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Abstract 

Stereo n1atching is one of t he fundan1ental t asks in early vision. Unlike hun1an 

brain recognizes obj ects and estin1at es t he dept h easily; it is difficult to design 

algorit hn1s that perforn1 ·well on a con1puter due to variations of illun1ination ; 

occlusion or t extureless . Like n1ost of t he early vision problen1s) stereo n1atch­

ing can be forn1ulated as an energy n1inin1ization problenr in v,rhich the optin1al 

dept h is t he one ,;vith the lo,;vest energy. And graph cuts is one of t he efficient 

and effective n1inin1ization tools t hat avoids t he problen1s of local n1inin1a . Con­

vent ional energy functions are defined on Markov Rando1n Fields(MRFs) ,;vith 

a 4-connected grid structure derived fron1 t he in1age, however it is incapable of 

expressing con1plex relationship betv,reen group of pixels. This thesis fo cuses on 

exploring son1e aspects of st ereo n1at ching proble1ns t hrough higher-order struc­

t ure and higher-order graph cuts . 

The first problen1 I address relat es to the evaluation of five state-of- t he-art 

segn1entation approaches. Their different cont ribut ions t o segn1ent-based stereo 

n1atching have been quant itatively n1easured and analyzed . This ·works ain1 at 

helping researchers to choose t he segn1entation approach that n1ost suitable for 

t heir stereo matching application . 

The second part of t he t hesis proposes a novel approach to dense stereo n1atch­

ing. This n1ethod features sub-segn1entation and adopts a higher-order potential 

to enforce t he label consistency inside segn1ents as a soft constraint . l'v1oreover ; 

several successful techniques have been co1nbined . Experin1ents shovl t hat t his 

approach obtains state-of-t he-art results vlhile still keeping efficiency. 

In t he last part of t he t hesis; a novel two-layer I'v1 RFs fran1evlork is presented 

in ·which stereo n1atching and surface boundary estin1ation are con1bined . Both 

propert ies are inferred sin1ultaneously and globally so that t hey can benefit each 

other. This Vlork has direct application in phosphene vision based hun1an indoor 

navigation . Experiments prove that t he proposed fran1evlork achieves signifi­

cant ly better perfonnance than other popular n1ethods in all resolutions. 
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Chapter 1 

Introduction 

1.1 Computer Vision 

Like hun1an using their eyes to perceive the real ,iVorld , the then1e of con1puter 

vision is to si1nulate t he hun1an vision by n1achines to analyze and underst and 

in1ages or video sequences. As a joint discipline, con1puter vision closely re­

lates to t he fields of physics ; signal processing, art ificial intelligence and n1achine 

learning. The at tent ion of con1puter vision has been ,iVell pa id since t he 1970s 

along t he develop1nent of con1putational abilities and n1aturing of active appli­

cations: autonon1ous vehicle navigation , n1edical i111aging, auton1atic surveillance 

and others[68]. 

Generally; con1puter vision consists of t hree levels of tasks: lo,iV-level, n1iddle­

level and high-level. Low-level con1puter vision , or con1n1only kno,iVn as early 

vision , is n1ainly confronted ,iVith the tasks of acquiring features and recovering 

three-di1nensional shape frorn in1ages . Middle-level and high-level vision prob­

le111s, on the other hand, focus on obj ect detection and scene understanding. 

According t o[57], early vision tasks a.re usually :' inverse" proble1ns , thus t hey are 

ill-posed . Their solut ions are not unique, and oft en proble111s t he1nselves are not 

sufficient ly constrained . To regularize t hen1 , researchers have to introduce specific 

constraints to t he problen1s. Typical early vision tasks include stereo 1natching1 

i1nage restoration and i1nage segn1entation. 

1. 2 Stereo Matching 

Stereo n1atching is one of t he 1nost heavily researched topics in early v1s1on . 

It has a ,iVide range of potent ial applications including: three-din1ensional scene-
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reconstruction i robot navigation. Con1prehensive reviev.rs can be found in [67] [5] [12] [18]. 

In general, it can be sorted into tvlo categories: t\i\ro-fran1e and n1ulti-fran1e. In the 

two-fran1e stereo n1atching problen1, a scene is capt ured by two can1 eras sin1ulta­

neously. The n1ain purpose is for con1puters to predict t he distance between t he 

objects and the can1eras through these two captured in1ages. If these two in1ages 

have already been v\rell rectified , the positions of an object ·will have a horizontal 

shift in two i111ages depending on its distance to the can1era. This distance is 

usually called disparity, and is inversely proport ional to the dept h . Therefore t ]1e 

n1ain process of stereo 111at ching is to find the correspondence between the two 

i111ages and con1pute their disparity. The disparity inforn1ation of each pixel can 

be displayed in the forn1 of a disparity n1ap (as shuwn in Figure 1.1 ), in which the 

brighter the pixel is , the closer it is to the ca111era. 

(a) Left image (b) Right image ( c) Disparity map 

Figure 1.1: An exan1ple fron1 I'v1iddlebury[67]. 

A variety of constraints are used to guide the correspondence solution includ­

ing photoconsistency, continuity, uniqueness, ordering and others. Algorithms for 

st ereo n1atching can be divided into local approaches and global approaches. Lo­

cal approaches neglect the sn1oothness of spatially neighboring pixels and usually 

their solutions are decided by a pixel independent "·winner-t ake-all" strategy. In 

practice, local approaches are efficient but not robust enough . l'vfeanwhile global 

approach forn1ula.te itself as a pre-defined energy 111inin1ization problen1 in which 

the luwest energy corresponds to t he optimal labeling. In their energy functions , 

they usually have sn1oothness tenns penalizing on difference between neighboring 

pixel. . In such design , pixels are opti111ized in the san1e global fr a111ework. iv1ost 

of the existing global algorithn1s are defined on Markov Randon1 Fields( I\1RFs) 

with a 4-connected grid structure , however it is incapable of expressing con1plex 

relationship between group of pixels. In t his t hesis , ,ve fo cus on exploring so111e 

of the higher-order structure of stereo 111atching. 
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1.3 Outli11e of tl1e Tl1esis 

A brief out line of t he t hesis fo llo-ws. 

1. In chapter 2, \1'.re first review the basic concepts used in this thesis including 

I\1arkov Randon1 Field , inference and graph cu ts. Then ·we discuss t he 

t'wo-fr an1e stereo n1atching problen1s and the lin1itations of previous "\A.Tork. 

2. In chapter 3; we int roduce t he evaluation fran1evlork of five state-of-the­

art segn1entation approaches . In addition , their different cont ribut ions to 

segn1ent-based stereo n1atching have been quant itatively n1easured and an­

alyzed . 

3. In chapter 4, \"le propose a nevl approach to dense st ereo n1at ching. It 

features sub-seg1nentation and adopts a higher-ordei potential to enforce 

t he lab el consistency. 

4. In chapter 5, v,.re present a novel tvlo-layer I\1RFs fr an1e"\A.rork in ·which st ereo 

n1atching and surface boundary estin1ation are co1nbined . Both propert ies 

are inferred sin1ultaneously and globally so that t hey can_ benefit each other. 

This work has direct application in phosphene vision based hun1an indoor 

navigation. 

5. In chapter 6, ,;ve give a sun1n1ary of our vlork and list n1ain cont ribut ions. \ tve 

end the chapter by discussing son1e pron1ising directions for fut ure research . 
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Chapter 2 

Theoretical Backgrounds and 

Related Work 

2.1 Bayesia11 Labeli11g a11d Markov Rando1n Field 

2.1.1 Labelin.g Problen.1s 

A variety of problen1s in con1puter vision can be fonn ulat ed as labeling in ,~ hich 

t he opt in1al solut ion is defined as the n1axin1un1 probability esti1nation. And 

t hese problen1s are con1n1only referred to as labeling problerris. They vl idely e?dst 

in early vision tasks like in1age segn1entation, st ereo n1at~hing, in1age restoration , 

texture synthesis and others, as sho,Nn in Figure 2.1. Labels represent different 

n1eanings in different tasks, for instance , intensity values as in grayscale i1nage 

restoration and dept h values as in stereo n1atching. 

More fonnallv let L be a set of n discrete labels. 

L ={ l , 2, ... : n} (2. 1) 

And assun1e we have a set of discrete variables X defined G\ er a lattice. 

X = {l 2: ... , m} (2.2) 

And labeling is to assign labels fro1n L to each randon1 variable X i E X. 

different , ariables can take different labels. Any possible assignn1ent is called a 

labeling configuration( denoted by J). It can be clearly observed t hat the set F of 

all configurations takes values fron1 

F n1 = n x n · · · x n = n (2.3) 
mti1nes 
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D D D 

(b) (c) 

Figure 2.1: S0n1e labeling problen1s in co1nputer vision. ( a) Stereo Matching: 

Given a pair of rectified left and right images i t he depth infon11ation can be 

con1puted by finding the pixel correspondence along epipolar lin es. The labels in 

t his application represent dept h values . (b ) linage Denoising: Given a noisy image 

of t he scenei t he obj ect is t o infer t he t rue intensity of t he original in1agei here 

t he labels are t he intensit ies. (c) Obj ect Class Seg1nentation : Given a observed 

image , t he task is t o divide t he scenes into segn1entations ,vit h sen1ant ic 111 an1ngs. 

Here t he set contains object labels { skyi t ree ; building ; grass} 
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In tern1s of the n1axin1un1 likelihood of the estin1ation of the true labeling, if 

'We define r as the observation of the in1age , and 'We have a po.ster'ior probability 

P (f /r ) over a certain configuration f , then the goal is equivalent to n1axin1ize this 

probability and is called n1axin1ize a posterior(IvIAP) probability. The target to 

find the n1ost probable labeling is to find the 1'v1AP configuration f * that 

f * = argrnax JEFP(f /r ) (2 .4) 

Suppose we kno·w both t he a prior probability P (f ) and t he probability densi­

ties p(r /f) of the observation r , since t he density function p(r ) does not affect the 

I\!IAP solution , t his posterior probability can be converted to a sin1ple calculation 

using t he Bayesian rule 

P (f /r) = p(r /f )P (f) / p(r) (2 .5) 

The likelihood function p(r /f ) is case Vlise , depending on the specific problen1s 

and ~rill be discussed later, as kno-wing P (f ) is generally difficult. And this is t he 

reason whv I\!larkov Randon1 Field is introduced. 
J 

2.1.2 Markov Random Field 

I\!larkov Randon1 Field(I\!IRF) is a widely used probabilistic n1odels described by 

an undirected graph for analyzing spatial or contextual dependencies of physical 

phenon1ena. [ 44]. Here we ~rill briefly review t he I\!lar kov property shared by vari­

ables in a I\!IRF . 

Pairwise Markov Property : Any two non-adjacent variables are conditionally 

independent given all other variables : xi, Xj IX\{ij} 

Local J\!Iarkov Property : A variable is conditionally independent of all other 

variables given its neighbors: Xi, x \ {i} IXneighbor{i} 

Global Markov Property: Any t~ro subsets of variables are conditionally in­

dependent given a separating subset :XA , XB /Xs where every path from n1embers 

in A to 1nen1bers in B passes t hrough S . 

In other vlords , a probabilistic 1nodel is considered a I\!IRF "\¥ith respect to 

t he joint probability distribution over a set of randon1 variables if and only if 
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separation in the n1odel in1plies conditional independence. Therefore , if defin a 

neighborhood systen1 as J-l = {l\Tx IT E X} i t hen a l'v1arkov Rando1n Field satisfies 

(2.6) 

According to the Han11nerslcy-Clifford t hcorcn1[40L t he posterior distribution 

P (rlf) over t he labelings of a J\1:RF is a Gibbs distribution and can be Vlritten as 

(2.7) 

,;vhere Z is a non11alizing constant kno,;vn as the partition function , and C is 

the set of all cliques in the J\1RF , and '!' c(Xc) a.re potential functions defined over 

cliques c. In definition , a clique is a set of nodes that in ·which any pair of tvlo 

nodes are adj acent in the J\1RF. The corresponding Gibbs energy is given by 

E (:r) = -logP (rlf) - logZ = L '!' c(X c) (2.8) 
cEC 

Since Z is a constant vl it h respect to different labeling configurations; n1ax­

in1un1 a posterior( J\1AP ) labeling f* is equivalent to the n1inin1un1 of the Gibbs 

energy. 

f * = argn1.axfEF P (r lf ) = ar_q171.infEFE(.1:;) 

For 1nore details, please refer to [8]. 

Orders and Structures of Markov Random Field 

(2. 9) 

Based on t he largest clique size c in t he Equation 2.8 , t he MRF are sorted into t,vo 

categories: second-order and higher-order. The second-order J\1RF arc con1111only 

referred to as pairwise J\1:RF in which t he largest clique size is 2. And for J\1RFs 

,;vith clique size larger than 2i they are knovn1 as higher-order J\1:RFs. 

Pairwise n1odcl has been ·widely used in con1putcr vision[69] due to its good 

enforcen1ent of spatial coherence and efficiency of in1ple111entation . If v,,e d note 

xi E X as the hidden variables. Yi E Yas the corresponding observed variables. 

and xi : :-C j E J\ are two neighboring hidden variables; then the joint distribution 

of a pairwise J\llRF can be " 'ritten as: 

(2.1 0) 

Here; oi ( :r 11 J)i ) co1nes fro1n the likelihood of local 1neasuremen( and '.\.j E (.ri: .r j) 

is usually defined as a prior enforcing consistcnc~ of adjacent \ ariablcs. 



Auxiliary node 

Pairwise - Grid Pairwise - Tree Higher-order 

Figure 2.2: Fron1 left to right the first one is the grid pain,vise structure and it is 

the n1ost con1n1on structure in con1puter vision; the second one is also a pairwise 

i\/IRF, but it is loop-free ; the third one is a higher-order iVIRF ,vith 111axin1un1 size 

of 5. In higher-order graph , the extra red node is a auxiliary node that connects 

ever3 111en1ber of the clique. This expression is equivalent to fully connection of 

all men1bers. 

Although pain;vise I\!lRFs are generally easy to optin1ize, they are incapable 

of encoding the relationship betvleen a group of variables. To overcon1e it , re­

searchers have developed higher-order MRFs. For example -in [35], segn1ent is 

n1odeled as one clique in which its 111en1bers are full1 connected. And in [59], 

each boundar3 piece is taken as one node , and the conjunction of boundaries is 

n1odeled as the higher-order connection of these boundary nodes. 

For full1 connected groups of pixels , the joint distribution of its probability 

can be v; ritten as: 

p(x y) = ~ II r/>i(xi, Yi) II 1Pi,J,k Ec(xi , Xj, Xk- -- ) (2.11 ) 

v; here fl ¢i(xi, Yi) ren1ains the local measuren1ent : and TI ?/Ji, j ,k ... Ec(xi, Xj, xk ... ) 

encodes the potential defined on a clique C. 

An illustration of these classic structures is given in· Figure 2.2. 

2.2 Inference 

After defining the I\1Iarkov Rando1n Field (I\IIRF) the natural question raises, hov. 

can we infer the labeling that maximize a posterior estimation or minimize the 

energy function of a I\IIRF? 

The enerITT minin1ization algorithn1s originally used in 1990's were con1pu­

tational inefficient or ineffecti e, such as iterated conditional modes (ICI\11) [6] or 
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sin1ulated annealing[4]. Over the past decade, energy n1inin1ization approaches 

have had a renaissance , novel algoritl11ns have been developed such as graph 

cu t [l l ][38] and loopy bc1icf propagation [79]. It results in t he prosperity of a vari­

ety of approaches using energy n1inin1ization to solve con1puter vision proble1ns. 

Here v,re 'Will briefly revie·w son1e of the representative energy n1inin1ization 

algorithn1s. 

2.2.1 Iterated Condition.al 1\1:odels(ICM) 

The iterated conditional n1odels (IC1VI) knovn1 as one of the classic "greed" strat­

egy based algorithn1s is firstly introduced in [6]. It starts by an initial labeling; 

and optin1ize each varia blc by choosing the label that decrease the n1ost an1ount 

of energy. The advantage of this algorithn1 is that it is guaranteed to converge. 

The shortages are obvious too , it is ext ren1ely sensitive to the initial labeling 

especially in high-din1ensional spaces ,vith nonconvex energies and easily to stuck 

in local n1inin1un1s. Therefore ICivI has not been ,videly used in con1puter vision. 

2.2.2 Grapl~ Cut 

Graph cut has been intensively explored during the past decade. It is firstly 

introduced into con1puter vision early in [28]. It is a algorithn1 of con1puting 

n1inin1un1 for binar:v labeling. It first converts a l\1RF to a graph, every potential 

defined on the I\1RF beco1nes vleight on the graph , and then it optin1ize the graph 

by finding a n1inin1un1 cut using n1a.x-flow algorith1n . It is guaranteed to achieve 

the global n1inin1un1 ,vhen certain requiren1ents are 1net . 

Ho,vever n1ost of the labeling tasks in con1puter vision have n1ulti lab ls. 

Therefore in [11], bvo algorithn1s o:(3 - swap and a - e:cpans'ion arc proposed , the 

usage of graph cut is extended fron1 binarJ to n1ulti-label. For both algorithms. 

it lovlers its energy b:'-- using binary graph cut as an inner loop; and it converges 

,Yhen no lower energy can be found. 

For o,(3 - swap , in each inner iteration , t" o rando1n labels fron1 the labels set 

are taken as the current o and /3 . The binary cut only applies on th variables 

,Yith the current label of either o: or /3 . The variables ,Yith current label a can be 

s,Yapped to '3 in this process. vice versa. The swap n1oves find the local n1inin1un1 

such that there is no s,Yap n10-.-e for any pair of labels ni , R that "ill lead to a 

lo,ver encrg:,-. 

The a - cxpan ·ion is applied in an analogously ·way. In each inner iteration, 
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one randon1 label is taken as a . For the variables vvith current labels other than 

a,, they ,vill be involved in the binary cut in ,i\rhich their labels can be changed to 

O'.. 

The advantages of graph cut a.re its effective and fast convergence. But certain 

requiren1ents have to be satisfied in order to use it. Define a label set L and 

{ a, (3, ""!} E L. For each pair of neighboring pixels { xi, Xj} , it has a second-order 

energy potential 'ljJij . V-\j is called a 1netric if it satisfies 

VJij ( a, (3 ) = 0 ¢:? a = (3 

VJij ( a , (3) = VJi j ((3, a) > 0 

VJij(a, (3 ) < VJij(o,, , ) + VJij(r, (3) 

(2.12) 

(2.13) 

(2.14) 

for any labels {a,/3,,} EL. If 'l/Jij only satisfies 2.12 and 2.13 , it is called a 

serni - rrletric. 

