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A bstract

This thesis is concerned with the study of the existence of extremal metrics and 
Abreu’s equation reduced from the scalar curvature equation on toric Kähler 
manifolds.

Part I contains an introduction of canonical metrics in Kähler geometry. In 
Chapter 1, we recall the definition of Calabi’s extremal metrics and the famous 
Yau-Tian-Donaldson conjecture which relates the existence of extremal metrics 
to stabilities in sense of geometric invariant theory. In Chapter 2, we review 
Donaldson’s reduction of this problem on toric manifolds.

In Part II, we present new results in the case of toric surfaces. Based on 
Arrezo-Pacard-Singer’s work, we prove in Chaper 3 that on every toric surface, 
there exists a Kähler class which admits extremal metrics. We also give examples 
of Kähler classes on a toric surface which admit no extremal metrics. In Chapter 
4, we prove that among all toric surfaces with 5 or 6 T2-fixed points, CP2#3CP2 
is the only one which admits Kähler classes with vanishing Futaki invariant. We 
also prove these Kähler classes are K-stable. Therefore by Donaldson’s theorem, 
there exist constant scalar curvature metrics in these classes.

In Part III, we study Abreu’s equation. The Bernstein theorem for Abreu’s 
equation in dimension 2 is proved in Chapter 5. In Chaper 6, we solve a boundary 
value problem for Abreu’s equation. Similar results for the affine maximal surface 
equation were proved by Trudinger and Wang. But Abreu’s equation is not affine 
invariant, new a priori estimates are needed for these results.
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Chapter 1

Extrem al m etrics

The existence of canonical metrics on Kahler manifolds is one of the central 
problems in complex geometry. Calabi [Cal3] proposed to study the existence of 
extremal metrics in a given Kahler class on a Kahler manifold. In this chapter, we 
first recall some elementary knowledge about Kähler geometry and then introduce 
the notion of extremal metric.

1.1 K ähler g eo m etry

In this section, we briefly recall some terminology and basic properties in Kähler 
geometry.

1.1.1 H erm itian and K ähler m etrics

Let (M, J ) be a compact 2n-dimensional complex manifold, where n is the com
plex dimension and J  is the complex structure.

Definition 1.1. A Hermitian metric on M  is a Riemannian metric g which 
satisfies

g{ JX , J Y ) = g(X. Y), V X, Y  G TXM, x € M.

With the Hermitian metric, we can define a 2-form a;g on M  by

a >g(X,Y)  = -g (X , JY ) .

We call it the Kähler form of g.

Definition 1.2. A Kähler metric on M  is a Hermitian metric g such that the 
associated Kähler form is closed, i.e., dwg =  0.

3



4 CHAPTER 1. EXTREMAL METRICS

Let V be the Levi-Civita connection of g, then the Kahler condition, i.e., 
dujg = 0 is equivalent to that the complex structure J  is invariant under parallel 
transformation, i.e., V J = 0.

Now, since we have an integrable complex structure, we can choose local 
complex coordinates {z1, ...,zn} such that zl = xl + y/—ly*. In this coordinate 
system,

d_ _  d_ d _ _  _ d _  
dx{ dyl 1 dyl dxl

The complexified tangent bundle TM  0  C is spanned by

_d_ = 1 (  d_ _ d_ = 1 ( d _  r x _ d \
dzl 2 dyl )  ’ dz{ 2 \öa:* dyl )

We can extend the metric g C-linearly to T M  ® C. One can verify that

( d _  _d_
9Kdz^ dzp

, d d x n 
9^dzi ' dz J  ~ ~

and

9ij 9 ji 9lj •

Hence, we can define a Hermitian inner product on the holomorphic tangent 
bundle T^1,0̂ M by

h =  gijdz1 <S> dzj .

In fact, the real part of h is the Riemannian metric g and the imaginary part is 
the associated Kahler form. The Kahler form can be rewritten as

LOg = —-—gfjdz1 A dzJ

in the complex coordinates. It is clear that on a Kahler manifold, a Kahler metric 
is uniquely determined by its Kahler form, so we usually denote a Kahler metric 
g by its Kahler form ug. Since uog is closed, it determines a cohomology class 
[ujg] G H2(M, R) n C), which is called the Kahler class of ug. The set of
Kahler forms that represent the class [cjg] can be expressed by the set of Kahler 
potentials as follows,

M{[u)g\) = {<£ G C°°(M,E) I ^  =  Lüg +  ^ Y - d d ( j >  >  0}.

Note that the volume element of lo$ can be represented as ^ An,Au/- ) and
U )n

the volume V(M) = f M depends only on the Kahler class.
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1.1.2 C onnection  and curvatures

On a Kähler manifold, we can naturally extend the Levi-Civita connection V and 
the Riemannian curvature tensor C-linearly to the complexified tangent bundle 
T M  ® C. We denote by r ,̂3 and Rap̂ s the connection and curvature coeffi
cients in the local complex coordinates {z1, ..., zn}. Here indices a, /?, 7 , S could 
be holomorphic or anti-holomorphic. When we use lower indices we indicate 
anti-holomorphic indices with over-bars and holomorphic indices without. For 
example, Tkj and are defined by

d z '  O Z J
= rfc----h r

lJdzk
k_d_ 
ijdzk '

For a Kähler metric g = g^, the Kähler condition implies that

^9ij 9gkj .
a =  “a » Vozk dzi

We have r̂ a3 = 0 unless a, /?, 7 are all holomorphic or anti-holomorphic and

r k  _  pF an(j pfc _
L i j  -  L I V  a n a  L i j  -  9  Q  •

For the curvature tensor, the only non-zero terms are Rfjki. Moreover,

D___  d2gij , „pq^dpj &9kq
^ - - d ^ d i A 9ä 7 ä iT '

By taking trace, the Ricci tensor in local coordinates can be written as

Rfj = gkl Rfjki = —(log det (gki))ij.

Hence, we can also associate it with a (1, l)-form called Ricci form as follows,

R.icfujg) yf=i
2

(log det{gki))fjdzl A dz3

>/=!
2

dd(log det (gki)).

It is well known that the cohomology class of the (1, l)-form is the first
Chern class Ci(M) which depends only on the complex structure of M. As we use 
Kähler forms to represent the Kähler metrics, we also use Ricci forms to represent 
Ricci curvatures.

Finally, by taking trace of Ricci tensor, we get the scalar curvature

S(ug) = - £ u (logdet {gki))ij-
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Note that when fixing a background metric ug and letting u# varies in the Kähler 
class [o;5], the scalar curvature S^ofy) is a fourth order operator on the space of 
Kähler potentials.

Another fact on Kähler manifold is that when g is Kähler, for any given 
smooth function / ,  in the local coordinates the second order covariant derivative 
V ;V j/ equals • Therefore,

A,/ = gfj

Here A g is half of the Laplace-Beltrami operator of the metric g.

1.2 E xtrem al m etr ics

In this section we introduce Calabi’s extremal metric as well as its energy func
tionals.

Definition 1.3 ([Cal3]). For a Kähler metric u, Calabi’s energy is given by

C(u) V(M)
t

( 1. 1)

Calabi [Cal3,4j proposed to study critical points of the functional in a fixed 
Kähler class [u>g\.

Definition 1.4 ([Cal3]). A Kähler metric in [ijg] is called extremal if it is a critical 
point of Calabi’s energy.

According to [Cal3], by computing the Euler-Lagrange equation of Calabi’s 
energy, is extremal if and only if

= 0, i , j  = 1 , n, (1.2)

i. e., the complex-valued gradient vector

x  = < /q sH ))3  A (i.3)

is holomorphic, where (g 1̂) is the inverse of Hermitian matrix (g{j + (pß). In 
particular, if X  = 0, the extremal metric is a constant scalar curvature (CSC) 
metric. Hence, if M  admits no holomorphic vector fields, any extremal metric on 
M  is a constant scalar curvature metric.
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The existence of extremal metric is a rather difficult problem because (1.2) 
is a 6th order nolinear PDE. However, the extremal holomorphic vector field X  
given by (1.3) can be uniquely determined by the Kahler class [u;5] no matter 
there exits an extremal Kahler metric on M  or not. To explain it, we first define 
a holomorphic invariant introduced by Futaki [Fut] as an analytic invariant on a 
Fano manifold which arises in the study of Kähler-Einstein metrics. This invariant 
is formulated as a character of the Lie algebra of holomorphic vector fields and 
can be defined in a general Kahler class on any Kahler manifold [Cal4].

Let rj(M) be the space of all holomorphic vector fields on M. For any Kähler 
class [a;], we pick a Kähler metric uog £ [a;]. It is known that there exists a smooth 
function hg on M  such that,

S K )  -  S  =  A ,h „

where
S =

1
V(M)

is the average of the scalar curvature depending only on the Kähler class. The 
Futaki invariant is defined by

F(b>g],v) =  J
It was proved in [Cal4] that this invariant is independent of the choice of ujg in 
[a;]. For convenience, we usually write the Futaki invariant by T(-) when the 
Kähler class is fixed.

Now we determine the extremal vector field following [FM]. Let Aut°(M) be 
the identity component of the holomorphisms group of M  and Autr(M) be the 
reductive part of Aut°(M). Then Autr(M) is the complexification of a maximal 
compact subgroup K  of Autr(M). We denote the Lie algebra of Autr(M) by 
rjr(M), which induces a set of holomorphic vector fields on M.  Let v £ rjr(M) 
so that its imaginary part generates a one-parameter compact subgroup of K. 
Then if the Kähler form uvg is A-invariant, that is, invariant under the group K , 
there exists a unique real-valued function 6V (called normalized potential of v) 
such that r ion

ivu)g = ^ M d 9 v(iJg), and / Ov(ug) - j  = 0. (1.4)
Jm 71 ■

For simplicity, we denote the set of such potentials 6V by E ^. Then the Futaki 
invariant on r]r can be written as

H y) = ~ J j v { u g){s {ug) - S ) A . (1.5)
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According to [FM], an extremal vector field X  in the Kahler class [ujg\ is defined 
by a gradient holomorphic vector field in rjr(M),

2zj(proj(SVs)) ) j-^ ,

where proj(5(o;s)) is the L2-inner projection of the scalar curvature of ujg to Ew . 
Futaki and Mabuchi proved that the definition of X  is independent of the choice 
of /^-invariant metrics in [uj9\. In fact X  is uniquely determined by the Futaki 
invariant T(-) as follows,

E(v) = -  [  0v(üüg)0x (ujg) - j ,  V rG  rjr(M). (1.6)
J M n '

Since IF(-) is a character, the above relation is equivalent to

E(v) = -  [  0v(cüg)6x {ug)- j , V v e r ] c(M), (1.7)
J M n -

where r/c(M) is the center of r]r(M). This shows that X  belongs to rjc(M). In 
particular, uog can be replaced by a ÄVinvariant Kähler form, where Kc is the 
Abelian compact subgroup of Autr(M) with the Lie algebra r]c(M).

By the above discussion, one sees that a Kähler metric in the Kähler class 
[u:g] is extremal iff the potential (f) satisfies a fourth-order equation with respect 
to the Kähler potential function <f>,

S(uj $) = S + 0x{(^4,)i ( 1.8)

where S  is the average of the scalar curvature of uog and 6x{<̂ )̂ = Oxi^g) + AT(0) 
denotes the potential of the extremal vector field X  associated to the metric 
(cf. page 208-209 in [FM]). In particular, if we choose the Kähler class to be 
a multiple of the first Chern class and X  vanishes, then the extremal metric, if 
exists, is a Kähler-Einstein metric. For example, when [ujg] = 2nci(M) > 0, and 
both Ric(uj0) and u# represent the first Chern class, then there exists a smooth 
function such that

Ricfaj) - u (f) = ^-^-ddhj,.

By taking trace,
Siu#) -  S  = A h#.

Hence (1.8) implies Ah# = 0. Since the manifold is compact, h# must be a 
constant, which immediately implies Ric(uo$) = In this case, the equation
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can be further reduced to a second order complex Monge-Ampere equation as 
follows. Let hg be the smooth function satisfying

Ric(ug) - ü J g =

Then if u# is Kähler-Einstein, we have

Ug + CEL dd<i> R ic ^ )

2

y T i

log (  ~

log ( —
W

Hence, the equation is

K  + ETL

+ Ric{uog)

+ <~da + ddhg.

Ag A (1.9)

which is a complex Monge-Ampere equation. When C i ( M )  < 0 or =  0, the 
Kähler-Einstein metric equation can also be formulated as complex Monge-Ampere 
equations with different right hand side terms.

In addition to Calabi’s energy, there is another important energy functional 
concerning extremal metrics, called modified K-energy. The original K-energy 
was introduced by Mabuchi [Mabl] for CSC Kahler metrics. The modified K- 
energy is defined on [ujg] by

mW>) =  ~V(M ) Jo f M^ [ S { ^ t) - S - e x {(i)t) ] ^  Adi:, (1.10)

where 0t(O < t < 1) is a path connecting 0 to (p in Mi^g]).  When X  — 0, //(</>) 
reduces to Mabuchi’s K-energy. It can be shown that the functional /i(0) is well- 
defined, i.e., it is independent of the choice of path (pt (cf. [Gua2], [Mabl], [Sim]). 
Thus 0 is a critical point of //(•) iff 0 satisfies (1.8). Moreover by the definition of 
X  and the relation (1.6), /i(0) is invariant under the group Autr(M). In [T2], Tian 
defined an analytic condition called properness for a functional which is equivalent 
to K-enegy. Then he proved that the existence of Kähler-Einstein metric in the 
positive first Chern class is equivalent to this properness. For the study of Kähler- 
Einstein metrics, different energy functionals have been introduced in [CT1, SW].

We finish this chapter by a brief review on the latest development of the study 
of extremal metrics concerning the uniqueness and existence.
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On the uniqueness of extremal metrics, great progress has been made. The 
uniqueness of Kähler-Einstein metrics was pointed out by Calabi in 1950s in the 
case when C\(M) < 0. In [BM], Bando and Mabuchi proved the uniqueness of 
the Kähler-Einstein metric in the case when C \ ( M )  > 0. For the case of CSC 
Kähler metrics, the answer is also positive. In [Ch], Chen proved the uniqueness 
of CSC Kähler metrics in any Kähler class which admits a Kähler metric with 
non-positive scalar curvature. In [Dl], Donaldson proved the uniqueness of CSC 
Kähler metrics in rational Kähler classes on any projective manifold without non
trivial holomorphic vector fields. The assumption on the holomorphic vector fields 
was later removed by Mabuchi [Mab3]. A complete answer to general extremal 
metrics was given by Chen and Tian. The theorem can be stated as follows.

Theorem 1.5 ([CT2]). Let (M, [a-1]) be a compact Kähler manifold with a Kähler 
class [a;] G H2(M, E) D C). Then there is at most one extremal Kähler
metric in Kähler class [u] modulo holomorphic transformations. Namely, if lji 
and to2 are two extremal Kähler metrics in the same Kähler class, then there is a 
holomorphic transformation a such that cr*u\ =  2 .

However, on the other hand, the existence of extremal metrics is still far from 
being completely understood. For the Kähler-Einstein case, this problem has been 
solved by Yau [Y2] when C \ ( M )  =  0, known as Calabi Conjecture, and solved by 
Yau, Aubin independently when C \ ( M ) < ü [Y2, Aul]. When C \ ( M )  > 0, it is still 
unknown whether the manifold admits Kähler-Einstein metrics although there are 
some remarkable work [Siu, Tl-2, WZhu]. In general, the existence of extremal 
metrics have been conjectured to be related to various stabilities of the underlying 
manifold in the sense of Geometric Invariant Theory. When the stabilities are 
violated, many counterexamples to the existence of canonical metrics on certain 
Kähler manifolds have been found [BD, R, St 1]. There are also some existence 
results in several special cases, see, for example, [API-2, APS, ACGT, CLW, Dl- 
5, Gual], In the next chapter, we will recall the development of extremal metrics 
on toric manifolds.

1.3 Relative K-stability

The relation between various notions of stabilities and the existence of Calabi’s 
extremal metrics have been recently studied ([T1], [D1-2], [Mab3-4], etc.). The 
goal is to find a necessary and sufficient condition for the existence of extremal 
metrics in the sense of Geometric Invariant Theory ([Y3], [T2]). There is now a
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famous conjecture called Yau-Tian-Donaldson conjecture that will be stated in 
Section 1.3.1. In Section 1.3.2, we will recall Donaldson’s definition of Futaki 
invariant for general polarized scheme. Then we state the notion of relative In
stability by [Sz], which is a main object of study in this thesis.

1.3.1 Y au-T ian-D onaldson  conjecture

Around the existence of Calabi’s extremal metrics, there is a well-known conjec
ture (cf. [Y3], [T3]):

Conjecture 1.6 ([Yau-Tian-Donaldson]). Suppose that (M, L) is a compact com
plex polarized manifold. Then M admits extremal metrics in 27TCi(L) if and only 
if (M, L ) is stable in sense of Geometric Invariant Theory.

Here we would like to point out that this conjecture was stated in many dif
ferent ways due to different notions of stabilities. The two best known stabilities 
are the K-stability and the Chow-Mumford stability.

For the “only if” part of this conjecture, the first breakthrough was made by 
G. Tian [T2]. By introducing the concept of K-stability, he gave an answer to 
“only if” part for the first Chern class (if it is positive) on M  (corresponding to a 
Kähler-Einstein manifold). Later, Donaldson extended the K-stability to general 
polarized varieties [D2] and made a conjecture on the relation between the K- 
stability and the existence of constant scalar curvature Kahler metrics. Very 
recently, Stoppa [St2] generalized Tian’s result to a compact Kahler manifold M  
with a CSC Kahler metric and without any non-trivial holomorphic vector field 
on M. Meanwhile, a remarkable progress was made by Donaldson who showed 
the Chow-Mumford stability is necessary for a polarized Kahler manifold with 
CSC metrics when the holomorphic automorphisms group Aut(M) of M  is finite 
[D1]. Donaldson’s result was later generalized by T. Mabuchi to any polarized 
Kähler manifold M  which admits an extremal metric without any assumption on 
Aut(M) [Mab4-5].

The definition of K-stability was extended by Szkelyhidi [Sz] to Kähler classes 
with nonzero extremal vector fields and was called relative K-stability. However 
it is still unknown whether it is true that the existence of general extremal metrics 
implies relative K-stability. Note that for Chow-Mumford stability, the answer 
is yes by Donaldson-Mabuchi’s result. In the case of toric manifolds, we gave a 
positive answer [ZZ2].
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The “if’ part of this conjecture is more difficult because we have to solve 
a fourth order elliptic equation. It is a challenge in differential geometry and 
PDE theory. On some special manifolds, the conjecture was confirmed. On toric 
manifolds, Donaldson [D2] set up a strategy for this problem and he proved the 
conjecture for toric surface when the Kahler class admits vanishing Futaki invari
ant [D3-5]. We will discuss more about Donaldson’s strategy on toric manifolds in 
the next chapter. Recently, another important progress was made on projective 
bundles, see [ACGT].

1.3.2 D onaldson-Futaki invariant

In this subsection, we recall the definition of Donaldson-Futaki invariant. As 
we said in Section 1.2, Futaki invariant was an holomorphic invariant first con
structed by Futaki and Calabi on any Kähler manifold. This definition was 
extended to the case of Fano normal varieties in [DT]. Later, Tian defined the 
notion of K-stability of a Fano manifold M  using this invariant and some de
generations of M. In [D2], Donaldson defined the general Futaki invariant for 
polarized scheme in an algebraic way. Here we state this definition as follows.

Let (M, L) be a polarized scheme, where L is an ample line bundle. Let a be 
a C*-action on (M, L ). Then for any positive integer k , a induces a C*-action on 
the vector space

Denote by the dimension of the vector space H* and Wk(a) the weight of the 
induced action on the highest exterior power H Then dk and Wk are given by 
polynomials of k as

Definition 1.7 ([D2]). The Donaldon-Futaki invariant of a on (M, L) is defined 
to be

Donaldson also proved that when M  is a smooth manifold and the C*-action 
is induced by a holomorphic vector field X,  this definition coincides with Futaki’s 
original result: let uj be a Kähler metric in 27TCi ( L ) ,  then

Hk = H°(M,Lk).

dk = a0kn + aik" 1 + ■ • 

Wk(a) = bokn+1 + b\kn + ■ ■ ■.

f { a )  = 4 V(M) (111)
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where
9 = G(S(a>) -

G is the Green’s operator, S  is the average of scalar curvature. Note that the 
integral in (1.11) is the original Futaki invariant in Section 1.2. Hence, when M  is 
a manifold, Donaldson-Futaki invariant is the original Futaki invariant multiplied 
by a constant.

1.3.3 N otion s of K -stab ilities

The definition of K-stability for a polarized manifold (M, L ) is related to its 
degenerations, called test configuration.

Definition 1.8 ([D2]). A test configuration for a polarized Kahler manifold 
(M, L) of exponent r consists of

1. a scheme W with a C*-action;

2. a C*-equivariant ample line bundle £ on >V;

3. a C*-equi variant flat family of schemes

7T : W — ► C,

where C* acts on C by multiplication. We require that the fibers (W*, £|wt) 
are isomorphic to (M .Lr) for any t ^  0.

Note that since 7r is C*-equivariant, the C*-action can be restricted to the 
central fiber. A test configuration is called trivial if W = M x C is a product. 
Now the K-stability can be defined as follows.

Definition 1.9 ([D2]). A polarized Kahler manifold (M, L) is K-semistable if for 
any test-configuration the Futaki invariant of the induced C*-action on (Wt, £|wt) 
is nonnegative. It is called K-stable if in addition the equality holds if and only 
if the test-configuration is trivial.

It has been proved that this K-stability is a necessary condition for the ex
istence of constant scalar curvature metrics in 27tci(L) on a polarized Kahler 
manifold (M, L) [St2].

As was pointed out, Futaki invariant is an obstruction to the existence of 
constant scalar curvature metric. When Futaki invariant does not vanish, i.e.,
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the extremal vector field is nontrivial, we need a modification of the notion of In
stability. In [Sz], Szekelyhidi introduced the notion of relative K-stability based 
on a modified Futaki invariant as a generalization of the K-stability. Let us recall 
the definition of relative K-stability.

To define the modified Futaki invariant, we first need an inner product for the 
C*-actions [Sz]. Let a, ß be two C*-actions on a polarized scheme (M .L ). Sup
pose that Ak and Bk are the infinitesimal generators of the actions on H°(M, Lk), 
respectively. The inner product (a, ß) is given by

Tr Tr(Ak) I \  f n Tr(Bk) I \
~ k  / w “  ~ _

(a ,ß)kn+2 + 0(kn+1).

The relative K-stability is based on the following modified Futaki invariant,

rß(a) =
(ß,ß) F ( ß ) , ( 1. 12)

where J-(a) and J-(ß) are Futaki invariants of a and /?, respectively.
Let x be the C*-action induced by the extremal vector field X.  We say that 

a test configuration is compatible with x, if there is C*-action \  on (W, £) such 
that 7T : W — +• C is an equivariant map with trivial C*-action on C and the 
restriction of x to (Wt,£|w t) for nonzero t coincides with that of x on (M, Lr) 
under the isomorphism. Note that C*-action a  on W induces C*-action on the 
central fibre M0 = 7r_1(0) and the restricted line bundle £ |m0- We denote by d 
and x the induced C*-action of a and x on (M0,£ |m0)> respectively.

The relative K-stability is defined as follows.

Definition 1.10 ([Sz]). A polarized Kähler manifold (M, L) is relatively K- 
semistable if ^ ( - )  < 0 for any test-configuration compatible with x- It is called 
relatively K-stable if in addition that the equality holds if and only if the test- 
configuration is trivial.

