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Abstract 

The proliferation of large electronic document archives recjuires new technicjues for 

automatically analysing large collections, which has posed several new and inter-

esting research challenges. Toi)ic modelling, as a promising statistical technique, 

has gained significant momentum in recent years in information retrieval, senti-

ment analysis, images processing, etc. Besides existing topic models, the field of 

toi)ic modelling still ne(>ds to l)e fur ther explored using more powerful tools. One 

])otentially usehil area is to directly consider the document s t ructure ranging 

from seniantically high-level segments {e.g., chapters, sections, or paragraphs) to 

low-level segments [e.g., sentences or words) in topic modelling. 

This thesis introduces a family of s tructured topic models for statistically mod-

elling text documents together with their intrinsic docmneut structures. These 

models take advantage of non-parametric Bayesian techni(iues {e.g., the two-

parameter Poisson-Dirichlet process (PDF)) and Markov chain Monte Carlo meth-

ods. Two preliminary contril)utions of this thesis are 

1. The Compound Poisson-Dirichlet process (CPDP) : it is an extension of the 

P D P that can be a])phed to nmltiple input distrilMitions. 

2. Two Gibhs sampling algorithms for the P D P in a finite s ta te space: these 

two samplers are based on the Chinese restaurant process tha t provides 

an elegant analogy of incremental sampling for tlie PDP. The first, a two-

stage Gibbs sani])ler. arises from a table nniltiphcity representation for the 

PDP. The second is built on to]) of a table indicator rei)resentation. In a sim-

ply controlled environment of multinomial sampling, the two new samplers 

have fast convergence speed. 

These sup])ort the major contribution of this thesis, which is a set of s t ructured 
topic models: 

S e g m e n t e d Topic Mociel ( S T M ) which models a simi)le document s t ructure 

with a fom-level hierarchy by niapjMng the document layout to a hierarchi-



cal subject structure. It performs significantly l)ctter tlian latent Diriclilet 
allocation and other segmented models at predicting unseen words. 

Sequential Latent Diriclilet Allocation (SeqLDA) which is motivated by 
topical correlations among adjacent segments {i.e., the sequential docu-
ment structure). This new model uses the PDP and a simi)le hrst-order 
Markov chain to link a set of LDAs together. It i)rovides a novel approach 
for exploring the toi)ic evolution within each indi\-idual document. 

Adaptive Topic Model (AdaTM) which embeds the CPDP in a simple di-
rected acyclic graph to jointly model both hierarchical and sequential doc-
ument structures. This new model demonstrates in terms of per-word pre-
dictive accuracy and topic distril^ution j^rofile analysis that it is Ijenehcial 
to consider both forms of structm-e in topic modelling. 
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Chapter 1 

Introduction 

111 recent years, with the fast development of the web and the advent of \'ari-

ous digit isation techniques {e.g., o])tical character recognition and speech recog-

nition). docnnieiits contiiine to l)e stored on the Internet in the form of web-

pages. l)logs. twitters, news papers, e-books, scientific articles, etc. T h e prolifer-

ation of large electronic docnnient archives requires new techniques for a u t o m a t -

ically organising, searching, indexing, and browsing large collections, which has 

posed several new and interesting challenges to researchers in both the machiiie 

learning and the d a t a mining communities. In particular, there is an increasing 

need of a u t o m a t i c methods to seniantically \'isuahse and analyse these electronic 

documents . T h i s thesis presents new prol)abilistic generative m e t h o d s based on 

non-parametric Bayesian techniciues {e.g., the Dirichlet processes and the two-

parameter Poisson-Dirichlet i)rocesses) for e^fecti^'ely modell ing text d o c u m e n t s 

by considering their intrinsic document structure. 

D o c u m e n t s not only contain meaningful text , but also exhibit a natural struc-

ture. which is part of the motivat ion of the development of S G M L , the precursor 

to H T M L . For example , a book has chapters which themselves contain sections; 

a section is further composed of paragraphs: a blog or a twitter ])age contains 

a seciuence of comments and links to related blogs/twitters: a scientific article 

contains aj jpendices and references to related work. Clearly, a complete rei)re-

sentaticm of a document structure ranges from the high-level conii)onents {e.g., 

chapters or sections) to the low-level components {e.g., sentences or words). T h e s e 

components (referred to as segments thereafter) provide rich contextual infornia-

tion for their subcomponents . T h e layout of the c()mi)onents is a lways represented 

in various forms joint ly with the (k)cunient logical structure, i.e.. the latent sub-

ject structure. A l together , the segments form a document structure, which will be 
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scntcnce 

Introduction 

Topic sentences carr> tlie t l iemc/out l ine/arguinent 

topic 
scnteni-c 

topic 
sentence 

topic 
sentence 

Bodv 

Sum up your argurtienl/ 
information with reference 

to the essay question 

Conclusion 

Figure 1.1: An example document structure: an essay structure. 

considered in this thesis. It can be very beneficial to directly consider the docu-
ment structure in statistical document modelling. The structural information can 
be useful for indexing and retrieving the information contained in the document, 
for instance, for structured information retrieval and digital libraries. 

A well organised document structure can convey two kinds of information. 
First, the layout of segments {e.g., the chapter sequence in a story book or the 
paragraph sequence in an essay) in a document gives many clues about the sub-
ject structure of the document, which implies some semantic relationships among 
those segments. These clues can also help readers to navigate documents ac-
cording to the subject structures. Second, the text content itself can give rich 
information about the relationships and semantics of text. Analysing the text 
content and exploring the document structure can provide us information about, 
for example, how subjects are organised in a document and how they change over 
the structure. Consequently, modelling documents along with their structures is 
an interesting and i)0tentially important problem in exploratory and predictive 
text analytics. 

To further explain the document structure, 1 take as an example an essay 
structure shown in Figure 1.1. An easily accessible and understandable structure 
is very important for an essay. Generally, an essay should have a subject which 
indicates what the essay tfilks about; then paragraphs, basic structural units in 
an essay, are organised around the subject. Furthermore, each paragraph should 
have one or more subtopics, that are somehow linked together to make up the 
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essay subject. It means the subtopics are not isolated, but they can l)c more 
specific than the essay subject, and generahy l)e variants of it. The layout and 
progression of them can give us a meaningful essay structure. Indeed, the above 
consideration originates from how people normally organise ideas in their writing. 

As a consecjuence. a different challenge in automatic text analysis is the prob-
lem of understanding the document structure. The focus of this thesis is to sta-
tistically model the text content of documents together with their underlying 
document structures by taking advantage of l)oth topic modelling (Chapter 4) 
and non-parametric Bayesian methods (Chapters 2 and 3). In recent years, topic 
models and non-parametric Bayesian methods l^ecome increasingly ])rominent in 
machine learning. The former forms a family of models in which documents can 
be generated with simple probal:)ihstic generative processes. The latter provides 
a valuable suit of fiexil)le modelling techniciues. in which the prior and posterior 
distributions are general stochastic processes whose support is the space of all 
(hstrilnitions. 

1.1 Thesis Contribution 
The objective of this thesis is to address research challenges for structured text 
analysis in the context of hierarchical non-i)arametric Bayesian modelling. This 
leads to the development of a family of structured topic models. Most existing 
toi)ic models directly model documents by tokens with the ''hag-of-words" as-
sumption. They usually neglect the document structure. However, incorporating 
the document structure in topic modelling, we can derive a richer posterior topical 
structure that can fmtlier facilitate understanding and exploring each individual 
document. 

As discussed in the previous section, a document is usually conii)osed of a 
certain number of segments. The definition of segments can vary according to 
different tyi)es of documents. They can be chai)ters in a book, sections in a 
scientific article, and paragraphs in an essay. Although segments can be defined 
dift'erently, they are organised logically to form an entire document. The logical 
organisation is achieved through linkages between the document subject and the 
segment subtopics. In this thesis, the first set of contri])utions are models and 
algorithms I i)resent for modelling the following document structures: 

Hierarchical document structure In writing, people usually try to organise 
segments around the document subject according to subtopics discussed in 
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the segiiieiits. The segiiieiit sul^topics can l)e more specific than the subject, 
which means each segment could have its specificity on topics. In general, 
they can ]:)e taken as ^'ariants of the document subject. The organisation of 
segments in a document according to relations ])etween the document sul)-
ject and the segment sul^topics gives us an hierarchical representation of 
the document structm'e. One contribution of this thesis is a new Segmented 
Topic Model (STM, Chapter 5), which directly models the hierarchical doc-
ument structure by mapping it to a subject hierarchy that is specihc for each 
individual document. Modelling the hierarchical structure, STM has higher 
fidelity over existing techniques in terms of per-word ])redictive accuracy. 

Sequential document structure The segment seciuence in a document, or the 
layout of segments, also conveys a sequential document structure. The 
subtopics of segments are not only linked to the document subject, but also 
linked sequentially to their adjacent ones. ])ecause peo])le often try to make 
the flow of information among segments logical and smooth. Therefore, 
segments are not actually exchangeable in a sequential context. Another 
contril)ution of this thesis is a Sequential Latent Dirichlet Allocation model 
(SeqLDA, Chapter G), a novel variant of Latent Dirichlet Allocation (LDA) 
Blei et al., 2003], which makes use of a simple first-order Marko-v̂  chain to 

model the sequential structure exhibited by each document. It can effec-
tively discover and visualise patterns of topic evolution in each individual 
document. 

Mixture of hierarchical and sequential document structures It is known 
that a document can simultaneously exhibit both a hierarchical structure 
and a secjuential structure. The mixture of the two structures gives us a 
full document structure. Now. topic shifts from one part of the document 
to another can be allowed, like those in a novel. The contribution on to])ic 
modelling is therefore the integration of STM and SeqLDA. 1 call it an 
Adaptive Topic Model (AdaTM. Chapter 7), in which a sim])le Directed 
Acyclic Graph (DAG) is used to model both the hierarchical and the seciuen-
tial document structures. It can further explore how each segment adapts 
to])ics from either the prec;eding segment subtopic or the document subject, 
or even both. 

Moreover, to handle the above document structures, I use a non-parametric 
Bayesian method, called the two-])aranieter Poisson-Dirichlet process (PDF), 
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to model i)rol)al)ilisti(: (lepeiuleiicies l^etweeii (lociiinent subject and its segment 
suljtopics, and those among subtoi)ics. \\'itli respect to the PDP. the second set 
of contributions (Chapter 3) of this thesis inchides 

A Collapsed Multiplicity Gibbs Sampler (CMGS) The Chinese restaurant 
process provides an elegant analogy of incremental sampling for the PDP. In 
a Chinese restaurant metaphor for the PDP, customers arrive secjuentially, 
each of which chooses a dish by choosing a tal)le. In Gibbs sampling dy-
naniicallj' recording the number of customers sitting at each table could be 
problematic. I introduce a two-stage Gibbs sampling algorithm based on 
the table rmdtipUcity representation for the PDP [Teh, 2{)()Ga; Buntine and 
Hutter, 2010]. It has been successfully used in STM and SeqLDA. 

A Blocked Table Indicator Gibbs Sampler (BTIGS) This is joint work' 
with Changyou Chen and Wray Buntine [Chen et al., 2011]. In the Chinese 
restaurant metai)hor, if a customer does not choose to sit at an occupied 
tal)le to share a dish with other customers, a new ta])le will be created 
for this customer. Thus, in the new sampling algorithm, we introduce an 
auxiliary latent variable, called table indicator, to record those customers 
who have chosen an unoccupied table. I have adapted it for doing posterior 
inference over a DAG, see AdaTM (Chapter 7). 

Notice that algorithms used for tloing posterior inference for STM, SecjLDA 
and AdaTM are good enough to test those models based on exi)eriniental results 
in Chapter 3. It will be worth exploring the above algorithms along with other 
techni(iues [e.g., variational inference [Jordan et al., 1999; Blei and Jordan, 2005]) 
to find more efficient methods. 

The researches of this thesis have led to a set of published results as follows: 

1. Lan Du, Wray Buntine. and Huidong Jin. A segmented toi)ic model based 
on the two-i)arameter Poisson-Dirichlet ])rocess. Machine Learning 2010. 
Du et al., 20101) 

2. Lan Du. Wray Bmitine, and Huidong Jin. Se(iuential latent Dirichlet al-
location: Discover underlying topic structures within a document. In Pro-
ceedings of the 2010 IEEE International Conference on Data Mining. 2010 
Du et al., 201()a]; 

^Each author has pcjual contribution to tiiis wori< [Chen et al., 2011]. 
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3. Laii Du, W'lay Buiitiiie. Huidoiig J in, and Cliangyoii Chen. Secjnential latent 

Dirichlet allocation. Knowledge and Infonnatton Systems, 2012 [Dn et al., 

20121)]; 

4. Lan Du. ^^i•ay Buntine. Huidong Jin. Modelling Sequential Text with an 

Adaptive Topic Model. Proceedings of the 2012 Joint Conference on Em-

pirical Methods in Natural Language Processing and Computational Natural 

Language Learning, 2012 [Du et ah. 20r2a]: 

5. \\Tay Buntine, Lan Du, and Petteri Nurnii. Bayesian networks on Dirich-

let distril)uted vectors. In Proceedings of the Fifth European Workshop on 

Probabilistic Graphical Models (PGM-2010), 2010 [Buntine et al., 2010]: 

6. Changyou Chen, Lan Du. and Wray Buntine. Sampling for the Poisson-

Dirichlet j^rocess. In European Conference on Machine Learning and Prin-

ciples and Practice of Knowledge Discovery in Database. 2011 [Chen et al.. 

2011 . 

1.2 Thesis Overview 

Figure 1.2 illustrates the dependencies of sections in Chapters 2 to 3 and the 

subsequent chapters. The rest of the thesis is organised as follows. 

C h a p t e r 2: In this c:hai)ter. I cover the fundamentals of Dirichlet related non-

parametric Bayesian methods, which provide necessary background knowl-

edge for the development of models and algorithms in subseciuent chap-

ters. These include the Dirichlet distribution, the Dirichlet process, the 

Poisson-Dirichlet process, and the com})ound Poisson-Dirichlet process. In 

the first section, I review l^asic; definitions and i)roperties of the Dirichlet 

distribution. Subsequently, I disc uss the three processes in detail from three 

main aspects, i.e.. definition, two different ways of construction {i.e.. the 

stick-breaking construction and the Chinese restaurant process re])resenta-

tion). and hierarchical models. I put emphasis on the Chinese restaurant 

representation, because it forms the basis of several Gibbs sampling algo-

rithms that are developed in Chapter 3 and used in Chaj^ters 5 to 7. 

C h a p t e r 3: In this cha])ter. I introduce two new Gib]>s sampling algorithms 

for doing i)osterior inference for the PDP. One is based on the multiplicity 

representation [Bunt ine and Hutter. 2010 . the other is based on the ta(>le 
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Chapter 2 

^T 
Chapter^ 3\ 

The Dirichlet Non-parametric Family 

e Poisson-Dirichlet Process 

T t i e ^ m p o u n d Poisson-Dirichlet Process 

\\ 

Gibbs S a m ^ J i i ^ o r the PDPs 

CoUap|ed|M^tipUcity Gibbs Sampler 

Blocked Table indicator Gibbs Sampler 

3 . 6 ^ Gibb^ Sampling for the CPDP 

Probabilji^tic Topic Modelling 

V \ \\ \ 

^ Chapters ^gmentedyibpic M^d el 

T 

/ / 
/ / / / / / 

^ Chapters 'Sequential LÊ A Model 

T 
/ 

^ Chapter 7 Adaptive Topic Model 

Figure 1.2: Dependency d i ag ram of chapters and sections 

inrizcafor representat ion [Chen et al., 2011]. I compare the two sami^lers with 

Teh ' s s a m p h n g for seat ing arrangement samj^ler [Teh, 20()Ga] in a s imple 

controlled environment of mult inomial sampl ing. T h e experimental results 

show that the two new m e t h o d s converge much faster than Teh ' s sampler in 

a s imply controlled environment. Thereaf ter . I a lso develop Gil jhs sampl ing 

for the c o m p o u n d Poisson-Dirichlet process by presenting the joint posterior 

dis tr ibut ions . 

Chapter 4 : hi this chai)ter. I review probabi l i s t ic topic models , es])ecially L D A . I 

a l so d i scuss ap])l ications of topic model s in various domains , e.g., infor-

mat ion retrie\'al, text analys i s aufl computer vision. Finally, I cover some 

ty])ical extensions of L D A . 



8 CHAPTER 1. INTHODUCTION 

Chapter 5: In this chapter. I iiitiochice a new Segmented Topic Ah)(lel (STM), 
which incorporates a simple form of document structure, a document con-
sisting of muhiple l)ut exchangeal)le segments {e.g.. paragraphs and sen-
tences). It maps the layout of segments to a hierarchical subject struc-
tm-e. The PDP is used to construct the hierarchy-. An effective collapsed 
Gibbs sampling algorithm that samples from the posterior of the model is 
developed based on the CAIGS algorithm introduced in Chapter 3. I com-
pare the new model with the standard LDA and other segmented topic 
models on several docmnent collections. 

Chapter 6: In this chapter, I present a Secjuential latent Dirichlet Allocation 
model (SeciLDA), a novel extension of LDA. It is motivated by the under-
lying secjuential document structure, i.e., each segment in a docmnent is 
correlated to its antecedent and subseciuent segments via linkages among 
their topics. Indeed, it maps the se(iuential document structiu'e to a sequen-
tial subject structure, then enil)eds the PDP in a hrst-order Markov chain to 
model the se(iueutial topic dependencies. In such a way. we can exjilore how 
topics within a docmnent evoh^e over the document structure. For doing 
the posterior inference. I adapt the CMGS algorithm in a hierarchical con-
text. Besides experiments on perplexity coni])arison. I apply the sequential 
model to topic evolution analysis of several liooks. 

Chapter 7: In this chapter, I propose an Adaptive Tb])ic Model (AdaTM) that 
integrates the two models introduced in Chapters 5 and 6. It considers 
])oth hierarchical and secjuential document structures via a simple DAG 
structure. I extend the block table indicator Gibbs sampler introduced in 
Chapter 3 to do the posterior inference over the DAG. Experimental results 
indicate that AdaTM outperforms STM, SeqLDA and LDA in terms of 
perplexity, and is able to uncover clear sequential structru'es in books, such 
as Herman Melville's ' 'Moby Dick". 

Chapter 8 In this chapter, I sunnnarise the key contributions of this thesis and 
discuss possibilities for future research. 



Chapter 2 

Dirichlet Non-parametric Family 

Hierarchical Bayesiaii reasoning is fundamental and used throughout the general 
machine intelligence domain [e.g., text analysis and image processing) to model 
distributions over observed data. It provides a valuable suite of flexible mod-
elling approaches for high dimensional structured data analysis. Recently, non-
parametric methods have become increasingly prominent in the machine learning 
community. In non-parametric Bayesian methods, the prior and ])osterior distri-
butions are general stochastic processes [Hjort et al., 2()f()] whose support is a 
space of distril)utions. These stochastic i)rocesses allow Bayesian inference to be 
carried out in general infinite dimensional spaces, which can overcome the prob-
lem of over-/under-fitting of data encountered by parametric Bayesian methods. 

In this chapter, I will focus on the foundation of one of the most important 
families of non-parametric Bayesian methods, the Dirichlet non-parametric fam-
ily, which includes: 

• the Dirichlet distribution (DD): a conjugate i)rior for parameters of the 
multinomial distribution (Section 2.1), 

• the Dirichlet process (DP): a prol)al)ility distrilMition over distributions 

(Section 2.2), it extends the DD to other domains, 

• the two-parameter Poisson-Dirichlet process (PDP): a two-j^arameter gen-

eralisation of the DP (Section 2.3), 

• the compound Poisson-Dirichlet process (CPDP): an extension of the PDP 

that can be applied to multiple ini)ut distributions (Secticm 2.4). 
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2.1 Dirichlet Distribution 

The Dirichlet distribution [Ferguson, 1973; Antoniak, 1974; Setlmranian, 1994 

forms the first step toward understanding the D P / P D P models. It has l^een widely 

used in areas such as topic modelling and i)roljal)ilistic language models [Mackay 

and Peto, 1995; Steyvers and Griffiths. 2007; Frigyik et ah. 2010], where the 

Dirichlet distribution has been proven to be particularly useful in modelling word 

distributions. This section will describe the Dirichlet distribution and some of its 

properties. 

The Dirichlet distribution, a nmlti-parameter generalisation of the Beta dis-

tribution, defines a probability flistribution on a space of all finite probability 

vectors, i.e.. the sami)ling result from a Dirichlet distribution is a distribu-

tion on some discrete probability space. Formally, the Dirichlet distribution of 

order k is defined over a {k — l)-dimensi()nal probability simplex denoted by 

J , = {{O^.Oo, = 

De f i n i t i o n 2.1. {Dirichlet distnhation). Let a = [oi, Q2, . . . , a-A.) and Oj > 

0. for = 1 k. A random vector 0 G is said to l)e Dirichlet flistributed if 

its probability density fmiction with res])ect to Lehesgue measure is given by 

= A''?'"' I " ' 

and it is denoted as 0 ~ Dir(ct). Betak{a) is a /.-dimension Beta functi(m that 

normalises the Dirichlet, defined as 

r (EL, «,) 

The sum qq = Yl'i=\ serves as a i)recision j^arameter that measm^es the 

sharpness of 6. It measures how different we expect typical sanii)les 6 to be from 

the mean . . . , \Mien all the components of a are equal to 1, the 

Dirichlet distribution reduces to a uniform distribution over the sim])lex. While 

they are all greater than 1. the density is concentrated on somewhere in the 

interior of the simplex. Otherwise, if they are less than one, the density has sharp 

peaks ahnost at vertices of the sim])lex. The support of the Dirichlet distribution 

is the set of all normalised /i-dimeusional vectors whose components will be in an 

interval (0. 1]. It means the supi)ort does not include vertices or edges. 
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The Diriclilct (listril)uti()ii is reduced to the Beta (hstiibution when k = 2. I 
now (lescril)e some interesting properties of the Dirichlet (hstribntion. More de-
tailed discussions of the Dirichlet distribution can l)e found in, for example, [Fer-
guson, 1973; Antoniak. 1974; Sethuraman, 1994; Bernardo and Smith, 1994 . 

2.1,1 Properties of the Dirichlet 
In the general case, the mean vector, covarianc:e, marginal distribution and mode 
are given as follows. 

Property 2.1. (Mean, Variance, Covariance, marginal, mode). If 6 ~ Dir{ct) 

and the precision qq = Yli=i 

/, 

Cov[e,, Oj 

[Ou 1 - 0, 

Mode{0,, 0-2, 

VQ'o' Q'O' ' O o / 
Q',(ao - aj) 
q2(1 + Q'o) 

Q - 2 ( l + a o ) 
Dir{ai, Qo — Qj) 

— 1 Q 2 — 1 

^Q'o - A-" Oo - A-' 

Property 2.2. (Conjugacy) Dirichlet Distribution 0 

prior of the multinomml n | 0 ~ Multi(6). 

Q'o - k- J 

Dir{ot) is a conjugate 

Proof. Let a chscrete random vector n = ( « ] , /?2, . . . , »/,•) '̂ '̂itli = 
which is multinomial distributed in a A-dimensional s])ace with parameters 6 = 

{6], O2, . . . . Oi;)-, and 6 be Dirichlet distril)uted with parameters cx — [qi, ..., q^). 

Then, using Bayes rule, the posterior distriljution is 

p{0\n) oc p{n\e)p(0) 
/ 

oc 
A'! 

\ 

a llO-
i=l 

H]! n2! . . . t 

' \ / 

/ \ i=i 
^ r r 

Deta,{cx)l\ ' 

Hence, 6\n ^ D i r ( a + n ) • 
This Dirichlet-Muhinomial conjugate property is the key ingredient to conr-

pute the conditional posterior distribution in Dirichlet-Multinomial mixture mod-

els. It assists in the inii)lenientation of efhcient Markov Chain Monte Carlo 
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(MCMC) algoritlims. For exami)le, tlio? collapsed Gibbs sanipling algoritliins in 
topic models {e.g., Latent Dirichlet Allocation [GiifHths and Steyvcrs. 2004]) 
make use of Dmclilet-Multmoriiial Conjugacy to compute the conditional poste-
rior distri])utiou with some latent variables marginalised out, which makes the 
Gibl)s sampling collapsed, instead of sampling the whole latent space. Thereby, 
a simple aj^proximate inference algorithm can be obtained. The inipt)rtance (jf 
Dirichlet-Multinomial Conjugacy will be further observed in the develo])ment of 
structured toi^ic models in Chapters 5, 6 and 7. 

In addition to conjugacy, the Dirichlet distribution has a useful fractal-like 
property, named aggregation, that if i)arts of the sample space are aggregated 
together, the new partition of the space is still Dirichlet distributed [Ferguson. 
1973 . 

Property 2.3. (Aggregation) In general, if h-.m is a partition of {1. 2. A'} ,. 
and (.Xi. X2, x^) ~ Dir{ai, 0-2, ..., ak)- then 

( \ / / \ / \ 
Y^Xi, ...,'^Xi ^ Dir ^ftj, 

iei„r / \ie/i iei,n J 

'9 

2.1.2 Sampling from the Dirichlet Distribution 
The Dirichlet distribution can be constructed in three different ways via the 
Gamma distribution, the stick-breaking construction, and the Polya Urn scheme 
respectively. They provide concrete representations of how to generate samples 
from a Dirichlet distrilnition. 

Dirichlet Distribution through the Gamma Distribution 

Ferguson [1973] defined the Dirichlet (listril)ution in a slightly more general way by 
transforming Gannna-distril)uted random varial>les. Generating a Dirichlet distri-
bution from these Gamma random varial:»les has following steps: let z^.z-^ zî . 
be Gannna-distributed random variables, 

1. For i = 1.2..... k, draw - - ^ (q , , 1), where ai > 0. 

2. R)r i = 1,2, . . . ,A- . = ^ 
^-1 = 1 

3. Then. {0,. 62, ..., 0,) ~ D U - ( Q ' , , Q:,. . . . , A^.). 

It has been proven that the distribution generated with the ste])s above is 
always singular with respect to Lebesgue measure in A:-diniensional space since 
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Yl'i=i ~ 1 [Ferguson. 1973]. Following this construction, the i)roof of Proi)erty 
2.3 is straightforward l)y using the additive proi)erty of the Gannna (hstribution: 
if Zi ~ G{ai, 1) and Zj ~ G{c\j, 1), where i ^ j, and if Zj and Zj are independent, 
then Zi + Zj Q{ai + aj,l). 

Dirichlet Distr ibution through the Stick-breaking Construct ion 

The stick-breaking construction is a process of iteratively breaking off pieces of a 
stick of length one. Random variables drawn from a Dirichlet distribution can be 
sinnilated by lengths of the i)ieces broken off from the stitk in a random way, such 
that the lengths follow a Dirichlet distribution [Sethuraman, 1994; Ishwaran and 
James, 2001]. This uses the marginalisation property of the Dirichlet distribution, 
see Property 2.1. 

Let V'l, I2, .. ., \ \ be intermediate random variables drawn from a Beta dis-
tribution. i.e., \ ] ~ Beta ^Qj, a j ^ A Dirichlet distribution can be con-
structed via the stick-breaking construction with following ste])s: 

1. Draw V] ~ Beta ^Q] , Yl'j=2 " j ) ' = ^ The remaining piece has leng th 
1 - V l . 

2. For 2 < i < A--1, draw 1 • - Beta (q^, Ej=i+i . set 0, = 1 • n 5 = i ( l -

yj)-

3. The length of remaining piece n j = i ( l ~ ^ j) is Oî . 

Finally, the derived vector of random variables (Oi. O2, 
distributed with parameters (Q-j, 0-2, • •. , 

Oi.) is Dirichlet 

Dirichlet Distribution through the Urn Scheme 

The Dirichlet distribution can be constructed from the Urn model [Johnson and 
Kotz, 1977]. Blackwell and Macqueen [1973] have shown that the distribution of 
colors in an urn after n draws converges as tt oc to a Dirichlet distribution in 
a hnite space [i.e., the number of colors is finite). It is known as the Polya Urn 
scheme. 

To generate a Dirichlet distribution from the Polya Urn scheme with i)arame-
ters (a-i, Q'l . . . , Ok), we start with an urn with Qo = Yl'i of which q^ balls^ 
are of color i. 1 < i < k. At each stej), we draw a ball miiformly at random from 

'111 general, Q,; is not necessarily an integer, so we inigiit have a rational iiuniher of balls of 
each color in the nni initiallv. 
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the uni. and then ])lace it l)a(:k to the urn along with an(jther l)all of the same 

color. After ri -> cx: steps, the proportions of balls of each color converge to a 

limiting discrete distribution, which is shown to be a Dirichlet distribution. 

Matheniatically. let X i be a color random variable, a Dirichlet distribiition 

can be constructed via the Polya Urn scheme as: 

1. For the first draw, a ball with color i is drawn with probability 

O-i 
p{X, = 0 = 

2. Draw the (n + 1)"' draw, a ball with color / is drawn with proba]:»ility 

P { X „ + I = Z I A I , . . . , A „ , ) = . ^ 

Qi' + n 

2.2 Dirichlet Process 

This section i)rovides a brief over^-iew of the Dirichlet process (DP) mainly l^astxl 

on the work of Ferguson [1973]; Antoniak [1974]: Teh [2010]; Teh et al. [2000]. A 

high-level tutorial can be found in [Jordan. 2005; Teh. 2007]. Along with the basic 

definition, constructions of a Dirichlet process from the stick-breaking process 

and the Chinese restaurant process (CRP) [Aldous. 1985] will be presented. In 

addition. I will discuss some hierarchical extensions of the Dirichlet process. 

In probability theory, a DP is a stochastic process that can be taken as a 

probability distribution over distrilnitions. It is, as a non-parametric Bayesian 

nrethod. most useful 

in models in which each mixture component is a discrete 

random varia]:)le of unknown cardinalit.y. A canonic:al example of such a nrodel 

is the infinite mixture model {i.e., the DP mixture model), where the discrete 

random variables may indicate clusters. 

Let {X,B) l)e a measurable space, for a random prol)abihty distribution G to 

be distril)uted according to a DP, its marginal distributions have to be Dirichlet 

distributions. Ferguson [1973] gave a formal definition of the DP as follows. 

De f i n i t i o n 2.2. [Dirichlet Process). Let H be a random measure on {X.B) and 

Q: l)e positive real number. We say a random probability measure G on (X.B) is 

a Dirichlet process with a base measure H and a concentration parameter a, i.e. 

G ~ DP(Q, H), if for any finite measurable partition (-Sj. • • •, B^) of A", the 

ramlom vector (G(Z?,), G(B2),..., G{Bu)) is Dirichlet distributed with parameter 

{G(B,), G[B.2). ..., G{Bu)) - Dir(Q//( i?I) , aH{B^>),..., aH{B,)) . 
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The support of G is the same as H. The existence of the DP is guaranteed 
l)y either the Kolrnogorov's consistency theorerii or the de Finetti's theorem. One 
important projjerty of the DP is that (Ustril^itions (h'awn from a DP are discrete 
with prol)ahihty one [Ferguson, 1973]. That means the previously drawn values 
have strictly positive i)rol)ability of being redrawn again, which can l)e proven in 
the two construction methods of the DP in the next section. 

Corollary 2.1. According to Definition 2.2, if H is a probability vector over a 

finite space, then the following holds 

DP{o, Dtscrete{H)) = Dir{aH) . 

Thus, the DP is an extension of a Dirichlet distribution. 

We can draw a secjuence of independently and identically (hstributed [i.i.d.) 

random varial)les from G. Theoreticahy, the sequence can lie infinite. Then after 
marginalising out G, these random variables follow a Blackwell-Mac(iueen distri-
bution [Blackwell and Maccjueen, 1973], also known as the GRP. I will show that 
a DP can be constructed via the CRP in next section. 

Property 2.4. (Mean, Variance, and Covariance) If G ^ DP{a,H}, for any 

measurable set B e B, 

E{G{D)) = H(B) 
H{B){l-H{B)) 

N{G{B)) = 
Q + 1 

Cov{G{B),G{B')) = s.t.B'r\B = ^ 

The base measure H and the concentration parameter a play important roles 
in the construction of a DP. Si)ecifically, the base measure is the mean of the 
DP, and the c:oncentration parameter a , also known as a precision parameter 
Rodriguez et ah, 2008]. controls the variance between G and H. Large a means 

the DP concentrates more mass around the mean. When the base measure is non-
atomic (or continuous), H{X) = 0 for all A' ~ H, thus samples from H are almost 
surely distinct, e.g., a probability (hstribution such as Gaussian. With resi)ect 
to discrete applications that are connnon in computer science and intelligent 
systems, the non-atomicity of the base measure does not always hold. Thus, 
when the base measm'e is atomic. HiX) > 0 for all samples X ~ / / . 

The posterior distribution of the DP is still a DP with updated concentration 
parameter and l)ase measure over partitions of X. Let X|, x '2 , . . . , x„ be a seciuence 
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of i.i.d. draws from G, and Xi take values on X. With Dirichlet-Mv.ltmonmd 

conjugacy (Property 2.2) and some alge1)ra, we can yield the posterior of the DP 

as 
/ 6 f ) \ 

GI Xvn - DP ( Q' + n. + '' , (2.3) 
\ a + n Q' + /7 n 

where is the point mass located at Xj. The updated concentration i)aram-

eter is a + n, and the base measure is changed to ^ The predictive 

distribution Xn+i \ Xi:n is the updated base measure of the posterior of DP. I wih 

show the derivation of predictive prol:)al:)ihty in the CRP interpretation for the 

DP in Section 2.2.1. 

2.2.1 Construction of the Dirichlet Process 

There are two \\'ell known ways of fhaAA'ing samples from a Dirichlet process. One 

is the stick-breaking construction for the DP. where two secjuences of i.i.d. ran-

dom \-ariables need to be generated. It can l)e sinnilated by randomly breaking 

a unit stick into pieces with different weights. The other is the CRP interpreta-

tion according to the Polya Urn scheme [Blackweh and .Macciueen. 1973], which 

gives us a straightforward way of generating posterior samj^les from a random 

distribution given observations. 

Dir ichle t P r o c e s s v ia t h e S t i c k - b r e a k i n g C o n s t r u c t i o n 

The stick-l)reaking construction [Setliuraman, 1994] is a concrete re]j)resentation 
of draws from G, where G -- DP(q, H). It is a weighted smn of the point masses 
at atoms. The process of stick-breaking also provides a straightforward proof of 
the existence of DPs [Teh. 2010 . 

