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A b s tra c t

Loop quantum gravity, a background independent approach to unifying gen­
eral relativity and quantum mechanics, has over the last 20 years been widely 
investigated. The aim of loop quantum gravity is to construct a background 
independent, non-perturbative quantum theory for the Lorentzian gravita­
tional field in four dimensions. In this approach, the principles of quantum 
mechanics and general relativity are combined in a natural manner with no 
other additional physical assumptions. A direct consequence of this combi­
nation is that it provides a picture of quantum Riemannian geometry which 
is discrete at the Planck length. Loop quantum gravity predicts that we live 
in a space and time that is discrete at the quantum level. These quantum 
states of space are described in the theory by spin networks. Formally, spin 
networks are a directed graph with edges labelled by irreducible representa­
tions of a compact Lie group and vertices labelled by intertwiners.
In this thesis, the extension of loop quantum gravity and spin networks to in­
clude supersymmetry is presented. If is known in 4, 3 and 2 dimensions that 
general relativity can be formulated as a constrained FF-theory. We will 
show that the same is true for supergravity in 2 dimensions. After introduc­
ing the supersymmetric extension of spin networks, obtained by replacing 
Lie groups with super Lie groups, we present the spin foam quantization 
of 2d general relativity. This quantization of the constrained FF-theory 
formulation is obtained using the Barrett-Crane technique of imposing the 
classical constraint at the quantum level as a restriction on the representa­
tions summed over. We then extend this quantization procedure to the case 
of 2d supergravity. We find that in order to recover 2d supergravity in this 
framework, it is necessary to restrict the representations summed over in the 
spin network to the trivial representation.
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Chapter 1 

Introduction

Our current understanding of gravitational phenomena is described by Ein­
stein’s Theory of General Relativity (GR). A triumph of twentieth century 
physics, GR has been experimentally verified and has led to relativistic as­
trophysics, cosmology and hopefully towards gravitational wave astronomy. 
Arguably more importantly, our understanding of gravity through GR has 
allowed the development of GPS technology that has greatly changed our 
lives. This incredibly successful theory however, breaks down at small scales 
and at high energies, which one finds for example when studying the big 
bang, black holes or other phenomena at the Planck scale. In order to study 
and understand these aspects of the universe we require a non-perturbative 
theory of quantum gravity. That is, a theory that is valid at all energies 
and scales, consistent with the principles of general relativity and formulated 
within the framework of quantum mechanics (QM). Quantum mechanics too, 
is a pillar of modern science, having opened the fields of nuclear physics, par­
ticle physics and condensed matter physics to name a few. These fields of 
research have led to everyday items that have drastically changed the world 
such as lasers, semiconductors and computers. Without the theories of gen­
eral relativity and quantum mechanics our lives would be very different. So 
such a theory of quantum gravity is expected to be a major leap forward in 
our understanding of the universe. But there is a catch. The coherent picture 
of the world that was understood through pre-relativistic classical physics is 
destroyed by QM and GR. Each is formulated with assumptions that directly 
contradict each other. QM was formulated using an external time variable,
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CHAPTER 1. INTRODUCTION 2

the t of the Schrödinger equation. The spacetime on which QM (and quan­
tum field theory) are defined is a fixed and nondynamical background. But 
this external time variable and fixed background spacetime are incompatible 
with GR. On the other hand, GR is formulated in terms of Riemannian ge­
ometry, assuming that the metric is a smooth and deterministic dynamical 
field. But QM has taught us that any dynamical field must be quantized 
at the quantum level. At small scales, dynamical fields are described as 
discrete quanta and are governed by probabilistic laws. From GR we have 
learned that spacetime is dynamical and we know from QM that dynami­
cal fields are quantized and can be in a probabilistic superposition of states. 
This implies that at small scales there should be quanta of space and quanta 
of time and the superposition of spaces. But what does it mean to live in 
a quantum spacetime and how can we describe it? Since the development 
of QM in the 1930’s, many physicists including Einstein, Dirac, Feynman, 
Weinberg, DeWitt, Wheeler, Penrose and Hawking, have attempted to unify 
GR and QM with varying degrees of success. Many different research di­
rections were followed including dynamical triangulations, noncommutative 
geometry, Hawking’s Euclidean sum over geometries, quantum Regge calcu­
lus, Penrose’s twistor theory and causal sets just to name a few. Again, all 
these ideas had varying degrees of success in merging the conceptual ideas 
of GR and QM. These days the two most developed theories of quantum 
gravity are loop quantum gravity (LQG) and string theory. It is the former 
theory that we shall discuss in this thesis. We do so however, with an eye to­
wards the latter. String theory to date, is the only theory we have currently 
with the potential to unify all four fundamental forces of nature. It is also 
the only technique we have for successfully investigating the perturbative 
regime. Thus if one wishes to study the potential connections between LQG 
and string theory, one is inevitably lead to consider supersymmetry and its 
implementation in the loop programme. This question, of the relationship 
between the two theories, has only been asked recently and as such, has not 
been studied in great depth. Specifically, the question of how supergravity 
should be included in LQG has received very little attention in the literature. 
As this is the case, we will examine in this thesis the more simple problem of 
2d supergravity and how it is to be formulated in LQG. To do this, the 2d
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supergravity model first considered in [5] will be formulated as a topological 
field theory, known as FF-theory. In order to achieve this, it is necessary to 
impose a constraint on the action at the classical level. FF-theory and its 
connection with LQG has been well studied and there are many techniques 
available in this framework to allow progress on the problem of quantum 
gravity. Using these techniques, we wish to ask the question: how is this 
classical constraint on the FF-action imposed at the quantum level in the 
LQG theory?

The basis of LQG is the hamiltonian formulation of GR which was inde­
pendently developed by Dirac [60] and Bergmann [61] in the late 1950’s and 
it is here where this thesis begins. Shortly after, in the early 1960’s, through 
the introduction of the ADM variables by Arnowitt, Deser and Misner [23], 
the algebraic complexity of the hamiltonian formulation was greatly simpli­
fied. Things were still further simplified by the self-dual connection variables 
developed later by Ashtekar [28, 29] and Sen [63]. The advantage to using the 
Ashtekar variables is that GR can be formulated as a canonical gauge the­
ory. As such, the knowledge and techniques developed for the quantization of 
gauge theories can be used to tackle the problem of quantum gravity. It is not 
surprising that it is these Ashtekar variables that are used in the definition 
of LQG. Having reviewed the hamiltonian formulation of GR and introduced 
the Ashtekar variables, we will proceed to 2d supergravity in the superspace 
setting. As mentioned, the actions of supergravity can be expressed as the 
actions of the topological FF-theory with the addition of a constraint. Doing 
this, supergravity can more easily be studied in the context of LQG using the 
mathematical tools that have already been developed for the quantization of 
gauge theories. As such, the beginning of Chapter 3 is an introduction to 
FF-theory and GR in this context. We then proceed to the supersymmetric 
extension of FF-theory and write 2d supergravity as a ‘constrained’ super 
FF-action. In Chapter 4, we leave supergravity and present the foundations 
and principal ideas of LQG. This theory is an attempt to define a quanti­
zation of GR that is background independent and non perturbative. It is 
based on the idea that fixing some background metric is not appropriate 
when trying to describe the quantum properties of spacetime. At its foun-
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dation, the inputs to the theory are QM and GR with no additional physical 
requirements such as extra dimensions or supersymmetry. The basis for the 
Hilbert space of LQG is provided by the so called ‘spin networks’ which are 
the topic of Chapter 5. First introduced in an attempt to describe spacetime 
in a purely combinatorial manner, the development of spin networks was mo­
tivated more by the quantum mechanics of angular momentum than by any 
consideration of GR. However, after the initial formulation of LQG, it was 
discovered that spin networks could be used to describe the states of LQG. 
What is surprising, is that the spin networks at the quantum level, describe 
a space that is discrete. In the final chapter the spin foam quantization of 
2d GR developed in [1] is presented. In order to answer the question posed 
above, regarding the imposing of a classical constraint at the quantum level 
in LQG, we will proceed to extend this spin foam quantization to include 
supersymmetry. Though the extension is not complete, it represents in our 
opinion a first step to the inclusion of supersymmetry.



Chapter 2

General relativity and 
supergravity

We begin this chapter with a brief overview of the hamiltonian formulation 
of GR, followed by the introduction of the Ashtekar variables which will be 
encountered again in later chapters discussing loop quantum gravity. As the 
focus of this thesis is 2d supergravity and its quantization in loop quantum 
gravity, the hamiltonian formulation will be presented. It should be pointed 
out that though LQG does not require supersymmetry (a symmetry relating 
bosonic and fermionic particles) to be a consistent and valid theory, there 
are compelling reasons to include it. Today string theory is the only theory 
that could potentially unify all four fundamental forces of nature. It is also 
the only successful technique for investigating the perturbative regime. But 
string theory does require supersymmetry in order to be consistent. It is a 
current (tentative) hypothesis that LQG, specifically the spin foam formu­
lation, may serve as a non-perturbative and background independent frame­
work for string theory [64, 65]. Having introduced supergravity in 2d, the 
supergravity model of Howe [5] is considered in detail in the context of its 
formulation in superspace. Chapter 2 ends with the presentation of the su­
pergravity Lagrangians that will be written as the Lagrangians of constrained 
BF-theories in the following chapter.
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2.1 H am iltonian form ulation of G R  and the  
A shtekar-Sen variables

The quantization of gravity, which at least in principle, avoids background 
dependence is based on the ADM approach to Dirac quantization of the 
hamiltonian [23]. Though the essential details will be presented in what 
follows, for a more thorough explanation of the details involved in the hamil­
tonian formulation of GR, see [24, 25, 26]. The general action for Rieman- 
nian or Lorentzian GR in (d + l)-dimensions and in metric variables is the 
Einstein-Hilbert action

The curvature scalar associated with the metric g is R^d+l  ̂ and (in units 
where c = 1) k = 8irG, where G is Newton’s gravitational constant. The 
signature convention is ‘mainly’ plus, that is, (—, + , . . . ,  +) or (+, + , . . . , + )  
in the Lorentzian or Riemannian case respectively1. The topology of the 
manifold M  is assumed to be of the form I x S ,  where E is a d-dimensional 
space-like hypersurface without boundary, in order to perform the d + 1 folia­
tion of space-time. This assumption may seem over restrictive, but a theorem 
of Geroch [27] states that if a space-time is globally hyperbolic (existence of 
Cauchy surfaces, roughly speaking manifolds that admit a smooth metric 
with everywhere Lorentzian signature) then it is necessarily of this type of 
topology. At least classically (and for the Lorentzian case) the assumption 
of topology seems to be no restriction. Now consider the tangential vector 
fields Si(X) to the hypersurface E*, where i, j , . . .  label spatial quantities and 
the X  are space-time coordinates labelled by lowercase Greek letters from 
the middle of the alphabet. The normal vector field nß{X)  can be defined as 
gpun^S? = 0, g^n^rY  — —1 and the foliation vector T can be decomposed 
into the basis n, S

where N  is the lapse function and N 'Si is the shift vector fields. Here we are 
using the standard summation convention of summing over repeated indices.

1See the Appendix for the general notational conventions that are used throughout this 
thesis.

(2 .1)

T  = Nn + N'Si, ( 2 .2)
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The intrinsic metric and extrinsic curvature can now be introduced which 
are symmetric space-time tensors

Qßi/ Qßv T TL^Tli,, Q[ipQvcrNPTl , (2-3)

where is the covariant derivative. These two tensors are introduced be­
cause they are spatial, that is, they vanish when contracted with the normal 
vector, q^rY = 0. The information they contain is associated with the com­
ponents of the spatial fields 5*,

Qij ~  Qpv î Sj Kij — 2JjlQij ^N l Qij ] •

=  g ^ s t s ] ,  (2.4)

Here CNi is the Lie derivative with respect to the shift vector field N l and 
the dot represents differentiation with respect to t. The metric g can now 
be completely expressed in terms of the induced metric of £ and the 
functions N  and N l. Taking these variables as configuration coordinates 
in a phase space one performs a standard Legendre transformation of the 
Einstein-Hilbert action. The resulting action will depend on £, N, N l and 
the canonically conjugate momenta 7rtJ to the induced metric. The variables 
(qij, irlj) are known as the ADM variables. Varying the action with respect to 
the shift and lapse functions produces the so-called vector (diffeomorphism) 
constraint V l(qij, 7 ry ’)  and the scalar (hamiltonian) constraint S(qij, 7ry  ) re­
spectively [26]. With these constraints the action can be written as

where the hamiltonian H = NiV1 + N S  is a linear combination of first class 
constraints and as such vanishes on solutions of the equations of motion.

2.1 .1  T h e A shtekar-Sen  co n n ectio n  variables

Now we wish to make a change from the ADM variables just introduced to the 
connection variables first presented by Sen [63] and Ashtekar in [28, 29] (see 
also [30]) and extended by Barbero [31, 32] and Immirzi [33]. Using these 
new variables it is possible to formulate GR as a canonical gauge theory
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and greatly simplify the hamiltonian form of the theory. Indeed, by moving 
from the metric variables of the ADM formulation to these new variables 
allows the use of the huge number of techniques developed for the canonical 
quantization of gauge theories. This allowed huge steps to be made in the 
field of quantum gravity where before progress had virtually stopped with 
the ADM formulation for almost 30 years. The spatial metric can be 
expressed in terms of a set of d one-forms e“ defining a frame at each point 
of S (in 4d these are the triads) by

Qij =  e“ebj6ab, (2.6)

where a, 6, . . .  =  1,2,3 are SU( 2) indices (strictly speaking they are 50(3) 
indices, however, as we wish to introduce fermions later we will consider the 
double cover of 50(3), i.e. SU(2)). One may also define (the densitized 
triad)

K  =  \e iikw(2.7)

which transforms under the vector representation of SU(2). Using this def­
inition, the inverse metric q can be related to the densitized triad through 
det(<?)(?u =  E laEJb6ab. The su(2)-connection defining the covariant derivative 
compatible with the triad is the so-called spin connection w“, which is derived 
as the solution to the Cartan structure equations

d {ie<j\ + ^ b c ^ i t f )  =  0- (2-8)

Here the square brackets denote antisymmetrization of the indices. The new 
Ashtekar-Sen variables can be defined by introducing the su(2)-connection 
A f as

i4? = o f +  7 * ? , (2.9)

where 7 6 C \ { 0}is the Immirzi parameter [34] and K “ =  KijEJb6ab are the 
momenta conjugate to the densitized triad E la. The new connection is nice 
in the sense that it too is conjugate to E la. The new variables (A?, E la) form 
a conjugate pair, with the Poisson brackets of the new variables being

{ E l  A]} = Kjö* 5$, { E l  E l} =  { A l  A$} =  0. (2 . 10)
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Rewriting the hamiltonian formulation of the GR action (2.5) in the new 
Ashtekar-Sen variables (Af, E la) results in the action becoming

I  = ^ J d t J d dx [E ji?  -  N %  - N S -  eaGa], (2.11)

where the constraints are now given by

Vi­

s'

Ga

E ^ - i l + ^ G c
El EJh

—r =  ( eab F c -v/dit(Ep C
DiEi. ( 2. 12)

where the F “ appearing in the vector constraint is the curvature associated 
with the Ashtekar connection A“. The derivative is covariant with respect 
to both the metric and the gauge connection, i.e. with (2.9). The third 
constraint is the SU(2) Gauss constraint and is required to encapsulate a 
redundancy that occurs when expressing the components of the spatial metric 
qij in terms of the densitized triad E la. This redundancy corresponds to the 
fact that one may choose different local frames ela by acting on the internal 
indices with local SU (2) rotations. The covariant derivative in the constraint 
is with respect to the connection
The argument could be made that by going from the ADM variables (q^, 
to the new Ashtekar-Sen variables (A“,F*) which increases the degrees of 
freedom, one has made the classical theory more complicated. However the 
first class Gauss constraint (2.12) removes these additional degrees of freedom 
showing that the gauge theory phase space is indeed equivalent to the ADM 
phase space [26]. The advantages that come from working in this extended 
phase space is that canonical GR can now be formulated as a canonical gauge 
theory with su(2)-connection A“ and conjugate field E la. Not only does this 
open up a possible approach to a gauge group unification with the other 
known forces but the problem of quantum gravity can now be attacked using 
the knowledge acquired and techniques that have already been developed for 
the canonical quantization of gauge theories. It is precisely because of this 
ability to formulate GR as a gauge theory that so much progress has been 
made in the last two decades in quantizing gravity.
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2 .1 .2  G auge tran sform ation s

As was alluded to before the Gauss constraint (2.12) is associated with SU(2) 
gauge transformations and it will now be shown how gauge transformations 
are generated by these constraints. Starting with the Gauss constraint, defin­
ing the smeared version

G{e)= [  ddxeaGa = f  ddxeaDiE ia, (2.13)
J E Jz

it is not difficult to show that acting on the canonical variables under the 
action of the Poisson brackets (2.10) one finds the familiar results

M ? = M?,G(e)} = -A £ a, Ä<£* = {ß‘,G(6)} = [ A 4  • (2-14)

Here e = ear a, where r a are the su(2) generators in the vector representation. 
By writing the connection and conjugate momenta as Ai = A^ra and E l = 
E iar a, the finite form of the infinitesimal transformations above are

Ai -  gA,g+ gdg~\& -  g P g - '  (2.15)

which are the standard ways in which the connection and electric field trans­
form under gauge transformations in Yang-Mills theory. Performing the same 
procedure for the vector constraint (2.12) by taking the Poisson bracket of 
the smeared constraint

V(N)= J  (2.16)

with the canonical variables one finds,

6n A? =  ( 4 ,  V(N)}  =  CNA l  6NEi = { E l  V(7V)} =  (2.17)

where Cn is the Lie derivative in the ‘smeared’ direction N l. The vector 
constraint generates diffeomorphisms on the spatial surface E. Likewise the 
scalar constraint (2.12) generates coordinate time evolution up to spatial 
diffeomorphisms and local SU(2) transformations.
The total hamiltonian of GR is a linear combination of constraints and can 
be written as

H(e, N \  N) = G(e) +  V ( N l) + S(N) (2 . 18)
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is the smeared scalar constraint. In a generally covariant formulation of 
physics, a coordinate time t has no physical meaning. One is always free 
to change the way space-time is coordinatized while leaving the physics in­
variant. This can be seen by the fact that the parameters labelling spatial 
diffeomorphisms N l and coordinate time evolution N  are completely arbi­
trary functions and the corresponding motions on the phase space must be 
interpreted as gauge transformations. In other words, gauge symmetry in­
duces constraints in the canonical formulation and in turn these constraints 
are the generators of the gauge symmetry. The total hamiltonian generates 
space-time diffeomorphisms and els this is pure gauge the total hamiltonian 
is a constraint itself and vanishes on shell, H — 0.

