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Abstract

Oceanic freak waves, optical spikes and extreme events in numerous contexts can ar-
guably be modelled by modulationally unstable solutions within nonlinear systems. 
In particular, the fundamental nonlinear Schrödinger equation (NLSE) hosts a high- 
amplitude spatiotemporally localised solution on a plane-wave background, called 
the Peregrine breather, which is generally considered to be the base-case prototype of 
a rogue wave. Nonetheless, until very recently, little was known about what to expect 
when observing or engineering entire clusters of extreme events. Accordingly, this 
thesis aims to elucidate this matter by investigating complicated structures formed 
from collections of Peregrine breathers. Many novel NLSE solutions are discovered, 
all systematically classifiable by their geometry.

The methodology employed here is based on the well-established concept of Dar- 
boux transformations, by which individual component solutions of an integrable 
system are nonlinearly superimposed to form a compound wavefunction. It is pri-
marily implemented in a numerical manner within this study, operating on period-
ically modulating NLSE solutions called breathers. Rogue wave structures can only 
be extracted at the end of this process, when a limit of zero modulation frequency 
is applied to all components. Consequently, a requirement for breather asymmetry 
ensures that a multi-rogue wavefunction must be formed from a triangular num-
ber of individual Peregrine breathers (e.g. 1,3,6,10,...), whether fused or separated. 
Furthermore, the arrangements of these are restricted by a maximum phase-shift 
allowable along an evolution trajectory through the relevant wave field.

Ultimately, all fundamental high-order rogue wave solutions can be constructed 
via polynomial relations between origin-translating component shifts and squared 
modulation frequency ratios. They are simultaneously categorisable by both these 
mathematical existence conditions and the corresponding visual symmetries, ap-
pearing spatiotemporally as triangular cascades, pentagrams, heptagrams, and so 
on. These parametric relations do not conflict with each other, meaning that any 
arbitrary NLSE rogue wave solution can be considered a hybridisation of this el-
ementary set. Moreover, this hierarchy of structures is significantly general, with 
complicated arrangements persisting even on a cnoidal background.
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Chapter i

Introduction

Rogue waves are unusually large and seemingly spontaneous disturbances within a 
medium. They are best known to the public in an oceanic context, infamously ca-
pable of causing significant damage to seafaring vessels. However, most abstractly, 
they can fundamentally be considered as localised and unexpectedly significant de-
viations from a regular or quiescent state. This generalisation has thus inspired a 
truly interdisciplinary movement over the last couple of decades, drawing parallels 
between all sorts of extreme events and all manners of emergent behaviour. Ideas 
have cross-pollinated between a diverse array of fields, ranging from fluid dynamics 
[10, 11] and optics [12-14] to condensed matter [15, 16], plasma theory [17, 18] and 
even finance [19]. In essence, there is a quest within the scientific community to un-
derstand the physics behind rogue wave evolution, so that the phenomenon may be 
both predicted within nature and engineered in the laboratory.

Given that the discipline is still young and continuously evolving, it follows that 
there are ongoing debates about applicability, relevance and even definition itself 
[20]. This chapter thus aims to provide a general but non-exhaustive overview of 
rogue wave science in its current state. Accordingly, the oceanic origins of the phe-
nomenon are described in Sec. 1.1, while Sec. 1.2 discusses the transfer of ideas into 
the optical domain. The need to develop theories for compound rogue waves is then 
motivated in Sec. 1.3, which leads into an overview of this thesis in Sec. 1.4.

l . i  From Deep Ocean to a Wave Tank

The concept of rogue waves initially originated in a hydrodynamic context. Unlike 
tsunamis, the destructive influence of which solely appears at coastal regions due to 
a wave shoaling process, rogue waves tend to occur in regions of great fluid depth. 
This has traditionally limited observers to those unlucky enough to be affected by 
the event, which means that the phenomenon of 'freak' waves has largely been con-
sidered a maritime legend for centuries. Indeed, it is debated whether giant breakers 
depicted in various historical artworks, exemplified by Fig. 1.1a, can be considered 
as the first documented rogue waves [21, 22, 24], All the same, it was not until New 
Year's Day, 1995, that an occurrence was finally unambiguously confirmed with a 
measuring instrument at an offshore platform [25]. Despite the existence of earlier 
studies [26, 27], this Draupner wave can loosely be considered as the inception of 
sustained oceanographic research into the topic. Since then, technological improve-
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(a) (b)

Figure 1.1: Examples of rogue waves in an oceanic context, (a) Katsushika Hokusai's 
The Great Wave off Kanagawa (c. 1829-32); a depiction of a possible freak wave [21, 22]. 
(b) A 'super rogue wave' engineered in a wave tank, on the verge of colliding with a 
lego pirate [23].

ments and a refining of focus have listed many more incidents [28], with preliminary 
satellite data indicating that rogue waves may be far more common than expected 
[29],

It is also in the discipline of fluid dynamics that rogue waves are perhaps most 
stringently classified. Specifically, if significant wave height (SWH) is defined as the 
mean vertical trough-to-crest distance for the largest third of waves in a recorded time 
series, then an individual wave is considered rogue if it possesses a height more than 
twice this value [20, 30, 31]. Consequently, there is no amplitude restriction for a freak 
wave. One metre in height could be considered sufficiently rogue if the background 
sea is calm enough. However, this functional definition is not without controversy. 
It is based on a threshold for outliers within a 'normal' Rayleigh distribution, which 
already assumes prior knowledge of rogue wave statistics. In contrast, heavy-tail 
distributions may be more appropriate depending on the actual physics behind freak 
wave generation [32, 33].

Fundamentally, oceanic rogue waves cannot be strictly categorised without a 
deeper understanding of their evolution dynamics. Some argue that freak waves fre-
quently arise as triplets, in what is known as the 'three sisters' phenomenon [28, 34], 
while others claim that shallow-water coastal events should also be considered as 
rogue waves [35, 36]. The ongoing debate of what is legitimate in the field may ul-
timately depend on whether the physics is shared or even similar between different 
high-amplitude incidents. Unsurprisingly, various mechanisms have been suggested 
for rogue wave generation, each with its own core principle. Broadly put, they are 
encapsulated by:
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Standard Linear Theory

Focussing by external 
factors

Energy from external 
sources

Nonlinear Theory

A wave formed from the linear superposition of 
two others can only have their amplitude sum as 
its maximum, at points of constructive interference. 
Nonetheless, with proper phase alignment of all 
spectral components in a wave field, crests and 
troughs of extreme amplitude could possibly arise, 
if with extreme rarity. This purist form of conjecture 
is no longer commonly favoured, with most mod-
ern 'linear' theories invoking novel concepts to bias 
Gaussian statistics [37, 38]. Certainly, as amplitudes 
increase, the concept of linearity worsens as an ap-
proximation of realistic wave dynamics.
Wave components with different directions can po-
tentially compress wave trains or align phases to 
produce rogue wave focal points. Diffraction due to 
coastal geometries and certain current-based effects 
are candidates for this process [22, 39].
Introducing energy into a wave field generally in-
creases the chance of greater heights arising. Storms, 
winds and thermal convection could contribute to 
this scenario [40, 41].
New frequencies can only be generated within a 
wave spectrum once nonlinear effects are taken into 
account. In this case, interactions between wave 
components in the background sea could naturally 
give rise to large amplitudes, without any significant 
external input [42, 43].

While no consensus yet exists, there is a strong preference within the research 
community towards the importance of nonlinearities in rogue wave evolution. For in-
stance, the shallow-water ID Korteweg-de Vries (KdV) and 2D Kadomtsev-Petviashvili 
(KP) equations have been proposed as models for coastal events [35, 44], More im-
portantly, from the perspective of this thesis, deep-water waves happen to be well 
described by the nonlinear Schrödinger equation (NLSE) [45, 46]. This is particularly 
significant as the NLSE is applicable in numerous fields and has been studied with 
various methods. It is also well known that the system hosts a unique spatiotem- 
porally localised solution, referred to as either a Peregrine breather or a Peregrine 
soliton [47]. Whether this theoretical structure truly depicts natural freak wave be-
haviour in the ocean is under debate, but the prototype function certainly adheres to 
all the relevant definitional criteria [48, 49], Based on these ideas, in 2011, a small- 
scale rogue wave was created in a water tank for the first time [11]. A snapshot of a 
subsequent experiment is shown in Fig. 1.1b.
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1.2 A Bright Light in an Optical Fibre

(a) (b)

Figure 1.2: Examples of rogue waves in an optical context, (a) Transient appearance 
of a bright spot in a laser beam profile during a filamentation experiment involving 
xenon [50]. (b) Temporal profile of an optical Peregrine breather generated in a 
standard telecommunications fibre [51].

Although the concept of rogue waves originated in oceanography, the ripples of 
interest it generated in the field of optics were no less substantial. It has long been 
known that, given certain assumptions, the evolution of light in an optical waveguide 
can be described by the NLSE. The analogy between waves in optical fibre and on 
deep-water surfaces has thus been equally clear, leading to an unusual transmission 
of ideas between distinct disciplines. One such example of an adapted notion is the 
concept of solitons, defined in the simplest instance as localised pulses that propagate 
without losing shape. They were first scrutinised in Scotland's Union Canal as 'waves 
of translation' in the early 19th century [52, 53], but it was not until 1973 that their 
existence was proposed within the optical domain [54]. Fortunately, in the case of 
rogue wave theory, the dissemination has been significantly faster.

In 2007, a report was published on the evolution of a pulse train in an optical 
fibre [12]. Although the experiment was primarily about exploring supercontinuum 
generation, a consequence of spectral broadening, analysis of the resulting radia-
tion indicated the existence of short-lived intensity spikes with large amplification. 
While such events could be averaged out in the presence of a chaotic background, 
they nonetheless occurred often enough to be reminiscent of a long-tailed probabil-
ity distribution. In effect, this marked the first reported observation of optical rogue 
waves. Since then, the stochastic generation of these extreme events has been further 
investigated from various angles, including laser beam filamentation [55] and turbu-
lence [56]. An example of a transient intensity flare arising in one such experiment 
is shown in Fig. 1.2a.

To date, no consensus truly exists for the definition of a rogue wave in an optical 
context. Certainly, the field is less than a decade old, but there are other differences 
with respect to hydrodynamics that rationalise this fact. For instance, amplitudes 
are not restricted by aspects such as wave breaking [57]. A rogue wave in fibre
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could potentially be orders of magnitude more intense than accompanying pulses, 
provided both that there is enough background energy to focus into the peak and 
that the damage threshold of the material is not surpassed [58]. Nonetheless, there 
are simultaneously fewer 'nuisance parameters' involved in modelling the evolution 
of light within a waveguide, so the mechanism for generating these extreme events 
is conversely less controversial. Indeed, it is usually very complicated to suppress 
or isolate the peripheral effects of currents, coastal geometries and meteorological 
events in general ocean surface waves, whereas the materials and engineered physics 
of common optical fibres are, theoretically at least, well defined.

Consequently, this thesis adopts the assumption that rogue waves are produced 
by the phenomenon of 'modulational instability', whereby an event is capable of 
growing and shrinking in a manner of 'breathing' via the interplay of dispersion 
and nonlinear focussing [59]. These effects arise from the interaction between elec-
tromagnetic radiation and certain waveguide materials, allowing for an infinitesimal 
perturbation to develop into a short-lived spatiotemporally localised crest with high 
intensity. Specifically, the simplest wavefunction of this type is the aforementioned 
Peregrine breather [47], exemplified in profile form within Fig. 1.2b, which has a 
remarkably simple analytic form. Thus, although this NLSE solution was originally 
developed with a hydrodynamic perspective in 1983, it was within an optical fibre in 
2010 that a rogue wave was deterministically generated for the first time [13].

1.3 The Quest for the Rogue Hierarchy

With scientific research entering a new decade, rogue waves had been controllably 
generated in both a wave tank [11] and an optical fibre [13] via the application of 
nonlinear theory. Unsurprisingly, the scientific community would still debate the 
relevance of the Peregrine breather with respect to extreme events in nature, but 
the proof of principle regarding the generation of waves with 'rogue features' had 
inspired a new surge of research enthusiasm. Accordingly, similar phenomena have 
been theorised and occasionally reproduced within numerous fields, primarily due 
to the universality of the NLSE. Analogues have been investigated for Bose-Einstein 
condensates (BECs) [15], superfluids [60], laboratory plasmas [17], the atmosphere 
[61], and so on. Even crises within the realm of finance have been associated with 
the theory of freak waves [19].

However, until very recently, most studies targeted the dynamics of a single rogue 
wave event. Even the oceanic three sisters phenomenon is typically considered to be 
several oscillations localised under the envelope of a solitary wave packet [62]. Yet 
noise and chaos exist in numerous domains, capable of converting modulationally 
unstable perturbations into a multitude of extreme amplitude spikes [63]. This is 
frequently observed in various optical processes [12, 64]. As for the ocean, it is such 
an intrinsically complex system that it too could hypothetically harbour multiple 
rogue waves in spatial and temporal proximity to each other, with only one solitary 
incident ever being experienced and reported. Certainly, particular types of chaotic
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environment increase the frequency of freak wave formation [65] and, in turn, the 
possibility of such an agglomerate occurrence. Hence it is of substantial interest to 
investigate where and when potentially catastrophic extreme events [58, 66] could 
appear, if physically interdependent.

Of course, prediction is but one side of the topic. It is inevitable that, with greater 
understanding, matters of engineering will also arise. Potential applications for con-
structed arrays of rogue waves range from the practical, such as the control of super-
continuum generation with extra finesse [67], to the highly speculative, such as the 
distribution of hydrodynamic effects to damage naval convoys [68]. But whatever 
the eventual implementation may be, dealing with multiple rogue waves opens up 
many new questions. For instance:

• Is it even possible to superimpose multiple rogue waves?

• If so, are certain spatiotemporal arrangements restricted?

• Can the remaining wavefunctions then be sensibly classified in some hierarchi-
cal manner?

• If so, do variations in a background modify the chosen categories?

• Likewise, how general is the hypothetical scheme with respect to deviations 
from the normal NLSE?

These problems are all addressed by the research presented in this thesis, so that 
the answers will be available once experimental methodology catches up with the-
ory. They are not trivial matters either, with mathematical limit issues and 'axial 
translation' peculiarities once stymying progress beyond the most standard of super-
imposed solutions [69, 70]. It is only through the fusion of analytic and numerical 
techniques that a better understanding of complicated multi-rogue structures has 
now been achieved. Consequently, this dissertation describes the development of 
novel NLSE rogue wave solutions that possess remarkable geometries, the intrinsic 
nature of which is remarkably robust. Using appropriate procedures, these various 
patterns of extreme events should be reproducible within wave tanks, optical fibres 
and other relevant domains.

Naturally, as with most frontier fields, rogue wave theory has continued to evolve 
alongside the investigation conducted for this thesis. Notably, the importance of spa- 
tiotemporally localised NLSE solutions has occasionally led to independent verifica-
tion of the results in this thesis [71, 72]. Moreover, much of the research included here 
has already been adopted in numerous theoretical investigations within the physics 
community [73-75], with experiments also beginning to support the relevant findings 
[76, 77]. In essence, it is likely that the next few years will determine the utility of 
the established rogue wave hierarchy, potentially expanding scientific focus beyond 
individual extreme events towards an aggregate perspective.
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1.4 Thesis Overview

The research in this dissertation is presented in a 'thesis by publication' format. Each 
core chapter contains a journal article that effectively details a step in the develop-
ment of NLSE multi-rogue wave solutions and the scheme by which they are cate-
gorised. Overarchingly, Chapters 2, 4 and 6 reveal new classes of spatiotemporally 
localised structure, while Chapters 3 and 5 discuss their features. Chapters 7 and 8 
then investigate the generality of the classification hierarchy. This entire work is per-
formed computationally, although a mix of both symbolic and numerical calculations 
is deployed throughout. In greater detail, the narrative of this study is organised in 
the following way.

Chapter 2 serves as an introduction to the topic, with a particular focus on the 
first spatiotemporally 'fissioned' type of compound rogue wave discovered, known 
as a circular cluster [2]. To contextualise this result, many vital concepts are intro-
duced that are ubiquitous within this thesis. These include the NLSE in optical no-
tation, the solution-generating Darboux scheme and the set of 'first-order' breathers 
used in the construction of high-order solutions. In particular, the latter component 
wavefunctions consist of both the Akhmediev breather (AB) and the Kuznetsov-Ma 
(KM) 'soliton', as well as the fundamental Peregrine breather that arises in the 'rogue 
wave limit'. With this established, the chapter then discusses the novel idea of in-
corporating spatiotemporally perturbating 'axial shifts' within the Darboux scheme, 
contrasting previously-known 'fused' rogue wave solutions with the aforementioned 
circular clusters.

Chapter 3 returns to a more generalised investigation of (axially-aligned) second- 
order breathers, with particular focus on the so-called degenerate and rogue wave 
limits [3]. This research presents exact expressions for various NLSE solutions, 
including wavefunctions formed from two ABs, two KM solitons or one of each 
breather type interacting together, as well as similar structures where a zero modulation- 
frequency limit has been applied to one of the breathers alone. Most significantly, 
the limit case of two breathers becoming identical is explored, with an inherently re-
quired asymmetry having profound effects on the composition of a compound rogue 
wave.

Chapter 4 extends the known set of multi-rogue wave solutions by revealing the 
existence of triangular rogue wave cascades [4]. Accordingly, the parametric con-
straint for the production of the solution is presented. Unlike with the case of circu-
lar clusters, a complicated relationship must be established between both axial shifts 
and the modulation frequencies of component breathers. However, the 'circularity' 
and 'triangularity' of a fissioned high-order rogue wave can be tuned independently 
of each other, allowing hybrid 'claw-like' NLSE solutions to be derived. These are 
displayed and discussed.

Chapter 5 elaborates on the phase features of high-order rogue waves, exploring 
their impact on a thus-far ignored carrier wave [5]. Specifically, evolution trajectories 
through amplitude surges and troughs are examined in the complex plane, identify-
ing various types of homoclinic orbit that correspond with multiples of a 2n phase
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shift. This is done for both fused and fissioned structures. Subsequently, the use 
of phase information to produce a better understanding of rogue wave 'anatomy' 
is discussed, particularly in situations of near-maximal spatiotemporal compression 
and general chaotic domains.

Chapter 6 presents the core result of this thesis; a systematic way to generate 
elementary NLSE solutions of any order that are spatiotemporally localised, all cate- 
gorisable within one fundamental rogue wave hierarchy [6]. Consequently, polyno-
mial relations involving both component modulation frequencies and axial shifts of 
variable 'order' are established as existence conditions for different arrangements of 
fused and separated Peregrine breathers. The generated wavefunctions are displayed 
up to sixth order, characterised by a rotational symmetry associated with each para-
metric constraint. Structural features are then extrapolated for NLSE solutions of 
extreme order, synthesising knowledge from the previous chapters. Again, geomet-
ric qualities of these compound rogue waves can still be tuned independently of each 
other, allowing for a concept of hybridisation that is exemplified within the article.

Chapter 7 examines whether the newly developed rogue wave hierarchy still ex-
ists when the plane wave background is replaced by a cnoidal wave field [7]. The 
Darboux scheme is thus modified appropriately, with numerical propagation par-
tially adopted. Subsequently, the relation between traditional solitons and breathers 
is clarified via smooth transformations of the background, with rogue waves shown 
to exist for all cases where energy is sufficiently mobile. Cnoidal parameter space is 
further explored, revealing the existence of unintuitive 'diffuse' rogue waves. In any 
case, the rogue wave hierarchy is ultimately shown to be substantially general with 
respect to the background.

Chapter 8 then briefly discusses possible future directions for multi-rogue wave 
research, from the perspective of its universality among nonlinear systems. This is 
inspired by the fact that, without discarding the basic tenets of NLSE modulational 
instability, it is possible to extend the equation via discretisation, coupling or the 
inclusion of higher-order nonlinearities and related terms. It is consequently sug-
gested, with strong evidence, that the rogue wave hierarchy is not unique to the 
standard NLSE.

Final conclusions are drawn in Chapter 9.



Chapter 2

Circular Rogue Wave Clusters

Prologue

In early 2011, it seemed that many of the surprises presented by rogue waves were 
already accounted for. Nonlinearity-based explanations for their existence were 
favoured by the scientific community, grounded in the rationale that the nonlin-
ear Schrödinger equation (NLSE) was a reasonably accurate first-order description 
of wave evolution in both deep-water surfaces [45] and optical waveguides [78]. Par-
ticularly appealing was the concept of modulational (a.k.a. Benjamin-Feir) instability 
[79, 80], by which a small perturbation in a regular waveform could grow to sub-
stantial amplitudes. Indeed, decades worth of mathematical research had discov-
ered a class of NLSE solutions that encapsulated this phenomenon, called 'breathers' 
[59, 81, 82]. Most significantly, this set of structures possessed a special limit case, 
now named the Peregine breather [47]. It not only possessed a significantly higher 
peak than its surrounding plane-wave background, but was even spatiotemporally 
localised. In effect, it "came out of nowhere", formed an amplitude spike and then 
"disappeared without a trace" [48]. Accordingly, the Peregrine breather soon became 
known as a prototypical representation of freak waves, eventually being replicated 
in both a wave tank [11] and in optical fibre [13].

However, initial interest into extreme events formed from the interactions of mul-
tiple rogue waves was limited. This was despite many of the same methods that 
generated the Peregrine breather [78, 83, 84] being perfectly well equipped to investi-
gate higher-order nonlinear superpositions of the structure. Certainly, 'fused' rogue 
waves of various orders had already been explored [69, 70], where individual compo-
nents were all centred at a common origin. Nonetheless, discarding that constraint 
of geometric coincidence was generally ignored within the community. This may 
have been due to a linear-based mentality, whereby separating the two components 
that combine into a composite second-order rogue wave was assumed to result in no 
more than two distinct formations arising out of the plane-wave background.

Surprisingly, seminal investigations soon overturned expectations [85, 86]. One of 
them [1] forms the inception of the research within this thesis, employing a method 
of NLSE solution generation called the Darboux scheme. This well-established recur-
sive procedure [84, 87] works here by algebraically combining n unique 'first-order 
components', each essentially representing an individual breather, into a wavefunc- 
tion of order n. However, what was new at this stage was the inclusion of 'axial

9



10 Circular Rogue Wave Clusters

shift' parameters, allowing each component to be centred at a different origin. Sub-
sequently, a numerical application of the modified scheme was synthesised with an 
analytical investigation to confirm that a 'fissioned' second-order rogue wave was 
actually comprised of three distinct Peregrine breathers, rather than the presumed 
two. This structure is now known as a rogue triplet [1].

Certainly, once the importance of spatiotemporal perturbations was realised, it 
was not difficult for various procedures to begin fissioning compound structures [88]. 
However, the particular implementation of the Darboux scheme in this thesis had one 
major strength. Specifically, given a natural choice of scaling, the NLSE happened to 
arrange the three individual peaks of the rogue triplet in a spatiotemporally circular 
fashion. The question then arose; did this same geometry extend to higher-order 
structures?

This chapter, as a published manuscript [2], answers that question in the affirma-
tive. Specifically, it presents and discusses the effects of using the Darboux scheme to 
shift one component of a multi-rogue wave relative to all others. It is also an appro-
priate publication for this thesis to begin with, as it introduces numerous concepts 
that will be referred to in later chapters. These include:

• The NLSE in optical notation.

• The Darboux transformation procedure, by which wavefunctions of order n are 
constructed from a background 'seeding solution'.

• Akhmediev breathers (ABs) and Kuznetsov-Ma (KM) 'solitons', as first-order 
solutions arising from modulational instability.

• The Peregrine 'soliton', as the prototype for a first-order rogue wave.

• The rogue triplet, along with an exact expression for its wavefunction.

• High-order 'fused' rogue waves.

Most importantly, from the perspective of the field, this paper presents novel high- 
order rogue wave solutions that appear as circular clusters of individual Peregrine 
breathers. They are an unintuitive consequence of limit theory and can only be 
contained within a finite portion of the spatiotemporal domain if the shift of the 
perturbed component is both carefully chosen and infinitesimal.
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I. INTRODUCTION

The notion of rogue waves first appeared in studies of deep 
ocean waves [1-3] and gradually moved to other fields of 
physics such as optics [4], capillary waves [5], superfluidity 
[6], Bose-Einstein condensates (BECs) [7], etc. There are 
various approaches in these studies, starting from linear wave 
analysis [8], which can explain some of the phenomena that 
involve high amplitudes. However, the most comprehensive 
approach is based on nonlinear physics [1].

In particular, deep ocean waves, as described by the nonlin-
ear Schrödinger equation (NLSE) [1], have specific solutions 
which are localized in both space and time. Such localization is 
exemplified by the Peregrine soliton, which has been studied 
both theoretically [9,10] and experimentally [11,12], There 
is now growing interest in identifying higher order rational 
solutions [13-19], which are also doubly localized. Recent 
publications by Matveev’s group significantly developed 
the technique of obtaining multirogue wave solutions and 
presented explicit forms for these higher order structures 
[15,17-20], However, the complexity of these solutions does 
not allow for easy manipulation, despite being provided in 
analytical form. Even plotting them does not reveal all the 
intricate features of the solutions. We estimate that a large 
amount of work still has to be done in the analysis of 
multirogue wave solutions.

To derive expressions for compound rogue waves and 
visualize them, there are currently two main procedures in 
favor: a method based on Wronskian determinants developed 
by Matveev’s group [15,17-20], which has seen success in 
reaching the sixth order solution analytically [21], and the 
Darboux method [22-24], which we employ in this investiga-
tion. Most attempts thus far have assumed the free parameters 
in the solution to be zeros. In this case, all components of the 
higher order structure are aligned perfectly at one point and the 
field has a single high maximum. However, here, we deviate 
from this assumption. This has already been done to a limited 
extent and has produced the “rogue triplet” solution [ 15,20,25]. 
In this work, we extend this investigation to higher order 
solutions using both symbolic computation and numerics, and 
present surprising clustered structures reminiscent of an atom 
with a shell of electrons. Perfect geometrical patterns obtained

’djk 105 @rsphysse.anu.edu.au

here clearly demonstrate that the world of NLSE solutions is 
significantly richer than we thought before.

We begin by writing the NLSE in the dimensionless form,

dr/f 1 d2x// ,
'77  +  5— +  ' ^ = 0 ' ( i )

The wave function \x//(x,t)\ in Eq. (1) commonly describes the 
wave envelope. In fiberoptic applications [11], the variable x 
is the distance along the fiber, while t is the retarded time in 
the frame moving with the pulse group velocity. On the other 
hand, in water wave applications [12], jc  is the dimensionless 
time, while t is the distance in the frame moving with the group 
velocity. This difference is related to conventions and traditions 
in each field, rather than to any particular physical meaning. 
A simple linear transformation with the variable involving the 
group velocity allows us to change the equation and variables 
from one form to another. Generally speaking, the linear 
relation between the two variables in this transformation may 
be one of the essential points for understanding the unusual 
results of our work; namely, the high level of symmetry in the 
(x , t ) plane.

There is a class of first order solutions to Eq. (1) that can 
be described by a complex eigenvalue / with imaginary part 
Im(/). This whole class has been previously presented [26]. If
0 < Im(/) < 1, the solutions are periodic in t and localized in 
x.  They are presently known as Akhmediev breathers (ABs) 
[27-30], An example is shown in Fig. 1(a). If Im(/) > 1, the 
solution is localized in t and periodic in x.  The solution is 
known as a Ma soliton. It is shown in Fig. 1(b). In the limit of
1 —*■ /, the period in both x  and t goes to infinity and a solution 
involving rational terms arises. This first order wave function 
is known as the Peregrine soliton [9]. Due to localization both 
in space and time we can also call it a “wave that appears from 
nowhere and disappears without a trace” (WANDT) [13].

First order solutions are the simplest amidst NLSE so-
lutions. Among more complicated known examples we can 
mention multisoliton solutions [23]. Via similar processes to 
the construction of this class, we can generate a nonlinear 
superposition of multi-AB solutions. This can be done in 
various ways, such as by following Wronskian methodology 
[17,18], In this work, we employ an alternative procedure 
that uses Darboux transformations [31]. This allows for the 
nonlinear superposition of n ABs, each centered at an arbitrary 
coordinate (x j , t j ) and each with a different eigenvalue lj,

1539-3755/201 l/84(5)/0566l 1(7) 056611-1 ©2011 American Physical Society
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(b)

(<•)

obstacles is by defining the n eigenvalues in the form Kj — jn  
(j  = 1 ,2 , . . . ,«) and taking the limit k  -» 0 afterwards. The 
sequence of calculations has previously been described in 
detail [32,33] and will not be repeated here. The rational 
solution of order n in general form, depending on x and r, 
can be written as

( - 1)" +
G„ + i Hn 

Dn
eix, ( 2 )

where G„, Hn, and D„ are all real polynomials of x and t.
A nontrivial observation is that higher order rational solu-

tions are nonlinear combinations of the elementary component 
in Fig. 1(c). Their relative locations are uniquely defined by 
the shifts xj  and tj, which effectively serve as coordinates of 
origin for each component. Depending on these parameters, 
we can have a variety of solutions of the same order n . A further 
nontrivial fact is that these shifts are eigenvalue dependent and 
need to be considered as functions of k  ;

m — 1

= X j i  +  X  j 2K~ + X  j ^ K4 + • • • ,
( 3 )

tj =  f > 2<m- 1,:r,-m
m= 1

=  Tj\  +  Tj 2 k ~ +  TfiK4  +  • ■ • ,

where 1 ^  j  n. The conceptual subtlety here is that, 
although the terms with nonzero orders of k  in Eq. (3) vanish 
in the k  —» 0 limit, analysis and numerics prove that their 
coefficients X and T have a crucial effect in defining the 
structure of higher order solutions.

In the first order case, n = 1, only Xu and Tn have any 
effect on the structure of the wave function in the /<r — 0 
limit. So, for this (n =  1) solution (Peregrine soliton), we 
have

G, = 4 ,
//, =  8(jc -  X„), (4)

D\ = 1 + 4 ( x - X u ) 2 + 4 ( t - T u )2.

FIG. I. (Color online) Various types of NLSE solution with / as 
eigenvalue, (a) Akhmediev breather with / =  0.65/. (b) Ma soliton 
with l =  1.35/. (c) Peregrine soliton with / = / (or k = 0).

where j  =  1........n. Frequencies of modulation are expressed
through the eigenvalues as k j  — 2 J l + / | .  For AB solutions, 
these are real.

II. LOW ORDER ANALYTIC SOLUTIONS

The Darboux method [31] allows us to present exact 
solutions of any order explicitly. The process is described 
in the Appendix and elaborated elsewhere [24,32], However, 
generally the method does not allow two AB components to 
share the same eigenvalue, otherwise degenerate solutions 
arise. In these situations, numerical simulations can also 
experience difficulties. One of the ways to overcome such

All higher order terms in Eq. (3) can be ignored. These 
two constants describe a simple translation of the solution 
in Fig. 1(c) relative to the origin. On the other hand, simple 
analytic study shows that the second order rational solution 
must have Xu =  X 2\ and Tn =  T2\. Otherwise \f/2 -> i/̂ o =  
e ix in the limit k  —> 0. Thus because such a requirement only 
involves a global shift of origin for all components, we can 
set Xji = Tj i =  0 without loss of generality. Analytically, 
applying the k  —* 0 limit now produces the general second 
order (n — 2) solution, described by

G2

h 2

— g(5x~ + t~)(x~ + t~) — -ĵ (3A' + C)
+XXd + ttd + ,

-L^ + df-L^-^+' lx
4 8 64

xd +  2 xttd,
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D2 =  ± (jr2 + ,2)3 +  ± (3;c2 _ , 2 )2 
‘ 24 32

+  — ( \ \ x 2 +  3t2) +  —
128 512

-   ̂jJ t3 -  x t2 +  - x  -  - xd j  Xd

+ (5)

where second order relative shills are defined by the k 2 

coefficients of xi — x2 and t\ — t2. Specifically

When the relative shifts (xd and td) between the components 
are zero, the resulting solution is an already known [13,33] 
second order rational solution with a single high maximum at 
the origin, shown in Fig. 2(a). When xd and td are not zero, 
the second order peak breaks apart and, for sufficiently large 
second order shifts, forms a set of three first order rational 
solutions, the centers of which form an equilateral triangle. 
This solution is shown in Fig. 2(b). We have studied this

t
(b)

FIG. 2. (Color online) (a) Second order rational solution with 
zero shifts: xd =  0 and td =  0. (b) Second order “rogue wave triplet” 
appears when xd — 52 and td =  0.

PHYSICAL REVIEW E 84. 056611 (2011)

form in detail [25] and can express the radius of the triangle’s 
circumcircle in terms of xd and td:

R ~  22/3(xd +  f j ) ‘/6. (7)

For the sake of comparison, we can relate the parameters y  
and ß found via the Wronskian methodology [18] with those 
of the current formalism by y  =  2*xd and ß =  — 25td.

As mentioned, analytically deriving general expressions for 
higher order rational solutions using the Darboux method is 
tedious, either by hand or with a computer. The Wronskian 
method appears to have had greater success generating these 
solutions [18,21], However, incorporating the relative shift 
parameters this way is still difficult and has not been done.

III. HIGHER ORDER NUMERICAL RESULTS

Being a set of algebraic equations, the Darboux method can 
easily be converted into a numerical recursion procedure for 
any finite order n with eigenvalues and shifts as free adjustable 
parameters. It allows higher order rational solutions to be visu-
alized in the k  —* 0 limit without presenting the cumbersome 
analytic expressions. Algebraic transformations can be done 
with high numerical accuracy to make the results indistin-
guishable from the rational solution. In fact, writing down the 
exact solutions would require many journal pages [18,21] and 
cannot be considered as a convenient way of presenting them.

In Fig. 3, we present higher order rational solutions, 
each with a single maximum at the origin, for n =  3,4,5,6. 
Analytical expressions for some of them have been presented 
earlier [14,21], The maximum height of an order n rational 
solution is 2n +  1 and the structure also has n(n +  l) /2  — 1 
local maxima on each side of the x — 0 line. Starting from 
large negative x , an observer of its evolution would witness a 
row of n small peaks, then a row of n — 1 larger peaks, then 
n — 2 peaks, etc., before the central high amplitude solitary 
wave appears. The process is then symmetrically reversed in 
x so that, at large x, the wave “disappears without a trace.” 
Thus, as noted before [21 ], the number of local maxima for an 
order n WANDT is n(n +  1) — 1. For example, from Fig. 3(b) 
(n =  4), we see that successive rows have four, three, two, one, 
two, three, and finally four peaks.

Naturally, applying shifts changes the profiles. As was an-
alytically evident with orders n =  1 and 2, it is also clear from 
numerics that only one coefficient per AB component from 
Eq. (3) has any effect on a higher order solution in the k  —> 0 
limit; namely X Jn or 7j„, where j  is the component number 
and n is the order of the solution. Here, we limit ourselves 
to shifting only one of the components; specifically, wc apply 
the x shift in Eq. (3) to the first (k \ =  k ) component alone. In 
this case, the n =  3 structure is solely determined by the X \ 2k a 
term, the n — 4 structure by X |4/e6, and so on. In each case, the 
coefficients of lower order k  terms must be the same between 
all components, otherwise i/r„ -> 1 / ^ - 2  in the k  -> 0 limit. As 
for the coefficients of higher order k  terms, they are irrelevant.

The resulting wave functions for orders n =  3 ,4 ,5 ,6  are 
shown in Fig. 4. Remarkably, all higher order solutions display 
a ring structure. We observe rings with five peaks in Fig. 4(a), 
seven peaks in Fig. 4(b), etc. All peaks within the ring are first 
order rational solutions, i.e., Peregrine solitons. Naturally, each 
individual first order rational solution is always oriented in the
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( d )

FIG. 3. (Color online) Higher order rational solutions with zero 
shifts, i.e., with its elementary components located at the origin, 
(a) The case of order n — 3. (b) n — 4. (c) n =  5. (d) n = 6.

same direction. Generally, the outer shell of an order n rational 
solution is composed of 2n — 1 first order rational solutions. 
Evidently, the second order rogue wave triplet shown in 
Fig. 2(b) is the first in a series of higher order “shell” structures.

PHYSICAL REVIEW E 84. 056611 (2011)

Another remarkable feature of these solutions is the 
presence of the central peak in each of them. Moreover, the 
central peak becomes more complicated with increasing n. 
When n = 2, the central peak is absent. When n — 3, the 
central peak is the same as the others, i.e., a first order rational 
solution. When n =  4, the central peak is more complicated. In 
fact, it is the n =  2 solution with zero shifts, i.e., the one shown 
in Fig. 2(a). All higher order solutions similarly display a 
central structure, which in each case is the order n — 2 rational 
solution with zero shifts. For example, the fifth order rational 
solution in Fig. 4(c) has a third order WANDT remaining in 
the middle of the structure. Likewise, after applying a shift 
proportional to k 10, the sixth order rational solution shown in 
Fig. 4(d) has a fourth order rational solution in the middle. 
Generally, any sufficiently large shift moves 2n — 1 first order 
rational solutions to its outer circular shell, leaving in the 
middle a WANDT of order n — 2.

Based on numerical evidence, we conjecture that the radius 
of the shell in the ( x , t ) plane for higher order structures follows 
a similar relation to Eq. (7), viz.

R OC (xfn  +  7j2n) 1/,2<2"-1)1. (8)

However, confirmation of a proportionality constant will re-
quire analytic expressions for the higher order wave functions. 
Furthermore, as the number of component shifts xj  that we 
can take to be nonzero is increased with n, additional relative 
shifts may split the central structure and create more shells.

IV. DISCUSSION: ROGUE WAVE “ATOMS”

Comparing our results with those of Matveev’s group 
[15,17-20], published recently, our main achievements are as 
follows:

(1) We have found the relation between the shift parameters 
of the Darboux transformation scheme and the free parameters 
of the multirogue wave solutions that control their structure. 
These relations are important and far from being trivial.

