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Abstract

Numerical models of stellar atmospheres fulfill an important role in astrophysical research. 
They describe the physical environment from which stellar radiation originates, allowing de
tailed analyses of the temperature and pressure stratification in the atmosphere, of the chemical 
composition, atmospheric motion, phenomena related to magnetic fields and more. Theoret
ical studies of stellar atmospheres usually involve two steps: first, the model atmosphere is 
constructed according to a set of parameters. Based on this model, a theoretical representation 
of an observable is produced, e.g., spectral lines or the center-to-limb variation of continuum 
radiation.

3D time-dependent radiation-hydrodynamical simulations of stellar atmospheres have been 
very successful in reproducing observations and have become a viable tool for solar physics and 
stellar astrophysics. Coupling detailed radiative transfer with a hydrodynamical description 
of stellar surface granulation, they allow accurate predictions of the atmospheric stratification, 
velocity fields, spectral line formation, magnetic phenomena etc.

The complexity and computational effort of 3D radiation-hydrodynamical simulations re
quires a variety of approximations, such as the assumption of local thermodynamic equilibrium 
(LTE) in the treatment of radiative transfer. This PhD thesis explores the enhancement of the 
radiation model with coherent photon scattering, studying its importance for radiative heat
ing in 3D radiation-hydrodynamical simulations. By comparing the atmospheric temperature 
stratification derived from different treatments of scattering opacity, it is demonstrated that a 
solar-type photosphere is well-approximated when continuum scattering is treated as absorp
tion, while this approach leads to significantly higher temperatures above the photosphere if 
applied to line-blanketing. In metal-poor giants, Rayleigh scattering is an important continu
ous opacity source; treating the opacity as absorption leads to significantly higher temperatures 
above the surface and a shallower temperature gradient. The temperature structure of the model 
atmosphere with coherent scattering can be approximated with reasonable accuracy by remov
ing scattering opacity above the stellar surface and using a Planck source function, which largely 
reduces the computational effort.

3D spectral line formation is an essential diagnostic for simulations of stellar atmospheres, 
and a widely used tool for analyzing, e.g., the chemical composition of stars. Metal-poor giants 
are interesting astrophysical laboratories in this context, for studying the chemical evolution 
of the Galaxy and the origin of the elements. The second part of the thesis investigates LTE 
spectral line formation with continuum scattering in metal-poor giants. It is shown that an 
increasing thermalization depth through scattering at short wavelengths affects profile shapes 
and equivalent widths, with important consequences for measured abundances.
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Chapter 1

Introduction

1.1 R adiation in astronom y and astrophysics

Radiation has always been an important foundation, if not the foundation for astronomical and 
astrophysical research. Stellar light fascinated ancient astronomers, motivating them to chart 
the sky and to understand its nature. It inspired important scientific progress to explain the ob
servations, leading to advances in the theory of mechanics and many other disciplines. Astron
omy also contributed evidence and motivation for philosophers and theologists to understand 
our existence. Their ideas still influence society and our political life, through religion, our re
lationship towards nature and many other aspects. Such direct and indirect cultural importance 
emerges in the continuous public interest in astronomical research.

Radiation is an essential tool to extend our knowledge of the universe, motivating the con
struction of ever larger telescopes and theoretical efforts to refine our understanding of its 
sources using mathematical and physical theories. Radiation allows us to probe places in the 
Universe that are far beyond reach with current technology, either because of their large dis
tance or because of their extreme physical conditions. Already the Sun and the solar-system 
planets and moons, our closest astrophysical sources of radiation, provide us with numerous 
puzzles to solve.

The english chemist William Hyde Wollaston1 was the first scientist who reported dark 
lines in the visible solar spectrum in 1802, which had previously appeared continuous. Between 
1814 and 1824, Joseph von Fraunhofer published a systematic analysis of the solar spectrum, and 
labeled the most prominent features with letters from A to G. Their origin remained unknown 
during Fraunhofer’s lifetime. Even though scientists have found millions of spectral lines in 
solar light later on, Fraunhofer’s labels are still commonly used in astrophysical literature.

The importance of Wollaston’s and Fraunhofer’s discovery was understood when Gustav 
Robert Kirchhoff and Robert Wilhelm Bunsen started to use spectroscopes as tools for chemical 
analyses, attributing spectral features to specific elements in the mid-19th century. Transferring 
their findings to Fraunhofer’s solar lines, it was realized that the Sun is composed of elements 
which are also found on earth, and that the same applies to other celestial bodies as well. It is 
interesting to note in this context that, in the same century, the French philosopher Auguste 
Comte believed in the impossibility of understanding the structure behind the astronomical 
discoveries:

Of all objects, the planets are those which appear to us under the least varied 
aspect. We see how we may determine their forms, their distances, their bulk, and

'The historical references in this section are mostly taken from Isaac Asimov’s The History of Physics (Walker 
Publishing, 1966)
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their motions, but we can never know anything of their chemical or mineralogical 
structure, and, much less, that of organized beings living on their surface. [...]
Auguste Comte, “The Positive Philosophy”, Book II, Chapter 1 (1842)

The bulk of radiation emitted by most stars closely resembles a black body. Wilhelm Wien 
and Josef Stefan related black body radiation to gas temperature, enabling an important clas
sification of stellar spectra and paving the way to investigate the evolution of stars. At the 
beginning of the 20th century, Max Planck’s explanation of the black body spectrum through 
statistical mechanics and the quantum hypothesis started a rapid development in atomic physics 
and our understanding of the detailed mechanisms behind the interaction between radiation and 
matter.

The fundamental tools became available to investigate the processes that lead to the emission 
of the radiation that we observe in telescopes and analyze in spectrographs, turning astronomy 
into astrophysics.

1.2 Stellar atmospheres

Stars consist mainly of opaque hot plasma that makes their interior invisible to observations of 
electromagnetic radiation. The gas becomes transparent only at the surface, allowing radiation 
to escape into space. On its way through the outermost shell of the star, the atmosphere, light is 
absorbed and emitted by atoms and molecules, giving its spectrum a very distinct “fingerprint”. 
The formation of the radiation field and thus the appearance of spectral features depends on 
microphysical states of the radiating gas and the thermal structure of the atmosphere, as it was 
demonstrated by Payne (1925), and the interaction between radiation and matter determines, in 
reverse, states and structure. Understanding stellar radiation thus requires solving the coupled 
problem of radiative transfer, the thermodynamics of fluids and atomic physics.

The large amount of observational data available for the Sun allows the construction of semi- 
empirical models that reproduce certain spectral features (e.g., Holweger, 1967). Early efforts to 
infer the solar (or stellar) atmospheric structure from theory were based on simple models that, 
among many other approximations, assume a single frequency-independent (or “gray”) opacity 
(e.g., Milne, 1921). It was quickly realized that a too idealized treatment of the problem does 
not provide a sufficient degree of realism to reproduce observations and to obtain a detailed 
understanding of the physics; see, e.g., the discussions of the effects of spectral lines using an 
analytical model by Chandrasekhar (1935) or numerical calculations by Böhm (1954). The rapid 
development of computers in the mid-20th century allowed astrophysicists to produce more 
advanced synthetic atmospheres for a large variety of stellar parameters. Numerical programs 
such as MARCS (Gustafsson et ah, 1975) or ATLAS (Kurucz, 1979) were created, which are still 
widely used in astrophysical research. They describe the atmosphere in a one-dimensional plane 
parallel (or spherically symmetric) approximation, which is nowadays often called a “classical” 
model. In the following decades, these programs were extended and refined, and applied to a 
larger range of objects, including brown dwarf stars and exoplanetary atmospheres.

Late-type stars like the Sun required further sophistication of theoretical methods: obser
vations provided evidence for the existence of gas motion in the atmosphere that strongly in
fluences the emitted light; theoretical considerations identified convection as the underlying 
physical process (Unsold, 1930). This led to the construction of models in 3D to account for 
inhomogeneities in the stratification and to include time-dependent hydrodynamics to repro
duce motion at the stellar surface (e.g., Nordlund, 1982). The larger complexity of a radiation- 
hydrodynamical description of late-type stellar atmospheres was rewarded by improved agree
ment of model predictions with the observations and a deeper understanding of the physics.
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Modern 3D radiation-hydrodynamical model atmospheres of late-type stars still use nu
merous approximations to make the problem tractable for currently available computers. The 
advent of parallel computing with hundreds or thousands of processing units opened up new 
possibilites for investigating more complex physical mechanisms and for increasing the realism 
of synthetic models.

Radiative transfer is an essential ingredient for model atmospheres, as radiation becomes 
the dominant mode of energy transport at the surface. Its numerical treatment is complex and 
often dominates computation times. Scattering of radiation has therefore mostly been neglected 
in 3D simulations: the scattering term in the radiative transfer equation makes solutions self- 
dependent; they need to be determined using an iterative solver rather than by simple numerical 
integration. However, scattering can have important effects on the radiation field: photons may 
escape from deeper, hotter layers in the atmosphere, radiative heating is reduced when photons 
are scattered rather than absorbed, and spectral lines change their shapes as scattering couples 
radiation from different angles and with different frequencies.

This PhD thesis explores the importance of photon scattering in stellar atmospheres. The 
focus lies first on 3D radiation-hydrodynamical simulations of stellar surfaces. Chapter 2 de
scribes selected aspects of the underlying physical model of hydrodynamics and radiative trans
fer. The numerical implementation in the BIFROST code (Gudiksen et al., in prep.) which was 
used for the simulations is discussed in Chapter 3. Chapter 4 contains a refereed publication that 
describes the radiative transfer method and discusses the effects of scattering on the atmosphere 
of a solar-type star; a similar analysis for metal-poor giant stars is presented in Chapter 5.

In Chapter 6, the thesis moves towards spectral line formation, an important diagnostic tool 
for model atmospheres and for astrophysical measurements, discussing some essential models 
that treat the atomic physics and numerical methods to solve the line formation problem. The 
effects of continuum scattering on line formation in red giant stars are analyzed in Chapter 7. 
Chapter 8 gives a summary of the thesis and highlights possible future developments.



14 C hap ter  1. In troduction



Chapter 2

The physics of late-type stellar 
atmospheres

2.1 Definition of a stellar atmosphere

Similar to the Earth’s atmosphere, the stellar atmosphere encloses the star in a spherical shell. 
Unlike the Earth, however, stellar envelopes mostly consist of hot plasma with a smooth tran
sition from the interior to space instead of cool gas that is bounded by condensed matter. The 
thickness of the atmosphere varies strongly with stellar type, from a very thin layer in dwarf 
stars to a considerable fraction of the stellar radius in the case of giants and supergiants. It is 
therefore not immediately clear how to strictly define a stellar atmosphere. Gray (2005) de
scribes it in general terms as “a transition region from the stellar interior to the interstellar 
medium”.

A fundamental feature of the atmosphere is an exponential outward decrease of gas opacity, 
producing an optical surface through which radiation can escape into space. Radiation inside 
the star is optically thick and photons diffuse outward in a random walk, with mean free paths 
on a centimeter scale or less. Matter is essentially in local thermodynamic equilibrium; the ra
diation field is thus almost isotropic and follows a Planck distribution. The optically thin outer 
layers of the atmosphere are characterised by photon mean free paths that reach beyond the 
stellar atmosphere and photons are lost into space. Ehe radiation field consequently becomes 
strongly anisotropic above the boundary layer of the optical surface, and numerous atomic and 
molecular absorbers in the gas add millions of narrow spectral lines to the previously smooth 
Planck spectrum. This is the part of the atmosphere that is observed in telescopes.

Gray (2005) divides the solar atmosphere into several regions: coming from the interior, 
the sub-photosphere (at heights h < 0 in Fig. 2.1) is still optically thick at all wavelengths with 
temperatures around some 10000 K. It is roughly bounded by the continuum optical surface in 
the visual band (h = 0). Visual continuum photons contribute most of the solar luminosity, 
as the Planck function for T  = 5777 K peaks in this wavelength band. The photosphere starts 
around the optical surface and extends up to a temperature minimum of about 4000 K at h «  
500 km. Most of the visible solar spectrum is formed in this region, apart from the cores of 
the strongest lines. Above the photosphere, the temperature increases again to about 7000 K in 
the chromosphere, which reaches up to h «  2000 km. It is important to note that empirically 
derived temperatures in the chromosphere depend on the chosen spectral feature: studies of CO 
lines are inconsistent with an inversion in the temperature structure (e.g., Ayres and Testerman, 
1981). 3D simulations of a magnetically quiet solar chromosphere have found a bifurcation in 
the temperature distribution that could explain the co-existence of a hot and cold component 
(Wedemeyer et ah, 2004). The outermost region of the solar atmosphere is called the corona,
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Figure 2.1: Solar temperature structure as a function of atmospheric height derived by 
Vernazza et al. (1973) using a semi-empirical model atmosphere; the continuum optical 
surface is at h =  0. Arrows indicate the formation height of important spectral features.

which is marked by a sharp increase in temperatures and strong ionization of the coronal gas.
Chromosphere and corona are heavily influenced by magnetic fields: theoretical studies 

support scenarios in which magnetic heating occurs through twisting of coronal magnetic flux 
tubes by gas motion beneath the surface, releasing energy by dissipation (e.g., Parker, 1983; 
Gudiksen and Nordlund, 2005; Nordlund et al., 2009). Such solar (or stellar) magnetic fields are 
generated in the interior and give rise to a whole variety of different phenomena at the surface, 
which include spots, faculae, plages, spicules and many more.

2.2 The hydrodynamical model

Stellar surface plasma is a dilute, hot, partly ionized, magnetized gas consisting of molecules, 
neutral atoms, ions and electrons. Flydrogen and helium dominate the chemical composition, 
heavier elements (“metals”) appear only in traces. A full description of all particles with their 
individual dynamics and interactions is neither feasible nor necessary. Macroscopic plasma 
physics may instead be investigated with three complementary approaches (see the discussion 
in Mihalas and Mihalas, 1984).

The thermodynamic view assumes that the gas is in local thermodynamic equilibrium and 
governed by macroscopic quantities, such as pressure, temperature, density etc.. The time evo
lution of the plasma assumes a fluid of one or several components and is described using the 
hydrodynamic equations, which form the foundation of practically all current 3D simulation 
codes. The gas density around the surface of late-type stars lets particle motions relax to a statis
tical equilibrium distribution on very short time scales, making a hydrodynamical description 
a valid approximation for simulations of stellar surface granulation (see Appendix A.2).

The kinematic view describes individual particles and their interaction with the background 
medium through equations of motion, which is useful for detailed studies of microscopic mech-
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anisms. A third approach employs statistical mechanics, where detailed phase-space distribution 
functions of particles are obtained from solving Boltzmann equations.

2.2.1 The equations of compressible hydrodynamics

Stellar atmospheres are strongly stratified by gravity and consist of highly compressible gas. The 
plasma conducts sound waves and may undergo large-scale pressure oscillations (“p-modes”) and 
gravity oscillations (“g-modes”). Typical microscopic and macroscopic plasma speeds remain 
far below the relativistic regime; a treatment using Newtonian dynamics is sufficient. The 
compressible hydrodynamical equations on a stationary grid in the Eulerian picture are an 
adequate choice for simulating surface convection (see, e.g., Nordlund et al., 2009). They consist 
of a set of 5 predictive equations for macroscopic states.

The first equation or continuity equation accounts for mass conservation:

f t + V-(pu) = 0, (2.1)

where p is the total gas density and u is the gas velocity; the gas momentum density pu is 
equivalent to a local mass flux. The dynamics are governed by the equation of motion for the 
components of the gas velocity vector or momentum vector, in this representation also called 
the Navier-Stokes equations:

^  + V-(puu) + V P = -p g  + V • Tvise, (2.2)
at

where P  is the total gas pressure, r v isc is the viscosity tensor and g is the gravitational accelera
tion. The tensor term puu, which is also often called the inertial term, provides kinetic energy 
flux and is responsible for complex turbulent behavior of gas with a large disparity of inertial 
and viscous length scales. In stellar atmospheres, plasma viscosity is small and acts on very short 
length scales (see Sect. 2.2.3), and it would in principle be sufficient to neglect the term V • Tvisc 

in the equations. However, numerical stability requires smoothenmg of the hydrodynamical 
flow using artificial viscosity (see Sect. 3.1). The simulations assume constant gravity across the 
entire domain, which is a very good approximation for dwarf stars like the Sun. It breaks down 
in the case of supergiant stars, where the atmosphere covers a significant fraction of the stellar 
radius.

The last remaining equation accounts for the conservation of internal energy of the gas. It 
is also sometimes called the thermodynamic equation due to its equivalence to the first law of 
thermodynamics (Appendix A.l) in the local co-moving frame of the gas flow:

dc
—  + V-(eu) + P(V • u) = Qrad + Qvise5 (2-3)

where e is the internal energy per unit volume. The term eu represents the internal energy flux, 
P(V • u) is the rate of change of internal energy through compression and expansion work, and 
Qrad is a source term that accounts for radiative heating and cooling. The last quantity on the 
right-hand side corrects the energy budget for viscous dissipation of kinetic energy:
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2.2.2 The equation of state

The hydrodynamic equations (Eq. (2.1), Eq. (2.2), Eq. (2.3)) are not a closed system: in addition 
to the radiative heating rate Qrad> the gas pressure P  must be determined using an equation of 
state (EOS), which needs to account for all microphysical states that the particles may occupy.

Surface plasma of late-type stars is dilute with small occupation numbers of physical states, 
so that quantum mechanical degeneracy effects are negligible. However, the gas is at least partly 
ionized and may form molecules in cooler layers. The electrons of the different atomic and 
molecular components may populate excited states, and molecules experience vibrational and 
rotational motion. Including such internal energy states is essential: simulations have shown 
that most of the energy transported outward by convective flow near the surface is stored in gas 
ionization rather than thermal motion. The smaller heat capacity of an ideal gas that has no 
internal degrees of freedom would result in flow speeds that are much larger than observed in 
the Sun to maintain the solar luminosity (Nordlund et al., 2009).

The fundamental problem of devising a realistic equation of state consists in accounting for 
all accessible microscopic states of a plasma in atmospheric conditions. Hydrogen and helium 
are naturally the most important components. Heavier elements, such as carbon, nitrogen 
and oxygen contribute a significant amount of electrons, affecting the ionization balance of all 
elements, and may form abundant molecular species. In principle, the microphysical state of 
the different plasma components changes through electromagnetic interaction with particles 
and the radiation field, and on varying time scales depending on the physical environment. 
The complexity of treating all such processes exceeds current computational limits by many 
orders of magnitude. Non-equilibrium physics can therefore only be approximately included in 
the EOS for selected mechanisms such as time-dependent hydrogen ionization (Leenaarts and 
Wedemeyer-Böhm, 2006; Leenaarts et al., 2007). Neglecting the effects of the radiation field and 
assuming instant equilibration leads to the approximation of local thermodynamic equilibrium 
(LTE). All microscopic states then only depend on a pair of macroscopic state variables, e.g. 
internal energy e and density p. The EOS can be used in tabulated form, which is a tremendous 
simplification for simulations of stellar surface granulation.

The Mihalas-Hummer-Däppen equation of state (MHD EOS, Hummer and Mihalas, 1988; 
Mihalas et al., 1988; Däppen et al., 1988; Mihalas et al., 1990) provides a modern and realistic 
treatment of stellar plasma in LTE and is well-suited for stellar interiors as well as late-type 
stellar atmospheres (see, e.g., the discussion in Trampedach et al., 2006). In its current state 
of development, it only includes the hydrogen molecules H 2 and H J ; the MHD EOS would 
therefore need to be expanded to the describe the complex chemistry of very cool objects such 
as brown dwarf stars, where heavier elements form dust and large numbers of molecules in the 
atmosphere.

The MHD EOS is based on the principle of free energy minimisation. The free energy F 
of a thermodynamic system is defined as

F = E - T S ,  (2.5)

where E  is the internal energy, T  is the temperature and S  is the entropy. Inserting the first law 
of thermodynamics,

dE = TdS -  PdV + Y  ßidNi (2.6)
i

into the total differential of F  leads to the relation

dF = - S d T  -  PdV  + Y  didNi, (2.7)
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where V is the gas volume, /q is the chemical potential of particle species i, and Nl is the 
number of particles of this species. F is minimal for a system in equilibrium: dT = 0, dV =  0 
and {dNi} = 0 require dF = 0 in Eq. (2.7); the entropy S has a maximum in equilibrium and 
F  must consequently be minimal (Eq. (2.5)).

The free energy of stellar plasma is assumed to consist of the following contributions:

•^plasma — -^t T  +  f e  " f T q , (2 .8)

where Ft accounts for translational free energy of all particles, F[ is the free energy of internal 
states, Fe is the free energy of electrons (which is treated separately as the electron gas may 
be partly degenerate deeper in the stellar interior) and Fq is the free energy of electrostatic 
(Coulomb) interactions between charged particles. The different terms are given by analytical 
expressions which assume an ideal gas for each state component, assisting the minimization 
process and the derivation of thermodynamic quantities once the EOS is solved.

Transitions between the different particle species follow stoichiometric equations that cou
ple their population numbers {Aj}. Ionization and recombination processes between the states 
j  and j  + 1 of each atom and molecule are described by expressions of the kind

dF dF dF 
dNj ~ dNj+i ~  ä/Ve

(2.9)

with the chemical potentials dF/dNj — fij. Formation and dissociation of diatomic molecules 
with components A and B is included by using a similar set of equations,

dF dF dF 
d N ^ B  ~ d N ^ ~ W B

(2. 10)

If the entire system is in equilibrium, the hypothesis of detailed balance requires that each 
of these equations must vanish individually with dF = 0 and d N \  = dNB — —dN^B for the 
various particle reactions. The resulting system of nonlinear equations is solved for population 
numbers {Afi} using a Newton-Raphson scheme. Thermodynamical relations provide, e.g., the 
gas pressure through the partial derivative

P = (dF_
V<917 T,{Ni}

(2 . 11)

Similar equations yield temperature, internal energy, and entropy.
A very important problem for the development of an EOS for stellar atmospheres and in

teriors is the divergence of the partition functions for electron excitation: single atoms and 
molecules may reach an infinite number of excited states with increasing spatial extent of the 
corresponding electron wave functions. In stellar plasma, such high-excitation atoms are ion
ized through Stark interaction with surrounding particles, and the divergence has no practical 
significance. The MHD EOS includes a detailed treatment of the Stark effect, which defines 
occupation probabilities for each excitation state that effectively suppress the highest levels.

2.2.3 Flow numbers

Hydrodynamical flow can be characterized by comparing the relative importance of the differ
ent terms that appear in the hydrodynamical equations. This leads to the definition of dimen
sionless flow numbers, which can be used to determine general flow behavior and to compare 
flows in different physical environments. Depending on the physical model and thus on the
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appearance of terms in the hydrodynamical equations, there exists a large variety of such num
bers. In the context of stellar atmospheres, the Reynolds number, the Prandtl number and the 
Mach number are of particular interest and shall be discussed in the following.

Dividing the Navier-Stokes equations (Eq. (2.2)) by a characteristic velocity u and a length 
scale L delivers a flow number that scales the viscous diffusion term, the well-known Reynolds 
number

The length scale L is given by the typical horizontal size of surface flow structures or the local 
vertical pressure scale height (both are related through mass conservation), and v is the kine
matic viscosity of the plasma. Kippenhahn and Weigert (1990) estimate a plasma viscosity of 
v = uthd, where itth is the thermal velocity and d is the average distance between particles. 
Since microscopic and macroscopic speeds of the atoms are of similar order, the Reynolds num
ber is dominated by the disparity between microscopic and macroscopic length scales L/d. 
Solar granules have sizes of ~  1000 km, while typical particle distances are small (d <  1 cm). 
The Reynolds number is very large, and it is clear that stellar surface plasma should have a 
strong tendency to build up turbulent motion. Numerical simulations of the solar atmosphere 
have indeed found granulation flow fields that resemble turbulence (Muthsam et al., 2007), but 
its detailed spatial structures are difficult to observe: photospheric radiation is dominated by 
the bright granules which exhibit only small intensity variations. Radiation cannot penetrate 
deep into the convection zone, and very fine structures in the gas flow are not resolved.

The Prandtl number compares the magnitudes of kinematic viscosity u and thermal con
ductivity K :

Pr = cpPj^i (2.13)

with the specific heat cp at constant pressure and the gas density p. Thermal conductivity in 
stellar atmospheres is mostly dominated by radiative transfer; energy transport is so efficient 
that the Prandtl number is small. Pr  can be interpreted as a comparison of inverse time scales 
of viscous and thermal interaction, or as a comparison of thickness of kinematic and thermal 
boundary layers: radiative energy transfer in stellar atmospheres happens on very small time 
scales, producing thermal boundary layers that are larger than kinematic boundary layers.

The Mach number is defined as the ratio of flow speed u and sound speed cs,

V
M  = - .  (2.14)

Cs

Flow speeds that exceed the local sound speed (M > 1 ) are called supersonic, M  < 1 charac
terizes subsonic flow, which dominates surface granulation. However, acceleration of gas above 
granules through pressure effects or shock formation forces local supersonic velocities (Stein 
and Nordlund, 1998).

2.3 Radiative transfer

The propagation of photons and their interaction with matter can be treated in different ways, 
depending on the physical environment and the quantities of interest. In the high-energy do
main of particle physics or when interactions with single photons are investigated, a detailed 
description in a consistent quantum field theory is required. In typical atomic physics appli
cations, a radiation field of many photons may be approximated using Maxwell’s equations, 
taking time-dependence, phase and polarization into account.
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In stellar atmospheres, radiation fields are moderately intense and non-coherent. Radiative 
energy transfer through bulk absorption and emission of photons in matter is well-approxi
mated in a macroscopic treatment with the radiative transfer equation, assuming linearity in 
the interaction between the radiation field and the surrounding medium. Gradients in stellar 
atmospheres are small on the scale of photon wavelengths, allowing a description of radiation 
in the particle model (see the discussion in Oxenius, 1986).

2.3.1 The radiative transfer equation

There are different ways to establish the radiative transfer equation. Besides postulating the 
equation with phenomenological arguments, it can be shown that it is equivalent to a Boltz
mann equation by assuming that photons behave like a particle gas (Oxenius, 1986). In this 
particle picture, photons follow a distribution function

dN = </>(x, p. i)dxdp. (2.15)

where dN  is the number of photons per unit volume in phase space at a given time t. The 
photon momentum depends on its frequency through p = (E / c)n = (his/c)n, where c is the 
speed of light, h is the Planck constant and n is the flow direction. The time evolution of the 
distribution function (f) is governed by a Boltzmann equation with a source term S + and a sink 
term S~ for the creation and destruction of photons,

^  + —  n • V0  = S + -  S~. (2.16)at c

In astrophysics, the radiation field is traditionally described by the specific intensity /, a distri
bution function for the energy dE  that is radiated through a surface area dA into solid angle dQ 
per time dt and frequency interval du\ the area dA may be tilted by an angle 6 away from the 
beam direction:

dE = /(x , n, v, t)dtdu cos OdAdQ. (2.17)

Specific intensity and the photon distribution function are related through the equality

/(x , n. is, t) =  —2~ 0 (x, p. t). (2.18)

The Boltzmann equation (Eq. (2.16)) can thus be rewritten as the monochromatic radiative 
transfer equation for frequency is,

1 d l
-  - f  + n • VG = - X v E  + j v. (2.19)c at

The source and sink terms 5 + and S~ are replaced by the emissivity j y and the extinction 
term Xv^y The interaction with matter is reduced to these bulk rate coefficients: the radiative 
transfer equation itself does not include any effects of absorption or emission on the physical 
state of the material, implicitly assuming a splitting between radiative interaction and material 
feedback.

In analogy to gas dynamics, one may define moments of the specific intensity /„ by integra
tion over solid angle. This is particularly useful for solving transport problems if the anisotropy 
of the radiation field is weak and the series of moments can be truncated at low order; unlike 
a real particle gas, the photon field does not relax to an isotropic distribution through self
interaction. In stellar atmospheres, Iy is highly anisotropic due to the dominance of outward 
energy transport, and it is necessary to solve the radiative transfer equation (Eq. (2.19)) rather 
than moment equations.
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The zeroth moment of the specific intensity Iv yields the mean intensity

Jv =  - r  I Ivdn, (2.20)4tt J s 2

where S 2 denotes the unit sphere. Jv is equivalent to a photon density per unit volume. The 
first moment yields the components of the radiative flux in direction fq,

where (rq, n') is the inner product of direction vectors. The second moment defines a radiation 
pressure tensor.

2.3.2 Opacities

The radiative transfer equation (Eq. (2.19)) for a medium with zero emission (jv = 0) predicts 
that the amount of radiation d lu that is removed from the radiation field along the photon path 
in direction n depends linearly on the incident radiation Iv and the opacity Opacity is 
a macroscopic material coefficient that includes both absorption of photons, with subsequent 
thermalization of its energy, and scattering of photons away from the incident beam:

X v  = Ki, +  ov, (2.22)

where kv is the absorption coefficient and ay is the scattering coefficient.
In general, the opacity at a given frequency v can consist of many processes: bound-bound 

transitions in atoms or molecules, bound-free transitions that ionize the medium, and free-free 
transitions where photons interact with charged particles in a three-body process. Opacity is 
commonly separated into two groups, continuous opacity which is characterized by small wave
length dependence across a given spectral range, and spectral line opacity with much stronger 
variation.

Opacities appear as a constant in the radiative transfer equation, which does not include 
material feedback of radiative processes. The treatment of opacities must therefore be supple
mented with appropriate atomic models, depending on the application. Radiative processes 
such as photo-ionization compete with collisional interaction of material components in the 
gas. If collisional processes dominate, the material is driven towards local thermodynamic equi
librium (LTE) and the opacity of gas with a given chemical composition only depends on the 
local gas temperature and pressure. It is this parameterization that makes LTE a drastic simpli
fication, since no additional information is needed about the detailed processes (see Chapter 6). 
LTE is usually a good approximation deeper in the atmosphere.

If LTE does not hold, the atomic model must be coupled with the radiation field to ob
tain a consistent description of the physical state of matter in the atmosphere. This treatment 
requires detailed knowledge of reaction rates, such as Einstein coefficients and collisional ex
citation rates, to obtain population numbers of atomic levels, which is generally called non- 
LTE (NLTE) radiative transfer. The models usually assume statistical equilibrium: processes 
that populate and depopulate atomic levels must in total be exactly balanced, leading to time- 
independent population numbers and a time-independent radiation field. The complexity of 
NLTE calculations usually limits applications to the important case of accurate spectral line 
formation (e.g., Carlsson et ah, 1994; Mashonkina et ah, 2008; Bergemann and Gehren, 2008), 
although NLTE techniques have been used in the context of ID hydrostatic stellar atmospheres 
(Anderson, 1989; Short and Hauschildt, 2005) and ID radiation-hydrodynamical simulations 
(Carlsson and Stein, 1997).
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2.3.3 The source function

The photon emissivity j v has an exponential depth variation in stellar atmospheres, similar to 
the opacity h is therefore customary to use the source function

S„ = h  (2.23)
Xv

instead of j v. S v is the number of photons emitted into the beam per photon removed from a 
beam with unit intensity. The source function is a material property like the opacity Xi/> which 
needs to be derived from an atomic model. If thermodynamic equilibrium holds, matter emits 
radiation from its thermal pool in equilibrium with absorption according to Kirchhoff’s law, 
and the source function is equal to the Planck function:

S v = B v. (2.24)

In LTE, this relation is only approximately fulfilled, as the equilibrium may be perturbed by 
radiation from non-local sources. Thermal emission is generally supplemented with scattering 
of photons from all directions n' and frequencies v' into the direction n of the monochromatic 
specific intensity Iv. Cold gas with negligible thermal emission scatters photons with a source 
function

where R(h.  n', v, v') is a redistribution function in angle and frequency. In general, R  needs 
to be evaluated for each scattering process separately and leads to a complex coupling between 
radiation at different angles and frequencies; Mihalas (1978) and Peraiah (2001) discuss several 
important cases (see also Sect. 6.2.2). Coherent isotropic scattering has R  =  5{u — u'), so that 
Eq. (2.25) simplifies to

S v = Jv. (2.26)

Radiative and collisional processes couple many excitation levels and ionization stages in 
real atoms and molecules. In continuum processes and simplified two-level atoms, it is possible 
to separate thermalization and scattering, weighting their contributions with the probability

e v  —  —  —  -

T &V Xv
(2.27)

that a photon is destroyed by absorption and reemitted from the thermal pool. In the case 
of two-level atoms, eu describes the competition between scattering and absorption/thermal 
emission for the same transition. In the continuum case, different physical transitions may 
contribute, such as Rayleigh scattering and radiative ionization/recombination of the H -  ion.

The probability that a photon is scattered is (1 — e„), and the combined source function for 
coherent isotropic scattering and thermal emission is given by

Sv — (1 — €l/)Ju +  evB. (2.28)

It is important to note that the coherent scattering source function does not automatically 
account for departures from LTE populations of emitting particles, except for the idealized 
case of two-level atoms. Despite its approximate nature, it nevertheless plays an important role 
for understanding the effects of photon scattering. The general non-LTE case requires a source 
function that handles the detailed level coupling in the radiating matter, an important ingredient 
for accurate spectral line formation calculations.
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2.4 The equations of radiation-hydrodynamics

The physical model of surface convection in late-type stars describes the time evolution of the 
plasma by coupling the equations of compressible hydrodynamics with the radiative transfer 
equation and the equation of state. The general treatment accounts for radiative heating ani 
cooling through photon absorption and emission, and includes the contribution of radiatioa 
pressure to the force equation. In late-type stars, radiation pressure is negligible in the force 
balance: assuming an isotropic LTE radiation field at every atmospheric depth point, the Stefar.- 
Boltzmann law and the Eddington approximation yield a local frequency-integrated radiation 
pressure

4(7 A
frad = T“ T4, (2.29)3c

where a is the Stefan-Boltzmann constant, c is the speed of light and T is the gas temperature. 
Figure 2.2 compares Pracj (dashed line) with the average gas pressure Pgas of a solar-type star 
(solid line). Although Eq. (2.29) yields only a poor estimate for Prad above the surface (at T < 
5800 K), where the radiation field and radiation pressure are non-local and highly anisotropic, 
decoupling from the local gas temperature, gas pressure dominates by orders of magnitude.

In stellar atmospheres, the photon propagation time along a mean free path with opacity y, 
Trad =  (c y )- \ is  orders of magnitude smaller than any hydrodynamic time scale. It is therefore 
sufficient to solve a time-independent radiative transfer problem at each given point of time 
in a simulation, assuming instant decay of modes that are related to time-dependent radiative 
transfer (see Mihalas and Mihalas, 1984). Stellar surface convection can thus be described using 
a simplified set of 3D radiation-hydrodynamical equations for the gas density p, the velocity u, 
the internal energy e and the monochromatic specific intensity Iu in direction n:

- £  +  V • pu =  0 (2.30)
ot

+ V-(puu) + V P = - p g  + V • rvisc (2.31)

de
— + V-(eu) + P(V • u) =  Qrad + Qvisc (2.32)ot

n • VIv = -Xvlu + XijSv. (2.33)

The stellar surface gravity g is assumed constant. The radiation-hydrodynamical equations 
are closed through the equation of state to obtain the gas pressure P, as well as through the 
gas opacity Xv> the photon destruction probability eu and the LTE source function Sv with 
coherent isotropic scattering:

P  = P(p,e) (2.34)

X v  =  X v { p , e ) (2.35)

tv — t v ( P i  ß) (2.36)
S j s  — (1 t i / ) J l s  + t i s  B i s  . (2.37)

The viscosity tensor Tvisc in Eq. (2.31) is only needed to ensure numerical stability of the 
discretized equations (see Sect. 3.1.2); viscous heat dissipation contributes to the internal energy 
through

Qvisc =  ^  r T ■ (2-38)
i j  3

The radiative heating rate Qrad is defined as
poo poo

Qrad = -  V-F„dis = 4:iT Xv{Jv- Su)dv, (2.39)
Jo  Jo
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Figure 2.2: Average logT-logPgas stratification taken from a snapshot of a radiation- 
hydrodynamical simulation of a solar-type star (solid line, Teff «  5800 K, logg = 
4.44 (cgs), chemical composition of Asplund et al., 2005) compared to the frequency- 
integrated local thermal radiation pressure Prad (dashed line).

where F u is the radiative flux (Eq. (2.21)). The radiative transfer equation (Eq. (2.33)) was used 
to obtain the second equality, which dlustrates the competition between the absorption of radi
ation XvJv and the emission of radiation X i at each frequency v. Radiative heating vanishes 
if an equal amount of photons is absorbed and emitted, which yields radiative equilibrium:

V • F Vdv = 0. (2.40)

The radiative equilibrium condition replaces the energy equation in ID hydrostatic model at
mospheres.

