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A b strac t

This thesis makes some theoretical contributions towards mixed quantum feed­
back network synthesis, quantum optical realization of classical linear stochastic 
systems and quantum feedback control designs.

A mixed quantum-classical feedback network is an interconnected system con­
sisting of a quantum system and a classical system connected by interfaces that 
convert quantum signals to classical signal (using homodyne detectors), and vice- 
versa (using electro-optic modulators). In the area of mixed quantum-classical 
feedback networks, we present a network synthesis theory, which provides a nat­
ural framework for analysis and design for mixed linear systems. Physical realiz­
ability conditions are derived for linear stochastic differential equations to ensure 
that mixed systems can correspond to physical systems. The mixed network syn­
thesis theory developed based on physical realizability conditions shows that how 
a class of mixed quantum-classical systems described by linear stochastic differ­
ential equations can be built as an interconnection of linear quantum systems 
and linear classical systems using quantum optical devices as well as electrical 
and electric devices.

However, an important practical problem for the implementation of mixed 
quantum-classical systems is the relatively slow speed of classical parts imple­
mented with standard electrical and electronic devices, since a mixed system 
will not work correctly unless the electronic processing of classical devices is 
fast enough. Therefore, another interesting work is to show how classical linear 
stochastic systems built using electrical and electric devices can be physically im­
plemented using quantum optical components. A complete procedure is proposed 
for a stable quantum linear stochastic system realizing a given stable classical lin­
ear stochastic system. The thesis also explains how it may be possible to realize 
certain measurement-based feedback control loops fully at the quantum level.

In the area of quantum feedback control design, two numerical procedures 
based on extended linear matrix inequality (LMI) approach are proposed to de-



sign a coherent quantum controller in this thesis. The extended synthesis linear 
matrix inequalities are, in addition to new analysis tools, less conservative in com­
parison to the conventional counterparts since the optimization variables related 
to the system parameters in extended LMIs are independent of the symmetric 
Lyapunov matrix. These features may be useful in the optimal design of quan­
tum optical networks. Time delays are frequently encountered in linear quantum 
feedback control systems such as long transmission lines between quantum plants 
and linear controllers, which may have an effect on the performance of closed-loop 
plant-controller systems. Therefore, this thesis investigates the problem of linear 
quantum measurement-based feedback control systems subject to feedback-loop 
time delay described by linear stochastic differential equations. Several numeri­
cal procedures are proposed to design classical controllers which make quantum 
measurement-based feedback control systems with time delay stable and also 
guarantee that their desired control performance specifications are satisfied.
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C h ap te r  1

In tro d u c tio n

1.1 L iterature review

Generally speaking, quantum control is control for systems whose behavior fol­
lows the laws of quantum mechanics that describes and predicts the movement 
and behavior of particles (such as atoms, electrons, protons, and photons) at the 
atomic and subatomic levels, [1], [2], [3] and the references therein. Quantum 
control theory, a combination of quantum mechanics and its related control theo­
ry. has more powerful capability than traditional control theory and brings about 
a bright future for the development of science and technology in control field [4], 
[5]. Initial developments in quantum control theory can trace back to the early 
1980s, [6], [7]. With the development of quantum control theory, it has improved 
people’s understanding of fundamental aspects of quantum mechanics [8], [9]. 
Quantum control theory has been successfully applied to quantum network [10], 
[11], [12], [13], [14], [15], physical chemistry [16], quantum optics [17], [18], and 
quantum filtering [19], [20], [21]. Interested readers may refer to survey papers 
[22], [23] and the references therein.

1.1.1 M o tiv a tio n  a n d  ch a llen g e

In recent years, quantum control systems play a more and more important role 
in control engineering, [24], [25]. However, as yet, relatively little is known about 
linear quantum systems, and it is thus natural to push the development of new 
quantum control techniques via theoretical exploration.

The behavior and movement of particles at these microscopic levels are quite 
different from anything observed in everyday life [26], [27], which needs a theory

1



2 CHAPTER 1. INTRODUCTION

like quantum mechanics in order to better describe the natural world. The main 
difference between quantum and classical mechanics is non-commutativity, which 
will allow us to highlight the essential features of the quantum problem that dis­
tinguish it from classical feedback control [28]. These features lead to the notation 
of physical realizability [29], which require us to develop new analysis and synthe­
sis methods to exploit and deal with quantum systems. Physical realizability in 
this thesis means that a linear system described by linear stochastic differential 
equations should represent the dynamics of a meaningful physical system. This 
issue of physical realizability has been analyzed in [29], [30], [31]. General physi­
cal realizability conditions are given in [32], which render the quantum feedback 
control problem potentially more complex. These fundamental features of quan­
tum mechanics require a revolution of conventional methods and techniques from 
control theory when developing the theory of quantum control. Therefore, the 
major conceptual challenge is to develop the fundamental principles and tools 
of linear systems theory that take into account the special features of quantum 
mechanics.

1.1.2 Q uantum  feedback  control

Feedback control of quantum systems is very important in a number of areas of 
quantum technology, including quantum optical systems, nanomechanical system- 
s, and circuit QED systems [1], [25], [33], [34], [35], [36], [37], [38], [39]. Quantum 
feedback control can be simply considered as an interconnection of a quantum 
plant and a controller, where the controller may be a quantum or classical con­
troller [2], [30], [39], [40]. In measurement-based feedback control (measurement 
is involved in the feedback loop) as shown in Figure 1.1, the plant is a quan­
tum system, while the controller is a classical (i.e. non-quantum) system [3], [5], 
[41], [42], [43], [44]. The classical controller processes the outcomes of a measure­
ment of an observable of the quantum system (e.g., the quadrature of an optical 
field) to determine the classical control actions that are applied to control the 
behavior of the quantum system. It is easy to monitor the feedback information 
flow and get some information of the system state. The designers can design 
the control law based on the estimation of the state. However, the weakness 
of this method is that the measurement causes inevitable back action noise and 
affects the states of measured quantum systems. If the controller is a quantum 
system implemented by quantum devices without any interfaces (e.g., homodyne 
detectors, modulators) involved in the feedback loop as shown Figure 1.2, this
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is known as coherent quantum feedback control [29], [30], which allows us not 
to need to take into account the effects of the measurement on the evolution of 
quantum systems. The quantum controller typically has much higher bandwidth 
than electronics devices, meaning faster response and processing times and thus 
would be much faster than classical signal processing. The coherent quantum 
feedback control can accomplish some tasks which are not possible using classical 
feedback. Therefore, there is a growing interest in the study of the strategy. The 
mathematical theory of coherent quantum feedback control has recently been de­
veloped for general quantum dynamical systems [10], [11], [13], [15], [38], [45], 
[46], [47]. There are interesting coherent control schemes for quantum systems 
proposed in the literature [48], [49], [50], [51], [52], [53], [54], which have shown 
that coherent feedback control is able to provide better performance. Several 
studies have also presented the applications of coherent feedback control, such as 
[2], [12], [45], [55], [56], [57], [58], [59],

Held I output 1

Quantum 

output 2
Quantum 

field 2

Classical

signal
Quantum t i 

vaccum noise Classical output 
signal

Classical
input signal

Classical
controller

Quantum
plant

Figure 1.1: A quantum plant with a classical controller.

Classical control theory and technique still play an important role in the 
quantum technology field and have been successfully applied to a class of linear 
quantum stochastic systems [14], [22], [29], [30], [31], [50], [54], [60], [61], [62], 
[63], [64], [65], [66]. Stability, dissipation, passivity and gain are fundamental 
to analysis and synthesis of feedback systems [67], [68], [69]. The stability of a 
control system is often very important, which relates to its response to inputs 
or disturbances. In engineering and stability theory, a square matrix A is called 
stable matrix (or Hurwitz matrix) if every eigenvalue of A has strictly negative
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fie ld  1 ou tp u t 1
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fie ld  2 p la n t output 2
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f ie ld  3

Figure 1.2: A quantum plant with a fully quantum controller.

real part, that is,

Re[Ai] < 0.

for each eigenvalue A;. A linear system with a stable matrix A is known as a 
Hurwitz stable system. This stability criterion is still suitable for linear quantum 
systems; e.g. see Chapter 4. Quantum storage functions are system observables, 
such as energy, and may be used as Lyapunov functions or Hamiltonian formalism 
to also determine stability [70], where the total energy of the system is a con­
served quantity; e.g. see [71], [72]. Quantum dissipation is the branch of physics 
that studies the quantum analogues of the process of irreversible loss of energy 
observed at the classical level. The paper [73] extends theory of dissipative sys­
tems to open quantum systems. In [29], a general framework for the quantum 
H°° control is developed, where a quantum version of the Bounded Real Lemma 
is proposed and applied to derive necessary and sufficient conditions for the H°° 
control of linear quantum stochastic systems. The problem of H°° control has also 
been discussed in [30], [50], [51], [56]. A quantum LQG problem with a classical 
controller has been solved in [74]. A problem of applying Linear Quadratic Gaus­
sian (LQG) techniques to quantum systems with a quantum controller has been 
addressed in [54], where a numerical procedure based on standard LMI approach 
[75] is proposed for finding a quantum controller to achieve desired performance
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specifications with a given upper bound on the LQG cost. A time-varying co­
herent quantum LQG control problem has been considered in [76], which seeks 
a physically realizable quantum controller to minimize the finite-horizon LQG 
cost, and presents a novel approach towards its solution. The problem of quan­
tum LQG control has also been studied in papers such that [77], [78] and [79]. 
It is shown that the coherent LQG problem is more challenging than the coher­
ent H°° quantum control since a property of separation of control and physical 
realizability does not hold and the notion of physical realizability imposes some 
linear and nonlinear constraints on the system matrices of a physically realizable 
quantum controller, which may complicate quantum controller designs.

1.1 .3  Q uantum  netw ork syn th esis  and stru ctu re

With the development of quantum technologies, the integration of photonic de­
vices into electronic chips has been the subject of research for more than two 
decades [2], [5], [80]. Since quantum optical devices have many advantages (e.g. 
higher bandwidth and faster response and processing times), these devices can 
solve many physical problems of interconnections, such as precise clock distribu­
tion, system synchronization, reduction of power dissipation and so on. There­
fore, there has been more and more interest in the structure of quantum sys­
tems and mixed quantum-classical systems; e.g., see [81], [82], [83]. The paper 
[81] prescribes how an arbitrarily complex linear quantum stochastic system can 
be decomposed into an interconnection of basic building blocks (such as cavi­
ties, beam splitters, modulators, phase shifters, amplifiers, fibres, and photon- 
detectors, etc.) of one degree of freedom open quantum harmonic oscillators and 
thus be systematically constructed from these building blocks. Synthesis and 
structure of mixed quantum-classical linear systems have been studied in [32], 
[84]. Mixed quantum-classical linear systems in this thesis means quantum sys­
tems interconnected with classical (non-quantum) devices. In quantum optics, 
an optical cavity may be part of a mixed quantum-classical system involving 
photodetectors, electronic amplifiers, piezoelectric actuators, feedback loops and 
so on. Figure 1.3 illustrates an example of a mixed quantum-classical system, 
where two Fabry-Perot optical cavities are connected to a classical controller via 
a homodyne detector (HD) and an electro-optic modulator (MOD), respectively. 
The classical controller processes the outcomes of a measurement of an observ­
able of the cavity on the left hand side (e.g. the quadrature of an optical field). 
Modulating the quantum held with the classical controller output by MOD gen-
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erates another quantum field sent to the cavity on the right. The signals from 
the classical controller also govern the behavior of the classical system, which can 
be implemented by electrical and electronic devices.

Classical
output

Classical
system

Quantum
output

Quantum
input Classical

signal
Quantum

fieldClassical
signal

Classical
controller MOD Quantum

signalClassical
control
signal

Figure 1.3: A mixed quantum-classical system.

1.1 .4  Q uantum  non-M arkovian  sy stem  w ith  tim e  delay

The concatenated quantum or mixed systems in [32], [81], [82], [83], [84] can 
be represented by a reduced Markov model, which ignores the effect of time de­
lay. Time delay in classical systems is quite easy to understand and is a generic 
problem in the control systems, which arises naturally in connection with the sys­
tem process and information flow for different parts of dynamic system [85], [86]. 
Time delays are also frequently encountered in quantum feedback control systems 
such as long transmission lines between quantum plants and classical controllers. 
The non-Markovian quantum feedback with time delay is first studied in [87], 
where the feedback controller is a classical controller. [88] and [89] investigate 
optimal control problem of linear quantum systems with feedback-loop time de­
lay and analyze the effect caused by time delay on control performance. [90] 
gives a delay-dependent stability criterion for a wide class of nonlinear stochastic 
systems including quantum spin systems. Quantum non-Markovian models have 
also been studied in [91], [92].
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1.2 T h esis  c o n tr ib u tio n

The contributions of this thesis are as follows.

1. The notions of physical realizability are proposed for mixed quantum-classical 
linear stochastic systems. Three physical realization constraints are derived 
for a standard form and a general form, respectively. A network theory 
is developed for synthesizing linear dynamical mixed quantum-classical s- 
tochastic systems of the standard form in a systematic way. One feedback 
architecture is presented for this realization.

2. A complete method is proposed in the thesis for a stable quantum linear 
stochastic system that can realize a given stable classical subsystem, which 
systematically shows how a classical linear stochastic system can be physi­
cally implemented using quantum optical components.

3. Two numerical procedures based on extended LMIs approach are proposed 
to design quantum LQG controllers, which can provide more parameters 
for the design of a physically realizable quantum controller and give less 
conservative solutions to quantum LQG problem since the optimization 
variables associated with the controller parameters are independent of the 
symmetric Lyapunov matrix.

4. A numerical procedure is proposed for optimal controller designs for quan­
tum feedback control systems with time delay in the feedback-loop. To 
this end, a quantum version of delay-independent stability criterion with 
an upper bound on a cost function is derived.

5. A physical model of a quantum feedback control system with time delay is 
presented for H°° control. Fundamental properties of dissipation, gain and 
stability for this class of linear models are presented and characterized using 
linear matrix inequalities (LMIs). A numerical procedure is proposed for 
feedback controller designs based on a quantum delay version of the Strict 
Bounded Real Lemma.

1.3 O rg an iza tio n  o f th e  th e s is

This thesis certainly covers some background materials that predate the research 
carried out during the candidature; therefore the thesis is organized as follows.
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• Chapter 2 collects important preliminaries which will be used regularly in 
other chapters to facilitate understanding of the main components of this thesis.

• Chapter 3 mainly investigates the synthesis and structure of mixed quantum- 
classical linear systems. It is shown that a given physically realizable mixed 
quantum-classical linear stochastic system can be systematically realized as a 
feedback interconnection of a quantum subsystem and a classical subsystem, to­
gether with appropriate interfaces such that modulators and homodyne detectors 
and so on.

• Chapter 4 mainly studies how a class of classical linear stochastic system- 
s (having a certain form and satisfying certain technical assumptions) can be 
realized by quantum linear stochastic systems.

• Chapter 5 formulates and solves a quantum LQG problem for quantum 
coherent feedback control systems based on extended linear matrix inequality 
(LMI). For comparison, the main results of this chapter is applied to the same 
example given in [54].

• Chapter 6 investigates a problem of a quantum feedback control system 
subject to feedback-loop time delay, where the controller is classical. The aim 
of this chapter is to design dynamic feedback controllers to make not only the 
closed-loop plant-controller systems stable but also the upper bound of the cost 
function minimized.

• Chapter 7 formulates and solves the H°° control problem of linear quantum 
measurement-based feedback control systems with time delay in feedback control 
loop.



C h ap te r 2

P re lim inaries

In this chapter, basic mathematical tools and important preliminaries are col­
lected for use in subsequent chapters. This chapter assumes that the reader is 
already familiar with various fundamental concepts about quantum mechanics.

2.1 C lassical p ro b a b ility  an d  q u a n tu m  p ro b a b il­

ity
First, let us briefly look at classical probability theory. In the classical theory, a 
classical probability model is given by (Q, J7, P),

1. fl is the set of possible outcomes of some experiment;

2. T  is a collection of events;

3. P  is a probability measure.

However, classical probability theory is not suitable for quantum mechanics 
due to non-commutativity. Quantum probability was thus developed in the 1980s 
as a noncommutative analogue to the Kolmogorovian theory of stochastic pro­
cesses in which random variables are not assumed to commute; e.g., see [9], [93], 
[94]. The mathematical ingredients of quantum probability theory derive from 
the theory of operator algebras.

A quantum probability model (A, p) (or called a quantum probability space) 
consists of

1. The collection of A($)) of projections on a Hilbert space ij;

2. a density operator p.

9



10 CHAPTER 2. PRELIMINARIES

The quantum probability model is a generalization of the classical probability 
model in Kolmogorovian probability theory, in the sense that every (classical) 
probability space gives rise to a quantum probability space if A  is chosen as the 
*-algebra of bounded complex-valued measurable functions on it. The projections 
p C A  are the events in A. and p(p) gives the probability of the event p.

2.2 C lassical an d  q u a n tu m  ra n d o m  v ariab les

Recall that a classical random variable X  is Gaussian if its probability distribution 
P  is Gaussian, i.e.

P(a < X  < b) — /  px(x)dx , (2.1)
J a

where
Px(x ) = —b=exp(— T ff) ) , ( 2 . 2 )  

cry 2ix 2crz
Here, p  = E[X] is the mean, and a2 =  ~E[(X — p)2] is the variance.

In quantum mechanics, observables are mathematical representations of phys­
ical quantities that can (in principle) be measured, and state vectors ip summarize 
the status of physical systems and permit the calculation of expected values of 
observables. State vectors may be described mathematically as elements of a 
Hilbert space fj. while observables are self-adjoint operators A on S). The expect­
ed value of an observable A when in pure state ip is given by the inner product 
(ip, Aip) — ip(q)* Aip(q)dq. Observables are quantum random variables.

A basic example is the quantum harmonic oscillator, a model for a quantum 
particle in a potential well; see [95, Chapter 14]. The position and momentum of 
the particle are represented by observables Q and P  (also called position quadra­
ture and momentum quadrature), respectively, defined by

(Q'ip)iq) = qip(q), (P*P)(q) = -« ^ (< ? ) , (2.3)

for ^  E id = L2(R). Here, q E R  represents position values. The position 
and momentum operators do not commute, and in fact satisfy the commutation 
relation [Q, P] = i. In quantum mechanics, such non-commuting observables are 
referred to as being incompatible. The state vector

\p{q) = (27r)~4cr~^exp(— ^ ^  ) (2-4)

is an instance of what is known as a Gaussian state. For this particular Gaus­
sian state, the means of P  and Q are given by ip(q)*Q'ip(q)dq =  p , and 
f™ 'ip(q)*P'ip(q)dq = 0, and similarly the variances are a2 and respectively.
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2.3 G en e ra l q u a n tu m  lin ea r s to c h a s tic  m odels

In this section linear quantum stochastic systems are briefly introduced. For a 
more detailed introduction, please see [29, Theorem 3.4].

Consider an open quantum harmonic oscillator consisting of n one degree of 
freedom open quantum harmonic oscillators coupled to boson fields (e.g. optical 
beams), [3], [96], [97]. Each oscillator may be represented by position q3 and mo­
mentum pj operators (j = 1, . . . ,  n), while each field channel is described by anal­
ogous field operators wqk{t), wPk(t), (k = 1, . . .  ,m) [98], [99]. The oscillator vari­
ables are canonical if they satisfy the canonical commutation relations [qj,Pk\ — 
2iöjk (jj, k = 1,.. . ,  n). In vector form, we write £ = [q\ p\ q2 P2 • • • qn Pn\r , and 
the commutation relations become

-  K E f  =  2*0, (2.5)

where in the canonical case, 0  = diagn(J). Similarly, the Ito products for the 
fields w = [wqj wPx wq2 wP2 • • • wqm wPin]1 may be written as

dw(t)dw(t)J = Fwdt, (2-6)

where in the canonical case Fw = Cm + idiagm(J). Commutation relations for 
the noise components of w can be defined as:

[dw(t)1 dw(t)' ] = (Fw — F2'l})dt — 2 iOwdt.

The dynamical evolution of an open system is unitary (in the Hilbert space 
consisting of the system and fields), and in the Heisenberg picture the system 
variables and output field operators evolve according to equations of the form

d£(t) — A£,(t)dt + Bdw(t),

dz{t) — C£(t)dt + Vdw(t), (2-7)

where A  E M2nx2n5 B E M2nxn™5 C E Mn*x2n? V  E Rn*xnu\  Here, nw =  2m and 
nz is even. We see therefore that in the Heisenberg picture dynamical “state 
space” equations (2.7) look formally like the familiar state space equations form 
classical systems and control theory. However, for arbitrary matrices A, B , C 
and V. equations (2.7) need not correspond to a canonical open oscillator. The 
system (2.7) is said to be physically realizable if the equations (2.7) correspond 
to an open quantum harmonic oscillator, [29, Definition 3.3]). The real constant
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matrices A, B. C and V  satisfying

.40 +  0 A T + =  0.

BV t = 9Ct 9 w,

®  =  4 i.  OT [•£>, o].

( 2 .8 )

(2.9)

( 2 . 10)

As shown in [29], the system (2.7) with V  defined as in (2.10) is physically 
realizable if and only if the matrices A , B , C and V  satisfy conditions (2.8) and 
(2.9). In general, we may take the commutation matrix 0  to be skew-symmetric, 
while the Ito matrix F  is non-negative Hermitian. These generalizations, which 
will be studied in Chapter 3, allow us to consider classical variables, characterized 
by zero commutation relations, as well as classical noise processes, corresponding 
to the absence of the imaginary part in the Ito products, [29], [30], [84],

2.4 Q u a n tu m  n e tw o rk  sy n th es is  th e o ry

We briefly review some definitions and results from [81]; see also [82] and [83]. The 
quantum linear stochastic system (2.7) can be reparametrized in terms of three 
parameters 5, L, H called the scattering, coupling and Hamiltonian operators, 
respectively. Here S' is a complex unitary matrix S^S =  SS^ = I, L = Ax0 
with A G Cnu;X2n, and H = ^x^Rx0 with R' = R 1 G M2nx2n. Recall that there 
is a one-to-one correspondence between the matrices A, B , C, V  in (2.7) arid 
the triplet S ,L ,H  or equivalently the triplet S, A, 7?; see [29] and [81]. Thus, 
we can represent a quantum linear stochastic system G given by (2.7) with the 
shorthand notation G = (S,L,H)  or G = (S,A,R)  [38]. Given two quantum 
linear stochastic systems G\ = (Si, L\,H\)  and G2 — (S2, L2, H2) with the same 
number of field channels, the operation of cascading of G\ and G2 is represented 
by the series product G2 < G\ defined by

According to [81, Theorem 5.1] a linear quantum stochastic system with n degrees 
of freedom can be decomposed into an unidirectional connection of n one degree 
of freedom harmonic oscillators with a direct coupling between two adjacent one 
degree of freedom quantum harmonic oscillators. Thus an arbitrary quantum 
linear stochastic system can in principle be synthesized if:

1) Arbitrary one degree of freedom systems of the form (2.7) with nw input 
fields and nw output fields can be synthesized.
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2) The bidirectional coupling H d= ( Rl t - a ( Al Aj _ A fc Af )) x i 
can be synthesized, where Aj denotes the j th  row of the complex coupling m atrix 
A. The Hamiltonian m atrix R  is given by R = \P jn{— JnA + A r Jn)P2n and the

coupling matrix A is given by A =  — £ T lw  X T ty j IT lw P2mdiagr XM)P?mBTJnP2

where M  —
1 —i 
1 i

P‘2n denotes a perm utation m atrix acting on a column

vector /  =  [fi h  • • • /2 n ] 7 as P2nf= [ f l  fl+n f ‘2 / 2 + n  ' "  fn f2nV■
The work [81] then shows how one degree of freedom systems and the cou­

pling H d can be approximately implemented using certain linear and nonlinear 
quantum optical components [34]. Thus in principle any system of the form (2.7) 
can be constructed using these components.

