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Abstract

Although numerous time series epidemiological studies have reported an association 

between daily mortality and air pollution, there is uncertainty about the extent of life 

shortening due to air pollution. It is unclear whether the increase in daily deaths as 

demonstrated by time series studies is just an indicator of the short-term displacement of 

the time of death of frail individuals by a few days, a phenomenon known as 

“harvesting”. This is an important question for the public health task of estimating the 

impact of air pollution on mortality. The impact will be much lower if the mortality 

displacement is very short-term i.e. just by a couple of days, rather than a substantial 

reduction of life expectancy by months or years. While several time series studies have 

provided evidence of the acute effects of air pollution on mortality, there is limited 

research analysing the extended effects of air pollution over a few weeks and the effects 

of long-term exposure to air pollution on mortality.

Christchurch has amongst the worst air quality in New Zealand. The frequent 

occurrence of calm periods and temperature inversions on cold winter nights, in 

combinations with emissions from the burning of coal and wood as domestic heating, 

exacerbate winter air pollution levels in Christchurch. For several decades, air pollution 

from the burning of coal and wood in the winter has been a major concern, primarily as 

an environmental nuisance. In addition to the emissions from domestic heating, air 

pollution from other sources, mostly vehicle emissions, is also a growing concern. 

Because of mounting evidence of the association between air pollution and mortality, 

air pollution has been increasingly recognised as a public health threat in Christchurch. 

This study examines whether or not particulate matter is associated with an increase in 

mortality in Christchurch. The four main objectives are: 1) to estimate the acute effects 

of daily air pollution on daily mortality, up to a few days after exposure; 2) to test 

whether an association between short-term exposure to particulate matter and mortality 

can be attributed to “harvesting”; 3) to estimate the extended effects of particulate 

matter on daily mortality up to a few weeks after exposure; and 4) to quantify the 

association between long-term exposure to particulate matter and annual mortality. 

Time series studies were carried out for the first three objectives and an ecological 

cross-sectional study was conducted for the fourth objective.

Mortality data for the years 1988 -  1999 were obtained from the New Zealand 

Health Information Service. Environment Canterbury provided routinely monitored air



pollution and weather data. For the first three objectives, daily mortality, air pollution 

and weather data for the period from June 1988 to December 1999 were analysed. For 

the fourth objective of estimating the effect of long-term exposure to PMio on mortality 

at annual level, census area unit based mortality data from 1996 to 1999 were associated 

with spatial annual average PMio exposure estimates provided by the University of 

Canterbury.

Modelling techniques included Poisson regression, polynomial distributed lag, 

time series analysis over the mid-scale variations of daily data and logistic regression 

across spatial units. Poisson regression models were used to associate daily air pollutant 

concentrations with daily mortality controlling for a long-term trend, seasonal variation 

in daily mortality and the confounding effects of weather variables. Polynomial 

distributed lag modelling was used to analyse the extended effects of PMio on mortality. 

The mid-scale variations of daily data were analysed to examine the presence of 

harvesting. Logistic regression across spatial units was used to associate annual average 

PMio concentrations with annual mortality.

A significant positive association was observed between daily PMio and daily 

non-external mortality. An increase of 10 pg/nr in daily PMio was associated with a 

1.5% increase (95% Cl: 0.6, 2.5%) in the same day non-external deaths in the 

population aged 65+ years. When deaths up to several weeks were considered using 

polynomial distributed lag models, the total estimated effects of PMio on non-external 

cause mortality, circulatory mortality and respiratory mortality were found to be much 

larger. There was a total estimated increase of 14.9% (95% Cl: 6.9, 23.4%) in non

external cause mortality in the population aged 65+ years during 41 days after exposure 

(including the day of exposure) for each 10 pg/nr increase in daily PMio. The analysis 

of long-term exposure to PMio estimated an increase of 17% (95% Cl: 9, 26%) in 

annual non-external deaths in the population aged 65+ years for each 10 pg/nr increase 

in annual average PMi0. The estimated PM]0 associated risk of mortality was higher for 

respiratory mortality than for other causes.

This study provides evidence of both short-term and long-term effects of PMio 

on mortality in Christchurch and suggests that studies focussing only on the effects of 

PMio on mortality on the same day or a couple of days after exposure underestimate the 

total effect of PMio. It also shows that the short-term association between PMio and 

mortality can not be entirely attributed to harvesting. These findings contribute to the 

scientific evidence of mortality effects of PMio both in the short-term and long-term,



and suggest that air pollution may be a greater threat to public health than what has been 

thought until now.
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Chapter 1: Introduction

1.1 Background

Air pollution has been a part of human life since before the days of civilisation, as 

people used fire, a major source of air pollution, for cooking and warmth. Prehistoric 

evidence of human exposure to air pollution from the burning of solid fuels can be 

found in mummified lung tissues (Brimblecombe, 1999). With urbanisation, the use of 

fossil fuels such as coal, oil, petrol, diesel and natural gas for transport, power 

generation and other human activities increased air pollution. The major sources of air 

pollution in modern cities are vehicle emissions, emissions from domestic home heating 

using solid fuels such as wood and coal, and industrial emissions.

Air pollution has long been recognised as one of the major threats to public 

health. Extreme air pollution episodes, such as those occurred in the Meuse Valley, 

Belgium in December 1930 (Roholm, 1937), Donora, Pennsylvania in October 1948 

(Ciocco and Thompson, 1961), and London in December 1952 (UKMoH, 1954), have 

been associated with increases in mortality and morbidity. The risk to health from air 

pollution was readily apparent during these extreme air pollution episodes. Increases in 

mortality and morbidity were reported during and after the episodes, and such events led 

to actions to reduce air pollution. Although ambient air pollution levels have decreased 

substantially in the major cities of the developed countries, the problems persist today in 

both developed and developing countries.

As ambient air pollution concentrations during subsequent episodes became 

significantly lower than in the earlier extreme episodes, it became harder to detect 

health effects during the short episodes (Brunekreef and Holgate, 2002). Research on 

the health effects of air pollution thus shifted from a focus upon the health effects 

during the episodes to time series methods which examine daily variations in air 

pollution over a longer period of time as determinants of daily variations in mortality. 

With advancement in analytical methods, time series methods have emerged as one of 

the most important statistical methods to analyse the associations between air pollution 

and mortality (and morbidity). Many of these time series studies have reported 

associations at ambient concentrations below existing health guidelines.

Time series epidemiological studies have documented short-term associations 

between air pollution and daily mortality in a number of cities, including Australian and 

New Zealand cities, using a wide range of modelling techniques (Schwartz, 1993;
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Schwartz, Dockery and Neas, 1996; Katsouyanni et al., 1997; Kelsall et al., 1997; 

Simpson et al., 1997; Michelozzi et al., 1998; Morgan et al., 1998; Ostro et al., 1999; 

Hales et al., 2000; Lee et al., 2000; Samet et al., 2000c; Denison et al., 2001a; Zanobetti 

et al., 2002). Time series studies associate day-to-day variations in mortality with day- 

to-day variations in air pollution concentrations after controlling for the effects of 

confounding variables that vary from day-to-day such as weather variables. These 

studies evaluate an increased risk of mortality due to an increase in air pollution over 

very short intervals of time, usually one day to a few days.

Air pollution can increase deaths on the same day as well as on several 

subsequent days. The effect of air pollution on mortality is likely to be distributed over 

several days (Zanobetti et al., 2000), so only models that analyse the extended effects of 

air pollution on mortality by combining the effects of air pollution on mortality 

occurring on the same day and on subsequent days can estimate the overall effect of air 

pollution on mortality.

Although numerous time series studies have reported that an increase in daily 

mortality is associated with an increase in daily ambient air pollution concentrations, it 

is unclear whether most or even all the excess daily deaths would have occurred in a 

few days regardless of air pollution levels. It is unclear whether air pollution only 

displaces the time of deaths by a few days, usually known as “harvesting” or 

substantially shortens the life by months or years. If all air pollution related deaths occur 

only among those frail persons who would have died within a few days, their lifespan 

are not greatly shortened and air pollution will be less of a public health concern. In 

order to assess the public health significance of air pollution, it is important to know by 

how many days, months or years the time of deaths is advanced by air pollution. The 

public health impact will be much more if air pollution brings forward the time of death 

by months or years rather than just a few days (McMichael et al., 1998; Brunekreef and 

Holgate, 2002). Any evidence that suggests that “harvesting” (i.e. short-term 

displacement of time of deaths by a few days) is not the dominating cause of increased 

mortality associated with air pollution will have significant public health implication.

Because of study design, daily time series studies can only demonstrate the 

short-term associations between air pollution exposure and mortality (and morbidity). 

They are designed to pick up only the short-term increase in the number of air pollution 

related deaths (and hospital admissions) against the background long-term mortality 

(and morbidity) and provide no information on the association between long-term 

exposure to air pollution and the background long-term mortality (and morbidity). The
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relationship between long-term exposure and mortality (and morbidity) has been 

evaluated using both cross-sectional ecological studies (Chappie and Lave, 1982; 

Ozkaynak and Thurston, 1987; Scoggins et al., 2004) and prospective cohort studies 

(Dockery et al., 1993; Finkelstein et al, 2003; Pope et al, 2004; Filleul et al., 2005; 

Krewski et al., 2005c; Gauderman et al., 2007). While time series studies estimate the 

acute effects of air pollution on mortality (and morbidity), cross-sectional ecological 

studies and cohort studies estimate the chronic effects of air pollution on mortality, and 

the effects of accumulated air pollution exposure on mortality. From a health point of 

view, all of these effects are equally important.

A few overseas studies, mainly North American and European, have examined 

the role of “harvesting” in the association of short-term exposure to particulate matter 

with mortality (Zeger, Dominici and Samet, 1999; Schwanz, 2000c; 2001; Dominici et 

al., 2003c) and others have analysed the extended effects of particulate matter on 

mortality spread over several days (Schwartz, 2000b; Braga, Zanobetti and Schwartz, 

2001; Zanobetti et al., 2002; Goodman, Dockery and Clancy, 2004). These studies have 

provided evidence against “harvesting”. The studies analysing the extended effects of 

particulate matter on mortality showed that the total effect of particulate matter spread 

over several days were much larger than the effects on a single day mortality; either on 

the same day or on the mortality occurring a few days after exposure. To date, there has 

not been any research analysing these issues in detail in Australian and New Zealand 

cities.

Australian and New Zealand cities are very different from the North American 

and European cities in terms of air pollution (for example composition of air pollution 

mixtures), weather conditions, population structure, lifestyle which could affect 

exposure to air pollution and access to health services. For example, air pollution in 

Christchurch is mainly a winter time problem because of the burning of solid fuels for 

domestic heating in the winter. This is most likely to be very different from air pollution 

in most North American and European cities where vehicle and industry emissions are 

the dominant sources of air pollution. The climatic conditions in Christchurch are also 

considerably different from many other cities. Lengthy calm periods and temperature 

inversions frequently occur, especially in cold winter nights in Christchurch. Because of 

these differences, the findings in Christchurch may be different from the results of the 

US and European studies.
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1.2 Air pollution and mortality in Christchurch

Although New Zealand, in general, has a clean and green image, and has clean air 

relative to major North American and European cities, some parts of New Zealand, 

most notably the city of Christchurch, have significant air pollution problems. For 

several decades, air pollution from the burning of solid fuels for domestic heating in the 

winter has been a major concern in Christchurch, primarily as an environmental 

nuisance. Domestic heating contributes about 82% of particulate matter of less than 10 

micrometers in diameter (PMio) in the winter months (Scott and Gunatilaka, 2004). 

Because of the topography and meteorology of Christchurch, lengthy calm periods and 

temperature inversions frequently occur, especially in cold winter nights, when 

emissions from domestic heating are most likely to be at the highest level. The frequent 

occurrences of such meteorological conditions, which are conducive to high air 

pollution, make the air pollution problem worse in the winter months in Christchurch. 

As a result, the twenty-four hour average PMio concentrations exceeds the Ministry for
'y

the Environment ambient air quality guideline of 50 |ig/nr, on average, for 30 days 

each year in the winter (Canterbury Regional Council, 1997; Ministry for the 

Environment and Ministry of Health, 2002). In addition to the emissions from domestic 

heating, air pollution from other sources, particularly vehicle emissions, is also 

becoming a growing concern (Kjellstrom, Shrestha and Metcalf, 2002).

Because of growing evidence of the associations between air pollution and 

mortality provided by overseas studies, air pollution has been increasingly recognised as 

a public health concern in Christchurch. A few studies have been carried out analysing 

the association between air pollution and mortality (and morbidity) in Christchurch 

(Dawson, Allan and Fergusson, 1983; Wilkie et al., 1995; Harre et al, 1997; Hewat et 

al., 1998; Hales et al., 2000; McGowan et al., 2002). While some studies showed 

statistically significant positive associations of daily particulate matter with daily 

mortality (Hales et al., 2000) and with daily cardio-respiratory hospital admissions 

(McGowan et al., 2002) in Christchurch, others did not find evidence of an association 

between the city’s air pollution levels and health outcomes (Dawson, Allan and 

Fergusson, 1983; Wilkie et al, 1995; Hewat et al., 1998). Inconclusive evidence could 

have resulted from small sample sizes and the short duration of these studies, which 

may have limited their statistical power to detect any association between air pollution 

and health outcomes.

A time series analysis of the association of short-term exposure to PMio with 

daily mortality in Christchurch reported a 1% increase in all-cause mortality and a 4%
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increase in respiratory mortality for each 10 pg/m3 increase in PMio on the day prior to 

death (Hales et al., 2000). While Hales et al. (2000) estimated the short-term association 

between PMio and mortality, a national risk assessment, commissioned by the Ministry 

of Transport, based on the exposure-response relationship from long-term exposure 

studies, estimated 182 deaths per year due to particulate matter from all sources in the 

population aged 30+ years in Christchurch (Fisher et al., 2002). This risk assessment 

followed the methodology used by Kunzli et al. (2000), which assumed a 4.3% increase 

in mortality for each 10 pg/m3 increase in annual average PMio concentrations above 

the threshold level of 7.5 pg/m' (Kunzli et al., 2000). The exposure-response 

relationship was based on the exposure-response relationships from the two US cohort 

studies (Dockery et al., 1993; Pope et al., 1995).

The need for the detailed analysis of the associations between particulate matter 

and mortality in Christchurch became evident when I was working with Professor Tord 

Kjellstrom in the research projects on health effects of air pollution at the New Zealand 

Environmental and Occupational Health Research Centre, University of Auckland. We 

were involved in the national risk assessment, commissioned by the Ministry of 

Transport, which estimated the number of premature deaths in the population aged 30+ 

years in New Zealand due to exposure to PMio from vehicle emissions and from all 

sources (Fisher et al., 2002). The Health and Air Pollution in New Zealand (HAPiNZ) 

project, jointly funded by Health Research Council, the Ministry for the Environment, 

and Ministry of Transport, has recently been undertaken to determine the 

environmental, health, social, and economic costs of air pollution in New Zealand 

(Fisher et al., 2005; Fisher et al., 2007). My PhD thesis has made a major contribution 

to the HAPiNZ project, especially in the areas of epidemiological analysis of PMio and 

mortality in Christchurch.

1.3 Aim and objectives

The main aims of this thesis are to examine whether or not particulate matter is 

associated with mortality and to analyse the associations over different time scales in 

Christchurch, New Zealand. Under these aims, the main objectives of this research are:

1. To quantify the effects of short-term exposure to particulate matter on daily 

mortality.

2. To test whether or not the association between short-term exposure to particulate 

matter and daily mortality is due to mortality displacement by a few days.
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3. To quantify the extended effects of particulate matter on daily mortality using 

distributed lag models.

4. To explore the shape of the distribution of effects of particulate matter on daily 

mortality over lag days.

5. To study the association between long-term exposure to particulate matter and 

annual mortality.

1.4 Significance of the study

Although previous Australian and New Zealand based time series studies have 

documented positive associations between short-term exposure to air pollution, 

including particulate matter, and daily mortality and morbidity (Simpson et al., 1997; 

Morgan, Corbett and Wlodarczyk, 1998; Morgan et al., 1998; Hales et al., 2000; 

Denison et al., 2001a; Denison et al., 2001b; McGowan et al., 2002; Simpson et al., 

2005a; Simpson et al., 2005b), there is very limited knowledge about the extended 

effects o f air pollution on mortality and whether or not the short-term association 

between daily air pollution and mortality is due to “ harvesting” . This is the first study to 

analyse these issues in Christchurch, and perhaps the first in this region. Analysis of the 

associations between exposure to particulate matter and mortality over different time 

scales, ranging from the very short-term to the long-term at annual level, in the same 

city, provides the overall knowledge about the effects of particulate matter on mortality. 

This study adds to what we know about the health effects of particulate matter in 

Christchurch in particular, and to scientific knowledge of the mortality effects of PMio.

1.5 Structure of the thesis

This chapter provides the rationale for this study and states its main aim and objectives.

Chapter 2 is a literature review, which provides a context for the development of 

the thesis. This chapter reviews the literature relevant to the association between 

particulate matter and mortality with a major focus on time series studies. The review 

covers major issues associated with time series studies including statistical modelling, 

the role o f short-term harvesting in the association between air pollution and mortality, 

the concentration-response relationship, the threshold levels and whether any air 

pollution effects are modified by certain factors.

Chapter 3 describes the study region, the sources of data, and the preparation of 

data for analysis. This chapter explains the preparation of exposure data and discusses
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various issues related to the data, including how they were collected by Environment 

Canterbury and the estimation of missing data using regression techniques.

The descriptive analyses of data are presented in Chapter 4 and Chapter 5. 

Chapter 4 provides descriptive analyses of population and mortality data, and Chapter 5 

provides descriptive analyses of weather and air pollution data. Annual trends and 

seasonal variations in mortality, weather, and air pollution data are examined in these 

chapters. The correlations between weather and air pollution data are also analysed in 

Chapter 5.

Chapters 6, 7, 8 and 9 are the main sections of this thesis presenting the findings 

of the research. Chapters 6, 7 and 8 present the analyses of the temporal data with time 

series regression models as the main analysis technique. Chapter 6 analyses the first 

objective, to quantify the effects of short-term exposure to particulate matter on daily 

mortality. This chapter analyses the effect on daily mortality of single day exposure to 

particulate matter using various modelling strategies. These models are adjusted for 

long-term trends and seasonal variations in daily mortality and the confounding effects 

of weather on mortality.

Chapter 7 analyses the second objective of this research. This chapter explains 

the concept of short-term mortality displacement and the method used to analyse it. It 

examines if any association between short-term exposure to air pollution and daily 

mortality is due to mortality displacement by a few days.

Building on the methods used in Chapter 6, the extended effects of particulate 

matter on daily mortality are analysed in Chapter 8, the third and fourth objectives of 

this research. The estimates of the total effects of particulate matter distributed over 

several days, using polynomial distributed lag models are presented and the shape of the 

distribution of effects of particulate matter on daily mortality over lag days is explored.

While Chapters 6, 7 and 8 describe the analysis of the associations between 

particulate matter and mortality at short to mid-term time scale, Chapter 9 provides the 

analysis of the association between annual average particulate matter and annual 

mortality, which is the fifth objective of this research. Instead of the regularly monitored 

temporal data used in Chapters 6, 7 and 8, spatial data are used in Chapter 9. Annual 

average spatial air pollution exposure estimates are derived from TAPM (The Air 

Pollution Model).

In Chapter 10, the findings of this study and their implications are discussed. 

Various issues related to data, method and the study’s limitations are also discussed in 

this chapter. Chapter 11 summarises the main findings of this research.
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Chapter 2: Literature review

2.1 Introduction

Striking increases in mortality following a series of high air pollution episodes in the 

United States and Europe in the mid-twentieth century have shown that air pollution at 

high concentrations causes excess deaths (Roholm, 1937; UKMoH, 1954; Ciocco and 

Thompson, 1961; Nemery, Hoet and Nemmar, 2001). As high air pollution episodes 

became less frequent and air pollution concentrations during the episodes became 

relatively lower than in the earlier episodes, the focus has shifted from air pollution 

episodes to time series studies. Several time series studies conducted both at a single 

city and across multiple cities have provided evidence of positive associations between 

daily air pollution levels and daily mortality/morbidity (Schwartz, 1993; Schwartz, 

Dockery and Neas, 1996; Katsouyanni et al., 1997; Kelsall et al., 1997; Michelozzi et 

al., 1998; Morgan et al., 1998; Ostro et al, 1999; Lee et al., 2000; Samet et al., 2000c; 

Zanobetti et al., 2002). Besides time series studies, which only demonstrate the effect of 

short-term exposure to air pollution, cohort studies, which can document the longer term 

effect o f air pollution on mortality, have also shown that air pollution causes excess 

deaths in the long run (Dockery et al., 1993; Pope et al., 1995; Pope et al., 2002; 

Nafstad et al., 2004).

Although it is well understood that there is an association between air pollution 

and daily mortality, there are still a number of issues and uncertainties associated with 

air pollution epidemiological studies such as the choice of statistical modelling, the role 

of short-term harvesting in the association between air pollution and mortality, the 

concentration-response relationship, the threshold levels, and whether air pollution is 

modified by certain factors. Many studies have attempted to address one or more of the 

above issues. This literature review summarises the literature relevant to the association 

between air pollution and mortality including those studies, which have discussed the 

above issues. A major focus of this literature review is the time series studies of the 

effect o f air pollution on mortality.

2.2 Statistical modelling in time series studies of particulate matter 
and health

Time series studies are the most commonly used epidemiological studies to study the 

association between air pollution and mortality/morbidity. These studies evaluate the
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effects of exposure to air pollution over a short period of time typically one day to 

several days. They relate the change in health outcomes, usually the daily counts of 

mortality or hospital admissions, to the change in air pollution exposure levels on the 

same day or over the last few days.

In time series study design, the relationship between air pollution and health 

outcomes is confounded by other variables that vary on short time scale. As population 

characteristics like age, gender, smoking habit, socioeconomic class do not vary from 

day-to-day, these variables do not confound the short-term association between air 

pollution and health. Variables like temperature, relative humidity and epidemics, which 

vary on short time scale, are most likely be confounders in time series studies. For 

example, number of deaths generally peaks during the winter months when temperature 

falls. PM 10 levels in a region like Christchurch are higher in the winter months than the 

rest of the year. Although PMio is not the only risk factor contributing to higher deaths 

in the winter months, the increased mortality may be wrongly linked only to PMio, 

which will result in an overestimation of the effect of PMio on mortality if the 

confounders such as season and temperature are not adequately adjusted for. The 

pollutant variables other than the pollutant variable of interest might also confound the 

true association between pollutant and health outcomes. For example, PMio and CO 

levels are highly correlated and peak during the winter months. Thus, the likely effect of 

CO on mortality may contribute to the association between the variable of interest PMio 

and mortality resulting in an exaggerated effect of PMio if the confounding effect of CO 

is not adequately adjusted for.

Time series analysis estimates an increase in health outcomes, usually a number 

of deaths or hospital admissions, associated with a unit increase in air pollution 

concentrations controlling for confounders such as season, long-term trend, weather 

variables, influenza epidemics, etc. The typical unit of analysis in time series analysis 

are days. Regression models are fitted with the number of daily health outcomes as the 

response variable and daily air pollution levels and weather data as explanatory 

variables. These models can also include additional terms for other confounders like 

other pollutants.

Early time series air pollution and health effects studies assumed that the 

response variable (daily number of deaths or hospital admissions) was approximately 

distributed as a normal variable (or could be transformed to an approximately normally 

distributed variable with a log or a square root transformation) and used linear 

regression methods for analysis (Martin, 1964; Schimmel and Greenburg, 1972;

9



Mazumdar, Schimmel and Higgins, 1982; Ostro, 1984; Schwartz and Marcus, 1990; 

Kinney and Ozkaynak, 1991).

Long-term and seasonal trends were generally adjusted for by filtering out the 

long-term variation in data before analysis and fitting the models for filtered data rather 

than the original time series data. A few earlier studies filtered out the long-term 

variation in data by calculating the deviations in daily data from its 15-day centred 

moving average (Martin, 1964; Schimmel and Murawski, 1976; Ostro, 1984). An air 

pollution and mortality study in New York City regressed the time series data on a 

series of harmonic waves (sine and cosine curves) with different frequencies and used 

the residuals from this model as filtered data series in the subsequent analysis 

(Schimmel and Greenburg, 1972). The filtered data series represented only short-term 

fluctuations in the original series and hence were used to study the association between 

short-term changes in daily deaths and short-term changes in air pollution and weather 

variables. Schwartz & Marcus (1990) further refined the analysis to control for the 

short-term autocorrelations in the data by fitting autoregressive models instead of linear 

regression models to analyse air pollution and mortality in London during the winters of 

1958 to 1972 (Schwartz and Marcus, 1990).

Since a very small proportion of the population dies or are admitted to hospital 

in any given day, daily mortality / hospital admission data are rare events. They are 

count data as they only take non-negative values. The counts of rare events are usually 

modelled as a Poisson variable. Hence, the time series studies of air pollution and 

mortality have later recognised that it is more appropriate to model the daily 

mortality/hospital admission data as a Poisson variable than a Gaussian variable. Studies 

then started using Poisson regression models instead of linear regression (Schwartz, 

1991; Dockery, Schwartz and Spengler, 1992; Schwartz et al, 1996). Schwartz et al. 

(1996) supported the use of linear regression in the earlier studies of the London winters 

arguing that the mean number of deaths in London winters was so high that it allowed a 

Gaussian approximation to a Poisson process. However, they also suggested that one 

should use Poisson regression for the studies with a fewer number of daily deaths 

(Schwartz et al., 1996).

When Gaussian data are linearly filtered, the resulting data series is still 

Gaussian which allows fitting linear regression models for the filtered data series. But 

the filtered Poisson data is not Poisson. Hence, pre-filtering the data to remove a long

term variation before fitting models is not possible if the outcome variable is to be 

modelled as a Poisson variable (Schwartz et al., 1996). In order to solve this problem,
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studies added filters in the regression models to control for the long-term trend and 

seasonal variations instead of pre-filtering data series. This is similar to adding variables 

to control for confounding variables in the regression models.

Studies often used calendar time or one or more functions of calendar time or 

their combinations as predictors in regression models to control for the long-term trend 

and seasonal variations in daily mortality / morbidity. Calendar time was often used as a 

linear predictor of daily mortality / morbidity in regression models (Schwartz, 1991). 

However, a study of air pollution and daily mortality in Cincinnati, Ohio showed that a 

quadratic term of calendar time along with a linear term might be more appropriate 

(Schwartz, 1994c). These studies treated the calendar time as a continuous variable. The 

other approach is to divide calendar time into categorical variables representing months, 

years and seasons and use them in the model. Dummy variables for months, years and 

seasons are created and included as predictors in the regression models. This approach 

models daily mortality / morbidity as a step function of calendar time.

Schwartz (1991) created dummy variables for each year of the study and used 

them in the Poisson regression model in addition to a linear term for the calendar time 

(Schwartz, 1991). In some studies, dummy variables for month of year have been used 

to control for seasonal variations in daily mortality (Ostro et al, 1996). As the seasonal 

pattern may vary from year to year, some studies created dummy variables for each 

month of the study (Schwartz, 1994c; 1994b; Morgan et al., 1998). Some studies 

created dummy variables for seasons instead of months and put them in the regression 

models to control for seasonal variations (Schwartz and Dockery, 1992; Ostro et al., 

1999).

Harmonic waves or trigonometric filtering were used in some studies to remove 

the long-term seasonal and cyclical patterns in data (Kinney and Ozkaynak, 1991; 

Schwartz, 1993). A sequence of sine and cosine functions of time of year was added in 

regression models to model data as harmonic waves. In order to control for the complex 

seasonal patterns in data, studies used the sum of harmonic waves of increasing 

frequencies in the models. The Air Pollution and Health: A European Approach 

(APHEA) project, supported by the European Commission to study the short-term 

health effects of air pollution in 15 European cities, used this protocol to control for 

seasonal variations in daily mortality / morbidity. The protocol was to include up to six 

sinusoidal terms for periods of 12 months, 6 months, 4 months, 3 months, 73 days, and 

2 months in the regression model so that it could pick up the patterns of up to two 

months and only the short-term variation of less than 2 months in mortality and air
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pollution data series would be used to estimate the association between air pollution and 

mortality. The maximum number of sinusoidal terms varied for individual cities which 

was based on goodness of fit test, inspection of time series plots and residual 

periodograms (Katsouyanni et al., 1995; Katsouyanni et al., 1996; Spix and Wichmann, 

1996; Sunyer et al., 1996; Touloumi, Samoli and Katsouyanni, 1996; Wojtyniak and 

Piekarski, 1996; Zmirou et al., 1996; Katsouyanni et al., 1997; Touloumi et al., 1997). 

In addition to the APHEA cities studies, a few other studies including studies in 

Australia and New Zealand also followed the same protocol to control for seasonal 

variations in daily mortality and hospital admissions (Simpson et al., 1997; Hales et al., 

2000; Denison et al., 2001a; Petroeschevsky et al., 2001).

Generalised linear models with parametric splines, such as natural cubic splines, 

and generalised additive models with non-parametric splines, such as smoothing splines 

or lowess smoothers, are the most commonly used statistical modelling techniques in 

the recent time series studies. These models are more flexible than earlier approaches in 

their assumptions about a long-term trend and seasonal variations in daily health 

outcomes, and about the associations of weather variables with health outcomes (Bell, 

Samet and Dominici, 2004).

2.3 Time series studies of particulate matter and mortality

The association between particulate matter and mortality has been reported by 

numerous time series studies in a number of cities in the USA, Canada, Europe, 

Australia, and other parts of the world (Schwartz, 1993; Ostro et al., 1996; Kelsall et al., 

1997; Simpson et al., 1997; Burnett et al., 1998; Morgan et al., 1998; Prescott et al., 

1998; Ostro et al., 1999; Hales et al., 2000; Hoek et al., 2000). The modelling 

techniques of these time series analyses are not restricted to any one particular 

technique. With new methodology development, the statistical modelling approach for 

time series analysis shifted from simpler to more advanced methods as discussed in 

Section 2.2. Irrespective of the statistical analysis methods, almost all of these studies 

have provided evidence of an association between PMio and mortality.

One earlier time series study conducted in New York City using data from 1963 

to 1968 (Schimmel and Greenburg, 1972) and the extension of this study covering the 

data up to 1972 (Schimmel and Murawski, 1976) examined the association between 

daily premature deaths and daily ambient levels of SO: and smoke shade, a measure of 

particulate pollution, using an ordinary linear regression modelling method. They 

reported associations between air pollution levels and total mortality, respiratory
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mortality and cardiac mortality. The percentage of premature deaths attributed to air 

pollution was reported to be about 3% after adjusting for temperature.

There were only a few studies using time series approach before the 1980s. A 

new wave of time series studies have begun with advances in statistical methods and 

software in late 1980s and early 1990s (Bell, Samet and Dominici, 2004). Using a wide 

variety of statistical approaches, these studies have reported an association between 

daily particulate matter and daily mortality in different geographic areas such as the US, 

Europe and other parts of the world. The association is generally positive and 

statistically significant in the majority of the air pollution and mortality studies. There 

are, however, a few studies which have found a negative, but inconclusive, association 

between daily particulate matter and daily mortality (Lee, Shin and Chung, 1999; Laden 

et al., 2000; Anderson et al., 2001).

The United States Environmental Protect Agency (USEPA) undertook two 

major reviews, one in 1996 and another in 2004, of epidemiological studies of human 

health effects associated with ambient particulate matter to issue air quality criteria for 

particulate matter (US Environmental Protection Agency, 1996; 2004). The 1996 Air 

Quality Criteria Document for Particulate Matter reviewed 35 PMio and mortality time 

series studies published between 1988 and 1996, and the 2004 Air Quality Criteria 

Document for Particulate Matter reviewed the studies, whose results became available 

(published or accepted for publication) between 1996 and 2003. The 1996 report 

concluded that the total acute non-accidental mortality relative risk estimate associated 

with an increase of 50 pg/nr in daily PMio concentrations was in the order of 1.025 to 

1.05 in the general population (US Environmental Protection Agency, 1996). This is 

same as an increase of 0.5% to 1% in total acute non-external deaths for a 10 pg/m3 

increase in daily PMio concentrations. The PMio effect size estimates for total non- 

external deaths reported in the studies assessed in the 2004 review were generally in the 

range of 0.4% to 0.7% for a 10 pg/nr increase in daily PM]0 concentrations, which 

were within but towards the lower end of the range of PMio effect estimates reported in 

the 1996 Air Quality Criteria Document for Particulate Matter (US Environmental 

Protection Agency, 2004).

In addition to the reviews carried out by the USEPA, a number of publications 

have critically reviewed air pollution epidemiological studies (Dockery and Pope, 1994; 

Schwartz, 1994a; Pope, Dockery and Schwartz, 1995). A review of reviews, which 

critically assessed some 15 reviews of the published studies studying the short-terms 

effects of air pollution on mortality and morbidity reached the conclusion that the short-
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term relation between air pollution and mortality and/or morbidity reported by many 

studies were valid and causal (Dab et al., 2001). These studies generally reported an 

increase of 1% in total non-external deaths in the range of 0.7% to 1.6% for an increase 

of each 10 pg/nr in daily PMio levels (Pope, Dockery and Schwartz, 1995).

2.4 Multicity studies

A wide variety of statistical models have been used to estimate the association between 

air pollution and health. Statistical models used in single city studies are not consistent. 

The choice of statistical modelling and controlling for confounders depends upon 

researchers’ preference. Because of the heterogeneity of the statistical approach used, 

the validity of the findings from single city studies has been questioned. Critics found 

that the findings among single city studies were not consistent, and even analyses in the 

same city gave inconsistent results when the data were reanalysed independently 

(Lipfert and Wyzga, 1995). They questioned whether models that biased the effect 

estimate upwards had been selected in reporting the results (Dominici, 2002). Multicity 

studies addressed these criticisms of single city studies (Katsouyanni et al., 1997; Samet 

et al., 2000c).

The idea of multicity studies is to analyse data under the same framework in 

individual participating cities so that the results are comparable across different 

geographic locations. The multicity study follows a similar protocol for data handling 

and analysis, which is one of the major advantages over meta-analysis of independent 

studies. Due to a wide variety of exposure levels and different geographic locations of 

different cities in multicity studies, the results from these studies can provide evidence 

of consistency or heterogeneity in the effects of PMio on mortality in individual cities. 

Further analysis can identify potential effect modifiers of the PMio mortality association 

across different geographic locations. In addition, multicity studies suffer less from 

publication bias as these studies report the results from all cities participated in the 

study, irrespective of whether the results are statistically significant or not in the 

individual cities.

The APHEA project is a multicity study of the short-term effects of air pollution 

on mortality and hospital admissions in European cities. The first study included 15 

European cities, and the second stage of the project (APHEA2 project) included 29 

cities and a more recent study period (Katsouyanni et al., 1995). City specific analysis 

showed associations between air pollution and non-external mortality, respiratory 

mortality in Paris and Lyon, France (Dab et al., 1996; Zmirou et al., 1996), Köln,
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Germany (Spix and Wichmann, 1996), Barcelona, Spain (Sunyer et al., 1996), and 

Athens, Greece (Touloumi, Samoli and Katsouyanni, 1996).

Katsouyanni et al. (1997) analysed data from 12 APHEA cities and pooled 

together the results from individual cities to get an overall estimate of the short-term 

effects of air pollution on daily non-external mortality across the cities. They reported a 

difference in the effects between the western European cities and the central eastern 

European cities, with higher effects in the western European cities. In the western 

European cities, they found a 3% increase (95% Cl: 2%, 4%) for each 50 pg/nr 

increase in daily SO: or black smoke (BS) and a 2% increase (95% Cl: 1%, 3%) for 

each 50 pg/nr increase in daily PMio. In the central eastern European cities, the 

increases in daily mortality for 50 pg/nr increase in daily SO: and BS were respectively 

0.8% (95% Cl: 0.1%, 2.4%) and 0.6% (95% Cl: 0.1%, 1.1%). They argued that the 

inconsistency in the results between the two groups of European cities could be due to 

the different pollutant toxicity or mix because of sources of pollutants, differences in 

sensitive sub-populations and differences in exposure levels (Katsouyanni et al., 1997).

Samoli et al. (2001) reanalysed the APHEA data using generalised additive 

models (GAM) with LOESS smoothing terms for seasonal trend and weather variables 

instead of using sine/cosine used in the APHEA protocol in order to investigate the 

regional differences in the short-term association between air pollution and mortality. 

They found higher relative risks than those reported by Katsouyanni et al. (1997) for the 

central and eastern European cities but a similar result for the western European cities. 

When they restricted the analysis to the days with BS levels less than 150 pg/m3, the 

differences in the effects between the two regions were further reduced. They argued 

that the statistical approach used in the previous study and the inclusion of days with 

higher pollutant levels in the analysis caused part of the heterogeneity in the estimates 

of air pollution effects in the two European regions (Samoli et al., 2001). Data were 

further analysed using generalised additive models with more stringent convergence 

criteria and generalised linear models with natural splines smoothing (Samoli et al., 

2003). They found that the difference in the air pollution effects in mortality between 

western and central, and eastern European cities was less clear.

As part of the APHEA2 project, Katsouyanni et al. (2001) analysed data from 29 

European cities using GAM with non-parametric LOESS smoother to control for 

seasonal trend and weather variables, and further reanalysed using GAM with more 

stringent convergence criteria, and with two parametric approaches (natural splines and 

penalized splines smoothing) to control for seasonal trend and weather variables
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(Katsouyanni et al., 2001; Katsouyanni et al., 2003). They used a hierarchical modelling 

approach. First the regression models were fitted in individual cities and then the results 

were pooled together in the second stage analysis to estimate an overall relative risk 

across all 29 cities, and to investigate potential effect modifiers. The second stage 

analysis adjusted for potential effect modifiers like air pollution level and mix; climatic 

variables in different cities; health status of the population and geographic area 

(Katsouyanni et al., 2001; Katsouyanni et al., 2003). They reported a 0.62% (95% Cl: 

0.4%, 0.8%), 0.59% (95% Cl: 0.4%, 0.8%), 0.41% (95% Cl: 0.2%, 0.6%), and 0.55% 

(95% Cl: 0.4%, 0.7%) increase in daily mortality for 10 pg/nT increase in PMio using 

GAM default criteria, stringent criteria, natural spline and penalized spline respectively.

Another multicity study, the National Morbidity, Mortality and Air Pollution 

Study (NMMAPS) funded by the Health Effects Institute, studied the effects of short

term exposure to PMio on mortality and hospital admissions in the 90 largest US cities 

during 1987-1994 (Samet et al., 2000b; Samet et al., 2000c). As part of this study, data 

were initially analysed for the 20 largest US cities (Samet et al., 2000a). The estimated 

increase in the relative rate of non-external causes mortality for each 10 pg/nr increase 

in PMio level was 0.51% (95% posterior interval: 0.07%, 0.93%). Analysis was first 

conducted in individual cities and the overall estimate of the relative rates of mortality 

associated with pollutants was calculated using hierarchical regression models.

Dominici et al. (2000) analysed the NMMAPS data for the 20 largest US cities 

in more detail using a Markov Chain Monte Carlo (MCMC) algorithm with a block 

Gibbs sampler to approximate the posterior distribution in the second stage analysis of 

pooling the city specific estimate together. They also considered spatial models in 

which the relative risks in closer cities were assumed to be more correlated (Dominici, 

Samet and Zeger, 2000).

The methods developed for the analysis of the 20 largest US cities were applied 

in the analysis of 90 largest US cities. In second stage analysis, the heterogeneity in the 

effect estimates in individual cities was evaluated with city or region specific 

explanatory variables. The analysis used five types of city specific variables: mean 

pollution and weather levels; crude mortality rate; % not graduating from high school 

and median household income (socio-demographic variables); % of public transport 

(urbanization); and variables related to measurement error (Samet et al., 2000c; 

Dominici et al., 2002a).

Both the original and reanalysis of the 90 largest US cities showed significant 

evidence of the combined effect of short-term exposure to PMio on mortality at all lags
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(0, 1 and 2 day lags were examined). However, the effect of 1-day lagged PMio was the 

largest. When the data were reanalysed using a stricter convergence criteria in GAM 

function, the combined effect across the 90 cities at lag 1 dropped to a 0.27% increase 

from a 0.41% increase (original analysis) in total non-external mortality for every 10 

pg/nr increase in PMio. The updated increase in the relative rate of non-external 

mortality for each 10 pg/nv increase in PMio using GLM with natural cubic spline was 

0.21% (95% posterior interval: 0.1%, 0.3%) (Samet et al, 2000c; Dominici et al, 

2003b).

Besides the APHEA and NMMAPS, several other studies have analysed the 

effects of daily levels of particulate matter on mortality across multiple cities and found 

positive associations between particulate matter and mortality (Laden et al, 2000; 

Moolgavkar, 2000; Schwartz, 2000a; 2000b; Schwartz and Zanobetti, 2000; Zanobetti 

and Schwartz, 2000; Braga, Zanobetti and Schwartz, 2001; Schwartz et al, 2001; 

Burnett and Goldberg, 2003; Schwartz, 2003a; 2003b).

2.5 Problem with generalised additive model

The generalised additive model (GAM) has been the most widely used method in both 

single city and multicity time series studies of air pollution and mortality / morbidity as 

it allows for the adjustment of the non-linear confounding effects of trends, seasonality 

and weather variables non-parametrically (Samet et al, 2000c; Samoli et al, 2001). The 

most appealing feature of GAM is that it does not require a strong assumption about the 

functional relationship of mortality with the confounders such as temperature and 

relative humidity, which gives a greater degree of confidence against model 

misspecification (Lumley and Sheppard, 2003).

Most studies including the NMMAPS and APHEA2 applied GAM using the 

Splus function gam with its default convergence criteria (Samet et al, 2000c; Simpson 

et al, 2000; Katsouyanni et al, 2001). It was later found that with the default 

convergence criteria, Splus (Version 3.4) function gam produced a biased estimate of 

the relative risk of mortality for air pollution. Dominici et al. (2002c) showed with a 

simulation that when the size of risk estimates are small and confounding variables are 

controlled using at least two non-parametric smoothers in the model, Splus (Version 

3.4) function gam with default convergence criteria overestimates the risk estimates. 

They also reported that the gam function with stricter convergence criteria and the 

generalised linear model with parametric nonlinear adjustment (natural spline smoother) 

gave similar relative risk estimates (Dominici et al, 2002c).
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In addition, Ramsay et al. (2003) showed with simulations that if there is 

concurvity (the non-parametric analogue of multicollinearity) in the data, GAM fitting 

could underestimate the standard error of the parameter estimates (the relative rate 

estimate), which may cause type 1 error and the parameter estimates may become 

statistically significant (Ramsay, Burnett and Krewski, 2003). For a more robust 

assessment of uncertainty of parameter estimates, a Splus function gam.exact has been 

developed which asymptotically computes the exact standard errors for each linear term 

in the model (except for the intercept) (McDermott, 2003a; 2003b).

Due to the problems observed in gam function and the dependence of the results 

on the choice of model (gam or glm), researchers were cautioned against choosing any 

particular model as a correct model and advised to explore the sensitivity of findings to 

model specification and to the degree of adjustment for confounding variables (Samet et 

al, 2003).

Following the findings of Dominici et al. (2002b) that the gam function in Splus 

(Version 3.4) software with default convergence criteria overestimated the relative risk 

estimates for air pollution, NMMAPS data were reanalysed using gam with default 

convergence criteria; gam with stricter convergence criteria and the Poisson regression 

model with parametric non-linear adjustments for confounding factors (glm with natural 

cubic splines). When the default convergence criteria was implemented, the national 

average excess risk estimate for non-external mortality across 90 cities per 10 pg/m3 in 

PMio at lag 1 was 0.41%, which dropped to 0.27% when the stricter convergence 

criteria was used. Use of glm with natural cubic splines further reduced this estimate to 

0.21% (Dominici et al, 2002b).

The reanalysis of more than 35 published time series studies of air pollution and 

mortality and morbidity, which had earlier used gam with default convergence criteria, 

using gam with stricter convergence criteria and glm with parametric smoother reported 

new relative risk estimates for air pollution which were lower than what had been 

reported earlier. Although the new relative risk estimates were lower, the reanalysis did 

not qualitatively change the original findings that there was a positive association 

between air pollution and mortality and morbidity (Health Effects Institute, 2003).

2.6 Case-crossover study design

Time series studies have analysed the short-term association between daily PMio and 

mortality/morbidity using analytical techniques ranging from simple to very 

sophisticated to control for long-term trends and seasonal variations in daily
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mortality/morbidity and the confounding effects of weather variables and gaseous air 

pollutants (Schimmel and Greenburg, 1972; Ostro, 1984; Schwartz and Marcus, 1990; 

Schwartz, 1991; 1994c; Katsouyanni et al., 1995; Katsouyanni et al, 1996; Schwartz^/ 

al., 1996; Morgan et al., 1998; Ostro et al., 1999; Dominici, Samet and Zeger, 2000; 

Samet et al., 2000c; Katsouyanni et al., 2001; Samoli et al., 2001; Katsouyanni et al., 

2003). These methods generally involve fitting functional relationships of daily 

mortality/morbidity with the confounders and may require assumptions about the 

relationships. For example, in multi-pollutant models, the confounding effects of co

pollutants are usually adjusted for by assuming a linear relationship of mortality with 

each pollutant (Morgan et al., 1998; Fairley, 1999; Chock, Winkler and Chen, 2000; 

Samet et al., 2000a). If the association of mortality with any one pollutant is non-linear, 

confounding by co-pollutants may not have been adequately controlled for in the 

models and thus the models may not correctly estimate the independent mortality effects 

of pollutants (Schwartz, 2004).

One of the traditional approaches to control for potential confounding in 

epidemiology is matching (Szklo and Nieto, 2000). If, in a case-control study, the cases 

and controls are matched on a potential confounder, the analysis will not have to adjust 

for that confounder. The study design will itself control for the confounder. The case- 

crossover study design, introduced by Maclure (1991), is an adaptation of the case- 

control design in which each person who had an event (case) serves as his/her own 

control (Maclure, 1991). Using time series data, this study design can be used to 

investigate the acute effects of exposure. Each person who had an event at a certain time 

(case day) is matched with him/herself on a nearby time when he/she did not have the 

event (control days) and their personal covariates and environmental exposures on a 

case day are compared with those of control days (Neas, Schwartz and Dockery, 1999). 

All personal attributes such as age, smoking habit, usual diet, socioeconomic status etc. 

that change slowly over time can be adjusted for by selecting nearby control days.

The study design controls for a long-term trend and seasonal variations in daily 

mortality by selecting control days close to the case day, i.e. within a few days apart 

when using daily time series data (Bateson and Schwartz, 1999). This is one of the 

major advantages of case-crossover design over time series studies which use smooth 

functions such as natural cubic splines or lowess smoothers or other complex functions 

to control for them. Once all potential control days close enough to each case day to 

control for seasonal confounding are identified, the subset of control days that also 

matches on the level of environmental exposures such as temperature, relative humidity
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and co-pollutants, and epidemics can be selected for each case day. This controls for the 

confounding effects of weather and co-pollutants by the study design without requiring 

complex modelling of the relationships between confounders and the health outcomes.

However, as the number of confounders increases, the number of potential 

control days that can be used to control for confounders by matching w ill reduce and 

thus, the power to detect any association w ill be reduced. This limits the applicability of 

this study design in single city studies (Bateson and Schwartz, 2001; Schwartz, 2004).

A number of studies have adopted this study design to analyse the acute effects 

of air pollution and have shown positive associations between air pollution and 

mortality and morbidity (Lee and Schwartz, 1999; Neas, Schwartz and Dockery, 1999; 

Sunyer et al., 2000; Schwartz, 2004). This study design has also been used by two 

recent Australian and New Zealand multicity studies to analyse the associations of 

outdoor air pollution with hospital admissions. They have reported a positive 

association between outdoor air pollution and cardiovascular hospital admissions for the 

elderly (Barnett et al., 2006) and a positive association between outdoor air pollution 

and respiratory hospital admissions for children (Barnett et al., 2005).

2.7 Shape of dose-response relationship

The dose-response relationship is the relationship between the dose and the proportion 

of individuals in an exposed group that develop a specific effect due to exposure (Yassi 

et al., 2001). The dose-response relationship is of particular importance in public health 

as it provides the foundation for setting safety standards.

The study of the shape of the concentration-response relationship between daily 

mortality and daily levels o f particulate matter (PM) has been motivated by the findings 

of many studies that there is a positive association between daily mortality and daily PM 

levels even at the lower levels o f concentrations (Ostro, 1984; Brunekreef, Dockery and 

Krzyzanowski, 1995; Schwartz, 2000a). The findings of a higher relative risk of 

mortality for unit change in daily PM levels at the lower levels than at the higher levels 

have generated more interest in the shape of the relationship between daily mortality 

and daily PM levels (Schwartz and Marcus, 1990; Schwartz, 2000a).

Although it is very common to assume a no threshold log-linear relation between 

daily mortality and daily PM concentrations in time series studies of the short-term 

effects o f particulate matter on daily mortality, a few single city studies have explored 

the shape of the dose-response relationship between particulate matter and mortality by 

replacing a linear term for particulate matter with a non-parametric smooth function in
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the log-linear Poisson regression models (Schwartz, 1993; 1994c; Pope and Kalkstein, 

1996; Burnett et al., 1998). These studies have found the shapes of the estimated 

concentration-response relationship approximately linear without well-defined 

thresholds.

The shape of exposure-response relationship has also been explored using data 

from multicity studies which has enhanced the statistical power to analyse the shape and 

its generalisability (Pope, 2000). Daniels et al. (2000) (reanalysis Dominici et al. 

(2003a)) analysed NMMAPS data for the 20 largest US cities to study the shape of the 

concentration-response relationship between daily PMio and daily mortality. They fitted 

several log-linear Poisson regression models in each city using (a) a linear term for 

PMio; (b) a natural cubic spline with knots at 30 and 60 pg/nr which are approximately 

the 25th and 75th percentile of the distributions of PMio for many of the 20 cities; (c) a 

threshold model with possible thresholds between 5 pg/nr and 200 pg/nr with an 

increment of 5 pg/m3, and combined the results across the cities. Comparison of the 

models within each city and over all cities based on the Akaike’s Information Criteria 

(AIC) showed that the model with a linear term for PMio better fitted the data than the 

threshold and the natural spline models for all cause mortality and for cardiovascular 

and respiratory mortality combined. The results using the natural spline model showed 

that for total and cardiorespiratory mortality, the spline curves were nearly linear down 

to the lowest PMio level (Daniels et al., 2000; Dominici et al., 2003a).

Schwartz & Zanobetti (2000) conducted what they called a “meta-smoothing” 

analysis using daily mortality and pollution data from 10 US cities. They fitted 

generalised additive Poisson regression models using a smoothed function of PMio 

controlling for other confounders in each city and computed the predicted values of the 

log relative risk of daily mortality in each city for 2 pg/nr increments of PMio. These 

predicted values at each increment were then combined across the 10 cities using 

inverse variance weighting. The estimated combined 10-city concentration-response 

relation was approximately linear down to the lowest PMio level observed suggesting a 

log-linear relationship without any threshold between daily PMio level and daily 

mortality (Schwartz and Zanobetti, 2000). Similar concentration-response relationships 

have also been reported between daily concentrations of black smoke and daily deaths 

in the eight Spanish cities study and between daily deaths and total PM2.5 and traffic 

related PM2.5 in the Harvard Six Cities study (Schwartz et al., 2001; Schwartz, Laden 

and Zanobetti, 2002).
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A recently published Cook County study (1987-1994) explored the 

concentration-response function between daily PMio and daily mortality by constraining 

the relationship to be biologically plausible i.e. the relative risk of mortality as a non

decreasing function of PMio concentrations. The study used piecewise linear regression 

with one and two change points to constrain the shape of the concentration-response 

relationship. By simulation, it first showed that constraining the concentration-response 

relationship to the biologically plausible gave a higher statistical precision of the 

estimates. Application of this method to real Cook County data did not provide evidence 

against a linear dose-response relation (Roberts, 2004). A study in Birmingham, 

Alabama (1985-1988) modelled the data using piecewise linear regression models and 

B-spline models to model non-linear effects of PMio on mortality and to find a 

threshold in the relationship between PMio and mortality. None of the modelling results 

provided statistically significant evidence either for a nonlinear concentration-response 

relationship or for a threshold effect (Smith et al., 2000a).

Although a study in Phoenix, Arizona (1995-1998) did not find any evidence 

against a linear concentration-response relationship between daily coarse particles and 

mortality, it provided evidence of a non-linear relationship between daily fine particles 

and mortality, with a change of slope occurring at somewhere in the range of 20 to 25 

jig/nT (Smith et al., 2000b). Unlike other studies which compared the effects of fine and 

coarse particles on daily mortality, this study found a statistically significant association 

between coarse particles and mortality but not between fine particles and mortality 

when a linear concentration-response relationship was assumed (Smith et al., 2000b). 

Being based on a single city study for a relatively short-time period, the generalisability 

of these results is very limited.

Except for a few single city studies, a number of studies including large 

multicity studies provided no evidence against a linear dose-response relationship 

between daily particulate matter and mortality. As such, in most studies, the exposure- 

response relationship has been approximated to a straight-line relationship.

2.8 Threshold

A threshold is a dose level below which no effect on individual health occurs (or is 

observed). For many environmental hazards, the dose needs to reach a specific level 

before the effects on people start (Yassi et al., 2001). The question of whether a 

threshold level exists below which air pollution has no effect in the population is of 

particular concern in air pollution studies. Identifying a threshold level has major policy
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implications. It would be expected that there will be no additional public-health benefit 

from bringing air pollution far below this level (Brunekreef and Holgate, 2002).

It would be technically difficult to detect the threshold concentrations for 

mortality effect, even when they exist, from epidemiological studies because of inter

individual differences in susceptibility as well as intra-individual variability over time. 