T h e o r e m 2 .2 . (The sUck-breaking construcUon for the DP) Let and 

be independent sequences of i.i.d. random variables, the stick-breaknig 
construction of the DP has the following form.: 

\\.\a.H^ Detail, q) A^ | q . / / ~ H 

^-i oo 

i=i /,=i 

where is a d,iscrete probability measure that concentrates at X^, and Pi- = 
1 with probability one. 
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Metaphoiically, the proctess of generating a sequence of pî  can be understood 

as iteratively l)reaking off pieces with random lengths from a stick, subject to the 

length of the initial stick is one. Similar to the stick-breaking construction for 

the Dirichlet distribution in Section 2.1.2, the stick-breaking for the DP goes as 

follows: 

1. Take a stick of length one and randomly Ijreak it into two parts with pro-

portions Vi and 1 - V]. The hrst Inoken stick has length pi = \\. 

2. Then take the remaining part, of length 1 — l ] and a])ply the same process 

to randomly break into proportions V2 and 1 — 12. This second broken stick 

is the first part, of length p2 = {1 — Vi)V2. 

3. Again, we take the remaining part, of length (1 — Vi)( l — V2), and ap-

ply the same process repeatedly. So the length of k̂ '̂  stick becomes p/,. = 

Ishwaran and James [2001] presented a truncated stick-breaking construction, 

in which the number of sticks is set to some truncation level K that can be 

determined by the moments of the random l^reaking weights, and the A'-i- 1, A'-f-

2, . . . sticks are discarded. The length of last stick is set to p]^ = 1 — X^jLV Pr ^̂ ^ 

most real world scenarios, the DP nrixture models are in an effectively finite state 

space, such as those adapted for natural language processing, language modelling, 

and computer vision. 

Dirichlet Process via the Chinese Restaurant Process 

The Chinese restaurant process (CRP) , also known as the Blackwell-Maccjueen 

Urn scheme, asymptotically produces a partition of integers [Blackwell and Mac-

queen, 1973]. It is shown that samples from a Dirichlet process are discrete and 

exhibit a clustering property [Teh et ah, 2000 . 

The C R P is an elegant analogy of incremental sampling for the DP. It refers to 

draws from G, instead of referring to G directly, which means it is easy to describe 

the distribution by specifying how to draw samples from it. Let {A'*. A'.̂  , A7<} 

be a set of distinct A'ahies drawn from the Imse measure H (Note H is non-atomic, 

and K can be infinitely large, i.e., K OG). Those distinct vahies are taken on by 

random samples X],X2, • • • ,Xr, that are i.i.d. given G, and nl = • Wi th 

G marginalised out and given the first n ol)servations. the posterior (hstril)ution 

(or the predictive distribution) of the (n 1)^'' ran(k)m varial)le has the following 
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i C i n (JCr,^ ^ 

i C i 
t . = X l 

o o o 

V 1 
i C i i V 7 

Figure 2.1: A CRP represent at ioii for a DP with a continuous Imse distribution 

that makes the dish served at each tal)le to lie distinct. Circles are tables, each 

A'"' table has a label ti,. x„s are customers, and A'^'s are dishes, tî  = X^ indicates 

the k"' table serves Xt. 

form 

X n+l Xa, X2, . . . , Q', i / ~ ——^xti-) + 
a 

k=i 
n + a 

Hi- (2.4) 

We can interpret the posterior distribution of the DP in terms of a Chinese 

restaurant metaphor, as shown in Figure 2.1. Consider a Chinese restaurant with 

an infinite number of tables, each of which has infinite seating capacity. Each 

table ti, serves a dish, i.e., a distinct value A^. A sequence of customers, labeled 

by X]. X2, . . . , arrive in the restaurant. The first customer sits at the hrst table; 

the (n + l)"' customer can choose either an occupied table or opening a new table 

with following probabilities, 

occupied taljle) oc 

];(next new table) cc 

n + a 

a 

n + Q 

In the sense of CRP. the concentration ])aranieter q controls how often a 

newly arrived customer opens a new table. The larger a is, the more tables will 

be activated, which further corresponds to the smaller the variance between G 

and H. Another important property of the DP is the reinforcement effect: the 

more customers sit at the A*"' table, the more likely the A"'̂  table will be chosen 

by subsequent customers. 

2.2.2 The Hierarchical Dirichlet Process 

As a widely used non-parametric Bayesian method for discrete random distribu-

tions, the DP has been extended in different ways to deal with dependencies that 

exists in various data, such as grouped data, streamed data and time-stamped 

data. For example. MacEachern [1999] introduced the dependent DP (DDP) to 
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handle (lepeiuleiicies in a collection of (listril)ntions. which is a (luite general 
framework; and Lin et al. [2010] gave a new Poisson processes l)ased constrnction 
for the DDP. One special case of the DDP general framework is the hierarchical 
DP (HDP) [Teh et al., 20()G]. In the HDP, mnhiple group specific distributions 
are drawn from a common DP whose base distribution is in turn drawn from an-
other DP. Some other extensions include the nested DP [Rodriguez et al., 2008 
and sj^atial DP [Duan et al., 2007]. In this section, I give a brief overview of the 
more widely used HDP model. 

Motivated l)y sharing atoms across different data groups, Teh et al. [200G 
introduced the HDP, in which the base measure Go of a Dirichlet process for each 
data group is drawn from another Dirichlet process with base measure H. In 
such a way, GQ is forced to be discrete, and distinct values drawai from the top 
level base measure H are shared with different weights among draws from the 
low level Dirichlet process. The sup])ort of draws from the HDP is the same as 
that of H. The precise definition of the HDP is given in [Teh et al., 2006]. and a 
further descrii)tion can be found in [Teh and Jordan. 2010 . 

Def in i t ion 2.3. {Hierarchical Dirichlet Process [Teh et al.. 2006]) Let 7 and a be 
concentration parameters. H is a baseline measure on a measurable space {X 
Go is the intermediate base measure, the HDP is defined as 

Go I 7 , ^ - D P ( 7 , H) 

G, |« ,Go ~ DP(a, Go), for G { 1 , . . . , / } , 

where {1, 2, . . . , / } is an index set which indexes a collection of Diric:hlet pro-
cesses, {Gi , G2, . . . , G / } . Each Gi corresponds to a data group and is defined on 
[X.B). 

Obviously, the HDP is also a probability distribution over a set of random 
distributions over a measurable space and shares sinnlar properties to 
the DP. It links a number of probability (hstributions by letting them share the 
same base measure. Teh et al. [2006] presented the stick-breaking construction 
and a Chinese restaurant representation for the HDP, analogous to the DP. Here, 
I describe the latter, named Chinese restaurant franchise (CRF) by Teh et al. 
2006], which not only elaborates the combinatorial structure of the HDP in a way 

of incremental sampling, but also provides the ground of the subsequent discussion 
of the Poisson-Dirichlet process and various Gibbs sampling algorithms. 

The CRF is an analog of the Chinese restaurant process for the HDP with 
all the Gi and their base measure Go marginalised out, i.e., the marginalisation 
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of the HDP. Actually, it extends the CRP representation for the DP to hanching 
nnihiple Chinese restanrants that are conditionahy independent to each other. 

jMetaphoricaUy. sni)pose there is a glol)al menu with dishes {i.e., (hstinct vahies 
(h-awn from H), and at each restaurant, each talkie is associated with a (hsh from 
the menu. A customer chooses a (hsh by choosing a table. More specifically, 
arriving in a restaurant that corresponds to Gj, a customer can either choose 
to sit at an occupied table to share the dish with other customers or to open a 
new table. If the customer sits at a new table, a dish nnist be ordered from the 
global menu. In the CRF, choosing a dish from the global menu is eciuivalent to 
sending the new table as a proxy customer [Mochihashi and Sumita, 2008] to the 
corresponding parent restaiu'ant (Go), and then repeating the Chinese restaurant 
process analogy of the DP to choose the dish from H. In this sense, the HDP 
is a hierarchical CRP. The precise nature of sharing atoms across data groups 
induced by the HDP is mimicked by sharing dishes among multiple restaurants. 

Mathematically, let Xi = (.Xj,,, x,j.) be a sequence of .7, custemiers 
in a restaurant x^j is one entry in Xi that are random variables distributed 
according to Gj. Dishes in the global menu are denoted liy {A'*. X^, . . . , A'/^-} 
that are i.i.d. draws from H. Furthermore, let y^ = (yj^j, ;(/j2, . . . , yi.Ti) be the 
dishes served at tables in the z"' restaurant and be distributed according to the 
intermediate base probability measure Gq. where T, is the number of currently 
occupied tables in restaurant z, and y^ e {Aj*, A'*, . . . , A'*-}. Clearly, all the 
customers x, take the values on {X*, A*, . . . , X^-} via the intermediate random 
variables y^. Let nl^ be the number of customers sitting at table t in restaurant 
?:, and n'f. be the total number of tables in all the restaurants serving dish A^, 

"a- = HtLi - 111 this setup, restaurants correspond to DPs associating 
with data grouj^s, and customers are factors. 

Now, the marginal prol^abilities of the HDP are computed l)y integrating out 
the random distributions G, and Gq recursively with the CRP. First, integrating 
out Gi yields the conditional probability of x , - g i v e n by the posterior (2.4), 

T, n • I Q. G„ ^ J ] + -^CM-) . (2.5) 

The probability of drawing a random variable from the above mixture is ac-
cording to mixture proportions on the right-hand side of the formula. Since all 
y^.j are i.t.d. according to Gq. which is again Dirichlet process distributed, we 
can readily marginalise out Go by using the same posterior (2.4). Thus, the con-
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(litioiial i)i-()l)ahility for i/i.Ti+i is 

A- , 
7, E , + ^ l ^ H ( - ) . (2.G) 

,=i 7 + i : k = i K 7 + EA.=i "1-

The i)osteii()r structure of the HDP can easily l)e obtained in regard to the 

posterior of the DP, Ecjuation (2.3). Thus, given Xi-j and y^.j, the posterior 

(hstributions are stipulated respectively by 

Go 12/1:/, 7, ^ ^ DP 7 + 2 ^ 'U- T ^ 
V k=\ 7 + E k = i < 

/ T, r,* A \ 

Clearly, the recursive construction of the HDP can be generalised to arbi-

trary hierarchical structures by recursively putting DPs together [Teh and .Jor-

dan, 2010]. However, these hierarchies should be tree structures, since the DP 

only allows one base measure. In Section 2.4, 1 will show how to extend the DP 

to handling multiple base measures. 

2.2.3 Variants of the H D P 

The HDP allows the sharing of atoms among nniltiple groups of data. The under-

lying assmnption is that these data groups are exchangeable. The exchangeability 

is possessed ])y the i.i.d. draws {i.e., Gu) from the same base measure. How-

ever, there are many applications for which the exchangeability assumption is 

not suitable and needs to be removed to further incorporate other dependencies 

for complex data structures, such as the temporal structure (e.g.. time stamped 

documents and nuisic). These have motivated various extensions of the HDP that 

have been studied in the Bayesian nou-])aranietric literature. 

A way to extend the HDP is to introduce dependence among realisations of 

independent HDPs, such as the dynamic HDP (DHDP) proposed by Rem et al. 

2008], with more details in [Ren et al., 2010]. To consider the statistical dei)en-

dency anrong the time-evolving data, the DHDP uses a Hidden Markov Model 

(HMM) to incorporate time-evolving i)aranieters, such as time stamps, to further 

chain a set of HDPs in a linear way. i.e., G j = (1 — -|-u'j_i//j_i. In the 

DHDP setting, a set of innovation distributions. {//], H2, • • • , and G'l are 

draws from the same HDP. as shown in Figme 2.2. We can see that the probabil-

ity distribution Gj at time stamp j is indeed a weighted sum of the i)robability 
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Figure 2.2: The dynamic HDP model 

distribution Gj-\ and the innovation distribution //j_] that are generated at the 

previous time stamp j - 1. In this wa}', Gj can be mochfied from G j_ i by adding 

an new innovation distribution // j_ i . The probabihty of innovation is controlled 

by the weight Furthermore, since G'l and all the Hs are drawn from the 

same HDP, atoms are shared across secjuential datasets that are no longer ex-

changeable. Therefore, the evohition is done by c-hanging the mixture weights 

associating with atoms seciuentially along the time line. A siniphhed version of 

the DHDP [Pruteanu-Malinici et al., 2010] has been applied to topic modeUing 

to study the change of tojjic mixture weights over time. In this simi)lified version, 

probability distributions drawn from a HDP are approximated by those drawn 

from a Dirichlet distribution, see Corollary 2.1. 

Unlike the DHDP, Zhang et al. [2010] have extended the HDP to a five-level hi-

erarchy to explore the cluster evohition patterns over time and cross corpora. This 

model is called an evolutionary HDP (EvoHDP). It uses a coupled Markov chain 

to link multiple HDPs through their intermediate base distributions, instead of 

linearly combining a set of proljability distributions drawn from a HDP. Specifi-

cally, let G i and indicate probabihty distributions associated with a corpus 

i at time j and j - 1 respectively. G^ be a glol)al base distribution at time j for 

all the corpora. G] is generated as G] - DP {c4 ,w jGf^ + (1 - where 

wl is the mixture weight for the corpus i at time j . Similarly, let G be an overall 

l)ase distribution drawn from a DP with base distribution H. The global base 

(hstribution G^ is generated as G^ - DP (a^., w^G^'^ + (1 - where u/̂  is 

the mixture weight for Gly Clearly, the ])ase distribution for drawing either G j or 

G/, is a weighted sum of two distributions. The authors use two chains on G f s 

and G^'s to model patterns of cluster evolution within each individual corpus 

and across corpora respectively. I will show that their way of constructing the 

two chains can be taken as a special variant of the conrpomid Poisson-Dirichlet 

process introduced in Section 2.4. Both DHDP and EvoHDP are two complex 
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models, that are diftereiit from models developed in Chapters 5 to 7 in terms 
of data l^eing modelled and modelling objectives. They may not be snitable for 
modelling docnment strnctnres. 

These and some other variants of the HDP have the same characteristic 
that the shared atoms are fixed across data groups, which are either tempo-
rally streamed or have other kinds of dependencies, and only the mixture weights 
are changed in a way according to different data structures. Can atoms them-
selves change along the data struc:ture without violating the underlying dej^en-
dencies? Ahmed and Xing [2010] introduced a new dynamic HDP where not only 
the mixture weights change dynamically, but also the atoms can either retain, die 
out or emerge over time. This dynamic HDP adapts the recurrent CRP, proposed 
in [Ahmed and Xing, 2008], which uses a time-decaying kernel to control the life 
span of atoms over time. Atoms at the current time period are dependent on 
those at the previous time periods, which enhances the statistical similarity 
l)etween adjacent time slices. 

R(>placing random atoms in the DP with random pro))ability distributions, 
Rodi'iguez et al. [2008] developed the nested Dirichlet i)rocess (NDP) to deal with 
multilevel clustering prol^lems in a nested setting. Under the Chinese restaurant 
metaphor, the NDP clusters customers within each restaurant and also clus-
ters restaurants at the same time. \Miile clustering the customers within each 
restaurant, the NDP can borrow the statistical information obtained from the 
clustering in other restaurants. A distribution drawn from a NDP can be written 
as Gj Q, and Q = / / ) ) . The stic-k-breaking construction for the 

NDP [Rodriguez et al., 2008] is 

I f3 ~ D e t a i l , P ) X^^ \H ^ H { - ) 

i - \ 00 
f i , = v ^ U i i - V U ) 

S = 1 / = 1 

k - \ 

V^ Q ^ B e t a { l , Q ) K = ( l - V , 

S = 1 

k=i 

According to this construction for the NDP and that for the HDP [see Teh 
et al., 2000, Section 4.1], the difference l)etween dependencies induced by the HDP 
and the DNP are straightforward, even though both of them allow hierarchical 
data structures. Changing atoms to random proba])ility distributions may in'ovide 
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more fiexil)ility than the HDP to chister ol)servatioiis together with co-chisteriug 
the (listril:)utioiis. 

2.2.4 Dirichlet Process Mixture Models 

The DP related processes cannot be nsed to model data directly l)ecause the 
probability distribntions drawn from a DP are discrete. Instead, they are more 
natnrally used as a prior on top of hierarchical models, which yields the Dirichlet 
mixture model, DPAI [Antouiak, 1974 . 

Let w.'j be an observation with a distribution F{Oi) given factor Oi that is 
t.i.d. drawn from a random proba])ihty measure G. Given 0i, the ol)servations are 
conditionally independent to each other. If G is Dirichlet process distriljuted, we 
can then derive The DPM as 

Wir~^F{0,) for z = 1,2, . . . , ;7 

^ G for / = 1, 2 , . . . , 

G - D P ( a , / f ) . 

\Mth respect to Dirichlet-nmlUnorntal conjugacy. F(-) is set to ]_)e a nmltino-
niial distribution in many language and image related applications, for instance, 
the probabilistic topic models, the n-gram model, image processing, etc. Siurilarly. 
the HDP mixture models can be represented as 

^ for ^ = 1, 2 , . . . , / ; J = 1, 2 , . . . , . / , 

for z = 1 , 2 . . . . , / : j = 1 , 2 , . . . , J, 

G , - D P ( Q , G O ) for ^ = 1 . 2 , . . . , / 

GO - D P ( 7 , H) . 

2.3 Poissoii-Dirichlet Process 
The two-parameter Pcnsson-DiricMet process (PDP), also known as the Pit.man-
Yor process (PYP) [Ishwaran and .lames, 2001], is a two-parameter generalisation 
of the Dirichlet process. Similar to the DP, it is a prol)abihty distribution over 
distril)utions over a nieasural)le space [X.B], and pararneterised with a discount 
parameter 0 < a < 1, a concentration parameter h > -a. and a random l)ase 
measure H over A", i.e., PDP(fl, / / ) . We can write G - PDP(fl, / / ) , if a 
])robability distril)ution G is PDP distributed. 
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As in the case of a DP. the most iiiiportaiit apphcatioii of the PDP is as a iioii-
paraiiietric ])rior for parameters of mixture models. For example, the PDP and 
its hierarchical extensions provide useful machinery for improving the standard 
topic model [Blei et ah, 2003; Buntine and .Takulin, 2006; Sato and Nakagawa, 
2010], the n-grani model [Teh, 200Ga,b] and models of grannnar [.Johnson et ah, 
2007; Wallach et ah, 2008]. By simply replacing the DP with the PDP. the PDP 
mixture model can be derived as follows: 

0, - G 

G ~ PDP(a. 6, H) , 

for i = 1, 2 , . . . , n 

for ? = 1, 2 , . . . , 77 

where Wi indicates observations, Oi indicates factors i.i.d. drawn the PDP. and 
F{Oi) denotes the factor specific distribution of the ol)servations. If the factor is 
given, the observations are conditionally independent. Similar to the DP. the PDP 
is a device for introducing inhnite mixture models and for hierarchical Bayesian 
modelling of discrete prol)abihty distributions. 

In this section I will give a brief introduction to the PDP, and discuss analogs 
of the three perspectives presented in Section (2.2) for the DP. i.e., the stick-
breaking construction, the CRP representation, and the hierarchical PDP. For 
more in depth discussion, please refer to Pitman and Yor [1997]; Ishwaran and 
.lames [2001]; Buntine and Hutter [2010]. A high-level tutorial from a machine 
learning perspective can be found in Jordan [2005] and Rodriguez [2011 . 

2.3.1 Poisson-Dirichlet Distribution 

Similar to the DP, the basic form of the PDP has as input a random base measure 
H on a measurable si)ace and yields a discrete distribution on a finite or 
countably inhnite subset of X , 

^PkSx'.i-) , (2.7) 

where p = (p|. />2, . . . ) is a probability vector so 0 < pk < 1 and Y1T=\ Pî  = 
Also, dx*{-) is a probal)ihty nrass concentrated at X^. The values X^ G X are 
t.i.d. according to H. which is referred to as the base measure. As discussed in 
Section 2.2, the base measure can be either continuous or discrete. The i)ro1)ability 
vector p follows a two parameter Poisson-Dirichlet distribution [Pitman and \br, 
1997] given in Dehnition 2.4. 



26 CHAPTER 2. DWICHLET NON-PAHAMETBIC FAMILY 

Definition 2 .4. (Pcmson-Dviichlet disinbution) For 0 < r/ < 1 and b > —a, 

suppose that a i)r()l)al)ility clistril)iition Paj, governs independent random ^'arial)les 
Vk such that has a Beta (hstril)ution. Let 

\oJ) ^ Beta( 1 - o, + ka) 
k-\ 

Pk = V ^ l l ( l - l ^ ) for = l , 2 , . . . , o o , 
i=i 

yielding p = {pi,p2,... )• Define the Poisson-Dirichlet distribution with parame-
ters a,b. al:)l)reviated PDD(a, / ) ) to be the Pa.b distril)ution of p . 

Note Definition 2.4 assumes a particular ordering of the entries in p , but when 
used in Equation (2.7) any order is lost so this does not matter. 

2.3.2 PDP via the Stick-breaking Construction 
The stick-breaking construction for the PDP can directly be derived l)y extending 
the Poisson-Dirichlet distribution with Equation (2.7). 

T h e o i - e m 2.3. (The stick-breakmg construction for the PDP) Let V^ be a Beta 

distributed random variable and pi, be the stick-l)reaking weight, a probability dis-

tribution G drawn from a PDP can be derived by the following constrution 

Vk \a,b ^ Deta{I - a,b + ka) 

Xl\H - H 
k-\ 

Pi- = ^II^l-^j) 
j=i 

OD 

k 

It is easy to observe that the PDP stick-breaking construction reduces to the 
DP stick-lneaking construction, see Theorem 2.2. when the discount ])arameter a 
is equal to 0. The simulation of iteratively bi'eaking off pieces with random lengths 
from a stick can be found in Section 2.2.1. More discussion about the PDP stick-
breaking construction can also be found in [Ishwaran and .Tames, 2001: Teh and 
•Jordan. 2010: Buntine and Hutter. 2010 . 

2.3.3 PDP via the Chinese Restaurant Process 
Another important approach to construct a PDP is to use the CRP metaphor, 
a particular interpretation for a marginalised version of the PDP. The C R P also 
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gives an analogy of incremental sampling from the posterior of the PDP. Snp-

pose a secjuence of data have been sampled from a random distribution G ^ 

PDP(a , h,H). Let the sampled data l)e X\, X2, then what is the conditional 

chstribntion of X A T + J after marginahsing out G? \\'hile the base distribution is 

non-atomic or continuous (the probability of repeated draws is effectively zero), 

the conditional distribution is [Ishwaran and James, 2001 

= + , (2.8) 
h—1 

where K is the distinct number of values in Xi, 2:2, • • •, Xa? ordered as A *̂, A'2,..., A'̂ -

{i.e., draws from H) with respective counts n*, . . . , R/̂ -, and theoretically K 

can be infinitely large. These are modelled with the notion of tables in a Chinese 

restaurant in the CRP terminology, the A-th table has cusUmiers seated and 

they are having dish X^. 

\Mien the ])ase distribution is discrete, and all probabilities are finite, this con-

ditional probability nmst be morhhed since draws from H can be rei)eated. That 

is, when sampling from H, the ])robability of Â *̂ = X* (for k ^ I) is positive. It 

has been ol^served the dish being served but cannot tell if it comes from the same 

table or not. For example, there are three tables in Figure 2.3 serving the same 

dish X l - However, just given A'j", we cannot tell which table, fi, t̂  or fs, it comes 

from. This observation also applies to the CRP representation for the DP. 

With the discrete base flistribution and a hnite sample, we can have a latent 

variable t^ that is the number of tables serving the dish X I and the total count 

n*f. of customers having dish X^ across fĵ  tables is spread with latent coimts 

rni;̂ ], ...jUk^ti where n*f, = For example, there are thirteen customers 

in the restaurant in Figure 2.3 that are sitting at five tal)les. The customers 

counts are n* = 5, n*2 = 4 and r?3 = 4, and the table c:ounts are t\ = 3, t*2 = 1, 

t* = 1. The customer counts are spread to tables. In the case of just observing 

the total counts but not the ])artition across tables, we can derive the following 

con(htional distribution 

pix,^^\x.m.t\a,b,H) = ^ E (•) + ^ / / ( O (2.9) 
k=l j=l 

where t* = {t*y, • • •, ^/v)' T = ^l- Sani])ling from the above equations 

makes explicit whether a new table is created or which existing table is used 
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Figure 2.3: A CRP representation for a PDP with a discrete l:)ase distrilni-

tiou. There are thirteen customers, five tal:)les with three chshes being served. A 

(hsh now can Ije served by niuhiijle tallies, which is chfferent to Figure 2.1. 

for the new sample. Eciuations (2.9) and (2.10) will be used to derive two Gibbs 

samplers that will be discussed respectively in Sections 3.2 and 3.3. 

2.3.4 Hierarchical Dirichlet-Poisson Process 

As discussed in Section 2.3.1, the PDP is a probability function on distributions: 

it takes as input a random liase distriljution and yields as output a discrete 

prol^ability distribution, which has a finite or countable set of possible values on 

the same domain. \Mien the base distribution is itself discrete, the PDP yields a 

new discrete distribution that is somewhat similar; the greater b is, the smaller 

variance of the two distributions will be (Generallv. the variance is of order 
^ • l+b 

Buntine and Hutter. 2010].). 

The output probability of a PDP can be recursi^'ely used as a base distril)ution 

for another PDP to create a hierarchy of distributions. This hierarchy is the so-

called hierarchical PDP (HPDP), or the hierarchical Pitman-Yor process [Teh, 

20061): Teh and Jordan, 2010]. It is a generalisation of the HDP. Analogous to 

the HDP, the HPDP is dehned as 

Go I (10,1)0-H - PDP(oo, bo, H) 

G, I Oi, Go - PDP(a„ k. Go), for z G { 1 . . . . . / } . 

With a simple modification of the conditional probabilities given by Equa-

tions (2.5) and (2.6). one has the following conditional probabihties for the HPDP 

K 

yi,Ti+i\yi-.j, «o, bo. H ^ ^ 
n^ - ao 

I Xi, a.i, hi, Go ^ ^ 
T^ * 

(=1 
b, + Ji 

+ 
b, + a,Ti 

h + J, 
-Go(-

where hi and bo are concentration jjarameters, and and ao are discomit parame-

ters. The other notations are the same as in Equations (2.5) and (2.6). Similar to 
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the HDP, the HPDP can be adapted to an inhnite limit of finite mixture models 
as a non-paranietrie prior. 

2.3.5 P D P v.s. DP 

The PDP is a generahsation of the DP. Both are probability distributions over 
distributions over a measurable sj^ace. The PDP has similar properties to the DP, 
e.g., mean, variance and covariance (see the proof of lennna 35 in [Buntine and 
Hutter, 2()f()]). 

Property 2.5. (Mean, Variance, and Covariance) If G ̂  PDP{a,h, H), for any 
m.eastimhle set B, 

nG{B)) = H(B) 
YiG{B)) = ^H{B){1-H{B)) 

1 + h 

CoviG(B],G{B')) = -^-^H{B)H{B') s.f.B'nB = l/}. 
1 + b 

The stick-breaking construction and the Chinese restam^ant process have nat-
ural generalisations for the PDP and the DP. ^ '̂ith respect to applications, both 
of them are used as non-parametric priors for parameters of mixture models. Nev-
ertheless, the PDP and the DP are different to a certain extent, since the intro-
duction of the discount parameter o in the PDP. 

The PDP can reduce to the DP, if the discount parameter is set to 0. With 
only the concentration parameter b, the DP has some properties such as slower 
convergence of the sum Y^^^iPk to one, since the number of unicjue values taken 
on by draws from G grows slowly at order (){blog N), where N is the total nunii)er 
of draws. Actually, with referring to the posterior distribution (2.4) of the DP in 
the CRP representation, we can have the expected number (A') of unicjue A'alues 
computed as follows. 

N , 
E[A- \N] = Y ^ — - e 0(Mog A'). b + n — 1 

n=\ 

If 0 < a < 1, the PDP behaves according to a ''power-law" [Pitman. 2002; 
Teh, 2006b; Goklwater et al.. 2006; Teh and Jordan, 2010], which is in contrast 
to the logarithmic growth for the Dirichlet Process. The "power-law" behaviour 
can be observed from either the stick-breaking construction or the CRP rei)re-
sentation for the PDIl As discussed by Teh and Jordan [2010], the stick-breaking 
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Figure 2.4: The graphieal representation of the CPDP. pi is the weight on the 

directed edge l)etween Hi and G. 

construction in Theorem 2.3 shows that the expectation of pk is of order 

if 0 < o < 1, which inchcates the partition size decays according to a "power-

law". For the DP, the exi)ectation of pk (see Theorem 2.2) is of order O ( ( j ^ )^ ' ) , 

which decreases exi)ouentially in k. 

A similar i)henomeuon can also be observed from the CRP representation of 

the PDP, in which the i)roi)ortion of tallies with N customers scales as A'"''^'"'"^'), 

and the total number of tables scales as 0{N"). Involving the discount parameter 

causes the tail of a distribution drawn from the PDP to be much longer than 

that drawn from the DP, since there will be a large number of tables with small 

number of customers, which corresponds to a "power-law" that exists in natu-

ral language [Goldwater et al., 2006]. The "power-law" behaviour of the PDP 

makes it more suitable than the DP for many ai^plications, especially for natural 

language processing. 

2.4 Compound Poisson-Dirichlet Process 

As discussed in Section 2.3, the traditional PDP only has one base measure. The 

expectation of ijrobability distril:)utions drawn from a PDP is the base mea-

sure. The variance between those random distril)utions and the base measure 

is controlled jointly by the discount and the concentration i)aranieters. However, 

in modelling problems, such as statistical language model domain adaption [Wood 

and Teh, 2009] and topic evolutionary analysis [Zhang et al., 2010], it is required to 

share knowledge {i.e., statistical information) across different domains or among 

data that impose, for instance, a sequential time dependence. Therefore, it is of 

great interest to develop a new integrated non-parametric Bayesian method that 

can adapt or borrow knowledge from different domains to handle more complex 

data relations. 

Although we can linearly combine a set of PDPs to deal with knowledge adap-
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Figure 2.5: A directed acyclic graph (DAG). Each node can be associated with a 
random prol^abihty distribution drawn from a CPDP. 

tations, hke those in [Ren et ah, 2008; Pruteanu-Mahnici et al., 2010], another 
approach is to (hrectly extend the PDP without loosing the generality l)y replac-
ing the single base measure with an achnixture of nniltiple base measures defined 
on the same measurable space, as shown in Figure 2.4. I call this method the 
compomid Poisson-Dirichlet process (CPDP). The mixture weights associating 
with the base measures are normally sunnned to one to make them probabilistic. 

Definition 2.5. {the compound Poisson-Dirichlet process) Let 0 < o < 1 be the 
discount parameter, h > —a l)e the concentration parameter, {Hi, H2,..., Hj} be 
a set of base measures over a measurable space (A'. B), each of which is indexed 
by i, and pi be the mixture weight corresponds to Hj, s.t. Pi = shown 
in Figure 2.4, the compound Poisson-Dirichlet jnocess is 

G - CPDP 
\ 

a, 6, ^ 
i=l / 

Clearly, Definition 2.5 shows that the CPDP can be understood as a nmltiple-
l)ase-measure generalisation of the PDP. It can easily be ada])ted to an arbi-
trary directed acyclic graph (DAG), as shown in Figure 2.5, where each node 
in the DAG is associated with a random probability distribution drawn from a 
CPDP. The CPDP takes as a base measure the admixture of random distribu-
tions associating with its parent nodes. This forms a network of CPDPs, called 
the graphical PDP, or the graphical Pitman-Yor i)rocess [Wood and Teh, 2009 . 

Definition 2.6. { The graphical Poisson-Dirichlet process) Let Q denote a DAG 
that composes of nodes indexed by integers 1, • • • , •/. Each node j in Q is associ-
ated with a random probability distribution Gj drawn from a CPDP. The directed 
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edges are indicated hy {i, j) for ? G Pa ( j ) . where P a ( j ) is the set of i^areiit nodes 

of j. Let pij l)e the mixture weight on eacli edge s.t. J^i^Pau) P'-J = ^l ie 

graphical P D P is 
\ 

G , - C P D P I ^ p^.jG, 

iePaO) J 

(2.1i; 

For example, in Figure 2.5, G2 can be drawn from a C P D P with a mixture of 

Gi and 6*8. and G j with a mixture of Gi . G4 and Gs- Note, when |Pa(j)| = 1, 

then the single hyper-parameter p i j is equal to one, so the sum degenerates to Gi, 

thus the C P D P defined on one node reduces to the PDP. The mixture weights p^ 

can be modelled as p j ~ where q is a Dirichlet parameter, whose 

dimensionality is |Pa(j)|. Obviously, the C P D P inherits most of the i)roperties 

of the P D P and can l)e embedded not only in hierarchical structures but also in 

large networks with arbitrary structures, such as a DAG. Conseciuently. one can 

no longer conunit to a single base measure, so there is more flexibility of modelling 

complex data, for example, the adaptor grammar [.lolmson et a l , 2007] in the 

context of i)robabilistic context-free granunars. 

2.4.1 CPDP via the Stick-breaking Construction 

Developing a stick-breaking construction for the C P D P provides a concrete rep-

resentation of dra\\'s fr om the CPDP, and it provides insight into the sharing of 

atoms drawn from multiple base measures with ]jrobabilities pro]X)rtional to the 

mixture weights. 

The generation of stick-breaking weights [pk)f=\ is the same as that in the 

P D P stick-breaking construction, see Theorem 2.3. The prol)leni is now how 

to generate random variables ( A ^ ) ^ ) from base measure(s). In the P D P stick-

breaking construction, all A'^'s are drawn from a single base measure. However, 

there are multiple base measures that are linearly combined as one measure in 

the CPDP. Therefore, to generate a A^, we need to decide exactly from which 

base measure this X I is drawn. Thus the core difference l^etween the C P D P and 

the P D P is the different way of drawing ( A ^ ) ^ , . 

According to Definition (2.5), the base measure for drawing a probaljility dis-

tribution G from a C P D P is the mixture of I base measures Hx. H2, ••• .H,. Since 

the sum of the mixture weights is equal to one. = 1. we can treat 

P = IF>\.P2'--- - PI) as a probalnlity vector, a parameter of a nmhinomial di.s-

tribution. and then samples diawn from this multinomial distriljution can be 



2.4. COMPOUND POISSON-DIBICHLET PROCESS .'33 

used to decide which l)ase measure a X I is (h'awii from. Therefore, the prol>al)il-

ity of ch'awiiig a X^ from a specific ])ase measure H, could 1)e proportional to the 

mixture weight pi, then the stick-breaking construction which we derive now is 

straightforward. 

Let (pî  be a random variable distributed according to a nniltinomial distribu-

tion with i)aranieter p, and attached to X^ , then (A'^)^j are generated as: 

I p ~ Discrete(p) 

If |Pa(ji')| = 1, as discussed before, the above procedure reduces to directly sam-

pling XI from a single base distribution. Moreover, the support of each G is 

contained within the support of the mixture of all its base measures. 