Originally in [11], a - expa'rLs 'ion can only be applied when it is a n1etric , and 

se1ni-n1etric for 0:(3 - swap. In the later work [38], it relaxes these constraints and 

sho,v that the expansion-n1ove can be used ,vhen 

(2.15) 

and the s"\i\rap-n1ove algorithn1 can be used if 

(2.16) 

And we refer to these constraints as sub1nodular conditions. \ i\Then these 

conditions are not satisfied, graph cut algorith1n can still be applied by truncating 

the violating tern1s[64], the deterioration degree ,i\rill depend on the nun1ber of 

tern1s need to be truncated . 

More details about graph cut ,vill be discussed in the next section. 

2.2.3 Loopy Belief Propagation(LBP) 

Belief propagation(BP) is a powerful inference engine. The principles of it are 

clearly explained in [80]. It is based on iterative 111essage passing. In every 

iteration, every node updates its n1essage based on its local evidence and received 

n1essage fro1n the last iteration, and further passes this updated n1essage to its 

neighbors according to the pre-defined graph structure. According to different 

usage , BP can be sorted into t"\vo categories , n1ax-product based and sun1-product 

based . Sun1-product BP co1nputes the n1arginal probability distribution of each 
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nodes in the graph. The con1n1only used one is the n1ax-product BP, because for 

n1ost of the ta~ks in con1puter visioni the optin1ization goal is to find the labeling 

,vjth tbe NIAP or the lo,vest energy, and this is exactly ,~rhat n1ax-product BP 

ai1ns at . 

In the original design[53] ) BP is for graphs ·without cycles. Ho,ivever this is not 

the case in con1puter vision , even the sin1plest painvise lVIRF is ·v-1ith loops . There­

fore researchers have developed a variant of BP, loopy belief propagation(LBP ), 

and successfully applied on loopy graphs. Later in [20] , researchers bave greatly 

i1nproved its efficiency by three n1odifications of distance transfon11 , ch ssboard 

updating and hierarchical netvlork. 

Let J\JL-+j be a n1essage that variables i sends to its neighbor j at ji.,eration l. 

T hen n1essage updating rule of a typical pairwise IV1RF is 

]\lf}-'tj (:ri) = n1/i 'n( ¢( xi) + L ]\If{~\ ( xi) + '~\j (xii .'Ej)) 
kEN(i)/j 

(2.17) 

Generallyi LBP is not guaranteed to converge and n1ay stuck in an infinite 

loop, but for n1ost tasks in early vision , it gives adequately good results and is 

widely applied. 

2.2.4 Dynamic Programming(DP) 

D:vnan1ic progran1n1ing(DP ) is a algorith1n for solving con1plex problen1s by break­

ing it dovn1 into a sequence of sin1pler subproblen1s. In con1puter vision ) it is 

firstly used in finding the corresponding points along each epipolar line in stereo 

n1atching[50] . 

Hov.rever , ·when in a graph vlithout loops , DP is equivalent to belief propaga­

tion. Researchers have taken advantage of this and perforn1ed DP in v\rell 1nodcled 

tree structure ( tree structures are naturally acychc). [71] 

2.2.5 Tree-Reweighted Message Passing(TRW) 

Tree-rev\reighted n1essage passing(TR\t\T) is originally proposed in [72]. The key 

idea is tree-based relaxation , using a convex con1bination of tree structured dis­

tribution to derive the lov.rer bounds on the energy of the MAP configuration. 

Sin1ilar to LBP. the n1essage that Yariable i sends to its neighbor j at iteration 

t is defined as 

!1IL_,, j (:ci) = nrin(cij(cp(xi) + L 1\11~~\ (.ci) ) + ij (xi, .rc j ) - J\IJ~~( xi )). (2.18) 
kE N (i ) / j 
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A set of trees are defined o, er the graph connections so that each edge vlill 

be included in at least one tree. And the coefficient cij is detern1ined by the 

probabilit) of the edge { Xi; Xj } contained by a randon1l) chosen tree. If cij is set 

to 1 i then it is identical to LBP; t herefore it is a generalization of LBP. 

Ho-Y\ ever the original TR"\ a.lgorithn1 does not guarantee to converge and the 

incren1ent of lo-Y\ er bounds ,, ith iterations does not necessary occur. Later a 

variant called TR"\i\1-8 [37] is proposed to overcon1e this shortage, in \vhich the 

lov, er bound is pron1ised not to decrease resulting in a convergence property. It 

is the 1nost often used version in practice . 

2.3 Pseudo-boolean Optimization and Grapl1 Cuts 

2.3.1 Graph Cuts in Computer Vision 

Graph cuts ren1ains one of the active research areas in the past decade. J\1any of 

the tasks in con1puter vision can be forn1ulated as an energy 1ninin1ization prob­

len1: and graph cuts has been used as one of the n1ajor optin1ization tools under 

this purpose. It has been used in a v1,ride , ariety of lovl-level yision applications , 

such as in1age denoising i i1nage segn1entation: in1age synthesis , stereo n1atching 

and so on. Be} ond finding ne" applications the researchers also obtained huge 

progress in itsel( including efficient 1nax-flo" algorithrns : constraint , 1nulti-label 

problen1 and so on. 

Although graph cuts has been firstl} int roduced into con1puter ·ision early 

in 1989 by Greig[28], but the real n1ilestone are t" o classic papers v1,rritten by 

Bo) kov[l 1 J[ l OJ in 1999 and 2001 respecti, el). Paper [l 1] successful!) introduces 

t"·o algorithn1s that expand the ability of graph cuts fron1 binar:') to 1nulti-label 

nan1ely expansion and s"'ap and is the beginning of broad usage in con1puter 

ision. Paper[lO] not only con1pares two con1n1on max-flo,v algorithn1s 1 but also 

introduced an i1npro, ed version of the augn1ented-path. Later I(oln1ogorov states 

the ,Yell-kno"·n ::sub-n1odularib ;; problen1[38] as the essential constraint in graph 

cut i and further expands econd-order to third-order. In [36], Kohli proposed 

the idea that search trees can be re-u ed in order to achieYe higher perforn1ance. 

The popular graph cuts tool ,ve use nowada-1, s in vision is the con1bination of 

these papers. 

nother interes ing ,i'?ork[24] appears later and n1anages to link graph cuts 

to pseudo-boolean optin1ization 1 and further extends third-order to higher-order. 

Based on it l researches have giYen theoretical prove on general transforn1ation of 
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higher-order tern1s to second-order ten11s by adding auxiliary nodes[30] ) but in 

such conversion exponential auxiliary nodes in the v.rorst case are needed ,;vhich 

n1akc it unsuitable in real use . To ovcrcon1c it ) researchers have explored and 

proposed son1e specific forn1 of higher-order energy potentials; such as the classic 

p n Potts J'viodel in [34] and Robust P 11 Potts l\1odel in [35]. After that) a sparse 

and efficient generalization of Robust pn Potts l\1odel is given in [62L it can deal 

\i\rith lo,i\rer-envelope higher-order tern1s. It is further ext ended to constrained 

upper-envelope higher order functions[33] [27]. 

l\1ean,i\rhile ) son1e researchers focus on other aspects of graph cuts as \i\rell . 

Firstly, ho,v to n1inin1ize un-subn1odular tern1s using graph cuts. In [63] author 

introduces techniques fron1 pseudo-boolean optin1ization and nan1es it QPBO ) 

it can be used in non-subn1odular problcn1s , after such optin1ization son1c of 

the labels n1ay ren1ain unlabled. Secondlyj efficiency. Researchers propose the 

Fusion Cuts[41], it decon1poses the label space by 2-bits coding and 1nini1nizes 

then1 iteratively. Due to its parallel con1putation capability, it is adopted in 

111any applications ,vith large label space[9] [48]. Thirdly, exact inference. There 

are son1c classic ,vorks on the exact inference including [58], but the restriction 

and calculation efficiency issue li1nit its usage . Fourthly, other 111odels. Paper[15] 

introduces the nevv hierarchical n1odel \i\rhich is the extension of I{ohli 's Robust P 11 

Potts . Recently a joint tv,ro-laycr l\1RF n1odel is presented in [39]. Fifthly) sin1ilar 

pseudo-boolean optin1ization. In [13], author establishes the ne,v fran1ework that 

directly takes advantage of pseudo-boolean optin1ization ) they start by clin1inatc 

the central pixel and build the ne,v connection betvveen its four neighboring pixels , 

and use approxin1ation to sin1plify the higher-order tern1. The advantage is that it 

docs not have to be regular ; the dra,i\rbacks arc its efficiency and lack of guarantee 

on approxin1ation . 

2.3.2 P seudo-bo olean R e presentation 

To better understand the n1echanisn1 of graph cuts. we will fir. t ly brief introduce 

pseudo-boolean representation here. Define variables X = {.r1; .E 2 ; ... , L1n } taking 

values fron1 B = { 0, 1 L a . pseudo-boolean function is a. n1apping 

f: Bn-+ R. (2.19 ) 

There are three ways to represent a pseudo-boolean function , nan1ely Tableau 

Posiforn1 and Pol:vnon1ial. 

1. Tableau 
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In a Tableau forn1 j it lists all 2n values . For exan1ple; f (x) = 

X1 X2 X3 ten11 value 

0 0 0 - - - -1 X1X2X3 

0 0 1 - - -1 X1X2X3 

0 1 0 - - 3 X1X2X3 

0 1 1 X1X2X3 2 

1 0 0 - - -1 X1X2X3 

1 0 1 X1X2X3 -2 

1 1 0 - 5 X1X2X3 

1 1 1 X1X2X3 1 

And it is equi" alent to 

f (.r) = - :f1:f2f3 - :f1:f2X3 + 3x1x2:f3 + 2:f1X2X3 

- X 1X 2X3 - 2x 1:f2X3 + 5 x 1X 2X3 + X 1X 2X3 

2. Posiforn1 

(2.20) 

If ·we replace the ten11s ,;-. ith negative coefficient in t he -above equation: for 

exan1ple 

- (1 - X1):f2:f3 

X 1X 2X3 - (1 - x2 ) :f3 

X 1X2X3 + X 2X3 - (1 - X3) 

X1X2X3 + X2X3 + X3 - l ; 

(2.21 ) 

so tha eYery all coefficients are positi" e: then it is a Posiforn1. T\1ore forn1all:'f 

let ui = { x 11 x j }. then a third-order pseudo-boolean function can be expressed in 

Posiforn1 as 

i 1..J i.j,k 

\\-here all ai: a 1j and aijk are positive. 

ote that Posiforn1 representation is not unique. for instance, xixj 

.01 + f2 + X1X2 . 

3. Polynornial 

Sin1ilarly. if "v\-e replace every xi bJ 1 - xi . for exan1ple 
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It is in Polynon1ial forn1. A typical Polynon1ial fon11 of a t hird-ord r pseudo­

boolean function can be denoted as 

(2.24) 
i i ,J i ,j ,k 

And Polynon1ial representation is unique. 

2.3.3 E11e rgy Cost and Grapl1 Represe11tatio11 

Let variables X = {x1, :t2 , .'.. , xm } take values in a binary label set B , and assun1e 

a neighborhood structure fix so that 
1. 

(2. 25) 

(2 .26) 

,i\rhere P (X i = xi) represents the conditional probability distribution of a given 

variable xi. 

According to the Gibbs distribution in 2.8 , finding the assignn1ent t hat n1axi­

n1izes the probability is equivalent to n1inin1ize the corresponding energy function. 

A classical energy function on a 4-connected ]\1RF is defined as 

(2.27) 

,i\rhere the first and second tern1s are referred to as Data ten11 and S111oothness 

ten11 respectively. Date ten11 is based on the local observation and applied on 

every node independently, ,i\Thile sn1oothness tenn usually acts as constraints to 

let neighboring nodes sn1oothed. 

Let J] ; q be the boolean values O or 1, and E i:p to denote t he cost ,i\Then .ri takes 

t he value p. Sin1ilarly, E ij ;pq is incurred if xi = p and Xj = q. Therefore, t he cost 

associated with t'\vo variables xi and Xj are redefined in ,i\Thich 

(2. 28) 

and 

(2. 29) 

And the su1n of the data tern1 and s1nooth ten11 cost can be fonnulated in an 

alternative fonn. nan1ely quadratic function. 
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The standard forn1 of a quadratic function is defined as , 

f(x) = ao + L a(ui + L aijXiXj, (2 .30) 
i 1 :Si :Sj :Sn 

,vhere ui = xi or xi, and ai , aij > 0. 

In general, 1ninin1izing pseudo-boolean functions is a NP hard problen1(,vit h 

respect to t he nun1ber of variables n) . It can be observed that a pseudo-boolean 

function vlith n variables can have up to 2n tern1s, t hus leading t o exponent ial 

tin1e. A solut ion is t o convert t he pseudo-boolean functions t o a graph, and use 

n1ax-flo,i\r algorithn1s[ lO]. 

Here let G =< V, E > be a undirect ed graph ,vit h a set of vertices 1/ and 

a set of directed edges E t hat connect t hen1. V contains not only one-to-one 

correspondence fron1 variables X but also t,vo special t er1ninal nodes , "\i\rhich are 

called the source( s) and the sink( t ). Each edge is assigned so1ne nonnegative 

"\i\reight w(p , q), and w(p , q) n1ay differ to w(q,p). An edge is called an - link if 

it connect s bvo variables , the edge vlhich connects a variable t o a tern1inal "\i\rill 

be called a t - link . 

Every node( except for ten11inals of course) connects bvo both tenn inals at the 

beginning, a st-cut C is t o partit ion the graph to t ,i\ro disjoint subsets S and T 

such that source s is in S and t is in T . and every variables ,vill onlv re1nain one 
I ~ J 

t - link . The cost of a cut C is the sun1 of pair of ,veight w(p, q) t he cut passing 

through if p and q do not ren1ain t he san1e t - link . The '1ninirnu1n cut problen1 

is to find a cut t hat has the n1inin1un1 cost an1ong all cuts . 

Here ,i\re specially exan1ine the case of quadratic pseudo-boolean functions, 

and show ho,i\r t hey could be converted to graph representation . 

First, t ransfonn the quadratic function to the fon11 of 

(2.31) 
'l] 

"\i\1 here L represents linear t erms of xi ( xi) and constant a0 . 

Second , dra,i\r a graph ,vit h vert ices "\i\rhich one-to-one corresponds to variables. 

Then assign edges as follo,i\rs: 

1. Draw source( s) and sink( t) to represent O and 1 respectively. 

2. For t he constant tern1 a0 , add an edge fro1n source t o sink with weight a0 . 

3. For a tenn aixi , add an edge fron1 source to xi "\i\rit h weight ai. 

4. For a tern1 a1xi , add an edge fron1 xi to sink ·with "\i\reight a1. 

5. For a tenn a"{j XiXj add an edge fron1 xi to Xj ,vit h ,veight a1-j . 
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Figure 2.3: Graph construction on a I\1RF and its cut . 
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For exan1ple, 

, Source(O) · , 
~ - ... _:_____.---"' "' 

1 

~ 
7 

2 

8 

~ 
6 

5 

Figure 2.4: A graph representation exan1ple. 

can be converted to the graph shown in Figure 2.4. 

(2.32) 

A quadratic function f ( x) is called either regular or subrriodular depend­

ing on ,;vhether aij > 0 for all i, j in Equation 2.31. This constraint is called 

subniodularity constraint. Only submodular quadratic functions are graph rep­

resentable and can be further solved using 1nax-flow algorithn1. 

Hence, the submodularity constraint of a second-order energy function can be 

conducted . According to Equation 2.27, the data tern1 is E(xi) and the smooth­

ness tern1 is E(xi , Xj)- The data tenn can always be the forn1 as 

(2 .33) 

It can be further represented using the Posifonn as 

(2 .34) 

Sin1ilar ly, the s1noothness tern1 can be converted to 

aij, i f Xi = l , Xj - 1, -

E(xi , xj) 
a{} , if Xi= l , Xj =0 

(2.35) ' --
a-:,,j ' i f xi = O, xj - 1, -

aij , i f xi= O,xj = 0. 

19 



And it can be further represented as 

(2.36) 

The dat a tern1 is a first-order linear t ern1 and the coefficient can ahvays be 

t ransforn1ed t o posit ive through sin1ple variable substit ution and hence is ahvavs 

graph representable . 

On t he other hand; sn1oothness 111ay violate the subn1odularity. Its constraint 

can be derived in this vi!ay. 

aifEiXj + aifEiX] + a-;,ffiXj + a-;,ff(fj 

aij ( 1 - Xi) X j + ai] ( 1 - Xi) ( 1 - X j) + a-;,/f i X j + au Xi ( 1 - X j ) 

L + ( ai] + a-;,J - aiJ - a-;,3 )xixj 

(2.37) 

L is first -order t ern1 plus const ant t ern1; and is ah;vays subn1odular. For t he rest 

of t he tcn11 , it is graph representable only if 

a .--: + a-:· - a ·· - a-:-: > 0 'lJ 'lJ 'lJ iJ - ' (2.38) 

and this conclusion is t he classic sub111odular constraint for quadratic pseudo­

boolean functions or second-order energy functions. 

l\1ore specifically, in alpha-expansion , 0 represents the variable keep its current 

label, and 1 represents t he variable taking the expandable label a. If we define 

t he current labels of two neighboring vari ables as p and q(note alpha-expansion 

Vlill only be applied vl hcn p, q =J a), and use ?jJ(p , q )to denote t he s1n oothness 

energy function , t hen the subn1odularity for alpha-expansion becon1es 

(2.39) 

Sin1ilarly, for alpha-beta-swap . suppose t he current swap pairs are p and q(p =J 
q), t-\-ro neighboring nodes -Yvit h current labels as eit her p or q ·will participate in 

t his process. If define O as t he potential nev" label p, and 1 for q, then the 

constraint is 

(2.40) 

2 .3. 4 Max-Flow Algorithms 

Once the graph representation step has been done . t he next st p is to co1npute 

the 1ninin1un1 cut. It ha been pro-\ en in con1binatorial optin1ization that find ing 
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t he niinirnuni cut is equivalent to finding the niaxiniunif low fron1 t he source s 

to t he sink t , and in fact t hese tvlo values are equivalent as v.rell . 

There exist n1any polyno111ial t in1e algorithn1s for n1in-cut/n1ax-flov1[52][10) . 