Finally, we would like to point out that since Donaldson’s Futaki invariant can 
be defined for polarized scheme, all the above notions are also well defined for 
schemes. We only stated the definitions for polarized manifolds which is enough 
for this thesis. The main objects we study in this thesis are toric manifolds. In 
the next chapter, we will obtain a simplified definition for the K-stabilities on 
toric manifolds.



C hapter 2

Toric reduction

In [D2], Donaldson built up a program of studying the existence of constant scalar 
curvature metrics and stabilities on toric manifolds. He reduced the K-energy to a 
real functional on a polytope in Rn, and proved that the K-stability is equivalent 
to the positivity of a linear functional on the polytope. Later, the reduction was 
extended to more general Calabi’s extremal metrics [ZZ1]. In this chapter, we 
will describe this reduction. We also reduce the scalar curvature equation (1.8) 
to Abreu’s equation [Abl].

2.1 K ah ler  g eo m etry  on  tor ic  m an ifo lds

In this section, we recall some background materials related to toric Kähler man
ifolds, for more details we refer the readers to [Abl-2, De, D2, Gui].

A complex manifold M  is called toric, if there is a complex torus Hamiltonian 
action T £  on M  and the action has a dense free orbit, identified with T £  =  

(C*)n = (S l ) n x Mn.
Now we assume that (M , g ) is an n-dimensional toric Kähler manifold with 

a torus action T =  (C*)n. Then the open dense orbit of T  in M  induces an 
global coordinates (uq,..., w n ) G (C*)n. To do the reduction we use the affine 
logarithmic coordinates

Zi =  log Wi =  £i +  v ^T Vi.

Let G0 =  (S 1)n be a maximal compact subgroup of T. Then if g is a Go-invariant 
Kähler metric, uog is determined by a convex function -00 which depends only on 
£ i G  in the coordinates ( z \ , ..... , zn), namely

aJg =  2\/^d<90o, on (C*)n.

15
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Since the torus action T  is Hamiltonian, there exists a moment map

m : M  —► Rn,

and the image is a convex polytope in Rn. Note that

&
Z{ + Z{

we have
(jJn —

2 ’ 

d2iPo
dCd^j

Zi -  Zi
Vi~ 2i 

d£i A drjj.

Hence, through

the moment map is given by

drrik — —̂ _d_uJn fdvk

fd'lpo d^0\  
( m i ’ ...... .....................................

that is the gradient of Denote the image by

P = Dtß o(Rn).

Then P is a convex polytope. This polytope is independent of the choice of the 
metric g in the class [ujg]. However, P can not be an arbitrary polytope in Rn. An 
interesting result [De] says that P satisfies several special conditions. DelzanUs 
conditions can be stated as follows [Abl]:

1. There are exactly n edges meeting at each vertex p.

2. The edges meeting at the vertex p are rational, i.e., each edge is of the form 
p + tVi, 0 < t < oo, V{ G Zn.

3. The vectors Vi, • • • ,vn can be chosen to be a basis of Zn.

As a conclusion, for an n-dimensional compact toric manifold M, together with 
an associated Kahler class [u5], (M, [o;fl]), there is an associated bounded convex 
polytope P C Mn satisfying Delzant’s conditions. Conversely, from a convex 
polytope P e l "  satisfying Delzant’s conditions, one can recover a toric manifold 
and the associated Kahler class (M, [o;5]). See [De] for details.

We will characterize the metric under the polytope coordinates. The polytope 
P can be represented by a set of inequalities of the form

P = { x e R n : {x,£i) < \ i: i = 1,2, • • • ,d}, (2.1)

where C is the normal to a face of P, Ai is a constant, and d is the number of 
faces of P. Delzant’s conditions can be equivalently stated as follows.
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1. There are exactly n faces meeting at each vertex p.

2. The normals £{ (i = 1,2, • • • , d) are vectors in Zn.

3. At any given vertex p, let £^, be the normals to the faces at p, then

Rem ark 2.1.
(i) Note that if det(G , £ n) = 1 and if £i G Zn, the matrix (£\, • • • ,£„) can be 
reduced to the unit matrix by Gauss elimination. Therefore (G, • • • , £n) is a basis

(ii) The constants Ai, • • • , Ad are not necessarily integers, and can change contin
uously. When they are all integers, the associated Kahler class is called integral 
[Gui] and from the polytope P  we can recover a polarized toric manifold.
(iii) Two different polytopes may correspond to the same toric manifold (M, [u:fl]). 
Indeed, all Delzant triangles correspond to the complex projective space CP2. We 
will discuss equivalent classes of Delzant’s polytopes in Chapter 4.
(iv) We also note that the set of all Kahler classes on a toric manifold M  is a 
finite dimensional convex cone. Moreover, a Kahler class is the first Chern class 
if and only if A* = 1 for all i = 1, • • • , d (up to translation of coordinates).

By using the Legendre transformation £ = (Dipo)-1(x), one sees that the 
function (Legendre dual function) defined by

is convex. In general, for any Go-invariant potential 0 in [u;fl], one gets a convex 
function u ^x )  on P  by using the above relation while ipo is replaced by ipo + (p.

C = {u = Uq + v I u is a convex function in P, v G C°°(P)}.

It was shown in [Abl] that there is a bijection between functions in C and Go- 
invariant functions in M.([ujg\). Denote the latter by A4g0([^s])- For any function 

in C, it can be explicitly given by ([Gui, Ab2]):

det ( £ i l , . . . , £ i n ) = ±1.

of Zn.

M x) = (^Dipo(O) -  MO  =  ( f ( s ) , z )  -  MM)):  v  x g p

Set

( 2 .2)

and it defines the form

uj94> = 2\Mlddm*((x, Du$) -  u#)
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on m~1(P), where /  is a function smooth up to boundary of P, m* is the pull
back map of m. We usually say that a function satisfies Guillemin’s boundary 
condition if it can be written in the form of (2.2).

In the coordinates {xi, ...,xn}, the scalar curvature of g# is given by [Abl]

V  —
t ^ x dx'dxi

(2.3)

where u is the Legendre function of 0 = 0O + 0, (uy) is the inverse matrix of 
(uij) = (dxTE )• For simplicity m the following we will write the right hand side 
of (2.3) as —u/j- The gradient of the scalar curvature is given by

v^o's = r

Note that g$ is extremal metric if and only if V^1,0)5 is holomorphic. Since 
= Jy- is real, it is holomorphic if and only if S is an affine linear function 

in the x-coordinates. In fact, we can determine the potential function of the 
extremal vector field. As in §1.2, Let iqr(M) be the Lie algebra of the reductive 
part of AuC(M), then r/c(M) is the Lie algebra of the torus action T  on M. By 
(1.7) we have

Lemma 2.2 ([ZZ1]). Let 0 be a Go-invariant potential in [uvg] on M and v E 
Let 6V = Ov{uj(f) be a normalized potential of v associated to as in 

(1-4). Then there are 2n-numbers a i and Ci such that
n

Oy ^   ̂ CLi^Xi -)- Cj).

Z=1

Moreover, if v is extremal, a i and Ci are determined uniquely by 2n-equations,

= ~ f j E  + cM xt + ci) dx> i = (2.4)

/ (xi + Ci) dx = 0, i =  l,...,n , (2.5)
Jp

where d~{-) is the Futaki invariant.

Therefore, let 6x be the affine linear function determined by (2.4), (2.5), the 
scalar curvature equation becomes a equation on the polytope,

-u'ij = S  + $x , (2 .6 )
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This equation is called Abreu’s equation.
Hence, on toric manifolds, the existence of extremal metric reduces to a 

real PDE problem of finding smooth solutions u to equation (2.6) defined on a 
Delzant’s polytope P such that u satisfies Guillemin’s boundary condition, which 
is given by (2.2).

2.2 D onaldson’s reduction

2.2.1 R eduction  o f Futaki invariant

Let der0 be the Lebesgue measure on the boundary dP  and v be the outer normal 
vector field on dP. Then we define a measure

, iv. x) , 1 7
da = ■ der0 = — d<70 (2.7)

\  \"i\

on the face (£i,x) = A; of P. Donaldson obtained the following simplification for 
Futaki invariant.

Lemma 2.3 ([D2]). The Futaki invariant can be computed on the polytope by

vm T{-k) = - (L Xidâ sLXidx)- ( 2 - 8 )

For simplicity, we denote A := S + 6x, and define a linear functional C by

C{u) = /  uda — Audx. (2.9)
JdP Jp

Let C\ be the set of general convex functions with Ll boundary value. The linear 
functional C is well defined in C\. By Lemma 2.2 and 2.3, A is an affine linear 
function in the polytope coordinates {aq,..., xn}, which can be determined by the 
parameters in (2.1) as follows.

Proposition 2.4. Let A = ao + Yl™ aix i- Then ao,ai,...,an can be determined 
uniquely by the n + 1-equation system

£(1) = 0, C(Xi) = 0, i = 1, ...,n. (2.10)

In Chaper 4, we will use this proposition to determined all the Delzant’s 
polytopes with no more than 6 vertices and with vanishing Futaki invariant. The 
linear functional C will also play an important part in the study of K-stability 
later.
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2.2.2 R ed uction  of K -energy

In this section, we transform the modified K-energy to a real functional for func
tions in C. This version of K-energy was first introduced by [D2], we extended it 
to modified K-energy [ZZ1].

Proposition 2.5 ([D2, ZZ1]). Let u be the Legendre function of i f  =  V;o + <t>, then 
there is a constant C independent of <f, such that

Proof. One can derive the formula (2.11) as in [D2]. Here we give a different 
proof. Denote by ut the Legendre function of (f)t. By definition.

( 2 . 11)

where
( 2 . 12)

M x ) =  x & ( x )  -  Ut(ft(x)).

Differentiating it and using the fact =  X { ,  we have

Changing the coordinates from f to x, we obtain

(log det D2(pt)ij = -

i

det D 2(f)td£ =  dx.

[(log det D2ut)ki(uty k + (log det D2ut)k(ut)lk],

(2.13)

Therefore, functional (1.10) becomes

ih[(logdet D 2ut)ki(uty k + (logdet D 2ut)k{uty k\ dxdt

Integrating by parts, we have

tit (log det D 2ut)ki{uty k + (log det D 2ut)k(uty kdxdt
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By Guillemin’s boundary condition, it holds [D2-3]

(ut)£ Video = da

on the boundary dP. Hence the first term is

-  [  [  (log det D2nt)k(uty kiSida0dt = f  f  ut{ut) ^ d a 0dt 
J0 J d P  Jo  J d P

f jJ O  J d l
iU dadt.

The second term is

f f (ib)i(logdet D2ut)k{ut)lk dxdt = [ [ (ut)i(ut)pq(ut)pqk(ut)lk dxdt
Jo Jp Jo Jp

= -  [  [  {ut)q(ut)pq dxdt 
Jo Jp

1 [ d(\og det D2ut)
dt.

o j p

Therefore we have
n r

K t )  =  -T7TUN Jo
(27r)n f 1 d( fp log det D2ut dx — fgp ut da + fp Aut dxdt) 
V(M)

dxdt.

The proposition follows.

2.2.3 R ed uction  o f K -stab ility

Now we consider the relative K-stability of a polarized toric manifold (M, L) 
which corresponds to an integral polytope P in Rn (i.e. when A* in (2.1) are 
integers). In [D2], Donaldson induced toric degenerations as a class of special 
test configuration induced by positive rational, piecewise linear functions on P. 
The reduction of the stability is based on these degenerations.

Recall that a piecewise linear (PL) function u on P is of the form

u = max-fit1, ..., ur},

where ux = ai xi + cA, A =  1, ...,r, for some vectors (aA, ..., aA) G Mn and some 
numbers cA G R. it is called a rational PL-function if the coefficients ax and 
numbers cA are all rational.

For a positive rational PL function it on P, we choose an integer R so that 

Q = {(x,t) I x G P, 0 < t < R — u(x)}
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is a convex polytope in IRn+1. Without loss of generality, we may assume that 
the coefficients a( are integers and Q is an integral polytope. Otherwise we 
replace u by lu and Q by IQ for some integer l, respectively. Then the n + 1- 
dimensional polytope Q determines an (n+ l)-dimensional toric variety Mq with 
a holomorphic line bundle £  —> Mq . Note that the face Q H {Rn x {0}} of 
Q is a copy of the n-dimensional polytope P, so we have a natural embedding 
i : M  —> Mq such that £ |m = L. Decomposing the torus action 7j?+1 on Mq 
as Tg x C* so that T£ x {Id} is isomorphic to the torus action on M, we get 
C*-action a by {Id} x C*. Hence, we define an equivariant map

7T : Mq —> CP1

satisfying 7r_1(oo) = i(M). One can check that W = Mq\ i(M) is a test configu
ration for the pair (M, L), called a toric degeneration [D2]. This test configuration 
is compatible to the C*-action \  induced by the extremal holomorphic vector field 
X  on M. In fact, x as a group is isomorphic to a one parameter subgroup of 
T£ x {Id}, which acts on W. Since the action is trivial in the direction of a, the 
test configuration is compatible.

The modified Futaki invariant for a toric degeneration has an explicit formula 
in polytope coordinates. Indeed, the following proposition relates the K-stability 
to the positivity of functional (2.9). It can be regarded as a generalization of 
Proposition 4.2.1 in [D2].

Proposition 2.6 ([D2, ZZ1]). For a C*-action a on a toric degeneration on M  
induced by a positive rational PL-function u, we have

=  - 2 vkp)C{u)’ (2 ' 14)

where \  is the C*-action induced by the extremal holomorphic vector field X , and 
Px(d') is given by (1.12).

According to the above reduction, we will use the positivity of C as the def
inition of relative K-stability on toric manifolds and we usually omit the words 
“relative” and “for toric degenerations” for simplicity.

Definition 2.7 ([D2]). We call (M, L) is relatively K-stable for toric degenera
tions if its associated polytope satisfies C(u) > 0 for all rational PL functions 
u on P and if C(u) =  0 for a rational PL function u , then u must be a linear 
function.
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Remark 2.8.
(i) In [D2] the K-stability was defined on polarized toric manifolds, that is the 
case when the constants A* in (2.1) are integers. But obviously his definition 
can be extended to general polytopes. (When the constants A; in (2.1) are not 
integers or rational numbers, we need to drop the word “rational” in the above 
definition).
(ii) The K-stability is related to Kähler class and is an intrinsic property. So if 
two polytopes corresponds to the same Kähler class of a toric manifold, then the 
K-stability of one polytope implies that of the other.

In dimension 2, that is, on toric surfaces, there is a further reduction on 
the positivity of C. Following Donaldson, we say a function u is simple PL if 
there is a linear function I such that u =  max{0,t?}. If u is simple PL, the set 
Tu = Pfl {I = 0} is called the crease of u. We still denote by C\ the set of general 
convex functions with Ll boundary value.

Proposition 2.9 ([D2]). Let P be a convex polytope P  C  IR2. Assume that A 
is positive and satisfies (2.10). Suppose that C{u) >  0 for all convex functions 
u G C\ but there is a nonlinear convex function u € Ci such that C(u) = 0. Then 
there is a simple PL function ü with its crease 2^ 0 such that C{u) = 0.

We will remove the assumption A >  0 in the next chapter.
In the end of this section, we restate the conjecture of Yau-Tian-Donaldson 

on toric manifolds.

Conjecture 2.10 ([D2]). A polarized toric manifold M admits extremal metrics 
in 2nci(L) if and only if (M, L) is relatively K-stable for toric degenerations.

2.3 R ecent progress on toric m anifolds

In this section, we review some main results on extremal metrics on toric mani
folds.

The ‘only if’ part of Conjecture 2.10 was proved in [ZZ2].

Theorem 2.11 ([ZZ2]). Let (M ,L ) be a polarized toric manifold which admits 
an extremal metric in 2ttci(L). Then (M,L) is relatively K-stable for toric de
generations.
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As we explained in last section, the relative K-stability for toric degenera
tions means the positivity of C for all PL-functions. Using Abreu’s equation and 
Guillemin’s boundary condition, one can show that

where u is the solution to Abreu’s equation satisfying Guillemin’s boundary con
dition. By (2.15), C is strictly positive for functions in C. Hence, Theorem 2.11 
implies that if M  admits an extremal metric in 27TCi (L), then for any PL-function 
/  on P, we also have

Moreover the equality holds if and only if /  is a linear function.

The ‘if’ part of the conjecture is rather difficult. Most of the recent develop
ments occur in dimension 2. In [D2], Donalson proved that on a toric surface, if 
the Kahler class has vanishing Futaki invariant, then K-stability implies that the 
K-energy is bounded from below. Later in a series of papers [D3-5], Donaldson 
gave a confirmative answer to Conjecture 2.10 in this special case by a continuity 
method.

Theorem 2.12 ([D5]). M admit a constant scalar curvature metric in 2ttc\(L) 
if and only if (M, L) is K-stable and Futaki invariant vanishes.

In his proof, the degeneration family of the continuity method was chosen 
to be the perturbation of the triple (P, A, da). In [D3], he obtained the interior 
estimates of Abreu’s equation. Then under an analytical condition called M- 
condition, he obtained boundary estimates by blow-up arguments [D4], These a 
priori estimates can be used to solve the existence of constant scalar curvature 
metrics. Finally, the conjecture was solved by showing that K-stability implies 
the a priori estimate of M-condition [D5]. In the general case with nonzero 
Futaki invariant, i.e., A is not a constant, the existence of solutions is still an 
open problem.

Another progress was made on toric Fano surfaces. A complex manifold is 
called Fano if its first Chern class is positive definite. It is well known that toric 
Fano surfaces are classified into five different types, i.e., CP2, CP1 x CP1 and the 
blowing-up spaces CP2#/C P2,/ = 1,2,3. In [CLW], X. Chen, C. Lebrun and B. 
Weber proved the existence of extremal metrics on CP2#2CP2, especially in its 
f.rst Chern class. Together with the existence of Kahler-Einstein metrics on CP2,

(2.15)

£( /)  > o.
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CP1 xCP1, CP2#3CP2 [TY, Siu] and Calabi’s construction of extremal metrics on 
CP2#1CP2 [Cal3], this implies that every toric Fano surface admits an extremal 
metric in its first Chern class.

In higher dimension, very little of existence result is known. In [ZZ3], under 
the assumption of a variational condition on the modified K-energy, the authors 
proved the existence of weak solutions for the extremal metrics in any dimension 
in the sense of general convex functions minimizing the modified K-energy. This 
variational condition generalizes Tian’s properness condition dealing with Kähler- 
Einstein metrics in the positive first Chern class [T2]. The properness condition 
is a generalization of Moser-Trudinger inequality [T2, PSSW]. The uniqueness 
and regularity of this weak solution is still unknown.

In the special case for Kähler-Einstein metrics, the problem has been com
pletely solved by Wang and Zhu.

Theorem  2.13 ([WZhu]). A toric manifold with positive first Chern class admits 
a Kähler-Einstein metric if and only if the Futaki invariant vanishes in its first 
Chern class.

2.4 M ain  resu lts  in th is  th esis

In Part II, we study the existence of extremal metrics and K-stability of Kahler 
classes on toric Kähler surfaces.

A fundamental property of toric Kähler surface is that every compact toric 
Kähler surface can be obtained from CP2 or Hirzebruch surfaces F*, (k — 0,1,2, • • •) 
by a succession of blow-ups at T^-fixed points [Ful]. In §3.1 we use this prop
erty and a result by Arrezo-Pacard-Singer [APS] to prove that on every toric 
surface, there exists a Kähler class which admits extremal metrics. We restate 
Arrezo-Pacard-Singer’s theorem as Theorem 3.2 in §3.1.

In §3.2 we give examples of Kähler classes on toric surfaces which are not K- 
stable. By Donaldson’s reduction of the K-stability, Definition 2.7, it suffices to 
find a polytope P C l 2 satisfying Delzant’s conditions and a PL function u such 
that the functional C{u) < 0. Such kind of examples was found by Donaldson 
but we found an unstable polytope P c ® 2 with 9 T^-fixed points (the number 
of vertices of the polytope).

In §3.3, we remove the condition A > 0 in Proposition 2.9. Our proof uses 
properties of solutions to degenerate Monge-Ampere equation.

In Chapter 4, we are concerned with the existence of constant scalar curvature
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metrics on toric surfaces. To apply Donaldson’s Theorem 2.12, we want to check 
when a toric surface has vanishing Futaki invariant and whether it is K-stable. 
It is known that a toric surface with 3 or 4 T^-fixed points must be CP2 or a 
Hirzebruch surface, and among these toric surfaces, CP2 and CP1 x CP1 are the 
only ones which have vanishing Futaki invariant and all the Kähler classes on 
them are K-stable. In this chapter we verify toric surfaces with 5 or 6 T^-fixed 
points.

In §4.1, we introduce a classification of polytopes in R2 which satisfy Delzant’s 
conditions. That is, we regard a family of polytopes as the same class if they 
correspond to the same Kähler class on a toric surface. This classification is built 
upon the fundamental property of toric surfaces stated above.

In §4.2, we prove that among all toric surfaces with 5 or 6 T2-fixed points, 
CP2#3CP2 is the only one which admits Kahler classes with vanishing Futaki 
invariant. The verification of vanishing Futaki invariant involves complicated 
computation, as we have to check all Delzant’s polytopes one by one. This was 
done in [WZho] but in this thesis we present a different verification for some cases 
of the polytopes.

In §4.3, we prove that the Kähler classes with vanishing Futaki invariant 
on CP2#3CP2 are K-stable. To verify the K-stability, by Definition 2.7 and 
Proposition 2.9, we need to show that the linear functional C(u) > 0 for all 
nontrivial simple PL functions. Again the verification of K-stability is technically 
a difficult problem, even the number of vertices is 6.

In Part III, we study Abreu’s equation. It is a fourth order partial differential 
equation and resembles in certain aspects to the affine maximal surface equa
tion arising from affine geometry. We study the Bernstein theorem and the first 
boundary value problem for this equation.

In Chapter 5 we prove the Bernstein theorem for Abreu’s equation in dimen
sion 2. That is, we prove a smooth convex solution to

^ 2 i j = i ^ u' J ^x *x3 =  0

in the entire space R2 is a quadratic function, where (wu ) is the inverse matrix 
Of (Uij).

For the affine maximal surface equation this result was proved in [TW1]. 
Our proof is based on the a priori estimates and a rescaling argument (§5.5). 
This idea is similar to that for the Monge-Ampere equation [P] and the affine 
maximal surface equation [TW1]. But Abreu’s equation is not invariant under



2.4. MAIN RESULTS IN THIS THESIS 27

linear transformation of coordinates IR n + 1 . When we rotate the coordinates in 
IR n+1 we get a more complicated 4th order pde (§5.3). We need to establish 
not only the a priori estimates for Abreu’s equation (§5.2) but also for the new 
equation (§5.3).

The a priori estimates also rely on the strict convexity of solutions, which 
involves subtle convexity analysis, and is done in §5.4. Our convexity analysis 
follows in a certain way the treatment in [TW1, 5]. In §5.6 we consider a variant 
of the Bernstein theorem. That is we prove in dimensions 2-4 that a solution to 
Abreu’s equation is a quadratic function if its graph is complete when equipped 
with Calabi’s metric.

In Chapter 6, we deal with a boundary value problem for Abreu’s equation, 
which can be formulated as a variational problem for the energy functional

The Euler equation of the functional is — /• We prove that in
dimension 2, there exists a unique, smooth convex maximizer of Jq in

S[(p, $2] = {u G C2(S7) I u is convex u\qq = ip(x),Du(Ll) C Dip(Q)}, (2.16)

where Ll is a bounded domain in Rn with smooth boundary and ip is a convex, 
smooth function defined in a neighborhood of Q.