If the discount parameter is set to zero, the CPDP reduces to the compound 

DP, and the gTai)hical PDP reduces to the grai)hical DP. There exists a stick-

breaking construction for the graphical DP. such as the one elaborated in [Zhang 

et al., 2010]. The admixture of base measures can be done through the admixture 

of stick-breaking weights. The stick-breaking representation for the Evolutionary 

HDP proposed by Zhang et al. [2010] deals with two base measures that are 

random distributions drawn from a DP. It can be generalised to handle multiple 

base distributions, say J base distril)utions as follows. 

Let Gj. j G J , be a probability distribution drawn from a DP acc:ording to 

Theorem 2.2, and G be a probabihty distribution drawn from DP(q', PjGj), 

then the corresi)on(ling stick-breaking construction is 

oo 

= for J = 1, • • • , . / 

k=\ 

/ J \ J 

p - DP Q:, pjp'j S.t. = l 

\ i=i / i=i 
oo 

Zhang et al. [2010] have given a Gibbs sanrpling based on this construction. Note 

we can also make Gj to l)e drawn from a compound DP. 

2.4.2 CPDP via Chinese Restaurant Process 

Recall the CRP representations for the DP, the HDP, mid the PDP. The CPDP 

c:an also be represented by a Chinese restaurant metaphor as follows. Draws 
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X — (xi../;2, • • • . X N ) from G coiTcsixnid to customers, dishes served at tables are 
draws (Xls ) from the mixture l)ase measure J^LiP'^^i- nl be the manlier 
of customers eating X^. If aU the l)ase measiues are iioii-atcjinic:, after G being 
niarginahsed out, the c:onditional of x',v+i can be deri^'d by shghtly mocUfying 
E({uation (2.8) as 

H\. H2- • • • . H[) , \ 
(2.12) V ^ "A- - C- / ^ " X + rr / 

k=\ \i=l 

where dx* is the i)rol)al)ility mass at X^ and K is the number of dishes ser\'ed at 
all tables. 

Similar to the PDP, when all the base measures are discrete, and all i)roba])il-
ities are hnite. E(ination (2.12) must be modified since draws from the mixture of 
bas(> measures can be repeated. \Mth the same notations used in Ecjuation (2.9) 
and (2.10). we have 

p {x^r_^_l I aj, m , t*. a. b, p, Hi. H2, ••• .Hj 

A = 1 j=l \ ••'—I 
{•2.13) 

nl , . axT + b ^ ' ^ E n,. — A * T: ^ ^ A x 1 + > 

t=l \!=1 / 

In the Chinese restaurant nietai)hor. customers choose a dish by sitting at 
a table. If a customer chooses to sit at an unoccupied table, a new dish should 
be sampled from the base measure. In the CPDP, the number of base measures 
could be more than one. so we need to decide from which base measure a dish 
is sampled. Since the base measure is an aclmixture. and the sum of the mixture 
weights is equal to one. it can be achieved by first choosing a base measure H, 
with probability proportional to pi. then sami)hng a dish from H,. This procedure 
is also known as nuilti-fioor Chinese restaurant franc-hise [\\ood and Teh. 2()()!J . 

Specifically, in the CRP metaphor for the CPDP, a restaurant corresponding 
to G has I menus, each of which is generatcxl from H,. Tables are clustered and 
allocated to difierent floors according to dishes ser\-ed by them. The number of 
floors is e(iual to the number of menus. If a table serves a dish that is drawn from 
a menu i. then this table will be alloc:ated to the floor. Arriving at a multi-floor 
restaurant, a customer can choose to sit either at an occupied taljle in a floor or at 
an unoccupied table. If the customer chooses to sit at an unoccupied table, a dish 
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Figure 2.G: A multi-floor CRP represeutatiou for a CPDP with three base uiea-

sures. The outer reetangle indicates a restaurant, the inter rectangles with dotted 

lines are floors, circles are tables, .T„'S are customers, anrl A'^'S are dishes. 

is then ordered from any one of the / menus. The proba])ility of ordering a dish 

from menu i is proportional to If the ordered dish is from menu i, the newly 

created table will then be allocated in the floor. Figure 2.6 shows a multi-floor 

Chinese restaurant metaphor for a C P D P with three base measures. It has three 

floors that correspond to the three base measures, nine occupied tables, and 20 

customers. In this C R P representation, each table could be associated with a 

latent variable, named menu indicator (shown as stars with different colors in 

Figure 2.G), that indicates from which menu the dish on the table is ordered. All 

the menu indicators can be taken as i.i.d. draws from a nuiltinomial distribution 

with parameter p, and they cluster tables into I munber of floors. We can consider 

putting a prior on p, such as a Dirichlet distribution. I will show how to introduce 

a Dirichlet distribution as a prior on p in Section 3.G. 

2.4.3 C P D P v.s. Other Related Models 

The C P D P is different in several perspectives from the related models, such as 

the dynamic HDP [Ren et al., 2008] and the Pachinko allocation model (PAM) 

Li and McCallum, 2006 . 

The dynamic HDP (DHDP), see Section 2.2.3, shares the statistical informa-

tion {e.g., atoms) across sequential data {e.g., nmsic) by linearly comi)ining two 

proba])ility distributions. In contrast, the C P D P combines several base distribu-
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tioiis to f(jnii a mixture base for the PDP, Ijefore drawing samples. In this way. 
the C P D P could ])r()])agate shared knowledge through, for exam])le, an arlntrary 
DAG structure where each node has at least one parent. Combining nmltiple 
base distributions tcjgether means sharing knowledge across different domains, or 
statistical dei)endencies among streamed data. Clearly, the former is a mixtme, 
and the latter is an admixture. 

The DAG structure to which the CPDP can be inserted is flexible such that 
it can be a hierarchy, or an arbitrary DAG with cross-connected edges. It is 
worth ])ointing out the Pachinko allocation model (PAM) proposed I)y Li and 
McCallum [2006] and its extensions [Li et al., 2007: Minmo et al., 2007]. The 
PAM is a DAG-structured mixture model for modelling topic correlations. It 
consists of a DAG. where each interior node is a Dirichlet distribution over its 
child nodes. The Dirichlet distribution has the same dimension as the number of 
child nodes. It can be seen that directed edges in its DAG inrlicate that parents 
are Dirichlet distributions over the corresi)onding linked children. Indeed, the 
DAG in PAM })artitions the space to different i)arts {i.e., the whole toi)ic space 
to subtopic spaces). However, in the DAG structure with the CPDP's , each node 
is associated with a random probability distribution drawn from a CPDP. The 
directed edges show how one node can l)e generated from the admixture of the 
linked parents via a stochastic process. 

2.5 Summary 
In this chapter. I have discussed the Dirichlet distribution and the Dirichlet re-
lated non-parametric Bayesian methods that include the Dirichlet j^rocess. the 
two-parameter Poisson-Dirichlet process and their hierarchical extensions. I also 
discussed a new class of non-parametric methods, named the compound Poisson-
Dirichlet processes that can handle multiple input distributions. The correspond-
ing stick-breaking construction and Chinese restaurant jnocess representation 
were presented. All of these provide a foundation for models and algorithms pi'e-
sented in Chapters 3 to 7. 



Chapter 3 

Gibbs Sampling for the PDPs 

111 this chaiiter, I will discuss coinputational aspects of doing inference for iioii-
paraiuetric Bayesiaii models based on the Poissoii-Diriclilet i)rocess that is an 
important non-i)aranietric method in statistical machine learning. There are var-
ious mathematical representations available for PDPs, which can be combined in 
different ways to build a range of inference algorithms, e.g., Neal [2000]; Ishwaran 
and James [2001]; Blei and Jordan [2005]; Ren et al. [2008]; Zhang et al. [2010]; 
Ren et al. [2010]. Here I will focus on Gibbs sampling algorithms for sampling 
from posterior distributions of the PDPs, based on the Chinese restaurant process 
( C R P ) representation, particularly in a finite state space. In subsequent sections. 
I will discuss three Gibbs sampling algorithms for the PDP. They are respectively 

• Teh's sampling for seating arrangement sampler (SSA) [Teh, 20()6a] (Sec-

tion 3.2); 

Collapsed nmhiplicity Gibbs sampler (CMGS, Section 3.3); 

Blocked table indicator Gibbs sampler (BTIGS, Section 3.4). 

After comparing these three samplers in Section 3.5, I will present two Gibbs 

sampling techniques for the CPDPs based on the CMGS and the BTIGS in 

Section 3.G. 

3.1 Joint Marginalized Likelihood 
In this section I discuss the joint marginalised likelihood over a si)ecific seat-
ing arrangement of customers in a restaurant. It will help in understanding the 
sampling algorithms that will be discussed in Sections 3.2. 3.3 and 3.4. 
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Figure 3.1: A specific seating arrangement in a Chinese restaurant. The customer-
dish assignment x„ = X^ in(hcates a customer x„ eats the dish X^, the custom,er-
table assignment = t; indicates Xn sits at table ti, and the table-dish assignment 
ti = X I inchcates talkie ti serves A'̂ *. 

In the Chinese restaurant metaphor, after all customers have been seated, 
each restaurant has a seating arrangement of those customers. Figure 3.1 shows 
a specific seating arrangement in a restaurant that has twelve customers, each 
of which sits at a table ti. There are four occupied tables, each of which serves 
a dish X I . We can see that a seating arrangement includes the total number of 
customers, the total number of occupied tables, the custom,er-table assignments 
{i.e., the table identities of the customers (6„ = ti)), the customer-d^ish assigir-
nients {x^ = A^), and the table-dish assignments {ti = X^). Actually, given 
the customer-table assignments, the table-dish assignments can be reconstructed 
from the customer-dish assignments, and vice versa. For example, in Figure 3.1, 
X\ = X* and Si = fi, so ti = X*. Therefore, we only need to keep either the 
customer-table and customer-dish assignments or the customer-tahle and ta.ble-
dish assignments. 

Now the joint marginal likelihood over a particular seating arrangenrent can 
l)e computed as follows. Let x = {X[. X2, •.. ,X[\;) be a secjuenc^e of customers' 
K the total number of dishes in a restaurant where each dish is denoted by 
XI : t l the number of tables serving X l ; n l the number of customers eating A^; 
mkj^ the number of customers sitting at table ti serving A^; T the total number 
of occupied tables; and N the total number of customers. The customer-table 
assignments are indicated by s = (si, 6 '2, . . . , sn). Each entry s„ of s corresponds 
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to the table assigunieut of customer x^, and takes values on {^i, /2, • • • > ^r}- The 
seating arrangeuient can now be interpreted matheniaticallv as 

X „ G { A 7 , A - , . . . . A - } 

Sn e {ti,t2, tr} 

for n e{l,2, ..., N} 

for 77 G {1, 2, . . . , N} 
N 

Illk.U = ^ lxn=X*lsn=ti 
n=l 

T T 

i=l i=l 
T K 

N 

nl = 

>0 

= 

n = l 
K 

k=i 

i=i 

The joint marginal hkeliliood over a specific seating arrangement {i.e., x and 
s) can be derived by nniltiplying up the conditional ])robal)ihties, given by Ecjua-
tion (2.9) in Chapter 2, for all assignments of customers to tables. It has the 
following form 

p{x, s\a,b, H) = HiXtfl (l-a (3.1) 
j=i 

where Q takes values on {ti,t2: • • • Jt}, H is a probability distril^ution over dishes, 
{x)n is given by (x|l)iv, and {x\y)N denotes the Pochhannner symbol with incre-
ment 7/, it is defined as 

X y)N = x{x + y)...{x + {N -\)y) = 
X .N if y = 0 

y ^ x H ^ i f y X ) , 
(3.2) 

where r(-) denotes the standard Ganmia function. 
This joint marginal likelihood function will be used as the basis for the deriva-

tion of Gibbs sampling algorithms discussed in Sections 3.2, 3.3 and 3.4. In partic-
ular. I will show how it can be used to compute eciuations in Section 3.3. Notations 
used in this section will be reused in subseciuent sections. 

3.2 Teh's Sampling for Seating Arrangement 

The sampling for seating armngernent algorithm [Teh, 2()()Ga]. denoted by SSA, 
returns samples from the posterior distribution over the seating arrangement. It 
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Algorithm 1 Sampling for seating arraiigeineiits algoritlini 

1. for each customer sitting at a taljle that serves a (hsh A^ do 
2. Sample to find the table from which will be removed, i.e., suppose for 

each dish, A^, there are a total of f* tables serving A^. each of which 
is indexed by Q {j e 1,2, and has customers. Then, the 
probability of removing x^ from the j-th of these tables is nikx^/nl. 

3. Decrement the corresponding customer comit by one. If the count 
goes down to zero, the table becomes unoccupied, then decrease the table 
count tl by one. 

4. Reinsert the customer back to the restaurant using the standard CRP 
sampling probabilities computed by Equation (2.9) which are propor-
tional to 

fi-) ^H-.Cj - a: seat x^ at ( / ' ' occupied table in the restaurant. The 
dish served on this table is then assigned to x„. Update related counts. 

1).) b + oT: seat Xji at a new table. A dish needs to be sampled from 
H. Let it be denoted by Then, assign the fhsh to the new table and 
the customer Increase tl, by one, and initialise mw^Q, to one. 

5. end for '' 

only keeps track of the number of customers sitting around each table {i.e., 
rather than explicitly recording all customer-table assignments'. 

From the joint marginalised likelihood over a seating arrangement. Equa-
tion (3.1), we can easily observe that given the dishes all customers eat, the table 
assignments have no effect on the joint marginalised likelihood of the data. There-
fore. at every restaurant, the SSA algorithm only keeps track of the number of 
tables t l and all the customer counts . . . , mk,^, at tables for each 
X I where g is defined in Ecjuation (3.1). The assignments of individual cus-
tomers to individual tables, denoted by s, are not recorded but rather recon-
structed randomly dming sampling. This can be done because the assignments s 
ck) not appear explicitly in either Eciuation (2.9) or Equation (3.1). rather appear 
indirectly via the customer count at each table. Thus they can l)e uniformly sam-
pled as long as the comiting constraints are maintained, i.e., nl > f*. The SSA 
algorithm performs cycles as shown in Algorithm 1. We should keep in mind that 

'Although nik,̂ ^ in Equation (3.1) can be recon.structecl from the customer-table assignments. 
and recording these assignments coukl lead to a better mixing of a .Markov chain, it may still 
require a large .storage space in cases, such as a topic model that needs to be trained on a large 
nmiiber of documents. 



3.3. COLLAPSED MULTIPLICITY GIBBS SAMPLEU 41 

SSA recjuires a (lyuaiiiic- storage for customer counts at all tal)les. Being placed in 

a hierarchical context where deletion and creation of tables lead us to recursively 

carry out the removing and reinserting operations up through all the nodes in 

the hierarchy. 

The basic idea of SSA has been embedded in samplers for more complex 

models, such as the hierarchical LDA [Blei et ah, 2010], the H D P variant of LDA 

Teh et ah, 200G], the doubly nested n-grani model [Mochihashi and Suniita, 

2008] and the side-by-side n-gram models for language adaptation [Wood and 

Teh, 2009]. However, the basic idea of these algorithms remains the same, which 

is to move the cnistonier currently being sampled up to the end of the customer 

sequence so that the sequential fornmla of Equation (2.9) can be used. 

3.3 Collapsed Multiplicity Gibbs Sampler 

In the SSA algorithm, the customer comit at each table needs to be dynamically 

stored in memory. It could still encounter a storage problem if the total number 

of tables at a restaurant becomes large, which is possible if the concentration 

parameter b is set to a large value, for example in a language model that needs to 

be trained on very large corpora. Here I introduce a collapsed version of the SSA 

that marginalises out all the possible seating arrangements so that the storage 

of the customer counts • • • > "'̂ --Cf* ^a^'h dish X l is not needed. It 

is based on the multiplicity representation of tables in the C R P interpretation 

for the P D F [Buntine and Hutter. 2010]. I call it Collapsed Multiplicity Gihbs 

Sam,pier (CMGS) . 

In the multiplicity representation, two observations that need to be stored 

are the customer count n l and the table count t l for each dish X ^ . as shown in 

Figure 3.2. This representation is no longer se<iuentiah since the actual identity 

of the table at which a customer sits cannot be reconstructed from njl's and 

f^.'s, and neither can one tell whether a dish being served comes from the same 

table or not (see Section 2.3.3). Therefore, the C R P based seciuential sampling 

methods using Ecjuation (2.9) c:annot be used. Nevertheless, in order to describe 

this representation, the terminologies, such as restaurant, table, customer, dish, 

will still be used. 

D e f i n i t i o n 3.1. {Multiplicity) In the C R P representaticm for a PDP, assume the 

base distribution H is discrete, which means the probability of a same dish being 

served by multiple tables is positive with probability one. The number of tables 
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Figure 3.2: A multiplicity representation for the PDP. The empty circles are 

unoccupied tables, the others are occupied tables. There are seven customers 

who arrive in a restaurant sequentially. The statistics kept are n^.'s and t l 's . The 

arrival of each customer will increase either n l or both, which depends on the 

way in which the customers choose a table to sit at. 
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tl serving the same dish A'̂ * is deftned as the multiplicity of the tal)les. hi general 

the ninhii)heity is the fr(>queney of a (hstinct vahie drawn from the l)ase nieasnre 

appearing in the data. 

Notice that given the seating arrangement, the conditional probabihty or the 

predictive i)robabihty, Equation (2.10), only depends on the number of customers 

eating dish XI, nl, and the number of tables serving X^. i.e., the multiplicity 

t l . ^^•ith all the customer comits m2,i:(*, . . . , mAM:t|̂ , being eliminated 

and just the t< t̂al counts being kept, the joint posterior distriliution of cus-

toniers^ x = {xi, X2,. •., x^) and muhiplicities t* = ( f j , • • •, ^K) is derived 

by marginalising out all the possible seating arrangements^ with Equation (3.1) 

Teh, 200Ga: Buntine and Hutter, 2010; Du et ah, 201()b 

(3.3) 

where is the generalised Stirling number [Hsu and Shine, 1998] given by the 

linear recursion [Buntine and Hutter, 2010; Teh, 2()()6a 

5*0,a = ^O.N 
CN _ n — 

qN+I _ CN , 

for M > N 

for M <N . (3.4) 

As a consequence, it follows that = 1 and = The major hur-

dle for using the joint distribution (3.3) is to compute the Stirling numbers. To 

avoid the intensive computation of order 0{NM), we can tabulate or cache the 

Stirling numbers for the required discount parameter a. In addition, these num-

bers rapidly become very large so computation needs to be done in a log spac« 

using a logarithmic addition to prevent overflow. Therefore. Eciuation (3.4) is 

computed in log si)ace as 

logSZV = + log (exp {logSZ-Ua - + - ^^^ «)) • 

The log() and exp() functions make the evaluation fairly slow. \Mien keeping a 

fixed, we can overcome this problem by placing a maximum value on M, say 

^Note customers x = {xi,x2,... ,xn) are explicitly represented by the customer counts 

{ n \ , n 2 , . • • ,n*K) i " Equat ion 

^Tlie last product in Eciuation (3.1) is changed to a St irhng nunilier in Ecpiation (3.3) by 

marginalising out all the s])ecific seating arrangements [see Teh. 20()6a. Ecjuation (26)]. 
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Algor i thm 2 Collapsed iiiultiplidty Gibljs sampling algoritliiii 

1. for oacli customer x„ eating a dish X'l do 

2. Remove x„ from the restaurant l)y decreasing nl, subject to nl > fl and 

= " iff K = If currently, nl = tl, then tl is decreased l̂ y one. 

3. Conditioned on the current t̂ ., sample for x̂ i a new dish A^/ according 

to Eciuation (3.3), and add it ])ack to the restaurant by increasing nl,. if 

tl, = 0, then increase tl, by one. 

4. Conditioned (m the new dish sample tp according to Equation (3.3), 

where t^, should ])e in the interval [1, /?̂  

5. end for 

100 or 1000 to limit the cached Furthermore, the computation with the two 

functions could suffer from fixed precision truncation error. es])ecially for large 

M. In practice, the type of Stirling numbers is normally set to Dovble in the 

computation. In order to save space without seriously losing precision, we could 

instead save the ffnal table in Float. 

Equation (3.3) gives the joint posterior distribution of two random variables, 

X and t. thus a simple two-stage Gibbs sampling algorithm [Robert and Casella, 

2005] can be adapted to sample each variable interchangeabh' conditioned on each 

other. Before presenting the two-stage Gibbs sampler in detail I first discuss some 

constraints on the two comits n* and t^ Intuitively, the numl)er of occupied tables 

in a restaurant should be less than or e(iual to the total number of customers 

currently being seated; and the tal)le count is equal to zero if and only if the 

customer count is zero. These constraints api)ly to and t*. Speciffcally, the 

nvmiber of customers eating a dish X* should be greater than or eciual to tp and 

if = 0. nl must be zero, i.e., 

tl = 0 if and onlv if n̂ . = 0 
• 

^^•hen removing and adding a custcnner, we nmst always bear in mind these 

constraints. 

Now I present the two-stage Gibbs sampler in Algorithm 2. We can see that 

the CRP l:)ased Gibbs sampling algorithms, like SSA, are no longer applical^le, 

^The vali.e of M depends on different applications. For instance, in tlie experiments of tlie 

segmented topic model in Cliapter 5, 1 set M to the maximum number of words in segments In 

the sequential LDA model, see Chapter 6. I set M to the double of this maxinunn number 
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Figure 3.3: An example of multi-level hierarchical PDF 
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Figure 3.4: An hierarchical CRP representation for a nnilti-level hierarchical 
PDF. There are two types of customers in each restam'ant, who arrive by 
themselves and who are sent by the corresponding child restaurant. 

since the underlying sequence of customer-table assignments are lost due to E(iua-
tion (3.3). I win empirically compare this CMGS with SSA in Section 3.5. 

The joint posterior distribution given by Equation (3.3) can be adapted hi-
erarchically to sample from the posterior of the PDF embedded in a multi-level 
hierarchy, see for instance Figure 3.3. The l)ase distribution at level j is now recur-
sively drawn from a PDF at level j - 1 . Then recursively applying Eciuation (3.3), 
we can derive the following joint posterior distribution 

piXi:j, t].j I a i : j , 6i:J. Hq) 

(3.6) 

where Ho is the base distribution for the highest level PDF, n^^ is the number of 
customers that arrive by themselves and eat NJ = Ylk=\ "j.'' - ̂ l ie recursion is 
done according to Figure 3.4, a hierarchical CRP representation for a nuilti-level 
hierarchical PDF. In the figure, rectangles re])resent the Chinese restaurants that 
are indexed by j , circles are tables finfl customers are .Tj,„'s. fj^m — A^ 
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indicates a disli X* is served at tal)le Hod arrows indicate tallies in the 
child restaurant are sent as ])roxy custonun's to its parent restaurant, so the total 
number of customers in restaurant j is Nj + This shows how the last two 
products in Equation (3.6) are derived. 

з .4 Blocked Table I n d i c a t o r G i b b s S a m p l e r 

In addition to SSA and CMGS algorithms, another promising sampling algorithm 
is a block Gibbs sampling algorithm based on an auxiliary latent variable, table 
indicator, which is introduced by Chen. Du and Buntine in [Chen et al.. 2011], I 
call the new algorithm the Blocked Table Indicator Gibbs Sampler (BTIGS). It is 
based on the table indicator representation built on top of the Chinese restaurant 
metaphor. 

Definit ion 3.2. [Table indicator) The taljle indicator u associated with each 
customer x is an auxiliary latent variable that indicates whether x takes the 
responsibility of opening (or contributing) a new table or not. If x opens a new 
table, I.e., the customer choosing to sit at an unoccupied table, u = 1. otherwise, 
u = 0. 

This representation could compensate for the information loss that might be 
caused by CMGS. As discussed in Section 3.3, customer-table assignments cannot 
be reconstructed from the two observations and tl) kept by CMGS. Losing 
the assignment information may result in bad mixing of the Markov chain in the 
sampling stage. However, recording all custom,er-table assignments requires large 
storage space. In order to reduce the information loss and the large space reciuire-
nient, the table indictor representation records table contributions of customers, 
rather than the customer-table assignments. 

The l)asic idea of the table indicator representation is that a table indica-
tor variable is introduced to dynamically record the tal)le contribution of each 
customer. If a customer takes the responsi])ihty of opening a new tal.le. let 

и, = 1; otherwise = 0. which indicates has chosen to share a dish with 
other customers. Figure 3.5 shows how the tal)le indicator representation works 
with seven customers in a restaurant. There are only three customers that have 
opened a new table. They are a:, and .x̂  respectively. Their indicators are 
set to 1. In tliis sense, the table indicator keeps track of table contribution of 
each customer, rather than the table identity. The table multiplicity tl dehned in 
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C M G S can l)e constructed from the indicators as 

N 

fl = ' 'k 
n=l 

For example, in Figure 3.5, for dish .Yj , the tal:)le count t* = + 1/3 + U4 = 2; 

for dish t^ = U2 + u^ + i/e + u j = 1. This construction iniphes that the 

statistics need to l)e kept for the table indicator representation can be the same 

as those kei)t in the multiplicity representation. Note given and f^.'s, we can 

compute the prol)al)iIity that a customer opened a tal)le. 

Condit ioned on customer eating dish X I and given rik and tk, the probal^il-
t* 

ity of this customer contril^uting a table is j^roportional to For instance, the 

probability of customer X3 contributing a table is | in Figure 3.5. Indeed, there 

is a uniformity in the table indicator assignment. Therefore, table indicators can 

be randomly assigned in order to recover the table contributions, and thus the 

explicitly recording table indicators for all the customers is unnecessary. 

The posterior distribution of the P D F from the table indicator representation 

can now be derived as follows. Let t* = ( t* ,^^ , . . . Jl;) l)e a vector of the table 

muhiplicities, u = {u]. it-j,. • • ,uiv) be a vector of latent table indicators, and 

X = {xuX2 , . . . , X n ) be a sequence of customers that are explicitly represented 

by per dish customer comits n^.s. It is easy to see from Ecjuation (3.7) together 

with Figure 3.5 that a specific table indicator assignment corresponds to a unique 

multiplicity representation, but a multiplicity representation gives Yik t'\{n*-t'y. 

l)ossible table indicator assignments. This choose term says any tl of the nl cus-

tomers are equally likely to contribute a table. As a consequence, Eciuation (3.3) 

can be computed in terms of the joint posterior distribution of x and u as 

/ \ 

p{x.t*\a,b,H)= • (3.8) 

\ k-y k k)-J 

This formula lets us convert the multiplicity representation {x,t*) to the ta-

l)le indicator representation {x,u). Consequently, modifying the joint posterior. 

Eciuation (3.3), along with Equation (3.8), we can write down the joint posterior 

distribution of x and u as 

p{x,u\a,h^H) = J . (3. J) 

It can l)e observed that this joint posterior distribution is exchangeable in the 

l)airs (Xn, since the posterior and related statistics used are all sums over 
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Figure 3.5: A table indicator representation of the PDF. The empty circles are 

unoccupied tables, the others are occupied tables. There are seven customers 

who arrive in a restaurant sequentially. Actually, only three of them have the 

responsibility of opening a new table. 
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Algori thm 3 Blocked tal)le indicator Gibbs sain})liiig algorithm 
1. for each customer a:„ eating a dish X^ do 
2. Sample u„ for Xn according to Ec^uations (3.10) to remove .x„. 
3. Jointly sample and u„ based on the joint posterior. Equation (3.9) 
4. Update l)otli and t l leased on the sampled values of and respec-

tively. 
5. end for 

data [see Chen et al., 2011, Corollary 1]. Thus, different sampling orders and 
table assignment s can yield the same indicator assignment u. 

To sample from the posterior, 1 introduce an adapted version {i.e., BTIGS) of 
the l)lock Gibbs sampling algorithm proposed in [Chen et al., 2011]. It is shown 
in Algorithm 3. BTIGS is different to Ixitli CMGS and its variants proposed by 
Buntine et al. [2010]; Du et al. [2()l()b,a, 2012b], all of which adopt the two-stage 
Gibl)S sampling algorithm to interchangeably and iteratively sampling x,, and 
t l . Instead, BTIGS allows jointly sample x'„ and (/„ by cancelation of terms in 
Eciuation (3.9). 

As 1 mentioned before. is randomly assigned in the sampling procedure, 
rather than (h-namically stored. While removing a customer from a restam'ant, 
we need first to sample the value of m„ with following probabilities 

p{u„ = 1 I = x;) = ^ = 0 I = A-) = ^ ^ . (3.10) 

It is interesting that the constraints put on the tl and nl discussed in CMGS (see 
Section 3.3) are implicitly guaranteed by the two prol)abilities. For example, if 
nl = t l and tl > 0, removing a customer x„ = A^ nmst cause t l to l̂ e decreased 
by one. In this case. Equation (3.10) always has p{u„ = l\ xn = XI) = 1 so that 
removing a table is guaranteed. The only case to which a careful attention should 
be paid is that a table cannot be removed for if t l = 1 and > t ^ Therefore, 
it should be assured that p{'Un = 1 | x„ = A-) = 0 and p{u„ = 0 | = A-) = 1 in 
the implementati(m of BTIGS. 

3.5 Empirical Comparison of the Three Sam-

plers 

All the three Gibbs sampling algorithms, i.e., SSA, CMGS, and BTIGS, can be 
embedded into an hierarchical context. However, it is difficult in experiments to 
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Tal)le 3.1: Experiiiieiit parameter settings for coiiii)ariiig SSA, CMGS and BTIGS 

Setting Xo. K a b 

Setting No.l 50 0 10 
Setting No.2 50 0 100 
Setting No.3 50 0.5 100 
Setting No.4 100 0 10 
Setting No.5 100 0 100 
Setting No.6 100 0.5 100 

isolate the side effects in complex hierarchies, such as those caused by different 
implementations, different hierarchical modelling methods and different hyper-
parameter settings or estimations. Therefore, in order to reduce the side effects 
as much as we can, the three samplers are investigated in this section in a simply 
controlled environment of niultinomial sampling, since the use of i)lain PDP or 
DP (i.e., the PDP/DP without a hierarchical structure) on a chscrete domain 
corresponds to nuiltinoniial sampling. In this way, we can do a precise quali-
tative comparison of these three samplers, which can further help explain their 
comparative performance in a more complex hierarchical context [Chen et ah, 
2011 . 

The goal of the following experiments is to compare the relative convergence 
speed of the three samplers in order to quantify the improvement of CMGS and 
BTIGS, compared with SSA. High precision of convergence is not a main concern 
here, since high precision would typically not be achieved in our hierarchical 
modelling context in which the DP and the PDP are normally used. Moreover, 
within the simply controlled environment, we can repeat dozens of Gibbs runs 
within a short time due to the fast computation. Therefore, the use of convergence 
diagnostics [Cowles and Carlin, 1996] or related theory is not required in this 
simple case. 

In all the experiments, the discount parameter a and the concentration pa-
rameter b are fixed, the base distriljution is uniform on a fixed dimension A', 
denoted l)y Uk. Table 3.1 shows six different parameter settings being used. For 
each of these parameter settings, 20 independent Gibbs runs are made. For each 
run, N samples are drawn from a single discrete probabilistic distribution fiĵ ^ 
that is randomly sampled from the PDP as follows. 

rik ^ 

PDP(a,6,t/ ; , - ) 

multinomial(//;^, A )̂ , 
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2 44 

(a) (b) 

Figure 3.6: The plots of mean estimates of T for one of the 20 Gibbs runs (a) and 

the standard deviation of the 20 mean estimates (b) with a = 0. b = 10, A" = 50 

and N = 500. 
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Figure 3.7: The plots of mean estimates of T for one of the 20 Gibl)s runs (a) 

and the standard deviation of the 20 mean estimates (1)) with a = 0.5, b = 10, 

K = 50 and N = 500. 

where N is set to l()/\ in all the experiments, and the sum of entries in the 

counting vector n/v is equal to N . 

The basic ciuantity estimated during each Gibbs run is the total number of 

tables T. For the six parameter settings, a rough determination is done for con-

vergence time required in milliseconds. Let C indicate the sampler's convergence 

time. A burn-in for each individual Gibbs sampling run is done for millisec-

onds. Different convergence times are used for the different parameter settings. For 

ĵ - ^ 50̂  c = lOOOms. and for K = 100, C = lOOOOms. Then the mean es-
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Figure 3.8: The relative standard deviations of T 

timates of T from all major Gibbs cycles from burn-in up to the current time 
are recorded. In addition, since there are 20 independent Gibbs runs, a sample 
standard deviation of the 20 means is also recorded at corresponding cycles. The 
time series of means for individual runs and the sample standard deviations allow 
one to assess empirically how fast the Gibbs samplers are converging. 

Figures 3.6 and 3.7 show examples of the time series of mean estimates of 
the total table counts and the time series of standard deviations of the 20 means 
with two different parameter settings. When a = 0, the PDF is indeed the DP. As 
we can see from these figures, regardless of the PDF or the DP, the mean esti-
mates and standard deviations for BTIGS and CMGS become relatively stable 
more quickly than those for SSA, especially for BTIGS. Besides, both BTIGS 
and CMGS have smaller standard deviations than SSA, which indicates a faster 
convergence. 

In order to further assess the relative performance of the three algorithms, 
the relative values of standard deviations are computed in ratios as 

S-d-CMGS s.d. BTIGS 
S.d.CMGS + S.d.SSA S.d.BTIGS + S.d.SSA 
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which should be close to 0.5 if the two standard deviations are about ecjual. If the 
ratio score is less than 0.5, say 0.25, it means the standard deviation for either 
CMGS or BTIGS is about three times smaller than that for SSA, thus CMGS 
and BTIGS converge faster. Otherwise, the standard deviation for the SSA is 
smaller, which means SSA converges faster. 

Figure 3.8 shows six plots for the six different parameter settings. Each plot 
overlays 9 time series of the ratio scores of the standard deviations on the mean 
estimates of T comi^uted across 20 Gibbs runs for the 9 different data samples 
n/v- We can see that in the context where both the concentration parameter 
and the discount parameter are hxed correctly, both CMGS and BTIGS are 
signihcantly faster than SSA, and CMGS has perhaps half the standard fleviation 
of BTIGS. Moreover, the improvement of CMGS seems more pronounced with 
the higher dimension. 

3.6 Gibbs Sampling for the CPDP 

In Section 3.5, I showed the superiority of CMGS and BTIGS over SSA in a 
controlled environment of multinomial sampling. In this section, I will generalise 
CMGS and BTIGS to do posterior inference for the CPDP in a discrete space, 
where all probabilities are finite and discrete. For easy understanding, I will de-
scribe the two techniques in context of a DAG structure, i.e. Equation (2.11). Note 
it is also worth pointing out that a SSA based sampling algorithm can be found 
in [Wood and Teh. 2009], and Zhang et al. [2010] introduced a Gibbs sampling 
algorithm based on the stick-breaking construction discussed in Section 2.4.1. 