2.5 Q u a n tu m  n o n -d em o litio n  co n d itio n

The Belavkin’s nondemolition principle requires an observable X(t )  at a time 
instant t to be compatible with the past output process Y(s)  (s < t ) [100], [101], 
[102], th a t is:

[X(t),  y ( s ) T] =  0, V t > s > 0. (2.11)

Condition (2.11) is known as a non-demolition condition. This notation will be 
used in Chapter 3.
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C h ap te r  3

N etw ork  Synthesis for a C lass of 
M ixed Q uan tum -C lassical L inear 
S tochastic  System s

As introduced in Chapter 1, quantum control systems constructed using quan­
tum optical devices and standard analog or digital electronics have attracted more 
and more attentions in recent years. This chapter mainly investigates a synthe­
sis problem for a class of linear quantum equations that may describe mixed 
quantum-classical systems as shown in Figure 1.3. A general model and a stan­
dard model for mixed quantum-classical linear stochastic systems are proposed 
for the design process. Furthermore, a network synthesis theory for a mixed 
quantum-classical system of the standard form is developed.

3.1 Introduction

In classical engineering, many methods have been developed for designing con­
trollers and electronic systems. The design process begins with some form of 
specification for the system, and concludes with a physical realization of the sys­
tem that meets the specifications. Often, mathematical models for the system 
are used in the design process, such as state space equations for the system. 
These state space equations may result from a mathematical optimization pro­
cedure, such as LQG, or some other procedure. The process of going from such 
mathematical models to the desired physical systems is a process of synthesis 
or physical realization, part of the design methodologies widely used in classical 
engineering [103]. The nature of the physical components to be used may restrict

15
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the range of, say, the state space models that can be used. For instance, capaci­
tors, inductors and resistors cannot by themselves implement non-passive devices 
like amplifiers. Analogous design issues are beginning to present themselves in 
quantum technology. For example, linear quantum optics has been proposed as 
a means of implementing quantum information systems, [35].

Linear quantum optical systems may be described by linear quantum differ­
ential equations in the Heisenberg picture of quantum mechanics [3], [38], [96]. 
These equations look superficially like the classical state space equations familiar 
to engineering, but in fact are fundamentally different because they are equations 
for quantum mechanical operators, not numerical variables. The purpose of this 
chapter is to consider synthesis problems for a class of linear stochastic differen­
tial equations that may describe mixed quantum-classical systems. This class of 
equations is usually presented in a general form given in Subsection 3.2.2 where 
the quantum-classical nature is captured in the matrices specifying the commu­
tation relations of the system and signal (e.g. boson field) variables. However, 
the structure of a mixed quantum-classical system is not very clearly presented 
in a general form and we thus show how a mixed system described in general for- 
m can be linearly transformed into a standard form defined in Subsection 3.2.3, 
which reveals in a standard (or canonical) way the internal structure of a mixed 
quantum-classical system. Furthermore, arbitrary linear stochastic differential 
equations for a general form or a standard form need not correspond to a phys­
ical system, and so we derive conditions ensuring that they do; that is, physical 
realizability. This work generalizes and extends earlier work [29], [84].

This chapter is organized as follows. Section 3.2 proposes two models of mixed 
quantum-classical linear stochastic systems for the design process and presents 
a connection between these models. Section 3.3 presents physical realizability 
definitions and constraints for the two models defined in Section 3.2, respectively. 
Section 3.4 develops a network synthesis theory for a mixed quantum-classical 
system of the standard form. Then two examples of the network synthesis theory 
are presented in this section. Finally, Section 3.5 gives the conclusion of this 
chapter.

3.2 M ixed  q u an tu m -c la ss ica l lin ea r m odels

In this section, we give two models (or forms) for mixed quantum-classical linear 
stochastic systems and then derive relations between two models. We allow our
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models to consider classical inputs and outputs, which are not included in previous 
models in [29], [84].

3.2 .1  R ev iew  o f m ixed  q uan tu m -classica l linear sto ch a stic  

sy stem s w ith  quantum  in pu ts and quantum  o u tp u ts

Before presenting our models of interest, we first review mixed quantum-classical 
linear stochastic systems with quantum inputs and quantum outputs given in 
[29], [84],

Now we let x have quantum and classical degrees of freedom, such that x  = 
[x7 xj. ]T, where classical variables xc(t) commute with one another and with the 
degrees of freedom in quantum variables xq(t). Thus, the commutation relation 
for x(t) satisfies

X X 1 — (xx7 )7 =  270n,

where 0 n = diag(0n<?, 0ncXnr) with 0 n<? =  diagnq(J) is said to be degenerate 
canonical by the terminology of [29].

Consider a mixed quantum-classical linear stochastic system in terms of x 
given by

dx(t) = Ax(t)dt + Bdw(t),
dyq(t) = Cqx(t)dt + Dqdw(t), (3-1)

where A G Rnxn, B  G Rnx2m, Cq G R 2n^ xn and Dq G R 2ny<jx2m (n =  2nq T  nc). 
w is a quantum noise defined as [dw(t), dwit)1] =  (Fw — F^)dt =  2iQwdt. If 
we are given a component of a vector of classical system variables xc denoted 
by xCfe, we may consider xCk as one of the quadratures of a quantum harmonic

Qk(t)oscillator, say the position quadrature q .̂ The vector Xk(t) =
Pk(t)

is called

an augmentation of xCk(t). That is, x(t) can be embedded in a larger vector 
x(t) = [x(t)7 ?](t)7]T, where any element of rj(t) = [771(f) 772(f) ••• 77n c ( f )]7
commute with any component of xq(t), arid are conjugate to the components of 
xc(f), satisfying [a:CJ(f),r]k(t)] — 2i5jk, where 8jk is the Kronecker delta function. 
Then the commutation relation for x(t) is defined as x x 1 — (xx1 )r = 270. So, 
the augmented system of the system (3.1) in terms of x  can be defined as:

dx(t) — Ax(t)dt + Bdw(t) 

dyq(t) = Cx(t)dt + Ddw(t)

(3.2)

(3.3)
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where A — 

On

0 - I

" A 0 ' B  ’ r -|

, B = , c = CQ 0A' A" B'
i D Dq, jjq  U q , O

is a invertible matrix with 0 0  — —I  and 0  = —0 7. The

matrices A', A" and B' will be given in the proof of Theorem 3.9.
The system (3.1) is said to be physically realizable if its corresponding aug­

mented system described by (3.2)-(3.3) can represent the dynamics of an open 
quantum harmonic oscillator after a suitable relabeling of the components of the 
variables x(t). Recalling the results of [29], we then have the following theorem.

Theorem 3.1. A mixed quantum-classical system (3.1) with quantum inputs and 
quantum outputs is physically realizable, where Dq — I2m or Dq — [/2n 0], if
and only if A, B, Cq and Dq satisfy the following conditions

AQn + QnAT + BQwB r = 0, (3.4)

BD* = encjew. (3.5)

3.2 .2  A  general form  for m ixed  linear sto ch a stic  sy stem s  
w ith  m ixed  in p u ts and m ixed  o u tp u ts

Consider a linear mixed quantum-classical stochastic system in a general form 
given by

dx(t) = Ax(t)dt +  Bdu(t),

dy(t) = Cx(t)dt + E>dv(t), (3-6)

where A G Rnxn, B G Mnxm, C G Mnyxn and D G WlyXTlv; x(t) includes quan­
tum and classical system variables satisfying the commutation relation, such that 
x0Xq — (xqXq ) r — 2z0n with a skew-symmetric matrix 0 a (x(0) = x0); the vec­
tor v(t) represents the input signals, which contains quantum and classical noises; 
y(t) represents mixed quantum-classical outputs. Fv and Fy are nonnegative def­
inite Hermitian matrices satisfying dv(t)dv(t)T =  Fvdt and dy(t)dy(t)7 — Fydt. 
The transfer function Hg(s) for a system of the form (3.6) is denoted by

= g (s )
A B 

C D
(s) = C (sln -  A )-1 B + D.
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3.2 .3  A standard  form  for m ixed  linear sto ch a stic  sy stem s  

w ith  quantum  in p u ts and m ixed  o u tp u ts

From the general form (3.6), it is not obvious which part corresponds to quantum 
components while which part corresponds to classical components. Therefore, 
we need to transform the system (3.6) into a form (called standard form), which 
presents a clear structure of a mixed quantum-classical system.

Consider a standard form given by

dx(t) = Ax{t)dt + Bdw{t),

dy(t) =  Cx(t)dt + Ddw(t), (3.7)

where A E Mnxn, B  E Rnx2m, C E WHyXn and D E Mn«x2m. y = [y7 yj]7 with 
yq E R2riyy and yc E Mnj/c, w = [wj w72 ]7 with W\ E M2nu’1 and u>2 E M2n™2 . Here 
m = nWl + nW2, ny =  ny = 2ny + nVc. Let initial values x(0) =  x0 satisfy the 
commutation relations x^xq — (x^x^)1 — 2z0n. We assume that Qw = 
with dw(t)dw(t)T = Fwdt and 0 y =  I‘~2f y with dy(t)dy(t)T = Fydt. The transfer 
function for the system of the form (3.7) is given by

-s(s)  =
A B

C D
(s ) = C( s I n - A ) ~ 1B + D.

Definition 3.1. A mixed quantum-classical linear stochastic system of the form 
(3.7) is said to be standard if the following statements are satisfied:

1. 0 n = diag(0n,, Oncxnc) with 0 7lg = diagn?( J) and 2nq + nc = n (nc > 0).

2. Qw =  diagm(J).

3. Fy = Iny + diag(0yq, 0 n y c x n y c ) ,  where ny = 2nVq +  nVc (nVq < m).

Let the matrices A , B , C, D be partitioned compatibly with partitioning of
A A Ba Cax(t) into xq(t) and xc(t) as A = 1 *~QC[ -*■ Lqc

A Acq ^ c c
, B = q

_ Bc
, c  = q

. Cc .

P •O P
 

__
__

_
1

and D = ’ V
r  ccq ^  cc Dc

Let y(t) be partitioned into yq(t) and yc{t).
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Then, the system (3.7) can be rewritten as

dxq(t) = Aqq A q c x(t)dt + Bqdw(t), (3.8)

dxc(t) = Acq Acc x(t)dt + Bcdw(t), (3.9)

dyq{t) = ' c qq Cqc x(t)dt + Dqdw(t), (3.10)

dyc{t) = Ccq Ccc x(t)dt + Dcdw(t), (3.11)

where A qq G M2n*X2T\  A qc G M2n<jXnc, A cq G RncX2r\  Acc e  R ncxnc  ̂ ß^ e R 2nqx2m^ 

Bc G RncX2m, cqq G R2n̂ x2n*, Cqc G R2n̂ xn% Ccq G Rn^ x2n«, Ccc G Rn^ xnc, 
Dq G R 2n^ x2m, Dc G R n^ x2m.

R em ark 3.2. The hrst item of Definition 3.1 indicates that x{t) has both quan­
tum and classical degrees of freedom, where 0 Hg corresponds to the quantum 
degrees of freedom xq while 0ncXnc corresponds to the classical degrees of freedom 
xc. The second item of Definition 3.1 shows that input signals of the system (3.7) 
must be fully quantum. The third item of Definition 3.1 implies that

(-)„ = D e wD r = diag(es„0„>cX̂ c), (3.12)

where 0 y<? =  diagny (J) corresponds to quantum outputs while the matrix 0nycxn yr 

corresponds to classical outputs, which will be discussed further and proved under 
suitable hypotheses in Section 3.3. So, the difference between the mixed linear 
systems (3.1) and (3.7) is that the latter explicitly exhibits classical output sig­
nals, and the matrix D has a more general form satisfying condition (3.12), which 
is equivalent to the following equations:

Dqe wDTq = 0 yq> (3.13)

Dq9 wD j =  o, (3.14)

Dc9 wDtc = 0. (3.15)

3 .2 .4  R e la tio n s  b e tw e e n  th e  g e n e ra l a n d  s ta n d a r d  fo rm s

The general form (3.6) and the standard form (3.7) can be related by Theorem 
3.3 and 3.5 below.

Theorem  3.3. Given an arbitrary n x n  real skew-symmetric matrix @n (n > 2), 
there always exists a real nonsingular matrix Pn and a block diagonal matrix 
0 n =  diag(0n<7,0ncXnJ  such that

0 =  P  ©  Prv y n  1  n ^ n 1  n  • (3.16)
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The proof of Theorem 3.3 will use the following lemma.

Lemma 3.4. Given an arbitrary n x n  real normal matrix ©nn ( n > 2 ) ,  there is 
a real orthogonal matrix P, such that

P Te „ P  =  0  =  diag ( 0 U 0 2, O j ) ,  (3.17)

where each Oi is either a real number denoted by A * or is a real 2 x 2  matrix of 
the form

with ßj >  0.

0 ,= ßi
- ß i  Oii

(3.18)

The proof of Lemma 3.4 can be found in [104], [105] and hence is omitted 
here. The proof of Theorem 3.3 is given below.

Proof. Since ©„©£=(—©,(,)(—©n) = & f  G n, & n is normal. By Lemma 3.4, the 
relation (3.17) holds. It can be easily verified that O is skew-symmetric, so each 
Ai =  —Ai and each Oi =  —O j . Then, we can get all A; = 0 and all a* = 0. ©n 
can be written as

with Oi =

f3diag(Oi, 02, ..., Ofc, 0(n_2fc)x(n-2fc))L>

0 ßi 0 1 yfßi 0
1 J

_ -  ßi 0
= Si

-1  0
Sfi, where Si =

0 \fßi
Note

that Eißi are the eigenvalues of ©n. Now, we want to construct a n x n  real non­
singular diagonal matrix S  such that S =  diag(5'i, S2 , • • • , S*, In- 2k)- Then, we 
get d iag (O i,...,O fe,0(n_2fc)X(n_2fc)) = 5diag (©„,,0 (n_ 2fc)X(n-2fc))  S T . Then, We 
can obtain ©n = P S Q n(P S )7 ( P ß l =  PS).  This completes the proof. □

Theorem 3.5. Given an arbitrary m x m  nonnegative definite Hermitian matrix 
Fv, there exists a 2m x 2m matrix Fti,= /2TnT,-zdiagTn( J) and a m x  2m real matrix 
W  such that

Fv =  WFwW t . (3.19)

Proof. Hermitian matrices Fv and Fw can be diagonalized by unitary matrices 
Uv and Uw, respectively, such that

F„ = Uv

F =  UA f/l1 w vw'-̂  un

(3.20)

(3.21)
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where Au,=diagr
0 0 
0 2

Av=diag(Ai, A2, • • • , Am), (A, > 0 is an eigenvec­

tor of Fv), Uw=diagm ^
i i
-1 1

. Since Av and Aw are two real diagonal

matrices, there exists a m x 2m complex matrix Q = [q± q2 • • • 72m] such that

A„ =  QKQ(3.22)

where A„=diag(Ai, A2 , • • • , Am ) ,  (Ay >  0  is an eigenvector of Fv). In order to let 
(3.22) hold, for simplicity we choose

72 =

q4 = 0
T

72m 0
1 T

and <?i, <7.3, * * * , 72m-i can be chosen to be arbitrary column vectors of length m 
and are to be determined later. Combining (3.20), (3.21) and (3.22) gives

Fv =  UvQUl FW{U Q V'J. (3.23)

Next, we want to show that Q can be chosen to let W  = UvQU}r be real. First, 
we get

U VQ  [ C y Q i  U v q 2 ' ■ '  U v q2m\- (3.24)

Observing the structure of Uw=diagm f 

real, we require that the following relations

i i
- 1  1

)e satisfiec

in order to let W  be

7i = ~U ]vU*q2, 
73 = -U lU #qA,

7 2 m —1 Uy Uy 72m -

Since 72, 74, • • • , 72m, and Uv have already been determined, the matrix Q is 
hence constructed as

Q ~UlU*q2 q2 -U lU * qi g4 ••• q2m

We can get the representation (3.19) with W  = UVQU}U. □
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Let us look at an example applying Lemma 3.5.
Consider a nonnegative definite Hermitian m atrix given by

Fv =
8.9286

-0.2143 -  4.8107z 
0.1429 -  7.2161z

-0.2143 + 4.8107z 0.1429 +  7.2161z 
8.3571 +  0.0000z 0.4286 -  2.4054z .
0.4286 +  2.4054z 8.7143

It is easily obtained tha t Fv =  UVAVU* with

Uv
0.6814 0.6814 0.2673

-0.1572 -  0.3922z -0.1572 +  0.3922z 0.8018
0.1048 -  0.5883z 0.1048 +  0.5883z -0.5345

and

K
18 0 0 
0 0 0 
0 0 8

Now following the construction in the proof of Lemma 3.5, we want to find a real
matrix W . First, we choose 9+ 96 as

72 =  [3 Ü Of,  

74 =  [0 0 O f ,  

q6 = ( 0  0 2 f .

Then q\, z/3, g5 are obtained as

7, =  [0 - 3  O f ,

73 =  [0 0 O f ,

75 =  [0 0 - 2 f .

So the m atrix Q can be constructed as

Q =
0 3 0 0 0 0

- 3 0 0 0  0 0
0 0 0 0 - 2 2

It follows from the above construction th a t W  is obtained as

W
0 2.8909 0 0 0 0.7559

-1.6641 -0.6671 0 0 0 2.2678
-2.4962 0.4447 0 0 0 -1.5119

It is easily checked th a t Fv =  WFwW 7 with Cu,= /6+zdiag3(J).
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Theorem 3.6. Given a mixed quantum-classical stochastic system of the general 
form (3.6), there exists a corresponding standard form (3.7).

Proof. By Lemma 3.3 and 3.5, there exist matrices Pn, W  and Py, such that

© n  =  P„@nPf,
e„ = wewwT, 

y = y.
diagte^ .O ^xnJ = PyByPy,

A = PnA P ~ \
(3.25)

B = PnBW,
C =  P y C P - \
D = PyBW.

y  /

Substituting relations (3.25) into (3.6) gives (3.7). Now, we verify the relation 
between the standard Eg(s) and general Eg{s) transfer functions as follows:

H.s (s) = C (sln -  A y 1 B + D

= PyCP~l {.sPnP~l -  P„APr: 1) - 1 P„BW + PyBW 

= Py(C(sIn -  A)“‘ B + D) W 

= PySG(s)W.

Thus, the general system (3.6) can be related to its corresponding standard system 
(3.7) by the above linear transformations. □

3.3 P h y s ica l re a liz a b ility  o f m ixed  sy stem s

In this section, we will introduce the definition of physical realizability of the 
standard form and a theorem on necessary and sufficient conditions for physical 
realizability. This is followed by the analogous definition, and necessary and 
sufficient conditions for the physical realizability of the general form.

3.3 .1  P h y s ic a l re a liz a b ili ty  fo r th e  s ta n d a r d  fo rm

The following lemmas will be used for dehning the physical realizability of the 
system (3.7).

Lemma 3.7. Non-demolition condition [x(t)1yq(s)1} =  0, V f > s > 0 for the 
augmented system (3.2)-(3.3) of the system (3.1) holds, if and only if

m wDTq = -ecTq. (3.26)
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Proof. First, we will argue that [x(t), yq (s)] = 0 is equivalent to [x(t), yq(t)r] — 0, 
for all t > s > 0. Let gs(t) — [x(t),yq(s)T], for all t > s > 0, where s is fixed. 
From [x(t), yq(t)T] — 0 for all t > s > 0, we can infer that g3(s) — 0 and then 
have

dgs{t) =  d[x{t),yq(s)T]

= [dx{t),yq(s)T]

= A[x(t),yq(s)T}dt 

= Ags(t)dt.

Solving the above equation gives

gs(t) = exp (Ä(t -  s)^ gs(s) = 0.

Therefore, [x(t):yq (t)\ = 0 implies [x(t),yq(s)1} = 0, for all t > s > 0. Con­
versely, it is trivial to verify that [£(£), yq(s)1 ] = 0 for all t > s > 0 implies 
[x(t), yq(t)T] = 0 for all t >  0.

Thus, we just need to consider the case where t — s. Let g(t) — [x(t), yq(t) J} 
with g(0) =  0 and then we have

dg(t) = d[x{t),yq(t)T)

= [dx(t),yq(t)T] + [x(t), dyq(t)T] + [dx{t), dyq{t)T\

= Ag(t)dt + 2i{SCq + BOwDq )dt.

Solving the above equation gives

g(t) = exp(At)g(Q) + 2i j  exp(A(t — r)) (@Cq + BOwDq  ̂dr.

From the above equation, it can be easily verified that g(t) = 0 for all t > 0, if 
and only if

ec,T + DewD l = ü.

□

Lemma 3.8. Non-demolition condition [x(t),y(s)T] = 0, V t > s > 0 for the 
system (3.7) holds, if and only if

b q wd t  = (3.27)
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The proof of Lemma 3.8 is similar to that of Lemma 3.7 and is thus omitted.
For better understanding Definition 3.2 and 3.3 below, a discussion regard­

ing the physical realizability of the standard form (3.7) will be given first. The 
system (3.7) can be divided into two parts: one is the system (3.1) with Dq sat­
isfying (3.13), or equivalently described by (3.8)-(3.10); the other is the output 
equation (3.11). So, the system (3.7) is physically realizable if the two parts are 
both physically realizable. First, we consider physical realizability conditions of 
the system (3.1). From the structure of system matrices of the augmented sys­
tem (3.2)-(3.3), it is clear that the dynamics of x(t) of system (3.1) embedded in 
system (3.2)-(3.3) are not affected by the augmentation, and matrices A',A '',B ' 
in system (3.2)-(3.3) can be chosen to preserve commutation relations for aug­
mented system variables x shown in the proof of Theorem 3.9. Motivated by the 
results in [29], we want to argue that the system (3.1) with D = Dq satisfying 
(3.13) is physically realizable if its augmented system (3.2)-(3.3) can be physically 
realizable. However, the previous definition and theorem of physical realizabili­
ty in [29] are only suitable for an augmented system (3.2)-(3.3) with D = I or 
D = [I 0] (no scattering processes involved). We hence need to transform the 
augmented system (3.2)-(3.3) into a familiar form without scattering processes. 
Suppose that non-demolition condition [x(t), yq(s)T] = 0, V t > s > 0 holds. So, 
we apply relation (3.26) in Lemma 3.7 to the output (3.3) to give yq =  Dyq with 
yq defined as dyq = Cx(t)dt + dw(t) , where C = 0 WB T0. Then, a reduced system 
for the augmented system (3.2)-(3.3) is dehned as

dx(t) = Ax(t)dt + Bdw(t), 

dyq — Cx(t)dt + dw(t). (3.28)

It is straightforward to verify that the reduced system (3.28) is physically real­
izable in the sense of Theorem 3.1. The definition of physical realizability of an 
augmented system of the system (3.1) is given below.

