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Abstract

The proliferation of large electronic document archives requires new techniques for
automatically analysing large collections. which has posed several new and inter-
esting research challenges. Topic modelling, as a promising statistical technique,
has gained significant momentum in recent vears in information retrieval, senti-
ment analysis. images processing, efc. Besides existing topic models, the field of
topic modelling still needs to be further explored using more powerful tools. One
potentially useful area is to directly consider the document structure ranging
from semantically high-level segments (e.g., chapters, sections, or paragraphs) to
low-level segments (e.g.. sentences or words) in topic modelling.

This thesis introduces a family of structured topic models for statistically mod-
elling text documents together with their intrinsic document structures. These
models take advantage of non-parametric Bayesian techniques (e.g.. the two-
parameter Poisson-Dirichlet process (PDP)) and Markov chain Monte Carlo meth-

ods. Two preliminary contributions of this thesis are

1. The Compound Poisson-Dirichlet process (CPDP): it is an extension of the

PDP that can be applied to multiple input distributions.

2. Two Gibbs sampling algorithms for the PDP in a finite state space: these
two samplers are based on the Chinese restaurant process that provides
an elegant analogy of incremental sampling for the PDP. The first. a two-
stage Gibbs sampler, arises from a table multiplicity representation for the
PDP. The second is built on top of a table indicator representation. In a sim-
ply controlled environment of multinomial sampling, the two new samplers

have fast convergence speed.

These support the major contribution of this thesis. which is a set of structured

topic models:

Segmented Topic Model (STM) which models a simple document structure

with a four-level hierarchy by mapping the document layout to a hierarchi-

ix



cal subject structure. It performs significantly better than latent Dirichlet

allocation and other segmented models at predicting unseen words.

Sequential Latent Dirichlet Allocation (SeqLDA) which is motivated by
topical correlations among adjacent segments (i.e., the sequential docu-
ment structure). This new model uses the PDP and a simple first-order
Markov chain to link a set of LDAs together. It provides a novel approach

for exploring the topic evolution within each individual document.

Adaptive Topic Model (AdaTM) which embeds the CPDP in a simple di-
rected acyclic graph to jointly model both hierarchical and sequential doc-
ument structures. This new model demonstrates in terms of per-word pre-
dictive accuracy and topic distribution profile analysis that it is beneficial

to consider both forms of structure in topic modelling.
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Chapter 1
Introduction

In recent years, with the fast development of the web and the advent of vari-
ous digitisation techniques (e.g.. optical character recognition and speech recog-
nition). documents continue to be stored on the Internet in the form of web-
pages, blogs. twitters. news papers, e-books, scientific articles, ete. The prolifer-
ation of large electronic document archives requires new techniques for automat-
ically organising. searching. indexing, and browsing large collections, which has
posed several new and interesting challenges to researchers in both the machine
learning and the data mining communities. In particular, there is an increasing
need of automatic methods to semantically visualise and analyse these electronic
documents. This thesis presents new probabilistic generative methods based on
non-parametric Bayesian techniques (e.g., the Dirichlet processes and the two-
parameter Poisson-Dirichlet processes) for effectively modelling text documents
by considering their intrinsic document structure.

Documents not only contain meaningful text. but also exhibit a natural struc-
ture, which is part of the motivation of the development of SGML, the precursor
to HTML. For example, a book has chapters which themselves contain sections:
a section is further composed of paragraphs: a blog or a twitter page contains
a sequence of comments and links to related blogs/twitters: a scientific article
contains appendices and references to related work. Clearly, a complete repre-
sentation of a document structure ranges from the high-level components (e.g.,
chapters or sections) to the low-level components (e.g., sentences or words). These
components (referred to as segments thereafter) provide rich contextual informa-
tion for their subcomponents. The layout of the components is always represented
in various forms jointly with the document logical structure, i.e.. the latent sub-

ject structure. Altogether, the seements form a document structure. which will be
J g B






1.1. THESIS CONTRIBUTION

(N

essay subject. It means the subtopics are not isolated. but they can be more
specific than the essay subject, and generally be variants of it. The layout and
progression of them can give us a meaningful essay structure. Indeed, the above
consideration originates from how people normally organise ideas in their writing.

As a consequence, a different challenge in automatic text analysis is the prob-
lem of understanding the document structure. The focus of this thesis is to sta-
tistically model the text content of documents together with their underlying
document structures by taking advantage of both topic modelling (Chapter 4)
and non-parametric Bayesian methods (Chapters 2 and 3). In recent years, topic
models and non-parametric Bayesian methods become increasingly prominent in
machine learning. The former forms a family of models in which documents can
be generated with simple probabilistic generative processes. The latter provides
a valuable suit of flexible modelling techniques. in which the prior and posterior
distributions are general stochastic processes whose support is the space of all

distributions.

1.1 Thesis Contribution

The objective of this thesis is to address research challenges for structured text
analysis in the context of hierarchical non-parametric Bayesian modelling. This
leads to the development of a family of structured topic models. Most existing
topic models directly model documents by tokens with the “bag-of-words”™ as-
sumption. They usually neglect the document structure. However, incorporating
the document structure in topic modelling, we can derive a richer posterior topical
structure that can further facilitate understanding and exploring each individual
document.

As discussed in the previous section, a document is usually composed of a
certain number of segments. The definition of segments can vary according to
different types of documents. They can be chapters in a book. sections in a
scientific article, and paragraphs in an essay. Although segments can be defined
differently, they are organised logically to form an entire document. The logical
organisation is achieved through linkages between the document subject and the
segment subtopics. In this thesis, the first set of contributions are models and

algorithms I present for modelling the following document structures:

Hierarchical document structure In writing, people usually try to organise

segments around the document subject according to subtopics discussed in
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the segments. The segment subtopics can be more specific than the subject.
which means each segment could have its specificity on topics. In general,
thev can be taken as variants of the document subject. The organisation of
segments in a document according to relations between the document sub-
ject and the segment subtopics gives us an hierarchical representation of
the document structure. One contribution of this thesis is a new Segmented
Topic Model (STM, Chapter 5). which directly models the hierarchical doc-
ument structure by mapping it to a subject hierarchy that is specific for each
individual document. Modelling the hierarchical structure., STM has higher

fidelity over existing techniques in terms of per-word predictive accuracy.

Sequential document structure The segment sequence in a document, or the
layout of segments, also conveys a sequential document structure. The
subtopics of segments are not only linked to the document subject. but also
linked sequentially to their adjacent ones. because people often try to make
the flow of information among segments logical and smooth. Therefore.
segments are not actually exchangeable in a sequential context. Another
contribution of this thesis is a Sequential Latent Dirichlet Allocation model
(SeqLDA., Chapter 6). a novel variant of Latent Dirichlet Allocation (LDA)
[Blei et al., 2003], which makes use of a simple first-order Markov chain to
model the sequential structure exhibited by each document. It can effec-
tively discover and visualise patterns of topic evolution in each individual

document.

Mixture of hierarchical and sequential document structures It is know
that a document can simultaneously exhibit both a hierarchical structure
and a sequential structure. The mixture of the two structures gives us a
full document structure. Now, topic shifts from one part of the document
to another can be allowed, like those in a novel. The contribution on topic
modelling is therefore the integration of STM and SeqLDA. I call it an
Adaptive Topic Model (AdaTM. Chapter 7), in which a simple Directed
Acyclic Graph (DAG) is used to model both the hierarchical and the sequen-
tial document structures. It can further explore how each segment adapts
topics from either the preceding segment subtopic or the doctment subject.

or even both.

Moreover, to handle the above document structures. I use a non-parametric

Bayesian method, called the two-parameter Poisson-Dirichlet process (PDP),
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Figure 1.2: Dependency diagram of chapters and sections

indicator representation [Chen et al., 2011]. T compare the two samplers with
Tel’s sampling for seating arrangement sampler [Teh, 2006a] in a simple
controlled environment of multinomial sampling. The experimental results
show that the two new methods converge much faster than Teh's sampler in
a simply controlled environment. Thereafter. I also develop Gibbs sampling

for the compound Poisson-Dirichlet process by presenting the joint posterior

distributions.

Chapter 4: In this chapter. I review probabilistic topic models. especially LDA. I
also discuss applications of topic models in various domains. e.q.,

mation retrieval. text analysis and computer vision. Finally, I cover some

typical extensions of LDA.

infor-






Chapter 2
Dirichlet Non-parametric Family

Hierarchical Bayesian reasoning is fundamental and used throughout the general
machine intelligence domain (e.g., text analysis and image processing) to model
distributions over observed data. It provides a valuable suite of flexible mod-
elling approaches for high dimensional structured data analysis. Recently. non-
parametric methods have become increasingly prominent in the machine learning
community. In non-parametric Bayesian methods. the prior and posterior distri-
butions are general stochastic processes [Hjort et al., 2010] whose support is a
space of distributions. These stochastic processes allow Bayesian inference to be
carried out in general infinite dimensional spaces, which can overcome the prob-
lem of over-/under-fitting of data encountered by parametric Bayesian methods.

In this chapter, I will focus on the foundation of one of the most important
families of non-parametric Bayesian methods. the Dirichlet non-parametric fam-

ily, which includes:

e the Dirichlet distribution (DD): a conjugate prior for parameters of the

multinomial distribution (Section 2.1).

e the Dirichlet process (DP): a probability distribution over distributions

(Section 2.2), it extends the DD to other domains.

e the two-parameter Poisson-Dirichlet process (PDP): a two-parameter gen-
eralisation of the DP (Section 2.3),

e the compound Poisson-Dirichlet process (CPDP): an extension of the PDP

that can be applied to multiple input distributions (Section 2.4).
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The Dirichlet distribution is reduced to the Beta distribution when & = 2. 1
now describe some interesting properties of the Dirichlet distribution. More de-
tailed discussions of the Dirichlet distribution can be found in, for example. [Fer-
guson, 1973: Antoniak. 1974; Sethuraman, 1994; Bernardo and Smith, 1994].

2.1.1 Properties of the Dirichlet

In the general case, the mean vector, covariance, marginal distribution and mode

are given as follows.

Property 2.1. (Mean, Variance, Covariance. marginal. mode). If @ ~ Dir(a)

and the precision ay = Zf:l (%
& Oy Q.
E[(0y, s, --- , )] = (— — e —)
ap (X
Q;\ g — O
V[Hl] . ( 0 )

a?(1+ ap)
Sa.a
a3 (1 + ap)
(0;,1 —0;) ~ Dirla;,aqp— o)
ar—1 as—1 ap — 1
ap—k ag—%k = iog— A')

Mode(0,, 0, ..., 0r) = (

Property 2.2. (Conjugacy) Dirichlet Distribution @ ~ Dir(a) is a conjugate
prior of the multinomial n | @ ~ Multi(8).

Proof. Let a discrete random vector m = (ny, ns, ..., ny) with Zle =
which is multinomial distributed in a A-dimensional space with parameters @ =
(0. 0. .... 0:); and @ be Dirichlet distributed with parameters a = (aj. ..., ag).

Then, using Bayes rule, the posterior distribution is

p@|n) x p(n|0)p)

NG k | k
X Sl ()H, H(.\,*l
nylng! ... ng! [1:[[ ] Betay (o) Il_I] '
A.
o HH;II+(ll—l
i=1
Hence, 8 |n ~ Dir(a + n). 0

This Dirichlet-Multinomial conjugate property is the key ingredient to com-
pute the conditional posterior distribution in Dirichlet-Multinomial mixture mod-

els. It assists in the implementation of efficient Markov Chain Monte Carlo
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Zf:l 0; = 1 [Ferguson, 1973]. Following this construction. the proof of Property
2.3 is straightforward by using the additive property of the Gamma distribution:
if z; ~G(a;. 1) and z; ~ G(a;. 1), where ¢ # j, and if z; and z; are independent,
thenvz; 42~ Glo, -+, 1)

Dirichlet Distribution through the Stick-breaking Construction

The stick-breaking construction is a process of iteratively breaking off pieces of a
stick of length one. Random variables drawn from a Dirichlet distribution can be
simulated by lengths of the pieces broken off from the stick in a random way, such
that the lengths follow a Dirichlet distribution [Sethuraman, 1994; Ishwaran and
James, 2001]. This uses the marginalisation property of the Dirichlet distribution,
see Property 2.1.

Let V1. V5. ..., Vi be intermediate random variables drawn from a Beta dis-
tribution, u.e., V; ~ Beta <(\,-.Z€.':H 1 (1‘,-). A Dirichlet distribution can be con-

structed via the stick-breaking construction with following steps:

1. Draw V| ~ Beta <(1 " Z;:-) u_,-). set 6; = V). The remaining piece has length
1—-W.

(W]

For 2 < i < k—1, draw V; ~ Beta ((1,—. Zj':H] ('1_,). and set #; = \}H;;ll(l—
N

3. The length of remaining piece Hé;:(l — 15) i85,

Finally, the derived vector of random variables (6, 6. ..., 6;) is Dirichlet

distributed with parameters (., as, ..., ag).

Dirichlet Distribution through the Urn Scheme

The Dirichlet distribution can be constructed from the Urn model [Johnson and
Kotz, 1977]. Blackwell and Macqueen [1973] have shown that the distribution of
colors in an urn after n draws converges as n — oc to a Dirichlet distribution in
a finite space (i.e.. the number of colors is finite). It is known as the Polya Urn
scheme.

To generate a Dirichlet distribution from the Polya Urn scheme with parame-
ters (ay,aq ....qp), we start with an urn with ay = Zf «; balls of which a; balls!

are of color i, 1 < i < k. At each step. we draw a ball uniformly at random from

ITn general, o; is not necessarily an integer, so we might have a rational number of balls of

each color in the urn initially.
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The support of G is the same as H. The existence of the DP is guaranteed
by either the Kolmogorov's consistency theorem or the de Finetti's theorem. One
important property of the DP is that distributions drawn from a DP are discrete
with probability one [Ferguson, 1973]. That means the previously drawn values
have strictly positive probability of being redrawn again, which can be proven in

the two construction methods of the DP in the next section.

Corollary 2.1. According to Definition 2.2. if H is a probability vector over a
finite space, then the following holds

DP(«, Discrete(H)) = Dir(aH) .
Thus, the DP is an extension of a Dirichlet distribution.

We can draw a sequence of independently and identically distributed (7.i.d.)
random variables from G. Theoretically, the sequence can be infinite. Then after
marginalising out (. these random variables follow a Blackwell-Macqueen distri-
bution [Blackwell and Macqueen, 1973]. also known as the CRP. T will show that

a DP can be constructed via the CRP in next section.

