Examining the role of transfer coupling in sub-barrier fusion of 46,50Ti+124Sn

Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

M. Dasgupta, D. J. Hinde, C. Simenel, E. Williams, K. Vo-Phuoc, M. L. Brown, I. P. Carter, M. Evers, D. H. Luong, T. Ebadi, and A. Wakhle

Department of Nuclear Physics, Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 2601, Australia

(Received 10 April 2016; revised manuscript received 4 July 2016; published 24 August 2016)

Background: The presence of neutron transfer channels with positive Q values can enhance sub-barrier fusion cross sections. Recent measurements of the fusion excitation functions for 58Ni+132,124Sn found that the fusion enhancement due to the influence of neutron transfer is smaller than that in 40Ca+132,124Sn although the Q values for multineutron transfer are comparable.

Purpose: To investigate the differences observed between the fusion of Sn + Ni and Sn + Ca.

Methods: Fusion excitation functions for 46,50Ti+124Sn have been measured at energies near the Coulomb barrier.

Results: A comparison of the barrier distributions for 46Ti+124Sn and 40Ca+124Sn shows that the 40Ca+124Sn system has a barrier strength resulting from the coupling to the very collective octupole state in 40Ca at an energy significantly lower than the uncoupled barrier.

Conclusions: The large sub-barrier fusion enhancement in 40Ca induced reactions is attributed to both couplings to neutron transfer and inelastic excitation, with the octupole vibration of 40Ca playing a major role.

DOI: 10.1103/PhysRevC.94.024616

I. INTRODUCTION

Heavy-ion fusion near the Coulomb barrier continues to attract experimental and theoretical interest [1]. The enhanced fusion cross sections at sub-barrier energies, with respect to a one-dimensional barrier penetration model, can be described by the coupling of the relative motion to the internal degrees of freedom of the participants. The coupling to neutron transfer may be important for reactions involving neutron-rich radioactive nuclei because for some projectile and target combinations there are a large number of positive Q-value transfer channels. This is particularly interesting for the synthesis of superheavy elements since neutron-rich radioactive beams may ultimately be used for such experiments [2]. Moreover, neutron transfer is predicted to enhance the fusion of neutron-rich nuclei occurring in the crust of accreting neutron stars [3]. These fusion reactions may affect the temperature profile and compositions of neutron stars [4]. Therefore, it is essential to understand the effect of transfer couplings on sub-barrier fusion.

The measurement of the fusion excitation function for 40Ca+132Sn found a very large sub-barrier fusion enhancement compared to the fusion of 48Ca+132Sn [5]. Coupled-channel calculations considering the inelastic excitations to the lowest 2$^+$ and 3$^-$ states of the participating nuclei were able to reproduce the excitation function for 48Ca+132Sn but severely under predicted the excitation function for 40Ca+132Sn. Because the Q values for ground-state transfer of up to 14 neutrons from 132Sn to 40Ca are positive and all the ground-state to ground-state transfer Q values (Q_{gg}) for 48Ca+132Sn are negative, the large sub-barrier fusion enhancement in 40Ca+132Sn was attributed to the couplings to transfer [5]. Likewise, a large sub-barrier fusion enhancement observed in 40Ca+134Te was also attributed to the same mechanisms [6]. The interpretation of these measurements is supported by the stable beam experiment studying the fusion of 40Ca and 124Sn, which exhibits a very large sub-barrier fusion enhancement [7]. The presence of multineutron transfer with positive Q values suggests that transfer plays a very important role. Furthermore, this observation is similar to the work which compared the fusion excitation functions for 40Ca+90,94,96Zr [9]. The fusion excitation function for 40Ca+90Zr was reproduced by coupled-channel calculations including the inelastic excitation of the projectile and target. However, similar calculations under predicted the sub-barrier fusion cross sections for 40Ca+94,96Zr. The large sub-barrier fusion enhancement was attributed to the coupling to neutron transfer in 40Ca+94,96Zr because of the large positive Q values [8,9]. Nevertheless, the sub-barrier fusion enhancement for 40Ca+132Sn appears to be no larger than that for 40Ca+124Sn even though the Q values for neutron transfer are larger for 40Ca+132Sn.

