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A bstract

Sterco matching is one of the fundamental tasks in early vision. Unlike human
brain recognizes objects and estimates the depth easily, it is difficult to design
algorithms that perform well on a computer due to variations of illumination.
occlusion or textureless. Like most of the early vision problems, stereo match-
ing can be formulated as an energy minimization problemr in which the optimal
depth is the one with the lowest energy. And graph cuts is one of the efficient
and effective minimization tools that avoids the problems of local minima. Con-
ventional energy functions are defined on Markov Random Fields(MRFs) with
a 4-connected grid structure derived from the image, however it is incapable of
expressing complex relationship between group of pixels. This thesis focuses on
exploring some aspects of stereo matching problems through higher-order struc-
ture and higher-order graph cuts.

The first problem I address relates to the evaluation of five state-of-the-art
segmentation approaches. Their different contributions to segment-based stereo
matching have been quantitatively measured and analyzed. This works aim at
helping researchers to choose the segmentation approach that most suitable for
their sterco matching application.

The second part of the thesis proposes a novel approach to dense stereo match-
ing. This method features sub-segmentation and adopts a higher-order potential
to enforce the label consistency inside segments as a soft constraint. Moreover.
several successful techniques have been combined. Experiments show that this
approach obtains state-of-the-art results while still keeping efficiency.

In the last part of the thesis, a novel two-layer MRFs framework is presented
in which stereo matching and surface boundarv estimation are combined. Both
properties are inferred simultaneously and globally so that they can benefit each
other. This work has direct application in phosphene vision based human indoor
navigation. Experiments prove that the proposed framework achieves signifi-

cantly better performance than other popular methods in all resolutions.
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Chapter 1

Introduction

1.1 Computer Vision

Like human using their eves to perceive the real world, the theme of computer
vision is to simulate the human vision by machines to analyze and understand
images or video sequences. As a joint discipline, computer vision closely re-
lates to the fields of physics, signal processing, artificial intelligence and machine
learning. The attention of computer vision has been well paid since the 1970s
along the development of computational abilities and maturing of active appli-
cations: autonomous vehicle navigation, medical imaging, automatic surveillance
and others|68].

Generally., computer vision consists of three levels of tasks: low-level, middle-
level and high-level. Low-level computer vision, or commonly known as early
vision, is mainly confronted with the tasks of acquiring features and recovering
three-dimensional shape from images. Middle-level and high-level vision prob-
lems, on the other hand. focus on object detection and scene understanding.
According to[57], early vision tasks are usually “inverse” problems, thus they are
ill-posed. Their solutions are not unique, and often problems themselves are not
sufficiently constrained. To regularize them, researchers have to introduce specific
constraints to the problems. Typical early vision tasks include stereo matching.

1mage restoration and image segmentation.

1.2 Stereo Matching

Stereo matching is one of the most heavily researched topics in early vision.

It has a wide range of potential applications including: three-dimensional scene-



reconstruction, robot navigation. Comprehensive reviews can be found in [67][5][12][18].
In general, it can be sorted into two categories: two-frame and multi-frame. In the
two-frame sterco matching problem, a scene is captured by two cameras simulta-
neously. The main purpose is for computers to predict the distance between the
objects and the cameras through these two captured images. If these two images
have already been well rectified, the positions of an object will have a horizontal
shift in two images depending on its distance to the camera. This distance is
usually called disparity, and is inversely proportional to the depth. Therefore the
main process of stereo matching is to find the correspondence between the two
images and compute their disparity. The disparity information of each pixel can
be displayed in the form of a disparity map(as shown in Figure 1.1), in which the

brighter the pixel is, the closer it is to the camera.

(a) Left image (b) Right image (c) Disparity map

Figure 1.1: An example from Middlebury[67].

A variety of constraints are used to guide the correspondence solution includ-
ing photoconsistency, continuity, uniqueness, ordering and others. Algorithms for
stereo matching can be divided into local approaches and global approaches. Lo-
cal approaches neglect the smoothness of spatially neighboring pixels and usually
their solutions are decided by a pixel independent “winner-take-all” strategy. In
practice, local approaches are efficient but not robust enough. Meanwhile global
approach formulate itself as a pre-defined energy minimization problem in which
the lowest energy corresponds to the optimal labeling. In their energy functions.
they usually have smoothness terms penalizing on difference between neighboring
pixels. In such design, pixels are optimized in the same global framework. Most
of the existing global algorithms are defined on Markov Random Fields(MRFs)
with a 4-connected grid structure, however it is incapable of expressing complex
relationship between group of pixels. In this thesis, we focus on exploring some

of the higher-order structure of sterco matching.



1.3 Outline of the Thesis

A brief outline of the thesis follows.

bo

a

In chapter 2, we first review the basic concepts used in this thesis including
Markov Random Field. inference and graph cuts. Then we discuss the

two-frame stereo matching problems and the limitations of previous work.

In chapter 3. we introduce the evaluation framework of five state-of-the-
art segmentation approaches. In addition, their different contributions to
segment-based stereo matching have been quantitatively measured and an-

alyzed.

In chapter 4, we propose a new approach to dense stereo matching. It
features sub-segmentation and adopts a higher-order potential to enforce

the label consistency.

In chapter 5, we present a novel two-layver MRFs framework in which stereo
matching and surface boundary estimation are combined. Both propertics
are inferred simultaneously and globally so that they can benefit each other.
This work has direct application in phosphene vision based human indoor

navigation.

In chapter 6, we give a summary of our work and list main contributions. We

end the chapter by discussing some promising directions for future research.






Chapter 2

Theoretical Backgrounds and
Related Work

2.1 Bayesian Labeling and Markov Random Field

2.1.1 Labeling Problems

A variety of problems in computer vision can be formulated as labeling in which
the optimal solution is defined as the maximum probability estimation. And
these problems are commonly referred to as labeling problems. Thev widely exist
in early vision tasks like image segmentation, stereo matching, image restoration.
texture synthesis and others, as shown in Figure 2.1. Labels represent different
meanings in different tasks, for instance. intensity values as in grayscale image
restoration and depth values as in stereo matching.

More formallv, let L be a set of n discrete labels.

L={1,2,..n} (2.1)
And assume we have a set of discrete variables X defined over a lattice.

X =41,2,...,m} (2.2)

And labeling is to assign labels from L to each random variable X; € X.
different variables can take different labels. Anyv possible assignment is called a
labeling configuration(denoted by f). It can be clearly observed that the set F of

all configurations takes values from

F=nxn---xn=n" (2.3)

7
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Building
Grass

()

Figure 2.1: Some labeling problems in computer vision. (a) Stereo Matching:

Given a pair of rectified left and right images, the depth information can be
computed by finding the pixel correspondence along epipolar lines. The labels in
this application represent depth values. (b) Image Denoising: Given a noisy image
of the scene. the object is to infer the true intensity of the original image, here
the labels are the intensities. (¢) Object Class Segmentation: Given a observed
image, the task is to divide the scenes into segmentations with semantic meanings.

Here the set contains object labels {sky, tree, building, grass}



In terms of the maximum likelihood of the estimation of the true labeling, if
we define r as the observation of the image, and we have a posterior probability
P(f|r) over a certain configuration f, then the goal is equivalent to maximize this
probability and is called maximize a posterior(MAP) probability. The target to

find the most probable labeling is to find the MAP configuration f* that

[ = argmaxerpP(f|r) (2.4)

Suppose we know both the a prior probability P(f) and the probability densi-
ties p(r|f) of the observation r, since the density function p(r) does not affect the
MAP solution, this posterior probability can be converted to a simple calculation

using the Bayesian rule
P(flr) = p(rlf)P(f)/p(r) ' (2.5)

The likelihood function p(r|f) is case wise, depending on the specific problems
and will be discussed later, as knowing P(f) is generally difficult. And this is the

reason why Markov Random Field is introduced.

2.1.2 Markov Random Field

Markov Random Field(MRF) is a widely used probabilistic models described by
an undirected graph for analyzing spatial or contextual dependencies of physical
phenomena.[44]|. Here we will briefly review the Markov property shared by vari-
ables in a MRF.

Pairwise Markov Property: Any two non-adjacent variables are conditionally

independent given all other variables: ;, 2;| X\ j3

Local Markov Property: A variable is conditionally independent of all other

variables given its neighbors: x;, X\ iy | Xneighvor {3}

Global Markov Property: Any two subsets of variables are conditionally in-
dependent given a separating subset: X 4, Xg|Xs where every path from members

in A to members in B passes through S.

In other words, a probabilistic model is considered a MRF with respect to

the joint probability distribution over a set of random variables if and only if

7



separation in the model implies conditional independence. Therefore, if define a

neighborhood system as N = { N,|x € X}, then a Markov Random Field satisfies
plz;| X\piy) = plzilz; 7 € N;) (2.6)
According to the Hammersley-Clifford theorem|[40], the posterior distribution

P(r|f) over the labelings of a MRF is a Gibbs distribution and can be written as

P(rlf) = Seap(— 3 T (X.)) 2

Z
ceC

[\
~
S———

where / is a normalizing constant known as the partition function, and C' is
the set of all cliques in the MRF, and ¥ (X, ) are potential functions defined over
cliques c¢. In definition, a clique is a set of nodes that in which any pair of two

nodes are adjacent in the MRF. The corresponding Gibbs energy is given by

E(x) = —logP(r|f) = logZ = > ¥ (X,) (2.8)
ceC
Since Z is a constant with respect to different labeling configurations, max-
imum a posterior(MAP) labeling f* is equivalent to the minimum of the Gibbs
energy.

f*=argmaxsepP(r|f) = argminser E(x) (2.9)

For more details, please refer to [8].

Orders and Structures of Markov Random Field

Based on the largest clique size ¢ in the Equation 2.8, the MRF are sorted into two
categories. sccond-order and higher-order. The second-order MRF arc commonly
referred to as pairwise MRF in which the largest clique size is 2. And for MRF's
with clique size larger than 2, they are known as higher-order MRIE's.

Pairwise model has been widely used in computer vision[69] due to its good
enforcement of spatial coherence and efficiency of implementation. If we denote
r; € X as the hidden variables, y; € Yas the corresponding observed variables.
and x;.v; € N are two neighboring hidden variables, then the joint distribution

of a pairwise MRF can be written as:

1 , :
plr.y) = - HOi<~77i- Yi) Hu.j&.,\-(fzq. %j ) (2.10)

Here. o;(7;. 1;) comes from the likelihood of local measurement. and v; jen (7, ;)

is usually defined as a prior enforcing consistency of adjacent variables.



Auxiliary node

70
===

Pairwise - Grid Pairwise - Tree Higher-order

Figure 2.2: From left to right, the first one is the grid pairwise structure and it is
the most common structure in computer vision; the second one is also a pairwise
MREF, but it is loop-free; the third one is a higher-order MRF with maximum size
of 5. In higher-order graph, the extra red node is a auxiliary node that connects
every member of the clique. This expression is equivalent to fully connection of

all members.

Although pairwise MRFs are generally easy to optimize, they are incapable
of encoding the relationship between a group of variables. To overcome it, re-
searchers have developed higher-order MRFs. For example in [35], segment is
modeled as one clique in which its members are fully connected. And in [59],
each boundary piece is taken as one node, and the conjunction of boundaries is
modeled as the higher-order connection of these boundary nodes.

For fully connected groups of pixels, the joint distribution of its probability

can be written as:

1 |
= 2 H Oi(Ii- yz) H 'Ui,j,k...EC(Ii: Ij. Ik...> (211)

where] | ¢;(z;, y;) remains the local measurement, and [[ ik ec(zi, 75, x...)
encodes the potential defined on a clique C.

An illustration of these classic structures is given in Figure 2.2.

2.2 Inference

After defining the Markov Random Field(MRF), the natural question raises. how
can we infer the labeling that maximize a posterior estimation or minimize the
energy function of a MRF?

The energy minimization algorithms originallv used in 1990’s were compu-

tational inefficient or ineffective, such as iterated conditional modes(ICM)[6] or

9



simulated annealing|4]. Over the past decade, energy minimization approaches
have had a renaissance, novel algorithms have been developed such as graph
cut|11][38] and loopy belief propagation|79]. Tt results in the prosperity of a vari-
ety of approaches using energy minimization to solve computer vision problems.

Here we will briefly review some of the representative energy minimization

algorithms.

2.2.1 Iterated Conditional Models(ICM)

The iterated conditional models(ICM) known as one of the classic “greed” strat-
egyv based algorithms is firstly introduced in [6]. It starts by an initial labeling,
and optimize each variable by choosing the label that decrease the most amount
of energy. The advantage of this algorithm is that it is guaranteed to converge.
The shortages are obvious too, it is extremely sensitive to the initial labeling
especially in high-dimensional spaces with nonconvex energies and casily to stuck

in local minimums. Therefore ICM has not been widely used in computer vision.

2.2.2 Graph Cut

Graph cut has been intensivelv explored during the past decade. It is firstly
introduced into computer vision early in [28]. It is a algorithm of computing
minimum for binarv labeling. It first converts a MRF to a graph, everv potential
defined on the MRF becomes weight on the graph, and then it optimize the graph
by finding a minimum cut using max-flow algorithm. It is guaranteed to achieve
the global minimum when certain requirements are met.

However most of the labeling tasks in computer vision have multi labels.
Therefore in [11], two algorithms a3 — swap and o — expansion arc proposed, the
usage of graph cut is extended from binary to multi-label. For both algorithms.
it lowers its energy bv using binary graph cut as an inner loop. and it converges
when no lower energy can be found.

For a3 — swap, in cach inner iteration, two random labels from the labels sct
are taken as the current a and 3. The binary cut onlv applies on the variables
with the current label of either «v or 4. The variables with current label o can be
swapped to [ in this process, vice versa. The swap moves find the local minimum
such that there is no swap move for any pair of labels «,/3 that will lead to a
lower energv.

The a — cxpansion is applied in an analogously way. In cach inner iteration,

10



one random label is taken as a. For the variables with current labels other than
v, they will be involved in the binary cut in which their labels can be changed to
Q.

The advantages of graph cut are its effective and fast convergence. But certain
requirements have to be satisfied in order to use it. Define a label set L and
{a, 3,7} € L. For each pair of neighboring pixels {z;,z;}, it has a second-order

energy potential 1;;. 1;; is called a metric if it satisfies

i, B) =0 a=0 (2.12)
vii(a, B) = ¥i(B,a) = 0 (2.13)
ii(a, B) < (e, v) + ¥i;(v, B) (2.14)

for any labels {a, 3,7} € L. If ¢;; only satisfies 2.12 and 2.13, it is called a
semi — metric.