Generally, t hese algorithn1s can be sorted into tv10 111ain groups: "push-relaber ' 

style 111ethods[25] and "augn1ent ing path" style n1ethods[23]. For push-relabel 

1nethods, t here is no valid flov.r during t he operation , instead there are "active'' 

nodes with a posit ive "flov.r excess'' . \ i\Thile augn1enting-paths based algorit hn1s 

v1ork by pushing flo\i\T along non-saturated paths fro1n t he source to t he sink until 

t he n1axin1un1 flo·w in t he graph is reached. Another advantage of push-relabel 

algorit hn1s is parallel con1putable over graph nodes, therefore it can be accelerated 

by GP U which is a very pro111ising direction for real-tin1e application . However , 

in co1nputer vision applications, t he n1ost co1nn1on used algorith1n current ly is 

t he one presented in [10] \i\rhich is a fast version of augn1ent ing- paths. \ i\Te refer 

it to "ne-w n1ax-flow algorithn1s" . 

Tradit ional aug111enting-paths based techniques need a search t ree for breadt h­

first search, however it is con1putational expensive, ·which n1akes it unusable in 

practice. Therefore, in t he ne,i\T n1ax-flow algorithn1s, authors in [10] develop 

a ne,i\T n1in-cut/n1ax-flo,i\T algorithn1 based on augn1enting paths. In tern1s of 

building search trees for detecting augn1ent ing paths, t hey build two search t rees, 

one fron1 t he source and the other fro1n the sink "\i\Thich greatly speed up the 

process . 1vforeover , two search trees can be reused and do not need t o be rebuilt 

every t in1e, ho,i\Tever t he drawback is that t he found path is not necessarily t he 

shortest path . Theoretically speaking, The con1putational con1plexity of t he new 

algorit hn1 is worse than t he standard a.lgorit hn1s, but t he au thors prove t hat it 

significant ly out perforn1s standard algorit hn1s. 

The New Max-Flow Algorithm Overview 

Here "\i\re \i\rill briefly int roduce t he ne\i\r max-flo,i\T algorith111s, because it is t he 

key to graph cuts opt in1ization in 1ny vision applications. There are two t rees S' 

and T "\i\Tit h roots at s and t respectively. There are two types of nodes, t he one 

t hat locat es on t he out border and can further gro,i\T by acquiring ne,i\T children 

are called "Active:' (A), and the one t hat can not gro,i\T are nan1ed "P assive" (P ). 

The algorithn1 iteratively repeats t hree n1ain stages : growth stage, augmentation 

stage and adopt ion stage . 

In t he growth stage, t he active nodes explore adj acent non-saturated edges and 

acquire ne\i\r children fro1n set of free nodes . Once all neighbors of a given active 

node are explored , t he active node becon1es passive. When active node encounters 

a neighboring node t hat belongs t o the opposite t ree , this st age tern1inates. 
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Q Free Node 

0 Active Node 

® Passive Node 

Figure 2.5: An exan1ple of the nevl 111ax-flo-w algorith111. 

In the augn1entation stage, it saturates son1e edge(s) in the path by pushing 

through the largest possible flovl. If the edge linking the children to their par­

ents are saturated, then the edges are no longer valid, and the children beco111e 

'(orphans;' . The result is , the augn1entation phase n1ay split the search trees into 

forests. 

In the adoption stage, the algorithn1 restores tree structure by trying to find 

a. ne,;v valid pa.rent for ea.ch orphan. The requiren1ent for the ne,;v parent is 

that it belongs to the san1e set ( 8 or T ) ·with the orphan and also connects the 

orphan vlith a non-saturated edge. If there is no qualified parent ; then the orphan 

is ren1oved fro111 8 or T and becon1es a free node. It also denotes all its forn1er 

children as orphans. \i\lhen t here is no orphans left , the adoption stage tern1inates. 

Thus t he search trees of 8 and T a.re restored , as son1e orphan nod s in 8 and T 

111ay beco111e free after this stage. 

The algorithn1 iteratively do t he three tage until t he search tree S and T 

can not further grow(no active nodes) and the trees are separated by saturated 

edge ,v hich 111eans a 111axin1un1 flow is achieved. 

After n1axin1un1 flow is obtained, ne,, labels of variables can be easil} de­

cided by exa1ning which t - link is left for each variable. For exan1ple in alpha­

expansion. after the cut nodes re111ain the t-link to source ,vill keep their current 

label , and those connect to sink , ,, ill take label a a their new label. 

22 



p 

Left Camera 

Figure 2.6: An exan1ple of two aligned can1eras. The point P and R on the 

objects can be observed by two ca1neras at the san1e tin1e, ·while the point Q only 

appears in the left ca1nera and is occluded by the blue object fro1n the right viev1. 

For point P , p and q are its projections in two ca1neras respectively. 

2.4 Stereo Matching 

2.4.1 Tl1e Two-Frame Stereo Matching Problem 
-

Two-frame stereo 1natching has always been one of the 1nost heavily researched 

topics in early vision problen1s. A few excellent co1nprehensive revievvs can be 

found in [67][5][12][18]. Unlike hun1an easily using their brain to perceive the 

depth , this task could be very challenging for con1puters. 

The proble1n is often forn1ulated as follow. A scene is captured by two can1eras 

at the sa1ne tin1e with known relative coordinate syste1ns, the task is to detennine 

a correspondence between each pixel p in the first i1nage ( also called the reference 

i111age , usually the left view) and son1e pixel q in the second in1age( usually the 

right vie,¥). That n1eans, ideally a real point P of the scene has one projection 

pixel in ea.ch can1era. The distance fron1 the ca1nera to the point P can be 

detennined through si1nple co1nputation. The reason "\¥e say "ideally" is that , 

there 1nay exist the situation that some point P only appears in one camera but 

is occluded by son1e close objects in the other vie,¥. In this case , the distance 

can not be decided since there is no correspondence, and this situation is knov111 

as "occlusion" (Figure 2.6). 

The 111ost con1mon t,¥0-camera setup in practice are that two aligned cameras 

differ only by a shift in the horizontal direction. To reduce the con1putation tin1e, 

i1nage rectification is applied on both i1nages, therefore two corresponding pixels 

in left and right in1ages are always on the same horizontal epipolar line. An 
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Figure 2.7: An exan1ple of hov,r the horizontal distance betv.reen t\i\TO corresponding 

pixels reflect t he real distance. 

illustration is given in Figure 2.7. 

In Figure 2.7, it can be observed that 

{ 
xf = YJ 
X R _ YR 
f - d . 

After sin1ple calculation , we can get 

(2.41 ) 

1 
ex: --- (2.42) 

In other ·words, the horizontal distance between two corresponding points 

(xL - xR) is inversely proportional to t he actual distance fron1 the cameras to the 

point in real ,i\rorld ( d). 
On the other hand , given t he tv.ro perspective projection n1atrices C) = [ qij] and 

C' = [q~jL then for any scene point P ,vith unknown 3D coordinates (X Y Z ): 

that projects onto the t,i\ro can1era at ('u: v) and ( u' , v' ) "'e ha, e 

C 

X 
y 

z 
1 

.u 

V a.11d C' 

X 
I U f 

y 
I V I (2.43) 

z 
s' 

1 

Elin1inating . and ' and cornbining the t\i\ o equations into n1atrix forn1 gives 

q 11 - vq31 q12 - v q32 q13 - 1lq33 
X 

U, - q 14 

q21 - vq31 q22 - v q32 q23 - vq33 
}/ 

V - q24 
(2.44) 

q~1 - u' q'3l q~2 - u' q'32 q~3 - u' q'33 u' - q' 
z 14 

q; 1 - v'q'31 q;2 - 1 I q'32 q;:3 - v' q'33 _J v' - q' 24 
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This is a linear systen1 in (X , Y , Z ). The 3D coordinates of P can be easily 

con1puted . 

It is ·worth noting t hat , researchers have generalized t \vo-can1era stereo to 

n1ult i-can1era, t hus t he an1biguity involved in 111atching can be furt her reduced. 

Also n1ult i-can1era have been applied successful in t he application of scene recon­

struction. 

2.4.2 Matcl1ing Con.strain.ts 

In order to n1inin1ize false n1at ches , researchers usually in1pose son1e constraints 

in 111atching. BeloviT is a list of t he con1n1only used constraints . 

Photoconsistency 

For color( intensity )-based a1gorit h1ns, if two pixels are corresponding t o t he san1e 

point in real "\i\rorld , t hen t heir colors(intensities) n1ust be si111ilar , this is son1e­

t in1es referred to as Lan1bert ian or constant bright ness assun1pt ion . Si111ilarly 

for feature-based approach , t he n1atching features should share sin1ilar attribute 

values . The phot oconsistency is the fundan1ental constraint in stereo n1atching, 

ho,vever it is sensitive to difference in can1era gain or bias. Pair of can1eras 111ay 

have slight ly different characteristics , and "\i\rill result in different intensities. To 

overco111e it , son1e algorit h111s use gradient-based or non-paran1etric 111easures in­

stead . 

Continuity 

To against local an1biguit ies , spatially s111oothness is con1n1only preferred . Un­

fort unately, t his constraint does not hold for neighboring pixels across t he depth 

surface boundaries , because dept h could change abrupt ly t here. Over-sn1oothing 

"\i\rill lead to blur effect along surface boundaries. 

Uniqueness 

The uniqueness constraint has been applied as a hard constraint so1neti1nes to 

mini1n ize t he risk of false n1atches. That is a given pixel fro111 one in1age can n1atch 

no n1ore t han one pixel fron1 t he ot her in1age. In ot her ·words, t he uniqueness 

constraint enforces a one-to-one 1napping between pixels in two i1nages. Ho-wever 

t his constraint fails if t here are t ransparent objects or occlusions. 

Ordering 
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Left Image 
[OJ - --2 Right Image 

Figure 2.8: An exan1ple of violation of ordering constraint. In the left in1age, the 

object 1 is to the left of object 3, but the order is reversed in the right view·. 

The ordering constraint usually appears as a su pple1nentarJ hard constraint to 

uniqueness. T,vo points P and Q, if P is to the left of Q in one view: then should 

ren1ain the san1e order in the over vie~': vice versa. That is , the ordering of 

features is preserved order along scanlines in both input images. This constraint 

can be efficiently in1plemented b1 dynan1ic progran1n1ing. It n1ay be violated in 

practice though , a si1nple case is given in Figure 2.8. 

2.4.3 Pixel-Based and Seg1nent-Based Algorithms 

Based on different representation of depth estin1ation. existing n1ethods can be 

sorted into tv,-o categories: pixel-"\"\ ise and segn1ent-~rise . Pixel-based algorithn1s 

arc often suffering fron1 local noises and being insufficient of the cues of the scene. 

As people generally identify the object and reconstruct the sc ne bJ partitioning 

the scene into a set of aroups each with the same or sin1ilar, isual features such as 

the color or texture. researchers have de, eloped segment-based algorithn1s upon 

the in1ilaritY. 

Segn1ent-based algorith1ns ha, e don1inated the Iiddlebury Benchmark[67] 

due to their good perforn1ance on reducing ambiguit_- of disparities in texture­

le s region . They usually share the assumption that the scene structure can be 
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approxin1ated by a set of non-overlapping visually hon1ogeneous regions where 

each region corresponds to its ov"n depth surface. In other vJ"ords , all pixels in the 

san1e segn1ent should lie on the sa.1ne depth surface and discontinuities only occur 

on boundaries. This assu1nption certainly enhances the tolerance of local noises 

as the depth surface is now decided by a group of pixels, the risk of assigning 

fault disparities to occluded or textureless individual pixels has been decreased. 

HovJ"ever , ,vith segments being purely grouped on visually features, they are still 

likely to be influenced by local noises. Seg1nent-based approach usually does not 

concern the din1ension of the seg1nent , and simplify each segn1ent as an individ­

ual node in the n1odel for further optin1ization. Therefore robustness ,vill not be 

guaranteed due to the existing of those s1nall segn1ents. 

(a) (b) - ( C) 

Figure 2.9: Typical results of pixel-based and segn1ent-based algorithn1s , the 

data set is Tsukuba fron1 I\1iddlebury[67]. (a) original in1age , (b) pixel-based 

algorithn1, ( c) segn1ent-ba.sed algorithn1. 

2.4.4 Local and Global Algorithms 

Existing stereo algorithn1s can also be divided into local and global algorithn1s 

based on the optin1ization. Normally, both local and global algorithn1s have the 

san1e step of pixel-based n1a.tching cost. 

The 1nost co1n1non and easy 1na.tching cost algorithn1s a.re sum of absolute 

dif f erence(SAD) [32], surri of squared dif f er ence(SSD)[ l ][29] and normalized 

cros s - correlation(NCC ) [65]. 
Define IL and IR as rectified left and right i1nages, for every pixel p there is a 

two-din1ensional support region w( usually a ,vindow) center at p. Then the cost 

for depth d at pixel p for sun1 of absolute difference is: 

SAD : cost(p, d) = L IIL(mx, my) - IR (m x, m y - d) 1- (2.45) 
(m :z: ,m y )E w 
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For sun1 of squared difference , the cost is: 

SSD : cost (p, cl ) = (2.46) 
(m x ,m,y )Ew 

In tbe case of non11alized cross-correlation , the cost is: 

L (m,x, m y)Ew TL (nix; 1ny) * JR(nix, niy - d) 
l\TCC: cost (p; cl ) = -;.==================== 

L (nix ,rny) Ew Iz( 171x, 7n y) * L (nix,my)Ew Ik(177·x, ?77.y - d) 
(2.4 7) 

Besides these three , other traditional approaches include binary 111atching 

cost (i.e. , 111atch/ no 111atch)[46] and the insensitive to difference in can1era gain or 

bias ones , such as gradient-based 111easures[66] and non-paran1et ric n1easures[82]. 

A widely used algorithn1 is described in [7] v1hich is insensitive to in1age san1-

pling. Instead of con1paring pixel values by integral shift , this algorithn1 con1pare 

each pixel in the reference in1age against a linearly interpolated function of the 

other in1age . It achieves relatively good results 'iiVhile not sacrifice 111uch on con1-

putation efficiency. 

Usually the support region size in local n1atching cost is a size-fixed squared 

'iiVindov". In practice , in order to achieve good results , ·windo'ii\T size should be 

set variously for different i1nage pairs, and a perfect vvindo-w size is alv1a:vs hard 

to tune. If the 'Vlrindov.r size is too large , it 'iiVill lose details , but too s1nall will 

lead to 111ore local noises. Therefore , researchers have developed algorit h111. · 'ii\rith 

shiftable window[2] and adaptive vlindo'ii\T [51 ][31]. 
It is 'iiVOrth noting that researchers also in1prove t he 'Vlrindo,iV- based aggregation 

by varying support-weights[81 ]. They adj ust t he support weights of the pixels in a 

given support 'ii\rindO'ii\T based on color sin1ilarity and geon1etric proxi1nity to reduce 

the in1age an1biguity. It has one of t he leading results an1ong local algorithn1s in 

I\1iddlebury benchn1ark. 

I\1:ore recently researchers found out by sn1oothing t he 111atching cost volu1ne 

'i\-ith a efficient edge preserving fi lter , state-of-the-art results can be obtained[61]. 

In addit ion this algorithn1s clain1s that it can b e optin1ized to run in real-tin1e . 

Local Algorithrn.s 

Local approaches usually focus on n1atching cost con1putation and cost ago-rega­

tion. once t hese st eps have been done, the rest is tri,-ial: usually a local \i\ inter­

t.ake-all'; (\irTA) st rat egy is perforn1ed. That is. for every pixel p , choose d with 

the optin1al co.st (p , d). T>-picall>- for SAD or SSD. the opti1nal cost is the one 

\\-ith the n1inin1un1 , -alue, and for 1CC the 111axin1um value \Yould be the chosen 
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depth. Opposite to global algorit hn1si local algorithn1s neglect the s111oothness of 

spatially neighboring pixels and the result is often not robust. 

Global Algorithn1.s 

Unlike local algorithn1s, global approaches often forn1ulate then1selves as a pre­

defined energy n1inin1ization proble1n in which t he lowest energy corresponds to 

the opti111al labeling. It iteratively n1ini111izes the energy through son1e opti1niza­

tion techniques , once the energy cannot be decreased further or ·within a sn1all 

threshold for certain tin1es , then the process is tern1inated and returns the current 

labeling. 

The standard forn1 of a energy function is 

(2.48) 
pEP {p ,q}EN 

where P is the set of pixels , and J\T is the neighboring systen1, and f denotes the 

labeling. L pEP D µ( f p) is referred to as Data T errn(Edata), it usually n1easures 

how well the disparity fp agrees v1ith the input in1age pair. A typical choice for 

the data tern1 is equal to the local 111atching cost, that is 

(2 .49) 
pEP pEP 

L{p,q}EN v{p,q}(fp , fq ) is called the Srrioothness T erm (Esmooth,) , and it often 

penalizes on difference betv,een neighboring pixels ( {p , q} E N ) to 1nake the re­

sult ing depth sn1oothness. 

A con1n1on f orn1 of E smooth is 

(2 .50) 
{p ,q}EN {p ,q} EN 

in v,,hich t he penalty incren1ent coincides with difference of labeling of two 

neighboring pixels. "\iVhile convex constraints like this can be efficiently solved 

using son1e optin1ization tools , however they v1ill results in poor surface bound­

aries , thus it is not "discontinuity-preservint ' . The reason behind it is sin1ple, 

depths change dran1atically along depth surface boundaries , since the penalty co­

incides the incre111ent of difference, it 'Will result in over-sn1oothing the differences . 

The n1ost si111 ple edge-preserving s1noothness t enn is defined as 

(2 .51 ) 
{p ,q}E N {p ,q} EN 
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(2 .52) 
ot /1.erw'ise. 

I 

and this is usually called the Potts n1odel. 

Another sin1ple tern1 'Nhich also features edge-preserving is 

(2. 53) 
{p ,q} EN {p ,q}E N 

·where"'/ is a truncation threshold. It truncates the cost in case the depth changes 

dran1aticallv. 

Unfortunately n1inin1izing such functions is NP-hard ) therefore researchers 

have adopted several approxin1ation 111ethods for global optin1ization including 

iterated conditional 111odels) graph cut ) n1ax-product loopy belief propagation . 

t ree-re,;veighted n1essage passing and so on. These algorithn1s have been briefi? 

revie-\;ved in section 2.2. 
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Chapter 3 

Evaluation of Different 

Segmentation Algorithms and 

Their Performance in Stereo 

Matching 

3.1 Overview of Image Segmentation and its Eval­

uation 

T he tasks in con1puter vision are often associated ,vit h t he goal t o find what 

objects or surfaces are presented in t he scene. In t his process , pixel based analysis 

usually lacks t he capability of represent ing objects , therefore i111age segn1entation 

based representation has been playing t he crucial role instead . It divides an 

in1age into visually 111eaningful part itions and extracts t he corresponding visual 

features of interest. Generally) segn1entation has been applied ,videly in lov1-level 

vision applications such as in1age understanding, classification , stereo 111atching 

and ot hers. 

