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Abstract

This thesis is a study of the mechanisms and applications of the near-field interaction in 

metamaterial systems, investigated using pairs of resonators. Metamaterials are arrays 

of sub-wavelength resonant elements, and can be engineered to create exotic properties 

such as artificial magnetism and negative refraction. The response of a bulk metama-

terial is strongly dependent on the lattice parameters, and the relative orientation of 

neighboring resonators has a particularly strong influence, due to the near-field interac-

tion.

To start with I study the coupling between two split ring resonators rotated through 

their common axis, in order to further understand the near-field interaction. The in-

terplay between the electric and magnetic interactions in the system is analyzed, along 

with the resulting crossing of the resonant modes. A Lagrangian model is applied to the 

twisted rings to determine the mechanisms behind the crossing of the modes, which is 
dependent on the symmetry and losses in the system.

The ability to use the near-field interaction to control the nonlinear tuning is then 

investigated. By introducing nonlinear inclusions in resonant elements, meta-atoms 

with a dynamic nonlinear response can be created. By modifying the spacing between 

such resonators, I can control this response via the near-field interaction. The resulting 

nonlinear response can be explained using the linear properties of the system such as the 

absorption in the resonators, and the voltage induced across the nonlinear inclusions.

The possibility of manipulating chiral properties of twisted meta-atoms is also stud-

ied, in order to address the issue of resonant optical activity over the transmission band, 

along with the accompanying ellipticity in the output polarization. In particular, I 

propose a "mixed pair" - a structure consisting of a meta-atom and its complement. 

Combining these elements together couples equivalent parallel electric and magnetic 

dipoles. This structure has a lower order symmetry than a pair of twisted identical 

resonators. The optical activity in the structure is optimized through manipulating the 

coupling in the structure. I also develop a method for retrieving the effective param-

ix



eters, and present the results retrieved from a periodic array. The resulting retrieved 

parameters are verified by recalculating the scattering parameters theoretically.
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Chapter 1

Introduction

1.1 Metamaterials

When developing new technologies for applications such as sensing, medical imaging 

and antennas, it is important to have structures which are highly tunable and flexible 

in their response. There are limits to what can be achieved using materials found in na-

ture, so to meet more demanding applications artificial materials are engineered to have 

specific properties. This idea has been explored using plasmas [1], photonic crystals [2], 

liquid crystals [3], along with many other approaches.

Utilizing metamaterials provides freedom in creating structures with unique prop-

erties. A metamaterial is an engineered array of artificial structures, distinguishable 

from photonic crystals in that they have periodicity significantly smaller than the wave-

length. This is demonstrated in Fig. 1.1, where the density of the unit cells is compared 

for photonic crystals and metamaterials. The high relative density in metamaterials

Figure 1.1: Conceptual schematic showing the wavelength with respect to the material density 
for (a) photonic crystals, where the wavelength is comparable to the period of the structure, and 
(b) metamaterials, where the wavelength is much larger than the period of the structure.

(a) (b)

1



2 Introduction

means that the incoming wave cannot resolve the details of the structure. This enables 

the metamaterial to be assigned effective parameters, such as the magnetic permeabil-

ity fi, the electric permittivity e, and the refractive index n. Metamaterials can then be 

engineered with exotic properties such as artificial magnetism [4], negative refractive 

index [5], strong nonlinearity [6] and chirality [7], as well as being used for applications 

such as electromagnetic cloaking [8]. Many applications do not need bulk materials, and 

a single element or layer may suffice.The individual elements making up these arrays 

can be referred to as "meta-atoms" and the single layers as “meta-surfaces" or "meta-

films". In the case of isotropic media, the material parameters relate the external fields 

of a homogeneous structure with the constitutive equations

1.1.1 Artificial magnetism

Natural magnetism requires magnetic materials, and most magnetic materials can only 

respond at low frequencies (below the gigahertz range). Exceptions to this, such as 

ferrites, remain moderately active at gigahertz frequencies but are often heavy [4].

By building a material based on resonators a metamaterial can be created having 

an artificial magnetic response. The material can be designed to have strong magnetic 

properties, as well as being quite light, if so desired. Such materials can also be created 

using non-magnetic materials as the building blocks. As the effect will be resonant, it 

will only act within a narrow band of frequencies. These materials can also be made to 

operate at much higher frequencies, even up to optical frequencies.

A limited magnetic response can be achieved by exciting an array of metallic spheres 

or cylinders. To achieve a stronger magnetic resonance capacitive elements can be intro-

duced into the design, balancing the inductive effect. This can be done by adding gaps 

to the internal structure of the cylinder resulting in a low frequency resonance [4].

Split-ring resonators

By using a structure with finite thickness, a more isotropic effect is produced. Such 

a structure is shown in Fig. 1.2 (a), and is known as a split-ring resonator (SRR). The
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Figure 1.2: Examples of common resonators used to build metamaterials, (a) Split-ring res-
onator, (b) fishnet structure, (c) negative-index material, made from an array of combined SRRs 
and wires, (d) canonical spiral, (e) twisted crosses and (f) a nonlinear SRR with an attached 
diode.

use of the SRR for obtaining a magnetic response was originally proposed by Pendry 

et al. [4] in 1999 for use in the microwave regime. The external field incident on the 

SRR excites currents in the metal ring, leading to a current build up over the gap which 

results in a magnetic resonance. In order to drive the response further sub-wavelength, 

SRRs are often combined in pairs with a smaller ring encircled by a larger ring, shown in 

Fig. 1.2(c). The effective permeability for an array of such pairs is modeled geometrically 

using

l i = l -
1 + i 2lai

wr/xo

7T r 2
IF

3 / c q

7rcj2i n ( ^ ) r 3

( 1.2)

The resistance per unit length of the wires measured around the circumference is rep-

resented as <7i, c0 is the speed of light in free space, a and l are the lattice parameters, 

and c, d and r the geometric parameters of the rings (the width of the rings, inner ra-

dius of the smaller ring, and gap between the rings respectively). The resulting effective 

permeability can become negative around the resonance.



4 Introduction

SRRs have since been scaled down for use at terahertz and mid-infrared frequencies 

[9-11]. However at higher frequencies there is an increased scattering of electrons at 

the surface of the metal, along with kinetic inductance due to the finite inertia of the 

electrons, which breaks the linear scaling of frequency with radius and dampens the 

resonance [12,13]. This results in the SRR being unable to exhibit a strong magnetic 

response for use at optical frequencies.

Structures for higher frequencies

Alternative structures are required to generate a magnetic response at higher frequen-

cies. An array of gold staple-like structures was used to experimentally achieve negative 

permeability at mid-infrared frequencies [14]. Magnetic responses were later achieved 

at near-infrared frequencies using a composite structure consisting of two gold layers 

separated by a dielectric layer, all of which have an array of holes drilled through, on 

top of a glass substrate [15]. This structure came to be known as the fishnet structure 

and is shown in Fig. 1.2 (b). The design was later improved to support a magnetic re-

sponse at optical frequencies [16]. This fishnet structure can also be used at terahertz 

and microwave frequencies [17].

There has also been a lot of interest in the use of nanoparticle resonators to achieve a 

magnetic response at optical frequencies. A metallic semi-sphere can be seen as a three 

dimensional analogue of a split-ring resonator, and can be used at optical frequencies to 

achieve a strong magnetic response [18]. Dielectric spherical nanoparticles also have a 

magnetic response at infrared [19] and optical [20] frequencies. It is also found at higher 

frequencies that use of dielectric materials instead of metals is often preferred due to 

reduced losses in the system [19]. Through a combination of a metallic split-ring with 

a silicon sphere at near-infrared frequencies, the ferrimagnetism of the response can be 

controlled, where changing the distance between the resonators can switch the system 

from being ferrimagnetic to antiferrimagnetic [21]. Cubic nanoparticles can also be used 

to create an isotropic magnetic response in three dimensions [22].

1.1.2 Negative refraction

The effects of a wave propagating through a medium with both negative permeability 

and negative permittivity were theoretically investigated by Veselago in 1968 [23]. He
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found that if the structure has both negative e and /i the resulting refractive index of the 

structure, defined as

n = ±y/Ji€, (1.3)

will take the negative sign. This means that the wave is traveling backwards, where the 

direction of the wave vector is now directed opposite to the Poynting vector, shown in 

Fig. 1.3 (b). This also results in a reversal of the Doppler effect. Such materials were 

originally known as Left-handed materials (LHM), however this is similar to another 

common term in the metamaterials field, so instead the term Negative-index materials 

(NIMs) is used. NIMs can be used in applications such as super-lensing and super-

resolution [23,24]

However, materials with desirable negative properties are not easy to come by. Ini-

tially Veselago was thinking of using plasma to achieve a negative permittivity, but it is 

now known that an array of thin wires will have the same property [25,26]. It was not 

until the proposal of the SRR [4] however, that a negative permeability could be easily 

achieved. By combining SRR and wires in an array, as in Fig. 1.2 (c), and designing 

the resonators so that their resonances overlap, a band with simultaneously negative 

and e was achieved experimentally [5,27]. This was confirmed to result in a negative 

refractive index [28,29]. This effect can also be achieved by exciting SRRs in a metallic 

waveguide operating below the first cut-off mode, as this is equivalent to a medium 

with e < 0 [30]. Efforts have also been made towards creating such materials in two 

and three dimensions [31,32]. A lot of research has since gone into expanding the pos-

sibilities of achieving negative refraction, especially at higher frequencies [16,33]. A 

negative refractive index has also been achieved using photonic crystals [34], however 

as this structure is not sub-wavelength the response cannot be homogenized.

1.1.3 Material symmetries

In the most general case, the effective medium description of a metamaterial has not 

only electric and magnetic terms, but also terms representing the coupling between 

them. The material parameters in a general material combine the electric and magnetic
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(a)

Figure 1.3: Wave vectors in (a) positive-index and (b) negative-index materials, showing the 
change in direction of the wave vector k. E is directed into the page.

fields. This is expressed in the general form [35]

e0e (x -  *«) /c 
_ _(x + i«) /c floß

(1.4)

where e and ß are the material tensors describing the dielectric and magnetic responses, 

k  is the bi-anisotropy tensor, which describes the cross-coupling between the incident 

fields, and x  is known as the non-reciprocity tensor. These two separate tensors (R and 
X )  are used as they represent two distinct effects - reciprocal and non-reciprocal.

The most general medium is non-reciprocal, which results in the transmission being 

different in the forward and backward directions along the same axis. Reciprocity is 

only violated for special classes of media, such as nonlinear materials or biased ferrites. 

This response can be simplified depending on the symmetry properties of the material, 

with the most simplified case being the homogeneous, isotropic case, with no coupling 

between the electric and magnetic fields. This case is described by Eq. (1.1), using only 

two effective parameters, fj, and e, which are scalar. Only structures excited at normal 

incidence, parallel to an axis of symmetry, will be considered in this thesis.

Reciprocal bi-anisotropic media

A bi-anisotropic medium is inhomogeneous and asymmetric. Specifically, it will be 

physically different when viewed from opposite directions, resulting in the reflection 

being dependent on the propagation direction. The constitutive equations for the recip-
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(a) (b)
Figure 1.4: (a) A diagram of the effect of the electromagnetic waves passing through a chiral 
medium, where the linearly polarized wave is rotated through an angle as it passes through the 
material, which is the optical activity, (b) A diagram showing the output polarization of the 
wave, </> is the resulting optical activity, and r/ the ellipticity.

rocal case are

In the reciprocal case there is still coupling between the electric and magnetic fields, 

however the transmission is no longer dependent on the direction of the incoming wave. 

The bi-anisotropy can be caused by effects such as the magnetic resonance of a SRR 

coupling to the incident electric field, dependent upon the correct alignment of the fields 

relative to the SRR [36].

Chirality leads to a special case of bi-anisotropy, where the trace of the bi-anisotropic 

tensor is non-zero. A chiral structure is distinct from its mirror image, an example of 

which is shown in Fig. 1.2 (c). Such a structure cannot be mapped onto its mirror image 

through any combination of translation and rotation operations.

A linearly polarized wave can be represented as a superposition of two identical 

but opposite circularly polarized waves. In an isotropic chiral medium, the two circular 

polarizations (right- and left- handed) are the propagating eigenmodes, and the chiral 

symmetry breaks the degeneracy causing the two polarizations to propagate at differ-

(1.5)

Chirality



8 Introduction

ent velocities. This results in the output polarization being rotated through an angle, 

which is the optical activity, shown in Fig. 1.4 (a). The output polarization can also 

have some ellipticity, which means it is no longer linearly polarized, and this is shown 

in Fig. 1.4 (b). Chiral metamaterials can have optical activity that is up to one million 

times stronger than that in natural materials, and may be useful for applications such as 

chemical sensing [37] and polarization manipulation.

A chiral medium can be either left- or right-handed, depending on the circular po-

larization with which it most strongly interacts [38]. In Section 1.1.2 it was mentioned 

that negative index media are sometimes called left-handed materials. It is important 

to distinguish between left-handed chiral media and negative index media, as they are 

referring to different properties of the material.

In the case of an isotropic chiral medium, the cross-coupling between the magnetic 

and electric polarizations of the media becomes scalar [7], resulting in the simplification 

of Eq. (1.5) to

where k  is the chirality parameter, which couples the parallel components of the electric 

and magnetic fields together. This added parameter results in negative refraction being 

easier to engineer, as now

which are the refractive indices corresponding to the two propagating circular polar-

izations [39,40]. The positive sign corresponds to the left-handed circularly polarized 

wave, and the negative sign to the right-handed circular polarization. Providing that /n 

and e are small enough compared to n, at least one of the polarizations will experience 

negative refraction [39]. This has resulted in large efforts to achieve negative refraction 

through chirality [41^43].

The chirality parameter can be calculated from the transmission of the circularly 

polarized waves [40]:

( 1.6)

n± = y/JIe ±  k (1.7)

K  = ( 1-8)
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where T± are the transmission coefficients for the two polarizations, and ip± are the 

corresponding phases. Eq. 1.8 can also be expressed as

Re ( k )
ip+ — ip- +  2m, it  

2kod
Im (k )

ln|r~| -ln |r+ |
2kod

(1.9)

with m being an integer determined by the condition — 7r < ip+ — ip- + 2m,it < n for one 

unit cell. The optical activity can be found using

(j) =
ip+ — ip- +  2mir 

2
( 1.10)

and the ellipticity using
itan-iin 2 -ir- | 2 

V 2 |T+ |2 + |T - |2 '
( 1.11)

It can be seen that the ellipticity (Eq. 1.11) and optical activity (Eq. 1.10) relate to the real 

and imaginary components of the chirality (Eq. 1.9).

This cross-coupling can be best seen in three-dimensional structures, such as the he-

lix, or the canonical spiral shown in Fig. 1.2 (d), which can result in coupled magnetic 

and electric dipole type responses [44]. This is due to the magnetic field exciting both 

electric and magnetic dipoles, as well as the electric field exciting both electric and mag-

netic dipoles. Such structures are used extensively for applications requiring chirality, 

such as broadband polarizers [38,45]. However, full three-dimensional structures can 

be quite complex to fabricate, especially at higher frequencies.

Alternatively, by combining two or more achiral, planar elements rotated about their 

common axis, such as crosses [46] or split ring resonators [47], a chiral meta-atom can 

be created. Such configurations have been shown to exhibit strong optical activity, and 

broadband polarization conversion [46-49]. An example is shown in Fig. 1.2 (e).