The fusion excitation function for 58Ni+132Sn [10] has been compared with 46Ni+124,132Sn [11], 58Ni+124Sn, and 44Ni+138Sn [12]. The number of neutron transfer channels with positive Q values and the magnitude of the Q values differ significantly among these systems, but there is no noticeable difference in sub-barrier fusion enhancement [10]. Moreover, when the differences in nuclear size and

1 Present address: FLIR Systems Inc., USA.
2 Present address: John Curtin School of Medical Research, ANU, Canberra, Australia.
3 Present address: Seeing Machines, Canberra, Australia.
4 Present address: National Superconducting Cyclotron Laboratory, MSU, USA.
the barrier height are factored out, the fusion excitation functions for Sn + Ni overlap with that for $^{48}\text{Ca} + ^{132}\text{Sn}$ which has no positive Q values for transfer. The heavier systems $^{58,64}\text{Ni} + ^{130}\text{Te}$ also exhibit similar behavior where the sub-barrier fusion enhancement shows no correlation with neutron transfer.

Recently, the measurement of the fusion cross sections for $^{58,64}\text{Ni} + ^{124}\text{Sn}$ was extended to cross sections down to 1 μb [13]. A comparison of the two excitation functions shows that the sub-barrier fusion enhancement for ^{58}Ni induced fusion becomes larger than that for ^{64}Ni induced fusion at cross sections less than 1 mb. The fall-off of the excitation function becomes less steep for $^{58}\text{Ni} + ^{124}\text{Sn}$ also. The analysis of the neutron transfer Q values and coupled-channel calculations show that the sub-barrier fusion enhancement in $^{58}\text{Ni} + ^{124}\text{Sn}$ is influenced by neutron transfer.

However, for ^{40}Ca induced reactions, the influence of transfer on sub-barrier fusion is visible at cross sections of a few tens of millibarns when the excitation functions are compared with fusion induced by ^{48}Ca. For ^{58}Ni induced reactions, the influence of transfer on sub-barrier fusion is not visible until cross sections as small as 1 mb, even though the magnitude of Q values for transfer are similar and the number of channels with positive transfer Q value are comparable to ^{40}Ca induced fusion. Therefore, it is necessary to further investigate the influence of transfer on sub-barrier fusion, particularly the different behaviors between ^{40}Ca and ^{58}Ni induced fusion.

There are a few differences between the two reaction sets, Sn + Ni and Sn + Ca. The product of the atomic number for the projectile and target, Z_pZ_T, is 1000 for Sn + Ca and 1400 for Sn + Ni. Because of the larger Z_pZ_T for Sn + Ni, deep inelastic collisions may influence the sub-barrier fusion process [14]. In addition, the open orbitals for neutrons transferring from Sn to Ca are $f_{7/2}$ and above, whereas the open orbitals for neutrons transferring from Sn to Ni are $p_{3/2}$ and above. The form factor for neutron transfer depends on the angular momentum of the initial and final states. This may result in different coupling strengths, therefore, leading to the differences in sub-barrier fusion enhancement observed between the two systems. Furthermore, the ^{40}Ca nucleus has a very collective octupole state at 3.74 MeV. The coupling of the excitation to this state has been shown to have a considerable influence on sub-barrier fusion [15].

To further explore the transfer couplings and try to resolve the differences observed in the sub-barrier fusion enhancement in Ca + Sn and Ni + Sn, the fusion cross sections for $^{46,50}\text{Ti} + ^{124}\text{Sn}$ have been measured. The Z_pZ_T for Sn + Ti is 1100, for which the deep inelastic scattering cross section is expected to be small and comparable to that for $^{40}\text{Ca} + ^{132}\text{Sn}$. The Q values for transferring two to five neutrons in $^{46}\text{Ti} + ^{124}\text{Sn}$ are similar to those in $^{40}\text{Ca} + ^{132}\text{Sn}$, as shown in Fig. 1. The $f_{7/2}$ orbital in ^{46}Ti is half filled. The remaining $f_{7/2}$ orbital would accommodate some of the neutrons transferring from Sn to ^{46}Ti. These aspects of the reaction are similar to $^{40}\text{Ca} + ^{132}\text{Sn}$. However, the excitation property for the lowest octupole state in ^{46}Ti is more similar to that in ^{58}Ni. As a reference, the $^{50}\text{Ti} + ^{124}\text{Sn}$ reaction was measured because there is no positive Q value for neutron transfer.