The wavelength integral in Eq. (2.39) is a major complication in the physical model: atomic 
and molecular absorption in stellar atmospheres produces millions of spectral lines, making 
radiative heating highly wavelength dependent. Solving radiative transfer equations for millions 
of frequencies is computationally prohibitive; an approximate treatment of the wavelength- 
dependence of opacities is required (see Chapter 4.2.2).

2.5 Convective and radiative heat transport

An important goal for simulations of stellar atmospheres is a realistic description of heat trans
port to determine the temperature stratification. Around the surface of late-type stars, con
vection and radiative transfer are equally important modes of energy transfer, while heat con
duction is negligible. The atmosphere exhibits strong stratification due to the dominant role 
gravity in the force balance. It is therefore close to hydrostatic equilibrium, which is perturbed 
by convective motion.

The temperature-pressure gradient and the gas opacities determine whether convective or 
radiative energy transport dominates beneath the stellar surface in general. The vertical radiative
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flux in an optically thick diffusion region at height z is given by

Fz,v(z) ~
4 1 dBu(z)
3 Xu dz

Fz{z) FZfV(z)dv «  -
16 erT 3 (IT
T XRoss dJ’ (2.41)

where the diffusion approximation and the Stefan-Boltzmann law have been used (e.g., Rutten, 
2003); cr is the Stefan-Boltzmann constant and x Ross is the Rosseland mean opacity, which 
depends on the chemical composition of the gas and the local temperature and pressure. For the 
temperature gradients and opacities encountered in the outer envelope beneath the photosphere 
of late-type stars, radiative energy transfer is not important. Above the surface, the gas becomes 
optically thin in large wavelength ranges, and radiative energy transfer dominates.

2.5.1 Convective instability
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Figure 2.3: Adiabatic curves ds(P,T) = 0 derived from the MF1D EOS for a solar- 
type star (thin lines). The thick line shows the horizontal average pressure-temperature 
stratification of a single snapshot taken from a time-series of a 3D simulation. Dashed 
lines approximately separate the radiative region above the surface (left), the convective 
region beneath the surface (right), and the transition between the two around the optical 
surface (center).

A stratification is convectively unstable if a rising gas parcel experiences continuous buoy
ancy: assuming optically thick gas with negligible radiative cooling, a parcel that starts with the 
density of the surrounding medium (p =  pmed) thus needs to experience larger adiabatic expan
sion —dps than the density change in the medium at depth z, —dpmed =  — (dpme&/dz)dz:

Pmed dps < Pmed dpmed dps > dpmed- (2.42)

This basic requirement for convective instability can be translated into a critical tempera
ture-pressure gradient: the density variation of a gas parcel in the T-P  plane is given by

dp = dT + dP,
dp
d f p

dp
~dP T

(2.43)
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Figure 2.4: Vertical entropy slice taken from a 3D radiation-hydrodynamical model at- 
mospere of a solar-type star. Blue areas represent cool low entropy gas, red areas represent 
high entropies, the zero point on the vertical axis marks the stellar surface. Radiatively 
cooled downdrafts mix with the upflowing gas, forming complex structures.

and an adiabatic density change has

dPs = {w)dp' (244)

if pressure is chosen as the independent variable. The density criterion for convective instability 
(Eq. (2.42)) is thus equivalent to requiring that

Op
dP

dT  + dp
dP

dP. (2.45)

Reordering terms and solving for the temperature-pressure gradient yields

( d T \  (,dp/dP)s -  0dp/dP)T =  ( d T \  n
( ö p j  (d p / d T) P ~ \ d p ) , ’ ( ' }

where (dp/dT)p < 0 was used since gas expands when heated. The right-hand side of Eq. (2.46) 
is equivalent to the adiabatic temperature-pressure gradient (d T / d P ) s due to Eq. (2.45). It is 
customary to write the temperature-pressure stratification as a log-log-gradient, which results 
in the well-known Schwarzschild criterion for convective instability:

/  d log T  \  /  d \ o g T \
\  d log P )  \  d  log P )

(2.47)

The Schwarzschild criterion can also be derived from an entropy argument: suppose that den
sity is given as a function of pressure and entropy, p =  p(P,s).  Rewriting Eq. (2.42), one 
obtains the condition

dp
dP

dP >
dp_
dP

(2.48)

The relation (dp/ds)p  < 0 holds again, since gas expands when heated, and Eq. (2.48) yields 
that the atmospheric stratification is convectively unstable if gas entropy increases inward:

ds > 0. (2.49)
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The Scharzschild criterion will now be used to understand the occurrence of surface convec
tion in late-type stars: if the T-P-stratification in the stellar envelope is steeper than adiabitic 
(“superadiabatic”), an upflowing gas parcel experiences continuous buoyancy and rises unt 1 it 
penetrates into a “subadiabatic” region, where the stratification is shallow. Buoyancy then re
verses sign, since the parcel is pulled back by gravity. In the solar atmosphere, the stratification 
is convectively unstable beneath the surface (right part of Fig. 2.3). The horizontal average gra
dient is very close to adiabatic, since adiabatically expanding upflows dominate on average. The 
stratification is nevertheless slightly superadiabatic, since cool, dense, downflowing plumes of 
gas create an ambient medium with a steeper gradient (Stein and Nordlund, 1998).

Radiative cooling thus acts as a driver for convection: as soon as the upwelling plasma 
becomes optically thin, photons escape into space and carry away entropy. The cooled gas 
gathers in plumes with higher density that sink into the star and provide the kinetic energy 
to supply the upflows (Stein and Nordlund, 1998). Figure 2.4 shows a vertical entropy slice of 
a solar simulation; cool low-entropy downdrafts (blue and green) contrast with hot isentrcpic 
upflows (red).

Above the surface (left part of Fig. 2.3), the stratification is subadiabatic: gas parcels that 
were thrown up from the convection zone experience negative buoyancy; gravity pulls them 
back into the star and the stratification is convectively stable. The T-P  gradient is set by radia
tive heating and it is much shallower than the adiabatic gradient (thin lines).

The shallow regions of the adiabatic curves in Fig. 2.3 are due to latent heat storage through 
hydrogen ionization (at low pressure and high temperature) and dissociation of hydrogen mole
cules (at high pressure and low temperature). At medium temperatures and pressures, hydrogen 
is dominantly atomic and neutral.

2.5.2 Convective energy fluxes

Convective motion propagates energy with the help of several transport agents. Nordlund et al. 
(2009) derive a conservation equation with the individual energy fluxes by adding the internal 
energy equation (Eq. (2.32)) and the inner product of the Navier-Stokes equations (Eq. (2.31)) 
with the gas velocity u. This yields the expression

d_
dt

e +  -p u ‘ + V- ( eu +  P u  +  -p u  u 4- Tvisc • u +  F rad =  - p g  • U. (2.50)

for the conservation of total energy as the sum of internal energy e and kinetic energy pu2/ 2, 
where u2 =  u • u.

The first energy flux in the divergence term of Eq. (2.50) is the internal energy flux,

^ in te rn a l  — CU — (Cion ~b ^diss T  C h e r m ) u , (2.51)

which combines the ionization energy eion? the molecule dissociation energy ediss and the ther
mal energy etherm- The thermal energy represents translational degrees of freedom through the 
caloric equation of state,

E therm  —  ̂  ̂P, (2.52)

where n is the total particle density, which depends on T  and P  through ionization and 
molecule formation; the second equivalence in Eq. (2.52) holds since the plasma approximately 
behaves like an ideal gas for fixed temperature and pressure. The internal energy flux and the 
thermal energy flux are shown in Fig. 2.5 (long dashed line and triple dot-dashed line), com
puted using a time series of a solar-type simulation. It is clear that ionization is the main heat
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Figure 2.5: Horizontal and temporal averages of vertical energy fluxes as a function of 
depth, computed using a time series of a solar-type simulation and corrected for vertical 
bulk mass motion. Solid line: convective flux, short dashed line: radiative flux, long dashed 
line: internal energy flux, dotted line: kinetic energy flux, dot-dashed line: acoustic flux, 
triple dot-dashed line: thermal energy flux.

transport agent in this uppermost region of the convection zone, it contributes the largest frac
tion of energy that is carried upward (compare internal and thermal energy flux in Fig. 2.5; 
molecules are dissociated beneath the surface). A realistic equation of state for surface convec
tion simulations must therefore include latent heat storage through ionization: an ideal gas can 
only store thermal energy and would require upflows to reach very high velocities in order to 
maintain the total energy flux (Stein and Nordlund, 1998; Nordlund et al., 2009)

The second flux term in Eq. (2.50) is the acoustic energy flux

F  acoustic = F u , (2.53)

which accounts for energy transported through gas compression and expansion (dot-dashed line 
in Fig. 2.5). The internal energy flux and acoustic energy flux constitute the convective flux

F c o n v  = (e + P )u , (2.54)

which combines all important agents for outward energy transfer beneath the surface (solid line 
in Fig. 2.5). The convective flux is also called enthalpy flux, since enthalpy density is defined 
through h = e +  P.

The kinetic energy flux
1 9

F k in  = ^pu~u. (2.55)

is the third term in Eq. (2.50), represented by the dotted line in Fig. 2.5. Kinetic energy is dom
inantly transported into the star, since gas velocities u and densities p are higher in downdrafts 
(Stein and Nordlund, 1998). The viscous energy flux

F  vise — 7"visc • U (2.56)
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does not contribute significantly to energy transport (not shown in Fig. 2.5). Radiative transfer 
contributes the radiative energy flux through the first moment of the specific intensities Iu 
integrated over the frequency spectrum,

roo r
Frad,i =  /  /  L{n\,fi')dVLdu, (2.57)

J o  J s 2

and becomes the dominant mode of energy transport above the stellar surface (short dashed 
line in Fig. 2.5).



Chapter 3

Numerical methods of 
radiation-hydrodynamics

The equations of radiation-hydrodynamics allow analytical solutions only in a few simplified 
cases (see Mihalas and Mihalas, 1984). Realistic physical models require a numerical solution 
of the full 3D time-dependent problem. Different codes have been presented in the field of 
stellar atmospheres, e.g., the code by Stein and Nordlund (1998), the Stagger code (Nordlund 
and Galsgaard, 1995), the C05B0LD code (Freytag et al., 2002), the MURaM code (Vogler et ab, 
2005), a code that was described in Jacoutot et al. (2008), the ANTARES code (Muthsam et ab, 
2010) and the BIFROST code (Gudiksen et ab, in prep.). BIFROST was used for the radiation- 
hydrodynamical calculations presented in this PhD thesis; see Fig. 3.1 for an example.

3.1 The hydrodynamical solver

A numerical solution of the fully compressible hydrodynamical equations needs to handle a 
variety of difficulties, depending on the physical application. The non-linear and hyperbolic 
nature of the system of partial differential equations allows discontinuous solutions through 
the formation of shock waves, even when initial conditions are smooth. Fluids with low vis
cosity can exhibit complex turbulent behavior; low sound speeds in dilute media support the 
appearance of transsonic flow. Such conditions are encountered in simulations of stellar surface 
granulation (Stein and Nordlund, 1998) and constrain the choice of numerical methods.

Current simulation codes follow a “large-eddy” approach, where only the largest flow struc
tures are resolved, and small-scale structures are either suppressed or approximated using a 
subgrid-scale model. Typical grid lengths reach the order of kilometres in the solar case, which 
is many orders of magnitude larger than viscous length scales. However, current facilities, such 
as the HINODE satellite or the Swedish Solar Telescope, achieve a much coarser resolution of 
~  150 km at the surface. Smaller structures that are predicted by the simulations are therefore 
not yet observable. Simulations of solar surface granulation nevertheless agree well with the 
observations (e.g. Nordlund et ab, 2009).

3.1.1 Discretization

The BIFROST code uses a conservative high-order finite difference solver on a staggered mesh, 
which offers flexibility for including additional physics in the hydrodynamical model and 
reaches high accuracy in the numerical solution; the method is well-suited for vector processors 
and MPI parallelization (Nordlund and Galsgaard, 1995; Brandenburg, 2003). The disadvantage 
of high-order finite difference solvers lies in their treatment of shocks, since the solution of the
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Figure 3.1: Left: Solar granulation at 4364 Ä near the center of the solar disk (6 = 20°, 
H = 0.94), observed with the Swedish Solar Telescope by Göran Scharmer and Kai Lang- 
hans (Institute for Solar Physics of the Royal Swedish Academy of Sciences, Sweden). 
Right: Disk-center intensities at 4364 Ä for a solar model atmosphere computed with the 
BIFROST radiation-hydrodynamical code and the SCATE spectrum formation code.

hydrodynamical equations must remain sufficiently smooth at all times to ensure numerical 
stability. Strong discontinuities need to be avoided by adding artificial viscosity, which is or
ders of magnitude larger than plasma viscosity in real stars. Artificial viscosity also suppresses 
small-scale structures, reducing the effective resolution of the simulation.

Staggered grids improve the accuracy of a discretization: scalar quantities, such as the density 
p or the internal energy e are defined on grid cell centers, while vector quantities, such as the 
momenta p or the magnetic field B, are defined on grid cell faces or corners (see Fig. 3.2). 
The derivative operators gain accuracy by delivering results on the respective staggered mesh, 
halving the step length A x  of the finite difference quotients compared to a non-staggered grid.

The hydrodynamical solver uses 6th order derivative operators and 5th order interpolation 
operators along the three spatial dimensions, each of them with a stencil of 6 grid points. The 
result is defined on the staggered grid, 1/2 step between the two center points of the stencil. 
The interpolation operators assume the explicit form

h + \ , i , k  =  a ( f i , j , k  +  f i + l , j , k ) +  b ( f i - l , j , k  +  f i+ 2 , j , k ) +  c { f i - 2 , j , k  +  fi+3,j,k) 'i  P -1 )

derivative operators are given by expressions of the kind

f [ + \ , j , k  =  +  f i + l , j , k )  +  - ^ { f i - i p . k  +  f i+ 2 , j ,k )  +  £ ^ { f i - 2 , j , k  +  f i+ 3 , j , k ) ,  (3.2)

with preset constants a, b and c for either case (Nordlund and Galsgaard, 1995).

3.1.2 Artificial viscosity

Although viscous length scales are not resolved in large-eddy simulations, numerical stability 
requires artificial smoothening of the solution. A viscosity tensor
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Figure 3.2: Example of a two-dimensional staggered mesh, where scalar quantities are 
defined on cell centers (squares), and the components of vector quantities (e.g., velocities 
or momenta) are defined on cell faces (circles). Ax denotes the spatial grid length.

is therefore added to the equation of motion. The kinematic viscosities v consist of three 
parts (cf. the discussion in Nordlund and Galsgaard, 1995): the first component damps short- 
wavelength oscillations, which are not resolved on the numerical grid and which are therefore 
propagated with erroneous speeds, resulting in phase errors in traveling wave groups. This 
component is represented by a term

^wave — Q iA x C g , (3.4)

with a scaling constant ai, the grid length Ax, and the local sound speed Cg, which is the fastest 
wave speed encountered in hydrodynamical simulations. Advective transport of small-scale 
fluctuations causes amplitude errors that grow over time; they are damped through the term

^advection — Q -2 A a |u |, (3.5)

which scales with the grid length and the total gas velocity |u|. The third source of instability 
is the formation of shocks in the compressible gas. They lead to strong discontinuities in the 
solution which cause ringing and may even destabilize the solver. Shocks are therefore resolved 
by a diffusion term

^shock = a3Ax2|V • u|~; (3.6)

the minus sign indicates that only gas compression (V • u < 0) is considered.
Artificial diffusion leads to unrealistically large plasma viscosities. It is therefore important 

to apply the smoothening only where it is necessary. Quenched diffusion, sometimes also called 
“hyperdiffusion”, is a method to keep artificial viscosity local. This is accomplished by scaling 
the viscosity tensor with quenching factors

q(dU/dx)
\A2(dU/dx)\

\dU/dx\ + \A2(dU/dx)\/qmax'
(3.7)

which depend on the spatial derivatives of a hydrodynamical variable U and their second nu
merical derivative A2, q vanishes if dU/dx  is smooth and removes viscosity from this point, 
but amplifies diffusion where strong discontinuities appear. Quenching factors are bounded by 
the parameter qmax.
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3.2 Boundary conditions

Solving the radiative-hydrodynamical equations requires appropriate start values and boundary 
values. The simulations should cover a small representative fraction of the stellar surface to 
reproduce granulation flow in the atmosphere in a statistical sense. The horizontal boundaries 
are therefore periodic, and the simulation behaves like an infinitely expanded atmosphere. In 
order to avoid self-interaction of granules, the 3D box has to be larger than the distance that a 
sound wave travels during a typical granule life time. In solar simulations, sound speeds reach 
~  lOkms-1 at the surface; a width of 6 Mm is thus sufficient for granules that typically live 
about 10 min.

The vertical boundary conditions are implemented by adding extra layers (“ghost zones”) 
to the simulation box. These ghost zones are filled by extrapolation to either force boundary 
values Ubound (Diriclet boundary conditions) or to set their spatial derivatives <9UbOUnd/dz  
(Neumann boundary conditions) at a given time step. The temporal behavior of the boundaries 
is controlled by adding terms to the hydrodynamic equations that affect the time derivatives 
^Ubound/ dt.

3.2.1 The top boundary

For simulations of magnetically quiet stellar photospheres, the top boundary is usually placed 
at a continuum optical depth of T5000 ~  10-6 . Gas densities are very low at this optical depth, 
mass flux and internal energy flux across the top boundary are therefore negligible.

Instantaneous boundary values for the gas density in each time step are set by antisymmetric 
logarithmic extrapolation,

logp(ztop -  h) = 2 logp(ztop) -  l°g p(ztop + h), (3.8)

accounting for the exponential density stratification; h is the distance from the boundary at the 
atmospheric height Ztop-

Atmospheric gas must be free to leave the simulation box to avoid reflection. Such “open” 
boundaries are approximately implemented by keeping velocities constant across the boundary:

^(•^top h) =  'Ux(ztop) (3.9)

t£y(z top fi) =  tXy(ztop) (3.10)

u z (ztop h) =  Uz (zt0p ) . (3.11)

Internal energies e are set as internal energies per unit mass e = e/p using antisymmetric linear 
extrapolation:

(̂ t̂op h) — 2e(ztop) c(-2;top +  h'). (3.12)

Drifts at the boundary can be prevented by adding a sink term for internal energies in the top 
layer to relax towards a slowly evolving horizontal average (etop):

<?«(*<*) =  - 6(*t°p) ~  <£tOP>, (3.13)
rtop

where rtop is a preset relaxation time constant; this boundary condition is modified in some 
cases (see Sect. 5.2).

Additional restrictions for the hydrodynamical variables are applied to handle extreme con
ditions, ensuring numerical stability.
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3.2.2 The bottom boundary

The bottom of the simulation box lies in the convection zone, where hot gas rises in adiabatic 
expansion, transporting heat from the interior. Plumes of dense, cool gas sink back down into 
the star and leave the simulation. The bottom boundary thus needs to regulate heat influx into 
the 3D box, and it needs to ensure mass conservation to achieve a quasi-stationary state of the 
atmosphere.

Logarithmic densities log p and internal energies e are set by antisymmetric linear extrapo
lation, similar to the top boundary:

logpObot + h) = 2 log p(zhot) -  logp(zbot -  h) (3.14)

e(2bot +  h) =  2e(2bot) -  e(zbot -  h). (3.15)

The entropy s(p, e) of inflowing gas is regulated by a relaxation term with preset constants pbot 
and ebot:

Qp,ingoing (^bot) =  - p(^bot) Pbot (3.16)
Tbot

Qe, ingoing ( 2bot)  =  - €(Zbot) ~  , (3,17)
^bot

where rbot is a relaxation time constant.
Stellar envelopes exhibit pressure oscillations (“p-modes”); the waves are created by stochas

tic excitation in the convection zone and reflected in the stellar interior. Dynamic forcing of 
a pressure node at the bottom boundary simulates this behavior approximately. The pressure 
P(p, e) of inflowing gas is already kept constant through relaxation of p and e to preset bound
ary values. Pressure fluctuations dP of outgoing flow are dynamically damped through an 
inverse adiabatic response, which will be discussed in the following.

A pressure fluctuation dP  is generated by density and energy fluctuations dp and de,

dP (3.18)

An adiabatic pressure fluctuation dPs couples dp and de through the first law of thermody
namics (see Appendix A.l), since the specific entropy is constant (ds =  0). This leads to the 
relations

d p s = dps (3.19)

d p s =  (|0 des. (3.20)

The bottom boundary is set to answer pressure fluctuations dP  in outflowing gas with an 
inverse adiabatic pressure fluctuation: dPs =  —dP.  Combining Eq. (3.18) with Eq. (3.19) or 
Eq. (3.20) and using the first law of thermodynamics leads to the damping terms

Q p .o u tg o in g ^ b o t)  —
{dP/dp)e dp +  (dP/de)p de 

(dP/dp)s

Q e ä n g o in g ^ b o t )  — Q p, outgoing (^bot)-

(3.21)

(3.22)
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The fluctuations dp and de in outflows include temporal variations dp/d t  and de/dt  that are 
predicted by the hydrodynamical solver, as well as general deviations from the boundary con
ditions through [p  — p b o t ) / Tbot and (e — e b o t ) / Tbot- I he EOS provides the thermodynamic 
derivatives in Eq. (3.21) and Eq. (3.22).

The pressure node at the bottom boundary keeps the total mass in the simulation box 
constant: a plume of gas that leaves through the bottom boundary generates a zone of low gas 
pressure in the layers above. This low-pressure zone is extrapolated outward into the ghost 
zone (Eq. (3.14) and Eq. (3.15)); the gradient V P  steepens and forces material influx through 
the boundary. Conversely, strong material influx causes a shallower pressure gradient. Vertical 
mass flux therefore oscillates, the period is set through the time constant 7bot.

An open bottom boundary is achieved by symmetric extrapolation of velocities to set a 
vanishing vertical derivative:

^ x i^ -b o t T  fi) — ^ x i^ b o t
dux
dz

=  0
bot

(3.23)

^ y (^ b o t T  fi) — t/.y(zbot h )  <r̂
duy
dz

= 0
bot

(3.24)

(-^bot T  h'j — t i2 (zbot
duz
dz

= 0.
bot

(3.25)

Horizontal motion of inflows is damped, reducing drifts in the

Q u x .ingoing (-^bot) —
Tbot

Q u y .ingoing (-^bot) =  •
Tbot

x  and y directions:

(3.26)

(3.27)

3.3 T he radiative transfer solver

The time-independent radiative transfer equation with scattering is an mtegro-differential equa
tion with solutions that are defined in six-dimensional space (x, n, u). Absorption, emission and 
scattering of photons, as well as Doppler shifts caused by material motion, lead to a complex 
coupling of the radiation field in space, direction and frequency. Solving the radiative transfer 
problem thus requires further simplifications. The strategy depends on the specific application, 
and there exist a variety of methods (see Wehrse and Kalkofen, 2006, for an overview).

3.3.1 The method of characteristics

The time-dependent radiative transfer equation is given by

1 d l
- - f  +  n • VI„ = - X v K  +  3v  (3.28)c at

The left-hand side is a simple hyperbolic advection equation for photon motion along straight 
lines in space-time (light rays) with self-similar solutions in the absence of sources and sinks. 
Light rays in direction n are characteristics x(£) of Eq. (3.28) and solutions of the differential 
equation

n • dx  =  cdt =  ds. (3.29)

The last equivalence defines a useful parameterization, the photon path length ds. The total 
differential of the specific intensity Iu(t(s), x(s)) along a characteristic is

d l v /  dly dt dly dx dly dy d l u dz  \
ds S \  dt ds dx ds dy ds dz d s )

dl, ds. (3.30)
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Figure 3.3: Illustration of a short characteristic (black line) in a 3D grid (grey dots and 
dashed lines) along which radiation is transported from the upwind point “u” to the 
center point “0”. The downwind point “d” is needed for second-order accuracy of the 
source function integral.

Inserting the differential relations of Eq. (3.29), one obtains

,T (1  d lv , dlu , dlu , d lv \ ,  dlv = --WT + nx—- + ny—-  + nz— - ds. \ c  ot ox oy oz )

Inserting the radiative transfer equation (Eq. (3.28)) leads to the expression

d lv =  0  ~  4- n • V / , )  ds = ( -xu lv  +  jv) ds.

(3.31)

(3.32)

The radiative transfer equation along a characteristic is thus equivalent to the ordinary differen
tial equation

— — —Xvlv 9“ jui (3.33)ds
which describes the propagation of photons along light rays in direction n. As it was mentioned 
before, it is sufficient to solve a time-independent radiative transfer problem at each time step 
of a hydrodynamical simulation. In the limit of infinite light speed (c —>• oo), Eq. (3.33) retains 
its form, and all quantities are time-independent.

3.3.2 Radiative transfer regimes

For the simple case of zero emission {jv =  0), Eq. (3.33) has solutions of the form

I„{s) -  Iv(0 ) e " ^ 5, (3.34)

where Iu(0) is the incident intensity. The opacity Xv acts as an inverse photon mean free 
path. The magnitude of Xv determines the physical as well as the mathematical nature of 
radiative transfer. In transparent media with small opacity and large photon mean free paths, 
radiative transfer is a hyperbolic problem for the advection of virtually free photons, with 
local emission from the source term j v and a highly non-local, possibly anisotropic radiation 
field. This situation is realized in stellar atmospheres for continuum radiation above the stellar 
surface. In opaque media, Xv is large and mean free paths are small; radiative transfer is diffusive 
and the radiation field is isotropic, dominated by local emission j v!Xv- If scattering contributes
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most of the opacity Xu> the medium is translucent and radiative transfer turns into an elliptic 
problem of photon diffusion. The cores of strongly scattering spectral lines represent this case 
in stellar atmospheres. If absorption dominates Xv> the source term is equal to the Planck 
function and radiative transfer can be treated in a simple diffusion approximation, which is 
adequate in stellar interiors.

The physical behavior of radiative transfer is determined by the optical depth

drv =  Xvds, (3.35)

where t„ <C 1 marks the optically thin streaming regime, and r„ 1 marks the optically thick 
diffusion regime. The optical depth t v can be interpreted as the average number of interactions 
between radiation and matter on a given path s along a light ray. In stellar atmospheres, the 
zero point of the optical depth scale is commonly set outside the star. The optical surface is 
reached at r„ = 1, the depth of last interaction before outgoing photons escape into space. The 
presence of spectral lines leads to strong fluctuations of the opacity with frequency is, which 
translates into a depth variation of monochromatic optical surfaces.

3.3.3 The integral method

Dividing Eq. (3.33) by the opacity Xu and using Eq. (3.35) leads to the expression

dly
drv du T Si/, (3.36)

introducing the source function Sb =  ju /X v  For known Sv, Eq. (3.36) has the formal solution

Iv{tv) =  Iv(tu,(v)e“ (Tl' “ Tu’") +  f  Sv(t)et~T'' dt (3.37)
d Tu ,i/

for r u > t Uj1/. The first term on the right-hand side describes the attenuation of an incident 
specific intensity Iu at r Uil/ along the ray. The second term accumulates the local contributions 
from the source function Su.

A simple discretization of Eq. (3.37) uses a first-order or second-order polynomial to inter
polate the source function Sv, called the integral method. Inserting such a polynomial approx
imation of Sv in Eq. (3.37) and evaluating the integral over optical depth leads to the discrete 
expression

h,u =  I\i,u£ U I/ T 'Eu,iv5'u,i/ T T 'Ed,i/*fid,i/» (3.38)

where the subscripts “u” “0” and “d” denote the upwind, center and downwind points along 
the characteristic, at which discrete values are needed to compute the specific intensity Iqu 
with second-order accuracy. 'Eu, T q and 'Ed are integration constants that depend on the up
wind and downwind optical depth steps A tu l/ and Ar^v, and the type of interpolation (see 
Appendix B.l).

The characteristics are either extended across the entire simulation domain (sometimes 
called the “long characteristics” method), or they are cut off at the intersection points with 
neighbor grid cells (the “short characteristics” method, see Fig. 3.3 for an illustration). The 
best choice of method depends on the nature of the problem; both approaches are found in 3D 
radiation-hydrodynamical simulations of stellar atmospheres (see Sect. 4.3.1 and, e.g., Vogler 
et ab, 2005; Heinemann et ab, 2006).
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3.3.4 A pprox im ate  lam bda ite ra tion

Solving the radiative transfer equation with a scattering term leads to an integro-differential 
problem with a self-dependent solution. The coherent scattering source function is given by

Sv =  (1 — €u)Jv +  t i /B v  (3.39)

The formal solution of the radiative transfer equation is commonly abbreviated by introducing 
the operator equation

= A„S„, (3.40)

where A„ is a linear operator if the opacities are constant. Inserting Eq. (3.40) into Eq. (3.39) 
yields

S v = (1 -  ev)AvS v +  evB v <-> [1 -  (1 -  e„)A„] S„ = evB v. (3.41)

The operator A^ reduces to a matrix in the discretize case. The numerical solution of the 
radiative transfer equation with coherent scattering and given opacities is equivalent to solving 
a system of linear equations

Am =  b. (3.42)

The amount of equations to solve may be moderate (~ 100) in the ID case, but it becomes
huge (> 10(>) in 3D. A direct inversion of the matrix operator A  is computationally expensive: 
A needs to be constructed, stored and inverted, and the procedure is not always numerically 
stable. It is therefore advantageous to use iterative methods for the solution of the problem. 
Approximate Lambda Iteration (ALI, also sometimes called Accelerated Lambda Iteration, Can
non, 1973) has become very popular in the field of stellar atmospheres. It belongs to a class of 
stationary iteration methods for solving systems of linear equations.

The solver starts with an approximate solution un with the residual

r = b — A un = Au  — A un =  A(m —  u11) =  Ae, (3.43)

where e =  u — un is the error of the approximate solution un with respect to the true solution u. 
A direct solution of this error equation is equivalent to the original problem. ALI solvers there
fore compute approximate corrections A m for a given residual r of the approximate solution un 
using a matrix A*, which represents a simplified version of the original matrix A:

A* A m =  A * ( M n + 1  - u n) =  r (3.44)

The matrix A* should be chosen in a way that the resulting system of linear equations,

A*Au = b - A u n , (3.45)

is computationally easier to solve. A new approximation to the solution is then obtained 
through

Mn + 1  =  Mn  + (A*)-1 (6 -  A M n ) ,  (3.46)

which emphasizes the role of A* as a convergence accelerator, since it amplifies the residuals 
r  =  b — Am” . Translated back into the original problem of computing a source function with 
scattering term (or the mean radiation field), one obtains approximate solutions through

[1 -  (1 -  e„)AJ] AS„ =  evB v -  [1 -  (1 -  ev) K \  S *
= (1 -  e„)AVSZ + €VBV -  Snv
__ q F S  on
—  ■

(3.47)
(3.48)

(3.49)
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The source function S^s is based on the radiation field that was obtained from the last formal 
solution, J j s = AuSy. The approximate matrix [1 — (1 — eI/)A*] on the left-hand side of 
Eq. (3.47) is the convergence accelerator.

The best choice for A * is found through a compromise between convergence speed and 
computational expense: choosing a simpler operator matrix requires less computation but slows 
down convergence. The simplest choice, A* = 0, is the Lambda-iteration method without 
acceleration (A* = 1). Lambda-iteration is known to suffer from very slow convergence or even 
no convergence in some situations. Choosing a more complex A* that includes off-diagonal 
elements may increase convergence dramatically, but requires larger computational effort (see 
the discussion in Hauschildt and Baron, 2006).

The local operator method uses the exact diagonal of the A matrix (Olson et al., 1986), 
making A* easy to invert and well-suited for 3D applications. However, Hauschildt and Baron 
(2006) warn that such local operators do not necessarily lead to convergence. Scharmer (1981) 
presented a sparse non-local A* operator, which has been used for various ID radiative transfer 
problems; Kiselman and Nordlund (1995) applied the operator to a 3D case.

The radiative transfer computations presented in this thesis are based on the ALI method of 
Trujillo Bueno and Labiani Bendicho (1995), which emulates an upper/lower triangular opera
tor matrix with non-local coupling between grid points in the atmosphere. Only the diagonal 
elements of the A operator need to be computed explicitly, the triangular behavior is achieved by 
applying source function corrections already during the formal solution, in analogy to Gauss- 
Seidel iteration.

While the Gauss-Seidel method of Trujillo Bueno and Labiani Bendicho (1995) produced 
good results, it is generally difficult for iterative solvers to handle scattering-dominated (e —> 0) 
radiative transfer problems in the diffusion regime: convergence of the solution is very slow 
as the spectral radius of the iteration operator increases (see the discussion in Trujillo Bueno 
and Labiani Bendicho, 1995), and the large condition number of the approximate matrix A* can 
amplify numerical errors. An efficient and accurate treatment of such cases remains an unsolved 
problem (Wehrse and Kalkofen, 2006).

3.4 Time integration

The hydrodynamical solver (together with the radiative transfer solver and the EOS) delivers 
numerical approximations for the right-hand side / ( U) of the system of partial differential 
equations (PDEs) at simulation time t and grid point x,

Au(x,t) = /(U ); (3.50)

the vector U consists of the hydrodynamical variables that are propagated in time. The time 
evolution in the system of PDEs is thereby reduced to solving an initial value problem. There is 
a large variety of numerical integration methods, which differ in their approximation order and 
computational expense. High-order methods produce lower amplitude errors in the numerical 
solution (see, e.g., the advection tests discussed in Brandenburg, 2003), but they need to evaluate 
several substeps between the main time steps to and to + At, or include several previous steps 
at t < to in the integration. However, computational work is effectively reduced as high-order 
methods enable larger step sizes At.

Explicit time stepping methods extrapolate the solution from one or several previous time 
steps, while implicit methods include the new solution in the time integration itself. Implicit 
methods usually offer better numerical stability and larger time stepping, but it is difficult 
to study detailed wave motion, since time steps in implicit integration are not bounded by
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wave speed. The B I  FROST code therefore uses explicit time stepping methods, which will be 
discussed in the following.

3.4.1 The Hyman method

The predictor-corrector method of Hyman (1979) combines explicit prediction of the solution 
with a quasi-implicit correction step. The predictor step extrapolates a weighted sum of the 
previous solution U*_i and the current solution U* forward in time,

= a iU M  + f>iU; + A tCl J T i ,  (3.51)

which yields an explicit prediction of the solution at t + At. The hydrodynamical solver is 
called to obtain the derivative <9Ui/d t through Eq. (3.50). In the corrector step, the prediction 

is refined by obtaining the final solution from the weighted sum
r\ r\

IT+i =  a2Ui- i  + b2V i + Atc2—XJi + Atd2- \ J » r+\d, (3.52)

where the hydrodynamical solver is called again to compute Ö X J /dt .  The method is semi- 
implicit, as it employs the approximate solution U - ^ 1 at t = to +  A t to obtain U j+i.

3.4.2 The 3rd order Runge-Kutta method

The 3rd order Runge-Kutta method splits the integration into three substeps:

ki =  U z 

k 2 = \Ji + A t

k,3 = Uj + At

Uj+i = Uj + At

d
+  Ö22 k  2 

Ot

d
dt kl + 023— k2 + 033ot

(3.53)

(3.54)

(3.55)

(3.56)

The hydrodynamical equations need to be evaluated three times during the integration to obtain 
<9ki/dt; the final solution Ui+i is found by adding a weighted sum of all time derivatives to 
the previous solution Uj (Eq. (3.56)). The memory requirements of the original Runge-Kutta 
method are large, since four sets of variables need to be stored (“4N-storage”). Williamson (1980) 
described a reordering of the scheme into a recurrent 2N-storage algorithm:

1. k = u  i # k -
dt - / ( k ) (3.57)

2. k —!■ k +  A ^ i ^ k  
ot

^ k - a 2 —  k  + f { k ) (3.58)

3. k —i► k + A t ß 2^ - k  
ot

® k -
dt

» 3 ^ k  + /(k ) (3.59)

4. k —i► k + A t ß 3^ - k  
ot

(3.60)

5. U z+i -  k. (3.61)

The arrows symbolize storage associations in the program; / ( k) represents the hydrodynamical 
solver. The constants a and ß  are combinations of constants atJ of the original method. Only 
two variable sets k and d k /d t  are needed, the memory requirements are the same as for first- 
order Euler time integration.
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3.4.3 Stability limits

The step intervals At of explicit numerical integration are subject to restrictions: if At is larger 
than a certain threshold, the method fails to converge and delivers unphysical results. The 
stability limit depends on the type of equation and the discretization. A strict analysis of finite 
difference methods is difficult, a general theory does not exist. Some necessary conditions for 
numerical stability will be illustrated in the following using simplified test equations.