Depending on the resonant mode, the response of these structures is dominated by 

their electric or magnetic dipole moment. In either case, this results in strong reflection 

at the resonant frequency due to impedance mismatch of the sample with the surround-

ing medium. In addition, the resonant optical activity in such structures is accompanied 

by strong circular dichroism, causing ellipticity in the output polarization state, which 

is often undesirable [46]. This is due to the Kramers-Kronig relationship for k  [50]. In 

conducting a thorough search of the relevant literature [46^49,51-56], it is found that



10 Introduction

for all cases involving layered structures this dispersive optical activity occurs. It is 

possible to achieve reasonably flat optical activity off-resonance [46], however this was 

accompanied by a decrease in the magnitude of the optical activity. This requires the 

development of a planar metamaterial which produces strong, non-resonant optical ac-

tivity over the transmission band.

1.1.4 Nonlinearity

So far the responses of metamaterials determined by the geometries of the individual 

meta-atoms have been discussed. However, introducing nonlinearity adds a whole 

realm of possibilities for engineering unique effects. The response of linear metamate-

rials is independent from the strength of the external field, whereas nonlinear materials 

can have responses which are power dependent. This has applications in tuning the 

frequency of negative refraction, as this is a narrow-band effect [57]. There is also the 

possibility of reproducing at microwave frequencies nonlinear effects commonly occur-

ring at optical frequencies [6] such as second and third harmonic generation [58-61], 

and the nonlinear Kerr effect [62].

A nonlinear meta-atom can be created by including some form of nonlinear element, 

such as a semiconductor diode, in a resonator. By attaching a semiconductor component 

across a split-ring resonator and changing the doping level, the resulting resonance can 

be modulated [63]. More commonly, by adding a varactor to a slit on a SRR, as shown in 

Fig. 1.2 (f), and applying a bias voltage, the resonance can be tuned through the resulting 

change in capacitance [57]. Such a response can be used for the design of tunable notch 

filters [64].

Many tunable inclusions also respond to the high frequency incident wave, which 

results in meta-atoms with varactors attached potentially having a dynamic nonlinear 

response [6]. These systems will typically have power-dependent resonant frequen-

cies [57,65-67]. The nonlinear response of metamaterials can be much stronger than 

that of natural materials, due to their resonant nature and the local field enhancement 

which occurs at certain "hot spots". This has been utilized to create metamaterials at mi-

crowave frequencies to achieve wave mixing [68], three-wave coupling [69] and control 

of the second harmonic generation [61], among other effects [70].
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1.2 Coupling and hybridization of meta-atoms

1.2.1 Effective medium theory

The response of a bulk metamaterial is dependent on the properties of the individual el-

ements, and can be modeled using effective medium theory, which averages the electric 

and magnetic responses over the unit cells of the metamaterial. This is used to calcu-

late the effective parameters from the transmission and reflection [71]. The resulting 

response is dependent on the properties of the resonator - size, shape and dielectric 

function, as well as on the properties of the surrounding medium [72]. Changing the 

physical structure of SRRs, including the introduction of asymmetries, can modify the 

response substantially [11].

The overall response of the lattice is determined not just by the geometrical proper-

ties of the individual resonators, but also on the interactions of the resonators [73]. The 

following equation was developed by Gorkunov et al. to calculate the overall response 

of a bulk metamaterial made of resonant circular conducting elements:

ß =
iZ

unoro
iZ

ujßoro

T  £  -  |7 r2rono 

+  £  — 7̂T2r§no
( 1.12)

where ro is the radius of the loop, no is the volume concentration of the loop, Z  is the 

self-impedance and S =  Y  J  (rn — rn/) is a dimensionless parameter which depends
n'^n

only on the lattice type and the lattice constant values. Here J(r) is a dimensionless 

function describing the mutual inductance around the loops, and r n is the radius vec-

tor. It can be seen from this equation that the overall response of the metamaterial is 

dependent on both the individual parameters and on the lattice parameters.

A lot of research has been done to determine the ideal spacing of resonators to ensure 

homogeneity of the response [74]. The parameters of a metamaterial should not be 

dependent on the thickness of the metamaterial, however if the resonators are too close, 

the coupling is too strong, and the resulting properties change with every layer added, 

including the chiral properties [53].

This coupling provides a whole new range of tunable metamaterials with unique 

properties [77]. These can also be created using MEMS devices, and have a range of ap-
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Figure 1.5: (a) Example of a metamaterial array of split ring resonators tuned by shifting alternat-
ing layers [75]. Two split-rings in a (b) broadside- and (c) gap-to-gap-coupled configuration [76]. 
Sa is the lateral shift between layers, defined for (b) and (c) as the lateral distance between the 
centers of the two rings.

plications, such as making tunable filters. Many methods and applications are explored 

further in Ref. [78]. In particular, in Ref. [75], Lapine et al. showed experimentally that 

by shifting alternate layers of a bulk structure, as shown in Fig. 1.5 (a), they could effec-

tively tune the overall response in a way that minimized altering the geometry.

As meta-atoms are not strongly sub-wavelength, coupling between them results in 

a highly non-local response which is not well described by effective medium theory. A 

new model for describing the materials is needed. The work by Gorkunov et al. [73] 

takes into account the mutual interaction of all the elements in the lattice. A modified 

effective medium approach based on circuit theory was also used in [75]. However 

these models only use very approximate expressions to describe the interaction. They 

are also only relevant to bulk systems but many systems of interest have a small number 

of elements, such as meta-surfaces or pairs of resonators.
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Figure 1.6: Relative current flow directions for the (a) symmetric and (b) antisymmetric modes.

1.2.2 Exact microscopic description of near-field interaction

When two resonators are close enough together, they will couple, resulting in a change 

in the resonant behavior [79]. When the coupling is weak, the response can be 

described using coupled mode theory [80]. Some commonly used resonator pairs 

are edge-coupled and broadside-coupled SRRs, the latter of which can be seen in 

Fig. 1.5 (b) [76,81]. This coupling results in a hybridization and splitting of the resonant 

modes. In the case of identical resonators, there will be a symmetric and an antisymmet-

ric mode [82]. The modes are named according to the relative direction of the currents 

- the currents flow in the same direction for the symmetric mode, shown in Fig. 1.6 (a), 

and in opposite directions for the antisymmetric mode, shown in Fig. 1.6 (b).

The effect of the relative orientation of neighboring resonators was studied in 

Ref. [76] by comparing a pair of SRRs broadside-coupled, shown in Fig. 1.5 (b), to a 

pair of SRRs coupled gap-to-gap, shown in Fig. 1.5 (c). It was found that the orientation 

of meta-atoms within the lattice has a strong influence on the resulting lattice response, 

and this contradicts earlier simplified models describing the interaction of the rings us-

ing mutual inductance. The dependence on the orientation within the lattice is due to 

near-field coupling between elements, which is strongest between nearest neighbors. 

Understanding this interaction is vital to being able to correctly understand and model 

the tuning and coupling mechanisms in the overall structure, and this will be the main 

topic of this thesis.

To this end H. Liu et al. developed a Lagrangian model to numerically analyze an 

array consisting of pairs of split ring resonators on the same axis, with a relative rota-

tion of 90° in Ref. [79]. The hybridized modes of this system showed strong polarization 

rotation, and had suppressed radiation losses [83]. Subsequently, N. Liu et al. [84] inves-
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tigated a similar system, but with the rotation changing from 0° through to 90°. They 

used numerical analysis to extract the eigenmodes of a pair of SRRs operating in the 

near infrared, and fitted a dipole model to the generalized dispersion curve. In particu-

lar, it was assumed that the magnetic interaction constant is invariant with twist angle, 

however this is inconsistent with the strong variation of current density around the cir-

cumference of the ring. This model has since been extended to include the polarization 

rotation of the scattered radiation [85].

In Ref. [76], Powell et al. developed an approach for determining the exact electric 

and magnetic interaction coefficients for the system. These coefficients were calculated 

based on the current and charge distributions calculated for the individual rings. The 

response for the pairs was then compared to the response of a bulk metamaterial with 

alternate layers shifted laterally. It was found that while the resonant frequencies were 

quantitatively different between a pair and an array, the effects of tuning were quali-

tatively similar. This suggests that the near-field interaction between neighboring el-

ements is the dominant source of coupling in the array for a realistic arrangement of 

resonators, and so studying pairs of resonators to further understand this interaction 

is important. Calculating the interaction directly from the charges and currents gives 

a physical understanding of the system, and is valid in regimes where simpler models 

based on dipole-dipole interactions break down.

The near-field interaction is also essential for determining the overall response of 

chiral structures formed from achiral constituents, where the spacing between the res-

onators affects the chiral properties [49,51]. The coupling effects between multiple such 

chiral pairs combined as a longitudinal array have also been studied [53,54]. The near-

field interaction provides a tool to address the issues discussed in Section 1.1.3, by al-

lowing the engineering of a material with large, non-resonant optical activity.

So far most near-field interaction work has been focused on engineering the linear 

properties of metamaterials. As discussed in Section 1.1.4, nonlinear materials can have 

a response which is power dependent. Being able to engineer the nonlinear properties 

of a metamaterial would be a powerful tool in the design of metamaterials, and provide 

further degrees of freedom. The effect that the relative orientation of unaltered L-shaped 

resonators in an array has on the second-order nonlinear properties at optical frequen-
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cies was studied in Ref. [86]. It was found that the response could be affected by up 

to a factor of fifty. However, the impact of near-field coupling effects on the nonlinear 

response of metamaterials has not been studied.

1.3 Thesis overview

In this Chapter I have given an overview of the development and theory of metamateri-

als, and the motivation behind my study of pairs of coupled resonators. This overview 

focused on the near-field interaction between resonators, and the effects this has on the 

overall properties of a bulk metamaterial. It also focused on the unique properties that 

metamaterials can have.

In Chapter 2, the coupling between two split ring resonators rotated through a twist 

angle 6 is studied, in order to further understand the near-field interaction. In particular, 

I look at the interplay between the electric and magnetic interactions in the system, and 

the resulting crossing of the resonant modes. I use a Lagrangian model applied to the 

twisted rings to understand the crossing of the modes.

I then investigate the control of nonlinear tuning via the near-field interaction in Chap-

ter 3. This is done by attaching varactors to the gaps in a pair of SRRs, and modifying 

the distance between them in the same way as in Ref. [76]. The nonlinear response is 

explained by looking at the linear properties of the system such as the voltage induced 

across the diodes.

In Chapter 4 the chiral properties of twisted meta-atoms are explored. In particular, 

I propose a "mixed pair", which is a structure consisting of a meta-atom and its com-

plement. Combining these elements together couples equivalent parallel electric and 

magnetic dipoles, which should overcome the current issues with twisted chiral struc-

tures highlighted in Section 1.1.3. This structure has C4 symmetry, which is a lower 

order than the symmetry in a pair of twisted crosses. I then optimize the optical activity 

in the structure through manipulating the coupling in the structure.

In Chapter 5 I continue to investigate the properties of the "mixed pair" proposed in 

the previous chapter, and study the effects of the symmetry of the structure on the prop-

erties. I develop a method for retrieving the effective parameters, as this has not been
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previously done for metamaterials belonging to this symmetry group, and present the 

results retrieved from a periodic array. I verify the retrieved parameters by recalculating 

the scattering parameters theoretically.

Finally, I summarize my research in Chapter 6, and present an outlook of possible 

future directions for further studies.



Chapter 2

Near-field Interaction of Twisted 

Split Ring Resonators

The near-field interaction between resonators plays an important role in the response of 

metamaterials. As discussed in Section 1.2.2, this response causes the relative orienta-

tion of elements inside a lattice to significantly affect the results, as shown by Powell et 

al. in Ref. [70], where a pair of split-ring resonators shifted laterally was studied. It was 

found that the relative angle in between the two rings greatly influenced the resulting 

effect of shifting the rings. This interaction is strongest between neighboring resonators, 

and so is best studied using pairs.

The purpose of this Chapter is twofold. First, I give a rigorous analysis of the interac-

tion between a pair of co-axial SRRs with one ring rotated, and determine the conditions 

under which the dispersion curves will undergo a crossing or avoided crossing. I intro-

duce a physically-based model for describing the interplay between the magnetic and 

electric near-field interactions, and show how this model explains the experimentally 

and numerically observed dispersion behavior.

In 2007 H. Liu et al. [79] analyzed numerically an array consisting of pairs of split 

ring resonators on the same axis, with the second ring rotated by 90°. The hybridized 

modes of this system show strong polarization rotation, and have suppressed radiation 

losses [83]. Subsequently, N. Liu et al. [84] investigated a similar system, but considered 

an arbitrary angle between the two rings. Using numerical analysis, they extracted the 

eigenmodes of a pair of SRRs operating in the near infrared. They concluded that as the 

twist angle increases, the resonances converge, undergo an avoided crossing, then di-

17



18 Near-field Interaction o f Twisted Split Ring Resonators

verge again. The reason for this avoided crossing is not clear, since the previous study by 

Powell et al. of a different systems of coupled SRRs showed that the hybridized modes 

can cross [76]. In Ref. [84] the dispersion curve with an avoided crossing was fitted 

by a multipole interaction model, however no physical justification for this fitting was 

given. In particular, it was assumed that the magnetic interaction constant is invariant 

with twist angle, however this is inconsistent with the strong variation of current den-

sity around the circumference of the ring. This model was subsequently extended to 

include the polarization-rotation of the scattered radiation [85].

In Section 2.1, I present the experimental and numerical analysis of the dispersion 

curves. I also investigate the effect of losses and the waveguide on the dispersion curves. 

In Section 2.2.11 show how the dispersion curves can cross, based on an idealized model 

of a pair of SRRs. Finally, in Section 2.2.2 the influence of losses and non-identical rings 

on the dispersion curves is considered. Using the theory of Morse critical points, it will 

be shown that competition between losses and differences in the resonant frequencies 

of the rings will determine whether or not the modes cross.

The work presented in this chapter is a collaboration predominantly between myself 

and David Powell. The experimental and numerical results were completed by myself, 

and the calculations in Section 2.2 by David Powell.

2.1 Experimental results

I consider a pair of SRRs with varying twist angle 6 between them shown schematically 

in Fig. 2.1 (a). First, microwave experiments are performed using pairs of rings, with 

one ring held fixed, and a separate sample created for each rotated ring. The rings 

have an inner radius of 3.5 mm, an outer radius of 4 mm, and a gap of 1 mm. They are 

copper, printed at fixed angles onto 1.6 mm thick FR4 circuit board, and the rings 3.6 mm 

apart, with the dielectric boards located between the rings. The incoming microwaves 

are polarized so that the electric field is across the gap of the fixed ring, as shown in 

Fig. 2.1 (a).

The experiments are conducted inside a WR-229 rectangular waveguide, which has 

a recommended band of operation from 3.3 - 4.9 GHz, over which the waveguide only
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Figure 2.1: (a) A schematic showing the rings rotated with respect to each other through angle 
9, and the polarization of the incoming waves, (b) Schematic diagram of the rings inside the 
waveguide. The size of the rings in relation to the waveguide is greatly exaggerated.

has one propagating mode, TEio- At 5 GHz, the decay rate for the TE20 mode is 5.3 mm, 

much smaller than the length of the waveguide. The experiments are designed to oper-

ate within this frequency range. A Rohde and Schwarz ZVB network analyzer is used to 

measure the resulting transmission and reflection coefficients. A depiction of the twisted 

rings inside the waveguide is shown in Fig. 2.1 (b). The relative size of the rings to the 

waveguide is greatly exaggerated in this figure. The excitation of the rings is measured 

using the absorption of the system, which describes the maximum currents on the rings. 

The absorption is given by 1 — l‘S'2112 — |£ ii |2/ where S 21 is the transmission coefficient, 

and Sn is the reflection coefficient. An example of the absorption is compared to the 

corresponding transmission and reflection in Fig. 2.3 (a).

