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Abstract

This thesis considers the design of equalizers which need to operate in various modes
(two or more modes) depending on the difficulty of the channel and the performance
of the equalizer. We consider the formulation of such switch-mode equalizers where
it is usually broken into an acquisition mode and a tracking mode. As a broad
goal, our objectives include speeding up the convergence rate of blind adaptive
algorithms which are well-known for their slow rate of convergence, achieving low
steady state errors as well as reducing switching transients during the switch-over

between operation modes.

A novel concept based on the reliability of the equalizer output is developed
and presented where unlike conventional algorithms which utilize only explicit in-
formation regarding the equalizer output, the reliability measure is calculated as
a function of both the equalizer output and its estimated statistical distribution.
Two separate algorithms are developed based on this concept. The first is a switch-
mode algorithm that uses the reliability measure to combine the acquisition algo-
rithm and the tracking algorithm to achieve not only a smooth transition between
modes, but also increased rate of convergence and lower steady state errors. While
the first algorithm that computes the reliability measure requires an estimate of
the variance of the residual intersymbol-interference (ISI) and noise term, the sec-
ond algorithm uses a simple technique of combining that computes the probability
of the equalizer output being close to the constellation data points instead. The
second algorithm extends and simplifies the first algorithm and is shown to achieve
fast convergence, low steady state errors and smooth transition at a significantly

lower computational cost.

We further propose modifications that extend a fast-convergence equalization
scheme proposed by Labat, Macchi and Laot in 1998. The main accomplishment
1s in the design of a new strategy that successfully reduces the switching transients
that occur during the switch-over between the linear acquisition equalizer and
the non-linear tracking decision feedback equalizer (DFE). This is achieved by
combining both the linear and the non-linear equalizers in a parallel fashion while
adapting the tap parameters using combining techniques designed for dual-mode
type algorithms such as the Benveniste-Goursat algorithm and the reliability-based
algorithm developed in this thesis. In addition, we also extended the original
equalization scheme to incorporate a linear transversal whitening filter in place
of a recursive whitening filter to overcome some deficiencies inherent in recursive

filtering structures. Thirdly, we introduced a novel DFE scheme that uses two
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DFE’s to accomplish the robust tracking of time-varying channel statistics and to
retain low steady state errors simultaneously by a novel interplay of the equalizer
structure and the transfer of equalizer tap parameters between the filter blocks.
In addition, we also analyzed the “rotational” behavior of several blind algo-
rithms using a torque concept, where we assess the susceptibility of the equalizer
output constellation to converge to stable but undesirable rotated solutions.This
new analysis tool is used to investigate various blind algorithms and we reveal the

multi-modulus algorithm (MMA) has superior convergence properties.
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Chapter 1
Introduction

This thesis deals with switch-mode blind equalizers for single-user digital communi-
cation systems. A switch-mode equalizer is a combination of two or more equalizer
modes where it usually starts with a linear equalizer that employs an acquisition
algorithm and later switches over to a tracking decision directed algorithm after
the data estimates have become sufficiently reliable. In terms of the filtering struc-
ture, a non-linear decision feedback equalizer may be used in the tracking mode.
In the acquisition mode, the equalizer is designed to be robust with respect to the
channel’s initial conditions but may yield high steady state errors even when its
convergence is achieved. The tracking equalizer, on the other hand, yields lower
steady state errors at convergence but cannot be used reliably to acquire severe
channels (which do not correspond to initial open-eye conditions [92,99]). There-
fore, switch-mode blind equalizers have become very popular in practical digital
communication systems because the distinct advantages of the acquisition and
tracking modes are complementary.

In this introductory chapter, we present an overview of the contents of the
thesis and provide a list of the contributions. It features several novel switch-
mode algorithms as well as switch-mode equalization schemes. Other contributions

relating to the global topic of switch-mode equalization are also presented.

1.1 Overview of Thesis

Chapter 2 — In this background chapter we give a brief overview of the domain
of digital transmission as well as reception over linear channels. The prob-
lem of intersymbol interference (ISI) is presented and the notion of equaliza-
tion is defined. Equalizer structures including linear transversal equalizers,

maximum-likelihood equalizers, and decision feedback equalizers (DFE) are



2 Introduction

presented. Subsequently, a concise overview of blind equalization techniques
is given, the emphasis being on Bussgang-type algorithms. Non-Bussgang
algorithms such as the polyspectra algorithms, the cyclostationary-statistics
algorithms and the probabilistic algorithms are also briefly described. Lastly,
we present an analysis of the undesirable solutions (due to the non-convexity
of cost functions) of the most widely used algorithms such as the Sato and

Godard algorithms.

Chapter 3 — This chapter addresses the problems induced by abruptly switching
between acquisition and tracking algorithms. We use a novel reliability mea-
sure to combine the two algorithms to provide a soft transition and avoid
having to accurately determine the open-eve threshold for the tracking al-
gorithm to be reliably employed. We derive the reliability measure from
Bayes theorem and compute the posterior probability of correctly detecting
the equalizer output. From the derivation we find that in order to effec-
tively provide a soft transition between algorithms, not only the equalizer
output needs to be utilized, but the statistical distribution of the residual
intersymbol-interference (ISI) plus noise term is also required. Once the reli-
ability measure is accurately estimated, it leads to significant improvements
over conventional algorithms such as the Benveniste-Goursat algorithm [15]
as well as the Stop-And-Go algorithm [116].

Chapter 4 — This chapter further considers the problem of smooth switching be-
tween acquisition and tracking algorithms. In the same spirit as the reliability-
based algorithm proposed in Chapter 3, we design an alternative switch-mode
algorithm that also utilizes information regarding the equalizer output and
1ts estimated distribution to ensure a smooth transition between algorithms.
This new algorithm is based on a simple concept that employs the track-
ing algorithm when the equalizer output is found in reliable regions in the
constellation space. Otherwise, an acquisition algorithm is employed. The
novelty lies in the way the size of these reliability regions is varied accord-
ing to a new probabilistic measure regarding the reliability of the equalizer

output.

In addition, this chapter also presents an algorithm capable of joint blind

equalization and phase recovery by using the new switch-mode technique.

Chapter 5 — This chapter presents three novel modifications of the equalizer

structures in addition to the adaptation algorithms as is the focus of Chap-



1.2 Contributions 3

ters 3 and 4. Overall, this chapter addresses the speed of convergence and
improved robustness while retaining the simplicity of an equalization scheme
proposed by Labat, Macchi and Laot [75]. We first address the problem of
the undesirable use of a recursive linear filter structure in the acquisition
mode by proposing a new transversal filter while preserving the ability of
direct transfer of the taps to the DFE in the tracking mode. Secondly, we
address the problem of eliminating switching transients of dual-mode equaliz-
ers during the switch-over between acquisition and tracking modes where the
positions of several filter blocks need to be rearranged. We propose a novel
strategy that combines the acquisition linear equalizer and the tracking DFE
in a parallel fashion to reduce the switching transients effectively. Lastly, the
chapter addresses the problem of tracking time-varying channels with a new
dual-DFE equalization scheme that features two DFE in an equalizer setup
and involves a novel interplay of the equalizer structures and the transfer of
filter coefficients between the filter blocks.

Chapter 6 — We analyze the phase and/or frequency locking (rotational) conver-
gence behavior of several blind algorithms, namely the CMA, the reduced
constellation algorithm (RCA) and the multi-modulus algorithm (MMA)?.
The principle objective is to assess their susceptibilities to wrong solutions
(stable undesirable equiibria) which correspond to an output constellation
that is a undesirable rotated version of the original data constellation. In
our analysis, we define a “torque” that is the cross product of the equalizer
output and the “force” which is due to the error function acting on the equal-
izer output symbol. A net torque will correspond to a rotational behavior
of the equalizer output in either the clockwise direction or the anti-clockwise

direction.

Chapter 7 — Some concluding remarks and future work are presented in this chap-

ter.

1.2 Contributions

At this point, a list of major contributions of this thesis is given:

e New treatment of switching for enhanced equalizer performance —

'The MMA we consider in this Chapter is proposed by Oh and Chin [105], and Yang et
al [152]. It should not be confused with another algorithm previously proposed by Sethares et
al [126] under the same name.
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Smooth switching algorithms are designed to avoid the difficult task of having
to accurately determine an open-eye condition so that the tracking algorithm
may be employed reliably. The major contribution drawn from Chapters 3 and
4 is in the design of superior smooth switching switch-mode algorithms. While
conventional techniques usually tradeoff convergence speed and steady state per-
formance for smoothness in the switch-over, our techniques actually accelerate

convergence in addition to ensuring smooth transitions between modes.

e Dual-parameter measure for estimating reliability of the equalizer out-
put —
The reliability-based switch-mode algorithm offers effective smooth-switching
that enhances convergence rate and preserves low steady state errors based on
a concept that utilizes explicit and implicit information in the equalizer output
signals. In contrast to conventional smooth switching algorithms that employ
a single-parameter? measure for combining the switch-mode algorithm, our new
dual-parameter reliability measure as proposed in Chapter 3 results in not only
a smooth transition between the acquisition and tracking algorithms, but also in

a faster, more reliable convergence as well as lower steady state errors.

e Simple algorithm for rapid acquisition —
The new measure for combining the switch-mode algorithm as proposed in Chap-
ter 4 is designed to be simple and effective in ensuring a smooth switching be-
tween algorithms. While conventional algorithms usually trade off equalizer per-
formance, e.g., convergence speed and steady state errors, with computational
complexity, this algorithm is shown to outperform several well-known switch-
mode algorithms at a reduced cost. This is because the novel measure can be
used to accurately reflect an open-eye condition without having to collect many
data samples. The switch-over therefore occurs promptly as soon as the data

estimates become sufficiently reliable.

e Joint blind equalization and automatic phase recovery -
By coupling the simple switching technique described above and the results in
Chapter 6 regarding phase recovery properties of the MMA, a new switch-mode
algorithm is proposed to achieve joint blind equalization and phase recovery
effectively. The phase offsets can be corrected by the MMA and the frequency

offsets can be handled through the use of the smooth switching technique of
Chapter 4.

*Conventional single-parameter measures rely solely on either the equalizer output, e.g., [15],
or the signs of the error functions, e.g., [116].
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e New fast convergence switch-mode decision feedback equalization (DFE)

scheme —

We extended a fast convergence equalization scheme proposed by Labat, Macchi
and Laot in 1998 to incorporate a simple linear transversal acquisition equalizer
which can be switched to a DFE when the error rate is sufficiently low. Deficien-
cies inherent in the recursive filtering structure in [75] can be overcome with this
modification. After a transformation in the transversal filter, the direct trans-
fer of the taps from the acquisition equalizer to the tracking equalizer (which

involves a recursive feedback filter) is also retained.

e Soft transition strategy for new switch-mode DFE scheme —
A parallel adaptation strategy that combines the linear equalizer and the tracking
DFE in a parallel fashion can reduce the switching transients that are due to the
rearrangement of the filter blocks as well as a switch in the adaptation algorithms.
We showed significant improvement in terms of smooth switching between the
linear equalizer and the DFE as well as rate of convergence with this strategy,

even when a simple Benveniste-Goursat combination technique is used.

e Dual DFE scheme for tracking varying channels —
The dual-DFE, unlike conventional equalizers which usually implement just a
single DFE, may exhibit enhanced tracking capabilities in non-stationary envi-
ronments and low steady state MSE in stationary environments. The complexity
incurred which is less than twice of that of a single DFE is reasonable for its

achieved improvements.

e Rotational analysis of blind equalization algorithms —
We develop a novel analysis technique based on a torque concept to study the
phase/frequency locking behavior of blind equalizer algorithms. Through analy-
sis of the RCA and the MMA, we reveal that the MMA is superior to its RCA
counterpart in terms of immunity to converge to incorrectly rotated solutions.
This revelation motivates the use of the MMA over the RCA for the task of joint

equalization and phase recovery.






Chapter 2

Background on Single-User Blind

Equalizers

For bandwidth-efficient communication systems operating in high inter-symbol in-
terference (ISI) environments, adaptive equalizers have become a necessary compo-
nent of the receiver architecture. An accurate estimate of the amplitude and phase
distortion introduced by the channel is essential to achieve high data rates with
low error probabilities. An adaptive equalizer provides a simple practical device
that is capable of both learning and inverting the distorting effects of the channel.
Conventional equalizers rely on the transmission of a training sequence known to
both the transmitter and receiver. The blind equalizer, on the other hand, does
not require a training sequence to be sent for start-up or restart. Rather, the
blind equalization algorithms exploit a prior: knowledge regarding the statistics
of the transmitted data sequence as opposed to an exact set of symbols known to
the transceiver, thereby achieving improved bandwidth utilization. Blind equaliza-
tion is also desirable when the communication system must cope with multipoint
broadcast environments and unpredictable channel changes [147].

In this chapter, a concise background on the communications systems is pro-
vided. We recommend the following references [12, 38, 58, 117-119, 141] for an
excellent tutorial overview of the field. Our focus will be to provide sufficient self-
contained background on the subjects which the thesis deals with predominantly,

i.e., a variety of equalizer structures and popular blind algorithms.

2.1 Model of a Digital Communications System

Throughout this thesis we will be dealing with aspects related to the physical layer

of a communications system, i.e., the transmission layer. A typical communica-

7
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Figure 2.1: A typical communication system.

tions system is illustrated in Fig. 2.1. The complete cycle of the transmit-receive
process begins with the original information being formatted in a digital form in
order to be represented by a series of bits. These digits are then source-encoded
whereby the message is represented in a succinct form and the redundancy is be-
ing removed as much as possible. The resulting sequence is then channel-encoded
where redundancy is now introduced into the data stream in a deliberate but con-
trolled manner for the purpose of detecting and possibly correcting the errors due
to transmission. This is also known as error control coding. One technique of
error control coding is to introduce frequent symbol changes so that the symbol
clock speed can be easily recovered in the receiver. Also, often a number of bits
are encoded into one or more symbols. At this point, multiplexing with sequences
from other sources may be performed to efficiently utilize the limited bandwidth
of communication channels. Finally, the sequence is converted by the modulator
into continuous-time passband waveforms, in accordance with modulation schemes
that are suitable for transmission over the channel. Examples of communications
channel include coaxial, fiber optic, or twisted-pair cables in wired communications;
and the atmosphere or ocean in wireless communications, or some combination of
these media. This resulting waveform is then delivered to the receiver at the other
end of the channel.

At the receiver, the processes prior to transmission need to be “inverted” in
order to recover the original transmitted information. The received waveform is
first demodulated and demultiplexed. Subsequently, the sequence is equalized and
decoded in order to give the final digital output. Equalization is necessary to

combat the impairments of the channel that may have caused signal distortions.

2.1.1 Digitally Modulated Source Signals

The information bearing bits are usually collected in blocks of say K consecutive

binary digits. Thus there may be 2% different binary sequences, and each sequence
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would correspond to a symbol. The set of all possible symbols is called the al-
phabet set A of the transmitted symbols of a particular modulation format. Each
of these possible symbols is then mapped to one of 2% different continuous-time
lowpass waveforms by attributing to the set of symbols a discrete set of amplitudes,
frequencies and /or phases, depending on the modulation format of the specific sys-
tem. For example, let we consider Quadrature Amplitude Modulation (QAM) and
let there be K = 4 binary digits in each block. Thus, there are 2* = 16 different

sequences as follows:
(0000, 0001, 0010, 0011, --- ,1110, 1111]. (2.1)

The QAM alphabet set can be represented by the set of sequences in (2.1) where
each sequence is uniquely mapped to one of 16 different constellation points in the

complex plane as in Fig. 2.2. The resulting 16-QAM alphabet set is thus

A = {j:lij,ili?)j, g = 7, iBiBj}. (2.2)
* * * *
* * * *
X% X * X
* * * *
* * * *
(A) (B)

* *
* * *
* *
% % —X X X k—
* *
5 s * 1 *
(©) (D)

Figure 2.2: Constellation diagram of modulation formats for (A) 16-QAM, (B)
4-PAM, (C) 8-PSK, (D) 16-APK (V29-CCITT).
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For other modulation formats such as the Pulse Amplitude Modulation (PAM)
and the Phase Shift Keying (PSK) formats, they differ from the QAM example
by only the mapping operator that maps each of the sequence in 2.1 to one of
the alphabet in 2.2. The constellation points of 16-QAM,; 4-PAM, 8-PSK, and the
16-APK (Amplitude-Phase Keying, also widely known as 16 point V29-CCITT for
9,600 bits per second modems). The choice of modulation formats usually trades oft
between bandwidth efficiency and probability of error, where larger constellations
may utilize the bandwidth more efficiently but suffers higher probability of error.
More recently, some new techniques that vary the modulation constellation size
according to the time-varying channel conditions in order to maintain a specified

target reliability in the receiver output have been proposed [52,61].

2.1.2 Inter-Symbol Interference and Eye Diagram

In a nutshell, inter-symbol interference (ISI) in a digital transmission system is the
distortion of the received signal that is manifested in the temporal spreading. The
overlap of individual pulses and their adjacent pulses would usually result in the

receiver being unable to reliably distinguish between individual signal elements.

h(t)
s / T

to u
+ l
Linear *
=== ch}?m;el = —
(t

(A) (B)

Figure 2.3: (A) Linear noisy baseband equivalent channel model. (B) Discrete-time
channel impulse response obtained from the continuous-time response.

Consider a linear time invariant (LTI) baseband equivalent channel! whose im-
pulse response A(t) is shown in Fig. 2.3. Then the received signal r(t) is obtained

by convolving the input signal a(t) with the channel’s impulse response A(t), giving

r(t) = a(t) ® h(t) + n(t) (2.3a)
= a;h(t—jT) +n(t) (2.3b)

b

Tn this model, the channel includes the effects of the transmitter filter, the modulator, the
transmission medium, the receiver filter and the demodulator.



2.1 Model of a Digital Communications System 11

where ® denotes convolution, T' seconds is the signalling interval and n(t) is the
additive white Gaussian noise (AWGN). When the continuous-time signal is sam-
pled at kT + ty, where ty accounts for the channel delay and sampler phase, the

sampled signal becomes

JFk
= aph(ty) +v(to + kT). (2.4b)

The first term on the right hand side (RHS) of (2.4a) is the desired term scaled by
h(to) since it can be used to identify the transmitted signal level. The middle and
last terms on the RHS of (2.4a) are the IST and AWGN respectively. The sum of ISI

and noise is also known as the effective noise and is denoted by v(k) £ v(to + kT)).

In the frequency domain, the received signal may be represented by the following

multiplicative process

R(f) = A(/)H(f) (2.5)

H(f)=5(h(t)) = /OO h(t)e 2™t dt, (2.6)
and R(f), A(f) are similarly defined as F(r(¢)) and F(a(t)), respectively. A suf-
ficient condition for zero ISI is for the folded spectrum to have a flat magnitude
at all frequencies for |f| < 1/27 and a linear phase. This is also known as the
Nyquist criterion. Most channels that are considered in the thesis are ISI channels
which linearly distort the transmit signals and the aim objective of equalization is

to combat such distortions.

The presence of ISI and noise can be easily visualized using the eye diagram
shown in Fig. 2.4. The figure is generated assuming an ideal raised cosine filter was
used with no added noise. The sampling should be carried out at a time offset that
corresponds to the two well defined points in the middle where the eye opening
is the largest in the vertical direction. Therefore, when and if the eye is open,
the symbol can be accurately detected at the receiver by a simple decision device
with an appropriate timing. When the signal-to-noise-ratio (SNR) drops due to
the addition of the AWGN and/or ISI, then the eye will begin to close, resulting

in an increase of the probability of an error.
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Figure 2.4: Eye diagram.

2.1.3 Performance Measures

The ultimate aim of the receiver is to produce a sequence of data estimates with

a minimum probability of error. When such a measure is difficult to estimate or

impractical, there are other simpler performance indices that are closely related to

the bit-error-rate. Three commonly used indices are:

1

(W)

The closed eye measure (CLEM)

CLEM — 2ilsil = maXi(!Si\)’ (2.7)

max;(|s;])
where the sequence with element s; is the combined channel-equalizer re-
sponse. It is the ratio of the noise margin level to the total signal level. A
small value of the CLEM indicates that the channel eye is sufficiently “open”.
Usually, if the CLEM is less than unity, then the decision directed algorithm

can be reliably employed and the convergence to undesirable local equilibria
can be avoided [92], [57, Ch. 3].

The ISI measure

Zi !Silz —maXv:<|5i’2)

max;(|s;|?)

Jist = (2.8)
This measure indicates to what extent the equalized signal is influenced by
adjacent samples of the same signal. It is the ratio of the power noise margin

of to the combined channel-equalizer power.
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3. Decision directed mean squared error (DD-MSE)

MSEpn(k) = B{ |2(k) — Q(2(k))|"} (2.9)

where Q(z(k)) is the nearest neighbor quantization operator appended to
the equalizer output z(k). A small value of MSEpp(k) indicates the raw

(unquantized) equalizer output is close to a symbol value.

Other measures that can be used include the Kolgomorov-Smirnov as well as
the Chi-Squared goodness-of-fit tests, with a suitably chosen null hypothesis, to
determine if the distribution of the equalizer output corresponds to an open eye
condition. An example is found in [8].

Among the three above mentioned performance indices, only the MSEpp (k) can
be practically used under blind equalization because it does not require knowledge
of both the unavailable channel and transmitted sequence. The CLEM and ISI
measure can be used for theoretical analysis but not for practical real-time digital

communication systems.

2.2 Equalizer Structures

We now describe several equalizer structures which can be used to mitigate the
effects of ISI. The choice of the equalizer structure will largely determine the speed
of recovery of the linearly distorted data sequence (convergence of the equalizer)
and the error probability of the equalizer output. A linear transversal equalizer
can be used to invert the channel and hence recover the transmitted input data.
Non-linear equalizers such as the maximum-likelihood sequence estimator and the
decision feedback equalizer exploit the discrete nature of the input symbols to

cancel ISI and noise in a more effective manner.

2.2.1 Linear transversal equalizers

In order for the receiver to reliably detect the original transmitted signal, the
effective noise (i.e., the sum of ISI and AWGN) of (2.4) must be reduced to lower
decision errors. The most common and simplest channel equalizer structure is the
linear transversal equalizer, or otherwise known as the tapped-delay line or non-
recursive equalizer as shown in Fig. 2.5. In digital implementation, the sampled
received signal at time &7 is given as r(k), where the symbol-rate samples are stored

in digital shift registers or memory. The equalizer output samples are computed
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according to

gk = Z cir(k —1) (2.10)

where {c;} are the (2M + 1) tap weight coefficients of the equalizer. Linear equaliz-
ers designed on the basis of the baud-rate sampled received signal are quite sensitive
to symbol timing errors. Therefore, fractionally spaced linear equalizers are widely
used to mitigate the equalizer’s sensitivity to symbol timing errors. A fractionally

spaced equalizer (FSE) in the linear transversal structure has the output

2(k) = Z cr(k — i) (2.11)

where ¢! and r(i) are column vectors with more than one sample per symbol
according to the oversampling factor, while {c;} are the (2M +1) vector tap weight
coefficients of the FSE. The linear equalizers can also be implemented as a lattice

filter [118] which is known for its improved convergence and numerical properties.

2.2.2 Non-linear equalizers

In digital communications, the actual goal of equalization is to recover the input
which is discrete and not to invert the channel. Hence despite the channel being
linear the equalizer needs not be linear. In fact, by most criteria the best equalizer
structures should be non-linear. |

Linear equalizers generally do not perform satisfactorily when the channel is
severely distorted especially when it has deep spectral nulls in the passband. Non-
linear equalizers can deal with such channels more effectively. In the realm of

non-linear equalizers, two well known approaches are:

Maximum-Likelihood (ML) Sequence Estimator It has been shown be Se-
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shadri [125] that it is possible to perform joint data and channel estimation
using the Viterbi algorithm [44]. However, unlike conventional maximum
likelihood sequence estimators (MLSE) where the Viterbi algorithm operates
on only one trellis, for joint data and channel estimation, the VA operates
on many trellises where each of them corresponds to a hypothesized estimate
of the channel. The number of trellises grows exponentially with the length
of the channel impulse response. The MLSE operates based on the following

concept:

The MLSE estimates the information sequence to maximize the joint proba-
bility of the received sequence conditioned on the information sequence. The

linear FIR channel output is

r(k) = Z hia(k — i) 4+ n(k) (2.12)

where L + 1 is the channel length and n(k) is the channel noise. Since n(k)
is often white Gaussian, the ML estimate of the channel input a(k) based
on a sequence of channel output r(k) can be obtained if the channel impulse
response is known or has been estimated. This is done by maximizing the

likelihood function, or equivalently, by minimizing

I 2

Z r(k) — Zhi@(k — )| . (2.13)

k=L 1=0

If the size of the symbol alphabet is M, then there are M* different possi-
ble states or transmitted sequences. The principle of ML receivers is then
to choose, among these M’ sequences the most likely one to have produced
the received sequence {r(k)}. Finding the most likely sequence involves ex-
haustive calculation of all the M* metrics, which can be quite complex if
the number of states M¥* is large. A substantially lower computational com-
plexity can be achieved by employing the Viterbi algorithm. Reduced state
Viterbi algorithms that provide good compromises between complexity and
performance by assuming some past decisions are correct have been proposed

for channels with long but small tails [37].

Due to the high computational cost of the MLSE which is impractical in real-
time high-data-rates digital communication systems, alternative structures

such as the DFE are usually preferred.
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Decision Feedback Equalizer The philosophy of a decision feedback equalizer
(DFE) is to employ previously detected symbols to reduce the impact of ISI
and noise due to those symbols that have distorted the current symbol. The
nonlinearity that arises from the use of a decision device significantly improves
the performance of the DFE because it exploits the discrete properties of the
transmitted sequence. However, it suffers from the error propagation phe-
nomenon whenever a decision error is made [39,71]. This phenomenon is due
to incorrect decisions traversing the feedback delay line, resulting in enhanced

probability of error until the states have been flushed out completely.

In this thesis, we deal with two types of DFE extensively in Chapter 5. These

DFE’s have been commonly used in the literature and are briefly described below:

Conventional Decision Feedback Equalizer

r(k + M) r(k—M+1) r(k — M)

C—M C1—-Mm CM—1

- Q) ' >

|
L@ q2 aQ-1 qQ
'

2

Figure 2.6: Conventional decision feedback equalizer.

The DFE was first developed by Austin [7]. It was intended to combat the
ISI due to channels with severe amplitude distortions, using decision feedback to
cancel the interference from symbols which have already been detected. It is imple-
mented as a cascade of a forward filter and a feedback filter that is equipped with
a memoryless decision device. Fig. 2.6 shows a symbol-rate DFE. The equalized

signal is the sum of the outputs of the forward and feedback parts of the equalizer,
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given by

M

@
2(k)= > ar(k—1i)— > galk—j) (2.14)

i=—M j=1
where g; is the tap weight coeflicient of the feedback filter with length @), and a(k) is
the output of the decision device. The forward filter is similar to the linear equalizer
that may be symbol-rate or fractionally spaced. The feedback filter however must

have tap spacing that equals the symbol interval.

Predictive Decision Feedback Equalizer
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Figure 2.7: Predictive decision feedback equalizer.