Originally in [11], e — expansion can only be applied when it is a metric, and
semi-metric for af — swap. In the later work [38], it relaxes these constraints and

show that the expansion-move can be used when

Vij(a, ) + by (B,y) < by, y) + i (B, o), (2.15)

and the swap-move algorithm can be used if

Vij(o, o) + Yi5(B, B) < Y, B) + vy (B, a). (2.16)

And we refer to these constraints as submodular conditions. When these
conditions are not satisfied, graph cut algorithm can still be applied by truncating
the violating terms[64], the deterioration degree will depend on the number of
terms need to be truncated.

More details about graph cut will be discussed in the next section.

2.2.3 Loopy Belief Propagation(LBP)

Belief propagation(BP) is a powerful inference engine. The principles of it are
clearly explained in [80]. It is based on iterative message passing. In every
1teration, every node updates its message based on its local evidence and received
message from the last iteration, and further passes this updated message to its
neighbors according to the pre-defined graph structure. According to different
usage, BP can be sorted into two categories, max-product based and sum-product

based. Sum-product BP computes the marginal probability distribution of each

11



nodes in the graph. The commonly used one is the max-product BP, because for
most of the tasks in computer vision, the optimization goal is to find the labeling
with the MAP or the lowest energy, and this is exactly what max-product BP
aims at.

In the original design[53], BP is for graphs without cycles. However this is not
the case in computer vision, even the simplest pairwise MRF is with loops. There-
fore researchers have developed a variant of BP, loopy belief propagation(LBP),
and successfully applied on loopy graphs. Later in [20], rescarchers have greatly
improved its efliciency by three modifications of distance transform. chessboard
updating and hierarchical network.

Let A . be a message that variables 7 sends to its neighbor j at iteration .

Z—)’]

Then message updating rule of a typical pairwise MRF is

t N I o)
M;_,;(x;) = min(¢(x E M= () + i (i, 24)) (2.17)
keN(i)/j
Generally, LBP is not guaranteed to converge and may stuck in an infinite
loop, but for most tasks in early vision, it gives adequatelv good results and is

widely applied.

2.2.4 Dynamic Programming(DP)

Dynamic programming(DP ) is a algorithm for solving complex problems by break-
ing it down into a sequence of simpler subproblems. In computer vision, it is
firstlv used in finding the corresponding points along each epipolar line in stereo
matching[50].

However, when in a graph without loops, DP is equivalent to belief propaga-
tion. Rescarchers have taken advantage of this and performed DP in well modeled

tree structure(tree structures are naturally acyclic).[71]

2.2.5 Tree-Reweighted Message Passing(TRW)

Tree-reweighted message passing(TRW) is originally proposed in[72]. The key

idea is tree-based relaxation, using a convex combination of tree structured dis-

tribution to derive the lower bounds on the energy of the MAP configuration.
Similar to LBP. the message that variable 7 sends to its neighbor j at 1teration

t is defined as

ML (x;) = man(ci; (o(x;) + Z ‘U{n;]i(.zf{):) + Xy, T5) — \[]’;Jy( i)). (2.18)

i—)
keN(1)/7

12
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A set of trees are defined over the graph connections so that each edge will
be included in at least one tree. And the coefficient ¢;; is determined by the
probability of the edge {x;, z;} contained by a randomly chosen tree. If ¢;; is set
to 1, then it is identical to LBP. therefore it is a generalization of LBP.
However the original TRW algorithm does not guarantee to converge and the
increment of lower bounds with iterations does not necessarv occur. Later a
variant called TRW-S[37] is proposed to overcome this shortage, in which the
lower bound is promised not to decrease, resulting in a convergence property. It

is the most often used version in practice.

2.3 Pseudo-boolean Optimization and Graph Cuts

2.3.1 Graph Cuts in Computer Vision

Graph cuts remains one of the active research areas in the past decade. Many of
the tasks in computer vision can be formulated as an energy minimization prob-
lem. and graph cuts has been used as one of the major optimization tools under
this purpose. It has been used in a wide variety of low-level vision applications,
such as image denoising, image segmentation. image synthesis, stereo matching
and so on. Beyond finding new applications, the researchers also obtained huge
progress in itself, including efficient max-flow algorithms. constraint, multi-label
problem and so on.

Although graph cuts has been firstly introduced into computer vision early
in 1989 by Greig[28], but the real milestone are two classic papers written by
Bovkov([11][10] in 1999 and 2001 respectivelv. Paper[11] successfully introduces
two algorithms that expand the ability of graph cuts from binary to multi-label,
namelyv expansion and swap, and is the beginning of broad usage in computer
vision. Paper|10] not only compares two common max-flow algorithms, but also
introduced an improved version of the augmented-path. Later Kolmogorov states
the well-known “sub-modularity” problem[38] as the essential constraint in graph
cuts, and further expands second-order to third-order. In [36], Kohli proposed
the idea that search trees can be re-used in order to achieve higher performance.
The popular graph cuts tool we use nowadavs in vision is the combination of
these papers.

Another interesting work[24] appears later and manages to link graph cuts
to pseudo-boolean optimization. and further extends third-order to higher-order.

Based on it, researches have given theoretical prove on general transformation of
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higher-order terms to second-order terms by adding auxiliary nodes[30], but in
such conversion exponential auxiliary nodes in the worst case are needed which
make it unsuitable in real use. To overcome it, resecarchers have explored and
proposed some specific form of higher-order energy potentials. such as the classic
P Potts Model in [34] and Robust P" Potts Model in [35]. After that, a sparse
and eflicient generalization of Robust " Potts Model is given in [62], it can deal
with lower-envelope higher-order terms. It is further extended to constrained
upper-cnvelope higher order functions|33][27].

Meanwhile, some researchers focus on other aspects of graph cuts as well.
Firstly, how to minimize un-submodular terms using graph cuts. In [63] author
introduces techniques from pseudo-boolean optimization and names it QPBO,
it can be used in non-submodular problems, after such optimization some of
the labels may remain unlabled. Secondly, efficiency. Researchers propose the
Fusion Cuts|41], it decomposes the label space by 2-bits coding and minimizes
them iteratively. Due to its parallel computation capability, it is adopted in
many applications with large label space[9][48]. Thirdly, exact inference. There
arc some classic works on the exact inference including [58], but the restriction
and calculation efficiency issue limit its usage. Fourthly, other models. Paper[15]
introduces the new hierarchical model which is the extension of IKohli’s Robust P"
Potts. Recently a joint two-layer MRF model is presented in[39]. Fifthly, similar
pseudo-boolean optimization. In|[13], author establishes the new framework that
dircctly takes advantage of psecudo-boolean optimization, they start by eliminate
the central pixel and build the new connection between its four neighboring pixels.
and use approximation to simplifv the higher-order term. The advantage is that it
does not have to be regular. the drawbacks are its efficiency and lack of guarantec

on approximation.

2.3.2 Pseudo-boolean Representation

To better understand the mechanism of graph cuts, we will firstly brief introduce
pscudo-boolecan representation here. Define variables X = {uy, 29, ..., 2, } taking

values from B = {0, 1}, a pseudo-boolean function is a mapping
f:B"— R. (2.19)

There are three ways to represent a pseudo-boolean function, namely Tableau,

Posiform and Polvnomial.
1. Tableau

14



===~

In a Tableau form, it lists all 2" values. For example, f(z) =

x1 | x9 | T3 | term value
0 0 0 1_1172L“_3 -1
0 0 1 ”C_lfngg -1
0 1 0 .'LTl.I?Q.’E—g ;.
0 1 1 flLL'Q;L‘g 2
1 0 0 IlfQCL‘_g =]
1 0 1 X1 To%a -2
1 1 0 331(17217_3 5
1 ) 1 T1T9T3 1
And it is equivalent to ]
f(x) = —T10T2T3 — T109x3 + 3T1903 + 2T1T0x3

—~
(N
(N}
(-

~——

— 10903 — 201T2X3 + dDXT1T9T3 + T1T9T3

2. Posiform
If we replace the terms with negative coefficient in the -above equation. for
example
—T1T9T3 = —(1 — x1)TpT3

= z15%s — (1 — 73) T3

—~
N}
N9)
—_

~—

= ZiTgZa -+ Toly— (1 = Ig)
= X1T3ZT3 + Toky + T3 — 1.
so that every all coefficients are positive, then it is a Posiform. More formally.

let u; = {2;. x;}, then a third-order pseudo-boolean function can be expressed in

Posiform as

o
N)
\)
N—r

flz) = ap + Z a;u; + Z s Usths + Z Qg Ui U U (
i i.j i.j.k
where all a;. a;; and a,;; are positive.

Note that Posiform representation is not unique, for instance, z;7; = —1 +
i + Ty + T1ZXo.

3. Polynomial

Similarly, if we replace every 7; bv 1 — z;. for example

—=ileds = 1(1 = 11>(1 = 1“2)(1 = ’13)

= X1T9x3 — T1T9 — T1T3 — T3 + 1 + 9 + 3.
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It is in Polynomial form. A typical Polynomial form of a third-order pseudo-

boolean function can be denoted as

flx) =co+ Z cii + Z Ci; LT + Z Ciik i T Tk (
i ij

1,9,k

(\N)
DO
=~
S—

And Polynomial representation is unique.

2.3.3 Energy Cost and Graph Representation

Let variables X = {a, 29, ..., 1, } take values in a binary label set B, and assume

a neighborhood structure N,. so that

W)}
N}
(@2
~—

x; € Nx] &z € Ny, (

(8]
(§)

P(Xi = x| X; = 25,5 #1i) = P(Xs = 23| X; = x5, € N,,) (2.26)

where P(X; = x;) represents the conditional probability distribution of a given
variable z;.

According to the Gibbs distribution in 2.8, finding the assignment that maxi-
mizes the probability is equivalent to minimize the corresponding energy function.

A classical energy function on a 4-connected MRF is defined as

E= Z E(x;) + Z E(x;,x;),

T,Ty

i
(N
N}
~I

p —_

where the first and second terms are referred to as Data term and Smoothness
term respectively. Date term is based on the local observation and applied on
every node independently, while smoothness term usually acts as constraints to
let neighboring nodes smoothed.

Let p, g be the boolean values O or 1, and Iv;., to denote the cost when r; takes
the value p. Similarly, Fjj.,,, is incurred if z; = p and z; = ¢. Therefore, the cost

associated with two variables x; and z; are redefined in which

Elz;) = Byams + Lanf (2.28)
and
F(I,‘. L ) = F,'j:()()fl‘JTj + Ez’j:Olfi-rj <= Ez’j:lOIi-fj + Fjj:ll.]'j.l'j. (220)

And the sum of the data term and smooth term cost can be formulated in an

alternative form. namely quadratic function.
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The standard form of a quadratic function is defined as,

f(iL') == Iy ~F Z iy T Z CLij;L—‘Z'LL'j; (230)

1<i<j<n

where u; = z; or &;, and a;, a;; > 0.

In general, minimizing pseudo-boolean functions is a NP hard problem(with
respect to the number of variables n). It can be observed that a pseudo-boolean
function with n variables can have up to 2" terms, thus leading to exponential
time. A solution is to convert the pseudo-boolean functions to a graph, and use
max-flow algorithms|10].

Here let G =< V. E > be a undirected graph with a set of vertices V' and
a set of directed edges E that connect them. V contains not only one-to-one
correspondence from variables X but also two special ferminal nodes, which are
called the source(s) and the sink(t). Each edge is assigned some nonnegative
weight w(p, q), and w(p. ¢) may differ to w(q, p). An edge is called a n — link if
it connects two variables, the edge which connects a variable to a terminal will
be called a t — link.

Every node(except for terminals of course) connects two both terminals at the
beginning, a st-cut C'is to partition the graph to two disjoint subsets S and T
such that source s is in S and ¢ is in 7', and every variables will only remain one
t — link. The cost of a cut C' is the sum of pair of weight w(p, ¢) the cut passing
through if p and ¢ do not remain the same t — link. The minimum cut problem
is to find a cut that has the minimum cost among all cuts.

Here we specially examine the case of quadratic pscudo-boolecan functions,
and show how theyv could be converted to graph representation.

First, transform the quadratic function to the form of

f(.L) =L+ Z (l{j;fi;lfj, (231)
ij _

where L represents linear terms of z;(7;) and constant ag.

Second, draw a graph with vertices which one-to-one corresponds to variables.
Then assign edges as follows:
1. Draw source(s) and sink(t) to represent 0 and 1 respectively.
2. For the constant term ag. add an edge from source to sink with weight «ay.
3. For a term a;x;, add an edge from source to x; with weight «;.
4. For a term a;7;, add an edge from x; to sink with weight a;.
5

. For a term a3, %;x;, add an edge from z; to x; with weight 65

17



.... Graph Representation

Source(0)

After Cut

o Source(0)

cut

Figure 2.3: Graph construction on a MRF and its cut.
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& Source(0)

Sink(1)

Figure 2.4: A graph representation example.

For example,
f(CL) =5+ 1 T 25[3—2 -+ 433_3 -+ 7”51?32 -+ 8513—15173 ~t Bfgxg (232)

can be converted to the graph shown in Figure 2.4.

A quadratic function f(x) is called either regular or submodular depend-
ing on whether a;; > 0 for all 7,7 in Equation 2.31. This constraint is called
submodularity constraint. Only submodular quadratic functions are graph rep-
resentable and can be further solved using max-flow algorithm.

Hence, the submodularity constraint of a second-order energy function can be
conducted. According to Equation 2.27, the data term is F(x;) and the smooth-

ness term is F(x;, ;). The data term can always be the form as

E(z;) = { @i, i zi=1, (2.33)

g, 1 x2=0.
It can be further represented using the Posiform as
E(x;) = a;x; + a;T;. (2.34)
Similarly, the smoothness term can be converted to

4 .
ay; 1 Zi= 1,33 =1,

= 4F &m;=1l.%;,=0,
E(CCZCU]) _ < 179 f 1 y MJ )
a;;, if z=0,z; =1,

C g 4 2i=0,2; =10,

ijs

(2.35)




And it can be further represented as
By, ;) = ay5i%; + 0i50:85 + ;8% + 0585 (2.36)

The data term is a first-order linear term and the coeflicient can always be
transformed to positive through simple variable substitution and hence is alwavs
graph representable.

On the other hand. smoothness may violate the submodularity. Its constraint

can be derived in this way.

Bz, 25) = gy + ai3%5%; + 03355 + 055t
aii(1 — &)z + a1 — &) (1 — z;) + ey Tz + ag il — z;)
= L+ (az+ a3 — ay — 65) T3z
(2.37)
L is first-order term plus constant term. and is always submodular. For the rest

of the term, it is graph representable only if

Gy + gy = Bz — g = 0, (2.38)

and this conclusion is the classic submodular constraint for quadratic pscudo-
boolean functions or second-order energy functions.