To match the experimental data, I perform numerical calculations using CST Mi-

crowave Studio, a numerical simulator designed for three dimensional simulation of 

high frequency components. The rings are simulated as copper, and the boards as FR4 

with a dielectric constant of 4.6, and a loss tangent (tan(6)) of 0.025. At microwave fre-

quencies, the dielectric constant of FR4 is ill-defined, so the value is chosen based on 

what best agrees with the experimental results. The losses in the copper rings are negli-

gible compared to the losses in the substrate.

To characterize the dispersion behavior, experiments are performed with 9 varied 

from 0° to 180° in 10° increments, while numerical results are calculated in 5° incre-
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Figure 2.2: Numerically calculated current distributions for the (a) antisymmetric (b) and sym-
metric resonant frequencies, for 0 = 0°. The circled areas shows the current directions to com-
pare, and the relevant frequencies are in the boxes in GHz.

ments. The current distribution on the rings is monitored at the resonant frequencies, 

an example of which is shown in Fig. 2.2, for 9 = 0°. The resonant frequencies at this 

angle are 3.877 GHz and 3.992 GHz, and by inspection of the simulated currents in the 

rings at these frequencies, I verify that these correspond respectively to the expected 

antisymmetric (Fig. 2.2 (a)) and symmetric (Fig. 2.2 (b)) resonances. These resonances 

are dom inated by these modes, but may have errors due to contribution from the other 

mode, the finite mesh or the selection of plotting points by CST. Comparisons of the 

absorption curves for 6 = 0°, 9 = 90° and 9 = 180° are shown in Figs. 2.3 (b, c and d) 

respectively. For 9 =0°, there are two resonances u s  and u a s - As  9 increases, u a s  in-

creases and u>s decreases, reaching their m axim um  and m inim um  values respectively at

As can be seen in Figs. 2.3 (b-d) and Fig. 2.4 (b), the two resonant peaks have different 

w idths, which are prim arily due to differing radiation losses. The symmetric mode 

has relatively stronger radiation losses for low angles, since each ring approxim ates an 

electric dipole, and a pair of parallel dipoles radiate strongly. As the angle approaches 

180°, the dipoles become oppositely directed, thus there is the low radiation efficiency of 

an electric quadrupole/m agnetic dipole like distribution [87]. The antisymmetric mode 

has the charges on one ring of the opposite sign to the other, therefore it changes from

9 =180°.
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Figure 2.3: (a) A comparison of the numerically calculated transmission, reflection and absorp-
tion curves for 0 = 0°. (b-d) Numerical (dashed) and experimental (solid) absorption curves for 
(b) 0 = 0°, (c) 6 =  90° and (d) 0 =180°.

an electric quadrupole to an electric dipole type distribution with increasing angle, and 

the radiation efficiency increases.

For each angle a Fano function [88] is fitted to the experimentally and numerically 

obtained absorption curves, in order to minimize errors in the peak due to background 

noise fluctuations. Due to the strong coupling of the resonance to the radiating waves, 

the data has an asymmetric lineform, which cannot be reproduced using fitting proce-

dures such as the Lorentz function. The Fano function is chosen as it has the degrees 

of freedom to reproduce the observed spectral features. This function is typically ex-

pressed in the normalized form [88]

(11 + q) 
fl2 + l ’
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where q is a phenomenological shape parameter and Q =2(co — cor) / j ,  with car /27r being 

the resonant frequency, and 7 the damping coefficient. The value of q determines the 

amplitude and asymmetry of the curve, and can range from —00 to 00. However, the 

large values that q can take on cause numerical problems for the fitting procedure, so 

additional parameters a and n are introduced, which account for the amplitude of the 

peak and the non-resonant contribution to the absorption, and q is replaced with £, 

which is an asymmetry parameter. Now the following equation will be used:

F = n + a (£fi + l )2
n2 +1

(2 .2)

This modified equation allows for accurate fitting of the curve to the data.

The fitting procedure uses a least squares optimization to find the values of the vari-

able parameters (a, n, u r, 7 and £). The resulting resonant frequencies and damping 

coefficients are shown in Figs. 2.4 (a) and (b) respectively. In all cases the data are well- 

described by a pair of Fano resonances with a correction for background absorption, 

and the fitting to the numerical results has a residual error below 5 x l0 -3 . The fitting 

error, for both the frequency and the damping rate, is estimated to be around 10-4 GHz. 

The disagreement between the experimental and numerical results, particularly for the 

antisymmetric mode, is predominantly due to fabrication imperfections.

2.1.1 Crossing of resonant modes

Inspection of Fig. 2.4 (a) shows that the resonances appear to cross at 9 «  34°. Con-

sidering only the resonant frequencies, the possibility of a narrowly avoided crossing 

too small to resolve cannot be eliminated. However the numerically determined loss 

coefficients 7 shown in Fig. 2.4 (b) can be directly identified with the corresponding 

resonant frequencies since they are derived from the same fitted peaks. The absorption 

coefficients remain clearly distinct in the region of the crossing (confirmed by additional 

numerical simulations in 0.02° steps), thus the resonant frequencies are not exchanged 

and there is a clear indication of a crossing of modes.

While there could be multiple local minima of fitted parameters, it is known from 

[89] that the dispersion curve must be a continuous function. The real part must either 

continue or exchange. The fact that the dispersion curves in Fig. 2.4 are continuous give
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Figure 2.4: (a) A comparison of the experimental (markers) and numerical (lines) resonant fre-
quencies. (b) Corresponding damping coefficients, calculated from the resonance line-widths.

confidence in the fitting procedure. If a different minima were obtained, there would be 

non-physical jumps in the dispersion.

In Fig. 2.5 I have plotted the numerical absorption spectrum in the vicinity of the 

crossing. It has the appearance of only a single peak, however the fitting procedure still 

identifies two separate resonances, which are also plotted for comparison purposes. It 

can be seen that the symmetric peak is much stronger than the antisymmetric peak, but 

they are both still clearly present.

In general the experimental data show good agreement with the numerical data, but
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Figure 2.5: Numerical absorption curve (solid) for 6 =34° at the crossing, showing the two fitted 
resonances (dashed).

with some uncertainties due to fabrication tolerances.

2.1.2 Factors influencing the dispersion

The crossing of modes is influenced by a num ber of factors in the system, and some of 

these factors will now be studied numerically, including the losses in the system and the 

symmetry breaking caused by the presence of the waveguide.

One of the main factors in the strength of the coupling of the system is the separation 

between the resonators. Fig. 2.6 (a) shows the frequency dispersion for a separation 

between the boards of 3.2 mm, which is a slight change from the original separation of 

3.6 mm. By com paring the curves w ith Fig. 2.4 (a), it can been seen that the dispersion 

relation is similar, though both modes are shifted to a higher frequency. The apparent 

crossing of modes also occurs around the same angle.

The losses in the substrate have a significant influence on the w idth of the reso-

nances, so removing them should enhance the resonances, and separate them further, 

especially closer to resonance. Figure 2.6 (b) shows the dispersion curves for the orig-

inal system of separation 3.6 mm, w ith the losses in the substrate removed. It can be 

seen that the crossing angle increases to around 40°, and the resonances are slightly fur-
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Figure 2.6: Numerical dispersion relations, for both symmetric (solid) and antisymmetric 
(dashed) modes, for (a) a separation of 3.2 mm, (b) the losses removed from the substrate, (c) 
the waveguide removed, and (d) a separation of 1.6 mm without the waveguide.

ther apart, especially closer to the crossing point where removing the losses cause the 

resonances to be better distinguished from each other, as expected.

In my system, the experiment was conducted inside a rectangular waveguide, which 

causes a breaking of the symmetry, due to each ring having a different relative orienta-

tion to the waveguide, dependent on the angle between the rings. Figures 2.6 (c, d) 

explore the effect of the waveguide on the frequency dispersion. Figure 2.6 (c) shows 

the frequency dispersion for the case where the waveguide is removed, and the rings 

are separated by a distance of 3.6 mm. The boards are modeled in this simulation as 

being loss free. It can be seen that there is again a crossing, and that the dispersion re-

lation is actually very similar to that in Fig. 2.4 (a). The apparent noise in the numerical 

frequency dispersion is due to imperfect meshing in the CST simulation. Figure 2.6 (d)
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then considers the case where the spacing is reduced to 1.6 mm. It can be seen that 

this change in coupling lowers the resonant frequency significantly, as well as lowering 

the crossing angle. However, the splitting between the modes is very similar, which is 

surprising.

In the systems considered here which appear to have a crossing of modes, it cannot 

be said for certain that this is the case, only that if an avoided crossing exists then it 

must be small. Therefore it is necessary to have a theoretical basis for understanding 

the dispersion curves, which will be developed in Section 2.2.1. Subsequently in Section

2.2.2 the effects of experimental error will be included in the model, thus the theory can 

be used to evaluate the reliability of my conclusion from the experimental results.

2.2 Theory of crossing

2.2.1 Identical and lossless Rings

The tuning of the system by rotation can be explained by looking at the interaction be-

tween the rings. As the rings are twisted, the magnetic and electric near-fields between 

the two rings change, changing the coupling between them. This problem is first ap-

proached using the Lagrangian for a pair of identical and lossless resonators [76,84]

where Q 1,2 (£) are the time-dependent amplitudes of the modes' charge distributions,

less magnetic and electric interaction constants. %  is defined by the interaction of the 

magnetic field with the currents on the rings, and h e  by the interaction of the electric 

field with the charges on the rings. These interaction coefficients are calculated from the 

electro-static (lT//iTnn) and magneto-static (WE,mn) stored energies in the system:

£ — ~^(Qi + Q\  + 2k m Q i Q2) — 2^(Q i + Q\  + ^ e Q xQ i) (2.3)

the rings have resonant frequency cüq = (LC ) 2, and %  and are the dimension-

We , 12 _ Wh , 12 (2.4)

These energies are derived from the numerically retrieved charge q (x) and current j (x') 

distributions:
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W E ,m n  —  

W H ,m n  =

^ (x )g (x /)
47T60 ||X -  X'|| ’

Moj (x) • j (x;) 
47t  ||x  — x'||

(2.5)

(2.6)

By substituting Eq. (2.3) into the Euler-Lagrange equation the dynamic equations are 

found to be

Qi  + üJq Q i =  ~ k m Q2 ~ KEU0Q2,

Q2 4* M0 Q2 k m Q i k e UqQ \ . (2.7)

Solving the characteristic equation for this system gives two resonances: symmetric 

(Qi = Q2)/ and antisymmetric (Q1 =  - Q 2)'

us  — ^ 0
1 4- Ke  
1 4 - k m

U  AS ( 2.8)

For a pair of rings in a homogeneous dielectric background, the electric and magnetic in-

teraction constants can be determined from the interaction energy between resonators, 

using the method described in Ref. [76]. The rings studied have the same dimensions 

as the rings used to obtain Fig. 2.4. The resulting interaction constants are shown by the 

markers in Fig. 2.7 (a), along with the following functions which fit the data very well:

k e  =  k e \ co s (0) k m  =  k mo  +  « m  1 cos(0) (2.9)

with k e \ — 0.085, k mo  =  0.098 and k m i = 0.05. These constants relate to the charge 

separation across the gap of the ring, the current circulating around the ring, and the 

inhomogeneity of the current distribution around the ring, respectively. They are found 

by fitting to the angle dependency of k e  and k m -

For rings aligned on the same axis, it is expected that the magnetic interaction k m  

should always be positive, as the intersecting magnetic field from one loop should al-

ways be normal to the other loop. In addition the electric interaction k e  should be 

positive at 9 — 0° as the charge distribution has the nature of parallel dipoles. All 

arrangement of rings on the same axis which were considered behaved in this manner.
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Figure 2.7: (a) Magnetic (k m ) and electric (k e ) interaction constants calculated for a pair of rings 
in free space. Dots show exact calculations, lines give the fitted function, and (b) shows the 
corresponding resonant frequencies, (c) Interaction where the variation in magnetic coupling 
dom inates, and (d) corresponding resonant frequencies, (e) Interaction constants which become 
equal, and (f) corresponding resonant frequencies which cross.

In Fig. 2.7 (b) the corresponding frequencies of the symmetric and antisymmetric 

modes are plotted, normalized to cuo- As this approach models the response of the 

resonators in a homogeneous dielectric background, the results are significantly dif-

ferent from those observed experimentally, where the dielectric is inhomogeneous and 

the effect of waveguide boundaries is also significant. In particular, for this system of 

perfectly conducting rings, the crossing of resonances cannot be reproduced in a homo-

geneous background. Therefore, the possible regimes of interaction which may occur 

are considered, under the assumption that the interaction constants will be of the form 

described in Eq. (2.9).

The case considered in Figs. 2.7 (a, b) corresponds to the magnetic interaction al-

ways being larger than the electric interaction. This results in increasing splitting of ujs 

and u j a s  with increasing twist angle, however in principle there is no reason why the 

splitting cannot decrease. Such a case is shown in Figs. 2.7(c, d), where k e i is set to 

0.02 < k m \, such that the inhomogeneity in the current has a stronger influence than the
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Figure 2.8: Numerical dispersion relations for a pair of rings simulated in a homogeneous dielec-
tric, in a periodic array, (a) The background dielectric is 1, with the rings separated by 1.6 mm; 
(b) the background dielectric is 4.6, with the rings separated by 1.6 mm; and (c) the background 
dielectric is 4.6, with the rings separated by 3.2 mm. The symmetric mode is represented by the 
solid blue line, and the antisymmetric the dashed red.

dipole-like charge distribution. Despite the different behavior of the frequency splitting 

curves, there is little qualitative difference between the interaction constants shown in 

Figs. 2.7 (a) and (c).

The only other case allowed in this model of interaction under the afore-mentioned 

physical constraints on «m and «£■ is that «m < «e  for 9 =0°. An example of this is given 

in Fig. 2.7 (e), where « mo , « m i  and k e \  are set to 0.108, 0.05 and 0.18 respectively, such 

that k e  = «M at 9 «  34°. The corresponding resonant frequencies normalized to ojo are 

plotted in Fig. 2.7 (f). The parameters have been chosen to closely match the dispersion 

shown in Fig. 2.4 (a). From this match between the model and the experimental data, 

it can be concluded that the inhomogeneous dielectric enhances the electric interaction 

between the rings but has almost no influence on the magnetic interaction, as expected.

As the changing of the dispersion relations is dependent on the electric interaction 

«j5, I can attempt to investigate these dispersion numerically by studying the effect of 

the dielectric on the response. In order to do this, pairs of rings are simulated in a 

homogeneous dielectric background, with both the background dielectric and spacing 

between the rings being altered. These simulations are performed in a periodic array, 

to remove the effects of the waveguide. The unit cell has the same height and width 

as the waveguide, and the system is excited using Floquet modes. Simulations are de-

signed to stay in approximately the same frequency range as the previous simulations. 

Figure 2.8 (a) shows the frequency dispersion for a background dielectric of 1, and a
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separation of 1.6 mm. The rings have an inner radius of 6 mm, to prevent the resonant 

frequencies becoming too large. The width of the rings and gap size remain the same (0.5 

and 1 mm respectively). It can be seen that there is significantly larger splitting between 

the modes here than for previous systems studied in this chapter, which will be due to 

the reduced separation between the rings, as well as the increased surface area on the 

rings, both factors which will lead to increased coupling between the rings. It can also 

be seen that there is no crossing of the modes, but they appear to both start at the same 

frequency. This frequency dispersion bears resemblance to that shown in Fig. 2.7 (b), 

where the frequency dispersion was calculated from the interaction coefficients.