A nonlinear equalizer, shown in Fig. 2.7, that is equivalent to the conventional
DFE under the condition that the forward filter has an infinite number of taps
was proposed by Belfiore and Park [10]. It is known as the predictive DFE and
is developed as follows. Given the MMSE forward filter, say an infinite-length
FSE, then the sequence of symbol-rate signals at the output of this forward filter
forms a set of sufficient statistics for estimating the transmitting sequence. Thus by
implementing the linear predictor as a feedback filter shown in the configuration

given in Fig. 2.7, the MSE may be further reduced by the memoryless decision
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device that eliminates the contribution of ISI and noise to the equalized signal.
The output of the MMSE forward filter is given in the usual form of (2.11).
The predictive DFE output, which is the input to the decision device, is given by

2(k) = .Z e;r(k — 1) —ij{s(k— ) —a(k — )} (2.15)

where p; is the tap weight coefficient of the predictive feedback filter with length
P, and s(k) is the output of the forward filter.

Remarks on conventional DFE and predictive DFE

1. Both conventional DFE and predictive DFE have identical expressions of min-
imum achievable MSE when the lengths of the forward filters of the equalizers
are unconstrained, even when the feedback filter is reduced to a finite length.
The output of the infinite length linear predictor is a white noise sequence
with corresponding minimum MSE that is identical to that of the conven-
tional DFE. A proof of their equivalence can be found in [119], [118].

2. In contrast to the conventional DFE whose forward filter depends on the
number of feedback coefficients, the forward filter of the predictive DFE is
independent of the predictor coefficients. Optimizations of the forward filter
and the feedback predictor in the predictive DFE can be done separately.
Hence, its MSE is at least as large as that of the conventional DFE. In spite
of this sub-optimality of the predictive DFE, it is more suited for trellis-coded
signals than the conventional DFE [40, 143].

3. Usually the conventional DFE and the predictive DFE are not used simul-
taneously because they are essentially equivalent [10]. However, we found a
new way to incorporate both DFE’s in Chapter 5.6 to enhance the tracking

capability of the equalizer in time-varying channels.

2.3 Criteria That Lead To ISI Cancellation

Throughout Section 2.2, commonly used linear and non-linear equalizer structures
were presented. The transmitted sequence is estimated by filtering the channel
output with a set of filter coefficients that ideally produce an output sequence with
minimum average probability of error. Unfortunately, the probability of error is a

highly non-linear function of the tap coefficients and cannot be easily computed
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without a known training sequence. Consequently other criteria in the spirit of
lowering the error probability have been proposed. We will review two criteria in
this section, namely the peak distortion criterion and the mean-square-error crite-
rion. The former is used to invert the channel directly while the latter minimizes
the error between the raw equalizer output data with its quantized output. In
digital communications where the input is discrete, the latter criterion is usually

preferred.

2.3.1 Zero Forcing Algorithm

The zero forcing (ZF) equalizer minimizes the so-called peak distortion criterion
[118], which is in essence the residual ISI (without the AWGN term) given by

Jze = > |s(k) (2.16a)
k=—00,k#0
= > Y gk ) (2.16b)
k=—00,k#0 |j=—00

where {s(k)} is the combined channel-equalizer impulse response, i.e., the convolu-
tion of the channel impulse response, {c;}, and the equalizer coefficients, {h,}. The
ZF cost is the peak value of the interference term minus the term corresponding
to the (k = 0)*" tap and the noise term, divided by s(0) which is often normalized
to be unity. With an infinitely long equalizer, Jzr can be zeroed. Effectively, this
corresponds to the complete elimination of ISI. The values of the taps are chosen to
yield non-zero overall channel-equalizer response at decision time, i.e., £ = 0, and
zero elsewhere. In other words this corresponds to choosing equalizer coefficients

so that the following condition is satisfied:
s(k) = Y c;(k)h(k =) = o (2.17)

where

5Aoé{ 1 k=0

0 otherwise
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denotes the Kronecker delta. In the z domain, this leads to the direct inversion of

the channel (assuming it is invertible):

(2.18)

where C(z) and H(z) denote the z transform of the {c;} and {h,}, respectively.
Even though the zero-ISI condition generally requires infinite-length symbol-rate
ZF equalizers, it can be shown that zero-ISI ZF equalizers of finite length generally
exist for fractionally-spaced receivers [118].

Minimizing the peak distortion using a finite length symbol-rate linear equaliz-
ers cannot completely eliminate the ISI at the output of the equalizer. However, it
can at the least be shown to be a convex function of the equalizer coefficients [88].
A steepest-descent recursive algorithm for adjusting the (2K + 1) equalizer coeffi-

cients would therefore be

where ¢;(k) is the value of the j* coefficient at time t = kT, (k) = a(k) — z(k)
is the error signal at time ¢ = k7" and p is the adaptation step size. When the
equalizer coefficients have converged to their global minima, the error is orthogonal

to the transmitted sequence, giving

E(e(k)a™(k — 7)) = E[(a(k) — 2(k))a"(k — j)] (2.20a)
= Ela(k)a*(k — j)] — E[z(k)a*(k — j)] (2.20Db)
= b0 — s(J) (2.20¢)
=0 j=-K, -, K (2.20d)

where we have assumed the transmitted sequence to be i.i.d. and the equalizer
output is correct, so that Q(z(k)) = a(k). The last two lines follow because the
optimal tap coefficients will give the zero-ISI condition, i.e., s(0) =1 and s(k) =0
for 1 < |kl < K.

2.3.2 Least Mean Squared (LMS) Algorithm

The ZF equalizer minimizes the ISI without explicitly taking into account the effects
of channel noise. For channels that exhibit deep spectral nulls, the channel inversion
property of the ZF algorithm may amplify the noise component at frequencies

corresponding to the nulls in the spectrum, resulting in significant deterioration
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of the bit-error-rates of the equalizer output. The minimum mean squared error
(MMSE) criterion on the other hand ameliorates this problem. Its philosophy is
rather than trying to completely eliminate the ISI, the MMSE equalizer minimizes
a balanced contribution from the ISI and the channel noise. The instantaneous

mean squared value of the error is
e(k) = a(k) — z(k) (2.21)

which is the derivative of the MMSE cost function with respective to the equalizer
output. Thus, the MMSE cost is

JMM%p:EOaMQ—zUQF> (2.22)
::EQQ@)—eryx@f) (2.23)

where r(k) is the column vector of the channel output and c(k) is the column
vector of the tap coefficients of the transversal equalizer. The solution to the above

criterion is the MMSE equalizer which is given in the z domain by

C@ZH@Z% (2.24)

where the additive noise at the channel output is assumed white with power spec-
tral density Ny. The minimization of the cost leads to the well known Wiener
filter whose (optimal) tap weights ¢* are determined by the following Wiener-Hopf

equation
c=R7'p (2.25)

where R is the autocorrelation matrix of the equalizer input and p denotes the

cross-correlation of the equalizer input and the desired signals [58].

2.3.3 Unsupervised (Blind) Algorithms

The ZF and MMSE equalizers are usually implemented with a training sequence
that is known to both the transmitter and the receiver. When the transmission
of these sequences is impractical or too costly, an alternative solution is to rely on
blind equalization techniques. The Bussgang-type techniques estimate the training
signal based only on the received signal and certain a prior: statistical information

regarding the transmitted signals. We devote the following sections to discuss
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certain blind algorithms in the literature as this thesis deals primarily with the
class of blind algorithms. We first give a brief overview of non-Bussgang techniques
before discussing in more detail the class of Bussgang algorithms which is used

extensively in this thesis.

2.4 Overview of Non-Bussgang Techniques

2.4.1 Historical Notes

To understand a science it is necessary to know its history.
Auguste Comte (1798-1857)

The problem of blind deconvolution is the subject of thorough research over
the past few decades; under different names and for various applications. The
homomorphic filter was introduced to remove effects of non uniform illumination
of images [107, Ch. 10]. An observed image is usually described as a convolution
of the object brightness distribution (OBD) by a Point Spread Function (PSF),
and blind deconvolution is used to recover the OBD when no reliable information
regarding the PSF is available. The name “blind deconvolution” was first used by
Stockham et al for the restoration of old records [132]. Later “minimum entropy
deconvolution” in seismic data analysis was introduced [149] to find the inverse
of the channel that maximizes the kurtosis of the deconvolved data. The same
concept was later applied to synthetic aperture radar focusing to estimate the
rate of change of the Doppler shift of radar echoes [77]. It is also used for image
reconstruction to remove the effects of the blur induced on astronomical plates
by short term variations of the refraction index of the atmosphere [154]. At the
same time, similar concepts were applied to multilevel blind data transmission over
telephone and radio channels.

The search for cost-function-based blind algorithms started with the seminal
work of Sato and Godard [49,124]. Their algorithms were generalized by Benveniste
et al [14] and Sethares et al [126], respectively. Later the Bussgang methods for
blind equalization, which subsume all the algorithms in this section, were discovered
by Bellini [11]. Other methods include CMA with multiple radii [120, 126], sign
algorithms [144], convex cost functions [68], super exponential methods [127] and
the so-called multimodulus-algorithm (MMA) [105, 106, 151, 152]. Alternatively,
second order statistics-based algorithms that emerged in the early 90’s due to
Gardner and Tong et al [45,135] have received a lot of attention. Some earlier works
by Tong et al include [134,136,155]. Higher-order statistics-based algorithms which
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include cumulant matching algorithms were proposed [56,140], as well as maximum
likelihood estimation using the Viterbi algorithm [47,125], [57, Ch. 6].

Much of the research over these two decades on blind equalization centered
on the analysis of particular blind algorithms. Generally, researchers are con-
cern with the convergence behaviors of these algorithms under both ideal condi-
tions [14,99] and also the case when they are violated, such as finite length filter
effects [26,27,35]. Apart from the work related to analysis, significant amount of re-
search is dedicated to extension of original equalization algorithms and structures.
For example, Benveniste et al [15] and Picchi et al (Stop-And-Go) [116] proposed
dual-mode algorithms that cater for smooth switching between the Sato and the
decision directed (DD) algorithms. In addition, some new algorithms that enable
a soft transition between the CMA and the DD algorithm have also been pro-
posed [60,145]. In the domain of equalizer structures, both blind decision feedback
equalization [5,17,66,75,112,133] and neural network implementations [43], [58, Ch.

¥
7

19] have also been considered more recently.

2.4.2 Classifications of Blind Deconvolution Algorithms

We have broadly identified four families of blind deconvolution algorithms. They

are.

1. The Bussgang algorithms where a non-linear operation is performed on the

output of the adaptive equalization filter.

2. The polyspectra algorithms where a non-linear operation is performed on the

input of the equalizer.
3. Probabilistic algorithms, where the non-linearity is in the data detection process.

4. The cyclostationary statistics-based algorithms which exploit the second-order
cyclostationary statistics of the received signal. The property of cyclostationar-
ity is known to arise in a modulated signal that results from varying the ampli-
tude, phase, or frequency of a sinusoid carrier, which is basic to the electrical

communications process.

For the remaining parts of this section, the last three types of algorithms will
be briefly described, namely the polyspectra type, cyclostationary statistics based
and the probabilistic algorithms. As the focus of this thesis is blind Bussgang
algorithms, a whole section is dedicated to reviewing the rich but essential literature

in this area.
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2.4.3 Polyspectra algorithms

One method of blind deconvolution that has attracted a lot of attention in the
late 80’s and early 90’s is the polyspectra algorithm. It explicitly exploits higher
order moments of the channel output in order to recover both magnitude and phase
information regarding the channel, where second order statistics based algorithms
fail. Omne important assumption is that the transmitted signal is not Gaussian
because otherwise phase identification is not possible (since for a Gaussian signal,
its higher order moments, i.e., order three and above, are zero). This assumption
is easily met in practical digital communications system.

The motivation behind using higher order cumulants or their Fourier transforms

called polyspectra for blind equalization include:

i. Equalization techniques based on higher order statistics are independent of a
particular transmitted sequence (the training sequence) since digital commu-
nications signals are data sequences with common statistical properties. They
are also more robust with respect to the channel input probability density
functions provided they are not too close to being Gaussian, which is typically

the case because the distribution is discrete.

ii. Polyspectra have the ability to identify non-minimum phase communications
channels from output measurements by virtue of their ability to be sensitive

to phase and magnitude information in the channel output.

iii. All polyspectra of Gaussian processes of order greater than two are zero. Con-
sequently, polyspectra techniques will not be affected by additive Gaussian
noise which might be present in communications systems, assuming they are

independent of the data.

iv. Global convergence to the desired solution is guaranteed in approaches of the

equation error type (see below).

As noted in [141], given the mathematical model, there are two broad classes
of approaches to channel estimation and equalization. They are distinguished only

by their respective choices of optimization criteria:

Equation Error The approaches of the Tricepstrum Equalization Algorithm (TEA)
and its extensions by Hatzinakos et al [56] and in [48] minimize an “equation
error’ in some equation which is satisfied ideally. They showed equalization of

a non-minimum phase channel (which we now assume is FIR for illustration,
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under the assumption that no zeros lie on the unit circle) given by

H(z) =XI(2)0(z™) (2.26a)

I{z) = Z(l — Qn2 ), ) < 1 (2.26b)

n=1
Ny

O(z") = (1—bpa), 1b,| < 1 (2.26¢)

n=1

where I(z), O(z~!) are minimum phase and maximum phase polynomials
respectively, can be identified and used for sequence estimation. Here we

give the briefest outline of the equation error approach whilst the details can
be found in [57, Ch. 5|, [58, Ch. 18] and [56].

Let c4(71, T2, 73) denote the fourth-order cumulant of the channel output (k).

The tricepstrum of r(k) is thus
C4<(U1,0J2,CL}3> — F{C4(’7'1,7'2,7'3):| (227)

where F'[-] denotes the three-dimensional discrete Fourier transformation. De-

fine also the so-called tricepstrum of the process r(k) as
k4w, wo,wy) = F1 [1HC4(W1,(UQ,W3)} (2.28)

where F~! denotes the inverse three-dimensional discrete Fourier transfor-
mation and In is log.. The following relation between c4(71, 72, 73) and the

assumed i.i.d. channel input sequence holds [58, Ch. 3.7], [100]

64(7_17 T2, T3> Sl ! Z hihi—l—Tl hi—i—Tz h’H—TB : (229>

1=0

It can be shown that x4(w1,ws,ws) can be expressed in terms of the zeros and
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poles of H(z) in the following form:

.

In 4 3 In 44, mn=mg=13=0
~r LA, n>0n=m3=0
_7_2—114(72)7 >0, =173=0
—73_114(73), 3>0,71=717=0
—1 ) . _
T B\, 1 <0,m=1m3=0
Ka (Wi, ws, w3) = X 2.30
slwr, w2, 3) 7 ' B(), T <0,mm=713=0 (2:30)
1 B, 73<0,71=7=0
—7'2_13(72), =T =T5 >0
7_2—114(72)7 n=Ty=173<0
| 0 otherwise
where
N Ny
A =% g, BU =", (2.31)
n=1 m=1

Note that A™) B(™) contain information regarding the minimum phase and
maximum phase roots of H(z) in (2.26). The key equation that connects the

fourth-order cumulant to the tricepstrum is [110]

o0 s o0
Z Z Z 7”:‘{4(7", 8,t)C4(7'1 — 3T — 8; Ty — t) — —7_164(7_1, Ta; 7'3). (232)

r=—00 §=—00 {=—00

Substituting (2.30) into (2.32) yields

p
Z (A(m) [04(/’1 — m, Ty, Tg) - C4(7’1 + M T + m, T3 + m)])

m=1
q
+ Z <B(m) [04(/”1 — Tty Tg — Ty Ty — m) — C4(T1 - Ty Ta, 7'3)]>
m=1
= —T1c4(71, T2, T3). (2.33)

Representing (2.33) in matrix form as an over-determined linear system of

equations we get

Ca=p (2.34)

where we wish to determine a to identify the non-minimum phase channel,
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and C is a matrix with entries of the form {c4(m1, 72, 73) — c4(7{, 75, 74)} and
dimensions given in [58, Ch. 18], p is a vector with entries of the form
{r1cs(m1,72,73)}, and a is a (p + ¢)-by-1 coefficient vector in terms of A(™

and B™ given by
a=[AD A@ ... A®) B B ... 7B(q)}T_ (2.35)

By estimating a it can be shown that the channel may be identified and a

corresponding equalizer may be constructed.

Fitting Error This so-called cumulant matching technique that is adopted in
[140] matches the model-based higher order statistics to the estimated data-
based statistic in a least-squares sense to estimate the channel impulse re-
sponse. Unlike the “equation error” approach which results in a zero-forcing
equalizer, this approach allows consideration of noisy observations. In gen-
eral, it is a less robust approach since it requires a good initial guess to prevent

the convergence of the channel estimator to undesirable local minima.

2.4.4 Algorithms based on cyclostationary statistics

For linear time-invariant frequency-selective deterministic channels, when the re-
ceived waveforms are over-sampled at p times the baud-rate, the discrete signal
displays scalar cyclostationarity properties that may be exploited for channel iden-
tification and equalization. Depending on its application, sequence estimation us-
ing this technique is viewed as a single-input-multiple-output (SIMO) equalization
where a discrete-time vector of stationary sequences is available at the equalizer
input, or fractionally-spaced equalization. The former considers the channel output

r(k) = Z hya(k — i) + n(k) (2.36)

where h; and n(k) are p-by-1 vectors. When the received signal is oversampled, the
fractionally-spaced equalizer that employs the constant modulus algorithm (CMA)
has been shown to converge to complete ISI removal under noiseless models [25,79].
However this is achieved at the expense of higher complexity relative to baud-rate
equalizers.

A subspace method that exhibits low complexity that leads to closed-form solu-

tions is given in [86]. Consider the collection of m over-sampled received sequences
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r(k) (multiple snapshots of r(k))

H(r(k)) £ [tr,Too1, -, Thom] = T(h) [ag, ak—1, -, Ak_m] (2.37)

where ‘T(h) is the so-called filtering matrix, h is the channel vector, ay is the input
source vector. As long as T(h) has full column rank, the span of H(r) is identical
to that of H(a). Then when H(a) has more modes than the rank of T(h), H(a) can
be uniquely determined from the nullspace of H(r) and the transmitted sequence

can be found by solving the set of linear equations
U (k)H(a) =0 (2.38)

where U(k) is the nullspace of H(r) and ¥ denotes the Hermitian transpose oper-

ator.

2.4.5 Probabilistic algorithms

An overview of this technique has been previously discussed in Section 2.2.2 under

the maximume-likelihood sequence estimation section.

2.5 Bussgang Algorithms

This section reviews the class of Bussgang-type blind algorithms that is used ex-
tensively in this thesis. The Bussgang technique [11,57] for blind equalization is
to obtain an estimate of the input signal by sending the equalizer output through
a zero-memory non-linear device g(-), and then the filter taps are updated using
the LMS algorithm by minimizing the error between the equalizer output and the

estimate of the input signal. The cost function of the Bussgang algorithm is thus

JBussgang =k { ‘Z(k) - g(Z(/C)) \2} . (239)

The equalizer model is assumed to be linear transversal with 2N + 1 symbol-
rate taps, whose tap weight vector at sampling time k7T is denoted as w(k). This
same model is used for the rest of this section when dealing with Bussgang blind

equalization techniques. The tap update equation of the equalizer is

w(k +1) = w(k) — pe(2(k)) X*(k) (2.40a)
w(k) — p (2(k) — g(2(k))) X*(k), (2.40b)
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Figure 2.8: Linear Transversal Bussgang Equalizer.

where X (k) is the regressor vector of the linear equalizer that employs the Bussgang
algorithm and €(k) is the LMS error function implicit in (2.39). This approach was
proposed by Godfrey and Rocca [51] for deconvolution of seismic traces and the
term Bussgang algorithm was coined by Bellini [11] after he revealed that the
algorithms based on higher order statistics implicitly are indeed identical to the
methods described by Barrett and Lampard [9]. In the approach, the estimated
input signal is cross-correlated with the equalizer output to obtain an approximate

inverse filter.

The very first truly blind algorithm for multilevel digital communication sys-
tems was proposed by Sato back in 1975. However reliable blind digital transmis-
sions has been sought after even before the revolutionary pioneering work of Sato.
In this section, we go one step before the invention of the Sato algorithm to describe
a simple blind algorithm called the Maximum Level Error (MLE) algorithm before
describing some common blind algorithms that have enjoyed widespread popular-
ity in today’s digital receivers. In fact, the concept of the MLE algorithm has
been partially exploited in the design of our switch-mode algorithm as described
in Chapter 4.

2.5.1 Maximum-Level-Error (MLE) algorithm

The MLE algorithm [153] is usually not regarded as a truly blind algorithm. It is
briefly explained here just to show how the evolution of blind equalization tech-
niques started. The algorithm was proposed by Yatsuboshi et al based on a very
simple idea. They observed that when the equalized signals are found beyond the
largest constellation points, there is a higher probability that these signals are cor-
rect regardless of the SNR of the residual equalizer output. Therefore, the LMS

algorithm which is decision directed, may be employed with a relatively higher rate
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Figure 2.9: Maximum Level Error (MLE) Algorithm: Constellation diagram for
16-QAM with dotted-line boundary connecting the edge data points. The equalizer
is only updated if the output is exceeds the boundary depicted by the dotted lines.

of detecting a correct symbol when the signal exceeds the boundary that joins the
edge symbols, as depicted in Fig. 2.9. The filter taps are updated only when at

least one of the following conditions

Re(2(k))| > max [Re(a(k)) (2.41a)
(2 (k)] > max Tm(a(k))] (2.41b)

are met. The stochastic gradient update equation of the MLE equalizer is
w(k+1) = w(k) — ué(k)(2(k) — Qz(k))) X" (k) (2.42)

where 0(k) is the Kronecker delta that yields a value of 1 when at least one condition
in (2.41) is satisfied, and 0 otherwise. Due to the low probability of satisfying the
conditions in (2.41), very slow convergence of the equalizer is expected especially

for large constellation sizes.

However, its concept has been exploited by several equalization and phase recov-
ery techniques. In Chapter 4, we designed a switch-mode algorithm that performs
joint equalization and phase recovery when one of the conditions in (2.41) is satis-
fied because such signals are generally more reliable. This concept is also similar
to the “four-corner” phase recovery technique of [63,139] where a phase discrimi-

nation is only performed when signals are “far” away from the origin, for example
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when they are close to the “four-corners” of the QAM constellation.

2.5.2 Sato algorithm

The first blind algorithm was proposed by Sato [124] for multilevel digital trans-
mission of real one-dimensional signals. His work has been widely recognized as a
major breakthrough in blind digital communication systems. Sato’s M-ary PAM

blind equalization algorithm consists of minimizing a non-convex cost function

Jswo = B{ (2(k) = 75 - sen[2()])°} (2.43)

with the scaling coefficient that sets the gain of the equalizer defined by

s E{a*(k)}
Vs = = (2.44)
E{la(k)l}
where a(k) is the channel input sample. Sato’s error function is thus
€sato(k) = 2(k) — s - sgn[z(k)]. (2.45)

In what follows, we provide a summary of the work of Sato in [124]. He used the
example of 8-PAM whereby the signal levels are given by

1 1 1

where d;, d and d3 are binary random variables and V' is a constant factor. The
Sato algorithm estimates only the most significant digit d; while treating the ds
and dz as random noise superimposed at the data source (see Fig. 1 in [124]).
The concept of Sato’s algorithm is thus to treat the multilevel digital signal as a
“binary” signal. The algorithm then uses the results of this preliminary step to
modify the error signal obtained from a conventional decision directed algorithm.
The algorithm only makes a distinction between the signs of the equalizer output,
subject only to a gain factor, vs. In short, rather than “pushing” the equalizer
output towards the nearest data point as would conventional decision directed
algorithms, the algorithm “pushes” the signals towards the half plane where they

are found.

The original work of Sato made three strong and rather “impractical” assump-

tions for the algorithm to be globally convergent:
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1. The PAM modulation admits an infinity number of levels, 1.e.

1 1 1 1
= - - Buill A B
4 <2d1+4d2+8d3+16 4+ )

where d; = +1 for all i, with a continuous uniform distribution in a symmetric
interval of (=V,V);

2. The combined channel-equalizer impulse response {s;} is doubly infinite in

length;

3. The channel eye is initially open, i.e. CLEM < 1, where CLEM is defined in
(2.7).

Under the above assumptions, the Sato cost function may be rewritten as

V2 i 512
Jsato = — Z 3;? — gV (30 +- &0——> 4+ vé. (2.47)

S0

Jsato 18 shown to be a convez? function of the tap gains {¢;} in Appendix B of [124]
under the above assumptions. This convexity result guarantees that it has a unique
minimum point that corresponds to a zero forcing equalizer (ZFE). These assump-
tions are indeed sufficient but not necessary. According to the Benveniste-Goursat-
Ruget theorem [14], global convergence of the Sato algorithm can be achieved pro-
vided that the probability density function of the transmitted data sequence is a
sub-Gaussian function such as the uniform distribution. The condition for doubly
infinite equalizer is required however to ensure its global convergence. Deviations
from this ideal behavior have been reported in the literature [26,92,99].

Perhaps the most important asymptotic result regarding the convergence of
the BGR algorithm is that it can be shown to be globally convergent in the zero-
forcing sense when the distribution of the input sequence {a(k)} is sub-Gaussian
when the equalizer length is unconstrained. The subsequent investigations carried
out by Ding et al in [26,27,78] yield the conclusion that the violation of the ideal
and impractical conditions can result in ill-convergence of the BGR algorithms to
undesirable local minima. |

Benveniste et al developed important results regarding the convergence of the
Sato algorithm and its generalizations for sub-Gaussian and super-Gaussian inputs,

where the input is continuous instead of discrete. The work of Kennedy, Ding et

2 f(z) is said to be a convex function of z if for any 0 < a < 1, the following holds: f(az; +
(1—a)ze <af(zx1)+ (1 —a)f(zs), for any z; < z2 in the domain of definition of f.
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Figure 2.10: Reduced Constellation Algorithm (RCA): Constellation diagram for
16-QAM and its reduced constellation whose 4 data points are represented by ‘o’
at coordinates [vys,7s|, where 45 is defined in (2.44).

al later revealed that undesirable local minima do exist in Sato equalizers under

practical constraints of finite equalizer length and discrete inputs [26,67].

Generalizations of Sato algorithm

The Sato algorithm, which is originally designed for real signals, is subsequently
generalized by Benveniste, Goursat and Ruget [14] into a class of error functions,

which can be used for complex signals, and is given by

EGSA <Z(k)) — €b<2(]{’)> — Vb - Sgll(Z(k)) (248&)
N E{gb (a<k>)a(k)}
» = "B e \2480)

where €,(-) is an odd function whose second derivative is non-negative for z > 0,
such that €(—2) = —&(z), and €, (2) = €/(2) > 0 for all z > 0. This is sometimes
known as the Generalized Sato Algorithm since it subsumes the special case of the
Sato algorithm which is obtained when one defines &,(z) = z.

Extension to the complex signalling, for example QAM signalling, has been
proposed by Godard and Thirion [50] and Benveniste and Goursat [15]. It is
commonly referred to as the Reduced Constellation Algorithm (RCA) because the
algorithm, just like the original Sato algorithm, treats the real and imaginary parts

of the QAM signals are “binary” signals. Thus it represents a reduced constellation
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in the constellation space. The error function is thus

erca (2(k)) = 2(k) — s - csgn(z(k)) (2.49)

where csgn(+) is the complex signum operator defined as csgn(z) = sgn(Re(z)) +
sgn(lm(z)). Even though the RCA largely resembles the Sato algorithm concep-
tually, in another sense, it differs from the Sato algorithm because unlike the Sato
algorithm, the RCA would alter the phase of the equalizer output in addition to

adjusting its magnitude (see Fig. 2.10).