More specificallv, in alpha-expansion. 0 represents the variable keep its current
label, and 1 represents the variable taking the expandable label a. If we define
the current labels of two neighboring variables as p and ¢(note alpha-expansion
will only be applied when p, ¢ # «), and use ¥(p, ¢)to denote the smoothness

energy function, then the submodularity for alpha-expansion becomes
U(p, )+ U(a.q) — U(p. q) — V(a,a) > 0. (2.39)

Similarly, for alpha-beta-swap. suppose the current swap pairs are p and ¢(p #

q), two neighboring nodes with current labels as either p or ¢ will participate in

this process. If define 0 as the potential new label p, and 1 for ¢, then the
constraint is |

Oip.q)+ (g p)—v(p.q) — (g, q) > 0. (2.40)

2.3.4 Max-Flow Algorithms

Once the graph representation step has been done, the next step is to compute

the minimum cut. It has been proven in combinatorial optimization that finding
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the minimum cut is equivalent to finding the maximum flow from the source s
to the sink 7, and in fact these two values are equivalent as well.

There exist many polynomial time algorithms for min-cut/max-flow|[52][10].
Generally, these algorithms can be sorted into two main groups: “push-relabel”
style methods|25] and “augmenting path” style methods|23|. For push-relabel
methods, there is no valid flow during the operation, instead there are “active”
nodes with a positive “How excess”. While augmenting-paths based algorithms
work by pushing flow along non-saturated paths from the source to the sink until
the maximum flow in the graph is reached. Another advantage of push-relabel
algorithms is parallel computable over graph nodes, therefore it can be accelerated
by GPU which is a very promising direction for real-time application. However,
in computer vision applications, the most common used algorithm currently is
the one presented in [10] which is a fast version of augmenting- paths. We refer
it to “new max-flow algorithms”.

Traditional augmenting-paths based techniques need a search tree for breadth-
first search, however it is computational expensive, which makes it unusable in
practice. Therefore, in the new max-flow algorithms, authors in [10| develop
a new min-cut/max-flow algorithm based on augmenting paths. In terms of
building search trees for detecting augmenting paths, they build two search trees,
one from the source and the other from the sink which greatly speed up the
process. Moreover, two search trees can be reused and do not need to be rebuilt
every time, however the drawback is that the found path is not necessarily the
shortest path. Theoretically speaking, The computational complexity of the new
algorithm is worse than the standard algorithms. but the authors prove that it
significantly outperforms standard algorithms.

The New Max-Flow Algorithm Overview
Here we will briefly introduce the new max-flow algorithms, because it is the
kev to graph cuts optimization in my vision applications. There are two trees S
and T" with roots at s and t respectively. There are two types of nodes, the one
that locates on the out border and can further grow by acquiring new children
are called “Active”(A), and the one that can not grow are named “Passive” (P).
The algorithm iteratively repeats three main stages : growth stage, augmentation
stage and adoption stage.

In the growth stage, the active nodes explore adjacent non-saturated edges and
acquire new children from set of free nodes. Once all neighbors of a given active
node are explored, the active node becomes passive. When active node encounters

a neighboring node that belongs to the opposite tree, this stage terminates.



O Free Node

@ Active Node

@ Passive Node

Source

Figure 2.5: An example of the new max-flow algorithm.

In the augmentation stage, it saturates some edge(s) in the path by pushing
through the largest possible flow. If the edge linking the children to their par-
ents are saturated, then the edges are no longer valid, and the children become
“orphans”. The result is, the augmentation phase may split the search trees into

forests.

In the adoption stage, the algorithm restores tree structure by trying to find
a new valid parent for each orphan. The requirement for the new parent is
that it belongs to the same set(.S or T') with the orphan and also connects the
orphan with a non-saturated edge. If there is no qualified parent, then the orphan
is removed from S or T and becomes a free node. It also denotes all its former
children as orphans. When there is no orphans left, the adoption stage terminates.
Thus the search trees of S and T are restored, as some orphan nodes in .S and T

may become free after this stage.

The algorithm iterativelv do the three stages until the search tree S and T
can not further grow(no active nodes) and the trees are separated by saturated

edges which means a maximum flow is achieved.

After maximum flow is obtained, new labels of variables can be easily de-
cided by examing which ¢ — link is left for each variable. For example in alpha-
expansion, after the cut, nodes remain the t—link to source will keep their current

label. and those connect to sink. will take label a as their new label.

O
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Q(occluded)
\

Left Camera Right Camera

Figure 2.6: An example of two aligned cameras. The point P and R on the
objects can be observed by two cameras at the same time, while the point ) only
appears in the left camera and is occluded by the blue object from the right view.

For point P, p and ¢ are its projections in two cameras respectively.

2.4 Stereo Matching

2.4.1 The Two-Frame Stereo Matching Problem

Two-frame stereco matching has always been one of the most heavily researched
topics in early vision problems. A few excellent comprehensive reviews can be
found in [67][5|[12][18]. Unlike human easily using their brain to perceive the
depth, this task could be very challenging for computers.

The problem is often formulated as follow. A scene is captured by two cameras
at the same time with known relative coordinate systems, the task is to determine
a correspondence between each pixel p in the first image(also called the reference
image, usually the left view) and some pixel ¢ in the second image(usually the
right view). That means, ideally a real point P of the scene has one projection
pixel in each camera. The distance from the camera to the point P can be
determined through simple computation. The reason we say “ideally” is that,
there may exist the situation that some point P only appears in one camera but
is occluded by some close objects in the other view. In this case, the distance
can not be decided since there is no correspondence, and this situation is known
as “occlusion” (Figure 2.6).

The most common two-camera setup in practice are that two aligned cameras
differ only by a shift in the horizontal direction. To reduce the computation time,
image rectification is applied on both images, therefore two corresponding pixels

in left and right images are always on the same horizontal epipolar line. An
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Left Camera Right Camera

Figure 2.7: An example of how the horizontal distance between two corresponding

pixels reflect the real distance.

illustration is given in Figure 2.7.

In Figure 2.7, it can be observed that

TL _ YL
rood (2.41)
TR _ YR
f d’
After simple calculation, we can get
yr — [ 1
i — (yr —yr)f _ f e = (2.42)
Iy, — TR Iy, — &R T, — TR

In other words, the horizontal distance between two corresponding points
(r;, — xR) is inversely proportional to the actual distance from the cameras to the
point in real world(d).

On the other hand, given the two perspective projection matrices ¢' = [g;;] and
C" = [g},]. then for any scene point P’ with unknown 3D coordinates (X, Y, Z),

that projects onto the two camera at (u,v) and (u',v"), we have

[ ‘Y 1 X /o]
su i s'u
C Y = | sv and C' ' = | §'v (2.43)
VA ' | A N
s S

Eliminating s and s’ and combining the two equations into matrix form gives

[ g —ug3l  qup—uqg32 g3 — ug33 | ¥ U — (14
go1 — vg31 99 — Vq32 — vq33 vV — o
721 1 422 1 423 CII 3 _ / /4 | (2.44)
gy — v g3l ¢y —u'q'32 ¢35 —u'q'33 7 u' — g1,
| ahy —Vq8L oy — V32 gy —V'q'33 ] | V'~ oy
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This is a linear system in (X,Y, 7). The 3D coordinates of P can be easily
computed.

It is worth noting that, researchers have generalized two-camera stereo to
multi-camera, thus the ambiguity involved in matching can be further reduced.
Also multi-camera have been applied successful in the application of scene recon-

struction.

2.4.2 Matching Constraints

In order to minimize false matches, researchers usually impose some constraints

in matching. Below is a list of the commonly used constraints.

Photoconsistency

For color(intensity)-based algorithms, if two pixels are corresponding to the same
point in real world, then their colors(intensities) must be similar, this is some-
times referred to as Lambertian or constant brightness assumption. Similarly
for feature-based approach, the matching features should share similar attribute
values. The photoconsistency is the fundamental constraint in stereo matching,
however it is sensitive to difference in camera gain or bias. Pair of cameras may
have slightly different characteristics, and will result in different intensities. To
overcome it, some algorithms use gradient-based or non-parametric measures in-

stead.

Continuity

To against local ambiguities, spatially smoothness is commonly preferred. Un-
fortunately, this constraint does not hold for neighboring pixels across the depth
surface boundaries, because depth could change abruptly there. Over-smoothing

will lead to blur effect along surface boundaries.

Uniqueness

The uniqueness constraint has been applied as a hard constraint sometimes to
minimize the risk of false matches. That is a given pixel from one image can match
no more than one pixel from the other image. In other words, the uniqueness
constraint enforces a one-to-one mapping between pixels in two images. However

this constraint fails if there are transparent objects or occlusions.

Ordering



Object 1 Object 2

Object 3
Left Camera Right Camera
"\
Left Image _2_ Right Image

Figure 2.8: An example of violation of ordering constraint. In the left image, the

object 1 is to the left of object 3, but the order is reversed in the right view.

The ordering constraint usually appears as a supplementary hard constraint to
uniqueness. Two points P and @), if P is to the left of @) in one view, then should
remain the same order in the over view. vice versa. That is, the ordering of
features is preserved order along scanlines in both input images. This constraint
can be efficiently implemented by dvnamic programming. It may be violated in

practice though. a simple case is given in Figure 2.8.

2.4.3 Pixel-Based and Segment-Based Algorithms

Based on different representation of depth estimation, existing methods can be
sorted into two categories: pixel-wise and segment-wise. Pixel-based algorithms
arc often suffering from local noises and being insufficient of the cues of the scene.
As people generally identify the object and reconstruct the scene by partitioning
the scene into a set of groups each with the same or similar visual features such as
the color or texture. researchers have developed segment-based algorithms upon
the similarity.

Segment-based algorithms have dominated the Middlebury Benchmark|[67]
due to their good performances on reducing ambiguity of disparities in texture-

less regions. Theyv usuallv share the assumption that the scene structure can be
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approximated by a set of non-overlapping visually homogeneous regions where
cach region corresponds to its own depth surface. In other words, all pixels in the
same segment should lie on the same depth surface and discontinuities only occur
on boundaries. This assumption certainly enhances the tolerance of local noises
as the depth surface is now decided by a group of pixels, the risk of assigning
fault disparities to occluded or textureless individual pixels has been decreased.
However, with segments being purely grouped on visually features, they are still
likely to be influenced by local noises. Segment-based approach usually does not
concern the dimension of the segment, and simplify each segment as an individ-
ual node in the model for further optimization. Therefore robustness will not be

guaranteed due to the existing of those small segments.

() (b) - (o)

Figure 2.9: Typical results of pixel-based and segment-based algorithms, the
data set is Tsukuba from Middlebury[67]. (a) original image, (b) pixel-based

algorithm, (c¢) segment-based algorithm.

2.4.4 Local and Global Algorithms

Existing stereo algorithms can also be divided into local and global algorithms
based on the optimization. Normally, both local and global algorithms have the
same step of pixel-based matching cost.

The most common and easy matching cost algorithms are sum of absolute
dif ference(SAD)[32], sum of squared dif ference(SSD)[1](29] and normalized
cross — correlation(NCC)[65].

Define I, and Iy as rectified left and right images, for every pixel p there is a
two-dimensional support region w(usually a window) center at p. Then the cost

for depth d at pixel p for sum of absolute difference is:

SAD:  cost(p,d)= > [r(mg,my) — In(me,m, — d)|. (2.45)

(Mg, my)Ew
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For sum of squared difference, the cost is:

SSD 1 cost(p,d) = Z (g, my) — Tr(ng, 1y, — d))?. (2.46)

(ma.my)Ew
In the case of normalized cross-correlation, the cost is:

Z(n“:”?y)ew I (my.my) * Ir(mg,m, —d)
2 . , ' i
\/Z(mw.mv)éw ]L(777177 ,77‘?/) * Z(mi.,my)EU' ]2i’<7”1‘7 my — (/)
(2.47)

Besides these three, other traditional approaches include binary matching

NCC : cost(p,d) =

cost(i.c., match/ no match)[46] and the insensitive to difference in camera gain or
bias ones, such as gradient-based measures|66| and non-parametric measures|82|.

A widely used algorithm is described in 7| which is insensitive to image sam-
pling. Instead of comparing pixel values by integral shift, this algorithm compare
cach pixel in the reference image against a linearly interpolated function of the
other image. It achieves relatively good results while not sacrifice much on com-
putation efficiency.

Usually the support region size in local matching cost is a size-fixed squared
window. In practice, in order to achieve good results, window size should be
set variouslv for different image pairs, and a perfect window size is alwavs hard
to tune. If the window size is too large. it will lose details, but too small will
lead to more local noises. Therefore. researchers have developed algorithms with
shiftable window[2] and adaptive window [51][31].

[t 1s worth noting that researchers also improve the window-based aggregation
bv varying support-weights[81]. They adjust the support weights of the pixels in a
given support window based on color similarity and geometric proximity to reduce
the image ambiguity. It has onc of the leading results among local algorithms in
Middlebury benchmark.

More recentlv researchers found out by smoothing the matching cost volume
with a efficient edge preserving filter, state-of-the-art results can be obtained[61].
In addition, this algorithms claims that it can be optimized to run in real-time.

Local Algorithms
Local approaches usuallv focus on matching cost computation and cost aggrega-
tion. once these steps have been done. the rest is trivial: usually a local “winter-
take-all” (WTA) strategy is performed. That is. for every pixel p. choose d with
the optimal cost(p.d). Tvpically for SAD or SSD. the optimal cost is the one

with the minimum value. and for NCC the maximum value would be the chosen
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depth. Opposite to global algorithms, local algorithms neglect the smoothness of
spatially neighboring pixels and the result is often not robust.
Global Algorithms

Unlike local algorithms, global approaches often formulate themselves as a pre-
defined energv minimization problem in which the lowest energy corresponds to
the optimal labeling. It iteratively minimizes the energy through some optimiza-
tion techniques, once the energy cannot be decreased further or within a small
threshold for certain times, then the process is terminated and returns the current
labeling.

The standard form of a energy function is

:ZDP(fp>+ Z V{P:(]}<fp:fq>t (248)

peP {p.q}eN

where P is the set of pixels, and N is the neighboring system, and f denotes the
labeling. ZPE p» Dy(fp) is referred to as Data Term(FEgu,), it usually measures
how well the disparity f, agrees with the input image pair. A typical choice for

the data term is equal to the local matching cost, that is

Edata = Z Dy(fp) = Zcost(p, Iv)- ‘ (2.49)

peEP peP

Z{p.q}eN Vip.ar(fp, fq) 1s called the Smoothness Term(Eqmoon), and it often
penalizes on difference between neighboring pixels({p, ¢} € N) to make the re-
sulting depth smoothness.