(2) We have revealed the highly symmetric structure of 
multirogue wave solutions in the (x, t )  plane. This is also a 
highly nontrivial result, as plotting the solutions does not reveal 
the symmetry immediately [15,17-20],

(3) We have found that, when we change their free param-
eters, the multirogue wave solutions split into substructures.

One way to interpret the wave functions in Fig. 4 is as atomic 
structures in the (x, t )  plane with a “nucleus” and “electrons.” 
Presently, this analogy is nothing other than visual. First, atoms 
are located in real space rather than in the (x , t ) plane, unlike 
rogue waves of the NLSE. Second, real atoms with several 
shells arc significantly more complicated. Thus this analogy 
still needs careful consideration, which may show that there is 
no real basis for it. Nevertheless, we cannot reject this attractive 
idea from the very beginning.

In order to see more similarities beyond the visual one, 
we note that, in a real atom, the first subshell s can have 
two electrons and each subsequent subshell has four more 
electrons than the previous subshell. Thus subshells p , d , f , g  
can have maxima of 6,10,14,18 electrons, respectively. So 
the nth full shell has 2 +  6 +  • • • +  (4n — 2) = 2n2 electrons. 
Likewise, an order n rogue wave for even n has an increasing 
number of electrons in the shells. If the core of the rogue wave
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(<i)

FIG. 4. (Color online) Higher order WANDTs with only the first 
component shifted. All Xu. =  0 unless specified, (a) Order 3 with 
X 13 =  54. (b) Order 4 with X i4 =  56. (c) Order 5 with X15 =  58. 
(d) Order 6 with =  510.

cluster were to be expanded into several rings, it would be 
evident that the series in this case is 3 +  7 +  • • • +  (2n — 1) 
with the total number of electrons being n(n + l) /2 . Similarly,

PHYSICAL REVIEW E 84. 056611 (2011)

for odd n the sum is 1 +  5 +  • • • +  (In — 1) =  n(n +  l)/2 . 
Furthermore, the nature of this electron series is likely related 
to the denominator of the polynomial expression for the nth 
rogue wave, which is of order n{n +  1) [14].

Curiously, there may also be some link with the nuclear 
shell model in that, if nuclear levels are labeled as n =
1,2,3....... then the number of states in level n is also n(n +  1).
Thus the analogies may actually be more profound than at first 
consideration. Further study may explain why the NLSE rogue 
wave cluster arranges itself in a regular fashion reminiscent of 
atomic shell theory.

With regard to experiment, a major application of these 
results might be found in optics or with deep water waves. 
Indeed, the simplest of these structures, namely the Peregrine 
soliton, has been recently observed in each of these cases 
[11,12], These experiments clearly demonstrated that rogue 
wave solutions do exist and, moreover, the governing equation 
for these waves is indeed the NLSE. Using more complicated 
initial conditions in the corresponding experiments may lead 
to the observation of higher order structures described in the 
present work. Such experiments would confirm to what extent 
we can use the NLSE as a model for these waves. There is al-
ready no doubt that rogue wave triplets could be observed with 
ease as they essentially consist of three separated Peregrine 
solitons. For structures of higher order, such observations are 
more difficult but certainly worthy of trial. Taking into account 
that the new solutions are highly nontrivial, experiments will 
require significant effort to upgrade the capability of both con-
trolled rogue wave production and detection. Nonetheless, we 
suggest that a progressive experimental program could feasibly 
generate circular rogue wave clusters within the next few years.

In some physical applications, e g .,  optical self-focusing, 
both variables are spatial. In such a case, the whole geometric 
structure appears in two-dimensional space. On the other hand, 
in problems related to wave propagation, the time and space 
variables are related through the group velocity and can be 
swapped. Thus we can see these solutions either in a (t,t) or 
(x , x ) plane. Perhaps this is a clearer way of understanding the 
beauty of the geometric structure of these formations.

In conclusion, we have studied families of higher order 
rational solutions of the NLSE with free real parameters. 
We have shown that these parameters are responsible for the 
“diffusion” of the central peak of the solution into clusters with 
a high level of symmetry. The clusters are arranged in circular 
shells, similar to the structure of electron shells in atoms.
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APPENDIX: THE DARBOUX METHOD

The NLSE arises from the compatibility of the following 
linear equations:

y/e 3R ,  1
—  = I J R  + UR,  —  = l2J R + IU R + - V  R,  (Al )
3t 3x 2
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with matrices

( o
W  0 )

( '  0\ 0  - i

- 4 ?  ' I ’AI2 /

- ( : ) ■
(A2)

and / as a complex eigenvalue.
Choosing a seeding solution of

=  efx
and restricting / to being purely imaginary, the system in Eq. 
(Al) is compatible with xf = x//0 when r =  r\j and s = s\j, 
defined as

(A3)

r\j =  2ie- ix/2s\n(Ajr + iAji),  

s\j =  2elx/2 cos(Bjr +  iBji). (A4)

The subscripts r and i refer to real and imaginary parts, 
respectively. The functions A and B are then given by

Ajr = [arccos ( ^ )  +  (t -  tj)Kj -  ,

Bj, =  -  [ -  arccos ( y )  +  (* -  k K i ~  y ]  -

A ji — Bjj l x  -  X j )K j \ j  I *1
4

(A5)

where Kj — 2^J 1 + I2. The j  subscript indicates that eigen-
value lj and coordinate shifts (Xj,tj) are free parameters. For 
example, j  = 4 refers to the fourth set of eigenvalue and shift 
parameters.

A first order solution to the system in Eq. (A 1) incorporates 
only one chosen set of free parameters and its corresponding 
r and s equations from Eq. (A4), denoted by j  = 1. The first 
order wave function is thus expressed as

Vri V'o +
2(/* -  /,)^nr*i

k n l 2 +  k n l 2
(A6)

An order n > I solution requires higher order versions of 
the expressions for r and s. These are recursively generated 
[24,32] by

t'np — [k«-l — 1 kn — l, 1 rii—1,1 Sn— \ ,p + 1

4 ~ { l p + n — 1 (fi —1 ) k n  —1.1 I ' r i j  —1 , p + l

T (lp+n— 1 ~ /„_i)kn —1,11'rii—l,p+l]

/ ( k n - 1 , 1 1 2 +  k n — 1,1 | 2)t 

$np =  [ ( ( „ _  I ln -  I )$ n -  1,1 ^n — 1 , l rii — 1 ,p + l

T  ( /p+n — 1 (n—1 ) k n — 1,11 $ n — 1 ,p+l

T  ( I p+n— 1 (n _ 1 ) k n  — 1,11 $ n  — 1 , p + 1 ]

/(kn-1,112 +  kn-1,1 I2)- (A7)
The p subscript in Eq. (A7) is used purely for enumeration and 
does not necessarily refer to a particular set of parameters. For 
example, the second order function rj\ involves the first order 
sets r\\, in ,  H2, and 5)2- Similarly, the third order function 
r3! involves the second order functions ^ i ,  $21 > r22, and si2, 
which, in turn, are based on rn , in ,  r 12, s12, 1̂3, and 1̂3 
at the lowest order of recursion. This way, Eq. (A7) allows 
n sets of free parameters to be incorporated into an order n 
solution. The diagram in Fig. 2.2 of the Solitons book [32] 
can be of use in representing this sequence of calculations. 
Then, the order n NLSE solution is generated through 
recursion by

•An-1
2(/„ ln)Sn\r„\

k n l  I2 +  k n l  I2
(A8)

In this work we are mainly interested in the specific case of 
the Kj —> 0 limit. Then all unequal Kj are expressed in terms of 
a common variable such as k . The numerator and denominator 
from every iteration of Eq. (A8) is then Taylor expanded in 
terms of k  and only the lowest order is retained. This results 
in “rational” solutions, such as Eqs. (4) and (5).
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Epilogue

Unlike the case of rogue triplets [1], a structure that had been identified several 
times before in both serendipitous [65] and intentional [85] manner, the discovery of 
circular clusters presented in this work [2] genuinely seems to have no precedent in 
the literature. This is in a sense unusual, as both the solution-generating procedure 
in this thesis and the alternative 'Wronskian' method [88] are, at their core, based on 
Darboux transformation theory [84]. It is then arguable that the advantages of either 
one must arise specifically from how spatiotemporal perturbations are applied to a 
compound rogue wave.

Certainly, in this study, component functions are treated as representations of the 
components themselves, with the relevant 'tuning' parameters considered physically 
as translations in space and time. It was thus inevitable that one component would be 
'shifted' in isolation to all others, resulting in the discovery of circular clusters. Pre-
sumably, this physics-based perspective is lost in the mix when dealing with abstract 
mathematical parameters obfuscated by Wronskian matrices. However, in retrospect, 
it appears that the perturbations in the Wronskian implementation have their own 
mathematical elegance. For instance, so-called 'triangular rogue wave cascades' were 
a simple result of this alternative method [86], seemingly so trivial that they were 
only mentioned in passing. In contrast, discovering them via the Darboux scheme 
in this thesis proved far more complicated. They are presented and discussed in 
Chapter 4.

In any case, the revelation of these structures appears to have had lasting impact 
in the field, contributing to a surge of interest in identifying numerous multi-rogue 
wave structures [71, 72, 89, 90]. The clusters are frequently cited as solutions that 
appear not just for the NLSE but also in other nonlinear systems [73, 91, 92], even 
though the spatiotemporal arrays are generally somewhat distorted in these cases. 
This ubiquity is in itself interesting and is touched on in Chapter 8. Indeed, to 
date, not much is known as to why their geometry is so perfectly circular for the 
particular scaling of the NLSE adopted in this thesis [93]. They are valid solutions 
mathematically, but it is unclear why the epicentres of modulational instability are 
physically arranged in such a manner. This peculiar rotational symmetry arises even 
when examining the first-order Peregrine breather more closely. For instance, it is 
possible to define the momentum of a wave [94] as

in optical convention, with ip as a solution of the NLSE. In fact, this P is a conserved 
quantity for the nonlinear equation. It follows then that SP — (dP/dt)öt  can very 
loosely be considered as the momentum present in a small portion of the wave with 
width öt. Shaded contours of this localised momentum are shown in Fig. 2.1a, indi-
cating how the energy in the wave is drawn into the peak of the Peregrine breather 
at the origin, before the flow symmetrically reverses itself for x > 0. Sequential 
derivatives of ÖP with respect to the evolution variable further describe the dynamics
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of the rogue wave to an ever finer degree. Remarkably, as displayed in the rest of 
Fig. 2.1, rotational symmetries are readily apparent in the contour plots. While these 
patterns only become more complicated for multi-rogue waves, this basic result hints 
that a concerted study of NLSE energetics may be required to fully comprehend the 
arrangements of circular rogue wave clusters.

There are also other interesting leads to follow from here. Indeed, the prediction 
made about the existence of multi-ring clusters would eventually be proved true 
by both the research within this thesis [6] and an independent investigation [72], 
as is further discussed in Chapter 6. These structures can be considered as multi-
shell extensions of the 'atom' analogy, although caution should still be applied when 
drawing links. Granted, there are good reasons to seek connections between particle 
and wave phenomena, particularly as the field of photonics was conceived in such a 
manner [95], but the dimensional issues of the NLSE have not yet been accounted for. 
On the other hand, with traditional solitons frequently favoured as particle models 
[96, 97], rogue waves may yet have a relation to solitonic collisions. This speculation 
is expanded upon in Chapter 7.

Theory aside, the applications for circular rogue wave clusters appear promising. 
With both fused rogue waves [23, 98] and a fissioned triplet [77] recently created 
inside a water tank, there is no reason to doubt the generation of higher-order wave-
forms in the near future.
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(c) (d)

Figure 2.1: Contour plots of 'localised' momentum and relevant evolution-variable 
derivatives with regard to a first-order rogue wave solution (i.e. Fig. lc in the pa-
per [2]). Red colours denote positive values (an upward direction) and blue colours 
denote negative values (a downward direction). Colour bars are omitted as the spec-
trum is proportional to d P / d t  and the relevant x derivatives, irrespective of the St 
value. Black lines mark zero contours, (a) Localised momentum, ÖP. (b) Localised 
force, SF =  SPX. (c) Localised 'yank', SPXX. (d) Localised 'tug', SPXXX.



Chapter 3

Second-order NLSE Breather 
Solutions in the Degenerate and 
Rogue Wave Limits

Prologue

The discovery of circular rogue wave clusters [2], as detailed in Chapter 2, revealed 
that the evolution dynamics of high-order spatiotemporally localised NLSE solutions 
were much richer than previously expected. However, the novel structures were still 
but the result of a numerically automated procedure, viz. the Darboux scheme [84]. 
Little was yet understood about why Peregrine breathers arranged themselves in 
such a way. In particular, naive reasoning still suggested that a rogue wave of order 
n should have been constructed from n individual first-order structures, rather than 
the n(n + 1) /2  Peregrine breathers that inductive logic showed was actually the case. 
Certainly, with regard to traditional multi-soliton wavefunctions of order n [87], it is 
relatively simple to identify the influence of n individual solitons.

Ultimately, the key to resolving this seeming paradox rests with the fact that the 
Darboux scheme technically superimposes breathers of general type, as opposed to 
Peregrine breathers specifically. This difference turns out to be crucial, as the 'zero 
modulation-frequency' rogue wave limit is only ever applied at the very end follow-
ing the nonlinear superposition process. Indeed, every spatiotemporally localised 
structure in the circular clusters paper [2] is but one complicated incident of modula- 
tional instability that has been mathematically extracted from an even more intricate 
wavetrain of crests and troughs. So, while a solitary AB or KM soliton does indeed 
leave behind a single rogue wave peak when its periodic modulation stretches out 
to the limit, interaction with a secondary breather in the same domain changes the 
rules.

This apparent asymmetry between components is yet another consequence of 
Darboux transformation theory, in that no two individual components can have the 
same shape-determining eigenvalue or corresponding modulation frequency. It is as 
true for breathers as it is for solitons [99, 100]. This inequality must hold all the way 
down to the rogue wave limit, even as both frequencies approach a value of zero, 
otherwise the compound solution becomes effectively undefined. All the same, it is 
still of physical interest to examine what actually occurs on the verge of eigenvalue
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equality, known as the degenerate limit. No true understanding of high-order NLSE 
rogue wave structures can be attained without first comprehending the intricacies of 
the breather solutions from which they are extracted.

This chapter, as a published manuscript [3], explicitly catalogues all axially- 
aligned second-order breathers of the NLSE. They are derived via the Darboux 
method and, in contrast to most of the numerical results in this thesis, their lim-
its are applied analytically. This set of solutions includes:

• The general two-breather wavefunction, which allows for various frequency 
ratios between components.

• The hybrid two-breather wavefunction, where isolated application of the rogue 
wave limit transforms one component into a Peregrine breather.

• The limit case of degeneracy, where modulation frequencies for two compo-
nents are effectively identical.

• The fused and fissioned second-order rogue waves that remain when the rogue 
wave limit is applied to the degenerate case.

Subsequently, the most significant conclusion to be drawn from this paper is that the 
NLSE does not permit two identical first-order modulation crests to exist together in 
isolation of any other plane-wave perturbation. Accordingly, the symmetry required 
of degeneracy is compensated for by one excess peak being drawn into the fusion 
of a triplet [1]. However, this is parametrically a very unstable situation and, even 
in the case of breathers, anything more than a select infinitesimal shift will repel 
the breathers so that they move away, eventually becoming infinitely far apart in the 
spatiotemporal domain.
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I. INTRODUCTION

Breather solutions of certain nonlinear equations are 
presently well accepted as potential prototypes for the notori-
ous rogue waves in the ocean [ 1-9] and other fields of physics 
[10-12], Breathers develop due to the instability of small 
amplitude perturbations that may grow in size to disastrous 
proportions. As the perturbations are usually chaotic and may 
contain many frequencies in their spectra, an important issue 
is our ability to construct higher-order solutions that grow 
as a nonlinear superposition of several lowest-order breathers 
[13,14]. Numerically, such solutions can be constructed with 
ease, and this has been done in a number of previous 
publications [14,15]. Analytic expressions for these solutions 
are another matter. They are usually cumbersome and admit 
many forms. Finding the simplest one is always a challenge.

In this work, we provide the two-breather solution of the 
nonlinear Schrödinger equation (NLSE) in explicit form. The 
solution has two eigenvalues as variable parameters of the 
breathers, thus allowing for a variety of particular cases. Of 
special interest is the case when the two eigenvalues coincide. 
The answer provided by the standard inverse scattering 
technique then becomes undefined. Nevertheless, the solution 
still does exist but requires special methods to reveal it. 
This procedure is analogous to the method employed with 
two-soliton solutions [16,17] where the degenerate case also 
requires a special approach. These techniques are highly 
nontrivial, but the final results are usually simpler than we 
may expect. They appear as a mixture of polynomials with 
trigonometric and hyperbolic functions.

The general solution with one, two, or more eigenvalues 
can be obtained using a variety of techniques including 
Darboux transformations [18]. This is the methodology that 
we use in this work. Having an explicit analytic solution 
has the advantage that we can also consider all particular 
cases analytically, including the rational solutions that have 
been studied in a number of recent works [19-24], These

*djk 105@rsphysse.anu.edu.au

include higher-order rogue waves [19,20] and their varied 
forms [21-27], In our present approach, rational solutions are 
just one of the limiting cases of the two-breather solution. A 
superposition of breathers that create a rogue wave can also 
be considered [14], Thus our approach here is quite general. 
It provides a comprehensive understanding of second-order 
NLSE breather solutions and their hierarchical nature.

The NLSE can be written in dimensionless form as

dxl/ 1 32\1/ , in

The wave function \x//(x,t)\ in Eq. (1) commonly describes the 
wave envelope. In fiber optic applications 112], the variable x 
is the distance along the fiber while t is the retarded time in 
the frame moving with the pulse group velocity. On the other 
hand, in water wave applications [9], x is the dimensionless 
time while t is the distance in the frame moving with the 
group velocity. Such a difference is more related to traditions 
in each field rather than to any particular physical meaning. 
Simple linear transformation between the variables involving 
the group velocity allows us to change the equation and 
variables from one form to another.

There is a class of first-order solutions to Eq. (1), pertaining 
to modulation instability [28], that can be described by a 
complex eigenvalue / [29], The real part of the eigenvalue 
represents the angle that the one-dimensionally localized solu-
tions form with the x axis, and the imaginary part characterizes 
the frequency of periodic modulation. A variety of different 
forms for this solution has been given in several publications by 
different authors [14,30-33]. The case of complex eigenvalues 
is rather involved and numerical results [15] may be easier to 
comprehend than analytic solutions. In this work, we restrict 
our analysis to purely imaginary eigenvalues, thus allowing us 
to present and analyze the second-order solutions in a relatively 
simple way.

The general form of the first-order breather solution [34] is

K 2 cosh<$(* — x \ ) + 2 i k v sinh<5(x — xi) 
2[cosh<$(jc — X|)—v cos/c(f — fi)] A ( 2)

1539-3755/2012/85(6)/066601 (9) 066601-1 ©2012 American Physical Society
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where v =  Im(/), k  =  2 \ / 1 + 11, and both x\ and t\ serve 
as coordinate shifts from the origin. The dependent variable 
<5 =  k v  in this expression is the growth rate of modulation 
instability; this is the process occurring as the plane wave 
evolves from a small periodic perturbation at x — — oo.

When 0 < v <  1 and k  is real, the solution is a r-periodic 
wave function that is localized in x , currently known as an 
Akhmediev breather (AB) [2,6,7]. This solution has been 
illustrated earlier in Fig. 1(a) of Ref. [27], On the other hand, 
when v > 1 and k  is imaginary, the trigonometric (dependent 
on t) and hyperbolic (dependent on x) functions in Eq. (2) 
convert to their analogues via the relations

sinh(z) =  -/' sin(/z) and cosh(z) =  cos(iz). (3)

Taking into account these transformations, we obtain a soliton 
solution in the following form:

— p 2 cos Q(x — jc i)—2ipv  sin S2(jc — jci )  ̂ jx
2[cos £2(x — jci )— u cosh p(t  — t \ )]

where k  =  ip, p  — I s / v 1 — 1, and <5 =  i Q, £2 =  pv.  This is a 
soliton on a background, localized in t and periodic in x. It is 
known as a Kuznetsov [35] or Ma [36] (KM) soliton and has 
previously been presented in Fig. 1(b) of Ref. [27],

Equations (2) and (4) represent an AB and a KM soliton, 
respectively, with the frequency parameters k  and £2 being 
real values in each case. One is the analytic continuation of the 
other when the parameter v passes through the point 1. Each 
solution can be written in the general form below with real 
G„, Hn, and Dn [see Eq. (5)]. In what follows, we take this 
fact into account and assume, in several equations below, that 
coefficients may take real or imaginary values, thus avoiding 
the need to explicitly present several real-coefficient versions 
of the same solution. When loaded into modem software such 
as m a tl a b , the assumption of complex coefficients allows 
these equations to be computed correctly without the need for 
further specifications.

In the nontrivial limit, when v —> 1 or k  -> 0, the above 
expressions become undefined. However, this problem can 
be resolved using l’Hopital’s rule. Then, the period of either 
solution goes to infinity and the resulting wave function is 
the Peregrine soliton localized in both x and t. It was shown 
earlier in Fig. 1 (c) of Ref. [27], This solution is also known as 
a first-order rogue wave. Using the general form

^ n(x,t) ( - 1 )" +
Gn +  / Hn 

Dn
eix (5)

to represent a NLSE solution of order «, this rational solution 
has the values for G i, H\,  and D\  given by

G , =  4, Hi =  8(x -  x i) ,

D ) =  1 -F 4 ( jc - x i ) 2 +  4 (f - H ) 2.

NLSE breather solutions take the above simple forms only 
when the real part of the eigenvalues is zero. The general case 
of complex eigenvalues is significantly more complicated, but 
the method and low-order analytic results have previously been 
presented (see the appendix of Ref. [14]).

II. TWO-BREATHER SOLUTION IN GENERAL FORM

Various methods exist for generating higher-order NLSE 
solutions that exist on a background plane wave. We employ 
the recursive Darboux method [13,18], which nonlinearly 
superimposes distinct components of AB or KM soliton form. 
Each first-order component j in the higher-order solution is 
described by the (imaginary) eigenvalue l j , the modulation 
frequency Kj =  2v  1 +  /2, and a shifted point of origin (xj,tj).  
A detailed step-by-step description of this technique has 
been presented previously (see the appendix of Ref. [27]). 
For convenience, we define xsj — x -  xj  and tsj — t -  tj as 
shifted variables.

With these parameters, we find that the general solution can 
be written in the same form as Eq. (5), but with the values for 
G 2 , H2, and £ > 2  given by

G2 =  ~{ k 2\ -  *1) \ — 1 CO Sh(<$iX ,|)CO S(/<-2L2)

FIG. 1. (Color online) Various forms of second-order NLSE 
solution with different eigenvalues lj. (a) Nonlinear superposition 
of two ABs with £ =  0.65/ and l2 = 0.85/. Finite shifts are x\ =  5 
and a' 2 =  —5. (b) An AB with /1 =  0.65/ crossing a KM soliton with 
/2 =  1.35/.

1
cosh(<52x.s2) cos(/c, £!)

( /c 2 -  k \ )  c o s h ( S i X j i ) c o s h ( < S 2 * 52) L

066601-2
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SECOND ORDER NONLINEAR SCHRÖDINGER EQUATION . . .

H 2 -2( k ] -  jc| ) (  1 sinh(Äix,i)cos(«-2rj2)
K2

S \ S 2
sinh(<S2xj2)cos(xifsi)

— Si sinh(S]X.si ) cosh(S2jrj2)

+  82 sinh(S2̂ i2)cosh(S| j :si )

. j  2 \  S i  S'?
D 2 = 2(/c, + k 2) — -  c o s (/C|Li ) c o s (^2c 2)

K\K2

+  4S)S2 f sin(AfUji) sin(ic2fj2)

+  sinh(SiJC,i) sinh(S2jrs2)^

— (2k ] — k ]k ]  +  2k ])  cosh(SiX;,i)cosh(S2x,2)

- 2 ( k ] -  k ] ) (  —  cos(K,tsl)cosh(S2xs2)
■ \* i

S 2----- cos(/c2fs2)cosh(S|^.sl)
k  2

(7)

where the instability growth rate for each component is 8j = 
Kj v 4 - - kJ / 2. A special case of this solution, where the two 
frequencies of modulation are harmonics of each other, has 
been given previously in Ref. [34]. We stress here that the 
two frequencies are independent parameters of the solution. 
Moreover, this present solution includes both ABs and KM 
solitons in any combination. To have an explicit real-parameter 
form for the cases when one or two values of Vj =  Im(/j) are 
greater than 1 (or the corresponding k j  values are imaginary), 
we can again apply the relations in Eq. (3) to Eq. (7).

Thus, within the set of solutions with purely imaginary 
eigenvalues, Eqs. (5) and (7) are capable of describing a variety 
of possible second-order cases. For example, the case of one 
AB developing with a time delay after another is shown in 
Fig. 1(a), where both have different modulation frequencies. 
Alternatively, the intersection of an AB with a KM soliton 
is shown in Fig. 1(b). These two examples demonstrate that 
our second-order solution is a versatile tool for modeling the 
nonlinear superposition of two arbitrary ABs, KM solitons, 
or their combinations. This idea has previously been explored 
with the concept of rogue waves being formed from colliding 
ABs [14], Despite the fact that our present solution is a 
particular case of complex eigenvalues, it is presented here 
in a simple explicit analytic form. Two more examples are 
shown in Fig. 2. These are combinations of two ABs located 
at the same position in x  and r, but with different frequencies.

Generally, second-order solutions of the NLSE do not admit 
two equal eigenvalues, otherwise the analytic expressions 
become undefined. Our present solution given by Eqs. (5) 
and (7) is not an exception. Moreover, none of the eigenvalues 
in the above expressions can be equal to i. It can easily be seen 
that in these cases, G 2, H2, and D2 are zero, and the analytic 
expression has to be further modified in order to be presented 
in explicit form.

These problems are complicated but can be surmounted by 
applying analytic limits. As demonstrated for the first-order

PHYSICAL REVIEW E 85. 066601 (2012)

FIG. 2. (Color online) Nonlinear superposition of two ABs with 
two different modulation frequencies Kj. (a) The frequency ratio is 
2 : 1 with /c( =  0.8 and k 2 =  1.6. (b) The frequency ratio is 3 : 2 with 
K\ — 0.8 and k 2 =  1.2.

solution in Sec. I, taking the limit lj —► / is the key to accessing 
important rational rogue wave solutions. In order to avoid 
the case of equal eigenvalues, we can, as in previous work 
[27], choose to set k j  — J k  and then apply the k  —> 0 limit. 
This trick effectively extends the period of the wave function 
shown in Fig. 2(a) to infinity, leaving behind only the central 
second-order rogue wave peak. This technique ensures that the 
component eigenvalues are distinct all the way to the lj — i 
limit.

Notably, this technique for finding the rational limit works 
for any ratio of k j  that is not one-to-one. As acknowledged in 
our previous work [26], a second-order rogue wave is generally 
built from three first-order Peregrine solitons. Therefore, 
enforcing a default 2 : 1 ratio with k 2 — 2k \ allows us to obtain 
a solution where two component ABs form first-order triplets 
that merge into second-order peaks, provided that they share 
the same origin. This case is shown in Fig. 2(a). In contrast, a 
3 : 2 ratio with k 2 =  1.5/Ci, shown in Fig. 2(b), forms a series 
of triplets, which are merged together, alternating with distinct 
doublets. Similar structures repeating along the ,v axis appear 
in the KM soliton regime, although we caution that the integer 
ratios in this situation must be applied to <$1 : S2 (or : £22 
in the real-parameter form), not K\ : k 2. A s Eq. (4) shows, this 
is because a KM soliton is periodic in x with a frequency of

066601-3
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Q =  —iS rather than k . Nevertheless, in either case, the k  —*■ 0 
limit isolates the single centrally located second-order rogue 
wave.

To see this merging of the triplet in greater detail, we 
present another particular case generated from the general two- 
breather solution in Eq. (7). This is the nonlinear superposition 
of an AB or a KM soliton with a Peregrine soliton and 
can be generated if we take the infinite period limit of one 
component independently of the other. Specifically, if /cj ^  0 
and k 2 —*■ 0, then Eq. (7) reduces to a semirational expression 
(i.e., a mixture of polynomials with both trigonometric and 
hyperbolic functions in x and t ):

G2 =  y {k \{k ]{^x 2s2 +  4f22 +  1) -  8)cosh(^i^i)

+  8<5i c o s(k v si )).

Hi =  ^-(8*v2(<$i cos(Kir*i) -  a t , cosh(<$, xs\ ))

+  5 i (4x^2 +  4t22 +  l) sinh(^i jCji)), (8)

D2 = - ± ( 8 l (K2(4x22 + 4tf2 + 1) -  16)cos(/f,f,i)

+  K\ {(/c,2 (4j :22 +  4r22 -  3) +  16) cosh(<S, )

— 16Ai [xs2 sinh(A\xsi ) +  ts2 sin(/citsi )]}).

FIG. 3. (Color online) Nonlinear superposition of an AB ( / 1 =  
0.65/) with a Peregrine soliton (l2 = i). (a) Shifts are *i = 5 and 
x2 =  —5. (b) Shifts are zero.

PHYSICAL REVIEW E 85. 066601 (2012)

When the two components in this formula are well sepa-
rated, the resulting solution appears as a Peregrine soliton and 
an AB (or a KM soliton), shown in Fig. 3(a). However, when 
these two components are nonlinearly overlaid, they appear as 
a first-order AB with a central second-order rogue wave peak, 
shown in Fig. 3(b). Three first-order peaks have effectively 
merged into a second-order peak. If we further apply the 
/ci —► 0 limit, we obtain the equation for a second-order rogue 
wave given below [see Eq. (10)]. This hybrid solution in 
Eq. (8) is thus one way to bridge the gap between a general 
second-order solution and an isolated rogue wave.

III. EQUAL-EIGENVALUE DEGENERATE 
SECOND-ORDER BREATHER

The general two-breather solution in Eq. (7) becomes 
undefined when the two eigenvalues l\ and/2 coincide. Despite 
this mathematical fact, numerical results similar to those in 
Fig. 2 show that, when the ratio of AB frequencies approaches 
1 : 1, the solution appears as two almost parallel lines of 
periodically located peaks curving in at the origin to produce a 
second-order rogue wave in the center. In accordance with this 
observation, we set x\ — x2 = t\ = t2 = 0 and analytically 
apply the k 2 —> K\ limit to Eq. (7). This can be done using 
a special form of THopital’s rule. Specifically, we set K\ =  k  
and k 2 = k + ( ,  then Taylor expand both the numerator 
and denominator of (G2 + iH2) /D2 in terms of t .  As all 
higher-order terms become zero at the f  —> 0 limit, only 
the coefficients of the lowest-order terms in f form the new 
numerator and denominator in the limiting solution.

This process results in the degenerate equal eigenvalue 
solution still given by Eq. (5), but now with real G2, H2, and D2 
given (again by mixtures of polynomials with trigonometric 
and hyperbolic functions in x and t) by

G2 = ------( cosh(S;c)((<$2 +  k 2) c o s(/c /) +  82k 1 sin(/c7)
<$

— 28k  cosh(<5x)) +  c o s(k7) sinh(<Sjc)(2<S2 — /c2)Ajc),

Hi = ------- (8<S.x:(2A2 — *r2)[<S c o s(k7) cosh(S.r) — k ]
2&K

+  8<S3 sinh(<$.v)[cos(/cr) +  Kt sin(/rt)]
+  (k 4 — 482)k  sinh(2<5x)),

D2 =  i - ( k \ 8 2 + k  2) +  882K2(82t2 + k 2x 2)
4 S2/c2

+  32S4x 2(S2 — K2) +  4[k 4 cosh(2($.v) — 84 c o s (2ac7)]
— \682k x (282 — K2)cos(Kt)s\nh(8x)
-48K2[482r sin (Kt )  + D  cos(/cf)] cosh(<Sjc)), (9)

where the lack of subscripts on k  and 8 variables indicates that 
the two constituent components have equal parameters.

When using a real k  value, Eq. (9) represents two coincident 
ABs with equal eigenvalues, illustrated with the contour plot 
in Fig. 4(a). If k  is, instead, purely imaginary, then 5 becomes 
imaginary and, as with Eq. (4), the trigonometric and hyper-
bolic functions swap via the relations in Eq. (3). In this case, 
localization in the x axis and periodicity in the t axis is replaced 
with localization in the t axis and periodicity in the x axis. The 
solution represents two coincident KM solitons with equal 
eigenvalues. It is illustrated in Fig. 4(b). In either situation, the

066601-4



§34 Differential Shifts 2 7

SECOND-ORDER NONLINEAR SCHRÖDINGER EQUATION . . .

FIG. 4. (Color online) Contour plots of the two-breather solution 
|t/f I in the equal eigenvalue limit. One axis in each plot is exaggerated 
in order to emphasise the curvature of the wave trains. The upper 
color bar limit does not signify the maximum amplitude, (a) Two 
ABs with equal k  =  0.8. (b) Two KM solitons with equal k  =  0.8/.

wave profile consists of two lines of peaks hinged upon one 
second-order rogue wave. This degenerate solution resembles 
the ordinary two-soliton degenerate solution presented in 
Fig. 3.15 of Ref. [37]. However, the difference is that the 
solution in Eq. (9) contains periodic structures that appear due 
to the presence of the background plane wave.

An interesting feature of the two solutions presented in 
Fig. 4 is that the location of the peaks almost coincide when 
one is rotated by 90: around the origin and overlaid on the 
other, even though the orientation of the substructures are kept 
unchanged (i.e., the pairs of troughs for each peak always line 
up along the t axis). This happens only when the coefficients 
of the NLSE are chosen to be those that we show in Eq. (1). 
In fact, most of the variation between peak alignment is due 
to the frequency of the periodic structures in an AB and a KM 
soliton being k  and ö  =  — iS, respectively. Thus the NLSE 
in this form has a remarkable symmetry, as has already been 
noted in our previous work [27],

Having the degenerate form of the two-breather solution in 
Eq. (9), we can use it to find the already familiar limit k  —*■ 0. 
This stretches the period of the wave train out to infinity, 
leaving at the center a single second-order rogue wave. The

PHYSICAL REVIEW E 85, 066601 (2012)

FIG. 5. (Color online) Second-order rogue wave given by Eq. (10). 

resulting analytic expression is

G 2 =  — (80* 4 + 96* V  + 16r4 +  72*2 +  24r2 -  3),
96

H2 =  — *(16* 4 +  32*V  +  16f4 +  8*2 -  24f2 -  15),
48

Di =  -  —L_(64*6 +  192*V +  192*V  +  64 r6 +  432*4

-288 x 2t2 +  48r4 +  396*2 +  108r2 +  9), (10)

which gives the wave function shown in Fig. 5. Thus we 
have fully established the hierarchy of unshifted second-order 
breather solutions, ranging from the general case to the rogue 
wave via degenerate breathers.

IV. DIFFERENTIAL SHIFTS

Now the question is how to incorporate the shifted coordi-
nates xsj =  * — xj and tsj =  t — tj into the equal eigenvalue 
limit. This is another highly nontrivial point in obtaining the 
limiting solutions and, as shown previously [27], the shifts 
need special consideration when eigenvalue limits are applied. 
Returning to the e Taylor expansion process that turns Eq. (7) 
into Eq. (9), we realize that shifts cannot be arbitrary values 
independent of any other parameter. When *7 ^  0 and tj ^  0 
are treated as arbitrary, the lowest-order terms of G2 and H2, 
after Taylor expansion, are of order e 1. However, the lowest- 
order term in D2 is 4<$2{cos[/c(r2 — fi)] — cosh[<5(*2 — *i)]]e°. 
This means that (G2 +  i H2) /D2 =  0 in the limit unless t\ — t2 
and *1 =  *2 . This difficulty was also present when considering 
rogue wave clusters [27] and the only solution to this problem 
was to have shifts dependent on the limiting parameter. 
Specifically, we have to define *7 =  X7e and tj — Tj€. This 
definition changes the result of the e expansion process, such 
that G2, H2, and D2 have lowest-order terms of equal order in 
e, thus avoiding a zero or infinite expression for e —> 0.

We caution that, as e is defined to be proportional to * in 
the Taylor expansion process, ABs and KM solitons have a 
real and imaginary value for e, respectively. As xj  and tj are 
always real-valued, pertaining to a shift of component origin in 
real space and time, then the nature of Xj  and Tj consequently 
depends on e . Specifically, these parameters are restricted to
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being real for ABs and imaginary for KM solitons, otherwise 
singular solutions result.

When these definitions are taken into account, the degener-
ate equal eigenvalue limit becomes

G2 =  — — [((8<$2 +  K4)cos(Kt) +  4 82K(t +  KTd)s\n(Kt)
28

-  88k  cosh(<$.r)) cosh(<$.x)
+  4<S[52(2jc +  k X j ) -  k 2x ] c o s(k I) sinh(5x)],

Hi = ---- !—(8<5[ac2jc -  S2(2x +  k X j )]
28k

x [k  — 8 cos(Kf)cosh(<$x)] +  k (k 4 — 4<S2) sinh(2Ajr)
+  8<53[c o s(Kt) +  K(t -(- t<Td) sin(/c/)] sinh(<5.r)),

D2 = U k 6 + 282k 2(k 2( \  + 4x2) -  2)
482k 2

+ 8<86(2jc + k X j )2 + 4<54( 1 + 2 k 2[U + n T d)2
-  2jc(2jc +  KXd)] -  cos(2Kt))

4- at[(4<S2 +  k 4)k  cosh(2<Sx)
-  16<$ V(f -I- k Td)cosh(8x) s \i\(k t )
+ 48 cos(Ar/')(4<S[/c2Jc -  82(2x  +  x X d)] sinh(<5jr)
-  k 4 cosh(5x))]), (11)

where we define the differential shifts as Xd — X) — X2 and 
Td — T\ — T2. Again we stress that the differential shifts 
have imaginary values in the KM soliton regime, although 
naturally \Xd\ and 17^| always represent the magnitude of 
the differential shifts. To avoid confusion, we will henceforth 
examine degenerate ABs, although the conclusions drawn have 
close analogues in the KM soliton case.