The proof is inspired by Trudinger-Wang’s variational approach and regularity 
arguments in solving the affine Plateau problem. But due to the singularity of

[TW3, 5] does not apply directly to our problem. To avoid this difficulty we 
introduce in §6.2 a sequence of modified functionals Jk to approximate J0, such 
that the integrand in Jk is Holder continuous at d = 0, and prove the existence 
and uniqueness of a maximizer of the functional Jk in the set S[p. £2].

The regularity of the maximizer is our main concern. In §6.3 we establish a 
uniform (in k) a priori estimates for the corresponding Euler equations. In §6.4, 
we establish the uniform (in k) a priori estimates for the equations obtained after 
coordinates rotation in Rn+1.

As the maximizer may not be smooth, to apply the a priori estimates we 
need to prove that the maximizer can be approximated by smooth solutions. We 
cannot prove the approximation for the functional Jo directly as log d is singular 
near d = 0. But for maximizers of J*,, the approximation can be proved similarly 
as for the affine Plateau problem [TW3, TW5]. We include the proof in §6.5 and 
§6.6 for completeness.

the function logd near d = 0 (d = det D2u), the approximation argument in
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The a priori estimates also relies on the strict convexity of solutions. The 
proof for one case is similar to that in Chapter 5 (§6.7) but for the other case 
the proof uses the a priori estimates, the Legendre transform and in particular a 
strong approximation Theorem 6.21 and is contained in §6.8.



P a r t  II

Toric surfaces



C hap ter 3

Existence and  nonexistence

In this chapter focus on the two dimensional case. We will not distinguish 
K-stability and relative K-stability for toric degenerations. We always call In
stability. We first show that every toric surface admits an extremal metre in 
Section 3.1 following the recent work [APS]. Then in Section 3.2, we present 
some examples of unstable Kahler class on toric surfaces. A further reduction to 
simple PL functions for the verification of K-stability will be given in Section 3.3. 
Results in this chapter are contained in [WZho].

3.1 A n  e x is te n c e  th eo rem

In this section, we show the following result.

Theorem 3.1. On every toric Kähler surface M , there is a Kähler class such 
that M admits an extremal metric of Calabi in the class.

Theorem 3.1 is essentially due to [APS]. Let us recall a main result in [APS]. 
Let ( M , u j g )  be an n-dimensional compact Kähler manifold whose associated 
Kähler metric g is an extremal metric,

Es = JVS + V - I V S

is a holomorphic vector field on M, where S  is the scalar curvature and J  is the 
complex stucture. Suppose that G is a compact subgroup of Isom(M,g) and 
its Lie algebra is g. Denote by f) the vector space of G-invariant hamiltonian 
real-holomorphic vector fields on M. Then

Theorem 3.2 ([APS, Theorem 2.1]). Suppose (M,g) is extremal and I) C g, 
«/Vs G g. Let Go be the identity component of G. Given pi,...,pm E Fix{Go)

31
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and ai, > 0 such that aj1 = aj2 ifp j1 and pj2 are in the same G-orbit, there
exists £o > 0 and, for any e G (0, eo), there exists a G-invariant extremal Kühler 
metric cje on the blow-up space M at p \, ...,pm, such that ut lies in the class

tt'M  -  e2( a r TPD[Ei] + ... + aZpPD{Em}), (3.1)

where 7r : M  —> M  is the standard projection map, PD[Ef] are the Poincare duals 
of the (2n — 2)-homology class of the exceptional divisors of the blow up at pj.

Note that when M  is a toric manifold and G = Go is the compact torus 
action Tn, one has f) = g and JV s G g, so the conditions in the theorem hold 
automatically, as pointed out in corollary 2.2 in [APS].

Now we apply the above result to toric Kahler surfaces. It is known that every 
compact toric Kähler surface can be obtained from CP2 or Hirzebruch surfaces 
Ffc (A; = 0,1, 2, • • •) by a succession of blow-ups at T^-fixed points [Fill]. More 
precisely, let M  be a toric surface with Kähler class K  corresponding to a polytope 
P. Then a T^-fixed point X  of M  corresponds to a vertex p of the polytope P. A 
blow-up of M  at JA is a new toric Kähler surface which corresponds to a convex 
polytope P obtained by chopping off a corner of the polytope P  at p. Moreover, 
it is known [Ful] that a Delzant polytope with m vertices (m > 5) can be obtained 
by chopping off a corner from a Delzant polytope with m — 1 vertices. Theorem
3.2 means that if there is an extremal metric on M. in the Kähler class K , then 
there is an extremal metric on M  in the class K  corresponding to P, provided 
the chopped-off corner is small and P  satisfies Delzant’s conditions. Furthermore, 
the Kähler class K  is exactly the class given in (3.1) [Gui].

It is well known that on CP2, the Fubini-Study metric is a Kähler-Einstein 
metric in the first Chern class. For the Hirzebruch surface F*, the existence of 
extremal metrics in any Kähler class can be reduced to an ODE and can be found 
in [Cal3]. Therefore Theorem 3.1 follows from the above Theorem 3.2.

3.2 U nstable exam ples

Donaldson [D2] found Delzant polytopes with large number of vertices which are 
not K-stable. Here we provide different examples. We wish to find an unstable 
Delzant’s polytope with least number of vertices.

Theorem 3.3. For any m > 8, there exists a toric Kähler surface M ^  with 
unstable Kähler class, and so there is no extremal metric on in the class,
where M ^  denotes a toric surface with m T^-fixed points.
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3.2.1 An exam ple

Our first example is symmetric with respect to both the X\ and the x 2  axes. So 
it suffices to give the vertices in the positive quarter

{x =  (Xi,X2 ) G R2 I X\ >  0, X2 >  0}.

Let a,n  (a >> n > 1) be integers to be determined later. The intersection of 
dP with the positive axes are the two points (0,a*) and (n + 1,0) (both points 
are not vertex of P), where

The vertices in the positive quarter are given by

Pi =  (l,a* ), 

p2 — (2, a* — 1),
P3 — (3, a* — (1 +  2)),

Pfc+i — (k +  1, a* — (1 +  2 +  • • • +  k)),

Pn+i  —  (u +  1, o:* — (1 -T 2 +  • • • +  n)) =  (71 +  1, a).

The vertices in other quarters are reflections of pi, • • • ,pn+i in the axes.
Let E0 be the edge connecting the vertex (—l,a*) to pi, and Ek be the edge 

connecting the vertices pk and Pk+i, k =  1,2, • • • , n, and En+1 be the edge con
necting pn+1 to (n + 1 , —  a). Let £{ be a normal at the edge Ei , given by

4 -  (0, 1),

h  = (2, 1),

Ck  —  { k ,  1 ) ,

£n (̂ , 1),
4 +i =  (1,0).

One easily verifies the polytope P  satisfies Delzant’s conditions.
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We show that the polytope P given above is not K-stable when a, n are 
sufficiently large (a >> n). As was pointed out above, it suffices to show that

C(u) = /  uda — Audx < 0 (3.2)
J d P  J p

for some PL function u. Note that when computing the integral Jgp da, we have

1 d a  =  
E0

2,

[  d a  = 1 for i
E i

f  d a =  2a .
En + l

(3.3)

Note that P is symmetric with respect to the axes, the linear function A is 
necessarily a constant, namely A = a0 (so an extremal metric must be a CSC 
metric if it exists). To compute the constant ao, letting Uq = 1 we have

£(u0) = 4(<a + n + 1) -  a0|P|
= 4(a + n + 1) — 4a0[a(n + 1) + 0 (n3)],

where \P\ is the area of the polytope P. Hence

oo =  - L r  +  0 ( - ) -  n  +  1 a

We choose a >> n such that O(^) is so small that can be neglected. 
Now we choose the function

(3.4)

ü = max{0, X2 — <a}.

It is a simple PL function, with crease Tü = P  fl {x2 = <a}. 
verifies that

üda < 2(n +  1) supri =  77.(77 +  l )2
p

(3.5)

By (3.3), one easily

and
r  ̂ jD
/ üdx > I P I  inf ü = ---- ,

Jp ~ ' 1 P 128’
where P = P fl {a + | t72 < x2 < a + 7̂72}. Hence when n is sufficiently large 
and when a »  77, by (3.4) we have

C{u) = /  üda — a0 ü d x <  0. (3.6)
J d P  J p

Hence, the corresponding toric surface is not K-stable. Note that the polytope P 
above is integral, namely the corresponding constants Ai in (2.1) are integers.
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3.2.2 U nstab le p o lytop es w ith  less vertices

It is interesting to find polytopes with less vertices such that the corresponding 
toric manifolds are not K-stable. In dimension 2, if the polytope has 3 vertices, 
it can only be CP2. If it has 4 vertices, the toric manifold must be a Hirzebruch 
surface. Both of them admit extremal metrics in any Kahler class. Hence, in 
dimension 2, a polytope of an unstable toric manifold has at least 5 vertices.

Let us first consider the polytope P in Section 3.2.1. We want to find the 
least n such that P is not K-stable. Instead of the test function (3.5), now we 
choose

ü = max{0, x2 — a + k}, (3.7)

so that ü = 0 when x2 < a — k and ü is linear when x2 > ot — k. Let n — 3. We 
have

/c2 + 8k -f- 0(1), 

4/c2 + 34/c + 0(1),

where 0(1) are absolute constants (depending only on n, but here n = 3 is fixed), 
and the number 34 is the area of PD {x2 > a}. Hence when k is sufficiently large 
and a »  fc,

C(u) = I ü d a —j  f  üdx = — ]-k + 0(1) < 0. (3.8)
J d P  4 J p  2

Therefore when n = 3, the corresponding toric manifold is not K-stable. The 
polytope P has totally 16 vertices.

Let
P' = P fl {x2 > —a}, (3.9)

where P is the above polytope, with n = 3, so that P' has only two vertices in 
{x2 < 0} and has totally 10 vertices. It is symmetric in x\ but not x2. The 
linear function A associated with P' has now the form A = do + a2x2. By direct 
computation,

o-o — T + 0 (—), a2 = 0 ( — ).4 a cr
We can choose a large enough such that O(^) and O(^j) are sufficiently small 
and can be ignored in the computation of £(fi), where ü is given in (3.7). Hence 
when k is sufficiently large and a >> k, as above we have C{u) < 0. Hence the 
corresponding toric manifold is not K-stable.
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Let P* be the polytope with vertices given by

Po =  (0,a*),

Pi =  ( 1 , 0 ,

P2 =  (2 ,a* -  1),

P3 =  (3, a* — (1 +  2)), 

p4 =  ( 4 , a * - (1 +  2 +  3)), 

p5 = (5 ,Q * -(l + 2 + 3 + 4)),

Pq = (7, a* — (1+ 2 + 3 + 4 + 10)) = (7. Of) 

p7 = (7, -o ) , 

p8 = (0,-o ) ,

where o > 0 is a large constant and o* = o + (l + 2 + 3 + 4 +  10). Then

Let ü be the test function in (3.7). Denote ut = max{0,:r2 — o + 1}. Then when 
o >> t »  1, we have

for some 6 > 0 independent of o, then C(u) < 0 when k is sufficiently large. 
Direct computation gives

The polytope P* has totally 9 vertices. It is the polytope of least vertices we 
have found such that the corresponding toric manifold is not K-stable.

An interesting question is whether a polytope P C M2 is K-stable if it has 8 or 
less vertices. We believe the answer is yes for polytopes with 7 or less corners. Our 
computation suggests the case of 8 corners is the borderline case. The verification 
of K-stability is technically a difficult problem, even for the polytope with 5 
vertices. In the next chapter, we consider the K-stabilty in the case A is constant.

Oo = ? + O(-), ai = 0(~), a2 = 0 ( L ) .7 a a

Therefore if
(3.10)
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3.3 K -stability and sim ple PL functions

Let P be a convex polytope P C Mn, n > 2. As in [D2] we denote by C\ the 
set of convex functions f  on P  such that f gp f  da < oo. Note that for a convex 
function /  G Ci, (i) /  is locally uniformly Lipschitz continuous in P; (ii) when 
restricted to a codimension 1 face of P, /  is also a convex function, (iii) /  may 
not be continuous near the boundary, such as the function /  = 0 in P and /  = 1 
on dP; (iv) /  may not be uniform bounded at the vertices of P, but the value of 
/  at vertices has no effect on the integral f dp f  du. In this section we prove

Theorem  3.4. Let P be a convex polytope P C IR2. Suppose that C(u) > 0 for 
all convex functions u G C\ but there is a nonlinear convex function u G C\ such 
that C{u) = 0. Then there is a simple PL function ü with its crease ^  0 such 
that C{u) = 0.

Theorem 3.4 was proved by Donaldson [D2] under the assumption A > 0 
(Proposition 5.3.1, [D2]). Here we remove the condition A > 0. Theorem 3.4 is 
needed if one wishes to verify the K-stability of polytopes. Namely to verify the 
K-stability for a poly tope P € l 2, by Theorem 3.4 it suffices to verify C(u) > 0 
for all simple PL functions u.

Note that in Theorem 3.4, P  can be any polytope, or any bounded convex 
domain. From the proof of Theorem 3.4, we also have the following

Corollary 3.5. Let P be a convex polytope P C M2. If there is a convex function 
u G C\ such that C(u) < 0, then there is a simple PL function ü such that 
C(u) < 0.

To prove Theorem 3.4, we first introduce some terminologies and related prop
erties.

Extreme point. Let 12 be a bounded convex domain in Mn, n > 2. A boundary 
point z G dQ is an extreme point of 12 if there is a hyperplane L such that 
z = L n d  12, namely 2 is the unique point in Ln<9!2. It is known that any interior 
point of 12 can be expressed as a linear combination of extreme points of 12. If 12 
is a convex polytope, a boundary point 2 G d!2 is an extreme point if and only if 
it is a vertex of 12.

Supporting plane. Let u be a convex function in a domain 12 C Mn and 2 G 12 be 
an interior point. A hyperplane L, given by L = {.rn+i = <j>(x) \ x G Rn}, is a 
supporting plane of u at 2 if u(z) = (f)(z) and u(x) > (p(x) for any x G 12. When
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u is Cl at 2, then there is a unique supporting plane, which is the tangent plane, 
of u at 2. For convenience we call 0 the supporting function of u at 2.

Normal mapping. Let u be a convex function in a domain H c K "  and 2 G D be 
an interior point. The normal mapping of u at 2, Nu(z), is the set of gradients 
of the supporting functions of u at 2. For any subset Q' C Q, denote NU(Q') = 
U-efy ATu(2). If uis C \  the normal mapping Nu is exactly the gradient mapping 
Du.

A degenerate Monge-Ampere equation. Let Q be a bounded convex domain in 
Mn, and Uq be a convex function on Q. Then

u(x) = sup{£(:c) I I is a linear function in D with I < u0 on <9fl} (3.11)

is the unique convex solution (generalized solution in the sense of Aleksandrov) 
to the Monge-Ampere equation [Gut, TW4]

in subject to the Dirichlet boundary condition u = u0 on dCt. Here we say a 
(nonsmooth) convex function u is a generalized solution to the degenerate Monge- 
Ampere equation (3.12) if fiu = 0, where the measure pu is defined by

for any Borel set a; C f 2, and | • | denotes the Lebesgue measure in R n. It is 
well known that pu is a measure defined in f2, and is called the Monge-Ampere 
measure [TW4]. When u is a smooth convex function,

A basic property of the Monge-Ampere measure is that if a sequence of convex 
function um converges to u (locally) uniformly in Q, then ßUrn —> /xu weakly [Gut, 
TW4].

Let u be a generalized solution of (3.12), given by (3.11). For any interior 
point 2 G Q ,  let Lz = {xn+\ = <f)(x),x G Mn} be a supporting plane of u at 2. By 
convexity, the set T  := {x E Q \ u(x) = 4>{x)} is convex. By (3.11), T  cannot be 
a single point.

det D 2u = 0 (3.12)

flu{u )  =  iNuMI (3.13)

Lemma 3.6. An extreme point of T  must be a boundary point of D.
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Lemma 3.6 is often used in the study of Monge-Ampere equation. It can be 
proved as follows. If there is an interior point y G 0  which is an extreme point 
of T, by choosing proper coordinates we assume that y = 0, T  C {xn < 0}, and 
the origin 0 is the only point of T  n {xn = 0}. By subtracting a linear function, 
we assume that Lz = {xn+i = 0}, namely <f> = 0. Then for a sufficiently small 
e > 0, since the origin is an extreme point of T, we must have u(x) > e(xn + 1) 
on dQ, which is in contradiction with (3.11).

The above results are well known to researchers in the real Monge-Ampere 
equation. We are now in position to prove Theorem 3.4.

Proof of Theorem 3.4. Denote P+ = {x G P \ A(x) > 0}, P_ = {x G P \ A(x) < 
0}. If u\ and U2 are two convex functions in C\ satisfying U\ > 112 in P+, U\ < U2 

in P_, and U\ = U2 on dP, then C{u\) < £ (2/2).

(i) Since for any codimension 1 face F of P, the area of F  is bounded by 
C f F da for some constant C > 0 depending only on P, there exist a small 
positive constant £0 > 0, depending only on P, such that for any simple PL 
function ü with the Lebesgue measure \{x £ P \ u{x) > 0}| < $0, we have 
C(u) > 0. Therefore if C(u) > 0 for all simple PL functions, there exists do > 0 
such that C(u) > a0 for any simple PL function u = max(0,1) with \DI\ = 1 and 
\{x e P \ u(x) > 0}I > (50.

(ii) Let u be a nonlinear convex function in Ci, which is not simple PL, such 
that C(u) = 0. We show that u is continuous at any codimension 1 face F (not 
including its codimension 2 boundary). Indeed, for any Xo G P, since u is convex, 
one easily verifies that limxepfX~*Xou(x) = \nnxePx^ Xou(x). Hence we can define a 
convex function ü G C\ by letting ü = u in P  and ü = limxgp^-,^ u(x) for Xq G F 
(the value of ü on the codimension 2 edges does not affect the integral Jgpda). 
If there is a point x0 G F  at which ü < u, then we have C(u) < C(u) = 0, a 
contradiction with the assumption that C(v) > 0 for any v G C\.

Let

u+(x) = sup{£(x) I I is a linear function with I < u in P_ U dP}. (3-14)

Then u+ = u in P_ and on dP, and u+ > u in P+. If there is a point x G P+ 
such that u+(x) > u(x), then C(u+) < C{u) = 0, in contradiction with the 
assumption that C{v) > 0 for all v G C\. Hence u+ = u in P. By (3.11), u 
satisfies the degenerate Monge-Ampere equation (3.12) in P+.
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Next let

u-(x) = sup{^(x) I I is a supporting function of u at some point x G P+}.
(3.15)

Then = u in P + and < u in P_. If there is a point x G P- such 
that u-(x) < u(x), then C{uT) < C(u) = 0, contradicting the assumption that 
C(v) > 0 for all v  G C\. Hence U -  — u in P.

We claim that u satisfies the degenerate Monge-Ampere equation (3.12) in 
the whole polytope P. Indeed, we have shown det D2u =  0 in P+. Hence 
|7VU(P+)| = 0. Note that the function u_ in (3.15) can be approximated by

u£_(x) = sup{£(x) \£ is a supporting function of u at some point x G P+}.
(3.16)

where P | = (x G P  | A(rr) > e] C P+. By (3.16), a supporting plane of ue_ 
at some point in P must also be a supporting plane of u at some point in P+. 
But since u is a generalized solution of (3.12) in P+, we have |iVu(P+)| = 0 by 
definition. Hence |Aru(P)| = 0 and so ue_ is a generalized solution to (3.12) in P. 
By the weak convergence of the Monge-Ampere measure, u = lime_̂ 0 ue_ is also a 
generalized solution to (3.12) in P.

Alternatively, the claim that ue_ is a solution to (3.12) also follows from a 
theorem of Aleksandrov, which states that for any convex function w G C(Q), the 
set {p G Mn I p G Nw(x) PI Nw(y) for two different points x,y G f2} has measure 
zero, because a supporting plane of ue_ at some point in P_ is also a supporting 
plane of u at some point in P+.

(iii) Let Xq be the mass center of P. By a translation of the coordinates we 
assume Xo = 0 is the origin. Let L = {xn+i = <j>(x)} be a supporting plane of u 
at Xq. By subtracting a linear function we assume that <j> =  0. By Lemma 3.6, 
the extreme points of T  = {x G P | u(x) = 0} are located on dP.

Assume n =  2. Then T  is either a line segment with both endpoint on <9P, or 
T  is a polytope (which is a convex subset of P) with vertices on <9P, by Lemma 
3.6.

By a rotation of the coordinates, we assume T  is contained in the aq-axis in 
the former case, or an edge of T  is contained in the aq-axis and T  C {aq < 0} in 
the latter case. For any point (aq, 0) G P, let

a(x\) = lim ~(u(aq, t) — u(aq, 0)).

By convexity the limit exists and is nonnegative. Let clq = infu(j'i). We must
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have clq =  0, otherwise denote

ip(x) =  m ax(0,x2), (3-17)

and Ui =  ux-i  u2 =  (u — aoip)x+, where %_ =  1 in {x2 < 0} and X- — 0 in 
{x2 > 0}, and x+ — 1 — X-- Then ^  is a simple PL function,

u =  ui +  u2 +  a0Vb

and +  u2 is convex in P. Hence

C(u) =  C(ui +  u2) +  a0£W ) — flo^o > 0;

where <To > 0 is the constant in (i) above. We reach a contradiction.
Since u > 0 in P  fl {x2 >  0} and the set Ge := {x G P \ u(x) < e'ijj(x)} ^  0, 

we have
Ge C {0 < x2 < with 5 —> 0 as e —»• 0 (3.18)

(otherwise by taking limit we would reach a contradiction as T  C {x2 <  0}). 
Denote

ui = uX-i
u2 =  ( u -  e^)x+,

u2 =  max(u2, 0).

Then u =  U\ +  u2 +  exp and u\ +  u2 is convex in P. Denote u — u\ +  u2 +  eip. By 
(ii) above we have

C{u) =  C{ui +  u2) 4- eC(%!)) >  6jC(V>) > ea0.

On the other hand, observing that 0 < u2 — u2 <  eS, we have u < ü < u +  eS. It 
follows that

C(ü) < C{u) +  Ce6 = CeS.

We obtain ecro <  CeS. But recall that 6 —> 0 as e —> 0. Hence when e >  0 is 
sufficiently small, we reach a contradiction. □

R em ark  3.7. Part (iii) in the above argument does not apply directly to high 
dimensions, because (3.18) holds only when {.xn =  0} fl P  C T , which is usually 
not true in high dimensions.
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C h ap ter 4

C onstan t scalar cu rvatu re  m etrics

It is known that a toric surface with 3 or 4 T^-fixed points must be CP2 or a 
Hirzebruch surface, and the Futaki invariant vanishes only for CP2 and CP1 xCP1. 
When a toric surface has large number of T^-fixed points, the verification of 
vanishing Futaki invariant is technically a complicated problem. In Section 4.2 
we prove that among all toric surfaces of 5 or 6 T^-fixed points, CP2#3CP2 is 
the only one which allows vanishing Futaki invariant. In Section 4.3 we will 
check the K-stability of CP2#3CP2. By Donaldson’s recent work, this means the 
existence of constant scalar curvature metrics on the toric surface. For general 
toric surfaces with m > 5 T2-fixed points, the verification of K-stability is also 
a very complicated problem. We still denote by M ^  a toric surface with m 
T^-fixed points.

4.1 E qu ivalent class

Let P be a Delzant poly tope with m vertices Po,Pir '' iPm with p0 = Pm- Let 
Ei be the edge connecting pi and pi+1 , be the normal to the edge E{. Also we
set t’oj Eß E0.