A common form of E.,,,01n 1S

Jsmooth— Z ‘{pq} fpqu — Z A)fp fq (250}

{p.q}eN {p,q}eN

in which the penalty increment coincides with difference of labeling of two
neighboring pixels. While convex constraints like this can be efficiently solved
using some optimization tools, however thev will results in poor surface bound-
aries, thus it is not “discontinuity-preserving”. The reason behind it is simple,
depths change dramatically along depth surface boundaries. since the penalty co-
incides the increment of difference. it will result in over-smoothing the differences.

The most simple edge-preserving smoothness term is defined as

Buoth= Y, Vipgllpfd = Y X{fefo), (2.51)

{p.q}eN {p.q}eN
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where

, 0 j’f fp — fq ‘
T(fp fo) = | (2.52)
1 otherwise,
and this is usually called the Potts model.
Another simple term which also features edge-preserving is
Esmooth - Z ‘/{p,q}(f]n fq) == Z A/???I?(’fp - fq‘-, A)/)a (253)

{p.q}eN {p.q}EN

where 7 i1s a truncation threshold. It truncates the cost in case the depth changes
dramatically.

Unfortunately minimizing such functions is NP-hard, therefore researchers
have adopted several approximation methods for global optimization including
iterated conditional models, graph cut, max-product loopv belief propagation.
tree-reweighted message passing and so on. These algorithms have been briefly

reviewed In section 2.2.
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Chapter 3

Evaluation of Different
Segmentation Algorithms and

Their Performance in Stereo
Matching

3.1 Overview of Image Segmentatioﬁ and its Eval-

uation

The tasks in computer vision are often associated with the goal to find what
objects or surfaces are presented in the scene. In this process, pixel based analysis
usually lacks the capability of representing objects, therefore image segmentation
based representation has been playing the crucial role instead. It divides an
image into visually meaningful partitions and extracts the corresponding visual
features of interest. Generally, segmentation has been applied widely in low-level
vision applications such as image understanding, classification. stereo matching
and others.

In the past decade, the development of segmentation algorithms has attracted
significant attention and many approaches have been developed, meanwhile rel-
atively few attention has been paid on their evaluations. Although most of the
algorithms compare its result with some particular chosen algorithms in their
papers, the comparisons are neither complete nor systematical. not even mention
the great diversity of definition of “visually meaningful” segments [3], ranging

from simple uniform intensity and color, homogenous textures, symmetric pat-



terns and up to complex semantically meaningful objects. Therefore. it is difficult
for researchers to choose the one that most suit their application.

In this chapter, we will briefly review five state-of-the-art image segmentation
algorithms [16] [21] [43] [49] [60](Figure 3.1), and evaluate their performances
in stereo matching with multi-scale segments. To organize this chapter, section 2
describes the methodology of these five algorithms. In section 3. we will present
the cfficient evaluation framework. In section 4, we will test its performance in
standard segmentation-based stereo matching by both qualitative and quantita-

tive analysis. Finally. the conclusion are given in the section 5.

3.2 Five Modern Segmentation Algorithms

There are a great variety of segmentation algorithms. In the chapter, we will

briefly review five selected state-of-the-art approaches.

Efficient Graph-Based Image Segmentation

Efficient graph-based image segmentation( FG15)[21] defines a predicate by mea-
suring the evidence for a boundary between two regions using a graph-based
representation of the image. FEGTS proved to be efficient by using two differ-
ent kinds of local neighborhoods in constructing the graph. Moreover, it makes
greedy decisions to produce segmentations that satisfv global properties. The
algorithm runs in times nearly linear in the number of graph edges and is also
fast in practice. It can preserve the details in low-variability image regions while
ignoring in other high-variability regions. The global aspects of the image is well

reflected by perceptually capturing the important groupings or regions.

Turbo Superpixels

Turbo superpixels [43] is a geometric-flow based algorithm for computing dense
over-segments of an image. This approach not only respects local image bound-
aries but also limits under-segmentation through a compactness constraint. It is
very fast and the complexity is approximately lincar in image dimension, which re-
ducing superpixel computation to an efficiently-solvable geometric flow problem.
[t vields less under-segmentation than other algorithms lacking of a compactness
constraint. while offering a significant speed-up over N-cuts which does enforce

compactness.



(e) ()

Figure 3.1: Image segmentation results by 5 different approaches: (a)Our cap-
tured outdoor image; (b)Superpixel result; (c)Superlattices result; (d)Efficient
graph-based image segmentation result; (e)Turbo superpixels result; (f)Mean-
shift result.

Superpixel Lattices
Superpixel lattices[49] is a method that produces superpixels which can preserve

a regular topology of original pixels. Such topology is quite useful especial in
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high order cliques related labels. The n'* superpixel has consistent position or
relationship with its neighbors so it is easv to get the label of neighbors. It is

also very fast and accurate.

Superpixel

Superpixel[60] is an over-segment method. It is a local, spatially-coherent, ho-
mogencous. structure which preserves information over scales or sampling reso-
lutions. In general, a superpixel can represent the property of the pixels in its

region. Also it 1s easier to optimize as the number of nodes significantlv decrease.

MeanShift

Mean-shift approach[16] is essentially defined as a gradient ascent search for max-
ima in a density function defined over a high dimensional feature space. The fea-
ture space includes a combination of the spatial coordinates and all its associated
attributes which are considered during the analysis. The main advantage of the
mean-shift approach is based on the fact that edge information is incorporated

as well.

3.3 Segmentation Evaluation Framework

A few comprehensive reviews [84][83] on evaluation methods for image segmenta-
tion has been done. Generallv, existing evaluation methods can be classified into
two categories: analyvtical methods and empirical methods. The analytical meth-
ods analvzes and evaluates the algorithms themselves directly based on the prin-
ciples. requirements. complexityv and so on. while the empirical methods give their
assessment by measuring the quality of segments. Moreover, according to [84].
the empirical methods could be further divided into two sub-categories: goodness
methods and discrepancy methods. In the former. the segments are measured by
values of goodness on pre-defined evaluation systems. while the latter one is to
comparc the generated segments with the reference image(ground-truth in some

sense). and the difference is quantitative measured.

3.3.1 Analytical Methods

The analvtical methods directlv assess the mechanism and properties of segmen-
tation algorithms itself. The advantage of these algorithms is that it skips the

actual implementation of the segmentation algorithms thus avoiding the differ-
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ence in efficiency when implementation environment is not consistent. However,
such properties are often hard to obtain or difficult to analysis. And the analysis
results are not always objective and quantitative. for instance. some rescarchers
attempt to evaluate the prior assumption that a segmentation algorithms use|14],
and determine the goodness of the algorithm by judging the reasonableness of the
incorporated prior. Generally, the development of analytical methods is limited,
and most of the existing works are only associated with some specific models or

desirable propertics.

3.3.2 Empirical Discrepancy Methods

The empirical discrepancy methods determine the goodness of a segmentation
by comparing the disparity between the segmented image by this algorithm and
some reference image. The reference image is sometimes called the groundtruth.
When the input image is manually synthesised, the reference image can also be
easily obtained. But when the input image is a natural image, usually the human
labeled segmentation is referred as the reference image. The commonly used dis-
crepancy measurement is the mean-square signal-to-noise ratio as in [26]. In this
case, a lower disparity value indicates a higher similarity and a better segmen-
tation. In addition, several other discrepancy measures have been proposed as
well. These measurements can be sorted into five categories: discrepancy based
on the number of mis-segmented pixels. discrepancy based on the position of
mis-segmented pixels, discrepancy based on the number of objects in the image,
discrepancy based on the feature values of segmented objects and discrepancy

based on miscellaneous quantities. For more details, please refer to [84].

3.3.3 Empirical Goodness Methods

At present, most methods to evaluate the quality of segmentation measurements
are established according to the “ideal” segmentation of human intuition. Widelyv
used evaluation ways include intra-region similarity, inter-region dissimilarity and
region shape parameter. We adopted these three evaluations to multi-scale over-

segments from these five approaches described in the previous section.

Intra-region similarity
The elements in a region should be similar. Thev include similar brightness.

texture, and low contour energv inside the region. The homogeneous degree of
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the features inside a region could be computed by the variance of the pixels

inside [42].

1 (2 y) 1 .

o= N [f(z,y) — \— Z (@, y)] (3.1)
(z.y)ER,; y)€

where Nj; is the pixel number inside ;. f(.r, y) is the feature of pixel located

at (x.y). Because every image has different number of regions, this result should

be normalized. Sahoo et al [56] proposed a normalized uniformity measure. We

improve 1t as

Onor = 1 — (6 — min)/(max — min), (3.2)

in which & denotes the average of all ¢ in the image. min is the minimal o

while max is the maximal in the images.

Inter-region dissimilarity

The ideal segmentation is to distinguish each region. and the elements between
different regions arc dissimilar. It means dissimilar brightness or texture, and
high contour energy on region boundaries. Such properties may also be used to
evaluate the segments. A good segmentation should divide a image into regions

with higher contrast.

ifo fbl
fo + .fb

/., 1s the average of visual features in a foreground over-segments, while f,

(3.3)

Is the average in the remaining regions as the background. The maximal mean

of ¢ between the foreground and the background represents the best segmentation.

Region shape parameter

Another method to evaluate the over-segments is region shape parameter. Dif-
ferent threshold can affect the extraction of the object boundarv. We can define
a parameter s which is closelv related to the boundarv as the boundary best rep-
resenting the object shape. The parameter can evaluate the segmentation from

the view of shape.

1 : !
— 4" Sgnlf(a.y) = Frwmlgle.y)Sgnlf(x.y) - T}, (3.4)
o (A{ gn|f(a vyl gn|flr.y }
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where g(x,y) is a gradient value at (z,y), T is the threshold value selected for

segmentation, ¢ is a normalization factor and Sgn() is the unit step function.

3.4 Evaluation of Performance in Stereo Match-
ing

Here we will introduce our evaluation system of the performance of different seg-
mentation method in stereo matching. The introduction of stereo matching can
be found in Chapter 2. In general, most of the existing methods can be sorted into
two categories: pixel-based and segment-based. Pixel-based algorithms are more
casily to be disturbed by local noises. As human visual system partitioning the
scene into a set of regions cach of which has the same or similar visual features,
segmentation has been widely used in the majority of modern stereo match-
ing algorithms. In the past decade, a variety of segment-based stereo matching
methods have emerged. These methods perform well in reducing the ambiguity
associated with textureless regions and enhancing noise tolerance. However, re-
searchers usually choose specific segmentation algorithm without comparing the
different results using different segmentation methods. To establish our evalua-
tion benchmark, we will briefly introduce our stereo matching algorithm.

Here we adopted a classic segmentation-based stereo matching algorithm, the
algorithm is under the global framework. Unlike local methods emphasizes on
localized matching cost computation and then simply assign the disparity la-
bel with the minimum cost value(usually referred to “winner-take-all” strategy),
global algorithms prefer to seek a disparity assignment that minimizes a global
cost function that combines both data term and smoothness term. The data term
is usually directly defined as the pixel-based local matching score by shifting a
predefined window along the horizontal directions between the candidates in left
and right frames, and the smoothness term encodes the smoothness between the
spatially neighbors. Once the energy function is defined, several algorithms can
be used for energy minimization. In our framework, we choose graph cuts|[11][10]
algorithm which proved to be a proper tradeoff between the efficiency and the
performance. To better encode the influence of different segmentation methods,
the work is carried out on segmentation level. In our stereo matching framework.
segment is treated as the minimal element and variable. and then as one individ-
ual node in graph cuts optimization. The spatially connection is also transformed

from pixel-based 4-connected or 8-connected neighbors to the segmentation-based
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neighboring system. An illustration of this is given in Figure. 3.2.

Figure 3.2: Segment-based neighboring system. (a)Our captured outdoor image;
(b)Cropped image: (c)Segmentation result, where each white region is a segment;
(d)Segment typology illustration, where the red nodes are the neighbors of the

black node.

Let X = 21,29, ...7, be the set of pixels, C' = ¢, ¢a, ..., ¢, be the set of seg-
ments(cliques) and L = {1,2,....,n} be a set of n discrete depth value labels.
The task is to find a labeling configuration f that allocates the labels from I to
cach variables ¢; € C. Each possible labeling f has its own posterior probabil-
ity, the goal is to find the f* that maximize the probability. According to the
Hammersley-Clifford theorem, maximum a posterior labeling f*(MAP) is equiv-
alent to finding the minimum of the Gibbs energy. We define the proposed energy

function as:

E= E(¢g) + E(a,¢) - (3.5)
S i, e
DataT erm SmoothnessTerm

Data Term

The data term measures the cost of assigning a disparity to a certain pixel on
the image. Data terms are often formed as the cost volume of pixel-based local
matching such as SSD. SAD or NCC'. Here we define ours according to [7]:
let I; and Ir be the left and right image respectively, Y is the corresponding
pixels in the right image and I is the lincarly interpolated function of between
the sample points of the right scanline, then the possibility that y; matches z; is

defined as:

d(z; yi. I, Ig) = My, 1 cycy,+1] 11 (z;) — Ir(y)|. (3.6)

Svmmetricallv,

d(yi, xi. Ir, Ir) = ming, _1.,<, 1|1R(Yi) — IL(z)l. (3.7)

1
2
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Then. the dissimilarity is defined as the minimum of these two:

d(;,y:) = min{d(zs, yi, I, Ir), d(yi, xi, I, Ip) b (3.8)

This design has proven to be insensitive to sampling error. Finally, the data

term is computed as:

E(e;) = Z Z d(wi, yi). (3.9)

c; eC zE€c;
Smoothness Term
The smoothness term encourages neighboring segments to have similar disparity
label which leads to a more smoothed disparity map and on some level eliminate
minor mistakes caused by the local stereo matching. We exploit the form of Potts

model, and only penalize on the difference.:

1, Zf Ci = Cyq,
ole c;) = s (3.10)
0, otherwise.

And the smoothness term is the sum of smoothness term over all pairs.

Ecic;) =X Y olcicy). (3.11)

{ci.cj}eC

In the function, A is the weight parameter balancing the scale between data
term and smoothness term based on the scale of the segmentation. In our ex-
periment, A\ is empirically set for every image pair and kept the same during the
implementation of all 5 segmentations.

