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Abstract 

An investigation into the response of Si(Li) detectors for electron spectroscopy was 

carried out, to provide calibration for a proposed measurement of the radiative width of 

the Hoyle state in ^^C, and to aid in the design of detectors in the future. The approach 

was to use Monte Carlo simulations, providing a cost-effective and reliable method of 

detector characterisation. The characterisation here was carried out to model proposed 

detector uses for both internal conversion spectroscopy in the range 20 keV - 1 MeV, 

and electron-positron pair spectroscopy, in the range 1 MeV to 3.5 MeV. Of interest is 

not only the response to electrons and positrons, but also to photons (both X-rays and 

7-rays), as they make up the majority of the background intensity. The aim was to use 

the simulations to not only predict efficiency and sensitivity to background, but also the 

lineshape, using the Monte Carlo program PENELOPE [1]. Modifications were made to 

the program to reproduce charge collection effects, electronic noise, and the spatial dis-

tribution of the source. The simulation system was tested by comparing an experimental 

measurement of a ^̂ ^Ba source to a simulation with identical detector geometry and input 

radiations. The comparison showed a close agreement with experiment in lineshapes, 

efficiency and sensitivity to background. Extensive simulations and a ®®Co measurement 

were used to extend the characterisation up to 3.5 MeV, and derive an empirical formula 

for the efficiency of a 1 cm thick Si(Li) detector as a function of energy and incident angle 

for energies in the range 10 keV < E < 3.5 MeV and angles in the range 0° < 0 < 60°. 

The results also provide insight into the causes of efficiency loss in Si (Li) detectors over a 

wide energy range. At high energy, the escape of bremsstrahlung photons from the back 

of the detector was found to be the dominant form of energy loss; this, along with other 

important results of the present study are generally applicable to electron spectroscopy 

measurements over the specified energy range. 
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Chapter 1 

Introduction 

This thesis describes the development of simulations aimed at supporting future mea-

surements of electron-positron pairs emitted by the Hoyle state in ^^C. In the following 

chapter, an explanation of the unique opportunities offered by electron spectroscopy is 

given, followed by a brief overview of the Hoyle state measurement. The experimental 

challenge addressed in the present work is then described. 

1.1 Why Electron Spectroscopy? 

In comparison to 7-ray studies, less progress has been made in pushing the limits for the 

detection electrons [2], however the need to develop more sophisticated electron detection 

systems is great. In the following we will focus on measurements of electrons from internal 

conversion and electron-positron pairs from pair production, and their applications to 

nuclear spectroscopy. 

The probability that an excited nucleus decays via internal conversion (IC) increases 

with increasing atomic number (Z) and with decreasing transition energy. This makes 

7-ray spectroscopy less suitable for low-energy transitions in nuclei with high Z (where 

the transitions are highly converted) meaning electron spectroscopy can be crucial to 

observe these states. Furthermore, an experimental bias toward 7 spectroscopy has 

hampered the study of odd mass nuclei and K 0 rotational bands in even-even nuclei 

where the probability of A/1 decay (which again have large conversion coefficients) 

becomes large compared to other electromagnetic modes [3]. The transition energies for 

the lowest states in the ground state rotational bands of well deformed, even-even nuclei 

with high mass cannot be measured using 7-ray spectroscopy, because the transitions 

are nearly fully converted. Traditionally, they are deduced by extrapolation from higher 

spins; electron spectroscopy allows the direct observation of these transitions. 
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The conversion electron or pair spectra can provide information beyond that which 

the 7 spectrum alone provides: 

1. The observation of EO transitions. Transitions between states of 0 angular mo-

mentum may only proceed via an £'0 transition. Low energy EO transitions are 

the signature of the decay between nuclear states with different intrinsic shapes 

[2]. The physics behind E{) transitions is not fully resolved; they are known to 

be related to the rearrangement of charge in a nucleus, but the manner of the 

rearrangement is not fully understood. EQ transitions may only proceed via IC 

or pair production (7-ray emission is not allowed), so electron spectroscopy is 

critical for studying these transitions. A pure £"0 transition cannot emit any 

photons, therefore they cannot be observed using only the 7 spectrum. An EQ 

transition may be observed by comparison of the conversion electron and 7 spectra. 

If the conversion-electron spectrum shows a conversion-electron peak and the 7 

spectrum shows no corresponding peak, the transition must be of pure EQ character. 

2. Determination of the multipolarity. The conversion coefficient, determined for a 

given transition, is 

az = - j - , (1.1) 
-'7 

where \-Y and ICE are the 7-ray and conversion-electron intensities respectively. The 

conversion coefficient ai{Z,E^,B{'K,L)) depends on Z,Ej, and the multipolarity 

{B{TT,L)). Measurements of a , can usually determine, or at least help determine, 

the multipolarity of the transition. 

3. Determination of the atomic number Z. The 7 - conversion-electron coincidence 

data can be used to determine Z of the nucleus emitting the radiation. This is 

important in beam experiments, where the desired products may be obscured 

by strong competing reaction channels, prompt fission products, etc.. Gating 

on a 7-ray will show the conversion lines that are in coincidence (from the same 

nucleus). The energy differences between the K, L, and M conversion lines and the 

corresponding 7-ray are the K, L, and M binding energies, which give Z directly. 
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Figure 1.1: The triple alpha process, leading to the stellar formation of ^^C, and the subsequent 

electromagnetic decays from the Hoyle state. 

4. Observation of the energy of a transition when the 7 data cannot provide it. In 

heavy atoms, the atomic X-ray emissions tend to be high in energy compared with 

low-Z miclei, and may interfere with the 7-ray spectrum from nuclear decay in the 

desired energy region. The electron spectnun may reveal a transition whose 7-ray is 

obscured by an X-ray because (i) the conversion-electron peaks are lower in energy 

(by the binding energy of each shell) and therefore may be in a clearer part of the 

spectrum, and (ii) with magnetic transportation the electron detector can be shielded 

from the X-rays. 

1 . 2 W h y 1 2 c ? 

Carbon is created in the universe via the triple-alpha process (see figure 1.1), occurring 

in red giant stars. The rate of this process is known with an uncertainty of 12.5% 

[4]. The large uncertainty is a stumbling block in developing stellar evolution models. 

The rate cannot be predicted accurately by theoretical models, as the Hoyle state, at 

7.654 MeV, and the states to which it decays, the 4.439 MeV 2+ state and the 0+ 

ground state, are very different in structure. The current theoretical treatments based 

on the shell model, do not describe both states and the transition between them in a 

reliable way. For example, in the most sophisticated no-core shell model calculations 

[5] the first excited 0+ state is predicted at around 18 MeV. A proposed experiment 

at the ANU aims to measure the rate of the triple alpha-process with an uncertainty of 3%. 

As shown in figure 1.1, once formation of the Hoyle state occurs, an estimated 99.96% 

of the time it will decay via spontaneous alpha emission. Only the remaining 0.04% will 



Introduction 

T̂T initial state 
J : E 

J ? 
final state 

conversion 
electron emission 

/ 
/ 
I 

y-photon 
emission 

electron positron 
pair production 

Figure 1.2: Mechanisms for the electromagnetic decay of excited nuclear states. 

result in the formation of stable carbon in the Hoyle state. The excited uucleiis will decay 

by one of the electromagnetic mechanisms shown in figure 1.2, namely photon emission, 

electron-positron pair production and conversion-electron emission. E2 7 emission to the 

first 2 ' state is the dominant decay branch, accounting for 98.5% of the decay intensity 

[6], with the remaining intensity almost completely shared between tlie EO pairs (1.5%) 

and the E2 pairs (0.09%). The novel experimental approach proposed [7] hinges upon the 

accurate determination of the ratio where is the rate of formation of 

E2 electron-positron pairs and is the rate of formation of EO pairs for the EO and 

E2 transitions de-exciting the Hoyle state as shown in figure 1.1. The proposed accuracy 

for the measurement of the ratio is 3%, which will require (amongst other things), 
e + e -

accurate knowledge of the detector response at relatively high energies: the combined 

kinetic energy of the EO pairs is 6.6 MeV, and the combined kinetic energy of the E2 

pairs is 2.2 MeV. The proposed method is to record only those pairs where the electron 

and positron share the kinetic energy nearly evenly. Thus, the EO and E2 pairs will be 

detected at energies near 3.3 MeV and 1.1 MeV, respectively. These two energies are far 

enough apart to expect that the detector response could be significantly different. 
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1.3 The Experimental Challenge: Outline of Present Work 

Electron/positron spectroscopy for iiuclear structure research poses several experimental 

challenges, the most imposing of which is the 7-ray background. For this reason, low 

sensitivity to photon backgromicl and high efficiency for electrons are paramount to the 

success of an electron spectroscopy measurement. The geometry of the electron detector 

has the dominant influence on its response, and must be manipulated in order to increase 

tlie efficiency for electrons relative to photons, and to improve the energy resolution. 

However, the geometry of a silicon detector cannot be altered once built, so experimental 

geometry must be optimised in advance. Because analytical equations for radiation 

interaction are solvable only in the simplest cases [8], Monte Carlo methods have become 

accepted as the most accurate method for calculating large scale radiation transport. A 

crucial advantage of Monte Carlo experiments is that the geometry can be altered at will, 

allowing the effect of the detector geometry to be studied in detail. 

It is connnon for electron detectors to be designed based on rudimentary calculations 

of electron stopping power and solid angle concerns. However, the approach is superficial, 

as the detector response depends upon its geometry in a complex way, due to competing 

effects, such as energy straggling, backscattering. transmission and other effects to be 

discussed in chapter 2. The physical interactions of radiation with matter, from which 

these effects originate, are discussed in chapter 3. One goal of this study is to manipulate 

the Monte Carlo routine PENELOPE [1] to create a calculational system that can yield 

not only the efficiency as a function of energy, but also lineshapes and the sensitivity of 

the detector to sources of background. Effectively, for a given input of radiations, the 

system will give a numerical simulation of the experimental energy spectrum that can be 

expected in a real measurement. The aim is to develop a tool for the design of future 

detectors, and to assist in pushing the boundaries of electron detection sensitivity. An 

important goal is to provide a method of calibration for existing detectors, to "fill in the 

gaps" where experimental calibration is not available. 

PENELOPE , along with GEANT4 [9], GEANT3 [10] and MNCP [11] are the most 

highly sophisticated radiation transport programs, in terms of both the accuracy of the 
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physical models used, and the computational efficiency. It should be noted that the very 

popular GEANT4 was primarily designed for high energies (>10 MeV). The option exists 

in GEANT4 to choose a "low energy" simulation scheme, which uses exactly the same 

physical models and input data as PENELOPE. A comparative study of these four code 

systems found that PENELOPE and GEANT4 agreed quite closely over the entire energy 

range of interest to the present work (up to 3.5 MeV), but that these two codes differed 

dramatically from the other two below 100 keV [12]. 

As well as extensive simulations, two experiments were carried out, one using a 

radioactive ^^^Ba source and the Honey [13] Si(Li) detector, and the other using a ®®Co 

source and the SEPH-530 detector [14]. The experiments were used for two purposes: 

first, to determine the effectiveness of the Monte Carlo system, and second, to provide 

calibration across the range of higher energies needed for the upcoming experiment 

to determine the radiative width of the Hoyle state in ^^C. A detailed model of the 

experimental setup of the ^^^Ba source measurement was recreated in the PENELOPE 

simulations, for comparison between simulation and experiment. Further simulations 

allowed the detector response to be extended to 3.5 MeV, and enabled a critical analysis 

of the sources of efficiency loss. These studies were combined with the source and 

simulations for calibration of the ^̂ C measurement. 

Experimental data on the scattering of electrons and positrons directly relevant 

to the present experimental conditions, are scarce. Two relevant studies known to 

us are: Kulchitsky [15], who studied the scattering of 2.25 MeV electrons by foils of 

different materials from aluminium to lead; and Hanson [16] who measured the angular 

distributions of 15.7 MeV incident electrons scattered by thin Be and An foils. 

1.4 Recent Progress in Electron Spectroscopy 

Reflecting the current importance of electron spectroscopy, there has been extensive 

work recently. Most of this work has been directed at low energy electron detection -

the sub keV to few keV energy region - due to the applications in electron microscopy 

and radiation therapy. Recently, extensive studies of Auger electron spectra have been 

carried out. These lie in the low keV region up to « 50 keV [17, 18]. There is extensive 
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interest in this area, dne to the apphcations in radiation therapy, where Monte Carlo 

methods are connnonly nsed for dosimetry evahiations. Monte Carlo methods are well 

established in electron microsc;opy and recently have been used for efficiency calibration 

of Ge detectors for 7-rays [19], and of Si(Li) detectors for X-rays [20], Monte Carlo 

simulations of electron transport have been widely used in electron microscopy for the 

last few decades [21], Estimating the backscattering probability is the main focus of these 

studies, and Monte Carlo methods are currently the most reliable and accurate for this 

purpose [22, 23]. Recently, experimental and Monte Carlo methods were combined to 

characterise a Si(Li) detector [20]. The approach was similar to the one presented here, 

using both radioactive sources and Monte Carlo experiments using the GEANT4 [9] code. 

The studies were aimed at characterisation of a Si(Li) detector for X-rays in the 0 keV -

60 keV energy region. One of the few examples in the literature of electron-positron pair 

spectrometer characterisation at higher energy (up to 8 MeV), is that of Tur et al. [24]. 

The approach was to use four scintillator detectors to improve the uncertainty on the 

radiative width of the Hoyle state in ^^C. Comparisons were made between experiment 

and GEANT4 simulations in the MeV energy range, for continuous electron-positron 

pair spectra. Final results on the radiative width of the Hoyle state are yet to be published. 

For applications to nuclear spectroscopy research, progress has been made using the 

Recoil-Decay-Tagging (RDT) technique, in combination with the GREAT spectrometer 

at the University of .Tyvaskyla [25]. In this technique, the recoils from a nuclear 

reaction are implanted into a double sided silicon strip detector (DSSSD). Electrons 

are then detected in surrounding silicon detectors, the signal from the electron detector 

is added to the corresponding signal in the DSSSD, to give the total energy signal. 

The silicon detectors surround the DSSSD in a box-like set\ip, the normal to each 

detector being perpendicular to the beam direction. The "add-back" results in some 

worsening of energy resolution. There is also a relatively large "dead layer", as the 

electrons are detected at very extreme angles. The detector is designed to observe a, 

proton and electron decays. Some resolution on the electron spectrum must be sacrificed 

therefore, to allow for this versatility. The detector must acconnnodate a particles 

with energies of 5-10 MeV and < 1 MeV electrons. The thickness of the silicon strips 

cannot be optimised for either particle alone, and nmst represent a trade-off between 

the optimal arrangement for both decays. The SACRED conversion electron array, also 
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at Jyvaskyla, uses a solenoid to transport conversion electron decays to a matrix of 

segmented PIN silicon diodes [26]. An energy resolution of 3-4 keV was reported for 

a test case of the 320 keV transition in ^^^Cs. In other recent work, the use of arrays 

of multiple mini-orange detectors has been reported, e.g. the ICEBALL [27] array 

designed for low resolution studies of high energy (>200 keV) electrons. Using 7-ray 

and conversion-electron spectroscopy a number of rotational bands have been observed 

in heavy nuclei including: 254No [2], 252No [28], 253No [2], ^SOpm [29], ^^i^Id and ^^^Lr [30]. 



Chapter 2 

Experiment 

2.1 Fundamental Concepts in Detector Characterisation 

The two key properties measured in electron spectroscopy are energy and intensity. 

Energy is the easier of the two to measure to useful precision. If the energy is taken as 

that which corresponds to the centroid of the full energy peak, energy calibration can be 

achieved by using a radioactive source with clear and well known lines. Generally a linear 

fit of the known energies to the centroids of two or more peaks will be adequate. 

Absolute intensity is challenging to measure; on practical grounds a relative intensity 

measurement is preferred whenever it can fulfill the experimental aims (such as the 

proposed ^^C measurement). Even relative efficiency, though, is far from trivial to 

measure for electron detectors, especially when there is a significant energy gap between 

the lines measured. A simple linear calibration may be applicable to some experiments, 

but in general, the efficiency response is non linear, and shows a more complex dependence 

on energy; the exact nature of this dependence is determined by the physical interactions 

of radiations with the bulk material of the detector, which are discussed in the next 

chapter. The separator/transporter, if used, introduces an additional energy dependence 

to the efficiency. 

An added complication in electron spectroscopy is the presence of competing radia-

tions, such as photons. It is often preferable to use a transporter or separator to separate 

the electrons/positrons from the background radiation (predominantly 7-rays). The ^^C 

experiment will use a magnetic transporter that transports to the detector only those par-

ticles with the correct energy and charge to mass ratio. A series of baffles absorbs other 

radiations. While this greatly reduces the background, it also reduces the efficiency of the 

system, due to the angular acceptance of the transporter. The overall efficiency of the 
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spectrometer ?](£) , including the transporter and detector, can be defined as 

ri(E) = - ^ r ^ , (2.1) 
^^ emitted 

where A is the peak area at energy E recorded in the detector and Nemitted is the number 

of electrons/positrons emitted from the source with energy E. The overah efficiency can 

be written in terms of the two contributions: 

rKi?) = T{E) X iUet{E) (2.2) 

where T{E) is the transmission of the magnetic transporter, and r]det{E) is the detector 

efficiency, defined by 

ridetiE) = (2.3) 
^^ incident 

where Ninddent is the number of particles that are transported and strike the detector. 

The focus of this work is not on the transmission of the magnetic transporter, but 

rather on the response of the detector as a function of the energy and angle of incident 

electrons. The efficiency is the primary, but not the only, concern. Also of interest are 

the lineshapes and energy resolution that can be expected. 

2.2 Semiconductor Detectors 

A nmnber of different types of detectors are used for electron spectroscopy. Here the 

focus is exclusively on semiconductor detectors. The detector generally consists of a 

single crystal of a semiconductor such as silicon or germanium, doped with an appropriate 

impurity. The passage of radiation in a solid-state detector creates electron-hole pairs, 

which are collected by an applied electric field. There is thus a flow of current and a drop 

in the voltage across the detector, which gives the observed output pulse. The amplitude 

of the signal is a measure of the energy of the particle. 

As shown in figure 2.1, even energetic electrons completely stop in a few millimeters 

or less of silicon (a 1 MeV electron has a range of approximately 2.5 mm). Because silicon 

can be cut into extremely thin wafers, the higher stopping power of electrons relative to 
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Figure 2.1: The range of electrons and positrons in silicon [8]. 

photons can be exploited. By allowing most photons to pass through without interaction, 

while ensuring that most electrons are stopped completely, the photon background can be 

greatly reduced. Solid state detectors have better energy resolution than, say, scintillator 

detectors because of the low aniomit of energy required to create an electron-hole (-Bpair) 

pair, which improves the statistics of the charge collection process (more electron-hole 

pairs are created for a given radiation). For silicon the energy required to create an 

electron hole pair is 3.62 eV at 300 K and 3.81 eV at 77 K. Epair is not the same as the 

band-gap in silicon, 1.1 eV at room temperature, as most of the deposited energy goes 

into exciting lattice vibrations. Although, Epair is a fundamental limitation on the energy 

resolution. However, as will be seen below, other contributions to the intrinsic energy 

resolution of the detector are much larger than this. 

2.2.1 Lithium-Drifted Silicon Diodes - Si(Li) 

Lithium-drifted diodes were developed to increase the depletion zone, or the sensitive 

region of the semiconductor. The maximum thickness that can be achieved using a 

conventional silicon diode is 1-2 nnn; but thicknesses of up to 10 mm can be achieved with 
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lithium drifting. Lithium ions are drifted through initially p-type silicon, and may be 

termed as a compensating dopant. Initially, a large excess of Li donor ions is diffused into 

one surface of the p-type crystal to create a n-type region near the surface. The resulting 

p-n junction is then reverse biased while the temperature of the material is elevated. 

The lithium ions will be slowly drawn towards the p-type region under the action of the 

electric field. It has been demonstrated [31] that the system will tend towards a state in 

which the total space charge is zero at every point (perfect compensation). This creates, 

in the centre, a compensated, or an intrinsic region of zero-net charge, forming a p-i-n 

junction. As there is no net charge in the intrinsic region, the voltage varies linearly 

across this region. As the resistivity of the intrinsic region is much larger than either the 

p or n regions, virtually all the applied voltage is distributed across the i region, and the 

electric field drops sharply to zero at its boundaries [32]. The intrinsic region, then, serves 

as the active region of the detector, and the migration of charge carriers to the p-i and 

i-n boundaries gives rise to a signal pulse. Because of the greater sensitive region, lithium 

drifted silicon detectors must be cooled to low temperatures to achieve high resolution. 

2,3 Lineshapes 

A common challenge of electron spectroscopy is to measure electron radiations with 

intensities far lower than the competing radiations. For example, the E2 3.2 MeV El 

pair line in ^̂ C is 1136 times weaker than the corresponding 7-ray, and 2.8 x 10® times 

weaker than the a-decay rate. Increasing the efficiency for electron detection will of 

course improve the peak to background ratio, but the importance of energy resolution 

should not be overlooked. For example, doubling the energy resolution will double the 

height of the peak, possibly allowing a peak to be measured that would otherwise be 

hidden by the background level in the spectrum. As such, energy resolution as well as 

efficiency are crucial factors in detector design. 

Internal conversion produces monoenergetic lines; however, peaks with a definite en-

ergy spread and distinctive lineshape are observed, as shown in figure 2.2. The observed 

experimental lineshapes, can be explained as the sum of various physical phenomena as-

sociated with the interactions of radiation with matter and the properties of the semicon-

ductor. The lineshapes of the electron peaks can be attributed to the following effects: 
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Figure 2.2: An example of the coiitrihutions to liiiesliape of a typical conversion-electron peak. 

The contributions from energy straggling, incomplete energy deposition, electronic noise, semicon-

ductor effects and room background are smnnied to give the lineshape. 
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Figure 2.3: A schematic of electron detection. An electron, emitted from a nucleus with energy 

Eo loses energy in the source {AEs), and in the front electrode {AEdet) and deposits an energy 

signal E = Eo- AEs - AEjet in the detector. 
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1. Semiconductor resolution (intrinsic as well as electronics) 

2. Energy straggling (in the source and the dead layers of the detector) 

3. Incomplete energy deposition in the detector 

4. Ambient background 

Semiconductor resolution refers to the broadening of electron lines by several effects 

associated with the collection and counting of charge in a semiconductor, as well as 

noise from the electronics. Energy straggling and semiconductor resolution cause a 

broadening of electron peaks. Incomplete energy deposition causes a reduction in 

the peak-to-total ratio, reducing the peak heights and increasing the background at 

energies lower than the peak energy. Obtaining the maximum peak-height and the 

lowest possible background are key requirements for the design of an internal conversion 

spectrometer. Detector design must consider the angular and geometric dependencies of 

energy straggling and incomplete energy deposition to be effective. These dependencies 

are dictated by electron scattering theory (to be discussed in chapter 3). The term 

"background" is often used fairly loosely to refer to unwanted radiations or counts in 

the spectrum. From here on, "ambient background" will be used to refer to random 

decays that do not originate from the source or the target, approximated by a straight 

line in figure 2.2; whereas "background" will refer to the sum of all unwanted detector 

counts, the sum of "ambient background", incomplete energy deposition, and photon 

(or other radiations) counts from the source. Ambient backgrovuid refers to mostly pho-

ton events, that originate from cosmic rays, radioactive decays from nearby materials, etc.. 