2.5.3 Godard algorithm

The arguably most important class of Bussgang algorithm is the Godard algo-
rithm [49] which consists of a family of constant modulus blind equalization al-
gorithms. It was also independently proposed by Treichler and Agee [137] under
the name, Constant Modulus Algorithm (CMA). The Godard algorithm penalizes
the deviation of the equalized signal from a constant modulus via the “property
restoral” philosophy, a term coined by Agee in [3]. The deviations from this con-
stant modulus is depicted by the dotted circles in the constellation space as shown
in Fig. 2.11. It was initially developed for constellations that exhibit a constant
modulus property such as the 4-QAM and PSK formats (see Fig. 2.11-A for the
8-PSK format). However, it exhibits exceptional robustness with respect a variety

of other non-constant modulus data formats such as larger QAM formats and the
V29-CCITT formats.

—¥— —
| * * * *
(A) (B)

Figure 2.11: Godard algorithm or Constant Modulus Algorithm (CMA): It pe-
nalizes deviations from a constant modulus represented by the dotted circles for
(A) 8&PSK which is a constant modulus source, and (B) 16-QAM which is a non-
constant modulus source.
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The Godard algorithm minimizes a non-convex cost function parameterized by

a positive integer p given as

Joma = E{(|z(k)[P —~2)*} (2.50)

where & is a positive real constant called the dispersion constant which is given

by

2 Blla(0)®)
° = Efa(®l}

(2.51)

When p = 1, the CMA is identical to the Sato algorithm for real systems. The
cost functions and error functions of the Godard algorithm for p = 1 and p = 2 are

respectively given by

p=1:
Jowa = B{(|2(6)] - 70)*} (2.522)
eonia = 2(k) (1 - \12)\) (2.52b)

p=2
Towa(k) = E{ (12(0) =2’} (2.53)
ccma = 2(k) (J2(K)? = ~3). (2.53b)

The second special case where p = 2 is referred to in the literature as the
constant modulus algorithm (CMA) and it is the most widely used algorithm in
the family of Godard algorithms.

The Godard algorithm is considered the most successful and the most exten-
sively researched Bussgang algorithm. It is supported by some comparative studies
performed by Shynk et al [130] and Jablon [63]. It can be shown to exhibit the
carrier phase blind property [81] that is particularly advantageous in the design of
practical digital transmission systems. Therefore it is more robust than other Buss-
gang algorithms with respect to carrier phase offsets as the equalizer parameters
can be adapted independently but simultaneously with the operation of the carrier
recovery system, leading to the notion of a decoupled equalizer and phase estima-
tor. Under steady state conditions, the Godard algorithm attains a mean-squared

error (MSE) that is lower than other Bussgang algorithm [58].
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As the cost function is non-convex, initialization of the equalizer tap parame-
ters is crucial in order to avoid convergence to spurious local minima. Even though
convergence to global minima cannot be guaranteed for all cases, practical guide-
lines do exist to ensure desirable convergence have been suggested in [49,79]. In
contrary, bad initialization strategies that should be avoided have been formulated
in [35] where it is stated that the initialization with an edge tap set to a non-zero
constant may very likely yield convergence to undesirable local minima that do not

correspond to the desired ISI removal.

2.5.4 Shalvi and Weinstein algorithm

The methods of Shalvi-Weinstein [128] generalize CMA, but unlike conventional
Bussgang algorithms that implicitly exploit higher order statistics of the equalizer
output, the Shalvi-Weinstein algorithm (SWA) are explicitly based on the higher
order statistics of the equalizer output. The SWA maximizes the absolute value of

the kurtosis of the equalizer output |K(z(k)) [, ie.,

max | K (2(k))| (2.54a)
subject to
E{z(k)[*} = E{la(k)]*}, (2.54b)

where the kurtosis of z(k) is defined as
K (2(k))| 2 E{|2(k)Y|} — 2B2{|2(k)?|} — |E{2(k)?}|". (2.55)

For convenience, we denote K, = \K(a(k))’ and K, = |K(z(k))|. Shalvi and
Weinstein showed that when (2.54b) is true, then the following must hold [128]:

‘Kzi < ‘Kal (2.56a)
’Kgl = lKal if and only if s =¢e’(--.,0,0,€,0,0,--- ) (2.56b)

where s is the vector of the combined channel-equalizer response, i.e.,

s(k) = [s1(k), sa(k), - 17, si(k) =D hiqwy(k) (2.57)

and h; is the channel impulse response, w;(k) is the equalizer impulse response,
and C is a non-zero constant. The result of (2.56b) is of particular interest as it

corresponds to a zero-forcing solution. It is obtained as follows [128]:
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Let the ly-norm ||s||3 be absolutely summable, i.e., >, |s;(k)|* < oo. Then,

S Jsulh)[* < (z 1) ) (258

l

where equality holds if and only if s has at most one non-zero component, which
would correspond to the zero-forcing solution. This completes the proof. The

necessary and sufficient conditions for equalization are therefore

E{|=(k)

“} =E{la(k)I"} and |K.

= | Ka|. (2.59)

It can also be shown for typical digital modulation, that the condition |K,| = |K,|
may be replaced by the simpler E{|z(k)|*} = E{|a(k)|*}.

According to the criterion in (2.54), the cost function may be expressed as

K| (2.60)
sgn (K,) - K, (2.61)

= sgn (K.) {E{l2(0)*} —2(B{=(0)P)° - (B0} (262)

JSV\T

I

where it can be shown that the second and third terms on the right hand side of

(2.60) do not influence the maximum. The criterion thus becomes
Jsw = sgn (K, ) E{|z(k)|*}. (2.63)
The update equation of the equalizer parameters is
w(k+1) = w(k) — 1 sgn(K,)

(k)X (k)2 (k)| (2.64)

o0
o

where 4 is the step size parameter.

2.5.5 Multi-Modulus Algorithm

The CMA for multiple moduli constellations is later extended and redeveloped
to incorporate joint phase constellation recovery together with equalization [105,
152]. It is called the multi-modulus algorithm (MMA) by Yang, Werner and Darth
[152]. The rotational behavior of this algorithm will be studied in Chapter 6 and is
compared with the Reduced Constellation Algorithm (RCA) previously described
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Figure 2.12: Multi Modulus Algorithm (MMA): It penalizes deviations from 7y
for real and complex components separately.

above. The algorithm minimizes the cost function

Junia = B [Re((k))? = 4%]" + [Im(z(k))? = %]} (2.65)
where
2= E[Re(a(k:))iJrIm(a(k))ﬂz N E[a(k)‘g (2.66)
B|[Re(a(k))|* + [Im(a(k)[*]  B|[alk)]’

for square QAM constellations. For cross QAM constellations, 73, should be as-
signed different values for different data points in the constellation, where details
can be found in [152]. Its concept is to “push” the equalizer output signals towards
the four boundaries that form a square of width 2+ as depicted in Fig. 2.12. This
cost function is somewhat similar to that of the CMA except that the in-phase and
quadrature components are separated and the cross term between the components

have been eliminated as we now show. Recall that the cost function of the CMA

2-2 algorithm that has been expanded is

P 2} (2.67a)

— [2Re(z(k))Im(2(k)) — 7(23]2} (2.67b)
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where 7Z is the dispersion constant of the CMA (2.51). Comparing (2.65) and
(2.67b) reveals that the cross term has been dropped in the MMA cost function.
The error functions of the MMA for the in-phase (7) and the quadrature (q) filters

are therefore

ESI)L\JA = Re(2(k)) {RG(Z(M)Q - “/1%1} (2.68a)
E%%)MA = Im(z(k)) [Im(z(k))z — vl (2.68Db)

Because of the disjoint adaptation of the in-phase and quadrature phase fil-
ters, minimization of this cost, unlike the CMA, will lead to phase-aware solu-
tions, i.e., with automatic constellation phase recovery (up to ambiguities related
to symmetries in the constellation) simultaneously achieved with the desired ISI
removal [81,105,152].

2.5.6 Bussgang algorithms for multiple-modulus constella-

tion

The CMA was proposed with the intention of equalizing signals whose source con-
stellations display a constant modulus. It was later shown to be robust with re-
spect to the modulation format, but would on the other hand yield larger excess
noise [42,65]. Recognizing this fact, the CMA is extended for signal formats with
multiple radii such as 64-QAM and 8-PAM in [8,120,126,145]. Two algorithms were
proposed by Sethares et al [126] where the first is also called the multi-modulus al-
gorithm (same as [152]) and the second is the decision adjusted modulus algorithm
(DAMA). To avoid confusion with the MMA we described earlier in Chapter 2.5.5,
we will abbreviate the first algorithm of [126] as MMAZ2. The cost function of the
MMA?2 is

: 97 2 ‘ 57 2 P 2
Rona = [2(02 = 13 [2(0 = 3]+ [s(b° = 72, 269
where 71, ,7,, are the m radii that circles the data points as illustrated in

Fig. 2.13.
The second algorithm that was jointly proposed by Sethares et al with the

MMAL in [126] is called the decision adjusted modulus algorithm (DAMA). It is

also independently proposed by Ready and Gooch under the name Radius Directed
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Figure 2.13: MMA2 and the DAMA algorithms : The 9 radii of the 64-QAM
constellation.

Equalization (RDE) algorithm [120]. It minimizes the cost function
JDAMA = E{ min )z(k)Q — 7“2-2‘2} (2.70a)
::E{VUQQ—(Lﬂz&ﬁff}. (2.70D)

DAMA is conceptually identical to a decision directed algorithm except for the

decision device, Qg(-) that they used. The decision device is a radius discriminator

which is defined as

Qr(z(k)) £ arg miin (||z(k)] = r4)). | (2.71)

At convergence, the MMA2 and the DAMA yields lower MSE than the CMA due

to the exploitation of the multi-modulus property of the constellation.

2.5.7 Decision directed algorithms

The decision directed algorithm [89] requires no training and is the simplest blind

algorithm. Its cost function is

ng:E{dM—{xdmw?. (2.72)
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where in principle, it minimizes the mean square error between the equalizer output
and the quantizer output. The performance of this algorithm can be indicated by
the closed-eye-measure, CLEM of (2.7), which is an indication of how (un)reliable
the equalizer output is. Global convergence to the optimum equalizer settings is
guaranteed is CLEM < 1 [99]. In general, if the initial parameter values cause

significant number of decision errors, then local convergence to undesirable minima
is highly likely [92].

2.6 Principal Aims Of Thesis

In the remainder of the thesis we will develop several new switch-mode algorithms as
well as switch-mode equalization schemes for blind equalization of linear channels.
The motivation for the development of each new method is due to the deficiencies

and disadvantages of existing algorithms and schemes in the following aspects:

e Their low convergence speed.
e Their high steady-state errors.

e Their abrupt switching which may result in the ill-convergence of the adaptive

equalizer.
e Their hich computational costs.

e Their poor estimation of open-eye condition that directly determines the

switch from the acquisition to the tracking equalizer mode.
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Chapter 3

Reliability Based Technique For
Switch-Mode Blind Algorithms

Blind acquisition algorithms such as the Sato and the Godard algorithms can be
used for the reliable acquisition of an unknown channel driven by a data sequence
of known distribution [14,49,124]. Unfortunately, in general such algorithms yield
non-zero error (noisy) solutions, typically described through the excess mean square
error, even when the equalizer parameters have nominally reached their optimal
settings, especially when dealing with non-constant modulus data formats [42, 65].
On the other hand, blind tracking algorithms such as the decision directed (DD)
algorithm and the decision adjusted modulus algorithm (DAMA) [89,126] can be
used after the channel eye is open to yield a low excess mean square error (dom-
inated only be the channel noise) when desired convergence is achieved, even for
non-constant modulus data formats [58,119]. Unfortunately these decision based
algorithms strictly require a sufficiently low level of decision errors to ensure con-
vergence [92,99]. Since the acquisition and tracking algorithms exactly complement
each other’s deficiencies, it is common to employ the former during the initial ac-
quisition and subsequently switch to the latter when the error rate is sufficiently
low. This combination which pairs up the above blind algorithms is thus called a
switch-mode algorithm. The Sato, Godard, LMS and DAMA algorithms have been
previously introduced in Chapter 2.

Switching between modes can be done in one of two ways. Firstly, it can
take place instantaneously as soon as a measure of the equalizer performance sur-
passes a pre-defined value that is chosen to correspond to low error rates. This is
the so-called “hard-switching” technique [58,82]. Otherwise, switching may occur
smoothly in the sense that the transition between algorithms is soft and is usually

automatic [15, 60,116, 145]. Unfortunately, smooth switching techniques usually

43
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slow down the convergence speed of the equalizer significantly, in addition to com-

promising low steady state errors. The following questions are therefore raised:

1) In determining the combination parameters of smooth switching approaches

how well does the switching process accurately reflect the error rates?

2) In designing for a sufficiently smooth transition in a switching scheme, is the
convergence speed too adversely affected and has the steady state error been

compromised as well?

We propose a new smooth switching technique in this chapter that reflects
the current error rate more accurately and less conservatively. It involves the
computation of the probability of a correctly detected symbol at the equalizer
output which has been derived using Bayes theorem. As a result, we observe fast
convergence and low steady state errors without the need to manually control the

parameters that govern the convergence speed and excess noise.

3.1 Motivation

In a trained digital communications sysfem, the LMS algorithm can be employed
with satisfactory convergence and steady state performance. With the availability
of a reference signal, its cost function is the error between the equalizer output
and the reference signal. Therefore minimizing the cost should lead to the desired
recovery of the transmit signal. In blind transmissions, however, the cost function
of the DD algorithm is the error between the equalizer output and its quantized
value. When the output is unreliable, the quantized output will be erroneous with
high probability, and may therefore result in the ill-convergence of the equalizer. A
sufficient condition for the DD convergence is for the channel to have an initially
open-eye condition [92,99]. Therefore the goal of blind acquisition algorithms is to

achieve an open-eye condition. The critical problem can be posed as:

“How can we measure the open eye condition, or at least estimate it as
accurately as possible. given only the observed channel output with only

knowledge of the statistics of the transmitted sequence?”

The conventional technique is to perform switching instantaneously when a
performance measure, say the estimated MSE of the equalizer output, drops below
a pre-defined threshold value. Even though it is simple to implement, this technique

requires the user to pre-specify the threshold value on the MSE to trigger the
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Figure 3.1: A typical baseband equivalent channel and a linear equalizer that
employs the switch-mode algorithm.

switch-over. Strictly speaking this can only be done effectively if there is knowledge
of the channel, which is not available. Switching too early when there are many
errors may result in the ill-convergence of the DD algorithm; switching too late
may result in a slow rate of convergence and possibly fail to acquire the channel
when the channel is time-varying. There are other instances when the estimated
MSE is not low enough even though the eye is clearly sufficiently “open”, such as
noisy channels and high excess MSE due to equalization of non-constant modulus

data using the Sato or Godard algorithm.

A few smooth switching techniques have been suggested in the literature to
overcome the lost of a reference (training) sequence. Some of them suggeste combi-
nation techniques for the acquisition and the tracking algorithms to be reflective of
the current distribution of the equalizer output based on the equalizer output only.
For example, if the equalizer output is close to one of the constellation data points,
then the tracking algorithm is preferred over the acquisition algorithm because
it is “believed” to be resulted from a well converged equalizer. On the contrary,
when the equalizer output is far from the data points, the acquisition algorithm is
preferred over the tracking algorithm. Thus, their concept is such that the error
rate is implicit in this combination parameter which measures the distance of the
equalizer output from its data points. The algorithms that employ this concept
are those in [15,60,145]. Another concept is the so-called “stop-and-go” algorithm,
whereby the algorithm is in its tracking mode at all times, but an update of the
equalizer parameters is only performed when the error functions of both acquisition
and tracking algorithms agree in sign [54,55,116]. However, the slow convergence

of this technique has been reported [82].
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3.2 System Model

In this chapter, we largely treat a communication system involving real signals
given they usually have obvious extensions to the complex case. Consider the
combined channel-equalizer system depicted in Fig. 3.1. Let h = [hg, hy,--- , hr]”
denote the coefficients of the channel filter of length L+ 1. The channel is assumed
stationary, possibly non-minimum phase, but unknown. Let the source data vector
be a(k) = [a(k),a(k —1),--- ,a(k — L)]” at a time index k, with elements drawn
from the alphabet set

A= {dy,dy, - ,dy} ={£1,%3,--- , £(M - 1)} (3.1)
representing M-ary PAM signaling. Then the input signal to the equalizer is
r(k) = hTa(k) + n(k) (3.2)

where n(k) is the additive noise. Also let w(k) = [w_npg, Wk, - ,wxx]? be
the (2N + 1) equalizer tap coefficients. We set

1 = {}
Wy o = { o (3.3)

0 otherwise

to have a center-tap initialization, which allows the causal development of approx-

imate inverse filters for non-minimum phase systems. Then the equalizer output is

given by
N
2(k) = ) war(k —n) (3.4a)
n=—N
= soa(k) + v(k) (3.4b)
where
N+L N
(k)= sjalk—35)+ ) wanlk—n) (3.5)
j#0,j=—N n=—N

is the so-called effective noise with a variance of o2, and {s;},j=—N,--- N+ L

is the set of coefficients of the combined channel-equalizer filter. Without loss of

generality, the coefficient sg is defined as unity. We further assume:

(H1) the M-PAM source symbols are identically and independently distributed
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(i.i.d.);
(H2) wv(k) is white and Gaussian with zero mean and variance o?;

(H3) the impulse response of the combined channel-equalizer filter is absolutely

summable, i.e., > . |s;| < oco.

Justification for the second assumption is provided by the central limit theorem

(see Section 3.5.2 for further justification).

3.2.1 Expressions for error function of switch-mode algo-

rithms

Before we proceed any further, we provide first the different expressions to describe
a switch-mode algorithm:

Blind adaptive equalization algorithms are often designed as stochastic gradient
descent schemes to update the parameter vector by minimizing some cost functions
that do not involve the use of the original input a(k) but reflect the current level

of ISI in the equalizer output. Define the mean cost function as
1
J(w(k)) = SE{e(2(k))} (3.6)

where €2(+) : R — R is a scalar cost function and z(k) is the equalizer output. De-
note the weight vector of the equalizer asw(k) and r(k) = [r(k—N),--- ,r(k),--- ,7(k+
N)]T is the regressor vector of the equalizer consisting of samples from the channel
output. The stochastic gradient descent minimization algorithm is well-known to

be

wk+1) =w(k)— u@vf(k) %62(2(]{» (3.7)
= w(k) — pe(z(k))r(k)". (3-8)

Hence the blind algorithm can either be defined by the cost function or equivalently
through €(-) which we call the error function since it replaces the prediction error
in the LMS algorithm.

Switch-mode algorithms can be broadly categorized under three distinct groups.
Slight modifications are possible as long as the modified form largely resembles the
parent form of (3.9) — (3.11) as shown below. Let €,.q(k) and e (k) be the error

functions of the blind algorithms of the acquisition mode and the tracking mode,
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respectively. Then the error function of a switch-mode algorithm can be expressed

in one of the following three forms:

(F1)

(52)

(F3)

A weighted error function:

(k) = Ba(k)ew(k) + Ba(k)eacq (k) (39)
= B(k) [exx (k). €aca(R)]"

where (1 (k) and (5(k) are positive functions and we define for convenience

B(k) = [B1(k), B2(k)]. They can be functions of the equalized output z(k) but

generally are taken as positive constants. The desired properties of F(k) are
B (k) B (k)

5a(k) Ball) > |

when the equalizer is close to convergence.

such that < 1 when the equalizer is far from convergence, and

A conditional update type error function:

[1,0] [ex(k), €acq(K)] = €xx(k) Condition 1
e(k) = [0,1] [ew(k), €acq(/€)]T = Cue ) Condition 2 (3.10)
[0, 0] [erc(K), €acq (k)] =0 Condition 3.

Depending on the conditions, only one of the error functions will be used
at any one time, or none at all when Condition 3 is satisfied. Condition
1 is usually a condition that indicates high probability of correct equalized
signals, or an event corresponding to low noise levels. Conditions 2 and 3
hold when there is uncertainty in the quality of the equalizer output with

condition 3 taking the most conservative approach (no update).

A Bussgang-type error function:

€(k) = z(k) — g(2(k)) = 2(k) — g(€acq(k), € (k) (3.11)

where g(-) is a Bussgang memoryless nonlinear function. As mentioned in
Chapter 2, Bellini [11] pointed out that most of the blind adaptive algorithms
are Bussgang-type algorithms. They include the Sato, the Godard, and even
the DD algorithms. The Bussgang-type algorithm resembles closely the LMS
type algorithm since the error function of the LMS algorithm is z(k)—Q(z(k)),
where Q(-) is the quantization operator and Q(z(k)) is taken as the reference.
The Bussgang error replaces Q(z(k)) with g(z(k)) as is shown above. The
combination of the respective error functions, given in (3.11), is performed

within the nonlinear function g(z(k)).
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Several approaches to the switching problem have been given in the references
8, 15, 53-55, 60, 75, 87,116, 130, 145]. We will review four popular switch-mode
algorithms in the following subsection because they present novel concepts that

enable a soft transition between the acquisition and tracking algorithms.

3.3 Review of traditional switch-mode algorithms

3.3.1 Benveniste-Goursat (BG) algorithm

The very first known switch-mode algorithm in the literature to address the switch-
ing problem is proposed by Benveniste and Goursat [15]. They proposed to min-
imize an error function that combines the Sato and the DD algorithm in the fol-

lowing manner:

6]3(;([’&) = k1€DD<k) —+ kQ‘EDD<k>‘€Sa‘co(k) (312)

where ki, ko are positive constants. It is expressed in the form of (3.9). In their
algorithm, they used the magnitude of the LMS error function as the weight of
€sato(k). When the equalizer is far from convergence, then the equalized signals
are usually far away from the constellation points. Hence |epp(k)| is large and
€sato(k) 1s largely used for the update. However, when the equalizer is close to
convergence, |epp(k)| reduces. It is interesting to note that at perfect equalization,
epp(k) = 0, and so will egg(k). Therefore, the BG algorithm can achieve the zero
cost condition given ideal convergence and no noise. Deshpande [23] reports still

better performance if the Sato error is replaced by the CMA error.

3.3.2 Stop-And-Go (SAG) decision directed algorithm

The standard DD algorithm for joint MSE equalization and carrier recovery, which
is normally utilized in the open-eye condition, can be turned into an algorithm
providing effective blind convergence in the MSE sense and is usable in the closed-
eye acquisition phase. This “stop-and-go” (SAG) algorithm [54, 55, 116] uses a
binary-valued flag to indicate to both the equalizer and the synchronizer whether
the equalizer output is sufficiently reliable. The flag shows “Go”, i.e., an update
event, when the signs of e, (k) and €,.q(k) agree. When they disagree, adaptation
is stopped for that iteration.

Consider the original algorithm by Picchi and Prati. They employed the Sato

algorithm and the DD LMS algorithm whose error functions are esato (k) and epp (k),
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respectively. Their error functions can be expressed in the forms of (3.9), (3.10) in

a modified manner and (3.11), as shown:

(F1) Weighted error function

ESA(;(]C) = O.5EDD(]€) -+ O.5IEDD(/€>‘Sgn(ésaw(k)). (313)

(F2) Conditional update type error function

esac(k) = { ;DD(k) zfn(EDD<k>> = sgn(esaio(k))

(F3) Bussgang type error function

esac(k) = z(k) — {0.5(Q(z(k)) + z(k)) — 0.5|epp (k)|sgn(esato(k))} . (3.15)

This is a demonstration that a switch-mode algorithm can be expressed in various

forms if required.

3.3.3 Dual-Mode Generalized Sato Algorithm (DMGSA)
and Dual-Mode Godard Algorithm (DMGA)

Weekackody and Kassam [130, 145] proposed two schemes that separately use
the generalized Sato algorithm (GSA) and the Godard algorithm as the acqui-
sition algorithms, and the DD LMS and the decision adjusted modulus algorithm
(DAMA) [126] as their tracking algorithms, respectively. Scheme 1 is a combina-
tion of the GSA and the DD LMS algorithm, named dual-mode generalized Sato
algorithm (DMGSA). Scheme 2 is a combination of the Godard algorithm and the
DAMA, named dual-mode Godard algorithm (DMGA).

The conditions of switching are as follows. For both DMGSA and DMGA,
condition 1 is when the equalizer output is within a predefined region D(k). Con-
dition 2 is simply its opposite, i.e., when the equalizer output is not inside D(k).
For DMGSA. D(k) is a box around the constellation alphabet. For DMGA, D(k)
is an annular region around the moduli of the (non-CM) constellation. So, the

error functions expressed in the form of (3.10) are
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1. Dual-Mode Generalized Sato Algorithm (DMGSA)

[1’ O] [EDD(k)a ESa,to<k>]T Z(k) e D,

[0,1] [epp (k), esaro(k)]”  2(k) & Dy, Vi (3.16)

epmasa (k) = {
where

epp(k) =(Re(z(k)) — Q(Re(2(k)))) + 7 (Im(2(k)) — Q(Im(z(k))))
€sato(K) =(Re(z(k)) — yRe(z(k))) + j(Im(z(k)) — yIm(z(k)))

where 7 is a constant [124].
2. Dual-Mode Godard Algorithm (DMGA)

[1,0] [epania(k), ecma (k)" 2(k) € D;

[07 O] [EDA_\'IAUf), ECMAUC)]T Z(k) ¢ D;, Vi <3'l7>

epvcal(k) = {
where

epama (k) =(|2(k)]° — Ri)z(k)
ecoma (k) =(|z(k)|? — R)z(k)

where R is the dispersion constant [49] and {R;} is the set of the radii square
of the source constellation. For further details of the DAMA algorithm and
the DMGA, please refer to [126] and [130, 145] respectively.

3.3.4 Hilal-Duhamel (HD) algorithm

Hilal and Duhamel [60] proposed a dual-mode algorithm for blind equalization of
PSK modulated signals. Their algorithm combines the CMA and the DD algo-
rithm in the manner as shown in (3.11), i.e., a Bussgang-type algorithm. The
combining method is using a memoryless proximity measure of the actual output
z(k) from each of the constellation points, so that the further z(k) is from a con-
stellation point, the smaller is this proximity measure. The concept is similar to
the Benveniste-Goursat algorithm, where it can be shown that the closer z(k) is
to a constellation point, the more the DD algorithm will dominate. When it is far
away, the algorithm will be dominated by the CMA.

The algorithm is as follows. Let d;,i = {1,2,--- , M} be the M-PSK constel-

lation points. Then the proposed Bussgang memoryless nonlinearity yields the
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output

=0

eup (k) = z(k) — exp {j. arg (Z_: Prox(z(k) : d@)O_dz> } (3.18)

where the notations are defined as follows. The so-called proximity measure is
defined as

s YEL =)
Prox(z(k) : d;) = ——=— = e (3.19)

12()ds] [2(k)di|

where & is a normalization constant that ensures that the sum of all proximities
_———

be equal to 1, and O_dz = 2(k) + 2(k)d;. Then (3.18) becomes

eup (k) = z(k) — exp {j. arg <z(k) + 2_: &(—E%%) } : (3.20)

The behaviour of the proximity measure can be categorized under three scenarios:

e
a) z(k) ~ 0 (Equalizer far from convergence): The distances ||z(k)d,|| are al-
most equal for all n due to the symmetry of the constellation, and Zzle a:—HZE:;?H

is almost a null vector, yields ¢g"P(2(k)) ~ exp(j. arg(z(k))).

b) |z(k)| > max,(|d,|) (Equalizer far from convergence): This corresponds to
z(k)d;

the case when z(k) is very far from the constellation points. Then Zi\il Ol =

—_
2(k)O + ¢ has the same argument as z(k), J is a small insignificant value.