Property 2.4. (Mean. Variance, and Covariance) If G ~ DP(a.H), for any
measurable set B € B,

E(G(B)) = H(B)
H(B)(1 - H(B))

D a+1
Cov(G(B),G(B")) = —% st. BnB=1f

The base measure H and the concentration parameter a play important roles
in the construction of a DP. Specifically, the base measure is the mean of the
DP. and the concentration parameter «, also known as a precision parameter
[Rodfiguez et al., 2008], controls the variance between GG and H. Large a means
the DP concentrates more mass around the mean. When the base measure is non-
atomic (or continuous). H(X) = 0 forall X ~ H. thus samples from H are almost
surely distinct, e.g.. a probability distribution such as Gaussian. With respect
to discrete applications that are common in computer science and intelligent
systems. the non-atomicity of the base measure does not always hold. Thus.
when the base measure is atomic, H(X) > 0 for all samples X ~ H.

The posterior distribution of the DP is still a DP with updated concentration

parameter and base measure over partitions of X'. Let &y, 9, ... . r, be a sequence
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handle dependencies in a collection of distributions, which is a quite general
framework; and Lin et al. [2010] gave a new Poisson processes based construction
for the DDP. One special case of the DDP general framework is the hierarchical
DP (HDP) [Teh et al., 2006]. In the HDP, multiple group specific distributions
are drawn from a common DP whose base distribution is in turn drawn from an-
other DP. Some other extensions include the nested DP [Rodfiguez et al.. 2008]
and spatial DP [Duan et al.. 2007]. In this section, I give a brief overview of the
more widely used HDP model.

Motivated by sharing atoms across different data groups, Teh et al. [2000]
introduced the HDP, in which the base measure GG of a Dirichlet process for each
data group is drawn from another Dirichlet process with base measure H. In
such a way, G is forced to be discrete, and distinct values drawn from the top
level base measure H are shared with different weights among draws from the
low level Dirichlet process. The support of draws from the HDP is the same as
that of H. The precise definition of the HDP is given in [Tel et al., 2006], and a

further description can be found in [Teh and Jordan. 2010].

Definition 2.3. (Hierarchical Dirichlet Process [Teh et al., 2006]) Let v and a be

concentration parameters, H is a baseline measure on a measurable space (X', B),

G 1s the intermediate base measure, the HDP is defined as

2o oy Hme DP(p, H)
G; | a,Gy ~ DP(a, Gy), forie{l,..., I},

where {1, 2, ..., I} is an index set which indexes a collection of Dirichlet pro-
cesses, {G, G, ..., G;}. Each G; corresponds to a data group and is defined on
(X.B).

Obviously, the HDP is also a probability distribution over a set of random
distributions over a measurable space (X, B), and shares similar properties to
the DP. It links a number of probability distributions by letting them share the
same base measure. Teh et al. [2006] presented the stick-breaking construction
and a Chinese restaurant representation for the HDP, analogous to the DP. Here,
I describe the latter, named Chinese restaurant franchise (CRF) by Teh et al.
[2006], which not only elaborates the combinatorial structure of the HDP in a way
of incremental sampling. but also provides the ground of the subsequent discussion
of the Poisson-Dirichlet process and various Gibbs sampling algorithms.

The CRF is an analog of the Chinese restaurant process for the HDP with

all the G; and their base measure (G, marginalised out, 7.e., the marginalisation
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ditional probability for y; 7, is

K /
ny, ) 1 ,
G |G % B > ——%— gy — T _H(). (26)
o e Y+ D ke T
The posterior structure of the HDP can easily be obtained in regard to the
posterior of the DP, Equation (2.3). Thus, given «,; and y,,, the posterior

distributions are stipulated respectively by

: )-f nyoxx(+)
C’”’ylil',\/‘H NDP +Z”]‘ ZA : \
9 +Z,\.:lnk

T; * £
2 s * “G“ + Zl\*l Zi:y,.,:.\’l’_ ”1[1()’-'\';(')
Gi|®1.5,0,Gog ~DP [ a+ 5 n; :

L 77
t=1 & Z{:I 1

Clearly. the recursive construction of the HDP can be generalised to arbi-

trary hierarchical structures by recursively putting DPs together [Teh and Jor-
dan, 2010]. However. these hierarchies should be tree structures, since the DP
only allows one base measure. In Section 2.4, I will show how to extend the DP

to handling multiple base measures.

2.2.3 Variants of the HDP

The HDP allows the sharing of atoms among multiple groups of data. The under-
lying assumption is that these data groups are exchangeable. The exchangeability
is possessed by the i.i.d. draws (i.e., Gy ) from the same base measure. How-
ever. there are many applications for which the exchangeability assumption is
not suitable and needs to be removed to further incorporate other dependencies
for complex data structures, such as the temporal structure (e.g.. time stamped
documents and music). These have motivated various extensions of the HDP that
have been studied in the Bayesian non-parametric literature.

A way to extend the HDP is to introduce dependence among realisations of
independent HDPs, such as the dynamic HDP (DHDP) proposed by Ren et al.
[2008], with more details in [Ren et al., 2010]. To consider the statistical depen-
dency among the time-evolving data, the DHDP uses a Hidden Markov Model
(HMM) to incorporate time-evolving parameters, such as time stamps, to further
chain a set of HDPs in a linear way, i.e., G; = (1 —w;—1)Gj-1 +w;—1 H;_,. In the
DHDP setting, a set of innovation distributions. {Hl. Hy, -+, H; 1} and G, are
draws from the same HDP, as shown in Figure 2.2. We can see that the probabil-

ity distribution G at time stamp j is indeed a \\'(‘i;.’,‘llt(‘(l sum of the probability
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models, that are different from models developed in Chapters 5 to 7 in terms
of data being modelled and modelling objectives. They may not be suitable for
modelling document structures.

These and some other variants of the HDP have the same characteristic
that the shared atoms are fixed across data groups. which are either tempo-
rally streamed or have other kinds of dependencies, and only the mixture weights
are changed in a way according to different data structures. Can atoms them-
selves change along the data structure without violating the underlying depen-
dencies? Ahmed and Xing [2010] introduced a new dynamic HDP where not only
the mixture weights change dynamically, but also the atoms can either retain, die
out or emerge over time. This dynamic HDP adapts the recurrent CRP, proposed
in [Ahmed and Xing, 2008], which uses a time-decaying kernel to control the life
span of atoms over time. Atoms at the current time period are dependent on
those at the previous A time periods, which enhances the statistical similarity
between adjacent time slices.

Replacing random atoms in the DP with random probability distributions,
Rodfiguez et al. [2008] developed the nested Dirichlet process (NDP) to deal with
multilevel clustering problems in a nested setting. Under the Chinese restaurant
metaphor, the NDP clusters customers within each restaurant and also clus-
ters restaurants at the same time. While clustering the customers within each
restaurant, the NDP can borrow the statistical information obtained from the
clustering in other restaurants. A distribution drawn from a NDP can be written
as G; ~ ), and ) = DP(a. DP(j3, H)). The stick-breaking construction for the
NDP [Rodfiguez et al.. 2008] is

Vi | B ~ Beta(1,3) X' | B~ H()
-1
ol = Vi [ 1 = Vi) = Z/»,A 0x;,
Gr=il =l
k—1
Vi |a ~ Beta(l, a) T = Vi H(l — Vi)

S=

m
|||

oo
st
k=1

According to this construction for the NDP and that for the HDP [see Teh
et al., 2006, Section 4.1], the difference between dependencies induced by the HDP
and the DNP are straightforward. even though both of them allow hierarchical

data structures. Changing atoms to random probability distributions may provide
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the HDP, the HPDP can be adapted to an infinite limit of finite mixture models

as a non-parametric prior.

2.3.5 PDP v.s. DP

The PDP is a generalisation of the DP. Both are probability distributions over
distributions over a measurable space. The PDP has similar properties to the DP,
c.g.. mean, variance and covariance (see the proof of lemma 35 in [Buntine and
Hutter, 2010]).

Property 2.5. (Mean, Variance, and Covariance) If G ~ PDP(a.b. H). for any

measurable set B,

E(G(B)) = H(B)
1 —a

V(G(B)) = 1+[)H(B)(1—H(B))
Cou(G(B),G(B")) = —i:{iH(B)H(B’) st. BNB=10.

The stick-breaking construction and the Chinese restaurant process have nat-
ural generalisations for the PDP and the DP. With respect to applications, both
of them are used as non-parametric priors for parameters of mixture models. Nev-
ertheless, the PDP and the DP are different to a certain extent, since the intro-
duction of the discount parameter a in the PDP.

The PDP can reduce to the DP, if the discount parameter is set to 0. With
only the concentration parameter b, the DP has some properties such as slower
convergence of the sum > | pi to one, since the number of unique values taken
on by draws from G grows slowly at order O(blog N), where N is the total number
of draws. Actually, with referring to the posterior distribution (2.4) of the DP in
the CRP representation, we can have the expected number (K) of unique values

computed as follows.

N /

)
W = = OblegrNi):
] Zl)+lz—l€ (HIoE )

n=l

E[IK

If 0 < a < 1, the PDP behaves according to a “power-law” [Pitman, 2002;
Teh, 2006b; Goldwater et al.. 2006: Teh and Jordan, 2010], which is in contrast
to the logarithmic growth for the Dirichlet Process. The “power-law” behaviour
can be observed from either the stick-breaking construction or the CRP repre-
sentation for the PDP. As discussed by Teh and Jordan [2010], the stick-breaking
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()
=

x = (r;.aoy, -, xy)from G correspond to customers, dishes served at tables are

> . . / 5 3 >

draws (X}s) from the mixture base measure ;| p;H;. Let nj, be the number
? a I . ] =

of customers eating X . If all the base measures are non-atomic. after G being

marginalised out, the conditional of xy.; can be derived by slightly modifying
Equation (2.8) as

/)(.I"\'+| |ZL'.(1.]).p. H]Hz H[)

K n}f,—(ld\w(')_*_ux]\ +b zl:/)H (2.12)
s N+bh * N+b
where 0y is the probability mass at X} and K is the number of dishes served at
all tables.
Similar to the PDP, when all the base measures are discrete, and all probabil-
ities are finite. Equation (2.12) must be modified since draws from the mixture of
base measures can be repeated. With the same notations used in Equation (2.9)

and (2.10). we have

])(.I'.\:H ]m.m.t*.u.b. p.H.Hy. --- . Hp)

. I

mi 5 aXxXT+b LN

— - — 5 H (- 29113
ZZ Vas a0+ ;’ v (&13)

K I

ng —ax*t; axT+b e

— ___(5 =P P _ iHi . 214
Zk_l N+b YT ZI_:] pitli(-) 20

In the Chinese restaurant metaphor. customers choose a dish by sitting at
a table. If a customer chooses to sit at an unoccupied table, a new dish should
be sampled from the base measure. In the CPDP, the number of base measures
could be more than one, so we need to decide from which base measure a dish
is sampled. Since the base measure is an admixture. and the sum of the mixture
weights is equal to one, it can be achieved by first choosing a base measure H;
with probability proportional to p;. then sampling a dish from H;. This procedure
is also known as multi-floor Chinese restaurant franchise [Wood and Teh, 2009].

Specifically, in the CRP metaphor for the CPDP. a restaurant corresponding
to G has I menus, each of which is generated from H;. Tables are clustered and
allocated to different floors according to dishes served by them. The number of
floors is equal to the number of menus. If a table serves a dish that is drawn from
amenu ¢, then this table will be allocated to the i floor. Arriving at a multi-floor
restaurant. a customer can choose to sit either at an occupied table in a floor or at

an unoccupied table. If the customer chooses to sit at an unoccupied table, a dish
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Figure 2.6: A multi-floor CRP representation for a CPDP with three base mea-
sures. The outer rectangle indicates a restaurant. the inter rectangles with dotted

lines are floors, circles are tables, x,'s are customers. and X['s are dishes.

is then ordered from any one of the 7 menus. The probability of ordering a dish
from menu ¢ is proportional to p;. If the ordered dish is from menu i. the newly
created table will then be allocated in the i floor. Figure 2.6 shows a multi-floor
Chinese restaurant metaphor for a CPDP with three base measures. It has three
floors that correspond to the three base measures. nine oceupied tables, and 20
customers. In this CRP representation. each table could be associated with a
latent variable. named menu indicator (shown as stars with different colors in
Figure 2.6). that indicates from which menu the dish on the table is ordered. All
the menu indicators can be taken as 7.2.d. draws from a multinomial distribution
with parameter p. and they cluster tables into I number of floors. We can consider
putting a prior on p. such as a Dirichlet distribution. I will show how to introduce

a Dirichlet distribution as a prior on p in Section 3.6.

2.4.3 CPDP v.s. Other Related Models

The CPDP is different in several perspectives from the related models. such as
the dynamic HDP [Ren et al., 2008] and the Pachinko allocation model (PAN)
[Li and McCallum, 2006].

The dynamic HDP (DHDP). see Section 2.2.3. shares the statistical informa-
tion (e.g., atoms) across sequential data (e.g.. music) by linearly combining two

probability distributions. In contrast. the CPDP combines several base distribu-






Chapter 3

Gibbs Sampling for the PDPs

In this chapter, I will discuss computational aspects of doing inference for non-
parametric Bayesian models based on the Poisson-Dirichlet process that is an
important non-parametric method in statistical machine learning. There are var-
ious mathematical representations available for PDPs, which can be combined in
different ways to build a range of inference algorithms, e.g.. Neal [2000]: Ishwaran
and James [2001]; Blei and Jordan [2005]: Ren et al. [2008]: Zhang et al. [2010];
Ren et al. [2010]. Here I will focus on Gibbs sampling algorithms for sampling
from posterior distributions of the PDPs. based on the Chinese restaurant process
(CRP) representation, particularly in a finite state space. In subsequent sections,

[ will discuss three Gibbs sampling algorithms for the PDP. They are respectively

e Telh’s sampling for seating arrangement sampler (SSA) [Teh, 2006a] (Sec-

tion 3.2);
e Collapsed multiplicity Gibbs sampler (CMGS, Section 3.3):
e Blocked table indicator Gibbs sampler (BTIGS, Section 3.4).

After comparing these three samplers in Section 3.5, T will present two Gibbs
sampling techniques for the CPDPs based on the CMGS and the BTIGS in
Section 3.6.

3.1 Joint Marginalized Likelihood

In this section I discuss the joint marginalised likelihood over a specific seat-
ing arrangement of customers in a restaurant. It will help in understanding the

sampling algorithms that will be discussed in Sections 3.2, 3.3 and 3.4.

37
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to the table assignment of customer x,,, and takes values on {t;,t,

seating arrangement can now be interpreted mathematically as

n € (X5, X2, .., X5 forne{l,2 ..., N}
sp € {t1, tay ..., t1} forne{1,2, ..., N}
N N
Mt = l.r,,:A\';‘ 15,,:[, ”Z:- == Z l.l',,:A\'lT_
=1 =1
i qE K

i=1 i=1 =1
K

T — Z ny .
k=1

The joint mareinal likelihood over a specific seating arrangement (i.e., @ and
« (=Y )

N'=

ME

i=1

s) can be derived by multiplying up the conditional probabilities. given by Equa-
tion (2.9) in Chapter 2. for all assignments of customers to tables. It has the

following form

K t).
l e ,
plx, 8la. b, H) = (())(% I | H(‘\A*j)"f | I(l — Ay e —1 (3:1)
)N : s
. =i 7=1
where (; takes values on {t1,to. ... . tp}. H is a probability distribution over dishes.

