Errata for the thesis entitled

Group VIII Transition Metal Complexes for Nonlinear Optical Switching

Patrick J. West

B.Sc. (Hons)

A thesis submitted for the degree of
Doctor of Philosophy
of The Australian National University

September 2011
I would like to thank the reviewers for providing advice and feedback on the submitted thesis. Below is a list of changes in response to the reviewers suggestions:

<table>
<thead>
<tr>
<th>Page and line reference</th>
<th>Previous text</th>
<th>New text</th>
</tr>
</thead>
<tbody>
<tr>
<td>p. iv, l. 4</td>
<td>then</td>
<td>than</td>
</tr>
<tr>
<td>p. 109, l. 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p. 7, l. 9-10,17</td>
<td>(\mu)</td>
<td>(\mu_0)</td>
</tr>
<tr>
<td>p. 16, l. 4</td>
<td>(d^8)</td>
<td>(d^8)</td>
</tr>
<tr>
<td>p. 30, l. 3</td>
<td>of the terpy.</td>
<td>of the terpy at 1.34(\mu \m)</td>
</tr>
<tr>
<td>p. 30, l. 10</td>
<td>phenathroline</td>
<td>1,10-phenanthroline</td>
</tr>
<tr>
<td>p. 34, chart</td>
<td>123: M = Os</td>
<td>123: M = Os</td>
</tr>
<tr>
<td>p. 42, l. 1</td>
<td>1,10-phenanthroline</td>
<td>1,10-phenanthroline</td>
</tr>
<tr>
<td>p. 43, chart 1</td>
<td>WLC</td>
<td>TPEF</td>
</tr>
<tr>
<td>p. 45, chart</td>
<td>reference 321</td>
<td>reference 328</td>
</tr>
<tr>
<td>p. 46, chart</td>
<td>GM esu</td>
<td>GM</td>
</tr>
<tr>
<td>p. 47, 49, 51, 52, chart</td>
<td></td>
<td>[Ru] = \textit{trans}-[Ru(dppe)_2]</td>
</tr>
<tr>
<td>p. 53, chart</td>
<td></td>
<td>o = open DTE, c = closed DTE, a = alkynyl, v = vinylidene, II/III = (formal) metal-centered oxidation states</td>
</tr>
<tr>
<td>p. 62, l. 15</td>
<td>Chemphyschem</td>
<td>ChemPhysChem</td>
</tr>
<tr>
<td>p. 67, l. 39</td>
<td>Ledoux-Rack</td>
<td>Ledoux-Rak</td>
</tr>
<tr>
<td>p. 76, l. 10</td>
<td>Previously, chloro-alkynyl</td>
<td>Previously, in the group chloro-alkynyl</td>
</tr>
<tr>
<td>p. 80, l. 8,11,15</td>
<td>ca</td>
<td>ca.</td>
</tr>
<tr>
<td>p. 81, l. 9,11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>p. 88, l. 6</td>
<td>suggests an IVCT</td>
<td>suggests that an IVCT</td>
</tr>
<tr>
<td>p. 88, l. 8</td>
<td>alternate</td>
<td>alternative</td>
</tr>
<tr>
<td>p. 91, Table 2.2</td>
<td>(NBu^\text{t}_4)PF_6</td>
<td>NBu^\text{t}_4PF_6</td>
</tr>
<tr>
<td>Page</td>
<td>Text</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>p. 93, l. 15,21</td>
<td>solvent THF or CH₂Cl₂</td>
<td></td>
</tr>
<tr>
<td>p. 99, l. 7</td>
<td>([RuCl(NCMe)(dppe)₂]⁺ ([RuCl(CH₃CN)(dppe)₂]⁺</td>
<td></td>
</tr>
<tr>
<td>p. 99, l. 20</td>
<td>([M – Cl + CNCH₃]⁺ ([M – Cl + CH₃CN]⁺</td>
<td></td>
</tr>
<tr>
<td>p. 110, l. 7</td>
<td>solvent solvent</td>
<td></td>
</tr>
<tr>
<td>p. 126, l. 14</td>
<td>at: 3302 cm⁻¹ at 3302 cm⁻¹</td>
<td></td>
</tr>
<tr>
<td>p. 129, legend</td>
<td>Os-Cl , Os-C(1) 2.5202(8), Os-Cl 2.5202(8), Os-C(1) 2.005(3)</td>
<td></td>
</tr>
<tr>
<td>p. 136, legend</td>
<td>0.46 V [1] (CH₂Cl₂) and 0.56 V [1] THF 0.46 V (CH₂Cl₂) and 0.56 V (THF)</td>
<td></td>
</tr>
<tr>
<td>p. 138, legend</td>
<td>0.56 V [1]. 0.56 V.</td>
<td></td>
</tr>
<tr>
<td>p. 141, table heading</td>
<td>[ε] [ε]</td>
<td></td>
</tr>
<tr>
<td>p. 141</td>
<td>Table 3.3 Table 3.4</td>
<td></td>
</tr>
<tr>
<td>p. 146</td>
<td>Table 3.4 Table 3.5</td>
<td></td>
</tr>
<tr>
<td>p. 148</td>
<td>Table 3.5 Table 3.6</td>
<td></td>
</tr>
<tr>
<td>p. 153, l. 5</td>
<td>ml mL</td>
<td></td>
</tr>
<tr>
<td>p. 155, l. 1</td>
<td>1267 ([M - NH₃-PF₆]⁺ 1267 ([M – NH₄PF₆]⁺</td>
<td></td>
</tr>
<tr>
<td>p. 156, l. 20</td>
<td>6.40 – 7.43 (m, 52H, Ph) 6.40 – 7.43 (m, 48H, Ph)</td>
<td></td>
</tr>
<tr>
<td>p. 157, l. 18</td>
<td>SiPr₃(dppe)₂ SiPr₃(dppe)₂</td>
<td></td>
</tr>
<tr>
<td>p. 158, l. 11</td>
<td>p. 159, l. 1,12</td>
<td>p. 204, l. 17</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>p. 163, l. 12</td>
<td>7.90 – 6.33 (m, 132H, Ar)</td>
<td>6.33 – 7.90 (m, 136H, Ar)</td>
</tr>
<tr>
<td>p. 177, l. 5</td>
<td>35,</td>
<td>35,</td>
</tr>
<tr>
<td>p. 180, l. 3</td>
<td>pendent</td>
<td>pendent</td>
</tr>
<tr>
<td>p. 183, l. 11</td>
<td>(\nu) (C≡C-Si). As shown previously</td>
<td>(\nu) (C≡C-Si). No other bands assigned as (\nu) (C≡C) were observed. As shown previously</td>
</tr>
<tr>
<td>p. 194, l. 3</td>
<td>to (\le) the maximum</td>
<td>to the maximum</td>
</tr>
<tr>
<td>p. 201, l. 19</td>
<td>7.55 – 6.69 (m, 295H, Ar)</td>
<td>6.69 – 7.55 (m, 303H, Ar)</td>
</tr>
<tr>
<td>p. 202, l. 23</td>
<td>0.99 (s, br, 3H, NH(_3))</td>
<td>0.99 (s, br, 6H, NH(_3))</td>
</tr>
<tr>
<td>p. 219, legend</td>
<td>0.46 V [1]</td>
<td>0.46 V</td>
</tr>
<tr>
<td>p. 222, legend</td>
<td>Table 4.3</td>
<td>Table 5.4</td>
</tr>
<tr>
<td>p. 225, l. 3</td>
<td>(C(_6)D(_6), 200 MHz)</td>
<td>(C(_6)D(_6))</td>
</tr>
<tr>
<td>p. 225, l. 4</td>
<td>(C(_6)D(_6), 50 MHz)</td>
<td>(C(_6)D(_6))</td>
</tr>
<tr>
<td>p. 225, l. 21</td>
<td>9.6 (C(_5)Me(_5))</td>
<td>9.6 (C(_5)Me(_5))</td>
</tr>
<tr>
<td>p. 226, l. 26</td>
<td>7.47 (d, 1H, (^3)J = 7.5 Hz, Ar), 7.29 (d, 1H, (^3)J = 7.7 Hz, Ar), 6.85 (dd, 1H, (^3)J = 7.8 Hz, Ar)</td>
<td>7.47 (d, 1H, (^3)J = 8.0 Hz, Ar), 7.29 (d, 1H, (^3)J = 7.7 Hz, Ar), 6.85 (dd, 1H, (^3)J = 8.0 Hz, Ar)</td>
</tr>
<tr>
<td>p. 228, l. 16</td>
<td>7.49 (d, 1H, (^3)J = 7.5, Ar), 7.24 (d, 1H, (^3)J = 7.6, Ar), 6.85 (dd, 1H, (^3)J = 7.7, Ar)</td>
<td>7.49 (d, 1H, (^3)J = 8.0, Ar), 7.24 (d, 1H, (^3)J = 7.6, Ar), 6.85 (dd, 1H, (^3)J = 8.0, Ar)</td>
</tr>
<tr>
<td>p. 229, l. 7</td>
<td>(J_{CP})</td>
<td>(^1J_{CP})</td>
</tr>
</tbody>
</table>
The following abbreviations are added to the list on page vii

DBU 1,8-Diazabicyclo[5.4.0]undec-7-ene
DTE 5,5'-dithienylperfluorocyclopentene
ITO indium tin oxide
ILCT intraligand charge transfer
TPEF two-photon excited fluorescence

For the Instrumentation sections on pages 93, 150 and 197 the following text

Electrospray ionisation mass spectra (ESIMS) were obtained using a Waters-micromass LCT-ZMD single quadrupole liquid chromatograph instrument; peaks are reported as m/z (assignment, relative intensity).

is replaced by:

Electrospray ionization mass spectra (ESIMS) were obtained from MeCN or MeOH solutions (a small amount of CH$_2$Cl$_2$ was used to increase solubility) using a VG Quattro II triple quadrupole MS instrument; peaks are reported as m/z (assignment, relative intensity (%)).
The Chart on page 119 is to be replaced with the following Chart which includes the numbering for C_{42}

![Chemical structure diagram]

The paragraph on page 146 describing the quantum mechanical calculations carried out on complexes 17 and 17^+ is to be replaced with the following paragraph which contains the orbital bases used.

3.2.2.7 Quantum mechanical calculations

DFT calculations at the SAOP/TZP//PBE/TZP level of theory were carried out on 17 and 17^+ in order to assign the UV-Vis absorption bands for the osmium bis-alkynyl complexes. In all calculations and for all atoms, the all-electron Slater type orbital basis sets used were of triple-ζ-plus-polarization quality (TZP). Orbital diagrams are shown in Figure 3.21 and results tabulated and compared to experimental data in Table 3.5.
The Chart on page 40 is to be replaced with the following chart, excluding complexes 163 – 165.

159: \(R^1 = R^2 = \text{CH}_3 \),
\(\beta/\beta_{\text{Chloroform (HRS)}} = 279 \text{ (MeCN)} \)146

160: \(R^1 = \text{CF}_3, R^2 = \text{Ph} \),
\(\beta/\beta_{\text{Chloroform (HRS)}} = 450 \text{ (MeCN)} \)146

161: \(R^1 = R^2 = \text{CH}_3 \),
\(\beta/\beta_{\text{Chloroform (HRS)}} = 2633 \text{ (MeCN)} \)146

162: \(R^1 = \text{CF}_3, R^2 = \text{Ph} \),
\(\beta/\beta_{\text{Chloroform (HRS)}} = 3333 \text{ (MeCN)} \)146

The experimentally obtained \(\mu/\beta \) for complexes 163 – 165 were erroneously attributed to reference 146 and were instead obtained via the EFISH method in the following reference:

The following references are provided for further information on virtual coupling as discussed on page 122:

The following reviewers comments have not resulted in changes to this thesis.

Reviewers comment: Title: Modern nomenclature would expect the use of Group 8 (specifically the iron group) rather than the archaic Group VIII which also encompassed metals from Groups 9 and 10.

Response: Whilst it is acknowledged that Group VIII doesn’t exclusively refer to iron, ruthenium and osmium (the transition metals used in this work) but also includes Group 9 and 10 transition metals, the title of the thesis is still appropriate as the Group 8 transition metals are included in Group VIII.

Reviewers comment: Summary. This is very general and while it covers the work reported it gives much less detail than would normally be presented in an abstract.

Response: The summary was intended to provide a brief overview of the content in each of the chapters without the level of detail of an abstract. Each of the chapters contains an introduction which provides details about past work in the area and the rational for the work presented in each chapter.

Reviewers comment: (page 25 chart) In the legend of cpnds 55 and 56, “β_{1,91}” should be written as “β_{1910}” to be consistent with the following text.

Reviewers comment: In the legend of cpnds 59 and 60, “β_{1,34}” should be written as “β_{1340}” to be consistent with the rest.

Response: Both μm and nm are used throughout the nonlinear optical literature. The wavelength unit used in each example are those used in the reference cited. The unit of wavelength used (nm or μm) is given in the text.

Reviewers comment: Note that in contrast to other chapters, Schemes and Figures were not numbered in Chapter 1.
Response: Due to the large number of Schemes and Figures in Chapter 1 it was decided not to number the Schemes and Figures and instead have each of the compounds numbered.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement</td>
<td>iii</td>
</tr>
<tr>
<td>Summary</td>
<td>iv</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>v</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>vii</td>
</tr>
<tr>
<td>Chapter 1 Inorganic materials for nonlinear optics: a review</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 2 Osmium chloro-alkynyl heterobimetallic complexes</td>
<td>72</td>
</tr>
<tr>
<td>Chapter 3 Osmium bis-alkynyl heterobimetallic complexes</td>
<td>102</td>
</tr>
<tr>
<td>Chapter 4 Branched heterobimetallic complexes</td>
<td>166</td>
</tr>
<tr>
<td>Chapter 5 Iron alkynyl complexes</td>
<td>207</td>
</tr>
<tr>
<td>Appendix A Chapter 2 NMR spectra</td>
<td>232</td>
</tr>
<tr>
<td>Appendix B Chapter 3 NMR spectra</td>
<td>247</td>
</tr>
<tr>
<td>Appendix C Chapter 4 NMR spectra</td>
<td>274</td>
</tr>
<tr>
<td>Appendix D Crystallographic data</td>
<td>286</td>
</tr>
</tbody>
</table>
I certify that the content of this thesis has never been submitted for any degree and is not currently being submitted for any other degree or qualification, that all the work and results are original unless due reference is made, and that any help has been acknowledged.

Patrick J. West
Metal alkynyl complexes have been shown to be potentially useful third-order nonlinear optical switches, with large two-photon absorption cross-sections and strong changes in photon absorption properties on oxidation. By forming multinuclear complexes, switches with more than two states can be made.

Chapter 1 presents an introduction to nonlinear optics and reviews some inorganic materials which have had their nonlinear optical properties measured.

Chapter 2 details new synthetic routes into binuclear complexes incorporating an osmium chloro-alkynyl metal centre. Structural, electrochemical and spectroelectrochemical studies on selected examples have been carried out.

Chapter 3 details new facile synthetic routes into osmium ammine-alkynyl and osmium bis-alkynyl complexes. Synthesis of osmium and ruthenium binuclear and trinuclear complexes with both diethynyl and triethynyl bridges between the metal atoms has been explored. Structural, electrochemical, spectroelectrochemical and theoretical studies have been carried out on selected complexes.

Chapter 4 reports the synthesis of a number of branched multinuclear complexes incorporating both osmium and ruthenium metal atoms. Electrochemical and spectroelectrochemical studies have been carried out on selected examples. The Z-scan technique has been used to investigate the third-order nonlinear optical properties of a number of linear and branched bimetallic complexes, showing large effects but some photo-induced instability.

Chapter 5 details the formation of a number of new mononuclear and unsymmetrical binuclear iron alkynyl complexes. The electrochemical and spectroelectrochemical behaviour of the complexes exhibiting a reversible redox process has been explored.
I am very grateful for the guidance, support and encouragement of my supervisors, Prof. Mark Humphrey and Dr Marie Cifuentes.

Chapter 1 has been adapted from a review co-written with Torsten Schwich, Prof. Marek Samoc, Dr Marie Cifuentes and Prof. Mark Humphrey.

Torsten Schwich and Dr Mike Randles are thanked and acknowledged for the crystal structure determinations and analysis within this project.

Dr Marie Cifuentes is thanked and acknowledged for assistance with electrochemistry and spectroelectrochemistry and for carrying out the associated studies of complexes 13 and 17.

Prof. Marek Samoc and Malgorzata Wielgus are thanked for the Z-scan measurements and analysis presented in this work and for patiently answering queries and teaching me to fit the theoretical curves. Dr Chris Corkery, Paul Gugger and Dr Marie Cifuentes are thanked for additional Z-scan assistance.

Erandi Kulasekera, Dr Simon Petrie and Prof. Rob Stranger are thanked for the theoretical calculations.

Torsten Schwich is thanked for providing many synthetic precursors and assistance in carrying out the reactions in Chapter 4.

Dr Frederic Paul is thanked for hosting me in his lab in Rennes, France, and assisting me with the iron chemistry in Chapter 5. Dr Gilles Argouarch and Dr Katy Green are thanked for providing many synthetic precursors and assistance with the iron chemistry in Chapter 5.
Paul Gugger is thanked for technical assistance and insightful discussions.

An ANU PhD Scholarship is gratefully acknowledged.

I would like to thank all members of the group for their friendship and support, in particular, Torsten, Mike, Rachel, Katy, Bandar, Chris, Mark, Adam, Pete, Mahbod, Guillaume, Vivek, Fazira, Aisyah, Erandi, Najib, Jennifer and Alan.

Special thanks must go to my family for their support and encouragement during my studies, in particular, Trista, Pauline, Arthur, Margaret, James, Stuart, Alex and Nathan.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ar</td>
<td>aryl</td>
</tr>
<tr>
<td>Bu</td>
<td>butyl</td>
</tr>
<tr>
<td>Cp</td>
<td>η⁵-cyclopentadienyl</td>
</tr>
<tr>
<td>Cp*</td>
<td>η⁵-pentamethylcyclopentadienyl</td>
</tr>
<tr>
<td>CT</td>
<td>charge transfer</td>
</tr>
<tr>
<td>d</td>
<td>doublet</td>
</tr>
<tr>
<td>dd</td>
<td>doublet-of-doublets</td>
</tr>
<tr>
<td>DFWM</td>
<td>degenerate four-wave mixing</td>
</tr>
<tr>
<td>dmso</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>dppe</td>
<td>1,2-bis(diphenylphosphino)ethane</td>
</tr>
<tr>
<td>dpdm</td>
<td>bis(diphenylphosphino)methane</td>
</tr>
<tr>
<td>EFISH</td>
<td>electric field-induced second harmonic generation</td>
</tr>
<tr>
<td>ESI</td>
<td>electro-spray ionisation</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>FT</td>
<td>fourier transform</td>
</tr>
<tr>
<td>GOF</td>
<td>goodness of fit</td>
</tr>
<tr>
<td>HOMO</td>
<td>highest-occupied molecular orbital</td>
</tr>
<tr>
<td>HRS</td>
<td>hyper-Rayleigh scattering</td>
</tr>
<tr>
<td>i</td>
<td>iso</td>
</tr>
<tr>
<td>i_{pa}</td>
<td>anodic current</td>
</tr>
<tr>
<td>i_{pc}</td>
<td>cathodic current</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>LMCT</td>
<td>ligand to metal charge transfer</td>
</tr>
<tr>
<td>LUMO</td>
<td>lowest-unoccupied molecular orbital</td>
</tr>
<tr>
<td>m</td>
<td>multiplet</td>
</tr>
<tr>
<td>Me</td>
<td>methyl</td>
</tr>
<tr>
<td>MLCT</td>
<td>metal to ligand charge transfer</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>n</td>
<td>normal</td>
</tr>
<tr>
<td>NLO</td>
<td>nonlinear optical</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>OTTLE</td>
<td>optically transparent thin-layer electrochemical</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl</td>
</tr>
<tr>
<td>Pr</td>
<td>propyl</td>
</tr>
<tr>
<td>s</td>
<td>singlet</td>
</tr>
<tr>
<td>SHG</td>
<td>second-harmonic generation</td>
</tr>
<tr>
<td>SOMO</td>
<td>singly occupied molecular orbital</td>
</tr>
<tr>
<td>t</td>
<td>tertiary</td>
</tr>
<tr>
<td>t</td>
<td>triplet</td>
</tr>
<tr>
<td>thf</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>THG</td>
<td>third-harmonic generation</td>
</tr>
<tr>
<td>TPA</td>
<td>two-photon absorption</td>
</tr>
<tr>
<td>TPL</td>
<td>two-photon luminescence</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>vis</td>
<td>visible</td>
</tr>
<tr>
<td>vtt</td>
<td>virtual triplet-of-triplets</td>
</tr>
<tr>
<td>WLD</td>
<td>wavelength dependence</td>
</tr>
<tr>
<td>2PA</td>
<td>two-photon absorption</td>
</tr>
</tbody>
</table>
Chapter 1

Inorganic materials for nonlinear optics: a review
Chapter 1
Inorganic materials for nonlinear optics: a review

Contents

1.1 Theory 3

1.2 Measurement Techniques
 1.2.1 Quadratic NLO properties of molecules 5
 1.2.1 Cubic NLO properties of molecules 9

1.3 Units 14

1.4 Second-Order Nonlinearities
 1.4.1 Complexes of pyridyl or polypyridyl ligands 16
 1.4.2 Complexes of porphyrins and related ligands 32
 1.4.3 Schiff base complexes 35
 1.4.4 Metal alkynyl complexes 37
 1.4.5 Metallocenyl Complexes 39

1.5 Third-Order Nonlinearities
 1.4.1 Complexes of pyridyl or polypyridyl ligands 41
 1.4.2 Complexes of porphyrins and related ligands 44
 1.4.3 Schiff base complexes 44
 1.4.4 Metal alkynyl complexes 45

1.6 Conclusions 54

1.7 References 55
1.1 Theory

Light is an electromagnetic wave and the propagation of light and its interaction with matter involve both the electrical and magnetic field components of that wave, both of which oscillate at the same frequency ω. In most cases, however, it is sufficient to consider only the electrical component $F(t, \mathbf{r})$, which for a monochromatic wave may be written as:

$$F(t, \mathbf{r}) = F_\omega \exp[i(\omega t -kr)] + c.c.$$ \hspace{1cm} (1)

where \mathbf{k} is the wavevector. As light propagates in a medium, the electric field interacts with matter, forcing the electrons in matter to oscillate at the light frequency. This interaction may lead to various effects including refraction, scattering, and absorption of light beams. At low light intensities, the oscillating electrical polarization induced in matter by a light beam is proportional to the amplitude of the electrical field F_ω. However, intense laser beams, and especially pulses of light from pulsed lasers, may involve electrical field strengths that approach in magnitude the internal electrical fields corresponding to the interactions of electrons with atomic nuclei. Under such circumstances, the proportionality of the electrical response to F_ω is no longer assured, and nonlinear optical effects may arise.

For optical media composed of molecules, it is useful to consider the response of a molecule to the electrical field as an expansion of the Cartesian components of its electrical dipole moment in a power series:

$$\mu_i(F) = \mu_{0,i} + \alpha_{ij}F_j + \beta_{ijk}F_jF_k + \gamma_{ijkl}F_jF_kF_l + \ldots$$ \hspace{1cm} (2)

where α, β and γ are the linear polarizability and the first and second hyperpolarizabilities, also termed the second-order and third-order polarizabilities, respectively. The field components F_i refer to the local field inside the medium. To appreciate the meaning of the polarizabilities, we note first that they are tensors of consecutively increasing rank (the above equation is written using Einstein's
convention of summing over repeated indices), and thus the effects depend on the direction of the electric field vector in relation to the directions of the molecular axes. In addition to that, however, one needs to account for the fact that the electric field is given by Eq. (1), or, more generally, by a combination of such terms with various values of ω, k, and F_{ω}. By substituting the sums of such terms into Eq. (2), one can verify that the presence of the quadratic term (the "β term") leads to the appearance of dipole oscillations at new frequencies that are sums and differences of the input frequencies (sum and difference frequency generation, SFG and DFG). When there is only a single frequency in the input, the nonlinear response includes a term oscillating at 2ω (second harmonic generation, SHG) as well as a time-independent term. In a similar way, the cubic "γ term" is capable of mixing three different components of the input field, or generating the third harmonic of a single input frequency (THG). An important term in the oscillation of the molecular dipole is that having the same frequency as the input field, but arising from the combination of three same-frequency input components.

The introduction of time-varying fields into Eq. (2) necessitates that one accounts for the possible lag between the field oscillation and the response of the electrons in the molecule. Such a lag, or a phase shift between the two oscillations, is treated by considering Fourier components of the input field and of the response, and defining all polarizabilities as complex quantities exhibiting frequency dispersion. This is relatively simple in the case of α, which should be treated as a complex quantity $\alpha(\omega)$, but becomes more complicated for β, which may depend on two different input frequencies, and γ, which may depend on three frequencies. The traditional notation for these two quantities is $\beta(-\omega_3;\omega_1,\omega_2)$ and $\gamma(-\omega_4;\omega_1,\omega_2,\omega_3)$, respectively, where the first of the arguments is the output frequency which is equal to the sum of the input frequencies. For example, the quadratic polarizability responsible for SHG is denoted as $\beta(-2\omega;\omega,\omega)$, while the cubic polarizability responsible for a degenerate cubic response is $\gamma(-\omega;\omega,-\omega,\omega)$. The latter quantity is of considerable interest because its real part contributes to the technologically important effect of nonlinear refraction, the dependence of the refractive index of a medium on the light intensity, while its
imaginary part contributes to the very useful effect of nonlinear absorption.\(^1\) The nonlinear absorption of molecules is usually quantified by presenting it in the form of the nonlinear absorption cross-section. When nonlinear absorption corresponds to the simultaneous absorption of two photons of the same energy, this quantity is called the two-photon absorption cross-section, \(\sigma_2\), and is most often given in Goeppert-Mayer units where \(1\ GM = 10^{50}\ cm^4\ s\).

From a practical point of view, the microscopic properties of molecules forming a photonic material must be summed together to provide the macroscopic NLO properties, while accounting for the differences between the microscopic (local) electric field and the macroscopic (external) field. By analogy to Eq. (2), the macroscopic effects are described by the power series:

\[
P_i(F) = P_{0,i} + C \left[\chi^{(1)}_{ij} F_j + \chi^{(2)}_{ijk} F_j F_k + \chi^{(3)}_{ijkl} F_j F_k F_l + ... \right] \quad (3)
\]

where the constant \(C\) depends on the choice of the system of units (1 for cgs units, \(\varepsilon_0\) for SI units), \(P\) is the macroscopic polarization vector, the field \(F\) is the external field and \(\chi^{(n)}\) are susceptibilities of consecutive orders. As with polarizabilities, the macroscopic susceptibilities are complex quantities with complicated frequency dependences; the calculation of a susceptibility of crystalline media from molecular properties of the constituent molecules requires the knowledge of the orientations of the molecules as well as the local field factors, and is a particularly tedious task. This is simplified considerably in the case of isotropic media such as solutions or glasses.

1.2 Measurement techniques

1.2.1 Quadratic NLO properties of molecules

The quadratic polarizability \(\beta\) is a third-rank tensor, i.e. it can be presented as a 3 x 3 x 3 matrix. As is true for all molecular property tensors, it has to fulfill the Neumann principle (at a minimum, a physical property has to possess the same symmetry as
that of the molecule). From this it follows that the existence of a center of symmetry in a molecule causes all the elements of the β tensor to vanish. In a similar way, all elements of the $3 \times 3 \times 3 \chi^{(2)}$ tensor are equal to zero for isotropic media, so a perfectly random liquid or a solid solution of second-order NLO-active molecules should not exhibit second-order NLO effects such as coherent second-harmonic generation.

Measurements carried out on crystals belonging to noncentrosymmetric symmetry classes afford second-order nonlinear optical properties; however, such measurements are cumbersome because of the necessity to grow large (typically a few millimetre in size) optical quality single crystals of the compound to be studied, coupled to the need to take measurements with different orientations of the crystallographic axes of the sample while varying the polarization of the laser beam, etc. Usually, the SHG signals are collected as so-called Maker fringes, the amplitude and periodicity of the fringes being analyzed. Such measurements are rarely attempted for new materials unless there is the prospect of practical applications in the crystal form. Measurements of the second-harmonic signals from solutions or solid samples in which the NLO chromophores have net noncentrosymmetric alignment are considerably simpler. Various procedures to effect alignment have been employed, the most common being application of a dc electric field. The SHG effect arising under such circumstances is electric field-induced second-harmonic generation (EFISHG or EFISH). In a typical experiment (see, for example, ref. 2), a series of solutions of the compound of interest in an organic solvent are prepared, and are then examined in a special cell that permits application of intense electric fields (typically of the order of 10^5 V m$^{-1}$). To minimize problems with electron and ionic conduction in the samples, the field is usually applied in the form of a relatively short voltage pulse that is timed to start just before the laser pulse (which is shorter than the voltage pulse). The molecules of the solute and the solvent can contribute to the generation of the second harmonic of the laser frequency in two ways. All molecules, independent of their symmetry, will contribute through their cubic
hyperpolarizabilities. This arises from a polarization term at the second harmonic that involves the product of the orientationally-averaged cubic hyperpolarizability and the dc field amplitude $<\gamma(-2\omega;\omega,\omega,0)>F_{dc}$. The molecules possessing a static dipole moment μ_0 provide another (usually larger) contribution: they tend to align with the dc field direction along their dipole moment direction. Since thermal motions counteract such alignment, the net alignment can be found from consideration of the balance between these two tendencies, which leads to the Langevin formula. In effect, the contribution of dipolar orientation to the nonlinear polarization at 2ω is found to be proportional to $\frac{\mu \beta}{kT}F_{dc}$. The tensor product $\mu \beta$ appearing here needs a comment: it can be considered a scalar product of the μ vector and the so-called vectorial part of the β tensor. Since many molecules of importance for second-order nonlinear optics are elongated in one direction and possess a dipole moment in that direction, it is often the case that the value of this product (the quantity that is determined experimentally in EFISH experiments) can be treated as the product of the length of the dipole moment of the molecules and the magnitude of the diagonal component of β along the molecular axis (often denoted β_{333}, 3 being the molecular axis). It should be noted that the product $\mu \beta$ may have different signs for different molecules; this explains the need for measurements on several concentrations of the chromophore in the solvent, so as to correctly account for the same-sign or opposite-sign contribution of the solvent.

This principle of determining the second-order nonlinearity through electric field alignment of dipolar molecules can also be applied when the molecules are not in a liquid, but in a solid solution, e.g. in a polymer or sol-gel glass matrix. The main difference is that the dipoles must be aligned by electric-field poling when the system is in a state allowing for reorientation of the dipoles, i.e. above the glass transition temperature in a polymer, or before crosslinking of a matrix. SHG measurements in poled matrices are often used for NLO polymers, but are not common for organometallics.
The EFISH method cannot be applied for determining the NLO properties of second-order NLO molecules possessing trigonal symmetry, which have no net electric dipole but may have an electric octupole moment. The β tensor of such molecules is dominated by the octupolar components (see, for example, ref. 3 for a discussion of the dipolar and octupolar components of β). Another deficiency of EFISH is that it is difficult to apply to conducting solutions (i.e. those containing ions). Octupolar and conducting systems can be studied with an alternative technique, namely hyper-Rayleigh scattering (HRS). As mentioned above, solutions of second-order NLO chromophores cannot generate coherent SHG beams because the contributions of individual molecules cancel out through the randomness of their orientations in space. However, such solutions can generate SHG in a non-coherent way: as a signal scattered in all directions. The principle of the effect is similar to that of ordinary Rayleigh scattering, in which light is scattered without the change of its frequency.

The experiment to measure this is rather simple. A beam from a pulsed laser (nanosecond, picosecond or femtosecond) is tightly focused inside a cell containing the solution of interest. Light scattered from the vicinity of the focal point is collected with low f-number optics and the component at 2ω is separated with narrow band filters or a monochromator, before being passed to a sensitive detector. The intensity of the HRS signal is proportional to the square of the fundamental light intensity and to the square of a product of a certain combination of the components of the β tensor and the concentration of the chromophore. The experiment can be conveniently calibrated by performing measurements on a solution of a well-known NLO chromophore (e.g. p-nitroaniline). This technique is currently the most popular way of examining the second-order NLO effects in organometallic molecules. Its main drawback is the fact that the light intensities employed in the experiments are quite high, and can therefore induce effects additional to HRS. The main problem is upconverted emission from multiphoton absorption-induced fluorescence of the solution. Although the fluorescence component can, in principle, be rejected based on the fact that it has a finite lifetime, unlike HRS which is instantaneous, and also
because its bandwidth is much broader than the SHG emission, the results obtained for fluorescent molecules should be treated with care.

In both cases (EFISH and HRS), the important factor is the choice of the fundamental wavelength of the experiment. This is significant because of the dispersion of β and because of the possibility of artifacts such as multiphoton-excited emission, which can take place if the energies of two photons (or three in the case of three-photon absorption) are sufficient to reach an excited state of the chromophore.

An important second-order NLO effect is the linear (Pockels) electro-optic effect. Measurements of this effect can be relatively easily accomplished by several techniques including the ATR technique and the Teng-Man technique. The measured quantity is then the electro-optic coefficient r, which involves the $\beta(-\omega;\omega,0)$ hyperpolarizability.

1.2.2 Cubic NLO properties of molecules

The cubic hyperpolarizability γ is a fourth rank tensor (3 x 3 x 3 x 3 matrix). Unlike second-order NLO effects, orientational averaging for a random collection of third-order NLO chromophore molecules always leads to non-zero effects. In most cases, the average hyperpolarizability is given by:

$$<\gamma> = \frac{1}{15}(\gamma_{iij} + \gamma_{iij})$$

which reduces to $<\gamma> = 1/5\gamma_{1111}$ when one element of the tensor, γ_{1111}, is dominant. The macroscopic cubic susceptibility $\chi^{(3)}_{ijkl}$ for an isotropic system, such as a solution, has twenty-one non-zero elements, three of which are independent. One usually determines $\chi^{(3)}_{1111}$, which can then be used to calculate $<\gamma>$.
While polarizabilities of all orders and corresponding to various frequency mixing schemes should be treated as complex, the real and imaginary parts of some have more immediate practical significance than others. There is little interest in the imaginary part of the second-order hyperpolarizability $\beta(-2\omega;\omega,\omega)$, because the second-harmonic generation process is usually carried out at frequencies well removed from the resonance frequencies of the material. On the other hand, both the real and imaginary parts of the above-mentioned degenerate cubic hyperpolarizability are of considerable practical interest.

The common techniques for the determination of the cubic NLO properties of molecules address different frequency combinations possible for $\gamma(-\omega_4;\omega_1,\omega_2,\omega_3)$. Currently, the most popular techniques are third-harmonic generation (THG), Z-scan, and degenerate four-wave mixing (DFWM). In all cases, solutions in liquid solvents or in solid matrices can be examined.

The third-harmonic generation experiments are performed with a pulsed laser beam impinging on a sample, the intensity of the beam generated at the third harmonic usually being monitored as a function of the angle of inclination of the sample with respect to that of the fundamental beam, which leads to the formation of Maker fringes similar to those from SHG measurements. There is no need to electrically pole the sample; on the contrary, one needs to account for the contributions of THG generated in all components of the system (e.g. glass walls or glass substrate, in addition to the liquid or solid sample). The interference between the signals from components of the system may be helpful in resolving the real and imaginary contributions to the cubic susceptibility $\chi^{(3)}(-3\omega;\omega,\omega,\omega)$ or the corresponding hyperpolarizabilities. A major limitation for organometallics is that ω needs to be chosen to avoid material resonances at ω, 2ω, and 3ω, which is difficult for molecules absorbing in the visible region.
Z-scan11 is currently the most widely applied technique for determining the real and imaginary parts of $\gamma(-\omega;\omega,-\omega,\omega)$. This technique measures two technologically relevant NLO parameters of a sample: its nonlinear refractive index and its nonlinear absorption coefficient. The former parameter can be defined by the relation $\Delta n = n_2 I$, while the latter parameter is defined by the analogous expression $\Delta \alpha_a = \alpha^{(2)} I$, where n is the refractive index, n_2 is the nonlinear refractive index, $\alpha^{(2)}$ is the nonlinear absorption coefficient, and $\Delta \alpha_a$ represents the change in the linear absorption coefficient induced by the intensity I (the index a is used here to distinguish this absorption coefficient from the linear polarizability).

The principle of Z-scan is as follows: a laser beam is focused by a lens, and the sample travels on a stage from a point before the beam focus (-z) through the focus ($z = 0$) to a point beyond the focus (+z). As the sample travels, it starts from a location where the light intensity is moderate, crosses the point of the highest intensity at $z = 0$ (because of the smallest beam diameter at that point) to a location where the intensity becomes much smaller again at +z. The changes of the intensity cause two effects. The change in the absorbance of the sample will influence the total power transmitted through the sample. The change in the refractive index, on the other hand, causes the sample to act as an induced lens, which contributes to the distortion of the beam in the far field (well after the sample). Both effects can be studied simultaneously: the nonlinear absorption, through monitoring the total power in the transmitted beam as a function of z (so called open-aperture Z-scan), and the nonlinear refraction, through monitoring the power transmitted through a small pinhole located at the centre of the beam in the far-field (closed-aperture Z-scan). The nonlinear refraction and nonlinear absorption coefficients obtained from the Z-scan data can then be used to compute the real and imaginary parts of the hyperpolarizability of the solute, taking into account the contribution to the signal coming from the solvent and the cell walls measured in a separate experiment.
The major difficulty with Z-scan measurements is that contributions to absorption and refraction at high light intensities may arise from a number of disparate processes. For example, a common problem is that linear and nonlinear absorption may lead to local heating of the solution, causing thermo-optic phenomena (changes in the refractive index and absorption coefficient due to a change of temperature). To avoid such contributions, it is necessary to use low repetition rate (usually 1 kHz or slower) short (typically 100 fs) laser pulses for Z-scan measurements. Nevertheless, distinguishing between various possible contributions to the Z-scan signals is only possible with additional, time-resolved experiments.

Historically, the most frequently employed time-resolved technique for determining cubic nonlinearities is degenerate four-wave mixing (DFWM). In the so-called BOXCARS geometry of the experiment, suitable for use with short-pulse lasers, a sample is subjected to the simultaneous action of three light beams, which are all derived from a single source by splitting the beam and adjusting the beam paths to ensure all beams arrive at the sample simultaneously. The beams are usually positioned in space in such a way that they arrive at a screen after the sample defining three corners of a rectangle. The interaction of the beams in the sample leads to the formation of volume gratings: periodic structures formed by changes in the refractive index and absorption coefficient of the material. The gratings contribute to the formation of new light beams: in the BOXCARS geometry, there is the possibility of forming a phase-matched beam pointing into the fourth corner of the above-mentioned rectangle, as well as several (usually weaker) non-phase matched beams. The intensities of the beams created in the DFWM process are proportional to $|\chi^{(3)}|^2$, and so resolving the contributions into those from nonlinear refraction and those from nonlinear absorption requires additional study. This can be accomplished by a separate measurement of nonlinear absorption, or by determination of the phase of the DFWM signal through other means (for example,
using concentration dependences for a series of solutions of a chromophore in a solvent,\(^{13}\) or through coherent detection\(^{14}\). The advantage of DFWM when performed with short laser pulses is the possibility of studying the temporal behavior of the induced changes in the refractive index and the absorption coefficient.

A simpler way of performing time-resolved experiments is by using the pump-probe technique, in which two pulsed laser beams of the same or different wavelengths arrive at the sample with a varied delay. The first beam, the pump, induces a change in the sample and the second, the probe, can sense these changes through the change of transmittance of the sample. This simplest manifestation (using the same wavelength for the pump and probe) affords the nonlinear absorption coefficient related to \(\text{Im}[\gamma(-\omega;\omega,\omega)]\), while the use of two different wavelengths provides \(\text{Im}[\gamma(-\omega_1;\omega_1,-\omega_2,\omega_2)]\). A useful way of implementing the experiment is with white light supercontinuum as the probe, because this can provide a complete spectrum of the non-degenerate nonlinear absorption coefficient in a single experiment.

The use of the pump-probe principle for the determination of nonlinear refraction requires some modification to the experiment. The Kerr gate experiment uses a pump-probe setup in which the transmission of the probe beam, polarized at 45 degrees to the pump beam, is monitored through a crossed analyzer. The intensity of the probe transmitted through the analyzer can then be related to a combination of off-diagonal components of \(\chi^{(3)}\). Resolution of the effect into that due to refractive and absorptive NLO properties requires a modification of the technique called heterodyne Kerr gate.

Nonlinear absorption is often investigated in an indirect way by two-photon excited fluorescence.\(^{15}\) In this technique, a spectrum of the nonlinear absorption coefficient can be obtained by simply recording the dependence of the fluorescence induced by
two-photon absorption on the wavelength of the excitation, and then comparing the wavelength dependence of the fluorescence with that of a standard well-known fluorescent dye. The spectrum obtained is of the product of the two-photon absorption cross-section of a molecule and its fluorescence quantum yield; the quantum yield is usually assumed to be equal to that measured under ordinary one-photon excitation.

The cubic NLO properties can also be observed when one of the exciting fields is not derived from a light beam but from a dc source. The refractive behavior observed under these conditions is the quadratic electro-optic effect or Kerr effect, while the absorptive behavior is electroabsorption or the Stark effect. The nonlinear susceptibilities derived from these measurements are the real and imaginary parts of $\chi^{(3)}(-\omega;\omega,0,0)$, respectively.

1.3 Units (conversions, definitions, difficulties)

Much confusion may arise when attempts are made to compare results of different authors using various conventions of defining the NLO parameters, different units systems and employing various experimental techniques. These issues have been discussed at length in the literature. In short, the difficulties arise from three sources.

- The first source of difficulties lies in the definitions of the NLO parameters. Eq. (2) and (3) are power series that can be written with or without explicitly including the $1/n!$ factors in the power expansion terms. This in itself may lead to quantities differing by a factor of $2! = 2$ and $3! = 6$ in the cases of second-order and third-order NLO effects, respectively. It should also be noted that the transition from Eqs (2) and (3) to frequency-dependent NLO parameters involves substituting in Eq. (1) which is often written with an additional factor of $1/2$ in front of the field amplitude. This leads to another
factor which will be 4 and 8 in the cases of second-order and third-order processes, respectively. An uncertainty is also the question of including so-called degeneracy factors in the definition of the NLO parameters. Since NLO susceptibilities and hyperpolarizabilities are defined for a given combination of the input frequencies, degeneracy factors arise as an effect of summing over the field amplitudes of fields with the same frequency. For example, the γ used to describe the process of third-harmonic generation and that used to describe nonlinear refraction may differ by a factor of 3 depending on whether the degeneracy factor is included in the definition of γ or not. It is usually considered prudent to define the hyperpolarizabilities in such a way that they collapse to the same value as the frequencies ω_i all go to zero.

- The second important consideration is that of using the proper units system. Traditionally, the cgs system was used for molecular parameters while the SI system and mixed units systems (e.g. cm2/W for the values of the nonlinear refractive index n_2) are more common for macroscopic nonlinear parameters. In addition to that, quantum chemists use the atomic units system for the quantities calculated theoretically and care needs to be taken when converting from those units to the experimental ones.

- The third difficulty is in comparing results of different experiments. Even if the degeneracy factors and other contentious issues are dealt with, the remaining problem is always the specificity of the experiment carried out, the frequency dependence of the parameters and the possible dependences of the parameters on factors such as the laser pulse duration See, e.g., ref. 17.
1.4 Second-Order Nonlinearities

Selected second-order nonlinearities of pyridyl, polypyridyl, and porphyrin complexes through 2004 have been summarized,18 and a review of quadratic NLO properties of square planar d8-metal dithiolene complexes through 2008 has appeared.19

1.4.1 Complexes of Pyridyl or Polypyridyl Ligands

Pyridyl complexes were amongst the first inorganic complexes to be assessed for optical nonlinearity20 and they continue to attract attention with a large number of complexes assayed for second-order properties.21-59 The N-heterocycle is typically 4-functionalized with donor or acceptor substituents. The quadratic NLO response in N-ligated pyridyl complexes is dominated by a low-energy transition that is MLCT in nature for acceptor substituents and ILCT in character for donor groups, the metal functioning as an inductive electron acceptor for the latter.60 Coe's group has explored the effect on quadratic nonlinearity of a variety of structural modifications in this system, and has reviewed his group's studies through 2005 of pyridyl complexes with pyridinium groups as quadratic NLO switches.21

Ruthenium complexes bearing a variety of co-ligand sets, namely chlorobis(diarsine),37,38 tetra(amine)pyridine/N-methylpyrazole,35,38,47,48 penta(amine),35,42,47,48 and penta(cyano) co-ligands,45 have been examined. Varying the quaternizing substituent in chlorobis(diarsine) complexes of 4-functionalized pyridines results in an increase in Stark spectroscopy-derived quadratic nonlinearities on proceeding from Me to Ph or pyrimidyl group (1 to 2 or 3).37 Oligo(ethynyl)-connected N-methylpyridinium-functionalized pyridine complexes 6-13 afford Stark- and HRS-derived β_0 values that increase on proceeding from $n = 0$ to 1 and then 2, with lower absolute values than those of the analogous ethenyl-linked complexes.38
1: $R = \text{Me}$, β_0 (Stark) = 131×10^{-30} esu (PrCN)37
2: $R = \text{Ph}$, β_0 (Stark) = 203×10^{-30} esu (PrCN)37
3: $R = \text{R}$, β_0 (Stark) = 200×10^{-30} esu (PrCN)37

4: $\lambda_{\text{max}} = 491$ nm (PrCN), β_0 (Stark) = 113×10^{-30} esu (PrCN), β_0 (HRS) = 45×10^{-30} esu (MeCN)38

5: $\lambda_{\text{max}} = 509$ nm (PrCN), β_0 (Stark) = 146×10^{-30} esu (PrCN), β_0 (HRS) = 45×10^{-30} esu (MeCN)38
Coe and co-workers have also examined oligo(ethenyl)-connected N-methylpyridinium-functionalized pyridine complexes 14-27 in which the trans-disposed ligand is ammine, N-methylimidazole, or pyridine.47,48 The CT bands in the visible region of these complexes are \(d \rightarrow \pi^*\) metal-to-ligand in character; these CT bands are unusual in that they blue-shift on increasing the number of ethenyl linkages. HRS- and Stark-derived frequency-independent nonlinearities \(\beta_0\) are maximized at two ethenyl linkages, unlike related organic compounds for which the nonlinearity increases on \(E\)-ethenyl chain lengthening.
14: $n = 0$, $\lambda_{\text{max}} = 646 \text{ nm (PrCN)}$, β_0 (Stark) = $120 \times 10^{-30} \text{ esu (PrCN)}$, β_0 (HRS) = $123 \times 10^{-30} \text{ esu (MeCN)}^{47}$
15: $n = 1$, $\lambda_{\text{max}} = 682 \text{ nm (PrCN)}$, β_0 (Stark) = $175 \times 10^{-30} \text{ esu (PrCN)}$, β_0 (HRS) = $142 \times 10^{-30} \text{ esu (MeCN)}^{47}$
16: $n = 2$, $\lambda_{\text{max}} = 675 \text{ nm (PrCN)}$, β_0 (Stark) = $482 \times 10^{-30} \text{ esu (PrCN)}$, β_0 (HRS) = $372 \times 10^{-30} \text{ esu (MeCN)}^{47}$
17: $n = 3$, $\lambda_{\text{max}} = 671 \text{ nm (PrCN)}$, β_0 (Stark) = $475 \times 10^{-30} \text{ esu (PrCN)}$, β_0 (HRS) = $131 \times 10^{-30} \text{ esu (MeCN)}^{47}$

18: $n = 0$, $\lambda_{\text{max}} = 660 \text{ nm (PrCN)}$, β_0 (Stark) = $170 \times 10^{-30} \text{ esu (PrCN)}$, β_0 (HRS) = $100 \times 10^{-30} \text{ esu (MeCN)}^{47}$
19: $n = 1$, $\lambda_{\text{max}} = 690 \text{ nm (PrCN)}$, β_0 (Stark) = $256 \times 10^{-30} \text{ esu (PrCN)}$, β_0 (HRS) = $168 \times 10^{-30} \text{ esu (MeCN)}^{47}$
20: $n = 2$, $\lambda_{\text{max}} = 686 \text{ nm (PrCN)}$, β_0 (Stark) = $586 \times 10^{-30} \text{ esu (PrCN)}$, β_0 (HRS) = $237 \times 10^{-30} \text{ esu (MeCN)}^{47}$
21: $n = 3$, $\lambda_{\text{max}} = 678 \text{ nm (PrCN)}$, β_0 (Stark) = $563 \times 10^{-30} \text{ esu (PrCN)}$, β_0 (HRS) = $175 \times 10^{-30} \text{ esu (MeCN)}^{47}$

22: $n = 0$, $\lambda_{\text{max}} = 611 \text{ nm (PrCN)}$, β_0 (Stark) = $171 \times 10^{-30} \text{ esu (PrCN)}$, β_0 (HRS) = $85 \times 10^{-30} \text{ esu (MeCN)}^{48}$
23: $n = 2$, $\lambda_{\text{max}} = 631 \text{ nm (PrCN)}$, β_0 (Stark) = $514 \times 10^{-30} \text{ esu (PrCN)}$, β_0 (HRS) = $75 \times 10^{-30} \text{ esu (MeCN)}^{48}$
24: $n = 3$, $\lambda_{\text{max}} = 625 \text{ nm (PrCN)}$, β_0 (Stark) = $412 \times 10^{-30} \text{ esu (PrCN)}$, β_0 (HRS) = $43 \times 10^{-30} \text{ esu (MeCN)}^{48}$

25: $L = \text{NH}_3$, $\lambda_{\text{max}} = 610 \text{ nm (PrCN)}$, β_0 (Stark) = $373 \times 10^{-30} \text{ esu (PrCN)}$, β_0 (HRS) = $19 \times 10^{-30} \text{ esu (MeCN)}^{48}$
26: $L = \begin{array}{c}
\text{N} \\
\lambda_{\text{max}} = 573 \text{ nm (PrCN)}, \beta_0$ (Stark) = $343 \times 10^{-30} \text{ esu (PrCN)}, \beta_0$ (HRS) = $88 \times 10^{-30} \text{ esu (MeCN)}^{48}
\end{array}$
27: $L = \begin{array}{c}
\text{N}\text{Me} \\
\lambda_{\text{max}} = 610 \text{ nm (PrCN)}, \beta_0$ (Stark) = $397 \times 10^{-30} \text{ esu (PrCN)}, \beta_0$ (HRS) = $46 \times 10^{-30} \text{ esu (MeCN)}^{48}
\end{array}$
Coe and co-workers have used similar complexes to demonstrate quadratic NLO “switching”, the earlier solution studies having been extended to the solid-state. The penta(ammine)ruthenium complex 14A, featuring an aryl-quaternized 4,4'-bipyridinium ligand, was assembled into a non-centrosymmetric multi-layer Langmuir-Blodgett film by alternately depositing the complex and arachidic acid, and the resultant film deposited onto ITO-coated glass. Oxidation reduced the SHG intensity by ca 50%, but continued redox cycling degraded the signal (Figure below).