—_—

c) 2(k) ~ a(k) (Equalizer close to convergence): It isshown [60] that S a%ﬁ] =
_—> v
2(k)d*, where d* is the constellation point of the transmitted symbol. Thus,

_

2(k) + z(k)d* = Od*, which is the decision directed algorithm.

3.3.5 Diagrams of error functions

The diagrams of the error functions of some of the above mentioned switch-mode
algorithms are shown in Fig. 3.2. The shapes of the error functions are reflective
of a combination of an acquisition and a tracking algorithm which is proportioned
according to a parameter that is a function of the equalizer output. We observe

the following properties in the above figures:

1. The shape of the error function is determined only by the position of the

equalizer output regardless of how reliable these data are. This is the main
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Figure 3.2: The error functions of the switch-mode algorithms outlined in the above
subsections for 8-PAM signalling. Their shapes vary with the equalizer output z(k)
only. (A) Benveniste-Goursat (BG) algorithm [15], with parameters k; = 1, ko =
0.25. (B) Stop-And-Go (SAG) algorithm [116]. (C) Dual-Mode Generalized Sato
Algorithm (DMGSA) [145], with the decision region D(k) = d; + 0.5, Vi, where
{d;} is the set of the source constellation. (D) Dual-Mode Godard Algorithm
(DMGA) [145] with the decision region D(k) = d; &+ 0.5, Vi.

“deficiency” in conventional algorithms that our switch-mode algorithm over-

comes.

2. Whenever the equalizer output is close to a data symbol, the shape of the
error function resembles that of the tracking algorithm more. Otherwise when
the equalizer output is close to the bisector of the data symbols, its shape

will resemble that of the acquisition algorithm.

3. All the above switch-mode algorithms yield zero error when the ideal conver-
gence to optimal equalizer parameters is achieved. They exploit the discrete

nature of the input data as would decision directed algorithms.

4. The well-known slow convergence of the “Stop-And-Go” (SAG) algorithm can
be explained (see Fig. 3.2-(B)) by observing that almost half of the values of
the equalizer output corresponds to zero update conditions. This happens at
the values where the signs of both acquisition and tracking error functions

do not agree.




54 Reliability Based Technique For Switch-Mode Blind Algorithms

3.4 A Novel Reliability Based Switch-Mode Al-
gorithm

Let €aeq(k) and €, (k) be the error functions of the blind algorithms of the acquisition
mode and the tracking mode, respectively. We propose a switch-mode algorithm

with an error function
e(k) = a(k)yen(k) + (1 — a(k))eacq (k) (3.21)

which represents a convex combination between vey, (k) and €,.q(k) with convex pa-
rameter a(k), and «y is chosen to compensate for the differences in the variances of
the respective error functions where it is sensible to assign v = E{|e.cq (k)| }/E{ e (k)| } .
The formulation in (3.21) is according to (3.9). The principle design issue is how
to determine a(k) as a function of signals available at the receiver. In what follows
we identify a(k) with a measure of reliability?.

Let P be the probability of the output of the quantizer being correct given
the output of the equalizer z(k). Then our proposed reliability measure can be

compactly expressed as

1 05 < Utzhr
a(k)=< 2P —1 05<P:<1 and o> 02, (3.22)
0 otherwise

which we now explain. Given that a(k) is a convex parameter we can relate the
extreme values of a(k) to P in the following way, where at one extreme, a(k) =0
when the probability of the equalizer detecting an incorrect symbol exceeds that of
the correct symbol, i.e., Po < 1— Po or Po < 0.5. At the other extreme, a(k) =1
when the probability of the symbol is high enough to allow the DD algorithm to
converge to its global minima. As empirical results often show that a bit-error-
rate of less than 10% is usually sufficient reliable, we will set a(k) = 1 whenever
0o < 04, where o2 is a suitable threshold. Subsequently we need to decide on the
relationship between a(k) and Po whenever 0.5 < P < 1 and o2 > o3, which

is the crucial portion that governs the need for smooth switching. We propose a

1~ is meant to be computed infrequently say at the end of each frame. When we consider

the CMA and the LMS algorithm for example, we find that v is approximately constant for a
particular constellation size during the transitional period between acquisition and steady state,
i.e., at the vicinity of an open eye condition. For the 4-PAM source, for example, it can be shown
empirically that v =~ 14.

>The definition of reliability is the ability of a system or component to perform its required
functions under stated conditions for a specified period of time [62].
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simple linear relationship between a(k) and Py which is given by a(k) = 2P — 1.
Other mappings are possible as long as (k) is a monotonically increasing function

of Po. This concludes our explanation of the assignment of a(k).

The probability P~ can be interpreted as the posterior probability of the event
of a correctly detected symbol given certain measurements. Such an event can
be mathematically expressed as {A;« : Q(z(k)) = dj~ = a(k)}, where Q(-) is the
quantization operator and j* is the index of the alphabet symbol that corresponds
to a correct quantizer decision. All other incorrect events are {4, : Q(z(k)) = dj,

V5 # j*}. Thus, we define Py as the posterior conditional probability

Pc = P(A;

2(k)). (3.23)

3.4.1 Computation of Reliability Measure a(k)

To compute a(k) we need to compute Pz and 0. The former can be calculated

by applying Bayes theorem® and the law of total probability:

p(2(k)|Aj) P(A;)

Po = P(Ay|s(k)) = 222 20 (3.25)
p(2(k)|A;j=)P(Aje) + 2 55- p(2(K)|A;) P(4;)
3The Bayes Theorem expresses the posterior probability as
_ P(B|A)P(A)
PlAlE)] = P(B) (3.24)

where P(B|A) is known as the likelihood function and P(A), P(B) are known as the priors. The
Law of Total Probability defines

P(B) = P(B|A)P(A) + P(B|A)P(A)

where A is the complement event of A. The likelihood function can be obtained if we have prior
knowledge of the distribution of the continuous random variable B given event A has occurred:

pa(B)
fBeB pA(B)dB .

P(B|A) =

Note that the upper case P(:) is used to denote the probability function, whereas the lower
case p(-) is used to denote the probability density function. If ps(B) is normalized, i.e.
fBeB pa(B)dB = 1 then the conditional posterior probability becomes P(B|A) = p4(B). Simi-
larly, we have P(B|A) = p4(B). So (3.24) becomes

pa(B)P(4)
pA(B)P(A) + pa(B)P(A)

P(A|B) =
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where p(-) denotes the probability density function (pdf). From assumption (H1),
we get P(A;) = 1/M,Vj. From assumption (H2), p(z(k)|A;),Vs is the pdf of a

normalized Gaussian distribution, i.e.,

plakAy) = —exp (ALY, (3.27)

Therefore, due to assumptions (H1) and (H2), P of (3.25) becomes a function of
both z(k) and o2 so that

Y —(e(k)=d;)? ) (3.28)
Zj:lexp 202

Then a(k) of (3.22) becomes

( 1 05 < Ut:Qhr
2eXp<—<z<k>;Q2<z(k>>)2>
alk) =49 — oy — 1 05<Po<l and of >0, (3.29)
L 0 otherwise.

The contour plot of a(k) w.r.t. changes in z(k) and o, can be illustrated as in

Fig. 3.3. Here oy, is chosen to be 0.2.

2 T T T
(Xk= 0% (Xk=1 1% to 20%
to 10% ka= 81% to 90%

4

4 2 0 2 4

057 o =91%
to 100%

Figure 3.3: Contour plots of the reliability measure of (3.29) for a 4-PAM data.

To calculate the reliability measure a(k) in (3.27) and F¢ in (3.36), it is neces-
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sary to estimate the variance of the effective noise 0. However, estimation of this
noise level is not a simple task because of the unknown channel. In our situation,
we will rely on the effective noise being Gaussian due to the central limit theorem,
i.e., the assumption of (H2). Recall that the conditions of the central limit theo-
rem are such that there should be many independent terms in the impulse response
of the effective noise which is the combined channel-equalizer response excluding
the cursor so. In other words, the terms in {s;},Vj # 0 should be many and
independent of one another. When the channel eye is almost open, the impulse
response {s;},Vj # 0 should contain many small terms whose cross-correlation is
small [57, ch. 2] if the equalizer has successfully minimized the cost function. It is
actually appropriate to restrict the region of our consideration to the region when
the channel eye is almost open as this is when switching usually occurs and the

calculation of a(k) is required.

2
v

There are two known methods to obtain o7, namely the decision directed MSE

and the signal-to-noise ratio (SNR) moments estimator approaches.

SNR Moments Estimator

The variance of the effective noise can be obtained by solving simultaneously the
equations of the second (Ms) and fourth (My) order moments of z(k) [115]

My2 S+ N (3.30)
My = k5% + 6SN + k,N* (3.31)

where S, N are the power scaling factors of the unit variance signal and noise
respectively, and k, £ E{|a(k)|*}/E{|a(k)|?}? and k, = E{|v(k)[*}/E{|v(k)|?}?
are the kurtoses of the signal and the noise, respectively. Let the so-called excess
kurtoses of a(k) and v(k) be G, = k, — 3 and G, = k, — 3. Then solving for S and

N in terms of M, and My, we get
) O

MGy =/ (MeG,)? — (Gy + Gy)(M2E(G, + 3) — My)

e} 3.32

G 1 C. (3.32)

N = M, — S. (3.33)

Further we assume the effective noise is Gaussian so that G, = 0. Thus the

last step before 02 = N is obtained is to solve for S and N of (3.32) and (3.35)

simultaneously, yielding

28 N = My /G (M, - 3M3). (3.34)
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The second and fourth order moments My, M,, can be estimated recursively in

time k by

My(k + 1) = pMa(k) + (1 = p)|2(k)/” (3.35)
My(k +1) = pMa(k) + (1 = p)|2(k)|* (3.36)

where p is a forgetting factor that is close to 1. The initial values of ]\72(0) and
]\//74(0) are set to zero. Equation (3.36) needs to be computed only once in every
frame?. The estimated variance is then substituted into Pz of (3.28) to acquire the

reliability measure a(k).

Decision Directed MSE Method
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Figure 3.4: Relationship between the DD MSE and o, for M-ary PAM with M =
2,4,---,64. The range of values of o, is from 0.1 to 1.4 presented in the log scale.

Once the pdf of v(k) is assumed Gaussian, there is a straight forward relation-
ship between o7 and the DD MSE. This method involves a lookup table to be

tabulated which can be computed offline. The value of o, is varied from say 0.4 to

*In our simulations using 4-PAM data, one frame consists of 100 symbols.
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Table 3.1: Lookup table for MSEpp(o,) and variance of effective noise, o2 for

M-PAM signals

e 0.4 0.5 0.6 0.7 0.8 0.9 1.0
o2 0.16 | 0.25 | 0.36 | 0.49 | 0.64 | 0.81 1.0
M-PAM MSEDD (UU>
2- 0.157 | 0.232 | 0.311 | 0.392 | 0.476 | 0.565 | 0.663
4- 0.155 | 0.224 | 0.287 | 0.344 | 0.396 | 0.444 | 0.495
8- 0.154 | 0.219 | 0.275 | 0.32 | 0.354 | 0.383 | 0.411
16- 0.154 | 0.217 | 0.269 | 0.308 | 0.334 | 0.353 | 0.369
32- 0.154 | 0.216 | 0.266 | 0.302 | 0.324 | 0.338 | 0.348
64- 0.154 | 0.216 | 0.265 | 0.3 | 0.319 | 0.33 | 0.337

1.0 at an interval of 0.1 and a large sample of z(k) is generated for each o,. Let
the DD MSE of these sample points be MSEpp(o,), where it is a function of o,.
Then the DD MSE can be computed according to

MSEpp(0,) = z:f:1 12(k) — Q(2(k))|?

7 (3.37)

where L is the sample size used. The lookup table for M-PAM, M = 2,4,8, 16, 32, 64
for a range of o, values is tabulated in Table 3.1.

One advantage of the DD MSE approach over the SNR moments estimator,
apart from being less computationally intensive, is that it is a direct and unbiased
estimator. In contrast the SNR moments estimator may suffer a large variance
given higher order moments need to be estimated. On the other hand, the DD
MSE approach is less robust for greater constellation sizes. For M-PAM, it may
not be reliably used for constellation sizes larger than 16 as the relationship becomes

increasingly nonlinear (see Fig. 3.4).

3.5 Discussions on convergence and approxima-

tion

3.5.1 Convergence

The error function of (3.21) is a function of both z(k) and o2. We plotted the error
function that combines the CMA and the DD LMS algorithm. Figure 3.5 depicts
the error function for an 4-PAM source for the range of z(k) values between -

4 and 4, and for the range of o, values between 0 and 2. At high noise levels,
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Figure 3.5: The error function of the novel switch-mode algorithm of Equation
(3.21). Here v = 14.

say when o, ~ 2, the error function is clearly dominated by ecma (k) (recall that
ecma (k) has the shape of a cubic, a third order polynomial). At low noise levels, say
o, ~ 0, the error function is clearly dominated by €, (k). The transition between
ecma (k) and €., (k) which happens when o, reduces from 2 to 0 may be observed as
smooth. Thus the convergence of the switch-mode algorithm is such that it follows
the characteristics of the CMA during the initial acquisition phase and then the

characteristics of the DD algorithm at steady state.

A look at the cross section of the new (k)

Consider further a switch-mode algorithm that combines ecya (k) and €. (k) for an
8-PAM source. If we were to take the cross sections of the error function at o, = 1.2
and 0.7, then the resulting error function evaluated at o, = 1.2 is predominantly
ecma (k) and e (k) for o, = 0.7. See Fig. 3.6. This switch-mode algorithm is
not only robust at high noise levels but the error also goes to zero at perfect
(and noiseless) equalization. The 3-D characteristic of this error function can be
contrasted with the 2-D error functions in Fig. 3.2, typified by Benveniste-Goursat

and other researchers.
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Figure 3.6: Cross sections of the 3-D graph of the error function of the new dual-
mode algorithm for 8-PAM signalling and v = 100. (A) 0, = 1.2 and (B) ¢, = 0.7,
The error functions of the CMA and the LMS algorithms are also plotted as dashed
and dotted lines respectively.

3.5.2 Gaussian assumption of effective noise

This subsection is intended for discussing the Gaussian assumption of the effective
noise which we have used to estimate the reliability measure. While the assumption
that the assumption that the effective noise, v(k), is Gaussian is generally untrue for
most dispersive channels and hence it is difficult to derive a universal expression for
the distribution of v(k) due to the unknown channel, the central limit theorem may
simplify matters significantly. Recall that the conditions of the CLT are that there
are many, independent random variables where none of them is especially dominant.
From (3.5) that v(k) is the sum of the sequence s;a(k — j), —N < j < N + L,
j # 0. Therefore for CLT to be valid, {s;}, —N < j < N + L, j # 0 should be
independent of each other and the order of the impulse response, 2N + L, should
be sufficiently large. In this discussion we will cover two scenarios where the first

validates the CLT and the second considers the case when 2N + L is very large.

1) If 2N + L is sufficiently large (usually at least 15 will yield well approximated
Gaussian distribution), then the correlation between v(k) and a(k) is small.

The normalized correlation coefficients of v(k) and a(k) are [57, ch. 2]

Efo(k)v;} Doy siSigk (3.38)
JEWDEE s

and

Ef{a(k)vi}  _ sj

JE{&(/@P}E{U?} - Vs

(3.39)
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If 2N + L is a large positive integer, then the above coefficients which are on
the order of the inverse of the square root of the terms s; that are different
from zero will be small. This results in small cross- and autocorrelation
of v(k) and a(k) which validates the CLT. Supportive experimental results
were presented by Metzger [101] whereby the pdf’s of the effective noise
in multilevel digital transmissions look reasonably Gaussian, and becomes

increasingly Gaussian-like with increasing constellation sizes.

One remaining issue regards the possibility of several taps with relatively
larger values than the rest dominating the overall distribution of v(k). A
simple example is when the equalization just begins, i.e., w(k) = [0,---,0, 1,
0,---,0], and the channel has just two non-zero taps, h = [1, A], where X is
a non-zero value. Then v(k) cannot be (approximately) a Gaussian random
variable. A general conclusion is that the more accomplished equalization is,

the more Gaussian-like v(k) will become.

2) Consider 2N + L — oo. Even though the derivation of the CLT assumes the

limiting case when the number of terms approaches infinity, it can be shown
that this is actually undesirable. As pointed out by Ding et al [57, ch. 3],
one important condition for the CLT is for the variance of v(k) to be finite

and non-zero, i.e.,
0< X <E{|sjalk -5’} <Xy <00, Vj (3.40)

where \; and Ay are some finite positive constants.

In order to justify the assumption that v(k) is Gaussian, we restrict our region

of consideration to the region where the eye is almost open. By then the condition

that s; are independent random variables is satisfied. Further, we propose to prefix

the usual equalizer with a recursive whitening filter [14,75] in order to satisfy the

CLT conditions that 2N + L be large but finite. A recursive filter ensures the length

of the combined system to be large regardless of the order of the channel. Besides,

prefixing the recursive filter also simultaneously satisfies the second condition of

2N + L < oo since its (transversal) impulse response is exponentially decaying with

increasing tap length [58]. This is why 2N + L is less than infinity in the practical

sense. So long as the Gaussian assumption of v(k) is valid, so would «a(k) and

assumption (H2).
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Figure 3.7: A comparison of several dual-mode algorithms equalizing channels (A)
h', and (B) h”, both at an SNR of 25dB for 4-PAM signalling.

3.6 Simulation Results

With stationary channels, the equalizer achievements can be characterized in terms
of convergence speed and steady-state error. As our performance measure, we have

used the DD MSE which can be estimated recursively via
MSEpp (k + 1) = pMSEpp(k) + (1 — p)[2(k) — Q(k)2 (341)

where p = 0.99 is the forgetting factor. Results have been obtained via Monte Carlo

simulations using 200 independent runs on two nonminimum phase channels:

h' = [0.04, —0.05,0.07, —0.21, —0.5, 0.72, 0.36, 0, 0.21, 0.03, 0.07]
h” = [0.8264, —0.1653, 0.8512,0.1636, 0.81].
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Figure 3.8: A comparison of several dual-mode algorithms equalizing channels
Hi(z) with an SNR of (A) 20 dB, and (B) 15 dB for 4-PAM signalling.

h" is a channel with a weaker coloring on the channel output [118], and h” is one

with stronger coloring [75].

Simulations on both channels were carried out at an SNR of 25dB using 4-PAM
signalling {£1,+3}. A total of 10* and 10° symbols were used in each simulation
run when dealing with the channel h’ and h”, respectively. For the respective
channels, we used a baud-rate equalizer with 20 taps and 40 taps initialized with

a center tap strategy, employing a step size of 107* and 2.5 x 107°, respectively.

We compared the performance of the proposed dual-mode algorithm (new)
with 4 other popular algorithms, namely the Benveniste-Goursat (BG) algorithm
[15], the Stop-And-Go (SAG) algorithm [116], the dual-mode Godard algorithm
(DMGA) [145] and the traditional “hard switching” (HS) algorithm. The HS al-
gorithm will switch from the CMA to the LMS algorithm when MSEpp (k) < 0.25.
The choice of acquisition and tracking algorithms in all cases is the CMA 2-2 and
the DD LMS algorithm, respectively, except for the DMGA [145] which employs

the decision adjusted modulus algorithm (DAMA) [126] at steady state. Their
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Figure 3.9: Similar to Fig. 3.7, this graph also includes the new equalizer that is
prefixed with a recursive whitening filter where lower steady state MSE is achieved
due to the additional whitening filter which increases the effective length of the

equalizer, thereby being able to estimate the channel more accurately. The SNR is
25 dB, and a 4-PAM source is used.

respective error functions are given below:

ecma(k) = z(k)(|2(k)[* — Ry) (3.42)
epp(k) = z(k) — Q(z(k)) (3.43)
epama (k) = 2(k)(|2(k)|* — Q*(z(k))) (3.44)

where Q(+) is the nearest neighbor quantizer.

For our simulations, the parameters of various algorithms of comparison are out-
lined below. In the notation of (3.22) we can express the error function in terms
of the combination B(k) = [f1, F2]. The name of the associated algorithm is super-
scripted on (k). We have assigned 85¢(k) = [4, |epp(k)|]; 58°4¢ (k) = [40, 0] for h'
and 354C (k) = [14, 0] for h” when sgn(ecma(k)) = sgn(epp(k)) and B54C (k) = [0, 0]
when sgn(ecma(k)) # sgn(epp(k)); BPMEA(K) = [1,0], V]z(k) — Q(2(k))| < 0.2,
and BPMEA(E) = [0,1] otherwise; 8%5(k) = [0,1] when MSEpp(k) > 0.25, and
BHS (k) = [14,0] otherwise. As for our dual-mode algorithm, we used (k) from

(3.27) and assigned v = 14. The variance o2 is estimated from (3.32).

We simulated 200 runs for each dual-mode algorithm for both channels. The
graphs of the DD MSE of the averaged runs are plotted in Fig. 3.7. Note that

these graphs are obtained by averaging out only the MSE of the runs that have
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Table 3.2: Summary of results in Fig. 3.7 including failure rates

h/ hll
Normalized Normalized
Dual-mode Fail time to reach Fail time to reach
Algorithm rate | -14dB | -18dB || rate | -14dB | -18dB
New 0% 1 1 3.5% 1.11 1
BG 0% 1.45 1.35 16.5% | 1.65 1,85
SAG 0% 2.70 2.88 || 55.0% | 3.18 -
DMGA 0% 1.15 1.25 1.5% 1.06 1.07
HS 1.5% 1.13 1.31 || 53.5% 1 1.23
Time normalized by | 1590 | 2110 28900 | 49700

been successful in convergence. The summary of the results that includes the
failure rate of convergence is tabulated in Table 3.2. The failure rate is calculated
by recording the number of runs where the MSE at the end of a particular run is
higher than —13.15 dB = 0.22 then dividing by the total number of runs. The time
to convergence has been normalized by the averaged number of symbols required
by the fastest algorithm. From Table 3.2, the hard switching algorithm is the most
unreliable as it yields high failure rates. Both our algorithm and the DMGA are the
smoothest in terms of low failure rate, but the DMGA yields higher steady state
MSE and is also carrier phase blind. The general conclusion is that the proposed
new algorithm is superior than others in terms of convergence speed and steady

state error based on the results in Fig. 3.7 and Table 3.2.

3.7 Conclusions

In this chapter, we proposed a new switch-mode algorithm. It reflects the reliability
of the equalizer output as a function of the equalizer output itself and the effective
noise variance. When employed, the technique exhibits superior performance in
terms of convergence speed and steady state errors relative to several conventional
switch-mode algorithms. This new technique also eliminates any requirement for
the manual control of the parameters that govern the convergence speed and excess

noise.



Chapter 4

Probabilistic-Based Switching
Technique For Switch-Mode
Algorithms

In this chapter, we propose a new switching technique that is intended to ensure a
smooth switch-over between the acquisition and tracking algorithms in addition to
achieving rapid convergence and low steady state errors. Like the reliability-based
technique proposed in Chapter 3, this new technique also exploit both the equalizer
output as well as its estimated distribution to achieve the above objectives. The
most important property of this technique lies in the simplicity of this technique
that accurately and promptly detects suitable conditions for the employment of
the tracking algorithm. The technique incurs no additional costs but it achieves
significant improvements over conventional switch-mode algorithms, for both hard-
switching and soft-transition type. When coupled with the result of Chapter 6
which reveals that the multi-modulus algorithm (MMA) [105, 152] usually yields
correctly oriented output constellation upon the convergence of the adaptive pa-
rameters, a tri-mode algorithm is proposed to perform joint blind equalization and
phase recovery.

Conventionally, the switch-mode algorithm is perceived to be a combination of
an acquisition algorithm and a tracking algorithm in such a way that they comple-
ment one another’s weakness so that the performance of the algorithm is improved.
However, in a more critical approach, we choose to treat switch-mode algorithms
as merely a tracking algorithm whose acquisition is assisted by a temporary acqui-
sition algorithm that is less desirable in the sense that it yields poorer steady state
performance, but is absolutely necessary during acquisition. Thus, it becomes clear

that failure to switch-over from the acquisition algorithm to the tracking algorithm
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as soon as the data estimates become sufficiently reliable will consequently slow
down the convergence of the equalizer. Hence, this motivates the design of better
and more efficient techniques to detect the open-eye condition reliably.

In Section 4.1. of this chapter, we present a brief problem statement regarding
the difficulty in performing switching. In Section 4.2, we illustrate graphically the
error functions of the acquisition and tracking algorithms to help us appreciate the
abruptness encountered due to the switching in switch-mode algorithms. In Section
4.3, we present our novel switching technique. In Section 4.4., we present a tri-mode
algorithm that uses this switching technique to perform joint blind equalization
and phase recovery effectively. Lastly, we present convincing simulation results to
show the improvement of this technique over some previous criteria reported in the

literature.

4.1 Problem Statement

Without a training sequence in blind equalizers, the detection of an open eye con-
dition using for example the closed-eye measure (CLEM) in (2.7) is impossible.
Thus, we must make a good guess regarding this condition based only on the avail-
able observed data. To make the existing task even more challenging, we will rely
only on the most current data signal, for reduced complexity, to make this guess.
Conventionally, it is common to estimate the mean-squared error (MSE) of the
equalizer output, as in the “hard-switching” criterion, and periodically compare it
to a pre-defined threshold value that usually corresponds to low error rates. These
threshold values, unfortunately, need to be chosen in a very conservative manner
to avoid switching too early that results in the ill-convergence of the tracking al-
gorithm [92,99]. The acquisition algorithm is thus employed much longer than
desired, thereby sacrificing valuable acquisition time. Moreover, the MSE criterion
may not be suitable because of the steady state MSE is comprised of the minimum
achievable MSE plus an excess MSE term that is due to the fluctuation of the filter
tap parameters about their optimal values [42,58]. Large amount of excess MSE
would often contribute to the total MSE especially for large non-constant modu-
lus source constellations [65] such as higher order PAM and QAM constellations.
Therefore, the MSE estimate that is high due to the excess MSE contributions
may not drop below the pre-defined threshold value even though the channel eye
is clearly open, thus preventing it from switching to the tracking algorithm. In ad-
dition to the above problems, most switching criteria are based on second order or

higher order statistics of the data sequence, for example the MSE and the reliability
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measure [82], which must be estimated. A large sample size is therefore required
before an accurate estimate can be obtained. Again, the collection of large samples

may take time and slow the estimation process and consequently, slow convergence.

4.2 Graphical Illustration of Switching Difficulty
in Switch-Mode Algorithms

Since we have repeatedly mentioned about the switching difficulties encountered
during the switch-over of the switch-mode algorithms, some graphical illustra-
tions are provided in this section to assist us in appreciating this problem visu-
ally. Consider a transversal equalizer, w(k), whose regressor vector is denoted by
r(k) =[r(k—N),---,r(k),-- ,7(k+ N)]. Then the stochastic gradient descent

equation of the equalizer is

wk+1)=w(k)— ugi((]]z; (4.1a)
= wi(k) — pe(k)r (k). (4.1b)

The error function of the switch-mode algorithm, e(k), essentially combines the
acquisition algorithm and the tracking algorithm. In what follows, we will plot the
figures of |e(k)| for some acquisition algorithms, namely, the CMA indexed by inte-
gers 1 and 2 (see (2.50)), and some tracking algorithms, namely, the DD algorithm

and the decision adjusted modulus algorithm (DAMA) (2.70) [126]. Their cost and

error functions are given below:

Jouai(k) = B{(]z(k)| — 4&")?} (4.2a)
Jomaz(k) = B{(]z(k)? = +&)?} (4.2b)

Joo (k) = E{(2(k) — Q(2(k)))*} (4.2¢)
Joaua (k) = B{|z(k)* — Qr(2(k))**} (4.2d)
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Figure 4.1: The plots of |e(k)| for (A) CMA-1, (B) CMA-2, (C) DD algorithm, (D)
DAMA algorithm, for the non-constant modulus 16-QAM source signals.

where ¢ ) is known as the dispersion constant that is parameterized by the positive
mmteger p asin (2.51), Q(+) is the nearest neighbor quantizer, Qp = arg min; {Hz(k)[—
rf)}. where {r;} are the radii of circles that join the source constellation points.
Further details on the DAMA can be found in Chapter 2.5.6 or [126].