() is given by (z]1)y. and (x]y)y denotes the Pochhammer symbol with incre-

ment y. it is defined as

. z ify=0 .
(zlg)y = zlz +9y).. e +(N = 1Ly)j= N (3.2)
yV x DalvtN) - 4~
Yy I'(x/y) Y ?
where I'(+) denotes the standard Gamma function.
This joint marginal likelihood function will be used as the basis for the deriva-
tion of Gibbs sampling algorithms discussed in Sections 3.2, 3.3 and 3.4. In partic-
ular. T will show how it can be used to compute equations in Section 3.3. Notations

used in this section will be reused in subsequent sections.

3.2 Teh’s Sampling for Seating Arrangement

The sampling for seating arrangement algorithm [Teh, 2006a], denoted by SSA,

returns samples from the posterior distribution over the seating arrangement. It
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SSA requires a dynamic storage for customer counts at all tables. Being placed in
a hierarchical context where deletion and creation of tables lead us to recursively
carry out the removing and reinserting operations up through all the nodes in
the hierarchy.

The basic idea of SSA has been embedded in samplers for more complex
models, such as the hierarchical LDA [Blei et al., 2010], the HDP variant of LDA
[Teh et al., 2006]. the doubly nested n-gram model [Mochihashi and Sumita,
2008] and the side-by-side n-gram models for language adaptation [Wood and
Teh, 2009]. However, the basic idea of these algorithms remains the same, which
is to move the customer currently being sampled up to the end of the customer

sequence so that the sequential formula of Equation (2.9) can be used.

3.3 Collapsed Multiplicity Gibbs Sampler

In the SSA algorithm, the customer count at each table needs to be dynamically
stored in memory. It could still encounter a storage problem if the total number
of tables at a restaurant becomes large. which is possible if the concentration
parameter b is set to a large value, for example in a language model that needs to
be trained on very large corpora. Here I introduce a collapsed version of the SSA
that marginalises out all the possible seating arrangements so that the storage
of the customer counts my.c, . Mycos -+ - Mk, for each dish X is not needed. It
is based on the multiplicity representation of tables in the CRP interpretation
for the PDP [Buntine and Hutter, 2010]. T call it Collapsed Multiplicity Gibbs
Sampler (CMGS).

In the multiplicity representation, two observations that need to be stored
are the customer count n} and the table count ¢ for each dish X7, as shown in
Figure 3.2. This representation is no longer sequential, since the actual identity
of the table at which a customer sits cannot be reconstructed from n;’s and
t:’s, and neither can one tell whether a dish being served comes from the same
table or not (see Section 2.3.3). Therefore, the CRP based sequential sampling
methods using Equation (2.9) cannot be used. Nevertheless. in order to describe
this representation. the terminologies, such as restaurant, table, customer, dish.

will still be used.

Definition 3.1. (Multiplicity) In the CRP representation for a PDP, assume the
base distribution H is discrete, which means the probability of a same dish being

served by multiple tables is positive with probability one. The number of tables
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Figure 3.2: A multiplicity representation for the PDP. The empty circles are
unoccupied tables, the others are occupied tables. There are seven customers
who arrive in a restaurant sequentially. The statistics kept are n}’s and #}’s. The
arrival of each customer will increase either nj, or both, which depends on the

way in which the customers choose a table to sit at.
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(S

t, serving the same dish X is defined as the multiplicity of the tables. In general,
the multiplicity is the frequency of a distinct value drawn from the base measure

appearing in the data.

Notice that given the seating arrangement, the conditional probability or the
predictive probability. Equation (2.10), only depends on the number of customers

eating dish X}, n;, and the number of tables serving X, . i.e.. the multiplicity

ty.. With all the customer counts My ., Mo 145, - MK 115, being eliminated

and just the total counts being kept. the joint posterior distribution of cus-
5 . « e, . .

HOMEIS N = B Los e ) and multiplicities £ = (17,85, =, i) s derived

by marginalising out all the possible seating arrangements® with Equation (3.1)
[Teh, 2006a; Buntine and Hutter, 2010; Du et al., 2010D)]
.(I

(t -
sl 6 b ) = )|(1 HH oL (3.3)

where SY . is the generalised Stirling number [Hsu and Shiue, 1998] given by the

linear recursion [Buntine and Hutter, 2010: Teh. 2006a]

1’\7 ~
S() @ = 00, N
S/\[ a = f()l' J\[ = ‘N'
S S;Q;_M + (N—Ma)Sy, for M < N . (3.4)
As a consequence, it follows that S, = 1 and ST, = (T—“')Z The major hur-

dle for using the joint distribution (3.3) is to compute the Stirling numbers. To
avoid the intensive computation of order O(N M), we can tabulate or cache the
Stirling numbers for the required discount parameter a. In addition. these num-
bers rapidly become very large so computation needs to be done in a log space
using a logarithmic addition to prevent overflow. Therefore. Equation (3.4) 1s

computed in log space as
logSNHL = logShy , + log (exp (logSyy 1., — logShya) + (N — M a))

The log() and exp() functions make the evaluation fairly slow. When keeping a

fixed. we can overcome this problem by placing a maximum value on M, say

2Note customers & = (x1.xo,...,xy) are explicitly represented by the customer counts
(i sy ny ) in Equation (3.3).
3The last product in Equation (3.1) is changed to a Stirling number in Equation (3.3) by

marginalising out all the specific seating arrangements [see Teh, 2006a, Equation (26)].
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Figure 3.3: An example of multi-level hierarchical PDP
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Figure 3.4: An hierarchical CRP representation for a multi-level hierarchical
PDP. There are two types of customers in each restaurant, x;,’s who arrive by

themselves and t;,1,,’s who are sent by the corresponding child restaurant.

since the underlying sequence of customer-table assignments are lost due to Equa-
tion (3.3). I will empirically compare this CMGS with SSA in Section 3.5.

The joint posterior distribution given by Equation (3.3) can be adapted hi-
erarchically to sample from the posterior of the PDP embedded in a multi-level
hierarchy, see for instance Figure 3.3. The base distribution at level j is now recur-
sively drawn from a PDP at level j — 1. Then recursively applying Equation (3.3),

we can derive the following joint posterior distribution

p(x.5, .| @iy, by, Ho)

K = oE J ([),'I(IJ‘ )T K —— . :
— Sl s ik, (3.6)
k gt BNty o
where Hy is the base distribution for the highest level PDP, nj is the number of
customers that arrive by themselves and eat X}, N; = Z,{;l n;x. The recursion is
done according to Figure 3.4, a hierarchical CRP representation for a multi-level
hierarchical PDP. In the figure, rectangles represent the Chinese restaurants that

are indexed by j, circles are tables (t;,,’s) and customers are ;,'s. 1, = X}
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CMGS can be constructed from the indicators as

N
f;‘ = § “nl.l',,:.\’,: o (31—)

=1
For example, in Figure 3.5, for dish X7, the table count ¢} = u; + uz +uy = 2;
for dish Xj, t5 = wuy + us + ug + uz = 1. This construction implies that the

statistics need to be kept for the table indicator 1'0])1‘('5011tati<)11 can be the same
as those kept in the multiplicity representation. Note given n;’s and t,’s, we can
compute the probability that a customer opened a table.

Conditioned on customer x,, eating dish X} and given ny and ;. the probabil-
ity of this customer contributing a table is proportional to I’}—‘} For instance, the
probability of customer rz contributing a table is % in Figure 3.5. Indeed, there
is a uniformity in the table indicator assignient. Therefore, table indicators can
be randomly assigned in order to recover the table contributions, and thus the
explicitly recording table indicators for all the customers is unnecessary.

The posterior distribution of the PDP from the table indicator representation

can now be derived as follows. Let t* = (f].%5..... ) be a vector of the table
mtltiplicities, & = (Ui, Ugs .+ -4 un) be a vector of latent table indicators, and
ol S rny) be a sequence of customers that are explicitly represented

by per dish customer counts njs. It is easy to see from Equation (3.7) together

with Figure 3.5 that a specific table indicator assignment corresponds to a unique
e ot 5 : ;!

7 am oot . OQ at] a mlarg AT OaCH ¢ IVUOQ k

multiplicity representation, but a multiplicity representation gives = AIEE

possible table indicator assignments. This choose term says any t; of the nj cus-

tomers are equally likely to contribute a table. As a consequence, Equation (3.3)

can be computed in terms of the joint posterior distribution of & and w as

%
(et oy by H ) = HW_”A——F)_ ple.w|a, b H) . (3.8)

This formula lets us convert the multiplicity representation (x.t*) to the ta-
ble indicator representation (x,w). Consequently, modifying the joint posterior.
Equation (3.3), along with Equation (3.8), we can write down the joint posterior
distribution of & and w as

o f;!(n; —i)

(1 ,
ple.w|a, b H) = "” H (X7 (3.9)

It can be observed that this joint posterior distribution is exchangeable in the

pairs (,, u,). since the posterior and related statistics used are all sums over
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Figure 3.5: A table indicator representation of the PDP. The empty circles are
unoccupied tables. the others are occupied tables. There are seven customers
who arrive in a restaurant sequentiallv. Actually. only three of them have the

responsibility of opening a new table.
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Algorithm 3 Blocked table indicator Gibbs sampling algorithm
1. for each customer r, eating a dish X, do

2 Sample wu,, for r, according to Equations (3.10) to remove x,,.

3. Jointly sample x,, and u, based on the joint posterior, Equation (3.9)

1. Update both nj and ¢ based on the sampled values of x,, and u,, respec-
tively.

5. end for

data [see Chen et al., 2011, Corollary 1]. Thus, different sampling orders and
table assignment s can vield the same indicator assignment w.

To sample from the posterior. I introduce an adapted version (i.e., BTIGS) of
the block Gibbs sampling algorithm proposed in [Chen et al., 2011]. It is shown
in Algorithm 3. BTIGS is different to both CMGS and its variants proposed by
Buntine et al. [2010]; Du et al. [2010b.a, 2012b]. all of which adopt the two-stage
Gibbs sampling algorithm to interchangeably and iteratively sampling z, and
t;. Instead, BTIGS allows jointly sample x, and u, by cancelation of terms in
Equation (3.9).

As I mentioned before, w, is randomly assigned in the sampling procedure,
rather than dynamically stored. While removing a customer from a restaurant,
we need first to sample the value of u,, with following probabilities
L

*
s

* *

ol =1 2p =X ) = =02, =X ) = (3.10)

ny.

It is interesting that the constraints put on the t; and n; discussed in CMGS (see
Section 3.3) are implicitly guaranteed by the two probabilities. For example, if
nf =t and ¢} > 0, removing a customer r, = X must cause t; to be decreased
by one. In this case. Equation (3.10) always has p(u, = 1|z, = Xj) = 1so0 that
removing a table is guaranteed. The only case to which a careful attention should
be paid is that a table cannot be removed for x,, if t;, = 1 and nj > ;. Therefore.
it should be assured that p(u, = 1|z, = k) = 0 and p(u, =0 |z, = k) =1in
the implementation of BTIGS.

3.5 Empirical Comparison of the Three Sam-

plers

All the three Gibbs sampling algorithms, i.e., SSA, CMGS, and BTIGS, can be

embedded into an hierarchical context. However, it is difficult in experiments to
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Figure 3.6: The plots of mean estimates of 7' for one of the 20 Gibbs runs (a) and
the standard deviation of the 20 mean estimates (b) with a = 0. b= 10. K = 50
and N = 500.
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Figure 3.7: The plots of mean estimates of T for one of the 20 Gibbs runs (a)
and the standard deviation of the 20 mean estimates (b) with a = 0.5, b = 10.
K = 50 and N = 500.

where N is set to 10K in all the experiments, and the sum of entries in the
counting vector ny is equal to N.

The basic quantity estimated during each Gibbs run is the total number of
tables T. For the six parameter settings. a rough determination is done for con-
vergence time required in milliseconds. Let " indicate the sampler’s convergence
time. A burn-in for each individual Gibbs sampling run is done for {-‘-, millisec-
onds. Different convergence times are used for the different parameter settings. For
K = 50. C' = 1000ms. and for K = 100, C' = 10000ms. Then the mean es-
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Figure 3.8: The relative standard deviations of T

timates of 7" from all major Gibbs cycles from burn-in up to the current time
are recorded. In addition. since there are 20 independent Gibbs runs, a sample
standard deviation of the 20 means is also recorded at corresponding cycles. The
time series of means for individual runs and the sample standard deviations allow
one to assess empirically how fast the Gibbs samplers are converging.

Figures 3.6 and 3.7 show examples of the time series of mean estimates of
the total table counts and the time series of standard deviations of the 20 means
with two different parameter settings. When a = 0, the PDP is indeed the DP. As
we can see from these figures. regardless of the PDP or the DP. the mean esti-
mates and standard deviations for BTIGS and CMGS become relatively stable
more quickly than those for SSA. especially for BTIGS. Besides. both BTIGS
and CMGS have smaller standard deviations than SSA. which indicates a faster
convergence.

In order to further assess the relative performance of the three algorithms.

the relative values of standard deviations are computed in ratios as

s.d.carcs s.d.prics

sd.caes + s.d.ssq s.d.prigs + s.d.gsa
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Figure 3.9: A CRP representation for a CPDP embedded in a simple DAG struc-
ture taken out from Figure 2.5. The red stars indicate that the dishes are drawn

from G,. and the green ones indicate that the dishes are drawn from Gs.

drawn from a CPDP with the admixture of G5 and Gy as base distributions. To
demonstrate clearly the representation. I assume that all probability distributions
associated with root nodes (nodes with no parents) in Figure 2.5 are drawn from
the same CPDP with a single discrete base distribution Hy. Thus, atoms (i.e.,
dishes in the global menu) drawn from H, can be shared among all the nodes
(i.e.. restaurants). Therefore. dishes, denoted by X in Figure 3.9. with the same
subscripts but different colored stars are the same dish drawn from the global
menu. Different colors are just used to indicate these dishes are ordered through
different parent restaurants and served by tables located in different floors in
the restaurant. For example. X| and X are the same dish, but ordered through

restaurant 1 and restaurant 8 respectively. As indicated by dotted arrows with dif-
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o
nt

ferent colors, tables in different floors of restaurant 2 are sent as proxy customers
to either restaurant 1 or restaurant 8. For example. {55 is sent to restaurant 8.
because the dish it serves is drawn from Gy.