2.1.3 An aside

Before moving on there are a few important things to mention. Firstly, the 
constraint algebra generated by the Gauss constraint does not differentiate 
between the Lie group 50(3) and its double cover 517(2) as both have the 
same Lie algebra. However, if one wants to include fermionic degrees of 
freedom, by incorporating spinors, then one is forced to use the group SU{2) 
[35, 36]. The second thing to note is that the Ashtekar-Sen variables do not 
have a simple relationship with space-time fields. In particular the Ashtekar- 
Sen connection (2.9) cannot in general be obtained as the pull back of a space- 
time connection to £. In [37] (in 4d) it was shown though, that for the specific 
choice 7 =  ± i of the Immirzi parameter, the connection obtained is the pull­
back of the self-dual part of a Lorentz connection ujab (A ,B — 1, . . . ,4).  
That is, Ai is the pullback of where

where
(2.19)

(2 .20)

The other remarkable thing about this particular choice of the Immirzi pa­
rameter is that the vector and scalar constraints (2.12) greatly simplify;
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\/det(E) 6 c ij
(2.21)

and consequently the total hamiltonian simplifies considerably. This was the 
original choice made by Ashtekar and loop quantum gravity was initially for­
mulated in these variables. The reason being that in order to quantize the 
scalar (hamiltonian) constraint (and hence quantize gravity) it was thought 
to be necessary to simplify the algebraic structure of the scalar constraint. 
By choosing 7 =  ±i, as was shown, the scalar constraint greatly simplifies 
and by multiplying by a factor of >/det(E), the constraint becomes polyno­
mial. There are however, a number of reasons why this choice in Immirzi 
parameter is no longer regarded as the preferred choice. Firstly the Ashtekar- 
Sen connection (2.9) is complex, i.e. At 6 sl(2,C), and there are technical 
difficulties yet to be overcome in defining the quantum theory when the con­
nection is valued in a Lie algebra of a noncompact group. The functional 
analysis on spaces of such connections is still not sufficiently well-developed 
to construct a quantum theory. Most progress in LQG has occurred by work­
ing with connections with compact structure groups. Due to the well-known 
properties of the compact group 5(7(2), such as the Haar measure and Peter- 
Weyl theorem, one can obtain a background independent representation of 
the quantum algebra and a spin network basis of the kinematic Hilbert space, 
which will be discussed in later chapters. In the case of A{ e sl(2,C) and 
using complex variables, the phase space of GR must be complexified and the 
original phase space can only be recovered by imposing the reality conditions

By making the scalar constraint polynomial, the spin connection uj(E) be­
comes a highly non-polynomial function. Implementing this reality condition 
at the quantum level by elevating it to an appropriate operator is extremely 
difficult to do. Thus it was accepted that 7 should be real in order to re­
move the problems associated with needing reality conditions and dealing 
with noncompact Lie groups at the cost of having a non-polynomial scalar 
constraint. In fact, it turned out (see [26]) that the non-polynomial nature is

A“ + Ä“ = ujf(E). (2 .22)
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actually required if one wishes to arrive at a well defined operator. Specifi­
cally it was shown that only scalars of density weight one could be quantized 
in a rigorous and background independent manner and hence the scalar con­
straint should not be multiplied by any power of >/det (E).
There is another argument for a real Immirzi parameter which is based on 
a physical reasoning. One of the most proclaimed results so far in loop 
quantum gravity is the derivation of the Bekenstein-Hawking formula for the 
entropy of a black hole [38, 44, 42, 43, 45]. In LQG there is an ‘area’ operator 
which measures the discrete area of a 2d surface S  C S  and the eigenvalues 
of this operator contain the Immirzi parameter. The Bekenstein-Hawking 
formula in this context becomes

SBH = ^ A s , y , - ™ .  (2.23)

For this result to match the statistical mechanical entropy given precisely 
by the Bekenstein-Hawking formula one must set 7 = 7o- Even though the 
arguments used to arrive at this result have been questioned and other values 
of the Immirzi parameter have been suggested [39, 40, 41], these values are 
always real.
So far, the Ashtekar-Sen variables that form the basis of loop quantum gravity 
were presented. It was shown how these variables allow GR to be formulated 
as a gauge theory. This is desirable for two reasons; first, the hamiltonian 
form of the theory is greatly simplified and second, the techniques developed 
for the quantization of gauge theories can now be used on the problem of 
quantizing gravity. Next we will consider 2d supergravity in the context of 
superspace. The method for constructing generic actions will be discussed 
and a number of different Lagrangians will be presented.

2.2 Supergravity

For the nongravitational forces, a unified renormalizable quantum field the­
ory exists, the well-known standard model. The electromagnetic and weak 
forces are unified within the SU(2) x U( 1) electroweak theory of Glashow, 
Salam and Weinberg. Describing the strong force, the interaction between
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quarks and gluons which keeps the nucleus together, there is the SU(3) the­
ory of quantum chromodynamics. It is these two theories together that make 
the standard model. But there is a major omission, the standard model does 
not contain gravity. The unification of gravity with the other known forces 
of nature has been one of the central problems of modern physics. Though 
many attempts were made, and numerous ideas were proposed, unification 
of the forces proved extremely difficult. The problem lies in the fact that 
the standard model is a quantum field theory and as such, is renormalizable. 
The incorporation of the principles of GR into these theories proved in the 
past impossible because GR describes gravity and gravity has a dimensional 
coupling constant. This dimensional coupling constant means that GR is 
not renormalizable. Thus what was needed was a field theory describing 
both gravity and the other forces that was based on the principles of quan­
tum field theory and general relativity that, though not renormalizable, still 
could make predictions. Supergravity [66, 67, 68] was proposed as such a 
theory. It is the gauge theory of supersymmetry, the proposed symmetry 
between bosonic and fermionic fields. It turned out that this gauge symme­
try between bosonic and fermionic fields could only be implemented in field 
theory if the spacetime is curved and hence only if gravity was included. The 
supersymmetric partner to the spin-(2) graviton is the spin-(|) gravitino, Xu- 
Simply by coupling a gravitino to GR, namely with the action (in first order 
form)

/ =  f  d ' x V ^ G R - i ^ X W v D ' X , ) ,  (2.24)

one could have a theory finite even at two loops. The infinities in the S- 
matrix in the first and second order quantum corrections cancel due to the 
supersymmetry. Unfortunately in the early 1980’s it became clear that above 
two loops supergravity was not renormalizable and the excitement and in­
terest in supergravity dropped off. That was however, until the late 1990’s 
during the second string revolution when supergravity in eleven dimensions 
made a comeback, being used to understand features of string theory and 
its relation with M-theory. What is more, recent developments indicate that 
certain supergravity theories, in certain dimensions, are actually likely to be 
finite.
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As mentioned before, loop quantum gravity does not require supersymmetry 
in order to be consistent, though it can be put in by hand if desired. There are 
good reasons though why we should take the idea of supersymmetry in loop 
quantum gravity seriously. These days string theory is the only theory that 
could potentially unify all four fundamental forces of nature. It is also the 
only successful technique for investigating the perturbative regime. String 
theory, unlike LQG, does require supersymmetry in order to be consistent. It 
is a current (and tentative) hypothesis that LQG, specifically the spin foam 
formulation, may serve as a non-perturbative and background independent 
framework for string theory [65].

2.2 .1  H am ilton ian  form ulation  o f 2d su p ergrav ity

Curved two-dimensional spacetime is worthy of study for at least two rea­
sons. First, it possibly has a connection with the real world through string 
theory. Second, it provides the simplest possible ground for a model of quan­
tum gravity and supergravity. There had been a barrier however that had 
prevented progress on the second of these lines of research. That is, the lack 
of a two-dimensional, non-trivial analog of the action principle for Einstein’s 
equations. In two spacetime dimensions the only non-trivial, local analogue 
of Einstein’s equations is

There is no invariant action constructed out of the metric gmn alone, that is 
the integral of a local Lagrangian that gives the equation of motion (2.25). 
Indeed if one varies the Einstein-Hilbert action f  y/—g{R — A) in two dimen­
sions, due to the curvature term being proportional to the topological Euler 
characteristic, one is left with the statement A =  0 and no restriction on 
the metric. It is possible however, to recover the equations of motion (2.25) 
from a non-invariant action [46, 47]. In general, the hamiltonian equations 
of motion for a dynamical variable F  are obtained from

where in the 2d case the index m  =_L, 1, where _L denotes the normal direction 
to the spacelike hypersurface of constant time and m — 1 labels tangent

R  — A =  0. (2.25)

(2.26)
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vectors to the spacelike surface. The bracket is the  normal Poisson bracket 
in the classical theory or a com m utator divided by ih in the quantum  case. 
The ham iltonian generators Ttm are constructed from the canonical variables. 
The T]171 are arb itrary  functions of space and tim e and determ ine the surface 
at tim e t + 6t from the initial hypersurface a t tim e t. The arbitrariness of the 
r]m in the ham iltonian formulation is the expression of the general covariance 
of the equations of motion. The action corresponding to the equations of 
motion (2.26) is of the form

I dt dx (<̂ 7r — r]rri7im), (2.27)

where </?, 7r are canonical variables. In two dimensions this action is not in­
variant under spacetim e reparam eterisations though the equations of motion 
are. To make contact with gravity, the ham iltonian generators are explicitly 

given by

7i ± = |(/c7r2 +  k 1ip'2) — 2k l ip" — k 1Aexp(y?),

Hi = tV - 2?r', (2.28)

which satisfy the necessary surface deform ation algebra for any value of k, X 
with central charge z =  A8nk~l (see [46, 47] for full details of this algebra and 
the derivation of the above generators). Substitu ting these equations into the 
action (2.27), eliminating i t  for p  and varying the action with respect to < /? , 

the equation of motion

6I/6g> =  gmn6I/Sgmn = - k ~ l y/=g(R -  A), (2.29)

is recovered. To obtain this result, it is necessary to use the relation

9 m n exp(</?) W' )2 ~  ( ?? 'L) 2 V 1
1 (2.30)

between cp and the metric gmn. The action (2.27) w ith the appropriate hamil­
tonian generators provides a suitable alternative to the E instein-H ilbert ac­
tion in 2d, giving the correct equations of motion with the central charge z 
playing the role of the gravitational constant.
The extension to 2d supergravity is rather straightforw ard and was (to the
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author’s knowledge) first presented in [48]. The surface deformation alge­
bra generated by the H m admits a graded extension by including two real 
anticommuting supersymmetry generators S a. These supersymmetry gen­
erators may be obtained directly from the H m by taking the “square root” 
in a way completely similar to how supergravity in 4d is derived from grav­
ity. This method introduces an anticommuting Majorana spinor x, the two 
components of which, provide the anticommuting counterpart to the pair of 
canonical variables (</?, tt). The graded hamiltonian generators are;

H± = |(/c7T2 +  k~1(p'2) — +  2k~lm 2 exp(</?)

- i {2 k ) - l [xT^5X' ~  mexp((^/2)xx),

Hi = nip' -  2n' + i(2k)~lx Tx',

S  = 75X71" +  4A;-1x/ — k~l<p'x +  2m/k~l exp(<^/2)x (2.31)

and satisfy the graded extension of the surface deformation algebra for any 
value of the constants k , m  (where m  enters the equations through the spinor 
covariant derivative [48]) and central charge z =  487r/c~1. The action for 2d 
supergravity corresponds to the hamiltonian

H = J  dx(pmK m + iC5), (2.32)

where the spinor £ is an arbitrary function of space and time and is the 
anticommuting counterpart to rj. Once again, this action will neither be 
coordinate invariant or invariant under supersymmetry, but the equations 
of motion will be. Taking the action whose hamiltonian is given above and 
eliminating n for 0, one obtains the following expressions for its variational 
derivatives;

Sl/dp = gmJ I / 6 g mn = - k

'TmSI/Sxm =  -1  6ik-'((2.33)

where

R = R + 2 im {-g ) l/2eTnnXmlsXn +  2m2, 

H  =  |7 5 (-p )1/2(emnAnXn + |rn7mXm), (2.34)
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the covariant derivative is defined as usual, Dm = and the gamma
matrices 7 m, 7 5 (refer to Appendix for details on gamma matrices) corre­
spond to the standard Pauli matrices. The R  and H  terms (which together 
form a supercurvature) are related to each other by local supersymmetry 
transformations, as well as being covariant under coordinate reparameterisa- 
tions. Later in this chapter we will examine Chamseddine’s supersymmetric 
extension of the Jackiw-Teitelboim action of 2d supergravity (c.f. (2.80)). We 
would like to point out now, that if the cosmological constant is identified as 
A =  — |A/2 =  —2m2, then the above two terms that form the supercurvature 
are in exact agreement with those of Chamseddine’s supersymmetric exten­
sion.

2.2.2 Superfield  fo rm ulation  of N = l ,  2d su p erg rav ity

One of the models we wish to formulate later as a constrained BF-theory is 
Howe’s 2d, N=1 supergravity [5]. In the following section we will proceed to 
give the relevant details of this paper and a brief description of this model. 
The reason this particular model is of interest is because the bosonic part of 
the relevant action is simply Einstein’s gravity in two dimensions and hence 
is topological and proportional to the Euler number. The gravitino terms in 
the model ultimately make no contribution to the action. The topological 
nature of 2d gravity, as we will soon show, allows it to be easily formulated 
as a more ‘simple’ topological BF-theory. These BF-theories serve as a start­
ing point in the study of background independent theories. It is due to the 
topological nature of this model that we will use it later on to illustrate the 
extension of the Barrett-Crane technique to supergravity.
As mentioned before, supergravity is the gauge theory of local supersym­
metry and contains the corresponding gauge field, the gravitino which is a 
spinor field. Owing to the presence of spinor fields, supergravity is formu­
lated using the tetrads (c.f. (2.6)) (Cartan formulation) of GR rather than in 
the metric formulation. Furthermore, we will now make a shift to working in 
superspace, an extension of normal spacetime as this comes with a number 
of advantages. Supersymmetry extends ordinary spacetime symmetries by
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adding N  spinorial generators Q whose anticommutator produces a transla­
tion generator, {Qm,Qn} = Pmn where the indices run from 1 to N.  This 
symmetry can be realized on ordinary spacetime fields by transformations 
that mix bosons and fermions. But this ‘component by component’ ap­
proach is unnecessarily complicated and inconvenient. A compact approach 
is given by the superspace-superfield approach. Superspace is an extension 
of ordinary spacetime to include anticommuting coordinates in the form of 
Weyl spinors 0. Superfields ^(rr, 0) are functions defined over this space. 
The Taylor expansion of these superfields with respect to the anticommuting 
coordinates is finite as the square of any anticommuting quantity vanishes. 
The coefficients of this expansion are the normal component fields. Also in 
superspace, supersymmetry is manifest being represented by translations and 
rotations involving both ordinary and anticommuting coordinates. A further 
advantage of superfields is that they automatically contain, in addition to 
the dynamical degrees of freedom, the unphysical auxiliary fields which are 
needed for the off-shell closure of the supersymmetry algebra.

2.2 .3  G eneral prop erties

The coordinates of 2+2 superspace are z M — (xm,6ß), where m, ß = {0,1}, 
the x's are the standard commuting coordinates and the 0’s anti-commuting. 
In superspace notation this can be expressed as

where \M\ — 0 (1) for bosonic (fermionic) indices. The dyads of standard 
GR are replaced by superdyads EMA(x, 0), which allows us to define a set of 
frames, that is, a basis of orthonormal one-forms

We are using the standard summation convention of summing over repeated 
indices and the superspace index A = (a, a), where a and a are tangent 
space and spinor indices respectively. We can also define a covariant exterior 
derivative by

zMzN = ( - l ) M I  N\zNzM (2.35)

E a = dzMEMA. (2.36)

D V a = dVA + v Bn £ dzMDMV A (2.37)
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where QBA is the superconnection and V A is some field transforming as a 
supervector under the tangent space group GL(2,2). Similarly the torsion 
and curvature two-forms are defined by

T A =  DEa =  \ E C A E bTb c a ,

r ab = dnAB + n Ac  a n c B = \ e d a e cr c d a b , (2.38)

which satisfy the Bianchi identities

D T a = E b A R ba,

D R ab = 0. (2.39)

It is well known [5] that by imposing the kinematic torsion constraints

V  = 2*(7aW  Tßl« = Tbca = 0, (2.40)

the number of independent components in the supertorsion and curvature 
are reduced and in fact can be expressed by one scalar superfield S, which 
we will now go on to show takes the form

S  =  A + 0 > a + \06C, (2.41)

where 66 = 6u6a and C and R  are given by

C = R -  \ x a l â  +  { tabXalsXbA -  \ A 2,
R = 2emndmun. (2.42)

(The gamma matrices here have been chosen to be real. See the Appendix
for details). Explicitly the supercurvature tensor can be simplified due to the 
2d Lorentz group to the form

R ab = , (2.43)

where F  =  dPt and QAB = QEa b . From (2.40) one gets, using the Bianchi 
identities the following components of the super curvature;

Rab = eabDaDaS -  eabS 2,

Raß 4(75 ̂ )aßSi

T ab = 2«(757b)c/ DßS. (2.44)
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Clearly if S  vanishes then the curvature does too and the space is flat. In 
this case the superdyad becomes

Ema = sm\  e m°=  o ,  ß ;  =  i 9 A( A V  =  V -  ( 2 -4 5 )

2.2.4 W ess-Zum ino G auge

To discuss the component formalism of supergravity we must make our way 
from the superfield to the component language. In order to do this it is nec­
essary to eliminate the superfluous auxiliary fields required by the superfields 
to ensure off-shell closure of the supersymmetry. This is achieved by choosing 
the Wess-Zumino gauge for the superdyad. Under a general super-coordinate 
transformation the superdyad changes as

f )? 'N
Em a (z) =  q^(2.46)

Expanding z' as a power series in 9M it is easy to see that a number of
parameters can be used to gauge some of the components of E^A to zero. A
superdyad can always be brought to the Wess-Zumino gauge;

E °  ~  V* + (2.47)

where EVßa = Eßl/a and Eu a =  Eßl/a, using the super coordinate transfor­
mation (2.46). Setting the first component of Ema to be the dyad ema and 
the first component of Ema to be the Rarita-Schwinger field |x ma one can> 
using the kinematic torsion constraints (2.40) and the Bianchi identities cal­
culate the full 9 expansion of the superdyad, (see [5]). From the condition 
Tabc = 0 and using the definition of supertorsion (2.38) one finds that the 
spin connection um is

Um = - e amtnldne? + |xm757nXn, (2.48)

(see [5] for explicit details on the relation between um and the superconnec­
tion Dab). Similarly for ?/>, the second component of the scalar superfield S, 
one finds from Tbca = 0 that

ip = —2iemn'ybDmXn ~ \ l mXmA (2.49)
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where A  is the leading component of the superfield S  and the bosonic space 
covariant derivative is given by

DmXn dmXn 2^rn'Î ~Xn‘ (2.50)

Note that due to (2.48) the bosonic space torsion is non-vanishing;

•̂ mn = Dmen ~ Dnem — |Xm7aXn- (2.51)

Putting all this together we have the complete form for the scalar superfield 
S  (2.41) which was given above. Note that the bosonic space curvature scalar 
R  of the spin connection u m (2.48) includes the gravitino field.