Denote

SL(2,Z) = < [  ̂ j : qnq22 ~ (7i2(72i — ±1, qij G Z 1 . (4.1)[  \  q2i q22 J  J
For any Delzant polytope P, and any transform Q G SL(2,Z), P' = QP is
also a Delzant polytope. From [De], the corresponding Kahler manifold Mp> is
symplectomorphic to Mp, and Mpt has the same complex structure and Kahler 
class. By this property we can introduce equivalent classes for Delzant polytopes.

43



44 CHAPTER 4. CONSTANT SCALAR CURVATURE METRICS

Definition 4.1. We say two Delzant polytope P and P' are equivalent if there 
exists a transform Q G 5L(2,Z) such that after proper translation and dilation, 
P' — QP. For any Delzant polytope, we denote by [P} the equivalent class.

For any Delzant polytope P, and any vertex p of P, we can make a translation 
and transform Q G SL(2. Z) such that p is the origin, the edges at p lie in the 
coordinates axes, and P  is contained in the positive quarter {x\ > 0, x2 > 0}. 
It implies that at any vertex of a Delzant polytope M^m\  one can chop off the 
corner to get a new Delzant polytope

It is easy to verify that a Delzant polytope with 3 vertices must be equivalent 
to the polytope with vertices

It is also known [Ful] that a Delzant polytope with 4 vertices must be equivalent 
to P^[k] for some k = 0,1,2, • • •, where P^[k] is the polytope with vertices

where h > 0. Note that P^[k] has two parallel edges E0 and E2.

To work out the equivalent classes of Delzant polytopes with 5 or 6 vertices, 
we need the following lemma.

Lemma 4.2 ([Ful]). For m > 4, every Delzant polytope p(m+1) can be obtained 
by chopping off a corner from a Delzant polytope P ^ .

From (4.3) and Lemma 4.2 we see that a Delzant polytope p(m) with m > 5 
must contain a pair of parallel edges, located respectively in {x\ = 0} and {xi = 
1} after proper choice of coordinates. From (4.3) and Lemma 4.2 we also have

Lemma 4.3. A Delzant polytope P ^  must belong to an equivalent class of the 
polytope P^[k] for some k = 0,1.2, • • •,

PO =  (0,0), 4  =  (-1 ,0 ) ,
p i =  (o. l), 4  =  (1,1),
Pz=  ( i , o ) ,  4  =  ( o , - i ) .

(4.2)

Po =  (0,0), 4  =  (-1 ,0 ) ,
Pi =  (o ,/i), 4  = ( - M ) ,
P2 = (l ,h + k), 4  = (1,0), 
P3 = (1,0), 4  =  (0,-1),

(4.3)

Po = (0,0), 
Pi = (0,/i),

4  = ( - 1,0),
4  = ( - * - 1 ,1 ) ,

p2 = ( t .h+  ( * +  1 )t),
Pz — (1, h + (* +  1 )t +  /c(l — t)), 
Pa = (1,0),

4 — (— l),
4  = (i,o),
4  =  (o, - l ) ,

(4.4)
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where t, h are positive constants and t < 1.

Lemma 4.3 follows from Lemma 4.2 immediately. Note that if is obtained 
by chopping off the corner p0 or p3, we need a translation, a dilation and a 
transform Q G SX(2,Z) to get the expression (4.4).

Similarly by (4.4) and Lemma 4.2, we have

Lemma 4.4. A Delzant polytope P ^  must belong to an equivalent class of the 
polytope P ^[ i;  k] for some « =  1,2 or 3 and some integer k = 0 ,1,2, • • •, where 
(i) P ^ [ l ; k ]  is given by

Po — (0,0), 4  = (-1,0),
Pi =  (0,h),  4  = ( - k  -  2,1),
P‘2 = (t, h + (k. + 2)t), 4  = ( - k  -  1, 1), 5
P3 = (5 + t, h + [k + 2)t + (k + l)s), £3 = (—4  1)5
P4 =  (l , / i+(fc-t- 2)t -T (/c +  l)s  +  fc(l — s — t)), £4 =  (1,0),
P5 = (i,o), 4  = (0, - 1),

where h, t, s are positive constants, t +  s < 1.
(ii) P ^ [ 2-,k] is given by

Po =  (0, 0), 4  =  ( - 1, 0),
Pi = (0 ,h), 4  =  (—fe —1.1)1
P2 =  (t,h +  (k +  1 )t), «2 =■(—2fc — 1, 2),
P3 =  {t 4- s, h +  (/c +  1 )t -T (k +  5)5), «3 =  (— 1),
P4 — (1 ,h -\- (k l)t +  (k +  ^)s +  /c( 1 — s — t)), £4  — (1,0),
Ps = (i,o), 4  = (0,-1),

where h, t, s are positive constants, t +  s < 1. 
(Hi) P (6)[3;/c] is given by

Po =  (0,0), 4  =  ( -1 ,0 ) ,
Pi = (0,/i), 4  = ( k -  1,1),
p2 = (s,h + (Ah - i )s), 4  =  ( - M ) ,
P3 =  (1, h +  (/c 4- l)s  +  fc(l — 5)), 4  =  (1, 0),

pa =  (1,(1 - 4 ), 4  =  (1 , -1) ,
ps =  (t, 0), 4  =  (0 , -1) ,

(4.7)

where h, t, s are positive constants such that t ,s  < 1, and k > 0  is an integer.

The verification of Lemma 4.4 is straightforward, we leave it to the reader. But 
we would like to point out that if the new polytope P' is obtained by chopping off
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the corner (0,0) of P^[k] in (4.4), then P' is in the equivalent class of P^6 [̂3; fc+1]. 
We also point out that P (6)[l; 0] and P (6)[2; 0] are in the same equivalent class. In 
(i) above, we can allow k = — 1 , but p(6)[l; —1 ] is in the same class as P^[3; 1 ].

4.2 P olytopes w ith vanishing Futaki invariant

4.2.1 Futaki invariant

We verify whether the Futaki invariant vanishes for the polytopes given above.

T \  =  V0b i  — V \ b o , p 2  =  ^0^2  — ^2^0? P 3 — 'Cl^2 “  C2&1- 

By Proposition 2.4, the linear function A =  ao  4 -  a ,\X \  + 0,2X2 is determined by

C( 1) =  0, C{xx) = 0, C{x2) = 0.

Therefore a0? a1? ^ 2  satisfy

a0v0 + axvi + a2v2 =  fro,

Recall that the Futaki invariant vanishes if and only if A is a constant, namely 
cli = ü 2 = 0. Since P is contained in { x \  > Q,x2 > 0}, we have v i . v 2 > 0. Hence 
if the Futaki invariant vanishes, the above linear equations can be reduced to

Therefore we obtain

Lemma 4.5. The Futaki invariant vanishes if and only if T\ — T 2 =  P 3 =  0.

With Lemma 4.5, we can verify when a Delzant polytope has vanishing Futaki 
invariant.

To estimate Pi, we introduce another way of expression of P^m\  m, > 5. For 
convenience, we use {x,y} instead of {x,\,X2 } to stand for the coordinates. We

Denote

fro _  fri _  l>2

Vo V i  v 2
(4.8)
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still assume that a pair of edges are located respectively in {x = 0} and {x = 1} 
as in the last section. Furthermore, we may assume that the origin is a vertex 
and the other edge passing the origin is contained in y = 0. It is clear that all 
the other edges form two piecewise linear functions /i, f 2. Then we have

For simplicity, we can use the pair ( / i , / 2) to express the polytope. Without 
loss of generality, we may also assume that {y = f\}  contains no less edges than

We first compute T\ with the data of ( / 1 . / 2). Note that f\  is a concave 
function while f 2 is convex. We denote the following parameters:

where k , l are integers, / > 0 and h, a,b > 0, b < a + h. For polytopes given in 
§4.1, it is clear that k < a, b < l. Let dai and drr2 be the boundary measures 
on <9P(m) at the boundary parts determined by {y = fi(x)} and {y = /^(x)}, 
respectively. As we pointed out in (2.7), d(7i is piecewisely a scalar multiplication 
of dx with the scalars determined by the outer normals of the edges. We would 
like to point out in particular that all the parameters h, a, b, k, l and the boundary 
measures dui are not chosen arbitrarily. They come from a Delzant polytope in 
§4.1. Hence, by computation,

p (m) = {{x, y)  I M x )  < y <

{y = A}-

h = MO), a = /,(!) -  MO), b = / 2(1), k = /((l), l = /'( l),

Furthermore, write
fi = h + ax + gu f 2 = bx + g2.

Then

F\ =  v0bi -  vib0
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where

Now we treat T \  as a functional of (pi, £2)- We consider more general functions 
(Pi,P2). Define

«Si =  {g I g is concave and p(0) =  g( 1) =  0. g'{ 1) = k — a},

S 2 = {g I g is convex and p(0) =  p (l) = 0, g \ 0) =  - b, p '(l) =  /-& } .

Hence, we formulate a minimizing problem

inf (4.9)
5iC*5i)32€<S2

For simplicity, we denote by

2/i +  cl — b +  Jq d(Ti +  Jq d(i2 

h +  a — b +  /0 xddi +  f 0 j:d(T2

Then we have

= K h  + L(a — b)+ +  a — b +  J  xdcrx +  J  xdcr^  [4>(pi) -  4>(p2)], (4-10)

where

<%) = A i  -  |)p.
Jo s

Note that 4>(pi) and 4>(p2) are independent when fixing fi. a, 6, fc, /. 

L em m a 4.6. We have the following reduction.

inf <F(pi) =  inf (fc — a)\P(t), 
*<t<i

(4.11)

sup $(p2)
526̂ 2

1 inf{<5<1(Z -  6)3<(s),

\ inf)<s<i(; -  *0*00,

* / « > ! ,  

i n < i ,
(4.12)

where T is a function given by

T ( x )
x 2 x  1 1
6£  +  2 +  6$  ~~ 2 '

(4.13)
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Proof. We first consider 4>(pi). Define

9i,t —
t

(k — a)(x  — 1),

x  G (0, t), 

x  G (t, 1).

where £ < £ < 1. It is clear tha t pljt G <Si. We claim

inf =  inf
9 1601 £ < i< 1

(4.14)

Indeed, for any G «Si, let £0 — <7i ( 0 j then £0 < <714 (0 - There exists a £0 G [£. 1) 
such that £0 — 9i,t0(to)- Since g\ G «Si, by the concavity of g\ and g ij0, we have

PiW  > Si,t0(z) for z € [0,0,
5 iW  < 9i,toW  for x G [£, 1].

It implies 4>(pi) > $(g iyto). Hence, it suffices to compute $ (p i>t). We have

* (* ,)  =  J \ l  -  | ) (fc ~ ~ 1)x + ( k - a )  J \ l - | ) ( a  -  1)

= (fc-a)tf(f),

where T(£) is given as in (4.13).
Next, we consider sup52€<52 <f>((/2). If £ >  j, we define

/  - ~b)l's~l) x, x G (0, s),
$2,s =  <

-  6)(a; -  1), z  G (s, 1),

where s G [£. 1). If £ < j. g2,s is defined for s G [y, 1). In either case, by a similar 
argument as for (4.14), one can prove

sup $(p2) =  sup$ (p2,s). (4.15)
92 £ $ 2  S

Therefore the lemma follows by a computation of <J>(g2)S). □

The infimum of T \  can be estimated in the following special case.

P ro p o sitio n  4.7. Suppose that k > l +  1. I f  the boundary measures satisfy 
da2 — dx and dai = dx , y  piecewisely, then T \ > 0.
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Proof. The assumption k > l + 1 implies a — b > k  — l > \ .  Note that

* (1) = 0,

o,

3? =  -  2)2
'  2 '24f ’

where 4/ is given by (4.13).
First, we discuss the infimum of T\  in two cases.
(i) When ^  >  1, i.e., attains its minimum when t = s = 1. Then

inf T\  =  K h  + L ( a - b )
, a — b

>  ( — —  + f  xdcri ---- f  deri +  f  xdcr2 ------ f  dcr2 j h := Mi.Jo 2 Jo Jo 2 Jo J
(ii) When < 1, we have L < | .  In this case, 4/(t ) attains its maximum at 
If ^  > j, 4; (s) attains its maximum at For 4/(s), it has two possibilities.

If ¥  < f, ^ ( s) at t ains its maximum at Note tha t 4/(y) < Hence, we
always have

inf T\

> K h  + L(a — b) +  + u — b +  J  xd<Ji + J  xdâ J (k + b — a — l)ty

(k + b — a — Z)(3£ — 2):
— A /i -b A(d — 5) -b -b cl — 5 -b J  xdcr\ T 

:= M2,
f xd"2) 24£

Next, we use the boundary measure condition to estimate in f^ i  in the above 
two cases. By the assumption dcr2 = dx ,

f  xdcri -  i  f  d(Ti, 
Jo 2 ,/o

Ä- =  ^  +
' 0  *  ^ 0

r a - 6 I f 1 , 1 /■' 1
L = --------1—  / xacTi----- / a<7i-------- .

6 2 J 0 3 7o 12

For case (i), we have

inf T\  > Mi  = [ —----- b / xdcri — \ {  dcfi ) h > 0.
./o  2  ./o  V

For case (ii), we first need to estimate L  from below. Assume that the pa
rameters h ,a ,b ,k , l  and dai are determined by the polytope ( / i , / 2). We prove 
that

L >
a — b 1
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under the assumption of this proposition. If da\ — dx, then L — ^  Then 
we assume that there is a segment [x0: xo + r] with dai = Since ( /1? f 2) defines 
a Delzant’s polytope, we denote by Eq the edge determined by the restriction of 
fi  in the segment (xo,Xo + r). E0 has two adjacent edges E\, E2. By Delzant’s 
condition, the directional vectors of E\,E q,E2 are (1, z + 1), (2,2i + 1), (1, z) 
for some positive integer i, respectively. Let Z(x) be the linear function that 
l(x) = fi(x) on E2. We construct a new polytope (/i, f 2) by

h  ~ f2, f i = <

A W ,
l(x) -  §,

X  G [O.x0], 

x G [x0,x 0 +  r], 

x G [x0 +  r, 1].

It is easy to check that the polytope (/i, f 2) still satisfies Delzant’s condition. For 
the new polytope (/i, f 2), all the parameters are the same as (/i, f 2) except that 
a =  a — V The boundary measure ddi = dx on [xo,x0 + r] and dai = da\ on 
[0,1] \  [x0, Xq + r], while da2 = da2. By a simple computation,

L - L = -----+ -
12

^ r x o + r

2 L
,1 1
( - x - - ) d x  =  - -  +  - j

x o + r

xdx <  0.

Repeat the above construction until there is no segments that da^ = Note 
that after each construction. L becomes smaller. Hence,

It is clear that

a — bK > ------
~ 3

It follows

AL2 =  Kh  T Z/(u — 6) T f h T a — b

a — 5 1
L > -  -  > 0.

~  6 6

f 1 dx 1 Z*1 ,
-  dx

7o 2 2 Jo 3 4

l  xdai + 5
- ) ( k  +  b - a - l ) (3g ~  2); 

24£

> [(« - b ) -  (k -  l)]

Since dai = dx or

h a — b (  ̂ +  /i — 3 Jo ocdai +  2 da\ — a +  b)‘
3 6 24(| + h. -t- a — b Jq xda\)

xda\ >
1
4’

da i <
L

lx =
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Here we used a — b > k  — l>  1. Then

inf T \ > M 2 > [(a -  b) -  (k -  /)] ■

The proposition follows.

(I +  h ~ a +  b)2 
2 4 (| + h + a — b)\

□

4.2.2 P with m  — 5,6

First we verify the polytope given in (4.4).

P ro p o s itio n  4.8. The linear function A associated with P {̂ [k] is not a constant 
for all k = 0,1, 2, • • •. Hence there is no toric surface of which the Kähler 
classes admit vanishing Futaki invariant.

Proof If k > 1, by Proposition 4.7, T \  > 0. If k =  0, we may assume that 
h > 1 — t. Otherwise we can make a translation, a dilation and a S L (2, Z)- 
transformation such that p4 is located at the origin. By a simple computation,

60 — 2 T  2h T t,

61 =  1 -t- h +  t, 

u0 =  h +  t -  \ t 2,

U! =  — | t 3.

Therefore
P i =  +  ( \ t  -  \ t 2 +  \ t 3)h

-  \^ 4 ~  6^3 +  - +  i ^3 ) ( 1 -  *)

=  | ( i  - t)2 + l{ t3 - 14) > o.

This completes the proof. □

Next we turn to P (6̂ . The verification of whether P x =  P 2 =  P3 =  0 is ele
mentary but for polytope with 6 vertices, the formulae are longer. Some formulas
are calculated by using Maple.

P ro p o s itio n  4.9. Among the Delzant polytopes P ^ fa k ]  in Lemma f . f ,  where 
i =  1, 2,3 and k =  0,1. 2, • • •, the poly tope with vanishing Futaki invariant must 
be P(6)[3;0], and the parameter t, s, h must satisfy either

s + t =  1, (4.16)

or
h = 1 — t = 1 — s. (4.17)
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Proof. We check k] for i = 1 ,2 ,3  case by case.

(i) Verification for P^6̂ [l; k). If k > 1, by Proposition 4.7, T \  > 0.

If k =  0, we need to consider both P x and P 2- By computation,

=  2 +  2/?. +  21 P  s,

b\ — 1 4~ h P  2t 4- s,

Vq =  4~h 4~ 2t 4~ s — t2 — ts  — ^s2,

Vi =  5/1 +  £ +  | s  — ^s3 -  | t 3 — | t 2s — I ts 2,

2̂ =  s 4- 2t +  t2 4- ts 4- (1 4- s 4- 2t)h 4~ h2,

v2 = \ s 2 — ^s0 4- 212 4- 2ts — | t 3 — 2t2s

— I ts2 4- (s +  2t — ts — t2 — | s 2)/i +  |t?2.

Hence

P i =  st 4- t2 — 2st2 — s2t — | t 3 — | s 3 +  | s 2t2 4- | s 3t +  114 4- | s 4 4- | s t 3 

4-(t 4- ^s — st — t2 — | s 2 +  | s 3 4- s2t +  s t2 +  | t 3)/i,

P2 =  — | s 3 — 2st2 — ts2 — | t 3 4- y s t 3 +  | t 2s2 +  | t s 3 +  | t 4 4- | s 4 

4-(—2st -  2t2 -  | s 2 4b 4 s t2 4b 3ts2 4b f t 3 4b §s3)/i 

4-( —|s  — t 4" t2 4~ ts 4- \ s 2)h2.

So P i -  P 2 =  U 4b Vh 4b VPh2, where

U = t2 +  st +  | s 3 — | s 4 — t4 — 2st3 — 2t2s2 — | t s 3,

V =  t +  ^s +  st +  t2 — | s 3 — 2ts2 — 3st2 — 2t3,

VP =  t — t2 — ts 4- | s  — | s 2.

By t > t( t 4- s), s > s(t 4- s), it is clear that VP > 0, and

U > t3 4- 2t2s +  s2t -  t4 -  2st3 -  2t2s2 -  | t s 3 > 0,

V > 2t2 +  f st +  i s 2 -  | s 3 -  2ts2 -  3st2 -  2t3 > 0.

Hence P i — P2 > 0.

As noted after Lemma 4.4, P ^ [3 ; l ]  =  P^6̂ [1; — 1] (in the same class). We 
will check P (6̂ [l; —1] instead of P^6)[3; 1].

We found tha t P i p  0 or P 2 P  0 is not true, and cannot find a combination of 
P i and P2 which does not vanish for all admissible h, s, t. We have to employ P3.
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We found the computation is simple if we choose a different coordinate system. 
Since P (6)[l; —1] is obtained by chopping off two corners on the same edge of a 
rectangle. Let us assume the corners of the rectangle is (0,0), (0, /i), (1, h), and 
(1,0). Let P (6)[ l ;—1] be obtained by chopping off the corner {xi > 0,^2 > 
0, X\ +  X2 < £} at (0,0) and the corner {x\ < 1, x^ > 0. X2 < X\ -f 1 — r} at (1, 0), 
where t. r > 0 ,  t +  r < l ,  and r,t  < h. There is no loss in assuming that r > t.

By direct computation we have

b\ = 1 +  h — r,

&2 =  h2 +  h,

Vi = \h  -  ±t3 -  ±r2 + ±r3,

V2 = \ h 2 -  \ t 3 -  | r 3.

and

Es =  \ h 2(r -  r 2 +  | r 3 -  | t 3) -  \h (r2 -  | r 3) +  |(1  -  r ) ( r3 +  t3).

Regard Es is a function of h. Recall tha t h > max(t, r) =  r. It suffices to verify 
that Es (r) > 0, E^(r) > 0 and E${h) > 0 V h > r. By direct computation,

Es{r) = | r 3( 1 -  r )2 +  | t 3( 1 -  r -  r2) > 0,

P '( r )  =  | r 2(l -  r )2 +  | r 2 -  § rt3 > 0,

Eg(h) = r - r 2 + \ r 3 -  \ t 3 > 0,

where we used the conditions 1 — r > t, r > t, and t <

(ii) Verification for P^[2\  k\. If k > 1, by Proposition 4.7, E\  > 0.
As noted in §4.1, P^6̂ [2;0] and P^6̂ [1;0] are in the same class, so we do not 

need to verify P ^ [2 ;0 ] here.

(iii) Verification for P^[3;/c]. Recall that P ^ [3 ; l ]  is in the same class as 
P (6)[l; —1], and the latter has been verified before. We need only to consider the 
cases k > 2 and k = 0.

If k > 2, by Proposition 4.7, E\  > 0.
If k — 0, the corresponding toric surface is CP2#3C P 2. In this case the three 

pairs of edges (Eq,E s), ( P i ,p 4 ), and (E2 .Es) are parallel. We may assume that

h > max{l —t, 1 — s}. (4.18)
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Otherwise by discussion in §4.1.1, we can take a £L(2, Z)-transformation and 
re-label the vertices such that (4.18) holds. By direct computation, we have

bo = 1 2h -t- t -(- s,

b\ = h 1 s,

Vo =  — | ( t 2 +  s 2 ) ,

 ̂ H- ^h +  +  | s  — ^{t3 +  s3).

Hence T\ — U + Vh with

^  = (—I* + \ t2) + (“ I 5 + 5s2) + + Is4 + 3 + (“ K  _ I s3)
+(st -  \ t 2s -  \ ts2) + |( s t3 + ts3), (4-19)

+ \ t  + -  \ t 2 -  \ s 2 + ^t3 + | s 3.

[/, V  can be simplified as

U = i=£*{(l -  t)[(1 -  s)2 + e +  t( 1 -  s)] + (1 [(1 -  + s(l -* )]} , 

V = - ^ ^ { [ ( 1  - s ) 2 + t2 + t(l - s ) ]  + [(1 - t ) 2 + s2 + s(l - t ) ] } .

Hence
T x =  hzi= i|(i _ t _  _  s)2 + t2 + t( l  -  s)]

+(1 — s — h) [(1 — t)2 + s2 + 5(1 -  £)] J.

Hence T\  = 0 if and only if t + s = 1, namely (4.16), or

(1 — t — h) [(1 — s)2 +  t2 +  t ( l  — s)] +  (1 — s — h) [(1 — t )2 +  s2 +  s (l — t)] = 0.

By h > max{l — t, 1 — s}, the latter case is equivalent to (4.17).
In the case (4.16), each parallel pair of the edges (Eo,Es), (^ 1, ^ 4), and 

(E2,E5) have the same length. In the case (4.17), the edges Eo,E2,E4 have the 
same length, and edges £1, £ 3, £5 have the same length. Under either (4.16) or 
(4.17), one can easily verify that T 2 = 0.