Numerical stability of finite difference schemes is studied using von Neumann stability 
analysis with a test function

tn) — ,tpoGnekXi (3.62)

that produces perturbations with amplitude Gn and wave number k at time step tn. If a PDE 
has a bounded solution at all times, a finite difference representation is considered stable if 
it produces a bounded numerical solution at all times as well. The amplitude Gn of the test 
function must therefore decay with time for all wave numbers k:

vr1 G n + i

G n \ G\ <1. (3.63)

Reaction terms

A prototypical equation for reaction terms is

d—ip + azip = 0 At >  0; (3.64)
at

At is a reaction rate that needs to be positive to produce bounded solutions 'ip. Spatial discretiza
tion and explicit Euler time integration leads to the expression

— ip™
* At * +  = o (3.65)

Inserting the von Neumann test function (Eq. (3.62)) then yields the stability condition

IGI = II — KAt\ < 1 <-> A t < ~ .  (3.66)
At

l ime integration for the chosen discretization is stable as long as At is smaller than the given 
limit, which decreases with increasing rate coefficient At.

Although reaction terms do not appear explicitly in the hydrodynamical equations, the 
stability limit (Eq. (3.66)) may be used as a general stability test for the PDEs, to monitor the 
sum of all terms in the equations:

Un+i =  jjn +  Atf (u,  x) =  up1 +  AtK?U?, (3.67)

where At At”  — (t/”+1 — [/”) /[ /” represents the relative change of the hydrodynamical variable 
U during a time step t = to + At. Note that At may also be negative, allowing the discrete 
variables U™ to grow if U grows. B I  FROST performs this stability test for the density equation 
and for the internal energy equation.
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Transport terms

The test equation for transport terms is

d d
— ip +  u — ip =  0 u > 0, (3.68)
ot ox

where u is the local transport speed, which is assumed positive for simplicity of the discussion. 
Using Euler time integration and upwind spatial discretization, one obtains

C +1-v>? ,—— —------ h u   --------
A t A x

(3.69)

with the grid length A x  = Xi — x*_i. The stability condition for a bounded numerical solution 
is the limit

/ A t (  A t  \  A x
|G| =  \ 1 +  2it—— I u —— — 1 j (1 — cos [/cAx]) < 1  <-> A t  < ---- . (3.70)

This is the well-known Courant criterion, which requires that the local speed of numerical 
propagation of information A x / A t  must always be faster than the fastest local physical prop
agation speed u to ensure causal order in the time evolution of the PDE. In hydrodynamical 
simulations, u is set by the sum of local sound speed and advection speed.

Diffusion terms

A prototypical equation for diffusion terms is given by

d t ^ ~ U'd x 2 ^  =  °  V >  ° ’ (3‘71)

with a diffusion coefficient v that needs to be positive to produce bounded solutions ip. Using 
Euler time integration and centered finite difference spatial discretization, one obtains

v>r+1 -  V i
A t

— v V+i -  2V  +1i —1
(A x);

(3.72)

Time integration for this type of equation is limited by

A t
\G\ 1 +  2v

(Ax)'
(cos [k Ax] — 1) < 1 A t < iA*y

2v
(3.73)

The diffusion time step (Eq. (3.73)) is often the most restrictive limit in simulations due to its 
(Ax)2 dependence. Diffusion terms appear in the artificial viscosity tensor of the hydrodynam
ical solver. If hyperdiffusion is used, the time step is reduced by the maximum quenching factor 
Qmax to ensure numerical stability.

General stability limits

In the radiation-hydrodynamical equations, combinations of transport terms, diffusion terms 
and source and sink terms appear. A strict and consistent stability analysis is very difficult. 
The time integration algorithm therefore applies necessary conditions as illustrated above to 
produce bounded numerical solutions assuming that the solutions of the PDEs are bounded.
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Time integration is considered stable in this context if the most restrictive of all conditions is 
satisfied at all grid points Xf.

A t  < C ■ min
1

~ K u \

A x
Cg +  |u

(3.74)

where A U  denotes the local relative change of variable U, cs is the local sound speed, u is the 
local advection velocity and v is the artificial diffusion coefficient. The constant C is typically 
set to ~  0.3, depending on the time integration method. BIFROST dynamically adapts the time 
step A t  to the maximum possible size during the simulation.

3.5 Analytical test of the radiative transfer solver

The complexity of radiative transfer problems only allows a numerical solution of the equations 
in general. However, there exist simplified situations where an analytical solution is possible, 
providing useful functionality and accuracy tests for a numerical solver.

Radiative transfer with coherent scattering has an analytical solution in the case of a ID 
plane-parallel isothermal atmosphere (“Lambert radiator”) in the Eddington approximation. 
The photon destruction probability e must be assumed constant with depth, and the Eddington 
approximation constrains the anisotropy of the radiation field, which is assumed to have a linear 
dependence on the projection factor /j. =  cos#, where 9 is the polar angle. This setup is also 
known as the “two-stream” approximation that was already employed by Schuster (1905) to 
discuss effects of scattering in a foggy atmosphere.

Second-order Gauss-Legendre quadrature (see Appendix B.3) yields an exact representation 
of integrals over a linear polynomial. A numerical computation of the mean radiation field 
becomes directly comparable to the analytical solution in the two-stream approximation (e.g., 
Trujillo Bueno and Fabiani Bendicho, 1995).

3.5.1 Derivation of the analytical solution

The time-independent radiative transfer equation1 for a horizontally homogeneous plane-paral
lel atmosphere is given by

ß A  = /„  -  5„, (3.73)drv

where fi = cos 9 is the projection factor for the polar angle 9. The optical depth scale for an 
outward increasing atmospheric height coordinate 2  is defined as drv = —\ v d z  with tv =  0 
outside the star. The zeroth, first and second moment of the specific intensity Iu define the 
mean intensity J the radiative flux-like H y and the radiation pressure-like K

(3.7*)

(3.7-)

(3.78)

The following discussion follows R utten (2003)



3.5. Analytical test of the radiative transfer solver 45

Using these definitions and evaluating the same moments for Eq. (3.75) with an isotropic source 
function S„ leads to the differential equations

dHv
dru Jv - S V

dKv
drv

= HU.

(3.79)

(3.80)

Inserting Eq. (3.79) into the derivative of Eq. (3.80) with respect to ru yields a second-order 
equation for K u,

d2K
- r r  = J v - S v.. (3.81)drj

The source function Su contains a coherent and isotropic scattering term,

Su — (1 — e„) Jv + euBy,  (3.82)

where Bu is the Planck function and eu is the photon destruction probability. To proceed with 
the analytical solution of Eq. (3.81), it is necessary to approximate the anisotropy of the specific 
intensities Iu by assuming a linear dependence on fi:

U{Tv, fi) — Q,i/,o(tv) T (3.83)

Second-order Gauss-Legendre quadrature (Appendix B.3) yields an exact integral of Eq. (3.83) 
over angle by choosing the quadrature nodes fi =  ± l/ \ /3 ,

j  Iu(Tv,fj)dfjL = Iv{tu, - I / V s) +  Iv foy+ I /Vs ) ,  (3.84)

enabling a direct comparison between the numerical solution and the analytical solution of the 
radiative transfer equation. Using the abbreviations — I y ( n  — ± l/ \ /3 )  for outward and 
inward traveling photons, the first three moments of the specific intensity are

Ju = £ + !v )  = a^0 (3.85)

-  K . ) = ~(3.86)

K v = = \(3.87)

The last equivalence in Eq. (3.87) is known as the Eddington approximation, which is frequently 
used to formulate closure relations for computing radiative transfer through moment equations 
(e.g., Mihalas and Mihalas, 1984); the Eddington approximation is exact for linear anisotropy 
of I u . At the top of the atmosphere ( t„  = 0), the assumption of zero irradiation from outside 
(I~ = 0) and using Eq. (3.85), Eq. (3.86), Eq. (3.80), and Eq. (3.87) lead to the useful relation

^ (0 )  =  ^ ( 0 )  =  n/3 =  =  (3.88)

The Eddington approximation allows a transformation of the second-order equation (Eq. (3.81)) 
into an equation for the mean intensity Ju: inserting Eq. (3.87) and Eq. (3.82) yields

1 d2Jy _
3 dr2 £u[Jl/  By). (3.89)
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The second derivative of the Planck function Bv in an isothermal atmosphere vanishes, enabling 
another transformation

= ^  _  Bt/) (3 90) 

This linear second-order differential equation has solutions of the form

Jv — Bu = +  c 2e'/ ^ T". (3.91)

At the bottom boundary deep inside the atmosphere (t„ —> oo), the diffusion approximation 
Jv =  B„ requires C2 = 0. At the top boundary, the derivative of Eq. (3.91) and relation 
Eq. (3.88) deliver:

= TuCi-* J„(0) Cl Bv. (3.92)
dru

Both constants are now determined:

Ci
1 + \ [ tv

C2 (3.93)

Substitution in Eq. (3.91) yields analytical expressions for the mean radiation field, the source 
function and the outgoing intensity at the top:

J v { r v ) — 1 - Bv
1 T \[ tv

Sv(tv) =

(3.94)

(3.95)

(3.96)

The exponential terms in Eq. (3.94) and Eq. (3.95) contain a factor vTE that defines a ther- 
malization depth Ttherm,̂  = Tv!\f^v at which photons are destroyed on average and enter the 
thermal pool. Rutten (2003) separates a scattering atmosphere into a transparent region beneath 
t v < 1, a translucent region between 1 < t v < Tt herm,i/> ar*d a region above r„ > Ttherm.i/ where 
the radiation field is entirely thermalized.

At the surface (t u = 0), the well-known relation

S„(0) =  yfrvBv (3.97)

holds: in the LTE case (eu = 1), the level occupation numbers of two level atoms are domi
nated by collisions, and gas emission does not depend on the presence of an outward boundary 
through which radiation is lost. In the scattering case (eu < 1), gas emission decreases, since 
photons are lost through the boundary and the radiative excitation rates decline. As a conse
quence, less photons are emitted through radiative de-excitation, and mean intensities decrease 
(see the discussion in, e.g., Rutten, 2003).

3.5.2 Comparison with the numerical result

The numerical radiative transfer solver is set to reproduce the mean radiation field Jan of the 
analytical solution (Eq. (3.94)), operating on a 3D cube with a resolution of 50 x 50 x 120 grid 
points and with a horizontally homogeneous stratification. The test does not verify the algo
rithms for interpolation onto the characteristics grid. The hydrodynamical mesh does not enter
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Figure 3.4: Numerical solution for the mean intensity J nUm in LTE (e = 1.0) as a function 
of optical depth r. The dashed line at r  =  1 marks the optical surface.

the computations either, since optical depths are preset on a grid that is equidistant in log10 r  
with 10 grid points per decade. The solver uses second-order Gauss-Legendre quadrature with 
^ =  l / \ /3  and arbitrary azimuth angles (f) to produce mean intensities that are comparable 
to the analytical solution. Contrary to normal operation in radiation-hydrodynamical simula
tions, the radiative transfer code is set to double precision arithmetic to handle strong scattering 
at very large optical depths, which appears due to the (unrealistic) constancy of the photon 
destruction probability e in the atmosphere. High condition numbers of the accelerator matrix 
(see Sect. 3.3.4) for very small e in the diffusion region lead to stronger numerical noise and 
convergence problems in single precision arithmetic. The Planck function is set to B(r)  =  1.0 
in arbitrary units for all cases; it is also used as a first-guess source function for the solver.

In the LTE case (e =  1), the solver delivers I + (t ) = 1.0 for outgoing intensities and I~ (r) = 
1.0 — e ~ ^ ° T for ingoing intensities (see Fig. 3.4). The deviation from the numerical evaluation 
of Eq. (3.94) practically vanishes for any grid resolution, as the Gauss-Seidel solver uses the 
formal solution of the radiative transfer equation, which leads to equivalent expressions. In the 
scattering case, photon destruction probabilities assume values between e =  10“ 1 (moderate 
scattering) and e =  10-6 (strong scattering), decreasing by factors of 10. The left column 
of Fig. 3.5 shows the numerical results for the radiation field J I1Um. The mean intensity at the 
surface decreases for smaller e due to outward photon losses and the thermalization depth moves 
deeper into the atmosphere (dot-dashed line), in agreement with the discussion in Sect. 3.5.1. 
At the smallest optical depths, the numerical solution delivers J nu m (T — 10~4) ~  yT for small 
e. The radiation field is completely thermal (Jnum = B = 1.0) above r  > Ttherm-

The center column of Fig. 3.5 shows the optical depth-dependence of the total error of the 
numerical solution as the relative deviation between J num and Jan,

A Jrei(r) =  Jnum(; } 7  f an(T). (3.98)
Tan ( r )

At large optical depths, radiative transfer is local and the total error depends on the source
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Figure 3.5: N um erica l so lu tion  fo r  the mean in tens ity  J num as a fu n c tio n  o f optica l depth 
r  (le ft co lum n), relative devia tion  A  J re\ fro m  the analytica l so lu tion  as a fu nc tio n  o f o p ti
cal depth r  (center co lum n), and m axim um  relative devia tion  m ax( A  Jve\) as a func tion  o f 
ite ra tion  coun t (r ig h t co lum n). The pho ton  destruction  p ro b a b ility  e ranges from  10“ 1 
(top row ) to  10~b (bo ttom  row ). The dashed and dot-dashed lines in  the le ft co lum n 
and center co lu m n  m ark the optica l surface at r  =  1 and the the rm a liza tion  depth at 
t therm  =  1 / The  dotted line  in  the center co lum n  indicates zero deviation. Dashed 
lines in  the r ig h t co lum n  show the convergence speed fo r Gauss-Seidel corrections applied 
o n ly  d u rin g  upsweeps, so lid  lines show the convergence speed fo r corrections applied dur
ing bo th  upsweeps and downsweeps.
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function gradient through the discretization error of the logarithmic optical depth grid. Using 
Eq. (3.95), one obtains

for the variation AS  of the source function between adjacent grid points with constant spacing 
A logr. In the LTE case, A S  = 0 everywhere in the atmosphere since e = 1.0 and S = B  =  
1.0, independent of A logr. For e < 1.0 and at optical depths r  > r therm> the radiation field 
is entirely thermalized (Jnum ~  B = 1.0), and A Jre] vanishes since A S  —> 0.0. The source 
function starts to decrease quickly through the decreasing mean intensity near r therm due to 
outward photon losses, causing a sharp increase in the error of the numerical solution. A Jre\ 
peaks in the translucent zone as A S  is largest between 1.0 < r  <  r therm- The magnitude of 
the peak grows with decreasing e through the (1 — yfe) factor in Eq. (3.100); an upper limit 
is reached with e —> 0.0. It also follows from Eq. (3.100) that m ax(A Jrei) scales with the 
grid resolution. Further up in the atmosphere, the error decreases again through the finer grid 
spacing. At optical depths r  *C r therm5 the local discretization error becomes negligible due 
to the vanishing A S  —> 0.0. However, as I + and I~  decouple from the local source function 
and the radiation field becomes anisotropic, the error becomes independent from the source 
function gradient. A Jve\ is dominated by the propagated error of outgoing radiation I + from 
deeper layers and is therefore constant.

The right column of Fig. 3.5 shows the convergence speed of the numerical result to the 
analytical solution, measured through the maximum relative deviation m ax(A Jrei) in the at
mosphere (see Eq. (3.98)). Dashed lines represent computations where Gauss-Seidel corrections 
for the source function were applied only during upsweeps, while solid lines show the results 
when both upsweeps and downsweeps were corrected, which increases convergence speeds by 
about a factor of two, as predicted by Trujillo Bueno and Fabiani Bendicho (1995). Convergence 
is significantly slower when the thermalization depth moves to deep, very optically thick layers 
as photon destruction probabilities decrease. The implementation of the Gauss-Seidel solver 
in upsweep correction mode delivers similar performance to the version of Trujillo Bueno and 
Fabiani Bendicho (1995) for e =  10-6 . Convergence is reached after ~  450 iterations (dashed 
line in the lower right panel of Fig. 3.5). m ax(A Jrei) ~  3.7 • 10-3 at e = 10-6 is similar to 
the error quoted by Trujillo Bueno and Fabiani Bendicho (1995), who used a slightly lower grid 
resolution which reduces the amount of iterations needed to reach the discretization error.

In summary, the results of the test with an isothermal atmosphere in the Eddington ap
proximation and with coherent scattering show that the radiative transfer solver performs as 
expected: numerical errors remain below the 1% level for all test cases, and the convergence 
speed is similar to the implementation of Trujillo Bueno and Fabiani Bendicho (1995).

A S  «  —----- A logr =  r —— A logr =  (1 — y/e)B ( VSere V̂T>) A  logr
a log r  dr \  /

(3.99)

(3.100)
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Radiative transfer with scattering for 
domain-decomposed 3D MHD 
simulations of cool stellar atmospheres
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Hansteen, and J. Leenarts, A&A, 517:49, July 2010

Abstract

Aims. We present the implementation of a radiative transfer solver with coherent scattering in 
the new BIFROST code for radiative magneto-hydrodynamical (MHD) simulations of stellar 
surface convection. The code is fully parallelized using MPI domain decomposition, which 
allows for large grid sizes and improved resolution of hydrodynarmcal structures. We apply 
the code to simulate the surface granulation in a solar-type star, ignoring magnetic fields, and 
investigate the importance of coherent scattering for the atmospheric structure.
Methods. A scattering term is added to the radiative transfer equation, requiring an iterative 
computation of the radiation field. We use a short-characteristics-based Gauss-Seidel acceler
ation scheme to compute radiative flux divergences for the energy equation. The effects of 
coherent scattering are tested by comparing the temperature stratification of three 3D time- 
dependent hydrodynamical atmosphere models of a solar-type star: without scattering, with 
continuum scattering only, and with both continuum and line scattering.
Results. We show that continuum scattering does not have a significant impact on the photo- 
spheric temperature structure for a star like the Sun. Including scattering in line-blanketing, 
however, leads to a decrease of temperatures by about 350 K below log10 T5000 —4. The effect
is opposite to that of ID hydrostatic models in radiative equilibrium, where scattering reduces 
the cooling effect of strong LTE lines in the higher layers of the photosphere. Coherent line 
scattering also changes the temperature distribution in the high atmosphere, where we observe 
stronger fluctuations compared to a treatment of lines as true absorbers.
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4.1 In troduction

The atmospheres of late-type stars form the transition from the opaque convective envelope to 
the interstellar medium. Hot rising plasma transports heat to the surface, becomes transpar
ent and looses its entropy through radiative cooling. Gravity accelerates the cooled gas back 
into the star, carrying kinetic energy inward and forcing the convective flow. By taking over 
heat transport and removing entropy, the radiation field therefore indirectly drives convection 
(Stein and Nordlund, 1998), making radiative and hydrodynamical processes equally important 
at the surface. Magnetic fields have strong impact on the higher atmosphere and cause local 
phenomena in the surface granulation, such as spots and pores.

T he classical numerical models of cool stellar atmospheres in ID focused on a detailed de
scription of radiative transfer, with two prominent examples being the MARCS code (Gustafs- 
son et al., 1975) and the ATLAS code (Kurucz, 1979). Assuming a plane-parallel or spherical- 
symmetric stratification, they include only a rudimentary treatment of convective energy trans
port in cool stellar atmospheres. Subsequent updates of these models (e.g., Kurucz, 1996; 
Gustafsson et al., 2008) benefit from the largely increased computational power, refining the 
treatment of the strongly wavelength-dependent line opacities. Newer codes, such as PHOENIX 
(Hauschildt et al., 1999) can also include departures from local thermodynamic equilibrium 
(LTE) in the radiative transfer computation and the absorber populations. The ID models have 
not only provided growing insight into the physical environment at the surface of cool stars, 
but have also become a standard tool for chemical abundance analyses. The wide variety of 
applications includes studies of galactic chemical evolution and of the origin of the elements.

The advent of fully dynamic 3D surface convection simulations has enabled a much more 
realistic treatment of the hydrodynamical plasma flow, deepening our understanding of con
vection and eliminating the need for microturbulent and macroturbulent broadening in line 
formation computations (see, e.g., Nordlund et al., 2009). The 3D models are capable of accu
rately reproducing the surface structure of the observed solar granulation with their strongly 
inhomogeneous surface intensities (Stein and Nordlund, 1998). The velocity fields predicted by 
the 3D simulations lead to a close match with both the observed spectral line bisectors and the 
broadening of their profiles in the atmospheres of different stars (e.g., Dravins and Nordlund, 
1990; Asplund et al., 2000b; Allende Prieto et al., 2002; Ramirez et al., 2009). Recently, im
pressive agreement between a new synthetic 3D model and solar observations has been found 
in a detailed comparison of spectral line shifts, equivalent widths and center-to-limb variations 
for normalized line profiles (Pereira et al., 2009a,b). In essentially all cases, this 3D model re
produced the observations with an accuracy that is comparable to the semi-empirical model of 
Holweger and Müller (1974), which is traditionally used in spectroscopy of the solar photo
sphere.

The accuracy of the treatment of radiation in 3D, however, is still strongly limited by the 
available computational power. Radiative transfer easily becomes the most computationally ex
pensive part of a simulation, since the equations must be solved for a considerably larger set 
of transport directions compared to hydrodynamics, and non-grey opacities must be accounted 
for in realistic simulations. Most of the currently existing 3D radiative (M)HD codes therefore 
assume LTE and capture the atmospheric height dependence of continuum and line opacities 
using the opacity binning method (e.g., Nordlund, 1982; Ludwig, 1992): the problem of com
puting the monochromatic radiation field for a larger number of wavelengths is reduced to the 
numerical solution of the radiative transfer equation for typically 5 opacity bins. Skartlien 
(2000) extended the opacity binning method to include coherent scattering, and showed its 
importance in the solar chromosphere using a 3D radiative transfer solver for parallel shared- 
memory architectures.
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Modern large-scale computer clusters use distributed memory architectures to handle the 
growing complexity of scientific simulations, allowing, e.g., self-consistent MHD models of the 
solar chromosphere, transition region and corona (Hansteen, 2004; Hansteen et al., 2007) or 
detailed hydrodynamical models of giant stars (Collet et al., 2007). We present a new fully MPI- 
parallelized radiative transfer solver with coherent scattering for the new BIFROST code for 
time-dependent 3D MHD simulations of cool stellar atmospheres (Gudiksen et al., in prepara
tion).

In Sect. 4.2 and 4.3, we discuss the physics of the radiative transfer model and its imple
mentation in the MHD code. Section 4.4 describes the most important continuous and line 
opacity sources that we include in our simulations. Section 4.5 describes the application of the 
BIFROST code to model the atmosphere of a solar-type star using radiative transfer calculations 
with scattering, and discusses the effects on the temperature structure.

4.2 Radiative transfer with scattering and the radiative flux diver
gence

4.2.1 The radiative transfer equation

Hydrodynamical simulations of cool stellar atmospheres need to cover several pressure scale 
heights above and below the optical surface to minimize the effect of the boundaries on the 
granulation flow. The exponential density stratification causes the optical depth of the plasma to 
span about 15 orders of magnitude from the highest to the lowest layers of the simulation. The 
radiative transfer problem must therefore be solved in very different physical environments: in 
the extremely optically thick diffusion region at the bottom of the simulation box, all photons 
are thermahzed. At the top, the atmosphere is mostly optically thin and mainly photons in the 
strongest fines interact with the gas. For the bulk of the photons, the transition between these 
two domains is rapid; it is confined to a thin layer which appears corrugated due to the different 
geometrical depth variation of opacities in upflows and downflows (Stein and Nordlund, 1998).

Radiative transfer is, in general, a time-dependent process, which needs to be treated simul
taneously with the hydrodynamics. However, the timescale of photon propagation over a mean 
free path length, t \  = (cxa)_ 1> where Xa is the monochromatic opacity and c is the speed of 
light, is orders of magnitude shorter than any hydrodynamical timescale. Radiative transfer 
therefore decouples from the hydrodynamics and is well approximated by a time-independent 
problem, described by a radiative transfer equation for the monochromatic specific intensity 
Ja(x , n) in direction n:

n • V /A(x, n) = - X a(x)/a(x , n) + ja(x, n), (4.1)

where j \  denotes the local emission at wavelength A (see, e.g., Mihalas, 1978; Rutten, 2003). 
The left-hand side of Eq. (4.1) is defined in the rest frame of the model atmosphere. The 
source and sink terms of the right-hand side are naturally described in the co-moving frame 
of the flowing gas. The consequent Doppler shifts are difficult to treat in 3D time-dependent 
simulations due to restrictions in computational power, requiring us to compute wavelength- 
integrated quantities in the opacity binning approximation (see below). We therefore assume a 
static medium, neglecting possible influences of the velocity field.

The extinction of photons is described, as customary, through the absorption coefficient 
and the scattering coefficient <ta, which combine to the gas opacity,

Xa(x ) =  rcA(x) +  cta(x ) (4.2)
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and give rise to the definition of the photon destruction probability

^a (x )
« a(x)

«a(x) + CTa(x) ’
(4.3)

Recasting the optical path ds = n • dx along a ray in direction n into the optical depth dr\ = 
X\ds  along that direction, gives Eq. (4.1) the form

-j— {T\)  =  - h i r x )  + S\{tx), (4.4)dr\

with the source function S\  = j x / X x -  For the numerical computation, we employ the formal 
solution

= Ix(rux ) e - ^ ~ T̂  + /  Sx{t)et~Txdt1 (4.5)
J tUi\

where Ia(tu,a) is the incident intensity at the upwind end of the ray at optical depth tu x < tx- 
The source function Sx at optical depth tx in direction n includes local thermal radiation 

from the gas and coherent scattering of photons:

Sa =  P ~  f  m ,  ^ Bx =  (1 -  ex) Jx + t xBx, (4.6)
^ X X  Js2 X a

where scattered radiation from direction rV contributes with weight 0 in the integral over the 
unit sphere S 2, Bx denotes the Planck function, and Jx is the mean intensity. The second 
equality holds for isotropic angular redistribution of radiation (0 =  1). For ex < 1, the source 
function depends on J\  and thus, through the non-locality of radiative transfer, on radiation 
processes in the entire simulation domain. This turns Eq. (4.4) from an ordinary differential 
equation into an integro-differential equation.

Current limitations of available computing resources require the assumption of isotropic 
coherent scattering. Continuum processes in cool stellar atmospheres and very strong lines 
fulfill this restriction in very good or reasonable approximation, respectively, due to their weak 
wavelength dependence. Intermediate and weak lines are more accurately treated in complete 
spectral redistribution.

4.2.2 The radiative flux divergence and the wavelength integral

Absorption and thermal emission of radiation couples the stellar plasma with the radiation field 
through the transfer of heat. Photon energies in cool stars are too small to exert a significant 
force on the fluid compared to the gas pressure and gravity; the coupling is therefore sufficiently 
described by adding a radiative heating term Qrad to the energy equation.

Evaluating the first moment of Eq. (4.1) and using the above definitions yields

-  v  • F A = 4ttxa {Jx ~ Sx) = 47TCAXA {Jx ~ Bx) , (4.7)

where V • F A is the local monochromatic radiative flux divergence. The second equality holds 
in the case of the coherent scattering source function (Eq. (4.6)). The scattering term does not 
contribute to heat exchange by definition, reducing radiative heating and cooling by a factor of 
ca compared to the case where Sx = Bx-

Integrating the monochromatic flux divergence in Eq. (4.7) over the whole wavelength spec
trum of the star yields the local heating rate Qrad;

Qrad V • F AdA. (4.8)
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In the optically thick regime, where radiative transfer is diffusive, this integral may be simplified 
with good accuracy by assuming the Rosseland mean opacity in the so-called gray approxima
tion. However, gray opacities are not sufficient for a realistic treatment of the height-dependent 
line-blanketing above the surface, where the atmospheric structure is very sensitive to the radi
ation field. Atomic and molecular lines are important opacity sources in this region, changing 
the radiative heating and cooling compared to the simplified case of a gray atmosphere (see, 
e.g., Vogler et ab, 2004, for a detailed discussion). The current version of the MARCS ID atmo
sphere code uses the opacity sampling technique (Peytremann, 1974), which approximates the 
spectrum through statistical sampling at ~  100000 wavelength points. This resolution is suf
ficient to capture continuum absorption and line-blanketing without bias, at least in the lower 
parts of the atmosphere where the spectral distribution of absorbers is sufficiently widespread. 
Stellar atmosphere models in 3D do not allow for such a detailed treatment yet, since a single 
formal solution is many orders of magnitude more expensive to compute: the radiative transfer 
equation in our radiation-hydrodynamical model (Sect. 4.5.1) is solved for 240 x 240 columns 
and 24 transport directions, which is equivalent to ~  105 ID calculations for each time step.

Nordlund (1982), Ludwig (1992) and Skartlien (2000) have described opacity binning tech
niques, where wavelength integration is performed over subsets of the spectral range before the 
solution of the radiative transfer equation, and the radiation field is computed for only a few 
mean opacities instead of the full spectrum. We will give a brief description of the technique in 
the following; see Skartlien (2000) for a more detailed discussion.

Integrating the radiative transfer equation (Eq. (4.1)) over wavelength leads to the definition 
of a mean opacity, mean scattering coefficient and mean absorption coefficient:

J  XxhdX
J h d X

f
f  J\dX 

J K\BxdX 
I  B\dX

(4.9)

(4.10)

(4.11)

The intensity-weighted mean opacity x1 and the mean-intensity-weighted mean scattering coef
ficient v depend on the unknown radiation field I\  and its angular average J\,  which must be 
estimated: we use ID radiative transfer calculations on the mean stratification of the atmosphere 
(see Sect. 4.5.2), which yield approximations for x1 ~  XJ,1D and cr'] ~  crJ,1D.

These three mean coefficients represent absorption, scattering and thermal emission of pho
tons with good accuracy where the stellar atmosphere is optically thin across the spectrum. 
However, xJ,1D does not ensure a correct total radiative energy flux at optical depths r  1 
where radiative transfer is diffusive. It needs to be replaced by the Rosseland mean opacity, 
defined as the weighted harmonic mean

R =  /  (dB\/ds) dX 
f  (1 /xa) (dBx/ds) dX

(4.12)

We consequently use a r-weighted sum of the two quantities x'J,1D and XR- The geometrical 
depth of the transition between the two regimes near r  «  1 varies quickly with wavelength 
where spectral lines are present, and it is not sufficient to consider only a single pair of mean 
opacities xJ,1D and XR- The opacity binning method therefore defines several opacity groups, 
where each member reaches unit optical depth (t\  =  1) at a similar geometrical depth. The 
integrals in Eq. (4.9) - Eq. (4.12) are then evaluated only for a set of member wavelengths { }  
in each bin i, which does not have to be continuous.
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Depending on the height range of the stellar atmosphere model and the wavelength selec
tion method, it turns out that about 5 such opacity bins are enough to capture the essence of 
the line-blanketing and continuum opacity and to obtain a realistic temperature structure (Vo
gler et ab, 2004). More recent atmosphere models have been extended to 12 bins (Caffau et ah, 
2008). For the simulations presented in this work, we compute radiative transfer with 12 bins, 
where wavelengths are sorted not only by the geometrical height of the monochromatic opti
cal surface, but also by wavelength, separating opacities in the UV, visual and infrared bands 
(Trampedach et al., in preparation).

It is difficult to assess the quality of the opacity binning method in realistic 3D simulations: 
deviations of the resulting radiative heating rates Qrad from an accurate monochromatic solu
tion have a height-dependent impact on the temperature structure (see Sect. (4.5)), making the 
long-term behavior of the simulation hard to predict. The agreement of 3D model atmospheres 
with various observational tests indicates that opacity binning still yields a reasonable estimate 
for the line-blanketing.

4.3 The numerical implementation

The large variety of radiative transfer models for astrophysical problems inspired the develop
ment of very different analytical and numerical methods to obtain the radiation field (see, e.g., 
Wehrse and Kalkofen (2006) for an overview). For our given problem of computing radiative 
heating rates as the flux divergence —V • F of a time-independent radiation field in 3D, the 
direct solution of Eq. (4.4) yields accurate results with efficient numerical schemes.

Characteristics methods, which solve the transfer problem along a discrete set of light rays 
to capture the anisotropy of the radiation field in the optically thin atmosphere, are a popular 
choice in stellar atmosphere models. Nordlund (1982) and Skartlien (2000) use Feautrier-type 
differential radiative transfer solvers (Feautrier, 1964) for solving Eq. (4.4) on long character
istics. They span across the entire simulation domain, which is an obstacle for a domain- 
decomposed parallelization of the MHD code (see Sect. 4.3.2 below). Bruls et al. (1999), Vogler 
et al. (2005) and Muthsam et al. (2010) employ the short characteristics method (Mihalas et al., 
1978; Olson and Kunasz, 1987; Kunasz and Auer, 1988), where the radiative transfer equation is 
solved on characteristics which only extend to the adjacent upwind and downwind grid layers. 
This method is required by our choice of iteration technique for an efficient solution of the 
scattering problem.

4.3.1 Short characteristics

The short characteristics method employs the formal solution (Eq. (4.5)) of the monochromatic 
radiative transfer equation (Eq. (4.4)) to compute the radiation field at the center of a three- 
point ray for a known source function S\. The discretization is performed by interpolating the 
source function for a given wavelength A (or bin number) along the ray using a second-order 
Bezier curve (see, e.g., the discussion in Auer, 2003)

S(t) = (1 -  t)2Su + t2S0 + 24(1 -  t)Sc, (4.13)

where Su and So are the upwind and local source functions and t = (r — tu) / ( to — ru) is 
the curve parameter. Sc is a control point, which shapes the interpolating curve by restricting 
it to the convex hull laid out by Su, Sc and So- This characteristic of Bezier curves may be 
exploited to detect and suppress overshoots, which destabilize the numerical solution at places 
in the atmosphere where strong opacity and temperature gradients occur. Inserting Eq. (4.13)
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into the formal solution (Eq. (4.5)), evaluating the integral and reordering the terms yields the 
discretized expression

I(t) = /(Tu)e-(T- T“> + f  US„ +  'PoSo +  »dSd- (4.14)

The shape of the three interpolation coefficients 'Tu, 'To and 'Tj for the upwind, center and 
downwind source functions depends on the control point Sc. Choosing

Sc = S0 - ^ ~ S ' 0, (4.15)

where S '0 is the centered derivative on the three-point stencil (Su, So, So), yields second-order 
interpolation. It is used where no overshoots happen and correctly reproduces the diffusion 
approximation at optical depths r  > 30 (see Appendix B.l for the detailed shape of the 'T 
coefficients). In the optically thin atmosphere where r  < 10—3, a second-order expansion of 
the (1 — e~T) terms in the 'T constants stabilizes the solver, which may therefore be imple
mented with single precision floating point numerics throughout the simulation domain. Op
tical depths At along the characteristics are similarly computed using the Bezier interpolation 
technique.

The mean intensities J  and the components of the flux vector F are computed by approx
imating the zeroth and first moment integrals by a quadrature sum over selected ray angles 
(“method of discrete ordinates”),

J  ~  4“  rii)(rii-nj),  (4.16)
i i

where wt is the weight of direction rfj. The best choice of quadrature depends on the expected 
anisotropy of the radiation field and on the quantity that needs to be computed. In our case, 
the components of the flux vector F need to be calculated explicitly, requiring the quadrature 
be invariant to rotation by tt/2 to avoid directional bias. Carlson’s A4 quadrature (Carlson, 
1963) with 3 rays per octant is an appropriate choice and represents the anisotropy with good 
accuracy.