Definition 3.2. An augmented system (3.2)-(3.3) of the system (3.1) is said to 
be physically realizable if the following statements hold:

1. The reduced system (3.28) is physically realizable in the sense of Theorem 
3.1.

2. For the augmented system (3.2)-(3.3), non-demolition condition [x(t), yq(s)T] 
0, V t > s > 0 holds.



3.3. PHYSICAL REALIZABILITY OF MIXED SYSTEMS 27

3. D — Dq is of the form [/n 0]V with V a symplectic matrix [45] or unitary
symplectic [81] such that relation (3.13) holds.

Then we consider physical realizability conditions of the system (3.11). Clas­
sical systems are always regarded as being physically realizable since they can 
be approximately built via digital and analog circuits. Thus, we just need to 
make sure that output equation (3.11) is classical. Now, we can present a formal 
definition of physical realizability of the system (3.7).

Definition 3.3. A system of the standard form (3.7) is said to be physically 
realizable if the following statements hold:

1. There exists an augmented system (3.2)-(3.3) of the system (3.1) with Dq 
satisfying (3.13), which is physically realizable in the sense of Definition 3.2.

2. For the system (3.7), non-demolition condition [x(t), y(s)1 ] = 0 , V£ > s > 0 
holds.

3. The output (3.11) and system variables xc both represent classical stochastic 
processes in the sense of commutation relations

[xc{t),x^(s)} =  0,

[xc{ t ) , y j ( s )} =  0 ,

and
[yc(t),yj(s)\ = 0,

for all t ,s>  0, where [arc(0),yc(0)7’] = 0 and [yc(0),yc(0)r ] =  0.

Theorem 3.9. A system of the form (3.7) is physically realizable, if and only if 
matrices A .B .C , and D satisfy the following constraints:

A@n + 0 n A/ + BGyjB1 =  0, (3.29)

BQwDt = - e nCT, (3.30)

DQWD' = diag(0yq,OnycXnyc). (3.31)

Proof. First, let conditions (3.29)-(3.31) hold.
I ‘2nv,

by , we get

Multiplying both sides of (3.30)

BQwDTq = (3.32)
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It follows by inspection that under conditions (3.29) arid (3.32), there exist ma­
trices A .B .C .D  and 0  defined in Subsection 3.2.1 satisfying the following con­
ditions

l e  + e l 7’ + Be,„5 ' = o, (3.33)
C = DBwB Te ,  (3.34)

D =  Dq, (3.35)

where A', A", D' satisfy the following relations:

B ' e wD j  = (0 I]CJ, (3.36)

0 I A'T -  A' ” =  B 'e wB'r , (3.37)

A' = (A '6„  -  [0 I]AT + B'ö wB t ) 0 . (3.38)

From (3.3) and (3.34), we get

c = e,„Br e . (3.39)

So, conditions (3.33) and (3.39) imply the reduced system (3.28) is physically 
realizable in the sense of Theorem 3.1. By Lemma 3.7, condition (3.34) implies 
that [x(t),yq(s)1} = 0, V f > 5  > 0 holds, which satisfies the second condition

of Definition 3.2. Multiplying both sides of (3.31) by [I 0] and we can

obtain (3.13). Thus, the augmented system (3.2)-(3.3) is physically realizable 
in the sense of Definition 3.2. By Lemma 3.8, condition (3.30) implies that 
[x(£), y(s)1 ] — 0, V £ > s > 0  holds, which satisfies the second condition of 
Definition 3.3. Combining conditions (3.15), (3.30) and using the same approach 
as shown in the proof of Lemma 3.7, we get

Myc(t) ,yc(s)T] =  0 ,

Myc{s)iyc(t)T] = 0 , 

d[yc{t),yc(t)T] = 0,

for alH > s > 0 (here the symbol dt denotes the forward differential with respect 
to £), which imply that [yc{t), yc{s)T] = 0 holds for all t, s > 0 under the fact that 
[i/c(0), yc(0)7 ] = 0 given in Dehnition 3.3. Applying a similar trick, we have

[xc(t),xc(s)T] = 0,
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[:yc{t),xc{s)T} = 0,

for all t ,s  > 0. We infer that output (3.11) and xc are both classical in the sense 
of the third item of Definition 3.3. Therefore, we conclude that the system (3.7) is 
physically realizable in the sense of Definition 3.3, which shows that (3.29)-(3.31) 
are sufficient for realizability.

Conversely, now suppose that a system of the form (3.7) is physically real­
izable. It follows from Theorem 3.1 and the first item of Definition 4.1 that 
condition (3.33) holds. Then, reading off the first n rows and columns of both 
sides of (3.33) gives us condition (3.29). By the second item of Dehnition 3.3, we 
have condition (3.30) in the sense of Lemma 3.8. Since the system (3.7) is a stan­
dard form, it follows from the third item of Definition 3.1 that condition (3.31) 
holds. Therefore, constraints (3.29)-(3.31) are necessary for realizability. □

3.3 .2  P h y s ica l r e a liz a b il ity  for th e  g e n e ra l fo rm

Without loss of generality, we will also need to give the physical realizability 
definition and constraints for the general form (3.6).

Definition 3.4. A system of the general form (3.6) is said to be physically real­
izable if its corresponding standard form (3.7) is physically realizable in the sense 
of Definition 3.3.

Theorem 3.10. A system of the general form (3.6) is physically realizable, if 
and only if the following constraints are satisfied:

A 0„ + &nA ‘ 4- B 0 ,.B / — 0, (3.40)

B©„DT = - 0 „ C T, (3.41)

D 0 „D r =  0 y. (3.42)

Proof. Suppose that equations (3.40)-(3.42) hold. It follows from Theorem 3.6 
that the general system (3.6) can be transformed to its corresponding standard 
system (3.7). Using relations (3.25) and equations (3.40)-(3.42), we get con­
straints (3.29)-(3.31). The corresponding standard system (3.7) is physically re­
alizable in the sense of Theorem 3.9. Therefore, we conclude that (3.40)-(3.42) 
are sufficient for physical realizability.

Conversely, suppose that a system of the general form (3.6) is physically realiz­
able. It follows from Dehnition 3.4 and Theorem 3.9 that constraints (3.29)-(3.31) 
hold. Conditions (3.40)-(3.42) can be obtained from constraints (3.29)-(3.31) by
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direct substitution using relations (3.25). Thus, constraints (3.40)-(3.42) are nec­
essary for realizability. □

3.4 S y s te m a tic  sy n th es is  o f m ixed  sy stem s

In this section, we will present our main results of this chapter, which are illus­
trated with two examples.

3.4 .1  M ain  syn th esis  th eorem

By Definition 3.4 and Theorem 3.6, we know that a system of the general form
(3.6) can be physically realized, if its corresponding standard form (3.7) is phys­
ically realizable. Therefore, our purpose in this section is to develop a network 
synthesis theory only for a mixed quantum-classical system of the standard form
(3.7) that generalizes the results in [84].

Lemma 3.11. The mixed quantum-classical linear stochastic system (3.7) is 
physically realizable if and only if conditions (3.13), (3.14), (3.15) and the con­
straints below are all satisfied

Aqq<Anq T  Qn<?A^ + Bq<AwBTq =  0 , (3.43)

AcqOnq + BcOwBq = 0 , (3.44)

BcOwB j  = 0, (3.45)

BcOwD rq =  0, (3.46)

BqQwDTq = - Q nqCTqq, (3.47)

BcOwD j  =  0, (3.48)

Bqe wDTc = - O nqCjq. (3.49)

Proof. By Theorem 3.9, it is easily checked that conditions (3.13)-(3.15) are e- 
quivalent to (3.31) while (3.43)-(3.49) are equivalent to (3.29)-(3.30). □

Lemma 3.12. If a matrix Dq satisfies the following condition,

d „Qwd I = (3.50)

then there exists a matrix N  such that 

be embedded into a symplectic matrix V =

" Da ' Da '
N N

= Ow, so that Dq can

DTq
T
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Proof. The m atrix Dq can be w ritten in the form of

r 1 ' D ~
I  ^ 2 n y q x ( 2 m - 2 n yq) N

(3.51)

where N  is a (2m — 2ny ) x 2m  matrix. Let the rows of Dq be denoted by 
di, d2, • • • , d2nyq • Let P(a|&1? b2, • • • ,bk) denote the orthogonal projection of the 
row vector a onto the subspace spanned by the row vectors &i, b2, * • * , b̂ .

Now, we want to build a (2m — 2ny ) x 2m m atrix N , following analogously 
the construction of the m atrix V  defined in [84, Lemma 6].

First, choose a row vector E R 2m linearly independent of di, d2, • • • , d2ny , 
and set

vi2) = ^ 1} — P(u[1}|di, d2, • • • , d2nyq)

and
=  v{}2)Ow.

Next, choose a row vector E R 2m linearly independent of d\, d2, • • • , d2nyq and 
set

P ( 4 l)|d i,d 2,---  , d2riyq)

and
v 2 =  v22)Q w .

Repeat this procedure analogously for k =  3, • • • , m  — nVq to obtain vectors 
Pn V4 , , vrn—Tlyq.

Then, we choose a row vector icjn E R 2m that is linearly independent of 
du d2, • * * , d2ny<? and v2, v3, • • • , vm- nyq such th a t

(^S1} -  P(w[l)\du d2, • • • ,d2nyq,v2,v3,-- ■ ,vm- nyq))vT ±  0.

We set
w52) =  w[1) - P ( ^ 1) |d i,d 2, - “  ,d2nyq,v2,v 3 , • • • ,vm_ny<?)

and
Vh =  ).

Next, we choose E R2m tha t is linearly independent of d i,d 2, • • • , d2riyy and 
vl5 wi, u3, u4, • • • , vm—nyq, such tha t

(icSn -  P fw J^ ld i,d2, • • • , d2nj/(j,i>i, Wi,u3, v4, • • • ,vm_nyq))?;J 0 .

Set

P ( v 4 1}| d i , d 2 , - - -  , ^ 2 n y(?, V l , W i , n 3 , U 4 , - - -  , V m - n y q )
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and
w 2 =  w 2 ) O w / ( v 2w 2 ) T ).

Repeat the procedure in an analogous manner to construct ic3,ic4,--- ,wm- nyq. 
So the matrix N  is defined as

N  = [v[ w[ Vr T  T  iTV Wm —riy u' m - n y 1 (3.52)

By the above construction, we readily verify that the 2m x 2m matrix V 
t  _  ' _

N T 
and (3.52).

is a symplectic matrix ( VOwV = 0 W) using equations (3.50)
□

Suppose that the system (3.7) is physically realizable. We are now in a position 
to explain how to realize the system (3.7) as an interconnection of a quantum 
system G\ and a classical system G2. We define G\ to be a fully quantum system 
given by

dxq{t) = Aqqx q(t)dt + Bqdw'{t) + Eu(t)dt: (3.53)

dyq{t) = Cqqxq(t)dt + Dqd w \t), (3.54)

dy'q{t) =  C'qqxq(t)dt + D'qdw'(t), (3.55)

where xq, yq, Aqq, Dq, Cqq, Dq are defined as in (3.8) and (3.10). Here D'q = N  
and C D' <dwBq On , where N  can be obtained from Dq using Lemma 3.12.

Note in particular that D'QOw(D'Q)1 = 0 ^  and Dq
D' D'

T

=  Bv Here

w'(t) w\(t)
w’2(t)

, where w[(t) and w'2(t) are two vectors of independent vacuum

boson fields and will be defined later. The Hamiltonian of G\ is given by Hq = 
-yx ]q Rqx q-\-x^Kqu(t) with a real matrix Kq = —Oni/E; u(t) a vector of real locally 
square integrable functions, representing a classical control signal; see [12], [46] 
for how to implement the linear part x 7q Kqu using classical devices. We then 
define G2 be a classical system given by

dxc(t) = Äccxc(t)dt + B'cduc(t), (3.56)

dyc(t) = C'ccxc(t)dt +  D'cduc(t), (3.57)

y'ci(t) = C’cixc(t), (3.58)

14M = C'C2xc(t), (3.59)
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where xc and yc are defined as in (3.9) and (3.11). Here uc(t) is real locally 
square-integr able classical signal satisfying

duc(t) = ac(t)dt + dwc(t),

where wc(t) is a vector of independent standard classical Wiener processes, and 
ac(t) is a vector of real stochastic processes of locally bounded variation.

The rest undefined system matrices, input and output signals appearing in 
(3.53)-(3.59) can be found in the following theorem, which presents a feedback 
architecture for the realization of the system (3.7).

Theorem 3.13. Assume that the system (3.7) is physically realizable and its

system matrices are all already known. Let C'c = 

C' G, B'c, and D' such that

C'c,
CL

and there exist matrices

DqC’c CG ' q c i (3.60)

B’cGC’qq A
- ^ c q  1 (3.61)

B',.GD'v = Bc, (3.62)

D'cGC'qq — Ĉ c q ) (3.63)
o 'cg d ; = Dc. (3.64)

Then the feedback network shown in Figure 3.1, with the identification

u(t) = xc(t), 

duc(t) = G dy'q(t),

w[(t) = y'cl(0) +  [  y'cl(s)ds + Wi(t),

™2 if') = Vo2(0)+  /  y'd2{s)ds + w2(t),
Jo

E — Aqc - BqC'c,

A'cc = Acc -  B 'G D 'C ',

C'c = Ccc -  D 'G D 'C ',

is a physical realization of the system (3.7) consisting of a quantum system G\ 
described by (3.53)-(3.55) and a classical system G2 described by (3.56)-(3.59), 
where the network G can realize the matrix G = K V  to produce classical signals 
uc = Gy'q(t) satisfying

[ric(t),uc(s)7] =  0,
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Vt, s > 0, where K  = [k[ k% ■ • • kf]T (kj = [ 0 0 • • • 0 10  • • • 0] G ]Rlx(nc+n^) 
with the 1 in the (2j-l)-th position) and V is a symplectic matrix; the network S

realizes a symplectic transformation Dq 
D;

Classical
system

Quantum
plant

Figure 3.1: Feedback interconnection of a quantum system G\ and a classical 
system G2. The two sets of modulators (MODs) displace the vectors of vacuum 
quantum fields w\ and w2 to produce the quantum signals w[(t) and w'2(t) by the 
classical vector signals y'C[ (t) and y'C2(t), respectively. The network G corresponds 
to measurement processes.

Proof. First, we will show that under physical realization constraints (3.13)-(3.15) 
and (3.43)-(3.49), we can build matrices C'c. G, B'c, and D'c to satisfy (3.60)-(3.64). 
It follows from equations (3.13) with invertible 0 y that the wide matrix Dq has
full row rank and rank(Z4<7) =  rank 
(3.60) is written as

Dq Cqc . So, the solution of equation

C' = DT(D,DTp - lCqc + N(D„).

where N(D q) denotes a matrix of the same dimension as C'c whose columns are
of Dq. Let DC -  B ;.G and Dc = D'.G. Now

Bc D'a =
Bc has solutions for Bc

Dc Dc Dc
that the equation Combining
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equations (3.14) and (3.46) gives

Dq ^n yq x (2m—2riyq)

©yj

~Dq S w BT Dj
,q <(nc+ n yc)

D 'q .
c c D'qe w BT DT

(3.65)

(3.66)

where 0 y/ = diag(m_ny )(J). From equations (3.65) and (3.66), we can infer that

rank((£>')7) =  rank (0 y/) ,

and
rank bT dT — rank ( D'qOx BT DT

Given that 0 ^  has full row rank, we can conclude that

rank (0 ^ )  = rank ©»; ßje, BT DT

 ̂ (D'q)7 Bj. D !c ) . So, there existwhich implies that rank ((D^)7) = rank 
Bc and Dc satisfying (3.62) and (3.64), respectively. From constraints (3.44), 
(3.49), and Cqq = DqQwBq 0 Uq, we conclude that equation (3.62) implies (3.61), 
and (3.64) implies (3.63), respectively.

Then it is straightforward to verify from (3.60)-(3.64) that interconnecting 
the system G\ and the system G2 gives the standard form (3.7), or equivalently 
described by (3.8)-(3.11). Now let us check that the system G i is a physical­
ly realizable fully quantum system. It follows from conditions (3.13) and (3.43) 
that the system G i satisfies constraints (3.29) and (3.31) in the sense of Theorem 
3.9 with matrices A, B, D , 0 n and diag(0y , 0M xril/i.) replaced by corresponding 
matrices Aqq. Bqi Dq, 0 Uq and 0 y<?, respectively. The system G\ also satisfies con­
straint (3.30) with its matrices replaced by corresponding matrices in equations 
(3.56)-(3.59) with the proof below:

-0 nq D’ e» s ,Te„ , __ _ (-) 0 T b  0 T

= Bqe x Dq
D'

Dq
D'

T

So, the system G\ is a physically realizable quantum system, where yq is the input 
to the network G. Given that D'qQw(D'q)1 = 0 y/ = diag^m_ny )(J), we get from
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equations (3.15), (3.45), (3.48), (3.62) and (3.64) that

T

= 0.

Bc
Df

’ Bc ' Be '
°y;

. Dc Dc _
(3.67)

From equation (3.67), we know that the matrix 

can be decomposed as

with rank Bc
D r

" Bc ' ’ PiZ '= P Z K V =
Dc P2Z

(see [84, Lemma 6] for details), where P = Pi
Pi

K V

is a permutation matrix; Z  is

a matrix of the form Z = I r

X
if r < nc+riyc, where X  is some {nc + nyr — r) x r

matrix, and Z  =  /(nc+nyc) if r — nc + nyc, and V is a symplectic matrix. So, we 
can define

G =  KV,

B'c = P\Z.

D’c = ,

and the symplectic transformation V can be realized as a suitable static quantum 
optical network. Applying K  to Vyq(t) is to measure the first r  amplitude quadra­
ture components of Vyq(t) to obtain the measurement result uc(t) =  KVy'q{t). 
So, G represents measurement processes [84]. Then we can show that Vt, s > 0,

M t),« c (s)T] = G[y'q(t),y'q(s)T]G‘
= «5lsGdiag„y, /2(J)G T 

= &u x 0 = ()’

which implies that uc is a classical signal. Thus G2 described by (3.56)-(3.59) is 
a classical system, where the classical vector signals y'Cl(t) and y'c.}(t) are used to 
produce the quantum signals w[(t) and w'2(t) injected into G]_. □

3.4 .2  E xam p les

In this subsection, two examples are presented to check our main results.
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E x am p le  3.1

Consider a mixed quantum-classical system of the standard form with A, B,C. D 
satisfying conditions (3.29)-(3.31), such tha t

0 0.1 - 1
A = -0 .1 0 - 3

0.4 0 - 5  _

" 0 0 0 0 0 0
B = 0 - 0.2 0 -0 .2 0 -0 .2

4 0 4 - 5 0 3 0

4.8 0 -4 2  "
0 0 0.35
0 0 - 2
0 0 5

8 0 10 0 6 0
0 0.04 0 0.05 0 0.03
3 0 0 0 - 4 0
0 0.12 0 0 0 -0 .16

Following the construction in the proof of Theorem 3.13, we have the quantum 
system G i given by

dxq(t) =
0 0 0 0 0 0
0 - 0.2 0 - 0.2 0 - 0.2

du(t),

0 0.1
- 0.1 0

xq{t)dt-\-

dyq(t)=
4.8 0
0 0

Xq(t)dt +
8 0 10
0 0.04 0

0 6 0
0.05 0 0.03

x

dw\{t)
dw2(t)

dwi{t)
dw2(t)

" 0.04 0 " ' 0.4 0 -0 .5 0 0.3 0
0 0

xq(t)dt +
0 0.8 0 - 1 0 0.6

-0 .2 0 3 0 0 0 - 4 0
0 0 _ 0 0.12 0 0 0 -0 .1 6  _

r
dw[(t) 
dw'2{t)
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and the classical system G-2 described by

dxc{t)

dyc(t)

y'cM

y'At)

-34 xc(t) + [0 10]duc(t),
- 5
5.6

1 3

xc(t)dt + 

T

0 0 
1 0

duc(t),

xc(t),
T

- 5 1 0 6 xc{t).

It can be easily checked that the closed-loop system described by (3.7) with the 
above matrices A, B, C, D is obtained by making the identification

u(t) = xc(t),

duc(t) =

dw[(t) = 

dw'2(t) =

where G =

0.04 0 
0 0

dw[ (t) 
dw'2{t)

T

Xq ( t ) d t  +
0.4
0

0
0.12

1 3 

- 5  1

xc(t)dt+dw\(t),
T

0 6 X c( t ) - \ - d W 2 ( t ) ,

1 0  0 0 
0 0 0 1

-0 .5  0 0.3 
0 0 0

0
-0.16

x

Example 3.2

Consider a mixed quantum-classical system of the standard form with A, B,C, D 
satisfying conditions (3.29)-(3.31), such that

A =
-9 -3 -1
1 - 7 -3

-0.72 -0.6 -12

B =

C =

1 2 - 7 0 -3 5
2 5 1 -3 6 -8
0 0.12 0 0 0 -0.16

38 46 -42  "
0.31 0.4 0.35 
4.2 -6  5
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D =

system G\ given by

dxq(t) =

dyq(t) =

dy'At) =

- 9  - 3  
1 - 7

-3 0 .4
22.2

38 46
0.31 0.4

H e n W
H q2{t)

Xq(t)dt +

du{t) ,

Xq(t)dt +

8 0 10 0 6 0
0 0.04 0 0.05 0 0.03
0 0.8 0 - 1 0 0.6

the proof of Theorem 3.13,

1 2 - 7 0 - 3  5
2 5 1 - 3 6 - 8

dw[(t)
dw'2(t)

+

0
0.04

10
0

0 6 0 
0.05 0 0.03

dw[ (t) 
dw2(t)

" -1 .1 2.3 0.4 0 -0 .5 0 0.3 0
4.2 —6

xq{t)dL+
0 0.8 0 - 1 0 0.6

-4 7 -1 4 3 0 0 0 - 4 0
_ —0.72 - 0 .6 . .0 0.12 0 0 0 -0 .16

dw[(t) 
dw2(t)

and the classical system G2 described by

dxc(t) =  —12xc(t) +  [3.6836 — 0.4345]dwc(t),

dyc(t) =  I2x c(t)dt +  [—0.2065 1.2388]duc{t),

y'd(*) =  0 .

y'aX) = y'aiW
y'c 22 O

-4 .2  7 0 0
T

Xc(t).

It can be easily checked th a t the closed-loop system described by (3.7) with 
the above matrices A, B, C, D is obtained by making the identification

u(t) =  xc(t),

0.2086 -0.7489 
3.4253 -4.9684

duc(t) = xq(t)dt-\-
0 0.1109 0 -0.0971 0 0.014
0 0.6643 0 -0.8235 0 0.4867

dw\(t) 
dw2{t) 

dw[(t) =  dw\(t),

dw2(t)
dw'2l(t)

_ dw22(t) _
-4 .2  7 0 0 xc(t) +

dw2i{t)
dw22(t)



40CHAPTER 3. SYNTHESIS OF MIXED QUANTUM-CLASSICAL SYSTEMS

where duc(t)
dUc,

, dw2 =
dw2\{t)

and G —C1

duC2 dw22(t)
0 0.0971 0 0.2769 
0 0.8235 0 0.0462 

The realization of this mixed system is shown in Figure 3.2.