Electrochemical switching of the 532 nm SHG from an alternating LB of 14A on ITO coated glass.

The [Fe(CN)₅]³⁻ center is very electron-rich, functioning as a very strong donor when coupled to N-methyl/aryl-pyridinium acceptors in donor-bridge-acceptor arrays, and affording complexes with intense and very broad MLCT transitions that are strongly solvatochromic. Stark spectroscopy suggests substantial NLO responses that increase with chromophore length. Not surprisingly, comparison to analogous [Ru(NH₃)₅]²⁺
complexes reveal an increase in HRS-derived nonlinearity in moving to the iron examples. Protic switching of nonlinearity was demonstrated in these complexes using both HRS and Stark spectroscopy, with a ca four-fold decrease in the magnitude of β being observed on protonation.

$$\text{NC-Fe-CN}$$

28: $R = \text{Me}, \lambda_{\text{max}} = 534 \text{ nm (H}_2\text{O)}, \beta_0 (\text{Stark}) = 61 \times 10^{-30} \text{ esu (Glycerol/H}_2\text{O, 50/50)}, \beta_0 (\text{HRS}) = 2 \times 10^{-30} \text{ esu (H}_2\text{O)}^{45}$

29: $R = \text{Ph}, \lambda_{\text{max}} = 566 \text{ nm (H}_2\text{O)}, \beta_0 (\text{Stark}) = 88 \times 10^{-30} \text{ esu (Glycerol/H}_2\text{O, 50/50)}, \beta_0 (\text{HRS}) = 22 \times 10^{-30} \text{ esu (H}_2\text{O)}^{45}$

30: $R = \text{COMe} \lambda_{\text{max}} = 584 \text{ nm (H}_2\text{O)}, \beta_0 (\text{Stark}) = 114 \times 10^{-30} \text{ esu (Glycerol/H}_2\text{O, 50/50)}, \beta_0 (\text{HRS}) = 31 \times 10^{-30} \text{ esu (H}_2\text{O)}^{45}$

31: $R = \text{N} \lambda_{\text{max}} = 618 \text{ nm (H}_2\text{O)}, \beta_0 (\text{Stark}) = 166 \times 10^{-30} \text{ esu (Glycerol/H}_2\text{O, 50/50)}, \beta_0 (\text{HRS}) = 50 \times 10^{-30} \text{ esu (H}_2\text{O)}^{45}$

32: $R = \text{Me}, \lambda_{\text{max}} = 538 \text{ nm (H}_2\text{O)}, \beta_0 (\text{Stark}) = 119 \times 10^{-30} \text{ esu (Glycerol/H}_2\text{O, 50/50)}, \beta_0 (\text{HRS}) = 4 \times 10^{-30} \text{ esu (H}_2\text{O)}^{45}$

33: $R = \text{Ph}, \lambda_{\text{max}} = 562 \text{ nm (H}_2\text{O)}, \beta_0 (\text{Stark}) = 174 \times 10^{-30} \text{ esu (Glycerol/H}_2\text{O, 50/50)}, \beta_0 (\text{HRS}) = 22 \times 10^{-30} \text{ esu (H}_2\text{O)}^{45}$

34: $\lambda_{\text{max}} = 660 \text{ nm (H}_2\text{O)}, \beta_0 (\text{Stark}) = 45 \times 10^{-30} \text{ esu (Glycerol/H}_2\text{O, 50/50)}, \beta_0 (\text{HRS}) = 165 \times 10^{-30} \text{ esu (H}_2\text{O)}^{36}$

35: $n = 2, \lambda_{\text{max}} = 520 \text{ nm (H}_2\text{O)}, \beta_0 (\text{Stark}) = 54 \times 10^{-30} \text{ esu (Glycerol/H}_2\text{O, 50/50)}, \beta_0 (\text{HRS}) = 73 \times 10^{-30} \text{ esu (H}_2\text{O)}^{36}$

36: $n = 3, \lambda_{\text{max}} = 502 \text{ nm (H}_2\text{O)}, \beta_0 (\text{Stark}) = 59 \times 10^{-30} \text{ esu (Glycerol/H}_2\text{O, 50/50)}, \beta_0 (\text{HRS}) = 56 \times 10^{-30} \text{ esu (H}_2\text{O)}^{36}$
The crucial CT interaction in these complexes is along the molecular dipole. Coe’s group has also extended these studies to embrace V-shaped complexes with *cis*-disposed *N*-pyridyl ligands,\(^{30,44}\) the resultant complexes possessing large NLO responses with 2D character. While HRS studies suggest that \(\beta_{zzz}\) is the dominant tensor component, Stark measurements and FF calculations are consistent with similar or even greater contribution to the global \(\beta\) value from the \(\beta_{zyy}\) tensor component.\(^{44}\)

\[\text{38: } R = \text{Me,} \quad \lambda_{\text{max}} = 628 \text{ nm (PrCN), } \beta_0 (\text{Stark}) = 137 \times 10^{-30} \text{ esu (PrCN)}, \beta_0 (\text{HRS}) = 58 \times 10^{-30} \text{ esu (MeCN)}^{30,44}\]

\[\text{39: } R = \begin{array}{c} \text{COMe} \\
\end{array} \quad \lambda_{\text{max}} = 632 \text{ nm (PrCN), } \beta_0 (\text{Stark}) = 231 \times 10^{-30} \text{ esu (PrCN),} \\
\beta_0 (\text{HRS}) = 53 \times 10^{-30} \text{ esu (MeCN)}^{30,44}\]

\[\text{40: } R = \begin{array}{c} \text{COMe} \\
\end{array} \quad \lambda_{\text{max}} = 684 \text{ nm (PrCN), } \beta_0 (\text{Stark}) = 248 \times 10^{-30} \text{ esu (PrCN),} \\
\beta_0 (\text{HRS}) = 59 \times 10^{-30} \text{ esu (MeCN)}^{30,44}\]

\[\text{41: } R = \begin{array}{c} \text{N} \\
\end{array} \quad \lambda_{\text{max}} = 731 \text{ nm (PrCN), } \beta_0 (\text{Stark}) = 298 \times 10^{-30} \text{ esu (PrCN),} \\
\beta_0 (\text{HRS}) = 59 \times 10^{-30} \text{ esu (MeCN)}^{30,44}\]

\[\begin{array}{c}
\text{Ru} \\
\text{N} \\
\text{H}_3\text{N} \\
\text{N} \\
\text{H}_3\text{N} \\
\text{N} \\
\text{H}_3\text{N} \\
\text{N} \\
\text{H}_3\text{N} \\
\end{array}
\]
Coe has also explored an alternative 2D approach, employing pyrazinyl-4,4'-bipyridinium bridges to link multiple ruthenium centers. Depolarization ratios from HRS studies at 1064 nm are consistent with dominant off-diagonal β_{xyy} components contributing strongly to 2D NLO responses in these complexes.
Co-ligand variation in zinc complexes has been examined, the EFISH-derived quadratic nonlinearity at 1.91 µm increasing on replacing acetate by triflate (proceeding from 55 to 56); this is accompanied by an increase in dipole moment and a red-shift of the ILCT transition for this structural modification. Dilution of solutions of the triflate complexes results in significant increases in nonlinearity, an effect explained by solvolysis of the triflate anion and concomitant strong ion-pairing.
Ruthenium polypyridyl complexes have attracted attention for their NLO properties; their quadratic nonlinearities are associated with ILCT bands that are red-shifted on complexation of the free ligand, and directionally opposed to MLCT transitions. Earlier studies had functionalized the bipy ligands with electron donating groups, so in order for MLCT effects to dominate nonlinearity, Coe et al. employed 4,4'-disubstituted bipy ligands with electron-withdrawing pyridinium groups, the RuII examples revealing larger β coefficients that their FeII analogues.43,46

$\lambda_{\text{max}} = 593 \text{ nm (PrCN)}, \beta_0 (\text{Stark}) = 56 \times 10^{-30} \text{ esu (PrCN)}, \beta_{\text{HRS}} (\text{HRS}) = 290 \times 10^{-30} \text{ esu (MeCN)}$46
A similar strategy was employed by Mayer and co-workers\(^ {39} \) – elaboration of bipy and terpy ligands with 4-(4-N,N-dimethylaminostyryl)-1-methylpyridinium (DASP) moieties was explored because of the significant bulk susceptibility of this organic cation as its tosylate salt.\(^ {62} \) The quadratic nonlinearities for the Ru-containing complexes were discussed as a superposition of \(\beta_{DASP} \), \(\beta_{ICT} \), and \(\beta_{d-x^*} \), where the latter two may be either positive or negative compared to \(\beta_{DASP} \), while the Zn(II) complex performance was explained by competing contributions of \(\beta_{DASP} \) and \(\beta_{ICT} \).
Le Bozec and co-workers have functionalized 4,4'-bis(dialkylaminostyryl)-[2,2']-bipyridines and incorporated them into the main chain of a polyimide, and used the resultant assembly to construct octupolar tris(bipyridine)ruthenium-containing macromolecules that exhibit intense linear absorption in the visible region, long-lived luminescence, and quadratic nonlinearities at 1.91 μm consistent with octupolar ordering in the metallodendrimer.49,51,52
Le Bozec and co-workers have used the Zn(II) center as a template to assemble functionalized bipy ligands in dipolar and octupolar arrangements (the latter both D_{2d} and D_{3h}). The UV-vis spectra are dominated by ILCT bands that are red-shifted.
from that of the free ligand. Both octupolar complexes are more quadratic NLO-efficient than the dipolar example, even after scaling for the number of bipy ligands.

Similar Zn(II) complexation of functionalized bipy ligands has been employed to demonstrate photoswitching of quadratic NLO properties.22 The continuous π-conjugation of the bridge connecting the donor dialkylamino group to the metal-bound pyridyl acceptor exhibited when the dithienylperfluorocyclopentene unit is in the “closed” state is broken on photoisomerization to the “open” form. This structural change is accompanied by dramatic changes in both the linear optical properties (loss of an absorption band centered at 690 nm) and an order of magnitude decrease in the $\mu\beta_0$ product evaluated by EFISH at 1.907 μm.

\begin{align*}
83: & \quad R = H, \quad \lambda_{\text{max}} = 357 \text{ nm (CH}_2\text{Cl}_2), \\
& \quad \mu\beta_0 (\text{EFISH}) = 75 \times 10^{-48} \text{ esu (CH}_2\text{Cl}_2)22 \\
84: & \quad R = \text{NMe}_2, \quad \lambda_{\text{max}} = 360 \text{ nm (CH}_2\text{Cl}_2), \\
& \quad \mu\beta_0 (\text{EFISH}) = 160 \times 10^{-48} \text{ esu (CH}_2\text{Cl}_2)22 \\
85: & \quad R = H, \quad \lambda_{\text{max}} = 357 \text{ nm (CH}_2\text{Cl}_2), \\
& \quad \mu\beta_0 (\text{EFISH}) = 1020 \times 10^{-48} \text{ esu (CH}_2\text{Cl}_2)22 \\
86: & \quad R = \text{NMe}_2, \quad \lambda_{\text{max}} = 360 \text{ nm (CH}_2\text{Cl}_2), \\
& \quad \mu\beta_0 (\text{EFISH}) = 1800 \times 10^{-48} \text{ esu (CH}_2\text{Cl}_2)22
\end{align*}
Coordination of 4'-donor or -acceptor functionalized 2,2':6,2''-terpy ligands to Ru(III), Ir(III) and Zn(II) centers significantly increases the absolute value of the quadratic nonlinearity of the terpy. In addition to ILCT bands, which for all complexes are red-shifted from those of the free ligands, crucial charge-transfer transitions are seen that are LMCT (Ru(III)) and MLCT (Ir(III)) in character. Quadratic nonlinearities of these complexes are strongly dependent on the nature of these CT transitions, and can be modified significantly by π-ligand and co-ligand variation.

Iridium complexes of substituted phenanthrolines show significant second-order nonlinearity that is a function of the acceptor strength of the phenanthroline
substituent, rather than the nature of the cyclometalated co-ligands. The important CT process that controls the magnitude of the nonlinearity is MLCT in character. Nonlinearities for salts of weakly interacting counter-ions (e.g. PF$_6^-$) are dependent on concentration, whereas those for salts of ions that ion-pair (e.g. C$_{12}$H$_{25}$SO$_3^-$, Γ) are lower and independent of concentration, an outcome likely to result from perturbation of the LUMO π^* levels of the phenanthroline in the former case.

![Diagram](image)

96: $R_1 = \text{Me, } R_2 = \text{H, } Y = \text{PF}_6^-, \lambda_{\max} = 377 \text{ nm (CH}_2\text{Cl}_2), \mu\beta_{1.907} (\text{EFISH}) = -1565 \times 10^{-30} \text{ D cm}^5 \text{ esu}^{-1} (\text{CH}_2\text{Cl}_2)$

97: $R_1 = \text{Me, } R_2 = \text{H, } Y = \text{C}_{12}\text{H}_{25}\text{SO}_3^-, \lambda_{\max} = 376 \text{ nm (CH}_2\text{Cl}_2), \mu\beta_{1.907} (\text{EFISH}) = -1350 \times 10^{-30} \text{ D cm}^5 \text{ esu}^{-1} (\text{CH}_2\text{Cl}_2)$

98: $R_1 = \text{NO}_2, \ R_2 = \text{H, } Y = \text{PF}_6^-, \lambda_{\max} = 378 \text{ nm (CH}_2\text{Cl}_2), \mu\beta_{1.907} (\text{EFISH}) = -2230 \times 10^{-30} \text{ D cm}^5 \text{ esu}^{-1} (\text{CH}_2\text{Cl}_2)$

99: $R_1 = \text{NO}_2, \ R_2 = \text{H, } Y = \text{C}_{12}\text{H}_{25}\text{SO}_3^-, \lambda_{\max} = 378 \text{ nm (CH}_2\text{Cl}_2), \mu\beta_{1.907} (\text{EFISH}) = -1430 \times 10^{-30} \text{ D cm}^5 \text{ esu}^{-1} (\text{CH}_2\text{Cl}_2)$

100: $R_1 = \text{H, } R_2 = \text{H, } Y = \text{PF}_6^-, \lambda_{\max} = 377 \text{ nm (CH}_2\text{Cl}_2), \mu\beta_{1.907} (\text{EFISH}) = -1270 \times 10^{-30} \text{ D cm}^5 \text{ esu}^{-1} (\text{CH}_2\text{Cl}_2)$

101: $R_1 = \text{NMe}_2, \ R_2 = \text{H, } Y = \text{PF}_6^-, \lambda_{\max} = 334 \text{ nm (CH}_2\text{Cl}_2), \mu\beta_{1.907} (\text{EFISH}) = -1330 \times 10^{-30} \text{ D cm}^5 \text{ esu}^{-1} (\text{CH}_2\text{Cl}_2)$

102: $R_1 = \text{H, } R_2 = \text{Me, } Y = \text{PF}_6^-, \lambda_{\max} = 375 \text{ nm (CH}_2\text{Cl}_2), \mu\beta_{1.907} (\text{EFISH}) = -1454 \times 10^{-30} \text{ D cm}^5 \text{ esu}^{-1} (\text{CH}_2\text{Cl}_2)$

103: $R_1 = \text{H, } R_2 = \text{Ph, } Y = \text{PF}_6^-, \lambda_{\max} = 385 \text{ nm (CH}_2\text{Cl}_2), \mu\beta_{1.907} (\text{EFISH}) = -1997 \times 10^{-30} \text{ D cm}^5 \text{ esu}^{-1} (\text{CH}_2\text{Cl}_2)$

A major problem in converting significant molecular quadratic nonlinearity into appreciable bulk susceptibility is the proclivity of dipoles to align in an antiparallel fashion. Réau and co-workers exploited the trans-effect at palladium to assemble pyridylphosphole ligands and construct a bis(dipole). The resultant complexes exhibit nonlinearities greater than twice those of the constituent pyridylphospholes.

![Diagram](image)

104: $\lambda_{\max} = 420 \text{ nm (CH}_2\text{Cl}_2), \beta_{1.91} (\text{HRS}) = 170 \times 10^{-30} \text{ esu (CH}_2\text{Cl}_2)$

105: $\lambda_{\max} = 452 \text{ nm (CH}_2\text{Cl}_2), \beta_{1.91} (\text{HRS}) = 180 \times 10^{-30} \text{ esu (CH}_2\text{Cl}_2)$
1.4.2 Complexes of Porphyrins and Related Ligands

The quadratic nonlinearities of complexes with phthalocyanines and porphyrins has been an active area of research63-96, with phthalocyanines (through 2002)97 and porphyrins and related ligands (through 2005)98 summarized. Therien and co-workers have explored 5-donor-15-acceptor-functionalized porphyrins incorporating solubilizing substituents at the 10- and 20-positions.67,80,83 Varying the chain length of two series of nitro-functionalized oligo(thienyl) groups afforded complexes with essentially identical linear optical properties for each bridge type, but with very different NLO behavior. Nonlinearities of these complexes at the telecommunications wavelength of 1300 nm are exceptionally large.83 These studies were extended to include carbazolylthiophenyl-containing donor groups and thiazolyl- or dicyanovinyl-containing acceptor groups. The energies and oscillator strengths of the low-energy Q-bands are very similar across these complexes, but the nonlinearities are not, a result ascribed to transfer of oscillator strength between overlapping π-π^* and CT transitions in the low-energy transition manifold. One expected outcome is the increase in nonlinearity observed on decreasing the aromatic stabilization energy of these substituents (proceeding from 106 to 116-119).80 Similar donor-porphyrin-acceptor complexes 111 and 112 have been used by Clays and Anderson and their co-workers as dyes for SHG imaging.67
Coupling (terpyridyl)metal centers as donor groups to zinc(porphyrin) bridges affords complexes 120/121 with exceptionally large nonlinearities at 1064 nm, with a further doubling of response on introduction of nitrophenylethynyl acceptor units at the meso site (proceeding to 122/123). Replacing the classical organic acceptor with a bis(terpyridyl)metal group (proceeding to 124) results in retention of the large quadratic nonlinearity. The (terpyridyl)metal center is a potent donor group, and
significantly more stable than the extensively exploited dialkylamino or diarylamino groups in conventional organic chromophores.

![Chemical structures and data](image)

120: \(M = \text{Ru}, \lambda_{\text{max}} = 639 \text{ nm} (\text{CH}_2\text{Cl}_2) \), \(\beta_{1.064} \) (HRS) = \(2100 \times 10^{-30} \) esu (CH2Cl2)94
121: \(M = \text{Os}, \lambda_{\text{max}} = 675 \text{ nm} (\text{CH}_2\text{Cl}_2) \), \(\beta_{1.064} \) (HRS) = \(2600 \times 10^{-30} \) esu (CH2Cl2)94

122: \(M = \text{Ru}, \lambda_{\text{max}} = 625 \text{ nm} (\text{CH}_2\text{Cl}_2) \), \(\beta_{1.064} \) (HRS) = \(4000 \times 10^{-30} \) esu (CH2Cl2)94
123: \(M = \text{Os}, \lambda_{\text{max}} = 702 \text{ nm} (\text{CH}_2\text{Cl}_2) \), \(\beta_{1.064} \) (HRS) = \(5000 \times 10^{-30} \) esu (CH2Cl2)94

Linked porphyrin dimers have been the subject of earlier studies,98 and it is therefore not surprising that \(\text{meso,meso} \)-linked corrole dimers have also attracted interest.76 While the HRS-derived quadratic nonlinearities at 1064 nm for the dimers 127 and 128 are larger than those of the corresponding monomers 125 and 126, reflecting the increased size of the \(\pi \)-system, the values are low, consistent with the lack of
strongly polarizing donor or acceptor substituents and orthogonality of the rings. Chandrashekar and co-workers have conjugated an expanded form of the corrole unit with the ferrocenyl group, the nonlinearities of the resultant adducts being dependent on the nature of the spacer group; the absolute values are again modest, and again consistent with the orthogonality of the appended group.\(^8^5\)

![Diagram of molecular structures]

125: M = Cu, \(\lambda_{\text{max}} = 750\ \text{nm}\) (CH\(_2\)Cl\(_2\)),
\[\beta_{1.064} (\text{HRS}) = 18 \times 10^{-30} \text{ esu (CH}_2\text{Cl}_2)\]

126: M = Ni, \(\lambda_{\text{max}} = 750\ \text{nm}\) (CH\(_2\)Cl\(_2\)),
\[\beta_{1.064} (\text{HRS}) = 13 \times 10^{-30} \text{ esu (CH}_2\text{Cl}_2)\]

127: M = Cu, \(\lambda_{\text{max}} = 750\ \text{nm}\) (CH\(_2\)Cl\(_2\)),
\[\beta_{1.064} (\text{HRS}) = 32 \times 10^{-30} \text{ esu (CH}_2\text{Cl}_2)\]

128: M = Ni, \(\lambda_{\text{max}} = 750\ \text{nm}\) (CH\(_2\)Cl\(_2\)),
\[\beta_{1.064} (\text{HRS}) = 43 \times 10^{-30} \text{ esu (CH}_2\text{Cl}_2)\]

1.4.3 Schiff Base Complexes

The quadratic nonlinearities of bis(salicylaldiminato)metal Schiff base complexes have been an active area of research\(^9^9\)\(^-\)\(^1^1^8\), and have been reviewed through 1999,\(^1^1^9\) with interest stemming from the flexibility of their composition (and in particular the facile incorporation of open shell as well as closed shell metals), ease of derivatization, their enforced planarity with square planar-coordinating metals, and their comparative robustness. Coordination of \(\text{N-diethylaminosalicylidene-N\prime-4-nitrobenzoylhydrazine}\) (to form, for example, 129 or 130) tautomerizes this ligand from the free keto form to the complexed enol form, and thereby completes the conjugation from the dialkylamino donor to the nitro acceptor, the resultant complexes showing appreciable EFISH-derived \(\mu_\text{bvec}\) products at 1.907 \(\mu\)m; it is
therefore an example of complexation "switching on" nonlinearity. The complexes are prepared as dimeric aggregates, but on heating 131 in refluxing pyridine, the monomer 133 is formed, with a concomitant doubling of the $\mu_{\beta_{\text{vec}}}$ product.118

![Diagram of complex 129](image1)

129: $M = \text{Cu}, R = \text{NO}_2, \lambda_{\text{max}} = 460 \text{ nm (DMSO)}, \mu_{\beta,1.907} (\text{EFISH}) = 460 \times 10^{-48} \text{ esu (DMSO)}$,118

130: $M = \text{Pd}, R = \text{NO}_2, \lambda_{\text{max}} = 459 \text{ nm (CHCl}_3), \mu_{\beta,1.907} (\text{EFISH}) = 380 \times 10^{-48} \text{ esu (CHCl}_3)$,118

131: $M = \text{Cu}, R = \text{A}_1, \lambda_{\text{max}} = 455 \text{ nm (DMSO)}, \mu_{\beta,1.907} (\text{EFISH}) = 650 \times 10^{-48} \text{ esu (DMSO)}$,118

132: $M = \text{Pd}, R = \text{A}_1, \lambda_{\text{max}} = 450 \text{ nm (DMSO)}, \mu_{\beta,1.907} (\text{EFISH}) = 1500 \times 10^{-48} \text{ esu (DMSO)}$,118

Ferrocenyl-functionalized Schiff base complexes such as 134/135 potentially combine the advantages of both key inorganic NLO-phores. Related complexes in which the phenoxy aryl is π-complexed to a RuCp* unit (136-138) were also prepared, the arene metallation having no appreciable effect on the HRS-derived nonlinearity at 1.91 μm.99

![Diagram of complex 133](image2)

133: $M = \text{Cu}, R = \text{A}_1, \lambda_{\text{max}} = \text{n.a.}, \mu_{\beta,1.907} (\text{EFISH}) = 1390 \times 10^{-48} \text{ esu (CHCl}_3)$,118

134: $M = \text{Ni}, \lambda_{\text{max}} = 587 \text{ nm (CH}_2\text{Cl}_2), \beta_{1.91} (\text{HRS}) = 250 \times 10^{-30} \text{ esu (CHCl}_3)$,99

135: $M = \text{Cu}, \lambda_{\text{max}} = 445 \text{ nm (CH}_2\text{Cl}_2), \beta_{1.91} (\text{HRS}) = 212 \times 10^{-30} \text{ esu (CHCl}_3)$,99
The quadratic and cubic NLO properties of metal alkynyl complexes through 2002 have been surveyed. Since 2002 there have been a number of reports on the quadratic NLO properties of metal alkynyl complexes. Earlier studies by Humphrey and co-workers had defined the impact on quadratic nonlinearity of varying the ligated metal center, co-ligands, \(\pi \)-bridge, and acceptor group, in donor-bridge-acceptor complexes with short \(\pi \)-bridge alkynyl ligands. The bis(bidentate diphosphine)chlororuthenium center proved amongst the most efficient donor groups, so has been used to explore the effect of \(\pi \)-bridge lengthening with phenylenevinylene and/or phenyleneethynylene units. \(^{122,124}\) Studies with the series of complexes 139-152 revealed several trends. The (formally) Ru\(^{II/III}\) redox potentials can be tuned in a systematic fashion, as they increase on replacing yne-linkage by ene-linkage at the phenylene adjacent to the metal, and on replacing dppe by dppm co-ligands, and decrease on \(\pi \)-bridge lengthening. The low-energy UV-vis-NIR bands are MLCT in nature, blue-shifting on \(\pi \)-bridge lengthening by addition of phenyleneethynylene units, and replacing \(E \)-ene by yne linkages. The \(\beta_0 \) values
increase on π-bridge lengthening, replacing yne linkage by E-ene linkage at the phenylene adjacent to the metal center, and replacing dppm by dppe co-ligands, until the tri(phenyleneethynylene) is reached, further lengthening (from 154 to 155 or 157 to 158) resulting in a reduction of nonlinearity.

\[
\text{Cl} - [\text{Ru}] \left(3\text{C} = \text{C} \right)_n \text{NO}_2
\]

| 139: [Ru] = Ru(dppe)$_2$, n = 1, $\lambda_{max} = 473$ nm (THF), β_0 (HRS) = 130 x 10$^{-30}$ esu (THF)122 |
| 140: [Ru] = Ru(dppe)$_2$, n = 1, $\lambda_{max} = 477$ nm (THF), β_0 (HRS) = 88 x 10$^{-30}$ esu (THF)122 |
| 141: [Ru] = Ru(dppe)$_2$, n = 2, $\lambda_{max} = 466$ nm (THF), β_0 (HRS) = 33 x 10$^{-30}$ esu (THF)122 |
| 142: [Ru] = Ru(dppe)$_2$, n = 2, $\lambda_{max} = 468$ nm (THF), β_0 (HRS) = 225 x 10$^{-30}$ esu (THF)122 |
| 143: [Ru] = Ru(dppe)$_2$, n = 3, $\lambda_{max} = 439$ nm (THF), $\beta_{0,007}$ (EFISH) = 77 x 10$^{-30}$ esu (CHCl$_3$)122 |
| 144: [Ru] = Ru(dppe)$_2$, n = 3, $\lambda_{max} = 429$ nm (THF), β_0 (HRS) = 388 x 10$^{-30}$ esu (THF)122 |

| 145: [Ru] = Ru(dppe)$_2$, n = 1, $\lambda_{max} = 489$ nm (THF), β_0 (HRS) = 52 x 10$^{-30}$ esu (THF)122 |
| 146: [Ru] = Ru(dppe)$_2$, n = 1, $\lambda_{max} = 491$ nm (THF), β_0 (HRS) = 250 x 10$^{-30}$ esu (THF)122 |
| 147: [Ru] = Ru(dppe)$_2$, n = 2, $\lambda_{max} = 448$ nm (THF), β_0 (HRS) = 430 x 10$^{-30}$ esu (THF)122 |
| 148: [Ru] = Ru(dppe)$_2$, n = 2, $\lambda_{max} = 446$ nm (THF), β_0 (HRS) = 441 x 10$^{-30}$ esu (THF)122 |

| 149: [Ru] = Ru(dppe)$_2$, $\lambda_{max} = 459$ nm (THF), β_0 (HRS) = 580 x 10$^{-30}$ esu (THF)122 |
| 150: [Ru] = Ru(dppe)$_2$, $\lambda_{max} = 452$ nm (THF), β_0 (HRS) = 495 x 10$^{-30}$ esu (THF)122 |

| 151: [Ru] = Ru(dppe)$_2$, $\lambda_{max} = 468$ nm (THF), β_0 (HRS) = 460 x 10$^{-30}$ esu (THF)122 |
| 152: [Ru] = Ru(dppe)$_2$, $\lambda_{max} = 466$ nm (THF), β_0 (HRS) = 395 x 10$^{-30}$ esu (THF)122 |
1.4.5 Metallocenyl Complexes

An article in *Nature* by Green and co-workers describing the SHG merit of a substituted ferrocene alerting researchers to the potential of organometallics in nonlinear optics, and metallocenyl complexes have continued to attract attention. Earlier reports utilized aryl bridges and nitro and other simple organic acceptor groups in conventional donor-bridge-acceptor compositions. Since then, studies in the purely organic sphere by Dalton and co-workers have revealed improvements to this design. Coupling analogues of the Dalton 2-dicyanomethylene-3-cyano-4-methyl-2,5-dihydrofuran acceptor to ferrocene afforded 159-162, the quadratic nonlinearities of which increase on replacement of methyl by trifluoromethyl and phenyl groups at the acceptor, and on incorporation of a thienylvinylene unit into the bridge. The bond-length alternation along the chromophore charge-transfer axis in these molecules fall in the range 0.05-0.10 Å, and correlate closely with the
magnitude of the hyperpolarizabilities. Complex 162 was doped into amorphous polycarbonate at a loading of 20% w/w, and a solution in cyclopentanone of the resulting composite was spin-coated onto an ITO slide. After poling, the film exhibited an electrooptic r_{33} coefficient of 25 pm V$^{-1}$ at 1300 nm, similar in magnitude to efficient organic chromophore-doped films, despite the absence of sterically encumbering groups designed to disfavor aggregation that are usually found with the latter.146

159: \(R^1 = R^2 = \text{CH}_3, \)
\[\beta/\beta_{\text{Chloroform}} (\text{HRS}) = 279 \text{ (MeCN)}^{146} \]

160: \(R^1 = \text{CF}_3, R^2 = \text{Ph}, \)
\[\beta/\beta_{\text{Chloroform}} (\text{HRS}) = 450 \text{ (MeCN)}^{146} \]

161: \(R^1 = R^2 = \text{CH}_3, \)
\[\beta/\beta_{\text{Chloroform}} (\text{HRS}) = 2633 \text{ (MeCN)}^{146} \]

162: \(R^1 = \text{CF}_3, R^2 = \text{Ph}, \)
\[\beta/\beta_{\text{Chloroform}} (\text{HRS}) = 3333 \text{ (MeCN)}^{146} \]

163: \[\mu\beta (\text{HRS}) = 92 \times 10^{-48} \text{ esu (MeCN)}^{146} \]

164: \[\mu\beta (\text{HRS}) = 420 \times 10^{-48} \text{ esu (MeCN)}^{146} \]

165: \[\mu\beta (\text{HRS}) = 1120 \times 10^{-48} \text{ esu (MeCN)}^{146} \]
1.5 Third-Order Nonlinearities

1.5.1 Complexes of Pyridyl or Polypyridyl Ligands

The cubic NLO properties of complexes incorporating pyridyl and polypyridyl have been reported for a number of complexes. The 2PA properties of polypyridine and alkynyl complexes through 2007 have been summarized. Single-wavelength fs Z-scan studies on pyridinium-functionalized tris(bipy) complexes 64 to 74 by Coe et al. have revealed a consistent increase in 2PA merit for π-system lengthening, while metal variation affords unclear outcomes.

\[\lambda_{\text{max}} = 573 \text{ nm (PrCN)}, \alpha_2 (z\text{-scan, fs, } 750 \text{ nm}) = 2500 \text{ GM (DMF)} \]

\[\lambda_{\text{max}} = 604 \text{ nm (PrCN)}, \alpha_2 (z\text{-scan, fs, } 750 \text{ nm}) = 1400 \text{ GM (DMF)} \]

\[\lambda_{\text{max}} = 566 \text{ nm (PrCN)}, \alpha_2 (z\text{-scan, fs, } 750 \text{ nm}) = 1200 \text{ GM (DMF)} \]

\[\lambda_{\text{max}} = 582 \text{ nm (PrCN)}, \alpha_2 (z\text{-scan, fs, } 750 \text{ nm}) = 1500 \text{ GM (DMF)} \]

\[\lambda_{\text{max}} = 614 \text{ nm (PrCN)}, \alpha_2 (z\text{-scan, fs, } 750 \text{ nm}) = 350 \text{ GM (DMF)} \]

\[\lambda_{\text{max}} = 620 \text{ nm (PrCN)}, \alpha_2 (z\text{-scan, fs, } 750 \text{ nm}) = 1500 \text{ GM (DMF)} \]

\[\lambda_{\text{max}} = 633 \text{ nm (PrCN)}, \alpha_2 (z\text{-scan, fs, } 750 \text{ nm}) = 265 \text{ GM (DMF)} \]
Whereas the functionalized 1,10-phenanthroline ligands in complexes 166 - 168 fluoresce strongly in the free state, complexation to Ni(II) quenches the fluorescence. A fs white-light continuum was used to assess the 2PA cross-sections, the maxima red-shifting on complexation and increasing the donor strength of the substituents. The maximal values increase on complexation, but are invariant across the three nickel(II) complexes. Related ruthenium(II) complexes (for photosensitizing) that incorporate fluorenyl substituents (to enhance fluorescence) and triethyleneglycol groups (to ensure lipophilicity) have been explored for use in spatially-confined photodynamic therapy. While the maximal value at 740 nm is low (ca 40 GM), it is much greater than those of common commercial dyes.

\[
\begin{align*}
166, & \quad R^1 = H, R^2 = S('Bu), \lambda_{\text{max}} = 392 \text{ nm (CHCl}_3), \sigma_{2,\text{max}} (\text{WLC, fs, 760 nm}) = 578 \text{ GM (CHCl}_3) \quad \text{(169)} \\
167, & \quad R^1 = R^2 = \text{OC}_6\text{H}_{13}, \lambda_{\text{max}} = 411 \text{ nm (CHCl}_3), \sigma_{2,\text{max}} (\text{WLC, fs, 789 nm}) = 569 \text{ GM (CHCl}_3) \quad \text{(169)} \\
168, & \quad R^1 = H, R^2 = N(\text{C}_6\text{H}_{13})_2, \lambda_{\text{max}} = 369 \text{ nm (CHCl}_3), \sigma_{2,\text{max}} (\text{WLC, fs, 839 nm}) = 592 \text{ GM (CHCl}_3) \quad \text{(169)}
\end{align*}
\]
The 2PA efficiency of zinc(II) terpyridine complexes functionalized by aminostilbene units has been examined by fs 2PA-induced photoluminescence. Cross-sections are lower than those of the free terpy ligands. This has been rationalized by (a) the orthogonal terpy ligands acting independently, and (b) coordination to zinc(II) increasing the acceptor properties of the terpy end of the ligand which as a consequence has an increasingly cyanine-like behavior, although a significant cyanine-like contribution from a polyaromatic chromophore is unlikely.

169: $R = (\text{CH}_2)_3(\text{O(CH}_2)_2)_3\text{OMe}$,
$\lambda_{\text{max}} = 450$ nm (CHCl$_3$),
$\sigma_{2,\text{max}}$ (WLC, fs, 740 nm) = 40 GM (CHCl$_3$)157

170: $R = /\text{NH}_2(N\text{C}_6\text{H}_{32})_2$
$\lambda_{\text{max}} = 459$ nm (Acetone),
$\sigma_{2,\text{max}}$ (WLC, fs, 815 nm) = 95 GM (Acetone)168

171: $R = \text{Me}$,
$\lambda_{\text{max}} = 453$ nm (Acetone),
$\sigma_{2,\text{max}}$ (WLC, fs, 815 nm) = 77 GM (Acetone)168

172: $R = \text{NO}_2$,
$\lambda_{\text{max}} = 426$ nm (DMF),
$\sigma_{2,\text{max}}$ (WLC, fs, 830 nm) = 30 GM (Acetone)168
1.5.2 Complexes of Porphyrins and Related Ligands

The cubic nonlinearities of complexes with phthalocyanines (through 2002)97 and porphyrins and related ligands (through 2005) have been summarized,98 and a selected summary of 2PA properties of porphyrins through 2007 has appeared,182 the robust nature of the core, established functionalization strategies, biocompatible nature of these molecules, and their strong nonlinear absorption properties serving to maintain strong interest in this area.66,75,183-320

1.5.3 Schiff Base Complexes

A number of reports have investigated the cubic NLO properties of Schiff base complexes.321-337 The zinc(II) complexes 175 and 176 have been shown by Goswami, Bharadwaj and co-workers to possess very large 2PA cross-sections at 890 nm (fs Z-scan), in contrast to the free ligand which is inactive at this wavelength; complexation enhances the weak acceptor character of the central diimine unit in these ligands with a formally D-\pi-A-\pi-D composition. Proceeding to the zinc(II) and copper(I) complexes 173 and 174 results in a further six-fold increase, concomitant with the progression to an octupolar structure. The zinc complex is the more efficient, consistent with the greater acceptor character of zinc(II) compared to copper(I).328
1.5.4 Metal Alkynyl Complexes

Metal alkynyl complexes continue to attract considerable interest for their cubic NLO properties. Humphrey and Samoc and their co-workers have examined the third-order NLO behavior of dipolar, quadrupolar, and octupolar ruthenium alkynyl complexes. Z-scan spectral dependence studies of 139, 141, 154, 155 and 158 revealed an approximate correspondence between twice the energy of the one-photon absorption bands and the energy of the major two-photon absorption bands, with evidence of the long wavelength features having a three-photon absorption behavior. As with quadratic nonlinearity, the two-photon absorption cross-section for these complexes is maximized at the tri(phenyleneethynylene) complex 154; further π-system lengthening results in decreasing importance of the LUMO ← HOMO transition and on-axis rotation-mediated change in the relative intensities of two or more crucial low-lying transitions, both of which serve to reduce the nonlinearity from the continuing increase that may otherwise have been anticipated.
Wavelength dependence studies of the cubic NLO properties of the octupolar complexes 177 - 181 revealed that refractive nonlinearities are maximized at a longer wavelength for the stilbene-linked dendrimers than for the tolane-linked examples, with the maximal values experiencing a nonlinear increase upon increasing dendrimer generation. The absorptive nonlinearities are positive through the spectral range for these complexes (i.e. they are two- or three-photon absorbers through this range); the stilbene examples exhibit appreciable nonlinear absorption at the "telecommunications wavelength" of 1300 nm, while 181 possesses a record 3PA coefficient under fs conditions (note: large branched complexes are displayed in a contracted form, where the arm shown is repeated at the wavy lines).
177: R = Cl

178: R = C≡C-Ph

179

180: R = NH₂

181: R = NO₂
N-cored analogues (182 – 184) have been examined because planarity at the sp^2-hybridized nitrogen and involvement in π-delocalization of the occupied p_z orbital may increase nonlinearity. Spectral dependence studies of the cubic nonlinearity revealed 2PA behavior below 1000 nm, with maximal values suggestive of an NLO dendritic effect (a nonlinear increase in nonlinearity upon increasing dendrimer generation). Beyond 1000 nm, data are consistent with 3PA-induced photochemistry. The 2PA cross-sections of these dendrimers are larger than those of comparable N-cored organic dendrimers, an increase in performance that is maintained when the outcomes are scaled by “effective number of electrons”, molecular weight, molecular volume, or even the cost of production.
182: \(R = \text{Cl}^{342} \)
183: \(R = \text{C} \equiv \text{C-Ph}^{342} \)

184\(^{342}\)
Wavelength dependence for 182 (a), 183 (b), and 184 (c)
Cubic nonlinearities of ruthenium alkynyl complexes have been switched under electrochemical control.\(^\text{367}\) In the resting state, the low-energy transition in these complexes is MLCT in nature. Oxidation, exploiting the Ru\(^\text{II/III}\) couple, results in the appearance of a low-energy LMCT transition. The cubic nonlinearities are also modified following oxidation, the complexes being two-photon absorbers at 800 nm in the resting state and saturable absorbers at that wavelength following oxidation. This approach to switching nonlinearities has been extended to demonstrate multistate NLO switching. Coupling the ruthenium alkynyl unit to a more easily oxidizable iron center permits sequential access to Fe\(^\text{II/Ru\text{II}}\), Fe\(^\text{III/Ru\text{II}}\), and Fe\(^\text{III/Ru\text{III}}\) states on stepwise oxidation of 185, with the oxidation processes resulting in strong changes to linear and NLO properties; in particular, the Fe\(^\text{II/Ru\text{II}}\) form of 185 possesses negligible absorptive nonlinearity at 790 nm, but the Fe\(^\text{III/Ru\text{II}}\) state is a two-photon absorber at this wavelength, and the Fe\(^\text{III/Ru\text{III}}\) form is a saturable absorber (or in other words, the three oxidation states afford successively zero, positive, and negative values of the absorptive nonlinearity at this wavelength).\(^\text{360}\)

![Diagram](image)

185: \(\lambda_{\text{max}} = 400 \text{ nm (CH}_2\text{Cl}_2),\)
\(\sigma_2 (z\text{-scan, fs, 790 nm}) = 0 \text{ GM (CH}_2\text{Cl}_2)\)\(^\text{360}\)

185\(^\text{1+}\): \(\lambda_{\text{max}} = 1124 \text{ nm (CH}_2\text{Cl}_2),\)
\(\sigma_2 (z\text{-scan, fs, 790 nm}) = 420 \text{ GM (CH}_2\text{Cl}_2)\)\(^\text{360}\)

185\(^\text{2+}\): \(\lambda_{\text{max}} = 706 \text{ nm (CH}_2\text{Cl}_2),\)
\(\sigma_2 (z\text{-scan, fs, 790 nm}) = -250 \text{ GM (CH}_2\text{Cl}_2)\)\(^\text{360}\)

Three-state cubic NLO switching has also been demonstrated with 186, but in this case using independent stimuli. Oxidation, as above, converts the Ru\(^\text{II}\)_4 state to the
RuIII form, whereas protonation affords a tetra(vinylidene) complex tetracation, in both cases resulting in strong changes to linear and NLO properties. This idea has been extended to include photochemical switching. 187 contains a dithienylperfluorocyclopentene unit that can be reversibly photoisomerized between open and closed forms, alkynyl ligands that can be reversibly protonated to the corresponding vinylidene forms, and ruthenium centers that undergo reversible oxidation, the lack of reversible oxidation of the vinylidene forms restricting the number of switchable states to six. The six switchable states can be interconverted along seven pathways, each of which results in distinct changes to the nonlinear absorption; some of these outcomes have been used to demonstrate NOR and INHIBIT logic gates.

\[
\begin{align*}
&\text{Ru}^\text{III}, \text{Cl} \quad 4 \text{HBF}_4 \quad 4 \text{NEt}_3 \quad \text{Ru}^{4+} [\text{BF}_4]^\text{-} \\
&\text{C}_{186} \quad \lambda_{\text{max}} = 470 \text{ nm (CH}_2\text{Cl}_2), \sigma_{2,\text{max}} (\text{z-scan, fs, 750 and 590 nm}) = 1100 \text{ (750) and 3000 (590) GM (CH}_2\text{Cl}_2)368} \\
&\text{C}_{186}^{4+} : \lambda_{\text{max}} = 925 \text{ nm (CH}_2\text{Cl}_2), \sigma_{2,\text{max}} (\text{z-scan, fs, 750 nm}) = -1800 \text{ GM (CH}_2\text{Cl}_2)368} \\
&\text{C}_{186-H_4}^{4+} : \lambda_{\text{max}} = 410 \text{ nm (CH}_2\text{Cl}_2), \sigma_{2,\text{max}} (\text{z-scan, fs, 750 and 590 nm}) = 1000 \text{ (750) and 2000 (590) GM (CH}_2\text{Cl}_2)368}
\end{align*}
\]
Switching wavelength dependence study of 2PA cross-sections of 187^{243}
The effect of \(sp \)-carbon chain lengthening on cubic NLO properties of the platinum-terminated polyynediyl complexes 188 - 194 has been examined by broad spectral range Z-scan studies.\(^{349}\) 2PA merit increases markedly on lengthening the carbon chain, affording complexes with extremely high 2PA/MWt coefficients. The saturation length was not reached in these studies, despite examples up to \(C_{24} \) being assessed. Extrapolation to the \(C_{\infty} \) case suggested a 2PA maximum for carbyne at ca 1000 nm.