Once the energy potential has been defined, we apply the powerful a-expansion
of graph cuts to minimize the energy iteratively. We start with an arbitrary la-
beling f. In cach iteration, one random label from I is taken out as the a, and for
the nodes with current label other than « will be involved in this alpha-expansion
by adding it to the graph. After the graph has been settled, a st-min cut is ex-
ecuted, and the labels of nodes are determined simultaneously. Saying the new
labeling 1s f’, we compare its energy with the one from the last iteration, and if
the difference is within a certain threshold for a certain number of times. then
the optimization is terminated, and the current f’ is set as the optimal labeling

To test different segmentation algorithms under different scales, we apply
them on the same datasets(some are with groundtruth for quantitative analysis

purpose) and all the number of segments are controlled to be similar. The three
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scales are dividing an image into 100, 500 and 1000 segments respectively. Of
course, not all the codes of algorithms allow us to predefine the proposed number
of segments precisely. so the numbers are only be roughly determined. In our
evaluation, the number of segments are all enforced to be within 5% offset of the
designed number. For quantitative analysis, the groundtruth of the disparitv map.
occlusion map and depth discontinuity map are used. The quantity evaluation
includes accuracv for non-occluded regions, all regions and depth discontinuity
regions. For pixels, the absolute difference of their depth with ground truth arc
computed. Pixel with difference large than 1.0 will be labeled as a bad pixel. The

error rate is the average percentage of these bad pixels.

3.5 Experiment

The evaluation has been carried out on Middlebury’s benchmark images|67|( Venus,
Teddy, Tsukuba, Cones) and our real-scene dataset. The real-scene data set we
usc 1s composed of seven outdoor and five indoor images which captured by Bum-
blebee stereo camera in our office and surrounding areas. The calibration and
cpipolar rectifving work have been done by Bumblebee itself. The testbed is on
a desktop computer with Intel core 73 2.93Ghz CPU. It is worth noting that
although most of the segmentation algorithms taking less than a few seconds to
process an image with resolution of 640 x 480 disrcgard of the three scales, but
the superpixel algorithm may cost significant more time when the number of seg-
ments is risen. For example, it takes 5.25 minutes to segment an image into 1000

segments.

3.5.1 Empirical Goodness Evaluation

For empirical goodness evaluation of over-segments generated by these five ap-
proaches, we use all the 16 images and compute their average as the final result.
Also, cach image is scgmented under three different scales: 100, 500 and 1000
samples. namely large. medium and small scales. Large scale means that the
dimension of the over-segment is larger and the number of over-segments in a
image 1s less. vice versa. For all three evaluations. the higher value in the table
means the better quality of segmentation the approach obtains. The result is in
Table. 3.1.

To have it more clearlv presented. the average results over three scales are

shown n Figure. 3.3.
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Intra-region | Inter-region | Region Shape
Large Scale | 0.7148 0.1724 0.2049
. Medium Scale | 0.8784 0.1746 0.1848
SuperPixel
Small Scale | 0.8080 0.2034 0.1720
Large Scale | 0.7480 0.1749 0.2377
) Medium Scale | 0.8044 0.1904 0.2042
SuperLattice
Small Scale | 0.8102 0.1920 0.1796
Large Scale | 0.6516 0.2035 0.3747
) Medium Scale | 0.7842 0.1641 0.2615
MeanShift
Small Scale | 0.7129 0.1935 0.2394
Large Scale | 0.8386 0.4003 0.4438
Medium Scale | 0.8365 0.2420 0.3891
EGIS
Small Scale | 0.8163 0.2737 0.3278
Large Scale | 0.7233 0.1996 0.2305
, Medium Scale | 0.7998 0.1373 0.2436
TurboSuperpixel
Small Scale | 0.7855 0.1785 0.2279

Table 3.1: Quantitative analysis on empirical goodness measurement over all

three scales.
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Figure 3.3: The average empirical goodness evaluation results of three scales.

From Table. 3.1 and Figure. 3.3, it explicitly shows that FGIS obtained
the best performance under the evaluation of intra-region similarity, as it got

the maxima of the average with the value of 0.8305, and also there is a consis-
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tency of similarity among all three scales of EGIS. In inter-region dissimilarity
measurement, EGIS also obtained the highest score at the average(0.3053). In
the measurement of region shape, along the scale decreasing, the value of shape
parameter consistently decreased on all of five approaches. This phenomenon can
be explained that large-scale over-segment is more coincided with objects than
small scale’s, and gradients on boundaries are significantly greater. In general.

EGTS and MeanShift give the best performance over other three algorithms.

3.5.2 Performance Evaluation in Segment-based Stereo

Matching

To test the performances of different segmentation algorithms, all 12 image pairs
are used. In terms of efficiency, it takes less than 40 seconds to process an image
pairs in average. The accuracy has been calculated with the average of four image
pairs from Middlebury benchmark, namely Teddy, Tsukuba, Venus and Cones.
The error rate for non-occluded regions, all regions and depth discontinuity re-
gions are shown in Figure3.4, Figure3.5 and Figure3.6 respectively. For all three

figures, the lower the value is, the better the depth is.
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Figure 3.4: Error rate of non-occluded regions by 5 segmentations.

It clearlv shows that segments from five algorithms contribute different effects

on the disparity results. In general. the error rate decreases along with the scale
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Figure 3.6: Error rate of depth discontinuity regions by 5 segmentations.

decreasing. Because in small segmentation scales, objects can be presented by a

larger number of segmentations leading to a more accurate depth. In addition,
MeanShift and FGIS give better performance when the scale is small. and when
the scale is large, SuperPixel SuperLattice and TurboSuperpixel are more suit-

able when the scale is large. This is due to different natures of segmentations.
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MeanShift and FGTS do not have constraint on segments’ size and their color-
based nature make them more coincident with the object boundaries or surface
boundaries. This advantage make them suitable for pixel-based or small-scale
segment-based stereo matching. On the other hand. SuperPixel SuperLattice
and TurboSuperpixel have strong enforcement on segments’ size, although it will
bring artifacts into the depth, the regularization gives better performance when
the scale is large, in which every segment becomes a large “pixel”. Based on that.
rescarchers proposed cfficient sterco matching under low-resolution|70].

For quality review, we selected the Teddy image from Middlebury and one
indoor and one outdoor images, as shown in Figure 3.7. Figure3.8 and Figure 3.9,
The segmentation results are also presented for reference. Because the depth is
enforced to be consistency inside each segment, the “blocky” phenomenon occurs
on the results especially when the segmentation scale is large. Nevertheless, it
gives a smoother depth distribution and filters isolated noises, as ground shown
in Figure3.8 and wall shown in Figure 3.7. Over all, MeanShift outperformed the

other four in the quality evaluation.

1



n
h

N T

¥

[T

\

111111
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Figure 3.9: Performance evaluation on the Teddy image pair from Middlebury.
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Chapter 4

Stereo Matching Using
Sub-segmentation and Robust
Higher-order Graph Cuts

4.1 Introduction

There exists a variety of color segmentation-based sterco ~matching algorithms
which have shown accurate estimation of depth. Most of them usually share the
hard constraint assumption that all pixels in the the same segment must have
the same depth value or lie on a locally fitted surface such as a plane. and discon-
tinuities only occur on segment boundaries[73|[78]. A typical procedure of these
algorithms is started bv emploving a visual feature based segmentation on the
reference image, followed by a plane-fitting procedure based on the initial dis-
parity estimation in each segmentation. Unary and smooth encouraging pairwise
terms are then defined based on plane parameters within an energy minimization
framework. Eventually global optimization algorithms are applied to solve the
problem, like graph cuts[11] or belief propogation[20]. And it is worth noting
that some methods generate possible plane proposals based on plane-fit. and use
it directly as label set. and optimize it on segment based level. This should also
be considered as hard constraint.

While hard constraint helps to reduce ambiguities of depth within textureless
regions, it has several drawbacks. First. it is not robust. It purelyv relies on initial
segmentation and local matching. and can not be recovered from noise and errors
in these initial estimations. Second. there is no such simple relation between

visual features and depth values, so clearly it is unreasonable to force pixels
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inside one segment to lie on the same disparity plane.

Then is it possible to combine segmentation as a soft constraimt into a pixel-
based framework so that both of their advantages will be kept? In this chapter.
we will present a novel framework. it does not force but encourage pixels to follow
a certain disparity distribution if they are in the same segment. Also the soft
constraint is realized in a higher-order term and being optimized under the same
MRF model along with pixel based unarv and pairwisc potentials. We believe
it 1s a more flexible and natural description of disparity distribution especially
considering natural scenes.

Optimization for stereo matching is always a challenge. State-of-the-art lo-
cal methods[81][61] are usually improved filter-based window matching. They
maintain cfficiency bv avoiding global optimization procedurc at the price of
loss in quality and smoothness, and it obtains ambiguity results in textureless
regions. Global methods on the other hand can involve more sophisticated as-
sumptions and hence achieve better results. The problem with global methods
are lack of efficient optimization tools. Message-passing based algorithms, such
as cfficient belief propagation(BP)[20] and tree-reweighted Tree-Reweighted Mes-
sage Passing(TRW)[72] are often easily to be trapped in local-minimum or slow.
Graph cuts is another powerful tool, but it has its own restrictions on the form of
potential which commonly known as “submodularity”[38]. In some cases|9][48],
the models are so complex that they do not satisfy submodularity any more. To
solve this. QPBO-based optimization algorithm[63] is applied but only part of the
nodes will be labeled. In our proposal, we take the form of the Robust I’ Potts
model[35] which is proven to be submodular, therefore we can take advantage of
the standard graph cuts for optimization which guarantees cfficacy.

We also exploit the idea of sub-segmentation in our proposed method. Most
existing paper directly use the result of segmentation as their stereco matching
input. However, such the prior segmentations are onlv depend on visual features,
and has no clear relationship with disparities. So we bring the relationship into
a higher level. we further divide segments into disparity relevant sub-segments.
And since this step is not alwavs accurate. so we onlv define higher-order based
soft constraint on it. It is worth noting that in [9]. thev also usc the term
sub — segmentation. but it is very different from ours. Firstly their definition of
sub-segmentation are totallv different from ours. secondly the only higher-order
term in their model is the MDL term which penalize on the number of appeared
labels and it is irrelevant to sub-segments, while we use sub-segmentation as the

clement of higher-order potential.
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In addition, several known techniques are combined under the same frame-
work, including symmetric occlusion handling, confidence measurement and plane-
fitting.

The rest of the chapter is organized as follows. In section 2, we describe our

algorithm in details. Experimental results are proposed in section 3.

4.2 Stereo Matching Through Robust Higher-
order Graph Cuts

The main steps of our algorithms are illustrated in Figure 4.1. Generally it
is a coarse to fine framework. First, MeanShift color segmentation[16] is ap-
plied to divide the reference image into several initial segments. Second, the fast
and efficient Birchfield and Tomasi’s pixel dissimilarity measure|7| constructs the
correlation volumes for both left and right images respectively. And a winner-
take-all strategy is applied afterwards. Third, we adopt the mutual consistency
check(left-right cross-check) to classify the pixels into occluded and unoccluded
pixels. Fourth, a confidence measurement is carried out on unoccluded pixels.
A robust voting based plane fitting procedure is exploited_ on those chosen un-
occluded pixels with high confidence to obtain an fitted disparity surface inside
each segment, followed by novel sub-segmentation process. Finally, the robust

higher-order graph cuts optimization is carried out to obtain the optimal result.

4.2.1 Initial Steps

Let X and Y be the sets of pixels of left image(/;) and right image(/g) respec-
tively, L be the label set with n discrete depth values. The labeling problem is to
find a labeling configuration f that allocates the labels from L to each variables
xz; € X,

First, MeanShift color segmentation[16] is applied to divide the reference im-
age(here we define left image as reference image) into several initial segments.

In terms of cost volumes construction. an attempt of several local matching
algorithms has been made in our experiment. Here we choose Birchfield and
Tomasi’s pixel dissimilarity measure|7] as our local based stereo matching ap-
proach, simply due to its better performance and its nature of being insensitive
to sampling difference. The dissimilarity c(z;, y;) is defined symmetrically as the

minimum of two quantities which stand for how well the pixel in one image fits
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Figure 4.1: The flowchart of proposed algorithm.

into the linearly interpolated scanline surrounding the corresponding pixel in the

other image, the details have been given in the previous chapter.

c(xi,ys) = man{c(xy, vi, In, Ir), ¢y, oy, Ir, 1)} (4.1)

Then a winner-take-all strategy is employed to select one label [, with the
minimum cost for every x; among its multiple candidates. An example of the

result is shown in Figure.4.2.

4.2.2 Occlusion Handling

Due to different geometries of the scene, it happens that some regions only ap-
pear in one of the images, and this phenomenon is commonly known as occlu-
sion. Occlusion has always been a challenge in stereo matching, and researchers
have proposed several algorithms to emphasis it. Generally, these algorithms can
be sorted into five categories[19]:Bimodality Distribution(BD), Confidence Mea-
surement Jumps(CMJ), Left-Right Cross Checking(LRCC), Ordering Require-

ment(OR) and Occlusion Constraint(OC). The first two algorithms belong to the



Figure 4.2: An example of the local matching result after locally winner-take-all.
border detection methods. while the last three focus on region detection.

Bimodality distribution(BD)
The theorv of bimodality distribution is that half-occluded borders should have
its neighbors in scanline arisen significantly, resulting in a bimodal distribution.

Therefore, thev usually compare the two peaks in the horizontal histogram:

max(py)

V(BD) = ———=, 4.2
HBD) max(ps) (42)
where max(py) and max(py) are two highest peaks. As the ratio ¢(BD) is ap-

proaching to one, the center pixel is more likely to be on the occlusion borders.

Confidence Measurement Jumps(CM.J)

The fundamentals behind CMJ is simple, it measure at the goodness of the match-
ing, and assumes that if the point in 3D world is visible in both views, then it
should have been well matched. And for those pixels that onlv appear in one of
the views, their confidences are supposed to be low. As a result. the occlusion
borders are located in the places that the goodness measurement values jump the

most. More formally,

V(CMJ) = maz(Cy — Crqn: Cz — Caw), (4.3)

+w:
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where x is the horizontal coordinate of the center pixel. and C is the sum of

matching cost within a windows with size of w.

Left-Right Cross Checking(LRCC)

Left-right cross checking is the most commonly used hypothesis. Its basic assump-
tion is that for the points which are presented in both views, their projections in
both views should be mutual corresponding. In other words, corresponding pixels
in left and right disparity images should differ only in occlusion areas. Analyti-
cally, let dist(x;) to be horizontal distance of x; , and proj(x;) to be its projection

in the other view, then we have

V(LRCC) = dist(proj(proj(x;))) — dist(x;). (4.4)

For pixels with their ©'(LRC'C') other than 0 are failed in the mutual consistency
check and labeled as occluded. However this occlusion detected by LRCC are not

include occlusion regions but also textureless or false matched regions.