![Ground-state Q values as a function of the number of neutrons picked up by ^{46}Ti, ^{40}Ca, and ^{58}Ni from ^{124}Sn. Only the channels with positive Q values are shown.](image)

II. Experiment

The first experiment was performed at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. The ^{124}Sn beams were accelerated by the 25 MV tandem electrostatic accelerator to energies near the Coulomb barrier. The targets were self-supporting metallic foils with thickness of 295 μg/cm2 for ^{46}Ti and 270 μg/cm2 for ^{50}Ti. The compound nucleus decayed predominantly by particle evaporation. Fission was estimated by the statistical model code EVAPOR [16] to be negligible until beam energies 10% above the barrier, as shown by the dotted curves in Fig. 2. Because the comparison of the fusion excitation functions are important only for energies near and below the barrier, the fission expected at higher energies need not be considered. For this reason, the vaporization residue (ER) cross sections are taken as the fusion cross sections at energies near and below the barrier. The ERs were identified by time-of-flight using multichannel-plate timing detectors and energy loss using a multi-anode ionization chamber. A detailed description of the apparatus can be found in Ref. [17].

A follow-up measurement was carried out at the Australian National University (ANU). The objective was to measure fusion cross sections to high precision with an energy step of 1.4 MeV to allow determination of the experimental barrier distribution. The $^{46,50}\text{Ti}$ beams were accelerated by the 14UD tandem electrostatic accelerator. Two sandwiched targets of 17 μg/cm2 ^{124}Sn evaporated onto 20 μg/cm2 carbon backings were used. The ERs were transported in the superconducting solenoid SOLITAIRE and detected by two multichannel proportional counters at and behind the focus [18]. To maintain the ER transmission and beam particle rejection, SOLITAIRE was filled with 1 Torr of helium gas. The magnetic field was set at 5.5 Tesla throughout the measurements. The efficiency of the device was simulated by a Monte Carlo program developed at ANU [19]. To calibrate the simulation, the $^{34}\text{S} + ^{89}\text{Y}$ reaction was used since the angular distributions of the ERs and the fusion cross sections were measured and published [20]. The calculated efficiency for transmission and detection of all the ERs varied from 58% at the lowest energy to
FIG. 2. Fusion excitation functions for (a) 46Ti$^{+}$124Sn and (b) 50Ti$^{+}$124Sn. The measurements were performed in inverse kinematics at HRIBF and in normal kinematics at ANU. Also shown are the ER cross sections predicted by the statistical model code EVAPOR, the results of one-dimensional barrier penetration model (uncoupled) calculations, and the results of coupled-channel calculations including up to two-phonon excitations of the projectile and target. The barrier height predicted by the frozen Hartree-Fock (HF) method is shown by the solid arrow, whereas the barrier height predicted by the time-dependent HF method (TDHF) is shown by the dotted arrow.

73% at the highest energy. Four silicon detectors located at 18° surrounding the beam axis were used to detect the elastically scattered beam particles for cross-section normalization.

III. RESULTS

Figure 2 presents the ER cross sections as a function of the center-of-mass energy for 46,50Ti$^{+}$124Sn. The HRIBF data are shown by the solid circles and the ANU measurements are shown by the crosses. The two measurements for 46Ti$^{+}$124Sn are in good agreement.