The concentration level that might kill an individual at one time would not do so at 

another time as the individual's susceptibility to particulate matter is likely to change 

over time due to disease state and other physiological conditions and environmental 

stresses (US Environmental Protection Agency, 1996). Similarly, the individual's 

differences in threshold level for serious effects from particulate matter due to 

individual differences in pre-existing disease conditions and genetic factors makes it 

difficult to detect threshold concentrations at the population level (Schwartz and 

Zanobetti, 2000). Despite the difficulty in identifying a threshold level, a few studies 

have analysed whether thresholds exist for health effects of particulate matter.

In one earlier time series analysis, Ostro (1984) analysed London data for 14 

winters from 1958 to 1972 to test for the existence of a threshold level in the 

relationship between BS and mortality. There was a statistically significant effect of BS 

on mortality below the hypothesized threshold level of 150 pg/nr for BS, which 

showed no evidence of threshold level at 150 pg/m3 (Ostro, 1984). By presenting the 

same data graphically, Schwartz & Marcus (1990) showed a curvilinear relation 

between BS and mortality with no threshold. They also observed steeper slopes at lower 

air pollution levels than at the higher levels (Schwartz and Marcus, 1990).

In his attempt to detect a threshold level for PMio effect, Schwartz (2000a) 

analysed the data from 10 US cities that had approximately daily PM)0 levels by 

limiting the analysis to the days with PMio below 50 pg/nr and combined the results of 

10 cities. If the threshold level was above 50 pg/nr, the slope of PMio on daily deaths 

would be expected to be approximately zero in the restricted analysis. If the threshold 

level was below 50 pg/nr, the effect size would be expected to be smaller than the 

effect size from the analysis with all days as a large fraction of the days would be below 

the threshold levels in the restricted analysis. He reported a greater relative risk of 

mortality for 10 pg/nr change in daily PMio concentrations in the restricted analysis 

than in the analysis with all days. This showed no evidence of threshold in the 

relationship between PMio and daily mortality (Schwartz, 2000a).

Daniels et al. (2000) (reanalysis Dominici et al. (2003a)) analysed NMMAPS

data for the 20 largest US cities using regression splines to examine the presence of a
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threshold for PMio. They found no evidence of a threshold in the association between 

daily PMio and daily total and cardiorespiratory causes of deaths. However, for non- 

cardiorespiratory mortality, a threshold of 50 pg/nv was reported (Daniels et al, 2000; 

Dominici et a l, 2003a). Schwartz and Zanobetti (2000) also found no evidence of 

threshold in their analysis of 10 US cities, which had daily measurements of PMio. They 

analysed the concentration-response relationship between PMio and daily deaths by 

modelling the logarithm of daily deaths as a smooth functions of PMio after adjusting 

for other confounders in each city and combined the results across the cities. They 

found an association between PMio and daily mortality in the entire range of PMio 

levels observed in the study (Schwartz and Zanobetti, 2000). Using a similar method, 

the eight Spanish cities study also reported no evidence of threshold for black smoke 

(Schwartz et al., 2001). The analysis of Harvard Six Cities data also showed no 

evidence of threshold level for either total PM2.5 or traffic related PM2.5 (Schwartz, 

Laden and Zanobetti, 2002).

Although a number of large multicity studies suggested there was no threshold 

in the relationship between particulate matter and mortality, one study in Phoneix, 

Arizona (1995-1998) found a threshold most likely to be in the range of 20 to 25 pg/nr 

for the effect of fine particles (PM2.5) on mortality. The study analysed data using a 

piecewise linear model in which several possible thresholds were specified and using a 

B-spline model with 4 knots. Both methods provided an evidence of a threshold for fine 

particles. However the study did not find any evidence of a threshold for coarse 

particles (PM 10-2.5). Using a no threshold model, the study only found a statistically 

significant association between coarse particles and mortality but not between fine 

particles and mortality (Smith et al., 2000b).

The threshold level, if it exists, along with the exposure-response relation and 

the distribution of exposure can be used to estimate the public health impact of air 

pollution. Kunzli et al. (2000) applied a threshold level of 7.5 pg/m3 for PMio effect in 

their calculation of public health impact of outdoor and traffic related air pollution in 

three European countries: France, Switzerland and Austria (Kunzli et al, 2000). In a 

similar calculation of the number of deaths attributed to air pollution in New Zealand, 

Fisher et al. (2002) used no threshold and 5, 7.5 and 10 pg/m1 threshold levels for the 

effect of long-term exposure to PMio on mortality as different scenarios (Fisher et al., 

2002).
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2.9 Effects of source oriented particulate matter

Particles from different sources may have different sizes and chemical compositions. 

The toxicities of particles depend on their size and chemical compositions. Fine 

particles which are mostly produced as a result of combustion, associated with diesel 

exhaust, power plants and other forms of rapid, hot combustion are considered more 

toxic than larger particles which are often the result of blowing dust or soot as the result 

of open combustion (Yassi et al., 2001). Some studies have shown that mortality is 

more strongly associated with fine particles (PM2.5) than with PM 10 and the coarse 

particles (PM2.5-10) (Schwartz, Dockery and Neas, 1996; Smith et al., 2000b; Schwartz, 

2003b).

A few studies have analysed which components of particulate matter are actually 

responsible for its effect on mortality in order to examine the association between the 

source-specific particulate matter with mortality. An analysis of Harvard Six Cities data 

(1979 -  1988) used the elemental composition of fine particles (PM2.5) to identify five 

distinct source-related fractions of fine particles for each city. The five sources of PM2.5 

identified were motor vehicle emissions, coal combustion, soil and crustal material, fuel 

oil combustion and salt (Laden et al., 2000). The study (reanalysis by Schwartz 

(2003b)) reported that fine particles from motor vehicle emissions and coal combustion 

source but not from soil and crustal factor were associated with increased mortality. The 

increase in mortality associated with fine particles from motor vehicle source was the 

highest among all sources. The reanalysis of the data from Laden et al. (2000) by 

Schwartz (2003b) showed a 3.6% increase in mortality associated with a 10pg/m3 

increase in motor vehicle emissions related PM2.5 and a 0.8% increase in mortality 

associated with a 10 pg/m3 increase in PM2.5 from coal combustion in the combined 

analysis of six cities (Schwartz, 2003b).

Mar et al. (2000) (reanalysis by Mar et al. (2003)) found in their analysis of 

Phoenix, Arizona data for 1995-1997 that each of motor vehicle factor (1-day lag), 

vegetative burning factor (3-day lag) and regional sulphate factor (same day) of fine 

particles (PM2.5) had significant positive associations with cardiovascular mortality 

(Mar et al, 2000; Mar et al., 2003). Using factor analysis, another study in three New 

Jersey cities (Camden, Neward and Elizabeth) from 1981 to 1983 identified several 

major source components of PM including oil burning, industrial, geological, motor 

vehicle and sulfate/secondary aerosols. The study reported statistically significant 

associations between each of oil burning, industrial sulfate aerosal and motor vehicle 

related PM with mortality (Tsai, Apte and Daisey, 2000).
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Although a few epidemiological studies have compared the effects of particulate 

matter of different sources on mortality/morbidity, none of the studies has specifically 

compared the effects of motor vehicle smoke and wood smoke on mortality. One 

approach could be to compare the results between the cities which have PM dominated 

by a single source. For example, the association between particulate matter and daily 

mortality in Santa Clara County in California could indicate the association between 

wood smoke related particulate matter and daily mortality as wood smoke is major 

source of particulate matter in Santa Clara County contributing about 40% of the 

wintertime PM2.5 (Fairley, 1990; 1999). Similarly the findings from a time series study 

in Amsterdam that individuals who lived on the main roads had much higher relative 

risks of death than people who lived away from the main roads, when analysed with 

data from the same background air pollution monitoring stations, suggested that traffic- 

related particulate matter was involved in increasing the mortality during high pollution 

days (Roemer and van Wijnen, 2001).

Since the multicity study follows the same protocol for data handling and 

analysis in each participant city, city specific results in multicity studies are the best to 

compare the effects of particulate matter of different sources on mortality if the cities 

have particulate matter dominated by a single source and the dominant source varies 

from one city to another (Katsouyanni et al., 1997; Laden et al., 2000; Samet et al., 

2000c). The APHEA analysis showed that the relative risks of mortality for particulate 

matter were higher in areas with high nitrogen dioxide (i.e. traffic density) suggesting 

that motor vehicle related PM might have a higher effect than particles from other 

sources (Katsouyanni et al., 2001).

2.10 Distributed lag models

Daily mortality is likely to be affected not only by the same day’s air pollution but also 

by the air pollution on a number of preceding days. In the same way, air pollution can 

increase the deaths occurring on the same day as well as on several subsequent days. 

The effect of air pollution on mortality is likely to be distributed over time (Zanobetti et 

al, 2000). Therefore, models with single day’s air pollution concentrations are likely to 

underestimate an effect of short-term exposure to air pollution on daily mortality. In 

order to measure the real effect of air pollution on mortality, we will need a model that 

combines the effects of air pollution levels on same day mortality and on subsequent 

days mortality.
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One such modelling method is to develop a regression model for daily deaths 

with PM 10 concentrations of the same day and of previous days as independent 

variables. The overall effect of a unit increase in PMio will be the increase in mortality 

due to a unit increase in PMio levels on the same day plus the increases in mortality due 

to a unit increase in PMio levels on previous days. These models are generally termed 

“unconstrained distributed lag models”, because PMio effects on mortality/morbidity in 

this type of modelling are not constrained (Schwartz, 2000b). In unconstrained 

distributed lag models, if there is a serial correlation between PM)0 levels, there will be 

multicollinearity between lagged PMio variables and thus the regression models will 

have a collinearity problem. This will result in unstable estimates of PMio effects (Pope 

and Schwartz, 1996; Schwartz, 2000b).

In order to reduce the noise in PMio effects estimated by unconstrained 

distributed lag models, the set of PMio effects over time can be constrained to some 

shape. One method is to calculate the weighted average of lagged PMio concentrations 

with weights that reflect the relative effects of the same day and lagged PMio 

concentrations and use the weighted average as an exposure variable. These models put 

a constraint in the relative effects of lagged PMio variables and thus are referred to as 

constrained distributed lag models (Schwartz, 2000b). Some studies have used a moving 

average of daily PMio levels as an exposure variable. This approach assigns equal 

weightings to the effects of every days air pollution level, which is also likely to not 

reflect the real health risk.

Instead of assigning equal weights to the effects of the same day and all lagged 

air pollution levels, a few studies have analysed the shape of distribution of air pollution 

effects at different lags and assigned the weights accordingly. The most common 

approach is to constrain the shape to fit some polynomial function.

Schwartz (2000b) used a quadratic polynomial distributed lag model with 5 lags 

to study the effect of PM]0 on daily mortality of persons 65 years of age and over in 10 

US cities. He compared the results with the results from the unconstrained distributed 

lag models, and the models with the same day’s PMio levels and the 2-day moving 

average of PMio levels (lag 0 and lag 1) as air pollution exposures and found that the 

overall effects from the distributed lag models were higher than the effects using one or 

2-day moving average of PMio levels. The study reported an increase of 1.41% in daily 

deaths for a 10 pg/nr increase in PMio when lag structure was considered as opposed to 

an increase of 1.05% in daily deaths for a 10 pg/nr increase in 2-day moving average 

PMio levels. (Schwartz, 2000b).
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Similar results were reported by a study conducted as part of the APHEA-2 

study in its ten largest study cities. This study estimated the combined effects of PMio 

on the same day and the lagged effects up to 40 days using 3rd and 4th degree 

polynomial distributed lag models. It was found that the estimated effects of PMio were 

more than doubled in many cities when lagged effects were considered as compared to 

the 2-day moving average (same day and the day before) of PMio levels. The results 

were consistent for all distributed lag models including unconstrained distributed lag 

models (Zanobetti et al, 2002).

Another study of the association between daily air pollution and daily mortality 

in Milan between 1980 and 1989 examined the effect of air pollution distributed over 

the same day and the following 45 days. Instead of polynomial distributed lag models, 

this study used a non-parametric smoothed distributed lag models which constrained the 

estimated air pollution effects to vary smoothly with the number of days lag between air 

pollution exposure and mortality. The study reported that the effect of cumulative 

exposure to air pollution was higher than the effect of air pollution on the same day 

(Zanobetti et al, 2000).

Distributed lag modelling has also been used to study the extended effects of 

cold and air pollution simultaneously. Goodman et al. (2004) analysed Dublin data from 

April 1980 to December 1996 to assess the cumulative net effects of daily minimum 

temperature and Black Smoke (BS) particulate air pollution exposure over the following 

40 days using polynomial distributed lag models. As in other studies, this study also 

reported higher effects of the extended exposure to air pollution on mortality. The study 

estimated a 1.1% increase in total non-trauma mortality associated with an increase of 

10 pg/nr in daily mean BS over the succeeding 40 days whereas the effect of each 10 

pg/nr increase in a 3-day mean BS was only 0.4% increase in total non-trauma 

mortality (Goodman, Dockery and Clancy, 2004).

2.11 Harvesting (mortality displacement)

The other key concern associated with the interpretation of the short-term association 

between air pollution and mortality as demonstrated by time series studies is that it is 

unclear whether the association is due to the short-term displacement of the deaths of 

people who would have died in a few days regardless of air pollution condition. Despite 

providing evidence of the short-term association between air pollution and mortality, 

time series studies can not substantiate that there will be an increase in longer term 

mortality due to long-term exposure to air pollution (McMichael et al, 1998). The key
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question in assessing the public health impact of air pollution is to understand whether 

higher air pollution levels increase mortality in the longer term or just bring forward the 

event of deaths by a few days known as mortality displacement (short-term “harvesting” 

of deaths). The public health significance will be considerably larger if life expectancy 

is reduced by months or years compared with deaths only brought forward by a few 

days (McMichael et al., 1998; Brunekreef and Holgate, 2002).

Two papers have used conceptually similar approaches to test whether the short

term association between air pollution and mortality is due to short-term mortality 

displacement (Zeger, Dominici and Samet, 1999; Schwartz, 2000c). Both approaches 

assumed that under the short-term harvesting hypothesis, the increase in mortality 

during higher air pollution days would be immediately followed by lower than expected 

mortality, which persists until the mortality level comes back to the expected level. If 

there is a substantial time between the increases in mortality and lower than expected 

mortality, then the mortality is being displaced by a substantial amount of time. If there 

is short-term harvesting, then an association would only be detected at shorter time 

scales, but not on longer time scales (Bell, Samet and Dominici, 2004). One of the 

above approaches focussed on time scale to test the hypothesis of short-term harvesting 

and examined the associations between daily air pollution levels and daily mortality at 

different time scales (Schwartz, 2000c). The other approach tested the hypothesis in the 

frequency domain and examined the associations between daily air pollution levels and 

daily mortality at different frequency ranges (Kelsall, Zeger and Samet, 1999; Zeger, 

Dominici and Samet, 1999).

Schwartz (2000c) (reanalysed by Schwarz (2003b)) tested the hypothesis of 

short-term harvesting using Boston, Massachusetts data (1979-1986) by decomposing 

data into three independent time series data representing long time trends and seasonal 

variations, intermediate variations, and the shortest-term variations. By varying the 

smoothing window sizes (15, 30, 45 and 60 days), several time series data, with 

seasonal and shortest-term variation removed, representing intermediate variations of 

different time scales were generated and the associations between PM2.5 and mortality 

were examined on these mid-scale components separately (Schwartz, 2000c; 2003b). 

Another study in Chicago (1988-1993) used the same approach to examine short-term 

harvesting in the association between PM 10 and mortality and hospital admissions 

(Schwartz, 2001). Both studies used the STL algorithm, the seasonal and trend 

decomposition program introduced by Cleveland et al. (1990), which fits LOESS
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smooths with different smoothing window sizes to a time series data to decompose it 

into different time scale components (Cleveland, 1979; Cleveland et al., 1990).

Both studies reported associations between particulate matter and mortality and 

hospital admissions at different time scales. The effect of PM2.5 on mortality due to all 

causes, pneumonia and heart attacks increased with increase in time scale except for the 

mortality due to chronic obstructive pulmonary disease (COPD). The study reported a 

reduction in the relative risk of COPD deaths due to PM2.5 for the longer time scale 

suggesting the deaths due to COPD were brought forward by a few weeks or few 

months (Schwartz, 2000c; 2003b). However, the Chicago study showed that the effect 

of PM 10 on hospital admissions due to COPD increased with longer time scales and the 

effect size estimates were more than doubled for daily deaths and for COPD admissions 

(Schwartz, 2001).

Zeger et al. (1999) (reanalysis by Dominici et al. (2003a)) used a frequency 

domain log-linear regression approach (Kelsall, Zeger and Samet, 1999) to estimate the 

effects of total suspended particles (TSP) on mortality in Philadelphia data (1974-1988) 

that is resistant to short-term harvesting. The assumption was that short-term harvesting 

creates the association only at shorter time scales. They decomposed the time series data 

at different characteristic frequency ranges using Fourier series decomposition and 

estimated the effects at each characteristic frequency range separately. Under the short

term harvesting hypothesis, which is that the association between TSP and mortality is 

only due to short-term harvesting, the effects would be expected to be near zero at lower 

frequencies (longer time scales) and to increase towards higher frequencies (shorter 

time scales). However, the study found the results, which were opposite to what would 

have been expected under the short-term harvesting hypothesis. The relative increase in 

mortality associated with the relative change in TSP levels was significantly different 

from zero at lower frequencies and decreased towards higher frequencies (Zeger, 

Dominici and Samet, 1999; Dominici et al., 2003a). Hence they argued that the short

term harvesting hypothesis was inconsistent with the Philadelphia data.

Another study in four US cities (Pittsburgh, Minneapolis, Chicago and Seattle) 

using data from 1987-1994 also found a larger relative risk for mortality associated with 

PM 10 at longer time scale than at shorter time scale (Dominici et al., 2003c). The major 

difference between their method and the method proposed by Schwartz (2000c) and 

Zeger et al. (1999) is that Schwartz (2000c) and Zeger et al. (1999) decomposed all time 

series data including mortality, PM 10 and weather into three distinct time series 

representing long time trends and seasonal variations, intermediate variations, and the
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shortest-term variations whereas Dominici et al. (2003c) decomposed only PMio data 

series into distinct time scale component series. They applied the discrete Fourier 

transformation with the frequencies of different cycles to the PMio series to decompose 

the daily air pollution data. They decomposed the daily time series data into the six 

series of independent time series ranging from the very smooth series, which fluctuates 

with a very low frequency (more than a 2 month cycle) to the less smooth series, which 

fluctuates with very high frequency (less than a 3.5 day cycle). They fitted the model for 

daily mortality with all six components series of air pollution data as exposure variables 

adjusting for temporal trend, days of the week and weather variables. This model 

estimated the relative risk for increasing daily mortality from an increase in air pollution 

levels at different time scales adjusting for weather variables. The analysis first 

calculated the city specific relative risks of mortality and then the results were pooled 

together to calculate the overall relative risk of mortality across four cities (Dominici et 

al, 2003c).

Under the short-term harvesting hypothesis that air pollution mortality 

association is only due to short-term mortality displacement, mortality is associated only 

with the short-term time scale component of air pollution but not with the mid to long

term time scale component of air pollution.

In a study in Milan, Italy (1980 -  1989), Zanobetti et al. (2000) used generalised 

additive distributed lag models to quantify mortality displacement (Zanobetti et al., 

2000). Zanobetti et al. (2002) (reanalysis by Zanobetti & Schwartz (2003)) applied the 

same concept (distributed lag modelling) in a multicity analysis of the 10 European 

study cities of APHEA2. All these studies reported that the PMio risk estimates obtained 

from the distributed lag models with up to lag of 40 days was higher than the PMio risk 

estimates obtained for the average of lag 0 and lag 1 suggesting a lack of mortality 

displacement up to 40-45 days (Zanobetti et al., 2002; Zanobetti and Schwartz, 2003).

Spix et al. (1993) investigated short-term mortality displacement due to SCF in 

Erfurt, Germany (1980 -  1989) using an interaction term between pollution and the 

mean number of deaths in the previous days. The study tried the interaction terms of 

pollution with the last 2 to 21 days mean mortality in the model and found the best fit 

with 15 days mean mortality. The assumption was if there was mortality displacement 

then there would be fewer than average deaths if more than average deaths occurred in 

the past 15 days. This would result in a significant interaction effect. However, they 

found that the interaction term was not statistically significant showing a lack of 

evidence for the short-term mortality displacement (Spix et al., 1993).
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A Philadelphia study for the period of 1973 to 1990 used state space modelling 

to estimate the relationship between air quality and mortality (Murray and Nelson, 

2000). The model, which assumes harvesting effects, allows estimation of the size of the 

at risk population; life expectancy of individuals in that population and the effect of 

changes in air pollution on that life expectancy. Murray & Nelson (2000) first verified 

the model by simulation and then applied it to Philadelphia data. They estimated that 

TSP caused a difference of about 2.5 days on average in the life expectancy of the 

roughly 500 at risk population in Philadelphia. These results are in contrast with the 

findings of Zeger et al. (1999), Schwartz (2000c), Dominici et al. (2003c) and Zanobetti 

et al. (2002) which showed evidence of mortality displaced by air pollution by more 

than a few weeks. However, due to the nature of time series studies, these studies could 

not identify exactly by how many weeks or months the time of death is brought forward 

by particulate matter. These studies have found that the effect size estimates from the 

existing time series studies are smaller than the effect size when people are exposed to 

air pollution for a longer time period. However in order to draw any valid conclusions, 

these analyses need to be replicated in different populations (Brunekreef and Hoek, 

2000).

2.12 Summary

This chapter reviewed the studies of the association between air pollution and mortality 

with a focus on time series studies. A large number of time series studies, both single 

city studies and multicity studies, carried out worldwide have shown positive 

associations between particulate matter and mortality. Despite the use of variety 

statistical methods, all studies provided similar conclusion.

There are a number of issues and uncertainties associated with air pollution 

epidemiological studies, which include concentration-response relationship, the 

threshold levels, the role of harvesting, extended effects of air pollution, and the 

differences in the effects of PMio from different sources. This review summarised some 

of the literatures, which have analysed one or more of the above issues. The conclusions 

from the review of several literatures are that there is a log-linear relationship between 

daily PMio and mortality, and there is no safe threshold level for mortality effect of 

PM io- The positive association between daily PMio and mortality can not be attributed 

to harvesting. The effects of PM]0 on mortality are not limited to the first few days. 

Increase in PMio concentrations can be associated with an increase in mortality of 

several weeks after exposure.
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Chapter 3: Study design and data preparation

3.1 Introduction

This chapter describes the study design, study area, sources of data, and measurements 

of air pollutants, mortality and population data. In terms of design, this study can be 

broadly divided into two parts. The first part (analysis of research objectives 1 to 4) is a 

time series study. The second part (analysis of research objective 5) is an ecological 

cross-sectional study. This chapter describes the preparation of air pollution, mortality 

and population data for the analysis of the first part of the study. The measurement of 

air pollutant and database preparation for the second part of the study is described in 

Chapter 9.

3.2 Study design

The first part of this study (analysis of research objectives 1 to 4) is a time series study 

with “day” as the unit of analysis. Time series study design associates daily variation in 

mortality with daily variation in air pollutant concentration after controlling for the 

variables that vary over time such as a long-term trend and seasonal variations in daily 

mortality, weather variables and other pollutants. This study analyses routinely collected 

mortality, weather and air pollution data. The second part (analysis of research objective 

5) is an ecological cross-sectional study, which is described in detail in Chapter 9.

3.3 Study period

The first part of this study (Chapters 6, 7 and 8), which is a time series study, analyses 

the data from June 1988 to December 1999. The second part (Chapter 9), which is an 

ecological cross-sectional study, analyses mortality data from 1996 to 1999.

3.4 Study area

Christchurch is a coastal city with a population of about 316,000, located on the east 

coast of the South Island of New Zealand. The city lies at latitude 43° South and 

longitude 172° East, on the Canterbury Plains, bounded by the Pacific Ocean in the east, 

the Canterbury plains extending as far as the Southern Alps in the north and west, and 

the Port Hills in the south. Apart from the suburbs in the foothills of the Port Hills on 

the southern edge, Christchurch is almost flat, sloping gently downwards from the 

airport in the west to the Pacific Ocean in the east. Figure 3-1 shows a map of 

Christchurch with census area unit (CAU) boundaries. The CAUs are the basis for the
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resident location of routinely collected health data, including mortality data. These areas 

are the second smallest geographic units defined by Statistics New Zealand for 

statistical purposes and are the most commonly used geographic units to disseminate the 

census data. Meshblocks are the smallest geographic units for which the census data are 

collected and processed. There are 106 CAUs in Christchurch, with the CAU population 

ranging from about 250 to 6,000.

Christchurch is ideally situated for the frequent occurrence of calm weather and 

temperature inversions which are conducive to high air pollution on cold winter nights. 

Westerly cold air drainage from the Southern Alps converges with the drainage winds 

down the slopes of Bank Peninsula (including the Port Hills) over Christchurch forming 

zones of stagnant air which enhance the strength of temperature inversions (Kossmann 

and Sturman, 2004). Local meteorological conditions such as calm weather and 

temperature inversions, in combination with emissions from the burning of coal or 

wood as domestic heating on cold winter nights, exacerbate particulate air pollution 

levels in Christchurch. Twenty-four hour average PMio concentrations exceeds the 

Ministry for the Environment ambient air quality guideline of 50 pg/m3, on average, for 

30 days each year in the winter (Canterbury Regional Council, 1997; Ministry for the
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Environment and Ministry of Health, 2002). Domestic heating is the major source of 

winter time particulate air pollution contributing about 82% of PMio in the winter 

months (Scott and Gunatilaka, 2004) and thus has been a major concern in winter. In 

addition to the emissions from domestic heating, air pollution from other sources, 

particularly vehicle emissions, is also becoming a growing concern in Christchurch 

(Kjellstrom, Shrestha and Metcalf, 2002).

3.5 Air pollutant measurements

3.5.1 Data source

Environment Canterbury provided hourly air pollution and meteorological data, 

monitored at the St. Albans air quality monitoring site, for the May 1988 to December 

1999 period. This site was established between Packe Street and Madras Street at St. 

Albans in 1988 by the former Department of Health. The Ministry of Health continued 

to operate the site as part of its contribution to an international air quality monitoring 

programme Global Environmental Monitoring Systems (GEMS). The Ministry for the 

Environment took over this responsibility in 1999. From 1993 to September 2000, the 

Institute o f Environmental Science and Research Limited (ESR) operated the site on 

behalf o f the Ministry of Health, and then on behalf of the Ministry for the 

Environment. The site was operated in accordance with Environment Canterbury’ s 

quality assurance procedures for ambient air quality monitoring. ESR maintained the 

monitoring site and was responsible for the calibration of monitoring equipment, data 

collection and quality assurance of data.

ESR supplied data to Environment Canterbury after validating it according to 

Environment Canterbury’s quality assurance procedures (Aberkane et al., 2001) and 

Environment Canterbury archived them. Any invalid data that were not representative 

of ambient air quality and weather were removed from the database before the data were 

archived (Aberkane et a l,  2001). Environment Canterbury provided the quality assured 

archived hourly data for the following air pollutants and meteorological parameters for 

the St. Albans monitoring site:

• A ir pollutants

a. Particulate matter of less than 10 pm diameter (PMio) (pg/m3)

b. Carbon monoxide (CO) (mg/m3)

c. Nitrogen dioxide (NO2) (pg/m3)
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• Meteorological parameters

a. Wind speed (m/s)

b. Wind direction (degrees from North)

c. Temperature at 1 metre (°C)

d. Temperature at 10 metres (°C)

e. Relative humidity (%)

Hourly data for the following meteorological parameters collected at Christchurch 

Airport were also obtained for the years from 1988 to 1999.

a. Wind direction (degree from North)

b. Wind speed (m/s)

c. Dry bulb temperature (°C)

d. Wet bulb temperature (°C)

e. Relative humidity (%)

3.5.2 Monitoring methods for air pollutants

Particulate matter (PMio)

A number of different instruments have been used to measure PMio concentrations at 

the St. Albans monitoring site at Packe St. since its establishment. Monitoring was 

begun with an MPSI beta gauge in May 1988, which was used until 13 June 1994. For a 

short period, from 18 June to 7 August 1994, a high volume sampler was used to 

monitor PMio concentrations. Since 17 August 1994, they were monitored using the 

Rupprecht and Patashnick Co., Inc. Tapered Elemental Oscillating Microbalance 

(TEOM) particulate monitor. PMio concentrations were not monitored between 8 

August and 16 August 1994. With the installation of a Wedding & Associates (W&A) 

beta gauge in May 1996, parallel monitoring of PMio concentrations using both the 

TEOM and the beta attenuation methods began at this site. Measurement of PMio 

concentrations depend on types of instruments used and the temperature settings of 

those instruments.

Carbon monoxide (CO)

Carbon monoxide was monitored using infrared spectrophotometry. Using this method, 

CO can be monitored by two different instrumental methods, the non-dispersive method 

and the gas filter correlation method. CO was monitored using a non-dispersive Uras 

3G/20310 until 4 April 1997; thereafter it was monitored by an API 300 instrument, 

which uses the gas filter correlation method.

36



Nitrogen dioxide (NO2)

Nitrogen dioxide concentrations was calculated by measuring nitrogen oxides using a 

technique called ozone chemiluminescence, which is a chemical reaction that emits 

energy in the form of light. NO: was monitored via single channel measurement. In this 

method, ambient airflow is alternately passed through two processes. One diverts the 

ambient airflow through a catalytic converter which reduces nitrogen dioxide (NO2) to 

nitric oxide (NO). This adds NO to already present NO in the sample. The measurement 

of NO gives the level of total oxides of nitrogen (NOx). The other process bypasses the 

converter and as such, the measurement of NO gives only the level of NO present in the 

sample. NO2 is calculated based on the differences between NOx levels (from the 

diverted air flow) and NO levels (from the undiverted air flow). Monitoring was carried 

out using an API 200A NOx analyser.

3.5.3 Monitoring methods of PM10

PMio concentrations were monitored using different methods over the twelve year 

period since monitoring began in May 1988 (Table 3-1) (Foster, 1998).

Table 3-1. Methods used to monitor PMJ0 at St. Albans site
Method Time period

Beta gauge analyser 28 May 1988 to 13 June 1994

Beta gauge analyser May 1996 to present

High volume sampler 18 June 1994 to 7 August 1994

TEOM analyser at 50°C 17 August 1994 to December 1997

TEOM analyser at 30°C January 1998 to December 1998

TEOM analyser at 40°C January 1999 to December 1999

A high volume sampler was used to measure PM 10 concentrations for a very short 

period from June to August in 1994. Unlike the TEOM and the beta gauge analyser, it is 

not possible to get results immediately from a high volume sampler and measurements 

for periods of less than 24 hours are not practicable using the high volume sampling 

method (Foster, 1998). Thus the variations of hourly concentrations over a day were not 

available during this period. Since the high volume sampler was used for a very short 

period and the method was not consistent with the other methods (TEOM and beta 

attenuation), the monitored PM 10 levels from the high volume sampler were not used in 

this study. Only the beta gauge and the TEOM measured PM 10 concentrations were used 

in this study. Parallel monitoring using both methods in the later years of the study
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made it possible to compare the methods, and to convert the PMio concentrations 

measured by the beta gauge method in the earlier years into the equivalent PMio 

concentrations measured by the TEOM method.

Of the three methods used at the St. Albans site, the TEOM method is the most 

technologically advanced and the most accurate over short time periods. This method is 

used extensively in a number of countries including Canada, France, the United 

Kingdom and Australia. In this method, the TEOM sensing system is heated to 

evaporate water and to minimise the effects of thermal expansion and contraction of the 

mass sensor. This heating also causes the volatilisation of some volatile materials, 

including nitrates and low molecular weight organic compounds. The amount of 

material volatilised depends on the temperature settings of the TEOM analyser and the 

composition of particulate matter. At higher temperature settings, the degree of 

volatilisation is more likely to be higher, resulting in a greater loss of volatiles 

(Environet Limited, 2003). The standard sample temperature setting for the TEOM 

analyser in Canada is 40°C, and the UK authorities operate at the setting of 50°C 

(Foster, 1998).

There was no recommended national standard regarding the temperature setting 

for TEOM analysers in New Zealand when Canterbury Regional Council (in 2000, 

Canterbury Regional Council became Environment Canterbury) started using them, 

replacing the high volume sampler and the beta gauge analyser. The sample temperature 

on the TEOM analyser was initially set at 50°C. In order to minimise the loss of 

particulate matter, the sample temperature setting was changed to 30°C in January 1998. 

In September 1998, a temperature of 40°C was proposed as a national standard 

operating temperature for TEOM equipment (Foster, 1998). From January 1999, the 

temperature of the TEOM equipment at St. Albans monitoring site was set to the 

national standard operating temperature of 40°C.

3.5.4 Comparison of different methods of measuring PM10

From 1996, there was parallel monitoring of PMio concentrations using both the TEOM 

and the beta attenuation methods at St. Albans site (Table 3-1). Whether or not the PMio 

concentrations measured by the two methods were comparable was analysed using the 

Bland-Altman method for assessing the agreement between two methods of 

measurement (Bland and Altman, 1986). Figure 3-2 shows the Bland-Altman plots for 

each year from 1996 to 1999, when PMio data from both the beta attenuation method 

and the TEOM methods were available. Differences between PMio concentrations
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measured by the two methods were plotted against the average of PMio concentrations 

measured by the two methods. The dotted line in the plot represents the mean difference 

in the concentrations measured by the two methods. For 1996 and 1997, the beta gauge 

method was compared with the TEOM method with sample temperature setting of 

50°C. For 1998 and 1999, it was compared with the TEOM method with sample 

temperature settings of 30°C and 40°C respectively.

The plots show that the two methods did not give the same concentrations and 

suggest that PMio concentrations measured by the TEOM methods were on average 

lower than the concentrations measured by the beta gauge method. The differences in 

PMio concentrations measured by the two methods increased with increase in PMio 

concentrations. Differences were larger when higher sample temperature settings were 

used in the TEOM analysers. This was more likely due to the lower levels of PMio 

concentrations measured by the TEOM analysers with higher sample temperature 

settings due to a greater loss of volatile materials in particulate matter.
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Figure 3-2. ßland-Altman plots to assess the agreement between the beta attenuation 
method and the TEOM methods of measuring PMio concentrations
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3.5.5 Missing data

Because of instrument malfunction and data logger malfunction, the data measured by 

the instruments did not, at times, represent the actual ambient air quality and weather 

conditions. Data were validated according to Environment Canterbury’s quality 

assurance procedures and any invalid data that were not representative of ambient air 

quality and weather were removed from the database before the data were archived by 

Environment Canterbury. This resulted in some data loss. In addition, other factors such 

as power failure of the instruments and discontinuity of remote access to the data also 

resulted, at times, in the loss of data. Missing data were interpolated or extrapolated by

Environment Canterbury as per their Quality Assurance Procedures Manual by using
40



their in-house software TRANSFER (Aberkane et al, 2001). Hourly data which did not 

satisfy the guidelines of the manual were left as gaps in the quality assured hourly 

datasets provided by Environment Canterbury.

A large portion of meteorological and pollutant data was missing for the years 

from 1991 to 1995. Table 3-2 shows the percentage of missing hourly data for both sets 

of variables by years. The years 1997 and 1998 had the least missing data for all 

variables. Relative humidity data was completely missing for 1993 and 1994.

Table 3-2. Percentage of missing hourly data for meteorological and pollutant variables 
for twelve year study period (1988 -  1999)

Y ear R elative

hum idity

Tem perature W ind

speed

P M 10 CO n o 2

1988 4.5 4.4 4.5 6.7 5 4.6

1989 11.5 13.7 11.5 24 12.6 22.4

1990 1.1 1.1 1.1 4.1 2.8 7.4

1991 5.6 5.5 5.6 6.7 26.9 14.7

1992 69.7 18.2 18.8 20.3 19.3 32.3

1993 100 7.9 5.2 46.6 21.2 35

1994 100 16.1 18.3 58.6 7.8 43.1

1995 46.9 38.7 60.4 3.4 8.6 16.3

1996 12.2 1.2 38.7 3.3 1.4 2.4

1997 0.2 0.2 0.2 3.9 5.3 1.9

1998 0.8 0.8 0.9 0.8 0.9 6.1

1999 1.6 1.6 1.6 1.6 1.7 8.2

3.5.6 Estimating missing air pollutant concentrations

Missing hourly air pollutant data were estimated in two stages. First, missing hourly 

meteorological data were estimated and then the missing hourly pollution 

concentrations were estimated by fitting regression models based on meteorological 

variables.

Stage 1: Estimation of missing hourly meteorological data

There were strong correlations between the weather data measured at the St. Albans 

monitoring site and at the airport. For hourly temperature, the correlation coefficient 

between the airport data and the St. Albans monitoring station data in 1997 was 0.95. 

For hourly wind speed and hourly relative humidity, the correlation coefficients were 

0.79 and 0.90 respectively.
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Because of highly positive correlations between hourly weather data at the St. 

Albans monitoring site and hourly weather data at Christchurch Airport, the 

Christchurch Airport data can be used to predict the missing hourly meteorological data 

for the St Albans monitoring site. Linear regression models were fitted for each of three 

meteorological variables, with hourly data at St. Albans as a dependent variable and 

hourly data at Christchurch Airport as a predictor. Separate models were developed for 

each year. Based on these linear regression models, hourly levels for meteorological 

variables were predicted for the St. Albans site. The predictions were used as the 

estimated values for the missing hourly weather data at St. Albans. A complete hourly 

meteorological data set for St. Albans was prepared by replacing the missing hourly 

meteorological data with the corresponding predicted hourly levels. This data set was 

used to develop the regression models for pollutants, based on which hourly pollutant 

concentrations were predicted, which were then used to replace the missing hourly 

pollutant concentrations.

There was no relative humidity data at the St. Albans monitoring site for 1993 or 

1994. No model was fitted for relative humidity for those two years. Instead, hourly 

relative humidity data at Christchurch Airport were used as the estimated hourly relative 

humidity at St. Albans for 1993 and 1994. Linear regression models for relative 

humidity for other years showed that there was very little difference between relative 

humidity at the airport and at St. Albans. The slopes of annual linear regression models 

with hourly data at the St. Albans monitoring site as a dependent variable and hourly 

data at Christchurch Airport as a predictor ranged from 0.89 to 1.03. It was thus 

assumed that relative humidity at St. Albans would be almost the same as relative 

humidity at Christchurch Airport.

Stage 2: Estimation of missing hourly air pollution data

Air pollution levels depend on emissions and meteorological conditions. Emissions of 

air pollutants from home heating are higher in the winter than in the summer because of 

home heating to keep houses warm in the cold weather of winter. In winter, the 

emissions from home heating in a 24 hour period are likely to vary, with higher 

emissions in the evenings and the early mornings when people burn coal and wood to 

keep houses warm. Vehicle emissions are higher during the hours when there are high 

volumes of traffic on the road. These emissions are higher on weekdays than on 

weekends because of a higher volume of traffic on weekdays. Thus, the emissions of air 

pollutants vary throughout the day and also depend on days of the week and seasons.
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Meteorological conditions are strongly associated with the dispersion of air 

pollutants. Low wind speed and temperature inversions cause poor air circulation, 

restricting the dispersion of air pollutants. Temperature inversion limits the vertical 

dispersion of air pollutants and low wind speed limits their horizontal dispersion. In 

addition, temperature also plays a major role in the emissions of air pollutants from 

home heating as people heat their houses in cold weather.

In addition to the above mentioned meteorological conditions (i.e. wind speed 

and temperature inversion), the concentrations of one of the major air pollutants; ozone 

also depends upon sunshine. Sunshine is vital to the production of ozone. However, 

ozone levels were not monitored in Christchurch during the study period and thus were 

not analysed in this study.

The high dependence of air pollution levels upon meteorological conditions and 

hourly and seasonal emission patterns allowed the estimation of missing hourly air 

pollution data using regression models. In order to explain the variations in hourly 

emissions, indicator variables for each hour of a day were created. Similarly an 

indicator variable was created to explain the differences in emissions on weekdays and 

weekends. These indicator variables were used in the regression models as proxy 

variables for explaining the variations in the emissions of air pollutants. Regression 

models were fitted for hourly air pollution levels, with the indicator variables and 

meteorological variables as predictors. Regression models also had the interaction terms 

between meteorological variables as predictors if adding them improved the model fit.

Because of the time series nature of air pollution and meteorological data, 

serially correlated residuals were expected from the ordinary least squares regression 

models for hourly air pollutants. The Durbin-Watson test statistic confirmed that the 

residuals were serially correlated (Draper and Smith, 1998). The autoregressive models 

controlling for the autocorrelation in the residuals were fitted using the SAS AUTOREG 

procedure. The autoregressive models satisfied the standard assumptions of linear 

regression models such as the normality of residuals, the constant variance and the 

independence assumption of the residuals (Draper and Smith, 1998). In addition to the 

explanatory variables, these models included new autoregressive parameters to explain 

any serial correlations left in the pollutants, not captured by the explanatory variables. 

The inclusions of new parameters that explain serial correlations added explanatory 

power to the models, which helped to better estimate the missing hourly air pollution 

levels. The autoregressive parameters (lag numbers for the autocorrelated errors) in the 

model were chosen based on their significance level. Details of model development for
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hourly air pollutant levels and model validation were reported elsewhere (Shrestha, 

Kjellstrom and Metcalf, 2002).

Due to the differences in the methods used to measure air pollutants over the 

twelve year period, modelling was carried out separately for each year. Models were 

separately fitted for the winter and the summer periods each year because of the 

substantial differences in air pollution levels during those periods. For modelling 

purposes, four months from May to August, when the emissions from home heating 

were the dominant source of air pollutants, were grouped as the winter period. The 

remaining eight months, from January to April and September to December, when the 

contributions of emissions from home heating to the ambient air pollution were very 

low, were grouped as the summer period. When air pollution concentrations were very 

low, fluctuating around zero, the instruments sometimes provided below zero readings. 

These negative readings should be considered as very low levels, close to zero (Personal 

communication with Teresa Aberkane, Environment Canterbury). The negative readings 

were converted to zero before fitting the models. Models were separately fitted for all 

three pollutants (PMio, CO and NO2).

Hourly air pollution levels for all three pollutants were predicted based on the 

fitted models for the respective pollutants. The predictions were used as the estimated 

levels for the missing hourly air pollution data at St. Albans. A complete hourly air 

pollution data set was prepared for St. Albans by replacing the missing hourly air 

pollution data with the corresponding predicted hourly levels in this thesis. The 

complete hourly air pollution and meteorological database with the missing data 

replaced by the corresponding model predictions was used as an exposure database in 

this study.

3.5.7 Conversion of measured hourly PM10 concentrations from one 

method to another

From 1996, there was parallel monitoring of PM 10 concentrations using both the TEOM 

and the beta attenuation methods at the St. Albans site. There was a highly positive 

correlation between the PM 10 concentrations measured by the two analysers. Table 3-3 

shows the correlation coefficients (p) between hourly PM 10 concentrations measured by 

the TEOM analyser and the beta gauge analyser and the regression equations showing 

the relationships between them for different years. The PM 10 concentrations measured 

by the TEOM analyser were on average lower than concentrations measured by the beta 

gauge monitor.
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Table 3-3. Linear relationships between hourly PM10 concentrations measured using a 
TEOM monitor and a beta gauge analyser for different years (1996 -  1999)
Y e a r A n a ly se r s N P R 2 R e g r e ss io n  e q u a tio n

1996 TEOM at 50°C and 
Beta gauge

5186 0.94 0.88 T, = 0.68*BG + 0.27

1997 TEOM at 50°C and 
Beta gauge

8308 0.93 0.87 T, = 0.64*BG + 1.48

1998 TEOM at 30°C and 
Beta gauge

8151 0.89 0.80 T3 = 0.83*BG + 1.40

1999 TEOM at 40°C and 
Beta gauge

6584 0.94 0.88 T2 = 0.69*BG + 0.47

T,
t2
t3
BG

TEOM at 50°C 
TEOM at 40°C 
TEOM at 30°C 
Beta gauge

N
P
R2

No. of hourly observations used in regression
Correlation coefficients
R2 value for the linear regression model fitting

PM io concentrations measured by the TEOM analyser were dependent upon the 

sample temperature setting of the TEOM equipment. The monitored PMio 

concentrations were lower when the sample temperature settings were higher. This was 

due to a greater loss of volatile materials in particulate matter at higher temperature 

settings. The amount of material volatilised depends on the composition of particulate 

matter. The TEOM analyser operating at 40°C gave PMio readings approximately 31% 

less than the PMio levels measured by the beta gauge analyser. PMio levels measured by 

the TEOM analysers with sample temperature settings of 50°C and 30°C were 

approximately 36% and 17% lower, respectively, than the levels measured by the beta 

gauge analyser.

In order to make PMio levels comparable over the whole study period (June 

1988 -  December 1999), it was necessary to convert both the original and the model 

estimated hourly PMio concentrations, which replaced the missing hourly PMio 

concentrations, to a common measurement method. The TEOM method with a sample 

temperature setting of 40°C was chosen as the standard method to convert all hourly 

PMio concentrations as Environment Canterbury is currently using this method to 

monitor PMio concentrations for reporting purposes in Christchurch in the recent years.

Based on the relationship between the TEOM measured PM)0 and the beta gauge 

measured PMio (Table 3-3), equations between the hourly PMio concentrations 

measured by the TEOM methods at different sample temperature settings were 

developed (Table 3-4). The linear relationship between the TEOM and the beta gauge
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measured PMio levels for 1997 was used to develop the equations between PMio 

concentrations measured by the TEOM method at sample temperature settings of 40°C 

and 50°C for the years from 1994 to 1997. The relationship based on the 1996 data was 

not used as PMio concentrations measured by the beta gauge method were available for 

relatively a short period of time in 1996 compared to those measured in 1997. The PMio 

data measured by the beta gauge method were not available for the four months from 

January to April in 1996.

Using equations in Table 3-4, all hourly PMio concentrations were converted to 

the equivalent reading of PMio concentrations measured by the TEOM method with a 

sample temperature setting of 40°C. PMio concentrations measured using the beta gauge 

method were adjusted downwards. PMio concentrations measured by the TEOM 

analyser with a sample temperature setting of 50°C were adjusted upwards whereas the 

readings from the TEOM analyser with a sample temperature setting of 30°C were 

adjusted downwards.

Table 3-4. Relationships between PMio concentrations measured by different methods 
(Table of adjustments)

Year Analysers Equations

1988- 1993 TEOM at 40°C and Beta gauge T2 = 0.69*BG + 0.47

1994- 1997 TEOM at 40°C and TEOM at 
50°C

T2= 1.09*T, -  1.14

1998 TEOM at 40°C and TEOM at 
30°C

T2 = 0.84*T3 -  0.69

T, TEOM at 50°C
T2 TEOM at 40°C
T3 TEOM at 30°C
BG Beta gauge

3.5.8 Exposure calculation

From the full hourly air pollution and meteorological database prepared for

Christchurch, with the missing data replaced by the corresponding model predictions 

(Section 3.5.6), the following daily exposure variables for air pollutants and weather 

variables for each 24-hour period from midnight to midnight were computed:

• 24-hour average for all three pollutants (PMio, CO and N 02)

• Maximum one-hour concentration for all three pollutants

• 24-hour average of temperature

• Maximum one-hour temperature

• Minimum one-hour temperature
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24-hour average of relative humidity

3.6 Population data

Populations of Christchurch census area units (CAU) were obtained for four census 

years (1986, 1991, 1996 and 2001) from the Statistics New Zealand Census of 

Population and Dwellings conducted in those years. For the 1991, 1996 and 2001 

censuses, Statistics New Zealand provided population data for each CAU by sex, age 

group (<1, 1-14, 15-24, 25-44, 45-64, 65-84 and 85+ years) and ethnicity (European, 

NZ Maori, Pacific people, Asian, Others and ‘not specified'). These census data were 

based on 2001 CAU boundaries. The 1996 CAU and 2001 CAU boundaries match each 

other in Christchurch. A few of 1991 CAU boundaries did not match the 1996 and 2001 

boundaries, and as such were mapped to 2001 CAU boundaries by Statistics New 

Zealand before releasing the census data.

For the 1986 census, total population data for each CAU were obtained from 

Statistics New Zealand publication (Statistics New Zealand, 1998). These data were 

based on 1996 CAU boundaries, which match the 2001 boundaries for Christchurch. 

This ensures that the study area did not change during the study period. CAU 

populations were summed together to get the total population of Christchurch for 1986, 

1991, 1996 and 2001.

Population data used in this analysis refer to the “usually resident population”. 

The census counts people where they are on census night, but also asks about “the 

address of the person’s usual residence”. The “usually resident population” is based on 

the address of a person’s usual residence where the person considers himself or herself 

to live (Statistics New Zealand, 1997). The population data used in this analysis refers 

to the population which usually lived in Christchurch, irrespective of where they were 

on the census night.

In order to assure the confidentiality of data, Statistics New Zealand has adopted 

a policy of randomly rounding all the figures in the published statistical tables and other 

aggregated census statistics to base three. This is to protect the confidentiality of the 

information about individual people and to ensure that no person can be identified from 

the published data. While rounding to base three, the probabilities of rounding up or 

down are set so that the expected value equals the original count in the long run 

(Statistics New Zealand, 2002). Rounding data in each cell of a table to base three 

makes the numbers in each cell the multiples of three.
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Population estimates for non-census years

Total Christchurch populations for non-census years were estimated by linear 

interpolation from the populations of two census years. This assumed an equal increase 

in total Christchurch population each year between the two census years.

3.7 Mortality data

Mortality data were extracted from the NEOH (New Zealand Environmental and 

Occupation Health Research Centre) New Zealand mortality database for the period 

from 1988 to 1998. The NEOH New Zealand mortality database was prepared by 

combining New Zealand mortality datasets (provided by the New Zealand Health 

Information Service) with a uniform format of data for all years (Shrestha and Smartt, 

2001). Mortality data for 1999 were provided by the New Zealand Health Information 

Service (NZHIS).

3.7.1 Health domicile code

A deceased person’s usual residential address is represented by the Statistics New 

Zealand health domicile code in the mortality database. The health domicile code is 

created from the Statistics New Zealand census area unit code and is used for collecting 

health data. There is a one to one match between the health domicile code and the 

census area unit code. For deaths registered from 1988 to 1992, the 1986 health 

domicile code was used, which have been mapped to 1991 codes by NZHIS. The 1991 

health domicile code (HDOM91) was used for deaths registered from 1993 to 1997 and 

the 1996 health domicile code (HDOM96) was used for deaths registered from 1998 to 

2002 (New Zealand Health Information Service, 2004). The HDOM91 and HDOM96 

codes are linked with the Statistics New Zealand 1991 census area unit code and 1996 

census area unit code respectively.

Mortality data with health domicile codes that matched Christchurch census area 

units, were extracted from the mortality database for the period from 1988 to 1998. 

Mortality data in this period have two groups of health domicile codes; HDOM91 

(linked with the 1991 census area unit code) for pre-1998 deaths and HDOM96 (linked 

with the 1996 census area unit code) for 1998-1999 deaths.

Except for the domicile codes shown in Table 3-5, the area boundaries of all 

other HDOM91 matched the area boundaries of HDOM96 in Christchurch. Although 

there were a few changes in the area boundaries of health domicile codes from 1991 to 

1996, changes were within the city of Christchurch. This ensured that mortality data
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were extracted from the same study area (Christchurch) for all years in the study period. 

Census population data were based on 2001 CAUs. Although mortality data and 

population data were based on the CAUs of different censuses, exact matching of the 

1996 CAU boundaries with the 2001 CAU boundaries ensured consistency between 

population and mortality data.

Table 3-5. Non-matching 1991 and 1996 health domicile codes in Christchurch
HDOM 91 1991 CAU H D O M 96 1996 CAU

A rea unit 

code

A rea unit 

description

A rea unit 

code

A rea unit description

2688 595900 South Brighton 2700 595900 South Brighton

2688 595900 South Brighton 2701 596101 Avon-Heathcote Estuary

2690 596100 Moncks Bay 2701 596101 Avon-Heathcote Estuary

2690 596100 Moncks Bay 2702 596102 Moncks Bay

3=7,2 Causes of death
Causes of deaths were coded according to the International Classification of Disease. 

Deaths registered up to the year 1999 were coded according to the International 

Classification of Disease, Version 9 (ICD-9 codes) and the deaths registered in 2000 

and after were coded according to ICD code, Version 10 (ICD-10 codes) (New Zealand 

Health Information Service, 2004). Thus, some of the pre-2000 deaths, which were 

registered in 2000 (mostly deaths, occurring in the second half of December 1999), 

were coded in ICD-10 codes. Equivalent ICD-9 codes were identified for these deaths 

using the mapping documentations developed by the New Zealand Health Information 

Service to map ICD-9 codes to ICD-10 codes and vice versa (New Zealand Health 

Information Service, 2000).

Based on the first three digits of the codes, the causes of deaths were grouped 

into the following broad categories:

• All non-external causes (ICD-9 code: 1-799)

• Circulatory causes (ICD-9 code: 390-459)

• Respiratory causes (ICD-9 code: 460-519)

Non-external cause deaths included all deaths except those due to external causes such 

as vehicle accidents, poisoning, drowning, fire, etc (ICD-9 code: 800-999). Deaths due 

to external causes were considered to be independent of air quality and excluding them 

would reduce potential dilution of the air pollution effect. Because of very small 

numbers of daily deaths (averages of 3 deaths per day for circulatory mortality and 0.8
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death per day for respiratory mortality), circulatory and respiratory mortality were not 

subdivided further to specific causes of death.

Causes of death were identified based only on the primary underlying cause of 

death. Other relevant diagnoses and other contributing causes were not analysed to 

classify the deaths into the above groups. This could exclude some deaths in which air 

pollution might have played a contributory role.