Here we will give a general overview of each of the contributions to the detector 

response before describing the experiments, and presenting the experimental spectra. 

2.3.1 Intrinsic Semiconductor Resolution 

An ideal detector would be one in which particles of the same incident energy always 

produced signals of the same amplitude. In practice this is never the case; there is always 

some spread. 
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Upon interacting with the detector crystal, an incident radiation that generates a total 

of N ion pairs at a distance x from the negative electrode will give a total charge Ne flowing 

throngh the external circnit, if there is no trapping or recombination. Of this charge, the 

holes will contribute a charge 

in a time 

and the electrons 

in a time 

<lh = Nex- (2.4) 
a 

r c = - ^ (2.5) 
HhS 

qe = Ne (2.6) 

re = ^ (2.7) 

where d is the distance between positive and negative electrodes, and // is the (electron or 

hole) carrier mobility, defined by: 

Vh = Hh£ (2.8) 

= f̂ eS (2.9) 

where Ve and Vk are the electron and hole drift velocities in an applied electric field of 

magnitude £. The electron and hole mobilities /Je and ///, in silicon at 77 K are 2.1 x 10^ 

cm^/V-s and 1.1 x 10'̂  cm^/V-s, respectively [32]. The contrib\ition of the semiconductor 

detector itself to the energy resolution may be described by the standard deviation a in 

the set of measurements of particles that arrive at the sensitive area of the detector with 

the same energy. Clearly, the smaller a the better. Semiconductor effects cause the line 

to be broadened into a Gaussian, centred on the peak energy. 

The following effects contribute to this Gaussian spread: 

1. Number of electron-hole pairs 

Perhaps the most fmidamental source of intrinsic semiconductor resolution is the 

distribution in N, the number of electron-hole pairs created by a given particle 

of a given energy entering the sensitive region of the detector. Due to the statis-

tical nature of electron scattering, the number of electron-hole pairs created by 
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radiations of a given energy will not be the same every time. This contributes a 

roughly Gaussian spread to the lineshape, and is a fundamental property of the 

semiconductor detection method. 

2. Incomplete charge collection 

An electron incident on a semiconductor detector will be stopped almost instanta-

neously, in most cases between and sec. But the electrons and holes 

created may (depending upon where they are created in the material, and the drift 

velocity) have longer travel times. As such, some of the electrons and holes created 

by an incident radiation may not reach the electrodes within the charge collection 

period TC, see equations 2.5 and 2.7. Clearly incomplete charge collection can also 

produce a low-energy skew to the lineshape along with making a contribution to 

the Gaussian width. 

3. Thermal noise 

Thermal noise occurs in any conductor. It arises because the velocity distribution of 

carriers in a medium at non-zero temperature leads to a fluctuating and non-uniform 

distribution of these carriers in the medium. This leads to a fluctuating voltage 

between the ends of the semiconductor, whose average value is zero. There are also 

some small contributions from the effects of high fields and from the temperature 

distribution to the thermal noise - a given temperature implies a given average 

energy, however the maximum thermal energy is larger. 

4. Current noise 

Applying a bias voltage generates a current through the semiconductor. Current 

noise, as distinct from charge collection noise, arises due to fluctuations in the cur-

rent that results from applying this bias voltage rather than the current that arises 

from incident radiations. This unwanted current is made up of discrete movements 

of electrons and holes, which may be trapped, recombined or generated thermally 

within the counter. Any process that disrupts the continuous flow of current is an 

additional source of noise. It requires a difl'erent treatment to charge collection noise. 
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(a) Generation-Recomhination noise 

Geiieration-Recombiiiation noise may be regarded as the noise that occurs 

from the breaking up of electron trajectories into stages. The charge carriers 

that make up the current flow in a semiconductor may suffer recombination or 

may be generated at some point in the bulk material. Such carriers traverse 

only part of the distance between the electrodes, and so contribute pulses 

which are shorter than those that cross the entire medium. Similarly, single 

carriers that become trapped for varying times and cross the crystal in two or 

three stages also do not contribute fully to the signal. 

(b) Shot noise 

One source of current noise is shot noise, the well known c}uantum effect that 

results from the quantisation of charge carriers in the medium. The current 

flows by means of individual electrons and holes and therefore cannot be 

continuous. 

(c) Excess Noise 

Excess noise refers to the current noise that is not due to shot noise or 

generation-recombination noise. Although it may be significant, there is little 

known about the physical causes of it. It depends upon the nature of the 

surface treatment applied to the semiconductor, and the type of electrodes 

used, and is probably related to imperfections in the contact on the crystal. 

2.3.2 Energy Straggling 

Energy straggling describes the process whereby an electron loses part of its energy 

before reaching the sensitive part of the detector. This results in the electron depositing 

less than its full energy in the sensitive part of the detector, and of course, a lower 

energy signal is recorded. Energy straggling occurs if there is any material between 

the radiation source and the sensitive area of the detector. In experiments described 

below there are contributions from the gold window on the detector and the depth 

distribution of the source. Straggling arises because the absorption of energy by matter 

is a statistical process, causing an originally monoenergetic electron line to no longer 
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be "sharp". The thicker the material through which the electrons must pass, the 

greater the straggling, and the lower the energy resolution. A thick target not only 

broadens the peak but shifts it to a lower energy and worsens the lineshape (giving it 

an extra "tail"). This hampers conversion-electron spectrometry, making determination 

of intensities and energies less accurate, and decreasing the ease with which nearby 

lines can be resolved. In conversion-electron spectrometry, at energies in the range of 

hundreds of keV, with very thin targets (< 1 mg cm~^), a reasonable rule of thumb is that 

an addition of 1 mg cm"^ to the target thickness worsens the resolution by 1 keV [33, pl36]. 

The energy straggling increases as the solid angle subtended by the detector increases, 

simply because geometry then allows a bigger range of path lengths through the source 

and detector dead region. Electrons that hit the edges of the detector will travel through 

more target material than those that hit near the centre, making them likely to lose more 

of their energy in the target and therefore contribute less than their starting energy in the 

detector (see figure 2.3). This poses a conflict with the desire to increase the efficiency, 

which clearly increases with solid angle. A large range of incident angles also causes a 

longer low energy "tail", to the left of the electron peak. The lineshape caused by energy 

straggling is affected by the detector geometry, but also depends upon the material, in 

which the energy loss occurs. In the ^^C measurement, there are expected to be two 

materials that will cause energy stragghng, the gold window on the detector and the 

carbon target foil (see figure 2.3). The straggling in the latter will depend heavily upon 

the solid angle and the implantation depth. 

2.3.3 Incomplete Energy Deposition 

Of crucial importance to the planned electron spectroscopy measurements on ^^C is the 

efficiency as a function of energy and angle. The proposed methods involve taking ratios 

of measurements, meaning it is not necessary to determine the absolute efficiency of the 

device. The solid angle efficiency will cancel upon taking the ratio, and the measurements 

can be corrected for the transmission of the Lens transporter, the energy dependence 

of which is known accurately. The quantity of interest is the detector efficiency lUet of 

equation 2.3. If all the particles that hit the detector deposit their full energy in the 

detector, the detector efficiency will be 100%. Traditionally, deviations from 100% 
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(i) 
• e. 

(ii) (iii) 
Figure 2.4: Incomplete energy deposition: (i) Secondary photon transmission (T^): a primary 
electron ( e " ) interacts with the detector material and produces a secondary photon, which is 
transmitted (ii) Primary electron backscattering {ppb)'- a primary electron interacts with the de-
tector material and is backscattercd (iii) Secondary electron transmission (T^e): a primary electron 
suffers interactions and produces a number of secondary electrons e j , one of which is transmitted. 

have been attributed to backscattering, the ejection of the primary particle from the 

detector with a negative velocity (if the initial direction is defined as positive) see figure 

2.4. However, this treatment neglects several sources of efficiency loss that can be equally 

or even more important. 

Several different effects can be responsible for incomplete energy deposition. The most 

obvious is when the incident (primary) particle leaves the detector with some non-zero 

energy. It may pass through the entire detector and exit at the back (transmission) or be 

reflected out the front of the detector (backscattering). In general, upon interacting with 

the detector material, the incident particle will create a multitude of secondary electrons 

and photons from ionisation events and excitation-relaxation events. For example, a 

3 MeV electron can be expected to create somewhere in the order of secondary 

radiations. The incident energy E, will then be shared among these "secondary" 

radiations. The entire family, consisting of a primary and its secondary radiations, may 

be called a "shower". In order for a complete energy signal to be recorded, the secondary 

radiations nmst also be stopped fully in the detector; any transmission or backscattering 
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of one or more secondary radiations will result in an incomplete energy signal. 

The sources of energy loss in an electron detection experiment may be summarised as 

(see figure 2.4, which illustrates some of these): 

• primary electron backscattering ppb 

• secondary electron backscattering psb 

• primary electron transmission Tpg 

• secondary electron transmission Tse 

• secondary photon backscattering p^ 

• secondary photon transmission 

As already noted, all secondary radiations must be fully absorbed in order for the full 

energy signal to be recorded. The detector efficiency will be 100% less the probability of 

incomplete energy deposition, x: 

met = i-x- (2.10) 

Alternatively, rewriting in terms of the specific contributions to the incomplete energy 

depositions x-

met = 1 - Ppb - Psb - Tpe - Tse - Pi - T-y. (2.11) 

The focus of the literature on primary backscattering is probably due to the fact that 

electron spectroscopy has been predominantly conducted at low energies (i.e. < 500 keV), 

where primary backscattering is indeed dominant. As bremsstrahlung radiation becomes 

the dominant form of energy loss in silicon for electrons above 1 MeV, minimising the 

photon transmission becomes crucial for studies of electrons and positrons above a few 

hundred keV in energy. 

Incomplete energy deposition events can deposit any energy E between 0 and Einc, 

where Einc is the energy of the particle upon entering the detector. Most of these events 

will not be recorded as part of the peak, as they can take any energy in the range 

0 < < Einc- In fact it is common to approximate the contribution of incomplete energy 

signals to the spectrum by a step function (see figure 2.2). As well as reducing efficiency, 

these events will also have an effect on the lineshape, effectively making the background 
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higher on the side of lower energy. 

In the low energy region, where primary backscattering is dominant, the backscattering 

coefficient p, defined as the rnnnber of backscattered electrons divided by the nnmber of 

electrons impinging on a material snrface, is an important quantity. Some important 

results relating to backscattering may be summmarised as follows: 

1. The backscattering coefficient p increases strongly with increasing Z of the medium. 

For example backscattering of 100 keV incident electrons from carbon produces 

about 4% backscattering events, whereas it is 50% for gold. 

2. Backscattering decreases with increasing energy. 

3. Backscattering depends strongly upon the angle of incidence. Geometry implies that 

backscattering will increase with any departure from normal incidence because, in 

effect, the trajectory of the electron remains nearer the front surface of the detec-

tor. For example, a 60° angle of incidence typically produces about twice as many 

backscattered electrons as normal incidence. Since energy straggling also increases 

as the angle departs from normal incidence, a key point of detector design is to min-

imise the departures from normal incidence for which radiation strikes the detector. 

2.4 Experimental Measurements 

In order to study the efficiency and linesliape response of silicon detectors, and to provide a 

reference for simulations, radioactive source experiments were made, with a ^^^Ba source 

and a source. The ^^^Ba measurement was designed to calibrate the detector at 

low energy (20 keV - 400 keV) and the measurement was designed to calibrate the 

detector in the MeV range (up to 3.5 MeV). The decays from the 7.654 MeV Hoyle state 

to the ground state will be detected at roughly 3.3 MeV, as the experimental method 

proposed measures those pairs that share the energy roughly equally. These results are 

crucial for the following purposes: 

1. Characterisation of existing Si(Li) detectors 

2. Design of future electron detectors 

3. Detector calibration in anticipation of an upcoming measurement of the decay rate 

of the Hoyle state in ^̂ C 
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Figure 2.5: Cross sectional view of the experimental setups used for the ^̂ B̂a radioactive source 
measurements. Red lines indicate the envelope of the spectrometer acceptance, (a) Honey electron 
array to obtain the mixed photon and conversion-electron data, (b) Magnetic spectrometer used 
to obtain the electron spectrum. 

Two experimental setups were used as shown in fig 2.5: (a) a bare Si(Li) detector in front 

of a radioactive source; and (b) a radioactive source, magnetic transporter and Si(Li) 

detector. Setups (a) and (b) can accommodate either of two Si(Li) detectors, the Honey 

[34] detector array or the SEPH-530 [14] detector. For these measurements. Honey was 

in (a) and SEPH-530 in (b). The ^^^Ba measurement used the Honey detector and setup 

(a). The ®®Co measurement used setup (b) with the SEPH-530 detector. 

2.5 Experimental Apparatus 

2.5.1 Further Details of Setup (a) From Figure 2.5 

Setup (a) shows the Honey detector, a bare Si(Li) detector, in front of a radioactive source. 

In this case, there is no material between the detection area of the crystal and the decaying 

nuclei (except the source material itself, and the electrode on the Si(Li) detector). The 

angles of acceptance are given by trigonometry. This setup avoids any efficiency loss from a 

transporter, but it also means that the detector will be sensitive to all source emissions and 

ambient background. For example, if a conversion-electron emitter is used, the detector 

will be sensitive to 7-rays, X-rays, Auger electrons, internal conversion-electrons, as well 
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electrons and positrons, if emitted. 

2.5.2 Further Details of Setup (b) From Figure 2.5 

Setup (b) shows the combined magnetic electron spectrometer and Si (Li) detector, which 

is sensitive to electrons and positrons only. A solenoidal magnetic field is applied, which 

causes the electrons and positrons to travel in a helical path. The radius of curvature (p) 

is obtained by the magnetic rigidity, which, assuming a (nearly) homogeneous field (the 

momentum resolution Ap/p is 12% [35]) is given by (in luiits of Tm) [35]: 

1.704433 X 10-V-E^ + 2mod^E 
Bp= 5 , (2.12) 

rriQC^ 

where Bp is the magnetic rigidity for electrons and toqc^ is the electron rest mass energy, 

and E is the electron's kinetic energy, in keV. Only those electrons whose magnetic rigid-

ity falls within a narrow region will be transported (for a given applied magnetic field). 

The selected particles traverse two loops before detection. There is no straight line view 

from the source to the detector, so the photon emissions interact with either the axial ab-

sorbers or diaphragm. The power supply is operated remotely by a computer, controlling 

a digital to analog converter (DAC). The field can either be fixed at a value calculated 

for a specific conversion line or electron-positron pair, or swept, to measure a wide energy 

range. The computer steps the output voltage of the DAC based on a timer, or after a 

certain beam charge. For radioactive source measurements timer based control is used. 

The field is incremented in small steps, typically w 3 mA and « 0.0002 T in current 

and field, respectively. Once the field has swept up to the maximum value, it is ramped 

back down to the initial value, stepping by the same process (making 1 cycle). There is 

some lag between the magnetic field and the control voltage caused by the impedance of 

the solenoid, however this has been measured to be less than 1% of the step-time at the 

sweeping speeds used [35]. 

2.5.3 Honey 

The Honey detector array consists of a six-segmented Si(Li) array. Each individual 

detector is a 4.3 mm thick equilateral triangle, 285.6 mm^ in area. The front and 

cross-sectional views are shown in figure 2.6 (and in figures 4.1 and 4.2). The detectors 

are housed in a copper cylinder. To reduce leakage current and thermal noise, the detector 

array is cooled to liquid nitrogen temperatures, through a copper conductor. Honey has 
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Figure 2.6: The front dimensions of the Honey detector. 

a 200 A thick gold electrode on the front and back, and is operated with a reverse bias 

voltage, which is limited to a maximum of 1000 V. The best energy resolution of about 

2 keV full-width at half-maximum (FWHM) comes at low energies ( « 300 keV). where 

semiconductor effects (leakage current, thermal noise, etc..) have less impact. 

2.5.4 SEPH-530 

The SEPH-530 detector is a single, cylindrical Si(Li) detector, 9 mm in thickness, and 

19.8 mm in diameter. Like the Honey array, it has a 200 A thick gold entry window, and 

is operated with a reverse bias voltage, limited to a maximum of 1000 V. 

2.6 ^̂ ^Ba Source Experiment 

Table 2.1: Conversion-electron, Auger, X-ray and 7-ray en-

ergies and intensities of the ^̂ ^Ba radioactive source. 

"E^' MultTw Mixing('') Lĥ ^ ^ ^ 
[keV] polarity Ratio [keV] 

Auger L 2.5 - 5.6 138.0 
Auger KLL 24.41 - 25.80 9.3 (4) 
Auger KLX 29.00 - 30.96 4.39 (19) 
Auger KXY 33.51 - 35.95 0.517 (21) 
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Table 2.1: continued 

Mixing*''' Line 

[keV] polarity Ratio [keV] 

XL 3.8 - 5.7 16.0 (8) 

XKa2 30.625 34.0 (4) 

XKai 30.973 62.8 (7) 

x m 34.92 6.17 (19) 

xm 34.987 11.9 (3) 

x m 35.259 0.127 (6) 

XK/32 35.818 4.03 (16) 

XK/34 35.907 0.032 (15) 

XK02,3 35.972 0.53 (6) 

53.1622(6) M1+E2 -0.15 (+6-5) 7 2.14 (3) 

K 17.18 10.30 (21) 

L 47.61 1.8 (3) 

M+ 52.20 0.46 (9) 

79.6142(12) M1+E2 0.124 (15) 7 2.65 (5) 

K 43.63 3.96 (9) 

L 73.98 0.575 (19) 

M+ 78.62 0.147 (5) 

80.9979(11) M1+E2 -0.151 (2) 7 32.9 (3) 

K 45.01 47.0 (7) 

L 75.38 7.04 (9) 

M+ 80.01 1.803 (24) 

160.6121(16) M1+E2 0.96 (5) 7 0.638 (4) 

K 124.63 0.149 (3) 

L 155.14 0.0300 (9) 

M+ 159.67 0.00780 (20) 

223.2368(13) M1+E2 -0.114 (14) 7 0.453 (3) 

K 187.25 0.0379 (6) 

L 217.56 0.00500 (8) 

M+ 222.23 0.001271 (20) 

276.3989(12) E2 7 7.16 (5) 

K 240.41 0.330 (6) 

L 270.90 0.0603 (10) 

M+ 275.44 0.0156 (3) 

302.8508(5) M1+E2 0.022 (20) 7 18.34 (13) 

K 266.87 0.684 (12) 
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Table 2.1: continued 

7(a) 

[keV] 

Mixing^'') 

polarity Ratio 

Line 
[keV] 

356.0129(7) E2 

383.8485(12) E2 

L 297.16 0.0887 (14) 

M + 301.84 0.0225 (3) 

62.05 (19) 

K 320.03 1.309 (19) 

L 350.47 0.215 (4) 

M + 355.04 0.0553 (7) 
8.94 (6) 

K 347.86 0.151 (21) 

L 378.29 0.0241 (4) 

M + 382.88 0.00619 (8) 

lid) 

(a) Taken from [38] 
(b) Taken from [39] 
(c) Energy of conversion-electron. Auger-electron, or X-ray 
(d) Conversion electron, Auger-electron. 7-ray or X-ray intensity per 100 ^^^Cs decays 

The nucleus ^^^Ba decays to excited states in ^^^Cs via electron capture with a half-life 

of 10.540(6) years [38]. The excited nucleus ^^^Cs then decays to its ground state via 

a number of converted electromagnetic transitions, with the conversion-electron energy 

ranging from 17.18 keV up to 382.88 keV. The energies, intensities and multipolarities of 

these transitions are well known [38, 39]. 

The complete spectrum of radiations emitted in the electron capture decay of ^^^Ba is 

listed in table 2.1. The intensities and energies of the 7 emissions from ^^^Cs were obtained 

from the "Decay Data Evaluation Project" (DDEP) [38] and the mixing ratios and mul-

tipolarities were taken from the "Evaluated Nuclear Structure Data File" (ENSDF) [39]. 

These parameters were input into the "Band-Raman Internal Conversion Coefficients" 

code (Bricc) [40] to obtain the internal conversion coefficients and energies for each shell. 

The M-|- line corresponds to the weighted average energy and summed intensity of the 

M,N,0,P lines, which are too close in energy to be resolved in most silicon detectors. 

Similarly, the energies of the conversion-electrons for the L-shell have been evaluated from 
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the partial values as: 

I = (2.13) 
i 

E = (2.14) 

The Auger emissions were taken from the DDEP [38]. The X-Ray intensities were 

calculated by combining data from the DDEP [38] and the Table of Radioactive Isotopes 

[41]. In summary, for every 100 decays, ^^^Ba emits: 152.2 Auger electrons; 78.4 

conversion-electrons; 135.6 X-rays and 135.23 "/-ray photons. 

2.6.1 Source Preparation 

The source was prepared by dropping a hydrochloric acid solution of ^^^Ba on to a 2.4 x 10^ 

/ig/cm^ Mylar foil, depositing a cylindrical distribution of barium chloride. The specific 

activity, 3.7 x lO'' Bq/g and activity, 7.4 x 10"̂  Bci, were specified by the supplier [14]. The 

diameter was measured at 4 mm. The source thickness was determined as follows: 

Activity 
Specific activity 

7.4 X 10-̂  Bq 

= mass 

• 1 - 7 , 2 X 10-'g 
3.7 X 10'̂  Bq/g 

p = 3.586 g/cm3 

Area = 7r(0.2 cm)2 = 0.126 cm^ 
2 X IQ-^ 

t 
0.126 cm^ X 3.586 g/cm^ 
4.4 nm, (2.15) 

or 1.59 /^g/cm^. A thin gold layer was evaporated onto the Mylar to prevent the build up 

of electrostatic charge. The source, with the Mylar foil, was housed within a square 19 

mm X 19 mm aluminium frame of thickness 0.5 mm. Electrons (and positrons) emitted 

from within the source can lose part of their energy traversing the source material. This 

will have an effect on the lineshape observed, causing broadening and asymmetry in 

the peaks, due to energy straggling. For example, a 100 keV electron will lose an av-

erage of 0.1 keV on traversing the source material and the gold window of the detector [42]. 
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Figure 2.7: The efficiency as a function of energy for the Honey detector. 