From the above verification, we see that among all Delzant polytopes P ^ \  
the polytope with vanishing Futaki invariant must be P^6̂ [3; 0] and the length of 
the edges satisfies either (4.16) or (4.17). □

Remark 4.10.
(i) Note that the polytope satisfying (4.16) is obtained by chopping-off the same 
sized corner from the opposite vertices of a rectangle, and the polytope satisfying
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(4.17) is obtained by chopping-off a same sized corner from each vertex of the 
triangle. So it is easy to see that the toric surface CP2#3CP2, with a Kahler 
class corresponding to a polytope satisfying (4.16) and (4.17), has vanishing 
Futaki invariant. This property was also observed in [LS], Example 3.2.
(ii) The polytope satisfying (4.16) can also be obtained from the triangle by 
chopping off three different sized corners. Therefore in the both cases (4.16) and
(4.17) , the corresponding toric surface is CP2#3CP2.
(iii) Let H be the hyperplane divisor of CP2, and D2, be the three 
exceptional divisors. Then after a dilation, the Kahler class corresponding to

where a, 6, c are positive constants, a + b < 3, and c < | .

In conclusion, we have

Theorem 4.11. If a toric surface m < 6, admits a Kähler class with
vanishing Futaki invariant, then it must be one of the following manifolds:

In [WZho] we proved Propositions 4.8, 4.9 by verifying the Futaki invariant 
for all the polytopes P^ [ f k ]  case by case directly. Here we verified the Futaki 
invariant for some polytopes by a different way, using Proposition 4.7 in §4.2.1.

4.3 Verification of K -stabiity

In a series of papers [D2-D5], Donaldson made a great progress on Conjecture 
2.10 on toric surfacs.

Theorem 4.12 ([D5]). M admits CSC (constant scalar curvature) metrics in 
27TCi (L) if and only (M ,L ) is K-stable and Futaki invariant vanishes.

As in previous section, we have worked out all the toric surfaces where
m < 6 with vanishing Futaki invariant. As we mentioned in Section 4.1, the 
existence is well-known when m = 3 or 4. When m = 6, the only toric surface

(4.20)

3 H — cfD\ + D2 + D3), (4.21)

CP2, CP1 x CP1, or CP2#3CP2.
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allowing vanishing Futaki invariant is CP2#3C P 2. All such Kahler classes have 
been characterized in Section 4.2. We will check the K-stability of these classes. 
Combing with Donaldson’s theorem, we have

Theorem  4.13. The toric manifold CP2#3C P 2 is K-stable, and admits a CSC 
metric, in any Kühler class with vanishing Futaki invariant.

As shown in last section, the polytope corresponding to CP2#3 C P 2 is P ^ [3 ; 0], 
whose vertices are given in (4.7) with k =  0. If CP2#3C P 2 has vanishing Futaki 
invariant in a Kahler class, the parameters h, s , t must satisfy either (4.16) or 
(4.17).

Proposition  4.14. Let P  \= P ^ [3 ;0 ] be the polytope given in (4-7) with k — 0 
and h ,s , t  satisfying either (4-16) or (4-17). Then for any nontrivial simple PL 
function u with its crease Tu ^  0, we have C(u) > 0.

Proof. Let u be a simple PL function. We can write it as

u(x) = ug%r(x) = m ax{ri cos 6 +  X2 sin 6 — r, 0} (4.22)

where (cos#, sin#) is the normal to the crease Tu, r G l 1 is the distance from the 
crease Tu to the origin (when # G (0, -)).

Denote

l r = { x e P  I ue,r{x) = 0},

Pr = {x  G P  I Ug,r(x) > 0},

where Tr =  IUr is the crease of ur. In our proof below, we will fix 0 and let the 
parameter r  change. So in the following we will drop the parameter 6. Define

F (r) =  C M ,  f ( r )  = F"(r).

Assume Tr ^  0 for r G (r, r) and Tr = 0 when r  < r or r  > f .  Obviously 
F( t) = F( f )  = 0. We want to prove F(r) > 0 for all r G (r, f).

A simple computation shows that F  G C 1(r, r), and

F' {r )= [  d a - A \ P r\. (4.23)
J d P f ] P r

Let yr, y'r be the two end points of the crease Tr , lying respectively on the edges 
E  and E r. If none of yr or y'r is a vertex of P , F  is twice differentiable in r and
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where lr is the length of the crease Tr , a, a' are respectively the angles between 
the crease Xr and E , E ', and a(yr), cr(y') are the values of the density function 
of the measure da on the edges E  and E'. Since P  has 6 vertices only, /  has at 
most 4 discontinuous points.

Proposition 4.14 now follows from the following observations.

(i) By our choice of r and fi, obviously F(r) = F(f) = 0. By (4.24) we also 
have F'(r) > 0 for r > r, near fi; and F'(r) < 0 for r < f , near fi. Hence 
F(r) > 0 for r > r, near r; and for r < f , near fi.

(ii) Note that at r = r or r = fi, the crease Tr must contain a vertex of P. 
By making a transform Q £ SL(2,Z), where SL(2,Z) is given in (4.1), we 
may assume that p0 = (0,0) is the vertex contained in Tr at r = r. By the 
expression (4.23), we have r = 0. Then p3 is the vertex contained in Tr with 
r =  fi, and r is the distance from 0 to the crease Tr.

(iii) When we increase the value of r from r to fi, the crease Tr will pass across 
the other 4 vertices at r = rq, r2, r3, r4 with r < ri < r2 < r3 < r4 < f. The 
crease may contain at most two vertices. Choose r £ [r2 , r3] such that there 
are three vertices on each side of the crease Xf, or there are two vertices on 
each side of I f  and two on the line I f .  The positivity of F in the latter case 
is immediate when the former case is proved. There are three sub-cases in 
the former case,
(a) Po,Pl,P5 I P2,P3,P4; (b) Po,P4,P5 | Pl,P2,P3i (c) Po,Pl,P2 | P3,^4,P5-

(iv) The length lr is monotone increasing for r £ (r, f). At any given r £ (r,r), 
if Xr contains no vertex of P. the quantity + ^ 4  is locally a constant, 
and so f(r)  is monotone decreasing near r.

(v) Since the edge Eo and E5 at po are located respectively in the X2 -axis and x\- 
axis, one easily verifies that when the crease I r passes through the vertices 
Pi or p5 (as r increases), the quantities + 4^7 has a jump-down.

(vi) Therefore in case (a), /( r)  is monotone decreasing for r £ (r, f), and in
creasing for r £ (f,r). The monotonicity of /  implies that F has only one 
local maximum in (r, f) and so by (i) above, F  must be positive in (r, r).

(vii) In case (b), then the crease I r passes through p5 at r\ and passes through 
p4 at r2, and r < r\ < r2 < f < r3. When r £ (r2, r3), the end points T/r , y'r 
of the crease Xr are on the parallel edges Eq and F 3. From (vi) above, f(r)
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is monotone decreasing in (r, 7 2 )  (and increasing in ( f 3 , r ) ) .  Assume for a 
moment that /  is a negative constant for r E (7*2,73) .  Then as in (vi) we 
infer again that F has only one local maximum point in (r, f), and so F 
must be positive.

When r E (72,73), the end points y r -,y'r of the crease J r are on the parallel
edges En and £ 3. Hence we have a' = a and f  = -ß------ A-. In the case
(4.16), we have A = > 2 and so /  < 0. In the case (4.17), we have
A = ~̂ 2hi > 2 and also /  < 0.

(viii) In case (c), note that by a dilation, a translation, and a transform Q E 

SL(2, Z) of the coordinates, we can take any vertex of P at the origin. 
Hence a similar proof as (vii) implies that F(r) > 0 for r E (r, f). □

Remark 4.15. The existence of CSC metrics for case (4.17) was also obtained in 
[CH] by Calabi flow method. When t = s = h =  the Kahler class on CP2#3CP2 
is half of the first Chern class, in this case the CSC metric is a Kähler-Einstein 
metric, and was obtained in [Siu], [TY].
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P a r t  I I I

A b re u ’s eq u a tio n



C h a p te r  5

B ern s te in  th eo rem

5.1 In tro d u ctio n

In this chapter, we study convex solutions to Abreu’s equation

y ,  d 2li* 

d x id x i  ~
(5.1)

on Rn, where is the converse matrix of (uij). For simplicity in the following 
we will write the left hand side as u^. It is locally the Euler-Lagrange equation 
of the functional

Aq(u) = /  logdet D2u dx. (5.2)
Jn

Abreu’s equation can also be written in the following form

UljWij = 0, w = [det-D2ii] \ (5.3)

where (UZJ) is the cofactor matrix of (uij). It is known that (f/u ) is divergence 
free, namely

E dUij
dxi

0 V j.

Abreu’s equation is similar to the affine maximal surface equation

Ui:jWij = 0, w = [det D2u] ^ 6\  (5.4)

whose energy functional is the affine area functional [Cal2]

Aq{u) =  /  [det D2u]edx, (5.5)
Jn

where 8 =

63



64 CHAPTER 5. BERN STEIN  THEOREM

In [TW1], the authors proved the Bernstein theorem for (5.4) in the two 
dimensional case, which was conjectured by S.S. Chern. Namely a smooth convex 
solution to (5.4) in the entire space R2 is a quadratic function. The main result 
of this chaper is the following Bernstein theorem for Abreu’s equation.

Theorem  5.1. Let n = 2 and u be an entire convex solution to (5.1). Then u is 
a quadratic polynomial.

Rem ark 5.2. The Bernstein theorem has an interesting geometric explanation. 
Let us define the metric

g = UijdxldxJ +  ulJ dytdyj 

under the coordinates (x1, x2, yi, 2/2) on R4, or

g =  ulJdxldxJ +  ulJ d6t dö3

under the coordinates (x1, x2, 9\. 02) on R2 x (S 1)2. These metrics are Kählerian 
and their scalar curvatures are — iqj. Therefore the above result implies that if 
(R4,y) or (R2 x (S l )2,g ' ) is scalar flat, it must be flat.

5.2 Interior estimates

In this section, we establish a priori estimates for Abreu’s equation. We consider 
the more general equation with non-homogeneous right hand term

U^Wij =  / ,  w = [det D 2u]~l in D, (5-6)

where Q is a bounded convex domain and /  G L°°(Q). The functional A 0(u) is 
replaced by

Jq(u) = Ao(u) — / fu d x .
Jn

(5.7)

First we recall an upper bound of the determinant obtained by Donaldson
[D2].

Lem ma 5.3. Let u be a convex smooth solution to Abreu 's equation in Q. Suppose 
that u satisfies u < 0 in Q and u = 0 on dQ. Then there is a constant C depending 
only on supn |V m|, sup^ \u\, sup | / |  such that

C
det D 2u ^

( - u ) n ‘
(5.8)
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Proof. Let
z = — log w + log (—u)13 + \Du\2,

where ß is a positive number to be determined later. Then 2  attains its maximum 
at a point p G 0. Hence, at p, it holds

Zi = 0, ulJztJ < 0.

By computation,
Wi ß U i

Z{ “I- “I- ‘zUki'llfc)w u (5.9)
^  + wj wl + 3u11_ 3 u }u1 +  +
w w2 u u2

On the other hand, since det D2u = w x,
Wi

uabuabi = ( - log w)i = ----- .

Therefore we have

UljZij +  t .  -  -  2 ^ u k + 2 An.
w ur u ul w

By (5.9),

Wk
---Ukw

ß\Du\‘
T 2uijUiUj.

By (5.10) and equation (5.6),

ßn
uijZij =  - /  +  —  + 2 A a  + — EE +  (ß2 -  ß)uij^  <  0. u u uz

Choosing ß = rt, we have

2n\Du\
—f  H------ h 2 A it +

it it ^  0 .

Hence,
(—it) [det D2u]" < (—it) A it < C 

at p. The lemma follows.

Remark 5.4. In the 2 dimensional case, we point out that the assumption u = 0 
on dQ can be removed by using the cut off function 77 =  log(R2 — \x\2) and the
relation

A  it

det D2u
See [TW3].
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To estimate the determinant from below, we consider the Legendre function 
of u. If u is smooth, the Legendre function of u is defined on the domain Q* = 
Du(Q), given by

u*(y) = x • y -  u(x), (5.11)

where x is the point determined by y = Du(x). By differentiating the formula 
y = Du(x), we have

I =° 2u(x )■
Hence we have

det D2u(x) = [det D2u*(y)]~1.

The Legendre transform of u* is u, and

u(x) = x - y -  u*(y)

at x = Du*(y). The dual functional with respect to the Legendre function is 
given by

J*(u*) = Aq(u*) -  [  f(Du*)(yDu* -  u*) det D2u*dy, (5.12)
J Q*

where
Aq(u*) =  — f [det D2u*] log det D2u* dy. (5.13)

Jn*
If u is a solution to Abreu's equation (5.6) in 0, it is a local maximizer of the 
functional Jo. Hence u* is a critical point of Jq under local perturbation, so it 
satisfies the Euler equation of the dual functional Jg, namely in Q*

= f(Du*) det D 2u*, w * = logdet D2w*, (5-14)

where is the cofactor matrix of

Lemma 5.5. Let u* be a smooth convex solution to (5.14) in dimension 2. 
Assume that u* < 0 in Ll*, u* =  0 on dQ*. Then there is a constant C depending 
only on supfi, supQ, \u*\, sup |/ | such that

det D 2U* <  -—— rrr.
-  (- u * ) 2

Proof. Consider
2  = w* + log(-?T)a + /J| |2,
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where the constants a  and ß  will be given below. By assumption, z tends to — oo 
near dfl, so it a tta in  its maximum at some point p G Q. At p we have

Zi =  0 , u * t j Zij  ^  0 ,

where

Zi = w* + a - ^ A  2ßu*kiu*k, 
u*

Zij = <  +  <xUijUT UiUi + Wu'kiju l +  2 ßu'kiu'kj.

Note th a t u*l̂ u*ki- = wk. Hence,

nu* -  u*iju*u*
0 > U* J Zij  =  U* JW*j + Q----------^2------ - + ^PWkUk + 2/? A  u*

u u* u*

Choosing ß  =  4 su p |1Dtt*|2 and using u*11 + u*22 =  dof^-2M. in dimension 2, we obtain

f  - a
\\7u*\2 Au* 

u*2 det D 2u*
+ 2aß

I V u *|2
+ ß  A u *  + —  < 0. 

u*

ß |V u *12 A  u*
2 A U  n ' u*2d e tD 2u*

< 0 ,

we obtain

(-u * )2d e tD V  ^  C2 „ . *

at p. Otherwise, we have

f  + 2aß
|V u*|2 ß an

+  A  u* + —  < 0 .  
2 u* “

Therefore, we also obtain

(—-u*)2 d e t -D2ti* <  (-ti* )2(&ti*)2 <  C

at p. The lemma follows by choosing a = n = 2. □

To apply the above determ inant estim ates, we first introduce the modulus of 
convexity for convex functions. The modulus of convexity of u a t x  is defined by

K ,x(r ) =  sup{/) >  0 I Sku(x) c B r(x)j ,  r >  0 (5.15)
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and the modulus of convexity of u on 0  is defined by

hu,n{r ) = inl  hu A r )i (5.16)

where

sh,uix) = {y e  ^ I u(y) < h +  ax(y)}

and ax is a tangent plane of u at x. When no confusions arise, we will also write 
ShjU(x) as Sh,u or Sh, for brevity.

For a convex domain 0  C Mn, it is known [TW4] that there is a unique 
ellipsoid E  C Rn containing 0 , which attains the minimal volume among all 
ellipsoids containing fi, such tha t

- E  C f l C  E, 
n

where ^ E  — { \{ x  — Xo) | x  G E )  and Xq is the centre of E. When E  is a unit 
ball, we say Tt is normalized.

P ro p o sitio n  5.6. Let u be a solution to equation (5.7). Assume f  G C a (f2), 
u = 0 on dO, and infqu = — 1 . Assume also that Q is normalized. Then for 
any 0 ' C 0 , there is a constant C depending only on a, d ist(0 ',dO ), f  and the 
modulus of convexity hu.n such that

M c 4-Q(0') <  C.

Proof. For any x  G 0 , by Lemma 5.4, we have

det D 2u (x ) < C

where C  is a constant depending only on /  and <5 = d is t(x , dQ). Let y = D u(x) G 
0*. By (5.15), (5.16), we have

Sr,*(y) c 0 \

where (5* =  hUtq( |)-  Furthermore, since \Du*\ < d iam {0 ), we also have

dts« y - x n  •

Hence, by Lemma 5.5,

det D 22l(x ) = [det D 2u*(y)] 1 >  C'
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where C  is a constant depending only on / ,  6 and /iu,q.
Once the determinant det D2u is bounded, we also have the Holder continu

ity of det D2u by Caffarelli-Gutierrez’s Holder continuity for linearized Monge- 
Ampere equation [CG]; and the C2,ot regularity for u by Caffarelli’s C2 a estimates 
for Monge-Ampere equation [Cafl, JW]. Higher regularity then follows from the 
standard elliptic regularity theory. □

We will estimate in §5.4 the modulus of convexity for the solution u in dimen
sion 2. In §5.3 we consider the change of Abreu’s equation under a coordinate 
transformation and establish the a priori estimates for the equation after the 
transformation.

5.3 Equations under transform ations in W 7+1

From this section, we always assume that /  = 0. Abreu’s equation is invariant 
under transformations of the x-coordinates in Rn, but it changes when taking 
transformations in Rn+1. We note that the affine maximal surface equation is 
invariant under uni-modular transformations in Rn+1, which plays an important 
part [TW1]. In this section we will derive the new equation under a rotation in 
jR.n+1 and establish the a priori estimates for it.

For our purpose it suffices to consider the rotation z = Tx, given by

* ^ n + l j (5.17)

Z2 X 2 , • • • ,  Zn Xn , (5.18)

^ 7 1 + 1 (5.19)

which fixes X2 , ...,xn axes.
Assume that the graph of u, M  = {(x,u(x)) G Rn+1 | x G Q} can be repre

sented by a convex function zn+\ = v(z\,...,zn) in ^-coordinates, in a domain Q. 
To derive the equation for x, we compute the change of the functional Aq.

Aq(u) = / logdetD2xdx (5.20)

, det D2u , . . _ .n. n+2
l°g —---- - + log(l + \Du\2) 2

(1 + |jDx|2) ^

'M
logK  + log(l + \Du\2)~̂ ~ (1 + \Du\2) 2 dE,
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where K  is the Gaussian curvature of M  and dS the volume element of the 
hypersurface. It is easy to verify that

1 V2 vn
1L\ , 'U2 i • • • 5 U n .

Vi  Vi  Vi
(5.21)

where V{ = So we have

1 + I Du 2 l + l ^ l 2
V2Vl

Lemma 5.7. Let u be a solution of (5.1). Let T  and v be as above. Then v 
satisfies the equation

V ij(d ~ %  = g, (5.22)

where (V li ) is the cofactor matrix of (vij), d = det D 2v and

g =  2vklvkn — -  (n + 2)-^-.
Vi vf

(5.23)

Proof. By (5.20) we have

n + 2
A 0(u) = J  logAT + log(l + |Z>u|J) T (1 -f \Du\2) 2 dYj

det D2v 1 + \Dv\2 n+2
log —— , -  —  -e h  + lQg(— 7 2 —~) 2(1 + |Du|2) 2

[v\)^dz

= J  [log det D 2v -  ^ - ^ l o g ( ^ ) ] ( ^ ) 2  dz := Ä 0(v).

One can now verify directly that (5.22) is the Euler-Lagrange equation of A q{v).
□

Next we prove a determinant estimate for equation (5.22). Assume v satisfies

v > 0, v > zu V! > 0, and 
v(0) is as small as we want.

Let
v — v — ez\ — c and Qec = {z \ v(z) < 0}, 

where e and c are positive constants in (0, ^). Then v satisfies

Vij(d .-%  =  2vk,vk,i 1 - ( n  + 2)
v\ + e (vi +  e)2 : =  9 •
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For simplicity, we omit the hat on v and write the above equation as

V ^ ( d ~ X  = g, (5.25)

where
9 = 2vklvkn

1
(n +  2)'

vn
x . xo- (5.26)Vi +  6 (iq + e)2

L em m a 5.8. Let v (=  v) be as above. Then there exists a positive constant C
depending only on sup^t c |u| and sup^  c \Dv\, such that

det D 2v <
C

(—if)n ‘

Proof. Consider
2  = logic — ßlog  (~v) — ^4|I2if|2,

where w = d~l and /?, A  are positive numbers to be determined below. Observe 
that i? < 0 in CltiC and if =  0 on dCltfC. Then 2  attains its minimum at a point p 
in i \ c. Hence, at p, it holds

Zi =  0 , v l j Zij >  0 .

By computation,

wi ßvi 0 A Zi = ---------------2 A vkivk,
W  V

(5.27)

+ -  2 (5.28)

Wk
w

Hence,

-vlJvijk.

n w i 1 vng — —2-------- -------[n +  2)

(5.29)

w  iq +  e
Therefore, by (5.28) and equation (5.25),

(iq +  e)2 ’

ij _  0u ’i 1 (n +  2)vn v ljWiWj ß n  ( ß v ljViVj
vlJZij = - 2

w  iq +  e (iq +  e)2
---------h

v
I V  Ic

+2 A — Vk — 2 A A v .  
w

By (5.27),

= ß*v̂ +4Aß\LA
Wi
w

wk 
— Vk w

ßv\
+  2Avklvk,

ß \V v \‘
+  2AvijV iV j.
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It follows

v*iz .. =  _ ( n +  2)— Hii____  1,111,1y (n +  Z) + 4j\  + e VikVk _  2ß_ ^

k—2
Vi  +  e (ui +  e)v

-  2A A » -  -  (/32 -  ß)vijV-A - .0) n*
ßn
v

We choose ß  > 1 such that ß 2 — ß >  0. By the positive definiteness of V i j , it holds 
îfc <  Uni;** for any k =  2, ...,n , so there is C' depending on |Du|, such that

V u 1A M  < f i  +  <  ;  a  « +  o '
fa  91-, -U  fa. —^  4

wn
iq +  e ' 4 (i?i +  e)2 4 (« 1  +  e ) 2

(5.30)

Then we have

- ( 2  +  n  -  2 * 7 ) - ^  _  4A-ÜÜ2- -  -  - A l  -  -  — - , 4 A t i > 0 .  (5.31)
(Ui +  e)2 Ui +  e (ui +  e)v v

Choose A small enough such that

2 +  n  -  2^C" > 0.

By a Schwarz inequality, there is a C q >  0 depending on |ui| such that

- ( 2  +  n  — 2AC"), T  ,2 -  4A <  CoA2««. 
(ui +  e)2 Vi  +  e

Now by (5.31), (5.32), we have

2ßv\ ßn

(5.32)

0 < -
( v i  4- e)v ^
2ße ß(n  + 2)

< -

(ui +  e)v v
ß(n  +  2)

-  —  -  {A -  Cq A 2) A v

(.A -  CqA 2) A v

- { A -  CoA2) A v.

Finally, we choose A  small enough such tha t A — CoA2 >  j .  It follows

(-v)Av(p) <  C

at p. Hence, choosing ß =  n, the lemma follows by

e z(x) >  g»(p) =  d - l ( _ v y n e -A\Dv\1  >  [ l A u ( - t ) ) ] - ” e “ '4|D”12 >

□
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5.4 M odulus of convexity  e s tim a te

In this section, we establish the modulus of convexity estimate for solutions to 
Abreu’s equation in dimension 2 with vanishing boundary condition.

Let u ^  be a sequence of solutions to Abreu’s equation in normalized domains 
Qk with vanishing boundary condition, and let A4k be their graphs. By taking 
a subsequence, we suppose that Qk converges to a convex domain 0  in R2, and 

converges to a convex function u defined on Q.
As in [TW1], we consider the domains

Dk =  { ( 2 , 2 : 3 )  G R3 I vfk\ x )  < £ 3  < 0}, (5.33)

D = {(x,£3) € R3 I u(x) < X3 < 0}. (5.34)

Then Dk converges to D. The graph A4 of u is understood as dD — {2:3 = 0}, so 
M k converges in Hausdorff distance to A4. We extend the definition of u to 80 
such that for any boundary point xo,

it(x0) = liminf u(x).
x — > x o ,  x e Q

For any given interior point Xq, let /(x) be a supporting function of u. Denote 
the contact set by

C = {x I u(x) = l(x)}.