The first feature revealed by Bq. (11) is that a differential 
shift Td along the t axis of the degenerate two-breather 
solution, shown in Fig. 4, does not change the overall structure 
of the wave profile. Two first-order ABs remain symmetrically 
arrayed and held in close proximity with a single intersection. 
However, the nature of this point of intersection depends on the 
value of the differential shift. It may change if the two breather 
components with equal eigenvalues are shifted relative to 
each other, at which point the perfect peak alignment in the 
middle of the intersection disappears. This case is shown in 
Fig. 6(a). The intersection more closely resembles the rogue 
wave triplet [26] than a second-order rogue wave with a single 
peak. However, periodicity of the solution suggests that the 
latter arrangement can be restored at specific values of Td 
and its multiples. Indeed, Fig. 6(b) shows that the high peak 
appears again at a nonzero value of differential shift Td.

The differential shift Xd has a different effect on the solution 
with equal eigenvalues. As shown in Fig. 7(a), the intersection 
point starts to disappear when Xd takes nonzero values. For 
a sufficiently large shift, the two first-order components are 
separated and the intersection disappears completely. This 
case is shown in Fig. 7(b). However, the interaction between 
the two breathers is still surprisingly strong. As a result, 
the two components are organized in an interleaving zigzag 
structure. Such an asymmetric arrangement appears to be a 
direct consequence of the e —► 0 limit. Indeed, taking the 
limit with k 2 set as k  — e instead of k  +  c is likely to flip 
the zigzag structure. However, we reiterate that the absolute 
shifts xj — X j f  and tj =  7)e are still technically zero in this

-1 5  -10

(b)
FIG. 6. (Color online) Contour plots of the two-breather solution 

|^r| in the degenerate limit, with / =  0.65/ and a nonzero differential 
shift Td between the two components. The upper color bar limit does 
not signify the maximum amplitude, (a) Td =  0.9/c. (b) Td =  1.8/c.

limit, irrespective of the X and Tj values, and this may be 
vital in explaining why the two breathers do not repel each 
other to the infinity horizon of the (jc,f) plane.

Linking this result to already known solutions, the l —> i 
{k  —► 0) limit of Eq. (11), with any value of the differential 
shift applied, is expected to produce a rogue wave triplet [26]. 
However, as k  approaches zero and the period of the breathers 
becomes infinite, keeping the values of Xd and Td constant is 
not sufficient to prevent the components from repelling each 
other to infinity. Instead, we define X d — xdK and Td = tdK, 
which alternatively allows the difference between absolute 
shifts to be written in full as x\ — x 2 = xd/ce and t\ — t2 =  
tdK€. Fixed values of xd and td keep the circumradius of the 
rogue wave triplet constant, even when it is the only structure 
left at the origin of the (x,t) plane in the k  —> 0 limit. An 
example of this process with two KM solitons is shown in 
Fig. 8. Furthermore, unlike Xd and Td, the values of x d and 
td are always real, even in the KM soliton regime, as /ce is 
always real. In any case, the second-order breather solution 
with equal eigenvalues can be considered as an intermediate

066601-6



§34 Differential Shifts 2 9

SECOJNDORDER NONLINEAR SCHRÖDINGER EQUATION . . .

-15 -10

-15 -10

FIG. 1 (Color online) Contour plots of the two-breather solution 
|^ | in the degenerate limit, with / =  0.65/ and a nonzero differential 
shift X j  b:tween the components. The upper color bar limit does not 
signify the maximum amplitude, (a) X d = 1.8/c. (b) X d — 18/c.

link between pure rogue waves and the general second-order 
breather solutions given by Eq. (7).

Direci analytic application of the k  —*■ 0 limit to Eq. (11) 
generates the following solution

G2 = —(8(k4 +  9 6 +  16/4 +  72x2 -  \92xxd 
%
- 2 4 12 -  192ttd -  3),

H2 = —(16jc5 +  3 2 jc 3 r2 +  16jcr4 +  8 jc 3 — 96x2xd 
4-8
-  24x t 2 +  96xdt 2 — \92xttd — 1 5jc -|- 24xd),

D2 =  - -p ^ (6 4 .v 6 +  192jc4r2 +  1 92jc2t 4 +  64r6

-  432x4 -  76Sx2xd -  288xV  +  2304xxdt2
-  2304x2rQ +  48r4 +  768t3td +  396jt 2 -  \12&xxd
+ 2304a J +  108r2 -  576ttd +  2304r] +  9). (12)

This is the same solution for the shifted second-order rogue 
wave ghen previously [22-24,27], although xd and td here 
have a different scaling factor of 2/3. This minor difference 
is due to the rogue wave limit in this work being taken 
with a diTerent frequency ratio between components. Indeed, 
had K\  : <2 been, for example, 1 : 3 rather than 1 : 2 in the

PHYSICAL REVIEW E 85, 066601 (2012)

(C)

FIG. 8. (Color online) Two KM solitons with equal eigenvalues, 
given by Eq. (11). The differential shift is Td =  3k  (td =  3) in all 
three cases. The two equal eigenvalues are (a) / =  1.2i . (b) / =  1.1/. 
(c) / % /. The period of the two breathers approaches infinity when 
the eigenvalues tend to i.

previous derivation [27], x d and td would have been scaled 
differently yet again. Nonetheless, as f is of order k , the 
process described in this work still supports the claim that 
a second-order rogue wave requires shifts proportional to k 2 
in order to be transformed into a triplet of finite circumradius 
in the k —► 0 limit [27].
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V. CONCLUSION

In summary, our main results are as follows.
i) We have found a general analytic expression for the two- 

breather solution of the NLSE with two independent imaginary 
eigenvalues. This solution describes nonlinearly superimposed 
ABs or KM solitons as well as their combinations.

ii) We have found the nontrivial degenerate solution in the 
limit of equal eigenvalues. Where simple substitution leads 
to an undefined expression, special application of I’Hopital’s 
rule allows the solution to be presented in explicit form. We 
illustrated this solution with two cases where the component 
breathers are either ABs or KM solitons. The analysis shows 
that in each case, these degenerate solutions consist of two 
near-parallel lines almost periodic in structure, with only one 
point of intersection.

iii) We introduced two free parameters, differential shifts 
between components, that modify the structure of the degen-
erate solution. We studied the wave profile at the point of 
intersection and how it is influenced by these parameters. In 
particular, the profile varies between the single-peak second- 
order rogue wave and the three-peak rogue wave triplet, 
depending solely on the value of the differential shifts.

iv) We have found that the rogue wave limit of infinite 
period, when the two equal eigenvalues are equal to /, 
generates the familiar second-order rogue wave with two free 
parameters; differential shifts along the t and ;r axes.

Ultimately, we have established how these wave functions 
are all related in a hierarchy of second-order breather solu-
tions. This concept has previously been obtuse, at best. The 
degenerate solutions are in effect a missing link between 
arbitrary superpositions and rogue waves. This understanding 
is particularly significant as analytic expressions for higher 
orders become vastly more complex, even for simple rogue 
wave limits [23], Second order is potentially the final regime 
where the hierarchy of all structures can be efficiently 
described. Even so, multibreather solutions that appear in 
a chaotic wave field can still be studied in a similar way 
as presented. The analysis here gives a good qualitative 
description of the higher-order structures expected to be 
generated. Numerics demonstrate, as shown in Fig. 9 with 
a fifth-order rogue wave produced in the intersection of 
five KM solitons, that this is potentially a way to produce 
very high amplitude waves from much smaller structures, 
without resorting to ideal rogue waves with infinite period.

15 

10 

5

-  0 

-5  

-1 0  

-1 5

-5 0  0 50
x

FIG. 9. (Color online) Numerical contourplot o f the five-breather 
solution | \jj | near the equal eigenvalue limit, with / % 1.2/ for all KM 
solitons. One axis is exaggerated to emphasize the curvature o f the 
wave trains. The upper color bar limit does not signify the maximum 
amplitude.

One of the important applications of our results is related 
to the description of the higher-order modulation instability 
of constant amplitude waves [38]. Varying two independent 
frequencies within the instability band may create significantly 
more complicated controllable periodic structures as a result 
of modulation instability [39]. We have already mentioned 
higher amplitude peaks within each period of modulation, but 
the amplitude profile within each period may also vary and 
can be tailored by adjusting the modulation depth and delay 
between the two frequency components. These experiments 
can be conducted either with water waves or in optics. Thus 
our explicit solutions may significantly enrich the family of 
pulse sequences and wave shapes that can be generated in 
fiber and water tanks, respectively. The seminal experiments 
have already been completed [9,12] and we expect further 
progress in this exciting area of research.
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Epilogue

As a publication dedicated to generalised two-breather solutions in exact analytical 
form [3], the contents of this chapter have had an impact beyond rogue wave theory, 
with the solutions used in the topic of similarity transforms to higher-dimensional 
equations [74, 75]. However, at this stage, it is worth addressing several terminolog-
ical oddities. It is evident that, while the main text in this thesis seeks to maintain a 
consistent convention for both breathers and solitons, the incorporated journal arti-
cles often mix labels. For instance, certain solutions on a plane-wave background are 
frequently called Peregrine or Kuznetsov-Ma 'solitons'. This ambiguity of nomen-
clature also goes the other way in the literature, with high-order zero-background 
beating solitons occasionally referred to as 'breathers' [93, 101]. Naturally, while this 
dissertation attempts to demarcate breathers from solitons based on the type of back-
ground they are built on, this terminological confusion is not simply due to tradition. 
There is actually a deep physical relation between the two solution types, elaborated 
in Chapter 7.

Even without knowing this link, the wavetrains pertaining to both breathers and 
solitons still discernibly behave in similar fashion. This follows from examination of 
the expression for a general first-order soliton given by

ipi(xj) = —2ib\sech(2bi (fsl +  2a1xsl)) (3.1)

where the fully-complex eigenvalue is A] = a\ + ib\ and the shifted origin is denoted 
by both xsl — x  — X\  and ts\ = t — fj. It is clear from the equation that, even with-
out a velocity imparted by a\, a soliton oscillates in phase with regular eigenvalue- 
dependent frequency. This is analogous to the modulating envelope of a breather. 
Consequently, the appearance of aligned second-order solutions becomes a matter of 
interference patterns. For example, Fig. 3.1a displays the nonlinear superposition of 
two unshifted a; = 0 solitons, derived via numerical implementation of the Darboux 
scheme with a seeding solution of ipo = 0. Each collision peak in the surface plot 
corresponds to a point of constructive phase interference, with alignment enforced 
at x = 0. The crests directly adjacent to the centre actually have a value of —ip(0,0) 
at those points, but the negative sign is ignored by the modulus operation.

For comparison, two superimposed ABs with the same choice of frequency values 
are shown in Fig. 3.1b. This structure can be interpreted in two ways. The first is as 
in the paper [3], according to which the 5 : 3 ratio results in eight Peregrine breather 
peaks needing to be distributed per repetitive cycle. Three fuse into a second-order 
rogue wave, while the other five are arranged to maximise symmetry. In this case, 
that means there are two doublets and a singlet between each adjacent second-order 
collision. On the other hand, the second interpretation is as in the case of the beating 
solitons. Analogously to Fig. 3.1a, there should effectively be five points of construc-
tive modulational interference at the same locations, albeit along t instead of x. Sure 
enough, there are, but the summative effect of the plane wave must now be taken into 
account. For the central and the outermost displayed peaks, all amplitudes construe-
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(a) (b)

Figure 3.1: Beating second-order NLSE solutions, (a) Two aligned solitons, with 
phase frequencies 2b\ — 0.9 and 2b\ — 1.5. (b) Two aligned breathers, with modula-
tion frequencies K\ =  0.9 and k -i =  1.5.

tively interfere to produce second-order peaks. In contrast, the intermediate nodes 
feature maximum destructive interference between the background and the aligned 
modulations, leaving behind rogue singlets for the particular wavefunction depicted. 
The remaining doublets then correspond to the 'craters' in Fig. 3.1a.

This close correlation between traditional solitons and breathers is what moti-
vated research into the degenerate case in the first place. For the solitonic case 
[99, 100], attempting to enforce eigenvalue equality via limit theory is equivalent 
to reducing the beating frequency of the wavefunction in Fig. 3.1a, extending the 
spatiotemporal distance between peaks until there is but one collision between two 
seemingly parallel solitons (as shown in Fig. 7d of the cnoidal paper [7]). By this 
logic, it follows that a degenerate breather would resemble the same shape. The 
only significant difference here is that the endless wavetrains are now composed of 
doublets.

Ultimately, the relevance of this discussion to the topic of multi-rogue waves is 
as follows. No two breathers can have exactly the same periodicity as this would 
be physically equivalent to a beating frequency of zero, essentially corresponding 
to linear superposition. This is of course not possible, as the nonlinearity in the 
NLSE precludes ip and 2ip from simultaneously being nontrivial solutions. So one 
breather will always have at least one more (or one less) modulation crest in its 
wavetrain than another. In effect, each component attempts to differ from every 
other breather in the smallest number of modulation peaks possible, as befits the 
degenerate limit, but without actually being identical to any other. However, the 
degenerate limit of two aligned breathers must still induce some symmetry, and this 
is achieved by fusing any excess wavetrain crests into an interaction between the two. 
In this second-order case, one breather donates one modulation crest and a second 
donates two towards this analogy of constructive interference, so that the remaining
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wavetrains are perfectly equal and symmetric. This asymmetry also carries over to 
higher-order fusions, such that while one breather contributes one 'quantum' and a 
second contributes two, a third contributes three, a fourth contributes four, and so 
on, ordered by their relative pre-limit modulation frequencies. This is why a rogue 
wave, in the absence of the rest of the breather wavetrains, consists of a triangular 
number (i.e. 1,3,6,10,...) of Peregrine breathers [2].

Incidentally, arguments based on breather asymmetry are but one of several ways 
to justify this sequence. They are physically inspired, but not necessarily the easiest 
to express. In contrast, this series can also be mathematically attained via an algebraic 
exploration of polynomials within the exact functional form of fused rogue wave 
solutions [69] and is elaborated in a publication on rogue triplets [1]. Moreover, there 
is yet an even simpler conceptual justification that can be discussed, but this requires 
a better understanding of how rogue waves are related to solitons and is deferred 
until Chapter 7.

(a) (b)

Figure 3.2: Colliding breathers with equal (real parts of) modulation frequency. 
Eigenvalues are A] = 0.1 + 0.8/ and A2 =  —0.1 + 0.8/ (a) Unshifted, (b) First compo-
nent breather is shifted by t\  =  t c / k \.

This work also strongly suggests that a rogue doublet, at least in quasi-rational 
form [69], cannot exist. The localised description of energetics introduced in the epi-
logue of Chapter 2 somewhat justifies this, as it is difficult to imagine energy flow 
reversing between two Peregrine breathers without any external influence, such as 
an additional rogue wave. Some physical feature seems required to flip the out-
ward direction of localised wave momentum inwards. Nonetheless, this concept can 
be further explored by examining the first-order component functions of a breather 
(i.e. Eq. A4 of clusters paper [2]). Accordingly, maximal constructive interference at 
the origin can be converted to maximal destructive interference by simply applying a 
7 T /  Kj phase shift to one of the components indexed by j. This can convert a breather 
collision, as shown in Fig. 3.2a, into a seeming reflection of wavetrains, as depicted in 
Fig. 3.2b. The technique is actually the basis of deriving so-called quasi-Akhmediev



E pilogue 35

breathers [102] with the Darboux scheme. However, it is both analytically and numer-
ically clear that the destructively interfering version of the degenerate case is not so 
simply envisaged as the solution in Fig. 3.2b. It effectively involves two wavetrains, 
equal in the quantity of modulational peaks they each host. They are maximally 
repelled to spatiotemporal infinities and cannot be depicted in a finitely bounded 
domain. Taking a rogue wave limit of this structure is indeed possible and would 
leave behind a rogue doublet, as one element in the homogeneous chain, but this 
would do nothing to counteract the effect of destructive interference that repelled 
the individual Peregrine breathers infinitely apart in the first place.
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Chapter 4

Triangular Rogue Wave Cascades

Prologue

The detour into the theory of degenerate breathers [3], as detailed in Chapter 3, 
explained the composition of compounded extreme events to some extent. However, 
many intriguing mysteries remained following the discovery of circular rogue wave 
clusters [2]. For instance, considering that the modulation wavetrains of breathers are 
always linearly arranged [103], it still seemed counterintuitive that these compound 
structures could possess a ring-shaped geometry. These kinds of issues helped spark 
a growing interest in multi-rogue wave study. Indeed, initial investigations into other 
related nonlinear systems were beginning to show that these cluster shapes were not 
restrictively dependent on the physics of the NLSE [73]. It would become clear that 
higher-order terms and other perturbations did not preclude their existence [91, 92].

More curiously, there were suggestions that these circular clusters were not the 
only possible arrangements of NLSE rogue wave solutions [86]. Research carried out 
for the paper in Chapter 2 had already hinted at the existence of multi-ring wavefunc- 
tions, while an alternative method had recently indicated that the circular geometry 
itself could be perturbed [71]. Yet none of these structures could be consistently con-
firmed with the Darboux scheme parameter choices employed thus far in the thesis. 
Progress here was stymied until an unintuitive concept was considered, inspired by 
the variations between both the degenerate and the rogue wave limit [3]; different 
orders of infinitesimal shifts have different structural effects.

Clarification of this idea requires the following train of thought. Rogue wave 
solutions of the NLSE are generated from breathers, as made explicit in Chapter 3. 
Achieving this requires a non-degenerate modulation frequency ratio to be estab-
lished between components, with a common factor k . Thus, when the rogue wave 
limit k —* 0 is applied, all breathers are still distinct. Now, given this definition, 
a rogue wave of order n transforms into a ringed structure when any number of 
components are shifted by a value proportional to A larger exponent re-
sults in shifts that are too small to induce any fission in the k  —> 0 limit, while a 
smaller exponent has typically been associated with infinite spatiotemporal 'ring ex-
pansion' for the same frequency values [2]. However, numerical application of the 
Darboux scheme soon indicated that triangularly arrayed structures of finite circum- 
radius could be isolated from a composite breather and kept stable for decreasing 
k values (as shown in Fig. 1 of the hierarchy paper [6]), provided that the ratio of

37
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modulation frequencies was finely tuned with respect to component shifts. More-
over, unlike the case of circular clusters, these new solutions required each and every 
component breather to be shifted with respect to all others by a value proportional 
to k ~, regardless of composite solution order.

This chapter, as a published manuscript [4], explicitly details the parametric con-
straints required to produce triangular rogue wave 'cascades'. These novel solutions 
of the NLSE are unique fundamental high-order structures, in that they are solely 
comprised of first-order Peregrine breathers. They are also more complicated to pro-
duce arbitrarily than circular clusters, as the second-order manifestations of both 
forms are identical and higher-order cascades have more stringent requirements. All 
the same, it is of great importance that the existence conditions for each form are ef-
fectively independent. As a consequence of this, it is possible to controllably fission 
a rogue wave of order n into either a ringed structure or a triangular array, or 'hy-
bridise' both features. Unique 'claw-like' structures exemplify unusual arrangements 
of Peregrine breathers from this mixing process, thus usefully serving to further ex-
pand the set of known multi-rogue wave NLSE solutions.
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By numerically applying the recursive Darboux transformation technique, we study high-order rational 
solutions of the nonlinear Schrödinger equation that appear spatiotemporally as triangular arrays of Peregrine 
solitons. These can be considered as rogue wave cascades and complement previously discovered circular cluster 
forms. In this analysis, we reveal a general parametric restriction for their existence and investigate the interplay 
between cascade and cluster forms. As a result, we demonstrate how to generate many more hybrid rogue wave 
solutions, including semicircular clusters that resemble claws.
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I. INTRODUCTION

An unfortunate fact of life is that extreme events have 
a tendency to arrive in bunches. This concept is reflected 
in the well-known proverb “bad things come in threes” 
and its equivalent, “misfortunes never come singly.” Indeed, 
where one occurrence may be labeled a minor disaster, 
successive incidents can compound a situation into a complete 
catastrophe. Furthermore, each event is normally unexpected 
and always appears “from nowhere.” So, given the notorious 
unpredictability of extreme events, due consideration must 
be given to any scientific approach that explains how these 
incidents arise.

Archetypically, the serial nature of rogue waves is exempli-
fied by the oceanic “three sisters” phenomenon, where three 
large waves appear as successive events. This is no longer 
merely legend but is now actively discussed in the litera-
ture U-4]. Furthermore, many natural disasters potentially 
modelled as rogue waves show a repetitive or correlated nature. 
Hence, the issue naturally arises whether groups of extreme 
events can be described mathematically and whether they are 
arranged in a specific pattern. Of course, these are generally 
complicated questions to answer. Nevertheless, if we start with 
a certain simple model, such as one involving deep ocean 
wave evolution, we can write a partial differential equation that 
describes rogue wave phenomena in the lowest approximation. 
With this, we can give fundamental solutions that portray a 
group of distinct rogue waves as sequences of extreme events.

In particular, this approach can be applied to the nonlinear 
Schrödinger equation (NLSE) [5—7J. This is a well-justified 
model for deep ocean waves [8-10] as well as many other 
phenomena in physics [11-14], The basic Peregrine soliton, 
a spatiotemporally localized solution of the NLSE, has been 
considered as a prototype of a first-order rogue wave. It has 
been studied both theoretically [15,16] and experimentally 
[17,18], Furthermore, despite being a rough approximation of 
reality, the NLSE accurately describes physical rogue waves 
of relatively high order [19],

From this model, it is apparent that second-order rogue 
waves may appear as a single event [20] or as triplets [21] 
in space and time. Remarkably, there are no solutions that 
describe rogue waves appearing as doublets. This fact alone
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tells us that only certain patterns of rogue waves represent 
legitimate solutions to the NLSE [22], This interesting ob-
servation poses the general question of what patterns are 
possible when we deal with extreme events of even higher 
order. Clearly, if we try to explain rogue waves based on 
linear theory [23-25], the concept of interference should 
allow any imaginable configuration, including a double peak. 
However, taking into account the rarity of a single high 
peak wave, two of them occurring in conjunction would 
be exceptionally improbable within the constraints of linear 
theory.

Thus, we utilize nonlinear analysis [8], which has been 
fruitful in describing not only single events but even higher- 
order solutions [6,22,26,27], This approach recently led to 
the discovery of sophisticated circular “atomlike” structures 
[28], as well as higher-order triangular patterns [29] as an 
alternative arrangement. Each of these cases is nontrivial 
and requires special techniques for investigation, such as 
Wronskian methodology [26,27,30], Schur polynomials [29], 
or Darboux transformations [31-33], Even so, the rapid 
increase of complexity with respect to solution order means 
that the analytic forms of these rogue wave arrangements 
become unwieldy beyond the case of a simple rogue wave 
triplet [21], It is becoming clear that none of the techniques 
mentioned above can provide a complete understanding of all 
the structures that may exist in higher orders.

Nonetheless, in the present work, we have made a further 
step forward and found a systematic way to generate rogue 
wave patterns in the form of triangular arrays. Although 
glimpsed as a special case by Ohta and Yang [29], these 
structures not only complement previously discovered circular 
cluster forms [28] but can even be “hybridized” with them 
to produce new solutions of the NLSE, acting almost like 
primary elements of a structural basis set. To show this, we 
use the Darboux transformation method [31-33], which was 
specifically designed for constructing higher-order solutions of 
a certain class. The main difficulty here is to find the parameters 
that control the pattern. Unlike eigenvalues from the inverse 
scattering transform, these parameters do not automatically 
arise from standard techniques. They are buried deep within the 
methodology. Although implicitly related to translations along 
the spatiotemporal axes, they are not simple and describe the 
structure as a whole rather than the positioning of individual 
peaks. Thus, they have to be carefully detailed in the theory to 
be associated with a certain pattern.

1539-3755/2012/86(5)7056602(9) 056602-1 ©2012 American Physical Society
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Here, we show how triangularly arrayed cascade solutions 
appear in our scheme and prescribe the way they can be 
generated numerically for any order. The first time these 
complicated structures become pertinent is at third order, 
which already offers several patterns, in contrast to the simple 
triplet at second order. This is because the latter solution 
can be considered as either a triangular or circular array, 
while the distinction between the two forms must be made 
clear in the third-order case. By additionally hybridizing the 
circular cluster and triangular cascade forms, we can find 
new legitimate solutions of the NLSE, such as a “claw” 
structure. Thus, our work opens up another range of possible 
structures to encounter in nature or to produce in experimental 
works.

II. THE THEORY

We, first, establish the key concepts from the Darboux 
process [31], modified here to operate on the NLSE. In 
dimensionless form, the target equation is written as

M  , i;>2 t>  ,

' ~ + 2 ~  +
l^ l2V/ 0 , ( 1 )

where the wave function \\J/(x,t)\ in Eq. (1) commonly 
describes the wave envelope. Variables x and t have different 
physical meanings, depending on traditions in each field. For 
example, in fiber optic applications [17], the variable x is the 
distance along the fiber while t is the retarded time in the frame 
moving with the pulse group velocity. On the other hand, in 
water wave applications [18,34], x is the dimensionless time 
while t is the distance in the frame moving with the group 
velocity. Nevertheless, this difference is largely unimportant, 
as simple linear transformation involving the group velocity 
allows us to change the equation and variables from one form 
to another. However, the choice of scaling factors in front of 
each term in Eq. (1) is unusually prescient; it is because of this 
particular choice that rogue wave clusters are spatiotemporally 
circular [28] and, likewise, the cascades we present below are 
essentially equilateral.

Applied to the NLSE, the Darboux method allows com-
plicated solutions to be generated as nonlinear superpositions 
of lower-order forms. This procedure is well established in 
the literature and detailed specifics can be found elsewhere 
[28,33], As a conceptual summary, the process creates n 
independent first-order components, the basic structure of 
which is uniformly determined by a zeroth-order seeding 
solution, and these are recursively combined into an order-« 
wave function. For example, a zero-background seeding input, 
f 0 — 0, generates simple solitons as individual first-order 
components, which then can be combined into multisolitonic 
structures [32],

More relevant to this work is the case when a plane wave, 
\J/o =  elx, is used as the seeding solution. The resulting first- 
order “building blocks” produced by the Darboux method are 
breather solutions, each with an identifying number j  and 
three unique parameters. Two are simply regarded as shifts 
from a common origin along the x and t axes, which we 
label as xj and tJy respectively. The third is the eigenvalue lj, 
which controls the shape of the first-order component. As the 
real part of lj only affects the angle a solution makes with

FIG. 1. (Color online) A third-order NLSE solution. Component 
1 is an AB (aligned with the t axis) with parameters/] =  0.8/, JCi = 5 ,  
and t\ = 0. Component 2 is a Peregrine soliton with l2 % i located at 
X2 =  —5 and t2 =  —5. Component 3 is a KM soliton (aligned with 
the x axis) with parameters /3 =  1.2/, x2 =  0, and t2 =  5.

respect to the x and t axes, it can be omitted without loss 
of generality. However, the imaginary part is important for 
tuning the modulation period of the breather solution, as well 
as deciding to which axis the wave train is parallel.

For purely imaginary I j,  we can define the modulation 
frequency of a component as kj  =  2^/1 +  lj. In the case when 
0 < Im(/y) < 1 {kj  is real), the solution is an Akhmediev 
breather (AB), which is localized in x but periodic in r. When 
Im(/y) > 1 (Kj is imaginary), the component is a Kuznetsov- 
Ma(KM) soliton, which is localized in t but periodic in x. In 
thelimitof/j —► i(K) —* 0), the period of each solution goes to 
infinity and, in the first-order scenario, a solitary peak remains. 
This quasirational solution is named the Peregrine soliton and 
has gained traction as a prototypical rogue wave. The three 
structures have been individually displayed previously [28], In 
contrast, Fig. 1 here shows the result of the Darboux process 
for a third-order superposition involving a Peregrine soliton, 
an AB and a KM soliton, all in a single solution. For long 
periods, both the AB and KM soliton can be treated as chains 
of Peregrine soliton peaks. Indeed, in this limit (kj  —>■ 0 for all 
j), every well-separated peak appears identical to a Peregrine 
soliton [17]. Thus, we shall henceforth refer to these as “rogue 
wave quanta” for convenience.

For the most part, higher-order multibreather solutions of 
the NLSE are intuitive and easy to comprehend. Although 
the recursive Darboux method is highly involved, the non-
linear superpositions of individual components are relatively 
recognizable, as in Fig. 1. However, there are a couple of 
exceptions to this rule. One is in the limit of two component 
eigenvalues becoming equal, called the degenerate case, and 
has been previously investigated in detail [35], The other is 
the aforementioned higher-order rogue wave limit, when all 
component eigenvalues approach /'. If Xj and tj have been 
left alone, all components are located at the same origin, and 
the overall wave function appears as a complicated but solitary 
peak, exemplified by Fig. 2(a). The analytic expression for this 
solution of eighth order can be written in explicit form [36]. 
To give an idea of its complexity, we only mention here that 
it occupies 60 printed pages. When the shift parameters enter
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FIG. 2. (Color online) Eighth-order rogue waves, (a) Unshifted, 
with all components located at origin. The maximum amplitude is 
17, as expected [22]. (b) Shifted, with Xi« =  5I4.

into play, as in Fig. 2(b), the solution becomes significantly 
more lengthy.

To avoid unnecessary complications, we henceforth assume 
component modulation frequencies are ordered by index and 
are multiples of a common parameter; specifically that kj  =  
kjK and k\ <  kj  <  • • • <  kn. If we further assume, without 
loss of generality, that all components are ABs before the 
k  —> 0 rogue wave limit, then it is known that component j  
donates j  quanta to the resulting structure, such that an order n 
rogue wave can be considered to consist of n(n +  l )/2  quanta 
[28], For example, the eighth-order rogue wave in Fig. 2(a) 
is constructed from eight components but, in reality, it is a 
fusion of 36 quanta. This is a particularly deep property of 
NLSE breather solutions, as it indicates that two identical 
components cannot exist in the same domain without enforcing 
some asymmetry, essentially by way of contributing unequal 
numbers of rogue wave quanta to the total solution [35]. The 
simplest consequence of this property is that no rogue doublet 
has yet been identified.

Optimally, the way to show the existence of these quanta 
is to spatiotemporally separate components with the use of 
the shift parameters Xj and tj, but this is a nontrivial task. 
In the k  —► 0 limit, any nonzero difference in shift between 
components is sufficient to repel them from each other to the 
infinity horizon of the (x , t ) plane. However, if component

PHYSICAL REVIEW E 86, 056602 (2012)

shifts are made dependent on eigenvalue before the k  —*■ 0 
limit is applied, according to the relation

OG

X j  =  K~{'" U X j m =  X j \  +  X j 2 K ~  +  X +  • • ■ ,

m  =  1 _

*  <2 >

tj =  ^  tc2(m l)Tjm =  Tj\ +  Tj i k 2 +  TßK* T • • •,
m — 1

where X Jm and Tjm are “shift expansion” coefficients that are 
independent of k , then it is possible to generate new structures 
by carefully selecting which coefficients to make nonzero. This 
is a fundamentally difficult concept to understand due to the 
intricacies of limit theory; all total shifts are technically zero 
for k  —*■ 0, provided that Xj\  — Tj\ — 0, but the coefficients 
still survive by a unique form of dissemination into the 
solution. The result is that, by changing X 12 (or T1 2) alone, 
a second-order rogue wave becomes a rogue triplet with three 
quanta pulled apart [21], Furthermore, for an order n rogue 
wave, X\„ pulls out a ring of 2n — 1 quanta, leaving behind 
a central rogue wave of order n — 2. This is demonstrated by 
an unshifted eighth-order rogue wave in Fig. 2(a) becoming a 
circular rogue wave cluster in Fig. 2(b), with 15 peaks arrayed 
in a ring. Thus, for convenience, we henceforth refer to Xj„ 
(or Tjn) as a shift of order n.

In previous work [28], only one component was shifted with 
respect to the others, which meant the structures were relatively 
easy to predict. With this restriction, an order n circular cluster 
forms only if X j n or Tjn is nonzero. A higher-order shift does 
nothing to perturb a rogue wave, while a lower-order shift strips 
the ring entirely, leaving behind a rogue wave of order n — 2. 
We now extend the investigation to include manipulations of 
several components at the same time.

General solutions of up to order 2 are analytically attainable 
with symbolic software, but those of higher order become com-
putationally intractable and cumbersome to express. Instead, 
we numerically employ the Darboux method as a recursive 
algorithm. Although technically we can present exact rogue 
wave solutions explicitly, in reality these solutions are much 
too oversized to be printed in journal pages. On the other 
hand, the shifts can be defined as functions of k  such that, if 
the structure of a certain wave function remains unchanged 
as k  becomes arbitrarily small, the numerical solution can be 
considered to approximate a rogue wave with the shifts as free 
parameters of the solution. This is an efficient way of revealing 
the new higher-order rogue wave structures.

We emphasize here that all the results presented in the 
next section use the exact same method as in previous work 
[28]. The new physics lies instead in an updated appreciation 
of Eq. (2). Prior thought assumed that each component shift 
was equivalent to one additional degree of freedom in the 
rogue wave limit. Correspondingly, an order n wave function 
only depended on Xj„ (and Tj„) to transform into a nontrivial 
circular cluster structure, while all other terms in the shift 
expansion were considered unimportant due to complicated 
cancellations in the mathematics of the Darboux procedure. It 
is now understood, guided by numerics, that each shift order 
relates to its own degree of freedom in the rogue wave limit, 
and the structures presented in the following section differ 
intrinsically from circular clusters.
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III. THE GENERAL PRESCRIPTION FOR CASCADE 
SOLUTIONS

With component shifts defined as in Eq. (2), first-order 
rogue waves are easy to understand. They are represented by a 
single Peregrine soliton that can be translated anywhere in the 
(x,f) plane using our parameters Xn and T\\. Second-order 
rogue waves also appear to be fully understood; the first-order 
shifts X j i and Tj\ translate the global structure, provided they 
are the same across the components, while the second-order 
shifts Xj2 and Tji break the structure apart into a triplet [21],

Complications start with the third-order rogue waves. These 
have three pertinent orders of shift, namely Xj\,  X and X j j , 
as well as three components to move around. First-order shifts 
remain important only as translation variables for the global 
structure, and the third-order shifts appear to only separate a 
circular ring of five quanta from the main structure. As for the 
second-order shifts, they appear irrelevant when applied to one 
component alone [28] and, in most cases, equally unimportant 
when applied to multiple components. In the k  —> 0 limit, 
nonzero Xj2 and Tj2 values generally appear to expel five 
quanta to the infinity boundary of the (x,r) plane.

However, there is a nontrivial exception to the rule for 
these second-order shifts. Certain combinations of values 
can in fact arrange the solution into a stable structure with 
finite circumradius, where all six quanta are visible in the 
domain. For simplicity, we work only with shifts along the x 
axis and assume X\2 < X22 < X32, although the following 
results are easily generalized. If the three components are 
equally and sufficiently “spaced apart,” such that | X 12 — 
X221 =  IX32 — X22I 0, and the frequency ratio adheres to 
the rule K\ : K2 : =  k 1 : y/i t f  +  )/2 ; £3, the third-order
rogue wave becomes arrayed in triangular fashion, as seen in 
Fig. 3(a). The six constituent quanta are well separated and 
the distances between the adjacent peaks are the same. We 
call this a rogue wave cascade as, in this typical arrangement, 
an observer would witness an increasing number of rogue 
waves over time, beginning with one solitary peak and ending 
with n Peregrine solitons for an order n structure. Of course, 
“cascade” is merely a convenient label. As we show later in 
Sec. IV, this structure can be freely rotated. This means that the 
progression of incidents can occur in reverse or even that the 
most dangerous time to experience this event may be midway 
between the first and last quanta observed.

With regard to structural control, varying the value of 
“differential shifts” tunes the spacing between the peaks. 
Knowing that a value of zero for all these second-order shifts 
results in a typical third-order rogue wave, structurally similar 
to Fig. 2(a) with one central high-amplitude peak, it is evident 
that small differential shifts will result in transitional wave 
functions, such as in Fig. 3(b). The triangular array is still 
evident in this case, but the quanta are deforming from perfect 
Peregrine solitons as they nonlinearly interact and merge. 
However, it is clear from the numerics that shifts alone do not 
control the interpeak spacing. As the difference between k\ 
and &3 increases, the cascade becomes more spatiotemporally 
compressed. Likewise, the cascade expands in the domain as 
the frequencies become more similar in value. The reason 
for this is likely to be that an AB with higher frequency 
contains more peaks within a set length than a lower-frequency

PHYSICAL REVIEW E 8 6 , 056602 (2012)

(b)

FIG. 3. (Color online) Third-order rogue wave cascades. Compo-
nent frequencies K\,Ki, and /c3 have a ratio of 1 : sf l  : %/3. (a) Three 
components involving six rogue wave quanta are well separated: 
the shifts are X12 =  —25, X 22 = 0, and X32 =  25. (b) The three 
components are overlapping: the shifts are X l2 =  —0.25, X22 = 0, 
and X32 = 0.25.

AB. Even though the rogue wave limit leaves behind only a 
small number of peaks, depending on component number, the 
proportions of the frequency ratio are still reflected in the 
spatiotemporal length of a cascade edge.