2.2 .5  S y m m etry  T ransform ations

In the previous section we went to the Wess-Zumino gauge in order to elimi­
nate the auxiliary fields from the superfields to obtain the appropriate com­
ponent formalism. However, in doing this, the gauge was not fixed completely 
and several parameters remain free. Initially there were twenty free parame­
ters; sixteen arising from the general super-coordinate transformations (2.46) 
and the expansion of z' as a power series in 6 and four parameters coming 
from local Lorentz transformations. A total of fifteen of these parameters 
can be used to give gauge fixing conditions. Specifically, the free parameters 
that remain are the zeroth component of the superspace diffeomorphisms and 
the zeroth component of the Lorentz transformation used to gauge away the 
first component of the super connection and the antisymmetric part of 
the 6 coefficient. Thus our choice in gauge has reduced the original invari­
ance from twenty parameters down to five which correspond to bosonic space 
reparameterisations, local Lorentz transformations and local supersymmetry. 
Having used both super-diffeomorphisms and Lorentz transformations to fix 
the gauge we see that the superdyad and superconnection obey the following 
infinitesimal transformation rules,

SEam = f d NEAM + dMi NENA + EMBLBA,

5Q.M — + d j — (2.52)

where the vector superfield £N{z) parameterizes super-diffeomorphisms and 
Lab is the generator of Lorentz (super) transformations. There is only one
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generator LAB in the superalgebra and it has components Lab ~  eab and 
LJ3 ~  (7 5 )0  ̂ in the vector and spinor representations respectively. For 
details on the explicit calculation of the supersymmetry parameters, see [6]. 
Ultimately one arrives at

= rp  -  i ( i md + ^0C7n7mXn,

^  = C -  ^ 7 mc X r/ -  \0 X(ns)x^ -  i^ (7 5 7 mr < > m  -

-  |^ C 7 n7mXnXmM>
L = I — |C7 &9 A — iC,^m9u +  \99^% ^  + ^ ^ C 7 m75Xm^ +

+ !^ C 7 n7mXnWm, (2.53)

where rjm, ^  and I  correspond to bosonic space coordinate transformations, 
local supersymmetry and Lorentz transformations respectively. Using (2.52) 
and the above parameter expansions it is straightforward to calculate the 
local N  =  1 supersymmetry transformations for the component fields;

5ema =  «C7°Xm. <5xm = 2DmC -  i 7mCA, (2.54)

and further more

5ujm = -illm lb ty  -  IC75XmA, 5^  =  -iC7m {dmA 7- \xm A) V CC. (2.55)

Following the same procedure we find the reparameterisations, forming the 
group Diff(M);

f ip  a =  T)n c) P a 7  P a f )  T)n ucm '/ uncm ' en um'l j

^Xm =  7 ^nXm d" Xn^m7 >

SA = r]ndnA,

S ^ m  9  “I- ^n & m J i i (2.56)

and the local Lorentz transformations

=  h \ e mb,

^Xm = 4^75Xm)
SA = 0,

m = (2.57)



CHAPTER 2. GENERAL RELATIVITY AND SUPERGRAVITY 24

We also have the ordinary Weyl transformations, which are rescalings of the

where Ll =  ea. A space is conformally flat if there is a coordinate system such 
that the metric is proportional to the flat metric. Recall that in two dimen­
sions all spaces are locally conformally flat. In [5] the notion of a superspace 
being superconformally flat was developed. If one naively attempts to gener­
alize the Weyl transformations to superspace and insists on the preservation 
of the torsion constraints (2.40) then the scaling parameter is restricted to 
be a constant. To overcome this define super Weyl transformations by

where (f)aa =  —i(/ya)af3DßA1̂ 2 is a spinor parameter. It is now possible to 
define a superconformally flat superspace as one for which we can choose a 
coordinate system such that the superdyad is related to the flat superdyad 
by the above super Weyl transformations, where in this case EMA is given 
by (2.45). It is always possible to pick a gauge such that the above argument 
holds and hence any (2+2)-dimensional superspace is superconformally flat. 
However, if the kinematic torsion constraints are not satisfied then this does 
not automatically hold. It is interesting to note that in this gauge the bosonic 
space torsion is zero and the x  contribution to the spin-connection u>m (2.48) 
drops out also. The final symmetry then is the super Weyl transformations

metric gmn -+ D2gmn]

(2.58)

(2.59)

(2.60)

Having discussed the properties of superspace, the details of Howe’s 2d su­
pergravity and the corresponding symmetries we will now look at some La- 
grangians of various supergravity theories formulated in superspace.
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2.2 .6  S u p ergrav ity  L agrangians

Before considering various models of supergravity and their corresponding 
Lagrangians, let’s first examine briefly the general construction of actions in 
superspace. For a more in depth discussion of this topic see [70]. To construct 
a locally supersymmetric action one must first covariantize all derivatives and 
the measure. For integrals over all of superspace, analogous with ordinary 
space, we will use the generalized determinant E  of the superdyad as a density 
to define a covariant measure. Explicitly, this measure takes the form [69]

E = e( 1 + 1 ieaT j x m ß  + Ö0[\iA + ])■ (2.61)

where L is a general real scalar superfield constructed out of covariant matter 
fields and derivatives. By construction, the transformations of L and E  are 
such that the action is left invariant [70]. The first Lagrangian to consider is 
L = 1. In this case we have the action

which would correspond to the cosmological constant in bosonic gravity. Here 
A is an as-yet uneliminated auxiliary field, so this action is on-shell. By itself 
this action only has trivial solutions but if added to other Lagrangians may 
yield nontrivial contributions. We will illustrate later how a cosmological 
constant can be added to a supergravity model. The next simplest case to 
consider is when L = S  (2.41), which corresponds to the supergravity of 
Howe [5]. For this choice we have the action

Using this we can write actions of the form

(2.62)

I

(2.63)

I  = / (fxcPeES

(2.64)
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This is (at least locally) a total derivative and is well known to be a topolog­
ical invariant, the Euler number x(M).  This topological invariant measures 
the inability to construct globally flat coordinates. In 2d, due to the symme­
try properties of the Riemann tensor, it has only one independent component 
which we take as ^ 1212- With the following relations for the Ricci tensor and 
scalar;

det (ö')Rmn 9mnR 1212? det(^)R =  2i?i212> (2.65)

it is easy to see that the Einstein equations,

^ m n  “  —  0> (2 .66)

are trivial, the Einstein tensor vanishes identically in 2d. Any metric is a 
solution to the vacuum Einstein equations. That the Einstein-Hilbert action 
in 2d is locally a total derivative follows [2];

C = y / d ^ ) R  = det(e) emaeanRpmpn

= det(e) emaendead d[mu nj

=  |det(e) det(e_1) emn d[mu n] = emndmujn, (2.67)

where Rabmn = eabd[mu;n], assuming that Dmena = 0. The spin-connection 
um is defined by the Cartan structure equations (2.8) and in what follows 
we will be dealing with an 50(2) connection. As the Einstein-Hilbert action 
(2.1) in 2d is a total derivative we would naively expect from Stokes’ theorem 
that the action is just equal to zero on manifolds without boundary. As is 
well known, this is not the case. For compact, orientable 2d manifolds we 
have the Gauss-Bonnet theorem (see [3] for details),

1
27T

Kda = X(M), ( 2.68)

where K  =  is the total curvature and da = y/det(g)dxl A dx2 is the
oriented area element of the manifold. The Euler characteristic x(Af) only 
depends on the genus of the manifold and is given by x(Af) =  2 — 2h, where 
h is the genus. Using the Gauss-Bonnet theorem (2.68) and (2.65) we easily 
see that

f  d2x y /det(g)R = 47rx(M). (2.69)
J  M
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From this we can see that the above action (2.64) is proportional to the Euler 
number;

/  = / d2x em

= J d 2x e R ~ x ( M )  (2.70)

and that Howe’s 2d, iV = 1 supergravity is trivial and reduces to 2d Einstein 
gravity. One should note that the spin-connection in the above Lagrangian 
is that of (2.48) and therefore contains gravitino terms. To see that these 
gravitino terms make no contribution to the Euler number it is convenient 
to decompose the Rarita-Schwinger field in the following Lorentz covariant 
way

Xm r)m4> 4“ Am> (2.71)

where Xm satisfies the condition, 7 • A = 0. Furthermore, due to the two 
dimensional identity

7m7n7m -  0, (2.72)

we can write Am as
Am = 7n7mDna, (2.73)

for some spinor a (see [11] for details). Using the supergauge transformation 
(2.54), we can set a to zero. In this gauge the bosonic space torsion is zero 
and the gravitino terms in (2.48) drop out giving no contribution in the above 
action. It is this very gauge that is used in proving that all (2+2)-dimensional 
superspace are superconformally flat. A proof that the ‘super Euler number’ 
reduces to the ordinary one;

X(M)
i

2n
d2xd26 E S  = —  

27T
d2xd29 eR (2.74)

regardless of which gauge is picked, can be found in [7].
Further supergravity models can be constructed along these lines by consid­
ering higher order terms in the supercurvature S  [69]. Though these models 
often have the nice property of being non-trivial, they do not lend themselves 
to being formulated as constrained BF-theories. As such we will not discuss 
them here.
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The final action we wish to discuss with an eye on formulating it as a 
BF-theory is the supersymmetric extension of the Jackiw-Teitelboim model 
[9, 46, 47, 10] studied by Chamseddine [8]. The Jackiw-Teitelboim model is 
obtained by dimensional reduction of the (2+l)-dimensional Einstein-Hilbert 
action leading to the two dimensional action

through a Lagrange multiplier, the dilaton field 0. In two dimensions it 
is not possible to decouple the dilaton field. It turns out, using the super­
space formalism of Howe, that the supersymmetric extension of the Jackiw- 
Teitelboim model is quite easy to obtain as one can simply replace the fields 
with the corresponding superfields. The supergravity action presented by 
Chamseddine is therefore

Integrating over 9 and eliminating the auxiliary fields by their equations of 
motion, we recast the action in component fields,

(2.75)

where the scalar curvature R is equated to the cosmological constant A

(2.76)

where the dilaton superfield 4> has the theta-expansion

$  =  <j) + 0qAq + i60F. (2.77)

The role of 4> is to impose the constraint

S -  X' = 0, (2.78)

which in component form is

A = A', ^  =  0,
C = 0 =*■ R  = {em"Xm'l5XnA -(2.79)

7 = 4 -  / ’d2xe{0(7?+iA '2- |A ,e”l"Xm75X n)-2iA (emn75Dmx„+^A'7mXm)}
(2.80)
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This is N  =  1, 2d superfield supergravity in component form, in Wess-Zumino 
gauge, with Dmx n (2.50) and R  (2.79) imposed, with residual local super- 
symmetries and Weyl invariance, derived from Chamseddine’s supergravity 
action (2.76). If the Rarita-Schwinger fields are set to zero we recover the 
bosonic Jackiw-Teitelboim model with cosmological constant A =  — \ \ ' 2. In 
comparison, we see that Howe’s form of supergravity (2.64) reduces to the 
Euler characteristic (2.70). Later we will show how these actions can be for­
mulated as constrained BF-theories with OSp( 1|2) gauge group.

This first chapter began with a brief introduction to the hamiltonian for­
mulation of general relativity in the ADM variables. In this formulation, 
the solutions to the hamiltonian constraints are incredibly difficult to solve. 
In fact, very limited progress could be made in the field of quantum grav­
ity using these variables. But with the introduction of the Ashtekar-Sen 
connection variables, GR could be formulated as a canonical gauge theory. 
Though it seems that changing to these new variables increases the degrees 
of freedom, complicating the classical theory, the first class Gauss constraint 
removes them. Thus the phase space of the gauge theory and the ADM phase 
space are equivalent. W hat’s more, by using the new variables and formu­
lating GR as a gauge theory, one could use the large number of techniques 
that had been developed for the quantization of gauge theories to attempt 
to quantize GR. It is no surprise then, as we shall see in a later chapter, that 
loop quantum gravity is formulated using the Ashtekar-Sen variables. The 
next section introduced supersymmetry and more specifically supergravity. 
As has been mentioned a number of times before, supersymmetry is not a 
necessary requirement for loop quantum gravity to be consistent. Indeed, it 
must be put in by hand. Though the importance that supergravity plays in 
string theory and the possibility of a connection between string theory and 
loop quantum gravity suggest that the idea of supersymmetry in loop quan­
tum gravity is one worth pursuing. Having presented for completeness the 
hamiltonian formulation of 2d supergravity, it was then formulated in super­
space coordinates. Two models were presented, the first being the N  = 1, 2d 
supergravity of Howe [5] and then second was Chamseddine’s supersymmet-
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ric extension [8] of the bosonic Jackiw-Teitelboim model of 2d GR. In the 
next chapter we will discuss a topological field theory known as FF-theory 
and the corresponding super FF-theory and show how these two theories of 
supergravity can be expressed as FF-theories with certain constraints. Ulti­
mately we wish to see how these classical constraints may be imposed at the 
quantum level in the context of LQG.



C h a p te r  3 

B F -th eo ry

Topological field theories offer an exciting possibility to combine ideas from 
physics and mathematics. They are quantum field theories with no physical 
degrees of freedom and their properties are fully determined by the global 
structure of the manifold they are defined on. A remarkable feature is that 
for many topological theories, like Donaldson theory and Chern-Simons (CS) 
theory, the expectation values of the observables are topological invariants. 
In the case of Chern-Simons theory, this provides a three dimensional inter­
pretation of the theory of knots. The Wilson loops in the theory are closely 
related to the Jones Polynomials of knot theory [71]. Another important 
application of CS theory is in three dimensional gravity. With the Poincare 
group as the gauge group, the CS action is the Einstein-Hilbert action [21], 
giving a gauge theory formulation of gravity in three dimensions. However, 
Chern-Simons theory is defined only in three dimensions. The generalization 
to arbitrary dimensions gives rise to BF-theory. These BF-theories, like CS 
theory, describe the moduli space of flat connections.
This chapter begins with a discussion of the general properties of BF-theory, 
which is a Schwarz type topological gauge theory. Defined on spacetimes of 
any dimension, these theories are topological and hence background indepen­
dent, needing no pre-existing metric or any other such geometric structure 
on spacetime in order to formulate them. Having presented the basics of 
BF-theory we will show how 2d GR can be formulated as a BF-theory with 
the addition of some constraints. These constraints have an important role 
to play and will be examined in more depth later in the chapter. Following

31
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this we will proceed to introduce the supersymmetric extension of BF-theory 
[72, 73, 74], which is a Witten type topological theory. Deviating from the 
usual procedure in the literature, the ‘super’ BF-theory will be formulated 
with supergroups. Two different 2d supergravity models will be presented as 
super BF-theories with the addition of constraints on the action.

3.1 Schwarz type topological gauge theories

Topological field theories (for an excellent review see [75]) can be classified 
into two types, both of which we will discuss in this chapter including some 
well-known examples. The first type that we shall discuss are the Schwarz 
type [76]. These theories are defined by their quantum action being given by 
(in general)

Sq($,g) = Se(*) + {Q,V(*,g)} ,  (3.1)

where 5C($) is a metric independent classical action which is not a total 
derivative and depends on the field content which contains gauge fields, 
ghosts and lagrange multipliers. Q is the BRST operator corresponding to 
the local gauge symmetry of the theory and V($,g)  is some field and met­
ric dependent functional. As the classical action is metric independent the 
classical energy-momentum tensor is zero. Defining the complete energy- 
momentum tensor Taß by the change in the action under infinitesimal defor­
mations of the metric

s i <“ >
if (3.1) holds then

Taß={Q,j=$,}.(3.3)

It follows from this that the partition function is metric independent. Ex­
amples of theories that satisfy the above properties include Chern-Simons 
theory in 3d, Abelian BF theory and 2 and 3 dimensional non-Abelian BF 
models. In the case of non-Abelian BF models, when the dimension n > 3, 
even starting with a metric independent classical action, properties (3.1) and 
(3.3) do not hold and further work is required to show that the resulting 
quantum theory is indeed topological.
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3.1 .1  B F -th eo ry  basics

In general, BF-theory can be defined on space-times of any dimension. As 
such, in this discussion on the generic properties of BF-theory, we take space- 
time to be any n-dimensional oriented, smooth manifold M . The gauge group 
G can be any Lie group whose Lie algebra g is equipped with an invariant, 
non-degenerate bilinear form (•, •). We choose a principal G-bundle P  with 
base space M  and the fields of the theory are a connection A on P  and an 
ad(P)-valued (n — 2)-form B  on M. The curvature of A is the ad(P)-valued 
two-form F. Here, ad(P) is the vector bundle associated with P  through 
the adjoint action of G on its Lie algebra. Choosing a local trivialization we 
can think of A , B  and F  as a g-valued one-form, (n — 2)-form and two-form 
respectively. The Lagrangian density formed from these fields is

L = (B,F),(3.4)

which is an n-form, by taking the wedge product of the differential parts 
of B  and F  and the Lie algebra parts are paired using the bilinear form. 
When the gauge group G is semisimple the bilinear form can be taken as 
the Killing form (x, y) = tr(xy), where the trace is taken in the adjoint 
representation. The equations of motion derived from this Lagrangian by 
varying with respect to the connection A  and the B-field are respectively

dB{x) =  0,

F(x) = 0. (3.5)

These equations of motion are solved by any constant .B-field and flat con­
nection and locally, all solutions are equivalent. This is clearly true for the 
connection as all flat connections locally, are equivalent up to gauge trans­
formations. To see that the B-field solutions to (3.5) are equivalent it is 
necessary to observe that the BF-action is invariant under another symme­
try. This additional symmetry is

A  —> A, B  —> B  T dj\£,) (3.6)

for some [n — 3)-form £ and where cU is the exterior covariant derivative. 
These symmetries are gauge symmetries in the sense that any two solutions
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differing by this symmetry should be considered as physically equivalent. 
Due to the fact that locally all closed forms are exact, it follows that if A  is 
flat, any B-field which satisfies the constraint (3.5) can be written locally as 
cIaC The solutions to the equations of motion are equivalent locally and as 
the classical theory has no local degrees of freedom it is topological and of 
the form (3.1) with V = 0.

3 .1 .2  2d G R  as a con stra in ed  B F -th eo ry

With the basics of BF-theory presented previously, we wish to consider in 
this section the points of contact and difference between 2d GR and 2d BF- 
theory. It will be shown how GR can be formulated as a BF-theory with a 
constraint applied to the B  field. As was mentioned, these constraints play 
a vital role. Recall that BF-theories are topological and have zero physical 
degrees of freedom, yet GR does (at least in dimensions greater than two). 
These constraints ‘free up’ degrees of freedom as we will explain later. 
BF-theory in 2d is defined by the action

where B  is a Lie algebra valued scalar field and F is the Lie algebra valued 
two-form curvature of the spin connection u. In the particular case of 2d GR 
we consider an Abelian 50(2) connection on the frame bundle. Using the 
matrix representation of the so(2) generator

we can write the curvature as F aß = f r Qß, where /  =  is a real valued 
two-form. Letting B = br, the action (3.7) becomes

where we have used tr[rr\ =  —2. The equations of motion are the standard 
BF equations; the ß-field is covariantly constant and the spin-connection is 
required to be flat. Like 2d BF-theory, 2d GR has no local degrees of freedom 
and is topological. The curvature term in the action is a total derivative and

(3.7)

(3.8)
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the action is proportional to the Euler characteristic x(M)  [77] (c.f. 2.70). 
However it differs to BF-theory in that the equations of motion of 2d GR 
are solved by any spin-connection u>, not necessarily one that is fiat. We can 
follow the construction of 4d GR as a constrained BF-theory [51] to get the 
analogous result in the 2d case. By using a two-form Lagrange multiplier 0, 
we add a constraint to the original BF-theory (3.7)

7 = T / (r( S A f - « B 2 + l))
= k [ ( b f -  0(62 -  1)). (3.9)

Now the equations of motion obtained by varying u, B and 0, respectively, 
are

=  0,

f r  =  2 <f>(x)br,

— \tr[bTbr} = 1. (3.10)

As <j)(x) is arbitrary and free to take on any value we see that the connection 
u  is no longer required to be flat. In fact it can be any value as is the case for 
2d GR. Equation (3.10) is the 2d analogue of the Plebanski constraint which 
we will discuss in detail in Chapter 5. Substituting this constraint back into 
the action (3.7) and picking k = we obtain

Sgr —
sgn(e) f
8irG J  1 ’

(3.11)

which is just the 2d Einstein-Hilbert action,

7 =  lCrG /
(3.12)

in the ‘dyad’ formalism, where sgn(e) is the determinant of the dyad. Note 
that the two signs of \/detg correspond to the two solutions, B = ± r , of 
the Plebanski constraint. In 4d the addition of the Plebanski constraint 
enhances the number of degrees of freedom. This is due to the constraint 
constraining a constrainer, the Lagrange multiplier B. Here though, the 
situation is slightly different. The constraint enlarges the space of classical
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solutions of the equations of motion. This can easily be seen as the curvature 
(3.10) is no longer zero but arbitrary. But this does not increase the number 
of degrees of freedom because of gauge equivalence. In the 4d case, the 
temporal components of the B  field are Lagrange multipliers while in 2d 
the B  field is simply the conjugate variable to the spatial component of 
the connection. So the constraint does not constrain a multiplier and no 
additional degrees of freedom arise.
As is expected the 2d case is much simpler than in the 4d case, which will 
be presented later. Now we will extend BF-theory to include supersymmetry 
by using superfields. After introducing the basics, two supergravity models 
will be formulated as super BF-theories with constraints.