Next, theoretical predictions are compared with the data. One of the most important inputs to both no-coupling and coupled-channel calculations is the nuclear potential. Commonly used phenomenological potentials, obtained from fits to experimental data, implicitly include the effects of couplings to states at high excitation energies which could lead to a potential shift. Given that this work is aimed at investigating the interplay of couplings to transfer and inelastic channels, the nuclear potential should be free of coupling effects, i.e., the “bare” nuclear potential should be chosen. Therefore, the frozen Hartree-Fock (HF) technique was used to obtain the nuclear potential [21]. The frozen HF potential has no free parameters that change from system to system, is self-consistent, and gives the “bare” nuclear potential. The choice of frozen HF potential is discussed further in the next section.

The predictions of the one-dimensional barrier penetration model (uncoupled) using the frozen HF nuclear potential are shown by the dashed curves. At high energies, the measured ER cross sections are smaller than the prediction of the uncoupled calculation. This is due to the fact that the fission decay of the compound nucleus was not measured. Statistical model calculation using the code EVAPOR is able to reproduce the measured ER cross sections. Furthermore, the calculation shows that the fission contribution to the fusion cross section gets smaller as the reaction energy decreases. It becomes negligible at energies near and below the barrier, which is the focus of this work. It can be seen that there is a large sub-barrier fusion enhancement for both reaction systems compared with the no-coupling calculations. The enhancement for 46Ti$^{+}$124Sn is larger than that for 50Ti$^{+}$124Sn.

The results of coupled-channel calculations, using the code CCFULL [22], including excitation of the projectile and target to the lowest 2^+ and 3^- states, are shown by the solid curves in Fig. 2. For these calculations, the excitation energies and deformation parameters were obtained from the literature [23,24] and given in Table I, whereas the nuclear potentials deduced from the frozen HF technique are shown in Table II.

In addition, two-phonon excitations including the mutual excitation of the projectile and target are considered. For the 50Ti$^{+}$124Sn reaction, the lowest 4^+ state with an excitation of 2.68 MeV is assumed to be the double-phonon state in the

TABLE I. Nuclear structure parameters for CCFULL calculations.
The β_λ is the deformation parameter for inelastic excitation couplings.

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>E (MeV)</th>
<th>λ</th>
<th>β_λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>46Ti</td>
<td>0.89</td>
<td>2^+</td>
<td>0.317</td>
</tr>
<tr>
<td>50Ti</td>
<td>3.06</td>
<td>3^-</td>
<td>0.142</td>
</tr>
<tr>
<td>124Sn</td>
<td>1.55</td>
<td>2^+</td>
<td>0.166</td>
</tr>
<tr>
<td>50Ti</td>
<td>4.41</td>
<td>3^-</td>
<td>0.138</td>
</tr>
<tr>
<td>124Sn</td>
<td>2.68</td>
<td>4^+</td>
<td>0.050</td>
</tr>
<tr>
<td>124Sn</td>
<td>1.13</td>
<td>2^+</td>
<td>0.095</td>
</tr>
<tr>
<td>124Sn</td>
<td>2.60</td>
<td>3^-</td>
<td>0.106</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reaction</th>
<th>V (MeV)</th>
<th>r_c (fm)</th>
<th>a (fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>46Ti$^{+}$124Sn</td>
<td>125</td>
<td>1.1487</td>
<td>0.6454</td>
</tr>
<tr>
<td>50Ti$^{+}$124Sn</td>
<td>116</td>
<td>1.1534</td>
<td>0.6322</td>
</tr>
</tbody>
</table>
calculation. Because the transition strength from the ground state has been measured, the direct transition to this state is included in the coupled-channel calculation. The calculation under predicts the sub-barrier cross sections for $^{50}\text{Ti} + ^{124}\text{Sn}$. This under prediction may be the result of a positive Q value for two-proton transfer. In contrast, there is a much larger discrepancy between the calculation and measurement for $^{46}\text{Ti} + ^{124}\text{Sn}$, particularly at cross sections less than 1 mb. The measured sub-barrier cross sections are much larger than the calculation, as seen by the increasing deviation from the solid curve in Fig. 2(a). To compare the under prediction by the coupled-channel calculations for these two reactions, the calculated cross sections subtracted from the measured cross sections at energies below the barrier are shown in Fig. 3. As can be seen, the discrepancy between measurement and calculation is small for $^{46}\text{Ti} + ^{124}\text{Sn}$. Conversely, the discrepancy between experimental data and the calculation is quite large for $^{46}\text{Ti} + ^{124}\text{Sn}$. The presence of positive Q-value transfer channels in $^{46}\text{Ti} + ^{124}\text{Sn}$ suggests that coupling to these channels may be important, similar to the fusion of ^{40}Ca with ^{124}Sn [7].