Remarkably, the differences |X )2 — X22| and IX32 — X22I 
do not have to be one to one for a rogue wave cascade to 
arise, despite the regularity in interpeak spacing. If dj denotes 
the second-order differential shift between the components j  
and j  +  1, then it is possible to generalize the frequency ratio 
required for such a structure as

K\  : k 2 : *3 k\
d2k f +  d\k] 

d\ +  d2
(3)

For a rogue wave cascade to exist, there must be a perfect 
balance between shift parameters and the frequency ratio. 
Thus, for example, the set of parameters X12 =  -300 , X22 =  
0, X32 =  500, and K\ : K2 : *3 =  3 : vT5 : 5 produces a rogue 
wave cascade in the k  —► 0 limit, appearing no different from 
Fig. 3(a) except in spatiotemporal size. But any deviation from
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this prescription results in a structural transition from cascade 
to cluster, which is instantaneous in the k  —*■ 0 limit. As 
previously recognized [28], maintaining nonzero second-order 
shifts in this case forces a cluster ring to expand to the 
infinity horizon of the .r and t axis, leaving behind one central 
Peregrine soliton. Therefore each rogue wave cascade is a 
specific case in parameter space and is highly unstable to 
general perturbation.

As mentioned by Ohta and Yang [29], higher-order cascades 
are also possible. For the Darboux method, this requires 
nothing more than a minor extension of the third-order 
prescription in Eq. (3). For simplicity, we continue to work 
only with x shifts and the ordering X \ 2 < X 22 < ■ ■ • < X n2, 
noting that the results can be generalized to include t shifts 
and rewritten for unorthodox orderings. Recalling that dj  is 
the second-order differential shift between components j  and 
j  +  1, a rogue wave cascade is always produced in the k —>■ 0 
limit, provided that

«j  : Kj+1 : Kj+ 2 — kj : kj+\ :
(dj +  dj +i)kj+l -  dj + ik2j

dj
(4)

l  X *

for all j  ranging from 1 to n — 2. This is the exact same ratio 
as given for the third-order case, only expressed in terms of 
the first two component frequencies. This recursive relation 
also indicates that the structural stability of a rogue wave 
cascade depends only on how the frequency and position of 
a component relates to its nearest neighbors. Provided this 
constraint holds, cascades are generated instead of clusters, 
such as the fifth-order example in Fig. 4(a) and the seventh- 
order example in Fig. 4(b). Curiously, the sides of the triangular 
arrays hint at some degree of curvature.

IV. CASCADE PERTURBATIONS AND “CLAWLIKE” 
STRUCTURES

So far we have established that, modified in isolation, 
shifts of order n generate circular clusters and second-order 
shifts are responsible for cascade solutions, provided a perfect 
balance is achieved with component frequency ratios. This is 
consistent with a second-order rogue wave, as a rogue triplet 
can be considered as both a cluster and cascade simultaneously. 
However, new third-order rogue wave structures, previously 
unreported in the literature, can be produced by manipulating 
shifts of second and third order simultaneously. For example, 
beginning with the cascade in Fig. 3(a), adding a third-order

(a)

FIG. 4. (Color online) Higher-order rogue wave cascades gener-
ated recursively with Eq. (4). (a) Cascade of order 5 with X j2 =  25 j 2 
and K\ : k 2 =  1 : s/3, (b) Cascade of order 7 with Xj2 =  25( j  — 4) 
and K\ : k 2 =  1 : J l .

FIG. 5. (Color online) Perturbations of a third-order rogue wave 
cascade with X]2 =  —25, X22 — 0, X22 =  25, and K\ : k 2 : k 2 =  1 : 
y/2 : \/3 . (a) An “arrow” structure with X23 =  250. (b) A circular 
cluster pointing in the negative x direction with X22 =  2500.
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shift to a component can deform the triangular array into an 
“arrow” arrangement, shown in Fig. 5(a), where three rogue 
wave pairs are arranged in parallel. Continuing to increase this 
third-order shift eventually draws one of the rogue wave quanta 
into the center, forming the familiar cluster shown in Fig. 5(b). 
In fact, larger values beyond this point will simply expand the 
ring of the cluster as if there were never a rogue wave cascade. 
This implies that structures produced by shifts of different 
order can coexist, but one will dominate the NLSE solution, 
depending on parameter values. In our previous work [28], 
we did not generate rogue wave cascades, so a cluster was 
free to grow from a central high-order peak. However, if a 
rogue wave cascade has been successfully produced by the 
right ratio of modulation frequencies and second-order shifts, 
then a third-order shift must be sufficiently large in order to 
perturb the cascade into a cluster.

The structures shown in Fig. 5 indicate how a cascade 
transforms into a cluster when both are “pointed” in the same 
direction. This requires nothing more unintuitive than a minor 
rearrangement of rogue wave quanta in the domain. However, 
if the third-order shift applied to the solution in Fig. 3(a) is

(b)

FIG. 6. (Color online) Perturbations of a third-order rogue wave 
cascade with X l2 =  —25, X22 =  0, X32 =  25, and K\ : k 2 : k 2 =  1 : 
y/2 : \/3.  (a) A “claw” structure with X23 —162.25. This value
correctly generates the solution numerically when k  =  8 x 10-3. 
(b) A circular cluster pointing in the positive x direction with 
X23 =  -2500.

reversed in sign, the three peaks located in the x < 0  half-plane 
must eventually flip with respect to the t axis in order to 
form a cluster that is a reflection of the one in Fig. 5(b). To 
achieve this, the three rogue wave quanta must merge into a 
second-order rogue wave, as shown in Fig. 6(a). We caution 
that the shift value at which this transition occurs is critically 
dependent on the proximity of k  to zero in the numerical 
process. Thus, we provide the value of k  used whenever 
detailing this transitional structure, which is unnecessary in 
all other cases. Nonetheless, this is a legitimate new solution 
of the NLSE, and we refer to it as a “claw” structure due to 
its spatiotemporal appearance. Furthermore, in some respects 
this solution is also a semicircular cluster; it has three peaks 
more than a solitary second-order rogue wave, all provided by 
the third component, but is four peaks short of a fourth-order 
cluster, which would be introduced by a fourth component. 
It is, thus, to be expected that claw structures of higher order 
also exist, albeit with more numerous “digits.” Regardless, 
a sufficiently large third-order shift once again completely 
converts the cascade into a circular cluster, shown in Fig. 6(b), 
at which point any increase of shift magnitude will extend the 
radius of the ring.

(b)

FIG. 7. (Color online) Third-order rogue wave cascades incor-
porating f-axis shifts, with K\ : k 2 : /r3 =  1 : C2 : \/3 . (a) A rotation 
with X j2 =  25( j  — 2)cos(7r/3) and TJ2 =  25( j  — 2)sin(7r/3). (b) A 
perturbation with Xj2 =  25( j  — 2) and T22 — —125.
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As previously mentioned, the cascade solution is precar-
iously dependent on the ratio of second-order shifts. It is 
possible to include t axis shifts of this order as well, but the 
vectorial directions of all second-order shifts must be aligned. 
If this is done, the rogue wave cascade can be spatiotemporally 
rotated to point in any direction, as shown in Fig. 7(a). 
However, no such restriction exists for third-order shifts. 
Hence, a cascade formed by second-order jr-axis shifts can 
be perturbed by third-order f-axis shifts. This opens up a new 
range of asymmetrical rogue wave solutions, such as is shown 
in Fig. 7(b). As usual, a sufficiently large third-order shift will 
expand the structure into a circular cluster, neutralizing the 
effect of any second-order shifts.

By this stage, the possible variety of third-order rogue 
wave solutions is reasonably well understood. However, each 
additional increase of solution order introduces a greater 
degree of complexity. From the examples in Fig. 4, it is 
evident that second-order shifts can produce cascade solutions 
of any order. It also follows that a shift of order n applied

(b)

FIG. 8. (Color online) Fourth-order rogue wave claws with 
X\2 = —75, X22 = —75, X22 25, X41 = 75, and K\ : /ci • K3 : =
1 : \/2 : V 3 : s/4. (a) Two rows of rogue wave quanta, where 
X2i = X33 RJ —425. These values correctly generate the solution 
numerically when k  = 8 x 10-3. (b) One row of rogue wave quanta, 
where X23 =  X33 »  —1042.5 and X34 % —13100. These values 
correctly generate the solution numerically when k  = 2 x I0-2.

PHYSICAL REVIEW E 86. 056602 (2012)

to any component can perturb the structure and still produce 
a k  —► 0 rogue wave solution of the NLSE. However, the 
intermediate orders of shift are also expected to produce novel 
and elegantly arranged structures. Even without cataloguing all 
these solutions, we can still show numerically that the results 
of the Darboux process adhere to certain patterns.

Recognizing that the clawlike structure in Fig. 6(a) was 
generated by applying a third-order shift to the middle com-
ponent so it approached the first, the middle two components 
of a fourth-order cascade can similarly be pushed towards 
the apex. In this process, three quanta belonging to two 
components merge and form a second-order rogue wave. The 
entire solution, shown in Fig. 8(a), looks identical to the claw in 
Fig. 6(a), except for an additional four rogue wave quanta that 
form a second row. Furthermore, by applying a fourth-order 
shift to the structure, specifically pushing the third component 
towards the first two, it is possible to construct a claw with only 
one row of quanta, shown in Fig. 8(b). The trade-off is that 
the focal peak transforms from a second-order to a third-order 
rogue wave, due to fusion with three extra rogue wave quanta. 
Thus, we show that rogue claw structures are generic across 
all orders of nonlinear superposition and display predictable 
features.

V. CONCLUSION

In summary, our main results are as follows:
(1) We have shown the existence of a third-order triangu-

larly arrayed multi-rogue-wave solution, generated numeri-
cally with the recursive Darboux method. These have recently 
been found as particular examples by Ohta and Yang [29], 
although we have further identified a general prescription for 
these “cascade” solutions, which involves prelimit component 
frequencies and second-order shifts.

(2) We have extended the prescription such that the Darboux 
method allows us to produce rogue wave cascades of any order. 
In all such cases, the shifts required are still of second order. 
Furthermore, as shifts of order n produce circular clusters for 
an order n solution, this suggests that shift orders between 2 
and n may be responsible for their own as-yet-undiscovered 
unique structures.

(3) We have further explored third-order rogue wave cas-
cades and presented new solutions of the NLSE by including 
third-order terms in shifts. While the cascade prescription 
rigidly restricts the choice of second-order terms in shifts, the 
third-order terms are independent and can generate a myriad of 
perturbed forms. The relative strength of second-order shifts 
with respect to third-order shifts determines how similar the 
hybrid structure is to a cascade or cluster.

(4) We have shown that the new forms are not trivial and 
that Peregrine soliton peaks can merge to produce rather un-
expected arrangements. In particular, we reveal new clawlike 
structures. These can also be considered as “semicircular” 
clusters and are indicative of an alternative class in the cluster 
hierarchy.

From a geometrical perspective, rogue wave cascades 
enrich the pattern of higher-order NLSE solutions. It is 
remarkable that the particular choice of NLSE in Eq. (1) 
produces limiting breather solutions that include not only 
circularly symmetric arrangements, but arrays in the shape
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of equilateral triangles as well. Furthermore, these structures 
are all associated with certain orders of shift in Eq. (2). This 
allows us to speculate that other elegant arrangements may 
also be possible for rogue waves of order 4 and beyond, 
simply by constraining relative component frequencies and 
other orders of shift in some manner. These prescriptions can 
only be proved beyond doubt by analytics, but the fact that 
these relations and their effect on structure are numerically well 
evident implies that a good understanding has been achieved 
already.

With regard to experiment, cascade solutions are important 
as the first theorized rogue wave structures beyond order 3 
that do not contain any substructures other than Peregrine 
solitons. This means that experimentalists can produce high- 
order arrangements without facing unduly large amplitudes. 
This is particularly beneficial in water wave tanks [ 18,19] as it 
is thought that wave breaking may limit the crest height with 
respect to the pulse width [37], The scaling transform [20] can 
alleviate some of the pressure from breaking by decreasing 
the solution amplitude, but this comes at the cost of increasing 
the spatiotemporal width, which is not ideal in a lank of finite 
length. For this reason, it is expected that it will be easier to 
produce cascades than circular clusters in water.

The triangular arrangement of first-order rogue waves in a 
cascade may also be important in optics. In one sense, such 
a structure has already been seen in fibre, arising from a 
perturbed plane wave due to beating laser frequencies [38], 
Despite minor variations in shape and the unavoidable peri-
odicity of experimental pulse sequences, the triangular nature 
of the observed arrays is unmistakable. These observations 
are naturally linked to higher-order modulation instability. 
However, it will not be surprising if an ideal cascade emerges 
from increasing the beat period, much as an Akhmediev 
breather served as a pragmatic forerunner of an ideal rogue 
wave [17]. Furthermore, this triangular symmetry may be far 
more fundamental to nonlinear optics in general, with similar 
shapes produced experimentally from wave interactions in 
transverse pattern systems [39,40].

In any case, the increased number of peaks in a rogue 
wave cascade relative to that of circular cluster could prove 
relevant to the real world in its own way. If encountered in
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the ocean, an order n rogue wave cascade has n(n +  l)/2  
chances to impact a vessel, as opposed to 2n chances for 
a circular cluster (where n > 2). Worse yet, if the event is 
first encountered at a spatiotemporal vertex, the sea will only 
become rougher. Furthermore, considering that the possibility 
of peaks arising stochastically becomes smaller for higher 
orders, a cascade may be the typical form of complex rogue 
wave encountered in the ocean, much like the ubiquitous “three 
sisters” phenomenon. As for photonics, producing a cascade 
may be a way to transmit signals produced by the same initial 
condition to different locations along the fiber. Alternatively, 
rogue wave cascades could be used to load-test materials in 
progressive steps with intense pulses. Whatever the eventual 
application, a detailed knowledge of possible rogue wave 
superpositions is no less important than that of multi-soliton 
solutions. While we have a complete understanding of the 
latter, conveniently aided by solitonic persistence in the time 
domain, multi-rogue-wave solutions are far more diverse 
and still require significant efforts to both comprehend and 
categorize.

In conclusion, we have studied a subset of higher-order 
NLSE rogue wave solutions that manifests itself as a triangular 
array of first-order rogue waves. We have also shown that 
the free real parameters that govern these structures are 
independent from those that produce circular rogue wave 
clusters. With particular emphasis on third-order structures, 
we have shown that careful modification of all parameters can 
produce cluster, claw-like and cascade structures, with a wide 
variety of intermediate patterns included. In this way, we move 
yet another step closer to understanding the full hierarchy of 
NLSE rogue wave solutions, which progressively appears to 
be much more complicated than the painfully familiar world 
of NLSE solitons.
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Epilogue

Triangular rogue wave cascades possibly remain the most enigmatic of NLSE solu-
tions presented within this thesis [4]. This is simply because, unlike circular clusters 
[2] and the more complicated geometries [6] presented in Chapter 6, it does not ap-
pear to be difficult to obtain these arrangements. A cascade inherently consists of 
nothing but first-order Peregrine breathers, with no statistically improbable fusions 
involved. Yet the physics-based implementation of the Darboux scheme in this thesis 
does not hint at the geometric array, on account of its 'existence condition' being 
extremely inaccessible to arbitrary selection of shift and frequency parameters.

This methodological disadvantage with respect to a Wronskian-based procedure 
[85, 88] was mentioned previously in the epilogue of Chapter 2, but it is worth stress-
ing here how remarkable that fact is. Indeed, the basic high-order rogue wave so-
lution of the alternative scheme, with all 'phase' parameters set to zero, is a cas-
cade [86]. This means that the complicated linear relation detailed in this chapter 
(i.e. Eq. (4)) can be considered a natural parametric 'origin' under a particular math-
ematical redefinition of nonlinear superposition.

Of course, both implementations of Darboux transformations are fundamentally 
useful because they are able to generate select solutions of the NLSE in exact form. 
This is only possible because specific mathematical variables, so-called component 
functions, can be defined analytically throughout space and time. In contrast, a lot 
of NLSE solution analysis operates on numerical propagation methods applied to 
an initial profile, with the Split-step Fourier Method (SSFM) as one commonly-used 
possibility [104, 105]. This is because the vast majority of interesting possible ini-
tial conditions will not avoid descending into endless chaotic behaviour and cannot 
be written in closed form. Even then, breather phenomena are still notoriously dif-
ficult to examine, as the slightest numerical error is equivalent to a perturbation 
of the background that eventually surges into false peaks of modulational instability 
[106]. Dissociating true events from false artefacts is complicated, as Fig. 4.1a demon-
strates with the numerical propagation of an initial analytic profile for the Peregrine 
breather.

Nonetheless, the point here is that triangular cascades are approximated with 
surprising ease, even in the case of numerical propagation, as exemplified by the use 
of a 'beating-type' perturbation as an initial condition in Fig. 4.1b. Indeed, structures 
like circular clusters may require particularly complicated profiles, but cascade-like 
wavefunctions do not appear to need them. In some cases, it is even easier to gen-
erate the perfectly equidistant triangular arrangement than it is to fuse Peregrine 
breathers together [107], It is simply sufficient to excite so-called higher-order modu-
lational instability processes, as experimentally demonstrated in optical fibre [76]. So 
perhaps this is why wavefunctions simulating cascades appear so often in the litera-
ture. Truly localised rogue wave cascades probably possess initial conditions that are 
the closest approximations to beating-type waveforms. These latter oscillations are 
ubiquitous in nature and experiment, formed in one instance by interference from 
lasers of different frequencies [13]. However, this hypothesis for cascade prevalence
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(a) (b)

Figure 4.1: Numerical solutions generated via an adaptive time-step implementa-
tion of the Split-step Fourier Method (SSFM), with an error tolerance of 1%. (a) 
Initial condition is the profile of an unshifted rogue wave (i.e. Eq. (6) in the de-
generate paper [3]) at x = —10. (b) Initial condition is a beating perturbation,
ip(t) — (1 + 0.01 exp(icot)) exp(ix) with to = 200zr/(37 — 1), at x =  —10. The influ-
ence of errors does not visibly arise for this case until outside the depicted domain.

will require further mathematical study to confirm.
Ultimately, while the novelty of cascade solutions is arguable, their development 

is a step towards developing a multi-rogue wave hierarchy. Furthermore, attaining 
an understanding of how they function in the Darboux scheme is not in vain, for it 
is the subsequent concept of hybridisation, in this chapter, that is most significant 
for the field. Certainly, prior to this publication, exact rogue wave solutions were 
always reported to possess clear symmetries. Arbitrary arrangements could seem-
ingly be constructed numerically, but were never properly isolated from noisy and 
chaotic backgrounds. In contrast, with the revelation that the existence condition for 
a cascade typically depends on shifts proportional to a different power of modula-
tion frequency than that for a circular cluster, it is now known that the 'triangularity' 
and 'circularity' of a multi-rogue solution with fixed frequency ratio can be tuned 
independently of each other. Based on this concept, higher-order versions of semi-
circular clusters have since been presented [89]. Moreover, this understanding hints 
at the fact that many more arbitrary arrangements of 6, 10, 15, 21 or 28 Peregrine 
breathers (and so on) can be classed as legitimate rogue wave solutions of the NLSE. 
The promising possibilities of hybridisation are discussed further in Chapter 6.
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Chapter 5

The Phase Patterns of Higher-order 
Rogue Waves

Prologue

At this stage of the thesis, both circular cluster [2] and triangular cascade [4] arrange-
ments of rogue wave 'quanta' have been presented. Chronologically, the discovery 
of the latter set was particularly useful as it hinted towards the construction of many 
more fundamental NLSE solutions that could be catalogued according to relevant 
parametric relations. This hierarchy, as the core result of this thesis, is discussed in 
Chapter 6. However, a few extra matters need to be addressed first, relating to the 
observable behaviour of these extreme events.

Most importantly, the NLSE only describes the evolution of a wave envelope in 
both hydrodynamic and optical contexts, which means that the underlying carrier 
wave has largely been neglected thus far in the thesis. This is not necessarily a se-
vere oversight with electromagnetic waves, as frequencies are typically so high that 
only squared amplitudes (a.k.a. intensities) are measured. Discerning phase infor-
mation generally requires interferometry. However, the wavelength of the carrier 
is typically much larger in ocean waves, often with multiple crests distinguishable 
under a peak of envelope modulation [62]. It is thus of interest to consider how a 
multi-rogue wave structure modifies the underlying background beyond its simple 
amplitude effects, especially when the phase-dependent steepness is arguably the 
real 'destructive' characteristic [57, 108].

This chapter, as a published manuscript [5], explores complex-plane trajectories 
of high-order rogue wave solutions, albeit without the plane wave factor. It is an ex-
tension of an earlier investigation regarding the Peregrine soliton, which concluded 
that an observer hit by a first-order rogue wave would experience a homoclinic orbit 
in phase space, otherwise known as an aggregate phase shift of 2n [109]. In physical 
terms, this represents individual crests in a carrier wave being rapidly forced along 
their sequential wavetrain by one wavelength [110], with hypothetically violent con-
sequences. This is only compounded by the fact that rogue waves of order n are 
capable of applying a maximum phase shift of 2nn. However, this is somewhat mit-
igated by the fact that these effects are demarcated by the zero-amplitude envelope 
troughs of the spatiotemporally localised solutions, realised as points of unusually 
calm ocean.

5 1



52 The Phase Patterns of Higher-order Rogue Waves

Turning to a more theoretical perspective, analysis of this type proves particularly 
convenient for examining the 'anatomy' of a rogue wave under potentially confusing 
amplitude information. For instance, it is revealed in this chapter how each quan-
tum maintains its distinct localisation, even in a fused triplet form. The individual 
Peregrine breathers always arrange themselves to avoid surpassing the maximum 
allowable phase shift of 2nn with their overlap. Therefore, considering that the to-
tal phase shift for each quantum also happens to occur over a short time period, it 
may be possible to probe intensifying rogue wave behaviour in a chaotic wave field 
via this methodology, potentially avoiding a particularly disastrous convergence of 
individual extreme effects.
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Abstract
We investigate the phase profiles of rogue wave solutions to the nonlinear Schrödinger 
equation, all produced via the Darboux transformation scheme. We focus specifically on the 
second-order rogue wave, in both origin-centred and fissioned form, and extrapolate the 
results for higher-order structures. In particular, a rogue wave solution of order n can be 
decomposed into n(n 4- l)/2  Peregrine breathers, and each peak applies an additive phase shift 
of 2n to the underlying plane wave background. Yet it is evident that no evolution path can be 
phase shifted beyond 2nn. We show that a fused rogue wave arranges its components to avoid 
any contradiction in this matter. We also show that the phase profile for any structure in the 
rogue wave hierarchy can be determined by examining phase bifurcations marked by 
zero-amplitude troughs.

Keywords: rogue waves, nonlinear optical effects, phase shifts 

(Some figures may appear in colour only in the online journal)

1. Introduction

As with any other wave, rogue waves are characterized by 
both their amplitude and phase profiles. Yet, in popular 
culture, there is a fixation on the maximum amplitude of 
the extreme event, considering that this is the parameter that 
usually justifies its name. Indeed, a rogue wave is supposed 
to have a higher amplitude than other waves in the same 
field, as is well established in oceanography with the ‘2.2 
times significant wave height’ rule [1,2]. Consequently, most 
theoretical treatments of a rogue wave focus on amplitude 
envelopes, rarely going beyond simple acknowledgment of 
the underlying carrier wave and its frequency. In many ways 
this is an oversight, taking into account that the maximum 
amplitude of the envelope is not necessarily the maximum 
amplitude of the carrier. Moreover, the second parameter 
that characterizes the killing strength of a rogue wave is 
its steepness. This is described by the front slope of each 
oscillation peak in the carrier. Naturally, the steepness not 
only depends on the amplitude profile of the envelope but also 
is strongly dependent on its phase profile. It follows that an 
amplitude investigation has to always be supplemented by a

study of phase in order to truly estimate the impact of a rogue 
wave.

Most fundamental theoretical descriptions of a freak 
wave revolve around the nonlinear Schrödinger equation 
(NLSE). In the case of its simplest rogue wave solution, 
commonly referred to as either a Peregrine breather or 
Peregrine soliton [3], the phase profiles are relatively 
simple [4], Crucially, there is a phase shift of 2n along its 
central path of evolution. This significant phase shift makes 
the wave much steeper than if we ignored it. Moreover, 
the Peregrine breather is generally considered as only a 
first-order rogue wave solution and can undergo processes 
of nonlinear superposition to become more complicated. 
For the simplest ‘origin-centred’ higher-order solutions [5], 
the phase shift is intuitively additive. For example, the 
central evolution path is shifted by 47T for second order, 
Ö7T for third order, and so on [6]. As the value of a 
phase shift increases, the corresponding steepness becomes 
more drastic. Furthermore, higher-order solutions attain more 
degrees of freedom pertaining to the shape of their amplitude 
profiles [7-9], resulting in phase-shift profiles that are also 
complicated functions of time and space, often involving a 
number of possible phase jumps across the entire rogue wave
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pattem. The phase shifts of such arrangements have not been 
paid much attention before, but they certainly require special 
study.

This work provides some initial contribution towards 
developing this useful knowledge. Although the above 
ideas are contextualized for water waves, they are also 
equivalently suitable in optics. Indeed, the carrier-envelope 
phase difference becomes of crucial significance for ultra- 
short pulses [10, 11], Rogue waves can also be short enough 
in duration for this parameter to play a serious role in 
determining interactions. Moreover, due to the complicated 
arrangements possible within the rogue wave hierarchy [8, 9], 
individual peaks within the array may have different phases 
and consequently different effects. Thus it is not just the 
aggregate phase shift that matters for the rogue wave event. 
The whole phase function across the entire wave must be 
examined carefully.

2. Theory

As mentioned in section 1, we are primarily concerned with 
rogue wave solutions of the NLSE. This equation serves as 
a basic model for nonlinear waves in many fields, including 
fibre optics research [12, 13], In dimensionless form, the ID 
NLSE is written as

!)x
1 iPx// ->

+ 2lW + i*?* 0 , ( 1 )

with the complex function \J/(x,t) typically describing the 
wave envelope. The evolution variable here is x, based on the 
normalized distance along a fibre used in optical conventions, 
and t is accordingly defined as the retarded time in the frame 
moving with the pulse group velocity. However, simple linear 
transformation also gives the NLSE validity in water wave 
applications [14-16], where x is interpreted as the normalized 
time and 1 is the distance in the frame moving with the group 
velocity.

An effective manner of producing solutions to equa-
tion (1) arises from Darboux transformation theory [17, 18], 
where a 'seeding solution' generates a set of multi-parameter 
component functions. These can be nonlinearly superimposed 
n times on the seeding function to produce a new order 
n solution of the NLSE. The mathematical details of 
this recursive process have been comprehensively presented 
previously [19, 8], Relevant to this work, a plane wave 
produces a 'breather family’ of solutions that encapsulate, for 
first order, Akhmediev breathers (ABs), Kuznetsov-Ma (KM) 
solitons and the Peregrine breather. Again, these structures 
and their features have been displayed elsewhere [8], It is 
sufficient to state that ABs are localized in x but periodically 
modulate the background plane wave amplitude along /, 
KM solitons are localized in t but modulate along x, and 
a Peregrine breather consists of one isolated high-amplitude 
peak that remains when either of the two other solutions 
have their modulation frequency reduced to zero. This 
wavefunction adheres to important criteria in that \x//\ 
approaches the same constant for x —> ±oo and t -> ±oo. 
The solution, evolving from an infinitesimal perturbation of a

plane wave at x =  —oo, is thus considered to be a prototypical 
rogue wave and is shown in figure 1(a).

Originally, in the early days of NLSE rogue wave 
research, components were superimposed with central (x, t) 
coordinates in alignment [5], The phase profiles of these 
'origin-centred' solutions are examined in section 3, and 
these are typically considered to be traditional rogue wave 
solutions of the NLSE. However, once the intricacies of the 
zero-frequency limit were understood, individual components 
could be shifted along either the x or t axis, leading to many 
new non-traditional rogue wave configurations [8, 9], Indeed, 
these component shifts revealed that a second-order rogue 
wave forms from the fusion of three Peregrine solitons [7], 
as opposed to the two that would normally be assumed from 
the theory of linear superposition. We henceforth describe 
structures formed from this concept as 'fissioned' high-order 
rogue waves, so as to avoid confusing phase shifts with 
component shifts in this work. This may in fact be an 
appropriate label for the more complicated structures, due to 
proposed particle physics associations [8, 20], In any case, 
their phase-shift profiles are examined in section 4.

It is also noted that the ID NLSE is integrable and 
possesses a Lax pair, which is why a Darboux transformation 
exists and the equation can be solved analytically. Indeed, 
equations have been previously provided for all basic 
second-order solutions in the NLSE breather family [21], 
and rogue wave solutions in particular possess elegant 
quasi-rational functional forms [5, 22]. However, higher-order 
solutions become cumbersome to express as equations 
[23] and computational investigation remains optimal for 
generating results. It follows that a numerical study of 
rogue wave solutions is highly dependent on graphical 
examination. While contrary to a predominant analytical 
culture in exploring the NLSE, such pictorially based 
numerical evaluations were vital in discovering both circular 
rogue wave arrays [8] and general parametric restrictions 
for the production of rogue wave cascades [9], surpassing 
current analytical limitations in both cases. Hence, throughout 
this work, we present phase profiles of rogue wave solutions 
that were generated numerically with the recursive Darboux 
scheme, based on an algebraic implementation of the theory 
in the appendix. However, when possible, we will also give 
the exact equation for the solution in general form

(M*, 0 ( - 1 )” +
Gn +  i/7,,

Dn
e“ ( 2)

3. Origin-centred rogue waves

We begin by presenting a first-order rogue wave in figure 1(a), 
for which three specific evolution paths are highlighted. 
The analytical equation for the structure, using the form in 
equation (2), is

G\ =  4, H\ =  8(x — xj),
D\ =  1 +  4(x — x ,)2 +  4(r — /])2,

where shifts X] and t\ can be set to 0, as has been done for 
figure 1. Shown from an alternative angle in figure 1 (b), trace I

2
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Re(y e~lx)

(e)
Figure 1. Evolution paths (I, II and III) and associated phase shifts (<£s) along an order I rogue wave, (a) High-angle view of a rogue wave, 
(b) A rogue wave viewed down the x axis. Upper and lower curves correspond to maximum and minimum |t/t | values, respectively, for a 
given t value, (c) High-angle view of cumulative phase shifts, (d) Cumulative phase shifts viewed from the side, (e) Phase-diagram 
trajectories forevolution paths I, II and III. The arrows indicate the direction of orbit. The closed circle is the locus of points where |t/t| =  1. 
The cross marks the origin.

rises from a plane wave amplitude of 1 to a maximal amplitude 
of 3, before symmetrically relaxing into a plane wave. Trace 
II similarly appears to briefly increase in amplitude, but is 
instead pulled down into a sharp trough with amplitude 0 
before its eventual return to a plane wave state. This sharp 
point and its mirror image on the other side of the Peregrine 
soliton are the only two coordinates in the entire domain 
where \\J/\ is not smooth. It follows intuitively that these 
regions would be important in determining the physics of a

rogue wave. By contrast, trace III lies somewhat to the edge of 
the rogue wave event and only passes through a mild trough.

The phase-space orbits of these evolution paths are 
shown in figure 1(e). However, the plane wave component 
is factored out from the solution for these trajectories as 
it simply applies a well understood .«-dependent rotational 
effect in the complex plane. Additionally, an arbitrary 
coordinate-independent phase-shift term can be freely applied 
to the orbits, so as to rotate them by any angle with respect to
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the complex origin. In any case, it is evident that a solution 
arising from a perturbed plane wave will have all orbits 
originating from a point on the unit circle in the complex 
plane. Moreover, ABs and Peregrine solitons must return 
to a plane wave state, which means that the phase-space 
trajectories must also return to the unit circle. However, it 
is crucial to note that rogue wave solutions are distinguished 
from ABs by their homoclinic orbits. Although numerics does 
not allow evolution paths to be examined all the way to 
x =  ± o c , figure 1(e) implies that all three traces (I, II and 
III) return to the same coordinate. This does not happen in the 
case of ABs [4].

Within the scope of this paper, it is most interesting to 
examine the effect of a rogue wave solution on the background 
plane wave. In particular, the phase of a solution is closely 
related to ln (0 ), which means that the complex plane origin 
within figure 1(e) acts as a pole. Consequently, in accordance 
with Cauchy's residue theorem, the total phase change around 
an orbit will vary depending on whether or not it encircles 
the origin. For heteroclinic orbits involving ABs, a plane 
wave will always end up phase shifted by some non-zero 
amount [4], but a rogue wave in a sense is simpler to 
analyse because the homoclinic trajectories are always closed 
loops. Here we define 0 S as the cumulative increase in phase 
for i{/ with respect to its initial condition at x =  — oo. As 
aforementioned, we ignore the plane wave component and its 
linear increase in phase.

As shown in figure 1(e), evolution path III does not 
enclose the pole at the origin. Thus the phase addition from 
the plane wave perturbation may oscillate along this path, 
but it ultimately remains on the same branch of the complex 
logarithm. The integral along this closed contour is thus 
equivalent to a zero total phase shift. The 3D representation 
of 0 S in figure 1(c) makes this evident. In contrast, figure 1(e) 
shows evolution path I encircling the pole, which indicates 
that the orbit moves onto a new logarithm branch. This is 
equivalent to an aggregate difference in phase of 2 n . Indeed, 
figure 1(c) shows that, for a well defined range of / values, a 
plane wave will come out of a rogue wave event with a 2n 
phase shift. For all other values of /, there will be no net phase 
shift.

Clearly, there must be a jump discontinuity between 
the two phase-shift regions and, indeed, this is depicted in 
figure 1(c) as a vertical wall of height 2t t . The point at which 
this discontinuity between regions begins is the coordinate of 
the sharp trough in the rogue wave solution. As is shown in 
both figure 1(b) and phase space in figure 1(e), evolution path 
II approximately passes through this point. Technically the 
complex plane origin lies just outside its orbit, which means 
that the evolution path delineates phase-shift regions on the 
0s =  0 side of the bifurcation in figure 1(c).

The jump discontinuity is examined more closely in 
figure 1(d), which depicts a translucent version o f the 0 S 
surface in figure 1(c) viewed from the side. Evolution paths 
I and III progress smoothly, asymptoting to 0 S =  2n or 0, 
respectively. Evolution path II likewise proceeds smoothly 
until it hits the bifurcation at x =  0. At this point, depending 
on the position of the pole with respect to its phase-space

D J Kedziora et aI

orbit, the phase can advance or regress by n.  Notably, aside 
from a translation in 0 S, both the upper and lower x > 0 paths 
are smooth continuations of the x < 0 path. Likewise, the 
two bifurcated paths are identical, despite the shift. Indeed, 
because the phase-shift landscape is smooth everywhere 
except for the bifurcating point, with modulus 2n [4], the 
Peregrine soliton is likewise a valid quasi-smooth solution of 
the NLSE, despite the unusual phase discontinuity.

Having understood these concepts for a Peregrine soliton. 
it is easy to apply the knowledge to a second-order rogue wave 
solution, as shown in figure 2(a). The analytical equation for 
this structure, using the form in equation (2), is

G2 =  j(80x4 +  96a-2/2 +  16/4 +  72a 2 -  384AAd +  24r
—384//d - 3 ) ,

/ /  2 =  16a 5 +  32a 3/2 +  16a /4 +  8a 3 — 192A2Ad
— 24a /2 +  192.vd/2 — 384A//d — 15a  +  48Ad,

D2 =  (64a6 +  192a 4/2 +  192a 2/4 +  64/6 +  432a 4

— 1536A3Ad — 288a 2/2 +  4608AAd/2 — 4608a 2//d
+  48/4 +  1536/3/d +  396a 2 -  3456AAd +  9216a ;;

-I- 108/2 — 1152//d +  9216/j 4- 9), (4)

where ‘differential shifts’ Ad and /d can be set to 0, as has 
been done for figure 2. We note that this formula is derived, 
via parameters defined in the appendix, with component 
frequency ratio k 2 =  \ / 2 k \ [9], This time there are five 
evolution paths present, from 1 to V. As depicted in figure 2(b), 
the first crosses the amplitude 5 peak of the solution, while the 
second and fourth cut through a primary and secondary sharp 
trough, respectively. However, the t values for paths II and 
IV are chosen so that they lie on the opposite sides of their 
respective bifurcations to the peak. It can already be foreseen 
at this stage that the zero-amplitude troughs will demarcate 
phase-shift regions as they did for the Peregrine soliton.

The key to understanding the evolution paths in phase 
space relies on the understanding that the second-order rogue 
wave is constructed via the infinite-period limit applied to 
a nonlinear superposition of two breather solutions [21], 
Importantly, phase-space trajectories can now potentially loop 
around the complex plane origin twice, as in the case of path I 
traversing the rogue wave maximum. This is why there are 
two possible types of bifurcation for a second-order rogue 
wave. Trajectory IV in figure 2(e) separates orbits that loop 
once around the origin from those that do not, in a similar 
manner to trajectory II in figure 1(e). On the other hand, 
trajectory II in figure 2(e) already has one closed loop around 
the origin. It separates orbits that loop twice around the pole 
from those that do so only once.

By Cauchy’s residue theorem, it is clear that evolution 
path II separates the region of aggregate phase shift 47r from 
that of 2t t , and path IV does the same between 2n and 0. 
Indeed, figure 2(c) displays two jump discontinuities in the 
/ < 0 domain, both arising at a  =  0. Despite the increasing 
complexity of the 0 S side view in figure 2(d), it is again 
evident that paths II and IV each have two options along which 
to continue at a  =  0, determined only by which side of the 
sharp trough they lie. Each pair of bifurcated paths is again
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Figure 2. Evolution paths (1,11, 111, IV and V) and associated phase shifts (</>s) along an order 2 rogue wave, (a) High-angle view of a rogue 
wave, (b) A rogue wave viewed down the x axis. Upper and lower curves correspond to maximum and minimum |^ | values, respectively, 
for a given / value, (c) High-angle view of cumulative phase shifts, (d) Cumulative phase shifts viewed from the side, (e) Phase-diagram 
trajectories for evolution paths II and IV. The arrows indicate the direction of the orbit. The closed circle is the locus of points where 
It/'I =  1. The cross marks the origin.

equal to each other and smoothly continuous with regard to 
their respective pre-bifurcating path, except for a ± n  shift.