![Diagram of complexes](image)

188: \(n = 2, \quad \lambda_{\text{max}} = 329 \text{ nm} \) (CH\(_2\)Cl\(_2\)), \(\sigma_{2,\text{max}} \) (z-scan, fs) = 200 GM (CH\(_2\)Cl\(_2\))
189: \(n = 3, \quad \lambda_{\text{max}} = 337 \text{ nm} \) (CH\(_2\)Cl\(_2\)), \(\sigma_{2,\text{max}} \) (z-scan, fs) = 305 GM (CH\(_2\)Cl\(_2\))
190: \(n = 4, \quad \lambda_{\text{max}} = 350 \text{ nm} \) (CH\(_2\)Cl\(_2\)), \(\sigma_{2,\text{max}} \) (z-scan, fs) = 300 GM (CH\(_2\)Cl\(_2\))
191: \(n = 5, \quad \lambda_{\text{max}} = 375 \text{ nm} \) (CH\(_2\)Cl\(_2\)), \(\sigma_{2,\text{max}} \) (z-scan, fs) = 862 GM (CH\(_2\)Cl\(_2\))
192: \(n = 7, \quad \lambda_{\text{max}} = 411 \text{ nm} \) (CH\(_2\)Cl\(_2\)), \(\sigma_{2,\text{max}} \) (z-scan, fs) = 1450 GM (CH\(_2\)Cl\(_2\))
193: \(n = 9, \quad \lambda_{\text{max}} = 443 \text{ nm} \) (CH\(_2\)Cl\(_2\)), \(\sigma_{2,\text{max}} \) (z-scan, fs) = 1400 GM (CH\(_2\)Cl\(_2\))
194: \(n = 11, \quad \lambda_{\text{max}} = 467 \text{ nm} \) (CH\(_2\)Cl\(_2\)), \(\sigma_{2,\text{max}} \) (z-scan, fs) = 2200 GM (CH\(_2\)Cl\(_2\))

1.6 Conclusions

Inorganic materials continue to attract interest for their NLO properties. For quadratic properties, complexes incorporating pyridyl or polypyridyl ligands and complexes featuring porphyrins and related ligands have attracted the most interest. For cubic properties, metal alkynyl and porphyrin complexes have garnered considerable recent interest. For the measurement of cubic properties, recent work has focused on measurements over a number of wavelengths to provide more accurate determination of the maximal NLO response.
1.7 References

(154) Ge, Q.; Dalton, G. T.; Humphrey, M. G.; Samoc, M.; Hor, T. S. A. Chem.
Asian J. 2009, 4, 998.
(155) Ge, Q.; Corkery, T. C.; Humphrey, M. G.; Samoc, M.; Hor, T. S. A. Dalton
Trans. 2009, 6192.
(156) Dragonetti, C.; Balordi, M.; Colombo, A.; Roberto, D.; Ugo, R.; Fortunati, I.;
(157) Boca, S. C.; Four, M.; Bonne, A.; van der Sanden, B.; Astilean, S.; Baldeck,
(159) Xiang, H.; Tian, Z. Y.; Wang, S. F.; Wang, Z. W.; Li, Z.; Yang, H.; Yao, J.
(161) Sumalekshmy, S.; Henary, M. M.; Siegel, N.; Lawson, P. V.; Wu, Y.;
Schmidt, K.; Bredas, J. L.; Perry, J. W.; Fahrni, C. J. J. Am. Chem. Soc. 2007,
129, 11888.
(162) Morales-Saavedra, O. G.; Vergara, M. E. S.; Rebollo, A. O.; Ortega-
29, 494.
(164) Girardot, C.; Lemercier, G.; Mulatier, J. C.; Chauvin, J.; Baldeck, P. L.;
(165) Feuvrie, C.; Maury, O.; Le Bozec, H.; Ledoux, I.; Morrall, J. P.; Dalton, G.
(166) Fabbrini, G.; Ricco, R.; Menna, E.; Maggini, M.; Amendola, V.; Garbin, M.;
1439.
(170) Yang, Z.; Wu, Z. K.; Ma, J. S.; Xia, A. D.; Li, Q. S.; Liu, C. L.; Gong, Q. H.
Zhang, S. Y.; Tao, X. T.; Jiang, M. H.; Chen, H. P.; Chantapromma, S.; Fun,
2004, 693, 217.
(173) Fabbrini, G.; Menna, E.; Maggini, M.; Canazza, A.; Marcolongo, G.;
(174) Sun, W. F.; Patton, T. H.; Stultz, L. K.; Claude, J. P. Optics Commun. 2003,
218, 189.

(242) Santhi, A.; Namboodiri, V. V.; Radhakrishnan, P.; Namboori, V. P. N. J. Appl. Phys. 2006, 100, 5.

(354) Powell, C. E.; Cifuentes, M. P.; Humphrey, M. G.; Willis, A. C.; Morrall, J. P.; Samoc, M. Polyhedron 2007, 26, 284.

Chapter 2

Osmium chloro-alkynyl heterobimetallic complexes
Chapter 2

Osmium chloro-alkynyl heterobimetallic complexes

Contents

2.1 Introduction 74

2.2 Results and Discussion

- 2.2.1 Synthesis 76
- 2.2.2 Physical Properties 80
 - 2.2.2.1 NMR spectroscopy 80
 - 2.2.2.2 UV-Vis absorption spectroscopy 81
 - 2.2.2.3 Infrared spectroscopy 82
 - 2.2.2.4 Structural determinations 82
 - 2.2.2.5 Electrochemistry 86
 - 2.2.2.6 Spectroelectrochemistry 87
 - 2.2.2.7 Nonlinear optics 91

2.3 Conclusions 92

2.4 Experimental section

- 2.4.1 General 92
- 2.4.2 Instrumentation 93
- 2.4.3 13C NMR numbering Scheme 93
- 2.4.4 Synthesis and Characterisation 95

2.5 References 100
2.1 Introduction

trans-\([\text{Os}(\equiv\text{CR})\text{Cl}(\text{diphosphine})_2]\) complexes have been reported by a number of groups in recent years. Lewis *et al.* describe the synthesis of a number of *trans*-\([\text{Os}(\equiv\text{CR})\text{Cl}(\text{dppm})_2]\) complexes prepared by stirring *cis*-\([\text{OsCl}_2(\text{dppm})_2]\), NaPF\(_6\) and acetylene in CH\(_2\)Cl\(_2\) at room temperature for 4 - 20 h, before deprotonating the resultant vinylidene complex with either basic alumina or DBU to form the corresponding alkynyl complex in up to 87% yield\(^{1-4}\) (Scheme 2.1).

\[
\text{cis-[OsCl}_2(\text{dppm})_2] \xrightarrow{\text{i) NaPF}_6, \text{CH}_2\text{Cl}_2, \text{RT, 4 - 20 h}} \xrightarrow{\text{ii) CH}_2\text{Cl}_2, \text{base}} \text{Ph}_2\text{P} \begin{array}{c} \text{PPh}_2 \end{array} \begin{array}{c} \text{Cl-Os} \end{array} \begin{array}{c} \equiv \text{Si} \end{array} \begin{array}{c} \equiv \text{H} \end{array} \begin{array}{c} \text{Ph}_2\text{P} \end{array} \begin{array}{c} \text{PPh}_2 \end{array} \begin{array}{c} \text{Ph}_2\text{P} \end{array} \begin{array}{c} \text{PPh}_2 \end{array} \begin{array}{c} \text{Ph} \end{array} \]

\(R = \text{H, base = alumina (basic), yield not given}\)
\(R = \equiv\text{CH, base = DBU, 71%}\)
\(R = \text{C}_6\text{H}_4-4-\equiv\text{CH, base = DBU, 87%}\)

Scheme 2.1. Three of the chloro-alkynyl complexes prepared by Lewis *et al.*\(^{1,2}\)

Wong *et al.* synthesised two similar complexes using the same method in 65 and 51% yields\(^5\) (Scheme 2.2).

\[
\text{cis-[OsCl}_2(\text{dppm})_2] \xrightarrow{\text{i) NaPF}_6, \text{CH}_2\text{Cl}_2, \text{RT, 8 h}} \xrightarrow{\text{ii) CH}_2\text{Cl}_2, \text{DBU}, 3 \text{ h, 65%}} \begin{array}{c} \text{Ph}_2\text{P} \end{array} \begin{array}{c} \text{PPh}_2 \end{array} \begin{array}{c} \text{Cl-Os} \end{array} \begin{array}{c} \equiv \text{Si} \end{array} \begin{array}{c} \equiv \text{H} \end{array} \begin{array}{c} \text{Ph}_2\text{P} \end{array} \begin{array}{c} \text{PPh}_2 \end{array} \begin{array}{c} \text{Ph}_2\text{P} \end{array} \begin{array}{c} \text{PPh}_2 \end{array} \begin{array}{c} \text{Ph} \end{array} \]

Scheme 2.2. One of the osmium chloro-alkynyl complexes formed by Wong *et al.*\(^5\)

McDonagh *et al.* synthesized an optically active osmium alkynyl complex \((-\text{e}^{\text{365}}\text{-trans-}[\text{Os}(4-\equiv\text{C}\text{C}_6\text{H}_4\text{NO}_2)\text{Cl}(\text{R,R)-diph})_2]\) in 59% yield by refluxing *cis*-\([\text{OsCl}_2(\text{R,R)-diph})_2]\), acetylene and NaPF\(_6\) in toluene for 2 h, before deprotonating the resultant vinylidene complex with NaOMe\(^6\) (Scheme 2.3).
Scheme 2.3. The osmium chloro-alkynyl complex incorporating an optically active diphosphine ligand synthesised by McDonagh et al.6

Morrall \textit{et al.} used a similar approach to form $\text{trans-}[\text{Os(C}≡\text{CR)Cl(dppe)}_2]$ complexes, using NH_4PF_6 as the halide abstraction agent, NEt_3 as the base and a reaction time of 18 h, to afford three complexes with yields ranging from 36 - 44\%7 (Scheme 2.4).

Scheme 2.4. Two of the osmium chloro-alkynyl complexes incorporating the $\text{trans-}[\text{Os(dppe)}_2]$ metal centre formed by Morrall \textit{et al.}7
of this project. It was formed in 45% yield from the reaction of trans-Os(C≡CC₆H₄-4-C=CH)Cl(dppm)₂ with cis-[RuCl₂(dppm)₂], NaPF₆ and DBU in CH₂Cl₂ over two steps (Scheme 2.5). It was found to be air-sensitive, precluding satisfactory microanalysis data. The electrochemical behaviour was investigated by cyclic voltammetry in CH₂Cl₂ and shown to have two processes at -0.02 and 0.34 V (ferrocene referenced to 0.46 V) assigned to oxidation at the osmium and ruthenium metal centres, respectively. The separation of the two processes (0.36 V) is 0.2 V greater than the gap between the potentials for the individual osmium and ruthenium mononuclear complexes.

Scheme 2.5. Formation of heterobimetallic complex by Younus et al.¹

2.2 Results and Discussion

2.2.1 Synthesis

Previously, chloro-alkynyl complexes incorporating the trans-[Os(dppe)₂] metal centre had been formed in modest yields (36 – 44%) under forcing conditions (refluxing toluene for 18 h)⁷ (Scheme 2.4). Due to the disadvantages of this approach, an alternative route based on that taken with the analogous trans-[Os(dppm)₂]⁴ and trans-[Ru(dppe)₂]¹⁴ metal centres was used to access chloro-alkynyl complexes (Schemes 2.6 and 2.7). This approach involved stirring cis-[OsCl₂(dppe)₂], acetylene and halide abstraction agent (NH₄PF₆) in CH₂Cl₂ for 18 h, affording the vinylidene complex. Without isolation, the vinylidene complex was deprotonated to the corresponding alkynyl complex through the addition of a base (NEt₃). After purification, the chloro-alkynyl complexes
trans-[Os(C≡C₆H₄-4-C≡SiPr'₃)Cl(dppe)₂]

(1) and

trans-[Os(C≡C₆H₄-4-C≡C₆H₄-4-C≡SiPr'₃)Cl(dppe)₂]

(5) were isolated in excellent yield (85 and 91%, respectively) (Schemes 2.6 and 2.7). These complexes could be desilylated by stirring the CH₂Cl₂ solutions in the presence of NBu''₄F. For complex 2, where the silyl group is closer to the metal centre, the desilylation reaction proceeds at a much slower pace, but is complete after 48 h. Both

trans-[Os(C≡C₆H₄-4-C≡CH)Cl(dppe)₂]

(2) and

trans-[Os(C≡C₆H₄-4-C≡C₆H₄-4-C≡CH)Cl(dppe)₂]

(6) were isolated in excellent yields (88 and 85%, respectively) (Schemes 2.6 and 2.7). The osmium-ruthenium complex 3 was synthesised through the reaction of

trans-[Os(C≡C₆H₄-4-C≡CH)Cl(dppe)₂] (2) with cis-[RuCl₂(dppe)₂] and NaPF₆, forming a vinylidene complex which was deprotonated in situ with NEt₃ to afford

trans, trans-[(dppe)₂ClO₦(C≡C₆H₄-4-C≡C)RuCl(dppe)₂] (3) (Scheme 2.6). The bimetallic complex with a diethynyl bridge separating the metal centres was initially targeted, as it would allow much greater communication between the metals, which should result in a greater separation of redox potentials. Although 3 was synthesised successfully it was found to be air-sensitive; a similar problem was reported for the dppm analogue of 3¹⁵. Due to the instability of 3, it was reacted with a further aliquot of

HC≡C₆H₄-4-C≡SiPr'₃ to afford

trans,

trans-[(dppe)₂ClO₦(C≡C₆H₄-4-C≡C)Ru(C≡C₆H₄-4-C≡SiPr'₃)(dppe)] (4)

(Scheme 2.6).
Scheme 2.6. Syntheses of 1 – 4

It should be noted that the low yield for the formation of 4 is partly due to the use of chromatography in the purification step, with some product lost due to instability on alumina. Interestingly, it can be seen from the formation of 4 that reactivity towards bis-alkynyl formation under these conditions is favoured for the ruthenium metal.
centre over the osmium metal centre. It was found that 4 was much more stable in air than 3, although over time in the solid state there were significant levels of decomposition. It was reasoned that the longer bridge between the two metal centres results in greater complex stability so the triethynyl-linked complex \textit{trans,trans}-[(dppe)\textsubscript{2}ClOs(C≡C\textsubscript{6}H\textsubscript{4}-4=C≡C\textsubscript{6}H\textsubscript{4}-4=C≡C)RuCl(dppe)\textsubscript{2}] (7) was synthesised under similar conditions as those used for the formation of 3 (Scheme 2.7). It was found that 7 was more stable in both solution and in air than 3 and 4.

\begin{center}
\textit{cis-}[OsCl\textsubscript{2}(dppe)\textsubscript{2}]
\end{center}

(i) NH\textsubscript{4}PF\textsubscript{6}, CH\textsubscript{2}Cl\textsubscript{2}, RT, 18 h
(ii) CH\textsubscript{2}Cl\textsubscript{2}, NEt\textsubscript{3}, 2 min

\begin{center}
\textit{cis-}[RuCl\textsubscript{2}(dppe)\textsubscript{2}]
\end{center}

(i) NaPF\textsubscript{6}, CH\textsubscript{3}Cl\textsubscript{2}, RT, 48 h
(ii) CH\textsubscript{2}Cl\textsubscript{2}, NEt\textsubscript{3}, 2 min

\textbf{Scheme 2.7.} Syntheses of 5 - 7

In order to compare the properties of osmium chloro-alkynyl complexes to ruthenium chloro-alkynyl complexes, the ruthenium analogue of 5,
trans-[Ru(C≡CC₆H₄-4-C≡CC₆H₄-4-C≡CSiPr₃)Cl(dppe)₂] (8) was also prepared (Scheme 2.8).

Scheme 2.8. Synthesis of 8

2.2.2 Physical Properties

2.2.2.1 NMR spectroscopy

Complexes 1 – 8 were characterised by ¹H, ³¹P and ¹³C NMR spectroscopy in CDCl₃. The ¹H NMR spectra of complexes 1 – 8 are quite similar, with resonances in the range 6.5 – 7.5 ppm corresponding to aromatic protons. All of the complexes formed also have a multiplet in the region 2.5 – 2.8 ppm due to the bridgehead protons of the dppe ligands. For the isopropyl group on complexes 1, 4, 5, and 8 there is a resonance at ca 1.1 ppm, appearing as a pseudo-singlet; the heptets corresponding to the methyne protons are not visible in the spectra. This isopropyl singlet is no longer present after desilylation to form complexes 2 and 6, with the spectra now containing a signal corresponding to the acetylenic proton at ca 3.1 ppm. All complexes containing a trans-[Os(dppe)₂] metal centre (1 – 7) have a characteristic ³¹P NMR signal in the range 16.0 – 16.6 ppm, which is consistent with previously reported resonances for this type of complex.⁷ For complexes containing a trans-[RuCl(dppe)₂] metal centre (3, 7 and 8), a characteristic ³¹P resonance at ca 50
ppm is visible. On replacement of the chloro group with a second alkynyl group to form 4, the signal for the phosphorus atoms attached to the ruthenium is found at 54.4 ppm, these resonances being consistent with previously reported findings for similar complexes16. For complexes 1 – 8, 13C NMR spectra have been recorded, where possible, to confirm the identity of the complexes; these are attached in Appendix A.

2.2.2.2 UV-Vis absorption spectroscopy

Complexes 1 – 8 were characterised by UV-Vis spectroscopy as CH\textsubscript{2}Cl\textsubscript{2} solutions. The mononuclear complexes with C≡C-4-C\textsubscript{6}H\textsubscript{4}C≡C ligand (1 and 2) have one major absorption band centred at ca 372 nm. This is in contrast to the complexes with the triethynyl ligand C≡C-4-C\textsubscript{6}H\textsubscript{4}-C≡C-4-C\textsubscript{6}H\textsubscript{4}C≡C ligand, which all have two major absorption bands, located at ca 304 and 417 nm for the osmium complexes (5 and 6) and slightly blue-shifted to 297 and 409 nm for the ruthenium complex (8). Interestingly, the UV-Vis spectrum of the binuclear complex with the triethynyl C≡C-4-C\textsubscript{6}H\textsubscript{4}-C≡C-4-C\textsubscript{6}H\textsubscript{4}C≡C bridging ligand (7) shows only one band, located at 427 nm and red-shifted with respect to the component mononuclear complexes. Both of the binuclear complexes with the diethynyl C≡C-4-C\textsubscript{6}H\textsubscript{4}C≡C bridging ligand have a single absorption band, located at 373 nm for 3 and 389 nm for 4. Although quantum mechanical calculations are required to definitively assign the absorption bands of these complexes, it is possible to tentatively assign transitions based on previous studies of similar osmium7 and ruthenium17 mononuclear complexes. It is likely that the dominant absorption bands for the mononuclear complexes 1, 2, 5, 6 and 8 are metal-to-ligand charge transfer bands. In particular, these are likely to be either metal-to-ethynyl or metal-to-phosphorus transitions, with the former being lower in energy.
2.2.2.3 Infrared spectroscopy

Complexes 1 - 8 were investigated via solution infrared spectroscopy, the ν(C≡C) band being indicative of the presence of an alkynyl linkage. For the mononuclear SiPr'₃-protected complexes (1, 5 and 8) the band corresponding to ν(C≡CSi) is present at ca 2147 cm⁻¹, and an additional broad band is seen between 2053 – 2063 cm⁻¹. On desilylation, the band at ca 2147 cm⁻¹ disappears and is replaced by a band at ca. 3300 cm⁻¹ corresponding to ν(≡CH). On formation of the binuclear complexes (3 and 7), the ν(≡CH) band disappears.

2.2.2.4 Structural determinations

Single crystals suitable for X-ray crystallographic structure determinations were obtained for complexes 1, 2 and 6 through the slow diffusion of n-hexane into CH₂Cl₂ solutions. The osmium metal centres all show distorted octahedral geometries, with the dppe ligands occupying the equatorial positions, and chloro and alkynyl ligands occupying the axial positions. The structures are given in Figures 2.1 - 2.3. Interestingly, a significant difference in the Os-Cl bond length can be seen on going from complexes 1 (2.532(2) Å) and 2 (2.5040(9) Å) to complex 6 (2.8479(8) Å). Both complexes 2 and 6 possess H-bonding between the Cl atom and the acetylene proton of the adjacent molecule (Figures 2.4 and 2.5). Additionally, the chlorine atom in complex 6 shows interactions with the protons of a CH₂Cl₂ solvent molecule (Figure 2.6), which may account for the elongated Os-Cl bond length.
Figure 2.1. Molecular geometry and atomic labelling scheme for trans-[Os(C≡C-4-C₆H₄C≡CSiPr₃)Cl(dppe)₂] (1). Thermal ellipsoids at the 40% probability level are shown for non-hydrogen atoms. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and bond angles (°): Os(1)-Cl(1) 2.532(2), Os(1)-C(1) 1.995(9), C(1)-C(2) 1.215(12), Cl(1)-Os(1)-C(1) 171.9(2), Os(1)-C(1)-C(2) 178.4(8).

Figure 2.2. Molecular geometry and atomic labelling scheme for trans-[Os(C≡C-4-C₆H₄C≡CH)Cl(dppe)₂] (2). Thermal ellipsoids at the 40% probability level are shown for non-hydrogen atoms. Hydrogen atoms have been
omitted for clarity. Selected bond lengths (Å) and bond angles (°): Os(1)-Cl(1) 2.5040(9), Os(1)-C(1) 2.044(4), C(1)-C(2) 1.123(5), Cl(1)-Os(1)-C(1) 172.91(10), Os(1)-C(1)-C(2) 172.8(3).

Figure 2.3. Molecular geometry and atomic labelling scheme for trans-[Os(C≡C-4-C₆H₄C≡C-4-C₆H₄C≡CH)Cl(dppe)₂] (6). Thermal ellipsoids at the 40% probability level are shown for non-hydrogen atoms. Hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and bond angles (°): Os(1)-Cl(1) 2.8479(8), Os(1)-C(1) 2.000(3), C(1)-C(2) 1.189(5), Cl(1)-Os(1)-C(1) 177.29(9), Os(1)-C(1)-C(2) 177.1(3).
Figure 2.4. Cell-packing diagram of 2, looking along the b axis of the unit cell. Hydrogen atoms have been omitted for clarity, with the exception of the acetylene protons. The Cl(1)•••H(101) contacts are ca 2.592 Å.

Figure 2.5. Cell-packing diagram of 6, looking along the c axis of the unit cell. Hydrogen atoms and solvent molecules have been omitted for clarity, with the exception of the acetylene protons. The Cl(1)•••H(181) contacts are ca 2.780 Å.
Figure 2.6. Fractional cell-packing diagram of 6. Interactions of the terminal chlorine atom of one molecule with the terminal acetylene proton of an adjacent molecule and with a proton of the CH₂Cl₂ solvent molecule are indicated by dashed lines. The Cl•••H distances are 3.032 Å (solvent•••complex) and 2.780 Å (complex•••complex), respectively.

2.2.2.5 Electrochemistry

The redox potentials of complexes 1 – 8 in THF were investigated using cyclic voltammetry. The mononuclear osmium complexes (1, 2, 5 and 6) were all oxidised at potentials within the range of 0.45 – 0.49 V (Table 2.1). The oxidation potential of the ruthenium mononuclear complex (8) is 0.63 V, in the same range as other similar ruthenium complexes previously reported.¹⁷ On forming the bimetallic complexes, the ease of oxidation for the osmium metal centre increases. This change in oxidation potential is affected by the length of the bridge separating the two metal centres, with the shorter bridge in complexes 3 and 4 resulting in a lower osmium oxidation potential than that in 7. It should also be noted that the length of the bridge separating the metal centres affects the separation of the osmium and ruthenium potentials. A shorter bridge, as seen in complexes 3 and 4 has a larger separation of potentials compared to a longer bridge (7).
Complex	$E_{1/2} \left[i_{pc}/i_{pa} \right] \text{Os}^{II/III}$ (V)	$E_{1/2} \left[i_{pc}/i_{pa} \right] \text{Ru}^{III}$ (V)	$E_{1/2} \left[\text{Ru}^{III} - \text{Ei} \right] / 2$	Os$^{II/III}$ (V)	RuIII - OsIII (V)
1 | 0.49 [1] | | | | |
2 | 0.45 [1] | | | | |
3 | 0.22 [1] | 0.51 [1] | | 0.29 | |
4 | 0.31 [1] | 0.59 [1] | | 0.28 | |
5 | 0.45 [1] | | | | |
6 | 0.45 [1] | | | | |
7 | 0.41 [1] | 0.62 [1] | | 0.21 | |
8 | 0.63 [1] | | | | |

Table 2.1. Cyclic voltammetric data for complexes 1 – 8. THF solvent, Pt disk working-, Pt wire auxiliary-, and Ag/AgCl reference electrodes, ferrocene/ferrocenium couple at 0.56 V, ΔE_p of samples approximately matched that of the ferrocene/ferrocenium couple.

2.2.2.6 Spectroelectrochemistry

Electrolysis of complexes 1, 4, 5, 7, and 8 was carried out in an optically-transparent thin-layer electrochemical (OTTLE) cell in order to observe the changes in UV-Vis-NIR absorption spectra upon oxidation. Strong changes were observed for all the complexes examined (Figures 2.7 - 2.11). Previous reports for various examples of trans-[Os(C≡CR)Cl(dppe)$_2$]7 and trans-[Ru(C≡CR)Cl(dppe)$_2$]18,19 have shown the appearance of a low energy band on oxidation ascribed to a chloro-to-metal-ethynyl charge transfer. All three mononuclear complexes studied (Figures 2.7, 2.9 and 2.11) show this band, centred at ca 13400 cm$^{-1}$ for osmium complexes 1 and 5, and at 11200 cm$^{-1}$ for the ruthenium complex 8. The lower energy band for the ruthenium complex matches previously observed data7,17. The bimetallic complexes 4 (Figure 2.8) and 7 (Figure 2.10) display similar behaviour on oxidation. For the mono-oxidised species, a low energy band appears at 6508 cm$^{-1}$.
for 4^+ and 8571 cm$^{-1}$ for 7^+. On forming the doubly-oxidised species, this band is blue-shifted to 9600 cm$^{-1}$ for 4^{2+} and 11355 cm$^{-1}$ for 7^{2+}, and becomes more intense. The low energy band appearing on the first oxidation for the binuclear complexes 4 and 7 may be ascribed to an inter-valence charge transfer (IVCT) process, particularly for complex 4 where the coupling between the metal centres evidenced by the large separation in redox potentials suggests an IVCT band should be present. However, the observation that the low energy band doesn’t disappear but shifts to higher energy on the second oxidation discounts this assignment. An alternate assignment by Klein and co-workers8 for similar homo-bimetallic ruthenium complexes proposes the low energy band appearing on oxidation is an intraligand transition from the former HOMO-1 to the newly formed SOMO, and the second lowest energy band at ca 20000 cm$^{-1}$ is a transition from the SOMO to the LUMO. Quantum mechanical calculations are required for a more definitive assignment.

Figure 2.7. UV-vis-NIR spectral changes during electrochemical oxidation of trans-$\text{[Os(C=CC}_6\text{H}_4\text{-4-C}=\text{CSiPr}_3]\text{Cl(dppe)}_2]$ (1).
Figure 2.8. UV-vis-NIR spectral changes during electrochemical oxidation of *trans-*
trans-[(dppe)$_2$ClOs(C≡CC$_6$H$_4$-4-C≡C)Ru(C≡CC$_6$H$_4$-4-C≡CSiPr$_3$)(dppe)$_2$] (4).

Figure 2.9. UV-vis-NIR spectral changes during electrochemical oxidation of *trans*-[[Os(C≡CC$_6$H$_4$-4-C≡CC$_6$H$_4$-4-C≡CSiPr$_3$)]Cl(dppe)$_2$] (5).
Figure 2.10. UV-vis-NIR spectral changes during electrochemical oxidation of trans,trans-[(dppe)$_2$ClOs(C≡C$_6$H$_4$-4-C≡C$_6$H$_4$-4-C≡C)RuCl(dppe)$_2$] (7).

Figure 2.11. UV-vis-NIR spectral changes during electrochemical oxidation of trans-[Ru(C≡C$_6$H$_4$-4-C≡C$_6$H$_4$-4-C≡CiPr_3$)Cl(dppe)$_2$] (8).
Table 2.2. Summary of optical data for complexes 1, 4, 5, 7 and 8. a Electronic spectra were obtained at 298 K in THF using 0.3 M (NBun)4PF6 as supporting electrolyte and potentials ca 50-200 mV beyond \(E_{1/2} \) for each couple.

2.2.2.7 Nonlinear optics

The third-order nonlinear optical properties of 7 have been measured using the Z-scan technique and are presented in chapter 4.
2.3 Conclusions

A series of mononuclear osmium complexes and binuclear osmium-ruthenium complexes have been formed with selected examples investigated structurally and electrochemically. All complexes possess a reversible redox process with the binuclear complexes having two. Spectroelectrochemical studies reveal large changes in the absorption properties on oxidation, which may be useful for optical or nonlinear optical switching.

2.4 Experimental Section

2.4.1 General

All reactions were performed under a nitrogen atmosphere using standard Schlenk techniques, with no precautions to exclude air during workup. CH₂Cl₂ was dried by distilling over calcium hydride, THF was distilled over sodium/benzophenone, and all other solvents were used as received. The term “petrol” refers to a fraction of petroleum ether of boiling range 60-80 °C. Column chromatography was performed using Sigma-Aldrich aluminium oxide (activated, basic, Brockmann 1, standard grade ca 150 mesh, 58 Å). Solvents and reagents were obtained from commercial sources and used as received, unless otherwise indicated. The following were prepared according to the literature: HC≡CC₆H₄-4-C≡CSiPr₃,²⁰ HC≡CC₆H₄-4-C≡CC₆H₄-4-C≡CSiPr₃,²¹ cis-[OsCl₂(DMSO)]₄,²² cis-[RuCl₂(dppe)]₄,²³ cis-[OsCl₂(dppe)]₄ was prepared via the following unpublished procedure by Morrall et al.: A mixture of 1,2-bis(diphenylphosphino)ethane (527 mg, 1.325 mmol) and cis-[OsCl₂(DMSO)]₄ (380 mg, 0.662 mmol) was heated in refluxing toluene (40 mL) for 18 h. The solution was allowed to cool to room temperature. The toluene-insoluble component was collected by filtration and washed with diethyl ether (690 mg, 98%).²⁴ ¹H NMR: δ 6.65-8.14 (m, 40H, Ar), 2.50 -2.92 (m, 8H, CH₂). ³¹P NMR: δ 7.6 (t, ²Jpp = 5.5 Hz), 5.3 (t, ²Jpp = 5.5 Hz).
2.4.2 Instrumentation

Electrospray ionisation mass spectra (ESIMS) were obtained using a Waters-micromass LCT-ZMD single quadrupole liquid chromatograph instrument; peaks are reported as m/z (assignment, relative intensity). Microanalyses were carried out by the Microanalysis Service Unit, Australian National University. Infrared spectra were recorded as dichloromethane solutions using a Perkin-Elmer System 2000 FT-IR spectrometer. 1H (300 MHz), 13C{1H} (75 MHz) and 31P{1H} (121 MHz) NMR spectra were recorded using a Varian Mercury-300 FT-NMR spectrometer and are referenced to residual chloroform (7.26 ppm (1H), 77.0 ppm (13C{1H})) or external 85% H$_3$PO$_4$ (0.0 ppm (31P{1H})). UV-Vis spectra were recorded as CH$_2$Cl$_2$ solutions in 1 cm quartz cells using a Cary 5 spectrophotometer.

Cyclic voltammetry measurements were recorded using an e-corder and EA161 potentiostat from eDaq Pty Ltd. Measurements were carried out at room temperature using Pt disc working-, Pt wire auxiliary-, and Ag/AgCl reference electrodes, such that the ferrocene/ferrocenium redox couple was located at 0.56 V. Scan rates were typically 100 mV s$^{-1}$. Electrochemical solutions contained 0.1 M (NBU$_4^n$)PF$_6$ and ca 10$^{-3}$ M complex in dried and distilled solvent; solutions were purged and maintained under a nitrogen atmosphere. Electronic spectra were recorded using a Cary 5 spectrophotometer. Solution spectra of the oxidized species were obtained at 298 K by electrogeneration in an optically-transparent thin-layer electrochemical (OTTLE) cell with potentials ca 50 - 200 mV beyond E$_{1/2}$ for each couple, to ensure complete electrolysis. Solutions were made up using 0.3 M (NBU$_4^n$)PF$_6$ in THF.
2.4.3 13C NMR Numbering Scheme
2.4.4 Synthesis and Characterization

trans-\([\text{Os}(\equiv\text{C}_{6}H_{4}-4-\equiv\text{CSiPr}_{3})\text{Cl}(\text{dppe})_{2}]\) (1)

A mixture of \(\text{cis-}[\text{OsCl}_{2}(\text{dppe})_{2}]\) (1, 1.50 g, 1.42 mmol), \(\text{HC}=\text{CC}_{6}H_{4}-4-\equiv\text{CSiPr}_{3}\) (2.00 g, 7.08 mmol), and \(\text{NH}_{4}\text{PF}_{6}\) (289 mg, 1.77 mmol) was stirred in \(\text{CH}_{2}\text{Cl}_{2}\) (150 mL) for 18 h. \(\text{NEt}_{3}\) (15 mL) was then added, and the solution reduced to 60 mL in volume. The solution was added to methanol (200 mL), precipitating the solid product which was collected on a sintered glass filter funnel and washed with n-hexane (5 mL), affording 1 as a yellow powder (1.684 g, 91%). ESI MS: 1301 ([M - Cl + CH₃OH]+, 100). Anal. Calcd for C₇₁H₇₃Cl₁₀P₄Si: C 65.40, H 5.64%. Found: C 65.48, H 5.68%. UV-vis (CH₂Cl₂): \(\lambda\) 376 nm, \(\varepsilon\) 14900 M⁻¹ cm⁻¹. IR (CH₂Cl₂) 2053 br cm⁻¹ \(\nu(\text{OsC=CC})\), 2146 cm⁻¹ \(\nu(\text{C=CSi})\). \(^1\)H NMR: \(\delta\) 6.51-7.48 (m, 44H, Ar), 2.62 (m, 8H, CH₂), 1.14 (s, 21H, Pr'₃). \(^{31}\)P NMR: \(\delta\) 16.1. \(^{13}\)C NMR: \(\delta\) 134.8, 134.6 (C₄₇, C₄₃, vtt, \(\text{J}_{PC} + 3\text{J}_{PC}\) = 24 Hz), 134.4, 134.2 (C₄₈, C₄₄), 132.6 (C₃₈), 131.2 & 130.2 (C₃₇, C₃₆), 128.9, 128.8 (C₅₀, C₄₆), 127.1, 126.9 (C₄₉, C₴₅), 116.4 (C₃₅), 110.3 (C₃₉), 108.4 (C₄₀, quint, \(\text{J}_{PC} = 11\) Hz), 89.6 (C₃₃), 31.4 (C₄₂, vtt, \(\text{J}_{PC} = 24\) Hz), 18.7 (C₅₂), 11.4 (C₅₁).
trans-[Os(C≡CC₆H₄-4-C≡CH)Cl(dppe)₂] (2)

A mixture of trans-[Os(C≡CC₆H₄-4-C≡CSiPr'₃)Cl(dppe)₂] (1, 1.689 g, 1.29 mmol) and tetra-n-butylammonium fluoride (12.9 mL of a 1.0 M solution in THF, 12.9 mmol) was stirred in CH₂Cl₂ (200 mL) for 48 h. The solution volume was reduced to 40 mL, and then added to methanol (150 mL) to precipitate the product, which was collected on a sintered glass filter funnel. Complex 2 was obtained as an orange powder (1.305 g, 88%). ESI MS: 1145 ([M - Cl + CH₃OH]⁺, 100). Anal. Calc. for C₆₂H₅₃ClOsP₄: C 64.89, H 4.65%. Found: C 64.95, H 4.74%. UV-vis (CH₂Cl₂): λ 371 nm, ε 15000 M⁻¹ cm⁻¹. IR (CH₂Cl₂) 2064, 2039 (sh) cm⁻¹ ν(C≡C), 3310 cm⁻¹ ν(C–CH). ¹H NMR: δ 6.54-7.50 (m, 44H, Ar), 3.11 (s, 1H, OCH), 2.63 (m, 8H, CH₂). ³¹P NMR: δ 16.1. ¹³C NMR: δ 135.6, 134.6 (C₄₇, C₄₃, vtt, |¹JₚC + ³JₚC| = 24 Hz), 134.3, 134.2 (C₄₈, C₄₄), 131.7 (C₃₈), 131.2, 130.3 (C₃₇, C₃₆), 128.9, 128.8 (C₅₀, C₄₆), 127.2, 126.8 (C₄₉, C₄₅), 114.8 (C₃₅), 110.2 (C₃₉), 109.1 (C₄₀, quint, ²JₚC = 11 Hz), 85.0 (C₃₄), 76.7 (C₃₃), 31.4 (C₄₂, vtt, |¹JₚC + ³JₚC| = 24 Hz).

trans, trans-[(dppe)₂ClOs(C≡CC₆H₄-4-C≡C)RuCl(dppe)₂] (3)

A mixture of trans-[Os(C≡CC₆H₄-4-C≡CH)Cl(dppe)₂] (2, 1.00 g, 0.872 mmol), cis-[RuCl₂(dppe)₂] (2.10 g, 2.18 mmol) and NaPF₆ (295 mg, 1.74 mmol) was stirred in CH₂Cl₂ (200 mL) for 18 h. NEt₃ (20 mL) was added and the solvent volume reduced to 60 mL. The product was precipitated after the addition of methanol (150 mL), collected on a sintered glass filter funnel, and washed with n-hexane (10 mL), affording 2 as a yellow powder (1.695 g, 93%). ESI MS: 2085 ([M - Cl + CH₃CN]⁺, 50). Anal. Calc. for C₁₁₄H₁₀₀Cl₂OsP₈Ru: C 65.83, H 4.85%. Found: C 65.04, H 4.57%. UV-vis (CH₂Cl₂): λ 373 nm, ε 45700 M⁻¹ cm⁻¹. IR: (CH₂Cl₂) 2065, 2043 (sh) cm⁻¹ ν(C≡C). ¹H NMR: δ 6.58-7.73 (m, 84H, Ar), 2.72 (m, 16H, CH₂). ³¹P NMR: δ 16.2 (s, 4P, OsP), 50.2 (s, 4P, RuP). The complex was insufficiently soluble for ¹³C NMR data to be obtained.
trans, trans- \[(dppe)_2\text{Cl}Os(C≡CCH}_4-4-C≡C)Ru(C≡CCH}_4-4-C≡CSiPr}_3(dppe)_2\] (4)

A mixture of **trans,trans-** \[(Cl(dppe)_2)\text{Os}(C≡CCH}_4-4-C≡C)\text{RuCl(dppe)}_2\] (3, 400 mg, 0.192 mmol), HC≡CC=4-C≡CSiPr}_3 (217 mg, 0.769 mmol), NaPF_6 (65 mg, 0.385 mmol) and NEt}_3 (0.1 mL) was stirred in refluxing CH}_2Cl}_2 (100 mL) for 18 h. The solvent mixture was absorbed onto basic alumina and the product eluted with 2:3 CH}_2Cl}_2/petrol, affording 4 as a yellow powder after reduction in volume of the solvent (177 mg, 40%). ESI MS: 2324 ([M - Cl + CH}_3OH]^{+}, 5). Anal. Calc. for C\text{133}H\text{25}ClOsP\text{4}RuSi: C 68.68, H 5.42%. Found: C 68.34, H 5.48%. UV-vis (CH}_2Cl}_2): \(\lambda\) 389 nm, \(\varepsilon\) 35000 M\(^{-1}\) cm\(^{-1}\). IR: (CH}_2Cl}_2) 2058 (br) cm\(^{-1}\) \(\nu(C≡C)\), 2147 cm\(^{-1}\) \(\nu(C≡CSi)\). \(^1\)H NMR: \(\delta\) 6.90 - 7.82 (m, 8H, Ar), 2.65 (m, 16H, CH}_2), 1.15 (s, 21H, 'Pr). \(^{31}\)P NMR: \(\delta\) 16.6 (s, 4P, OsP), 54.3 (s, 4P, RuP). \(^{13}\)C NMR: \(\delta\) 137.4 (C\text{23}, C\text{19}), 136.5, 135.7 (C\text{47}, C\text{43}, tt, \(1\text{J}_{PC} + 3\text{J}_{PC}\) = 24 Hz), 134.4, 134.0 (C\text{48}, C\text{44}, C\text{24}, C\text{20}), 131.2, 131.2, 130.0, 129.7, 129.4, 129.1 (C\text{37}, C\text{36}, C\text{14}, C\text{13}, C\text{35}, C\text{15}), 128.6, 128.5 (C\text{50}, C\text{46}, C\text{26}, C\text{22}), 127.0 (C\text{49}, C\text{45} C\text{25}, C\text{21}), 116.7 (C\text{12}), 110.0, 108.6, 108.5, 89.6, 89.5 (C\text{10}, C\text{11}, C\text{16}, C\text{34}, C\text{39}), 32.4 (C\text{18}, vtt, \(1\text{J}_{PC} + 3\text{J}_{PC}\) = 24 Hz), 18.7 (C\text{52}), 11.4 (C\text{51}), C\text{40}, C\text{38}, C\text{33}, C\text{17} (not detected).

**trans-[Os(C≡CCH}_4-4-C≡CCCH}_4-4-C≡CSiPr}_3(dppe)_2]Cl(dppe)_2\] (5)

A mixture of **cis-[OsCl}_2(dppe)_2\] (600 mg, 0.567 mmol), HC≡CC=4-C≡CC=4-C≡CSiPr}_3 (324 mg, 0.848 mmol), and NH}_4PF}_6 (153 mg, 0.938 mmol) was stirred in CH}_2Cl}_2 (115 mL) for 18 h. NEt}_3 (10 mL) was added to the resulting dark brown solution, and the solution became orange. The volume of solvent was reduced by rotary evaporation to 50 mL, and the product was then precipitated from methanol (150 mL), collected on a sintered glass filter funnel and washed with \(n\)-hexane (5 mL), affording 5 as a yellow powder (680 mg, 85%). ESI MS: 1401 ([M - Cl + CH}_3OH]^{+}, 30), 1369 ([M - Cl]^{+}, 30). Anal. Calc. for C\text{79}H\text{77}ClOsP\text{4}Si: C 67.58, H 5.53%. Found: C 67.52, H 5.51%. UV-vis (CH}_2Cl}_2): \(\lambda\)
306 nm, ε 23200 M⁻¹ cm⁻¹, λ 417 nm, ε 21200 M⁻¹ cm⁻¹. IR (CH₂Cl₂) 2059 (br) cm⁻¹ ν(C=≡C), 2151 cm⁻¹, ν(C≡C≡Si). ¹H NMR: δ 6.56-7.51 (m, 48H, Ar), 2.64 (m, 8H, CH₂), 1.15 (s, 21H, Pr'₃). ³¹P NMR: δ 16.0. ¹³C NMR: δ 135.8, 134.9 (C₄₇, C₄₃, vtt, |¹JPC + ³JPC| = 24 Hz), 134.4, 134.2 (C₄₈, C₄₄), 131.5 (C₃₈), 131.9, 131.3, 130.8, 130.5 (C₃₇, C₃₆, C₃₁, C₃₀), 129.0, 128.8 (C₅₀, C₄₆), 127.2, 126.9 (C₄₉, C₄₅), 123.9, 122.6, 115.7 (C₃₅, C₃₂, C₂₉), 110.7, 106.9, 92.8, 92.4 (C₃₉, C₃₄, C₃₃, C₂₈), 109.9 (C₄₀, quint, ²JPC = 11 Hz), 87.3 (C₂₇), 31.4 (C₄₂, vtt, |¹JPC + ³JPC| = 24 Hz), 18.7 (C₅₂), 11.3 (C₅₁), 18.7 (C₅₂), 11.4 (C₅₁).

trans-[Os(≡CC₆H₄-4-C≡CC₆H₄-4-C≡CH)Cl(dppe)₂] (6)

A mixture of trans-[Os(≡CC₆H₄-4-C≡CC₆H₄-4-C≡CSiPr'₃)Cl(dppe)₂] (5, 501 mg, 0.402 mmol) and tetra-/β-butylammonium fluoride (4.84 mL of a 1.0 M solution in THF, 4.84 mmol) was stirred in CH₂Cl₂ (100 mL) for 20 h. The solution volume was reduced to 40 mL, and the product was precipitated on addition of methanol (150 mL). The product was collected on a sintered glass filter funnel and washed with methanol (20 mL), affording 6 as an orange powder (513 mg, 85%). ESI MS: 1245 ([M - Cl + CH₃OH]⁺, 30), 1213 ([M - Cl]⁺, 100). Anal. Calc. for C₇₀H₅₇ClOs₄: C 67.38, H 4.60%. Found: C 67.44, H 4.91%. UV-vis (CH₂Cl₂): λ 304 nm, ε 27000 M⁻¹ cm⁻¹, λ 416 nm, ε 30000 M⁻¹ cm⁻¹. IR (CH₂Cl₂) 2058, 2027 (sh) cm⁻¹ ν(C≡C), 3297 cm⁻¹ ν(≡CH). ¹H NMR: δ 6.59-7.52 (m, 48H, Ar), 3.18 (s, 1H, C≡CH), 2.65 (m, 8H, CH₂). ³¹P NMR: δ 16.0. ¹³C NMR: δ 135.6, 134.8 (C₄₇, C₄₃, vtt, |¹JPC + ³JPC| = 24 Hz), 134.6, 134.2 (C₄₈, C₄₄), 131.6 (C₃₈), 132.0, 131.1, 130.8, 130.5 (C₃₇, C₃₆, C₃₁, C₃₀), 129.0, 128.8 (C₅₀, C₄₆), 127.2, 126.9 (C₄₉, C₄₅), 124.5, 121.1, 115.6 (C₃₅, C₃₂, C₂₉), 110.0 (C₄₀, quint, ²JPC = 11 Hz), 110.7, 93.0, 89.0 (C₃₉, C₃₄, C₃₃), 83.5 (C₂₈), 78.6 (C₂₇), 31.4 (C₄₂, vtt, |¹JPC + ³JPC| = 26 Hz).
trans, trans-\([(\text{dppe})_2\text{ClOs} (\text{CC}_6\text{H}_4-4-\text{C} = \text{CC}_6\text{H}_4-4-\text{C} = \text{C}) \text{RuCl}(\text{dppe})_2)]\) (7)

A mixture of \(\text{trans-}[\text{Os} (\text{C}=\text{CC}_6\text{H}_4-4-\text{C}=\text{CC}_6\text{H}_4-4-\text{C}=\text{CH}) \text{Cl}(\text{dppe})_2]\) (6, 501 mg, 0.402 mmol), \(\text{cis-}[\text{RuCl}_2(\text{dppe})_2]\) (778 mg, 0.803 mmol) and \(\text{NaPF}_6\) (353 mg, 2.09 mmol) was heated at reflux in \(\text{CH}_2\text{Cl}_2\) (150 mL) for 48 h. \(\text{NEt}_3\) (15 mL) was added and the solvent volume reduced to 30 mL. Methanol (150 mL) was added, precipitating the solid product, which was collected on a sintered glass filter funnel affording 7 as a yellow powder (841 mg, 97%). ESI MS: 2186 ([M - Cl + CH_3CN]\^+, 1), 974 ([RuCl(\text{NCMe})(\text{dppe})_2]^+, 100). Anal. Calc. for \(\text{C}_{122}\text{H}_{104}\text{Cl}_2\text{OsP}_8\text{Ru}\): C 67.21, H 4.81%. Found: C 67.20, H 5.08%. UV-vis (\(\text{CH}_2\text{Cl}_2\)): \(\lambda\) 427 nm, \(\varepsilon\) 47600 M\(^{-1}\) cm\(^{-1}\). IR: (\(\text{CH}_2\text{Cl}_2\)) 2059 (br) cm\(^{-1}\) \(\nu(C=C)\). \(^1\text{H} \text{NMR}: \delta\) 6.57-7.55 (m, 88H, Ar), 2.66 (m, 16H, \(\text{CH}_2\)). \(^{31}\text{P} \text{NMR}: \delta\) 16.1 (s, 4P, OsP), 49.9 (s, 4P, RuP). \(^{13}\text{C} \text{NMR}: \delta\) 134.4, 134.3, 134.2 (C\(_{48},\ C_{44},\ C_{24},\ C_{20}\)), 129.0, 128.8 (C\(_{50},\ C_{46},\ C_{26},\ C_{22}\)), 127.2, 127.0, 126.9 (C\(_{49},\ C_{45},\ C_{25},\ C_{21}\)), 30.6 (C\(_{42},\ C_{18}\)); other signals were not observed due to poor solubility.

trans-\([\text{Ru}(\text{C}=\text{CC}_6\text{H}_4-4-\text{C}=\text{CC}_6\text{H}_4-4-\text{C}=\text{C} \text{SiPr}_3) \text{Cl}(\text{dppe})_2]\) (8)

A mixture of \(\text{cis-}[\text{RuCl}_2(\text{dppe})_2]\) (1.5 g, 1.55 mmol), \(\text{HC} = \text{CC}_6\text{H}_4-4-\text{C}=\text{CC}_6\text{H}_4-4-\text{C}=\text{C} \text{SiPr}_3\) (770 mg, 2.01 mmol), and \(\text{NaPF}_6\) (631 mg, 3.87 mmol) was stirred in \(\text{CH}_2\text{Cl}_2\) (100 mL) for 12 h. \(\text{NEt}_3\) (5 mL) was added to the red solution and the solution turned yellow. The volume of solvent was reduced by rotary evaporation to 40 mL, and the product was then precipitated from methanol (150 mL), collected on a sintered glass filter funnel and washed with petrol (20 mL), affording 8 as a yellow powder (1.86 g, 92%). ESI MS: 1320 ([M - Cl + CNCH_3]\^+, 100). Anal. Calc'd for \(\text{C}_{79}\text{H}_{77}\text{Cl}_4\text{RuSi}_2\text{C}\): C 72.16, H 5.90%. Found: C 72.03, H 6.12%. UV-vis (\(\text{CH}_2\text{Cl}_2\)): \(\lambda\) 251 nm, \(\varepsilon\) 51800 M\(^{-1}\) cm\(^{-1}\), \(\lambda\) 297 nm, \(\varepsilon\) 38000 M\(^{-1}\) cm\(^{-1}\), \(\lambda\) 409 nm, \(\varepsilon\) 40000 M\(^{-1}\) cm\(^{-1}\). IR (\(\text{CH}_2\text{Cl}_2\)) 2063 (br) cm\(^{-1}\) \(\nu(C=C)\), 2152 cm\(^{-1}\), \(\nu(C=\text{CSi})\). \(^1\text{H} \text{NMR}: \delta\) 6.56 - 7.44 (m, 48H, Ar), 2.69 (m, 8H, \(\text{CH}_2\)), 1.14 (s, 21H, \text{Pr}_3). \(^{31}\text{P} \text{NMR}: \delta\) 49.8. \(^{13}\text{C} \text{NMR}: \delta\) 136.3, 135.5 (C\(_{47},\ C_{43}\), vtt, \(|^1J_{PC} + ^3J_{PC} | = 18 \text{ Hz}\), 134.4, 134.2
(C₄₈, C₄₄), 131.9 (2C), 131.2, 130.7, 130.2 (C₃₈, C₃₇, C₃₆, C₃₁, C₃₀), 128.9 (C₃₀, C₄₆), 127.2, 127.0 (C₄₉, C₄₅), 123.7, 122.8 (2C), 106.8 (2C), 92.5 (2C) (C₃₉, C₃₅, C₃₄, C₃₃, C₃₂, C₂₉, C₂₈), 89.5 (C₂₇), 30.6 (C₄₂, vtt, |J₁ₚc + 3J₃ₚc| = 22 Hz), 18.7 (C₅₂), 11.3 (C₂₇), C₄₀ (not detected).