IV. DISCUSSION

The magnitude of sub-barrier fusion enhancement among different reaction systems is customarily compared by plotting the fusion excitation functions in the same graph. For reactions with projectiles and targets of fixed atomic numbers but different isotopes, the differences in nuclear size and barrier height are little and a fair comparison is possible. However, when the comparison is made among reaction systems with projectiles and targets having different atomic numbers, it is necessary to account for the differences in nuclear size and barrier height. One of the usual ways to achieve that is through the use of reduced scales where the reaction energy is divided by the barrier height and the cross section is divided by the nuclear radius. Several models have been developed to describe the nuclear potential between two nuclei. The barrier heights for $^{40,48}\text{Ca} + ^{124}\text{Sn}$, $^{46,50}\text{Ti} + ^{124}\text{Sn}$, and $^{58,64}\text{Ni} + ^{124}\text{Sn}$ predicted by the Broglia-Winther [25], Bass [26], and Sao Paulo [27] models are shown in Fig. 4. The comparison is made by scaling to the Coulomb energy $Z_P Z_T e^2 / R$, where Z is the atomic number, e is the electric charge, and $R = 1.2(A_{p}^{1/3} + A_{t}^{1/3})$ is the radius with A being the nuclear mass. It can be seen that the predicted barrier heights agree for some reactions but differ for others. Additionally, there seem to be different correlations between the predicted barrier heights and the Coulomb energies.

Since many of the models presented in Fig. 4 use parameters deduced from systematics, the difference in predictions may be, in part, due to the different reaction systems included in compiling the systematics. Thus, it is important to choose a model as a reference for comparison carefully. Moreover, as more experiments are performed with radioactive beams and reactions involving these nuclei are not included in obtaining the systematics, the uncertainty in the models could become large, particularly for nuclei very far from stability. To avoid making comparisons that depend on the variation in models, it would be advantageous to use a model that carries nuclear structure information. One such model is based on an energy density functional [28] which is consistent in describing nuclear structure and nuclear interaction under the assumption that the ground-state densities are frozen. The latter are determined within the HF microscopic mean-field approach. The HF method for modeling many-body systems has been successful for predicting nuclear structure properties. In this work, the frozen HF model is adopted for estimating the barrier height. The only input to the frozen HF is the energy density functional which is deduced from effective Skyrme nucleon-nucleon interaction. Because the HF technique properly accounts for the nuclear structure effects, the barrier height predicted is fairly different from the other three models which mostly rely on fitting heavy-ion reaction data from stable beam experiments. Moreover, the frozen HF method gives the “bare” barrier which is not influenced by potential shifts due to couplings to high-lying collective states or a multitude of weak couplings.
FIG. 5. Comparisons of reduced fusion excitation functions for (a) 40,48Ca + 96Zr, (b) 40,48Ca + 124Sn, (c) 40,48Ca + 132Sn, (d) 46,50Ti + 124Sn, (e) 58,64Ni + 124Sn, and (f) 58,64Ni + 132Sn. The data points shown by the crosses in (e) are for 64Ni + 118Sn. The reduced energy is obtained by dividing the center-of-mass energy by the barrier height predicted by the frozen HF method.