3.7.3 Age group classification

Due to the small number of daily deaths, only four age groups were used. The age of a 

deceased person was classified into one of the following groups:

• <1 year

• 1-14 years

• 15-64 years

• 65+ years

Preliminary analysis of daily deaths in the three younger age groups showed no clear 

association with air pollution, which may be due to a lack of power to detect statistically 

significant associations in those age groups. Most analyses therefore were focussed on 

deaths in the population aged 65+ years. While the associations between air pollution 

and mortality were analysed both for the 65+ years age group population and the whole 

population (all ages) for non-external cause mortality, the analyses were carried out 

only for the 65+ years age group population for circulatory and respiratory mortality.

3.7.4 Computation of daily deaths

Daily numbers of deaths for the study period of June 1988 to December 1999 were 

computed for the following subsets o f death:

• Non-external cause mortality o f all ages

• Non-external cause mortality o f those aged 65+ years

• Circulatory mortality of those aged 65+ years

• Respiratory mortality o f those aged 65+ years

A ll analyses were separately carried out for each of the above subsets of death in this 

thesis.

3.8 Statistical analysis

Statistical modelling techniques used in each chapter are briefly mentioned here, with 

details provided in the “ Methods”  section of the respective chapter.
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The first part of this study (analysis of research objectives 1 to 4 in Chapters 6 to 

8) is a time series study with “day” as the unit of analysis. Time series study design 

associates daily variation in mortality with daily variation in air pollutant concentrations 

after controlling for the variables that vary over time such as a long-term trend and 

seasonal variations in daily mortality, weather variables and other pollutants. The 

second part (analysis of research objective 5 in Chapter 9) is an ecological cross- 

sectional study.

Poisson regression models were used to associate daily air pollutant 

concentrations with daily mortality controlling for a long-term trend and seasonal 

variations in daily mortality, and the confounding effects of weather variables. In 

Chapter 6, the models were used to quantify the acute effects of single day exposure to 

air pollutants on daily mortality.

Using the LOESS smooths with different smoothing window sizes, time series 

data were decomposed into a number of independent time series representing daily 

variations in those series, which vary with the period of different time scales such as 

long-term variation, mid-term variation and short-term variation. The associations 

between daily PMio and daily mortality were analysed using the mid-term variations of 

daily data in Chapter 7 to examine if any association between short-term exposure to air 

pollution and daily mortality was due to mortality displacement by a few days. 

Polynomial distributed lag models were used in Chapter 8 to estimate the extended 

effects of PMio on daily mortality, distributed over several days and to analyse the 

shape of the distribution of effects of PMio on daily mortality over lag days. Logistic 

regression models across spatial units were used to analyse the association between 

annual average PMio concentrations and annual mortality in Chapter 9. These statistical 

methods are discussed in detail in the respective chapters.

Effect size estimates were presented with their 95% confidence intervals. 

Statistical significance of the results were generally assessed at 5% level of significance 

(p-value < 0.05), unless otherwise stated.
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Chapter 4: Descriptive analysis of population and mortality

data

4.1 Introduction

This chapter is divided into two sections. The first section describes the population 

structure of Christchurch and compares it between the three censuses. The second 

section provides a descriptive analysis of mortality, including an analysis of mortality 

trends over the study period and seasonal variations in mortality.

4.2 Descriptive analysis of population data

Christchurch has the second largest population of all the territorial local authorities in 

New Zealand after Auckland, making it the second largest urban area in New Zealand. 

According to the 2001 Census of Population and Dwellings, Christchurch had the 

usually resident population of approximately 316 thousand, which was about 8.5% of 

the country’s 3.7 million residents (Statistics New Zealand, 2002).

The population growth rate in Christchurch fluctuated over the study period of 

1988 to 1999. Between the census years 1986 and 1991, the average annual growth was 

0.49%, which increased to 1.38% per year between 1991 and 1996. The rate of increase 

slowed to 0.46% per year between the 1996 and 2001 censuses (Statistics New Zealand, 

1998; 2002). Figure 4-1 shows the numbers of males and females in the population in 

the three census years. The percentages of males and females were approximately the 

same in all three census years. The sex ratio (males per 100 females) remained 

relatively constant at 93 in the whole study period.

4.2.1 Age distribution

In Christchurch, a little over one per cent of the total population were under one year 

old, approximately 18% were between 1 and 14 years old, around 67% were between 15 

and 64 years old and a little over 13% were 65+ years old (Figure 4-2). The proportion 

of less than one year old population decreased slightly between 1991 and 2001 whereas 

the proportion of people aged 65+ years increased slightly in the same period.
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Figure 4-1. Comparison of the male and female population in the three census years 
(percentages indicate proportion of each sex), Christchurch
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Figure 4-2. Age distribution of Christchurch population in the three census years
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4.3 Descriptive analysis of mortality data 

4.3.1 Mortality by cause of death

The total number of deaths in Christchurch during the study period of 1988 to 1999 was 

31,921, with an average of 2,660 deaths each year, or 7.3 deaths each day. About 94.3% 

of these deaths were due to non-external causes and the remainder (about 5.7%) were 

due to external causes, which included accidents, poisoning, drowning, fire etc. 

(Table 4-1). Among non-external deaths, circulatory disease was the major cause of 

deaths, constituting about 48% of all non-external deaths and about 45% of total deaths.
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Respiratory mortality constituted about 11% of non-external mortality and 10.5% of 

total mortality.

Table 4-1. Mortality by cause of death, Christchurch 1988 -  1999
All

causes
Non-external

causes
External
causes

Circulatory
causes

Respiratory
causes

Mortality count 31,921 30,111 1,810 14,327 3,352

Percentage of all 
causes mortality

100% 94.3% 5.7% 44.9% 10.5%

Daily average 
mortality

7.3 6.9 0.4 3.3 0.8

Figure 4-3 shows the number of deaths by year for different causes of deaths for 

the twelve years from 1988 to 1999. The trends for the annual number of deaths showed 

slight declines in all cause mortality, non-external mortality, circulatory mortality and 

respiratory mortality over the twelve year period.

Figure 4-3. Mortality trends by cause of death, Christchurch 1988 -  1999
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4.3.2 Age distribution of cause-specific mortality

Except for external cause deaths, the age distributions of mortality for the other three 

categories (non-external, circulatory and respiratory) were similar (Figure 4-4). 

Table 4-2 shows the percentage of deaths by age group within each mortality category. 

For non-external, circulatory and respiratory cause mortality, those aged 65+ years 

made up the highest percentage of deaths (over 80% within each category) whereas for 

external cause mortality, the highest percentage occurred in the 15 -  64 years age group,
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followed by the 65+ years group. Those under 15 years of age constituted a very small 

proportion of deaths, less than 2% within each category except external cause mortality.

Figure 4-4. Age distribution of mortality within each category, Christchurch 1988 -  1999
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Table 4-2. Percentage of deaths by age group within each mortality category, 
Christchurch 1988 -  1999

Age group All causes Non-external
causes

External
causes

Circulatory
causes

Respiratory
causes

<1 year 1.2 1.2 0.8 0.03 0.5

1- 14  years 0.5 0.3 3.4 0.03 0.2

15-64 years 18.9 16.03 66.9 11.4 7.9

65+ years 79.4 82.4 28.8 88.5 91.5

The mean age of Christchurch residents who died due to non-external causes 

was 74.5 years (sd 15.7 years). For circulatory and respiratory mortality, the mean age 

at death was 77.6 years (sd 11.5 years) and 79.2 years (sd 12.5 years) respectively. The 

trend of mean age at death for each mortality category over the twelve year period is 

shown in Figure 4-5. There were slight upward trends in the mean age of death over the 

twelve year period for all the causes presented here.
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Figure 4-5. Trend of mean age at death by mortality category, Christchurch 1988 -  1999
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4.3.3 Seasonal variation in mortality

The age groups under 15 years (<1 year and 1-14 years) constituted a very small 

percentage of total number of deaths, less than 2% (Section 4.3.2). Due to the very low 

number of daily deaths in these age groups, the age groups under 15 years were merged 

with the 15-64 years age group to analyse the seasonal variation in daily mortality. 

Since the population aged 65+ years is likely to have the highest mortality risk 

associated with air pollution, seasonal variation, and the association between air 

pollution and mortality were analysed separately for total population and for the 

population aged 65+ years for non-external mortality. Since most of the circulatory and 

respiratory deaths occurred in the population aged 65+ years (more than 88% of 

circulatory and respiratory deaths), analysis was carried out only for the population aged 

65+ years for those mortality categories.

Figures 4-6 and 4-7 show time series plots of daily mortality. A centred 31-day 

moving average smoothing filter was applied to reveal any pattern present in each time 

series plot. Figure 4-8 shows the monthly variations in average number of daily deaths. 

There was a strong seasonal variation in non-external cause mortality, circulatory 

mortality and respiratory mortality in the population aged 65+ years, with peaks 

occurring during the winter months (June-August) and troughs during the summer 

months (December-February). Non-external mortality in the population under 65 years 

old did not have a noticeable seasonal variation. A marked seasonal variation in non

external cause mortality of all ages was related to the seasonal variation in non-external
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cause mortality of the elderly population (65+ years old). External cause mortality did 

not show any seasonal pattern.

Figure 4-6. Time series plots of daily deaths with a 31-day moving average filter, 
Christchurch 1988 -  1999
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Figure 4-7. Time series plots of daily deaths with a 31-day moving average filter in the 
population aged 65+ years, Christchurch 1988 -  1999
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Figure 4-8. Monthly variations of average daily deaths by mortality category,
Christchurch 1988- 1999
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In order to estimate the seasonal differences in daily mortality, the months were 

grouped into three different periods based on the dominant source of air pollution in 

those months. The first four months from January to April and the last four months from 

September to December, when motor vehicle emissions were the primary source of air 

pollution with very small contributions from the emissions from home heating to the 

ambient air pollution, were grouped as the warmer period 1 and the warmer period 2 

respectively. The four months from May to August, when emissions from home heating 

were the dominant source of air pollution, were grouped as the cooler period. Relative 

risks of mortality for each period were calculated for each mortality category using 

Poisson regression models with the warmer period 1 (January -  April) as a reference
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period (Table 4-3). Except for external cause mortality, the risks of dying were 

significantly higher in the cooler period than in the warmer periods. Relative risks were 

similar for non-external mortality and circulatory mortality of the 65+ years age group. 

In the population aged 65+ years, the risks of dying due to non-external causes, 

circulatory causes and respiratory causes were significantly higher in the warmer period 

2 (September -  December) than in the warmer period 1 (January -  April). Respiratory 

mortality in 65+ years age group had the strongest seasonal variation, with the cooler 

period’s average daily mortality 2.07 times higher (95% Cl: 1.89, 2.27) than the average 

daily mortality in the warmer period 1.

Table 4-3. Relative risk of mortality (95% Cl) in each period for different mortality 
categories, Christchurch 1988 -  1999

S eason 6 5 +  y e a r s  p o p u la t io n N o n -ex te rn a l E x terna l

N o n -e x te rn a l
m o rta lity

C ircu la to ry
m orta lity

R esp ira to ry
m o rta lity

m o rta lity  o f  
less than  65 

years  o ld

cause
m o rta lity  o f  

all ages
W arm er 
p e rio d  1 
(Jan -A p r)

R e fe re n c e R eference R efe ren ce R efe ren ce R efe ren ce

C o o le r  period  
(M ay -A u g )

1 .30***  
(1 .2 7 , 1.35)

1.28*** 
(1 .23 , 1.34)

9 07 * * *

(1 .8 9 , 2 .27)
1.09** 

(1 .0 3 , 1.17)
0 .9 6

(0 .86 , 1.08)

W arm er 
p e rio d  2 
(S ep -D ec)

1 1 1 ***

(1 .0 8 , 1.15)
1.09*** 

(1 .0 5 , 1.15)
1 .46*** 

(1 .3 2 , 1.61)
1.004

(0 .9 4 , 1.07)
1.05

(0 .9 4 , 1.18)

* p -v a lu e  < 0 .05 ; ** p -v a lu e  <  0 .0 1 ; *** p -va lue  <  0.001

The associations between daily air pollution and mortality were analysed by 

season in time series analysis in Chapter 6. For the seasonal analysis, the two warmer 

periods (warmer period 1 and warmer period 2), covering eight months from September 

to the following April, were combined as the emissions from home heating generally 

contribute very low to the ambient air pollution in those periods. Motor vehicle 

emissions were the primary source of air pollution in those months.

4.3.4 Daily variation in mortality across a week

Average daily numbers of deaths by day of week with 95% confidence interval bars are 

shown in Figure 4-9. The average daily number of deaths did not vary across a week in 

any discernible manner for any mortality category except for external cause mortality. 

The average daily number of deaths due to external causes was slightly lower on 

Tuesday, Wednesday and Thursday than on other days. Relative risks of mortality for 

each day of the week were calculated using Poisson regression models with Sunday as a

60



reference day (Table 4-4). The risk of dying due to respiratory causes in the population 

aged 65+ years was high on Monday compared with the risk on Sunday. It is not clear 

why the number of respiratory deaths of those aged 65+ years was higher on Monday 

than on Sunday. It may be due to registration errors (Barnett and Dobson, 2004). 

However, there was no evidence of higher deaths occurring on Monday for other causes 

of deaths. The results did not provide any evidence that the risks of mortality were 

associated with days of the week for non-external mortality of all ages or for non

external deaths and circulatory deaths of those aged 65+ years.

Table 4-4. Relative risk (95% Cl) of mortality for each day of the week for different 
mortality categories, Christchurch 1988 -  1999

Day of 
week

65+ years population Non-extemal 
mortality of

External
cause

Non-external
mortality

Circulatory
mortality

Respiratory
mortality

less than 65 
years old

mortality of 
all ages

Sunday Reference Reference Reference Reference Reference

Monday 0.98
(0.94, 1.03)

0.96
(0.90, 1.03)

1.14*
(1.00,1.31)

1.01
(0.91, 1.11)

0.98
(0.83, 1.16)

Tuesday 1.01
(0.96, 1.05)

0.99
(0.93, 1.05)

1.01
(0.88, 1.16)

0.97
(0.87, 1.07)

0.83*
(0.69, 0.99)

Wednesday 0.99
(0.95, 1.04)

0.99
(0.93, 1.06)

1.08
(0.95, 1.24)

1.03
(0.93, 1.14)

0.84#
(0.71, 1.01)

Thursday 0.99
(0.95, 1.05)

0.99
(0.93, 1.06)

1.11
(0.97, 1.27)

1.06
(0.96, 1.17)

0.81*
(0.68, 0.97)

Friday 1.02
(0.97, 1.06)

1.00
(0.94, 1.07)

1.09
(0.96, 1.26)

0.93
(0.84, 1.03)

0.97
(0.82, 1.15)

Saturday 1.02
(0.97, 1.07)

0.98
(0.92, 1.05)

1.08
(0.94, 1.24)

1.01
(0.92, 1.12)

1.08
(0.92, 1.28)

# p-value <0.1;* p-value < 0.05; ** p-value < 0.01; *** p-value < 0.001

61



Figure 4-9. Variations of average daily deaths across a week by mortality category,

Non-external deaths, all ages Non-external deaths, 65+ years
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4.3.5 Distribution of daily mortality

Table 4-5 summarises daily mortality data for each mortality category and Figure 4-10 

shows the distribution o f daily mortality by mortality category. The mean number o f 

daily respiratory deaths in the population aged 65+ years was about 12% o f the mean 

number o f daily non-external cause deaths o f the same age group. About 50% o f daily 

non-external deaths in the population aged 65+ years were due to circulatory causes. 

The distributions o f daily deaths were skewed towards higher values (right skewed) for
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all mortality categories, with daily respiratory mortality having the most skewed 

distribution.

Table 4-5. Summary statistics for daily mortality for each mortality category, 
Christchurch 1988 -  1999

Mortality category Mean (sd) Minimum

1st

Quartile

Median 3rd

Maximum

Non-external mortality: 

less than 65 years old 1.2(1.1) 0 0 1 2 7

65+ years old 5.7 (2.6) 0 4 5 7 18

Circulatory mortality 2.9 (1.8) 0 2 3 4 13

(65+ years old) 

Respiratory mortality 0.7 (0.9) 0 0 0 1 7

(65+ years old)

External mortality of all 0.4 (0.7) 0 0 0 1 9

ages

Figure 4-10. Distribution of daily mortality by mortality category, 

Christchurch 1988 -  1999
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4.4 Summary

This chapter provided a general description of the population structure of Christchurch. 

Mortality data were summarised by age group for non-external mortality, circulatory 

mortality and respiratory mortality. More than 80% of all non-external cause deaths 

occurred in the population aged 65+ years. For both circulatory and respiratory 

mortality categories, the 65+ years population constituted more than 88% of deaths. On 

average, there were 5.7 non-external cause deaths per day in the population aged 65+ 

years. For circulatory and respiratory cause deaths, the average daily numbers of deaths 

were 2.9 and 0.7 respectively.

Annual numbers of deaths declined slightly over the study period for all 

mortality categories analysed. Except for external cause deaths, there were strong 

seasonal variations in other mortality categories, with peaks occurring during the winter 

months (June -  August) and troughs during the summer months (December -  February).
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Chapter 5: Descriptive analysis of weather and air pollution

data

5.1 Introduction

This chapter provides a descriptive analysis of weather (temperature and relative 

humidity) and air pollutant (PMio, CO and NO2) data. A ir pollution levels depend 

highly upon local weather conditions. Emissions from the burning of solid fuels for 

domestic heating and the local meteorological conditions cause very high levels of air 

pollution during winter in Christchurch. Due to local topography, temperature 

inversions occur frequently during calm evenings in the winter. Temperature inversions 

and calm weather restrict the dispersion of air pollutants both horizontally and 

vertically, resulting in higher levels of air pollution. Seasonal variations in weather data 

and air pollutants and the correlations between them are examined in this chapter.

5.2 Seasonal variation in weather variables

Figures 5-1 and 5-2 show time series plots o f daily temperature and daily relative 

humidity from June 1988 to December 1999, with a centred 31-day moving average 

smoothing filter. Time series plots of three temperature variables (average hourly 

temperature, maximum hourly temperature and minimum hourly temperature) are 

shown in Figure 5-1. As expected, temperature had a strong seasonal variation, with 

lower levels occurring in the winter months (June -  August) and higher levels occurring 

in the summer months (December -  February). The seasonal patterns are illustrated in 

the plots showing monthly variations in daily temperature and daily relative humidity 

(Figure 5-3). Seasonal variations were consistent for all three temperature variables. 

Relative humidity had a seasonal variation opposite to the seasonal variation of 

temperature. Monthly average relative humidity was higher between May and July and 

lower between October and December.
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Figure 5-1. Time series plots of daily temperature with a 31-day moving average filter, 
Christchurch June 1988 -  December 1999
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Figure 5-2. Time series plot of daily average of hourly relative humidity with a 31-day 
moving average filter, Christchurch June 1988 -  December 1999

Figure 5-3. Monthly variations in average daily temperature and average daily relative 
humidity, Christchurch June 1988 -  December 1999
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5.3 Annual trends in weather variables

No long-term trend in daily temperature or daily relative humidity was noticeable in the 

time series plots in Figures 5-1 and 5-2. Figure 5-4 shows annual averages of daily 

temperature and daily relative humidity from 1989 to 1999. Since data were available 

only from June 1988 for this study (almost half o f the warmer period data were not 

available for 1988), the 1988 annual averages were not comparable with annual 

averages for the other years and thus were not plotted in Figure 5-4.

Figure 5-4. Annual trends in average daily temperature and average daily relative 
humidity, Christchurch 1989 -  1999
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There were slight upward trends in the annual averages of daily temperature for 

all three temperature variables (hourly maximum temperature, hourly average 

temperature and hourly minimum temperature). The upward trends were clearly visible 

after 1992. There was a slight downward trend in the annual average of daily relative 

humidity.
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5.4 Seasonal variation in air pollution variables

Figure 5-5 shows time series plots of daily PMio, CO and NO2 concentrations from June 

1988 to December 1999 with a centred 31-day moving average smoothing filter. Time 

series plot of daily NO2 concentrations shows that daily NO2 concentrations in the 

winter season in the years after 1992 were lower than the concentrations in the pre 1992 

winter season with no apparent change in the warmer seasons. The standard deviation of 

daily NO2 concentrations after 1992 was little more than half of the standard deviation 

of daily NO2 concentrations before 1992. The other two pollutants (PM 10 and CO) did 

not have any specific long-term trend. The differences in NO2 concentrations before and 

after 1992 may be due to the increasing number of old vehicles being gradually replaced 

by the vehicles fitted with catalytic converters and other emission control equipment.

A ll three pollutants (PM 10, CO and NO2) had strong seasonal patterns, with 

higher levels occurring between May and August and lower levels occurring between 

September and April. The seasonal patterns are illustrated in the plots showing monthly 

variations in daily PM 10, CO and NO2 concentrations (Figure 5-6). Though all three 

pollutants had similar seasonal patterns, the monthly variation of NO2 was slightly 

different from those of PM 10 and CO. While the monthly averages of PM 10 and CO 

were almost constant from October to March, when the concentration levels were low, 

the monthly averages of NO i gradually increased in the first three months of the year 

(January -  March) and decreased in the last three months of the year (October -  

December), after having attained higher concentration levels in the winter.
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Figure 5-5. Time series plots of daily air pollutant concentrations with a 31-day moving 
average filter, Christchurch June 1988 -  December 1999
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Figure 5-6. Monthly variations in average daily air pollutant concentrations, Christchurch 
June 1988 -  December 1999
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All three pollutants had peaks in June and July, which are the coldest and the 

calmest months (Figure 5-3). The low wind speed and the presence of temperature 

inversions during these months cause highly stable air. Besides meteorological
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conditions, the higher concentrations of pollutants during June and July were also due to 

higher levels of emissions from domestic heating, such as the burning of coal and 

firewood to keep houses warm.

The primary sources of air pollutants are different for summer and winter in 

Christchurch. Vehicle emissions are the main source of air pollution in the summer. 

Apart from vehicle emissions, sea spray, dusts and pollens may also contribute some 

pollutants especially PMio. The contributions of these sources are likely to be high 

during the summer when wind speeds are elevated. In the winter, air pollution from 

domestic heating, which dominates all other sources, is added to the summer level air 

pollution. This results in very high pollution levels in the winter. Another source of air 

pollution is industry emissions, which is approximately the same throughout the year.

In the winter months, people burn firewood during cold mornings and evenings 

to keep their houses warm. The sudden increase in PMio concentrations in the coldest 

months is most likely due to the burning of firewood in these months. The 

concentrations of NO2 started gradually increasing during the summer months as well 

when people had not started burning firewood. Emissions of NO: in the environment is 

mainly caused by vehicle emissions, which is more likely to be the same throughout the 

year, with slightly lower level of emissions in December and January. The gradual 

increase and decrease in NO: concentrations is likely to be mainly due to changes in 

wind speed and in temperature inversion conditions.

5.5 Annual trends in air pollution variables

Time series plots of air pollutant concentrations in Figure 5-5 show no specific long

term trend in daily PMio and CO concentrations. The NO: plot shows that daily NO: 

concentrations in the winter season in the years after 1992 were lower than daily NO: 

concentrations of the pre 1992 winter season, with no apparent changes in the warmer 

season. The higher concentrations in the pre 1992 winters caused higher annual 

averages of daily NO: concentrations in the years earlier than 1992 (Figure 5-7). The 

plot of the annual averages of daily CO concentrations shows that annual averages were 

higher in the years between 1990 and 1993. There was no specific long-term trend in the 

annual averages of daily PMio concentrations (Figure 5-7).

The primary sources of three main pollutants were different in Christchurch, 

with domestic home heating being the dominant source of PMio and emissions from 

motor vehicles being the main source of NO:. Both domestic home heating and 

emissions from motor vehicles contributed almost equally to CO, with emissions from
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motor vehicles contributing about 4% more than from domestic home heating (Scott and 

Gunatilaka, 2004). Differences between the long-term trend of PMio and those of CO 

and NO2 may be due to the increasing number of old vehicles being gradually replaced 

by the vehicles fitted with catalytic converters and other emission control equipment, 

which might have reduced NO: and CO concentrations dramatically without making 

any noticeable change in PM 10 concentrations.

Annual averages for 1988 were not plotted in Figure 5-7 as data were not 

available for the full year. Since the period of this study commenced June 1988, only 

the seven months of data from June to December were available for 1988. Almost half 

of the warmer period data were not available for 1988.
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Figure 5-7. Annual trends in average daily air pollutant concentrations, Christchurch 
1989- 1999
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5.6 Distribution of weather and air pollution variables

Summary statistics for daily weather variables and air pollutants are presented in 

Table 5-1 and their distributions are shown in Figure 5-8. Except for daily temperature, 

all other variables had skewed distributions, with all three pollutants having highly 

skewed distributions. While the distribution of daily relative humidity is left skewed, 

the distributions of all three daily pollutants were highly right skewed.

Figure 5-8. Distributions of daily weather variables and air pollutants, Christchurch
June 1988 -  December 1999
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Table 5-1. Summary statistics for daily weather and air pollutants, Christchurch 
June 1988 -  December 1999
Variables Mean

(sd)

Min

1st

Quartile

Median 3rd

Max

W e a th e r  v a r ia b le s  

Tem perature

24-hour average (°C) 12.8

(4.8)

1.9 9.1 12.7 16.4 27.4

Maximum hourly (°C) 18.8

(5.7)

3.9 14.6 18.7 22.9 36.7

Minimum hourly (°C) 

Relative hum idity

8.1

(4.9)

-4.0 4.5 8.3 11.7 22.1

24-hour average (%)

P o llu ta n ts

Particulate m atter (P M w)

76.1

(13.3)

21.8 68.7 77.8 85.4 104.8

24-hour average (|ag/m3) 19.8

(18.1)

1.1 9.8 13.9 21.5 171.9

Maximum hourly (jag/m3) 

Carbon m onoxide (CO)

59.7

(74.8)

4.2 21.5 31.3 60.8 806.1

24-hour average (mg/m3) 1.1

(1.3)

0 0.33 0.75 1.2 12.04

Maximum hourly (mg/m3) 

N itrogen dioxide (N O 2)

3.6

(4.9)

0 1 1.7 4.0 40.6

24-hour average (jig/m3) 17.8

(13.4)

0 8.2 14.4 23.9 179.5

Maximum hourly (jag/m3) 41.1

(28.9)

0 21.8 34.4 53.0 412

5.7 Correlations between exposure variables

The Pearson’s correlation coefficients between daily pollutants and daily weather 

variables by season are shown in Table 5-2. Seasons were defined similar to those
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defined for the seasonal analysis of the association between daily air pollution and 

mortality in Chapter 6. Four months from May to August were classified as the cooler 

season and the remaining eight months from September to the following April were 

classified as the warmer season. The correlation coefficients of temperature with CO 

and NO2 were similar in both seasons but the correlation with PM 10 was stronger in the 

cooler season. Relative humidity was weakly correlated with all three pollutants in both 

seasons.

All three pollutants were negatively correlated with daily mean temperature and 

daily minimum temperature. The strongest correlation was with daily minimum 

temperature (Table 5-3). The negative correlation of pollutants with temperature is 

consistent with the environmental process. People start burning firewood in the winter 

months when the temperature is very low, which results in higher concentrations of air 

pollutants. Temperature inversion, the other meteorological phenomenon, which 

restricts the dispersion of air pollutants by limiting the vertical movement of air and thus 

increases the local air pollution levels, is created when the ground level temperature is 

low.

Pollutants were strongly correlated with each other, with the strongest 

correlation observed between PM10 and CO (correlation coefficient = 0.77 for the cooler 

season). The correlations between pollutants were stronger in the cooler season than in 

the warmer season. The strong correlations between air pollutants were most likely due 

to the dominating influence of weather on daily pollutant variations. Temperature 

inversions and calm weather, which occur more frequently in the cooler season in 

Christchurch, restrict the dispersion of air pollutants both horizontally and vertically and 

cause the higher levels of all air pollutants in the cooler season.
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Table 5-2. Correlations between daily pollutants and weather variables by season, 
Christchurch June 1988 -  December 1999

PM,o CO NO: Mean

Temperature

C ooler season  (M ay -  A ug)

CO 0.77

NO: 0.32 0.41

Mean temperature -0.39 -0.39 -0.29

Relative humidity -0.08 -0.09 -0.08 -0.28

W a rm er season  (Jan  -  A pr; S ep t -  D ec)

CO 0.35

NO: 0.10 0.32

Mean temperature -0.07 -0.36 -0.30

Relative humidity -0.05 0.03 0.04 -0.35

Table 5-3. Correlations between daily pollutants and temperature variables by season, 
Christchurch June 1988 -  December 1999

Daily Temperature

Mean Maximum Minimum

C ooler season  (M ay -  A ug)

PM,0 -0.39 0.13 -0.55

CO -0.39 0.11 -0.55

NO: -0.29 -0.006 -0.35

W a rm er season  (Jan  -  A pr; S ep t -  D ec)

PMio -0.07 0.02 -0.15

CO -0.36 -0.23 -0.43

NO: -0.30 -0.15 -0.38

5.8 Summary

This chapter provided a general description of daily weather and air pollution data in 

Christchurch. Long-term trends and seasonal variations in weather and air pollution data 

were explored. All weather variables and air pollutants had strong seasonal variations. 

Relative humidity had a seasonal variation opposite to the seasonal variation in
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temperature variables. Monthly average relative humidity was higher in May -  July and 

lower in October -  December. All three pollutant concentrations had similar seasonal 

patterns, with higher concentrations in the cooler months and lower concentrations in 

the warmer months. There was a strong correlation between PMio and CO, especially in 

the cooler season. The correlations between air pollutants were stronger in the cooler 

season than in the warmer season. This is most likely because of the dominating 

influence of winter weather conditions, such as calm weather and temperature 

inversions, on the dispersion of air pollutant concentrations.
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Chapter 6: Short-term effects of air pollution on mortality

6.1 Introduction

The main aims of this chapter are to examine the association between daily mortality 

and air pollution adjusting for confounding variables, and to assess the sensitivity of the 

association to different methods by which the confounders are adjusted for. The main 

hypothesis explored in this chapter is that an increase in daily air pollutant concentration 

is associated with an increase in daily mortality.

Time series regression models are used to model daily counts of deaths with 

“day” as the unit of analysis. The probability of dying on any given day is very small 

and the distribution of daily mortality can take only non-negative integers. This suggests 

that daily counts of deaths are counts of rare events and thus follow a Poisson 

distribution. Poisson regression analysis was used to quantify the association between 

daily mortality and air pollutant concentrations adjusting for other co-variates such as a 

long-term trend and seasonal variation in mortality data, days of the week and daily 

weather data. Various approaches were used to adjust for confounders and the 

sensitivity of the association to different approaches were analysed.

6.2 Confounders

Confounding in the association between mortality and air pollution occurs when an 

extraneous variable is associated with an increase in mortality and it is also correlated 

with air pollutant concentrations. The key analysis in a time series study design is to 

associate daily variation in air pollutant concentrations with daily variation in mortality. 

The most likely confounders in time series study design are the variables that have 

systematic variation over time, such as a long-term trend, seasonal variation, weather 

variables, and epidemics of seasonal infectious diseases such as flu epidemics. As 

individual characteristics like age, sex, smoking habit, and socioeconomic class do not 

vary from day-to-day, these variables do not confound the association between air 

pollution and mortality.

Daily mortality may have a long-term trend due to change in population 

structure over time. If daily air pollutant concentration also has a long-term trend, it will 

induce correlations between air pollution and mortality even if they are not causally 

related. Analysis to look for any causal association must adjust for these long-term 

trends.

80



Chapters 4 and 5 show that mortality, meteorological and air pollution variables 

had pronounced seasonal variations. Both daily number of deaths and air pollutant 

concentrations peaked during the winter. Because of similar seasonal variations, 

mortality and air pollution would be positively correlated and the correlations could be 

very high. Although high PMio concentrations in the winter may contribute to higher 

deaths in the winter, most of the seasonal variation in mortality may be due to other 

factors. So in order to analyse the acute effects of air pollution on mortality, these 

seasonal patterns need to be adequately adjusted for in the analysis. Failure to control 

for seasonal patterns in the analysis could provide false evidence of the association 

between mortality and air pollution.

Weather variables and co-pollutants that vary on short time scales are the other 

likely confounders in the short-term association between daily mortality and air 

pollution. Weather variables, especially temperature, are highly correlated with air 

pollutants and at the same time they are also risk factors for increased mortality. 

Extreme temperatures, both hot and cold, are associated with increased daily mortality. 

So if the confounding effects of weather variables are not adjusted for, the increased 

mortality may be wrongly linked only to air pollutants even though they are not the only 

risk factors. This may result in an overestimation of the effect of air pollutants on 

mortality. Co-pollutants may also confound the true association between the pollutant of 

interest and mortality. For example, PMio and CO concentrations are highly correlated. 

Thus, the likely effect of CO on mortality may contribute to the association between 

PMio and mortality resulting in an exaggerated effect of PMio if the confounding effect 

of CO is not adequately adjusted for.

A long-term trend and seasonal variation in daily mortality and the confounding 

effects of weather variables have been taken into account in this analysis. Before adding 

air pollutant variables, the models were checked to confirm that a long-term trend and 

seasonal variation were adequately controlled for. The confounding effects of 

co-pollutants were analysed by fitting multi-pollutant models.

6.3 Methods

Poisson regression models were fitted for daily mortality as shown in equation (6-1 ).

Where Y, is the number of deaths on day “f”, Pop is the population at risk which is used 

as an “offset” in the models, PM,.q is PMio concentrations on day “f-g”, “g” is the lag
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number and Xja are other daily confounding variables. By varying the values of q from 0 

to 3, the lagged effects of air pollutant can be estimated for lags 0 (same day) to 3 days. 

The effect of each lag was estimated one at a time by fitting separate models with only 

one lagged air pollutant variable each time. The annual population was used as the 

population at risk for each day in a year. For census years, the “usually resident” census 

population for Christchurch was used as an annual population and for non-census years 

it was estimated by linear interpolation from the “usually resident population” of two 

census years.

Various functions of time were used to adjust for a long-term trend and seasonal 

variation in daily mortality. Models were also adjusted for weather variables such as 

daily temperature and relative humidity.

The associations between mortality and air pollutants were examined for 

non-external cause mortality, respiratory mortality and circulatory mortality by 

separately fitting the Poisson regression models (equation (6-1 )) for each of the 

mortality categories. Models were fitted for daily mortality of different age groups to 

analyse age-specific associations between air pollutants and mortality. Analysis was 

performed separately for all ages and for the 65+ years age group. The analyses of 

respiratory mortality and circulatory mortality were restricted to the population aged 

65+ years only.

Two different approaches were used to adjust for seasonality and weather 

variables. They were:

1. Using trigonometric filtering to adjust for seasonality in daily mortality and a 

linear or a piecewise linear term for weather variables to control for the 

confounding effects of weather variables based on the analysis of their 

associations with daily mortality.

2. Using regression spline functions of confounders including time, temperature 

and relative humidity to adjust for them.

These methods are discussed in detail in the following sections.

6.3.1 Controlling for season and trend 

Method 1

In the first method, the seasonal variation in mortality was controlled by using harmonic 

waves (sinusoidal terms). Although the annual cycle of daily mortality is strongly 

periodic with higher deaths in the winter and lower deaths in the summer, it is highly 

unlikely that mortality patterns over time can be explained by just one sinusoidal
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function with a period of one year. Some risk factors that vary seasonally may cause the 

seasonal variation of a six month period in daily mortality while others may cause the 

seasonal variations of even shorter period for example four months, three months etc. 

Thus, in addition to the annual cycle, the pattern of daily deaths is more likely to have a 

number of other cycles of less than a one year period. This would require the sum of 

harmonic waves with increasing frequencies to adjust for the complex seasonal pattern 

of daily deaths.

Seasonal patterns in mortality were modelled using sinusoidal functions

Z ( « *  &inkT + ßt  cos kT) , 6-2 )
k

Where T = 2^^/365.25, t is the day of the year, a and ßi are the regression

coefficients to be estimated from the model fitting. The values of k determine the period 

of seasonal cycle. For annual cycle, the value of k is set to 1. The integer values of 

k = 2,3,4,5 approximately correspond to the cycles of 6 months, 4 months, 3 months and 

73 days respectively. Modelling seasonal pattern using sinusoidal functions like this is 

commonly known as a cosinor analysis.

Sinusoidal functions were included in the models to control for significant 

cycles of up to 2 months (k = 6). The short-term variation of less than 2 months in 

mortality was used to estimate the association between mortality, air pollution and 

weather. The maximum number of sinusoidal functions to control for seasonal patterns 

was selected based on the likelihood ratio test for the model. Sinusoidal functions of 

one-year period, 6 months cycle and the other smaller cycles were entered into the 

model in a forward stepwise fashion until the likelihood ratio test between the higher 

order model and the nested model within it showed that further additions of sinusoidal 

functions improved the model fit significantly. Statistical significance was set at the 

10% level (p-value < 0.1). Both sine and cosine terms of the same period were included 

simultaneously in the models to create the sinusoidal functions.

Long-term trends in mortality over the 13 year period were modelled using a 

linear time trend. Influenza or other epidemics may cause higher mortality in the 

epidemic years than in non-epidemic years. This results in non-monotonic year to year 

fluctuations in mortality. Analysis was carried out to investigate whether there were 

year to year fluctuations in mortality by including dummy variables for each year in the 

models. A statistically significant improvement (p-value < 0.1) in the model fit would 

indicate year to year fluctuations in mortality. If there was evidence of year to year 

fluctuations in mortality, dummy variables were included in the models. This would
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control for any between-year variations in daily number of deaths that may be caused by 

influenza epidemics or epidemics of other infectious diseases. Flu or other epidemics 

may also cause the variations in daily number of deaths within a year. Adding dummy 

variables for each year would not control for this within-year variations. However, since 

most epidemics including flu are seasonal, controlling for seasonal variations in daily 

number of deaths would control for within-year variations to some extent. Because of 

the lack of data on flu or other epidemics, the variations in daily number of deaths 

caused by the epidemics could not be completely controlled for.

In order to control for daily variation in mortality across the week, dummy 

variables for day of the week were included in the models irrespective of whether they 

were statistically significant or not.

Method 2

While seasonal variation in mortality was modelled with a parametric approach using 

sinusoidal functions in Method 1, it was modelled semi parametrically in Method 2 

using regression spline functions of calendar time. Natural cubic splines of calendar 

time were used to fit the seasonal variation and a long-term trend in daily mortality. 

Natural cubic spline function of calendar time divides the whole time period of analysis 

into a number of intervals as defined by the degrees of freedom used in the natural cubic 

spline function and a cubic polynomial is fitted to each interval. Cubic polynomials are 

fitted such that they join smoothly at the boundaries of the intervals. Beyond the 

boundary points, a linear function is fitted.

Seven degrees of freedom (df) per year of data was chosen (a total of 81 df) to 

create natural cubic splines of calendar time. Using 7 df per year of data would adjust 

for the long-term variation in daily mortality of approximately more than two months 

leaving only the short-term variation in mortality of less than two months to estimate the 

association between mortality, air pollution and weather. This would adjust for the 

confounding effect from a long-term trend in mortality, year to year variations in 

mortality arising from influenza or other epidemics and seasonal variations in mortality. 

Dummy variables for days of the week were included in the models irrespective of 

whether they were statistically significant or not in order to control for daily variation in 

mortality across the week.

Diagnostic plots

Several diagnostic plots were examined to assess whether the models reasonably 

adjusted for seasonal variations and long-term trends in daily mortality data. Time series
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plots of residuals were examined for any long wavelength pattern remained in the data. 

Time series plots of model prediction against the real data are helpful in assessing if the 

models are reasonably fit to the seasonal variation and a long-term trend in data. The 

models adjusted for the variation in daily mortality of approximately more than two 

months. The spectral analysis on the residuals was carried out to see if residual 

periodogram had larger values at the periods above two months. Large values at these 

periods would indicate an insufficient adjustment of seasonal variations. The partial 

autocorrelation functions (PACF) of the residuals were plotted to check for any large 

values at the first lags, which would indicate an insufficient adjustment of seasonal 

variations.

6.3.2 Controlling for weather variables 

Method 1

Relationships between weather variables and mortality were first explored graphically 

using the residual-residual plots of daily mortality data against daily weather data. The 

residuals from the basic model (discussed in Section 6.3.1) for daily mortality that 

adjusted for a long-term trend and seasonal variations were plotted against the residuals 

from the model for daily weather variables that adjusted for a long-term trend and 

seasonal variations in daily weather data. The same sets of variables were used to 

control for a long-term trend and seasonal variations in both mortality and weather 

variables. A loess smoothing technique was used to smooth the scatter plots and to 

reveal any pattern present in them (Cleveland, 1979). The decisions on which weather 

terms (i.e. linear, piecewise linear, second order polynomial) to include in the models to 

control for their confounding effects were made based on the shape of the plots.

Because of the increased risk of mortality associated with hot and cold weather, 

daily mortality is likely to increase with change in temperature at both high and low 

temperature. Variables, based on daily maximum temperature and daily minimum 

temperature, were included in the models to control for the confounding effects of heat 

and cold respectively. Similarly, variables, based on daily average relative humidity, 

were included in the model to control for the confounding effect of relative humidity on 

mortality.

If the residual-residual plots showed that there was an increase in mortality with 

increase in daily maximum temperature above a certain temperature (heat effect) and 

increase in daily mortality with decrease in daily minimum temperature below a certain
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temperature (cold effect), two new temperature variables would be created as follows to

include in the models:

^ tempgx -  A ; if tempgx > A
HOT = J

l  o ; else

,  B -  tempgm ; if tempgm < B
COLD = J

1  o ; else

Where tempgx and tempgm are daily maximum hourly temperature and daily minimum 

hourly temperature; A and B (A > B) are the temperatures where the associations of 

mortality with maximum hourly temperature and minimum hourly temperature changed.

Temperature A is the daily maximum hourly temperature above which there is 

an increased risk of daily mortality and temperature B is the daily minimum hourly 

temperature below which there is an increased risk of mortality. Days with maximum 

hourly temperature below the temperature A and minimum hourly temperature above 

the temperature B can be described as the comfort days when the risk of increased 

mortality associated with daily temperature is almost zero. The optimal change-points A 

and B were estimated by fitting models with a range of possible temperatures as change- 

points and choosing the ones that best fitted the data. Model fit was evaluated based on 

the AIC.

Similarly, new relative humidity variables were created from daily average 

relative humidity based on the shape of the associations shown in the residual-residual 

plot for relative humidity. These new variables were included in the models to control 

for the confounding effects of relative humidity.

The new weather variables were created, as discussed above, based on the shape 

of the associations of weather variables with non-external mortality in the 65+ years age 

group and the same weather variables were included in the models for other mortality 

categories.

The lagged effects of weather variables were adjusted for by including the 

moving averages of the last three days’ (lag 1 to lag 3) maximum temperature, 

minimum temperature, and relative humidity. It was assumed that the relationships of 

these lagged weather variables with daily mortality would be of the same shape as the 

relationships of the corresponding same day weather variables with daily mortality. 

Both temperature and relative humidity variables were kept in the model irrespective of
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their statistical significances in order to control for the confounding effects of weather 

variables.

Method 2

Like modelling long-term trend and seasonal variations in daily mortality, the effects of 

weather variables on daily mortality were modelled using natural cubic splines of 

temperature and relative humidity. A weather model similar to the one used in the 90 

US cities analysis was used in this analysis (Samet et al., 2000b; Samet et al, 2000c). 

The model included

• a natural cubic spline of the same day’s average hourly temperature with 6 df

• a natural cubic spline of the moving average of the preceding three days’ (lag 1 

to lag 3) average hourly temperature with 6 df

• a natural cubic spline of the same day’s average hourly relative humidity with 3 

df

• a natural cubic spline of moving average of the preceding three days’ (lag 1 to 

lag 3) average hourly relative humidity with 3 df.

In addition, several sensitivity analyses were performed to examine the 

sensitivity of the effect of PMio on acute mortality to adjustment for a long-term trend 

and seasonal variation in mortality and to control for the confounding effects of weather 

variables. The choice of degrees of freedom for a natural cubic spline smooth function 

of time to control for a long-term trend and seasonal variation in mortality can change 

the estimates of effect coefficients considerably and as such it is an important issue in 

time series analysis of air pollution and mortality (Health Effects Institute, 2003). The 

degrees of freedom for the smooth function of time were varied to investigate the 

sensitivity of effect estimates of daily PMio on acute mortality to the adjustment for a 

long-term trend and seasonal variation in daily mortality. Similarly, the sensitivity of the 

estimates of PMio effect to the degrees of freedom for natural cubic spline smooth 

functions of weather variables was examined. Sensitivity analysis is discussed in detail 

in Section 6.4.3.

6.3.3 Adding air pollution variables

Daily measurement of air pollutant concentrations (24-hour average of hourly 

concentrations) was added as a linear term to the models that controlled for a long-term 

trend, seasonal variation and weather variables to estimate the relative risk of daily 

mortality associated with an increase in daily air pollutant concentrations. The lagged 

effects of air pollutant were estimated for lags 0 (same day) to 3 days. The effect of each
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lag was separately estimated by fitting separate models with different lags of air 

pollutants one at a time in this chapter. Each model had only one air pollution exposure 

variable. Estimation of the combined effect of all lags on daily mortality using 

distributed lag model is discussed in detail in Chapter 8.

Multi-pollutant models were fitted to investigate whether the association 

between daily mortality and PMio changed after controlling for CO or NO2. A ll air 

pollutant variables were added as linear terms to the model.

6.3.4 Effect modification by season

The possible differences in the association between mortality and PM 10 in different 

seasons were examined by adding a dummy variable for season and an interaction term 

between the season variable and PM 10 to the model. For this purpose, the whole year 

was divided into two seasons; cool season (May-August) and warm season (September- 

April). The cool season corresponds to the winter months with very high PM 10 

concentrations, when particulate matter from wood smoke dominates all other sources. 

The warm season corresponds to the non-winter months with relatively low PM 10 

concentrations with almost no particulate matter from wood smoke. Vehicle emissions, 

industrial emissions and other insignificant sources such as farm dusts, sea spray and 

pollens are the sources of particulate matter in the warm season.

6.3.5 Overdispersion and autocorrelation

The mean and variance of a Poisson distribution are equal and as such, the dispersion 

parameter for a Poisson distribution is one. Many count processes such as daily counts 

o f deaths generally have a variance greater than the mean of the distribution. Such 

distribution has a dispersion parameter greater than one. This is called overdispersion. 

The dispersion parameter for the final models for daily mortality was checked to 

examine whether or not the distribution was overdispersed. I f  there was evidence of 

overdispersion, Negative Binomial regression models would be used instead of Poisson 

regression models to allow for overdispersion.

It is very common to get serially correlated residuals from the models fitted for 

time series data. Autocorrelation, i f  remaining in the residuals of the final models, 

would be adjusted for by re-fitting autoregressive models.
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6.4 Results

6.4.1 Method 1: Using sinusoidal functions 

Controlling for season and trend

Table 6-1 shows a systematic development of the basic model to describe a long-term 

trend and seasonal variations in daily non-external deaths in the 65+ years age group. A 

long-term temporal trend in mortality over the 13 year period was modelled using a 

linear time trend. Seasonal variations were modelled by first fitting the simplest model 

with sine and cosine terms for a one-year period to model the annual cycle and then 

gradually adding sinusoidal terms for other shorter period cycles. In each step, the 

likelihood ratio test was performed to test if adding new terms significantly improved 

the model fit. The p-values for the likelihood ratio tests are shown in the table. The p- 

values less than 0.1 were considered statistically significant. All models shown in 

Table 6-1 had a linear time trend as a co-variate to capture a long-term trend in daily 

mortality.

Table 6-1. Sequential development of a basic model for daily non-external deaths in the 
65+ years age group
Model Model Description df* p-value

M, Annual cycle (k = 1) 4

m 2 Annual and six months cycle (k = 1,2) 6 <0.001

m 3 Annual, six months and four months cycle (k = 1, 2, 3) 8 0.007

m 4 With k* = 1,2, 3 ,4 10 0.007

m 5 With k* = 1,2, 3 ,4 ,5 12 0.005

m 6 With k* = 1,2, 3 ,4 , 5 ,6 14 0.063

All models had a linear time trend as a co-variate.
df: degrees of freedom of model (the number of parameters in the model)

A

p-value: p-value for the likelihood ratio test to compare the model with the one immediately 
above it.

* Values of k determine the period of seasonal cycle, k = 1,2,3,4,5,6 approximately correspond 
to annual, 6-month, 4-month, 3-month, 73-day and 2-month cycle respectively.

For non-external deaths in the 65+ years age group, the sinusoidal terms of up to 

6th order corresponding to the seasonal cycles of 1 year, 6 months, 4 months, 3 months, 

73 days and 2 months were statistically significant. Dummy variables for each year 

were included in the model to test if there was any remaining year to year variation in 

daily non-external deaths in the 65+ years age group. There was no evidence of 

remaining year to year variations after controlling for a long-term trend and seasonal
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variations, and thus dummy variables were dropped from the model. The basic model 

for daily non-external deaths in the 65+ years age group had sinusoidal terms for the 

periods of 1 year, 6 months, 4 months, 3 months, 73 days and 2 months, and a linear 

term for time trend. A time series plot of daily number of non-external deaths in the 65+ 

years age group with the predicted daily number of deaths from the basic model are 

shown in Figure 6-1. The plot confirms that the basic model approximately captures the 

seasonal variation in daily mortality. In order to control for any daily variation in 

mortality across the week, dummy variables for days of the week were added into the 

basic model.

The basic models that adjust for a long-term trend and seasonal variations in 

daily mortality were developed for circulatory deaths in the 65+ years age group, 

respiratory deaths in the 65+ years age group, and total non-external mortality of all 

ages. The sequential development of these models (similar to Table 6-1) is shown in 

Appendix A. Plots of the predicted number of daily deaths based on the final basic 

models for daily circulatory and respiratory deaths in the 65+ years age group and daily 

non-external deaths in the whole population are shown in Appendix B. There was a 

long-term time trend present in all analysed daily mortality data. Among seasonal cycles 

of different periods, the annual cycle was the most dominant seasonal cycle for all 

analysed daily mortality categories.
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Figure 6-1. Time series plot of daily number of non-external deaths in the population aged 
65+ years with the predicted number of daily non-external deaths based on the cosinor 
model for daily non-external deaths in the 65+ years age group

Day of study

Predicted number of daily non-external deaths of the population aged 65+ years based on the 
cosinor model for daily non-external deaths in the 65+ years age group

=  5.5 •
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The final basic model for daily circulatory deaths in the 65+ years age group had 

sinusoidal terms for the periods of 1 year, 6 months, 4 months and 73 days, and a linear 

term for time trend. There was no significant remaining non-monotonic year to year 

variation in daily circulatory deaths in this age group.

The final basic model for respiratory deaths in the 65+ years age group included 

seasonal cycles of 1 year, 6 months, 4 months, 3 months and 2 months, and a linear term 

for time trend. The likelihood ratio test for the comparison between two models; one 

with dummy variables for each year and another without dummy variables showed that 

addition of dummy variables into the model improved the model fit significantly, 

suggesting a remaining year to year variation in daily respiratory deaths in the 65+ years 

age group. Dummy variables for each year were included in the final model to adjust for 

the remaining year to year variation in daily mortality.
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The final basic model for non-external mortality of all ages included sinusoidal 

terms for the periods of 1 year, 6 months, 4 months, 3 months and 73 days, and a linear 

term for time trend. The test showed that there was a remaining year to year variation in 

daily non-external mortality of all ages. Thus, dummy variables for each year were 

included in the model to adjust for the remaining year to year variation in daily non

external mortality of all ages. In order to control for any daily variation in mortality 

across the week, dummy variables for days of the week were added into the basic 

models for all mortality categories.

Residual diagnosis

In order to check whether the basic models adequately adjusted for a long-term 

temporal trend and seasonal variation in daily deaths, various diagnostic analyses of 

residuals were performed. Figures 6-2, 6-3(B) and 6-4(B) show diagnostic plots for 

residuals of the basic model for non-external deaths in the 65+ years age group. A plot 

of residuals of the basic model for non-external deaths in the 65+ years age group 

against day of study (Figure 6-2) shows that the seasonal pattern in daily deaths have 

been reasonably removed.

Figure 6-2. A temporal plot of the residuals after adjusting for a long-term trend and 
seasonal variation in daily non-external deaths in 65+years age group 
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Figure 6-3 compares the partial autocorrelation functions (Partial ACF) for daily 

non-external deaths in the 65+ years age group and for the residuals from the basic 

model for daily non-external deaths in the same age group. Unlike in daily non-external 

deaths, there was no large partial autocorrelations in the residual series. The absence of
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large positive values at the first lags suggests that the basic model adequately adjusted 

for seasonal variations.

Figure 6-4 compares the spectral density analysis of daily non-external deaths in 

the 65+ years age group and the residuals from the basic model for daily non-external 

deaths in the same age group. The periodogram shows the estimates of spectral density 

(spectrum) at various frequencies, which are the number of periods per day. Large 

spectrum indicates a cyclical pattern of the frequency at which the large spectrum was 

estimated. The periodogram for daily non-external deaths had some large values at 

different frequencies (Figure 6-4 (A)) suggesting that the data series had a number of 

cyclical patterns of different period lengths. The periodogram for residual series did not 

have any large value left. This shows that the seasonal variation and a long-term trend in 

daily non-external deaths in the 65+ years age group had been adequately controlled for 

by the basic model.

The diagnoses of the residuals were performed for other mortality categories 

(i.e. daily non-external deaths of all ages, daily circulatory deaths in the 65+ years age 

group and daily respiratory deaths in the 65+ years age group). The diagnosis confirmed 

that the basic models for respective mortality categories reasonably controlled for 

seasonal variation and a long-trend in daily mortality.