The challenge of doing Gibbs sampling over the posterior of CPDP is to 
handle to multiple base measures. It is more complex than the PDP. In the 
Chinese restaurant metaphor for the CPDP eml^edded in a DAG structure [i.e., 
the graphical PDP in Definiticm 2.G), all the restaurants {i.e., nodes in the DAG) 
are linked to nniltiple parent restaurants. In each restaurant, dishes served in 
different floors are drawn from difterent parent restam'ants. The number of fioors 
is equal to the number of parents. Then, how can we decide from which parent a 
l)articular dish is drawn? or how can we decide to which parent the newly openenl 
table is sent as a proxy customer? 

Figure 3.9 shows an example of the CRP representation of the CPDP within 
a DAG structure. There are three restaurants, labeled with 1, 2 and 8, that cor-
respond to three nodes in Figure 2.5, i.e., Gi, G2 and Gg respectively. G] is 
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G 

© 

© 
Figure 3.9: A CRP representation for a CPDP enil)edded in a simple DAG stnic-
ture taken out from Figure 2.5. The red stars indicate that the dishes are (h'awn 
from G], and the green ones indicate that the (hshes are drawn from Gg. 

drawn from a CPDP with the admixture of G2 and Gg as base distril^utions. To 
demonstrate clearly the representation, I assume that all probability distributions 
associated with root nodes (nodes with no parents) in Figure 2.5 are drawn from 
the same CPDP with a single discrete base distril:)Ution HQ. Thus, atoms {i.e., 
dishes in the global menu) drawn from HQ can be shared among all the nodes 
{i.e., restaurants). Therefore, dishes, denoted by X^ in Figure 3.9, with the same 
suliscripts but different colored stars are the same dish drawn from the global 
menu. Different colors are just used to indicate these dishes are ordered through 
different parent restaurants and served by tables located in different floors in 
the restaurant. For example, X* and are the same dish, l^ut ordered through 
restaurant 1 and restaurant 8 respectively. As indicated l)y dotted arrows with dif-
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foieiit colors, tables in difi'ereiit floors of restaurant 2 are sent as proxy enstoniers 

to either restaurant 1 or restaurant 8. For example, fo.? is sent to restaurant 8. 

because the dish it serves is drawn from Gg. 

Now, we are ready to nrodify CMGS and BTIGS algoritlnns to make them 

applicable to the CPDP. First, I adapt the multiplicity representation of the P D F 

to the CPDP. Refer to Equation (2.11), G j is a random probalnlity (hstribution 

associated with node j , P a ( j ) is a set of i)arent nodes of j , each of which is 

indicated by Gj, (7, 7) is the directed edge from node i to node j , and pt^ is the 

mixture weight cm {t,j), s.t. EjePa(j) = 

Now, let n*^ be the count of customers eating X^. at node j , which includes the 

customers arriving by themselves and those sent by the child nodes of j (Cd( j ) ) , 

see Figure 3.9, and l:)e the table multiphcity. Ecjuation (3.3) can he modified 

to yield the joint posterior of all customer counts rij and table multiplicities t* 

for a C P D P at node j as 

p{Xj, t* I aj, hj, Gi, G2, • • • , '^|Pa(j)|) 

/ \ 

l i s t . E 
(3.11; 

where Tj = t*,. and Nj = ri*,.. To expand the sum with nmltinoniial 

identity, t*can be decomposed into i)arts, each of which indicates the 

number of tables serving X^ in the floor of restaurant j, s.t. slj,^. > 0. The 

s* . , tables are sent to i^arent i as proxy customers. Thus, we have 
l.JM 

iePao) ceC(l(j) 

where riĵ k is the number of customers arriving by themselves. For example, there 

are 3 tallies serving dish A'g* in restaurant 2 in Figure 3.9, i.e., t^ = 3. Two of them 

(f2,5 and fa.e) are sent to restaurant 1 and the left one (^2,7) is sent to restaurant 

8. Thus, nt 3 = 2 + 2 = 4, and .3 = 4 + 1 = 5. 

As a consecjuence, we can decide with this decomposition how many tables 

serve a dish ordered from a specihc parent. The problem of involving nnilti])le 

base measures can now be solved. The hnal joint i)osterior distribution of Xj and 
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s* {i.e., (st.,.,. • • •' ^^ 

P {xj, s* I bj, G'l, G2, • • • , = 

iePaU) 
(3.12) 

t* 
where C î"'"' is a niultiuoniial coefficient which is computed as 

i* 
^ s! 

Indeed, Equation (3.12) can l̂ e treated as a generahsation of Equation (3.3). Re-
place the equations in Algorithm 2, we can derive the Gibbs sampling algorithm 
for the CPDP. 

Now. I generalise BTIGS for the CPDP. Unlike the table indicator represen-
tation for the PDP (see Section 3.4), given a niultii)licity representation, there 
^rc riiiLi ^s*'^,!* - f ) flioices of the table indicator configurations, where ji,A"' i,h j^k ' 

( a e P a a ) H k - t y ^ 

Therefore, the joinst posterior for the CPDP at node j based on the multiplic-
ity representation can be reconstructed from that based on the table indicator-
representation as (similar to Equation (3.8)) 

/ A' 

\k=l J ' 

then, modifying Equation (3.12) with reference to Equation (3.13) gives the joint 
posterior distribution of Xj and table indicators Uj as follows 

P {xj^ Uj I aj, bj, Gi, G2, • • • , G 

(bjlajh, 
ib:. 

> K r-S.fc 
"jJTj 7 7 ^n*), "-'sl^ -p-p n 

iePaO) 

iePa(j) 
(3.14) 
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Here the defiiiitiuii of fable mdicator for the CPDP is slightly different from 

that for the PDP {i.e.. Dehiiitioii 3.2). For the CPDP embedded in a DAG. 

there can be nniltiple parents for each node. Tal)les contributed by customers 

at one node can be sent to different parents. Thus, the values that the table 

indicator can take on should be the indices of all the parent nodes if a tal)le is 

created. Otherwise, the table indicator is zero. For example, in Figure 2.5, if a 

customer contributes a new table at node G5 and the new table is sent to node 

G7 as a proxy customer, then the table indicator for this customer is u = 7. Note 

although I just elaborated how table indicator works for the CPDP, dynamically 

recording all the table indicators is not re(iuired in i)ractice. Like BTIGS, we can 

randomly assign table indictors by sampling. 

\\'hile adapting Algorithm 3 for doing sampling for the CPDP. we should pay 

attention to Step 2, sampling to remove a customer eating dish X^ from 

node j {i.e.. restaurant j in the CRP representation), since the deconi])osition of 

t* f. makes the sampling more com])lex than in Algorithm 3. If Xj,„ has contributed 

a table, which floor is the table k)cated in? Based on the recorded counts. 

s*jf.'s and tj^'s, we cannot tell the exact floor (recall that each floor corresponds 

to a parent) because there could be nniltiple floors serving X^. For example, A'j* 

and A'3 are served in both floors in restaurant 2 in Figm'e 3.9. Consequently, it is 

necessary to consider all possibilities Ijy computing the i)robabilities of allocating 

a table contril)Uted by to any floors serving X^. That is, given = A *̂ and 

all the counts, we have 

p{uj,n = i I X,,, = XI) = ^ for . e Pa(j) (3.15) 

= 01 = x t ) = (3.1G) 

Finally, sampling for the CPDP at each node, we can adapt Algorithm 3 

])y replacing Equation (3.9) with Eciuation (3.14), and Eciuations (3.10) with 

Eciuations (3.15) and (3.1G). However, to do sampling in the whole DAG. one 

needs to modify Algorithm 3 with recursions. I will give a concrete example in 

Chapter 7 by embedding the CPDP in a document structure. 

To deal with the mixture weights, pj , we can predehne the weights with 

respect to how important each parent node i is to the node j , or we can even 

make pj uniformly distributed. The approach adopted here is to i)ut either an 

informati\'e or a non-informative i)rior on Pj. In regard to Dirichlet-Midtinoniial 

conjugacy and apphcations to discrete (U)mains, such as language processing. 
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a |Pa(j)|-(liiiieiisi()ii Diriclilet clistril)utioii is used, i.e., Pj ~ Dir [ g ] . 
\Mtli Pj iiiarginalised out, Equations (3.12) and (3.14) can l)e fiu'tlier changed to 
respectively 

r (E.gPaO) Qi,j) n . ePag) ^ + Eti ^lu] 

r ( E . e P a o ) + E l i , 

iePao) k=} 

r ( E . e P a o ) LKj) n . ePao ) T + Z L 

/ 
(3.17) 

i.j.A-

n , . P a ( , ) r ( a . ) r (E .ePa( . ) a . + ^ 

\k=i 

-I \ 

iePao) / 
(3.18) 

The differences between the Gil)bs sampling scheme proposed in [A\bod and 
Teh. 2009] and those discussed aliove reside in the differences between the SSA 
and the CMGS/BTIGS. Wood and Teh's scheme is based on a mochfied version 
of the SSA (see Equation 3.1) according to the nuilti-fioor Chinese restaurant 
franchise representation, which is a direct extension of the Chinese restaurant 
franchise representation in [Teh et al., 2000]. In their method, we have to do 
l>ookkeeping of menu mdtcator variables [i.e., floor variables in [Wood and Teh, 
2009]) as discussed in Section 2.4, when unseating and reseating customers. The 
purpose of the bookkeeping is to keep track of the parent restaurants to which 
each table should be sent as a proxy customer in the DAG structure. Therefore, 
in the sampling procedure, if unseating (reseating) a customer causes removing 
(adding) a taljle in a restaurant, it is essential to recursively sample to remove 
(add) a proxy customer (and a table if necessary) to the corresponding parent 
restaurant, see the i)redictive (hstrilnition shown in E(iuation 2.13. 

Howevei-, the schemes based on the C.MGS/BTIGS do not require to maintain 
the menu mdicator varial)les. since both the CGMS and BTIGS have integrated 
out all the possible seating arrangements, refer to Sections 3.3 and 3.4. All need 
to be kept are table counts, i.e., sl -^Js in each restaurant. In order to c:onipute 
the table counts, we nnist recursively check whether a table needs to be removed 
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(addcnl) from a restaniaiit and its (•orros])()iidiiig parent restanrants, if a cus-
tomer is unseated (reseated). Specifically, if a tal)le is added or removed from a 
restaurant, we need to consider all the possible linked paths from this restaurant 
towards the root, where a j^roxy customer (and a table if necessary) can be recur-
sively added or removed. Because rnemi indicator variables are not dynamically 
recorded, one needs to sample over all the jiossible i)aths to add or remove a 
tal)le. See for exami)le the inference scheme for the AdaTM in Chapter 7, which 
used Equation 3.18 l)ased on the BTIGS. 

3.7 Summary 

In this Chapter, I liaA'e reviewed Teh's sampling for seating arrangement (SSA) 
sampler, and introduced the coUapsed nuiltiplicity Gibbs sampler (CMGS) and 
the blocked tal)le indicator Gibbs sami)ler (BTIGS). The results of experiments 
run in a simply controlled environment of multinomial sampling have prelimi-
narily shown that the CMGS and BTIGS converges much faster than the SSA 
does. It would be \'ery interesting to further compare the three samplers in dif-
ferent contexts, for instance, to compare the three samplers in tojjic models or 
the word segmentation models by [Goldwater et al.. 2009 . 

The techniciues for doing posterior inference with networks of PDPs or CPDPs 
can be readily developed from these hkelihoods, i.e., Ecjuations (3.6), (3.9), (3.12) 
and (3.14). In Chapters 5 . 6 and 7. I will show these can l)e used to do inference 
for structured topic models. 
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Chapter 4 

Probabilistic Topic Modelling 

Topic modelling is an increasingly useful class of techniciues for analysing not only 
large unstructured documents but also data that posit •'hag-of-words" assump-
tion. such as genomic data [Flaherty et al., 2005] and discrete image data [Wang 
and Crimson, 2008]. As a promising unsupervised learning approach with wide 
application areas, it has gained significant momentum recently in machine learn-
ing, data mining and natural language processing connnunities. In this chapter. I 
discuss briefly the fundamentals {e.g., basic idea and posterior inference) of topic 
models, especially Latent Dirichlet Allocation (LDA) by Blei et al. [2003] that 
acts as a benchmark model in the topic modelling connnunity, since these are the 
important prercxjuisites for understanding the structured topic models that will 
l)e developed in Chapters 5, 6 and 7. 

This cdiapter is organised as follows. The basic idea of the probabilistic topic 
models is discussed in Section 4.1. Section 4.2 gives an fairly detailed introduc-
tion to LDA, then the Cibbs sampling algorithm for LDA is presented in Sec-
tion 4.3. Finally, I will discuss applications of topic models in Section 4.4. 

4.1 Probabilistic Topic Models 

Probabilistic topic models [Deerwester et al., 1990; Hofmann, 1999, 2001; Blei 
et al.. 2003; Cirolami and Kaban, 2003; Buntine and .Jakulin, 2006; Steyvers and 
Criffiths, 2007; Blei and Lafferty, 2009; Heinrich, 2008] are a discrete analogue to 
principal conipcment analysis (PCA) and independent component analysis (ICA) 
that model topic at the word level within a docannent [Buntine, 2009]. They 
have many variants such as Non-negative Matrix Factorisation (NMF) [Lee and 
Seung, 1999], Probabilistic Latent Semantic Indexing (PLSI) [Hofmann, 1999 
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and LDA [Blei et al., 2003]. and have applications in fields sneli as genetics 
Pritchard et a l , 2000; Flaherty et ah, 2005], text and the web [\\ei and Croft, 

2006: Bi'ro et ah, 2008], image analysis [Li and Perona, 2005: Wang and Crimson. 
2008: He and Zemel, 2008; Cao and Fei-Fei, 2007: Wang et ah, 2009a], social 
networks [McCallum et ah, 2007; Mei et ah, 2008] and reconnnender systems 
Pennaccliiotti and Guruniurthy. 2011]. A miifying treatment of these models and 

their relationship to PCA and ICA is given by Buntine and .Jaknlin [2006]. The 
first Bayesian treatment was due to Pritchard et al. [2000] and the broadest model 
is the Camma-Poisson model of Canny [2004 . 

Specifically, probabilistic topic models are a family of generative models for 
learning the latent semantic structure of a corpus hy using of a hierarchical 
Bayesian analysis of the text content. Their fundamental idea is that each doc-
ument is a convex mixture of latent topics, each of which is a probability distri-
bution over words in a vocal)ulary. Clearly, a topic model is a factor model that 
specifies a simi)le probabilistic process by which documents can be generated. 
It reduces the complex process of generating a document to a small number of 
probabilistic steps by assuming ext:hangeability. 

To generate a new document, a distribution over topics {i.e., a topic distrihu-
tton) is first drawn from a probability distribution over a measurable space. Then, 
each word in the document is drawn from a word distribution associated with a 
topic that is drawn from the generated topic distribution. The semantic properties 
of words and documents can be expressed in terms of probabilistic topics. Let 
be document specific topic distribution, (ji^.j^ be topic specific word distributions, 
Zi be a topic associated with word iVi, where € { ! , . . . , A'}, a topic model can 
be interpreted in term of a mixture model as 

Zi\ flr^ ^ 

for i = 1 , 2 , . . . , n 

for 7 = 1 , 2 , . . . , n, 

where F(-) is set in general to a multinomial distribution, ancl a Dirichlet distri-
bution ( see Clia])ter 2) is put as a prior on fx. 

Applying standard Bayesian inference techniciues, we can invert the generative 
process to infer a set of optimal latent topics that maximises the likelihood (or 
the posterior probability) of a collection of documents. Compared with the purely 
spatial representation {e.g.. Vector Space Model [Salton and McCill. 1986]), the 
superiority of representing the content of words and documents in means of prob-
abilistic topics is that each topic can be individually interpretable as a prol^a-
bility distribution over words, it picks out a coherent cluster of correlated terms 
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Stoyvers and Griffiths, 2007]. We should also note that each word can ai)])ear in 
multiple clusters, just with different i)r<)l)abilistic weights, which indicates toi)ic 
models could be able to capture polysemy [Steyvers and Griffiths, 2007]. The gen-
erative process is purely based on the ''bag-of-words' assumption where only word 
occurrence information {i.e., fre(iuencies) is taken into consideration. This well 
corresi)on(ls to the assumption of exch.angeabtlity in Bayesian statistics. However, 
word-order is ignored even though it might contain important contextual cues to 
the original content. 

As a probabilistic generative process, variants and extensions of toi)ic models 
can be used to postulate complex latent semantic structures resi)onsible for a 
collection of documents, making it possible to use Bayesian inference to recover 
those structures. The goal of fitting those topic models is to hnd the best set 
of latent topics that can well explain the observed data {e.g., (k)cunients). In 
topic modelling literature, there are two ways in general to do approximate pos-
terior inference, one is variational inference [.Jordan et al., 1999], the other is 
Gibbs sampling [Neal, 2000; Rol^ert and Casella, 2005]. The latter is discussed in 
Section 4.3. 

4.2 Latent Dirichlet Allocation 

Latent Dirichlet Allocation (LDA) [Blei et al., 2003], a full Bayesian extension of 
PLSI, is a three-level hierarchical Bayesian model for collections of discrete data, 
e.g., documents. It is also known as nmltinoniial PGA [Buntine, 2002 . 

Comi)ared with PLSI, LDA puts a Dirichlet prior on topic distributions, which 
overcomes the difficulty, faced by PLSI, in the generalisability of modelling the 
unseen documents. Girolami and Kaban [2003] showed that PLSI is a niaxinmm a 
posterior estimate of LDA with a uniform Dirichlet prior. Ghoosing the Dirichlet 
prior siniplihes the problem of posterior inference due to the Dirichlet-Multinomial 
conjugacy, see Property 2.2 in Ghapter 2. Moreover, if the Kullback-Leibler mea-
sure is used, instead of least sciuare, then NMF behaves like a maxinnun likelihood 
version of LDA. 

As a fundamental model for topic modelling, LDA is usually used as a bench-
mark model in the empirical comparison with its various extensions. Figure 4.1 
illustrates its graphical representatitm using plate notation (see [Buntine, 1994 
for an introduction). In this notation, shaded and unshaded ncxles indicate ob-
served and unoI)served {i.e., latent or hi(klen) variables resi)ectively; arrows in-
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Figure 4.1: Latent Diriclilet allocation 

dicate conditional dependencies among variables; and plates indicate repeated 

sampling. 

For document analysis, LDA is a hidden varial)le moflel of docimients. The 

observed data are words w of each document, the two hidden variables are fi {the 

topic distnbuUon) and z (the word-topic assignment), and the model j^arameters 
are the Diriclilet prior a and (p^.j^ {worri distributions). To generate docmnents, 

LDA assumes the following generative process: 

L For each topic k where k E { 1 , . . . , A } 

(a) Draw word distriliution (f)), ~ Dirv'(7) 

2. For each document i G { ! , . . . , / } 

(a) Draw topic distribution /X; | a ~ DirA-(a) 

(b) For each word ?t'j; in i, where i € { 1 , . . . , L j } 

i. Draw a topic z^ 

ii. Draw a word Wj,; 

fjî  ~ Discrete(/xJ 

id. 4>i: :K Discrete(0 

Here, the hyper-parameter 7 is a Diriclilet prior on word distributions [i.e., a 

Diriclilet smoothing on the multinomial parameter cf)̂ . [Blei et al., 2003]), and 

DirA-(-) indicates a A'-dimensional Diriclilet distribution. The model parameters 

can be estimated from data. The hidden variables can be inferred for each doc-

ument by simply inverting the generative process. These hidden variables are 

useful for ad-hoc document analysis, for exanii)le, information retrieval [W'ei and 

Croft, 200G] and document summarisation [Arora and Ravindran, 2008a,))]. With 

this process, LDA models documents on a low-dimensional topic space', which 

^Note the number of topics associated with a document collection is usually far smaller than 
the vocabulary size, since documents in a collection tend to be heterogeneous. 
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])rovi(les not only an explicit semantic representation of a docnnient, l^nt also a 
hidden topic decomposition of the docnnient collection [Blei and Lafferty, 2()()9 . 

Given the Dirichlet i)riors a , 7 , and the observed docmnents Wi-j, the joint 
distril)ntion of l)oth the ol)served and the hidden varial)les can l)e read directly 
from Fignre 4.1 using distril)uti()ns given in the above generative process as: 

pifx^.j, zi-j, w^.j I a , 7) 
I< I Li 

k=\ 2=1 /=! 
The varial)les (p̂ .,̂ - are corpus level variables, which are assumed to be sampled 
once for the corpus; document level varial)les /u,,'s are sampled once for each 
document; and varial)les Zi/s are word level variables that are sampled once per 
word ill each document. 

Given the obser^'ed documents Wi-j, the task of Bayesian inference is to com-
pute the i)()sterior (hstribution over the model i)arameters (j)^.^ and the hidden 
varial)les, fi^.,, and The posterior is 

I wi:i, a , 7) 
21;/. wi,i I a . 7) 

Although LDA is a relatively simple model, a direct computation of this 
posterior is infeasible due to the summation over topics in the integral in the 
denominator. Training LDA on a large collection with millions of documents 
can be challenging and efficient exact algorithms have not been found [Buntine, 
2009]. Therefore, one has to appeal to approximate inference algorithms and the 
following methods are used, i.e., the mean field variational inference [Blei et al., 

2003], the collapsed variational inference [Teh et al., 2007], the expectation prop-
agation [A'linka and Lafferty. 2002], and Gibbs sampling [Griffiths and Steyvers, 
2004]. Buntine and Jakulin [2000] have given a fairly detailed discussion on some 
of those methods. They also mentioned some other methods, such as the direct 
Gibl:)S sampling ])y Pritchard et al. [2000] and Rao-Blackwellised Gibl)s sampling 
by Casella and Robert [1996 . 

Furthermore, W'allach et al. [2009] have studied several classes of structured 
jM-iors for LDA, i.e., asymmetric or symmetric Dirichlet priors on n and (p. They 
have shown that LDA with an asymmetric prior on significantly outperforms 
that with a symmetric prior. However, there is no benefit while putting an asym-
metric prior on cj). Sato and Nakagawa [2010] have further put a PDF prior (see 
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Section 2.3) on (j) to introdnce the power-law phenomenon of a word (hstrilxition 
hi topic models. They have shown a better performance than the standard LDA. 

Ont of all the i)r()i)ose(l approximate inference algorithms, each of which has 
advantages and disadvantages, a thorough comparison of these algorithms is not a 
goal of this thesis. Hereafter I will focus on the collapsed Gibbs sampling algorithm 
introduced in [Grifhths and Steyvers, 2004], details can be found in [Steyvers and 
Griffiths. 2007]. The collapsed Gil)bs sampler is found to be good as others. It is 
also general enough to be a good base for extensions of LDA. 

4.3 Approximate Inference via Gibbs Sampling 

Since we can easily write down the full conditional distribution ,w) 

by marginalishig out the document-topic distributions, i.e., fiy,. from the joint 
distri1)ution, Eciuation (4.1). it is straightforward to use Gibbs sampling [Geman 
and Geman, 1990]. a si)ecial case of the Metropolis-Hastings algorithm in the 
Markov chain Monte Carlo (MCMC) family. The collapsed Gibbs sampling algo-
rithm for LDA marginalises out fi^., and instead of explicitly estimating 
them. The strategy of marginalising out some hidden variables is usually referred 
to as "collapsing" [Neal. 2000]. which is the same as Rao-Blackwellised Gil^bs sam-
pling [Gasella and Robert, 199G]. The collapsed algorithm sanrples in a collapsed 
space, rather than sampling parameters and hidden variables sinniltaneously [Teh 
et al.. 2007]. So. Griffiths and Steyvers' algorithm is also known as a collapsed 
Gibbs sampler. 

The i)rinciple of Gibl)s sampling is to sinnilate the high-dimensional pro]:)abil-
ity distribution by conditionally sampling a lower-dimensional subset of varial^les 
via a Marko^' cdiain, given the values of all the others fixed. The sampling pro-
ceeds mitil the chain l)ecomes stable {i.e., after the so-called 'Tmrn-in ixniod, 
the chain will burn-in to a stable loc:al optimmn). Theoretically, the probabihty 
distribution drawn from the chain after the ^'burn-nr period will asymptotically 
a])proach the true posterior distribution. In regard to LDA, the collapsed Gibbs 
sampler considers all word tokens in a document collection, and iterates over 
each token to estimate the probabihty of assigning the current token to each 
topic, conditioned on topic assignments of all the other tokens. 

To deiive the full conditional distributions, we need first to compute the 
joint distribution given in Equation (4.1) by using the Dirichlet integral. Let 
rik = ("A-,1, • • •, "a-.k) where /?./,.„ is the number of times word v is assigned 
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a topic k: and m, = ( / » , , ] , 2 , ) where /??,• /,. is the iiuiiiber of word 
tokes in docuiiieiit i to which topic k is assigned. Thns, given ah the documents, 
Ecjuation (4.1) is further computed as 

K 
Wi-,] I a , 7 ) = 

k=i 

Betav (7 + n^.) j-p Beta/,-(a + m j 
Betav (7 ) i=l BetaA'(a) 

(4.2) 

^^'ith a simple cancelation of Ecjuation (4.2), the ftill conditional distrilMition 
can be derived as 

nk,w,,i + Iw.j >ni,k + ak (4.3) 
ELi ink + Iv) + 

After a sufficient nmnber of Gibl)s iterations, which means the sampler has 
burned-in, the Markov chain is ready to sample. Given the posterior sample 
statistics, the latent variable /x and the model parameter (p can be estimated 
using the expectation of the Dirichlet distribution (see Section 2.1) as: 

(pk,v = 

Due to the extensive computations recjuired by the topic sampling for each 
word token, particularly while the number of topics and the corpus size are large 
(which is usually the case in real applications), Porteous et al. [2008] presented 
a fast collapsed Gibbs sampling algorithm, an efficient variant of Griffiths and 
Steyvers' sampler. This fast version signiffcantly reduces the sampling operations 
based on the notion of skewed sampling distribution, whicli means the i)robability 
mass is always put on a small fraction of K topics. With the same motivation, 
Xiao and Stibor [2010] gave another version of fast sampling method that puts a 
multinomial distribution on the number of times each word type is sampled in a 
document. 

4.4 Applications and Extensions 

Since the first introduction of topic models, particularly PLSI and LDA. they 
have been broadly applied for machine learning and data mining, particularly in 
information retrieval, text analysis and computer vision. For instance, 

Information retrieval Azzopardi et al. [2004]; Buntine et al. [2004]; Wei and 
Croft [2006]; Gheniudugunta et al. [2007]: Tang et al. [2011] have adapted 
topic models to information retrieval. Some of them have shown that topic 
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model l)as(>d iiifoniiaticni letiieval iiiethods can outperforiii alternative meth-
ods that are l)ased on. for example. Latent Semantic Indexing [Deerwester 
et al., 1990], the mixtnre of uni-grams model [AlcCallnm, 1999]. Bh'o et al. 
2008] enii)lo3^ed a modified LDA, so-called mnlti-cori)us LDA, to handle the 

problem of web spam filtering, which demonstrates a relative inipro\'enient 
over a strong content and link featnre baseline. 

Text analysis Multi-docnment snnmiarisation is an interesting application of 
topic models in the text analysis domain. It is an automatic procedure that 
aims at the identification of the essence of a set of related documents. The 
LDA mode can be usefl to decompose a document collection into different 
topics, and then find the sentences that adequately represent these top-
ics. Arora and Ravindran [2008a,b] described an approach that uses LDA 
to c:apture the underlying topics of a set of df)cuments, and further uses 
Singular Value Decompositiejn (SVD) to find the most orthogonal repre-
sentation (topic vector) of sentences. Those sentences can be chosen to be 
])ut together as a sunnnarisation. Purver et al. [2006]: Misra et al. [2009]; 
Blei anrl Moreno [2001] have further used topic models in semantic text 
segmentation. The segment Ixjundaries are deternnned based on the to];ic 
change. Some other apphc:ations of topic models in text analysis are such as 
sentiment analysis [Mei et al., 2007; Titov and McDonald. 2()08a,b; Lin and 
He. 2009; Brody and Elhadad, 2010], sparse text classification {e.g.. twitter 
Ritter et al., 2010]. web segments [Phau et ah, 2008] and nncroblogs [Ra-

niage et ah, 2010]), entity resolution [Bhattacharya and Getoor, 2006], and 
word sense disambiguation [Boyd-Graber et al., 2007 . 

Computer vision Tojjics models have also been adapted for comi)uter vision. For 
example. LDA has been used to discover ol)jects from images [Cao and Fei-
Fei, 2007], and to classify images into different categories [Li and Perona. 
2005], and to assort human actions [Xiel^les et ah, 2008]. In particular, 
^̂ '•ang and Grimson [2008] proposed a Spatial Latent Dii'ichlet Allocation 
(SLDA) model which encodes spatial structures among visual words (or im-
age patches). It partitions the visual words that are close in space into the 
same documents. In discovering objects from a collection of images, SLDA 
outperforms LDA. 

Furthermore, standard topic models, es])ecially LDA. have been extended in 
several ways to relax assumi)tions {i.e., ''hag-of-woTd.^'' and the fixed number of 
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topics) or to incorporate l)ey<)iKl the ''bag-of-words" iiifonnatioii. 

In order to model lunv topics evolve over time in large se(iuentially organised 
documents, [Blei and Lafferty, 2(K)Gb] introduced a dynamic topic model (DTM) 
which removes the document exchangeability assumption (i.e., the joint i)osterior 
distribution is invariant to permutations of the ordering of docmnents [Blei. 2011]) 
made by LDA. The DTM puts a random walk model on the natural i)arameters 
of multinomial distril)Utions (denoted by ) to model sequential data depen-
dencies. In the DTM, corpus is divided by time slice. Documents within each time 
slice are modelled with a A'-component LDA. Topics associated with time slice t 
evolve from those associated with time slice t - 1 [Blei and Lafferty, 2009]. The 
DTM chains the natural parameters for each topic k (fS^j.) at different time slices 
in a random walk model that evolves with Gaussian noise as 

It is clear that the natm'al parameters at time slice t - 1 are the expectation for 
the distribution of the natural parameters at time slice t, and the correlation of 
samples from the above distribution is controlled through adjusting the distri-
bution variance. Then. (3fj. is mapped to the nniltinoniial mean parameters </),j, 

fD0t,k.W 

(Pt.k,w = 

However, the nonconjugacy of the Gaussian and the nniltinoniial makes exact 

posterior inference intractable. The authors adapted Kahnan Filtering to do an 

approximated inference. Here, we should note that the DTM allows topics them-

selves to change over time. 

In the DTM, data are required to be divided into discretised time slices. \\ ang 

et al. [2008a] argued that ''the choice of discretisation affects the memory re-

quirements and computational complexity of posterior inference''. They further 

generalised the DTM to handle the continuous time space using a Brownian mo-

tion model. In the continuous DTM, the natmal parameters of the nniltinoniial 

distributions evolve as 

where A, is the elapsed time between time points t - 1 and t. Thus, we can see 
that the difference between the continuous DTM and the DTM resides in the 
way of handling time. Other models following the DTM are used ciuite often in 
data mining to analyse streamed data to identify topic trends, e.g., the on-line 
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LDA model [AlSuiiiait et al., 2008]. topics over time model [Wang and McCallum, 
2000], the inheritance topic model [He et ah, 2009]. the Markov topic model [\\'ang 
et al., 20091)] and the dynamic mixtin-e model [\A'ei et ah, 2007. 

The "-hag-of words"' assunii)tion made by LDA assumes the order of the words 
in each document does not matter, but this assumption is sometimes unrealistic 
and can cause to mistakenly neglect the important contextual information con-
veyed l)y word-orders. Griffiths et al. [2005] and Wallach [2006] i)resented two 
extensions of LDA to model words unexchangeably. Grifhths et al. [200.5] used 
a combined model to capture the syntactic (word-orders) and semantic (topics) 

m-by alternating l)etween a standard HMM and LDA. ^^'hile \\allach [2006 
serted a Dirichlet l)igram language model [Mackay and Peto, 1995] into LDA 
to generate topics conditioned on the context. A similar independence assmnp-
tion is also made on to])ics. which says the learned toi)ics are unrelated to each 
other. However, considering topic correlations may give us a rich posterior to])ic 
structure. These models include the correlated topic model (CTM) [Blei and Laf-
ferty, 2006a], the Pachinko allocation model [Li and McCahum. 2006] and the 
hierarchical LDA (liLDA) [Blei et al., 2010] and so on. 

In the CTM. topic pro])ortions are modelled Iw a logistic normal (listril)ution 
that allows for covariance structure among toj^ics, instead of a Dirichlet distri-
bution. Now. the topic i)roportion fx in Figure 4.1 is generated l)y mapping a 
nmltivariate random variable from R '̂"' to the A'-siniplex as follows: 

MA = K' 

where {//, E } is a A'-diniensional mean and covariance matrix, in which each 
entry specifies the correlation between a pair of topics. Clearly, the CTM uses 
the covariance of the Gaussian to model the correlations between topics. Thus 
topics are allowed to be correlated to each other. One should also note that 
the number of parameters in the covariance matrix grows as 0(K'^). The PAM 
captures the topic correlations with a directed acyclic graph. It extends to the 
concept of topic to be a flistribution not only over words, Init also over interior 
to])i(!s. see Section 2.4.3. The liLDA is built on toj) of nested Chinese restavu'ant 
process (nCRP) which is defined as "a stochastic process that assigns probabtUty 
(hstnbutions to ensembles of vnfin.itely deep, infinitely branchmg trees"' [Blei et al.. 
2010]. In the liLDA. topics are (jrganised in a tree hierarchy on which nCRP is 
used as a prior. To generate a document, the liLDA first draws a topic path from 
the tiee, then sam])les topics from the ])ath. In this way, the liLDA can cluster 
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(locuuieiits according to the topic tree with iiinhiple levels of abstraction. 
How to incorporate nieta-inforniation (besides time) into topic modelling is 

another line of research that is interesting in, for example, conipnter vision and 
text mining, where the collected data usually come with meta-information, e.g., 
class labels, review rating, authors, and citations. The well-known models for this 
kind of research include 

The supervised LDA model [Blei and McAuliffe, 2007] that puts a logistic 
regression on the word-topic assignments to generate observed featm'es, 
such as class labels; 

The Dirichlet-multiiiomial regression model [Minmo and McCahum, 2008 
that can in principal incorporate arl)itrary features; 

The correlated labelling model [Wang et al.. 2008b] that liuilds directly the 
class label into the generative process; 

The author-topic model [Rosen-Zvi et al., 2004; Steyvers et al., 2004] in which 
the word-topic assignments are generated according to the topics distribu-
tions associated with different authors; 

The linked-LDA model [Nallapati et al., 2008] that jointly models the text 
and citations. 