Short characteristics require knowledge of the upwind intensities 7(ru) for each ray direc
tion n, on which the sweep direction for a formal solution therefore depends. Interpolation 
yields all such quantities (Sect. 4.3.3). Shallow rays, that fail to hit the upwind layer within 
the grid cells, need to be extended and may cross several cells, possibly across subdomain 
boundaries. For the first formal solution of a simulation run, a Feautrier-type long charac
teristics solver delivers boundary intensity estimates; intensities from the previous iteration in 
the neighbor subdomains are used for all subsequent computations. Once 7(r) is known along 
two edges of the current layer, the remaining unknown intensities may be computed away from 
the boundary through vertical interpolation between the upwind layer and the current layer. 
It is worth noting that some long characteristics codes turn transport directions around the 
vertical axis with every time step to avoid numerical artefacts stemming from a fixed set of 
discrete ordinates. Such an effect is not observed in our short characteristics implementation. 
Moreover, the anisotropy of the radiation field slows down convergence of an iterative solution 
in optically thin parts when transport directions are turned between time steps, since the stored 
boundary intensities come from the previous solution (see Sect. 4.3.2 for further details). All 
ray directions are therefore kept fixed.

The discretized formal solution (Eq. 4.14) in the simulation domain and averaging of the 
radiation field over solid angle will be abbreviated in the following using the A operator, which 
is commonly defined through

J  =  AS. (4.17)
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A is a linear matrix operator on the source functions S  which represents the numerical algo
rithm used to compute the radiation field in the code.

4.3.2 The Gauss-Seidel scheme and MPI parallelization

o 10'

Depth in [Mm]

Z 10'

—  3
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Figure 4.1: Horizontal mean photon destruction probability e for three bins representing 
continuum and weak lines (1), intermediate lines (2) and strong lines (3) in the UV, plotted 
as a function of geometrical depth (left) and optical depth in the respective bin (right, the 
average is taken over surfaces with the same vertical optical depth). The dotted line marks 
the stellar surface (left) and unit optical depth in each bin (right).

As noted in Sect. 4.2.1, the coherent scattering term turns the transfer equation into an inte- 
gro-differential equation for the specific intensity I. Using the A operator defined in Eq. (4.17), 
the problem may be rewritten into the matrix equation

[ l - ( l - e ) A ] S  =  eß , (4.18)

with the identity matrix 1. The expression represents a very large system of linear equations. 
Its direct solution in 3D through inversion of the operator on the left-hand side is far too com
plex and numerically unstable in some cases, to be of practical use. Most solvers therefore 
apply an iteration scheme, the choice of which depends on the structure of the A operator 
matrix. Approximate Lambda Iteration (ALI, sometimes also called Accelerated Lambda It
eration, Cannon, 1973) is a popular method to obtain a good approximation of the radiation 
field with fast convergence. J  is computed through a formal solution and used to correct the 
source function. Rather than just inserting J  in S, which leads to very slow convergence (or no 
convergence at all), a largely simplified approximate operator A* is used to compute correction 
values A S  at low cost, speeding up convergence tremendously.

We employ the Gauss-Seidel scheme (Trujillo Bueno and Fabiani Bendicho, 1995), an ALI 
method that combines the formal solution and correction steps. It mimics an upper/lower tri
angular A* operator, but the scheme does not require the expensive construction of the matrix. 
Source function corrections at the grid point i are obtained during a solver sweep from the 
expression

ASi (1 + 
1 (1

(4.19)

jold/new ^  racjjatjon £efd t ]iat includes the corrections in the upwind part of the simulation 
domain, which have already been computed during the current sweep. The dependence of 
ASi on Ji in each layer for immediate correction of S{ during the sweep requires employing 
the short characteristics method. The denominator contains the diagonal element An of the
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A operator, which may be computed using Eq. (4.14) and therefore reduces to a sum of 'E 
constants. Source function corrections may be applied during both upsweeps and downsweeps 
for faster convergence.

We tested our radiative transfer code by comparing the numerical results with an analytical 
solution for the case of an isothermal ID atmosphere with constant photon destruction proba
bility e (see the discussion in Trujillo Bueno and Fabiani Bendicho, 1995) and found very good 
agreement.

The radiation solver is parallelized using spatial domain decomposition and communication 
with the MPI library, adopting the virtual topology given by the MHD solver of the BI  FROST 
code. The grid is decomposed into cuboid subdomains, allowing an arbitrary number of divi
sions on all three spatial axes. While this parallelization lends itself to a mixed initial and bound
ary value problem found in computational hydrodynamics, it is harder to apply in an efficient 
way to the pure boundary value problem of time-independent radiative transfer. Concurrent 
computation of spectral subdomains (or opacity bins) would provide a higher degree of paral
lelism considering the non-local dependencies in a monochromatic formal solution of our given 
coherent scattering problem, but such an approach would cause severe load balancing issues and 
suffer from node memory limitations when applying the code to very large simulations. Spatial 
domain decomposition may still be combined with spectral domain decomposition if radiative 
transfer needs to be solved for a large number of wavelengths.

Heinemann et al. (2006) have presented a domain-decomposed method based on a variant 
of the formal solution (Eq. (4.5)) on long characteristics. The solver bypasses the problem of 
missing incident intensities at subdomain boundaries by splitting the local and boundary con
tributions. While their approach efficiently solves the radiative transfer equation without scat
tering, the long characteristics solver would have to be combined with a different ALI scheme 
than Gauss-Seidel. An approximate A* operator needs a certain bandwidth around its matrix 
diagonal to achieve good convergence (see, e.g., the discussion in Hauschildt and Baron, 2006). 
It is therefore more expensive to construct and invert than the diagonal operator used for the 
Gauss-Seidel scheme.

Our code iterates the solution, starting with the source function and subdomain boundary 
intensities from the previous hydrodynamical time step, until the maximum relative source 
function correction in the domain after the nth iteration is smaller than a preset threshold C :

-  ( f c j p )  < C.

When scattering is not included, the maximum relative change of mean intensities at the bound
ary is used instead to test the convergence of the radiation field:

/  I jn  _  j n -11 \
max M 1 jn _\ 1 j  < C. (4.21)

If too few iterations are performed, the subdomain boundaries produce artifacts in the upper 
parts of the atmosphere, where photon mean free paths are comparable to or larger than the 
subdomain size. In practice, it turns out that a threshold of C ~  1(D3 yields good results in 
either case.

The convergence speed of an iterative method depends on the spectral radius p of the opera
tor with which corrections are computed, as the error of the solution after n iterations decreases 
with pn. The spectral radius approaches p ~  1 — e for optically thick scattering media (see, e.g., 
the discussion in Trujillo Bueno and Fabiani Bendicho, 1995). Strong scattering at high optical
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Figure 4.2: Convergence o f the source fu nc tio n  fo r bins 1-3 (see Fig. 4.1) du ring  a s im u
la tion  ru n  w ith o u t dom ain  decom position  (le ft co lum n), w ith  2 x 2 x 2  decom position 
(center co lum n) and 3 x 3 x 3  decom position  (righ t co lum n), and w ith  a tim e  step o f 
A t = 0.03 s (upper row ), A t = 0.04 s (center row ) and A t  =  0.08 s (low er row). L ine 
styles represent the same bins as in Fig. 4.1. T h in  lines: relative source fu nc tio n  correc
t io n  A S  a fte r n ite ra tions w ith  respect to  S n~l fro m  the previous ite ra tion  n — 1. T h ick  
lines: relative source fu n c tio n  co rrection  A S  w ith  respect to  the “ tru e ” so lu tion  S°°. 
D o tted  lines m ark the thresho ld  C beneath w h ich  convergence is assumed (see text).
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depths therefore leads to very poor convergence rates of the Gauss-Seidel solver, requiring hun
dreds of iterations in extreme situations. However, this difficulty is mostly alleviated by using 
the source function solution from the previous time step and the slow evolution of the plasma 
flow between consecutive time steps, so that the code ideally needs to fully converge the solu
tion only once at the beginning. Domain decomposition additionally slows down convergence 
if the photon mean free paths cross subdomain boundaries, which is the case at continuum 
wavelengths in the thin atmosphere, since the subdomain boundary intensities are not initially 
known. Storing intensities from the previous time step again largely circumvents this prob
lem, and the actual number of iterations per time step that is required during a simulation run 
depends on how fast the atmosphere evolves.

We therefore test the convergence of the solution for arbitrary time steps of our solar-type 
simulation using 12 opacity bins with continuum and line scattering (see Sect. 4.5), following 
a similar discussion in Skartlien (2000). The tests were run at half resolution on all axes to 
facilitate computation on a single core, which yields slightly faster convergence. Since the true 
solution S  of our radiative transfer problem is unknown, we compare the approximate solution 
after n iterations, Sn, with an approximate solution S °° which we obtained after additional 
iterations with a lower convergence threshold of C ~  10 1, assuming 5°° «  S  with good 
accuracy.

We use three representative opacity bins, which cover weak, intermediate and strong opaci
ties in the UV, with different depth-dependence of the scattering strengths. The remaining nine 
bins at longer wavelengths behave in a similar way. Figure 4.1 shows horizontal averages of the 
photon destruction probabilities e for each bin in an arbitrary snapshot of our photospheric 
simulation: averages over layers with the same geometrical depth are plotted in the left panel, 
averages over surfaces with the same vertical optical depth are plotted in the right panel.

Figure 4.2 compares the convergence speed for the radiative transfer solution of the sam
ple bins with and without domain decomposition, and with different time step lengths. Thick 
lines represent convergence relative to the true solution S°° for each bin, thin lines show the 
convergence relative to the solution obtained in the previous iteration, which we use as the 
convergence criterion. In normal operation, the solver would stop as soon as the thin line of 
the currently computed opacity bin has crossed the dotted horizontal line. We caution that the 
number of iterations needed for a solution also depends mildly on the time stepping algorithm, 
since the choice of method affects the deviation of stored boundary intensities and source func
tions between substeps of the time integration. We therefore only analyze the behavior for the 
first extrapolation step of a 3rd order Runge-Kutta time stepper.

T he poorer convergence speed caused by scattering at high optical depths in bin 3 is evident 
in all plots (thick dot-dashed line), compared to the situation in bin 1, where the photon destruc
tion probability is larger. The small optical path lengths of bin 3 reduce the impact of domain 
decomposition, since the radiation field is essentially local in most parts of the simulation box. 
Contrary to that, bin 1 suffers most strongly from slower convergence with increasing number 
of subdomain divisions, as well as from some flip-flopping of AS. T he latter is caused by high- 
order interpolation (see Sect. 4.3.3) and disappears when the solver is set to linear interpolation. 
High order interpolation of upwind intensities widens the domain of dependence of the short 
characteristics, and the effect is amplified where large path lengths in the optically thin regime 
cross subdomain boundaries.

Domain decomposition mildly slows down convergence, and the accuracy of the solution 
in bin 3 slightly deteriorates for a larger number of subdomains. Longer time steps have the 
same effect on that bin, causing slower convergence towards S 00 than indicated by the relative 
corrections with respect to S n~l (thick and thin dot-dashed lines in Fig. 4.2). The method 
devised by Skartlien (2000) exhibits similar behavior for bins with strong scattering lines.
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Figure 4.3: N um erica l d iffus ion  o f a searchlight beam w ith  rectangular cross-section us
ing linear (upper righ t), local cubic (low er le ft) and local cubic m ono ton ic  (low er rig h t) 
in te rp o la tio n , compared to  the exact so lu tion  (upper left).

The effect o f such inaccuracies in  the num erical so lu tion  o f S and J  on the energy transfer 
between the rad ia tion  fie ld  and the gas are nevertheless small o r even vanish in some regions: ra
diative heating is reduced in  the atmosphere where coherent scattering is im p o rta n t (see Eq. (4.7) 
and Fig. 4.1). C oherent scattering also e ffectively damps the im pact o f any rem ain ing  d iscon ti
nuities in  the rad ia tion  fie ld  across subdom ain boundaries on the flu x  divergence in  the o p tica lly  
th in  atmosphere, so that no visib le  artifacts fro m  the dom ain  decom position  rem ain in  the gas 
temperatures.

C om pared to  the solver proposed by F leinem ann et al. (2006), it  is clear tha t o u r m ethod 
is not o p tim a l fo r the case w ith o u t scattering, since several com pu ta tiona lly  expensive fo rm a l 
so lu tion  and com m un ica tion  steps are required to  obta in  a rad ia tion fie ld that is consistent 
in  the w ho le  dom ain. It offers good perform ance when scattering is included, w h ich  is not 
considered in  th e ir  m ethod.
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4.3.3 Interpolation and grid refinement

At every time step, the hydrodynamical solver updates mass densities and internal energy den
sities. These quantities are used to look up tabulated opacities, bin-integrated Planck functions 
and photon destruction probabilities at every grid point. In general, the characteristics grid 
needed to represent the anisotropy of the radiation field does not coincide with the hydrody
namical mesh, requiring the interpolation of x, S and the upwind intensities / u during the 
formal solution.

The accuracy of this interpolation strongly influences the overall accuracy of the solver, 
and there is a large choice of possible methods (see, e.g., the discussion in Auer, 2003). Linear 
interpolation is fast and avoids instabilities produced by interpolation overshoots, but yields 
poor estimates where the radiation field is not well-resolved, e.g. between granules and inter
granular lanes at the optical surface. It also amplifies the numerical diffusion effect of short 
characteristics, where lateral diffusion artificially transports radiation away from the beam.

To illustrate this behavior, we repeat the searchlight test of Kunasz and Auer (1988), where 
a rectangular light beam is cast through an empty 3D box with a 1003 mesh and zero opacity. 
Any diffusion of radiation away from the beam results in a broadening of the beam profile at 
the surface and can only stem from the interpolation of unattenuated upwind intensities. The 
light source illuminates the bottom of the 3D box, where it initially covers an area of 302 mesh 
points; it is slanted with an angle of 9 = 28.1° off the vertical and an azimuth of <j> = 45.0°. 
The upper left panel in Fig. 4.3 shows the beam profile at the top of the 3D box expected 
from an exact solution of the unattenuated transfer problem through vacuum; note that the 
finite resolution of the surface in the plot leads to a slightly widened profile. The upper right 
panel shows the broadening of the beam profile caused by 100 consecutive linear interpolations 
applied for the numerical transfer through the box. Although the area-integrated intensity is 
conserved with good accuracy, limited by the machine precision, the beam is visibly widened 
through numerical diffusion. The lower left panel in Fig. 4.3 shows the result when using local 
cubic interpolation for the transport problem. The broadening is reduced, but the overshooting 
cubic polynomials produce ringing and negative intensities. We therefore use the local cubic 
monotonic interpolation scheme of Fritsch and Butland (1984), which effectively suppresses 
overshoots by using weighted harmonic mean derivatives, in consecutive ID-ID interpolation 
on horizontal planes, and local quadratic interpolation on vertical cell walls (see Appendix B.2 
for further details). The lower right panel in Fig. 4.3 shows the result from the searchlight test, 
where the beam profile is conserved to a satisfactory degree. Numerical diffusion is reduced 
and reaches a level which renders the computed flux divergences comparable to those obtained 
with long characteristics codes: although upwind intensities do not need interpolation along 
the beam, diffusion affects the local flux divergences when transfered from the slanted long 
characteristics grid back to the hydrodynamical grid.

The basic mesh on which radiative transfer is computed is imposed by the MHD solver. This 
is usually not critical in the optically thin upper atmosphere and the optically thick interior, 
where radiative transfer is simple and may even be over-resolved. The opposite is the case in the 
transition region around the optical surface, where opacities drop rapidly due to their strong 
temperature dependence and cause a runaway cooling effect (Stein and Nordlund, 1998). For 
a solar simulation, ID tests performed by Nordlund and Stein (1991) indicate that a vertical 
spacing of < 10 km is desirable at this atmospheric height. Using a non-linear vertical grid with 
the finest resolution around the surface, this is easily achievable in 3D for modern MPI-based 
domain decomposed radiative hydrodynamics codes. However, for large coronal simulations 
or in the case of giant stars, where the spatial scales needed to resolve hydrodynamics and 
radiation transport exhibit much larger disparity than in the Sun, finding the optimal grid 
leads to a conflict. Besides the larger simulation size, too small length intervals A x  drastically
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increase the stiffness of the hydrodynamical equations, where the stability-limited time steps 
of the transport and diffusion terms scale with A x  and A x 2, respectively, and quickly become 
exceedingly small. In extreme cases, both effects may increase computation times of a model 
beyond tractability.

A fully adaptive mesh for computing radiative transfer would yield optimal results without 
affecting the stiffness of the equations, but is difficult to realize in a characteristics method. We 
achieve partial adaptivity by inserting horizontal layers in the hydrodynamical mesh for the 
radiative transfer computation, reducing optical path lengths without reducing the time steps. 
The refinement is based on the maximum vertical gradient of the Rosseland mean opacity in 
each layer and reassessed in regular intervals. While inserting additional layers slows down 
convergence of the Gauss-Seidel method (see Sect. 4.3.2), this is again overcome by storing the 
source function from the previous time step.

4.3.4 Numerical flux divergences

Having established a method for numerically computing radiative transfer with coherent scat
tering in a decomposed simulation domain, we now need to obtain flux divergences V • F , a 
derivative of the radiation field.

The right-hand side of Eq. (4.7) involves only local quantities that are defined on the cell 
centers of the hydrodynamical mesh, where Q rad is eventually needed, and therefore seems a 
natural choice. The expression x{J ~ S) is numerically stable in the optically thin regime, 
where round-off errors of a possibly vanishing difference between J  and S  are attenuated by 
the exponential outward decrease of the opacity y. At the same time, x  amplifies round-off 
errors of (J  — S) beneath the optical surface, where the radiation field thermalizes (J ~  B,  also 
in the scattering case since e > 0): the flux divergence again vanishes, but the finite machine 
precision prevents complete cancellation of the terms.

It is possible to stabilize a short characteristics solver in the whole simulation domain by 
subtracting So from the discretized formal solution (Eq. (4.14)), which yields the modified inte
gration constant 'I'o =  'Eo — E Using this equation, one obtains a monochromatic Qrad,A(x, n) 
along each ray. We note, however, that this leads to a deviation between the radiative energy 
[f Qrad,A(x, n)dQ,dV that is emitted by the gas in the simulation volume V  per time unit, and 
the outgoing radiative flux computed from the specific intensities at the surface: the expressions 
are not equivalent anymore in their discretized form, and numerical errors affect the two values 
in a different way.

The discretized flux divergence V • F  on the left-hand side of Eq. (4.7) using finite difference 
quotients is stable in the optically thick regime, but its accuracy deteriorates outward: round-off 
errors quickly become significant, as the internal energy per gas volume decreases exponentially 
(see also the discussion in Bruls et al., 1999).

Adopting the approach presented in Bruls et al. (1999) and Vogler et al. (2005), we combine 
both expressions through exponential bridging in each vertical column of the simulation do
main as a function of bin optical depth to benefit from their respective advantages. We slightly 
reduce the transition range between the regimes by a squared exponent, resulting in the expres
sion:

Qrad =  e - (T/T0)2Q id +  ( l  -  e -W T»>2) Q ^ ,  (4.22)

where To =  0.1, Q^ad =  At x {J — S) and Q ^ d =  —V • F, representing the two sides of Eq. (4.7). 
The total radiative energy computed with this expression delivers a consistent surface flux, since 
Qy.M\ contributes most of the radiative heating.

Following Vogler et al. (2005), we compute radiative transfer on cell corners to improve the 
accuracy of Q^ld. Radiative fluxes F  are averaged over cell corners surrounding each face before
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computing difference quotients, while Q^ad is averaged over all eight cell corners surrounding 
each grid point. Both expressions use exactly the same stencil and exhibit very good agreement 
around the threshold optical depth To in our solar-type simulation.

Flux divergences are computed only on the hydrodynamical grid. Additional layers that 
are possibly inserted by the radiative transfer solver just serve to stabilize the computation and 
may simply be omitted when computing Qrad, since conservation of the radiative energy flux 
through the hydrodynamical cell surfaces must hold.

4.4 A bsorption and scattering opacity sources in the Sun

Figure 4.4: Wavelength and depth dependence of the continuum photon destruction 
probabilities ecx (upper panel), the van Regemorter (1962) line photon destruction prob
abilities (center panel) and the total photon destruction probabilities e\ (lower panel) 
for the mean solar-type stratification. The zero point on the depth axis marks the stellar 
surface.

A complete description of radiative transfer in stellar atmospheres requires a detailed wave
length-resolved treatment of numerous radiative absorption and emission processes, collisions 
with neutral atoms, electrons and ions in the plasma, as well as an evaluation of the feedback of 
the radiation field on the level populations of the interacting particles. The complexity of the 
resulting problem vastly exceeds current computational resources. We therefore restrict all of 
the underlying thermodynamical plasma states to LTE, neglecting the effects of radiation on the 
excitation and ionization of atoms and photo-dissociation of molecules. The cross-sections and 
level populations needed for the absorption and scattering coefficients then depend only on the 
gas density p and the temperature T . Microscopic plasma thermodynamics is treated with the 
Mihalas-Hummer-Däppen equation of state (EOS) for stellar envelopes (Hummer and Mihalas, 
1988; Mihalas et ah, 1988; Däppen et ah, 1988; Mihalas et ah, 1990) and used in tabulated form. 
The solar chemical composition for the 15 elements included in the EOS and for the opacities 
is taken from the abundances of Asplund (2005).
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4.4.1 Continuum opacity

The most important continuous opacity sources are various transitions of hydrogen atoms, 
their ions and molecules. The H - ionization opacity dominates the solar continuum around 
the optical surface in the visual band; the large temperature sensitivity of the weakly bound 
second electron in the hydrogen atom causes runaway radiation cooling and the strong temper
ature gradient found at the top of the granules in the Sun (Stein and Nordlund, 1998). Most 
solar continuum photons originate from this very thin layer. Among many other processes, 
photoionization of metals contributes significantly to the continuous opacity at shorter wave
lengths. Table C.l gives an overview of all sources considered in this work; our data is mostly 
identical to those used in the latest MARCS models (see Table 1 in Gustafsson et ah, 2008), 
but includes additional bound-free data from the Opacity Project and the Iron Project (see 
Trampedach et ah, in prep., for further details). We also include opacities of the second ioniza
tion stage for many metals, allowing 3D models to extend deeper into the convection zone than 
their ID counterparts, which is a requirement for correctly simulating surface granulation.

The upper panel in Fig. 4.4 shows the wavelength and depth dependence of the continuum 
photon destruction probabilities ecx for the mean stratification of our 3D model, including all 
continuous absorption and scattering opacity sources considered here. Continuum scattering 
has a significant contribution mostly above the surface, photons thermalize beneath at almost 
all wavelengths. Note that the narrow features at the short-wavelength end are the scattering 
resonances of the Lyman series; Lyman lines are nevertheless treated as true absorbers if line 
scattering is not included in the simulations. The Rayleigh scattering tail of H I contributes 
mostly to the UV continuum opacity in the upper solar photosphere due to its comparatively 
small cross-section and strong wavelength dependence {a \ ~  A-4). The importance of elastic 
scattering on neutral hydrogen is outweighed by thermalizing processes closer to the surface 
and at short wavelengths. Electron scattering is wavelength-independent in the spectral range 
considered here, and becomes significant in the upper photosphere, where metals are the most 
important electron donors. It is mostly notable red-ward of the 1.644 pm edge of LD bound- 
free, before H -  free-free absorption takes over. Rayleigh scattering on He I atoms only gives 
minor contributions to the UV continuum opacity in the upper photosphere. The scattering 
opacity of H -2 molecules is negligible. Rayleigh and electron scattering are treated as isotropic, 
neglecting their weak (1 + cos2 6) anisotropy, where 9 is the scattering angle away from the 
incident direction (see, e.g., Mihalas, 1978).

Between 5000 Ä and 1.644 pm, the strong bound-free absorption opacity thermalizes 
the photons. Its dominance slightly decreases in the cool outermost layers owing to the lack of 
free electrons to form the ion.

4.4.2 Line opacity

Spectral line absorption and scattering are important processes which dictate the near-radiative 
equilibrium found in the solar photosphere. The heating/cooling effect of this line-blanketing 
forces the flatness of the observed temperature gradient, balancing the adiabatic dynamical gra
dient; see the discussion in Sect. 4.5.4. Spectral lines are particularly significant opacity sources 
at short wavelengths where many radiative bound-bound transitions of metals lie.

We obtain line opacities from extensive opacity sampling tables provided by B. Plez (2008, 
priv. comm.) as part of the MARCS collaboration. The data are based on VALD with some 
modifications; see Gustafsson et al. (2008) for further details. The original line data combine 
scattering and absorption contributions in a total opacity, which is sampled with ~  100000 
wavelengths and tabulated for a range of temperatures and pressures. The tables assume Saha 
ionization equilibrium and Boltzmann level populations to obtain the absorber density frac-
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tions. Departures from LTE, e.g. through radiative ionization, are neglected.
Following Skartlien (2000), we estimate the importance of scattering in line transitions by 

computing a photon destruction probability for every line opacity sample, using the van 
Regemorter (1962) formula (see Appendix C.l). We assume all scattering atoms to be neutral, 
accounting for the large contribution of Fel to the line-blanketing (Anderson, 1989), and all 
transitions to be permitted, in which case the assumptions of the van Regemorter (1962) formula 
yield reasonable estimates. Only electrons are taken into account for collisional de-excitation. 
The estimated photon destruction probability is then a function of wavelength, temperature 
and electron pressure, and independent of the actual transition. It may therefore also be ap
plied in cases where the line opacity sample includes several transitions (see the discussion in 
Appendix C.l). Fine transitions are treated as independent two-level processes without taking 
the coupling of the respective level populations into account, which is a reasonable assumption 
for resonance lines.

The center and lower panels in Fig. 4.4 show the wavelength and depth dependence of 
the estimated of spectral lines and the total photon destruction probabilities c\, including 
all considered continuous and line processes. It is clear that collisional de-excitation dominates 
beneath the surface and at the longest wavelengths. Resonant line scattering becomes important 
towards optical and shorter wavelengths at increasing depth.

With the exception of very strong lines, line scattering is generally not coherent due to the 
Doppler shifts in the moving gas, which are not accounted for in our calculations. The two- 
level approximation probably gives a reasonably realistic picture of strong permitted lines, but 
departures from the FTE populations of the atomic levels are still neglected. The important 
Fe I opacity deviates from the FTE estimate in higher layers (see Fig. 7 in Short and Hauschildt, 
2005), thereby affecting the overall magnitude of the line-blanketing in these regions. Moreover, 
the accuracy of the opacity sampling method itself deteriorates outwards, where fewer and 
fewer lines contribute to the opacity. The van Regemorter approximation assumes resonant line 
scattering and consequently produces poorer estimates for all non-resonant lines. In summary, 
we should expect to obtain an order-of-magnitude estimate for the effects of scattering on the 
atmospheric structure. A more detailed picture requires a full treatment of the departures from 
FTE level populations and velocity fields, which is still out of reach for time-dependent 3D 
simulations.

4.5 The effects of scattering on the photospheric temperature struc
ture of a solar-type star

4.5.1 The 3D hydrodynamical surface convection model

To investigate the effects of scattering on the atmosphere of a solar-type star, we conduct time- 
dependent radiative hydrodynamical simulations of the quiet surface, neglecting the effects of 
magnetic fields. We solve the fully compressible Navier-Stokes equations, the mass conservation 
equation and the energy equation, along with the time-independent radiative transfer equation 
(Eq. (4.4)); see, e.g., Stein and Nordlund (1998) and Nordlund et al. (2009) for further details. 
Our 240 x 240 x 226 model covers a horizontal area of 6 Mm x 6 Mm at a constant resolution 
of 25 km, and extends approximately 700 km above and 2.8 Mm below the surface. The vertical 
resolution reaches 7 km around the radiative cooling peak and decreases in the optically thick 
and thin parts of the simulation; radiative transfer is thus resolved well enough that only ~  3 % 
of the rays would be affected by overshoots (see Sect. 4.3.1). We test the accuracy of the vertical 
resolution using the adaptive refinement, inserting two extra layers before each computation 
of radiative transfer. Focal differences between the two calculations reach ~  3 • 101() erg g-1
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Figure 4.5: Horizontal average heating rate per unit mass around the stellar surface at 
an arbitrary time step of the simulation. Boxes show (qraj )  when computed on the 
hydrodynamical grid; the vertical resolution reaches 7 km around the peak. The solid line 
shows the result after inserting two additional horizontal layers in each hydrodynamical 
cell. The upper panel gives the average deviation between the two cases in the same units.

s-1 , owing to the strong sensitivity of the heating rate per unit mass, qTacj =  Qrad/A to the 
local temperature gradients in the highly inhomogeneous granulation flow. On the average, 
however, the change in radiative flux divergence is negligible (see the upper panel of Fig. 4.5), 
and the radiation field is well resolved on the hydrodynamical grid. Note the difference between 
the magnitude of the cooling peaks in Fig. 4.5 and Fig. 4.6: the ID  calculation is based on the 
mean structure; in the 3D case, the average over each depth layer in the 3D box is taken and 
thus includes lateral inhomogeneities produced by the granulation flow.

Horizontal boundaries are periodic to mimic an infin itely extended atmosphere, vertical 
boundaries at the top and bottom of the simulation box are open to minimize the interfer
ence w ith the granulation flow. Mass conservation is ensured at the bottom by keeping the 
gas pressure constant; the underlying convection zone is mimicked by setting the entropy of 
the inflowing gas. The upper atmosphere is stabilized by setting internal energies to a slowly 
evolving average at the top.

We approximate the wavelength integral (Eq. (4.8)) w ith 12 opacity bins to account for 
the depth-dependence and wavelength-dependence of the absorption and scattering coefficients. 
The simulation box extends far into the optically thin atmosphere w ith (75000) ~  10-6 , where 
irradiation Jtop from above is negligible. Rosseland optical depths at the bottom typically reach 
(trqss) ~  10‘ , where radiative transfer is entirely diffusive and the radiation field is completely 
thermalized. We therefore set the diffusion approximation t =  B^ot +  d B / d r  for all ingoing 
intensities at the bottom.

The three simulations discussed in Sect. 4.5.3 have mean effective temperatures Teff between 
5804 K and 5811 K w ith average temporal fluctuations of about 13 K; they are thus slightly 
hotter than the Sun. For our purposes, there is no need to exactly reproduce the solar Teff. The 
simulations yield time-series of snapshots spanning ~  1 h of stellar time each, covering several 
granule lifetimes (t ~  10 min) and several periods of the dominant p-mode (t ~  5 min). Our
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Figure 4.6: Left\ Heating rates gracj per unit mass as a function of monochromatic optical 
depth at 5000 Ä, computed on the ID mean structure with full opacity sampling for three 
cases: without scattering (solid line), with continuum scattering (dashed line), and with 
continuum and line scattering (dot-dashed line). The upper panel shows the deviations 
of the latter two cases from the computation without scattering (same axis units as in the 
lower panel). Right: Same computation, but using mean opacities and scattering albedos 
in 12 bins for the radiative transfer computations.

simulation box covers about 10 granules with typical sizes of the order of ~  1 Mm, allowing us 
to obtain a statistically meaningful sample of the surface flow in terms of the ergodic hypothesis. 
The model without scattering was computed with a coarser radiation time step of 0.2 s, keeping 
the radiation field constant during the intermediate hydrodynamical calculations. The slow 
evolution of the flow field and the locality of the Planck source function allow such reduction 
of the computation time in very good approximation.

4.5.2 Scattering in the ID mean stratification

We first test the importance of scattering in the ID mean stratification of our 3D model (the 
S = B  case, see Sect. 4.5.3) by comparing the wavelength-integrated qvaci, using the full opacity- 
sampled spectrum. Radiative transfer was computed in ID using a direct block matrix Feautrier- 
type solver with coherent scattering (for a detailed description see, e.g., Rutten, 2003) and 4th 
order Radau quadrature for the integral over the polar angle. The left-hand side of Fig. 4.6 shows 
qrad without scattering and S  = B, with continuum scattering only, and with both continuum 
and line scattering (lower panel), as well as the deviations from the first case (upper panel).

Continuum scattering seems to have very little impact on qracj for the given mean structure; 
the cooling is slightly stronger near the surface. This behavior is expected from the mostly large 
photon destruction probabilities ecx shown in the upper panel of Fig. 4.4.

The differences are slightly larger when scattering is included in the line-blanketing: the 
small heating bump, where cool uprising gas is heated from beneath by hot granules (see the 
discussion in Stein and Nordlund, 1998), and the cooling peak beneath the surface both slightly 
weaken, since the fraction of scattered photons in the line-blanketing does not contribute to
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Figure 4.7: Horizontal and temporal average of the mean temperature structure as a func
tion of optical depth at 5000 A without scattering (solid line), with continuum scattering 
(dashed), and with continuum and line scattering (dot-dashed). The upper panel shows 
the deviation from the first case.

heat exchange (cf. the right-hand side of Eq. (4.7)). The upper atmosphere, however, now 
shows slight heating of the mean structure.

We repeat the same test with the binned opacities, computing ID  radiative transfer with and 
without scattering for 12 mean opacities, photon destruction probabilities and bin-integrated 
Planck functions. The right panels of Fig. 4.6 compare again the three different cases. The bin
ning has been optimized for matching sampled and binned qra(\ in the S =  D case (solid lines 
in the lower panels of Fig. 4.6). The continuum scattering calculation with opacity bins under
estimates the cooling beneath the surface. The disparity increases further when line scattering 
is included; the relative deviations reach 7.5% in the cooling peak (dot-dashed lines in Fig. 4.6). 
However, the overall impact of scattering radiative transfer on the temperature structure of the 
3D atmosphere above T5000 ^  10~3 is small (see Sect. 4.5.3 and Fig. 4.7), the same binning setup 
was therefore adopted for all three simulations. Higher up in the atmosphere, at T5000 10“ 5,
opacity binned radiative transfer shows slightly stronger heating of the gas.

4.5.3 Scattering in the mean 3D model

In order to assess the effects of continuum and line scattering, we perform three independent 
simulation runs: the first one treats radiation without scattering by adding all scattering opacity 
to the absorption opacity and assuming a Planck source function S = B. The second one 
includes continuum scattering in the source function and only adds line scattering opacity to 
the absorption opacity, and the third one includes scattering both in the continuum and in the 
line-blanketing. A ll three time series start from the same initial snapshot and span the exact 
same amount of simulation time. Snapshots are taken at regular intervals of A ts[m =  10 s. 
We consider time steps at ts[m > 8 min after the initial snapshot to allow the atmosphere to
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adjust to any changes in the radiative heating rates. Exploiting the tight correlation between 
gas temperature T  and vertical optical depth r  (Stein and Nordlund, 1998), we interpolate the 
3D temperature cube at each time step of the series onto surfaces with the same optical depth, 
using a reference r-scale at 5000 A. We then compute the average temperature of each surface in 
the 3D cube, which yields a ID mean temperature profile for every snapshot. These profiles are 
finally averaged over time, and we obtain a very robust characteristic T-r  relation.

Figure 4.7 compares the resulting horizontal and temporal mean temperature profiles. The 
simulations without scattering and with continuum scattering have practically identical stratifi
cations, as expected from the continuum photon destruction probabilities e\ (Fig. 4.4) and the 
ID test presented in the previous section; continuum scattering is therefore insignificant for the 
atmospheric stratification in solar-type stars.

The effects of scattering on line-blanketing in and below the photosphere are also rather 
weak (dot-dashed line in Fig. 4.7). The gas temperatures above T5000 10-2 deviate up to 40 K
from the stratification without scattering, resulting in a slightly steeper temperature gradient 
around the surface (75000 — 1). Since our adopted binning setup overestimates the deviations 
for the ID mean structure (right-hand side of Fig. 4.6), the impact of line scattering is probably 
even smaller at T5000 10-2 . The temperature structure in the lower photosphere is thus hardly
affected by scattering. The opposite is the case in the high photosphere and above (75000 

10~4), where we observe temperatures that are about 350 K lower, resulting in a significantly 
steeper mean gradient.

4.5.4 Comparison of the ID and 3D calculations and with other model atmo
spheres

The effects of line scattering on the temperature structure of the 3D model seem to be opposite 
of ID hydrostatic models in radiative equilibrium, where heating of the highest layers rather 
than cooling is observed. Indeed, the ID calculations on the mean 3D atmosphere exhibit 
slight heating in this region when scattering is included (Fig. 4.6). The temperature gradient 
would therefore become shallower if the ID calculations were iterated under the assumption of 
radiative equilibrium (see, e.g., the discussion in Rutten, 2003).