Now, we are ready to modify CMGS and BTIGS algorithms to make them
applicable to the CPDP. First. I adapt the multiplicity representation of the PDP
to the CPDP. Refer to Equation (2.11), G; is a random probability distribution
associated with node j. Pa(j) is a set of parent nodes of j, each of which is
indicated by G;. (z.j) is the directed edge from node i to node j, and p;; is the
mixture weight on (7, j), s.t. Zlél—)d pij = 1.

Now. let n}, be the count of customers eating X at node j. which includes the
customers arriving by themselves and those sent by the child nodes of j (Cd(j)).
see Figure 3.9, and 17, be the table multiplicity. Equation (3.3) can be modified
to yield the joint posterior of all customer counts n; and table multiplicities ¢;

for a CPDP at node j as

[)(32_,‘. tl l”_j' b.l“ (1'1(1'_) R 'C;‘P‘d(j)|) =

[v

Jak
[)]|(1 n’ 1. g .
H Sy 9 Z pijGi(Xg) ; (3.11)
iePa(j)
where T} = 1\ (15, and N ;‘_ . To expand the sum with multinomial

identity, 7, can l)o (lv(()mpos(‘(l into parts, s;j;,’s, each of which indicates the
number of tables serving X in the i'" floor of restaurant j. s.t. siik 2 0. The

ables are sent to parent i as proxy customers. Thus, we have

* *
L= E ik ni = Njk =+ § Sioh

icPa(j) ce Cdy)
et =0 nje =0,

K
Siqk t

where n;x is the number of customers arriving by themselves. For example, there
are 3 tables serving dish X in restaurant 2 in Figure 3.9, i.e., t = 3. Two of them
(o5 and to6) are sent to restaurant 1 and the left one (fo7) is sent to restaurant
8. Thus,n};,=2+2=4,andngz=4+1=95

As a consequence, we can decide with this decomposition how many tables
serve a dish ordered from a specific parent. The problem of involving multiple

base measures can now be solved. The final joint posterior distribution of @; and
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Indeed. Equation (3.12) can be treated as a generalisation of Equation (3.3). Re-
place the equations in Algorithm 2, we can derive the Gibbs sampling algorithm
for the CPDP.
Now. I generalise BTIGS for the CPDP. Unlike the table indicator represen-
tation for the PDP (see Section 3.4), given a multiplicity representation. there

are ]I, C""'

... choices of the table indicator confieurations. where
87 (] =10 1) 2

%
!
Lk | * 4% |
(Hiep‘d(j) '“i.j.k-) (n i)

Therefore, the joinst posterior for the CPDP at node j based on the multiplic-

v”‘/‘k
» . *
sj.,.,.(nJ‘k—IJ.A_ )

ity representation can be reconstructed from that based on the table indicator

representation as (similar to Equation (3.8))

p (a:, sjlaj, bj, Gi.Gs. - 'G'Pau)])

K

b (1] Lo TN (m] ;| aj, b, G1. Gy, - - .G|pa(j)l). (3.13)

k=l

then, modifying Equation (3.12) with reference to Equation (3.13) gives the joint

posterior distribution of &; and table indicators u; as follows

P (:13] uJ-|(1J-. bl G]Gz G’Pd(/)’)

(bj|a;) i3 ("7‘
J*JT’_ '”;.l. G : " i i
;) H 5[;*'" "k H /) Gi( X ) ok
k=1 sj s (nl - l;.k IGPd G)
(])J"(l/‘)T . n’ Il 4 )
=S &l .’/AA ——— )'_'._J.A-Gi X* 8k 314
(b/)’\] "ljl ’j.k'”-’ ('”/'I' H | / % ( k ) ( )
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Here the definition of table indicator for the CPDP is slightly different from
that for the PDP (i.e.. Definition 3.2). For the CPDP embedded in a DAG.
there can be multiple parents for each node. Tables contributed by customers
at one node can be sent to different parents. Thus, the values that the fable
indicator can take on should be the indices of all the parent nodes if a table is
created. Otherwise, the table indicator is zero. For example, in Figure 2.5, if a
customer contributes a new table at node G5 and the new table is sent to node
G as a proxy customer, then the table indicator for this customer is u = 7. Note
although T just elaborated how table indicator works for the CPDP, dynamically
recording all the table indicators is not required in practice. Like BTIGS, we can
randomly assign table indictors by sampling.

While adapting Algorithm 3 for doing sampling for the CPDP, we should pay
attention to Step 2, sampling to remove a customer (r,,) eating dish X} from
node j (z.e.. restaurant j in the CRP representation). since the decomposition of
t, makes the sampling more complex than in Algorithm 3. If ; , has contributed
a table. which floor is the table located in? Based on the recorded counts, nj s,
siix s and t7,'s, we cannot tell the exact floor (recall that each floor corresponds
to a parent) because there could be multiple floors serving X, . For example, X7
and X3 are served in both floors in restaurant 2 in Figure 3.9. Consequently. it is
necessary to consider all possibilities by computing the probabilities of allocating
a table contributed by x;,, to any floors serving X ;. That is, given x, = X and

all the counts., we have

Pt = Al = Xi) = =2 for i € Pa(j) (3.15)
Bl = 0| By = X3} = 07— (3.16)

Finally, sampling for the CPDP at each node, we can adapt Algorithm 3
by replacing Equation (3.9) with Equation (3.14). and Equations (3.10) with
Equations (3.15) and (3.16). However, to do sampling in the whole DAG. one
needs to modify Algorithm 3 with recursions. I will give a concrete example in
Chapter 7 by embedding the CPDP in a document structure.

To deal with the mixture weights, p;, we can predefine the weights with
respect to how @mportant each parent node 7 is to the node j, or we can even
make p, uniformly distributed. The approach adopted here is to put either an
informative or a non-informative prior on p;. In regard to Dirichlet-Multinomial

conjugacy and applications to discrete domains, such as language processing,






3.7. SUMMARY 59

(added) from a restaurant and its corresponding parent restaurants, if a cus-
tomer is unseated (reseated). Specifically, if a table is added or removed from a
restaurant, we need to consider all the possible linked paths from this restaurant
towards the root, where a proxy customer (and a table if necessary) can be recur-
sively added or removed. Because menu indicator variables are not dynamically
recorded, one needs to sample over all the possible paths to add or remove a
table. See for example the inference scheme for the AdaTM in Chapter 7, which
used Equation 3.18 based on the BTIGS.

3.7 Summary

In this Chapter. I have reviewed Teh’s sampling for seating arrangement (SSA)
sampler, and introduced the collapsed multiplicity Gibbs sampler (CMGS) and
the blocked table indicator Gibbs sampler (BTIGS). The results of experiments
run in a simply controlled environment of multinomial sampling have prelimi-
narily shown that the CMGS and BTIGS converges much faster than the SSA
does. It would be very interesting to further compare the three samplers in dif-
ferent contexts. for instance. to compare the three samplers in topic models or
the word segmentation models by [Goldwater et al., 2009].

The techniques for doing posterior inference with networks of PDPs or CPDPs
can be readily developed from these likelihoods, i.e., Equations (3.6), (3.9). (3.12)
and (3.14). In Chapters 5, 6 and 7, I will show these can be used to do inference

for structured topic models.
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Chapter 4

Probabilistic Topic Modelling

Topic modelling is an increasingly useful class of techniques for analysing not only
large unstructured documents but also data that posit “bag-of-words™ assump-
tion, such as genomic data [Flaherty et al., 2005] and discrete image data [Wang
and Grimson, 2008]. As a promising unsupervised learning approach with wide
application areas, it has gained significant momentum recently in machine learn-
ing, data mining and natural language processing communities. In this chapter. I
discuss briefly the fundamentals (e.g., basic idea and posterior inference) of topic
models, especially Latent Dirichlet Allocation (LDA) by Blei et al. [2003] that
acts as a benchmark model in the topic modelling community, since these are the
important prerequisites for understanding the structured topic models that will
be developed in Chapters 5, 6 and 7.

This chapter is organised as follows. The basic idea of the probabilistic topic
models is discussed in Section 4.1. Section 4.2 gives an fairly detailed introduc-
tion to LDA. then the Gibbs sampling algorithm for LDA is presented in Sec-

tion 4.3. Finally, I will discuss applications of topic models in Section 4.4,

4.1 Probabilistic Topic Models

Probabilistic topic models [Deerwester et al., 1990: Hofmann, 1999, 2001; Blei
ot al.. 2003: Girolami and Kaban, 2003; Buntine and Jakulin, 2006; Steyvers and
Griffiths. 2007: Blei and Lafferty, 2009; Heinrich, 2008] are a discrete analogue to
principal component analysis (PCA) and independent component analysis (ICA)
that model topic at the word level within a document [Buntine, 2009]. They
have many variants such as Non-negative Matrix Factorisation (NMF) [Lee and
Seung., 1999]. Probabilistic Latent Semantic Indexing (PLSI) [Hofmann, 1999

61






4.2. LATENT DIRICHLET ALLOCATION 63

[Steyvers and Griffiths, 2007]. We should also note that each word can appear in
multiple clusters, just with different probabilistic weights, which indicates topic
models could be able to capture polysemy [Steyvers and Griffiths, 2007]. The gen-
erative process is purely based on the “bag-of-words’ assumption where only word
occurrence information (i.e., frequencies) is taken into consideration. This well
corresponds to the assumption of exchangeability in Bayesian statistics. However.
word-order is ignored even though it might contain important contextual cues to
the original content.

As a probabilistic generative process, variants and extensions of topic models
can be used to postulate complex latent semantic structures respounsible for a
collection of documents. making it possible to use Bayesian inference to recover
those structures. The goal of fitting those topic models is to find the best set
of latent topics that can well explain the observed data (e.g., documents). In
topic modelling literature, there are two ways in general to do approximate pos-
terior inference, one is variational inference [Jordan et al.. 1999]. the other is
Gibbs sampling [Neal, 2000; Robert and Casella, 2005]. The latter is discussed in
Section 4.3.

4.2 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) [Blei et al., 2003]. a full Bayesian extension of
PLSI. is a three-level hierarchical Bayesian model for collections of discrete data.
e.q.. documents. It is also known as multinomial PCA [Buntine, 2002].

Compared with PLSI, LDA puts a Dirichlet prior on topic distributions, which
overcomes the difficulty, faced by PLSI, in the generalisability of modelling the
unseen documents. Girolami and Kaban [2003] showed that PLSI is a maximum a
posterior estimate of LDA with a uniform Dirichlet prior. Choosing the Dirichlet
prior simplifies the problem of posterior inference due to the Dirichlet-Multinomaual
conjugacy. see Property 2.2 in Chapter 2. Moreover, if the Kullback-Leibler mea-
sure is used. instead of least square, then NMF behaves like a maximum likelihood
version of LDA.

As a fundamental model for topic modelling, LDA is usually used as a bench-
mark model in the empirical comparison with its various extensions. Figure 4.1
illustrates its graphical representation using plate notation (see [Buntine, 1994]
for an introduction). In this notation, shaded and unshaded nodes indicate ob-

served and unobserved (i.e.. latent or hidden) variables respectively: arrows in-
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provides not only an explicit semantic representation of a document, but also a
hidden topic decomposition of the document collection [Blei and Lafferty, 2009].

Given the Dirichlet priors a. 4. and the observed documents w;.;. the joint
distribution of both the observed and the hidden variables can be read directly

from Figure 4.1 using distributions given in the above generative process as:

p(pyg, 210, Wiy | @, )
K

I I
= [Ir(en |9 ][] p(eile) ] pCzialisp(wiilb.,,) - (4.1)

k=1 i=1 I=1
The variables ¢, are corpus level variables, which are assumed to be sampled
once for the corpus; document level variables p,’s are sampled once for each
document; and variables z;;’s are word level variables that are sampled once per

word in each document.

Given the observed documents w,.;. the task of Bayesian inference is to com-
pute the posterior distribution over the model parameters ¢ ., and the hidden

variables, g, ;. and 2.7 ... The posterior is

Py 210 @ | Wy, & Y)
1)(1"’1:]- Z1.0, Wy | (8 7)
f“,[¢zz])(li1;1- zir wig | o )

Although LDA is a relatively simple model, a direct computation of this
posterior is infeasible due to the summation over topics in the integral in the
denominator. Training LDA on a large collection with millions of documents
can be challenging and efficient exact algorithms have not been found [Buntine,
2009]. Therefore, one has to appeal to approximate inference algorithms and the
following methods are used, i.e., the mean field variational inference [Blei et al..
2003]. the collapsed variational inference [Teh et al.. 2007]. the expectation prop-
agation [Minka and Lafferty, 2002], and Gibbs sampling [Griffiths and Steyvers,
2004]. Buntine and Jakulin [2006] have given a fairly detailed discussion on some
of those methods. They also mentioned some other methods. such as the direct
Gibbs sampling by Pritchard et al. [2000] and Rao-Blackwellised Gibbs sampling
by Casella and Robert [1996].

Furthermore, Wallach et al. [2009] have studied several classes of structured
priors for LDA, 7.e.. asymmetric or symimetric Dirichlet priors on g and ¢@. They
have shown that LDA with an asymmetric prior on g significantly outperforms
that with a symmetric prior. However, there is no benefit while putting an asym-

metric prior on ¢. Sato and Nakagawa [2010] have further put a PDP prior (see
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a topic k; and m; = (m;1, myo, ..., m; ) where m;; is the number of word
tokes in document 7 to which topic & is assigned. Thus. given all the documents,
Equation (4.1) is further computed as

K i

Betay (v + ny, Betag(a + m;
P(lel- Wi | Q. ‘y) = H ‘(’7 i) H etay( )

4.2
P Betay (7) Betay (o) 2]

With a simple cancelation of Equation (4.2). the full conditional distribution
can be derived as
T w; = Twi i e S 0

7 K
> o=t (Mo + 70) ZA-\’:I (Mg + apr)

After a sufficient number of Gibbs iterations, which means the sampler has

ol = A'\z;;"'.wlzl.a.'y) X (4.3)

burned-in, the Markov chain is ready to sample. Given the posterior sample
statistics. the latent variable g and the model parameter ¢ can be estimated
using the expectation of the Dirichlet distribution (see Section 2.1) as:

Nkw + Yo Nk =+ g

QDrv = v Wik = 73
z(V’zl (”A'.l" + A/:v) ]\_\/:] (”l]\/ + (l;‘./)

Due to the extensive computations required by the topic sampling for each
word token, particularly while the number of topics and the corpus size are large
(which is usually the case in real applications). Porteous et al. [2008] presented
a fast collapsed Gibbs sampling algorithm, an efficient variant of Griffiths and
Steyvers’ sampler. This fast version significantly reduces the sampling operations
based on the notion of skewed sampling distribution, which means the probability
mass is always put on a small fraction of K topics. With the same motivation,
Xiao and Stibor [2010] gave another version of fast sampling method that puts a
multinomial distribution on the number of times each word type is sampled in a

document.