In t he past decade, t he develop111ent of seg111entation algorit hn1s has attracted 

significant attention and n1any approaches have been developed , n1eanYvhile rel­

atively fe,v attent ion has been paid on t heir evaluations. Alt hough n1ost of t he 

algorit hn1s con1pare its result ,vit h son1e part icular chosen algorit hn1s in t heir 

papers, t he con1parisons are neit her con1plete nor syste111atical) not even 111ention 

t he great diversity of defini t ion of "visually 111eaningful" segn1ents [3] , ranging 

fron1 sin1ple uniforn1 intensity and color , hon1ogenous textures , syn1111etric pat-
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terns and up to con1plex sen1ant ically n1eaningful obj ects. Therefore. it is difficult 

for researchers to choose the one t hat n1ost suit t h ir application . 

In t his chapter ; vle viTill briefly revievir five state-of- t he-art in1age segn1entation 

algorit hn1s [16) [21) [43) [49) [60](Figure 3. l )i and evaluate t heir perfon11ances 

in stereo n1at ching ,;vit h n1ult i-scale seg111ents. To organize t his chapter; section 2 

describes the n1ethodology of t hese five algorithn1s. In section 3; ,,re \\rill present 

t he efficient evaluation fran1cwork. In section 4; we ·will t est its perfon11ance in 

standard segn1entation-based st ereo n1atching by both qualitative and quant ita­

t ive analysis. F inally; t he conclusion are given in t he section 5. 

3.2 Five Moder11 Seg111.entation Algoritl1.ms 

There are a great variety of segn1entation algorithn1s. In t he chapter , Vle ,vill 

briefly revie,v five selected st ate-of-the-art approaches . 

Efficient Graph-Based ln1age Seg1nentation 

Efficient graph-based in1age seg1nentation ( EGIS ) [2 1] defines a predicate by 111ea­

suring t he evidence for a boundary bet'\i'.reen t ,\ro regions using a graph-based 

representation of t he i111age. EG JS' proved to be efficient by using two differ­

ent kinds of local neighborhoods in constructing t he graph. iv1oreover , it n1akes 

greedy decisions to produce segn1entations t hat satisfy global propert ies. The 

a.lgorit hn1 runs in t in1es nearly linear in t he nu111ber of graph edges-and is also 

fast in practice. It can preserve t he details in lo,,r-variability in1age regions while 

ignoring in other high-variability regions. The global aspects of t he in1agc is well 

reflected by percept ually capt uring t he i111portant groupings or regions. 

Turbo Superpixels 

Turbo superpixels [43] is a geon1etric-flow based algorithn1 for co1nput ing dense 

over-segn1ents of an in1age. T his approach not only respects local in1age bound­

aries but also lin1it s under-segn1entation through a con1pactness constraint. It is 

vcr~' fast and the con1plcxit~, is approxin1atcly linear in in1agc din1cnsion i which re­

ducing superpixel con1putation to an efficient ly-solvable geo111etric flovl proble111. 

It yields less under-seg111entation t han other algorithn1s lackin o- of a con1pactness 

constraint. \Yhile offering a significant speed-up over K-cuts which does enforce 

con1pactness. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 3.1: In1age segn1enta.tion results by 5 different approaches: ( a)Our cap­

tured outdoor i1nage; (b )Superpixel result; ( c )Superlattices result; ( d)Efficient 

graph-based i1nage segn1entation result ; (e)Turbo superpixels result; (f)Mean­

shift result. 

Superpixel Lattices 

Superpixel lattices[49] is a 111ethod that produces superpixels 1,;vhich can preserve 

a regular topology of original pixels. Such topology is quite useful especial in 
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high order cliques relat ed labels. The nth superpixel has consistent po. ition or 

relationship ·with its neighbors so it is eas:v to get t he lab 1 of neighbors. It is 

also \·erv fast and accurate . 

Superpixel 

Superpixel[6 0] is an 0Yer-segn1ent 111ethod . It is a local; spatially-coher nt , ho­

n1ogeneous1 structure ,Yhich preserves inforn1 ation oYer scales or san1pling reso­

lutions. In general, a superpixel can represent t he property of t he pixels in its 

region . Also it is easier to optin1ize as t he nun1ber of nodes significantly decrease . 

MeanShift 

1'1ean-shift approach [16] is essent ially defined as a gradient ascent search for n1ax­

in1a in a density function defined over a high din1ensional feature space . The fea­

t ure space includes a co111bination of t he spati al coordinates and all its associated 

att ributes ,i\·hich are considered during t he analysis. The 111ain ad, ant age of t he 

111can-shift approach is based on the fact that edge inforn1ation is incorporated 

as ,vell. 

3.3 Segmentation Evaluation Framework 

--\ .. fe ,,· con1prehensive reviews [84] [83] on eYaluation methods for image segn1enta­

tion has been done. Generall~-. existing e\·aluation n1ethods can be classified into 

t,,·o categories: analyt ical n1ethods and en1pirical n1ethods. The analytical n1eth­

ods analyzes and eYaluates the algorit hn1s t hen1selves directly based on the prin­

ciples. requiren1cnts . con1plexity and so on. while t he en1pi rical n1et hods give their 

a es n1ent by 111easuring t he quality of seg111ents. :\Ioreover: according to [ -1]. 
the en1pirical n1ethods could be further di,·ided into b, o sub-categories: goodness 

n1et hod. and discrepancy n1ethods. In the forn1er . the se0"111ents are measured by 

Yalue of goodness on pre-defined evaluation systen1 . ,,-hil the latter one is to 

con1pare the generat ed segn1ents ,,·ith the reference in1a(J"e( ground-truth in son1c 

·ense ). and the difference is quantitatiYe 111ea.'ured. 

3 .3.1 Analyt ical Methods 

The anal:'·tica l n1ethod · directly a e the n1echanisn1 and properties of serrmen­

tation alrrorithn1 it elf. T he adYantaae of the e alrrorithn1 i. that it kip the 

actual i1nplen1cntation of the ·eu111entation alrrorithn1 thu · a, oidinu the differ-
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ence in efficiency when i111plen1entation environn1ent is not consistent. Ho\vever ; 

such properties are often hard to obtain or diffic ult to analysis. And t he analysis 

results arc not always obj ective and quant itative ; for inst ance ; son1c researchers 

atten1pt to evaluate the prior assu111pt ion t hat a segn1entation algorit hn1s use[14L 

and det ern1ine t he goodness of t he algorithn1 by judging t he reasonableness of t he 

incorporated prior . Generally; the develop111ent of analytical n1ethods is lin1ited j 

and n1ost of t he existing vvorks are only associated ,;vit h son1e specific n1odels or 

desirable propert ies. 

3.3.2 Empirical Discrepancy Metl1ods 

The en1pirical discrepancy 111ethods detern1ine the goodness of a segn1entation 

by co111paring the disparity bet,;veen t he seg1nented i1nage by this algorithn1 and 

son1e reference in1age. The reference in1age is son1etin1es called t he groundt rut h . 

\i\Then t he input in1age is n1anually synthesised , the reference in1age can also be 

easily obtained . But vlhen t he input in1age is a nat ural in1age, usually t he hun1an 

labeled segn1entation is referred as the reference in1age. The con1n1only used dis­

crepancy n1easurcn1ent is the n1ean-square signal-to-noise ratio as in [26]. In this 
-

case, a lower disparity value indicat es a higher sin1ilarity and a better segn1en-

tation. In addition ; several other discrepancy 1neasures have been proposed as 

well . These 111easure1nents can be sorted into five categories: discrepancy based 

on t he nun1ber of n1is-segn1ented pixels; discrepancy based on the posit ion of 

n1is-seg111ented pixels, discrepancy based on the nun1ber of objects in the in1age, 

discrepancy based on t he feature values of segn1ented obj ect s and discrepancy 

based on n1iscellaneous quantities . For n1ore det ails, please refer to [84]. 

3.3.3 En1pirical Goodness Methods 

At present ; n1ost n1ethods t o evaluate t he quali ty of segn1entation n1easuren1ents 

are established according to t he '\dear ; seg1nentation of hun1an intuition. \Nidely 

used evaluation vlays include int ra-region sin1ilarityj inter-region dissimilarity and 

region shape paran1eter. We adopted t hese three evaluations to 111ulti-scale over­

segn1ents fron1 t hese five approaches described in the previous section . 

Intra-region similarity 

The ele1nents in a region should be si111ilar. They include si1n ilar bright ness: 

texture; and lo,,r contour energy inside t he region. The hon1ogeneous degree of 
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t he feat ures inside a region could be con1put d by t he variance of t he pix ls 

inside [-12]. 

1 1 
a= - ' [f (x . y) - - ' f (x; y)] 2 

J\ T. ~ i\ . ~ 
1 1 

(x,y)E R ; (x,y)E R, 

(3.1 ) 

\\·here i\Ti is t he pixel nun1ber inside R i . f ( J.,·; y) is t he f ature of pixel located 

at (x . y). Because e\·ery i1nage has different nun1ber of regions. t his re. ul t should 

be non11alizecl . Sahoo et al [56] proposed a nonnalized uniforn1ity n1easure. Y\ e 

in1pro\·c it as 

O"nor = 1 - (a - niin) /(niax - niin ); (3.2 ) 

in \\·hich a denot es t he average of all a in t he i1nage. nii n is t he n1inin1al a 

\Yhile nia .r is t he n1axin1al in t he in1ages. 

Inter-region diss irnilarity 

The id al segn1entation is to distinguish each region . and t he elen1ent. beh,·e n 

different regions arc dis in1ilar . It n1eans dissin1ilar brightness or texture. and 

high contour energ:': on region boundaries. Such properties 1nay also be used to 

e\·aluate the segn1ents . A good segn1ent at ion should divide a in1age into regions 

" ·ith higher cont rast. 

a= (3.3 ) 

f 0 is the aYcrage of \·isual feat ure in a foreground O\ cr-seo-111ents . \i\·hile ]b 

is th c1.Yerag in the ren1aining region · a · the backo-round. T h n1axin1al 111ean 

of c beh,·een the foreground and the background repre ·ents the best ·cg1n ntation. 

Region shape paran1eter 

.-\not. her n1ethod to e\·aluate the o\·er- egn1ent. 1. region hape paran1eter . Dif­

ferent threshold can affect the extraction of th object boundar~·. \Ye can d fine 

a paran1eter ·" ,Yhich is closel:"· related to the boundar:': as the boundar>· be ·t rep­

re ·enting the object hape. The paran1 ter can e,·aluate the ecrn1entation fron1 

the Yie,Y of shap . 

1 
CT= -:-i ' 'yn~ f (.r .. lJ ) - f.Y (:r .,u)J y (.r. y ) 'yn [.f (.r. y ) - T ]}. (3A) 

c ~ 
(.r.µ) 
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where g(x, y) is a gradient value at (x , y), Tis t he threshold value selected for 

::;egn1entat ion , c is a norn1alization factor and Sgn() is the unit step function . 

3.4 Evaluation of Performance in Stereo Matcl1.-

Herc ,vc -will int roduce our evaluation syste111 of t he perforn1ance of different seg­

n1entation 111ethod in stereo 111atching. The introduction of st ereo n1atching can 

be found in Chapter 2. In general, n1ost of the existing 111ethods can be sorted into 

two categories : pixel-based and segn1ent-based. Pixel-based algorithn1s are 111ore 

easily to be disturbed by local noises. As hun1an visual systen1 partitioning the 

scene into a set of regions each of ViThich has the san1e 01: sin1ilar visual features, 

segn1entation has been widely used in the 111ajority of 111odern stereo n1atch­

ing algorithn1s. In the past decad e, a variety of segn1ent -based stereo 111at ching 

111ethods have en1erged. These 111ethods perforn1 ,vell in reducing the a111biguity 

associated wit h text ureless regions and enhancing noise tolerance. Ho,vever , re­

searchers usually choose specific segn1entation algorithn1 -without con1paring the 

different results using different seg111entation 111ethods. To establish our evalua­

t ion benchn1ark, v.re ,vill briefly int roduce our st ereo 111atching algorit hn1. 

Here v.,re adopted a classic segn1entation-based st ereo n1atching algorith111, the 

algorit hn1 is under t he global fran1ework. Unlike local 111ethods en1phasizes on 

localized 111atching cost co111putation and then sin1ply assign the disparity la­

bel \i\rit h t he 111inin1un1 cost value( usually referred to '\vinner-take-alf' strategy), 

global algorit hn1s prefer to seek a disparity assign111ent t hat n1inin1izes a global 

cost function t hat co111bines bot h dat a t ern1 and sn1oot hness t ern1. The data tern1 

is usually directly defined as the pixel-based local 111atching score by shift ing a 

predefined ,vindo,v along t he horizontal directions betv.reen the candidates in left 

and right fran1es, and t he s111oothness tern1 encodes t he sn1oothness bet,veen t he 

spatially neighbors. Once t he energy function is defined , several algorith111s can 

be used for energy 111inin1ization. In our fran1e,vork, v.re choose graph cuts[l l J[ l OJ 
algorithn1 -which proved to be a proper t radeoff bet\veen the efficiency and t he 

perfonnance. To better encode t he influence of different segn1entation n1ethods, 

t he \i\rork is carried out on segn1entation level. In our stereo n1atching fran1ev.rork, 

segn1ent is t reated as t he n1inin1al elen1ent and variable1 and t hen as one individ­

ual node in graph cuts opt in1ization. The spatially connection is also t ransfonned 

fron1 pixel-based 4-connected or 8-connected neighbors to t he seg111entation-based 

37 



neighboring systen1. An illustration of this is given in Figure. 3.2. 

( a.) (b) (c) ( d) 

Figure 3.2: Segn1ent-based neighboring systen1. ( a)Our captured outdoor in1age; 

(b) Cropped i1nage; ( c )Segn1entation result ; vvhere each white region is a seg1nent ; 

( d)Segn1ent typology illustration ; ,vhere the red nodes are the neighbors of the 

black node. 

Let X = x 1 , x2 , .. . Xn be the set of pixels , C = c1,c2, ... ,en be the set of seg-

1nents (cliques) and L = {l i 2, ... , n} be a set of n discrete depth value labels. 

The task is to find a labeling configuration f that allocates the labels fron1 L to 

each variables ci E C'. Each possible labeling f has its own posterior probabil­

ity) the goal is to find the f * that maximize the probability. According to the 

Ham1nersley-Clifford theorem, 1naxin1um a posterior labeling / * (MAP ) is equiv­

alent to finding the n1inin1um of the Gibbs energy. V./e define the proposed energy 

function as: 

(3.5) 

Data T erm SmoothnessTerm 

Data Term 

The data tern1 1nea. ures the cost of assigning a disparity to a certain pixel on 

the in1age. Data tern1s are often forn1ed as the cost volun1e of pixel-based local 

n1atching such as SSD. SAD or l\ CC'. Here we define ours according to [7): 

let IL and IR be t he left and right image respectivelJ j Y is the corresponding 

pixels in the right in1age and fR is the linearl:v interpolated function of bet~ ccn 

the san1ple points of the right scanline, then the possibility that Yi matches Xi is 

defined as: 

(3.6) 

s\-n11net ricall \". . ' ' 

(3.7) 

3 



Then j the dissin1ilarity is defined as t he n1inin1u1n of t hese two : 

(3.8) 

This design has proven to be insensitive to san1pling error . Finally; t he data 

tern1 is con1puted as : 

(3.9) 

8111.oothness Tern1-

The sn1oothness tern1 encourages neighboring seg1nents to have si1nilar disparity 

label vlhich leads to a n1ore sn1oothed disparity n1ap and on so1ne level elin1inate 

n1inor n1istakes caused by the local stereo n1atching. '\Ve exploit t he forn1 of Potts 

n1odel i and only penalize on the difference.: 

( . . . ) _ { 1, i f Ci = Cj , 
<p Ci . CJ -

' 0, otherwise. 
(3. 10) 

And the sn1oothness ten11 is the sun1 of s1noothness tern1 over all pairs. 

E ( Ci j Cj ) = A L <p (Ci ' Cj ) . (3. 11) 
{ci, Cj }EC 

In the function , A is the ,;veight para1neter balancing the scale bet,;veen data 

ten11 and sn1oot hness tern1 based on t he scale of t he segn1entation. In our ex­

perin1ent , ,\ is en1pirically set for every i1nage pair and kept the san1e during t he 

i1nplen1entation of all 5 seg111entations. 

Once t he energy potential has been defined , ,;ve apply the po,;verful a -expansion 

of graph cuts to n1inin1ize the energy iteratively. V./e start ,;vith an arbitrary la­

beling f. In each iteration; one randon1 label fron1 L is taken out as the a i and for 

t he nodes ,;vit h current label other than a will be involved in this alpha-expansion 

by adding it to t he graph. After the graph has been settled , a st-n1in cut is ex­

ecuted , and t he labels of nodes are detern1ined sin1ultaneously. Saying the new 

labeling is f' , v.re con1pare its energy ,x.rit h the one from t he last iteration , and if 

the difference is ,;vithin a certain threshold for a certain nun1ber of tin1es i then 

t he opti111ization is tern1inated , and t he current f' is set as t he optin1al labeling 

f *. 

To test different segn1entation algorithn1s under different scales , we apply 

then1 on the san1e datasets(so111e are ,vith groundt rut h for quantitative analysis 

purpose) and all t he nu111ber of segn1ents are controlled to be si1n ilar. The three 
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scales are dividing an in1age into 100; 500 and 1000 seg111ents respecti\ ely. Of 

course, not all the codes of algorithn1s alloviT us to predefin the proposed nun1ber 

of scgrncnts precisely; so the nun1bcrs arc only be roughly dctcrn1incd. In our 

evaluation , t he nu111ber of segn1ents are all enforced to be \vithin 5o/c offset of th 

designed nun1ber. For quantitative analysis; the ground truth of the disparity 1nap . 

occlusion n1ap a.nd depth discontinuity n1ap are used . The quantity evaluation 

includes accuracy for non-occluded regions , all regions and depth discontinuity 

regions. For pixels; the absolute difference of their depth with ground t ruth arc 

con1puted. Pixel vlith difference large than 1.0 \i\rill be labeled as a bad pixel. The 

error rate is the average percentage of these bad pixels. 