The total radiative flux divergence includes several components: hot radiation from deeper 
layers at short wavelengths dominates the heating of the gas; the steep outward d B \ / d T  gradient 
causes a positive growing (J  — S) split. The effect declines in higher layers due to the rapidly 
decreasing opacity (cf. Eq. (4.7)). Strong LTE lines may heat or cool the higher atmosphere 
(since J  «  B  in deeper parts), depending on the spectral region and local temperature gradient, 
which determine the sign of the (J  — S ) split. Including coherent scattering in line-blanketing 
effectively reduces both radiative heating and cooling in high layers through the outwards de
creasing e1 (see Fig. 4.1). As a consequence, strong resonance lines become unimportant for the 
temperature structure in high layers, and radiative heating at shorter wavelengths decreases.

In the ID mean atmosphere, scattering-weakened line cooling shifts the total qrac\ slightly 
towards positive values. The behavior of the 3D case can be understood by considering the 
dynamical nature of our 3D models. Following a derivation in Mihalas and Mihalas (1984), we 
insert the continuity equation

^ 7  + pV • u = 0, (4.23)

where p is the gas density, D /D t  is the material derivative and u is the gas velocity, into the 
energy equation,

^  ' U (/rad 1
P

(4.24)
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Figure 4.8: Horizontal averages of the radiative heating rates qra(\ for the continuum scat
tering case (circles) and the continuum and line scattering case (diamonds) as a function 
of simulation time t, at optical depths T5000 =  10-5 (upper panel), T5000 =  10~4 (cen
ter panel) and T5000 =  10-3 (lower panel). Dashed lines show the spatial and temporal 
averages for the continuum scattering case, where line scattering is treated as true absorp
tion; dot-dashed lines show the spatial and temporal averages for the line scattering case. 
Dotted lines indicate zero heating.
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Figure 4.9: Temperature histograms at three different geometrical heights z above the 
optical surface, integrated over each simulation run. Solid lines show the radiative transfer 
computation w ith continuum scattering, dot-dashed lines the case where continuum and 
line scattering are included. Each temperature distribution is normalized.
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where e is the internal energy per unit mass, P  is the gas pressure, and qrac\ is the radiative 
heating rate per unit mass; we omit the viscous dissipation term for simplicity. The resulting 
expression,

De P Dp 
~Dt ~ ~p*~Dt, ~  qrad

(4.25)

is the first law of thermodynamics. An upflowing (downflowing) gas parcel cools (heats) 
through expansion (compression) represented by the Dp/Dt  term in Eq. (4.25), and is exposed 
to radiative heating through the qrad term. Equation (4.25) is equivalent to the expression

T — = <?rad, (4.26)

where T  is the gas temperature and s is the entropy per unit mass, and it is immediately clear 
that gas motion is adiabatic when qrad —» 0. In the photosphere of the 3D simulation, temper
atures are not affected by scattering. In the upper atmosphere, below T5000 ~  10~4, scattering 
strongly reduces the line-blanketing. Small or vanishing heating rates qrad cause the temperature 
stratification to steepen towards an adiabatic gradient.

Figure 4.8 compares the time evolution of radiative heating rates at three optical depths in 
the atmosphere, averaged over surfaces of constant optical depth to approximately account for 
vertical gas motion. The plot shows a sequence of snapshots taken at regular simulation time 
intervals of 10 s; the zero point on the abscissa is arbitrary. At T5000 — 10- '3 and T5000 — 10~4 
(lower and center panels), the continuum scattering case (circles) and the continuum and line 
scattering case (diamonds) exhibit similar positive heating rates on the average (dashed and dot- 
dashed lines) and thus similar average temperatures (Fig. 4.7). Line scattering radiative transfer 
produces slightly stronger mean heating at T5000 — 10“ '3, but fluctuates with lower amplitude. 
At T5000 — 10- 5 , qrad practically vanishes on the time average in the line scattering case, but 
there is still significant radiative heating with line scattering as true absorption. Note the dy
namical variation of the sequences: contrary to ID hydrostatic models, where the radiation 
field is time-independent by definition, the evolution of the 3D simulations produces fluctuat
ing radiative heating.

Wedemeyer et al. (2004) presented 3D radiation-hydrodynamical simulations of the solar at
mosphere that include a chromosphere, using radiative transfer without scattering and solving 
the equation only for the Rosseland mean opacity to suppress radiative cooling by strong LTE 
lines. They found an increasing asymmetry of the gas temperature distribution with increas
ing height above the surface, and a bifurcation in the chromosphere. Wedemeyer et al. (2004) 
further observed that treating strong spectral lines as true absorption with the opacity bin
ning method reduces the amplitude of temperature fluctuations, which are caused by outward 
propagating acoustic waves, resulting in unrealistically low maximum temperatures in high lay
ers. Skartlien (2000) investigated scattering radiative transfer in the chromosphere, comparing 
radiative heating with and without scattering, and came to the conclusion that including line 
scattering reduces this damping effect of LTE lines.

Our simulations do not include a chromosphere; the internal energy at the top boundary 
is set to a slowly evolving mean instead. In the line scattering case, where radiative transfer has 
only weak influence on the gas, the temperature gradient is sensitive to this boundary condition 
and thus not well-constrained. However, this does not compromise our conclusions, since the 
boundary is free to adapt to any upward or downward shift in the mean energies of the gas 
beneath.

Figure 4.9 shows temperature distributions of the simulations with continuum scattering 
and with continuum and line scattering at three different heights above the surface. Our simu
lations do not reach the same geometrical heights as those of Skartlien (2000) and Wedemeyer
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et al. (2004), and we use a more realistic radiative transfer treatment with 12 opacity bins. We 
find a similarly growing asymmetry in the temperature distribution of the line scattering simu
lation in the outer layers (cf. Fig. 7 in Wedemeyer et al., 2004). Treating strong lines as absorbers 
shifts the mean temperature upward and removes the high temperature tail of the distribution, 
in qualitative agreement with the findings of Skartlien (2000) and Wedemeyer et al. (2004).

Figure 4.10 shows horizontal and temporal averages of the relative temperature fluctuations, 
which we define as

A r rms _  V ( ( T - { T ) ) 2)
(T) (T) ( - >

in every geometrical depth layer (cf. Eq. 2 and Fig. 9 in Wedemeyer et al., 2004). The com
parison between the cases with continuum scattering and with continuum and line scattering 
confirms the damping of temperature fluctuations through line absorption. Note the decreas
ing ATrms at the top of the simulation, which is induced by the hydrodynamical boundary 
conditions.
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Figure 4.10: Horizontal and temporal averages of the relative temperature fluctuations 
ATrms/  (T) as a function of atmospheric height, computed with continuum scattering 
(solid line) and with continuum and line scattering (dot-dashed line).

We conclude that line scattering is an important ingredient for model atmospheres of solar- 
type stars that include a chromosphere; while gray radiative transfer reduces damping through 
strong LTE lines, it cannot produce a realistic temperature structure.

Anderson (1989) presented simplified, and Short and Hauschildt (2005) presented full ID 
non-LTE line-blanketing calculations, respectively, for hydrostatic model atmospheres of solar- 
type stars. The departures of line-blanketing from LTE through iron-group elements heat up the 
atmosphere in the height range 10-6 < T5000 10“2. Our 3D model predicts a predominant
temperature decrease as we discussed above. However, it is not clear how departures from LTE 
in the absorber populations through the ionization balance etc. would affect the atmospheric 
structure in our 3D simulations, making a direct comparison with the ID models difficult.

Doppler shifts may have a significant influence on line absorption in higher layers, which 
expose line cores to hot radiation from deeper in. Vogler et al. (2004) estimated the effects to 
be insignificant in the photosphere, but their work was based on ID tests. The large scattering 
albedo of strong resonance lines, however, should reduce the impact of Doppler shifts higher 
up.
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4.6 Conclusions
We presented a 3D radiative transfer method with coherent scattering for time-dependent 3D 
(M)HD simulations of stellar atmospheres with the new BI  FROST code (Gudiksen et ah, in 
prep.). The simulations are parallelized through domain-decomposition to take advantage of 
large-scale computer clusters. The solver is based on short characteristics and the Gauss-Seidel 
scheme for an iterative computation of the radiation field and the radiative flux divergence 
in the whole simulation domain. We use monotonic interpolation to reduce the numerical 
diffusion effect of short characteristics and represent the source function integral with Bezier 
polynomials to suppress interpolation overshoots. A partial grid refinement scheme is included 
to improve the resolution of the radiative transfer computation where strong vertical opacity 
gradients occur. The wavelength integral is treated in the opacity binning approximation, using 
12 bins that divide the opacity spectrum by formation height and wavelength.

The effects of coherent scattering on the temperature structure of a solar-type star are inves
tigated with 3D time-dependent hydrodynamical simulations of magnetically quiet surface con
vection, including Rayleigh scattering and electron scattering in the continuum and estimated 
line scattering using the van Regemorter formula. While continuum scattering processes are 
not important for the mean temperature stratification, we find lower temperatures in the upper 
atmosphere when scattering is included in the line-blanketing. 3D radiative-hydrodynamical 
atmospheres thus show the opposite behavior of ID hydrostatic atmospheres in radiative equi
librium, where scattering in strong lines effectively heats the outer layers.

3D LTE models of solar surface convection have been very successful at reproducing various 
observational tests, and our results indicate that the solar photosphere is indeed well represented 
when scattering is not included in radiative transfer. It therefore seems that a refined treatment 
of the line-blanketing through, e.g., opacity distribution functions or opacity sampling will be 
the next significant step to improve the realism of 3D radiative-hydrodynamical model atmo
spheres. Scattering radiative transfer is nevertheless an important ingredient of consistent 3D 
MHD models of the solar chromosphere, transition region and corona.

While it is not unexpected to see only small differences in the photospheres of solar-type 
stars when scattering is taken into account, this is likely to change for the much less dense atmo
spheres of giants, where the importance of Rayleigh scattering increases. The case of metal-poor 
giants is particularly interesting in that respect, owing to their significance for understanding 
galactic chemical evolution and the origin of the elements.
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5.1 In troduc tion

Metal-poor giant stars are important probes for understanding the chemical evolution of the 
Galaxy and the origin of the elements. Their envelopes preserve the chemical composition of 
the interstellar medium (ISM) out of which they formed; the oldest objects exhibit abundance 
patterns that contain the signatures of only a small number of nucleosynthesis events. Observa
tions and chemical analyses of metal-poor stars are thus an important instrument for identifying 
the different nuclear processes that produce chemical elements and for finding the astrophys- 
ical sites that host the physical environment to support the reactions, such as supernovae or 
AGB stars. The various mechanisms, e.g., the slow and the rapid neutron capture processes (s- 
process and r-process), produce a distinct abundance pattern that has been observed in different 
metal-poor stars (e.g., Sneden et al., 1996; Johnson and Bolte, 2004; Hayek et ab, 2009).

Analyses of stellar abundances often rely on ID hydrostatic model atmospheres, such as the 
MARCS models (Gustafsson et al., 1975, 2008), which enforce radiative equilibrium in the energy 
equation above the stellar surface. ID models cannot take convective heat transfer and other 
dynamical effects into account. Asplund et al. (1999) showed that 3D time-dependent radiation- 
hydrodynamical models of metal-poor giants exhibit different atmospheric temperature strati
fications than ID hydrostatic models: adiabatic expansion and compression of upflowing and 
downflowing gas parcels steepen the temperature gradient towards an adiabatic curve, as the 
weak coupling between the radiation field and the gas due to the low metallicity provides less 
radiative heating compared to stars with higher metallicity. The lower atmospheric tempera
tures have important consequences for line formation and thus for abundance measurements, 
which results in large 3D abundance corrections for many species (Collet et al., 2007).

An important limitation of 3D radiation-hydrodynamical model atmospheres is the treat
ment of radiative transfer in the LTE approximation without taking the effects of scattering 
into account. Scattering processes transfer very little energy between the radiation field and the 
gas and thus do not contribute to radiative heating. Rayleigh scattering is an important contin
uous opacity source in the blue and UV wavelength regions in metal-poor giants, which is often 
treated as an absorption process to avoid the complexity and numerical expense of scattering 
radiative transfer. While this approximation is valid for solar-type stars, where Rayleigh opacity 
is not significant compared to absorption opacity (Hayek et al., 2010), the situation is different 
in the much more dilute atmospheres of giant stars.

We explore the effects of scattering in metal-poor giant stars by comparing the temperature 
structure of 3D radiation-hydrodynamical simulations where scattering is treated as absorption 
with coherent scattering radiative transfer computations. We also test an approximation where 
Rayleigh scattering is removed from the opacities above the optical surface and a Planck source 
function is used, imitating the behavior of a coherent scattering calculation. Such a simplifi
cation can reduce the computational expense by about an order of magnitude, depending on 
the numerical radiative transfer method (see Skartlien, 2000; Hayek et al., 2010). Section 5.2 
describes the 3D radiation-hydrodynamical models and the opacity treatment. The results of 
the simulations are presented in Sect. 5.3; Sect. 5.4 summarizes our investigations.

5.2 3D radiation-hydrodynam ical model atm ospheres

We solve the fully compressible hydrodynamical equations and the radiative transfer equation 
with a coherent scattering term using the B I FROST code (Gudiksen et al., in prep.), producing 
time-sequences of the surface granulation flow in a 3D cube that represents a small fraction of 
the stellar surface. The radiative transfer treatment includes a coherent scattering term in the 
source function; see Hayek et al. (2010) for a detailed description of the method.



5.2. 3D radiation-hydrodynamical model atmospheres 79

Teff [K] log 2 [cgs] [Fe/H] [ct/Fe]
5091 ± 21 2.2 -3 .0 +0.4
5040 ± 12 2.2 -2 .0 0.0

Table 5.1: Stellar parameters of the 3D radiation-hydrodynamical model atmospheres.

Two metal-poor giant stars with metallicities [Fe/H] =  —3.0 and [Fe/H] =  —2.0 (Table 5.1) 
are analyzed. The lower surface gravity of giants increases pressure and density scale heights, 
which results in larger granulation structures compared to the Sun to satisfy mass conserva
tion (see the discussion in Nordlund and Dravins, 1990). Our models span 1140 Mm on both 
horizontal axes and include ~  10 granules at a time. A height of 94 Mm is reached above the 
optical surface and a depth of 335 Mm below; the 3D cube is resolved with 240 x 240 x 230 grid 
points. The simulations assume periodic horizontal boundaries. A pressure node and isentropic 
inflows from beneath are enforced at the bottom by damping out fluctuations in densities and 
internal energies with a preset decay time constant. We use open boundaries at the top and at 
the bottom, allowing gas to freely enter and leave the simulation box. Time scales for radia
tive heating of the dilute metal-poor gas in the higher atmosphere of the giants are significantly 
longer than in solar-type stars. The temperature stratification near the top of the simulation box 
is thus more sensitive to the internal energy boundary condition, which mainly determines the 
temperature of inflows from above. In the absence of physical constraints from observations, 
we use a boundary condition that enforces a monotonic temperature gradient at the boundary 
by requiring the internal energy of inflowing gas to be smaller than the minimum of the first 
layers in each individual column. Outflows are left unchanged.

The wavelength-dependence of radiative opacities is approximated using the opacity bin
ning method (Nordlund, 1982), which reduces the problem of solving the radiative transfer 
equation for millions of spectral lines for obtaining the wavelength-integrated radiative heating 
rate to computing the radiation field for only a small number of mean opacities. Opacity bin
ning sorts continuous and line opacities into 4 representative groups; membership at a given 
wavelength is determined by the atmospheric height of the monochromatic optical surface. In 
order to correctly reproduce the behavior of radiative transfer in the optically thick and thin 
regimes, Nordlund and Dravins (1990) refined the method by using an optical depth-weighted 
sum in each bin i that combines an intensity-weighted mean opacity x/> which provides a good 
approximation for spectral line absorption, with the Rosseland mean opacity x ^ ° S S 5 which pro
duces the correct radiative flux in the diffusion region:

*  =  + ( l  -  e - / r f °") x f" - , (5.1)

where r Ross is the Rosseland optical depth in bin i and /  is a scaling factor, which is set to 30 to 
suppress x \  beneath the surface. Skartlien (2000) defined a coherent scattering coefficient for 
each opacity bin and calculated mean opacities for all bins explicitly rather than extrapolating 
the first bin as in the method of Nordlund (1982). The intensity-weighted mean opacity x{  ls 
computed using ID radiative transfer calculations based on the mean stratification of the 3D 
model. The ID solver uses the Feautrier (1964) method, which includes a scattering term (see, 
e.g., the description in Rutten, 2003) if an opacity table for coherent scattering simulations is 
computed.

The radiative heating rate in the hydrodynamical energy equation is given by the expression

^ b i n s

Qrad = 4tT ^   ̂ Xi(Ti 
i=1

M a in s

47T ^2 «iW -  £j), 
i=1

(5.2)
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where Jj is the bin-integrated mean intensity in bin i, Sx is the bin-integrated source function, 
Ki is the mean absorption coefficient, and Bx is the bin-integrated Planck function. The second 
equality holds for the case of a coherent scattering source function,

Si =  (1 -  Ci) Ji +  elB l, (5.3)

where ex = Ki/xi ls the mean photon destruction probability in bin i (see Skartlien, 2000, for a 
detailed discussion). While it is possible to account for line scattering using the van Regemorter 
(1962) formula, the inherent approximations can only provide an estimate of the effect (see 
Hayek et ab, 2010). We restrict the present simulations to continuum scattering and treat 
line scattering as absorption opacity, based on large opacity sampling tables with ~  100000 
wavelength points, which are sorted into 4 opacity bins.

Only absorption opacity k, contributes to heat exchange while scattering opacity o has no 
such effect in the case of coherent scattering (Eq. (5.2)). This behavior can be approximated at 
low optical depths by removing cr from x% (Eq. (5.1)), provided that Jt is only weakly affected 
by scattering, a nevertheless needs to be included in the Rosseland mean opacity x f oss to obtain 
the correct radiative flux at high optical depths.

5.3 The effects of scattering on the temperature structure

1 0 3 1 0 4 1 o 5

Wavelength in [Ä]

Figure 5.1: Wavelength-dependence and atmospheric depth-dependence of photon de
struction probabilities e\ for the mean structure of the [Fe/H] =  —3.0 model. The zero 
point of the depth axis marks the stellar surface.

Rayleigh scattering on neutral hydrogen atoms and electron scattering are the most im
portant continuous scattering opacity sources in metal-poor giant stars. Figure 5.1 shows the 
wavelength-dependence and depth-dependence of the total photon destruction probabilities e\ 
of continuum and spectral line opacity for the mean structure of the [Fe/H] = —3.0 model. 
Below the stellar surface at depths > 50 Mm, absorption dominates the interaction of photons 
with the gas. Closer to the surface, Rayleigh scattering on H I becomes an important opac
ity source for continuum formation between 2000 A < A < 5000 Ä; at smaller wavelengths, 
bound-free absorption of metals thermalizes the radiation field. Above the surface, scattering 
opacity dominates in large wavelength ranges, owing to the small density of spectral lines (nar
row vertical lines in Fig. 5.1) compared to solar-metallicity stars (see Fig. 4 in Hayek et ab, 2010); 
electron scattering becomes important at large wavelengths. Rayleigh scattering on hydrogen 
molecules and helium does not contribute significant opacity.

We investigate the effects of scattering on the temperature structure by computing time- 
sequences of stellar surface granulation, treating continuum scattering as absorption, computing 
radiative transfer with scattering and approximating scattering by removing the opacity above
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the surface. I he simulations for the three cases start from the same snapshot; we analyze model 
atmospheres with [Fe/H] =  —3.0 and [Fe/H] = —2.0 (see Table 5.1).

Figure 5.2 shows a time sequence of average temperatures as a function of optical depth at 
5000 Ä for four snapshots of the [Fe/H] =  —3.0 simulation, taken at 1 h, 2 h, 5h and 8 h of 
simulation time where t = 0 is the start snapshot. Note that the optical depth scale is based on 
the same opacities for all cases. After 1 h, the atmosphere of the absorption model has heated at 
optical depths below T5000 <0.1, the temperature deviation relative to the scattering case grows 
monotonically towards higher layers (upper left panel of Fig. 5.2). The differences around the 
continuum optical surface and below are negligible; the approximate scattering model exhibits 
no significant deviation from the coherent scattering model. At t = 2 h and t = 5 h after the 
beginning of the simulation, the absorption model heats continuously, but the optical depth at 
which the deviation starts remains at 75000 ~  0.1 (upper right and lower left panel of Fig. 5.2). 
The average temperatures in the approximate scattering model still agree well with the pre
dictions of the coherent scattering model. At t = 8 h, the temperature stratification of the 
absorption model stabilizes, reaching A (T) ~  900 K near the top of the simulation box at 
75000 ~  10-5 (lower right panel of Fig. 5.2). Above 75000 ^  0.1, differences are negligibly small; 
there is no significant deviation between the approximate scattering model and the coherent 
scattering model.

The depth-dependence of the temperature deviation between the absorption model and the 
approximate scattering model follows the deviation between binned opacities with and without 
scattering: Fig. 5.3 shows horizontal average group-mean opacities in the four bins as a function 
of optical depth at 5000 Ä for the start snapshot of the [Fe/H] = —3.0 model, calculated with 
scattering opacity (dotted lines) and without scattering opacity (solid lines). Differences appear 
beneath 75000 < 0.1, similar to the temperatures in Fig. 5.2. The contribution of scattering 
to the total opacity decreases with increasing bin number and becomes insignificant in bin 4, 
which contains the strongest opacities. The optical depth at which the opacities diverge in 
each bin is affected by the weighting between x{ and X i °ss(Eq. (5.1)), as scattering opacity a 
is present above t-Ross > 1 / /  ~  0.03 in all simulations and scattering is still significant close 
to the optical surface (see Fig. 5.1). However, the small temperature differences between the 
coherent scattering simulation, which includes scattering opacity at all optical depths and the 
approximate scattering simulation around 75000 ~  0.1 indicate that the average temperatures 
should not be strongly affected.

We derive a mean temperature stratification from the model atmospheres by averaging time 
sequences over surfaces of constant vertical optical depth and over the time period of the fun
damental pressure oscillation mode, to include a statistical sample of the convective flow. The 
results for the three radiative transfer treatments and metallicity [Fe/H] =  —3.0 are shown 
in the left panel of Fig. 5.4. The deviation between the simulation with scattering radiative 
transfer and the absorption model reaches A (T) ~  1000 K at the top of the simulation box 
(t5000 ~  10-5) and decreases monotonically towards the stellar surface. At optical depths 
r  > 0.1, differences between the two models become small. Approximating scattering by 
removing its opacity above the optical surface reproduces the temperature structure of the sim
ulation with scattering radiative transfer with very good accuracy, the deviation is smaller than 
50 K.

The opacity tables of all three simulations are based on the same mean temperature strat
ification of the approximate scattering case for computing the intensity weights of the mean 
opacities x{  above the surface. Deviations from this assumed stratification in the higher at
mosphere affect the weighting of spectral line opacity, which has an important influence on 
radiative heating. The temperature differences of the absorption simulation are therefore an 
approximation; a quantitatively more accurate result is not critical for our conclusions.
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Figure 5.5 shows the temperature-pressure distribution of a snapshot of the approximate 
scattering model with [Fe/H] =  —3.0; darker shades indicate higher number density, solid 
lines trace the adiabatic curves in the temperature-pressure plane. The simulation produces 
isentropic upflows in the granulation zone beneath the surface (upper right corner in Fig. 5.5). 
In the atmosphere (lower left corner), the stratification is close to adiabatic, too, as radiative 
heating time scales in the metal-poor gas are too long to force the atmosphere into radiative 
equilibrium and the compression/expansion term in the hydrodynamical energy equation be
comes important. It is clear that the choice of internal energy boundary condition at the top, 
which determines the temperature of gas inflows, leaves some uncertainty in the temperature 
gradient of the higher atmospheric layers. While the magnitude of the heating effect of treating 
scattering opacity as absorption may change, it is unlikely that a physically plausible boundary 
condition cancels or reverses the temperature deviation.

The histograms in the left column of Fig. 5.6 compare the temperature distribution of the 
[Fe/H] = —3.0 models at three optical depths, integrated over the same period of simulation 
time that was used for deriving the mean stratification in Fig. 5.4. Close to the optical surface 
at T5000 =  0.1, the distributions are very similar in all cases (lower left panel). At smaller 
optical depths, the coherent scattering simulation and the approximate scattering simulation 
still exhibit similar distributions with a maximum at low temperatures and a high-temperature 
tail (cf. Fig. 5.5). The absorption case exhibits a very different shape with a maximum at higher 
temperatures, as the gas is driven towards radiative equilibrium. A low-temperature tail forms 
in the optically thin region, which is fed by cool inflowing gas from the top of the simulation 
box.

At metallicity [Fe/H] = —2.0, treating scattering as absorption leads to larger temperatures 
below t5000 = 0.1 as well, reaching A (T ) ~  300 K near 75000 — 10-5 (right panel of Fig. 5.4). 
The depth-dependence of the scattering effect is similar to the [Fe/H] = —3.0 model; the tem
perature deviation increases monotonically towards higher atmospheric layers. Removing scat
tering opacity rather than computing scattering radiative transfer leads to a good approximation 
over a large atmospheric height range. However, temperatures deviate by A (T) ~  100 K at 
the top of the simulation box. The histograms of the [Fe/H] =  —2.0 scattering and approx
imate scattering models at T5000 = 10~3 exhibit a maximum at cool temperatures, which is 
less pronounced than for the [Fe/H] = —3.0 models and average temperatures are higher due to 
increased radiative heating. The absorption simulation has a more symmetric distribution with
out a low-temperature tail. At T5000 — 10~2, the three distributions are more similar compared 
to the simulations with [Fe/H] =  —3.0; at T5000 — 0.1, the differences become small.

5.4 Summary

The effects of continuum scattering on the temperature structure of metal-poor giant stars are 
investigated by comparing 3D radiation-hydrodynamical simulations where scattering is treated 
as absorption to simulations with coherent scattering radiative transfer. We compute time- 
sequences of two model atmospheres with metallicity [Fe/H] — —3.0 and [Fe/H] = —2.0 and 
derive mean temperature stratifications by averaging gas temperatures over surfaces of constant 
optical depth at 5000 A and over a period of the fundamental pressure oscillation mode.

Rayleigh scattering on H I is an important continuous opacity source in atmospheres of 
metal-poor giant stars at blue and UV wavelengths. Treating scattering opacity as absorption 
leads to significantly higher temperatures at optical depths T5000 0.1, reaching (AT) ~
1000 K for the [Fe/H] = —3.0 model and (AT) ~  300 K for the [Fe/H] = —2.0 model, as 
the atmosphere is driven towards radiative equilibrium. The temperature distributions in the 
higher atmosphere deviate between the scattering and the absorption cases: the coherent scat-
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Figure 5.2: Time evolution of temperatures of the [Fe/H] = —3.0 model as a function of 
vertical optical depth at 5000 A, averaged over surfaces of constant optical depth. Snap
shots were taken at simulation time t = 1 h (upper left panel), t = 2 h (upper right 
panel), t = 5 h (lower left panel) and t = 8 h (lower right panel). Solid lines show the 
average temperature structure for the scattering simulation, dashed lines show the case 
were scattering is treated as absorption, dot-dashed lines show the approximate scattering 
simulation. The upper panels show the deviation of the absorption simulation and the 
approximate scattering simulation from the coherent scattering case.
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Figure 5.3: Group-mean opacities in the 4 bins (upper left to lower right) as a function 
of optical depth at 5000 A, averaged over surfaces of constant vertical optical depth, com
puted for the start snapshot of the [Fe/H] = —3.0 model with scattering opacity (dotted 
lines) and without (solid lines).
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Figure 5.4: Temperature as a function of vertical optical depth at 5000 Ä, averaged 
over surfaces of constant optical depth and over a time sequence, computed for the 
scattering simulation (straight lines), for the absorption simulation (dashed lines), and 
for the approximate scattering simulation (dot-dashed lines). The left panel shows the 
[Fe/H] =  —3.0 model, the right panel shows the [Fe/H] = —2.0 model. The upper 
panels show the deviation of the average temperatures from the scattering simulation.



5.4. Summary 85

10000 
^  9000

8000 
c 7000 
u 6000
■§ 5000

I  4000
<D

5000

2000
1 0 1 1 0 2 1 0 3 1 0 4 1 0 5 1 0 6 

Pressure in [dyn cm-2]

Figure 5.5: Temperature-pressure distribution of the approximate scattering model with 
[Fe/H] =  —3.0 at t = 33.5 h of simulation time. Solid lines trace adiabatic curves of the 
equation of state.

tering simulation forms a temperature maximum at low temperatures due to its nearly adiabatic 
stratification, as well as a high-temperature tail. Treating scattering as absorption exhibits a 
low-temperature tail at [Fe/H] =  —3.0 and a more symmetric distribution at [Fe/H] =  —2.0.

The magnitude of the heating effect is approximate, since the dependence of the opacity 
weighting on the mean stratification has been neglected in the absorption case. The choice of 
internal energy boundary condition at the top of the simulation box can also affect (AT); it is 
however unlikely that the temperature deviation is cancelled or reversed.

We test an approximation where scattering is removed from the opacities above the optical 
surface and a Planck source function is used, which significantly reduces the computational 
expense of the problem. The temperature stratification exhibits a very small deviation from 
the scattering radiative transfer simulation in case of the [Fe/H] = —3.0 model. At metallicity 
[Fe/H] = —2.0, the approximation is still in good agreement in the deeper photosphere and 
below the surface. However, temperature differences reach 100 K beneath T5000 ^  10-3. We 
expect that radiative transfer with approximate scattering yields again a better approximation 
towards [Fe/H] = 0.0, where scattering opacity is less important.



86 Chapter 5. The effects of scattering on the temperature structure of metal-poor giants

2000  3000  4000  5000  6000
T i n  [ K ]

2000  3000 400 0  5000
T i n  [ K ]

2000  3000  4000  5000  6000
T  i n  [ K ]

2000  3000  4000  5000  6000
T i n  [ K ]

2000  3000  4 000  5000  6000
T i n  [ K ]

2000  3000  4000  5000  6000
T i n  [ K ]

Figure 5.6: Normalized temperature histograms integrated over a period of the funda
mental pressure oscillation mode, computed at optical depths T5000 = ICC3 (upper pan
els), T5000 — 10-2 (center panels) and T5000 — ICC1 (lower panels) of the [Fe/H] = —3.0 
model (left column) and the [Fe/H] =  —2.0 model (right column), treating scattering 
as absorption (dashed lines), computing coherent scattering radiative transfer (solid lines) 
and approximate scattering (dot-dashed lines). The temperature bin size is 100 K.
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Figure 6.1: Observated spectrum near a Th II line at 4019 A in the atmosphere of a metal- 
poor giant (black dots) and numerical line formation computations (gray lines), taken 
from Hayek et al. (2009).

The analysis of spectral lines is a fundamental discipline in astrophysical research. Spectral 
lines enable “remote sensing” of the physical state of matter in distant objects, such as stellar at
mospheres, planetary atmospheres, the interstellar medium etc.; they form through absorption 
and emission of radiation by bound-bound transitions in atoms and molecules, providing opac
ity with strong frequency dependence. The shapes and depths of the absorption and emission 
profiles that appear in the spectrum depend on gas temperature, pressure, the chemical com
position and velocity fields in the radiating gas. Spectral line profiles can therefore be used to 
determine stellar parameters (e.g., Barklem et ah, 2000b) or the detailed chemical composition 
of the Sun (Asplund et ah, 2009) and other stars. The analysis of spectral line bisectors has been 
used by, e.g., Dravins and Nordlund (1990), Asplund et ah (2000b), Allende Prieto et ah (2002), 
Ramirez et ah (2009) to investigate macroscopic velocity fields in stellar atmospheres.

The complexity of the radiative transfer problem requires a numerical treatment of spec
tral line formation. A much more detailed account of physical processes is required to obtain 
realistic line profiles compared to radiative transfer in radiation-hydrodynamical simulations,
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where the focus lies on energy and momentum transfer between the radiation field and the 
surrounding matter.

6.1 Spectral line opacity

The treatment of photon extinction from a beam by spectral line absorption and scattering in 
the radiative transfer equation assumes bulk interaction between a large number of particles 
and photons. The opacity is approximated using statistical occupation numbers for all accessi
ble atomic states, and the different mechanisms that contribute to shaping the line profile are 
handled as independent processes.

6.1.1 Spectral line opacity in LTE

The amount of radiation d lv per unit path length ds that is removed from an incident beam 
with specific intensity Iu through radiative excitation of an electron in the atomic restframe is 
given by

dly
hup
47T

n\B\u(f)(u -  up)Iuds =  -x llu d s (6. 1)

where h is the Planck constant, n\ is the number density of interacting particles in the lower 
state of the transition, B\u is the Einstein coefficient for radiative excitation and 0 is a normal
ized profile function with center frequency up; Eq. (6.1) thereby defines the line opacity xL- 
Radiative de-excitation competes with collisional de-excitation after a photon has excited an 
atom or molecule. The LTE approximation requires that collisions dominate, thermalizing all 
absorbed photons; line opacity xl/ and line absorption k\, are then identical quantities.

Emission through induced de-excitation of the atom by incident radiation adds photons to 
the beam:

-nnBn\x{v -  up)Iuds; (6.2)d l y  =
47T

nu is the number density of the upper state, Bu\ is the Einstein coefficient for stimulated emis
sion and x  is the normalized induced emission profile function. Stimulated emission is counted 
towards the opacity rather than to the source function to simplify the equation. Using the Ein
stein relation g\B\u = guBu\, where g\ and gu are the statistical weights of the lower and upper 
states, one obtains the total line opacity

Xi -h~ -n \B iu(J)(u 
47r *4)) 1 nn9ixW -  *4)) 

n\gu(t>(u -  u0)_
(6.3)

The term in brackets constitutes a correction term for induced emission. In general, the extinc
tion profile 4>(u — up) and the induced emission profile x{.v ~  *4)) are different. If LTE holds, 
detailed balancing between absorption and emission at all frequencies requires

ct){v -  up) =  x{v ~  *4)). (6.4)

Collisional excitation dominates the population of atomic states in LTE; population densities 
n\ and nu are related by a Boltzmann factor

nu gu--- =  -- e kT
n\ g\

(6.5)

with the Boltzmann constant k and the temperature T. Inserting Eq. (6.4) and Eq. (6.5) into 
Eq. (6.3), one obtains the LTE line opacity,

X
l
V

hup
47T

n\B\u(f)(u *4)) 1 — e k T (6 .6)
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In real stellar atmospheres, lines may be blended with lines from other transitions, and opacities 
include a background continuum. The different contributions then combine to the total opacity

xlot — xc + xl,»> (6-7)
i

where the dropped frequency subscript in the continuum opacity xc indicates slow variation 
across a line profile.

6.1.2 LTE absorber populations

Spectral line opacity x l is proportional to the number density of the interacting particles. 
Their population depends on several factors: the total abundance of the atom or molecule, the 
ionization fraction, and the population of the lower excitation level.

Different molecular species, such as H 2 , CO, and CN, can form in cool layers of stellar 
atmospheres with significant abundances. Photo-dissociation processes are usually neglected 
to simplify the treatment of molecules. LTE then requires that the formation of compounds 
through a reaction AB  ^  A + B is in detailed statistical equilibrium. The number densities are 
governed by the law

Pa Pb

T ab
= K(T), (6.8)

where K ( T ) is a dissociation equilibrium function that depends on the temperature T, and 
P a , Pb and P ab are the partial pressures of the components and the molecule. In practice, 
equilibrium functions are approximated by a polynomial of the kind

J 'lm a x

log K(9) = a„(logey* -  Du9,
71=0

(6.9)

with the reciprocal temperature 9 =  5040/T and the dissociation energy Dq per particle; poly
nomial coefficients an are available in tabulated form in the literature (e.g., Sauval and Tatum, 
1984). In order to determine atomic and molecular population densities, a system of non-linear 
equations that are coupled by equilibrium laws (Eq. (6.8)) needs to be solved numerically.

LTE ionization is treated in an analogous way, considering an equilibrium reaction A ^  
A '  + e~. This yields the Saha ionization equilibrium,

3
nenA+ 2gA+ f2'Kmek T \  2

riA 9 \ V h2 )
(6. 10)

with the ionization potential x lon- Note that the free electron contributes statistical weight 2 in 
the dissociation function on the right-hand side, as every electron state can accommodate two 
spin orientations.

The LTE population number density of an atomic excitation level i with respect to the total 
number density ritot is given by a Boltzmann factor,

ni _  9i -4 v  
ntot U(T)6 U(T) = Y9ie~&,

i
(6. 11)

where U(T)  denotes the partition function, which needs to include all accessible excitation 
levels. U(T)  diverges for an isolated atom as an infinite number of excitation levels is theo
retically available. In real stellar atmospheres, highly excited electron states will be destroyed



90 Chapter 6. Spectral line formation

by collisions with other particles, and U(T) can be truncated. Polynomial approximations for 
partitions functions are available in the literature in tabulated form (e.g., Irwin, 1981).