3.2 Super B F -theory

As we have seen, BF-theory is a topological theory of Schwarz type. This 
is not the case for the supersymmetric extension. The super BF-theory is 
a Witten type topological field theory [75]. This is a quantum field theory 
described by a BRST exact quantum action

S,(*,s) =  {<3,V(*,9)}, (3.13)

where represents the fields in the theory and g is the metric of the under­
lying manifold M. Q is the BRST operator corresponding to the local gauge 
symmetries and V  is some field and metric dependent functional. The rele­
vant BRST transformations are determined from the symmetries one wishes 
to study. Witten type field theories are in a sense a model that enables one 
to study the moduli space A4 of the theory under consideration. The moduli 
space is defined as the space of fields which are solutions to certain equations, 
modulo the symmetries one wishes to study. Roughly we have

_  {4> € S\D $ = 0}
{symmetries}

where S  denotes the space of fields and D is some appropriately defined 
operator acting on the fields. Generally, A4 will be finite and the theory has 
a finite number of degrees of freedom. Now we will proceed to discuss the 
details of super BF-theory formulated using supergroups.
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3.2 .1  2d su p ergrav ity  as a con stra in ed  B F -T h eo ry

One can extend the formulation of 2d gravity, described in the previous sec­
tion, to the supersymmetric case of supergravity in a super BF formulation. 
This is achieved by extending the symmetry group from SO(2) to the super­
group OSp( 1,2). One can then introduce the familiar B  field of BF-theory as 
a scalar field taking values in the corresponding Lie superalgebra. Similarly, 
from the connection A  the supercurvature F, a Lie superalgebra valued two- 
form field strength can be calculated. With these components, the action 
can be constructed and takes the form

1 =  [  S t r ( BA F) ,  (3.15)
J M

where one should note that Str  stands for the OSp( 1,2) invariant bilinear 
form which is unique up to an overall constant factor (see Appendix for 
details) and the manifold M  has the standard structure M 2 ~ l x  E1. The 
equations of motion mimic the standard case;

F = 0,
dAB = 0, (3.16)

with the curvature being equal to zero and the super Gauss constraint im­
posing the usual SU (2) gauge invariance and the additional supersymmetric 
constraint. We will now illustrate this procedure in detail by presenting the 
supersymmetric extension of the Jackiw-Teitelboim model of 2d gravity and 
the 2d model of Howe.

3.2 .2  T h e su p ersym m etr ic  Jack iw -T eite lb o im  m od el

It has been known for some time that the (l-t-l)-dimensional gravity model 
of Jackiw and Teitelboim has a topological and gauge invariant formulation 
[13]. It is also known [12] that the supersymmetric extension of the Jackiw- 
Teitelboim model (2.76) can be formulated in the framework of a topological 
super BF-theory. This formulation is based on the two dimensional graded 
de Sitter group, the supergroup OSp{1,2)*;

1See Appendix for details.
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[Pa, Pb] =  -jA  l2eabJ,[P0, J] = ea»Pb,

[Qa, J] =  |( 7  [ ^ ,  <?J =  \X('1c)J’Q0,

{Qa, Qß] = - H l  a)aßPa + (3.17)

with the parameter A'2 taking on positive, vanishing or negative values (note 
that the cosmological constant is A =  ^A/2, not A'). The graded invariant 
quadratic form consistent with a non-degenerate Casimir operator (except 
for A' =  0 corresponding to the supersymmetric extension of ISO (2). For 
details on this case see [75]) is;

(Pa,Pb) = Vab, (J, J)= 4/A'2, {Qa,Qß) = - (S i /X ’)taß, (3.18)

with all other relations equal to zero. Using this we can evaluate the BF 
action

/  =  L  J  Str(B  A F), (3.19)

where F = dA + A  A A  is the Lie superalgebra (3.17) valued, two-form field 
strength associated with the gauge field

Am = em° P„ -  uimJ + | x m“ (7 (3.20)

and
B = baPa + bJ + baQa (3.21)

is a scalar field, again taking values in the above Lie superalgebra. Calculat­
ing the curvature with respect to the connection Am (3.20), we have

Fmn = F^nPa + f mnJ + F^nQa (3.22)

=  (dmena -  eabumenb -  | x ma (7a)aßXnß)Pa 

+ (-dmUn -  \ \ ,2eabemaenb -  |A'xma(75)aßXnß)J 

+  (F>mXnß( l 5)ßa -  l ^ e nbXmßh 5)ß1(rrb)1a)Qa

and using the scalar superfield B  and doing a little rearranging we find the 
component form of the action (3.19) is,

1 = ̂  J  d2x {^ emn (dmena -  eabumenb -  \ x ma( l a)aßXnß)
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-  jrM ’nn (dmbjn + |A '2€a6em°en6 +  %Xxma{'1b)J>Xnß)

+ (emnDmXn ß( ' f ) ß° + |eA (3-23)

The role of the scalar superfield B , as in any BF-theory, is to impose the 
constraint Fmn = 0. If we integrate out the B-field we should recognize that 
the condition imposed by ba, that is Fmna = 0, is nothing but the standard 
torsion condition of supergravity, Tbca — 0 (2.40). Solving this constraint we 
can write the spin-connection um in terms of ema and x ma and recover the 
result (2.48)

um = - e am^nldneia +  \X m lslnXn- (3.24)

The other conditions, f mn = 0 and Fmna = 0, imposed by integrating out b 
and 6a , are exactly those for constant supercurvature. Specifically,

Fmna = 0 =* ^  =  0,
fmn = 0 => C = 0 (3.25)

and we have the supercurvature (2.41) being a constant

S  = A, (3.26)

where we have identified A with through its equation of motion. This 
restriction to constant supercurvature is the same as that imposed by the 
dilaton superfield (2.77) in the supersymmetric Jackiw-Teitelboim model (c.f. 
(2.78)). To make the connection between the above BF-theory formulation 
using the supergroup OSp( 1,2) and the supersymmetric extension of the 
Jackiw-Teitelboim action (2.76) complete, note that if we identify the com­
ponent fields of the superfield B  as b = A/2</>/2 and ba = —A'Aa/2 (where ba 
is Grassmann valued to avoid the vanishing of bab^eaß) and substitute the 
relation for the spin-connection (2.48) back into the action above we recover 
the action of Chamseddine (2.80).
The final thing we wish to mention about this gauge formulation of the su­
persymmetric Jackiw-Teitelboim model is the relation between supergauge 
transformations and local Lorentz, diffeomorphism and N  = 1 supersymme­
try transformations. If we look at the supergauge transformation

^e-^m F rnC 9 m C +  [Am, f] (3.27)
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with gauge parameter e =  r]aPa +  £J +  ( aQa, we eventually get

6ema =  0m77a +  em6eV  +  iC7aXm, 

öoJm =  d iJ  ~ \X,2eabemarjb -  JA'Cy5Xm,

6xm =  2DmC -  |A '7m(  +  4^7öXm ~ |A'xm757a^a- (3.28)

If we identify the transformations involving (  and i  with N =  1 supersym­
metry and local Lorentz transformations respectively we clearly see that they 
correspond to the transformations discovered by Howe [5] (c.f. (2.54), (2.55) 
and (2.57)), where we identify A' with the scalar auxiliary field A. The trans­
formations with parameter rja can be identified with diffeomorphisms up to 
local Lorentz and supersymmetry transformations in the constant supercur­
vature geometry.

3 .2 .3  H ow e’s su p ergrav ity

Starting from the OSp(l,2) BF-theory action (3.19) we saw, once written 
out in components, that we could recover Chamseddine’s supersymmetric 
extension of the Jackiw-Teitelboim model (2.80) after redefining the B-field 
and substituting in the solution for the spin-connection. Is it possible to 
recover Howe’s action (2.64) through the imposing of constraints and field 
redefinitions? Starting from the BF-theory action we can reduce it down to

I  = J  d2x  pj6emn d̂mu n + |A/2ea{,emaenb + |A'xmQ(75)Q̂Xn/3̂  (3.29)

by substituting in the solutions from the constraints imposed by ba and ba , 
that is, (2.48) and ^  =  0. If we now put b =  — A'2/4, we get

I = - ^ J d 2x 6m" (dmun +  §A'2eoi,emV  + ^ ’X ^ i ^ / X n ß ) , (3.30)

which in superfield notation is

I =  —  [  d2xd20 E(S -  A'). (3.31)
47r J

Therefore in order to recover Howe’s supergravity action it is necessary to 
take the limit A' —► 0, which is the super analogue of the standard conformal- 
Poincare contraction. To briefly summarize, the superfield action (3.31) is
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equivalent to the OSp( 1,2) super BF-theory action (3.19), only in the special 
case of b = \ \ ' 2, which only agrees with Howe when A' —> 0. However, start­
ing with the super BF action (3.19), one may also recover Chamseddine’s su­
pergravity action (2.80) with the identification b = A/20/2 and ba — —A'Aa/2 
and the elimination of the auxiliary field A. Thus, both Howe’s and Chamsed­
dine’s supergravity, though not equivalent, can both be derived from super 
BF-theory under the appropriate conditions.
In taking the limit A' —> 0, it is important to note that the supersymmetry 
transformations generated by supergauge transformations no longer close off- 
shell. Also we are still restricted to the case of constant super curvature, i.e 
ip = C = 0 and S — A = A'. Howe’s supergravity is not restricted to this 
situation and allows arbitrary supercurvature. To achieve this, rather than 
simply putting b = —A/2/4, we will add an algebraic constraint to the BF- 
theory action such that this particular value of b is a solution. A possibility 
is to add the constraint through a Lagrange multiplier two-form E,

Adding this constraint to the BF-action we now have the constrained action

1 =  [  S tr{BF  + E (£ 2 -  A)). (3.33)
JM

Mimicking the 2d bosonic case, varying the action with respect to the La­
grange multiplier gives the result

It is indeed possible to choose A in such a way that the solutions to this 
constraint, in component form, are

E (£ 2 -A ) . (3.32)

(3.34)

ba = 0. (3.35)

To see this more explicitly, note that the fundamental representation of 
OSp( 1,2) is three dimensional. The Lie superalgebra is then generated by
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five 3 x 3  matrices which are given explicitly in the Appendix. Expressing 
the scalar field B  and A as 3 x 3 graded matrices one can see that the entries 
can be chosen in such a way that the above constraints hold. So, from the 
super BF-action with the added constraint, we have the following equations 
of motion by varying with respect to the connection umi scalar field B  and 
Lagrange multiplier A respectively;

dB = 0,

F = £ £ ,

B 2 =  A. (3.36)

One can clearly see that as the Lagrange multiplier £  is arbitrary, the field 
strength no longer has to be zero and the supercurvature can be nonzero 
which is the case in the Howe model. Thus starting with the constrained 
BF-action, imposing the constraint B 2 = Ä on the B  field, with Ä chosen in 
such a way that the values (3.35) of the B  field hold, then once again the 
action (3.30) can be recovered without the restriction that the supercurva­
ture be zero. This however is not yet the action of Howe. As was pointed 
out before, the limit A' —> 0 must be taken. But in doing this the Lie su­
peralgebra reduces to the supersymmetric extension of I SO (2) which has no 
non-degenerate invariant bilinear form. Despite this, it is still possible to 
construct an invariant super BF-action for this group. This is achieved by 
rescaling the components of the connection and scalar field B  as follows [78],

*  kum, Xm * VkXm,

ba -  \ b a, b ^ \ b< ( 3 ' 3 7 )

and taking the limit k —> 0.

The idea of a quantum field theory with no physical degrees of freedom and 
whose properties are fully determined by the global structure of the manifold 
they are defined on may seem boring. Despite that these topological fields 
often have the feature of describing topological invariants which is worthy of 
study in itself, we saw in this chapter that these theories make direct contact 
with physics. A particular example of this kind of theory is Chern-Simons
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theory, which provides a description of 3d GR, and its generalization to arbi­
trary dimensions in the form of BF-theories. After discussing the properties 
and construction of the Schwarz type BF-theories we demonstrated how 2d 
GR can be formulated as a BF-theory with a constraint term added to the ac­
tion. This constraint had the effect of placing a restriction on the scalar field 
in the theory and substituting this constraint back into the BF-action we ar­
rived at the 2d GR action. This procedure directly follows the 4d case which 
will be discussed in Chapter 5. Extending this method to include supersym­
metry by replacing the gauge group with a supergroup led us to consider 
the super BF-theories. Explicitly, using the gauge supergroup OSp( 1,2) two 
supergravity models were formulated as super BF-theories. For the second 
of these models, that of Howe, it was shown that by copying the procedure 
for 2d gravity by adding a constraint term to the action, certain restrictions 
could be imposed on the scalar field B. When these constraints were put back 
into the BF-action, the recovery of Howe’s supergravity action was possible 
only in the limit of A' going to zero. Though this resulted in the reduction of 
the gauge group to the supersymmetric extension of ISO {2), which does not 
have a non-degenerate bilinear form, it was shown that a super BF-action 
could still be constructed with the appropriate rescaling of the component 
fields of the theory.



C hap ter 4

Loop Q uantum  G ravity

Standard quantum field theory provides an excellent unification of the prin­
ciples of quantum mechanics and special relativity. The standard model and 
its ability to describe the known particles and their interactions is a per­
fect example of a quantum field theory on the fixed background geometry of 
Minkowski spacetime. As such, the standard model can only be considered as 
an approximation of the description of fundamental interactions when gravity 
is negligible, as in the lab. Using the techniques of quantum field theory on 
curved spacetime would extend the domain of applicability of the standard 
model to situations where a nontrivial, but weak gravitational field is present. 
Such situations would occur when the spacetime curvature is small compared 
with the Plank scale. In the case of strong gravitational fields, such as at sin­
gularities, it appears that a full theory of quantum gravity is required. The 
principles of GR and quantum mechanics must be unified into one consistent 
theory. Considering the gravitational interaction, one can see that it is fun­
damentally different from the other known forces. The degrees of freedom 
of the gravitational field are encoded in the spacetime geometry. The space- 
time geometry is fully dynamical and the notion that space is absolute and a 
‘stage’ on which things happen no longer makes sense. The gravitational field 
defines the geometry on which its own degrees of freedom and those of matter 
fields propagate. Looking at the lessons of GR, implementing the principles 
of general covariance completely cuts out the concept of absolute space. Ac­
cording to Einstein the world is relational. There is no absolute space and 
it only makes sense to describe physical entities in relation to other physi-

44
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cal entities. Unfortunately the consequences of this view point in quantum 
physics are yet to be understood. In fact, when dealing with quantum grav­
ity, the standard procedure to date has been perturbative quantum gravity. 
In standard perturbative approaches one attempts to describe gravitational 
interactions using the same techniques used in the standard model. These 
techniques require a nondynamical background which arbitrarily separates 
the degrees of freedom of the gravitational field into two terms. The first 
term represents a background geometry which is fixed and the second 
term represents dynamical metric fluctuations h ^ .  The spacetime metric is 
given as

9nv =  '0 $ ) +  V -  ( 4<1)

However this strategy leads to a number of significant difficulties. Firstly, 
conventional perturbative QFT of GR based on the above split metric leads 
to a non-renormalizable theory. To get rid of these ultraviolet divergences one 
must resort to string theory. Furthermore, as was discussed previously LQG 
shows that at the Planck scale the structure of spacetime is discrete. Physical 
spacetime possibly has no short-distance structure at all. The assumption of 
a smooth, fixed background rjffi implicit in (4.1) may be precisely the cause 
of the ultraviolet divergences. Finally the idea of fixing part of the metric 
directly contradicts the physical lessons of GR. If we are to take seriously the 
ideas of GR and use them to guide us towards a theory of quantum gravity, 
the relevant spacetime geometry is the one determined by the full gravita­
tional field gßly. Loop quantum gravity is an attempt to define a quantization 
of gravity that is background independent and therefore also non perturba­
tive. LQG is based on the idea that (4.1) is not appropriate for describing 
the quantum properties of spacetime. The inputs to the theory are just QM 
and GR. No other additional physical assumptions, such as extra dimensions 
or supersymmetry, are required. The theory is based on the Hamiltonian 
quantization of GR in the Ashtekar-Sen variables which was presented in 
Chapter 2. In terms of these variables GR is formulated as a background 
independent SU  (2) gauge theory.
In this chapter we will present a standard strategy for the canonical quan­
tization of GR, ultimately leading to the description of a Hilbert space of 
states and the kinematics of the theory. In order to implement any quanti-
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zation procedure a choice has to be made, which quantities to promote to 
quantum operators. In QFT, this quantization leads to the creation and 
annihilation operators a and (A. What characterizes LQG is the choice of a 
different algebra, based on the holonomies of the gravitational connection. 
The holonomy, which is the matrix of the parallel transport along a curve 
\  will be presented in this chapter. It is from these holonomies that state 
functions can be defined in LQG and the kinematic Hilbert space can be 
described as will be demonstrated.

4.1 C anonical quantization of G R

As was shown in the previous chapters, GR can be formulated as a con­
strained hamiltonian system. The quantization of generally covariant systems 
was first considered by Dirac [49] and consists of the following generalized 
steps [26, 50]:

(i) Define the classical phase space (M, {.,.}), including a set of first class con­
straints and (possibly) a hamiltonian. In order to quantize the phase space, 
one must choose a submanifold C of M called the configuration space, the 
coordinates of which have vanishing Poisson brackets amongst themselves. 
We will assume that M is a cotangent bundle M = T*Q and it is natural to 
take C = Q.