We first prove a key lemma.

Lemma 5.9. If xq G dUt fl dC, then u(x0) =  0.

Proof. We prove this lemma by contradiction as in [TW1]. If u (xq) < 0, by 
the convexity of u, the segment connecting (x0,it(x0)) and (xo,it(xo)) lies on 
A4. Denote p0 = (x0,it(x0)) G A4. Since the equation is invariant under linear 
transformation of the x variables, we may suppose without loss of generality that

x0 = ( - 1, 0), Xq = (0, 0),

and
D C {x i >  —1}.

Then the segment
{(0, 0, t) I ii(—1, 0) < t <  0}

lies in A4. Adding a linear function to u ^  and u, we can further suppose that

u( —1, 0) =  —1, l =  —X\ — 2,



74 CHAPTER 5. BERNSTEIN THEOREM

which is a supporting function of u at x'0. In addition, we consider the line

L = { ( - M , - l )  I t G M}.

It is clear that A4 fl L must be a single point (Case I) or a segment (Case II). In 
Case II, we may suppose that p0 is an end point of the segment which is

{ ( - M , - l )  I -  1 <<<0 } .

Later, we will discuss the two cases separately.

Now we can first translate the origin to po and then make the rotation (5.17)- 
(5.19) such that A4 can be represented by a convex function v near p3. Therefore, 
we have the change of coordinates

Zi = - x 3 -  1, z2 = x2, z3 = Xi + 1.

By convexity, A4k can also be represented by z3 = v^k\ z i, z2) near ptb respectively. 
By Lemma 5.7, v'k' is a solution of the equation (5.22) near the origin. As we 
know that A4k converges in Hausdorff distance to A4, in new coordinates, v ^  
converges locally uniformly to r. It is clear that

u(0) =  0, v >  0, when — 1 <  Z\ <  0 and 
v > zi, when 0 < Z\ < 1

and the two line segments

{(*,0,0)| - 1 < * < 0 } ,  {(*,0,*) I 0 < t < 1}

he on the graph of v.
As in (5.25), let v ^  = v ^  — \z\  and v = v — \z\. Also as in (5.25), in the 

following computation we omit the hat for simplicity. Then

v > \ \ z \ \  and v(zu 0) = ^\zi\. (5.35)

Let
C = {z I v(z) = 0}.

Observe that
A i n  L = {(zi,z2, 0) I (zu z2) G Cj

in ^-coordinates.
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Case I. In this case, v is strictly convex at (0,0). The strict convexity implies 
that Dv is bounded on Sh,v{0) for small h > 0. Hence, by locally uniform conver
gence, D v ^  are uniformly bounded on S h vW(0). By Lemma 5.8, we have the 
determinant estimate

det D2v{k) < C (5.36)

near the origin.
For 6 < f, by (5.35), 5^(0) C < z\ < and (±§,0) G dSs,v{0). In 

the z2 direction, we define

«<5 =  sup{|2 2| I (zi,z2) e Ss,v{0)}.

By comparing the images of 5^(0) under normal mapping of v and the cone with 
bottom at dSs,v{0) and top at the origin,

|Ar„(5i,„(0))| > C - .  (5.37)
hiS

The definition of normal mapping Nv has been given in §3.3.
On the other hand, by the lower semi-continuity of normal mapping,

Nv(Ss,v(0)) C liminf Nvk(SstV(0)).
k—*oo

By (5.36),

|Ar»(S^(0))| < lim inf |jV„(t,(Sj,„(0))|
k—>oc

= lim inf /  det D2v{k)
Js6,v(o)

< C|Sä,„(0)|
< C6ks(5.38)

Hence, (5.37), (5.38) imply k& > C > 0, where C is independent of 6. Again by 
the strict convexity, k,s —► 0 as 6 —> 0. The contradiction follows.

Case II. In this case,
C = {(01z2) I 1 < z2 < 0}.

We define the following linear function:

le(z) = 6ez2 + e

and uoe = {z \ v(z) < /e}, where 6e is chosen such that
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We can suppose that e is small enough such that is contained in a small ball 
near the origin. Hence, Dv^  is uniformly bounded. By comparing the image of 
ujt under normal mapping of v and the cone with bottom at duot and top at the 
origin, we have

\Nv(u€)\ > C6e. (5.39)

On the other hand, ut C {—e < z\ < e} since v > \\z\\. By the convexity 
and the assumption above, u€ C { — f- < < j-}. Therefore,

e2
M  < C-r-

Oe

— le still satisfies equation (5.22). Applying the determinant estimate in 
Lemma 5.8 to v^  — le and by a similar argument as in (5.38),

\Nv(uu)\ < Cj-- (5.40)

Combining (5.39) and (5.40), we have

However, according to our construction, f- goes to 0 as e goes to 0, which induces 
a contradiction. □

Remark 5.10. The following property has been used in the above proof, and 
will also be used in the next chapter. Assume that u is a 2-dimensional convex 
function satisfying

it(O) = 0, u(x) > 0 for x 0 and u(xi,0) > C\x\\. (5-41)

Then

In other words, if

|JV„(SM (0))|
| 5 m ( 0 ) I

oo as

det D 2u < C

and u vanishes on boundary, then u is C1 in O. This property can be extended 
to high dimension if

m(0) = 0, u(x', xn) > C\xn\ and u(x',xn) > C\x'\2, (5.42)

where x! — (xi, ...,xn_i).
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It is also known that a generalized solution to

det D2u > C

in a domain in R2 must be strictly convex. This result was first proved by 
Aleksandrov but a simple proof can be found in [TW4].

Now we can prove the estimate for the modulus of convexity.

Proposition 5.11. Let u^  be a solution to Abreu’s equation in a normalized 
domain Qk with vanishing boundary value and inf^kU — —1. Then there is a 
positive function h(r) (r > 0) such that the function

huw,&(r) > h(r),

where hu{k) & is defined in (5.16).

Proof. We also prove this proposition by contradiction 
as before. If there exists r0 > 0 such that hu(k) Qk(r0) - 
strictly convex. So we may assume the contact set

C = {x I u(x) = l(x)}

is not a single point set, where l(x) is a supporting function of u at the origin.
By Lemma 5.9, there must be an point p G dC lying in the interior of Q. By 

making a linear transformation of x and adding a linear function to u, there is 
no loss of generality in assuming that p = (0, 0), l(x) = 0, and the segment

{Oi,0) I -  1 <  x i  < 0}

lies in C. Here the transformation does not change Abreu’s equation.
To reduce this case to the model as in Lemma 5.9, we make the following 

construction. For any e > 0, we consider a linear function

Ze = ex\ +  e

and a subdomain Qe = {u < le}. Let Te be the coordinates transformation that 
normalizes Ule and

ue(y) = -u{x), y e Qe e
where y = Tex and Cle = Te(Qe). Note that Abreu’s equation is invariant under the 
above transformation. By choosing a subsequence, f2e converges to a normalized

Let Ulk —> O and —> u
■ 0, then the limit u is not
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domain D, ue converges to a convex function ü on Cl. Denote by A4e the graph 
of ue. We also have A4e sub-converges in Hausdorff distance to a convex surface 
A4 G M3. It is clear that (0,0) is a boundary point of Q and A4 contains the two 
segments

{(*,0,0) I -  1 <  t <  0}, {(0,0,*) I 0 < * <  1}

By Lemma 5.9 we reach the contradiction. □

5.5 P roof of Theorem  5.1

Let u be an entire solution to Abreu’s equation on M2. By adding a linear function, 
we assume u attains its minimum 0 at the origin. We claim that there are 
constants C > 0 such that

0 < C < det D 2u < C~l . (5.43)

To prove it, we first recall a lemma.

Lemma 5.12 ([Caf2]). Let i l  be a locally uniformly convex function in Mn. Then 
for any y G IRn and h > 0, there is a point x such that y is the centre of mass of 
the level set S .̂n(x).

By Lemma 5.12, for any h >  0, there is Xh G such that 0 is the centre of 
mass of Sh,u(%h)• Let Th be the linear transformation which normalizes Sh,u(xh) 
and

u(x) -  u(xh) -  Du(xh)(x -  xh) n  , c . .v
M v )  = -------------------t------------------ , y e  £ih, (5.44)

where y =  Th(x) and Oh = Th{Sh,u(^h))- Noting that 0 is the centre of mass 
of f2/i, we have Uh = 1 on dOh and infnfc Uh = Uh(Th(xh)) = 0. By Proposition 
5.11, Uh is strictly convex, uniformly in h. By Lemmas 5.3 and 5.5, we have the 
estimate

Ci < det D2uh < C2 in Bi/2n(0). (5.45)

Hence by Proposition 5.6, | |^ | |c 4(ß1/4n(o)) ^  C for some C independent of h. We 
obtain

Ci\y\2 < uh(y) -  Duh(0)y -  uh{0) < C2\y\2. (5.46)

Note that by (5.44),

u(x)
=  My) -  Duh(0)y -  uh{0).h
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It follows
OITftxl2 < h~lu(x) C2\Thx\2.

Let Ah, Ah be the largest and the least eigenvalues of the transformation Th- Then

A„ < C3h~i, Xh > C 4/i. - 2 ,  (5.47)

where C3 depends on Ci, C2 and supößi u and C4 depends on C2 and i n f ^  u. 
Letting h —► 00 , we obtain (5.43).

Finally, the Bernstein theorem for Abreu’s equation in dimension 2 follows 
from the following result for two dimensional elliptic equations.

Proposition 5.13 ([B, Ho, Mi]). Suppose u is a solution to the elliptic equation

2

dijUij = 0 in M2
i,j= 1

such that

Then u is a constant.

u(x)| = o(|rrI) as \x\ —> 00 .

(5.48)

(5.49)

The use of Proposition 5.13 is inspired by [Tr]. Instead of using the above 
proposition, we can also use Proposition 5.6 and a rescaling argument, as in 
[TW1, 2].

5.6 A  variant o f  B ern ste in  th eo rem

In this section, we will prove a Bernstein property for Abreu’s equation under 
the assumption of completeness in Calabi’s metric. The argument originates 
from Yau’s gradient estimate for harmonic functions on complete Riemannian 
manifolds [Y].

Let 0  be a domain in En and u be a strictly smooth convex function on Q. 
Denote by A4U the graph of u. Calabi introduced an Riemannian metric on A4U, 
given by [Call]

g — uijdxldx3. (5.50)

In [JL], [Me], the authors proved the Bernstein property for affine maximal sur
faces in dimensions 2 and 3 under the assumption of completeness with respect 
to Calabi’s metric. In the case of Abreu’s equation, we have a similar result.
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Theorem 5.14. Let u be a solution to (5.1). Assume 2 < n < 4 and the graph 
AAU is complete with respect to g. Then u is a paraboloid.

Denote by V and A the gradient and Laplace operators in the Calabi metric. 
Let /  be a smooth function on Q .  Then

IV/I2 = ufj, (5.51)

A /  =  u ' 3 f i j  +  (5.52)

where the subscripts i , j  means the usual partial derivatives in .r* and x.j. Note 
that Abreu’s equation can be written as

uijL i:i -  uijLiLj =  0, (5.53)

where
L =  log det D2u.

Hence, Abreu’s equation can also be rewritten as a second order equation in 
Calabi’s metric,

A L = i | V L | 2. (5.54)

By direct computation, Ricci curvature of Calabi’s metric is given by [Call, JL]

R i j  —  ^  ( n  n  Upr iUqgj  U U Upqj-Ugij').

Lemma 5.15. The following formula holds in all dimensions,

R i j  > - ~ \ V L \ 2ut}. (5.55)

Proof. For any point p £ D, we can make a linear transformation to the coordi
nates such that at p, =  5ij and Rij is diagonal. Then

R i i  ^ ( ^ p r i  ^ p p r U r i i )

~  ~^{Upri ~  L r Ur a )  >  — — |VL| .

□

Lemma 5.16. We also have

A|VL|2 > ^ - ^ |V L |4 +  (VL, V|VL|2). (5.56)
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Proof. For any point p £ 0, as above we make a linear transformation to the 
coordinates such that at p, Uij = öij and = 0 for k > 1. Then

RiciNL.VL) =

>

^  ' y  U p r l  u p p r u r l l ) L i

p ,r

^ y  ^(Uprl ~ LrUrll)L1
p ,r

\  X+iU “ L ium ) L\
P

p>2

Using an elementary inequality, we have

Ric{NL,NL) > - - ^ l ^ m  +  (y ^ppi)n — 1 z—'

u m  — T jU n i  +

n o

1
7 2 — 1 

7 2 + 1

P> 2 

( L i  —  U m ) 2

1
'72 i11

7 2 - 1  7 2 — 1
^1̂ 111 +

1 1> -----
4 n — 1

(72 +  i f
4n -  1 L\

7 2 — 1

7 2 — 1

1Ö72

L\ L\

|VL|4. (5.57)

Applying (5.54), (5.57) to the Bochner formula,

A |VL|2 = 2|V2L|2 + 2Ric(VL,VL) + 2{VL, VAL)

> - |A i |2 — — |VL|4 + (V i, V|VL|2)
72 o72
 ̂_ in

= —  |VL|4 + (VL,V|VL|2). (5.58)

□

Proof of Theorem 5.1 f. Fix a point p in Mn. Denote the geodesic ball centered 
at p with radius R  by BR(p). Let r be the distance function

r(-) = dg(p, •).

Assume
z — 2 log(i?2 — r 2) + log I VL|2.

Since 2 = — 00 on the boundary of the ball, it attains its maximum at an interior 
point q. We may suppose that q lies outside the cut-locus of p, that is, r 2 is
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smooth at q. Otherwise, we can use the approximation argument as in [SY] or 
[JL, Me].

Choosing the normal coordinates at the maximum point, we have

Zi = 0, za < 0.

By computation, 

Zi ■- - 2 (r2), (IV^P).
R2 - r 2 |V I |2

zu — —2- (r2 ) 2

(R2 — r2)2 

Using the fact |Vr| = 1, we have

-  2
(r2)

R2 — r2
a (|VL|2)jj (|VL | 2 ) 2

|VL|; \VL[

A r2 = 2r A r + 2.

Substituting (5.59) and (5.61) into A z < 0, we obtain 

-24

By Lemma 5.16,

(R2 - r 2)2

A|VL|
IVL|

2r A r  + 2 AIVLI2
-  2— — ------- —  +  <  0 .R2 — r2 \VL\ 2 —

2 5 —n . _ _ l2 0 ( VL, r Vr )> ------ |VL|2 + 8- ’ '2 —

>  (

8n 
5 — n

R2 -r< 

e)|VL|2 - C t

(5.59)

(5.60)

(5.61)

(5.62)

(5.63)(R2 - r 2)2’

where (7e is a positive constant depending on the small e > 0.
Next, we deal with the term r A r. Denote R* = dg(p,q). Assume R* > 0. 

When 2 < n < 4, by Lemma 5.16,

A |VL|2 > <VL,V|VL|2).

Hence, by the maximum principle,

max IYZ/12 = max !YL|2.
B r *(p ) 0B r *(p )

However, z = (R2 — r 2)|VL|2 attains its maximum at q. So

max IVLI2 = max IVLI2 =  |VL|2(g').
Br R p ) dB R* (p)

Therefore from Lemma 5.15 we have the Ricci curvature bound, 

Rij(x) > —^ \ V L \ 2{x)ui:j(x) > - ^ \ V L \ 2{q)uij(x)
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for any x in BR*(p). By the Laplace comparison theorem,

rA r < (n — 1)[1 + |VL|(g)r] (5.64)

in BR*(p). This inequality also holds at q when R* = 0. Indeed, when R* = 0, it 
means q = p. For any <5 > 0, we have

Rij(z) > ~ ( y^ VLI2(9) + u>ij(x)

in Bs(q) provided s is sufficiently small. Then the inequality follows by taking
<5 — 0.

Substitute (5.63), (5.64) into (5.62) to get

0 > -24 (R2 -  r2y
-  4 ( n - l ) ( l  +  |VL|(</)r) + l

R2 - r :
.2

> ( V - - ^ - 0 | V L | 2(<?) - ( 2 4  + c £ + c £o-8n '  v- -  . - c . - c / ( ^ 2 _ r 2)2 i ? 2 _ r 2

When 2 < n < 4, choosing e and e' small enough, we obtain

ez(q) <Q R 2 + C2.

Here C\, C2 are positive constants independent of R. Thus by the definition of 2 ,

(R2 -  r 2)2|VL|2(x) = e"(l) < ez{q) < CR2 + C.

This implies |VL|(p) = 0 by letting R —> 0. Since p can be any point, so L 
must be a constant. Namely det D2u =const.. Hence u defines an affine complete 
parabolic affine hypersphere. By [Call], u is a paraboloid.
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C h a p te r  6

B o u n d ary  value p rob lem s

We continue to investigate Abreu’s equation. In this chapter, we study a bound
ary value problem for Abreu’s equation, which can be formulated as an variational 
problem for the energy functional.

6.1 In trod u ction

Let Q be a smooth, bounded domain in IR n  and p  a smooth, uniformly convex 
function defined in a neighborhood of Q. Define

S[<p, U] = {uG C2(Q) I u is convex u\ao, =  <̂ (x), Duffil) C D(p(Q)}. (6.1)

In [TW3, 5], N. Trudinger and X.J. Wang studied the affine Plateau problem. A 
special case of the affine Plateau problem is to maximize the affine area functional

Aq{u) = f  [det D2u]edx, (6.2)
Jn

in S[<p, D], where 0 = We formulate an analogous variational problem for the 
energy functional of Abreu’s equation as follows. As we pointed out in Chapter 
5, the energy functional is given by

A0(u) = /  log det D2udx.  (6.3)
Jn

As in [TW3], we can consider the more general functional,

(6.4)

85
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where /  G So we have a similar variational problem for Abreu's equation,
that is to find a function u in 5[^, fi] such that

Jo(u) = sup{J0(u) I v G (6.5)

The Euler equation of the functional (6.4) is Abreu’s equation

UlJWij =  / , (6.6)

where
w = [det D2u]~l . (6.7)

In [TW3], Trudinger and Wang proved the existence of smooth maximizers of 
Jo in S[ip, n]. The main result in this chapter is as follows.

Theorem 6.1. Suppose the domain Q is bounded and smooth. Assume f  G 
C°°(fl). If n = 2, there exists a unique, smooth, locally uniformly convex maxi
mizer u of the variational problem (6.5).

The variational problem (6.5) extends the first boundary value problem for 
equation (6.6),

u = (p on dQ, (6-8)
Du = Dp on <9Q. (6-9)

Indeed, if we have a classical, locally uniformly convex solution u G C4(fl) D C1(fl) 
to (6.6), u will also solve (6.5) uniquely. The uniqueness follows from the concav
ity of the functional Aq.

The proof of Theorem 6.1 is inspired by Trudinger-Wang’s variational ap
proach and regularity arguments in solving the affine Plateau problem. But due 
to the singularity of the function logd near d = 0, the approximation argument 
in [TW3, 5] does not apply directly to our problem. To avoid this difficulty we 
introduce a sequence of modified functionals Jk to approximate J0, and prove 
that the limit of the maximizers of Jk is a maximizer of (6.5). For the regularity, 
we need to establish uniform a priori estimates for maximizers of J^.

6.2 A m odified functional

Since the set S[ip, fi] is not closed, we introduce

£[<£, Q] = {u G C°(f2) I u is convex u \qq = p(x),N U(D) C Dp{Vt)}, (6.10)
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where Nu is the normal mapping of u: introduced in §3.3. Note that S[ip, fi] is 
closed under the locally uniform convergence of convex functions. In [ZZ3], we 
proved the upper semi-continuity of the functional Ao, which implies the existence 
of a maximizer of J0 in £[(/?, 0]. To apply the a priori estimates to the maximizer, 
we need a sequence of smooth solutions to Abreu’s equation to approximate the 
maximizer. Since the penalty method in [TW3] does not apply to Jo5 we consider 
a functional of the form

where

J(u) (6 . 11)

A(u) = f  G(detD2u)dx. (6-12)
Jn

Here G(d) =  Gs{d) is a smooth concave function on [0, oo) which depends on a 
constant (5 E (0, 1) and satisfies the following conditions.

(a) G(d) = log d when d > 5.
(b) G\d) > 0 and there exist constants Ci, C2 > 0 independent of 5 such that 

for any d > 0

(c) The function F(t) 
satisfies

G"{d) > - CM' 2, 
dG"'(d)
G"(d) G C2 ■

G{d), where t = d«, is smooth in (0,+ 00) and

F (0) > - 00, F"(t) < 0, 
limt_̂ o F'(t) = 00, limt_o tF ' ( t )< C 3, 

where C3 is a positive constant.

Rem ark 6.2.
(i) The condition F"{t) < 0 in (c) implies that the functional A is concave.
(ii) The concavity of F, Fn(t) < 0, is equivalent to dG"(d) 4 - < 0; and

T l__1

limf_ 0 F'(t) = 00 is equivalent to d~^~G'(d) —> 00 as x —* 0.
(iii) A function G satisfying properties (a)-(c) will be given in (6.18) below.

The Euler equation of the functional J  is

UijWij = f,  (6.13)

where
w = G'(det D2u) (6-14)

and is the cofactor matrix of D2u.
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Remark 6.3. Equation (6.13), (6.14) is invariant under unimodular linear trans
formation. If we make a general non-degenerate linear transformation T  : y = Tx  
and let u(y) = u(x), then u(y) is a solution of

ÜljWij =  / ,  w = G"(det D2ü),

where G(d) = G(\T\2d), d = det D2ü. Here G is a smooth concave function 
satisfying (a), (b), (c) with 6 = \T\~25, C\ =  Ci, C2 = C2, C3 = C3.

Now we study the existence and uniqueness of maximizers to the functional 
J(u). The treatment here is similar to that in [TW3] and [ZZ3].

First, we extend the functional J  to S[ip, fi]. It is clear that the linear part 
in J  is naturally well-defined. It suffices to extend A(u) to S[<p, f2]. Since ?/, 
is convex, u is almost everywhere twice-differentiable, i.e., the Hessian matrix 
(D2u) exists almost everywhere. Denote the Hessian matrix by (d2u) at those 
twice-differentiable points in Pt. Recall that a convex function on 0  induces a 
Monge-Ampere measure y[u] through its normal mapping. This measure is a 
Radon measure and can be decomposed into a regular part and a singular part 
as follows,

p [ u ]  =  LLr [ u \  +  f i s [ u \ -

It was proved in [TW3] that the regular part fir[u] can be given explicitly by

ßr[u] = det d2udx

and det d2u is a locally integrable function. Therefore for any u G 5[<£>, Q], we 
can define

A(u) = f  G(det d2u)dx. (6.15)

Next, we state an important property of A(u). For any Lebesgue measurable 
set E , by the concavity of G and Jensen’s inequality,

f  ~ ^  (  fPdetö2u d x \
J  G(detd2u)dx < \E\G y —— —------J (6.16)

< \E\G(\E\-l fi[u]{E)).

By the assumption (a), d~lG(d) —> 0 as d —> 00. Note that G is bounded from 
below. So the above integral goes to 0 as |.E| —► 0. With this property, we have 
an approximation result for the functional A(u). For u G S[ip, D], let

uh(x) = h~ p{^-r^My)dŷ
B i (x)
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where h > 0 is a small constant and p £ Cq°(Bi (0)) with f Bl^  p = 1. Suppose 
that u is defined in a neighborhood of 17 such that uh is well-defined for any 
x £ Ft. A fundamental result is that that (D2Uh) —*► (d2u) almost everywhere in 
17 [Z]. We have therefore obtained as in [TW1],

Finally, the existence of maximizers of J  in S[<£>, 17] follows from the following 
upper semi-continuity of the functional A(u) with respect to uniform convergence.