4.5 Summary 

hi conclusion, topic models have broad applications across different disciplines, 
generally from machine learning to data mining. Although these models are 
slightly different in the sense of assmnptions, they share the same fundamen-
tal idea: mixtures of topics and probability distril)uti<)ns over words. It is worth 
pointing out that most of them have to deal with the ''bag-of-words' assumi)tion, 
and no one has paid attention to the subject structure of each individual document 
that is buried in the high levels of document structures. However. Embedding the 
document structru'es directly in topic models could yield a rich posterior topic 
structiu-e for eacdi document, which can further help in ad-hoc document analysis. 
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Chapter 5 

Segmented Topic Model 

The structure of docuinents iuto headings, sections, and theniatically coherent 
parts, iniphes something al)out shared topics, and also plays an ini])ortant role 
in document browsing and retrieval. In this chai)ter I take the simplest form of 
structure, a document consisting of multiple segments, as the basis for a new 
form of topic model, named Segmented Topic Model (STM), which leverages the 
structure of a document, instead of learning it. To make the model computation-
ally feasible, and to allow the form of collapsed Gibbs sampling that has worked 
well to date with topic models, the marginalised PDP posterior (see Section 3.3) 
is used to handle the hierarchical modelling. I compare it with the standard topic 
models [e.g., LDA reviewed in Chapter 4) and existing segmented models. The 
new model significantly outperforms standard topic models on either whole doc-
ument or segment, and the existing segmented models, based on the held-out 
perplexity measure. 

This chapter is organised as follows. In Section 5.1 I give an introduction to 
the motivation of STM. In section 5.2, I discuss related works in the literatiu'e 
of topic modelling. Then, I describe STM in detail and the posterior inference 
based on the PDP in Sections 5.3 and 5.4 respectively. In Section 5.5, I compare 
STM with LDA and the existing segmented models. The experimental results on 
several document collections are reported in Section 5.G. 

5.1 Introduction 

In recent years, documents continue to be digitised and stored in the form of web 
pages, bk)gs, twitters. ])()oks, scientific articles and so on. A majority of these 
(k)cunients come naturally with structure. They are structured iuto semantk:ally 
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coherent parts to ease uiKlerstanding and readal)ility of texts. A complete rep-
resentation of the document structure ranges from the seniantically high-level 
components {e.g., chapters and sections) to the low-level components {i.e., sen-
tences and words). For instance, a book has chapters which itself contains sec-
tions. a section is further composed of paragraphs: a blog/twit ter page contains 
a secjuence of conrments and links to related blogs/twitters; a scientific article 
contains appendices and references to related work. 

In text analysis, some forms of structure are modelled with links in a docu-
ment, and many different approaches follow from the key initial paper by Cohn 
and Hofmann [2001]. Some forms of structure are readily modelled simj^ly by typ-
ing tokens, separating out the words, the links, maybe the names, into different 
multinomials in the toi)ic model, easily done with existing theory [Buntine and 
Jakulin, 2000. Section 5.2]. Other forms of structure work with the topic space 
themselves [Blei et al., 2003; Minmo et ah, 2007]. However, a dift'erent challenge 
in text analysis is the problem of uuderstanchng the document structure. Here I 
look at the original layout of each document as the guide to structure by following 
the ideas of Shafiei and Milios [2006], who develoi^ed a hierarchical model of the 
segments in a docmnent. 

Given a collection of documents, each of which consists of a set of segments 
{e.g., sections, paragraphs, or sentences), each segment contains a group of words, 
it is interesting to explore the latent subjec:t structure of each document by taking 
into account segments and their layout. I believe segments in a docunrent not only 
have meaningful content but also provide preliminarily structural information, 
which can aid in the analysis of the original text. This idea actually originates 
from the way in Avhich peoi)le ncjrnially compose documents {e.g.. essays, theses 
or books). \Mien starting to write a document, people always bear in mind that 
they need first come up with some main ideas that they want to talk a])out: then 
decide a structure to organise these ideas logically and smoothly through, for 
example, chapters in a book, or secticnis in an article; and the ideas assigned to 
dift'erent segments could vary around the main ideas. 

Can we statistically model documents in this manner? I adopt the pro])abilistic 
generative models called to])ic models to test this hypothesis. The basic idea is 
that each document is a random nnxture over several latent topics, each of which 
is a distribution over words. Topic models specify a simple prol)abilistic process 
l)y which words can be generated, see Chapter 4. Here, we can consider LDA, 
as a way of modelling •Ideas"' with topics. However, LDA cannot simultaneously 
learn main ideas and sub-ideas under the same latent topic settings. 
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Extending LDA to involve segments of a document, Sliafiei and Milios [2000 
presented a Latent Diriclilet Co-Clustering (LDCC) model. It assumes there are 
two kinds of topics, document-topics {i.e., distributions over segments) and word-
topics {i.e., distributions over words). In LDCC, documents are random mixtm'es 
of docuriient-topics, and segments are random mixtures of word-topics. To gen-
erate a word-topic distribution for a segment, one needs to first draw for each 
segment a document-topic from the document-topic distribution. Clearly, LDCC 
does not share topics between docnunents and their segments. It also assumes 
that each segment is associated with only one document-topic. I will argue that 
these assmni)tions can be removed ])y using distributions over topics {i.e., topic 
proportions), which recjuire more powerful statistical tools. 

In subsef|uent sections. I develop a simple structured topic model using the 
PDP in a finite (hscrete space, which is discussed in Section 2.3. This has the ad-
vantage of allowing a collapsed Gibbs sampler (see Section 3.3) to be deA'elojied 
for a hierarchical structure model. The proi)osed new topic model takes into ac-
count the beyond ''bag-of-words" information, i.e., a simple document structure, 
to enhance the understanding of the original text content. 

5.2 Related work 

Generative probabilistic topic models, see Chapter 4, are designed to identify 
topic-al representations of the textural data, which can reveal word usage patterns 
within or across documents. They have been widely applied to different kinds of 
documents, such as articles [Griffiths and Steyvers, 2004; Blei et al., 2003], emails 
iMccalhun et a l , 2004], web blogs [Raniage et al., 2010], web spams [Biro et al., 

2008], customer profiles [Xing and Girolanii, 2007], etc. They share a connnon 
assumption, ''bag-of-words'" that is the most widely used representation of text 
documents [Sebastiani. 2002 . 

Recently, some researchers have given attention to the study of how to explore 
the beyond ''bag-of-words" information in toi)ic modelling, such as the word order 
and topic structure. Griffiths et al. [2005] presented a composite model that makes 
use of the short-range syntactic dei)endencies among the words within the limit 
of a sentence. This model consists of two parts, a hidden Markov model (HMM) 
and a topic model. The former handles the syntactic word dependencies, the 
latter deals with the word semantics. Wallach [2000] gave another topic model 
that extends LDA by incorporating a notion of word orders via the combination 
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of the ii-grain statistics and latent topics. 

The other models, which discover the strncture of latent toi)ics, include the 
correlated topic model (CT.M) [Blei and Lafferty. 2()06a], the Pachinko alloca-
tion model (PAM) [Minuio et al., 2007], the liierarcliical Dirichlet process (HDP) 
Teh et ah, 2006], the hierarchical LDA (HLDA) [Blei et ah, 2010], etc. Since 
the Dirichlet distribution is usually used in toi)ic modelling as a prior to gen-
erate document topic proixjrtions, a latent assumption is that topic:s are nearly 
independent. However, it is connnon to have correlations among topics in textual 
data. The CTM tries to captiu'e the pairwise topic correlations by replacing the 
Dirichlet distribution with a logistic normal distribution. The PAM extends the 
concept of topics to include distributions not only over words but also over top-
ics. The HDP (see Section 2.2.2) is ])uilt on top of pre-clustered data, i.e., data 
groups, that have a pre-defined hierarchical structure. The HLDA organises toj)-
ics into a tree with different levels of abstraction. The nested Chinese restaurant 
process defines a prior on the tree. For more discussion, see Section 4.4. 

All these models attempt to capture the intra-topic correlation {i.e., the hier-
archical structure of topics themselves) that is cjuite different from the docmnent 
structure this chai:)ter deals with. The benefit of modelling document structure is 

Table 5.1: List of notatiwis for STM 

Notation. Description. 

A' number of topics 
I number of documents 

Ji number of segments in document / 
L j j munber of words in document i, segment j 
H ' number of words in dictionary 
a base distribution for docmnent topic prol)abilities 
fi, document topic probabilities for document i. base distril)ution 

for segment topic proljal)ilities 
Vij segment toj^ic probabilities foi' document i and segment j 
$ word probability vectors as a K xW matrix 

pi-obal)ility vector fbr topic k. entries in 
7 n'-dimensional vector for the Dirichlet j^rior foi' each 

Wijj word in doc:ument i. segment j . at position / 
Zi,j.i topic for word in document /, segment j , at position / 
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that it can help uiiderstaiid the hierarchical sul)ject structure of each individual 
document. Some previous research considers document internal structure with 
topic modelling. A considerable body of this line of research is in the field of 
toi)ic segmentation, i.e., diAision of a text into topically coherent segments. For 
exami)le, the aspect HMM model [Blei and Moreno, 2001] assumes that each 
segment is generated from a unicjue toi)ic assignment, and those latent topics 
haÂ e Markovian relations. Similar models include the hidden topic Markov model 
Grul)er et al., 2007], the structural topic model [Wang et al., 2011]. Instead of 

assuming each segment is assigned one topic, Purver et al. [2000] proposed a topic 
segmentation model in which each segment is associated with a topic distribu-
tion drawn from a Dirichlet distribution, like the multinomial mean shift model 
Mochihashi and Matsmnoto, 200G]. Indeed, STM shares a similar assumption as 

the model by Purver et al. [2006]. However, those models were designed to learn 
the toi)ical structure of documents, while STM tries to leverage the structure in 
topic modelling. 

5.3 STM Generative Process 
The segmented topic model (STM) is a four-level probabilistic generative topic 
model with two levels of topics proportions, a level of topics and a level of words. 

Before specifying STM, I list all notations and terminologies being used. No-
tation is depicted in Table 5.1. The following terms and dimensions are defined: 

A word is the basic unit of the text data, indexed by {l,...,ir} in a 
vocabulary. 

A segment is a secjuence of L words. It can be a section, paragraph, or even 
sentence. In this chapter, I assume segments are paragraj^hs or sentences. 

A document is an assemblage of J segments, as shown in the left of Fig-
ure 5.1, where d indicates a document, SjS are segments, and u-vs are words. 
Notice that J is known a priori. 

• A corpus is a collection of I documents. 

The basic idea of STM is to assume that each document i has a certain mixture 
of latent topics, denoted by i^robability vector /Lt,, and is composed of meaningful 
segments; each of those segments also has a nnxture over the same s])ace of latent 
topics as those for the document, and these are denoted by probability vector i / j j 
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/ -N 
W, W2 Wl. V. ) V J \ / 

Figure 5.1: Graphical representation of mai)i)ing a docinnent layout to a docu-
ment subject structure in the STM. The left is the layout, and the right is the 
subject structure. 

for segment j of document i. Both the main ideas of a document and sul>ideas 
of its segments are modelled here by the topic distribtitions. Sub-ideas are taken 
as variants of the niahi ideas, and thus sub-ideas can be linked to the main ideas, 
given correlations between a document and its segments, as shown in Figure 5.1. 

How do the segment proportions vary aromid the document propor-
tions /Li,? The use of the PDF as ~ PDP(rt.6./LiJ (listril)uti(m is a key 
innovation here. One would be happy to use, instead, a distribution such as 
Uij r^ Dvrichlet{hiJii) where b plays the role of "equivalent sample size". How-
ever, such a distribution makes the prior not conjugate to the likelihood so general 
MCMC sampling is required and parameter vectors such as can no longer be 
integrated out to yield an efhcient c-ollapsed Gibbs sampler. 1 therefore employ 
the following lemma adapted from [Buntine and Hutter, 2010]: 

Lemma 5.1. The following appToxnnations on distributions hold 

PDP{0.b,Discrete{e)) = Dir{b0) . 

PDP{a,().Dtscrete(e)) ^ DiriaG) [as a 0 ) , 

The. first approximation is justified because the means and the first two central 
moments (orders 2 and 3) of the LHS and RHS distributions are equal. The 
second approximation is just fied because the mean and first two central moments 
(orders 2 and 3) agree with error 0{a'^). 

The PDF is a prior conjugate to the nuiltinomial likelihoods, so allows c-ol-
lapsed Gibbs samplers of the kind used for LDA. Thus, conditioned on the model 
parameters a , 7 , $ and the FDF parameters a,b, STM assvunes the following 
generative jjrocess for each document i: 
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Figure 5.2: Segmented topic model. The inner rectangle indicates rej^eated sam-
pling on words, the middle one indicates segments, the outer indicates documents. 

1. Draw /Xj ~ Dir/\(a) 

2. For each segments j e {1 J J 

(a) draw i / y ~ PDP(o., 6, / l i j 

(b) For each u'ij.;, where / G {1, • • •, L i j } 

i. Select a topic Zij j ~ DiscreteA-(i>'jj) 

ii. Generate a word tVijj ^ Discreteiv(02^^,)• 

I have assumed the number of topics (i.e., the dimensionality of the Diricdilet 
distribution) is known and fixed, and the word prol)abihties are parameterised 
by a K x IT matrix The gra])hical representation of STM is shown in Fig-
m-e 5.2. The complete-data likelihood of each flocunient i {i.e., the joint distri-
bution of all observed and latent variables) can be read directly from the graph 
using the distributions given in the above generative process. 

5.4 Approximate Inference by CMGS 
Having described the motivation behind STM, I now elaborate on the procedures 
for the posterior inference and parameters estimation. In order to use this model, 
the key inference problem that needs to be solved is to compute the posterior 
distribution of latent variables {i.e., fi, v and z) given the model parameters a, 

a, h and observations w, i.e., 

p{fj., ly, z,w\ a, a, b) 
u.z\w, ot, a, b) = 
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Uiifortuiiatcly, this posterior flistrilnitioii cannot l)e conipnted directly, due 

to the intractal)le comiMitation of marginal i)rol)abilities in the denominator. We 

must appeal to an ai)proxinrated inference, where some of the parameters (e.g. fi, 

V and can be integrated out rather than explicitly estimated. Two standard 

api^roximation methods have been applied to topic models: variational inference 

Blei et ah. 2003] and collapsed Gibl)s sampling [Griffiths and Steyvers, 2004]. I 

use the latter in order to take the advantage of the collapsed Giljbs sampler for 

the PDF, I.e., CMGS discussed in Section 3.3. Table 5.2 hsts all statistics, which 

are needed for the development of the Gibbs algorithm. The table count [i.e., 

the table nmlUplicity) and its derivatives are introduced in Section 3.3. 

5.4.1 Model Likelihood 

To build a collapsed Gibbs sampling algorithm, we need first to derive the joint 

distribution over observations w, topic assignments z and the nnilti])licities t*, 

and then use this joint distribution to compute the full conditional distributions, 

i.e., 

• I WxjA:.]., t\.j ^.j. ex. 7. a, b), and 

Table 5.2: List of statistics for STM 

Statistic. Description. 

^^li.k.w topif by word total smn in document i, the number of 

words with dictionary index w and topic k, i.e., = 

u,, totalled over documents i, i.e., J^i ^h.k.w 

Mk vector of IT values Mk.w 

^opic total in document i and paragraph j for topic k. n*j= 

1 , 

Nij topic total sum in document i and segment J, i.e., J2k=i K j k-

nlj topic total vector, i.e., (r/*^. j. r;*^ 2,..., n*^ . 

tljj. table t:ount in the GRP for document i and segment j , for 

topic k. This is the nmnber of tables active for the k-tli value. 

Tij total table count for document i and segment j, i.e.. 

tl^ table count vector, i.e., fl^^^.). 
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The Diriclilet i)riors put on fj.̂  and the PDP priors on i^ij are conjugate to 

the niuhinoniial (Ustril)utions. and the PDP is also conjugate to the Dirichlet dis-

tril)ution. The conjugacy makes the marginahsation much easier. Thus, the joint 

conchtional distril)ution of Zj, Wi can easily be computed by integrating 

out and $ respectively as follows. 

First, integrating out the segment topic distribution i^ij by using the joint 

l)osterior distribution of observations and niultii^hcities for the PDP, see Ecjua-

tion 3.3, we have 

PifJ'O t*]:J, | O, Ij) 

)=1 ^ ^̂  J ' - f, ,. \ ' 

1 

\ 
BetaA-(a: 

K \ .J, / 

Yl'-it 

K 

k=l j=i \ 

q i.J.k I,], 
\ K \r n n 
) w=\ 

see Equation 3.3 

K \ A / " I ^ 

BetaA-(a) I'i.k n 

\ K ir n 
/ i 

where BetaA-(a) is K dimensional Beta function that normalises the Diriclilet 

(see Definition 2.1), and the last two products are derived by 

k=l w=\ 

Then, integrating out all the document topic distributions fx̂  and the topic-word 

matrix $ with Dirichlet integral, as is usually done for collapsed Gibbs sampling 

in topic models, gives 

w ; , , t* a , a , 

/ ^Beta.,, (a+ A f(b 

/ / \ 

/ 

2 = 1 

K 
\ 

Beta;,' ( a ) 

y-r 

= 1 v J k=\ 

k=l 

BetaH- (7 + M, , ] 
Beta„- (7) 

(5.2) 
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5.4.2 Collapsed Gibbs Sampling Algorithm 

Collapsed Gib])s saini)ling is a special form of MCiMC siinulation. wliieh should 

proceed until the Markov chain has "converged", although in practice it is run for 

a fixed number of cycles, ^^'hile the proposes! algorithm does not directly estimate 

fj,, h> and I will show how they can be aj^proximated using the posterior sample 

statistics of z and t*. I adapt the CiNIGS algorithm proposed in Section 3.3 to 

divide the sanrpling i)rocedm-e to two stages. First, given all the table counts 

latent topic assignment Zi^jj for each word is sampled. Second, given 

all the topic assignments of words Zh/.hj, the tal)le count t* - ,. is sampled for each 

topic under each segment. 

Now. the fnll conditional distribution for Zi^jj can l)e obtained l)y focusing 

on a Zj j j , and looking at the proportionahties in Equation (5.2). For this, f*-^ 

is mostly constant, as is Also, we have to take care of constraints on t*^^., 

t l j j . < (see constraints (3.5)). Note that can be forced to decrease 

when nlj j . decreases by removing the current Zi j j . Therefore, to conii)ute the 

final conditional distribution we have to distinguish among three cases: 

1. Removing Z i j j = k forces n*j,. = = (). 

2. Before removing Zi^jj = k, n* - f. = > (), so t*j should decrease by one, 

3. Adding Zi j j = k forces both n* • and t l j j . to change from zero to one. 

Taking into account all cases, we can obtain the final full conditional distri-
bution 

Pizi.jj = A-1 w^.j,^,,;, ex. 7 , « , b) 

oc 

\ 

Given the cnu'rent state of topic assignment of each word, the c-onditional dis-

tribution for table count can l̂ e oI)tain(^d by cancelation of terms in Equa-
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tion (5.2), yielding 

pitlj,k I ZUA.J. 7, a, b) 

oc 
r + E i i 

v 
r EL, + I ' ^ I- I 

/ 

(5.4) 

which stochastically samples the multiplicity We should note that the value 
of t*ji. should be in a specific interval to obey the constraints on n*jj. and 
t*jf.. The interval is [1, if n*j,. > 2. There is no sampling t*j,. required if 
n*ji. < 2. Algorithm 4 gives the collapsed Gibbs sampler for STM that is derived 
from Algorithm 2. 

From the statistics obtained after the hurn-in of the Markov chain, we can 
easily estimate the docmnent topic distribution /u, the segment toi)ic (listril)ution 
V, and toi)ic-word distributions They can be approximated from the following 
l)osterior exi)ected A'alues via sampling: 

c^k+Eil 

e l + 

k,w — -^.J \ wi,l ,1:J .Ot.-f.ajl 

Tj^j X g + b' 
b + N,, b + K,, 

Iw + ^k.w 

(5.0) 

(5.7) 

5.4.3 Sampling the Concentration Parameter 

Initial experiments showed the concentration parameter b of the PDF can strongly 
affect perplexity results and seemed difficult to set by optimisation. I therefore 
developed a simple sampling method using auxiliary variables as follows. Each 
segment j of document i has an auxiliary probability (Uj ^ Beta(?), .Vjj). From 
this, using an improper prior for b of the form l/b, the posterior for b is given by 

I QhlA-.J^ ZiJA:.;, W].,iA:J,tll l.J, 7 , Q 

/ I Ji 

Gamma 
/ J^ 

Vi=i j=i i=i j=\ 
(5.8) 

/ 

Sampling using these auxiliary variables oi)erates every major Gibbs cycle as 

follows: 
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A l g o r i t h m 4 Collapsed Gi1)]3s saiiipling algoritliiii for STM 

Require: o, b. a . 7, A', Corpus. Maxlteration 

Ensure: topic assignments for all Avords and all table counts 

1. Toi)ic assignment initialisation: randomly initialise topic assignments for all 
the words. 

2. Table count initialisation: randomly initialise all f * . s.t. 0 < t*,,, < n * I f 
Kj.k > ^Ij.k i^^ist Ije greater than 0. 

.3. Compute all statistics hsted in Tal)le 5.2 
4. for iter ^ 1 to Maxlteration do 
5. foreach docimient i in corpus do 

6. foreach segment j in i do 
7. foreach word j / in j do 

8- Exclude Wijj, and update all the related statistics with 
current topic Zij j = k' removed. The constraints on 
and tljj,, must be satisfied. 

9- Sample new topic k for using Eciuation (5.3). 
10. Update all the statistics related to the new topic. 
11- Remove the value of the current table comit t* •, from the 

i.j.h 

statistics. 
12. Sample 

new table count t*j for the new topic k using 
Equation (5.4). 13- Update the statistics with the new table count. 

14. end for 
15. end foi-
16. end for 
17. end for 
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1. Saiiii)le (jij ~ Beta(6, Ni_j) for each (locunieiit i and segiiieiit j and compute 

E L i EjLi logl/'/^j-

2. Sample b according to the condition distribution (5.8). 

5.5 Comparison with other Topic Models 

In this sec:tion I comi)are STM, in terms of text modeUing, with two topic models\ 

Latent Dirichlet Allocation (LDA) [Blei et al., 2003] and Latent Dirichlet Co-

Clustering (LDCC) [Shafiei and Milios, 2006 . 

5.5.1 Latent Dirichlet Allocation 

LDA is a three-level i)robal)ilistic generative model, the idea of which is that doc-

uments are random mixtures over latent topics, where each topic is a distribution 

over words, see Chapter 4 for detailed discussion. Comi)ared with LDA, instead 

of sampling a topic Zij j directly from the docTunent topic distribution /x ,̂ STM 

adds another layer between Zij j and fj,̂ , which is the segnrent topic distribution 

Adding this distribution implies a higher fidelity of STM over LDA on mod-

elling the correlation between the docmnent topics and its segment topics {i.e., 

the subject structure inside a document). LDA could also model the correlation 

by having two runs through documents and their segments separately. Neverthe-

less, the consistency of underlying topics between two separate nuis cannot l)e 

guaranteed, since different nuis will come up with different latent topics (due to 

unsupervised learning). Therefore, LDA cannot sinuiltaneously model document 

topic distributions and segment topic distributions under the same latent topic 

space, as does STNL 

It is interesting that STM can reduce to LDA, if the concentration parameter 

b of the PDF is set to an extremely large value, such as a value far larger than 

the numl)er of observations. The proof is cjuite straight forward. In STM, Uij is 

drawn from a PDF with base measure /it,, which itself is drawn from a Dirichlet 

distribution. Therefore, the l)ase measure is discrete. See Property 2.5, the mean 

and variance of Uij are 

= Ai, ; = (^diagonaU^,) - • (5.9) 

' I have changed some notations from the original ])ai)ers to make them consistent witii those 

nsed in STM. 
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Figure 5.3: The latent Dirichlet co-clustering model 

We can see that if 6 —> -x:, the variance approaches zero, so i/jj is almost 

eciual to fi^. Now drawing topics from Ui j can be equivalent to drawing topics 

directly from which makes STM l)ecome LDA. It can also be proven by 

observing the conditional distrilnition given by Ecjuation (2.10). If b ^ oc, the 

probability of customers choosing an occupied table approaches zero. These mean 

each customer will choose a new table to sit at and each table will just have 

one customer. Thus, there are r^j approaching N i j and n* j j . approaching 

for all A-'s. Therefore, the ratios of Pochharnmer symbols and the values of the 

Stirling numbers in Equation (5.2) become one. Taking out the two products over 

Pochhammer symbols and Stirling numbers from Equation (5.2), we can see that 

the marginal distribution of STM is the same as that of LDA (see Ecjuation (4.2)). 

5.5.2 Latent Dirichlet Co-clustering 

LDCC is a four-level probabilistic model, as STM. It tries to extend LDA by 

assuming documents are random mixtures over document-topics, each of those 

topics is characterised by a distribution over segments: and segments are ran-

dom mixtures over word-topics, each word-topic is a distribution over words. The 

two different kinds of tojjics are connected by hyper-parameters a, under the 

assumption that each document-topic is a mixture of word-topics. It is a kind of 

nested LDA, as shown in Figure 5.3. LDCC also assumes that each segment is 

associated with only one document-topic {y in Figure 5.3), which is (juite a strong 

assumption in my view. 

In contrast, STM allows documents and segments to share same latent top-

ics. rather than assuming two different kinds, as I believe a docmnent and its 
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segiiients should l)e generated from the same toi)ie space. Moreover, STM relaxes 

the assumption on segments by assuming each segment still has a topic distri-

iMition drawn from its document toi)ic distribution. Thus, each segment can also 

exhibit nniltiple topics, which includes the case that it has only one topic, if the 

distribution highly concentrates on one topic. In this sense, STM does not make 

the strong assumptions, as LDCC does. 

5.6 Experimental Results 

I implemented the three models in C, and ran them on a desktop with Intel(R) 

Core(TM) Quad CPU (2.4GHz), ahhough the codes are not nmlti-threaded. The 

training time, for instance, on the NIPS dataset with 100 topics and 1000 Gibbs 

iterations is ap])roximately 5 hours for LDA, 33 hours for LDCC and 20 hours for 

STM. In subseciuent sections. I report the following sets of experimental results: 

The in depth study of characteristics of S T M I first discuss the experimen-

tal results on two patent datasets (G()6-1000 and G06-990) to analyse topic 

variability among segments. The goal of this set of experiments is to study 

how the concentration parameter h and the discount parameter a can influ-

ence toi)ic proportions. 

Perplexity comparisons I then compare STM with LDA and LDCC in terms 

of per-word predictive accuracy on miseen documents. Besides the afore-

mentioned two patent datasets, the three models are further applied to 

another two patent datasets (A-1000 and F-IOOO), the NIPS datasets^, and 

an extract from the Reuters RCVl corpus [Lewis et al.. 2004]. The perplex-

ity comparisons on held-out testing documents evidently demonstrate the 

advantage of STM over the other two models. 

5.6.1 Data Sets and Evaluation Criteria 

The two patent datasets, GOG-1000 and G0G-99(), are randomly selected from 

5000 U.S. patents-^ granted between Jan. and Mar. 2009 under the (4ass ''com-

puting; calculating; counting" with international patent classification (IPC) code 

GOG. Patents in GOG-1000 are split into paragraphs according to the original 

2lt is available at http://nips.djvuzone.org/txt.htinl 

^All patents are from Caiiibia, http://www.cambia.org/daisy/cambia/home.html 
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structure. Patents in G()G-99()^ are split into sentences with a Perl package (Lin-
gua: :En:Sentence). All stop-words, extremely connnon words {e.g., top 40 for 
GOG-IOOO), and less connnon words {i.e., words appear in less than 5 documents) 
have been removed. This leads to a vocabulary size of 10385 unique words in GOG-
IOOO and 11518 in GOG-990. The GOG-IOOO dataset contains 1,000 patents, G(),5G4 
paragraphs, and 2.513.087 words. The G{)6-99() dataset contains 990 patents, 
249,102 sentences, and 2,832.3G4 words. Paragraphs or sentences are treated as 
segments, and 80% of each tlataset are hold out for training and 20% for testing. 

In order to evaluate the generalisation capability of these models to unseen 
data, perplexity is computed, which is a standard measure for estimating the 
performance of i)robabilistic language models. The perplexity of a collection Vtest 
of I test documents that is defined as: 

perplexUy{V,^,,) = (5.10) 

where Wi indicates all words in docmnent i, and Nt indicates the total nunil)er of 
words ill i. A lower perj^lexity over unseen documents means better generalisation 
capability, hi the following experiments, it is computed based on the held-out 
method introduced l)y Rosen-Zvi et al. [2004]. In order to calculate the likelihood 
of each unseen word in STM, we need to compute the document topic prol)al)ility 
vector fi, the segment topic probaliility vector i/, and word proliability matrix 

Here, I estimate them using a Gibl^s sampler and Equations (5.5), (5.G) and 
(5.7) for each sample of assignments z.t. 

5.6.2 Topic Variability Analysis among Segments 

I first investigate the varialnlity between topic proportions {i.e., distril)utions) 
of documents and those of their segments. As I discussed in Section 5.3, it is 
modelled by the PDP with two parameters, a and b. Here I present studies on 
how a and b act on the diversity among document topic proportions {i.e., / u j and 
their segment topic proportions {i.e., Uq). 

The standard deviation is used to measure the variation of and entropy 
to show the expected number of topics in either documents or segments. The 
prior mean and variance of have been given in Equations (5.9). For all figures 
in this section, STALP and STM.S indicate STM running on paragraphs (GOG-
IOOO) and sentences (GOG-990) respectively; STM_P_mu and STM_S_mu indicate 

•'I randomly selected 1000 patents, hut 10 were deleted after pre-processing, because they 
were too small. 
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entropies computed l)ase(l on /j., and STM_P_nu and ST]\LS_nu denote those 

computed based on v. 

Study of the Concentration Parameter b 

The i)urpose of this set of experiments is to investigate how h influences topic 

proportions after isolating the effect of a. In the experiments, I fix a = 0.2 for the 

G()G-1()()() dataset and a = 0 for the G()6-99() dataset, change h from 0.1 to 300.0, 

and then run STM on those two datasets with k = 50 and a = 0.5. As shown 

in Figure 5.4(a), the standard deviation decreases while b is increasing. When 

b is small, the variance of topic proportions in segments is large. Hereby, the 

topic proportion Vij of a segment could be quite different from the topic pro-

portion /i, of the corresponding document, as indicated in Figure 5.4(1)) l)y the 

different exj^ected number of topics. In contrast, when b gets cjuite large, the 

variance of segment topic proportions ])econies small. Figure 5.4(b) shows the 

expected num])er of topics in each segment gets close to the number of topics in 

the corresponding document. In this case, there could be no difference between 

a document topic proiwrtion and its segment topic i)roportions, and segments 

loose their specificity on topics. We can oljserve that the perplexity turns out 

to be larger when b is quite small or (juite large in Figiu'e 5.6(a). Consequently, 

we can conclude that the topic deviation between a document and its segments 

should be neither too small nor too big, which somehow complies with the way 

in which people structure ideas in writing. 

Study of the Discount Parameter a 

To study how a influences topic ])roportions, I ran another set of experiments on 

the two patent datasets by fixing b to 10 and changing a from 0.0 to 0.9. According 

to Eciuations (5.9), the variance of segment topic distribution gets small while a 

is getting large, given b fixed. 

I plotted the standard deviation in Figure 5.5(a), the entropy in Figure 5.5(b), 

and perplexity in Figure 5.G(b). For the G()6-99() dataset, while a is increasing, 

the standard deviation decreases, and the expected number of topics in each seg-

ment gets close to the expected number of topics in the document. However, the 

perplexity increases significantly when a changes from O.G to 0.9, which is also 

observed in the GOG-IOOO dataset. It is interesting that both the standard devia-

tion and the entropy drop first and then increase for the GOG-IOOO dataset. Fig-

ure 5.G(b) shows there is no big difference while a is between 0 and 0.5. We may 
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conclude that the iiihuence of o, especially a < 0.6. on topic pR)i)ortions is not 

significant when I) is set to 10 on the two patent datasets. 

Topic Proportion Examples 

To fiu'ther show topic variability among docinnent topic proportion and its seg-

ment toi)ic proportions, I plot as an exanii)le those topic i)roportions of a patent 

from G()6-l()()0 in Figure 5.7. They are extracted from an experiment with fol-

lowing settings: K = 50, a = 0.2, b = 10 and Q' = 0.5. This patent has 10 

paragraphs, and talks about web authentication security systems for finance, as 

indicated l)y four topics with the highest ratios in document topic distribution 

mu in Figure 5.7. They are T-12, T-16, T-31 and T-44 in Table 5.3 (Note topic 

numbers following "T-" correspond to topic indices in Figure 5.7.). As indicated 

l)y the blue l)ars, segment topic proportions are variants of the document topic 

proportion with difi'erent ratios for the four main topics. For example, the first 

paragraph (see //(/_1) covers all the four topics and topic T-15, it is indeed an 

Table 5.3: 11 topic examples learnt by STM from the G()6-l()00 dataset 

T-12 T-16 T-20 T-21 T-31 T-32 

wel) systems path component key files 

page performance tree management security volume 

browser large nodes engine authentication copy 

site reciuired price electronic hash site 

internet multiple paths applications keys update 

pages problem decision modules encryption backup 

content high failure external chip directory 

report single l)eriod desktop encrypted local 

nsers cost gra])h install protected delta 

weljsite typically model installation secure updates 

T-37 T-42 T-44 T-46 T-47 

value window- card skilled state 

threshold selected transaction understood event 

segment displayed account patent error 

niaxinunn screen customer specific status 

size view payment intended current 

amount button terminal limited action 

rang selection cards modifications recovery 

(ieterniined box ic incor])orated events 

index select identification disclosed determines 

equal text merchant detail routine 
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FigTire 5.7: Plots of topic clistribiitioiis for a patent from G()G-1()()(). Document 
topic distribution mu is on the toj). and the others are 10 segment topic distri-
butions, lal)eled with iruj, j e { 1 , 2 , . . . , 10}. The label of X-axis is topic which 
is indexed from 1 to 50, the Y-axis is topic i)roportion. 

introduction paragraph; the fifth paragraph (see nu.5) focuses on the interface 
design, see topic T-42; and the seventh and the eighth paragraphs (see rm_7 and 
nu.8) discuss more about technical issues of an authentication system. It can be 
seen that STM can cai)ture the variabilit}^ among tojjic i)roportions. 