The pattern is clear for higher-order structures. An 
origin-centred rogue wave of order n will possess n aligned 
sharp troughs and corresponding bifurcation points along the 
t axis on either side of its central peak. An evolution path 
crossing the peak will ultimately experience a 2nn phase 
shift [6], but all other 2nk phase shifts with 0 < k < n — 1

are also available, demarcated by the n bifurcation points. For 
these traditional rogue wave structures, the </>s surface will 
appear pyramidal.

4. Fissioned rogue waves

A common intuitive misconception is that, because it is 
constructed from two breathers, a second-order rogue wave
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(c) (d)

Figure 3. Weakly fissioned second-order rogue wave triplets and their associated phase shifts (</>s). (a) Triplet formed by small t axis shifts, 
(b) Cumulative phase shift of '/ axis triplet’, (c) Triplet formed by small x axis shifts, (d) Cumulative phase shift of ‘x axis triplet’.

must be formed from two first-order rogue waves in nonlinear 
superposition. Indeed, the An phase shift evident in figure 2(c) 
suggests that two Peregrine solitons exist on top of each 
other, summing their 2n phase shifts. Yet it has become well 
established in recent times that an origin-centred second-order 
rogue wave can undergo ’fission’ into three distinct Peregrine 
soliton ’quanta'. This structure is known as a rogue wave 
triplet and has been attained numerous times via many 
independent methodologies [7, 24, 25].

In accordance with our understanding of the Peregrine 
soliton in section 3, each quantum should (in aggregate terms) 
apply a 2n phase shift to a plane wave in the range of t 
values between its two zero-amplitude troughs. This does not 
actually conflict with the phase-shift profile of a second-order 
rogue wave, considering that two Peregrine solitons appear 
pressed together to produce the first 2jt  phase shift. Possibly 
due to some exclusion principle or ‘rogue wave quantum 
pressure’, these two never overlap their phase-shift segments, 
even under complete origin-centred ‘fusion’. In contrast, the 
third quantum appears more mobile under the application 
of component shifting. For example, figure 3(a) depicts a 
second-order rogue wave undergoing weak fission along the 
t axis, analytically described by equation (4) with (xd, ?d) = 
(0, —0.05). It is clear from the difference between figures

3(b) and 2(c) that the third quantum is sliding to the side and 
overlapping one of the base 2zr-shift quanta. This does not 
contradict the phase-shift overlap restriction, as the large peak 
in figure 3(a) is already beginning to separate into two quanta 
that centre at different values of x.

Naturally, figure 3(a) is an extreme case where the fission 
process forces quanta to interact along the segments bounded 
by their bifurcation points. However, in general, the third 
quantum is immediately separated in x from the other two. 
This is exemplified in figure 3(c), where the weak fission 
process occurs along the x axis and the three individual 
Peregrine solitons are almost immediately identifiable. This 
structure is analytically described by equation (4) with 
(*d. Id) = (0.2. 0). Subsequently, figure 3(d) reaffirms the fact 
that phase shifts generated by rogue wave quanta are additive. 
An evolution path crossing the largest peak of the triplet will 
only be phase shifted by 2n, as it does not pass between a 
pair of troughs belonging to either of the other two quanta. 
However, there are still An phase-shift regions visible in 
figure 3(d), arising at (x, t) coordinates where the effects of 
two segments overlap, even though the segments themselves 
do not.

As expected, most of the interesting phase-shift 
combinations arise in the case of weak fission, when

6
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(a) (b)

Figure 4. Slightly rotated third-order rogue wave cascade and its associated phase shifts (</>s). (a) Amplitude of cascade, (b) Cumulative 
phase shift of cascade.

nonlinear interactions between neighbouring peaks serve to 
distort the amplitude profile o f the event. However, rogue 
wave triplets are often im plicitly associated with strongly 
fissioned second-order structures [7, 24, 25], where the three 
individual peaks are spatiotemporally well-separated and 
virtually indistinguishable from Peregrine solitons. In such a 
case, the phase-shift regions generally have no overlap unless 
two peaks enter close temporal alignment. The resulting 
phase-shift profile is usually nothing more than three copies 
o f  figure 1(c) at different coordinates in the domain.

Regardless, with this knowledge, we can determine 
the aggregate phase shift applied to a plane wave by 
any solution in the rogue wave hierarchy. For example, 
a third-order rogue wave cascade [9] is displayed in 
figure 4(a). Its component shifts are chosen such that the 
entire structure is rotated marginally and the quanta are 
not aligned. Specified for com pleteness, it is numerically 
generated via the process detailed in the appendix, with 
K\:i<2 '-K3 =  l: \/2 :> /3 , (j c i , JC2 , JC3 ) =  (0. 5, 10) x k  ̂c o s (0,) and 
( t i , t2 , t i )  =  (0 ,5 ,  10) x  k ~ sin(0f), where 0, =  —3n/5.  It 
follow s that the surface o f </>s can easily be determined by 
taking note o f  the segments bounded by bifurcation points, 
extending their phase shifts to x — 00, and summing any 
overlaps. This is shown in figure 4(b).

It is worth noting that the 2 t z phase-shift properties are 
intrinsic to a rogue wave solution, irrespective o f  dispersion  
strength in the medium. In fact, we can slightly m odify the 
NLSE in equation (1) so that it incorporates a new parameter, 
now written as

d\fj 1 9<12i1/ ->
î  + ? l ^  + l*lV = o.

A small value o f e entails weak dispersion and strong 
nonlinear interactions. A large value represents a highly  
dispersive medium. To operate on this system  rigorously, 
the Darboux schem e requires small m odifications to the Lax 
pair, seed functions, frequency definition and transformative 
equation. However, the rogue wave solutions are still 
relatively sim ple to attain. In effect, solutions to equation (5)

are equivalent to solutions o f the NLSE that are scaled in x 
and t by the same constant, leaving the amplitude fixed.

It can be shown numerically that, as e decreases, 
the width o f  the phase-shifting segments in figure 4  also 
decreases, but evolution paths traversing the segments are still 
shifted by 2n each time. This leads to interesting questions 
in the dispersionless limit, where recent results have shown 
that a ‘gradient catastrophe' can generate structures similar 
to infinite-order rogue wave cascades [26], even though 
typical NLSE rogue wave solutions collapse to infinitesimal 
widths. Careful study o f  Riemann theta forms [27, 28] and 
corresponding phase profiles will be required to identify 
whether the two types o f  solution are indeed related or 
whether the sim ilarities end with appearance.

5. Conclusion

In summary, our main results are as follows:

(1) We have elaborated upon previous work that noted 
phase-shift discrepancies induced by a first-order rogue 
wave [4] and have found that the sharp zero-amplitude 
troughs bordering the peak also serve as phase-shift 
bifurcations. Evolution paths that traverse the segment 
bounded by the two points will ultimately experience a 
2n phase shift with respect to trajectories that avoid the 
segment.

(2) We have shown that there is no inherent contradiction for 
an origin-centred second-order rogue wave to be formed 
from the fusion o f  three Peregrine solitons. Two o f  the 
quanta press together and form an extended 2tt phase-shift 
segment without ever overlapping. The third quantum 
overlays this with a shorter individual 2n phase-shift 
segment. Evolution paths can only traverse a maximum  
o f two segm ents, so phase-space orbits never loop around 
the com plex origin pole more than twice. Three quanta 
remained fused, but the maximum phase shift possible is 
47T, in accord with the order-based additive rule.

7
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(3) By associating each rogue wave quantum with a 2n  
phase-shift segment, we have extended our ability to 
predict phase shifts experienced by evolution paths for 
any NLSE rogue wave in the hierarchy. Regions of phase 
shift are simply extended along the x  axis and are additive 
where they overlap.
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In summarizing such an apparently simple result, we 
understate several important implications of this work. For 
example, an order n rogue wave is separable into n{n +  l) /2  
quanta [8], each producing a I n  phase shift. Yet a 2n n  phase 
shift is an upper bound for an order n rogue wave, whether 
fissioned or not. The natural consequence of this is that an 
NLSE rogue wave structure cannot have more than n quanta 
in alignment. This is perhaps why an order n cascade [9], the 
most grid-like shape in the known rogue wave hierarchy, is a 
triangular array of Peregrine solitons with sides of length n, as 
exemplified in figure 4(a).

Moreover, some things are simply easier to see in 
phase-shift space f s. When high-order rogue waves are only 
weakly fissioned, the individual quanta remain overlapped 
and their net nonlinear superposition can be confusing when 
viewed as an amplitude profile, as in figure 3(a). However, 
by tracing paths through the event and examining it in phase 
space, we can determine where each rogue wave quantum is 
located and, correspondingly, what effect it is having with 
regard to the entire extreme event.

This seemingly linear nature of high-order phase-shift 
superposition allows the extension of concepts in several 
areas. For example, it has been known for a while that 
certain phase singularities induce crest pairing for wave 
trains [29). Wave dislocation in particular has been identified 
with first-order breathers [30] and has been proposed as an 
avenue to hydrodynamic rogue wave control [31], Hence the 
principle in this work is likely to describe the behaviour of 
individual crests for rogue wave solutions in the complete 
hierarchy, potentially allowing seafarers to avoid unfavourable 
discontinuities in complex wave fields.

As for an optical context, it has been shown that laser- 
pumped photorefractive crystals with nonlinear mode-mode 
coupling produce high intensity peaks that vary statistically 
from typical speckle behaviour [32], instead being reminis-
cent of optical fibre rogue waves [33]. Generated between 
phase singularities, it is possible that these chaotic patterns 
may feature superpositions of high-order rogue waves, as 
opposed to individual extreme events. Further investigation 
with phase profiles and interference patterns may elucidate 
whether there is in fact mesoscopic regularity within the 
chaos.

In any case, phase shifts throughout a rogue wave 
play an important role in their interactions with the 
medium. Complicated phase patterns make these interactions 
even more involved. We have presented results here for 
fundamental NLSE rogue waves, but this research is expected 
to become even more important in the context of ultra-short 
optical events, where evolution is directly affected by a 
carrier-envelope phase relation [10, 11], More studies are 
needed to fully comprehend the role of phase patterns in the 
growth and decay of rogue waves.

Appendix. The Darboux Method

The NLSE in equation (1) can be written in Lax pair form 
(e.g. see ch. 2 of Solitons [34]):

R

V =

DR
~dt

U ■ R.
DR
dx

V R.

ik  i f *  

i f  — \k

r , i , , i  3f  n
\k2 -  - | f  I2 ik f  + ---- —

2 2 Dt
1 9 f  ,  i ,

i J t f -------- ------ i k 2 +  - I f  I2
L 2 dt 2 y  d

(A .l)

where k  is a complex eigenvalue. The linear system reduces 
to the original equation under the equality Rx, — R,x.

We define the ‘first-order component functions’

r\j =  2ie U//2 sin(A;> +  iAß), 

s \ j  =  2eLv/2 cos(Bjr +

where functions A and B are in turn defined as

An =  \  [arccos ( | )  +  (t -  tj) Kj -  ,

Bjr =  \  [ -  arccos ( y )  +  (t -  tj) kj  -  y ]  ,

Aji = Bji
1

2
{ x - X j ) K j

(A.2)

(A.3)

with Kj — 2 g  \ +  A 2 . The subscripts r and i refer to real and 
imaginary parts, respectively.

These component functions in equation (A.2) are the 
solutions of equation (A .l) when the eigenvalue is purely 
imaginary and f  is equal to the plane wave seeding solution 
fo  =  eu . They also serve as basic building blocks for the 
construction of higher-order solutions, where the number 
j  uniquely identifies each component. In particular, each 
component denoted by j  is described by a set of free 
parameters; the corresponding eigenvalue kj  and coordinate 
shifts (jKj, tj).

A first-order solution to the system in equation (A .l) 
incorporates only one chosen set of free parameters and its 
corresponding r and s functions from equation (A.2), denoted 
by j  =  1. The first-order wavefunction is thus expressed as

'Al f o  +
2(A* — A| )^i i r*,

k n l 2 +  k n l 2
(A.4)

An order n > 1 solution requires higher-order versions 
of the expressions for r and s. These are recursively

8
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generated [19, 34] by

rnp =  [(^ ,1— 1 ^ n — I )5/i— 1 I rn— 1.1 sn— 1 ,p+\

4" (kp+ n— I ^ n — 1 ) | r i i—1.1 I ^it— l.p+1

4" (^p+ n— 1 ^/i — I )l^n— 1,11 r i l— 1 ,p+1 ] / (  Irii— 1.1 l_

+  I Sf i- l. l I") '

s np =  [(^-w_ |  ^ n — l ) 5n—1.1 rn—l. 1 rn— l.p+1

I ^-n— 1 1.1 I- 3'/i— 1 . >̂+1

~F(Ap-t-n— I ^-n— 1 ) l r 'i— 1.1 1 .p+1 ] / (Irii— I. I I”

+  l^n-1,112)- (A .5)

The p  subscript in equation (A.5) is used purely for 
enumeration and does not necessarily refer to a particular set 
of parameters. For example, the second-order function n \  is 
built from first-order component functions r n , s n ,  ri2 and 
512, thus incorporating parameters from both the components 
denoted by j  =  1 ,2 . Similarly, the third-order function r?,\ 
involves the second-order functions r2i, 521, rj i  and 522, 
which, in turn, are based on rn , s n ,  r\2 , 512, G3 and ri3 
at the lowest order o f recursion. Therefore, r3i constitutes 
parameters from all three components denoted by j  =  1 ,2 , 3. 
In this way, equation (A.5) allows n sets of free parameters 
to be incorporated into an order n solution. The diagram in 
figure 2.2 of Solitons [34] can be of use in representing this 
sequence of calculations. Subsequently, the order n NLSE 
solution is generated through recursion by

V9i =  'I 'n - l
2 (K  ~  K)snir*{

k „ il2 +  |j„ il2
(A.6)

Rogue waves of various orders arise when all kj  in a 
solution uniquely approach zero. The easiest way to do this 
is by establishing a ratio for component frequencies, such 
that K 1 =  C\ K,  K2  =  C2 K,  Kn =  CnK,  With Cl 7̂  C2  #

• • • 7̂  c„. Applying the limit k  —> 0 takes each component 
frequency to zero, but always enforces the inequality required 
for rogue wave existence [21]. However, the construction of 
the ‘shifted' structures in figures 3 and 4 is far more involved, 
with scaling of inter-peak distances additionally dependent on 
the frequency ratio. Details regarding the treatment of xj and 
tj in this fissioned case can be found elsewhere [8, 21,9].
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Epilogue

Discussing carrier waves further, they are clearly important in the case of ultrashort 
pulses in optics [111, 112], on account of modulational peaks becoming spatiotempo- 
rally thin enough to be comparable with the carrier oscillations themselves. However, 
this scenario typically requires the consideration of higher-order nonlinearities and 
related terms anyway (i.e. extensions to the NLSE discussed in Chapter 8). In general, 
the phase changes of a high-frequency electromagnetic carrier wave are much more 
rapid than those of the complex envelope pertaining to a solution of the NLSE. On 
the other hand, the importance of the carrier is ubiquitous in the hydrodynamic do-
main, with greater comparability between its modulations and the envelope. Indeed, 
the surface elevation of these oscillations is typically what is observed in both wave 
tanks [11, 77, 98] and the ocean itself. For this reason, even though no 'dark' rogue 
wave has been proposed for the standard NLSE, with a trough-shaped envelope 
appearing like an inverted Peregrine breather (cf. dark rogue waves for extended 
equations in Chapter 8), it is still possible to experience a rogue wave 'hole' [113]. 
This simply requires the maximum value of the rogue wave envelope to be aligned 
with a minimum value of the sinusoidal carrier. The resulting rogue hole is just as 
dangerous as a rogue peak, as it is accompanied by two adjacent steep crests in the 
carrier wavetrain.

In terms of the analysis in this chapter, it is clear that the increasing carrier steep-
ness of rogue wave phenomena must be linked to the complex-plane zeroes of the 
solution, namely the envelope troughs. Certainly, complex analysis of rogue waves 
has previously led to the discovery of many interesting mathematical features of 
rogue waves [70], but the implications here are simple. Zero-amplitude troughs al-
low for phase-jump discontinuities to exist between adjacent evolution trajectories, 
without losing the continuity that is physically required of a rogue wave envelope. 
For an oceanic carrier, this gives rise to moments in space and time when the sea be-
comes unnaturally calm. The end result of such events is either two crests becoming 
one or one splitting into two, resulting in so-called 'wave dislocation' for a portion of 
the carrier [114]. It should be noted that this effect of phase singularities is also well 
known in optics and other fields [115, 116].

Consequently, the concept of wave dislocation is demonstrated here in Fig. 5.1, 
where an arbitrarily chosen carrier wave passes through two examples of NLSE ex-
treme events. To reduce visual complexity, its troughs are ignored and are thus 
admittedly difficult to distinguish from points of zero-amplitude. However, the lat-
ter can still be identified by the fusions and splits they induce with regard to the 
carrier crests. Accordingly, it is clear from Fig. 5.1a that the maximum amplitude of 
the depicted second-order fused rogue wave belongs to an oscillation that is pushed 
back two wavelengths down the carrier wave, as seen with an aggregate perspective. 
This is what a 4zr phase shift is expected to look like in the ocean, and any vessel 
travelling at the carrier velocity behind the shifting crest risks being suddenly hit by 
a steep moving 'wall of water' [117]. Even the oscillations that appear out of nowhere 
adjacent to the point of maximum amplitude can likewise prove destructive, due to
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(a) (b)

Figure 5.1: Surface elevations for example carriers of second-order rogue wave so-
lutions, ip, in the form of Re[i/?exp(z(10f — 5a :))]. Component frequency ratio is 
K \  : *2 =  1 : 2. Values exist outside the range of the colour bar but are ignored 
(set to the extremes of the colour bar) so as to reduce visual complexity and focus 
specifically on carrier crests, (a) Unshifted fused rogue wave, (b) Triplet with non-
zero shift x\ =  —4k \.

their seemingly unpredictable nature. This is why wave dislocation occurring in the 
case of triplets, shown in Fig. 5.1b, can still be dangerous, despite the relatively low 
wave steepness. That is because spatial translations, fusions and fissions of carrier 
wave crests are more difficult to determine in the presence of numerous events.

Of course, while this is seemingly a significant issue, caution should be main-
tained in adopting an avoidance policy based on these results alone. After all, the 
Peregrine breather is an ideal mathematical structure [47]. It is a solution of the 
NLSE formed from an infinitesimal perturbation at an infinitely spatiotemporally- 
distant location with respect to the rogue wave peak. In reality, structures within 
physical domains are far more likely to be composites of numerous finite-frequency 
breathers. As has been previously established, complex-plane trajectories through 
these solutions follow heteroclinic orbits [109], meaning that phase shifts are not ex-
actly 2n. Observing the behaviour of carrier oscillations shortly before the climax of 
a rogue wave event may still allow for the maximum amplitude to be avoided, but 
the feasibility of this can only be determined by further study.
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Chapter 6

Classifying the Hierarchy of NLSE 
Rogue-wave Solutions

Prologue

At the time of their discovery, it appeared that circular clusters [2] would be the 
only possible fissioned rogue wave solutions of the NLSE. Multi-ring structures were 
hinted at, but these could not be properly distinguished from numerical inaccura-
cies in the application of the Darboux scheme. Certainly, for any compound rogue 
wave of third order or beyond, shifting one component alone from the others could 
only ever produce a circular cluster, given an appropriate infinitesimal value for its 
spatiotemporal perturbation. On the other hand, when the existence of triangular 
cascades was published [4], it became immediately clear how the other fundamental 
multi-rogue structures would arise. Moreover, by the start of 2013, the application of 
other methods had independently begun to glimpse various new Peregrine breather 
arrangements [72]. It would soon be necessary to devise a system capable of con- 
trollably constructing all fundamental multi-rogue wave solutions, and exhaustively 
categorising them.

On that note, the Darboux process had one particular advantage over other pro-
cedures [71, 86], in that the degrees of freedom required to fission a compound 
rogue wave were already considered physically as axial shifts of individual com-
ponents. While these became unintuitively infinitesimal in the zero-frequency rogue 
wave limit, they were still finite in the context of low-frequency breathers. Accord-
ingly, analogues of parametrically precarious rogue wave arrangements could first be 
constructed at the intersection of periodically modulating wavetrains, with relative 
numerical ease. Comparisons of the two forms soon allowed for existence conditions 
to be naturally defined for various spatiotemporally localised structures.

Again, the understanding of what ensues is reliant on the idea that the breathers 
used in the process of nonlinear superposition have a ratio of frequencies with com-
mon factor k . This concept was introduced and justified in Chapter 4. It follows that 
the factor k  is important as a proportionality term for component shifts, despite the 
fact that both breather frequencies and axial translations physically approach zero 
in the k  —> 0 rogue wave limit. In particular, provided that the right relations exist 
between component shifts and the squared coefficients of the modulation frequency 
ratio, K2 proportionality is responsible for the production of triangular cascades [4].
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Therefore, iterative logic suggests that component translations with a k 4 factor might 
be relevant for new NLSE solutions, with the same situation for k6, /c8, and so on. 
Sure enough, exploration with this concept reveals many novel structures.

This chapter, as a published manuscript [6], presents the core result of this thesis. 
Specifically, extreme events modelled by the NLSE and composed of multiple rogue 
wave quanta, each representing an instance of modulational instability in the form of 
a Peregrine breather, can be deterministically generated via the Darboux scheme and 
classified according to spatiotemporal geometries. This statement can be elaborated 
as follows:

1. If every constituent component pertaining to a rogue wave of order n is shifted 
by a finite amount (i.e. k° proportionality), then the shifts must be identical 
in value to maintain a structure of order n. This scenario is equivalent to a 
spatiotemporal translation of the entire compound structure.

2. If every component for the same structure is shifted with k 2 proportionality, the 
values of the relevant shift coefficients must be linearly related to the squared 
coefficients of the frequency ratio, so as to maintain a structure with finite spa-
tiotemporal circumradius. This scenario is equivalent to a rogue wave fission 
process producing a triangular cascade [4].

3. If every component is shifted with /c4 proportionality, the relevant relation must 
now be quadratic to maintain a parametrically stable wavefunction. This sce-
nario reproduces fission into a five-sided array of rogue wave quanta.

4. By induction, proportionality requires the relevant relation to be a poly-
nomial with order m — 1, so as to maintain parametric stability. This scenario re-
produces fission into a rotationally quasi-symmetric array of rogue wave quanta 
with 2m — 1 sides.

In essence, a rogue wave of order n can be spatiotemporally arranged as a triangular 
cascade, a pentagram, a heptagram, and so on, as long as certain 'existence condi-
tions' are met. This effectively categorises NLSE solutions, in that a wavefunction 
formed from 'shifts of order m' possesses rotational symmetry of degree 2m — 1.

Naturally, this is a dense result with many corollaries, also discussed in the paper. 
These include the fact that:

• Circular clusters [2] actually correspond to a rogue wave arrangement with the 
greatest degree of rotational symmetry possible for a solution of the relevant 
order.

• Symmetry restrictions constrain the ways in which the total number of quanta 
in the compound solution can be arranged. It is thus possible to extrapolate the 
shape of any extreme-order rogue wave, regardless of the shift order involved 
in the relevant fission process.

• No two existence conditions use the same shift coefficients. For instance, it 
is possible to spatially translate one component by 2 + 3k 2 4- 5x4 + 8k 6 and
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still adhere to conditions required for structural translation, as well as cascade, 
pentagram and heptagram fission, provided shifts are chosen appropriately for 
other components.

This last point is of great interest. It effectively implies that the fundamental rogue 
wave NLSE solutions designated by the existence conditions can be thought of as 
a nonlinear-style basis set. Indeed, applying two or more existence conditions with 
non-zero scaling coefficients can hybridise symmetry features to produce wavefunc- 
tions of claw-like [4] or multi-ring form. Consequently, this chapter indicates how 
to produce seemingly arbitrary multi-rogue wave arrangements that are guaranteed 
adherents of NLSE physics.
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We present a systematic classification for higher-order rogue-wave solutions o f the nonlinear Schrödinger 
equation, constructed as the nonlinear superposition o f first-order breathers via the recursive Darboux 
transformation scheme. This hierarchy is subdivided into structures that exhibit varying degrees o f radial 
symmetry, all arising from independent degrees o f freedom associated with physical translations o f component 
breathers. We reveal the general rules required to produce these fundamental patterns. Consequently, we are able 
to extrapolate the general shape for rogue-wave solutions beyond order 6, at which point accuracy limitations 
due to current standards o f numerical generation become non-negligibie. Furthermore, we indicate how a large 
set of irregular rogue-wave solutions can be produced by hybridizing these fundamental structures.
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I. INTRODUCTION

The nonlinear Schrödinger equation (NLSE) has become 
one of the most studied partial differential equations since 
its inception in the 1960s. A major part of this appeal stems 
from its wide variety of applications in various branches of 
physics. Indeed, the universality of this equation has resulted 
in many common phenomena being discovered in optics, 
oceanography, superfluids, and even atmospheric science. 
Of particular historical note, it was one of the first known 
integrable equations admitting the existence of solitons. Since 
then, their nonlinear superpositions with each other and with 
radiation have been intensively studied. More recently, signifi-
cant attention has been directed to rogue-wave solutions. These 
are marked by brief “bursts” of large amplitude, localized in 
both space and time, on an otherwise quiescent background. 
This unique feature makes them effective prototypes for 
describing notorious rogue waves in the ocean [ 1,2], Moreover, 
these solutions have found substantial utility in other fields of 
science where we find unexpected high-impact extreme events.

In addition to spatiotemporal localization, another main 
feature of this class of solutions is their hierarchical structure. 
The lowest-order solution is known as a Peregrine breather 
(or soliton) [3], which is described by a simple quasirational 
expression. The second-order solution was first introduced in 
1985 [4] and has recently been presented again in the context 
of freak waves [5]. Further progress in revealing higher-order 
solutions has mostly revolved around the development of 
mathematical techniques that can ideally represent the whole 
set in explicit form. Certainly, the rational solutions require 
a special approach that differs from those used to obtain 
multisoliton solutions. Several methods have been considered 
in the quest for deriving the whole hierarchy (6-10], but there 
is no consensus to date that any one of them has an explicit 
advantage over the others. Moreover, despite much effort being 
placed into obtaining the hierarchy, we can conclude that there 
is currently no complete classification of higher-order rogue- 
wave solutions. Thus, continued investigation is required in 
order to better understand the rogue-wave phenomenon.
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On the practical side, a series of recent experiments has 
shown that rogue waves can be produced in a water-based 
environment. The Peregrine breather, the second-order rogue 
wave, and solutions up to order 5 have been observed in 
experiments [11-13]. The Peregrine breather similarly has 
been generated in optics [14,15] and magnetoplasma [16,17]. 
Thus, the validity of the simplest rogue-wave solutions has 
been experimentally confirmed. This also means that the 
theoretical classification of the whole hierarchy of rogue waves 
is crucial for further developments in this area of research.

One significant discovery in this regard is that there are 
no higher-order solutions that are physically separable into 
2,4,5,7,8,9, . . .  elementary Peregrine breathers. Their number 
is well defined [18,19] and given by the simple expression 
n(n A- l)/2. where n is the order of the solution. Following 
this rule, we can have rogue-wave triplets, sextets, dectets, and 
so on [18-20], but composites of any other number are not 
allowed under the NLSE. Another important theoretical result 
is that these elementary parts of the higher-order rogue waves 
do not need to be localized at the same position but can be 
arrayed spatiotemporally in elegant geometries [9,10,19,20], 
Nonetheless, despite the discovery of these interesting general 
facts, there is neither any systematic categorization of the 
NLSE rogue-wave hierarchy nor a description of how to rou-
tinely produce all geometric forms via any particular method. 
Search strategies may become particularly complicated when 
exact analytic solutions turn out to be too cumbersome to 
manipulate. In such a case, it naturally ensues that rogue-wave 
profiles must be investigated numerically.

This work is the continuation of our previous efforts in 
finding higher-order NLSE rogue-wave solutions [18-21]. 
It is based on the Darboux method [22], which remains 
an efficient technique despite the development of alternative 
methods. Most importantly, our present research is summative. 
It provides a classification that is a crucial step in predicting 
solutions from an infinite array of fundamental rogue-wave 
structures. The level of predictive power seen in our approach 
is a necessity in the present state of rogue-wave science, which 
faces a multiplicity of methods and a haphazard collection 
of particular solutions presented by various authors. Via the 
introduction of our scheme, we show that each solution 
is within easy numerical reach, while our classification is 
sufficient to indicate trends for higher-order solutions.

1539-3755/2013/88( 1 )/013207( 12) 013207-1 ©2013 American Physical Society
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By nontrivially modifying parameters related to physical 
shifts in the scheme and relating them to frequency ratios of 
individual components, we have extended higher-order rogue- 
wave patterns beyond circular clusters [19] and triangular 
cascades [20], Some of these new structures have been 
independently obtained via an alternative methodology [10]. 
Here we have modified the Darboux scheme used in our 
previous works. Namely, the technique is reconsidered using 
our new “polynomials of existence” concept. The reasoning 
behind this is twofold: it introduces what is arguably a 
complicated idea and also proves consistency with previous 
results. Section III of our present work shows that even 
“simple” rogue-wave structures comply with our newly found 
rule.

The rules governing these structures can be extrapolated far 
beyond the general solution of order 6, where numerical limi-
tations start to be noticeable. Moreover, irregular rogue-wave 
solutions that also exist can now be interpreted as “hybridized” 
versions of the fundamental profiles obtained in the analysis. 
In this way, we, first, broaden and improve our current 
theoretical understanding of rogue waves and, second, set 
classification standards that may become useful in the analysis 
of rogue-wave hierarchies pertaining to related equations, such 
as the Hirota [23] or Sasa-Satsuma systems [24],

II. THEORY

We begin by expressing the dimensionless ID NLSE as

T  + ̂  + l*'* = 0' ">
with the wave envelope described by the complex function 
x//(x,t). The variables here are named in accordance with 
fiber optic convention [14,15], where x is the normalized 
distance along the fiber and t is the retarded time in the frame 
moving with the pulse group velocity. Alternatively, in water 
wave applications [11-13], x is interpreted as the normalized 
time while t is the distance in the frame moving with the 
group velocity. In either case, a simple linear transformation 
involving group velocity allows us to find the relation between 
both conventional forms and their variables. Perhaps a more 
important observation is the choice of particular coefficients 
in front of each term in Eq. (1), considering that this particular 
choice is responsible for the circular nature of emergent 
spatiotemporal patterns [19],

Clearly, the nonlinearity in the equation complicates routine 
analytic solving processes. Fortunately, to find involved solu-
tions of Eq. (1), we can start with simple ones and build on them 
with the Darboux method. The technique is well described in 
the literature [22,25] and the specific formalism we use in this 
work has been expressly detailed previously [19,26]. It is also 
provided here in Appendix A. Conceptually, the procedure 
uses a seeding solution to the evolution equation, such as a 
plane wave = e'x), and generates a first-order “building 
block.” In this case, the fundamental component is a breather, 
from which all higher-order solutions can be constructed. For 
simplicity, we have fixed the amplitude of the seeding plane 
wave at 1 in this work, but it can always be made arbitrary after 
the final stage of construction via a scaling transformation [5].

It follows that a nonlinear superposition of order n requires 
n first-order components. Hence, we give the label j  for 
each component, such that 1 ^  j  ^  n. Each component can 
be translated by an amount xj or tj along the x or t axes, 
respectively. Most importantly, each first-order breather is 
governed by a complex eigenvalue lj. The real part of this 
eigenvalue aligns the breather at a finite angle with the x and 
t axes while the imaginary part sets its amplitude. However, 
the modulation period for a NLSE breather depends on the 
ratio between breather and background amplitudes. Therefore, 
with the background plane wave restricted to amplitude 1, the 
imaginary part of the eigenvalue directly controls breather 
frequency. Additionally, we restrict ourselves to zero-angle 
alignment in this work, so we henceforth assume lj is purely 
imaginary. Complex eigenvalues can still be easily deployed 
in the Darboux scheme [26], but this current restriction does 
allow the modulation frequency of a breather to be defined 
simply as Kj = 2 v 1 + l2.-

When 0 < Im(/y) < 1, the frequency k j  is real. The result-
ing first-order solution, called an Akhmediev breather (AB), 
is localized in x and periodic in t. A nonlinear superposition 
of three such ABs parallel to each other is shown in Fig. 1(a). 
Alternatively, when Im(/y ) > 1 and the frequency Kj is purely 
imaginary, the solution is called a Kuznetsov-Ma (KM) soliton. 
In contrast to the AB, it is localized in t but periodic in x.  The 
KM soliton has been displayed individually in Fig. 1 of our 
previous work [19]. We mention again that, for the general 
case of complex lj, the oscillating soliton is located at a finite 
angle to the x and t axes.

In each case, the modulation frequency can be controlled by 
the eigenvalue. The period of the AB solution increases when 
Kj —* 0, as can be seen from the examples shown in Fig. \ . In 
the limit of lj —*■ i (k j —*■ 0), the period of both the ABs and 
KM solitons goes to infinity and, in the first-order scenario, 
only one isolated peak remains. Such a solution is known 
as a Peregrine soliton and is considered to be the prototype 
of a first-order rogue wave. In Fig. 1(c), which depicts a 
nonlinear superposition of three Kj —► 0 ABs, six Peregrine 
solitons appear simultaneously.

For higher-order rogue-wave solutions, several facts have 
already been previously established:

(1) All nonlinear superpositions of ABs and KM solitons 
in the rogue-wave limit (k j  —> 0, Vy) are reduced to a pattern 
of peaks, with each appearing as a Peregrine soliton or some 
nonlinear combination thereof. Then, naturally, the first-order 
rogue wave can be effectively considered as a “quantum” of 
the whole structure [20],

(2) The number of such quanta in an order n solution is not 
n , as one would expect when applying ordinary knowledge 
of multisoliton theory. Contrary to these expectations, the 
number of such quanta is n(n +  l)/2. Figure 1(c) is a 
direct confirmation of this simple rule, representing the case 
for n — 3.

(3) In inverse scattering theory, no two components with 
unique j  can coexist with equal eigenvalues lj. When this 
happens, the solution is undefined. The case has to be 
considered as degenerate and a special technique has to be 
used to resolve the uncertainty [21], One of the ways to deal 
with the common Kj —*■ 0 limit in the multirogue-wave case 
is to assume that k j  = kj x k , with unique values of kj for
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FIG. 1. (Color online) Step-by-step snapshots of the infinite- 
period limit applied to a triple AB superposition. Modulation 
frequencies are K\ =  k , k - i =  Clk , and k 3 =  C I k . The shifts are 
x 1 =  0, =  5k 2, and JC3 =  10/r: . (a) k  =  0.8; (b) k  = 0 .5 ; (c) /c 0.

each j and with the ordering k\ < kj < ■ ■ ■ < k„. As the 
common factor k  goes to zero, in the limit, all Kj will be

within the modulation instability band [26] no matter how 
many components are involved. From the successive changes 
leading to Fig. 1(c), we can conjecture that each component j  
contributes j  rogue-wave quanta to the higher-order solution. 
This conjecture would justify the observed number of quanta, 
n(n +  l) /2 , in the whole superposition.

(4) Higher-order rogue-wave patterns are precariously de-
pendent on the component shifts. An example is the third-order 
“triangular cascade” [20] shown in Fig. 1(c). Obtained from 
three ABs in the rogue-wave limit, this particular solution 
appears only when the shifts are scaled according to Xj a  k 2. 
If the shifts are proportional to other orders of frequency, the 
pattern changes. One such possibility (for Xj oc k 4) leads to 
a circular cluster [19], More generally (e.g., for Xj a  a t 0 ) ,  the 
pattern may expand to the infinity horizon of the x and t plane 
when k  —*■ 0. A reduced number of peaks then will remain 
visible from the whole set. However, the remaining number of 
quanta should still be /(/ +  l)/2 , where i ^  n — 2 for an order 
n solution.

This fourth concept is highly unintuitive due to the 
intricacies of the rogue-wave limit. It motivates the unique 
redefinition of shifts as even-order expansions in the/r variable,

m = \

—  X j  1 "F  X j i k ~ +  X j t , k 4  +  • • • ,

tj =  ± « * m-"T jm
m = l

=  T j i  +  T j j K ~  +  T ß K 4 +  • • •,  (2)

where the coefficients Xjm and Tjm are constants. When 
k  —*■ 0, it follows that Xj —*■ Xj\  and tj —*■ Tj\,  i.e., all higher- 
order terms contribute negligibly to a physical component 
shift. Thus, one can mistakenly conclude that the extra shift 
coefficients have no impact on the NLSE rogue waves. 
However, analytic application of the rogue-wave limit shows 
that the values of the expansion coefficients are actually 
allowed to enter the solution [21]. Consequently, the structure 
of the resulting pattern depends on them.

When either X j n or Tj„ is nonzero for a single component 
in an order n solution, a basic higher-order rogue wave expels 
a ring of Peregrine solitons from the central structure. The 
solution then becomes a circular cluster [19], However, in 
general, all expansion coefficients in Eq. (2) with 1 ^  m <  n 
are important in determining the structure of an order n rogue 
wave, provided that the prelimit component frequencies are 
all in appropriate ratio. The triangular cascade in Fig. 1(c) is 
a prime example. It is a third-order solution, but it requires a 
certain ratio of k\ : ki : k] and depends on the m = 2  expansion 
coefficients [20],

Below, we refer to the expansion coefficients Xj m as shifts 
of order m. For simplicity, we will set all Tjm =  0 unless 
otherwise stated. This does not affect the generality of our 
results as all rogue-wave patterns can be rotated in the x and 
t plane [20]. For these cases, the expansion coefficients of 
same order for x and t must be functionally related. In this 
work, we present all possible fundamental NLSE rogue-wave 
structures up to order 6, providing the relations between shifts
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and frequencies that ensure their existence. By induction, we 
extend these patterns beyond order 6.