Lemma 6.5. Suppose that un £ S[(p, f2] converge locally uniformly to u. Then

Proof. The proof is also inspired by [TW1], see also [ZZ3]. Subtracting G by the 
constant (7(0), we may suppose that (7(0) = 0. By Lemma 6.4, it suffices to prove 
it for un £ C2(i7) and we may assume that un converges uniformly to u in 17.

Denote by S  the supporting set of /xs[u], whose Lebesgue measure is zero. By 
the upper semi-continuity of the Monge-Ampere measure, for any closed subset
f  c n \  s,

Lemma 6.4. Let u £ S[<p, 17], we have

(6.17)

For given e, e' > 0, let

S7fc =  {x £ 17 \  S  I (k — l)e < det d2u < /ce}, k = 0,1, 2,...,

and oik C 17fc be a closed set such that

^  2|fc|'

For each Uk, by concavity of G and (6.17), we have

< G{he).
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It follows

Hence,

limsup /  G(det D2un)dx < G(ke)\uk\
T t  ►OO UJfc

— — l)e)\cJk\ Y G^liükl

< f  G(de td2u)dx +  G(e)\Llk\-
JQk

limsup [  G(det D2un)dx < j  G(det d2u)dx + G(e)|f2|. 
n—*oo J\Jojk Jfl

By (6.16), letting e go to 0, we can replace the domain of the left hand side 
integral by fl. The lemma is proved. □

For the uniqueness of maximizers, one can check that Lemma 2.3 in [TW3] 
also holds for J(u). That is

Lemma 6.6. For any maximizer u of «/(•), the Monge-Ampere measure p[u] has 
no singular part.

In conclusion, we have obtained the existence and uniqueness of maximizers 
of J in S[p, f2].

Theorem  6.7. Let Q be a bounded, Lipschitz domain in IRn. Suppose ip is a 
corvuex Lipschitz function defined in a neighborhood of Q and f  € L°°(Q). There 
exists a unique function in S[p, f2] maximizing J .

Proof. The existence follows from the upper semi-continuity of A(u). For the 
uniqueness, note that by the concavity of the functional, if there exist two maxi
mizers u and v , then d2u = d2v almost everywhere. Hence by Lemma 6.6 we have 
p[u\ = fj[v]. By the uniqueness of generalized solutions to the Dirichlet problem 
of the Monge-Ampere equation, we conclude that u = v. □

In Theorem 6.7, we only need the Lipschitz condition on Ll and <p. But later 
for the regularity, we must assume the smoothness as stated in Theorem 6.1. 
We also point out that the above argument applies to the functional J0, and the 
existence and uniqueness of maximizers also hold for J0.

At the end of this section we also point out the existence of functions G 
satisfying properties (a)-(c) above. A function in our mind satisfies

G(d) =
i f  _  iLAg _i_ ioe s -  

0 (1 - 6 )U e ’

log d,

d < 5, 

d > 6,
(6.18)
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where 9 =  One can check that G G C2(0,oo) and C3 except at d =  5. It 
is easy to see that G satisfies (a) and (c). We can also check that G satisfies (b) 
except at d =  6. Hence, we can always mollify G to have a sequence of smooth 
functions satisfying the properties (a)-(c) to approximate it.

For our purpose of studying J0, we choose a sequence of functions Gk =  G$k 
satisfying (a)-(c) with 8k —* 0 as k —> oo, and consider the functionals

Jk{u) = Ak(u) - (6.19)

where
Ak(u) =  I Gfc(det D 2u)dx. (6.20)

Jn
By Theorem 6.7, there exists u ^  G S[ip, 12] maximizing the functional Jk in 
S[p,Q]. It is clear that u^  converges to a convex function uo in S[</?, fl]. In the 
rest of this diaper, we will prove that in dimension 2, Uq solves the problem (6.4). 
It suffices to prove that u0 is smooth in Q and satisfies Abreu's equation.

6.3  In terior e stim a tes

In this section, we establish the interior estimates for the equation (6.13).

Lem ma 6.8. Let u be the convex smooth solution to (6.13) in 0 . Assume that 
u <  0 in 0  and u =  0 on dLl. Then there is a positive constant C depending only 
on sup |V ia|, sup \u\, sup |/ |  and independent of 8, such that

det D2u < -------- — .
~  ( - u ) n

Proof. Let
2 =  — log d — log (—u)3 — I Viz|2,

where ß  is a positive number to be determined later. Then 2 attains its minimum 
at a point p in 12. We may assume that d(p) > 8  so that w = d~l in a small 
neighborhood of p. Otherwise, the estimate follows directly. Hence, at p, it holds

Zi =  0 , u^Zij >  0 .

We can rewrite 2 as
2 =  log W  — log {—u Y  — I V?l|2
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near p. By computation,

Wi ßUi 
W  U

Zij ~
W i j  W i W j  ß U i j  ß U i U j

w w* u uV  2  ‘̂‘V'kij'U'k .

( 6 .21)

( 6.22)

On the other hand, since det D 2u =  w x,

ab / i \u uabi =  ( - lo g W)i = -----.
W

Therefore we have

««*, = _  i ±  +  +  2— uk -  2Au.
w* u

By (6.21),

i jw{Wj 2 {jUiUj Aß\Du\2
i ° — 7T =  ----- ----- -  + 4 UijUiUj,

w 1 u2, u
wk ß\Du\2
— u k = -------------- f 2  UijUiUj .
w u

It follows

ßn
u

_  2W  _ 2 _ ^
u w1

ul:iZij =  f  — —  — 2 A u — —Z1-----(ß'z — (3}uvZLZL > Q.

Choosing ß  =  n, we have

(—w)[detD 2u]™ < (—u) A u  < C

at p. The lemma follows. □

For the lower bound estimate of the determinant, we consider the Legendre 
function u* of u. As we mentioned in §5.2, if u is smooth, u* is defined on 
f2* = Du(Ll), given by

u*(y) =  x - y -  u(x),

where x is the point determined by y =  Du(x). Differentiating y =  Du(x), we 
have

det D 2u(x ) =  [det D 2u*(y)]~1.

The dual functional with respect to the Legendre function is given by

=  A*(u*) -  [  f(Du*)(yDu* -  u*) det D 2u*dy,
Jn*
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where
A*(u*) = f  G([det D 2u*)~l ) det D 2u*dy.

Jn*
If u is a solution to equation (6.13) in fi, it is a local maximizer of the functional 
J. Hence u* is a critical point of J* under local perturbation, so it satisfies the 
Euler equation of the dual functional J*, namely in Q*

= - f ( D u ') ,  (6.23)

where
w* = G(<f-1) -  <f _1G'(<f _1), d* = det £>V. (6.24)

Note that on the left hand side of (6.23), it is u*l\  the inverse of

Lemma 6.9. Let u* be a smooth convex solution to (6.23) in Q* in dimension 2. 
Assume that u* < 0 in Q* and u* = 0 on dQ*. Then there is a positive constant 
C depending only on sup |Vit*|, sup \u*\, inf f  and independent of 6 such that

det D 2u* < C .(—u*y

Proof. We consider

z = — log d* — log(—u*)P — a  I Vu*|2,

where a, ß  are positive numbers to be determined below. Since z tends to oo on 
it must attain its minimum at some point p G 0*. At p we have

Zi = 0, u*ljZij ^  0.

By (6.24), we compute

w'i = G"(d‘~1)d*~3d*, (6.25)
ttiy = -G " '(d '~ ')d ‘~ \ l 'd ‘ -  ?jG"(d’ ~1)d'~4d‘d‘J + G "(if~ l )d, ~3d'y (6.26)

On the other hand, by computation,

d'i r K  ,  , . (6.27)
d* d*d* n* ii*v*

*V = - f  + - f r  -  0 - f  + ß f p t  -  2auU <  -  (6-28)

It follows

*i j
U J Zij +

d *2 

u*tfd*d*
- ß -  + ßu*

u*iju*u*
2 a -^ u l - 2 a  A  u*



94 CHAPTER 6. BOUNDARY VALUE PROBLEM S

By (6.26) and equation (6.23), we have

ij d' 2 d, ~1G'"(d, ~1)u*ijd*id,jJi*u d * d *
—r / +  — ■ -  — 7 ^  + 3 - 2d* G"(d*~1) ' ' ' G"(d*_1) d-2 ' “ d*2

We may assume th a t /(p )  < 0 .  By the condition (b) for G,

ü  < - er1,G"(d* )
d* _1G'"(d*_1)

G"(d* )
<  C2.

Hence,

So we have

1 / d*d*lJ ^  / O f —  1 £ I l Q  / o  1 JL■ * « >

>  C r 1i n f /  +  ( 3 - C 2)
d*2

u*i2zy >  - O f 1 inf /  +  (C2 -  2) 

By (6.27),

£ ^ _ 2 4  A u .
d*2 ??* ??*2 d*

u*ijd*d*
d*2

rl*

d*Uk ~ ß

L*i j U*U*
+  4 a ß — — -— h 4a 2u*ku*u*k,

| Vit*12
-  2 m 4 u ,X

Therefore

2, u*u u*m* nß
- C ß l m i f + [ ß v { C 2 - 2 ) ß 2}

U - w
IV?/* I2

+[4(C 2 -  2) +  2]a/3'- ^  - +  [4(C2 -  2) +  4]a2«*t u,*ui - 2 o A i i ‘ > 0 .  

Choose a  small enough such th a t

[4(C2 -  2) +  4 W u 'lk< A

Using the fact A 11 +  u*22 = , f*"2 in dimension 2, we have

0 1*̂ 01*11*u*u] |v«*|2 A  u*
*2 — o.*2?r*2 det D 2u*

It follows

- G f 1 i n f /  +  G
, |V u " f  An* /Jra J V u *  |2

+  c
u*2 det D 2u* u* u*

a  A  u* >  0,

where C', C" are constants depending only on a , ß, C\ and C2. If

An*
2 A  u*2 det D 2n* -  ° ’
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we obtain
(—u*)2 det D 2u* ^  C

at p. Otherwise, we have

Hence, we also obtain

(—u*)2 det D 2u* <  ( A u*)2 ( - u * ) 2 ^ C

at p. The lemma follows by choosing ß =  n =  2. □

We would like to point out that
(i) the determinant estimates above is independent of <5. This leads us to use 

the approximation {G*,};
(ii) The estimate depends only on inf / .  This is crucial in §6.8;
(iii) In Lemma 6.9, the estimate only holds in dimension 2. Since we do not

have the relation u*n Tu*22 =  ~icf^ 2 u*, we can not deal with the term in
the proof. This is why we can not extend Theorem 6.1 to higher dimensions.

By Caffarelli-Gutierrez’s Holder continuity for linearized Monge-Ampere equa
tion [CG] and Caffarelli’s C2'a estimates for Monge-Ampere equation [Cafl, JW], 
we have the following a priori estimates.

Lemma 6.10. Let u £ C4(fl) be a locally uniformly convex solution of (6.13) in 
dimension 2.

for any p > 1 and Q' CC 0, where C depends on n, p, sup |/ |,  dist{Q!,dQ) and 
the modulus of convexity of u.

for any a £ (0,1) and O' CC 0, where C depends on n, a, sup |/ |,  dist{Q! , dO) 
and the modulus of convexity of u.

(i) Assume f  £ L°°(Q). Then

IMIw4'P(q') < c

(ii) Assume f  £ Ca(0). Then

^ | | c,4-q (o /) <  c

Note that the modulus of convexity has been explained in §5.2.
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6.4 Equations after rotations in Rn+1

In order to establish the estimate of the modulus of convexity, we also need to 
consider the equation under rotations in En+1.

As in §5.3, we consider the rotation z =  Tx,  given by

zi = - x n+i, (6.29)

22 =  x2, ..., 2n =  xn, (6.30)

Zn+1 = Xi, (6.31)

which fixes x2, . . . ,xn axes. Assume that the graph of w, Ad = {(x,w(a:)) G 

R n+1 I x G can be represented by a convex function zn+1 = v(z\ . ..., zn) in
2-coordinates, in a domain Q. To derive the equation for v, we compute the
change of the functional A0.

A(u) = f  G(det D2u)dx 
Jn

(6.32)

f  ^  ( det D2u . . ^  , , . n ± 2  I ,

= G \ ------— „.n + J 1 + \DU\ ) 2Jn \ ( 1  + \Du\2) 2 J

= j  G(A'(l + ID uf)2̂ )  (1 + |Du|2)-2dE,

where K  is the Gaussian curvature of Ad and dE the volume element of the 
hypersurface. Following the computation in §5.3, we have

1 + \Du\2 =2 _  1 +
v\

Hence we obtain

In addition,

A(u) = f  G(vl r̂,+2) det D 2v)(v2) 2 dz := Ä(v).  (6.33)
Jn

f  f(x)u(x)dx =  f  fu { l  V \Du \2) ~ U e  
Jn Jm

=  /  f(v,  22, Zn ) (  — Z \ ) ( v \ ) ^ d z .
Jn

Let
J{v) = Ä{v)~ [  f(v,  22, ..., zn)(—z\)(vl)zdz.

Jn
After computing the Euler equation for the functional J(v), we have
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Lem ma 6.11. Let u be a solution of (6.13). Let T  and v be as above. Then v 
satisfies the equation

V lJ(d l )ij — g — f\Z\V\ +  f\Z\  +  /  (6.34)

in the set {z \ v l n̂+2^d > (5}, where (V i s  the cofactor matrix of (% ), d = 
det D 2v and

9

f

f i

2vklvkn —  -  (n +  2 )^y , 
Vi vf

f '(vi  Z'2i •••)  Znfi
d f
dxi

(v,Z2,...,Zn).

Rem ark 6.12. In the proof of strict convexity in §6.7, we will use the upper 
bound estimate for det D 2v given below. Since the lower bound for det D 2v is 
not needed, we do not give the explicit form of the equation for v outside the set 
{z I vf^n+2^d > d} in this lemma.

Next we prove a determinant estimate for v. Assume v satisfies

v > 0, v > Zi, Vi > 0, and 
v(0) is as small as we want.

Let
v = v — ez\ — c and f2€)C =  {z \ v(z) < 0}, 

where e and c are positive constants in (0, |) .  Then v satisfies

V lJ{d l )ij = g — f\Z\{vi +  e) +  f\Z\  +  /

in the set {z \ (i>i +  e)_ n̂+2)d > <5} Pi f^c, where d = det D 2v , and

1
g = 2v vkn— ------ (n +  2)— — ■ ,

Vi +  e (vi +  e)z

f  =  f { v  +  ezi +  c , z 2, . . . , zn),
d f

f i  = — (v + tZ i  + ci Z2 i ...i zn).

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)

Lemma 6.13. Let v be as above. Then there exists C > 0 depending only on 
sup I/I, s u p |V /|,  s u p ^  |f)| and supätc \Dv\, but independent of 5, such that

{—v)n det D 2v  < C.
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Proof. Consider
z  = \o gw  — ß log (—v) — A \ D v \ 2,

where w = d_1, and /?, A  are positive numbers to be determined below. Then 2 

attains its minimum at a point p f \ c. Hence, at p, it holds

r)i =  0 , vlJriij >  0 .

We can suppose that p  G { z  | (?) 1 +  e)~^n+2^d > d}. Otherwise, we have

(vi + e)~{n+2)d < S

and then the estimate follows. By computation,

Vij

m  =

W , 0 V i „ ,. .~ 2AvkiVk,
w v
W ij  W i W j  ß V i j  ß V i V j Ä 0 ,„ Ä

2 ~ T ^2 ZAvkijVk 2AvkiVkj,w  w 2 v v 2

ijk■

By (6.37),

Therefore we have

9 =  -  2
W \  1
w v 1 +  e

— (n +  2)
(£1 +  <02’

(6.40)

(6.41)

(6.42)

v ijWjWj _  w x 2 _ ß n _ _ ( r t , , 9 3 .
w 2 w V\ +  e v (?)i +  e)2 v 2 w  k

—2.4hi v — f] z  1 (71 +  e) +  /) 2 ] +  /.

By (6.40),

w 2 v 2 ?;
wi 2 _  2ffi)i | 1  ̂?)ifc?)fc
w i)i +  e («1 +  e)?) t)i +  e ’

w k  ̂ \Dii\2 _
— Vk =  ß —------h 2 A v ijvivj .
w v

Hence, we have

v lJVij =  ~(n + 2)
(?)i +  e ) 2

ß n  2 A ß \ D v \ 2

— 4A V l l V l  

v\  +  e + E V\k^k 2ßv\

k=2 #i +  e / (t)i +  e)i)
— 2 A A v

v v -  (/?2 -  /?)
v lJvlv3 

v 2
~ f iZ i ( v i  +  e) +  f iZ i  +  f . (6.43)
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We choose ß > 1 such that ß2 — ß > 0. By the positive definiteness of it 
holds v\k < vnVick for any k = 2, so there is C  depending on n and \Dv\, 
such that

n

E \vikh\ < 1
t)i +  e “ 4

+ c
k—2

v + C
(Vi +  e)2 4

An
(fii +  e)2 '

(6.44)

It follows

(2n +  4 — 4AC')vn  v n i)i 2ßvl ßn
--------------------- WTTfv-AA'” “ T

\Dv \2
—2A ß—------+ e) + f\Z \ + /  > 0. (6.45)

v

Choosing 4̂ small enough such that 2n +  4 — 4^4C  > 0. Then by a Schwarz 
inequality, there exists a Co > 0 depending only on \Dv\ such that

(2n +  4 -  4AC')vn
{vi + e) 2

-  4 A p ß ± -  < C0A 2vn . 
vi + e

(6.46)

By (6.45), (6.46), we have

0 <  CqA2Vh -  -  —  -  4  A t) -  2 A ß ---- +  e) 4- f xz\ +  /-
(ui 4- e)v v v

Choosing A  small enough furthermore such tha t Co A 2 <  4 , and observing that

2ßv1 _  2ß 2ße ^  2ß 
(vi 4- e)v v [Vi +  e)v v

we have

_ £ (n  +  2) _  ^  A fi _  _  /,* ,(« , +  e) +  / l2l +  0,
v 2 v

which implies

(-fi)A fi <  C

at p. Hence, choosing ß = n, the lemma follows by

e v(x) > gV(p) =  e ~A\Dv\* >  j( - ^ )A ^j-ne->l|£>i)|2 >  £,
n

□
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6.5 Second  b ou n d ary  value prob lem

In order to construct approximation solutions to the maximizer of J(u), we study 
the second boundary value problem for equation (6.13). This section is just a 
modification of the second boundary problem in [TW3]. We include it here for 
completeness. Throughout this section, we will denote by d the determinant 
det D2u for simplicity.

We study the existence of smooth solutions to the following problem.

UliWij = f(x,u), in Ll, (6-47)

w = G\d ), in f2, (6.48)

w = if, on dD, (6.49)
u = <p, on dQ. (6.50)

where 0  is a smooth, uniformly convex domain in Rn, <p, if are smooth functions 
on dUt with

0 < Q“1 < if < C0.

f  G L°°(Q x R) is nondecreasing in u and there is t0 < 0 such that

f(x,t)  < 0, t < t0-

We note that this condition is not needed if u is bounded from below.
By Inverse Function Theorem, w = G'(d) has an inverse function d = g{w). 

g is an decreasing function which goes to 0 as w —> oo and goes to oo as w —► 0. 
To solve the problem (6.47)-(6.50), we first consider the approximating problem

UtjWij = / , in Q, (6.51)

det D2u = rjkg{w) + (1 — rjk), in (6.52)

where cp and ^  satisfy (6.49), (6.50) and rjk € Co°(ft) is the cut-off function 
satisfying rjk =  1 in Llk = {% € Ll | dist(x, dQ) >4}.

Proposition 6.14. Suppose that f  G L°° satisfies the condition above. 7 /(u ,  w) is 
the C2 solution of (6.51), (6.52), there is a constant depending only on diamifiV), 
f, <p, if and independent of k, such that

C 1 < w < C, in O,

Iw(x) — w(x0)I < C\x — Xo|, for any x G fh Xq G dQ.

(6.53)

(6.54)
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Proof. The proof of the upper bound for w is totally the same as that for affine 
maximal surface equation in [TW3] by considering the auxiliary function

2 = log w + A|:r|2

and using the condition F'{0) = oo in (c). By w < C , we have det D2u > C. 
Suppose that v is a smooth, uniformly convex function such that D2v > K > 0 
and v = ip on dD. Then, if K  is large,

UijVij > KUÜ > K[detD2v ] ^  > CK  > /,

which implies Ul*(v — w)ij > 0. By maximum principle, v — w < 0. We thus 
obtain

w(x) — w(x0) > —C\x — x0|, for any x £ Q,x0 G dO. (6.55)

To prove the lower bound of re, let

z — log w + w — ah(u),

where a > 0 is a constant to be determined later and h is a convex, monotone 
increasing function such that,

h(t) = t, when t > —10 and h > —to — 1, when t < —to.

Assume that 2 attains its minimum at x0. If x0 is near <9f2, by (6.55), z(:x0) > —C. 
Otherwise, Xq is away from the boundary. Hence, we have, at Xq,

l A / j  7 /  /  \0 = Z{ = ---- 1- Wi — ah (u)Ui,w
Wij WfWj ... . , t / \0 < Zij = —-------- - + Wij — ah {u)UiUj — ah (u)Uij.

By maximum principle,

0 <  u^Zij =  -■ +  —  —  ah"{u)uliUiUj — ah \u )n
aw w2 a

<  +  —y — ah'(u)n.
aw a

If u(xo) < to, /  < 0, which immediately induces a contradiction. Hence, u(xo) > 
to, and hf(u(xo)) > h!(to). Then choosing a large enough, we obtain d < C at Xq 
by the assumption (a). Using the relation between w and d, we have w(xo) > C. 
By definition,

2 = log w + w — ah(u) > z(xo) > —C.
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This implies w > C.
Similarly, with the upper bound of the determinant, we can construct a barrier 

function v from above for w and prove

With the above estimates, we have the higher order and global estimates 
of (6.51), (6.52) by using Caffarelli-Gutierrez’s Holder continuity for linearized 
Monge-Ampere equation [CG] and Caffarelli’s C2,a estimates for Monge-Ampere 
equation [Cafl, JW] repeatly. By an application of the degree theory (see [TW3] 
for details), there exists a solution Uk to the approximating problem (6.51), (6.52). 
Finally, taking k —+ oo, we obtain

Theorem 6.15. The second boundary problem (6.47)-(6.50) admits a solution 
u G Wfdc G C0,l(O)(p > 1) with det D2u G C°(Q). Moreover, if f  G Ca(0 x M)
(0 < a < 1), then u G C4,Q(f2) fl C0,1(G).

6.6 A p p rox im ation

We will use a penalty method and solutions to the second boundary value problem 
to construct a sequence of smooth convex solutions to (6.13) to approximate the 
maximizer of «/(it). This section is similar to §6 in [TW3].

First, we consider a second boundary value problem with special non-homogenous 
term / .  Let B = Br (0) be a ball with 0  C C  B and if G C2(B ) be a uniformly 
convex function in B vanishing on dB. Suppose H is a nonnegative smooth 
function defined in the interval (—1,1) such that

w{x) — iv(xo) <  C\x — £o|.

In conclusion, the proposition has been proved. □

t G ( 5 , 1), 

t  e  ( — 2)'
(6.56)

Extend the function f  to B such that

where h(t) =
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Lemma 6.16. Let f(x,u) be as above. Suppose dO is Lipschitz continuous. Then 
there exists a locally uniformly convex solution to the second boundary problem

with u G n C0,l(B), for all p < oo, and w G C°(fl).