5.6.3 Perplexity Comparison 

I follow the standard way in topic modelling to evaluate the per-word predica-
tive perplexity of STM, LDA and LDCC. In the training procedure, each Gibbs 
sampler is initialised randomly and runs for 500 burn-in iterations. Then a total 
nuniljer of 5 samples are drawn at a lag of 100 iterations. These samples are 
averaged to obtain the final trained model, as in [Li et al., 2007 . 

I set hyper-parameters fairly in order to make a scientihc comparison, as they 
are important to these models. Synunetric Dirichlet priors {i.e., a for LDA and 
STM. 6 for LDCC) were simply used in the following experiments, although we 
can estimate them from data using, for instance, the Moment-Matching algorithm 
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Figure 5.8: Perplexity comparisons on the GOG-1000 and G06-990 datasets 

proposed l)y Minka [2000], With 7 fixed to 200/11', I ran different settings of a 
and 6 (from 0.01 to 0.9) for different niunl)er of topics {i.e., 5, 10, 25, 50, 100, and 
150), and empirically chose the optimal parameters for LDA and LDCC. It has 
been observed, for example, LDA trained on a = 0.1 was always l)etter on ])oth 
G06-l()00 and G()6-99() datasets than on other settings, but LDCC varied (luite a 
bit {e.g., S = 0.9 for 25 word-topics. S = 0.01 for 100 word-topics). The number of 
document-top'ics in LDCC was fixed to 20 for all experiments and a was estimated 
using the moment-match algorithm, as in [Shafiei and Milios, 2006]. I used a = 0.5 
in STM for all the numl^ers of topics without timing, and set a = 0.2 and b = 10 
for both the GOC-IOOO dataset and the G()G-99() dataset. \\''hen optimising 6, I 
set a = 0. Note that optimising the parameter settings for the two competitors 
(LDA and LDCC) enables us to draw sound conclusions on the performance of 
STM. 

Figure 5.8(a) presents experimental results for these models on the GOC-
IOOO dataset. LDA has been nm on document level (LDA_D) and paragraph 
level (LDA_P) separately. It is interesting to see that LDA_P is better than 
LDA_D. LDCC exhibits better performance than LDA.D, but it is only com-
parable with LDA_P. The paired t-test, shown in Table 5.4, gives p-value= 0.05 
to the slight improvement. In contrast, STM (with or without sampling b using 
the scheme presented in Section 5.4.3, indicated by STM and STM_B respec-
tively) consistently performs better than all the other models. The advantage is 
especially obvious for large numbers of topics. Table 5.5 shows the optimised b 
values. The superiority of STM over LDA and LDCC is statistically significant 
according to the paired t-test with p-values shown in the third and fourth colunms 
of Table 5.4. 
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Tal)le 5.4: P-values for paired t-test on Two patent datasets 

006-1000 0()G-990 

LDCC STM STM_B LDCC STM STM_B 

LDA.D 7.0e-5 1.3e-3 5.4e-4 2.9e-2 4.8e-3 2.2e-3 

LDA_P/S 5.0e-2 1.5e-2 8.0e-3 3.9e-l 9.1e-3 6.3e-3 

LDCC 3.9e-2 2.8e-2 l.le-2 7.7e-3 

Table 5.5: Optimised b values, when a = 0 

K=5 K=10 K=25 K - 5 0 K=100 K=150 

006-1000 1.53 1.89 2.46 2.92 3.42 3.54 
006-990 1.21 1.36 1.90 2.15 2.36 2.44 

Similar comparison on the G()G-99() dataset is shown in Figure 5.8(b). I ran 
LDA (indicated by LDA_S), LDCC and STM on the sentence level. The perplexity 
of LDCC becomes slightly larger than LDA_S when the number of topics is greater 
than 50. It is comparable to LDA_S. as LDCC vs. LDA_P in Figure 5.8(a). In-
terestingly, the performance of either LDA or LDCC on the sentence level turns 
out to be nmch worse than LDA on the document level. However, the paired 
t-test results in the last two columns of Table 5.4 show that STM is still signif-
icantly better than both LDA and LDCC. ST.M could certainly retain its good 
generalisation capability even on sparse text on the segment level. 

Evidently, the results illustrated in both Figure 5.8(a) and Figure 5.8(1)) 
demonstrate that STM can work remarkaljly well on both the paragraph level 
and the sentence level. 

5.6.4 Further Experiments 

In order to further exhibit the advantage of STM. I also ran it on another two 
patent datasets (A-IOOO and F-1()()0), the NIPS dataset and an extract of the 
Reuters dataset using a = 0 and sampling the concentration parameter b accord-
ing to the scheme in Section 5.4.3. Table 5.G shows the optimised b values. The 
Diric:hlet prior a for LDA is optimised by using the method^ proposed by [Minka, 
20001. 

^The code is modified from the Miiika's Matlab code that is downloaded from h t t p : / / 
research.microsoft .com/en-us/um/people/minka/software/ fastf it / 
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Tal)le 5.G: Optimised b values on the A-l()()(), the F-l()()(), the NIPS and the 

Reuters datasets with a — 0. 

K = 5 K = 1 0 K = 2 5 K = 5 0 K = 1 0 0 K = 1 5 0 

A-1000 0.94 1.08 1.36 1.56 1.71 1.77 

F-IOOO 1.G4 2.10 2.75 3.31 3.99 4.49 

NIPS 1.46 1.97 2.7 3.4 4.04 4.33 

Reuters 2.98 3.54 3.17 2.26 1.50 1.20 

Tal)le 5.7: Dataset statistics 

A-1000 F-1000 NIPS Reuters 

Number of documents 1,000 1,000 1,629 2,640 

Numl)er of segments 78,653 55,149 174,747 38,182 

Number of words 3,108,479 2,127,878 1,773,365 405,531 

Voc:abulary size 18.988 9,760 13,327 13,884 
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(a) Perplexity comparison on the A-1000 (b) Perplexity comparison on the F-1000 

dataset dataset 

Figure 5.9: Perplexity comparisons on the A-l()()() and the F-l()()() patent datasets 

The two patent datasets, A-1()()0 and F-l()()(), are randomly selected from the 

U.S. patents granted in 2010 with IPC code A {''human necessities'') and F {''me-

chanical engineering; lighting; heating; weapons; blasting") respectively. All the 
patents in the two datasets are split into paragraphs, as done for G06-100(). The 

NIPS dataset is processed to remove bibliography material (everything after "Ref-

erences") and header material (everything before "Abstract") ; the Reuters ar-

ticles are extracted from 20-25/8/1996, and the articles in categories CCAT, 

ECAT and MCAT are dropped. All the documents in the NIPS dataset and the 
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Figure 5.10: Perplexity comparisons on the NIPS and the Reuters datasets 

Reuters dataset are split into sentences. Table 5.7 shows the statistics of the four 

datasets. Again 8 0 % were used for training and 20% for testing. Perplexity re-

sults appear in Figures 5.9 and 5.10. It is interesting that the per formance of L D A 

running on the document level is slightly better than S T M on Reuters articles. I 

have observed that the average size of Renter articles is about 150 words, but the 

average sizes of documents in the other three datasets are nuich larger than the 

size of Renter articles. There are about 3100 words for A-1000. 2100 words for 

F-1000 and 1100 words for NIPS, respectively. 

5.7 Summary 
In this chapter, I have presented a segmented topic mode l ( S T M ) that directly 

models the document structure with a four-level hierarclty. A n effective col lapsed 

G ibbs sampling algorithm based on the C M G S has been developed. T h e ability 

of S T M to explore correlated segment topics {i.e., the latent sub ject structure of 

a document buried in the document layout) has lieen demonstrated in the exper-

iments by the significant improvement in terms of per -word predict ive perplexity 

compared with the standard topic mode l ( L D A ) and previous segmented mode l 

( L D C C ) . I also found that S T M is approximately equal to L D A on (juite short 

dociunents . 

T h e primary benefit of S T M is that it allows us to simultaneously mode l 

document topic distributions and segment topic distributions in the same latent 

topic space, without separate runs as L D A or introducing different kinds of topics 

as L D C C . A l though the experiments I have done were just on either the paragraph 
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level or seiitciiee level, STM readily models other segiiieiits, like sections and 

chapters. Moreover, the success of STM has indicated that it is beneficial to 

consider the document structure directly in toi)ic modelling. Although I think 

the inference algorithm I proi)osed is good enough to test STM, it is still worth 

exi)l()ring other inference algorithms, such as variational inference for Dirichlet 

process mixture models [Blei and .Jordan, 2005; Teh et al., 2008. 
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Chapter 6 

Sequential LDA Model 

UiKlerstaiiding how topics within a document evolve over the structure of the 

document is an interesting and potentiahy important problem in exploratory and 

predictive text analytics. In this chapter, I address the proljlem of toi)ic evolution 

by presenting a novel variant of LDA: Sequential LDA (SeqLDA). This \-ariant 

directly considers the underlying secjuential structure, i.e., a dociunent consists 

of nniltiple segments [e.g.. chapters or paragraphs), each of which is correlated to 

its antecedent and subsecjuent segments. Such progressive secjuential dependency 

is captured by using the HPDP (see Section 2.3.4). I also develop an effective 

collapsed Gibbs sampling algorithm based on CMGS (see Section 3.3). SeqLDA 

outperforms the standard LDA in terms of perplexity and yields a nicer seciuential 

topic structure than LDA in topic evolution analysis on several l)ooks such as 

Melville's 'Mol)y Dick'. 

This chapter is organised as follows. I !)riefly disciiss the related work in Sec-

tion 6.2 after the introduction in Section 6.1. I then elaborate the derivation of 

SeqLDA. and compare it with some related models in Section 6.3. Section 6.4 dis-

cusses the collai)sed Gibbs sampling algorithm that samples from the posterior 

of SeqLDA. In Section 6.6, I present experimental results on patents and several 

books. Section 6.7 gives a brief discussion and concluding connnents. 

6.1 Introduction 

As I discussed in the previous chapter, many documents in cori)ora come naturally 

with structure. They consist of meaningful segments [e.g., chapters, sections, or 

paragraphs), each of which contains a group of words, ^.e., a document-segment-

word structure. STM pro])osed in Chapter 5 focuses on mapping a sim])le docu-
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Figure 6.1: A subject structure modelled by SeqLDA. The node iXQ is the doc-
uineut topic distribution, and the other nodes are the segment topic distribu-
tions. The subscripts of /x follow the order of segments in a document. The arrows 
indicate dependencies. 

ment structure to a hierarchical topic structure, as shown in Figiu'e 5.1. It tries to 
ca])ture the hierarchical relationshi]) between a document subject and the corre-
sponding segment subtopics. The l)enefit of incorporating the document structure 
into topic modelling has l)een shown 1)y the signihc:antly l)etter performance of 
STM over LDA and LDCC. However, the underlying assumption of STM is that 
segments in a document are exchangeal:)le {i.e., given the document topic distri-
bution. the segment topic distril)utions are conditionally independent.). For the 
problem of analysing how topics evolve over the document, the exchangeability 
assumption is not suitable and needs to be removed to further incorporate topic 
dependencies existing in the secjuential document structure, i.e., the segment 
sequence according to the document layout. 

Here I take an essay as an example. It is composed of multiple paragraphs, 
each of which is associated with a subtopic, as shown in Figure 1.1. All the 
siibtopics are combined in a way together to form the subject of the essay. This 
document structure conveys two kinds of topic structures that are necessary for 
writing a cohesive and easily accessible essay. The first kind of topic structure 
is that sTibtopics are linked to the essay subject, which gives a topic hierarchy, 
as shown in the right of Figure 5.1. Thus, paragraphs are organised according 
to the topic hierarchy, and implicitly assumed to l̂ e exchangeable. In this chap-
ter. I am interested in the second kind of topic structure that subtopics are 
linked sequentially according to the paragraph seciuence {i.e. the original layout 
of paragraphs). These linkages are indicated by arcs labeled with "link" in Fig-
m-e 1.1. Now paragraphs are no longer exchangeable, and I believe the paragraph 
sequence can provide some useful contextual information that can help to under-
stand the original text content. ^ can further use the contextual information to 
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analyse how topics change within a document. Figure G.l shows a graphical rep-
resentation of the seciuential topic structure according to the segment secjuence 
in a document. 

As with STM, I adapt topic models for explicitly modelling the secjuential 
topic structure. In the context of topic modelling. 1)oth the subject of a docmnent 
and the sul)topics of its segments can l)e modelled by distril)utions over the same 
set of latent topics, each of which is a distribution over words. The sequential topic 
structm-e is modelled through the probabilistic dependencies among the topic 
distriljutions. as indicated l)y arrows in Figure 6.1. However, most of the existing 
topic models are not aware of the underlying document subject structure. They 
only consider one level, i.e., document-words, and usually neglect the contextual 
information l)uried in the higher levels of document structure. 

In SeciLDA, the in'ogressive topic dependency is captured using a nuilti-level 
extension of the HPDP. see Section 2.3.4. Thus, a segment topic distril)ution 
can l)e recursively drawn from a PDF with a l)ase distril)Ution that is the topic 
chstril)ution of its preceding segment. Using the PDP chain of topic distributions 
allows us to explore how topics are evolving among, for example, paragraphs 
in an essay, or chapters in a novel; and to detect the rising and falling of a 
topic in prominence. The topic evolution can l)e estimated l)y exploring how 
topic proportions change in segments. Tackling topic modelling together with the 
subject structure of a document provides a solution for going beyond the ''bag-of-
words" assumption that is widely used in text analytics {e.g., natural language 
processing and information retrieval). 

6.2 Related Work 

To capture topic evolution in temporal data, integrating time stamps into topic 
models has been around for a while. Existing work focuses mainly on learning 
topic evolution patterns from a time-varying corpus, instead of exploring how 
topics progress within each individual document l)y following the latent topic: 
structure. These works explore how topics change, rise and fall, by considering 
time stamps associated with document collections. In general, they can l)e put 
into two categories, Markov chain based models and non-Markov chain based 
models. 

In the Markov chain based models, the dynamic behaviours {i.e., to])ic evolu-
tion in my perspective) are captured by state transitions. The state at time A, 



102 CHAPTER G. SE(}UENTIAL IDA MODEL 

is (lepeiideiit on tlie state oft. For instance, the dynamic: topic model (DTM) [Blei 
and Lafferty. 2()0Gb], the dynamic mixture model (DALM) [Wei et al., 2007], and 
the dynamic extensions of HDP [Ren et ah, 2008: Ahmed and Xing, 2010 . 

The DTM captures the topic evolution in document collections that are organ-
ised sequentially into several discrete time periods, and then within each period 
an LDA model is trained on the documents. The Gaussian distributions are used 
to tie a collection of LDAs l)y chaining the Dirichlet prior and the model param-
eters of each topic, hideed. the parameter at time f - 1 is the expectation for the 
distribution of parameter at time t, the idea of which is similar to that used in our 
SeqLDA. Unfortunately, Gaussian distributions are not conjugate to multinomial 
distril)utions, which results in complex a])proxiniation in inference. 

The DMM assumes that the mixture of latent variables {i.e., topic distri-
liution) for all data streams is dependent on the mixture of the previous time 
stamp, i.e.. the expectation of topic distribution at time f is the topic distrilni-
tion at time f — 1, as used in the DTM. Although the structure of the DMM is 
similar to SeqLDA (i.e.. both put hrst-order Markov assumptitm on topic distri-
butions), SeqLDA capitalises on the self-conjugacy^ of the P D P to chain a series 
of LDAs, instead of using Dirichlet distributions. The prol)lem with the Dirichlet 
distribution is that it is not self-conjugate, which could not facilitate an effective 
inference algorithm. 

Recently, the HDP has been extended to incorporate time dependence to 
model the time-evolving properties of temporal data, such as the dynamic HDP 
(DHDP) [Ren et al.. 2008]. As shown in Figure 2.2, the DHDP captures the time 
dependence via a weighted mixture of two distributions drawn from the same 
HDP, I.e., the distribution Gt at time f is equal to (1 - + , 

where G,_] is the distri1)ution at time t - 1. and //(_] is the innovation distribu-
tion. It is easy to see that G, is modihed from by the weighted mixture. See 
Section 2.2.2 for detailed discussion. Compared to the DHDP, our SeqLDA takes 
G,_i as the expectation of G,. which is done by drawing G, from a P D P with 
base distri]:)Ution G,_i. The correlation of samples at adjacent times can ])e con-
trolled hy adjusting the variance of the two distril)utions. Therefore, the difference 
between the DHDP and SeqLDA resides in the way of handling the dynamic re-
lationship from Gt-] to G/. 

Instead of assuming the Markovian dependence over time, the second class 

^ r O P is c-onjugate to itself when applied to tiie discrete data. Equation 3.G shows tha t we 
can recursively integrate out the real valued prohaljility vectors {i.e., G) in the H P D P with an 
auxiliary varialile, i.e.. table multiplicity. 
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of models treats time as an observed varial)le that can Ije jointly generated with 
words l)y latent topics, for example, the topics over time (ToT) model [\\ang 
and McCalhnn, 2()0G]. In the ToT, the topic over time is captured by a Beta 
distril)ution. Drawing all time stamps from the same Beta distrilnition might not 
be appropriate for. such as, stream data [Wei et al., 2007]. Some other approaches 
are, for instance, He et al. [2009] develoi)ed inheritance topic model to understand 
topic: evolution l)y leveraging the citation information; Kandylas et al. [2008 
analysed the evolution of knowledge connnmiities based on the clustering over 
time method, called Streenier. 

Significantly, the difference l)etween these models and SeqLDA is that, in-
stead of modelling topic trends in document collections based on documents' 
time stamps, SecjLDA models topic progress within each individual docmnent 
by using the correlations among segments, i.e., the underlying sequential topic 
structure, according to the original document layout. The Markovian dependen-
cies are put on the tojnc distributions. In this way. we can directly model the 
t()i)ical dependency between a segment and its successor. 

Although one may argue that the models just discussed can also be adapted to 
the individual document l)y treating the seciuence of segments as time stamps, the 
computation complexity and space complexity of those models could l̂ e signifi-
cantly increased with the growth of the latent variables and hyper-parameters. In 
contrast, I use a single integrated model based on the HPDP, in which the real 
valued parameters can be integrated out because PDP's are self-conjugate . 

6.3 SeqLDA Generative Process 

Now I present the Sequential Latent Dirichlet Allocation model (SeqLDA) which 
models how topics evolve over segments in individual documents. I assume that 
there could be some latent sequential topic structure within each individual doc-
ument, I.e., topics within a document evolve smoothly from one segment to 
another, especially in various books {e.g., novels). This assumption intuitively 
originates from the way in whic:h people normally organise ideas in their writ-
ing. Before specifying SeqLDA. I list notation and terminology used in this chap-
ter. Notation is given in Table 6.1. The terms and dimensions used in the SeqLDA 
model are the same as those in STM, see Section 5.3. In this chapter I assume 
segments are either ])aragraphs or chapters. 

The l)asic idea of SeciLDA is to assume that each document / is a certain 
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niixtuie of latent topics, denoted l)y a topic distribution /li, (,. aufl is conii)osed of 

a sequence of meaningful segments; each of these segments also has a mixture OA'er 

the same set of latent topics as those for the document, and these are indicated 

by a toi)ic distribution fx̂  j for segment J. Ol^iously. both the docmnent and its 

segments share the same topic space. Notice that the index of a segment should 

comply with its position in the original document layout, which means the first 

segment is indexed by j = 1. the second segment is indexed by j = 2. and so 

on. Both the subject of a document and subtopics of its segments are modelled 

here by these distributions over topics. Take the book, called "The Prince", as an 

example. The whole book is treated as a document, each chapter is a segment in 

the experiments carried out in Section G.6. The theme of each chapter is sinnilated 

by the distribution [i.e.. fi^ j) over latent topics. T h e linkage between theme is 

modelled by the change among topic distributions. 

The development of a seciuential structured generati\-e model according to the 

above idea is based on the HPDP. and it models how the subtopic of a segment 

is correlated to its pre^•ious and following segments. Specifically, the correlation 

Table G.l: List of notations used in SeciLDA 

Not at ion. Descr ipt ion. 

ai 

b. 

K number of topics 

/ number of documents 

•h number of segments in document i 

Li^j munber of words in document i. segment j 

number of words in dictionary 

the discount parameter of the P D P 

the concentration parameter of the P D P 

a A'-dimensional vector for the Dirichlet prior for document 

topic distributions 

Hm document topic distribution for document / 

Mi.j segment topic distributicju for segment j in document i 

^ word probaf)ility vectors as a A" x IT matrix 

(pi, word probal)ilit3- \'ector for topic k. entries in # 

7 ir-diniensional \'ector for the Dirichlet prior for each (j)̂  

Wijj word in document i, segment j , at position I 

topic for word in docvunent z. segment j . at position I 
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Figure 6.2: SeqLDA 

is siiimlated Ijy the progressive (lepeiideiicy anioiig topic distributions. That is. 
the f " segment topic distribution n^ j is the base chstrilmtion of the PDF for 
drawing the ( j + l)"" segment topic chstribution Mjj+i; for the first segment, its 
topic distribution ^^ j is drawn from the PDF with document topic distribution 
^t; 0 as the l)ase (Ustribution. The concentration parameter bi and discount param-
eter (li control the variation between the adjacent topic distril^utions. Figme 6.2 
shows the graphical representation of SeqLDA. Shaded and unshaded nodes indi-
cate ol)served and latent varial)les respectively. An arrow indicates a conditional 
dependency between variables, and plates indicate repeated sampling. 

In terms of a generative process, SeqLDA can also be viewed as a prol)abilistic 
sampling procedure that descril:)es how words in documents can be generated 
leased on the latent topics. It can be depicted as follows: Step 1 samples the word 
distributions for topics, and Step 2 samples each document by breaking it up into 
segments: 

1. For each topic A' in {1 , . . . , A'}, 

(a) Draw (p,. ~ Diru (7) 

2. For each document i in {1, / } 

(a) Draw /itj o ~ Dii'A'(a) 

(1)) For each segment j 6 {1 , J i} 
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i. Draw /i, ̂  P D P ( a ; , ) 

ii. For each word Wij.h where / G {1 . . • •, Li_j} 

A . (h'aw ~ Discrete/v(/u.,j) 

B. (h'aw lUijj ~ Discrete)v(</>2.^.,)-

Like STM. the iiuinber of to])ics (i.e., the diuieiisioiiahty of the Dirichlet dis-

trilMitioii) is assumed to Ije known and fixed {i.e., K), and the word probabihties 

are parameterised by a K x IT matrix $ = {(p^,..., and wiU be estimated 

througli the learning process, ijl^^ is sampled from the Dirichlet distribution with 

prior a , and others are sampled from the PDP. Both the Dirichlet flistribution 

and the P D P are conjugate priors for the nmltinomial distribution, and the P D P 

is also self-conjugate. Choosing these conjugate priors makes the statistical infer-

ence easier, as discussed in Section 6.4. The joint distriliution of all observed and 

latent \'ariables can be constructed directly from Figure G.2 using the distributions 

given in the above generative process, as follows: 

J. 

i=i 
p{^liJ\(H• b,. 1) I jlAzijjI}piwijjI^ J 

/ 
, {G.i: 

where p{iJ.i j\ai,bi, is given by PDP(ai ,b i . 

From the notion of the ])roposed model, we can find the obvious distinction 

between SeqLDA and LDA (shown in Figure 4.1): SeqLDA takes into account the 

sequential structure of each document, i.e., the segment sequence in a docunrent 

that LDA ignores. SeqLDA aims to use the information conveyed in the docu-

ment layout, to capture how toi)ics evolve within a docmnent. Although L D A can 

also be ai)plied to segments directly, the progressive tojjical dei^endency between 

two adjacent segments could I:)e lost ]:)y treating segments independently. L D C C 

Sliafiei and Milios. 2006]. shown in Figure 5.3, has an implicit assumi^tion that 

segments within each document are exchangeal^le, which is not always apj^ro-

priate. so does S T M proposed in Chapter 5. Furthermore, assigning just one 

topic to each segment in LDCC carmot captiu'e the evolution of each topic de-

picted in the document. Like SecjLDA. S T M assumes each segment has a to])ic 

distribution, and each segment topic distribution is drawn frt)ni docunrent topic 

distribution via a PDP. As discussed earlier in Section 6.1. S T M is de^^eloped 

to explore only the hierarchical relationship between a document sul^ject and its 

segment subtopics. The exchangealjility assumption imposed by S T M may make 

it unsuitable for describing the sequential topic structure. 
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Thus, if (l()c-\iiiionts indeed have some latent secjuential structure, considering 
this dependency means a higher hdelity of SecjLDA over LDA and LDCC. How-
ever, if the correlation among subtopics of some adjacent segments is not obvious, 
taking the topic distribution of the j " ' segment as the base distribution of the 
( j + 1)"' segment may niis-interi)ret the document topic structure. In this sense, 
SeciLDA may be a deficient generative model, but it is still a useful model and 
remains powerful if the progressive dependency is dynamically chang(xl by op-
timising concentration and discount i)aranieters (a and b) for each individual 
segment within each document. In all the reported experiments, I ran one set of 
experiments with fixed a and b for each corpus, and another set of experiments 
with a fixed but b optimised for each docmnent i {i.e., hi). 

6.4 Inference Algorithm via CMGS 

In this section, I derive the collai)sed Gibl)s sampling algoritlnn for doing infer-
ence, and parameter estimation in the proposed model. Collai)sed Gibl)s sampling 
take ad^'antage of the conjugacy of priors to compute the conditional posteri-
ors. Thus, it always yields relatively simple algorithms for approximate inference 
in high-dimensional probalnlity distributions. Note that I use conjugate priors in 
SecjLDA, I.e., Dirichlet prior a on /ig and 7 on the PDP prior on ny. thus 
Ĵ,̂ yJ and $ can be integrated out. Although the proposed samphng algorithm 

does not directly estimate fx .̂ j and I will show how they can be a])proxiniated 
using the ])osterior sample statistics. 

Table G.2 lists all the statistics recjuired in the proposed algorithm. The Se-
ciLDA sampling is a collapsed version of what is known as the nested Chinese 
restaurant process (CRP) used as a component of different toi)ic models [Blei 
et ah, 2010 . 

6.4.1 Model Likelihood 

To flerive a collai)sed Gibbs sampler for the above model, we need to c()m])ute the 
marginal distribution over the observation w, the corresponding topic assignment 
z , and the table nmltiplicities t*. We do not need to include, i.e., can integrate 
out. the parameter sets |x̂ yJ and since they can 1)e interpreted as statistics 
of the associations among w. z and t*. Hence, we can hrst recursively ai)ply 
E(iuation (3.G) (the joint posterior of HPDP. see Section 3.3) to int(>grating out 



108 CHAPTEB 0. SE(^UENTIAL LDA MODEL 

the segment topic distriljutions /X; from Equation (6.1) as follows. 

p { z i : l j . , j . w y j j . j , t l i I a , 7 , # . a ] : / . 6 i : / ) 
I J,. 

' — — " 1 = 1 i=i 

' / / 1 A 
\ 

i=i v \ 
A' H' 

f'l.O.k 

•h K 
hA.k 

i'i.o.k 
/ A;=l / 

nn 
k=] w=l 

' / / 

A.W 

K 
-TT / -r-r j+i.,. 

f'l.O.k I I ^ 

A' U' 
(6.2) 

Statistic. 

Tal)le 6.2: List of statistics used in SeqLDA 

Descrii)tion. 

M, 

^ij.k 

Ui.k 

topic by word total sum in document i, the number of 
words with dictionary index w and topic k, i.e., Mi,k,w = 

totalled over docmnents /, i.e., X^Li 
vector of IT values I\Ik,w 
topic total in document i and segment j for topic k\ i.e. 
''̂ ij.k = It' is the total number of customers in 
the CRP that arrive l)y themselves, rather than being sent by 
the child restaurant. 
topic total sum in document i and segnrent j , i.e., n, 
table count in the CRP for document i and segment j , 
for topic k. This is the nunil)er of tables active for the k-
th value. Necessarily, < nlj , . and > 0 whenever 
tljj^ > 0. In particular, if = 1 then = 1. 
total tahle count in the CRP for document i and segment j , 

table count vector, i.e., (f-^ j. for segment j. 

the smallest segment index j ' in i, where t*j, ^ = 0. 
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where f*^ , < + ^ and = 0 iff + = 0: Beta^- (a) is a K 

(liniensional beta function that norniahses the Dirichlet; (a;)Ar is given l)y (.xil)A', 

and {x\ij)̂ T denotes the Pochhammer symbol (see Section 3.1 for its definition); 

is the generalised Stirling niunber (see Section 3.3). Figure 3.4 shows how 

the segment level topic distributions can l)e marginalised out in a recursive way 

to yield Ecjuation 6.2. 

Finally, integrate out the docmnent topic distributions o ^lif topic-word 

matrix as is ustially done for coUapsed Gibbs sanii)hng in topic models. The 

joint distribution of z^.j, Wi-j, -̂ .j. is 

BetaA- (a + ^ ( A ^n.j.k+tl 

y Beta/a^) 

Beta,,- (7 + A'h. 

i -L Beta,r (7) ' 

6.4.2 The Collapsed Gibbs sampler 

In each cycle of the Gibl)s sampling algorithm, a subset of varial)les are sampled 

from their conditional distributions with values of all the other variables given. In 

SeqLDA, distributions that we need to sample from are the posterior distributions 

of topics {z). and table counts (t*), given a collection of documents. Since the fuU 

joint posterior distril)ution is intractable and difficult to sample from, in each cycle 

of Gibl)S sampling we will sample respectively from two conditional distributions: 

1) the conditional distribution of topic assignment {Zijj) of a single word (u'jj,;) 

given topic assignments for all the other words and all the talkie comits; 2) the 

conditional distri1)ution of table count {tljj.) of the current topic given all the 

other table counts and all the topic assignments. In particular, the sampling 

strategy adopted here is CMGS discussed in Section 3.3. Notice that sampling 

table counts from the latter can be taken as a stochastic process of rearranging 

the seating plan of a Chinese restaurant in the GRP. 

In SeqLDA. docmnents are indexed l)y segments of each document are in-

dexed by j according to their original layout, and words are indexed l)y /. Thus, 

with documents indexed by the above method, we can readily yield a Gibl)s sam-

pling algorithm for SeqLDA: for each word, the algorithm computes the probabil-

ity of assigning the current word to topics from the first con(htional distribution, 

while topic assignments of all the other words and table counts are fixed. Then 

the current word would be assigned to a sampled topic, and this assignment will 
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l)e stoix'd while the Gil)l)s sainphiig cycles through other words. While scaiiiiiug 

through the list of words, we should also keep track of table c.ouuts for each 

segment. For each new topic that the current word is assigned to, the Gibbs sani-

phng algorithm estimates the probal^lities of changing the corresponding table 

count to different values by fixing all the topic assignments and all the other 

tal)le counts. These ])robabilities are conii)uted from the second conditional dis-

tribution. Then, a new value will be sampled and assigned to the current table 

count. Note that the values of the table count should be subject to some con-

straints that I will discuss in detail when deri^'ing the two conditional distribu-

tions. Consequently, the aforementioned two conditional distributions need to be 

computed are. respectively, 

*—t* 

where z .̂j./ = k indicates the assignment of the word in the segnrent of doc-

ument i to toi)ic k. ^j ./ ' i ' ; presents all the topic assignments not including the /"' 

word, and t^.j j'.̂ / denotes all the talkie counts except for the current taljle count 

^ij.k- Before elaborating the derivation of these two distributions, I discuss con-

straints on the table count and the word count (njj./;) for each topic. Fol-

lowing the C R P formulation (see Chapter 3), customers are words, dishes are 

topics and restaurants are segments. All restaurants share a finite number of 

dishes, i.e., K dishes. From Equation (6.3) and also seen from Ecjuation (3.6) in 

Section 3.3, tables of the ( j 1)"' restaurant are customers of the j " ' restaurant 

in hierarchical CRPs. as depicted in Figure 3.4. These counts have to comply 

with the folknving constraints: 

1- = if and only if + = (); 

2. t l j j . > 0 if either rujM > 0 or > 0; 

3- + > 0 . 

For instance, the third constraint says that the total number of occupied tables 

serving the k"' dish must be less than or equal to the total nunil)er of customers 

eating this dish. That is bef:ause each occu])ied table must at least have one 

customer. Handling the constraints on all the tal)le counts t*j is the key challenge 

in the develo])ment of the collapsed Gibbs algorithm. 
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Considering the proccHlnre of sampling a new topic for a word Wijj, we need to 
remove the current topic (referred to as old topic) from the statistics. Assume the 
vahie of old topic Zij j is /,-, the uuml)er of words assigned to k in the f ' segment 
of document /'ij.A-, should decrease by one; then recm'sively check the table 
comit f*j, J, for 1 < f < j according to the above constraints, and remove one 
if needed to satisfy the constraints, this check will proceed until somewhere the 
constraints hold; and finally assign the smallest j' to Uĵ k where the first constraint 
holds. Similarly, the same process should be done when assigning the current word 
to a new topic. It is easy to prove, by recursion, that no goes from zero to 
non-zero or vice versa unless an iiij^k does, so we only need to consider the case 
where riij,,, + > 0. Moreover, the zero forms a complete suffix of the 
list of segments, so f l j ,. = 0 if and only if m,,/,. < j < Ji for some Uî u-

Now, beginning with the joint distribution. Eciuation (G.3), using the chain 
rule, and taking into account all cases, we can obtain the final full conditional 
distribution 

Piz^JA-J^ ti;,:/, i «!:/• ^1:/) 
with three different cases according to the value of iii.k as follows. 

\\'hen = 1, which means all the tal)le counts for 1 < f < .h are zero, 

{(^k + th.k) + A flH±a£i^j_\ + 

E ? = i + n x k ) ;=2 V'̂ ^ + + + 

When 1 < Uj_k < which means all the table counts t*j,j, for < f < Ji 

are zero, the conditional probability is 

Pizijj = 

yr ( iH + (hT^^r \ + , , 

When J < Ui^k, which means the current table count > 0 (no recm'sive 

check), it is simplified to 

(6.6) 
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After sani])liiig the new topic for a word, we need to stochastically saiii])le the 

tal:)le count for this new topic, say k. Ahhough we have sunnned ont the sj^ecific 

seating arrangements {i.e., different ta])les and specific taWe assignments) of the 

cnstomers in the collapsed Gibbs sampler, it is still needed to sample how many 

tables are serving the A'"' dish (i.e., topic k in SeqLDA), given the ciu'rent number 

of customers {i.e.. words) eating the A-"' dish. If Hij^i, + > 1, the value of 

t l j f. should be in the following interval: 

max (1. - , n,.j.k + t l j ^ u 

Thus, given the current state of topic assignment of each word, the conditional 

distribution for table count t*j i, can be obtained 1)y similar arguments, as follows. 

p{Uj.k I t^.j l'^f. a. ai:/, 6,:/) (6.7; 

*~t 

( 

oc 
r + thx) 

a .a i : / ,6 j : / ) 

/ / 

( h \n \rr. 