Thus by plotting the figures of |e(k)| against complex values of equalizer out-
put z

(k), we can then appreciate the differences in the respective shapes of the
acquisition and tracking algorithms that complicate switching. The shapes differ
largely for data constellations which are constant modulus such as binary PAM,

4-QAM, 8-PSK and for those which are non-constant modulus such as 8-PAM and
16-QAM.
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Figure 4.2: The plots of |e(k)| for (A) DD algorithm, (B) DAMA algorithm, for
the constant modulus 8-PSK source signals. The plots of |e(k)| for CMA-1 and

CMA-2 are identical to Fig. 4.1-A,B, except that vép) has to be readjusted.

4.2.1 Non-Constant Modulus Constellation

We consider first the non-constant modulus constellation of 16-QAM. The absolute
values of the error functions in (4.3) are plotted in Fig. 4.1. The minimum points as
seem in the figures indicate zero update of the equalizer parameters. From Fig. 4.1-
A B, none of the sixteen (16) QAM data points lie on the minimum points. This
is the reason why a finite excess MSE is still expected even when the CM equalizer
has converged to its optimal settings [42,65]. This is because of the finite error term
that constantly updates the equalizer parameters. On the contrary, the tracking
algorithms such as the DD and the DAMA algorithms yield zero solutions when the
equalizer has converged to its optimal settings since all 16 data points correspond
to the minimum points of the plots in Fig. 4.1-C,D. It is clear from the figures that
the error functions of the acquisition and the tracking algorithms are very different
indeed, thereby resulting in a disruption in the convergence of the switch-mode

equalizer when the switching occurs.

4.2.2 Constant Modulus Constellation

We consider now the constant modulus constellation of 8-PSK. From Fig. 4.2-

A B, it is clear that upon convergence, the eight (8) PSK data points would all
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Figure 4.3: The new switch-mode algorithm featuring adaptation with the acquisi-
tion algorithm when z(k) is outside the individual square regions surrounding each
data point, and with the tracking algorithm otherwise.

lie on the surface that correspond to local minima. This is also the same for the
acquisition algorithms, CMA-1 and CMA-2 (which have the same shapes as 4.2-
A B). The only difference between the acquisition and tracking algorithms is that
upon convergence, the phase of the acquisition algorithm may differ (deviate) from
the original phase. This result therefore implies that switching is easier if the data

constellation is constant modulus than if it were non-constant modulus.

4.3 A Novel Probabilistic-Based Switching Tech-

nique

Using a concept that parallels the reliability measure derived from Bayes theorem in
Chapter 3 and [82,83], we propose a new switching technique that is also dependent
on both the equalizer output and its statistical distribution. This is because we have
shown that according to Bayes theorem, the reliability of the equalizer output is a
function of both the equalizer output and its distribution [82,83]. Consequently,
the new switch-mode algorithm may achieve more rapid convergence and lower
steady state errors. On the other hand, the new technique in this chapter, unlike
the reliability-based technique in Chapter 3 that is computationally intensive, 1s
very simple but yet accurately reflects an open-eye condition. This switch-mode

algorithm combines the acquisition and tracking algorithms in a convex manner
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using a binary combination parameter?.
We originally developed this smooth switching switch-mode technique for QAM

systems. Its error function can be expressed as
e(k) = a(k)vyepp(k) + (1 — a(k))ecma (k) (4.4)

or perhaps more conveniently as

(k) = { yeon(k)  2(k) € D(k) (45)

ecma (k) z(k) & D(k)

where ~ is appropriately chosen to compensate for the differences in the variance
of the respective error functions as in (3.21) and details found in Appendix A, and

the binary combination parameter is defined as

g~ [ 1 2 €D
0 z(k) ¢ D(k).

D(k) is our reliable regions which are designed to correspond to regions of relatively
low bit-error-rates so that the DD algorithm can be employed more reliably [92,99].
One relatively more reliable region in the QAM constellation space can be identified
as regions enclosing each of the constellation point. Therefore, if we denote the
individual region that encloses the p** data point, a,, as D,(k), then D(k) is given
by

D(k) = UDy(k), p=1,2,-- M (4.6)

where we have heuristically chosen D,(k) to be the square region, each of equal
size for all p, in a similar fashion as [145]. The diagram illustrating this switch-
mode algorithm is shown in Fig. 4.3. During the transient stages, the distortion
introduced by the channel will cause the equalizer output to be scattered in a very
large area around the transmitted data point. Thus, if D(k) is sufficiently small
during the initial acquisition mode, then the error function will be dominated by the
acquisition algorithm. On the other hand, in the steady state, since the equalizer
output will be close to the transmitted data point, then the error function will be
dominated by the tracking algorithm. The more important contribution which we
will now show is to vary the size of the region, D(k), according the new probabilistic

measure that is closely related to the distribution of the equalizer output. The

Tt can sometimes be thought of as a binary approximation of the reliability measure.
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increase of the size of D(k) in steady state makes sense because in steady state,
we want D(k) to be a large area so that most equalizer output will be found in it
and they can drive the equalizer with the DD algorithm instead of the acquisition
algorithm. On the other hand, during the initial acquisition, we want D(k) to be

small so that most output will drive the equalizer with the acquisition algorithm.

Let the width of the each individual region, D,(k), be 26(k) as in Fig. 4.3. Then
we propose to update the width, which ultimately governs the size D(k), according
to the probability of the equalizer output being found in the reliable region, D(k),

§(k+1)="Pr{z(k) € D(k)} (4.7a)
= Pr{Re[z(k) — Q(z(k))] < 6(k)}
+ Pr{Iml(k) — Q(=(k))] < (k)] (4.7b)

Implementation-wise, the width of these individual regions, §(k), can be updated

according to the recursion

(k+1) = A5(K) + (1 — B)I(K) (48)
where
I(k) = 1 RG(EDDUf)) < (k) and Im(eDD(k)) < §(k)
0(0)  otherwise

and [ is a forgetting factor, say 0.99. Its initial value, 6(k), should be sufficiently
small but non-zero. Consider first an initial closed-eye condition and §(0) is small.
Say under successful adaptation, the channel eye opens. Then Pr{z(k) € D(k)} is
increased regardless of the size of D(k), as long as it is non-zero. This is because the
highest concentration of equalizer output is found in the regions surrounding the
data points. Consequently, the width of the individual region increases according
to (4.8). The increase of §(k) subsequently induces an increase in the size of the
reliable region, D(k). This will in turn increase Pr{z(k) € D(k)} even more. This
cycle repeats itself until an equilibrium is reached. For an open eye condition,
0(k) — 1 as k — oo. Conversely, for a closed eye condition, §(k) — §(0) as k — oo

In a similar manner.

Since the width 0(k) increases and decreases progressively, it provides a soft
transition between the acquisition and the tracking algorithms. In addition, the

simple technique incurs very little implementation cost but is very effective even
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for large constellation sizes. Unlike higher-order criteria such as the DD MSE
hard-switching technique, as well as the reliability-based technique [82,83], this
technique involves only first order estimation which are computationally simple

and accurate with a small sample size.

4.4 Algorithm For Joint Blind Equalization And

Phase Recovery

Extending the probabilistic switching technique developed in Section 4.3, we pro-
pose an algorithm that can perform joint blind equalization and phase recovery
by exploiting reliability in the constellation space. We first describe the QAM

equalizer model before delving into the development of the new algorithm.

4.4.1 System Model

Non-stationary Combined Channel Combined Equalizer Phase—Estimator
e T 534 o v s
Stationary Phase :
Channel . l . Equalizer Estimator Quantizer

(k) a(k)

Figure 4.4: Baseband QAM system model for joint blind equalization and phase
recovery.

The objective of the QAM digital baud-rate receiver that we will consider in
this paper is to recover the data symbol up to a fixed time delay A\, and a possible
phase shift § modulo 90°. The phase ambiguity of modulo 90° is allowed as it may
be easily detected and corrected using differential encoding techniques. Thus the

desired output of the combined equalizer-phase estimator should be in the form of
a(k — Ak)ejé, where 6 € [0°,90°,---]. (4.9)

where a(k) is the transmitted symbol drawn from the M-QAM alphabet set A =
{ai,a9,-+ ,ap} . The baseband channel output is corrupted by a linear distortive
channel and additive white Gaussian noise (AWGN). In addition, we assume that

demodulation phase errors may be present which may cause time-varying phase
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rotations or simply an arbitrary phase offset in the output signal constellation.
Therefore in a typical baseband receiver [49,63,139], its output prior to quantization

can be expressed as (see Fig. 4.4)
2(k) = a(k)e??0®) 1y (k) (4.10)
where
AO(k) = [0(k) — (k)] (4.11)

is the instantaneous residual phase error term, 6(k) and ®(k) are as depicted in
Fig. 4.4, and

0(k) = 27k fa + 0o (4.12)

is the demodulation phase error that consists of a normalized frequency offset,
fa, and an arbitrary phase offset, 0y; and v(k) is the residual-ISI-plus-channel-
noise term. We will also make the simplifying assumption that v(k) is Gaussian
and circularly distributed with independent real and imaginary components each
of variance o2 due to central limit theorem [57, Ch.2]. A typical receiver sepa-
rately removes the ISI, v(k), and compensates for the phase errors, Af(k), with an
equalizer and a phase estimator, respectively. In our approach, we propose a new
algorithm that accomplishes the joint tasks of ISI removal and phase estimation in
a single filter. Our philosophy is as follows. Rather than treating the phase errors

separately from v(k) as in (4.10), we choose to express the equalizer output as
z(k) = a(k) +v'(k) (4.13)

and then minimize E|v'(k)[?, where the v'(k) is the ISI-plus-noise term of the non-

stationary channel e??(%®) . h, where h is the channel coefficient vector, [hy, A, - - ].

4.4.2 Development of Novel Tri-Mode Algorithm

Having established the system model, we now propose an algorithm that performs
joint blind equalization and phase recovery without having to rely on a separate
phase estimator using the novel switching technique developed earlier in Section
4.3. In our approach, we have designed an algorithm that employs one of three blind
algorithms depending on the location of the equalizer output in the constellation

space. They are the DD algorithm, the MMA and the CMA, whose error functions
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Table 4.1: Characteristics of blind algorithms

CMA | MMA | DD algorithm
Robust Acquisition b Y N*
Low Excess Noise N N Y
Phase-Awareness N Y Y
(Y)es, (N)o.

* Requires the condition of an initial open eye.

are given below:

epp(k) = z(k) — Q(z(k)) (4.142)
voia (k) = Re(y(k) [Re(y(k)” =44

+ V=T Im(y(k)) [ (y(k)* = 73] o LEb)

eoma (k) = y(k) (ly(k)* — 1¢) (4.14c)

where 73y = E{Re(a(k))*}/E{Re(a(k))?} [152], v& = E{la(k)*}/E{|a(k)]*} [49],
and the names of the respective algorithms are subscripted on €(k). These three
algorithms display distinct characteristics which we will use, after identifying them,
as the underlying reasons for the design of our algorithm. In particular, we are
looking for robust acquisition abilities, low excess noise under convergence, and
phase correcting capabilities. A summary of their properties is tabulated in Table
4.1.

Our proposed tri-mode algorithm, in terms of its error function, can be com-

pactly expressed as

vépp (k) z(k) € D(k)
(k) =4 enmvalk) 2(k) € Doyt (4.15)
ecmal(k)  z(k) ¢ U(D(k), Dous)

where v is to compensate for the difference in the average values of epp(k) and
enva (k) as well as ecya(k); D(k) and Dyy, are suitably defined regions of higher
reliability in the constellation space, where the size of the former is time varying
and the size of the latter is fixed. D(k) should represent a region where epp(k)
may be employed in a reliable manner where ill-convergence may be avoided with
high probability. Reliability can be measured as a function of the variance of the
residual ISI plus noise term [82] and the phase error. We choose to adopt D(k) as

proposed in Section 4.3 as described by equation 4.6. D, is a fixed size region
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MMA

Boundary of D(k)

BoundaryofDout

Figure 4.5: The new tri-mode blind equalization algorithm. The reliable regions
D(k) = UDy(k),p = 1,2,--- ,32 and Dy (k) where the DD algorithm and the
MMA are respectively employed for the 32-QAM constellation are illustrated. The
CMA is employed outside these regions.

outside a boundary set near the edge or corner symbols and it is exclusive of D(k).
Its main function is to separate the inner constellation from the outer constellation
points so that the CMA is employed when smaller values of z(k) are detected,
otherwise the MMA is employed for larger values of z(k). This design enables
robust and rapid acquisition in the presence of phase errors which we now explain.
According to (4.11-4.12), the phase error Af(k) consists of a constant phase offset
fp and a frequency component 27kfr. We make the following claim regarding

phase recovery in the absence of frequency offsets, i.e., fa = 0.

In the absence of a frequency offset. phase recovery is guaranteed as long as
Pr(z(k) € Doyt) > 0. i.e.. the MMA is employed with a finite probability.

This is true because the MMA must yield complete phase recovery when equal-
ization is accomplished [81,152]. Its phase recovery properties are covered in Chap-
ter 6. Therefore, the exact size of D, is irrelevant as long as Pr(z(k) € Dyyt) > 0.

Naturally the larger the size of D, the faster is the process of phase recovery.
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Figure 4.6: Figures illustrating the technique for joint equalization and phase re-
covery for 16-QAM signals in the presence of phase errors. The emphasis is on the
variable-size reliable region, D(k).

We propose that D, be either

{Dout : lZ(]{J)\ > 5out} (416>

which is a circle, or
{Dous : Re(2(k)) > Sous  and  Im(z(k)) > Sous | (4.17)

which is a square. We have adopted the latter in our tri-mode algorithm as shown
in Fig. 4.5. For fast phase recovery, d,,: should be as small as possible so that D¢
becomes a large region that employs the MMA.

Consider now a (sizeable) frequency offset that corresponds to fast phase ro-
tations where the MMA cannot recover. In such situations, the MMA will be
combating fast phase rotations in addition to its usual task of ISI removal. This
will result in large fluctuations in the equalizer parameters and hence increased

MSE which we want to avoid. Thus, we design D, to be the outer region where
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the amplitude of z(k) is large so that Pr(z(k) € Doy) is finite but small, so that the
adaptation with the MMA is less frequent than with the CMA. Here we choose D
to be the outer region because the equalizer output signals in this outer region are
more reliable? [63, Sect. III]. Our design that performs phase discrimination only
when z(k) is large emulates several blind DD phase estimation techniques such as
the “four-corner” technique [139] and the reduced-constellation phase-locked-loop
(PLL) [63], with the exception that phase recovery is performed using a phase-

aware algorithm instead of a separate phase estimation filter.

Discussion on characteristics of individual algorithms

Although employing the tracking algorithm is desirable in steady state because
it yields less noisy solutions and possesses good tracking abilities, its convergence
to undesirable local minima is highly likely if the initial parameter values cause
significant number of incorrect decisions [92,99]. The CMA and the MMA on
the other hand, can perform reliable channel acquisition that results in significant
ISI removal in a zero-forcing fashion [49, 65, 152]. However, their steady state
solutions are significantly noisier than the DD solution, especially for large non-
constant modulus modulation formats [65]. This is why the CMA or the MMA is
usually employed during acquisition and later switched to the tracking algorithm
when decision errors are less likely to occur. As for the task of simultaneous
phase recovery, the MMA is chosen as the candidate algorithm that facilitates
phase recovery in the acquisition mode, while the tracking algorithm caters for the
tracking mode. The MMA is phase-aware because its cost function minimizes the
dispersion of the output samples around straight moduli which fits into a reduced
version of the original constellation in the statistical sense. The tracking algorithm
is phase-aware as it minimizes E[v'(k)|?, where v/(k) is the effective error term as a
function of both residual IST and phase error as expressed in (4.10). Table 4.1 shows

a summary of the important characteristics of the above mentioned algorithms.

4.4.3 Performance Improvements via Pre-Whitening

Considerable performance improvements may be achieved if the channel output is
first whitened prior to the equalizer. A whitening filter, or otherwise known as
the minimum output energy (MOE) filter, can be implemented. Let {rc,} be the

channel output sequence and {r} be the equalizer input sequence. The MOE filter

>This is because they suffer less noise contributions from their adjacent data points.
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minimizes the cost
Juoe = E{|[r(k)[*} (4.18)

which is its output energy. There are three areas where we may benefit from

implementing the MOE filter prior to the equalizer.

1. Rapid acquisition: An MOE filter is able to compensate for the amplitude
distortions of the channel. Thus, via pre-whitening, the proceeding equalizer
will be left with the simpler task of compensation of residual phase distortions
by the ‘slower’ CMA that computes higher moments of the received data. As
demonstrated in [75], pre-whitening significantly increases convergence time

compared to equalization without pre-whitening.

2. Low steady state MSE: Perhaps one of the nicest properties of the equaliza-
tion scheme in [75] is that the equalizer acquires the channel efficiently as a
linear equalizer, then switches to a decision feedback equalizer (DFE) to sup-
press steady state MSE when its output is sufficiently reliable. A predictive
DFE scheme that is proposed in [5] can also be used in conjunction with the
implementation of the MOE filter.

3. Larger step size for the DD algorithm for enhanced tracking: The step size of
the DD algorithm is governed by the eigenvalue spread of the autocorrelation

matrix of the received signals r(k) [58]. It is bounded as follows:

2
0 < pp £ ——
Amax
where A\n.x is the largest eigenvalue of the autocorrelation matrix. Usually
when the channel is unknown, a conservatively small value of y that slows
convergence is assigned in case of highly correlated channel output. Through
whitening, Amax may be minimized, hence allowing a larger step size to be

employed for faster tracking purposes.

By incorporating the MOE filter, we summarize the algorithm and its associated

step size assignments in Table 4.2.

4.5 Simulation Results

The objective of this section is to provide a performance comparison of our new tri-

mode algorithm with probabilistic switching-technique and other conventional al-
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Table 4.2: Progressive stages in new algorithm and associated step sizes employed
in our simulations in the presence of phase errors

Step Sizes of
Stage MOE* CMA MMA | DD algorithm Description
1 none initialization
2 I1x103 [ 2x10°|2x107° 2 x 107° acquisition mode !
3 5x 107 | 5x107° | 5 x 1073 5x107° usual acquisition mode 1
4 25x107° | 5x 107" | 5x 107" | 1.5x107° DD mode

* MOE stands for the Minimum Output Energy algorithm

" MOE algorithm dominates in this mode.

T Joint blind equalization and phase recovery is performed in this mode.
T Tt can be switched to a DFE as in [5,75] if required.

gorithms that have been proposed in the literature. The performance improvement
of the tri-mode algorithm, as we will show later, varies according to the severity
of the channel. Basically, the more severe the channel, the more distinctive is the
tri-mode algorithm’s performance over its competitors. The improvement is due
to the way the tri-mode algorithm is designed and the smooth switching technique

employed.

We separate the simulations into two major sections, where the first deals with
a variety of channels assuming zero phase errors. The later section then deals with
channels with phase errors. As the performance of the equalizer is usually charac-
terized by the mean-squared error (MSE), we will estimate the decision directed

MSE according to the following recursion:
MSEpp (k + 1) = pMSEpp (k) + (1 — p)|2(k) = Q(z(k)|*  (4.19)

where p = 0.99 is our assigned forgetting factor. Throughout this section, we will
use only three channels for all simulations. They consist of a lightly colored channel,

h’ [118], a medium colored channel, h” [118], and a heavily colored channel, h" [75].

Their impulse responses are respectively given by

h' = [0.04, —0.05,0.07, —0.21, —0.5, 0.72, 0.36, 0, 0.21, 0.03, 0.07] (4.20a)
h" =[2 - 045,15+ 1.87,1,1.2 — 1.35,0.8 + 1.67] (4.20D)
h” = [0.8264, —0.1653, 0.8512, 0.1636, 0.81]. (4.20¢)

We will compare out tri-mode algorithm several other switch-mode algorithms,



4.5 Simulation Results 83

where some employ the “hard-switching” criterion and others smooth switching
techniques. The switch-mode algorithms that employ the “hard-switching” tech-

nique can be expressed as

() = { €acq(k)  MSEpp(k) > Cuse 21)

vepp(k)  MSEpp(k) < Cusk.

where Cysk is a suitably chosen threshold value that would correspond to low error
rates under the condition MSEpp(k) < Cysg. Two “hard-switching” algorithms

under comparison are

1. The constant modulus algorithm (CMA) [49] and DD algorithm, where €,.q(k) =

ECMA<k>-

2. The multi-modulus algorithm (MMA) [152] and DD algorithm, where €,.4(k) =
EMMA(k>-

The switch-mode algorithms that employ smooth switching techniques are

3. Dual-mode Godard Algorithm (DMGA) [145] type where

e(k) = { emma(k)  Re[z(k) — Q(2(k))] > dpmaa or Im[z(k) — Q(2(k))] > dpmaa

vepp (k) otherwise.
(4.22)

and dpyvaga 1S a suitably defined width between 0 and 1, normally small at
around 0.2 [145].

4. Benveniste-Goursat [15] type where

6(/6) = kl’YEDDUf) -+~ kQ}EDD(k)‘GCMAU@ (423)
where k; and k; are a suitably chosen constants [15].

5. Tri-Mode Algorithm (4.15) where

”YEDD<k> Z(k) c D(k?)
e(k) =< emma(k)  z(k) € Dou (4.24)
ECMAUf) Z(k}) % U(D(k?), Dout)-

For our simulations, the parameters of the equalizer are as follows:

- Adaptation step size: ;=5 x 107°, unless otherwise stated.
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« ny= 1.

. For CMA-DD and MMA-DD, the MSE threshold value is assigned to be Cysg =
V2 x 0.282 = 0.396.

. For DMGA type algorithm, dpmga = 0.25, unless otherwise stated.
- For BG type algorithm, £, = 5 and kg = 1, unless otherwise stated.

- For the tri-mode algorithm, the initial width value is assigned as §(0) = 0.25 and

the forget factor is [/ = 0.95, unless otherwise stated.

- The length of the equalizer for various channels are varied according to the length
of the inverse response of the channel. For h', the equalizer has 31 taps. For h”,

the equalizer has 36 taps. For h”’, the equalizer has 41 taps.

4.5.1 Results for Stationary Channel Without Phase Er-

rors

We want to compare the performance of our tri-mode algorithm against several
competitors as listed above under various conditions. We found a simple channel,
h', and two difficult channels with deep spectral nulls, h” and h”’. We also test the
tri-mode algorithm against different modulation formats. For all simulations, we
performed 50 independent Monte Carlo runs for each algorithm and plotted their
average MSEpp(k) in Fig. 4.7 to Fig. 4.10.

16-QAM, b’

(A) h', 16—QAM, SNR = 15dB (B) h’, 16—QAM, SNR = 25dB

0 0
-2i' CMA-DD (solid)
% -3t ) ’, %/ -10+¢ )
= 2 5}
_51- '
g MMA-DD (dot) _ —20 o e
‘ Tri-mode alg (thick solid) Tri-mode alg (thick ébilo)
7 : - : : -25 , ' '
0 2000 4000 6000 8000 0 2000 4000 6000 8000
Number of data points Number of data points

Figure 4.7: Comparing various algorithms using the channel h’ under SNR levels
of 15dB and 25dB only. The modulation format is 16-QAM. Equalizer has 31 taps.
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For the first easy channel, h’, we performed our simulations on the channel with
an SNR levels of 15 dB and 25 dB for 16-QAM data using a total of 10,000 symbols
for each of our runs. At lower SNR levels, e.g., 15 dB, smooth-switching algorithms
outperform the hard switching algorithms in terms of steady state errors, whereby a
gain of close to 1 dB is achieved over the MMA-DD algorithm at steady state. The
speed of convergence for all the algorithms are almost the same, where the tri-mode
algorithm has a marginal improvement over other competitors. The CMA-DD
exhibit high steady state MSE because under adaptation, its output constellation
has been regularly rotated because it is a phase-invariant algorithm, unlike the

other algorithms.

Under higher SNR level, i.e., 25 dB, the tri-mode algorithm outperforms all
other competitors in terms of convergence rate. In terms of steady state errors,
it outperforms the BG type algorithm and marginally outperforms the DMGA-
type algorithm. It achieves the same steady state performance as the MMA-DD
algorithm. The CMA-DD algorithm exhibits higher steady state MSE and slower

convergence due to the same reason as given above.

16-QAM, h”

For the difficult channel, h”, we performed our simulations on the channel with
an SNR level of 15 dB for 16-QAM data using a total of 100,000 symbols for each
of our runs. The step sizes for all algorithms are reduced by a factor of 50, i.e.,
p = 107° except for the BG type algorithm where its step size is further reduced
to u = 2 x 1077 to ensure high rate of successful convergence. Here for the BG
type algorithm, k1 = ko = 1. The CMA-DD algorithm is omitted because it cannot

converge at all unless the phase recovery is performed.

From Fig. 4.8, it is shown that our tri-mode algorithm converges the fastest
on average among all four switch-mode algorithms, followed closely by the hard-
switching method. The smooth switching algorithms converge much slower. The
tri-mode algorithm, MMA-DD, and the DMGA-type algorithms achieve similar
steady state errors in this special case. The BG-type algorithm is very slow in its
convergence mainly due to a smaller step size that we assigned (5 times smaller).
This is essential to ensure the convergence of the BG-algorithm with high prob-
ability of success. In other words, the BG-algorithm cannot be used reliably to
open the channel-eye unless the step size is significantly reduced, thereby slows the

convergence as shown in the figure.
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Figure 4.8: Comparing various algorithms using the channel h” under SNR level
of 15dB. The modulation format is 16-QAM. Equalizer has 41 taps.

16-QAM, h”

For the difficult channel, h”’, we performed our simulations on the channel with
an SNR level of 17 dB for 16-QAM data using a total of 100,000 symbols for each
of our runs. The step sizes for all algorithms are reduced by a factor of 5, i.e.,
it = 107°, except for the BG type algorithm where its step size is further reduced
to i = 2 x 107° to ensure high rate of successful convergence. Here for the BG

type algorithm, k; = ks = 1.

From Fig. 4.9, it is observed that our tri-mode algorithm once again achieves
the fastest convergence. The more subtle advantage lies in its lower steady state
MSE over all other algorithms. This is due to the new probabilistic technique that
recognizes an open-eye condition under very noisy environments much earlier than

did the hard-switching algorithm and the DMGA-type algorithm.
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Figure 4.9: Comparing various algorithms using the channel h” under SNR level
of 17dB. The modulation format is 16-QAM. Equalizer has 41 taps.

32-QAM, h’

For the easy channel, h’, we performed our simulations on the channel with an
SNR levels of 25 dB and 30 dB for 32-QAM data using a total of 50,000 symbols
for each of our runs. The step sizes for all algorithms are reduced by a factor of
20, i.e., p = 2.5 x 107%. As for ~, it is set to be at v = 50 to compensate for the

difference in the magnitudes of the error functions.