2.5 References

Chapter 3

Osmium bis-alkynyl heterobimetallic complexes
Chapter 3
Osmium bis-alkynyl heterobimetallic complexes

Contents

3.1 Introduction 104

3.2 Results and Discussion

3.2.1 Synthesis 105
3.2.2 Physical Properties 115
3.2.2.1 NMR spectroscopy 115
3.2.2.2 UV-Vis absorption spectroscopy 123
3.2.2.3 Infrared spectroscopy 126
3.2.2.4 Structural determinations 126
3.2.2.5 Electrochemistry 134
3.2.2.6 Spectroelectrochemistry 138
3.2.2.7 Quantum mechanical calculations 146
3.2.2.8 Nonlinear optics 146

3.3 Conclusions 148

3.4 Experimental section

3.4.1 General 149
3.4.2 Instrumentation 150
3.4.3 13C NMR numbering Scheme 151
3.4.4 Synthesis and Characterisation 151

3.5 References 163

103
3.1 Introduction

Whilst there have been numerous reports of ruthenium alkynyl complexes examined for nonlinear optical effects,1-6 there have been far fewer reports of osmium complexes for the same applications. This is curious, as it has been shown previously that optical nonlinearities increase on proceeding down the group 8 metals.7,8 One possible reason for the lack of development in this area is the ease with which unsymmetrical bis-alkynyl complexes of ruthenium are formed relative to the analogous osmium complexes, an important consideration if large, highly functionalised structures are to be prepared. Whilst there have been a few reports of symmetrical bis-alkynyl complexes of osmium9-16 the only report of unsymmetrically substituted osmium bis-alkynyl complexes involved the use of alkynyl-tin reagents and proceeded in approximately 30% yield17 (Scheme 3.1).

![Scheme 3.1. Syntheses of unsymmetrical bis-alkynyl complexes by Younus et al., utilising alkynyl-tin reagents17](image)

A large number of hetero-multinuclear phenylethynyl complexes have been reported to date. These complexes include: iron-ruthenium,18,19 rhenium-platinum,20 iron-rhenium,21 ruthenium-palladium,22 iron-palladium,22 ruthenium-platinum-iron-rhenium23 and osmium-ruthenium24 derivatives. One example of particular interest to this work is the iron-ruthenium hetero-bimetallic complex reported by Gauthier et al. (Figure 3.1).3,19,25 This complex has been shown to be a good third-order nonlinear optical switch, with the complex possessing several desirable properties for this type of application:
both the iron and ruthenium metal centres undergo reversible oxidation processes leading to three interchangeable states FeIIRuII, FeIIIRuII, FeIIIRuIII.

- the formation of each of the electrochemical species (FeIIRuII, FeIIIRuII, FeIIIRuIII) is accompanied by large changes in the optical absorption properties of the complex suggesting possible large changes in the nonlinear optical spectra.

- the ruthenium metal centre has two alkynyl ligands—one is attached to the iron metal centre, and the other remains free to potentially attach to either another metal centre, or to a surface for incorporation into molecular devices.

- the unsymmetrical nature of the two alkynyl ligands around the ruthenium metal centre allows greater design flexibility.

![Diagram](image_url)

Figure 3.1 Hetero-bimetallic complex formed by Gauthier *et al.*19

3.2 Results and Discussion

3.2.1 Synthesis

The heterobimetallic complexes reported in Chapter 2 (3, 4 and 7) have limited synthetic functionality as there is no convenient method of replacing the chloro ligand with a second alkynyl group. In order to extend the conjugated phenylethynyl chain, a route to unsymmetrically substituted bis-alkynyl osmium complexes was developed. The previously reported route using alkynyl-tin reagents was not attempted due to the low yields involved,17 so the first attempt at preparing bis-alkynyl complexes involved refluxing *trans*-\([\text{Os}(\text{C}≡\text{CPh})\text{Cl(dppe)}]_2\) (9) with nitrophenylacetylene, NE\textsubscript{T}\textsubscript{3} and NH\textsubscript{4}PF\textsubscript{6} in aromatic solvents with progressively
higher boiling points. It was found that for xylenes, mesitylene and 1,2-dichlorobenzene, no reaction was observed, and only starting material was recovered (Scheme 3.2).

Scheme 3.2 Attempted formation of osmium bis-alkynyl complexes

When the synthesis of osmium bis-alkynyl complexes was attempted with the procedure used to prepare the analogous ruthenium complexes,26 (complex 9 stirred at room temperature in the presence of NEt₃, NH₄PF₆ and phenylacetylene) the formation of the ammine complex, trans-[Os(C≡CPh)(NH₃)(dppe)₂]PF₆ (13), was observed (Scheme 3.3).

Scheme 3.3 Formation of osmium ammine-alkynyl complex

This cationic complex can be isolated through precipitation from petrol, with subsequent washing with methanol to remove any residual NH₄PF₆. It should be noted that phenylacetylene plays no part in the reaction, which proceeds in the same manner in the absence of acetylene. A number of different chloro-alkynyl complexes were formed and reacted in this manner, to demonstrate the general nature of this reaction, with the corresponding ammine-alkynyl complexes isolated in good yield (Scheme 3.4).
Scheme 3.4 Syntheses of chloro-alkynyl (9 – 12) and ammine-alkynyl (13 – 15) osmium complexes

Touchard et al. have shown that the ammine group in analogous ruthenium ammine-alkynyl complexes is labile, allowing substitution with carbonyl, hydride and isocyanide groups, as well as alkynyl groups (Scheme 3.4).
Scheme 3.5 Reactivity of ruthenium ammine-alkynyl complexes²⁷

Ruthenium ammine-alkynyl complexes can be formed either from a chloro-alkynyl complex²⁸ or a bis-alkynyl complex.²⁶ Whilst the latter affords high yields with mild conditions, reaction with the former proceeded very slowly with no yields reported. It was of interest to determine whether a ruthenium ammine-alkynyl complex could be formed directly from a chloro-alkynyl complex quickly and in good yields. This was found to be the case, when using the modified conditions that were successful for the analogous osmium complex (addition of NEt₃), with the reaction of \(\text{trans-}[\text{Ru}((\text{C} = \text{C}_6\text{H}_4\text{I}))\text{(Cl)(dppe)}] \) yielding the corresponding ammine complex, \(\text{trans-}[\text{Ru}((\text{C} = \text{C}_6\text{H}_4\text{I}))\text{(NH}_3\text{)(dppe)}]\text{PF}_6 \) (16), after 12 h at room temperature in 60% yield (Scheme 3.6).
It has been shown previously that ruthenium ammine-alkynyl complexes can be used to form bis-alkynyl complexes, in good yields, by heating in methanol solutions containing acetylene for 4 hours (Scheme 3.5). Similar treatment of the osmium ammine-alkynyl complexes (13 and 14) afforded the corresponding bis-alkynyl complexes in good yields, although the reaction proceeded more slowly then with the ruthenium analogues (Scheme 3.7).

The osmium chloro-alkynyl complexes (9–12) have some instability in solution, with decomposition observed by 31P NMR (disappearance of product peaks and
appearance of new peaks over the course of several hours). The addition of NEt₃ to solutions containing these complexes appears to reduce this decomposition, so it was also added to the reaction mixtures for the formation of 18 and 19. One of the decomposition products has been identified as trans-[OsCl₂(dppe)₂], which has a singlet at 12.8 ppm in the 31P NMR spectrum. This complex is formed in CHCl₃ (or CDCl₃) in the absence of NEt₃ presumably through reaction with the small amount of HCl present in the solvent. This product was confirmed crystallographically, although the structure was not refined as it has been reported previously.²⁹ Chloroform was added to the reaction mixture for the formation of 19, to aid solubility as the acetylene was insoluble in the CH₂OH/NEt₃ mixture.

Bis-alkynyl complexes with a triisopropysilyl-protected acetylene on one end and an aryl-iodo on the other (18 and 19), allow Sonogashira reaction with a trimethyl silyl-protected acetylene at the iodo site, yielding a complex that has two silyl protected alkynyl ligands that can be reacted independently, trans-[Os(C≡C-4-C₆H₄-4-C≡CSiMe₃)(C≡C₆H₄-4-C≡CSiPr₃)(dppe)₂] (20) (Scheme 3.7). Whilst both protecting groups can be removed using NBu₄F, use of KOH in a mixture of CH₂Cl₂ and CH₃OH (1:1) allows the trimethylsilyl group to be selectively cleaved, leaving the triisopropylsilyl group intact and allowing further unsymmetrical functionalization to be carried out. trans-[Os(C≡C-4-C₆H₄-4-C≡CH)(C≡C₆H₄-4-C≡CSiPr₃)(dppe)₂] (21) was isolated in 81% yield using these conditions (Scheme 3.7).
Scheme 3.7 Syntheses of complexes 20 and 21

Complex 21 can be coupled to ruthenium chloro-alkynyl complexes via a ruthenium bis-alkynyl formation reaction to form the binuclear complexes 22 and 23 (Scheme 3.8).
The binuclear complex 22 can be extended further through coupling at the iodo site via a Sonogashira reaction with trimethylsilylacetylene to form the binuclear complex with two different silyl groups (24), allowing selective deprotection and further unsymmetrical functionalisation (Scheme 3.9).

Scheme 3.8 Syntheses of complexes 22 and 23

Scheme 3.9 Synthesis of complex 24
In order to form difunctionalised bimetallic complexes incorporating the chain-lengthened C=CC₆H₄-4-C=CC₆H₄-4-C=C bridge, complex 19 was desilylated by stirring a CH₂Cl₂ solution in the presence of NBu''₄F at room temperature, yielding complex 25 in a 93% yield (Scheme 3.10).

![Scheme 3.10 Synthesis of complex 25.](image)

The free terminal alkynyl group on complex 25 can now be coupled to a ruthenium metal centre. Complex 25 was coupled to cis-[RuCl₂(dppe)₂] affording complex 26 in 87% yield (Scheme 3.11). This complex was then extended at the osmium centre through a Sonogashira reaction, replacing the iodo group with -C=CSiMe₃ or -C=CC₆H₄-4-C=CSiPr₃ groups to yield complexes 27 and 28 (Scheme 3.11). Both of these complexes were purified by passing the solution through a small pad of alumina to remove residual catalyst.
As shown in Chapter 2, when an osmium metal centre is separated from a ruthenium centre by a diethynylbenzene bridge (C≡CC₆H₄-4-C≡C), oxidation of the Os occurs at a lower potential compared to a mononuclear osmium complex, or a bimetallic complex where the osmium and ruthenium metal centres are separated by the triethynyl bridge (C≡CC₆H₄-4-C≡CC₆H₄-4-C≡C). As a result, a trimetallic complex containing one ruthenium and two osmium metal centres was targeted, with the osmium centres separated by both a diethynyl and triethynyl bridge from the central ruthenium metal centre. It was hoped that this complex would possess three individually-addressable redox states that might provide different optical absorption
properties. Complex 7 was coupled to complex 21 to afford the trinuclear complex (29) (Scheme 3.12).

![Scheme 3.12 Synthesis of complex 29](image)

3.2.2 Physical Properties

3.2.2.1 NMR spectroscopy

The mononuclear complexes (10–21 and 25) were characterised by 1H, 31P and 13C NMR spectroscopy in CDCl$_3$; 13C NMR data are assigned where possible and included (along with 1H and 31P NMR) in Appendix B. Complex 9 has previously been synthesised using a different route. The multinuclear complexes (22–24 and 26–29) were characterised by 1H and 31P NMR spectroscopy, with low solubility precluding the use of 13C NMR spectroscopy.

1H NMR spectroscopy

The 1H NMR spectra of chloro-alkynyl osmium complexes (9–12) show similar aromatic and dppe bridgehead resonances to that described earlier for the similar
chloro-alkynyl complexes 1, 2, 5, and 6 in Chapter 1. Resonances due to the aromatic protons appear as multiplets within the range 6.34 – 7.51 ppm, and the dppe bridgehead protons show as multiplets within the range 2.61 – 2.64 ppm. For the ammine-alkynyl osmium complexes (13 – 15), the aromatic resonances extend over a wider range, 6.43 – 8.20 ppm. The bridgehead protons are largely unchanged on moving from the chloro to ammine complexes with a range of 2.61 – 2.63 ppm observed for 10 - 15. The ammine-alkynyl complexes have an additional broad singlet corresponding to the three protons on the ammine ligand ranging from 1.00 – 1.05 ppm. The ammine-alkynyl ruthenium complex (16) has similar resonances as those seen for the osmium analogue, with aromatic proton resonances over a wide range, 6.42 – 8.13 ppm, and the dppe bridgehead resonances at 2.63 ppm. Signals attributed to the protons on the ammine ligand are significantly altered on moving from the osmium complexes (13 – 15) to the ruthenium complex (16) with an upfield shift to 0.28 ppm for the latter. For the bis-alkynyl mononuclear osmium complexes 17 – 19, 20, 21 and 25, the aromatic proton resonances are spread over a smaller range (6.40 – 7.50 ppm) than the ammine alkynyl complexes. The bridgehead protons are within a similar range as the previous examples, and fall between 2.56 – 2.59 ppm. The mononuclear complexes with a SiPr'3 protecting group (18, 19, 20 and 21) have an additional resonance for the protons associated with the silyl group in the range of 1.14 – 1.15 ppm, as described previously in Chapter 2. On desilylation of 19 to form 25 this resonance is no longer present and is replaced by a resonance at 3.17 ppm corresponding to the acetylenic proton. In a similar manner, complex 20 has a resonance corresponding to the SiMe3 group at 0.27 ppm which, upon removal to form 21, is replaced with a resonance for the acetylenic proton at 3.10 ppm.

For the multinuclear complexes (22 – 24 and 26 – 29) proton resonances similar to the mononuclear complexes are seen. All of the bimetallic complexes have aromatic proton resonances within the range of 6.33 – 7.90 ppm, and dppe bridgehead signals within the range 2.56 – 2.70 ppm. For the multi-nuclear complexes that possess a SiPr'3 group (22 – 24 and 28 - 29) a resonance at ca. 1.28 ppm (C6D6) or 1.15 ppm
(CDCl$_3$) is observed. Likewise, a resonance at 0.26 ppm (CDCl$_3$) is observed for complexes with a SiMe$_3$ group (24 and 27).

31P NMR spectroscopy

The 31P NMR spectra of the chloro-alkynyl osmium complexes (9 – 12) show a singlet resonance that falls within a narrow range 16.0 – 16.2 ppm that is very similar to the resonances observed for similar complexes in Chapter 2, as well as those reported in the literature30. For the ammine-alkynyl osmium complexes (13 – 15), the singlet resonance in the spectra for the four phosphine atoms are slightly downfield of the related chloro-alkynyl complexes, and within the range 19.8 – 19.9 ppm. The ammine-alkynyl complexes also have a characteristic septet spectral signal corresponding to the PF$_6^-$ counter anion, with the central peak at -143.7 ppm and a J_{PF} coupling constant of 714 Hz. The spectrum for the ruthenium ammine complex (16) contains a resonance at 54 ppm, a 4 ppm downfield shift from its chloro-alkynyl precursor, as well as the signal due to the PF$_6^-$ anion as mentioned above. For the osmium bis-alkynyl mononuclear complexes (17 – 21 and 25), a singlet resonance for the four phosphine atoms is found in the range of 16.5 – 16.7 ppm. A comparison of the above data with the 31P NMR spectral data for similar ruthenium complexes highlights some differences. Spectra for ruthenium chloro-alkynyl complexes with a similar ligand environment to the above osmium complexes (9 – 12) have a singlet resonance in the region of 50 ppm,26 whereas ruthenium bis-alkynyl complexes with similar ligands have a resonance at ca 54 ppm in the phosphorus spectrum.31 It is interesting to note that while there is a similar downfield shift on moving from both a ruthenium and an osmium chloro-alkynyl complex to an ammine alkynyl-complex, moving from an ammine-alkynyl complex to a bis-alkynyl complex affords very little shift for ruthenium complexes but a ca 3 ppm upfield shift for the osmium complex. This results in very little difference (ca 0.3 ppm) between an osmium chloro-alkynyl and bis-alkynyl complex, whilst the 4 ppm difference for the ruthenium case provides a very valuable tool for distinguishing between the two types of complexes.
For the binuclear complexes (22 – 24 and 26 – 28) two resonances are visible in the 31P NMR spectra that can be attributed to the phosphorus atoms attached to ruthenium and osmium. For the complexes with either a C=CC$_6$H$_4$-4-C≡C bridge (22 - 24) or the longer C=CC$_6$H$_4$-4-C=CC$_6$H$_4$-4-C≡C bridge (26 – 28) no real difference in either the osmium or ruthenium phosphine resonances are observed, with the immediate ligand environment of the metal centre having the greatest influence on chemical shift. For the complexes with the diethynyl C=CC$_6$H$_4$-4-C≡C bridge (22 – 24) the phosphorus atoms attached to osmium produce a resonance at 16.5 ppm corresponding to a bis-alkynyl environment. The phosphorus atoms attached to ruthenium in these complexes afford a resonance in the range of 54.2 – 54.3 ppm, corresponding to a ruthenium bis-alkynyl environment. Complexes with the longer triethynyl C=CC$_6$H$_4$-4-C=CC$_6$H$_4$-4-C≡C bridging unit (26 – 28) again have a phosphorus NMR resonance corresponding to a bis-alkynyl environment in the range of 16.4 – 16.6 ppm, attributed to the phosphorus atoms attached to the osmium, whereas those attached to ruthenium produce a resonance at 49.9 ppm, which matches previously observed signals for the chloro-alkynyl ruthenium environment.

The trinuclear complex 29 contains a ruthenium bis-alkynyl centre as well as two distinct osmium environments, bis-alkynyl and chloro-alkynyl. The phosphorus atoms in each of these three metal atoms possess distinct chemical shifts; signals at 15.8, 16.5 and 54.3 ppm are assigned to osmium chloro-alkynyl, osmium bis-alkynyl and ruthenium bis-alkynyl environments, respectively.

13C NMR spectroscopy

One area of confusion in the literature is the assignment of the carbon NMR resonances corresponding to the dppe ligands attached to a metal. Although this has primarily concerned the Ru(dppe)$_2$ metal centre, it has been found that the osmium complexes synthesised in this work have very similar 13C resonances to their
ruthenium analogues, with the major difference being the alkynyl carbon adjacent to the osmium centre being shifted between 12 – 22 ppm upfield compared to the ruthenium analogues. In the past, the phenyl carbons of the dppe ligand have either been grouped together, labelled as \(C_{43} = C_{47}, C_{44} = C_{48}, C_{45} = C_{49} \) and \(C_{46} = C_{50} \), with a multiplet assigned for \(C_{43} = C_{47} \) (numbering shown in Figure 3.2) and doublets with \(J_{pc}, P_c \) and \(J_{pc} \) for each of the other carbons respectively. These carbon resonances have also been reported as having distinct chemical shifts for the related aryl carbon atoms \(C_{43}, C_{47}, C_{44}, C_{48}, C_{45}, C_{49}, C_{46} C_{50} \). In this work, the latter approach has been taken for a number of reasons.

![Figure 3.2 Labelling for dppe phenyl carbons where \(R = Cl, NH_3\{PF_6\} \) or an alkynyl group, and \(R_1 \) is an aromatic group.](image)

One of the most compelling pieces of data supporting this assignment is the large separation of these pairs of carbon atoms upon formation of the ammine complex from the chloro precursor. While the separation of these carbons is between 6 and 23 Hz for the chloro complex (Figure 3.3), upon substitution with an ammine ligand the separation between \(C_{44} \) and \(C_{48} \) increases to 486 Hz (Figure 3.4).
Figure 3.3 Carbon NMR spectrum of 11 with dppe phenyl carbons in inset

Figure 3.4 Carbon NMR spectrum of 14 with dppe phenyl carbons in inset
If these signals constituted a doublet, the $^2J_{PC}$ would be equal to 486 Hz. As this is larger than one would expect for carbon-phosphorus coupling, it is unlikely the observed signals are the result of coupling and are rather two unique signals. Furthermore, on forming the bis-alkynyl complex, the signals corresponding to each pair of carbon atoms coalesce (Figure 3.5). If these signals corresponded to doublets it is unlikely that the coupling would decrease to zero under these circumstances.

![Figure 3.5 Carbon NMR spectrum of 18 with dppe phenyl carbons in inset](image)

Another interesting aspect to the carbon spectra obtained is the coupling of carbons C_{42}, C_{43} and C_{47}. As these carbons are one bond from a phosphorus atom, it might initially be thought that a doublet due to $^1J_{PC}$ would be observed. The signal that is observed, however, appears to have five signals similar to that seen for C_{40} where $^2J_{PC}$ coupling to all four phosphorus atoms is observed. What is actually being observed in this case is a higher order effect where, rather then coupling just to the
adjacent phosphorus atom, the strong coupling of the phosphorus atoms through the metal to the corresponding trans-phosphorus atom causes a virtual triplet-of-triplet to be observed (Figures 3.3, 3.4 and 3.5). For these peaks, the J-coupling observed is measured between the two second most intense signals and corresponds to $|1J_{PC} + 3J_{PC}|$.

The formation of both trans-[Os(C≡C-4-C₆H₄Br)Cl(dppe)₂] (10) and trans-[Os(C≡C-4-C₆H₄I)Cl(dppe)₂] (11) allows the effect of increasing the size and electronegativity of the substituent para to the ethynyl group on the neighbouring carbon resonances to be explored. If we look at the resonances of C₃₅ and C₃₆, i.e. the carbons closest to the halogen, we can see a resonance of 115.5 ppm for C₃₅ and 130.3 ppm for C₃₆ for 10 (Figure 3.6). On moving to 11, where the bromine has been replaced by the larger less electronegative iodine, we can see the carbon directly adjacent to the change (C₃₅) is much more shielded and undergoes a large upfield shift to 108.5 ppm, and C₃₆ is deshielded and undergoes a downfield shift to 136.2 ppm (Figure 3.3).

Figure 3.6 Carbon NMR spectrum of 10
3.2.2.2 UV-Vis absorption spectroscopy

Complexes 10 – 29 were characterised by UV-Vis spectroscopy as CH₂Cl₂ solutions (Table 3.1). For the chloro-alkynyl complexes (9 – 12), replacing the hydrogen para to the ethynyl group in 9 with a bromo in 10 and an iodo in 11, results in a red-shift in the λ_{max} by 15 - 25 nm, with λ_{max} = 324 nm for 9, 340 nm for 10 and 364 nm for 11. On moving to complex 12 with the diphenylethynyl ligand, two absorption bands are present at 284 nm and 400 nm, matching the data seen for complexes with the longer ethynyl ligands in Chapter 2. As mentioned therein, it is possible to assign these transitions based on studies reported for 9, with the dominant absorption band assigned to a metal-to-ethynyl ligand charge transfer.

The ammine-alkynyl complexes (13 – 16) are all blue-shifted with respect to the corresponding chloro-alkynyl complexes. For the phenylethynyl complex 13 and the iodophenylethynyl complex 14, a blue-shift of ca 46 nm to 275 nm and 319 nm, respectively, is observed. For the bromodiphenylethynyl complex 15 a blue shift of 38 nm and only one absorption band (362 nm) is observed. For the ruthenium complex 16 a smaller blue shift of 22 nm is observed to 318 nm. It is not possible to assign these transitions without quantum mechanical calculations.

For the mononuclear bisalkynyl complexes (17 – 21 and 25), increasing the length of the phenylethynyl ligands results in a red-shift in the lowest energy band, with λ_{max} equal to 336 nm (17), 378 nm (18), 387 nm (20) and 414 nm (19). For the mononuclear complexes with a longer triethynyl C=CC₆H₄-4-C≡C₆H₄-4-C≡C ligand (19 and 25) the absorption spectra is more complex then those with the shorter diethynyl C≡CC₆H₄-4-C≡C groups with multiple bands observed.

The binuclear complexes with a diethynyl C≡CC₆H₄-4-C≡C bridge between the metal centres (22 - 24) show a large increase in the extinction coefficient compared to the corresponding mononuclear complexes. For complexes 22 and 24, a single
absorption band at 387 nm and 391 nm, respectively, is observed. For complex 23, where the ruthenium terminal peripheral ligand is the longer diethynyl C≡C₆H₄-4-C≡C₆H₄-4-I, a slight red-shift to 400 nm is observed. For the binuclear complexes with the longer triethynyl C≡C₆H₄-4-C≡C₆H₄-4-C≡C bridging ligand (26 – 28), a red-shift of the lowest energy band is observed relative to the complexes with the C≡C₆H₄-4-C≡C bridge with λ_max at 423 nm (26), 425 nm (27) and 434 nm (28) for the dominant absorption band. For the trinuclear complex (29), a very broad absorption band with a λ_max at 402 nm is observed, as well as an increase in the extinction coefficient compared to the binuclear complexes.
<table>
<thead>
<tr>
<th>Complex</th>
<th>UV-Vis: (\lambda_{\text{max}}) (nm) [(\varepsilon)] (10^4 M(^{-1}) cm(^{-1}))</th>
<th>IR (cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>340 [2.1]</td>
<td>2067 (\nu(C=C))</td>
</tr>
<tr>
<td>11</td>
<td>364 [2.2]</td>
<td>2064 (\nu(C=C))</td>
</tr>
<tr>
<td>12</td>
<td>400 [3.3], 284 [2.7]</td>
<td>2056 (\nu(C=C)), 2070 (\nu(C=C))</td>
</tr>
<tr>
<td>13</td>
<td>301 [1.9], 275 [1.8]</td>
<td>2076 (\nu(C=C))</td>
</tr>
<tr>
<td>14</td>
<td>319 [2.9]</td>
<td>2076 (\nu(C=C))</td>
</tr>
<tr>
<td>15</td>
<td>362 [4.5]</td>
<td>2062 (\nu(C=C)), 2074 (\nu(C=C))</td>
</tr>
<tr>
<td>16</td>
<td>318 [1.8]</td>
<td>2076 (\nu(C=C))</td>
</tr>
<tr>
<td>17</td>
<td>336 [2.9]</td>
<td>2060 (\nu(C=C))</td>
</tr>
<tr>
<td>18</td>
<td>378 [4.6]</td>
<td>2055 (\nu(C=C)), 2150 (\nu(C=CSi))</td>
</tr>
<tr>
<td>19</td>
<td>414 [3.7], 322 [3.8], 291 sh [3.1], 274 sh [3.3]</td>
<td>2054 (\nu(C=C)), 2152 (\nu(C=CSi))</td>
</tr>
<tr>
<td>20</td>
<td>387 [6.1]</td>
<td>2048 (\nu(C=C)), 2147 (\nu(C=CSi))</td>
</tr>
<tr>
<td>21</td>
<td>384 [4.4]</td>
<td>2053 (\nu(C=C)), 2146 (\nu(C=CSi)), 3302 (\nu(=CH)),</td>
</tr>
<tr>
<td>22</td>
<td>387 [7.8]</td>
<td>2057 (\nu(C=C)), 2145 (\nu(C=C))</td>
</tr>
<tr>
<td>23</td>
<td>400 [11.0], 314 [4.4]</td>
<td>2053 (\nu(C=C)), 2146 (\nu(C=CSi))</td>
</tr>
<tr>
<td>24</td>
<td>391 [9.8]</td>
<td>2055 (\nu(C=C)), 2147 (\nu(C=CSi))</td>
</tr>
<tr>
<td>25</td>
<td>411 [3.8], 324 [3.6], 276 sh [3.4], 265 sh [3.9]</td>
<td>2053 (\nu(C=C)), 3296 (\nu(=CH))</td>
</tr>
<tr>
<td>26</td>
<td>423 [5.7], 308 [2.7]</td>
<td>2056 (\nu(C=C))</td>
</tr>
<tr>
<td>27</td>
<td>425 [8.0]</td>
<td>2054 (\nu(C=C)), 2148 (\nu(C=CSi))</td>
</tr>
<tr>
<td>28</td>
<td>434 [7.9], 304 [4.3]</td>
<td>2053 (\nu(C=C)), 2153 (\nu(C=CSi))</td>
</tr>
<tr>
<td>29</td>
<td>402 [11.0]</td>
<td>2054 (\nu(C=C)), 2145 (\nu(C=CSi))</td>
</tr>
</tbody>
</table>

Table 3.1 UV-Vis and infrared absorptions for complexes 10 - 29
3.2.2.3 Infrared spectroscopy

Infrared absorption spectroscopy was carried out on complexes 10 – 29 as CH₂Cl₂ solutions, with the presence of an absorption corresponding to ν(C≡C) providing confirmation on the formation of a metal-alkynyl complex (Table 3.1). For the chloro-alkynyl complexes (10 – 12), broad bands in the region of 2056 – 2070 cm⁻¹ corresponding to ν(C≡C) are present. For the osmium ammine-alkynyl complexes (13 – 15), bands corresponding to ν(C≡C) are slightly blue-shifted in comparison to their parent chloro-alkynyl complexes, with resonances in the range of 2062 – 2076 cm⁻¹. For the ruthenium ammine-alkynyl complex 16, a band at 2076 cm⁻¹ is present, blue-shifted by 8 cm⁻¹ compared to its parent chloro-alkynyl complex.⁶ For the bis-alkynyl complexes 17 – 29, a broad band for the ν(C≡C) is observed in the range of 2048 - 2060 cm⁻¹. In addition to these bands complexes possessing a silyl group (18 – 20, 22 – 24, 27 – 29) also have a band for ν(C≡C-Si) in the region of 2045 – 2053 cm⁻¹. For those complexes where the silyl group has been cleaved to afford a terminal acetylene, there is a broad band for ν(≡CH) at: 3302 cm⁻¹ (21) and 3296 cm⁻¹ (25).

3.2.2.4 Structural determinations

To confirm the identity of many of the osmium mononuclear complexes, single crystals were grown by slow diffusion of CH₂Cl₂ solutions into n-hexane, and the complex structures were determined using single crystal X-ray diffraction. The structures of several chloro-alkynyl (9 - 11), ammine-alkynyl (13 - 15) and bis-alkynyl (17 and 19) complexes were determined in this manner. For all of these complexes, the bond lengths and angles fall into the range reported for similar osmium or ruthenium complexes.¹⁶,¹⁷,²⁶,³²,³³
Figure 3.7 Molecular structure and atomic numbering scheme for \(\text{trans-}[\text{Os(C\equiv C\text{Ph})Cl(dppe)}]_2 \) (9). Thermal ellipsoids are displayed on a 40 % probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths: Os-P(1) 2.3704(8), Os-P(2) 2.3501(8), Os-P(3) 2.3806(8), Os-P(4) 2.3513(8), Os-Cl 2.5017(7), Os-C(1) 2.006(3), C(1)-C(2) 1.219(5) Å.

Selected bond lengths for Ru analogue: Ru-P(1) 2.3680(14), Ru-P(2) 2.3524(14), Ru-P(3) 2.3917(14), Ru-P(4) 2.3734(14), Ru-Cl 2.4786(13), Ru-C(1) 2.007(5), C(1)-C(2) 1.198(7) Å.33
Figure 3.8 Molecular structure and atomic numbering scheme for trans-[Os(C≡C-4-C₆H₅Br)Cl(dppe)₂] (10). Thermal ellipsoids are displayed on a 40 % probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths: Os-P(1) 2.3571(12), Os-P(2) 2.3811(12), Os-P(3) 2.3810(12), Os-P(4) 2.3637(12), Os-Cl 2.5191(11), Os-C(1) 2.018(4), C(1)-C(2) 1.195(6) Å.
Figure 3.9 Molecular structure and atomic numbering scheme for trans-[Os(C≡C-4-C₆H₄I)Cl(dppe)₂] (11). Thermal ellipsoids are displayed on a 40% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths: Os-P(1) 2.3561(8), Os-P(2) 2.3808(8), Os-P(3) 2.3669(8), Os-P(4) 2.3839(8), Os-Cl, Os-C(1) 2.5202(8), C(1)-C(2) 1.215(5) Å.
Figure 3.10 Molecular structure and atomic numbering scheme for \textit{trans}-[Os(C=CPH)(NH}_3\textit{)(dppe)}_2]PF\textsubscript{6} (13). Thermal ellipsoids are displayed on a 40% probability level. Hydrogen atoms are omitted for clarity with the exception of the NH\textsubscript{3} ligand. Selected bond lengths: Os-P(1) 2.357(2), Os-P(2) 2.3655(19), Os-P(3) 2.382(2), Os-P(4) 2.394(2), Os-N 2.216(7), Os-C(1) 2.043(7), C(1)-C(2) 1.192(11) Å.

Selected bond lengths of Ru analogue: Ru-P(1) 2.401(1), Ru-P(2) 2.347(1), Ru-P(3) 2.385(1), Ru-P(4) 2.347(1), Ru-N 2.215(5), Ru-C(1) 2.014(5), C(1)-C(2) 1.187(7) Å.26
Figure 3.11 Molecular structure and atomic numbering scheme for trans-[Os(C≡C-4-C_6H_4I)(NH_3)(dppe)_2]PF_6 (14). Thermal ellipsoids are displayed on a 40 % probability level. Hydrogen atoms are omitted for clarity with the exception of the NH_3 ligand. Selected bond lengths: Os-P(1) 2.3741(9), Os-P(2) 2.3735(9), Os-P(3) 2.3961(9), Os-P(4) 2.3859(9), Os-N 2.244(3), Os-C(1) 2.042(4), C(1)-C(2) 1.199(5) Å.
Figure 3.12 Molecular structure and atomic numbering scheme for $trans$-[Os(C≡C₆H₄-4-C≡C₆H₄-4-Br)(NH₃)(dppe)]PF₆ (15). Thermal ellipsoids are displayed on a 40 % probability level. Hydrogen atoms are omitted for clarity with the exception of the NH₃ ligand.

Selected bond lengths: Os-P(1) 2.3865(9), Os-P(2) 2.3839(9), Os-P(3) 2.3640(9), Os-P(4) 2.3580(9), Os-N 2.248(3), Os-C(1) 2.019(4), C(1)-C(2) 1.204(5), C(9)-C(10) 1.175(6) Å.
Figure 3.13 Molecular structure and atomic numbering scheme for trans-[Os(\(\text{C}=\text{CPh}\))_2(dppe)] (17). Thermal ellipsoids are displayed on a 40 % probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths: Os-P(1) 2.3598(4), Os-P(2) 2.3535(4), Os-C(1) 2.0721(17), C(1)-C(2) 1.212(2) Å. Selected bond lengths for Ru analogue: Ru-P(1) 2.363(2), Ru-P(2) 2.356(2), Ru-P(3) 2.360(2), Ru-P(4) 2.362(2), Ru-C(1) 2.061(5), Ru-C(1') 2.061(5), C(1)-C(2) 1.194(7), C(1')-C(2') 1.207(7) Å.\(^{16}\)
3.2.2.5 Electrochemistry

Cyclic voltammetry was used to determine the redox potentials of the Os$^{III/IV}$ couple for mononuclear complexes 10 – 21 and 25, either as CH$_2$Cl$_2$ or as THF solutions using Pt disk working-, Pt wire auxiliary-, and Ag/AgCl reference electrodes. It is not possible to directly compare the potentials of complexes that were obtained in different solvents due to the shift in redox potentials (e.g. trans, trans-$\text{[dppe]}_2\text{ClOs(}\text{C}≡\text{C-4-C}_6\text{H}_4\text{-4-C}≡\text{C}\text{SiPr}_3\})$ (4), Os$^{III/IV} = 0.10$ and Ru$^{II/III} = 0.44$ V (CH$_2$Cl$_2$); Os$^{III/IV} = 0.31$ and Ru$^{II/III} = 0.59$ V (THF)). If we compare the oxidation potentials of the chloro-alkynyl complexes (10 - 12), we can see that for 10 and 11, the potential is ca 0.27 V (CH$_2$Cl$_2$) and for 12 0.45 V (THF). This is probably primarily due to the change of solvent as it has been shown previously that minimal change occurs in the redox potential on chain lengthening.
\(\text{(trans-}[\text{Os(C=CPh)Cl(dppe)}] \quad (9) \quad \text{Os}^{II/III} = 0.26, \)

\(\text{trans-}[\text{Os(C=CCH}_{3}\text{H}_{4}-4-\text{C=CPh})\text{Cl(dppe)}] \quad \text{Os}^{II/III} = 0.29) \)\(^{30}\). On forming the cationic ammine complexes, oxidation of the metal centre to give the corresponding dications is significantly more difficult than oxidation of the neutral complexes, as would be expected. The redox potentials for the osmium ammine complexes are ca 0.75 V in CH\(_2\)Cl\(_2\) and 0.87 V in THF. The ruthenium ammine complex is significantly more difficult to oxidise than the analogous osmium complex with a redox potential of 0.95 V (CH\(_2\)Cl\(_2\)). For the mononuclear osmium bis-alkynyl complexes (17 - 21 and 25) redox potentials fall within the range of 0.22 – 0.29 V for measurements in CH\(_2\)Cl\(_2\) and 0.48 – 0.52 V for measurements in THF (Table 3.2). On going from 17 to 18 there is an increase in the oxidation potential from 0.22 V to 0.29 V. Whilst it is not immediately apparent why this is the case it is interesting to note that for a similar ruthenium example no increase was apparent on increasing the length of the phenylethynyl ligand \(\text{(trans-}[\text{Ru(C=CPh)Cl(dppe)}] \quad \text{Ru}^{II/III} = 0.45, \)

\(\text{trans-}[\text{Ru(C=CCH}_{3}\text{H}_{4}-4-\text{C=CPh})\text{Cl(dppe)}] \quad \text{Ru}^{II/III} = 0.45) \)\(^{31}\). It is interesting to note that for the symmetrical osmium bis-alkynyl complex (17) a second irreversible process is observed at 0.61 V. It is not clear why this is the case for this complex while the other osmium bis-alkynyl complexes have only one reversible process. All other Os\(^{II/III}\) couples were reversible with an \(i_{pc}/i_{pa} \) ratio of 1, and peak separations similar to that observed for the internal ferrocene/ferrocenium standard.
<table>
<thead>
<tr>
<th>Complex</th>
<th>$E_{1/2} \left[i_{pc}/i_{pa} \right]^{a}$ (V)</th>
<th>Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>$trans$-[Os(C=CPh)Cl(dppe)$_2$] (9)</td>
<td>0.26 [1]30</td>
<td>CH$_2$Cl$_2$</td>
</tr>
<tr>
<td>$trans$-[Os(C=C-4-C$_6$H$_4$Br)Cl(dppe)$_2$] (10)</td>
<td>0.27 [1]</td>
<td>CH$_2$Cl$_2$</td>
</tr>
<tr>
<td>$trans$-[Os(C=C-4-C$_6$H$_4$I)Cl(dppe)$_2$] (11)</td>
<td>0.27 [1]</td>
<td>CH$_2$Cl$_2$</td>
</tr>
<tr>
<td>$trans$-[Os(C=CC$_6$H$_4$-4-CC$_6$H$_4$-4-Br)Cl(dppe)$_2$] (12)</td>
<td>0.45 [1]</td>
<td>THF</td>
</tr>
<tr>
<td>$trans$-[Os(C=CPh)(NH$_3$)(dppe)$_2$]PF$_6$ (13)</td>
<td>0.74 [1]</td>
<td>CH$_2$Cl$_2$</td>
</tr>
<tr>
<td>$trans$-[Os(C=C-4-C$_6$H$_4$I)(NH$_3$)(dppe)$_2$]PF$_6$ (14)</td>
<td>0.77 [1]</td>
<td>CH$_2$Cl$_2$</td>
</tr>
<tr>
<td>$trans$-[Os(C=CC$_6$H$_4$-4-CC$_6$H$_4$-4-)Br(NH$_3$)(dppe)$_2$]PF$_6$ (15)</td>
<td>0.87 [1]</td>
<td>THF</td>
</tr>
<tr>
<td>$trans$-[Ru(C=C-4-C$_6$H$_4$I)(NH$_3$)(dppe)$_2$]PF$_6$ (16)</td>
<td>0.95 [1]</td>
<td>CH$_2$Cl$_2$</td>
</tr>
<tr>
<td>$trans$-[Os(C=CPh)$_2$(dppe)$_2$] (17)</td>
<td>0.22 [1]</td>
<td>CH$_2$Cl$_2$</td>
</tr>
<tr>
<td>$trans$-Os(C=C-4-C$_6$H$_4$I)(C=CCC$_6$H$_4$-4-C=CC$_6$H$_4$-4-)C=CSiPr$_3$$_2$ (18)</td>
<td>0.29 [1]</td>
<td>CH$_2$Cl$_2$</td>
</tr>
<tr>
<td>$trans$-Os(C=C-4-C$_6$H$_4$I)(C=CC$_6$H$_4$-4-CC$_6$H$_4$-4-)C=CSiPr$_3$$_2$ (19)</td>
<td>0.48 [1]</td>
<td>THF</td>
</tr>
<tr>
<td>$trans$-Os(C=C-4-C$_6$H$_4$I)(C=CC$_6$H$_4$-4-CC$_6$H$_4$-4-)C=CSiMe$_3$$_2$ (20)</td>
<td>0.51 [1]</td>
<td>THF</td>
</tr>
<tr>
<td>$trans$-Os(C=C-4-C$_6$H$_4$I)(C=CH)C=CC$_6$H$_4$-4-)C=CSiPr$_3$$_2$ (21)</td>
<td>0.52 [1]</td>
<td>THF</td>
</tr>
<tr>
<td>$trans$-Os(C=C-4-C$_6$H$_4$I)(C=CC$_6$H$_4$-4-C=CC$_6$H$_4$-4-)C=CH$_2$ (25)</td>
<td>0.48 [1]</td>
<td>THF</td>
</tr>
</tbody>
</table>

Table 3.2 Cyclic voltammetric data for complexes 9 – 21 and 25. Pt disk working-, Pt wire auxiliary-, and Ag/AgCl reference electrodes, ferrocene/ferrocenium couple at 0.46 V [1] (CH$_2$Cl$_2$) and 0.56 V [1] THF.

Cyclic voltammetry measurements were carried out on the binuclear complexes 22 – 24 and 26 – 28, and the trinuclear complex 29, as THF solutions using Pt disk
working-, Pt wire auxiliary-, and Ag/AgCl reference electrodes (Table 3.3). As shown in the previous Chapter, moving from complexes with the shorter diethynyl C=CC₆H₄-4-C≡C bridge (22 - 24) to those with the longer triethynyl C≡CC₆H₄-4-C≡C₆H₄-4-C≡C bridge (26 - 28) results in an increase in oxidation potentials for both the osmium and ruthenium metal centres, and a decrease in the separation of the two oxidation processes. Apart from these differences between the two bridging units, functionalising the peripheral acetylide ligands by chain lengthening has little effect on the overall redox properties. The complexes with the shorter bridge possess an osmium redox couple that falls within the narrow range of 0.28 – 0.32 V, a ruthenium redox couple within the range of 0.56 – 0.60 V, and a separation between the two processes that ranges from 0.26 – 0.28 V. For the complexes possessing a longer bridge, osmium redox potentials fall within the range of 0.45 – 0.47 V. The ruthenium potentials range from 0.63 – 0.64 V, and the separation between the two redox processes ranges from 0.17 – 0.18 V.

The trinuclear complex 29, incorporating two osmium and one ruthenium metal centre had been designed to possess three individually addressable redox properties. By having the osmium separated from the ruthenium metal centre by both the short C≡CC₆H₄-4-C≡C phenylethynyl bridge and a longer C≡CC₆H₄-4-C≡CC₆H₄-4-C≡C bridge, it had been hoped that the better coupling with the shorter bridge would reduce the corresponding osmium redox potential more than for the osmium attached through the longer bridging unit. This was found to be the case with three separate redox processes observed for the trinuclear complex. The first process is located at 0.31 V and can be attributed to the osmium atom separated from the ruthenium metal centre by a diethynyl C≡CC₆H₄-4-C≡C bridge. This potential falls within the range observed for the above examples with this type of bridge. The second process is found at 0.42 V and is assigned to the osmium atom separated from the ruthenium metal centre by the longer bridge. This is slightly lower than the range given from the above examples but is about the same as the potential for 7 (0.41 V) (Chapter 2) where the peripheral ligand was also a chloro ligand. The third process assigned to
ruthenium is found at 0.58 V, and falls in-between the potentials given above for the smaller and larger bridging groups (Table 3.3).

<table>
<thead>
<tr>
<th>Complex</th>
<th>$E_{1/2}$ (V) $[i_{pc}/i_{pa}]_a$ OsIII</th>
<th>$E_{1/2}$ (V) $[i_{pc}/i_{pa}]_a$ RuIII</th>
<th>$E_{1/2}$ RuIII - $E_{1/2}$ OsIII (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>0.30 [1]</td>
<td>0.56 [1]</td>
<td>0.26</td>
</tr>
<tr>
<td>23</td>
<td>0.28 [1]</td>
<td>0.56 [1]</td>
<td>0.28</td>
</tr>
<tr>
<td>24</td>
<td>0.32 [1]</td>
<td>0.60 [1]</td>
<td>0.28</td>
</tr>
<tr>
<td>26</td>
<td>0.46 [1]</td>
<td>0.63 [1]</td>
<td>0.17</td>
</tr>
<tr>
<td>27</td>
<td>0.45 [1]</td>
<td>0.63 [1]</td>
<td>0.18</td>
</tr>
<tr>
<td>28</td>
<td>0.47 [1]</td>
<td>0.64 [1]</td>
<td>0.17</td>
</tr>
<tr>
<td>29</td>
<td>0.31 [1], 0.42 [1]</td>
<td>0.58 [1]</td>
<td>0.27, 0.16</td>
</tr>
</tbody>
</table>

Table 3.3 Cyclic voltammetric data for complexes 22 - 24 and 26 - 29. a THF solvent, Pt disk working-, Pt wire auxiliary-, and Ag/AgCl reference electrodes, ferrocene/ferrocenium couple at 0.56 V [1].