The frequency dispersion for the same arrangement but with a background dielec-

tric of 4.6 is shown in Fig. 2.8 (b). The rings in this simulation are significantly smaller 

than those in Fig. 2.8 (a), to account for the increased dielectric. These rings are of inner 

radius 2.5 mm. The frequency dispersions between the two systems are very similar 

qualitatively but the second system has much smaller splitting. This is probably due 

to the decrease in surface area on the rings. The resonances are lower than the previ-

ous measurements, to prevent the need for even smaller rings, however the scales on 

the graphs are the same. The qualitative similarity between the dispersions shown in 

Figs. 2.8 (a, b) show that increasing the background dielectric does not appear to af-

fect the shape of the interaction coefficients. This is because the background dielectric 

constant cancels from the normalized interaction coefficients.

Figure 2.8 (c) then shows the dispersion for the previous system with the separa-

tion between rings increased to 3.2 mm. As expected, the coupling between the rings is 

greatly reduced, as seen by the significantly reduced splitting between the modes. This 

decrease in the coupling has also resulted in the appearance of two clear, separate reso-

nances at 0°, resulting in a frequency dispersion very similar to that in Fig. 2.7 (b). As the 

larger coupling in Fig. 2.8 (b) resulted in the modes being equal at 0°, it would be of in-

terest to see whether increasing the coupling further could cause the modes to be equal 

at a larger angle, resulting in a frequency dispersion to resembling that in Fig. 2.7 (f). 

However, due to higher order Floquet modes becoming propagating, there is a limit to 

how large a frequency range can be easily simulated over using CST, which limits the 

splitting which can be simulated.
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Equations (2.8) show that the tuning curves arise from competition between electric 

and magnetic interaction constants. If the magnetic and electric interaction constants 

have the same sign, then they will counteract each other. Thus the frequency splitting 

can be weak even if the near-field interaction is strong. In particular, the model shows 

that there is no splitting when k m = k e . This crossing of the real parts of the dispersion 

is in agreement with the numerical results presented in Fig. 2.4.

2.2.2 Non-identical and lossy Rings

Up to this point, a theoretical account of interaction which predicts a crossing of modes, 

and which is consistent with experimental results and numerical calculations has been 

given. However, a single ring within the waveguide will have some variation of its res-

onant frequency as it is rotated, due to interactions with the image currents in the wave-

guide walls. Similar effects should occur for rings which form part of a larger planar 

lattice. In addition, there will be further contribution due to fabrication uncertainties. 

Therefore the pair of twisted rings should be modeled as non-identical resonators. In 

addition, the theory developed in Section 2.2.1 has not included the influence of losses, 

neglecting the strong radiation from the rings into the waveguide modes, as well as 

ohmic dissipation.

One would expect that differences between the two rings would result in an avoided 

crossing, following well-known results from coupled-mode theory [80]. However such 

results rely on the Hermitian nature of the system, and are not valid once losses are 

considered. Therefore this question will be investigated using the theory of Morse crit-

ical points, which has previously been applied to resonators and waveguides [90-92]. 

In Ref. [89] an approach was demonstrated which showed the conditions for a crossing 

or anti-crossing of modes, and in particular demonstrated that losses can counteract an 

avoided crossing. This approach is now applied to this system of rotating rings, and the 

key results are presented. For a complete derivation and theoretical background, the 

reader is referred to Ref. [89].

First the system of equations given by Eqs. (2.7) is modified by introducing dissipa-

tion coefficients T a n d  a detuning parameter 6u, where 26uj is the difference between 

the individual resonant frequencies of the two rings, and T a r e  the damping coeffi-



32 Near-field Interaction of Twisted Split Ring Resonators

cients retrieved using the Fano fitting. The resulting equations are:

Qi T 2TiQ i T (üjo *F Öl c) Q i =  ~ k m Q2 ~~ ke ^ o Q z -

Q 2  +  2T2Q2 +  (<̂ 0 — Su j ) 2 Q 2  — —k a i Q i  — k e ^ o Q i - (2.10)

By taking the time dependence of Q as exp(jujt), the following dispersion equation is 

arrived at:

D(u,0) (cjq T  Su j ) T j 2T \uj — up X (a;o — Suj )2 + j2T 2 0 ; — up 

[k e (0)ujq -  k m {0)u 2] 2 =  0 ( 2 . 11)

The solutions of this system are not strictly symmetric and antisymmetric, although 

for small Su and for angles away from the avoided-crossing they are only slightly per-

turbed from the original modes. This model neglects the differences in radiation losses 

of the symmetric and antisymmetric modes, which also vary with twist angle. For this 

example km  arid k e  are given by Eq. (2.9), with the same coefficients used to derive 

Figs. 2.7 (e, f).

The dispersion curves of the system correspond to the condition D(u>, 6) = 0. In 

applying the theory of Morse critical points, the behavior of the function D(u,9) in the 

neighborhood of the crossing/anti-crossing is studied, and the values of (ta,0) which 

satisfy the dispersion equation are not limiting. This model is for the individual ele-

ments, and does not include a full analysis of the effect of the waveguide walls. The 

effects of the waveguide are that ujo is shifted, and the resonant frequency becomes an-

gle dependent. This second effect is the main effect for this analysis, and is accounted 

for in öuj

The first step is to find the Morse critical point (com, 0m) which satisfies D'^uim, 9m) = 

D'e(ujm,9m) = 0. In the case of a crossing of modes, this will be approximately the 

point where the dispersion curves cross, in the case of an avoided crossing this will be 

a saddle-point of D{uj,6). In general this point must be found numerically, however 

if it is assumed that T1 = T2 = T, a sufficiently accurate solution is found by using
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perturbation theory to first order in T:

^m

wm0

COS (9m)

WmO T  j T

(cüq + Su2) 2

^A/Ô mO + JT 2 k m O ^ E 1 ^ iw Q ^ q  

(«M lW ^o -  « E l ^ o ) 2

( 2.12)

(2.13)

(2.14)

In the vicinity of the Morse point a second-order Taylor expansion of D(u, 6) is per-

formed

.D(ce, 6) — D(um, 0m) +  — cem)2/2 +

D"„(u; -  wm)(0 -  0m) + D'^(0 -  emf/2. (2.15)

For this system the relevant partial derivatives can be calculated analytically, but the 

expressions are long and not particularly illuminating. From this local form of the dis-

persion equation, the solutions are given by:

n"U ujQ

K e 2-D 'L D e e ) (8 -  9my - 2 D ^ D ( u m, 8m) (2.16)

This function has a pair of branch points, where the argument of the square root be-

comes zero. Upon substitution of the parameters of the system, it is found that the 

branch points occur at the following values1 of 6:

v  (k MOKEIWq ) 2 -  («A /iwmO “  K E I ^ q ) 2
0bi ,2 = 0m ±  2jöuu0- ^ ----------------------, 0 °  2-------------------- — • (2.17)

( KM lW m0 — l ^ o )

As shown in Ref. [89], the position of branch points 0&i,2 on the complex plane deter-

mines the behavior of the resonant frequencies of the modes. In brief, if the imaginary 

parts of the two branch points have different signs, then the modes undergo an anti-

crossing. However, the modes cross if the imaginary parts of the Obi,2 have the same 

sign. This allows the effect of detuning Suj and losses T on the crossing-anti-crossing

‘Strictly speaking the term inside the square root has some dependence on T, which in turn will cause 
it to become complex for T ± 0. However both effects are negligible in this system.
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Figure 2.9: (a) Resonant frequencies and (b) absorption coefficients when T = lx lO -3u;o; (c) 
resonant frequencies and (d) absorption coefficients when T =7xlO -3c<Jo/ showing that losses 
restore the crossing, (e) Resonant frequencies and (f) absorption coefficients when losses are 
increased to T =2xlO -2u;o- The projections of the Morse point are shown by crosses. In all cases 
k m o  —  0.108, k m l =  0.05 and k e \  = 0.18.

behavior of the system to be analyzed. To do this, a single ring is analyzed as it is ro-

tated within the waveguide. By calculating the absorption spectra at 9 = 0° and 9 =34°, 

it is found that 2 6 l o =3.8x 10_3u;o, and that Ti = 1.8x 10-2üjo/ T 2  =1 .5x l0-2u;o. There-

fore Ti and T2 are set to = T and 0.83T respectively, and the dispersion behavior as a 

function of T is analyzed. While both T and 5uj are dependent on 9, in order to analyze 

the crossing of the modes, only the local behavior of the dispersion curve is studied, and 

so using T and Soj calculated at 9 — 34° is justified.

To start with, weak losses are considered, when T = lx lO ~ 3u;o. This case is very 

close to the lossless regime, and the real parts of frequencies are plotted in Fig. 2.9(a), 

where an avoided crossing can be seen, and in Fig. 2.9 (b) the imaginary parts, which 

are exchanged, are seen. As the losses are increased such that T =1.42x 10-2 u;o, it can be 

seen from Fig. 2.9 (c) that the resonant frequencies approach close to each other, but do 

not cross. The corresponding loss coefficients in Fig. 2.9 (d) still cross over each other. As 

the losses are increased further to T =  1 .8xlO ~2u;o (as obtained from simulations), the
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dispersion curve changes from an avoided crossing to a crossing, as shown in Fig. 2.9 (e) 

and (f). It is interesting to note that the losses also shift the angle of crossing away from 

the projection of the Morse point, which is exactly at the crossing in the lossless case.

Further simulations revealed that for T =1.8xlO~2ieo, the maximum permissible 

frequency detuning to maintain a crossing is 2Suj  =  4.8x 10-3o;o. This gives a bound on 

the total difference between the rings, including additional difference due to fabrication 

error. It was found from simulations that a change of 0.1 mm in either the radius or the 

ring gap would change Sco by 2.2xlO~3ceo, which gives Scu =  6 x 1 0 ~ 3c j o , resulting in an 

anti-crossing. Experimentally fabricating samples with smaller error thresh-holds than 

this should be achievable, however verifying the experimental resonant frequencies of 

the individual rings is much more difficult. In this system there is a different sample 

for each angle, thus Sco will vary with angle due to varying fabrication errors. So while 

it cannot be guaranteed that our experimental system has a crossing of modes, there 

can be confidence that any anti-crossing would be small, and would be eliminated by 

improved fabrication tolerances.

In the simulations considered in the previous section, the effect of both the losses and 

the presence of the waveguide (representing the detuning in the system) were studied. 

As removing the losses from the substrate does not affect the appearance of the crossing 

of modes discussed in Section 2.1.1, as shown by Figs. 2.5 and 2.6 (b), the likelihood of 

the losses in the initial system being too low for a crossing to occur is minimal. The 

effect of the waveguide's presence is harder to qualify further from the considerations 

above.

From the numerical results in Fig. 2.4 (c) and Fig. 2.9 (d), it can be seen that the 

decay constants of the hybridized modes are quite different, due to different radiation 

losses. It should be noted that if complete degeneracy of both the frequency and decay 

constants of the eigenmodes could be achieved, then the coupling between the rings 

would be completely suppressed, as the electric and magnetic coupling would cancel 

each other out. The case shown in Fig. 2.9 (c - d) is very close to this at the point of 

the avoided crossing, which can be seen where 7 becomes equal for both modes, and 

the frequencies are very close. Indeed, there exists a critical value of F at the transition 

between the crossing and avoided crossing regimes. In practice it would be quite diffi-
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cult to achieve this experimentally, however if such compensation could be realized this 

would have important implications for mitigating spatial-dispersion, as the coupling 

between neighboring rings is one of the contributors.

2.3 Conclusion

In this chapter I have studied the effect of twisting rings relative to each other, in or-

der to further understand the near-field response. This involved using numerical and 

analytical means to investigate the crossing of the resonant modes in the system.

I have shown in a series of experiments how changing the relative rotation between 

two rings modifies the electric and magnetic interaction between them, thus tuning the 

hybridized resonances. Both the resonant frequencies, and the Q factors were tuned, 

which resulted in an apparent crossing of the symmetric and antisymmetric modes. 

This crossing was studied further using numerical simulations, with both symmetric 

and antisymmetric resonances found to coexist at this point.

The effect on the frequency dispersion, of the losses in the system and of breaking 

the symmetry were then studied. They were both found to have some effect on the angle 

of crossing.

Using both numerical simulations and an analytical model that takes into account 

both electric and magnetic interactions between the rings, this crossing of modes was 

further investigated. It was found that there are different regimes of dispersion curves, 

determined by the relative interaction coefficients. The effect of the dielectric in the 

system was studied numerically.

It was also found that there is a crossing where the two resonances coexist, at an 

angle where the electric and magnetic coupling are equal. It was also shown that the 

waveguide walls and experimental errors can cause the crossing of the dispersion curve 

to be avoided, however using the theory of Morse critical points, it has been demon-

strated that increasing the losses can cause the crossing to be restored.

This study of the crossing of modes has shown how the near-field interaction can be 

used to understand the tuning of resonances. The near-field response could be used as
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a tool in manipulating the properties of metamaterials to address current weaknesses. 

In particular, this could be used as a further degree of freedom in designing nonlinear 

and chiral metamaterials.
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Chapter 3

Tuning the Nonlinear Response of 

Coupled Split Ring Resonators

As discussed in Section 1.1.4, nonlinear materials can have a response which is power 

dependent. Nonlinear meta-atoms can be created by adding a nonlinear inclusion to 

a resonant element, which will react to the high power incident field. In particular, 

metamaterials can exhibit a response much stronger than natural materials, due to their 

resonant nature and the local field enhancement which occurs at certain "hot spots". 
This effect has been investigated for SRRs with varactor diodes attached across gaps in 

the ring [77]. Systems with one and two attached varactors were studied experimen-

tally and analytically in Ref. [67], and it was found that the nonlinear effect could be 

described using the second and third order susceptibilities.

The strength of the local field depends on the design of the resonator, and the choice 

of an optimal location to place the nonlinear element. However it also depends strongly 

on the coupling of the wave to the external field, which along with losses determines 

the quality factor of the resonator. Since modifications of the lattice parameters also 

influence the quality factor of the resonances [76], they should affect the local-field en-

hancement. The effect of the arrangement of meta-atoms on nonlinear properties has 

previously been studied at optical frequencies. It was found that the relative orientation 

of L-shaped resonators in an array could affect the second-order nonlinear properties 

by up to a factor of fifty [86].

In this Chapter I introduce the concept of controlling the nonlinear response of the 

metamaterial by altering its internal structure. Previously it was shown that the lin-

39
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Figure 3.1: Schematic of the lateral shifting of SRRs with inserted varactor diodes showing the 
directions of the incident fields; 5a is the shift between two rings.

ear properties of a system could be controlled via laterally offsetting the resonant ele-

ments [70]. By offsetting the resonators I now control the maximum currents through 

the nonlinear driving elements, which affects the nonlinear response of the system. In 

Section 3.1 I experimentally demonstrate control of the nonlinear response of two coupled 

split-ring resonators by changing their mutual position. This effect is achieved through 

modification of the structure of the coupled resonant modes, and their interaction with 

the incident field. The effect of breaking the symmetry is also investigated. In Section 3.2 

I then investigate how this response occurs, by studying the linear properties of the sys-

tem. These properties include the absorption on the rings, and the voltage across the 

varactor diodes.

3.1 Experimental results

I start by performing microwave experiments with a pair of SRRs, having an offset 5a 

between their centers, as shown schematically in Fig. 3.1. The copper rings are 3.75 mm 

in outer radius, 3.25 mm in inner radius, and have a gap width of 1 mm. These rings are 

printed on opposite sides of 1.6 mm thick FR4 circuit board. Each ring has a second gap 

of 0.4 mm opposite the initial gap, across which a Skyworks SMV1405-079 series varac-

tor diode is soldered. A photo of one of the fabricated samples is shown in Fig. 3.2 (b). 