(ii) Find a representation of the phase space variables as linear operators
on some kinematical Hilbert space Hkin satisfying the commutation relations 
{ , }pB —>► , ]. Specifically, consider the spaces C°°(C) and V°°(C) of
smooth functions and vectors fields on C respectively. The pair C°°(C) x 
V°°(C) form a Poisson-Lie algebra defined by the relation [(/, u), (f',v')\ = 
(v[f'} — v'[f], [v , t/]), where v[f] denotes the action of a vector field on a func­
tion. The space of fibre coordinates of M, called momentum space, generates 
preferred elements of V°°(C) through (vp[f])(q) \= ({p, /})(<?), where q,p are 
configuration and momentum coordinates respectively. The elements (/, vp)

1In LQG, the holonomy is defined on a curve, not necessarily closed, which is the usual 
definition.
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form a subalgebra B of the Lie algebra C°°(C) x V°°(C). The subalgebra 
B is closed in the sense that for every element ( /" ,vp») G B the relation 
[(/, vp), ( / ',  vp')} — (/", v )  holds. One then wishes to find all irreducible 
representations 7r : B —> C{Hkin) of B as linear operators on Hkin, such that 
the commutation relations

*r(M D =  T l7r(a)’7r(6)]>
7r(a*) =  7r(a)  ̂ (4-2)

are implemented for all a,b G B and where the * and f-relations are complex 
conjugation and the adjoint operation respectively.

(iii) Constraints are promoted to self-adjoint operators in Hkin- For GR 
these are the vector, scalar and Gauss constraints (2.12). The number of 
representations which support the constraints and the hamiltonian as oper­
ators is usually limited if at all possible. Typically the constraints are not in 
B and corresponding operators will involve ordering ambiguities. However it 
is usually possible to find a domain Vkin C Hkin on which all the operators 
and their adjoints are defined and which they leave invariant.

(iv) Find the space of solutions to the quantum constraints. Generally, so­
lutions to the constraints do not lie in Hkin, but are in the space of linear 
functionals on T>kin• One must then define the appropriate inner product 
which defines the notion of physical probability and leads to the Hilbert 
space Hphys of physical states.

(v) Finally one must find a complete set of operators, which along with 
their adjoints, commute with all the constraints. These represent the gauge 
invariant observables.

4.2 T he Loop program

In this section a more formal definition of LQG will be presented following 
the above steps of Dirac’s method for the quantization of generally covari-
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ant theories. For convenience we will deal with the quantization of 3 + 1 
dimensional GR, invariant under internal SU(2) gauge transformations and 
3d diffeomorphisms as this is the most physically relevant theory and the one 
most commonly found in the literature.

4.2.1 Classical phase space and Poisson algebra B
The first step in quantizing GR was completed previously in Chapter 2. The 
phase space M is coordinatized by the new Ashtekar-Sen variables (A^,Ela), 
where Af  is the SU(2) connection (2.9) over the 3d hypersurface E and E la 
is the su(2)-valued densitized triad (2.7). There Poisson brackets are given

by

with all others being zero. Clearly, it is natural to take the space of smooth 
SU (2) connections over E as the configuration space C = A.  Next we need 
to define C°°(A) the space of smooth functions on the connection. In order 
to ensure that the notion of differentiability is well defined for elements of 
C°°(A) and that they transform nicely under 51/(2) gauge transformations 
we will introduce the holonomy of a connection [50, 51], which has these 
properties.
Given a one dimensional orientated curve e : [0,1] —> E mapping the param­
eter s G [0,1] —> x m(s), the holonomy (or parallel propagator) he(A) G G (in 
this case specifically 517(2)) is denoted by

where em(s) =  dxm(s)/ds is the tangent to the curve, ra is a basis of the Lie 
algebra of the group G and V  stands for a path ordered exponential. More 
precisely, the holonomy as given above is the unique solution to the ordinary 
differential equation

{Eia(x),A){y)} = 6)8ba6(x,y) (4.3)

(4.4)

-^he[A, s] + em(s) Am he[A, s] — 0 (4.5)

with the boundary condition he[A, 0] =  1 and

he(A) = he[A, 1]. (4.6)
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The connection A  is a rule which defines the meaning of parallel-transporting 
a vector in a representation R  of G from on point to another nearby one. 
Along the curve e, a vector v is parallel-transported to the vector R(he(A))v. 
There are some important properties of the holonomy worthy of mention. 
Firstly, the definition of the holonomy he(A) is independent of the parametriza- 
tion of the path e. Secondly, the holonomy is a representation of the group 
of oriented paths. That is, the holonomy of a single point is the identity and 
given two paths e\ and e2 such that e2 begins where e\ ends so that we can 
form the path e =  e2ei, then

he(A) = h e M ) K ( A ) ,  (4-7)

where the operation on the right is group multiplication. Also the property
he-i(A) = h~l {A) holds, where the inverse holonomy is simply the holonomy 
of the same connection along the same curve but with opposite orientation. 
As mentioned above, the holonomy transforms nicely under gauge transfor­
mations. Under a gauge transformation generated by the Gauss constraint 
(2.12c), that is SU(2) gauge transformations, the holonomy transforms as

K ( A ) = 9(x( 1)) he(A) g~l (:r(0)). (4.8)

Under the action of diffeomorphisms, which are generated by the vector con­
straint (2.12) the holonomy transforms as

he(<f>’A) = V(e)(-4). (4-9)

where 0 6 Diff(E) and (ff A  denotes the action of $ on the connection.
As the behaviour of the connection under gauge transformations (generated 
by the six constraints (2.12) for the case of GR) is quite straight forward, it 
makes it easy to construct gauge invariant functions such as the Wilson loop 
Tr(h7(A)), where 7 is a closed loop. This is in fact where the name loop 
quantum gravity originated from. Geometrically, the holonomy is a func­
tional of the connection that defines the notion of parallel-transport for, in 
this case, SU(2) spinors along the path e. As a functional of a closed path e, 
it encapsulates all the information of the field A“ [52]. For these reasons it is 
the holonomy that is taken as the basic functional of the connection. There
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is one more important thing to mention about the holonomy. The aim of 
LQG is to quantize gravity in a background independent way. A connection 
is a one-form and hence is smeared (naturally integrated) over one dimen­
sional submanifolds of E, where natural in this sense means without using a 
background metric. With the holonomy being the path-ordered exponential 
of f e A, this is in accordance with the desire to construct a background inde­
pendent quantum field theory.
Now taking the holonomy as the fundamental variable rather than the con­
nection we run into a problem. The holonomy smears the connection A in 
one direction so in order to obtain a well-defined Poisson algebra it is nec­
essary to also smear the densitized triad E. Prom considering the relation 
(4.3) it is clear that E  must be smeared in at least two dimensions. Taking 
Eijk as the totally antisymmetric, (background independent), tensor density 
of weight —1, then Ea = eij^E^dx^ A dxk is a two-form of weight 0 and E  is 
naturally smeared in two dimensions. Again consistent with the desire for 
background independence. One is led to consider the fluxes

where S' is a two-dimensional, open surface embedded in E. Under gauge 
transformations and spatial diffeomorphisms respectively, E(S) = Ea(S)ra 
transforms as

Though the transformation under spatial diffeomorphisms is nice, the one 
under gauge transformations is not. The idea however, is to use Ea(S ) as the 
building blocks of more complicated functions of E  which will be gauge invari­
ant and for which the corresponding quantum operators will be well-defined. 
Even though the functions h(A) and Ea(S) are appropriately smeared to give 
a well-defined Poisson bracket, this smearing also complicates the calculation 
considerably. Technically, the functions are regularized, the Poisson bracket 
of the regularized functions is calculated and finally the regulator is removed 
to arrive at a well-defined symplectic structure. These calculations can be

(4.10)

£*(S) = (4.11)
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found in detail in [25]. It is possible though to be slightly more general at 
this stage by introducing the cylindrical functions.
A graph T embedded in E is an ordered collection of orientated paths e C E 
meeting (at most) at their end points. Let l — 1, . . . ,  N  be the number of 
edges in the graph. Given a smooth function /  : SU(2)N —> C and a graph 
T, the couple (f, / )  defines a functional of A,

The space Cyl is defined as the linear space of all functionals 'Lp,/(A), f°r 
all T and / .  These functionals are called cylindrical functions. Clearly the 
cylindrical functions depend on the ordering of the graph T. Changing the 
ordering or the orientation of a graph is equivalent to changing the ordering 
of the arguments of / ,  or replacing arguments with their inverse. Also, the 
cylindrical functions /  are not necessarily gauge invariant.
Equipped with the appropriate topology (see [26]), Cyl is dense in the space 
of all continuous functionals of A 2. The Poisson algebra B, the appropriate 
representation of which will define our kinematical Hilbert space TLkin will be 
based on the the space of functions Cyl. In calculating the Poisson bracket 
between the flux (4.10) and a cylindrical function it is important to take into 
account how the path e intersects the surface S, i.e if e is tangential to S  or 
intersects it at one point if at all. These details are important to consider 
but are easily dealt with and the end result is

where uf [25, 26] are vector fields on the space of cylindrical functions Cyl. 
The Poisson algebra B is generated by the vector fields vf and the functionals 
$  G Cyl , through the relation [(4>, v), (4/', v')} =  ('u['I'/] — t/[4/], [v, v']).

4.2.2 The kinematical Hilbert space Hkin

The representation theory of B was studied recently in [53] and the analysis is 
not yet fully complete. However, by requiring the irreducible representation

2Technically one considers a distributional extension A of A such that for an element 
A € A, he(A) = 1 may vary discontinuously as e is varied continuously.

*i\/(A ) =  /(/>„ (A) , . . .  ,he„(A)). (4.12)

(4.13)
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to admit flux operators which are well-defined and self-adjoint and the rep­
resentation to be spatially diffeomorphism invariant, a unique representation 
exists. It is the cylindrical functions presented above that are the candidates 
for states in Likin- To define the Hilbert space Likin, an inner (scalar) prod­
uct needs to be defined on Cyl. Thus a measure on the space of holonomies 
is needed to obtain a definition of this inner product. Given a cylindrical 
function 4/r ,/(^4) £ Cyl, a positive, normalized state /.lal is defined as

P A L ^ r j ) (4.14)

where he 6 SU(2) and dh is the Haar measure on SU(2). The state y al is 
called the Ashtekar-Lewandowski measure [54] and using it the inner product 
is defined

(^rj\^r",g) =  M'JT'j 'JT",*?)

I dhe I f  (hei, . . . ,  heN) g(hei, . . . ,  heN ,̂ (4.15) 
ecr /

where Dirac notation has been used, with the cylindrical functions becom­
ing wavefunctions of the connection and the graph T =  T 'i j r " .  These 
wavefunctions correspond to the kinematical states 4/r,/(A) =  (A|4/r,/) =  
/(/ iei, . . . ,  heN). It is important to note that the two couples (T, / )  and (T', / ')  
may define the same functional. For example, let T be the union of N' edges 
in T' and M" other edges in T" and let f ( h ei, . . . ,  K Nn K N,+l, . . . ,  heift+M„) = 
/ ' (/iei, . . . ,  heN,) depend trivially on the graph T". Then clearly 4/r,/ =  ^ r , f -  
Because of this, any two functionals 4rr/,// and can be rewritten as the
functionals and fyr,g having the same graph T which is the union of T' 
and T" with N'  +  M"  edges. Therefore the inner product defined above is 
valid for any two functionals in Cyl ;

(4-16)

The kinematical Hilbert space of quantum gravity is the completion of Cyl 
in the norm defined by the inner product (4.15) 3.

3The space of the Cauchy sequences 4>n, where ||4'm -  ^ n|| converges to zero.
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Before moving on to define a basis for Likin, there is grounds for objecting 
to the above definition of Likin', it is nonseparable. Normally this would be 
disastrous in the context of flat-space quantum field theory, but because of 
diffeomorphism invariance in the general-relativistic context, this turns out 
to be harmless. As will be shown, the ‘excessive size’ of Likin turns out to be 
just gauge and once the diffeomorphism gauge is factored away, the physical 
Hilbert space Liphys is separable.

4 .2 .3  A n  orth onorm al basis o f Likin

An orthonormal basis of Likin is constructed using the Peter-Weyl theorem. 
It states that a basis for the Hilbert space L 2[SU(2)] is given by the matrix 
elements of the irreducible representations of the group. Given a function 
/  e L2[SU(2)], it can be written as the sum over unitary irreducible repre­
sentations of SU(2),

f(g)  =  E K ß(g), (4.17)
j

where
I f  -  V W +  \ f  (g) (4.18)

and dg is the Haar measure of SU{2). The normalized representation matri­
ces [55] are H ^  := 1J2j  + 1 RJaß, which satisfy the orthogonality condition 
for unitary irreducible representations of SU(2),

f  dg n i ß(g) n sf g ~ l ) = 6»'6^5ßs (4.19)
J SU {  2)

Now given an arbitrary cylindrical function T r j(A ) G Cyl and using the 
Peter-Weyl theorem, it can be expressed as

V / W  = f (hei(A),---,heN(A)) (4-20)
= E K f ^ ( A ) ) , - - - , n f NßN(heN(A)),

J W t j N

where '^N is given by the inner product(4.15) of the cylindrical
function and the tensor product of irreducible representations,

f f f f ' ßw"ßN =  (4.21)
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The product of components of (normalized) irreducible representations 
U h K ß ^ i )  associated with the N  edges e C T is a complete basis of 
Hkin provided a simple redundancy is removed. To see this redundancy 
consider the finite dimensional subspace Hr of Hkin formed by the cylindrical 
functions with support on a particular graph T. Then the set of vectors 
n f =i n aißii^ei) is not a basis because the same vector appears in Hr  and Hr1 
if T C r .  But because all Hr vectors belong to the trivial representation of 
the paths that are in T' and not in T, the redundancy can easily be removed. 
A basis for H kin is given by the vectors Y\"=l n%iß.(hei), where ji = \ ,  1, .
never takes the value zero. Defining for a graph T the proper graph subspace 
Hr as the subset of Hr spanned by the basis states with ji > 0, then it can 
be shown that all proper subspaces Hr are orthogonal and span Hkin

Hkin ~  (4.22)
r

Loop quantum gravity is an attempt to quantize the gravitational field in 
a background independent and non perturbative way. Its fundamental as­
sumptions are that GR and QM are correct and that one should consider 
the idea of QM formulated to be compatible with general covariance se­
riously. At high energy the Einstein equations may be modified but the 
general-relativistic notions of spacetime are assumed to be correct so LQG 
deliberately avoids the practice of splitting the metric (4.1). In this chapter, 
the canonical quantization of GR, formulated as a SU(2) gauge theory in the 
Ashtekar-Sen variables, was presented. From the connection the holonomy 
was constructed and likewise from the densitized triad a smeared, two-form 
flux was defined. It was these two entities that, under the Poisson bracket, 
formed the algebra of basic field functions. Using the holonomy, we intro­
duced the cylindrical functions, the space of which was defined as the linear 
space of all functionals of the connection over all graphs. The cylindrical 
functions, together with the fluxes formed a Poisson algebra. We showed 
that the appropriate representation of this algebra produced the kinemati- 
cal Hilbert space H kin of states and using the Peter-Weyl theorem a basis 
was constructed out of unitary irreducible representations of SU(2). This 
kinematic Hilbert space is the space of arbitrary wave functionals of the con-
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nection. Next we will consider the states of Likin that are invariant under 
local gauge transformations. These states are known as spin networks and 
will be the subject of the next chapter.



C h a p te r  5

Spin  N etw orks an d  Spin  Foam s

In the previous chapter it was shown that an element of the Hilbert space of 
cylindrical functions of the holonomy can be expressed as a sum of unitary 
irreducible representations of the gauge group SU(2). Furthermore, using 
the Peter-Weyl theorem, a complete and orthonormal basis of this kinematic 
Hilbert space can be found. In this chapter we will discuss the states of this 
Hilbert space which are invariant under local SU(2) gauge transformations. 
These states are known as spin networks. They were first introduced by 
Penrose [83] in an attempt to find a purely combinatorial description of 
spacetime. Initially, the development of spin networks was motivated more 
by the quantum mechanics of angular momentum than by considerations of 
GR. However, after the initial formulation of LQG, Rovelli and Smolin [84] 
in 1995 discovered that the spin networks of Penrose in fact can be used 
to describe the states of LQG. The spin networks describe a discrete space 
at the quantum level. We begin this chapter by considering the most basic 
example of a state in the kinematic Hilbert space of LQG that is locally 
gauge invariant, the well known Wilson loop. This state is then generalized 
to the spin network states, which form a complete basis for the Hilbert space 
of gauge invariant states.
In order to address supergravity in the context of LQG we extend the idea 
of spin networks to include supersymmetry. This requires the replacement 
of gauge groups with supergroups, something that has received very little 
attention in the literature. Having introduced the super spin networks we go 
on to discuss the most widely studied spin network model, the Barrett-Crane

56
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model. This model attempts to quantize GR by expressing the path integral 
of a BF theory action as a spin foam (a sum over histories of spin networks) 
and then implementing the constraint imposed classically on the BF action 
at the quantum level. This is done by restricting the representations that 
are summed over in the spin foam. Later we will show how this procedure, 
of imposing a classical constraint at the quantum level by a restriction on 
representations, can be used in the case of 2d supergravity.

5.1 G auge invariant states o f Hkin

The kinematical space Tikin is the space of arbitrary wave functionals 'Ü(A) 
(4.20) of the connection. We are interested in the states that are invariant 
under local 57/(2) gauge transformations. These states are solutions to the 
quantum Gauss constraint

and define the Hilbert space H^in. (Note that previously the classical Gauss 
constraint (2.12c) acted through the Poisson brackets (4.3). In the quantum 
theory, the Gauss constraint appears as a functional derivative). The simplest 
example of a state in H^in is the well-known Wilson loop state. The Wilson 
loop is defined as the trace of the holonomy around a closed curve e,

The 57/(2) invariance of We(A) is implied by the behavior of the holonomy 
under a gauge transformation (4.8) generated by the Gauss constraint (2.12) 
and the invariance of the trace. Notice that using (4.7), (i.e. he = heihe2), 
the Wilson loop could also be defined as

Furthermore, one could define the Wilson loop on the graph 7" (see Fig. 5.1) 
with trivial dependence on the third argument he3.

It is important to note that there is no physical distinction between these 
different graphs when evaluating the Wilson loop.

(5.1)

We(A) ■■= tr[he(A)]. (5.2)

We(A) = tr\heihn \. (5.3)
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Figure 5.1: The three graphs 7 ,7 ' and 7" on which the Wilson loop function 
above is defined. As the Wilson loop has trivial dependence on the argument 
he3, there is no physical distinction between these graphs.

This simple gauge invariant function can be generalized by considering an 
arbitrary matrix representation M  of SU(2). Then clearly the function

W*{A)  =  tr[M(he(A))) (5.4)

is also a gauge invariant function. If M  is a unitary irreducible representation 
of spin j ,  denoted by Il4n, then the function

W’(A) =  fr[rP(/»e(.4))) (5.5)

is the simplest example of a spin network [51, 83, 84, 85]. This function is 
represented on the left of Fig. 5.2.
Given the graph 7, depicted in the center of Fig 5.2 for which an orientation

Figure 5.2: Examples of increasingly more generalized spin networks.

and ordering has been fixed, one can see that an irreducible representation 
j e (not the trivial representation) has been assigned to each edge e G 7. To 
each node an intertwiner rii must also be assigned. Before continuing with 
this discussion on spin networks, let’s briefly mention a few details about 
intertwiners.
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5.1 .1  A side: In tertw iners

Take N  irreducible representations j i , . . .  On and consider the tensor product 
of their Hilbert spaces

= n h ® • • • <8) n jN. (5.6)

The space can be decomposed into a sum of irreducible spaces.
The subspace which transforms in the trivial representation, that
is, the subspace formed by invariant vectors, is /c-dimensional where k is the 
multiplicity of the trivial representations appearing in the decomposition. It 
is a Hilbert space and as such one can choose an orthonormal basis. The 
elements l of this basis are called intertwiners between the representations 
j i , . . . , j N-  To illustrate this explicitly, the elements tai,‘",ajv G are
tensors that are invariant under the action of SU(2) on all their indices

n ^ ai(/i(^)) • • • n f KaN(h(A))iß' - - ßK =  t“1'- '“". (5.7)

Furthermore, the space 7~Cj of representation j  has its dual space Hj* of dual 
representation j *. An intertwiner t between n dual representations j \ , . . . ,  j* 
and m  representations j i , . . .  ,jm, is a covariant map

t : 0  H j; -> 0  (5.8)
i=l,...,n k=l,...,m

The intertwiner in associated with a node is in the tensor product of the 
representations associated with the edges adjacent to the node.