The Saha ionization equilibrium (Eq. (6.10)) and the Boltzmann excitation equilibrium 
(Eq. (6.11)) deliver ratios of level populations for a particle in ionization stage i and excita
tion level k , and the ionized particle in stage j  =  i +  1 and excitation level l. Summing over all 
possible excitation levels from which the particle can be ionized delivers the Saha-Boltzmann 
equilibrium formula

n*Tiji 2aj I ( 2ixmck T \  2  xion+x**

=  w )  HH lT ■ (6-12)
Combining molecular equilibrium calculations with Saha-Boltzmann equilibrium, one obtains 
a total absorber abundance for species m in ionization stage j  and excitation level l through

n j,l,m — ^ to t,m S 7 ^ T , rie , {ritotjm ' } m ' / m (6.13)

where the equilibrium function depends on the chemical composition {ntot,m'} °f the star 
through molecule formation. The total number densities of the different atomic species
are derived from the chemical composition of the star and the gas densities. Elemental abun
dances in stellar atmospheres are usually given in spectroscopic notation using logarithmic abun
dance fractions

logio^m =  log 1 0  ^ +  12.0, (6.14)
VnH /

normalized to the number of hydrogen atoms 7?h and 10l2. In general, stellar gas is composed 
of a mixture of different elements. With given abundance fractions Am =  n m/n n , one obtains 
a mean molecular weight p, and the hydrogen number fraction / h :

M = 

/ h =

Am
1
Am

(6.15)

(6.16)

Using the gas density p provided by the model atmosphere, 
abundance

n tot,m  — ^ m / H
ß

one obtains the global elemental

(6.17)

6.1.3 Oscillator strength

The photo-excitation rate B\u depends on the processes which govern the transition of wave 
functions between the two electron states. Laboratory experiments provide accurate data for 
many important atomic and molecular transitions, but in some cases, theoretical calculations 
or calibrations with observed spectra need to be used.

For practical reasons, it is useful to describe transitions through a classical harmonic oscilla
tor model, in which the electron oscillations are excited by the electromagnetic field of incident 
radiation. This simple model does not produce accurate interaction cross-sections for, e.g., for
bidden lines where quantum-mechanical effects play an important role. However, it can be 
corrected through the oscillator strength f\u, which is introduced with the expression
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the factor 7re2/ (rnec) is the cross-section for a classical harmonic oscillator, with the elementary 
charge e, the electron mass m e and the speed of light c. Oscillator strengths are available in the 
literature for large amounts of lines (e.g., from the VALD database (Piskunov et ah, 1995; Kupka 
et ah, 1999; Ryabchikova et ah, 1997) or from the NIST database (Ralchenko et ah, 2009)).

6.1.4 Line profiles

- - Lorentz 
  Gauss
—  Voigt

Aiz/Ai^o

Figure 6.2: Examples of a Lorentzian profile (dashed line) for radiative damping and 
collisional broadening in the impact approximation, a Gaussian profile (dotted line) for 
thermal broadening through Doppler shifts, and a Voigt profile (solid line) as functions 
of frequency offset A v  from the line center in units of the Doppler width A T h e  
Voigt profile is the convolution of the Lorentzian and the Gaussian profiles.

The profile of a spectral line is determined by many different physical processes. Lines ex
hibit a natural profile of finite width, which is broadened through Doppler-shifts by random 
thermal motion of the radiating particles, and through collisions with other particles in the 
atmosphere. Although the underlying mechanisms of atomic physics are in principle under
stood, it is often difficult to obtain an accurate description due to the complex electromagnetic 
interactions and quantum mechanical effects. For the important case of collisional broaden
ing through neutral hydrogen, the Unsold (1955) formula was often used in the past. Detailed 
quantum-mechanical calculations by Anstee and O ’Mara (1995) and other authors have become 
available, improving the atomic data significantly. Classical approximations still need to be used 
for some species or in other situations, such as inelastic collisions of particles in non-LTE cal
culations (see the discussion in Asplund, 2005). In addition to broadening, spectral line profiles 
are shifted by macroscopic gas motion in the moving atmosphere, which needs to be taken into 
account for realistic line formation studies.

Radiative damping

Radiative damping results from the finite lifetime of an excited state, which may decay through 
radiative transitions to one or more lower levels in the atom. The quantum-mechanical na-
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ture of electron states requires a broadening of energy levels through Heisenberg’s uncertainty 
principle, and thus a broadening of the spectral line profile. Natural broadening produces a 
Lorentzian profile shape (dashed line in Fig. 6.2),

0 0  -  *A>)
7rad/47T2

0  — ^o)2 + (7rad/47r)2
(6.19)

If laboratory measurements are not available, the profile width 7rad can be estimated using the 
Einstein coefficient for spontaneous radiative de-excitation (see, e.g., Gray, 2005). Assuming 
that only one transition exists through which the excited state can decay and using the Einstein 
relations as well as the definition of the oscillator strength (Eq. (6.18)), one obtains an estimated 
natural profile width of

7rad «  Aul
8?r2e 2 1 g i / iu

m ec A2 gu
(6.20)

where A is the transition wavelength.

Collisional broadening

Collisions of radiating particles with electrons, ions and neutral atoms in the atmosphere cause 
additional profile broadening: the fluctuating electromagnetic field that the perturber imposes 
on the atom modulates its energy levels with an amplitude and frequency that depends on the 
type of particle, the relative speed and the number density of the perturbers. The statistical 
distribution of particle velocities turns the individual line shifts effectively into profile broad
ening.

Neutral hydrogen atoms dominate collisional broadening for transitions of metal lines in 
late-type stars due to their large number density; van der Waals interaction provides the un
derlying physical mechanism. The strength of the interaction scales with particle distance as 
d-6 due to the screening of the proton by the electron in H I, resulting in a small perturba
tion cross-section. The duration of such collisions is therefore very short, making the impact 
approximation valid.

In the impact approximation, each encounter of the radiating atom with a perturber pro
duces an immediate phase shift in the emitted radiation field. The outgoing electromagnetic 
wave then consists of several distinct wave trains. Fourier transformation into frequency space 
and integration over a statistical distribution of perturbations yields a Lorentzian broadening 
profile (dashed line in Fig. 6.2). Its width is 7 =  2 /Ato, where A^o is the inverse collision rate 
(see, e.g., Gray, 2005, for a detailed discussion).

Cross-sections for collisional broadening through H I have been calculated for different tran
sition types of neutral atoms and selected transitions of ions by Anstee and O ’Mara (1995), 
Barklem and O ’Mara (1997), Barklem et al. (1998), Barklem et al. (2000a), Barklem and O ’Mara 
(2001), and Barklem and Aspelund-Johansson (2005). The dependence of collisional cross- 
sections a on the relative velocity v of the two interacting particles is approximated by a power 
law

where cr(uo) and a are tabulated, and vq is a reference velocity. A collision rate Chi is obtained 
through the expression

C\n{v) =  nm vcr(v), (6.22)

where nn i is the number density of neutral hydrogen atoms. Assuming that relative particle 
speeds follow a Maxwellian velocity distribution for a reduced mass g, the number of hydrogen
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atoms dniu per velocity bin dv is given by

dnm = { j ^ )  2 v2e~™rdv. (6.23)

The profile width 7 =  2 /AG = 2Chi is obtained by integration over the distribution:

lEI  =  2 ( ! ) ! r ( T ) ” w @  nHI’ (6-24)

with the gamma function F and the average velocity v =  y/8kT/'K\i.
In the absence of quantum mechanical calculations, an approximation by Unsold (1955) 

may be used:
log 7H1 = 20 + 0.4 log C6 +  log P  — 0.7 log T, (6.25)

for quantities given in cgs units (see Gray, 2005); P  is the gas pressure. The interaction constant 
Cq is approximated by

C6 =  0.3 • 1CT30 ( x D - 2 (6.26)

with the ionization potentials xl?n and xjon of the upper and lower level of the transition, both 
given in eV (see Gray, 2005).

Thermal broadening

Thermal motion of the absorbing particles widens the line profile through Doppler shifts. Such 
thermal broadening is important in line cores, and dominates the profiles of weak lines.

A non-relativistic particle that moves with velocity v absorbs a photon of frequency v in 
direction n in the laboratory frame with a frequency

1/ = (6.27)

in its local rest frame due to the Doppler effect. Note that light aberration is negligible at non- 
relativistic velocities (see, e.g., Mihalas and Mihalas, 1984). Thermal velocities v in LTE follow 
a Maxwellian distribution (Eq. (6.23)). For the case of an infinitely sharp line extinction profile 
where 4>{v — vq) =  ö{v — vq), a Galilean transformation from the rest frame of the atom into the 
rest frame of a macroscopic gas parcel and integration over the velocity distribution produces a 
Gaussian line profile (dotted line in Fig. 6.2):

4 > { y  -  0̂ ) = —j=rr— e V *"D ) , (6.28)
V  7T A z/]3

where the Doppler width A^d is defined using the rms velocity urms of the distribution func
tion for particle mass m,

Ai/d = — t>rms c
2kT

c \1 m
(6.29)



94 Chapter 6. Spectral line formation

The Voigt profile

Real line profiles in the atomic rest frame have a finite width due to radiation damping and 
collisional broadening. Assuming complete independence of these mechanisms, one obtains the 
combined profile by convolution of the individual Lorentzians, which yields a new Lorentzian 
with

7 =  7 rad +  7H>. (6.30)

Galilean transformation into the rest frame of a gas parcel and assuming a Maxwellian velocity 
distribution produces the line profile through the convolution

</>(̂  -  V0 )
7 / 4 7 T 2

(z/ -  V o ) 2 +  ( 7 /47t)2
1 - ( ^ Y* —— e v A i/d /

V ttA v d
(6.31)

which is called the Voigt profile (solid line in Fig. 6.2). Equation (6.31) is usually abbreviated 
with the Voigt function H :

<t>(v ~  ^0 ) =  H(f '  ^ , (6.32)A vd

where a — j  /  (4tt A v^ )  is the damping parameter and v = (v — vq) / A vd is the frequency 
parameter. The Voigt function H  is given by the expression

H (a , v)
a e~y
7t  J- 0 0  ( v  -  y) 2 +  a2

v
^rms ‘ (6.33)

Various numerical recipes to evaluate Eq. (6.33) exist in the literature. The vectorizable approxi
mation by Hui et al. (1978) is well-suited for 3D applications where a very large number (> 106) 
of Voigt functions needs to be evaluated in the model atmosphere.

The Voigt profile approximately reduces to a Gaussian profile for weak lines, where contin
uum extinction hides the damping wings (see the discussion in Rutten, 2003).

Macroscopic velocity fields in the atmosphere

Convective motion in the atmosphere of late-type stars causes significant Doppler shifts of the 
entire line profile; gas velocities reach ~  5 km s-1 in updrafts and ~  7 km s-1 in downdrafts at 
the solar surface (Stein and Nordlund, 1998). Macroscopic motion is thus comparable to the 
average thermal velocity of hydrogen (~ 11 km s_1 at T  =  5777 K), which is the fastest-moving 
atom in the atmosphere. The profile functions in the observer’s frame are obtained using the 
Doppler formula:

$(1; -  v0) =  (f) (  ' ' [ v - v 0 - v 0 (6.34)

where n is the direction of the incident photon and u is the local gas velocity.

Microturbulence and macroturbulence

Microturbulent broadening has been traditionally used in ID line formation to generate missing 
broadening of spectral lines through non-thermal motion. Assuming that length scales of parti
cle motion are smaller than photon mean free paths, a microturbulent broadening parameter £ 
is added to the local thermal velocities and calibrated with observed spectral lines. Macroturbu- 
lent broadening accounts for velocity fields on length scales that are larger than photon mean 
free paths; the line profiles are convolved with a Gaussian profile to approximate the effect.

Microturbulence and macroturbulence are both artificial parameters that need to be cali
brated through observations. They strongly affect the accuracy of line profile computations,
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as they mask imperfections in the underlying models and atomic data through the calibration. 
Using high-resolution 3D radiation-hydrodynamical models of the solar atmosphere, Asplund 
et al. (2000b) found that observed line profiles were accurately reproduced by 3D spectral line 
formation without artificial broadening.

6.2 The line source function  w ith  a background con tinuum

Similar to absorption and scattering of photons away from the beam, emission from the gas 
through different atomic or molecular transitions and continuous sources is treated as a bulk 
contribution from a large number of particles to the radiation field. Spectral lines are assumed to 
form in strict LTE in this discussion; the energy of line photons is drawn from the thermal pool, 
while the source function of the background continuum includes a scattering contribution.

6.2.1 The LTE line source function

The amount of monochromatic radiation d lv per path length ds that is added to a beam by a 
spectral line in the atomic rest frame is given by

d lv = ^p -n uAu\p(i' -  L'0)ds = j luds, 
47r

(6.35)

where nu is the population density of the upper level, T ui is the Einstein coefficient for spon
taneous de-excitation and <p{y — ^o) is the emission profile. Induced emission is treated with 
a correction factor for the line opacity (see Sect. 6.1.1). For matter in thermodynamic equi
librium, the Kirchhoff-Planck relation requires that photons are absorbed and emitted at equal 
rates:

j v  —  K y l y  * j y  =  H L y B y .  (6.36)

The second equality follows, since radiation in thermodynamic equilibrium follows a Planck 
distribution By. It is important to note that Eq. (6.36) is not strictly fulfilled in LTE, as radiation 
from non-local sources perturbs the equilibrium and photons escape from the gas (see, e.g., 
Mihalas and Mihalas, 1984). Detailed balancing in equilibrium implies the equivalence of the 
absorption and emission profiles,

(t>{v -  vq) = <p(v -  q) = x (v - vq). (6.37)

Treating line opacity as absorption (x\, = k[,), the LTE line source function is given by the 
Planck function:

S l  =  4  =  Bv. (6.38)xl

6.2.2 Scattering and redistribution

In addition to thermal radiation (Eq. (6.38)), atoms emit photons through scattering processes. 
The radiative transfer equation then includes source terms of the kind

jy = ~t~ l  [  R{v, i/, n, h')Iyt(n')dQ'du . (6.39)
4?r Jo Js2

Scattering emission j°  is proportional to scattering opacity cr, which depends on the population 
density and the detailed transition (see the discussion of line opacity in Sect. 6.1). Doppler-shifts 
and the angle-dependence of scattering cross-sections redistribute the incident radiation Iy>(n' )
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in angle and frequency. The scattering term (Eq. (6.39)) integrates the radiation field at all angles 
and frequencies, weighting the individual contributions with a redistribution function R.

Rayleigh scattering and electron scattering, which are important opacity sources in stellar 
atmospheres, depend only weakly on the scattering angle, angular redistribution is therefore of
ten neglected. Scattering is approximately coherent in the rest frame of an isolated particle, but 
thermal motion and collisional broadening break this coherence. The result is a very complex 
coupling of the radiation field across a wide range of frequencies and angles. The redistribution 
function R  depends on the local physical conditions and varies with the different scattering 
mechanisms; Mihalas (1978) and Peraiah (2001) give examples for several important cases.

While a detailed treatment of redistribution is difficult, it is often sufficient to approximate 
R: Rayleigh scattering and electron scattering can be assumed isotropic and also coherent if the 
radiation field varies slowly with frequency, which yields R = — v'). The emission term
(Eq. (6.39)) then simplifies to

S R  — v ')Ivi(h')d£l' dv' =  a J u. (6.40)

However, this approximation is not strictly valid in the presence of spectral lines, where Jv 
changes rapidly across the profile.

Complete redistribution, where emitted photons are assumed to have lost their correlation 
with the incident radiation, is usually a good approximation for weak spectral lines. The redis
tribution function reduces to R  = ip(v — uq)4>R' — vo), which results in an emission term

roc r
jZ = ~r~ /  /  <p(y -  "o)<t>R' -  vo)Iv’(n')dQ'dv =  aip(v -  u0)JVQ, (6.41)

47r Jo J s 2

where JVQ is the profile-averaged mean intensity. Complete redistribution breaks down in the 
case of strong lines, which require a more detailed treatment (see, e.g., Uitenbroek and Bruls, 
1992). For LTE lines, j °  = 0, as only thermal emission processes are considered.

6.2.3 LTE lines w ith a scattering background continuum

The monochromatic time-independent radiative transfer equation for a spectral line with coher
ent scattering in the background continuum is given by

n • V/„ =  — (xL +  X l l u  + x l B  + + , (6.42)

where the frequency dependences of the Planck function and the continuous absorption and 
scattering coefficients have been dropped as they are almost constant across the profile of a 
weak line. Dividing Eq. (6.42) by the total opacity Xu =  x l  +  XC and introducing the optical 
depth dru — Xuds, one obtains

d R
drv

1 CXI r, , X <JC t  KC
—  Jv T  —  B 
Xc Xc

—R  + — B  +
Xv Xv

+ — B  +  —  [(1 -  ec)J„ +  ecB ] , 
Xu Xu

(6.43)

(6.44)

where the continuum photon destruction probability ec =  K,c/ a c has been introduced in the 
second equality, weighting between thermal emission of continuum photons and scattering of 
radiation. The factors Xu/Xu and X°/Xu assume the role of weighting functions as well; they 
represent the probability that a photon was created by thermal emission from the line or by 
thermal or scattering emission from the background continuum. In the presence of macroscopic 
velocity fields, the source function in Eq. (6.44) becomes anisotropic due to Doppler shifts of 
the spectral line profile. The probability of thermal emission from the line then depends on 
frequency, direction and flow velocity of the radiating gas.
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6.3 Numerical methods for spectral line formation

Spectral line synthesis with a scattering background continuum in 3D involves detailed cou
pling of the radiation field at different angles, frequencies and spatial locations in the model 
atmosphere. Analytical solutions of the radiative transfer problem exist only in few very sim
plified cases (see Sect. 3.5). In general, a numerical solution of the equations is required. A 
large variety of methods for solving the radiative transfer equation is available (see Wehrse and 
Kalkofen, 2006). Characteristics-based schemes are a popular choice in the field of stellar atmo
spheres, due to their efficiency and straightforward implementation.

The spectral line formation computations with the SCATE code use a short characteris
tics scheme with Gauss-Seidel-type ALI acceleration (see Sect. 3.3) for determining the source 
function with coherent scattering, to benefit from the fast convergence of the method. Surface 
intensities are then computed using a Feautrier-type solver on long characteristics, which extend 
through the entire 3D atmosphere cube; angle-resolved radiative transfer with short character
istics schemes suffers from larger numerical diffusion.

6.3.1 The Gauss-Seidel method for anisotropic source functions

The Gauss-Seidel ALI method of Trujillo Bueno and Fabiani Bendicho (1995, see Sect. 3.3.4 and 
Sect. 4.3.2) is well-suited for computing the mean radiation field with coherent scattering, as it is 
numerically stable when scattering is important at large optical depths and converges fast. The 
solver needs to handle a radiative transfer problem with a complex anisotropic source function 
due to the appearance of continuum scattering:

S„ = O-B  + L  [(! _  ec)J„ +  ecß ] =  (1 _  nv) s '  +  rivSl,  (6.45)
Xv Xv

where 77̂  weights between emission from the line and from the continuum. Doppler-shifts 
through macroscopic velocity fields introduce a direction dependence in Su through 77̂ , despite 
the isotropy of S l and S£. The ALI scheme for an isotropic coherent scattering source function 
(Eq. (3.47)) requires some adaption for a correct treatment.

The A„ operator that delivers the mean monochromatic radiation field Jv for a given source 
function Su combines integration of the radiative transfer equation and integration over solid 
angle:

Jv — A1/1Sui/ =  I  X . S ^1/. (6.46)
47T Js2

The subscript fi indicates the direction dependence of the source function (Eq. (6.45)). The 
new operator XßU delivers specific intensities in direction n /A. Inserting Eq. (6.46) into the 
continuum source function (Eq. (6.45)) yields

S£ =  ( 1 —ec) T /  d , i l \ ^ (Vl̂ S t  + ( l - v ^ ) S ' )  + ecB  (6.47)
47r Js 2

=  ( l - e ' ) T  f  + (1 -  £c) 4  (6.48)4?r Js 2

where J lu abbreviates the angle-integrated contribution of line photons that are scattered by a 
continuum process. Solving Eq. (6.48) for the continuum source function and discretizing the 
result, one obtains a system of linear equations for ££,

Si = (1 -  ec) 4  4- ecB, (6.49)
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in analogy to the derivation in Sect. 3.3.4. Introducing the approximate operator A*  ̂ and the 
matrices

A = 

A* =

1  -  ( i  -

p

1  -  ( !  -  ec) ^  X
p

(6.50)

(6.51)

one obtains an iterative scheme which produces continuum source function corrections A 
for the approximate solution Sv,r) through

A* AS* = (1 -  ec) J\ + ecB -  AScu'n (6.52)

= (1 -  «c) ^ I > mA + (1 -  + tcB -  (6.53)
P

= S ^ FS -  S l’n, (6.54)

where .5)/1 ' is the continuum source function for the radiation field of the last formal solution. 
The iteration method is thus identical to the case of an isotropic source function, apart from 
the emission weighting through r/ i n  the approximate operator A*: in the absence of line 
opacity, 77MI/ = 1 for all angles and Eq. (6.54) reduces to the isotropic case of Sect. 3.3.4. If line 
opacity dominates, 77  ̂ —> 0 suppresses continuum emission, and the local source function only 
depends weakly on the radiation field as most absorbed photons are thermalized.

6.3.2 The Feautrier method
The Feautrier (1964) method provides a fast and numerically stable solver for the radiative 
transfer equation in ID or along characteristics in 3D, which is based on finite difference dis
cretization. The method obtains stability and second-order accuracy by solving a second-order 
version of the radiative transfer equation for pairs of opposite ray directions, instead of a direct 
discretization of the equation. Feautrier (1964) introduces a mean-intensity-like variable Pu and 
a flux-like variable Qv for a given ray direction n through the expressions

P„ = i(/„ (fi) + U - n ) ) (6.55)

Qv = ^ (Mn)  -  U(~n))- (6.56)

Using a separate radiative transfer equation for each ray direction, one obtains

= - M " )  + (6.57)

n) = _ ^ (_ fl) + 5v (6.58)
drv

It is important to note that the Feautrier method requires isotropic opacities and source func
tions. In the presence of macroscopic velocity fields that break isotropy through Doppler shifts, 
opacities along ingoing and outgoing rays differ. For a known source function, the Feautrier 
method still produces correct surface intensities if optical depths are computed consistently for 
outgoing rays, as outgoing intensities /^(n) are independent of the incorrectly treated ingoing 
intensities /„ (—n). In the case of completely symmetric line profiles in the local rest frame



6.4. Rotational broadening 99

of the gas, the Feautrier method can alternatively be adapted to produce consistent results (see 
Mihalas, 1978).

Combining Eq. (6.57) and Eq. (6.58) using definitions Eq. (6.55) and Eq. (6.56) results in the 
coupled system of equations

1 ~  drv
(6.59)

dQy -  P + s  
drv

(6.60)

Inserting each equation into the derivative of the other one yields two 
equations for Pv and Qv,

second-order transport

(P Pv -  P 9
dTl V "

d?Q„ dS„
dr1 v drv '

(6.61)

(6.62)

The first equation is used for spectral line formation problems, while the second equation is 
sometimes employed for computing radiative heating rates in radiation-hydrodynamical simu
lations. Discretizing Eq. (6.61) using centered finite differences, one obtains the expression (e.g., 
Rutten, 2003)

A{Pi~ i — BtPi +  CiPi+i = —Si; (6.63)

The three coefficients A{, Bi and Ct are defined by

d . _  2
A ri_ i(A ri_ i 4- Ar»)

(6.64)

1 1 A p - iA r i
(6.65)

c  — ^
A r p A p - i  +  A rj) ’

(6.66)

similar expressions are found for the upper and lower ends of the ray through Taylor expansion. 
For a known source function Sv, the radiative transfer problem on a characteristic is reduced to 
solving a system of linear equations, which is represented by a tridiagonal matrix. The Thomas 
algorithm or other numerical methods are then used to obtain Px on each point along the ray. 
The outgoing intensities at the surface are given by

IZ (t„ = 0) = 2 Pu (6.67)

since I~ (tv =  0) =  0 was used as a boundary condition.

6.4 Rotational broadening

Stellar rotation leads to blueshifts in light emission from the approaching half of the disk and 
to redshifts on the receding half with respect to a line of sight. As the disk itself is usually not 
resolved, the observed line profiles appear broadened. Stellar rotation is often approximated 
by assuming a rigid rotator; the amount of broadening then depends on the equatorial velocity 
v and the inclination i of the rotational axis with respect to the line of sight through a factor 
vsinz (e.g. Gray, 2005). In general, z is unknown and only zzsin z may be determined from the 
observed spectrum.
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Dravins and Nordlund (1990) used the following recipe for rotational broadening: assum
ing an angular velocity 12 of the rotating star, the line-of-sight velocity vlos in direction n at 
position r on the disk is given by

ulos — (E2 x r) n =  (n x f l )-r =  |f2|.Rsinz(sin0cos0) =  t;sini(sin0cos0) (6.68)

where R is the equatorial radius. 6 and 0 are projection angles, the disk center is located at 
6 = 0. 3D radiation-hydrodynamical models represent stellar atmospheres in a statistical sense; 
the stellar disk is approximated by identifying positions on the surface with the projection 
angles (9. 0) off the vertical axis and a horizontal axis in the model. The line-of-sight velocity 
(Eq. (6.68)) produces a Doppler-shift of the line profile as a function of 0 and 0; limb darkening 
is automatically taken into account in the flux integration.

Tests by Ludwig (2007) show that an accurate description of rotational broadening through 
the recipe of Dravins and Nordlund (1990) requires solving the radiative transfer problem for a 
large number of ray angles (Nq > 4) to produce reliable results. However, this is not a major 
restriction on modern parallel computer systems, which allow fast concurrent computation of 
radiative transfer on many ray angles.
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3D LTE spectral line formation with 
scattering in red giant stars

W. Hayek, M. Asplund, R. Collet, Ä. Nordlund, A&A submitted 

Abstract

Aims. We investigate the effects of coherent isotropic continuum scattering on the formation 
of spectral lines in local thermodynamic equilibrium (LTE) using 3D radiation-hydrodynamical 
model atmospheres of red giant stars.
Methods. Detailed radiative transfer with coherent and isotropic continuum scattering is com
puted for realistic 3D radiation-hydrodynamical models of late-type stellar atmospheres us
ing the SCATE code. The calculations take the full 3D surface structure and Doppler-shifts 
from convective motions into account. Opacities are computed in LTE, while a coherent and 
isotropic scattering term is added to the continuum source function. We test the importance of 
scattering by comparing continuum flux levels and spectral line profiles of different species with 
calculations that treat scattering as absorption. The role of velocity fields and inhomogeneities 
of the 3D atmosphere models in determining profile shapes and the curve of growth is further 
explored by repeating the analysis for a 3D model with zero gas velocities and for a classical ID 
hydrostatic model.
Results. Rayleigh scattering is the dominant source of scattering opacity in the continuum of 
red giant stars. Photons may escape from deeper, hotter layers through scattering, resulting in 
significantly higher continuum flux levels beneath a wavelength of A < 5000 Ä. The magnitude 
of the effect is determined by the importance of scattering opacity with respect to absorption 
opacity; we observe the largest changes in continuum flux at the shortest wavelengths and low
est metallicities, and intergranular lanes are more strongly affected than granules. Continuum 
scattering acts to increase the profile depth of LTE lines: continua gam more brightness than line 
cores due to their larger thermalization depth in hotter layers. We thus observe the strongest 
changes in line depth for high-excitation species and ionized species, which contribute signifi
cantly to photon thermalization through their absorption opacity near the continuum optical 
surface. Scattering desaturates the line profiles, leading to larger abundance corrections for 
stronger lines, which reach —0.5 dex at 3000 Ä for Fe II lines with excitation potential x  = 2 eV 
at [Fe/H] = —3.0. The corrections are less severe for longer wavelengths and higher metallic- 
ity. Velocity fields increase the effect of scattering by separating emission from granules and 
intergranular lanes in wavelength.
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7.1 In tro d u c tio n

Spectral line formation is an important discipline in the field of stellar astronomy. It is used as 
a diagnostic tool for numerical models of stellar atmospheres by comparing their predictions 
with observations, as well as for measuring quantities of astrophysical interest, such as stellar 
parameters, chemical abundances, surface velocity fields and many more. Spectral lines sample 
the physical conditions in stellar atmospheres in a wide height range and can thereby reveal 
useful information about the atmospheric structure.

The physics of line formation involves many different processes that require a detailed 
treatment of the interaction between radiation and matter. Beside the transition itself, these 
processes include, e.g., Doppler-shifts through thermal and non-thermal particle motion, colli- 
sional interaction, photoionization etc. The physical state of matter depends in general not only 
on local conditions, such as the gas temperature and pressure, but also on conditions in other 
parts of the atmosphere that are connected through the radiation field. Ignoring such non-local 
coupling enables the approximation of local thermodynamic equilibrium (LTE), which allows 
a tremendous simplification of line formation computations and is therefore frequently used. 
However, LTE is in general a bad approximation, and it can be only applied to specific cases in 
which its validity has been proven or when only estimated quantities are needed. A more ac
curate non-LTE treatment involves detailed atomic models, which require a significant amount 
of additional physical data (see, e.g., the discussion in Asplund, 2005). Owing to their much 
lower complexity and computational demands, analyses based on 3D LTE line formation are 
nevertheless useful tools for cases that are known to show weak or vanishing departures from 
LTE, such as the often-used forbidden [O I] line at 6300 Ä.

Late-type stellar atmospheres are bounded by the underlying convection zone, which is 
responsible for horizontal inhomogeneities in gas temperature and pressure, and flow fields 
that affect the line profile shape through Doppler-shifts (e.g., Nordlund et ah, 2009). Accurate 
line formation computations need to take this 3D structure of the atmosphere into account to 
obtain correct line profiles. The complexity of 3D calculations is rewarded by the elimination 
of additional parameters such as microturbulence and macroturbulence (e.g. Asplund et ah,
2000b).

Metal-poor halo stars are particularly interesting targets for stellar abundance analyses: they 
are among the oldest objects in the Galaxy and largely preserve the chemical composition of 
the ISM in their envelopes, allowing detailed studies of nucleosynthesis processes and Galactic 
chemical evolution (e.g., Beers and Christlieb, 2005). Most abundance studies of metal-poor 
stars rely either on ID LTE or on ID non-LTE syntheses. The effects of 3D line formation 
have not been widely explored yet: Asplund et ah (1999), Collet et ah (2007) and Behara et ah 
(2010) showed that the temperature stratification and inhomogeneous structure of 3D model 
atmospheres have an important effect on line formation in metal-poor giant stars and dwarf 
stars. Molecular species, low-excitation lines and atomic minority species are thus particularly 
affected by 3D effects through their high temperature-sensitivity; molecules are important in
struments for determining CNO abundances of such stars. Full 3D non-LTE studies of lithium 
abundances in metal-poor stars have been presented by Asplund et ah (2003), Cayrel et ah (2007) 
and Sbordone et ah (2010), following earlier work of Kiselman (1997) and Uitenbroek (1998), 
who used simplified methods to approximate the effect of photospheric inhomogeneities.

An important issue for the accuracy of abundance analyses of metal-poor giants is the role 
of Rayleigh scattering opacity for continuum formation in the blue and UV wavelength regions, 
where transitions of many important elements are found. Such scattering processes can increase 
the thermalization depth of photons, which may escape from deeper, hotter layers in the star, 
resulting in higher continuum flux. Chemical abundance studies by Cayrel et ah (2004), Bihain
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et al. (2004) and Lai et al. (2008) using ID LTE line formation have found that treating con
tinuum scattering as absorption instead of computing radiative transfer with scattering leads to 
significantly larger abundances and trends with transition wavelength.

We investigate the effects of coherent scattering in the background continuum by computing 
3D LTE line profiles for a selection of typical transitions, including neutral and singly ionized 
iron, as well as various molecular species. Section 7.2 discusses important aspects of the under
lying radiative transfer model for spectral line formation, which builds on 3D time-dependent 
radiation-hydrodynamical model atmospheres of red giant stars discussed in Sect. 7.3. We an
alyze continuum formation with scattering in Sect. 7.5, and investigate its effects on LTE line 
formation in Sect. 7.6. Besides exploring the scattering in the 3D case, we also compare our 
results with calculations based on a classical ID LTE model atmosphere. Section 7.7 gives a 
summary of our results.

7.2 Line formation with continuum scattering

We solve the 3D time-independent radiative transfer problem for stellar spectral lines and a 
background continuum with coherent isotropic scattering. Excitation level populations, ion
ization and molecule formation needed to derive gas opacities are computed assuming local 
thermodynamic equilibrium (LTE); the line profiles include collisional broadening by neutral 
hydrogen and Doppler-shifts through macroscopic velocity fields (see Sect. 7.4 and Appendix D 
for a description of the numerical methods).

The time-independent radiative transfer equation evaluates the monochromatic specific in
tensity Iu in direction n at frequency v in the observer’s frame:

+ Sv{tv), (7.1)
dT y

where Su is the monochromatic source function. The optical depth drv of a photon path length 
ds on a light ray is defined as

dru =  (x l  +  Xc) (7.2)

with the line opacity x l and the continuum opacity x°- The source function Su at optical depth 
tv includes contributions from spectral lines and continuum processes:

Sv . Xt/ B + 
x l +  Xc

Xc
x l +  Xc

( [ l - e c] J„ + ecB); (7.3)

B is the Planck function, ec is the continuum photon destruction probability and Ju is the 
monochromatic mean intensity. Note that frequency subscripts have been dropped in Eq. (7.1) 
through Eq. (7.3) for all quantities that depend only weakly on frequency across a line profile 
and are therefore assumed constant in our computation.

The line opacity x l may include contributions from several transitions of different species. 
At each point in the atmosphere, the individual line profiles are evaluated in the local rest 
frame of the gas around the center frequency is'q of the transition. In the observer’s frame, the 
profiles appear Doppler-shifted through the non-relativistic velocity field u predicted by the 3D 
hydrodynamical model atmosphere. The line center frequency isq is then given by

is0 = (7.4)

in the observer’s frame for a light ray in direction n (see, e.g., Mihalas and Mihalas, 1984); c 
is the speed of light. Relative to the frequency is of photons that stream in the same direction
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as the flowing gas, the absorption profile appears blue-shifted; the same holds for line emission 
from the observer’s point of view. In the solar atmosphere, upflowing gas in the bright granules 
dominates the emitted radiative flux (Stein and Nordlund, 1998), and the resulting Doppler- 
shifts along the line of sight distort profile bisectors dominantly towards higher frequencies (see 
the discussion in Sect. 7.6 and, e.g., Asplund et al., 2000b).

The opacity quotients xL/  (xl + X°) ar,d xV (xl + X°) ‘n Eq. (7.1) yield the probabilities 
that a photon was created by a line transition or by a continuous process. The direction- 
dependence of line opacity in the observer’s frame through Doppler-shifts (Eq. (7.4)) induces 
a direction-dependence of these emission probabilities, and the combined source function Su 
becomes anisotropic.

The continuum photon destruction probability e( is defined by the ratio

ec =
K C

K,c +  <7C ’
(7.5)

with the continuous absorption coefficient kc and the continuous scattering coefficient ac. In 
analogy to the above described opacity quotients, ec can be interpreted as the probability that a 
photon was fed into the beam from the thermal pool rather than from a scattering event. In late- 
type stellar atmospheres, Rayleigh scattering on H I atoms and electron scattering mainly con
tribute to continuous scattering opacity, while continuous absorption includes many bound- 
free and free-free transitions of hydrogen, helium and metals (see, e.g., the discussion in Hayek 
et al., 2010).