Ordering Requirement(OR)

The ordering requirement hypothesis is that every pixel corresponds to a unique
point in the 3D scene, so for both views, the points that pixels correspond to
should share the same ordering. Namely, let 2; and x; be two pixels lic on the
same scanline, without loss of generality assume x; is on the left of z;, then

proj(x;) should also be located on the left of proj(r;) in the other view.
V(OR) = (dist(x;) — dist(z;)) = (dist(proj(x;)) — dist(proj(z;))) (4.5)

Pixels with ¢ (OR) < 0 will be labeled as occluded. Ordering requirement is

known to fail in some cases, an example 1s given in Chapter 2.

Occlusion Constraint(OC)
The occlusion constraint assumes that disparity change smoothly within non-
occluded surfaces. If depth changes dramaticallv in one view while jumps over
pixcls in the other view. then OC will label the unmatched pixels in the other
view as occluded.

In our algorithm. we adopt the LRCC as our occlusion detection method. and
an example of the result is presented in Figured.3. After this step, pixels are

labeled as cither Occluded or Unoccluded.
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Figure 4.3: An example of our LRCC occlusion detection. In the figure, detected
occluded pixels are in black, unoccluded pixels are in white. It can be seen that
this detection is not accurate. it will not distinguish false matchings with real

occlusions.

4.2.3 Confidence Measurement

Although winner-take-all strategy can easilv assign the optimal depth label d for
every pixel bv choosing the minimum matching cost ¢(x;. d) among the candidates.
the reliability behind the assignment may differ. For example. in textureless
regions, the matching costs are intend to be quantitativelyv similar. so the optimal
label mav not be distinguished with confidence. A illustration of this phenomenon
1s given in Figure 4.4.

To solve it. similar to [77], we define our confidence function conf(zx;) as:

=1,

Z exp(—(c(z;, d) — c(x;, d*))?/o? (4.6)

d#d*

conf(x;)

In the equation. ¢(x;. d) is the locally matching cost of pixel z; at different depth
candidates d. d* is locally picked optimal label through winner-take-all process.
o 1s a scale robust parameter. In our experiment. a threshold fis set for the
generated confidence map. For unoccluded pixle x;. if conf(x;) > 0. it is denoted

as stable points. otherwise it is unstable. An example is presented in Figure 4.5.
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Figure 4.4: The fundamentals behind the confidence measurement. In high-
texture regions(as shown in red block), the optimal(minimum) matching cost may
significantly lower than other’s, so the confidence should be higher. In contrast,
in textureless regions(blue), the optimal matching cost may not differ that much

comparing to others. so the confidence should be lower.

4.2.4 Plane Fitting

The most commonly used plane fitting techniques are Least Square Error(LSE)|76]
and Random Sample Consensus(RANSAC)[22]. The advantage of the LSE is its
efficiency, but its robustness is not comparable to RANSAC. Recently, a Voting-
Based Mcthod(VBM)[73] has been tested well in depth plane fitting.
Analvtically, we establish a 3-dimensional space with x and y being the hor-
1zontal and vertical coordinates of the image and d being the depth value, then

every 2d pixel p;(2;, y;) can be projected into a 3d point p;(x;, y;, d; ) once its depth
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Figure 4.5: An example of our confidence measurement. Brighter the pixel is,

the higher possibility of it being the right match it has.

value is known. Here we use the locally optimal depth map as the input d. Then
the task is to find a plane 5 = [A: B: (] that fits these 317 points cloud. where
A. B.C are plane parameters. Once the plane parameters are obtained. projec-
tions of each point on the plane can be computed through d! = [x;, y;, 1]x[A; B: C1.

The error for fitting the pixel p; to plane 3 is computed as the distance:

Ap:) = |[zi, yi, 1] % B — di. (4.7)

The optimal plane 3% is the one that suits the 3d points cloud the most with

respect to the inliers.

Least Square Error(LSE)

The LSE used here is the linear least squares[76]. By “least squares”, it means
that the solution is approximated bv minimizing the sum of the squares of the
errors over all points:

SUm = Z A(p;)?. (4.8)
P
The optimal plane that minimizes the sum can be computed through
5* = (PTP)'PTD, (4.9)

where P is the matrix of 2D points with the third coordinate as 1. and D is the

matrix of corresponding input depth d.
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Since the input depth map here is from locally matching, it inevitably includes
lots of noises from false matchings. Although LSE is relatively efficient, it often

can not give a robust estimation.

Random Sample Consensus(RANSAC)

RANSAC[22] is an robust method to plane-fitting. It dvnamically divide the
imput data into two scts:inliers and outliers, and increasingly improve its estima-
tions iteratively. In each iteration, it randomly samples 3 pixels, and generate a
plane. Then it adds a process evaluating the number of inliers, and only procceds
when the model is regarded as qualified. Rather than give an estimation to fit all
of the points, it is only applied on inlier points. The algorithm for RANSAC in
our method has been given in Algorithm 1. The drawback of RANSAC is that
several robustness relevant parameters have to be predefined. In addition. it is

not efficiently comparable to LSE and voting-based method.

Voting-Based Method(VBM)

The idea behind VBM is simple. The proposed depth on the plane can be defined
as d; = |x;,y;, 1] * [A; B; C], so the plane parameter A can be obtained by calcu-
lating od’ /o for a pair of points along X-axis. By doing counting for cvery pairs.
we can build a one-dimensional histogram with integer values of A as horizontal
coordinate and count number as vertical coordinate. Once the histogram is madec.
by applyving winners-take-all, value A is easily computed. After that, a similar
strategv is applied on B by calculating dd’/dy. Once A and B are obtained, '
can be scttled by a similar voting operation. Unlike RANSAC, it is not required
to predefine parameters. and its performance is comparable to RANSAC in most
of the regions while at significantly higher efficiency. Its drawback is that it does

not perform well in sub-pixel planes.

Here we perform a plane-fitting on the initial segments by Mecanshift. Be-
cause plane-fitting plays an important role in our algorithm and further sub-
segmentation will be based on it. algorithm insensitive to outliers is required. We
have test all three algorithms in our experiment. the performances are shown 1n
Figure 4.6. RANSAC achieves the highest accuracy. as a result, we choose it as

our planc-fitting method.

58



Algorithm 1 Algorithm for RANSAC Depth Plane Fitting

1: const (:minimum offset allowed for a single pixel;

2: const c:xminimum number of inliers allowed;

3. const ileralions,,,, maximum number of iterations allowed;
4 /?: Current Model;

5. 3*:Optimal Model:

6: for cvery segment C; do

7:  aterations,g, = 0;

8: CTT 0T pest — OQ:

G é* = 0

10:  while (iterations,,, < iterations,,..) do

11: randomly choose three points py (@1, y1, dy),pa(2a, Yo, do).p3(x3, Yz, d3):
12: B = LSE(p1.p2.p3);
18: mdierSeount = 0;
14: inliersge = 0;
15: for everv p; € ¢; do
16: if (||, v, 1] [ = d;| < 0) then
17: add p; to inliersgy:
18; inlierScount + +; )
19: end if
20: end for
21: if (inlierscount > |ci| % ¢) then
22: B = LSE(inliersge);
; N Xi i1 -B—d;
2 T O gy = Z2aEry PV,
24: end if
25: if (error,,. < errory.s) then
26: /))* = /19;
27: CTT O pest = CTTO  now:
28: end if
29: iterations,g, + +;

30: end while
31; return /3*
32: end for

4.2.5 Sub-segmentation

A common assumption in segment-based labeling problem is that inside a segment

labels should be consistency, however directly allocating disparities in such way
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Figure 4.6: Results of three different plane fitting techniques: (a) LSE, (b)
RANSAC, (c¢) Voting-based.

is unreasonable. According to our assumption, we further divide the color-based
segments into smaller subsegments so that inside pixels are more likely to share

the same depth.

It works as follows. For every plane-fitted segment, we can always extracts the
planar vector along which the disparity values changes the most. Based on the
value of each pixel on the surface, pixels can be clustered into sub regions which
satisfy the condition that pixels share the same discrete integer value inside the

same sub region, as illustrated in Fig 4.7.

............... » Planar vector

— — — = Sub-segments’ boundary

Figure 4.7: An illustration of Sub-segmentation. The black dot lines represent the
planar vector, while the red dot lines represent the new sub-segments’ boundaries
which perpendicular to planar vector. The pixels are separated into sub-segments

where pixels inside it have the same discrete value.
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4.2.6 Emnergy Function Model

The framework has been formulated as an energy minimization problem, in which
the lowest energy means the globallv optimized labeling. In our framework.
we add sub-segment information as higher-order potential in the wayv of a soft
constraint into our model. and take advantage of the powerful robust higher-order

graph cuts algorithm to solve it. The energy function is given by:
b= EData —+ ES‘moothness a EHiglzerOrder (410)

The data term is sum over all pixels’ local measurement:

Epata = Z c(x;, yi). (4.11)

T;e€X

The smoothness term is the truncated L1 norm function:

0. d(z;) = d(z;), \
ESmoothness — Z ) L (7 ) _ (zj)l (412)
g A s man(k, |d(x;) — d(z;)]). otherwise.

d(z;) denotes the label of x;, and k is a truncation parameter. The pairwise form
has shown great great performance in discontinuity preserving.

In terms of clique(segment /sub-segment ) based higher-order term, unlike most
existing works formulating higher-order assumption into pairwise terms. we treat
all three energv terms equally. which means thev are optimized simultaneously.
The benefit is that the higher-order term will be able to contain all the assump-
tions without anv sacrifice. and clearlv a more globallv optimized result will be
achieved if three energyv terms are treated evenlv in the optimization procedure.

We take advantage of the P Potts model[35] model. because it meets our
assumptions while keeping submodularity. More details will be provided in the

next section.

4.2.7 Robust Higher-Order Term and Graph Cuts

According to [24], in order to minimize the energy function by graph cuts. the
energv function must be submodular. From additive principle. it is equivalent to
that every term of the energy function should be submodular. The data term and
pairwise term in our function are submodular. so it is reallv depend on the higher-
order term. And from the definition of submodularitv on F~(N > 3). an energv
term which involving more than two binarv variables e.g.. higher-order term. is

submodular if and only if all its projections on 2 variables are submodular.

61



Generally such conditions are hard to satisty or will need exponential auxiliary
nodes added. Thanks to the robust P™ Potts model[35], it is not only submodular
but also benefit the inference that only two auxiliary nodes are needed for cach
clique.

In cach sub-segment cli, Rest(cli) represents percentage of pixels not taking

the dominant label. then the higher order term is defined as:

, Rest(cli) 2 Vmae. 1f Rest(cli) < Q.
E]‘]?g/[(fl"()Td(fT' — Z q)<(‘l7> = Z ( @ ( ) (413)

Yonaz s otherwise.

cli cla

In the equation. Q is the truncation parameter which controls the rigidity of this
function and satisfies the constraint 2Q) < |cli|, and 7,4, is the truncated penalty.
Here we define 7,,,.. as a function inverse to visual feature dissimilarity inside the

region:

e ) = fla)?
Ymaz = Z cli] : (4.14)

xiEcli

The basic idea 1s fairly simple, if one segment is less visually homologous, then it
is more likelv to belong to different depth surfaces, so the penalty for its depth
inconsistency should be lower.

It can be seen that the higher-order term is a linear truncated function of the
number of inconsistent pixels. While it encourages pixels in one segment to take
the same label. 1t does allow some pixels to take different labels depending on the
cost.

According to[35], in a-cxpansion, the higher-order term can be transformed

into sum of first-order and second-order terms:

O(clr) = Mg m, ((romo -+ 0gmg E w; T; +rimy + 0amy E w;r; —0). (4.15)

‘/[IE("[idun( 76(’1

where mig.my, are two auxiliarv nodes. rg. 7. w;, are weight parameters, (740,
denotes the the variables that have beeb assigned the dominant label in the clique,
and o0 1s a constant.

Hence the higher-order is decomposed into unarv and pairwise potential of
original variables and two auxiliary nodes. the transformed graph is shown in
Figure 4.8.

The details about implementation of higher-order graph cuts is given in Al-

gorithm 2.
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Figure 4.8: Graph construction for higher-order terms. S, T are source and sink.
cli; & cliy here represent two different cliques. Only two auxiliary nodes, namely

mo&m; are needed for each clique.
4.3 Experiment

4.3.1 Quality

To examine the performance of the proposed method, we test on both Middle-
bury benchmark[67] and challenging real-scene images. The results have been

compared with conventional graph cut with the same data term and pairwise
term.

From Figure 4.9.the results clearly show that our algorithm succeeds in:(1) It
keeps the shape of objects due to sub-segmentation. For example. the arms of the
lamp on Tsukuba data set can be clearlv distinguished in our result. while it is
over-smoothed in conventional graph cut method. (2) It can eliminates ambiguity
caused by inaccuracyv of initial disparity estimation. This is because the higher-
order graph cut process will not onlv rely on the initial disparitv result but also
the distribution within segments is taken into account. For example, in the Baby

data set, the front of the round object which the baby sits on has some matching
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Algorithm 2 Algorithm for Higher-Order Graph Cuts Optimization

Iis

O

O:

:]

o0

10:

24
30:

31:

const TimesRemain = T;
. LabelNow = {0};
- while TimesRemain > 0 do
for random ¢ € L do
= 1
E = Compute Enerqgy( Label N ow)
for every x; € X that LabelNow|x;] # a do
add node r; and its t-links
end for
for every pair {x;, x;} € X that Label Now[x;]| # o && Label Nowl|a ;] #
a do
add n-link between z; and x;, also update t-links
end for
for every ¢li € X do
add auxiliary nodes mg,m; and their t-links
for every x; € cli that LabelNow|x;| # o do
add n-link between x; and my
end for
for every x; € cli that LabelNow[x;] = Dominant Label do
add n-link between x; and m,
end for
end for
Applv max-flow algorithm and update Label N ow
FE'" = Compute Enerqgy( Label Now)
if (|[/—F

TimesRemain — —

< eps) then

else
TimesRemain = 1
end if
end for
end while

return Label N ow

errors by traditional graph cut method. but is recovered as part of a plane in

our algorithm. (3) High accuracy is achieved in tvpical difficult areas such as

texturcless regions. An example can be found in the real-scene image where the
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Algorithms Tsukuba Venus Teddy

nonocc all disc | nonocc all disc | nonocc all disc
Regular GC 2.27 436 11.4 | 1.27 290 134|149 23.6 24.7
Proposed method || 2.01 401 9.75|0.74 1.88 854|114 18.0 23.5

Table 4.1: Error rate on Middlebury Benchmark. It can be easilv seen that our

proposal outperforms regular graph cut in all three indicators.

left-down part of the ground is textureless, our algorithm handles it accurately.
Table 4.1 of error rates quantitativelv describes the performance of our method
in comparison with the regular graph cut. It clearly demonstrates our approach
outperforms in all three indicators with average improvement of more than 20

percent.