I PS. I

Classical system

Figure 3.2: A realization of the mixed quantum-classical system. Black rect­
angles denote fully reflecting mirrors. Mi ,M 2i ,M 22 and M3 represent trans­
mitting mirrors with coupling constants Ki, «2 1 ,^ 2 2  and 7, respectively (7 <C 
1 , 7  <C «1 , «2 ij «22); BSi, BS2i , BS2 2 , BS3 , BS4 , BS5 and BS6 represent beam split­
ters; TSi ,TS2i and TS22 represent two-mode squeezers; PSi, PS2 i, PS22 represent 
phase shifters; Sj (i = 1 , 2 • • • , 8 ) represents a squeezer; DPA is short for degen­
erate parametric amplifier; Modi (i = 1,2,3,4) represents a modulator; HDi 
(i — 1 , 2 ) represents a homodyne detector; Ai is an amplifier with gain A=. f  can 
be realized using a computer. W], w2\, w22, rc3 are vacuum noises and the con­
tribution of w3 to quantum system noise is negligible compared to that of other 
vacuum noises.

3.5 C o n c lu d in g  re m a rk s

In this chapter, two forms (a general form and a standard form) are presented for 
the physical realization of the mixed quantum-classical linear stochastic system.
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We have shown the relation between these two forms. Three physical realization 
constraints are derived for the standard form and the general form, respectively. 
A network theory is developed for synthesizing linear dynamical mixed quantum- 
classical stochastic systems of the standard form in a systematic way, arid we then 
propose one feedback architecture for this realization. Our results are illustrated 
with several examples.



42CHAPTER 3. SYNTHESIS OF MIXED QUANTUM-CLASSICAL SYSTEMS



C h ap te r 4

Q uan tum  O ptical R ealiza tion  of 
C lassical L inear S tochastic  
System s

In Chapter 3, we have presented how a physically realizable mixed quantum- 
classical linear stochastic system can be realized as a feedback interconnection 
circuit consisting of a fully quantum linear system implemented by quantum op­
tical devices, and a classical linear system implemented by standard electrical and 
electronic devices, together with modulators and homodyne detectors. However, 
classical systems have the relatively slow processing speed while quantum optical 
systems typically have much higher bandwidth than electronic devices, meaning 
faster response and processing times, and have a potential for providing better 
performance than classical systems. So, the performance of a mixed quantum- 
classical system will be affected if the classical part is not fast enough. To solve 
this problem, in this chapter, we develop a method that show how classical linear 
stochastic systems can be physically implemented using quantum optical compo­
nents. A complete procedure is proposed for a stable quantum linear stochastic 
system realizing a given stable classical linear stochastic system.

4.1 Introduction  and m otivation

Linear systems are of basic importance to control engineering, and also arise in 
the modeling and control of quantum systems; see [3] and [27]. As is known to all, 
the state space representation provides a convenient and compact way to model 
and analyze systems with multiple inputs and outputs. A classical linear system

43
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described by the state space representation can be approximately realized using 
electrical and electronic components by linear electrical network synthesis theory, 
see [106]. For example, consider a classical system given by

fW =-f(*)+Vi(*),
y(t) =£(t) + v2(t), (4.1)

where £(t) is the state, v\(t) and v2(t) are inputs, and y(t) is the output. Im­
plementation of the system (4.1) at the hardware level is shown in Figure 4.1. 
Analogously to the electrical network synthesis theory of how to synthesize linear 
analog circuits from basic electrical components, [81] have proposed a quantum 
network synthesis theory (briefly introduced in Section 2.4 of Chapter 2), which 
details how to realize a quantum system described by state space representations 
rising quantum optical devices.

1

Figure 4.1: Classical hardware implementation of the system (4.1).

The purpose of this chapter is to address this issue of quantum physical re­
alization for a class of linear systems. For example, the quantum physical real­
ization of the system (4.1) is shown in Figure 4.2 (see Example 4.1 for more 
details). The essential quantum optical components used in Figure 4.2 include 
optical cavities, degenerate parametric amplifiers (DPA), phase shifters, beam
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Figure 4.2: Quantum hardware realization of the system (4.1).

splitters, and squeezers, etc; Interested readers may refer to [81], [107] for a more 
detailed introduction to these optical devices. From the above introduction, it 
can be easily seen that this issue of quantum physical realization can be solved by 
seeking state space equations of a quantum linear system to replace (or realize) 
state space equations of the classical linear system, where the classical and quan­
tum systems should satisfy some relation discussed in Section 4.3. However, [29] 
and [32] point out that a linear system with arbitrary system matrices does not 
correspond to a physically meaningful quantum system. Therefore, we propose 
Theorem 4.2 to show how to construct state space representation matrices of a 
physically meaningful quantum system according to state space equations of a 
given classical linear system. The motivation of this work will be discussed below.

Compared with classical systems typically implemented using standard ana­
log or digital electronics, quantum mechanical systems can have better physical 
properties, which may provide a bandwidth much higher than that of convention­
al electronics and thus increase processing times. For instance, quantum optical 
systems can have frequencies up to 1014 Hz or higher. Furthermore, it is be­
coming feasible to implement quantum networks in semiconductor materials, for 
example, photonic crystals are periodic optical nanostructures that are designed
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to affect the motion of photons in a similar way that periodicity of a semiconduc­
tor crystal affects the motion of electrons, and it may be desirable to implement 
control networks on the same chip (rather than interfacing to a separate system); 
see [33], [80],

This chapter is organized as follows. Section 4.2 formulates a problem of 
quantum physical realization to be solved in this chapter. Section 4.3 presents 
the main results of this chapter. Section 4.4 presents a potential application 
of the main results of this chapter to measurement-based feedback control of 
quantum systems. Some examples are also presented to illustrate the application 
of the main results in this section. Section 4.5 study if a quantum realization 
of a classical controller can improve the overall closed-loop control performance. 
Finally, Section 4.6 gives the conclusion of this chapter.

4.2 P ro b le m  fo rm u la tio n

4.2 .1  C lassical linear sy stem s

Consider a class of classical linear systems of the form

£{t) =M{t) + Bvx{t),
y{t) =C£(t) + Dv2(t), (4.2)

where A E Mnxn, B  E RnXn̂ i, C E MnyXn and D E Wn y X n v 2 are real constant 
matrices, V\(t) and v2(t) are input signals and independent. The initial condition 
£(0) =  £0 is Gaussian, while y(G) =  0. The transfer function Ec(s) from the noise 
input channel v to the output channel y for the classical system (4.2) is denoted
by

Hc (s) =
A H 0 n xnt;2

C ®nV2x n V2 D

C( s I n - A ) ~ l B. D

(s)

(4.3)

4 .2 .2  Q uantum  linear sto ch a stic  sy stem s

Consider a quantum linear stochastic system of the form (see e.g. [3], [27], [30], 
[54] and [108])

dx{t) =Äx(t)dt + Bdw(t),

dz(t) —Cx(t)dt + Ddw(t), (4.4)
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where Ä E M2nx2n, B E M2nxnu’, C  E Mn2X2n and D E are real constant
matrices. We assume that nw and nz are even (see [29, Section II] for details). 
We refer to n as the degrees of freedom of systems of the form (4.4). Equation 
(4.4) is a quantum stochastic differential equation (QSDE) [27], [109], [110] and 
[111]. In equation (4.4), x(t) is a vector of self-adjoint possibly non-commuting 
operators, with the initial value x(0) = x0 satisfying the commutation relations

X Q j X o k  2zOjfc, (4.o)

where 0  is a skew-symmetric real matrix. The matrix 0  is said to be canonical if 
it is the form 0  = Jn. The components of the vector w(t) are quantum stochastic 
processes with the non-zero Ito products

dwj(t)dwk(t) — Fjkdt, (4.6)

where F  is a non-negative definite Hermitian matrix. The matrix F  is said to be 
canonical if it is the form F = IHw + iJnin. In this chapter we will take 0  and F 
to be canonical. The transfer function for the quantum linear stochastic system 
(4.4) is given by

Hq(s) =
Ä I B 

C D
(s) = C B + D. (4.7)

Here we mention that while the equations (4.4) look formally like the classical 
equations (4.2), they are not classical equations, and in fact give the Heisenberg 
dynamics of a system of coupled open quantum harmonic oscillators. The vari­
ables x(t), w(t) and z{t) are in fact vectors of quantum observables (self-adjoint 
non-commuting operators, or quantum stochastic processes).

The quantum system (4.4) is (canonically) physically realizable (cf. [32]), if and 
only if the matrices A, B, C and D satisfy the following conditions:

ÄJn + JnAT + BJnw_BT = 0, (4.8)

BJn^DT = - J nCT, (4.9)

D Jrhn DT = JUs. , 2 2 7 (4.10)

where nw > nz. In fact, under these conditions the quantum linear stochastic 
system (4.4) corresponds to an open quantum harmonic oscillator [29, Theorem 
3.4] consisting of n oscillators (satisfying canonical commutation relations) cou­
pled to nw fields (with canonical Ito products and commutation relations). In
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particular, in the canonical case, x0 =  (qi q2 . . .  qn Pi P2 ■ ■ ■ Pn)r , where qj and 
Pj are the position and momentum operators of the oscillator j  (which consti­
tutes the jth  of degree of freedom of the system) that satisfy the commutation 
relations [qj,Pk\ — 2iöjk, [Qj,Qk] — \PjiPk\ =  0 in accordance with (4.5). Hence by 
the results of [81] the system can be implemented using standard quantum optics 
components. It is also possible to consider other quantum physical implementa­
tions.

4.2 .3  Q u a n tu m  p h y sic a l re a l iz a tio n

We have briefly reviewed some notations and concepts about classical probabil­
ity and quantum probability as well as classical and quantum random variables 
introduced in Chapter 2. If we are given a classical vector-valued random variable

V  =  [ x ,  x 2 ■ ■ • x„]T,

we may realize (or represent) it using a quantum vector-valued random variable 
X q with associated state ip in a suitable Hilbert space in the sense that the 
distribution of X  is the same as the distribution of X q with respect to the state 
tp. For instance, if the variable X  have a multivariate Gaussian distribution with 
its probability density function given by

f (x)  = (27r)~t|E|"^exp f - i ( x  -  p)r E~l (x -  (4.11)

with mean pi E Mn and covariance matrix £  E Mnxn, we may realize this classical 
random variable X  using an open harmonic oscillator. Indeed, we can take the 
realization to be the position quadrature X q — [Q[ Qlj • • • Qjj}1 (for example), 
with the state ip selected so that (/i, E2) =  (pq . Y q). So statistically X  = X q. 
The quantum vector X  — [Xq Xp}1 is called an augmentation of X, where 
Xp — [P[r Pj • • • Pj } 1 is the momentum quadrature. The quantum realization 
of the classical random variable may be expressed as

X  =
r  -I ’ V

*n d n x n
X p

(4.12)

As is well known, for a linear system, its state space representation can be 
associated to a unique transfer function representation. Then, we will show how 
the transfer function matrix Ec(s) can be realized (in a sense to be defined more 
precisely below) using linear quantum components. I11 general, the dimension of
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vectors in (4.4) is greater than the vector dimension in (4.2), and so to obtain a 
quantum realization of the classical system (4.2) using the quantum system (4.4) 
we require that the transfer functions be related by

E c (s) = M0Eq(s)Mu (4.13)

as illustrated in Figure 4.3. Here, the matrix Mi and M0 correspond to operation 
of selecting elements of the input vector w(t) and the output vector z(t) of the 
quantum realization that correspond to quantum representation of v(t) and </(£), 
respectively (as discussed in Section 4.2). In Figure 4.3, the unlabeled box on the 
left indicates that v(t) is represented as an element of w(t) (e.g. modulation*) 
[49], whereas the unlabeled box on the right indicates that y(t) corresponds to 
some element of z(t) (quadrature measurement).

quantum
system

Figure 4.3: Quantum realization of classical system He : v >-» y.

Then we have the following definition.

Definition 4.1. The classical linear stochastic system (4.2) is said to be canon­
ically realized by the quantum linear stochastic system (4.4) provided:

1. The dimension of the quantum vectors x(t), w(t) and z(t) are twice the 
lengths of the corresponding classical vectors f(£), v(t) = [v\ (t)7 v2{t)T]T 
and y(t), where w(t) = [v\(t)J v2(t)T U\(t)J u2(t)T]T, x(t)=[£(t)T 0(t)J]r 
with £(Q =  [qi(t) q2{t) • • • qn(t)]T and 9(t) = \pi(t) p2{t) • • • pn{t)]T.

2. The classical ^c(^) and quantum Eq (s) transfer functions are related by 
equation (4.13) for the choice

Mo Tly 0U y X r i y

* Modulation is the process of merging two signals to form a third signal with desirable 
characteristics of both in a manner suitable for transmission.
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and
Mi = ’n v x n v

T

3. The quantum linear stochastic system (4.4) is canonically physically real­
izable (as described in Subsection 4.2.2) with the system matrices A .D ,C  
and D having the special structure:

Ä

B

C

D

A Onxn
A A

Bo Unxnu2
By to

Co ^ n w Xn

Ci C2

On^xn ĵ B
D 1 D

O n x r i u j  d n x r a „2 i

B3 B4

0n y x n Vl 0Ely X 71̂ 2

Ds E>4

(4.14)

(4.15)

w ith  A) G Mnxn, A  G MnXn, A2 G Mnxn, B0 G RnXn-i, B{ G Rnxn*i, 
b 2 g Rnxn-2, b 3 g Mnxn-i, b 4 g RnxrA  c0 e  Rn*xn, cx g RnyXn, C2 g

R n^xn, ]JQ £  l n»xn»2) £  M^xn«! ; U2 G RnyXTlv2 , D3 G WlyXTlv' , and

D4 G Rnyxnv2.

Remark 4.1. According to the structure of matrices A and B. C and D, it can be 
verified directly that commutation relations for £(t.),Q(t) satisfy [C(^)?^(s) / ] =  0, 
[£(£), O(s)1} 7̂  0 and [0(t), 9(t)J ] /  0 ( for all £, s), which mean that the subvector 
£(t) in x(t) acts with respect to £(f) itself like a classical random vector while 
the subvector £(£) in x(t) behaves with respect to the vector x(t) as a quantum 
random vector. So, the quantum realization of the classical variable £(£) may

mbe expressed as £(£) = I  0 x(t) = /  0 m The structures of the

matrices A, B , C and D in the above definition ensure that the classical system 
(4.2) can be embedded as an invariant commutative subsystem of the quantum 
system (4.4), as discussed in [29], [32] and [38]. Here, the classical variables and 
the classical signals are represented within an invariant commutative subspace 
of the full quantum feedback system, and the additional quantum degrees of 
freedom introduced in the quantum controller have no influence on the behavior 
of the feedback system; see [29] for details. In fact, D represents static Bogoliubov 
transformations or symplectic transformations, which can be realized as a suitable 
static quantum optical network (eg. ideal squeezers), [45], [81], [84].
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4.3 M ain  re su lts

In this section we will present our results concerning the quantum physical real­
ization of classical linear systems.

In what follows we restrict our attention to stable classical systems, since it 
may not be desirable to attempt to implement an unstable quantum system. By 
a stable quantum system (4.4) we mean that the A is Hurwitz. We will seek sta­
ble quantum realizations. Furthermore, given the quantum physical realizability 
conditions (4.8)-(4.10), we cannot do the quantum realizations for an arbitrary 
classical system (4.2). For these reasons we make the following assumptions re­
garding the classical linear stochastic system (4.2).

Assumption 4.3.1. Assume the following conditions hold:

1. The matrix A is a Hurwitz matrix.

2. The pair (—A, B ) is stabilizable.

3. The matrix D is of full row rank.

Theorem 4.2. Under Assumption 4-3.1, there exists a stable quantum linear s- 
tochastic system (4.4) realizing the given classical linear stochastic system (4.2) in 
the sense oj Definition 4-1, where the matrices A, B , C and D can be constructed 
according to the following steps:

1. A0 = A, Bq = B, Co — C and Do = D, with A B, C and D as given in 
(4.2).

2. B[, B2 are arbitrary matrices of suitable dimensions.

3. The matrices A2 and B% can be fixed simultaneously by

A2 = - A t -  , (4.16)

where B3 is chosen to let A2 be a Hurwitz matrix.

4. The matrices B± and D4 are given by

Bi = - C T(DDT) - 1D + Nl (D)T, (4.17)

D4 = (DDt ) - 'D + N2(D)t , (4.18)

where N,(D) (resp., N2(D)) denotes a matrix of the same dimension as B[ 
(resp., D{ ) whose columns are in the kernel space
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5. For a given D4, there always exist matrices Tfi, D2, D3 satisfying

— D%D  ̂— D4D2 + DxD l  +  D2D \  — 0. (4.19)

The simplest choice is Tfi = 0, D2 — 0, and D% — 0.

6. The remaining matrices can be constructed as

= - D 3Bt , (4.20)

Cl = D4B^ + D3B j - D 2B j - D lBj ,  (4.21)

Ai — 3 +  \ ( B 3BT, -  BxB l -  B2B j + B4B2t ), (4.22)

where E is an arbitrary n x n real symmetric matrix.

Proof. The idea of the proof is to represent the classical stochastic processes f(t) 
and v(t) as quadratures of quantum stochastic processes x(t) and w(t) respec­
tively, and then determine the matrices A, B, C and D in such a way that the 
requirements of Definition 4.1 and the Hurwitz property of A are fulfilled. To this 
end, we set the number of oscillators to be n =  nc, the number of field channels 
as nw — 2nv =  2(nVl + nV2) and the number of output field channels as nz = 2ny.

Equations (4.16)-(4.22) can be obtained from the physical realizability con­
straints (4.8)-(4.10). According to the second assumption of Assumption 4.3.1, 
we can choose such that A2 = — A1 — B^B1 is a Hurwitz matrix. From the 
first assumption of Assumption 4.3.1, we can conclude that A is a Hurwitz ma­
trix, which means the quantum linear stochastic system (4.4) is stable. Using 
Mi and M0 as defined in Definition 4.1 and then combining these with equations 
(4.14)-(4.22), we can verify the relation between the classical Ec(s) and quantum 
Eq(s) transfer functions, such that

M0EQ(s)Mi

I n y  0  r i y X T l y

I n v 0 n v x n v

C 0

C 0 riyXn 
C1 c2

T

A  0 n x n

A\ A2

-l
B  0 n xnt,2 Onxn^j O nxn,^

B\ B2 B2 B\
PD

Jn y x n

0 nyxnVl D

( s l n  A )  0 n x n

- ( s ln -  A2)_1Ai(s/n -  A)-1 (sIn-A 2)~l
’ B On X 71̂2
Bi B2

+

C (sln — A)-1 B D

ScW-

This completes the proof. □
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4.4 A p p lica tio n  an d  ex am p les

4.4 .1  A p p lic a tio n

Quantum 
vacuum noise

--------------►

Quantum

Quantum 
control signal

Classical 
control signal

Classical
measurement

signal

C lassica l
controller

Quantum
plant

Figure 4.4: Measurement-based feedback control of a quantum system, where HD 
represents the homodyne detector and Mod represents the optical modulator.

The main results of this chapter may have a practical application in measurement- 
based feedback control of quantum systems, which is important in a number of 
areas of quantum technology, including quantum optical systems, nanomechani­
cal systems, and circuit QED systems; see [3], [4], [5], [25]. In measurement-based 
feedback control, the plant is a quantum system, while the controller is a classical 
(i.e. non-quantum) system [3]. The classical controller processes the outcomes of 
a measurement of an observable of the quantum system (e.g. the quadrature of 
an optical field) to determine the classical control actions that are applied to con­
trol the behavior of the quantum system. The closed-loop system involves both 
quantum and classical components, such as an electronic device for measuring a 
quantum signal, as shown in Figure 4.4. However, the state of quantum systems 
is easily affected by interaction with measurement devices, which causes the loss 
of quantum information. This thus motivates the replacement of the classical 
controller in measurement-based feedback control system as shown in Figure 4.4 
by a coherent quantum controller, which is directly interconnected with a quan-
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Q u a n t u m

p l a n t

— ------- »

Q u a n tu m  

c o n tro l s ig n a l

Q u a n tu m
o u tp u t

Q u a n t u m

c o n t r o l l e r

Figure 4.5: Quantum realization of a measurement-based feedback control sys­
tem.

turn plant without any interfaces (eg. homodyne detectors, modulators) involved
[5], [35].

According to the main results of Section 4.3, it may be possible to realize the 
measurement-based feedback loop illustrated in Figure 4.4 fully at the quantum 
level. For instance, if the plant is a quantum optical system where the classical 
control is a signal modulating a laser beam, and if the measurement of the plant 
output (a quantum field) is a quadrature measurement (implemented by a ho­
modyne detection scheme), then the closed-loop system might be implemented 
fully using quantum optics, Figure 4.5. The functions of the modulator and the 
measurement device are built into the couplings between the quantum controller 
device (a quantum system) and the quantum fields used to carry signals in the 
feedback loop. In other words, the role of the quantum controller in the feedback 
loop is equivalent to that of a combination of the classical controller, the modula­
tor and the measurement devices in the feedback loop as shown in Figure 4.6. In 
Subsection 4.4.2, Example 4.3 will be provided to illustrate the application of 
our main results to the measurement-based feedback control of quantum systems.

4 .4 .2  E x a m p le s

In this subsection, we will provide three explicit, examples of the application of 
the main result to the implementation of classical systems as quantum systems, 
where we will also detail the construction of the quantum system G using various
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Quantum
control
signal

Quantum
output

Quantum
output

b

Figure 4.6: Relations between classical and quantum controllers. The function of 
the quantum controller shown in Figure 4.6b is equivalent to that of the combina­
tion of the classical controller together with the homodyne detector and optical 
modulator shown in Figure 4.6a.

linear and nonlinear quantum optical devices. Before continuing to read, please 
briefly review some definitions and results introduced in Section 2.4 of Chapter 2. 
In the following we will use the construction proposed in [81] to realize systems 
of the form (4.4) without further comment. The details of the construction can 
be found in [81] and the references therein.

E xam ple 4.1

Let us realize the classical system (4.1) introduced in Section 4.1. The classical
transfer function is Ec(s) = 
quantum system G given by

s+T 1 By Theorem 4.2, we can construct a

d x i  =

dx2 - 
dz\ =

—x \ dt + dv i,

—X2 dt + 2 du\ — du2 , 

x\dt + dv 2 ,
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dz2 =  du2. (4.23)

The quantum transfer function is given by

l
1 0 0

- q(s) = s +l

0 0 0 1

1 T

Since in this case M0 — 1 0 , Mi - h 62x2 , we see that -1 c(s)
M0Eq(s)M1. The commutative subsystem dx\ — —x\dt + dtq, dz\ = X\dt + dv2 
can clearly be seen in these equations, with the identifications y  =  Zi ,  £ =  X\ .  It 
can be seen that A. B, C and D satisfy the physically realizable constraints (4.8) 
and (4.9).

Let us realize this classical system. The parameter R for G is given by R  = 0, 
which means no Degenerate Parametric Amplifier (DPA) is required to implement 
/?; see [81, section 6.1.2]. The coupling matrix A for G is given by

A = A' I
_ A2 _

’ -1  —0.52 
0.5 0

From the above equation, we can get Ai = [ — 1 —0.5z ] and A2 =  [ 0.5 0 ]. 
The coupling matrix Li = A\Xq for G is given by

= Ai Q

.  p  .