Continuous scattering may be treated as a coherent mechanism to very good approximation 
when the radiation field Jv varies only slowly with frequency. In the presence of spectral lines, 
Jv exhibits much stronger frequency-dependence, and scattering leads to a complex coupling 
of the radiation field in frequency and angle through Doppler-shifts (see, e.g., discussions in 
Mihalas, 1978; Peraiah, 2001). Auer and Mihalas (1968a,b) analyzed the effects of non-coherent 
electron scattering on line formation in early-type stars. They assumed redistribution through 
thermal motion of the electrons, which occurs across a very wide frequency band compared 
to thermal redistribution in the line: the ratio between the thermal profile widths of electrons 
with mass m e and line-forming atoms with mass matom is given by \ /m atom/m e ~  42.7\/Ä, 
where A is the atomic mass number. In late-type stars, Rayleigh scattering dominates scatter
ing opacity at the continuum optical surface in the blue and UV wavelength regions, and the 
ratio of Doppler widths scales only with \/~A <15. Although electron scattering is an impor
tant continuous opacity source in early-type stars, Auer and Mihalas (1968b) find a relatively 
small effect of non-coherence on the wings of Hell profiles. We therefore expect the assump
tion of coherent scattering to be a reasonable approximation for the rather weakly scattering 
background continua of red giant stars.

Rayleigh scattering and electron scattering cross-sections depend on the scattering angle 
9 through the angular redistribution function (1 cos2 0), which may be neglected to good
approximation (see, e.g., Mihalas, 1978).

7.3 3D radiation-hydrodynamical model atmospheres

Various studies have shown that the formation of spectral lines in the atmospheres of late- 
type stars can be severely affected by the presence of mhomogeneities in the temperature struc
ture and velocity fields (e.g., Nordlund, 1980; Dravins and Nordlund, 1990; Asplund et al., 
2000b; Steffen and Holweger, 2002; Allende Prieto et al., 2002; Caffau et al., 2008; Ramirez 
et al., 2009). Synthetic line computations based on the current generation of 3D radiation- 
hydrodynamical models are capable of providing realistic predictions of the observations; see
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Teff [K] log 9 [cgs] [Fe/H] [a/Fe]
5100 ± 14 2.2 -3.0 +0.4
5051 ±  13 2.2 -2.0 0.0
4730 + 11 2.2 -1.0 0.0
5063 ± 21 2.2 0.0 0.0

Table 7.1: Stellar parameters of the 3D radiation-hydrodynamical model atmospheres.

Pereira et al. (2009b,a) for the important case of the Sun. Classical ID hydrostatic model atmo
spheres, which are still widely used, simply cannot achieve this degree of realism.

An important aspect in this context is the coupling of radiative transfer and hydrodynamics 
in 3D models, which leads to significantly cooler gas temperatures above the surface of metal- 
poor stars than predicted by ID hydrostatic models (Asplund et al., 1999). Low metallicity 
strongly reduces radiative heating in these objects, and the photospheric temperature stratifica
tion steepens towards an adiabatic gradient, while the assumption of radiative equilibrium that 
is inherent to ID models keeps the gradient shallow. The lower temperatures of 3D models 
have a strong impact on the formation of molecules and thus on the predicted molecular line 
strengths (Asplund and Garcia Perez, 2001; Collet et al., 2007); molecules are frequently used 
for determining the abundances of carbon, nitrogen and oxygen (e.g., Spite et al., 2006).

We base our analysis on 3D radiation-hydrodynamical model atmospheres of red giant stars 
with similar effective temperatures, a surface gravity of logg =  2.2 (in cgs units) and metallici- 
ties1 between [Fe/H] =  —3.0 and [Fe/H] =  0.0 (see Table 7.1); the chemical abundance mixture 
adopts the solar composition of Asplund et al. (2009), scaled by metallicity and with a +0.4 dex 
enhancement of o-elements for the most metal-poor model.

The simulations were created with the StaggerCode (Nordlund and Galsgaard, 1995), 
which solves the coupled equations of compressible hydrodynamics and time-independent radia
tive transfer, computing radiative heating rates in LTE. Line-blanketing is approximated using 
the opacity binning method (Nordlund, 1982; Skartlien, 2000) with 4 opacity bins. Calcula
tions by Collet et al. (2010, in preparation) demonstrate that the effects of coherent scattering 
on the temperature structure of metal-poor giant stars may be reproduced in reasonable approx
imation by removing the scattering contribution from the opacities in the optically thin parts 
of the atmosphere and using a Planck source function, which we applied to the models used for 
the analysis.

The effective temperature of 3D radiation-hydrodynamical model atmospheres is an observ
able rather than a parameter: it is determined by the entropy of the inflowing gas at the bottom 
of the simulation, but exhibits some temporal variation due to the convective motions. Teff 
therefore varies between the different model atmospheres, which is not critical for our differ
ential investigation of continuum scattering effects. After the initial scaling of the model atmo
sphere to reach the desired stellar parameters, each simulation was run until the atmospheric 
stratification reached a quasi-steady state with little temporal variation.

Figure 7.1 shows the temperature distribution of an arbitrary snapshot of the [Fe/H] =  
—3.0 model as a function of optical depth at 5000 Ä. The atmospheres cover several pressure 
scale heights above and below the continuum optical surface of the stars to include the relevant 
line-forming regions and to avoid boundary effects on the granulation flow. The simulation 
domains have a resolution of 240 x 240 x 230 grid points and assume periodic horizontal 
boundaries. Synthetic curves of growth were computed using time-series of simulation snap
shots that span over a period of the fundamental pressure oscillation mode. A representative

'Metallicity is defined here in spectroscopic notation as the logarithmic iron abundance relative to the Sun,
[Fe/H] =  log10(iVFe/jVH), -  \ogl0(NFe/ N H)# .
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sample of line profiles is thereby obtained that includes statistical variation in the predicted line 
strengths through convective motions.

We include a MARCS model atmosphere with Teff = 5100 K, logg = 2.2, [Fe/H] =  —3.0 
and [a/Fe] =  +0.4 in our analysis to compare the effects of scattering between 3D hydrody- 
namical and ID hydrostatic atmospheres. The ID model is converted into a 3D cube with 
zero gas velocity, horizontally homogeneous layers and with the same T - t$ooo relation; line 
formation is computed using the exact same method as in the 3D case.
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Figure 7.1: Temperature distribution as a function of vertical continuum optical depth r  
at 5000 Ä, computed for an arbitrary snapshot of a 3D radiation-hydrodynamical model 
atmosphere with Teff =  (5100 ± 14) K, logg = 2.2 (cgs) and [Fe/H] = —3.0. The dashed 
line indicates the average temperature at each optical depth.

7.4 3D line formation computations

Synthetic continuum flux and line flux profiles are calculated using the SCATE code. The pro
gram first computes the monochromatic continuum source function with coherent isotropic 
scattering using a short characteristics-based radiative transfer solver with Gauss-Seidel-type ap
proximate A-iteration (Trujillo Bueno and Fabiani Bendicho, 1995). A detailed description of 
the implementation can be found in Appendix D and in Flayek et al. (2010). Continuum opac
ities and photon destruction probabilities are looked up in precomputed tables, line opacities 
are calculated during runtime. All quantities assume the LTE approximation.

The numerical method takes Doppler-shifts of line profiles into account, which influence 
absorption and line-to-continuum photon emission probabilities as a function of ray direction, 
gas velocity and frequency according to Eq. (7.4). Including this inherent coupling is essential 
for correctly predicting the impact of scattering on the local radiation field and consequently 
on the profile shapes (see Sect. 7.6). A minimum resolution in solid angle and frequency is 
furthermore needed to reproduce the effects of Doppler-shifts. For the case of continuum scat
tering with LTE lines in late-type stellar atmospheres, where gas flow reaches only moderate 
velocities, Carlson (1963) quadrature with 24 ray directions provides sufficient accuracy; com-
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puting radiative transfer with 48 angles changes the spatially averaged flux level by < 0.3%. 
Carlson quadrature also has the advantage of rotational invariance, which avoids directional 
bias for determining the local mean radiation field Ju. Line profiles for synthetic curves of 
growth are computed with typically 40 frequency points. We use linear interpolation of (lin
ear) quantities between the grid of the model atmosphere and the characteristics grid, as well as 
for the source function integral in the optically thin regime. Second-order interpolation is ap
plied to the source function integral in optically thick regions to correctly recover the diffusion 
approximation.

Once the continuum source function has converged, it is passed to a second radiative transfer 
solver, which computes outgoing specific intensities on characteristics that span across the entire 
3D atmosphere cube. This method has the advantage of reduced numerical diffusion with 
respect to the short characteristics method when angle-resolved surface intensities are needed. 
Local cubic interpolation translates the relevant quantities onto the tilted characteristics grid. 
The radiative transfer equation is then solved along vertical columns using the Feautrier (1964) 
method to obtain surface intensities.

The grid resolution of the model atmosphere is an important issue for 3D line formation 
calculations (see the discussion in Asplund et al., 2000a). The axis spacing in the vertical dom
inates the accuracy of the solution, due to the strong temperature gradients near the stellar 
surface. Our calculations are based on a mesh with 120 x 120 x 230 grid points, and we re
fine the vertical grid by automatic insertion of additional layers where needed to obtain robust 
intensity and flux profiles. Computation of the scattering source function excludes the deepest 
layers of the 3D model atmosphere, which are optically thick and dominated by local thermal 
radiation. The Feautrier-type solver starts at a continuum optical depth log10 r c ~  2 on each 
individual ray to integrate the entire contribution function of continuum and line emission.

Stellar spectroscopy measures the radiative flux integrated over the stellar disk in most cases 
of interest. The monochromatic flux Fuz that leaves the surface on the visible hemisphere into 
the observer’s direction is given by

r  1 r2ir

K , Z  =  /  (Iv) O ,  (p)ßdiid(f), (7.6)
J /z=o J 4>=o

where =  cos# is the projection factor, 6 is the polar angle, (f) is the azimuth angle and (/„) is 
the horizontal average surface intensity of the simulation cube. The 3D hydrodynamical model 
atmospheres are interpreted as local statistical representations of stellar surface convection. Each 
angle pair (^, 0) for which radiative transfer is computed in the 3D cube corresponds to a 
different position on the disk. The flux integral (Eq. (7.6)) is thus equivalent to an integral 
over the stellar surface as seen by the observer; iv,z thereby automatically includes the limb 
darkening effect. Including stellar rotation in 3D spectral line formation computations requires 
additional consideration (Ludwig, 2007), we therefore assume zero rotation (v sin i =  0) for 
simplicity.

We approximate the flux integral (Eq. (7.6)) using Gauss-Legendre quadrature for the polar 
angle and the trapezoid rule for the azimuth angle; 4 x 4  ray angles reproduce the surface flux 
with good accuracy. Doubling the number of polar angles or azimuth angles changes the spatial 
average flux level by < 0.4 %.

7.5 The effects of scattering on the continuum flux

We first seek to determine the wavelength range in which continuum scattering contributes suf
ficient opacity to influence continuum flux levels. Radiative transfer is computed with scattering
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Figure 7.2: Spatial and temporal averages of the continuum flux distribution (Fc) as a 
function of wavelength, computed for time sequences of the model atmospheres with 
metallicity —3.0 < [Fe/H] < 0.0 (upper left to lower right), treating scattering as ab
sorption (dashed lines) and as coherent scattering (solid lines). The upper panel of each 
plot shows the deviation A (Fc) of the coherent scattering cases from the continuum 
flux distribution where scattering is treated as absorption; vertical dotted lines indicate 
A = 3000 Ä, 4000 Ä and 5000 Ä where Fe line profiles were computed. Note the Balmer 
jump at 3647 A.
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Figure 7.3: Continuum photon destruction probabilities for arbitrary snapshots of the 
model atmosphere w ith [Fe/H] =  —3.0 (upper left panel), [Fe/H] =  —2.0 (upper right 
panel), [Fe/H] =  —1.0 (lower left panel), and [Fe/H] =  0.0 (lower right panel), averaged 
over surfaces of constant monochromatic continuum optical depth t cx  for wavelengths 
A =  3000 Ä (solid lines), A =  4000 Ä (dashed lines) and A =  5000 Ä (dot-dashed lines). 
The monochromatic optical surfaces at r£ =  1 are marked by vertical dotted lines.
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Figure 7.4: Continuum surface intensities in the disk center at 3000 Ä computed for an 
arbitrary snapshot of the [Fe/H] =  —3.0 model, treating scattering as absorption (left 
panel) and as coherent scattering (right panel). Intensities are normalized to the average 
continuum intensity w ith coherent scattering.
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Figure 7.5: Left: Correlation between the continuum intensity ratio / C(s c a t) //C(abs) 
and the normalized continuum intensities w ith scattering 7C(scat)/ ( / c(scat)) at 3000 A, 
computed for an arbitrary snapshot of the [Fe/H] =  —3.0 model. Right: Correlation 
between the continuum photon destruction probabilities ec at the local monochromatic 
continuum optical surface r c =  1 and the normalized continuum intensities w ith scatter
ing / c(scat)/ ( / c(scat)) at 3000 A for the same model.

opacity treated as absorption and as coherent scattering for a set of wavelength points w ith log
arithmic distribution in the range 1500 A <  A <  8000 Ä, taking only continuum opacity into 
account; Fig. 7.2 shows the resulting flux distributions for the different model atmospheres (see 
Table 7.1 for stellar parameters). It is clear that continuum scattering is only significant in the 
U V in all cases, where Rayleigh scattering on H  I atoms is mostly responsible for the increased 
flux levels compared w ith the case of treating scattering as absorption; the A-4 -dependence of 
the Rayleigh cross-section and thermalizing bound-free transitions of prim arily various metals 
at shorter wavelengths lim it the spectral range. Scattering is therefore completely negligible in 
the infrared.

Continuum scattering evidently increases the thermalization depth in the UV, as a signif
icant fraction (1 — ec) of outward streaming photons from deeper, hotter layers is scattered 
instead of absorbed. Figure 7.3 shows the vertical variation of photon destruction probabili
ties (ec) in arbitrary snapshots o f the model atmospheres, averaged over surfaces of constant 
vertical continuum optical depth r c at the three wavelength points indicated by vertical dotted 
lines in Fig. 7.2. For the [Fe/H] =  —3.0 model (upper left panel o f Fig. 7.3), all photons that 
interact w ith the gas above optical depth r£ >  10 are absorbed and thermalize. A t 3000 Ä, the 
atmosphere becomes slightly translucent before the optical surface (r^ =  1) is reached, allowing 
photons to escape from larger depths than in the case where scattering is treated as absorption, 
while photons at 4000 A and 5000 Ä are still trapped. Higher up in the atmosphere, scatter
ing becomes increasingly important at all wavelengths. Photon destruction probabilities grow 
w ith metallicity, but exhibit only weak variation at the optical surface for the models w ith 
[Fe/H] <  0.0. The lower effective temperature of the [Fe/H] =  —1.0 model reduces ec above 
the surface relative to the other model atmospheres due to the temperature-dependence of ab
sorption opacity (see the discussion below). A t [Fe/H] =  0.0, absorption dominates almost 
everywhere in the photosphere and beneath.

Note the effect of the H I  (n — 2) bound-free absorption edge at 3647 Ä (the so-called 
Balmer jump), which causes a depression in the continuum flux on the blue side. Absorption 
through photoionization increases the photon destruction probability and moves the thermal
ization depth outward into cooler layers, causing a spike in the flux deviation A  (F c) (upper 
panels of the plots in Fig. 7.2).
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The granulation flow in 3D radiation-hydrodynamical simulations produces strong hori
zontal variations of the outward radiative intensities between the hot, bright granules and the 
cool, dark intergranular lanes. The left panel in Fig. 7.4 shows continuum intensities in the 
stellar disk center at 3000 A, computed with scattering as absorption for an arbitrary snapshot 
of the [Fe/H] = —3.0 model. The shapes of granules and intergranular lanes are similar to 
solar granulation, but extend to much larger spatial scales (see Collet et al., 2007). Note that 
radiative emission in the dark intergranular lanes is comparatively small but nonzero, which is 
important for the formation of line profiles (see the discussion in Sect. 7.6). The right panel 
in Fig. 7.4 shows disk center continuum intensities computed with scattering; both panels in 
Fig. 7.4 are normalized to the same average intensity. While the overall morphology of the 
granulation pattern is almost identical, the surface intensities appear slightly brighter due to the 
larger thermalization depth of the coherent scattering case.

The left panel of Fig. 7.5 quantifies the spatially resolved intensity ratio of the scattering and 
absorption calculations, showing the correlation with continuum surface intensities; the darker 
intergranular lanes gain more brightness in proportion to their intensity than the brighter gran
ules. The reason for this variation is the temperature dependence of the continuum photon de
struction probabilities ec, visible in their correlation with continuum intensity at local optical 
surfaces (rc =  1) in each column of the model atmosphere (right panel of Fig. 7.5): Rayleigh 
scattering cross-sections are independent of temperature if the gas is cool enough that hydrogen 
is dominantly neutral, Rayleigh opacity is therefore very similar at continuum optical surfaces 
in granules and lanes. Contrary to that, thermalizing opacity varies strongly with tempera
ture. Absorption is thus dominant in hot granules, while scattering opacity is important in 
lanes. The result is a larger thermalization depth with respect to the optical surfaces in the 
lanes compared to granules and a relatively stronger intensity gain through scattering. The 
overall contrast in the continuum surface intensities reduces through scattering: while the hor
izontal average continuum intensity (Ic) at 3000 A of the snapshot shown in Fig. 7.4 increases 
by «  27% with respect to treating scattering as absorption, the relative rms variation at this 
wavelength decreases from I^msf  (I c) = 0.51 to / rcms/  (Ic) = 0.43 when coherent scattering is 
included in the radiative transfer computation.

7.6 Spectral line formation with a scattering continuum

We now add spectral lines from different atomic and molecular species to the continuum opaci
ties. It is sufficient to restrict the wavelength range to 3000 A < A < 5000 A, in which radiative 
flux is accessible for measurements with current instruments and in which continuum scatter
ing is important, as it was demonstrated in Sect. 7.5. The profile broadening in all Fe line 
formation computations assumes the Unsold (1955) approximation for collisions with neutral 
hydrogen for simplicity, although the SCATE code includes tabulated collisional cross-sections 
based on quantum-mechanical calculations for many species and transitions (see Appendix D). 
No collisional broadening was applied to molecular line profiles.

7.6.1 Fe I lines at 3000 Ä and metallicity [Fe/H] = -3.0

The effects of a background scattering continuum are demonstrated by analyzing the formation 
of fictitious Fel lines at 3000 A in the atmosphere of the [Fe/H] = —3.0 model. The left panel 
of Fig. 7.6 shows spatial averages of disk-center intensity profiles of a low-excitation (x = 0 eV) 
transition, where scattering opacity is treated as absorption (dashed line) and as coherent scatter
ing (solid line). Line core brightness increases along with the continuum in the spatial average 
profile. The right panel of Fig. 7.6 shows the same profiles normalized to their individual aver-
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Figure 7.6: Spatial averages of disk-center intensity profiles (left panel) and normalized 
disk-center intensity profiles with bisectors (right panel) of a fictitious low-excitation 
(X — 0 eV) Fe I line plotted as functions of wavelength shift AA in mÄ with Ao = 3000 Ä, 
computed for an arbitrary snapshot of the [Fe/H] = —3.0 model with coherent contin
uum scattering (solid lines) and treating scattering as absorption (dashed lines).
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Figure 7.7: Correlation between wavelength-integrated line-to-continuum opacity ratios 
x '/x c and normalized continuum intensities 7c(scat)/ (7c(scat)) at the continuum opti
cal surface r c = 1 (left panel), and at continuum optical depth r c =0.1 (right panel) for 
the Fe I line of Fig. 7.6.
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Figure 7.8: Correlation between the growth of continuum-to-line core intensity ra
tios (7c/7 0)scat/(7c/7 (J)abs through scattering and normalized continuum intensities 
7c(scat)/(7c(scat)) (left panel), as well as between the growth of equivalent widths 
FFA(scat)/FF\(abs) through scattering and the line shift AAo (right panel) for the Fel 
line of Fig. 7.6.
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Figure 7.9: Spatial averages of flux profiles (left panel) and normalized flux profiles with 
bisectors (right panel) of the Fe I line of Fig. 7.6.
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Figure 7.10: Left: Curves of growth for the Fel line of Fig. 7.9 as a function of oscilla
tor strength log gf,  computed with scattering as absorption (dashed line) and as coher
ent scattering (solid line). Right: Corresponding abundance corrections as a function of 
equivalent width W \  for the curves of growth shown in the left panel where y = 0 eV 
(solid line), and for a Fe I line with \  — 2 eV (dashed line).
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Figure 7.11: Abundance corrections for the same Fel line as shown in Fig. 7.9, but com
puted for the [Fe/H] =  —3.0 model with velocity fields set to zero (left panel) and with 
a ID hydrostatic MARCS model (right panel), assuming microturbulent broadening with 
£ = l.Okms-1 (solid lines), £ = 2.0kms-1 (dotted lines), and £ =  3.0kms-1 (dashed 
lines).
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Figure 7.12: Spatial averages of Fel flux profiles at 3000 Ä as functions of Doppler shift 
Av  from the line center, computed treating scattering as absorption (dashed lines) and as 
coherent scattering (solid lines) using the 3D [Fe/H] = —3.0 model (left column), the 3D 
[Fe/H] =  —3.0 model with velocity fields set to zero (3D static model, center column) 
and the ID hydrostatic MARCS model (right column). The bottom row shows normalized 
profiles. The 3D static model and the ID model assume microturbulent broadening with 
£ = 2.0 km s-1 ; line strengths of the ID calculations were increased by +0.7 dex to obtain 
similar equivalent widths (see text).

age continuum intensity, as well as the line bisectors in the profile centers. Line depth increases 
when scattering is included, and the profile bisector shifts to slightly longer wavelengths. Note 
the characteristic C-shape of the bisector, a consequence of spatial dominance of the upflowing 
gas in the bright granules, which causes blueshifts in the emitted light (e.g., Dravins, 1982).

The depression of line core intensity in the normalized profile through continuum scat
tering stems from thermalization through line absorption. If line opacity is significant in 
continuum-forming layers, the thermalization depth of the radiation field moves outward into 
cooler parts of the atmosphere, since the joint photon destruction probability eu of continuum 
and line opacity is larger than the continuum photon destruction probability ec:

xl xc cc = xl + k c 

xl + xc xl + Xc e xl + xc > e c ; (7.7)

line opacity x l is treated as absorption in our computations. The radiation temperature in the 
deeper parts of the line contribution function decreases towards the lower local gas temperature, 
and the line core gains less brightness through scattering than the continuum. Normalization 
turns this disproportional growth into a deeper line profile. If line opacity is not significant 
in continuum-forming layers, line core brightness increases along with the continuum through 
the contribution from scattered photons, and the intensity gain is mostly divided out when the 
line profile is normalized.

Both magnitude and height-dependence of the line opacity thus determine the importance 
of continuum scattering for line formation: the ability of lines to thermalize the radiation field 
grows with x l; the opacity contribution of low-excitation lines of neutral atoms such as the Fe I 
line in Fig. 7.6 is biased towards higher atmospheric layers (compare the distribution of line-to- 
continuum opacity ratios xVxc at the continuum optical surface r c = 1.0 and at r c = 0.1 in
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Fig. 7.7), such species therefore have a weaker effect on the thermalization depth in continuum
forming layers. Ffigh-excitation lines exert larger influence, as the exponential temperature- 
dependence of the Boltzmann excitation equilibrium moves their opacity contribution closer 
to r c = 1.0.

The growth of continuum-to-line core intensity ratios through scattering correlates with 
normalized continuum intensity across the stellar surface (left panel in Fig. 7.8): in the hot 
granules, lines gain less strength since line opacity is relatively small and continuum absorption 
relatively large in continuum-forming layers (left panel of Fig. 7.7 and right panel of Fig. 7.5), 
and both continua and cores increase in brightness (left panels of Fig. 7.5 and Fig. 7.8). In the 
cool intergranular lanes, continua gain more intensity than the cores since line opacity plays a 
more important role in thermahzing the radiation field.

The spatial dependence of line growth is translated into wavelength space as Doppler-shifts 
change sign between the upflowing gas in granules and downflowing gas in intergranular lanes. 
The right panel of Fig. 7.8 shows the correlation between the growth of equivalent widths W \ 
through scattering and wavelength shifts AAo of the individual line profiles in each column. We 
define AAo through the deviation of the intensity profile bisector at half-depth from the center 
wavelength Ao,

AAo = I  ( a&“  -  A tf) , (7.8)

since the 3D velocity field may produce blended profiles with multiple minima in some columns. 
The stronger gains in line strength in the intergranular lanes are shifted towards larger wave
lengths, causing the red wing of the normalized profile to appear relatively darker.

The flux profiles in Fig. 7.9 demonstrate that the effects of scattering also become stronger 
towards the limb: continuum optical surfaces move outward into cooler layers with smaller 
continuum photon destruction probability (see Fig. 7.3), which increases the brightness gain 
in the continuum and therefore produces stronger lines (right panel of Fig. 7.9) through the 
absorption mechanism that was discussed above.

We quantify the impact of scattering on flux profiles by computing synthetic curves of 
growth, treating scattering as absorption (dashed line in the left panel of Fig. 7.10) and as co
herent scattering (solid line). The deeper profiles of the scattering case lead to larger equivalent 
widths W\. The distance between the two curves at each W \ defines a logarithmic abundance 
correction2

Aloge =  loge(scat) — loge(abs); (7.9)

the solid line in the right panel of Fig. 7.10 shows the result. As larger thermalization of the 
radiation field near line core wavelengths produces increasingly deeper flux profiles, satura
tion in the curve of growth is delayed and stronger lines exhibit larger abundance corrections. 
A log e also grows with excitation level \  of the transition (dashed line in the right panel of 
Fig. 7.10): larger line opacity in continuum-forming layers leads to abundance corrections of up 
to —0.4dex at W \ = 60 mÄ.

It is instructive to compare this result with lines that form in a 3D atmosphere with zero gas 
velocities and in a ID hydrostatic MARCS model atmosphere. Missing broadening through con
vective motion is replaced by microturbulent broadening with £ =  1.0 km s-1 , £ =  2.0 km s-1 
and £ =  3.0 kms_L. Oscillator strengths for the calculations with the ID model were increased 
by 0.7 dex for this \  = OeV Fel line to obtain approximately the same range of equivalent 
widths as in the 3D cases. The adjustment compensates for weaker line strength, which stems 
from the much shallower temperature gradient above the surface of the ID model compared to

2In spectroscopic notation, loge(A) =  log10(A a / A h) +  12.0, where N \  and Nh are the number densities of 
species A and hydrogen
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the 3D atmosphere; low-excitation transitions at low metallicity are particularly affected (see 
Collet et al., 2007). In the absence of Doppler-shifts, profiles are exactly symmetric (center col
umn and right column of Fig. 7.12). Resulting abundance corrections are shown in Fig. 7.11. 
In the 3D static case, emission from granules and intergranular lanes is no longer separated in 
wavelength. At low microturbulence £ = l.Okms-1, the line profiles saturate earlier compared 
to the 3D case with velocity field. Desaturation through scattering effects is reduced as gran
ules dominate the radiative flux, resulting in a weaker dependence of A loge on line strength 
(solid line in the left panel of Fig. 7.11). Increasing microturbulent broadening delays saturation 
of line profiles in the scattering and absorption cases, extending the linear part of the curve of 
growth, and A log e is almost constant (dotted line and dashed line in the left panel of Fig. 7.11). 
The weakest lines at W\ = 10 mÄ are independent from microturbulent broadening and yield 
approximately the same abundance corrections for all values of £.

The ID MARCS model exhibits similar effects of scattering at the lowest equivalent widths. 
Abundance corrections are larger for stronger lines compared to the 3D case, reaching —0.2 dex 
at W \ =  60 mÄ for £ =  1.0 km s_1 due to the different atmospheric structure and the +0.7 dex 
adjustment of line opacity (right panel of Fig. 7.11). Increasing microturbulence desaturates 
both the absorption and scattering line profiles and weakens the dependence of A loge on line 
strength.

7.6.2 Curves of growth for Fe I and Fe II lines

We compute abundance corrections for fictitious Fe I and Fe II lines with excitation potentials 
X = OeV and x — 2eV at 3000Ä, 4000Ä and 5000 Ä and for all models to investigate the 
dependence on ionization stage, excitation potential, wavelength and metallicity. Figure 7.13 
shows the results for the [Fe/H] = —3.0 model. As expected from the discussion in Sect. 7.6.1, 
we find the largest A log e for the strongest high-excitation Fe II lines at 3000 A, where thermal- 
izing opacity becomes most important in continuum-forming layers near line core frequencies 
and desaturation has the strongest effect. Abundance corrections reach A loge «  —0.5 dex at 
W\ — 60 mÄ (dot-dashed line in the upper left panel of Fig. 7.13). The corrections become 
less severe for neutral species and lower excitation levels. At 4000 Ä (upper right panel), scat
tering effects are still significant; strong Fell lines reach A loge ~  —0.1 dex at W\ = 60 mÄ. 
At 5000 Ä (lower left panel), scattering is negligible with A log e ~  —0.02 dex at W\ =  60 mÄ, 
which is smaller than typical abundance measurement errors.

The results for the [Fe/H] = —2.0 model and the [Fe/H] = —1.0 model exhibit similar be
havior as scattering opacity is equally important for continuum formation (Fig. 7.2 and Fig. 7.3). 
Abundance corrections are again largest for both metallicities at 3000 Ä and for the strongest 
high-excitation Fell lines, reaching A loge «  —0.4dex at W\ — 60mÄ. The smaller effective 
temperature of the [Fe/H] = —1.0 leads to relatively larger scattering effects compared to the 
other models (see Sect. 7.5).

The situation changes at solar metallicity ([Fe/H] =  0.0): scattering is weak around the op
tical surface at all wavelengths (lower right panel of Fig. 7.3), leading to generally smaller abun
dance corrections. At 3000 Ä, A loge reaches only —0.1 dex for the strongest high-excitation 
Fe II lines and only —0.03 dex at small equivalent widths. At 4000 Ä and 5000 Ä, scattering can 
be neglected.

7.6.3 Curves of growth for molecular lines

Spectral lines from molecules are important tools for abundance measurements of carbon, ni
trogen and oxygen in metal-poor stars. Computing synthetic line profiles and curves of growth 
requires solving a set of equilibrium equations to obtain population numbers of the different
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atoms and molecules (see Appendix D). In late-type stellar atmospheres, simple molecules such 
as carbon monoxide (CO), the hydrides CH, NH and OH and cyanide (CN) form in suffi
ciently cool layers. CH, OH and NH molecules have observable transitions in the blue and 
UV wavelength regions. We follow Collet et al. (2007) and compute synthetic curves of growth 
for typical molecular lines at 3150 Ä (OH), 3360 Ä (NH) and 4360 Ä (CH).

The resulting abundance corrections for the [Fe/H] = —3.0 model are shown in the lower 
right panel of Fig. 7.13. We find the largest scattering effect for the OH line due to its short 
wavelength, reaching —0.13dex for the strongest lines (dashed line in the lower right panel of 
Fig. 7.13). NH lines at 3360 Ä exhibit a slightly smaller abundance correction (dotted line) 
with A log e = —0.10 dex; CH lines at 4360 Ä experience only weak influence from continuum 
scattering (solid line). The magnitude of A log e for molecular lines is very similar to Fe I lines, 
as molecules form mostly in higher, cooler layers of the atmosphere.

The abundance corrections of molecular lines at [Fe/H] = —2.0 are equally large as for 
the most metal-poor model, but they become less severe at [Fe/H] = —1.0 where the OH 
correction reduces to —0.09 dex at W\  =  60 Ä. Aloge is almost negligible at [Fe/H] =  0.0, 
except for the strongest OH features which reach a correction of —0.04 dex.

Note that we vary oscillator strengths instead of elemental abundances to calculate the curve 
of growth. The resulting correction A log e is therefore an approximation, as shifts in the molec
ular equilibria are not taken into account. Decreasing log e(O) by 0.13 dex in the [Fe/H] = —3.0 
model and increasing log g f  by the same amount leads to a deviation of the resulting equiva
lent widths of < 2%, the systematic errors in the abundance corrections of Fig. 7.13 through 
Fig. 7.16 are therefore small.

7.7 Conclusions
We investigate the effects of a scattering background continuum on spectral line formation 
based on 3D radiation-hydrodynamical model atmospheres of giant stars with different metal- 
licity. Continuum scattering is treated in the coherent and isotropic approximation; opacities 
assume LTE. We compute radiative transfer using the SCATE line formation code to determine 
synthetic continuum flux levels and line flux profiles of fictitious Fel and Fell lines between 
3000 A < A < 5000 Ä, as well as selected CH, NH and OH molecular transitions.

Rayleigh scattering contributes significant opacity in the blue and UV wavelength bands, al
lowing photons to escape from larger atmospheric depths compared to the case of treating scat
tering as absorption. As a consequence, the continuum surface flux increases between 2000 Ä 
and 5000 Ä, while scattering is negligible in the infrared and at the shortest wavelengths, where 
photoionization processes thermalize the radiation field. The strongest relative brightness gain 
is observed in intergranular lanes, where scattering opacity is more important and photon de
struction probabilities near the optical surface are smaller compared with the hot granules.

Continuum scattering affects the strength of LTE lines, depending on ionization stage, exci
tation potential, wavelength and metallicity. If a line contributes significant absorption opacity 
in continuum-forming layers, the thermalization depth near line core frequencies moves out
ward into cooler layers and the core gains less brightness through scattering than the continuum. 
Normalization of the flux profiles translates this disproportional intensity gain into a deepening 
of the line. We find the largest effects at the lowest metallicity, the shortest wavelengths, for 
singly ionized lines and for higher excitation levels, where continuum scattering is strongest 
and line opacity is significant in continuum-forming layers. The temperature contrast across 
the stellar surface results in differential line growth, as intergranular lanes experience a stronger 
scattering effect than granules. Doppler-shifts reverse sign between granules and intergranular 
lanes, translating spatial variation into wavelength space. The red wing of the lines thus ap-
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Figure 7.13: Upper left panel to lower left panel: Abundance corrections for fictitious Fe I 
lines and Fell lines with excitation potential x  — OeV and x  — 2eV at 3000 A, 4000 Ä 
and 5000 Ä, computed for the [Fe/H] =  —3.0 model. Lower right panel: Abundance 
corrections for typical CH, N H  and O H lines for the same model.
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Figure 7.14: Same as Fig. 7.13, but computed with the [Fe/H] =  —2.0 model.
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Figure 7.15: Same as Fig. 7.13, but computed w ith  the [Fe/H] =  —1.0 model.
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Figure 7.16: Same as Fig. 7.13, but computed w ith  the [Fe/H] =  0.0 model. Note the 
different scaling o f the vertical axes.
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pears relatively darker than the blue wing, and the line center shifts slightly towards longer 
wavelengths.

We quantify the importance of continuum scattering by comparing synthetic curves of 
growth using scattering radiative transfer and treating scattering as absorption. Increasing line 
strength through scattering desaturates line profiles, leading to a growing deviation between 
the curves of growth for stronger lines. Transformed into an abundance correction for given 
equivalent width, we find up to ~  —0.5dex deviation for Fell with x = 2eV at 3000 Ä and 
[Fe/H] = —3.0. At 4000 A, the effects of scattering on line abundances are much smaller and 
only significant for the strongest lines; at 5000, Ä, scattering can be neglected. Transitions of 
the CH, NH and OH molecules behave in an analogous way to neutral low-excitation atomic 
lines; the strongest abundance corrections appear at the shortest wavelengths. Scattering effects 
weaken towards higher metallicity as continuous absorption opacity becomes increasingly im
portant; abundance corrections at solar metallicity ([Fe/H] = 0.0) only reach —0.1 dex for the 
strongest lines at 3000 A, while they are practically negligible for weaker lines and at longer 
wavelengths.

The importance of velocity fields for line formation in the given wavelength range is tested 
by comparing the results with a 3D atmosphere with zero velocities and artificial microturbu- 
lent line broadening. In the absence of Doppler-shifts through the granulation flow, the line 
profiles become symmetric and saturate earlier for small microturbulence. The desaturating ef
fect of scattering is weaker as granules dominate the emission, where photon destruction prob
abilities are larger, resulting in smaller abundance corrections. We repeat the analysis for a ID 
hydrostatic MARCS model with [Fe/H] = —3.0 and find a similar result; abundance corrections 
for low-exctiation Fel lines at 3000 Ä reach «  —0.2 dex, depending on the microturbulence 
parameter.

Chemical abundance analyses of metal-poor giant stars that include spectral lines in the 
UV and blue regions should take background continuum scattering into account. Convective 
velocity fields change the profile shapes, which shift towards slightly longer wavelengths and 
produce larger abundance corrections for stronger lines compared to a ID hydrostatic model; 
it is therefore important to conduct abundance analyses based on 3D radiation-hydrodynamical 
model atmospheres.