2.6.2 Data Collection 

Two sets of nieasurenients were taken on the ^^^Ba source, using: 

(a) No magnetic transporter, and the Honey detector array 

(b) The magnetic transporter and the SEPH-530 detector 

The efficiencies of both setups were determined experimentally by comparing the 

peak areas of the conversion-electron peaks to the intensities given in table 2.1. The 

efficiency of the bare Honey detector was found to be constant with energy (see figure 

2.7). The efficiency of the magnetic spectrometer and SEPH-530 detector data shows 

a more complex dependence, see figure 2.8, due to the transmission of the magnetic 

transporter. The solid line is the fit to the data obtained by integrating the momentum 

window over the energy region [43], and applying a scaling factor. 

The Honey data were recorded over 23 hours. The SEPH-530 data were taken over 

17 hours, the magnetic field was swept over 77 cycles. Figure 2.8 shows the transport 

efficiency of the Lens magnetic transporter. To correct for the energy dependent efficiency 

of the transporter the raw data were divided by the efficiency of the Lens transporter. 

The two spectra were normalised to each other using the 356 K line. By fitting the 
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100 200 300 400 
Energy (keV) 

F igure 2.8: The efficiency of the magnetic spectrometer and SEPH-530 detector. Points: experi-

mental efficiencies from the source experiment; Sohd curve: Transport efficiency, calculated 

by integrating the momentum window over the current range and normalising to the experimental 

data. 

experimental spectra, the peak positions were obtained accurately, and the SEPH-530 

data were shifted in energy to line up with the Honey data. The data were then energy 

calibrated by comparing the electron peak positions in the Honey data to table 2.1 and 

applying a linear calibration. An ambient background spectrum was recorded in the 

Honey chamber (with no source present) for 25 hours, this was subtracted from both 

the Honey data and the Lens data (but not the difference spectrum). The efficiency 

corrected and energy calibrated experimental energy spectra of the ^^^Ba source are 

shown in figure 2.9. The top panel is the bare Si(Li), Honey detector data (a), the middle 

is the magnetic spectrometer, SEPH-530 detector data (b), and the bottom panel is the 

difference between the Honey and Lens ((a) - (b)). 

The difference spectrum is dominated by photon events in the Honey detector. Some 

discontinuities around the peaks, and some negative values occurred. Some irregularities 

must be expected due to the differing detector geometries, amplifiers, angles of incidence 

and also statistical fluctuations. The difference spectrum then is not the exact photon 
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200 

energy [keV] 

Figure 2.9: ^̂ ^Ba energy spectra. Top panel: Mixed plioton and electron spectrum, measured 
with Honey; Middle panel: Electron spectrum, measured with the SEPH-530, comijined with the 
Lens spectrometer; Bottom panel: Pure photon spectrum deduced by subtracting the middle panel 
from the top panel; the features labeled * are artifacts of the subtraction. 
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spectrum, but rather, an indication of the photon background. Nevertheless, the X-ray 

and photon peaks are clearly visible, as is the Conipton background. The Compton edge 

can be clearly seen for the most intense high energy peak, the 356 keV, at exactly the 

correct energy of 203 keV. 

2.7 Source Exper iment 

The characterisation done with the ^^^Ba measurement was extended with a measurement 

on a source with the aim to: 

• extend the detector characterisation to high energies (up to 3.4 MeV). This was 

necessary, because the proposed ^^C measurement requires detector characterisation 

up to 3.3 MeV. 

• demonstrate the ability of the spectrometer to detect high energy electron-positron 

pairs. 

®®Co was chosen because it is a high energy internal conversion-electron and electron-

positron pair emitter exhibiting converted transitions up to 3.4 MeV (table 2.2). The 

experiment was conducted with the magnetic electron transporter and the SEPH-530 

detector. 

Table 2.2: Conversion-electrons, photons and pairs, emitted 

from with an intensity exceeding 1 x 10"^ particles per 

100 disintegrations of ®®Co. 

[keV] 

Multi-'' 

polarity 

Mixing'' 

Ratio 

Line 
[keV] 

Id 

733.5085(23) Ml-f-E2 -0.02(2) 7 0.191(4) 

K 726.40 5.08(14)E-5 

787.7391(23) M1+E2 0.85(35) 7 0.310(4) 

K 780.63 8.9(7)E-5 

846.7638(19) E2 7 99.9399(23) 

K 839.65 2.67(4)E-2 

L 845.99 2.55(4)E-3 
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Table 2.2: continued 

Multi-'' Mixing'' Line 

[keV] ] polarity Ratio [keV] 

M+ 846.68 3.68(5)E-4 

977.363(4) M1+E2 0.07(3) 7 1.422(7) 

K 970.25 2.10(3)E-4 

L 976.59 2.00(3)E-5 

996.939(5) M1+E2 1 (Assumed) 7 0.116(6) 

K 989.83 1.9(3)E-5 

1037.8333(24) M1+E2 0.00(5) 7 14.03(5) 

K 1030.72 1.84(3)E-3 

L 1037.06 1.75(3)E-4 

M+ 1037.75 2.52(3)E-5 

1175.0878(22) M1+E2 0.14(4) 7 2.249(9) 

K 1167.97 2.32(6)E-4 

L 1174.32 2.21(3)E-5 

1238.2736(22) E2 7 66.41(16) 

K 1231.16 7.16(10)E-3 
L 1237.50 6.8(l)E-4 

M+ 1238.19 9.81(13)E-5 
Pair 1.027(24)E-3 

1360.196(4) M1+E2 -0.11(1) 7 4.280(13) 
K 1353.08 3.34(5)E-4 
L 1359.43 3.168(5)E-5 

Pair 1.361(22)E-4 

1771.327(3) M1+E2 -0.004(2) 7 15.45(4) 
K 1764.21 7.44(ll)E-4 
L 1770.56 7.04(10)E-5 

M+ 1771.24 1.015(14)E-5 
Pair 2.48(3)E-3 

1810.726(4) M1+E2 -0.17(3) 7 0.639(3) 
K 1803.61 2.97(4)E-5 

Pair 1.131(20)E-4 
1963.703(11) M1+E2 -0.02(2) 7 0.706(4) 

K 1956.59 2.84(4)E-5 
Pair 1.68(3)E-4 

2015.176(5) M1+E2 0.68(5) 7 3.017(14) 
K 2008.06 1.181(18)E-4 

Id 
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Table 2.2: coiitimied 

Multi-'' Mixing'' Line I'' 
[keV] polarity Ratio [keV] 

L 2014.41 1.117(17)E-5 
Pair 8.42(15)E-4 

2034.752(5) M1+E2 -0.073(5) 7 7.741(13) 
K 2027.64 2.93(4)E-4 

L 2033.98 2.77(4)E-5 
Pair 2.08(3)E-3 

2113.092(6) M1+E2 0.27(3) 7 0.376(3) 
K 2105.98 1.336(22)E-5 

Pair 1.154(21)E-4 

2212.898(3) M1+E2 -3(1) 7 0.385(5) 
K 2205.79 1.32(3)E-5 

Pair 1.58(4)E-4 

2276.16(16) E2 7 0.118(4) 

Pair 5.29(20)E-5 

2523.0(8) E2 7 0.063(8) 

Pair 3.1(4)E-5 

2598.438(4) M1+E2 -0.28(2) 7 16.96(4) 

K 2591.43 4.264(ll)E-4 

L 2597.67 4.03(6)E-5 
Pair 8.80(14)E-3 

2657.5(8) E2 7 0.0195(20) 

Pair 1.23(13)E-5 

3009.559(4) M1+E2 0.065(5) 7 1.038(19) 

K 3002.45 2.05(5)E-5 

Pair 7.10(16)E-4 

3201.930(11) M1+E2 0.50(1) 7 3.203(13) 

K 3194.82 5.79(8)E-5 

Pair 2.50(4)E-3 

3253.402(5) E2 7 7.87(3) 

K 3246.29 1.424(21)E-4 

L 3252.63 1.345(19)E-5 

Pair 7.00(ll)E-4 

3272.978(6) M1+E2 0.420(4) 7 1.855(9) 

K 3265.87 3.24(5)E-5 

Pair 1.493(23)E-5 
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Table 2.2: continued 

[keV] 

Multi-'' 
polarity 

Mixing'' 

Ratio 

Line Ea,c 

[keV] 

3369.7(3) 
3451.119(4) 

E2 
E2 

3547.93(6) M1+E2 
3611.8(8) E2 

-0.30(2) 

7 

7 

K 
Pair 

7 

7 

0.0103(8) 
0.942(6) 

3444.01 1.56(2)E-5 
9.12(14)E-4 
0.1956(13) 
0.0084(4) 

Id 

'' Taken from [44] 
Taken from [37] 

Energy of conversion-electron, Auger electron, or X-ray 
^ conversion-electron, Auger electron. 7-ray or X-ray intensity per 100 decays 

Table 2.2 shows the 7 . pair and conversion-electron emissions from ®®Co. The intensi-

ties and energies of the 7 emissions were again evaluated from DDEP [44] and the mixing 

ratios and multipolarities were taken from ENSDF [37]. These parameters were input to 

Bricc [40] to obtain the internal conversion and pair coefficients and energies for each shell. 

2.7.1 Source Preparation 

The source was made in the ANU laboratories. The source was calibrated by comparison to 

a ^^^Eu source of known activity. The ^^^Eu source was counted in the same experimental 

setup, and the 344 keV 7 - r a y was chosen for comparison. The count-rate (11344 )̂ is given 

by: 

11344-̂  = J344y X 77344-), X ^344^ (2.16) 

where 4̂344-̂  is the source activity, in Becquerels, 77344̂  is the absolute efficiency of the 

7-detector and J344-Y is the intensity of the 344 keV line. Rearranging equation 2.16 yields 

??3447 = 

V344f = 

n 3447 
J 3 4 4 7 X ^3447 

6.1 Bq 
0.2765 X (1.41 X 10^) Bq 

r?3447 = 1.56 X 10"^ (2.17) 

In-house studies show that the 7-ray detector used has twice the absolute efficiency at 
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344 keV as at 840 keV, which means that the absolute efficiency at the 846 7-line of 

is 

'78467 = 
1.56 X 10 - 4 

r/8467 = 7.82 X 10 
- 5 

Rearranging eciuation 2.16 gives 

^8467 
II 8467 

-'̂ 8467 X '?8467 

= 4.70 X 10'̂  Bq, (2.18) 

I.e. an activity of 4.70 x 10"̂  Bq, for the source. 

2.7.2 Data Collection 

1000 2000 
energy [keV] 

3000 

Figure 2.10: Blue: ®®Co electron spectrum, black: background, *: unidentified contaminants. 

The magnet current was swept between 2.7 A and 12.6 A. 
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1000 2 0 0 0 
energy [keV] 

3000 

Figure 2.11: ®®Co electron spectrum, after background subtraction, unidentified contaminants. 

The source was measured using the Lens spectrometer and SEPH-530 detector, 

operated at 400 V, with a swept magnetic field, counting for 69 hours. The field was 

swept 422 times. For each energy signal recorded, a value of the magnetic field was also 

recorded in event - by - event mode. The momentum resohition Ap/p is 12% [35], which 

means that the FWHM of the momentum window is 12% of the momentum [35]. Due 

to the design of the Lens transporter, only those electrons whose energies are within a 

narrow range will be transported to the detector. Recorded events with energies that 

lie outside this energy region are most likely photon counts and can be discarded. Once 

this "momentum matching" was carried out, the measured backgroimd spectrum was 

subtracted to give a considerably cleaner spectrum (shown in blue in figure 2.10). Data 

were then collected with the source in place, but with the magnetic field switched off - to 

obtain a photon and ambient background spectrum (shown in black in figure 2.10). The 

background spectrum was normalised to the experimental spectrum and subtracted, to 

give figure 2.11. The background subtraction is not perfect, the background run shows 

a higher count rate at low energy as compared to the spectrum with the lens energised. 
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This is due to the effect of the magnetic field of screening knock-on electrons that may be 

prodnced by energetic photons interacting with the chamber material. 

The measnrements described in this chapter provide valnable calibration ahead of the 

measnrement of the Hoyle state in ^^C. However, the statistics at high energy (above 

3 MeV) in the measurement were quite low. Simulations were used to reinforce 

the measurements, and "fill in the blanks" in energy. W i t h a view to designing the new 

detector for the ' ^C measurement, the aim was to investigate the properties of silicon 

detectors in general and more specifically, the dependence of efficiency on energy and 

angle. Sinuilations can also provide further insight, e.g. the required thickness, and can 

be used to investigate the causes of efhciency loss. Such information would have relevance 

beyond the ^^C measurement, to silicon detector design and characterisation in general. 

O f course, a simulation system can only be as accurate as the physical models it uses, 

discussed in the next chapter. 
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Chapter 3 

Simulation with PENELOPE 

The following is a suinmary of the treatineiit by PENELOPE of the fundamental inter-

actions with matter, drawing heavily on the PENELOPE manual [8], with reference to 

previous research that the PENELOPE models have been based on. Some depth of un-

derstanding of the atomic physics involved is necessary for the developments based on this 

work. Examples of the energy and angular dependences of the relevant cross sections in 

silicon are provided to relate the models to the experimental measurements presented in 

section 2. In this chapter, I will present: 

1. Penelope physics 

(a) Electrons and positron interactions 

(b) Photon interactions 

2. Review of relevant Monte Carlo methods used by PENELOPE 

3. PENELOPE implementation - the input files required to run PENELOPE 

3.1 Electrons and Positrons 

The fundamental interactions of electrons and positrons with matter are (see figure 3.1): 

a) Elastic scattering of an electron by an atom, which results in the electron being 

deflected through an angle 0. Elastic scattering is responsible for most (but not all) 

of the angular deflections suffered by electrons in a bulk material. 

b) Inelastic scattering from atoms, resulting in excitation or ionisation. The primary 

electron or positron loses an energy W, having a final energy E' = E - W. In the 

case of ionisation, the ionised electron will have an energy Eg ^ E - E' -Ui, where 

Ui is the binding energy of the shell i. At low energy inelastic scattering is the 

dominant form of energy loss for electrons and positrons interacting with matter. 

39 
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a) 

O 

Elastic scattering 

o 

C) 

E - W 

Bremsstraiilung emission 

o 

b) 

E3 = E - E ' - U , 
Inelastic scattering 

d) 

Positron annihilation 

Figure 3.1: Basic types of interaction of electrons with matter. 

c) Bremsstrahlung emission, where an electron or positron interacts with the atom and 

produces a photon of energy W. At high energy, bremsstrahlung emission is the 

dominant form of energy loss for electrons and positrons. 

d) Positron annihilation - unlike the other three interaction mechanisms mentioned above, 

positron annihilation is unique to positrons interacting with atoms. The positron 

will disappear, creating two "annihilation" photons, one at an energy E+ and angle 

6+, the other at energy E- and an angle . 

3.1.1 The Treatment of Elastic Scattering in PENELOPE 

For the case of bombarding electrons, elastic scattering is an important process, as 

the angular deflections can be relatively large. Elastic collisions are defined as those 

collisions that do not change the state of the target atom, normally the ground state. 

In an elastic collision, the movement of the electron through the Coulomb field of 

the atom causes a deflection. The angular deflections of electron trajectories are 
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Figure 3.2: Electron interaction cross sections for silicon. 

mostly (but not completely) due to elastic scattering. There is, of course, a transfer 

of energy from projectile to target, which causes the target to recoil. However, for 

the case of electron scattering, the mass of the target is large enough (w3600Zme) 

that the average energy imparted is a very small fraction of the bombarding energy 

(a few meV for scattering of 30 keV electrons by aluminium atoms). It is usually ne-

glected, which is equivalent to assimiing the target has an infinite mass and does not recoil. 

We will restrict ourselves to discussing elastic collisions within the energy range of 

the relevant experiments, that is, from a few keV to 3.5 MeV. Elastic collisions within 

this energy region can be described as scattering of the projectile by the electrostatic 

field of the target atom [45]. The charge distribution of the target atom consists of the 

nucleus and the electron cloud. PENELOPE calculates the density distribution of atomic 

electrons using a self-consistent Hartree-Fock code [46]. PENELOPE assumes a spherical 

charge distribution for closed shell atomic configurations, and for open shell configurations. 
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Figure 3.3: Electron interaction mean free paths for silicon. 

performs an average over all directions to give an average spherical density Pe{r). The 

finite size of the nucleus only becomes of marked importance for projectile energies above 

10 MeV [47]. At the highest energies sampled in the Monte Carlo experiments presented 

here, namely of 3.5 MeV, the finite size of the nucleus has only a very slight effect on the 

cross sections for elastic scattering [8] (but is taken into account anyway). P E N E L O P E 

uses a Fermi distribution [47] to describe the charge distribution of the nucleus 

Pnir) = 
PO 

e x p [ ( r - i ? „ ) 4 1 n ( 3 A ) ] + l ' (3.1) 

where B„ is the mean radius (or half density radius) and t is the surface or "skin thickness" 

(defined as the distance over which pn drops from w 0.9 to « 0.1 of its central value). 

These two parameters are given by 

R„ = 1.07 X m, 

t = 2.4xl0-iSn,- (3.2) 
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Figure 3.4: Positron interaction cross sections for silicon. 

where Am is the atomic mass of the element. The constant po, which equals twice the 

proton density at r = /?„, is determined by normalisation, 

roo 
Z = 4n pn{r)r'^dr. 

Jo 

The electrostatic potential of the target atom is [8] 

- [ i r p , y y w + r p n i r y d r ' ] - [ - r p e { r y ' d r ' + H p e i r Y d r ' 
r Jo Jr J L'^ - ' 0 Jr J 

(3.3) 

47re 
(3.4) 

where the first two terms are the contribution from the nucleus, and the last two terms 

are the contribution from the electron cloud. 

To calculate elastic scattering cross sections, P E N E L O P E uses the program ELSEPA 

(ELastic Scattering of Electrons and Positrons by Atoms) [48, 49]. From energies of a 

few eV up to a few hundred keV, ELSEPA uses a semi-empirical optical-model potential, 
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Figure 3.5: Positron interaction mean free paths for silicon. 

with an imaginary absorptive part, that yields results in close agreement with available 

experimental data for electron elastic scattering in gases [48]. For larger energies, 

ELSEPA uses a static-field approximation, where the target atom is assumed to be a 

frozen charge distribution, and the interaction with the projectile is assumed to reduce 

the electrostatic interaction [45]. 

At energies below 10 keV, the accuracy of the static-field approximation worsen dra-

matically due to the combined effects of loss of flux due to inelastic absorption, and 

atomic-charge polarisability. These effects are accounted for by introducing an absorption 

and polarisation potential into the atomic cross section. The optical-model potential de-

scribes the effective interaction between a projectile at r and the target is described by 

means of the potential: 

V{r) = Vst{r) + Ve.{T) + - i\Vabs{.r) (3.5) 
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where Vst(r) is the electrostatic interaction potential, Vex(r) is the exchange potential, 

Vcp(r) is the correlation-polarisation potential (needed for projectiles with E < 10 keV), 

and Wabs is the magnitude of the imaginary absorption potential (which affects the cross 

section for energies up to about 1 MeV). The electron-exchange interaction is included to 

account for the possible exchange of the indistinguishable projectile electron and target 

electrons. The default is a Furness MacCarthy (FM) exchange potential [48]: 

= \[E - -\{[E - V,t{r)? + inaoe'pir)}'/^ (3.6) 

where ao = 5.291772 x cm is the Bohr radius. At a few hundred eV, accounting for 

this effect modifies the cross section by about 3% at 5 keV for silicon and gold, and by 

less than 1% for silicon and gold at 30 keV [49]. The correlation-polarisation potential 

accounts for the polarisation of the target charge distribution due to the electric field 

of the incoming projectile (electron or positron). The polarised atom then acts back on 

the projectile. This is described by a potential that decreases as r""^ at large distances. 

The absorptive imaginary potential accounts for loss of elastic scattering flux due to 

coupling with inelastic channels. The magnitudes of these effects decrease with incident 

energy. The effect of polarisation becomes negligible for E 10 keV; absorption effects 

remain appreciable up to relatively high energies, of the order of 1 MeV or higher, de-

pending on the atomic number of the target [48]. Polarisation and absorption effects have 

about a 5% effect in silicon at 5 keV and about a 10% effect in gold at the same energy [49]. 

The PENELOPE code defines the elastic scattering in terms of the polar and azimuthal 

angles, 9 and (f) respectively, and uses the quantity called polar deflection 

( 1 - c o s 0 ) / 2 (3.7) 

instead of the scattering angle 6. Note that // varies from 0 (forward scattering) to 1 

(backward scattering). The cross section per unit angular deflection is 

^ = (3.8) 
di.1 d^ 

Figure 3.6 shows the cross sections calculated by ELSEPA for elastic scattering of 

electrons and positrons on silicon for various energies. As the interaction V{r) is attractive 

for electrons and repulsive for positrons, the scattering is more intense for electrons than 
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Figure 3.6: Calculated differential cross sections for elastic scattering of electrons (solid lines) and 
positrons (dashed lines) calculated by ELSEPA for silicon assuming the Dirac-Fock electron-density 
function and the point nucleus model [49]. The dotted line shows the relativistic Rutherford cross 
section. Energy of: (a) 500 eV; (b) 5000 eV; (c) 30 keV; and (d) 100 MeV. 

positrons - the electrons can fall deeper into the potential well - whereas the positrons 

are repelled and cannot "feel" the inner region of the atom. The relativistic Rutherford 

cross section is shown for comparative purposes, but is not used by PENELOPE. 

PENELOPE calculates the cross sections for compoimds and mixtures by taking the 

incoherent sum of scattered intensities. This is equivalent to neglecting chemical binding 

effects. Comparison with more rigorous methods has shown that this is a reasonable 

approximation [8]. As the scattering events are axially symmetric about the angle of 

incidence, PENELOPE uniformly samples the azimuthal angle ({> in the interval (0,27r) 

using the sampling formula (j) = 27rr; where ry is a random number from 0 to 1. On 

start-up of the program, PENELOPE will produce a new table of cross sections with 200 

logarithmically spaced points in energy, spanning the energy range used in the simulation. 

This table is determined from the input table by cubic spline interpolation. For each grid 

energy, the program determines the probability density function (PDF) for the angular 

deflection n, 

Pei{.Ef,n) = 1 daei 47r dagi 
(Tel (^M (^el (IQ. 