3.2.2.6 Spectroelectrochemistry

Spectroelectrochemical studies were carried out on representative examples of mononuclear, binuclear and trinuclear complexes. Complex 13 was investigated as a representative example of an ammine alkynyl complex. Upon oxidation of 13, a decrease in the intensity of the absorption band centred at 32930 cm$^{-1}$ was observed, accompanied by an increase in the band centred around 40000 cm$^{-1}$ and the appearance of two broad absorption bands at lower energy, centred at 14775 cm$^{-1}$ and 25222 cm$^{-1}$ (Figure 3.15).

Complexes 17 and 20 were measured as representative examples of bis-alkynyl complexes (Figures 3.16 and 3.17). Oxidation of both complexes results in a decrease in the intensity of the main absorption band for the neutral species, located
at 29900 cm\(^{-1}\) for 17 and 25800 cm\(^{-1}\) for 20. For similar ruthenium bis-alkynyl complexes this band has been assigned to metal-to-ethynyl charge-transfer processes\(^{31}\). In addition, oxidation of each complex affords a low energy band centred at 10400 cm\(^{-1}\) for 17 and 9800 cm\(^{-1}\) for 20. Assuming the same transitions as for the analogous ruthenium complexes, this band can be assigned to an ethynyl-to-metal charge-transfer. The energy of these transitions is ca. 1000 cm\(^{-1}\) higher in energy for the osmium complexes than for the analogous ruthenium complex. A feature of the low energy absorption band for both Os\(^{\text{III}}\) and Ru\(^{\text{III}}\) species is the associated fine structure, suggesting vibrational interactions related to the ethynyl bond stretch\(^{31,34}\). All three of these complexes showed reversible processes at room temperature, indicated by clean isobestic points on oxidation and recovery of the starting spectrum on application of a reducing potential (Figures 3.15 – 3.17).

![Figure 3.15](image)

Figure 3.15 UV-Vis-NIR spectral changes during electrochemical oxidation of trans-[Os(C=CPh)(NH\(_3\))(dppe)\(_2\)]PF\(_6\) (13).
Figure 3.16 UV-Vis-NIR spectral changes during the first electrochemical oxidation step of $\text{trans-}[\text{Os(C=CPh)}_2(\text{dppe})_2]$ (17).

Figure 3.17 UV-Vis-NIR spectral changes during the oxidation of $\text{trans-}[\text{Os(C=C-4-C_6H_4-4-C=CSiMe}_3)(\text{C=C}_6\text{H}_4-4-C=CSiPr}_3)(\text{dppe})_2]$ (20)
<table>
<thead>
<tr>
<th>Complex</th>
<th>ν_{max} (cm$^{-1}$) [e$^-$] (104 M$^{-1}$ cm$^{-1}$)a</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>32930 [2.4]</td>
</tr>
<tr>
<td>13$^{2+}$</td>
<td>14775 [0.4] 16490 br, sh [0.4] 25222 [0.5] 26680 sh [0.6] 29545 [1.2]</td>
</tr>
<tr>
<td>17</td>
<td>29910 [2.8] 42590 [3.8]</td>
</tr>
<tr>
<td>17$^+$</td>
<td>10435 [1.2] 11330 sh [1.0] 12385 sh [0.7] 18070 [0.2] 24420 [0.5] 26370 [0.8] 30100 [1.5] 41220 [3.8]</td>
</tr>
<tr>
<td>20</td>
<td>25840 [6.1]</td>
</tr>
<tr>
<td>20$^+$</td>
<td>9817 [2.3], 10903 sh [0.8], 11775 sh [0.5], 21920 [0.6], 24855 [2.5], 29765 [2.4], 31891 [2.9], 37260 [4.2], 41444 [6.7]</td>
</tr>
</tbody>
</table>

Table 3.3 Summary of optical data for mononuclear complexes 13, 17, 20.

a Electronic spectra were obtained at 298 K in CH$_2$Cl$_2$ using 0.3 M (Bun$_4$N)PF$_6$ as supporting electrolyte and with potentials ca 200 mV beyond $E_{1/2}$ for each couple.

Spectroelectrochemical studies were carried out on complex 24 (Figure 3.18) as a representative example of the complexes that possess a diethynyl C≡CCH$_4$-4-C≡C bridge between metal centres, where the external ligands attached to both the osmium and ruthenium sites are ethynyl groups. This complex is very similar to trans-,trans-[(dppe)$_2$ClOs(C≡C-4-CH$_4$-4-C≡C)Ru(dppe)$_2$(C≡CCH$_4$-4-C≡CSiPr$_3$)] (4, Chapter 2) with the chloro ligand attached to the osmium metal centre in 4 being replaced by a C≡CCCH$_4$-4-C≡CSiPr$_3$ unit in complex 24. Oxidation of 24 at 0.4 V affords the cationic OsIII/RuII complex and a steady decrease in the intensity of the main absorption band centred at 25600 cm$^{-1}$, with concomitant appearance of intense low energy absorption bands centred at 6420 cm$^{-1}$ and 20165 cm$^{-1}$. As mentioned earlier for 4 although a broad, low-energy IVCT band is expected for these complexes in view of the electrochemical evidence for some electronic communication between the metal centres, it is unlikely to be the band centred at
6420 cm$^{-1}$. Rather, the alternate assignment offered by Klein and co-workers for the similar ruthenium homo-bimetallic complex is more likely to apply for the hetero-bimetallic 24. They assign the band at 6420 cm$^{-1}$ to a former HOMO-1 to newly formed SOMO transition, and the band at 20165 cm$^{-1}$ to a SOMO-to-LUMO transition34. Further oxidation to the OsIII/RuIII dicationic species at 0.7 V results in a blue-shift to 9575 cm$^{-1}$, and increases in intensity of the lowest energy band, adding further support to it not being an IVCT band. The close similarities between the spectroelectrochemical behaviour of 4 and 24 indicates that the behaviour is dominated by the metal and bridge composition, with the peripheral ligands having less effect. The clean isobestic points for each of the processes described above and ability to recover the starting spectrum on applying a reducing voltage illustrate the reversibility of the processes.

![Figure 3.18](image)

Figure 3.18 UV-Vis-NIR spectral changes during electrochemical oxidation of trans-,trans-142[(Pr$_3$SiC≡CC$_6$H$_4$-4-C≡C)(dppe)$_2$Os(C≡CC$_6$H$_4$-4-C≡C)Ru(dppe)$_2$(C≡CC$_6$H$_4$-4-C≡CSiMe$_3$)] (24)

Complexes 26, 27 and 28 show similar electrochemical behaviour, so the spectroelectrochemical behaviour of 28 was investigated as a representative example to determine the effect of replacing the chloro ligand in complex trans-,trans-
[(dppe)$_2$CIOs(C≡CC$_6$H$_4$-4-C≡CC$_6$H$_4$-4-C≡C)RuCl(dppe)$_2$] (7 Chapter 2) with an extended phenylethynyl ligand (Figure 3.19). Oxidation of 28 at 0.57 V affords the cationic OsIII/RuII complex and results in a decrease in intensity of the main absorption band for the neutral species centred at 23041 cm$^{-1}$, and the subsequent appearance of a very broad absorption band with a maximum at 9612 cm$^{-1}$. A second low energy absorption band at 19958 cm$^{-1}$ also appears for the OsIII/RuII species. Oxidation to the OsIII/RuIII species on applying 0.8 V results in the disappearance of the band at 9612 cm$^{-1}$ and appearance of a less broad absorption band with a maximum at 9436 cm$^{-1}$. The absorption bands are similar to those seen for complex 7, however, for the OsIII/RuII species 7, the low energy bands are more distinct rather than one broad band, and for the OsIII/RuIII species, the low energy band is more intense for 7 than for 28. Although it can be speculated that the transitions assigned to these bands are the same as for the short-bridge complex 24, quantum mechanical calculations are required to confirm this assignment.

Figure 3.19 UV-Vis-NIR spectral changes during electrochemical oxidation of trans,trans-[(dppe)$_2$(Pr$_3$SiC≡CC$_6$H$_4$-4-C≡CC$_6$H$_4$-4-C≡C)Os(C≡CC$_6$H$_4$-4-C≡CC$_6$H$_4$-4-C≡C)Ru(Cl)(dppe)$_2$] (28)
It was hoped that the trinuclear complex 29, possessing three distinct redox potentials, would have distinctive optical absorption spectra for each of the resultant complexes. However, when the spectroelectrochemical study of 29 was carried out in THF it was found that only two distinct absorption traces were obtained (Figure 3.20). The first trace was obtained on applying 0.4 V and resembles the absorption spectra obtained for the OsIII/RuII species of 24, with low energy bands with at 6360 and 18685 cm$^{-1}$ (compared with 6420 and 20165 cm$^{-1}$ for 24). On increasing the applied voltage to 0.55 V, the formation of a species with a low energy band blue-shifted to 9555 cm$^{-1}$ and disappearance of the band at 18685 cm$^{-1}$ is observed. These spectral characteristics are similar to those observed for the OsIII/RuIII species of 24, which has a lowest energy band at 9575 cm$^{-1}$. On increasing the voltage to 0.75 V, no further spectral changes are observed. On applying a reducing voltage (-0.5 V) the neutral species is recovered with some loss of peak height due to decomposition. It is difficult to assign the two spectra obtained, since there are three redox processes contributing to the observed spectral changes, but due to similarities to the spectral progressions of 24, the two processes can be tentatively assigned to OsIII/RuII/OsII + OsIII/RuII/OsIII and OsIII/RuIII/OsIII.
Figure 3.20 UV-Vis-NIR spectral changes during electrochemical oxidation of trans-, trans-, trans-\([\text{Pr}^3\text{SiC}=\text{CC}_6\text{H}_4-4-\text{C}=\text{C}]\text{(dppe)}_2\text{Os(}\text{C}=\text{CC}_6\text{H}_4-4-\text{C}=\text{C})\text{Ru(dppe)}_2(\text{C}=\text{CC}_6\text{H}_4-4-\text{C}=\text{C})\text{Os(dppe)}_2\text{Cl}] \) (29)
\begin{tabular}{ll}
Complex & v_{max} (cm$^{-1}$) [\(\varepsilon\)] (104 M$^{-1}$ cm$^{-1}$) a \\
\hline
24 & 25575 [9.8] \\
24$^+$ & 6420 [2.4], 20165 [1.9], 26465 [6.0] \\
24$^{2+}$ & 9575 [6.3], 16293 [1.4], 26649 [1.8], 31035 [5.3] \\
28 & 23041 [7.9], 32895 [4.3] \\
28$^+$ & 9612 [0.8], 19958 [0.5], 23290 [2.5], 30620 [4.2], 40370 [7.9] \\
28$^{2+}$ & 9436 [0.9], 21536 [0.8], 29989 [5.0], 36162 [6.1] \\
29 & 24622 [11.3] \\
29$^{2+}$ & 6360 [3.2], 18685 [2.0], 20282 [2.9], 24691 [5.2] \\
29$^{3+}$ & 9555 [4.8], 16533 [0.4], 30770 [6.6] \\
\end{tabular}

\textbf{Table 3.4} Summary of optical data for complexes 24, 29 and 30. a Electronic spectra were obtained at 298 K in THF using 0.3 M (NBu\textsubscript{4})PF\textsubscript{6} as supporting electrolyte with potentials ca 50-200 mV beyond $E_{1/2}$ for each couple.

3.2.2.7 Quantum mechanical calculations

DFT calculations at the SOAP/TZP//PBE/TZP level of theory were carried out on 17 and 17$^+$ in order to assign the UV-Vis absorption bands for the osmium bis-alkynyl complexes. Orbital diagrams are shown in Figure 3.21 and results tabulated and compared to experimental data in Table 3.5.
Figure 3.21 Orbital diagrams showing transitions for 17 and $^{17+}$
For the neutral complex 17, the calculations show transparency below 25000 cm\(^{-1}\) and are in good agreement with the observed experimental data. The experimentally observed absorption band at 29900 cm\(^{-1}\) matches well with the calculated bands at 27111 and 30975 cm\(^{-1}\) arising from Os d\(_{xz}\) + C\(_2\)Ph π → C\(_2\)Ph π\(^*\) and Os d\(_{yz}\) + C\(_2\) π → Ph π\(^*\) transitions (Figure 3.21 and Table 3.5). For the oxidised complex 17\(^+\), absorption bands below 25000 cm\(^{-1}\) are observed experimentally at 10400, 18000 and 24400 cm\(^{-1}\). These match well with the calculated bands at 9872, 17361 and 26738 cm\(^{-1}\) (Figure 3.21) and can be assigned to C\(_2\) π → Os d\(_{xz}\) + C\(_2\) π\(^*\), Os d\(_{yz}\) + C\(_2\) π → Os d\(_{xz}\) + C\(_2\) π\(^*\) and dppe → Os d\(_{xz}\) + C\(_2\) π\(^*\), respectively.

<table>
<thead>
<tr>
<th>Complex</th>
<th>Expt v(_{\text{max}}) (cm(^{-1})) [ε] (10^4) M(^{-1}) cm(^{-1})</th>
<th>Calcd v(_{\text{max}}) (cm(^{-1})) [ε]</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>29900 [2.8]</td>
<td>27111 [0.084] 30795 [0.085]</td>
</tr>
<tr>
<td>17(^+)</td>
<td>10400 [1.2] 18000 [0.2]</td>
<td>9872 [0.081] 17361 [0.082]</td>
</tr>
<tr>
<td></td>
<td>24400 [0.5]</td>
<td>26738 [0.059]</td>
</tr>
</tbody>
</table>

Table 3.5 Experimental and calculated absorption bands for 17 and 17\(^+\)

3.2.2.8 Nonlinear optics

The third-order nonlinear optical properties of 24 and 29 were measured using the Z-scan technique. The results of this investigation and associated discussion can be found in Chapter 4

3.3 Conclusions

A new route into osmium bis-alkynyl complexes has been developed proceeding via an ammine adduct. This route has been shown to be high yielding and facile with a variety of ammine-alkynyl and bis-alkynyl complexes isolated. From these bis-alkynyl complexes, bimetallic derivatives incorporating ruthenium have been formed and shown to be more stable in solution than the analogous complexes with an osmium chloro-alkynyl metal centre. Electrochemically, all of these complexes have
reversible oxidation processes with the oxidised species giving rise to new, low-energy absorption bands that may be useful for on-resonant nonlinear optical switching.

3.4 Experimental Section

3.4.1 General

All reactions were performed under a nitrogen atmosphere using standard Schlenk techniques, with no precautions to exclude air during workup. CH$_2$Cl$_2$ was dried by distilling over calcium hydride, THF was distilled over sodium/benzophenone, methanol was dried according to the method of Pangborn and co-workers, and all other solvents were used as received. The term “petrol” refers to a fraction of petroleum ether of boiling range 60-80 °C. Column chromatography was performed using Sigma-Aldrich aluminium oxide (activated, basic, Brockmann 1, standard grade ca 150 mesh, 58 Å). Solvents and reagents were obtained from commercial sources and used as received, unless otherwise indicated. The following were prepared according to the literature: HC=CC$_6$H$_4$-4-C=CSiPr$_3$, HC=CC$_6$H$_4$-4-C=CC$_6$H$_4$-4-C=CSiPr$_3$, cis-[OsCl$_2$(DMSO)$_4$], cis-[RuCl$_2$(dppe)$_2$], HC=CC$_6$H$_4$-4-Br, HC=CC$_6$H$_4$-4-I, HC=CC$_6$H$_4$-4-C=CC$_6$H$_4$-4-Br, trans-[Ru(C=C-4-C$_6$H$_4$I)Cl(dppe)$_2$], trans-[Ru(C=CC$_6$H$_4$-4-C=CC$_6$H$_4$-4-I)Cl(dppe)$_2$] was provided by Mr Torsten Schwich. cis-[OsCl$_2$(dppe)$_2$] was prepared via the following unpublished procedure by Morrall and et al.: A mixture of 1,2-bis(diphenylphosphino)ethane (527 mg, 1.325 mmol) and cis-[OsCl$_2$(DMSO)$_4$] (380 mg, 0.662 mmol) was heated in refluxing toluene (40 mL) for 18 h. The solution was allowed to cool to room temperature. The toluene-insoluble component was collected by filtration and washed with diethyl ether (690 mg, 98%). 1H NMR: δ 6.65-8.14 (m, 40H, Ar), 2.50-2.92 (m, 8H, CH$_2$). 31P NMR: δ 7.6 (t, 2J$_{pp}$ = 5.5 Hz), 5.3 (t, 2J$_{pp}$ = 5.5 Hz).
3.4.2 Instrumentation

Electrospray ionisation mass spectra (ESIMS) were obtained using a Waters-micromass LCT-ZMD single quadrupole liquid chromatograph instrument; peaks are reported as \textit{m/z} (assignment, relative intensity). Microanalyses were carried out by the Microanalysis Service Unit, Australian National University. Infrared spectra were recorded as dichloromethane solutions using a Perkin-Elmer System 2000 FT-IR spectrometer. 1H (300 MHz), 13C{1H} (75 MHz) and 31P{1H} (121 MHz) NMR spectra were recorded using a Varian Mercury-300 FT-NMR spectrometer and are referenced to residual chloroform (7.26 ppm (1H), 77.0 ppm (13C{1H})) or external 85\% H$_3$PO$_4$ (0.0 ppm (31P{1H})). UV-Vis spectra were recorded as CH$_2$Cl$_2$ solutions in 1 cm quartz cells using a Cary 5 spectrophotometer.

Cyclic voltammetry measurements were recorded using an e-corder and EA161 potentiostat from eDaq Pty Ltd. Measurements were carried out at room temperature using Pt disk working-, Pt wire auxiliary-, and Ag/AgCl reference electrodes, such that the ferrocene/ferrocenium redox couple was located at 0.56 V. Scan rates were typically 100 mV s$^{-1}$. Electrochemical solutions contained 0.1 M (NBu$_4^+$)PF$_6$ and ca 10^{-3} M complex in dried and distilled solvent; solutions were purged and maintained under a nitrogen atmosphere. Electronic spectra were recorded using a Cary 5 spectrophotometer. Solution spectra of the oxidized species were obtained at 298 K by electrogeneration in an optically-transparent thin-layer electrochemical (OTTLE) cell with potentials ca 50 - 200 mV beyond E$_{1/2}$ for each couple, to ensure complete electrolysis. Solutions were made up using 0.3 M (NBu$_4^+$)PF$_6$ in THF or CH$_2$Cl$_2$.
3.4.3 13C NMR numbering Scheme

3.4.4 Synthesis and Characterization

trans--[Os(C≡CPh)Cl(dppe)$_2$] (9)

A mixture of **cis-**-[OsCl$_2$(η2-dppe)$_2$] (600 mg, 0.567 mmol), NH$_4$PF$_6$ (115 mg, 0.709 mmol) and phenylacetylene (0.579 mg, 5.67 mmol) was stirred at room temperature in CH$_2$Cl$_2$ (100 mL) for 18 h. NEt$_3$ (5 mL) was added, and the solution was reduced
in volume to 50 mL. Methanol was added, and the resulting precipitate collected and washed with petrol (50 mL) to give 9 as a yellow powder (573 mg, 90%), identified by comparison with spectroscopic data in the literature30 (31P NMR: δ 16.4).

trans-[Os(C=C-4-C\textsubscript{6}H\textsubscript{4}Br)Cl(dppe)\textsubscript{2}] (10)

A mixture of *cis*-[OsCl\textsubscript{2}(dppe)\textsubscript{2}] (800 mg, 0.756 mmol), NH\textsubscript{4}PF\textsubscript{6} (154 mg, 0.945 mmol) and 1-bromo-4-ethynylbenzene (206 mg, 1.13 mmol) was stirred in CH\textsubscript{2}Cl\textsubscript{2} (100 mL) for 12 h. NEt\textsubscript{3} (5 mL) was added and the solution was reduced to 50 mL. The solution was added to methanol (150 mL), precipitating a solid that was collected and washed with petrol (50 mL), affording 10 as a yellow powder (836 mg, 92%). ESI MS: 1199 ([M - Cl + CH\textsubscript{3}OH]+, 100). Anal. Calcd for C\textsubscript{60}H\textsubscript{52}BrClOsP\textsubscript{4}: C 59.93, H 4.36%. Found: C 60.22, H 4.28%. UV-vis: λ 340 nm, ϵ 21000 M-1 cm-1. IR: 2067 cm-1 ν(OsC=C). 1H NMR: δ 6.45-7.51 (m, 44H, Ar), 2.62 (m, 8H, CH\textsubscript{2}). 31P NMR: δ 16.4. 13C NMR: δ 135.7, 134.8 (C\textsubscript{47}, C\textsubscript{43}, vtt, ν 1J\textsubscript{PC} + 3J\textsubscript{PC} = 22 Hz), 134.3, 134.2 (C\textsubscript{48}, C\textsubscript{44}), 132.0 (C\textsubscript{57}), 130.3 (C\textsubscript{36}), 129.9 (C\textsubscript{38}), 129.0, 128.8 (C\textsubscript{50}, C\textsubscript{46}), 127.2 & 126.9 (C\textsubscript{49}, C\textsubscript{43}), 115.5 (C\textsubscript{55}), 108.3 (C\textsubscript{39}), 105.5 (C\textsubscript{40}, quint, 2J\textsubscript{PC} = 12 Hz), 31.4 (C\textsubscript{42}, vtt, ν 1J\textsubscript{PC} + 3J\textsubscript{PC} = 26 Hz).

trans-[Os(C=C-4-C\textsubscript{6}H\textsubscript{4}I)Cl(dppe)\textsubscript{2}] (11)

A mixture of *cis*-[OsCl\textsubscript{2}(dppe)\textsubscript{2}] (3.65 g, 3.45 mmol), NH\textsubscript{4}PF\textsubscript{6} (703 mg, 4.31 mmol) and 1-iodo-4-ethynylbenzene (1.18 g, 5.17 mmol) was stirred in CH\textsubscript{2}Cl\textsubscript{2} (150 mL) for 12 h. NEt\textsubscript{3} (10 mL) was added and the solution was reduced in volume to 80 mL and added to methanol, precipitating a product that was collected and washed with petrol (50 mL) to give 11 as a yellow powder (4.02 g, 93%). ESI MS: 1247 ([M - Cl + CH\textsubscript{3}OH]+, 100). Anal. Calcd for C\textsubscript{60}H\textsubscript{32}Cl\textsubscript{10}OsP\textsubscript{4}: C 57.67, H 4.19%. Found: C 57.59, H 4.04%. UV-vis: λ 364 nm, ϵ 22000 M-1 cm-1. IR: 2064 cm-1 ν(OsC=C). 1H NMR: δ 6.34-7.51 (m, 44H, Ar), 2.61 (m, 8H, CH\textsubscript{2}). 31P NMR: δ 16.2. 13C NMR: δ 136.2 (C\textsubscript{36}) 135.7, 134.8 (C\textsubscript{47}, C\textsubscript{43}, vtt, ν 1J\textsubscript{PC} + 3J\textsubscript{PC} = 22 Hz), 134.3, 134.2 (C\textsubscript{48}, C\textsubscript{44}),
132.5 (C_{37}), 130.4 (C_{38}), 129.0, 128.8 (C_{39}, C_{40}), 127.1, 126.9 (C_{41}, C_{42}), 108.5 (C_{35}), 106.3 (C_{40}, coupling not visible), 86.1 (C_{39}), 31.4 (C_{42}, vtt, |J_{PC} + \frac{3}{2}J_{PC}| = 24 Hz).

trans-[Os(C\equiv C_{6}H_{4}-4-C\equiv CC_{6}H_{4}-4-Br)Cl(dppe)_{2}] (12)

A mixture of cis-[OsCl_{2}(dppe)_{2}] (500 mg, 0.473 mmol), HC\equiv CC_{6}H_{4}-4-C\equiv CC_{6}H_{4}-4-Br (266 mg, 0.945 mmol) and NH_{4}PF_{6} (96 mg, 0.591 mmol) were stirred in CH_{2}Cl_{2} (100 ml) for 16 h. NEt_{3} (5 ml) was added and the mixture stirred for 1 min. The solvent was reduced in volume to 40 mL and a solid precipitated on addition of methanol (150 mL). The solid was collected on a sintered glass filter funnel and washed with petrol (40 mL) to remove excess acetylene, affording 12 as an orange powder (504 mg, 82%). ESI MS: 1299 ([M - Cl + CH_{3}OH]+, 90), 1308 ([M - Cl + CH_{3}CN]^{+}, 80). Anal. Calcd for C_{67}H_{56}BrClOsP_{2}: C 62.70, H 4.33%. Found: C 62.28, H 4.55%. UV-vis: \lambda 400 nm, \epsilon 33000 M^{-1} cm^{-1}, \lambda 284 nm, \epsilon 27000 M^{-1} cm^{-1}. IR: 2056 cm^{-1} \nu(C\equiv C), 2070 cm^{-1} \nu(C\equiv C). 1H NMR: \delta 6.56-7.50 (m, 48H, Ar), 2.64 (m, 8H, CH_{2}). 31P NMR: \delta 16.0. 13C NMR: \delta 135.6, 134.7 (C_{47}, C_{43}, vtt, |J_{PC} + \frac{3}{2}J_{PC}| = 22 Hz), 134.3, 134.2 (C_{48}, C_{44}), 132.7, 131.5, 130.7, 130.6, 121.7 (C_{37}, C_{36}, C_{31}, C_{30}, C_{29}), 128.9, 128.8 (C_{50}, C_{46}), 127.2 & 126.9 (C_{49}, C_{45}), 31.3 (C_{42}, vtt, |J_{PC} + \frac{3}{2}J_{PC}| = 22 Hz); other signals were not observed due to poor solubility.

trans-[Os(C\equiv CPh)(NH_{3})(dppe)_{2}]PF_{6} (13)

A mixture of trans-[Os(C\equiv CPh)Cl(dppe)_{2}] (9, 270 mg, 0.240 mmol), NH_{4}PF_{6} (58 mg, 0.360 mmol) and NEt_{3} (6 mL) was stirred in CH_{2}Cl_{2} (100 mL) for 18 h. The solution was reduced to 50 mL, and a solid precipitated from petrol (200 mL), collected and washed with methanol, affording 13 as a pale yellow powder (238 mg, 79%). The sample can be further purified through crystallization from toluene. ESI MS: 1089 ([Os(C\equiv CPh)(dppe)_{2}]^{+}, 100), 988 ([Os(dppe)_{2}]^{+}, 30). Anal. Calcd. for C_{60}H_{56}F_{6}NO_{2}P_{2}: C 57.65, H 4.51, N 1.12%. Found: C 57.54, H 4.74, N 1.12%. IR: \nu(OsC\equiv C) 2076 cm^{-1}. UV-Vis: \lambda 275 nm, \epsilon 17700 M^{-1} cm^{-1}; 301 nm, \epsilon 18600 M^{-1}.
trans-[Os(C≡C-C₆H₄I)(NH₃)(dppe)₂]PF₆ (14)

A mixture of trans-[Os(C≡C-C₆H₄I)Cl(dppe)₂] (11, 4.00 g, 3.20 mmol), NH₄PF₆ (1.04 g, 6.4 mmol) and NEt₃ (4 mL) was stirred in CH₂Cl₂ (200 mL) for 18 h. The solution was reduced to 100 mL, and a solid precipitated by addition of the solution to petrol. The solid was collected and washed with methanol, affording 14 as a pale yellow powder (4.269 g, 97%). ESI MS: 1232 ([M - PF₆]⁺, 100). Anal. Calcd for C₆₀H₅₅F₆INO₅P: C 52.37, H 4.03, N 1.02%. Found: C 52.36, H 3.92, N 1.04%. UV- vis: λ 319 nm, ε 29000 M⁻¹ cm⁻¹. IR: 2076 cm⁻¹ ν(OsOC). ¹H NMR: δ 6.42-8.13 (m, 44H, Ar), 2.61 (m, 8H, CH₂), 1.02 (s, 3H, NH₃). ³¹P NMR: δ 19.9, -143.7 (sept, PF₆, JPF = 714 Hz). ¹³C NMR: δ 137.0 (C₃₆), 135.1 (C₄₇, vtt, |JPC + ³JPC| = 26 Hz), 134.4 (C₄₈), 131.7 (C₃₇), 131.2 (C₄₉), 131.0 (C₄₃, tt, |JPC + ³JPC| = 22 Hz), 130.5, 130.3 (C₅₀, C₄₆), 129.4 (C₄₅), 129.0 (C₃₉), 127.9 (C₄₄), 112.5 (C₃₅), 97.8 (C₄₀, quint, ²JPC = 11 Hz), 88.2 (C₃₉), 31.2 (C₄₂, vtt, |JPC + ³JPC| = 24 Hz).
	rans-[Os(C≡C₆H₄-4-C≡C₆H₄-4-Br)(NH₃)(dppe)₂]PF₆ (15)

A mixture of trans-[Os(C≡C₆H₄-4-C≡C₆H₄-4-Br)Cl(dppe)₂] (12, 400 mg, 0.307 mmol), NH₄PF₆ (200 mg, 1.23 mmol) and NEt₃ (1 mL) were stirred in CH₂Cl₂ (100 mL) for 24 h. The solvent volume was reduced to 60 mL and salts were precipitated on addition of petrol (150 mL). The solution was filtered to remove the salts and product was crystallized through evaporation of CH₂Cl₂/petrol mix at room temperature over a period of 8 h. The orange crystals were collected on a sintered glass filter funnel and were washed with methanol to afford 15 as a dark orange
crystalline product (300 mg, 68%). ESI MS: 1267 ([M - NH3-PF6]+, 100). Anal. Calcd for C_{68}H_{59}BrF_{6}NO_{5}P_{5}: C 57.15, H 4.16, N 0.98%. Found: C 57.01, H 4.34, N 0.94%. UV-vis: λ 362 nm, ε 45000 M⁻¹ cm⁻¹. IR: 2074 (br) cm⁻¹ ν(OsC≡C), 2062 cm⁻¹ ν(C≡C). ¹H NMR: δ 6.43 - 8.15 (m, 48H, Ar), 2.63 (m, 8H, CH₂), 1.05 (s, 3H, NH₃). ³¹P NMR: δ 19.8, -143.7 (sept, PF₆, J_{PF} = 714 Hz). ¹³C NMR: δ 135.1 (C₄₇, vtt, | J_{PC} + J_{PC} | = 24 Hz), 134.4 (C₄₈), 131.3 (C₄₉), 131.0 (C₄₃, vtt, | J_{PC} + J_{PC} | = 20 Hz), 132.8, 131.6, 131.4, 129.9 (C₃₇, C₃₆, C₃₁, C₃₀, C₂₉), 130.5, 130.2 (C₅₀, C₄₆), 129.4 (C₄₅), 128.9 (C₃₈), 127.9 (C₄₄), 122.1, 117.8, 114.1, 91.2, 89.0 (C₃₉, C₃₅, C₃₄, C₃₃, C₃₂), 31.2 (C₄₂, tt, | J_{PC} + J_{PC} | = 22 Hz); C₄₀ not visible.

trans-[Ru(C≡C-4-C₆H₄I)(NH₃)(η²-dppe)₂]PF₆ (16)

A mixture of **trans**-[Ru(C≡C-4-C₆H₄I)Cl(η²-dppe)₂] (250 mg, 0.215 mmol), NH₄PF₆ (105 mg, 0.646 mmol) and Et₃N (1 mL) was stirred in CH₂Cl₂ (60 mL) for 12 h. The solution was reduced to 10 mL and added to petrol (100 mL), precipitating a solid that was collected on a sintered glass filter funnel and washed with methanol to give 16 as a pale yellow powder (167 mg, 60 %). ESI MS: 1126 ([Ru(C≡C-4-C₆H₄I)(dppe)₂]⁺, 100), 898 ([Ru(dppe)₂]⁺, 50). Anal. Calcd for C_{60}H_{55}F_{6}INP₅Ru: C 56.00, H 4.31, N 1.09%. Found: C 55.69, H 4.54, N 1.03%. UV-vis (CH₂Cl₂): λ 318 nm, ε 18000 M⁻¹ cm⁻¹. IR (CH₂Cl₂) 2076 cm⁻¹ ν(Ru-C≡C). ¹H NMR: δ 6.42-8.13 (m, 44H, Ar), 2.63 (m, 8H, CH₂), 0.28 (s, 3H, NH₃). ³¹P NMR: δ 54.0 (s, PPh₂), -143.7 (sept, PF₆, J_{PF} = 714 Hz). ¹³C NMR: δ 137.2 (C₃₆), 135.8 (C₄₇, vtt, | J_{PC} + J_{PC} | = 22 Hz), 134.4 (C₄₈), 131.6 (C₄₃, vtt, | J_{PC} + J_{PC} | = 20 Hz), 131.5 (C₃₇), 131.3 (C₄₀), 130.2, 130.5 (C₅₀, C₄₆), 129.4 (C₄₅), 128.4 (C₃₈), 128.0 (C₄₄), 119.9 (C₄₀, quint, J_{PC} = 16 Hz), 116.4 (C₃₉), 88.7 (C₃₅), 30.3 (C₄₂, vtt, | J_{PC} + J_{PC} | = 24 Hz).
trans-[Os(C≡CPh)₂(dppe)₂] (17).

A mixture of trans-[Os(C≡CPh)(NH₃)(dppe)₈]PF₆ (13, 200 mg, 0.160 mmol) and phenylacetylene (0.5 mL, 5 mmol) was heated in refluxing methanol (100 mL) for 16 h. The solution was allowed to cool to room temperature and the pale yellow powder was collected by filtration and identified as 17 (114 mg, 60%). The sample can be further purified through crystallization from toluene. ESI MS: 1191 ([Os(C≡CPh)₂(dppe)₂]⁺, 100), 1089 ([Os(C≡CPh)(dppe)₈]⁺, 60), 988 ([Os(dppe)₈]⁺, 20). Anal. Calc. for C₆₈H₅₈OsP₄: C 68.67, H 4.92%. Found: C 68.57, H 5.08%. IR: 2060 (br) cm⁻¹ ν(Os≡C). UV-Vis: λ 336 nm, ε 28600 M⁻¹ cm⁻¹. ¹H NMR: δ 6.50-7.50 (m, 50H, Ph), 2.58 (m, 8H, CH₂). ³¹P NMR: δ 16.7. ¹³C NMR: δ 136.2 (C₄₇, C₄₃), 134.3 (C₄₈, C₄₄, coupling not observed), 130.5, 127.4 (C₃₇, C₃₉), 128.7 (C₅₀, C₄₆), 127.0 (C₄₉, C₄₅), 122.7 (C₃₅), 32.6 (C₄₂, coupling not observed); C₃₈, C₃₉, C₄₀ not detected.

trans-[Os(C≡C₄-C₆H₄I)(C≡CC₆H₄-4-C≡CSiPr₃)(dppe)₂] (18)

trans-[Os(C≡C₄-C₆H₄I)(NH₃)(dppe)₈]PF₆ (14, 2.30 g, 1.67 mmol), [(4-ethynylphenyl)ethynyl(triisopropyl)silane (1.88 g, 6.68 mmol) and NEt₃ (1 mL) were heated in refluxing methanol (200 mL) for 144 h. The resulting solid was collected and washed with methanol (50 mL) and petrol (50 mL), affording 18 as a yellow powder (1.76 g, 70%). HRMS (ESI): Calc.: 1497.348 [M + H]⁺, Found: 1497.352. Anal. Calc. for C₇₉H₇₇OsP₄Si: C 63.45, H 5.19%. Found: C 63.44, H 5.35%. IR: 2055 (br) cm⁻¹ ν(Os≡C), 2150 cm⁻¹ ν(C≡CSi). UV-Vis: λ 378 nm, ε 46000 M⁻¹ cm⁻¹. ¹H NMR: δ 6.40-7.43 (m, 52H, Ph), 2.57 (m, 8H, CH₂), 1.14 (s, 21H, Pr'). ³¹P NMR: δ 16.7. ¹³C NMR: δ 136.3 (C₅₇), 135.6 (C₄₇, C₄₃, vtt, ¹J_Pc = 24 Hz), 134.1 (C₄₈, C₄₄), 132.2 (C₅₆), 131.3 (C₃₇), 131.1 (C₃₈), 130.3 (C₅₅), 130.0 (C₃₆), 128.8 (C₅₀, C₄₆), 127.0 (C₄₉, C₄₅), 119.7, 117.7 (C₄₀, C₅₃, quint, ²J_Pc = 12 Hz), 116.9, 115.0, 113.7 (C₃₅, C₃₉, C₅₄), 108.5 (C₅₄), 89.7 (C₃₃), 86.7 (C₅₆), 86.7 (C₅₈), 86.7 (C₃₄), 31.4 (C₄₂, vtt, ¹J_Pc = 24 Hz), 18.7 (C₅₂), 11.4 (C₅₁).
trans-[Os(C≡C-4-C₆H₄I)(NH₃)(dppe)₂]PF₆ (15, 450 mg, 0.327 mmol), HC≡CC₆H₄-4-C≡CSiPr₃ (375 mg, 0.981 mmol), Et₃N (1 mL) were heated in a refluxing mixture of methanol (50 mL) and CHCl₃ (50 mL) for 72 h. The solution was taken to dryness and the residue dissolved in a minimum amount of CH₂Cl₂ (10 mL) and precipitated out of methanol (200 mL). The solid was collected on a sintered glass filter funnel and washed with pentane (40 mL), affording 19 as a yellow powder (296 mg, 57%). ESI MS: 1619 ([M + Na]⁺, 5), 1635 ([M + K]⁺, 5). HRMS (ESI): Calc.: 1619.3625 [M + Na]⁺, Found: 1619.3615. Anal. Calc. for C₈₇H₆₈I₂O₄P₄Si: C 65.49, H 5.12%. Found: C 65.26, H 5.22%. IR: 2054 (br) cm⁻¹ ν(OsC≡C), 2152 cm⁻¹ ν(C≡CSi). UV-Vis: λ 414 nm, ε 37000 M⁻¹ cm⁻¹, λ 322 nm, ε 38000 M⁻¹ cm⁻¹, λ 291 nm (sh), ε 31000 M⁻¹ cm⁻¹, λ 274 nm (sh), ε 33000 M⁻¹ cm⁻¹. ¹H NMR: δ 6.41-7.45 (m, 52H. Ph), 2.59 (m, 8H, CH₂), 1.14 (s, 21H, (Pr). 3¹P NMR: δ 16.5 ppm. ¹³C NMR: δ 136.3 (C₅₇), 135.5 (C₄₇, C₄₃, vtt, |¹JₚC + ³JₚC| = 24 Hz), 134.1 (C₄₈, C₄₄), 132.2 (C₅₆), 131.9 (C₃₇), 131.4, 131.3 (C₅₅, C₃₈), 131.1, 131.0, 130.2 (C₃₆, C₃₁, C₃₀), 128.8 (C₅₀, C₄₆), 127.0 (C₄₉, C₄₅), 123.8, 122.6, 116.2, 115.4, 113.8, 106.8, 92.7, 92.4 (C₅₄, C₃₉, C₃₅, C₃₄, C₃₂, C₂₉, C₂₈, C₂₇), 89.3 (C₃₃), 86.7 (C₅₈), 33.3 (C₄₂, vtt, |¹JₚC + ³JₚC| = 24 Hz), 18.7 (C₅₂), 11.3 (C₅₁); C₅₃, C₄₀ not observed.

trans-[Os(C≡C-4-C₆H₄-4-C≡CSiMe₃)(C≡CC₆H₄-4-C≡CSiPr₃)(dppe)₂] (20)

A mixture of trans-[Os(C≡C-4-C₆H₄I)(C≡CC₆H₄-4-C≡CSiPr₃)(dppe)₂] (18, 1.80 g, 1.21 mmol), trimethylsilylacetylene (591 mg, 6.02 mmol), CuI (20 mg) and trans-[PdCl₂(PPh₃)₂] (50 mg) was stirred in a mixture of CH₂Cl₂ (100 mL) and NEt₃ (100 mL) for 12 h. The mixture was absorbed onto basic alumina and eluted with a mixture of petrol and CH₂Cl₂ (2:1). The solution was taken to dryness. The resultant residue was dissolved in minimum of dichloromethane (20 mL), precipitated out of methanol (120 mL) and collected on a sinter glass filter funnel, affording 21 as a
yellow powder (1.50 g, 86%). ESI MS: 1466 ([M]+, 30). HRMS (ESI): Calc.: 1466.4840 [M]+, Found: 1466.4834. Anal. Calc. for C_{84}H_{86}OsP_{4}Si_{2}: C 68.83, H 5.91%. Found: C 68.47, H 5.95%. UV-vis (CH_{2}Cl_{2}): λ 387 nm, ε 61000 M^1 cm^1. IR (CH_{2}Cl_{2}) 2048 (br) cm^1 ν(C≡C), 2147 (br) cm^1 ν(C≡CSi). 1H NMR: δ 7.44 – 6.88 (m, 48H, Ar), 1.15 (s, 21H, SiPr’_{3}), 0.27 (s, 9H, SiMe_{3}). 31P NMR: δ 16.5. 13C NMR: δ 135.7 (C_{47}, C_{43}, vtt, \vert J_{PC} + 3J_{PC} \vert = 24 Hz), 134.1 (C_{48}, C_{44}), 132.2 (C_{56}), 131.4, 131.1 (C_{55}, C_{39}, 131.3, 131.2 (C_{50}, C_{57}), 130.0 (C_{57}, C_{36}), 128.8 (C_{50}, C_{46}), 127.0 (C_{49}, C_{45}), 120.4, 119.6 (C_{53}, C_{40}, quint, 2J_{PC} = 12 Hz), 116.9, 116.3, 115.4, 108.5, 106.5 (C_{59}, C_{58}, C_{54}, C_{39}, C_{35}, C_{34}), 93.6, 89.7 (C_{60}, C_{33}), 32.3 (C_{42}, vtt, \vert J_{PC} + 3J_{PC} \vert = 26 Hz), 18.7 (C_{52}), 11.4 (C_{51}), 0.15 (C_{51}).

\textit{trans-}[Os(C≡C-4-C_{6}H_{4}≡CH)(C≡CC_{6}H_{4}-4-C≡CSiPr’_{3})(dppe)] (21)

A mixture of \textit{trans-}[Os(C≡C-4-C_{6}H_{4}≡CSiMe_{3})(C≡CC_{6}H_{4}-4-C≡CSiPr’_{3})(dppe)] (20, 1.00 g, 0.695 mmol) and KOH (266 mg, 4.17 mmol) was stirred in a mixture of CH_{2}Cl_{2} (50 mL) and methanol (50 mL) for 12 h. The reaction mixture was then taken to dryness. The resultant residue was dissolved in minimum of CH_{2}Cl_{2} (20 mL), precipitated in methanol (150 mL) and collected on a sintered glass filter funnel, affording 21 as a orange powder (788 mg, 81%). ESI MS: 1394 ([M]+, 100). HRMS (ESI): Calc.: 1394.4435 [M]+, Found: 1394.4438. Anal. Calc. for C_{81}H_{78}OsP_{4}Si: C 69.81, H 5.64%. Found: C 69.88, H 5.39%. UV-vis (CH_{2}Cl_{2}): λ 384 nm, ε 44000 M^1 cm^1. IR (CH_{2}Cl_{2}) 2053 (br) cm^1 ν(C≡C), 2146 cm^1 ν(C≡CSi), 3302 (br) cm^1 ν(≡CH). 1H NMR: δ 7.43 – 6.60 (m, 48H, Ar), 3.14 (s, 1H, C≡CH), 2.59 (m, 8H, CH), 1.15 (s, 21H, SiPr’_{3}). 31P NMR: δ 16.6. 13C NMR: δ 135.6 (C_{47}, C_{43}, vtt, \vert J_{PC} + 3J_{PC} \vert = 24 Hz), 134.1 (C_{48}, C_{44}), 131.6, 131.1 (C_{55}, C_{39}), 131.3, 131.2 (C_{56}, C_{37}), 130.02, 130.00 (C_{57}, C_{36}), 128.8 (C_{50}, C_{46}), 127.0 (C_{49}, C_{45}), 120.3, 119.6 (C_{53}, C_{40}, quint, 2J_{PC} = 12 Hz), 116.9, 115.3, 115.2, 108.4 (C_{58}, C_{54}, C_{39}, C_{35}, C_{34}), 89.6 (C_{33}), 84.9 (C_{59}), 76.7 (C_{60}), 32.3 (C_{42}, vtt, \vert J_{PC} + 3J_{PC} \vert = 26 Hz), 18.7 (C_{52}), 11.4 (C_{51}).
trans-,trans-[(Pr'₃SiC≡CC₆H₄-4-C≡C)(dppe)₂]Os(C≡C-4-C₆H₄C≡CH)(C≡CC₆H₄-4-C≡CSiPr') (22)

A mixture of trans-[Os(C≡C-4-C₆H₄C≡CH)(C≡CC₆H₄-4-C≡CSiPr')₂] (21, 300 mg, 0.215 mmol), trans-[Ru(C≡C-4-C₆H₄I)Cl(dppe)₂] (250 mg, 0.215 mmol), NaPF₆ (72 mg, 0.43 mmol) and NEt₃ (12 drops) were refluxed in CH₂Cl₂ (100 mL) for 24 h. The reaction volume was reduced to 40 mL and a solid precipitated on addition of methanol (150 mL). The solid was collected and washed with pentane (40 mL) to give 23 as an orange powder (479 mg, 88%). ESI MS: 2518 ([M]+, 2). HRMS (ESI): Calc.: 2518.5468 [M]+, Found: 2518.5520. Anal. Calc. for C₁₄₁H₂₉₉OsP₈RuSi: C 67.27, H 5.16%. Found: C 67.44, H 5.42%. UV-vis (CH₂Cl₂): λ 387 nm, ε 78000 M⁻¹ cm⁻¹. IR (CH₂Cl₂): 2057 (br) cm⁻¹ v(C≡C), 2145 cm⁻¹ v(C≡CSi). ¹H NMR (C₆D₆): δ 7.88 – 6.60 (m, 92H, Ar), 2.56 (m, 16H, CH), 1.27 (s, 21H, SiPr'₃). ³¹P NMR (C₆D₆): δ 54.3 (4P, RuP), 16.5 (4P, OsP).

trans-,trans-[(Pr'₃SiC≡CC₆H₄-4-C≡C)(dppe)₂]Os(C≡C-4-C₆H₄C≡CH)(C≡CC₆H₄-4-C≡CSiPr') (23)

A mixture of trans-[Os(C≡C-4-C₆H₄C≡CH)(C≡CC₆H₄-4-C≡CSiPr')₂] (21, 100 mg, 0.0718 mmol), trans-[Ru(C≡CC₆H₄-4-C≡CC₆H₄-4-I)(Cl)(dppe)₂] (90 mg, 0.0718 mmol), NaPF₆ (24 mg, 0.144 mmol) and NEt₃ (5 drops) were heated in refluxing CH₂Cl₂ (60 mL) for 24 h. The reaction volume was reduced to 30 mL and a solid precipitated by addition of the solution to methanol (150 mL). The solid was collected and washed with pentane (40 mL) affording 23 as an orange powder (104 mg, 55%). ESI MS: 2618 ([M]+, 2). HRMS (ESI): Calc.: 2618.5781 [M]+, Found: 2618.5789. Anal. Calc. for C₁₄₉H₂₃₇OsP₈RuSi: C 68.37, H 5.12%. Found: C 68.83, H 5.23%. UV-vis (CH₂Cl₂): λ 400 nm, ε 110000 M⁻¹ cm⁻¹, λ 315 nm sh, ε 44000 M⁻¹ cm⁻¹. IR (CH₂Cl₂): (br) 2053 cm⁻¹ ν(C≡C), 2146 cm⁻¹ ν(C≡CSi). ¹H NMR (C₆D₆): δ 7.90 – 6.84 (m, 96H, Ar), 2.58 (m, 16H, CH), 1.27 (s, 21H, SiPr'₃). ³¹P NMR (C₆D₆): δ 54.2 (4P, RuP), 16.5 (4P, OsP).
trans-,trans-\{(Prt_{3}SiC≡CC\textsubscript{6}H\textsubscript{4}-4-C≡C)(dppe)\textsubscript{2}Os(C≡C-4-C\textsubscript{6}H\textsubscript{4}C≡C)Ru(dppe)\textsubscript{2}(C≡CC\textsubscript{6}H\textsubscript{4}-4-C≡CSiMe\textsubscript{3}))\} (24)

A mixture of trans-,trans-\{(Prt_{3}SiC≡CC\textsubscript{6}H\textsubscript{4}-4-C≡C)(dppe)\textsubscript{2}Os(C≡C-4-C\textsubscript{6}H\textsubscript{4}C≡C)Ru(dppe)\textsubscript{2}(C≡CC\textsubscript{6}H\textsubscript{4}-4-C≡CSiMe\textsubscript{3}))\} (22, 300 mg, 0.119 mmol), HC≡CSiMe\textsubscript{3} (70 mg, 0.715 mmol), trans-[PdCl\subscript{2}(PPh\textsubscript{3})\textsubscript{2}] (50 mg, 0.07 mmol), CuI (20 mg, 0.11 mmol) were stirred in a mixture of CH\textsubscript{2}Cl\textsubscript{2} (50 mL) and NEt\textsubscript{3} (50 mL) for 12 h. The reaction mixture was absorbed onto alumina, eluting with a mixture of CH\textsubscript{2}Cl\textsubscript{2}/petrol (1:1). The solvent was removed and the residue taken up in a minimum of CH\textsubscript{2}Cl\textsubscript{2} (10 mL), precipitated from petrol (150 mL) and collected on a sintered glass filter funnel to give 24 as an orange powder (151 mg, 51%). ESI MS: 2489 ([M]+, 5). Anal. Calc. for C\textsubscript{46}H\textsubscript{31}O\textsubscript{8}P\textsubscript{2}RuSi\textsubscript{2}: C 70.48, H 5.59%. Found: C 70.12, H 5.85%.