It can be seen that there is a second ring on the back of the board, shifted laterally. These
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Figure 3.2: (a) Diagram of the experimental set-up. VNA is the vector network analyzer and RW 
is the rectangular waveguide, (b) A photo of one of the experimental samples, (c) A diagram of 
the RLC representation of the varactor diode, based on the SPICE model from the relevant data 
sheet [93].

samples are placed inside a WR-229 rectangular waveguide (RW), held up using a sty-

rofoam holder, oriented such that the incoming magnetic field is perpendicular to the 

loops, as seen in Fig. 3.1.

3.1.1 Linear response

The transmission and reflection from the sample are measured using a Rohde and 

Schwarz ZVB-20 vector network analyzer (VNA) connected in series with the waveg-

uide, shown in Fig. 3.2 (a). A 3 dB attenuator is added to the circuit to ensure that 

the VNA is operating in its linear regime. I measure the transmission and reflec-

tion coefficients, and use them to calculate the absorption spectrum, which describes 

the frequency of the maximum current distribution in the rings. This is given by 

1 — 1*̂2112 ~ l^iiI2, where S21 and 5h  are the transmission and reflection coefficients
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Frequency (GHz) 5a (mm)

Figure 3.3: (a) The measured absorption curves for 8a = 3.75 mm (blue solid) and 7.5 mm 
(green dashed), in the linear regime. Symmetric (us) and antisymmetric (ic^s) modes are high-
lighted. (b) ios (black circle/solid) and u a s  (red cross/dashed), as determined both experimen-
tally (markers) and numerically (lines) for the linear case.

respectively. The absorption curves are measured experimentally for the values of 8a 

between 0 and 7.5 mm, in 0.375 mm increments, at -20 dBm power. This power is cho-

sen as lowering the power further has no effect on the resulting measurements, and 

therefore is low enough to be considered the linear regime.

Numerical results are calculated for the linear regime using CST Microwave Studio. 

The rings are modeled as copper, and the FR4 board has a dielectric constant of 3.65, 

and a loss tangent of 0.025. Each varactor is represented by a series RLC circuit, shown 

in Fig. 3.2 (c), where Cjo is the zero bias junction capacitance, Cp is the package capac-

itance and Rs and Ls are the series resistance and inductance. For the SMV1405-079 

varactor diode series used here, Cjo = 2.92 pF, Cp = 0.05 pF, Rs = 0.8 Q and Ls = 

0.7nH [93]. For the purposes of modeling this varactor, the value of Cp = 2.67pF is 

used, which is the measured total capacitance of the varactor, obtained from the data 

sheet [93]. This circuit describes the varactor diode in the linear regime so Vr  =0 V.

The curves for 8a equal to 3.75 mm, and 7.5 mm in the linear regime are plotted 

in Fig. 3.3 (a). There are clearly two resonant modes, symmetric (us) and antisym-

metric (ic^s), which are defined by the relative directions of the currents on the rings. 

These modes are both tunable through a change of 8a [75,76], which is evident, as when 

8a =3.75 mm u s (u>a s ) is the lower (higher) frequency, while when 8a = 7.5 mm us
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(üMs ) has increased (decreased) to become the higher (lower) frequency. Both us  and 

u a s  are found and plotted as a function of Sa in Fig. 3.3 (b) (markers), along with the 

numerical equivalents (lines). When they overlap, it is difficult to accurately distinguish 

them in the data. Therefore the experimental values for 5a in the shaded regions have 

been excluded in all figures. Outside of this region there is excellent agreement between 

the experiment and numerical simulations, with negligible errors. Consistent with the 

findings in Ref. [76], there are strong responses in both the modes, with us  increasing 

with an increase in 5a, and u a s  decreasing.

As seen in Fig. 3.3 (a), the symmetric mode is much more strongly excited than the 

antisymmetric mode. In fact, the antisymmetric mode is not excited at all for low values 

of 5a, as seen in Fig. 3.3 (b), due to weak coupling to the incident wave. However, there 

are enough points to see that this mode is still tunable via the lateral shifting. It is also 

important to note that the first two measurements for this mode are only experimental, 

as it was still unobservable in the numerics.

3.1.2 Nonlinear response

In a single SRR, the resonant frequency is determined by u — l/\/L C , where L is induc-

tance, and C is capacitance. Introducing the varactor diode adds a nonlinear capacitance 

Cy in series with the capacitance of the SRR. By adding the second SRR, I introduce cou-

pling between the rings, which causes a split in the resonant frequency, resulting in the 

two previously discussed modes, us  and u a s - Changing the intensity of the incoming 

microwaves causes a nonlinear change in the voltage incident on the varactors, which 

shifts the resonant frequencies by changing the effective capacitance of the system. This 

results in there being an added degree of freedom for manipulating the system.

In this structure the nonlinear response is quantified by a shift of the resonant fre-

quency with increasing input power from the linear regime to 15 dBm, which is the 

maximum power available from the VNA. These powers represent the linear and high 

power regimes of the VNA. The inset in Fig. 3.4 shows the absorption for both powers 

when 5a = 3.75 mm. It can be seen that both resonant modes are shifted by the change 

in power, the symmetric mode much more so. The arrow indicates the quantitative shift 

in resonance for increasing power.
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Figure 3.4: Relative nonlinear response for tos (black circles) and ljas  (red crosses) for shifts (<5a). 
The dashed lines are second order polynomial fits to the data. The inset shows the nonlinear shift 
of the absorption when 5a = 3.75 mm.

The relative difference between the low- and high-power resonant frequencies for 

each value of 5a is shown in the main graph in Fig. 3.4. A significant change in the 

nonlinear frequency shift for both modes as a function of 5a is observed. It is clear that 

the nonlinear shift for us is much stronger when the rings are closer together. A trend 

for ca a s  cannot be meaningfully described due to the mode not being excited at lower 

offsets.

3.1.3 Breaking the symmetry

While the symmetric mode is the dominant excitation, being able to understand the an-

tisymmetric resonance further would be an advantage. In order to do this, a stand made
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Figure 3.5: Schem atic of the SRRs inside  the p lexiglass stand .

of plexiglass is introduced to break the symmetry, which should enable the antisymmet-

ric resonance to be excited. The symmetry is broken as the stand is physically closer to 

the gap of one of the resonators than the other, as shown in Fig. 3.5. The resulting ab-

sorption curves for shifts of 0.375 mm and 7.5 mm are then shown in Fig. 3.6 (a). It can be 

seen that the antisymmetric resonance is quite strongly excited, even for a shift close to 

0 mm. This is due to a Fabry-Perot resonance from the stand at around 5.2 GHz, as well 

as the breaking of the symmetry. The resulting dispersion relations for both modes are 

plotted in Fig. 3.6 (b). It can be seen that they are similar to those plotted in Fig. 3.3 (b), 

except that the antisymmetric mode is now excited for all values of Sa.

While the plexiglass stand does break the symmetry, it does so only weakly, 

which can be seen from the similarity between the dispersion relations in Figs. 3.3 (b) 

and 3.6 (b). This means that while the symmetric and antisymmetric modes are not 

strictly symmetric and antisymmetric, they are close enough, meaning that the nonlin-

ear properties of the antisymmetric mode at low offsets can now be measured.
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Figure 3.6: (a) Experimental absorption curves 6a =0.375 mm and 7.5 mm. (b) Dispersion rela-
tion for both symmetric and antisymmetric modes.

Fig. 3.7 (a) shows the experimental absorption curves for a shift of 7.5 mm in both 

high and low power regimes. The nonlinear shifts for both modes are plotted as a func-

tion of 6a in Fig. 3.7 (b). Again, this plot is similar to Fig. 3.4, however there are now 

values measured for the nonlinear response in the antisymmetric mode. While the non-

linear response for the symmetric mode remains quantitatively similar, the values mea-

sured for the antisymmetric mode in both cases are now much larger. It is also now 

possible to define a trend for the antisymmetric mode, where the nonlinear response is 

clearly increasing with offset.
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Figure 3.7: (a) Experimental absorption curves for an offset of 6a = 7.5 mm at both low and high 
power, (b) Nonlinear shift as a function of 6a for both resonant modes.
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Figure 3.8: The main linear properties affecting the nonlinear response of the system. The white 
waves propagating away from the SRR represent the radiation.

As the symmetry breaking of the stand is increasing the excitation of the antisym-

metric resonance, it is also possible that this is what is driving the increase in the non-

linear response for the antisymmetric mode.

While the use of the plexiglass stand has been useful in studying the antisymmetric 

mode further, the results using the foam are more useful as there is no interference from 

the Fabry-Perot resonances.

3.2 Factors contributing to the nonlinear response

The nonlinear tuning can be explained by looking both experimentally and numerically 

at some of the linear aspects of the system, which are shown in Fig. 3.8. In particular, 

the losses in the system, along with the properties of the varactor diode, and the current 

distributions on the rings should be significant in determining the response. In this 

section, I specifically look at the effect of the currents on the rings via the absorption 

peaks, as well as the quality (Q) factor. I study both of these for the lossy and lossless 

cases to also examine the effect of the substrate losses. I then look at the properties of 

the varactors by calculating the voltage and capacitance across them.
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Figure 3.9: (a) Experimental (markers) and numerical (lines) maximum absorptions for both 
symmetric (black circle/solid) and antisymmetric (red cross/dashed) modes, (b) Numerically 
calculated absorption coefficients at the resonant frequencies for the case of a lossless substrate.

3.2.1 Absorption

As the nonlinear shift is due to the currents excited in the rings (which also lead to 

absorption), it would be expected that the higher the absorption, the larger the non-

linear response. Therefore the maximum absorption for each value of öa is plotted in 

Fig. 3.9 (a) for both modes, showing good agreement between experimental and numer-

ical results. However, by comparing this figure with Fig. 3.4, for the symmetric mode 

it can be seen that the absorption increases with decreasing nonlinear shift. This effect ap-

pears because by offsetting the rings not only are the current amplitudes in the rings 

modified, but the field distribution in the substrate is also changed. As a result, the total 

absorption presented in Fig. 3.9 (a) contains contribution from losses in both metal and 

dielectric. At the same time, the nonlinear response is caused by currents in the metal 

which flow through the varactor. The losses within the FR4 substrate increase with öa 

due to increased field confinement within the board, and changes in these losses dom-

inate changes of the absorption in the metal. In Fig. 3.9 (b) the results of a simulation 

which neglects dielectric losses are shown. It can be seen that there is now agreement 

with the trend in the nonlinear response. The difference in trends between Figs. 3.9 (a) 

and (b) confirms the influence of the dielectric losses.
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Figure 3.10: Experimental (markers) and numerical (lines) Q factors for the (a) symmetric mode, 
and (b) antisymmetric mode. The black (solid) lines correspond to the lossy case, while the blue 
(broken) lines correspond to the lossless case. The arrows indicate the relevant axis, and the 
error bars are plotted for all cases. The experimental results use the same axis as the lossy case.

3.2.2 Quality factor

The quality (or Q) factor describes the rate of energy loss relative to the energy stored 

in the system. The amplitude of the currents depends on the Q factor of the resonator, 
so it would be expected that there would be some correlation between the changing 

nonlinear shift, and the Q factor. The Q factor is calculated as nf/2^,  where /  is the 

resonant frequency, and 7 is found from fitting the peaks with a Fano function [88]. This 

approach was used as the antisymmetric resonances are too small to find an accurate 

width.

In Fig. 3.10,1 have plotted the Q factor as a function of 6a for both modes. The solid 

lines for the symmetric and antisymmetric modes are the Q factors for the numerical 

lossy case. This case corresponds to the experimental results shown by the red mark-

ers. The error bars are also shown for all cases. While the general trends agree between 

the experiment and numerics, there is less agreement between the values, even con-

sidering the error bars. This is not entirely surprising as the error bars only represent 

the fitting and analysis errors, and not any fabrication imperfections. These error bars 

are dominated by the residual errors from the fitting function. While the fabrication 

imperfections are not huge (they are the main source of disagreement in Fig. 3.3), they 

accumulate when calculating the Q factor. The jump in the numerical results for the 

antisymmetric resonance is probably due to the peak not being distinguishable enough
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from the symmetric peak to define a width accurately.

By comparing Fig. 3.10 with Fig. 3.4 it can be seen that there is a direct correlation 

between the Q factor and the nonlinear shift, due to the change in dielectric losses. The 

additional finely dashed curves show the case when dielectric losses are neglected. This 

indicates that for both modes radiation losses increase with increasing offset, due to in-

creased coupling to the waveguide modes. For the symmetric mode, radiation losses 

are dominant, thus increasing them decreases the current amplitude and hence the non-

linear shift. However for the anti-symmetric mode, the coupling is initially very low, 

and for low offsets very little energy can accumulate in the resonant mode. Therefore 

increasing the coupling increases the current amplitude and the nonlinear shift.

3.2.3 Voltage and capacitance

The physics of the nonlinear shift of the resonant frequency was studied in Ref. [65], 

where it was shown that the rectified AC voltage across the varactor provides a self-

biasing mechanism. By increasing the amplitude of the electromagnetic wave, alternat-

ing voltages in the SRR are increased, generating a larger DC bias voltage, reducing 

the varactor capacitance. To study this effect I perform numerical simulations in the 

linear regime, and monitor the voltages on each RLC circuit representing a varactor. 

As a larger voltage leads to a stronger decrease in the varactor capacitance, a similar 

trend would be expected between the voltages recorded at the resonant frequency, and 

the nonlinear shift. It should be noted that the voltage across the capacitor, and not 

the whole RLC circuit, should be calculated, which is done by numerically monitoring 

the voltage over the varactor diode, then calculating the portion over the capacitor and 

resistor. This is done because the inductance represents the purely linear package in-

ductance. As CST treats the RLC circuit as a lumped element, only the voltage across 

the entire circuit, and not one component, can be monitored.

By rectifying the monitored RF voltage Vr f , the DC voltage can be calculated [65]:

Vr  =  —Vr\n [To (Vr f /Vt )] , (3.1)

where Vr = 25.85 mV is the thermal voltage and Io is a modified Bessel function of 

the first kind. The resulting DC voltage at the resonant frequency is plotted for both
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Figure 3.11: (a) Calculated voltage over the capacitive component of the varactor, (b) Resulting 
capacitance (presented as 1/VC).

resonant modes in Fig. 3.11(a).

By comparing Figs. 3.4,3.9 (b), and 3.11 (a), an overall correlation can be seen, where 

as Sa increases there is a decreasing trend in the nonlinear response, the maximum ab-

sorption in the rings, and the calculated voltages, for the symmetric mode. This enables 

the nonlinear response of the system to be explained in a meaningful way.

As the nonlinear response should be directly proportional to the inverse of the 

square root of the capacitance, the change in capacitance to the system with increased 

power is then calculated using the known voltage across the varactor. From the data 

sheets for the varactor, the capacitance (Cy) can be obtained for a given applied voltage 

(Vr ) using the equation [94]

CV (1 + Vr  /V j )** + CP
(3.2)

where Vj is the junction potential and M  is the grading coefficient. For the SMV1405- 

079 varactor diode series I have used, these values are C jo  = 2.92 pF, Vj — 0.68 V, M  — 

0.41, and Cr  = 0.05 pF [93].