(3.9) 
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which is tabulated for the 606 angular deflections in the ELSEPA database. These are 

transformed into continuous functions in //. from which random values are generated. To 

save on compiitation time, PENELOPE uses linear interpolation for those events in which 

the energy of the incident particle E does not fall on the grid. 

3.1.2 Inelastic Scattering in P E N E L O P E 

Inelastic collisions are the dominant mechanisms for energy loss by electrons and positrons 

with low and intermediate energies. They produce electronic excitations and ionisations 

in the medium. They may also produce secondary knock-on electrons (delta rays) and 

secondary de-excitation photons, both of which carry away part of the primary energy, 

and must be stopped fully in order for a complete energy signal. 

Bohr established a semi-classical theory of inelastic collisions, where collisions were 

characterised by an impact parameter 6, which is roughly the distance of closest approach 

to the centre of the atom. Bethe then formulated a quantmn-mechanical treatment, where 

collisions are characterised by their momentum transfer q - an observable quantity, as 

opposed to b. The vector q is a function of the energy transfer E„ and the angular 

deflection ff experienced by the projectile. The loss of energy per imit path length due to 

inelastic events is given by 

= (3.10) 
i n 

where ani is the cross section for inelastic collision that raises an atom of type i to an 

energy level E„i above its ground state, and where Ni is the density of atoms (or molecules). 

The effect of individual inelastic collisions on the projectile is completely specified by 

the energy transfer W and the polar and azimuthal scattering angles 6 and (p, respectively. 

It is customary to refer to the recoil energy Q, first with relativistic correction, then in 

the non-relativistic case 

Q{Q + 2meC )̂ = (cq)^ (3-11) 

Q « q'^/2m (nonrelativistic), (3.12) 

PENELOPE uses the relativistic formula. The parameter q is the magnitude of the mo-

mentum transfer q = p — p', where p and p' are the linear momenta of the projectile 
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before and after the collision. Q is the kinetic energy of an electron that moves with a 

linear momentinn equal to q. In the limit of large q, Q coincides with the energy transfer 

En. The cross section for collisions with energy loss W and recoil energy Q, obtained from 

the first Born approximation can be written [51]. 

d'a Trê  1 df{W,Q) 
dQdW En WQ dW 

The factor df{Q,W)/dW is the atomic generalised oscillator strength within the Born 

approximation. PENELOPE uses a form of the above Bethe atomic cross section equation 

that is corrected for relativistic effects. The result was obtained in the Coulomb gauge 

[53]. By applying the Born approximation, and assuming a Coulombic interaction, Bethe 

obtained the following expression for the differential cross section for elastic scattering of 

a particle by a stationary atom [51]: 

dan = (3.14) 

where m and v are the mass and velocity of the colliding particle, and q is the magnitude 

of the momentum transfer. Equation 3.14 may be viewed as the product of two factors, 

relating to different physics. The factor x Q~^d{\nQ) is evaluated from 

observable quantities i.e., the momentum transfer and the scattering angle, and relate to 

the incident particle only. It is in fact, the Rutherford cross section [54] for the scattering 

of a particle with charge ze by a free and initially stationary electron, which upon the 

collision receives a recoil energy ranging from Q to Q + dQ. In this simplified situation, a 

given momentum transfer Tiq results in a imique value Q of energy transfer. In reality, the 

energy is shared between a certain kinetic energy imparted to the atom as a whole, and 

the internal excitation of the atom. This results in multiple possibilities for the degree of 

internal excitation, due to the fact that the atomic electrons responsible for excitation 

are initially bound rather than free. This situation is described by the remaining factor 

in equation 3.14, |e„(Q)P, which gives the probability that the atom makes the transition 

to the excited state n upon receiving a momentum transfer Tiq [56]. 

The generalised oscillator strength is difficult to evaluate theoretically, due to the 

lack of sufficiently accurate eigenfunctions of atomic or molecular systems in the ground 

state, and especially in excited states. In fact, the generalised oscillator strength is only 
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characterised analytically for two simple systems: hydrogen ions and the free-electron 

gas. Even in these cases, the generalised oscillator strengths are too complex (i.e., too 

computationally intensive) for use in the simulations. The generalised oscillator strength 

though, has been studied extensively for atomic hydrogen [57, 58] and some of its features 

arc valid for any atom or molecule. The generalised oscillator strength can be represented 

comprehensively by a three dimensional plot of df{Q,W)/dW as a function of In(Qao)^ 

and E, called the Bethe surface. The Bethe surface embodies all information about the 

inelastic scattering of electrons and positrons within the first Born approximation (except 

secondary electrons). PENELOPE's method for the sinnilation of inelastic collisions is 

basically a topographical study of this surface. Inelastic collisions can be characterised 

by a few global features of the Bethe surface [8]. 

PENELOPE divides the Bethe surface into two distinct regions, following the method 

first proposed by Bohr in 1948. The first being a region of low momentum transfer, that 

results in resonance-like interactions with bound electrons, and another characterised by 

high momentum transfer, where due to large momentum transfer, the atomic electrons 

may be regarded as free. These correspond to different parts of the Bethe surface [51]. The 

resonant interactions correspond to excitation of the target; the interactions where the 

electron is considered as free correspond to ionisations. In the free electron region (or large 

momentum transfer), the Bethe surface reduces to a ridge peaked at Q = VK, i.e., on aver-

age, the relation Q = IV holds apart from a fluctuation (a broadening due to the motion of 

the atomic electrons). PENELOPE disregards this broadening, as the effect is deemed to 

be negligibly small in the case of electrons and positrons. The transition from resonance 

to free interactions is estimated to occur when the momentmn transfer energy Q exceeds 

the typical resonance energy transfer [59]. In fact, PENELOPE draws the line between 

these two regions at the ionisation energy Uk. For soft collisions (low energy transfer) 

the generalised oscillator strength is nearly constant with Q and decreases rapidly with W. 

PENELOPE's generalised oscillator strength model for inelastic scattering is designed 

for fast sampling of W and Q. Following the model outlined by Liljequist [60], the as-

sumption that the generalised oscillator strength is comprised of contributions from the 

different atomic shells is made. Each atomic shell k is characterised by the inimber Zfc 

of electrons in the shell, and the ionisation energy Uk- In the Liljequist model adopted 
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by PENELOPE, the generalised oscillator strength of each atomic shell is modeled as a 

"^-oscillator", which is an entity with a simple generalised oscillator strength given by 

Q, W ) = S{W - W k ) e { W k - Q ) + S{W - Q ) e { Q - W k ) , (3.15) 

where 5 { x ) is the Dirac delta function and Q { x ) is the step function. The first term 

represents the low-Q interactions, which are described as a single resonance at the energy 

Wk', the second term corresponds to large-Q interactions in which the target electrons 

react as if they were free and at rest { W = Q ) . Notice that the oscillator generalised 

oscillator strength satisfies the sum rule 

roo 
/ F { W k ; Q , W ) d W = 1 for any Q (3.16) 

Jo 

and, as the corresponding integral over the whole atom has to equal Z , the number of 

electrons, a 5 oscillator corresponds to one electron in the target. The Liljequist generalised 

oscillator strength model for the whole atom is given by 

= E - - Q ) + -̂ (w^ - Q M Q - w ^ ) ] , (3.i7) 
k 

where the summation in k extends over all bound electron shells (and the conduction 

band, in the case of conductors). Note that the Bethe sum rule 

= (3.18) 
k 

is satisfied. Another constraint is that the excitation energies must be defined in such a 

way that the generalised oscillator strength model leads to the accepted value of the mean 

excitation energy I, 

= (3.19) 
k 

Low momentum transfer (soft excitations) contribute the most to the total cross sec-

tion. The contribution made by resonance excitations to the generalised oscillator strength 

can be called the optical oscillator strength. The optical oscillator strength of weakly 

bound electrons mostly determines the cross section [8]. The outermost shells in conduc-

tors and semiconductors form the conduction band (cb). These electrons move quite freely 

throughout the medium, so their binding energy is set to 0. Electrons in the conduction 
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baiici are described by a single oscillator f̂ b and resonance energy Web- These parameters 

should agree with the effective number of electrons per atom or molecule, that participate 

in plasmon excitations and the plasmon energy. They can be estimated from empirical 

data e.g., from electron energy-loss spectra or from measured optical data. When this 

data is not available PENELOPE will fix the value of fcb as the number of electrons with 

ionisation energies less than 15 eV and set the resonance energy Web equal to the plasmon 

energy of a free-electron gas with the same density as that of conduction electrons. 

U'eb = s J i n N U h h y n i e = y (3.20) 

where Hp is the plasma energy of a free-electron gas with the electron density of the 

medium given by: 

n l = inNZh^e^/me, (3.21) 

where N is the number of atoms per unit volume. This approximation is more realistic 

for those materials that more closely resemble free-electron states (such as ahnninium). 

In PENELOPE, the target atoms are assumed to be in their ground state config-

uration. The ionisation energy Ui, number of electrons Zj of each electron shell, and 

the empirical value of the mean excitation energy I must be specified. The adopted 

/-values are those proposed by Berger and Seltzer [61], which were also used to generate 

the ICRU (1984) tables of stopping powers for electrons and positrons. As mentioned 

earlier, the model assumes a zero-width Bethe ridge - deemed only to be a problem 

for heavy ion projectiles. It also disregards the fact that for low-Q transitions, there 

is a transfer of oscillator strength from inner to outer shells [62]. This makes the 

shell ionisation cross section only approximate, however due to the low-probability of 

inner shell ionisation, they only have a very small effect on the global transport properties. 

The user specifies a cutoff value Wcc- Collisions that involve energy transfers below 

this cutoff are sinuilated collectively, by means of multiple-scattering approximations. 

Collisions involving energy transfers above Wcc, are called hard collisions and are 

simulated by a detailed calculation. The PENELOPE code uses the generalised oscillator 

strength model only to simulate the effect of inelastic collisions on the projectile and 

the secondary knock-on electrons. The relaxation of atoms from excited states by X-ray 
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or Auger electron emission is simulated by means of more accurate ionisation cross sections. 

The model is readily applied to compounds and mixtures - the oscillators may pertain 

to either atoms or molecules. If the value of the mean excitation energy of the compound 

is unknown, it is estimated from Bragg's additivity rule. In the case of a compound X^Yy, 

in which the molecules consist of x atoms of the element X and y atoms of the element 

Y, the number of electrons per molecule is Zm = xZx + yZy, where Z x stands for the 

atomic number of element X . According to the additivity rule, the generalised oscillator 

strength of the compound is approximated as the sum of the atomic generalised oscillator 

strengths of the atoms so that 

Zm hi I = xZx In Ix + yZy In ly, (3.22) 

where I x denotes the mean excitation energy of element X . 

In the case of compounds and mixtures with several elements, the number of electron 

shells may be too large to permit simulation of each electron shell with the same detail. 

In these situations, PENELOPE groups together outer shells with similar resonance 

energies, and replaces them by a single oscillator of strength equal to the sum of strengths 

of the original oscillators. The resonance energy of the group oscillator is set by requiring 

that its contribution to the mean excitation energy I equals the sum of contributions of 

the grouped oscillators, ensuring that grouping will alter the stopping power in the right 

way. 

Cross Sections 

PENELOPE splits the cross sections for inelastic collisions into contributions from distant 

longitudinal, distant transverse and close interactions, 

d'^CTin ̂  d^CJdis.t 
dWdQ ~ dWdQ dWdQ dWdQ' ^ ^ ^ 

The cross section's are obtained from the generalised oscillator strength method outhned 

earlier. As was the case with elastic collisions, the cross section for close collisions of 

electrons must be adjusted to take into account the indistinguishability of projectile 

and target electrons. This is a small effect for distant collisions, and is neglected in 
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these cases. In the case of close collisions, the cross section is adjusted according to Moller. 

The energy-loss cross section is defined as 

^ _ (ladisd , dadis,t , doclo /o oa\ 
d\V - Jq_ dWdQ'^^^ - + + ^ ^ 

where Q- and are the minimum and maximinn kinetically allowed recoil energies, 

given by cos0 = +1 and —1 respectively in the definition of Q 

Q{Q + 2mec^) = {cqf = - 2pp'cos 6), (3.25) 

which reduces, in the non-relativistic limit, to 

= (3.26) 

Note that the continuous spectrum associated with single-distant excitations of a given 

atomic electron shell is approximated by 6 distributions. This gives rise to unphysical, 

narrow peaks at multiples of the resonance energies. However, these peaks are smoothed 

in the cumulative total of many inelastic scattering events. The generalised oscillator 

strength model then, gives a good average description of inelastic scattering, not of single 

scattering events. 

The probability distribution function of the energy loss in a single inelastic collision 

{pi„) is given by 

ftn(lV') = — ( 3 . 2 7 ) a in dW 

where 
r^^ max rtrr 

is the total cross section for inelastic collisions. 

The mean free path = Nain, where N is the number of scattering centres (atoms 

or molecules) per miit volume. The stopping power is defined by 

(3.29) 
Ai 
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The integrated cross section can be expressed as the sum of contributions from 

distant, transverse interactions distant longitudinal interactions adis,i, and close 

interactions cr̂ Ĵ ' 
(n) (n) , (n) , (n) /n nrw 

Simulation of Hard Inelastic Collisions 

The generalised oscillator strength model permits the random sampling of the energy loss 

W and the angular deflection 9 using purely analytical methods. In general, however, 

only hard collisions, those with an energy loss larger than a specified cutoff value Wcc, 

are simulated. The cutoff energy Wcc is specified by the user. 

To simulate a hard collision, PENELOPE first must choose the type of collision, i.e., 

which oscillator to use. 

fWmax 

Jwcc ^^ 

= (3.32) 
k 

as well as the contribution from each oscillator, cric(Wcc)- The active oscillator is sampled 

from the point probabilities pk = crf̂ [Wcc)/(̂ {Wcc)- PENELOPE calculates these proba-

bilities at initialisation time, and stores them in the memory. A larger value of Wcc will 

speed up the simulation - potentially at the cost of accuracy. 

Secondary Electron Emission 

After a hard collision with a bound electron, the primary electron/positron has kinetic 

energy E — W, the "secondary" electron (delta-ray) is ejected with kinetic energy 

Eg = W — Ui, and the residual ion is left in a state with excitation energy equal to Ui 

in shell i. The atom will release the energy in the form of an X-ray or Auger electron, 

however the above-described model does not accurately describe the emission of Auger 

electrons or X-rays; they are simulated by a separate system, see 3.1.2. 

The direction of the delta-ray, however, is chosen by collision kinematics. With the 

assumption that the target electron is initially at rest, the delta-ray is emitted in the 

direction of the momentum transfer q, and the polar emission angle Og coincides with the 
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recoil angle ffr 

/2//32 / n/'/^) _i_ o^. _ W2\ 2 

^ w / i I y 2 W ( E + meC/j / Q{Q + 2mec2) 

111 the case of close collisions {Q = W), this expression simplifies to 

The inomentnni transfer lies on the scattering plane - the plane formed by the initial 

and final momenta of the projectile, so the aziiimthal emission angle is (l)s — tt + cj). The 

assumption that the target electrons are initially at rest disregards "Doppler broadening" 

of the angular distribution. However, the energies of the emitted electrons are typically 

much smaller than those of the incident particle, so their directions will become quickly 

randomised by elastic and inelastic events (much shorter than the transport mean free 

path of the projectile [8]). 

lonisat ion of Inner Shells 

The generalised oscillator strength model does not adequately describe the ionisation of 

inner shell electrons. The correlation between energy loss/scattering of the projectile 

and ionisation events is of minor importance, and is neglected [8]. Hence, inner-shell 

ionisation is treated as an independent process. 

PENELOPE uses a total ionisation cross section obtained from an optical-data model 

of the generalised oscillator strength [63] to simulate the ionisation of inner shells. This 

model assumes the following relationship between the optical oscillator strength of the i - t h 

inner shell, ( l f i { W ) / d W , and the photoelectric cross section aph,i{Z,W) for absorption of 

a photon with energy W, 

The photoelectric cross sections used are taken from the Evaluated Photon Data Library 

[64]. The generalised oscillator strength is modeled as a continuous superposition of 6-
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oscillators weighted by the optical oscillator strength, 

'MRlKl = r Q, W)dW' + ZrS{W - Q)e{W - Ui) ( 3 . 3 6 ) 
dW Jm dW 

with 

(3.37) 
JUi 

The Born approximation is known to overestimate the ionisation cross sections for incident 

electrons with kinetic energies near the ionisation threshold. This is mainly dne to the 

effect of the electrostatic field of the target atom to increase the kinetic energy of the 

projectile. To offset this effect, PENELOPE assmnes that the incident electron gains a 

kinetic energy 2Ui before it interacts with a target electron, which is bound with binding 

energy Ui. With this "Coulomb" correction, the ionisation cross section for electrons is 

(E+Ui)l2 dcT[.\E + 2U^ 

dW 
-dW. (3.38) 

The correction reduces the ionisation cross section near the threshold, and yields values 

in close agreement with experimental data [8]. For positrons the effect of the Coulomb 

distortion is introduced empirically by multiplying the ionisation cross section by a global 

factor (1 + Ui /E)-^. That is, 

giving positron ionisation cross sections that are smaller than those of electrons near 

the ionisation threshold, in qualitative agreement with experimental data [65, 66]. The 

molecular cross section for ionisation of inner shells is evaluated using the additivity ap-

proximation as requiring 

= (3.40) 
i 

where the summation extends over all inner shells of the atoms in the molecule. 

3.1.3 Bremsstrahlung 

Bremsstrahlung or "breaking-radiation" is the radiation emitted due to accelerations 

caused by the electrostatic field of the atoms. The continuous X-ray spectrum or 

bremsstrahlung, was first reported by Rontgen in 1895. The quantum mechanical theory 
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Figure 3.7: Radiative and collisioiial stopping powers of silicon for electrons [8]. The radiative 
or lirenisstrahlung stopjjing power becomes dominant for high energy. 

was developed by Bet he and Heitler [67], using Dirac's relativistic theory of the electron 

and Born's first approximation. The classical theory states that w^henever a particle 

experiences an acceleration, it should radiate. In the quantum-mechanical tlieory, a plane 

wave representing the electron enters the nuclear field, is scattered, and has a small but 

finite chance of emitting a photon. The electron is acted on by both the atomic field and 

the emitted radiation field. Part or all of the electron (or positron) energy E is lost to the 

emission of the bremsstrahhmg photon, which can take any fraction of the electron energy 

(0 < 11' < E), where W is the energy of the bremsstrahhmg photon. PENELOPE's cross 

section for bremsstrahhmg is differential in terms of the energy loss W, and is derived from 

that of Bet he and Heitler [67, 68], which was based on the Born approximation, which 

takes the initial and final electronic wave functions as plane-waves, and the actions of the 

atomic field and emitted radiation field as a perturbation. This holds only when the elec-

tron energy before and after the collision is nnich larger than mgC ,̂ the electronic rest mass. 

The Bethe-Heitler cross section indicates that, for a given value of Z, the quantity 

\Vd(7f,r./dW varies smoothly with E and W. PENELOPE follows the convention of ex-
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Figure 3.8: Radiative and collisional stopping powers of silicon for positrons [8]. The radiative 
or bremsstrahlung stopping power becomes dominant for high energy. 

pressing the cross section for bremsstrahlung in the form: 

dabr z^ 1 
(3.41) 

where W is the energy of the emitted photon and K is the reduced photon energy, defined 

as 

K = W/E, (3.42) 

which takes values between 0 and 1. The quantity 

(3.43) 

is known as the "scaled bremsstrahlung cross section" which, for a given element Z, varies 

smoothly with E and k. PENELOPE uses a database of scaled cross sections obtained 

from those of Seltzer and Berger [69]. They separately calculated the bremsstrahlung 

cross sections due the screened field of the nucleus, and the sinn of the two, the total 

scaled cross section. For high energies {E > 2 MeV) the nucleus-electron cross sections 
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were calculated analytically, for lower energies {E < 2 MeV), the scaled cross sections 

were calculated using the partial-wave calculations of Pratt et al. [70]. The scaled cross 

sections for electron-electron bremsstrahlung were obtained from the theory of Haug 

(1975), combined with a theory that involves Hartree-Fock incoherent scattering functions. 

The file for each element Z contains the values of x{Z,Ei,Kj) that correspond to 

electron kinetic energies Ei, which are spaced to allow natural cubic spline interpolation 

in ln£^. For each energy Ei in the grid, the table contains the values of the scaled cross 

section for a given set of 32 reduced photon energies kj (the same for all elements), which 

span the interval (0,1). This grid is spaced closely enough to allow linear interpolation of 

x{Z,Ei,Kj) in K. 

At high energies, the radiative cross section for positrons reduces to that of electrons, 

but it is smaller for intermediate and low energies. PENELOPE obtains the cross section 

for positrons by nmltiplying the electron cross section by a K-independent factor i.e., 

= (3^44, 

The factor Fp{Z,E) is set equal to the ratio of the radiative stopping powers for 

positrons and electrons, as calculated by Kim et al. [71]. PENELOPE uses an analytical 

approximation for Fp in terms of the electron energy E and the atomic number Z. 

The mean free path for emission of a photon of larger energy than a user defined cutoff 

U'cr is 
= (3.45) 

where Kcr = Wcr/E. The radiative stopping power is 

ShriE) = N w'^dW = N^E f x{Z, E, K)dK. (3.46) 
Jo dW p Jo 

The stopping powers are normalised to coincide with those of the ICRU Report 37 [8]. 

Angular Distribution of Emitted Photons 

The direction of the emitted bremsstrahlung photon is defined by the polar angle 6 and 

the azimuthal angle 4>. For isotropic media, the random orientation of the atoms and 
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molecules renders the bremsstrahlung cross section independent of (f) 

d W = ^^^x {Z ,E ,K)PUZ,E ,K-COS0) , (3.47) 
dWd{cos0) dW"^"" ' ' ' ' P^W 

where Pbr{Z, E, K;COS0) is the probability distribution function of cos0. 

Numerical values of the "shape function" PHR{Z, E, K-,COS6), calculated by partial 

wave methods, have been published by Kissel et al. [72] for the cases: Z = 2, 8, 13, 47, 

79, 92; = 1, 5, 10, 50, 100, 500 keV and K =0, 0.6, 0.8, 0.95. PENELOPE samples the 

shape function from a semi empirical formula derived by Kirkpatrick and Wiedmann [73] 

Statham [74], modified to agree with the values given by Kissel et al. [72]. 