4.4 Applications and Extensions

Since the first introduction of topic models, particularly PLSI and LDA. they
have been broadly applied for machine learning and data mining, particularly in

information retrieval, text analysis and computer vision. For instance,

Information retrieval Azzopardi et al. [2004]; Buntine et al. [2004]; Wei and
Croft [2006]); Chemudugunta et al. [2007]: Tang et al. [2011] have adapted

topic models to information retrieval. Some of them have shown that topic
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documents according to the topic tree with multiple levels of abstraction.

How to incorporate meta-information (besides time) into topic modelling is
another line of research that is interesting in. for example, computer vision and
text mining, where the collected data usually come with meta-information, e.g..
class labels, review rating, authors, and citations. The well-known models for this

kind of research include

The supervised LDA model [Blei and McAuliffe, 2007] that puts a logistic
regression on the word-topic assignments to generate observed features,

such as class labels;

The Dirichlet-multinomial regression model [Mimno and McCallum, 2008]

that can in principal incorporate arbitrary features:

The correlated labelling model [Wang et al.. 2008b] that builds directly the

class label into the generative process:

The author-topic model [Rosen-Zvi et al., 2004; Steyvers et al.. 2004] in which
the word-topic assignments are generated according to the topics distribu-

tions associated with different authors:

The linked-LDA model [Nallapati et al., 2008] that jointly models the text

and citations.

4.5 Summary

In conclusion, topic models have broad applications across different disciplines,
generally from machine learning to data mining. Although these models are
slightly different in the sense of assumptions, they share the same fundamen-
tal idea: mixtures of topics and probability distributions over words. It is worth
pointing out that most of them have to deal with the “bag-of-words™ assumption.
and no one has paid attention to the subject structure of each individual document
that is buried in the high levels of document structures. However, Embedding the
document structures directly in topic models could yield a rich posterior topic

structure for each document, which can further help in ad-hoc document analysis.
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Chapter 5
Segmented Topic Model

The structure of documents into headings. sections, and thematically coherent
parts, implies something about shared topics, and also plays an important role
in document browsing and retrieval. In this chapter I take the simplest form of
structure, a document consisting of multiple segments, as the basis for a new
form of topic model, named Segmented Topic Model (STM), which leverages the
structure of a document. instead of learning it. To make the model computation-
ally feasible, and to allow the form of collapsed Gibbs sampling that has worked
well to date with topic models. the marginalised PDP posterior (see Section 3.3)
is used to handle the hierarchical modelling. T compare it with the standard topic
models (e.g.. LDA reviewed in Chapter 4) and existing segmented models. The
new model significantly outperforms standard topic models on either whole doc-
ument or segment, and the existing segmented models, based on the held-out
perplexity measure.

This chapter is organised as follows. In Section 5.1 I give an introduction to
the motivation of STM. In section 5.2. 1 discuss related works in the literature
of topic modelling. Then, I describe STM in detail and the posterior inference
based on the PDP in Sections 5.3 and 5.4 respectively. In Section 5.5, I compare
STM with LDA and the existing segmented models. The experimental results on

several document collections are reported in Section 5.06.

5.1 Introduction

In recent years, documents continue to be digitised and stored in the form of web
pages, blogs, twitters, books. scientific articles and so on. A majority of these

documents come naturally with structure. They are structured into semantically

S
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Figure 5.1: Graphical representation of mapping a document layout to a docu-
ment subject structure in the STM. The left is the layvout, and the right is the

subject structure.

for segment j of document 7. Both the main ideas of a document and sub-ideas
of its segments are modelled here by the topic distributions. Sub-ideas are taken
as variants of the main ideas. and thus sub-ideas can be linked to the main ideas.
given correlations between a document and its segments, as shown in Figure 5.1.

How do the segment proportions v;; vary around the document propor-
tions pu;? The use of the PDP as v;; ~ PDP(a.b. ;) distribution is a key
innovation here. One would be happy to use. instead, a distribution such as
vij ~ Dirichlet(bp;) where b plays the role of “equivalent sample size”. How-
ever, such a distribution makes the prior not conjugate to the likelihood so general
MCMC sampling is required and parameter vectors such as g can no longer be
integrated out to yield an efficient collapsed Gibbs sampler. I therefore employ

the following lemma adapted from [Buntine and Hutter, 2010]:

Lemma 5.1. The following approximations on distributions hold

PDP(0.b, Discrete(@)) = Dir(b@) .
PDP(a.0. Discrete(@)) =~ Dir(a@) (as a — 0),

The first approzimation is justified because the means and the first two central
moments (orders 2 and 3) of the LHS and RHS distributions are equal. The
second approximation is justified because the mean and first two central moments

(orders 2 and 3) agree with error O(a?).

The PDP is a prior conjugate to the multinomial likelihoods. so allows col-
lapsed Gibbs samplers of the kind used for LDA. Thus, conditioned on the model
parameters a,y, ® and the PDP parameters a.b. STM assumes the following

generative process for each document i:
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Figure 5.2: Segmented topic model. The inner rectangle indicates repeated sam-

pling on words. the middle one indicates segments, the outer indicates documents.

1. Draw u; ~ Dirg (o)
2. For each segments j € {1...... Ji}

(a) draw v;; ~ PDP(a.b, ;)
(b) For each w; ;;, where [ € e L;;}

i. Select a topic z; j; ~ Discreteg (v ;)

ii. Generate a word w; j; ~ Discretey (¢, ,/)'

[ have assumed the number of topics (i.e., the dimensionality of the Dirichlet
distribution) is known and fixed, and the word probabilities are parameterised
by a I x W matrix ®. The graphical representation of STM is shown in Fig-
ure 5.2. The complete-data likelihood of each document i (i.e., the joint distri-
bution of all observed and latent variables) can be read directly from the graph

using the distributions given in the above generative process.

5.4 Approximate Inference by CMGS

Having described the motivation behind STM, I now elaborate on the procedures
for the posterior inference and parameters estimation. In order to use this model,
the key inference problem that needs to be solved is to compute the posterior
distribution of latent variables (i.e., p, v and z) given the model parameters a,
®. a. b and observations w, i.e.,

plp.v.z,w|a, P a.b)
,,, ’,, Yo.pp vz, w|a. P a.b) '

plp.v.z|w o, ® a.b) =
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7//
o p(t 1\21/|/w11|/t.,,’, a,v.a,b).

The Dirichlet priors put on g, and the PDP priors on v, ; are conjugate to
the multinomial distributions. and the PDP is also conjugate to the Dirichlet dis-
tribution. The conjugacy makes the marginalisation much easier. Thus, the joint

conditional distribution of z;, t7, ;. w; can easily be computed by integrating

7l
out ;. v; .y, and ® 1'(\\'1)(\('“\'(\1}' as f()ll()\\'s.

First, integrating out the segment topic distribution v;; by using the joint
posterior distribution of observations and multiplicities for the PDP, see Equa-

tion 3.3, we have

])([,l,]-. Zil:.J; Wi, .t;ﬁl.l |a @.(I.())

— lJ’/ I (81 / H[) V; j ‘ll,l a, [) H :i.jJ ‘ Vi.j)l)(“‘i._/.[ \ d)'-’, ,)(]I/,"J'
< , i

=l i,j~PDP(a.b,u;) =1

1 N J; K
- H/[,\,..fl ‘” a7, ; g’ ,,; /1 H H \/,; .
Betar (a ik I | I | L /1
(I\( )A':l .i:I Nij k L1 =1
==
see Equation 3.3
J; K W
- H/l(”+ O3B H |a) ”HS”’A HH M; ke
B(tdh i g ’) i,j, k% ke, w
k= J=l1 Nid =1 k=1 w=l

where Betay(a) is K dimensional Beta function that normalises the Dirichlet
(see Definition 2.1), and the last two products are derived by

K W

l(wll/‘zlll (I) HH [\”,‘,‘”‘- (

k=1 w=1

n

1)

Then, integrating out all the document topic distributions p; and the topic-word
matrix @ with Dirichlet integral, as is usually done for collapsed Gibbs sampling

in topic models, gives

p(zrr g wiris iy |a,vy.a.b)

— / H//)u,z,'w, t/ ., la.® ab)dp; | d®

=
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which stochastically samples the multiplicity 77 ;. We should note that the value

X
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of 7, should be in a specific interval to obey the constraints on n;;; and
i ik The interval is (1, ni;,), if nj;, > 2. There is no sampling ¢7 ;. required if
ny ;. < 2. Algorithm 4 gives the collapsed Gibbs sampler for STM that is derived
from Algorithm 2.

From the statistics obtained after the burn-in of the Markov chain. we can
casily estimate the document topic distribution g. the segment topic distribution
v, and topic-word distributions ®. They can be approximated from the following

posterior expected values via sampling:

J; *
Qg + Z_,-zx i,k

~ ) ==
ik = Ez,,l;,;’.t,’ 1o | Wi 1 7:5007,05b K ] ()-‘))
s didy J2 *
P (”k ne Z‘j:l i._j.k)

P nlip—a Xty Ty xa+ b (5.6)

Vigk = Lz, 15,87 1.5, | Wi, 007,00 bT N, Gl /11.A-———’)+ N i
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5.4.3 Sampling the Concentration Parameter

Initial experiments showed the concentration parameter b of the PDP can strongly
affect perplexity results and seemed difficult to set by optimisation. I therefore
developed a simple sampling method using auxiliary variables as follows. Each
segment j of document i has an auxiliary probability ¢; ; ~ Beta(b, N; ;). From

this, using an improper prior for b of the form 1/b, the posterior for b is given by

*
[)‘ql;],l;,]-ZI:IAI:‘I-wl:/.l:./-tl;].l;,/- o, 7. a

I & I
~ Gamma Z Z 180 Z Z log 1/g; ;

=1 7= =1 g=1

—
(a1
P‘

Sampling using these auxiliary variables operates every major Gibbs cycle as

follows:
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Algorithm 4 Collapsed Gibbs sampling algorithm for STM

Require: a. b. a, v, K, Corpus, MaxIteration

Ensure: topic assignments for all words and all table counts

Il

10.
11.

1133,
14.
15.

16.

Topic assignment initialisation: randomly initialise topic assignments for all

the words.

Table count initialisation: randomly initialise all ik St 0S8, <1y

I

i,j.k

n; . > 0, &, must be greater than 0.

Compute all statistics listed in Table 5.2

for iter < 1 to Maxzlteration do

foreach document 7 in corpus do

foreach segment j in i do

foreach word w; ;,; in j do

Exclude w; ;;. and update all the related statistics with
current topic z; j; = &' removed. The constraints on N g
and ¢, ,, must be satisfied.

Sample new topic & for w; j; using Equation (5.3).
Update all the statistics related to the new topic.

Remove the value of the current table count t; ;. from the
statistics.

Sample new table count t;,, for the new topic k using
Equation (5.4).

Update the statistics with the new table count.

end for

end for

end for

7. end for
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L. Sample ¢; ; ~ Beta(b, N, ;) for each document ¢ and segment j and compute

I J,
> ZQ;’:I log 1/qi ;.

2. Sample b according to the condition distribution (5.8).

5.5 Comparison with other Topic Models

T this section I compare STM, in terms of text modelling. with two topic models',
Latent Dirichlet Allocation (LDA) [Blei et al., 2003] and Latent Dirichlet Co-
Clustering (LDCC) [Shafiei and Milios, 2006].

5.5.1 Latent Dirichlet Allocation

LDA is a three-level probabilistic generative model. the idea of which is that doc-
uments are random mixtures over latent topics, where each topic is a distribution
over words. sce Chapter 4 for detailed discussion. Compared with LDA, instead
of sampling a topic z; ;; directly from the document topic distribution ;. STM
adds another layer between z; j; and p;. which is the segment topic distribution
v; ;. Adding this distribution implies a higher fidelity of STM over LDA on mod-
elling the correlation between the document topics and its segment topics (z.e..
the subject structure inside a document). LDA could also model the correlation
by having two runs through documents and their segments separately. Neverthe-
less. the consistency of underlying topics between two separate runs cannot be
ouaranteed, since different runs will come up with different latent topics (due to
unsupervised learning). Therefore, LDA cannot simultaneously model document
topic distributions and segment topic distributions under the same latent topic
space, as does STM.

It is interesting that STM can reduce to LDA. if the concentration parameter
b of the PDP is set to an extremely large value, such as a value far larger than
the number of observations. The proof is quite straight forward. In STM, v, ; is
drawn from a PDP with base measure g, which itself is drawn from a Dirichlet
distribution. Therefore. the base measure is discrete. See Property 2.5, the mean

and variance of v, ; are

1 —a

Elvi;] = m; ; Vivi;] = T

((11-(1;;()11'(11(“,-) — IL,H,T) : (5.9)

IT have changed some notations from the original papers to make them consistent with those

used in STM.
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(b) Entropy w.r.t. b

(a) Standard deviation w.r.t. b

Figure 5.4: Standard deviation and entropy with changing a fixed
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(a) Standard deviation w.r.t. a (b) Entropy w.r.f. a

Figure 5.5: Standard deviation and entropy with b fixed
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Figure 5.6: Perplexity with either a or b fixed
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conclude that the influence of a. especially a < 0.6, on topic proportions is not

significant when b is set to 10 on the two patent datasets.

Topic Proportion Examples

To further show topic variability among document topic proportion and its seg-
ment topic proportions, I plot as an example those topic proportions of a patent
from G06-1000 in Figure 5.7. They are extracted from an experiment with fol-
50, a = 0.2, b = 10 and o = 0.5. This patent has 10

paragraphs. and talks about web authentication security systems for finance, as

lowing settings: K =

indicated by four topics with the highest ratios in document topic distribution
mu in Figure 5.7. They are T-12, T-16, T-31 and T-44 in Table 5.3 (Note topic
numbers following “T-" correspond to topic indices in Figure 5.7.). As indicated
by the blue bars, segment topic proportions are variants of the document topic
proportion with different ratios for the four main topics. For example, the first

paragraph (see nu_1) covers all the four topics and topic T-15, it is indeed an

Table 5.3: 11 topic examples learnt by STM from the G06-1000 dataset

T-12 T-16 T-20 T-21 T-31 T-32
web systems path component key files
page performance tree management — security volume
browser large nodes engine authentication  copy
site required price electronic hash site
internet multiple paths applications  keys update
pages problem decision modules encryption backup
content high failure external chip directory
report single period desktop encrypted local
users cost graph install protected delta
website typically model installation secure updates
T-37 T-42 T-44 T-46 T-47

value window card skilled state

threshold selected transaction understood event

segment displayed account patent error

maximuin screen customer specific status

size view payment intended current

amount button terminal limited action

rang selection cards modifications  recovery

determined  box ic incorporated  events

index select identification  disclosed determines

equal text merchant detail routine
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Figure 5.7: Plots of topic distributions for a patent from G0G6G-1000. Document
topic distribution mu is on the top. and the others are 10 segment topic distri-
butions. labeled with nu_j. j € {1.2..... 10}. The label of X-axis is topic which

is indexed from 1 to 50. the Y-axis is topic proportion.

introduction paragraph: the fifth paragraph (see nu.5) focuses on the interface
design. see topic T-42: and the seventh and the eighth paragraphs (see nu_7 and
nu_8) discuss more abont technical issues of an authentication system. It can be

seen that STM can capture the variability among topic proportions.