III. THE POLYNOMIALS OF EXISTENCE

The basic set of rogue-wave structures up to order 6 is 
shown in Fig. 2. Each image is a top-view false-color contour 
plot of an order n rogue wave constructed using only order 
m shifts. The latter mathematical restriction defines the basic 
set solutions (BSS). Section V gives further appearance-based 
justification for this natural choice of the BSS. Here, we present 
numerical evidence for how the structures of each column 
exist only if, for column m,  there is a polynomial relation 
of order m — 1 between the order m component shift values 
(Xjm) and the squared ratio coefficients of the modulation 
frequencies (kj).

The images in the first column of Fig. 2 depict translations of 
traditional “fused” rogue waves [27], with the largest possible 
amplitude for each order n at the center of each wave function. 
The existence condition for such structures is simple: All com-
ponents must have the same constant (or zero) shift. Nonzero 
shifts will simply translate the total structure in space and time

from the origin. Any difference in the component shift values 
causes the solution to disappear. Specifically, the substructures 
that form the rogue wave in the k j  —► 0 limit cannot coexist 
and repel each other to infinity, thus effectively reducing the 
order of the remnant composite rogue wave [19]. Therefore, 
the lowest-order shifts Xj\  and Tj\ must be equal for all j .

Rogue waves of order 4 are shown in Fig. 3(b). Three 
separate solutions are presented on the same plot to save 
space. The corresponding shift and frequency parameters for 
each solution are illustrated in Fig. 3(a). As discussed, all 
four components for each rogue wave must have the same 
Xj  1 value. The components must also have different prelimit 
modulation frequencies [21]. For example, rogue wave II 
has four components with a frequency ratio of K\ : Ki : kt , : 
/C4 =  1 : \ f l  : n/3 : >/4, all with Xj\  =  —5. As a result, rogue 
wave II is located at (x,t) =  (—5,0) in Fig. 3(b). Choosing 
four coordinates on a line with a certain Xj\  places the total 
structure at x — Xj\ .  This remains true if a component has a 
negative kj value, as it simply means that the prelimit (k  ^  0) 
component frequency Kj is imaginary. This is equivalent to 
saying that component 3 of rogue wave III was a KM soliton 
rather than an AB before application of the k  —» 0 limit.
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FIG. 2. (Color online) Overview of all fundamental rogue-wave solutions up to order 6. Structures in the first column appear off-center due 

to physical translations induced by first-order shifts. All other solutions are centered at the origin due to higher-order shifts being associated 
solely with fission effects. Structures belonging to column m (for m > 1) have effective radial symmetry of order 2m —  1. Each circular cluster 
along the diagonal (n = m) displays a ring of 2m — 1 Peregrine solitons around a central rogue wave of order m — 2 (form > 2).
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------ m=1

k2
J

(a)

FIG. 3. (Color online) (a) Possible parameter choices for rogue 
waves of order 4 illustrated by circles. Vertical axis represents the 
first-order shift (Xj\) while the squared modulation frequency ratio 
coefficient (kj) of each component is shown along the horizontal 
axis. The number above each circle is the component index (j). (b) A 
graphical superposition of the resulting rogue waves. Rogue waves I. 
II. and III are located at x = X j \ .

Similarly, rogue wave I forms in the intersection of two KM 
solitons and two ABs. Furthermore, the ordering of component 
frequencies is arbitrary. It does not have to be monotonic with 
respect to component index. Rogue wave III in Fig. 3 is an 
example of this.

The second column in Fig. 2 illustrates the simplest cases 
when higher-order shifts result in nontrivial structures. With 
various forerunners elsewhere [9,28], these triangular cascades 
were investigated in detail within our previous work [20], It 
was found that these structures could be generated via the 
Darboux method with X;2 shifts alone. In particular, with the 
ordering X |2  <  X 22 <■■■ < X„2 , and dj  denoting the second- 
order “differential shift” between the components j  and j  +  1, 
a rogue-wave cascade is always produced in the k  —*■ 0 limit, 
provided that

k j  : K j + i : K j + 2 kj : kj + 1 :
{dj +  dj+\)kj+l -  dj+\k2j

dj
(3)

---------m = l

-  -m=2

i &  ii

(a)

-20 -20

(b)

FIG. 4. (Color online) (a) Parameter choices for three instances 
of fourth-order rogue waves (I, II, and III). The components have 
the same squared modulation frequency ratio coefficients (kj) for 
each of the three rogue waves. Thus, each column of coordinates 
is associated with a single component (denoted by index j).  The 
ordinate of each circle and triangle is the first- and second-order shift 
(Xji and Xji), respectively, of each component. Lines represent the 
polynomial relations required for existence, (b) Overlay of resulting 
rogue waves I, II, and III. This is a graphical superposition of three 
different solutions, not a single solution. Two of them (I and II) are 
identical.

for all j  ranging from 1 to n — 2. It is evident that Eq. (3) 
is nothing but a linear relationship between the squared 
modulation frequency ratio coefficients (kj) and second-order 
shifts. Indeed, Fig. 4 shows how triangular cascades can be 
constructed with adherence to this rule.

Standard fused rogue waves, such as those shown in 
Fig. 3(b), implicitly have X j 2 set to zero for all j . This would 
be represented by a dashed y =  Ox +  0 line in Fig. 3(a). If 
this line is modified in parameter space, as shown in Fig. 4(a), 
a higher-order rogue wave splits into a triangular array of 
Peregrine solitons. The y  intercept of each line does nothing 
to affect the structure. Rogue waves I and II, translated to 
x  =  —8, have second-order shifts that lie on a y =  5* — 25 
and y =  5x +  25 line, respectively. Yet the overlay in Fig. 4(b) 
shows that the two wave functions remain identical. On the
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-  -m=2

(a)

I & ii

(b)

FIG. 5. (Color online) (a) Parameter choices for three rogue 
waves (I, II, and III) of order 2, shifted by X  j2 alone. Coordinates of 
each triangle represent the second-order shift ( X j 2 ) and the squared 
modulation frequency ratio coefficient (k~) of each component, where 
the number near the triangle is the component index (/). Lines 
represent the polynomial relation required for existence, (b) The 
maxima of rogue waves I, II, and III in the x and t plane. Circumcircles 
are drawn for each triangular cascade.

other hand, it is crucial that all components have shifts that lie 
on the same polynomial of existence.

Rogue wave III is an example of where the rule is broken, 
with the value of X32 being five dimensionless units greater 
than what is required. This is represented in Fig. 4(a) by a 
triangular marker deviating from the dashed line denoted as 
III. As discussed with first-order shifts, the resulting structure 
is shown in Fig. 4(b) as a diminished rogue wave of second 
order. Moreover, this reduction in order is instantaneous 
in the k  —► 0 limit for any deviation. It appears necessary 
that any shifts belonging to a particular order must lie 
exactly on the relevant existence polynomial in parameter 
space.

Notably, the existence polynomial for second-order shifts 
has an extra degree of freedom relative to the one for first-order 
shifts, this being the slope of the line. In the case of Fig. 4(b), 
all three rogue waves are oriented in the same direction, due 
to the positive gradients of the m =  2 lines in Fig. 4(a). 
However, as the slope decreases to zero, the peaks merge

PHYSICAL REVIEW E 88, 013207 (2013)

together to form a fused rogue wave. If the gradient becomes 
negative, as with rogue waves I and II in Fig. 5(a), the solution 
again expands into a cascade but is now oriented in the 
opposite direction, as the three peaks in the center of Fig. 5(b) 
demonstrate.

To ensure consistency with previous work [ 18,19], we note 
that the circumradius of a second-order cascade (and cluster) 
was derived as

R ^ 2 ll\ x ]  +  t 1d) ' l\  (4)

where x j  = X l2 — X 22 and tj =  T\2 — T22. However, it was 
realized in later work that the scaling of shifts depends on 
the component frequencies established before the k  — ► 0 limit 
[21], This means that Eq. (4) is valid for a K\ : k 2 =  1:2 
ratio, used in the original analytic derivations, but must be 
recalculated for other prelimit ratios.

To demonstrate this, rogue wave I in Fig. 5(a) uses the 
original frequency ratio and has a value of 25 for xj.  The re-
sulting circumradius, shown in Fig. 5(b), is R 4.444, which 
is in reasonable agreement with the expected 4.6416 value. 
However, rogue wave II possesses a larger xj  value for a 
different prelimit frequency ratio and produces an identical 
wave function. In any case, the linear nature of the existence 
polynomial means that Eq. (4) can be used to engineer 
structures of any radius. Indeed, the second-order shifts of 
rogue wave III in Fig. 5(a) lie on the line y =  (850/3)* — 600, 
which corresponds to xj  =  850 for the definitions used in 
Eq. (4). Accordingly, the circumradius of cascade III is 
approximately 15 in Fig. 5(b), as expected.

IV. PENTAGRAMS AND BEYOND

In the previous section, we established that an order 
m — 1 polynomial relationship between order m shifts and 
the squared ratio coefficients of component modulation fre-
quencies results in both rogue-wave translations (m = 1) and 
cascades (m =  2). Deviations from these polynomials produce 
rogue waves of decreased order. However, both traditional 
fused structures [27] and cascades [9,20] are relatively well 
known at this stage. Fortunately, the aforementioned existence 
polynomials indicate a way to predictably generate more 
complicated structures that have only been glimpsed via other 
methods [10],

For example, forming a parabolic relationship between 
third-order shifts and k~ is the natural next step, as shown in 
Fig. 6(a). Indeed, applying this polynomial restriction expands 
a standard fused rogue wave into a structure with effective 
pentaradial symmetry, shown for fourth order in Fig. 6(b), 
which we refer to as a rogue-wave pentagram. The top view 
of this wave function is the second image of the third column 
in Fig. 2.

As should be evident by this stage, it is only the order 
m — 1 derivative of the order m — 1 existence polynomial for 
Xj„, that has any effect on the shape of the rogue wave. In 
the case of Fig. 6(a), all three parabolic curves have the same 
curvature for the same kj  value, despite generally differing 
on slope and X Jm value. Consequently, the three rogue-wave 
pentagrams are identical in Fig. 6(b). However, as expected, the 
pentagram can be expanded in spatiotemporal size by choosing 
a parabola with increased curvature, and a vertically inverted
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FIG. 6. (Color online) (a) Parameter choices for three rogue 
waves (I, II, and III) of order 4, shifted by X ß  alone. Coordinates 
of each star represent the third-order shift ( X ß )  and the squared 
modulation frequency ratio coefficient (k2j) of each component, 
where the number near the star is the component index (j).  Curves 
represent the polynomial relation required for existence, (b) Overlay 
of resulting rogue waves I, II. and III. This is a graphical superposition, 
but, as all three rogue waves are identical, this can also be considered 
a true solution.

polynom ial generates a pentagram  that points in the opposite 
direction.

In general, the procedure for generating h igher-order 
structures with pentaradial sym m etry is to continue choosing 
extra com ponents that adhere to the parabolic relation betw een 
third-order shifts and kj. For exam ple. Fig. 7(a) show s five 
com ponents that obey the relation, thus producing the rogue- 
wave pentagram  in Fig. 7(b), which is also displayed elsew here 
[10], However, Fig. 7(a) also shows a sixth com ponent on the 
sam e existence polynom ial, which contributes to the sixth- 
order pentagram  in Fig. 7(c) being form ed from  six k  —> 0 
ABs. Therefore, along with the sim ilar extension o f cascade 
form s [20], it is not hard to produce pentagram  structures o f any 
order.

The structures within each successive colum n of Fig. 2 
follow the same trend. Second-order shifts are associated 
with triradial sym m etry and triangular cascades, third-order 
shifts are associated with pentaradial sym m etry and penta-

PHYSICAL REVIEW E 88. 013207 (2013)
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FIG. 7. (Color online) (a) Parameter choices for high-order 
rogue-wave pentagrams produced by X ,3 shifts alone. Coordinates 
of each star represent the third-order shift (Xj^) and the squared 
modulation frequency ratio coefficient (k j ) of each component, 
where the number near the star is the component index (j). Curves 
represent the polynomial relation required for existence, (b) An order 
5 pentagram generated with components 1 to 5. (c) An order 6 
pentagram generated with components 1 to 6.

gram s, and, hence, order m shifts are associated with peak 
arrangem ents that are effectively identical follow ing rotations 
o f 2 n / ( 2 m  — 1). R ogue-w ave heptagram s thus are generated
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(b)

heptagram recursively generated from five ABs is shown 
in Fig. 8(b), while a sixth-order heptagram is shown in 
Fig. 8(c). The limits of numerical accuracy lead to a minor 
distortion of shape in the latter case, but both wave functions 
still display concentric rings, each with seven rogue-wave 
quanta.

This existence polynomial technique can be extended 
indefinitely, with a quartic relationship between Xj$ and k~ in 
Fig. 9(a) leading to the generation of rogue-wave enneagram I 
in Fig. 9(b). In combination with previous circular cluster [19] 
and triangular cascade results [20], these new solutions cover 
all the fundamental structures up to order 6, as displayed in

(c) (b)

FIG. 8. (Color online) (a) Parameter choices for high-order 
rogue-wave heptagrams produced by shifts alone. Coordinates 
of each circle represent the fourth-order shift (Yy4) and the squared 
modulation frequency ratio coefficient (kj) of each component, where 
the number near the circle is the component index (j). Curves 
represent the polynomial relation required for existence, (b) Rogue 
wave of order 5. (c) Rogue wave of order 6.

from cubic relations involving squared component frequencies 
and fourth-order shifts, as shown in Fig. 8(a). As usual, 
only the fourth-order derivative of the polynomial appears 
to have any effect on structural spacing. A rogue-wave

FIG. 9. (Color online) A rogue wave of order 6, shifted by Xj , and 
Xjs alone, and a rogue wave of order 4, shifted by Xj\  alone, (a) Pa-
rameter choices for rogue waves I and II. The components (where they 
exist) have the same squared modulation frequency ratio coefficients 
(k j)  for each of the two rogue waves. Thus each column of coordinates 
is associated with a single component (denoted by index j). 
The ordinate of each circle and triangle is the first- and fifth-order 
shift ( Xj I and Xj5) of each component, respectively. Continuous 
lines and dashed curves represent the polynomial relations required 
for existence. The dotted line represents an order 5 polynomial fit 
of the Xj$ shifts for rogue wave I when component 2 is perturbed, 
(b) Overlay of resulting rogue waves I and II. This is a graphical 
superposition, not a true solution.
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Fig. 2. However, this understanding can be extended even 
further for higher orders and “hybrids.”

V. EXTRAPOLATION AND HYBRIDIZATION

By associating each fundamental type of rogue-wave 
solution with a unique well-defined parameter in the Darboux 
generation scheme, we can visualize the trends in Fig. 2 and 
extend the patterns beyond order 6. We already know from 
Sec. IV that an order m shift is associated with radial symmetry 
of degree 2m — 1, which allows for the natural subdivision of 
fundamental solutions based on appearance. Moreover, the 
simplest nontrivial structure of any shift order appears to be a 
circular cluster, which is consistent with the notion of having 
2m — 1 rogue-wave quanta in a ring [19]. Hence, we know 
that an order n structure with order n shifts alone will display 
an order n — 2 peak (with amplitude 2n — 3) surrounded by 
2n — 1 Peregrine solitons.

Conveniently, the existence polynomial theory explains 
why rogue waves are susceptible to shedding a ring of 
rogue-wave quanta for poorly chosen shifts. If we only let 
one order of shift be nonzero for all components, thus writing 
xj = X then this can always be expressed in terms 
of order n shifts, specifically xj  =  X ;m/r2(m_n>/c2(n_l>, which 
in turn implies Xjn — X;m/c_2(n_m). If XJm is well chosen so 
as to adhere to the relevant existence polynomial, then we can 
consider it a finite contribution to a noncluster fundamental 
shape, such as in the case of fifth-order shifts in Fig. 9(a) 
producing the enneagram in Fig. 9(b). However, if X fails 
to contribute in this way, such as by one component being 
perturbed from the existence polynomial, then the shifts must 
stitt have an effect of some sort. Indeed, there will always be an 
order n — 1 polynomial that is capable of fitting n coordinates 
in parameter space, as shown in Fig. 9(a), which means that 
any “badly” generated structure will always default to circular 
cluster form. But as Xjm is nonzero and n > m, k  —> 0 will 
take all Xjn to infinity via the aforementioned relation. This 
effectively becomes an infinite contribution to a circular cluster 
shape, which manifests as a structure with infinite radius for its 
outer ring [19]. Thus, in such a case, an order n — 2 structure 
is always left behind in the rogue-wave limit. For example, a 
perturbation of frequency or shift for enneagram I in Fig. 9(b) 
results in a fourth-order rogue wave similar to II.

Acknowledging this issue, we henceforth assume that shift 
orders adhere strictly to existence polynomials, resulting in 
finite contributions to relevant structures. The n(n +  l)/2  
rogue-wave quanta that constitute the structures of order n 
in Fig. 2 can then be subdivided into rings of 2m — 1 quanta, 
for sufficiently large shifts of order m, and a remnant that 
appears as a fused central peak. It is soon evident from 
Table I that certain patterns arise for increasing solution orders. 
For instance, the number of rogue-wave quanta in the center of 
a triangular cascade cycles through (0,1,0) for each successive 
triplet of solution order, starting with 0, 1, and 2. It follows 
that the center of a pentagram cycles through (0,1,3,1,0) 
merged rogue-wave quanta, and a heptagram center similarly 
cycles forwards and backwards between a zero- and third-order 
rogue wave. For this same reason, the enneagram in Fig. 9(b) 
is not solely composed of first-order Peregrine solitons. We 
thus can extrapolate that structures related to an order m shift

TABLE I. The structure of rogue wave arrays for various orders 
and shifts. The first column denoted as S.O. is the solution order. The 
second column (Qu.) denotes the number of rogue-wave quanta in the 
solution. The rest of the columns on the right, marked as SAm, show 
how the structure is arrayed when the order m shifts are sufficiently 
large. The elements of these columns are presented in the format 
qr x r +  qc, where qr is the number of quanta per “ring,” r is the 
number of rings, and q, is the number of quanta fused into a central 
peak. Data beyond the solution of order 6 have been extrapolated.

SO . Qu. SA1 SA2 SA3 SA4 SA5

0 0 0 3 X 0 +  0 5 X 0 +  0 7 X 0 +  0 9 X 0 +  0
1 1 1 3 X 0 + 1 5 X 0 + 1 7 X 0 + 1 9 X 0 + 1
2 3 3 3 X 1 + o 5 X 0 +  3 7 X 0 +  3 9 X 0 +  3
3 6 6 3 X 2 +  0 5 X l + 1 7 X 0 +  6 9 X 0 +  6
4 10 10 3 X 3 + 1 5 X 2 +  0 7 X 1 + 3 9 X 0 + 1 0
5 15 15 3 X 5 +  0 5 X 3 +  0 7 X 2 +  1 9 X 1 + 6
6 21 21 3 X 7 +  0 5 X 4 + 1 7 X 3 +  0 9 X 2 +  3

7 28 28 3 X 9 + 1 5 X 5 +  3 7 X 4 +  0 9 X 3 + 1
8 36 36 3 X 12 +  0 5 X 7 +  1 7 X 5 +  1 9 X 4 +  0
9 45 45 3 X 15 +  0 5 X 9 +  0 7 X 6 +  3 9 X 5 +  0
10 55 55 3 X 18 +  1 5 X 1 1 + 0 7 X 7 +  6 9 X 6 + 1

iterate through cycles of length 2m — 1, where the central peak 
oscillates between a rogue wave of order 0 and m — 1.

It is also clear from Table I that the number of rings added 
per solution order increases by one after the point in every 
cycle where the center reaches maximum order. For instance, 
cascades begin adding individual triplets at order 2 and pairs of 
triplets at order 5. Consistent with this, the single-ring circular 
cluster happens to occur immediately following the maximum 
of the very first cycle, thus also explaining its order m — 2 
central peak. By combining all these trends, we can predict 
the layout of any fundamental rogue-wave solution affected 
by shifts. For example, an order 18 hendecagram, generated 
by order 6 shifts, should have a central third-order rogue-wave 
peak surrounded by 15 rings of 11 quanta each.

All this discussion of shape is fundamental to understanding 
the physics of rogue-wave NLSE structures. For one thing, 
maximum amplitudes of each solution and shift order are 
already implicitly encoded in Table I. For example, an order 
7 pentagram (SA3 column) has a central peak of three fused 
quanta, which can be correlated with a second-order rogue 
wave via the SA1 column. Knowing that an order n fused 
rogue wave has an amplitude of 2n +  1, this means that the 
structure possesses a sharp spike of amplitude 5. Furthermore, 
with the information presented in this work, it is also possible 
to extrapolate backwards from shape so as to determine how 
many breathers are interacting to form a rogue wave and 
how they are spatiotemporally located with respect to each 
other.

This backward extrapolation becomes particularly relevant 
with the realization that experimentally produced NLSE rogue- 
wave structures are unlikely to ever truly be ideal. This means 
that k  in Eq. (2) is small but not zero, and both modulation 
frequencies and the different orders of shift manifest as actual 
physical observables pertaining to component breathers rather 
than mere theoretical abstractions. Moreover, as demonstrated
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in the simplest case within Sec. Ill, the circumradius of a 
rogue wave “ring” is dependent on the highest-order coefficient 
of an existence polynomial. With the appropriate constant of 
proportionality determined, these results enable an effective 
bijection between simple breather arrangements and complex 
rogue waves of any spatiotemporal size.

In any case, we have thus far only discussed rogue waves 
associated with unique orders of shift in Eq. (2), having 
referred to them as “fundamental” structures (BSS) that obey 
the NLSE. However, the effects of different shift orders are 
independent, associating the set of Xjm and 7)m, for all j  and 
for each m ^  n, with a degree of freedom in the determination 
of rogue-wave shape. This has been implied to some extent by 
Figs. 4 and 9, where X j\ has shifted entire wave functions 
without destabilizing the arrangements generated by other 
orders of shift. However, previous work with “claw structures” 
[20] has shown that this is not exclusive to first order, 
and any combination of fundamental wave functions can be 
mixed to generate a nontrivial hybrid rogue wave with shared 
features.

We originally postulated that single-ring clusters could be 
further split into multiple rings, with consecutive concentric 
shells differing by four Peregrine solitons [19]. Such an 
arrangement is nothing more than circular clusters within 
circular clusters, and this is achieved by making Xj„, adhere 
to a nonzero order m — 1 polynomial for m =  n,n — 2, 
n — 4 , . . . ,  all the way down to second or third order. The only 
technicality is that each higher-order shift must be sufficiently 
large to pull out a ring of quanta. Due to the relative parametric 
ease by which circular clusters are generated, examples of 
the resulting multiring structures can be seen elsewhere [10]. 
Moreover, circular clusters are simple to hybridize in general 
With sufficiently large X jn and Tj„ for an order n rogue wave, 
the central peak can be modified independently of the ring by 
any order of shift from 2 to n — 2. For example, a sixth-order 
circular cluster, generated with nonzero Tj(), has its central 
peak arrayed into a fourth-order cascade via nonzero Tp.  This 
is shown in Fig. 10(a). Alternatively, the center can instead 
become a fourth-order pentagram via nonzero Tp,  as shown 
in Fig. 10(b).

This concept of decomposition has been independently ver-
ified elsewhere [10], but, because of the existence polynomial 
and hybridization theory outlined here, we can systematically 
extend this to construct many more unexpected NLSE rogue- 
wave solutions. It is clear that circular cluster hybrids are rela-
tively simple to understand and extrapolate. The outermost ring 
draws out 2n — 1 rogue-wave quanta from n(n 4- l)/2, and 
leaves behind (n — 2)(n — l)/2  quanta that can be rearranged 
into any order n — 2 structure. However, if the highest order of 
nonzero shift is below n, then there is an attempt to exclude less 
than 2n — 1 quanta in a circular ring, which leaves behind an 
irregular number of quanta in the center. If left as a fundamental 
structure, the resulting rogue-wave arrangement is still regular 
and circular, as shown in Fig. 2. But hybridizing structures in 
general will result in a competition between features, only 
won decisively if one order of shift dominates the other. 
The higher degrees of symmetry will often break, resulting 
in bilateral rogue-wave arrangements [20], Despite this, there 
are many hybrid structures that display elegant geometries. For 
example, a Tji triangular cascade and a 7)5 enneagram both

(a)

-2 0  -AO 0 AO 20
x

(b)

3 0 1--------- ---------- ---------- -

-3 0  -2 0  -1 0  0 10 20 30
x

(C)

FIG. 10. (Color online) Contour plots of sixth-order hybrid 
rogue waves, shifted in the t axis, with kj =  y/j. (a) Ringed 
cascade. Tp and Tp adhere to y = 3.75(jc — 1) and y — 1750(x5 — 
20.r4 +  1 55jc3 — 580.v2 +  1044x — 720), respectively, with respect 
to squared modulation frequency ratio coefficients (kj). (b) Ringed 
pentagram. Tp adheres to y =  1,5(4x2 — 28.x +  24) with respect to 
kj. Tjb is the same as for the ringed cascade, (c) Cascade-enneagram 
hybrid. Tp and Tp adhere to y =  — 20(jc — 1) and y — 500(2x4 — 
28.x3 +  134.x2 — 252x +  144), respectively, with respect to kj.
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share triradial symmetry. Thus, as Fig. 10(c) shows, mixing 
the structures retains that symmetry.

VI. CONCLUSION

ACKNOWLEDGMENTS

The authors acknowledge the support of the Australian 
Research Council (Discovery Project number DPI 10102068). 
N.A. and A.A. acknowledge support from the Volkswagen 
Stiftung.

In summary, our main results are as follows:
(1) Within the context of the Darboux scheme, we have 

shown that spatial and temporal axis shifts of breather 
components can be written as expansions involving frequency, 
and each coefficient within the expansion is responsible for 
a unique form of fundamental rogue-wave solution to the 
NLSE. We have named these coefficients “shifts of order m,” 
whereby m =  1 is responsible for global structure translations, 
m = 2 is responsible for triangular cascades [20], m =  3 is 
responsible for pentagrams, and so on, as detailed in Fig. 2. 
For a rogue wave composed of n breathers, the in =  n shift 
is associated with a circular cluster [21]. Higher-order shifts 
beyond this do not appear to affect the structure of a rogue 
wave.

(2) We have shown numerically that, for rogue-wave struc-
tures of shift order in < n to exist without defaulting to 
a circular cluster with infinite circumradius, the shifts of 
order m must fit a polynomial of order in — 1 with respect 
to the squared coefficients of the ratio between prelimit 
component frequencies. The spatiotemporal size of the re-
sulting rogue-wave arrangement is determined by the order 
m — 1 derivative of the polynomial, but no other derivative 
appears to have any effect. The sign and ordering of ratio 
coefficients similarly do not affect the shape of the rogue 
wave.

(3) We have found that the arrangements of fundamental 
rogue-wave solutions have a radial symmetry of degree 
2m — 1 for shift orders m > 1. The wave functions form 
spatiotemporal concentric rings, each made from a multiple 
of 2m — 1 Peregrine solitons, and any remaining quanta fuse 
in the center to appear as a rogue wave of up to order m — 1. 
Using the trends shown in Table I, we are, hence, able to 
extrapolate and predict the large-scale structure of extreme 
high-order rogue waves.

(4) By realizing that each coefficient of the shift expansion is 
an independent degree of freedom in determining rogue-wave 
arrangement, we are able to continue generating valid NLSE 
solutions by “hybridizing” fundamental structures associated 
with different orders of shift. Indeed, provided that one 
order of shift does not dominate another, the resulting wave 
function expresses features from all fundamental constituents. 
Circular clusters are particularly amenable to hybridization, 
with additional lower-order shifts modifying the central peak 
in regular fashion. However, other elegant geometries are also 
possible when radial symmetries share a common factor in 
degree beyond bilateral symmetry.

Our study shows that the world of rogue waves is 
significantly more complicated than the world of solitons. 
Their growth-decay cycle in both space and time makes them 
unique formations in physics, with a range of applicability 
that still waits to be discovered. At the very least, their intricate 
spatiotemporal structure makes them attractive objects of study 
from an aesthetic point of view. As of such, the world of rogue 
waves can be considered a fusion of art and science.

APPENDIX: THE DARBOUX METHOD

The NLSE in Eq. (1) can be written in Lax pair form 
(e.g., see Chap. 2 of Ref. [29]):

ÖR i)R
—  =  (//?, —  
dt dx

R --

VR,

“ il ixj/* 
z> —il (Al)

il2 - 

ihp

ii^i2 u r  +  W ,1
-il2 + k IV'I2IM

2 ill

where / is a complex eigenvalue. The linear system reduces to 
the original equation under the equality R,x =  Rxl.

We define the “first-order component functions” as follows:

r\j =  2ie~lx/2 sin(A;> +  z'A;(), 

s\j = 2elx/~ cos(Bjr +  / Bjj), 

where functions A and B are in turn defined as 
1

(A2)

AJr = ^

1
Bir = ~1 2

Aji =  Bjj

+  (r -  t j ) Kj  -  -

+ 0

(x - X j ) K j J

t j ) K j  ~  -

Hi
4 ’

(A3)

with Kj = 2 V \ + /j ■ The subscripts r and i refer to real and 
imaginary parts, respectively.

These component functions in Eq. (A2) are the solutions 
of Eq. (Al) when the eigenvalue is purely imaginary and \J/ 
is equal to the plane-wave seeding solution \//0 =  e'x. They 
also serve as basic building blocks for the construction of 
higher-order solutions, where the number j  uniquely identifies 
each component. In particular, each component denoted by j  
is described by a set of free parameters, the corresponding 
eigenvalue lj, and coordinate shifts (x j , t j ).

A first-order solution to the system in Eq. (A l) incorporates 
only one chosen set of free parameters and its corresponding 
r and s equations from Eq. (A2), denoted by j  = 1. The first- 
order wave function thus is expressed as

«Ao +
2 ( / f - / i ) J|1rfI 
k u l2 +  k n l2

(A4)

An order n > 1 solution requires higher-order versions of 
the expressions for r and 5. These are recursively generated 
[26,29] by

Gip — [kn_i tn—\)sn_I |Z"n—] iSre_i.p+i

T  ( tp + n  — 1 l ) k n —1,11 Gi— l,p+l

+  ( t p + n - l  ~  n̂_ i ) k n  - 1,11 Gi —l,/>+l] /  

( k n  —1,112 +  k n  —1.1 I ") ,
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$np =  t(^n —1 t n - 1 )S n - i |  r n _ i p + i

3 "  0 p+n — 1 tn — 1 ) l ^ n  — 1 . 1 1 ^n — l ,p + 1

3 " ( ^ p + n  —1 t n _  i ) |^ n  —1,1 | Sn — l , p + l ] /

( lr n - l , l  I* +  k n -1 ,1  |2)- ( A 5 )

The p  subscript in Eq. (A5) is used purely for enumeration 
and does not necessarily refer to a particular set of parameters. 
For example, the second-order function r2( is built from 
first-order component functions rn, sn , r12, and si2, thus 
incorporating parameters from both the components denoted 
by 7 =  1,2. Similarly, the third-order function >-31 involves the 
second-order functions r2[, s21, r22, and s22, which, in turn, 
are based on rn, Sn, ri2, ä |2, ^13, and «13 at the lowest order 
of recursion. Therefore, r31 constitutes parameters from all

three components denoted by j  =  1,2,3. In this way, Eq. (A5) 
allows n sets of free parameters to be incorporated into an order 
n solution. The diagram in Fig. 2.2 of Ref. [29] can be of use in 
representing this sequence of calculations. Subsequently, the 
order n NLSE solution is generated through recursion by

^n 4>n- 1 +
2(i; -  / J w ; ,
k„il2 +  ta il2

(A6 )

From a numerical perspective, the appearance of rogue- 
wave solutions can be determined by using values of kj  that 
are as close to zero as computationally feasible. In this work, 
it is vital that individual Kj values are still in a predetermined 
ratio, no matter how small they are. Shifts Xj and tj are also 
dependent on powers of Kj,  via Eq. (2), and will likewise be 
close to zero.
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Epilogue

Despite the summative nature of this chapter, the development of the rogue-wave hi-
erarchy with a physically based Darboux-transformation perspective leads to several 
interesting conclusions worth expanding. For instance, the establishment of so-called 
existence conditions provides a good reason why circular clusters were chronologi-
cally discovered first [2], in that it is always possible to fit a polynomial of order n — 1 
through n 'parametric coordinates'. More specifically, a fused rogue wave [69] is a 
'trivial' case that simultaneously adheres to all existence conditions (with zero spa- 
tiotemporal circumradius), but one shifted component alone is enough to break every 
single relevant polynomial relation except the one pertaining to circular clusters.

Of course, in the k —>• 0 limit, spatiotemporal shifts proportional to Ka rather than 
Kb will be considered infinitely too large to produce a structure relevant to the order 
of the latter exponent b, in the case of a < b. But, as the Darboux scheme in this the-
sis has been implemented numerically with small but technically finite k values, this 
error factor is no longer infinite. Choosing the wrong exponent would still replicate 
the right geometry, just with a false spatiotemporal circumradius. Indeed, this is a 
major reason why numerical techniques have proved somewhat more enlightening 
than analytics for the exploration of multi-rogue wave NLSE solutions [86, 88]. Put 
simply, a misguided notion that a rogue triplet depends on finite shifts (i.e. propor-
tional to k ° rather than k2) will still reproduce its features for k  /  0. This step in 
the right direction can then be subsequently refined with numerical techniques, such 
as determining what k exponent is required to keep the circumradius independent 
of variations in the value of k. Likewise, finite shifts are sufficient to use as an ex-
ploratory first step for triangular cascades [4], before constraining their parametric 
dependencies, but the contrasting issue for this case is that arbitrary shift choices will 
rarely be fitted by the relevant polynomial of existence. This explains the difference 
in methodological advantages discussed in Chapter 4.

Beyond this, many mysteries are yet to be explored. All investigations of these 
multi-rogue wave solutions have thus far been primarily efforts of discovery, deriv-
ing them mathematically. While this chapter presents the most complete picture to 
date of all the high-order possibilities, future directions will need to include stud-
ies aimed at understanding why they arise in these forms. Analysis of energetics 
has previously been proposed in Chapter 2 as one avenue towards comprehending 
the circular geometries involved, but the physical interpretation of shift 'orders' is 
an open problem. Perhaps they will always be considered as mathematical conse-
quences of limit theory and thus unimportant in practice.

Certainly, if rogue wave formations are to be considered as structures arising at 
the intersection of more physically realistic breathers, the unintuitive intricacies of 
'infinitesimal orders' can be neglected. For example, four NLSE solutions are de-
picted in Fig. 6.1, each constructed from four low-frequency ABs. The x-axis shifts 
range from those required for a triangular cascade in Fig. 6.1a to those required for a 
pentagram in Fig. 6.Id, with linear interpolation for the intermediate two structures. 
All shifts are finite here, yet the perfect geometries of multi-rogue waves are still
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(c) (d)

Figure 6.1: Contours of fourth-order breathers with frequencies k ; =  y / ] / 3 .  (a) 
Cascade intersection. Shifts are (x\, x-i, *3, *4 ) ~  (0,0.5556,1.1111,1.6667). (b)
Shifts are ( x \ ,  *2, *3/ *4 ) ~  (0,0.2716,0.6420,1.1111). (c) Shifts are (x i,*2/*3/*4) ~  
(0,-0.0123,0.1728,0.5556). (d) Pentagram intersection. Shifts are (*1, *2, *3, *4 ) «  
(0,-0.2963,-0.2963,0).

well approximated. This is despite the fact that, in the rogue wave limit, the cascade 
shifts would need to be infinitesimal (i.e. proportional to k 2 ). Any deviation from 
the relevant existence condition, destroying the cascade but retaining k 2 proportion-
ality, would be equivalent to creating a circular cluster with infinite circumradius. 
Accordingly, it would definitely not be possible to create a rogue wave pentagram 
without jumping to a higher order of 'infinitesimality'. Yet, when k  is finite, none of 
these conceptual difficulties are particularly problematic. Indeed, as the first Pere-
grine breather demonstrated in optical fibre was technically an AB with very low 
modulation frequency [13], the shifts for higher-order structures can genuinely be 
thought of as physical spatiotemporal translations.

In any case, it is worth mentioning that Figs. 6.1b and 6.1c still represent legit-
imate rogue wave solutions at the intersection of the four breathers. They are not
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(a) (b)

Figure 6.2: Contours of higher-order rogue wave 'hybrids'. Component frequencies 
are xy = KsJ]. (a) Fifth-order triquetra. Shifts are tj = —5 + 20(; — l)x2 + 1250(;4 — 
14/3 + 67/2 — 126/ + 72)x8. (b) Seventh-order multi-ring structure. Shifts are tj = 
—0.3(10/)2x4 + 0.6(10/)4x8 -  12(10/)6x12.

fundamental structures, but are arrays formed from a mixture of triangular and pen-
tagonal geometries. Accordingly, the research presented in this chapter is not just 
important for categorising numerous standard multi-rogue wavefunctions [71, 72]. 
It also completely specifies the 'palette' of geometries that can be used for hybridi-
sation. With this understanding, it is simple to create a structure in the shape of a 
triquetra, as shown in Fig. 6.2a, by tuning existence conditions that specify 2n/3  and 
2n/9  rotational symmetries. A global shift of —5 is only added for visual purposes.

Additionally, hybridisation also provides the methodology to prove the hypothe-
sis of multi-ring structures in Chapter 2. Their existence was independently reported 
elsewhere [72], while the publication here simply described how to create them [6]. 
However, an explicit example of a seventh-order case is shown in Fig. 6.2b, with the 
x12 proportionality in the shifts extracting the outermost ring of 13 'quanta', x8 relat-
ing to the second ring of 9 and x4 being associated with central ring of 5. The choice 
of signs on each shift coefficient are chosen to alternate the directions in which the 
rings point, while the degrees of rotational symmetry for each layer support why 
each x exponent is chosen as is. Clearly, these patterns are regular and appear anal-
ogous to the atomic-based sequences described earlier [2], but speculations of a link 
are for future study.