In Fig. 5, the fusion excitation functions for (a) 40,48Ca + 96Zr [8,29], (b) 40,48Ca + 124Sn [5], (c) 40,48Ca + 132Sn [5], (d) 46,50Ti + 124Sn, (e) 58,64Ni + 124Sn [12,13], and (f) 58,64Ni + 132Sn [10,11] are compared where the reaction energy is shown on a reduced scale using the barrier height predicted by the frozen HF. For 40Ca induced reactions, the sub-barrier fusion enhancement is larger than for 48Ca induced reactions, as seen in Figs. 5(a)–5(c). The difference is clearly visible at cross sections of several tens of millibarns. Because the Q values for transferring a multiple number of neutrons from 96Zr and 124,132Sn to 40Ca are positive whereas the Q values for neutron transfer are negative for reactions involving 48Ca, the larger sub-barrier fusion enhancement has in the past been attributed to the coupling to neutron transfer [5,7,8,29]. However, if the same reasoning is applied to 58Ni and 64Ni induced fusion on 124Sn and 132Sn, then the sub-barrier fusion enhancement is expected to be larger for 58Ni induced reactions. As shown in Fig. 5(e), the sub-barrier fusion enhancement for 58Ni + 124Sn is indeed larger than for 64Ni + 124Sn, but the enhancement is smaller than for Ca and Ti induced reactions, and it is only clearly seen for cross sections less than 1 mb. Also shown in the figure is the fusion excitation function of 64Ni + 118Sn (crosses) for which the Q values for multineutron transfer are negative. At cross sections larger than 1 mb, these three excitation functions overlap with each other. Figure 5(f) shows the measurements of 58,64Ni + 132Sn. It was very difficult to measure cross sections below 1 mb at current radioactive beam facilities due to the low intensity. The reduced fusion excitation functions for 58Ni + 132Sn and 64Ni + 132Sn are similar and do not show the influence of multineutron transfer on sub-barrier fusion. Perhaps, at lower energies where the cross section is well below 1 mb the effects of multineutron transfer on sub-barrier fusion may appear.
The comparison of fusion excitation functions measured in this work for 46,50,58Ti+124Sn is shown in Fig. 5(d). It can be seen that the sub-barrier fusion enhancement is larger for 46,50,58Ti which has positive Q-value neutron transfer channels similar to 40Ca+124Sn. The difference becomes visible at cross sections greater than 10 mb, similar to 40Ca induced fusion. To further examine whether there are differences between the fusion of Ca + Sn and Ti + Sn, the reduced excitation functions for the two systems are compared in Fig. 6. The excitation functions for 50,52Ti+124Sn and 48,46Ca+124Sn overlap with each other. As mentioned above, the Q values for neutron transfer are negative for both reactions. The sub-barrier fusion enhancement for 46Ti+124Sn is larger than for 50Ti+124Sn, which correlates with the presence of positive Q values for neutron transfer. On the other hand, the enhancement for 46Ti+124Sn is smaller than for 40Ca+124Sn until $E_{c.m./V_{HF}} = 0.92$ and the cross section for 46Ti+124Sn decreases with energy more slowly than for 50Ca+124Sn.

To better understand the reaction mechanisms, the barrier distributions for 40Ca+124Sn [7] and 46Ti+124Sn were obtained by taking the second derivative of the product of the cross section and energy using the point difference formula [30]. The barrier distributions are compared in Fig. 7. For both systems, the barrier strength is generally below the calculated frozen HF barrier, $E_{c.m./V_{HF}} = 1$, as would be expected since the frozen HF predictions are for “bare” barriers that do not include any coupling effects. This barrier strength at low energies in the experimental barrier distribution is responsible for fusion enhancement at sub-barrier energies. The low-energy tail of the barrier distributions for 46Ti+124Sn and 40Ca+124Sn has shallower slopes. This is associated with coupling to transfer channels with positive Q values. Nevertheless, for 40Ca+124Sn, the centroid of the barrier distribution at the lowest energies lies 5% below the uncoupled barrier which is lower than that for 46Ti+124Sn, 3% below the uncoupled barrier. As a result, the sub-barrier fusion enhancement for 40Ca+124Sn is larger.