3.1 .4 Positron Annihilation 

All previously discussed collision mechanisms apply to the interactions of both positrons 

and electrons with matter. However, a positron traversing through matter, has the miique 

possibility to combine with an atomic electron and annihilate, giving up its kinetic en-

ergy and the rest mass of the positron and electron to two photons, called "annihilation 

radiation". If both the positron and electron are at rest (in the laboratory system), the 

two photons will both have an energy of 511 keV. However, if the positron annihilates 

in flight i.e., the kinetic energy E of the positron is larger than the "absorption" energy, 

the two photons may have diff'erent energies, say, E^ and E+, which add to £' + 2meC^, 

where E- refers to the photon of lower energy. Each annihilation event is then completely 

characterised by the quantity 

Assuming that the positron moves initially in the direction of the z-axis, from conservation 

of energy and momentum it follows that the two photons are emitted in directions with 

polar angles [8] 

cose. = (7^ - + 1 - 1/C) (3.49) 

and 

C O S 0 + = (7 ' - + 1 - 1/(1 - 0 ] , (3.50) 
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and azimuthal angles (/)- and 4>+ = (p- + tt. The quantity 7 = 1 + E/{m^c^) is the total 

energy of the positron in units of its rest energy. 

PENELOPE'S treatment of positron annihilation is derived from that of Heitler [75], 

subsequently transformed by Nelson et al. [76] in to the laboratory system (where the 

electron is at rest), given by 

where 

S i O = - ( 7 + 1)^ + (7' + 47 + 1)^ - (3.52) 

Again, axial synunetry of the target atom distribution makes the cross section independent 

of the azimuthal angle <?!)_, which is uniformly distributed on the interval (0,27r). For 

fast positrons, annihilation photons are emitted preferentially at forward directions. The 

angular distribtition becomes more isotropical as the energy of the positron decreases. 

3.1.5 Cross Sections 

As figures 3.2-3.5 suggest, inelastic and elastic scattering are responsible for most of 

the energy loss and angular deflection suffered by low energy electrons and positrons 

interacting with matter. However figures 3.7 and 3.8 show that this is not the case above 

1 MeV, where the radiative stopping power (due to bremsstrahhmg events) begins to 

increase dramatically. This is due to an increase in the average energy per bremsstrahlung 

photon, rather than any increase in the cross section. As higher energy photons are 

more likely to escape from the detector crystal, this is likely to be important for electron 

detection. 

3.2 P E N E L O P E Physics: Photons 

As photons are the main source of backgromid, PENELOPE's treatment of their interac-

tions should be discussed. The fundamental interactions of photons with matter are (see 

figure 3.9): 

(a) Coherent (Rayleigh) scattering, where there is angular deflection, but no excitation 
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Figure 3.9: Interactions of photons with matter. 

of the target atom or transfer of energy 

(b) Photoelectric absorption - dominant at low energy, below ( « 0.1 MeV) - describes 

the complete absorption of an incident photon and the emission of a bound electron 

(c) Compton scattering - dominant at high energies, above (ss 0.1 MeV) - and describes 

the absorption of the incident photon together with a scattered atomic electron 

(d) Pair production - only available for photons of E > 1.022 MeV, a higher order process 

that describes the production of an electron-positron pair in the atomic field 

3.2.1 Coherent (Rayleigh) Scattering 

Rayleigh or coherent scattering is the scattering by bound atomic electrons without ex-

citation of the target atom; necessarily then, the energies of the incident and scattered 

photon are the same. The term coherent is applied because the scattering arises from the 

interference between secondary electromagnetic waves, coming from different parts of the 
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Figure 3.10: Photon interaction cross sections for silicon. 

atomic charge distribution [8]. PENELOPE uses an atomic cross section per unit solid 

angle for coherent scattering based upon Born [77] 

(lafta duT 

cin dQ 
(3.53) 

where 

dariO) _ 21 + fos^ 0 

dn ~''' 2 
(3.54) 

is the classical Thomson cross section for scattering by a free electron at rest, 9 is the 

polar scattering angle and F{q, Z) is the atomic form factor. The quantity r^ is the 

classical electron radius and q is the magnitude of the momentum transfer. The atomic 

form factor can be expressed as the Fourier transform of the atomic electron density p{r). 

PENELOPE uses the analytical approximation of Baro et. al. [78]. 
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Figure 3.11: Photon mass attenuation coefficients for silicon. 

3.2.2 Photoelectric Absorption 

Photoelectric absorption is the cloniinant interaction mechanism for photon energies less 

than around 0.1 MeV. A photon, of energy E is entirely absorbed by an atom, which then 

ejects an atomic electron (photoelectron). Momentum is conserved by tlie recoil of the 

entire atom. The electron is emitted with an energy Eg = E — Ui where Ui is the binding 

energy of the state i. The remainder of the energy will appear as characteristic X-rays or 

Auger electrons, filling the vacancy in the inner shell. The transition is only allowed if the 

photon has an energy higher than that of the binding energy of the state, giving rise to 

the characteristic absorption edges seen on the photoelectric cross sections. To represent 

the atomic states, an independent electron model, such as the Dirac-Hartree-Fock-Slater 

self-consistent model, may be used. The ionisation energies used in PENELOPE are the 

empirical values given by Lederer and Shirley [79]. 

PENELOPE uses photoelectric cross sections obtained by interpolation in a numerical 
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table that was extracted from the LLNL Evahiated Photon Data Library [64], The table 

is derived from Scofield's theoretical calculations of shell cross sections [80] and Hubbell's 

total cross sections [81]. For compounds or mixtures, the molecular cross section is 

obtained via the additivity approximation i.e., the sum of the atomic cross sections of 

the elements involved. 

The initial direction of emission of the photoelectron, relative to that of the absorbed 

photon is defined by the polar and azininthal angles 0e and (j)̂ . Assuming that the 

incident photon is not polarised, the angular distribution is independent of ({>, which will 

be sampled miiformly in the distribution (0, 2-n). PENELOPE samples the polar angle 

from the K-shell cross section derived by Sauter using K-shell hydrogenic wave functions 

[59]. At low energies, the photoelectrons tend to be ejected at right angles to the inci-

dent photon direction. At higher energies, the photoelectrons favour the forward direction. 

3.2.3 Incoherent (Compton) Scattering 

The scattering of very low energy photons {hu niQC^) by free electrons is described 

adequately by the non-relativistic classical theory of J .J . Thomson [82]. This breaks 

down as hft approaches woc^. and the photon momentmn cannot be discounted. 

Compton scattering arises in this regime, and becomes dominant for medium - high 

energies E > 0.1 MeV. For this reason, a relatively detailed summary of the physics is 

included here. Compton scattering is the process where, an incident photon of energy 

E is absorbed by an atom, and then re-emitted with a reduced energy E', in the 

direction Q = {0,(f)) relative to the direction of the incident photon, and an atomic 

electron is emitted with energy Eg = E - E' - Ui > 0. The quantity Ut is the binding 

energy of the considered shell, and the residual atom is left with a vacancy in the i-th shell. 

P E N E L O P E sinmlates Compton scattering via a cross section adapted from the Klein-

Nishina fornmla. 

dQ 
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where 

E' ^ — ^ ^ Ec, (3.56) 
1 + k(1 - cosff) 

K = E/mec'. (3.57) 

This simple cross section, as it is, assumes that the bound electrons are initially 

at rest - thereby neglecting Doppler broadening of the scattered quanta. Moreover, it 

neglects the fact that the transition is only allowed if the energy transfer E - E' is larger 

than the ionisation energy Ui of the active shell. The impulse approximation favoured by 

PENELOPE essentially applies a Lorentz transformation with velocity v equal to that of 

the moving target atom, and averaging over the momentum distribution pi(p) = IV'i(p)l^) 

where ^i(p) is the wave function in the momentum representation. 

For the present purpose, though, most of the important results can be obtained simply 

by conserving energy and momentum: 

1. The Compton shift 

- - - = A ' - A = — ( 1 - C O S 0 ) (3.58) 
u' V moc 

where v' and v are the frequencies of the scattered and incident photons respectively; 

A' and A are the wavelengths of the scattered and incident photons. 

2. Energy of the scattered quantum 

, I 
1 - COS ^ + ( ! / . ) ' 

^ _ 1 
y ~ a +K{l-cos9y 

Note that for very large incident photon energy, k > 1, the energy of the backscat-

tered photon approaches meC^/2 = 0.25 MeV at 6* = 180°, while the energy of 

photons scattered at 0 = 90° approaches rrieC^ = 0.51 MeV. 

3. Energy of the emitted electron 

Ee = ' 3.61 1 + K(1 - COS0) 
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4. The 77iaxirnum energy transfer E, (max) 
e 

= rrrk)' 
E = 

p{max) t^e J 
(3.63) 

Equation 3.62 can often be seen in conversion-electron spectra as the familiar "Comp-

ton edge" seen in CE spectra as a sharp drop in the backgronnd. 

3.2.4 Electron - Positron Pair Production 

Photons with energies, E, above 2meC^ may interact with matter via a fourth mechanism, 

whereby the photon is completely absorbed, and in its place an electron positron pair is 

created with total energy equal to E-. 

E={E,-+ rriec:^) + + m.^c^) (3.64) 

where Eg- and Ee+ are the kinetic energies of the electron and positron respectively. The 

process can only take place in the electromagnetic field of the nucleus or an electron, with 

the target particle absorbing momentum and energy so as to conserve both quantities. 

The threshold energy for pair production in the field of the nucleus is 2m.eC^ = 1.022 

MeV. The threshold for pair production in the field of an electron is. if the electron is at 

rest, 4/»,ec2 = 2.044 MeV. 

3.2.5 Attenuation Coefficients 

In terms of energy loss per vniit thickness, the photoelectric effect is dominant below about 

0.1 MeV. Above around 10 MeV pair production becomes dominant, and in the interim 

region, Compton absorption is dominant. 

3.3 Mon te Carlo Simulations 

The following discussion, based heavily on the PENELOPE manual, reviews the relevant 

aspects of the Monte Carlo techniques as implemented in PENELOPE. 

Monte Carlo simulations originated in the Los Alamos National Laboratory in the 

1940s. It has become accepted as reliable for the simulation of radiation transport 
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[83, 84], Monte Carlo delivers the same information as the Boltzmann transport equation, 

with the same interaction model, but is easier to implement [85]. In fact, the Boltzmann 

equation is difficult to solve for even the simplest geometries e.g., thin foils, however 

complex geometries e.g., detector geometries, are dealt with easily by Monte Carlo simu-

lations. The main drawback is that the results are subject to statistical fluctuation and 

uncertainties. However, these can be estimated and reduced by increasing simulation time. 

Detailed Monte Carlo simulation follows an incident particle (primary particle) until it 

stops. The entire chain of events is labeled a "history". This, together with the histories 

of all the daughter secondary radiations created is labeled a "shower". The initial energy 

is shared among the primary and secondary radiations, thus the initial energy of the 

primary particle is completely contained within its shower. A history consists of a set of 

free flights, separated by a series of events, where the particle may lose energy, change 

direction, or create secondary radiation. The "time" and place of each event, along with 

the type of interaction at each event, is determined by random sampling of the set of 

cross sections for each interaction. 

To visualise the cross section, take the example of a single interaction mechanism, 

where both a change in direction and energy loss occur, e.g., inelastic scattering of elec-

trons. Consider a monoenergetic beam of electrons with energy E and direction of move-

ment d impinges on a target atom or molecule T, which is located at the origin of the 

reference frame. Assume that the beam is laterally homogeneous, and that its lateral 

extension is much larger than that of the target atom. The beam is characterised by its 

current density In an interaction, the particle loses energy W, and is deflected. Sup-

pose a detector, placed some distance from the origin in the direction {0,(j)), and covering 

a small solid angle dO. detects and counts all particles that enter its sensitive volume with 

energy in the interval {E - W - dW,E - W) {i.e., particles that have lost an energy 

between W and W + dW). Let Ncount denote the number of counts per unit time. The 

double-differential cross section (per unit solid angle and unit energy loss) is defined by 

(i^cy _ Ncount 
dQdW \J^r^c\dndW^ ^ ' 

The cross section has the dimensions of area/(solid angle x energy); the product 

[d'^a{dQdW)] x dQdW represents the area of a plane surface that, placed perpendicularly 
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to the incident beam, is hit by as many projectiles as are scattered into directions d ' 

within dU with energy loss between W and W + dW. 

The energy-loss cross section, differential in only the energy loss is obtained by inte-

grating the double-differential cross section over directions. 

The total cross section a is defined as the integral of the energy-loss cross section over the 

energy loss. 

A molecule or atom may be replaced by a sphere of radius Tg such that the cross sectional 

area nr^ equals the total cross section ut- Consider a foil of small thickness ds. If there 

are N molecules over unit vohnne, and the current density J, then the number of incident 

particles that will interact per unit time and unit vohnne is dJ = JNads. Therefore, the 

probability of interaction per miit path length is 

' ^ ^ ^ N a . (3.68) 
J ds 

The probability of interaction as a function of path length s is 

p{s) = Naexp[-s{Na)]. (3.69) 

The mean free path A is defined as the average path length between collisions: 

fOO ^ 

= sp{s)ds = —. (3.70) 

Its inverse. 

A-i = Na (3.71) 

is the interaction probability per unit path length. 

Consider now that there are two independent collision mechanisms, "A" and "B". 

which could represent, for example, inelastic and elastic scattering. The mechanisms are 
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completely specified by their corresponding cross sections 

dndw dndw ' 

where dVl is a solid angle element in the direction (0,^). Assuming that the 

molecules/atoms that make up the target material are oriented at random, the cross 

sections are independent of the azimuthal angle. The total cross sections (per molecule) 

for mechanisms A and B are 

The total interaction cross section is 

( jT{E)=aA{E)+aB{E) . (3.74) 

The interaction probability per unit path length is 

A"! = N u t . (3.75) 

Notice that the total inverse mean free path is the sum of the inverse mean free paths 

of the different interaction mechanisms. 

+ (3.76) 

The probability distribution function of the path length s of a particle from its current 

position to the site of the next collision is 

p(s) = A-^exp(-s/AT). (3.77) 

The probabilities that the interaction will be of type "A" or "B" are: 

PA = o-^/cjT and ps = (Jbot- (3.78) 

The probability distribution functions of the polar scattering angle and the energy loss in 
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individual scattering events are 

Here PA{E; 9, W)d0dW gives the normalised probability that, in a scattering event of type 

A, the particle loses energy in the interval (H', W + dW) and is deflected into directions 

with polar angle in the interval {6,6 + d6). The azinnithal scattering angle is uniformly 

sampled in the interval (0, 27r), i.e.. 

(3.80) 

PENELOPE advances the particle to the next interaction by sampling the total mean 

free path XT- It will then randomly sample the interaction mechanisms based upon the 

total cross sections (T.4, <75, which give the point-probabilities, pA and pb- The energy 

loss i r and/or angular deflection is/are sampled from the energy loss cross section and/or 

the angular deflection cross section respectively. The process is then repeated until the 

particle is stopped (has energy below the energy cutoflt) or exits the entire detector 

geometry. 

3.3.1 Mixed Simulation 

Up until now, the process described is the detailed simulation of events. The user 

specifies six angular and energy cutoff's for various interaction mechanisms. If the angular 

deflection and energy loss are below the user specified cut-off values, the interaction is 

called a soft event, and is simulated by collective simulation, using a continuous slowing 

down approximation, and an average energy loss. Interactions with a higher energy or 

angular change are simulated by detailed sinuilation, as outlined above. As the changes 

in energy and angle caused by the soft events in between hard events affects the hard 

interaction, a linear dependence on energy is assimied for those events. This approach is 

called mixed sinuilation (or class II simulation). It is necessary due to the increasingly 

large numbers of small energy loss collisions that occur toward the end of a particle's 

flight, when it has low energy. The approach is validated by the Markovian nature of 

particle transport [8]. 
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Figure 3.12: Random sampling from a distribution p{x) using the inverse-transform method. 

3.3.2 Sampling Methods 

Monte Carlo methods generate random variables by numerical transformations of random 

ninnbers. This allows random variables with probability distribution functions to be 

sampled. Random numbers ^ are generated uniformly over the interval (0,1), which then 

must be transformed to the required probability distribution function. The randomness of 

the Monte Carlo method suits nuclear disintegration, as no two experiments will produce 

exactly the same results. 

3.3.3 Inverse-Transform Method 

PENELOPE uses the inverse transform method for random sampling of discrete variables, 

see figure 3.12 [8]. PENELOPE also uses the inverse-transform method for sampling 

continuous distributions p{x). This is done by evaluating the function P{x) at the points 

Xi of a certain grid. The sampling equation P{x) = ^ can then be solved by inverse 

interpolation i.e., by interpolating in the table (^iXj), where = P{xi). 

Rejection Methods 

Another sampling method used by PENELOPE consists of sampling a distribution 

different to p{x) and subjecting it to a random test to determine whether it will be 

accepted or rejected. This method is applicable to any probability distribution function. 
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X 

Figure 3.13: Random sampling from a distribution p{x) using rejection methods. 

These methods can be understood using simple graphical arguments, see figure 

3.13. Consider that, by means of the inverse transform method, random values of x are 

generated from a probability distribution function 7r(x). For each sampled value of x we 

sample a random value y imiformly distributed in the interval (0,C7r(x)), where C is a 

positive constant. The function Ctt{x) must be greater than p{x) for some value C > 0. 

The points (x, y) are randomly generated to be miiformly distributed over the region A 

of the plane limited by the x-axis and the curve y = Ctt{x). The points with y > p{x) are 

rejected and the accepted ones (with y < p{x)) are uniformly distributed in the region 

between the x-axis and the curve y = p{x) and hence, their x-coordinate is distributed 

according to p{x). 

This method can be sunnnarised by representing the probability distribution function 

p{x) as 
p{x) = C7r(x)r(x) (3.81) 

where n{x) is a probability distribution function that is sampled using the inverse trans-

form method, C is a positive constant and the fimction r(x) satisfies the conditions 

0 < r(x) < 1. The rejection algorithm can be summarised as follows 

1. Generate a random value x from 7r(x) 
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2. Generate a random number ^ 

3. If ^ > r(x), go to step 1 (rejected) 

4. Deliver x (accepted) 

The efficiency of the algorithm i.e., the probability of accepting a generated x-value, 

is 

^ r{x)Tr{x)dx = ^ (3.82) 

Graphically, the efficiency is the ratio of the areas under the curves y = p{x) and 

y = C7t{x), which are 1 and C, respectively. For a given 7r(x), since R{x) < 1, the constant 

C must satisfy the condition C-k{x) > p{x) for all x. The minimum value of C, with the 

requirement that C-k{x) = p{x) for some x, gives the optimum efficiency. 

The generation of the energy values is non-trivial. In PENELOPE, a given photon or 

electron line must be chosen from the lines specified in the input file, with a probability 

that corresponds to the relative intensities of the lines. If the random variable x can take 

the values x — l,...,N with point probabilities pi,...pN, respectively, the corresponding 

probability distribution function can be expressed as 

N 

= (3.83) 
i=l 

where S{x) is the Dirac distribution. Here p{x) is assumed to be defined for x in an interval 

{xmin,Xmax) with Xmin < 1 and x^ax > N. The Corresponding cmnulative distribution 

function is 

0 i f a ; < l , 

iil<x<N, (3.84) 

1 i f x > A ^ , 

where [x] stands for the integer part of x. Then, equation 3.84 leads to the sampling 
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forinula 

X = 1 if < Pi 

= 2ifpi<^<pi+p2 

J-i 3 

= .y if < J ^ f t 

i=l j=l 

(3.85) 

We can also define the quantities 

A = 0 , P2=PU P3 = P I + P 2 , . . . , = = 1 (3.86) 

N 

i=l 

To sample the function x randomly, a random number ^ is generated and set x equal 

to the index i such that 

P ^< ^<P^+ l . (3.87) 

3.4 The Input Files for P E N E L O P E 

The user must provide three files for a PENELOPE simulation: a geometry file, an input 

file, and a material data file. The user can trivially generate the material data file by 

specifying the materials involved in the simulation in a subroutine. PENELOPE will 

then produce detailed cross sections, mean free paths, etc., generally using cubic-spline 

interpolation, in energy and angle, on the values in its database. The geometry and input 

files are non-trivial to generate, and are summarised below. 

3.4.1 G e o m e t r y 

The strength of the Monte Carlo method is its ability to handle complex geometries. Each 

simulation requires a user-specified geometry file, which is non-trivial to generate. PENE-

LOPE uses a "constructive quadric geometry" system, whicli allows for the reproduction 

of very complex geometries. PENELOPE defines a geometry in terms of three entities 

(see appendix A): 

• Quadr ic surfaces These surfaces define the intersection between materials. Each 
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Figure 3.14: A possible cross section of a PENELOPE geometry and niodnle, with geometry 
family tree. 

surface is defined by the implicit equation 

F{x,y,z) = Axxx'^+A:cyXy+AxzXz+Ayyy'^+Ay^yz+A^zZ^+AxX+Zyy+AzZ+Ao = 0, 

(3.88) 

which allows for the formation of planes, pairs of planes, spheres, cylinders, cones, el-

lipsoids paraboloids, hyperboloids, etc. Intersections of surfaces can be found simply 

by solving a quadratic. In practice, the surface is defined by an equivalent system, 

based on a reduced quadric of the form: 

Fr{x, y, z) = hx'^ + hi/ + hz^ + hz + h = 0, (3.89) 

where the indices / i to which can take the values -1, 0 or 1, determine the "shape" 

of the surface - plane, sphere, etc. Three transformations are then applied to the 

basic reduced quadric equation of equation 3.89: 

1. A scaling along the x, y, and 2 axes. The reduced quadric of equation 3.89 can 

be re-written as 

Fs{x,y,z)=h (^y+12 [ l Y 0 , (3.90) 

where the coefficients a, b, and c can be defined arbitrarily. The coefficients a, 

b and c, scale the shape in the x, y, and z planes, respectively. 

2. A rotation R{uj, d, (p) defined by the Euler angles, co, 9 and which define 



§3.4 The Input Files for PENELOPE 77 

right-handed rotations about the z-axis, ?y-axis and z -axis , respectively. The 

LO rotation is apphed first, followed by 0, then the (p rotation. 

3. A translation, defined by components t^, ty and t^ which define shifts in the x, 

y and 2 directions, respectively. 

• Bodies define a connected volume filled with a homogeneous material. They are 

specified by their limiting surfaces (which nnist be defined earlier), and their com-

position - a number that refers to a material in the material data file. Each limiting 

surface specifying a boundary of the body must be followed by a side pointer, which 

can take values of either -1 or 1, to specify on wliich side of the surface the body 

lies. A side pointer of —1 specifies that a point with coordinates (XQ, yo, zq) is said to 

be inside the surface if F(xo, yo, zo) < 0; whereas a side pointer of -|-1, specifies that a 

point with coordinates (XQ, yo, zq) is said to be inside the surface if F{xq, yo, zo) > 0. 