The inverse of the square root of the resulting capacitance is shown in Fig. 3.11 (b), 

as a function of Sa. As expected, this plot closely resembles the plots in Fig. 3.11 (a) and 

Fig. 3.4. The dependence of the varactor capacitance on Sa also changes the response
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of the system to linear tuning of the resonant frequencies, as the resonant frequency is 

dependent on the combined capacitance of the varactor and SRR.

3.3 Conclusion

In this chapter I have shown that the near-field interaction can be used to control the 

nonlinear properties. I then studied the effect of the linear properties on the nonlinear 

response.

I experimentally demonstrated that by shifting two coupled SRRs relative to each 

other, I can significantly control the nonlinear properties of both the symmetric and 

antisymmetric resonant modes in the system. The symmetric and antisymmetric modes 

were found to respond to both the incident wave and the change in coupling. While the 

antisymmetric resonance is not normally strongly excited, it can be boosted by breaking 

the symmetry, which causes the antisymmetric mode to be excited for all offsets. It also 

increased the nonlinear response of the antisymmetric resonance.

I also found that the tuning of the nonlinear response can be explained and predicted 

by studying the linear properties of the system. This includes the maximum absorption 

on the rings, and the voltages across the varactors. As a result, it was found that the 

losses in the system also play a strong part in the tuning of the nonlinear response. These 

results should stimulate further work in controlling and designing nonlinear properties 

of metamaterials.



Chapter 4

Dispersionless Optical Activity in 

Chiral Metamaterials

Being able to control the output polarization state from a chiral metamaterial is desirable 

in the engineering of materials, as doing so is important for many applications such as 

ultrafast modulation of electromagnetic waves [95]. In particular, the development of a 

planar chiral metamaterial with strong broadband optical activity over the transmission 

band would be advantageous. The strong coupling between neighboring resonators 

should be helpful in achieving this effect.

Coupling a resonator to its complement should provide a means of achieving unique 

chiral properties. Babinet's principle states that an infinitely thin, perfectly conducting 

complementary structure illuminated by an incident field rotated through 90° to the 

field exciting the structure, generates a magnetic field equivalent to the electric field ex-

cited in the original structure [52,96-98]. Intuitively, by coupling an element together 

with its complement these electric and magnetic responses become coupled, matching 

the impedance over the transmission peak, which should overcome the highly disper-

sive optical activity, and ellipticity often seen in rotated chiral structures, as discussed 

in Section 1.1.3.

This approach has been used to achieve dual-band ultraslow modes, by alternating 

layers of SRRs and their complementary structures [99]. It has also been used to create a 

broad bandpass filter in the terahertz regime, combining a cross and a cross shaped hole 

of different size in a non-chiral arrangement, for which the current distributions for the 

resonant modes were also studied [100]. Chiral properties of such structures have not 

been studied.

53
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Figure 4.1: Schematic of my proposed "mixed pair": a cross coupled to its complement, rotated 
through an angle 6.

In this chapter I propose a cross coupled to its complement, or a "mixed pair", and 

demonstrate that it achieves large, flat optical activity accompanied by very low elliptic- 

ity. In Section 4.11 compare the mixed pair to a pair of crosses and a pair of complemen-

tary crosses, and find that this structure provides dispersionless optical activity over the 

transmission resonance, in contrast to the high dispersion normally seen. This results 

in very low ellipticity in the output polarization state. Section 4.2 then describes how I 

optimize the chirality through the twist angle, and study the effect of changing the spac-

ing between elements. The case of multiple complementary pairs is also briefly studied. 

In Section 4.3 I investigate the effect of increasing the substrate losses. The large, flat 

optical activity and low ellipticity are then confirmed experimentally. Section 4.4 then 

looks at the case of a strip combined with a slot to determine the excitation mechanism 

of this structure. It is found that this structure is excited by means of the hole-modes in 

the complementary cross. Finally, in Section 4.5 I summarize this chapter, and provide 

some directions for future research.

4.1 "Mixed pair"

The cross and its complement are designed having arms of length 25 mm, and width 

1.5 mm. They are rotated through 22.5°, and separated by FR4 substrate 1.6 mm thick, 

with 1.6 mm substrate on the outside of both the cross and complementary cross (so 

that the resonators have substrate on either side). They are modeled as perfect electrical
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Figure 4.2: (a) Transmission, (b) optical activity and (c) ellipticity for a pair of crosses (red dotted 
line), a pair of complementary crosses (green dashed line) and the mixed pair (solid black line).

conductors (PEC), inside a circular waveguide with a diameter of 59.7 mm , so as to be 

experimentally realizable. The substrate has a dielectric constant 4.3 and loss tangent 

of 2.5xl0~4. A schematic of the two elements rotated through an angle 9 is shown in 

Fig. 4.1.

Simulations are calculated using CST Microwave Studio. I excite the two lowest or-

der modes using a linearly polarized input wave. The first mode is assigned to that with 

the electric field oriented in the x-direction, and the second for the ^-direction. I sim-

ulate the co- and cross-polarized transmission coefficients for both linear polarizations 

(SXx/ Syy, Sxy and Syx). As this structure has four-fold rotational symmetry, Sxx = Syy 

and Sxy = —Syx. The total transmission amplitude (S2X + S 2y)1̂ 2 is plotted in Fig. 4.2 (a) 

(solid black curve).
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The transmission coefficients for the circular polarizations are found as

(4.1)
2

from which the optical activity is then calculated using Eq. (1.10). This is plotted in 

Fig. 4.2 (b) (solid black curve). The corresponding ellipticity of the output polarization 

state, defined in Fig. 1.4 (b), is shown in Fig. 4.2 (c) (solid black curve), which is calcu-

lated using Eq. (1.11).

To show the advantages of the "mixed pair" compared with known structures, I cal-

culate the optical activity and ellipticity for a pair of crosses, and a pair of complemen-

tary crosses, both also with an internal rotation of 0 = 22.5°. The lengths of the elements 

in these structures were designed so that the transmission resonances line up with those 

of the mixed structure - (24 mm) 16 mm for the (complementary) crosses [Figs 4.2 (a, b)].

In Fig. 4.2 (a) there is a resonant pass band for the mixed structure at 4.4 GHz. There 

is also a transmission minimum at 3.4 GHz, which cannot be seen in this plot as the 

background transmission is already low. For the pair of crosses, there is a resonant stop 

band at 4.6 GHz. By reducing the distance between the two crosses, thus increasing 

the coupling, it is seen that there are actually two resonances very close together. The 

pair of complementary crosses also has two resonances - pass bands at 3.5 and 4.4 GHz. 

The mixed structure has at least one other resonance below the cut-off frequency of the 

waveguide, however the pass band at 4.4 GHz is the most useful resonance, as it is a 

pass band accompanied by large optical activity.

The optical activities for the three structures are compared in Fig. 4.2 (b), as calcu-

lated using Eq. (1.10). For both the pair of crosses and pair of complementary crosses 

there is highly dispersive optical activity at the resonant transmission band. For the 

mixed structure, there is a resonance in the optical activity at 3.4 GHz. This resonance 

corresponds to the transmission minimum, where the through transmission dips be-

low the cross-polarized transmission. However, the optical activity at the pass band 

frequency has very low dispersion, but is still large (about 20°).

The corresponding ellipticities, calculated using Eq. (1.11), are shown in Fig. 4.2 (c). 

The ellipticity is related to the gradient of the optical activity shown in Fig. 4.2 (b), due to
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the Kramers-Kronig relationship for the chirality k , as mentioned in Section 1.1.3. This 

means that, unlike the other two structures, the mixed structure has very low ellipticity 

at resonance, which is very desirable. It also shows much lower ellipticity overall than 

the other structures.

4.2 Optimizing the response

4.2.1 Twist angle

As the system is achiral when 0 = 0 °  and 45°, but chiral for all angles in between, I inves-

tigate the control of the chirality by varying the twist angle 9. I measure the transmission 

for 9 ranging from 0° to 45°, in 2.5° increments. In Fig. 4.3 (a) the total transmission is 

plotted for some of these angles. It can be seen that as 9 is increased from 0° to 45°, 

the resonant frequency increases from 4.056 GHz to 4.514 GHz, and the transmission 

amplitude changes slightly, with an overall moderate effect of 9 on the transmission. 

Fig. 4.3 (b) shows the optical activity at the resonant frequency, as a function of twist an-

gle 9. The near-field coupling within a twisted "mixed pair" leads to changing optical 

activity due to change in the coupling between the two elements. While this structure 

is furthest from symmetry when 9 = 22.5°, the maximum optical activity of 0 = 22° is 

found at 9 =17.5°. This is due to retardation, which is related to the spacing between 

the resonators, as found in Ref. [101]. This spacing can be seen as adding helicity to the 

system. The resonant behavior at 3.5 GHz, associated with the stop-band resonance in 

the transmission, is present for most values of 9, and is less tunable. The ellipticity at
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Figure 4.3: (a) Total transmission for various twist angles 9, ranging from 0° (solid black) to 
40° (dashed brown); and (b) optical activity and (c) ellipticity as a function of twist angle, calcu-
lated at the frequency of maximum transmission for that angle.
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resonance was also calculated, and is plotted in Fig. 4.3 (c), showing a similar trend to 

the optical activity. The ellipticity at resonance peaks at 0.1°, which is very low com-

pared to other twisted chiral structures including that in Ref. [47], where the ellipticity 

angle r/ reached values of 45° over the transmission resonance.

4.2.2 Separation between elements

By changing the distance between the cross and its complement, I change the retar-

dation in the structure, as well as the interaction between the resonators. This should 

also alter the twist angle at which the optical activity and ellipticity peak, as shown in 

Fig. 4.3 (b, c). From Fig. 4.4 (a) it is seen that increasing the spacing between the elements 

from 1 mm (solid black line) to 2.5 mm (dotted green line) significantly reduces the mag-

nitude of the transmission. More importantly, the transmission resonance shifts closer to 

the optical activity resonance, increasing the ellipticity of the structure across the trans-

mission band, shown in Fig. 4.4 (c). However, there is also a decrease in the magnitude 

of the optical activity as the spacing is decreased, seen in Fig. 4.4 (b). Therefore it can 

be concluded that there is a trade-off between the magnitudes of the transmission and 

optical activity in choosing the optimal spacing.

4.2.3 Multiple pairs

While the flat optical activity is a reasonably broadband effect, the transmission pass 

band is quite narrow. By combining multiple resonators in a longitudinal array, an 

increased number of resonances are excited. These resonances could potentially be en-

gineered to merge and form a continuous broadband resonance [48,100,102]. Increas-

Ellipticity (r|°)Total Transmission Optical Activity (cp)

lmm
1.6mm
2.5mm

1.5 4 4.5
Frequency (GHz)Frequency (GHz) Frequency (GHz)

Figure 4.4: (a) Total transmission, (b) optical activity and (c) ellipticity for substrate thickness 
varying from 1 mm (solid black) to 2.5 mm (dotted green).
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Figure 4.5: Comparison of the (a) total transmission, (b) optical activity and (c) ellipticity for one 
(solid black) and two (dashed red) pairs.

ing the number of pairs along the z-axis should allow the increase of the transmission 

bandwidth and increase the total optical activity. Such a system will also provide fur-

ther degrees of freedom to control the size of the optical activity through the tuning of 

the rotation angles.

I simulate two mixed pairs, with alternating crosses and complementary crosses, 

where all resonators are equidistant with 1.5 mm spacing, and rotated 22.5° relative to 

the previous element. The parameters have been chosen to optimize the occurrence of 
flat optical activity over a transmission pass band, resulting in the cross arms now being 

30 mm long. The resulting total transmission is plotted in Fig. 4.5 (a), compared to my 

previous results for one pair. There are three pass bands over this frequency range, at 

around 3.7 GHz, 4.2 GHz and 4.9 GHz, however there are further resonances outside 

this range. There is also a transmission minimum visible near 4.8 GHz. The resonances 

are also more narrowband when there are two pairs.

The optical activity is plotted in Fig. 4.5 (b), and by comparing it to Fig. 4.5 (a), it can 

be seen that the optical activity is large and flat over the first transmission resonance 

(3.7 GHz). The optical activity at this point is also larger than that for the single pair 

(~ 30°). It is also seen that at the second resonance (4.2 GHz), the optical activity is still 

relatively flat, and much larger than at the first resonance (~ 50°). There is a trade-off 

here between the magnitude of the optical activity and the slope. The optical activity is 

highly dispersive over the third resonance.

I have also plotted the ellipticity in Fig. 4.5 (c). While the total ellipticity is larger 

for two pairs, the ellipticity at resonance is still very low over the first two resonances.
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Figure 4.6: (a) Total transmission (thicker lines) and reflection (thinner lines); and (b) optical 
activity for a mixed pair, compared for increasing losses.

However, it can be seen that the bandw idth over which there is very low ellipticity is 

smaller for two pairs than for one.

While increasing the num ber of pairs has increased the m agnitude of the optical 

activity over transmission resonance, the transmission is actually less broadband. H ow -

ever, the flat optical activity now spans two transm ission resonances, and it may be pos-

sible to drive the resonances closer together through increasing the num ber of mixed 

pairs. However, the increase in the num ber of resonances makes the system very com-

plicated to find an optimal regime, which could be improved by the introduction of a 

suitable model to predict the behavior of the system.

4.3 Experimental verification

4.3.1 Increasing losses

So far my simulations have assumed the best case losses in the system. However, it 

w ould be useful to be able to experimentally verify my findings, which will involve 

higher losses if the FR4 substrate is used. I investigate this by increasing the losses in 

the substrate by two orders of magnitude.

Fig. 4.6 (a) shows the m agnitude of the total transmission (thicker lines) and reflec-

tion as the losses in the system are increased. It is not surprising that as the losses are 

increased the m agnitude of the transmission decreases significantly. It is evident from
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Figure 4.7: (a) Schematic of the experimental set-up. VNA stands for vector network analyzer, 
RW rectangular waveguide, CW circular waveguide and PC polarization converter, (b) Photo 
of the sample inside the circular waveguide rotated through 20° and (c) the other side of the 
sample, showing the complementary cross.

the accompanying drop in the reflection, that this due to an increase in the absorption. 

However, Fig. 4.6 (b) shows that the optical activity is barely affected by the increase in 

losses. The ellipticity was also studied (not shown) and it increases slightly at resonance 

with increased losses, but is still very low. This means that good experimental results 

should be able to be obtained, regardless of the losses. It also suggests that scaling this 

structure down for use at optical frequencies with much higher losses could be feasible.

4.3.2 Measurement of the sample

The experiment is conducted using a vector network analyzer (VNA) connected to a 

series of waveguides, shown in Fig. 4.7 (a). The rectangular waveguide (RW), the same
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waveguide used in Chapters 2and 3, allows the propagation of one waveguide mode, 

which is linearly polarized. This mode is then converted into a right- or left-handed cir-

cularly polarized wave using the polarization converter (PC). The wave then propagates 

through the circular waveguide (CW), inside which the sample is placed. The second 

polarization converter converts the resulting wave back to a linear polarization, which 

is then measured by the VNA. Using this set-up I measure the transmission coefficients 

for both right- and left-handed polarizations.

While the losses may not affect the optical activity and ellipticity, for applications 

it is usually desirable to have larger transmission, so I use Rogers R4350 board as the 

substrate, which has a loss coefficient of 0.0031 at 2.5 GHz, and a dielectric constant of 

3.48. To accommodate the change in substrate, the cross and its complement now have 

arms of length 27 mm, and width 1.5 mm. They are made of copper, and are 30 pm  thick. 

They are separated by the 1.5 mm thick substrate, and rotated through 20°. The cross 

and complementary cross are printed on opposing sides of the same substrate, and a 

separate substrate is fabricated for each angle. Fig. 4.7 (b) shows the sample inside the 

circular waveguide. The color of the cross is due to a thin coating of solder to prevent 

oxidization. The reverse side of the substrate is shown in Fig. 4.7 (c).