3.5 Experiment 

The evaluation has been carried out on I\1iddlebury;s benchn1ark i1nages[67](Venus; 

Teddy, Tsukuba: Cones) and our real-scene dataset. The real-scene data set \iVe 

use is con1poscd of seven outdoor and five indoor in1agcs which captured by Bun1-

blebee stereo can1era in our office and surrounding areas. The calibration and 

cpipolar rectifying ViTork have been done by Bun1blcbcc itself. The test bed is on 

a desktop con1puter ,,rith Intel core 13 2.93Ghz CPU. It is worth noting that 

although n1ost of the segn1entation algorithn1s taking less than a fe,v seconds to 

process an in1agc with resolution of 640 * 480 disregard of the three scales , but 

the superpixel algorithn1 n1a:v cost significant n1ore tin1e \Nhen the nurnber of seg­

n1ents is risen. For exan1ple , it takes 5.25 n1inutes to segn1ent an in1age into 1000 

segn1ents. 

3.5 .l Empirical Goodness E valuation 

For en1pirical goodness evaluation of over-segn1ents generated by t hese five ap­

proaches. ,ve use all t he 16 in1ages and con1pute t heir aYerage as the final result. 

Also ; each in1age is scgn1entcd under t hree different scales: 100: 500 and 1000 

san1ples. nan1 ly large. n1ediun1 and sn1all scales. Large scale n1eans t hat the 

din1ension of the 0Yer-segn1 nt is larger and the nun1ber of over-s gn1ents in a 

in1age is less. vice Ycrsa. For all t hree evaluations. the hirrhcr value in the table 

111 ans the better qualit~· of. eg1nentation the approach obtain .. Th re ·ult i 111 

Table . 3.1. 

To ha\·e it 1nore clearl~· present cl. the a-:erage result over thr e seal s ar 

sho,Yn in Fiaure. 3.3 . 
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Intra-region Inter-region Region Shape 

Large Scale 0.7148 0.1 724 0.2049 

l'v1ediun1 Scale 0.8784 0.1746 0.1848 
SuperPixel 

Sn1all Scale 0.8080 0.2034 0.1720 

Large Scale 0.7480 0.1749 0.2377 

IVIediun1 Scale 0. 8044 0.1904 0.2042 
SuperLattice 

S111all Scale 0.8102 0.1920 0.1796 

Large Scale 0. 6516 0. 2035 0.3747 

Mean Shift 
I\1ediun1 Scale 0.7842 0.1641 0.2615 

S111all Scale 0.7129 0.1935 0.2394 

Large Scale 0.8386 0.4003 0.4438 

EGIS 
I\1ediun1 Scale 0.8365 0.2420 0.3891 

Sn1all Scale 0.8163 0. 2737 0.3278 

Large Scale 0.7233 0.1996 0.2305 
-

I\1ediun1 Scale 0.7998 0.1373 0.2436 
TurboSuperpixel 

S111all Scale 0.7855 0.1785 0.2279 

Table 3.1: Quantitative analysis on empirical goodness 1neasuren1ent over all 

three scales . 

en -C: ·o 
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Different Segmentation Algorithms 

Figure 3.3: The average en1pirical goodness evaluation results of three scales. 

Fron1 Table. 3.1 and Figure. 3.3 , it explicit ly shows that EG I S obtained 

the best perfonnance under the evaluation of int ra-region similarity, as it got 

the n1axima of t he average "\i\ ith the value of 0.8305 , and also t here is a consis-
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tency of sin1ilarity an1ong all t hree scales of EGIS. In inter-region dissi1nilarity 

1neasuren1ent i EGIS also obtained the highest score at the average(0.3053). In 

the n1easure1nent of region shape, along the scale deer a.sing; the value of shape 

paran1eter consistently decreased on all of five approaches. This pheno1nenon can 

be explained t hat large-scale over-segn1ent is n1ore coincided vl ith objects t han 

sn1all scale;s, and gradients on boundaries a.re significantly greater . In genera.Ii 

EG I 8 and J\1ea.nShift give the best perfonnance over other three algorith1ns. 

3.5.2 Performan.ce Evaluation in Segme11t-based Stereo 

Matcl1i11g 

To test t he perfonnances of different seg1nentation algorithn1si all 12 in1age pairs 

are used. In tern1s of efficiency, it takes less than 40 seconds to process an in1a.ge 

pairs in average. The accuracy has been calculated with the average of four i1na.ge 

pairs fron1 Middlebury bench1na.rk, na.n1ely Teddyi Tsukuba, \ /enus and Cones . 

The error rate for non-occluded regions , all regions and depth discontinuity re­

gions are sho\vn in Figure3.4; Figure3.5 and Figure3 .6 respectively. For all three 

figures, the lo"Vlrer the value is , the better the depth is. 
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Figure 3.4: Error rate of non-occluded regions by 5 segmentations. 

It clearl:v shows that segn1ents fron1 five algorit hms contribute different effects 

on the disparity results. In general. the error rate decreases along with t he sea.le 
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Figure 3.5: Error ra.te of all regions by 5 seg1nentations. 
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Figure 3.6: Error rate of depth discontinuity regions by 5 segmentations. 

decreasing. Because in s1nall segn1entation scales; objects can be presented by a 

larger number of segn1entations leading to a more accurate depth. In addition; 

l'vieanShift and EG IS give better perforn1ance when the sea.le is sn1all j and vvhen 

the scale is large, SuperPixel SuperLattice and TurboSuperpixel are more suit­

able ,vhen the scale is large. This is due to different natures of segmentations. 
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I'd eanShift and EC JS' do not have constraint on seg111ents ' size and their color­

based nat ure n1ake t hen1 n1ore coincident Vl it h t he obj ect boundaries or surface 

boundaries. This advantage 111ake then1 suitabl e for pixel-based or sn1all<cale 

segn1ent-based stereo n1atching. On the ot her hand : SuperPix 1 SuperLattice 

and TurboSuperpixel have strong enforcen1ent on segn1ents: size , alt hough it will 

bring artifacts into the dept h , the regularization gives better perfon11ance vl h n 

t he scale is large , in 'l.rhich every segn1ent becon1es a large "pixef ' . Based on tha( 

researchers proposed efficient stereo 111a.tching under lov'7-resolut ion[70]. 

For quality revie,;v, v..re selected the Teddy in1age fron1 Iv1iddlebury and one 

indoor and one outdoor in1ages, as shovn1 in Figure 3.7: Figure3.8 and Figur 3.9. 

The segn1entation results are also presented for reference. Because t he dept h is 

enforced to be consist ency inside each seg111ent , the "blocky" phenon1enon occurs 

on t he results especially ,vhen the seg1nentation scale is large. Nevert heless , it 

gives a sn1oother depth distribut ion and fil ters isolated noises , as ground sho,vn 

in Figure3.8 and ,vall sho\i\rn in Figure 3.7. Over all , I'v1eanShift outperfonned t he 

ot her four in t he quality evaluation. 
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Chapter 4 

Stereo Matching Using 

Sub-segmentation and Robust 

Higher-order Graph Cuts 

4.1 Introductio11 
-

There exist s a variety of color segn1ent at ion-based stereo n1atching algorit hn1s 

vihich ha, e shuwn accurat e estin18,t ion of depth . i\!Iost of t hen1 usuall} share t he 

hard con~traint assun1pt ion t hat all pixels in t he the sa1ne segn1ent n1ust have 

the san1e dept h value or lie on a locally fi tted surface such as a plane. and discon­

t inuit ies only occur on segn1ent boundaries[73][78]. A typical procedure of these 

algorit hn1s is started by en1ploying a visual feature based segn1entation on t he 

reference i111age, follo,;ved by a plane-fi tting procedure based on t he initial dis­

parity esti1nation in each segn1entation. Unary and sn1ooth encouraging pairwise 

tern1s are t hen defined based on plane paran1eters ,;vit hin an energy n1inin1ization 

fran1e,~ ork . EYent ually global opt in1ization algorit hn1s are applied to solve t he 

proble111: like graph cuts[ l 1] or belief propogation [20]. And it is "·orth noting 

that son1e 1nethods generate possible plane proposals based on plane-fit . and use 

it directly as label set ) and optin1ize it on seg111ent based level. This should also 

be considered as hard constraint. 

YI\ hile hard constraint helps to reduce ambiguities of depth \\Tithin text ureless 

regions: it has seYeral dra"Vl·backs. First : it is not robust. It purely relies on init ial 

segn1entation and local n1atching and can not be recovered fron1 noise and errors 

in t hese init ial esti1nations. Second: t here is no such sin1ple relation bet\\·een 

, isual features and dept h Yalues. so clearly it is unrea onable to force pixels 
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inside one segn1ent to lie on the sa,111e disparity plane. 

Then is it possible to con1binc scgn1cntation as a soft consh·a'int into a pixel­

based fran1ework so that both of their advantages ,vill b kept? In this chapter. 

,ve will present a novel fran1e,vork: it does not force but encourage pixels to follo\\· 

a certain disparity distribution if they are in the san1e segn1ent. Also the soft, 

con .straint is realized in a higher-order tenn and being opti1nized under the san1e 

I\1RF n1odcl along \i\rith pixel based unary and pairwise potentials. Vile believe 

it is a n1ore flexible and natural description of disparity distribution especially 

considering natural scenes. 

Optin1ization for stereo n1atching is al-ways a challenge. State-of-the-art lo­

cal 1nethods[8 l ][61] are usually in1proved filter-based ,;vindo\i\r n1atching. They 

n1aintain efficiency by avoiding global optin1ization procedure at the price of 

loss in quality and sn1oothness , and it obtains an1biguity results in textureless 

regions. Global n1ethods on the other hand can involve n1ore sophisticated as­

sun1ptions and hence achieve better results. The problen1 with global n1ethods 

are lack of efficient optin1ization tools. I\1essage-passing based algorithrns , such 

as efficient belief propagation(BP) [20] and trce-rcwcightcd Trcc-Rcwcightcd I\1cs­

sage Passing(TRvV) [72] are often easily to be trapped in local-n1inin1u1n or slo,;v. 

Graph cuts is another po,verful tool , but it has its ovln restrictions on the forn1 of 

potential which con1n1only known as :'subn1odularity': [38] . In son1e cases[9Jr48], 

the n1odels are so con1plex that they do not satisfy sub1nodularity any n1ore. To 

solve this: QPBO-bascd optin1ization algorithn1[63] is applied but only part of the 

nodes ,vill be labeled . In our proposal, we take the fonn of the Robust p n Potts 

n1odel[35] \i\Thich is proven to be subn1odular , therefore we can take advantage of 

tbc standard graph cuts for optin1ization which guarantees efficacy. 

\Ne also exploit the idea of sub-segn1entation in our proposed n1ethod. I\1ost 

existing paper directly use the result of scgn1cntation as their stereo n1a-Lching 

input. Ho,veYer , such the prior segn1entations are only depend on visual f atur s, 

and has no clear relationship ,vith disparities. So Yve bring the relationship into 

a higher level. ·we further divide segn1ents into disparity relevant sub-segn1ents. 

And since this step is not ah\·a>·s accurate. so we onl:-· define higher-order bas d 

soft con.strai11l on ii. It is ·worth noting that in [9]. the>' also use the term 

.s1Lb - .segn1,entation. but it is ,·ery different fron1 ours. Fir. t ly their definition of 

sub-seg111entation arc totall:-· different fron1 ours. secondly the only higher-order 

ten11 in their n1odel is the I\IDL tern1 \i\·hich penalize on the nun1ber of appeared 

labels and it is irreleYant to sub-segn1 nts; while \Ye use sub-segn1entation as the 

clen1cnt of higher-order potential. 
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In addition , several knovn1 techniques are con1bined under t he san1e fr an1e­

·work, including syn1n1etric occlusion handling, confidence n1easuren1ent and plane­

fitt ing . 

The rest of the chapter is organized as follO-\i\TS. In section 2, ·we describe our 

algorit hn1 in details. Expcrin1ental results are proposed in section 3. 

4.2 Stereo Matcl1ing Through Robust Higl1er­

order Graph Cuts 

The n1ain steps of our algorit hn1s are illustrat ed in Figure 4. 1. Generally it 

is a coarse t o fine fran1e·work. First , lVIeanShift color segn1entation[l 6] is ap­

plied t o divide t he reference in1age into several init ial seg1nents . Second, t he fast 

and efficient Birchfield and Ton1asi's pixel dissi111ilarity n1easure[7] constructs t he 

correlation volun1es for both left and right in1ages respectively. And a 'Winner­

take-all strategy is applied afterwards. Third , we adopt t he n1ut ual consist ency 

check(left -right cross-check) to classify the pixels into occluded and unoccluded 

pixels. Fourt h , a confidence 1neasure1nent is carried out on unoccluded pixels. 

A robust voting based plane fitting procedure is exploited on t hose chosen un­

occluded pixels ·wit h high confidence t o obtain an fi t t ed disparity surface inside 

each segn1ent , follo-wed by novel sub-segn1entation process. Finally, the robust 

higher-order graph cuts opt in1ization is carried out t o obtain t he opt in1al result. 

4.2.1 Initial Steps 

Let .,Y and }' be t he sets of pixels of left in1age( IL) and right i1nage (IR) respec­

t ively, L be t he label set ·wit h n discrete dept h values . The labeling proble1n is to 

find a labeling configuration f t hat allocates t he labels fron1 L to each variables 

~ri E X. 

First , !IeanShift color segn1entation[l 6] is applied to divide t he reference in1-

age (here ·we define left in1age as reference in1age) into several init ial segn1ents. 

In tern1s of cost volun1es construction , an atte1npt of several local n1atching 

algorithn1s has been n1ade in our experi1nent. Here we choose Birchfield and 

Ton1asi's pixel dissi1n ilarity 1neasure[7] as our local based stereo n1atching ap­

proach , si1n ply due to its better perforn1ance and its nature of being insensit ive 

t o sa1npling difference. The dissi1n ilarity c(xi, Yi) is defined sym1netrically as t he 

1n ini1n un1 of two quantit ies ·which stand for ho,i\, \i\rell t he pixel in one in1age fits 
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Pixel Diss imilarity Measurement 

Occlusion Handl ing 

Occluded Pixels Unoccluded Pixels 

Confidence Measurement Color Segmentation 

Unstable Pixels Stable Pixels 1st Level Segments 

Plane Fit 

2nd Level Segments(Sub-segmentations) 

Higher-Order Global Optimization 

Figure 4.1: The flo-\;vchart of proposed algorith1n. 

into t he linearly interpolated scanline surrounding the corresponding pixel in t he 

other i1nage , the details have been given in the previous chapter. 

( 4.1) 

Then a -Yvinner-take-all strategy is e1nployed to select one label l x .i v.rith the 

111inin1un1 cost for every xi an1ong its 1nultiple candidates. An exa1nple of th 

result is sho-\vn in Figure.4.2. 

4 .2.2 Occlusion Handling 

Due to different geon1etries of the scene, it happens that some regions only ap­

pear in one of the in1ages , and this phenon1enon is con1n1onl:v known as occlu­

sion. Occlusion has always been a challenge in stereo n1atching, and researchers 

have proposed several algorithn1s to emphasis it . Generally, these algorithms can 

be sorted into five categories[19]:Bin1odality Distribution(BD), Confidence I\i1.ea­

suren1 nt Jumps(CMJ ): Left-Right Cross Checking(LRCC) , Ordering Require-

111ent (OR) and Occlusion Constraint (OC). The first tv.o algorithn1s belong to the 
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Figure 4.2: An exan1ple of the local n1atching result after locally ,;\, inner-t ake-all . 

border det ection n1ethods) v1hile the last t hree fo cus on region detection. 

Bi1nodality distribution(BD) 

The theory of bin1odality distribution is that half-occluded borders should have 

its neighbors in sca.nline arisen significantly) result ing in a bi111odal distribution. 

Therefore. the:v usually con1pare the tv.ro pea.ks in t he horizontal histogran1: 

(4.2 ) 

"-here 1na~;(p1) and 1nax(p 2) are t,vo highest peaks . A.s the ratio 11 (ED ) 1s ap­

proaching to one. t he center pixel is 111ore likely to be on the occlusion borders. 

Confidence Measurement Jun1ps(CMJ) 

The funda111ental behind C tI.J is in1ple: it n1ea ure at the goodness of the n1atch­

ing; and assun1e t hat if the point in 3D ,Yorld is visible in both Yie,~·s: then it 

should haYe been ·well n1atched. And for those pixels that only appear in one of 

the , iews: their confidences are supposed to be lo\"\-. As a result : the occlusion 

borders are located in the places t hat t he goodness rneasuren1ent values jun1p the 

n1ost. Niore fon11alh·. 

( 4.3) 
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·where J; is t he horizontal coordinate of the center pixel. and C 1s th su1n of 

n1atching cost -Yvithin a -YvindO-\VS ,;vith size of w . 

Left-Right Cross Checking(LRCC) 

Left-right cross checking is the n1ost con1n1only used hypothesis. Its basic assu1np­

tion is that for the points v.rhich are presented in both views i their proj ections in 

both vievls should be n1utual corresponding . In other words ; corresponding pixels 

in left and right disparity i1nages should differ only in occlusion areas. Analyti­

cally, let dist ( xi) to be horizontal distance of :ri , and proj (.xi) to be its projection 

in the other vie'VI' , then vve have 

'lj) (LRC'C) = di st (proj(proj (xi))) - di st (xi) . ( 4.4) 

For pixels ,~rith their 'I/J ( LRC.1()) other than O are failed in the n1utual consistenc>· 

check and labeled as occluded . Hov,,ever this occlusion detected by LRCC ar not 

include occlusion regions but also textureless or false n1atched regions. 

Ordering Require1nent(OR) 

The ordering requiren1ent hypothesis is that every pixel corresponds to a unique 

point in the 3D scene , so for both vie,vs , the points that pixels correspond to 

should share the san1e ordering. N an1ely, let xi and Xj be tvlo pixels lie on the 

san1e scanline , ,vithout loss of generality assun1e xi is on the left of Xj t hen 

pro.i (Ti) should also be locat ed on the left of proj(Tj) in the other vie,v. 

'!),( OR)= (di.st (x i) - rli .st (Tj)) * (di .st (proj (.01) ) - di.st (pro_j (.rcj ))) (4 . .5 ) 

Pixels with v ( 0 R) < 0 ,~rill be labeled as occluded. Ordering require1nent is 

kno\\·n to fail in son1e cases. an exan1ple is given in Chapter 2. 

Occlusion Constraint(OC) 

The occlusion constraint assun1es that disparity change sn1oothly within non­

occluded surfaces. If depth changes dran1aticall~· in one view ,vhile jun1ps over 

pixels in the other vie,Y. then OC ,,·ill label t he unn1atched pixels in the other 

Yie\\· as occluded. 

In our algorithn1. ,,·e adopt the LRCC as our occlusion det ction n1ethod. and 

an exan1ple of the r sult is presented in Figure4.3 . After t hi tep , pixels are 

labeled as either Occl udcd or U noccludcd. 
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Figure 4.3: An exan1ple of our LRCC occlusion detection. In the figure , detected 

occluded pixels are in black; unoccluded pixels are in v,;hite. It can be seen that 

this detection is not accurate. it v.rill not distinguish false n1a.tchings vl it h real 

occlusions. 