5.6.3 Perplexity Comparison

I follow the standard way in topic modelling to evaluate the per-word predica-
tive perplexity of STM. LDA and LDCC. In the training procedure. each Gibbs
sampler is initialised randomly and runs for 500 burn-in iterations. Then a total
number of 5 samples are drawn at a lag of 100 iterations. These samples are
averaged to obtain the final trained model. as in [Li et al.. 2007].

I set hyper-parameters fairly in order to make a scientific comparison. as they
are important to these models. Symmetric Dirichlet priors (i.e.. a for LDA and
STM. 6 for LDCC) were simply used in the following experiments, although we

can estimate them from data using, for instance. the Moment-Matching algorithm
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(a) Perplexity comparison on the GO6G-1000 (b) Perplexity comparison on the GOG-990

Figure 5.8: Perplexity comparisons on the G06-1000 and GO06-990 datasets

proposed by Minka [2000]. With 5 fixed to 200/W . I ran different settings of &
and & (from 0.01 to 0.9) for different number of topics (z.e.. 5. 10, 25, 50. 100, and
150). and empirically chose the optimal parameters for LDA and LDCC. It has
been observed. for example. LDA trained on a = 0.1 was always better on both
G06-1000 and G06-990 datasets than on other settings. but LDCC varied quite a
bit (e.q.. 8 = 0.9 for 25 word-topics. 6 = 0.01 for 100 word-topics). The number of
document-topics in LDCC was fixed to 20 for all experiments and a was estimated
using the moment-match algorithm, as in [Shafiei and Milios, 2006]. I used a = 0.5
in STM for all the numbers of topics without tuning, and set a = 0.2 and b = 10
for both the G06-1000 dataset and the G06-990 dataset. When optimising b. 1
set @ = 0. Note that optimising the parameter settings for the two competitors
(LDA and LDCC) enables us to draw sound conclusions on the performance of
STM.

Figure 5.8(a) presents experimental results for these models on the GOG-
1000 dataset. LDA has been run on document level (LDA_D) and paragraph
level (LDA_P) separately. It is interesting to see that LDA_P is better than
LDA_D. LDCC exhibits better performance than LDA_D. but it is only com-
parable with LDA_P. The paired t-test. shown in Table 5.4. gives p-value= 0.05
to the slight improvement. In contrast. STM (with or without sampling b using
the scheme presented in Section 5.4.3. indicated by STM and STM.B respec-
tively) consistently performs better than all the other models. The advantage is
especially obvious for large numbers of topics. Table 5.5 shows the optimised b
values. The superiority of STM over LDA and LDCC is statist ically significant
according to the paired t-test with p-values shown in the third and fourth columns
of Table 5.4.
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5.0.

Table 5.6: Optimised b values on the A-1000. the F-1000. the NIPS and the

Reuters datasets with a = ().

K=5 | K=10 | K=25 | K=50 | K=100 | K=150
A-1000 | 0.94 1.08 1.36 1.56 1.71 1.77
F-1000 | 1.64 2101 2.75| 3.31 3.99 4.49
NIPS 1.46 1.97 2.7 3.4 1.04 4.33
Reuters | 298| 354 | 3.17| 226 1.50 1.20
Table 5.7: Dataset statistics
A-1000 F-1000 NIPS | Reuters
Number of documents 1.000 1.000 1.629 2.640
Number of segments 78.653 55.149 174.747 | 38.182
Number of words 3.108.479 | 2.127.878 | 1.773.365 | 405.531
Vocabulary size 18.988 9.760 13.327 | 13.884

0% 510 25 e 28

(a) Perplexity comparison on the A-1000 (b) Perplexity comparison on the F-1000

dataset dataset

Figure 5.9: Perplexity comparisons on the A-1000 and the F-1000 patent datasets

The two patent datasets, A-1000 and F-1000. are randomly selected from the
U.S. patents granted in 2010 with IPC code A ( “human necessities” ) and F (“me-
chanical engineering: lighting; heating: weapons; blasting”) respectively. All the
patents in the two datasets are split into paragraphs, as done for GOG-1000. The
NIPS dataset is processed to remove bibliography material (everything after “Ref-
erences”) and header material (evervthing before “Abstract™): the Reuters ar-
ticles are extracted from 20-25/8/1996. and the articles in categories CCAT,
ECAT and MCAT are dropped. All the documents in the NIPS dataset and the
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Figure 5.10: Perplexity comparisons on the NIPS and the Renters datasets

Renters dataset are split into sentences. Table 5.7 shows the statistics of the four
datasets. Again 80% were used for training and 20% for testing. Perplexity re-
sults appear in Figures 5.9 and 5.10. It is interesting that the performance of LDA
running on the document level is slightly better than STM on Reuters articles. |
have observed that the average size of Reuter articles is about 150 words. but the
average sizes of documents in the other three datasets are much larger than the
size of Reuter articles. There are about 3100 words for A-1000. 2100 words for
F-1000 and 1100 words for NIPS. respectively.

5.7 Summary

In this chapter, I have presented a segmented topic model (STM) that direct ly
models the document structure with a four-level hierarchy. An effective collapsed
Gibbs sampling algorithm based on the CMGS has been developed. The ability
of STM to explore correlated segment topics (i.e.. the latent subject structure of
a document buried in the document layout) has been demonstrated in the exper-
iments by the significant improvement in terms of per-word predictive perplexity
compared with the standard topic model (LDA) and previous segmented model
(LDCC). I also found that STM is approximately equal to LDA on quite short
documents.

The primary benefit of STM is that it allows us to simultaneously model
document topic distributions and segment topic distributions in the same latent
topic space, without separate runs as LDA or introducing different kinds of topics

as LDCC. Although the experiments I have done were Just on either the paragraph
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level or sentence level, STM readily models other segments. like sections and
chapters. Moreover, the success of STM has indicated that it is beneficial to
consider the document structure directly in topic modelling. Although I think
the inference algorithm I proposed is good enough to test STM, it is still worth
exploring other inference algorithms. such as variational inference for Dirichlet

process mixture models [Blei and Jordan, 2005; Teh et al., 2008].
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of models treats time as an observed variable that can be jointly generated with
words by latent topics, for example, the topics over time (ToT) model [Wang
and McCallum, 2006]. In the ToT, the topic over time is captured by a Beta
distribution. Drawing all time stamps from the same Beta distribution might not
be appropriate for, such as, stream data [Wei et al., 2007]. Some other approaches
are, for instance, He et al. [2009] developed inheritance topic model to understand
topic evolution by leveraging the citation information; Kandylas et al. [2008]
analysed the evolution of knowledge communities based on the clustering over
time method, called Streemer.

Significantly. the difference between these models and SeqLDA is that. in-
stead of modelling topic trends in document collections based on documents’
time stamps, SeqLDA models topic progress within each individual document
by using the correlations among segments, i.e.. the underlying sequential topic
structure, according to the original document layout. The Markovian dependen-
cies are put on the topic distributions. In this way., we can directly model the
topical dependency between a segment and its successor.

Although one may argue that the models just discussed can also be adapted to
the individual document by treating the sequence of segments as time stamps. the
computation complexity and space complexity of those models could be signifi-
cantly increased with the growth of the latent variables and hyper-parameters. In
contrast. I use a single integrated model based on the HPDP. in which the real

valued parameters can be integrated out because PDP’s are self-conjugate .

6.3 SeqLDA Generative Process

Now I present the Sequential Latent Dirichlet Allocation model (SeqLDA) which
models how topics evolve over segments in individual documents. [ assume that
there could be some latent sequential topic structure within each individual doc-
ument. i.c., topics within a document evolve smoothly from one segment to
another, especially in various books (e.g., novels). This assumption intuitively
originates from the way in which people normally organise ideas in their writ-
ing. Before specifying SeqLDA. T list notation and terminology used in this chap-
ter. Notation is given in Table 6.1. The terms and dimensions used in the SeqLDA
model are the same as those in STM. see Section 5.3. In this chapter I assume
segments are either paragraphs or chapters.

The basic idea of SeqLDA is to assume that each document ¢ is a certain
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mixture of latent topics. denoted by a topic distribution g, ;. and is composed of
a sequence of meaningful segments: each of these segments also has a mixture over
the same set of latent topics as those for the document, and these are indicated
by a topic distribution p; ; for segment j. Obviously, both the document and its
segments share the same topic space. Notice that the index of a segment should
comply with its position in the original document layout. which means the first
segment is indexed by j = 1. the second segment is indexed by j = 2. and so
on. Both the subject of a document and subtopics of its segments are modelled
here by these distributions over topics. Take the book, called “The Prince” . as an
example. The whole book is treated as a document. each chapter is a segment in
the experiments carried out in Section 6.6. The theme of each chapter is simulated
by the distribution (i.e., ;) over latent topics. The linkage between theme is
modelled by the change among topic distributions.

The development of a sequential structured generative model according to the
above idea is based on the HPDP, and it models how the subtopic of a segment

is correlated to its previous and following segments. Specifically, the correlation

Table 6.1: List of notations used in SeqLDA

Notation. Description.
i number of topics
! nunber of documents
I number of segments in document ;
e s number of words in document i, segment j
i number of words in dictionary
a; the discount parameter of the PDP
bi the concentration parameter of the PDP
a K-dimensional vector for the Dirichlet prior for document

topic distributions

Eio document topic distribution for document i
;i segment topic distribution for segment j in document i
D word probability vectors as a K x W matrix
O, word probability vector for topic k. entries in &
~ W-dimensional vector for the Dirichlet prior for each @,
W ji word in document i, segment J. at position [

Z; 1 topic for word in document ;. segment j, at position /
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Figure 6.2: SeqLDA

is simulated by the progressive dependency among topic distributions. That is,
the j segment topic distribution g, ; is the base distribution of the PDP for
drawing the (j 4 1) segment topic distribution g, ;,: for the first segment, its
topic distribution g, , is drawn from the PDP with document topic distribution
I; o as the base distribution. The concentration parameter b; and discount param-
eter a; control the variation between the adjacent topic distributions. Figure 6.2
shows the graphical representation of SeqLDA. Shaded and unshaded nodes indi-
cate observed and latent variables respectively. An arrow indicates a conditional
dependency between variables, and plates indicate repeated sampling.

Tn terms of a generative process, SeqLDA can also be viewed as a probabilistic
sampling procedure that describes how words in documents can be generated
based on the latent topics. It can be depicted as follows: Step 1 samples the word
distributions for topics. and Step 2 samples each document by breaking it up into

segments:
1. For each topic k in {1,.... K},
(a) Draw ¢, ~ Diry(7)
2. For each document 7 in {1, ..., I}

(a) Draw u; , ~ Dirg(a)

(b) For each segment j € {1....,. I}
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Thus. if documents indeed have some latent sequential structure, considering
this dependency means a higher fidelity of SeqLDA over LDA and LDCC. How-
ever, if the correlation among subtopics of some adjacent segments is not obvious,

" segment as the base distribution of the

taking the topic distribution of the j
(7 + 1y segment may mis-interpret the document topic structure. In this sense,
SeqLDA may be a deficient generative model. but it is still a useful model and
remains powerful if the progressive dependency is dynamically changed by op-
timising concentration and discount parameters (a and b) for each individual
segment within each document. In all the reported experiments, 1 ran one set of
experiments with fixed a and b for each corpus, and another set of experiments

with a fixed but b optimised for each document i (i.e., b;).

6.4 Inference Algorithm via CMGS

In this section, I derive the collapsed Gibbs sampling algorithm for doing infer-
ence, and parameter estimation in the proposed model. Collapsed Gibbs sampling
take advantage of the conjugacy of priors to compute the conditional posteri-
ors. Thus, it always vields relatively simple algorithms for approximate inference
in high-dimensional probability distributions. Note that I use conjugate priors in
SeqLDA., i.e., Dirichlet prior e on p, and v on @, the PDP prior on p;: thus
o ; and @ can be integrated out. Although the proposed sampling algorithm
does not directly estimate g, ; and @, I will show how they can be approximated
using the posterior sample statistics.

Table 6.2 lists all the statistics required in the proposed algorithm. The Se-
gqLDA sampling is a collapsed version of what is known as the nested Chinese
restaurant process (CRP) used as a component of different topic models [Blei
et al.. 2010].

6.4.1 Model Likelihood

To derive a collapsed Gibbs sampler for the above model. we need to compute the
marginal distribution over the observation w, the corresponding topic assignment
~_ and the table multiplicities t*. We do not need to include, 7.c., can integrate
out. the parameter sets ., and @, since they can be interpreted as statistics
of the associations among w. z and t*. Hence, we can first recursively apply

Equation (3.6) (the joint posterior of HPDP, see Section 3.3) to integrating out



108 CHAPTER 6. SEQUENTIAL LDA MODEL

the segment topic distributions g, ., from Equation (6.1) as follows.
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Table 6.2: List of statistics used in SeqLDA

Statistic. Description.

M; 30 topic by word total sum in document 7. the number of
words with dictionary index w and topic k, i.e., M; ., =
Z;—I Zlfl 2.,,,./=1\'1“‘,.,41=“"

M. .. M, .. totalled over documents 7, i.e., 21—1 M, 50

M, vector of W values M, ,,

Mgk topic total in document i and segment j for topic k., i.e.
T g = Z, Y 1., =k It is the total number of customers in

the CRP that arrive by themselves, rather than being sent by

the child restaurant.

N; topic total sum in document i and segment j. i.e.. ZZ,‘ZI i 1k

i3 table count in the CRP for document ¢ and segment 7.

0],k S J
for topic k. This is the number of tables active for the k-
th value. Necessarily. ¢7,, < nf;, and t;,, > 0 whenever
* S T R B e . . * 1
ti e > 0. In particular, if n7;, =1 then ¢}, = 1.

JE total table count in the CRP for document i and segment j.
. K

ti; table count vector, i.e.. (t7;,.....t; ;) for segment j.

W Je the smallest segment index j’ in 7, where ti v =0.




6.4. INFERENCE ALGORITHM VIA CMGS 109

where 7., < n; ;. + ti i and 8 =0 iff nije + 17,4, =0 Betay (o) is a K
dimensional beta function that normalises the Dirichlet: (2)y is given by (x|1)y,
and (x|y)x denotes the Pochhammer symbol (see Section 3.1 for its definition):
Sy, is the generalised Stirling number (see Section 3.3). Figure 3.4 shows how
the segment level topic distributions can be marginalised out in a recursive way
to yield Equation 6.2.