Figure 6-3. Partial autocorrelation plots

(A) For daily non-external deaths in 65+ years (B) For the residuals after adjusting for a long- 
age group term trend and seasonal variation in daily non

external deaths in 65+ year age group
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Figure 6-4. Spectral density analysis

(A) Periodogram plot for daily non-external 
deaths in 65+ years age group
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(B) Periodogram plot for residual series after 
adjusting for a long-term trend and seasonal 
variation in daily non-external deaths in 65+ 

year age group
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Controlling for weather variables

The short-term relationships between daily mortality and weather variables after 

controlling for a long-term trend and seasonal variation were explored graphically using 

the residual-residual plots. Models with the same set of variables as in the basic model 

were fitted for weather variables and their residuals were plotted against the residuals of 

the basic model for non-external mortality in the 65+ years age group. Figures 6-5, 6-6 

and 6-7 show the residual-residual plots of daily mortality against the same day’s 

maximum temperature, minimum temperature and relative humidity respectively. The 

non-parametric smooth (a lowess smooth) shows the pattern present in the scatter plots. 

In order to reveal the pattern present in more detail, only a part of the residual-residual 

plot from -1 to 1 of the y-axis is shown in the right hand side plot of all three figures.

The shape of the association in the residual-residual plots of daily non-external 

deaths in the 65+ years age group against the same day’s maximum temperature 

(Figure 6-5) suggested that there was an increase in daily number of deaths for an 

increase in the same day’s maximum temperature above a certain threshold maximum 

temperature but no association below the threshold maximum temperature. This 

suggests an increased risk of mortality associated with high temperature (effect of heat) 

above a certain threshold temperature after controlling for seasonal variation and a long

term trend in daily mortality.
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In order to identify the threshold temperature for heat effect, a new variable 

“hot” was created as explained in Section 6.3.2. The value of “hot” was set to 0 if the 

daily maximum temperature was below the threshold maximum temperature and set to 

maximum temperature minus threshold temperature if the daily maximum temperature 

was above or equal to the threshold temperature. Models were fitted using a sequence of 

threshold maximum temperature ranging over the minimum and maximum values of 

daily maximum temperature with an increment of 0.1°C. The threshold maximum 

temperature for the heat effect on mortality, i.e. the temperature above which the risk of 

increased daily mortality was associated with an increase in maximum temperature, was 

chosen based on the best model fit as decided by minimising the AIC. The best model 

fit was with a threshold temperature of 26.2°C for daily maximum temperature. The 

new variable “hot” with the threshold temperature of 26.2°C for daily maximum 

temperature was included in the final models to adjust for an increase in daily mortality 

associated with hot temperatures (the effect of heat on daily mortality).

The shape of the association in the residual-residual plots of daily non-external 

deaths in the 65+ years age group against the same day’s minimum temperature 

(Figure 6-6) suggested that there was an increase in daily number of deaths for a 

decrease in the same day’s minimum temperature. This suggests an increased risk of 

mortality associated with low temperatures (effect of cold). The plots neither showed a 

piecewise linear relationship between daily mortality and minimum temperature nor 

supported any existence of the threshold temperature for the effect of cold temperature 

on mortality. Thus daily minimum temperature was included in the final models as a 

linear term to adjust for an increase in daily mortality associated with cold temperatures 

(the effect of cold on daily mortality).

The shape of the association in the residual-residual plots of daily non-external 

deaths in the 65+ years age group against the same day’s relative humidity (Figure 6-7) 

suggested that there were increases in daily number of deaths for an increase in the 

same day’s relative humidity above a certain threshold relative humidity and also for a 

decrease in the same day’s relative humidity below a certain threshold relative humidity 

but no association between the two threshold levels.
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In order to identify the two threshold levels for relative humidity, two new 

variables “high.humid' and “low.humid' were created as follows:

,  rh -  rhA ; if rh > rhA
high.humid = J

l  o ; else

f  rhB -  rh ; if rh < rhB
low. humid = J

l  o ; else

Where rh is daily relative humidity; rhA and rhB (rhA > rliB) are the two threshold levels

for relative humidity where the association of mortality with relative humidity changed.

Models were fitted using a sequence of threshold relative humidity ranging over 

the minimum and maximum values of daily relative humidity with an increment of one. 

The two levels of relative humidity rhA and rhB were chosen based on the best model fit 

as decided by minimising the AIC. The best model fit occurred when the values of rhA 

and rhB were 61% and 52% respectively. This shows that there was an increased risk of 

mortality associated with a decrease in relative humidity below 52% and also associated 

with an increase in relative humidity above 61%. The effect of new relative humidity 

variable low.humid (i.e. the negative association between daily mortality and the same 

day’s relative humidity below 52%) was not statistically significant after controlling for 

a long-term trend, seasonal variation in daily mortality and the effect of temperature on 

daily mortality. Also, there was not much improvement in the model fit when the new 

relative humidity variable low.humid was used in the model.

Although exploratory analysis shows a negative association between daily 

number of deaths and the same day’s relative humidity below 52%, the association 

disappeared when a long-term trend, seasonal variation in daily mortality and the effect 

of temperature on daily mortality were controlled for. The positive association between 

daily number of deaths and the same day’s relative humidity above 61% remained 

statistically significant. This suggested that there was no association between daily 

number of deaths and relative humidity below 61%. Thus, only one relative humidity 

variable high.humid with the threshold level of 61% was chosen to use in the final 

models.

The model with the relative humidity variable with a threshold (high.humid) was 

compared with the model with a linear term for relative humidity and quadratic terms 

for relative humidity. The threshold model fitted better to the data than others and thus 

the relative humidity variable with a threshold (high.humidi) was used in the final
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models to adjust for the confounding effect of the same day relative humidity on daily 

mortality.

The lagged effects of weather variables were adjusted for by including the 

moving averages of the last three days’ (lag 1 to lag 3) maximum temperature, 

minimum temperature and relative humidity. A new lagged “/rot” variable similar to the 

same day “hot” variable with the threshold temperature of 26.2°C was created from the 

moving average of the preceding three days’ maximum temperature. Similarly, a new 

lagged “high.humid” variable similar to the same day “high.huinicT variable with the 

threshold relative humidity level of 61% was created from the moving average of the 

preceding three days’ relative humidity. In order to control for the lagged effects of cold 

weather, the moving average of the preceding three days’ minimum temperature was 

included in the model. These variables were kept in all models irrespective of their 

statistical significances.

Interactions between temperature and relative humidity variables were added 

into the model to examine if including them in the model changed the associations 

between daily air pollutant concentrations and daily mortality. The interaction between 

temperature and relative humidity was statistically significant. However, no noticeable 

difference was found between the effect size estimates of air pollutants on daily 

mortality from the models with and without interaction terms. Thus, the interactions 

between temperature and relative humidity variables were not included in the final 

models.

Figure 6-5. Residual - residual plot: Plots of residuals of the basic model for non-external 
deaths in 65+ years age group against residuals of the same model for daily maximum 
temperature
(Right hand side plot shows part of the left hand side plot from -1 to 1 of y-axis)

4

2

M 
■
3E oCDu QÜ

-2 

-4

Note: Y-axis scale is different

it**.;-'- ;•

~ ~ ~ ~

*. ** . \.<v
» * * , .• »** *

-5 0 5
Residuals

1 .0 -

£1|0,i
-0.5-

- 1.0 .■mmr
0 5

Residuals

97



Figure 6-6. Residual - residual plot: Plots of residuals of the basic model for non-external 
deaths in 65+ years age group against residuals of the same model for daily minimum 
temperature
(Right hand side plot shows part of the left hand side plot from -1 to 1 of y-axis)
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Figure 6-7. Residual - residual plot: Plots of residuals of the basic model for non-external 
deaths in 65+ years age group against residuals of the same model for daily relative 
humidity
(Right hand side plot shows part of the left hand side plot from -1 to 1 of y-axis)
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Single pollutant analysis

Table 6-2 shows the results of single pollutant analysis for each mortality category. The 

effects of air pollutants were estimated by fitting separate models with only one lag of

air pollutant at a time. The effect of air pollutant on daily mortality is expressed as a
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percentage increase in daily mortality associated with one interquartile range increase in 

respective air pollutant concentrations. Figures 6-8, 6-9 and 6-10 show the comparisons 

of the effects of PMio, CO and NO2 on daily mortality for zero (the same day) to three 

day lags.

A significant positive association between daily non-external mortality and PM 10 

was found for up to two days after exposure, with the largest risk for mortality two days 

after exposure. The associations of PM 10 with daily non-external mortality were 

stronger in the population aged 65+ years than in the whole population. An interquartile 

range (11.7 pg/nr) increase in two-day lag PM 10 concentrations was associated with an 

increase of 1.69% (95% Cl: 0.70, 2.69) in non-external mortality in the population aged 

65+ years. For the whole population, the estimated increase in non-external mortality 

for one interquartile range increase in two-day lag PM 10 concentrations was 1.31% 

(95% Cl: 0.37, 2.26).

Carbon monoxide was associated with an increase in daily non-external 

mortality only in the elderly population (65+ years age group). In this age group, the 

statistically significant associations between CO and non-external mortality were 

observed for up to two days after exposure. The association was at the borderline 

significance for non-external deaths of the same day. An interquartile range (0.88 

mg/m3) increase in two-day lag CO concentrations was associated with a 1.10% (95% 

Cl: 0.07, 2.14) increase in non-external mortality in the elderly population. There was 

no statistically significant association between CO and daily non-external mortality for 

the whole population.

There was no evidence of a significant association of PM 10 and CO with same 

day circulatory mortality in the 65+ years age group but both pollutants were associated 

with an increase in next day mortality. For respiratory mortality in the 65+ years age 

group, no statistically significant association between PM 10 and mortality was found for 

same day mortality or next day mortality. PM 10 associated significant increased risk was 

found only for respiratory mortality two days after exposure. There was no significant 

association between CO and respiratory mortality in the 65+ years age group. Analysis 

did not provide any evidence of significant association between NO2 and daily mortality 

for any mortality categories analysed.

The overdispersion parameters for the above models were approximately equal 

to one suggesting no overdispersion. Residual autocorrelation coefficients for various 

lags were estimated. No residual autocorrelation coefficient was greater than 0.05, 

which suggested that there was no serial correlation left in the residuals.
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Table 6-2. Single pollutant model: Percentage increase (95% Cl) in daily mortality 
associated with one interquartile range increase in daily PMi<> concentrations (11.7 |ig/m3), 
daily CO concentrations (0.88 mg/m3) and daily NO2 concentrations (15.8 (ig/m3) for 
various mortality categories

Non-external _____________ 65+ years population
Pollutant Lag mortality of all 

ages
Non-external

mortality
Circulatory

mortality
Respiratory

mortality
PM 10 Same day 1 .0 5 *

(0 . 10 , 2 .0 1 )

* *

1.37
(0 .3 7 , 2 .3 8 )

0.71
(-0.70,2.13)

2.54
(-0.19,5.35)

1 1 .0 2 *

(0 .0 9 , 1 .9 5 )

1 .2 5 *

(0 .2 7 , 2 .2 5 )

1 .4 9 *

(0 . 11 , 2 .8 9 )

0.77
(-1.89,3.49)

2 1 .3 1 **

(0 .3 7 , 2 .2 6 )

1 .6 9 *** 

(0 .7 0 , 2 .6 9 )

0.60
(-0.80, 2.02)

3 .8 1 ** 

( 1 . 13 , 6 .5 6 )

3 0.05
(-0.87, 0.97)

0.28
(-0.69, 1.27)

-0.23
(-1.60, 1.16)

2.57
(-0.02, 5.24)

CO Same day 0.75
(-0.22, 1.74)

1.01
(-0.04, 2.06)

1.01
(-0.44, 2.48)

0.37
(-2.43, 3.25)

1 0.88
(-0.07, 1.84)

1 .0 5 *

(0 .0 4 , 2 .0 8 )

1 .9 3 ** 

(0 .5 2 , 3 .3 6 )

0.52
(-2.19,3.30)

2 0.76
(-0.21, 1.73)

1 . 10*

(0 .0 7 , 2 .1 4 )

0.82
(-0.62, 2.28)

1.85
(-0.88, 4.67)

3 -0.60
(-1.54, 0.36)

-0.47
(-1.48, 0.55)

-0.87
(-2.28, 0.56)

0.37
(-2.29,3.11)

N 0 2 Same day 0.03
(-1.90,2.00)

-0.41
(-2.35, 1.58)

-1.01
(-3.69, 1.75)

-2.65
(-8.29, 3.33)

1 0.41
(-1.49,2.34)

0.03
(-1.89, 1.98)

-0.88
(-3.51, 1.83)

-3.04
(-8.54, 2.79)

2 0.48
(-1.44, 2.43)

0.29
(-1.64, 2.26)

-0.26
(-2.93, 2.48)

-1.76
(-7.34, 4.17)

3 -0.79
(-2.67, 1.12)

-1.22
(-3.12, 0.72)

-0.77
(-3.41, 1.94)

-5.39
(-10.78,0.31)

* p < 0.05; ** p < 0.01; *** p < 0.001
Lag 1, lag 2 and lag 3 represent the pollutant levels on the previous day, the 2 days before and 
the 3 days before respectively.
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Figure 6-8. Percentage increase in daily deaths and 95% Cl associated with one 
interquartile range (11.7 Jlg/m3) increase in daily PMn, concentrations for various 
mortality categories

(A) Non-external mortality; all ages (B) Non-external mortality; 65+ years
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Figure 6-9. Percentage increase in daily deaths and 95% Cl associated with one 
interquartile range (0.88 mg/m3) increase in daily CO concentrations for various mortality 
categories

(A) Non-external mortality; all ages (B) Non-external mortality; 65+ years
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Figure 6-10. Percentage increase in daily deaths and 95% Cl associated with one 
interquartile range (15.8 |ig/m3) increase in daily NO 2 concentrations for various mortality 
categories

(A) Non-external mortality; all ages
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Multi-pollutant analysis

Table 6-3 summarises the results o f m ulti-po llu tan t models fo r daily m orta lity w ith  

PM 10 and CO as exposure variables. The effects o f air pollutants were estimated by 

fitt in g  separate models w ith  only one lag o f a ir pollutants at a time, w ith  the same lag 

fo r both PM 10 and CO. The same day and the lagged effects o f pollutants on daily 

m orta lity  from  m ulti-po llu tan t analysis are compared in Figure 6-11. The statistically 

significant association between CO and non-external m orta lity in the 65+ years age 

group in single pollutant analysis (Table 6-2) became statistically non-significant when 

PM 10 was included in the model in m ulti-po llu tan t analysis. S im ilarly , the associations 

o f non-external m orta lity  w ith  PM 10 were weakened except fo r the association w ith  two- 

day lag P M 10 when CO was included. The estimated P M 10 effect sizes at this lag fo r 

both non-external m orta lity in the 65+ years age group and the whole population were 

larger in the m u lti-po llu tan t analysis. The increased risk o f non-external m orta lity in the
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65+ years age group associated with the same day’s PMio was statistically significant 

only at the 10% level (p-value < 0.1).

The statistically significant positive associations of PMio and CO with daily 

circulatory mortality of 65+ years age group at lag 1 observed in single pollutant 

analysis disappeared in multi-pollutant analysis (Figure 6-11(C)). For respiratory 

mortality in the 65+ years age group, the estimated effect size of PMio was larger in 

multi-pollutant analysis (Figure 6-11(D)).

Table 6-3. Multi-pollutant model: Percentage increase (95% Cl) in daily mortality 
associated with one interquartile range increase in daily PMio concentrations (11.7 pg/m3) 
and daily CO concentrations (0.88 mg/m3) for various mortality categories

Non-external 65+ years population
Pollutant Lag mortality of all 

ages
Non-external

mortality
Circulatory

mortality
Respiratory

mortality
Model 1
PM,o Same day 1.11

(-0.28, 2.52)
1.33

(-0.04, 2.72)
0.07

(-1.83, 2.01)
5.05*

(0.92, 9.36)

CO Same day -0.08
(-1.50, 1.36)

0.06
(-1.35, 1.49)

0.96
(-1.01, 2.98)

-3.36
(-7.38, 0.84)

Model 2 
PM.o 1 0.84

(-0.55, 2.24)
1.06

(-0.31,2.44)
0.35

(-1.54, 2.28)
0.88

(-3.12,5.04)

CO 1 0.25
(-1.16, 1.67)

0.29
(-1.11, 1.72)

1.68
(-0.28, 3.67)

-0.15
(-4.19, 4.06)

Model 3 
PMio 2 1.67

(0.28, 3.09)
1.83** 

(0.45, 3.22)
0.11

(-1.80, 2.06)
5.56** 

(1.48, 9.80)

CO 2 -0.50
(-1.91,0.93)

-0.20
(-1.61, 1.22)

0.74
(-1.23,2.75)

-2.30
(-6.27, 1.83)

* p < 0.05; ** p < 0.01; *** p < 0.001
Lag 1, lag 2 and lag 3 represent the pollutant levels on the previous day, the 2 days before and 
the 3 days before respectively.
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Figure 6-11. Percentage increase in daily deaths and 95% Cl associated with one 
interquartile range increase in daily PMi0 concentrations (11.7 pg/m3) and daily CO 
concentrations (0.88 mg/m3) for various mortality categories from multi-pollutant models

(A) Non-external mortality; all ages
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Figure 6-11 (cont.). Percentage increase in daily deaths and 95% Cl associated with one 
interquartile range increase in daily PMi0 concentrations (11.7 |ig/m3) and daily CO 
concentrations (0.88 mg/m3) for various mortality categories from multi-pollutant models

(D) Respiratory mortality; 65+ years

PM10 effect CO effect

Day lag Day lag

The results of multi-pollutant models for daily mortality with PMio and NO: as 

exposure variables are reported in Table 6-4. The effects of air pollutants were 

estimated by fitting separate models with only one lag of air pollutants at a time, with 

the same lag for both PMio and NO:. The same day and the lagged effects of PMio and 

NO: on daily mortality from multi-pollutant models are compared in Figure 6-12. 

Adjusting for NO: did not change the associations between daily mortality and PMio for 

non-external mortality and circulatory mortality. For respiratory mortality in the 65+ 

years age group, the estimated PMio effect sizes on mortality were slightly larger in 

multi-pollutant models compared to single pollutant analysis (Figure 6-12(D)). The 

statistically non-significant associations between daily mortality and NO: for the 

mortality categories analysed in the single pollutant analysis remained unchanged in the 

multi-pollutant analysis, except for the association between three-day lag NO: and 

respiratory mortality in the 65+ years age group. A statistically significant negative 

association was observed between three-day lag NO: and respiratory mortality when 

three-day lag PMio was included in the model.

No significant association between daily mortality and NO: was found in either 

single or multi-pollutant analysis, except for the statistically significant negative 

association between three-day lag NO: and respiratory mortality in the 65+ years age 

group in multi-pollutant analysis. There was an association between CO and daily non

external mortality in the population aged 65+ years in single pollutant analysis but the 

association disappeared in multi-pollutant analysis. Although adding CO slightly 

weakened the association of PMio with daily non-external mortality in the population
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aged 65+ years, the association was still statistically significant at the 10% level. Daily 

mortality appeared to be independently associated with only PMio. Thus, only the 

association between daily mortality and PMio was analysed in the analysis of the 

association by season.

Table 6-4. Multi-pollutant model: Percentage increase (95% Cl) in daily mortality 
associated with one interquartile range increase in daily PM]0 concentrations (11.7 pg/m3) 
and daily N 0 2 concentrations (15.8 pg/m3) for various mortality categories

Non-external 65+ years population
Pollutant Lag mortality of all 

ages
Non-external

mortality
Circulatory

mortality
Respiratory

mortality
Model 1
PM,o Same day 1.09*

(0.13, 2.08)
1.50** 

(0.47, 2.54)
0 .8 8

(-0.57, 2.34)
2.96*

(0.16, 5.84)

n o 2 Same day -0.45
(-2.42, 1.56)

-1.08
(-3.07, 0.95)

-1.39
(-4.14, 1.43)

-4.00
(-9.69, 2.05)

Model 2 
PM10 1 1.03*

(0.07,1.99)
1.34”  

(0.32, 2.37)
1.73*

(0.30, 3.18)
1.21

(-1.54, 4.04)

n o 2 1 -0 .1 1

(-2.05, 1.88)
-0 .6 6

(-2.62, 1.35)
-1.74

(.4 .4 5 , 1.04)
-3.69

(-9.34, 2.31)

Model 3 
PM,0 2 1.32”  

(0.36, 2.29)
1.76*** 

(0.74, 2.80)
0 .6 8

(-0.77, 2.14)
4.25"  

(1.49, 7.08)

n o 2 2 -0.15
(-2.10, 1.85)

-0.56
(-2.54, 1.46)

-0.58
(-3.33, 2.24)

-3.86
(-9.48, 2.12)

* p < 0.05; ** p < 0.01; *** p < 0.001
Lag 1 and lag 2 represent the pollutant levels on the previous day and the 2 days before 
respectively.
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Figure 6-12. Percentage increase in daily deaths and 95% Cl associated with one 
interquartile range increase in daily P M ]0 concentrations (11.7 (ig/m3) and daily NO2 

concentrations (15.8 pg/m3) for various mortality categories from multi-pollutant models

(A) Non-external mortality; all ages
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Figure 6-12 (cont.). Percentage increase in daily deaths and 95% Cl associated with one 
interquartile range increase in daily PMio concentrations (11.7 pg/m3) and daily N 0 2 
concentrations (15.8 |Xg/m3) for various mortality categories from multi-pollutant models

(D) Respiratory mortality; 65+ years
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Effect modification by season

Table 6-5 summarises the results of seasonal analysis of the association between PMio 

and daily mortality for up to two day lags. Figure 6-13 gives graphical representations 

of the associations by season. The percentage increases in daily mortality and their 95% 

confidence interval for one interquartile range (11.7 pg/nr) increase in daily PMio 

concentrations are reported by season for various mortality categories together with the 

p-values for the significance test of the interaction between the season variable and 

daily PMio concentrations. Significant p-values indicate seasonal differences in the 

association between PMio and daily mortality.

There was a significant seasonal difference in the association between PMio and 

non-external mortality both in whole population and in the elderly population (65+ 

years). The PMio associated risks of non-external mortality were higher in the warm 

season (September - April) than in the cool season (May - August). In the warm season, 

significantly increased risks were found for up to two days after exposure for both the 

whole population and the elderly population. In the cool season, the increased risk of 

non-external mortality for the whole population was significant only for mortality two 

days after exposure.

The analysis for circulatory mortality in the elderly population did not show 

statistically significant seasonal differences in the association between PMio and daily 

circulatory mortality. The results were consistent across different lags. There was no 

evidence of association between PMio and daily circulatory mortality in both seasons. 

The significant positive association of PMio with the next day circulatory mortality in
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the 65+ years age group (Table 6-2) disappeared when the associations were analysed 

by season.

For respiratory mortality in the 65+ years age group, there was a strong seasonal 

difference in the association between daily mortality and PMio. It was consistent across 

different lags. The PMio associated risks o f respiratory mortality were significantly 

higher in the warm season (September - April) than in the cool season (May - August). 

One interquartile range increase in PMio concentrations was associated with a 15.61% 

(95% Cl: 6.07, 26.02) increase in same day respiratory mortality in the warm season 

compared to a 1.66% (95% Cl: -1.14, 4.55) increase in the cool season (Table 6-5).

The 95% confidence intervals o f the effect estimates were much wider in the 

warm season than in the cool season. It was most like ly due to the greater variability in 

daily PMio concentrations in the cool season than in the warm season. The standard 

deviation o f daily PMio was 25.03 |J.g/nr in the cool season compared to 6.41 p.g/nr in 

the warm season.
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Table 6-5. Percentage increase (95% Cl) in daily mortality, by season, associated with one 
interquartile range (11.7 jig/m3) increase in daily PMio concentrations for various 
mortality categories

N on-external 65+  years popu lation
Lag Season" m orta lity  o f all 

ages
N on-ex ternal

m ortality
C ircu la to ry

m orta lity
R esp ira to ry

m orta lity
Sam e day W arm 3.93** 

(0.99, 6.96)
4.26

(1.12, 7.49)
0.78

(-3 .48, 5 .22)
15.61*** 

(6.07, 26.02)

Sam e day Cool 0 .82
(-0 .16 , 1.81)

1.09*
(0.05, 2.15)

0 .70
(-0 .76 , 2 .18)

1.66
(-1 .1 4 ,4 .5 5 )

p-value* 0 .043 0.057 0 .974 0.004

1 W arm 4.17
(1.25, 7.18)

4.75** 
(1.63,7.97)

3.74
(-0 .56 , 8 .22)

11.21*
(1.93, 21.33)

1 Cool 0.75
(-0 .21 , 1.73)

0 .92
(-0 .11, 1.95)

1.27
(-0 .17 , 2 .73)

0.04
(-2 .69 , 2 .85)

p-value* 0 .025 0 .020 0 .284 0.020

2 W arm 4.43”  
(1.49, 7.44)

5.31*** 
(2.17, 8.55)

2.06
(-2 .2 1 ,6 .5 1 )

* *

14.19
(4.71, 24.54)

2 C ool 1.05*
(0.08, 2.03)

1.35*
(0.31, 2.39)

0 .46
(-1 .003 , 1.94)

3.15*
(0.40, 5.97)

p-value* 0 .028 0.017 0.486 0.024
+ Warm season (Non-winter months): September to the following April;

Cool season (Winter months): May - August 
* p < 0.05; ** p < 0.01; *** p < 0.001
Lag 1 and lag 2 represent the pollutant levels on the previous day and the 2 days before 
respectively.
§ P-value for the significance test of the interaction between season and daily PMio 
concentration
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Figure 6- 13. Percentage increase in daily deaths and 95% C l associated w ith one 
in terquartile  range ( 11.7 q,g/m3) increase in daily PMio concentrations for various 
m orta lity categories by season

(A) Non-external mortality; all ages
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Figure 6-13 (cont.). Percentage increase in daily deaths and 95% Cl associated with one 
interquartile range (11.7 (ig/m3) increase in daily PMi0 concentrations for various 
mortality categories by season

(D) Respiratory mortality; 65+ years
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6.4.2 Method 2: Using natural splines

In the second method, the confounding effects of long-term trend, seasonal variation 

and weather variables were adjusted for by using natural cubic spline smooth functions 

of all confounders. The associations between daily mortality and daily pollutant 

concentrations were analysed separately for each mortality category using the Poisson 

regression model

E(Yt ) = Pop x exp(/?0 + ns{time,81) + yDOWt + ns(tempgt ,6)
+ nsitem pg^,6) + ns{rht ,3) + ns(rh^,3) + ß^PMt_q) ( 6-3 )

Where:

t refers to the day of the study.

q refers to the lag number.

E(T,) is the expected number of deaths on day “t”.

Pop is the population at risk, which is the annual usual resident population.

DOWt is the set of dummy variables for days of week.

^is the set of coefficients that adjusted the daily variation in mortality across the 

week.

ns(X, k) refers to a natural cubic spline smooth function of variable “X” with 

degrees of freedom.

ns(time,81) is a natural cubic spline smooth function of time variable with 81 

degrees of freedom i.e. approximately 7 df / year of data.

tempg, is the same day’s average hourly temperature.

113



tempgi-3 is the average of three previous days’ average hourly temperature 

(average of lags 1 to 3).

rht is the same day’s average hourly relative humidity.

rhi-3 is the average of three previous days’ average relative humidity (average of 

lags 1 to 3).

PMt.q is PMio concentrations on day “t-q

ßi is the log relative risk of mortality associated with an increase of 1 pg/nr in 

PM io on “f-g” th day. The percentage increase in daily mortality associated 

with one interquartile range increase in daily PMio concentrations is 

calculated as 100[(e,ö/f ß' ) -  1]%, where IQR is one interquartile range of 

daily PMio concentrations.

The above Poisson regression model (equation ( 6-3 )) was first fitted to estimate 

the percentage increase in mortality associated with an increase in the same day’s PMio 

(.PM,). Replacing same day PMio by previous days PMio (P M, P M, . 2, PMt.3), the 

lagged effects of PMio were estimated separately for up to 3 day lags. Similarly, using 

CO and NO2 instead of PMio, the corresponding percentage increases in daily mortality 

associated with increases in CO and NOo concentrations were estimated. For multi

pollutant models, I fitted the models with two pollutant variables at the same time.

Residual diagnosis

Before including weather variables and air pollutant variables, various diagnoses of the 

residuals of the basic models, which only had a natural cubic spline smooth function of 

time and dummy variables for days of the week, were performed. This was to check 

whether the basic models adequately adjusted for seasonal variation and a long-term 

temporal trend in daily deaths. Diagnoses were separately performed for the residuals of 

the basic models for each of the mortality categories (i.e. daily non-external deaths of all 

ages, daily non-external deaths in the 65+ years age group, daily circulatory deaths in 

the 65+ years age group, and daily respiratory deaths in the 65+ years age group). 

Figures 6-14 and 6-15 show the diagnostic plots for residuals of the basic model for 

non-external deaths in the 65+ years age group that adjusted for seasonal variation and a 

long-term temporal trend.

Figure 6-14 shows residuals of the basic model for non-external deaths in the 

65+ years age group plotted against day of study. The grey points in the plot are the 

residuals for each day. The dark line is a non-parametric smoothing (lowess smoothing 

with a bandwidth of 0.02) of the scatter plot to reveal any pattern present in the plot.
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There was no seasonal pattern left in the residuals suggesting that the basic model 

adequately adjusted a long-term trend and seasonal variation in daily non-external 

deaths in the 65+ years age group. Figure 6-15 shows the partial autocorrelation 

functions (Partial ACF) for the residuals from the basic model for daily non-external 

deaths in the 65+ years age group, which only had a natural cubic spline smooth 

function of time and dummy variables for days of the week. There was no large partial 

autocorrelations in the residual series. The original daily mortality series had large 

positive partial autocorrelations (Figure 6-3 (A)). The absence of large positive values at 

the first lags in the partial autocorrelations of the residual series suggests that the basic 

model adequately adjusted for seasonal variation. The diagnosis of the residuals of the 

basic models for other mortality categories also confirmed that the basic models for 

respective mortality categories reasonably controlled for seasonal variation and a long

term trend in daily mortality.

Figure 6-14. Residuals after adjusting for a long-term trend and seasonal variation in 
daily non-external deaths in 65+years age group against day of study

Day of study

Bandwidth for lowess smoothing = 0.02
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Figure 6-15. Partial autocorrelation plot for residuals after adjusting for seasonal 
variation and a long-term trend in daily non-external deaths in 65+ years age group
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Single pollutant analysis

Results of single pollutant analysis for each mortality category are shown in Table 6-6. 

The effects of air pollutants were estimated by fitting separate models with only one lag 

of air pollutant at a time. The comparisons of the same day and the lagged effects of 

PMio, CO and NO2 on daily mortality are shown in Figures 6-16, 6-17 and 6-18 

respectively for various mortality categories. The estimated percentage increases in 

daily mortality and their 95% confidence intervals shown in Table 6-6 and Figures 6-16, 

6-17 and 6-18 are for one interquartile range increase in respective daily pollutant 

concentrations. Results are shown for up to three day lags.

Both PM 10 and CO were positively associated with an increase in daily non

external mortality. The statistically significant positive associations between daily non

external mortality and PM 10 and CO were observed for up to 2 days after exposure, with 

the largest effects occurring on the same day mortality. The associations of PM 10 and 

CO with daily non-external mortality were stronger in the population aged 65+ years 

than in the whole population. An interquartile range (11.7 |ig/nr) increase in PM10 

concentrations was associated with an increase of 1.82% (95% Cl: 0.71, 2.95) in same 

day non-external mortality of the elderly population. For all ages, there was an 

estimated increase of 1.54% (95% CF 0.52, 2.57) in same day non-external mortality 

for one interquartile range increase in PM 10. An interquartile range (0.88 mg/m3) 

increase in CO was associated with 1.57% (95% Cl: 0.46, 2.70) increase in same day 

non-external mortality in the elderly population and 1.35% (95% Cl: 0.33, 2.37) 

increase in same day non-external mortality in the whole population.

Only previous day’s PM 10 and CO concentrations were significantly associated 

with an increase in daily circulatory mortality of people aged 65+ years. For respiratory

mortality of people aged 65+ years, estimated PM10 effect was statistically significant
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only on the mortality occurring two days after exposure. Although the associations of 

PM 10 with respiratory mortality in the population aged 65+ years were not statistically 

significant, PMio had a higher effect on respiratory mortality than on other mortality 

categories.

No significant association between CO and respiratory mortality of those aged 

65+ years was observed. Analysis did not provide any evidence of a significant 

association between NO: and daily mortality for any mortality categories analysed.

The check of dispersion parameter and residual autocorrelation coefficients for 

the above models provided no evidence of overdispersion and high residual 

autocorrelations. The dispersion parameters were approximately equal to one. The 

residual autocorrelation coefficients for lag 1 up to lag 365 were estimated without 

conducting any statistical test. None of the residual autocorrelation coefficients was 

greater than 0.1, suggesting there was no serial autocorrelation left in the residuals.
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Table 6-6. Single pollutant model: Percentage increase (95% Cl) in daily mortality 
associated with one interquartile range increase in daily PM|« concentrations (11.7 pg/m3), 
daily CO concentrations (0.88 mg/m3) and daily NO2 concentrations (15.8 pg/m3) for 
various mortality categories

Non-external _____________ 65+ years population
Pollutant Lag mortality of all 

ages
Non-external

mortality
Circulatory

mortality
Respiratory

mortality
PM,o Same day

**
1.54

(0.52, 2.57)
1.82

(0.71, 2.95)
1.30

(-0.26, 2.88)
2.69

(-0.21,5.68)

1 1.28*
(0.29, 2.28)

1.46** 
(0.38, 2.55)

2.16"  
(0.64,3.71)

0.26
(-2.53,3.14)

2 1.39** 
(0.39, 2.40)

**
1.77

(0.68, 2.88)
0.84

(-0.70, 2.41)
3.48*

(0.65, 6.39)

3 -0.09
(-1.05,0.88)

0.06
(-0.99, 1.11)

-0.29
(-1.77, 1.20)

2.30
(-0.40, 5.07)

CO Same day 1.35**
(0.33, 2.37)

**
1.57

(0.46, 2.70)
1.49

(-0.06, 3.06)
0.69

(-2.20, 3.66)

1 1.24*
(0.25, 2.24)

1.36*
(0.28, 2.46)

2.36** 
(0.85, 3.90)

0.47
(-2.33, 3.36)

2 0.88
(-0.12, 1.89)

1.21*
(0.11,2.31)

0.86
(-0.68, 2.42)

1.63
(-1.20,4.53)

3 -0.62
(-1.58, 0.36)

-0.57
(-1.62, 0.49)

-1.14
(-2.62, 0.36)

0.29
(-2.42, 3.08)

N 0 2 Same day 0.98
(-1.31,3.32)

0.99
(-1.54, 3.58)

0.86
(-2.63, 4.48)

1.33
(-5.45, 8.60)

1 0.90
(-1.35,3.20)

1.03
(-1.46, 3.57)

0.19
(-3.22, 3.73)

0.05
(-6.54,7.11)

2 0.66
(-1.60, 2.97)

1.13
(-1.37, 3.69)

0.77
(-2.68, 4.33)

1.10
(-5.59, 8.26)

3 -1.19
(-3.39, 1.05)

-1.38
(-3.80, 1.10)

-0.23
(-3.60, 3.25)

-3.87
(-10.2,2.96)

* p < 0.05; ** p < 0.01; *** p < 0.001
Lag 1, lag 2 and lag 3 represent the pollutant levels on the previous day, the 2 days before and 
the 3 days before respectively.

118



Pe
rc

en
ta

ge
 in

cr
ea

se
 

Pe
rc

en
ta

ge
 in

cr
ea

se

Figure 6-16. Percentage increase in daily deaths and 95% Cl associated with one 
interquartile range (11.7 pg/m') increase in daily PMi« concentrations for various 
mortality categories

(A) Non-external mortality; all ages

Same day

Day lag

(B) Non-external mortality; 65+ years

Same day

Day lag

(C) Circulatory mortality; 65+ years

Same day
Day lag

(D) Respiratory mortality; 65+ years

Same day

Day lag

Note: Y-axis scale is different
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Figure 6-17. Percentage increase in daily deaths and 95% Cl associated with one 
interquartile range (0.88 mg/m3) increase in daily CO concentrations for various mortality 
categories

(A) Non-external mortality; all ages (B) Non-external mortality; 65+ years
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Figure 6-18. Percentage increase in daily deaths and 95% Cl associated with one 
interquartile range (15.8 pg/m3) increase in daily NO2 concentrations for various mortality 
categories

(A) Non-external mortality; all ages
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Multi-pollutant analysis

Table 6-7 summarises the results of multi-pollutant models for daily mortality with 

PM 10 and CO as exposure variables. The effects o f air pollutants were estimated by 

fitting separate models with only one lag of air pollutants at a time, with the same lag 

for both PM 10 and CO. The same day and the lagged effects of pollutants on daily 

mortality from multi-pollutant models are compared in Figure 6-19. Single pollutant 

analysis showed that both CO and PM 10 were associated with an increase in daily non

external mortality (Table 6-6). The associations were weakened when a second pollutant 

was included in multi-pollutant analysis. The association of CO with daily non-external 

mortality was no longer statistically significant at any lag in multi-pollutant analysis. 

While the associations of PM 10 with daily non-external mortality at lags 0 and 1 became 

weaker and were statistically significant only at the 10% level (p-value < 0.1) 

(Table 6-7), the 2-day lag association remained statistically significant at the 5% level.
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The estimated effect sizes of PMio on daily non-external mortality were smaller for the 

same day mortality and the next day mortality in multi-pollutant models compared to 

single pollutant model. However, controlling for CO slightly increased the size of the 

effect of PM 1 0  two days prior to mortality on non-external mortality.

The statistically significant positive associations of PMio and CO with daily 

circulatory mortality of people aged 65+ years at lag 1 observed in single pollutant 

analysis disappeared in multi-pollutant analysis (Figure 6 -19(C)). For respiratory 

mortality of people aged 65+ years, the estimated effect size of PMio was larger in 

multi-pollutant models (Figure 6 -19(D)).

Table 6-7. Multi-pollutant model: Percentage increase (95% Cl) in daily mortality 
associated with one interquartile range increase in daily PMj0 concentrations (11.7 |ig/m3) 
and daily CO concentrations (0.88 mg/m3) for various mortality categories

Non-external 65+ years population
Pollutant Lag mortality of all 

ages
Non-external

mortality
Circulatory

mortality
Respiratory

mortality
Model 1
PM.o Same day 1.20

(-0.32, 2.75)
1.46

(-0.21,3.16)
0.39

(-1.94, 2.77)
5.08*

(0.57, 9.79)

CO Same day 0.45
(-1.06, 1.99)

0.48
(-1.18, 2.17)

1.20
(-1.12,3.57)

-3.03
(-7.29, 1.41)

Model 2 
PMio 1 0.81

(-0.70, 2.33)
1.003

(-0.65, 2.68)
0.85

(-1.46,3.21)
-0.23

(-4.48, 4.22)

CO 1 0.63
(-0.88, 2.16)

0.60
(-1.05,2.28)

1.71
(-0.60, 4.08)

0.65
(-3.65,5.14)

Model 3 
PM10 2

__ 9|e

1.67
(0.14, 3.21)

1.99*
(0.33, 3.69)

0.45
(-1.88, 2.83)

5.30*
(0.89, 9.91)

CO 2 -0.37
(-1.87, 1.16)

-0.29
(-1.94, 1.38)

0.52
(-1.80, 2.90)

-2.31
(-6.51,2.07)

* p < 0.05; ** p < 0.01; *** p < 0.001
Lag 1, lag 2 and lag 3 represent the pollutant levels on the previous day, the 2 days before and 
the 3 days before respectively.
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Figure 6-19. Percentage increase in daily deaths and 95% Cl associated with one 
interquartile range increase in daily PM i0 concentrations (11.7 |ig/m3) and daily CO 
concentrations (0.88 mg/m3) for various mortality categories from multi-pollutant models

(A) Non-external mortality; all ages
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(B) Non-external mortality; 65+ years 
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Figure 6-19 (cont.). Percentage increase in daily deaths and 95% Cl associated with one 
interquartile range increase in daily PM]0 concentrations (11.7 pg/m3) and daily CO 
concentrations (0.88 mg/m3) for various mortality categories from multi-pollutant models

(D) Respiratory mortality; 65+ years
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The results of multi-pollutant models for daily mortality with PMio and NO2 as 

exposure variables are reported in Table 6-8. The effects of air pollutants were 

estimated by fitting separate models with only one lag of air pollutants at a time, with 

the same lag for both PM 10 and NCK The same day and the lagged effects of PM 10 and 

NO2 on daily mortality from multi-pollutant models are compared in Figure 6-20. 

Adjusting for NCb did not change the associations between daily mortality and PM 10 for 

non-external mortality and circulatory mortality of people aged 65+ years. For 

respiratory mortality in the 65+ years age group, the estimated effect sizes of PM 10 on 

mortality two days (lag 2) and three days (lag 3) after exposure were larger in multi

pollutant models (Figure 6-20(D)). The statistically non-significant associations 

between daily mortality and NCb for the mortality categories analysed in single 

pollutant analysis remained unchanged in multi-pollutant analysis.

Analysis of single pollutant models showed that there was an association 

between CO and daily non-external mortality but the association disappeared in multi

pollutant analysis when PM 10 was included. Although adding CO weakened the 

associations of PM 10 with daily non-external mortality in multi-pollutant models, they 

were statistically significant at the 10% level. No significant association between daily 

mortality and NO2 was observed. Daily mortality appeared to be primarily associated 

with PMic. Thus, only the associations between daily mortality and PM 10 were analysed 

in the subsequent analyses.
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Table 6-8. Multi-pollutant model: Percentage increase (95% Cl) in daily mortality 
associated with one interquartile range increase in daily PMk, concentrations (11.7 pg/m') 
and daily NO2 concentrations (15.8 pg/m3) for various mortality categories

N on-ex ternal 65+  years popu lation
Pollu tant Lag m orta lity  o f all 

ages
N on-ex ternal

m ortality
C ircu la to ry

m orta lity
R esp ira to ry

m ortality
Model 1
PM ,o Sam e day

**
1.54

(0.48, 2.61)

**
1.85

(0.69, 3.02)
1.29

(-0 .33, 2 .95)
2.76

(-0 .27, 5 .87)

N O , Sam e day -0.001
(-2 .37 , 2 .42)

-0.20
(-2 .80 , 2.48)

0 .03
(-3 .59 , 3 .78)

-0.53
(-7 .48 , 6 .94)

Model 2 
PM10 1

$
1.28

(0.24, 2.33)
1.46*

(0.32, 2.60)
2.36** 

(0.75, 3.98)
0.29

(-2 .6 5 ,3 .3 1 )

n o 2 1 0.03
(-2 .3 1 ,2 .4 2 )

0.02
(-2 .56, 2 .67)

-1.41
(-4 .95 , 2 .25)

-0 .16
(-7 .08, 7 .27)

Model 3 
P M 10 2 1.42**

(0.37, 2.48)
1.78**

(0.63, 2.93)
0.81

(-0 .80 , 2 .46)
3.66*

(0.70, 6.70)

N 0 2 2 -0.26
(-2 .60 , 2 .13)

-0.05
(-2 .6 3 ,2 .6 1 )

0 .23
(-3 .35 , 3 .94)

-1 .46
(-8 .29, 5 .88)

* p < 0.05; ** p < 0.01; *** p < 0.001
Lag 1 and lag 2 represent the pollutant levels on the previous day and the 2 days before 
respectively.
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Figure 6-20. Percentage increase in daily deaths and 95% Cl associated with one 
interquartile range increase in daily PMio concentrations (11.7 Jig/m3) and daily N 02 
concentrations (15.8 |ig/m3) for various mortality categories from multi-pollutant models

(A) Non-external mortality; all ages
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Figure 6-20 (cont.). Percentage increase in daily deaths and 95% Cl associated with one 
interquartile range increase in daily PM]0 concentrations (11.7 |ig/m3) and daily NO2 

concentrations (15.8 |ig/ni3) for various mortality categories from multi-pollutant models

(D) Respiratory mortality; 65+ years

PMin effect

Same day

Day lag

NO2 effect
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CS -4 ■

Same day

Day lag

Effect modification by season

Table 6-9 summarises the results of seasonal analysis of the association between PM 10 

and daily mortality for up to two day lags and Figure 6-21 gives graphical 

representations of the associations by season. The percentage increases in daily 

mortality and their 95% confidence interval associated with one interquartile range 

(11.7 pg/nv) increase in daily PM10 concentrations are reported by season for various 

mortality categories together with the p-values for the significance test of the interaction 

between the season variable and daily PM 10 concentrations. Significant p-values 

indicate seasonal differences in the association between PM 10 and daily mortality.

No statistically significant seasonal difference was observed in the association 

between PM10 and same day non-external mortality both in whole population and in the 

elderly population. In the elderly population, the effects of PM 10 on non-external 

mortality at both lag 1 and lag 2 in the cool season (May - August) were significantly 

lower than the effects in the warm season (September - April). For non-external 

mortality of all ages, there was weak evidence (p-value < 0.1) of seasonal differences in 

the associations at lag 1 and lag 2. The statistically significant positive associations 

between PM 10 and daily non-external mortality were consistent across both seasons and 

all analysed lags. The relative risks of non-external mortality associated with PM 10 were 

higher in the warm season than in the cool season. Although the relative risks were 

higher in the warm season, the total number of non-external deaths attributed to PM 10 

would be much higher in the cool season due to the higher daily PM10 concentrations in 

the cool season.
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The analysis for circulatory mortality of those aged 65+ years did not show 

statistically significant seasonal differences in the associations between PMio and daily 

circulatory mortality. The results were consistent across different lags.

For respiratory mortality in the 65+ years age group, there was a strong seasonal 

difference in the acute effects of PMio on the same day mortality. One interquartile 

range increase in PMi0 concentration was associated with a 14.5% (95% Cl: 4.16, 25.9) 

increase in same day respiratory mortality of people aged 65+ years in the warm season 

compared to a 1.81% (95% Cl: -1.17, 4.89) increase in the cool season (Table 6-9). For 

other lag effects of PMio, there were weak evidences (p-value < 0.1) of seasonal 

differences. No statistically significant association between PM]0 and daily respiratory 

mortality of those aged 65+ years was observed in the cool season (Figure 6-21(D)).

Table 6-9. Percentage increase (95% Cl) in daily mortality, by season, associated with one 
interquartile range (11.7 |ig/m3) increase in daily PMio concentrations for various 
mortality categories

Non-external 65+ years population
Lag Season: mortality of all 

ages
Non-external

mortality
Circulatory

mortality
Respiratory

mortality
Same day Warm 3.95*

(0.73, 7.27)
4.47*

(0.92, 8.14)
1.25

(-3.63, 6.37)
14.5”

(4.16, 25.9)

Same day Cool 1.33*
(0.27, 2.40)

1.59“
(0.43, 2.76)

1.31
(-0.31,2.96)

1.81
(-1.17, 4.89)

p-value* 0.126 0.127 0.981 0.019

1 Warm 4.12*
(0.94, 7.40)

4.89** 
(1.38, 8.51)

4.84
(-0.07, 9.98)

9.05
(-0.87, 19.9)

1 Cool 1.03*
(0.001, 2.07)

1.16*
(0.03, 2.29)

1.93*
(0.34, 3.54)

-0.38
(-3.26, 2.58)

p-value* 0.068 0.045 0.269 0.073

2 Warm 4.37** 
(1.18, 7 .66 )

5.54** 
(2.02, 9.19)

2.39
(-2.46, 7.47)

12.6*
(2.44, 23.9)

2 Cool 1.10*
(0.06, 2.16)

1.42*
(0.28, 2.57)

0.70
(-0.91,2.33)

2.81
(-0.09, 5.80)

p-value* 0.053 0.027 0.517 0.067
$ Warm season (Non-winter months): September to the following April;

Cool season (Winter months): May - August 
* p < 0.05; ** p < 0.01; *** p < 0.001
Lag 1 and lag 2 represent the pollutant levels on the previous day and the 2 days before 
respectively.
§ P-value for the significance test of the interaction between season and daily PMio 
concentration
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Figure 6-21. Percentage increase in daily deaths and 95% Cl associated with one 
interquartile range (11.7 ^ig/m3) increase in daily PMi« concentrations for various 
mortality categories by season

(A) Non-external mortality; all ages
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Figure 6-21 (cont.). Percentage increase in daily deaths and 95% Cl associated with one 
interquartile range (11.7 pg/m3) increase in daily PMh> concentrations for various 
mortality categories by season

(D) Respiratory mortality; 65+ years
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6.4.3 Sensitivity analysis

The original model (presented in Section 6.4.2) used a natural cubic spline smooth 

function of time with 7 degrees of freedom per year of data to adjust for a long-term 

trend and seasonal variation in daily mortality. The analysis was repeated using 3 to 10 

degrees of freedom per year of data for the natural cubic spline smooth function of time. 

Figure 6-22 shows the sensitivity analysis for non-external mortality in the 65+ years 

age group. Although the use of 3 and 4 degrees of freedom per year of data gave slightly 

lower estimates of PMio effect on daily mortality, the effect estimates did not greatly 

depend upon the number of degrees of freedom for the smooth function of time 

(Figure 6-22 (A)).

In order to examine the sensitivity of the estimates of PMio effect on daily 

mortality to the adjustment for the temperature effect, the analysis was repeated using 3 

to 8 degrees of freedom for the natural cubic spline smooth functions of temperature 

variables (the same day’s temperature and the average of three previous days’ 

temperature). The original analysis used 6 degrees of freedom. The effect estimate was 

slightly smaller when 2 degrees of freedom was used. The effect estimates and their 

95% confidence intervals were almost equal and did not depend upon the degrees of 

freedom for the smooth functions of temperature variables (Figure 6-22 (B)).

The original model used 3 degrees of freedom for the natural cubic spline

smooth functions of relative humidity variables (the same day‘s relative humidity and

the average of three previous days’ relative humidity). The analysis was repeated using

1 to 5 degrees of freedom. The estimates of PMio effect on daily mortality did not
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depend upon the choice of the number of degrees of freedom for the natural cubic spline 

smooth functions of relative humidity variables (Figure 6-22 (C))

Sensitivity analyses for other mortality groups are presented in Appendix C. The 

estimates of effect of PMio on acute mortality did not depend upon the degrees of 

freedom for the natural cubic spline smooth functions of weather variables. Small 

variations in the estimates of PMi0 effect were observed when the degrees of freedom 

for the smooth function of time were varied. However, the variations were not large 

enough to conclude that the effect estimates largely depended upon the number of 

degrees of freedom for the smooth function of time.
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Figure 6-22. Sensitivity of the effects of PM ]0 on daily non-external mortality of 65+ years 
age group to the degrees of freedom set for the smooth functions of confounders. 
Percentage increase in daily deaths and 95% Cl associated with one interquartile range 
(11.7 Jig/m3) increase in daily P M 10 concentrations
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6.5 Comparison of results from the two methods

Figure 6-23 shows the comparison of the estimated effects of PM]0 from the two 

methods for various mortality categories. Both methods reported similar findings about
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the statistical associations of daily mortality and PMio. It was consistent for all mortality 

categories and across different lags analysed (up to lag three). Method 2 estimated 

slightly higher relative risks of mortality associated with PMio for non-external 

mortality of all ages, non-external mortality in the 65+ years age group and circulatory 

mortality in the 65+ years age group. For respiratory mortality in the 65+ years age 

group, the estimated relative risk was slightly smaller in Method 2. However, the 

differences were very small.

The associations of PMio with daily mortality by season from the two methods 

are compared in Figure 6-24 for various mortality categories and for different lags. 

There were very small differences in the estimates of PMio effects from the two 

methods. The main findings from both methods were, in general, consistent. It appeared 

that differences in the methods to control for a long-term trend, seasonal variation, 

temperature and relative humidity may result in a small difference in the relative risks of 

mortality associated with PMio. However, this does not change the main findings of the 

statistically significant associations of PMio with daily mortality as long as they are 

adequately adjusted for.
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Figure 6-23. Comparison of the results from the two methods: Percentage increase in daily 
deaths and 95% Cl associated with one interquartile range (11.7 |ig/m') increase in daily 
PMio concentrations for various mortality categories
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Figure 6-24. Comparison of the results from the two methods: Percentage increase in daily 
deaths and 95% Cl associated with one interquartile range (11.7 jxg/m3) increase in daily 
PMio concentrations for various mortality categories by season
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(B) Circulatory mortality; 65+ years
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Figure 6-24 (cont.). Comparison of the results from the two methods: Percentage increase 
in daily deaths and 95% Cl associated with one interquartile range (11.7 jig/m3) increase 
in daily PM)0 concentrations for various mortality categories by season

(D) Respiratory mortality; 65+ years

Cool season Warm season

t/Jre
QJ
0
,E
O)
0 3re1  Q) U
o3Q.

25 - 

20 -  

15 - 

10 

5 

0
-5 1

M1 M2 
Same day

M1 M2 
1

Day lag

. i 4 i
* * i  ■ 1 !

Q> 25 ■
V)

S 20 -

.1 15-
0)
® 10 ■re
t :  r  .

g  n .

I 1

I I  1 , ' 11 1  1 1

t  ;  1 i  :
\  1 ■

1 1  1 t  ! 1
' ! ! ; 1

1 1
^  1 * T

1 1
0  0
Q.

-5 J

1

M1 M2 M1 M2 
Same day

M1 M2 
1

Day lag

M1 M2 
2

6.6 Summary

This chapter quantifies the association between daily mortality and air pollution 

concentrations using Poisson regression models, adjusting for long-term trend and 

seasonal variations in mortality, and the confounding effects of weather variables. The 

possible differences in the association between daily mortality and PMio in different 

seasons were analysed. Two different methods were used to control for confounders, 

and the results were compared.