The simulations are adjusted to best match the experimental parameters. The mag-

nitudes of the right- and left-handed polarizations are compared with the experimental 

results in Fig. 4.8 (a). It is seen that there is little difference between the two polariza-

tions, however the resonances are blue-shifted in the experiment, which is most likely 

due to increased effective series capacitance form an imperfect electrical connection be-

tween the metallic sample and the waveguide walls. This is the result of a thin gap 

between the complementary cross and the edge of the sample, and the samples not be-

ing perfectly round. The phase for both polarizations is also plotted in Fig. 4.8 (b), and 

there is good agreement apart from the shift in resonance. The cross-polarization was 

also measured, and found to be small, confirming the reliability of the measured circular 

polarizations.

The optical activity and ellipticity are again calculated using Eqs. (1.10) and (1.11). 

Figure 4.9 (a) shows the calculated optical activity, comparing the experiment with the 

numerical simulations. It can be seen that there is good agreement, with large, flat op-
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Figure 4.8: (a) Magnitude and (b) phase of the transmission for both LCP and RCP waves, ex-
perimental (solid) and numerical (dashed), for the structure rotated through 20°.

tical activity over the frequency of transmission. The ellipticity is plotted in Fig. 4.9 (b), 

noting that the magnitude of the ellipticity is very small, as intended with this design, 

so the measured values are comparable to the experimental uncertainties.

4.3.3 Twist angle

The effect of changing the twist angle 0 is also experimentally verified. This is measured 

in 2.5° steps. The resulting optical activity at the transmission resonance is plotted as a 

function of 0 in Fig. 4.9 (c), both numerically and experimentally. The numerical data 

is interpolated using a fourth-order polynomial. The small disagreements between the 

numerical and experimental data points can be explained by imperfections in the fabri-

cation.

Optical Activity (tp°)Ellipticity (r|e)

Experimental
Numerical

Optical Activity (tp )

Numerical 
Experimental -

Frequency (GHz) Frequency (GHz) Twist Angle 0 (degrees)

Figure 4.9: (a) Optical activity for both numerical simulations and experiment, when 6 —  20°. 
(b) Experimental and numerical ellipticity, for 0 =20°. (c) Experimentally measured and numer-
ically calculated optical activity at the transmission resonance, as a function of the twisting angle 
0. The numerical values (black) are fitted using a fourth- order polynomial.
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Frequency (GHz) Frequency (GHz)

Figure 4.10: (a) Basic schematics of the strip, and slot, in parallel, and perpendicular arrange-
ments. The slot is aligned w ith the y-axis, the strip is rotated. The gray, hatched rectangle is the 
strip and the black, solid outline is the slot. The sim ulated transm issions for both modes, Sxx 
(red dashed) and Syy (black dotted), are shown in (b) (parallel) and (c) (perpendicular).

These experimental results verify my numerical findings presented in Section 4.1 of 

large, dispersionless optical activity at resonance, and very low ellipticity.

4.4 Excitation mechanism

In order to determ ine the nature of the transm ission resonances of this structure, and 

how it is excited, I study the excitation of a single strip and slot. The slot-strip system is 

studied as it is a simpler structure than the "mixed pair", but exhibits qualitatively sim-

ilar behavior. The slot-strip system is also anisotropic, which allows the polarizations 

exciting the different parts of the structure to be seen, enabling the coupling mechanisms 

contributing to the response in this system to be determined. The slot is aligned along 

the y-axis, then the strip added aligned either in a parallel or perpendicular configu-

ration, as shown in Fig. 4.10 (a). The strips are 25 mm long and 1.5 mm wide, and the 

FR4 substrate is used, resulting in a transm ission peak in the same frequency range as 

the previous numerical simulations in this Chapter. Fig. 4.10 (b) shows the co-polarized
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transmission for both incoming polarizations, for the parallel configuration of this set-

up. The same results, but for the perpendicular arrangement, are shown in Fig. 4.10 (c).

For both arrangements, in Figs 4.10 (b, c), significant transmission is only seen when 

the incoming polarization is across the slot (Sxx). In Fig. 4.10 (c) the stop band is also 

observed. However, the resonances are too far apart for the stop band to also be studied 

for both arrangements. It should be noted that these graphs are plotted using a logarith-

mic scale, so it can be seen that the transmission for the wave polarized along the slot 

(Syy) is negligible. By looking at these results, it can be concluded that the predominant 

mechanism in exciting this structure is through the hole-mode in the slot. The strip is 

then excited by the electric field parallel to it and as the strip is rotated from parallel to 

perpendicular to the slot, the strength of its excitation changes. This couples to the exci-

tation of the slot to determine the properties of the resonance. It can thus be concluded 

that the predominant excitation in our structure is through the hole-mode in the com-

plementary structure aligned perpendicular to the magnetic field, which then couples 

primarily to the perpendicular corresponding arm of the cross.

4.5 Conclusion

In this chapter I have proposed a "mixed pair" structure, which is a combination of 

a meta-atom with its complement, and found large, flat optical activity at resonance, 

accompanied by very low ellipticity in the polarization of the transmitted wave. This 

is in contrast to the highly dispersive optical activity and ellipticity normally found in 

twisted chiral structures.

I have also shown how these effects can be optimized by changing the twist angle 

9, and the spacing between the elements. I found that maximum optical activity at 

resonance, for a separation of 1.6 mm, occurs at a twist angle of about 17.5°. This angle 

will change depending on the separation. I also investigated the possibility of increasing 

the number of complementary pairs to enhance the effects, and found that the effect can 

still hold.

I then investigated how increasing the losses affected the system, and found little 

to no effect on the optical activity. I experimentally verified the results and found good
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agreement. I also found experimental agreement with the effect of changing the internal 

rotation.

Finally, I investigated how the structure is excited, by studying numerically a strip 

combined with a slot. I found that the the excitation of the hole modes in the arms of 

the cross dominate the excitation of the structure. The rotation angle then changes the 

coupling between the hole modes and the cross arms.

This is the first time to my knowledge that such an effect has been found for a twisted 

chiral structure. This effect is very important for chiral applications that require linear 

polarization. There is also the possibility of investigating the properties of similar struc-

tures with lower orders of symmetry, such as a strip or split-ring resonator combined 

with its complement in order to determine if the mechanism is general, or specific to 

structures with a particular symmetry. It would also be beneficial to study the effec-

tive medium parameters of this system, which will require the development of a new 

retrieval approach. This will be considered in Chapter 5.



Chapter 5

Development of a Retrieval 

Procedure for an Asymmetric Chiral 

Medium

In Chapter 4 I proposed a "mixed pair", which is a combination of a cross and its com-

plement, and demonstrated large, flat optical activity accompanied by very low ellip- 

ticity in the output polarized wave. This structure couples equivalent electric and mag-

netic dipoles, according to Babinet's principle. This structure also has C 4 symmetry, 

which is of lower-order symmetry than commonly studied metamaterial structures cre-

ated by twisted identical resonators, which have D4 symmetry [46,52].

To further understand this new type of structure, it is very important to calculate the 

effective parameters of such structures, as this will explain how the structure is polar-

ized by the external fields. Obtaining the material parameters of metamaterial structures 

is a well established procedure for isotropic, achiral media [71]. The approach has been 

extended for the cases of chiral, bi-anisotropic and inhomogeneous media [40,103-105]. 

An alternative approach based on the state-transition matrices has also been proposed 

for isotropic chiral media [106], however none of these methods can be employed for 

metamaterials with C 4 symmetry. The parameters for the structures with C 4 symmetry 

were retrieved in Ref. [42] under the assumption that the two bi-anisotropic parame-

ters are related by a frequency-independent constant. This assumption is not valid for 

general structures, including the "mixed pair". This lower-symmetry results in the re-

flection being dependent on the propagation direction, and is due to the structure being 

physically different when seen from opposite directions.

67
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There are, however, some well known limitations in effective medium models and 

the resulting retrieved parameters. The resulting parameters are also dependent on the 

thickness d, the definition of which can be ambiguous due to the effect of the near-field 

extending past the physical sample. While the physical thickness of the sample is the 

most popular choice, other cases have been made. This also means that the retrieval 

methods are less useful as the number of layers is increased [107]. The parameters 

can also become non-physical at resonance, resulting in forbidden conversion between 

circular polarizations at resonance, violating symmetry, as well as sign changes in the 

imaginary part of the permeability, violating passivity [71]. Despite these limitations, 

the resulting parameters can still be useful for gaining insight into the studied system.

In this Chapter I develop a retrieval procedure to determine the effective material 

parameters for meta-structures with C4 symmetry. In Section 5.1 I retrieve the refrac-

tive indices and impedances for such structures in a unit cell configuration, based on 

the eigenvalues of the scattering-transfer matrix. The resulting effective parameters are 

then calculated. I verify this approach in Section 5.2, by recalculating the scattering ma-

trix through the substitution of the retrieved material parameters. This is done by first 

calculating the admittance tensors. Section 5.3 then concludes the chapter.

5.1 Parameter Retrieval

To calculate the material parameters I use a unit cell model periodic in the x and y 

directions for simplification, as the waveguide mode is not uniform in the transverse di-

rection, making it equivalent to a non-normal angle of incidence. The period of the unit 

cell is 59.7 mm. The cross and its complement are modeled having arms 28 mm in length 

and 1.5 mm in width, and are separated by 1.5 mm thick Rogers circuit board with a di-

electric constant of 3.48, and a loss tangent of 0.0031 at 2.5 GHz. The metal is modeled as 

PEC. The elements are twisted through 20° and the complementary cross and the boards 

are now square in shape to fill up the unit cell, shown in Fig. 5.1. The system is excited 

using a plane wave at normal incidence, described using the time convention exp (iut). 

Simulations are made using CST Microwave Studio, with the wave propagating along 

the 2 -axis. The two lowest order linearly polarized modes are excited. The first mode 

has the electric field directed along the y-axis, and the second directed along the x-axis.
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Figure 5.1: Schematic of the structure array. The cross is rotated relative to its complement 
through an angle 6, making up one unit cell. The arrows show the direction of the fields.

The most general case for this structure, including all possible internal rotation an-

gles, has C4 symmetry. At normal incidence there is no z component of the macroscopic 

fields, allowing the transverse components to be modeled using the reduced tensors

where e is the effective permittivity, y  the effective permeability, n the chirality, and 

is a bi-anisotropic parameter which is not present in isotropic chiral media, and is 

introduced by the lower order of symmetry in this system. The off-diagonal components 

of e and jj are 0 due to time reversal symmetry [35]. The resulting constitutive relations 

at normal incidence are

f D )  -  f  - i /
\ B J y / c  (kI  + 1 J))  \ H

where J = zo x I  is the 90° rotator in the x — y plane. The following parameters then need 

to be calculated: e, y, k  and £. The currently established approaches do not cover gen-
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eral structures with this particular symmetry [40,42,105], so a new approach needs to be 

developed. There is the added complication that due to the meshing in the CST model 

not preserving 90° rotational symmetry the eigenstates are not perfectly circularly po-

larized in the numerical model. To account for this a much more robust method will 

be developed, where the scalar parameters of the eigenmodes of the scattering-transfer 

matrix will be found and used to assign effective parameters for a medium with circular 

eigenstates.

5.1.1 Eigenmode analysis

I start by solving the eigenvalues of the scattering-transfer matrix which are then used to 

find the refractive index n and the impedance Z. The impedance is a tensor, but due to 

symmetry there are only a few unique values which will be found. When dealing with 

the tensors, I will denote Z  as the impedance for waves traveling in the +2 direction, 

and Z  in the —2 direction. To calculate n and Z  from the scattering parameters, the 

scattering-transfer matrix [108] is used, which can be found from the scattering matrix

T 5
S2i 1 -S21 1S22

S 1 1 S 2 1  1 S 1 2  — S 1 1 S 2 1  * S 22
(5.3)

S n , S12, S2i and S22 are 2 x 2 arrays including both linear polarizations at each port. 

The eigenvalues Am of T 5 represent solutions which are then found using the relation

F(z + d) = T 5F(2) =  eiadF (2) -  AF(2), (5.4)

where a is the phase advance across the unit cell of thickness d, and F is defined as

a\w
F(z) = (5.5)
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am and bm are the amplitudes of the waves propagating towards and away from the 

structure at the interface z = d, and can be defined as

bm  — { y f z ö E m  +  H m /  \J~ Z q ) / ‘l , (5.6)

= (v^O-Em H m  /  %/̂ o) /  2 • (5.7)

The value of m  refers to the linear mode being considered and zo is the impedance of 

free space.

Reference [105] uses the relation in Eq. (5.4) with the transmission matrix, however 

this still holds when using scattering-transfer parameters as well. The four eigenval-

ues correspond to the forwards and backwards modes of the two polarizations. The 

refractive indices can then be found as

n=M̂,
kod

(5.8)

where d is the thickness of the sample (the substrate thickness plus the thickness of both 

metal resonators), and ko is the wavenumber in free space. While the appropriate choice 

for d is ambiguous, as discussed in the introduction to this chapter, this needs to be the 

same thickness that the scattering parameters are calculated over, from Eq. 5.4. The 

physical sample thickness has been chosen as this is the easiest to measure the fields 

over. The main effect of using a larger value of d would be the diluting the parameters 

due to the free space included. The resulting indices of the two polarizations for both 

directions are plotted in Fig. 5.2 (a) and (b). The real part of the index is seen to be 

clearly dependent on the polarization, and not on the direction of propagation. This is 

consistent with Lorentz reciprocity, which means that for each polarization the refractive 

index is identical for forwards and backwards propagation.

By finding the eigenvectors F(z) corresponding to these eigenvalues, the fields in 

the structure can be studied. From symmetry considerations, the eigenstates of this 

structure are expected to be circularly polarized, where

E± = Ex ±  iEy, (5.9)

and this can be verified by inspecting the relative amplitude and phase of the compo-
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Figure 5.2: (a) Real and (b) imaginary parts of the retrieved refractive indices for both polariza-
tions and directions. The forwards direction is denoted by —> (markers), and the backwards by 

(lines).
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Figure 5.3: (a) Phase difference between the two electric components E\ and E2 of the propagat-
ing waves, for both eigenstates, in factors of n. (b) Ratio of magnitudes for the two components 
E1 and E2. (c) Conversion between the right and left handed polarizations.

nents of the eigenvectors. In Fig. 5.3 (a) the phase difference between the two electric 

components for both eigenstates is plotted. Fig. 5.3 (b) shows \E \\/\E 2 \ as a function of 

frequency. For a circular polarization the two electric components will be out of phase 

by 7t /2 ,  and will have equal magnitude. From Fig. 5.3 it can be seen that this is the 

case, apart from at resonance, where the polarizations deviate slightly from a circular 

polarization. At this point there is conversion between the right and left handed po-

larizations, shown in Fig. 5.3(c), despite this being prohibited by the symmetry of the 

structure. This deviation is due to the mesh not having C4 symmetry, so I am physically 

justified in treating the eigenstates as circularly polarized for the purpose of calculating 

the impedances and material parameters.
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Figure 5.4: (a) Real and (b) imaginary impedances for both polarizations, for both forward and 
backward directions. The forwards direction is denoted by and the backwards by Z+ is 
denoted using dashed lines, and Z_ using markers.