From Fig. 4.10, we draw several interesting conclusions. For (A) where SNR
level is lower, it is observed that once again our tri-mode algorithm achieves the
fastest convergence (only marginally slower than the BG-type algorithm) and the
lowest steady state errors. The MMA-DD algorithm yields relatively higher MSE
because it has failed to switch-over to the tracking algorithm because the DD MSE
estimate never drops below the pre-defined MSE threshold. The BG-type and
the DMGA-type switch-mode algorithms also display slightly marginally higher

MSE because of they allow a significant percentage of the equalizer output to
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Figure 4.10: Comparing various algorithms using the channel h’ under SNR levels
of 25dB and 30dB. The modulation format is 32-QAM.

drive the equalizer parameters with the acquisition algorithm. For (B), i.e., the
simulations performed at a higher SNR level, the tri-mode algorithm significantly
outperforms all other algorithms. Only the MMA-DD algorithm achieves simi-
lar steady state MSE while the smooth-switching algorithms suffer slichtly higher
steady state MSE.

Only the tri-mode algorithm maintains its superiority in terms of convergence

speed and low steady state errors for both relatively high and low SNR levels.

32-QAM, h”

For the difficult channel, h"”, we performed our simulations on the channel with
an SNR level of 30 dB for 32-QAM data using a total of 150,000 symbols for each
of our runs. The step sizes for all algorithms are reduced by a factor of 20, i.e.,
1 =2x107°, except for the BG-algorithm which has a step size of u = 1.25 x 107°.
As for 7, it is set to be at v = 50 to compensate for the difference in the magnitudes

of the error functions.

From Fig. 4.11. we notice that for this difficult channel, the convergence is
still very rapid compared to the other algorithms. The DMGA-type algorithm,
even though smooth, is slow and yields high steady state MSE as expected. The
MAMA-DD converges slower because of the DD MSE, which is difficult to accurately
estimate, is used to govern the switching. Moreover, for larger constellation sizes,
the excess MSE due to non-constant modulus input constellation may increase
the DD MSE even though the channel eye is already open. As for the BG-type
algorithm, it cannot employ a similar step size as the other algorithms otherwise

it will not converge most of the time. That explains the slow rate of convergence



4.5 Simulation Results 89

h™, 32-QAM, SNR = 35dB

4

R A DMGA-type alg

w
\

P | "';.‘\ \ _
% \/\/v BG-type alg
w67 N _
£ a0
-8 \\T\‘T‘ MMA—-DD
- O i ’\v‘tx"\""‘."'l\"”'\'“'\"‘4'/’.

tri-mode alg

192 . .
0 5 10

Number of data points 1

Figure 4.11: Comparing various algorithms using the channels h”" under SNR level
of 30dB. The modulation format is 32-QAM.

which is due to a smaller step size assignment. Due to the smaller step size, it also

achieves similar steady state errors as the tri-mode and MMA-DD algorithms.

4.5.2 Results for Joint Equalization and Phase Recovery

We compare the tri-mode algorithm with two phase-aware algorithms, namely the
reduced constellation algorithm (RCA) and the multimodulus algorithm (MMA)
[105,152] in the presence of phase errors for the difficult channel, h", only. Simu-
lations were carried out for the noiseless channel and one with considerable noise
using 16-QAM data. In addition, the channel is subjected to phase and frequency
offsets in three different scenarios. In the first scenario there is no phase or fre-
quency offsets. The second scenario has a 45° phase offset but no frequency offset.
The third scenario has both 45° phase offset and fa = 2 x 10™* of normalized
frequency offset (4.10), i.e., a complete rotation of 27 in 5000 symbols. The MMA
and the RCA are designed to switch to the DD algorithm once the DD MSE,
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MSEpp(k), drops below 0.3960, as before in Section 4.5. Note that wehave not
used an additional phase estimator for all the algorithms in order to assess their
performances in the presence of phase and frequency offsets. In addition we also

compared our algorithm with a trained linear equalizer.

The channel output sequence will be whitened by the MOE filter, b(k), prior to
equalization as mentioned in Section 4.4.3, except for the case of the trained linear
equalizer. We implemented an infinite impulse response (IIR) MOE filter which
has four taps in the same manner as [75]. The taps of the MOE filter, b(k), are

adapted as follows:
b(k+1)=b(k) — upr(k)r*(k — 1)

where r(k) = [r(k),r(k — 1),7(k — 2),7(k — 3)]7 and up is the adaptation step
size. The proceeding baud-rate equalizer, with the exception of the trained linear
equalizer, has 24 taps and is initialized with a non-zero tap set at the 18" position,

le.,

1=17 18 19—-24

More anti-causal taps than causal ones were assigned because the causal impulse
response would be close to zero once the MOE filter has equalized the amplitude
distortions. For the trained equalizer however, it has 40 taps and will be initialized
with a center tap strategy. For our new algorithm, the parameters that control the
sizes of D(k) and Doy (k) are D(0) = 0.15 and # = 0.95 according to (4.7), and
Doyt (k) = 2.5, Vk. Its adaptation step sizes for different stages are shown in Table
4.2. As for the trained equalizer, we assigned a larger step size initially for fast

convergence and then a smaller one to achieve a lower steady state MSE.

The results show fast convergence rate of the new algorithm in comparison to
the CMA, MMA, and RCA schemes, in addition to automatic phase recovery and
smooth transition between modes. In both noiseless and noisy cases without phase

errors in Fig. 4.12-(A),(B), the tri-mode algorithm converges the fastest.

In Fig. 4.12 (C) and (D) the tri-mode algorithm corrects a 45° phase offset and
converges faster than the RCA but slower than the MMA. This is due to the lack
of phase recovery in our algorithm as we only employ the MMA in a restricted
region in Dy (k).

In Fig. 4.12 (E) and (F), the RCA completely failed to acquire the frequency

offset as depicted by the ripple-like MSE, where each notch corresponds to a mod-
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ulo 90° phase offset, once in 1250 symbols. The tri-mode algorithm and the MMA
perform better in the sense their MSE have descending staircase-like behaviors.
This means at every modulo 90° phase offset, more simulation runs have success-
fully converged to the DD mode. The tri-mode algorithm reports more successful
convergence compared to the hard-switching technique employed by the MMA-DD
algorithm as depicted by the lower steady state MSE of the tri-mode algorithm.

4.6 Conclusions

The new tri-mode algorithm is the fastest converging algorithm among the hard-
switching and smooth-switching algorithms according to our simulations. It is
attributed to both the novel smooth-switching technique as well as the novel de-
sign of the tri-mode algorithm that assigns algorithms with different capabilities
to different reliable regions in the constellation space. Apart from that, it also
achieves the lowest steady state errors for a wide range of easy to difficult chan-
nels, different SNR levels, as well as constellation sizes. From the results obtained
via simulations, we conclude that in general, smooth-switching algorithms outper-
form hard-switching algorithms under high noise conditions, but the opposite is
true when the noise level is relatively low. The tri-mode algorithm however per-
forms just as good under low and high noise conditions. The complexity of the
algorithm is extremely low as the smooth-switching technique exploits first order
estimates which are accurate and simple. In addition, it can also perform joint
blind equalization and phase recovery in the presence of realistic demodulation

phase errors without having to rely on a separate phase compensator.
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Figure 4.12: Comparing various algorithms in different equalizer setups.



Chapter 5

Fast Convergence Switch-Mode
DFE Schemes

5.1 Introduction

Blind equalization compensates for channels distortions without relying on a train-
ing sequence. Relative to adaptation using training sequences, blind equalizers
tend to exhibit slower convergence, higher steady state errors and possibly ill-
convergence. In the domain of linear equalization the blind algorithm design and
analysis problem has been exhaustively studied for several decades. In the do-
main of decision feedback equalization, it was only in 1998 that Labat, Macchi and
Laot found a compelling realization of an effective blind decision feedback equal-
izer (DFE) [75]. In Sections 5.2 and 5.3 of this chapter, we build on their work to

develop alternative designs which exhibit significant performance advantages.

In the innovative blind scheme presented in [75], the adaptation is broken up
into two modes, an acquisition mode and a tracking mode. Not only is the adap-
tation algorithm switched between modes but also the actual equalization filtering
structure is switched. In the acquisition mode a recursive linear structure is em-
ployed and later, once the eye diagram has opened sufficiently, the DFE is employed
in the tracking mode. The algorithm in the acquisition mode uses a combination
of a constrained convex minimum energy cost and the constant modulus algorithm
(CMA), whilst in the tracking mode a decision directed (DD) algorithm is used.
These choices are not arbitrary but are guided by the design objective to have the

blind DFE converge as close as possible to the optimum MMSE solution.

93
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-0.5 Reo(z) 0.6

-0.5 ReO(z) 0.5

Figure 5.1: Decomposition of a transversal non-minimum phase channel via the
channel decomposition property with H(2) = GHpin(2)Hap(2), assuming the com-
plex gain, G, is unity.

5.1.1 Channel Decomposition Property

The novel approach taken by Macchi, Labat and their colleagues in [22,75] is to
equalize a “decomposed” channel via the channel decomposition property to achieve
rapid and effective equalization. According to the channel decomposition property
[108], an arbitrary non-minimum phase channel H(z) can be represented by the
convolution of an equivalent minimum phase system, Huyin(2), and an equivalent

all-pass system, H,,(2), multiplied by a complex gain G in the following manner:
H(z) = GHpin(2)Hap(2). (5.1)

Consider the decomposition of a transversal non-minimum phase channel of the

form
N, No
Hz)=§[] 1 —re "] ][] [ro} — 2] (5.2)
i=1 j=1

where r1 and rg are zeros of the system that are inside and outside the z-unit circle,
(U), respectively. Hp,(2) is the equivalent minimum phase system that contains
r1 and rg”, 1.e., the zeros that are the conjugate reciprocals of ro. H,p(2) is an all-
pass system which comprises of zeros ro, and poles 75" to cancel the reflected zeros

in Hypin(2). Thus the decomposed channel consists of the following components

Ny N

Huin(2) = [[[1 =iz [ 1 = (5,2 7] (5.3a)

i=1 j=1
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1

(5.3b)

The decomposition process for an example with a pair of minimum phase zeros
and a pair of maximum phase zeros is shown in Fig. 5.1. Its zeros and poles are
respectively represented by circles, ‘0’, and crosses, ‘x’. H(z) is shown in Fig. 5.1-A,

while its decomposed components, Hyin(2) and H,,(2), are shown in Fig. 5.1-B,C,

respectively.
Channel Equalizer
Output Output
r(k) z(k)
— ¢ —= W —= T —>= PR [—*
Gain Amplitude Phase Phase
Control Equalizer Equalizer Rotator

Figure 5.2: Novel blind linear equalizer setup [75] as a cascade of four devices used
to acquire the “decomposed” channel.

The authors of [22, 73, 75] exploited this decomposition property to isolate
Hyin(2) from H,p(2), where the equivalent minimum phase can be quickly equal-
ized by a whitening filter that is based on second order statistics. It is also known
as the amplitude equalizer in [22]. The output of the whitening filter which is now
uncorrelated appears to have been produced by convolving the channel input with
a new channel §H,,(z) since the whitening filter has equalized Hpi,(2). A transver-
sal phase equalizer that employs the CMA will be used subsequently to equalize
the remaining phase distortions due to H,,(2). The CMA, which is usually slower
than the whitening algorithm, now has the simpler task of equalizing the all-pass
channel without amplitude distortions [14,22]. Compensation for the complex gain,
G, is carried output by splitting the task into compensation of real and complex
components, respectively, using a real gain control and complex phase rotator. It
is suggested in [75] that the real gain control be placed upstream of the equalizer
while the phase rotator downstream, as shown in Fig. 5.2 during the acquisition
of the channel. This equalizer setup has been shown to speed up the convergence
of the Godard equalizer significantly. In fact, at high signal-to-noise ratios (SNR),
this cascaded equalizer structure has been shown to emulate the optimal linear min-
imum MSE equalizer and efficiently equalize the decomposed channel [75], where
W will converge to H_! (z), T to H_'(z), and G€ and PR will jointly compensate
for the complex gain, §. Simulations in [75] show that its performance is equally

impressive at low SNR levels, outperforming even the trained DFE in some cases.
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Another attractive feature of the equalization scheme of [75] lies in the flexibility

of the linear equalizer to switch to a DFE when the bit-error-rate is sufficiently low.

This is accomplished by simply relocating W downstream, i.e., behind T and PR,

and incorporating a quantizer to facilitate decision feedback.

5.2 Design Objectives

For the equalizer scheme of sections 5.3 and 5.4

In our design we seek to improve on the design in [75], while retaining the

simplicity of the equalization scheme, with the following principle goals in mind:

A)

Non-Recursive Linear Acquisition Filter — In [75], the recursive form of
the linear filter in the acquisition structure is used to permit direct transfer of
the filter tap values to the DFE feedback filter in the tracking structure. Our
design goal is to retain the ability of direct transfer of filter taps value but
avoid some of the well-known problems with the adaptation of the recursive
form (where the gradient can only be approximated, the dynamic range at the
output may be large and the stability needs to be monitored). We show that
this is indeed possible using a non-recursive linear filter provided we modify
the DFE feedback filter appropriately.

Reduced Switching Transients — Switching structures and switching algo-
rithms lead to transients in signals which disrupts convergence. The design goal
here is to develop a strategy which provides for “smooth switching” and thereby
significantly improved convergence. We achieve this on the structural side by
employing a parallel adaptation strategy where the acquisition structure and
the tracking structure are jointly adapted. Further on the algorithm side, rather
than abruptly switch algorithms, we employ a technique to smoothly combine
the acquisition and tracking algorithms into a single algorithm. In this way
1t 1s not necessary to make a distinction between acquisition and tracking and
therefore the new scheme needs not be considered a dual-mode equalizer. This
eliminates the requirement for the user to pre-specify certain parameter values
that strictly depend on the channel to determine the exact and appropriate

sampling period to perform the switch-over.

To accomplish our first goal, we develop new equalizer structures in the acqui-

sition and tracking modes as described in Section 5.3. As the underlying concepts

of our alternative scheme are identical to that of [75], simulation results would
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subsequently show almost identical performance between both schemes. Our sec-
ond goal, which is more important, features a novel strategy that enhances these
fast-convergence DFE schemes (that include the scheme in [75] and our alternative
scheme in Section 5.3) where they must undergo a switch in both their adapta-
tion algorithms and filtering structures. This new switching strategy that results
in a single-mode DFE by combining the respective equalizers in both modes in a

parallel fashion is described in Section 5.4.

5.2.1 System Model

Consider a typical baseband symbol-rate blind equalizer whose main objective is
to recover a corrupted version of the transmitted signal, {a(k)}, based only on the
observable received signals, {r(k)}. Let the linear distortive channel and additive
white Gaussian noise be denoted as {h;} and n(k), respectively. Then the objective
of equalization is to yield an output, z(k), that well estimates the transmitted
signal such that z(k) ~ a(k — /), where A is some time delay. We will treat
the channel {h;}, via the channel decomposition property [108], as a cascade of
an equivalent minimum phase channel and an all-pass channel for the design of
our linear equalizer in the starting mode in an identical fashion to [22,75]. Thus,
we separate the principle tasks of our equalizer into compensation for amplitude
distortions only (due to the equivalent minimum phase channel), and compensation
for the remaining phase distortions [73,75].

The equalization scheme involves two distinct modes — the linear acquisition
mode and the tracking DFE mode. In order to distinguish the filter parameters
and signals of these two modes, we append the superscripts “(1)” and “(2)” to all
filter parameters and signals in the “first” acquisition mode and “second” tracking

mode, respectively.

5.3 Development of Alternative Fast-Convergence
DFE

Following [75], a possible equalizer setup in the acquisition mode is the cascade
of four filters, namely, a real gain control filter (§C), a whitening filter (W), a
phase equalizer (7), and a complex phase rotator (PR). Thus in acquisition mode
the equalizer is linear and decision feedback is not employed. This overall linear
equalizer consisting of filters §€, W, T, and PR, is shown in Fig. 5.3.

In contrast to [75] for the reasons listed in the introduction, we propose to use a
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Figure 5.3: Linear equalizer of acquisition mode of the alternative DFE scheme to
that of [75], featuring a non-recursive W.

non-recursive whitening filter in the place of the originally proposed recursive filter.
This requires a modification to the whitening algorithm. The whitening algorithm,
also known as the minimum output energy (MOE) algorithm, minimizes the cost
function E{[t™(k)|?}, where t()(k) is the output of W. In order to avoid the
convergence of the equalizer to the trivial solution, it is necessary to impose a
linear constraint upon the equalizer taps so that convexity of the cost function is
not lost. Following [142], the simplest and recommended linear constraint fixes the
leading tap, ag(k), to be unity for all k£ so that the transfer function of W becomes
1+ A(z) as shown in Fig. 5.3. Define a®V)(k) = [a,(k),as(k), -+ ,an(k)]T as the
weight vector of W of length N that ezcludes the leading tap, ag(k). Then under

the usual stochastic gradient adaptation, a®)(k) is updated according to
aVl(k+1) = aV(k) — p.wemorsV (k — 1) (5.4)
where the MOE error takes the form
EMOE = t<1)(k) (5.5)

and a®(0) = [0,---,0]7, ) is the adaptation step size, s(V)(k — 1) = [s(V(k —
1),sM(k —2),---,sM(k — N)]T and * is the complex conjugate operator. This
algorithm attempts to minimize the cost Jyor(a?) = E{[tM (k)[>} subject to the
first tap being fixed at unity, i.e., ag(k) = 1.

As for GC, T and PR, our adaptation algorithms are no different from that
of [75]. Briefly, GC is a real filter that fixes the average power level of the sam-
ples at t()(k) at a particular value, while PR is the complex phase rotator that
compensates for any demodulation phase errors. As for the phase equalizer, T, the

CMA is the preferred algorithm to achieve the desired removal of the residual ISI.
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The update equations of §C, T and PR are as follows:
e For GC :

G<1>(k +1) = GY(k) + pew (1 — [uP (&)%) (5.6a)

(k+1) = /IGO(k + 1) (5.6b)

where G (0) = 1, and pgw is the positive step size that governs the rate of
adaptation of GC. The output of G€ is sV (k) = g (k)rW (k).
e For T :

*

bD(k + 1) = bO (k) — ppeona (k)t0 (k) (5.7)

where the CMA error takes the form

cona(k) = u® (k) [u® () — 2, (5.8

and b¥(0) = [0,0,---,0,1,0,---,0]7 and puya) is a small positive step size,
tW (k) = [tW(E),tW(k—1),--- ,tM(k — M +1)]7, where M is the equalizer length
and 2 = E{|a(k)[*}/E{|a(k)|?} is the so-called dispersion constant of the CMA,
where a(k) is the transmitted data symbol [49].

e For PR :
OV (k+ 1) = 0(k) + ppo o (k) (5.9a
eo(k) = Im[Q(2V (k) 2" (k)] (5.9b)
or ep(k) = Im[Q(z'V(k))[Q(zV (k) — 2V (k)]]

+6 ) Im[QVENIQEW () — 2 ()] (5.9¢)

where 81(0) = 0 and py0) is a small positive step size, (5.9b) and (5.9¢) correspond
to the first [49] and second order [75] phase tracking loop, respectively, and /3 is an

appropriate positive parameter.

In the tracking mode, the position of the whitening filter, W, is interchanged
with the positions of T and PR, so that W is transformed to a non-linear filter
and placed downstream. Unfortunately, unlike the recursive structure in [75], our
non-recurswe W is not immediately ready to facilitate decision feedback. Our sub-
sequent objectives therefore are to firstly transform the non-recursive filter block,

W, into a new but equivalent filter block that is equipped with a feedback path;
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Figure 5.4: The non-linear equalizer (DFE) of the tracking mode.

and secondly, to retain the ability for the direct transfer of the parameters of W
between the acquisition and the tracking modes. The objectives can be jointly

achieved by performing the following block transformation:

B 1+ A(2) B 1
1+A<Z>—1+A(2)—A(z)_1_%' (5.10)

The term on the right hand side, which is equivalent to the non-recursive transfer
function of W of the acquisition mode, is now equipped with a feedback path whose
lfz)z). The transformed block W in terms of A(z) only of
the DFE is illustrated in Fig. 5.4.

transfer function is —

The adaptation of the real gain control §€ is no longer required in the tracking
mode. As for T, W, and PR, they are jointly adapted by minimizing the decision
directed MSE criterion

Jop(a®, b ) = E { 2@ (k) — Q2@ (k)) \2} (5.11)

where a? and b(? are the weight vectors of A(z) and B(z), respectively, as in Fig.

5.4. They are updated as follows:

a®(k +1) = a® (k) — pa@epn(k)x® (k- 1) (5.12)

b (k) — @ epp (k)t?7 (k) (5.13)

o
&

~—~
oy

_+_

—

~—
I

o [y<2)(k — 1)# 9(2)(k o 2): o vy(Q)(k T Nv)]T (514&)
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Figure 5.5: New DFE scheme under parallel adaptation. The taps are adapted and
shared among filters from “top” and “bottom” paths of the new DFE.

t& (k) = 2 k), t P& -1), -, t Pk - M+ 1)]7. (5.14b)

The phase rotator is adapted as it would in the acquisition mode according to

(5.9). Suppose switching occurred at k = kg, then their initial values are [75]:

a® (ko — 1) = a® (kg — 1) with x®@ (kg — 1) = 0, b@ (kg — 1) = b (kg — 1) and
2)(ky — 1) = 0, and lastly g(k) = g(ko — 1),Vk > ko — 1.

5.4 Parallel Adaptation Strategy for Dual Mode

Equalization Schemes

Switching between the starting mode and the tracking mode involves both a rear-
rangement of the equalizer structure as well as a change between the acquisition
and tracking algorithms. The switching often results in a slower rate of convergence
because of the disruptions in the filtering structure and the algorithms employed.
In addition, there is also a disruption in the states of the filters which adversely
affect the algorithms and the output signals over several sample periods until they
are flushed from the regressor vectors. Consequently, the output signals are more
error-prone and the DFE, which is sensitive to incorrect decisions, may therefore
exhibit pathological behavior [39,71].

In the light of these problems, we propose a novel parallel adaptation strategy to
ameliorate the transients by employing parallel adaptation of the linear equalizer
of the acquisition mode and the DFE of the tracking mode such that only one set
of filter parameters { A(z), B(z)} is adapted and shared by the linear and decision
feedback equalizers, as shown in Fig. 5.5. This means it is possible to always

obtain the equalizer output from the output of the DFE, 2 (k), as depicted in
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Fig. 5.5. Thus, this strategy will transform the original dual-mode equalization
scheme in [75] to a single-mode DFE scheme whose initial acquisition is assisted by
a linear acquisition equalizer. The new update equations of the DFE filter weights,

a(k) and b(k), under parallel adaptation are

a(k+1) = a(k)—pa{oa(k Yemors™” (k)

+ as(k)veepp (k)X 2)*(76)} (5.15)
b(k +1) = b(k)—pu{ 51 (k)ecma (k)tH “(k)

+ Ba(k)yoenn (k)67 (k) } (5.16)

where a(0) = [0,---,0]%, b(0) = [0,0,---,0,1,0,---,0]7, epp(k) = 2 (k) —
Q22 (k)), ar(k), az(k), Bi(k), Bo(k) are data dependent parameters in a manner
that is described below, 7, and 7, are parameters assigned to compensate for the
difference in the expected values of the respective error functions. s(k) and
t(1) (k) are regressor vectors of 1+ A(z) and B(z) of length N and M, respectively,
of the linear equalizer along the top path of the new DFE. A phase rotator in the
linear equalizer is not required for this setup. The signals from the top path are

obtained by employing the shared DFE taps such that

tW(k) = s(k) + Z a;(k)s(k — 7) (5.17a)
ul (k) => b (k)M (k — ). (5.17b)

where a;(k), b;(k) are the j* taps of A(z) and B(z) of the new DFE, respectively.
The gain control and the phase rotator are adapted as in (5.6) and (5.9). Therefore,
due to the parallel adaptation strategy, the outputs of the “top” linear equalizer

and the “bottom” DFE will be approximately equal, i.e.,
uM (k) exp(—jO(k)) ~ 2@ (k). (5.18)
See Appendix-B for detailed explanation.

The choice of a;(k), as(k), £1(k) and [2(k) is paramount to the success of our
parallel adaptation strategy in terms of convergence speed and steady state errors,
in addition to guaranteeing a smooth transition between “modes” which ultimately
affects the convergence speed. In fact, certain soft switching techniques that were

previously proposed for dual-mode algorithms are suitable for combining the ac-
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Figure 5.6: The new alternative fast-convergence predictive DFE.

quisition and tracking increment vectors® in (5.15) and (5.16) where intermediate
values between 0 and 1 can be assigned to a;(k), as(k), f1(k) and [(5(k) according
to a reliability measure of the equalizer output [82]. Alternative simpler techniques
(albeit with poorer performance) that include the ‘Stop-And-Go’ algorithm [116],
dual-mode type algorithm [145], as well as the simple Benveniste-Goursat algo-
rithm [15] can also be employed. As a simple illustration, we will describe the

Benveniste-Goursat soft-switching technique which assigns

O!l(/l’&> = 51(]{7> —= Cl‘EDDU‘g) (519&)
and as(k) = Ga(k) = ¢ (5.19b)

where ¢; and ¢y are user defined positive constants [15]. The new update equa-
tions of (5.15) and (5.16) under parallel adaptation strategy using the Benveniste-

Goursat type parameters become

a(k+1) = a(k) ua{cl\eDD(A) @™ (k)+
Yaenp (k)xP7 (k)} (5.20)
b(k+1) = b(k) ub{q»eDD(m A (B) 6 (k) +
62“/’b€DD(k)t(2)*(k)}- (5.21)

5.5 Alternative Fast-Convergence Predictive DFE

Scheme

The predictive DFE (P-DFE) [10] is an alternative DFE structure that is equivalent

to the conventional DFE under the condition that the forward filter has an infinite

1The increment vector of the stochastic gradient update equation is the regressor vector mul-
tiplied by the error function.
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number of taps. A blind P-DFE that extended the equalization scheme in [75] has
been proposed in [5]. The objectives of this P-DFE are to overcome the switching
difficulties encountered by the switch-mode equalizer in [75] and to interface with
trellis-based channel codings schemes [40,133,143]. They seek to overcome the same
switching problem that our novel parallel adaptation strategy proposed in Section
5.4 seeks to overcome. However, in their novel equalizer setup, switching of filtering
structures is not required at all because the taps of the whitening filter can be driven
by the P-DFE filter downstream, and conversely, the P-DFE taps can be driven
by the linear whitening filter upstream. The equivalence of the linear whitening
filter (which is a linear forward predictor [58]) and the non-linear predictive DFE
is shown in [5]. In the acquisition mode, the linear whitening filter will adapt its
filter taps and transfer them directly to the P-DFE situated downstream. After
convergence is achieved by this linear equalizer setup, the P-DFE will begin its
adaptation and map its taps to the linear whitening filter upstream. In this way, a
low MSE is achieved due to the P-DFE without the need to switch filter positions.
As for the interface with trellis-based coding schemes, a vector deinterleaver is
inserted in between the whitening filter and the transversal Godard equalizer to

take advantage of the noise whitening effect [5].

In our alternative DFE scheme, we will use a non-recursive whitening filter in
the place of the originally proposed recursive whitening filter. Then we design

the feedback filter of the P-DFE as P(z) = 1;&2) as shown in Fig. 5.6 where it

has been derived earlier in the same manner as our alternative conventional DFE

scheme in Section 5.3 which is governed by Equation (5.10).