Our investigation assumes coherent isotropic scattering, neglecting redistribution of radia
tion through Doppler-shifts, which should only have a small effect on the synthetic line profiles. 
The LTE approximation is a more severe limitation: non-LTE effects, such as photoionization, 
are known to be important in metal-poor stars and need to be considered for a quantitative 
analysis of stellar line profiles (for a discussion, see Asplund, 2005).
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Chapter 8

Summary and outlook

Radiation-hydrodynamics

The field of 3D radiation-hydrodynamical simulations of late-type stellar atmospheres has expe
rienced continuous growth in the last decade, as the availability of large-scale parallel computers 
enabled simulations of unprecedented complexity and physical realism. The success of realistic 
3D models of the solar surface in reproducing different observations will support this develop
ment and the acceptance of model predictions.

The simulations in this PhD thesis use an enhanced 3D radiative transfer model with coher
ent photon scattering to explore its importance for the atmospheres of late-type stars. It was 
demonstrated in Chapter 4 that continuum scattering is weak in solar-type stars and therefore 
insignificant for their temperature structure; scattering opacity may be treated as absorption 
to very good approximation. However, simulations of higher atmospheric layers in the Sun 
require a scattering source function for a more realistic description of line-blanketing. Treating 
line scattering opacity as absorption strongly reduces radiative heating timescales, leading to a 
shallower temperature gradient and smaller thermal fluctuations above the photosphere, while 
the temperature structure steepens towards an adiabatic gradient when scattering is included; 
the mean temperature difference reaches (AT) ~  350 K in the highest layers. Line-blanketing 
with scattering is thus an important ingredient for realistic models of the solar chromosphere 
and corona (see also the discussion in Skartlien, 2000).

Rayleigh scattering on neutral hydrogen is an significant continuous opacity source for 
metal-poor giant stars, owing to their more dilute atmospheres and smaller absorption opac
ity compared to the Sun. By comparing 3D radiation-hydrodynamical simulations that treat 
continuum scattering as absorption with coherent scattering radiative transfer simulations, it 
was shown in Chapter 5 that the mean temperatures above the surface increase by approxi
mately (AT) ~  1000 K in the absorption case at the lowest metallicity ([Fe/H] = —3.0) and 
thus exhibit a shallower gradient. The effect is smaller at [Fe/H] = —2.0, where the deviation 
reaches (AT) «  300 K. Test calculations indicate that coherent continuum scattering can be 
approximated with reasonable accuracy by ignoring scattering opacity above the optical surface 
and using a Planck source function. This simplification significantly reduces the computational 
expense of the radiative transfer calculations, as the source function only depends on local gas 
temperatures and an iterative computation of the radiation field is unnecessary.

Despite this improvement of the radiative transfer model, the accuracy is still limited by 
the assumption of LTE for computing opacities and emissivities. Departures from LTE popu
lations could be important for radiative heating: analyses of non-LTE effects in ID hydrostatic 
models by Anderson (1989) and by Short and Hauschildt (2005) indicate that mechanisms such 
as over-ionization of iron group elements with respect to Saha equilibria play an important
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role and result in significantly higher temperatures above the surface. It is not immediately 
clear how these departures from LTE will affect the stratification in the 3D case, where the 
radiative equilibrium condition is replaced with the hydrodynamical energy equation and dy
namical effects need to be considered. First efforts to include non-equilibrium physics in the 
treatment of hydrogen ionization in the solar atmosphere have been presented by Leenaarts and 
Wedemeyer-Böhm (2006) and Leenaarts et al. (2007). Implementing consistent atomic models 
in 3D radiation-hydrodynamical simulations will provide a great challenge in terms of problem 
complexity and computational requirements, even if only the most important elements and 
transitions are considered.

The strong frequency dependence of opacities is still an important issue for time-dependent 
3D model atmospheres: the opacity binning method that was briefly outlined in Sect. 4.2.2 
reduces the computational load dramatically, sorting millions of spectral lines into a small num
ber of opacity bins, but the approximation limits the accuracy of the temperature structure and 
cannot include the effects of velocity fields (see, e.g., the discussion in Vogler et al., 2004). A 
more detailed treatment using, e.g., opacity distribution functions (ODFs) or the opacity sam
pling technique, which is the current standard for ID hydrostatic models (e.g. Gustafsson et al., 
2008), could in principle by applied. However, opacity sampling requires a spectral resolution 
of ~  100000 wavelength points, resulting in very large computational load when applied to 3D 
time-dependent radiation-hydrodynamics. Recent developments in high-performance comput
ing, such as parallel execution on Graphics Processing Units (GPUs) and the rapidly increasing 
performance of large-scale cluster computers may soon provide the necessary resources to en
able more realistic spectrum integration.

The analysis of very cool objects, such as brown dwarfs and extrasolar planets, offers new 
exciting possibilities for research based on 3D radiation-hydrodynamical simulations. Their 
complex chemistry includes the formation of abundant molecules and dust, requiring some so
phistication of the hydrodynamics treatment (e.g., Freytag et al., 2010), and non-equilibrium 
physics in the equation of state. Global models are needed for studying atmospheric circula
tion in irradiated extrasolar planets, to understand heat transport and the surface temperature 
distribution. Radiative transfer in such simulations has traditionally been treated using simple 
approximations such as Newtonian cooling, and only recently have first attempts been made 
to include a more realistic description of radiation effects (Showman et al., 2009). Detailed 
3D radiation-hydrodynamical simulations have the capacity to provide new insight into atmo
spheric physics of irradiated exoplanets, in particular the strongly irradiated “Hot Jupiters”, and 
they could be used as well to analyze effects of radiation on the Earth’s climate.

An interesting development for the numerical solution of the radiative transfer equation 
in 3D are finite element methods (Kanschat, 1996; Richling et al., 2001), which can handle 
unstructured meshes naturally. They are highly suitable for situations where adaptive mesh 
refinement is desirable, such as simulations of giant stars with very low surface gravity, which 
exhibit large disparity in the resolution of hydrodynamical and radiative transfer length scales 
(see Sect. 4.3.3).

Spectral line formation

In the field of 3D spectral line formation, many advances have been made in the last years: com
plex numerical codes such as MULT 1 3D have become available, accompanied by an increasing 
amount of accurate data to support establishing detailed atomic models. Owing to the com
plexity of the problem, only a comparatively small number of studies has been presented in 
the literature, such as line formation analyses in the Sun and lithium abundance measurements 
in metal-poor stars. The importance of 3D effects and 3D non-LTE effects still needs to be
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explored for a large variety of cases.
The formation of LTE spectral lines with background continuum scattering in 3D radiation- 

hydrodynamical simulations of red giant stars was described in Chapter 7. It was demonstrated 
that continuum scattering deepens the line profile through a difference in thermalization depth 
between the core and the continuum if line opacity and continuous scattering opacity are im
portant in continuum-forming layers. Gains in line strength desaturate the profile and lead 
to significant abundance corrections, derived from synthetic curves of growth. The effect is 
most pronounced at low metallicity, at the shortest wavelengths and for the strongest lines. 
High-excitation transitions and lines from ionized atoms produce larger corrections, as they 
form closer to the continuum optical surface and thus have a stronger effect on the radia
tion field. The gas velocities predicted by 3D radiation-hydrodynamical models further in
crease the scattering effect by separating emission from granules and intergranular lanes in fre
quency. Abundance corrections reach A log e =  —0.5 dex for \  —  2 eV Fe II lines at 3000 Ä and 
[Fe/H] =  —3.0, while they become insignificant above A > 5000 Ä and for solar metallicity.

The analysis should be extended to the 3D non-LTE case, to include scattering in the line and 
departures of level populations from LTE predictions through interaction with other transitions 
of the same element and photoionization. The effects can be large (e.g., Asplund et al., 2003), 
and detailed investigations with 3D non-LTE line formation may help solving outstanding prob
lems, e.g., related to the chemical evolution of the Galaxy. The importance of magnetic fields 
for stellar abundance analyses also requires further exploration. Modern radiation-magneto
hydrodynamics codes such as BIFR OST  enable detailed simulations of magnetic phenomena 
at the solar surface surface, such as flux tubes, sun spots or coronal heating. Magnetic fields 
can change the temperature structure of the atmosphere, as well as the line profile through the 
Zeeman effect, and thereby affect chemical abundance measurements (Fabbian et al., 2010).

Abundance analyses of late-type stars based on 3D radiation-hydrodynamical model atmo
spheres are not yet commonplace: line formation in 3D is computationally more demanding, 
and widespread application requires a grid of 3D model atmospheres that covers a large range 
of stellar parameters. Such grids are currently being constructed at the Max Planck Institute 
for Astrophysics and other institutes (see Ludwig et al., 2009). The development time needed 
to create a 3D model atmosphere is significantly longer than ID models, as each change of stel
lar parameters requires relaxation of the stratification to a quasi-steady state before the model 
can be used for analyses. Ongoing efforts will nevertheless soon provide large atmosphere data 
sets, offering a wide range of applications: besides improving the realism of stellar abundance 
analyses, they can be used to produce template spectra for automated determination of stellar 
parameters, for synthetic photometry, to investigate stellar oscillations in the field of asteroseis- 
mology etc.. Such astrophysical research in 3D will require fast and user-friendly tools to exploit 
the data: a spectral line formation code such as SCATE or ASSeT (Koesterke, 2009) could be 
combined with a web-based user interface to allow online spectral diagnostics and abundance 
measurements, making 3D models easily accessible for non-experts in radiation-hydrodynamics.

It is clear that 3D radiation-hydrodynamical simulations will play a key role in answering 
important questions in the field of stellar and planetary atmospheres. The development of 
sophisticated computational methods and analysis techniques, as well as the validation of the 
models through observations, will offer exciting research possibilities for astrophysicists and 
scientists from related fields in the near future.
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Appendix A

Plasma physics

A.l The first law of thermodynamics

Microscopic processes in 3D radiation-hydrodynamical simulations are often treated in the ap
proximation of local thermodynamic equilibrium (LTE); all thermodynamic quantities, such 
as pressure and temperature, are determined by a pair of independent variables through the 
equation of state (EOS). The gas density p and the internal energy e are directly predicted by 
the hydrodynamical solver and thus chosen as the fundamental pair of state variables. In the 
context of realistic simulations of stellar surface granulation, it is not sufficient to use the EOS 
of an ideal gas, since ionization and molecule formation occur which store a significant amount 
of latent heat in the gas. It is therefore necessary to use a more general treatment based on the 
first law of thermodynamics, which will be transformed into hydrodynamical variables in the 
following.

The first law of thermodynamics for a system in chemical equilibrium is given by the equa
tion

dE — TdS — PdV, (A.l)

where the internal energy E  is a function of entropy S  and volume V; T  is the temperature and 
P  is the pressure. Mass conservation requires that a gas parcel with mass dm has

dm -  d(pV) -  pdV + Vdp =  0. (A.2)

This is equivalent to the expression

Inserting Eq. (A.3) in Eq. (A.l) yields

V
dV = ---- dp.

P
(A.3)

dE = TdS  + (A.4)

In fluid dynamics, energy and entropy are redefined as specific internal energy e = E / pV and 
specific entropy s = S/pV,  which leads to the transformations

dE = pV de + ed(pV) = pV de (A.5)
dS = pV ds + sd(pV) = pV ds , (A.6)

where Eq. (A.2) has been used. The first law of thermodynamics may now be expressed through 
hydrodynamical variables:

P
de = Tds -\— ~dp.

P2
(A.7)
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A.2 Plasma relaxation timescales

The macroscopic fluid description of stellar plasma using the hydrodynamical equations re
quires that the gas relaxes to a local equilibrium on very short time scales through frequent 
particle collisions. If gradients in the flow are sufficiently small and typical length scales are 
larger than particle mean free paths, it is then sufficient to describe gas dynamics using moment 
equations rather than detailed particle distribution functions. Assuming Coulomb interaction 
in a plasma of electrons and protons, Goedbloed and Poedts (2004) estimate a relaxation time 
for electron-electron collisions and electron-proton collisions of

3 \/2  ^ ( f c T e)3/ 2 
e 8 v'fit logAe4n p

(A.8)

in the cgs unit system, where m e is the electron mass, k is the Boltzmann constant, Te is the 
temperature of the electron gas, e is the elementary charge, and np is the proton density, log A 
is a screening term of the Coulom b potential for particles that are separated by a distance larger 
than the Debye length (see below), for which Goedbloed and Poedts (2004) use the expression 
(in cgs units)

log A
(  3 {kTef / 2\  
^ x/ T tt e 3 y f f i l  J  '

(A.9)

Below the surface, where hydrogen is dominantly ionized, solar plasma reaches temperatures of 
T  ~  20000 K, gas densities of p ~  10~5 g cm -3 and electron densities of ne ~  1018 cm -3 . The 
electron relaxation time (Eq. (A.8)) for such a proton-electron gas is

re ~  5 • 10 14 s. (A. 10)

The relaxation timescale for proton-proton collisions is given by the same expression (Eq. (A.8)), 
replacing m e with m p:

Tp =  ~  2 • 10“ 12 s. (A .ll)V m e

The two separate electron and proton fluids still need to equilibrate their individual temper
atures through electron-proton collisions. This is the slowest process, since energy exchange 
between particles of very different masses is inefficient. Goedbloed and Poedts (2004) estimate 
an equilibration timescale of

m p
T- = 2m / * '

(A. 12)

For solar plasma, one obtains
Teq ~  5 • 10 11 S. (A.13)

The shortest time scales of hydrodynamic flow in simulations of solar surface granulation are 
set by the propagation times of sound waves, which are numerically resolved with time steps of 
typically Athyd ~  0.1 s. Relaxation to an equilibrium state at the bottom of the simulation box 
thus happens quasi-instantaneously for each simulation time step, and the essential condition

A^hyd ^  ’T’eq (A. 14)

is easily satisfied. Higher up in the atmosphere, equilibration times increase due to smaller 
particle densities. Mihalas and Mihalas (1984) estimate r eq ~  10_ 6 s at T  = 104 K and ne =  
n p =  1014 cm -3 using similar arguments.
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The assumption of instant equilibration can break down above the surface for certain inter
nal degrees of freedom such as hydrogen ionization, requiring a more detailed treatment of the 
plasma states (see, e.g., Leenaarts and Wedemeyer-Böhm, 2006).

Having established two fluids in thermodynamic equilibrium, a macroscopic description of 
the plasma as a single fluid further requires a restriction to large length scales. Charge separation 
of the plasma through thermal fluctuations happens on Debye lengths

=̂t/JlE (a-,5>
in the cgs unit system. For solar subsurface conditions, charges are separated on average by a 
Debye length of

Id  «  10-7 cm, (A.16)

and the plasma appears as a single fluid. If magnetic fields are included, further restrictions on 
macroscopic length scales and time scales apply through cyclotron frequencies and radii (see the 
discussion in Goedbloed and Poedts, 2004).
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Appendix B

Numerical methods

B.l Bezier interpolation of source functions and opacities

The discrete formal solution (Eq. (4.14)) of the radiative transfer equation (Eq. (4.4)) requires 
interpolating the source function S(t ) along the short characteristic. While linear interpola
tion never overshoots, its accuracy is not sufficient in optically thick media, since the discrete 
expression is not equivalent to the diffusion approximation. Second-order interpolation sig
nificantly improves the accuracy, but suffers from strong overshoots where A S /A t gradients 
change rapidly between the upwind and downwind halves of the characteristic. In extreme 
cases, this can even destabilize the solver and produce spikes in the focal flux divergences.

Bezier-type interpolation techniques allow for a direct detection and suppression of such 
overshoots by virtue of a control point in the polynomial which shapes its curve (see Auer, 
2003). A second-order Bezier polynomial may be written in the parameterized form

where Su and So are the source functions at the upwind end and the center point of the charac
teristic, between which interpolation is needed, t =  (r — tu) / ( to — ru) is the curve parameter, 
and Sc is the control point. A Bezier curve is always bounded by the convex hull of the three 
points Su, Sc and Sq. Using the abbreviations

S(t) =  Su(l -  t )2 +  S0t2 +  2Sct(l -  t), (B.l)

A tu = To -  tu; A Td =  rd -  To (B.2)

for the optical depths along the characteristic and choosing the control point

5c =  So 2̂ S'o
ATd So -  Su A tu Sd -  So 

A tu +  A rd A ru A ru +  A rd A rd

yields second-order interpolation of S, which now also depends on the source function Sd at 
the downwind end. Introducing the three functions

U0(t)
Ui(t)
m)

1 - e _t 
t - U 0{t) 
t2 — 2Ui(t),



144 Appendix B. Numerical methods

and evaluating the integral of the Bezier polynomial results in the familiar second-order integra
tion constants for Eq. (4.14),

'Eq

'Ed

U 0 ( A r u )  +
U2(A tu) -  (Ard + 2Atu)C/i (Atu)

Atu(Atu + A rd) 
(Aru + Ard)C/i(Aru) -  f/2(Aru)

A ruArd
[72(Aru) -  A ruLri(A ru) 

A rd(Aru + A rd)

(cf. Eq. 8 and 9 in Kunasz and Auer, 1988). If the source functions 5U, So and 5d have an 
extremum at 5q, choosing Sc = Sq enforces 5q = 0, yielding the constants

'Eu

'Eo

'Ed

t/o(Aru) +
U2(A tu) -  2AruUl (Aru)

2Aruf/i(A ru) - 
At2

Aru2
U2(A tu)

Overshoots are avoided by limiting Sc to the range of the data points: min(5u, So) < Sc < 
max(5u, 5b). If 5C lies outside these limits, choosing 5C = 5U results in the constants

V E 0

'Ed

r r  s U 2 ( A TU)

C/°(A u) -
e 2(A r u)

Note that, contrary to the first two cases, suppressing such overshoots leads to discontinuous 
left-hand and right-hand derivatives at So-

Optical depths are computed in an analogue fashion to avoid negative results. A second- 
order Bezier polynomial x(s) interpolates opacities over the path length As along the ray; 
integration over s yields the optical depth interval

f ^ s As
A t = j  x (cr)da =  ~y  (Xu + Xo + x c ) , (B.3)

where the control point Xc is selected according to the same criteria as discussed above for 5C.

B.2 Local cubic monotonic interpolation

The radiative transfer solver uses local cubic interpolation for interpolating data from the hy- 
drodynamical grid onto the characteristics grid. This choice of method improves the accuracy 
compared to linear interpolation, while ensuring local control of the interpolating polynomial 
to reduce artifacts. In addition to being a one-pass algorithm, the method also exhibits good 
computational performance through its mstruction-per-data ratio, which is well-suited for mod
ern multi-core CPUs, where high computation speeds are contrasted with slow memory access. 

2D interpolation is approximated by consecutive ID interpolation using a cubic polynomial

f( t)  = at3 + bt2 + ct + cf, (B.4)
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with the curve parameter t 6 [0, 1]. The coefficients a, b, c and d depend on the adjacent data 
points / 1 and f 2 and their derivatives f[ and f 2. Inserting the data and reordering the terms, 
the polynomial may be rewritten in the form

f{t )  =  a{t) f i  +  ß{t ) f2 +  +  ö(t)f2, (B.5)

where the interpolation weights a, ß, 7 and d now depend on the parameter t:

a(t) =  213 -  3t2 +  1 
ß{t) =  312 -  213 
7 (t) =  (t3 — 212 +  t) Ax 
6(t) =  (t3 — £2) Ax

with the grid spacing Ax between the two data points. The shape of the curve is defined by 
the derivatives f[ and f 2. A natural choice is the mean of the left-handed and right-handed 
difference quotients /( and at both end points. An unweighted arithmetic mean leads to 
wiggles and overshoots where strong gradients appear. We therefore adopt a recipe by Fritsch 
and Butland (1984), which uses a weighted harmonic mean

/ '  =

■T/r
(1- Q:) / l + q / r

0

7 / r >  0

f i f k  < 0

(B.6)

with the weighting factor

l f l +  A *R ^
3 V A xL + A x R J  ’

(B.7)

which depends on the grid spacing A xl and A xr on the left and right sides of the data point. 
The weighted harmonic mean biases f  towards the smaller of the two difference quotients f[ 
and where strong gradients occur, effectively suppressing overshoots.

Quadratic interpolation uses only one of the two derivatives f[ and f 2, depending on the 
interpolation parameter t. The interpolation coefficients are

t < \ \ t > \  '■

a(t) = h—
■■ 1 CH

* to a{t) = (i - t ) 2

IIso. i 2 ß(t) = t ( 2 - t )

II £(1 — t) Ax 7W  = 0

IIH
O

'-cT 0 m  = t(t — l)A x

(B.8)

B.3 Angle quadrature

Moment integrals of specific intensities yield the mean intensity J  and radiative flux F, which 
are frequently needed for solving radiative transfer problems. Integration over solid angle is 
approximated by an appropriate quadrature. The best choice of method and order of accuracy 
depends on the problem: Gauss-type quadrature generally yields good accuracy, providing a 
mathematically optimal choice of quadrature nodes and weights. However, it is only applica
ble to integrals in one dimension, and low quadrature orders may introduce directional bias 
through the angle distribution. Gauss-Legendre quadrature is commonly used for radiative 
transfer calculations to approximate the integral over polar angle // =  cos 9, supplemented by
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n Mi M2 M3 M4

2 ±0.57735027
3 0.0 ±0.77459667
4 ±0.33998104 ±0.86113631
5 0.0 ±0.53846931 ±0.90617985
6 ±0.23861919 ±0.66120939 ±0.93246951
7 0.0 ±0.40584515 ±0.74153119 ±0.94910791
8 ±0.18343464 ±0.52553241 ±0.79666648 ±0.96028986

n W \ W2 W s W 4

2 1.0
3 0.88888889 0.55555556
4 0.65214515 0.34785485
5 0.56888889 0.47862867 0.23692689
6 0.46791393 0.36076157 0.17132449
7 0.41795918 0.38183005 0.27970539 0.12948497
8 0.36268378 0.31370665 0.22238103 0.10122854

Table B.l: Gauss-Legendre quadrature nodes n and weights w for quadrature orders n, 
computed using an algorithm from the Numerical Recipes (Press et ah, 1996).

the trapezoid rule for the integral over azimuth angle (f) in 3D. Table B.l lists quadrature nodes 
and weights for the first eight quadrature orders.

Carlson (1963) proposed a ray discretization that is invariant under rotation by 90° to avoid 
directional bias when a transport equation is solved numerically. The requirement of invariance 
leads to a set of angles with equal projection factors for the three spatial axes. The lowest order 
(n = 2) is equivalent to Gauss-Legendre quadrature with a 4-point trapezoid rule. Figure B.l 
shows the distribution of quadrature nodes on an octant (see Table B.2 for the numerical values). 
The weighting of the nodes is also constrained by the invariance. As nodes lie on concentric 
circles around the center of the quadrant (e.g., the quadrature nodes lie on two circles for n = 8), 
symmetry requires that all nodes on the same circle receive the same weight; the nodes closer 
to the axes are weighted higher.
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n Mi M 2 M 3 M 4
2 0.57735027

4 0.33333333 0.88191710

6 0.25819889 0.68313005 0.93094934

8 0.21821790 0.57735027 0.78679579 0.95118972

n W \ W 2 W3
2 1.00000000
4 0.33333333

6 0.15000000 0.18333333

8 0.07075470 0.09138352 0.12698139

Table B.2: Projection factors // (upper panel) and weights w (lower panel) for Carlson A 
quadrature of order n — 2,4, 6, 8.

Figure B.l: Distribution of Carlson A quadrature angles on an octant with increasing 
quadrature order n = 2, 4, 6, 8 (upper left to lower right, see Table B.2). Note the align
ment of quadrature angles on concentric circles around the center of the octant (crosses).
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Appendix C

Opacities

C.l Line scattering with the van Regemorter formula

10.000 f

1.000

0.100
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0.001
0.001 0.010 0 .100  1.000 10.000 100.000

A E x /k T

Figure C.l: Dependence of the tabulated Gaunt factor integral P(AE\ ,  T ) for collisions 
of electrons with neutral atoms in the van Regemorter (1962) formula on the transition 
energy AE\  and the gas temperature T. The dashed lines mark the boundaries for typical 
values of AE \ / k T  found in solar surface convection simulations (Sect. 4.5.1).

The photon destruction probabilities in line transitions may be estimated using the semi- 
empirical van Regemorter (1962) formula to obtain electron collision rates, following the dis
cussion in Skartlien (2000). Neglecting other contributions from, e.g., collisions with neutral 
hydrogen atoms, the de-excitation rate for electron collisions according to this formula is given 
by

Cn  ~  \ 3NeT ~ 1/2A21P (A E x, T), (C.l)

where A is the transition wavelength, Ne is the electron density, T  is the gas temperature, and 
A 21 is the Einstein coefficient for the corresponding spontaneous radiative transition. The func
tion P(A E \ ,T )  abbreviates the velocity integral over the empirically calibrated Gaunt factor
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of the scattered electron, and depends on the transition energy A E \  and the gas temperature T. 
We adopt the tabulated data for neutral atoms of van Regemorter (1962), see Fig. C .l.

The photon destruction probability for a two-level atom is given by

^A _  _________ &21_________

Nx +  ^ a C 2 1  +  A 2 1  +  B 2i B \  ’
(C.2)

where B 2 1  is the rate for induced de-excitation, and B \  is the Planck function. Neglecting the 
induced de-excitation term, Eq. (C.2) simplifies to

1
1 +  A 2 1 / C 2 1

(C.3)

€\ is independent of the actual transition after inserting the van Regemorter formula Eq. (C.l), 
and thus only a function of A, N e and T.

Line opacities in stellar spectra often combine contributions from many transitions at a 
given wavelength. The total monochromatic photon destruction probability of an opacity sam
ple at wavelength A is given by the sum over all transitions,

S z  K\,i

E z  X a ,z

(C.4)

Inserting Eq. (C.3), thus assuming the above mentioned approximations, yields

e A
5-4 f ^TA,z 

£ z  * A ,z

(C.5)

where the equality holds since £\ is independent of the actual transition i. The absorption and 
scattering contributions and to each opacity sample x \  are then isolated using and 
added to the coefficients of the continuum processes (see Table C.l).

C.2 Continuum opacity sources

Table C .l: Continuum  opacity sources

Absorber and process Reference
H -  b-f Broad and Reinhardt (1976); Wishart (1979)
H -  f-f Bell and Berrington (1987)
H I b-f, f-f Karzas and Latter (1961)
H I + H I Doyle (1968)
H I + H el Gustafsson and Frommhold (2001)
h 2+ h i Gustafsson and Frommhold (2003)
H 2 + H e l Jorgensen et al. (2000)
h 2+ h 2 Borysow et al. (2001)

X to
 

1 Bell (1980)
H 2 photo-dissociation Allison and Dalgarno (1969)

b-f, f-f Stancil (1994)
H e-  f-f John (1995)

continued on next page
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Absorber and process Reference
He I b-f 
H e lf-f  
H e ll b-f
c -  f-f
C l  b-f 
C l  f-f 
C II b-f 
C II f-f 
C III b-f 
N -  f-f 
N Ib -f  
N il  b-f 
N  III b-f
o -  f-f
O I, O II b-f 
O  III b-f
Ne I, N ell, N e ill b-f 
N al, N all, N a lll b-f 
M g I, M g II, M g III b-f 
A ll, AlII, A1III b-f 
Si I b-f 
Sill b-f 
Si III b-f 
SI b-f 
SII b-f 
S III b-f
A rl, A ril, ArIII b-f 
C al, C all, CaIII b-f 
Fe I b-f 
Fell b-f 
Fe III b-f 
Ni II b-f 
c o -  f-f 
h 2o -  f-f
O H  b-f 
CH  b-f

TOPbase1 
Peach (1970)
TOPbase1 
Bell et al. (1988)
Nahar and Pradhan (1991) 
Peach (1970)
Nahar (1995, 2002)
Peach (1970)
Nahar and Pradhan (1997) 
Ramsbottom et al. (1992) 
Nahar and Pradhan (1997) 
Nahar and Pradhan (1991) 
Nahar and Pradhan (1997) 
John (1975)
Nahar (1998)
Nahar and Pradhan (1994b)
TOPbase1
TOPbase1
TOPbase1
TOPbase1
Nahar and Pradhan (1993) 
Nahar (1995)
TOPbase1 
TOPbase1 
Nahar (1995)
Nahar (2000)
TOPbase1 
TOPbase1 
Bautista (1997)
Nahar and Pradhan (1994a) 
Nahar (1996)
Bautista (1999)
John (1975)
John (1975)
Kurucz et al. (1987)
Kurucz et al. (1987)

H I scattering 
H 2 scattering 
e_ scattering 
He I scattering

Gavrila (1967)
Victor and Dalgarno (1969) 
Thomson
Langhoff et al. (1974)

1 Contains Opacity Project data (Seaton et al., 1994)
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Appendix D

The SCATE code

The SCATE spectral line formation code for stellar atmospheres computes 3D radiative trans
fer for blended spectral lines and a background continuum with coherent isotropic scattering. 
Local thermodynamic equilibrium (LTE) is assumed to compute level populations for lines and 
continuous opacity sources, using Saha-Boltzmann equilibrium calculations. A lookup-table 
is used for monochromatic continuum opacities, continuum photon destruction probabilities, 
Saha ionization equilibria, molecular equilibria (for hydrogen, carbon, nitrogen and oxygen) 
and partition functions to speed up the 3D line formation computations, in particular when a 
time-series of profiles is required.

The code was originally developed by A. Nordlund and later extended by M. Asplund, 
R. Trampedach, R. Collet and T. Pereira. The author of this thesis rewrote most of the code 
in Fortran 90 language and implemented some optimizations to enhance code performance, 
including OpenMP parallelization over ray angles for long characteristics computations. A 
short characteristics solver was added as well, which provides a source function with continuum 
scattering.

D .l Numerical solution of the radiative transfer equation

Computation of a line profile is divided into two steps: a short-characteristics-based radiative 
transfer solver with Gauss-Seidel-type convergence acceleration (Trujillo Bueno and Fabiani 
Bendicho, 1995) computes the monochromatic radiation field at each frequency point v across 
the profile to obtain the continuum source function with coherent scattering. The Gauss-Seidel 
method uses an upper/lower triangular approximate A* operator, which computes source func
tion corrections during the formal solution and yields fast convergence; see Hayek et al. (2010) 
for a detailed description of the implementation. The solver takes the anisotropy of the com
bined continuum and line source function in the observer’s frame into account, which is due 
to the angle-frequency coupling of line opacity through Doppler-shifts. Linear or higher-order 
local interpolation is available for translating opacities, source functions and upwind intensi
ties onto the characteristics grid. The discretized source function integral is computed using 
linear interpolation or second-order interpolation, which is required at high optical depths to 
correctly reproduce the diffusion approximation.

A second solver delivers angle-resolved surface intensities and surface fluxes for obtaining 
the line profiles. SCATE offers the differential Feautrier (1964) scheme as well as an integral 
scheme which is based on the formal solution of the transfer equation. The integral scheme 
computes the source function integral using the same interpolation methods as the scattering 
solver. The radiative transfer equation is solved on long characteristics that begin in the top 
layer of the hydrodynamical mesh and span across the simulation domain, until they reach the
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optically thick diffusion region. Before each calculation of surface intensities, the 3D model 
atmosphere is tilted into the ray direction using local cubic interpolation.

Both solution steps are parallelized over angle using OpenMP directives for shared-memory 
architectures, allowing for fine resolution of the angle-frequency coupling in the scattering com
putation and for integrating surface intensities over a large number of rays when radiative fluxes 
are needed. A modern 8-core cluster node delivers a line profile with scattering (see Sect. 7.4) in 
~  15 min per atmosphere snapshot, while the radiative transfer problem without scattering is 
solved within < 1 min.

SCATE uses partial grid refinement on the vertical axis to improve the resolution of con
tinuum optical surfaces. Additional layers are automatically inserted into the 3D model where 
vertical optical depth steps are large using cubic spline interpolation. The mesh is truncated 
when the optically thick diffusion region is reached and the radiation field is entirely thermal.

D.2 Line opacities in the LTE approximation
The line opacity at frequency v' in the local rest frame of a gas parcel in the stellar atmosphere 
is computed using the expression

Tte
X W  —  J \ u n \ mec 1 — e

hv'
k T W  ~ v'o) >

(D.l)

with the electron charge e, the electron mass me, the speed of light c, the Planck constant h, the 
Boltzmann constant k and the temperature T. Literature values of the oscillator strength f\u are 
usually combined with the statistical weight g\ of the lower level of the transition, which enters 
the opacity through Boltzmann excitation factors for the level population density rt\. The code 
computes Saha-Boltzmann equilibria with tabulated partition functions that were calculated 
using the NIST database (Ralchenko et ah, 2009). Molecule formation is taken into account for 
12 important species by computing LTE equilibrium populations (see Table D.l). The term in 
brackets in Eq. (D.l) corrects the line opacity for stimulated emission, assuming atomic level 
populations in LTE.

The line profile i\) is given by a Voigt function around the laboratory wavelength vq of the 
transition. Doppler-shifts through macroscopic velocity fields u in the observer’s frame are 
included in the non-relativistic approximation, which yields the line profile

^ [ v  -  V q ) i ) \ v - v Q - V Q (D.2)

in the observer’s frame, for a ray in direction n and gas velocity u. The vectorizable recipe of 
Hui et al. (1978) is used to evaluate the Voigt profile numerically.

Line profiles include Doppler broadening to account for shifts through random thermal gas 
motion. Microturbulent broadening may be included in the computations, but it is generally 
unnecessary for line formation with 3D hydrodynamical atmospheres (see the discussion in 
Asplund et al., 2000b).

Natural line broadening through radiative de-excitation is set by the profile width parameter 
rrad using laboratory data if available, or it may be estimated using the expression

p ra d  _  87T2e2 1

m ec A2 gu J u P-3)

which assumes a two level atom; A is the transition wavelength and gu is the statistical weight 
of the upper level.
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Pressure broadening through collions of neutral atoms and ions with neutral hydrogen 
atoms is taken into account in the impact approximation. Profile widths are based on quantum 
mechanical calculations by Anstee and O ’Mara (1995); Barklem and O ’Mara (1997); Barklem 
et al. (1998, 2000a); Barklem and O ’Mara (2001); Barklem and Aspelund-Johansson (2005). Col- 
lisional cross-sections are estimated using the power law

a(v) =  cr(u0) (D.4)

where v is the relative velocity of the particle and the perturbing H I atom, cr(uo) and a  are 
tabulated, and uo is a reference velocity. The width parameter of the Lorentzian broadening 
profile is obtained by integrating over a Maxwell-Boltzmann distribution for v, which yields

T'H I = 2 ( J ) T ( i ^ ) c CT(„„) ( ^ )  n HI, (D.5)

with the gamma function T, the number density tihi of neutral hydrogen, and the average 
velocity v = ^SkT/ir^i,  where n is the reduced mass of the particle and the perturbing H I 
atom. In the absence of quantum mechanical data, the classical Unsold (1955) approximation is 
used in the formulation found in Gray (2005):

log y H 1 =  20.0 +  0.4 log Ce +  log P  — 0.7 log T, (D.6)

for quantities given in cgs units; P  is the gas pressure. The interaction constant Cß is approxi
mated through the expression

c 6 = o.3 • to -30 [ ( x i r r 2 -  ( x i ° T 2] . (d .7)

with the ionization potentials Xu n and Xi°n from the upper and lower level of the transition, 
both given in eV. For the more complicated case of hydrogen lines, broadening recipes of N. 
Piskunov and P. S. Barklem (priv. comm.) are available. The contribution from He I atoms to 
pressure broadening is estimated through

W 1 0  +  CHeIZ!Hel\ (D.8)
V nm  )

using an approximate scaling factor cnei ~  0.41.
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Molecule Dissociation energy
h 2
h 2+
h 2o
CH
c 2
CN
CO
O H
o 2
N H
n 2
NO

Sauval and Tatum (1984) 
Sauval and Tatum (1984) 
Ruscic et al. (2002)
Sauval and Tatum (1984) 
Urdahl et ah (1991) 
Huang et ah (1992) 
Eidelsberg et ah (1987) 
Ruscic et ah (2002)
Sauval and latum  (1984) 
Marquette et ah (1988) 
Sauval and Tatum (1984) 
Sauval and Tatum (1984)

Table D .l: Molecular data included in the equilibrium calculations; partition functions 
were computed using the NIST database (Ralchenko et ah, 2009).