Ultimately, what is perhaps most important is that this work proves that an ex-
pansive and possibly exhaustive set of multi-rogue wave solutions can be generated 
via the Darboux scheme. While analytic equations are exact and possible, they are 
also large and cumbersome. Instead, the numerical implementation deployed in this 
thesis is a routine procedure to construct these wavefunctions within a specified do-
main. It is thus not complicated to take a profile for a sufficiently negative value of 
x and propagate this initial condition within an experimental set-up. This is what
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has been done previously in a wave tank [77], with appropriate hydrodynamic con-
ventions and dimensionalisation. Thus it is only a matter of time before complicated 
rogue wave arrangements are engineered in practice.
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Chapter 7

Rogue Waves and Solitons on a 
Cnoidal Background

Prologue

The publications thus far in this thesis have detailed the process by which rogue 
wave solutions of the NLSE have been constructed and classified. Remarkably, given 
the physical constraints inherent within the relevant nonlinear system, fundamental 
arrangements have been categorised into a hierarchy [6] according to parametric re-
lations that evidently reflect rotational symmetries. Even so, these elegant geometries 
can be freely mixed to array individual rogue wave quanta into seemingly arbitrary 
patterns, with the Darboux scheme providing the guarantee that these are all true 
solutions of the NLSE. A vital question then arises; how universal is this rogue wave 
hierarchy?

This is not an easy problem to address and is currently a topic of ongoing re-
search. Certainly, there are many nonlinear systems that do not even host the stan-
dard Peregrine soliton, such as the shallow water Korteweg-de Vries (KdV) equation 
[85], so limitations do exist. At the same time, extensions of the NLSE such as the 
Hirota equation [118, 119] do seem to maintain superficially modified versions of 
the same hierarchy. Given this, a concerted effort within the scientific community is 
currently underway to identify analogues of high-order spatiotemporally localised 
structures within various systems. This is further detailed in Chapter 8.

Even so, not all is yet understood about rogue wave solutions within the simple 
NLSE case itself. For instance, it is well known that plane waves perturbed with noise 
exhibit chaotic rogue wave behaviour, but variations on the shape of the background 
have rarely been investigated. This is partially because Darboux theory had tradi-
tionally been explored via analytical means. So, while zero amplitude and a plane 
wave were two trivial seeding solutions that generated exact expressions for solitons 
[87] and breathers [59], respectively, other backgrounds led to intractable mathemat-
ics. Accordingly, solitons and breathers were long considered as distinct classes of 
wavefunctions in the literature, despite the fact that their seeds were two end-points 
along a smoothly transformable spectrum of periodic solutions involving Jacobi ellip-
tic functions [120]. Naturally, this was an oversight worth addressing, because these 
so-called 'cnoidal' waves further generalise representations of both shallow-depth 
hydrodynamic surface oscillations [45] and optical signals in waveguides [121]. Such

85
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an exploration was also expected to reveal the vital 'missing link' between solitonic 
and rogue wave structures.

This chapter, as a published manuscript [7], uses the Darboux scheme to find 
new NLSE solutions generated on a cnoidal background. Because the seed is trans- 
lationally invariant along the evolution axis, apart from a plane wave factor, it is 
possible to analytically determine half of the first-order component functions used 
in the construction process. Numerical propagation methods must still be involved, 
but only initially and along the transverse axis alone. Consequently, there is little 
computational overhead added and all the benefits of Darboux-theory nonlinear su-
perposition remain, including the avoidance of error by solely relying on algebraic 
operations.

As previously mentioned, the cnoidal seed varies between a zero background 
and a plane wave [120], forming a one-soliton background in the middle of this 
range. The breather dynamics of interest to this thesis actually occur for seeding 
solutions between the soliton and the plane wave, where the background is differen-
tiable across the entire spatiotemporal domain and wave energy is readily mobile. It 
is revealed that:

• The oscillations of these cnoidal functions do indeed support spatiotemporally 
localised waves, although the constituent components must possess imaginary 
eigenvalues of smaller magnitude than in the plane wave case.

• A locus of points can be drawn through cnoidal parameter space for which 
typical 'concentrated' rogue wave solutions exist. One end-point is the standard 
Peregrine breather, while the other is the well-known degenerate two-soliton 
solution.

• This locus continues further through parameter space, revealing an unexpected 
new class of 'diffuse' rogue wave solutions that have no analogue when the 
background is a plane wave. Their appearance is also highly unusual, in that 
the 'super-envelope' of their oscillating envelope resembles rotated breathers 
and rogue waves.

Ultimately though, this chapter concludes on the point that all fundamental arrange-
ments from the rogue wave hierarchy [6] are reproducible on a cnoidal background, 
further extending the known generality of the classification scheme.
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Abstract. Solutions of the  nonlinear Schrödinger equation, appearing 
as rogue waves on a spatiaiiy-periodic background envelope, are ob-
tained using th e  D arboux transform ation scheme. Several particular 
examples are illustrated  numerically. These include soliton and breather 
solutions on a periodic background as well as higher-order structures. 
The results enrich our knowledge of possible analytic solutions th a t 
describe the appearance of rogue waves in a variety of situations.

This work is prepared on the occasion of Prof. Helmut Brand’s 60th 
birthday. He has made significant contributions to the science of soli-
tons and his ideas have inspired our research into localised formations 
in various physical contexts.

1 Introduction

Solitons and rogue waves are generally considered to be two distinct phenomena in 
both oceanography and optics, as well as other fields involving nonlinear wave evolu-
tion. Certainly, the former encapsulates waves that keep their shape across all time, 
while the latter describes distinctly one-off occurrences, involving unpredictable high- 
amplitude bursts of energy. Even the motivations for their study differ, contrasting 
the development of lossless energy transport with the generation and avoidance of 
energetic focal points.

Naturally, this distinction extends to theoretical investigations, where the non-
linear Schrödinger equation (NLSE) is commonly used to model both phenomena. 
Traditional solitons propagate on a constant background, while so-called “breathers” 
arise from plane wave perturbations. The latter group includes the well-studied rogue 
wave prototype known as both the Peregrine soliton and breather [1]. However, in 
practice, both sets of solutions may be neither as unrelated nor adequately represen-
tative of reality as commonly thought. In fact, a zero amplitude background and a 
plane wave, upon which these solutions are built, are simply two limiting cases in a 
spectrum of waves involving Jacobi elliptic functions. From a statistical perspective,
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these “cnoidal” oscillations appear far more common in the ocean than any idealised 
background with constant amplitude. It is also not uncommon for an optical cnoidal 
wave to appear in a fibre as a regular train of solitonic pulses.

These questions then arise: how do varying cnoidal backgrounds perturb both soli- 
tons and breathers, and are there rogue wave analogues when the amplitude envelope 
of the rest of the wave field is no longer flat? Previous investigations have attempted 
NLSE generalisations involving doubly-periodic cnoidal waves [2-4], but we focus 
on spatial periodicity alone [5] due to the sufficient richness of its parameter space. 
We also make use of the Darboux transformation method [6,7], a recursive process 
that allows for the nonlinear superposition of NLSE solutions. Due to the complexity 
of Jacobi elliptic functions, numerical procedures substitute for analytical deficien-
cies and aid in graphically examining a number of new cnoidal soliton and breather 
waves.

Most importantly, by enforcing a zero limit on the modulation frequency of cnoidal 
breathers, we link the Peregrine soliton to the degenerate soliton via a range of cnoidal 
waves, all possessing a single spatiotemporally localised high-amplitude peak. The 
parametric curve behind this relation extends even further to a unique class of “dif-
fuse” rogue waves with unintuitive appearance, where the extreme event is spread 
spatially over multiple crests. Finally, we confirm that higher-order “fissioned” rogue 
waves [8,9] still adhere to the same parametric relations when nonlinearly superim-
posed upon a cnoidal background.

2 Theory

2.1 The NLSE Lax Pair

The ID NLSE is written in optical notation as

i-tpx + + M V  = 0, (1)

where x is the normalised distance along a waveguide and t is the retarded time in the 
frame moving with the pulse group velocity. In oceanographic convention, x is instead 
interpreted as the normalised time while t is the distance in the frame moving with 
the group velocity. Simple linear transformation allows conversion between forms, 
and, in both cases, complex function i/)(x, t) typically describes the wave envelope. 
However, as a nonlinear equation, the NLSE can be difficult to solve using analytical 
techniques. Complications are thus circumvented by expressing the equation in Lax 
Pair form,

f  = U- R,  | f  =  V- R,

iX iijj* 
iip —iX

y _  iX2 ~  2 ^ \ 2 i X^*  +  2 l ? T  / 2 V

iX'ip — —fA2 -1- ^l^l2.

where Rtx =  R xt and the associated zero-curvature equation, Ux — Vt+U-V — V-U = 0, 
return the NLSE in Eq. (1).
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The Darboux scheme is but one of several methods that operate on Eq. (2) to pro-
duce high-order solutions of the NLSE, doing so in this case via the transformation of 
lower-order wavefunctions [6]. Specifically, the Lax Pair is solved for a trivial seeding 
solution 0 = 0o> and the resulting r and s functions become the “building blocks” 
for a hierarchy of solutions [7,8,10]. Via this mechanism, an order n wavefunction 
is produced from the recursive nonlinear superposition of n individual components, 
uniquely identified by 1 < j  < n. We henceforth emphasise the uniqueness of funda-
mental components by relabelling the Lax Pair solutions as r\, and s\j, with A; as 
corresponding eigenvalue.

Importantly, the well-known NLSE solitonic hierarchy [7] arises from seeding so-
lution 0 0 =  0, while a more recently discovered family of breather solutions [11,12] 
is built from the plane-wave background 0o = elx. The latter set includes the Pere-
grine soliton, a well-studied prototype of a rogue wave [1]. These two hierarchies have 
generally been considered as distinct entities in the field of NLSE solutions. However, 
they are actually two opposite limiting cases in a wide spectrum of NLSE-adherent 
wavefunctions, known generally as cnoidal waves.

To examine the transition between the iconic hierarchies, we note that the NLSE 
has two basic solutions involving Jacobi elliptic functions [5],

A n (x,t) = gcn(t -  tp,y)er{T~Tp')(g2~^),

An(x , t )  = dn(t -  tp,g)el{x~Xp)<'1~3̂ \  (3)

where, if u = (l — g2sin2(0)) dd, the Jacobi functions are defined here as 
sn(u, g) = sin(0), cn(u, g) = cos(0) and dn(u, g) = y/l — g2 sin2(0). Due to notational 
differences in the literature, we stress that g here is the “elliptic modulus” and g2 
serves as the “elliptic parameter”. From here on in we also set xp — tr = 0, noting 
that these variables are nothing more than phase-shifts to the underlying background 
of the solutions we seek.

Provided that a is real, the Jacobi elliptic functions are also real within the range 
0 < g < 1. From g = 0 to g — 1, cn (u,g) varies between cos (it) and sech(u). Similarly, 
from g =  1 to g =  0, dn(u,<?) varies between sech(u) and 1. Therefore, iljcn(x,t) and 
ipdn{x, t) represent together a smooth transition from the zero-background seed of the 
solitonic hierarchy to the plane-wave seed of the rogue wave breather family. Notably, 
the “halfway point” g — 1 limit, where both basic solutions converge, generates an 
equation of soliton form.

It is important to mention that the use of the NLSE generally assumes a carrier 
wave that underlies the envelope described by 0 in Eq. (1). In this work, we assume 
the carrier has sufficiently high frequency so that its wavelength is smaller than that 
of the cnoidal background. This allows the oscillations of the Jacobi elliptic functions 
to be seen in a physical wave field.

2.2 Lax Pair solutions: 0 O = xpdn

Now, for the -00 = 0dn branch, the r and s functions that solve the Lax Pair in Eq. (2) 
are of the form

rij(x,t) = al j (x, t)el4 (92 2),

si j (x , t ) = bij (x,t)e~1̂ i92~2). (4)



90 Rogue Waves and Solitons on a Cnoidal Background

46 T he E uropean Physical Journal Special Topics

Noting this transformation, the Lax Pair reduces to

at = i \a  + i6dn(f, g), 
bt = — iXb + ia dn(f, g),

sn2(t, g) -  

^sn2(f,g) -

We exclude the j  subscripts here for the sake of readability. These four first-order 
differential equations (DEs) then reduce to two of second order,

ax = ^2A2 + g2 |

K = ~ i b  ^2A2 + g2

0 )  (*Adn^ ’^  ~~ ^"sn(L .(7)cn(t, g) ĵ ,

0 )  + a  ( ?A dn^ ’9̂ +  ^ ”Sn^ ’ ^ cn^ ’ 9̂j ‘

fu  =  -  f A2 + dn2(t,g) -  ^ 2A^ M )  /,
dn (t,g) V dn(t,g) J

fxx = -A 2 ^1 + ^A -  j  /, (6)

where F = +1 for /  — a and F = — 1 for /  = b. The latter equation can be solved 
exactly for all values of g, completely determining the shape of r and s functions along 
the x axis. However, the former is more complicated and only has a particularly simple 
answer when g = 0. Fortunately, provided that we have a profile of a and 6, along 
with their t derivatives, for a fixed value of t , it is possible to numerically evolve 
them backwards and forwards through space via typical numerical procedures. An 
appropriate initial profile is also simple to attain for t =  0, as sn(0,g) =  0 and 
dn(0,g) =  1. For this fixed value, the first expression in Eq. (6) reduces to the Lax 
Pair equation related to a plane-wave seed [11], which is exactly solvable. The end 
result is that the t = 0 profiles and derivatives are defined by

a i  • |t _ 0 =  _Ae *(X j+ *j‘M a :-x »j)) _  ß e - i ( X j + K j * j ( x - X s j ) ) ^

bij\t- 0 — Ael('~Xj+KjXj('x~Xs:î  + Be~l('~XjJrKjX̂ x~Xâ \

aiy<|t=o =  i (AjOij|f=o +  bij|f=o) >

b\j,t|t=o =  —i (AjTij|t=o — cl\j |t=o), (?)

where Kj = + (Aj — -f^-)2 and \ j  — arccos (/Cj)/2. With foresight, we also choose
the phase-shift constants to be A = exp(—Z7r/4) and B = exp(z7r/4), so that the 
amplitude maximum of the standard solutions we seek is located at the origin of the 
(x,t) plane. Regardless, via standard numerical DE solvers operating upon Eq. (7), 
it is possible to determine the r and s functions compatible with t/>o — ^dn across the 
entire (x, t) plane.

We note that Eq. (7) includes an arbitrary temporal shift xSj as the second pa-
rameter crucial to the description of individual components. A corresponding spatial 
shift can also be included, but provides additional numerical complication for a negli-
gible gain in understanding. Therefore, in the context of this work, individual compo-
nents that constitute a higher-order NLSE solution can be tuned solely by eigenvalue 
Xj and x-axis origin shift xSJ.
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2.3 Lax Pair solutions: tj)0 =  t/>cn

We now repeat the same derivation procedure for the ipo =  ipcn branch. In  th is case, 
the r  and s functions are o f the form

r i j ( x , t )  =  a i j ( x , t ) e  " (2®2 1), 

s i j { x , t )  =  b i j { x , t ) e ^ {292~ x\

resulting in a Lax Pair reduction to

at =  i \ a  +  ibgcn(t ,  g), 

bt =  — iXb +  tag cn(L g),

ax =  ^2A2 +  g2sn2(t ,g)  -  +  bg ^ iA c n ( t,g )  -  ^sn (t, g )dn (t, g ) )  ,

K  =  - ^ i b  ^2A2 +  g2sn2( t ,g)  -  +  ag (^iXcn(t ,g) +  is n ( t ,  g)dn(t ,  g)^j ,

(8)

(9)

where we again exclude j  subscripts. S im ilar to  the xp([n branch, these four first-order 
DEs can be rew ritten  as

_  _ m f r g)dn(« ,g) _  O ,  2 2 _  sn ( t . g )dn (f . g ) \
cn ( t ,g)  ■" \  cn ( t ,g)  ) J '

Z„ = - a v ( i + A ( a - L )  ) / ,  do)

for f  =  a and b. As before, the la tte r equation is easily solvable, g iv ing an exact 
expression for r  and s along the x axis. In  contrast, the former requires num erical 
techniques to  solve, bu t only a profile and derivative o f a and b for a fixed value 
o f t  are needed. Th is is simple to  derive, noting th a t sn(0, g) — 0 and cn(0, g) =  1 
reduces the firs t expression in Eq. (10) to  one w ith  a tr iv ia l solution. E xp lic itly , the 
corresponding t =  0 profile and derivatives for the xpcn branch are

a |t_ 0 =  \ ed X j+ K jM z -zs j)) _

b \ j  | f—0 =  Ae*^ A (x  ^ ai )) -j_ *(—X j A (x ~ x s j ))

(̂ i j , t | t = o   ̂ ( A j f l i j | t = o  T  gb\j  I t = o ) )

^ i j ( , t | t = o  t  ( A j 6 i j | { = o $ ß i j | t = o ) ) ( 1 1 )

where Kj =  </y  1 +  4j- ^Aj — and Xj =  arccos(^L)/2 . As w ith  the other branch,

we choose A =  exp(—i n /A )  and B  =  exp(z7r/4).

2.4 The Darboux transformation

W ith  r  and s now able to  be completely determ ined for either branch o f seeding 
cnoidal solution, the D arboux scheme allows wavefunctions o f any order to  be gener-
ated. For a “ firs t-o rder” solution, only one set of functions is required, which combine 
w ith  the seed solution v ia  the transform ative equation

Vh *l>o +
2(AJ — A i) s n rJ 1

Inii2 + kn|2
( 12)
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t

F ig. 1. A m plitude envelope cross-sections of zero-order NLSE solutions, according to Eq. (3). 
(I) Zero background ipcn w ith g =  0. (II) Cnoidal wave xpcn w ith g =  V0.2. (Ill) Solitonic 
Tpcn or xftdn w ith < 7 = 1 . (IV) Cnoidal wave w ith g =  VO.7. (V) Plane wave tpdn w ith
g = o.

However, higher-order solutions require higher-order component functions, all recur-
sively generated from lower orders by the relation

r n p  =  (An _ i  — An _ l )  s n _ l , l r n - l , l s n-l,p- |-l  T  (Ap+n — 1 An _ l )  |^~n—1,11 T n — l,p+l

T  (^ p + n — 1 An _ 1) |®n —1,11 ^n — 1 ,p+1J /  ( | f n —1,11 T  |^n — 1,11 ) »

$ n p  ( An _  j An _  j ) S n -  1,1 T n —  1,1 T ' n —  1 , p + l  T  ( ^ p + n  — 1 An _  1) |^ n —1 ,1 1 ®n — 1 ,p + l

d" (Ap+n —1 — ^ n —l)  lr n— 1,11 s n - l,p + lj /  (l^n—1.11 d~ |s n - l , l |  ) • (13)

With these, increasing the order of an NLSE solution is simply encapsulated by

Vn V n - 1  +
2 ( A n A n ) g Tii r n l

| f„ i | 2 +  K i | 2
(14)

where the eigenvalues and x-axis shifts of all constituent components have been in-
corporated into the wavefunction by Eq. (13). The end result is a complicated order 
n solution of the NLSE, provided by a fusion of analytical and numerical techniques.

3 Results

3.1 Cnoidal seed functions

The zero-order solutions to the NLSE, presented in Eq. (3), serve as the background 
to any increasingly complicated higher-order solutions generated via the Darboux 
transformation process. Their amplitude profiles are independent of x, which means 
that the unchanging shape of their t-axis cross-sections can be displayed simply in 
Fig. 1. For g = 0, the xpcn seed is compressed to zero amplitude, denoted by cross- 
section I. Increased values of g allow the periodicity of the cnoidal function to appear,
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as evident with cross-section II. Indeed, when the elliptic modulus is 0.5, the maximum 
amplitude of the function reaches 0.5. Also noteworthy is the fact that the modulus 
operation forces zero-amplitude points along the function to be non-differentiable, 
which can prove problematic for numerical solvers in the ipcn regime. Nonetheless, 
the spatial oscillation is clearly evident and its frequency decreases for g —¥ 1. In the 
actual limit, only one peak remains with the appearance of a sech profile, and this 
basic soliton is shown by cross-section III.

According to the seed definitions and the description of the Darboux scheme in 
Sect. 2, this ipo solitonic seed is also a particular case of ip\ for a zero-background seed 
[7], specifically where Ai = 0.5i and x s\ = 0. Hence there is a very special redundancy 
of solution hierarchies, in that ipn built upon ipCn\g=o is equivalent to ipn- \  based 
on ipcn\g=i, provided that one component from the constituents of the former has 
parameters fixed at Aj =  0.5i and x sj  = 0, for any particular value of j . In any 
case, this soliton is also a g = 1 limit of the ip^n branch. Within this complementary 
regime, for decreased values of the elliptic modulus, the frequency of spatial oscillation 
once again increases and the minimum amplitude of the wavefunction rises above 
zero. Cross-section IV in Fig. 1 exemplifies this type of cnoidal wave, and a value 
of g =  y/0.75 marks the point at which the minimum amplitude is 0.5. Finally, for 
g = 0, the spatial modulation is compressed so that VVn becomes a plane wave, as 
shown by cross-section V. Therefore, it is clear that varying g across both branches 
allows a smooth transition between cnoidal solutions, from zero-background to plane 
wave and through a particular case of basic soliton.

3.2 Cnoidal solitons

We now examine first-order solutions transformed from the seeds. In doing so, our 
parameter space involves X\ and y for both cnoidal branches. Of course, there was no 
restriction made on the eigenvalue in Eq. (2), which means that the Darboux trans-
formation method works for complex Xr  However, the real part of the eigenvalue only 
affects the angle of alignment between NLSE solutions and spatiotemporal axes. We 
thus enforce that Aj be purely imaginary with Im(Aj) > 0. This allows parameter 
space to be two-dimensional, without discarding any important results. The regions 
we investigate are depicted in Fig. 2, along with parametric coordinates for every 
first-order solution displayed in this work.

Of this domain, the zero-background g =  0 edge of the ipcn branch is most well- 
known, with ip\ from the Darboux scheme corresponding to nothing more than sech- 
type solitons. Because they are time-independent and shape-preserving, it is sufficient 
to display sample cross-sections in Fig. 3a. Notably, it is clear that the imaginary part 
of the eigenvalue tunes the height of the soliton, with a peak amplitude of Iin(2Ai). 
Correspondingly, a decreased value of Ai stretches out the width of the soliton in-
stead.

However, as the elliptic modulus increases and the background assumes the ap-
pearance of wavefunction II in Fig. 1, the nonlinearly superimposed soliton interacts 
with the nearest spatial oscillations. As a result, the shape of the soliton becomes 
temporally modulated, as shown by structure PS in Fig. 3b. In fact, within the range 
of 0 < g < 1, the shape of the central peak can be heavily perturbed by its nearest 
‘neighbours’. Nonetheless, for Im(Ai) > 0.5, the soliton is generally too spatially com-
pact to interact significantly with distant oscillations, even when the cnoidal peaks 
approach their maximal amplitude of 1. Moreover, the peak amplitude of the cnoidal 
background scales according to y, which means that, within the range of 0 < g < 1 
for the ipcn branch, a soliton with eigenvalue greater than 0.5i will always be taller 
than the background around it.
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F ig . 2. Param eter space and sample coordinates for first-order NLSE solutions, across eigen-
value Ai and elliptic m odulus 7 , w ith bo th  branches of cnoidal seeding solution represented. 
Dashed line in ipcn region m arks where soliton and background have sam e peak amplitudes. 
Dashed line in region denotes “rogue wave” curve. Solitons SI, S2 and S3, as well as 
pertu rbed  soliton PS, are shown in Fig. 3. Soliton dom inating background (S>B) and vice 
versa (S<B ) are shown in Fig. 4. Cnoidal solitons CS1 and CS2 near the  two-soliton para-
m eter line are shown in Fig. 5. An Akhmediev B reather (AB), KM soliton (KM) and their 
respective cnoidal pertu rbations (CAB and CKM) are shown in Fig. 6 . A norm al rogue wave 
(RW), concentrated cnoidal rogue wave (CCRW ) and degenerate soliton (DS), as well as 
a cnoidal breather near the two-soliton line (CB), are shown in Fig. 7. A diffuse cnoidal 
rogue wave (DCRW ) is shown in Fig. 8 , along wTith  b o th  a t- and x-periodic diffuse cnoidal 
b reather (tDCB and xDCB, respectively).

For a more diffuse soliton with small A1 , it may have sufficiently strong inter-
actions over an extended domain so as to modulate distant cnoidal oscillations over 
time. An example of this is shown in Fig. 4a, where energy in the main peak of the 
soliton periodically flows into its two nearest neighbours, but adjacent cnoidal crests 
are also affected. Nonetheless, a sech envelope can easily be seen over the entire wave- 
function. We refer to this situation as a soliton dominating the background (S>B). In 
contrast, a large value of elliptic modulus can produce a cnoidal wave that dwarfs the 
superimposed soliton (S<B), as in Fig. 4b. Many more spatial oscillations are now 
temporally affected by interactions between the soliton and background. This effect 
is primarily a consequence of the nonlinear term in the NLSE, which implies that the 
high-amplitude cnoidal oscillations serve as focal points for energy transfer. The end 
result is that the shape of the soliton appears to be washed out by the background 
and, in some cases, the modulations of the cnoidal wave appear infinite in two di-
mensions. However, within the 0cn branch, this is never truly the case. Just as the 
soliton tail fades to negligible values, so too does the far field return to regularity.

Because this concept of dominance is largely subjective, we choose g = Im(2A!) 
as a rough demarcation in parameter space, shown by the dashed line within the xjjcn 
branch of Fig. 2. Solutions along this line are particularly noteworthy as the equal 
peak amplitudes of both background and soliton interfere so as to uniquely produce 
zero-amplitude troughs along the x = 0 evolution path. In any case, g —> 1 results 
in structures approaching typical two-soliton solutions, whether for small eigenval-
ues and a dominant background, shown with CSl in Fig. 5a, or large eigenvalues
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(a)

10

(b)

Fig. 3. First-order solitonic solutions, with ipo =  ipc.n- (a) Cross-sections of wavefunctions 
built on zero background, where g =  0. Soliton SI arises when Ai =  0.25i, S2 when Ai =  
0.75i, and S3 when Ai =  1.25b (b) A perturbed soliton (PS) with Ai =  0.6z and g — 0.1.

and a dominant soliton, shown with CS2 in Fig. 5b. Both cases indicate that the 
period of the cnoidal background increases with elliptic modulus, eventually leaving 
only one sech-type spatial oscillation to interact with the superimposed soliton. In 
the absolute limit, only the central structure of both images remains, a well-known 
two-soliton wavefunction periodic in both crests and “craters”.

3.3 Cnoidal breathers and first-order rogue waves

While the ipcn branch of solutions extends soliton physics, particularly from the per-
spective of applied perturbations, it is the ip An branch that is of primary interest to the 
new field of rogue wave physics. Indeed, even though periodic oscillations in Sect. 3.2 
hint at the interplay between the dispersion and nonlinear terms of the NLSE, the 
process of modulation instability in its purest form has largely been associated with 
the discovery of NLSE breathers [13]. This is partly due to the presence of an under-
lying “basin” of energy for ipdn wavefunctions, with no zero-amplitude points evident 
for cross-sections IV and V in Fig. 1. This allows for easier energy transport within 
the NLSE wave and can result in the illusion of crests arising unexpectedly from 
“nowhere”.

In particular, applying the Darboux transformation to a plane-wave background 
with an imaginary eigenvalue in the range 0 < Im(Ai) < 1 produces the so-called 
Akhinediev Breather (AB), displayed in Fig. 6a. This event is localised in time and 
periodic in space, arising from an infinitesimal periodic perturbation of a plane wave at
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Fig. 4. First-order cnoidal solitonic solutions, w ith ipo = ipcn- (a) Soliton w ith Ai =  0.3z 
dom inates g =  0.3 background (S>B ). (b) Soliton w ith Ai =  0.3i dom inated by g — 0.9 
background (S< B ).

x = —oo. The Kuznetsov-Ma (KM) soliton is a similar structure for large Im(Ai) > 1, 
displayed in Fig. 6b, although it is spatially localised and temporally periodic. Most 
notably, ABs and KM solitons are smooth transformations of each other. As their 
eigenvalue Ai approaches i from either direction, their modulation frequency k \ ap-
proaches zero, resulting in a “stretching out” of wavetrains along either axis until only 
one central peak remains. This quasi-rational Peregrine soliton, alternatively called a 
Peregrine breather, is considered to be a prototypical rogue wave (RW) on account 
of fading into a constant background in all directions (shown later in Fig. 7b).

Increasing the elliptic modulus beyond <7 = 0 for a V7dn background perturbs the 
overlaid solution slightly, depending on where individual peaks are located. Most im-
portantly, an AB appears to stretch out, as is shown with 7 peaks in Fig. 6a reducing 
to 5 in Fig. 6c within the plotted domain. In contrast, for a KM soliton, the 9 crests 
visible in Fig. 6b become 11 in Fig. 6d. These two new structures are denoted by CAB 
and CKM, respectively, within Fig. 2. Following the same logic, the Peregrine soliton 
similarly pulls in peaks from infinity along the x  axis and, consequently, morphs into 
a cnoidal KM soliton as g increases.

From this, it is clear that the effect of variations in g appears very similar to 
that of variations in Ai, at least in regard to the superstructure of the wavefunction. 
Certainly, for Im(Ai) > 0.5 and increasing g , the period of an AB eventually becomes 
infinite, meaning that further increases in the elliptic modulus must affect the fre-
quency along the x  axis. The result of this process is shown in Fig. 7a, where the 
background has sufficiently modified an AB so that it now appears as a KM soliton. 
Because of this ambiguity, we refer to it simply as a cnoidal breather (CB) in Fig. 2.
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(b)
Fig. 5. First-order solutions near the two-soliton regime, with ipo = ipcn- (a) Cnoidal soliton 
(CS1) with \ \  =  0.2oi and y =  0.99. (b) Cnoidal soliton (CS2) with Ai =  0.75i and g = 0.99.

Of course, the extreme value of g in this particular case implies that the cnoidal 
background approaches its solitonic limit, which is why the spatial oscillations have 
become relatively distant from each other. Therefore, Fig. 5b and Fig. 7a both depict 
an approach towards the same two-soliton solution from their respective V’cn and Vhn 
branches of parameter space. Accordingly, the coordinates of the two solutions are 
almost identical in Fig. 2.

Now, while Fig. 7b represents an ideal rogue wave with quiescent background 
(RW), we can arguably stretch the definition of a first-order rogue wave so that it is 
considered to be a spatiotemporally localised high-amplitude burst on an otherwise 
predictable background. Hence, it is sufficient for the modulation frequency of the 
superstructure to approach zero. From the definition of k j  in Eq. (7), this is achieved 
along the curve in parameter space denoted by g2 = 4Aj(Aj — i). This is depicted 
in Fig. 2 by the dashed line within the region. The Peregrine soliton exists at 
one endpoint of this “cnoidal rogue wave” (CRW) curve, with g = 0 and Ai = i. 
However, there are many more structures in this range, exemplified by the “CCRW” 
wavefunction in Fig. 7c, where one peak alone arises from the periodic oscillations 
of the background. In these cases, the central “X shape” of the wavefunction ap-
pears familiar. Indeed, at the (g, Ai) = (l,0.5f) vertex of the parametric curve, it 
is all that is left in the domain, forming the well-known degenerate soliton (DS) in 
Fig. 7d. Again we note that this is a first-order solution formed from the nonlinear 
superposition of a Ai = 0.5f soliton upon a background that is effectively the same 
soliton. The Darboux process does not support equal eigenvalues [11,12], so, as with
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(a)

( c )

(d )

Fig. 6. F irst-order breathers and their cnoidal perturbations, w ith o =  V'rfn- (a) Regular 
AB w ith Ai =  0.75i and g — 0. (b) Regular KM soliton w ith Ai =  1.25z and g =  0. (c) 
Cnoidal AB (CAB) w ith Ai =  0.75z and g =  0.5. (d) Cnoidal KM soliton (CKM) w ith 
Ai -  1.25z and g =  0.5.



§7-3 Results 99

Localized Structures in Physics and Chemistry 55

Fig. 7. First-order cnoidal breather solutions, with xpo = il>dn- (a) Cnoidal breather (CB) 
with Ai = 0.75i and g = 0.99. (b) Regular rogue wave (RW) with Ai ~  i and g — 0. (c) 
Typical “concentrated” cnoidal rogue wave (CCRW) with Ai ~  0.75i and g = \/0.75. (d) 
Degenerate soliton (DS) with Ai fa 0.5i and g = 1. This is also technically a cnoidal rogue
wave.
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all CRWs, this structure can only be attained via the application of a limit, k 3 —» 0, 
not an actual equality.

As is evident from Fig. 7, all CRWs with Im(Ai) > 0.5 are simple to visually 
relate with the Peregrine soliton endpoint. However, the parametric CRW curve also 
extends in the other direction to (g,\i) = (0,0), a plane wave with a superstructure 
of zero differential amplitude. This means that CRWs with Irn(Ai) < 0.5 are less 
intuitive to understand, possessing no limiting-case analogue. It is thus important to 
note that, in this regime, the modulation frequency k-i can be comparable to that 
of the cnoidal background for g = 0, implying a much sharper and more extreme 
transition to zero-frequency in the “rogue wave limit”. In practice, this means that a 
number of adjacent crests for the AB are “left behind” as all others recede to infinity, 
effectively being maintained by a resonance effect with the cnoidal background. The 
resulting wavefunction is shown in Fig. 8a. which we refer to here as a diffuse cnoidal 
rogue wave (DCRW). We contrast this with the “concentrated” cnoidal rogue waves 
(CCRWs) displayed by Fig. 7 in much the same way as Fig. 4 differs from Fig. 5b; 
the nonlinear interactions of the superstructure appear to extend over many crests of 
the cnoidal background.

Because of this diffuse nature of DCRWs, their envelopes can extend over great 
spatiotemporal distances. But, when a more overarching view of the domain is taken, 
it is clear that the DCRWs behave similarly to CCRWs. Perturbing parameters into 
the region above the g2 = 4Xj(X0 — i) curve induces t-axis periodicity, as shown with 
tDCB in Fig. 8b, while entering the region below the curve produces x-axis periodic-
ity, as shown with xDCB in Fig. 8c. The parametric perturbations are all displayed 
in Fig. 2. There are, however, crucial differences. Both Fig. 6 and Fig. 7 indicate that 
typical breather peaks are accompanied by adjacent troughs along the t axis, where 
energy has been depleted to fuel the high-amplitude bursts. In contrast, for the so-
lutions near the DCRW curve in Fig. 8, examination of the fine structure shows that 
these features still remain, but the superstructure envelopes distinctly show other am-
plitude dips we call “cnoid voids” aligning with the diffuse peaks along the x axis. This 
means that Fig. 8b has the appearance of a rotated KM soliton, Fig. 8c is reminiscent 
of an AB, and even the second-order DCRW shown in Fig. 8d seems like a rotated 
version of a regular second-order rogue wave [8]. In a way, this axial inversion for the 
superstructure envelope preserves our understanding of eigenvalue effects. Decreased 
Ai values promote the appearance of ABs and increased values give preference to KM 
solitons. However, far more analysis is required to better understand this inverted 
appearance.

3.4 Higher-order cnoidal rogue waves

Although we avoid delving into too much depth here, the Darboux scheme set out 
in Sect. 2 is sufficient to generate the entire hierarchy of known rogue wave solutions 
[14] on a cnoidal background. The second-order DCRW in Fig. 8d is one example of 
this, but it is a simple “fused” case, where both constituent components are centred 
at the origin with no axial shifts. Alternatively, components can be independently 
shifted with respect to each other such that “fissioned” structures arise in the domain 
[8,9,15]. Notably, the cnoidal background does not change the intricacies involved in 
generating higher-order rogue waves, but shifts must now be appropriately dependent 
on the modified modulation frequency term, introduced by Eq. (7).

The key point is that, in the CCRW regime, cnoidal solutions allow for the depic-
tion of a smooth transition between plane-wave and solitonic NLSE solutions, lending 
insight into rogue wave analogues. For example, the typical rogue wave triplet [15] 
presented in Fig. 9a does not change drastically as the elliptic modulus of the back-
ground varies. Certainly, the circular array of peaks becomes oval as the triplet is
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Fig. 8. Solutions in and near the diffuse cnoidal rogue wave regime, with ipo = ipdn- 
(a) First-order cnoidal rogue wave (DCRW) with Ai ~  0.25? and g — \/0.75. (b) First-order 
cnoidal breather (tDCB) with Ai =  0.25?' and g — \/0.7. (c) First-order cnoidal breather 
(xDCB) with Ai = 0.25? and g = \/()78. (d) “Fused” second-order cnoidal rogue wave with 
Ai ~  A2 ~  0.25? and g - y/0.75.
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( c )

(d )

F ig . 9. Higher-order rogue wave solutions, w ith V>o =  i/Mn- Com ponent frequencies are K j  —  

K\Zji w ith /c ~  0. (a) Second-order norm al rogue wave trip let, for g — 0 and X j  — 100(j —2)k 2. 
(b) Second-order cnoidal rogue wave trip let, for g —  \/0.75 and X j  —  100(j —2)k 2. ( c ) Second- 
order solitonic rogue wave trip let, for g =  \/0 .99 and x 3 =  100(j — 2)k 2. (d) T hird-order 
cnoidal rogue wave cascade, for g = \/0 .5  and x 3 =  25(j — \ ) k 2.



§7-4 Conclusion 103

Localized S tructures in Physics and Chem istry 59

spatially compressed and temporally elongated, shown in Fig. 9b, but the trio of 
high-amplitude peaks remains visible, all the way to the solitonic extreme shown in 
Fig. 9c. Because a second-order solution consists of three crests in fissioned rogue 
wave form and three solitons in the <7 = 1  limit, the transformation in this case ap-
pears particularly clear. The energy in the system is pulled into the central soliton 
first, then is returned in unsustainable quantity to the two adjacent peaks, before 
the system returns to a stable state. This event happens only once within the entire 
spatiotemporal domain, and the only difference between Fig. 9a and 9c is where and 
how the background energy is stored.