4 .2.3 Confidence Measure1nent 

Although ·winner-take-all strategy can easily assign the optin1al depth label d for 

every pixel by choosing the n1inin1un1 n1atching cost c(xi: d) an1ong the candidates , 

the reliability behind the assignn1ent n1ay differ . For exan1ple. in textureless 

regions. the n1a.tching costs a.re intend to be quantitatively sin1ilar , so the optin1al 

label n1ay not be distinguished \ i\ it h confidence. A illust ration of t his phenon1enon 

is gi, en in Figure 4. -l . 

To soh e it. sin1ila.r to [77], \Ye define our confidence function con f (xi) as: 

( 4.6 ) 

In t he equat ion. c(xi: d) is t he locally n1atching cost of pixel xi at different depth 

candidates d: d* i locally picked optin1al label through " Tinner-take-all process , 

o- is a scale robust paran1eter. In our experin1ent. a t hreshold Bis set for the 

generated confidence n1ap . For vnoccluded pixle xi . if con f (xi) > e. it is denoted 

as tabl e points. othenvise it is 'Un tabl e . An exan1ple is presented in Figure 4.5. 
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Matching 

Cost 

Left lmage(Reference) 

Hypothesis Depth(d) d* 

Matching 

Cost 

Right Image 

d* Hypothesis Depth(d) 

Figure 4.4: The funda1nentals behind the confidence n1easuren1ent. In high­

texture regions(as shown in red block), the optin1al(1nini1nun1) 1natching cost 1nay 

significantly lo-\;ver than other is , so the confidence should be higher. In contrast , 

in textureless regions(blue) , the optin1al n1atching cost n1ay not differ t hat n1ucb 

con1paring to others , so the confidence should be lo,.ver . 

4.2.4 Plane Fitting 

The n1ost con1n1only used plane fitting techniques are Least Square Error (LSE) [76] 

and Randon1 San1ple Consensus(RANSAC ) [22]. The advantage of the LSE is its 

efficiency, but its robustness is not comparable to RANSAC. Recently, a Voting­

Based ifethod (VBM ) [73] has been tested well in depth plane fi tting. 

Anal:vticall:v we establi sh a 3-din1ensional space \7\ it h x and y being t he hor­

izontal and Y rtical coordinates of t he in1age and d being t he depth value then 

every 2d pixel Pi(.1:i , Yi) can be projected into a 3d point JJi (xi Yi , di) once its depth 
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Figure 4.5: An exan1ple of our confidence 111easuren1ent . Brighter t he pixel is: 

the higher possibility of it being the right n1at ch it has. 

value is kno-\Yn . Here ,Ye use the locally opt i1nal depth n1ap as the input d. Then 

t he t ask is to find a plane .§ = [A : B: CJ that fit s these 3D- points cloud. ,vhere 

A: B : C are plane paran1eters. Once the plane paran1eters are obtained: projec­

tions of each point on the plane can be con1puted t hrough d~ = [x i; Yi : l ]* [A.; B ; C']. 
A 

The error for fi t ting the pixel Pi to plane ,8 is con1puted as the distance : 

(4. 7) 

The optin1al plane 6* is the one that suits the 3d points cloud the n1ost "it h 

respect to the inliers . 

Least Square Error (LSE) 

The LSE used here is t he linear least squares[76]. By :: least squares::: it n1eans 

t hat the solution is approxi1nated by n1ini1nizing t he sun1 of the square of t he 

error oYer all points: 

S1D71 = L 6. (pi) 2
. (4.8) 

Pi 

The optin1al plane t hat 1n inin1izes t he . ·un1 can be co1nputed t hrough 

(4.9) 

" -here P is t he n1atrix of 2D points "-ith t he t hird coordinate as 1. and D is the 

n1atrix of corresponding input depth d. 
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Since the input depth n1ap here is fron1 locally n1atching , it inevitably include. · 

lots of noises fron1 false 1natchings . Alt hough LSE is relatively efficient, it often 

can not give a robust cstin1ation. 

Randon.1. San1.ple Consensus(RANSAC) 

RANSAC[22] is an robust n1ethod to plane-fit t ing. It dynan1ically divide t h 

input data into tvlo scts: inlicrs and out liers , and increasingly in1provc its C.'tin1a­

tions iterat ively. In each iteration , it rando1nly san1ples 3 pixels, and generate a 

plane. Then it adds a process evaluating t he nun1bcr of inlicrs, and only proceeds 

v.rhen t he n1odel is regarded as qualified . Rather t han give an estin1ation to fit all 

of t he points , it is only applied on inlier points . The algorit hn1 for RANSAC in 

our n1cthod has been given in Algorit hn1 1. The dra,vback of RANSAC is that 

several robustness relevant paran1eters have to be predefined . In addition. it is 

not efficient ly con1parable to LSE and voting-based n1ethod. 

Voting-Based Method(VBM) 

The idea behind VBI\!I is sin1ple. The proposed depth on t he plane can be defined 

as d~ = [:r:i, Y i: l] * [A; B; Cl so t he plane paran1eter Jl can be obtained b:v calcu­

lating 5cl' / 5x for a pair of points a.long X-axis. By doing counting for every pairs. 

·we can build a one-din1ensional histogran1 v.r it h integer values of A as horizontal 

coordinate and count nun1bcr as vertical coordinate. Once t he histogran1 is n1adc. 

by applying ·winners-take-all , value A is easily con1puted . After that , a si111ilar 

strateg>- is applied on B by calculating 6d' / 6y. Once A and B are obtained , C' 

can be settled by a sin1ilar voting operation . Unlike RANSAC , it is not required 

to predefine paran1et erE\ and its perfonnance is con1parable to RANSAC in n1ost 

of the regions \\-hile at significantl>' higher efficienc>-- Its drav.rback is that it does 

not perforn1 well in sub-pixel planes. 

Herc we pcrfonn a pl ane-fitting on tbc initi al segments b:\' I\1:canshift . Be­

cause plane-fitting plays an in1portant role in our algorith111 and further sub­

seg1nent at ion ,Yill be based on it. algorithn1 ins nsitive to outliers is required . \Ne 

bave test all three algorith1ns in our experi111ent. the perfonnances are shown in 

Figure -±.6 . RA:\"SA.C achieves the highest accurac)-. as a result , we choos it as 

our planc-fi tting n1cthod . 
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Algorithn1. 1 Algorithn1 for RANSAC Depth Plane Fitting 
1: const 8:111inin1un1 offset al1o-\ved for a single pixel; 

2: const E: n1inin1un1 nun1ber of inliers a.llo-wed; 

3: const iterationsniax :n1axin1un1 nun1ber of iterations allovied; 
" 

4: (3 : Current 1\1:odel; 
" 

5: /3* :Optin1al 1\1:odel; 

6: for every segn1ent Ci do 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

24: 

25: 

26: 

27: 

28: 

29: 

30: 

31: 

iteration.c:;now = O; 

errorbest = oo; 

/3* = 0; 
while ( iterationsnow < iterationsniax) do 

randon1ly choose three points P1 (x1, Y1 , d1 ),P2(x2, Y2 , d2) ,p3 (x3, y3 , d3); 

~ = LSE(p1 ,P2 ,p3); 

inl'ierscount = 0; 

inliersset = 0; 
for every Pi E ci do 

if (l[xi , Y i; 1] · ~ - dil < 8) then 

add Pi to inliersset; 

inlierscount + + ; 
end if 

end for 

if (inlier scount > lci l * t) then 

~ = LS E( inlier sset ); 
L p · E i nliers t l[xi ,Y'i, 1]·,8-di l error - i se . now - inlierscount ' 

end if 

if ( errornow < errorbest) then 
" " 

(3 * - (3 · - ) 

errorbest = errornow; 

end if 

it erat'ionsnow + + ; 
end while 

" 

return /3* 
32: end for 

4.2.5 Sub-segmentation 

A con1n1on assun1ption in segn1ent-based labeling problen1 is that inside a segn1ent 

labels should be consistency, however directly allocating disparities in such way 
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: . a 
(a) (b) (c) 

Figure 4. 6: Results of t hree different plane fit ting techniques: (a) LSE, (b) 

RANSAC, (c) Voting-based. 

is unreasonable. According to our assun1pt ion , \ '-le further divide t he color-based 

segn1ents into s1naller subsegn1ents so that inside pixels are n1ore likely to share 

t he san1e depth. 

It works as follows . For every plane-fit t ed segment, we can always extracts t he 

planar vector along ,vhich t he disparity values changes t he 111ost. Ba. ed on the 

value of each pixel on the surface, pixels can be clustered into sub regions vlhich 

satisfy t he condit ion t hat pixels share the san1e discrete integer value inside t he 

san1e sub region , as illustrated in Fig 4. 7 . 

. ..... . . .. .. . . . 3:,. Planar vector 

' - - - - Sub-segments' boundary 

' 
' ' 

' 
' ' ' ' ' 

' ' ' ':-,' 

.·· ' ' 
.·· ' ' 

' ' 

Figur 4.7: An illustration of Sub-segn1entation. The black dot lines represent t he 

planar vector. while the red dot lines represent the new sub-. egn1ents' boundaries 

which perpendicular to planar vector . T he pixels are separated into sub-seg1nents 

where pixels inside it ha, e the san1e discrete value. 
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4.2.6 Energy Function Model 

The fran1e,-:ork has been forn1ulated as an energy n1inin1ization problcn1; in which 

the lowe. t energy n1eans the globally optin1ized labeling. In our fran1e,\·ork ; 

,-:e add sub-segn1ent infon11ation as higher-order potential in the ,vay of a soft 

con. traint into our n1odel. and take ad, ant age of the po,-:crful robust higher-order 

graph cuts algorithn1 to solve it . The energy function is given by: 

E -E I E 1 £ - Data T Smoothness T Hi gherOrder 

The data tern1 is sun1 over all pixels; local n1eastuen1ent: 

ED ata = L c(xi; Yi ). 
x;E X 

The n1oothness ten11 is the truncated Ll norn1 function: 

d(xi) = dCr,j ); 
otherwise. 

(-± .10) 

( 4.11) 

(4. 12) 

d(xi) denote the label of x1; and k is a truncation pa.ran1eter. The painvise forn1 

ha sho-ffn great great perfon11ance in discontinuity preserving . 

In tern1s of clique(segn1ent/ sub-segn1ent) based higher-order tern1 , unlike n1ost 

exi ting "'·ork forn1ulating higher-order assun1ption into pain vise ten11s. ,ve treat 

all three energy tern1 equally; "'hich 111eans t hey are optin1ized sin1ult aneously. 

The benefit is that the higher-order tern1 ,vill be able to contain all the assun1p­

tion "·ithout any sacrifice . and clearly a n1ore globally optin1ized result ·will be 

achie,·ed if three energy tern1s are t reated evenly in the optin1ization procedure. 

\Ye take adYantage of the p n Pott n1odel [35] n1odel. because it n1eets our 

a un1ption "'·hile keeping subn1odularity. }11ore detail ,-:ill be provided in the 

next ection. 

4.2.7 Robust Higher-Order Tern1 and Graph Cuts 

~-\.ccording to [2-±]. in order to n1inin1ize the energy function by graph cuts. the 

energ:, function n1ust be ubn1odular. Fron1 additiYe principle. it is equi, alent to 

that e,·ery tern1 of the energy function hould be submodular. The data tern1 and 

painYi e tern1 in our function are ubn1odular : o it is really depend on the higher­

order tern1. ~-\.nd fron1 the definition of ub1nodularity on Fs CY > 3). an energy 

tern1 "'hich invohing more than t\"\10 binary variables e.g. ; higher-order tern1. 1s 

ubn1odular if and only if all its projections on 2 variables are ubn1odular. 
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Generally such conditions are hard to satisfy or v-rill need exponential auxili a. ry 

nodes added. Thanks to the robust p n Potts 1nodel[35] i it is not onl>· subn1odular 

but also benefit the inference that only two auxiliary nodes arc needed for each 

clique. 

In each su b-segn1ent ch , Re.st( r-1-i,) represents percentage of pixels not taking 

the do1ninant label. then the higher order tcrn1 is defined as: 

-1 . . _ , ) ( z ·) _ , { Re.st (cli) b~'lma.x: i f Rest (cli ) < Q. 
RH19herOrder - ~ q C 'l - ~ . 

l . l ' [ max; other1.uise. 
C i C i 

(4 .13) 

In the equation , Q is the truncation paran1eter v-rhich controls the rigidity of this 

function and satisfies the constraint 2Q < lcli Ii and r ma x is the truncat ed penalt?. 

Herc we define rma.x as a function inverse to visual feature dissin1ilarit>' in side tl1c 

region : 

(4.14) 

The basic idea is fairly sin1ple , if one segn1ent is less visually hon1ologous , then it 

is n1ore likely to belong to different depth surfaces , so the penalty for its depth 

inconsistency should be lo-wer. 

It can be seen that the higher-order tenn is a linear truncated function of the 

nun1ber of inconsistent pixels. \i\Thile it encourages pixels in one segn1 nt to take 

the san1e label , it does allo-w son1e pixels to take different labels depending on the 

cost . 

According to [35], in a -expansion , the higher-order tcn11 can be tran sf orn1cd 

into sun1 of first-order and second-order t ern1s: 

iEcli 

,,-here n 10 . 777 1; are bYo auxiliary nodes . r 0 ; r1; w1; are weight paran1etcr. . di rlom 

denotes t he t he variables that have becb assigned the don1inant label in t he clique. 

and 6 is a con:t ant . 

Hence the higher-order is decon1pos d into unar? and pairwise potential of 

original variables and iwo auxiliary nodes. t he transforn1cd graph is shov-.rn in 

Figure -± . . 
The details about in1ple1nentat ion of hiaher-order graph cuts is giYen in Al­

gorithn1 2. 
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T 

Figure 4.8: Graph construction for higher-order t ern1s . S) T are source and sink. 

cli 1 & cli2 here represent t-\vo different cliques. Only tv"o auxiliary nodes . nan1ely 

1n0&n i 1 are needed for each clique. 

4.3 Experiment 

4 .3.1 Quality 

To exan1ine t he perfon11ance of the proposed n1ethod , vle test on both 1\lliddle­

bur:' benchn1ark[67) and challenging real-scene in1ages. The results have been 

con1pared ·vi·it h conventional graph cut ,~ith t he san1e data tern1 and pairvl ise 

tern1 . 

Fron1 Figure 4.9 :t he results clearly sho-,i\ that our algorithn1 succeeds in :(1) It 

keeps t he shape of objects due to sub-segn1entation . For exan1ple, the anns of t he 

lan1p on T sukuba data set can be clearly distinguished in our result . ·while it is 

o, er-sn1oothed in convent ional graph cut n1ethod. (2) It can elin1inates an1biguity 

caused by inaccuracy of initial disparity e tin1ation . This is because t he higher­

order graph cut process will not only rely on t he initial dispari ty result but also 

t he distribution 'within segn1ents is taken into account. For exa1nple, in t he Baby 

data set , t he front of the round obj ect ,vhich the baby sits on has son1e n1atching 
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Algorithn1 2 Algorithn1 for Higher-Order Graph Cuts Optin1ization 
1: const Tinie.sRenioin = ,: 
2: LobPl!\T01u = {O}; 
:3: while Tin2 esR cniain > 0 do 

4: for randon1 i E L do 

5: O'. = l 

6: E = C01nputeEner,r;y(LabelN ow) 

7: for every .'ti E X t hat Lohell\T ow[.01] -f- a do 

8: add node xi and its t -links 

9: end for 

10: for every pair { :ri; Xj } E X that Lal.Jell'../ ov [.ri] -f- n, && L(l,/.JpJ ]\ ow [.i: j] f-
a do 

11: add n-link betvleen xi and .'Cj, also update t -links 

12: end for 

13: for everv cli E X do 
J 

14: add auxiliary nodes 1n0 , 777,1 and t heir t-links 

15: for ever:v xi E cli that Labell\T ow[xi ] -f- a do 

16: add n-link bet\;veen xi and 7Tlo 

17: end for 

18: for every xi E cli that Labell\T ow[xi] = Dorninant Label do 

19: add n-link between Ti and 1n.1 

20: end for 

21: end for 

22: Appl:v n1ax-flo-\v algorith1n and update Lobr-:JJ\T ow 

2:3: E' = C'oniputeEnergy( !Jabell\T ow ) 

24: if (I E' - El < ep.s ) then 

25: T'inu:sRe1nu:in - -

26: else 

27: Tinw .c.;Re111oin =, 
2 : end if 

29: end for 

:30: end while 

:31 : return Label.Y ou· 

errors b~- traditional graph cut n1ethod. but is reco\·ered as part of a plane in 

our algorithn1. (3) High accurac)· is achieYed in t)·pica] difficult area.s such as 

texturclcs. · regions. An exa111plc can be found in the real-scene i1nagc ·where the 
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_ lgori t hn1s T sukuba Venus Teddv 

nonocc all disc nonocc all disc nonocc all 

Regular GC 2.27 4.36 11.4 1.27 2.90 13.4 14.9 23.6 

Proposed 111ethod 2. 01 4 .01 9.75 0.74 1.88 8.5-1 11.4 18.0 

Table 4. 1: Error rat e on I\/Iiddlebun Benchn1ark. It can be easilv seen t hat our 
- J 

proposal out perforn1s regular graph cut in all three indicators. 

lcft-do-\Yn part of t he ground is t extureless j our algorit hn1 handles it accurately. 

Table 4. 1 of error rates quant itatively describes the perforn1ance of our n1ethod 

in con1parison \vith the regular graph cut. It clearly den1onstrates our approach 

outperforn1s in all three indicators wit h a, erage in1proven1ent of n1ore than 20 

percent. 

4 .3 .2 Efficiency and Energy Convergence Analysis 

The increased auxiliary nodes onlJ take a sn1all proportion of t he original nodes: 

therefore there is aln1ost no ext ra tin1e consun1ption for each n1ax-flo\\r iteration . 

So t he effi ciencJ here is all related to the nun1ber of iterations t aken to converge. 

here one iteration is referred to a ,-isits e, en- label in L once . 