=  Ai
1 1

—i i
- -

= - 1 .5 a - 0.5a

where a = \{q + ip) is the oscillator annihilation operator and a* = -}(q — ip) is 
the creation operator of the system G with position and momentum operators 
q and p, respectively. L\ can be approximately realized by the combination of 
a two-mode squeezer T gu , a beam splitter Bqx2, and an auxiliary cavity G\. If 
the dynamics of G\ evolve on a much faster time scale than that of G then the 
coupling operator L\ is approximately given by L\ =  -j==(—e\2a + cn«*), where 
7i is the coupling coefficient of the only partially transmitting mirror of G i, en 
is the effective pump intensity of T gu and ei2 is the coefficient of the effective 
Hamiltonian for Bgv2 given by e\2 = 2 0 12e_!<f)12, where 0 i2 is the mixing angle of
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BgV2 and 4q2 is the relative phase between the input fields introduced by Bq12] 
see [81]. To be a good approximation for adiabatic elimination, we require that 
\/TÖ kill? ki2| be sufficiently large. So assuming that the coupling coefficient of 
the mirror M\ is 71 = 100, we then can get en — —5, ei2 = 15, 4>i2 = 0 and 
012 =  7.5. The scattering matrix for G1 is em =  — 1 and all other parameters are 
set to be 0. In a similar way, the coupling operator L2 =  A2x0 can be realized 
by the combination of T g21, Bq22, and G2. In this case, if we set the coupling 
coefficient of the partially transmitting mirror AI2 of G2 to y2 = 100, we find the 
effective pump intensity e2i of Yg21 given by e2i =  5, the relative phase <f>22 of 
Bg22 given by 4>22 =  7r, the mixing angle 0 22 of Bg22 given by 0 22 = 2.5, the 
scattering matrix for G2 to be et7T — — 1. All other parameters are set to be 0. 
The implementation of the quantum system G is shown in Figure 4.2.

E x am p le  4.2

Consider a classical system of the form (4.2) with matrices

A =
-3  
2 -

1
-2

, B =
-3
2

C = 2 5 9 D = 1.

By Theorem 4.2, we can construct a quantum system G, an augmentation of the 
above classical system, with the following matrices

Ä

B

C

1 C
O 1 0 0

2 - 2 0 0

1 0 3 - 2

0 1 8 -4

- 3 0 0 0

2 0 0 0

0 0 0 - 2

0 0 3 -5

0 - 3 0 0  
2 5 0 0 
0 0 3 - 2  
0 0 0 0
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D

1 0  0 0 
0 1 0  0 
0 0 1 0  
0 0 0 1

Since Mn = 0 1 0  0
Ec (s) = M 0Eq (s ) M 1.

Mr = h  02 x 2 , it can be easily checked that

The system G has two degrees of freedom, which can be realized as an inter­
connection of two one degree of freedom systems G\ and G2. The parameter R 
for G is given by

R = Rl 2

R i

where R\ is for the subsystem Gi, R 2 is for the subsystem G2, and R \ 2 is for a 
direct interaction between G\ and G2- We can realize R\ and R2 as two DPAs 
with detuning parameters A ^  and Ag2 and effective pump intensities egx and 
respectively. These parameters are Agt =  —0.5, €g1 — — 3 + 0.5i, Ag2 =  —0.5, 
and eg2 = 1 + 0.5z.

The coupling matrix Ac for the quantum system G is given by

Ac = Agi A g 2 ,

where

g 2.

A Gi,i

A g1i2
for the subsystem G\1 Ag2 Ag2,i

Ag2j2
for the subsystem

Dehning the coupling operators Lcjk = AGjk [Qj^Pj}7 for j, k — 1,2, we can 
realize these coupling operators with the construction employed in Example 
4 . 1 . That is, for the coupling operator Lcjk we will need an auxiliary cavity 
mode Gjtk, a two-mode squeezer with effective pump intensity 1 and a beam 
splitter with mixing angle S giK and relative phase 4 giving the coefhcient 
ec) k ,2 — 2 0 g - fce~l^Gj'k, and a partially transmitting mirror of Gjtk with coupling 
coefficient 7 cj k- These values are given by

^Gi,i ,1 -15; 0 gm =

*Glfl = 0; eGi,i,2 =

7gm = 100; eGi,2,1 =

0 Gx,2 -5 ; *Gll2 =
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c g  1,2,2 — — 10; 7 G i ,2 — 1 00;

eGa.1,1 b, 0G2,i 12.5,

^ g2,i =  0; eG2,i,2 = 25;

7 g 2,i 100, ^g 2j2,i 25,

O g 2,2 = —12.5; ^ g2,2 = 0;

eG2,2,2 =  —25; 7 g2,2 = 100.

We now consider the implementation of the direct interaction Hamiltonian 
Hq g-> between G i and (72 given by

Define HGiG2l — — 1.5*oia2 + 1.5 *a*a2 and HGiG22 ~  O.öißiaJ — 0.5*oja2 so 
that Hqxg2 = Hq q x + Hq G 2 ' The first part HGxG2 x can be implemented by 
a two-mode squeezer Y ^ g^ i * The two modes a\ of G\ and a2 of G2 interact in 
a suitable y2 nonlinear crystal with a classical pump beam of effective intensity 
eGiG2,i = 0. On the other hand, the second part HG G 2 can be simply imple­
mented as a beam splitter B g xg 2,2 with a mixing angle 0 gxg2,2 — —0.5. All other 
parameters are set to be 0. The implementation of G is shown in Figure 4.7.

E xam ple 4.3

Consider a closed-loop system which consists of a quantum plant G and a real 
classical controller K  shown in Figure 4.4. The quantum plant G , an optical 
cavity, is of the form (4.4) and is given in quadrature form by the equations

where u  is the detuning parameter, and 7  is a coupling constant. The output 
of the homodyne detector (Figure 4.4) is £ =  rj\. The quantum control signal 
(w\,w2) is the output of a modulator corresponding to the equations dw\ = 
£dt +  dw 1, dw2 = dw2, where (wi,w2) is a quantum Wiener process, and f is a

0 .5a ia 2 -  1.5*0702 +  1.5*070,2 -  0 .5*o;a2

e GiG2, l a l a 2 +  e GiG2,2a l a 2 +  eG iG 2,2^ *02  +  eG xG2, l a i a 2*

7dq = ( - - q  + up)dt -  yjGfdwi, 
7dp = ( - - p  -  uq)dt -  yj^dw2, 

dr] i — ^/jqdt + dwi, 

dt]2 = yfypdt +  ,

(4.24)

(4.25)

(4.26)

(4.27)
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Figure 4.7: Realization of G.

classical state variable associated with the classical controller K , with dynamics 
d4 =  — £dt -4- dA- The combined hybrid quantum-classical system G-K is given 
by the equations

dq = ( - - q  + u p - y / 7 £ ) d t - y f t d w i,
7dp = ( - - p  -  ujq)dt -  y /j dw2,

d£ =  y/Aqdt + dw i ,

d( = +  £)dt +  dw\. (4.28)

Note that this hybrid system is an open system, and consequently the e- 
quations are driven by quantum noise. The quantum realization of the system 
d£ =  — S'dt + dQ dwi — £dt + dw\ , denoted here by K q is, from Example 4.1. giv­
en by equations (4.23) (with the appropriate notational correspondences). The 
combined quantum plant and quantum controller system G-Kq is specified by 
Figure 4.5, with corresponding closed-loop equations

7dq =  { - - q  + u p -  y/^xQ dt -  y /j dv2,
7dp - ( - - p  -  uq)dt -  y /jd u 2,

dxi = yj7) qdt + dv2l
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dx2 — (—x2 + ‘Zy/l p)dt + du2. (4.29)

The hybrid dynamics (4.28) can be seen in these equations (with X\, v2 and u2 
replacing £, ib\ and u>2, respectively). By the structure of the equations, joint 
expectations involving variables in the hybrid quantum plant-classical controller 
system equal the corresponding expectations for the combined quantum plant 
and quantum controller. For example, E[q(t)£(t)] = E[q(t)xi(t)]. A physical 
implementation of the new closed-loop quantum feedback system is shown in 
Figure 4.8.

We consider now the conditional dynamics for the cavity, [3], [9]. Let q(t) 
and p(t) denote the conditional expectations of q(t) and p(t) given the classical 
quantities £(s),£(s), 0 < s < t. Then

dq — 1( - 2  Q + u p -  y/r£)dt +  K q d v , (4.30)

dp = ( — — p — ujq)dt + K p d i s , (4.31)

where Kq = q2 — (.q)2 + 1 and Kp = qp — qp are the Kalman gains for the two 
quadratures, and v is the measurement noise (the innovations process, itself a 
Wiener process). The output also has the representation

dC, =  {y/lQ + 0 ^  + dv.

The conditional cavity dynamics combined with the classical controller dynamics 
leads to the feedback equations

dq = 7(--<7 + Ujp -  y /r £ )d t  +  K qd v , (4.32)

dp — ( — — p  — ujq)dt +  Kpdis, (4.33)

= y j^q d t  +  du, (4.34)

<  = (\/7  9 + C)dt + du. (4.35)

Here we can see the measurement noise v(t) explicitly in the feedback equations. 
By properties of conditional expectation, we can relate expectations involving the 
conditional closed-loop system with the hybrid quantum plant classical controller 
system, e.g. E[q(t)£(t)\ = E[q(t)£(t)]. We therefore see that the expectations 
involving the hybrid system, the conditional system, and the quantum plant 
quantum controller system are all consistent.
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Figure 4.8: Quantum realization of the closed-loop system shown in Figure 4.5.

4 .5  P er fo r m a n c e  a n a ly s is

As discussed in the previous sections, we have shown that a class of classical 
linear stochastic systems (having a certain form and satisfying certain technical 
assumptions) can be realized by quantum linear stochastic systems. However, 
the structure of the closed-loop system has changed, which may affect the closed- 
loop control performance. Therefore, the purpose of this section is to investigate 
conditions under which such quantum realization can preserve the original closed- 
loop control performance, such as LQG performance. Given a quantum plant and 
some control performance specifications, we can first design a classical controller 
by means of measurement-based quantum feedback methods. Then the classical 
controller is realized using quantum optical devices so that a quantum controller 
is obtained.

Consider a quantum plant G to be controlled described by non-commutative 
stochastic models of the following form

dxp(t) =Apxp(t)dt + Bpudu(t) 4- Bpvodw(t), 

dy(t) —Cpxp{t)dt + Dpwdw(t), (4.36)
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where xp represents a vector of plant variables satisfying

xpXp -  (xpXp )T =  2i0n.

w is a quantum noise satisfying

[dw(t), dw(t)T] = Fw — F j  — 2iOwdt.

u is the control signal satisfying

[du(t), du(t)T] = Fu — F j  = 2iQudt.

Quantum output y satisfies

[dy(t),dy(t)T] = Fy -  F j  = 2iOydt,

which can be represented by position yq and momentum yp.
Construct a classical controller for the quantum plant (4.36) as

d£(t) =A£>(t)dt + Bdvi(t),

Vc{t) = c m ,  (4.37)

where yc is a classical output. Here V\ is the measurement signal of the position 
quadrature of the output y of the quantum plant, such that

Vi = [I ( % .

Note that our controller is not exactly of the form (4.2), but we can relate it to 
another system which is of the form (4.4). So, consider Figure 4.4. Note that 
the output yxif)  of the classical controller K  feeds a modulator. Since £(£) is 
real, modulation here means that the signal yx(t) modulates a quantum noise 
with quadratures (t>2 , u2) to produce a quantum signal yQ(t) at the output of the 
modulator of the form

dyQ{t)
cm

0
dt -p dv2

du2

Note that the first component of dyQ(t) is C£(t)dt + dv2(t). Now we define 
another classical system K  that extends the controller K  with equations given 
by

d^(t) —A^{t)dt + Bdv\(t),

yc{t) = C m  + Ddv2(t). (4.38)
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Note that the output of K  is the first component of yQ(t), and it is a classical 
system of the form (4.2). We may consider this as the system that we will realize 
using a quantum system, say, G^. By the construction, this quantum realization 
of K  will have as output the quantum signal yQ(t) and thus will replace the 
combination of K  together with the homodyne detector (that measures V\(t)) 
and the modulator that will produce y®{t).

The plant and controller can be connected by modulators and homodyne 
detectors. y®(t) can be considered as to be produced by displacing the vectors

of vacuum quantum fields w2 = V2
U2

via modulators. If the quantum output

signals y(t) are measured by homodyne detectors (HD), classical signals V\(t) — 
G y(t) are produced during measurement processes G dehned as in Chapter 3 
that satisfies the condition

G 0 yGT -  0 (4.39)

with rank(G) < . Thus interconnecting systems (4.36) and (4.38) by setting
u(t) — yQ{t) and V\(t) =  Gy(t) gives

dxd {t) = Adxd {t)dt + Bddwd (t) (4.40)

where xd
£

i wd
UJp

w2
with w2 = [v2 U2 ]r , Ad=

Ap ’ BpuC 
0

_ BGC A

B r l  — Bd\ Bd 2
Br'pw

BGD pw
with Bd 1 -

Define a LQG performance variable for (4.40) as

zi(t) = Czixp{t) + Dzlß(t) = Czixd (t),

and Brio = - Jp u

0

(4.41)

where ß(t) — 

Along the

C
0

£(t) is the signal part of u = y®\ Czi = a ,  D,
C
0

ine of [54], the infinite-horizon LQG cost for (4.40) can be defined
as

J r  = Ihn sup i  f  (zi(s)1 zi(s))ds
t-+ +  OG * J  Q

1 H «
l imsup -  / Tr(CdCziS(t))d^

t—>+00 t  J  Q

Tr (CSCrfS), (4.42)
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where S — limt^ +QOS(t) and the symmetric matrix S — f  eAclT BdBdeÂ r dr
o

solves the following Lyapunov equation

AdS + SÄL + BdBd — 0, (4.43)

and the solution is unique.
By Theorem 4.2, we can construct a quantum realization of the classical con­

troller (4.37) as
Tdxk(t) =Äxk(t)dt + B [dwy(t)J dw2(t)T] , 

dyk{t) =Cxk(t)dt + Ddw2{t),

where x k(t) = [at)T 9(t)T}T, Wy = [u\ v^]T, w2 = [u^ v]]T, A =

(4.44)

B =  

D =

B\ B2 with By =
B  0 
B i B3

and B 2 =

\Un Vn 1 7 , A —
A O n x n

L L. A Ay to

Oo

, C  =
" C 0

B2 B/y Cy C2
0 0 D 0

D\ D3 D2 D4

The new closed-loop plant-controller system can be obtained by setting u(t) = 
yk.(t) and Wy ( t )  = y(t). So interconnecting systems (4.36) and (4.44) gives

dxd(t) = Äclxcl(t)dt+ Bddwcl{t),

where xd = [x7 x lk] T,wd = [w1 . The matrices Ad —

(4.45)

A R C^ p  pu^
B\CV Ä

A ’  c  " 0

. C 1 .

pu

. C 2 .

[B 0 \CP A 0
[By B3}Cp Ay A2
Dehne a LQG performance variable for (4.45) as

B r l —

Brpw j-'pu

[B 0] Dpw 0 
[By B3\Dpw [B2 B4] _

Zi(t) = Czixd (t), (4.46)

where Cd = a, D,
C
Cy

' zl
0
c2

We also associate a infinite-horizon LQG cost for (4.45), such that

1 f lJq — lim su p - / (z(s)1 zi(s))ds
t~> +  OO t  J  Q

l 0
= lim su p - / Tr (Cd CziS(t))ds

£—>+oo t  J Q

= Tv(CjiCziS), (4.47)
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where the symmetric matrix S = limt^ +00S(t) = 

Lyapunov equation

t
f  e^clTBC\D,rle ^ Tdr solves the 
o

A-dS +  SÄ î +  BciBJi —  0, (4.48)

and the solution is unique.

Theorem  4.3. Assume that D[ = 0, D2 — 0, D3 =  0, B2 =  0, G = [I 0], 
and Ad, Aci are both Hurwitz matrices. The closed-loop system (4.45) with the 
quantum realization controller (4.44) can provide the same LQG performance 
specifications as the closed-loop system (4.40) with the classical controller (4.37) 
for the plant (4.36) to be controlled.

Proof. By Theorem 4.2, if D\ — 0, D2 — 0, D3 = 0, B2 — 0, then C\ — 0 and 
C2 — 0. So Ad, Bci, Czi can be rewritten as

Ad

Bd

Czt

Ad 0 
A\ A2

Bd
B

Czl
' c ' r  1

0
0 Czi 0

(4.49)

(4.50)

(4.51)

where Ad and Bd are defined as before with G = [I 0], A\ = [[Bi B3]CP A\] 
and B = [B{Dpw B3Dpw B2 BA].

Now we will show these two closed-loop systems have the same LQG perfor­
mance. Under assumptions of Theorem 4.3, we then have

J n  = lim sup ~  f  Tr ( c ziS (r)C f ) dr 
t f ->+oo t f  J 0 V

= Tt [Cz1SCJ,

= Tr ( 7 ° °  CaeA«TBd B Td eA«TCldT^

= T r ( j ™ C zlj 2 ^ ( Ä dT)kBĉ Ö J , d r

Ad 0 
Äi A2

Bd
B

oo /

E ft °iE
k=0 \

Ad 0 
A\ A2

Bd
Bd

T

dr
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= Tr ( 6 dSC%) = Jc.

This completes the proof. □

4.6 C o n c lu d in g  re m a rk s

In this chapter, we have developed theories and methods of how to construct quan­
tum optical systems equivalent to classical systems. Our results are illustrated 
with examples from quantum optics. We also study if a quantum realization of a 
classical controller can improve the overall closed-loop control performance. It is 
hoped that the main results of the work will help the implementation of classical 
linear systems using quantum optical devices.
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C h ap te r 5

E x ten d ed  LM I A pproach  to  
C oheren t Q u an tu m  LQG C ontro l 
D esign

As mentioned in Chapter 1, in quantum coherent feedback control loop, a designed 
linear controller is itself a quantum system that is required to be physically real­
izable. Thus, additional non-linear and linear constraints must be imposed on the 
coefficients of a physically realizable quantum controller, which differs the quan­
tum Linear Quadratic Gaussian (LQG) design from the standard LQG problem. 
This chapter proposes numerical procedures based on extended linear matrix in­
equality (LMI) approach and new physical realizability conditions proposed in 
[32] to design a coherent quantum controller. The extended LMI approach is not 
only a new analysis tool but also less conservative in comparison to the conven­
tional counterpart, which may be useful in the optimal design of quantum optical 
networks.

5.1 Introduction

In previous works [113], [114], [115], extended LMI technique has been applied 
to designs of classical controllers, which characterize stability and performance 
specifications. Recalling some knowledge about extended LMIs approach: A 
linear system with system matrices A. B, C (assume that D — 0) is Hurwitz 
stable and the squared H2-norm of its transfer function T  satisfies ||X'||| = 
^  f_™ Tv^T^iw)1 (T(iw)) < 7 if and only if there exists a general matrix F,

69
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symmetric matrices P > 0 and Q such that

FA  + ATF T P -  F + ATFT FB  
P - F T + FA  - F - F r FB

B TFT B TFT - I
< 0 ,

P CT 
C Q

> 0 ,

Tr(Q) < 7.

(5.1)

(5.2)

(5.3)

It can be seen from (5.1) that the extra instrumental variable F  introduced 
in extended LMIs gives a suitable structure in which the system matrices are 
completely independent from the Lyapunov matrix and provides a more positive 
impact on the design of quantum controllers compared with standard LMI con­
ditions used in [54], [75]. In a significant way, the problem of minimizing the 
norm on one channel, subject to some moderate H°° performance requirement on 
another channel can be addressed with employing different Lyapunov matrices to 
test all the objectives, which gives us less conservative solutions.

Therefore, the purpose of this chapter is to propose two new numerical proce­
dures based on extended LMI approach and new physical realizability conditions 
presented in [32] to design quantum controllers. We may optimize over extra pa­
rameters in extended LMIs and new physical realizability conditions to improve 
the LQG control performance of a closed-loop plant-controller system.

This chapter is organized as follows. Section 5.2 formulates the set-up of a 
closed-loop quantum system with a physically realizable quantum controller, and 
then we present a quantum LQG problem to be solved in this section. Section 5.3 
proposes two numerical procedures based on extended LMIs approach to solve the 
quantum LQG problem. Section 5.4 applies the numerical procedures proposed 
in Section 5.3 to the same example given in [54] for comparison. Finally, Section 
5.5 gives the conclusion of this chapter.

5.2 P ro b le m  fo rm u la tio n

Consider a quantum plant described by non-commutative stochastic models of 
the following form

dxp(t) — ApXp(t)dt + Bpwdwp(t) + Bpudu(t), 

dy(t) = CpXp(t)dt + DpWdwp(t), 

z(t) =  Cpzxp(t) +  Dpzßu(t), (5.4)
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where Ap G Rnxn, Bpw G RnXTlwp, Bpu G Mnxn’"p, Cp G Rnj/pxn, Dpi(; G Rnvpxn™P 
(n,nWp are even). xp represents a vector of plant variables and wp is a quantum 
noise, u is a control input and ßu(t) = Ccx c(t) is the signal part of u{t). z(t) is 
the performance output. Let initial values xp(0) =  xpo satisfy the commutation 
relations xpox Jpn — {xpoxpQ)J = 2z0np. We assume that 0 ^  = Wp2t Wp- with 
dwp(t)dwp(t)T = FWpdt.

Construct a quantum controller given by

dxc(t) = Acx c(t)dt + Bcidwci(t)

+BC2dwC2(t) + BC3dyp(t), (5.5)

du(t) — Ccx c{t)dt + DcdwCl(t), (5-6)

where Ac G Rnxn, BCl G Rnxn"ci , BC2 G Rnxn”c2 , BC3 G Mnxn^3, Cc G Rn“xn, 
Dc G RnuXn«;c1 ( tlWĉ = nu, nWc2 — n, nWc3 = nVp are even). xc represents a vector 
of controller variables of the same order as xp{t). The commutation relation for 
xc(t) satisfies

xcxTc -  (xcx l Y  = 2z0nc,

where 0 nc is an arbitrary anti-symmetric matrix. The quantum Wiener distur­
bance vectors wCl, wC2, wp are independent of each other and satisfy the following 
relations

[dwci(t),dwci(t)r] = {FWci -  F^ci )dt = 2iQWcidt, 
[dwC2(t),dwC2{t)T] =  (FWC2 -  F^c2)dt =  2iOWc2dt, 

[dwC3{t),dwcl{t)r] = {FWc3 -  F ^ ) d t  = 2iOWc3dt,

where FWci, FWc2, FWc3 are nonnegative definite Hermitian matrices and their cor­
responding , 0 Wc2, ©„, are skew~synunetric matrices. A physically realizable 
quantum controller (5.5) should require its system matrices AC1 F Cl, BC2, BC3,CC 
to satisfy the following conditions:

4 0 n c + F>ncATc + BClQWci B tCx + BC20 Wc2Bj2 + BC3QWc3Bj3 = 0. (5.7)

BClOWcDTc = - O ncCTc , (5.8)
Dce Wci D' = QWC1. (5.9)

Interconnecting systems (5.4) and (5.5) gives

dx(t) = Ax(t)dt + Bdw(t), 

z(t) = Cx(t), (5.10)
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where x —  \xl x r}! .w — \ wT w1 }1. A =
A R C

, B =L p  C  J ' L y C l  C 2 J  ' BC3 Cp Ac
Bpw Bpu Dc 0 

Bcs Dpw BCI Bc 2
, C = Cpz DpzCc . Along the line of [54], the

infinite-horizon LQG cost can be defined as

Joo = lirri sup -  /  (z(s)T z(s))ds 
£-> + oo t J0

1  0
— lim sup -  / Tr(C1 CS(t))ds

£->-+oo t Jo

= Tr(CTCS), (5.11)

where the symmetric matrix S  solves the following Lyapunov equation and the 
solution is unique.