UV-vis (CH\textsubscript{2}Cl\textsubscript{2}): \(\lambda\) 391 nm, \(\varepsilon\) 98000 M-1 cm-1. IR (CH\textsubscript{2}Cl\textsubscript{2}): 2055 (br) cm-1 \(v(C≡C)\), 2147 (br) cm-1 \(v(C≡CSi)\). \(^1\)H NMR: \(\delta\) 7.70 - 6.53 (m, 92H, Ar), 2.64 (m, 16H, CH), 1.15 (s, 21H, SiPrt_{3}), 0.26 (s, 9H, SiMe\textsubscript{3}). \(^3\)P NMR: \(\delta\) 54.2 (4P, RuP), 16.5 (4P, OsP).

trans-[Os(C≡CC\textsubscript{6}H\textsubscript{4})](C≡CC\textsubscript{6}H\textsubscript{4}-4-C≡CC\textsubscript{6}H\textsubscript{4}-4-C≡CH)(dppe)\textsubscript{2}] (25)

A mixture of trans-[Os(C≡C-4-C\textsubscript{6}H\textsubscript{4})](C≡CC\textsubscript{6}H\textsubscript{4}-4-C≡CC\textsubscript{6}H\textsubscript{4}-4-C≡CSiPrt_{3})(dppe)\textsubscript{2}] (19, 965 mg, 0.605 mmol) and NBut_{4} (6.05 ml of a 1.0M solution in THF, 6.05 mmol) was stirred in CH\textsubscript{2}Cl\textsubscript{2} (150 mL) for 20 h. The solution volume was reduced to 40 mL with a solid precipitated from methanol (150 mL) and collected on a sintered glass filter funnel, affording 25 as a orange powder (811 mg, 93 %). ESI MS: 1440 ([M]+, 40), ([M-C≡CC\textsubscript{6}H\textsubscript{4}-4-C≡CH])+, 70). HRMS (ESI): Calc.: 1440.2386 [M]+, Found: 1440.2383. Anal. Calc. for C\textsubscript{78}H\textsubscript{61}O\textsubscript{4}P\textsubscript{4}: C 65.09, H 4.27%. Found: C 65.30, H 4.22%. UV-Vis: \(\lambda\) 411 nm, \(\varepsilon\) 38000 M-1 cm-1, \(\lambda\) 324 nm , \(\varepsilon\) 36000 M-1 cm-1, \(\lambda\) 276
nm (sh), \(\varepsilon \) 34000 M\(^{-1}\) cm\(^{-1}\), \(\lambda \) 265 nm (sh), \(\varepsilon \) 39000 M\(^{-1}\) cm\(^{-1}\). IR (CH\(_2\)Cl\(_2\)): 2053 (br) cm\(^{-1}\) \(\nu \)(C=C), 3296 cm\(^{-1}\) \(\nu \)(CH). \(^1\)H NMR: \(\delta \) 6.91 - 7.47 (m, 52H, Ar), 3.17 (s, 1H, C=CH), 2.57 (m, 8H, CH). \(^3\)P NMR: \(\delta \) 16.6. \(^{13}\)C NMR: \(\delta \) 136.3 (C\(_{57}\)) 135.5 (C\(_{47}\), C\(_{43}\), vtt, \(\mid \(\text{J}_{\text{PC}} + \text{J}_{\text{PC}} \mid = 24 \text{ Hz} \), 134.1 (C\(_{48}\), C\(_{44}\)), 132.2 (C\(_{56}\)), 132.0 (C\(_{37}\)), 131.2, 131.0, 130.2 (C\(_{36}\), C\(_{31}\), C\(_{30}\)), 128.8 (C\(_{50}\), C\(_{46}\)), 127.0 (C\(_{49}\), C\(_{45}\)), 86.7 (C\(_{58}\)), 83.4 (C\(_{28}\)), 76.6 (C\(_{27}\)) 33.3 (C\(_{42}\), vtt, \(\mid \(\text{J}_{\text{PC}} + \text{J}_{\text{PC}} \mid = 24 \text{ Hz} \); C\(_{55}\), C\(_{53}\), C\(_{54}\), C\(_{40}\), C\(_{39}\), C\(_{38}\), C\(_{35}\), C\(_{34}\), C\(_{32}\), C\(_{29}\), C\(_{28}\), C\(_{27}\) not observed.

\textit{trans,trans-}[\text{(dppe)}\text{2}(\text{IC}_6\text{H}_4-4-\text{C}=\text{C})\text{Os(C}=\text{C}\text{C}_6\text{H}_4-4-\text{C}=\text{C}\text{C}_6\text{H}_4-4-\text{C}=\text{C})\text{RuCl(dppe)}\text{2}] (26)

A mixture of \textit{trans-}[Os(\text{C}=\text{C}-4-\text{C}_6\text{H}_4\text{I})(\text{C}=\text{C}\text{C}_6\text{H}_4-4-\text{C}=\text{C}\text{C}_6\text{H}_4-4-\text{C}=\text{C})\text{CH})(\text{dppe})\text{2}] (25, 800 mg, 0.556 mmol), \textit{cis-}[\text{RuCl(dppe)}\text{2}] (1.08 g, 1.11 mmol) and NaPF\(_6\) (470 mg, 2.78 mmol) were stirred in CH\(_2\)Cl\(_2\) (150 mL) for 48 h. NEt\(_3\) (10 mL) was added and the reaction stirred for 1 min. The reaction volume was reduced to 60 mL and a solid precipitated on addition to methanol (200 mL). The solid was collected and washed with petrol (30 mL), affording 21 as a yellow powder (1.16 g, 87%). ESI MS: 2253 ([M - 1 - Cl + MeCN + H]\(^+\), 5). Anal. Calc. for C\(_{130}\)H\(_{108}\)Cl\(_2\)OsP\(_8\)Ru: C 65.84, H 4.59%. Found: C 65.30, H 4.84%. UV-vis (CH\(_2\)Cl\(_2\)): \(\lambda \) 423 nm, \(\varepsilon \) 57000 M\(^{-1}\) cm\(^{-1}\), \(\lambda \) 308 nm, \(\varepsilon \) 27000 M\(^{-1}\) cm\(^{-1}\). IR (CH\(_2\)Cl\(_2\)): 2056 (br) cm\(^{-1}\) \(\nu \)(C=C). \(^1\)H NMR: \(\delta \) 6.33 - 7.46 (m, 92H, Ar), 2.7 (m, 8H, RuPCH) 2.6 (m, 8H, OsPCH) \(^3\)P NMR: \(\delta \) 49.9 (4P, RuP), 16.6 (4P, OsP).

\textit{trans,trans-}[\text{(dppe)}\text{2}(\text{Me}_3\text{SiC}=\text{C}\text{C}_6\text{H}_4-4-\text{C}=\text{C})\text{Os}(\text{C}=\text{C}\text{C}_6\text{H}_4-4-\text{C}=\text{C}\text{C}_6\text{H}_4-4-\text{C}=\text{C})\text{RuCl(dppe)}\text{2}] (27)

A mixture of \textit{trans,trans-}[(dppe)\text{2}(\text{IC}_6\text{H}_4-4-\text{C}=\text{C})\text{Os(C}=\text{C}\text{C}_6\text{H}_4-4-\text{C}=\text{C}\text{C}_6\text{H}_4-4-\text{C}=\text{C})\text{RuCl(dppe)}\text{2}] (26, 1.20 g, 0.505 mmol), HC=CSiMe\(_3\) (497 mg, 5.05 mmol), \textit{trans-}[PdCl\(_2\)(PPh\(_3\))\text{2}] (50 mg, 0.07 mmol), and CuI (20 mg, 0.11 mmol) were stirred in a mixture of CH\(_2\)Cl\(_2\) (100 mL) and NEt\(_3\) (100 mL) for 24 h. The reaction mixture
was absorbed onto alumina and the column eluted with a mixture of \(\text{CH}_2\text{Cl}_2/\text{petrol} \) (2:1) (300 mL). The product was then eluted with \(\text{CH}_2\text{Cl}_2/\text{petrol} \) (3:1) (200 mL). The solvent was removed affording 27 as a yellow powder (640 mg, 54%). ESI MS: 2349 ([M - Cl + MeCN]^+), 10), HRMS (ESI): Calc.: 2348.5749 [M - Cl + MeCN]^+, Found: 2348.5745. Anal. Calc. for C\(_{135}\)H\(_{117}\)ClO\(_8\)P\(_8\)RuSi: C 69.23, H 5.04%. Found: C 68.71, H 5.04%. UV-vis (\(\text{CH}_2\text{Cl}_2 \)): \(\lambda \) 425 nm, \(\epsilon \) 80000 M\(^{-1}\) cm\(^{-1}\). IR (\(\text{CH}_2\text{Cl}_2 \)): 2054 (br) cm\(^{-1}\), v(C=Si); 2148 cm\(^{-1}\) v(C=CSi). \(^1 \)H NMR: \(\delta \) 6.56 - 7.48 (m, 96H, Ar), 2.7 (m, 8H, RuPCH) 2.6 (m, 8H, OsPCH), 0.26 (s, 9H, SiMe\(_3\)). \(^{31} \)P NMR: \(\delta \) 49.9 (4P, RuP), 16.4 (4P, OsP).

\(^{\text{trans,}-\text{trans}} \)\[\text{[(dppe)}_2(\text{Pr}^3\text{SiC}\equiv\text{CC}_6\text{H}_4-4-\text{C}\equiv\text{CC}_6\text{H}_4-4-\text{C}\equiv\text{C})\text{Os(=CC}_6\text{H}_4-4-\text{C}\equiv\text{CC}_6\text{H}_4-4-\text{C}\equiv\text{C})\text{RuCl(dppe)}_2] \] (28)

A mixture of \(^{\text{trans,}-\text{trans}} \)\[\text{[(dppe)}_2(\text{IC}\equiv\text{CC}_6\text{H}_4-4-\text{C}=\text{CC}_6\text{H}_4-4-\text{C}=\text{CC}_6\text{H}_4-4-\text{C}=\text{C})\text{RuCl(dppe)}_2] \] (26, 600 mg, 0.253 mmol), HC\equiv\text{CC}_6\text{H}_4-4-\text{C}=\text{CSiPr}^3 \) (143 mg, 0.506 mmol), \(^{\text{trans}} \)\[\text{[PdCl}_2(\text{PPh}_3)_2] \) (50 mg, 0.070 mmol), and Cul (20 mg, 0.11 mmol) were stirred in a mixture of \(\text{CH}_2\text{Cl}_2 \) (100 mL) and NEt\(_3 \) (100 mL) for 24 h. The crude product was absorbed onto alumina and the column eluted with a mixture of \(\text{CH}_2\text{Cl}_2/\text{petrol} \) (2:1) (350 mL). The solvent was removed and the resulting residue dissolved in \(\text{CH}_2\text{Cl}_2 \) (20 mL). The product was precipitated from petrol and collected on a sintered glass filter funnel, affording 28 as a yellow powder (444 mg, 69%). ESI MS: 2533 ([M - Cl + MeCN]^+), 5), HRMS (ESI): Calc.: 2532.7001 [M - Cl + MeCN]^+, Found: 2532.7000. Anal. Calc. for C\(_{49}\)H\(_{33}\)ClO\(_8\)P\(_8\)RuSi: C 70.84, H 5.31%. Found: C 70.41, H 5.16%. UV-vis (\(\text{CH}_2\text{Cl}_2 \)): \(\lambda \) 434 nm, \(\epsilon \) 79000 M\(^{-1}\) cm\(^{-1}\), \(\lambda \) 304 nm, \(\epsilon \) 43000 M\(^{-1}\) cm\(^{-1}\). IR (\(\text{CH}_2\text{Cl}_2 \)): 2053 (br) cm\(^{-1}\) v(C=C), 2153 cm\(^{-1}\) v(C=CSi). \(^1 \)H NMR: \(\delta \) 6.57 - 7.45 (m, 96H, Ar), 2.70 (m, 8H, RuPCH), 2.60 (m, 8H, OsPCH), 1.15 (s, 21H, SiPr\(_3\)). \(^{31} \)P NMR: \(\delta \) 49.9 (4P, RuP), 16.4 (4P, OsP).
trans-,trans-,trans-\[(Pr'_3SiC=CC_6H_4-4-C=C)(dppe)_2Os(C=CC_6H_4-4-C=C)Ru(dppe)_2(C=CC_6H_4-4-C=CC_6H_4-4-C=C)OsCl(dppe)_2\] (29)

A mixture of trans,trans-\[(dppe)_2ClOs(C=CC_6H_4-4-C=CC_6H_4-4-C=C)RuCl(dppe)_2\] (7, 100 mg, 0.045 mmol), trans-[Os(C=4-C_6H_4-4-C=CH)(C=CC_6H_4-4-C=CSiPr'_3)(dppe)_2] (23, 63 mg, 0.045 mmol), NaPF_6 (15 mg, 0.92 mmol) and Et_3N (10 drops) were refluxed in CH_2Cl_2 (50 mL) for 24 h. The solvent volume was reduced to 10 mL and the crude product precipitated upon addition of methanol (100 mL). The solid was collected on a sintered glass filter funnel, and then washed through the sinter with a mixture of CH_2Cl_2/Et_3N (40:1) (60 mL). The solvent was removed and the residue taken up in a minimum of CH_2Cl_2 (15 mL), precipitated from pentane (100 mL) and collected on a sintered glass filter funnel, affording 29 as a yellow powder (60 mg, 38%). ESI MS: 3539 ([M]^+, 1), HRMS (ESI): Calc.: 3538.8746 [M]^+, Found: 3538.8748. UV-vis (CH_2Cl_2): λ 402 nm, ε 110000 M\(^{-1}\) cm\(^{-1}\). IR (CH_2Cl_2): 2054 (br) cm\(^{-1}\) ν(C=C), 2145 cm\(^{-1}\) ν(C=CSi). \(^1\)H NMR (C_6D_6): δ 7.90 – 6.33 (m, 132H, Ar), 2.59 (m, 24H, CH), 1.28 (s, 21H, SiPr'_3). \(^31\)P NMR (C_6D_6): δ 54.3 (4P, RuP), 16.5 (4P, OsP), 15.8 (4P, ClOsP). Accurate microanalysis was not obtained.

3.5 References

(41) Morrall, J. P. *Unpublished procedure* 2011
Chapter 4

Branched heterobimetallic complexes
Chapter 4
Branched heterobimetallic complexes

Contents

4.1 Introduction 168

4.2 Results and Discussion

4.2.1 Synthesis 171

4.2.2 Physical Properties 179

4.2.2.1 NMR spectroscopy 179

4.2.2.2 UV-Vis absorption spectroscopy 181

4.2.2.3 Infrared spectroscopy 183

4.2.2.4 Electrochemistry 183

4.2.2.5 Spectroelectrochemistry 185

4.2.2.6 Nonlinear optics 189

4.3 Conclusions 196

4.4 Experimental section

4.4.1 General 196

4.4.2 Instrumentation 197

4.4.3 13C NMR numbering Scheme 199

4.4.4 Synthesis and Characterisation 200

4.5 References 205
4.1 Introduction

It has been shown that large electron delocalised structures have much greater two-photon absorption cross-sections (σ_2) compared to linear structures, with some of the largest σ_2 found for highly branched dendrimeric structures.1,2 This has been shown to be the case even when the σ_2 is scaled for molecular weight or molecular volume.3 For this reason, larger branched structures incorporating the osmium and ruthenium metal centres explored in Chapters 2 and 3 were targeted as part of this work.

Previously, a heterobimetallic 1,3,5-substituted benzene complex incorporating ruthenium and iron metal centres was synthesised by Gauthier and \textit{et al.}4 The complex was investigated electrochemically and spectroelectrochemically and was shown to possess three redox states ($\text{Fe}^{II}\text{Ru}^{II}$, $\text{Fe}^{III}\text{Ru}^{II}$, $\text{Fe}^{III}\text{Ru}^{III}$) with distinct optical absorption properties. These changes in the optical absorption behaviour were used to conduct on-resonant switching of the third-order nonlinear optical effects at 750 nm and 1250 nm.

![Hexanuclear bimetallic complex](image)

Figure 4.1. Hexanuclear bimetallic complex synthesised by Gauthier \textit{et al.},4 where the arm shown is repeated at the wavy lines.

The heterobimetallic dendrimers explored in this work are large, branched structures consisting of a core unit incorporating three metal centres and three wedges containing a differing metal centre (Figure 4.2). The organic molecules linking the metal centres together are conjugated phenyl-ethynyl chains.
Figure 4.2. Schematic of a heterobimetallic dendrimer with the core and associated metal centres shown in red, and the "wedges" and associated metal centres shown in blue.

Due to the difficulty in representing these large macromolecular structures, dendritic complexes containing equivalent "arms" will be shown with a single arm from the core and a wavy line depicting the repeating unit (Figure 4.3).

Figure 4.3. Schematic of macromolecular structure and the wavy line contraction used.

Powell and et al. have synthesised a heterobimetallic dendrimer incorporating platinum metal centres within the core, and ruthenium metal centres in the wedge.
This complex is not suitable for use as a multistate nonlinear optical switch, as the platinum metal centres are not reversibly oxidised. Z-scan measurements at 800 nm have shown a significantly lower absorptive component of γ compared to the analogous complex with ruthenium in place of the platinum metal centres. This was rationalised by the increased electron density obtained by the replacement of the 16 valence-electron platinum by the 18 valence-electron ruthenium.

![Figure 4.4.](image_url)

Figure 4.4. The heterobimetallic dendrimer formed by Powell and co-workers

Another branched metal alkynyl complex that was utilised as a nonlinear optical switch was the cruciform ruthenium alkynyl complex formed by Dalton et al. (Figure 4.5). This complex can be switched between three different states using the reversible RuII/RuIII couple and the reversible protonation to the vinylidene complex. These three states all possessed different optical and nonlinear optical absorption properties.
4.2 Results and Discussion

4.2.1 Synthesis

To form 1,3,5-substituted benzene bimetallic complexes, complex 18 formed in Chapter 3 was desilylated using NBu’4F to afford trans-[Os(C≡C-4-C₆H₄-I)(C≡CC₆H₄-4-C≡CH)(dppe)] (30) in 53% yield (Scheme 4.1). This complex has a pendent ethynyl group which can be coupled to a ruthenium centre, as well as an aryl-iodo group which could be further functionalised via a Sonogashira reaction with an ethynyl moiety.

Scheme 4.1. Synthesis of trans-[Os(C≡C-4-C₆H₄-I)(C≡CC₆H₄-4-C≡CH)(dppe)] (30).
Making use of the pendent ethynyl group, complex 30 can be coupled to 1,3,5-C₆H₃(C≡CC₆H₄-4-C≡CC₆H₄-4-C≡C-trans-[RuCl(dppe)₂]₃ to afford 1,3,5-C₆H₃(C≡CC₆H₄-4-C≡CC₆H₄-4-C≡C-rra^-[Ru(dppe)₂]C≡CC₆H₄-4-C≡C-/rra^-[Os(dppe)₂]C≡C-4-C₆H₄I)₃ (31) in a 51% yield (Scheme 4.2).

![Scheme 4.2. Synthesis of 31.](image)

In a similar manner, 25 was coupled to the same 1,3,5-substituted ruthenium chloro-alkynyl complex to afford 1,3,5-C₆H₃(C≡CC₆H₄-4-C≡CC₆H₄-4-C≡C-rra^-[Ru(dppe)₂]C≡CC₆H₄-4-C≡C-trans-[Os(dppe)₂]C≡C-4-C₆H₄I)₃ (32) in 53% yield (Scheme 4.3). This complex is analogous to 31 except the longer triethynyl C≡CC₆H₄-4-C≡CC₆H₄-4-C≡C bridge separates the osmium and ruthenium metal centres in 32 rather than the shorter diethynyl C≡CC₆H₄-4-C≡C bridge in complex 31. The formation of these two complexes should allow a greater understanding of the influence of the length of the bridge on the nonlinear optical properties.
Previously, it has been shown that increasing the branching points within 1,3,5 substituted benzene complexes to form dendrimers can lead to an increase in magnitude of the third-order nonlinear optical effects.7,8 Although metal alkynyl dendrimers have been formed previously, they have either been monometallic2,9,10 or multimetallic examples using metals without a reversible redox process5, making them poor candidates for multistate nonlinear optical switches. It has been shown that metal centres with an 18 valence-electron configuration possess greater nonlinear optical effects than metal centres with less valence electrons, further limiting the choice of metals available for maximising the nonlinear optical effects.8

A phenylethynyl dendrimer incorporating both the trans-\-[Os(dppe)\textsubscript{2}] and trans-\-[Ru(dppe)\textsubscript{2}] metal centres was targeted in order to determine whether it could act as a multistate nonlinear optical switch. The formation of a branching point is possible by reacting a bulky metal centre such as cis-\-[RuCl\textsubscript{2}(dppe)\textsubscript{2}] with 1,3,5-(HC=C)\textsubscript{3}C\textsubscript{6}H\textsubscript{3}, where the steric bulk of the metal centre limits addition to only two of the three ethynyl sites;11,12 this then allows further functionalization at the remaining ethynyl site to form a complex that can act as a branching point in dendrimers. With the analogous osmium metal centre possessing similar steric bulk, it was envisaged that a similar branching point could be formed under the same conditions. An excess of cis-\-[OsCl\textsubscript{2}(dppe)\textsubscript{2}] was reacted with 1,3,5-(HC=C)\textsubscript{3}C\textsubscript{6}H\textsubscript{3} with the same conditions.
used previously to form osmium chloro-alkynyl complexes, to afford 1-(HC≡C)C₆H₃-3,5-{C≡C-trans-[OsCl(dppe)₂]}₂ (33) in 74% yield (Scheme 4.4). Another target was the formation of a dendrimer incorporating osmium ammine-alkynyl metal centres. By having the cationic wedge incorporated in the dendrimer it was envisaged that the osmium metal centres would be more difficult to oxidise than the internal ruthenium metal centres affording two independent redox switches. To form the osmium ammine-alkynyl wedge, 1-(HC≡C)C₆H₃-3,5-{C≡C-trans-[OsCl(dppe)₂]}₂ (33) was stirred in the presence of NH₄PF₆ and NEt₃ in CH₂Cl₂ at room temperature for 24 h to afford [1-(HC≡C)C₆H₃-3,5-{C≡C-trans-[Os(NH₃)(dppe)₂]}₂](PF₆)₂ (34) in 51% yield (Scheme 4.4). Unfortunately oxidation of the metal centres in 34 (described fully elsewhere) was found to be irreversible, making formation of the dendrimer incorporating this wedge undesirable.
Scheme 4.4. Syntheses of complexes 33 and 34

It has been shown that if a metal centre is resistant to the formation of bis-alkynyl complexes directly from a chloro-alkynyl complex such as \(\text{trans-}[\text{MCl} (\text{C=CR})(\text{dppm})_2] \) (M = Ru or Os), then careful stoichiometric addition of
the metal centre to 1,3,5-(HC=C)3C6H3, will result in coupling of the metal centre to only one of the three ethynyl sites. Trans-[OsCl(C≡CR)(dppe)2] complexes, unlike their ruthenium analogous, are resistant to bis-alkynyl formation, and addition of a stoichiometric amount to 1,3,5-(HC≡C)3C6H3 gave 1,3-(HC≡C)2C6H3-5-{C≡C-trans-[OsCl(dppe)2]} (35) in 33% yield after 50 min (Scheme 4.5). The low yield for this reaction is more a reflection on the difficulty of purifying this very soluble product without the use of chromatography, where complexes of this type have exhibited instability, rather than the formation of a significant amount of di-substituted product (less than 20% by 31P NMR).

Scheme 4.5 Synthesis of 1,3-(HC≡C)2C6H3-5-{C≡C-trans-[OsCl(dppe)2]} (35)

The bimetallic dendrimer was formed by coupling the ruthenium core 1,3,5-C6H3(C≡C6H4-4-C≡C6H4-4-C≡C-trans-[Ru(dppe)2]C≡C6H4-4-C≡C6H4-4-I)3 with the osmium wedge 33 via a Sonogashira reaction using a Pd(0)/CuI catalyst. The bimetallic dendrimer, 36, was isolated in 34% yield, after refluxing in a NEt3/CH2Cl2 mix (1:1) for 48 h (Scheme 4.6). The mixture of homo-coupled and unreacted wedge can be removed from the product by trituration with a petrol/CH2Cl2 (7:3) mixture.
Scheme 4.6. Synthesis of 36

The mononuclear wedge complex 35 can be coupled to 1,3,5-C₆H₃(C≡C₆H₄-4-C≡C₆H₄-4-C-trans-[RuCl(dppe)₂])₃ using the conditions reported previously for the formation of ruthenium bis-alkynyl complexes; the steric bulk of the trans-[Ru(dppe)₂] and trans-[Os(dppe)₂] metal centres ensures coupling at only one of the two ethynyl sites on 35, affording 1,3,5-{C≡C₆H₃-3-(C≡CH)-5-(C≡C-trans-[Os(dppe)₂]Cl)-C₆H₃}₃C₆H₃ (37) in 71% yield (Scheme 4.7). Coupling in this manner leaves a pendent ethynyl group that can potentially be coupled to an organic molecule or a less bulky metal centre.
Recently it has been shown that triarylamine-based dendrimers have very high two-photon absorption cross-sections, as well as instantaneous three-photon absorption. A bimetallic triarylamine complex was targeted to determine whether these desirable properties could be switched between three states upon stepwise oxidation of the osmium and ruthenium metal centres. Complexes with the diethynyl (C=CC_6H_4-4-C=C) bridge have more intense changes in the optical spectra on oxidation of the metal centres compared to similar complexes containing the longer triethynyl (C=CC_6H_4-4-C=CC_6H_4-4-C=C) bridge. For this reason, trans-[Os(C=C-4-C_6H_4C=CH)(C=CC_6H_4-4-C=C SiPr'_3)(dppe)]_2 (21) was coupled to N(C_6H_4-4-C=trans-[RuCl(dppe)_2])_3, using the conditions used previously for the formation of ruthenium bis-alkynyl complexes, to afford N(C_6H_4-4-C=trans-[Os(dppe)_2]C=CC_6H_4-4-C=trans-[Os(dppe)_2]C=CC_6H_4-4-C=CSiPr'_3)_3 (38) in 28% yield (Scheme 4.8).
Scheme 4.8. Synthesis of 1,3,5-N(C₆H₄-4-C≡C-trans-)[Ru(dppe)$_2$]C≡CC₆H₄-4-C≡C-trans-[Os(dppe)$_2$]C≡CC₆H₄-4-C≡CSSiPr$_3$)$_3$ (38)

4.2.2 Physical Properties

4.2.2.1 NMR Spectroscopy

Complexes 30 – 38 were characterised by 1H and 31P NMR spectroscopy (Table 4.1). In addition, 13C NMR spectroscopy has been used to characterise the homometallic complexes 30, 33 and 35, with peaks assigned where possible and displayed in Appendix C. The bimetallic complexes 31, 32, 36 - 38 and homometallic ammine complex (34), proved insufficiently soluble for useful 13C NMR spectra to be obtained.
The neutral complexes (31 – 33 and 35 – 38) have multiplets in the range of 7.90 – 6.41 ppm corresponding to aromatic protons and multiplets in the range of 2.83 – 2.49 ppm corresponding to the dppe bridgehead protons. For 35, the range for the aromatic protons is larger as shown previously for ammine-alkynyl complexes, with multiplets in the range of 8.14 – 6.38 ppm. Complex 35 also has a multiplet at 2.62 ppm for dppe bridgehead protons, and a broad resonance at 0.99 ppm for the ammine protons. For complexes with acetylenic protons (30, 33, 34, 35 and 37) a resonance in the range 3.16 – 3.12 ppm (CDCl₃) or 2.91 - 2.82 ppm (C₆D₆) is visible. Complex 38 also has a pseudo-singlet at 1.23 ppm (C₆D₆) corresponding to the methyl protons of the SiPr₃ group with the heptet corresponding to the methyne proton not visible, as discussed previously in Chapter 2.

Resonances from the ³¹P NMR spectra of complexes 30 – 38 are shown in Table 4.1. All complexes show similar peaks to those described in Chapters 2 and 3 for osmium- and ruthenium-bound phosphorus atoms. An interesting observation is that, for the osmium chloro-alkynyl wedge 33 and dendrimers 36 and 37, the resonance for the osmium bound phosphorus atoms (16.5 – 16.6 ppm) is the same as for the phosphorus atoms in the complexes incorporating an osmium bis-alkynyl environment (30 – 32 and 38). However, for the mononuclear chloro-alkynyl complex 35 the resonance is at 16.0 ppm, matching the previously observed data for these complexes in Chapters 2 and 3.
<table>
<thead>
<tr>
<th>Complex</th>
<th>Solvent</th>
<th>OsP (ppm)</th>
<th>RuP (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>CDCl₃</td>
<td>16.6</td>
<td>—</td>
</tr>
<tr>
<td>31</td>
<td>C₆D₆</td>
<td>16.6</td>
<td>54.2</td>
</tr>
<tr>
<td>32</td>
<td>C₆D₆</td>
<td>16.6</td>
<td>54.1</td>
</tr>
<tr>
<td>33</td>
<td>C₆D₆</td>
<td>16.6</td>
<td>—</td>
</tr>
<tr>
<td>34</td>
<td>CDCl₃</td>
<td>19.6</td>
<td>—</td>
</tr>
<tr>
<td>35</td>
<td>C₆D₆</td>
<td>16.0</td>
<td>—</td>
</tr>
<tr>
<td>36</td>
<td>C₆D₆</td>
<td>16.5</td>
<td>54.0</td>
</tr>
<tr>
<td>37</td>
<td>C₆D₆</td>
<td>16.5</td>
<td>54.5</td>
</tr>
<tr>
<td>38</td>
<td>C₆D₆</td>
<td>16.4</td>
<td>54.4</td>
</tr>
</tbody>
</table>

Table 4.1. ³¹P NMR spectral resonances for complexes 30 – 38, measured in CDCl₃ or C₆D₆

4.2.2.2 UV-Vis absorption spectroscopy

The extinction coefficients of the absorption bands are greatly enhanced on moving from the linear complexes described in Chapters 2 and 3 to branched structures incorporating more metals. The mononuclear 30 has λ_{max} at 373 nm, with $\varepsilon = 58000$, whereas the hexanuclear complex 31, has absorption bands at $\lambda_{\text{max}} = 344$ and 386 nm, and a shoulder at $\lambda_{\text{max}} = 417$ nm, with $\varepsilon = 220000$, 221000 and 145000, respectively (Figure 4.6). On moving to the hexanuclear complex with the longer triethynyl (C≡C₆H₄-4-C≡C₆H₄-4-C≡C) bridge between the osmium and ruthenium metal centres (32), the lowest energy band is red shifted, with two main absorption bands at $\lambda_{\text{max}} = 334$ and 428 nm and an increase in the intensity of the lowest energy band with $\varepsilon = 269000$ (Figure 4.6).
Figure 4.6. UV-Vis absorption spectrums of complexes 31 and 32

The UV-Vis absorption spectra of wedge complexes 33, 34 and 35 were measured in CH$_2$Cl$_2$, with absorption bands within the range of 352 – 321 nm (Figure 4.7). On going from the mononuclear complex 35 to the binuclear complexes 33 and 34, a doubling of intensity is observed. On forming the ammine-alkynyl complex 34 from the chloro-alkynyl complex 33, a blue shift is observed from 340 nm to 321 nm (Figure 4.7). This matches the earlier observations made in Chapter 3 for other chloro-alkynyl and ammine-alkynyl complexes.

Figure 4.7. UV-Vis absorption spectra of complexes 33, 34 and 35
The two dendrimers 36 and 37 have similar absorption bands, with those for the larger and more metallated 36 being more intense. Both complexes have two dominant absorption bands at 334 and 423 nm for 36, and 336 and 420 nm for 37, with the higher-energy band being much more intense in both cases. Complex 38 has an interesting absorption spectrum compared to the other branched systems as it has only one relatively narrow absorption band compared to the two for 31, 32, 36 and 37. This band has a $\lambda_{\text{max}} = 391$ nm, and is very intense, with $\varepsilon = 340000$.

4.2.2.3 Infrared spectroscopy

The IR spectra for complexes 30 – 38 as CH$_2$Cl$_2$ solutions showed a broad band in the range of 2064 – 2051 cm$^{-1}$ for ν(C≡C). In addition to this band, complexes 30, 33, 34, 35 and 37 had a band within the range of 3294 – 3303 cm$^{-1}$ for ν(≡CH). For complex 38, a band at 2146 cm$^{-1}$ was assigned to ν(C≡C-Si). As shown previously, on moving from a chloro-alkynyl complex (33) to an ammine-alkynyl complex (34), a slight blue shift in ν(C≡C) is seen from 2054 to 2064 cm$^{-1}$.

4.2.2.4 Electrochemistry

The electrochemical properties of complexes 30 – 38 were measured as THF solutions, using cyclic voltammetry. For the mononuclear complexes 30 and 35, a reversible process (due to the Os$^{II/III}$ redox couple) at 0.51 V and 0.54 V, respectively is observed (Table 4.2). On coupling 30 to a triruthenium core complex to form the heterometallic dendritic complex (31), electron donation from the ruthenium metal centres across the short diethynyl (C≡CC$_6$H$_4$-4-C≡C) bridge results in a decrease of the Os$^{II/III}$ redox potential to 0.24 V. On forming the hexanuclear heterometallic complex with the triethynyl unit separating the osmium and ruthenium metal centres (32), we can see once again a reduction in the Os$^{II/III}$ redox couple (0.39 V) compared to the mononuclear osmium precursor (0.51 V), however it is significantly higher than the same oxidation in the diethynyl bridged dendrimer (31). The reduced ease of
the osmium oxidation is accounted for by the reduced donating ability of the ruthenium metal centre across the longer triethynyl \((\text{C}==\text{C}_6\text{H}_4-4-\text{C}==\text{C}_6\text{H}_4-4-\text{C}==\text{C})\) bridge.

For the binuclear wedge complexes 33 and 34, two-redox potentials are observed indicating that some electronic communication is possible across the \(\text{C}==\text{C}_6\text{H}_4-3-\text{C}==\text{C}\) bridging unit; as expected, the dicationic 34 is harder to oxidise. The redox potentials for 34 are irreversible, thus making it unsuitable for nonlinear optical switching. The heterometallic dendrimer 36 has three well-separated redox potentials; the first two at 0.37 and 0.52 V can be assigned to osmium metal centre oxidation and match potentials determined for the precursor wedge 33. The third potential at 0.62 V can be assigned to the three ruthenium metal centre oxidations.

For the smaller hexanuclear heterometallic dendrimer 37, two processes were observed; the first process at 0.43 V can be assigned to the osmium metal oxidations, and the second process at 0.71 V to the ruthenium metal oxidations. The osmium centres are easier to oxidise compared to the precursor (35), suggesting that the ruthenium metal centre is able to donate electron-density across the \(\text{C}==\text{C}_6\text{H}_4-3-\text{C}==\text{C}\) bridge, although the increased ease of oxidation is much less than in the complexes with the \textit{para} substituted \(\text{C}==\text{C}_6\text{H}_4-4-\text{C}==\text{C}\) bridge.

For the \(\text{N}\)-cored heterometallic dendrimer 38, two processes are observed; the first assigned to oxidation of the osmium centres is found at 0.30 V, and the second assigned to the ruthenium oxidation is at 0.57 V. Although a process assigned to the amine oxidation at higher potential is expected this was not observed for 38. Comparing 38 to the aryl cored complex 31, which has the same diethynyl \((\text{C}==\text{C}_6\text{H}_4-4-\text{C}==\text{C})\) bridge between osmium and ruthenium metal centres, shows some interesting results. Whilst the ruthenium process occurs at the same potential for both of these complexes, oxidation of the osmium centres occurs at a slightly higher potential in 38 than in 31. Although there are a number of structural differences between the two complexes, it does suggest that the peripheral ligands
can have an observable impact on the electronic properties of these bridged systems. Another interesting observation for 38 is that, although the precursor ruthenium complex possesses four distinct redox processes, one for each ruthenium centre, as well as one at higher potential for the ammine13, in 38 this is not the case, with all three osmium centres and all three ruthenium centres being oxidised simultaneously (Table 4.2).

<table>
<thead>
<tr>
<th>Complex</th>
<th>E\textsubscript{1/2} (V) [i\textsubscript{pc}/i\textsubscript{pa}] OsII/III</th>
<th>E\textsubscript{1/2} (V) [i\textsubscript{pc}/i\textsubscript{pa}] RuII/III</th>
<th>E\textsubscript{1/2} RuII/III - E\textsubscript{1/2} OsII/III (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0.51 [1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>0.24[1]</td>
<td>0.57[1]</td>
<td>0.33</td>
</tr>
<tr>
<td>32</td>
<td>0.39[1]</td>
<td>0.59[1]</td>
<td>0.20</td>
</tr>
<tr>
<td>33</td>
<td>0.36 [1], 0.51 [1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>0.89 irr., 1.04 irr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>0.54 [1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>0.37 [1], 0.52 [1]</td>
<td>0.62 [1]</td>
<td>0.26, 0.11</td>
</tr>
<tr>
<td>37</td>
<td>0.43 [1]</td>
<td>0.71 [1]</td>
<td>0.28</td>
</tr>
<tr>
<td>38</td>
<td>0.30 [1]</td>
<td>0.57 [1]</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Table 4.2. Cyclic voltammetric data for complexes 30 – 38. THF solvent, Pt disk working-, Pt wire auxiliary-, and Ag/AgCl reference electrodes, ferrocene/ferrocnium couple at 0.56 V [1]. ΔE_p of samples approximately matched that of the ferrocene/ferrocenium couple.

4.2.2.5 Spectroelectrochemistry

Spectroelectrochemical studies were carried out on the heterometallic dendrimer complexes 31, 32 and 38 as THF solutions in an OTTLE cell at room temperature.
The hexanuclear complexes with a diethynyl \((\text{C}≡\text{C}_6\text{H}_4-4-\text{C}≡\text{C})\) bridge between the osmium and ruthenium centres (31 and 38) show similar behaviour (Figures 4.8 and 4.10). On oxidation of the osmium metal centre for both complexes the absorption band for the neutral species decreases in intensity and low energy bands appear at 6353 and 20315 cm\(^{-1}\) for 31 and 6253 and 20035 cm\(^{-1}\) for 38. The second oxidation process at the ruthenium metal centre results in the lowest energy band undergoing a blue shift to 9823 cm\(^{-1}\) for 31 and 9878 cm\(^{-1}\) for 38 and the band at ca 20000 cm\(^{-1}\) for both complexes disappearing. One major difference between 31 and 38 is that oxidation of ruthenium, in 31, results in the intensity of the lowest energy band increasing from \(\varepsilon = 85000\) to 150000 M\(^{-1}\) cm\(^{-1}\), whereas for 38 very little change in intensity is observed (\(\varepsilon = 160000\) to 162000 M\(^{-1}\) cm\(^{-1}\)). For complex 32, where the longer triethynyl \((\text{C}≡\text{C}_6\text{H}_4-4-\text{C}≡\text{C}_6\text{H}_4-4-\text{C}≡\text{C})\) bridge separates the osmium and ruthenium metal centres, oxidation of the osmium metal centre results in a very broad low energy band with \(\lambda_{\text{max}} = 9945\) cm\(^{-1}\), while oxidation of the ruthenium metal centre results in the formation of two bands at low energy (\(\nu_{\text{max}} = 8000\) and 9565 cm\(^{-1}\)). Spectroelectrochemical studies were also carried out on the dendrimers 36 and 37, however these processes proved irreversible at room temperature.
Figure 4.8. UV-Vis-NIR spectral changes during electrochemical oxidation of 31.

Figure 4.9. UV-Vis-NIR spectral changes during electrochemical oxidation 32.
Figure 4.10. UV-Vis-NIR spectral changes during electrochemical oxidation of 39.

Table 4.3. Summary of optical data for complexes 31, 32 and 38. Electronic spectra were obtained at 298 K in THF using 0.3 M (NBu₄)PF₆ as supporting electrolyte with potentials ca 50-200 mV beyond E₁/₂ for each couple.
4.2.2.6 Nonlinear optical study

The third-order nonlinear optical (NLO) properties of a selection of the heterometallic complexes formed in this work were measured using the Z-scan technique (cf. Chapter 1) in order to determine the real and imaginary components of the third-order molecular susceptibilities (γ_{real}, $\gamma_{\text{imaginary}}$), as well as the two-photon absorption cross-section (σ_2). A small amount (1 drop) of NEt$_3$ was added to CH$_2$Cl$_2$ solutions of each complex to prevent the decomposition that has been observed previously (cf. discussion in Chapter 3). The complexes that were investigated include linear and star-shaped heterometallic complexes with the diethynyl (C=CC$_6$H$_4$-4-C=C) and triethynyl (C=CC$_6$H$_4$-4-C=CC$_6$H$_4$-4-C=C) bridges separating the osmium and ruthenium centres (7, 24, 31, 32), as well as the trinuclear complex (29), N-cored heterometallic complex (38) and nonanuclear heterometallic dendrimer (36) (Figure 4.11).

Off-resonant measurements were carried out at 530, 555, 800, 1200 and 1500 nm using 130 fs pulses with repetition rate 1kHz in order to limit observations to the instantaneous two-photon-absorption processes (no excited-state contributions). In contrast to reports on similar ruthenium complexes,2,8,14 all of the complexes measured here showed photochemical instability when exposed to the beam, as evidenced by a coloured spot observed under the focussed beam from the laser. This decomposition was observed at all of the wavelengths except 530 nm, where only complex 36 was unstable. The photochemical decomposition was such that accurate values were not able to be obtained, so discussion will be limited to the 530 nm values.
Although no photochemical instability was observed at 530 nm for all the complexes except 36, the data still needs to be carefully examined to determine whether a good theoretical fit is able to be obtained, and whether any deviation from the theoretical fit is observed (evidence of instability). For complexes 24 and 31 good correlation was obtained with very little deviation from the open aperture theoretical fit, allowing the data to be considered accurate (within the error margin) (Figures 4.12 – 4.15). For complexes 7, 29, 32 and 38 a small deviation from the theoretical fit...
occurred past the focal point and suggests the presence of a small amount of photochemical instability, allowing accurate values to be obtained, however, with the caveat that the complexes are partially unstable at 530 nm.

Figure 4.12 Z-scan closed aperture trace and theoretical fit for 24 at 530 nm.

Figure 4.13 Z-scan open aperture trace and theoretical fit for 24 at 530 nm.
Figure 4.14 Z-scan closed aperture trace and theoretical fit for 31 at 530 nm.

<table>
<thead>
<tr>
<th>Number of points</th>
<th>Start point (mm)</th>
<th>End point (mm)</th>
<th>beam waist (microns)</th>
<th>Aperture (mm)</th>
<th>Distance to detector (mm)</th>
<th>Transmission</th>
<th>Rayleigh length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>0</td>
<td>40</td>
<td>34</td>
<td>1</td>
<td>600</td>
<td>0.15333</td>
<td>5.33547</td>
</tr>
<tr>
<td>Delta fit</td>
<td>0.75</td>
<td>T factor</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data in column</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4.15 Z-scan open aperture trace and theoretical fit for 31 at 530 nm.

For complex 36, where photochemical instability was observed experimentally, the open aperture scan shows significant deviation from the theoretical fit past the focal point precluding the determination of accurate values (Figure 4.16).
Figure 4.16 Z-scan open aperture trace and theoretical fit for 36 at 530 nm.

Third-order NLO parameters (γ_{real}, $\gamma_{\text{imaginary}}$ and σ_2) were calculated along with the associated errors and collected in Table 4.4.

<table>
<thead>
<tr>
<th>Complex</th>
<th>γ_{real} (esu) x 10^{-32}</th>
<th>$\gamma_{\text{imaginary}}$ (esu) x 10^{-32}</th>
<th>σ_2 (GM) x 10^4</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>-5.40 ± 0.179</td>
<td>2.93 ± 0.253</td>
<td>1.62 ± 0.140</td>
<td>minor instability</td>
</tr>
<tr>
<td>24</td>
<td>-6.29 ± 0.216</td>
<td>7.22 ± 0.527</td>
<td>3.99 ± 0.292</td>
<td>good data</td>
</tr>
<tr>
<td>29</td>
<td>-9.79 ± 0.334</td>
<td>6.86 ± 0.629</td>
<td>3.80 ± 0.348</td>
<td>minor instability</td>
</tr>
<tr>
<td>31</td>
<td>-22.3 ± 1.94</td>
<td>13.5 ± 1.92</td>
<td>7.45 ± 1.07</td>
<td>good data</td>
</tr>
<tr>
<td>32</td>
<td>-27.4 ± 0.865</td>
<td>21.3 ± 1.94</td>
<td>11.79 ± 1.08</td>
<td>minor instability</td>
</tr>
<tr>
<td>38</td>
<td>-23.8 ± 4.01</td>
<td>16.7 ± 4.08</td>
<td>9.23 ± 2.25</td>
<td>minor instability</td>
</tr>
</tbody>
</table>

Table 4.4 Third-order NLO data for complexes 7, 24, 29, 31, 32 and 38 at 530 nm.
As discussed in Chapter 1, it is not possible to compare the magnitude of the NLO response between complexes only measured at a single wavelength, as it is not known whether this corresponds to ≤ the maximum NLO response. It is possible to compare the values obtained here with other data obtained at multiple wavelengths provided it is recognised that the complexes measured at a single wavelength may have a higher maximum NLO response at a wavelength other than 530 nm. A variety of linear and branched ruthenium alkynyl complexes measured over a spectrum of wavelengths were chosen as comparison complexes (Figure 4.17 and Table 4.5).