Finally. integrate out the document topic distributions g, , and the topic-word
matrix ®, as is usually done for collapsed Gibbs sampling in topic models. The

joint distribution of zy.;, wy.p. t1; ., 18

p(zr,wig, t | o, v.ar. big)

1 b 4
LA H B(‘t‘(‘t/\' (a aF t,'.l) H ((),‘|(1,')T/_J ﬁ 911,4.,{%—1:‘_&1.,‘.
Betay (o) ( s

P bi)‘\'l-,l+T'-_7‘H fh=il

B(‘T?l\\'(‘Y+ML-) -
6.3
H Betay () (6:3)

6.4.2 The Collapsed Gibbs sampler

In each cvcle of the Gibbs sampling algorithm. a subset of variables are sampled
from their conditional distributions with values of all the other variables given. In
SeqLDA., distributions that we need to sample from are the posterior distributions
of topics (2), and table counts (t*), given a collection of documents. Since the full
joint posterior distribution is intractable and difficult to sample from, in each cycle
of Gibbs sampling we will sample respectively from two conditional distributions:
1) the conditional distribution of topic assignment (2;;,) of a single word (w; ;)
given topic assignments for all the other words and all the table counts; 2) the
conditional distribution of table count (¢; ;) of the current topic given all the
other table counts and all the topic assignments. In particular, the sampling
strategy adopted here is CMGS discussed in Section 3.3. Notice that sampling
table counts from the latter can be taken as a stochastic process of rearranging
the seating plan of a Chinese restaurant in the CRP.

In SeqLDA. documents are indexed by i, segments of each document are in-
dexed by j according to their original layout, and words are indexed by [. Thus,
with documents indexed by the above method. we can readily yield a Gibbs sam-
pling algorithm for SeqLDA: for each word., the algorithm computes the probabil-
ity of assigning the current word to topics from the first conditional distribution,
while topic assignments of all the other words and table counts are fixed. Then

the current word would be assigned to a sampled topic, and this assignment will
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Considering the procedure of sampling a new topic for a word w; ;. we need to
remove the current topic (referred to as old topic) from the statistics. Assume the

value of old topic 2, is k., the number of words assigned to & in the gith

segient
of document i, n; ;. should decrease by one: then recursively check the table
count ¢7,, for 1 < 4" < j according to the above constraints. and remove one
if needed to satisfy the constraints, this check will proceed until somewhere the
constraints hold; and finally assign the smallest j to u; , where the first constraint
holds. Similarly, the same process should be done when assigning the current word
to a new topic. It is easy to prove, by recursion, that no 7, goes from zero to
non-zero or vice versa unless an n; j; does, so we only need to consider the case
where n; ;. 4+t .1, > 0. Moreover, the zero ¢, forms a complete suffix of the
list of segments, so fi.j_,‘, = 0 if and only if u;; < j < J; for some u; j.

Now. beginning with the joint distribution, Equation (6.3), using the chain
rule, and taking into account all cases, we can obtain the final full conditional

distribution

¥ = e iy — i3, *
p(ziju = k|20 wir g, tiy 1., @ @, big)

p(Zir1 Wrrgs iy | o, e, bir)

23,950

p(z i wir bl | e anr br)
with three different cases according to the value of u; ;. as follows.
When wu;;, = 1, which means all the table counts t7 for 1 < j' < J; are zero,
p(zijy = k| 21005 wirs, thg 1., @, a1, bur) (6.4)
(('1;,. + f?’.l_,\,) (b +a;T; ) ﬂ ( b; + a;T; j > Ywi ;0 T A\fk.u',_,,./
,{.\':1 (e + 171 4) bi + Niji—1 + Tiy Z},‘,':J(”;u-‘{‘jfk.u-)

When 1 < w;, < j, which means all the table counts #7; , for u;; < P

are zero, the conditional probability is

1(-:11'—I‘|Z111/wllllt|11/aall bi)
,'”l.ul_k.fl.l.'+]

J 2 3 [
1 H bi + aiTi ) G 1% Vg T Miws s (6.5)
= N _ Vil =1k W o 7 ’ N
= bi + A\l",l—l - T"‘], 'Sff T Zu':l( Y T M)

When j < w;;, which means the current table count t7,, > 0 (no recursive

check). it is simplified to

[(«,;/—HZ”]/w]/llt”;/aal/bli)

I"’<.Ivl"+l+[/./+l.’.‘
5/; i Yoty p0 T A\];‘,‘,,.’_l‘, (6.6)
0 L L 5.0
Gkt W ~
b,, i st Z,,,:|( Tw S ‘\[/\'.u‘)

3,5,k 8
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Algorithm 5 Collapsed Gibbs sampling algorithm for SeqLDA

Require: a. b, a. v, K, Corpus, MaxIteration

Ensure: topic assignments for all words and all table counts

1. Topic assignment initialisation: randomly initialise the topic assignment for
all words.

2. Table count initialisation: randomly initialise all tiip 8t 0= i < Mgk +
" A 4
i,j+1k

3. Compute statistics listed in Table 6.2

4. for iter < 1 to MaxIteration do

5. foreach document ¢ do

6. foreach segment j in i. according to the original layout do
7. foreach word w;;; in j do
8. Exclude w; ;. and update the statistics with current topic =

removed

9. Recursively check all table counts, ¢, ;. where 1 < j" < j, to make
sure 0 < 75 0 < Ny + f}”\,@,.k, holds:

10. Look for the smallest 1 < j" < j, s.t. ¢, = 0, and assign it to
Ui k'

Kl Sample new topic k for w;;; using Equations (6.4), (6.5) or (6.6)

depending on the value of u;,
12. Update the statistics with the new topic, and also update the value

of u; . if needed

13. Remove the current table count ¢}, from the statistics

14. Sample new table count ¢;; ; for the new topic k using Equation (6.7)
15 Update the statistics with the new table count

16. end for

17. end for

18. Update o by Newton-Raphson method

19. Sample b; with adaptive rejection sampling

20. end for

21. end for
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Figure 6.3: Perplexity comparison on the Pat-1000 dataset.

Table 6.4: P-values for paired t-test for results in Figure 6.3(a)

Pat-1000
SeqLDA alpha | SeqLDA_b SeqLDA _alpha_b
SeqLDA 2.2¢-1 2.8e-1 1.3e-2

Table 6.5: P-values for paired t-test for results in F igure 6.3(c)

Pat-1000
SeqLDA SeqLDA_D SeqLDA_P
LDA_D 7.5¢e-4 3.3e-4 3.2¢-5
LDA_P 3.0e-3 1.9e-2 3.6e-3
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Figure 6.4: Topic alignment by confusion matrix

ment. The approach I adopt is to start the SeqLDA’s Gibbs sampling with the
topic assignments learnt from LDA. Figure 6.4(a) and Figure 6.4(b) show the con-
fusion matrices between the topic distributions generated by SeqLDA and LDA
with Hellinger Distance. where SeqLDA topics run along the X-axis. Most topics
are well aligned (with blue on the diagonal and vellow off diagonal). especially
those for “Moby Dick™. For “The Prince”. the major confusion is with topic-0
and 9 vielding some blueish off diagonal. Table 6.6 shows some topic examples
learnt from “The Prince”.

After aligning the topics. I plot the topic distributions (i.¢.. subtopics) as a
function of chapter to show how each topic evolves, as shown in Figure 6.5 and
Figure 6.6 respectively. Inmmediately. we can see that the topic evolving patterns
over chapters learnt by SeqLDA are much clearer that those learnt by LDA. For
example. compare the subfigures in these two figures, it is a bit hard to find
the topic evolution patterns in Figure 6.5(b) learnt by LDA: in contrast. we can
find the patterns in Figure 6.6(b). for example, topic-7. which is about men on
board ship generally. and topic-12, which is about the speech of old (“thou.”
sthee,” “ave.” “lad”) co-occur together from chapters 15 to 40 and again around
chapters 65-70, which is coherent with the book.

Moreover, Figure 6.7(a) and Figure 6.7(b) depict the Hellinger distances
(also as a function of chapters) between the topic distributions of two consec-
utive chapters to measure how smoothly topics evolve through the books. Obvi-
ously. the topic evolution learnt by SeqLDA is much better than that learnt by

LDA. SeqLDA always vields smaller Hellinger distances and smaller variance of
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Table 6.6: Typical topics learnt from “The Prince”. Top 30 words are listed as

examples.

topic-0 | servant servants pandolfo good opinion cares honours
LDA recognise honest comprehends venafro trust attention
fails praise judgment honouring form thinking correct
error clever choosing rank disposed prime useless Sinea
faithfull study

topic-9 | truth emperor flatterers opinions counsels wisdom con-
tempt advice listen preserved bold counsel resolutions
speaking maximilain patient unite born deceived case
affairs short anger prove receive support steadfast guard-

ing discriminating inferred

topic-0 | servant flatterers pandolfo opinions truth good hones
SedLDA question emperor counsels form cares opinion servants
S s wisdom comprehends enable interests honours contempt
fails venafro preserved maximilain choosing advanta-

geous listen thinking capable recognise

topic-9 | support cardinals labours fortify walls temporal fortified
courageous pontificate spirits resources damage town
potentates character barons burnt ecclesiastical princi-
palities defence year firing hot attack pursuit loss showed

enemy naturally

topic-15 | people nobles principality favour government times hos-
tile ways oppressed enemies secure give messer friendly
rule security courage authority satisfy arises fail rome

receive finds adversity civil builds aid expect cities

topic-16 | prince men great good state princes man things make
time fear considered subject found long wise army peo-

ple affaires defend whilst actions life fortune difficulty

present mind faithful examples roman
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based models. SeqLDA. as an integrated model, detects the rise and fall of topics
within each individual document by putting the Markov assumption on the topic
distributions.

I have also developed for SeqLDA an efficient collapsed Gibbs sampling algo-
rithm based on the CMGS for the HPDP (Equation 3.6). Instead of sampling for
the full customer seating arrangement., this algorithi uses the table multiplicities
to sum out the exact customer partitions in the restaurants. In this way, the real
valued parameter of the PDP can easily be integrated out. Having observed that
the PDP is sensitive to the concentration parameters (i.e.. b), I introduced an
adaptive rejection sampling method to optimise b. Besides the advantage over
LDA in terms of improved perplexity, the ability of SeqLDA to discover more co-
herent sequential topic structure (i.e., how topics evolves among segments within
a document ) has been demonstrated in the experiments. The experimental results
also indicate that the document structure can aid in the statistical text analysis,
and structure-aware topic modelling approaches provide a solution going beyond
the “bag-of-words™ assumption.

There are various ways to extend SeqLDA which I hope to explore in the
future. The model could be applied to conduct document summarisation and text
seomentation, where sequential structures could play an important role. The two
parameters a and b in the PDP can be optimised dynamically for each segment
in order to handle sizeable topic drift among segments i.e.. where the correlations

between two successive segments are not very strong.
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Chapter 7

Adaptive Topic Model

In this chapter. I present another structured topic model, called an adaptive topic
model (AdaTM). based on the compound Poisson-Dirichlet process (CPDP) dis-
cussed in Section 2.4. This new model integrates STM (in Chapter 5) and Se-
qLDA (in Chapter 6) to incorporate the full document structure, so that two
kinds of subject structures (i.e., the latent hierarchical structure and the sequen-
tial structure) buried in the high levels of document structures can be modelled
simultaneously. It is evaluated on five sets of U.S. patents with different Inter-
national Patent Classification (IPC) codes and two books. Experimental results
show that with topic adaptation, AdaTM can outperform STM. SeqLDA and
LDA in terms of per-word predicting likelihood. and it is able to uncover clear
topic evolution structure in the books. like SeqLDA.

This chapter is organised as follows. Section 7.1 gives the motivation of the
new model. Section 7.2 elaborates the model in detail, then the blocked Gibbs
sampling algorithm based on BTIGS is developed in Section 7.3. The experimental

results are reported in Section 7.4. Section 7.5 concludes this chapter.

7.1 Introduction

In Chapters 5 and 6, I developed two structured topic models, z.e.. STM and Se-
qLDA. that explore the hierarchical document structure and the sequential docu-
ment structure respectively. The former maps the hierarchical document structure
to a document topic hierarchy by using the PDP (see Figure 5.1): and the latter
deals with the underlying sequential topic dependencies (see Figure 6.1) conveyed
by the segment sequence (i.e., the order of segments in the document layout) by

extending the HPDP with a multi-level hierarchy. Both models have better pre-
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Figure 7.2: Adaptive topic model. g is the document topic distribution for the
document subject. vy, vy, ..., v, are the segment topic distributions for the

segment subtopics. p is a set of the mixture weights associated with segments.

adaptation. Clearly, recursively drawing segment topic distribution with a CPDP
forms a simple DAG structure over topic vectors. The graphical representation of
AdaTM is shown in Figure 7.2.

The complete probability construction of AdaTM is:

¢,. ~ Dirichlety (7) for each &
p; ~ Dirichletx () for each i
pi; ~ Beta(Ag, Ar) for each 1 < j < J;
Vg~ PYP (p; 0 -1 +(1 — pij) it 0, 0) for each 1 < j < J;
% 50 ~ Discreteg (v ;) for each 7. j, 1
w; 1 ~ Discretey <¢::.;./> for each i. j.1

Here, for notational convenience, let v;, = ;. Like in STM and SeqLDA, 1
have assumed the dimensionality of the Dirichlet distribution (z.e.. the number
of topics) is known and fixed, and word probabilities are parameterised with

a K x W matrix ®. The complete-data likelihood can be read directly from
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Figure 3.11 using distributions given in the above probability model, 2.e¢.,

1'(“1;/- Viga:Js 210,00, Wi 1.0 ’ a,b, o, ®. \g. A\r)

I 7
= H pp; | o) H (1’(/),’._,‘ | X, Ar)  p(vig | By Vi.j—l-/)i.j-“ﬂ
= =1 v; j~CPDP(pi j¥45—1+(1pi,5 J15,0:0)
Li.;
Hl)(:i.ij.l \vij)p(wigi | ., ,, )) (7.1)
i

7.3 Gibbs Sampling via BTIGS

For the posterior inference, I elaborate a blocked Gibbs sampling algorithm based
on the BTIGS (see Section 3.4) to do approximated inference. Table 7.1 lists
all the statistics needed in the algorithm. Notice that for easy understanding.
terminologies in the CRP will be used. i.c., customers, dishes and restaurants,
which correspond to words, topics and segments respectively. The basic theories
of the CRP for the PDP and the CPDP are discussed in Chapters 2 and 3. It
is worth reminding ourselves that tables in a child restaurant are sent as proxy

customers to its parent restaurants, see Figure 3.9.