The collapsed Gibbs sampling algorithm for SeqLDA is outlined in Algo-

rithm 5. This algorithm is started by randomly assigning words to topics in 

1, . . . ,A '] , and if the total number of customer, njj-/̂ , + is greater than 

zero, the table comit i* - ^ is initialised to 1. Each Gil)bs circle then applies Ecjua-

tions (6.4), (6.5) or (6.6) to every word in the document collecti(jn; and applying 

Ecjuation (6.7) to each tal)le count. Note Steps 18 and 19 will l)e detailed in Sec-

tion 6.5. A numl)er of initial samples, i.e., samples before hv;ni-tn have to 

l)e discarded. After that, the Gibbs samples should theoretically approximate the 

target distribution {i.e., the posterior chstribution of topics ( 2 ) . and tal)le counts 

{t)). Nf)w, a number of Gibbs samples are drawn at regularly spaced intervals. In 

experiments discussed in Section 6.6. I averaged these samples t(j obtain the fi-

nal sample, as done in [Rosen-Zvi et al.. 2004]. This collapsed Gibbs sampling 

algorithm is easy to implement and requires little memory. 

6.4.3 Estimating Topic/Word Distributions 

Now, we can easily estimate the topic distribution /x and topioword distribution 

from statistics o])tained after the convergence of the Markov chain. Thev can 
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Algorithm 5 Collapsed Gil)l3s sampling algorithm for SeqLDA 

Require: a, b, cx, 7, A', Corpvs, Maxlteration 

Ensure: topic assignments for all words and all table eonnts 

1. Topic assignment initialisaticm: randomly initialise the topic assignment for 

all words. 
2. Table count initialisation: randomly initialise all f*jj. s.t. 0 < < njj^i, + ±* 

3. Compute statistics hsted in Table 6.2 

4. for iter ^ 1 t o Maxlteration d o 
5. foreach document i do 
G. foreach segment j in according to the original layout do 
7. foreach word Wjjj in j do 
8. Exclude Wij.i, and update the statistics with current topic k' = Zij,k 

removed 

9. Recursively check all table counts, t*j, f.,, where 1 < j' < j, to make 

sure 0 < < r\j'M' 

10. Look for the smallest 1 < f < j , s.t. = 0, and assign it to 

Uî k' 

11. Sample new topic k for Wi j j using Equations (6.4), (6.5) or (6.6) 

depending on the value of 

12. Update the statistics with the new topic, and also update the value 

of Uî k if needed 

13. Remove the current table count tl^j. from the statistics 

14. Sample new table c«unt t*j f. for the new topic k using Ecpiation (6.7) 

15. Update the statistics with the new table count 

16. end for 
17. end for 
18. Update a by Newton-Raphson method 
19. Sami)le with adaptive rejection sampling 20. end for 
21. end for 
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Ije approxiinated from the following mean posterior expected values (using the 

mean of a Dirichlet (hstril)ution (see Proi)erty 2.1) and the mean of the PDP (see 

Proi)erty 2.5)) via sanii)ling. For the document to])ic distril)ution /x̂  Q, we have 

+ ^lo.k 

-EL + /'i.O.k — 

And the segment tojHc distril)ution {I < j < Ji) can be estimated as 

T'i.j,k = 

E 

(6.8) 

aiTij + b. 
1 , A- I T^ fH.j-l.k + 

+ A'ij + Tij+i 

(6.9) 

l>i + + Tij+Y 
Then, the topic-word distribution is given l)y 

Iw + 
(6.10) 

6.5 Estimating Hyper-parameters 

Since the PDP is quite sensitive to the concentration parameters {i.e., b]-j}, which 

has been oljserved in our initial experiments, also see Section 5.6.2, I thus jn'oi^ose 

an algorithm to sample b, for each documents using the Beta/Gannna auxiliary 

variable trick, as those in [Du et al.. 2()l()b: Teh. 2()06a]. The sanii)hng routine is 

based on the joint distribution Equation (6.3). 

First let us consider the case when the discount ]:>arameter «,• = 0, which is 

sanre to what has been discussed in Section 5.4.3. The posterior for b, is propor-

tional to 

n -f A,,, + • 

Now I introduce an auxiliary variable ~ Deta(bi, Aij-hT^j+j for each segment 

i, j. Then the joint posterior distribution for qij and b^ is ])ro])ortional to 

. (c . i i ) 

j 
Given samjjled values of all the auxiliary variables, we can sample bi according 

to their (conditional distributions. 

(U.J -

/ A 
hi ^ GanirDci 

\j=i j=i ) 
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For the case when a; > 0, the sanipliiig sc-heiiie l^ecoine a l)it more ekhorate. Now 

the posterior for b̂  is proportional to 

^/(h + r{iH] 

Introducing the same auxiliary variables, as those for a = 0, we can yield a joint 

posterior distril)ution proportional to 

(6.12) 

It is easy to show that the al)ove distril)ution is log concave in hj, so I here adojit 

an adaptive rejection sampling algorithm [Gilks and \M1(1, 1992]. Sampling the 

concentration parameter b allows a different \^ahie for each document, even for 

each segment with only a slight modification of Eciuations (6.11) and (6.12). In 

addition, although I did not study the discount parameter Oj in this chapter, it 

could also be optimised or sampled. 

Instead of using symmetric Dirichlet prior a, we can use an asynnnetric Diricdi-

let prior whose components have to be estimated. As argued by Wallach et al. 

2()()9], the use of asynnnetric prior on //j,o ( »u ld lead to a significant i)erformance 

improvement. Algorithms for estimating Dirichlet priors pro])osed in the liter-

atm-e are Imsed on either maxiunun likelihood or maxinnun a posteriori, such 

as the Moment-iVIatcliing and the Newton-Raphson iteration. Here. I ado])t the 

Newton-Raphson method foUowing the early work l)y Minka [2()()()]. Accorchng to 

Equation (6.3), the gradient of the log-likelihood is 

dfja] 

Oqi. 

I / / i< \ 

- Z E 
/ A' 

-

\k=} i=i V V/,'=i / 
/ 

\ \ 

/) 

1=1 

where 'I '(-) is known as the digannna function that is the hrst derivative of log 

gannna function, and f ( a ) is the model log likelihood paranieterised with a , 

ft \ 1 f n ^("^^K (oc + ./ (a) oc log I —— 
\7i Beta/,-(a) y 
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Then, the Hessian of the log-hkehhood is 

Ofjcx) 

OqI 

I / 

- E 

/ i< 

VI/' 

\k=i 

\ / '< 

/ \A = 1 

dfjcx) 

dok dak' 

i=i \ 
I 

i=l 

/ / /A ' 

i=i \ 

\ / h-

- vl/' 

\k=l / 

Y . {Qk + Uxk) 
\k=l 

where k ^ k' , 

/ 

and »!/'(•) is the trigannna function, i.e., the second derivative of gamma func-

tion. Now, a Newton iteration can be computed to optimise Dirichlet prior a . hi 

the rei)orted experiments, I interchangeal)ly upgrade b and ct after each main 

Gil)l)s samphng iteration. For example. I optimise a for the first 300 iterations 

with b fixech then, optimise b for the next 300 iterations with a fixed, and so 

on. As we can see, I adopt a more greedy approach to optimise the two parameters 

sinmhaneously. which may not give a gloljal optimum. 

6.6 Experimental Results 

I implemented LDA, LDCC and SecjLDA in C. and ran them on a desktop 

with hitel(R) Core(TM) Quad CPU (2.4GHz), even though my code is not 

multi-threaded. The experiment environment is the same as the environment for 

STM. The previous experimental results, presented in STM. show that, LDCC 

performs (juite similarly to LDA working on the segment level in terms of docu-

ment modelling accuracy. On the other hand. LDCC is not designed to micover 

sequential topic structure either, neither does STM. Thus. I compare SecjLDA 

directly with LDA working on both the document and the segment levels to 

facilitate easy comjiarison. 

In this section. I first discuss the perj^lexity (see Equation 5.10) comparison 

between SeqLDA and LDA on a patent dataset. The held-out perplexity measure 

Rosen-Zvi et ah. 2004] is employed to evaluate the generalisation capability to the 

unseen data. Then. 1 present toi)ic evolution analysis on two l)ooks, a^•ailable at 

http://www.gutenberg.org. The for mer will show that Sec^LDA is signihcantly 

better than LDA with respect to document modelling accuracy as measured by 

perplexity; and the latter will tyi)ically demonstrate the superiority' of SeqLDA 

in topic evolution analysis. 
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Tal)le G.3: Dataset statistics 

The Moby Pat-lOOO 

Prince Dick Training Testing 

No. of documents 1 1 800 200 

No. of segments 26 135 49,200 11,360 

No. of words 10,588 88.802 2.048,600 464,460 

Vocabulary 3,292 16.223 10,385 

6.6.1 Data Sets 

The patent dataset (?:.e., Pat-lOOO) has 1000 patents that are ranflonily selected 

from a large set of U.S. patents'-^. They are granted between Jan. and Apr. 2009 

nnder the class ''computing: calculating: counting'. All patents are split into 

paragraphs according to the original layont in order to preserve the document 

structure. I have removed all stop-words, extremely connnon words (i.e., most 

frequent 50 words), and less connuon words {i.e., words appear in less than 5 doc-

uments). No stennning has been done. I here treat paragraphs as segments. The 

two books I choose for topic evolution analysis are "The Prince" by Xiccolo Machi-

avelli and "Moby Dick" by Herman Melville, also known as "The \Miale". They 

are split into chapters which are treated as segments, and only stop-words are 

removed. Table 6.3 shows the statistics of these datasets. 

6.6.2 Document modelling 

I follow the standard way in document modelling to evaluate the per-word pred-

icative i)erplexity of SeqLDA and LDA on the Pat-lOOO dataset with 20% held 

out for testing. In order to calculate the likelihood for each unseen word in the 

SeqLDA model, we need to integrate out the sampled distributions {i.e., aufl 

and sum over all possible topic assignments. Here. I approximate the integrals 

using a Gibbs sampler with Eciuations (6.8), (6.9) and (6.10) for each sample of 

assignments 2 and t. In sampling procedures, I run each Gibl)s sanii)ler for 2.000 

iterations with 1.500 burn-in iterations. After the burn-in period, a total number 

of 5 samples are drawn at a lag of 100 iterations. These samples are averaged to 

yield the final trained model. 

I first investigate the performance of SeciLDA with or without the hyper-

2All patents are from Gambia, http://www.cambia.org/daisy/cambia/home.html 
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Figure 6.3: Perplexity comparison on the Pat-1000 dataset. 

Table 6.4: P-values for paired t-test for results in Figure 6.3(a) 

Pat-1000 
SeqLDA_alplia SeqLDA.b SeqLDA_alplia_b 

SeqLDA 2.2e-l 2.8e-l 1.3e-2 

Table 6.5: P-values for paired t-test for results in Figure 6.3(( 

Pat-1000 
SeciLDA SeqLDA.D SeqLDA.P 

LDA_D 7.5e-4 3.3e-4 3.2e-5 
LDA_P 3.0e-3 1.9e-2 3.6e-3 
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l)araiiieter estimation proposed in Section G.5. Fonr sets of experiments'^ have 

been done. They are. resi)ectively, SeqLDA with a = 0.10 { i . e . , synmietric a), 

b = 10 and a = 0.2 (SeciLDA); with a optimised by Newton-Raphson method, 

b = 10 and o = 0.2 (SeqLDA_alpha); with Q = 0.10, b optimised by samphng 

method and a = 0.2 (SecjLDAJ)); and with l)oth a and b optimised and a = 0.2 

(Se(iLDA_alphaJ)). Note that for simplicity, b is optimised for each docnnient, 

even thongh we can optimise b for each iudividnal segment. Figure 6.3(a) shows 

the results in terms of perplexity. 

According to the p-values of the paired t-test (as shown in Table 6.4), there is 

no significant diftcrence Ijetween the manually optimised SeqLDA and the auto-

matically optimised models at the signific:ant level 5%. It has ])een ol)served that 

the average value of the optimised as>'mmetric Q is close to 0.10. The perplexity of 

SeqLDA with only alpha optimised becomes lower than others when k is getting 

larger {k > 50). In contrast, SeqLDA with both Q and b optimised yields slightly 

higher perplexity. This might be l)ecause the way that I used to carry out the 

oi)tiniisation is approximately greedy, which cannot reach a global optimum for 

both « and b. W e can therefore conclude that the hyper-parameter optimisation 

algorithms work as well as the manual optimisation. And. I can further claim that 

these hyper-parameters are not difficult to set up in order to get good results. 

Secondly, I ran another set of experiments to verify whether there indeed ex-

ists a sequential topical dependency among segments of each document. Instead 

of retaining the original layout of segments { i . e . , the original order of paragraphs 

in a patent), I have randomly pernmted the order of the segments for both the 

training dataset and the testing dataset. In Figure G.3(b), "NP" indicates se-

qLDA trained and tested without pernmtation, "PTrTe" indicates the model 

trained and tested with permutation, and "PTe" indicates the model tested with 

pernmtation but trained without permutation. Taking k = 25 as an example, the 

perplexity corresponding to the original layout (1905.2) is much lower than that 

corresponding to the randomly permuted order (2009.8). Thus, the significant 

difference shows that the seciuential topical structure does exist in the patents, 

and considering this structure can improve the accuracy of text analysis in terms 

of perplexity. 

Thirdly. I compare SeqLDA with LDA. In order to make a fair comparison, 

I set hyper-parameters fairly, since they are important for the two models. The 

have first done a series of experiments with the vahie of Q ranging from O.Ot to 0.90 to 

manually choose the optimal one. whicli is 0.10. And the vahies of b and a are chosen empirically 

based on tiie initial experiments. They are b = 10 and a = 0.20 
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Moiiiont-Matching algoiitlini Miiika [2000] is used to oi^tiinise a for LDA, and 

all the parameters for SeqLDA are fixed as: a = 0.2, b = 10, a = 0.1. And 

7 is set to 200/11' for l)otli models. Note that I seek to automatically optimise 

the parameter settings for LDA, wliieh enal)les one to draw fair conchisions on 

Se(|LDA"s performance. 

Fignre 6.3(c) demonstrates the perplexity comparison for different nnml:)er of 

topics. LDA has l)een tested on document level (LDA_D) and paragraph level 

(LDA_P) separately. I have also run SeqLDA with or without l:)eing boosted 

])y either LDA.D (SeqLDA.D) or LDA.P (SeqLDA.P). The ]xx)sting is done 

by using the topic assignments learnt by LDA to initialise SeciLDA. As shown 

in the figure, SecjLDA, either with or without boosting, consistently performs 

l)etter than lK)th LDA_D and LDA_P. The p-values from the paired-t test shown 

in Tal)le 6.5 are always smaller than 0.05, which has clearly indicated that the 

ad\'antage of SeqLDA over LDA is statistically significant. E^•idently, the topical 

dependencies information propagated through the sequential document structure, 

for the patent dataset, indeed exists; and explicitly considering the de])endency 

structure in topic modelling, as SeqLDA does, can ])e valuable to hel]j understand 

the original text content. 

In my last set of experiments for perplexity comparison. I show the perplexity 

comparison by changing the projwrtion of training data. In these exi>eriments, 

the number of topics for both LDA and SeqLDA are assumed to be fixed and 

equal to 50. As shown in Figure 6.3(d), SeqLDA (without boosting) always per-

foi-nis l^etter than LDA as the proportion of training data increases. The training 

tinre, for example, with 80% patents for training and 2000 Gibl)s iterations, is 

approximately 5 hours for LDA. and 25 hours for SeciLDA, which indicates that 

SeqLDA is still reasonably manageable in terms of training time. 

6.6.3 Topic Distribution Profile over Segments 

Besides better modelling perplexity, another key contribution of SeqLDA is the 

al^lity to discover underlying sequential topic eA'olution within a document. With 

this, one can fm-ther perceive how the author organises, for instance, her stories in 

a l)ook or her ideas in an essay. Here. I test SeqLDA on two books with following 

parameter settings: r/ = 0. a = 0.5. k = 20. b = 25 for -The Prince", and b = 50 

for ^\Iol)y Dick". 

To comimre the topics of SeqLDA and LDA, we have to solve the i)rol)lem 

of topic alignment, since topics learnt in separate runs have no intrinsic align-
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Figure 6.4: Topic alignment by confusion matrix 

nient. The approach I adopt is to start the SeqLDA's Gibl)s saniphng with the 

topic assignments learnt from LDA. Figure 6.4(a) and Figure 6.4(b) show the con-

fusion matrices l)etween the topic distributions generated by SeqLDA and LDA 

with Hellinger Distance, where SeqLDA topics run along the X-axis. Most topics 

are well aligned (with bhie on the diagonal and yellow off (hagonal), especially 

those for "Moby Dick". For "The Prince", the major confusion is with topic-0 

and 9 yielding some l)lueish off (hagonal. Tal)le 6.6 shows some toi)ic examples 

learnt from "The Prince". 

After ahgning the topics, I plot the topic distrilnitions {i.e., subtopics) as a 

function of chapter to show how each topic evolves, as shown in Figure 6.5 and 

Figiu'e 6.6 respectively. Innnediately. we can see that the topic evolving patterns 

over chapters learnt l)y SeqLDA are nnich clearer that those learnt Ijy LDA. For 

example, comi)are the subfigures in these two figures, it is a bit hard to find 

the topic evolution patterns in Figure 6.5(b) learnt by LDA; in contrast, we can 

find the patterns in Figure 6.6(b), for example, topic-7, which is about men on 

board ship generally, and topic-12, which is about the speech of old ("thou," 

"thee," "aye," "lad") co-occur together from chapters 15 to 40 and again around 

chapters 65-70, which is coherent with the lx)ok. 

Moreover, Figure 6.7(a) and Figure 6.7(b) depict the Hellinger distances 

(also as a function of chapters) between the topic: distributions of two consec-

utive compters to measure how smoothly topics evolve through the books. Obvi-

ously, the topic evolution learnt by SeqLDA is nnich better than that learnt by 

LDA. SecjLDA always yields smaller Hellinger distances and smaller variance of 
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Table G.6: 
examples. 

T^'pical topics learnt from "The Prince". Top 30 words are listed as 

LDA 

SeqLDA 

topic-0 

topic-9 

topic-O 

toijic-9 

topic-15 

toi)ic-l() 

servant servants pandolfo good opinion cares honours 
recognise honest comprehends venafro trust attention 
fails praise judgment honouring form thinking correct 
error clever choosing rank disposed prime useless Sinea 
faithfull studv 
truth emperor flatterers opinions counsels wisdom con-
tempt advice listen preserved bold counsel resolutions 
speaking maximilain patient unite born deceived case 
affairs short anger prove receive support st(^adfast guard-
ing discriminating inferred 
servant flatterers pandolfo opinions truth good hones 
cjuestion emperor counsels form cares opinion servants 
wisdom comprehends enable interests honours contempt 
fails venafro preserved maximilain choosing advanta-
geous listen thinking capable recognise 
support cardinals labours fortify walls tenrporal fortified 
courageous pontificate spirits resources damage town 
potentates character barons burnt ecclesiastical princi-
palities defence year firing hot attack prn'suit loss showed 
enemy naturally 
people nobles principality favour government times hos-
tile ways opi)ressed enemies secure give messer friendly 
rule security courage authority satisfy arises fail rojne 
recei^-e finds adversity civil builds aid expect cities 
prince men great good state princes man things make 
time fear considered su])ject found long wise army peo-
ple affaires defend whilst actions life fortune difficulty 
present nnnd faithful examples roman 
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(a) The Prince (1)) Moby Dick 

Figure G.5: Topic evohitioii analysis l)y LDA 

(a) The Prince (b) Moby Dick 

Figure G.G: Topic evolution analysis Iw SeqLDA 
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Figure G.7: Topic evolution l)y Hellinger Distance 
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distances. The big ro])ic shifts fomid l)y LDA are also highhghted by SeciLDA. 

such as Chapter 7 to 10 in Figure G.7(a). Evidently, SecjLDA has a^^oided heavy 

topic drifting, and makes the topic flow ])etween cdiapters much smoother than 

LDA does. An innnediate and o1)vious effect is that this can help readers under-

stand more precisely how a l)()ok is organised. 

Consider "The Prince" in more detail. The topic that is most unchanged 

in "The Prince" is topic-16 (having the lightest yellow in off-diagonal in Fig-

ure 6.4(a)), also show in Table 6.6. This topic occurs consistently through the 

chai^ters in l)oth models and can l)e seen to really be the core topic of the 

book. Topic-1.5 is another topic that has not changed much, and it has its occiu'-

rence broadened consideraljly: for SeqLDA it now occurs throughout the second 

half of the book starting at cliapter 10; the to])ic is about the nature of governing 

principalities as opposed to the first 9 chapters which cover how principalities are 

formed and how princes gain their titles. Now consider the issue of topic-0 anrl 

9. Inspection shows topic-9 learnt by LDA occurring in Chapters 2 and 16 is split 

into two by SeqLDA: the chapter 16 part joins topic-O which has its strength 

in the neighbouring Chapter 15. and the topic-O part broadens out amongst the 

three chapters 1-3. These topics are illustrated in Table 6.6 and it can be seen 

that topic-O and topic-9 by LDA talk about related themes. 

Now consider "Moby Dick" in more detail. In some cases SecjLDA can be 

seen to refine the topics and make them more coherent. Toi)ic-6, for instance, in 

SeqLDA is refined to be a])out the l)usiness of processing the captured whale with 

hoists, oil, blubber and so forth. This occurs starting at chapter 98 of the book. 

For LDA this topic was also sprinkled about earlier. In other cases, SeqLDA seems 

to smooth out the flow of otlierwise unchanged topics, as seen for topic-O, 1 and 2 

at the bottom of Figure 6.6(b). 

6.7 Summary 

In this chapter, I have proposed a novel generative model, the Sequential La-

tent Dirichlet Allocation (SeqLDA) model hy explicitly considering the docu-

nrent structure in the hierarchical nKjdelling. The seciuential topical dependencies 

buried in the higher level of document structure are caj^tured by the dependen-

cies among the segments^ subtopics (or ideas) which are further approximated 

by topic distributions. Thus, the topic e^•olution can Ix̂  estimat(Kl by ol)serv-

ing how topic distributions change among segments. Unlike other Mark(w chain 
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l)asc(l models, ScqLDA, as an iiitegratod model, detects the rise and fall of topics 
within each individual document l)y putting the Markov assunii)tion on the topic 
distrilnitions. 

I have also develoixxl for SecjLDA an efficient collapsed Gibl)s sampling algo-
rithm Imsed on the CMGS for the HPDP (Equation 3.6). Instead of samphng for 
the full customer seating arrangement, this algorithm uses the table nniltiplicities 
to sum out the exact customer partitions in the restam'ants. In this way, the real 
valued parameter of the PDP can easily be integrated out. Having observed that 
the P D P is sensitive to the concentration parameters {i.e., 6), I introduced an 
adaptive rejection sampling method to optimise b. Besides the advantage over 
LDA in terms of improved perplexity, the ability of SeqLDA to discover more co-
herent sec|uential topic structure {i.e., how topics evolves among segments within 
a document) has 1)een demonstrated in the experiments. The experimental results 
also indicate that the document structure can aid in the statistical text analysis, 
and structure-aware toi)ic modelling approaches provide a solution going beyond 
the "bag-of-words" assumption. 

There are various ways to extend SeqLDA which I hope to explore in the 
future. The model could be applied to conduct document smnmarisation and text 
segmentation, where seciuential structm'es could play an important role. The two 
parameters a and b in the P D P can be optimised dynamically for each segment 
in order to handle sizeable topic drift among segments where the correlations 
between two successive segments are not very strong. 
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l)aso(l models. SecjLDA. as an iiitograted model, deteets the rise and fall of topies 
within each indivi(hial doeument by i)utting the Markov assumption on the topic 
distril)utions. 

I have also develo])ed for SeciLDA an efficient collapsed Gibl)s sampling algo-
r i thm based on the CMGS for the HPDP (Eciuation 3.6). Instead of sampling for 
the full customer seating arrangement, this algorithm uses the table nniltiphcities 
to sum out the exact customer partitions in the restaurants. In this way. the real 
valued parameter of the P D P can easily be integrated out. Having oljserved that 
the P D P is sensitive to the concentration parameters (i.e., b), I introduced an 
adaptive rejection sampling method to optimise b. Besides the advantage over 
LDA in terms of improved perplexity, the al)ility of SeqLDA to discover more co-
herent sequential topic structm'e {i.e., how topics evolves among segments within 
a document) has l)een demonstrated in the experiments. The experimental results 
also indicate that the document structure can aid in the statistical text analysis, 
and structure-aware toi)ic modelling approaches prcnide a solution going l)eyon(l 
the "l)ag-of-words" assumption. 

There are various ways to extend SeqLDA which I hope to explore in the 
future. The model could l)e a])])hed to conduct docmnent summarisation and text 
segmentation, where sequential structures could play an important role. The two 
parameters a and b in the P D P can be optimised dynamically for each segment 
in order to handle sizeable topic drift among segments i.e., where the correlations 
between two successive segments are not very strong. 
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Chapter 7 

Adaptive Topic Model 

111 this chapter, I i)reseiit another structured toi)ic model, called an adaptive topic 
model (AdaTM), l)ased on the compound Poisson-Dirichlet process (CPDP) dis-
cussed in Section 2.4. This new model integrates STM (in Chapter 5) and Se-
qLDA (ill Chapter 6) to incorporate the full document structure, so that two 
kinds of subject structures {i.e., the latent hierarchical structure and the secjuen-
tial structure) buried in the high levels of document structures can l)e modelled 
simultaneously. It is evaluated on five sets of U.S. patents with different Inter-
national Patent Classification (IPC) c:odes and two l)ooks. Experimental results 
show that with topic adaptation, AdaTM can outperform STM, SeqLDA and 
LDA in terms of per-word predicting likelihood, and it is able to uncover clear 
topic evolution structure in the books, like SeqLDA. 

This chapter is organised as follows. Section 7.1 gives the motivation of the 
new model. Section 7.2 elaborates the model in detail, then the l^locked Gibbs 
sami)hng algorithm based on BTIGS is developed in Section 7.3. The experimental 
results are reported in Section 7.4. Section 7.5 concludes this chapter. 

7.1 Introduction 

In Chapters 5 and G, I developed two structured topic models, i.e., STM and Se-
qLDA, that explore the hierarchical document structure and the seciuential docu-
ment structure respectively. The former maps the hierarchical document structure 
to a document topic hierarchy by using the PDP (see Figure 5.1); and the latter 
deals with the underlying secjuential topic dependencies (see Figure 6.1) conveyed 
by the segment secjuence {i.e., the order of segments in the document layout) l)y 
extending the HPDP with a multi-level hierarchy. Both models have better pre-
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(lictive accuracy t han the s t anda rd LDA and other segmented topic models, which 

suggests tha t document s t ruc ture can l:)e impor tan t in analysing the original tex t 

content . 

However, documents {e.g.. books, scientific articles and j^atents) usually ex-

hibit bo th hierarchical and secjuential s t ructures . Recall tha t document s are com-

posed of segments, each of which contains a group of words. T h e definit ion of 

segments can vary according to different types of documents . For example, seg-

ments can be chapters in books, sections in articles, or pa ragraphs in essays. All 

segments are organised logically to form a document . T h e logical organisat ion 

is done through linkages between the document subject and subtopics associat-

ing with segments, and those among the subtopics. T h e former linkages form 

the hierarchical topic structvu'e, and the lat ter ones form the sequential topic 

s t ructure . All the linkages establish the complete document s t ruc ture . 

The problems of modelling these two kinds of s tructm'es sej^arately could l)e: 

1. Modelling the document subject and its corresponding segment subtopics 

in a hierarchical way has assmned segments in a document are exchange-

able. This implies tha t there are no direct relations among subtopics. How-

ever. in writing, people usually t ry to link a segment to its antecedent and 

subsecjuent segments in order to make toi)ics change smoothly from one seg-

ment to another . Therefore, the exchangeability assumpt ion is not always 

appropr ia te , especially if documents indeed exhibit some la tent sequential 

topic s t ructure . This can be the reason why STM could be inappropr ia te 

for floing analysis of topic evolution . 

2. In contrast , only modelling the sequential s t ruc ture may misinterpret the 

document s t ruc ture if correlations among subtopics of ad jacent segments are 

not strong. Here I take books, especially novels as examples. In many books, 

one can have topic shifts f rom one chapter to another . This was discussed 

in the analysis of topic: dis tr ibut ion profile over chapters of two novels in 

Section 6.6.3. T h e topic shifts may in terrupt the sequential s t ruc ture , so it 

is possible tha t stories wri t ten in different chapters do not exhibit obvious 

sequential relations, though they al together make up a complete story. In 

this case, modelling the sequential s t ruc ture with the hierarchical s t ruc ture 

may yield a be t te r performance. 

In Figure 7.1, the graph on the top i l lustrates an example of a document struc-

tu re t ha t consists of bo th kinds of to])ic s t ructures . T h e sets ({//i. 1̂ 2}, {'^3, 1̂ 5} 
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Figure 7.1: An exami)le of a full document structure with seven segments, each 

of which is denoted Ijy a circle with lal)el //j. The top one shows the case when the 

document structure is known a priori. The button one shows the case when the 

document structure is not known a priori, thus we need to model the document 

structure with a fully directed graph. The latter is usually the case in dociunent 

analysis. 

and {UQ, UJ}) that contain different number of linked nodes exhibit a hierarchical 

structure, and nodes in each set exhibit a sequential structure. Topic shifts can 

be simulated by adapting a new subtopic from the document subject at breaking 

points of the chain, i.e., at nodes 7/3 and VQ. If document topic structures are 

known a priori, we can linearly combines STM and SeqLDA. However, document 

topic structures are not always known a priori. They need to be learnt from the 

original text content and the i)hysical layout. As a consequence, we need an in-

tegrated model that models the two kinds of structure together, as shown by 

the fully directly linked graph in Figure 7.1. The integrated model should al-

low the data themselves to decide whether they exhil)it both structures, or just 

one. Thus, each node can inherit topical features from both parent nodes. There-

fore, the sul)topic of one segnrent is now an admixture of its preceding segment 

subtopic and the document sul:)ject. 

In this c-hapter, I am interested in develo])ing a new topic model that can 

go Ijeyond a strictly secjuential model [e.g., SeqLDA) while allowing some hi-

erarchical influence. I employ the hyl)rid shown at the buttom of Figure 7.1, 

and associate relative strengths with the arrows. These relative strengths can l)e 

used to adaptively allow this hybrid to approximate the one in the top of Fig-

ure 7.1. Thus, one needs to dei)art from the earlier HMM style models, see, e.g., 
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Blei and Moreno, 2001: Purver et al., 2006; Grnljer et al.. 2007: Eisenstein and 

Barzilay. 2008: ^̂ •ang et al., 2011; Ngnyen et al., 2012;. 

Research in Machine Learning and Natural Language Processing has attempted 
to model various topical dependencies. Some work considers structure within the 
sentence level by mixing HMMs and topics on a word l)y word basis: the as-
pect HMM [Blei and Moreno. 2001] and the HMM-LDA model [Griffiths et ah, 
2005] that models both short-range syntactic dependencies and longer semantic 
dei)en(lencies. These models operate at a finer le "̂el than we are considering at a 
segment (like paragraph or section) level. To make a tool like the HMM work at 
higher levels, one needs to make stronger assumptions, for instance assigning each 
sentence a single topic and then toj^ic specihc word models can l:)e used: the hid-
den topic Markov model [Gruber et al.. 2007] that models the transitional topic 
structure: a global model Ijased on the generalised Mallows model [Chen et ah, 
2009]. and a HMM based content model [Barzilay and Lee. 2004]. Researchers 
have also considered time-series of topics: various kinds of dynamic topic mod-
els, following early work of [Blei and Lafierty. 20()Gb], represent a c(jllection as a 
sequence of sub-collections in epochs. Here, one is modelling the collections over 
broad epochs, not the structure of a single document that AdaTM considers. 

7.2 A d a T M Generative Process 

In this section. I develop a new adaptive topic model (AdaTM). a fully structured 
topic model, by using the CPDP discussed in Section 2.4 to simultaneously model 
the hierarchical and the sequential topic structures. As for STM and SeqLDA. 
topic distributions are used to mimic the subjects of docmnents and subtopics 
of their segments. The notations and terminologies used in the following sections 
are the same as those in STM. see Table 5.1. In addition, pi j , drawn from a Beta 
distribution {i.e.. a two-dimensional Dirichlet distril^ution), is the mixture weight 
associating with the link l)etween document distribution fj,̂  and segment topic 
distribution i/jj. It is first introduced in the CPDP, see Section 2.4. 

In AdaTM, the two topic structures are c:a])tm'ed by drawing topic distri-
butions from the CPDPs with two l)ase distributions as follows. The document 
topic distribution /i, and the j " ' segment topic distribution are the two base 
distril)utions of the CPDP for drawing the {j + 1)"' segment topic distribution 
Ui.j+i. The topic distril)ution of the first segment, i.e., r/,;̂ , is drawn directly 
from a PDP with the base distribution fj,-. I call this generative proc^ess topic 
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1 O " 

Figure 7.2: Adaptive topic model. is the document topic distribution for the 

document subject. V]. • •., V j are the segment topic distributions for the 

segment sul)topics. p is a set of the mixture weights associated with segments. 

adaptation. Clearly, recursively drawing segment topic distri])ution with a CPDP 

forms a simple DAG structure over topic vectors. The graphical representation of 

AdaTM is shown in Figure 7.2. 

The complete probal)ility construction of AdaTM is: 

(pî . ~ Dirichletvr (7) 

jjL^ ~ DirichletA' {a.) 

Pi J Beta(As, \t ) 

ly.̂ j - PYP + (1 - a, 

Zî jj ~ Discrete/,- {Ui j ) 

Wijj - Discrete/v , 

for each k 

for each i 

for each 1 < j < Ji 

for eacdi 1 < j < Ji 

for each i, j , / 

for each y, / 

Here, for notational convenience, let = /ẑ . Like in STM and SecjLDA, I 

have assumed the (hmensionahty of the Dirichlet distribution {i.e., the number 

of topics) is known and fixed, and word probal)ihties are parameterised with 

a K X i r matrix The complete-data hkelihood can l)e read directly from 
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Figure 3.11 using distrilnitions given in the al)()ve i)r()l)al)ility model, i.e., 

•h / 

I A) TT p{fH,j I A5, AT) I 
-L J- \ • 

/ / 

i=l \ 

l=^ 

(7.1) 

7.3 Gibbs Sampling via BT IGS 

For the posterior inference, I elal)orate a l)locked Gi1)bs sampling algorithm based 

on the BTIGS (see Section 3.4) to do approximatefl inference. Tal)le 7.1 lists 

all the statistics needed in the algorithm. Notice that for easy imderstanding. 

terminologies in the CRP wih be used, i.e., customers, dishes and restaurants, 

which correspond to words, topics and segments respectively. The l)asic theories 

of the CRP for the PDF and the CPDP are discussed in Chapters 2 and 3. It 

is worth reminding ourselves that tables in a child restaurant are sent as proxy 

customers to its parent restaurants, see Figure 3.9. 