5.1 .2  Sp in  netw orks

The more complicated spin network associated with the middle graph of Fig.
5.2 can be defined by taking the different representation matrices of spins 
1,1/2 and 1/2 and evaluating them on the holonomy along the respective 
edges. The spin network function is explicitly given by

S,(A) = n \h ei(A))*nHhe>(A))a0nl(he,(A))Ti <7?<T*s, (5.9)

where i , j  = 1,2,3 are vector indices and a ,ß  = 1,2 are spinor indices. At 
the two nodes one has the tensor product of two fundamental representations
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and one adjoint representation of SU(2). The decomposition of this tensor 
product contains one copy of the trivial representation and therefore there is 
only one intertwiner; the Pauli matrices a f ß. The spin network function S  is 
gauge invariant due to the fact that the Pauli matrices are invariant tensors 
in the tensor product of representations 1 <g> \  <g> \  which is where gauge 
transformations act. By considering the graph on the right of Fig. 5.2, it is 
easy to see how to generalize the idea of a spin network function to arbitrary 
representations. Given an invariant tensor (intertwiner) l G j  <S> k ® /, the 
spin network is expressed as

s 7(X) =  i f (M /i))a lAn*(M ^))aj&n ‘(M /i))Q3& (5.io)

The generalization of this construction to arbitrary graphs is straightforward. 
To each edge e one associates a representation j e, and to each node n and 
intertwiner in in the tensor product of the representations associated with 
the edges adjacent to the node. A spin network in £  is defined as the triple 
S = (7, j e, tn)> with coloring of the edges and nodes j e, respectively. Each 
spin network S  defines a state | S) by

(A\S) = Sy(A)
= ® W '( h e(A)). (5.11)

n C7 eC'y

Intertwiners in the tensor product of an arbitrary number of irreducible rep­
resentations can be expressed in terms of basic intertwiners between three 
irreducible representations. What this means is that any node joining an 
arbitrary number of edges can be decomposed into a number of nodes, each 
of which only joins three edges. In the case of SU (2), these basic inter­
twiners are uniquely defined up to normalization, and are related by the 
Clebsh-Gordon coefficients. Following the previous chapter we see that the 
spin network states S  form a complete and orthonormal basis in the gauge 
invariant kinematical Hilbert space H^in.
Before continuing, we should briefly comment on the other constraints as­
sociated with GR; the vector constraint (2.12a), which generates diffeomor- 
phisms, and the scalar constraint (2.12b), which generates coordinate time 
evolution. Though the vector constraint can easily be imposed at the quan­
tum level [50], having a natural (unitary) action on the states of Tikim the
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scalar constraint is a different story. The precise form of the quantum scalar 
constraint is not yet settled and there are a number of mathematically con­
sistent definitions arising from ambiguities in the quantization procedure of 
the constraint [51]. As such, the space of solutions of the quantum scalar 
constraint remains an open issue in LQG.

5.1 .3  In clu d in g  su p ersym m etry

Similar to the case of bosonic gravity, it is possible to construct a loop quan­
tization of supergravity. This provides the framework for the super spin 
networks and the corresponding models of supergravity. Following what was 
shown for the case of gravity with SU{2) gauge group in the previous chap­
ter, the kinematical states of loop quantum supergravity will be OSp( 1|2) 
spin networks1. Before moving on to discuss the states in the Hilbert space 
T ik in  invariant under local gauge transformations, the super spin networks, 
we would like to consider how the loop quantization procedure presented 
previously extends to the supergravity case.
Supergravity in terms of the Ashtekar-Sen variables was first studied in [16]. 
In this formulation, for the N  = 1 case, the canonical variables are the Lie 
algebra valued spin connection A** and its super-partner, the gravitino field 
ipf. These two variables, as was shown in [56], together form a graded super 
Lie algebra valued connection

A, = Aai Ja + ^ Q a, (5.12)

where in the case of the spin connection being su(l, 1) valued, the super Lie 
algebra formed is osp(l, 2), (c.f. (3.20), where we have made the association 
(Pa, J ) —> Ja and the Ja now refer to the generators of sp(2) =  su(l, 1) with 
dimension D = 1 + 1). Similarly, if E la and irla are conjugate momenta of Af 
and ipf respectively, then the graded momenta are defined as

E' = £* J a + ir'aQa. (5.13)

!In this thesis we have not discussed the dynamics of LQG which leads to spin foams. 
One way to view spin networks is as the boundary states of some spin foam, which is 
the path integral for LQG.There are still many unanswered questions with regards to the 
dynamics of LQG and how to recover it in the spin foam formulation. See [86] for more 
details on these problems.
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In the fundamental representation of OSp( 1,2) the super-Lie algebra is gen­
erated by the five 3 x 3  matrices Ua (A = 1, . . . ,  5) (see Appendix and [56]), 
where A labels the five generators of OSp( 1,2). Using these we can define

The canonical analysis of D = 1 + 1 supergravity on a manifold M = l x E  
begins with the super BF action (3.19). The canonical variables are the spa­
tial components of the superconnection A and their corresponding conjugate 
momenta, the spatial components of the superdyad E. The total hamiltonian 
consists of two constraints: (1) the super Gauss constraint DE = 0 imposes 
a vanishing supertorsion and generates local OSp( 1,2) gauge transforma­
tions, specifically local supersymmetry and 517(1,1) gauge transformations 
(c.f. (3.28)) for the 2d supergravity case of Howe [5], (2) F = 0 which 
imposes flatness on the superconnection and generates ‘topological’ gauge 
transformations on the momenta E. This constraint is composed of spa­
tial diffeomorphisms on E and the constraint generating time evolution. It 
is now possible to ‘loop quantize’ the theory following the same procedure 
presented above for bosonic gravity. The algebra of kinematic observables 
is given by considering cylindrical functions of the superconnection A (c.f. 
(4.12)), which depends only on the superholonomies of A along the edges of 
some graph 7 C E,

Note in this expression we have used the superholonomy Hei(A), which is 
an element of Osp( 1,2). It is constructed in the same was as the usual 
holonomy (c.f. (4.4)), only that now the connection has been replaced with 
the superconnection [62]. By taking the supertrace of the superholonomy in 
the fundamental 3 dimensional representation of OSp{ 1,2), we once again 
have the Wilson loop, (see Appendix for definition of supertrace)

(5.14)

— f ( H cl( € 7). (5.15)

= Str[He], (5.16)
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where again e : [0,1] —» E is a closed, one dimensional orientated curve 
parameterized by s G [0,1] —► xm(s). The term em(s) =  dxm{s)/ds is the 
tangent to the curve and ra is a basis element of the Lie algebra of OSp( 1,2). 
It was with these Wilson loops that the loop representation of supergravity in 
the chiral representation was first constructed [56]. Even though the Wilson 
loop is gauge invariant, the superholonomies are not. However, to construct 
OSp( 1,2) spin networks it is necessary to impose gauge invariance, i.e. in­
variance under Osp{ 1, 2) at the nodes (vertices) n of the graph 7. Following 
the procedure for the pure gravity case, this invariance of the cylindrical 
functions would read as

)gM ) = (5.17)

where Si , S2 respectively denote the beginning and ending nodes of the edge 
e £ 7. In fact, cylindrical functions of the superholonomies H(A) are ac­
tually defined on the matrix elements M[H(A)] of the supergroup elements. 
As these matrices do not commute, one must be careful and choose a full 
ordering of the edges e. The precise definition of gauge invariance, and also 
of the super spin networks, will depend on whatever convention of ordering 
is chosen. This is similar to the problem found when dealing with quantum 
groups. Using the (super)Haar measure dp, on OSp(l,2) which was inves­
tigated in [57], one can introduce the measure product of dp on all edges 
e G 7 which defines a natural inner product on the space of square integrable 
cylindrical functions and a basis of the resulting gauge invariant kinemati- 
cal Hilbert space 7l^-n can be found. This basis is the OSp{ 1,2) super spin 
networks [58, 59].

5.1.4 The Hilbert space

To show that the OSp( 1, 2) spin networks do indeed form a basis of the gauge 
invariant kinematical Hilbert space of cylindrical functions, we need to ad­
dress two key problems. One is the definition of the inner product of spin 
network states, which allows us to show that any two different spin networks 
are orthogonal and linearly independent. The other problem to address is 
the completeness of the Hilbert space, that is can any state in the Hilbert 
space be expressed as a sum of super spin networks? In the case of SU(2),
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these two problems are solved successfully as we saw in the previous chapter, 
through the Haar measure and the Peter-Weyl theorem respectively. The end 
result is that the SU(2) spin networks form a linearly independent basis of 
the Hilbert space of cylindrical functions in LQG. When the construction of 
spin networks is extended to the supersymmetric case, we need to construct 
them in a way and find the rules that are consistent with the representation 
theory of supergroups. At first sight, the extension to supersymmetric spin 
networks seems pretty straightforward. Every edge of the spin network is 
labelled with a representation of the Lie group of the theory. So one must 
relabel all the edges with the corresponding representations of the super­
group. Similarly with the vertices, these too must be relabelled with the 
appropriate intertwiners. One immediate question that can be raised here 
is what is the case at a trivalent vertex? Is it possible to decompose the 
three adjacent representations (a tensor product of irreducible representa­
tions) into a direct sum of irreducible representations. This is certainly true 
in the su(2) case, but not for super Lie algebras. One example of this is in 
the construction of OSp{2, 2) super spin networks. Fortunately in the specific 
case that we are interested, namely OSp( 1,2) we do not have to worry about 
this. Its reducible representations are fully reducible and furthermore, any 
finite dimensional representation can be obtained from the direct product of 
fundamental representations.

5.1 .5  Super sp in  netw orks

Recall that a spin network state of quantum gravity, denoted by \S) consists 
of a closed graph 7 with edges labelled by the representations of SU (2) and 
vertices by intertwining operators. The super spin networks are defined in the 
same way, simply by replacing SU(2) with the Lie supergroup OSp( 1,2). As 
the steps showing that super spin networks form a basis of the Hilbert space 
of (super)cylindrical functions follows very closely the case of spin networks 
presented earlier in this chapter, we will give a more general description. For 
a more detailed explanation of this process we refer the reader to [59]. Start­
ing with a manifold M  we define a super-Lie algebra (osp(l, 2)) valued 1-form 
connection A (for example (3.20)). The components of this connection are



CHAPTER 5. SPIN NETW ORKS AND SPIN FOAMS 65

smooth functions over M  so we denote the space of smooth connections on 
the manifold as A. Let C°°(A) be the space of continuous functionals on A  as 
defined previously in section 4.2.1. Now by introducing an inner product be­
tween the states of C°°(A) and completing in the norm, we wish to define the 
Hilbert space C?. Recall that the (super)holonomy of a connection is simply 
an element of some (super)-Lie group. Therefore the (super)cylindrical func­
tions, defined as functionals of holonomies of connections, are also functions 
of some group manifold. Examining the steps presented earlier, this inner 
product is defined by integration over the group manifold (4.15). In order 
to do this it was necessary to introduce a unique, left and right invariant 
measure, the Haar measure. To extend this construction to the supersym­
metric case one must generalize the Haar measure to allow integration for 
Lie supergroups. We refer the reader to [57] for further details on the super 
Haar measure and Haar integral. In the particular case of OSp( 1,2), it is 
possible to define a super Haar measure on the space of functionals of the su­
per holonomies which is both left and right invariant. This is not always the 
case for other supergroups. With the integration theory on the space of su­
per connections A  established, we can define the inner product of cylindrical 
functions. If we consider some graph 7 , recall that the role of the holonomy, 
in some irreducible representation j ei, is to assign an element He.(A) of the 
group G to the edge e* E 7 . In this context, the measure for the space of 
smooth connections can be expressed as

This measure is called the generalized Ashtekar-Lewandowski measure and 
is entirely analogous to the 577(2) case (c.f. (4.14)). Now consider a graph 
T(ei,n,j), where e*, rij denote the ith-edge and jth-node respectively and the 
cylindrical functions 'Lpj defined over this graph. Using the super Haar 
measure on Gn, we can define the inner product between two super cylindrical 
functions as

($ r,/|9 'r,s> := /  R  dHei . . . ,  He„)g(Hcl, . . . ,  He„). (5.19)
Jo* ot-r

(Note that in the case of super spin networks, the inner product defined here 
is essentially of the same form as the inner product of standard SU (2) spin

(5.18)
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networks previously defined (4.15)). Entirely analogous to the bosonic case, 
if Hje represents the Hilbert space on which the irreducible representation j e 
is defined, then the total Hilbert space associated to super spin networks can 
be defined as the tensor product of these spaces,

W = 0 H " '  =  ® ( ® W e i) V<, (5.20)
Vj  Vj  e,

where the edges e* meet at the same vertex Vj. Likewise, in the case of 
OSp( 1,2), since any product of finite irreducible representations is completely 
reducible, the tensor product of the Hilbert spaces can be decomposed into 
the direct sum of Hilbert spaces on which the irreducible representations of 
OSp( 1,2) are defined,

• =  (5.21)
jm

Now, using a generalization of the Peter-Weyl theorem to include super­
groups presented in [59], one can show that the Hilbert space of functions of 
the superconnection can be expressed as a direct sum over irreducible rep­
resentations of OSp( 1,2). That is, using the generalization of (4.17) and 
the orthogonality condition (4.19) to include supergroups, one can show that 
the super spin network states are indeed orthogonal and form a complete 
basis for the gauge invariant Hilbert space £ 2[OSp( 1,2)] of functions of the 
superconnection.

5.2 T he B arrett-C rane m odel

In four dimensions the description of the dynamics of gravity, known as spin 
foam representations, was motivated by lattice discretizations of the path 
integral of gravity in the covariant formulation [79, 80, 81]. The scope of this 
thesis does not include the representation of the dynamics of gravity using 
spin foams as 2d GR is topological and hence has no dynamics. However, 
we wish to finish this chapter with a discussion of one of the most widely 
studied spin foam models in the literature, the Barrett-Crane (BC) model 
[82], The reason for considering this model is that in the final chapter it will 
be shown how the features of this model have been used to quantize gravity
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in two dimensions and calculate the corresponding partition function. We 
wish to know, can these features be extended to the case of supergravity? 
To illustrate these features, we will focus on Riemannian GR. This is because 
the starting point of the BC model is the BF action in four dimensions and BF 
theory is only well understood in the case of compact gauge groups. Work­
ing with compact gauge groups limits one to Riemannian quantum gravity. 
Starting with the SO(4) BF-action

/  =  J  Ba b A F ab, (5.22)

where both B  and F  are two-forms and A, B  =  1 , . . . , 4  are Lie algebra 
indices. Note that this treatment of BF-theory differs from before, where 
in this case the B  and F  fields take value in the adjoint of 50(4), which is 
represented as the antisymmetric part of the vector representation and hence 
the antisymmetric indices AB.  Now if the B-field is replaced with

B ab = eABCDec Ae° ,  (5.23)

one gets precisely the action of GR. The B-field of BF theory can be identified 
with the gravitational field e A e. The constraint on the 13-field is called 
the Plebanski constraint and transforms BF theory into GR. Adding this 
constraint to the BF action gives the Plebanski action of 50(4) GR,

I  =  J  B AB A Fab + AabcdB ab A B CD +  [ieABCD Aabcdi (5.24)

where // is a four-form and A an antisymmetric tensor. Varying with re­
spect to gives the constraint eABCD Aabcd  = 0. This reduces the number 
of independent components of A to 20. Now variation with respect to A 
imposes 20 algebraic equations on the 36 components of the ß-field. The 
(non-degenerate) solutions to the equations obtained by varying the multi­
pliers are

B ab = ±eABCDec A e D,

B ab = ±eA A eB, (5.25)

expressed in terms of the remaining 16 components of the tetrad field. As 
stated before, substituting the first of these solutions, which is the Plebanski
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constraint, into the original action gives Palatinos formulation of GR2. The 
second term is topological and has no effect on the classical equations of 
motion. How is this Plebanski constraint imposed directly at the quantum 
level in the BC model? The key idea is that the path integral for BF theory 
in four dimensions

I  =  J  DB DA  exp[i J B a b A F ab\, (5.26)

can be defined as a sum over spin foams (see [51, 50] for details). The BC 
model provides a definition of the path integral of gravity from the formal 
expression

I  = J  DB DA 6[B-  t ABCD ec  A eD] exp[t J  B ab A FAB}. (5.27)

Here the term S(B —► eABCD ec A eD) expresses the Plebanski constraint 
(5.23), an immediate consequence of which is

e A BC D  B abB cd = 0. (5.28)

Indeed, it is this restriction that can be imposed in a systematic way directly 
on the spin foams that define (5.26), that is, at the quantum level. To see 
this, note that the Lie algebra of 5 0 (4) is su(2) © su(2). The irreducible 
representations of 50(4) are labelled by pairs of representations of SU(2), 
namely by two spins j  = (j+,j-)-  The B-field is a two-form with values in 
the adjoint representation of 50(4), and the generators of the two SU(2) 
groups are B± = P±abB ab, where P±ab a projector onto the selfdual 
components of 50(4). Two invariants of 50(4) can be constructed from 
B ab ; the scalar invariant

C = B abB ab = \B\2 (5.29)

2If one substitutes the first constraint (5.25a) on the B-field into the BF-action (5.22) 
and set the variation of the action to zero, the field equations eAF  = 0 and dA(eAe) = 0 are 
obtained. To see that these equations are an extension of the vacuum Einstein equations, 
note that dA(e A e) =  0 is equivalent to e A dAe = 0 and when e is one-to-one this implies 
dAe =  0. If e is used to pull back the connection A to a metric preserving connection 
T, the equation dAe = 0 says that T is torsion-free, so T is the Levi-Civita connection 
of the metric. This allows one to write the term e A F  in terms of the Riemann tensor. 
Furthermore e A F  is in fact proportional to the Einstein tensor, so e A F  is equivalent to 
the vacuum Einstein equation [85].