AS  + S A T + B B t = 0, (5.12)

where S < P~{ and the symmetric matrix P is shown in (5.1)-(5.2).
In the next section, we will focus our attention to solve the following problem: 
Problem 5.1: Given a cost bound parameter 7  > 0, and design a quantum 

controller of the form (5.5) satisfying the following statements:

1 . There exist symmetric matrices P > 0  and Q as well as a general matrix F 
satisfying (5.1)-(5.3).

2. Joo < 7-

3. The conditions (5.7)-(5.9) should be satisfied.

5.3 Q u a n tu m  co n tro lle r  sy n th es is

In this section, we will propose numerical procedures based on extended LMI 
approach to design coherent quantum controllers, which can solve Problem 5.1.

5.3.1 C ontroller p aram etriza tion

In order to fit Problem 5.1 into extended LMIs frame, let us redefine our plant 
below without changing the structure of the closed-loop system (5.10)

dxp(t) Ap.i’p(t )dt ~\~ BpUßu{i) T BpWduip(t ),

dy(t) = CpXp{t)dt + DpWdwp(t), 

z{t) = Cpzxp(t)dt +  Dpzßu(t), (5.13)
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where Wp w, DpW [BpW BpU Dc 0], Cp [0 0

Let us redefine our controller as

Cp]T, and Dpw=
I  0 
0 /  
0 0

dxc(t) =  A cx c{t)dt +  B cdy(i),

ßu{t) =  Ccx c(t), (5.14)

'C2 }where Bc =  [BCl Bc

To remove the nonlinear terms in (5.1) and (5.2), we now follow the ideas of 
[114], [115] by introducing n x n general matrices X. Y .U , V.

Let K  =
A c Bc 
Cc 0

, F =

/ "
and F

-

I X
0 0 u

X  *
u * and F  1 =

Y T * 
V T *

. F
Y T
V T

can be inferred from F lF  =  I. Then, we have

FT, = T2,

where T,
I Y T
0 V T

transformation

and T2
X  /  
U  0

Define the following nonlinear

A c B c ' V Y  Bpu
K

U 0 "

C e 0 0 I _ Cpx I

+
Y
0

a 7 X  0

N  J  
J T H

T lP T u

S =  Y X  +  V U .

(5.15)

(5.16)

(5.17)

where A c =  Y  APX  +  B cCpX  + Y B puCcV  +  V/1CU .B C =  C c =  CcU. 
N. H  are symmetric matrices and J  is a general n x n matrix. Performing con­
gruence transformations on inequalities (5.1) and (5.2) with d iag (7 \,7 \, In) and 
diag(7\, 7n), respectively, we obtain new inequalities
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ApX-\- BpuCc 0 0 0 0
0 Y  Ap-\-~BcCp (•)T ( • f (•)T
0 Ap -  ST+ J - X  -  X T (•)T (■ r
0 Y A p +  B cCp- Y T +  H

C
D11 - Y (■)T

0 (Y  Bpw + ~BcDpw)T B Tpw (Y  Bpw -(- B c Dpw)T 0

+

(ApX + Bjn Cc)T

-T

/n  +  J T

APX + BpuCc — X T +  N

n T^pw
N
J T

( ■ ) T

(Y A p+ B cCp)T 
0 
0 
0

(•)T (')T '
H  (-)T

( • f  (')T ( ') T1
0 0 0

- X - X T 0 0
- Y r  0
0 - I r

< 0 , (5.18)

CpzX  +  DpzCc Cpz Q
> 0.

T r(Q) < r

(5.19)

(5.20)

Multiplying both sides of the left hand side of (5.7) with V  and V r produces 
new variables © nc =  V 0 ric, B c. =  V B Ci (i = 1,2,3). Then, conditions (5.7)-(5.9) 
become

( - a cu - ‘ + (bC3cp + Y / y x t r 1 + y
+ 0 „ c(A cU - ‘ -  (B C3Cp +  Y A P)X U  -  Y BmCc)

3

+ ^ B C|e rocBcl' = 0 ,

T

i = l

B ci e.„clD j  =  - 0 n<;C j,

DcQWci o ' = 0,„C1.

(5.21)

(5.22)

(5.23)

If there exists a upper-bound 7 and matrices A c, B c, C c, Dc, X. Y . S, N , J . 
H . V , U, Q satisfying conditions (5.15)-(5.23), then matrices Ac, Bc and Cc of a 
quantum  controller of the form (5.5) can be obtained as

Cc =  CcU->. 
B„ =  V ^ 'B ,

Ac =  V - ‘(A C -  Y A PX  -  B cCpX ) U - ‘ -  V ' Y B ^- 1  X T ’ - 1 '
p u ^ c -

(5.24)

(5.25)

(5.26)
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5.3 .2  N u m e ric a l o p tim iz a tio n  p ro c e d u re s

Our Problem 5.1 can be formulated as minimization of the LQG cost subject to 
constraints including LMIs and additional nonlinear constraints which are related 
to rank conditions [54], [119]. In the following we present numerical algorithms 
based on extended LMI approach. The nonlinear constraints (5.7)-(5.9) make 
proposing numerical algorithms for solving Problem 5.1 very challenging, which 
differs quantum LQG problem from that of conventional LQG.

Numerical Procedure 5.1: To seek a fully quantum controller, we will allow 
matrices Onc to be arbitrary skew-symmetric matrices but invertible. Let Dc = /
and Ow = d ia g ^ ( J ) ,  i = 1,2,3. For simplicity, we choose U = I and hence

1 2

V = S -  YX. Then, suppose ZXl = Ac, ZX2 = BCl,Z X3 = BC2, ZX4 = BC3, ZX5 = 
Cc,Zx6 = 0 nc,ZX7 = X r,ZX8 = Y, ZX9 = S. Introducing appropriate matrix 
lifting variables ZVI, ZV2, • • • , ZUl6 can linearize conditions (5.21) and (5.22). De­
hne a symmetric matrix Z of dimension 26n x 26n as Z = V V r , where V  = 
[/ Zl■■■ Z l  ZlZ£JT, Zvt = YX, =  V 0 n„ =  V,
Z.,. — Y A„ +  B,„,On, ZVK — Y Bpu, Zv6 — VhCc! , ZV7 — (YAp + BC3CP)X, ZV8 —
AcVh' , Z„9 = YBp„(VhCcT)T, Z„10 = (YAP + BC3Cp)XVh' , Zvn = BC10,
Z(;12 BClO
zvi6 b C30 u

it)Cj B ei i Z V13 B Co 0 ^ 5 Z x\4 B C2O tXc2B C2
;c B C3/ . Then, we have the following set of addi

Z >  0; — ZXi Z £  — 0;

Zo,0 I-nxn 0, Z vg — Z v5 Zy6 =  0;

z x6 +  Z x6 =  0;

cTdiO
N

Zy 1 ZX8ZX7 0, Z V11 -  ZX2d i a g ^ ( J )  2
Z V2 ~  Z X g  +  ZVl = 0; 7  — 7  7 T — n-^Vl2 *JVuZJX2

ZV3 +  ZX2Z j6 =  0: ZX13 -  ZX3d i a g ^ ( J )  
2

7  —7  A  —7  C  —D-£JV4 ZJX4K-̂ p 7  — 7  7 t — n-^«13^X3

Zy3 ZX8 B pu 0, ZU15 -  ZX4d ia g ^ . ( J )  2
ZX6 — ZX3Z j5 =  0;

— Z v4Z x7 =  0;

7  — 7  7 t — n-^Vie ^«15^X4

B C30 u;C3

(5.27)

(5.28)

and a rank constraint

rank(Z) < n.

Conditions (5.21)-(5.22) for physical realizability can be expressed as

(5.29)

—Zva + Z,IO + ZVQ + z,,„ + z,vio + Z v l0 + Z V12 + Z’Xi4 + ZVl6 — 0, (5.30)
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Zvn “I“ ZVR — 0. (5.31)

If we can employ a semidefinite programming to solve the feasibility problem 
with constraints (5.3), (5.18), (5.19) and (5.32)-(5.35) in which decision variables 
are Z  and Q , Problem 5.1 is solvable. Then controller matrices can be built as 
(5.24)-(5.26).

Numerical Procedure 5.2: To achieve better optimal control performance 
and seek a fully quantum controller, we will set 0 nc to be an arbitrary invert­
ible skew-symmetric matrices and allow Dc to be an arbitrary symplectic ma­
trix. Let = d ia g ^ ( J ) ,  i = 1,2,3. For simplicity, we choose U = I  and

1 2

hence V = S -  YX. Then, suppose ZXx =  Ac, ZX2 =  BCl,Z X3 = BC2,Z X4 = 
B C3,ZX5 = Cc, ZX6 =  ©nc,ZX7 = X7, ZX8 = Y, Zxg =  Dc. Introducing appro­
priate matrix lifting variables ZVl, ZV2, - • ■ , ZV2X can linearize conditions (5.21)- 
(5.23) as well as nonlinear terms Y B puDc and (YBpuDc) 1 in inequality (5.18). 
Define a symmetric matrix Z of dimension 32n x 32n as Z — VVQ  where 
V = [I ZTXl . . .  Z jio Z l  . . .  Z l f ,  ZVl = YX, ZX2=V , Zv = \ Q nc = 
Vh, ZV4= Y A P + B C3CP, ZV5—Y B pu, ZX6= V hC / ,  ZV7 — (Y A p + BC3CP)X, 
ZV8=AcVh7, Zvg=YBpuiVhCc1) [ , ZV10= (Y A p + BC3Cp)XVh/ , Zvu=BClOWci, 
Zv\2 B ClQWcB Cl , ZVX3 B Ca0 Wca, ZVX4 BC20 (Xc2BC2 , ZUl5 BC3Ou,C3,
7  — p > t\ T 7 — D P )  7  -  n  ft  n T 7  — r  p\ n 7
^ V l 6  J-J C3 , -l 'C 3  5 ^ V l 7  J-y C K-y W c 1 l ^ ^ 1 8  J-y C w tUCi -L' c  5 ^ ^ 1 9  -L J C l v y tLiCl -L' c  5

ZX20 =  DjBpU, ZV21 = Y B puDc. Then, we have the following set of additional 
constraints:

Z  >  0; Zv io — ^ 7Z j3 —0;

^0,0 I n  x  n  0 5 ZX1 -  ZX2 diag nu^ (J )  =  0; 2
Zxs +  ^ Te =  0; 7  — 7  7 T — n-

Zv i — zx8 ZX7 0, ZXl3 -  ZX3d i a g ^  (J) = 0; 2
Zy 2 — S +  ZV1 — 0; 7  — 7  7 t  — n-

^ 3 +  ZV2 Z j6 =  0; ZX15 -  ZX4d i a g ^  (J )  = 0 ; 2
^«4-_ 7  4 _ 7  T' — n-

Z J X4 7  — 7  7 t — n-^Ul6 ^15  ̂ X4

Z,5 — Zx g  Bpu 0, ZX17 -  ZXlod ia g ^ L(J )  =  0
7 “  ZvzZXb = 0; 7  —7  7 7 — n-^V\g ^^17^X10 ~  U’

Zy7 — ZV4ZXj — 0; 7  —7  7 T — n-

00 ~  Z x X z =  0; 7  7 7 RT — ft-^20 ^Xio PW_
Zi,g -  ZVbZ TV6 = 0; Zu2i - Z X8ZJ2o =  0;

(5.32)
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and a rank constraint

rank(Z) < n. (5.33)

Conditions (5.21)-(5.23) for physical realizability can be expressed as

- Z Vs + Z^8 + ZV9 + Z^9 + ZVl0 + Z^lQ +  ZVl2 + ZV14 +  ZVl6 = 0, (5.34)

Zv lg + ZV6 — 0, (5.35)

ZVl8 — d ia g ^ ( J )  = 0. (5.36)

Extended LMI constraints (5.3) (5.18), (5.19) can be reexpressed as

( A ^ J 7 +  BpuZx 5)T ( - r (,)T (•)T (,)T -

% ( Z XhA p 4- Z X4C P)T f \ T (,)T ( • f
~ Z X7 +  N J ~ Z X1 (■V (•)T +

JT
+  H

- s (,)T

0 ( \Zx2 Z x 3 Zx  4 ] B p u )T 0 (IZX2 Z X3 Z X4\D pw)T 0

A p Z x 7 +  B m z x5 (•)T (•)T (■)T (■)r
Z x i Z XhA p T Z X4Cp (,)T (,)T ( . ) T

A p ZX7 T B puZ Xb A p -  ST (•)T ( . ) T <0, (5.37)
7 — J1 n Z x8 A p T Z x j Cp - I n ~ z xs (,)T

B Tpw ([ Z Xy Bpuj Z V2 0])T B pw {[Zx , B pw Zy2l 0])T ~ I n

N (■)T (')T '
JT H  (-)r > 0 , (5.38)

_ Cpz Z X7 +  D pzZ Xb C vz Q

Tr(Q) < r (5.39)

If we can employ a semidefinite programming to solve the feasibility problem 
with constraints (5.32)-(5.39) in which decision variables are Z, N, J, S, H and Q, 
Problem 5.1 is solvable. Then controller matrices can be built as (5.24)-(5.26).

Our numerical procedures can be solved based on Yalmip [116], SeDuMi [117], 
and LMIRank [118], [119]. The LMIRank solver can only solve feasibility prob­
lems and uses a local approach to address the non-convex rank constraints, hence 
it is essential to find proper starting points for our algorithms [118], [119].

In our two procedures, 0„c is allowed to be arbitrary antisymmetric matrices. 
However, as pointed out in [32], [81], [84], we cannot build a linear quantum 
stochastic controller as a suitable network of basic quantum devices if it is not in 
a standard form in the sense of Definition 3.1 proposed in Chapter 3. Thus, we 
need to transform the quantum controller into a standard form once it does not 
satisfy conditions in Definition 3.1.



78 CHAPTER 5. EXTENDED COHERENT QUANTUM LQG CONTROL

Theorem 5.1. Given an arbitrary real skew-symmetric matrix Onc (nc > 2 ) ,  
there exists a real nonsingular matrices SUc such that

enc = Sncdmg n.(J)Sl.(5.40)

Then we have

Äc =  S^A cS*., (5.41)

Be, = S ^ B Ci, (5.42)

Cc =  CcS nc. (5.43)

Dc =  D(5.44)

Furthermore, if the original closed-loop system (5.10) is asymptotically stable, the 
closed-loop system of the form (5.10) with a new quantum controller built by Ac, 
Bc, Cc, Dc is still asymptotically stable and its LQG cost is the same as original 
one.

Proof. The similar proofs of relations (5.40)-(5.43) can be found in [104] and 
hence is omitted here. Substituting (5.40)-(5.43) into conditions (5.7)-(5.8) with 
some algebraic manipulations gives

Tcdiagi^(J) + diagn±(J)Äf + Bc, diag»mCl (J)B!.[ +

ß C2d ia g -^  (J ) B f  + B ^ d ia g ^  (J ) B f  = 0, (5.45)
2 2

j5Cid i a g (J )D (r = —diagse.{J)Cj. (5.46)
2 2

By applying similarity transformation F = diag(/, S ~ l) to A, B  and C,  we have

a.

i__ r  r r_1 = Ap Ft r

b C3c p Ac BCjCp

-----1o
T

PhII
<cq Bpyj B pu Dc  13 = Bpxjo BpuDc

^C3 F)pw B c i  B C2 B C3 DpW B Cl

C = Cpz DpZC c r - 1 = c ,oz a ■g P
’

(5.47)

(5.48)

(5.49)

From (5.47), we can see that the new closed-loop system of the form (5.10) 
with A,B, C, x and z replaced by A,B. C. = r a n d  z =  Cx  is asymptotically
stable. Multiplying the left and right hand sides of each term in (5.12) with 
and r '  gives

r/ir-'rsr7' + rsr7T_T.47TT +
is  + s iT + b b t = o,
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where S  = r S r T
The LQG cost for the new closed-loop system of the form (5.10) is given by

1
Joo — lim sup- / (z(s)Tz(s))dst^+oc t Jo

i r l _ _ .
= lim sup- /  Tr(C1 CS(t))ds t->+o° t J0
= Ty(Ct CS)

-  Tr(CTCS') =  Joo. (5.50)

This completes the proof. □

5.4 A n  ex am p le

The linear quantum plant below is studied in [54, Section 8],

dxp(t) =
0 0.1

- 0.1 0

+
0 0 0 0
0 - 0.2 0 - 0.2

dy{t) =
0.2 0
0 0

xp(t) +

0 0 
0 - 0.2

dwp(t),

0 0 0 " 

1 0 0

du(t)

dwp(t). (5.51)

For comparison with results in [54, Section 8], we work in Matlab using the 
same Yalmip prototyping environment and the same semi-definite program solver. 
Then applying our Numerical Procedure 5.1 with 7 = 5.4 proposed in the 
Section 5.3 to the plant (5.51), we get the following solutions:

A
-0.0265 -0.2471 
0.0665 -0.1558

B ei
0.0835 -0.5259 
0.1740 -0.0578

B C2 1 0 - 12
-0.1212 -0.0865 
-0.0785 -0.0100

B C3

0.7786 -0.1680 
0.7468 -0.0383

Cc =
0.0578 -0.5259 
0.1740 -0.0835
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Dc =
1 0 
0 1

Let us first check if the above results solve Problem 5.1. The right hand sides of

(5.7) and (5.8) take the numerical values 10 13
0 0.6040

-0.6040 0
and 10 13 x

0.3064 -0.4412
-0.1275 -0.1837

, respectively, which indicate the quantum controller is

physically realizable. The eigenvalues of the closed-loop system are —0.0281 + 
0.1030z, -0.0281 -  0.1030z, -0.0631 + 0.0901z, -0.0631 -  0.0901z, so the plant- 
controller system is Hurwitz stable. The resulting LQG performance is 4.1651, 
which is a little better than the LQG cost 4.1793 in [54].

Applying Numerical Procedure 5.2 with 7 = 5.4 proposed in the Section 
5.3 to the plant (5.51), we get the following solutions:

Ac
-0.0265 -0.2471 
0.0665 -0.1558

Hc 1
0.0835 -0.5259 
0.1740 -0.0578

Bc 2 10-12
- 0.1212
-0.0785

-0.0865
- 0.0100

DC3

0.7786 -0.1680 
0.7468 -0.0383

0.0578 -0.5259 
0.1740 -0.0835

Dc =
1 0 
0 1

The right hand sides of (5.7) and (5.8) take the values 10 13
0 0.6040

-0.6040 0

, respectively, which indicate the quantum con­

troller is physically realizable. The eigenvalues of the closed-loop system are 
-0.0281 + 0.1030z, -0.0281 -  0.1030z, -0.0631 + 0.0901z, -0.0631 -  0.0901z, so 
the plant-controller system is Hurwitz stable. The resulting LQG performance is 
4.1601, which is a little better than that of Numerical Procedure 5.1.

and 10- 1 3 0.3064 -0.4412
-0.1275 -0.1837
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5.5 C o n c lu d in g  re m a rk s

In this chapter, we propose two new numerical procedures based on extended 
LMIs approach and new physical realizability conditions, which can provide more 
parameters for the design of a physically realizable quantum controller of the 
standard form and give less conservative solutions to quantum LQG problem. 
For comparison, we reinvestigate the example given in [54]. It turns out that our 
optimization procedures proposed in this chapter may be useful in the optimal 
design of quantum optical networks.
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C h ap te r 6

O ptim al C on tro lle r D esign for 
Q uan tum  M easu rem en t-based  
Feedback C ontro l System s w ith  
Feedback-loop T im e D elay

One is often confronted with time delay mainly originated from the transition 
delay of signals in a quantum feedback control loop, which may cause quantum 
feedback control systems unstable. The effect of time delay on the control per­
formance plays a peculiar role in quantum mechanics. It has been shown that 
time delay is often a source of instability of feedback control systems, which has 
received considerable attention in the past years [88], [90], [112]. This chapter for­
mulates a problem of quantum feedback control of linear stochastic systems with 
feedback-loop time delay and then proposes a numerical procedure for optimal 
controller designs to solve this problem.

6.1 Introduction

Although the time delay required in quantum feedback control loops as shown 
in Figure 6.1 is vanishingly small and thus often neglected in previous works 
[29], [54], [81], [83], it can have an effect on system performance in real experi­
ments. So ignoring the time delay may lead to design flaws and incorrect analysis 
conclusions. Furthermore, as shown in [32] and [84], mixed quantum-classical 
linear stochastic systems are, in general, represented by Linear Stochastic Differ­
ential Equations (LSDEs) which have Markov property (the memoryless property

83
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of a stochastic process), where the quantum-classical nature is captured in the 
matrices specifying the commutation relations of the system and signal (e.g. bo­
son field) variables. As mentioned in Chapter 1, the problem of H°° control 
of mixed quantum-classical linear stochastic systems has been discussed in [29]; 
the problem of LQG control of mixed systems described by LSDEs has been 
investigated in [74]. However, theoretical ways to study the problem of quan­
tum measurement-based feedback control systems with feedback-loop time delay 
described by LSDEs have not been addressed so far. In this chapter, we shall 
investigate this problem in a systematic way.

classical
input
signal

measurement

classical
measurement
signal

classical
controller

quantum
plant

Figure 6.1: Quantum measurement-based feedback control.

The stability criteria in classical control field are often classified into two types: 
delay-independent criteria and delay-dependent, criteria [86], [120], [121], [122], 
[123]. In the first case the stability property is irreverent to the size of the delay, 
whereas in the second one the stability property is a function of the delay size, seen 
as a parameter. Generally speaking, the latter ones are less conservative than the 
former ones, while the former ones are also useful when the effect of time delay is 
small. However, the developed delay-independent (or delay-dependent) stability 
criteria in classical control theory cannot be directly applied to quantum feedback 
control systems, so a quantum version of delay-independent stability criterion 
with an upper bound on a cost function is derived based on quantum ltd rules 
in this chapter. Moreover, controller designs based on the quantum version of 
delay-independent stability criterion suffers from severe limitations since some 
nonlinear and non-convex conditions, and many decision variables are involved 
in design procedures. We thus propose one numerical procedure for classical
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controller designs to overcome the limitations.
This chapter is organized as follows. Section 6.2 presents a model of closed- 

loop plant-controller systems with time delay. Section 6.3 develops a sufficient 
condition for the stability of quantum measurement-based feedback control sys­
tems subject to feedback-loop time delay, and an upper bound on a quadratic 
cost function is derived. Section 6.4 proposes one numerical procedure for quan­
tum feedback controller designs. Section 6.5 presents an example to illustrate our 
numerical procedure. Finally, Section 6.6 gives the conclusion of this chapter.

6.2 C losed-loop  p la n t-c o n tro lle r  sy stem s

This section presents our plant and controller models as well as the set-up of a 
closed-loop plant-controller system with time delay.