Increase in daily mortality was significantly associated with an increase in daily 

PMio and CO but not with NO2. While PMio was associated with an increase in daily 

mortality for all mortality categories analysed, CO was associated with non-external 

mortality of all ages, non-external mortality of people aged 65+ years, and circulatory 

mortality of people aged 65+ years. No evidence of the association of CO with 

respiratory mortality of people aged 65+ years was found. The seasonal analysis of the 

association between PMio and daily mortality shows that the relative risks were larger in 

the warmer season than in the cooler season. The results from two different methods 

used in this analysis were consistent suggesting that the associations between daily 

mortality and air pollution observed in this study is less likely due to the choice of 

statistical modelling technique and inadequate control of confounders.
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Chapter 7: Mortality displacement

7.1 Introduction

Time series analysis of the association between daily mortality and PMio in Chapter 6 

provided strong evidence of a significantly increased risk of daily mortality associated 

with PMio after controlling for potential confounders. The analysis estimated an acute 

effect of PMio on mortality. However, it was not clear from the analysis whether 

exposure to high PMio concentrations increased the number of deaths in the general 

population or only brought forward the time of death of individuals in the frail 

subpopulation, who would have died in a few days irrespective of PMio concentrations, 

a phenomenon usually termed “harvesting” of deaths or “mortality displacement”. This 

is an important question for the public health task of estimating the impact of PMio on 

mortality. The public health concern of the association of PMio with mortality would be 

much less if the majority of the deaths associated with PMio were from the pool of frail 

individuals, who would have died in a few days, compared to PMio increasing the 

number of deaths in the general population and thus reducing the life span by months or 

years (McMichael et al., 1998).

This chapter investigates whether the association between daily mortality and 

PMio can be entirely attributed to “harvesting”. This was done by analysing the 

associations at different mid-term time scales. If the association was completely due to 

“harvesting”, then the association would be observed at short time scales but not at mid 

to long time scales.

7.2 “Harvesting” hypothesis

Under “harvesting” or mortality displacement hypothesis, PMio only hastens the deaths 

of individuals in the frail population and is only associated with an increase in deaths of 

frail individuals. A three state population model, i.e. a model describing the movement 

of individuals from “healthy” (general population) to “frail” (pool of frail individuals) to 

death, has been used to analyse the mortality displacement hypothesis (Zeger, Dominici 

and Samet, 1999; Murray and Nelson, 2000; Zanobetti et al., 2000; Schwartz, 2001; 

Dominici et al., 2003c; Roberts and Switzer, 2004). Figure 7-1 shows a schematic 

diagram of this model. Because of various risk factors, individuals in the “general 

population” become frail and move into the “frail population”. Exposure to PMio may 

be one of the risk factors that cause the movement of individuals from the “general

137



population'’ to the “frail population”. Individuals in the “frail population” either may die 

(move into “death'’) or recover and move back to the “general population”. Individuals 

in the “frail population” are the ones who may die in near future irrespective of PMio 

concentrations. The movement of individuals from the “frail population” to “death” may 

be associated with PMio concentrations.

Figure 7-1. A three state population model for the analysis of harvesting hypothesis

General

population Deathpopulation

Under the mortality displacement hypothesis, PMio only affects the individuals 

in the “frail population”, but not the individuals in the “general population”. In other 

words, PMio is only associated with an increase in deaths of individuals in the “frail 

population”. It is not associated with the movement of individuals from the “general 

population” to the “frail population” or the deaths of individuals in the “general 

population”. This is, of course, only a hypothesis and in reality, people in the “general 

population” may be affected by PMio and become frail.

The hypothesis assumes that there would be no increase in the number of 

individuals moving from the “general population” to the “frail population” due to higher 

PMio concentrations to counter balance the short-term increase in mortality rate in the 

“frail population” due to higher PMio concentrations. As a result, the size of the “frail 

population” will deplete to a level below its long-term average. Because of the smaller 

size of the “frail population”, the number of deaths on subsequent days will be lower 

than expected (i.e. a decrease in the number of individuals moving from the “frail 

population” into “death”). As there is no change in the movement of individuals from 

the “general population” to the “frail population”, the size of the “frail population” 

would replenish eventually and the number of deaths would return to its long-term 

average. Until the size of the “frail population” returns to the long-term average, 

decrease in the number of deaths would continue.
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If only individuals in the “frail population” are affected by PMio, then an 

increase in daily mortality due to PMio will be immediately followed by a drop in daily 

mortality. The increase in daily mortality will be balanced out by the subsequent drop in 

daily mortality, if the increase is completely due to short-term displacement of the time 

of deaths by a few days. There will be no net increase in daily deaths associated with 

PMio if the daily number of deaths is averaged over a few days. In other words, 

mortality will no longer be associated with PMio if a moving average of daily data is 

analysed. If some of the deaths are brought forward by a longer period (“no 

harvesting”), the increase in daily mortality will be partially cancelled out by the 

subsequent drop in daily mortality. This will result in a reduced effect of PM)0 if 

moving average of daily data is analysed.

Calculating moving average of daily data is similar to smoothing daily time 

series data. A moving average or a smoothed data series fluctuates less than the original 

daily data series. The frequency and amplitude of fluctuation reduce with an increase in 

the number of days over which the moving averages are calculated. The data series that 

represents daily variations in the original data series due to a short time scale pattern 

(i.e. shortest-term variations in the original data) fluctuates with high frequency. The 

data series that represents daily variations in the original data series due to mid-term and 

longer time scale pattern (i.e. mid-term variations and long-term variations in the 

original data) fluctuate with mid-scale and low frequency respectively. Because of 

similar long-term trends and seasonal variations in daily mortality and PMio data, it is 

more likely that the association between mortality and PMio will be observed at low 

frequency.

If the association between daily mortality and PMio is completely due to short

term mortality displacement, the association will likely to be observed only at high 

frequency fluctuations (i.e. in the time series representing the shortest-term variations, 

those with periods of only a few days), but not at mid-scale frequencies (i.e. in the time 

series representing the mid-term variations). An increase in daily mortality due to PMio 

and the drop in daily mortality which follows the increase would have been smoothed 

over at mid-scale frequencies and thus PMio and mortality will no longer be associated 

at these frequencies. Conversely, the existence of a positive association between PMio 

and mortality at mid-scale frequencies would show that the association of daily 

mortality with PMio is not completely due to mortality displacement and PMio 

associated deaths are brought forward by a longer period. A significantly positive but 

reduced effect size of PMio on mortality at mid-scale frequencies indicates that some
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deaths, not all, are due to harvesting. This suggests that some deaths are brought 

forward by a longer period, and the association between daily mortality and PMio 

cannot be entirely attributed to harvesting.

The “harvesting" hypothesis was tested using the method proposed by Schwartz 

(2000c) which examines the effects of PMio on daily mortality at different time scales 

(Schwartz, 2000c).

Schwartz (2000c) suggested decomposing each time series, which includes daily 

mortality, air pollution and weather data, into three independent parts representing daily 

variations in the original series that are due to patterns with different time scales. For 

example, daily PMio data could be decomposed into three independent time series: 

PMioiong, PMiomid, and PMioshort which represent the daily variations in the original PMio 

series that fluctuate with low frequency, mid-scale frequency and high frequency 

respectively. PMioiong, which fluctuates with low frequency, represents temporal trends 

including a long-term trend and seasonal variations. PMioshort, which oscillates with high 

frequency, represents the short-term variations, which is susceptible to short-term 

mortality displacement. The mid-scale component (PMiomid), which fluctuates with mid

scale frequency, is free from both the long-term trends (including seasonal variation) 

and the short-term variation. The presence of “harvesting" in the association between 

PMio and mortality can be examined by analysing the associations in these mid-scale 

components of the original data series adjusting for the mid-scale components of daily 

weather data. The existence of a positive association between PMio and mortality in 

these mid-scale components would show that not all of PMio associated deaths are 

being advanced by only a few days (Schwartz, 2000c; 2001). Some are brought forward 

by a longer period.

7.3 Methods

Following the method proposed by Schwartz (2000c), the LOESS smooths (Cleveland, 

1979) with different smoothing window sizes were used to decompose a time series data 

into a number of independent time series representing daily variations in that series, 

which vary with the period of different time scales such as long-term variation, mid

term variation and short-term variation (Schwartz, 2000c). The LOESS is a non- 

parametric smoother. The amount of smoothing depends upon the size of the smoothing 

window, with increased smoothness as the size of the smoothing window increases.

The LOESS smooth with a large smoothing window gives smoothed data that 

fluctuate with a low frequency. This smoothed series represents the fluctuation in the
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original series, which is due to a long-term time trend and seasonal variation. The width 

of smoothing window was set at 120 days for a long-term trend and seasonal variation 

in time series data. The residuals from this filtering will have no seasonality and only 

include the mid-term and short-term time scale components of data series.

Let Y, be the original time series data and lo(Yt, 120) be the 120-day LOESS 

smooth of the series Y,. The smoothed data series lo(Yh 120) is a long-term trend and 

seasonal variation in daily time series Yt. The residual series

Z,= Yt -  lo(Yt, 120)

will be free from the long-term trend and seasonal variation of the original series.

The second LOESS filter with a 30-day smoothing window was then applied to 

the residuals from the first filter, i.e. Zt.

Let lo(Zb 30) be the 30-day LOESS smooth of the series Zt. This filtered series 

lo(Zt, 30) is the mid-term time scale component of the original time series. This second 

filtered series lo(Zt, 30) will be free from the longer-term fluctuations and seasonal 

variations as well as from the short-term fluctuations, which are sensitive to short-term 

displacement of time of deaths.

The residuals of the second filter, i.e. Z, -  lo(Zh 30), represent the fluctuations at 

short-term time scale of less than 30 days.

The above process was applied to daily mortality, PMm, temperature and 

relative humidity to generate daily fluctuations in each of the time series data, which are 

due to mid-scale variations. The second filtered series lo(Zh 30) of daily mortality and 

PMio concentrations were associated to investigate the association at mid-term time 

scale.

In order to analyse the associations over different mid-term time scales, several 

mid-scale variations of each of the time series were generated by repeating the above 

process with different mid-term smoothing windows for the second LOESS filter. In 

addition to a 30-day smoothing window, mid-term smoothing windows of 15, 45 and 60 

days were used for the second LOESS filter.

Analysis was carried out using only the mid-term time scale components of all 

time series. Regression analysis was undertaken to study the association between mid

term time scale components of daily mortality and PM]0 concentrations adjusting for 

mid-term time scale components of weather variables for the mid-scale components on 

each of the four filter lengths. The mid-term components of the same time scale were 

used for all variables in the models. The same model as described in daily time series 

analysis in Section 6.4.2 (p.l 13) was used in this analysis. Daily time series variables in
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the model were replaced by the respective mid-term time scale components. A log- 

linear regression model was fitted to the mid-scale component of daily mortality to 

maintain the basis of multiplicative effect of covariates as in the time series analysis of 

the effect of short-term exposure to PM|0 on mortality, discussed in Chapter 6. The 

mean of daily mortality was added back as a constant to the mid-scale component to 

retain the scaling of original mortality series. The confounding effects of weather 

variables were controlled for by creating natural cubic spline smooth functions of the 

same weather variables as in the original model in Section 6.4.2 (p.l 13). Same number 

of degrees of freedom was used for the natural cubic spline smooth functions. The 

models included

• a set of dummy variables for days of week to control for daily variation in 

mortality across the week;

• a natural cubic spline smooth function of the mid-scale component of the same 

day’ s average hourly temperature with 6 df and a natural cubic spline smooth 

function of the mid-scale component of moving average of the preceding three 

days’ (lag 1 to lag 3) average hourly temperature with 6 df to control for the 

confounding effect of temperature;

• a natural cubic spline smooth function of the mid-scale component of the same 

day’s average hourly relative humidity with 3 df and a natural cubic spline 

smooth function of the mid-scale component o f moving average of the preceding 

three days’ (lag 1 to lag 3) average hourly relative humidity with 3 df to control 

for the confounding effect of relative humidity; and

• mid-scale component of daily PMio

7.4 Results

Figures 7-2 and 7-3 illustrate the decomposition of daily time series data of non-external 

deaths in the population aged 65+ years and daily PMio concentrations into long-term 

components (top panel) and mid-scale components (central panel). Decompositions for 

other mortality categories are illustrated in Appendix D. The bottom panels of both 

figures show daily data of the respective data series. The long-term components (top 

panels) are the LOESS smooths with a window size of 120 days applied to daily data. 

They appear to capture a long-term trend and seasonal variations in daily data. The 

residuals after removing the long-trend and seasonal pattern in daily non-external deaths 

in the 65+ years age group are shown in Figure 7-4. The residual plot confirms that the
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long-term variations were reasonably controlled for by applying the LOESS filter with a 

120-day smoothing window.

The central panel in Figure 7-2 shows the mid-scale component of daily non

external deaths in the population aged 65+ years, generated by applying the LOESS 

filter with a 30-day smoothing window to the residuals in Figure 7-4. This series was 

free from long-term variations including seasonal variations as well as from short-term 

variations, which were sensitive to short-term mortality displacement. The mean of this 

series was zero but the original mean of daily non-external deaths of people aged 65+ 

years was added back to retain the scaling of the original mortality series before fitting 

the log-linear regression models. Figure 7-5 shows the residuals of the second LOESS 

filter with a 30-day smoothing window applied to the residual of the first LOESS filter 

with a 120-day smoothing window (Figure 7-4). This residual series represents the 

short-term variations in daily time series data.

Figure 7-3(B) shows the mid-scale component of daily PM)0 data series, 

generated by applying the LOESS filter with a 30-day smoothing window to the 

residuals of the LOESS filter with a 120-day smoothing window applied to the original 

daily PMio data. Daily time series data of other confounders were similarly decomposed 

and the series representing mid-scale components of each data series were generated 

using the LOESS filter with smoothing windows of same sizes as in the case of daily 

mortality and PMio data (plots not shown). The mid-scale component of daily non

external mortality in the 65+ years age group (Figure 7-2(B)) was associated with the 

mid-scale component of daily PMio concentrations (Figure 7-3(B)) adjusting for the 

mid-scale components of other confounder data series.

Mid-scale components with mid-term smoothing window sizes of 15, 30, 45 and 

60 days were generated in order to analyse the associations over different mid-term time 

scales. For illustration, the plots of mid-scale components generated with a mid-term 

smoothing window size of 30 days are shown here in this chapter.
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Figure 7-2. Decomposition of daily non-external deaths in 65+ years age group

(A) Long-term trend and seasonal variation with a 120-day smoothing window

Day of study

(B) Mid-scale component with a 30-day smoothing window
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Figure 7-3. Decomposition of daily P M 10 concentrations

(A) Long-term trend and seasonal variation with a 120-day smoothing window
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Figure 7-4. Residuals after removing long-term variations in daily non-external deaths in 
65+ years age group using the LOESS filter with a 120-day smoothing window
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Figure 7-5. Residuals after removing both long-term variations and mid-scale variations in 
daily non-external deaths in 65+ years age group using the LOESS filter with a 120-day 
smoothing window and a 30-day smoothing window
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The associations between PMio and mortality at four different mid-term time 

scales were compared by examining the effect size estimates of PMio on mortality at 

different mid-term time scales. The effect size estimates were expressed as percentage
3increases in mid-term components of daily mortality associated with a 10 p.g/nr 

increase in mid-term components of daily PMio. Figure 7-6 shows the effect size 

estimates of PMi0 on daily mortality at four different mid-term time scales for various 

mortality categories. The corresponding sizes of the mid-scale smoothing windows used
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in the analysis of the association are shown in the x-axes. The effect size estimates at 

four different mid-term time scales are compared with the short-term effect size 

estimates of PMio on daily mortality from Chapter 6 in Table 7-1. The estimated 

percentage increases in daily mortality in Chapter 6 were reported for one interquartile 

range increase in daily PMio. For the comparison here, the percentage increases in daily 

mortality were recalculated for a 10 |ig/nr increase in daily PMio concentrations.

The results presented in Figure 7-6 and Table 7-1 are based on the analysis of 

the mid-term components of daily mortality and PMio data series generated using non- 

parametric smooths. Therefore, the interpretation of the percentage increase in mortality 

for increase in PMio is not as clear as the ones reported in Chapter 6, which were based 

on the analysis of the observed daily number of deaths and daily PMio concentrations. 

However, to examine whether or not the association between PMio and mortality can be 

entirely attributed to harvesting, we only need to test if there is an association between 

PMio and mortality at mid-term time scales.

Figure 7-6. Effect size estimates with 95% Cl for various mortality categories associated 
with a 10 |ig/m3 increase in PMio at various mid-scale components with different 
smoothing window sizes

(A) Non-external mortality; all ages (B) Non-external mortality; 65+ years
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Table 7-1. Percentage increase (95% Cl) in mortality associated with a 10 jig/m' increase 
in PMio at various mid-scale components with different smoothing window sizes for 
various mortality categories

Smoothing Non-external 65+ years population
window size mortality of Non-external1 Circulatory Respiratory
for mid-term all ages mortality mortality mortality
component

0 day# 1.31 1.55 1.84 2.95
(0.44, 2.18) (0.60, 2.50) (0.54,3.15) (0.55, 5.40)

15 days 1.16 1.64 1.79 2.25
(0.55, 1.78) (0.97, 2.32) (0.89, 2.72) (0.40, 4.13)

30 days 0.78 1.33 1.13 0.48
(0.18, 1.38) (0.67, 1.99) (0.24, 2.03) (-1.38, 2.36)

45 days 0.73 1.22 1.55 -2.59
(0.15, 1.32) (0.56, 1.88) (0.64, 2.47) (-4.45, -0.69)

60 days 0.34 1.16 2.17 -5.64
(-0.24, 0.92) (0.49, 1.83) (1.24,3.11) (-7.49, -3.75)

#Note: The percentage increases in mortality estimated in the daily time series analysis of 
mortality and PMi0 in Chapter 6. The percentage increases were for the PMi0 lag that 
had the strongest effect on single day mortality. For non-external mortality, the effects 
were of the same day’s PMio. For circulatory mortality and respiratory mortality, they 
were the effects of 1-day lagged PM]0 and 2-day lagged PM]0 respectively.

For non-external mortality of all ages, a 10 pg/nr increase in daily PMio was 

associated with an increase of 1.31% (95% Cl: 0.44, 2.18) in the same day mortality. 

The estimated PMio effect sizes at mid-term time scales were smaller than the PMio 

effect at the very short-term time scale of a 1-day period (i.e. the same day effect of 

PMio). The estimated effect size reduced as the size of the smoothing window for mid

scale components was increased. The associations became statistically non-significant 

when a 60-day smoothing window was used. This pattern was similar to what we would 

have expected under the short-term mortality displacement hypothesis. This suggested 

that the association between PMio and non-external mortality of all ages may be entirely 

attributed to short-term mortality displacement. However the positive associations for 

up to 45-day smooth windows suggested that deaths were being advanced by more than 

a few days, perhaps by a few weeks or months.

For non-external mortality in the 65+ years age group, a 10 pg/nv increase in 

daily PM )0 was associated with an increase of 1.55% (95% Cl: 0.60, 2.50) in the same 

day mortality. The estimated effect size first slightly increased when a 15-day
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smoothing window was used for mid-scale components and then gradually decreased as 

the size of the smoothing window increased. With smoothing windows larger than 15 

days (i.e. 30-day, 45-day and 60-day smoothing window) for mid-scale components, the 

effect sizes at mid-term time scales were smaller than the effect of same day PMio. 

Although the estimated effect sizes slightly reduced as the size of the smoothing 

window for mid-scale components was increased, significant positive associations were 

observed at all four mid-term time scales. This shows a presence of some harvesting and 

at the same time shows that some deaths were brought forward by a longer period. This 

suggests that the association between PMio and non-external mortality in the population 

aged 65+ years could not be entirely attributed to short-term mortality displacement.

There was an estimated increase of 1.84% (95% Cl: 0.54, 3.15) in circulatory

deaths in the population aged 65+ years for each 10 pg/m3 increase in 1-day lagged

PMio- Effect sizes at mid-term time scales were slightly lower when a 15-day and a 30- 

day smooth windows were used, which suggests that there was some harvesting. For the 

smoothing windows of greater than 30 days, the estimated effect size increased with an 

increase in the size of the smoothing window. When a 60-day smoothing window was 

used, the effect size was greater than the effect size at the very short-time scale of a 1- 

day period (effect of single day PMio on next day circulatory mortality). There were 

greater effects at longer time scales, which was not consistent with the harvesting 

hypothesis.

There was an estimated increase of 2.95% (95% Cl: 0.55, 5.40) in respiratory

deaths in the population aged 65+ years for each 10 pg/m3 increase in 2-day lagged

PMio. The estimated PMio effect sizes at mid-term time scales were smaller than the 

effect at the very short-term time scale of a 1-day period and reduced gradually with 

increase in the size of the smoothing window for mid-term components. There was a 

positive association when a 15-day smoothing window was used but the associations 

became negative when 45-day and 60-day smoothing windows were used. Increase in 

PMio was associated with decrease in mortality at these time scales. The reason for this 

statistically significant negative association was unclear. It might be due to a very small 

number of daily respiratory cause deaths in the population aged 65+ years although we 

would more likely to get inconclusive results when the numbers are very low.

7.5 Summary

This chapter investigated whether the short-term association between daily mortality 

and PMio, shown in the time series analysis in Chapter 6, was entirely due to short-
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displacement of time of deaths of frail individuals who would have died in a few days 

irrespective of PMio concentrations, a phenomenon usually termed “harvesting” or 

“mortality displacement”. A method proposed by Schwartz (2000c) was used to analyse 

the “harvesting” hypothesis by examining the association of PMio with mortality at 

different time scales. If the association was completely due to harvesting, the 

association would be observed only at short time scales but not at mid time scales.

All daily time series data including mortality data, PMio data and weather data 

were decomposed into three components that represent a long-term variation, a mid

term variation and a short-term variation in the original series. The associations were 

analysed at mid-term variations only as associations at this time scale would indicate 

that the association between PMio and daily mortality was not completely due to 

harvesting. The mid-term component of the mortality series was associated with the 

mid-term component of PMio series adjusting for the mid-term components of weather 

variables. Several mid-term components were generated using various mid-term 

smoothing window sizes and the associations were analysed at different mid-term time 

scales.

Although the association between PMio and daily non-external mortality of all 

ages appeared to be due to harvesting, the results suggest that time of death was brought 

forward by more than a few days, perhaps by a few weeks or months. The analysis for 

non-external deaths in the 65+ years age group showed that the association was not 

entirely due to harvesting. Some deaths in this age group were brought forward by a 

longer period. Similarly, the association between PMio and circulatory mortality in the 

65+ years age group was not entirely due to harvesting.

In this analysis, the mid-term components were generated using non-parametric 

smooth with different smoothing window size. Therefore, the interpretation of the 

regression coefficients (effect size estimates) from this analysis for an increase in 

mortality associated with PMj0 is not as clear as that for daily time series analysis of 

mortality and PMio- However, to examine whether or not the association between PMio 

and mortality can be entirely attributed to harvesting, we only need to test if there is an 

association between PMio and mortality at mid-term time scales and this can be 

examined using this method. This analysis shows that the association cannot be entirely 

attributed to harvesting, suggesting that PMio not only affects the deaths of frail 

individuals but may also increase mortality in the general population over a longer 

period. This indicates that PMio can have a real impact on long-term mortality.
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Chapter 8: Extended effects of PM10 using distributed lag

models

8.1 Introduction

Daily mortality is affected not only by the same day’s air pollution but also by the air 

pollution of a number of preceding days. In the same way, air pollution can increase the 

deaths occurring on the same day as well as on several subsequent days. The effect of 

air pollution on mortality is more likely to be spread over several days (Zanobetti et al., 

2000). The models in Chapter 6 estimated the short-term effects of air pollution on a 

single day mortality; either on the same day or on the deaths occurring a few days after 

exposure. It did not combine the effects across several days. In order to measure the real 

effect of air pollution on mortality, we need a model that combines the effects of air 

pollution on mortality on the same day and on many subsequent days.

Distributed lag models can estimate the total effect of air pollution on mortality 

spread over multiple days and indicate how the effects are distributed over multiple 

days. The main aims of this chapter are to estimate the extended effects of PMio on 

daily mortality using polynomial distributed lag models and to explore how the effects 

are distributed over several days. This chapter also analyses the sensitivity of the 

extended effects of PMio on daily mortality to the different methods by which the 

confounders are adjusted for.

8.2 Distributed lag models

Pope and Schwartz (1996) described the application of distributed lag models in 

epidemiology (Pope and Schwartz, 1996) and a few studies have used this method to 

estimate the total effect of daily PMio on mortality distributed over several days 

(Schwartz, 2000b; Braga, Zanobetti and Schwartz, 2001; Kim, Kim and Hong, 2003; 

Goodman, Dockery and Clancy, 2004). The main basis of this model is that the number 

of deaths on any given day depends on PMio concentrations of the same day and on 

several previous days’ (lagged) PMio concentrations. The simplest method is to fit the 

regression model for daily number of deaths with the same day’s PMio, the previous 

days’ PMio and other covariates as independent variables. The model separately 

estimates the mortality effects of the same day’s PMio and each previous days’ (lagged) 

PMio. The sum of the estimated mortality effect of a unit increase in the same day’s 

PMio concentrations and the estimated mortality effects of a unit increase in PM]0

151



concentrations on preceding days gives the estimated total effect of a unit increase in 

daily PMio on mortality spread over several days. Such distributed lag models for daily 

mortality which include the same day’s PMio and the previous days' PMio as predictor 

variables are generally known as unconstrained distributed lag models as no constraint 

is applied for PMio effects (Schwartz, 2000b).

For Poisson regression, the unconstrained distributed lag model is

E( Y, ) = Pop x exp {fj +ß0 PM, +ßt P M +/?, PM ,_2 + • • • +ßq PM ,_q

+ 1  a.,f(xu )} ( 8 ‘ n
j

Where Y, is the number of deaths on day “f \  Pop is the population at risk, PM,, PM,.], 

PM,.2 , ..., PM,.q are PMio concentrations on day t, t-1, t-2, ..., t-q respectively, ßo, ßi, 

ßi, ..., ßq are the log relative risks of mortality associated with an increase of 1 |ag/m3 in 

PMt, PM,.], PM,.2 , ..., PM,.q respectively and Xjt, are the other daily confounding 

variables. The sum ßo + ßi + ß 2 + ...+ ßq gives the estimated total mortality effect of a 

unit increase in daily PMio concentrations.

Due to a higher degree of serial correlation in daily PMio data, the Poisson 

regression model in equation (8-1 ) will have a collinearity problem. As a result, it 

produces unstable estimates of individual regression coefficients. There will be too 

much noise in the regression coefficients to provide any information on the shape of the 

distribution of effects of PMio on daily mortality over several days. Although the model 

estimates unstable individual PMio coefficients {ß/s ; j  = 0, 1,2, ..., q), their sum {ßo + 

ßi + / % + . . . +  ßq) gives an unbiased estimate of the total mortality effect of a unit 

increase in daily PMio concentration (Schwartz, 2000b).

Constraining the variation of ß/s  to some shape will reduce noise in individual 

PMio coefficients and help to explain the shape of the distribution of lagged PMio 

effects on daily mortality. This could be done by calculating the weighted sum of lagged 

PMio concentrations with weights that reflect the relative mortality effects of the same 

day and individual lagged PMio concentrations, and then modelling daily mortality on 

the weighted sum of the lagged PMio concentrations instead of the lagged PMjo 

concentrations themselves. For such models, equation ( 8-1 ) can be rewritten as 

follows:

E(Y,) = PopxexP{ p  + ß Z l + Z Ä Jf ( X j , )}  ( 8-2 )
j

Where Z, is the weighted sum of lagged PMio concentrations,
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Z, =W0PM, + W,PM,_] + W2PMt_2 + -  + WqPMt_q ( 8-3 )

and Wo, W/, W2, ..., Wq are the weights reflecting relative mortality effects of the same 

day’s PM10 {PM,) and those on preceding days (PM,./, PM, 2, PM,.q).

Unlike the unconstrained distributed lag model in equation (8-1 ), the model in 

equation ( 8-2 ) puts a constraint on the shape of the distribution of daily PM 10 effects 

on mortality over several days and is thus referred as a constrained distributed lag model 

(Schwartz, 2000b). One can change the constraint by changing weights (Wfs ; j  = 0, 1, 

2, q) in equation ( 8-3 ), which will also change the shape of the variation of PM10 

effects with lag days.

The models with a single day’s PM 10 exposure (either the same day or the 

individual lag day) as discussed in Chapter 6, are also a kind of constrained distributed 

lag model. If we are calculating the same day effect of PM 10 concentrations on daily 

mortality, we set the weight Wo at 1 and all other weights Wfs at 0. Similarly, to 

calculate the effect of 1-day lagged PM 10 concentrations, all the weights Wfs are set at 0 

except for j  = 1, and Wi is set at 1. In these models, we assume that the effects of PM10 

are limited to a single day, either on the same day or on the following days.

A few studies have used a lagged moving average of daily PM10 concentrations 

as an exposure variable (Pope, Schwartz and Ransom, 1992; Morgan et al, 1998; 

Goldberg et al,  2001; Katsouyanni et al., 2001). These models put a constraint W0 = W; 

= W2 = ... = Wq with the assumption that mortality effects of the same day’s PM10 and 

the preceding days’ PM 10 are equal. Both of these models are very restrictive and may 

not reflect the real risk of mortality associated with daily PM 10 concentrations (Pope and 

Schwartz, 1996).

A more flexible and common approach is to constrain the shape of the extended 

effects of daily PM 10 over lag days to follow some polynomial function of lag number 

(Almon, 1965; Schwartz, 2000b). Such models are referred to as polynomial distributed 

lag models and are discussed in detail in the next section. For these models, weights are 

calculated as follows

WJ = f j Vt j ‘ ; j  = 0 ,1 ,2 ,"- ,q ( 8 ' 4 )

k= 0

where d is the degree of polynomial, q is the number of lags and ; k = 0, 1, 2, ..., d 

are the parameters of polynomial distributed lag models.
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8.3 Polynomial distributed lag models

The polynomial distributed lag model was first introduced by Almon (1965) for 

Gaussian data and Schwartz (2000b) extended the application of this method for 

Poisson data in a generalised additive model (Almon, 1965; Schwartz, 2000b). Schwartz 

(2000b) showed for the first time the use of polynomial distributed lag models in 

studying the distributed effects of daily PMio concentrations on mortality over a number 

of days. Since then, a number of studies have applied this method in time series 

epidemiological studies to estimate the extended effects of particulate air pollution and 

temperature on daily mortality (Braga, Zanobetti and Schwartz, 2002; Zanobetti et a i ,  

2002; Kim, Kim and Hong, 2003; Zanobetti et a i ,  2003; Goodman, Dockery and 

Clancy, 2004).

The polynomial distributed lag model constrains the coefficients f f  s in 

equation (8-1 ) to follow a polynomial function of lag number j . The polynomial 

distributed lag model with q number of lags and d degrees of polynomial puts the 

following constraints on ß/s  in equation (8-1 ).

( 8-5 )ßj = Znuk •J = 0,1,2, ...,q q > d
k=o

Substituting ß/s  from equation ( 8-5 ) in equation ( 8-1 ) and suppressing covariates and 

other terms except for PMio terms, equation ( 8-1 ) can be rewritten as

E(Yl ) = e J f j ( f j Vkj
^ j =0 \  k=0

PM >- j
( 8-6 )

which becomes, after rearrangement of the terms,

(
E(Y,) = exp 2X v /

\\

Jt=0
' - j

\ j = °  J  J

( 8-7 )

Thus, equation ( 8-1 ) can be expressed as

E(Yt ) = Popxexp{Ju+r i0Z 0+rjlZ ]+q2Z 2 + ...+7jdZ d+YJAj f ( X j t )} (8-8)
j

where Z, ; i = 0, 1,2, ..., d are the weighted sums of lagged PM)0 concentrations such 

that

z, = 1 . / '  PM <~j ; z=0 ,1,2, . . . ,d ( 8-9 )

7=0

and rjo, t]i, Tp, •••, tld are the parameters of the polynomial distributed lag model. We 

can create d+ 1 new variables Z, ; i = 0, 1,2, ..., d representing the weighted sums of 

lagged PMio concentrations and use them in the Poisson regression model
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(equation ( 8-8 )) to fit a polynomial distributed lag model and estimate its parameters q, 

; i = 0, 1, 2, d (Schwartz, 2000b).

After estimating the parameters of the polynomial distributed lag model {rjj s), 

the effect size estimates (ß/s) of the same day PMio and the lagged PM)0 on daily 

mortality can be calculated by expanding equation ( 8-5 ) as follows:

ßo = *7o

ß\=  7o+7i +’l2+1>+- + n,i

ß i=  Vo+rh 2 +?7,22+ ^323 +... + ̂ 2 ‘

ß i=  '7o+'7i3 + t]232+ ^ 3 i +... + 7„3‘1
( 8- 10 )

ß ,=  V o + w  +n2q 2 +th<i3+-

where q is the number of lag days and d is the degree of polynomial.

The above set of equations can be expressed in matrix notation as:

P = J ti (8-11)

where ß is a vector {ßo, ß,, ß2, ß3, . . ßqf of length q+ 1, r| is a vector {%, q,, q2, q3, • • •, 

Tjdi of length d+ 1 and J is a (q+ 1 )\{d+1) matrix

1 0  0 0 
1 1 1 1
1 2 22 23
1 3 32 33
1 4 42 43

1 q q2 q 3

The covariance matrix of ß is

cov(ß) = J cov(n) J ‘ (8-12)

and the square root of the (j+\){b diagonal element of cov(ß), which is the ((/+l),(/+l))lh 

element of cov(ß) gives the standard error of ßj ;j = 0, 1,2, ..., q.

The sum of ß/s  gives an estimate of the total effect of a unit increase in PMio on 

daily mortality. Thus, the total mortality effect ßcan be calculated as

155



( 8-13 )/? = l ‘ß
where 1 is a unit vector (1, 1, 1, 1, 1)' of length q+1. The standard error of ß  is

calculated as

se(/?) = yjV cov(ß) 1

= ^ ‘Jcovdl) J‘ 1
( 8-14 )

8.4 Methods

The fourth degree polynomial distributed lag model was used to estimate the overall 

risk of mortality distributed over 0 to 40 days after PMio exposure (over 41 days 

including the day of exposure). Five new variables representing the weighted sums of 

PM io concentrations of the same day and up to 40 lag days were created as described in 

equation ( 8-9 ) and the Poisson regression model (equation ( 8-8 )) was fitted for daily 

mortality to estimate the parameters of the fourth degree polynomial distributed lag 

model. The parameters define the shape of PMio effects on daily mortality distributed 

over 41 days. The individual effect coefficients (ß/s) of the same day PMio and the 

lagged PMio on daily mortality and their standard errors were estimated as described in 

equations ( 8-10 ) and ( 8-12 ). The overall risk of mortality due to PMio concentrations 

distributed over 0 to 40 days was estimated by totalling the estimated individual effect 

coefficients (ß/s), and its standard error was calculated using equation ( 8-14 ).

Analyses were separately undertaken for daily non-external deaths of all ages, 

and for daily non-external deaths, circulatory cause deaths and respiratory cause deaths 

of the 65+ years age group.

A long-term trend and seasonal variation in daily mortality and the confounding 

effects of weather variables were controlled for in the Poisson regression model 

(equation ( 8-8 )) using natural cubic spline smooth functions of calendar time and 

weather variables, as mentioned in Sections 6.3.1 (Method 2, p.84) and 6.3.2 (Method 2, 

p.87). In addition to PMio exposure variables, the models included

• a natural cubic spline smooth function of calendar time with 81 degrees of 

freedom i.e. approximately 7 df per year of data to control for a long-term trend 

and seasonal variation in daily mortality;

• a set of dummy variables for days of the week to control for daily variation in 

mortality across the week;

• natural cubic spline smooth functions of the same day’s average hourly 

temperature and a moving average of the preceding three days’ (lag 1 to lag 3)
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average hourly temperature with 6 df each to control for the confounding effect 

o f temperature; and

• natural cubic spline smooth functions of the same day’s average hourly relative 

humidity and a moving average of the preceding three days’ (lag 1 to lag 3) 

average hourly relative humidity with 3 df each to control for the confounding 

effect of relative humidity.

The check of overdispersion parameters and residual autocorrelation coefficients 

for the models with the above variables provided no evidence of over-dispersion or 

residual autocorrelations for any of the mortality categories analysed (Section 6.4.2, 

p.l 17). Thus, controlling for overdispersion and autocorrelation were not required for 

any of the models.

A quadratic or a cubic distributed lag model is usually flexible enough to 

approximate a biologically plausible lag structure of PMio effects on daily mortality 

(Pope and Schwartz, 1996). However, a fourth degree polynomial was fitted to ensure 

adequate flexib ility to better define the shape of the distribution of PMio effects on daily 

mortality over time. A cubic distributed lag model, a quadratic distributed lag model 

and an unconstrained distributed lag model were also fitted as sensitivity analyses.

Similar to the sensitivity analysis in Section 6.4.3 (p. 130), the degrees of 

freedom for the natural cubic spline smooth function of calendar time were varied to 

examine the sensitivity o f the estimated extended effects of daily PMio on mortality to 

adjustment for a long-term trend and seasonal variation in mortality. Additional 

analyses to examine the sensitivity of PM]0 effect estimates to the degrees of freedom 

for natural cubic spline smooth functions of weather variables were also performed.

8.5 Results

Table 8-1 compares the PMio associated risk o f single day mortality with the total risk 

o f mortality summed over 0 to 40 days after PMio exposure under various distributed 

lag models for different mortality categories. Risks are expressed as percentage 

increases in mortality for each 10 pg/nr increase in PMio concentrations. For 

distributed lag models, the percentage increases in mortality are summed over 41 days, 

including the day of exposure (0 day after exposure). The results of distributed lag 

models are compared with the effect of PMjo lag that had the largest effect on single day 

mortality.

The relative risks of mortality associated with an increase in daily PMio 

concentrations were substantially higher when the lagged effects were considered using

157



distributed lag models for each of the mortality categories analysed. Each 10 pg/m 

increase in PMio was associated with a 1.31% (95% Cl: 0.44, 2.18) increase in the same 

day total non-external mortality of all ages. When the lagged effects were considered 

using the fourth degree polynomial distributed lag model, the overall percentage 

increase in total non-external mortality of all ages over 41 days, including the day of 

exposure, was 13.3% (95% Cl: 6.1, 20.9) for a 10 pg/nr increase in PMio. In the 

population aged 65+ years, the percentage increase in non-external mortality for each 10 

pg/m3 in the same day PMio was 1.55% (95% Cl: 0.6, 2.5) whereas the overall 

percentage increase in non-external mortality over 41 days, including the day of 

exposure, was 14.9% (95% Cl: 6.99, 23.4).

For circulatory deaths in the population aged 65+ years, the percentage increase 

for each 10 pg/m3 increase in 1-day lagged PMio was 1.84% (95% Cl: 0.54, 3.15), 

compared to the overall percentage increase of 18.7% (95% Cl: 7.3, 31.3) over 41 days 

for each 10 pg/m3 increase in PMio when the lagged effects were combined using the 

fourth order polynomial distributed lag model. The estimated percentage increase in 

mortality due to PMio was considerably greater for respiratory deaths than for other 

causes of deaths. For respiratory deaths of the 65+ years age group, the overall 

percentage increase in mortality over 41 days was 26.9% (95% Cl: 4.5, 54.1) for each 

10 pg/m3 increase in PM iq.

Although the total effect size estimates were similar for all distributed lag 

models including the unconstrained distributed lag models, they increased slightly with 

an increase in the order of models, with unconstrained distributed lag models providing 

the highest effect size estimates, but with slightly wider confidence intervals. This may 

indicate that polynomial distributed lag models marginally underestimated the total 

effect size, given that the estimates from the unconstrained distributed lag models were 

unbiased.
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Table 8-1. Estimated percentage increase in daily mortality (95% Cl) associated with each 
10 |ig/m3 increase in PMi0 concentrations and the estimated overall percentage increase in 
mortality associated with each 10 |ig/m3 increase in PM]0 concentrations under different 
distributed lag models for 0 to 40 lag days

1-day Distributed lag model
Causes of deaths mortality0 4th order Cubic Quadratic Unconstrained
Total non-external 

All ages 1.31
(0.44,2.18)

13.3
(6.1,20.9)

13.0
(5.9, 20.7)

12.9
(5.9, 20.6)

13.9
(6.7,21.8)

65+ yrs 1.55
(0.60, 2.50)

14.9
(6.99, 23.4)

14.7
(6.9, 23.2)

14.7
(6.8, 23.1)

15.7
(7.6, 24.3)

Circulatory 65+ yrs 1.84
(0.54,3.15)

18.7
(7.3,31.3)

18.6
(7.2,31.1)

18.5
(7.2,31.1)

18.9
(7.4,31.7)

Respiratory 65+ yrs 2.95
(0.55, 5.4)

26.9
(4.5,54.1)

26.3
(4.01,53.3)

26.1
(3.9, 53.1)

28.7
(5.6, 56.7)

#Note: For 1-day mortality, the percentage increases in mortality were for the PMi0 lag that had 
the strongest effect on single day mortality. For non-external mortality, the effects were 
of the same day’s PM,0. For circulatory mortality and respiratory mortality, they were 
the effects of 1-day lagged PM10 and 2-day lagged PM)0 respectively.

Results of polynomial distributed lag models showed significant increased risks 

of daily non-external mortality due to PMio up to four weeks after exposure in the 

population aged 65+ years (Figure 8-1). PMio had the major immediate effect on the 

first few days after exposure. The delayed effect of PM\0 decreased but stayed 

significantly positive for up to four weeks after exposure. Results from the fourth degree 

polynomial and cubic distributed lag models showed that the effect remained fairly 

constant between 10 and 28 days after exposure (Figures 8-1(A) and 8-1(B)). Although 

statistically non-significant, the effect remained positive between 30 and 37 days after 

exposure. This showed that besides an immediate effect on the same day mortality, 

PMio had a significant delayed effect on non-external mortality of 65+ years suggesting 

that the model with single day’s PMio underestimates the overall effect of PMio.

Polynomial distributed lag models showed how the PMio effects were 

distributed over time and thus were useful to explore the shape of the distribution of 

PMio effects on daily mortality over days. Estimated PMio effects at each lag in 

unconstrained distributed lag models had too much noise to provide any information 

about the shape of the distribution of PMio effects on daily mortality over lag days 

(Figure 8-1(D)). A lowess smooth with a bandwidth of 0.4 was applied to the plot to 

reveal the shape of the distribution of PMio effects. The smoothed shape approximately 

matched the shape of the distribution of PMio effects from the polynomial distributed 

lag models.
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Figure 8-2 shows the estimated increased risk of non-external deaths of all ages, 

circulatory deaths in the 65+ years age group and respiratory deaths in the 65+ years age 

group, associated with PMio, at each lag with fourth degree polynomial distributed lag 

models. Although the shapes of the distributions of increased risks of daily deaths due 

to PMio over lag days differed slightly, they had similar patterns in general. 

Significantly increased risks of non-external deaths of all ages and circulatory deaths in 

the 65+ years age group were found up to four weeks after PMio exposure. Similar to 

the results for non-external deaths in the population aged 65+ years, effects were 

strongest for the first few days after exposure and then decreased but stayed 

significantly positive for up to four weeks. For all ages, the risk of total non-external 

deaths elevated to a second smaller peak about 20 days after exposure (Figure 8-2(A)).

PMio was significantly associated with an increased risk of respiratory deaths in 

the 65+ years age group in the first week after exposure (Figure 8-2 (C)). Risks 

associated with PMio were not statistically significant between 7 and 10 days after 

exposure. The risks then elevated to a second smaller peak around 20 days after 

exposure and stayed significantly positive for up to 25 lag days before dying out to zero 

by 40 lag days.
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Figure 8-1. Estimated percentage increase in daily non-external deaths of the 65+ years 
age group associated with a 10 pg/nv increase in PMio under various distributed lag 
models

(A) Fourth degree polynomial
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(C) Quadratic polynomial
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Note: Y-axis scale is different
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Figure 8-2. Estimated percentage increase in daily deaths associated with a 10 pg/m3 
increase in P M jo with fourth degree polynomial distributed lag models for various 
mortality categories

(A) Non-external mortality; all ages

- 0.5 -

Day Lag

(B) Circulatory mortality; 65+ years
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8 o.o

-0.5 -

Day Lag

(C) Respiratory mortality; 65+ years

■ 1 1 1 1

.................................. i i

Day Lag

8.6 Sensitivity analysis

Figure 8-3 shows the sensitivity of the estimated shape of the association between PMio 

and daily non-external deaths of the 65+ years age group to using various degrees of 

freedom for the natural cubic spline smooth functions of time for the adjustment of a
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long-term trend and seasonal variation in daily mortality, with fourth degree polynomial 

distributed lag models. In the original analysis (results presented in Section 8.5), 7 

degrees of freedom per year of data were used to adjust for a long-term trend and 

seasonal variations in daily mortality. The analysis was repeated using 3 to 10 degrees 

of freedom per year of data for the natural cubic spline smooth function of time. 

Irrespective of the number of degrees of freedom set for the smooth function of time, 

the distributions of PMio associated increased risks of daily non-external deaths over lag 

days in the population aged 65+ years had the same general shape (Figure 8-3). Risks of 

mortality due to daily PMio remained positive for five weeks after exposure, though 

were statistically non-significant at some lags. When 5, 6 7 and 9 degrees of freedom 

per year of data were used for the smooth function of time, statistically significant 

increased risks were found up to four weeks after exposure. Using 3 and 4 degrees of 

freedom per year of data, the delayed effects were statistically significant up to four 

weeks after exposure, though were not so during the second and third weeks after 

exposure.

Using fewer degrees of freedom for the smooth function of time gave lower 

estimates of the total PMio effects on daily non-external mortality of the 65+ years age 

group summed over 0 - 4 0  days (Figure 8-4 (A)). The effect estimates stabilised, 

however, after seven or more degrees of freedom per year of data were used. Effect 

estimates had wider confidence intervals when greater degrees of freedom were 

assigned for the natural cubic spline smooth functions of time.
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Figure 8-4. Sensitivity of the extended effects of PM)0 on daily non-external mortality of 
the 65+ years age group over 41 days to degrees of freedom set for the smooth functions of 
eonfounders. Estimated overall percentage increase in daily deaths and 95% Cl for each 
10 pg/m3 increase in PMi0, with fourth degree polynomial distributed lag models.

(A) Degrees of freedom for the smooth function of time

(B) Degrees of freedom for the smooth function of temperature

3 4 5 8

Degrees of freedom

(C) Degrees of freedom for the smooth function of relative humidity

2 3 4

Degrees of freedom

The PMio associated total risk of non-external deaths in the population aged 65+ 

years over 0 - 4 0  days did not depend upon the adjustment for the effect of temperature 

or relative humidity. Increased risks of mortality due to daily PMio and their 95% 

confidence intervals were almost equal, irrespective of the degree of freedom for the
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natural cubic spline smooth functions of temperature or relative humidity 

(Figures 8-4 (B) and 8-4 (C)).

Sensitivity analyses for other mortality groups (non-external deaths of all ages, 

circulatory deaths of the 65+ years age group and respiratory deaths of the 65+ years 

age group) are presented in Appendix E. The findings were similar to the results for 

non-external deaths of the 65+ years age group. They also showed that the PMio 

associated increased risk of mortality did not depend upon the degree of freedom for the 

smooth functions of temperature or relative humidity to control for the effects of 

temperature or relative humidity whereas it changed considerably with changes in the 

degrees of freedom for the smooth function of time to control for a long-term trend and 

seasonality.

8.7 Summary

This chapter describes the use of distributed lag models to estimate the extended effects 

of PMio on mortality. The PMio associated total risks of mortality over 0 - 4 0  days after 

exposure under a fourth degree polynomial distributed lag model, a cubic distributed lag 

model, a quadratic distributed lag model and unconstrained distributed lag model were 

compared with each other and with the effects of PMio on single day mortality. 

Polynomial distributed lag models show that PMio was associated with significantly 

increased risks of mortality for several weeks after exposure. The total effects of PMio 

spread over several weeks were substantially higher than the effect of PMio on single 

day mortality. The results were consistent across various distributed lag models. For 

non-external deaths in the population aged 65+ years, the total percentage increase in 

mortality over 0 to 40 days for a 10 ftg/nT increase in PMio was 14.9% (95% Cl: 6.99, 

23.4) whereas the percentage increase in the same day mortality for the same increase in 

PMio was only 1.55% (95% Cl: 0.6, 2.5). This suggests that the studies focussing on 

single day effects highly underestimate the real effect of PMio on daily mortality.

The total risks of mortality associated with PM)0 did not depend upon the 

number of degrees of freedom for the natural cubic spline smooth functions of 

temperature or relative humidity, suggesting that the risk was not sensitive to the way 

the confounding effects of temperature and relative humidity were adjusted for. The 

total risk of mortality was, however, sensitive to the number of degrees of freedom set 

for the natural cubic spline smooth function of time variable used to control for seasonal 

variation and a long-term trend in daily mortality. The total PMio effects over 0 to 40
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days were slightly lower when fewer degrees of freedom were used for the smooth 

function of time, but the results were not meaningfully different.
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Chapter 9: Association of annual PM10 with mortality

9.1 Introduction

Time series analysis in Chapters 6, 7 and 8 provided evidence of associations between 

PMio and mortality over short to mid-term time scales. Time series studies, based on 

daily data, are designed to pick up short-term increase in number of air pollution related 

deaths against the background long-term mortality. These studies only estimate the 

acute effects of air pollution and provide no information on the association of air 

pollution with the long-term mortality. For the health effect assessment of air pollution 

including estimating the number of deaths attributed to air pollution, the health effect 

estimates that combine both the short-term and long-term health effects of air pollution 

are required. The health effect estimates of long-term exposure to air pollution can 

provide the combination of both chronic and acute effects of air pollution and thus are 

the most appropriate effect measurement for the health effect assessment. This chapter 

quantifies the effects o f long-term exposure to PMio on long-term mortality. It is 

reasonable to assume annual average air pollution levels as long-term exposure levels 

for the people living in a spatial area. The association of annual average PMm 

concentrations with annual mortality adjusting for confounders, such as age, sex, 

ethnicity, area-level socioeconomic status and smoking is analysed in this chapter. This 

chapter also explores the spatial variation in population characteristics and PMio 

exposure in Christchurch. Census area unit (CAU) is chosen as a small scale geographic 

unit to explore spatial variation.

9.2 Study design

This is an ecological cross-sectional study of air pollution and mortality with the spatial 

unit “ CAU” as the unit o f analysis. This study associates spatial variation of annual 

average PMio concentrations with spatial variation of mortality after controlling for 

potential confounders. The hypothesis analysed in this study is that the mortality rates at 

CAUs with higher annual average PMio concentrations are greater than the mortality 

rates at CAUs with lower annual average PMio concentrations. An increase in mortality 

rates is associated with an increase in annual average PMio concentrations of CAUs.

The key assumptions in this study are:

• all people within each CAU are exposed to the same level of annual PMio 

level;
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• personal exposure to annual average PMio level can be measured at their 

place of usual residence;

• personal exposure to annual average of weather variables is uniform across 

Christchurch;

• between-year variations in spatial distribution of annual average PMio level 

are negligible; and

• all people within a CAU have the same socioeconomic status as the 

socioeconomic status calculated for that CAU.

9.3 Confounders

Age, sex and ethnicity are important determinants of mortality. The ethnic differences in 

mortality in New Zealand have been well documented. Studies have found that Maori 

and Pacific Islanders have higher mortality rates than Europeans (Ministry of Health, 

1999; Blakely et al., 2005; Ministry of Health and University of Otago, 2006). There is 

no concern for confounding effect of these variables (age, sex and ethnicity) in time 

series analysis (Chapters 6, 7 and 8) as time series analysis compares short-term 

temporal variations between air pollution and mortality and these variables do not vary 

in short-term. Time series studies require controlling for the confounding effects of 

those variables which vary from day-to-day like weather variables. Unlike time series 

studies, ecological cross-sectional studies compare geographic areas to analyse the 

association between air pollution and mortality. The population composition with 

respect to age, sex and ethnicity can vary significantly between geographic areas. If 

different geographic areas have different population structure, then these variables may 

confound the relationship between air pollution and mortality.

Socioeconomic status is another important potential confounder in the 

relationship between air pollution and mortality (Finkelstein et al., 2003; Jerrett et al., 

2005; Naess et al., 2007). Socioeconomic status in different geographic areas can vary 

significantly (Crampton et al., 2000). People with poor socioeconomic status may be 

exposed to higher air pollution levels as they have higher probability of living in the 

areas closer to main roads or near industrial sources where air pollution levels tend to be 

higher. Socioeconomic status has also been well recognised as a broad determinant of 

the health status of individuals and populations (Ministry of Health, 1999). A number of 

studies have reported a strong association of socioeconomic status with all cause 

mortality and specific causes of mortality (Ministry of Health, 1999; Crampton et al., 

2000; Blakely et al., 2002; Ministry of Health, 2002; Ministry of Health and University
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of Otago, 2006). The confounding factors such as age, sex, ethnicity, area-level 

socioeconomic status, smoking variables have been taken into account in this analysis.

9.4 Data

9.4.1 Population data

This analysis used the “ usually resident population” of Christchurch CAUs for two 

census years 1996 and 2001, obtained from the Statistics New Zealand Census of 

Population and Dwellings. The census data were based on 2001 CAU boundaries. There 

was no change in CAU boundaries for the 1996 and 2001 census in Christchurch. This 

ensured that population data of both censuses belonged to the same spatial units.