CHAPTER 5. SPIN NETWORKS AND SPIN FOAMS 69

and the pseudo-scalar invariant

C = ( abcd B ABB CD. (5.30)

These invariants are not the 50(4) Casimirs but are indeed related. Im­
mediately we can see that the pseudo-scalar invariant is constrained to zero 
because of (5.28). The 50(4) representations in which the pseudo-scalar in­
variant vanishes are called ‘simple’ representations. It is straightforward to 
calculate the value of the pseudo-scalar invariant in the (j+, j_) representa­
tion

t A B C D B A B B CD =  Ba+

= j+U + 1) -  j - U -  + !)• (5.31)

From this and (5.28) one obtains the result j + = j - .  The representations 
that satisfy this constraint, those such that (j+)j~) = (j, j),  are the simple 
representations and are labelled by the single spin j. This is the quantum 
version of the constraint (5.23). Though the details have not been presented 
here, when one calculates the partition function from the path integral (5.26) 
for BF theory, in the spin foam formulation, the resulting expression includes 
a term which is summed over representations. This quantum constraint sug­
gests that quantum GR can be obtained by restricting the sum over repre­
sentations in the partition function to just the simple representations. This 
procedure defines the class of BC models. It should be noted that due to the 
different ways in which the constraints can be discretized there are various 
versions of the BC model in the literature. It is still unclear to date, which 
version is indeed discretized GR. Having now seen how a classical constraint 
added to a BF action was first imposed at the quantum level, we will proceed 
to illustrate in the next chapter this procedure in more detail for 2d GR and 
calculate the partition function using spin networks. We will then go on to 
show how this procedure can also accommodate the case of supergravity.



Chapter 6

Spin foam 2D quantum  gravity

Spin foam models provide a non-perturbative approach to quantum gravity 
[51, 85, 89]. There are two ways in which they can be motivated, as a 
rigorous method of performing a covariant path integral quantization, or as 
emerging histories in (canonical) LQG. To date, these approaches to quantum 
gravity have had little to do with the main perturbative approach, string 
theory (see, however, [65, 91]). One of the main obstacles to linking these 
approaches to string theory is that the latter requires supersymmetry. This 
can be accommodated in the spin foam formulation by the promotion of gauge 
groups to supergroups. Unfortunately this possibility is something that has 
barely been investigated. Here the extension of the spin foam approach to 
the quantization of supergravity is considered. In this chapter we review the 
spin foam quantization of 2d GR developed in [1], beginning with a simple 
review of 2d GR on compact manifolds without boundary. This procedure 
involves the discretization of the 2d BF-theory via a triangulation of the 
base manifold which will allow the calculation of the corresponding partition 
function. By implementing the Plebanski constraint at the quantum level by 
restricting the representations summed over in the spin foam, the partition 
function of 2d GR is calculated. This procedure will then be extended to the 
2d supergravity case, focusing on the model of Howe [5].

70
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6.1 2d R iem annian G R  on com pact m anifolds

The action for Riemannian GR in 2d is the Einstein-Hilbert action (2.1)

I
1

167tG
d2xy/det(g)R , (6. 1)

where det(g) is the determinant of the Riemannian 2d metric gmn, m ,n  — 
1,2, G is Newton’s constant and R  is the Ricci scalar. (Compare this with 
the Einstein equation discussed previously (2.25), in which the cosmological 
constant has been included to allow nontrivial equations of motion). As was 
shown previously, this action is topological and proportional to the Euler 
characteristic

(6.2)

The first step towards covariantly quantizing 2d GR is to calculate its parti­
tion function. This can formally be given by

Z =  I Vge* lGR. (6.3)

It is not necessary to know what the measure Vg  on the infinite dimensional 
space of metrics modulo diffeomorphisms is, provided we assume it is nor­
malized with J Dg = 1 . From (6.2) we clearly see that the action does not 
depend on the metric, but only on the topology of the manifold via the Euler 
characteristic. Therefore the partition function can be expressed as

Z
ix(M)

e 4hG , (6.4)

where the condition on the measure being normalized has been used. In 
background independent theories, both orientations of the manifold M  are 
summed over in the Feynman integral. In doing this the partition function 
and the transition amplitudes are real. By summing over both orientations 
of the manifold in the Feynman path integral, the final result for the 2d GR 
partition function is

Z  = J  Vg(e*lGR -(- e~*lGRSj  = 2cos (6.5)

In the following sections it will be shown how this result is recovered from a 
spin foam quantization procedure.
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6.1 .1  T h e fram e bu n d le  and its to p o lo g y

Considering 2d compact manifolds one would expect from Stokes’ theorem

that (3.11) is zero due to f  = du (3.8) and <9M =  0. However for arbitrary- 
topology it is not possible to globally define the dyad em, with the exception 
of the torus. This is equivalent to saying that it is not possible to define a 
continuous, non-vanishing vector field on 2d manifolds with x(M ) ^  0. Thus 
the dyads, and consequently the spin-connection, must be defined separately 
on each local open region U\. The fields e/ and ej, where the regions U\ and 
Uj  overlap, are related to each other by an 50(2) rotation R i j {x ) — e^IJ^ T,

e/ =  R i j e j , (6.7)

where ipjj is the transition function from region Ui to Uj and r  is the genera­
tor of the so(2) algebra. The spin connection can only be defined locally (with 
the exception of the torus), and transforms under gauge transformations as

u j  = ui + d'tpij. (6-8)

As Stokes’ theorem (6.6) is a global argument it only applies when we can 
define the dyad and the connection globally. But as mentioned before, this is 
only possible for the torus for which x(M) =  0. In this particular case of GR 
on a torus, Stokes’ theorem is not in contradiction with (2.69). Considering 
the principal bundle P{M ,SO(2)) with 2d base manifold M, a nontrivial 
result from Stokes’ theorem can be computed. First however, it is necessary 
to partition M, into regions in which wj is a locally defined one-form, by a 
triangulation of the manifold M.  This triangulation A consists of triangles 
meeting at edges which meet at points. It has an orientation inherited from 
M  and the curvature can be regarded as being at the points of the trian­
gulation, (those familiar with simplicial Regge geometry [87] will recognize 
this construction). For reasons that will soon become apparent, it is more 
convenient to work with a dual triangulation A* with its faces dual to the 
original points, edges dual to edges and dual points correspond to the origi­
nal faces of the triangulation. Along the boundary ejj  between faces / /  and
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f j  we assign an orientation and have

Here (IJ)  means unordered pairs and the transformation equation (6.8) has 
been used. From this we see that the curvature of the manifold is inde­
pendent of the connection and only depends on the transition functions tpjj 
which encode the topology of the bundle. There is a topological invariant of 
an SO (2) principal bundle with a 2d base manifold which completely char­
acterizes the topology called the Euler number e(P). This is defined as the 
integral over the first Euler class of the manifold which in this case is just /

e(P) = Y  (6.10)

Thus from (2.69), (3.11) and the formula for the Euler number (6.10), we 
have

e(P) = X(M),  (6.11)

which is a well-known theorem by Gauss-Bonnet-Chern-Avez [4]. This result 
can be taken one step further by noting the following. In GR, the spin- 
connection a; is a connection on the principal bundle P(M ,SO (2)). But 
because the connection satisfies the Cartan equations (2.8) it can be defined 
via the dyad fields em. These fields provide an isomorphism between the 
vector bundle on which u  acts and the tangent bundle. Thus u  acts on a 
bundle isomorphic to the tangent bundle and hence is in the frame bundle, 
the principal bundle of local rotations of the tangent bundle. It follows from 
(6.11) that in order to view 2d GR as a constrained BF-theory it must be 
ensured that the connection of the BF-theory is on a bundle with the same 
topology as the principal frame bundle. That is,

e(Pfr>SO(2)) = X(M). ( 6. 12)
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When it comes to quantizing the constrained BF-theory, the non-triviality 
of the bundle must be considered and transition functions xpu picked that 
satisfy (6.12).

6 .1 .2  D iscre te  bu nd les

The idea of a discrete bundle will be introduced in this section. That is, a 
bundle with a discretized (triangulated) manifold. Consider a 2d base man­
ifold with dual triangulated decomposition A* over M. As discussed previ­
ously this cellular decomposition consists of 2d faces (labelled // ,  / j ,  f x ,  • • •) 
dual to the O-simplices of the original triangulization and edges ejj  between 
faces which meet at trivalent vertices vjjk dual to the original faces in A. 
Assuming that each face / /  is contained in some open subset Uj C M  the 
transition functions t u  [1] on the overlap Ui D Uj  (which also contains the 
edge ej j ) define the bundle. Parameterizing the edge ejj  with s G [0,1] we 
restrict the transition function to this edge, given by tu(s) .  The transition 
functions are now maps from the edges to G. They satisfy the following 
conditions for all points of s on which they are defined;

Note that the third condition holds only on the vertices as this is where all 
three functions are defined. Up to gauge transformations (which are now 
maps from the perimeter of a face / /  to G) the transition functions above 
define a principal bundle P(A*, G) over the dual cellular complex. Associated 
to each edge is the variation of the transition function, which for the case of 
G — SO(2), is given by

Following the gauge fixing arguments of [1], the bundle is characterized by 
the set of integers n / j  G 7Ti (G ), the first homotopy group of G T Following

1To see this more explicitly, note that a gauge transformation in Ui  adds a real number 
Au ,  the variation of the gauge transformation along the edge e /j, to each n /j .  Writing

tn(s)  =  1 
tu (s )t j , (s )  = 1 

tu{s)tjl(s)tKl{s)  =  1.

(6.13)

(6.14)

(6.15)

(6.16)
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from the expression for the Euler number (6.10) and the fact that n u  = njj , 
one gets

eT )  =  l E n" -  <617)
I J

From the above construction a ‘discrete bundle’ P(A*,G)  is defined as a 
principal G-bundle over a 2d cellular complex A* with to each edge ejj the 
assignment of an element of 7Ti(G) (up to gauge transformations).

6.2 Spin foam quantization of B F -theory

In this section, the quantization of BF-theory using spin foams will be dis­
cussed. Formally the partition function of BF-theory can be written as,

Z dB du elh tr B̂F\ (6.18)

In order to explicitly calculate this partition function, a triangulation of the 
base manifold must be made. As can be seen from Fig. 6.1 the vertices of 
the dual triangulation, A*, are trivalent. The continuous fields u  and B  can 
now be replaced with discrete variables on A*. The connection is replaced 
by the 50(2) group element

9ij (6.19)

associated with the edge ejj. Since the edge ejj  has the opposite orientation 
to eji  we have the condition

9ij9ji =  1- ( 6.20)

Parameterizing 50(2) as  g u  =  e<f>IJT, where 4>u G [0, 27r], this is equivalent 
to

(f>u +  <t>Ji =  0. (6-21)

Xu  =  A) — A j ,  where i , j  label the vertices of the edge ej j ,  the gauge transformation 
can be written as nj j  —* n j j  -I- A} — A j +  A ^  — A j. Now it is always possible to choose a 
gauge transformation such that the transition functions satisfy t j j ( 0) =  t j j (  1) =  1. In this 
‘edge’ gauge, the transition functions are a map, t j j  : S 1 —> G. The gauge transformations 
deform this map smoothly and so it is the homotopy class that is relevant. In the case of 
50(2 ), n u  is just the number of times the transition function of an edge wraps around 
the group. It is an integer and in 7Ti(50(2)).
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Figure 6.1: The original triangulation A is shown by the dashed lines and 
the dual triangulation A* by solid lines. The group elements g u  and gji are 
on the edge e/j, which joins the two faces / /  and f j .

On each face f j  the .B-field is replaced with Ba = bar  € so(2)2. Recalling 
that the curvature of M  is located at the vertices of the initial triangula­
tion A which correspond to the faces of A*, a group element gi related to 
the curvature on a face / /  can be defined. For a face f j  enclosed by faces
f j l  ) J • • • ? f jm

e 0/T =  g u x g u m = e ° ^ i +- +*"m)T, (6 .22)

where 0/ £ [0,27t). For gj = 1 on // ,  the discretized connection is flat. To 
simplify latter calculations, it is convenient to use the square root3 of gi, 
given by g ^ 2 = e~iT. Discretizing the BF action (3.7) by replacing the 
continuous variables with the new discrete variables gives

Ibf =  ~ t Y ]  tA Bi9i]- (6-23)
Ä /

2Where we take r  = ^ ^  ^ ^ .

3The reason for taking the square root is that it allows one to avoid the doubling of 
the degrees of freedom introduced by the discretization, (see [1] for details).
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In the limit of fine triangulations this action approximates the continuous 
BF-action (3.7)4 *. We are now in a position to perform the integration of the 
partition function (6.18).

Z = dB> e * lBF [  n dgu  n dBi e 1̂
j  u  i

j t r[Bigf (6.24)

where dgu  is the Haar measure of 50(2). For dBj we take the Lebesgue 
measure on so(2), dBj =  dbj. Using

-tr[Bg]

one has

—tr 0 1
-1  0

cos 5 sin 4> 
— sin (f) cos 0, 2b sin 0, (6.25)

}/2l J  dbj e2̂ sin(0//2)

27r£(2 sin(0 / / 2))

2n6((f)1)

% /) , (6.26)

where 5(g) is the delta function on the group. (Had gi been used in the 
action rather than the square root, the result ö(gi) Y 5(—gi) would have 
been obtained). This results in the expression

[  n ^ n ^ )
j u  i

(6.27)

for the standard partition function for BF-theories. Here it is important to 
note that the ^-function on the group can be expanded in terms of irreducible 
representations using the Plancherel expansion. For the case of 50(2), the 
irreducible representations are labelled by an integer n and have character 
X̂ n\9 )  — em<̂ . Thus the delta function can be expanded as

5w  = ^ E ein^  (6-28)
n

4In the limit in which the triangulation is fine and the face / /  has area d2x, one has
gf  =  1 +  | / r d 2x, where /  in this expression is the curvature on the face. Thus to first
order in the area, we have tr[Bigf]  —> tr[B( 1 +  F)] =  tr[BF).
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which is simply the Fourier expansion of the ^-function. Substituting this 
into (6.27), giving the Haar measure as the normalized measure of the angle 
and replacing the sum over representations with a sum over faces f j  gives

Z d(pu
2n

e  i E i nl <t>l (6.29)

where the first sum is over all possible assignments of a representation nj to 
each face //. Using the group element (6.22) associated with the curvature 
of a face and the fact that (f>u + 4>ji = 0,

Z e ^ 'E iA n i - n j ) (t>ij (6.30)

Using the formula for the orthogonality of characters, the integrals can be 
evaluated. Doing this one arrives at the partition function for unconstrained 
BF-theory,

Z bf = 1- (6.31)
n

Just like the 4d partition function, (6.31) diverges. This partition function 
is an example of an (extremely simple) spin foam model where the faces are 
labelled by representations of the gauge group. In this simple case of 2d 
SO (2) spin foams, the ‘Clebsch-Gordon conditions’ force the representations 
to be equal over all faces.

6.2 .1  Q uan tum  G R  on tr iv ia l b u n d les

Recall that we are trying to investigate the validity of the Barrett-Crane 
technique for obtaining quantum GR. That is, view 2d Riemannian GR as 
a BF-theory with an imposed Plebanski constraint (3.10) and finding the 
corresponding constraint on the representations summed over in the spin 
foam model. The connection u  has been identified with the group element 
(6.19) associated with the edge ejj. The quantity which represents the B- 
field in the spin foam must also be found. Noting that the Fourier expansion 
of the B-field can be expressed in terms of the J-function on the compact 
angle 0/ G [0, 2tt\ and that the J-function can be expanded as a sum over the
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representations nj

f  dbr eibl4>1 =  27T<S(0/) =  ^  ein/0/, (6.32)
n/

one finds that the discrete variable n/ is the quantized version of the con­
tinuous variable Bj. The Plebanski constraint (3.10) on the B-field can now 
be interpreted as a constraint on the representations summed over in the 
spin foam model. Similar to the way angular momentum is associated with 
the generators of the rotation group, the continuous field B  G so(2) can be 
identified with the so(2) generator J  (see [88] for a detail discussion of this 
identification of the B-field with the generators of the gauge group in the 
analogous 4d case). In this case, the generator J  in the representation n, is 
simply nr. The Plebanski constraint (3.10) is now;

~\tr[B B ] = -

= — ̂ tr[nrnr] =  n2,

=* n2 = 1. (6.33)

Note that —Itr[JJ\ is in fact the Casimir of SO(2). The Plebanski constraint 
is imposed on the spin foam sum (6.29), by restricting the representations 
summed over to those satisfying the above condition. The divergent BF 
partition function (6.31) becomes

Zgr — ^n2, l =  2, (6.34)
n

which is now clearly finite. Recall that the partition function of BF-theory 
diverges. This is because the B-field has a symmetry under translations. 
The Plebanski constraint fixes this gauge which results in a finite partition 
function. As mentioned before, when dealing with GR it is necessary to 
consider bundles isomorphic to the frame bundle. But the only case in 2d 
where the frame bundle is trivial is for the torus for which e(Pfr) = XCP2) — 0. 
Substituting this into the partition function (6.5) gives an answer of 2, which 
agrees exactly with the result from the spin foam formulation.
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6.3 Q uantum  G R

Previously to each open subset Ui of a nontrivial bundle was associated a 
Lie algebra-valued one-form uj,  the connection. In the case of a triangu­
lated manifold, a connection u>i is associated to each face, // .  When deal­
ing with the trivial bundle it was sufficient to consider the group element 
9ij = ehJeu  , which satisfied the condition gugji  = 1. However when 
working with nontrivial bundles it is necessary to consider two group ele­
ments assigned to the edge ejj. One coming from the connection cui on the 
face / /  and the other from u j  associated with the face f j .  Due to the ori­
entation on the edge, these two group elements g u  and gjj are respectively 
denoted;

gu  = exf*uUI, gji = . (6.35)

In the case of G = SO(2), the connections are related by ujj = ujj +  dipu. 
From this and the expression (6.16) for nj j  € 7^(50(2)),

gugji  =  (6.36)

which is equal to unity in the trivial case. Following the same procedure 
for the quantization as demonstrated on the torus, one gets (6.29) for the 
partition function. We can replace the sum over faces / /  to a sum over 
(ordered) pairs I J  by replacing 0/ in (6.29) with <fu given by the curvature 
relation (6.22), where now (pu +(fiji — 12nnjj  due to (6.36). Using this new 
relation for 0 /j,

f  Y \ ^ L L e i E u  { ( n j - n j W u + n j f c n n u )  ^

n7 J T r
(6.37)

IJ

(c.f. (6.31)). After integrating and using the expression (6.17) for the Euler 
number in terms of elements of 7Ti (50(2)),

E 0i n j r 2 n J 2 u  n l J E e i n ^ e ( P ) _ (6.38)

At this point it is interesting to observe how this result corresponds to the 
classical BF-theory. Recall that the solutions to the equations of motion 
of 2d BF-theory are flat connections, which only exist on trivial principal
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bundles, i.e. e(P) = 0. Performing the sum above for BF-theory we get the 
partition function

Z = 6{k/he(P)). (6.39)

Thus the partition function of BF-theory is zero unless the theory is defined 
on a trivial bundle. BF-theory only exists on trivial bundles. In order to get 
the right result for GR three conditions must be met;

1) set k = 1/87rG

2) fix the bundle to be isomorphic to the 

frame bundle, that is require e(P) = x(Af)

3) impose the Plebanski constraint n2 =  1. (6.40)

Imposing these three conditions on (6.38), the final result for the partition 
function is achieved,

z  = = 2cos(^Kg )-(6-41)
n '  '

This is the 2d Riemannian quantum GR partition function (6.5) that was 
obtained earlier using formal arguments and the Gauss-Bonnet theorem.