• A Module is a connected volume, defined by limiting surfaces that contains one 

or more l)odies. Essentially, it is a body that contains other bodies. Modules may 

also contain other modules, called submodules. The purpose of the extra structure 

is to speed up the process of checking whether the particle has crossed an interface 

between bodies. Part of the geometry routine is a subroutine called LOCATE, that 

"locates" a point r, i.e., determines the body that contains it, if any. The brute-force 

method would be to compute the side pointers for all surfaces and then check each 

body one by one, until one that fits all the side pointers is found. Another method 

may be to disregard those bodies that cannot be reached in a single step, but this 

was deemed undesirable from a computational point of view, as it requires extra 

information to be supplied to the routine. Figure 3.14 illustrates a possible structure 

of modules, submodules and bodies. Consider a particle at a point r in module 9. 

After stepping the particle through to the next interaction, the subroutine LOCATE 

must determine whether it has crossed into another body. Instead of checking all 

bodies, the program will check whether it has strayed into modules 3 or 8. If it has 

crossed an interface, say into module 3, the program will then only check the bodies 

1, 2 and 3 for the location of the particle. 

3.4.2 Input File 

A user generated input file specifies the source position and emissions, the energy 

detectors, and the simulation parameters, see appendix B. Each radiation is specified by 
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its energy in eV and its intensity (relative to the other radiations). The coordinates and 

throwing angle of the source is specified. Each detector must be specified by its body 

number in the geometry file. The energy window i.e. the minimum and maximum energies 

and the number of energy bins must be specified for each detector. The length of the sim-

ulation can be set by either the simulation time, or the number of desired particle histories. 

Simulation Parameters 

The electron tracking is controlled by 6 user specified parameters. Eabs gives the 

absorption energy below which the particle is considered to have stopped. Eabs should be 

smaller than the width of the energy bins used. CI and C2 refer to elastic collisions, and 

have a very weak influence on the results [8]. CI gives the average angular deflection due 

to a hard collision and to the soft collisions previous to it. C2 represents the maximum 

value permitted for the average fractional energy loss in a step. On the other hand, Wcc 

and Wcr are energy cutoffs to distinguish hard and soft events. Wcc and Wcr should be 

chosen so that they are smaller than the energy bins used. The maximum step size can 

be controlled with the parameter Smax- The maximum step length is important for thin 

bodies, and the PENELOPE manual specifies that it should be set to less than one-tenth 

of the body thickness. For thick bodies, such as the detector casing, Smax is miimportant 

and can be left unspecified, where the program will take the default value of 1 x cm. 



Chapter 4 

Results 

For electrons in the energy range of interest, there is httle hteratiire that compares 

PENELOPE sininlations to experiment. Presented in this chapter are several simulations 

nsing the Monte Carlo program PENELOPE, designed for direct and comprehensive 

comparison to the ex])erimental results, presented in chapter 2. It will be shown that the 

simulations provide additional information to the experiments, and that the two together 

effectively chart the resj)onse of the Si(Li) detector from 10 keV to 3.5 MeV in energy, 

and from 0° to 60° in angle of incidence. 

4.1 Experimental Setup for the '̂̂ '̂ Ba Monte Carlo Mea-

surement, with the Honey Detector as Specified by the 

Manufacturer 

The experimental details and experimental photon and electron spectra of a ^^^Ba source 

were presented in chapter 2. The experimental setup was recreated in PENELOPE, 

and the setup and simulated spectra are presented here. The aim was to reproduce the 

entire energy spectrum in PENELOPE, including detector efficiencies, background and 

lineshape, as verification of the code's accuracy and suitability for electron-spectroscopy 

calibration. 

The most crucial aspects of the ^^^Ba experiment were reproduced in the simulation 

inputs, these being: 

(i) The detector geometry, see figures 4.1 and 4.2, of appendix A, including casing, gold 

front window, and the position and thickness of the source (the pixelatiou of the 

figures is a result of the graphics program used, and is not present in the simulation) 
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Figure 4.1: Honey - front view, produced in PENELOPE, see appendix A. 

Figure 4.2: Honey - cross sectional view, produced in PENELOPE, see appendix A. 
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(ii) The spatial distribution of the source - the source distribution was sampled uniformly 

from a cylindrical distribution with diameter and thickness matching those of the 

radioactive source used in the experiment 

(iii) Radiation intensities and energies were sampled according to the relative intensities 

and energies specified in table 2.1 

(iv) The effect of charge collection and electronic noise (see section 2.3.1) 

While the physics in the PENELOPE source code was left unchanged, some modifi-

cations to the program were necessary to reproduce the experimental conditions, notably 

(ii) and (iv). the source distribution and the effects of statistical charge collection: 

• The PENELOPE source code only allows a point source distribution. This is prob-

lematic, as electrons that are ejected from some depth in the source may lose part of 

their energy to the bulk material of the somxe, causing an energy straggling tail, see 

section 2.3.2. Leaving this out of the simulations would give an incorrect lineshape. 

A routine to uniformly sample a cylindrical source distribution was incorporated 

into the PENELOPE code. The radius and thickness of the source nmst be specified 

in the PENELOPE input file. 

• As there is no [provision in PENELOPE for electronic noise, and peak broadening 

due to charge collection effects, a modification was made to "mimic" the effects that 

these have on the spectrum. Once PENELOPE has determined the energy a particle 

leaves in the detector, the program randomly samples a Gaussian distribution centred 

around that energy. The width of the Gaussian is specified in the input file and 

was fixed at a constant value of 2 keV, chosen to match those found by fitting the 

experimental spectrum. 

• A modification was made that allows the user to set the desired number of energy 

channels to their choosing - originally there was a 400 channel maximum, which was 

too coarse to see the fine details of the spectrum. The modification allowed the user 

to set the nmnber of channels to a maximmn of 4000, which is appropriate for the 

experiments performed here. 

• It was noticed that the program defaults to using the same seed for the random 

number generator every time, meaning that running twice with identical setups will 

produce identical results. For this reason, a program that generates the seed based 
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on the time and date was implemented [86]. This is called once at the start of the 

run, and then the PENELOPE random number generator is used from then on. 

4.1.1 Geometry 

The Honey detector array, including crystal and casing dimensions, as well as gaps and 

electrodes, were constructed from elementary quadratic surfaces, as described in section 

3.4.1. The electrical connections on the back were left out, as well as the cold finger, as 

they are unlikely to affect the energy signal. The detector chamber was also omitted -

there is the possibility that electrons will backscatter off the detector chamber and hit 

the detector, however, incorporating this would slow simulation speed considerably, and 

most likely not affect the simulation results in a significant way. 

4.1.2 Simulation Parameters 

Material Ea6s,7 (keV) Kbs,e- (keV) CI C2 Wcc (keV) Wer (keV) Smax ( c m ) 
Active Silicon 1 0 .1 0 .1 0 .1 0 .1 0 . 1 1 X 1 0 - ^ 
Gold Window 1 0 .1 0 .1 0 .1 0 .1 0 . 1 1 X 1 0 - « 
Copper Casing 10 1 0 .1 0 .1 1 1 1 X 10^^ 

Table 4.1: Simulation parameters. 

The simulation parameters, described in section 3.4.2 are set separately for each 

material. Simulation parameters were chosen so as to provide precision for the detector 

materials (silicon and gold) and were left quite coarse for the detector casing, see table 

4.1. The radiations were emitted in a cone of half angle 18.2°, sufficient to irradiate the 

entire area of the detector, with 45 bins for the polar angle and 18 bins for the azimuthal 

angle. 
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Figure 4.3: Comparison of experimental (see section 2) and simulated spectra. In all cases, 
the simulation data were obtained by using the energies and intensities of radiations, taken from 
table 2.1, incident on the bare Honey detector. Mixed: bare Honey detector; Electron: SEPH-530 
detector and Lens transporter; Photon: the difference: Mixed - Electron spectra. Artifacts of the 
subtraction process are marked with *. 
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4.2 Comparison of the ^̂ ^Ba Simulation and Experimental 

Results 

4.2.1 Statistics and Calibration 

The results of over 10 billion simulation particle histories with the complete ^̂ ^Ba 

experimental setup as described above are shown in figure 4.3. The simulated photon 

spectrum in pink was normalised to the experimental spectrum in black via the most 

intense line, the CS-XKQI X-ray. The simulated electron spectrum was normalised to the 

experiment via the peak heights of the 356 K line. The mixed experimental spectrum is 

the sum of the photon and electron spectra. The normalisation and energy calibrations 

of the experimental spectra are described in section 2.6. 

4.2.2 Comparison of the Photon Spectra 

The photon spectra agree surprisingly well, given that the procedures used to obtain the 

experimental and simulated photon spectra were somewhat different. More specifically, 

the photon spectrum that was recorded is the subtraction of the pure electron spectrum, 

taken with the SEPH-530 detector and Lens transporter, from the total spectrum recorded 

with the bare Si(Li) detector. Honey. In contrast, the simulated photon spectrum was 

obtained with the replica Honey detector array and the ^̂ ^Ba photon emissions specified 

in table 2.1. However, as there are no photon counts in the pure experimental electron 

spectrum, what is left, the photon spectrum of figure 4.3 after the subtraction, are photon 

counts in the Honey measurement. So effectively, the experimental and simulated photon 

spectra do come from matching setups. Ignoring the distortions in the experimental 

spectrum, due to the subtraction of intense electron lines, at first inspection, the two 

spectra agree remarkably closely in the following respects: (1) the background agrees 

broadly in shape and also in intensity, and (2) the intensities for both photons and 

electrons are well reproduced. These features suggest that this method of simulation using 

PENELOPE is suitable for estimating the photon background of a given experiment, 

as well as estimating the heights of photon peaks. The photon background, prevalent 

between 100 keV and 200 keV, is reproduced particularly well. 
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Figure 4.4: Fit to part of the Honey data for ^^^Ba, using the Fitek code. 

4.2.3 Comparison of the Electron Spectra 

Looking more critically, of the three comparisons, the pure electron spectrum of figure 4.3 

(middle panel) show the greatest disparity. The experimental spectrmn was taken with 

the SEPH-53() detector and transporter, whereas the simulated spectrum was calculated 

for the bare Honey detector geometry. However, the main difference in the detectors is 

their thickness, which is perhaps not overly important in the energy range up to 400 

keV. Due to differing lineshapes, the peak to backgroimd ratios do not match well. The 

sinmlation lines are sharper, and more symmetric, a discrepancy which is also present in 

the "mixed" spectrum of figure 4.3. 

Aiming to quantify the diflFerences, in order to understand and improve the simulation, 

the experimental and simulation spectra were fitted and the lineshapes compared. 

4.2.4 Comparison of the Lineshape Parameters 

The lineshapes of the experimental and simulation peaks were compared more quan-

titatively using the fitting routine F ITEK [87]. A sample fit to experimental data is 

shown in figure 4.4. The lineshape parameters obtained from the experimental (closed 

symbols) and simulation (open symbols) data are shown in figure 4.5. The full width 

at half maxinumi ( FWHM) was fixed in the simulations. The magnitudes of the energy 

straggling tail heights are miderestimated. It is unclear whether this is the result of poor 
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tal (filled symbols) electron spectra of figure 4.3. 
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Figure 4.6: The energy absorption of the source, according to the simulation. 

statistics, or the physical models of P E N E L O P E , or perliaps the geometries used in the 

simulations do not match closely enough with the experimental geometries. Also, we 

were unable to fit a step function to the simulated peaks. This could either be because 

approximating incomplete energy deposition in the detector by a step function is not 

valid, or could perhaps point to a more fundamental problem with the P E N E L O P E 

physical models. 

The electron lineshapes were not reproduced accurately. The photon peak heights 

and backgrounds were reproduced well. Figure 4.6 shows that the energy absorption 

occurred in the source, which is expected to be important for the lineshape. The photon 

background in the Honey spectrum was reproduced well. 

Al though the results are promising, it is of concern that they do not reproduce the 

experimental conversion-electron lineshapes sufficiently well. Specifically, the simulated 

peaks are more symmetric, showing smaller energy straggling tails (see figures 4.5 and 

4.5). The step height, which nuist be related to incomplete energy deposition, was also 

smaller in the simulations. This caused the peak to background ratio to be much higher 

in the simulations than was fomid experimentally. Ou t of the three plots of figure 4.3, 

the simulated photon spectrum agrees most closely with that of experiment; the peak 
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Figure 4.7: Experimental and Simulation results assuming a 4 /xm dead layer of silicon on the 
front face of the Honey detector crystal; Artifacts of the subtraction process are indicated by *. 
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to background ratio is reproduced almost exactly above 100 keV. This suggests that 

the discrepancies in the simulated electron lineshapes may be due to an absorbing layer 

that has not been taken into account in the simulations - such a layer would affect the 

electron response nuich more strongly than the photon response. The existing absorbing 

layers are those of the gold window (200 A) and the source itself (44 nm). Citing the 

comparisons between experiment and simulation made by Mesradi [88], the possibility 

was raised that the silicon detector might have a "dead layer" on the front of the silicon 

face i.e.. a region of silicon that does not have the necessary charge-carrier abundance to 

fmiction as a semiconductor [891. 

4.3 ^^^Ba Monte Carlo Measurement Using a "Dead Layer" 

Honey Geometry 

Simulations were run with Honey geometries with a dead layer of silicon of varying thick-

nesses. To speed up the process, only the 356 K line was simulated. A dead layer thickness 

of 4 //m was chosen as the most accmate in reproducing the experimental lineshape, so 

the full list of ^^^Ba radiations was run for a Honey detector array with 4 /xm dead layer. 

The results shown in figure 4.7 overall show a much better agreement with experiment 

than the results of the previous Monte Carlo run, section 4.1. The comparison of the two 

spectra may be divided into the following points: 

1. Inspection of the spectra shows a close agreement, except for an offset at low energy 

in the simulated spectrmn 

2. Low energy offset, and arguments for and against the dead layer 

3. Comparison of the simulation and experimental lineshape parameters: 

(a) Incomplete energy deposition 

(b) Energy straggling 

(c) Full width at half niiiximum, 

which are discussed below. 
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4.3.1 Inspection of Figure 4.7 

The results are shown in figure 4.7 and the results of fitting the simulation and experi-

mental parameters are shown in figure 4.9. The excellent agreement between simulation 

and experiment supports the theory that the SEPH-530 and Honey detectors contain a 

Si dead layer on the front window. As in the previous simulations shown in figure 4.3, 

the photon spectrum was reproduced well, showing that the dead layer has little to no 

effect on the photon response. The electron and mixed spectra agree much more closely, 

however. The peak to background ratio is reproduced well in both the pure electron 

and the mixed spectra, some slight differences at higher energies are likely due to both 

low statistics in the experimental measurement - and imprecise ambient background 

subtraction in the experimental measurement. There is no ambient background in the 

simulations, so experimental ambient background subtraction is necessary to compare 

the experiment and simulations. Due to limited access to the facilities, the ambient 

background spectrum was recorded later, and an ambient background was only recorded 

for the Honey setup, not the Lens transporter - SEPH-530 setup. At high energies (above 

the 356 K line) the spectra background intensity drops to zero in both the experimental, 

and simulation, much larger statistics in both would be needed to see the peak to 

background ratio in this area. 

4.3.2 Low^ Energy Offset and Arguments For and Against the Dead 

Layer 

The most significant difference between experiment and simulation occurs in the electron 

peaks below 100 keV. The energies of the simulated peaks are offset from the experimental 

peaks by around 4 keV at the worst agreement, the 81 K line. Absorbing layers such as 

the silicon dead layer are known to shift the energy of the peak, and it is likely to be 

the treatment of this that is causing the energy shift. While at first, this may indicate 

that the assumption of a dead layer is inappropriate, the presence of a dead layer is 

supported by the generally excellent agreement in the lineshapes. Any reduction in the 

dead layer thickness is likely to worsen the agreement between lineshapes and peak to 

background ratios. The presence of a dead layer is also supported by comparing the 

photon and electron calibrations. By fitting the photon peaks from the mixed spectra, 

an energy calibration oi E = 0.4010 {keV/CH) x CH - 0.72 keV, where CH is the 
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Figure 4.8: Simulation of the ^̂ B̂a measurement for a 1 fiin silicon dead layer compared to the 
SEPH-r)30 experimental data. 

channel, was obtained, whereas by fitting the electron peaks, an energy calibration of 

E = 0.3995 (keV/Charniel) x CH + 0.55 keV was obtained. This shows that there is an 

offset between photons and electrons of 1.27 keV, an offset that is likely to be caused 

by energy absorption. Furthermore, figure 4.3, would suggest that the experimental 

lineshapes cannot be reproduced without a dead layer. It is possible that PENELOPE 

does not reproduce the energy loss due to passing through a thin absorbing layer well 

at energies below 100 keV. Further experiments and accurate knowledge of the detector 

window structure would be necessary to confirm or discount this possibility. However, 

considering the ^̂ C measurement, the higher energy region is of primary interest, where 

the agreement is excellent. 

Investigations showed that in order to achieve an agreement between the simulated 

and experimental peak energies, the dead layer thickness must be reduced to 1 /xm. 

Figure 4.8 shows the results of a 1 //m dead layer - Honey geometry, simulated for the 
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^^^Ba radiations. As can be seen, the energy calibration is correct, but the lineshape is 

not accurate. 

Further experiment and simulations would be necessary to investigate the origin of 

the tails further. It is also possible that there are effects not included in the PENE-

LOPE model that have not been considered that could cause the asymmetry seen in 

the electron peaks. Particularly, the effect that would be needed, would be one that 

produces the asymmetry characteristic of an absorbing layer, but one that is less en-

ergy dependent. Further investigation is needed to determine whether such an effect exists. 

One possibihty is that the effect responsible for the observed peak asymmetry is 

occurring within the active detector crystal. Charge collection, and electronic noise 

is currently treated as Gaussian and symmetric in the PENELOPE simulations. The 

effects outlined in section 2.3.1 (thermal noise, fluctuations in the number of electron-hole 

pairs created, shot noise, etc.) are all expected to have symmetric contributions to the 

lineshape, except for that of incomplete charge collection. This raises the possibility that 

the tail may, at least in part, come from incomplete collection of electron-hole pairs in 

the semiconductor. However, the absence of any tail from the photon peaks casts doubt 

on this hypothesis. Photons would however, deposit their energy with a different depth 

distribution, which could give rise to different charge collection properties. 

4.3.3 Comparison of Experimental and Simulation Lineshape Parame-

ters 

Figure 4.9 shows the lineshape parameters obtained by fitting the simulated and ex-

perimental electron spectra using Fitek [87]. The fit parameters shown are: the step 

height - due to incomplete energy deposition; the tail height and tail width, due to 

energy straggling; and the full width at half maximum due to charge collection effects 

and electronic noise. The parameters agree very well, as there are not only uncertain-

ties in the fitting process, but also in the experimental and simulation spectra being fitted. 
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Figure 4.10: Shown in black is the spectrum extracted from the Lens - SEPH-530 measurement, 
described in section 2.6, for a small window of the magnetic field, with the magnet current between 
1.68A and 2.00A. The transmission of the Lens system for this current region is shown. Shown in 
pink is the comparable spectrum obtained by a simulation in PENELOPE. 

Full Width at Half Maximum 

The full width at half maxiinuin was an input in the simulations; the other parameters 

were reproduced in PENELOPE via the fundamental interactions of radiation with 

matter. However, it does show some energy dependence in figure 4.9. This is due to the 

interplay of the fit parameters in Fitek, and the subjectivity of the fit parameters obtained. 

Incomplete Energy Deposition 

The largest discrepancy is in the step heights, however, this is possibly a result of poor 

statistics, and the irregularities of the ambient background subtraction. Better exper-

imental statistics, both in the background and source measurements may improve the 

agreement. It is possible that PENELOPE's treatment of incomplete energy deposition 

is inconsistent with the fitting of a step function. 
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Figure 4.10 shows the experimental spectrum obtained for a single value of the Lens 

magnetic field, recorded with the SEPH-53() detector, as described in section 2.6. A 

sinnilation was run in PENELOPE with only the radiations visible in the experimental 

spectrum of 4.10. There is some mismatch in the peak intensities, due to the shape of 

the transmission window of the Lens in the experimental spectrum, i.e., the efficiency is 

not constant. However, the close agreement between the two backgrounds in figure 4.10 

suggests that PENELOPE does reproduce incomplete energy deposition well. As such, 

the mismatch between step fmiction parameters at high energy, see figure 4.9, is likely 

to be due to the low statistics in both experiment and simulation, in this energy region. 

In any case, there is reasonable agreement within vnicertainties at low energies. The 

uncertainties at high energies may be miderestimated. 

Energy Straggling 

The agreement of the tail heights is excellent: there is one outlying point in the 

experimental fit, which could, perhaps, be disregarded due to poor statistics. The tail 

widths agree well also, except perhaps at around 45 keV, where the 81 K line appears, 

the sinnilated tail width is overestimated slightly. However, this region is on the edge of 

the Lens transport window, see figure 2.8, and is also at the area of most intense ambient 

background, both could alter the experimental lineshape. To investigate further, the Lens 

magnetic field should be swept over a wider range. 

4 .3 .4 Photon Background 

As well as providing a "baseline" or confirmation of the simulation system, these 

experiments and simulations also provide insight into the detector response between 20 

keV and 400 keV. Both simulation and experiment show a roughly constant efficiency, 

(figure 2.7). One of the features of the experimental spectra that was confirmed in the 

sinnilated spectra was the alarming prevalence of the photon background at this energy 

range. Below the 356 keV Compton edge, which occurs at 203 keV, the complex Compton 

spectrum at lower energies, as described by Compton theory can be seen. In the energy 

region of 100 - 200 keV, Compton electrons accounted for around 99.9% of all events 
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recorded by the detector. This explains the high background seen in this region of the 

experimental data, and the lack of visibility of the electron peaks expected there. The 

most intense electron peaks in this region were only visible as 10% "bumps" on the 

dominant Compton electron background. Full energy photon peaks were also visible; 

PENELOPE predicts that 0.4% of 356 keV photons incident on the Honey detector array 

will deposit their full energy in the detector. A corresponding experimental value of 1% 

was obtained from the 356 photon peak area in figure 2.9. 

4.4 Efficiency as Function of Energy 

Further simulations were combined with the measurement to extend the detector 

characterisation up to 3.5 MeV. Using PENELOPE, the dependencies of the efficiency on 

angle and energy were investigated for electrons incident on a silicon crystal. A cylindrical 

geometry was used, with mono-energetic line-beams of electrons of 0°, 15°, 30°, 45° and 

60° angular incidence. The energy range sampled was 2 keV - 3.5 MeV. A simple cylinder 

of homogeneous silicon, of diameter 50 cm and thickness 1 cm, was used and a total of 1 

million showers were simulated for each point. 