Consider a quantum plant to be controlled described by noil-commutative 
stochastic models of the following form

dxp(t) = Apxp(t)dt + BpwdWp{t) + Bpudu(t),

dyp{t) =  CpXp{t)dt + DpWdwp{t), (6.1)

where E Mnxn, Bpw E Rnxn-p, Bpu E Rnxriu, Cv € Mn^ xn, Dpw E Rn*pxn-p (n, 
nWp, nu and nVp are even). The plant matrices should satisfy physical realizability 
conditions. xp represents a vector of plant variables and wv is a quantum noise.

p  _pT
Suppose that Oyp = -~p yp = diag^yp (J) with dyp{t)dyp{t)1 — FVpdt. The signal 
u(t) is a control input of the form

du(t) = ßu(t)dt + du(t), (6-2)

where ßu(t) and ü are the signal and noise parts of u(t), respectively. If the 
quantum output signals yp(t) are measured by homodyne detectors (HD), classical 
signals ym(t) — G yp(t) are produced during these processes. The matrix G 
defined as before satisfies the following condition

G O ^G " =  0 (6.3)

with rank(G) < Ep, which corresponds to measurement processes.
Consider a classical controller given by

dxc(t) — Acxc(t)dt + Bcduc(t),

Vcify Gcxc(t), (6.4)
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where Ac G Mnxn, Bc G M.nXTlUc, Cc G Rn“xn. xc{t) represents a vector of classical 
controller variables. Assume that the quantum plant and the classical controller 
are initially decoupled such that xp(0)xc(0)/ — (xp(0)xc(0)] )7 =  0, and wp and 
wc are independent with each other.

Since time delay often happens in a feedback loop, a closed-loop system with 
a classical controller as shown in Figure 6.2 can be obtained by making the 
identification u(t) = yu(t) and uc(t) = ?/m(£), where quantum time-delay signals 
yu{t) = 2/c(0) + fo T Vc{s)ds + wc{t) are produced by displacing the vectors of 
vacuum quantum fields wc via modulators. Interconnecting systems (6.1) and 
(6.4), we have

dx(t) = Ax(t)dt + Adx(t — r)dt -I- Bdw(t), (6.5)

where x [a? xJ}T,™ = WwcV and its dimension is 2m, 0, _  Fw-F'I

diagm(J) with dw(t)dw(t)1 = Fwdt. The matrices A —
Ap

BrGCr
Jn Xn

Ar
Ah =

n  nLJpa^-y c B = Bpw
BrGD

Br
pw  u n x n

Quantum 
noise Wp(/)

Quantum 
noise We(t)

Quantum 
output >^(0

Measurement
signals

C lassical
output
yi o

C lassical
controller

Quantum
plant

Figure 6.2: A closed-loop system with a classical controller. HD represents a 
homodyne detector for measurements; Mod represents a modulator.

6.3 D e la y -in d e p e n d e n t s ta b ili ty  c r ite r io n

So far we have presented a description of the plant-controller system (6.5) to be 
used for controller designs. In this section, we derive a delay-independent stability
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criterion as well as an upper bound on a cost function below for (6.5), suitably 
adapted to the quantum context.

The following lemma and definition will be used in the proof of Theorem 6.2.

Lemma 6.1. If there exists a real valued function S(t) of time t satisfying the 
differential inequality

— + cS(t) < A, (6.6)

where c and A are positive real numbers, then inequality

S (t) < e-cfS(0) +  -  (6.7)
c

holds, which implies that S(t) is bounded for all t > 0.

Proof. Integrating the both sides of (6.6), we obtain

t-\~h

S(t + h) — S(t) + c j  S(s)ds < Ah, (h > 0).
t

From the above inequality, we can infer that

— ~ cS(t) + A,

which implies that S(t) is bounded for all t > 0. Suppose that 'pjp + cS(t) = r 
(■r < A). Solving the above equation, we have S(t) = e~ctS(0) + < e~ctS(0) +

□
C

Definition 6.1. A linear system is said to be bounded stable if there exists a real 
valued function S(t) =  (V(t)) satisfying inequality (6.6), where V(t) represents 
an abstract internal energy for the system at time t.

Assume that system (6.5) is bounded stable in the sense of Definition 6.1. 
Then we can associate a infinite-horizon quadratic cost function

Joo = lim — /  ([x(s)1 x(s — r)7 }R,[x(s)] x(s — r ) r]I )ds  (6.8)tf^+oo tf J to

with R > 0 as a performance measure for (6.5). Later we will find a minimum 
upper bound for the cost function (6.8).

The following theorem relates the stability of the system (6.5) to certain linear 
matrix inequalities.
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<  0 . ( 6 . 10)

Theorem 6.2. The system (6.5) is bounded stable in the sense of Definition 6.1 
with

S(t) = (V(t)) = (^e~ctx{t)1 Px(t) + e~ct x(s)1 Qx(s)ds^ (6.9)

if there exist real matrices P. Q > 0, satisfying the following linear matrix in­
equality

" ATP + PA + Q PAd 
ATdP - Q

Furthermore, suppose all quantum noises are canonical (hence Fw=l2m+idi&gTn(J) 
and then the cost function (6.8) should satisfy

./<*, < Tt(Bt PB). (6.11)

Proof. We construct a Lyapunov-Krasovskii functional defined as in (6.9). Ap­
plying quantum ltd rule to (6.9), we have

d(V(t))
= e~ct (dx{t)1 Px(t) + x(t)1 Pdx{t) + dx(t)1 Pdx(t) — cx(t)TPx{t)dt) + 

e~ct x{t)rQx{t ) — x(t —  t ) t Qx{t — r) — c x(s) 1 Qx(s)ds^ dt

— e~ct(x(t)T[Ä] P+PA]x(t)+2x(t)1 PAdx(t — r)-\-x(t)7 Qx(t) — cx(t)TPx(t)) dt — 

e~ct Vc
\  Jt-^r

=e~ct(x(t)I[A1 P + P A\x(t) + 2x(t)1 PAdx(t — r) + x(t) rQx(t) — cx(t)1 Px(tf) dt + 

e~Ct PB]jkdwk(t) — x(t — t ) 1 Qx ( t - r ) + c £  x(s)1 Qx(s)ds^jdt

= e~ct ( x f t ^ A 7 P\-PA]x(t)-\-2x(tf P A d x ( t -T )—cx(t)TPx(t)-\-Tr(B7 PBFwf)dt+

(6.12)

c I x(s)1 Qx{s)ds—x{t — r)7 Qx(t—T)dt+Tr (die(t)7B 1 PBdw(t))^ dt

e ct (x(t)TQx(t) — c I x(s)TQx(s)ds—x(t — T)TQx(t—r))dt,
t —T

where (dw{t)) =  0 and {dw(t)dw(t)' ) — Fwdt. 
From (6.12), we get that

! f iM  + o mm
(e ct (xi fYlA1 P-\-PA]x(i)-\-2x{t)7 PAdx{t — r)+x(t)rQx(t))) +

Tr(BTPBFw)—cx(t)TPx(t)+ cxl (t)Px(t) — c x(s)TQx(s)dsj^  +

I x(s)1 Qx(s)ds — x(t — T)rQx(t — r)
J  t - T
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—(e ct(rc(t)7[A7 P +PA  + Q]x(t) + 2x(t)1 PAdx(t — T) — x(t — t )1 Qx(t — r) + A)) +

e ct I [x(t)T x(t — r)vTl ATP + PA + Q PAd

-QATdP
[x(t)J x ( t - r ) 7]T+A I ) , (6.13)

where A = Ti' (B1 PBFW).
Now suppose that (6.10) holds. Then, we get

i^e ct[x(t)T x(t — t )t ] 

< e~ct\  < A,

ATP + PA + Q PAd 
ATdP -Q

[x(t)7 x(t — t )t }1 +e  ctX

(6.14)

where c > 0 and 0 < e ct < 1. Therefore, the system (6.5) is bounded stable in 
the sense of Definition 6.1.

R\ R 2From (6.13), we can infer that there exists a positive symmetric R — 

dehned as in (6.8) such that
Rn R:

- { V ( t ) ) < e - ct[x(t)T, x ( t - T ) T}
ATP p P A  + Q PAd

-QATdP
[x(t)T x(t — r) T iT

+e_ciA

< \x{t)T x{t — t)t ) 

<{ [ x( t ) T x ( t - T ) r]

< I  [x(t)T -  t)t ]

At P + PA + Q PAd 
ATdP - Q

'ATP + PA + Q PAd 
ATdP

R\ ~ R ‘i
3R l - R ,

[x(t)T x(t — t)t ]t +A 

x(t)r x(t — r ) r]TE\ j  

x{t)T x(t — r ) r]! + A ) . (6.15)

Integrating both sides of the inequality (6.15) from to to tf, we obtain

{V{tf ) -  V(t0))<  (A -  [i(s)'r x (s - T)T]fl[:r(s)T x(s -  r)T]T)ds. (6.16)

Combining the above proof with Lemma 6.1, we know that (V(t)) is bounded 
V t > 0. So, We can conclude that =  0 and — ̂ °— = 0 as tj  goes to Too.
From (6.8) and (6.16), we thus have the following relation by dividing the both 
sides of (6.16) by tf  and then taking the limit as tf  —> oc

J<x> < a = Ti (BrPB(I2m + idiagm(J)))
=  Tr (Br PB) + *Tr(ßr Pßdiagm( J)) 

=  Tr (BTPB),
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where the last equality follows from the fact that diagm(J) is a antisymmetric 
matrix with [diagm( J)]j,k — ~  1,1,0 and the matrix D 1 PB  is symmetric, which 
implies that T r(P7 PPdiagm(J)) — 0. Therefore, the corresponding guaranteed 
cost controller in the form of (6.4) is an optimal guaranteed cost controller in the 
sense that under this controller the upper bound on the closed-loop cost function 
(6.8) is minimized. □

In subsequent sections, we will focus our attention to solve the problem below.
Problem 6.1: Given a cost bound parameter A > 0, find a classical controller 

of the form (6.4) with controller matrices Ac, Bc, Cc such that the following 
conditions hold.

1. Condition (6.3) should be satisfied.

2. There exist symmetric matrices P > 0. Q > 0 satisfying (6.10).

3. An upper bound condition (6.11) should be satisfied.

Problem 6.1 can be transformed into a rank constrained LMI problem [54], 
[119], which can be solved based on Yalmip [116], SeDuMi [117], and LMIRank 
[118]. The details of rank constrained LMI problems for classical controller de­
signs will be solved in Section 6.4.

6.4 C o n tro lle r  designs

In this section, we will present a numerical procedure for classical controller de­
signs to solve Problem 6.1.

It should be noted that matrices A and Ad contain plant and controller ma­
trices. So the terms PA  and PAd as well as their corresponding symmetric 
matrices in inequality (6.10) make plant and controller matrices mixed together, 
which causes difficulties in controller designs. In order to separate the former 
from the later, we now extend the method proposed in [75] by introducing aux­
iliary variables N, M, X u Yu Y2, where M N T + AhY = 7n, JSpXi +  Y2M T = 0:

N  and M  are invertible and Ah, Y\, Y2 are symmetric. Let P — Yi N  
N T Y2

and

p n In Yi
0 nxn N T

with n  =
M T 0

In
nxn
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Performing congruence transformations on inequality (6.10) with transforma­
tion matrix diag(n,/2n), we have

n T 0 2 n X 2 n ATP +  PA + Q PAd n  o2nx2n
0 2 n x 2 n  ^ 2 n AdP 0 2 n x 2 n  -*2 n

UT{ATP +  PA)U  +  F  UTPAd 
ATdPU -Q

" AvX l +  X ,A TV Ap 0 0
a t Y\AP +  ApYi 0 0
0 0 o - q 2

(BpuCc)T (YxBpuCc)T -Q \ o
Fi A CT +  F2 0

A c +  F2  B cCp +  (B cCp)t +  0 Y\BpuCc
0 n - Q ,  0

0 0 0 - q 3

(6.17)

where A,. =  YiApX t +  N B CGCpX x +  B,; =  N B C Q =Q 1 Q'i
Ql O 3

f  =  nTgn = Pi f2
FT T 2 Qi

with F, =  X lQ1X 1 +  M Q lX 1 +  X 1Q2M T +

F -2 =  A'i Q i +  MQ'!,. The upper bound condition (6.11) can be rewritten as

Tr (BpwBpP!, A) +  Brm Bpm V) +  BcG Dpw( BCG Dpil, j7 !') ) +

Tr {Bpw(N B rG D pw)T +  B .G D ^ B ^ N )  <  7 . (6.18)

For simplicity, we choose M  =  / n and hence N  =  I n — Y\X\, X \N  +  Y2  =  0 

and A c =  Y\APX  1 +  N  BcGCpX \ +  N A C. Introducing appropriate matrix lifting 

variables and the associated equality constraints can linearize nonlinear condition 

(6.3) and nonlinear entries in inequality (6.17). Introducing appropriate matrix 

lifting variables and the associated equality constraints can linearize nonlinear 

condition (6.3) and nonlinear entries in (6.17)-(6.18).

Let ZXl =  Bc, ZX2 — C J , ZX3 =  X u ZX4 =  Yi, ZX5 =  Y2, ZX6 =  N , ZX7 =  N T, 

ZX8 =  G. Zxg — G 1, ZXl0 =  ZXll =  Q2 - Dehne a symmetric matrix Z  of 
dimension 25n x 25n as Z — V V T, where V  =  \In Z l  • • • ZT_ Z 7̂  • • • Z;T ]T , 

Zv 1 =  Y1X 1, ZX2 =  Y\BpUi ZV3 =  Y\BpuCCi ZVA — G 0 yp, ZX5 -- G 0 ypG T, ZX6 =  

G TB j  1 ZVl =  G 1 B jY 2, ZV8 =  ZV6Z jr , ZX9 =  A B CG, ZVl0 =  X i Q2, ZUn =  2^ A/-, 
ZXl2 =  Z Xl3 =  X 1Q 1X 1. The symmetric matrix Z  should satisfy the
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following conditions:

Z  >  0;

ZX3 ~ ZT„ = 0;
z.

x 3

z l  = o;
ZXl0 — Z jio — 0; 
ZVl —I T  ZX6 -  0; 
ZV3 — ZV2ZX3 =  0; 
ZV5 — ZV4 Z j9 =  0;

^xgZxl =  0;Z,
Zx8 — ZVJZX6 — 0;

^10 ~  ZX3 ZXu =  0; 
7 — 7 7T — n-Z ^ V 1 2  Z J X 3 X J X l Q  —  U ,

Zy\3 T Zxg 0,
^x8 -  ZT = 0;

Z[),0 fnxn 0, 
ZX4 ~ ZXA = 0;

^X6 —
ZVl —
ZV 2 “

Zx4 —
Zt,5 =

-J V 7

7 _77  ?,n

X 4

Z l  =  0;
z x7 l  = o
Zx§ Bpu 0i
ZX9Oyp =  0; 

0 ;

Zv6ZX5 — 0;

Zx6Z l  = 0;
ZX l l

z,X 13

-  ZX3Z l  =  0;
— ZVl2ZX3 — 0;

Zvu +  ZX5 — 0;

and a rank constraint

rank(Z) <  n.

(6.19)

(6.20)

Stability conditions are given as

ApZX4-\-ZX4Ap +ZVl3 AP+A J Onxn N __
1

Ap +  A c ZX4ApY Ap ZX4e z vw 0 7
/ - ‘ V 3 +

0 0 0 - z j n
(B puZ lY 7r ~ zx 11 0

Zv 10  +Zyw +  Q3 Zy 12 E ZXl J 0 0
( ZVl2 +  ZXn)T ZV gCPT (Z « c P)T 0 0

< 0 , (6.21)
0 0 ~ Z X 10 0
0 0 0 -Qa .

UTPU ZX4 

. In CSJ
 

^
 

8 
s

1 
1

> 0 , (6.22)

Q =
7^Xio
z L

Z in > 0 , 
Os

(6.23)

where Q3 is a symmetric matrix.
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An upper bound condition is given as

Tr ^BpwBpWZX5 + BpuBpUZX5 + Zvg 4- 2BpwDpWZ„9) < 7 . (6.24)

If we can employ a semi-definite programming to solve the feasibility problem 
with constraints (6.19)-(6.24) in which decision variables are Z, Ac and Q3, we 
have

A c =  Z 7 A 7 Zyg Cp ZX.A ) ,
Br — Z

Cr =  Z
X \  1

T

Remark 6.3. It should be noted that the above procedure with some 7 may 
give ill-conditioned solutions. Thus 7 has to be chosen carefully to generate a 
meaningful controller. Furthermore, the LMIRank solver can only solve feasibility 
problems and uses a local approach to address the non-convex rank constraints, 
so it is essential to find proper starting points for our numerical procedures [119]. 
Otherwise improper ones may also return ill-conditioned solutions. Sometimes 
imposing some additional conditions on the decision variables which lead to ill- 
conditioned solutions can help us quickly find proper starting points. When 
reasonable results are obtained by applying our procedure with new constraints, 
we remove the additional conditions, set the results as our starting points V 0 
and then use the procedure again with the original conditions to get final results. 
This fact will be illustrated by an example given in Section 6.5.

6.5 A n  ex am p le

In this section, we present an example to test our numerical procedure developed 
in Section 6.5.

Consider a quantum plant to be controlled

a. •s II - 1  0 
3 -1

xp(t)dt +
2 1 
4 3

dwp +
0 0 
2 -1

du(t),

dyP -
’ - 3  1

4 -2
xp(t)dt +  dwp, (6.25)

where the quantum plant matrices satisfy physical realizability conditions (3.30). 
Applying our numerical procedure to the quantum plant (6.25) with 7 =  2, we
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get the following solutions:

Ac
-12.7262 -1.8521 

3.7122 -0.1574
-5.7952 3.8640 
-1.3860 0.9239

0.0691 -0.0210 " ’ 0.0708 -0.5597 "
, G =  ID“ 14

0.1115 -0.0469 0.1626 -0.0860

Clearly, the m atrix G =
G n  G 12 

G 2i G22
ingful). So an extra condition should

is ill-conditioned (not physically mean- 

3e added to the original conditions such
tha t Zxg( 1,1) =  G n  > 1. Then we employ a semi-definite programming to solve 
the feasibility problem with constraints (6.19)-(6.24) as well as the additional 
condition G n  > 1 and obtain reasonable solutions, which are set as starting 
points Vq. Applying our procedure again with constraints (6.19)-(6.24) and Vo, 
we can get the following solutions:

-545.8124 -552.1781 
130.8006 113.9618

, Pc -
-1.2601
-5.3781

3.0471
0.9453

-1.2055 -0.0643 
-2.4110 -0.1286 5 G =

-0.7362
-2.8301

0.4323
1.6618

' 13.9188 11.7573 1.0000 0

n Tp n  = 11.7573 52.8529 
1.0000 0

0
0.0886

1.0000
-0.0197

0 1.0000 -0.0197 0.0235

0.3315 -0.0927 -0.5801 -1.5521
-0.0927 0.0261 0.1623 0.4344
-0.5801 0.1623 1.0155 2.7169
-1.5521 0.4344 2.7169 7.2697

Now we check tha t if the resulting solutions satisfy the constraints listed in 
P roblem  6.1. The eigenvalues of (6.21) are —16.5055, —8.6424, —0.3882, —0.0001, 
—0.0001, —0.0001, —0.0001, —0.0001 and thus condition (6.21) is negative. It is 
easily checked tha t P  and Q are positive symmetric matrices, and G d ia g ^ fcl G 1 =

IO“ 12
0 0.7521

-0.7521 0
Furthermore, the upper bound is 1.9760 < 2. There­

fore, t le resulting solutions are reasonable for the classical controller designs.
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6.6 C o n c lu d in g  re m a rk s

In this chapter, we investigate a quantum measurement-based feedback control 
system subject to feedback-loop time delay. A delay-independent stability criteri­
on and an upper bound on a cost function are derived for such quantum feedback 
control systems with time delay. One numerical procedure is proposed for clas­
sical controller designs. An example is presented to test our procedure. These 
results are expected to give useful guidelines for the future quantum feedback 
control experiments with time delay.
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C h ap te r  7

H°° C ontro l of Q u an tu m  
Feedback C ontro l System s w ith  
Feedback-loop T im e D elay

In Chapter 6, we have proposed a numerical procedure to design a linear feedback 
controller that not only makes a quantum feedback control system stable but also 
guarantees an upper bound for the performance functional. In modern control 
theory, H°° control technique can also solve the problem of linear classical time- 
delay systems. This chapter deals with the H°° controller synthesis problem 
for a quantum measurement-based feedback control system with time delay in a 
feedback control loop.

7.1 Introduction

The last decade has witnessed the emergence of a fully developed theory for 
robust control in the form of H°° optimal control [124], [125], [126], [127]. The 
backbone of H°° synthesis is the small gain theorem [128], [129], [130]. The most 
promising feature of the H°° controller is the guaranteed stability margin that it 
provides in the face of a norm bounded perturbation [124], [125]. The problem 
of H30 optimal control of classical time-delay systems is studied in [131], [132]. 
As mentioned in Chapter 1, the H°° technique generalized from modern control 
theory has already been successfully applied to the area of quantum feedback 
control systems without time delay in recent years. An H°° synthesis problem for 
a class of linear quantum stochastic systems has been formulated and solved in 
[29]. The paper [56] presents an experimental realization of a coherent quantum

97
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feedback control system using H°° control theory. In [50], a coherent H°° control 
problem has been considered for a class of linear quantum systems described 
by complex quantum stochastic differential equations in terms of annihilation 
operators only. However, the problem of the H°° control for quantum feedback 
control systems subject to feedback-loop time delay has not been solved so far, 
where the plant is quantum and the designed controller is classical.

Therefore, this chapter is concerned with applying the H°° control technique 
to quantum measurement-based feedback control systems with feedback-loop time 
delay. The main contributions of this chapter are as follows. Firstly, we develop 
a linear model for a quantum measurement-based feedback control system with 
time delay. This model is a mixed quantum-classical system, which contains time- 
delay system variables. Secondly, the properties of our model such as stability, 
dissipation and gain are characterized in algebraic terms, which then lead to a 
new quantum version of the Bounded Real Lemma (BRL). Finally, we present a 
numerical procedure for H°° controller designs based on the new version of the 
Strict BRL developed in this chapter.

This chapter is organized as follows. Section 7.2 presents the set-up of closed- 
loop plant-controller systems with time delay. Section 7.3 investigates basic per­
formance characteristics such as dissipativity, gain, stability, etc for the model 
developed in Section 7.2. Section 7.4 proposes a numerical procedure to build 
a quantum feedback controller, which is illustrated with an example. Finally, 
Section 7.5 gives the conclusion of this chapter.

7.2 C losed-loop system s

In this section, we develop a model for a quantum measurement-based feedback 
control system with time delay, which will be used in the following sections.

Consider a quantum plant described by non-commutative stochastic models 
of the following form

dxp(t) = Apxp(t)dt 4- Bwdw(t) + BVpdvp(t) + Budu(t), 

dz(t) — Czxp(t)dt + Dudu(t) +  Dwdw{t),

dyp(t) = CpXp(t)dt + DVpdvp{t), (7.1)

where Ap G Rnxn, Bw G Mnxnu), BVp G Mnxn^ ,  Bu G MnXn“ , Cz G Rn*xn, 
Du G MnzXnu, Dw G R nypXUw, Cp G Mnypxri, DVp G RnypXTlvp (n,nwi nu, nVp 
and nVp are even). xp represents a vector of plant variables. w(t) represents a



7.2. CLOSED-LOOP SYSTEMS 99

disturbance signal of the form

dw(t) — ßw(t)dt + dw(t), (7-2)

where ßw(t) and w are the signal and noise parts of w(t), respectively; 0^  = 
w2i Cl! = Juml with dw(t)dw(t)‘ — F^dt. vp represents additional quantum noises 

and = JnyP with dvpiißdvpit)1 =  Fvdt. The signal u(t) represents a
control input of the form

du{t) = ßu(t)dt +  du(t), (7-3)

where ßu{t) and ü are the signal and noise parts of u(t), respectively. z{t) rep­
resents a performance output. Classical signals ym{t) = G yp{t) are produced by 
the quantum output signals yp(t) being measured via homodyne detectors (HD) 
where the matrix G has been defined in Chapter 6, which satisfies the following 
condition

G e ^ G 7- = 0 (7.4)

with rank(G) < yy.
Consider a classical controller given by

dxc{t) =  Acxc{t)dt + Bcduc(t), 

yc(t) =  Ccxc{t), (7.5)

where Ac G Mnxn, Bc G Mnxn“c , Cc G Mn“ xn. xc(t) represents a vector of classical 
controller variables. Assume that the quantum plant and the classical controller 
are initially decoupled such that £p(0):rc(0)T — (xp(0)xc(0)r )7 = 0.