Figure 4.17 Ruthenium alkynyl complexes chosen from the literature²,⁸,¹⁴ for comparison.
Table 4.5 Third-order NLO parameters for ruthenium alkynyl complexes from the literature

A comparison between the linear complexes C4 and 7, 24 and 29 show over an order of magnitude increase in all three third-order parameters ($\gamma_{\text{real}}, \gamma_{\text{imaginary}}$ and σ_2). For 24, which has the same bridge between metal centres as C4, the σ_2 increases by almost two orders of magnitude. It should be noted again that the values obtained for the osmium-containing complexes here are not necessarily the maxima but are \leq to the maxima. It is also interesting to note that the osmium-containing linear complexes have higher values for all third-order parameters when compared to all of the ruthenium-containing comparison complexes (C1 – C4), with the largest reported σ_2 (C2) approximately 25% of the σ_2 for the linear complex 24. Unsurprisingly, the branched osmium-containing complexes have even higher NLO parameters than the linear structures, although no trends can be drawn as only one wavelength gave valid values. It is clear from the limited amount of data that has been collected that a significant increase in the third-order NLO response is produced on replacing ruthenium with osmium in these types of metal alkynyl complexes. Further studies, perhaps using a solvent system that can stabilize the complexes under examination is required before further trends can be drawn or switching studies carried out.
4.3 Conclusions

A series of branched metal alkynyl complexes containing ruthenium and osmium metal atoms have been synthesised and demonstrated to be suitable three-state optical switches with significant difference in the optical absorption properties of each of the states. The third-order NLO properties of several of these branched complexes, as well as some linear complexes formed in Chapters 2 and 3, have been measured using the Z-scan technique. All of the complexes showed photochemical instability at 580, 800, 1200 and 1500 nm under the conditions used. At 530 nm all of the complexes measured, except the osmium-ruthenium dendrimer 36, produced valid results with no observed photochemical instability and very little deviation from the theoretical fit used to obtain values. In particular, complexes 24 and 31 showed no evidence of any photochemical instability in the data or measurement at 530 nm. The magnitude of the values for the NLO parameters at this wavelength suggest that incorporation of osmium into metal alkynyl complexes results in significant increase in the third-order NLO properties. Measurements where the complexes are stable over broad-spectrum wavelength studies are required before trends can be drawn from the data and switching carried out.

4.4 Experimental section

4.4.1 General

All reactions were performed under a nitrogen atmosphere using standard Schlenk techniques, with no precautions to exclude air during workup. CH₂Cl₂ was dried by distilling over calcium hydride, THF was distilled over sodium/benzophenone, and all other solvents were used as received. The term “petrol” refers to a fraction of petroleum ether of boiling range 60-80 °C. Column chromatography was performed using Sigma-Aldrich aluminium oxide (activated, basic, Brockmann 1, standard grade ca 150 mesh, 58 Å). Solvents and reagents were obtained from commercial sources and used as received, unless otherwise indicated. The following additional
materials were prepared according to literature procedures and were provided by Mr Torsten Schwich: $N(C_6H_4-4-C=C-trans-[RuCl(dppe)_2])_3$ and $1,3,5-(HC≡C)C_6H_3$. The following new materials were provided by Mr Torsten Schwich: $1,3,5-C_6H_3(C≡CC_6H_4-4-C≡CC_6H_4-4-C≡C-trans-[RuCl(dppe)_2])_3$, $1,3,5-C_6H_3(C≡CC_6H_4-4-C≡CC_6H_4-4-C≡C-trans-[Ru(dppe)_2]C≡CC_6H_4-4-C≡CC_6H_4-4-I)_3$. All other materials were used as received.

4.4.2 Instrumentation

Electrospray ionisation mass spectra (ESIMS) were obtained using a Waters-micromass LCT-ZMD single quadrupole liquid chromatograph; peaks are reported as m/z (assignment, relative intensity). Microanalyses were carried out by the Microanalysis Service Unit, Australian National University. Infrared spectra were recorded as dichloromethane solutions using a Perkin-Elmer System 2000 FT-IR spectrometer. 1H (300 MHz), $^{13}C\{^1H\}$ (75 MHz) and $^{31}P\{^1H\}$ (121 MHz) NMR spectra were recorded using a Varian Mercury-300 FT-NMR spectrometer and are referenced to residual chloroform (7.26 ppm (1H), 77.0 ppm ($^{13}C\{^1H\}$)) or external 85% H$_3$PO$_4$ (0.0 ppm ($^{31}P\{^1H\}$)). UV-Vis spectra were recorded as CH$_2$Cl$_2$ solutions in 1 cm quartz cells using a Cary 5 spectrophotometer.

Cyclic voltammetry measurements were recorded using an e-corder and EA161 potentiostat from eDaq Pty Ltd. Measurements were carried out at room temperature using Pt disc working-, Pt wire auxiliary-, and Ag/AgCl reference electrodes, such that the ferrocene/ferrocenium redox couple was located at 0.56 V. Scan rates were typically 100 mV s$^{-1}$. Electrochemical solutions contained 0.1 M (NBu$_4^+$)PF$_6$ and ca 10^{-3} M complex in dried and distilled solvent; solutions were purged and maintained under a nitrogen atmosphere. Electronic spectra were recorded using a Cary 5 spectrophotometer. Solution spectra of the oxidized species were obtained at 298 K by electrogeneration in an optically-transparent thin-layer electrochemical (OTTLE)
cell with potentials ca 50 - 200 mV beyond $E_{1/2}$ for each couple, to ensure complete electrolysis. Solutions were made up using 0.3 M (NBu$_4^-$)PF$_6$ in THF.

Third-order NLO measurements were carried out using the standard Z-scan technique with simultaneous recording of the open aperture and closed aperture signals. An amplified femtosecond laser system consisting of a Quantronix Integra-C regenerative amplifier operating as an 800 nm pump and a Quantronix-Palitra-FS BIBO crystal-based optical parametric amplifier was used. Measurements were carried out for the following wavelengths: 530, 555, 800, 1200 and 1500 nm. The pulse duration was approximately 130 fs and the repetition rate was 1 kHz. The pulse energy was adjusted to keep the nonlinear phase shifts obtainable from the samples in the range of 0.5 - 1.5 rad, which typically corresponded to light intensities on the order of 100 GW/cm2. This was achieved by attenuating the beam power with the help of neutral density filters. Additionally, some colour glass filters were used to remove unwanted spectral components of the Palitra output. The source beam was focused to provide a focal spot in the range $w_0 \approx 25$ - 50 μm. This led to the Rayleigh range being kept well in excess of the total light path in the sample (about 3 mm, including the solution and the walls of the glass cell). The solutions of the measured compounds and the reference solvent were placed in Starna glass cuvettes with 1 mm path length (in order to fulfill the thin sample condition). The cuvettes were moved along the source beam (z-axis) through its focus covering a travel distance of 40 mm (-20 mm to +20 mm). The data were collected by three InGaAs photodiodes that were measuring signals proportional to the intensities of reference, closed aperture and open aperture beams. Signals from the photodiodes were fed into a digital oscilloscope, transferred to a personal computer and collected by custom software, written in LabVIEW17. All measurements were calibrated using signals obtained from a 4.66 mm thick fused silica plate.

Analysis of the obtained measured data was performed using custom software18 implementing computation of theoretical Z-scans according to equations introduced by Sheik-Bahae et. al.16 Fitting the theoretical curves to the measured traces gave
the parameters (nonlinear phase shift, T parameter and beam radius at the focal spot) that were then used in the calculation of the real and imaginary parts of the second hyperpolarizability γ, and the effective two-photon absorption cross section which is related to the imaginary part of γ. The above mentioned calculations were made assuming additivity of solvent and solution nonlinearities, and using the Lorentz local field approximation.

4.4.3 13C NMR Numbering Scheme
4.4.4 Synthesis and Characterization

trans-[Os(C≡C-4-C₆H₄I)(C≡CC₆H₄-4-C≡CH)(dppe)₂] (30)

A mixture of *trans*-[Os(C≡C-4-C₆H₄I)(C≡CC₆H₄-4-C≡CSiPr₃)(η²-dppe)₂] (18, 350 mg, 0.234 mmol) and NBu₄F (0.7 mL of a 1.0 M solution in THF, 0.7 mmol) was stirred in dichloromethane (100 mL) for 16 h. The solution volume was reduced to 40 mL, and added to methanol (130 mL), precipitating the product, which was collected on a sintered glass filter funnel affording 30 as a yellow powder (166 mg, 53 %). ESI MS: 1340 ([M]+, 100). HRMS (ESI): Calc.: 1340.2072 [M]+, Found: 1340.2070. Anal. Calc. for C₇₀H₅₇OsP₄: C 62.78, H 4.29%. Found: C 62.89, H 4.07%. UV-vis (CH₂Cl₂): λ 373 nm, ε 58000 M⁻¹ cm⁻¹. IR (CH₂Cl₂): 2056 (br) cm⁻¹ ν(C≡C), 3294 cm⁻¹ ν(=CH). ¹H NMR: δ 7.43 – 6.41 (m, 48H, Ar), 3.12 (s, 1H, C≡CH), 2.58 (m, 8H, CH₂). ³¹P NMR: δ 16.6. ¹³C NMR: δ 136.3 (C₅₇), 135.6 (C₄₇, C₄₃, vtt, \[|J_{PC} + 3J_{PC}| = 24 \text{ Hz}\]), 134.1 (C₄₈, C₄₄), 132.2 (C₅₆), 131.6 (C₃₈), 131.3 (C₃₇), 130.3 (C₅₅), 130.1 (C₃₆), 128.8 (C₅₀, C₄₆), 127.0 (C₄₉, C₄₅), 120.2, 117.4 (C₄₀, C₅₃, quint, \[2J_{ep} = 12 \text{ Hz}\]), 115.3, 115.0, 113.7 (C₃₅, C₃₉, C₅₄), 86.7 (C₅₈), 84.9 (C₃₄), 76.7 (C₃₃), 32.3 (C₄₂, vtt, \[|J_{PC} + 3J_{PC}| = 26 \text{ Hz}\]).

1,3,5-C₆H₃(C≡CC₆H₄-4-C≡CC₆H₄-4-C≡C-trans-[Ru(dppe)₂]C≡CC₆H₄-4-C≡C-trans-[Os(dppe)₂]C≡C-4-C₆H₄I)₃ (31)

A mixture of 1,3,5-C₆H₃(C≡CC₆H₄-4-C≡CC₆H₄-4-C≡C-trans-[RuCl(dppe)₂]), (42 mg, 0.0118 mmol), *trans*-[Os(C≡C-4-C₆H₄I)(C≡CC₆H₄-4-C≡CH)(dppe)₂] (30, 52 mg, 0.039 mmol), NaPF₆ (23 mg, 0.135 mmol) and Et₃N (10 drops) were stirred in refluxing CH₂Cl₂ (90 mL) for 24 h. The solvent volume was reduced to 3 mL and the crude reaction mixture filtered through a pipette containing cotton wool. The product was precipitated from methanol (100 mL) and collected on a sintered glass filter funnel. The product was redissolved in a minimum of dichloromethane (2 mL) and
precipitated from n-pentane (100 mL) and collected once more on a sintered glass filter funnel to afford 31 as an orange powder (45 mg, 51%). ESI MS: 2178 ([trans-[Ru(NCMe)(dppe)2]C≡CC6H4-4-C≡C-trans-[Os(dppe)2]C≡CC6H4I]+, 1) Anal. Calc. for C42H33I3Ru3Os3P24: C 68.62, H 4.58%. Found: C 68.11, H 4.30%. UV-vis (THF): λ 344 nm, ε 220000 M⁻¹ cm⁻¹; λ 386 nm, ε 221000 M⁻¹ cm⁻¹, λ 417 nm (sh), ε 145000 M⁻¹ cm⁻¹. IR (CH2Cl2): 2056 (br) cm⁻¹ ν(C≡C). ¹H NMR (C6D6): δ 7.90 – 6.59 (m, 291H, Ar), 2.58 (m, 48H, CH2). ³¹P NMR (C6D6): δ 54.2 (RuP), 16.6 (OsP).

1,3,5-C6H3(C≡CC6H4-4-C≡CC6H4-4-C≡C-trans-[Os(dppe)2]C≡CC6H4-4-C≡C-trans-[Ru(dppe)2]C≡CC6H4-4-C≡C-trans-[Ru(dppe)2]C≡CC6H4-4-C≡C-trans-[Os(dppe)2]C≡CC6H4-4-C≡C-trans-[Ru(dppe)2]C≡CC6H4-4-C≡C-trans-[Os(dppe)2]C≡CC6H4-4-C≡C-trans-[Ru(dppe)2]C≡CC6H4-4-C≡C-trans-[Os(dppe)2]C≡CC6H4I]3 (32)

A mixture of 1,3,5-C6H3(C≡CC6H4-4-C≡CC6H4-4-C≡C-trans-[Ru(dppe)2]C≡CC6H4-4-C≡C-trans-[Os(dppe)2]C≡CC6H4-4-C≡C-trans-[Ru(dppe)2]C≡CC6H4-4-C≡C-trans-[Os(dppe)2]C≡CC6H4I]3 (43 mg, 0.012 mmol), trans-[Os(C≡C-4-C6H4I)(C≡CC6H4-4-C≡CC6H4-4-C≡CH)(dppe)2] (21, 70 mg, 0.048 mmol), NaPF6 (24 mg, 0.146 mmol) and Et3N (10 drops) were stirred in refluxing CH2Cl2 (60 mL) for 24 h. The solution was reduced to 3 mL and filtered through cotton wool in a pipette into stirring methanol (100 mL), forming an orange precipitate. The precipitate was collected, dissolved in CH2Cl2 (2 mL), precipitated from n-pentane (80 mL) and collected on a sintered glass filter funnel, affording 32 as a orange-brown powder (50 mg, 50%). ESI MS: 2378 ([trans-[Ru(NCMe)(dppe)2]C≡CC6H4-4-C≡CC6H4-4-C≡C-trans-[Os(dppe)2]C≡CC6H4-4-C≡C-trans-[Ru(dppe)2]C≡CC6H4I]+, 1). Anal. Calc. for C450H335I3Ru5Os5P24: C 69.68, H 4.56%. Found: C 69.15, H 5.00%. UV-vis (THF): λ 334 nm, ε 219000 M⁻¹ cm⁻¹, λ 428 nm, ε 269000 M⁻¹ cm⁻¹. IR (CH2Cl2): 2052 (br) cm⁻¹ ν(C≡C). ¹H NMR (CDCl3): δ 7.55 – 6.69 (m, 295H, Ar), 2.57 (m, 48H, CH2). ³¹P NMR (C6D6): δ 54.1 (RuP), 16.6 (OsP).

1-(HC≡C)C6H3-3,5-{C≡C-trans-[OsCl(dppe)2]I}2 (33)

A mixture of 1,3,5-(HC≡C)3C6H3 (50 mg, 0.333 mmol), cis-[OsCl2(dppe)2] (1.23 g, 1.17 mmol) and NH4PF6 (237 mg, 1.46 mmol) were stirred in refluxing CH2Cl2 (100
mL) for 12 h. The mixture was allowed to cool to room temperature, Et₃N (2 mL) added and the mixture reduced in volume to 40 mL. The product was precipitated from methanol (150 mL) and collected on a sintered glass filter funnel, washing with n-pentane (40 mL) to give a pale yellow powder 33 (540 mg, 74%). ESI MS: 2194 ([M]⁺, 100), HRMS (ESI): Calc.: 2195.4411 [M + H]⁺, Found: 2195.4458. Anal. Calc. for C₁₁₆H₁₀₀Cl₂Os₂P₈: C 63.53, H 4.60%. Found: C 63.19, H 4.34%. UV-vis (CH₂Cl₂): λ 397 nm (sh), ε 7000, λ 340 nm, ε 27000 M⁻¹ cm⁻¹. IR (CH₂Cl₂): 2054 cm⁻¹ (br) ν(C≡C), 3302 cm⁻¹ ν(≡CH). ¹H NMR (CD₂Cl₂): δ 7.70 – 6.88 (m, 83H, Ar), 2.91 (s, 1H, C≡CH), 2.65 (m, 16H, CH₂). ³¹P NMR: δ 16.6. ¹³C NMR: δ 136.0, 134.8 (C₄₇, C₄₃, vtt, |¹Jpc + ³Jpc| = 24 Hz), 134.4, 134.2 (C₄₈, C₄₄), 131.0 (C₃₇), 130.2 (C₃₆), 130.0 (C₃₈), 129.0, 128.6 (C₅₀, C₄₆), 127.2, 126.7 (C₄₉, C₄₅), 120.0 (C₃₅), 109.6 (C₃₉), 100.9 (C₄₀, quint ²JCP = 11 Hz), 85.3 (C₃₄), 74.6 (C₃₃), 31.6 (C₄₂, vtt, |¹Jpc + ³Jpc| = 26 Hz).

[1-(HC≡C)C₆H₃-3,5-{C≡C-trans-[Os(NH₃)(dppe)₂]}₂](PF₆)₂ (34)

A mixture of 1-(HC≡C)C₆H₃-3,5-{C≡C-trans-[OsCl(dppe)₂]}₂ (33, 200 mg, 0.091 mmol), NH₄PF₆ (89 mg, 0.55 mmol) and Et₃N (2 mL) were stirred in CH₂Cl₂ (100 mL) for 24 h. The solution was reduced in volume to 60 mL and the product precipitated by addition to stirring n-pentane (150 mL). The solid was collected and washed with methanol (50 mL), affording 34 as a white powder (114 mg, 51%). ESI MS: 2302 ([M - PF₆]⁺, 50), Anal. Calc. for C₁₁₆H₁₀₀P₁₀F₁₂Os₂N₂₂: C 56.96, H 4.37, N 1.15%. Found: C 56.68, H 4.53, N 0.91%. UV-vis (CH₂Cl₂): λ 321 nm, ε 45000 M⁻¹ cm⁻¹, λ 372 nm (sh), ε 11000 M⁻¹ cm⁻¹. IR (CH₂Cl₂): 2064 cm⁻¹ ν(C≡C), 3301 cm⁻¹ ν(≡CH). ¹H NMR (CDCl₃): δ 8.14 – 6.38 (m, 83H, Ar), 3.16 (s, 1H, C≡CH), 2.62 (m, 16H, CH₂), 0.99 (s, br, 3H, NH₃). ³¹P NMR: δ 19.6 (OsP), -143.7 (sept, PF₆, JPF = 714 Hz).
1,3-(HC=C)2C6H3-5-{C=C-\textit{trans}\textendash[OsCl(dppe)2]} (35)

A mixture of 1,3,5-(HC=C)3C6H3 (47 mg, 0.312 mmol), \textit{cis\textendash[OsCl2(dppe)2]} (297 mg, 0.281 mmol) and NH4PF6 (51 mg, 312 mmol) were stirred in CH2Cl2 (50 mL) for 50 min. NEt3 (1 mL) was added and the reaction mixture stirred for a further 1 min. The solvent was removed and the crude product suspended in methanol (50 mL) and filtered through a sintered glass filter funnel washing with \textit{n}-pentane (30 mL) to afford 35 as a pale yellow powder (120 mg, 33%). ESI MS: 1172 ([M]+, 100), HRMS (ESI): Calc.: 1173.2479 [M + H]+, Found: 1173.2469. Anal. Calc. for C64H53ClOsP4: C 65.61, H 4.60%. Found: C 66.01, H 4.67%. UV-vis (CH2Cl2): λ 352 nm, ε 20000 M\(^{-1}\) cm\(^{-1}\). IR (CH2Cl2): 2057 cm\(^{-1}\) ν(C=\textit{C}), 3301 cm\(^{-1}\) ν(=CH). \(^1\)H NMR (C6D6): δ 7.81 – 6.98 (m, 43H, Ar), 2.82 (s, 2H, C=\textit{CH}), 2.56 (m, 8H, CH2). \(^3\)P NMR (C6D6): δ 16.0. \(^{13}\)C NMR (CDCl3): δ 135.5 – 135.0 (m, C47, C43), 134.9 (C36), 134.5, 134.0 (C48, C44), 129.0 (C50, C46), 127.2, 126.9 (C49, C45), 121.2 (C35), 83.5 (C34), 76.3 (C33), 31.4 (C42, vtt, \(|J_{\text{CP}} + 3J_{\text{CP}}| = 24\text{ Hz}\); C40, C39, C37, C38 not observed.

1,3,5-C6H3{C=CC6H4-4-C=C\textit{C}=CC6H4-4-C=C\textit{C}-\textit{trans}\textendash[Os(dppe)2]Cl}2 (36)

A mixture of 1,3,5-C6H3(C=CC6H4-4-C=C\textit{C}=CC6H4-4-C=C\textit{C}-\textit{trans}\textendash[Os(dppe)2]Cl)2 (40 mg, 0.009 mmol), 1-(HC=C)C6H3-3,5-{C=C-\textit{trans}\textendash[OsCl(dppe)2]}2 (33, 80 mg, 0.036 mmol), Pd(PPh3)4 (3 mg), Cul (1 mg) and Et3N (30 mL) were refluxed in CH2Cl2 (30 mL) for 48 h. The solvent was removed, the reaction mixture dissolved in a minimum of CH2Cl2 (5 mL) and the product precipitated from a CH2Cl2/pentane mixture (3/7). The product was collected on a sintered glass filter funnel, redissolved in CH2Cl2 (5 mL) and reprecipitated from the CH2Cl2/pentane mixture to afford 36 as an orange powder (33 mg, 34%). Anal. Calc. for C612H492Cl6Os6P36Ru3: C 69.22, H 4.67%. Found: C 68.78, H 4.93%. UV-vis
(THF): \(\lambda \ 278\) nm, \(\varepsilon \ 250000 \) M\(^{-1}\) cm\(^{-1}\), \(\lambda \ 334\) nm, \(\varepsilon \ 350000 \) M\(^{-1}\) cm\(^{-1}\), \(\lambda \ 423\) nm, \(\varepsilon \ 240000 \) M\(^{-1}\) cm\(^{-1}\). IR (CH\(_2\)Cl\(_2\)): 2052 cm\(^{-1}\) \(\nu(\text{C=C})\). \(^1\)H NMR (C\(_6\)D\(_6\)): \(\delta \) 7.70 – 6.87 (m, 420 H, Ar), 2.65 (m, 48H, Os-P-CH\(_2\)), 2.49 (m, 24H, Ru-P-CH\(_2\)). \(^{31}\)P NMR: \(\delta \) 54.0 (RuP), 16.5 (OsP).

1,3,5-C\(_6\)H\(_3\){C\(=\)C\(_6\)H\(_4\)-4-C\(=\)C\(_6\)H\(_4\)-4-C}-C-\(\text{trans-}\)[Ru(dppe)\(_2\)]-1-C\(_6\)H\(_3\)-3-(C\(=\)CH)-5-(C\(=\)C-\(\text{trans-}\))[OsCl(dppe)\(_2\)]\(_3\) (37)

A mixture of 1,3,5-C\(_6\)H\(_3\)(C\(=\)C\(_6\)H\(_4\)-4-C\(=\)C\(_6\)H\(_4\)-4-C)-C-\(\text{trans-}\)[RuCl(dppe)\(_2\)]\(_3\) (48 mg, 0.014 mmol), 1,3-(HC\(=\)C)\(_2\)C\(_6\)H\(_3\)-5-{C\(=\)C-\(\text{trans-}\)}[OsCl(dppe)\(_2\)] (35, 50 mg, 0.043 mmol), NaPF\(_6\) (14 mg, 0.083 mmol) and Et\(_3\)N (5 drops) were heated in refluxing CH\(_2\)Cl\(_2\) (50 mL) for 12 h. The reaction mixture was reduced in volume to 20 mL and the crude product precipitated by addition of methanol (100 mL). The product was further purified by dissolving in a minimum of CH\(_2\)Cl\(_2\), filtering through a small cotton wool plug and precipitating from CH\(_2\)Cl\(_2\)/pentane (4:1) twice, to yield 37 as a yellow powder (68 mg, 71%). Anal. Calc. for C\(_{408}\)H\(_{327}\)Cl\(_3\)Os\(_3\)P\(_2\)Ru\(_3\): C 70.47, H 4.74%. Found: C 70.51, H 4.79%. UV-vis (THF): \(\lambda \ 336\) nm, \(\varepsilon \ 220000 \) M\(^{-1}\) cm\(^{-1}\), \(\lambda \ 420\) nm, \(\varepsilon \ 120000 \) M\(^{-1}\) cm\(^{-1}\). IR (CH\(_2\)Cl\(_2\)): 2051 cm\(^{-1}\) \(\nu(\text{C=C})\), 3303 cm\(^{-1}\) \(\nu(\text{sCH})\). \(^1\)H NMR (C\(_6\)D\(_6\)): \(\delta \) 6.9 – 7.9 (m, 276H, Ar), 2.90 (s, 3H, C\(=\)CH), 2.70 (m, 48H, CH\(_2\)). \(^{31}\)P NMR (C\(_6\)D\(_6\)): \(\delta \) 54.5 (RuP), 16.5 (OsP).

N(C\(_6\)H\(_4\)-4-C\(=\)C-\(\text{trans-}\)[Ru(dppe)\(_2\)]C\(=\)C\(_6\)H\(_4\)-4-C\(=\)C-\(\text{trans-}\)[Os(dppe)\(_2\)]C\(=\)C\(_6\)H\(_4\)-4-C\(=\)CSiPr\(_3\)]\(_3\) (38)

A mixture of N(C\(_6\)H\(_4\)-4-C\(=\)C-\(\text{trans-}\)[RuCl(dppe)\(_2\)]\(_3\) (40.6 mg, 0.013 mmol), trans-[Os(C\(=\)C-4-C\(_6\)H\(_4\)C\(=\)CH)(C\(=\)C\(_6\)H\(_4\)-4-C\(=\)CSiPr\(_3\))](dppe)\(_2\) (23, 80 mg, 0.057 mmol), NaPF\(_6\) (46 mg, 0.27 mmol) and NEt\(_3\) (10 drops) were heated in refluxing CH\(_2\)Cl\(_2\) (50 mL) for 48 h. The solvent volume was reduced to 10 mL and the product precipitated upon addition of methanol (100 mL). The product was redissolved in a minimum of
CH$_2$Cl$_2$ (5 mL), precipitated from a CH$_2$Cl$_2$/pentane (1:5) mixture and collected on a sintered glass filter funnel to yield 38 as a yellow powder (24 mg, 26%). Anal. Calc. for C$_{423}$H$_{387}$NOS$_3$P$_{24}$Ru$_3$Si$_3$: C 70.70, H 5.43, N 0.19%. Found: C 70.38, H 5.16, N 0.25%. UV-vis (THF): λ 391 nm, ε 340000 M$^{-1}$ cm$^{-1}$. IR (CH$_2$Cl$_2$) 2055 cm$^{-1}$ ν(C=C), 2146 cm$^{-1}$ ν(C-C-Si). 1H NMR (C$_6$D$_6$): δ 7.86 – 6.83 (m, 276H, Ar), 2.83 (m, 48H, CH$_2$), 1.23 (s, 63H SiPr$_3$). 31P NMR (C$_6$D$_6$): δ 54.4 (RuP), 16.4 (OsP).

4.5 References

(5) Powell, C. E.; Cifuentes, M. P.; Humphrey, M. G.; Willis, A. C.; Morrall, J. P.; Samoc, M. Polyhedron 2007, 26, 284.

Chapter 5

Iron alkynyl complexes
Chapter 5
Iron alkynyl complexes

Contents

5.1 Introduction 209

5.2 Results and Discussion

5.2.1 Synthesis 210

5.2.2 Physical Properties 215

5.2.2.1 NMR spectroscopy 215

5.2.2.2 UV-Vis absorption spectroscopy 216

5.2.2.3 Infrared spectroscopy 217

5.2.2.4 Electrochemistry 218

5.2.2.5 Spectroelectrochemistry 219

5.3 Conclusions 223

5.4 Experimental section

5.4.1 General 223

5.4.2 Instrumentation 224

5.4.4 Synthesis and Characterisation 224

5.5 References 231
5.1 Introduction

Iron alkynyl complexes have been studied extensively for nonlinear optical1-3 and switching applications4,5. Whereas redox processes involving the ruthenium and osmium complexes described in Chapters 2, 3 and 4 possess significant alkynyl character, redox processes at iron alkynyl complexes are predominantly metal centred due to the lower energy of the d orbital of iron compared to the heavier group VIII metals6.

The metal centre Fe(dppe)Cp* is commonly used to form iron alkynyl complexes due to favourable electrochemical properties and well explored chemistry. However, the use of this metal centre also has several disadvantages. The formation of alkynyl complexes requires the use of a polar solvent (MeOH) in which some acetylene precursors are insoluble and the alkynyl complexes are prone to oxidation; the latter requires the use of stringent anaerobic conditions. It has been shown that the use of the Fe(CO)\textsubscript{2}Cp* metal centre can allow the formation of iron alkynyl complexes without either of these prohibitive conditions. Although the Fe(CO)\textsubscript{2}Cp* metal centre doesn’t exhibit reversible redox activity, it is possible to substitute either one or both of the carbonyl groups for phosphines to afford a complex with a reversible redox process7-9.

Previously, Lapinte and co-workers synthesised a butadiynyl complex incorporating the Fe(CO)\textsubscript{2}Cp* metal centre in good yield from FeI(CO)\textsubscript{2}Cp* and lithium alkynyl precursors (Scheme 5.1). After deprotection this complex could be coupled to a Fe(dppe)Cp* metal centre forming a binuclear donor-acceptor complex. Complexes of this type have potential use as second-order NLO-active materials (where a permanent dipole is required) as well as switchable rectifying components in molecular electronics7.
Diiron complexes with a diethynylbenzene bridge have been extensively investigated, with the bridge shown to be largely innocent in the electrochemical behaviour.10-12 This allows these complexes to form mixed-valent species following the first iron oxidation. Most of the diiron complexes with this type of bridging ligand have been symmetrical and involved two metal centres with similar electronic behaviour. Donor-accepter unsymmetrical binuclear iron complexes with a diethynylbenzene bridge have, by comparison, been less explored, but remain an interesting area of investigation due to their potential rectifying nature.

5.2 Results and Discussion

5.2.1 Synthesis

Formation of mononuclear alkynyl complexes incorporating the Fe(CO)\textsubscript{2}Cp* metal centre was achieved by using an alkynyl cuprate reagent formed in situ through the reaction of Cul and acetylene in NEt\textsubscript{3}. This cuprate was then reacted with the Fe(CO)\textsubscript{2}Cp* metal centre to form the iron alkynyl complex. It should be noted that these complexes are light sensitive, with all reactions performed with the exclusion of light to limit decomposition.

Reaction of FeCl(CO)\textsubscript{2}Cp* in this manner with either HC=C\textsubscript{6}H\textsubscript{4}-4-C=CSiPr\textsubscript{3} or HC=C\textsubscript{6}H\textsubscript{4}-4-C=CSiMe\textsubscript{3} afforded the mononuclear iron alkynyl complex with a silyl protected ethynyl group that on desilylation can be further functionalised (Scheme 5.2). Both the triisopropylsilyl (39) and trimethylsilyl (40) protected complexes were formed in good yields (78% and 73%).
Utilising the same procedure used to form 39 and 40, the analogous complexes where the ethynyl groups are meta to one another were formed (Scheme 5.3). While the complex with a triisopropylsilyl (41) protecting group was isolated in good yield (74%) the yield for the complex with the trimethylsilyl (42) protecting group was lower (36%). This is primarily due to the high solubility of the iron alkynyl complex and the synthetic difficulty in purifying the complexes. Although the complexes are filtered through a small pad of alumina to remove most contaminants, washing with pentane is needed to remove impurities such as grease. Unlike the ruthenium and osmium complexes formed in earlier chapters these iron complexes are very soluble in most solvents including pentane. Even when washing with a small amount (10 mL) of cold pentane, significant sample is lost, accounting for the low yield for 42. An unidentified by-product of these reactions is a Cp*-containing compound (by 1H NMR). This compound has very similar solubility to the desired product and is difficult to remove, with several washings required which lowers the yield. This by-product is easier to remove on cleavage of the silyl group or substitution of one of the carbonyls for a PPh$_3$ group.
Scheme 5.3. Formation of iron alkynyl complexes with a protected 3-ethynylphenylethynyl ligand

Both the triisopropyl- and trimethyl-silyl groups can be removed under the same conditions by stirring the complexes in the presence of NBu"F for 15 h. In this manner the complexes with ethynyl groups para to one another 39 and 40 (Scheme 5.4) and those meta to one another 41 and 42 (Scheme 5.5) can be desilylated to afford complexes 43 and 44, respectively. Once again the low isolated yields for some of these reactions is due to the high solubility of the products and the difficulties in removing impurities.

Scheme 5.4. Desilylation of complexes 39 and 40 to form complexes with an acetylene para to the acetylide bond (43)
Scheme 5.5. Desilylation of complexes 41 and 42 to form complexes with an acetylene meta to the acetylide bond (44)

As mentioned in the introduction, the ability to substitute either one or both of the carbonyls with phosphines is an important property of the FeCl(CO)₂Cp* metal centre. On replacement of the two carbonyls with a dppe ligand or one of the carbonyls with a PPh₃ ligand, the resultant complexes exhibit reversible redox processes, making them useful for electrochemical switching. Complex 39 can have one carbonyl substituted for a PPh₃ molecule under UV irradiation (Scheme 5.6). Although an excess of PPh₃ is used, only one carbonyl is substituted due to the steric bulk of the PPh₃. The complex Fe(C≡CC₆H₄-4-C≡CSiPr₃)(CO)(PPh₃)Cp* (45) is formed in moderate yields (42%), with the solubility of the product and some decomposition under the reaction conditions accounting for the low yield.

Scheme 5.6. Formation of 45 by ligand substitution under irradiation with UV light

Using the same conditions, one of the carbonyl groups in complex 41 can be substituted for a PPh₃ group to afford Fe(C≡CC₆H₄-3-C≡CSiPr₃)(CO)(PPh₃)Cp* (46) (Scheme 5.7) in a 30% yield. Once again some decomposition occurs under UV conditions with a darkening of the reaction mixture observed.
Scheme 5.7. Formation of 46 by ligand substitution under irradiation with UV light

Attachment of an electron rich metal centre Fe(dppe)Cp* to the acetylene site in complexes 43 and 44 creates a binuclear complex where the electron deficient Fe(CO)₂Cp* metal centre can act as an electron acceptor and Fe(dppe)Cp* as a donor. Complexes of this type have potential applications as a rectifying unit in molecular electronics or as a 2nd order nonlinear optical material. The Fe(dppe)Cp* metal centre, possessing a reversible redox process, also allows these complexes to be electrochemically switchable, increasing the potential uses. As mentioned earlier Lapinte and co-workers have previously explored complexes of this type with a butadiynyl bridge between the metal centres.

The binuclear complex, \{Fe(dppe)Cp*\}(\mu-\text{C}=\text{C}C₆H₄-4-\text{C}=\text{C})\{Fe(CO)₂Cp*\} (47) was formed by stirring Fe(C=C₆H₄-4-CH)(CO)₂Cp* (44) with a halide abstraction agent (KPF₆) and the FeCl(dppe)Cp* metal centre in a CH₃OH/THF mixture (1:1) for 16 h. The resultant vinylidene complex could then be deprotonated to the acetylide by stirring a THF solution with KO'Bu to afford 47 in 31% yield (Scheme 5.8).

Scheme 5.8. Formation of the binuclear complex 47
The binuclear complex where the ethynyl bonds are *meta* to one another can be formed in 68% yield using the same conditions to those used for the formation of the analogous *para* example (Scheme 5.9).

\[
\text{(i) FeCl(dppe)Cp}* \rightarrow \text{KPF}_{6}, \text{THF/CH}_{3} \text{OH, RT, 60 h}
\]
\[
\text{(ii) THF, KO'Bu, 2 h, 68%}
\]

Scheme 5.9. Formation of the binuclear complex 48

5.2.2 Physical properties

5.2.2.1 NMR spectroscopy

Complexes 39 – 48 were characterised using 1H NMR. In addition the phosphorus containing complexes 45 – 48 were characterised using 31P NMR and complexes 39 – 46 were characterised using 13C NMR, with signals assigned where possible, and otherwise grouped. Useful 13C NMR data were unable to be obtained for the binuclear complexes (47 and 48) due to the ease of oxidation of the Fe(dppe)Cp* metal centre and the associated broadening of the NMR signals.

1H NMR

The proton NMR spectra of complexes 39 – 48 were measured in C$_6$D$_6$ and showed characteristic signals. For all of the complexes a singlet between 1.39 - 1.53 ppm for the methyl protons of the Cp* group is visible. The binuclear complexes have two methyl resonances within this range. The complexes with a silyl group 39 – 42, 45 and 46 either have a resonance at ca 0.4 ppm for a SiMe$_3$ or at ca 1.19 ppm for a SiPr$_3^*$ group. As discussed in Chapter 2, the resonance at 1.19 ppm is a pseudo
singlet with the heptet corresponding to the methyne proton not observed. All of the complexes have resonances within the range 8.06 – 6.76 ppm corresponding to aromatic protons in the phenylethynyl ligand (39 – 48), PPh$_3$ ligand (45 and 46) and dppe ligand (47 and 48).

31P NMR

The 31P NMR spectra of the two complexes with a PPh$_3$ ligand (45 and 46) and the two binuclear complexes with a dppe ligand (47 and 48) were measured as C$_6$D$_6$ solutions. For complexes 45 and 46 a singlet at ca 76 ppm corresponds to the metal-bound PPh$_3$ ligand. For the binuclear complexes a singlet at 101.6 ppm corresponding to the two phosphorus atoms in the dppe ligand was observed.

5.2.2.2 UV-Vis spectroscopy

The UV-Vis absorption spectra of complexes 40 and 42 – 48 were measured in CH$_2$Cl$_2$ (Table 5.1). Complexes 39 and 41 were not measured due to similarities to 40 and 42. The di-carbonyl complexes with ethynyl groups para to one another (40 and 43) have an absorption band at 325 nm (40) and 316 nm (43). For the analogous complexes with the ethynyl groups meta to one another (42 and 44) the absorption band is blue-shifted to ca 289 nm. The PPh$_3$ containing complexes (45 and 46) have absorption bands at 339 and 369 nm (45) and 298 nm (46). The bimetallic complexes (47 and 48) have absorption bands at 372, 292 and 263 nm (47) and 367 and 281 nm (48).
Complex $\quad \lambda_{\text{max}}/\text{nm [}\varepsilon/10^4 \text{M}^{-1}\text{cm}^{-1}]$

$\text{Fe(}C\equiv C\text{C}_6\text{H}_4-4\text{C}=\text{CSiMe}_3\text{)(CO)}_2\text{Cp}^* \ (40) \quad \text{325 [3.3]}$

$\text{Fe(}C\equiv C\text{C}_6\text{H}_4-3\text{C}=\text{CSiMe}_3\text{)(CO)}_2\text{Cp}^* \ (42) \quad \text{288 [1.4]}$

$\text{Fe(}C\equiv C\text{C}_6\text{H}_4-4\text{C}=\text{CH}\text{)(CO)}_2\text{Cp}^* \ (43) \quad \text{316 [2.8]}$

$\text{Fe(}C\equiv C\text{C}_6\text{H}_4-3\text{C}=\text{CH}\text{)(CO)}_2\text{Cp}^* \ (44) \quad \text{289 [1.8]}$

$\text{Fe(}C\equiv C\text{C}_6\text{H}_4-4\text{C}=\text{CSiPr}_1\text{3})(CO)(PPh_3)\text{Cp}^* \ (45) \quad \text{339 [1.7], 369 [1.3]}$

$\text{Fe(}C\equiv C\text{C}_6\text{H}_4-3\text{C}=\text{CSiPr}_1\text{3})(CO)(PPh_3)\text{Cp}^* \ (46) \quad \text{298 [1.7]}$

$\{\text{Fe(dppe)Cp}^*\}(\mu-\text{C}\equiv \text{C}_6\text{H}_4-4\equiv \text{C})\{\text{Fe(CO)}_2\text{Cp}^*\} \ (47) \quad \text{372 [1.5], 292 [1.9], 263 [2.2]}$

$\{\text{Fe(dppe)Cp}^*\}(\mu-\text{C}\equiv \text{C}_6\text{H}_4-3\equiv \text{C})\{\text{Fe(CO)}_2\text{Cp}^*\} \ (48) \quad \text{367 [9.0], 281 [1.8]}$

Table 5.1 UV-Vis absorption data for complexes 41 and 43 – 47.

5.2.2.3 Infrared spectroscopy

The carbonyl groups attached to the Fe metal centre can act as a probe into the electronics of the metal centre. The shifting of the carbonyl bands to a lower energy would be indicative of a more electron rich metal centre, as one might expect to see if the electron density is increased by the presence of an electron donor. The IR carbonyl and ethynyl stretches of complexes 39 – 48 were measured in CH$_2$Cl$_2$ (Table 5.2). On substituting one of the carbonyls for a PPh$_3$ the metal centre becomes much more electron rich and the band for the remaining carbonyl is shifted ca 40 cm$^{-1}$ to lower energy (Table 5.2). However, on forming the bimetallic complexes (47 and 48) very little change is observed for the carbonyl bands. This is in contrast to the changes reported for analogous complexes with a butadiynyl bridge between the metal centres, where a red-shift of ca 10 cm$^{-1}$ was observed.
Table 5.2 Infra-red absorption data for complexes 39 - 48

<table>
<thead>
<tr>
<th>Complex</th>
<th>ν(CO)</th>
<th>ν(C=≡C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe(C≡CC₆H₄-4-C≡CSiPr₃)(CO)₂Cp* (39)</td>
<td>2018, 1969</td>
<td>2150, 2096</td>
</tr>
<tr>
<td>Fe(C≡CC₆H₄-4-C≡CSiMe₃)(CO)₂Cp* (40)</td>
<td>2018, 1969</td>
<td>2152, 2096</td>
</tr>
<tr>
<td>Fe(C≡CC₆H₄-3-C≡CSiPr₃)(CO)₂Cp* (41)</td>
<td>2018, 1968</td>
<td>2150, 2100</td>
</tr>
<tr>
<td>Fe(C≡CC₆H₄-3-C≡CSiMe₃)(CO)₂Cp* (42)</td>
<td>2018, 1969</td>
<td>2152, 2100</td>
</tr>
<tr>
<td>Fe(C≡CC₆H₄-4-C≡CH)(CO)₂Cp* (43)</td>
<td>2018, 1969</td>
<td>2095</td>
</tr>
<tr>
<td>Fe(C≡CC₆H₄-3-C≡CH)(CO)₂Cp* (44)</td>
<td>2018, 1969</td>
<td>2096</td>
</tr>
<tr>
<td>Fe(C≡CC₆H₄-4-C≡C-SiPr₃)(CO)(PPh₃)Cp* (45)</td>
<td>1924</td>
<td>2148, 2076</td>
</tr>
<tr>
<td>Fe(C≡CC₆H₄-3-C≡C-SiPr₃)(CO)(PPh₃)Cp* (46)</td>
<td>1927</td>
<td>2152, 2077</td>
</tr>
<tr>
<td>{Fe(dppe)Cp*}(μ-C≡CC₆H₄-4-C≡C){Fe(CO)₂Cp*} (47)</td>
<td>2017, 1966</td>
<td>2095, 2053</td>
</tr>
<tr>
<td>{Fe(dppe)Cp*}(μ-C≡CC₆H₄-3-C≡C){Fe(CO)₂Cp*} (48)</td>
<td>2018, 1969</td>
<td>2098, 2049</td>
</tr>
</tbody>
</table>

5.2.2.4 Electrochemistry

The electrochemical behaviour of complexes 39 – 48 was measured using cyclic voltammetry (Table 5.3). For the mononuclear Fe(CO)₂Cp* complexes 39 – 44 no reversible processes were seen with only an irreversible process at ca 1 V observed. For the mononuclear complexes in which one of the carbonyl groups had been substituted for a PPh₃ (45 and 46) a reversible process at 0.45 V, corresponding to the Fe²⁺/Fe³⁺ redox couple, was observed. For the binuclear complexes 47 and 48 only one reversible process at ca - 0.2 V, corresponding to the Fe²⁺/Fe³⁺ redox couple of the Fe(dppe)Cp* metal centre, was observed, along with an irreversible process at ca 1 V for the the Fe(CO)₂Cp* metal centre.
Complex & \(E_{1/2} \) & \(i_{pc}/i_{pa} \)^a (V) \\
\(\text{Fe(C=}\text{C}_6\text{H}_4-4-\text{C} \equiv \text{CSiPr}^3\text{)(CO)(PPh}_3\text{)}\text{Cp}^* \) (45) & 0.45 [1] \\
\(\text{Fe(C=}\text{C}_6\text{H}_4-3-\text{C} \equiv \text{CSiPr}^3\text{)(CO)(PPh}_3\text{)}\text{Cp}^* \) (46) & 0.45 [1] \\
\{\text{Fe(dppe)}\text{Cp}^*\}(\mu-\text{C}=\text{C}_6\text{H}_4-4-\text{C}=\text{C})\{\text{Fe(CO)}_2\text{Cp}^*\} \) (47) & -0.18 [1] \\
\{\text{Fe(dppe)}\text{Cp}^*\}(\mu-\text{C}=\text{C}_6\text{H}_4-3-\text{C}=\text{C})\{\text{Fe(CO)}_2\text{Cp}^*\} \) (48) & -0.20 [1] \\

Table 5.3 Cyclic voltammetric data for complexes 45 – 48. ^aIn CH\(_2\)Cl\(_2\), SCE reference electrode, ferrocene/ferrocenium couple at 0.46 V [1]. Peak separation of processes is approximately the same as for the ferrocene/ferrocenium couple.

5.2.2.5 Spectroelectrochemistry

Electrolysis of complexes 45 - 48 was carried out in an optically-transparent thin-layer electrochemical (OTTLE) cell in order to observe the changes in UV-Vis-NIR absorption spectra upon oxidation. For 45 and 46 (Figures 5.1 and 5.2) the oxidised complex was found to be unstable, with the loss of ca. 30% peak height for each scan and unclean isobestic points. For 45 oxidation to the Fe\(^{\text{III}}\) species results in a low-energy band at 12600 cm\(^{-1}\) and decrease in the intensity of the bands between 25000 and 30000 cm\(^{-1}\). For 46 the changes observed upon oxidation are similar but less dramatic, with the appearance of a low intensity, broad absorption band between 12000 cm\(^{-1}\) and 23000 cm\(^{-1}\) and a decrease in the intensity of the absorption band around 30000 cm\(^{-1}\).
Figure 5.1 UV-Vis-NIR spectral changes during electrochemical oxidation of 45

Figure 5.2 UV-Vis-NIR spectral changes during electrochemical oxidation of 46

For the binuclear complexes 47 and 48 the process associated with the Fe(dppe)Cp* metal centre was shown to be reversible, cycling between the neutral and oxidised
species a number of times being accomplished without loss of peak height and with clean isobestic points. For 47 it was found that the starting material was already significantly oxidised (ca 50%) despite the precautions to exclude air and operating under an argon atmosphere. To obtain the neutral species a reducing voltage was initially applied before the material was oxidised. The changes on oxidation are very similar to those observed for 45, which has the same C≡CC₆H₄-4-C≡C ligand. The formation of a low energy band at ca 12000 cm⁻¹ is accompanied by a decrease in intensity of the absorption bands between 22000 cm⁻¹ and 27000 cm⁻¹ (Figure 5.3). For 48 it was found that the starting material had no oxidised material present, as on applying a reducing voltage no changes were observed. On oxidation similar absorption bands to 46, with the same C≡CC₆H₄-3-C≡C ligand, are observed with a low intensity broad band between 13000 cm⁻¹ and 20000 cm⁻¹ and a slight decrease in the intensity of the absorption bands between 25000 cm⁻¹ and 30000 cm⁻¹ (Figure 5.4).

![Figure 5.3 UV-Vis-NIR spectral changes during electrochemical oxidation of 47](image-url)
Table 4.3. Summary of optical data for complexes 45, 46, 47 and 48. Electronic spectra were obtained at 298 K in CH$_2$Cl$_2$ using 0.3 M (NBu$_4$)PF$_6$ as supporting electrolyte with potentials ca 50-200 mV beyond $E_{1/2}$ for each couple.
5.3 Conclusions

A series of iron phenylethynyl complexes have been synthesised. The Fe(CO)$_2$Cp* centre has been used due to its lower sensitivity to oxidation than the more commonly used Fe(dppe)Cp* centre. It has been shown that one of the carbonyl ligands can be substituted for a PPI13 group, to form a complex that has a reversible redox process as shown by cyclic voltammetry, but spectroelectrochemistry shows that the oxidised material is unstable at room temperature with significant loss of peak height on cycling. The formation of two binuclear complexes with a C=CC$_6$H$_4$-4-C=C and a C=CC$_6$H$_4$-3-C=C bridge separating a Fe(CO)$_2$Cp* from a Fe(dppe)Cp* centre has been achieved. The Fe(dppe)Cp* centre exhibits a reversible redox process as shown by cyclic voltammetry and spectroelectrochemistry.