Statistics New Zealand provided the “ usually resident population” data by sex, 

age group (<1, 1-14, 15-24, 25-44, 45-64, 65-84 and 85+ years) and ethnicity 

(European, NZ Maori, Pacific people, Asian, Others and “ not specified” ). Due to very 

small population and low number of deaths in the age-sex-ethnic groups, data were 

aggregated into three age groups (<15, 15-64 and 65+ years) and five ethnic groups 

(European, NZ Maori, Pacific, Asian/Others and “ not specified” ). Assuming an equal 

increase in age-sex-ethnicity specific population each year between the two census 

years, the age-sex-ethnicity specific population for non-census years were estimated by 

linear interpolation from the population of two census years. As four years of mortality 

data from 1996 to 1999 were used in this analysis, the estimated populations for the 

years from 1996 to 1999 were summed in each of age-sex-ethnicity groups to give 

person-years of residence.

9.4.2 Mortality data

This analysis used mortality data from 1996 to 1999. This dataset was the subset of the 

mortality data extracted for the earlier analysis (Chapters 6, 7 and 8), which were for the 

period from 1988 to 1999.

The Statistics New Zealand health domicile code, which represented a deceased 

person's usual residential address, was used to map mortality records to census area 

unit. Mortality data with the health domicile codes that matched Christchurch census 

area units were extracted for the period from 1996 to 1999. Mortality data in this period 

(1996 to 1999) had two groups of health domicile codes: the 1991 health domicile code 

(HDOM91) for 1996/1997 deaths which were linked with the 1991 census area unit 

code and the 1996 health domicile code (HDOM96) for 1998/1999 deaths which were
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linked with the 1996 census area unit code (New Zealand Health Information Service, 

2004).

Except for the domicile codes shown in Table 3-5, the area boundaries of all 

1991 census area units matched the area boundaries of 1996 census area units in 

Christchurch. The census area unit boundaries of Christchurch CAUs for the 1996 

census and the 2001 census exactly match. The population statistics for all three 

censuses (1991, 1996 and 2001) were based on the 2001 census area boundaries. For the 

1996 census, part of South Brighton and part of Moncks Bay were merged and a new 

census area unit Avon-Heathcote Estuary was created (Table 3-5). According to the 

population statistics based on the 2001 census area unit boundaries, there was no one 

living in Avon-Heathcote Estuary part of both South Brighton and Moncks Bay in 1991. 

This ensured that the people, w-ho died in 1996/1997 and had HDOM91 of 2688 were 

living in South Brighton part. Similarly, the people, who died in 1996/1997 and had 

HDOM91 of 2690 were living in Moncks Bay part. There was no one living in Avon- 

Heathcote Estuary in 1996 and 2001 and thus this census area unit was excluded from 

the analysis.

Table 9-1. Non-matching 1991 and 1996 health domicile codes in Christchurch
HDOM91 1991 CAU HDOM96 1996 CAU

Area unit 
code

Area unit 
description

Area unit 
code

Area unit description

2688 595900 South Brighton 2700 595900 South Brighton

2688 595900 South Brighton 2701 596101 Avon-Heathcote Estuary

2690 596100 Moncks Bay 2701 596101 Avon-Heathcote Estuary

2690 596100 Moncks Bay 2702 596102 Moncks Bay

Mortality data were aggregated into three age groups (< 15, 15-64 and 65+ years) and 

five ethnic groups (European, NZ Maori, Pacific, Asian/Others and “not specified“). 

Deaths were categorised by cause of deaths according to the ICD-9 code. The causes of 

deaths were grouped into the same three broad causes of deaths which were analysed in 

Chapters 6, 7 and 8. They were:

• All non-external causes (ICD-9 code: 1-799)

• Circulatory causes (ICD-9 code: 390-459)

1. Respiratory causes (ICD-9 code: 460-519)

171



The total numbers of deaths by age-sex-ethnicity for four years from 1996 to 1999 were 

calculated for each CAU for the above three causes of deaths. Analyses were separately 

conducted for each of the above causes of deaths.

9.4.3 Percentage of ever smokers

No smoking data was collected in the 2001 Census of Population and Dwellings. 

Percentages of ever smokers were estimated based on the 1996 census data. The number 

of current smokers and ex-smokers by sex, age group and ethnicity were obtained for 

Christchurch CAUs from the 1996 Census of Population and Dwellings. Data were 

aggregated into the same age, sex and ethnic groups as in population and mortality data. 

No data on the number of smokers was available for less than 15 years age group. As 

such, the numbers of smokers and ex-smokers in this age group were assumed zero. The 

number of current smokers and ex-smokers were added to calculate the total number of 

ever smokers by age-sex-ethnic group for each CAU. The age-sex-ethnicity specific 

percentage of ever smokers was then calculated by dividing the age-sex-ethnicity 

specific number of ever smokers by the age-sex-ethnicity specific population.

9.4.4 Socioeconomic status

The NZDep96 index of deprivation, created from the 1996 Census of Population and 

Dwellings data, was used as a measure of socioeconomic status (Crampton et al., 2000). 

This index is based on nine deprivation variables from the 1996 Census and is therefore 

a composite indicator of relative social and economic deprivation. These nine variables 

which reflect eight types of deprivation are shown in Appendix F. The NZDep96 index 

of deprivation is a small area based measure. It does not describe the socioeconomic 

position of an individual but reflects the general socioeconomic position of all people 

living in the small area.

The NZDep96 index of deprivation for Christchurch CAUs was obtained from 

the publication “Degrees of Deprivation in New Zealand: An atlas of socioeconomic 

difference” (Crampton et al, 2000). The NZDep96 index of deprivation was created for 

small areas, which were in general either one standard Statistics New Zealand 

meshblock or two nearby meshblocks joined together. Each census area unit is made up 

of many meshblocks or many small areas for which the NZDep96 index was created. 

The average deprivation score for each census area unit was calculated by calculating 

the population-weighted average of the deprivation score of the small areas that made 

up the census area unit. Based on deprivation score, census area units were ranked from
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the least deprived (lowest score) to the most deprived (highest score) and were assigned 

NZDep96 index of deprivation from 1 to 10 with 1 indicating the least deprived 10 per 

cent of census area units and 10 indicating the most deprived 10 per cent of census area 

units in New Zealand (Crampton et al., 2000).

9.4.5 Air pollution exposure

Geography Department of Canterbury University, New Zealand estimated annual 

average PMio concentrations for Christchurch CAUs as their contribution to the Health 

and A ir Pollution in New Zealand (HAPiNZ) project. The estimates of annual PMio 

exposure were produced for the health impact assessment o f PMio in New Zealand 

(Fisher et al., 2005; Fisher et a l, 2007). These CAU based annual PMio exposures were 

used to analyse the effect of annual PMio on mortality in this study.

Canterbury University simulated the meteorology and dispersion of PMio 

continuously for 2001 over the Christchurch airshed using the A ir Pollution Model 

(TAPM; version 2). This generated the spatially distributed datasets of hourly PMio 

concentrations over the Christchurch airshed. Zawar-Reza et al. (2005) validated PMio 

concentrations simulated by TAPM version 2 against PMio concentrations monitored at 

Christchurch’ s primary air quality monitoring site at St. Albans. They reported that the 

simulated PMio concentrations were in good agreement with observed levels at St. 

Albans with a very small difference of 4 |ig/nr in annually averaged simulated and 

monitored PMio concentrations (Zawar-Reza, Kingham and Pearce, 2005).

The annual average PMio levels for Christchurch CAUs were derived from the 

spatially distributed datasets of hourly PMio concentrations. The A ir Pollution Model 

separately simulated the dispersion of PMio emissions from different sources such as 

domestic home heating, motor vehicle and industrial. Using TAPM modelled annual 

PMio levels and other variables such as the variables that could affect the pollution 

concentrations from domestic home heating, motor vehicle emissions such as wood fires 

per square kilometre and vehicle kilometres travelled per square kilometre, the variables 

for proximity to other CAUs and the variables describing topography of CAUs, 

Canterbury University produced more precise estimates of annual average PMio for 

Christchurch CAUs for 2001 (Fisher et al., 2007). Canterbury University provided the 

estimates of annual average PMio for Christchurch CAUs to use in this study.
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9.5 Spatial distribution of population characteristics 

9.5.1 Age

Figures 9-l and 9-2 show the spatial distributions of the proportion of population aged 

less than 15 years old and 65+ years old respectively. Census area units in the central 

business area of Christchurch had the lowest proportion (6 to 10%) of their population 

aged less than 15 years old. Only a few CAUs (i.e. Shirley Easy, Upper Riccarton and 

Barrington South) had over 20% of their population aged 65+ years old.
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Figure 9-1. Percentage of under 15-year population (1996 -  1999)

Figure 9-2. Percentage of population aged 65+ years (1996 -  1999)
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9.5.2 Ethnicity

The spatial distributions of the proportion of European, Maori, Pacific and Asian/Others 

populations are shown in Figures 9-3, 9-4, 9-5 and 9-6 respectively. European 

populations were the most dominant in all CAUs. More than 70% of CAU population 

were of European in almost all CAUs. More than 90% of the population living in CAUs 

at Port Hills in the south were Europeans. Except in a few CAUs, there were a very 

small percentage of Pacific Islanders (less than 5% of CAU population) living in most 

CAUs. They tend to have higher concentrations at CAUs which had higher proportion 

of Maori populations. Asian / Other populations tend to have higher concentrations in 

the central business area of Christchurch and the north-west of central business area 

towards the airport.
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Figure 9-3. Percentage of Europeans (1996 -  1999)

Figure 9-4. Percentage of Maori population (1996 -  1999)
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Figure 9-5. Percentage of Pacific Islander population (1996 -1999)

Figure 9-6. Percentage of Asian/Others (1996 -  1999)
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9.5.3 Socioeconomic status

Figure 9-7 shows the spatial distribution of area-level socioeconomic status as measured 

by the NZDep96 index of deprivation in 1996. NZDep96 quintile 1 represents the least 

deprived 20% CAUs and quintile 5 represents the most deprived 20% CAUs in New 

Zealand. There was higher deprivation in the central business area and the surrounding 

CAUs of central business area except at the CAUs north-west to the central business 

area.

There was a relationship between socioeconomic status and ethnic groups living 

in the area. Compared to other CAUs, the most deprived CAUs had higher proportions 

of Maori and Pacific Islander population (Figures 9-4 and 9-5). The least deprived 

CAUs at Port Hills in the south had more than 90% of their population from European 

ethnic groups (Figures 9-3 and 9-7)

Figure 9-7. Socioeconomic status as measured by NZDep96 index of deprivation

Paalic
Ocean

1 Least deprived

5 Most deprived

9.6 Air pollution exposure

Spatial distributions of annual average PMio concentrations for 2001 (Figure 9-8) 

showed a clear trend of annual PMio levels, decreasing from the inner parts of 

Christchurch to the outer parts of Christchurch. Inner city had the highest level of 

annual PMio with many CAUs having an annual average of higher than 20 pg/m3, the
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Ministry for the Environment guideline level for annual average PMio (Ministry for the 

Environment and Ministry of Health, 2002)

Figure 9-8. Spatial distribution of annual average PMk, for 2001

9.7 Methods

Both population and mortality data were aggregated into 3 x 2 x 5  age-sex-ethnicity 

groups in each CAU as discussed in Section 9.4. Age was categorised into three groups; 

<15, 15-64 and 65+ years. Sex was categorised into two groups; male and female. 

Ethnicity was categorised into five groups; European, Maori, Pacific, Asian/Others and 

“not specified”. Each CAU had one socioeconomic status indicator (NZDep96; 1-10 

level) and one annual PMio exposure level. Data with ethnic group “not specified” were 

excluded from the analysis. This eliminated 313 (3.2%) non-external deaths, 168 (3.7%) 

circulatory deaths and 26 (2.5%) respiratory deaths from the analysis. This left 24 

( 3 x2x4 )  age-sex-ethnicity groups for each CAU for the analysis.

Logistic regression was used to analyse the association of annual PMio with 

mortality controlling for confounders age, sex, ethnicity, socioeconomic status 

(NZDep96) and the percentage of ever smokers. Poisson regression or Negative 

Binomial regression is often used to model the count data (i.e. number of deaths in each 

age-sex-ethnicity group) when the probably of dying in each group (i.e. the probably of 

dying in age-sex-ethnicity groups) is too small. However, in this case due to very small 

denominator population in most age-sex-ethnicity groups, the probably of dying in age- 

sex-ethnicity groups was not small. Therefore, logistic regression was chosen over
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Poisson regression or Negative Binomial to analyse how PMio influences the 

probability of dying.

The dataset was a grouped data with each row corresponding to an age-sex- 

ethnic specific group of each CAU. The dataset had the number of deaths and the total 

number of people for each age-sex-ethnic group of each CAU (i.e. for each row). The 

probability of dying in this aggregated data was modelled using logistic regression 

analysis method for grouped data.

Data on the number of current smokers and ever smokers by age, sex and 

ethnicity were not available for three CAUs; Halswell West, Kennedys Bush and 

McLeans Island. Data analysis excluded these three CAUs.

Some of the age-sex-ethnicity groups had less number of people than the number 

of deaths occurred in the group. This anomaly most likely had occurred due to the 

confidentiality assurance technique used by Statistics New Zealand. All aggregated 

census data were randomly rounded to base three by Statistics New Zealand in order to 

protect the confidentiality of the information about individual people and to ensure that 

no person can be identified from the released data (Statistics New Zealand, 2002). 

When the data in each cell of a table are randomly rounded to base three, the numbers in 

each cell become the multiples of three. Estimating the age-sex-ethnicity specific 

population for non-census years by linear interpolation from the population of two 

census years could also have contributed to the anomaly. The age-sex-ethnicity groups 

with the number of deaths greater than population were not included in the analysis. The 

percentage of deaths in each ethnic group which were excluded from the analysis is 

shown in Table 9-2.

Table 9-2. Number of deaths (% of deaths) in each ethnic group which were not included 
in the analysis

E thnicity
C ause o f deaths

All non-external C irculatory R espiratory

European 0 0 0

Maori 13 (6.2%) 7 (8.1%) 2(10%)

Pacific Islander 14(20.0%) 6 (24%) 1 (14.3%)

Asian/Others 13 (14.8%) 7 (19.4%) 2 (28.6%)

The percentage of deaths excluded from the analysis varied across ethnic groups. 

Asian/Other and Pacific Islanders had higher percentage of deaths excluded from the 

analysis (Table 9-2). This may have introduced some error in the results. In order to
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prevent the necessity o f eliminating number of deaths from the analysis, three people 

were added to all age-sex-ethnicity groups. This made population in each age-sex- 

ethnicity groups equal or greater than the number of deaths in those groups. The results 

were compared between the models which had the populations increased by three and 

the models which had the age-sex-ethnicity groups with the number of deaths greater 

than population excluded.

Analyses were separately conducted for total non-external deaths, circulatory 

deaths and respiratory deaths. Models were first fitted only to control for the main effect 

of confounders. Interaction terms between confounders were then added into the model 

to test the effect o f interaction between confounders and to see how controlling for the 

interaction effect changes the association between annual PMio and mortality. 

Interaction terms between confounding variables were retained in the model i f  adding 

them improved the model fit and they were statistically significant at the 5% level. 

Improvements in the model fit were tested using the likelihood ratio test.

The mortality effects of PMio are likely to be stronger in the population aged 

65+ years than all age groups combined. In addition to the analysis for the whole 

population, analyses were also carried out for the population aged 65+ years only. The 

risks of mortality associated with annual average PMio were compared for the whole 

population and the population aged 65+ years.

9.8 Results

Out of 106 CAUs in Christchurch, four CAUs (Avon-Heathcote Estuary, Halswell 

West, Kennedys Bush and McLeans Island) were excluded from the analysis. Avon- 

Heathcote Estuary did not have any population and Canterbury University did not 

provide the estimate of annual PMio concentration for this CAU. The other three CAUs 

did not have data on the number of smokers by age, sex and ethnic groups. This analysis 

used data from 102 Christchurch CAUs. The following results are based on these 102 

Christchurch CAUs and for all age groups.

9.8.1 Descriptive analysis of mortality data 

Mortality by cause of death

There were 9828 non-external deaths with an annual average of 2457 non-external 

deaths in the period from 1996 to 1999 in Christchurch. The total number of non

external deaths reduced to 9515 when the deaths with the ethnic group “ not specified” 

were excluded. Table 9-3 shows annual number of deaths by cause of deaths from 1996
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to 1999 after excluding the deaths in the ethnic group “not specified”. About 46% and 

11 % of non-external deaths were respectively due to circulatory cause and respiratory 

cause.

Table 9-3. Annual number of deaths by cause of deaths (1996 - 1999)
Year All non-external 

cause

Circulatory cause Respiratory cause

1996 2400 1062 298

1997 2248 1038 244

1998 2415 1136 218

1999 2452 1141 239

Total 9515 4377 999

Mortality by sex

Annual average mortality for the period 1996 to 1999 by sex are presented for various 

causes of deaths in Table 9-4. This table excluded the deaths with the ethnic group “not 

specified”. Total Female deaths were slightly higher than total male deaths. About 52% 

of all non-external deaths were female deaths and the remaining 48% were male deaths. 

Similarly about 53% of deaths due to circulatory cause were female deaths and 47% 

were male deaths. For respiratory cause mortality, females made up about 51% and 

males made up 49% of total deaths. Although the proportion of female deaths was 

slightly higher than the proportion of male deaths for respiratory mortality, the crude 

annual average mortality rate was slightly lower for female for respiratory mortality. 

For all non-external mortality and for circulatory mortality, the crude annual average 

mortality rates were higher for female.

Table 9-4. Annual average mortality by sex (1996 - 1999)
Sex All non-external cause Circulatory cause Respiratory cause

Average Crude Average Crude Average Crude

Mortality rate# mortality * # rate mortality rate#

Male 1137 783 514 354 123 85

Female 1242 796 581 372 127 81

#Annual mortality rate per 100,000 population
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Mortality by age group

Table 9-5 shows average annual mortality by age group after excluding the deaths in the 

ethnic group “not specified”. As expected, the 65+ year age group population had both 

the highest annual average number of deaths and the highest annual mortality rate for all 

mortality categories analysed. Eighty four percent of non-external deaths occurred in 

this age group. Similarly, this age group constituted 90% of circulatory cause mortality 

and 93% of respiratory cause mortality. Those under 15 years of age constituted a very 

small proportion of deaths, less than 2% for all non-external cause mortality and less 

than 1% for circulatory mortality and respiratory mortality.

Table 9-5. Annual average mortality by age group (1996 - 1999)
Age group All non-external 

cause

Circulatory cause Respiratory cause

Average

mortality

Crude

rate#

Average

mortality

Crude
* # rate

Average

mortality

Crude

rate#

< 15 yrs 36 49 0.5 0.9 0.5 0.8

15-64 yrs 352 175 109 54 17 8

65+ yrs 1998 4883 985 2406 232 568

#Annual mortality rate per 100,000 population

Mortality by ethnicity

Annual average mortality by ethnicity is shown in Table 9-6. The majority of non

external deaths (about 96%) were of European ethnicity. Maori people mortality 

constituted about 2% of non-external deaths. Each of the ethnic groups Pacific Islanders 

and Asian/Others constituted less than 1% of non-external deaths. Roughly similar 

proportions were found for circulatory mortality and respiratory mortality.

Although the majority of deaths occurred in European ethnic group, Pacific 

Islanders had the highest age-sex standardised mortality rates for non-external deaths 

and respiratory mortality (Table 9-6). Standardisation was done using direct 

standardisation method with total Christchurch population (excluding the populations of 

four CAUs that were not included in the analysis and the population in ethnic group 

“not specified”) as a standard population. For respiratory mortality, Maori had higher 

age-sex standardised annual mortality rate than Europeans whereas the age-sex 

standardised annual mortality rates were higher for Europeans for all non-external 

mortality and circulatory mortality.
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Table 9-6. Annual average mortality by ethnic groups (1996 - 1999)
Ethnicity All non-external cause Circulatory cause Respiratory cause

Average

mortality

Rate# Average

mortality

Rate# Average

mortality

Rate#

European 2287 797 1058 366 241 83

Maori 53 687 22 298 5 91

Pacific
Islander

18 922 6 336 2 107

Asian / 
Others

22 463 9 221 2 42

#Age -  sex standardised annual mortality rate per 100,000 population

Mortality by socioeconomic status

Christchurch had a slightly higher proportion of its population living in relatively less 

deprived areas. More than half of its population were living in the CAUs with NZDep96 

deciles from 1 to 5. It had the smallest proportion of its population (about 4%) living in 

the most deprived areas (NZDep96 decile 10). The fewer number of most deprived 

CAUs in Christchurch was due to its smaller proportion of Maori and Pacific Islanders 

population. More than 85% of its population were Europeans and other ethnic groups 

such as Maori and Pacific Islanders made up a very small proportion. Europeans 

generally had relatively better socioeconomic status than Maori and Pacific Islanders. 

The CAUs with higher proportions of Maori and Pacific Islander population were the 

most deprived (Section 9.5.3).

Although the most deprived area (NZDep96 decile 10) had the lowest annual 

average number of deaths, the age-sex-ethnicity standardised mortality rate was one of 

the highest for the CAUs in the most deprived area for non-external mortality, 

circulatory mortality and respiratory mortality (Table 9-7). The lowest annual average 

number of deaths in the most deprived area was due to its smallest population size. 

Table 9-7 shows annual average mortality and age-sex-ethnicity standardised mortality 

rates by NZDep96 index of deprivation. Standardisation was done using direct 

standardisation method with total Christchurch population (excluding the populations of 

four CAUs that were not included in the analysis and the population in ethnic group 

“not specified”) as a standard population. There was an association between NZDep96 

and mortality. The CAUs in relatively less deprived areas (NZDep96 deciles from 1 to 

3) had lower age-sex-ethnicity standardised mortality rates whereas the CAUs in more
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deprived areas (NZDep96 deciles from 8 to 10) had higher age-sex-ethnicity 

standardised mortality rates.

Table 9-7. Annual average mortality by socioeconomic status (1996 - 1999)

NZDep96 A ll non-external cause Circulatory cause Respiratory cause

Average

mortality

Rate# Average

mortality

Rate# Average

mortality

Rate#

Decile 1
(Least

180 588 84 271 16 53
deprived)

2 285 739 129 339 24 64

3 252 660 120 313 23 60

4 339 926 152 412 39 107

5 194 804 87 360 18 74

6 199 838 93 386 25 104

7 376 790 175 369 39 83

8 183 984 82 438 24 128

9 291 855 135 401 32 97

Decile 10
(Most 82 888 38 412 9 96

deprived)
#Age-sex-ethnicity standardised annual mortality rate per 100.000 population

9.8.2 Descriptive analysis of PMi0 data

The distribution o f annual average PMio was slightly left skewed (Figure 9-9). The 

mean and median o f annual PMio level were respectively 19.8 pg/nv (standard 

deviation o f 4.2 pg/m ) and 20.8 pg /n r. F ifty six out o f 102 CAUs had annual average 

PMio level greater than the M inistry for the Environment ambient air quality guideline 

level o f 20 pg/m3 for annual average PMio (M inistry for the Environment and M inistry 

o f Health, 2002).
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Figure 9-9. Frequency distribution of annual average PM10

10 15 20 25 30
Annual average PM1G (|ig / m3)

9.8.3 Modelling the association between annual average PM10 and 

mortality

There was a significant positive relationship between mortality and annual average 

PMio for all non-external causes of deaths, circulatory deaths and respiratory deaths. All 

potential confounding variables, which were controlled in the analysis, such as age, sex, 

ethnicity, socioeconomic status and smoking had statistically significant effect on 

mortality for all non-external causes of deaths, circulatory deaths and respiratory deaths.
' l #

Table 9-8 shows the odds ratios for mortality associated with a 10 pg/nr increase in 

annual average PMio for different causes of deaths analysed for all ages.

Table 9-8. Odds ratios (95% Cl) for mortality of all ages associated with a 10 pg/m3 
increase in annual average PM10

Cause of deaths Controlling for main 
effects of confounders 

only

Controlling for both main effects 
and interaction effects between 

confounders

All non-external causes 1.17
(1.10, 1.24)

1.11
(1.04, 1.18)

Circulatory causes 1.18
(1.08, 1.29)

1.13
(1.03, 1.24)

Respiratory causes 1.45
(1.18, 1.76)

1.32
(1.08, 1.61)

In the first stage of analysis, only the main effects of confounders were controlled for. 

Both main effects and the effects of interaction between confounders were controlled in

187



the second stage of analysis by adding statistically significant interaction terms between 

confounders. The odds ratios estimated in the second stage of analysis (controlling for 

both main and interaction effects) are compared with the odds ratios estimated in the 

first stage of analysis (controlling for main effects only) in Table 9-8. The odds ratios 

for mortality were reduced after controlling for interaction effects. The interaction 

effects of age and sex; age and ethnicity; sex and ethnicity; NZDep96 and age; 

NZDep96 and sex; age and smoking variable; ethnicity and smoking variable; 

NZDep96 and smoking variable on non-external cause mortality were statistically 

significant. For circulatory mortality, the interaction effects of age and sex; age and 

ethnicity; sex and ethnicity; NZDep96 and age; NZDep96 and sex; NZDep96 and 

ethnicity; age and smoking variable; NZDep96 and smoking variable were statistically 

significant. For respiratory mortality, interaction effects of age and sex; age and 

ethnicity; NZDep96 and age; NZDep96 and sex; NZDep96 and ethnicity; age and 

smoking variable; ethnicity and smoking variable; NZDep96 and smoking variable were 

statistically significant.

The effect estimates of annual PMio on non-external cause mortality and 

circulatory mortality were approximately the same. After controlling for potential 

confounding variables, a 10 pg/nr increase in annual PMio was associated with an 

estimated 11% (95% Cl: 4, 18) increase in annual non-external cause mortality and an 

estimated 13% (95% Cl: 3, 24) increase in annual circulatory mortality. Annual average 

PMio had the strongest effect on annual respiratory mortality compared to others. There 

was an estimated increase of 32% (95% Cl: 8, 61) in annual respiratory mortality per 10 

pg/m3 increase in annual PM^.

Table 9-9 compares the odds ratios for mortality associated with a 10 pg/nr 

increase annual average PMio for all ages and the population aged 65+ years. Except for 

circulatory cause of deaths, the odds ratios were higher for the population aged 65+ 

years showing that the estimated excess risk of mortality due to PMio was higher for the 

population aged 65+ years compared to the whole population.
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Table 9-9. Odds ratios (95% Cl) for mortality associated with a 10 |ig/m3 increase in 
annual average PM10

Cause of deaths For all ages 65+ years age group

All non-external causes 1.11
(1.04, 1.18)

1.17
(1.09, 1.26)

Circulatory causes 1.13
(1.03, 1.24)

1.13
(1.02, 1.25)

Respiratory causes 1.32
(1.08, 1.61)

1.39
(1.12, 1.73)

The above analysis excluded the age-sex-ethnicity groups with the number of 

deaths greater than population. In order to eliminate the possibility of errors that might 

have been introduced due to the exclusion of few deaths in the analysis, populations in 

each age-sex-ethnicity group was increased by three so that population in each group 

would be greater or equal to the number of deaths in the same group making it possible 

to include all age-sex-ethnicity groups in the analysis. Models were refitted with 

population increased by three in all age-sex-ethnicity groups and the results were 

compared with the earlier analysis that excluded the age-sex-ethnicity groups which had 

the number of deaths greater than population (Table 9-10). There was a very small 

increase in the odds ratios for mortality in the analysis which did not exclude any death. 

However, the increase was too small to draw any conclusion that excluding deaths in 

the age-sex-ethnicity groups with the number of deaths greater than population added 

any error in the results.

Table 9-10. Differences in the results due to excluding few deaths in the analysis

Cause of deaths
Odds ratios (95% Cl) for mortality associated with a 10 

ftg/m3 increase in annual average p m i o

Analysis 1 Analysis 2

All non-external causes 1.11
(1.04, 1.18)

1.12
(1.05, 1.19)

Circulatory causes 1.13
(1.03, 1.24)

1.14
(1.04, 1.26)

Respiratory causes 1.32
(1.08, 1.61)

1.35
(1.10, 1.65)

Note: Analysis 1: Excluding deaths in the age-sex-ethnicity groups which had the number of 
deaths greater than population.
Analysis 2: Increasing the population in each age-sex-ethnicity group by three so that the 
number of deaths would be greater or equal to population in all age-sex-ethnicity groups. 
No death was excluded in this analysis.
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9.9 Summary

This chapter explored the spatial variation of socio-demographic characteristics and 

annual average PMio concentrations and also quantified the association of long-term 

exposure to PMio concentrations with annual mortality. Census area unit was chosen as 

a spatial unit for exploring the spatial variations and for the analysis of the association 

between PMio and mortality. The analysis controlled for the confounding effects of age, 

sex, ethnicity, area-level socioeconomic status and smoking.

There was a distinct spatial pattern of annual average PMio concentrations 

within Christchurch with higher levels in the inner parts of the city, which were 

gradually declining from the inner parts to the outer parts o f the city. The mean annual 

PMio level was 19.8 pg/m3, with 56 CAUs having annual average PMio level greater 

than the Ministry for the Environment ambient air quality guideline level of 20 pg /n r.

An increase in annual average PMio was significantly associated with an 

increase in annual mortality. There was an estimated increase of 11% (95% Cl: 4, 18) in 

annual non-external cause mortality, 13% (95% Cl: 3, 24) in annual circulatory 

mortality, and 32% (95% Cl: 8, 61) in annual respiratory mortality 7i£p 10 pg/nr 

increase in annual average PMio. The effect of annual average PMio on annual mortality 

was stronger for the population aged 65+ years compared to the whole population.
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Chapter 10: Discussion

10.1 Introduction

Air pollution from the burning of solid fuels for domestic heating has been a major 

environmental concern for several decades in Christchurch. Because of the emissions 

from domestic heating and local weather conditions, Christchurch experiences very high 

levels of air pollution especially PMio in the winter. Twenty-four hour average PMio 

concentrations exceeds the Ministry for the Environment ambient air quality guideline 

of 50 pg/nr, on average, for 30 days in the winter (Canterbury Regional Council, 1997; 

Ministry for the Environment and Ministry of Health, 2002). There is growing public 

health concern about air pollution in Christchurch because of its potential health effects. 

Numerous epidemiological studies have provided evidence of associations of short-term 

air pollution exposure with mortality in various cities including Australian and New 

Zealand cities (Schwartz, 1993; Ostro et al., 1996; Kelsall et al., 1997; Burnett et ai, 

1998; Morgan et ai, 1998; Ostro et al., 1999; Hales et al., 2000; Hoek et al., 2000; 

Peters et al., 2000; Simpson et al., 2000). In addition, a few studies have also 

demonstrated the associations of long-term air pollution exposure with mortality 

(Dockery et al., 1993; Pope et al., 1995; Pope et al., 2002; Nafstad et al., 2004; 

Scoggins et al., 2004; Filleul et al., 2005; Krewski et al., 2005a; Krewski et al., 2005b).

The main aim of this study is to examine whether or not particulate matter is 

associated with an increase in mortality in Christchurch. This study analyses the 

association of particulate matter with mortality at different time scales. The research 

objectives of this study are:

1. To quantify the effects of short-term exposure to particulate matter on daily 

mortality.

2. To test whether or not the association between short-term exposure to 

particulate matter and daily mortality is due to mortality displacement by a 

few days.

3. To quantify the extended effects of particulate matter on daily mortality 

using distributed lag models.

4. To explore the shape of the distribution of effects of particulate matter on 

daily mortality over lag days.

5. To study the association between long-term exposure to particulate matter 

and annual mortality.
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Time series study design was used for research objectives 1 to 4 and ecological cross- 

sectional study design was used for research objective 5. Chapters 6, 7, 8 and 9 

summarised the findings of this study. This chapter discusses the main findings and 

compares them with the findings of the other studies, with particular reference to any 

differences in results. Various methodological issues of this research are also discussed 

in this chapter.

10.2 Short-term effects of air pollution on daily mortality 

10.2.1 Analytical methods

One of the major concerns in time series analysis of the association between daily air 

pollution and mortality is the appropriate method to adequately control for the effects of 

confounding variables, such as a long-term trend and seasonal variations in daily 

mortality, and weather variables. Descriptive analyses of daily mortality, weather and 

air pollution data have shown that daily time series of mortality, weather variables and 

air pollutants have very strong seasonal patterns with peaks generally occurring during 

the winter months and troughs occurring during the summer months (Section 4.3.3 in 

Chapter 4 and Sections 5.2 and 5.4 in Chapter 5). Similar seasonal variations and long

term trends in mortality, weather and air pollution time series w ill induce correlations 

among them even if  they are not causally related. Although temperature may be 

responsible for a lot of the seasonal variation in deaths, the long-term trends and 

seasonal variations in mortality may also be due to unmeasured factors associated with 

mortality, other than air pollution and weather, which also vary seasonally and have 

long-term trends over time. Seasonal variations in mortality may occur because of the 

effect of seasonal infectious disease, such as influenza, and other more general factors 

such as people spending more time indoors during the winter months (Schwartz et a i ,  

1996). Thus, long-term trends and seasonal variations in mortality need to be adequately 

controlled for in the analysis of the association of short-term air pollution exposure with 

daily mortality. In this Christchurch City study, the long-term trends and seasonal 

variations in daily mortality were adjusted for using the standard statistical methods 

commonly used in the time series studies of air pollution and health (Schwartz et al ,  

1996). Various standard diagnostic checks were performed at each step to ensure that 

the long-term trends and seasonal variations in daily mortality were adequately 

controlled for.

The long-term trends and seasonal variations in mortality were controlled for

using two different methods. In the first method, they were modelled using a linear time
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trend and sinusoidal terms. In the second method, they were modelled using a natural 

cubic spline smooth function of calendar time. In both methods, the long-term variations 

in daily mortality of more than two months were controlled for leaving only the short

term variations in mortality of less than two months to estimate the association between 

mortality, air pollution and weather. The European multicity study, the first APHEA 

project, used harmonic waves (sinusoidal terms) in regression models to control for 

seasonal variations (Katsouyanni et al., 1996). The US multicity study, the NMMAPS 

study, used a smooth function of calendar time (Samet et al., 2000c; Dominici et al., 

2005) with a smoothing parameter (i.e. number of degrees of freedom) selected based 

on a priori considerations. The same number of degrees of freedom per year of data as 

in the NMMAPS study (seven degrees of freedom per year of data) was chosen to create 

natural cubic splines of calendar time in this Christchurch City study. This would adjust 

for the long-term variation in daily mortality of approximately more than two months, 

which would include a long-term trend, seasonal variation and any increase in the 

number of deaths due to the outbreaks of seasonal infectious diseases such as flu in an 

epidemic year. However, a very localised spike in the number of deaths, if any, possibly 

caused by flu outbreaks that lasted only for a few days might not be adequately 

controlled for.

Another standard method to control for a long-term trend and seasonal variation 

is to use non-parametric loess smoothing functions of calendar time in the generalised 

additive models for daily counts of deaths (Anderson et al., 2001; Katsouyanni et al., 

2001; Aga et al., 2003).

Besides long-term trends and seasonal variations, the other most likely 

confounders in the relationship between air pollution and mortality are weather 

variables. Because of high dependence of local ambient air pollution concentrations on 

local weather conditions, daily weather data are likely to be highly correlated with daily 

air pollution data. Temperature plays a major role in emission patterns, thus affecting 

the ambient air pollutant concentrations. For example, people burn firewood in cold 

winter temperatures to keep their houses warm. Temperature inversions, which 

commonly occur in cold weather, create a stable atmospheric condition restricting the 

dispersion of air pollutants, which results in higher air pollutant concentrations. 

Furthermore, short-term exposure to extreme temperatures, both hot and cold, and high 

relative humidity are associated with an increase in daily mortality after controlling for 

long-term trend and seasonal variation (Huynen et al., 2001; Hajat et al., 2002; O'Neill 

et al., 2005). Inadequate control for the short-term effect of daily weather variables on

193



mortality may provide a false evidence of a short-term association between daily air 

pollution and daily mortality. Such association does not reflect a true causal 

relationship.

Daily temperature and relative humidity are the two main weather variables that 

confound the association between daily air pollution and daily mortality, and are usually 

controlled for in time series analysis of air pollution and mortality. Although it is a 

standard practice to use temperature and relative humidity as separate variables in the 

models to control for their confounding effects (Katsouyanni et al, 1996; Samet et al, 

2000c), some studies have combined the two variables to construct a single variable 

such as an apparent temperature that reflects the physiologic effects of temperature and 

relative humidity, and used it in the model to control for the confounding effects of 

weather variables (O'Neill, Zanobetti and Schwartz, 2003; O'Neill et a l , 2005). In this 

Christchurch City study, the confounding effects of weather variables were controlled 

for by including temperature and relative humidity as separate variables in the models.

Two different approaches were used in this study to control for the confounding 

effects of temperature and relative humidity on daily mortality. In the first method, the 

relationships of temperature and relative humidity with daily mortality after controlling 

for a long-term trend and seasonal variations were explored and new weather variables 

that expressed these relationships were created (Section 6.3.2).

While the first method was based on data, the second method was based on a 

priori considerations. The second method (Method 2 in Section 6.3.2) adjusted for the 

confounding effects of weather variables using natural cubic spline smooth functions of 

weather variables with smoothing parameters same as in the NMMAPS study (Samet et 

al, 2000c; Dominici et al, 2005).

Despite the uses of two different approaches to adjust for the long-term trends, 

seasonal variations and the confounding effects of weather variables, the results from 

both methods were similar. Both methods provided evidence of associations between 

short-term exposure to air pollutant and daily mortality with similar effect sizes. This 

strengthens the findings of this study.

The confounding effects of weather variables (i.e. temperature and relative 

humidity) were adjusted for in the analysis by controlling for the same day effect and 

the lagged effect of weather variables on daily mortality. The models included the 

weather variables based on the same day’s weather variables and the moving average of 

the previous three days’ weather variables. The same day’s weather variable and the 

moving average of the previous three days’ weather variables are likely to be strongly
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correlated. When two strongly correlated variables, such as the same day’s temperature 

and the moving average of the previous three days’ temperature, are included in the 

same model, the coefficient estimates will likely be positive for one variable and 

negative for another making it difficult to interpret the effects of those variables. Thus, 

the coefficient estimates for the same day’s weather variable and the lagged weather 

variables should not be interpreted independently.

Generalised linear models were fitted for daily counts of deaths. Another 

common modelling approach for these types of studies is to fit generalised additive 

models with non-parametric loess smoothing functions of calendar time and weather 

variables (Burnett et al., 1998; Zanobetti and Schwartz, 2000; Anderson et al., 2001; 

Braga, Zanobetti and Schwartz, 2001; Aga et al., 2003). A generalised linear model 

with natural cubic splines is basically a parametric approach for a generalised additive 

model with smoothing splines such as loess smoothers (Roberts, 2004). It was argued 

that the generalised linear models with natural cubic splines provide better estimates of 

air pollution effect and the associated standard errors than the generalised additive 

models with non-parametric loess smoothing functions (Dominici et al., 2002c). The 

gam function used to fit the generalised additive model in the software SPlus (Version 

3.4) was prone to overestimating the risk estimates when the model was fitted with the 

default convergence criteria and two or more confounding variables were controlled 

using non-parametric smoothers (Dominici et al., 2002c). It was suggested to fit the 

model with the gam function using stricter convergence criteria instead of using the 

default convergence criteria (Health Effects Institute, 2003). The risk coefficients from 

the generalised linear model with parametric nonlinear adjustment (natural spline 

smoother) were reported to be similar to the risk coefficients from the gam with stricter 

convergence criteria (Dominici et al., 2002c). In addition, the generalised additive 

models also underestimated the standard errors of the risk coefficients if there were 

concurvity in data (Ramsay, Burnett and Krewski, 2003) up until a new function 

gam.exact was developed to compute the exact standard error of the risk coefficients 

(McDermott, 2003a; 2003b). The generalised linear models do not have such modelling 

problems.

The assumption of a no threshold log-linear relationship between daily air 

pollutant concentrations and daily mortality used in this analysis is comparable with 

other time series air pollution epidemiological studies (Morgan et al., 1998; Hales et al., 

2000; Samet et al., 2000c; Anderson et al., 2001; Aga et al., 2003). A few studies have 

explored the shape of dose-response relationships of PMjo with mortality and analysed

195



whether a threshold level exists for mortality effects of PMio. These studies neither 

found any evidence of a threshold nor any evidence against log-linear dose relationships 

between PMio and daily mortality (Daniels et al., 2000; Schwartz and Zanobetti, 2000; 

Samoli et al., 2005).

10.2.2 Relative risk of daily mortality associated with daily PM10

This study has a major focus on the population aged 65+ years as it is the most 

vulnerable population group. Studies have reported a higher mortality effect of PMio for 

this age group than for younger populations (Gouveia and Fletcher, 2000; Filleul et al, 

2004). Preliminary time series analysis of any association between air pollution and 

mortality in the younger age groups showed no clear association in Christchurch, which 

may be due to a lack of power to detect statistically significant associations in those age 

groups. Analysing only the deaths in the older population would reduce the potential 

“ dilution”  of any air pollution effect. Because of a very small number of daily deaths 

(an average of 5.6 deaths per day for non-external deaths) in the population aged 65+ 

years, data were not analysed for the further sub age groups. For the analysis o f non

external mortality, analysis was done for all ages and for the 65+ years age group. For 

circulatory and respiratory mortality, analysis was conducted for the 65+ years age 

group only.

Another reason to focus mainly in the population aged 65+ years was the larger 

proportion of deaths occurring in this age group. More than 80% of non-external cause 

deaths occurred in this age group. For circulatory and respiratory cause mortality, this 

age group made up more than 88% of deaths (Section 4.3.2, p.54).

The results o f single pollutant models in this study showed positive associations 

between daily mortality and daily PMio and CO for non-external mortality of all ages 

and the 65+ years age group. Statistically significant positive associations between daily 

non-external mortality and PM]0 and CO were observed for up to two days after 

exposure. There was no evidence of associations between daily mortality and daily NO2 

for any mortality category analysed in Christchurch.

The positive association between daily non-external mortality and PMio 

observed in this study is consistent with the results reported by numerous other single 

city and multicity studies (Morgan et al., 1998; Fairley, 1999; Samet et al., 2000c; 

Katsouyanni et al., 2001; Fairley, 2003). This study found a 1.3% increase in daily non- 

external mortality o f all ages for each 10 fig/nr increase in the same day PM 10. A 

review of time series studies of the association between daily mortality and PMio
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reported a -0.5% to 2.6% increase in daily non-external mortality for each 10|ig/nr 

increase in PMio (Levy, Hammitt and Spengler, 2000). The review of air pollution 

epidemiological studies by the USEPA for its Air Quality Criteria for Particulate Matter 

reported that the PMi0 effect size estimates for total non-external mortality were 

generally in the range of 0.4% to 0.7% for each 10 pg/nr increase in PMio (US 

Environmental Protection Agency, 2004). A meta-analysis by Dockery and Pope (1994) 

found a 1% increase in daily non-external mortality for each 10 pg/nT increase in PMio 

concentrations. Studies reviewed in this meta-analysis reported estimated acute effects 

of PMio on daily non-external mortality in the range of 0.7% to 1.6% increase for each 

10 pg/m3 increase in PM)0 (Dockery and Pope, 1994). The reviews of acute effects of 

particulate pollution on daily mortality reported heterogeneity in the results. Although 

PMio effect size estimates observed in Christchurch were generally within the range of 

the effect size estimates reported by other studies, they were at the high end.

The slightly larger than average PMio effect size estimate in Christchurch may 

be due to the air quality monitoring method. An earlier Christchurch study by Hales et 

al. (2000) using the data from 1988 to 1993 reported a slightly smaller PMio effect 

estimates (an increase of 1% in daily non-external mortality per 10 pg/m' increase in 

PMio) than the findings of the current study (Hales et al., 2000). They used PMio 

concentrations measured by the beta gauze method. The current study used PMio data 

monitored by the TEOM method with the temperature of TEOM analyser set at 40°C 

and analysed for the period from 1988 to 1999. Comparisons of monitored PMio 

concentrations using two different methods in Chapter 3 showed that the TEOM method 

underestimates PMio concentrations compared to the beta gauze method. 

Underestimation of PMio concentrations by the TEOM method has also been reported 

by a study in Mexico City (O'Neill et al., 2004).

When the analysis was restricted to the population aged 65+ years, the estimates 

of acute effects of PMio on daily non-external mortality were larger than the effect 

estimates for the whole population. This suggests that the elderly population had a 

higher risk of mortality due to PMio exposure than the younger population. Moreover, 

the preliminary analysis did not show any significant association between PMio and 

daily deaths in the younger age groups. A larger relative risk of mortality associated 

with particulate pollution for the population aged 65+ years than for the younger 

population has been consistently reported by numerous studies (Schwartz and Dockery, 

1992a; Schwartz, 1994c; Gouveia and Fletcher, 2000; Filleul et al., 2004). Multicity
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studies have reported larger effects of PMio in the cities with a larger proportion of the 

population aged 65+ years (Katsouyanni et al, 2001).

For other mortality categories in the population aged 65+ years, this study found 

that increases in daily circulatory and respiratory mortality were associated with an 

increase in 1-day lagged PMio and 2-day lagged PMio respectively. The significant 

positive associations between PM]0 and daily circulatory mortality and respiratory 

mortality observed in this study are consistent with the findings of other studies (Zmirou 

et al, 1998; Ostro et al, 1999). This study found larger relative risks of mortality due to 

PMio for respiratory mortality than for circulatory mortality. Studies have generally 

reported a larger relative risk of respiratory mortality (Zmirou et al, 1998; Fairley, 

1999; Ostro et al, 1999; Gouveia and Fletcher, 2000). Although there is growing 

epidemiologic evidence that the cardiovascular system is affected by PMio, lung is still 

considered as the primary organ affected by PMio inhalation (US Environmental 

Protection Agency, 2004). Experimental studies have shown that exposures to 

concentrated air particles induce pulmonary inflammation and reduce pulmonary 

function (Ghio, Kim and Devlin, 2000; Ghio and Devlin, 2001).

The PMio mortality effect estimates for respiratory mortality had larger standard 

errors than for other mortality categories analysed, which could be due to a smaller 

number of average daily deaths from respiratory cause in the population aged 65+ years 

compared to daily deaths from other causes analysed. The average number of daily 

deaths from respiratory causes was 0.7 deaths compared to 5.7 from non-external causes 

and 2.9 from circulatory causes. Because of a fewer number of respiratory and 

circulatory cause deaths per day, no further analysis was conducted for the specific 

causes of deaths within the respiratory and circulatory cause categories.

Associations of daily mortality with gaseous air pollutants

This study found a positive association of CO with increase in daily non-external 

mortality and daily circulatory cause mortality, which is similar to the results reported 

by other studies (Burnett et al, 1998; Cifuentes et al, 2000). This study did not find any 

evidence of association between NO2 and daily mortality for any mortality categories 

analysed in Christchurch. This contrasts with the results reported by the studies in other 

cities (Touloumi et al, 1997; Burnett et al, 1998; Cifuentes et al, 2000; Samoli et al, 

2006), which have found a positive association between daily mortality and NCF, but it 

is consistent with the earlier Christchurch study by Hales et al. (2000). They also did not 

find any association between the oxides of nitrogen (NOx) and daily mortality in 

Christchurch (Hales et al, 2000).
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Confounding effects of co-pollutants

Most air pollutants are highly correlated with each other, either because of the common 

source of their emissions or meteorological conditions or both. The primary source of 

PMio and CO in Christchurch in the winter months is the emissions from domestic 

home heating using solid fuels such as wood and coal. The meteorological conditions, 

such as calm weather and temperature inversions, which frequently occur in the cold 

winter nights in Christchurch, increase the levels of all air pollutant concentrations in 

the winter. Depending upon meteorological conditions, all air pollutant concentrations 

increase or decrease in parallel. Descriptive analysis in Section 5.7 (p.76) shows that 

PM 10, CO and NO2 concentrations were highly correlated with stronger correlations in 

the cooler months.

Because of a strong correlation between air pollutants, it can be difficult to 

interpret the observed association between air pollutant and mortality in single air 

pollutant models. The air pollutant in single pollutant models may simply be a surrogate 

for exposure to other air pollutants or the mix o f other air pollutants. Even i f  the air 

pollutant in single pollutant models is in fact responsible for an increase in mortality, its 

mortality effect estimates may capture some effects of other air pollutants as well. In 

other words, co-pollutants confound the relationship. The multi-pollutant models adjust 

for the confounding effects of co-pollutants.

In multi-pollutant models with PM 10 and CO in the model, the statistically 

significant positive association between CO and mortality disappeared and the 

association of PM 10 with mortality became slightly weaker (statistically significant only 

at the 10% level; p-value < 0.1). Including CO in multi-pollutant models increased the 

standard errors of the PM 10 effect. This result together with high correlation between 

PM 10 and CO especially in the cooler months (Section 5.7, p.76) suggests that the 

positive associations of CO with mortality in single pollutant models may be just due to 

CO acting as a surrogate exposure for particulate matter. The reduction in the strength 

of the association between PM 10 and mortality after adding CO in the model suggests 

that the effect of PM 10 on mortality may not be completely independent of the effect of 

CO. The results of multi-pollutant models with PM 10 and NO2 suggest that the effect of 

PM 10 on mortality was independent of any NO2 effect.

Since the effect of CO was not statistically significant in multi-pollutant models 

with PM 10 and CO in the model and including CO in the model increased the standard 

errors o f the PM 10 effect, the subsequent analysis of distributed lag modelling and 

mortality displacement hypothesis did not adjust for CO effect in the modelling.
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Another reason for not adjusting the effect of CO in the subsequent analysis was 

because it was possible that CO was only acting as a surrogate exposure for particulate 

matter in single pollutant analysis. I f  this were true, then analysing data with both PMio 

and CO in the model would risk putting two variables representing the same risk factor, 

and thus strongly correlated variables, in a regression model (Zeka, Zanobetti and 

Schwartz, 2005). As a possible statistical effect, this may result in a negative coefficient 

estimate for one of the pollutants, suggesting that the pollutant has a protective effect, 

which in the case of these air pollutants is biologically implausible (Roberts, 2006).

Ground level ozone exposure has been reported to be associated with increased 

mortality (Simpson et al., 1997; Bell et al., 2004; Penttinen, Tiittanen and Pekkanen, 

2004; Levy, Chemerynski and Sarnat, 2005; Parodi et al., 2005; Schwartz, 2005). As 

ozone levels were not monitored in Christchurch during the study period, this analysis 

could not examine any effect of ozone on daily mortality or any confounding of the 

association between PMio and daily mortality by ozone. In any case, the confounding 

effects of ozone would be minimal, i f  any, as ozone concentrations are least likely to be 

high in the winter when PMio concentrations are high. Ozone generally peaks in the 

summer when PMio concentrations are low (Schwartz, 2000a) and it does not generally 

have a very strong correlation with PMio unlike other air pollutants (Morgan, Corbett 

and Wlodarczyk, 1998). Furthermore, it has been shown that PMio - mortality effects 

are not significantly changed after controlling for potential confounding by other co

pollutants including ozone (Samet et al., 2000c; Schwartz, 2000a; Katsouyanni et al., 

2001). A case-crossover analysis by Schwartz (2004), that controlled for confounding 

effects of gaseous pollutants by choosing control days that were matched on each 

gaseous pollutant in turn, found that PMio -  mortality association was independent of 

the effects of gaseous pollutants (Schwartz, 2004).

Two different methods were used to adjust for long-term trends, seasonal 

variations in daily mortality and the confounding effects of weather variables in this 

study. Comparison of the results from the two methods showed that the results were not 

dependent upon the method chosen and were consistent with the results reported by the 

other studies.

10.2.3 Seasonal differences in the effects of PM10 on mortality

In order to analyse the seasonal differences in the effects of PMio on mortality, the 

whole year was divided into two seasons; cooler season (May-August) and warmer 

season (September-April), based on the level of air pollution concentrations and the
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primary source of air pollutants. The cooler season corresponds to the winter months 

with very high PMio concentrations, when particulate matter from home heating 

dominates all other sources. The warmer season corresponds to the non-winter months 

with relatively low PMio concentrations with home heating contributing very low 

particles. Although September pollution levels tend to be slightly higher than those in 

the warmer months, they are still closer to the levels of warmer period than the levels of 

May to August (Figure 5-6, p.71). Besides, domestic home heating generally contributes 

lesser in September than in the winter months. Hence, September was grouped into the 

warmer season.

This study found that the effect estimates of short-term exposure to PMio on 

daily mortality varied by season. For non-external deaths of all ages and non-external 

deaths and respiratory deaths in the population aged 65+ years, the effect estimates were 

higher in the warmer season (in the non-winter months from September to the following 

April) than in the cooler season (in the winter months from May to August). For some 

mortality categories, the estimated percent increases in daily deaths for one interquartile 

range (11.7 p.g/m3) increase in PMio concentrations were over 10% in the warmer 

season. For example, for respiratory mortality in the population aged 65+ years, the 

estimated increase in daily death for one interquartile range increase in the same day 

PMio concentrations was 14.5% (95% Cl: 4.16, 25.9). This was a very big increase in 

daily number of deaths and would have larger public health implications than what has 

been considered until now.

The findings of larger effect estimates in the warmer season are similar to the 

results of other studies analysing the seasonal difference in the acute effects of PMio on 

mortality (Michelozzi et al., 1998). The analysis of 100 US cities in the NMMAPS 

reported a larger effect size of PMio in the summer season than in other seasons (Peng et 

al., 2005). Other multicity studies have reported higher risk of mortality in warmer 

cities than in cooler cities (Katsouyanni et al, 2001; Aga et al., 2003) suggesting that 

the effects were stronger in a warmer climate than in a cooler climate. Larger effect 

estimates in the warmer season than in the cooler season have also been reported for the 

effects of ozone on daily mortality (Ito, De Leon and Lippmann, 2005).