The closed-loop system with a classical controller as shown in Figure 7.1 is 
obtained by making the identification u(t) = yu{t) and uc(t) = ym(t), where 
quantum time-delay signals yu{t) =  yc(0) +  T yc(s)ds T  wc(t) are produced by 
displacing the vectors of vacuum quantum fields wc via modulators. Intercon­
necting systems (7.1) and (7.5), we have

dx(t) =  Ax{t)dt 4- Adx(t — r)dt + Bdw(t) + B vdv(t),

dz(t) — Cx{t)dt+Cdx(t  — T)dt+Ddw(t)+Dvdv{t), (7.6)

where x — [xp x7}1 represents a vector of closed-loop system variables; w is de­
fined as in (7.2); v(t) = [vp(t)' wc(t)T}7 represents additional noise sources. As­
sume that w, vp, wc are independent with each other. We define ßz(t) =  Cx(t) +
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Cdx{t — r) + Dßw(t). The closed-loop system matrices A
Ap

BcGCp
h i x n

Ar
0 BuCc

, B = Bw , By = B Vp By
0 0 0 BcGDVp 0

[0 DuGCc\, D — Dw, Dv — [0 DuG].

Disturbance
quantum 

noise W(t)
Quantum 

noise Wc(t)
Quantum 

output yjd)

Measurement
signal

Classical
output
yd t)

Additional quantum 
noise Vp(l)

Quantum
plant

C lassical
controller

Figure 7.1: The closed-loop system with a classical controller. HD represents a 
homodyne detector for measurements; Mod represents a modulator.

7.3 Perform ance characteristics

The purpose of this section is to discuss basic performance characteristics such 
as dissipativity, gain, stability, etc., for a quantum measurement-based feedback 
control system with feedback-loop time delay of the form (7.6) developed in Sec­
tion 7.2.

7.3 .1  D iss ip a tiv ity  o f tim e-d ela y  c losed -loop  sy stem s

Since a supply rate is a function of input and output and the output z(t) of 
the system (7.6) contains time-delay system variables, the delay terms should be 
considered as an argument of supply rate. In order to define dissipation for the
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system (7.6), we use the quadratic supply rate below 

r(ßz(t),ßw(t)) = [x(t)T x(t -  t )T ßw{t)T]W 

where W  is a symmetric matrix of the form

x(i)
x(t  —  t ) 

ßw{t)

VF =
W\i W\2 11 [3 
Wfi2 1̂ 22 VF23
w?3 wq3 vk33

For the system (7.6), we define a candidate storage function as

V (t ) =  x ft)1 P x(t),

(7.7)

(7.8)

(7.9)

where symmetric matrices P  is positive definite.

Definition 7.1. (Dissipation) The quantum measurement-based feedback control 
system with feedback-loop time delay is said to be dissipative with respect to the 
supply rate (7.7) if there exists a nonnegative-definite functional V(t) defined as 
in (7.9) such that

{V{t))) ~  (V'(O)) + /  (r(ßz(t),ßw(t)))ds < At, (7.10)
Jo

for all t > 0. Also, the system (7.6) is said to be strictly dissipative if there exists 
" Wn  0 0

a matrix W  =  0 fF22 0 with Wn > 0, W22 , W33 > 0, such that
0 0 IT33

inequality (7.10) holds with the matrix W  replaced by matrix W  + W .

Theorem 7.1. The quantum measurement-based feedback control system with 
feedback-loop time delay is dissipative with respect to the supply rate (7.7) if and 
only if there exists a real positive definite matrix P such that the following matrix 
inequality is satisfied

ATP + PA + Wn PA d + W l2 PB + Wl3 
ATdP + Wf2 W22 W23
dtp + w?3 wq3 Was

<  0 . (7.11)

Furthermore, the system (7.6) is strictly dissipative with respect to the supply rate 
(7.7) if and only if there exists a real positive definite symmetric matrix P such
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that the following matrix inequality is satisfied

’ A TP  + P A  + W u  + W n  P A d + W u  P B  + W l3
Ajf P  +  IV  12 YL22 +  W/ 22 YY23

B TP  + W l  W.I  W33 + W33

Proof. Applying quantum ltd rule to (7.9), we have

<  0 . (7.12)

d (V(t)) = (dxifb)1 Px(t)  + x ( t ) ‘ Pdx(t)  + d x f t )1 P d x ( t ))

=  ([x(t)I{ATP + P A \x ( t ) + x{t)TP  A dx{t — t ) + xifi)1 P B ß w(t)) dt +

(.x(t  — t ) 1 A d Px(t )  + ßw(t )BJ Px(t)  + A)dt, (7-13)

where A = Ti\ B '  PBFyf) + Tr(Bj, P B VFV) > 0.
The rest proof of this theorem is similar to that in ([29, Theorem 4.2]), so it 

is omitted. □

7.3 .2  S ta b il i ty  a n d  B o u n d e d  R e a l L em m a

In this subsection, we study stability and the Bounded Real Lemma for quantum 
measurement-based feedback control systems with feedback-loop time delay of 
the form (7.6).

Using Definition 6.1 presented in Chapter 6, we obtain the following theorem.

Theorem  7.2. The quantum measurement-based feedback control system with 
feedback-loop time delay is bounded stable in the sense of Definition 6.1 with 
S(t) = (V{t)} =  (x ( t ) r Px{t)) i f  the system (7.6) is dissipative with respect to the 
supply rate (7.7) with matrices W  =  diag(X, 0, 0) and X  > cP > 0 (c > 0).

Proof. From (7.13), we get

f f f U c i r , , ) )
= (a:(t)7[A7 P + P A \x ( t )+ 2 x ( t )1P A dx(t  — T) + 2x ( t ) rP B ß w( t y  + 

(A -\-cx{t)rPx(tf)

\T
' A TP  + P A  + X P A d P B ~ x(t)

r )T ßw(t)T] ATdP 0 0 x(t  — T)
B T P 0 0 ßw{t)

A. (7.14)

If (7.11) with the matrix W  = diag(X, 0,0) holds, then we can infer from (7.14) 
that the inequality +c(U (t)) < A holds, which implies that the system (7.6)
is bounded stable in the sense of Definition 6.1. This completes the proof. □
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D efin ition  7.2. The quantum measurement-based feedback control system with 
feedback-loop time delay is said to be bounded real with disturbance attenuation 
g > 0 if the system (7.6) is dissipative in the sense of Definition 7.1 with the 
supply rate

r(ß z(t) ,ß w{t))

= ßz( t) rßz(t) -  g2ßw{t)Tßw(t)

' C TC C TCd C TD x(t)
x ( t)T x (t  -  t ) 1 ßw{t)T] C JC  C jC d C JD x(t — T)

D TC D TCd D TD - g 2I ßw(t) _

Furthermore, the system (7.6) is said to be strictly bounded real with distur­
bance attenuation g > 0 if the system (7.6) is strictly dissipative in the sense of 
Definition 7.1 with the supply rate (7.15).

Now combining Theorem 7.1 with Definition 7.2, we obtain the following 
Theorem, (e.g., see also [29], [130J for the similar proof.)

T heorem  7.3. (Bounded Real Lemma) The quantum measurement-based feed­
back control system with feedback-loop time delay is bounded real with finite L 2 
gain from ßw to ßz less than g > 0 with respect to supply the rate (7.15) i f  and 
only if  there exists a non-negative symmetric matrix P  such that

A TP  + P A  + C t C P A d +  C TCd P B  + C t D 
A j P  + C jC  CJ

B TP  + D TC  D TCd D TD  -
< 0 (7.16)

or, equivalently

' A TP + PA P A d P B C T '
A J P 0 0 r T

B T P 0 - g i d t

C Cd D - g i .

(7.17)

Furthermore, the system  (7.6) is strictly bounded real with finite L2 gain from ß% 
to ßz less than g > 0 with respect to the supply rate (7.15) i f  and only if  there

~ Q 0 0 “

exists non-negative symmetric matrices P, W

(c > 0), such that

0 0 0 
0 0 0

and Q > cP > 0

A TP  + P A  + C TC + Q P A d + C TCd P B  + C TD  
A I P  + C JC  Cd Cd C JD
B TP  + D TC D TCd D TD -

< 0 (7.18)



104C H APTER 7. H°° CONTROLLER DESIGN FOR Q U AN TU M  TIM E-D E LA Y S Y S T E M

or, equivalently

A TP  + P A  + Q P A d P B C T '
A l P 0 0 CJ

B TP 0 -gi D T
c cd D -g i.

(7.19)

We are now in a position to present our main result concerning H°° controller 
synthesis for the model (7.6).

T heorem  7.4. The quantum measurement-based feedback control system with 
feedback-loop time delay is bounded stable in the sense of Definition 6.1 with 
S(t)  =  (V ( t )) =  (x(t)T P x ( t ) ) , and also satisfies the following relation

(ß f is )1 ßz(s) +  x (s )7 Qx(s)) ds < g 2 /  {ßw(s)T ßw(s))ds +  /ii +  ß2t (7.20)

with t, /ii, fi2, c > 0 and Q > cP, i f  the system  (7.6) is strictly bounded real with 
disturbance attenuation g > 0.

Proof. Consider the following index:

dZw{t)
= ßz(t)Tßz(t) -  g2ßw(t)Tßw(t) +  x ( t )7Q x(t)

' CTC  +  Q cTcd c t d x(t)
x ( t ) r x { t - r ) T ßw{t)T] esc C jC d C JD x ( t ~ T )

D TC D TCd D TD_ ßw{t)

From (7.13) and (7.21), we have

I {'Jzw(s')) ds  
Jo

< f *  ( ^ 7 ^  +  ds +  <V(0)>

x(s)
x(s  — t ) 

ßw(s)

ds + \ t  +  (V (0 )), (7.22)

where
A TP  + P A  + C TC + Q P A d + C TCd P B  + C t D

aip + as c
B t P  + D t C D TCd D TD -  g21



7.4. H°° CONTROLLER SYNTHESIS 105

By Theorem 7.4, we know that the system (7.6) is strictly bounded real with 
disturbance attenuation g > 0 if and only if E < 0. From (7.21) and (7.22), we 
can get (7.20) with g\ — (V(0)) and /i2 =  A.

From E < 0, we can get the following relation by taking the derivative of both 
sides of (7.22) with respect of t.

(Jzw(t)) +
d(V(t))

= (ßz(t)Tßz{t )-g2ßw(t)Tßw(t)+x(t)TQx(t)) + -  TLh< A,

for all t > 0, which implies d-Vdj~  + c(V(t)) < + (x(t )1 Qx(t)) < A when
ßw — 0 and Q > cP. So, the system (7.6) is bounded stable in the sense of 
Definition 6.1. This completes the proof. □

7.4 H ^  co n tro lle r  sy n th es is

In this section, we consider the problem of H°° controller design for quantum 
measurement-based feedback control systems with time delay. The problem of 
H°° controller design is first formulated in Subsection 7.4.1 and then in Subsec­
tion 7.4.2 we propose a numerical procedure to solve the problem using LMIs 
technique. An example is given to illustrate our procedure in Subsection 7.4.3.

7.4 .1  H°° c o n tro lle r  sy n th e s is  o b je c tiv e

Now we formulate our H°° controller synthesis objective as follows:
Problem 7.1: (H°° controller synthesis) Given a disturbance attenuation 

parameter g > 0 and a parameter c > 0, the aim of H°° controller design for The 
quantum measurement-based feedback control system with feedback-loop time 
delay is to hnd a classical controller of the form (7.5), such that the following 
conditions hold:

1. The nonlinear condition (7.4) should be satisfied.

2. The closed-loop plant-controller system (7.6) is bounded stable in the sense 
of Dehnition 6.1.

3. The closed-loop plant-controller system (7.6) satisfies the relation (7.20).
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7.4 .2  i / x c o n tro lle r  d es ig n s

According to Theorem 7.4, Problem  7.1 can be solved if (7.19) holds. It can be 
seen that plant and controller matrices are mixed together in terms PA, PA(i, PD 
and PBd as well as their corresponding symmetric matrices in inequality (7.19), 
which complexes controller designs. In order to separate the former from the later, 
we now extend the method proposed in [75] by introducing auxiliary variables N. 
M, X, Y, where M N 7 + XY = In; N and M are invertible and X, Y are

symmetric. Let P =
Y

N T
and PIT P

0
Y

N T
with n X

M T
In
0

Performing congruence transformations on inequality (7.19) with transforma­
tion matrix T =  diag(LI, / 2n, / 2n, hn), we have

rT

ATP + PA + C P  PAd PB
ATdP  0 0
B TP  0 - g l

C Cd D

CT
CTd
DT
- g i  J

r

■ UT(ATP + PA + cP) n n TPAd n t p b n Tc T “

ATdPU 0 0 c j
BTPU 0 - g i DT

_ c n c d D gi
'A pX + X A Tp 0 BuCc Bw x c j -

YTp+ BcCp 0 Y  BuCc Y B W CJ
0 0 0 0 0 0

C I B I (YPuC'c)T 0 0 0 CJDI
B l B r Yw 0 0 0 DT
c zx c z 0 DuCk D 0

Pi Ac/ + R‘2 0 0 0 0
A c + P.J ApY  + Cp B j +R3 0 0 0 0

0 0 0 0 0 0

A o

0 0 0 0 0 0
0 0 0 0 --gi 0
0 0 0 0 o - -gi.

+

(7.23)

where Ac = NACM T + YApXM T + N B cGCpX.  B(
Pi
RT2

P2

P3

npcg , p = nTgn =

Nonlinear conditions (7.4) and nonlinear entries in inequality (7.23) can be
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linearized by introducing appropriate m atrix lifting variables and associated e- 
qnality constraints. For simplicity, we choose M  =  In, so A c =  N A C +  Y ApX  +  
N B cGCpX  and N  = In — Y X .  Let ZXl =  Y . ZX2 =  X, ZX3 -  CcT, ZX4 -  B j , 
ZX5 =  N , ZX6 =  G, ZX7 =  G / . Define a symmetric matrix Z  of dimension 
15n x 15n as Z =  V V T, where V  =  [In Z jx ••• Z j? ••• Z 7̂\ r ,
ZVl -  Y Bu, ZV2 - Y B uCc, ZX3 =  Y X , ZX4 =  N B C, Zy5 =  N B CG , Zv& — G 0 yp, 
ZV7 =  G 0 y;)G / . Then, we have the following set of additional constraints

Z >  0; Zo ,0 Inxn

-  K  =  0; Z x2 — Z j2 -  0;

Z V1 ~~ zxi B u =  0; Zi>2 — zv i z j 3 = 0

zV3 ~~ zxiz l  — 0; ~  I  +  ZX5 —  0

Z V4 — Z X5 Z l  =  0; cn

i ii

Zv 6 _  Z X6Oyp 0,

Z v 7 — 0;

Z V7 — Z V6 ZJ6 — 0;

and a rank constraint

(7.24)

rank(Z) <  n. (7.25)

Stability conditions are given as

APZX2 4- Z I2 Ap Ap 0 B 7 t R 7 CT/ - ‘ X 2 K y Z

ZXlAp +  ZV5Cp 0 7 7 Ft*J V2  ^ X l  ■L J W CJ
0 0 0 0 0 0

Zx^Bl 0 0 0 ZX3Dtu

BTW 0 0 0 DT
CzZX2 C* 0 D u Z l D 0

Ri A c 7 + 0 0 0 0

A c +  i?2 Ap ZXl +  (ZVbCp)T +  i?3 0 0 0 0

0 0 0 0 0 0
< 0 ,

0 0 0 0 0 0

0 0 0 0 - g l  0

0 0 0 0 0 —gl

+

(7.26)

n Tp n  =
7  I ̂x \  ± n

a
"

to

R\ cZXl R 2 -  cln
R-2 ~  C l n B 3 c Z x 2

> 0 ,

>  0 .

(7.27)

(7.28)
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For a given disturbance attenuation parameter g > 0 and a parameter c > 0, if 
we can employ a semi-definite programming to solve the feasibility problem with 
constraints (7.24)-(7.28) in which decision variables are Z , Ac, and R, Problem  
7.1 is solvable, see [54], [116], [118], [119]. Then the designed controller matrices 
can be built as

Cc

Bc

Ac

T
X 3  5

T
X 4  1

-1
*5

z  

z

ZX5l (Ac — ZXxApZX2 — ZV5CPZX2).

7.4 .3  A n  exam p le

In this subsection, we present an example to test our numerical procedure devel­
oped in subsection 7.4.2.

Consider a quantum plant to be controlled

dx{t) =

dy(t) =

dz(t) =

- 1 0
CO - 1

0 1

- 2

-----1
O

1 0
0 1

4 - 2

0 1

- 2 0

x{t)dt +
2 1 
4 3

du(t),

x{t)dt + dwp(t)i

x{t)dt +  du(t),

dwp + 0 1 
2 0

dvp(t) +

(7.29)

where system matrices satisfy physical realizability conditions.
Applying our method proposed in Subsection 7.4.2 to the quantum plant 

(7.29) with g = 7, c = 0.01, we get the following solutions:

-0.7079 0.5772
, Dr = 0.0059 0.0507

1.0946 -0.0970 -0.3360 -0.3194

3.194 0.507
, G =

1.0209 0.2065
-3.360 -0.59 -0.0035 -0.0007

0.8205 1.7504 1.0000 0
1.7504 17.0245 0 1.0000
1.0000 0 6.9585 -2.6406

0 1.0000 -2.6406 1.8490
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1.2919 -4.2307 0.0100 0.0000
-4.2307 14.9839 - 0.0000 0.0100
0.0100 - 0.0000 15.2019 -0.0264
0.0000 0.0100 -0.0264 15.1508

Now we check that if the resulting solutions satisfy the constraints listed 
in Problem 7.1. The eigenvalues of (7.26) are —16.7443, —8.1605, —7.6262, 
-7.0943, -7.0001, -6.0220, -2.4694, -0.0835, -0.0313, -0.0001, -0.0377, 0, 0,
0, which indicate condition (7.26) is non-positive. It is easily checked that R > 
cUTPU > 0 holds. Therefore, the resulting solutions satisfy all the conditions, 
which are reasonable for the classical controller designs.

7.5 C o n c lu d in g  re m a rk s

In this chapter, we present a linear model for the H°° control of quantum measurement- 
based feedback control system subject to feedback-loop time delay, which is the 
main concern of this chapter. Stability and dissipation theory is developed for 
this model and from this a new quantum version of the Bounded Real Lemma is 
derived for our model. The H°° controller synthesis problem is also investigated 
in this chapter. An example is given to present our controller design procedure.
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C h ap te r 8

C onclusions and  F u tu re  R esearch

8.1 C onclusions

The work of this thesis can be grouped into two parts. The first part including 
Chapter 3 and 4 is devoted to mixed quantum-classical feedback network synthesis 
and a quantum realization of a linear classical stochastic system. The second 
part consisting of Chapter 5-7 focuses on controller designs for quantum feedback 
control systems with or without time delay. The main contributions of this work 
can be summarized as follows.

For the first part, Chapter 3 has developed a network theory for synthesizing 
linear dynamical mixed quantum-classical stochastic systems of the standard form 
in a systematic way based on three new physical realization constraints. Then 
one feedback architecture is proposed for this realization. Chapter 4 has shown 
that under certain technical assumptions, a class of classical linear stochastic 
systems in a certain form can be realized by quantum linear stochastic systems. 
It is anticipated that the main results of the work will aid in facilitating the 
implementation of classical linear systems with fast quantum optical devices (eg. 
measurement-based feedback control), especially in miniature platforms such as 
nanophotonic circuits.

For the second part, Chapter 5 has presented two numerical procedures based 
on extended LMIs approach to solve a quantum LQG problem, which can provide 
more parameters for the design of a physically realizable quantum controller of 
the standard form and give less conservative solutions to quantum LQG prob­
lem. For comparison, we reinvestigate the example given in [54]. It turns out 
that our optimization procedure proposed in this chapter can be used to improve 
overall the closed-loop control performance. Chapter 6 and Chapter 7 have con-

111
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cerned the influences of time delay in quantum feedback control systems. Chap­
ter 6 has investigated classical controller designs for quantum feedback control 
systems with feedback-loop time delay. A delay-independent stability criterion 
as well as an upper bound on a cost function has been derived for a quantum 
measurement-based feedback control system, and from this we proposed one nu­
merical procedure for classical controller designs. Chapter 7 has investigated H°° 
controller synthesis problems for quantum feedback control of linear stochastic 
systems with feedback-loop time delays. The dissipation property is character­
ized in linear matrix inequality forms, which can lead to a quantum version of the 
Bounded Real Lemma for quantum measurement-based feedback control systems 
subject to feedback-loop time delay. A numerical procedure is proposed for a 
quantum feedback control system with time delay based on this version of the 
Strict Bounded Real Lemma.

8.2 Future research

Here we indicate the area of future research that follows naturally from this thesis.
It is well-known in the control community that there are intrinsic conflicts be­

tween achievable performance and system robustness. A well thought controller 
design is to make some suitable tradeoffs between performance and system ro­
bustness. It is therefore desirable to develop design techniques that can optimally 
and systematically perform such performance and robustness tradeoffs. In Chap­
ter 5 we have considered an extended LMI approach to coherent quantum LQG 
control design, which only addresses the issue of performance in the presence of 
quantum noise processes using LMI technique to calculate the dynamic controller 
parameters. H°° control is to minimize the disturbance effect on the output of 
the plant, which also plays an important role in the quantum controller design. 
The mixed multi-objective LQG and H°° optimal control problem for classical 
systems has been widely studied in previous works [133], [134], etc. The designed 
controller not only can guarantee the resulting closed-loop system satisfying a 
pre-specified H°° disturbance attenuation level for all admissible parameter un­
certainties, but also provides an upper bound for the LQG cost function, which 
is minimized using a strict LMI convex optimization approach. However, the 
problem of multi-objective LQG and H°° optimal quantum controller design has 
not been solved so far. In our future work, we will apply the multi-objective 
optimization control technique to the quantum linear stochastic systems setting.
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As mentioned in Chapter 6, the stability criteria can be classified into two cat­
egories, namely delay-independent and delay-dependent. In Chapter 6 and 7, we 
have derived delay-independent stability conditions for quantum measurement- 
based feedback control systems subject to feedback-loop time delays. In the 
future work, we will plan to theoretically develop delay-dependent stability con­
ditions for quantum measurement-based feedback control systems described by 
linear stochastic differential equations. We also plan to extend multi-objective 
control technique to the quantum measurement-based feedback control systems 
with feedback-loop time delay.
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