5.4 Experimental section

5.4.1 General

All manipulations were carried out under inert atmospheres. Solvents or reagents were used as follows: Et$_2$O and n-pentane, distilled from Na/benzophenone; CH$_2$Cl$_2$, distilled from CaH$_2$ and purged with argon; NEt$_3$ distilled from KOH. Photolyses were performed with a Heraeus UV lamp (TQ150, 150 W, medium pressure) equipped with a quartz jacket. Solvents and reagents were obtained from commercial sources and used as received, unless otherwise indicated. Materials were prepared as stated previously. In addition the following additional materials were prepared according to literature procedures and were kindly provided by Dr Katy Green and Dr Gilles Argouarch: FeCl(CO)$_2$Cp13, FeCl(dppe)Cp*14, HC=CC$_6$H$_4$-4-C=CSiPr$_3$15, HC=CC$_6$H$_4$-3-C=CSiPr$_3$16, HC=CC$_6$H$_4$-3-C=CSiMe$_3$17, HC=CC$_6$H$_4$-4-C=CSiMe$_3$17. Complexes 39 and 41 were initially prepared by Dr Katy Green.
5.4.2 Instrumentation

NIR spectra were recorded on a Cary 5000 spectrometer. UV-Visible spectra were recorded on an UVIKON XL spectrometer (250-12500 cm⁻¹). NMR spectra were obtained on a Bruker 200 DPX. Chemical shifts are given in parts per million relative to tetramethylsilane (TMS) for ¹H and ¹³C spectra, and relative to H₂PO₄ for ³¹P spectra. Cyclic voltammograms were recorded using a EG&G potentiostat (M.263) on platinum electrodes referenced to a SCE electrode and were calibrated with the ferrocene/ferrocenium couple taken at 0.46 V in CH₂Cl₂. LSIMS analyses were effected at the "Centre Regional de Mesures Physiques de l'Ouest" (C.R.M.P.O.) on a high resolution MS/MS ZabSpec TOF Micromass spectrometer (8 kV). Electronic spectra were recorded using a Cary 5 spectrophotometer. Solution spectra of the oxidized species were obtained at 298 K by electrogeneration in an optically-transparent thin-layer electrochemical (OTTLE) cell with potentials ca 50 - 200 mV beyond E₁/₂ for each couple, to ensure complete electrolysis; solutions were made up in 0.3 M (NBu₄)PF₆ in CH₂Cl₂.

5.4.3 Synthesis and Characterization

Fe(C≡CC₆H₄-4-C≡CSiPr’₃)(CO)₂Cp* (39)

Cul (91 mg, 0.478 mmol) was dissolved in NEt₃ (20 mL) and stirred for 10 min. This solution was then added to a solution of HC≡CC₆H₄-4-C≡CSiPr’₃ (497 mg, 1.76 mmol) in THF (20 mL) and stirred for 30 min. FeCl(CO)₂Cp* (542 mg, 1.92 mmol) was dissolved in THF (20 mL), stirred for 10 min and then added to the Cul/acetylene solution. The reaction mixture was stirred for 12 h. The solvent was removed and the crude reaction mixture was passed through a short pad of alumina eluting with CH₂Cl₂. After evaporation of the solvent the product was dissolved in diethyl ether (10 mL) and precipitated with pentane (100 mL) at -70 °C, affording 39 as a yellow powder (723 mg, 78 %). ESI HRMS: m/z 551.2040 [M + Na]⁺, m/z calcd
for [C₅H₄O₂NaSi⁵⁶Fe] 551.2039. Anal. Calcd for C₂₅H₂₈O₂SiFe: C, 70.44; H, 7.63

Found: C, 69.41 H, 7.80. IR (CH₂Cl₂): 2150 cm⁻¹ ν(C≡C-Si), 2096 cm⁻¹ ν(Fe-C≡C), 2018 cm⁻¹ ν(C≡O), 1969 cm⁻¹ ν(C≡O). ¹H NMR (C₆D₆, 200 MHz): δ 7.42 (m, 4H, Ar), 1.42 (s, 15H, Cp*), 1.19 (s, 21H, SiPr'₃). ¹³C NMR (C₆D₆, 50 MHz): δ 215.3 (C≡O), 132.3 (C₆H₄), 131.6 (C₅H₅), 130.2 (C₆H₄), 120.0 (C₆H₄), 113.8 (C≡C), 110.0 (C≡C), 109.0 (C≡C), 97.1 (C₅Me₅), 90.5 (C≡C), 19.0 (Si(CHMe₂)₃), 11.8 (Si(CHMe₂)₃). ¹H NMR (C₆D₆): 5 7.43 (m, 4H, Ar), 1.40 (s, 15H, Cp*), 0.24 (s, 9H, SiMe₃). ¹³C{¹H} NMR (C₆D₆): δ 215.3 (C≡O), 132.1 (C₆H₄), 131.6 (C₆H₄), 130.2 (C₆H₄), 119.6 (C₆H₄), 113.7 (C≡C), 110.4 (C≡C), 106.9 (C≡C), 97.1 (C₅Me₅), 94.3 (C≡C), 9.6 (C₅Me₅). Fe(C≡CC₆H₄-4-C≡CSiMe₃)(CO)₂Cp* (40)

CuI (91 mg, 0.48 mmol) was dissolved in 20 mL of NEt₃ and stirred for 10 min. This solution was then added to a solution of HC≡CC₆H₄-4-C≡CSiMe₃ (322 mg, 1.63 mmol) in THF (20 mL) and stirred for 30 min. FeCl(CO)₂Cp* (500 mg, 1.77 mmol) was dissolved in THF (20 mL), stirred for 10 min and then added to the CuI/acetylene solution. The reaction mixture was stirred for 12 h. The solvent was removed and the crude reaction mixture was passed through a short pad of alumina, eluting with CH₂Cl₂. The solvent was removed and the product was washed with cold pentane (10 mL), affording 40 as a yellow powder (530 mg, 73 %). HRMS: m/z 467.1098 [M + Na]+, m/z calcd for [C₂₅H₂₈O₂NaSi⁵⁶Fe] 467.1100. IR (CH₂Cl₂): 2152 cm⁻¹ ν(C≡C-Si), 2096 cm⁻¹ ν(Fe-C≡C), 2018 cm⁻¹ ν(C≡O), 1969 cm⁻¹ ν(C≡O). UV-vis (CH₂Cl₂, λₓₓₙₓ/mm [ε/10³ M⁻¹cm⁻¹]): 325 [33.3]. ¹H NMR (C₆D₆): δ 7.43 (m, 4H, Ar), 1.40 (s, 15H, Cp*), 0.24 (s, 9H, SiMe₃). ¹³C{¹H} NMR (C₆D₆): δ 215.3 (C≡O), 132.1 (C₆H₄), 131.6 (C₆H₄), 130.2 (C₆H₄), 119.6 (C₆H₄), 113.7 (C≡C), 110.4 (C≡C), 106.9 (C≡C), 97.1 (C₅Me₅), 94.3 (C≡C), 9.6 (C₅Me₅). Fe(C≡CC₆H₄-3-C≡CSiPr'₃)(CO)₂Cp* (41)

CuI (107 mg, 0.56 mmol) was dissolved in 20 mL of NEt₃ and stirred for 10 min. This solution was then added to a solution of HC≡CC₆H₄-3-C≡CSiPr'₃ (604 mg, 2.14
mmol) in THF (20 mL) and stirred for 30 min. FeCl(CO)$_2$Cp* (626 mg, 2.21 mmol) was dissolved in THF (20 mL), stirred for 10 min and added to the Cul/acetylene solution. The reaction mixture was stirred for 12 h. The solvent was removed and the crude reaction mixture passed through a short pad of alumina, eluting with CH$_2$Cl$_2$. The solvent was removed, the product dissolved in diethyl ether (10 mL) and precipitated with pentane (100 mL) at -70 °C, affording 41 as a yellow powder (823 mg, 74 %). Anal. Calcd for C$_{25}$H$_{28}$O$_2$SiFe: C, 70.44; H, 7.63. Found: C, 69.68 H, 7.72. HRMS: m/z 551.2040 [M + Na]$^+$, m/z calcld for [C$_{22}$H$_{20}$O$_2$Na56Fe] 551.20392. IR (CH$_2$Cl$_2$): 2150 cm$^{-1}$ v(C=Si), 2100 cm$^{-1}$ v(Fe-C=C), 2018 cm$^{-1}$ v(C=O), 1968 cm$^{-1}$ v(C≡O). 1H NMR (C$_6$D$_6$): δ 7.94 (s, 1H, Ar), 7.46 (d, 1H, 3J = 7.4 Hz, Ar), 7.24 (d, 1H, 3J = 7.5 Hz, Ar), 6.86 (dd, 1H, 3J = 7.4 Hz, Ar), 1.41 (s, 15H, Cp*), 1.17 (m, 21H, SiPr$_3$). 13C(1H) NMR (C$_6$D$_6$): δ 215.3 (C=O), 135.2 (C$_{ArH}$), 132.0 (C$_{ArH}$), 130.0 (C$_{Ar}$), 128.8 (C$_{ArH}$), 128.4(C$_{ArH}$), 123.6 (C$_{Ar}$), 112.6 (C≡C), 108.6 (C≡C), 107.4 (C≡C), 97.1 (C$_5$Me$_5$), 89.8 (C≡C-Si), 19.0 (Si(CHMe$_2$)$_3$), 11.8 (Si(CHMe$_2$)$_3$), 9.6 (C$_5$Me$_5$).

Fe(C≡C$_6$H$_4$-3-C≡CSiMe$_3$)(CO)$_2$Cp* (42)

CuI (91 mg, 0.48 mmol) was dissolved in 20 mL of NEt$_3$ and stirred for 10 min. This solution was then added to a solution of HC≡C$_6$H$_4$-3-C≡CSiMe$_3$ (322 mg, 1.63 mmol) in THF (20 mL) and stirred for 30 min. FeCl(CO)$_2$Cp* (500 mg, 1.77 mmol) was dissolved in THF (20 mL), stirred for 10 min and added to the Cul/acetylene solution. The reaction mixture was stirred for 12 h. The solvent was removed and the crude reaction mixture passed through a short pad of alumina, eluting with CH$_2$Cl$_2$. The solvent was removed and the product was washed with cold pentane (10 mL), affording 42 as a yellow powder (260 mg, 36 %). HRMS: m/z 467.1099 [M + Na]$^+$, m/z calcld for [C$_{25}$H$_{28}$O$_2$Na56SiFe] 467.1100. IR (CH$_2$Cl$_2$): 2152 cm$^{-1}$ v(C≡Si), 2100 cm$^{-1}$ v(Fe-C≡C), 2018 cm$^{-1}$ v(C=O), 1969 cm$^{-1}$ v(C≡O). UV-vis (CH$_2$Cl$_2$, λ_{max}/nm [ε/103 M$^{-1}$cm$^{-1}$]): 288 [13.8]. 1H NMR (C$_6$D$_6$): δ 8.00 (s, 1H, Ar), 7.47 (d, 1H, 3J = 7.5 Hz, Ar), 7.29 (d, 1H, 3J = 7.7 Hz, Ar), 6.85 (dd, 1H, 3J = 7.8 Hz, Ar), 7.47 (d, 1H, 3J = 7.5 Hz, Ar), 7.29 (d, 1H, 3J = 7.7 Hz, Ar), 6.85 (dd, 1H, 3J = 7.8 Hz, Ar), 7.47 (d, 1H, 3J = 7.5 Hz, Ar), 7.29 (d, 1H, 3J = 7.7 Hz, Ar), 6.85 (dd, 1H, 3J = 7.8 Hz, Ar), 7.47 (d, 1H, 3J = 7.5 Hz, Ar), 7.29 (d, 1H, 3J = 7.7 Hz, Ar), 6.85 (dd, 1H, 3J = 7.8 Hz, Ar),
1.39 (s, 15H, Cp*), 0.22 (s, 9H, SiMe3). 13C NMR (C$_6$D$_6$): δ 215.4 (C=O), 135.3 (C$_{ArH}$), 132.0 (C$_{ArH}$), 128.5 (C$_{ArH}$), 128.4 (C$_{ArH}$), 130.1 (C$_{Ar}$), 123.5 (C$_{Ar}$), 112.6 (C≡C), 107.4 (C≡C), 106.5 (C≡C), 97.1 (C$_5$Me$_3$), 93.6 (C≡C-Si), 9.6 (C$_5$Me$_3$), 0.13 (SiMe$_3$).

Fe(C≡CC$_6$H$_4$-4-C≡CH)(CO)$_2$Cp* (43)

From Fe(C≡CC$_6$H$_4$-4-C≡CSiPr$_3$)(CO)$_2$Cp*:

NBu"$_4$F (0.04 mL of a 1.0 M solution in THF, 0.04 mmol) and Fe(C≡CC$_6$H$_4$-4-C≡CSiPr$_3$)(CO)$_2$Cp* (67 mg, 0.127 mmol) were stirred in THF (50 mL) for 15 h. The solvent was removed and the residue dissolved in CH$_2$Cl$_2$ and passed through a short pad of alumina, eluting with CH$_2$Cl$_2$. The solvent was removed and the product dissolved in a minimum of diethyl ether (15 mL) and precipitated with pentane (100 mL) at -70 °C, affording 43 as an orange powder (18 mg, 38%).

From Fe(C≡CC$_6$H$_4$-4-C≡CSiMe$_3$)(CO)$_2$Cp*:

NBu"$_4$F (0.32 mL of a 1.0 M solution in THF, 0.32 mmol) and Fe(C≡CC$_6$H$_4$-4-C≡CSiMe$_3$)(CO)$_2$Cp* (480 mg, 1.08 mmol) were stirred in THF (30 mL) for 15 h. The solvent was removed and the residue dissolved in CH$_2$Cl$_2$ and passed through a short pad of alumina. The solvent was removed and the product washed with cold pentane (20 mL), affording 43 as an orange powder (220 mg, 55%). HRMS: m/z 395.0707 [M + Na]$^+$, m/z calc for [C$_{22}$H$_{20}$O$_2$Na56Fe] 395.0705. IR (CH$_2$Cl$_2$): 3297 cm$^{-1}$ ν(=CH), 2095 cm$^{-1}$ ν(C=C), 2018 cm$^{-1}$ ν(C=O), 1969 cm$^{-1}$ ν(C≡O). UV-vis (CH$_2$Cl$_2$, λ$_{max}$/nm [ε/103 M$^{-1}$cm$^{-1}$]): 316 [27.5]. 1H NMR (C$_6$D$_6$): δ 7.41 (m, 4H, Ar), 2.77 (s, 1H, C≡CH), 1.41 (s, 15H, Cp*). 13C-NMR (C$_6$D$_6$): δ 215.4 (C≡O), 132.2 (C$_{ArH}$), 131.7 (C$_{ArH}$), 130.2 (C$_{Ar}$), 118.6 (C$_{Ar}$), 113.6 (C≡C), 110.2 (C≡C), 97.1 (C$_5$Me$_3$), 84.6 (C=C), 78.1 (C=C), 9.7 (C$_5$Me$_3$).
Fe(C≡CC₆H₄-3-C≡CH)(CO)₂Cp* (44)

From Fe(C≡CC₆H₄-3-C≡SiPr')₃(CO)₂Cp*:
Nбу"₄F (0.06 mL of a 1.0M solution in THF, 0.06 mmol) and Fe(C≡CC₆H₄-3-C≡SiPr')₃(CO)₂Cp* (99 mg, 0.187 mmol) were stirred in THF (50 mL) for 15 h. The solvent was removed and the residue dissolved in CH₂Cl₂ and passed through a short pad of alumina, eluting with CH₂Cl₂. The solvent was removed and the product washed with pentane (10 mL), affording 44 as an orange powder (10 mg, 14%).

From Fe(C≡CC₆H₄-3-C≡SiMe₃)(CO)₂Cp*:
Nбу"₄F (0.20 mL of a 1.0M solution in THF, 0.20 mmol) and Fe(C≡CC₆H₄-3-C≡SiMe₃)(CO)₂Cp* (300 mg, 0.675 mmol) were stirred in THF (30 mL) for 15 h. The solvent was removed and the residue dissolved in CH₂Cl₂ and passed through a short pad of alumina, eluting with CH₂Cl₂. The solvent was removed and the product washed with cold pentane (20 mL), affording 44 as an orange powder (130 mg, 52%). HRMS: m/z 395.0706 [M + Na]^+, m/z calcd for [C₂₂H₂₀O₂Na⁵⁶Fe] 395.0705. IR (CH₂Cl₂): 3300 cm⁻¹ ν(-CH), 2096 cm⁻¹ ν(C≡C), 2018 cm⁻¹ ν(C≡O), 1969 cm⁻¹ ν(C≡O). UV-vis (CH₂Cl₂, λ_max/nm [ε/10³ M⁻¹cm⁻¹]): 289 [18.4]. ¹H NMR (C₆D₆): δ 7.98 (s, 1H, Ar), 7.49 (d, 1H, ³J = 7.5, Ar), 7.24 (d, 1H, ³J = 7.6, Ar), 6.85 (dd, 1H, ³J = 7.7, Ar), 2.68 (s, 1H, C≡CH), 1.40 (s, 15H, Cp*).

Fe(C≡CC₆H₄-4-C≡CC₆H₄-3-C≡SiPr')₃(CO)(PPh₃)Cp* (45)

Fe(C≡CC₆H₄-4-C≡CC₆H₄-3-C≡SiPr')₃(CO)₂Cp* (250 mg, 0.473 mmol) and PPh₃ (124 mg, 0.473 mmol) were dissolved in toluene (20 mL) and irradiated with UV light for 4 h. The solvent was removed and the crude product dissolved in a minimum of diethyl
ether (5 mL) and precipitated with pentane (20 mL) at -70 °C, affording 45 as a dark orange powder (150 mg, 42 %). HRMS: m/z 762.3100 [M]^+, m/z calc'd for [C_{48}H_{55}O_{56}SiP_{56}Fe] 762.3104. IR (CH2Cl2): 2148 cm\(^{-1}\) ν(C=C-Si), 2076 cm\(^{-1}\) ν(Fe-C=C), 1924 cm\(^{-1}\) ν(C≡O). UV-vis (CH2Cl2, λ\(_{max}/nm [ε/10^3 M^{-1}cm^{-1}])\): 339 [17.3], 369 [13.2]. \(^1\)H NMR (C\(_6\)D\(_6\)): δ 7.89 – 7.02 (m, 19H, Ar), 1.43 (s, 15H, Cp*), 1.21 (m, 21H, SiPr\(^3\)). \(^{31}\)P NMR (C\(_6\)D\(_6\)): δ 75.6 (s, PPh\(_3\)). \(^{13}\)C NMR (C\(_6\)D\(_6\)): δ 222.4 (d, J\(_{CP} = 29\) Hz, C=O), 136.3 (m, J\(_{CP} = 41\) Hz, C\(_{Ar}\)), 134.4 (m, C\(_{ArH}\)), 132.2 (C\(_{ArH}\)), 130.8 (C\(_{ArH}\)), 131.1 (C\(_{Ar}\)), 129.7 (C\(_{ArH}\)), 127.9 (m, C\(_{Ar}\)), 119.3 (C≡C/C\(_{Ar}\)), 118.6 (C≡C/C\(_{Ar}\)), 109.4 (C≡C), 93.6 (C\(_5\)Me\(_5\)), 89.9 (C≡CSi), 19.0 (Si(CHMe\(_2\))\(_3\)), 11.8 (Si(CHMe\(_2\))\(_3\)), 9.8 (C\(_5\)Me\(_5\)).

Fe(C≡CC\(_6\)H\(_4\)-3-C≡CSiPr\(^3\))(CO)(PPh\(_3\))Cp* (46)

Fe(C≡CC\(_6\)H\(_4\)-3-C≡CSiPr\(^3\))(CO)\(_2\)Cp* (115 mg, 0.218 mmol) and PPh\(_3\) (57 mg, 0.218 mmol) were dissolved in toluene (20 mL) and irradiated with UV light for 4 h. The solvent was removed, and the residue extracted with a minimum of diethyl ether (5 mL) and the product precipitated with pentane (20 mL) at -70 °C, affording 46 as a dark orange powder (50 mg, 30 %). HRMS: m/z 762.3090 [M]^+, m/z calc'd for [C_{48}H_{55}O_{56}SiP_{56}Fe] 762.3104. IR (CH2Cl2): 2152 cm\(^{-1}\) ν(C≡C-Si), 2077 cm\(^{-1}\) ν(Fe-C=C), 1927 cm\(^{-1}\) ν(C≡O). UV-vis (CH2Cl2, λ\(_{max}/nm [ε/10^3 M^{-1}cm^{-1}])\): 298 [16.8]. \(^1\)H NMR (C\(_6\)D\(_6\)): δ 7.89 – 6.87 (m, 19H, Ar), 1.41 (s, 15H, Cp*), 1.19 (m, 21H, SiPr\(^3\)). \(^{31}\)P NMR (C\(_6\)D\(_6\)): δ 75.8 (s, PPh\(_3\)). \(^{13}\)C NMR (C\(_6\)D\(_6\)): δ 222.4 (d, J\(_{CP} = 29\) Hz, C=O), 136.3 (m, J\(_{CP} = 41\) Hz, C\(_{Ar}\)), 134.5 (C\(_{ArH}\)), 134.3 (m, C\(_{ArH}\)), 131.3 (C\(_{ArH}\)), 130.9 (C\(_{Ar}\)), 129.7 (m, C\(_{ArH}\)), 128.2 (C\(_{ArH}\)), 128.0 (m, C\(_{Ar}\)), 127.8 (C\(_{ArH}\)), 123.5 (C\(_{Ar}\)), 117.9 (C≡C), 117.8 (C≡C), 109.1 (C≡C), 93.6 (C\(_5\)Me\(_5\)), 89.2 (C≡CSi), 19.0 (Si(CHMe\(_2\))\(_3\)), 11.8 (Si(CHMe\(_2\))\(_3\)), 9.8 (C\(_5\)Me\(_5\)).
\{\text{Fe(dppe)Cp*}\}(\mu-\text{C=CC}_{6}\text{H}_{4}-4-\text{C=CH})\{\text{Fe(CO)_2Cp*}\} \ (47)

Fe(C=CC_{6}H_{4}-4-C=CH)(CO)_2Cp* \ (150 \ mg, \ 0.403 \ mmol), \ FeCl(dppe)Cp* \ (277 \ mg, \ 0.443) \ and \ KPF_{6} \ (110 \ mg, \ 0.604 \ mmol) \ were \ suspended \ in \ 80 \ mL \ of \ a \ methanol/THF \ solvent \ mixture \ (1:1) \ and \ stirred \ at \ room \ temperature \ for \ 16 \ h. \ The \ solvent \ was \ removed \ and \ the \ vinylidene \ complex \ was \ extracted \ with \ CH_{2}Cl_{2} \ (20 \ mL). \ The \ CH_{2}Cl_{2} \ solution \ was \ reduced \ to \ 10 \ mL \ and \ the \ vinylidene \ complex \ was \ precipitated \ with \ pentane \ (40 \ mL). \ The \ vinylidene \ complex \ was \ dissolved \ in \ THF \ (40 \ mL) \ and \ KO'Bu \ (67 \ mg, \ 0.604 \ mmol) \ added. \ The \ solution \ was \ stirred \ at \ room \ temperature \ for \ 2 \ h. \ The \ solvent \ was \ removed \ and \ the \ product \ extracted \ with \ toluene \ (80 \ mL). \ The \ solvent \ was \ removed \ and \ the \ product \ washed \ with \ pentane \ (30 \ mL) \ at \ -70 \ ^{\circ}C, \ to \ afford \ 47 \ as \ a \ dark \ orange \ powder \ (264 \ mg, \ 68 \ %). \ HRMS: \ m/z \ 960.2603 \ [M]^+, \ m/z \ \text{calcld for} \ [C_{58}H_{58}O_{2}P_{2}^{56}Fe_{2}] \ 960.2605. \ IR \ (CH_{2}Cl_{2}): \ 2095 \ \text{cm}^{-1} \ \nu(C≡C-Fe(CO)_2(Cp*)), \ 2053 \ \text{cm}^{-1} \ \nu(C≡C-Fe(dppe)(Cp*)), \ 2017 \ \text{cm}^{-1} \ \nu(C≡O), \ 1966 \ \text{cm}^{-1} \ \nu(C≡O). \ UV\text{-vis} \ (CH_{2}Cl_{2}, \ \lambda_{\text{max}}/\text{nm} \ \epsilon/10^{3} \ \text{M}^{-1}\text{cm}^{-1})): \ 439 \ [5.5], \ 333 \ [11.6], \ 263 \ [22.1]. \ \text{^1H NMR} \ (C_{6}D_{6}): \ \delta \ 8.15 – 7.45 \ (m, \ 24H, \ Ar), \ 2.61 \ (m, \ 4H, \ CH_{2}), \ 1.56 \ (s, \ 15H, \ Cp*), \ 1.46 \ (s, \ 15H, \ Cp*). \ \text{^31P NMR}: \ \delta \ \text{(ppm)} \ 101.6 \ (s, \ 2P, \ dppe).

\{\text{Fe(dppe)Cp*}\}(\mu-\text{C=CC}_{6}\text{H}_{4}-3-\text{C=CH})\{\text{Fe(CO)_2Cp*}\} \ (48)

Fe(C=CC_{6}H_{4}-3-C=CH)(CO)_2Cp* \ (150 \ mg, \ 0.403 \ mmol), \ FeCl(dppe)Cp* \ (277 \ mg, \ 0.443) \ and \ KPF_{6} \ (110 \ mg, \ 0.604 \ mmol) \ were \ suspended \ in \ 80 \ mL \ of \ a \ methanol/THF \ solvent \ mixture \ (1:1) \ and \ stirred \ at \ room \ temperature \ for \ 60 \ h. \ The \ solvent \ was \ removed \ and \ the \ vinylidene \ complex \ was \ extracted \ with \ CH_{2}Cl_{2} \ (20 \ mL). \ The \ solution \ volume \ was \ reduced \ to \ 10 \ mL \ and \ the \ vinylidene \ intermediate \ was \ precipitated \ upon \ addition \ of \ pentane \ (60 \ mL). \ The \ vinylidene \ complex \ was \ dissolved \ in \ THF \ (40 \ mL) \ and \ KO'Bu \ (67 \ mg, \ 0.604 \ mmol) \ added. \ The \ solution \ was \ stirred \ at \ room \ temperature \ for \ 2 \ h. \ The \ solvent \ was \ removed \ and \ the \ product \ extracted \ with \ toluene \ (80 \ mL). \ The \ solvent \ was \ removed \ and \ the \ product \ washed \ with \ pentane \ (30 \ mL) \ at \ -70 \ ^{\circ}C, \ affording \ 48 \ as \ a \ dark \ orange \ powder \ (120 \ mg, \ 31
%. HRMS: m/z 960.2607 [M]⁺, m/z calcd for [C₅₈H₅₈O₂P₂Fe₂] 960.2605.
IR(CH₂Cl₂): 2098 cm⁻¹ ν(C≡C-Fe(CO)₂Cp*), 2049 cm⁻¹ ν(C≡C-Fe(dppe)Cp*), 2018 cm⁻¹ ν(C≡O), 1969 cm⁻¹ ν(C=O). UV-vis (CH₂Cl₂, λ_max/μm [ε/10³ M⁻¹cm⁻¹]): 367 [6.2], 281 [18.3]. ¹H NMR (C₆D₆): δ 8.06 - 6.76 (m, 24H, Ar), 2.61 (m, 4H, CH₂), 1.53 (s, 15H, Cp*), 1.48 (s, 15H, Cp*). ³¹P NMR: δ 101.6 (s, 2P, dppe).

5.5 References

(17) Argouarch, G.; Paul, F. Unpublished results 2011
Appendix A

Chapter 2 NMR spectra
cis-[OsCl₂(dppe)₂] 1H NMR

cis-[OsCl₂(dppe)₂] 31P NMR
1H NMR

3P NMR
13C NMR

1H NMR
$^2\text{P NMR}$

$^2\text{C NMR}$
3H NMR

3P NMR
$^4\text{H NMR}$

$^3\text{P NMR}$
4 13C NMR

5 1H NMR
5P NMR

5C NMR
6 13C NMR

7 1H NMR
7 31P NMR

7 13C NMR
1H NMR

3P NMR
Appendix B

Chapter 3 NMR spectra
11 31P NMR

![Ph$_2$P][PPh$_2$]Cl$_2$C≡CPh

![NMR spectrum of 31P](image)

11 13C NMR

![Carbon-13 NMR spectrum](image)
12 1H NMR

12 31P NMR
13C NMR

13H NMR
13P NMR

13C NMR
14 1H NMR

14 31P NMR
14 13C NMR

15 1H NMR
31P NMR

13C NMR
16 1H NMR

\[\text{PF}_6 \quad \text{Ph}_2\text{P} \quad \text{PPh}_2 \]
\[\text{H}_3\text{N} - \text{Ru} \quad = \quad \text{Ph}_2\text{P} \quad \text{PPh}_2 \]

16 31P NMR

\[\text{PF}_6 \quad \text{Ph}_2\text{P} \quad \text{PPh}_2 \]
\[\text{H}_3\text{N} - \text{Ru} \quad = \quad \text{Ph}_2\text{P} \quad \text{PPh}_2 \]
$^{17} \text{P NMR}$

![$^{17} \text{P NMR}$ spectrum with structures]

$^{17} \text{C NMR}$

![$^{17} \text{C NMR}$ spectrum with structures]
18 1H NMR

18 ^{31}P NMR
18 13C NMR

19 1H NMR
$^{19} \text{P NMR}$

$^{19} \text{C NMR}$
20 1H NMR

20 31P NMR
20 13C NMR

21 1H NMR
21 31P NMR

![P NMR Spectrogram]

21 13C NMR

![C NMR Spectrogram]
22 1H NMR

22 31P NMR
24 1H NMR

24 31P NMR
25 1H NMR

25 ^{31}P NMR
26 31P NMR

27 1H NMR
$^{29} \text{P NMR}$

![Chemical Structure](image)

![NMR Spectra](image)
Appendix C

Chapter 4 NMR spectra
$^{30} \text{H NMR}$

$^{31} \text{P NMR}$
30 13C NMR

31 1H NMR
31 31P NMR

32 1H NMR
32 31P NMR

33 1H NMR
$^{31}\text{P NMR}$

$^{13}\text{C NMR}$
34 1H NMR

34 31P NMR
35 1H NMR

35 31P NMR
35 13C NMR

13C NMR spectra showing peaks at various ppm values. The spectra are labeled with chemical shifts, and a chemical structure is illustrated with atom labels and bond connections.

36 1H NMR

1H NMR spectra showing peaks at various ppm values. The spectra are labeled with chemical shifts, and a chemical structure is illustrated with atom labels and bond connections.
36 31P NMR

37 1H NMR
Appendix D

Crystallographic data
Chapter 2

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>6 • CH₂Cl₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. Formula</td>
<td>C₇₁H₇₂ClOsP₄Si</td>
<td>C₆₂H₅₃ClOsP₄</td>
</tr>
<tr>
<td>M (g/mol)</td>
<td>1303.99</td>
<td>1147.65</td>
</tr>
<tr>
<td>Cryst. color / habit</td>
<td>Yellow / plate</td>
<td>Yellow / block</td>
</tr>
<tr>
<td>Cryst. dim. (mm³)</td>
<td>0.05 x 0.09 x 0.15</td>
<td>0.08 x 0.11 x 0.20</td>
</tr>
<tr>
<td>Temp. (K)</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>λ (Å)</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>Cryst. Syst.</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group (N°)</td>
<td>P 2₁/a (14)</td>
<td>P 2₁/c (14)</td>
</tr>
<tr>
<td>a (Å)</td>
<td>13.9487(3)</td>
<td>11.4941(2)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>17.1350(3)</td>
<td>22.4668(3)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>26.3883(5)</td>
<td>19.3328(3)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>96.9911(10)</td>
<td>93.9699(7)</td>
</tr>
<tr>
<td>β (deg)</td>
<td>79.035(10)</td>
<td>79.035(10)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td>89.6495(9)</td>
<td>89.6495(9)</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>6260.2(2)</td>
<td>4980.44(13)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Dcalc (g/cm³)</td>
<td>1.38</td>
<td>1.53</td>
</tr>
<tr>
<td>Transm. Factors</td>
<td>0.76-0.90</td>
<td>0.67-0.82</td>
</tr>
<tr>
<td>μ (mm⁻¹)</td>
<td>2.24</td>
<td>2.78</td>
</tr>
<tr>
<td>Theta (deg)</td>
<td>2.6-25.0</td>
<td>2.7-27.9</td>
</tr>
<tr>
<td>hmin/hmax</td>
<td>-16/16</td>
<td>-15/15</td>
</tr>
<tr>
<td>kmin/kmax</td>
<td>-20/20</td>
<td>-29/29</td>
</tr>
<tr>
<td>lmin/lmax</td>
<td>-31/31</td>
<td>-25/25</td>
</tr>
<tr>
<td>F(000)</td>
<td>2664</td>
<td>2312</td>
</tr>
<tr>
<td>Compl. (%)</td>
<td>100</td>
<td>99.7</td>
</tr>
<tr>
<td>Rint (%)</td>
<td>22.0</td>
<td>7.8</td>
</tr>
<tr>
<td>Total reflections</td>
<td>123175</td>
<td>116730</td>
</tr>
<tr>
<td>Unique refl. (N₀)</td>
<td>11102</td>
<td>12195</td>
</tr>
<tr>
<td>N₀ [I > 2.0 σ(I)]</td>
<td>4170</td>
<td>9118</td>
</tr>
<tr>
<td>N° of param.</td>
<td>703</td>
<td>613</td>
</tr>
<tr>
<td>GoF</td>
<td>1.02</td>
<td>0.95</td>
</tr>
<tr>
<td>Flack-Parameter</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RF² > 2 σ(F²)</td>
<td>3.2</td>
<td>3.5</td>
</tr>
<tr>
<td>wR(F²) (%)</td>
<td>12.7</td>
<td>7.2</td>
</tr>
</tbody>
</table>

\[
R = \frac{\sum |F_o| - |F_c|}{\sum |F_o|},
\]

\[
wR = \left(\frac{\sum w(|F_o| - |F_c|)^2}{\sum wF_o^2} \right)^{1/2} \text{ where } w = \left[\sigma_c^2(F_o) + \left(\frac{p^2}{4}\right)F_o^2 \right]^{-1}
\]
<table>
<thead>
<tr>
<th></th>
<th>9·0.5C₇H₈</th>
<th>10·CH₂Cl₂</th>
<th>11·CH₂Cl₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. Formula</td>
<td>C₆₃H₅₆ClOsP₄</td>
<td>C₆₁H₅₄BrCl₃OsP₄</td>
<td>C₆₁H₅₄Cl₃IosP₄</td>
</tr>
<tr>
<td>M (g/mol)</td>
<td>1169.2</td>
<td>1287.47</td>
<td>1334.46</td>
</tr>
<tr>
<td>Cryst. color / habit</td>
<td>Yellow/rod</td>
<td>Yellow/block</td>
<td>Yellow/plate</td>
</tr>
<tr>
<td>Cryst. dim. (mm³)</td>
<td>0.44 x 0.11 x 0.10</td>
<td>0.11 x 0.18 x 0.27</td>
<td>0.09 x 0.13 x 0.16</td>
</tr>
<tr>
<td>Temp. (K)</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>λ (Å)</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>Cryst. Syst.</td>
<td>Monoclinic</td>
<td>Triclinic</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group (N°)</td>
<td>P 1 2₁/n 1</td>
<td>P -1(1)</td>
<td>P 1 2₁/a 1(14)</td>
</tr>
<tr>
<td>a (Å)</td>
<td>13.7138(1)</td>
<td>9.2626(1)</td>
<td>9.3045(1)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>22.7102(3)</td>
<td>12.9132(2)</td>
<td>48.1334(5)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>17.3934(2)</td>
<td>23.9301(4)</td>
<td>12.9892(2)</td>
</tr>
<tr>
<td>α (deg)</td>
<td></td>
<td></td>
<td>93.264(1)</td>
</tr>
<tr>
<td>β (deg)</td>
<td>103.8598(6)</td>
<td>93.976(1)</td>
<td>99.5615(3)</td>
</tr>
<tr>
<td>γ (deg)</td>
<td></td>
<td></td>
<td>99.222(1)</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>5259.34(10)</td>
<td>2811.74(7)</td>
<td>5736.49(12)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Dcalc (g/cm³)</td>
<td>1.48</td>
<td>1.52</td>
<td>1.55</td>
</tr>
<tr>
<td>Transm. Factors</td>
<td>0.75-0.77</td>
<td>0.48-0.71</td>
<td>0.66-0.78</td>
</tr>
<tr>
<td>μ (mm⁻¹)</td>
<td>2.64</td>
<td>3.27</td>
<td>3.05</td>
</tr>
<tr>
<td>Theta (deg)</td>
<td>2.6-30.0</td>
<td>2.57-27.49</td>
<td>2.56-27.47</td>
</tr>
<tr>
<td>hmin/hmax</td>
<td>-19/19</td>
<td>-12/11</td>
<td>-12/12</td>
</tr>
<tr>
<td>kmin/kmax</td>
<td>-31/31</td>
<td>-16/16</td>
<td>-62/62</td>
</tr>
<tr>
<td>lmin/lmax</td>
<td>-24/24</td>
<td>-31/31</td>
<td>-12/12</td>
</tr>
<tr>
<td>F(000)</td>
<td>2362</td>
<td>1284</td>
<td>2640</td>
</tr>
<tr>
<td>Compl. (%)</td>
<td>100</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>Rint (%)</td>
<td>5.0</td>
<td>7.3</td>
<td>4.3</td>
</tr>
<tr>
<td>Total reflections</td>
<td>124257</td>
<td>61755</td>
<td>64677</td>
</tr>
<tr>
<td>Unique refl. (N₀)</td>
<td>15388</td>
<td>12843</td>
<td>12387</td>
</tr>
<tr>
<td>N₀ [I > 2.0 σ(I)]</td>
<td>11292</td>
<td>10259</td>
<td>11163</td>
</tr>
<tr>
<td>N₀ of param.</td>
<td>631</td>
<td>631</td>
<td>631</td>
</tr>
<tr>
<td>Gof²</td>
<td>0.92</td>
<td>0.95</td>
<td>0.98</td>
</tr>
<tr>
<td>Flack-Parameter</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RF² > 2 σ(F²)</td>
<td>2.1</td>
<td>3.7</td>
<td>3.1</td>
</tr>
<tr>
<td>wR(F²) (%)</td>
<td>5.6</td>
<td>7.1</td>
<td>7.5</td>
</tr>
</tbody>
</table>

\[R = \frac{\sum|F_o|-|F_c|}{\sum|F_o|}, \]

\[wR = \left[\frac{\sum w(|F_o|-|F_c|)^2}{\sum wF_o^2} \right]^{1/2} \]

where \(w = \left[\sigma^2(F_o) + (p^2/4)F_o^2 \right]^{-1} \)
<table>
<thead>
<tr>
<th></th>
<th>13 ∙ 2C₇H₈</th>
<th>14</th>
<th>15 ∙ CH₂Cl₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. Formula</td>
<td>C₇₄H₇₂F₆NO₅P₅</td>
<td>C₆₀H₅₅F₆INO₅P₅</td>
<td>C₆₀H₆₁BrCl₂F₆NO₅P₅</td>
</tr>
<tr>
<td>M (g/mol)</td>
<td>1434.45</td>
<td>1376.06</td>
<td>1514.12</td>
</tr>
<tr>
<td>Cryst. color / habit</td>
<td>Yellow/plate</td>
<td>Yellow/plate</td>
<td>Yellow/block</td>
</tr>
<tr>
<td>Cryst. dim. (mm³)</td>
<td>0.09 x 0.14 x 0.15</td>
<td>0.07 x 0.21 x 0.24</td>
<td>0.06 x 0.07 x 0.11</td>
</tr>
<tr>
<td>Temp. (K)</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>λ (Å)</td>
<td>0.71073</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>Cryst. Syst.</td>
<td>Orthorhombic</td>
<td>Orthorhombic</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space group (N°)</td>
<td>P a 2₁(29)</td>
<td>P c a 2₁</td>
<td>P bca(61)</td>
</tr>
<tr>
<td>a (Å)</td>
<td>17.8849(2)</td>
<td>24.2797(3)</td>
<td>17.6946(1)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>15.6530(2)</td>
<td>9.764(1)</td>
<td>23.1349(2)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>23.5329(3)</td>
<td>22.6269</td>
<td>32.7147(2)</td>
</tr>
<tr>
<td>α (deg)</td>
<td>90.0</td>
<td>90.0</td>
<td>90.0</td>
</tr>
<tr>
<td>β (deg)</td>
<td></td>
<td></td>
<td>90.0</td>
</tr>
<tr>
<td>γ (deg)</td>
<td></td>
<td></td>
<td>90.0</td>
</tr>
<tr>
<td>V (Å³)</td>
<td>6588.09(14)</td>
<td>5364.15(11)</td>
<td>13392.18(16)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Dcalcd (g/cm³)</td>
<td>1.45</td>
<td>1.70</td>
<td>1.50</td>
</tr>
<tr>
<td>Transm. Factors</td>
<td>0.75-0.84</td>
<td>0.53-0.82</td>
<td>0.75-0.85</td>
</tr>
<tr>
<td>µ (mm⁻¹)</td>
<td>2.12</td>
<td>3.16</td>
<td>2.76</td>
</tr>
<tr>
<td>Theta (deg)</td>
<td>1.93-27.47</td>
<td>2.68-27.86</td>
<td></td>
</tr>
<tr>
<td>hmin/hmax</td>
<td>-22/23</td>
<td>-31/31</td>
<td>-20/21</td>
</tr>
<tr>
<td>kmin/kmax</td>
<td>-20/19</td>
<td>-12/12</td>
<td>-27/27</td>
</tr>
<tr>
<td>lmin/lmax</td>
<td>-30/30</td>
<td>-29/29</td>
<td>-38/38</td>
</tr>
<tr>
<td>F(000)</td>
<td>2912</td>
<td>2720</td>
<td>6048</td>
</tr>
<tr>
<td>Compl. (%)</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Rint (%)</td>
<td>6.2</td>
<td>9.6</td>
<td>7.1</td>
</tr>
<tr>
<td>Total reflections</td>
<td>98993</td>
<td>75500</td>
<td>189505</td>
</tr>
<tr>
<td>Unique refl. (N₀)</td>
<td>15029</td>
<td>12764</td>
<td>12785</td>
</tr>
<tr>
<td>N₀ [I > 2.0 σ(I)]</td>
<td>11475</td>
<td>11445</td>
<td>8988</td>
</tr>
<tr>
<td>N₀ of param.</td>
<td>720</td>
<td>668</td>
<td>766</td>
</tr>
<tr>
<td>GoF</td>
<td>0.97</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>Flack-Parameter</td>
<td>-0.022(5)</td>
<td>-0.015(3)</td>
<td>-</td>
</tr>
<tr>
<td>RF² > 2 σ(F²)</td>
<td>3.8</td>
<td>2.5</td>
<td>3.1</td>
</tr>
<tr>
<td>wR(F²)(%)</td>
<td>9.8</td>
<td>5.6</td>
<td>7.2</td>
</tr>
</tbody>
</table>

\[R = \frac{\sum|F_o|-|F_c|}{\sum|F_o|}, \]

\[wR = \frac{\sqrt{\sum w(|F_o|-|F_c|)^2}/\sum wF_o^2}^{1/2} \text{ where } w = \frac{\sigma_c^2(F_o) + (p^2/4)F_o^2}{F_o} \]
Table 3.1

<table>
<thead>
<tr>
<th>Property</th>
<th>17·2C₇H₈</th>
<th>19</th>
<th>187H₈₁₃O₅₄P₄Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chem. Formula</td>
<td>C₈₂H₇₄OsP₄</td>
<td>C₈₇H₈₇₁₃O₅₄P₄Si</td>
<td></td>
</tr>
<tr>
<td>M (g/mol)</td>
<td>1373.59</td>
<td>1604.69</td>
<td></td>
</tr>
<tr>
<td>Cryst. color / habit</td>
<td>Yellow/plate</td>
<td>yellow/plate</td>
<td></td>
</tr>
<tr>
<td>Cryst. dim. (mm³)</td>
<td>0.17 x 0.22 x 0.32</td>
<td>0.23 x 0.09 x 0.04</td>
<td></td>
</tr>
<tr>
<td>Temp. (K)</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>λ (Å)</td>
<td>0.71073</td>
<td>0.71073</td>
<td></td>
</tr>
<tr>
<td>Cryst. Syst.</td>
<td>Triclinic</td>
<td>Triclinic</td>
<td></td>
</tr>
<tr>
<td>Space group (N°)</td>
<td>P -1(1)</td>
<td>P -1(1)</td>
<td></td>
</tr>
<tr>
<td>a (Å)</td>
<td>9.5310(1)</td>
<td>13.5087(2)</td>
<td></td>
</tr>
<tr>
<td>b (Å)</td>
<td>12.9852(2)</td>
<td>14.3396(2)</td>
<td></td>
</tr>
<tr>
<td>c (Å)</td>
<td>14.3474(2)</td>
<td>21.9504(3)</td>
<td></td>
</tr>
<tr>
<td>α (deg)</td>
<td>81.8841(7)</td>
<td>99.0901(8)</td>
<td></td>
</tr>
<tr>
<td>β (deg)</td>
<td>75.5031(9)</td>
<td>102.5757(6)</td>
<td></td>
</tr>
<tr>
<td>γ (deg)</td>
<td>74.2740(8)</td>
<td>101.3641(9)</td>
<td></td>
</tr>
<tr>
<td>V (Å³)</td>
<td>1649.65(4)</td>
<td>3977.95(10)</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>D_calcd (g/cm³)</td>
<td>1.38</td>
<td>1.34</td>
<td></td>
</tr>
<tr>
<td>Transm. Factors</td>
<td>0.57-0.72</td>
<td>0.82-0.92</td>
<td></td>
</tr>
<tr>
<td>μ (mm⁻¹)</td>
<td>2.08</td>
<td>2.16</td>
<td></td>
</tr>
<tr>
<td>Theta (deg)</td>
<td>2.94-27.91</td>
<td>2.62-27.49</td>
<td></td>
</tr>
<tr>
<td>h_min/h_max</td>
<td>-12/12</td>
<td>-17/17</td>
<td></td>
</tr>
<tr>
<td>k_min/k_max</td>
<td>-17/17</td>
<td>-18/18</td>
<td></td>
</tr>
<tr>
<td>l_min/l_max</td>
<td>-18/18</td>
<td>-28/28</td>
<td></td>
</tr>
<tr>
<td>F(000)</td>
<td>702</td>
<td>1620</td>
<td></td>
</tr>
<tr>
<td>Compl. (%)</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>R_int (%)</td>
<td>3.2</td>
<td>7.2</td>
<td></td>
</tr>
<tr>
<td>Total reflections</td>
<td>37667</td>
<td>84298</td>
<td></td>
</tr>
<tr>
<td>Unique refl. (N₀)</td>
<td>7880</td>
<td>18225</td>
<td></td>
</tr>
<tr>
<td>N₀ [I > 2.0 σ(I)]</td>
<td>7833</td>
<td>14664</td>
<td></td>
</tr>
<tr>
<td>N₀ of param.</td>
<td>394</td>
<td>855</td>
<td></td>
</tr>
<tr>
<td>GoF</td>
<td>0.98</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>Flack-Parameter</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>R[F² > 2σ(F²)] (%)</td>
<td>1.9</td>
<td>5.4</td>
<td></td>
</tr>
<tr>
<td>wR(F²) (%)</td>
<td>3.8</td>
<td>14.6</td>
<td></td>
</tr>
</tbody>
</table>

\[
R = \frac{\sum ||F_0|| - |F_c||}{\sum |F_0|},
\]

\[
wR = \left[\frac{\sum w(|F_0| - |F_c|)^2}{\sum wF_0^2}\right]^{1/2} = \frac{[\sigma_c^2(F_0) + (p^2/4)F_0^2]}{w}^{-1}
\]

290