The stronger effects of PMio on mortality during the warmer season may be due 

to the fact that people are likely to have higher personal exposure to ambient air 

pollution during this season. A study by Sarnat et al. (2000) reported a higher 

correlation between ambient particulate pollution concentrations and personal exposure 

to particulate pollution in the summer than in the winter (Sarnat, Koutrakis and Suh,
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2000). The time spent outdoors varies by season. People tend to spend more time in 

outdoor activities in the warmer season than in the cooler season and are more likely to 

keep windows and doors open during the warmer season.

The stronger PMio effect in the warmer season may also be due to the 

differences in the source of ambient air pollution in the warmer and cooler seasons. Air 

pollution from one source may be more toxic than another. Sources of ambient air 

pollution are more likely to be different in the warmer and cooler climate resulting in 

the differences in the toxicity of air pollution mixtures in the warmer and cooler 

seasons. In Christchurch, air pollution from domestic heating is the main source of 

ambient PMio in the winter months (cooler season) with PMio from domestic heating 

contributing very low to the ambient PMio in the non-winter months (warmer season). 

PMio from domestic heating contributes about 82% of ambient PMio in the winter 

months (Scott and Gunatilaka, 2004). Motor vehicle emissions are the main source of 

PMio in the non-winter months. The stronger PMio effects in the warmer season than in 

the cooler season may suggest that PMio from motor vehicle emissions is more toxic 

than PMio from domestic heating. This may be due to the physical and chemical 

differences in fine particles (PM2.5) present in PMio from different sources. Fine 

particles generated from domestic heating may have different chemical composition 

than the fine particles generated from motor vehicle emissions have and thus fine 

particles from one source may be more toxic than another. Laden et al. (2000) reported 

in their analysis of Harvard Six Cities data that fine particles from motor vehicle 

emissions had a stronger effect on daily mortality than fine particles from coal 

combustion (Laden et al., 2000). The proportion of fine particles is also likely to be 

different in PMio from different sources, which may also explain the differences in 

mortality risks of PMio from different sources. However, in the absence of source- 

oriented PMio data in Christchurch, it is not possible to estimate the separate effects of 

PMio on mortality from motor vehicle emissions and domestic home heating.

Although the relative risks of mortality associated with PMio were lower in the 

cooler season than in the warmer season, the total number of deaths attributed to PMio 

could be much larger in the cooler season due to significantly higher PMio 

concentrations in the cooler season than in the warmer season. PM]0 concentrations in 

the cooler season are almost three times the levels of the warmer season (Chapter 5).
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10.3 Mortality displacement

The effects of PMio on mortality net of short-term mortality displacement (Chapter 7) 

were estimated using the method proposed by Schwartz (2000c) for the assessment of 

short-term mortality displacement in the association between PMio and mortality 

(Schwartz, 2000c). The harvesting hypothesis was tested which assumes that the short

term association between daily PMio and daily mortality discussed in Section 10.2 is 

completely due to short-term mortality displacement of the time of deaths of the frail 

people who are going to die in a few days irrespective of PMio levels. Under this 

hypothesis, we would expect an increase in daily mortality to be immediately followed 

by a drop in daily mortality. There would be no net increase in daily mortality if the data 

were analysed at time scales of more than a few days. No association between PMio and 

mortality would then be observed at time scales of more than a few days. This 

hypothesis was tested by examining the associations between PMio and mortality at 

different mid-term time scales of a few days to a few weeks using the mid-term 

components of PMio and mortality data series. Any effect of PMio observed at these 

time scales would be an estimate of the effect of PMio on mortality net of short-term 

mortality displacement.

The results for non-external mortality of people aged 65+ years suggest that the 

association between PMio and mortality cannot be entirely attributed to the short-term 

mortality displacement. As the mid-term time scales were increased for the analysis by 

increasing the size of the smoothing window for the mid-term component of data series, 

the effect size estimates decreased but remained positive confirming that there was an 

association between PMio and mortality at all mid-term time scales. The decrease was 

possibly due to an increase in daily mortality being partially balanced out by a drop in 

daily mortality that followed soon after the increase. However, the signification positive 

association between PM]0 and mortality of 65+ years at all mid-term time scales 

confirms that not all the increase in daily mortality was balanced out by the drop in 

daily mortality and some of the deaths were brought forward by a longer period. This 

provides evidence that PMio was associated with an increase in mortality in the 

population aged 65+ years even after excluding a short-term harvesting effect.

Using different methodologies, many studies have analysed time series data to 

test if the observed effect of PM)0 in time series analysis is entirely due to a short-term 

term harvesting effect (Zeger, Dominici and Samet, 1999; Schwartz, 2000c; 2001; 

Dominici et al., 2003c; Morgan et al., 2003). These studies have not found results in 

support of the short-term harvesting hypothesis. Instead, they have reported a larger
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effect size at the longer mid-term time scales. However, in Christchurch, a lower effect 

size was found at the longer mid-term time scales. Although there is not enough 

statistical evidence to suggest that the effect size is significantly lower at the longer 

mid-term time scales than at the shorter time scales, the lower effect size at the longer 

mid-term time scales suggests the presence of some short-term harvesting effect.

No association between PMio and mortality was observed in the analysis using 

the mid-term components generated with a 60-day smoothing window for non-external 

mortality of all ages. This indicates that the association between PMio and non-external 

mortality of all ages may be completely due to short-term mortality displacement. 

However, the positive associations observed between PMio and mortality for up to 45- 

days smooth windows suggest that some of the deaths were brought forward by more 

than just a few days, possibly by a few weeks or months. Comparison between the 

results for non-external mortality of 65+ years and non-external mortality of all ages 

suggests that most of the short-term harvesting effect of PMio on non-external mortality 

of all ages is specific to the population aged less than 65 years. In this age group, it is 

more likely that PMio only affects the frail individuals without affecting the healthy 

population resulting in the partial short-term harvesting phenomenon.

For circulatory causes of death, the effect size was slightly reduced when a 30- 

day smoothing window was used for mid-term components suggesting that some 

circulatory deaths may be brought forward only by a few weeks. Increasing the 

averaging period for mid-term components, the effect size increased steadily providing 

evidence of a larger effect size when the short-term harvesting effect was excluded. 

Schwartz (2000c) also reported a larger effect size of PM2.5 for the deaths from ischemic 

heart disease in Boston when the longer averaging period was used for the mid-term 

components (Schwartz, 2000c). Although the time series studies can not estimate the 

effect of long-term exposure to PMio on mortality like cohort studies (Dockery et al, 

1993; Pope et al., 2004), the larger effect size at longer mid-term time scale may be 

reflecting the effect of long-term exposure to PM 10. This may also be due to the reason 

that PMio increases the number of frail individuals by affecting the healthy people, 

which results in the higher number of deaths after a few weeks or months and thus 

increasing the effect size when a longer averaging period for mid-term component was 

used (Schwartz, 2000c).

The reason for the statistically significant negative associations between the 

mid-term components of PMio and respiratory mortality of 65+ years (Figure 7-6, 

p.147), when the longer mid-scale averaging periods was used, is unclear. One possible
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explanation for this observation could be the small number of daily respiratory deaths in 

Christchurch. The average number of daily deaths from respiratory cause was 0.7 deaths 

per day. This analysis decomposed daily time series data of respiratory mortality of 65+ 

years into three different time series data that vary at different timescales: longer-term, 

mid-term and the shortest-term. Because of very low numbers of daily deaths in the 

original data series, perhaps there was not enough variation in the decomposed data 

series. We would generally expect non-significant associations in such cases. Although 

it is unclear, the negative associations observed in this study could also have been 

occurred because of this. This may suggest that it is not easy to analyse the short-term 

harvesting hypothesis in the association between daily mortality and air pollution with 

the method of decomposing data series into different components, when the number of 

daily deaths is very small.

In order to maintain comparability with daily time series analysis of PMio and 

mortality in Chapter 6, the same weather model as in Chapter 6 was used to test the 

harvesting hypothesis. The same weather variables, with their daily time series data 

replaced by their respective mid-term time scale components, were used in the models. 

The same numbers of degrees of freedom as in the weather model in Chapter 6 were 

used for natural cubic spline smooth functions of weather variables.

As Schwartz (2001) has noted, the method used in this analysis to study 

mortality displacement has certain limitations. Because of the necessity to control for 

seasonal variation in time series study design, this analysis and other studies that used 

time series approach to analyse short-term harvesting (Zeger, Dominici and Samet, 

1999; Dominici et al., 2003c) can not examine short-term harvesting beyond 3-4 months 

(Schwartz, 2001). In addition, this approach can not tell exactly by how many days or 

months, deaths are brought forward by air pollutant exposure. It can only indicate that 

exposure to air pollutants bring deaths forward by a nontrivial amount of time 

(Schwartz, 2001).

10.4 Distributed lag models

Polynomial distributed lag models were used to estimate the cumulative effects of PMio 

of the last 40 days on daily mortality and to examine the pattern of mortality risks over 

the 40 day period (Chapter 8). Several studies have analysed the cumulative effects of 

PMio of the last 40 days on daily mortality and examined the shape of the distribution of 

PMio effects over the same time period (Zanobetti et al., 2002; Zanobetti et al., 2003; 

Goodman, Dockery and Clancy, 2004). Use of lag 40 days to estimate the extended
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effects of PM 10 on mortality in this study allowed me to compare the Christchurch 

results with the results of the other studies conducted in various cities. The analysis of 

the lag structure of mortality risk for more than a few weeks lag is also useful to analyse 

if there is any short-term mortality displacement.

Although the models allowed analysing the effects of PMio of the last 40 days, it 

was not assumed that there were mortality effects at all 40 lags. If there were no effects 

at high lags, then the model would show that by giving fitted polynomials with small 

values at high lags, which means the estimated effects of PMio on mortality at high lags 

would be very small to almost zero.

The results show that the risks of daily deaths due to PMio were the highest on 

the day of exposure and a few days after exposure. The risks were reduced but stayed 

statistically significant for several weeks after exposure. For the population aged 65+ 

years, there was a significant risk of non-external mortality due to daily PMio for up to 

four weeks after exposure. This explains why the model with a single day PMio 

underestimates the overall effect of PMio on mortality. Significant risks of mortality for 

several days after exposure have been reported in several studies. However, most 

studies found statistically significant risks for a lesser number of days than this study. 

Zanobetti et al. (2002) reported that the effect of PMio on daily non-external deaths of 

all ages decreased to almost zero with a lag of 10 days (Zanobetti et al., 2002). In 

Dublin, significantly increased risks of non-external deaths of all ages associated with 

black smoke were found for three days after exposure when the extended effects of both 

minimum temperature and black smoke were estimated simultaneously through 40 days 

with polynomial distributed lag models (Goodman, Dockery and Clancy, 2004).

For the population aged 65+ years, the lag structures of mortality risks for 

respiratory mortality and circulatory mortality were similar to the lag structure of 

mortality risks of non-external mortality. Although there are some minor differences in 

the pattern of mortality risks over several days reported by different studies, the results 

of this Christchurch study are consistent with the basic findings of other studies that the 

adverse effects of particulate pollution on mortality persist for several weeks (Zanobetti 

et al, 2002; Goodman, Dockery and Clancy, 2004). The similar adverse effect of air 

pollution was also observed during the 1952 London smog episode (Anderson, 1999). 

Toxicological studies also suggest that exposure to particulate matter may have an effect 

for several subsequent days. Lay et al. (1999) reported that particles instilled in the lung 

induced an inflammation that took up to 4 days after exposure to resolve (Lay et al., 

1999). Respiratory disease such as pneumonia and other chronic diseases progress very
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slowly and thus the longer lagged effects of PMio can be expected for the deaths from 

these causes (Zanobetti et al., 2003).

Several time series studies have reported an association between increase in 

daily PMto concentrations and increase in hospital admissions for different diseases 

(Morgan, Corbett and Wlodarczyk, 1998) (Ponce de Leon et al., 1996; Schouten, Vonk 

and de Graaf, 1996). Some of these people, who became sick because of air pollution, 

may not recover and may die a few weeks after exposure. This may explain some of the 

delayed effects of PMio on mortality. People becoming sick and languishing in hospital 

for a few weeks before dying could be the reason for the small secondary peak in the 

distribution of mortality risks at around 20 days (Figures 8-2, p. 162) after exposure.

The lag structure of mortality risks is also useful to ascertain if there is any 

short-term mortality displacement. The significant risk of increased mortality for up to 

four weeks after exposure confirms that the association between PMio and mortality was 

not due to short-term harvesting. If it was completely due to short-term harvesting, the 

increase in the number of daily deaths during the exposure and soon after exposure 

would be counterbalanced by a decrease in the number of daily deaths on subsequent 

days. If this were the case, analysis of lag structure in the relationship between PMio 

and mortality would show that positive associations in the first few days after exposure 

would be followed by negative associations at some longer lags. A few studies have 

explored the mortality displacement hypothesis using distributed lag models and have 

found no evidence of short-term mortality displacement for non-external mortality, 

cardiovascular mortality and respiratory mortality (Zanobetti et al., 2000; Zanobetti et 

al., 2002; Zanobetti et al., 2003). A study in Dublin, however, reported a non-significant 

negative risk for non-external mortality between one and two weeks after exposure to 

black smoke suggesting possible short-term harvesting (Goodman, Dockery and Clancy, 

2004).

Comparison of the cumulative effect of PMio of the last 41 days (including the 

same day PMio) to the effect of a single day PMio showed that the effect was much 

lower for a single day PM^. This is consistent with the findings of other studies. Studies 

focussing on the single day effect or the effect on a couple of days after exposure 

(Schwartz, 2000a; Katsouyanni et al., 2001) consistently reported a substantially 

smaller effect size than analysis of the effects over a longer period after exposure 

(Schwartz, 2000b; Braga, Zanobetti and Schwartz, 2001; Zanobetti et al., 2002; 

Zanobetti et al., 2003; Goodman, Dockery and Clancy, 2004).
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The increase in effect size, when the effects spread over several days were 

considered, was much larger in this study compared to the other overseas studies. When 

only a single day PMio effect was considered, a 10 pg/m3 increase in daily PMio was 

associated with a 1.55% (95%CI: 0.6, 2.5) increase in daily non-external mortality of 

65+ years. When the effect was summed over 41 days (including the effect on the same 

day), there was an estimated total increase of 14.9% (95%CI: 6.99, 23.4) for each 

10 pg/m3 increase in daily PMio for non-external mortality of people aged 65+ years. 

Schwartz (2000b) reported that the estimated total effect of daily PMio on non-external 

mortality of people aged 65+ years for five days follow up period was about double the 

effect of PMio on same day mortality (Schwartz, 2000b). Goodman et al. (2004) 

reported that the total estimated effect of black smoke on all non-external cause 

mortality in the subsequent 41 days (including on the same day) was almost three times 

the effect of a 3-day moving average of daily black smoke (Goodman, Dockery and 

Clancy, 2004). Many studies have, however, reported heterogeneity in the results 

(Schwartz, 2000b; Zanobetti et al., 2002), which could be due to the differences in 

population structure, and PMio sources of study cities.

Similar to PMio associated risks of all cause non-external mortality, the 

cumulative effects of PMio of the last 41 days (including the same day PMio) were 

much larger for circulatory mortality and respiratory mortality compared to the effects 

of a single day PMio. For circulatory mortality in the population aged 65+ years, the 

total effect of each 10 pg/nr increase in PMio over 0 to 40 days after exposure was a 

18.7% (95% Cl: 7.31, 31.3) increase which was about 10 times the estimated effect of 

the same increase in 1-day lagged PM^. For respiratory mortality in the population aged 

65+ years, the cumulative effect of each 10 pg/nr increase in PMio over 0 to 40 days 

was 9 times the estimated effect of the same increase in 2-day lagged PMio. The PMio 

mortality effect size estimates at different time scales are compared in Table 10-1 in 

Section 10.6. This analysis, together with the results of other studies, confirms that the 

estimates of the increased risk of mortality associated with PMio exposure relying on 

the same day or a couple of days’ exposure underestimate the overall mortality risk 

associated with daily PMio concentrations. Thus, distributed lag models should be used 

to estimate the overall effect of daily PMio on mortality.

The total mortality effects of PMio were similar under different distributed lag 

models such as 4th degree polynomial, cubic polynomial, quadratic polynomial and 

unconstrained. This confirms that the risks of mortality are not sensitive to the choice of 

distribution lag model fitted to the data.
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Various sensitivity analyses were carried out to check whether the accumulated 

effects of PM 10 were sensitive to the adjustment of confounders like temperature, 

relative humidity and seasonal variations. The sensitivity of the effect of PMio on 

mortality to the adjustment of confounders has been recognised as an important area of 

research in time series epidemiological studies of air pollution and mortality (Health 

Effects Institute, 2003). The present study shows that the total effects of PMio were not 

sensitive to the number of degrees of freedom used to create the natural cubic splines of 

temperature and relative humidity. Lack of sensitivity of the estimated total effect of 

PMio on mortality to the choice of smoothing parameter for weather variables and the 

parameters of the distributed lag model strengthens the findings of this study.

However, the PMio mortality effect estimates varied considerably when the 

number of degrees of freedom for the smooth function of time was varied to control for 

long-term trend and seasonal variation. In the original analysis, seven degrees of 

freedom per year of data was used. Sensitivity analyses were performed using three to 

ten degrees of freedom per year of data. Using fewer degrees of freedom in the model 

resulted in lower estimates of PMio mortality effect. The effect estimates stabilised in 

the models that used seven or more degrees of freedom per year of data for the natural 

cubic spline smooth function of time variable. Using more than seven degrees of 

freedom per year of data did not change the effect estimates but provided more 

imprecise estimates with wider confidence intervals. A simulation study conducted by 

Roberts (2005) has shown that the use of too many degrees of freedom for controlling 

seasonal variation did not create a major problem in the effect estimates. The study 

reported that the effect estimates were similar to those obtained from using the correct 

number of degrees of freedom. However, the use of too few degrees of freedom 

sometimes provided effect estimates substantially larger than those obtained from using 

the correct number of degrees of freedom (Roberts, 2005). It is unclear why the 

estimates of PMio mortality effect in Christchurch were lower when few degrees of 

freedom were used to control for seasonal variation. Since the effect estimates were 

stabilised after the use of seven or more degrees of freedom, controlling for seasonal 

variation with seven degrees of freedom per year of data seemed adequate and 

appropriate in this analysis. Moreover, the use of natural cubic splines of the time 

variable with seven degrees of freedom per year of data adjusts for the long-term 

variation of approximately more than a two-months period so that only the information 

from time scales less than two months is used to estimate the association between 

mortality, air pollution and weather.
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10.5 Association between annual exposure to PM10 and annual 
mortality

An ecological cross-sectional study design was used to analyse the association of long

term exposure to PMio with mortality. The cross-sectional study design associates 

spatial variation in mortality with spatial variation in air pollutant concentration. This 

requires controlling for the confounding effects of spatially varying variables such as 

population structure with respect to age, sex, ethnicity, socioeconomic status etc.

This study found a positive association between annual average PMio and annual 

mortality after controlling for age, sex, ethnicity, socioeconomic status and smoking 

across CAUs in Christchurch. Long-term associations between air pollution and 

mortality have been reported by both cross-sectional studies (Chappie and Lave, 1982; 

Ozkaynak and Thurston, 1987) and prospective cohort studies (Dockery et al., 1993; 

Pope et al., 2002; Finkelstein et al., 2003; Krewski et al., 2005c). Comparison between 

the relative risks of mortality from the acute effect study (Chapter 6) and the long-term 

study (Chapter 9) shows that the relative risk of annual mortality associated with annual 

average PMio was larger than the relative risk of acute mortality associated with daily 

PMio- The PMio mortality effect size estimates at different time scales are compared in 

Table 10-1 (Section 10.6). This observation is in agreement with the results reported by 

the other studies. The prospective cohort studies (Dockery et al., 1993; Pope et al., 

2002) have reported larger relative risks of mortality than the relative risks of mortality 

reported by the acute effect studies using time series method (Schwartz, 2000a; 

Katsouyanni et al., 2001). While time series studies, based on daily data, are designed to 

estimate the acute effects, the long-term studies estimate a combination of both acute 

and chronic effects (Dominici, Sheppard and Clyde, 2003) and as such, the larger 

relative risk in the long-term studies is reflecting any chronic effect of PMio on 

mortality.

There is consistency between the results of time series studies discussed in 

Sections 10.2.2 and 10.4 and this ecological study. Both studies found larger relative 

risk of mortality for the population aged 65+ years than for whole population. This 

suggests that the population aged 65+ years is more vulnerable than the younger 

population. A larger relative risk for respiratory cause mortality than for other causes 

analysed in the population aged 65+ years was found in both studies.

In principle, cross-sectional studies must adjust for a wide range of variables that 

may affect mortality rates. However, given the large number of individual and 

environmental factors that can affect mortality, controlling for all confounders is not
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possible in this type of research. This study has controlled for age, sex, ethnicity, 

socioeconomic status (as measured by the NZDep96 index of deprivation) and smoking 

but lacked information on other risk factors such as diet and lifestyle factors. 

Controlling for socioeconomic status probably has mitigated the confounding effects of 

some variables to some extent. There is a strong socioeconomic gradient in obesity, diet 

and physical activity in New Zealand. Obesity is significantly more common among 

people in the most disadvantaged occupation class who are most likely to be in the 

lowest socioeconomic group. Occupational class is strongly related to socioeconomic 

status in New Zealand. People in the lower occupational class also have higher intake of 

saturated fat (Howden-Chapmen and Tobias, 2000). Although the use of socioeconomic 

status in the analysis is likely to control for any confounding effect of some risk factors, 

there is still a possibility of further residual confounding by the effects of other 

unmeasured risk factors.

Like all ecological cross-sectional studies, this study used area based measure 

for some confounding variables. For example, the socioeconomic status variable, the 

NZDep96 index of deprivation, is a CAU based measure and the analysis assumes that 

all resident of a deprived CAU are deprived. The smoking variable is based on 

age-sex-ethnicity specific group within each CAU. The analysis controlled for smoking 

by creating a smoking variable that represented the percentage of ever smokers in each 

age-sex-ethnicity stratum in each CAU. The analysis used aggregated data instead of 

individual level data. Thus, making any inferences about individuals based on this 

aggregated level data may result in the well known error termed the “ecological fallacy” 

(US Environmental Protection Agency, 1996). Prospective cohort studies are less 

subject to confounding by community-level factors as they use individual level data. 

Because of their ability to control for individual risk factors, they are better than cross- 

sectional studies. However, since air pollution is population-wide exposure, ecological 

cross-sectional analyses can also provide important information.

The ecological cross-sectional study used mortality data from 1996 to 1999, 

which was the subset of the mortality data analysed in the first part of this study. The 

time series study in the first part of this study analysed daily data from June 1988 to 

December 1999.

Annual change in population structure with respect to age, sex and ethnicity was 

adjusted for in the analysis by using the estimated annual population based on the 1996 

and 2001 censuses. There were considerable changes in population structure in some 

CAUs between the two censuses. Since no smoking data was collected in the 2001
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Census, percentages o f ever smokers were estimated based on the 1996 Census data. 

This may have resulted in some errors in smoking data. The study used the spatial 

annual average PMio concentrations estimated for the year 2001. The main assumption 

in this study was that between-year variations in spatial distribution o f annual PMio 

concentrations were negligible in Christchurch. The long-term trend in annual average 

PMio concentrations monitored at the St. Albans monitoring site did not show any 

specific trend (Figure 5-7(A), p.74). Thus, there is no reason to believe that the spatial 

pattern in annual average PMio changed between years and hence the assumption is 

reasonable. However, the possibility o f misclassification o f exposure can not be 

excluded.

10.6 Comparison of the effect estimates at different time scale

The effect estimates o f P M ]0 on mortality for different exposure periods are compared 

in Table 10-1. The effects o f short-term exposure to daily PMio are the acute effects o f 

single day lagged PMio for the lag that had the largest effect. These are the estimates 

from the time series study (Chapter 6). The effects o f PMio at medium term are the 

cumulative effects o f PMio summed over 0 (the day o f exposure) to 40 days after 

exposure. These are the estimates from the polynomial distributed lag models (Chapter 

8). The long-term effects are the effects o f annual average PMio on annual average 

mortality estimated from the ecological cross-sectional study (Chapter 9).

Table 10-1. Comparison of the effect estimates of P M i0 for different exposure period. 
Percentage increase (95% C l) in deaths for each 10 Jig/m3 increase in P M )0 in the 
population aged 65+ years

Duration o f effect 

measurement

A ll non-external 

Causes

Circulatory

causes

Respiratory

causes

Short-term# 1.5 1.8 2.9

(acute effect) (0.6, 2.5) (0.5, 3.1) (0.5, 5.40)

Medium term 14.9 18.7 26.9

(distributed lag model) (6.9, 23.4) (7.3,31.3) (4.5, 54.1)

Long-term 17 13 39

(effect o f annual exposure) (9, 26) (2, 25) (12, 73)

#Note: The acute effects of single day lagged PM|0 for the lag that had the strongest effect. For 
non-extemal cause mortality, the effects were of the same day PM|0. For circulatory 
cause mortality and respiratory mortality, they were the effects of 1-day lagged PMio and 
2-day lagged PMio respectively
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The finding of an increase in the mortality effect estimates of PMio with an 

increase in the duration of the exposure (Table 10-1) confirms the results reported by 

other studies. The medium term studies using distributed lag models (Schwartz, 2000b; 

Braga, Zanobetti and Schwartz, 2001; Zanobetti et al., 2002; Zanobetti et al, 2003; 

Goodman, Dockery and Clancy, 2004) have consistently reported substantially larger 

effect size than the acute effect studies focussing on the single day effect or the effect on 

a couple of days after exposure (Schwartz, 2000a; Katsouyanni et al, 2001). The cohort 

studies analysing the effects of long-term air pollution exposure on mortality (Dockery 

et al., 1993; Pope et al., 2002; Nafstad et al., 2004) have reported much larger relative 

risk of mortality than the studies of the short-term and medium term effects.

The acute effect studies only evaluate an increased risk of mortality due to an 

increase in air pollution over very short intervals of time usually one day to a few days. 

The medium term effect studies extend the acute effect studies to examine cumulative 

effects of daily air pollution over several weeks. Both study designs use time series 

methods. The larger risk of mortality due to PMio in the medium term effect studies 

compared to the acute effect studies confirms that the increased risk of mortality due to 

PMio exposure is not restricted to a few days. The risk is actually distributed over 

several weeks.

Because of the study design, time series studies are unable to analyse whether 

long-term exposure to higher levels of air pollution increase long-term mortality rates 

(McMichael et al., 1998). They only provide the evidence of the short-term association 

between daily air pollution and daily mortality, which could be due to short-term 

mortality displacement. The effects estimated by the long-term studies are not 

susceptible to short-term mortality displacement. The positive associations of long-term 

exposure to PMio and mortality observed in this study show that the association is not 

just due to short-term mortality displacement. It confirms the findings of other studies 

that exposure to PMio shortens life by a significant amount of time. Although the acute 

effect studies have their own role in demonstrating the association between daily 

mortality and air pollution, because of their limitation to estimate the chronic effects of 

air pollution and uncertainty about short-term mortality displacement due to acute 

exposure, the effect estimates from the acute effects studies are not appropriate to 

estimate the total impact of air pollution on mortality (McMichael et al, 1998). In order 

to estimate the number of deaths attributed to air pollution and for other health effect 

assessment of air pollution, one needs to use more suitable effect estimates from the
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long-term exposure studies, which can provide the combined estimates of both acute 

and chronic effects.

10.7 Air pollution exposure data 

10.7.1 Time series studies

One of the major issues in studying the adverse health effects of air pollution is the

measurement error in the assessment of exposure. This study, like other time series

studies of the association between air pollution and mortality, has used air pollution

exposure data from outdoor air pollution monitoring stations rather than personal

exposure monitors. Exposure assessment studies have reported differences between

outdoor air pollutant concentrations and the readings from personal exposure monitors

and have argued that air pollutant concentrations monitored at outdoor monitoring

stations do not adequately represent personal exposure (Lioy et al., 1990; Ozkaynak et

al., 1996). Schwartz (2000a) concluded that personal exposure monitors measure

exposure to particulate matter o f all sources (ambient plus indoor generated) including

environmental tobacco smoke and cooking aerosols. Thus, outdoor concentrations are

not likely to be highly correlated with the readings from personal exposure monitors.

However, i f  the correlation o f ambient concentrations with personal exposure to

particulate matter of ambient origin only is analysed, they are more likely to be closely

related (Schwartz, 2000a). This has been confirmed by others (Janssen et a l, 1998;

Mage et al., 1999). Janssen et al. (1998) has reported that the correlations between

personal exposure and outdoor concentrations was much higher when exposure to

environmental tobacco smoke was excluded (Janssen et al., 1998). Mage et al. (1999)

has further reported that i f  there is any association between indoor generated PMi0 and

mortality, daily variation in mortality related to daily variation in indoor PMio is

uncorrelated with daily variation in ambient PM]0 concentrations. Thus, indoor

generated PMio is less likely to confound the association of daily mortality with ambient

PMio concentrations (Mage et al., 1999). Given that the main aim of this study was to

quantify the association between ambient PMio concentrations and mortality, the use of

PMio concentrations measured at an outdoor monitoring station as surrogates for

personal exposure to PMio of outdoor origin would not create any major bias in the

estimates of the mortality effects of ambient PMio-

Ambient air pollutant concentrations at the monitoring station at St. Albans in

central Christchurch were used as air pollution exposure in this study. Environment

Canterbury monitored air pollutant concentrations at a few other monitoring stations at
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different locations within Christchurch but only for a short period of time during the 

study period (Environet Limited, 2003). Only at St. Albans, monitoring was continued 

for the whole study period from June 1988 to December 1999. As data were only 

available for a relatively small period of time at the monitoring stations other than at St. 

Albans, monitored data from other stations were not used in this study.

The monitoring station at St. Albans is Christchurch’s primary air quality 

monitoring site (Aberkane, 2000). It is centrally located in Christchurch. Because of its 

location and the flat topography of Christchurch, the measurements at this site are likely 

to provide a good representation of ambient air quality in much of Christchurch. It has 

also been suggested that PMio concentrations are homogenous over Christchurch 

because of relatively even mixing of ambient particulate matter across the Christchurch 

airshed over a 24-hour period (Foster, 1996). However, the cross-sectional study 

showed that annual average PMio concentrations varied across Christchurch CAUs with 

higher levels in the inner parts of the city and the levels gradually decreasing from the 

inner parts to the outer parts of the city (Section 9.6, p. 179).

For time series studies, it is the relative changes in exposure from one day to the 

next day that matters rather than the absolute exposure. The relative changes from one 

day to the next day in air pollution at the monitoring station may adequately represent 

the relative changes in exposure for the whole city (US Environmental Protection 

Agency, 1996). Thus, it is reasonable to use ambient air pollutant concentrations 

monitored at a single station at St. Albans as exposure for the whole of Christchurch in 

this study.

The missing hourly air pollutant concentrations were estimated using regression 

models based on hourly weather variables and time variables like hour of day for this 

study (Shrestha, Kjellstrom and Metcalf, 2002). These regression models predicted 

observed hourly air pollutant levels reasonably well except for some high hourly 

concentration levels, which were underestimated. This study used 24-hour averages of 

hourly concentrations instead of individual hourly concentrations as an exposure 

variable. Although some possibly high levels of hourly concentrations, which were 

missing, may have been underestimated, the measurement error it may cause in 24-hour 

average concentrations is likely to be small. However, the possibility of bias in the 

estimates of mortality effects of PMio resulting from the possible underestimation of 

missing high levels of hourly concentrations can not be excluded. In addition, the 

estimates of the missing air pollutant concentrations from the regression models for the 

years when a high proportion of data is missing may not be as reliable as for the other
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years when only a small proportion of data is missing. This may also introduce some 

bias in the estimates of mortality effects of PMio.

10.7.2 Ecological cross-sectional study

Unlike time series analysis (Chapters 6, 7 and 8), ecological cross-sectional analysis 

(Chapter 9) compares mortality rates between geographic areas. This study used census 

area units as small scale geographic areas for comparison. This requires spatial variation 

in air pollution exposure rather than temporal variation and as such ambient air pollutant 

concentrations monitored at a single monitoring station at St. Albans w ill not be 

sufficient measures of exposure for this analysis. The annual average PMio exposure 

levels for each CAU were derived from the simulated spatially distributed PMio 

concentrations over Christchurch airshed using an urban airshed model (Fisher et al., 

2007). The simulated concentrations from the urban airshed model are likely to 

represent an average condition rather than an extreme condition (Scoggins, 2003) and 

thus they may not represent true daily variation in air pollutant concentration but their 

long-term average would represent true long-term average PMio exposure. These PMio 

exposure estimates may not be suitable for acute effect studies where we correlate daily 

variation in mortality with daily air pollutant concentrations but are appropriate 

measures of exposure for long-term studies such as this where our interest of exposure 

is a long-term average like annual average PMio.

The assumption that people residing in a CAU are exposed to an ambient PMio 

concentrations estimated for that CAU is consistent with the assumption made in other 

studies that ambient air pollutant concentrations can be measured at place of residence 

(Dockery et al., 1996). While some studies have argued that exposure to an air pollutant 

not only depends upon a person’s usual residential location but also on regular 

movement across diverse environments with varying levels of air pollutant 

concentrations such as the person’s workplace and the chosen mode of transport 

(Kingham et al., 1998), others concluded that the residential location is the most useful 

measure of exposure to ambient air pollution particularly for long-term average 

exposure (Huang and Batterman, 2000; Kunzli and Tager, 2000). The lack of time- 

activity patterns and the use of PMio concentrations at the residential location as 

exposure measure may have introduced some misclassification of exposure.

This study has also assumed that there was a uniform distribution of annual 

average PMio concentrations within a CAU. Given the smaller size of CAUs in

216



Christchurch city, this assumption is plausible. However, this assumption may still 

introduce some errors in exposure assessment.

10.8 Population and mortality data

This study obtained population data from the Census of Population and Dwellings for 

census years and estimated population for non-census years by linear interpolation from 

the populations of two census years, which is the most commonly used method to 

estimate the population size for non-census years (Marshall, Scragg and Bourke, 1988).

Mortality data were extracted from a national mortality database. The causes of 

deaths were coded according to the International Classification of Disease. Although the 

causes of death in the database are unlikely to be completely accurate, any 

misclassification of cause of deaths is very unlikely to be related with air pollutant 

concentrations and thus the association between PMio and mortality observed in this 

study cannot be explained by this (Hales et al., 2000). Furthermore, analyses were 

conducted for broad mortality categories, such as all respiratory cause deaths and all 

circulatory cause deaths, instead of specific causes of deaths within these categories. 

This also reduces errors due to misclassification of cause of deaths.

Causes of deaths were identified based only on the primary underlying causes of 

deaths. Secondary and other contributing causes were not considered to group the 

deaths. This could have excluded some deaths in which air pollution might have played 

a contributory role and thus might have resulted in underestimation of air pollution 

effects.

10.9 Power of the study

This study found statistically significant positive associations between daily mortality 

and daily PMio and CO for the whole population and the population aged 65+ years 

suggesting that the study had adequate power to find the statistically significant 

associations. However, for certain mortality categories and certain analysis such as 

multi-pollutant analysis, the study may not have enough power to find the statistically 

significant results.

Preliminary time series analysis of any association between air pollution and 

mortality in the population under 65 years old showed no clear association in this age 

group, which may just be due to a lack of power to find a statistically significant 

association in that age group. The PMio associated relative risk that would have been 

statistically significant at the 5% level for the standard error obtained in the model for
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non-external deaths in the population under 65 years old was estimated. For the standard 

error obtained in the model, the percentage increase in non-external mortality associated 

with a 10 pg/nr increase in the same day PMio should be at least 2.2% to become a 

statistically significant at the 5% level. This effect size was a bit high since the 

percentage increase in the same day non-external mortality for a 10 pg/nr increase in 

PMio was just 1.31% (95% CP. 0.44, 2.18) for the whole population suggesting that the 

study was underpowered to detect a statistically significant association between daily 

PM io and daily mortality in the population under 65 years old. Thus, no specific 

analysis was undertaken for the population of that age group.

The statistically significant association observed between CO and daily 

mortality in the single pollutant analysis disappeared in the multi-pollutant analysis 

when PMio was added in the model. While the association between PMio and non

external mortality was statistically significant at the 5% level in the single pollutant 

analysis, it was statistically significant only at the 10% level in the multi-pollutant 

analysis. For the standard errors obtained in the multi-pollutant model, the percentage 

increase in non-external mortality associated with one interquartile range (11.7 pg/nr) 

increase in the same day PMio should be at least 1.67% and the percentage increase in
# r

non-external mortality associated with one interquartile range (0.88 mg/nr) increase in 

the same day CO should be at least 1.68% to become statistically significant at the 5% 

level. These effect sizes were similar to the results from the single pollutant analysis and 

were not unreasonable for daily non-external deaths of the population aged 65+ years 

suggesting that the study had enough power to detect any effect of the reasonable size. 

However, the estimated percentage increases in the same day non-external mortality for 

one interquartile range increases in PMio and CO were respectively 1.46% and 0.48% in 

the multi-pollutant analysis (Table 6-7, p. 122). The study did not have enough power to 

detect the smaller effects of that magnitude.

10.10 Areas of future research

This study has established associations of both short-term and long-term exposure to 

PMio with mortality. PMio is a mixture of particles of different physical sizes, all 

smaller than 10 pm aerodynamic diameter. There is a growing evidence that the relative 

risks of mortality associated with fine particles (P M 2 .5 ) (particles less than 2.5 pm) is 

greater than the risks associated with coarse particles ( P M  10-2.5) (Schwartz, Dockery and 

Neas, 1996; Cifuentes et al, 2000; Fairley, 2003). The fine particles (P M 2 .5 ) within the 

PMio mixture are probably the ones that cause the greatest effects because of their
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ability to accumulate and reach the lower region of the respiratory system. It would be 

useful to conduct a similar study, analysing the association of exposure to fine particles 

with mortality. Although PM2.5 has not been monitored continuously in Christchurch, 

Environment Canterbury has carried out some monitoring of PM2.5 in recent years 

(Aberkane, Harvey and Webb, 2005). This could be a useful future research topic when 

continuous monitoring of PM2.5 will start.

This study has analysed the association between air pollution and mortality. The 

number of deaths due to air pollution will be smaller than the number of non-fatal health 

outcomes such as hospital admissions due to air pollution. Studies have reported an 

increase in hospital admissions associated with an increase in air pollutant 

concentrations (Morgan, Corbett and Wlodarczyk, 1998; Schwartz, 1999; Atkinson et 

al., 2001; Luginaah et al., 2005) . This has also been reported in Christchurch city 

(McGowan et al., 2002). These studies only analysed an increase in hospital admissions 

up to a few days after exposure. My study showed that the PM 10 effect on mortality is 

not restricted to a few days. The effect is distributed over several weeks. Focussing on 

the effects for only a few days after exposure would underestimate the overall effect of 

PM 10. This may be true for hospital admissions as well. A detailed analysis looking at 

the extended effects of PM 10 on daily hospital admissions using distributed lag 

modelling would be useful for public health decision making, including the allocation of 

hospital resources according to expected air pollution related demand.

The urban airshed model used in this study is also capable of simulating other 

pollutants such as NO2 and CO. Annual average NO2 simulated by a similar urban 

airshed model was used to study the association of long-term exposure to NO2 with 

annual mortality in the Auckland Region (Scoggins et al., 2004). An increase in annual 

mortality associated with an increase in annual average NO2 was reported in that study. 

The present study did not find any evidence of the acute effects of NO2 on mortality in 

Christchurch. The effect of long-term exposure to NO2 on mortality is, however, 

unknown for Christchurch. In the absence of data on long-term exposure to other 

pollutants, it is unknown whether the long-term effect of PM 10 on mortality observed in 

this study is independent of the effect of other pollutants or other pollutants confound 

the association of long-term exposure to PM]0 with mortality. It would be useful to 

carry out a similar study with annual data on other pollutants.

The variation in the exposure-response relationships among the large number of 

short-term mortality studies could be due to differences in air pollution sources. Air 

pollution from one source may be more toxic than another and as such their effects on
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mortality will be different. However, in absence of source-oriented PMio data in 

Christchurch, it is not possible to estimate the separate effects of PMio from different 

sources, such as motor vehicle emissions, domestic home heating and industry. 

Provided that source-specific detailed PMio data are available, separate analysis of the 

association of mortality with PMio from different sources would be helpful in 

developing policies aimed at reducing exposure from specific sources.
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Chapter 11: Conclusion

There has been growing public health concern about air pollution in New Zealand, 

Australia and other countries in recent years. The main aim of this study was to 

establish whether or not ambient particulate air pollution is associated with an increase 

in mortality in Christchurch. Christchurch has one of the worst air quality problems in 

New Zealand, especially in the winter, with 24-hour average PMio concentrations 

exceeding the Ministry for the Environment ambient air quality guideline for about 30 

days each winter. The availability of continuously monitored ambient air pollutant 

concentration going back to 1988 in Christchurch provided an excellent opportunity to 

carry out a comprehensive time series analysis of the association of daily mortality with 

air pollution exposure. In addition, the estimated spatial PMio concentrations from an 

urban airshed model simulated over the Christchurch airshed allowed analysis of the 

association of long-term exposure to PMio with mortality. This study analysed the 

association between PMio and mortality over different timescales.

This study shows that PMi0 is associated with an increase in mortality for all 

non-external causes, circulatory causes and respiratory causes. The associations were 

observed for both short-term exposure (acute effect) and long-term exposure to PMio. 

One important policy question while interpreting the association of short-term exposure 

to PMio with daily mortality is whether or not this short-term association (acute 

mortality effect o f PMio) is entirely due to short-term mortality displacement. I f  the 

majority of the deaths associated with PMio are brought forward just by a few days, 

there w ill be much less public health concern of the association of PMio with mortality. 

This study shows that the short-term association between PMio and daily mortality 

could not be entirely attributed to short-term mortality displacement or “ harvesting” . 

PMio brought forward the majority of deaths by a non-trivial amount of time.

This study also shows that the mortality effect of PMio was not restricted to a 

couple of days. The effect was distributed over several weeks after exposure. The 

increase in risk of mortality due to PMio was much higher when the effects o f daily 

PMio over a longer period of time was considered.

It is the increase in mortality associated with long-term exposure to PMio, such 

as annual average, that has the most public health importance. This study shows that the 

effect o f annual average PMio on annual mortality was much higher than the acute 

effect o f PMio on daily mortality. This suggests that PMio may be a greater threat to
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public health than what has been considered until now based on the findings of time 

series studies.

Although the PMio associated individual risk of mortality in the general 

population is low, the implication of the study is important for public health because 

hundreds of millions of people in the world are exposed to air pollution levels at least as 

high as those in Christchurch. There need to be policies in place to reduce ambient air 

pollution from the current level. Christchurch experiences high levels of air pollution 

mainly in the winter. The major source of air pollution in the winter is the emissions 

from the burning of solid fuels for domestic heating. Hence, the primary focus of 

control strategies for reducing air pollution in Christchurch should be to implement 

policies that will reduce domestic emissions such as banning the use of open fires, 

replacing solid fuel burners with improved burners, which have lower levels of 

emissions, and better insulation of houses. Although vehicle emissions make up a 

relatively small fraction of air pollution in Christchurch, it should not be ignored 

especially because of the likelihood of a stronger adverse effect of air pollution from 

this source than other sources. In addition, vehicle emissions are the major contributor 

in the summer when there is no air pollution from domestic heating. Thus, the long-term 

control strategies to reduce air pollution should include policies to reduce motor vehicle 

emissions.

The results of this study are broadly consistent with those of many other studies 

of the association of particulate pollution with mortality. This analysis, together with the 

results of other studies, confirms that particulate pollution is associated with an increase 

in mortality. This study contributes to the growing scientific evidence of mortality 

effects of PM 10 both in the short-term and in the long-term and provides evidence that 

ambient air pollutant concentration in Christchurch is a matter of public health concern, 

and that there should be policies in place to reduce ambient air pollution.

222



References

Aberkane, T. (2000). Annual air quality monitoring report 1999. Christchurch: 
Environment Canterbury.

Aberkane, T., Foster, E., Beck, T. and Harvey, M. (2001). Quality assurance
procedures for ambient air quality monitoring. Christchurch: Environment 
Canterbury.

Aberkane, T., Harvey, M. and Webb, M. (2005). Annual ambient air quality monitoring 
report 2004. Christchurch: Environment Canterbury.

Aga, E., Samoli, E., Touloumi, G., Anderson, H.R., Cadum, E., Forsberg, B., Goodman, 
P., Goren, A., Kotesovec, F., Kriz, B., Macarol-Hiti, M., Medina, S., Paldy, A., 
Schindler, C., Sunyer, J., Tittanen, P., Wojtyniak, B., Zmirou, D., Schwartz, J. 
and Katsouyanni, K. (2003). Short-term effects of ambient particles on mortality 
in the elderly: results from 28 cities in the APHEA2 project. Eur Respir J Suppl 
40: 28s-33s.

Almon, S. (1965). The distributed lag between capital appropriations and expenditures. 
Econometrica 33(1): 178-96.

Anderson, H.R. (1999). Health Effects of Air Pollution Episodes, in: Holgate, S.T.,
Samet, J., Koren, H.S. and Maynard, R.L. (eds.) Air Pollution and Health. San 
Diego, California: Academic Press. 461-482.

Anderson, H.R., Bremner, S.A., Atkinson, R.W., Harrison, R.M. and Walters, S. (2001). 
Particulate matter and daily mortality and hospital admissions in the west 
midlands conurbation of the United Kingdom: associations with fine and coarse 
particles, black smoke and sulphate. Occup Environ Med 58(8): 504-10.

Atkinson, R.W., Anderson, H.R., Sunyer, J., Ayres, J., Baccini, M., Vonk, J.M.,
Boumghar, A., Forastiere, F., Forsberg, B., Touloumi, G., Schwartz, J. and 
Katsouyanni, K. (2001). Acute effects of particulate air pollution on respiratory 
admissions: results from APHEA 2 project. Air Pollution and Health: a 
European Approach. Am J Respir Crit Care Med 164(10 Pt 1): 1860-6.

Barnett, A.G. and Dobson, A.J. (2004). Is the increase in coronary events on Mondays 
an artifact? Epidemiology 15(5): 583-8.

Barnett, A.G., Williams, G.M., Schwartz, J., Best, T.L., Neller, A.H., Petroeschevsky, 
A.L. and Simpson, R.W. (2006). The effects of air pollution on hospitalizations 
for cardiovascular disease in elderly people in Australian and New Zealand 
cities. Environ Health Perspect 114(7): 1018-23.

Barnett, A.G., Williams, G.M., Schwartz, J., Neller, A.H., Best, T.L., Petroeschevsky, 
A.L. and Simpson, R.W. (2005). Air pollution and child respiratory health: a 
case-crossover study in Australia and New Zealand. Am J Respir Crit Care Med 
171(11): 1272-8.

Bateson, T.F. and Schwartz, J. (1999). Control for seasonal variation and time trend in 
case-crossover studies of acute effects of environmental exposures. 
Epidemiology 10(5): 539-44.

Bateson, T.F. and Schwartz, J. (2001). Selection bias and confounding in case-crossover 
analyses of environmental time-series data. Epidemiology 12(6): 654-61.

Bell, M.L., McDermott, A., Zeger, S.L., Samet, J.M. and Dominici, F. (2004). Ozone 
and short-term mortality in 95 US urban communities, 1987-2000. Jama 
292(19): 2372-8.

Bell, M.L., Samet, J.M. and Dominici, F. (2004). Time-series studies of particulate 
matter. Annu Rev Public Health 25: 247-80.

223



Blakely, T., Tobias, M., Robson, B., Ajwani, S., Bonne, M. and Woodward, A. (2005). 
Widening ethnic mortality disparities in New Zealand 1981-99. Soc Sei Med 
61(10): 2233-51.

Blakely, T., Woodward, A., Pearce, N., Salmond, C., Kiro, C. and Davis, P. (2002). 
Socio-economic factors and mortality among 25-64 year olds followed from 
1991 to 1994: the New Zealand Census-Mortality Study. N Z Med J 115(1149): 
93-7.

Bland, J.M. and Altman, D.G. (1986). Statistical methods for assessing agreement 
between two methods of clinical measurement. Lancet 1(8476): 307-10.

Braga, A.L., Zanobetti, A. and Schwartz, J. (2001). The lag structure between
particulate air pollution and respiratory and cardiovascular deaths in 10 US 
cities. J Occup Environ Med 43(11): 927-33.

Braga, A.L., Zanobetti, A. and Schwartz, J. (2002). The effect of weather on respiratory 
and cardiovascular deaths in 12 U.S. cities. Environ Health Perspect 110(9): 
859-63.

Brimblecombe, P. (1999). Air Pollution and Health History, in: Holgate, S.T., Samet, J., 
Koren, H.S. and Maynard, R.L. (eds.) Air Pollution and Health. San Diego, 
California: Academic Press. 5-18.

Brunekreef, B., Dockery, D.W. and Krzyzanowski, M. (1995). Epidemiologic studies 
on short-term effects of low levels of major ambient air pollution components. 
Environ Health Perspect 103 Suppl 2: 3-13.

Brunekreef, B. and Hoek, G. (2000). Beyond the body count: air pollution and death.
Am J Epidemiol 151(5): 449-51.

Brunekreef, B. and Holgate, S.T. (2002). Air pollution and health. Lancet 360(9341): 
1233-42.

Burnett, R.T., Cakmak, S., Raizenne, M.E., Stieb, D., Vincent, R., Krewski, D., Brook, 
J.R., Philips, O. and Ozkaynak, H. (1998). The association between ambient 
carbon monoxide levels and daily mortality in Toronto, Canada. J Air Waste 
Manag Assoc 48(8): 689-700.

Burnett, R.T. and Goldberg, M.S. (2003). Size-fractionated particulate mass and daily 
mortality in eight Canadian cities. Revised analyses of time-series studies of air 
pollution and health. Boston, MA, Health Effects Institute: 85-89.

Canterbury Regional Council (1997). Take a deep breath : A discussion document about 
the improvment of Christchurch air quality. Christchurch: Canterbury Regional 
Council.

Chappie, M. and Lave, L. (1982). The health effects of air pollution: a reanalysis. J 
Urban Econ 12: 346-76.

Chock, D.P., Winkler, S.L. and Chen, C. (2000). A study of the association between 
daily mortality and ambient air pollutant concentrations in Pittsburgh, 
Pennsylvania. J Air Waste Manag Assoc 50(8): 1481-500.

Cifuentes, L.A., Vega, J., Köpfer, K. and Lave, L.B. (2000). Effect of the fine fraction 
of particulate matter versus the coarse mass and other pollutants on daily 
mortality in Santiago, Chile. J Air Waste Manag Assoc 50(8): 1287-98.

Ciocco, A. and Thompson, D.J. (1961). A follow-up of Donora ten years after: 
methodology and findings. Am J Public Health 51(1): 155-64.

Cleveland, R.B., Cleveland, W.S., McRae, J.E. and Terpening, I. (1990). Seasonal trend 
decomposition procedure based on LOESS. J Offic Stat 6: 3-73.

Cleveland, W.S. (1979). Robust locally weighted regression and smoothing scatterplots. 
J Am Stat Assoc 74(368): 829-836.

Crampton, P., Salmond, C., Kirkpatrick, R., Scarborough, R. and Skelly, C. (2000).
Degrees of Deprivation in New Zealand: At atlas of socioeconomic difference. 
Auckland: David Bateman Ltd.

224



Dab, W., Medina, S., Quenel, P., Le Moullec, Y., Le Tertre, A., Thelot, B., Monteil, C., 
Lameloise, P., Pirard, P., Momas, I., Ferry, R. and Festy, B. (1996). Short term 
respiratory health effects of ambient air pollution: results of the APHEA project 
in Paris. J Epidemiol Community Health 50 Suppl 1: s42-6.

Dab, W., Segala, C., Dor, F., Festy, B., Lameloise, P., Le Moullec, Y., Le Tertre, A., 
Medina, S., Quenel, P., Wallaert, B. and Zmirou, D. (2001). Air pollution and 
health: correlation or causality? The case of the relationship between exposure to 
particles and cardiopulmonary mortality. J Air Waste Manag Assoc 51(2): 220- 
35.

Daniels, M.J., Dominici, F., Samet, J.M. and Zeger, S.L. (2000). Estimating particulate 
matter-mortality dose-response curves and threshold levels: an analysis of daily 
time-series for the 20 largest US cities. Am J Epidemiol 152(5): 397-406.

Dawson, K.P., Allan, J. and Fergusson, D.M. (1983). Asthma, air pollution and climate: 
a Christchurch study. N Z Med J 96(727): 165-7.

Denison, L., Simpson, R.W., Petroeschevsky, A., Thalib, L., Rutherford, S., Williams, 
G., Morgan, G. and Streeton, J. (2001a). Melbourne mortality study: Effects of 
ambient air pollution on daily mortality in Melbourne 1991-1996: EPA Victoria.

Denison, L., Simpson, R.W., Petroeschevsky, A., Thalib, L. and Williams, G. (2001b). 
Ambient air pollution and daily hospital admissions in Melbourne 1994-1997. 
Southbank, Australia: EPA Victoria.

Dockery, D.W., Cunningham, J., Damokosh, A.I., Neas, L.M., Spengler, J.D.,
Koutrakis, P., Ware, J.H., Raizenne, M. and Speizer, F.E. (1996). Health effects 
of acid aerosols on North American children: respiratory symptoms. Environ 
Health Perspect 104(5): 500-5.

Dockery, D.W. and Pope, C.A., 3rd (1994). Acute respiratory effects of particulate air 
pollution. Annu Rev Public Health 15: 107-32.

Dockery, D.W., Pope, C.A., 3rd, Xu, X., Spengler, J.D., Ware, J.H., Fay, M.E., Ferris, 
B.G., Jr. and Speizer, F.E. (1993). An association between air pollution and 
mortality in six U.S. cities. N Engl J Med 329(24): 1753-9.