The extent of the sub-barrier fusion enhancement is different for 40Ca+124Sn, 46Ti+124Sn, and 58Ni+124Sn although the Q values for transferring two to five neutrons are similar, as shown in Fig. 1. It is instructive to compare the barrier distributions deduced from the CCFULL calculations for these reactions to investigate whether there are differences in the contributions from coupling to inelastic excitations. Since all three reactions involve a common nucleus, 124Sn, the couplings to the collective excitations in 40Ca, 46Ti, and 58Ni are examined first. For the reaction involving 40Ca, the result of the weak coupling to the lowest 2^+ state leads to the main barrier strength being just below the uncoupled barrier, as shown by the dotted curve in Fig. 8(a). The stronger coupling to the 3^- state in 40Ca produces a much larger change, with the centroid of the resulting low-energy peak in the barrier distribution being 3.5% below the uncoupled barrier. The barrier distribution at energies below the uncoupled barrier is very similar for couplings to both 2^+ and 3^-, and 3^- alone, showing that the coupling to the 3^- state is dominant, as shown in Fig. 8(a). It is worth noting that the coupling to the octupole state in 40Ca also results in a barrier well below the uncoupled barrier for other reactions [31–33].

For the 46Ti induced reaction, the weak coupling to the 3^- state leads to a peak in the barrier distribution with its centroid slightly lower than the uncoupled barrier. The strong coupling to the 2^+ state results in a peak in the barrier distribution 2.5% below the uncoupled barrier. By including both the 2^+ and 3^- states in the coupled-channel calculation, the barrier distribution at low energies is shifted slightly lower.

For the reaction involving 58Ni, the coupling to the 2^+ and 3^- states each leads to a peak in the barrier distribution at the same location below the uncoupled barrier but with different probabilities. Including both states in the calculation results in shifting the lowest peak farther, to 3% below the uncoupled barrier.

Next, couplings to the states in the target, in addition to the couplings to states in the projectile discussed above, are included. Couplings to the 2^+ and 3^- states in 124Sn shift the low-energy peaks in the barrier distributions to slightly lower energies, as can be seen in Fig. 8. Comparing the calculated barrier distributions for the three systems, it is clear that the 40Ca+124Sn system has a large strength at low energies.
energies, followed by $^{58}\text{Ni} + ^{124}\text{Sn}$ and finally $^{46}\text{Ti} + ^{124}\text{Sn}$. Thus, if transfer couplings were not playing a significant role, then the sub-barrier fusion enhancement for $^{40}\text{Ca} + ^{124}\text{Sn}$ would be expected to be the largest followed by $^{58}\text{Ni} + ^{124}\text{Sn}$ and $^{46}\text{Ti} + ^{124}\text{Sn}$. Experimentally, while $^{40}\text{Ca} + ^{124}\text{Sn}$ has the largest enhancement, the enhancement for $^{46}\text{Ti} + ^{124}\text{Sn}$ is larger than that for $^{58}\text{Ni} + ^{124}\text{Sn}$. For both $^{40}\text{Ca} + ^{124}\text{Sn}$ and $^{46}\text{Ti} + ^{124}\text{Sn}$, the experimental barrier distributions extend well below the calculated ones and the strength at lowest energies falls off very slowly. This would be expected if many positive Q-value transfer channels were playing a role. Barrier distributions are not available for $^{58}\text{Ni} + ^{124}\text{Sn}$, which makes it difficult to make further statements about the reduced enhancement compared to $^{40}\text{Ca} + ^{124}\text{Sn}$ and $^{46}\text{Ti} + ^{124}\text{Sn}$.

Implementing realistic coupling for neutron transfer in coupled-channel calculations is a very challenging theoretical problem. In the cases that involve transferring multiple nucleons and populating many states, the task is even more difficult. By comparing the coupling to inelastic excitations of the projectile and target among the three reactions, this analysis suggests that the large sub-barrier fusion enhancement in $^{40}\text{Ca} + ^{124}\text{Sn}$ is the result of coupling to both transfer and inelastic excitation, with coupling to the 3^- state in ^{40}Ca playing the major role.