5.5.1 Switching Strategy

Switching for this P-DFE is not as difficult as it is for the conventional DFE
scheme in Section 5.3. This is because the P-DFE only involves a switch in its
algorithms while the positions of the filters need not be interchanged, which is the
original intention of the authors of [5]. We adopt a similar concept as the parallel
adaptation strategy described in Section 5.4. Let the taps of the whitening filter
be a'®(k), which is also the filter taps of the P-DFE (see Fig. 5.6). Similarly, let
the taps of the phase equalizer be b®®) (k). Then the proposed update equations of
a® (k) and b® (k) are as follows:

K

3(3)<]{ +1) = a(3)(k) = ,LLap{Ol3t(3)<]€> (3)*(/6) — a4€DD(k)X(3) | (k)} (5.22)
b®(k+1) =b® (k) - Mbp{ﬁatfc;\m( ) + Bsepp (K }t (5.23)
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where a®(0) = [0,---,0]T, b®(0) = [0,0,---,0,1,0,---,0]T, x®)(k) is the re-
gressor vector for P(z), t(3)7 (k) the regressor vector for B(z), and as, o, B3, Ba
are user defined parameters. These parameters are assigned in the same manner
as described for our alternative conventional DFE in Section 5.3. An example us-

ing Benveniste-Goursat combination technique [15] has been described earlier in
Section 5.4.

5.6 Novel Dual Decision Feedback Equalizer

5.6.1 Problem Statement

The least-mean-square (LMS) algorithm has been widely embraced due to its sim-
plicity, useability and convexity. It is also known for its satisfactory performance
for tracking time-varying channel statistics [58]. When the LMS algorithm is em-
ployed by a DFE, it usually exhibits near-maximum likelihood (ML) steady state
performance at a fraction of the ML implementation cost. In addition, the DFE is
capable of equalizing channels with deep spectral nulls which are usually difficult
with linear equalizers.

The DFE that is adapted using the stochastic gradient approach must employ a
reasonably small adaptation step size to ensure the proper convergence of the LMS
algorithm. When the channel order is high (and hence the equalizer length), and/or
the impulse response of the channel is heavily colored, the step size parameter has
to be further decreased. As the step size governs the speed of convergence and
tracking, the tracking capabilities of the DFE may be limited once the equalizer
length is increased. A bulk of research effort has focussed on blind equalization
algorithms over the past few decades based on a fixed equalizer structures such as
the linear equalizer [14,49,124] and the DFE [7,10,17,133]. More recently, the
approach by the research community is reversed whereby new equalizer structures
and schemes based on conventional algorithms are proposed instead [5,21,75,106].
In what follows, we propose a more robust DFE structure that employs the LMS

algorithm.

5.6.2 Development

We propose a new DFE structure that incorporates both the conventional DFE
and the predictive DFE in one equalizer for improved tracking. As this structure
consists of two DFE’s, we will refer to it as the dual DFE from hence forth [80].

It consists of three filter blocks in the equalizer path as shown by the solid lines
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___________________

Figure 5.7: The dual DFE scheme which features a conventional DFE that is
prefixed by a linear recursive filter whose taps are driven by a predictive DFE
which is not in the equalizer path (illustrated by the dotted lines) but it minimizes
the residual error at the soft output of the conventional DFE, y(k).

connecting them in Fig. 5.7, i.e., the filters P(z), B(z) and A(z). The combination
of B(z) and A(z) constitutes the conventional DFE as previously shown in Chapter
2.2 in Fig. 2.6, where B(z) is a non-causal transversal filter and A(z) is a causal
feedback filter. As for the newly appended P(z) before the conventional DFE
structure, it is a linear recursive filter is driven by a predictive DFE criterion that
minimizes the residual error at the conventional DFE soft output. In fact the
taps of P(z) are copied directly from the predictive DFE, P’(z), since the linear
whitening filter upstream and the predictive DFE are forward predictors which
are amplitude equalizers [58]. It can be shown that the prediction filter, P'(2), is
identical to P(z) as follows [5]:

Assume first that 2(k) = a(k) and 2'(k) = a(k), i.e., the output signals of
both the conventional DFE and the predictive DFE are correctly detected. Let
the error sequences at the output of the conventional DFE and the predictive DFE
be e(k) = y(k) — 2(k) and €' (k) = w(k) — 2/(k), respectively. Let Z(-) denote the
z-transformation. Then, the error sequence of the predictive DFE in the z-domain

can be expressed as

W(z) =Y(2) + P'(2)[Y (2) — Z'(2)]
g(z) = W(z) — Z'(2)

where €(2) = Z(e(k)) and €'(2) = Z(¢'(k)). The power spectral density of the error
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sequence at the output of the predictive DFE can be expressed as

Z(E[€ (k)€™ (k —1)]) (5.29a)
= Z(Ele(k)e*(k —0)]) [1 + P'(2)] [1 + P*(2)] (5.29b)
- In¥a (14 P'(2)][1+ P(2)] (5.29¢)

where F(z) is the channel response, o> and o2 are the variance of the AWGN

and the data symbols, respectively. Further, the denominator of (5.29¢) can be

factorized into
o2F(2)F*(27*) + 02 = SoG(2)G*(z™) (5.30)

where Sy is a positive constant. Recall that the transfer function of the optimal
linear MMSE equalizer can be expressed as [75,118,119]

o2 F*(z7%)
02F(2)F*(z7*) + o2

a

O(z2) = (5.31)

and the transfer function of the linear recursive whitening filter that compensates

for the minimum phase part of C(z) is such that

] = G (5.32a)

1
1+P(2)
P(z) = G(z) — 1. (5.32b)

N

Thus the minimization of the MSE at the input to the decision device of the
predictive DFE; i.e., E[¢/(k)e*(k — 4)], would lead to P'(z) = G(z) — 1 according
to (5.29¢). This expression is exactly identical to (5.32b), which is the transfer

function of the linear whitening filter upstream.

5.6.3 Operation Details

The dual DFE’s main objective is to enhance the tracking capability of the con-
ventional DFE without compromising on the low steady state MSE of the conven-
tional DFE. We wish to retain the advantage of implementing the conventional
DFE whose steady state MSE is usually lower than that achievable by the predic-
tive DFE in practice [119]. Thus, the predictive DFE should not ‘compete’ with
the conventional DFE in acquiring the transfer function of the minimum phase

channel expressed in (5.32), but rather complements the conventional DFE only
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when rapid changes in the channel statistics are encountered.

Let the weight vectors of P(z) and P’'(z) be p(k) = [p1(k),p2(k), -+, pn(k)]T
and p'(k) = [pi(k), py(k), -+ ,px(k)]L. Let their associated regressor vectors be
s(k) = [s1(k),s2(k), -, sn(K)]" and v(k) = [vi(k),va(k), - ,un(k)]T, respec-
tively. The conventional DFE is allowed to converged first until a sufficiently low
MSE, say MSE;1, is detected at time k£ = ky. The predictor coefficients are not
updated before kg, such that

p(k) = 0,p'(k)
s(k) = 0,v(k)

0 VEk < ko (5.33a)
0 VE < k. (5.33b)

I

After time kg, the regressor vectors are initialized with their input signals, but the
adaptation of P’(z) is not started yet as we are relying on the conventional DFE
to achieve a low steady state MSE. Howe{fer, when the MSE is detected to have
risen above a pre-defined threshold, MSEs,, at time k > kg, either changes in the
channel statistics have been encountered or the SNR level has dropped. Assume
fixed SNR level, then the predictive DFE is started to assist in the tracking of the
channel statistics. It is adapted as follows, for k > ko, MSE > MSE;,:

p'(k+1) =p'(k) — pplw(k) — z(k)]v* (k) (5.34)

The weight vector of linear recursive filter upstream copies the adapted weights
of (5.34). If tracking is successful and the channel statistics are vary slower, then
the MSE would decrease given the same SNR levels. When the MSE drops below
MSEy;, then the adaptation of P'(z) ceases and weight vector is slowly decreased

to 0 by multiplying p’(k) with a decaying factor very close to unity.

Discussion

By incorporating a predictive DFE, the MSE can usually be reduced further at
the output of the predictive DFE due to its noise whitening effect. However, this
does not help the MMSE equalizer upstream to track the channel better since the
MMSE equalizer is independent of the predictor coefficients [119]. The novelty of
the dual DFE is in the mapping of the predictor taps into a linear recursive filter
upstream of the MMSE equalizer, enabling a coupling between the taps in a special
way so that the predictor coefficients may be reflected into the equalizer path (in
solid lines in Fig. 5.7) to reduce the load on the conventional DFE. With this new

configuration, a low steady state MSE due to the use of the conventional DFE in
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stationary environments and enhanced tracking due to the predictive DFE driven
criterion that minimizes the residual error at the conventional DFE’s output are

simultaneously accomplished.

Switch-mode fast-convergence blind dual DFE

For acquisition of the channel blindly, we choose to implement a fast convergence
DFE scheme due to Labat et al [75]. The initial acquisition is performed using the
cascaded equalizer structure that exploits the channel decomposition property as
explained in Section 5.1 in this chapter. The equalizer is allowed to converge to
its optimal settings as a conventional DFE. When the MSE estimate drops below
a pre-defined threshold, then the dual DFE structure is subsequently implemented
according to (5.33) and (5.34).

5.7 Simulation Results

This chapter deals with three broad classes of switch-mode DFE schemes, namely,
the switch-mode conventional DFE scheme of Section 5.3, the switch-mode pre-
dictive DFE scheme of Section 5.5, as well as the switch-mode dual DFE scheme
of Section 5.6. The simulation results are plotted for various switch-mode DFE

schemes that will be addressed accordingly in the following subsections.

5.7.1 Switch-Mode Conventional DFE Scheme of Section
5.3 — Channel Equalization Results

The following simulations are generated to yield performance results regarding the
new scheme in Section 5.3 with and without the enhancements using the parallel
adaptation strategy as described in Section 5.4. Two stationary non minimum
phase channels are selected for our simulations.The first is an auto-regressive mov-
ing average (ARMA) channel, h’, which is more heavily colored, and the second
is a moving average (transversal) channel, h”, which is lightly colored [118]. The

transfer functions (TF) of both channels are given by

0.44 g1
1—0.32714+052"2—-0.2z"3
TF (h") =0.04 — 0.0527" +0.0727 % — 0.21z7° — 0.5z '+

0.7227% + 0.3627% + 0.21278 + 0.0327° 4+ 0.072719. (5.36)

TF () =
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Figure 5.8: (A) and (B) are comparisons of three DFE schemes for the first channel,
h', while (C) and (D) are for the second channel, h”, using 16-QAM data signals.
The first equalizer is the DFE of [75]. The second and third equalizers are the DFE
described in Section 5.3 without and with parallel adaptation strategy, respectively.
The parallel adaptation strategy employs the Benveniste-Goursat type combination
parameters.

The transmit data format used is 16-QAM and assumed independent and iden-
tically distributed. The real and imaginary components of the transmit data are
drawn from the [—3,—1,1,3]. To characterize the equalizer performance in terms
of convergence speed and steady state errors, we employ the decision directed MSE

which can be estimated using the following recursion
MSEpp(k + 1) = 0.99 MSEpp(k) + 0.01 |epp(k)|°. (5.37)

We tested with three types of adaptive equalizers. The first is the DFE in [75].
The second is the DFE of Section III without the use of parallel adaptation strategy.
The third is similar to the second equalizer except that the parallel adaptation

strategy with the Benveniste-Goursat type soft switching technique is used. The
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system parameters of the three equalizers are as follows:

The length of A(z) is 20, for the recursive whitening filter of [75] as well as our
non-recursive one (see Fig. 5.3). The length of B(z) is 21 for all three equalizers.
For the first two DFE’s (without parallel adaptation strategy), it switches from
the linear acquisition mode to the tracking mode when MSEpp(k) < 0.5657, i.e.,
—4.9dB. Once it is in the tracking mode, it may be switched back to the starting
mode if MSEpp(k) > 0.7778, i.e., —2.2dB. For the third equalizer there is no dis-
tinct switching point. Their adaptation equations are governed by the Benveniste-
Goursat parameters ¢; = ¢ = 1 and v, = 1,7, = 10 for both channels (equations
(5.20) and (5.21) are referred), with the exception ¢; for (5.20) for h” where we
assigned ¢; = 0.5. The step sizes of the first two equalizers for h’ in the acquisition
mode are g 1) = 5 x 107° and p,a) = 5 x 107°, while in the tracking mode they
become fi,2) = @ = 107%; for h”, we assigned p ) = paz = e = 2.5 x 107
and ) = 2.5 x 1072, As for the third equalizer, g = 5 x 107° and pp = 5 x 107°
for h'; and p, = 2.5 x 107 and pup = 2.5 x 107> for h”.

Fig. 5.8 shows the MSE plots of the three above equalizers averaged over 100
independent trials using 15,000 and 10,000 symbols for channels h’ and h”, re-
spectively, at SNR levels of 15 dB and 25 dB. Two main conclusions are drawn.
Firstly, the first and second equalizers exhibit almost identical performances in
terms of convergence speed and steady state errors for both channels under both
SNR levels. This shows that our simplified DFE as described in Section III has
maintained the standard set by the original DFE in [75]. Secondly, the use of
the parallel adaptation strategy using the Benveniste-Goursat type combination
parameters improves performance of the third equalizer over the first two equal-
izers that are without the strategy. The success of the smooth switching strategy
is implicit in the faster rate of convergence achieved by the third equalizer since
the first two equalizers would usually switch between their acquisition and track-
ing modes several times before convergence is finally achieved. It is less obvious
for easier channels, i.e., h”, at high SNR levels (Fig. 5.8-D) since switching with-
out parallel adaptation can still be “smooth” because the slicer errors that can
cause ill-convergence of the DFE are fewer. On a different note, the third equalizer
that employs the Benveniste-Goursat type parameters yield higher steady state
MSE because of the finite contribution from the acquisition increment vectors, i.e.,
c1lepp (k) |emors™ (k) and ¢;|epp (k) |ecna (k)™ (k) as in (5.20) and (5.21), even
after convergence has been achieved. The problem with the high steady state MSE
can be solved by employing the reliability measure technique [82] which is more

computationally intensive.
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5.7.2 Switch-Mode Conventional DFE Scheme of Section
5.3 — Channel Identification Results
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Figure 5.9: The 100 most dominant taps of the inverse response of channel h”.

For this subsection, we generated source data signals that are drawn from an
8-PAM alphabet set

A= {=%1,+£3,45,£7}.
We chose a 5 tap transversal channel whose transfer function is given by
TF (h") = 0.8264 — 0.1653z " + 0.8512272 4+ 0.16362"° + 0.81z7%.  (5.38)

[t is a severe non-minimum phase channel that exhibits deep spectral nulls and
has an initial kurtosis ratio of 0.3 (see [75]). The implication of the initial kurtosis
ration that is less than 0.5, according to [79], is that convergence of the Godard
equalizer would usually take much longer. As our equalizer is transversal, under
convergence, its weight vector will be approximately the inverse of the channel’s
impulse response, which is shown in Fig. 5.9. Only 100 of its most dominant taps

have been plotted.
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Figure 5.10: Channel identification results using new switch-mode DFE scheme
proposed in Section 5.3. These results are obtained using (A) 300 symbols, (B) 800
symbols, (C) 2500 symbols. The equalizer is in its acquisition mode for both (A)
and (B). As for (C), the equalizer has settled into its tracking (DD) mode.

The SNR level is set at 30 dB. Therefore, after some calculations, the standard
deviation of the AWGN is obtained to be ¢ = 0.15. While the equalizer removes
the ISI due to the channel distortions, it inevitably amplifies the noise. At the

equalizer output, the filtered (amplified) noise has a standard deviation of 0.22,

where amplification is by a factor of ||1 + A(z)||3, where || - ||> denotes the 1, norm
of a vector and assuming A(z) has converged to its optimal values. This level of (fil-
tered) noise makes equalization of this channel quite a challenging task, especially
for non-constant modulus source signals like 8-PAM [42].

An equalizer can be designed for channel identification purposes by inverting
the channel. In our case, we aim to find the inverse response of the channel using
our non-recursive FIR acquisition equalizer. If MSEpp(k) drops below 0.27, it
would then switch to the DFE as explained in Section 5.3. The inverse impulse
response of the channel has more than 90 taps whose magnitudes exceed 1073, as
well as many other smaller tails. A hundred of the most dominant taps of H~!(z)
are plotted in Fig. 5.9.

Due to the large number of taps in the channel’s inverse response, we assigned
40 taps for A(z) and 50 taps for B(z). We simulated 15 different runs where 300

and 800 baud-rate symbols were used. The equalizer’s impulse response of each run
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is plotted in Fig. 5.10-A,B, as a solid line and the desired impulse response of the
channel inverse is plotted as circles on the same graphs. Even though the equalizer
has not switched to its decision directed mode at this point, we are pleasantly
surprised at the close proximity of the equalizer’s taps to the channel’s inverse
after just 800 symbols despite the severity of the channel. Fig.5.10-B demonstrate

the speedy acquisition of the linear acquisition equalizer.

5.7.3 Switch-Mode Conventional DFE Scheme Under Par-
allel Adaptation Strategy

(B) Symbol-error-rate (SER)
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Figure 5.11: The average MSE and SER of 20 runs of fast convergence DF'E scheme
of Section 5.3, with (solid line) and without (dotted line) parallel adaptation strat-
egy on 8-PAM signals at 30 dB for channel h".

In Fig. 5.11, we plotted the averaged result from 20 separate runs to demon-
strate the adverse effects of switching. When parallel adaptation is not used, the
equalizer generally faces an abrupt change when switching occurs which disrupts
the convergence of the equalizer parameters to its optimal decision directed set-
tings. The average MSE plots of the equalizer output with and without parallel
adaptation are drawn with the solid and dotted lines, respectively. Notice the
‘bumps’ encountered at the vicinity of switching when parallel adaptation is not
employed. Consequently, the equalizer may switch back and forth between its ac-
quisition and tracking mode until eventually convergence is achieved. As a result,
the equalizer will generally take longer to converge. As the DFE is extremely sensi-
tive to decision errors [39,71], the ‘bump’ in the symbol error rate (SER) at around

15% SER may cause the ill-convergence of the DFE.
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Figure 5.12: Results of two new alternative DFE’s compared with trained equaliz-
ers.

The estimate MSE is obtained according to (5.37) and the symbol-error-rate

(SER) is estimated via
SER(k+ 1) =0.99 SER(k) + 0.01 I(k) (5.39)

where

I(k) is simply an indicator which yields unity when the equalizer output is correctly

detected, i.e., z(k) = a(k), and a zero if it is incorrectly detected, i.e., z(k) # a(k).

5.7.4 New Switch-Mode DFE Schemes of Sections 5.3, 5.4

and 5.5 — Channel Equalization Results

In this section, we provide simulation results to draw evidence of fast convergence,
low steady state errors, and high success rate of convergence that is unaffected
by switching. of the new DFE. We will compare the performances of the blind
conventional DFE of Section 5.3. the blind P-DFE of Section 5.5. the trained LE
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and the trained DFE. The data format used is 4-QAM signalling. The SNR level
is set at 15 dB. The channel to be equalized is h"” of (5.38). We used a total of

20,000 symbols for the above simulations.

The convergence rate of the blind equalizer is comparable to that of the trained
equalizers (LE and DFE), and its steady state MSE is lower than the trained LE.
Unlike the results in [75] that showed equal convergence speed for both their blind
equalizer and the trained equalizers, our results show marginally slower convergence
speed. This is largely due to the increased length of the non-recursive for this
particular example. The length of the recursive whitening filter in [75] is 4 but

ours is fixed at 21.

(A) CM equalizer

(B) Trained linear equalizer (C) Blind Predictive DFE

(D) New FIR Scheme
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Figure 5.13: Plot of the equalizer output of various selected schemes extracted at
the end of the data stream. (A) CMA equalizer. (B) Trained LMS equalizer. (C)
Fast converging blind predictive DFE. (D) Our FIR scheme and the trained DFE,

which yields similar MSE.

In Fig. 5.13, we plotted the last 2000 symbols of the data stream consisting of
20,000 symbols of the equalizer output for various selected equalizers from Fig. 5.13
in ascending order of their steady state MSE. The results is not surprising because
a clear open eye is expected for our conventional DFE scheme, followed by a smaller
eye by the predictive DFE scheme. This is because the predictive DFE’s forward
MMSE equalizer parameters are adapted independently of its DFE feedback pa-
rameters, whereas the parameters of both feedforward and feedback filters of the
conventional DFE are jointly adapted [119]. The linear equalizers perform much
worse, where the trained linear equalizer yields lower MSE compared to the CM

equalizer because the data constellation is non-constant modulus [42].
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5.7.5 Switch-Mode Dual DFE Scheme of Section 5.6 — Chan-

nel Equalization Results

The following simulations show the performance comparison of three schemes used
to equalize the five-tap non-minimum phase channel that is used in [75], which
is h"”. The data format used here belongs to the real 8-PAM format. As the
dual DFE equalizer scheme is one that only enhances tracking of a non-stationary
channel after which convergence has been achieved, we let the channel be stationary
for the first 15,000 symbols before introducing a time-varying zero. For the first
simulation scenario whose MSE is as depicted in Fig. 5.14, a fifth zero denoted by
r5(k) apart from the four original zeros of (5.38) is added. It starts from the origin
at the 15,001 symbol and it moves radially towards the coordinate (1,0) on the

z-unit circle according to the following equation:

0 0 <k < 15000

rs(k) = { 0.06(k—15000) (5.41)
b k > 15000

As for the second simulation whose results are depicted in Fig. 5.14, a zero is
also added on the 15, 001*® symbol. It is defined by a similar linear motion plus a

sine component in the following manner:

(5.42)

0.05(k—15000) . kw ; -
SERF + 0.1sin T k > 15000

{o 0 < k< 15000

Here, we compare the performances of three equalization scheme. The first
is the linear equalizer of the acquisition mode of [75]. The second is the linear-
equalizer-DFE scheme of [75], whereby it starts off as a linear equalizer (same as
the first equalizer that we are testing on), and switches over to a DFE once the
eye is sufficiently open. The switching occurs when MSEpp (k) < 0.27. The third
is the dual-DFE scheme that starts off as the DFE scheme of [75] (same os the
second equalizer that we are testing on). It the dual-DFE is implemented once the
MSE estimate further drops below a lower threshold, i.e., when MSEpp (k) < 0.23.

Note that all three equalizers are extensions of the one before it. The first
equalizer is merely the acquisition linear equalizer in [75]. Its recursive whitening
filter, A(z), has 25 taps. Its doubly finite Godard transversal filter, B(z), has
50 taps. The second equalizer extends the first in the sense that acquisition is
achieved using the similar linear equalizer, it switches to a conventional DFE once
the estimate MSE drops below a predefined threshold value, i.e., MSEpp(k) <

0.27. The third equalizer extends the second equalizer in the sense it is adapted
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Figure 5.14: Comparing three equalizers: 1) the linear acquisition equalizer (LE)
of [75], 2) the DFE scheme of [75], and 3) the dual-DFE that extends the DFE
in [75].

exactly as the second equalizer until MSEpp (k) < 0.23 after which the dual DFE
is implemented. In the setup of the third equalizer, the additional predictor filters,
P(z) and P’(z), have equal lengths of 25 taps.

The plots in the MSE figures are obtained using 20 different and independent

runs at a signal to noise ratio (SNR) of 30 dB.

5.8 Conclusions

In this chapter, we have accomplished three distinct goals which describe the main

contribution of this chapter. They can be itemized as follows:

1. We have successfully extended the switch-mode equalizer scheme of Labat
et al [75] to incorporate a linear transversal whitening filter while retaining
the simplicity of a direct transfer of its tap parameters to the DFE in the
tracking mode. No observable loss in performance is encountered with this

modification to the transversal mode as compared to the original recursive
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DO

scheme.

We addressed the smooth switching between operation modes of the equaliza-
tion scheme of [75]. Even though it is advantageous to use different types of
equalizer structures under different conditions related to the existing channel,
it becomes difficult to ensure a smooth switching between these structures.
We proposed a switch-mode technique called the parallel adaptation strat-
egy [84] that ensures an automatic transition between a suboptimal linear

acquisition structure and a non-linear tracking structure.

We proposed a new equalizer structure that incorporates two DFE’s simul-
taneously to cope effectively with time-varying channel statistics as well as

stationary ones.
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Chapter 6

Rotational Analysis On Several

Blind Equalization Algorithms

In this chapter, we study the rotational behaviors of the constant modulus algo-
rithm (CMA), the reduced constellation algorithm (RCA) and the multi-modulus
algorithm (MMA) for quadrature-amplitude-modulation (QAM) schemes, which
are the behaviors of the equalizer output constellation under the adaptation of the
above algorithms. In particular, we compare their susceptibilities to undesirable
rotated solutions using the concept of torque where the output signal constellation
is treated as a physical object and the update error term treated as an external
force that induces rotation. We verify the phase-invariant property of the CMA
and show that the RCA is prone to undesirable 45-degree solutions for cross-QAM
constellations but much less likely for square-QAM constellations. We also found
that the MMA cannot converge to such wrong solutions for any arbitrary constant

phase offsets for a wide range of noise levels.

6.1 Introduction

Blind equalization algorithms can be employed to combat the intersymbol interfer-
ence (ISI) when only the channel output and some statistical information regarding
the data input are available. Certain blind algorithms are also capable of correcting
the phase of the output constellation apart from their usual tasks of blind ISI re-
moval. These phase aware algorithms include the reduced constellation algorithm
(RCA) [15,50] and the multi-modulus algorithm (MMA) [105,152] that is developed
more recently. Unfortunately, their convergence to undesirable rotated solutions
whereby the output constellation is rotated by an arbitrary angle from its original

orientation have been reported in the literature [105,147,152]. In this chapter, we

121
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Figure 6.1: Baseband QAM system model.

will analyze the constant modulus algorithm (CMA) [49,137], the RCA and the
MMA, with respect to their immunities (or susceptibilities) to such undesirable
solutions.

Blind equalization is used extensively in various emerging broadband access
applications such as fiber-to-the-curb (FTTC) networks and x-digital-subscriber-
line (xDSL). A phase aware blind algorithm that can perform the joint task of
blind equalization and phase recovery satisfactorily is highly desirable [46, 147].
In carrierless amplitude and phase (CAP) modulation and quadrature amplitude
modulation (QAM) receivers, for example, additional carrier phase tracking circuits
are necessary due to the lack of an automatic constellation phase recovery property
not inherent in the CMA. A solution is then to employ phase aware algorithms such
as the RCA and the MMA so that the phase tracking circuits are no longer required.
However their potential convergence to wrong solutions will seriously jeopardize the
equalizer performance under practical environments. While the occurrences of such
undesirable convergence are much fewer for the MMA compared to the RCA and
the CMA [152], the reason for the superior behavior of the MMA has not been
established. Moreover, even though the minimization of the costs of both the RCA
and the MMA will result in the desirable 0° solution [46], it is not clear it there
exists other rotated solutions which may not yield minimum costs. We will study
the existence of such ill-oriented solutions which helps in the design of an equalizer.

In this chapter, we will use the concept of torque common in mechanics to address

this rotational issue.

6.2 System Setup and Assumptions

Consider the channel-equalizer system depicted in Fig. 6.1. Let h = [hg, by, -+, hr]"
denote the coefficients of the stationary channel filter of length L + 1. The chan-
nel is possibly non-minimum phase but unknown to the receiver. In addition,

the data symbols may be rotated. Let the source data sequence be a(k) =
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la(k),a(k — 1),--+ ,a(k — L)]T with a time index k, drawn from M-QAM al-
phabet set, M = 16, 32, 64, 128, where M = 16,64 are square constellations and
M = 32,128 are cross ones. At the receiving end, the input signal to the equalizer

r(k) = hTa(k) + n(k) (6.1)

where n(k) is the additive white Gaussian noise (AWGN) and 7 denotes trans-
position. Let w(k) £ [w_n(k), -+ ,wo(k),--- ,wx(k)]T be the (2N + 1) complex
equalizer tap coefficients initialized with a center-tap strategy, which allows the

causal development of approximate inverse filters for non-minimum phase systems.