4.3.2 Efficiency and Energy Convergence Analysis

The increased auxiliary nodes only take a small proportion of the original nodes.
therefore there is almost no extra time consumption for each max-flow iteration.
So the efficiency here is all related to the number of iterations taken to converge.
here one iteration is referred to o« visits everv label in L once.

From Figure 4.10, it can be observed that most of the energy are minimized
within the first iteration, and all three Middlebury sample images converge well

within 5 iterations.
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Figure 4.9: Results on Middlebury(Tsukuba, Venus. Teddy, Baby)& Real-scenc

data. From left to right: image input, regular graph cut, our result, ground truth.
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Figure 4.10: Energy minimization on three Middlebury images. We take the final
converged energy as 100%. And one iteration involves a visiting every label in

label set once.
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Chapter 5

Joint Optimization on Coupled
MRFs for Stereo Matching and

Surface Boundary Estimation

5.1 Motivation and Introduction

Based on different representations of depth estimation, exis‘ting methods can be
classified into two categories: pixel-wise and segment-wise. Pixel-based algo-
rithms often suffer from local noises and have insufficient cues of the scene. As
people generally identifv the object and reconstruct the scene by partitioning the
scene into a set of groups each with the same or similar visual features such as
color or texture, researchers have developed segment-based algorithms based on
the similarity.

Segment-based algorithms [73][78] have dominated the Middlebury Bench-
mark [67] due to their good performance on reducing ambiguity of disparities in
textureless regions. They usually share the assumption that the scene structure
can be approximated by a set of non-overlapping visually homogeneous regions
where each region corresponds to its own depth surface. In other words, all pixels
in the same segment should lie on the same depth surface and discontinuities
only occur on boundaries. This assumption certainly enhances the tolerance of
local noise as the depth surface is now decided by a group of pixels, the risk of
assigning incorrect disparities to occluded or textureless individual pixels is de-
creased. Typical procedures for these approaches are as follows: first, segmenting
the reference image using color-based segmentation and getting an initial dis-

parity by doing pixel-based local match; then fitting disparity planes to every
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segment using plane fitting techniques: finally the optimal assignment of planes
is approximated bv using global-based optimization tools to minimize a certain
cnergy function.

However, this assumption has some drawbacks. First, with segments be-
ing purely grouped on visual features, they are still likely to be influenced by
local noises. Imagining a piece of colorful newspaper lying on a planar table.
Clearly the newspaper should locate on the same planar depth surface. However
in scgment-based algorithms, cvery individual character and color region may be
segmented into different sized segments. Segment-based approaches usually are
not concerned with the dimension of the segment, and simplify each segment as
an individual node in the model for further optimization. Therefore robustness
will not be guaranteed due to the existence of these small segments. Second,
Color segmentation only relies on visual cues, but the correspondence between
visual features and depth does not always hold. Two neighboring surfaces with
huge difference in depth but little variance in color sometimes are segmented as
onc segment, which resulting in assigning onc faulty surface for both. A typical
example is shown in Fig 5.1. Third, although the first phenomenon may be reg-
ularized by adding smoothness interaction between neighboring segments, this is
under the assumption that the depth is spatially smooth everywhere. even for
the neighboring segments that actuallv cross the surface boundaries. As a result,
the parameter of smooth scale is always hard to tune. If the paramecter is too
small, these small segments will not be as consistent as desired. but if too large
it will lead to undesired blurring along surface boundaries because the neighbor-
ing scgments that actuallv cross the surface boundaries arc smoothed as well.
An alternative solution is to introduce depth surface boundaries to distinguish
the smoothness of neighboring segments along the surface boundaries. An ex-
periment motivates us is that given perfect or near perfect surface boundaries.
state-of-the-art results can be achieved bv over-smoothing segments within the
same depth surface.

In addition. low resolution is crucial for some specific applications for artificial
visual simulation[55][54][75]. Under the present hardware limitation of low-vision
devices, the depth must be down-sampled to a qualified low-resolution. Appar-
entlv, some popular image resizing methods(nearest-neighbor, bilinear, cubic and
so on) will be the straight-forward solution. but thev may bring some serious dis-
tortions into the results in which the surface boundaries are blurred. and depth
of foreground merges into background. This is partially due to the equally treat-

ment of boundary regions and no boundary regions. Down-sampling within the
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Figure 5.1: An example of the Venus image pair from the Middlebury

Benchmark[67]. The image on the left is the color segmentation by Mean-
Shift[16], the image on the right is one typical state of the art result[85]. From
the correspondence, it can be clearly concluded that three major errors are all

caused bv inaccurate initial color segmentation.

same depth surface is straightforward and easy to implement. but boundary re-
gions should be handled carefully. Therefore, surface boundary can be used as

clues into down-sampling process.

The above challenges motivate us to integrating depth surface boundary es-
timation into the existing stereo matching framework so that these two types of
variables could be inferred together and interact each other. In the chapter, we
will present two novel approaches that employs a similar two-layer MRF's frame-
work. The first is geometry-based. and has shown great performance in surface
boundary completion. The second is natural boundarv-based and we have suc-

cessfully applied it in phosphene vision for indoor human navigation.

Inspired by Ren’s work[59], we use one layver to model the connectivity of
locally found edges. In his work, he builded a constrained Delaunay triangula-
tton(CDT) over the locally found edges and used Conditional Random Field to
model the continuity of edge junctions. Because the connectivity of the CDT
edges involved higher-order clique, he used loopy belief propagation|74|(LBP) to
estimate the marginal distributions. But in our framework. with a two layers
MRF's the graph will be much more complex so that LBP will be computational
expensive. As a result, the connection between boundarv nodes are simplified
from higher-order to pairwise relationship. After these two lavers are modeled
separately, we align and associate two lavers based on the topological structure.

Our first approach also take advantage of the CDT, and we will demonstrate

that this geometry-based modeling has significant advantage in surface boundary
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completion. Besides that., we also propose another approach that novelly break
boundaries into pieces so that two neighboring segments will only have one unique
boundary picce between them. And we {reat such boundary picces as individual
variables 1n the boundary layer of associative MRFs.

In both approaches, along with surface boundarics determined dynamically,
smoothness scaling between segments can be decided as need, and will only apply
within surface boundaries. In some sense, it can be seen that segments are formed
dyvnamicallv according to boundariecs. And both surface boundary and depth
obtained simultaneously facilitates further recognition and scene understanding.

Generally. optimizing such framework is quite complex and challenging. The
third-order interaction between two layers makes standard graph cuts approach
difficult to apply. Also dense short loops will lengthen the time taken to converge
in message-passing algorithms. Thanks to the latest projected graph cuts|39], it
minimize the energy by making projected moves iteratively. in which it fixes one
laver of MRFs at a time, and uses ST-min cut[11] to optimize the other layer. It
converges when no lower energy can be reached.

Experiments demonstrates our novel approaches could provide 1)significant
improvements by eliminating depth ambiguities and increasing its accuracy. 2)
explicit clues of depth and boundary for human navigation under low-resolution
phosphene vision, 3) foreground obstacles are clearly discriminated from sur-

rounding background by integrating boundary clues into downsampling process.

5.2 Triangulation-Based Joint Framework for Stereo

and Surface Boundary Completion

In our first approach. we build a two lavers MRFs that modeling depth and its
surface boundary simultaneouslv. In the experiment. we find that the geometry
nature of constrained Delaunay triangulation(CDT) makes it capable of complet-
ing true surface boundaries which missed by local edge detector. As well as due
to efficiency. our first approach is carried out on triangle-based instead of pixel-
based. Sides of triangles are defined as variables for surface boundary with only
two states. on and off. And the set of pixels that each triangle covers are defined
as one variable for stereo matching. An illustration is in Figure 5.2.

More formallv. two sets of variables are used. X for depth and Y for boundaryv.
Let L, = {1.2....n} be a set of n different discrete depth plane labels, and

L, = {0.1} be a two-variable sct for the labels of surface boundary in which 0
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Figure 5.2: Triangulation-based two layers MRF's framework.

is off and 1 is on. The task is to find a labeling configuration f that allocates
the labels from L, to each variables X; € X and L, to each Y; € Y respectively.
Then each possible labeling f has its own posterior probability, the goal is to find
the f* that has the maximum probability. According to the Hammersley-Clifford
theorem, maximum a posterior labeling f*(MAP) is equivalent to the minimum

of the Gibbs energy. We define the proposed energy function as:

E=E%z)+ E%y) + El(z,y). _ (5.1)
Nt Nyt Wiy
Stereo Boundary  Interaction

This energy function not only contains energy potentials £°(z) and E?(y)
for stereo matching and boundary estimation alone but also has energy term
regarding the interaction between them. Details will be given later.

The main steps of our algorithms are illustrated in Figure 5.3.

5.2.1 Boundary Potentials

Our approach starts with locallvy captured edges by probability of boundary
detector|47], then the probability for every edge is normalized into [0, 1]. After
that. we break up the boundaries into piecewise linear segments at high-curvature
locations. To do this, we trace each boundary from one conjunction point to the
other, and recursivelv split the curve into approximate line segments to satisfy
that the angle between two splits will always exceed a certain threshold. Once
the decomposition has been completed, we have a set of conjunction nodes and a
set of line segments. Each line segment will be given an probability value pb that
equals to the average probability of all the pixels its corresponding curve passing
through.
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Figure 5.3: The flowchart of our triangulation-based algorithm.

Next we employ the constrained Delaunay triangulation(CDT) algorithm to
predict the missing edges. CDT is a generalization of the standard Delaunay
Triangulation that forces the generated triangulations passing through certain
required segments(in our case, the edges in the piecewise linear approximation).
Here the pb value for these completed edges are given as 0. An example of these

processes 1s given in Fig 5.4.

5.2.2 Surface Boundary Potentials

The energy potentials for surface boundary estimation is defined as
E%(y) = ¥ (yi) + i (i v5) (5.2)

The unary term 7 (y;)only penalize on the situation that the boundary choose

to be appear. The lower its local probability is the higher penalty it will take:

WP (y:) = D (1 —pbi) - v (5.3)

v, €Y

The pairwise term 1*5(z/j.;y]-) encourages two connecting boundaries to be
both turned on or turned off. Define ©;; as the angle between two edges, when

©,; — m, it indicates a strong continuity and the possibility for them to have the
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Missing Edges Local Deteced Edges  Linear Approximation  CDT Completion

Figure 5.4: An example demonstrates the process and advantage of edge com-
pletion. From left to Right, the first image is the depth result with missing
edge(inaccurate segmentation). The second image is the result of local edge de-
tection. In the third image, the red edges represent linear approximation, the
green dots represent line segment terminals. The fourth image is the CDT com-

pletion result. It can be seen that it successfully complete the missing edge.

same states should be greater, vice versa. It takes the form of a data-driven Potts

model:

©,;;, otherwise..

A= X J 5.9

vi,y; EN

5.2.3 Stereo Matching Potentials

To begin with, we use the fast local pixel dissimilarity measure[7] to construct the
correlation volume for both left and right images as the reference image. Then we
apply mutual consistency check on the result. Pixels passing it will be labeled as
stable prxels. The reasons for failing mutual consistency check include occlusion,
textureless and specific faulty matching.

Once obtained initial depth and a set of stable pixels, a RANSAC plane fit-
ting is carried out inside each triangle with the depth of the left view. Note we
only apply RANSAC on stable pixels. and also only choose to implement in a
triangle if its percentage of stable members exceeds a certain threshold. For every
implementable triangle, we put the computed plane with the least error into L,.

and keep records of its frequency f;, .

Plane Extraction with MDL Regularization
As the fitting label L, having too many members. it not only slows down the
final global optimization but also arises more noise. To cut down the volume, we

add a plane extraction step to merge neighboring planes.
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The encrey function for plane extraction is defined as:

Eh[DL :3¢Q<I¢)—Flbg<lﬁ,lﬁ>‘+'2{:'11'6L (5.5)
leLy
N—— ——

label cost

where 1);(;) is the sum of pixel-based absolute depth difference between its orig-
inal plane and new mapping plane. (2, 2;) is a Potts model penalizing on
difference. The label cost term|17] functions as a MDL regularizer, penalizing on
occurrence of a certain plane, and is a decreasing function of the frequency f,, in
the RANSAC result. More formally, we use v; = e /=, and

! 1, da,l, €L, o
0 = . (5.6)
0, otherwise.

Roughly, the size of [, is cut down to less than 20 after this step.

The energy function for sterco is then defined as:

BS(x) = v () <

ant
N |

The unary term 1" (;) is the sum of absolute difference between current labeling
and 1nitial disparitv map. We do not have a conventional pairwise term for sterco
here 1s that we modified it into an interaction term with boundary, it will be

described 1n details in next section.

5.2.4 Interaction Potentials

For each pair of neighboring x; and x; there will be an unique piece of boundary

namelyv .. The interaction potential is defined as:

El(.r.,z/) = Z Wil 24 ) * Tg (5.8)

Ti,X j Yk

where 1 (7;. ;) is a Potts model. The principle of the projected graph cuts is to
fix one laver in MRFs at a time while optimizing the other. When layer X is fixed.

and neighboring r; and r; do not belong to the same depth surface(v;;(x;. r;) =

J
1). the energyv potential will intend to decrease itself bv encouraging the boundary
between to be appeared(y, = 1). And when laver Y is fixed and y; 1s turned on,
the energv potential will be 0 thus the smoothness requirement of r; and x; will

no longer be executed.



5.2.5 Joint Inference

This two-layer MRF's have the set of variables up to {X, Y} and label space up
to L, = L,. Graph with such complexity is generally difficult to optimize. We
bring the idea of Projected graph cuts (PGC) [39] to a-expansion optimization,
it gives an approximation of the true labeling at an acceptable efficiency.

The requirement for using PGC is that the potential defined between two
layers(in our energy function, the interaction term F!(x,y)) should always be
projected submodular, that is when fixing one laver of variables, the other layer
should satisfies submodularity. In our case, fixing X will make the rest of the
energy term as a first order term for Y, so it is alwavs submodular. On the other
hand, when fixing Y. the rest term will either be 0 or Potts model with positive
weights, so it is submodular too.