Proof. By the discussion of the second boundary problem in last section, it suffices 
to prove that for any solution u to (6.57), \f(x,u)\ < C for some constant C 
independent of u. Note that by our choice of H, a solution to (6.57) is bounded 
from below.

First, we prove an estimate of the determinant near the boundary dB. By the 
definition of H and the convexity of it, /  is bounded from above near dB. For any 
boundary point Xq G dB , we suppose by a rotation of axes that Xq =  (R, 0,..., 0). 
There exists <$o > 0 independent of Xq such that /  is bounded from above in 
BO{x i  > R—<$o}. Choose a linear function l = ax\+b such that 1(xq) < u(xo) = 0 
and l > u on x,\ = R — ô- Let

where ß > 0 is to be determined below. If z attains its minimum at a boundary 
point on dB, by the boundary condition w =  1, z > —C near dB. If 2  attains 
its minimum at a interior point yo G {u > /}, we have, at ?/o>

U^Wij = f(x,u) in B, 
w = G'(d), in B , 
u = ip on dB, 
w =  1 on dB

(6.57)

z = w +  log w — ß log(u — l),

0  =

By (6.58),
■UH _  ß (u ~ l)i 
w 1 + w u — l

It follows by (6.59) and equation (6.57)

We may suppose that w < 1. Choose ß large enough such that
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So we have w(yo) > C. Therefore, det D2u < C near dB.
By the above determinant estimate near d B , it follows that \Du\ is bounded 

near dB. By the convexity of u,

sup \Du\ < C.
B

Next, we prove that /  is bounded from below. We note that by the Lipschitz 
continuity of dQ, there exists positive constants r, k, such that for any p G B \  
there is a unit vector 7 such that the round cone C B \  where

Cpn,r,K ■= {x G Rn I \ x - p \ <  r, (x -  p ,y) > cosk.}.

Assume that M = — infß /  is attained at xq G B. If xo G 0, then M  = H/Hl^ o)- 
If xq G B \  0, we have

M  = 2n[l +  u(x0) -  </?(x0)]~2n_1,

that is,

u(x0) -  (f(x0) = ( —
M  \  2n+1

-  1.

Let Iq be the tangent plane of i f  at x q . Since we have the gradient estimate of u, 
there exists a uniform d0 such that

f  ~2^n
0 < 1 + u{x) — p{x) < 2 1 — )

and
2 n )

( M \  2n+1
0 < 1 + u(x) -  l0(x) <2 l — J

in the cone C 1 . Let cuo = {x | u(x) < Iq{x)}. It is clear that when
i o ,7,<5o( | £ )  2 n + 1 ,«

M  is sufficiently large,
C

,Kx0,7,S0(££) ^ fT,
Integrating by parts, we have

j  U^Wij(u — lo)dx = — I UlJWj(u — lo)tdx
J U)0  J UJQ

= — wUlj(u — ^ i ' j jdS  +  / w det D2udx,
J duo J u>0

where dS is the volume element of dujQ. u — lo vanishes on the boundary, so 
Uli{u — Z0)i7j > 0. The first integral on the right-hand side is negative. Hence, 
we obtain

/  f (x,u)(u — lo)dx< j  wde tD2u d x < C .  (6.60)
J Lün J Cdn
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Note that the last inequality follows by the condition lirn^o tF'(t) < C3 in the 
assumption (c) on G. Estimating the integral in the cone, we have

f(x,u)(u  — lo)dx>2  2n lM ■
1 ~i

f M \  2n+1
•C-

f M \  2n+1
\2  n (6.61)

Therefore M < C follows from (6.60), (6.61).
Finally, we prove that /  is bounded from above. For any 5 > 0, let

tit = {u < -6}  C B

and 7 be the unit outward normal on dOs- We have 

I  UlJWij(u + 6)dx = — I  U^WjUidx
Cls

d̂Qs

'dns

I'dns

> — I w U ^u^jdS  
JdQx

wU^XL^dS

wu^KgdS

w det D2udx
0,5

JdQs
> — C supiesup \Du\n, 

dCls B

where dS is the volume element of dQs and Ks is the Gaussian curvature of dQs- 
Letting 5 —> 0, by w = 1 on dB and the gradient estimate,

/ f(x ,u )udx  > —C.
Jb

By a similar argument as in the proof of lower bound, if u — (/? is sufficiently close 
to 1 at some point x € B \Q ,  u — </?is sufficiently close to 1 nearby in B \  O. 
This implies the integral can be arbitrary large, which is a contradiction. Hence, 
/  is bounded and the lemma follows. □

Now we prove that the maximizer of J(u) can be approximated by smooth 
solutions to (6.13). This approximation was proved for the affine Plateau problem 
in [TW3] by a penalty method. We will also use this method.

Theorem 6.17. Let O and ip be as in Theorem 6.7. Suppose dfl is Lipschitz 
continuous. Then there exist a sequence of smooth solutions to equation (6.13) 
converging locally uniformly to the maximizer u.
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Proof. The proof for this approximation in [TW3] is very complicated, so we use 
a simplified proof in [TW5].

Let B = B r {0) be a large ball such tha t Ü C B r . By assumption, <p is defined 
in a neighborhood of Q, so we can extend u to B  such that <p is convex in B, 
if G C0,l(B) and f  is constant on dB.  Adding (|rr| — R +  | ) 2 to if, where

(M  - R + ^ ) +  =  max{|x| -  R +  ^ ,0},

we assume that <f is uniformly convex in {x G IRn | R  — \  < \x\ < R}. Consider 
the second boundary value problem (6.57) with

i f  in Q,
fj {x,u)  =  <

yH 'j{u- i f )  in B r \Q ,

where Hj (t) = H(Pt)  and H  is defined by (6.56). By Lemma 6.16, there is a 
solution Uj satisfying

\uj — (f \ < 4_J, x G B r \  0.  (6.62)

By the convexity, Uj sub-converges to a convex function ü in B r as j  —► oo. Note 
tha t ü = ip in B r \  0. Hence, ü G S[f ,  f2] when restricted in 0.  We claim that ü 
is the maximizer.

Let Vj be an extension of u, given by

Vj = sup{/ I Z G $ j} ,

where <&j is the set of linear functions in Br satisfying

l(x) <  ip(x) when |x| =  R  or |x| < R ---- , and
j

l(x) < Uj(x) when R  — - < \x\ < R.

By our assumption, if is uniformly convex in Br \  B r . By (6.62), |Uj — <f\ < 
4- -7 =  o (j-2), x G Br \ Q .  So we have

vj — uj in Br \ B r_j_, (6.63)

V j  = if in B r _ 2  \  0,3 (6.64)

ip\ < I Uj -  <f\ Br-Â  \  Br_z := Dj.2 0 3 (6.65)

Now we consider the functional

Jj(v) = f  G(det d2v)dx 
Jbr
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Subtracting G by the constant (7(0), we may assume that (7(0) = 0. Note that 
Uj is the maximizer of J0 in S[iLj, B r ] and Vj e S[uj, B r]. So we have

'7 jivj) ^  Jjiuj)-

In the following, we denote by Jj(v,E) the functional Jj over the domain E. By 
(6.63), we have

Jj(vj,BR_i)  < Jj(uj, Br_ i ). (6.66)2 3
By (6.64), (6.65), we obtain

—  /  Hj(uj — (f)dx <  —  /  Hj(vj — T)dx-
Jb i \q Jbr i \nr~7J

For any e > 0, by the upper semi-continuity of the functional A(u),

[  G(detd2uAdx < [  (7(det d2tp)dx + e
J br _ 2 \ q J br_z \ ci

J

= / (7(det d2Vj)dx + e
Jb„ 9\nB R - Z \ n

(6.67)

(6 .68)

provided j  is large enough. In addition, by (6.16),

0 < [  G{detd2v)dx < \Dj\Gi\Dj\'1 fi[v]{Dj)) -> 0 (6.69)
JD<

as j  —> oo, where v  = Uj  or Vj .

Hence, by (6.66)-(6.69) and the upper semi-continuity of the functional A(u),

J(u) = J(vj) < J{uj) + e < J(u) + 2e.

provided j  is large enough. By taking e —> 0, this implies u is the maximizer. By 
the uniqueness of maximizers in Theorem 6.7, we obtain ü = u. □

Remark 6 .18. We remark that the above approximation does not holds for the 
maximizer of the functional Jq. The reason is that since logd is not bounded 
from below, we do not have the property

log det d2u dx 0,

as \E\ —> 0. This is why we introduce the function G and consider the modified 
functional J(?i).
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By Theorem 6.17, for each k, there exists a smooth solutions to

II9 (6.70)

where
w = G^det D2u), (6.71)

which converges locally uniformly to the maximizer u ^  of (6.19). Then we have

(k) . 7Uj — ► u0, j, k -H. oo. (6.72)

As we explained in §6.3, if U q is strictly convex, the interior a priori estimates of 
Uj will be independent of k and j. Hence, by taking limit, we have the interior 
regularity of u0 in Q. Moreover, by the construction of G*,, u0 will be a solution 
to Abreu’s equation (6.6). Therefore we have

Theorem 6.19. Let uq be as above. Assume that f  E G°°(fl). Then if uq is a 
strictly convex function, u0 E G°°(f2) and solves (6.5).

In the last two sections, we will show the strict convexity of U q .

6.7 Strict convexity I

We prove the strict convexity of u q  in dimension 2. Let A4o be the graph of Uo. 
If uo is not strictly convex, A4o contains a line segment. Let l(x) be a tangent 
function of uq  at the segment and denote by

C = {x e O  \ Uq{x) = /(t )}

the contact set. According to the distribution of extreme points of C, we consider 
two cases as follows. For the definition of extreme point, see §3.3.

Case (a) C has an extreme point To which is an interior point of Q.
Case (b) All extreme points of C lie on dLl.
In this section, we exclude Case (a).

Proposition 6.20. C contains no extreme points in the interior ofQ.

Proof. Since .To is an interior point in f2, there is a linear function a such that 
a(T0) > u0(to) and a < u on dO.

By (6.72), we can choose a sequence of smooth functions u*, = converging 
to Uq such that Uk is the solution to (6.70). Let A4k be the graph of u Then Aik
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converges in Hausdorff distance to .Mo- There is no loss of generality in assuming 
that l(x) = 0, Xq is the origin and the segment {(xi, 0) | 0 < X\ < 1} C C.

For any e > 0, we consider a linear function

l€ = —ex\ +  e

and a subdomain Cle = {u < le}. Let Te be the coordinates transformation that 
normalizes Cle. Define

ut {y) =  ^it(x), uk}t = ^ u k(x), y G Cle (6.73)

where y = Tex  and Cle = Te(Cle). After this transformation, we have the following 
observations:

(i) By Remark 6.3, uk,t satisfies the equation (6.13) with

G = Gk,{d) = G M T (\2d), -

and the right hand term ef.  Note that \Te\ > Ce~l , so 5k ê < C6k —> 0 for a 
constant C  independent of e.

(ii) Denote by M f , M k,e the graphs of ue, ukit, respectively. Taking k —* oo, 
it is clear that uk,t —>• ut and Mfc,e converges in Hausdorff distance to M t . Then 
taking t —> 0, we have that the domains sub-converges to a normalized domain 
Cl and ue sub-converges to a convex function ü defined in Cl. We also have M e 
sub-converges in Hausdorff distance to a convex surface M o G M3.

(iii) The convex surface M o satisfies

Mo C {y,  > 0} n  {2/3 > 0} (6.74)

and M o contains two segments

{(0 ,0 ,i/s) I o < J/3 < 1}, {(«/I,O.o) I 0 <  yi < 1}. (6.75)

Hence, by (i), (ii), (iii), we can suppose that there is a solution ük to

UtjWij = ekf  in Dfc, (6.76)

where
w = (5^(det D 2u), (6.77)

and Sk.ek —► 0, such that the normalized domain Clk converges to Cl, uk converges 
to ü and the graph of ük, denoted by JAk converges in Hausdorff distance to Mo-
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It is clear that in ^-coordinates, A4o is not a graph of a function near the origin, 
so we need to rotate the R3 coordinates. Since the equation (6.13) is invariant 
under unimodular transformation, we may suppose

n c {vi> o}.

Adding a linear function to ?7, we replace (6.74), (6.75) by

M 0 C {yi > 0} H {y3 > - y Y} (6.78)

and Mo  contains two segments

{(0. 0, t) I 0 < t < 1}. {(*, 0,-*) | 0 < * < 1}. (6.79)

Let
L = {(2/1, 2/2 , 2/3) ^ Mo  I 2/1 = 2/3 = 0}.

L must be a single point (Case I) or a segment (Case II). In Case II, we may also 
suppose that 0 is an end point of the segment which is

{(0,i,0) I -  1 < t < 0}.

Later, we will discuss the two cases separately.
Now we make the rotation

Zi  =  - 2 / 3 ,  =  2/2, 23 =  2/1

such that M .0 can be represented by a convex v near the origin. By convexity, 
Mk  can also be represented by z3 = v ^ ( z i , z 2) near p0, respectively, is a 
solution of the equation given in Lemma 6.11 near the origin. As we know that 
M k converges in Hausdorff distance to Mo, in new coordinates, converges 
locally uniformly to v. It is clear that

u(0) = 0, v > 0, when — 1 < Z\ < 0 and 

v > Zi, when 0 < Z\ < 1

and the two line segments

{(*,0,0) I -  1 < t < 0}, {(*,0,*) I 0 < t < 1}

lie on the graph of v.
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As in (6.36), let = vW — \z\  and v = v — \z\. In the following computation 
we omit the hat for simplicity. Then

v > ~ \ z\\ and v(zi,0) = ^\zi\. (6.80)

Let
C = {z I v(z) = 0}.

Observe that
L — {(2i> 2 2 ,0) I (2:1 , z2) € C}

in ^-coordinates. The contradiction arguments for the Cases I, II are very similar 
to those in Lemma 5.9 in Chapter 5. For completeness, we include the details 
here.

Case I. In this case, v is strictly convex at (0,0). The strict convexity implies 
that Dv is bounded on Sh,v{0) for small h > 0. Hence, by locally uniform con
vergence, D v ^  are uniformly bounded on Sh u(fc)(0). By Lemma 6.13, we have 
the determinant estimate

det£>V*><C (6.81)

near the origin.
For 6 < | ,  by (6.80), 5^(0) C {-§  < y\ < §} and (± f,0) 6 dSs,v{0). In the 

z2 direction, we define

= ®up{\ z21 I (2i ,22) C Ss,v(0)}.

By comparing the images of 5^(0) under normal mapping of v and the cone with 
bottom at dSs,v(ß) and top at the origin,

|JVt,(Si,„(0)})| > C - .
Ks

By the lower semi-continuity of normal mapping,

Nv(Ss,v{0)) C lim infk-+ocNvk(5^(0)),

then
Nv(Ss,v(0)) =  Nv(Ss,v(0)) C lim i n f (5 (̂0)).

By (6.81),

|Nt,(S'(6))| < lim inffĉ ool Â (fc) (5,j)t,(0))|

= liminffc^oo f  det D2v ^
JsStVms)

< C |% (0 )|
<  C 8 k&. (6 .82)
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Hence, ks > C > 0, where C is independent of (5. Again by the strict convexity, 
Ks —> 0 as  ̂—» 0. The contradiction follows.

Case II. In this case,

C~={(0,z2) I — 1 < z2 < 0}.

We define the following linear function:

le ( z )  =  SeZ2 +  €

and uje = {z \ v(z) < /e}, where 5t is chosen such that

u(0, y ) = *(0, y ) =  2e> = ~ t ) = °-Oe Öe be de

We can suppose that e is small enough such that uje is contained in a small ball 
near the origin. Hence, D v ^  is uniformly bounded. By comparing the image of 
ujt under normal mapping of v and the cone with bottom at du;e and top at the 
origin,

|W„(w«)| > cse. (6.83)

On the other hand, u>€ C {—e < Z\ < e} since v > \z\\. By the convexity and 
the assumption above, uje C { - j -  < z2 < j-}. Therefore,

k l  < c€I
be

Furthermore, subtracting all v^  by Ze, they still satisfy the same equation. By 
the determinant estimate in Lemma 6.13 and a similar argument as in (6.82),

|iV«k)l < C eT . (6.84)
be

Combining (6.83) and (6.84),

However, according to our construction, j- goes to 0 as e goes to 0. The contra
diction follows.

□
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6.8 Strict convexity II

In this section, we rule out the Case (b) that all extreme points of C lie on the 
boundary dCl.

First, we need a stronger approximation. In the case of the affine Plateau 
problem, this approximation was obtained by [TW5]. Here, we extend it to our 
functional J{u).

Theorem 6.21. Let p, El be as in Theorem 6.7 and u be the maximizer of the 
functional J  in S[(p, fi]. Assume that dEl is lipschitz continuous. Then there exist 
a sequence of smooth solutions um G W 4,P(Q) to

UlJwi:j = f m = f  + ßmXDm in El (6.85)

such that
um — > u uniformly in 0 , (6.86)

where = {x  G El \ dist(x, dEl) < 2-m}, \  is the characteristic function, and 
ßm is a constant. Furthermore, we can choose ßm sufficient large (ßm —> oo as 
m  —» oo) such that for any compact subset K  C N ^E l),

K C N UJ Q )  (6.87)

provided m is sufficient large.

Proof. We assume that (7(0) = 0 and G > 0 by subtracting the constant G(0). 
The proof are divided into four steps.

(i) Let B = B r {0) be a large ball such that Q C B R. By assumption, cp is 
defined in a neighborhood of £2, so we can extend u to B  such that p  is convex 
in B, p  G C0,1(B) and <f is constant on dB . Consider the second boundary value 
problem with

fm,j
f  + ßmXDm in 0,

Hj(u — p) in B R \ n ,

where H3 (t) = H(4R)  is given by (6.56). By Lemma 6.16, there is a solution 
satisfying

\Um,j -<p\ ^ 4 \  1 6 (6 .88)

(ii) By the convexity, wmj sub-converges to a convex function um as j  oo 
and um = p  in B R\Q . Note that um G S[p,  12] when restricted in Ll. By Theorem
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6.17, um is the maximizer of the functional

Jm(v) = [  G(detd2v)dx -  [  ( f  +  PmXDm)vdx (6.89)
Jn Jn

in S[(ß, D].

(iii) Since um G S[<p, fi], um converges to a convex function in S[(p, f2] as 
m  —► oo. We claim that u00 is the maximizer u. The proof is as follows.

Define

(/?* =  sup{/(:r) I l is a tangent plane of <p at some point in Br \  Q}.

Then (£* G S[<p, D] and v > (/?* for any v G S[(/?, D]. We consider the maximizer 
u. Let

üm = sup{Z(x) I l is linear, l < u in D and l < ip* in Dm}-

Then üm G 5[^, 0] and um =  (/?* in Dm- Since u is convex, it is twice differentiable 
almost everywhere. By the definition of üm, iim = u at any point where D 2u > 0 
when m  is sufficiently large. Therefore, we have det<92fim —» det d2u a.e.. By the 
upper semi-continuity of the functional A(u) and Fatou lemma,

lim f  G(det d2üm)dx = [  G(detd2u)dx.
m -> o °  J q  J q

It follows that for a sufficiently small e0 > 0,

J(u) < J (u m) +  60 (6.90)

provided m is sufficiently large.
On the other hand, we consider the functional Jm. By (ii), um is the maximizer 

of Jm in S[ip, Q], so we have

Jm(dm) < Jm(Um) •  (6-91)

Note that um > (/?* = um in Drn. Hence, we obtain

urndx > Q i) dx

By the definition of Jm, it follows

d(Um) — J (̂ m) (6.92)

for sufficiently large m.
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Finally, by (6.90), (6.92) and the upper semi-continuity of A(u),

J(u) < J({tm) + eo
< J(um) +  Co

< J (lioo) 4- 2e0-

By taking e0 —♦ 0, this implies that u0c is the maximizer. By the uniqueness of 
maximizers, u00 =  u.

(iv) It remains to prove (6.87). We claim that for any fixed m,

lim um(x) <  ip+(x). (6.93)
ßm —>00

We prove it by contradiction. Suppose that there is Xq G Dm such that um(xo) > 
y?*(xo) +  fo f°r some eo > 0. Since um and are uniformly Lipschitz continuous, 
um(x) > <p*(x) +  I  in a ball Bceo{xo) for some constant C. Let

um* =  sup{l(x) I l is linear, l < um in $7 and Z < </?* in Dm}.

Then G S[<£, £7], and satisfies

U m * — Um  h i £7, Um * — P *  In  T$C eo(x o )-

Hence,

J n i{U m ) J m {U m * )  J  (Urn) J { u m *) ß m  I Um Um * d x
J Dm

becomes negative when ßm is sufficiently large. This is a contradiction to that 
um is a maximizer of Jm. □

R em ark  6.22. If (f G C 1, we can restate (6.87) in the theorem as

\D(um — p)\ 0 uniformly on dQ. (6.94)

Now we deal with Case (b). By Theorem 6.22, there exists a solution Um to

UlJWij = fm , (6.95)

where

such that

w =  G"fc(det D2u), (6.96)
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and for any compact set K  C Dp(Q),

K C Du^(Ü) (6.97)

for large m. Hence, we can choose a sequence —* oo such that

Uk ■= U%1 ------> U q . (6.98)

Lemma 6.23. Assume that 0  and p are smooth. Then M q contains no line 
segments with both endpoints on 8A4q.

Proof. Suppose that L is a line segment in M 0 with both end points on dM$. 
By subtracting a linear function, we suppose that u0 > 0 and l lies in { £ 3  = 0}. 
By a translation and a dilation of the coordinates, we may further assume that

L = {(0.x2 , 0) I -  1 < :r2 < 1} (6.99)

with (0, ±1) G dQ. Note that by Remark 6.3, these transformations do not change 
the essential properties of equation (6.13).

Since p  is a uniformly convex function in a neighborhood of Q and p = uo at 
(0, ±1), L must be transversal to dQ at (0, ±1). Hence, by uo = p on dQ and 
the smoothness of p and dQ, we have

By the convexity of «0 ,

Q
uq(x) = p(x) < — x € dQ.

C
u0(x) < — xj, x € Q.

Now we consider the Legendre function Uq of Uq in Q*

(6 . 100)

Dp(Q), given by

Ug(y) = sup{x • y -  u0(x), x € fi}, y e  Q*.

Note that (0, ±1) G dQ. By the uniformly convexity of p, 0 ^ Dp(dQ). Hence, 
0 G Q*. By (6.99), (6.100) and the smoothness of p, we have

u*(0,y2) >  M ,  (6 .101)

u \ y )  >  (6.102)

On the other hand, by the approximation (6.98), the Legendre function of Uk, 
denoted by u*k satisfying the equation

~fmk(Du*) (6 . 103)
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where
to* = G*(d* “') -  <f “'G ^d*_1). (6.104)

By (6.97), u*k is smooth in Q*k with ek —* 0 as k —> oo, where

Q*ek = {y e 0* I dist(y. dQ*) > ek}.

By (6.101), (6.102), Uq is strictly convex at 0. Then {y \ Uq < h} C Q*k 
providing m is sufficiently large. Note that u*k converges to Uq. By Lemma 6.9, 
we have the estimate

det D2u*k < C

near the origin in Q*. Note that in Lemma 6.9, C depends on inf /  but not on 
sup / .  In other words, the large constant ßmk in (6.85) does not affect the bound 
C. Therefore sending k —> oo, we obtain

det D2Uq < C

in the sense that the Monge-Ampere measure of Uq is an L°° function. This is a 
contradiction with (6.101), (6.102) according to Remark 5.10. □

In conclusion, we have proved that Uo is strictly convex in Q in dimension 2. 
Theorem 6.1 follows from Theorem 6.19.
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