7.3.1 Model Likelihood

To adapt the blocked table indictor Gibbs sampling algorithm for AdaTM, we
first compute the marginal distribution of the observations wy.; 1.5 (words), the
topic assignments z.7,1.; and the table indicators w;.; 1.;. Specifically. the Dirich-
let integral is used to integrate out the document topic distributions gy, and the
topic-by-words matrix @, and the joint posterior distribution computed in Equa-
tion (3.18) is used to recursively marginalise out the segment topic distributions
vi.g1.y. With these variables marginalised out, we derive the following marginal

distribution

Pz Wi Wi | oy, a, b, As, Ar)

Beta (e + lel/:l 813) 1 (bla)r, ,+s
Betay (o) H <B("ra (‘Si-./ Ao dis LAl

(D) 5+05 01

I
.::\

i=1 j=1
K —1 K
H (/u.‘,‘,/.r S 11A,1+|<A»> qu,,.,.:.+/,'_,+,‘;.,> H Betay (v + My) (7.9)
* A = +s7 . .a s (.2
k=1 g T Sign) i, el Betaw ()

where Betay () is a K dimensional beta function that normalises the Dirich-

let: (x)y is given by (x|1)n, and (x|y)x denotes the Pochhammer symbol (see
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o 41 5 (2 80 % YN S5 y 3 D) . 1 . o ¢ T
Equations (3.2)); S}, is a generalised Stirling number (see Section 3.3). Note

the following constraints apply:

Eon T '“‘T._,‘.L- < gkt f,ﬂj‘,-H_A.- (7-3)

f;:.j,k + .‘s.‘;-k.‘]-_l‘. =) if and only if njx +1; 11, =0. (7.4)

For convenience, t; ; 11, = 0 and t; ;. = 0. The reason for setting #; |, to zero is
that the topic distribution of the first segment of each document is always drawn
from a PDP with base distribution g, (i.e., the document topic distribution), as
shown in Figure 7.2.

As discussed in Section 3.4, table indicators are not required to be recorded,
instead, randomly sampled in Gibbs sampling iterations; and all the statistics
needed are the same as those in the CMGS. The table indicators can be used to
reconstruct the table multiplicities, and vice versa. See Chapter 3 for detailed dis-
cussions. Furthermore, the table indicator u; j; for word w; ;; has two components

in AdaTM. It is defined specifically as

W = (s wg) st € [=1, 0; 1] and we € [1, -+, 4],

Table 7.1: List of statistics used in AdaTM

Statistic. Description.

M ks the total number of words in document 7 with dictionary index

w and being assigned to topic k.

M M; ;... totalled over documents i, i.e., Y . M; k.

M, vector of W values M.,

Wit topic total in document i and segment j for topic k, i.e..
Nijk = Z,’;"/ 1., =& It counts customers arriving by them-
selves in the CRP representation.

N topic total sum in document ¢ and segment j, i.c.. ZZ_":I s e

o table count in the CPR for document i and paragraph j. for
topic k that is inherited back to paragraph j — 1 and p, ;.

57 ik table count in the CPR for document i and paragraph j. for
topic k that is inherited back to the document and p;.

Iy total table count in the CRP for document i and segment j.

s total table count in the CRP for document ¢ and segment j.

t;; table count vector, i.e., (t7;,...,t]; ) for segment j.

8} ; table count vector, i.e., (8, ..., 5] j jc) for segment j.
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the constraint check in restaurant J" =1 (i.e.. the parent restaurant of j'),
because the table removed from ti 14 18 @ proxy customer in the parent

restaurant.

2. It my g 30 - i > iyt ti s 1t is a bit more complex than the above

case when they are equal. We have to consider all the following three cases:

(a) If sj 4 +1t; 1w > L atable could either be removed or not. It depends
on the value of u; ;; sampled according to Equations (7.5), (7.6) and
(7.7). If a table was sampled to be removed. uy will be set to j'. and
up will be set to either —1 or 1. If w; is 1, which means the table will
be removed from ti jr s then we need to recursively do the check at

the parent restaurant j' — 1.

(b) If s} ;s po+17 ;14 = 1. a table must not be removed. This is because there
are other customers (i.e., words) sitting at that table and sharing the
dish (7.e.. a topic) with w; ji. Although the table was contributed by
Wi ji, 1t cannot be removed. The recursive constraint check can be

terminated.

(c) It t; v =0, pluy = 1|up =7, i j1 = k') = 0. The customer does not
contribute a table count to t; o - We do not need to recursively check

constraints at the parent restaurant j" — 1.

It is clear that, if u; = 1, the constraint check should be done recursively towards
the first segment indexed by 1 until u; changes to 0. Algorithm 6 shows how to
sample the table indicators to remove a topic. It is a concrete example of the
table indicator sampling algorithm for the CPDP embedded in a DAG structure.

as introduced in Section 3.3.

7.3.3 Sampling a New Topic

Now consider a new topic k is sampled for w; ;. denoted by Zijq4 = k. In order

- . . 2 . . 0 , .
to satisfy the constraints (7.3) and (7.4), for each node j' (1 < j* < j). we have
to do the recursive constraint check as done in removing a topic. The following

cases are considered: similar to removing a topic, let j start from j to 1,

il Jh gk +1; iy = 0, which means .s'f.‘,,.k+f,‘-‘_j,_k = 0, adding a customer eat-
ing the k-th dish means a new table must be created. The new table can be

either contributed to S; jrp Or 175, which is according to Equation (7.9). If



136 CHAPTER 7. ADAPTIVE TOPIC MODEL

Algorithm 6 Sample to remove a word w; j; in AdaTM

1. initialise u; ;; with u; =0, up = j
2. for j/=jto1ldo

3. T =50+t

4. N =mn; 5+ b 1k

5 if T=1& N >T then

6. return u;j,

7. else

S. sample v according to Equations (7.5), (7.6) and (7.7);
9. if «}, =0 then

10. return wu; j;

1. else

12. if u) = —1 then

13, uy =—1, ug =j'
14. return wu; j,

15, else

16. w1 =1, @y = 3"
17. end if

18. end if

19. end if

20. end for

21. if u; = 1 then

22, Decrement 7, , where uy < 5" < j

23. else

24. if u; = —1 then

25; Decrement s7, ;. and tf i where up < j' < j
26. end if

27. end if

28. Decrement n; ;. and update other related statistics
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Algorithm 7 Sample a new topic for w; ;u in AdaTM

I. for k=1to i do

2. p(zije = k) =0;

3 Find the least integer u', otherwise v’ = —1;

4. if v’ = —1 then

5 p(zig1 = k) += p(2i41 = k,uy = 0,uy = j) with formula (7.8);

6. end if

7. for j/ =1 to j do

8. if i/ <u & j' > 1 then

9. P(ziji = k) += p(zij1 = k,us = 1,up = j') with formula (7.9);
10 end if

11. P(ziji = k) += plzij0 = k,uy = —1,us = j') with formula (7.10);
12 end for

13. end for

14. sample a topic k" according to the computed probabilities p(z; ;; = k), 1 <

[ TG

15. sample w; ;; according the computed probabilities, conditioned on z; ;; = k'
16. if u; = —1 then

17. increase s; , 1. and all t; j» o for uy < j” < j:

18. else

19. if u; =1 then

20. increase t; jo v for uy < j" < j;
21. end if
22. end if
23, Wiye = Nigp +1;

it is sampled to contribute the table to ¢}, ;. a recursive constraint check
is needed in the parent restaurant j° — 1. since this new table will be sent

as a proxy customer to the parent restaurant.

2. lng e+t i1 >0, adding a customer may or may not increase the table
count (either t7 ., or st ix) by one. It will depend on the value of w;
sampled according to Equations (7.8). (7.9) and (7.10). Similar to the first
case, if £, is sampled. we need to do the recursive check up to the parent

restaurant j' — 1.

As a consequence, adding a customer w;;; to the current restaurant with

ziju = k could create a new table in each restaurant j for 1 < j* < j. However,
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to guarantee the table is created recursively, if n; g + 17 ., = 0 and t] ;. is
sampled to increase, we must find the least integer «’ so that n; j . +t i =0

for v/ < j' < j. All nodes between u’ (exclusive) and j (inclusive) should only

consider two options, u; = —1 and u; = 0. because a recursion is needed if
u; = 1. Moreover, the special case is when j° = ', u; now can be chosen to

be 1. After considering all the cases discussed above, we can derive the joint
conditional probabilities of a topic assignment z; ;; and the corresponding table

indicator u; j; as follows.

plzige = kw1 =0, up=j) x (7.8)
Wi gkl 5aq il
¥ * K " ‘ e i)
1 Wik + 8 1+ 1 — (&0 T Siin) Ot xtst
N - o * M gkt -
b+ Nij+Tijn Nk + fi..;‘+l.1.> +1 G SR G E LR
,i.j.l"_'_'gln/.l:'u
A;u',.‘,_] + A[l\‘.u‘,ﬁ,./
Z“.(A;u' e A-[A‘.u‘)
o/ -
plzijgi = k,ur =1, ug=3") (7.9)
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Algorithm 7 shows how to sample to add a new topic based on Equations (7.8).

(7.9) and (7.10). The implementation is quite easy and straightforward.
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7.3.4 Estimating Topic/Word Distributions

From statistics obtained after the burn-in of the Markov chain, we can estimate
document topic distributions . segment topic distributions v, and topic-word
distributions ¢. Like STM and SeqLDA. they can be approximated from the

following posterior expected values via sampling:

B
ay + Z.,:l Sisk

K J; *
k=1 (”A' + Z_;‘:I '“i._j.k)

(7.11)
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7.4 Experimental Results

As done in experiments in Chapters 5 and 6, I implemented AdaTM in C, and
ran it on a desktop with Intel Core i5 CPU (2.8GHzx4), although the code is not

multi-threaded. In the following sets of experiments, there are three objectives:
1. To explore different setting of hyper-parameters.

2. To compare AdaTM with the earlier STM, SeqLDA and the standard LDA
(on either the document level or the segment level) in terms of per-word

predictive likelihood.
3. To view the results in detail on a number of characteristic problems.

The first objective is to study how hyper-parameters can affect the performance
of AdaTM: the second is to show the superiority of AdaTM over the other three
models with respect to document modelling accuracy; The last is to demonstrate
that AdaTM can be a promising tool for structured document analysis, which
could be useful for other ad-hoc document analysis techniques, such as structured

information retrieval. document summarisation, and topical segmentation.
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Table 7.2: Datasets
#does | #segs #words | vocab
Pat-A 500 | 51.748 | 2.146.464 | 16.573
Pat-B 397 9.123 417.631 7.063
Pat-G 500 | 11.938 655.694 6.844
Pat-H 500 | 11.662 562.439 | 10.114
Pat-F 140 3.181 166.091 4.674
{* - ’ 1250
12‘”%'. . % - + Pat-B k. a e, L Movoopuean Wosoanss” >
Sy o OPat-F 1100 = + Pat-B
3 1100}"" - <Pa-G % * Pat-G
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(a) ixa =0 (b) fix b = 10

Figure 7.3: Analysis of parameters of Poisson-Dirichlet process. (a) shows how

perplexity changes with b; (b) shows how it changes with a.
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Figure 7.4: Analysis of the two parameters for Beta distribution. (a) shows how

perplexity changes with Ag: (b) shows how it changes with Ap.
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Figure 7.5: Perplexity comparisons.
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(a) LDA versus AdaTM for chapters (b) LDA versus AdaTM for paragraphs

Figure 7.6: Topic alignment analysis on “The Prince”.

7.4.4 Topic Evolution Comparisons

All experiments reported in this section are run with 20 topics, the upper limit for
easy visualisation. and without optimising any parameters. The Dirichlet Priors
are fixed as a; = 0.1 and v, = 0.01. For AdaTM. SeqLDA. and STM, a = 0.0
and b = 100 for “The Prince” and b = 200 for “Moby Dick”. These settings
have proven robust in experiments. To align the topics so visualisations match,
the sequential models are initialised using an LDA model built at the chapter
level. Moreover, all the models are run at both the chapter and the paragraph
level. With the common initialisation, both paragraph level and chapter level
models can be aligned. Figure 7.6 shows the alignment of topics between the ini-
tialising model (LDA on chapters) and AdaTM run on chapters/paragraphs. Each
point in the matrix gives the Hellinger distance between the corresponding topics,
color coded. The plots for the other models, chapters or paragraphs, are similar
so plots like Figure 7.7 can be meaningfully compared.

To visualise topic evolution, I use a plot with one colour per topic displayed
over the sequence, as done in Chapter 6. Figures 7.7(a) and 7.7(b) show these for
LDA run on chapters/paragraphs of “The Prince”. The proportion of 20 topics
is the Y-axis. spread across the unit interval. The chapters/paragraphs run along
the X-axis, so the topic evolution is clearly displayed. One can see there is no
clear sequential structure in these derived by LDA, especially in paragraphs, and
similar plots result from “Moby Dick” for LDA.

Figure 7.7 then shows the corresponding evolution plots for AdaTM and Se-
qLDA on chapters and paragraphs. The contrast of these with LDA is stark. The
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(e) SeqLDA on chapters (f) SeqLDA on paragraphs

Figure 7.7: Topic Evolution on “The Prince”.
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(b) STM on Chapters
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Figure 7.8: 1()|)|( Evolution on “Moby Dick”.
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Figure 7.9: Topic evolution analysis based on Hellinger Distance









Chapter 8
Conclusions and Future Work

Topic models. as promising unsupervised learning approaches. have gained signif-
icant momentum recently in machine learning, data mining and natural language
processing communities. They have gained wide applications in. for example,
information retrieval, sentiment analysis. and text analysis. Related techniques
such as NMF are also widely used in images analysis for codebook/dictionary
optimisation. In particular, the standard LDA has been extended by relaxing its
underlying assumptions to incorporate beyond the “bag-of-words™ information.
such as supervised information (e.g., class labels) or meta-data (e.g., authors or
citations).

Despite various topic models that have been proposed in the literature, the
field of topic modelling still needs to be further developed. One promising area in
topic modelling that has been introduced in this thesis is to directly consider the
document structure ranging from semantically high-level segments (e.g.. chapters
or sections ) to low-level segments (e.g., sentences or words). The layout of these
segnients in a document is usually represented jointly with the document subject
structure. Exploring the document structure can be very useful in exploratory
and predictive text analytics.

This thesis presented a family of structured topic models by taking advantage
of non-parametric Bayesian methods, z.e.. the two-parameter Poisson-Dirichlet
process (PDP). These models take into consideration document structure directly
by looking at the original layout of each document as a guide to structure. Three
Bavesian topic models were introduced, each capturing different types of docu-
ment structures: the hierarchical document structure, the sequential document
structure, and a mixture of the two. The experimental results from applying the

three models to several real-world document collections have demonstrated that
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