Fron1 Figure -1.10 ) it can be observed that n1ost of the energJ are n1inin1ized 

within the fir t iteration 1 and all t hree Niiddlebur:, san1ple in1ages converge ,vell 

·wit hin 5 iterations. 
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Figure 4.9: Results on Middlebury(T sukuba, Venus; Teddyi Baby)& Real-scene 

data. Fron1 left to right: in1age input regular graph cut our result , ground t ru t h . 
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Figure 4.10: Energy n1inin1ization on three Middlebury in1ages. "\i\ e take t he final 

converged energy as 100%. And one iteration involves a visit ing every label in 

label set once . 
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Chapter 5 

Joint Optimization on Coupled 

MRFs for Stereo Matching and 

Surface Boundary Estimation 

5.1 Motivation and Introduction 

Based on different representations of depth estin1ationi existing n1ethods can be 

classified into tv.ro categories: pixel-vvise and seg1nent-,;vise. Pixel-based algo­

rithn1s often suffer fro1n local noises and have insufficient cues of the scene. As 

people generally identify the object and reconstruct the scene by partitioning the 

scene into a set of groups each ,;vith the san1e or sin1ilar visual features such as 

color or texture, researchers have developed segn1ent-based algorithn1s based on 

the sin1ilari ty. 

Segn1ent-based algorithn1s [73] [78] have don1inated the IVIiddlebury Bench­

n1ark [67] due to their good perforn1ance on reducing an1biguity of disparities in 

textureless regions. They usually share the assun1ption that the scene structure 

can be approxin1ated by a set of non-overlapping visually hon1ogeneous regions 

,;vhere each region corresponds to its own depth surface. In other words , all pixels 

in the san1e segn1ent should lie on the san1e depth surface and discontinuities 

only occur on boundaries . This assun1ption certainly enhances the tolerance of 

local noise as the depth surface is now decided by a group of pixels , the risk of 

assigning incorrect disparities to occluded or textureless individual pixels is de­

creased. Typical procedures for these approaches are as follovls: first , segn1enting 

the reference in1age using color-based segn1entation and getting an initial dis­

parity by doing pixel-based local n1atch; then fitting disparity planes to every 
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scgn1ent using plane fitting techniques: fina lly the opti111al assign1nent of plane. · 

is approxin1ated b:v using global-based optin1ization tools to n1ini111ize a certain 

energy function. 

I-Io-\vever , t his assun1ption has son1e dravvbacks. First, ,i\rith segn1ents b -

ing purely grouped on visual features , they are still likely to be influenced by 

local noises. In1 agining a piece of colorful nevlspa.per lying on a planar i.able. 

Clearly th ne,vspaper should locate on the san1e planar depth surface. However 

in scgn1ent-bascd algorit hn1s, every individual character and color region n1ay be 

segn1ented into different sized segn1ents. Seg1nent-based approaches usually are 

not concerned ,vith the din1ension of the segn1ent , and sin1plify each seg1nent as 

an individual node in the n1odcl for further optin1ization. Therefore robustness 

,vill not be guaranteed due to the existence of these sn1all segn1ents. Second , 

Color segn1entation only relies on visual cues, but the correspondence between 

visual features and depth does not always hold . T,i\ro neighboring surfaces vlith 

huge difference in depth but little variance in color son1etin1es are segn1ented as 

one scgn1cnt , ,i\rhich resulting in assigning one faulty surface for both . A typical 

exa111ple is sho,vn in Fig 5 .1. Third , although the first phenon1enon n1ay be recr­

ularized by adding s1noothness interaction bet"\veen neighboring segn1ents, this is 

under the assun1ption t hat t he dept h is spatia]]y sn1ooth everywhere. even for 

t he neighboring segn1ents that actually cross the surface boundaries. As a result. 

the paran1eter of sn1ooth scale is ahi\rays hard to tune. If the paran1eter is too 

sn1all , these sn1all seg1nents ,vill not be as consistent as desired. but if too large 

it ,vill lead to undesired blurring along surface boundaries because the neighbor­

ing scgn1ents t hat actually cross t he surface boundaries arc sn1oothcd as welJ . 

An alt ernative solut ion is to int roduce depth surface boundaries to distinguish 

the sn1oothness of neighboring segn1ents along t he surface boundaries. An ex­

perin1ent n1otivates us is that given perfect or near perfect surface boundari s. 

state-of-the-art results can be achieved b:v over-sn1oothing segn1ents within t he 

san1e depth surface. 

In addition . low resolution is crucial for son1e specific applications for artificial 

visual sin1ulation [55J [5..J.J [75]. Under the present hard,var lin1itation of lo,Y-vision 

de\·iccs. the depth n1ust he dovn1-san1pled to a qualified low-resolution . A ppar­

entl,\·, . ·on1e popular i1nage resizing n1ethods(near st-neighbor, bilinear, cubic and 

so on) "\\·ill be the straight-for"\i\·ard solution. but the:v n1ay bring so1ne serious dis­

tortions into the resuli.s in \\·hich th surface boundaries are blurred. and depth 

of foreground n1erges into background. This is partially due to the equally treat­

n1cnt of boundar_\· regions and no boundary regions. Do,vn-san1pling ,vithin the 
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Figure 5.1: An exan1ple of the \ enus i1nage pair from the Middlebury 

Benchn1ark[67]. The i1nage on the left is the color segn1entation by I'v1ean­

Shift[l6]: the i1nage on the right is one t} pical state of the art result[85]. Fron1 

the correspondence it can be clearly concluded that three major errors are all 

caused b) inaccurate initial color segmentation. 

san1e depth surface is straightfonva.rd and eas} to in1plen1ent ) but boundary re­

gions should be handled carefull}. Therefore , surface boundar} can be used as 

clues into do,i\ n-san1pling process. 

The abo, e challenges 111otivate us to integrating depth -surface boundary es­

tin1ation into the existing stereo 111atching fra1ne" ork so that these two types of 

variables could be inferred together and interact ea.ch other. In the chapter ,i\ e 

Vlill present t,vo no, el approaches that en1plo} s a sin1ilar t,i'-10-layer 1RFs fran1e­

work. The first is geon1etn -based and has sho" n great perforn1ance in surface 

boundar:') con1pletion. The second is natural boundar)-based and "e have suc­

cessfully applied it in phosphene vision for indoor human navigation. 

Inspired by Ren s " 'ork[59], ,ve use one layer to 111odel the connectivity of 

locall - found edges. In his ,~ ork, he builded a constrained Delaunay triangula­

tion ( CDT) o, er the locally found edges and used Conditional Random Field to 

model the continuity of edge junctions. Because the connecti, it} of the CDT 

edges in oh ed higher-order clique, he used loopy belief propagation[74](LBP) to 

e tin1a e the 111arginal distributions. But in our fran1e-work , with a t\\ o layers 

'IRFs the graph "ill be much 111ore con1plex so that LBP will be computational 

expensi e. As a result the connection betv\ een boundan nodes are simplified 

fro111 higher-order to pairwise rela ionship. After these ru o lavers are n1odeled 

separately we align and associate tv\ o la,-ers based on the topological structure. 

Our first approach also take ad, antage of he CD·T ) and " 'e "ill demonstrate 

tha this geon1etr -based n1odeling has significant advantage in surface boundary 

71 



con1pletion. Besides that. we also propose another approach that nov lly break 

boundaries into pieces so that t\vo neighboring segn1ents ·will only have one unique 

boundary piece bcbvccn t ben1. And ,ve treat such boundary pieces as individual 

variables in t he boundary la,yer of a.-sociative NIRFs. 

In both approaches , along ·with surface boundaries deten11ined dynan1icall:v) 

sn1oot hness scaling between seg1nents can be decided as need and ,vill only apply 

,ivithin surface boundaries . In son1e sense, it can be seen that segn1ents are fon11ed 

dynan1ica1ly according to boundaries . And bot h surface boundary and depth 

obtained sin1ultaneously facilitates fur t her recognition and scene understanding. 

Generally. optin1izing such fran1e,;vork is quite con1plex and challenging. The 

t hird-order interaction between two layers n1akes st andard graph cuts approach 

difficult to apply. Also dense short loops vl ill lengthen the t i111e t aken t o converge 

in 1nessage-passing algorith1ns . Thanks to the latest projected graph cuts[39], it 

n1ini1nize the energy by n1aking proj ect ed n1oves iteratively in which it fixes one 

layer of IvIRFs at a tin1e; and uses ST-n1in cut [ll] to opti1nize the ot h r lay r . It 

converges when no lov/er energy can be reached. 

Experin1ents d n1onstrat es our novel approaches could provide 1 )significant 

in1proven1ents by clin1inating depth a1nbiguities and increasing its accuracy. 2) 

explicit clues of depth and boundary for hun1an navigation under low-resolution 

phosphene vision , 3) foreground obst acles are clearly discri1ninat ed fron1 sur­

rounding background by integrating boundary clues into dovn1san1pling process . 

5.2 Triangulation-Based Joint Framework for Stereo 

and Surface Boundary Completion 

In our fi rst approach. ,ve bui]d a two la:vers lVIRFs t bat 1n odeling de;pi h and its 

surface boundary sin1ultaneousl:v. In t he exp eri1nent. we find that t he geo1net r~T 

nature of constrained Delaunay triangulation (CDT ) n1akes it capable of con1plet-

1ng true surfac boundaries which n1issed b:v local edge detector . As v-.re ll as due 

to efficienc~-. our fi rst approach is carried out on tri angle-based instead of pix 1-

based . Sides of t ri angles arc defined as Yari a bles for surface boundary °VI i t h onl~r 

h ,·o states. on and off. And t he set of pixel. · t hat each t riangle co, ers are d fin d 

as on Yariable for stereo 1natching. An illustration is in Figure 5.2. 

~lore fonnalb'. l\Yo sets of va ri ables are us d . X for dept b and Y for boundar~'­

Let L.r = { 1. 2 . .... n} be a set of n different di er t depth plane label . and 

Ly = { 0. 1} be a t\Yo-Yariablc set for t he labels of surface boundary in ,i\·hich 0 
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............ Side of CDT O Node for Surface Boundary Estimation 
• Node for Depth Estimation ............ Pairwise Connection Between Two Layers 

Depth Estimation Two Layers M RFs 

Figure 5.2: Triangulation-based t \, o layers IvIRFs fran1e-work. 

is off and 1 is on. The task is to find a labeling configuration f that allocates 

the labels fron1 Lx to each variables Xi E X and Ly to each 1"i E Y respectively. 

Then each possible labeling f has its o,~ n posterior probability1 the goal is to find 

the f * that has the n1axin1um probabilit,. According to the Han1111ersley-Clifford 

theorem; n1axin1un1 a po t erior labeling f * (MAP ) is equivalent to the n1inimun1 

of the Gibbs enerITT. \ i\ e define the proposed energ} function as: 

E = Es ( x ) + EB (y) + E 1 (x i y) . 
~ "-v-" ~ 
Stereo Boundary Interaction 

(5.1) 

This enerITT function not onl} contains energJ potentials E 5 ( x) and EB (y) 

for stereo matching a.nd boundar} estin1ation a.lone but also has energy term 

regarding the interaction between then1. Details ·will be given later. 

The 111ain steps of our algorithn1s are illustrated in F igure 5.3. 

5. 2.1 Boundary Potentials 

Our approach starts ~rith locally captured edges by probabilit) of boundary 

detector[4 7] then the probability for ever:, edge is rion11alized into [O 1 1]. After 

that. we break up the boundaries into piece~ ise linear segments at high-cun ature 

locations. To do this , v. e trace each boundar:, from one conjunction point to the 

other, and recursi, ely split the curve into approxin1ate line segments to satisfy 

that the angle bet'\\ een nvo splits "ill alv.-ays exceed a certain threshold. Once 

the decon1position has been completed) we ha, e a set of conjunction nodes and a 

set of line segn1ents. Each line segment" ill be gi, en an probability value pb that 

equal to the a, erage probabili~ of all the pixels its corresponding curve passing 

through. 
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Edge Detection (Pb) 

Edge Piecewise Linear 
Rep re sen tatio n 

Delaunay Constraint 
Triang ulation Completion 

Triangulation Edg,e 

Two-Layer MRF 
Joint Optim ization 

Pixel Dissimilarity Measure 

Cross Check 

Triangulation Center 

Plane Fitting & 
MDL Plane Extraction 

Figure 5.3: The flo-\;vchart of our triangulation-based algorithn1. 

Next ·we en1ploy the constrained Delaunay triangulation( CDT) algorithn1 to 

predict the n1issing edges . CDT is a generalization of the standard Delaunay 

Triangulation t hat forces the generated triangulations passing through certain 

required seg1nents(in our case , the edges in the piecewise linear approxin1ation). 

Here the pb value for these con1pleted edges are given as 0. An example of these 

processes is given in Fig 5.4. 

5.2.2 Surface Boun d ary Potentials 

The energy potentials for surface boundary estin1ation is defined as 

(5.2) 

The unary tern1 1/Jf (yi) only penalize on the situation that the boundary choose 

to be appear. The lower its local probability is the higher penalty it will take: 

1/Jf(yi ) = L (l - pbi) . Yi· (5.3) 
YiEY 

The pairwise tenn , t (Yi . yj) encourages hvo connecting boundaries to be 

both turned on or turned off. Define 8 ij as the angle between two edges, when 

G ij -+ r 1 it indicates a strong continuity and the possi bilit\ for then1 to have the 
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Missing Edges Local Deteced Edges Linear Approximation CDT Completion 

Figure 5.4: An exan1ple den1onstrates the process and advantage of edge con1-

pletion. Fron1 left to Right , the first in1a.ge is the depth result vvith n1issing 

edge(ina.ccurate segn1entation). The second i1nage is the result of local edge de­

tection. In the third in1age, the red edges represent linear approxin1ation , the 

green dots represent line seg111ent ten11inals. The fourth i111age is the CDT con1-

pletion result. It can be seen that it successfully con1plete the 111issing edge. 

san1e states should be greater , vice versa.. It takes the forn1 of a data-driven Potts 

model: 

1/JB(Yi :Yj)= L {~ .. 
Y · y ·EN iJ , 
i' J 

5.2.3 Stereo Matching Potentials 

i f Yi = Yj, 
otherwise ._ 

(5.4) 

To begin ,, ith , \\Te use the fast local pixel dissi111ilarity n1easure [7] to construct the 

correlation volume for both left and right in1ages as the reference i111age. Then we 

appl1 n1utual consistency check on the result. Pixels passing it 'Nill be labeled as 

stable pixels . The reasons for failing n1utual consistency check include occlusion, 

textureless and specific faulty matching. 

Once obtained initial depth and a. set of stable pixels , a. RANSAC plane fit­

ting is carried out inside each triangle with the depth of the left vie,v. Note we 

onl1 apply RANSAC on stable pixels: and also only choose to implen1ent in a 

triangle if its percentage of stable members exceeds a certain threshold. For every 

in1plen1entable triangle "e put the computed plane with the least error into Lx, 

and keep records of its frequency ft x. 

Plane Extraction with MDL Regularization 

As t he fitting label Lx having too n1any n1embers: it not only slows down t he 

final global optin1ization but also a.rises n1ore noise. To cut down the volume, ~ e 

add a plane extraction step to n1erge neighboring planes . 
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The energy function for plane ext ract ion is defined as: 

EJ\JDL = 1/Ji(xi) + VJij(Xi, Xj) + L l 'l. a,. 
l EL 1-
~ 

I a.bel cost 

(5.5) 

Vlhere 1/Ji (x1) is t he sun1 of pixel-based absolute depth difference bet,;veen its orig­

inal plane and ne,v 1napping plane. 1/Jij (xi, :.i.; j) is a Potts n1odcl penalizing on 

difference. The label cost tern1[17] functions as a 1'v1DL regularizer , penalizing on 

occurrence of a certain plane, and is a decreasing function of the frequency f L
1

• in 

t he RANSAC result. l\!Iore forn1ally, we use l 't = e- fi x, and 

5..- _ { 1 , :jX , lx E L , 
U[ -

0, otherwise . 
(5.6) 

Roughly, t he size of Lx is cut do,v-n t o less than 20 after t his step . 

The energy function for stereo is then defin ed as: 

(5.7) 

The unar:v tern1 ?j_; f' ( xi) is t he sun1 of absolute difference between curr nt labeling 

and initial disparity n1ap . \Ne do not have a conventional pain;vise tern1 for stereo 

here is that v.re n1odified it into an interaction tern1 \ivit h boundary, it will b 

described in details in next section. 

5. 2 .4 Interaction Potentials 

For each pair of neighboring xi and x j t here will be an unique piece of boundar:v 

nan1el)· Yk. The interaction potent ial is defined as: 

(5. ) 

,,·here 11 'ij ( :r1: Tj) is a Potts n1odel. T he principle of t he projected graph cut. is to 

fix one layer in 1RFs at a tin1c ,Yhi]e optin1 izing the other. \ir hcn layer X is fixed . 

and neighboring .r1 and .rj do not belong to t he san1e depth surface( V 1j (x1. Xj) = 
1) . the energ)· potential ,vi ll intend to decrease itself b? encouraging t he boundary 

bet\Yeen to be appeared ( Yk = 1 J. And when la\er Y is fixed and Yk is t urned on. 

the energ:v potential will be O thu. t he s1noothness requiren1ent of .T1 and Tj v, ill 

no longer be executed. 
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5 . 2 .5 J oi11t Inference 

Thi::; tvlo-layer 1'1RFs have t he set of variables up to { X , ·y} and label space up 

to Lx * Ly. Graph vlit h such con1plexity is generally difficult to opt in1iie. \Ale 

bring t he idea of Projected graph cuts (PGC) [39] to oi-expansion optin1ization , 

it gives an approxin1ation of the true labeling at an acceptable effi ciency. 

The requiren1ent for using PGC is that the potent ial defined bet,veen t ,i\ro 

layers( in our energy function , the interaction t en11 E I ( x, y) ) should al\i\rays be 

projected subn1odular , t hat is ,i\rhen fixing one layer of variables, the ot her layer 

should satisfies subn1odularity. In our case, fixing X ,¥ill n1ake the rest of t he 

energy tern1 as a first order t ern1 for }7
, so it is ah¥ays subn1odular . On t he other 

hand , ,vhen fixing }7 ; the rest tern1 ,i\rill either be O or Potts n1odel ,vith positive 

weights , so it is subn1odular too . 

The basic steps for t he inference is as follo\i\rs. \Ne start randon1lv either fron1 

t he initial labeling f x or j y, and do the opti1nization recursively. For instance , 

when Vle optin1ize Y in one iteration , suppose the optin1al labeling achieved so 

far are f5c and f {~. \Ve fix X in EI (x; y) by t aking t he values fron1 f 3c , and put 

t he t ransforn1ed t en11 together ,i\rith the st and alone tern1 E B (y), and use ST-n1in 

cut t o opt in1ize variable Y alone. If a lovler energy wit h solution f {,. is found , ,i\Te 

keep t he f 5.c unchanged and set f t,, = f ~. Optin1izing X is applied in a sin1ilar 

subsequent ,i\ray. ~ Then no lower energy can be achieved in Lx * Ly iterations; the 

opt in1ization stops and returns JJ.c . Details are given in Alg. 5.2 .5. 