Run Efficiency (%) 
1 78.19 
2 78.57 
3 78.25 
4 78.42 
5 78.63 
6 78.45 
7 78.69 
8 78.49 
9 78.67 
10 78.59 

Average 78.50 ± 0 . 1 7 

Table 4.2: A sample spread of results, obtained by running the same simulation 10 times. 

Plotted in figure 4.11 is P = (1 - as a percentage, where rĵ et is the efficiency of 

the crystal, defined by 
\peak) ,, _ 

met = — ( 4 . 1 ) 
•^{spectrum) 

where A^pg^k) is the nimiber of counts in the full energy peak and ^(^pecfrum) is the total 
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Figure 4.11: Probability of incomplete energy deposition for a 1 cm thick Si(Li) detector, 1 

million particle histories per point. Also shown are four points (1 MeV, 2 MeV, 3 MeV and 3.5 

MeV), calculated for 0° incidence on a 10 cm thick detector. 

miinber of counts in the spectrum, equal to the total number of input primary radiations 

(1 million). This is equivalent to that of equation 2.3, as for a single input energy, the 

number of radiations that strike the detector with that energy is the total area of the 

spectrum. Plotted in figure 4.11, then, is the total efficiency loss as a function of angle 

and energy. A strong dependence on both angle and energy is shown. The magnitude of 

the statistical micertaiuties was investigated, see table 4.2. Ten repetitions of the same 

Monte Carlo experiment were conducted for each point for a given angle (30°). Based on 

the standard deviation of the Monte Carlo runs, the statistical errors were found to be 

negligibly small, at least compared to the uncertainties inherent in the physical models 

used. For example, the data given in table 4.2, has a standard deviation of 0.17% due to 

Monte Carlo statistics. 

Figure 4.11 shows a somewhat alarming rise in the probability of incomplete energy 



98 Results 

g 
m o U 

in 

0) -U (U 

o u c 
o\o 

50 

40 

30 

T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 \ 1 1 1 1 1 1 1 I 
— Total incomplete energy signals 0° 

Secondary photon transmission T̂ , 
Secondary photon backscattering p̂  
Primary electron backscattering Ppb 

— Secondary electron backscattering Psb 
Secondary electron transmission T.̂  

-i—I—I—I—I I I i I i r 
1000 1500 2000 

Energy (keV) 

"i i i IX I - I I I I " 
2500 3000 3500 

Figure 4.12: Sources of efficiency loss for the 0° curve in figure 4.11. The contributions of 
secondary photon emission, secondary photon backscattering, primary electron backscattering, 
secondary electron backscattering and secondary electron transmission are shown. 

deposition above 1 MeV. This poses an experimental problem to which increasing the 

thickness of the detector is the obvions solution. Simulations were therefore run for a 

much thicker silicon detector of 10 cm thickness, see figure 4.11. These results still show 

an increase in the probability of incomplete energy deposition above 1 MeV, but the 

increase is not as steep. However, the benefit is not as dramatic as may be hoped, for such 

a thick semiconductor; and a Si(Li) with a thickness of 10 cm would be challenging to 

manufacture. In order to shed light on the energy dependence in figure 4.11, the sources 

of energy loss were investigated. PENELOPE provides the following quantities for each 

simulation: 

• number of backscattered secondary photons 

• number of transmitted secondary photons 

number of backscattered secondary electrons 
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3 5 0 0 

• number of backscattered primary electrons 

number of transmitted primary electrons 

These quantities were plotted as a function of energy, for a fixed angle (see figures 4.12 

4.13 4.14 4.15 4.16) and as a function of the angle of incidence 0. for a sample energy 

(3.5 MeV), see figure 4.17. Figures 4.12 4.13 4.14 4.15 4.16 show that while the primary 

backscattering decreases as a function of energy, the transmitted photon probability 

rises dramatically for high energies. This feature is explained by the increasing radiative 

stopping power in that energy region. At around 500 keV - 1 MeV the radiative stopping 

power rises steeply as a function of energy, see figure 3.7. This is not caused by any 

increase in the radiative cross section, but by an increase in the average energy per 

bremsstrahlung photon. The higher energy photons are more likely to escape from the 

detector, which explains the loss of efficiency seen at high energy in figure 4.11. The 

first region of figure 4.11, where a small, linear decrease in incomplete energy deposition 

with energy is seen, is as expected, and is due to the well known decrease of primary 
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backscattering with energy. Figures 4.11, 4.12 - 4.17 both explain why the approach taken 

in the hterature has been that primary backscattering is the only source of efficiency 

loss in a Si(Li) electron detector measurement, and also show that in general, it is 

inadequate. Below 100 keV, primary backscattering is indeed responsible for almost all 

the incomplete energy depositions. In fact, it is the dominant form of incomplete energy 

deposition below 1 MeV. Above that energy however, the dominant form of energy loss 

is the transmission of photons produced by bremsstrahhmg events. The backscatter-

ing of bremsstrahlung photons becomes quite significant also. This misinterpretation 

will surely need to be corrected if high-energy pair spectroscopy is to be developed further. 

Following on from the previous simulations, which were conducted for a 1 cm thick 

detector, like the SEPH-530 detector, a similar set of simulations were conducted with a 

4.3 mm thick detector - the thickness of the Honey detector - as the ^^C measurement 

proposes to use the Honey detector array, at least for pilot studies. The results are shown 

in figure 4.18. An identical set of measurements, but with incident positrons instead 



§4.4 Efficiency as Function of Energy 101 

g 

w a 
^ 
u OJ 
s 
0) -u) (U 

o 

50 

40 -

1—I—I—I—I—I—I—I—r ^—I—I—I—I—I—I—I—I—r 
Total incomplete energy signals 
Secondary photon transmission T̂^ 
Secondary photon backscattering Pa 
Primary electron backscattering Pp̂  
Secondary electron backscattering p, 
Secondary electron transmission T̂ ^ 

30 -

2 0 -

10 -

0 

45' 

0 500 1000 1500 2000 2500 3000 3500 
Energy (keV) 

Figure 4.15: Same as figure 4.12, but for 45° iucideuce. 

of electrons, were simulated, see figure 4.19. As would be expected from the previous 

results, the loss of efficiency above 1 MeV is marked for both electrons and positrons 

with the efficiency for electrons dropping below 30% at 3.5 MeV, and the efficiency for 

positrons dropping below 20% at 3.5 MeV. The lines cross each other, i.e., the 0° case 

has the highest efficiency at low energy, but has the lowest efficiency at 3.5 MeV. This is 

most likely due to the tendency of brenisstrahlung photons to be emitted in the forward 

direction, see figure 3.7. 

The results of 4.18 and 4.19 pose a major concern for the proposed measurement of 

the radiative width of the Hoyle state in ^^C, if the Honey detector must be used to make 

quantitative measurements of electron - positron pairs at 3.3 MeV. Figures 4.18 and 4.19 

would suggest an efficiency of around 30% for electrons and 20% for positrons, depending 

on the angle of incidence. The fact that the efficiency is changing so drastically with 

energy at 3.3 MeV, is also a concern, when one considers that the energy calibration may 

not be exact. In light of this, a 1 cm thick version of the Honey detector is proposed for 
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Figure 4.16: Same as figure 4.12, but for 60° incidence. 

use in the Hoyle state measurement. 

4.5 Empirical Formula for Efficiency as a Function of En-

ergy and Angle 

Figure 4.20 combines the simulated data on Si(Li) detector efficiency. It is the same data 

set as figure 4.11, but plotted as the efficiency, rather than percentage of incomplete 

energy deposition. These plots take several weeks of computer time to generate by the 

Monte Carlo method. With a view to cutting computer time, an empirical formula was 

developed here, to fit the data points as a function of energy E and incident angle 6. The 

aim is to obtain a formula for use as a quick reference in planning experiments or detector 

design, in the absence of a Monte Carlo run or experimental study. It is also necessary 

to interpolate between the data points of figure 4.20, especially as there are only 5 angles 

plotted. The formula could also be used (with caution) to extrapolate the results to higher 
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Figure 4.17: Sources of efficiency loss plotted as a function of angle for an energy of 3.5 MeV. 

energies. Plotted in figure 4.20 are the same results of figure 4.11, shown in data point form. 

To obtain an empirical formula, the energy dependence of figure 4.20 was divided into 

two regions: 

1. the first, ranging from 10 keV up to 200 keV. where the function is roughly linear, 

and proportional to energy, as shown in figure 4.21; 

2. the second ranging from 200 keV to 3.5 AleV, where the efficiency decreases with 

the incident energy in a quadratic nature, is shown in figure 4.23. 

The first region was fitted as a linear function of energy: 

t]{E) = ai + a2E, (4.2) 

see figure 4.21. 

The values of the fitting parameters are shown in table 4.3. The parameter a i was 
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Figure 4.18: Percentage of incomplete energy deposition as a function of incident angle, and 
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Efficiency for Electrons Incident on a 10 ran Silicon Slab 
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Figure 4.20: Simulated effioiency for electrons incident on a 10 mm silicon slab. 
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0 ai a2 

0° 0.8251 1.206x10"^ 

15° 0.81326 1.135x10-'^ 

30° 0.77580 9.12x10-5 

45° 0.707997 6.49x10-5 

60° 0.60137 2.70x10-5 

Table 4.3: Fit parameters for the region 10 keV < £ < 200 keV. 

then fitted as: 

ai = 03 (cos 6*) 04 (4.3) 

and the parameter 02 was fitted as 

a2 — a^ + 06 cos 0. 

Re-writing equation 4.2 in terms of the new parameters gives: 

7]{E) = a3(cos + (05 + ae cos 0)E. 

(4.4) 

(4.5) 

The values of the parameters, 03,04,05 and og are summarised in table 4.4. Substitution 

03 0.827 

04 0.456 

05 -6.2 x 10-^ 

06 1.80 x 10"^ 

Table 4.4: Fit parameters for the region 10 keV < £• < 200 keV. 

into equation 4.5 gives 

i]{E) = O.827(cos0)°-^^® + (-6.2 x lO '^ + 1.80 x 10"^ cos 

where 10 keV < ^ < 200 keV. 

(4.6) 

Region two (200 keV < E < 3.5 MeV) was fitted, see figure 4.23, as: 

r^E) = h + b2E + (4.7) 

where 61, 62 and 63 are the quadratic fit parameters. The parameter bi was then fitted as 
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a linear function of cos0: 

bi =b.i +1)5 cose, (4.8) 

with 64 = 0.36 and 65 = 0.49. The parameter 62 was fitted as a quadratic in cos 6 as 

= be + l>j cos 9 + b̂  cos^ 6, (4.9) 

where b̂  = -2 .22 x 10-^ 67 = 1.09 x Ur^, and bg = -7 .10 x 10"^ The parameter 63 was 

fitted as hnear in cos 0: 

63 = 69+ 610 cos (4.10) 

where 69 = - 4 x 10-^ and 610 = - 1 . 2 x 10"^ This gives, for 200 î eV < E < 3500 keV: 

>]{E) = 64 + b5 cos ^̂  + (̂ 6 + 67 cos 0 + bs cos^ 0)E + {bg + bio cos 0)E^. (4.11) 

64 0.36 
65 0.49 
be -2 .22 X 10-^ 
bj 1.09 X 10-^ 
bn -7 .10 X 10"'' 
bo - 4 X 10-y 
bio - 1 . 2 X 10-« 

Table 4.5: Fit parameters for the region 200 keV < £ < 3.5 MeV. 

The vahies of the fit parameters are sunnnarised in table 4.5, and data and fit are 

compared in figure 4.25. The parameterisation of the detector efficiency is achieved 

in terms of 4 parameters for the linear region and 7 for the quadratic region shown 

in figure 4.25. There is some mismatch at 200 keV where the 2 regions overlap, but 

the difference is of less than 1% of the data value. Note that the parameterisation 

has been carried out for a 10 nun detector, which is likely the thickness required 

for the Hoyle state experiment. However, it is likely that other thicknesses could be 

parameterised with a similar expression. The empirical formula provides a means of 

interpolating between the data points in angle and energy. It also provides a fast method 

of computing efficiency for a given energy and angle. This becomes important when 

the experimental detection system of the ^̂ C is sinmlated as a whole, including the 

angular distribution of emitted radiations, the transport through the magnetic field of 

the lens, and finally, the interaction with the Si(Li) detector. As the complexity of 
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Figure 4.25: Fit to efficiency as a function of energy and angle for electrons incident on a 10 mm 
silicon slab. 

the simulated system increases, the empirical formula is a useful tool to improve the 

simulation speed, and still provides the necessary information. It will also be a goal of fu-

ture work to integrate the full PENELOPE routine with source and transport simulations. 

4.6 Future Directions 

To improve the agreement between the experimental and simulated ^^^Ba spectra, 

it may be necessary to take a radiograph of the detector, to get a more accurate 

knowledge of the detector geometry, similar to the approach applied by Mesradi et al. 

[20]. Specifically that would allow us to get a clearer idea of the thickness of the dead 

layer of silicon and the gold window. Similar methods could also be applied to the 

source, to get a more accurate source distribution. Also, the accuracy of the simulations 

could be improved by adding more detail to the geometry file. Several aspects of the 

geometry were left out to improve simulation speed, such as the cold finger on the 

back of the detector, electrical connections, and the stainless steel chamber that the 
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ap]:)aratus was niouiitocl in. Of these, the vacvimn chamber is most hkely to have an 

effect, as all the others are behind the detection area, i.e. behind too much material 

for keV electrons to penetrate through. It is likely though, that some radiations will 

backscatter from the chamber wall and strike the detector with a depleted energy. 

The effect would be to raise the background, i.e. to lower the peak to background 

ratio. To simulate this geometry would however require the angle of radiation emission 

to be increased, preferably to 360°, which would reduce sinmlation speed by a factor of six. 

The empirical formula for the efficiency as a function of energy and angle could be 

extended to include the detector thickness, which would make the results more widely 

applicable. As two thicknesses have already been simulated, 3 or 4 more thicknesses could 

be enough to allow the trend to be characterised. This would increase the complexity 

of the formula, but widen its relevance. It would allow the formula to be used as a 

quick reference for the design of new detectors, in the absence of a detailed Monte Carlo 

or experimental study. The number of parameters would increase significantly, but an 

empirical formulation would remain much faster than a full Monte Carlo simulation. 

While the empirical fornmla can be judged as adequate by inspection of figure 4.25, future 

applications may require a more qiiantitative evaluation of its accuracy. 

Other properties of the detection system could be investigated, such as the magnitude 

of "cross talk" between the detector segments of the Honey array. The Hoyle state 

measurement will rely on the ability to detect when radiations strike the detector in 

coincidence, i.e., when two detector segments are stimulated in quick succession. The 

principle is that electrons and positrons (which are emitted simultaneously in pair 

production) of equal energy will take essentially the same time to travel through the 

transporter and strike the detector within a narrow time window. Radiations which 

do not satisfy the time conditions will be rejected. Cross talk occurs when a particle 

strikes one detector and then another detector, depositing some of its energy in each. 

These events will satisfy the time conditions, but are unwanted background. Simulations 

could investigate the magnitude of this effect by throwing radiation at only one detector, 

and counting events in the adjacent detectors. Other properties of interest could be 

investigated, such as the ability of photons to reach the detector through the lens system. 
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To investigate further the simulation's reproduction of the experimental lineshape, a 

measurement could be taken of a single monoenergetic electron line, such as that produced 

by a synchrotron. The lineshape would be more visible in the absence of background 

from other source radiations. The setup could be reproduced in the simulations. 

This thesis can be regarded as a significant step in the overall project of detector 

charactersation in order to measure the radiative width of the Hoyle state in ^^C. The 

scope is the electron detector, and its response to electrons, photons, and positrons. 

In order to characterise the spectrometer, these results must be combined with the 

characterisation of transport through the Lens transporter, and with accurate energy 

and angular correlations of electron-positron pairs. These projects, together with further 

experimental studies of the system, are being compiled by the research group at the ANU. 



Chapter 5 

Conclusions 

The outcomes and conclusions of the present studies are summarised as follows: 

• Review of the PENELOPE Monte Carlo program. A review of the physics of electron, 

positron and photon interactions in the PENELOPE Monte Carlo program has been 

completed. Key aspects identified include the rise of the radiative stopping power 

above 1 MeV. 

• Reproduction of ^^^Ba experimental spectra. The lineshapes, backgromid and effi-

ciencies of an experimental spectrum were reproduced successfully using Monte Carlo 

methods. The PENELOPE simulations were enhanced by the inclusion of a routine 

to sample a cylindrical source distribution, and to reproduce the line-broadening 

effects of semiconductor charge collection effects and electronic noise, allowing ac-

curate reproduction of experimental spectra for both electrons and photons. The 

modifications have been incorporated in a computationally efficient way, allowing 

fast and reliable Monte Carlo detector calibration and characterisation. The simu-

lations showed that the inclusion of a silicon dead layer is necessary to reproduce 

the experimental results. A mismatch of up to 4 keV was seen in the simulated and 

experimental peak energies at aro\md 45 keV. The origins of this mismatch require 

fmther investigation. The excellent agreement at higher energies, though, shows 

that the simulation system is appropriate for calibration of the pair spectroscopy 

measurement on ^^C. The agreement for photon radiations was excellent throughout 

the studied energy range. 

• Incomplete energy deposition simulations and Co spectrum. As well as demonstrat-

ing the accm-acy of the modified PENELOPE routine, the ^^^Ba spectrum provided 

insight into the detector response, resolving the overall spectrmn into its electron 

and photon contributions. The characterisation was extended to higher energies 

through a ^®Co measurement and a series of sinnilations. Two unexpected and im-

113 
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portant results followed from this investigation: first, that the efficiency drops off 

alarmingly fast above 1 MeV for both 4.3 nnn and 10 mm thick detectors; second, 

that the cause of this efficiency loss is by the transmission of secondary photons, not 

backscattering. This suggests that electron detectors should be made significantly 

thicker than the few millimetres needed to stop the electrons, when studying MeV 

radiations. Specifically, the results show that the 4.3 mm detector (Honey) proposed 

for the Hoyle state measurement is not ideal, and a much thicker detector would be 

preferable. As the lens transporter screens most of the photon background, the max-

imum thickness that could reasonably be achieved would be preferable. The results 

also raise the possibility of new innovative detector arrays, perhaps using multiple 

detectors to 'add back' signals from escaping photons. 

• Semi-empirical formula for efficiency as a function of energy. The efficiency of 

electrons incident on a 1 cm silicon slab was fitted as a function of incident energy and 

the cosine of the angle of incidence. The fitting was divided into two regions, a region 

from 10 keV to 200 keV, where the efficiency was fitted as a linear function of energy, 

and from 200 keV to 3.5 MeV, where the efficiency was fitted as a quadratic function 

of energy. The fit for the hnear region was r]{E) = az{cos9Y'' + (05 + a6Cos9)E, 

where 03, 04, 05 and a^ are constants summarised in table 4.4. The quadratic region 

was fitted as 

r]{E) = 64 + 65 cos 0+{b6 + 67 cos 0 + bg cos^ e)E + {bg + bw cos 0)E^ (5.1) 

where 64, 65, 65, 67, bg, bg, and 610 are constants simnnarised in table 4.5. The em-

pirical formula can be used to interpolate between the simulated angles of incidence 

of 0°, 15°, 30°, 45° and 60°. It can also be developed for use as a quick reference for 

detector design in the absence of a full Monte Carlo run. 

To summarise, the research has given deeper insights into silicon detector response to en-

ergetic electrons and positrons. Quantitative analysis of detector response, both efficiency 

and lineshape, was performed. An empirical characterisation of the efficiency response was 

achieved, to replace time consuming Monte Carlo calculations in future, which will assist 

in detailed planning for pair spectroscopy with the Honey detector and Lens transporter 

at the ANU. 
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A p p e n d i x A 

PENELOPE Geometry Input File 
for the Honey Detector Array 

This appendix lists the complete geometry inpiit file for the Honey detector array. 