Then the equalizer output can be expressed as

gk = Z wy(k)r(k —n) (6.2a)

n=—N

_ a(k>€jﬂ9(k) + v(k) (6.2b)

where Af(k) = [(k) — ®(k)] is the instantaneous residual phase error term, (k)
and ®(k) are depicted in Fig. 6.1, and v(k) is the residual-ISI-plus-noise term of
variance o2. In our analysis, we make the simplifying assumption that v(k) is
normally distributed so that we can assume that the data is transmitted over an

AWGN channel due to the central limit theorem [57, ch. 2].

Under the usual stochastic gradient adaptation, the weight vector of the equal-

izer is updated as below:

wik+1) = w(k) — fiw gif(‘g (6.3a)
— (k) — pwe(k)ry (k) (6.3b)

where L., is the adaptation step size, J(w) and €(k) are the cost function and the
error function of the blind adaptive algorithm, respectively, ry(k) = [r(k), 7(k —
1),---,7(k — N +1)]T is the input regressor, and * denotes complex conjugation.
In what follows, we will assess the cost functions J(w), or equivalently, their error
functions €(k), with respect to their immunities (or susceptibilities) to undesirable

rotational equilibria.
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Figure 6.2: Examples of undesirable rotated solutions for (A) 16-QAM at 21°,
obtained by RCA and CMA; (B) 32-QAM at 45°, obtained by RCA and CMA; (C)
16-QAM under a frequency offset, obtained by CMA.

6.3 Torque Analysis of Undesirable Rotated So-

lutions

6.3.1 Some Wrong Rotated Solutions

The cost functions of the CMA, the RCA and the MMA are respectively given by

Toua(w) = E { ([(8) = 12)’ } (6.40)
Jrea(w) = E { (k) — mf} (6.4D)

Jyiva (W) = E{ [Re(z(k))2 — 7“24}2 + [Im(z(k))2 - 71%4}2 } (6.4¢)

where 72 2 E{[a(k)[*}/E{|a(k)?} [49], 7 2 E{a(k)2}/E{|a(k)[}, csgn() = sgn(Re(-))+
v/—1-sgn(Im(-)) is the complex signum operator, and v, = E{Re(a(k))*}/E{Re(a(k))?}.
Wrong rotated solutions should not be confused with the undesirable local min-
ima in the channel-equalizer parameter space which will result in incomplete ISI
removal (26,31, 78]. Wrong rotated solutions, on the other hand, are solutions
obtained even after the channel eye has been open except that its output signals
are out of phase with its original QAM constellation. Note that modulo 90° 1s
acceptable because such solutions may be detected and corrected with differential
encoding techniques. Consequently with disorientated solutions, the MSE is not
minimized. Thus such solutions present the notion of local minima in the phase
parameter space, as opposed to local minima in the combined channel-equalizer

parameter space.

Fig. 6.2 shows three wrong solutions that may be encountered during lab sim-
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ulations, where Fig. 6.2-A, B show two possible wrong solutions at angles of 21°
and 45°, respectively, when the CMA and the RCA are employed in the presence
of a constant phase offset. Fig. 6.2-C shows a wrong solution of the CMA un-
der non-stationary phase offsets. Even though the eye is clearly open for each of
the three cases (three distinct circular lines in Fig. 6.2-C represent a well open
eye condition), the MSE is not minimized due to the disorientation of the output
constellation. It is also interesting to note that none of the wrong solutions has
been reported when the MMA is employed. The torque analysis that proceeds will

explain this phenomenon.

6.3.2 Preliminaries on Torque Concepts and Some Defini-

tions

Unlike conventional approaches, we have resorted to using torque to analyze the
rotational behavior of the output constellation under the adaptation of the tap
weights. This is because the output constellation may be represented by an object,
in the physical sense, that is being applied a net rotational force which causes
rotation about its origin. Thus this translates into a problem that can be readily
addressed by the concept of (mechanical) torque.

Torque is a measure of how much a force acting on an object causes that object
to rotate. The object rotates about an axis called the pwot point or simply, the
origin. The distance from the origin to the point where the force acts is called the
moment arm. In our context, the origin of the object is in fact the origin of the

QAM constellation. The object that is being rotated is the equalizer output vector

—

2(k) = [Re(z(k)), Im(z(k))]. (6.5)

Note that the moment arm is a vector. The acting force is the error function vector

e

e(k) = [Re(e(k)) — Re(z(k)), Im(e(k)) — Im(2(k))]. (6.6)

Thus, the effective torque applied on the output signal is defined as

T(k) = z(k) x e(k) = z(k) e(k) singp (6.7)

where X denotes the cross product of two vectors and ¢ is the angle between the

two vectors. We now state the condition for rotational equilibrium.

Under rotational equilibrium, the sum of the torques acting on the object must
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- —

be equal to zero. In our context, there is only one force, €(k), acting on one moment
—

arm, z(k), at any one instant. The moment arm and its associated force, however,
are distributed over the constellation space. Thus, the condition for rotational

equilibrium is for the expected torque value to be zero, i.e.,

E{T(k)} = 0. (6.8)

6.3.3 Rotational Behavior of the CMA

Using the concept of torque, we will show that the CMA is a phase-blind algorithm,
i.e., it is insensitive to the phase of its output. In other words, we will verify that all
angles for the output signal constellation correspond to marginally stable equilibria.
The error function of the CMA is

eoma (k) = 2(k) (J2(k)[* —1¢) (6.9)
where the noisy phase rotated equalizer output (6.2b) given here again is
2(k) = a(k)e??®) 4 y(k). (6.10)

The force that acts on the moment arm is

(k) = (Re(2(k)) (J2(k) 2 — 78) — Re(2(k)),

T (z(k)) (|2(k) 2 = 73) — Im(2(k))) (6.11a)
= (|2(R)? = 78 = 1) (Re(2(k), Im(2())) (6.11b)
= scalar - z_(ES (6.11c)

The torque is
T(k) = ATkS x (scalar - z(—ki) (6.12a)
= scalar - (z(k) z(k))sin0 (6.12b)
=0, Vz(k) (6.12¢)

because the cross product of two vectors in the same direction is zero (6.12a), which
is also reflected by the term, sin 0, in (6.12b). Since z(k) is a function of the residual

phase errors, A#(k), this implies that the rotational equilibrium is achieved for all
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(B) 16—QAM Negative Mean Torque (C) 16-QAM Mean Cost

(A) 16-QAM Mean Torque
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This is also reflected in Fig. (C)

Figure 6.3: Rotational behavior of RCA for square-QAM constellations. The non-
flat region in Fig. (B) indicates that there is an undesirable but rotationally stable

equilibrium point which is at the vicinity of 21°.

~ 21°,

)

k

(

~ 0 and Ad

where a shallow local minimum is observed for o,

ors, l.e.,

r

phase er

(6.13)

).

YA (k

E{T(k)} =0,

In other words, there is no mean torque that acts on the output signal constellation

—

for all values of Af(k) because the force that acts on z(k) will go through the origin,

-

just like z(k) itself. This result supports the fact that the CMA is indeed phase-

blind.

6.3.4 Rotational Behaviors of RCA and MMA

MMA by examining

s of the RCA and the

the mean torque acting on the output constellation for different phase errors, SNR

We will study the rotational behavior

—

Rather than being vigorous in our analysis, we com-
puted the cross products of large samples of equalizer output vectors, z(k), and

levels, and constellation sizes.
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Figure 6.4: Rotational behavior of RCA for cross-QAM constellations. The large
non-flat regions in Figures (B) and (E) at the vicinity of 45° indicate that the RCA

e two

There ar

This is also reflected in the cost
under the following environments:

g solutions.
where a local minimum point clearly exists at 45°.

)

F

(

C),
ii. A standard deviation, o, of the effective noise which is assumed to be Gaus-
sian, from 0.05 to 1 at intervals of 0.05.

—
their associated error function vectors, €(k), to obtain their mean torques. In addi-
i. A phase error of 0° to 45° at intervals of 0.5°.

more stable points for 32-QAM as shown in Figure (B) at high SNR and around

13° and 21°.
tion, we also computed their mean costs

is very susceptible to the ‘45°” wron

figures (

iii. Constellation sizes of 16,32, 64, 128, where 16,64 are square QAM constella-

tions, while 32, 128 are cross QAM constellations.

garding the rotational equilibria

The empirical results using torque analysis re

of the RCA and the MMA are shown in Fig.

6.3, 6.4, 6.5. In order to meaningfully

interpret the figures, the following points must be understood first:
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a) Due to the symmetry of the QAM data constellation about the x- and y-axes,

DO
~—

the torque figures are identical for 0° < Af(k) < 45°, 90° < Af(k) < 135°,-- -,
while they are mirrored about the x-axis (i.e., the positive mean torque becomes
the negative mean torque) for 45° < Af(k) < 90°, 135° < Af(k) < 180°,- - -.
Therefore, the results for the range 0° < Af#(k) < 45° can completely describe

the rotational behavior of the algorithm.

By the definition of z(—k)> in (6.5) and e(—/c)) in (6.6), a positive mean torque will
result in a clockwise rotation in the constellation. Conversely, a negative mean
torque will result in an anti-clockwise rotation. If you will refer to the figures
of mean torque, a positive mean torque ‘pushes’ Af(k) towards the equilibrium
point! on its left. A negative torque ‘pushes’ Af(k) towards the equilibrium
point on its right. Therefore, an undesirable equilibrium point between 0° and
45° exists if a negative mean torque exists over this range. This is why we have
also plotted the negative mean torque figures to ease the identification of such

undesirable equilibria.

Not all equilibrium points are stable. For the range 0° < Af(k) < 45°, a stable
equilibrium is one that must experience a negative mean torque on its left and
a positive mean torque on its right. Take for example the 32-QAM for RCA
and observe Figure 6.4-(B). The 45° solution is stable for o, = 0.5. However,

at 0, = 0.1, the stable angle corresponds to approximately 37°.
We now present the conclusions drawn from observing Fig. 6.3, 6.4, 6.5.

Square (16- and 64-) QAM constellations: Both algorithms exhibit little sus-
ceptibilities to wrong solutions, except for the RCA at very high SNR’s and

only for 16-QAM. There exists one stable equilibrium at approximately 21° and
gy = 0. 1.

Cross (32- and 128-) QAM constellations: The RCA, as opposed to the MMA,
is much more likely to converge to the 45° solution for both 32- and 128-QAM
sizes. Once trapped in these solutions, they are hard to ‘escape’. This is because
of the large area of negative mean torque that spans approximately 11° to the
left of 45° and over all shown values of ¢,. Thus, once trapped in the 45°
solution, a large amount of torque will ‘push’ the signal constellation back to
the wrong solution if the constellation is rotated within 11° from 45°. Hence
they are highly stable solutions. It is no wonder a high rate of undesirable

convercgence to 45° solutions has been observed in lab experiments [152].
(@)

1 An equilibrium point corresponds to zero mean torque.
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(A) 16-QAM Mean Torque (B) 16—-QAM Negative Mean Torque (C) 16-QAM Mean Cost
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Figure 6.5: Rotational behavior of MMA for 16-QAM constellation. Identical-
shaped figures are observed for 32-, 64- and 128-QAM, so they are not plotted.
Figure (B) shows no signs of a negative mean torque and this is true also for 32-,
64- and 128-QAM. This phenomenon is also reflected in the cost function which
does not have any undesirable local minimum.

3) The mean torque of the MMA that is always positive for all o, and Af(k) shows
that a rotational force always pushes the output signal constellation back to its
correct 0° solution. Therefore, the MMA is not possible to converge to a wrong
solution. In addition the mean torque has a constant shape even when the o,
varies. This is a very interesting property which makes MMA a very robust
blind phase recovery algorithm as it is not only immune to 45° solutions, but

its mean torque is also insensitive to fluctuations in the SNR.

Based on this torque analysis we therefore conclude that the MMA is far more
superior than the RCA in terms of its convergence immunity to wrong solutions

for QAM systems in both high and low noise environments.

6.4 Conclusions

The rotational behavior of gradient-type blind algorithms, namely, the CMA, the
RCA and the MMA can be studied using the concept of torque. The CMA is shown
to be phase invariant through the use of the torque analysis. As for the RCA, it
is shown to suffer from potential wrong solutions of all sorts of angles especially
for cross-QAM constellations. These wrong solutions are also highly stable for the
RCA. The MMA on the other hand, is shown to be superior in terms of its immunity
to undesirable rotated solutions in both high and low noise environments.

In this chapter, we have presented a new way to analyze the rotational behavior

of blind algorithms which can be thought of as the local minima analysis in the
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phase parameter space. Therefore, when it comes to selecting a blind algorithm for
the purpose of blind equalization and phase recovery, the MMA is definitely the
l ' preferred choice over the RCA due to its superior phase recovery properties. From
this analysis, we revealed that the MMA is the most suitable algorithm among the

three algorithms to be used.
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Chapter 7
Conclusions

In this chapter, we present a summary of the research findings of the thesis and
the contributions found in each of the chapters. Also, guided by insights gained
in conducting the research found in the thesis, we propose a program for further

research.

7.1 Executive Summary

In this thesis, we have investigated, analyzed, and developed switch-mode equal-
ization schemes with the global goals of fast convergence and smooth switching in
mind. We have developed a new reliability concept based on Bayes theorem that
is used to combine the acquisition and the tracking algorithms. This combination
methodology is very flexible and can even be extended to combine algorithms based
on different equalizer structures such as a linear equalizer and a decision feedback
equalizer. We then focussed on developing simpler formulations of switching crite-
rion inspired by our reliability combining concept. The new switch-mode algorithm
that employs this switching criterion achieves very fast convergence and smooth
switching at practically no additional cost. Finally, considered a novel analysis
method for determining the phase/frequency locking (“rotational”) behavior of
blind algorithms and applied it to several blind algorithms to test their robustness
and immunity to to wrongly rotated stable equilibria.

In Chapter 3, we developed a new reliability based switch-mode algorithm
whereby the acquisition and the tracking algorithms are combined using a convex
reliability parameter. This parameter has been derived using Bayes theorem and
is found to be dependent on both the equalizer output and its estimated statistical
distribution. Unlike conventional techniques found in the literature that employ

heuristically chosen measures which are usually dependent on only the equalizer
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output or other measures, our new technique (that depends on both equalizer out-
put and its distribution) was shown to exhibit significant performance improvement
over conventional techniques.

In Chapter 4, we developed a new switching criterion that is based on the
probability of an equalizer output being found in square regions that enclose the
constellation points. The novelty of this technique lies in the dynamically vary-
ing size of these square regions. The concept parallels the reliability measure de-
veloped in Chapter 3 whereby the combination of the acquisition and tracking
algorithms is dependent not only on the equalizer output, but its estimated statis-
tical distribution as well. This algorithm, unlike conventional algorithms including
the reliability-based algorithm in Chapter 3, achieves very rapid convergence, low
steady state error and automatic phase recovery. In addition it has the advan-
tage, particularly in a practical setting, that it is very simple to implement with
complexity comparable to conventional “hard-switching” techniques.

In Chapter 5, we developed a new DFE scheme that extends the work of of
Labat, Macchi and Laot. The most important aspect of the new strategy is that
it combines the linear equalizer and the DFE of this equalization scheme in the
same way we combine the acquisition and tracking algorithms in Chapters 3 and 4.
Once again, fast convergence and smooth switching between modes are achieved.

In Chapter 6, we proposed an alternative tool to analyze the phase/frequency
locking (“rotational”) behaviors of several blind algorithms. Specifically, we verified
that the constant modulus algorithm (CMA) is rotationally invariant. The most
important and somewhat surprising result is that the multi-modulus algorithm
developed by Oh and Chin, and independently by Werner and Yang, is superior
that the reduced constellation algorithm (RCA) developed by Benveniste et al, in
terms of the algorithm’s immunity to wrongly rotated stable equilibria for QAM

signals.

7.2 Future Work

7.2.1 Direct Extensions

In terms of more direct extensions to the work there are a number of which we

indicate a few. The new probabilistic switching criterion in Chapter 4 has been de-

1

veloped for QAM signals with the assumption that the effective noise" is a complex

Gaussian noise term which is independent of the data signal. It can be extended to

l1Effective noise is defined as the sum of the residual ISI and additive noise.
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other data formats such as the real PAM format. It can also be extended to involve
analysis that treats the effective noise as non-Gaussian and non-independent of the

data signals, which is usually true in practise.

7.2.2 Generalizations

Dual mode (and possibly multi-mode) equalizers can be viewed as specific instances
of a more general class of equalizers. In their most basic form this type of equalizer
exists in two modes and there is either a hard switching or soft switching between
the modes. The two modes differ in the filtering structure and the type of adaptive
algorithm they use. This thesis has focussed on how to make this handover between
the acquisition mode and the tracking mode as quick and smooth as possible.
The ability of an equalizer to switch structure and algorithm is in general a very
powerful notion but the problem is not well studied. Generally a channel will be
time-varying and a given equalizer can expect to have to operate over a variety of
channels with varying degrees of difficulty. To be successful an equalizer needs to
have a complexity comparable to the complexity of the channel dynamics. Hence
when a channel is simple the equalizer should be simple and lowly parameterized.
Conversely a complex channel would require an equalizer of many parameters.
The problem that needs to be addressed is how to have an equalizer change its
structure automatically in response to the complexity of the channel and to do so
in a blind way. Married with the changing structure is a requirement to change the
associated algorithm. In this way the limited number of modes of today’s equalizers
(usually one or two modes) need to move towards a continuum of modes in a more
general setting and change in a smooth way that tracks the channel complexity
variations. Adaptation is no longer an issue of varying the parameter values in
a fixed structure but also in addition varying the structure, parametrization and

number parameters.
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Appendix A

Computation of mean of absolute

value of error functions, E{|e(k)|}

The switch-mode algorithms that we deal with in Chapters 3, 4, 5 usually consists
of two (or more) algorithms that will be switched from one to another at some
point in time when the equalizer output is believed to be sufficiently reliable. The
magnitudes of the error functions can be orders apart and thus they need to be
scaled to yield same orders of error functions to ensure a smooth transition. In this
Appendix, we will consider the minimum output energy (MOE) or the whitening al-
gorithm, the constant modulus algorithm (CMA), and the blind least-mean-square
(LMS) algorithm. We assume the input signal to the transversal equalizer is 7 (k)

and its output z(k). The weight vector of the equalizer is denoted as w(k).

Firstly, we consider the MOE algorithm. Its cost function is
Juon(k) & B{|2(k)2} (A1)

and its error function, i.e., the derivative of the cost function and taking away the

expectation operator, is therefore

Thus, the mean of the absolute value of (A.2) is easily computed once the prob-
ability density function (p.d.f.) of z(k) is known. The equalizer output can be
expressed as the sum of the desired signal (originally transmitted data signal) and
an effective noise term which consists of the residual ISI plus colored additive chan-

nel noise as in (2.4). In discrete time, it can be expressed as in (3.4) as follows:
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(A) p.d.f.: MOE algorithm (B) p.d.f.: CMA algorithm (C) p.d.f.: LMS algorithm
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Figure A.1: The probability density functions (p.d.f.) of the error functions of
the MOE, CMA, and the LMS algorithms. The solid lines represent the c.d.f. for
02 = 0.28 and the dotted lines for o2 = 0.69.

N

k) = Z cnr(k —n) (A.3a)
n=—N
= spa(k) + v(k) (A.3b)
where
N+L N
vk)= > sjalk—j5)+ ) cn(k—n) (A4)
j#0,j=—N n=—N

is the so-called effective noise with a variance of o2, and {s;},j =—-N,--- N+ L

is the set of coefficients of the combined channel-equalizer filter. The p.d.f. of z(k)
therefore is the joint p.d.f. of the marginal p.d.f. of the transmit signal and the

effective noise, given as

p(z(k)) = pla(k),v(k)) = p(a(k)) - p(v(k)) (A.5)

where p(-) stands for the probability density function, and the second term to the
third term is due to the assumption that a(k) and v(k) are statistically independent.
With the simplifying assumption of Gaussian effective noise, we therefore obtain
the following closed form expressions for the p.d.f. for both real data signals,
which are one dimensional, and complex data signals, which are two dimensional,

as follows:
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Real:  p(z(k)) = ! Z ! exp [— (2(k) — d;) ] (A.6a)

Complex :  p(z(k)) = ! Z

2
QOU

(A.6b)

where d; is the j* alphabet in the data alphabet set. Therefore, we can plot the
p.d.f. of the error function of the MOE algorithm, and from there evaluate the
mean of its absolute value. This is shown in Fig. A.1-A where the real 8-PAM

data is used assuming o2 = 0.28 and o2 = 0.69.

Next, we consider the CMA. Its cost function is
Joma (k) = E{(]z(k)]* —7&)*} (A7)
where ~& is the dispersion constant (2.51). Its error function is therefore
eoma (k) = 2(k)(|2(k)]* — 7). (A.8)

To obtain the p.d.f. of ecyma(k), it is possible to perform the p.d.f. transformation
of z(k), since we have closed form expression of p(z(k)) as in (A.6) according
to [118, Ch. 1]. The p.d.f. transformation requires that

coa(k) = 2(k) (|2(k) > = 13) (A.9)

be solved, such that {z7(k),z25(k),---,25(k)} are the N real roots of the above
equation of (A.9) which are functions of ecyma (k). It can be shown for real PAM

data formats, NV = 3, i.e., there are three real roots, when

a2 e
o (k)] < £ <\/3~/(% - \/—§5> (4.10)

and N = 1 otherwise. This will be explained shortly afterwards. Thus, the p.d.f.
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of ecva (k) may be expressed as [118]

N
z; (k))
ECMA (All)
Z ECMA j (k))’
where

eoma (7 (k) =3[z (R)]” — 7¢. (A.12)

The p.d.f. plot of ecnma (k) is shown in Fig. A.1-B for an 8-PAM data format with
o2 = 1. Tt is clear from the figure that the p.d.f. is larger for |ecma (k)| < 86.63
due to (A.10), where & = 37. In fact, at |ecma(k)| = 86.63, the p.d.f. tends to
be much larger because at these points, the denominator of (A.11), |eqya (27 (k))],
tends to zero and the p.d.f. thus tends to infinity.

Equation (A.10) is obtained by finding the values of ecya (k) that correspond
to 322(k) — 43 = 0. The z(k) value is found to be £1/42/3. By substituting this
value into ecya (k) of (A.9), we thus arrive at equation (A.10).

Lastly, we consider the blind LMS algorithm. It is rather difficult to obtain
closed form expression for the p.d.f. of the LMS algorithm. Therefore, we generated
large amount of data samples and plotted its p.d.f. as shown in Fig. A.1-C for the
same 8-PAM data format and o = 0.28 and o2 = 0.69.

Conclusions drawn from observation of the figures in Fig. A.1 include :

1. The magnitudes of the respective error functions are indeed orders apart for
8-PAM. In fact, their differences increase as the constellation size increases,
say for 32-PAM compared to 8-PAM.

2. The “shapes” of the p.d.f. of eyjor(k) and epys(k) are rather similar, sug-
gesting that a switch between these two algorithms would be smooth under
appropriate scaling of the error function. The “shapes” of the p.d.f. of
ecva (k) and epys(k) are rather different, suggesting that even under appro-
priate scaling of er\s(k), the switching between these algorithms may not be

smooth.

The means of the absolute value of the error functions can be computed by
evaluating the cumulative distribution function (c.d.f.) of the e(k) [118, Ch. 1],
defined as

D(z) = Pr(e(k) < x) —00 < & < 60 (A.13)
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(A) c.d.f.: MOE algorithm (B) c.d.f.: CMA algorithm (C) c.d.f.: LMS algorithm
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Figure A.2: The cumulative distribution functions (c.d.f.) of the error functions
of the MOE, CMA, and the LMS algorithms. The solid lines represent the c.d.f.

for 02 = 0.28 and the dotted lines for o2 = 0.69. The horizontal dotted lines show
D(e(k)) = 0.75.

where z is any real number in the interval (—oo,c0). Note that the mean of the
error function is obtained when D(e(k)) = 0.5, but the mean of the absolute value

of the error function is obtained when D(e(k)) = 0.75. This is shown in Fig. A.2.






Appendix B

Validity of (5.18) due to parallel

adaptation

In this appendix, we show that via parallel adaptation, the output signals of the
“top” and “bottom” paths of the new DFE in Section 5.4 are almost similar in
value, but differs in a manner that is proportional to the adaptation step sizes of
the respective filters.

Refer to Fig. 5.5 for the notations of the signals and filters. Consider first the
linear equalizer of the “top” path. The output signal of the non-recursive whitening
filter is

tO(k) = A(k)ST (k) (B.1a)
= [1,a1(k), az(k), - - [s(k), s(k — 1),---]". (B.1b)

The output signal of the transversal (Godard) equalizer is

T

uV (k) = B(E)T®™ (k) (B.2a)
= [bi(k), ba(k), - - ][tV (k), t D (k = 1), - ]T (B.2b)

= [bi(k)A(k)ST (), ba(k)A(k — 1)ST(k — 1),
bniv(K)A(k—N—-M+1)ST (k- N - M+1)]. (B.2¢)

The output signal u* (k) depends on (N + M) previous input signals as shown in
(B.5c).

Consider now the DFE in the “lower” path of the new DFE under parallel
adaptation. In order to arrive at meaningful results, we “linearize” the DFE in
the “lower” path by ignoring the quantizer for the following derivation. In that

case, the transformed W of the DFE will have exactly the same transfer function
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as the W of the linear equalizer, i.e., 1+ A(z). The output signal of the transversal

(Godard) equalizer is

t2 (k) = B(k)ST (k) (B.3a)
= [b1(k), ba(k), - - -][s(k), s(k — 1), ---]". (B.3b)

After the phase rotator, the signal and its vector becomes

u® (k)
U(2)(k)

£®) (f)e~70k) (B.4a)
T (k)e=70%), (B.4b)

The equalizer output (ignoring the effect of the quantizer due to linearization),

eventually, becomes

= [1, a1(k), az(k), - - - J[u® (k), u® (k — 1), |7 (B.5b)

[1- B(k)ST (k)e™*®, a1 (k)B(k — 1)ST(k — 1)e 901 ...

anym-1(k)B(k— N — M+ 1)ST(k — N — M + 1)e 70— N=M+1)]
(B.5c¢)

Recall that Equation (5.18) states that
uM (k)e™ k) ~ @) (k). (B.6)
From (B.2) and (B.5), we get

uD (k)e™%%) = [by (kYA (k)ST (k), ba(k)A(k — 1)ST(k — 1), -,
byim(K)A(k— N — M+ 1)8T(k— N — M + 1)]e/® (B.7a)
2(2)<k> _ [1 . B /f)ST(k)e_j9<’“),a1(k)B(k _ 1)ST(k _ 1>€—j9(k—1)’ cne

anim—1(k)B(k— N — M +1)8T(k — N — M + 1)e 90¢-N-M+1)]
(B.7b)

After a close examination of (B.7a) and (B.7b), it is clear that under the condi-
tion of non-adaptive equalization, both terms are exactly equal. The difference
in magnitude of these two terms increases as the step sizes of the adapting filters
are increased. If Pr{Q(2?(k)) = a(k)} is high enough, i.e., the output signal is
sufficiently reliable, then incorporating the non-linear quantizer would still yield

output signals that are almost similar from both the “top” and “bottom” paths.
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