Considering that a well-separated fissioned rogue wave of order n consists of 
n(n + l)/2  Peregrine breathers [8] and an order n solution in the <7 = 1 limit contains 
n + 1 solitons, the bijection involving energy focal points is often far less visually 
intuitive. Nonetheless, we have provided the framework to investigate the relation-
ships for all higher-order rogue waves. Quasi-circular clusters of order n continue to 
be formed on a cnoidal background via the shifting of any component by an amount 
proportional to K2̂ n~l \  while the production of rogue wave cascades still requires the 
same constraint involving shifts and frequency ratios as previously established [9], an 
example of which is shown by Fig. 9d. The only numerical issue to note is that, upon 
selecting the appropriate component frequencies close to zero, the eigenvalues are 
derived by the expression Xj = iy^J 1 — Kj ± ^/1 — k,2 — gl )/2. Building a solution 
with the ± sign regarded as a “plus” generates a CCRW, as in Fig. 9, while a “mi-
nus” produces a DCRW, as in Fig. 8d. It is thus interesting to consider the shape of 
high-order rogue waves formed from a mixture of both “diffuse” and “concentrated” 
eigenvalues, but we leave that for future investigation.

In any case, through numerical examination, the peak amplitude of all “fused” 
CRWs is now easy to relate to eigenvalue A and order n. Specifically, it is Im(2A?i) + 1. 
Hence the regular rogue wave in Fig. 7b has amplitude 3, the cnoidal version in Fig. 7c 
has amplitude 2.5. and the degenerate soliton in Fig. 7d has amplitude 2. This is also 
why the first-order diffuse rogue wave in Fig. 8a has a smaller peak amplitude of 
1.5 and the second-order version in Fig. 8d has an amplitude of 2. All this of course 
assumes that the cnoidal background has amplitude 1 under the central peak, as a 
spatial phase shift may instead superimpose the superstructure on a minimum of the 
cnoidal wave. This rule is also not much more complicated for fissioned solutions, but 
the amplitude of the highest crest does depend on how constituent components are 
arranged.

4 Conclusion
In summary, our main results are as follows:

1. We have outlined a Darboux transformation scheme for the NLSE, using spa-
tially periodic cnoidal functions as the background for nonlinearly superim-
posed solutions. By varying the elliptic modulus from 0 to 1 through the -0cn 
branch and then back from 1 to 0 through the V’dn branch, as defined by Eq. (3), 
this technique allows the smooth transformation of a wavefunction background 
from zero amplitude to a plane wave via a lone soliton.

2. We have shown how a ?/>cn background affects a superimposed soliton. For solu-
tions with large eigenvalue, the soliton is modulated via nonlinear interactions 
with only the nearest crests of the cnoidal wave, enforcing that its shape re-
mains distinct and clear. In contrast, for diffuse solitons, interactions extend 
over a greater domain and, in the case that the elliptic modulus and corre-
sponding peak amplitude of the background is large enough, the cnoidal wave
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may visually wash out the superstructure. In any case, as the elliptic modu-
lus approaches 1, the cnoidal background becomes a soliton and the first-order 
solution becomes a typical two-soliton wavefunction.

3. We have shown how a 'ipdn background affects a superimposed breather. For 
first-order solutions with sufficiently large eigenvalue (Im(A) > 0.5), increasing 
the elliptic modulus decreases the frequency of modulation along the spatial axis 
until there is only one spatiotemporally localised peak. Further increasing the 
elliptic modulus beyond this point increases the frequency of modulation along 
the temporal axis, until the first-order solution eventually becomes a two-soliton 
structure. The locus of these intermediate points forms a curve in parameter 
space, denoting a large range of rogue waves arising from a cnoidal background. 
This provides the missing “cnoidal link” between a Peregrine breather and a 
degenerate soliton.

4. We have shown that solutions with low eigenvalue (Im(A) < 0.5) are affected in 
a similar way by the increase of elliptic modulus. However, the locus of points 
in this regime, for which modulation frequency approaches zero, depicts un- 
intuitively diffuse rogue waves. In the case of these structures, the spatiotem- 
poral localisation extends spatially over a number of adjacent crests. While 
individual peaks display the usual features relating to modulation instability, 
including spatially aligned troughs, an envelope drawn across oscillations over 
a large domain reveals a pattern of depressions and protuberances in the shape 
of a rotated rogue wave solution.

5. In the case of higher-order rogue wave solutions, we have shown that the cnoidal 
background does not significantly affect the existence of these structures. Fis-
sioned rogue waves still require shifts that depend on modulation frequency in 
a polynomial manner, with the only difference being that the elliptic modulus 
is incorporated into its definition. The peak amplitude for a fused rogue wave 
solution is also found to be Im(2An) + 1. provided that it is superimposed upon 
a crest of the cnoidal background.

In effect, this work has explored an expansive space of solutions, all arising from waves 
constructed with Jacobi elliptic functions and their case-dependent interactions with 
both solitons and modulationally unstable perturbations. The connections between 
plane-wave and zero-background structures are both rich and unintuitive, and will 
be of particular interest in any nonlinear field that engages with cnoidal waves. The 
obvious example is in oceanography, where rogue waves are typically considered to 
be deep-water phenomena, while naturally occurring cnoidal structures are usually 
associated with shallow water and the KdV equation [16]. However, renormalisation 
strategies indicate that the two structures may be valid in either context [17], mean-
ing that their superpositions may actually describe real-world water waves.

The applicability of our results also extends to the optical sciences, where fibre 
lines can transmit trains of pulses described by cnoidal waves [5]. Accordingly, new 
laser techniques are being developed to controllably shape signal intensity in this 
manner [18]. It is thus vital that the effect of perturbations on data transmission is 
well understood so that wavefunction stability and fidelity are maintained. Beyond 
this, cnoidal waves and Peregrine solitons can also be generated in Bose-Einstein 
condensates [19,20], indicating that our superimposed wavefunctions may similarly 
appear here and in a number of other fields.

In any case, with respect to the -0cn background, our results imply the possibil-
ity of a “length scale competition” arising between a soliton and a cnoidal wave, 
analogous to specific scenarios in other nonlinear systems [21]. For example, kink 
solitons in Klein-Gordon models have been shown to differentiate between a state of
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entrapment within a potential well and a contrasting state of freedom, depending on 
how the width of the soliton compares with the basin length of the potential [22]. 
In similar fashion for the NLSE, the difference between solitonic dimensions and the 
cnoidal wavelength determines whether pulse energy remains relatively localised or 
is instead mobile. In the presence of inhomogeneities, intelligent tuning of the back-
ground and soliton may lead to interesting energy transport applications.

However, regarding potential future investigation, it is the influence of the ipdn 
background that is of greatest novelty. I11 particular, we stress that the diffuse rogue 
waves presented here have, to the best of our knowledge, not been found before. They 
provide an intriguing alternative to the “concentrated” forms, in that the latter is 
a highly destructive but relatively avoidable event, due to the presence of only one 
crest, while the effect of the former is low-impact but particularly wide-spread. Per-
haps the solution could be used to explain the oceanic “three sisters” phenomenon 
[23].

Ultimately, the impact of this work is best described by highlighting the follow-
ing logic. It is well known that a plane-wave background, as a solution of the NLSE 
with constant amplitude, is modulationally unstable. The rogue wave itself is one of 
the manifestations of this instability. It is possible then to think that the application 
of strong modulation to the initial wave profile may change the properties of the 
background and make it stable [5j. However, our results definitively show that even 
the most extreme of modulated backgrounds is unstable and subject to the genera-
tion of spatiotemporally localised amplitude bursts. This is an important implication 
regarding the existence of rogue waves, in that they can be generated within an 
NLSE-governed nonlinear system with seemingly no restriction on the background, 
provided that the conditions are right. From a physical point of view, this means 
that, assuming there is sufficient energy distributed in space to fuel the generation of 
a high-amplitude spike, no wave field is intrinsically safe from these extreme events.
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Epilogue 1 0 7

Epilogue

It is clear that the research presented in this chapter has a very large scope, discussing 
constructed NLSE solutions on a range of backgrounds. These periodic seeds, based 
on Jacobi elliptic functions, are effectively two separate regimes that are linked so 
that they are transformably continuous [120]. One branch is described by a cn(f,g) 
function, oscillating along the optical t axis and parametrised by g. This ranges from 
a g = 0 plane wave to a g — 1 soliton and typically resembles a periodic series 
of intermediate-amplitude crests, with non-differentiable zero-amplitude points be-
tween consecutive peaks. The associated results are then likely to be of interest to 
soliton studies, as the background starts to resemble a series of pulses for large values 
of g [122]. All nonlinearly superimposed components in this parameter regime also 
resemble solitons themselves, so the complicated beating structures may have impli-
cations regarding localised energy transfer and optical signal interference [123, 124], 
among other more speculative applications.

However, it is the background related to dn (t,g) that is of greatest interest to the 
narrative within this thesis. Ranging from a g — 0 plane wave to the aforementioned 
g — 1 soliton, NLSE solutions constructed with this seed must necessarily describe 
a smooth transformation between breathers and solitonic wavefunctions. To some 
extent, this relationship between both classes of localised solutions has already been 
discussed in the epilogue of Chapter 3. However, this work extends that idea and 
demonstrates that rogue waves themselves are actually analogous to the collisions 
between solitons. Indeed, the peaks of the latter are phase alignments of interact-
ing pulses, while the former spatiotemporally localised structures can be considered 
products of beating between the plane wave and a separate wavefunction. This mys-
terious component can be considered a soliton when the product is a KM breather 
[81, 82], but this cannot be carelessly extended to the scenario of ABs, since energy 
conservation laws preclude the existence of any x-localised zero-background solu-
tion. Regardless, this indicates that any multi-rogue wave NLSE solution of order n 
can be reproduced in the collision of n + 1 solitons.

The implications of this are numerous. Amplitude relations have already been 
noted [7], but this concept hints at the reasons why there is a particular number of 
Peregrine breathers fused in a multi-rogue wavefunction. If solitons are considered to 
travel along a linear spatiotemporal path, two will only ever intersect a maximum of 
one time, three can collide thrice, four have six crossing points, and so on. Concisely 
put, n +  1 solitons can produce a maximum of n(n + l ) / 2  collisional peaks. This 
is a significant revelation that provides an alternate perspective to the one based on 
breather asymmetry in Chapter 3.

Thus it is shown in this chapter that other types of background do not necessarily 
invalidate the rogue wave hierarchy [6]. In fact, a cnoidal seed involving dn(t,g) ap-
pears to even double the hierarchy of spatiotemporally localised solutions, although 
the new set of structures is more debatable as a prototypical class representing rogue 
wave behaviour. For instance, the consecutive ripples of a first-order 'diffuse' rogue 
wave are certainly spatiotemporally localised, but the maximum amplitude is below
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that of a degenerate soliton [99,100]. This means that a basic diffuse rogue wave does 
not fulfil the hydrodynamic criterion based on significant wave height [20, 30, 31]. 
On the other hand, higher-order versions can be constructed to superimpose compo-
nents up to an arbitrarily large amplitude [69]. Moreover, with the envelope almost 
resembling a second-order version of the carrier wave discussed in Chapter 5 and the 
localisation of the diffuse rogue wave extending over a large spatiotemporal domain, 
this newly-discovered set of structures could potentially represent extreme events 
that have even more impact.

Figure 7.1: A diffuse rogue wave triplet, with g = \/0.85, K\ = k , K2 — K\fl and 
numerical limit k —> 0. Modified modulation frequency k , is related to both cnoidal 
parameter g and eigenvalue Aj via Eq. (7) in cnoidal paper [7], Non-zero shifts are 
X\ — 100k2. (a) Top view, (b) Angled view.

As already mentioned, these NLSE solutions seem to be classifiable into their 
own version of the standard rogue wave hierarchy. For instance, two perspectives 
of a diffuse rogue triplet are shown in Fig. 7.1. As is expected [1], the spatiotempo-
ral shift of a component must still be proportional to k2 for this solution, although 
it must be noted that the definition of modulation frequency is slightly modified 
within the publication in this chapter [7], so as to incorporate cnoidal parameter g. 
It is nonetheless clear from Fig. 7.1a that the typical features of modulational in-
stability are still present in these unusual structures. The blue colours representing 
low amplitudes indicate that troughs still accompany peaks of intensity along the t 
axis, but this does not explain why the 'super-envelope' of envelope oscillations in 
Fig. 7.1b resembles a rotated version of the rogue triplet. Certainly, the troughs of 
the super-envelope are adjacent to the three crests along the evolution axis x. This 
would never be allowed in the case of a plane wave background, as energy conserva-
tion would clearly be violated. Yet, remarkably, the cnoidal oscillations allow for this 
uncanny resemblance to arise. It may be possible then that doubly-periodic cnoidal 
functions [125, 126] also host their own versions of a diffuse rogue wave. An investi-
gation of these seeds would inevitably lose the analytic advantage that the Darboux
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scheme affords singly periodic cnoidal backgrounds, forcing the methodology to rely 
solely on numerical propagation. But perhaps even more complicated spatiotempo- 
rally localised solutions can be thus attained, possibly in the form of further rotated 
'super-super-envelopes'.

Of course, at this stage, speculation must give way to patience and further in-
vestigation. It is at least evident that varying the background to a multi-rogue wave 
solution can potentially enrich the possible situations in which extreme events can 
arise, as well as their appearances themselves.
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Chapter 8

The Future of the Hierarchy

Although the fundamental categorisation scheme of NLSE multi-rogue wave solu-
tions was established in Chapter 6, and subsequently proved to be reasonably robust 
regarding variations of the plane wave background in Chapter 7, its study is far from 
over. Certainly as research intensifies into numerous wave evolution equations, one 
of the most important questions at the current time is: how ubiquitous is the rogue 
wave hierarchy within nonlinear systems in general?

This chapter is intended as a brief and non-exhaustive discussion of this issue. 
Few mathematical details are provided, as it merely aims to preview several inves-
tigative pathways that have opened up in the aftermath of the core discoveries within 
this thesis. Certainly, the showcased results have been compiled into articles that are 
either published or on the verge of submission. With that preface, there are three sim-
ple ways to extend the standard NLSE. One is to modify the domain, either adding 
dimensions or changing the definitions of ones that already exist. To this end, rogue 
waves of the discrete NLSE are discussed in Sec. 8.1. Another way is to couple the 
NLSE to the evolution of extra wavefunctions. Resonance between a 'long wave' and 
a 'short wave' is an example of this and is detailed in Sec. 8.2. Finally, one can simply 
keep extending the NLSE with higher-order nonlinearities and other terms, in an 
effort to better approximate the physics of wave evolution within various domains. 
Progress in deriving and solving an integrable NLSE of infinite order is summarised 
in Sec. 8.3.

These three research directions ensure that the heretofore understood concepts 
of NLSE dispersion and cubic nonlinearity, along with their effects on modulational 
instability and rogue wave evolution, are not discarded. At the same time, they 
constitute significant steps forward in the theory of multi-rogue waves, forming a 
compromise between novelty and tractability.

8.1 Discretisation and Spectral Interference

Higher dimensional versions of the NLSE are sometimes seen as a holy grail of re-
search in the field. Certainly, while the ID version has proven to be remarkably 
useful in describing hydrodynamic waves and optical signals in a variety of con-
texts, as well as other phenomena in numerous physical domains, it cannot give a 
full picture of all the possible extreme events that can arise. For instance, there are 
definitely numerous spots in the ocean where group velocity vectors may cross as
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a result of coastal diffraction [127, 128]. Accordingly, the 2D hyperbolic NLSE is 
one such higher-dimensional system investigated, albeit with a so-called 'hyperbolic' 
term to distinguish between the anomalous and normal dispersion affecting oscilla-
tions travelling with and across the wave group, respectively [129, 130]. Moreover, 
this is just for surface waves. There is similarly plenty of interest in rogue waves that 
arise in three spatial dimensions [131, 132].

However, there is a major caveat here. Most investigations of higher-order sys-
tems must be done via numerical propagation or similar techniques. This is be-
cause they lack a crucial property called integrability [133, 134]. This mathematically 
deep concept has many implications regarding features such as conserved quan-
tities. Moreover, it is a prerequisite for numerous solution-generating procedures 
including the Darboux scheme [84, 135]. This is why the ID NLSE can be exactly 
solved, but the standard 2D NLSE remains obtuse. This is not to say that concerted 
efforts have not wrangled integrability from higher-dimensional nonlinear systems, 
but these successes have generally been achieved via the contrived inclusion of gen-
erally unphysical terms. Analytic triumphs in this topic are few and infrequent.

(a) (b)

Figure 8.1: Fourth-order Ablowitz-Ladik triangular cascades constructed via the Dar-
boux scheme, with h =  1, so that x = n. (a) Shifts along the t axis, (b) Same shifts 
along the x axis.

On the other hand, discretisation has seen much greater progress in rogue wave 
theory [136-138]. The resulting nonlinear systems face the issue of limited applica-
bility, but spatially discrete domains can still be found in various physical contexts 
that involve lattice potentials [139]. Given this, the generalised Ablowitz-Ladik (AL) 
system is one such discretisation of the NLSE [140], expressed as

(V5t-1 ~  2lpn +  lpn+1) +  -  (t/̂ M-1 +  Ipn+l) \lpn\2 =  0 (8.1)

in traditional (i.e. non-optical) convention, where evolution is along the t axis. As to 
variable n, it is an index that denotes the nodes of a lattice along the spatial x axis,
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with adjacent gridpoints separated by a distance of h.
Compensating for the variable changes, this equation reduces to the continuous 

NLSE in the h —> 0 limit. Moreover, it is integrable, which means that the nonlinear 
system can be written in 'Lax pair' format. Darboux transformations can subse-
quently be established [141, 142]. Naturally, these have a different form from that 
found using the methodology employed in this thesis [2, 5, 6], but the conceptual 
procedure is the same. A plane wave is a trivial solution of Eq. (8.1) and leads to the 
derivation of first-order discrete breather components. Subsequently, the recursive 
process and application of zero-frequency limits lead to the standard rogue wave 
structures presented in Chapter 6. As an example, triangular cascades [4] are shown 
in Fig. 8.1. They are technically only defined along the depicted black lines, rep-
resenting a lattice with grid-spacing h = 1, but, without delving into details, they 
have analytic continuations that are defined for the entire spatiotemporal domain. 
As is apparent, the differences between continuous and discrete rogue waves are 
few, including the fact that lattice-spacing h affects the amplitude and steepness of 
each rogue wave quantum, as well as the fact that an increasing h value stretches out 
arrays of rogue waves along the spatial axis.

Figure 8.2: Spectral interference pattern for a first-order and second-order AL rogue 
wave in alignment, as part of a numerically generated fourth-order rogue wave hep- 
tagram. Lattice spacing is h — 1/4, so that x — n /4. (a) Wavefunction in spatiotem-
poral domain. Grid does not represent lattice and is a visual aid. (b) Solid blue 
line represents spectrum for profile at t — 0. The dotted black and dashed red lines 
denote spectra for first-order and fused second-order rogue waves, respectively, with 
h = 1/4.

Of course, an exploration of discrete rogue waves may be of limited appeal to a 
general scientific audience more interested in phenomena within a continuous con-
text. However, the set-up of this problem is well-suited to investigate spectra, as 
most numerical applications of the Fourier transform are technically discrete. Inter-
estingly, despite differences in spatiotemporal shapes, the spectral profile of a discrete
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Peregrine breather at its maximum amplitude is almost identical to the well-known 
triangular shape associated with the continuous version [143]. This holds true for all 
multi-rogue spectra, provided that h is not overly large.

Now, based on the knowledge gained during the course of study detailed in this 
thesis, it is possible to investigate more complicated spectral effects that were not 
attainable previously. For instance, constructing a fourth-order discrete heptagram 
with the Darboux scheme is a routine matter, utilising an appropriate existence con-
dition [6] that is tailored for the discrete AL system. The resulting circular cluster 
[2] is shown in Fig. 8.2a, although there are too many individual lattice points com-
pressed in the domain to also depict the solution in discrete form. In any case, the 
discrete Fourier transform (DFT) of the profile at t = 0 is shown in Fig. 8.2b. Re-
markably, it is a clear beating shape formed from the interference pattern of spectra 
pertaining to both a first-order and a second-order rogue wave, also shown in the 
same image. This is particularly curious because two localised structures (e.g. delta 
functions) in the frequency domain typically correspond to a beating structure in the 
spatiotemporal domain. Here, the converse is occurring. Localisations in space and 
time are inducing interference patterns in the frequency domain. Thus this explo-
ration of a discrete system has inadvertently developed a greater understanding of 
Fourier physics with respect to continuous NLSE rogue wave solutions. At the very 
least, it is now possible to confirm that the rogue wave hierarchy is not necessarily 
invalidated by a discretised domain.

8.2 Rogues in Resonance

Coupling the NLSE to other equations is another way to extend standard theories. 
It is also generally less challenging than dealing with dimensional issues, as main-
taining integrability is arguably simpler in many of these cases. Indeed, including 
an extension such as polarisation into optical models is often done by coupling one 
wavefunction that obeys the NLSE with another. An example of this is the widely- 
studied Manakov equation [144-146]. The full picture of a rogue wave must then 
be synthesised from two or more separately-visualised spatiotemporally localised 
structures.

From a technical perspective, the simplest procedures of coupling amount to vec-
torising a wavefunction, which accordingly increases the size of the NLSE Lax pair 
matrices (i.e. Eq. (A2) in the clusters paper [2]) but does not sacrifice the tractability 
of solution-generating methods. However, this is not the only way to increase the 
complexity of a Lax pair. The inclusion of some higher-order terms are sufficient to 
induce this consequence, as in the case of the Sasa-Satsuma equation [147,148]. More 
generally, non-trivial couplings tend to have this effect as well, such as the 'long-short 
wave resonance' equation (LSWRE) [149, 150], expressed as

dA _  d\B\2
dt dx
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.dB 1 32ß , „i -r— -T — ——j T- A B — 0. dt 2 dx2
( 8 .2)

This is again written here in traditional (i.e. non-optical) convention, where t is the 
evolution variable. Function A is the real-valued long wave and B is the complex-
valued envelope of the short wave.

This nonlinear system is one focus of collaborative research initially inspired by 
the circular clusters result in this thesis [2], Indeed, Eq. (8.2) is of interest to multi-
rogue studies as it can be used to model physical interactions between the oscilla-
tions on the surface of a two-layer fluid (i.e. B) and a wave in the interface (i.e. A) 
[151, 152]. Unsurprisingly, because of the similarity between the LSWRE and the 
standard NLSE, the analogue of a Peregrine breather was eventually identified, al-
beit derived via the alternative Hirota bilinear method [8]. To date, there has not 
been overwhelming success with establishing a hierarchy for the system with the 
Darboux scheme. This is because the aforementioned increase in the complexity of 
Lax pair matrices, from a size of 2 x 2 for the NLSE to 3 x 3 for the LSWRE, provides 
many difficult obstacles.

x -20 -20 x -20 -20

(a) (b)

Figure 8.3: An intersection of an AB and KM breather in the long-short wave reso-
nance equation (LSWRE). (a) Long wave A. Background is Aq = 0. (b) Short wave B. 
Background is Bq = 1.

For one thing, without dwelling on the details, there does not appear to be an 
'elementary' Darboux method for the scheme. A 'binary' version must be employed 
instead, which is highly involved [153,154]. This complication is compounded by the 
fact that there are now three functions to deal with for each first-order component 
(cf. r\j and Sn of Eq. (A4) in the clusters paper [2]). The eigenvalue space is also 
more convoluted. Whereas axially-aligned NLSE ABs and KM breathers are para-
metrically constrained by a straight line in the complex plane (i.e. purely imaginary 
eigenvalues), the parametric locus of LSWRE ABs and KM breathers consists of fully 
complex eigenvalues and is not smoothly continuous. However, while not necessar-
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ily elegant, this alone is numerically surmountable. An image of intersecting LSWRE 
breathers is shown in Fig. 8.4.

(a) (b)

Figure 8.4: A dark rogue wave triplet of the LSWRE. (a) Long wave A. Background 
is Aq = 1. (b) Short wave B. Background is Bq = exp(i\/2x).

Notably, the LSWRE possesses many features that the NLSE does not appear to 
have. For instance, the modulation peaks of LSWRE breather solutions can be aug-
mented and even inverted, depending on the background amplitude of A and the 
plane wave parameters that seed B. In fact, if the backgrounds of Eq. (8.2) are Ao = 1 
and Bo = exp it is possible to reproduce a maximally 'dark' rogue wave. While 
these inverted spatiotemporally-localised envelopes are nothing new at this stage 
[73, 155], they are still wave phenomena that are not encapsulated by the standard 
NLSE. There is also every indication that they adhere to the same hierarchy as that 
of 'bright' rogue waves. For instance, a dark rogue triplet is depicted in Fig 8.4. 
However, these particular results are not yet ready for publication, for possibly the 
same reason that there is no mention yet of a LSWRE rogue wave hierarchy in the 
literature. Specifically, the identification of exact component shifts to align multiple 
rogue waves at the origin is proving to be a tremendous mathematical challenge, 
seemingly intractable via current methodologies and computational power. This is 
why the collision peak in Fig. 8.3 is not symmetric. The problem here is that, with-
out fused versions of higher-order rogue waves, a classification hierarchy cannot be 
considered systematic.

Curiously, the LSWRE is not the only nonlinear system stymied by this analytic 
obstacle. The Sasa-Satsuma equation also resembles the resonance equation in nu-
merous ways [147, 156], seemingly on account of both its 3 x 3 Lax pair matrices and 
deeper mathematical symmetries, and similarly appears to suffer component align-
ment issues. Nonetheless, both equations remain appealing objects of study despite 
their challenge. Certainly, a 3 x 3 Lax pair matrix extends the possible types of wave 
behaviour beyond the NLSE case, providing hints towards the existence of so-called 
'Y breathers', angled wavetrain reflections and other exotic phenomena [157, 158].



§8.3 The Endless NLSE 117

Thus, a potential breakthrough in this direction may not only lead to a plain confir-
mation of the same rogue wave hierarchy in a new nonlinear system, but also give 
rise to novel spatiotemporally localised structures that only exist due to the effect of 
coupling and extended physics.

8.3 The Endless NLSE

To conclude the preview of future directions in this chapter, it is worth acknowl-
edging the fact that the standard NLSE is but an approximation of wave behaviour 
that relies on numerous assumptions. It is indeed a universal equation, but it restric- 
tively describes the dynamics of slowly-varying quasi-monochromatic wave packets 
in dispersive weakly-nonlinear media. These foundations quickly fail in numerous 
contexts, such as when dealing with ultrashort pulses in optics [111, 112] or water 
waves with a broad spectral band [159, 160]. Consequently, there are many ways to 
extend the NLSE so as to better model phenomena in various domains.

In line with this research direction, rogue waves have been found for models that 
incorporate higher-order nonlinearites and dispersion terms [118,161], as well as sys-
tems that possess gauge transformations into relevant extended equations [162]. One 
example of a nonlinear system that has been studied as part of a collaborative effort 
stemming from the research in this thesis is the Chen-Lee-Liu (CLL) equation [163], 
a type of 'derivative NLSE' [164,165]. However, it is a complicated system, requiring 
a 'binary' Darboux scheme, and, as of such, has thus far only been solved with the 
Hirota bilinear method [9]. Nonetheless, research interest into these equations has 
blossomed. Given the impact of some of the multi-rogue wave results in this study, it 
is not surprising that hierarchical structures are also being sought in these nonlinear 
systems [92, 166].

Progress with some of these equations is challenging. As mentioned in Sec. 8.2, 
certain higher-order terms can modify Lax pairs and corresponding Darboux trans-
formations to induce greater analytic difficulty. In fact, most arbitrary extensions 
will break the integrability of the system altogether [133, 134] and preclude any 
easy way to produce exact solutions, even if the terms they introduce are physically 
appropriate. Given this, it is worthwhile to investigate NLSE extensions that main-
tain Lax pair simplicity and keep the corresponding Darboux scheme in this thesis 
fixed. Indeed, the standard NLSE is but a second-order manifestation of a so-called 
Ablowitz-Kaup-Newell-Segur (AKNS) class of equations [167]. Instead of being re-
stricted by second-order dispersion and the cubic nonlinearity, it is possible to derive 
the equation of any order in the AKNS set [168] as

;=0
(8.3)
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with

Pj+1 + E PhPh-
i=h+)2

(8.4)

The initial function to launch the recursive process must be p\ — ipip* and the use of 
the 'functional derivative' is required; it is defined as

Keeping with the theme of this chapter, these equations are defined in traditional 
(i.e. non-optical) convention with t as the evolution variable.

Now, this set of expressions appears involved, but it is a compact way of repro-
ducing a number of integrable equations, with fj serving as a coefficient to select and 
scale desirable terms for the relevant model of wave evolution. For instance, setting 
f 2 — 1/2 for the corresponding Kj — 2\ip\2ip + ipxx generates the NLSE used in this 
thesis, provided that all other /.• coefficients are zero and the x and t variables are 
swapped. The Hirota equation [118] then simply requires K3 =  i(6\ip\2ipx + 1pxxx) to 
be included in Eq. (8.3). A higher-order Laksmanan-Porsezian-Daniel (LPD) equa-
tion [169, 170] follows when is non-zero, and so on. Research into the quin tic 
version of the NLSE is currently underway, but the most important point here is that 
a corresponding Lax pair, representing the NLSE far beyond to infinite order, has 
been recursively established. As the Darboux scheme in this thesis does not change 
for the AKNS system of any order, it is possible to attain a generalised first-order 
rogue wave in the form

(8.5)

=  4 (1 + 2  iSrlt),
D\ = 1 +  4^jf2 +  4 (x — vr\ t )2,

(8.6)

with associated factors

L ( » — 2 ) / 2 j

E
L ( « - 1 ) / 2 J (2; + 1)! 

+2 ( ; ! ) 2 '
r̂l - E 2 (~ l ) 7/ 2/

;=o
L“ / 0 1

(8.7)
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and where is the floor function. It follows that, if /2 = 1/2 is fixed as the 
only non-zero coefficient, then Eq. (8.6) becomes consistent with the equation for a 
standard Peregrine breather (i.e. Eq. (6) in the degenerate paper, with x ■<->■ t).

While only previewed here, this derivation is a significant result. It describes 
how each group of higher-order terms in an integrable AKNS-based NLSE affects 
the growth and relative velocity of a rogue wave quantum. This understanding is 
expected to be transferable to the case of compound extreme events. Granted, the 
practicality of integrable higher-order nonlinear Schrödinger equations appears to 
diminish as they become ever more complicated, but they may yet produce the closest 
exact-form approximations to extreme events in highly nonlinear domains. From a 
mathematical perspective, they also indicate how various combinations of terms can 
affect solutions formed from the phenomenon of modulational instability.

Ultimately, every investigation described in this chapter attempts to aid in devel-
oping a broader understanding of multi-rogue waves, whether immediately applica-
ble or not. Moreover, it is at least clear that the rogue wave hierarchy developed and 
presented in this thesis [6] is significantly general, valid for numerous extensions to, 
and deviations from, the standard NLSE.
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Chapter 9

Conclusion

At its core, this thesis has presented an investigation into general high-order rogue 
wave solutions of the ID nonlinear Schrödinger equation (NLSE). These appear as 
spatiotemporally localised clusters of high-amplitude surges, all arising from mod- 
ulationally unstable perturbations on a plane wave background. Moreover, they are 
complicated nonlinear superpositions of Peregrine breathers; such a breather is the 
base-case structure considered to represent a single rogue wave 'quantum'. Accord-
ingly, these new solutions are promising models for situations in which the physical 
effects of individual extreme events combine, such as a hypothetical cascade of freak 
waves in the deep ocean or a chaotic sequence of intensity bursts within an optical 
waveguide. They possess fundamental forms, categorisable by rotational symmetries 
in their spatiotemporal geometry, and can be hybridised into seemingly arbitrary ar-
rangements of rogue wave quanta. The only apparent restrictions on their evolution 
dynamics have been elaborated in this study.

Summary

Each major chapter of this thesis has presented results relating to this research in 
the form of a journal publication. Together, they have aimed to form a cohesive 
narrative of investigation up to and beyond the establishment of the novel rogue 
wave hierarchy. The crucial features of this dissertation are thus summarised below.

• There exists a mathematical procedure for the construction of complicated 
NLSE solutions based on the concept of Darboux transformations. This scheme, 
as implemented in this thesis, was first introduced within the publication [2] 
presented in Chapter 2 and has been detailed again in subsequent articles [5, 6].
It takes a trivial seeding solution to the nonlinear system and determines a set 
of first-order component functions that are compatible with the background, 
from which simple first-order solutions of the NLSE can be algebraically de-
rived. More importantly, the Darboux scheme can work recursively to nonlin- 
early superimpose n first-order components into a wavefunction of order n. It 
follows that the shape of this high-order structure is thus tuned by n sets of 
spatiotemporal shifts and eigenvalues.

• If the seeding solution to the Darboux scheme is a plane wave, then the first- 
order components take the form of modulationally oscillating breathers. Whether
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localised in space or time, each solitary component can be transformed into one 
doubly-localised crest, known as a Peregrine breather, by taking a limit of zero 
modulation frequency. However, no two breathers in nonlinear superposition 
can have the same eigenvalue or corresponding frequency, even as the latter 
approaches zero. Certainly, in this degenerate limit detailed in Chapter 3, an 
asymmetry must exist regarding the number of modulational peaks per com-
ponent wavetrain. This means that, in the rogue wave limit, one component 
will produce one Peregrine breather for a compound structure, another will 
provide two, a third will donate three, and so on.

• If each component is spatiotemporally aligned at a common origin, the rogue 
wave limit applied to a breather of order n will generate a corresponding fused 
NLSE rogue wave solution of order n. However, if each component is spa-
tiotemporally shifted by the same finite amount, then the entire structure is 
translated to a new origin. Moreover, if each component shift is proportional to 
K2, where k is a factor common to each component frequency, a linear relation 
between shift coefficients and squared frequency ratio coefficients is necessary 
and sufficient to fission the compound wavefunction into a triangular arrange-
ment of n(n + l ) / 2  Peregrine breathers, referred to in this thesis as rogue wave 
quanta. This concept of an existence condition was introduced in Chapter 4.

• Each quantum imparts a 2n phase shift to any carrier wave that passes though 
the extreme event, although this effect is localised between its zero-amplitude 
envelope troughs. This pair of phase singularities is capable of causing wave 
dislocation, a phenomenon which affects wave steepness and contributes to 
broadening the dangerous aspects of an oceanic extreme event beyond large 
amplitudes alone. However, a rogue wave NLSE solution of order n can only 
maximally impart a phase shift of Inn, which restricts the possible arrange-
ments of quanta in both fused and fissioned form. This was elaborated in 
Chapter 5.

• The existence condition for the cascade can be extended for other orders of
shift. For example, a quadratic relation between coefficients of both shifts pro-
portional to k4 and squared frequency ratios is responsible for the production 
of a rogue wave pentagram. Existence conditions for heptagrams, enneagrams, 
and so, continue in logical fashion. Concisely, proportionality in spa-
tiotemporal shifts requires the relevant relation to be a polynomial with order 
m — 1, so as to reproduce fission into an array of rogue wave quanta with a 
rotational quasi-symmetry of degree 2m — 1. Accordingly, if m — n for a multi-
rogue wave of order n, then the fissioning process replicates a circular cluster 
from Chapter 2. Hence all these can be considered fundamental high-order 
rogue wave solutions, categorisable into a hierarchy by their spatiotemporal 
geometries, as established in Chapter 6. These existence conditions can also be 
enforced independently of each other, allowing numerous arrangements to be 
hybridised.
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• Replacing the plane wave background with a cnoidal seed does not conceptu-
ally invalidate the rogue wave hierarchy. As demonstrated in Chapter 7, all 
the typical compound solutions can still be nonlinearly superimposed onto the 
cnoidal oscillations. Moreover, there is a deep bijective connection between col-
lisions formed from n + 1 solitons and NLSE rogue wave solutions of order 
n. Additionally, cnoidal waves enrich the set of possible multi-rogue wave- 
functions by allowing for diffuse spatiotemporally localised perturbations in 
an otherwise regular pattern of envelope oscillations.

• Finally, as briefly discussed in Chapter 8, there is plenty of evidence to sug-
gest that the rogue wave hierarchy remains valid for numerous other nonlin-
ear systems. In particular, discretisations, couplings and extensions involving 
higher-order nonlinearities do not inherently contradict the existence of the 
classification scheme developed within this thesis.

Final Words

The research in this thesis has been conducted at a time in which the topic of rogue 
waves can be considered part of both the pop-cultural and scientific Zeitgeist. Indeed, 
inspired by the power and devastation they symbolise, the media and public have 
embraced the phenomenon. It sometimes seems that every seventh wave crashing 
into a boat is considered 'freak', while every sudden market movement is feared to 
be 'rogue'. But this is no surprise. The psychology of awe has always driven the 
imagination to seek the extreme, the so-called “rare wonders of nature" 1171]. What 
is then more extreme and rare than a rogue wave itself?

It is not unexpected then that the publications presented in this thesis have had 
a substantial impact already, particularly in a topic area as young and dynamic 
as the study of multi-rogue waves. Certainly, at the time of this writing, the ear-
liest publications involving rogue triplets [1], circular clusters [2] and degenerate 
breathers [3] have each been cited over 25 times. Some of these ensuing investiga-
tions have been complementary to the quest for a rogue wave hierarchy of the NLSE 
[71, 72, 89, 90, 172-174], while others have taken these concepts to nonlinear systems 
far beyond [73, 75, 91, 92,145,146,175,176]. Given that compound rogue waves have 
been already glimpsed in experiments for the first time [76, 77], it may not be long 
before humankind is able to controllably engineer its own extreme events.

Finally, as a concluding observation, it is clear that this discipline shares a char-
acteristic with the phenomenon it researches, in that it essentially “appeared from 
nowhere". However, unlike that same phenomenon, I personally have high hopes 
and great expectations that it will not “disappear without a trace".
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