6.4 Q uantum  supergravity

Not to belabor the point, but LQG does not require supersymmetry in or­
der to be consistent. As has been shown it is a background independent, 
non-perturbative theory of quantum gravity relying solely on the principals 
of GR and QM. Though if one wishes to make contact with string theory, 
currently the best attempt at unifying the laws of physics, one must at least 
consider supersymmetry and how it is to be implemented in LQG. With this 
thought in mind, we will now lay out how the ideas presented in this chap­
ter may be extended to include supersymmetry. The starting point of this 
procedure is the partition function. As was explained in detail previously, 
the action of Howe’s 2d, N=1 supergravity in superfield notation reduces 
to a total derivative and, like 2d GR, is topological. The gravitino terms 
in the connection have no effect and the action (2.70) is proportional to
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the Euler number x(Af). As such, we would expect the partition function 
to be the same as that of bosonic GR, namely (6.5). The partition func­
tion for Chamseddine’s supersymmetric extension of the Jackiw-Teitelboim 
model was explicitly given in [8]. As we shown, both these models can be 
formulated as super BF-theories. To illustrate the procedure for extending 
the method [1] introduced in this chapter to supergravity, we shall take as 
our starting point the partition function of the super BF-action.

6.4.1 D iscretization of the super BF-action

Starting with the action for super BF-theory (3.15), the partition function 
can formally be written as,

Z  =  J  dAdB eV  = J  d A dB e'-n! StrlBF]

= J  dAS(F).  (6.42)

The first step towards evaluating the partition function involves formally 
integrating out the B-field from the path integral, which is possible as it 
appears linearly in the exponential. As expected, what remains is an integral 
over hat connections. In order to make sense of the delta function on the 
curvature in the remaining path integral, it is convenient to triangulate the 
manifold. As before, the base manifold is decomposed into a 2d dimensional 
triangulation A. Again, it is the dual triangulation A* that will actually be 
used. Discretizing the connection A, as in lattice gauge theory, an element of 
OSp{ 1,2), the parallel transport ge(A), is associated with each edge e. The 
curvature F  is measured through the superholonomies hi = (gei, . . . , g ek) i.e. 
the products of parallel transports, around each face // ,  bounded by k edges

Ü * -  eiF- (6-43)
ee df

Consequently the curvature F  can be thought to be located at the center 
of the dual faces, which corresponds to the nodes of the original triangula­
tion. The condition of zero curvature becomes the condition that the super­
holonomies vanish. That is, the product of group elements around each face
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has to be the unit element. The procedure for discretizing the B-field is en­
tirely analogous to the bosonic case presented before. The continuous B-field 
in the super BF-theory is replaced by an element Bj = baPa + bJ + baQa 6 
OSp( 1,2) on a face / /  in the dual triangulation. Replacing the continuous 
variables in the classical super BF-action with the discrete variables [£?/,h/] 
gives the discrete action,

where the sum is over all faces //. Substituting this discrete action into the 
formal expression for the partition function (6.42) and replacing the measure 
dA with the super Haar measure dhe gives

where the first product is over all edges and the second over all faces of the 
dual triangulation. Also note that dhe represents the super Haar measure 
on edge e, whereas hj represents the superholonomy around the face //. 
Now integrating out the discrete B-field, the discretized version of the super 
BF-action has the following partition function

where (gei, . . .  ,gefc) is the product of group elements associated with the

vanishes unless this product of group elements is the unit element. At this 
point in the procedure for the 5 0 (2) case presented before, the delta func­
tion was expressed as a sum over irreducible representations of 50(2) using 
the Plancherel expansion (6.28). More generally, the delta function can be 
expressed as a sum of characters of irreducible representations

1 = - \ Y s t r ^ h‘\ (6.44)

(6.45)

(6.46)

edges e bounding the face //. The delta function in the above equation

<5 (g) =  5 Z d i m ( A ) x a  (ff)- (6.47)
A

The extension of this expression for the delta function to the case of super­
groups, follows from a generalization of the Peter-Weyl theorem, (see [59]
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and references therein). Before continuing, we should briefly discuss the 
representation theory of OSp( 1,2) [92]. Each irreducible representation of 
OSp( 1,2) contains two adjacent SU(2) representations, labelled by the spins 
n and n — | ,  with n =  0, 1, | ,  —  The spin n is taken as the label of the
OSp( 1,2) representation;

Rn = Vn ® V n~5, (6.48) 
£

In the case of n — 0 one has the trivial one dimensional representation. 
Looking at Fig. 6.2, one sees that the su{2) generators act as usual on

Figure 6.2: A graphical illustration of the structure of the representation Rn 
of OSp(l,2). The identification. PQ —» P± and Qa —> Q± has been made 
to make clear the action of the generators of the Lie superalgebra on the 
representation.

each level. The fermionic generators allow one to go from one level to an­
other. Clearly the dimension of a representation Rn is 4n +  1. Formally, the 
quadratic Casimir operator is [58],

C =  PaPa + J J +  (6.49)

and the eigenvalues of the Casimir are;

Cn = n(n + |) .  (6.50)

Returning to the question of expanding the delta function of a group ele­
ment in terms of characters of irreducible representations, when dealing with 
supergroups, it is necessary to replace the dimension of the representation
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with the super-dimension. For OSp( 1,2) the dimension is (4n + 1) and the 
super-dimension is 1 for all finite dimensional irreducible representations. 
Thus, expressing the delta function over the group elements in the partition 
function in terms of characters of irreducible representations results in the 
partition function being

This is the partition function for super BF-theory with gauge group OSp{ 1,2). 
In the 50(2) case it was relatively simple to evaluate the value of the cor­
responding bosonic partition function because the characters of irreducible 
representations of 50(2) are known and are very simple. For the spin foam 
quantization of 4d GR with 50(4) gauge group, it is possible to use the char­
acter decomposition formula which decomposes the character of a given repre­
sentation of a product of group elements into a product of Wigner D-functions 
in that representation [89]. Unfortunately, for the supergroup 0 5 p (l,2 ) the 
character formulas are quite complex [90] and make the explicit evaluation of 
the super BF partition function incredibly difficult. To the author’s knowl­
edge, the method presented in [20] is the only attempt in the literature to 
solve this partition function (actually in the 3d case). This method avoids 
explicitly using the characters of OSp( 1,2), instead representing the parti­
tion function diagrammatically using circuit diagrams. As a result of this 
method, the partition function is finally expressed in terms of the Wigner 
6j-symbols of su(2). Unfortunately the evaluation of the partition function 
in this form is also difficult and it remains on open problem to date.
Though we were unable to explicitly evaluate the partition function of super 
BF-theory in 2d with OSp{ 1,2) gauge group, we know that in order to make 
contact with the supergravity model of Howe, it is necessary to restrict the 
representations summed over in the partition function. It is this restriction 
that we will now discuss.

6.4.2 The quantum constraint

To formulate 2d supergravity from super BF-theory, it was shown previously 
(c.f. 3.33) to be necessary to add a constraint to the action. This is also the

(6 .51)



CHAPTER 6. SPIN FOAM 2D QUANTUM GRAVITY 86

case for bosonic GR in two, three and four dimensions. The reason being that 
only flat connections are solutions to the equations of motion of BF-theory, 
whereas any connection is a solution of 2d GR. By adding a constraint to the 
BF-action, the number of degrees of freedom is increased. The added con­
straint effectively constrains a constrainer. Specifically for the case of Howe’s 
2d supergravity, it was shown that by adding the constraint (B  A B — A) to 
the action via a Lagrange multiplier two-form would lead to 2d supergravity 
provided a particular value for the variable A was chosen. Integrating out 
the Lagrange multiplier from the action (3.33) gave the Plebanski constraint

Str{B  A B) = S tr(Ä) (6.52)

The question was, how should this constraint be imposed at the quantum 
level? The answer to this question was illustrated in the example of the 
Barrett-Crane model of 4d gravity. Adding a constraint to the classical super 
BF-action results at the quantum level in a restriction of the representations 
summed over in the spin foam model. Likewise, for 2d GR, it was shown 
that by adding a constraint to the BF-action at the classical level, the rep­
resentations summed over were restricted and the partition function of the 
BF-theory became finite and agreed with that of GR. Even though it was not 
possible to explicitly calculate the partition function of 2d OSp{ 1,2) super­
gravity, it appears that this should also be the case. Following the example 
of the Barret-Crane model, if the B-field of the original super BF-action is 
identified as a generator of OSp( 1, 2), then the Plebanski constraint gives

Str( A) = S t r ( B A B )

= Str(babbP a P b + b2 J 2 +  babßQaQß). (6.53)

One can see that this expression is related to the OSp( 1,2) Casimir5 (6.49). 
Recalling that the Casimir has eigenvalues Cn = n(n +  | )  on an irreducible 
representation n, and setting A to the values (3.35), calculated previously to 
recover Howe’s supergravity, we have the result;

Cn = Str(k)

5This expression is actually the supertrace version of the osp(l,2) Killing form.
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±A'2
4

=  n(n-h^). (6.54)

So, to recover Howe’s supergravity from the spin foam formulation of su­
per BF-theory, it is necessary to restrict the representations summed over 
in the spin foam to those representations n that satisfy the above condition. 
However, there is a problem. Recall that the final step in writing 2d super­
gravity as a constrained super BF-theory was to take the limit of A' —> 0, 
corresponding to the supersymmetric extension of ISO (2). When this limit 
is taken the representations, due to the above condition, are restricted to 
the value n = 0. Therefore all the representations on the edges of the spin 
foam are simply the trivial one-dimensional representation. Thus it appears 
from this general argument, that it is not possible to formulate Howe’s 2d 
supergravity as a spin foam model and recover the correct partition function 
(6.5). It does appear however, that the procedure described in this chap­
ter would be suitable for formulating 2d supergravity models with nonzero 
cosmological constant as spin foam models. It is the cosmological constant 
in these models that ultimately restricts the representations summed over in 
the spin foam models. Thus, in order to have a nontrivial spin foam, it is 
necessary to have a nonzero cosmological constant.



C h a p te r  7 

C onclusion

To date, LQG represents one of the most promising approaches to the open 
problem of constructing a quantum theory of the gravitational field. What 
characterizes this attempt from others is the assumption that the lessons 
learned from QM and GR should be considered seriously, without any fur­
ther assumptions; mathematical or physical. Making no assumptions on how 
physics should behave at the Planck scale, combining QM and GR and trying 
to push them to their extreme consequences leads to some amazing conse­
quences. Most notably the description of the quantum properties of space 
at the smallest scales, where the classical continuous space of our everyday 
experience takes on a discrete, granular nature. LQG provides a diffeomor- 
phism invariant, background independent, non perturbative quantum theory 
of geometry and is therefore an appealing candidate for a theory of quantum 
gravity. That is not to say that LQG is complete. There remain many open 
questions, including its connection to string theory and inclusion of super­
gravity. By studying more simple and tractable models, it is possible to make 
progress and not only answer certain questions but learn what questions are 
good to ask and will lead one in the right direction. It is with this idea in 
mind that we analyzed the simple model of 2d supergravity in LQG, with 
the hope of finding answers that indicate the properties we would expect to 
find in the full and complete theory of quantum gravity. Having discussed 
the basics of GR and 2d supergravity in the hamiltonian and superspace 
setting respectively, in Chapter 3 we presented the topological BF-theory as 
the starting point into our investigation of supergravity in LQG. The rea-

88
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son was twofold; the methods for formulating FF-theory in the context of 
LQG is already well known, as well is the idea of expressing supergravity 
actions as FF-actions with a classical constraint imposed. However, to the 
author’s knowledge, this thesis represents the first time that the 2d super­
gravity model in [5] has been expressed in this manner, imposing a constraint 
on the classical F-field through an extension of the cosmological constant. 
After presenting the foundations of LQG in Chapter 4, we introduce the 
quantum states of the Hilbert space of LQG, the spin networks, in Chap­
ter 5. These are the eigenstates of the quantum operators corresponding to 
classical geometrical quantities. In other words, they are discrete quantum 
excitations of space itself. They are one dimensional objects label by the 
representations of the gauge group under consideration and invariant un­
der spatial diffeomorphisms. Something quite different from the usual Fock 
states of standard quantum field theory. The question of how to extend these 
spin networks to include supersymmetry is an interesting one that has re­
ceived little attention in the literature. In the case of this thesis the topic 
of interest, that is OSp( 1,2) spin networks, could be found from the bosonic 
networks by simply replacing the gauge group with the supergroup OSp( 1, 2) 
and relabelling all the edges accordingly. Having formulated the notion of 
a supersymmetric spin network, in the final chapter we presented the spin 
foam quantization procedure developed in [1], beginning with a brief discus­
sion on the topological nature of 2d bosonic gravity including the calculation 
of the partition function. As the action of Howe’s 2d supergravity is also 
topological in nature and equivalent to the Euler character, it was expected 
to share the same partition function and hence would be a good candidate for 
attempting to extend the spin foam quantization procedure to supergravity. 
It was shown that in order to quantize a constrained BF-theory using spin 
foams that it is necessary to ensure that the topology of the bundle is the 
same as the frame bundle. It is also necessary to discretize the continuous 
variables of the theory and this was accomplished by using a triangulation, 
or more accurately the dual triangulation of the base manifold. With the 
action of the BF-theory in a discrete form it is possible to explicitly calculate 
the partition function of 2d SO (2) BF-theory, which diverges. However, by 
adding a Plebanski constraint at the classical level to the BF-action, corre-
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sponding at the quantum level to a restriction of the representations summed 
over, it was possible to achieve a finite partition function. Not only this, but 
by satisfying a number of other conditions, the partition function of the con­
strained BF-theory was shown to be equivalent to that of 2d GR. The final 
step was to extend this procedure to supergravity and answer the question of 
how to impose the classical constraint on the super BF-action at the quan­
tum level in the case of including supersymmetry. Initially the procedure 
follows the bosonic case; the action is discretized by a triangulation of the 
base manifold and the partition function is calculated. Unfortunately due 
to the complicated nature of OSp( 1,2) characters, we have not succeeded 
in explicitly calculating the partition function for 2d supergravity. The final 
consideration was how the classical constraint on the super BF-action should 
be implemented at the quantum level. It was found that the value of the 
cosmological constant at the classical level, directly determined which rep­
resentations of the spin foam should be summed over at the quantum level. 
As Howe’s model of supergravity has as its gauge group the supersymmetric 
extension of 750(2) and a zero cosmological constant, the only possible spin 
foam model is the trivial one, i.e all representations on the edges of the spin 
foam are the one-dimensional trivial representation. The procedure though, 
of formulating 2d supergravity as a spin foam model with a restriction on the 
representations coming from the classical action appears to be applicable for 
models with a nonzero cosmological constant. However, it remains an open 
problem, how one could explicitly calculate the partition functions of such 
models.



A p p en d ix  A 

C onventions

Throughout this thesis the following index notation has been used unless 
otherwise stated. Greek letters from the middle of the alphabet [i, v , . . .  are 
used as 4d spacetime indices and as the indices of the anticommuting spinor 
coordinates, 6, of superspace. The indices m, n , . . .  are 2d spacetime indices 
and lower case Latin letters i, j , . . .  are 3d spatial indices, (and occasionally 
SU(2) vector indices). Lower case Latin letters a, 6, . . .  from the beginning 
of the alphabet are tangent space indices in 2, 3 and 4 dimensions. Spinor 
indices are given by the Greek letters from the beginning of the alphabet 
c*,/3,. . .  Upper case indices A4, N , . . .  are supexspace coordinate indices and 
A, B , . . .  the corresponding tangent space indices. The upper case indices 
7, J , . . . ,  when discussing the triangulation of a manifold, label the faces (and 
also the edges and vertices).

A .l  Two dim ensional superspace

The coordinates of (2+2)-superspace are zM = (xm,6ß), where the xm (9ß) 
are even (odd) elements of a Grassmann algebra. As elements of a Grassmann 
algebra, the following relation holds;

zMzN = (- l)IA W  zNzM, (A.l)

where \M\ = 0  (1) for bosonic (fermionic) indices A4.
The bosonic metric and antisymmetric tensor are;

rjab = diag(—1, +1), eab = - e 6a, e0i =  1,
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_ be _ re
^ t-abi €ab£ — ua •

The fermionic metric is

eaß — t i 2 =  1 =  —621) 6l l  =  622 =  0

and the contractions are given by

=  -^ a 7) ea/3ea/3 =  2.

The gamma matrices are chosen to be real and satisfy

7 V  =  v «b _  e «i>7 5.

With 7 5 = l 0! 1, the following relations can be deduced;

[7“, 76] =  — 2ea675, [7“, 75] =  2eafc7b, 7 V  = eaV

An explicit representation is given by

7
0 1

-1  0 7
0 1 
1 0 r

1 0  

0  - 1

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)

The gamma matrices are related to the standard Pauli matrices <r, by

7 =  -7o =  *0 2 , 7 =  7i =  0i, r (A.8)

A .2 Superm atrices

Supergroups can be conveniently represented by matrices acting on a su­
perspace (supermatrices). Supermatrices act linearly on the coordinates of 
superspace leaving invariant the partition among even and odd coordinates. 
The coordinates of superspace form an (m + n) x 1 column vector with the 
first m entries (last n entries) being even (odd) elements of the Grassmann 
algebra. The (m + n) x (m + n) supermatrix is written in partitioned block 
form

M
A■rxm xm B m x n

O n x m Df ixn
(A.9)
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where the components Aij,Daß (Bia,Cai) are even (odd) elements of the 
Grassmann algebra.
The addition and multiplication of supermatrices according to the rules;

(Ml + M 2 ) m N  = + (M2)m7V,

—  ^^(M i)mp(M2)p/v, (A.10)
p

is such that it produces another supermatrix.

A .3 T he supertrace

The basic invariant of a supermatrix is the supertrace,
m+n

Str(M) = tr(A) -  tr(D) = ^ ( - 1  )|P|MPP, (A .ll)
p= l

which is defined so that the cyclic property

Str (M\M2) = ( - l ) |Ml||M2|S£r(M2Mi) (A.12)

holds for arbitrary supermatrices.

A .4 T he superalgebra of O S p (l,2 )

The superalgebra osp(l, 2) is the simplest of the orthosymplectic groups and 
can be viewed as the supersymmetric version of su(2). It contains three 
bosonic generators Pa, J  which form the Lie algebra su(2) and two fermionic 
generators Qa. The non-vanishing commutation relations are,

[Pa,Pi,} = 2X'2eabJ, [J,Pa} = eabPb,

[j, Qa] = 1 ( 7 V < ? / 3 ,  [Pa, Qa] = ^ ( 7 a)aßQß,

[Qa, Qß} =  ^ ( 7  a)aßPa A'(75) ^ J ,  (A.13)

with the parameter A'2 taking on positive, vanishing or negative values1. The 
graded invariant quadratic form consistent with a non-degenerate Casimir

lrThe sign of A/2 dictates whether J is a compact (so(2)) or noncompact (so (l,l))  
generator of sp(2). The author would like to thank the examiners of this thesis for pointing 
this out.
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operator (except for the supersymmetric extension of iso(2)) is;

{ P a )  P b)  =  Vab, ( J , J ) =  2A'2, ( Q c n Q ß )  = \ ^ a ß )  (A.14)

with all other relations equal to zero.

The Casimir operator is C — pabJaJ b + J 2 -  X'eaßQaQf3 and has the eigen­
values n(n +  1) on the representation labelled by the (half)-integer n. The 
dimension of an irreducible representation of osp{ 1,2) is (4n + 1).

The fundamental representation of osp{ 1,2), which is 3 dimensional, is gen­
erated by five 3 x 3  matrices. They are given explicitly as,
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