Equations (5.5) - (5.7) can be rearranged to find the ratio of E /H  in order to calculate 

the scalar impedances. For circularly polarized waves, Ex = E\ and Ey = E2 and the 

resulting impedances are found as

Z ± E ±
H±

b2 + a,2±i (b 1 + 01)" 
b2 — a 2 ± i {b\ — a \)m

(5.10)

As there exists an eigenvector F(z) corresponding to each eigenvalue, the values of b\, 

62, ai and 02 in the above equation will change depending on which eigenstate is being 

considered.

The resulting impedances are plotted in Fig. 5.4 (a) and (b), for a twist angle of 20°. 

It can be seen that the impedances are only dependent on the propagation direction and 

not the polarization. This is expected, as in more symmetric chiral materials, the two 

circular polarizations have the same impedance [40].

5.1.2 Determining the material tensors

Now that I have the scalar index of refraction and impedance for each eigenmode, I 

can calculate the effective medium parameters. By considering the material relations 

in Eq. (5.2), the equations for the refractive index and impedances from the effective 

parameters can be found by using Maxwell's equations and taking a plane wave ex-

pansion of the fields. The full derivation of these equations can be found in Ref. [35],



74 Development of a Retrieval Procedure for an Asymmetric Chiral Medium

sections 8.1.1 and 8.2.2. In this section, subscripts 1,2 will be used to denote polariza-

tions, except when the polarizations are circular, in which case ±  will be used.

The refractive indices for the two polarizations n\^  can be found using

•:> /  1 \  ĵ .2
n\ 2 = ep + K2 -  ( 2 + -  -  (epz + ezp)J ±  \T0,

where ReyfD >0 and

(5.11)

D =
iA  iA. \ 2 2 ^t(epz -  ezp) + k  ezpz

4<22/Cq i 2K +  K z ^ k l )  

i e K { K +  K z ^ k ) + ( ß { 2K +  K z ^ l )  ■
(5.12)

k z, ez and pz are the components of the material tensors in the z direction (wave propa-

gation direction). kt is the transverse component of the wave vector, ko is the free space 

wave number and a = ezpz — k%. As this structure is excited at normal incidence, I take 

the limit of these equations as kt —>0, which means that the polarizations will be circular, 

and the resulting indices will be

n± = y/ep — £2 ±  k . (5.13)

In this limit it can be seen that the parameters k z, ez and pz do not contribute to the 

refractive index. In the limit of £ =0, as is the case for an isotropic chiral structure, this 

simplifies to

n± = y/ep ±  (5.14)

which is the well known refractive index of a chiral material [40].

The impedance tensors can then be found using [35]

Zi,2 = f  (ni,2 ± t O
k*k* eakl kf x z0k/ x zq

Cö /Cq c k? k?

f  e (Kak% + Kzk?) \  z q  x k/kt k , k t x z0

V eako ~ ezkt J kt K kt
(5.15)

where the positive sign is chosen for direction —z, and the negative sign for direction
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+z. Taking the limit as kt —> 0, the equations become

z±  — —

Z ± = ^  
e

(n± + i£) I  + i k J  

(n± — i£) I  — inJ

(5.16)

(5.17)

The eigenvalues Z  for the different polarizations and propagation directions can 

then be found, giving the impedances for the eigenstates in the medium. Each of the

four eigenstates will have two potential eigenvalues, the correct one being determined
=>

by the corresponding eigenvector. For Z± the scalar impedances are degenerate and are

Z, =  ^ ( „  + t£),

and for Z± the scalar impedances are again degenerate, and are

Z2 = 7̂  (n -  *0 ,

(5.18)

(5.19)

where

n n+ + n_ 
2

(5.20)

There are then two unique eigenvalues, which supports the earlier argument that the 

impedance is only dependent on the direction, as shown in Fig. 5.4(a-b).

Eq. (5.13) can then be rearranged along with these eigenvalues to find equations for 

the retrieval of the parameters /i, e, k  and £:

2ri0n
Zi + Z2;

P =
n2 + £2 _

?
6

ie(Z2 — Z \ ) ' 
2̂ 7o

n+ — n_

(5.21)

Both the real and imaginary parts of the retrieved parameters are plotted in Fig. 5.5. 

In Fig. 5.5 (a) it can be seen that the imaginary part of ^  becomes positive, violating 

passivity, which is a known problem with assigning local parameters to metamateri-

als [71],as discussed at the beginning of this chapter. The effective parameters can still 

yield useful insights. In Fig. 5.5 (c) k  is plotted, the real part of which is directly related



76 Development of a Retrieval Procedure for an Asymmetric Chiral Medium

Real
Imaginary

Frequency (GHz)

(b)
1 1 T

-

X  iv___

Y’ -
1/

1

I
i i i-150

Frequency (GHz)

Figure 5.5: Real (solid black) and im aginary (red dashed) parts of the retrieved parameters: (a) 
magnetic permeability /z, (b) electric perm ittivity e, (c) chirality k  and (d) bi-anisotropy £.

to the optical activity, and the imaginary part defines the ellipticity. The real part is rel-

atively flat, consistent with my previous findings in Chapter 4. It can also be seen that 

the imaginary part is very low, corresponding to the very low ellipticity predicted in 

section 4.1 and measured in section 4.3.2.

The real and imaginary parts of £ are plotted in Fig. 5.5 (d). This determines the 

asymmetry of the structure as shown in the reflection coefficients. It is worth reiterating 

here that these parameters are strongly dependent on the earlier choice of d. These 

parameters are also only valid for this particular system, and would look very different 

if further layers were added. This can be seen in the optical activity and ellipticity shown 

in Figs. 4.5 (b,c).
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5.2 Checking the retrieved parameters

There are a number of checks that these parameters need to satisfy in order to be valid. 

The first checks apply this retrieval approach to the "corner" cases of k  — £ = 0, k  = 

0 and £ =0, and compares the results to those obtained using well established retrieval 

methods [40,71,105]. This was found to be the case (not shown). The final check is 

a consistency check, using the retrieved parameters for the general case to reproduce 

the scattering parameters theoretically. I will recalculate the scattering parameters (Sn 

and S21) by re-substitution, calculating the scattering parameters based on the admit-

tance tensors for a reciprocal bi-anisotropic medium. The scattering parameters can be 

calculated using

Si 1 - (frf + y ^ ’̂ -^y  + Y) • (y0 + ? ) - ( f t - ? ) - e _i*'-(? + y) - ( f t - ?
-1 - 1

f t  +  y ^ - e ^ .  ( y  + y ) ■(y0 - y ' ) - ( y d - y V e - ^ ' 1 ( y  +  y )  [% + y

(5.22)

and

Sn =  2 (Vo + y) • (e-w'J •(? + ?) ■ (ft + ?)

■(
-  Y o - Y  ■ e Y  + Y f t - ? Yo, (5.23)

where Y  is the admittance tensor, and Fo4  are the admittances at the structure bound-

aries. These equations are found by requiring the transverse fields to be continuous over 

the interfaces between the sample and its surroundings, the full derivation of which can 

again be found in Ref. [35].

It can be seen that the scattering equations are dependent on the admittance tensors 

Y  and the propagation tensors for the polarized waves e±l^d.

5.2.1 Developing the analytical solutions

To develop the analytical solutions for the propagation tensors, a reciprocal basis 

and E 2 is introduced [35], based on the two-dimensional basis Ei and E 2, which are
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the field vectors calculated using the eigenvectors in Section 5.1.1. The reciprocal basis 

vectors are found using
/ _  Zp X E 2 , j

1,2 E l , 2 • ( z o  X E 2 , l )  ’
(5.24)

and will satisfy

E 1,2 • E'2,1 =  o, E 1i2 • E i j2 =  1. (5.25)

For this structure the eigenstates are circularly polarized, so Ei and E 2 are left- and 

right-handed circularly polarized waves of equal magnitude. This requires that E\x = 

E\y = E2x = E^y and E i^  = E±. From Eq. (5.9) the vectors are then

with resulting reciprocal basis vectors of

Then

1 1 —i ~5” 1
; E _E  =  -

1 i
2 i 1 ~ 2 —i 1

(5.26)

(5.27)

(5.28)

^—  — y

For the backwards propagation direction E + =  E_ and vice versa.

The propagation factors elf3d and e 1(3 d are then found using [35]

e i ß d  =  e i n - k 0d E + E+ + ein+fcod|;_g^

e-ißd -  e-m+*odg+g + +  e-in_fc0rfE_E_,

(5.29)

resulting in

ß d =  i  | e *n +*0<* ( j t + J )  + _ j ) } ;

- i 0d =  1 | e- in - k o i  (ft + j j) + e ~ i n+ kod ^  _ j J) j
(5.30)
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Figure 5.6: (a) Magnitude and (b) phase of the scattering parameters calculated by re-
substituting the retrieved parameters. The lines are from CST, the markers from the theory. 
The reflection is in red, RCP transmission in green, and LCP transmission in black.

5.2.2 Calculating the admittance tensors

As Y  = Z ~ l, the eigenvalues for the admittance tensors can be found by inverting 

Eqs. (5.18-5.19), and substituting in p from Eq. 5.21. Taking the eigenvalues as diagonal 

components of the tensors results in

Y  = 

<=
Y  =

( n - f Q  j

(nHMO j

(5.31)

If the system is considered as a slab of thickness d, then Yb is the admittance tensor 

for the region 2 <0, found as a special case of Eq. (5.31). Yd is the tensor for the region 

z > d. For this system these regions are both free space, so

Y0 = Y„= (5.32)
%

5.2.3 Calculating the scattering Parameters

The scattering parameters Sn and S21 can now be evaluated by substituting 

Eqs. (5.32, 5.31) and (5.30) into Eqs. (5.22) and (5.23). The results for both polarizations 

are plotted in Fig. 5.6, and show near perfect agreement between our original simu-

lations and the recalculations. It can also be seen that the nearly constant difference 

between the transmission phases in Fig. 5.6 (b) is consistent with the flat optical activity.



80 Development of a Retrieval Procedure for an Asymmetric Chiral Medium

The reflection plotted is that for the forward incidence - to recalculate the opposite di-

rection, the sign of £ needs to be changed. The reflection was found to be equal for both 

polarizations within numerical error, as is expected [40]. These calculated scattering 

parameters confirm the consistency of this new retrieval approach, and also justify the 

treatment of the polarizations of the eigenmodes as circular, as this is the assumption 

made in calculating and inverting the parameters.

5.3 Conclusion

In this Chapter I have continued to study the "mixed pair" proposed in Chapter 4. It 

is important to be able to retrieve the effective parameters for a structure, as it gives a 

good explanation of how the structure is polarized by the external fields. However no 

such method existed for a general structure with C4 symmetry. To remedy this I have 

developed a novel retrieval method for calculating the effective material parameters 

which is applicable to single-layer structures with C4 symmetry at normal incidence, 

and verified the accuracy of this new approach.

A method of calculating the refractive indices and impedances was developed based 

on the eigenvalues of the scattering-transfer matrix. Equations were then derived to 

calculate the effective parameters from the indices and impedances.

I have verified the consistency of this approach by calculating the scattering param-

eters theoretically and comparing them with results obtained from the numerical simu-

lations. The scattering parameters were calculated from the admittance tensors for this 

structure, and agreed almost perfectly with the numerical results.

This is the first time to my knowledge that a parameter retrieval approach has been 

developed for general structures with this particular symmetry. This is a robust method 

for retrieving the effective parameters.
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Conclusion

Metamaterials are important for engineering materials with unique properties. A large 

amount of effort has gone into designing better ways to create them for a range of ap-

plications. The response of a bulk metamaterial is determined both by the properties of 

the individual resonators, and the coupling between them. The near-field interaction is 

vital for understanding the response of a metamaterial and is best studied using pairs 

of resonators, as the effect is strongest between neighboring meta-atoms. Accordingly, 

I have used resonator pairs to further the study of the near-field interaction, and in-

vestigated the effect it has on other properties such as the nonlinear response and the 
chirality. This work is an important step in increasing the understanding of how the 

coupling between neighboring resonant elements affects a metamaterial system, which 

should result in further efforts towards utilizing strongly coupled meta-atoms.

By changing the relative rotation between a pair of split-ring resonators, I experi-

mentally and numerically investigated the near-field interaction. Changing the rotation 

angle modifies the electric and magnetic interaction between the rings, tuning the hy-

bridized resonances. Using both numerical simulations and an analytical model that 

takes into account both electric and magnetic interactions between the rings, I found 

that there is a crossing where the two resonances coexist, at an angle where the electric 

and magnetic coupling are equal. The waveguide walls and experimental errors can 

cause the crossing of the dispersion curve to be avoided, and by using the theory of 

Morse critical points, it was found that the losses can cause the crossing to be restored. 

This analysis gives further understanding of the near field response between resonators. 

It also suggests the possibility of achieving a specific set of parameters where both the 

frequency and the decay constants of the resonances are degenerate, causing the cou-

pling to be suppressed. This would have important implications for mitigating spatial

81



82 Conclusion

dispersion.

The influence of the near-field interaction on the nonlinear properties of a struc-

ture was demonstrated, using a pair of coupled SRRs with varactors attached. I found 

that by shifting the two rings relative to each other, the nonlinear properties of both 

the symmetric and antisymmetric resonant modes in the system can be controlled. I 

then explained the tuning of the nonlinear response by studying the linear properties 

of the system, including the voltages generated across the diodes. This research should 

stimulate further work in controlling and designing the nonlinear properties of meta-

materials. In particular, the system could be scaled down, making appropriate changes 

in the design process, for use at higher frequencies.

The interaction between twisted planar elements was then used to study chiral prop-

erties. I proposed a "mixed pair" structure, which is a combination of a meta-atom with 

its complement. Such a combination couples equivalent electric and magnetic dipoles, 

according to Babinet's principle, and has C4 symmetry, which is a lower order symmetry 

than a pair of twisted crosses or complementary crosses. This "mixed pair" overcomes 

issues with other twisted structures, where highly dispersive optical activity is often ac-

companied by ellipticity in the polarization of the transmitted wave. In contrast to other 

rotated structures, I found that the "mixed pair" can possess large, flat optical activity 

over the transmission resonance, accompanied by very low ellipticity. I have also shown 

how these effects can be optimized, including through changing the internal twist angle 

6, and increasing the number of complementary pairs. The optical activity and ellip-

ticity for the structure, along with the effect of changing the rotation, were confirmed 

experimentally. The effect of changing the spacing between the elements was also inves-

tigated, and the excitation mechanism of the structure determined. This was done by 

studying the excitation of a strip combined with a slot, and showed that the excitation 

of this structure is predominantly determined by the currents around the "arms" of the 

complementary cross.

The effects of the material's symmetry on the bi-anisotropic properties was also in-

vestigated. I developed a new retrieval method applicable for metamaterials with C4 

symmetry at normal incidence, based on the eigenvalues of the scattering transfer ma-

trix, and then calculated the resulting material parameters for a unit cell array, including
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the extra bi-anisotropic parameter £. I verified the accuracy of this approach by calcu-

lating the scattering parameters theoretically. This is the first general retrieval approach 

developed for this set of parameters to my knowledge. This approach could be easily 

extended for use in more general media, including structures inside a waveguide or 

excited at non normal incidence.

This research has shown the importance of near-field coupling in the design of meta-

materials, and that this near-field coupling can be used to manipulate nonlinear and chi-

ral properties. It also highlights the need for continued research in the field. In particu-

lar, my results from the “mixed pair" should stimulate further research on understand-

ing coupling properties and resonant modes of similar structures, as well as potential 

applications for linear polarization control. Whether these effects will hold for “mixed 

pairs“ consisting of other resonators, or for increasing numbers of complementary pairs 

in longitudinal arrays, would be particularly of interest. In order to more thoroughly 

optimize and understand this system, a dipole model could be developed.
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