5.3 Segment-Based Joint Framework for P hospl1ene 

Vis ion in Indoor Navigation 

For indoor navigation purpose , vle have e1nployed t he fr a111e,i\rork to present an­

other approach on seg111ent-level. Con1paring to t he ·first approach , it has 1nore 

accurate boundaries and higher effi ciency. In addition , ,¥hen integrating t he 

boundary clues into downsan1pling process , the foreground obstacle has been 

clearly enhanced and discrin1inated fron1 t he surrounding background . 

The fran1ework is in general sin1ilar . The first stage of the proposed approach 

is color segn1entation[l 6] on t he reference in1age. For stereo n1atching; every 

segn1ent is taken as an individual dept h node disregard of t heir sizes. And fo r each 

pair of neighboring segn1ents , define t heir unique piece of boundary connection 

as one boundary node. An illustration of this process is given in Figure 5.5. 
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A lgorithn1 3 Algorithn1 for Pro.iection Graph Cuts Opti111ization in Our Fran1e­

-Yvork . 
1: const T irr1,es R ernain = T: 

2: .f~. = { 0} and f y = { 0} ; 

:3 : E = C'j ornputeEner_gy (f x, f y) 

4 : while T iniesR eni ain > 0 do 

5: for randon1 Lx do 

6: Fix / y, transforn1 E1(x, y) to E 1(x, / y) 
7: Add E 1 (.rc: f y) to E 8 (x) 
8: Apply a-expansion and get t he newest labeling / ~ 

9: E' = C oniputeEnergy (J~, f y) 

10: if E' < E then 

11: E = E' 

12: f - f' 'X - 'X 

13: T'i1nesR en1,a'in - -

14: else 

15: Ti1nes Re1nain = T 

16: end if 

17: end for 

18: for randon1 Ly do 

19: Fix f x, transfon11 E1 (x, y ) to E1 (f x, y ) 

20: Add E 1 (.fx: y) to EB(y ) 

21: Apply a -expansion and get the nev.rest labeling f{ 
22: E' = C'ornputeEnergy (f x· J~) 

23: if E' < E then 

24: E = E' 

25: f y = f { 

26: T 'i nws R c1nain - -

27: else 

2 : T in?.es R r-1n nin = T 

29: end if 

30 : end for 

:n: end while 

:3'.2: Set .f; = .fx and J; = fy 

The definition of the energ)- function is sin1ilar t o our first approach , and we 

abo use P GC for opti111ization . After obtaining the dept h and surface boundar>' 
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Color Segmentation 

Local Boundary Surface Boundary Estimation Coupled MRFs 

Figure 5.5: The proposed t\vo-Layer MRFs Fra1nework. \Ve use color segn1en­

tation as our inputs. For dept h esti1nation in t he upper-layer , every seg1nent is 

1n odeled as one node(black). For surface boundary esti1nation in the downer­

layer , boundaries a.re furt her broken int o piecewise ones(red). The green lines are 

the connection betvleen two layers. For simplicity, here only dravls t he two-layer 

connections(green) of t\vo boundary nodes. 

result , t he downsa1npling and phosphene visualization process are carried out to 

convert t he dept h into phosphene vision in order suit hun1a.n navigation . 

5.3.1 Down.sampling and Phosphen.e Representation 

There exists a variety of i1nage down-sampling 1nethods. Interpolation of bilinear 

and cubic ·will con1pose nev.r values for ant i-aliasing purpose ·which 1nay cause 

confusion in dept h-based human navigation . Alt hough sin1ple nearest neighbor 

vlill not add new value, it is not robust for low-vision navigation eit her as it 

111ay on1it so1ne crit ical inforn1ation in t he foreground. Here ,ve propose a novel 

do,vn-san1pling n1ethod by integrating t he boundary clues to t he dovn1-sa111pling 

process , Vlhich clearly help to discri1n inate t he obstacle object fron1 t he surround­

ings in phosphene-based lo,v-resolut ion navigation t rial. 

A brief exan1ple is given in Figure 5.6. The principle of nearest neighbor 

do,vn-sa.n1pling is to project every do,vn-sampled node(pixel) to original in1age 

and obtain its sub-pixel location and coordinates , and t hen sin1ply select t he 

value of its nearest neighbor as its o,vn . However in low-vision navigation , the 

priority is t o avoid t he nearest obstacles. Therefore during t he down-sampling 

process , nearest neighbor algorit hm may omit so111e crit ical infonn ation of fore­

ground obstacles which merged int o background , and t his ,vill cause serious prob­

len1s in navigation. Such errors always happens in surface boundaries where t he 

dept h significant ly changed . To solve it , vve have n1odified and improved near­

est neighbor algorit hn1 by integrating t he boundary clues to efficient ly solve t he 
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problen1. During the dovn1-san1pling process, it takes advantages of the boundary 

n1ap, for the sub-pixel projected in the original in1age, if any of its neighbors in a 

lin1ited scope locating on the boundary, the sub-pixel \i\rill take the largest depth 

value an1ong its neighbors , otheni\rise it takes t he value of its nearest neighbor. 

The experin1ents demonstrates such n1odification could e1nphasize the foreground 

objects significantly in lo,v-resolution vision. 

1 

- - - I Conventional e 
I Nearest Neighbor 

Proposed _ _,..o 
Depth(original resolution) If downsampled pixel with their corresponding 

pixel in the original coordinates locating in the gray area 

• 

• 

Ill 

II 
Depth(downsampled) 

Figure 5.6: An exan1ple den1onstrates the advantage of our do,vnsampling algo­

rit hn1 con1paring to the conventional nearest neighbor. 

For stin1ulated phosphene rendering after do,vn-sa1npling , each phosphene is 

represented by a circular Gaussian \i\rhose center value and standard deviation are 

n1odulated by the depth at that point. In addition, phosphene sun1s their values 

,vhen they overlap. For co1nplete description , please refer to [45]. 

5 .4 Experiment 

Two proposed n1ethods have been tested on Middlebur:is bench1nark i1nages [67] 

and our indoor navigation real-scene dataset. The testbed is on a desktop com­

puter with Intel core I3 2:93Ghz CP U. In the first approach , the CDT function 

is realized by calling the 1\/Iatlab function in 1v1icrosoft Visual Studio and most 

of the tin1e is pent on this procedure. For the PGC optin1ization it takes less 

than 60 seconds to process a high-resolution in1age pairs. The second algorithn1 

is "·ith higher efficienc) , the t in1e has shorten to 100 seconds: and this includes 

the tin1e taken by all the processes. 
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5 .4.1 Experiment of Triangulation-Based Algorith1n in. Sur­

face Completion 

Here vve provide the results on t\iVO representative in1a.ge pairs , Venus and l\,1ap[67] 

in Fig 5.7. Fron1 the results, it can be observed that our algoritlun succeeds in 

Figure 5.7: Fron1 left to right : left in1age fron1 image pair, depth ground truth, 

our depth result , our surface boundary result 

capturing surface boundaries. In Venus, it clearly distinguishes the scene into 

four individual depth surfaces. "\i\Tith such infonnation , it provides convenience 

for further high-level vision works. Due to the noise by local stereo correlation , 

the boundaries and depth are not perfect in our case , ho,;vever its accuracy is 

still con1parable to state of the art results. Quantitative n1easuren1ent is given in 

Table 5.1. 

nonocc all disc 

0.23 0.43 2.77 

Table 5.1: Our accuracy on Venus. 

5.4.2 Experiment of Segment-Based Algorithm in Human 

Navigation 

For experin1ent of the second algorithn1 , the analysis on the real-scene dataset is 

presented in Figure 5.8 and Figure 5.9 , while the comparisons on the Middlebury's 

images are in Figure 5 .10 and Figure 5 .11. 
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Figure 5.8: The first row includes the original 1n1age ,vithout obstacles; its 

original-size and do-,vnsan1pled depth co1nputed by Graph Cut , followed b:v second 

ro,v with the results obtained by our algorithn1 j respectively surface boundary. 

depth and its do,vnsan1ples . The third and forth ro,vs are the result s of the in1-

ages \Yit h ob. tacles. ( Original in1age size: 500 * 312 , dovn1sarnpled in1ag siz : 

32 * 20) 

Fron1 the results of t he indoor in1age pairs in Figure 5.8; It clearly presents 

that our approach has 1nore natural and continuous depth than traditional graph 

cuts under both obstacle and non-obstacle in1age pairs ; as " ell as t he obstacles 

stand discrin1inatiYel)· frorn the background. "\\ hen con1paring the perforn1ance 

of dovn1san1pled result s. t he obstacle objects are clearly discrin1inated fron1 the 

surroundings aft er integrating the boundar)· clues into do,vn-san1pling process 

and it is valuable for further obj ect detect ion use. "\Vhi le th obstacles in the tra­

ditional do,,·n-san1pled look ,·ague. In Figure 5.9 of zoo1ning out interest regions: 

those obstacles could be n1orc clearly obser, cd in phosphcnc , ·isualization. 
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Figure 5.9: Phosphene si1nulation of indoor scene ,¥ith obstacles. The first row 

uses the full ca1nera size in1age as the input , while the last t ,¥0 ro,¥s are t he 

obst acles zoon1-in effect ,¥hich could be crucial in real navigation. The second 

and t hird colun1ns are t he result by Graph Cut and the proposed algorithn1 

respectively. It can be seen that t he latter one has obvious advantage in obstacle 

distinction. 

For quantitative analysis, the proposed n1ethod has been tested t ogether vl ith 

convent ional graph cuts and belief propagation n1ethods on four classic l\!Iiddle­

bury in1age pairs \ !enus, Teddy, Cones and T sukuba , under t hree different scales 

of original size, 1000 and 100 san1ples respectively. The accuracy is calculated in 

t he follo,¥ing ~ray. For every unoccluded pixels, the absolute difference of t heir 

dept h wit h ground t rut h is calculated . Pixel ~rit h difference large t han 1.0 ~rill 

be labeled as bad pixel . The error rate is t he average percentage of t hese bad 

pixels over all unoccluded pixels in tvlo Middlebury i1nages . The original ground 

t ruth and occlusion n1ap are all down-san1pled t o align the comparison under 
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differ nee scaling. The results of Figure 5.10 and Figure 5.11 clearly de1non. trate 

our n1ethod outperfon11s other two approaches at 811 thre scales consistently and 

achieved the best accuracy v"ith the error rate less than 2%. 

4 



(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (1) 

Figure 5.10: For quality review, we select to present the results on Teddy and 

Tsukuba from Middlebury. The first tv10 ro\vs are results on Teddy: ( a) original 

image, (b) ground truth , ( c) result by Graph Cuts , ( d) result by Belief Propaga­

tion , ( e) depth by proposed n1ethod , ( f) surface boundary by proposed n1ethod. 

Fron1 (g) to (i) are results on Tsukuba. 
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Figure 5.11: Quant ity analysis of precision of t he proposed algorit hms con1paring 

to Graph Cuts and Belief Propagation in three scales. The accuracy is con1puted 

as the average of Tsukuba , Teddy, Venus and Cones four in1 age pairs. 
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Chapter 6 

Conclusions 

In t his thesis, we have explored st ereo n1atching problen1s using higher-order 

graph cuts. In this chapter , we sun1n1arize our contributions and stat e son1e 

future works. 

6.1 Co11tributions 
-

Firstly, v..re qualitatively and quantitatively evaluat e five recently proposed st at e-

of-the-art segn1entation algorithrn s. In addition , ,;ve con1pare and analysis t heir 

perforn1ance in classic segn1ent-based stereo n1atching algorith1ns. Through ex­

perin1ent , v..re conclude that color segn1entation n1ethods generally perfonn ,;vell 

because t hey are 1n ore coincident wit h t he obj ect boundaries. On t he ot her 

hand, regularized segn1entation algorit hn1s are n1ore suitable ,;vhen t he segn1en­

tation scale is large. The reason is the regularization on the size of segn1ents 

n1akes every segn1ent becon1es a large ('pixel" . This ai1ns at helping researchers 

to choose the seg1nentation algorithn1 that n1ost suitable for t heir st ereo n1at ching 

application . 

Secondly, a novel approach to dense stereo n1atching has been provided. Con­

vent ional segn1ent-based algorit hn1s share a hard constraint t hat all pixels in t he 

san1e segn1ent n1ust have t he san1e depth value or lie on a locally fi t t ed surface 

such as a plan e, and discont inuit ies only occur on segn1ent boundaries . \iVhile 

hard constraint helps reducing an1biguity of disparities , it is not robust . Different 

t o theirs, our approach develops t he idea of soft constraint t hat encourage but not 

force pixels t o follo,;v t he san1e distribution if t hey are in t he san1e segn1ent . This 

idea has been t ransforn1ed into a higher-order energy potential, and opt in1ized 

along ,;vith unary and pain;vise t enns in our fr an1ework. Beyond the novel higher-
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order tern1, t he idea of sub-segn1entat ion has been presented so that seg1nents are 

not only decided b? visual features but dept h as ,;vell . For a better estin1ation. 

several succes. ful tecbniques bave been con1bin ed , includin g robust local n1atchin g 

1nethod, left-right n1ut ual check. confidence n1easure1nent , RA ISAC and Yoting­

based plane-fit t ing. T,vo test-beds of bot h lVIiddlebury and challenging real-scene 

in1ages have been evaluated , and results shov" that it obtains st ate-of- t he-a.rt re­

sults v-.r hile still keeping efficiency. 

Thirdly, ,ve present a novel global optin1ization fran1e'work t hat con1bines 

stereo n1at ching ,;vith surface boundary estin1ation . To encode t he relationship 

bet,~·een t hese tvvo types of vari ables , a t,vo-layer I\1arkov Randon1 Fields( !lRFs) 

is built in ,vhich one layer represents dept h and t he other represents .. urface 

boundaries. In such fr an1e·work, t,vo types of vari ables are inferred globally and 

sin1ultaneously. The work is carried out on both constrained Delaunay triangul a­

tion level and color segn1entation level. The forn1er one features dept h boundar:v 

con1pletion and t he lat ter one provides accurate boundaries. \A/e have success­

fully applied it in lo,;v-resolution phosphene-based indoor hun1an navigation . \Nit h 

surface boundaries integration , it has three significant in1proven1ents: 1) elin1inat­

ing depth a.1nbiguit ies and increasing t he accuracy, 2) providing con1prehensive 

inforn1ation of dept h and boundary for hun1an na\ igation under lo~r-resolut ion 

phosphene vision , 3) ,vhen integrating the boundar:v clues into do,, nsan1pling pro­

cess, the foreground obstacles are clearly enhanced and di. crin1ina.ted fron1 the 

surrounding background. To opt in1ize such co1n plex graph. we choose the latest 

projected graph cuts. Experi1nents on both I\!Iiddlebury and indoor real-scene 

data set sho,v that t he proposed approach achieYes significant ly bett er perfor­

n1ance t han other popular n1ethods in both regular and lo,,· resolut ions. 

6.2 Future Works 

Be .. ides t hese cont ributions . we ha,·e great interests to extend our current ,\·ork 

in the following directions: 

6.2.1 Objects Recognition 

In Chapter 5. ,Ye sho,,· that the propo::;ed t\, o-laver fran1e,York gl\·es great es­

tin1ations of both depth and surface boundary. One typical result is a-iven in 

Fi o- ure 6.1. it can be ob erYed that the ob tacles are clearl~- distino-uished fron1 

the surrounding background . This work can be further extended to recognit ion 



Figure 6 .1: One of our results fron1 tvvo-layer fra111ework described in Chapter 

5. Fron1 left to right , input i1nage ,vith obstacles, our depth result , our surface 

boundarv result. 
v 

and classification. Since objects have already been ,i\rell discri111inated, it ,vill 

certainly assist future supervised learning ·work. 

6.2.2 Hierarchical Model in. Stereo Mat-cl1i11g 

l'v1ost of t he existing works on stereo 111atching are either pixel-based or superpixel 

based , the forn1er one gives a n1ore precise estin1at ion "\i\rhile t he latter one is 

111ore efficient . To better find the trade off between accuracy and efficiency, a 

hierarchical 111odel 111ay be proposed. In son1e applications, eg ., hu1nan navigation 

as we described in Chapter 5, the con1putation should focus on the close obstacles 

rather than t he background objects "\i\rhich are far away. In other ,i\rords , a rough 

depth estin1ation for background is sufficient , but for the nearer obstacles , t he 

depth should be as accurate as possible. In a hierarchical 111odel, every seg111ent 

has its O"\i\'11 children segn1ents, the breaking do"\i\rn operation "\i\rill dynan1ically 

happen only ,vhen the parent segn1ent chooses certain depth labels. In our case, 

only if a segn1ent takes a nearer depth label, its children nodes in the MRF 

,i\rill be visited . This tree n1odel can be easily pre-con1puted in the initial color 

segn1entation step svith different color and space thresholds. 

6.2.3 Projection Graph Cuts for Problems with Large La­

bel Space 

For labeling problen1s with large one-din1ensional label space , conventional a­

expansion ,i\rill be inefficient , actually it takes a lot of tin1e just visiting every label 

in the label set. To overcon1e it , the large label space can be decon1posed into 

t"\vo din1ensions , so the original variables will now be replaced by t"\vo new sets of 

variables. Once ,ve have the labeling for both t,vo ne,v sets , t he label assign1nent 

for t he original variables can be easily con1puted through reverse conversion. 
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This n1ethod is in t he hope of being n1ore efficient v,hile still achieving adequat 

accuracy. 

In this case, any energy functions wit h second-order energy ten11 ,;v ill now 

be decon1posed to a tv10-layer Iv1RFs v, ith t he clique size up to 4, as shov. n 

in Figure 6.2. If t he second-order ten11 in t he original energy function is in 

son1e specific forn1s, e.g., Potts 1nodel, t he transforn1ed tv10-layer structure can 

be solved t hrough proj ection graph cut. In general cases , t he fully linked clique 

can be approxin1ated by 4 pairwise links t hrough son1e techniques , e.g. , least 

square error. Also if v,,e force all ,;veight t o be positive, vie ,vill be able to soh e 

tv..,ro-layers t ogether t hrough 111ax-flo-\i\T algorithn1. 

E= D(xi) + V(xi,xj) 

Xi Xj 

Large Label Space 

D(xi) = 4,1(yi,zi) 

V(xi,xj) = cp(yi,yj,zi,zj) 

E = 4,1(yi,zi) + 4,1(yj,zj)+ cp(yi, yj,zi,zj) 

yi yj 

Two Small Label Spaces 

Figure 6.2 : An illustration of label space decon1posit ion. 
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