Dockery, D.W., Schwartz, J. and Spengler, J.D. (1992). Air pollution and daily
mortality: associations with particulates and acid aerosols. Environ Res 59(2): 
362-73.

Dominici, F. (2002). Invited commentary: air pollution and health-what can we learn 
from a hierarchical approach? Am J Epidemiol 155(1): 11-5; discussion 16.

Dominici, F., Daniels, M., McDermott, A., Zeger, S.L. and Samet, J.M. (2003a). Shape 
of the exposure-response relation and mortality displacement in the NMMAPS 
database. Revised analyses of time-series studies of air pollution and health. 
Boston, MA, Health Effects Institute: 91-96.

Dominici, F., Daniels, M.J., Zeger, S. and Samet, J. (2002a). Air pollution and
mortality: estimating regional and national dose-response relationships. J Am 
Stat Assoc 97: 100-111.

Dominici, F., McDermott, A., Daniels, M., Zeger, S.L. and Samet, J.M. (2002b). A 
report to the Health Effects Institute: Reanalysis of the NMMAPS Database. 
Baltimore.

Dominici, F., McDermott, A., Daniels, M., Zeger, S.L. and Samet, J.M. (2003b). 
Mortality among residents of 90 cities: Revised analysis of the national 
morbidity, mortality and air pollution study, Part II. Revised analyses of time- 
series studies of air pollution and health. Boston, MA, Health Effects Institute: 9 
-24.

Dominici, F., McDermott, A., Daniels, M., Zeger, S.L. and Samet, J.M. (2005). Revised 
analyses of the National Morbidity, Mortality, and Air Pollution Study:

225



mortality among residents of 90 cities. J Toxicol Environ Health A 68( 13-14): 
1071-92.

Dominici, F., McDermott, A., Zeger, S.L. and Samet, J.M. (2002c). On the use of
generalized additive models in time-series studies of air pollution and health. Am 
J Epidemiol 156(3): 193-203.

Dominici, F., McDermott, A., Zeger, S.L. and Samet, J.M. (2003c). Airborne particulate 
matter and mortality: Timescale effects in four US cities. Am J Epidemiol 
157(12): 1055-65.

Dominici, F., Samet, J. and Zeger, S. (2000). Combining evidence on air pollution and 
daily mortality from the largest 20 US cities: a hierarchical modeling strategy. J 
R Stat Soc A 163: 263-302.

Dominici, F., Sheppard, L. and Clyde, M. (2003). Health effects of air pollution: a 
statistical reveiw. lnt Stat Rev 71: 243-76.

Draper, N.R. and Smith, H. (1998). Applied Regression Analysis. New York: John 
Wiley & Sons, Inc.

Environet Limited (2003). Monitoring of PM 10 in New Zealand. Wellington: Ministry 
for the Environment.

Fairley, D. (1990). The relationship of daily mortality to suspended particulates in Santa 
Clara County, 1980-1986. Environ Health Perspect 89: 159-68.

Fairley, D. (1999). Daily mortality and air pollution in Santa Clara County, California: 
1989-1996. Environ Health Perspect 107(8): 637-41.

Fairley, D. (2003). Mortality and air pollution for Santa Clara County, California: 
1989-1996. In: Revised analyses of time-series studies of air pollution and 
health. Boston, MA: Health Effects Institute.

Filleul, L., Le Tertre, A., Baldi, I. and Tessier, J.F. (2004). Difference in the relation
between daily mortality and air pollution among elderly and all-ages populations 
in southwestern France. Environ Res 94(3): 249-53.

Filleul, L.. Rondeau, V., Vandentorren, S., Le Moual, N., Cantagrel, A., Annesi-
Maesano, L, Charpin, D., Declercq, C., Neukirch, F., Paris, C., Vervloet, D., 
Brochard, P., Tessier, J.F., Kauffmann, F. and Baldi, I. (2005). Twenty five year 
mortality and air pollution: results from the French PAARC survey. Occup 
Environ Med 62(7): 453-60.

Finkeistein, M.M., Jerrett, M., DeLuca, P., Finkeistein, N., Verma, D.K., Chapman, K. 
and Sears, M.R. (2003). Relation between income, air pollution and mortality: a 
cohort study. Cmaj 169(5): 397-402.

Fisher, G., Kjellstrom, T., Kingham, S., Hales, S. and Shrestha, R. (2007). Health and 
air pollution in New Zealand : Main report. Wellington: Health Research 
Council, Ministry for the Environmet, Ministry of Transport.

Fisher, G., Kjellstrom, T., Woodward, A., Hales, S., Town, I., Sturman, A., Kingham,
5., O'Dea, D., Wilton, E., O'Fallon, C., Scoggins, A., Shrestha, R., Zawar-Rewa, 
P., Epton, M., Pearce, J., Sturman, J., Spronken-Smith, R., Wilson, J., McLeod,
5., Dawson, R., Tremblay, L., Brown, L., Trout, K., Eason, C. and Donnelly, P. 
(2005). Health and air pollution in New Zealand : Christchurch pilot study, 
Health Research Council, Ministry for the Environmet, Ministry of Transport.

Fisher, G.W., Rolfe, K.A., Kjellstrom, T., Woodward, A., Hales, S., Sturman, A.P.,
Kingham, S., Peterson, J., Shrestha, R. and King, D. (2002). Health effects due 
to motor vehicle air pollution in New Zealand. Wellington: Ministry of 
Transport.

Foster, E. (1996). Health Effects of Suspended Particulate. Christchurch: Canterbury 
Regional Council.

Foster, E. (1998). An investigation into the measurement of PM 10 in Christchurch. 
Christchurch: Canterbury Regional Council.

226



Gauderman, W.J., Vora, H., McConnell, R., Berhane, K., Gilliland, F., Thomas, D., 
Lurmann, F., Avol, E., Kunzli, N., Jerrett, M. and Peters, J. (2007). Effect of 
exposure to traffic on lung development from 10 to 18 years of age: a cohort 
study. Lancet 369(9561): 571-7.

Ghio, A.J. and Devlin, R.B. (2001). Inflammatory lung injury after bronchial instillation 
of air pollution particles. Am J Respir Crit Care Med 164(4): 704-8.

Ghio, A.J., Kim, C. and Devlin, R.B. (2000). Concentrated ambient air particles induce 
mild pulmonary inflammation in healthy human volunteers. Am J Respir Crit 
Care Med 162(3 Pt 1): 981-8.

Goldberg, M.S., Burnett, R.T., Bailar, J.C., 3rd, Brook, J., Bonvalot, Y., Tamblyn, R., 
Singh, R. and Valois, M.F. (2001). The association between daily mortality and 
ambient air particle pollution in Montreal, Quebec. 1. Nonaccidental mortality. 
Environ Res 86(1): 12-25.

Goodman, P.G., Dockery, D.W. and Clancy, L. (2004). Cause-specific mortality and the 
extended effects of particulate pollution and temperature exposure. Environ 
Health Perspect 112(2): 179-85.

Gouveia, N. and Fletcher, T. (2000). Time series analysis of air pollution and mortality: 
effects by cause, age and socioeconomic status. J Epidemiol Community Health 
54(10): 750-5.

Flajat, S., Kovats, R.S., Atkinson, R.W. and Elaines, A. (2002). Impact of hot 
temperatures on death in London: a time series approach. J Epidemiol 
Community' Health 56(5): 367-72.

Hales, S., Salmond, C., Town, G.I., Kjellstrom, T. and Woodward, A. (2000). Daily
mortality in relation to weather and air pollution in Christchurch, New Zealand. 
Aust N Z J  Public Health 24( 1): 89-91.

Harre, E.S., Price, P.D., Ayrey, R.B., Toop, L.J., Martin, I.R. and Town, G.I. (1997). 
Respiratory effects of air pollution in chronic obstructive pulmonary disease: a 
three month prospective study. Thorax 52(12): 1040-4.

Health Effects Institute (2003). Special report: revised analyses of time series studies of 
air pollution and health. Boston MA.

Hewat, V.N., Foster, E.V., O'Brien, G.D. and Town, G.I. (1998). Ambient and exhaled 
carbon monoxide levels in a high traffic density area in Christchurch. N Z Med J 
111(1073): 343-4.

Hoek, G., Brunekreef, B., Verhoeff, A., van Wijnen, J. and Fischer, P. (2000). Daily
mortality and air pollution in The Netherlands. J Air Waste Manag Assoc 50(8): 
1380-9.

Howden-Chapmen, P. and Tobias, M., Eds. (2000). Social inequalities in health: New 
Zealand 1999. Welllington: Ministry of Health.

Huang, Y.L. and Batterman, S. (2000). Residence location as a measure of
environmental exposure: a review of air pollution epidemiology studies. J Expo 
Anal Environ Epidemiol 10(1): 66-85.

Huynen, M.M., Martens, P., Schram, D., Weijenberg, M.P. and Kunst, A.E. (2001). The 
impact of heat waves and cold spells on mortality rates in the Dutch population. 
Environ Health Perspect 109(5): 463-70.

Ito, K., De Leon, S.F. and Lippmann, M. (2005). Associations between ozone and daily 
mortality: analysis and meta-analysis. Epidemiology 16(4): 446-57.

Janssen, N.A., Hoek, G., Brunekreef, B., Harssema, H., Mensink, I. and Zuidhof, A. 
(1998). Personal sampling of particles in adults: relation among personal, 
indoor, and outdoor air concentrations. Am J Epidemiol 147(6): 537-47.

Jerrett, M., Buzzelli, M., Burnett, R.T. and Deluca, P.F. (2005). Particulate air pollution, 
social confounders, and mortality in small areas of an industrial city. Soc Sei 
Med 60(12): 2845-63.

227



Katsouyanni, K., Schwartz, J., Spix, C , Touloumi, G., Zinirou, D., Zanobetti, A.,
Wojtyniak, B., Vonk, J.M., Tobias, A., Ponka, A., Medina, S., Bacharova, L. 
and Anderson, H.R. (1996). Short term effects of air pollution on health: a 
European approach using epidemiologic time series data: the APHEA protocol.
J Epidemiol Community Health 50 Suppl 1: SI2-8.

Katsouyanni, K., Touloumi, G., Samoli, E., Gryparis, A., Le Tertre, A., Monopolis, Y., 
Rossi, G., Zmirou, D., Ballester, F., Boumghar, A., Anderson, H.R., Wojtyniak, 
B., Paldy, A., Braunstein, R., Pekkanen, J., Schindler, C. and Schwartz, J.
(2001). Confounding and effect modification in the short-term effects of ambient 
particles on total mortality: results from 29 European cities within the APHEA2 
project. Epidemiology 12(5): 521-31.

Katsouyanni, K., Touloumi, G., Samoli, E., Petasakis, Y., Analitis, A., le Tertre, A.,
Rossi, G., Zmirou, D., Ballester, F., Boumghar, A., Anderson, H.R., Wojtyniak, 
B., Paldy, A., Braunstein, R., Pekkanen, J., Schindler, C. and Schwartz, J.
(2003). Sensitivity analyses of various models of short-term effects of ambient 
particles on total mortality in 29 cities in APHEA2. Revised analyses of time- 
series studies of air pollution and health. Boston, MA, Health Effects Institute: 
157-164.

Katsouyanni, K., Touloumi, G., Spix, C., Schwartz, J., Balducci, F., Medina, S., Rossi,
G. , Wojtyniak, B., Sunyer, J., Bacharova, L., Schouten, J.P., Ponka, A. and 
Anderson, H.R. (1997). Short-term effects of ambient sulphur dioxide and 
particulate matter on mortality in 12 European cities: results from time series 
data from the APHEA project. Air Pollution and Health: a European Approach. 
Bmj 314(7095): 1658-63.

Katsouyanni, K., Zmirou, D., Spix, C., Sunyer, J., Schouten, J.P., Ponka, A., Anderson,
H. R., Le Moullec, Y., Wojtyniak, B., Vigotti, M.A. and Bacharova, L. (1995). 
Short-term effects of air pollution on health: a European approach using 
epidemiological time-series data. The APHEA project: background, objectives, 
design. Eur Respir J 8(6): 1030-8.

Kelsall, J.E., Samet, J.M., Zeger, S.L. and Xu, J. (1997). Air pollution and mortality in 
Philadelphia, 1974-1988. Am J Epidemiol 146(9): 750-62.

Kelsall, J.E., Zeger, S.L. and Samet, J.M. (1999). Frequency domain log-linear models; 
air pollution and mortality. Appl. Statist. 48(3): 331-344.

Kim, H., Kim, Y. and Hong, Y.C. (2003). The lag-effect pattern in the relationship of 
particulate air pollution to daily mortality in Seoul, Korea. Int J Biometeorol 
48(1): 25-30.

Kingham, S., Meaton, J., Sheard, A. and Lawrenson, O. (1998). Assessment of exposure 
to traffic-related fumes during the journey to work. Transportation Research 
Part D: Transport and Environment 3(4): 271-274.

Kinney, P.L. and Ozkaynak, H. (1991). Associations of daily mortality and air pollution 
in Los Angeles County. Environ Res 54(2): 99-120.

Kjellstrom, T., Shrestha, R. and Metcalf, P. (2002). Epidemiological study of daily air 
pollution and mortality in Christcurch applying an air quality index. Paper 
presented at the 16th International Clear Air & Environmental Conference, 
Christchurch, New Zealand.

Kossmann, M. and Sturman, A. (2004). The surface wind field during winter smog 
nights in Christchurch and coastal Canterbury, New Zealand. International 
Journal of Climatology 24(1): 93-108.

Krewski, D., Burnett, R., Jerrett, M., Pope, C.A., Rainham, D., Calle, E., Thurston, G. 
and Thun, M. (2005a). Mortality and long-term exposure to ambient air 
pollution: ongoing analyses based on the American Cancer Society cohort. J 
Toxicol Environ Health A 68(13-14): 1093-109.

228



Krewski, D., Burnett, R.T., Goldberg, M., Hoover, K., Siemiatycki, J., Abrahamowicz, 
M., Villeneuve, P.J. and White, W. (2005b). Reanalysis of the Harvard Six 
Cities Study, part II: sensitivity analysis. Inhal Toxicol 17(7-8): 343-53.

Krewski, D., Burnett, R.T., Goldberg, M., Hoover, K., Siemiatycki, J., Abrahamowicz, 
M. and White, W. (2005c). Reanalysis of the Harvard Six Cities Study, part I: 
validation and replication. Inhal Toxicol 17(7-8): 335-42.

Kunzli, N., Kaiser, R., Medina, S., Studnicka, M., Chanel, O., Filliger, P., Herry, M., 
Horak, F., Jr., Puybonnieux-Texier, V., Quenel, P., Schneider, J., Seethaler, R., 
Vergnaud, J.C. and Sommer, H. (2000). Public-health impact of outdoor and 
traffic-related air pollution: a European assessment. Lancet 356(9232): 795-801.

Kunzli, N. and Tager, I.B. (2000). Long-term health effects of particulate and other 
ambient air pollution: research can progress faster if we want it to. Environ 
Health Perspect 108(10): 915-8.

Laden, F., Neas, L.M., Dockery, D.W. and Schwartz, J. (2000). Association of fine
particulate matter from different sources with daily mortality in six U.S. cities. 
Environ Health Perspect 108(10): 941-7.

Lay, J.C., Bennett, W.D., Ghio, A.J., Bromberg, P.A., Costa, D.L., Kim, C.S., Koren, 
H.S. and Devlin, R.B. (1999). Cellular and biochemical response of the human 
lung after intrapulmonary instillation of ferric oxide particles. Am J Respir Cell 
Mol Biol 20(4): 631-42.

Lee, J.T., Kim, H., Hong, Y.C., Kwon, H.J., Schwartz, J. and Christiani, D.C. (2000).
Air pollution and daily mortality in seven major cities of Korea, 1991-1997. 
Environ Res 84(3): 247-54.

Lee, J.T. and Schwartz, J. (1999). Reanalysis of the effects of air pollution on daily 
mortality in Seoul, Korea: A case-crossover design. Environ Health Perspect 
107(8): 633-6.

Lee, J.T., Shin, D. and Chung, Y. (1999). Air pollution and daily mortality in Seoul and 
Ulsan, Korea. Environ Health Perspect 107(2): 149-54.

Levy, J.I., Chemerynski, S.M. and Sarnat, J.A. (2005). Ozone exposure and mortality: 
an empiric bayes metaregression analysis. Epidemiology 16(4): 458-68.

Levy, J.I., Hammitt, J.K. and Spengler, J.D. (2000). Estimating the mortality impacts of 
particulate matter: what can be learned from between-study variability? Environ 
Health Perspect 108(2): 109-17.

Lioy, P.J., Waldman, J.M., Buckley, T., Butler, J. and Pietarinen, C. (1990). The
personal, indoor and outdoor concentrations of PM-10 measured in an industrial 
community during the winter. Atmospheric Environment. Part B. Urban 
Atmosphere 24(1): 57-66.

Lipfert, F.W. and Wyzga, R.E. (1995). Air pollution and mortality: issues and 
uncertainties. J Air Waste Manag Assoc 45(12): 949-66.

Luginaah, I.N., Fung, K.Y., Gorey, K.M., Webster, G. and Wills, C. (2005). Association 
of ambient air pollution with respiratory hospitalization in a government- 
designated "area of concern": the case of Windsor, Ontario. Environ Health 
Perspect 113(3): 290-6.

Lumley, T. and Sheppard, L. (2003). Time series analyses of air pollution and health: 
straining at gnats and swallowing camels? Epidemiology 14(1): 13-4.

Maclure, M. (1991). The case-crossover design: a method for studying transient effects 
on the risk of acute events. Am J Epidemiol 133(2): 144-53.

Mage, D., Wilson, W., Hasselblad, V. and Grant, L. (1999). Assessment of human
exposure to ambient particulate matter. J Air Waste Manag Assoc 49(11): 1280- 
91.

229



Mar, T.F., Norris, G.A., Koenig, J.Q. and Larson, T.V. (2000). Associations between air 
pollution and mortality in Phoenix, 1995-1997. Environ Health Perspect 108(4): 
347-53.

Mar, T.F., Norris, G.A., Larson, T.V., Wilson, W.E. and Koenig, J.Q. (2003). Air
pollution and cardiovascular mortality in Phoenix, 1995-1997. Revised analyses 
of time-series studies of air pollution and health. Boston, MA, Health Effects 
Institute: 177-182.

Marshall, R.J., Scragg, R. and Bourke, P. (1988). An analysis of the seasonal variation 
of coronary heart disease and respiratory disease mortality in New Zealand. Int J 
Epidemiol 17(2): 325-31.

Martin, A.E. (1964). Mortality and morbidity statistics and air pollution. Proc R Soc 
Med 57: SUPPL:969-75.

Mazumdar, S., Schimmel, H. and Higgins, I.T. (1982). Relation of daily mortality to air 
pollution: an analysis of 14 London winters, 1958/59-1971/72. Arch Environ 
Health 37(4): 213-20.

McDermott, A. (2003a). gam.exact. Accessed on Sept 2004.
http://ihapss.biostat.ihsph.edU/software/gam.exact/gam.exact.s

McDermott, A. (2003b). The gam.exact function for Spins. Accessed on Sept 2004. 
http://ihapss.biostat.ihsph.edu/software/gam.exact/gamDoc.htm

McGowan, J.A., Hider, R.N., Chacko, E. and Town, G.I. (2002). Particulate air
pollution and hospital admissions in Christchurch, New Zealand. Aust N Z J 
Public Health 26(1): 23-9.

McMichael, A.J., Anderson, H.R., Brunekreef, B. and Cohen, A.J. (1998). Inappropriate 
use of daily mortality analyses to estimate longer-term mortality effects of air 
pollution. Int J Epidemiol 27(3): 450-3.

Michelozzi, P., Forastiere, F., Fusco, D., Perucci, C.A., Ostro, B., Ancona, C. and 
Pallotti, G. (1998). Air pollution and daily mortality in Rome, Italy. Occup 
Environ Med 55(9): 605-10.

Ministry for the Environment and Ministry of Health (2002). Ambient air quality 
guidelines: 2002 update. Wellington: Ministry for the Environment.

Ministry of Health (1999). Our health, our future: The health of New Zealanders 1999. 
Wellington: Ministry of Health.

Ministry of Health (2002). Reducing inequalities in health. Wellington: Ministry of 
Health.

Ministry of Health and University of Otago (2006). Decades of disparity III: Ethnic and 
socioeconomic inequalities in mortality, New Zealand 1981 - 1999. Wellington: 
Ministry of Health.

Moolgavkar, S.H. (2000). Air pollution and daily mortality in three U.S. counties. 
Environ Health Perspect 108(8): 777-84.

Morgan, G., Corbett, S. and Wlodarczyk, J. (1998). Air pollution and hospital
admissions in Sydney, Australia, 1990 to 1994. Am J Public Health 88(12): 
1761-6.

Morgan, G., Corbett, S., Wlodarczyk, J. and Lewis, P. (1998). Air pollution and daily 
mortality in Sydney, Australia, 1989 through 1993. Am J Public Health 88(5): 
759-64.

Morgan, G., Lincoln, D., Lumley, T., Sheppeard, V., Beard, J.F., Jalaludin, B. and
Corbett, S. (2003). Time scale effects of particulate air pollution and mortality in 
Sydney, Australia, 1994 to 2000. Epidemiology 14(5): Si l l .

Murray, C.J. and Nelson, C.R. (2000). State-space modeling of the relationship between 
air quality and mortality. J Air Waste Manag Assoc 50(7): 1075-80.

230

http://ihapss.biostat.ihsph.edU/software/gam.exact/gam.exact.s
http://ihapss.biostat.ihsph.edu/software/gam.exact/gamDoc.htm


Naess, O., Piro, F.N., Nafstad, P., Smith, G.D. and Leyland, A.H. (2007). Air pollution, 
social deprivation, and mortality: a multilevel cohort study. Epidemiology 18(6): 
686-94.

Nafstad, P., Haheim, L.L., Wisloff, T., Gram, F., Oftedal, B., Holme, I., Hjermann, I.
and Leren, P. (2004). Urban air pollution and mortality in a cohort of norwegian 
men. Environ Health Perspect 112(5): 610-5.

Neas, L.M., Schwartz, J. and Dockery, D. (1999). A case-crossover analysis of air
pollution and mortality in Philadelphia. Environ Health Perspect 107(8): 629- 
31.

Nemery, B., Hoet, P.H. and Nemmar, A. (2001). The Meuse Valley fog of 1930: an air 
pollution disaster. Lancet 357(9257): 704-8.

New Zealand Health Information Service (2000). Third mapping fix files, 1CD-10 to 
1CD-9. Wellington: New Zealand Health Information Service. Accessed on 12 
August 2003.
http://www.nzhis.govt.nz/documentation/mapping/mappingfiles.html

New Zealand Health Information Service (2004). Mortality collection data dictionary, 
Version 1.2. Wellington: New Zealand Health Information Service.

O'Neill, M.S., Hajat, S., Zanobetti, A., Ramirez-Aguilar, M. and Schwartz, J. (2005). 
Impact of control for air pollution and respiratory epidemics on the estimated 
associations of temperature and daily mortality. Int J Biometeorol 50(2): 121-9.

O'Neill, M.S., Loomis, D., Borja Aburto, V.H., Gold, D., Hertz-Picciotto, I. and
Castillejos, M. (2004). Do associations between airborne particles and daily 
mortality in Mexico City differ by measurement method, region, or modeling 
strategy? J Expo Anal Environ Epidemiol.

O'Neill, M.S., Zanobetti, A. and Schwartz, J. (2003). Modifiers of the temperature and 
mortality association in seven US cities. Am J Epidemiol 157(12): 1074-82.

Ostro, B. (1984). A search for a threshold in the relationship of air pollution to
mortality: a reanalysis of data on London winters. Environ Health Perspect 58: 
397-9. *

Ostro, B., Chestnut, L., Vichit-Vadakan, N. and Laixuthai, A. (1999). The impact of 
particulate matter on daily mortality in Bangkok, Thailand. J Air Waste Manag 
Assoc 49(9 Spec No): 100-7.

Ostro, B., Sanchez, J.M., Aranda, C. and Eskeland, G.S. (1996). Air pollution and 
mortality: results from a study of Santiago, Chile. J Expo Anal Environ 
Epidemiol 6(1): 97-114.

Ozkaynak, H. and Thurston, G.D. (1987). Associations between 1980 U.S. mortality
rates and alternative measures of airborne particle concentration. Risk Anal 7(4): 
449-61.

Ozkaynak, H., Xue, J., Spengler, J., Wallace, L., Pellizzari, E. and Jenkins, P. (1996). 
Personal exposure to airborne particles and metals: results from the Particle 
TEAM study in Riverside, California. J Expo Anal Environ Epidemiol 6(1): 57- 
78.

Parodi, S., Vercelli, M., Garrone, E., Fontana, V. and Izzotti, A. (2005). Ozone air 
pollution and daily mortality in Genoa, Italy between 1993 and 1996. Public 
Health 119(9): 844-50.

Peng, R.D., Dominici, F., Pastor-Barriuso, R., Zeger, S.L. and Samet, J.M. (2005). 
Seasonal analyses of air pollution and mortality in 100 US cities. Am J 
Epidemiol 161(6): 585-94.

Penttinen, P., Tiittanen, P. and Pekkanen, J. (2004). Mortality and air pollution in
metropolitan Helsinki, 1988—1996. Scand J Work Environ Health 30 Suppl 2: 
19-27.

231

http://www.nzhis.govt.nz/documentation/mapping/mappingfiles.html


Peters, A., Skorkovsky, J., Kotesovec, F., Brynda, J., Spix, C., Wichmann, H.E. and 
Heinrich, J. (2000). Associations between mortality and air pollution in central 
Europe. Environ Health Perspect 108(4): 283-7.

Petroeschevsky, A., Simpson, R.W., Thalib, L. and Rutherford, S. (2001). Associations 
between outdoor air pollution and hospital admissions in Brisbane, Australia. 
Arch Environ Health 56(1): 37-52.

Ponce de Leon, A., Anderson, H.R., Bland, J.M., Strachan, D.P. and Bower, J. (1996). 
Effects of air pollution on daily hospital admissions for respiratory disease in 
London between 1987-88 and 1991-92. J Epidemiol Community' Health 50 
Suppl 1: s63-70.

Pope, C.A., 3rd (2000). Particulate matter-mortality exposure-response relations and 
threshold. Am J Epidemiol 152(5): 407-12.

Pope, C.A., 3rd, Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K. and
Thurston, G.D. (2002). Lung cancer, cardiopulmonary mortality, and long-term 
exposure to fine particulate air pollution. Jama 287(9): 1132-41.

Pope, C.A., 3rd, Burnett, R.T., Thurston, G.D., Thun, M.J., Calle, E.E., Krewski, D. and 
Godleski, J.J. (2004). Cardiovascular mortality and long-term exposure to 
particulate air pollution: epidemiological evidence of general pathophysiological 
pathways of disease. Circulation 109(1): 71-7.

Pope, C.A., 3rd and Kalkstein, L.S. (1996). Synoptic weather modeling and estimates of 
the exposure-response relationship between daily mortality and particulate air 
pollution. Environ Health Perspect 104(4): 414-20.

Pope, C.A., 3rd and Schwartz, J. (1996). Time series for the analysis of pulmonary 
health data. Am J Respir Crit Care Med 154(6 Pt 2): S229-33.

Pope, C.A., 3rd, Schwartz, J. and Ransom, M.R. (1992). Daily mortality and PM 10 
pollution in Utah Valley. Arch Environ Health 47(3): 211-7.

Pope, C.A., 3rd, Thun, M.J., Namboodiri, M.M., Dockery, D.W., Evans, J.S., Speizer, 
F.E. and Heath, C.W., Jr. (1995). Particulate air pollution as a predictor of 
mortality in a prospective study of U.S. adults. Am J Respir Crit Care Med 
151(3 Pt 1): 669-74.

Pope, C.A.I., Dockery, D.W. and Schwartz, J. (1995). Review of epidemiological
evidence of health effects of particulate air pollution. Inhalation Toxicology 7: 1- 
18.

Prescott, G.J., Cohen, G.R., Elton, R.A., Fowkes, F.G. and Agius, R.M. (1998). Urban 
air pollution and cardiopulmonary ill health: a 14.5 year time series study.
Occup Environ Med 55(10): 697-704.

Ramsay, T.O., Burnett, R.T. and Krewski, D. (2003). The effect of concurvity in
generalized additive models linking mortality to ambient particulate matter. 
Epidemiology 14(1): 18-23.

Roberts, S. (2004). Biologically plausible particulate air pollution mortality
concentration-response functions. Environ Health Perspect 112(3): 309-13.

Roberts, S. (2005). An investigation of distributed lag models in the context of air 
pollution and mortality time series analysis. J Air Waste Manag Assoc 55(3): 
273-82.

Roberts, S. (2006). A new model for investigating the mortality effects of multiple air
pollutants in air pollution mortality time-series studies. J Toxicol Environ Health 
A 69(6): 417-35.

Roberts, S. and Switzer, P. (2004). Mortality displacement and distributed lag models. 
Inhal Toxicol 16(14): 879-88.

Roemer, W.H. and van Wijnen, J.H. (2001). Daily mortality and air pollution along 
busy streets in Amsterdam, 1987-1998. Epidemiology 12(6): 649-53.

232



Roholm, K. (1937). The fog disaster in the Meuse Valley, 1930: A Fluorine
intoxication. The Journal of Industrial Hygiene and Toxicology 19: 126-137.

Samet, J.M., Dominici, F., Curriero, F.C., Coursac, I. and Zeger, S.L. (2000a). Fine 
particulate air pollution and mortality in 20 U.S. cities, 1987-1994. N Engl J 
Med 343(24): 1742-9.

Samet, J.M., Dominici, F., McDermott, A. and Zeger, S.L. (2003). New problems for an 
old design: time series analyses of air pollution and health. Epidemiology 14(1): 
11- 2 .

Samet, J.M., Dominici, F., Zeger, S.L., Schwartz, J. and Dockery, D.W. (2000b). The 
national morbidity, mortality and air pollution study Part I: methods and 
methodologic Issues. Cambridge, MA: Health Effects Institute.

Samet, J.M., Zeger, S.L., Dominici, F., Curriero, F., Coursac, I., Dockery, D.W.,
Schwartz, J. and Zanobetti, A. (2000c). The national morbidity, mortality and 
air pollution study Part II: morbidity and mortality from air pollution in the 
United States. Cambridge, MA: Health Effects Institute.

Samoli, E., Aga, E., Touloumi, G., Nisiotis, K., Forsberg, B., Lefranc, A., Pekkanen, J., 
Wojtyniak, B., Schindler, C., Niciu, E., Brunstein, R., Dodic Fikfak, M., 
Schwartz, J. and Katsouyanni, K. (2006). Short-term effects of nitrogen dioxide 
on mortality: an analysis within the APHEA project. Eur Respir J 27(6): 1129- 
38.

Samoli, E., Analitis, A., Touloumi, G., Schwartz, J., Anderson, H.R., Sunyer, J.,
Bisanti, L., Zmirou, D., Vonk, J.M., Pekkanen, J., Goodman, P., Paidy, A., 
Schindler, C. and Katsouyanni, K. (2005). Estimating the exposure-response 
relationships between particulate matter and mortality within the APHEA 
multicity project. Environ Health Perspect 113(1): 88-95.

Samoli, E., Schwartz, J., Analitis, A., Petasakis, Y., Wojtyniak, B., Touloumi, G., Spix, 
C., Balducci, F., Medina, S., Rossi, G., Sunyer, J., Anderson, H.R. and 
Katsouyanni, K. (2003). Sensitivity analyses of regional differences in short
term effects of air pollution on daily mortality in APHEA cities. Revised 
analyses of time-series studies of air pollution and health. Boston, MA, Health 
Effects Institute: 205-210.

Samoli, E., Schwartz, J., Wojtyniak, B., Touloumi, G., Spix, C., Balducci, F., Medina,
S., Rossi, G., Sunyer, J., Bacharova, L., Anderson, H.R. and Katsouyanni, K. 
(2001). Investigating regional differences in short-term effects of air pollution 
on daily mortality in the APHEA project: a sensitivity analysis for controlling 
long-term trends and seasonality. Environ Health Perspect 109(4): 349-53.

Sarnat, J.A., Koutrakis, P. and Suh, H.H. (2000). Assessing the relationship between
personal particulate and gaseous exposures of senior citizens living in Baltimore, 
MD. J Air Waste Manag Assoc 50(7): 1184-98.

Schimmel, H. and Greenburg, L. (1972). A study of the relation of pollution to mortality 
New York City, 1963-1968. J Air Pollut Control Assoc 22(8): 607-16.

Schimmel, H. and Murawski, T.J. (1976). Proceedings: The relation of air pollution to 
mortality. J Occup Med 18(5): 316-33.

Schouten, J.P., Vonk, J.M. and de Graaf, A. (1996). Short term effects of air pollution 
on emergency hospital admissions for respiratory disease: results of the APHEA 
project in two major cities in The Netherlands, 1977-89. J Epidemiol Community 
Health 50 Suppl 1: s22-9.

Schwartz, J. (1991). Particulate air pollution and daily mortality in Detroit. Environ Res 
56(2): 204-13.

Schwartz, J. (1993). Air pollution and daily mortality in Birmingham, Alabama. Am J 
Epidemiol 137(10): 1136-47.

233



Schwartz, J. (1994a). Air pollution and daily mortality: a review and meta analysis. 
Environ Res 64( 1): 36-52.

Schwartz, J. (1994b). Air pollution and hospital admissions for the elderly in Detroit, 
Michigan. Am J Respir Crit Care Med 150(3): 648-55.

Schwartz, J. (1994c). Total suspended particulate matter and daily mortality in 
Cincinnati, Ohio. Environ Health Perspect 102(2): 186-9.

Schwartz, J. (1999). Air pollution and hospital admissions for heart disease in eight U.S. 
counties. Epidemiology 10(1): 17-22.

Schwartz, J. (2000a). Assessing confounding, effect modification, and thresholds in the 
association between ambient particles and daily deaths. Environ Health Perspect 
108(6): 563-8.

Schwartz, J. (2000b). The distributed lag between air pollution and daily deaths. 
Epidemiology 11(3): 320-6.

Schwartz, J. (2000c). Harvesting and long term exposure effects in the relation between 
air pollution and mortality. Am J Epidemiol 151(5): 440-8.

Schwartz, J. (2001). Is there harvesting in the association of airborne particles with daily 
deaths and hospital admissions? Epidemiology 12(1): 55-61.

Schwartz, J. (2003a). Airborne particles and daily deaths in 10 US cities. Revised
analyses of time-series studies of air pollution and health. Boston, MA, Health 
Effects Institute: 211-218.

Schwartz, J. (2003b). Daily deaths associated with air pollution in six US cities and 
short-term mortality displacement in Boston. Revised analyses of time-series 
studies of air pollution and health. Boston, MA, Health Effects Institute: 211- 
218.

Schwartz, J. (2004). Is the association of airborne particles with daily deaths
confounded by gaseous air pollutants? An approach to control by matching. 
Environ Health Perspect 112(5): 557-61.

Schwartz, J. (2005). How sensitive is the association between ozone and daily deaths to 
control for temperature? Am J Respir Crit Care Med 171(6): 627-31.

Schwartz, J., Ballester, F., Saez, M., Perez-Hoyos, S., Bellido, J., Cambra, K., Arribas, 
F., Canada, A., Perez-Boillos, M.J. and Sunyer, J. (2001). The concentration- 
response relation between air pollution and daily deaths. Environ Health 
Perspect 109(10): 1001-6.

Schwartz, J. and Dockery, D.W. (1992). Particulate air pollution and daily mortality in 
Steubenville, Ohio. Am J Epidemiol 135(1): 12-9; discussion 20-5.

Schwartz, J. and Dockery, D.W. (1992a). Increased mortality in Philadelphia associated 
with daily air pollution concentrations. Am Rev Respir Dis 145(3): 600-4.

Schwartz, J., Dockery, D.W. and Neas, L.M. (1996). Is daily mortality associated 
specifically with fine particles? J Air Waste Manag Assoc 46(10): 927-39.

Schwartz, J., Laden, F. and Zanobetti, A. (2002). The concentration-response relation 
between PM(2.5) and daily deaths. Environ Health Perspect 110(10): 1025-9.

Schwartz, J. and Marcus, A. (1990). Mortality and air pollution in London: a time series 
analysis. Am J Epidemiol 131: 185-94.

Schwartz, J., Spix, C., Touloumi, G., Bacharova, L., Barumamdzadeh, T., le Tertre, A., 
Piekarksi, T., Ponce de Leon, A., Ponka, A., Rossi, G., Saez, M. and Schouten, 
J.P. (1996). Methodological issues in studies of air pollution and daily counts of 
deaths or hospital admissions. J Epidemiol Community Health 50 Suppl 1: S3- 
1 1 .

Schwartz, J. and Zanobetti, A. (2000). Using meta-smoothing to estimate dose-response 
trends across multiple studies, with application to air pollution and daily death. 
Epidemiology 11(6): 666-72.

234



Scoggins, A., Kjellstrom, T., Fisher, G., Connor, J. and Gimson, N. (2004). Spatial
analysis of annual air pollution exposure and mortality. Sei Total Environ 321(1- 
3): 71-85.

Scoggins, S.A. (2003). Air pollution exposure and mortality in the Auckland region. 
(Thesis) Auckland: The Univeristy of Auckland.

Scott, A. and Gunatilaka, M. (2004). 2002 Christchurch inventory; of emissions to air. 
Christchurch: Environment Canterbury.

Shrestha, R., Kjellstrom, T. and Metcalf, P. (2002). Time series regression modelling to 
estimate missing hourly PM 10 in St. Albans, Christchurch. Paper presented at 
the 16th International Clean Air & Environment Conference, Christchurch, New 
Zealand.

Shrestha, R. and Smartt, P. (2001). NEOH New Zealand mortality database, Revision 1: 
Data manual. Auckland: New Zealand Environmental and Occupational Health 
Research Centre, Division of Community Health, The University of Auckland.

Simpson, R., Denison, L., Petroeschevsky, A., Thalib, L. and Williams, G. (2000). 
Effects of ambient particle pollution on daily mortality in Melbourne, 1991- 
1996. J Expo Anal Environ Epidemiol 10(5): 488-96.

Simpson, R., Williams, G., Petroeschevsky, A., Best, T., Morgan, G., Denison, L.,
Hinwood, A. and Neville, G. (2005a). The short-term effects of air pollution on 
hospital admissions in four Australian cities. Aust N Z J Public Health 29(3): 
213-21.

Simpson, R., Williams, G., Petroeschevsky, A., Best, T., Morgan, G., Denison, L.,
Hinwood, A., Neville, G. and Neller, A. (2005b). The short-term effects of air 
pollution on daily mortality in four Australian cities. Aust N Z J Public Health 
29(3): 205-12.

Simpson, R.W., Williams, G., Petroeschevsky, A., Morgan, G. and Rutherford, S. 
(1997). Associations between outdoor air pollution and daily mortality in 
Brisbane, Australia. Arch Environ Health 52(6): 442-54.

Smith, R.L., Davis, J.M., Sacks, J., Speckman, P. and Styer, P. (2000a). Regression
models for air pollution and daily mortality: analysis of data from Birmingham, 
Alabama. Environmetrics 11: 719-743.

Smith, R.L., Spitzner, D., Kim, Y. and Fuentes, M. (2000b). Threshold dependence of 
mortality effects for fine and coarse particles in Phoenix, Arizona. J Air Waste 
Manag Assoc 50(8): 1367-79.

Spix, C., Heinrich, J., Dockery, D., Schwartz, J., Volksch, G., Schwinkowski, K., 
Collen, C. and Wichmann, H.E. (1993). Air pollution and daily mortality in 
Erfurt, east Germany, 1980-1989. Environ Health Perspect 101(6): 518-26.

Spix, C. and Wichmann, H.E. (1996). Daily mortality and air pollutants: findings from 
Köln, Germany. J Epidemiol Community Health 50 Suppl 1: s52-8.

Statistics New Zealand (1997). Census Classfications (1996 Census of Population and 
Dwellings). Wellington: Statistics New Zealand. Accessed on 20 July 2005. 
http://www2.stats.govt.nz/domino/external/pasfull/pasfull.nsf/7cf46ae26dcb680 
0cc256a62000a2248/4c2567ef00247c6acc256b04006822ad?QpenDocument

Statistics New Zealand (1998). Population and Dwellings Statistics: 1996 Census of 
Population and Dwellings. Wellington: Statistics New Zealand.

Statistics New Zealand (2002). 2001 Census of Population and Dwellings: Population 
and Dwellings Statistics. Wellington: Statistics New Zealand.

Sunyer, J., Castellsague, J., Saez, M., Tobias, A. and Anto, J.M. (1996). Air pollution 
and mortality in Barcelona. J Epidemiol Community Health 50 Suppl 1: s76-80.

Sunyer, J., Schwartz, J., Tobias, A., Macfarlane, D., Garcia, J. and Anto, J.M. (2000). 
Patients with chronic obstructive pulmonary disease are at increased risk of

235

http://www2.stats.govt.nz/domino/external/pasfull/pasfull.nsf/7cf46ae26dcb680


death associated with urban particle air pollution: a case-crossover analysis. Am 
J Epidemiol 151(1): 50-6.

Szklo, M. and Nieto, F.J. (2000). Epidemiology: Beyond the Basics. Maryland: Aspen 
Publishers, Inc.

Touloumi, G., Katsouyanni, K., Zmirou, D., Schwartz, J., Spix, C., de Leon, A.P.,
Tobias, A., Quennel, P., Rabczenko, D., Bacharova, L., Bisanti, L., Vonk, J.M. 
and Ponka, A. (1997). Short-term effects of ambient oxidant exposure on 
mortality: a combined analysis within the APHEA project. Air Pollution and 
Health: a European Approach. Am J Epidemiol 146(2): 177-85.

Touloumi, G., Samoli, E. and Katsouyanni, K. (1996). Daily mortality and "winter type" 
air pollution in Athens, Greece—a time series analysis within the APHEA 
project. J Epidemiol Community; Health 50 Suppl 1: s47-51.

Tsai, F.C., Apte, M.G. and Daisey, J.M. (2000). An exploratory analysis of the 
relationship between mortality and the chemical composition of airborne 
particulate matter. Inhalation Toxicology 12(S2): 121-135.

UKMoH (1954). Mortality and morbidity' during the London Fog in December 1952. 
London: Ministry of Health, HMSO.

US Environmental Protection Agency (1996). Air quality criteria for particulate matter. 
Office of Research and Development.

US Environmental Protection Agency (2004). Air quality criteria for particulate matter. 
Office of Research and Development.

Wilkie, A.T., Ford, R.P., Pattemore, P., Schlüter, P.J., Town, I. and Graham, P. (1995). 
Prevalence of childhood asthma symptoms in an industrial suburb of 
Christchurch. N Z Med J 108(1000): 188-90.

Wojtyniak, B. and Piekarski, T. (1996). Short term effect of air pollution on mortality in 
Polish urban populations—what is different? J Epidemiol Community Health 50 
Suppl 1: S36-41.

Yassi, A., Kjellstrom, T., Kok, T.D. and Guidotti, T.L. (2001). Basic Environmental 
Health. New York: Oxford University Press.

Zanobetti, A. and Schwartz, J. (2000). Race, gender, and social status as modifiers of 
the effects of PM 10 on mortality. J Occup Environ Med 42(5): 469-74.

Zanobetti, A. and Schwartz, J. (2003). Multicity assessment of mortality displacement 
with the APHEA2 project. Revised analyses of time-series studies of air 
pollution and health. Boston, MA, Health Effects Institute: 249 - 253.

Zanobetti, A., Schwartz, J., Samoli, E., Gryparis, A., Touloumi, G., Atkinson, R., Le 
Tertre, A., Bobros, J., Celko, M., Goren, A., Forsberg, B., Michelozzi, P., 
Rabczenko, D., Aranguez Ruiz, E. and Katsouyanni, K. (2002). The temporal 
pattern of mortality responses to air pollution: a multicity assessment of 
mortality displacement. Epidemiology 13(1): 87-93.

Zanobetti, A., Schwartz, J., Samoli, E., Gryparis, A., Touloumi, G., Peacock, J.,
Anderson, R.H., Le Tertre, A., Bobros, J., Celko, M., Goren, A., Forsberg, B., 
Michelozzi, P., Rabczenko, D., Hoyos, S.P., Wichmann, H.E. and Katsouyanni, 
K. (2003). The temporal pattern of respiratory and heart disease mortality in 
response to air pollution. Environ Health Perspect 111(9): 1188-93.

Zanobetti, A., Wand, M.P., Schwartz, J. and Ryan, L.M. (2000). Generalized additive 
distributed lag models: quantifying mortality displacement. Biostatistics 1(3): 
279-92.

Zawar-Reza, P., Kingham, S. and Pearce, J. (2005). Evaluation of a year-long dispersion 
modelling of PM 10 using the mesoscale model TAPM for Christchurch, New 
Zealand. Science of The Total Environment 349(1-3): 249-259.

Zeger, S.L., Dominici, F. and Samet, J. (1999). Harvesting-resistant estimates of air 
pollution effects on mortality. Epidemiology 10(2): 171-5.

236



Zeka, A., Zanobetti, A. and Schwartz, J. (2005). Short term effects of particulate matter 
on cause specific mortality: effects of lags and modification by city 
characteristics. Occup Environ Med 62(10): 718-25.

Zmirou, D., Barumandzadeh, T.. Balducci, F., Ritter, P., Laham, G. and Ghilardi, J.P.
(1996). Short term effects of air pollution on mortality in the city of Lyon, 
France, 1985-90. J Epidemiol Community Health 50 Suppl 1: S30-5.

Zmirou, D., Schwartz, J., Saez, M., Zanobetti, A., Wojtyniak, B., Touloumi, G., Spix, 
C., Ponce de Leon, A., Le Moullec, Y., Bacharova, L., Schouten, J., Ponka, A. 
and Katsouyanni, K. (1998). Time-series analysis of air pollution and cause- 
specific mortality. Epidemiology 9(5): 495-503.

237



Appendix A: Sequential development of basic models for various 

mortality categories

Sequential development of a basic model for daily circulatory deaths in the 65+ years age 
group
Model Model Description df" p-value

M, Annual cycle (k = 1) 4

m 2 Annual and six months cycle (k = 1,2) 6 0.052

m 3 Annual, six months and four month cycle (k = 1, 2, 3) 8 0.016

m 4 With k* = 1,2, 3 ,4 10 0.270

m 5 With k* = 1,2, 3 ,4 , 5 12 0.002

M5, With k* = 1,2, 3, 5 10 0.001

m 6 With k* = 1,2, 3, 5 ,6 12 0.807

All models had a linear time trend as a co-variate.
# df: degrees of freedom of model (the number of parameters in the model)A # . . .  

p-value: p-value for the likelihood ratio test to compare the model with the one immediately
above it except for model M51. Model M51 was compared with model M3.
Values of k determine the period of seasonal cycle, k = 1,2,3,4,5,6 approximately correspond
to the seasonal cycles of one year, 6 months, 4 months, 3 months, 73 days and 2 months
respectively.

Sequential development of a basic model for daily respiratory deaths in the 65+ years age 
group
Model Model Description d f p-value

M, Annual cycle (k = 1) 4

m 2 Annual and six months cycle (k = 1,2) 6 <0.001

m 3 Annual, six months and four month cycle (k = 1, 2, 3) 8 0.154

m 4 With k* = 1,2, 3 ,4 10 0.005

Ms With k* = 1,2, 3 ,4 ,5 12 0.930

m 6 With k* = 1,2, 3 ,4 , 5, 6 14 <0.001

m 61 With k* = 1,2, 3 ,4 ,6 12 0.547

Mö2 With k* = 1,2, 4 , 5 , 6 12 0.038

m 7 Möi + Indicator variables for years 23 <0.001

All models had a linear time trend as a co-variate.
# df: degrees of freedom of model (the number of parameters in the model)
A

p-value: p-value for the likelihood ratio test to compare the model with the one immediately 
above it except for model M62 and M7. Model M62 was compared with model M6 and M7 was 
compared with M6i.

*  .Values of k determine the period of seasonal cycle, k = 1,2,3,4,5,6 approximately correspond
to the seasonal cycles of one year, 6 months, 4 months, 3 months, 73 days and 2 months
respectively.
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Sequential development of a basic model for daily non-external deaths in the whole 
population
Model Model Description p-value

M, Annual cycle (k = 1) 4

m 2
Up

Annual and six months cycle (k = 1 , 2 ) 6 <0.001

m 3 Annual, six months and four month cycle (k = 1, 2, 3) 8 0.012

m 4 With k* = 1,2, 3 ,4 10 0.012

M5 With k* = 1,2, 3 ,4 , 5 12 0.014

m 6 With k* = 1,2, 3, 4, 5 ,6 14 0.115

m 7 Ms + Indicator variables for years 23 0.079

All models had a linear time trend as a co-variate.
# df: degrees of freedom of model (the number of parameters in the model)
A

p-value: p-value for the likelihood ratio test to compare the model with the one immediately 
above it except for model M7. Model M7 was compared with model M5.

*

Values of k determine the period of seasonal cycle, k = 1,2,3,4,5,6 approximately correspond 
to the seasonal cycles of one year, 6 months, 4 months, 3 months, 73 days and 2 months 
respectively.
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Appendix B: Plots of the predicted number of daily deaths based on 

the final cosinor models that adjust for a long-term 

trend and seasonal variations in daily mortality

(A) Non-external deaths in the whole population

(B) Circulatory deaths in the 65+ years age group

Day of study

(C) Respiratory deaths in the 65+ years age group

Day of study
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Appendix C: Sensitivity analyses of the effects of PM10 on daily 

mortality for various mortality categories

Sensitivity of the effects of P M 10 on daily non-external mortality of all ages to the degrees of 
freedom set for the smooth functions of confounders. Percentage increase in daily deaths 
and 95% Cl associated with one interquartile range (11.7 fig/nr') increase in daily P M 10 
concentrations

(A) Degrees of freedom for the smooth function of time

Degrees of freedom per year

(B) Degrees of freedom for the smooth function of temperature
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Sensitivity of the effects of PMi« on daily circulatory mortality o f those aged 65+ years old to 
the degrees of freedom set for the smooth functions of confounders. Percentage increase in 
daily deaths and 95% Cl associated with one interquartile range (11.7 fig/m3) increase in 
daily P M ]0 concentrations

(A) Degrees of freedom for the smooth function of time

(B) Degrees of freedom for the smooth function of temperature
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Sensitivity of the effects of PM i0 on daily respiratory mortality of those aged 65+ years old to 
the degrees of freedom set for the smooth functions of confounders. Percentage increase in 
daily deaths and 95% Cl associated with one interquartile range (11.7 |ig/m2 3) increase in 
daily P M ]0 concentrations
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Appendix D: Decomposition of daily mortality data series

Decomposition of daily non-external deaths in whole population

(A) Long-term trend and seasonal variation with a 120 days smoothing window

Day of study

(B) Mid-scale component with a 30 days smoothing window
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Day of study

(C) Daily number of deaths

1 1000 2000 3000 4000

Day of study
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Decomposition of daily circulatory deaths in the 65+ years age group

(A) Long-term trend and seasonal variation with a 120 days smoothing window
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Decomposition of daily respiratory deaths in the 65+ years age group

(A) Long-term trend and seasonal variation with a 120 days smoothing window

Day of study

(B) Mid-scale component with a 30 days smoothing window
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Appendix E: Sensitivity analyses of the total effects of PM10 on 

daily mortality over 0 - 4 0  days for various mortality 

categories

Sensitivity of the total effects of P M 10 on daily non-external mortality of all ages over 41 
days to the degrees of freedom set for the smooth functions of confounders. Estimated 
overall percentage increase in daily deaths and 95% Cl for each 10 |ig/m2 3 increase in 
PMio, with fourth degree polynomial distributed lag models

(A) Degrees of freedom for the smooth function of time

(B) Degrees of freedom for the smooth function of temperature
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Sensitivity of the total effects of PM i0 on daily circulatory mortality of those aged 65+ years 
old over 41 days to the degrees of freedom set for the smooth functions of confounders. 
Estimated overall percentage increase in daily deaths and 95% Cl for each 10 pg/m3 
increase in PM i(), with fourth degree polynomial distributed lag models

(A) Degrees of freedom for the smooth function of time

(B) Degrees of freedom for the smooth function of temperature
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Sensitivity of the total effects of P M )0 on daily respiratory mortality of those aged 65+ years 
old over 41 days to the degrees of freedom set for the smooth functions of confounders. 
Estimated overall percentage increase in daily deaths and 95% Cl for each 10 |ig/m3 
increase in PM i0, with fourth degree polynomial distributed lag models

(A) Degrees of freedom for the smooth function of time

(A 60

a? 30

J2 20

Degrees of freedom per year

(B) Degrees of freedom for the smooth function of temperature
70

0> 50
£  40

o  30oo
<2 20

<u u

-10

(C) Degrees of freedom for the smooth function of relative humidity
70

co
O  50

a> 30
03
» 20 
1  10

-10

1 2 3 4 5

Degrees of freedom

3 4 5 6 7

Degrees of freedom

249



Appendix F: NZDEP96 index of deprivation

Deprivation variables used in the construction of the NZDep96 index of deprivation (in 
decreasing importance in the index)
Deprivation type Description (proportions in small areas of people)

Communication With no access to a telephone

Income Aged 18-59 years receiving a means-tested benefit

Employment

Income

Aged 18-59 years unemployed
*

Living in households with equivalised income below an

income threshold

Transport With no access to a car

Support Aged less than 60 years living in a single-parent family

Qualifications Aged 18-59 years without any qualifications

Owned home 

Living space

Not living in own home

Living in households above equivalised bedroom occupancy

threshold

equivalisation refers to methods used to control for household composition. In this way, for 
example, the standard of living of a single person with an income of $40,000 could be compared 
to that of a household consisting of two adults and three children on an income of $40,000.

Source: (Crampton et al., 2000)
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