7.3.1 Model Likelihood 

To adapt the l)locked table indictor Gil:>bs sampling algorithm for AdaTM, we 

first compute the marginal distribution of the observations Wi-ja-j (words), the 

topic assignments Zi-j^ j and the tal)le indicators Ui;/,i:j. Specifically, the Dirich-

let integral is used to integrate out the document topic distril)Utions fx^.j and the 

topic-by-words matrix and the joint posterior distribution computed in Equa-

tion (3.18) is used to recursively marginalise out the segment topic distributions 

Ui-i i-j. Wi th these variables marginalised out, we derive the following marginal 

(listril)ution 

i=i \ 

i< 

n 
BetaA' ( a ,,=1 V 

Beta [Si^, + As. + Ar) 

- 1 

5. j + 1,1: 

/ A-=l 

Betayy (7 + Mfc) 

Beta,v ( 7 ) 
^2) 

where Beta^- ( a ) is a K dimensional ])eta function that normalises the Dirich-

let; {x)n is given l)y (x|l)Ar, and {x\y)iv denotes the Pochhannner symbol (see 
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Eciuatious (3.2)); is a generalised Stirling nnniber (see Section 3.3). Note 
the following constraints api)ly: 

+ + (7.3) 

^Ij.k + = if aii'l only if + ^ti+i,/.- = ^̂  • 

For convenience, = 0 and f^j = 0. The reason for setting f j j . t to zero is 
that the topic distribntion of the first segment of each docnnient is always drawn 
from a PDP with base distribntion fj.^ {i.e., the docmnent topic distribntion), as 
shown in Fignre 7.2. 

As discnssed in Section 3.4, table indicators are not required to be recorded, 
instead, randomly sampled in Gibbs sampling iterations; and all the statistics 
needed are the same as those in the CMGS. The table indicators can be used to 
reconstruct the table multiplicities, and vice versa. See Chapter 3 for detailed dis-
cussions. Furthermore, the table indicator Uijj for word u ' l j j has two components 
in A d a T M . It is defined specifically as 

Uij j = {uu u-i) s.t. ui e [ - 1 , 0, 1] and U2 G [1, • • • 

Ta])le 7.1: List of statistics used in AdaTM 

Statistic. Description. 

^h.k.w the total number of words in document i with dictionary index 
tv and being assigned to topic k. 

^h.w totalled over documents i, i.e., 

M k vector of H ' values Mk^ 
topic total in document i and segment j for to])ic A', i.e., 

= ^Zijt=k- It counts customers arriving by them-
selves in the C R P representation. 

N i j topic total sum in document i and segment j, i.e., Ylk=i 

71 

f * t a b l e comit in the CPR for document i and paragraph j, for 
topic k that is inherited back to paragrai)h j — 1 and 

s* table count in the CPR for document i and paragraph y, for 
toi)ic k that is inherited back to the document and fx^. 

Tî j total table count in the CRP for document i and segment j . 

Sî j total table count in the C R P for document i and segment j. 

t*j table count vector, i.e., j, •••JIj^k) f"i' segment j. 

s*.j table count vector, i.e., f^i' segment j. 
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where 112 indicates the restaurant (i.e., a segment denoted l)y node i/j in Fig-

ure 3.11) up to which W i j j contributes a table. Given U2, Wj = —1 denotes W i j j 

contril)utes a tal)le count to arid ^ for ?/2 < ./ < .j- = 0 denotes 

t^'ijj does not contril)ute a tal)le to node U2. but contributes a talkie count to 

U.f.k for V.2 < j' < j: and Vi = 1 denotes u'i^jj contril:)Utes a tahle count to each 

fij',k foi' "2 < j' < j- Now, we are ready to conii:)Ute the conchtional prol^abil-

ities for jointly sampling topics and tal)le indicators from the model likelihood 

function (7.2). 

7.3.2 Removing the Current Topic 

Before sampling a new topic for Wi j j , we ftrst need to remove its current value 

i^ijd = />•') fi'oiii the related statistics according to its tal_)le in(hcator U j j j . How-

ever. tahle indicators for all words are not recorrled. Therefore, the table indi-

cators need to l)e randomly assigned by sami^hng. Given Z j j j = k' and 112 = j ' 

(1 < j' < j), the probabilities of a word 2c,jj (i.e.. a customer in the restaurant) 

being a table head at restaurant / {i.e. j ' - th segment) are respectively: 

= - 1 I U2 = j", Zi.jj = k') = (7.5) 
+ Uj'+LI.' 

pill, = 1 I U2 = = k') = (7.6) 

The cJiallenge here is to handle the two constraints (7.3) and (7.4) to make sure 

they are always satisfied after removing a topic. It is very interesting that the three 

probabilities have implicitly guaranteed that sampling to remove a topic according 

to Equations (7.5), (7.6) and (7.7) will not violate the two constraints. Specifically, 

the following 

cases at each restain'ant j ' (for 1 ^ j ' y) are considered. 

Let j' iterate from j to 1, 

1. 11 + = > removing a customer implies that we 

nmst remove a tal)le count from either or tij/j,'. It is easy to see that 

p(w] = 0 11/2 = Zi^jj = //) is always equal to zero in this case. Therefore, 

if this equation holds, removing a table is guaranteed by either p{ui = 

l h ' 2 = = k') > 0 or p(vi = -l\ u2 = = k') > 0, or 

both. Thus, v/2 is set to f . The value of (z, de])ends on whether s*j, or 

is sami)led. If t*^^^, is sampled, i.e. Ui = 1, we need to continue 
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the constraint check in restaurant f - 1 {i.e.. the parent restaurant o f . / ) , 

Ix^cause the tal)le removed f rom f i s a proxy customer in the parent 

restaurant. 

2- n + > s*y j , , + it is a l)it more complex than the above 

case when they are eciual. W e have to consider aU the fo l lowing three cases: 

( a ) If •Sij'^^.'+^-j/ ;,/ > 1, a table could either be removed or not. It depends 

on the value of u , j j sampled according to Eciuations (7.5), (7.G) and 

(7.7). If a table was sampled to be removed, U2 will be set to f , and 

ui will l)e set to either - 1 or 1. If is 1, which means the table will 

be removed f rom f*^, then we need to recursively do the check at 

the parent restaurant f - 1. 

II K j ' = a tahle must not be removed. Th is is l)ecause there 

are other customers ( i . e . , words) sitting at that table and sharing the 

dish {i.e., a toi ) ic) with iVi^jj. A l though the table was contri l )uted by 

W i j j , it c:annot be renun-ed. T h e recursive constraint check can be 

terminated. 

(fO If flj'.k' = = 1 I "2 = .j', Zi,jj = /,•') = 0. T h e customer does not 

contribute a ta])le count to W e do not need to recursively check 

constraints at the parent restaurant J' - 1. 

It is clear that, if W j = 1, the constraint check should be done recursively towards 

the first segment indexed by 1 until U] changes to 0. A lgor i thm G shows how to 

sample the table indicators to remove a topic. It is a concrete example of the 

ta]) le indicator samphng algorithm for the C P D P embedded in a D A G structure, 

as introduced in Section 3.3. 

7.3.3 Sampling a New Topic 

N o w consider a new topic k is sampled for Wt j j , denoted l)y Z i j j = k. In order 

to satisfy the constraints (7.3) and (7.4), for each node j' (1 < j' < j ) . we have 

to do the recursive constraint check as done in removing a toi)ic. T h e fol lowing 

cases are c:onsidered: similar to removing a topic, let j ' start f rom j to 1, 

I- If + = 0, which means = 0, adding a customer eat-

ing the A-th dish means a new table nnist be created. T h e new tal) le can be 

either contr ibuted to or f*^-, which is according to Equation (7.9). If 
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Algor i thm 6 Sample to remove a word iVijj in A d a T M 

1. initialise U j j j with = 0, U2 = j 

2. for j ' = j to 1 do 

4. = + 

5. i { T = l k N > T then 

6. return Uj j j 

7 . else 

8. sample u\ according to Equations (7.5), (7.6) and (7.7); 

9. if = 0 then 

t o . return xtj^j 

tl. else 

t2. if u\ = - 1 then 

13. uj = - 1 . = f 

14. return Uj j j 

15. else 

16. Ui = 1, U2 = j ' 

17. end if 

18. end if 

19. end if 

20. end for 

21. if U] = 1 then 

22. Decrement t * j , ,, where U2 < j ' < j 

23. else 

24. if W] = - 1 then 

25. Decrement and where u.j < f < j 

26. end if 

27. end if 

28. Decrement riij^}, and update other related statistics 
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Algorithm 7 Sample a new topic for Wj^jj in AclaTIM 

1. for k = 1 to K do 

2- = A') = 0; 

3. Find the least integer u', otherwise u' = - 1 ; 

4. if (/' = - 1 then 

5- pizi,j,i = k) + = p(zijj = k.tii = (),?72 = j) with fornmla (7.8); 

6. end if 

7. for j' = 1 to j do 

8. if f < u' k f > 1 then 

9. pi^ijj = />') + = pi^ijj = " i = = j') with formnla (7.9); 

10. end if 

11. pi^ijj = f^') pi^ijj = A'. Ill = -1,112 = j') with fornmla (7.10): 

12. end for 
13. end for 
14. sample a topic k' according to the compnted probabilities p{zij,i = k), 1 < 

k < A'; 

15. sample Ujjj according the compnted prol)a])ilities, conditioned on Zijj = A:'; 

16. if 111 = - 1 then 

17. increase ^nfl fih foi' < j" < j; 

18. else 
19. if 111 = 1 then 

20. increase ĵj',/,.' for U2 < j" < j', 

21. end if 

22. end if 

23. riî ĵ k' = nî ĵ k' + 1: 

it is sampled to c:ontril)iite the table to a recursive constraint check 

is needed in the parent restaurant / - 1, since this new table will be sent 

as a proxy customer to the parent restaurant. 

2. If nij',/,.+ f, > 0, adchng a customer may or may not increase the talkie 

covmt (either or 8* -, .̂) l)y one. It will depend on the value of ii,j,/ 

sampled according to Ecjuations (7.8), (7.9) and (7.10). Similar to the hrst 

case, if f*y ^ is sami)led, we need to do the recursive chec:k up to the parent 

restaurant J' — 1. 

As a consequence, adding a customer Wij j to the current restaurant with 

z- jj = k could create a new table in each restaurant j' for 1 < j' < j. However. 
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to guarantee the tal)le is created recursively, if riij'̂ î . + = 0 and /,, is 

sampled to iiK:rease, we must find the least integer so that Hij',k + k ~ " 

for a' < f < j. All nodes between ?/' (exclusive) and j (inclusive) should only 

consider two options, //] = —1 and U[ — 0, because a recursion is needed if 

M] = 1. Moreover, the special case is when j' = u'. Ui now can be chosen to 

be 1. After considering all the cases discussed alx)ve. we can derive the joint 

conditional probabilities of a toj^ic assignment ^̂  and the corresponding table 

indicator Uj j j as follows. 

P{Zi,j,l = A', Ml = 0, U2 = j) oc (7.8) 

b + A^,, + Tlj+i 

'ij,^ + ilj+Lk + 1 - + 

p{Zi,j.t = A', III = 1, U2 = f ) (X 

1 ^ / 

b + Nij'-i + Tij' \ 

Tjj" + \t b + a(TjJ// + Sj^j") ^ 

j" + Ti^j" + As + \t b+ Nij" + 
J —J 

+ + 1 ^^ 

, , ,+s* „ . ,,, 

n 

j " + i / 

+ ^If'.k + ^ 

rii^r'.k + f* 

(7.9) 

vizi^j.i = k\ = - 1 , 11-2 = j 

Qi- + T.J Sij> + As 

oc 

'''ijM Sjj^ + As y^ Ti jn + Aj-

Y.k + Y.j.k Tij' + \T + + As + Ar 

-j-r b + a{Tij» + Sjj") t*j„,. + slj,,,. + 1 

J"=J' 

[7.10) 

Algorithm 7 shows how to sample to add a new topic based on Ecjuations (7.8), 

[7.9) and (7.10). The imi)lementation is ciuite easy and straightforward. 
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7.3.4 Estimating Topic/Word Distributions 

From statistics ()l)taine(l after the biirn-iii of the Markn' chain, we can estimate 

document topic (hstributions segment topic distril)utions i/. and topic-word 

(hstril)utions cj). Like STM and SeqLDA. they can l)e approximated from the 

following i)osterior expected values via samphng: 

Q̂^ + Ej l l 

E L + 
7.11) 

hu- = 
{nij.k + f • j+1,;,) - « X (tl^j^ + 

6 + 

+ + b + Ag) + + XtY 
h + A'jj + Tij+i V Tij + Si J + As + AT 

7.12) 

Iw + k,w 
w' / 

(7.13) 

7.4 Experimental Results 

As done in experiments in Chapters 5 and 6, 1 implemented AdaTM in C, and 

ran it on a desktop with Intel Core i5 CPU {2.8GHzx4), although the code is not 

nmlti-threaded. In the following sets of experiments, there are three objec:tives: 

1. To explore different setting of hyper-parameters. 

2. To compare AdaTM with the earlier STM, SeqLDA and the standard LDA 

(on either the document level or the segment level) in terms of per-word 

l)redictive likelihood. 

3. To view the results in detail on a numl)er of characteristic prol)lems. 

The first objective is to study how hyper-parameters can affect the performance 

of AdaTM; the second is to show the superiority of AdaTM over the other three 

models with respect to docmnent modelling accuracy; The last is to demonstrate 

that AdaTM can be a promising tool for structured document analysis, which 

could be useful for other ad-hoc document analysis techniques, such as structured 

information retrieval, document sunnnarisation, and toi)ical segmentation. 
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Following the standard way of doing evalnation in topic modelling, we use per-

plexity, a standard measure of dictionary-based compressibilit}^ in i)erforniance 

comparison. \Mien reporting test perplexities, the held-out perplexity measure 

Rosen-Zvi et al., 2004] is used to evaluate the generalisation capability to the 

unseen data. This is known to be unbiased. To compute the held-out perplexity, 

20% of patents in each data set was randomly held out from training to l)e used 

for testing. For this. 1000 Gibbs cycles were done for burn-in followed by 500 

cycles with a lag for 100 for parameter estimation. 

7.4.1 Datasets 

For ol)jectives one and two. five patent datasets are randomly selected from U.S. 

patents granted in 2009 and 2010. Patents in Pat-A are selected from international 

patent class (IPC) "A", which is about "HUMAN NECESSITIES"'; those in Pat-

B are selected from class "B60" about "VEHICLES IN GENERAL" : those in 

Pat-H are selected from class "H" about "ELECTRIC ITY" ; those in Pat-F are 

selected from class "F" al)out "MECHANICAL ENGINEER ING ; L IGHTING; 

HEATING: WEAPONS ; BLASTING"; and those in Pat-G are selected from class 

"G06" aboiit "COMPUTING; CALCULATING; COUNTING" . Ah the patents 

in these hve datasets are split into paragraphs that are taken as segments, and 

the sequence of paragraphs in each patent is reserved in order to maintain the 

original layout. All the stop words, the top 10 common words, the unconnnon 

words (i.e.. words in less than hve patents) and numbers have been removed. 

Two books used for more detailed investigation are "The Prince" l)y Nic'colo 

Machiavelli and "Moljy Dick" by Herman Melville. They are split into chapters 

and/or paragraphs which are treated as segments, and only stop-words are re-

moved. Table 7.2 show^s in detail the statistics of these datasets after preprocess-

ing. The statistics of the two books can 1)6 hurl in Tal:)le 6.3. For "The Prince", 

there are 192 paragraphs. 

7.4.2 Hyper-parameters Investigation 

Experiments on the impact of the hyper-parameters on the patent data sets are 

as foUows. First, fixing K = 50. the Beta parameters XT = 1 and As = 1. oi^timise 

symmetric a. and do two variations fix-a: a = 0.0. trying b = 1,5.10,25, ....300, 

and fix-b: b = 10. trying a = 0.1,0.2 0.9. Second. fi-x-Xr (fix-Xs)'. fix a = 0.2 

and XriXs) = 1. optimise b and a. change XS{XT) = 0.1,1.10,50,100.200. Fig-
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Talkie 7.2: Datasets 

#docs #segs # words vocal) 

Pat-A 500 51,748 2,140,464 16,573 

Pat-B 397 9,123 417,631 7,663 

Pat-G 500 11,938 655,694 6,844 

Pat-H 500 11,662 562,439 10,114 

Pat-F 140 3,181 166.091 4,674 
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Figure 7.3: Analysis of parameters of Poissoii-Diriclilet process, (a) shows how 

perplexity changes with h; (b) shows how it changes with a. 

200 
LamSa T 

(b) fix As = 1 

Figure 7.4: Analysis of the two jjaranieters for Beta distribution, (a) shows how 

perplexity changes with As; (b) shows how it changes with At. 



142 CHAPTER 7. ADAPTIVE TOPIC MODEL 

Ta1)le 7.3: P-values for oue-tail paired t-test on the five patent datasets. 

AdaTM 

Pat-G Pat-A Pat-F Pat-H Pat-B 

LDA.D .0001 .0001 .0002 .0001 .0001 

LDA.P .0041 .0030 .0022 .0071 .0096 

SeciLDA .0029 .0047 .0003 .0012 .0023 

STM .0220 .0066 .0210 .0629 .0853 

ures 7.3 and 7.4 show the corresponding plots. Figtn'es 7.3(1)) and 7.4(a) show that 
A^arying the valnes of a and As does not significantly change the perplexity, hi 
contrast, Fignre 7.3(a) shows different b valnes significantly change perplexity. 
Therefore, I songht to optimise h. The experiment of fixing As = 1 and changing 
Xt shows a small Xt is preferred. 

7.4.3 Perplexity Comparison 

Perplexity comparisons were done with the defanlt settings a = 0.2, a = 0.1, 
7 = 0.01, As = 1, Ar = 1 and b optimiserl antoniatically nsing the scheme 
discussed in Chapter 6. Moreover, LDA has l^een run on ])oth the document level 
(LDA_D) and the paragraph level (LDA_P). The different numbers of topics I 
have run are 5, 10. 25. 50, 100. and 150. Figures 7.5(a) to 7.5(e) show the results 
on these five patent datasets for different number of toi)ics. Ta!)le 7.3 gives the p-
values of a one-tail paired t-test for AdaTM versus the others, where lower p-value 
indicates AdaTM has statistically significant lower perplexity. From this we can 
see that AdaTM is significantly l)etter than SeqLDA and LDA. and better than 
or comparalile with STM. I observed that for Pat-B and Pat-H. the hierar(4iical 
structure dominates the sequential structure, given that the relative weights on 
edges l)etween // and î j are usually larger than those between iJJ and which 
results in that AdaTM and STM are conii)arable. 

In addition. I ran another set of experiments by randomly shuffling the order of 
])aragraphs in each ])atent several times before running AdaTM. Then, I calculate 
the diffei'ence between perplexities with and without random shuffle. Fignre 7.5(f) 
shows the plot of differences in each data sets. The positive difference means 
randomly shuffling the order of paragrai)hs indeed increases the perplexity. It can 
further prove that there does exist sequential toj^c structure in patents, which 
confirms the finding in Chapter 6. 
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Figure 7.5: Perplexity comparisons. 
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Figure 7.6: Topic alignment analysis on "The Prince". 

7.4.4 Topic Evolution Comparisons 

All experiments reported in this section are run with 20 topics, the upper limit for 
easy visualisation, and without optimising any parameters. The Dirichlet Priors 
are fixed as a t = 0.1 and = 0.01. For AdaTM, SeqLDA, and STM, a = 0.0 
and b = 100 for "The Prince" and b = 200 for "Moby Dick". These settings 
have proven robust in experiments. To align the topics so visualisations match, 
the sequential models are initialised using an LDA model built at the chapter 
level. Moreover, all the models are run at both the chapter and the paragraph 
level. With the common initialisation, both paragraph level and chapter level 
models can be aligned. Figure 7.6 shows the alignment of topics between the ini-
tialising model (LDA on chapters) and AdaTM run on chapters/paragraphs. Each 
point in the matrix gives the Hellinger distance between the corresponding topics, 
color coded. The plots for the other models, chapters or paragraphs, are similar 
so plots like Figure 7.7 can be meaningfully compared. 

To visualise topic evolution, I use a plot with one colour per topic displayed 
over the sequence, as done in Chapter 6. Figures 7.7(a) and 7.7(b) show these for 
LDA run on chapters/paragraphs of "The Prince". The proportion of 20 topics 
is the Y-axis, spread across the unit interval. The chapters/paragraphs run along 
the X-axis, so the topic evolution is clearly displayed. One can see there is no 
clear sequential structure in these derived by LDA, especially in paragraphs, and 
similar plots result from "Moby Dick" for LDA. 

Figure 7.7 then shows the corresponding evolution plots for AdaTM and Se-
qLDA on chapters and paragraphs. The contrast of these with L13A is stark. The 
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(a) LDA on chapters 

oa iBe 126 ] « lefl l e e 

(b) LDA on paragraphs 

I W 120 146 166 166 

(c) AdaTM on chapters (d) AdaTM on paragrai)hs 

66 186 126 146 166 166 

(e) SeciLDA on chapters (f) SeqLDA on paragraphs 

Figme 7.7: Topic Evolution on 'The Prince". 
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80 100 120 

(a) LDA oil chapters (h) STM on Chapters 

100 120 

(c) AdaTM on Chajrters 

Figure 7.8: Topic Evolution on "Mo1)y Dick". 

91 121 151 
Paragraph 91 Chapter 121 135 

(a) '-The Prince" (b) "Moby Dick" 

Figure 7.9: Topic evolution analysis based on Hellinger Distance 
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large iiiipioveiueiit in perplexity for AdaTM (see Section 7.4.3) along with no 
change in lexical coherence means that the secinential information is actually l)ene-
hcial statistically. Note that SeciLDA, while exhibiting slightly stronger se(iuential 
structure than AdaTM in these figures has significantly worse test perplexity, so 
its secinential affect is too strong and harming results. Also, note that some top-
ics have different time seciuence profiles between AdaTM and SecjLDA. Indeed, 
inspection of the top words for each show these topics differ somewhat. So while 
LDA to AdaTM/SeqLDA topic correspondences are (luite good due to the use 
of LDA initialisation, the correspondences l)etween AdaTM and SeqLDA have 
degraded. see that AdaTM has nearly as good secinential characteristics as 
SeciLDA. Furthermore, segment topic distribution i^ij of SeciLDA are gradually 
deviating from the document topic distribution //,, which is not the case for 
AdaTM. 

Rc^sults for "Moby Dick" on chapters are comparable. Figure 7.8 shows similar 
topic evolution plots for LDA, STM and AdaTM. In contrast, the AdaTM topic-
evolutions are nmch clearer for the less freciuent topics, as shown in Figure 7.8(c). 
Varicjus parts of this are readily interpreted from the storyline. Here I l)riefly 
discuss topics by their colour: Mack: Captain Peleg and the business of signing 
on: yellmv: inns, housing, bed; rnauve: (^leeciueg; azure: (around chapters 60-
80) details of whales aqua: (peaks at 8, 82, 88) pulpit, schools and mythology of 
whaling. We see that AdaTM can be used to understand the topics with regards 
to the secinential structure of a book. In contrast, the secinential nature for LDA 
and STM is lost in the noise. 

7.4.5 Further comparison between A d a T M and SeqLDA 

In previous section, I have shown the topic profile analysis for LDA, STM Se-
qLDA and AdaTM on the two books. In order to further compare AdaTM with 
Sc^qLDA. here. I do analysis on the two models by using the Hellinger Distance 
(HD). Specihcally, the methodology uscxl is to compute, fcjr each segment j , the 
Hellinger distance between document topic distribution and Uj. dc^notcxl l)y 

Figure 7.9 shows the pk)ts of H D { p , U j ) on the paragraph levc4 of 

'The Prince" and the chapter level of "Mol)y Dick". 
It is interesting that, for SeqLDA. HDip,, u/) increases as the paragraph index 

becomes large. This phenomena may be due to the Markov c-hain used by SeciLDA, 
sĉ e Figure 6.2. In such a chain structure, lyj is likely to be conc-entrated on 
less support as j grows, which results in that Uj becomes less dependent on 
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^i. However, allowing some hierarchical influence in a strict sequential s t ructure 

can reduce the secjuential affect of Markov chain, and it can balance the support 

that Vj is concentrated on. Therefore, if the distance between Uj and f i l)econies 

large, AdaTM can pull Vj back, as shown in red in Figure 7.9. 

7.5 Summary 

In this chapter. I have proposed an adaptive topic model (AdaTM) tha t nrodels 

the document structure by embedding the C P D P in a simple DAG structure. This 

DAG structure is motivated by both the hierarchical and the secjuential subject 

structures embedded in the document layout, i.e., a segment sequence. It can be 

taken as a generalisation of STM introduced in Chapter 5 and SeqLDA introduced 

in Chapter 6. Specifically, if the mixture weight p is set to 1, AdaTM reduces to 

SeqLDA: if p is set to 0, it reduces to STM. In order to do posterior inference for 

AflaTM. I have developed a blocked table Indicator Gibl)s sampling algorithm 

based on BTIGS introduced in Chapter 3. 

The experimental results on five sets of patents show that the average pre-
dictive accm-acy of AdaTM on unseen words is significantly bet ter than SeqLDA 
and LDA, and somewhat better than STM: the topic evolution analysis shows 
that with AdaTM, one could extract meaningful topics from a book like Her-
man Melville's "Moby Dick" and concurrently gain their sequential profile. In 
the future, I would like to study how AdaTM can be used in ad-hoc document 
analysis. For example, It can be very interesting to apply AdaTAl to topic seg-
mentation, sunnnarisatiou, and semantic title evaluation. Currently, the code 
runs fairly slow due to the procedure of sampling new topics discussed in Sec-
tion 7.3.3. The development of a more effective and efficient sampling algorithm 
is one possilile futm-e research direction, such as particle filtering [Canini et al., 
20091. 



Chapter 8 

Conclusions and Future Work 

Topic models, as proiiiising unsupervised learning api)roaclies. have gained signif-
icant nionientuni recently in machine learning, data mining and natural language 
processing connnunities. They have gained wide applications in, for example, 
information retrieval, sentiment analysis, and text analysis. Reflated techniques 
such as NMF are also widely used in images analysis for codebook/dictionary 
optimisation. In particular, the standard LDA has been extended by relaxing its 
underlying assumptions to incorporate beyond the ''bag-of-words' information, 
such as supervised information {e.g., class labels) or meta-data {e.g., authors or 
citations). 

Despite various topic models that have been i)roposed in the literatm-e, the 
field of topic modelling still needs to be further developed. One promising area in 
topic modelling that has been introduced in this thesis is to directly consider the 
document structure ranging from seniantically high-level segments {e.g., chapters 
or sections ) to low-level segments {e.g., sentences or words). The layout of these 
segments in a document is usTially represented jointly with the document subject 
struc:ture. Exploring the document structure c:an be very useful in exploratory 
and ])redictive text analytics. 

This thesis presented a family of structured topic models by taking advantage 
of non-parametric Bayesian methods, i.e., the two-parameter Poisson-Dirichlet 
process (PDF) . These models take into consideration document structure directly 
by looking at the original layout of each document as a guide to structure. Three 
Bayesian topic nuxlels were introduced, each capturing different types of docu-
ment structures: the hierarchical document structure, the sequential document 
structure, and a mixture of the two. The experimental results from applying the 
three models to several real-world document collections have demonstrated that 
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it is beneficial to jointly model the docnment structnre with the latent topic: 
variables. 

In chapter 3, I introclncecl two new Gibbs sampling methods for doing posterior 
inference for the PDP in finite discrete space. One is a two-stage Gil)bs sampling 
algorithm, called a Collapsed Multiplicity Gibljs Sampler (CMGS), which is based 
on the table multiplicity representation for the PDP. Different from Sampling for 
Seating Arrangement (SSA) sampler most commonly used with the hierarchical 
DP and PDP modelling, CMGS does not need to dynamically record the cus-
tomer count at each table. The other is a Blocked Table Indicator Gibbs Sampler 
(BTIGS). In BTIGS, a new auxiliary latent variable, called taMe indicator, is 
introduced to record the table contribution of customers. Unlike recording the 
custonier-talile assignment, table indicators can be randomly assigned in Gibbs 
cycles. Note from the table indicator assignments, we can reconstruct the talkie 
multiplicity representation, and vice versa. The results of experiments run in a 
simply controlled environment of nuiltinomial sampling have shown that both 
CMGS and BTIGS converge faster than SSA. 

Chapter 5 presented a Segmented Topic Model (STM) that directly models 
the docmnent structure with a four-level hierarchy. It maps the layout of seg-
ments in a document to a hierarchical subject structure. I developed for STM 
an effective collapsed Gibbs sampling algorithm based on CMGS. Using several 
real-world document collections. I compared it with the standard LDA and other 
segmented topic models, demonstrating that STM performs better than other 
models in terms of per-word predictive perplexity. For example, STM gains 28% 
improvement over LDA running on document level and 18% on paragraph level, 
when 100 topics are used for the patent dataset. The concentration parameter 
b is optimised for the case when a = 0. The primary benefit of STM is that it 
allows us to model document structure by sinmltaneously modelling document 
and segment topic distributions in the same latent topic space. 

In Chapter 6, I considered another document structure, the sequential docu-
ment structure, by introducing a novel Sequential Latent Dirichlet Allocation 
(SeqLDA) model. This model relaxes the excdiangeability assumption on the 
segments, which is made by STM. SeqLDA uses a simple first-order Markov 
chain to simulate the segment sequence in a document, the first node in the 
chain corresponds to the document subject, subsequent nodes correspond to seg-
ment subtopics. I adapted CMGS in a multi-level hierarchy context to do pos-
terior inference for SeqLDA. In addition to the better predictive accuracy on 
unseen words, the ability of SeqLDA to explore the topic evolution in individual 
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(locuiiioiits has been deinoiistrated l)y topic evolution analysis on several story 

books. Furthermore. I modified an adaptive rejection sampling method to opti-

mise h for a > 0. It has been shown that this optimisation algorithm works as 

well as manual oi)tiniisatiou. 

Chapter 7 further c()nsider(Kl the full document structure, which is a mixture 

of the two modell(>(l respectively by STM and Se(iLDA. I introduced an Adaptive 

Topic Model (AdaTM) for modelling the full document structure by embedding 

the compound Poisson-Dirichlet process in a simple DAG structure. The topic 

distril)ution of each segment is now an admixture of the document to])ic distri-

bution and its preceding segment topic distril^ution. Each document can exhibit 

l)oth the hierarchical and sequential structures. The experimental results showed 

that the performance of AdaTM is better than the earlier models: compared with 

STM, AdaTM can uncover clear seciuential topic structures in documents without 

harming the per])lexity; compared with SeciLDA, AdaTM can gain nuich k)wer 

perplexity. 

In addition, understanding and applying CMGS and BTIGS to complex mod-

els are cjuite challenging. Careful attention should l)e paid to the implementation, 

especially, to handle the constraints {e.g., Constraint 3.5) on table and customer 

comits in a recursive way. Therefore, another ini])ortant contribution of this the-

sis is the implementation of CMGS and BTIGS in the context of a hierarchy, a 

Markov chain and a DAG structure to do posterior inference for STM, SeqLDA 

and AdaTM respectively. 

8.1 Future Work 

Possible future work is how to extend the three structured topic models presented 

in this thesis to consider more complex document structures. For exanii)le. a scd-

entific article consists of sections, each of which contains ])aragraphs. and each 

paragraph is composed of sentences. This gives us an article-section-paragrai)h 

structure. One promising research is to extend STM to a nuilti-level hierarchy, 

since the PDPs can be easily extended to full trees, and the proposed Gibbs sani-

])ling algorithms still api)ly. In addition, it woukl be interesting to learn document 

structure automatically without taking the segment layout as a guide to struc-

ture, which is closely related to structured learning [Lee et al.. 2007; Yehezkel 

and Lerner, 2009]. To find a good Bayesian network structure that matches the 

fk)cumeut subject structure, we coukl do heuristic search or M C M C sampling 
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oxer the space of network structures. 
Text analysis is one of the important application areas of those models, e.g., 

document sunnnarisation and segmentation. The former aims at finding a short 
set of words or paragraphs that can adeciuately represent the main subject of a 
text document or a collec:tion of df)cunients. The latter is the task of dividing a 
given text data into semantically coherent ])arts. Topic models have been api^lied 
to both sunnnarisation [Arora and Ravindran, 20()8a.l)] and segmentation [Blei 
and Moreno, 2()()f; Purver et al., 2006: Misra et ah, 2009; Nguyen et ah, 2012]. It 
would be worth exploring how docmnent structure can assist in both kinds of 
analysis by taking advantage of the three models presented in this thesis. 

The inference methods I proposed in this thesis are Gibbs sam])ling l)ased 
on the Chinese restaurant process (CRP) presentation for the PDF, since the 
CRP provides an elegant analogy of incremental sampling for the i)osterior of the 
PDP. They are good enough to test the three proposed topic models. However, it is 
still worth studying other algorithms for D P / P D P mixture models, such as Gil)bs 
sampling for the stick-breaking construction [Isliwaran and .James, 2001], and 
variational inference [Blei and .Jordan. 2005: Teh et ah, 2008], and indeed \'ariants 
of the existing algorithms could also prove suj^erior. In i)articular, to analyse 
unseen docmnents for the jiurpose of, for example, toi)ic segmentation, instead of 
using Gibbs sampling, one could also consider leveraging the forward-backward 
algorithm [Yu and Kobayashi, 2006] to find the most likely state for each segment, 
es]:)ecially for SeqLDA that has a simple Markov chain. Thus, developing forward-
backward algorithms for the proposed models can be an interesting research topic. 

Moreover, to further investigate capaljilities of three topic models presented 
in Chapters 5 to 7, it would be important to compare them, especially AdaTM in 
Chapter 7, with other dynamic models, such as Dynamic Topic Models (DTM) 
Blei and Lafferty. 20()6b], dynamic HDPs [Ren et ah, 2008], graphical Pitman-

Yor process [Wood and Teh, 2009] and Evolutionary HDPs [Zhang et ah, 2010 
with more extensive experiments. 
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