0000000000000000000000000000000000000000000000000000000000000000 
SURFACE ( 1) Plane Z=-0.07 Silicon Front 
INDICES=( 0, 0, 0, 1, 0) 
Z-SHIFT=( 0.070000000000000E+00, 0) 
0000000000000000000000000000000000000000000000000000000000000000 
SURFACE ( 2) Plane Z=-0.50 Silicon back 
INDICES=( 0, 0, 0, 1, 0) 
Z-SHIFT=( 0.500000000000000E+00, 0) 
0000000000000000000000000000000000000000000000000000000000000000 
SURFACE ( 3) Plane X= 1.05 (Gold) Si A-C 
INDICES=( 0, 0, 0, 1, 0) 
THETA=( 9.000000000000000E+01, 0) DEG 

X-SHIFT=( 0.275000000000000E+00, 0) 
0000000000000000000000000000000000000000000000000000000000000000 
SURFACE ( 4) Plane X=+1.05 (Gold) Si C-B 
INDICES=( 0, 0, 0, 1. 0) 
THETA=( 9.000000000000000E+01, 0) DEG 

PHI=( 6.000000000000000E+01, 0) DEG 
Y-SHIFT=( 3.025085296000000E+00, 0) 
0000000000000000000000000000000000000000000000000000000000000000 
SURFACE ( 5) Plane X=5.522319124 Gold Top A-B 
INDICES=( 0, 0, 0, 1, 0) 
X-SHIFT=(-0.550000000000000E+00, 0) 

THETA=( 9.000000000000000E+01, 0) DEG 
PHI=(-6.000000000000000E+01, 0) DEG 

0000000000000000000000000000000000000000000000000000000000000000 
SURFACE ( 6) Plane X= 1.05 (Gap) Si A-C 
INDICES=( 0, 0, 0, 1, 0) 
THETA=( 9.000000000000000E+01, 0) DEG 

X-SHIFT=( 0 125000000000000E+00, 0) 
0000000000000000000000000000000000000000000000000000000000000000 
SURFACE ( 7) Plane X=5.522319124 Gap A-B 
INDICES=( 0, 0, 0, 1, 0) 
X-SHIFT=(-0.250000000000000E+00, 0) 

THETA=( 9.000000000000000E+01, 0) DEG 
PHI=(-6 OOOOOOOOOOOOOOOE+01, 0) DEG 

0000000000000000000000000000000000000000000000000000000000000000 
SURFACE ( 8) Plane X=+1.05 (Gap) Si C-B 
INDICES=( 0, 0, 0, 1, 0) ^̂  
THETA=( 9.000000000000000E+01, 0) DEG 

PHI=( 6.000000000000000E+01, 0) DEG 
Y-SHIFT=( 3 198205096000000E+00, 0) 
0000000000000000000000000000000000000000000000000000000000000000 
SURFACE ( 9) Plane Z=-0.65 Silicon Front 
INDICES=( 0, 0. 0, 1, 0) 
Z-SHIFT=( 0.650000000000000E+00, 0) 
0000000000000000000000000000000000000000000000000000000000000000 

121 



122 PENELOPE Geometry Input File for the Honey Detector Array 

SURFACE ( 10) Plane Z=-0.00 Front 
INDICES=( 0, 0, 0, 1, 0) 
0000000000000000000000000000000000000000000000000000000000000000 
SURFACE ( 11) Cylinder R X=0.0+2e6 
INDICES=( 1, 1, 0, 0,-1) 
X-SCALE=( 3.3000000000000000E+00, 0) 
Y-SCALE=( 3.3000000000000000E+00, 0) 
0000000000000000000000000000000000000000000000000000000000000000 
SURFACE ( 12) Plane Z=-0.07 Cu Back 
INDICES=( 0, 0, 0, 1. 0) 
Z-SHIFT=( 1.250000000000000E+00, 0) 
0000000000000000000000000000000000000000000000000000000000000000 
SURFACE ( 13) Plane Z=-.069998 Gold Plating (front) 
INDICES=( 0, 0, 0, 1, 0) 
Z-SHIFT=( 0.069998000000000E+00, 0) 
0000000000000000000000000000000000000000000000000000000000000000 
SURFACE ( 14) Plane Z=-.28 Si side (front) 
INDICES=( 0, 0, 0, 1, 0) 
Z-SHIFT=( 0.280000000000000E+00, 0) 
0000000000000000000000000000000000000000000000000000000000000000 
SURFACE ( 15) Plane Z=-.28 Si side (front) 
INDICES=( 0, 0, 0, 1, 0) 
THETA=( 9.000000000000000E+01, 0) DEC 

0000000000000000000000000000000000000000000000000000000000000000 
SURFACE ( 16) Plane X=5.522319124 Gap A-B 
INDICES=( 0, 0, 0, 1, 0) 
THETA=( 9.000000000000000E+01, 0) DEG 
PHI=(-6.000000000000000E+01, 0) DEG 

0000000000000000000000000000000000000000000000000000000000000000 
SURFACE ( 17) Plane Z=-0.07 Back Source 
INDICES=( 0, 0, 0, 1, 0) 
Z-SHIFT=(-5.OOOOOOOOOOOOOOOE+00, 0) 
0000000000000000000000000000000000000000000000000000000000000000 
SURFACE ( 18) Plane Z=-0.00 Front Source 
INDICES=( 0, 0, 0, 1, 0) 
Z-SHIFT=(-4.999995600000000E+00, 0) 
0000000000000000000000000000000000000000000000000000000000000000 
SURFACE ( 19) Cylinder R X=0.0+2e6 Source 
INDICES=( 1, 1, 0, 0,-1) 
X-SCALE=( 2.000000000000000E-01, 0) 
Y-SCALE=( 2.000000000000000E-01, 0) 
0000000000000000000000000000000000000000000000000000000000000000 
SURFACE ( 20) Plane Z=-0.07003 Silicon Front 
INDICES=( 0, 0, 0, 1, 0) 
Z-SHIFT=( 0.070400000000000E+00, 0) 
0000000000000000000000000000000000000000000000000000000000000000 
BODY ( 1) Silicon (active) 
MATERIAL( 2) 
SURFACE ( 20), SIDE POINTER=( 1) 
SURFACE ( 2), SIDE P0INTER=(-1) 
SURFACE ( 3), SIDE POINTER=( 1) 
SURFACE ( 4), SIDE P0INTER=(-1) 
SURFACE ( 5), SIDE P0INTER=(-1) 
0000000000000000000000000000000000000000000000000000000000000000 
BODY ( 2) Silicon (dead) 
MATERIAL( 2) 
SURFACE ( 1), SIDE POINTER=( 1) 
SURFACE ( 20), SIDE P0INTER=(-1) 
SURFACE ( 3), SIDE POINTER=( 1) 
SURFACE ( 4), SIDE P0INTER=(-1) 
SURFACE ( 5), SIDE P0INTER=(-1) 
BODY ( 1) 
0000000000000000000000000000000000000000000000000000000000000000 
MODULE ( 3) GOLD 
MATERIAL( 3) 
SURFACE ( 2), SIDE P0INTER=(-1) 
SURFACE ( 13), SIDE POINTER=( 1) 
SURFACE ( 3), SIDE POINTER=( 1) 
SURFACE ( 4), SIDE P0INTER=(-1) 
SURFACE ( 5), SIDE P0INTER=(-1) 
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BODY 
BODY 

1) 
2) 

0000000000000000000000000000000000000000000000000000000000000000 
BODY ( 
MATERIAL( 
SURFACE ( 
SURFACE ( 
SURFACE ( 
SURFACE 

4) 
2) 
1) 

14) 
6) 
7) 

Silicon 

SIDE POINTER=( 1) 
SIDE P0INTER=(-1) 
SIDE POINTER=( 1) 
SIDE P0INTER=(-1) 

8 ) , SIDE P0INTER=(-1) 
1) 
2) 

( 
SURFACE ( 
BODY ( 
BODY ( 
0000000000000000000000000000000000000000000000000000000000000000 
MODULE ( 
MATERIAL( 
SURFACE ( 
SURFACE ( 
SURFACE ( 
SURFACE ( 
SURFACE ( 
MODULE ( 
BODY 

5) 
0) 
6) 
7) 
8) 
9) 

10) 
3) 
4) 

Gap 

SIDE POINTER=( 1) 
SIDE P0INTER=(-1) 
SIDE P0INTER=(-1) 
SIDE P0INTER=(-1) 
SIDE POINTER=( 1) 

0000000000000000000000000000000000000000000000000000000000000000 
MODULE ( 
MATERIAL( 
SURFACE ( 
SURFACE ( 
SURFACE ( 
SURFACE ( 
SURFACE ( 
MODULE 

6) 

1) 

Copper 

10), SIDE POINTER=( 1) 
12), SIDE P0INTER=(-1) 
11), SIDE P0INTER=(-1) 
15), SIDE POINTER=( 1) 
16), SIDE P0INTER=(-1) 

( 5) 
0000000000000000000000000000000000000000000000000000000000000000 

CLONE ( 
MODULE ( 

7) 
6) 

Silicon 

111111111111111111111111111111111111111111111111111111111111111 
OMEGA=( 60.00000000000000E+00, 0) DEG 

0000000000000000000000000000000000000000000000000000000000000000 
CLONE ( 8) Silicon 
MODULE ( 6) 
111111111111111111111111111111111111111111111111111111111111111 

0MEGA=(120.00000000000000E+00, 0) DEG 
0000000000000000000000000000000000000000000000000000000000000000 
CLONE ( 9) Silicon 

llllllllllllfllllllllllllllllllllllllllllllllllllllllllllllllll 
0MEGA=(180.00000000000000E+00, 0) DEG 

0000000000000000000000000000000000000000000000000000000000000000 
CLONE ( 10) Silicon 

n i i i i i i h i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i 
0MEGA=(240.00000000000000E+00, 0) DEG 

0000000000000000000000000000000000000000000000000000000000000000 
CLONE ( 11) Silicon 

llllllllllllfllllllllllllllllllllllllllllllllllllllllllllllllll 
0MEGA=(300 OOOOOOOOOOOOOOE+00, 0) DEG 

0000000000000000000000000000000000000000000000000000000000000000 
BODY ( 12) Source 
MATERIAL( 4) „ , 
SURFACE ( 17), SIDE POINTER=( 1 
SURFACE ( 18), SIDE P0INTER=(-1) 



124 PENELOPE Geometry Input File for the Honey Detector Array 



Appendix B 

PENELOPE Input File for the 
Q Q 

^̂ ^Ba Electron Measurement 

TITLE 133Ba electron emissions with 4.3 mm Honey detector 
. Alan Devlin alan.devlin@anu.edu.au 6/6/2009 
> > » > > » Source definition. 
1 [Primary particles: l=electron, 2=photon, 3=positron] 

Energies in eV 
SKPAR 

SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 

25.105e3 9.3 
25.105e3 -l.OeO 
29.98e3 4.39 
29.98e3 -l.OeO 
34.73e3 0.517 
34.73e3 -l.OeO 
17.18e3 10.30 
17.18e3 -l.OeO 
47.61e3 1.8 
47.61e3 -l.OeO 
52.20e3 0.46 
52.20e3 -l.OeO 
43.63e3 3.96 
43.63e3 -l.OeO 
73.98e3 0.575 
73.98e3 -l.OeO 
78.62e3 0.147 
78.62e3 -l.OeO 
45.01e3 47.0 
45.01e3 -l.OeO 
75.38e3 7.04 
75.38e3 -l.OeO 
80.01e3 1.803 
80.01e3 -l.OeO 
124.63e3 0.149 
124.63e3 -l.OeO 
155.14e3 0.0300 
155.14e3 -l.OeO 
159.67e3 0.0078 
159.67e3 -l.OeO 
187.25e3 0.0379 
187.25e3 -l.OeO 
217.56e3 0.00500 
217.56e3 -l.OeO 
222.23e3 0.00127 
222.23e3 -l.OeO 
240.41e3 0.330 
240.41e3 -l.OeO 
270.90e3 0.0603 
270.90e3 -l.OeO 
275.44e3 0.0156 
275.44e3 -l.OeO 
266.87e3 0.684 
266.87e3 -l.OeO 
297.16e3 0.0887 
297.16e3 -l.OeO 

[Auger KLL E bin: lower-end and total probabil 

[Auger KLX] 

[Auger KXY] 

[53 K] 

[53 L] 

[53 M] 

[80 K] 

[80 L] 

[80 M] 

[81 K] 

[81 L] 

[81 M] 

[161 K] 

[161 L] 

[161 M] 

[223 K] 

[223 L] 

[223 M] 

[276 K] 

[276 L] 

[276 M] 

[303 K] 

[303 L] 
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SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
SPECTR 
FWHM 
SPOSIT 
SRAD 
STHICK 
SDIREC 
SAPERT 
EPMAX 

301.84e3 
301.84e3 
320.03e3 
320.03e3 
350.47e3 
350.47e3 
355.04e3 
355.04e3 
347.86e3 
347.86e3 
378.29e3 
378.29e3 
382.88e3 
382.88e3 
1. OE+3 
0 0 - 5 
0.15 
4.4E-6 
0 0 
55 

400e3 

0.0225 
-l.OeO 
1.309 
-l.OeO 
0.215 

-l.OeO 
0.0553 
-l.OeO 
0.151 
-l.OeO 
0.0241 
-l.OeO 
0.00619 
-l.OeO 

[303 M] 

[356 K] 

[356 L] 

[356 M] 

[384 K] 

[384 L] 

[384 M] 

FWHM due to electronic noise] 
Coordinates of the source] 
Radius of the source] 
Thickness of the source] 
Beam axis direction angles, in deg] 
Beam aperture, in deg] 
Maximiim energy] 

» > » > » Material data and simulation parameters. 
NMAT 4 [Number of different materials, .le.lO] 

» > » > » Copper 
SIMPAR 1 10.OE+3 lO.OE+2 10.OE+3 0.1 0.1 1.OE+3 lO.OE+2 [M,EABS,C1,C2,WCC,WCR] 

» » » » Silicon 
SIMPAR 2 l.OE+3 l.OE+2 1.OE+3 0.1 0.1 1.OE+2 1.OE+2 [M,EABS,C1,C2,WCC,WCR] 

>>>>>>>> Gold 
SIMPAR 3 l.OE+3 l.OE+2 l.OE+3 0.1 0.1 l.OE+2 l.OE+2 [M,EABS,C1,C2,WCC,WCR] 

» » » » Source 
SIMPAR 4 l.OE+3 l.OE+2 l.OE+3 0.1 0.1 l.OE+2 l.OE+2 [M,EABS,CI,C2,WCC,WCR] 
PFNAME Honey.mat [Material definition file, 20 chars] 

» » » » Geometry 
GEOMFN Sidead.geo 
DSMAX 1 1.Oe-03 
DSMAX 2 1.0e-08 
DSMAX 3 l.Oe-08 
DSMAX 4 l.Oe+11 
DSMAX 5 l.Oe+11 
DSMAX 6 l.Oe+11 
DSMAX 7 1.Oe-03 
DSMAX 8 1.Oe-08 
DSMAX 9 l.Oe-08 
DSMAX 10 l.Oe+11 
DSMAX 11 l.Oe+11 
DSMAX 12 l.Oe+11 
DSMAX 13 l.Oe-03 
DSMAX 14 l.Oe-08 
DSMAX 15 l.Oe-08 
DSMAX 16 l.Oe+11 
DSMAX 17 l.Oe-6 
DSMAX 18 l.Oe+11 
DSMAX 19 1.0e-03 
DSMAX 20 l.Oe-08 
DSMAX 21 l.Oe-08 
DSMAX 22 l.Oe+11 
DSMAX 23 l.Oe+11 
DSMAX 24 l.Oe+11 
DSMAX 25 l.Oe-03 
DSMAX 26 l.Oe-08 
DSMAX 27 l.Oe-08 
DSMAX 28 l.Oe+11 
DSMAX 29 l.Oe+11 

definition file. 
[Geometry definition file, 20 chars] 

[IB, Maximum step length in body IB] 
[IB, Maximum step length in body IB] 
[IB, Maximum step length in body IB] 
[IB, Maximum step length in body IB] 
[IB, Maximum step length in body IB] 
[IB, Maximum step length in body IB] 

[IB, Maximum step length in body IB] 
[IB, Maximum step length in body IB] 
[IB, Maximum step length in body IB] 
[IB, Maximum step length in body IB] 
[IB, Maximum step length in body IB] 
[IB, Maximum step length in body IB] 

[IB, Maximum step length in body IB] 
[IB, Maximum step length in body IB] 
[IB, Maximum step length in body IB] 
[IB, Maximum step length in body IB] 

[IB, Maximum step length in body IB] 
[IB, Maximum step length in body IB] 
[IB, Maximum step length in body IB] 
[IB, Maximum step length in body IB] 
[IB, Maximum step length in body IB] 
[IB, Maximum step length in body IB] 
[IB, Maximum step length in body IB] 
[IB, Maximum step length in body IB] 

[IB, Maximum step length in body IB] 
[IB, Maximum step length in body IB] 
[IB, Maximum step length in body IB] 
[IB, Maximum step length in body IB] 
[IB, Maximiim step length in body IB] 
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DSMAX 
DSMAX 
DSMAX 
DSMAX 
DSMAX 

NBE 
NBTH 
NBPH 

30 l.Oe+11 
31 l.Oe-03 
32 l.Oe-08 
33 l.Oe-08 
37 l.Oe-10 

[IB, Maximum step length in body IB] 
[IB, Maximum step length in body IB] 
[IB, Maximum step length in body IB] 
[IB, Maximum step length in body IB] 
[IB, Maximum step length in body IB] 

> > » > » > Emerging particles. Energy and angular distributions. 
Ie3 400e3 800 [E-interval and no. of energy bins] 
45 [No. of bins for the polar angle THETA] 
18 [No. of bins for the azimuthal angle PHI] 
>>>>>>>> Energy deposition detectors (up to 25). 

ENDDET le3 400e3 800 
EDSPC pm-spc-enddet-01.dat 
EDBODY 1 
EDBODY 7 
EDBODY 13 
EDBODY 19 
EDBODY 25 
EDBODY 31 
ENDDET le2 1000e2 1000 
EDBODY 37 

> > » > > » Job properties 
DUMPTO dumpl.dat 
DUMPP 60 

[Energy window and number of channels] 

[Active body; one line for each body] 
[Active body; one line for each body] 
[Active body; one line for each body] 

[Active body; one line for each body] 
[Active body; one line for each body] 
[Active body; one line for each body] 
[Energy window and number of channels] 

[Generate this dump file, 20 chars] 
[Dumping period, in sec] 

> » » » > 
NSIMSH le9 
TIME le8 

[Desired number of simulated showers] 
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Appendix C 

PENELOPE Output File 

** Program PENMAIN. Results. ** *********************************** 

Simulation time 4.497899E+03 sec 
Simulation speed 2.223260E+02 showers/sec 

Simulated primary showers l.OOOOOOE+06 
Transmitted primary particles O.OOOOOOE+00 
Backscattered primary particles 1.632580E+05 
Absorbed primary particles 8.367420E+05 
Fractional transmission O.OOOOOOE+00 +- O.OE+00 
Fractional backscattering 1.689480E-01 +- 1.3E-03 
Fractional absorption 8.367420E-01 +- l.lE-03 
Secondary-particle generation probabilities: 

I electrons I photons I positrons I 
1 transmitted 1 O.OOOOOOE+00 1.460000E-04 O.OOOOOOE+00 1 

1 +- O.OE+00 +- 3.6E-05 +- O.OE+00 1 

1 backscattered 1 5.690000E-03 6.381000E-03 O.OOOOOOE+00 1 
1 1 +- 2.3E-04 +- 2.4E-04 +- O.OE+00 1 

1 absorbed 1 1.650730E+01 9.698800E-02 O.OOOOOOE+00 1 
1 1 +- 1.7E-02 +- 9.4E-04 +- O.OE+00 1 

Average deposited energies (bodies): 
Body 1 9.002142E+04 +- 7.2E+01 eV 

Average deposited energies (energy detectors): 
Detector # 1 ... 9.002142E+04 +- 7.2E+01 eV 

Last random seeds = 1 , 2 

(effic. = 3.16E+03) 

(effic. = 3.16E+03) 

The secondary particle probabilities should be multiplied by the number of simulated 

primary showers (in this case 1 x 10®) to obtain absolute particle numbers. It should be 

noted that a single shower may transmit or backscatter more than one secondary particle. 

The numbers of absorbed secondary particles are much higher than the input primary 

showers as in general a single primary particle will generate a multitude of secondary 

particles. 

129 



130 PENELOPE Output File 



Appendix D 

PENELOPE Output Spectrum 
File 

This appendix is an example of a PENELOPE output spectrum file. In this case, there 

is a peak at 50 keV. 

# 
# 
# 
# 
# 

Results from PENMAIN. Output from energy-deposition detector # 
WARNING: May be strongly biased if interaction forcing is used! 
1st column 
2nd column 
3rd column 

5.000000E+02 
1.500000E+03 
2.500000E+03 
3.500000E+03 
4.500000E+03 
5.500001E+03 
6.500001E+03 
7.500001E+03 
8.500001E+03 
9.500001E+03 
1.050000E+04 
1.150000E+04 
1.250000E+04 
1.350000E+04 
1.450000E+04 
1.550000E+04 
1.650000E+04 
1.750000E+04 
1.850000E+04 
1.950000E+04 
2.050000E+04 
2.150000E+04 
2.250000E+04 
2.350000E+04 
2.450000E+04 
2.550000E+04 
2.650000E+04 
2.750000E+04 
2.850000E+04 
2.950000E+04 
3.050000E+04 
3.150000E+04 
3.250000E+04 
3.350000E+04 
3.450000E+04 
3.550000E+04 
3.650000E+04 
3.750000E+04 
3.850000E+04 

deposited energy (eV). 
probability density (1/(eV*particle)). 
statistical uncertainty (3 sigma). 
1.995000E-06 
2.394000E-06 
2.704000E-06 
3.173000E-06 
3.388000E-06 
3.873000E-06 
4.260000E-06 
4.622000E-06 
4.972000E-06 
5.191999E-06 
5.525999E-06 
5.661999E-06 
5.851999E-06 
5.913999E-06 
6.122999E-06 
6.121999E-06 
5.914999E-06 
5.911999E-06 
5.781999E-06 
5.786999E-06 
5.380999E-06 
5.328999E-06 
5.257999E-06 
5.082999E-06 
4.754000E-06 
4.551000E-06 
4.237000E-06 
4.030000E-06 
3.879000E-06 
3.588000E-06 
3.409000E-06 
3.196000E-06 
2.889000E-06 
2.694000E-06 
2.449000E-06 
2.215000E-06 
2.016000E-06 
1.845000E-06 
1.575000E-06 

338625E-07 
466097E-07 
557889E-07 
687198E-07 
743235E-07 
863384E-07 
953885E-07 
034840E-07 
110107E-07 
156047E-07 
223942E-07 
250988E-07 
288226E-07 
300244E-07 
340290E-07 
340100E-07 
300437E-07 
299857E-07 
274579E-07 
275557E-07 
194730E-07 
184157E-07 
169635E-07 
133412E-07 
063555E-07 
019222E-07 
948626E-07 
900627E-07 

1.864821E-07 
1.793771E-07 
1.748611E-07 
1.693283E-07 
1.610151E-07 
1.555014E-07 
1.482802E-07 
1.410349E-07 
1.345638E-07 
1.287414E-07 
1.189650E-07 

1 
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3. 950000E+04 1, .429000E--06 1. . 133253E--07 
4. 050000E+04 1, .295000E--06 1. , 078884E--07 
4. 150000E+04 1, . 126000E--06 1, .006111E--07 
4. 250000E+04 9, .889999E--07 9, . 429844E--08 
4. 350000E+04 8, .259999E--07 8, ,618502E--08 
4. 450000E+04 7, .249999E--07 8, .074818E--08 
4. 550000E+04 6 .439999E--07 7, .610694E--08 
4. ,650000E+04 5, .319999E--07 6, .917696E--08 
4. ,750000E+04 4, .600000E--07 6, .432802E--08 
4. ,850000E+04 5, .216999E--06 2, .161204E--07 
4. .950000E+04 8 .226189E--04 1, .145972E--06 
5. ,050001E+04 1 •OOOOOOE--35 1, .OOOOOOE--35 
5. ,150001E+04 1 •OOOOOOE--35 1, •OOGOOQE--35 
5. .250001E+04 1 .OOOOOOE--35 1. .OOOOOOE--35 
5. .350001E+04 1 •OOOOOOE--35 1. .OOOOOOE--35 
5, .450001E+04 1 •OOOOOOE--35 1. ,OOOOOOE--35 
5, .550001E+04 1 .OOOOOOE--35 1, ,OOOOOOE--35 
5, .650001E+04 1 •OOOOOOE--35 1. .OOOOOOE--35 
5, .750001E+04 1 •OOOOOOE--35 1. .OOOOOOE--35 
5, .850001E+04 1 .OOOOOOE--35 1. .OOOOOOE--35 
5, .950001E+04 1 .OOOOOOE--35 1. .OOOOOOE--35 