The basic steps for the inference is as follows. We start randomly either from
the initial labeling fyx or fy, and do the optimization recursively. For instance,
when we optimize Y in one iteration, suppose the optimal labeling achieved so
far are f3 and fy-. We fix X in E!(x,y) by taking the values from f%, and put
the transformed term together with the stand alone term E?(y). and use ST-min
cut to optimize variable ¥ alone. If a lower energy with solution fy is found. we
keep the f% unchanged and set fy = fi-. Optimizing X is applied in a similar
subsequent way. When no lower energy can be achieved in L, * L, iterations, the

optimization stops and returns f%. Details are given in Alg. 5.2.5.

5.3 Segment-Based Joint Framework for Phosphene

Vision in Indoor Navigation

For indoor navigation purpose, we have emploved the framework to present an-
other approach on segment-level. Comparing to the first approach, it has more
accurate boundaries and higher efficiency. In addition, when integrating the
boundaryv clues into downsampling process, the foreground obstacle has been
clearly enhanced and discriminated from the surrounding background.

The framework is in general similar. The first stage of the proposed approach
is color segmentation|[16] on the reference image. For stereo matching, every
segment is taken as an individual depth node disregard of their sizes. And for each
pair of neighboring segments, define their unique piece of boundarv connection

as one boundary node. An illustration of this process is given in Figure 5.5.

R
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Algorithm 3 Algorithm for Projection Graph Cuts Optimization in Our Frame-
work.
1: const TimesRemain = T:

: fo =40} and f, = {0};
3. B = ComputeEnergy(f.. [,)

o

4: while TimesRemain > 0 do

5. for random L, do

6: Fix f,, transform F!(x,y) to E'(x, f,)
i Add El(x, f,) to B%(x)

8: Apply a-expansion and get the newest labeling f/
9: E" = ComputeEnergy(f.. f,)

10: if £/ < FE then

11 =58

12: fz= 1.

18 TimesRemain — —

14: else

15: TimesRemain = 1

16: end if

17:  end for
18:  for random L, do

19: Fix f,, transform F!(x,y) to B1{f,.y)
20: Add F(f,.y) to BB(y)

21 Apply a-expansion and get the newest labeling f;
29 L' = ComputeEnergy(f.. f,)

93 if / < I then

24: E=F

25: fy=1,

26: TimesRemain — —

27: else

28: TimesRemain — 7

29: end if

30: end for

31: end while
32: Set fr = f; and f; = f,

The definition of the energy function is similar to our first approach, and we

also usc PGC for optimization. After obtaining the depth and surface boundary
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Color Segmentation Depth Estimation

Local Boundary Surface Boundary Estimation Coupled MRFs

Figure 5.5: The proposed two-Layer MRFs Framework. We use color segmen-
tation as our inputs. For depth estimation in the upper-layer, every segment is
modeled as one node(black). For surface boundary estimation in the downer-
layer, boundaries are further broken into piecewise ones(red). The green lines are
the connection between two layers. For simplicity, here only draws the two-layer

connections(green) of two boundary nodes.

result, the downsampling and phosphene visualization process are carried out to

convert the depth into phosphene vision in order suit human navigation.

5.3.1 Downsampling and Phosphene Representation

There exists a variety of image down-sampling methods. Interpolation of bilinear
and cubic will compose new values for anti-aliasing purpose which may cause
confusion in depth-based human navigation. Although simple nearest neighbor
will not add new value, it is not robust for low-vision navigation either as it
may omit some critical information in the foreground. Here we propose a novel
down-sampling method by integrating the boundary clues to the down-sampling
process, which clearly help to discriminate the obstacle object from the surround-

ings in phosphene-based low-resolution navigation trial.

A brief example is given in Figure 5.6. The principle of nearest neighbor
down-sampling is to project every down-sampled node(pixel) to original image
and obtain its sub-pixel location and coordinates, and then simply select the
value of its nearest neighbor as its own. However in low-vision navigation, the
priority is to avoid the nearest obstacles. Therefore during the down-sampling
process, nearest neighbor algorithm may omit some critical information of fore-
ground obstacles which merged into background, and this will cause serious prob-
lems in navigation. Such errors always happens in surface boundaries where the
depth significantly changed. To solve it, we have modified and improved near-

est neighbor algorithm by integrating the boundary clues to efficiently solve the
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problem. During the down-sampling process, it takes advantages of the boundary
map, for the sub-pixel projected in the original image, if any of its neighbors in a
limited scope locating on the boundary, the sub-pixel will take the largest depth
value among its neighbors, otherwise it takes the value of its nearest neighbor.
The experiments demonstrates such modification could emphasize the foreground

objects significantly in low-resolution vision.

1

| Conventional

&
>

| Nearest Neighbor

foreground |

| Proposed

e IR

Depth(downsampled)

Depth(original resolution)

If downsampled pixel with their corresponding
pixel in the original coordinates locating in the gray area

Figure 5.6: An example demonstrates the advantage of our downsampling algo-

rithm comparing to the conventional nearest neighbor.

For stimulated phosphene rendering after down-sampling, each phosphene is
represented by a circular Gaussian whose center value and standard deviation are
modulated by the depth at that point. In addition, phosphene sums their values

when they overlap. For complete description, please refer to [45].

5.4 Experiment

Two proposed methods have been tested on Middlebury’s benchmark images|[67]
and our indoor navigation real-scene dataset. The testbed is on a desktop com-
puter with Intel core 73 2.93Ghz CPU. In the first approach, the CDT function
is realized by calling the Matlab function in Microsoft Visual Studio, and most
of the time is spent on this procedure. For the PGC optimization, it takes less
than 60 seconds to process a high-resolution image pairs. The second algorithm
is with higher efficiency, the time has shorten to 100 seconds, and this includes

the time taken by all the processes.

(08
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5.4.1 Experiment of Triangulation-Based Algorithm in Sur-

face Completion

Here we provide the results on two representative image pairs, Venus and Map|67]

in Fig 5.7. From the results, it can be observed that our algorithm succeeds in

Figure 5.7: From left to right : left image from image pair, depth ground truth,

our depth result, our surface boundary result

capturing surface boundaries. In Venus, it clearly distinguishes the scene into
four individual depth surfaces. With such information, it provides convenience
for further high-level vision works. Due to the noise by local stereo correlation,
the boundaries and depth are not perfect in our case, however its accuracy is
still comparable to state of the art results. Quantitative measurement is given in
Table 5.1.

nonocc | all disc
0.23 043 | 2.77

Table 5.1: Our accuracy on Venus.

5.4.2 Experiment of Segment-Based Algorithm in Human

Navigation

For experiment of the second algorithm, the analysis on the real-scene dataset is
presented in Figure 5.8 and Figure 5.9, while the comparisons on the Middlebury’s

images are in Figure 5.10 and Figure 5.11.
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Figure 5.8: The first row includes the original image without obstacles, its
original-size and downsampled depth computed by Graph Cut, followed by second
row with the results obtained by our algorithm, respectively surface boundary:.
depth and its downsamples. The third and forth rows are the results of the im-
ages with obstacles. (Original image size: 500 * 312, downsampled image size:
32 * 20)

Irom the results of the indoor image pairs in Figure 5.8, It clearly presents
that our approach has more natural and continuous depth than traditional graph
cuts under both obstacle and non-obstacle image pairs, as well as the obstacles
stand discriminatively from the background. When comparing the performance
of downsampled results. the obstacle objects are clearly discriminated from the
surroundings after integrating the boundarv clues into down-sampling process
and 1t is valuable for further object detection use. While the obstacles in the tra-
ditional down-sampled look vague. In Figure 5.9 of zooming out interest regions.

thosc obstacles could be more clearly observed in phosphene visualization.
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Figure 5.9: Phosphene simulation of indoor scene with obstacles. The first row
uses the full camera size image as the input, while the last two rows are the
obstacles zoom-in effect which could be crucial in real navigation. The second
and third columns are the result by Graph Cut and the proposed algorithm
respectively. It can be seen that the latter one has obvious advantage in obstacle

distinction.

For quantitative analysis, the proposed method has been tested together with
conventional graph cuts and belief propagation methods on four classic Middle-
bury image pairs Venus, Teddy, Cones and Tsukuba, under three different scales
of original size, 1000 and 100 samples respectively. The accuracy is calculated in
the following way. For every unoccluded pixels, the absolute difference of their
depth with ground truth is calculated. Pixel with difference large than 1.0 will
be labeled as bad pixel. The error rate is the average percentage of these bad
pixels over all unoccluded pixels in two Middlebury images. The original ground

truth and occlusion map are all down-sampled to align the comparison under
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difference scaling. The results of Figure 5.10 and Figure 5.11 clearly demonstrate
our method outperforms other two approaches at all three scales consistently and

achieved the best accuracy with the error rate less than 2%.

co



(3) (k) (1)

Figure 5.10: For quality review, we select to present the results on Teddy and
Tsukuba from Middlebury. The first two rows are results on Teddy: (a) original
image, (b) ground truth, (c) result by Graph Cuts, (d) result by Belief Propaga-
tion, (e) depth by proposed method, (f) surface boundary by proposed method.
From (g) to (i) are results on Tsukuba.
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Analysis of Downsampling Precision
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Figure 5.11: Quantity analysis of precision of the proposed algorithms comparing
to Graph Cuts and Belief Propagation in three scales. The accuracy is computed

as the average of Tsukuba, Teddy, Venus and Cones four image pairs.
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Chapter 6

Conclusions

In this thesis, we have explored sterco matching problems using higher-order
graph cuts. In this chapter, we summarize our contributions and state some

future works.

6.1 Contributions

Firstly, we qualitatively and quantitatively evaluate five recently proposed state-
of-the-art segmentation algorithms. In addition, we compare and analysis their
performance in classic segment-based stereo matching algorithms. Through ex-
periment, we conclude that color segmentation methods generally perform well
because they are more coincident with the object boundaries. On the other
hand, regularized segmentation algorithms are more suitable when the segmen-
tation scale is large. The rcason is the regularization on the size of segments
makes every segment becomes a large “pixel”. This aims at helping researchers
to choose the segmentation algorithm that most suitable for their stereo matching
application.

Secondly, a novel approach to dense stereo matching has been provided. Con-
ventional segment-based algorithms share a hard constraint that all pixels in the
same segment must have the same depth value or lie on a locally fitted surface
such as a plane, and discontinuities onlv occur on segment boundaries. While
hard constraint helps reducing ambiguity of disparities, it is not robust. Different
to theirs, our approach develops the idea of soft constraint that encourage but not
force pixels to follow the same distribution if they are in the same segment. This
idea has been transformed into a higher-order energy potential, and optimized

along with unary and pairwise terms in our framework. Beyond the novel higher-
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order term, the idea of sub-segmentation has been presented so that segments are
not only decided bv visual features but depth as well. For a better estimation,
several successful techniques have been combined, including robust local matching
method. left-right mutual check. confidence measurement, RANSAC and voting-
based plane-fitting. Two test-beds of both Middlebury and challenging real-scene
images have been evaluated, and results show that it obtains state-of-the-art re-
sults while still keeping efficiency.

Thirdly, we present a novel global optimization framework that combines
stereo matching with surface boundary estimation. To encode the relationship
between these two tvpes of variables, a two-layer Markov Random Fields(MRFs)
is built in which one layer represents depth and the other represents surface
boundariecs. In such framework, two tvpes of variables arc inferred globallv and
simultaneously. The work is carried out on both constrained Delaunay triangula-
tion level and color segmentation level. The former one features depth boundary
completion and the latter one provides accurate boundarics. We have success-
fullv applied it in low-resolution phosphene-based indoor human navigation. With
surface boundaries integration, it has three significant improvements:1) eliminat-
ing depth ambiguities and increasing the accuracy, 2) providing comprehensive
information of depth and boundary for human navigation under low-resolution
phosphene vision, 3) when integrating the boundary clues into downsampling pro-
cess, the foreground obstacles are clearly enhanced and discriminated from the
surrounding background. To optimize such complex graph. we choose the latest
projected graph cuts. Experiments on both Middlebury and indoor real-scence
data set show that the proposed approach achieves significantly better perfor-

mance than other popular methods in both regular and low resolutions.

6.2 Future Works

Besides these contributions. we have great interests to extend our current work

in the following directions:

6.2.1 Objects Recognition

In Chapter 5. we show that the proposed two-laver framework gives great es-
timations of both depth and surface boundary. One typical result is given In
Figure 6.1. it can be observed that the obstacles are clearly distinguished from

the surrounding background. This work can be further extended to recognition

co
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Figure 6.1: One of our results from two-layer framework described in Chapter
5. From left to right, input image with obstacles, our depth result, our surface

boundary result.

and classification. Since objects have already been well discriminated, it will

certainly assist future supervised learning work.

6.2.2 Hierarchical Model in Stereo Matching

Most of the existing works on stereo matching are either pixel-based or superpixel
based, the former one gives a more precise estimation while the latter one is
more efficient. To better find the trade off between accuracy and efficiency, a
hierarchical model mayv be proposed. In some applications, eg., human navigation
as we described in Chapter 5, the computation should focus on the close obstacles
rather than the background objects which are far away. In other words, a rough
depth estimation for background is sufficient, but for the nearer obstacles, the
depth should be as accurate as possible. In a hierarchical model, every segment
has its own children segments, the breaking down operation will dynamically
happen only when the parent segment chooses certain depth labels. In our case,
only if a segment takes a nearer depth label, its children nodes in the MRF
will be visited. This tree model can be easily pre-computed in the initial color

segmentation step with different color and space thresholds.

6.2.3 Projection Graph Cuts for Problems with Large La-
bel Space

For labeling problems with large one-dimensional label space, conventional a-
expansion will be inefficient, actually it takes a lot of time just visiting every label
in the label set. To overcome it, the large label space can be decomposed into
two dimensions, so the original variables will now be replaced by two new sets of
variables. Once we have the labeling for both two new sets, the label assignment

for the original variables can be ecasilv computed through reverse conversion.
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This method is in the hope of being more efficient while still achieving adequate
accuracy.

In this case, any energy functions with second-order energy term will now
be decomposed to a two-layer MRFs with the clique size up to 4, as shown
in Figure 6.2. If the second-order term in the original energy function is in
some specific forms, e.g., Potts model, the transformed two-layer structure can
be solved through projection graph cut. In general cases. the fully linked clique
can be approximated by 4 pairwise links through some techniques. c.g.. least
square error. Also if we force all weight to be positive, we will be able to solve
two-layers together through max-flow algorithm.

E = w(yi,zi) + w(yj,zj)+ ¢(yi,yjzi,zj)
E= D(xi) + V(xi,xj) yi '

Y]
Xi Xj .
D(xi) = w(yi,zi)
V(xi,xj) = @(yi,yj,zi,zj)
Large Label Space Two Small Label Spaces

Figure 6.2: An illustration of label space decomposition.
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