Besides ^{40}Ca induced reactions, a very large sub-barrier fusion enhancement has been reported for ^{32}S induced reactions [34–36]. As an example, the sub-barrier fusion enhancement in $^{32}\text{S} + ^{100}\text{Pd}$ is much larger than that in $^{36}\text{S} + ^{110}\text{Pd}$. Similar to the comparison between $^{40}\text{Ca} + ^{124}\text{Sn}$ and $^{48}\text{Ca} + ^{124}\text{Sn}$, the large sub-barrier fusion enhancement in $^{32}\text{S} + ^{110}\text{Pd}$ is attributed to the coupling to transfer because there are neutron transfer channels with positive Q values in $^{32}\text{S} + ^{110}\text{Pd}$ [35]. However, in the slightly heavier ^{40}Ar induced fusion, there is no difference in the shape of the excitation functions between $^{40}\text{Ar} + ^{116}\text{Sn}$ and $^{40}\text{Ar} + ^{122}\text{Sn}$ even though the Q value for two-neutron transfer is positive in $^{40}\text{Ar} + ^{122}\text{Sn}$ [37,38]. It is worth noting that ^{32}S has a very collective high-lying octupole state, like ^{40}Ca. It is likely that the coupling to the octupole state in ^{32}S substantially enhances fusion induced by ^{32}S at sub-barrier energies.

For reactions with a large $Z_P Z_T$, the coupling to inelastic excitations contributes significantly to sub-barrier fusion enhancement. This may make the contributions from coupling to transfer seem less important. As seen in the comparison for $^{58,64}\text{Ni} + ^{124}\text{Sn}$, the excitation functions do not differ until the cross section is less than 1 mb. In contrast, the influence of neutron transfer seems to be more significant for lighter systems. Whether the fusion of lighter nuclei occurring in the crust of neutron stars would be enhanced by transfer, as predicted by TDHF [3], would be interesting for further research. Moreover, it is not known if the large collectivity in one of the participating nuclei would make the effect of coupling to transfer more pronounced, as seen in ^{40}Ca induced fusion. This observation could be important for using neutron-rich radioactive beams for superheavy element synthesis. Perhaps the production rate is higher when one or both of the nuclei in the reaction have a large inelastic excitation probability.

V. CONCLUSIONS

Fusion excitation functions for $^{46,50}\text{Ti} + ^{124}\text{Sn}$ have been measured in an attempt to resolve the differences in sub-barrier fusion enhancement observed in $^{40,48}\text{Ca} + ^{124,132}\text{Sn}$ and $^{58,64}\text{Ni} + ^{124,132}\text{Sn}$. In particular, the fusion cross sections for $^{46}\text{Ti} + ^{124}\text{Sn}$ were measured to high precision and in fine steps to allow determination of the barrier distribution for comparison with the previously published $^{40}\text{Ca} + ^{124}\text{Sn}$ data. It is found that there is a peak in the barrier distribution below the uncoupled barrier. For $^{46}\text{Ti} + ^{124}\text{Sn}$, the peak is further below the uncoupled barrier than that for $^{40}\text{Ti} + ^{124}\text{Sn}$. Coupled-channel calculations including the inelastic excitation of the projectile and target show similar behaviors. The coupling to inelastic excitations and neutron transfer is likely to be the reason for the very large sub-barrier fusion enhancement in $^{40}\text{Ca} + ^{124}\text{Sn}$ with the coupling to the octuple state in ^{40}Ca playing a major role. To further probe the effects of transfer couplings on sub-barrier fusion in $^{46}\text{Ti} + ^{124}\text{Sn}$, it would be necessary to measure multineutron transfer cross sections to deduce the transfer form factors and compare them with the
results for $^{36}\text{Ca}+^{124}\text{Sn}$ [39]. Further work is also needed to clarify the effect of charged particle transfer, as well as neutron transfer, in the fusion of heavy systems such as Ni + Sn.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics and this research used resources of the Holifield Radioactive Ion Beam Facility of Oak Ridge National Laboratory, which was a DOE Office of Science User Facility. Research at ANU was supported by the Australian Research Council Grants DP130101569, FT120100760, DP140101337, FL110100098, DE140100784 and by National Collaborative Research Infrastructure Strategy (NCRIS) for the operation of the Heavy Ion Accelerator Facility.

This manuscript was authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up irrevocable, worldwide license to publish or reproduce the published form of the manuscript, or allow others to do so, for United States Government purposes.

