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Abstract

This thesis is concerned with the study of the existence of extremal metrics and
Abreu’s equation reduced from the scalar curvature equation on toric Kéahler
manifolds.

Part I contains an introduction of canonical metrics in Kahler geometry. In
Chapter 1, we recall the definition of Calabi’s extremal metrics and the famous
Yau-Tian-Donaldson conjecture which relates the existence of extremal metrics
to stabilities in sense of geometric invariant theory. In Chapter 2, we review
Donaldson’s reduction of this problem on toric manifolds.

In Part II, we present new results in the case of toric surfaces. Based on
Arrezo-Pacard-Singer’s work, we prove in Chaper 3 that on every toric surface,
there exists a Kéahler class which admits extremal metrics. We also give examples
of Kéahler classes on a toric surface which admit no extremal metrics. In Chapter
4, we prove that among all toric surfaces with 5 or 6 T2-fixed points, CP243CP2
is the only one which admits Kéhler classes with vanishing Futaki invariant. We
also prove these Kéahler classes are K-stable. Therefore by Donaldson’s theorem,
there exist constant scalar curvature metrics in these classes.

In Part III, we study Abreu’s equation. The Bernstein theorem for Abreu’s
equation in dimension 2 is proved in Chapter 5. In Chaper 6, we solve a boundary
value problem for Abreu’s equation. Similar results for the affine maximal surface
equation were proved by Trudinger and Wang. But Abreu’s equation is not affine
invariant, new a priori estimates are needed for these results.
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Part 1

Introduction



Chapter 1
Extremal metrics

The existence of canonical metrics on Kéhler manifolds is one of the central
problems in complex geometry. Calabi [Cal3] proposed to study the existence of
extremal metrics in a given Kahler class on a Kéahler manifold. In this chapter, we
first recall some elementary knowledge about Kahler geometry and then introduce
the notion of extremal metric.

1.1 Kahler geometry

In this section, we briefly recall some terminology and basic properties in Kéhler
geometry.

1.1.1 Hermitian and Kahler metrics

Let (M, J) be a compact 2n-dimensional complex manifold, where n is the com-
plex dimension and J is the complex structure.

Definition 1.1. A Hermitian metric on M is a Riemannian metric g which
satisfies
9(JX,JY)=¢g(X,Y), VXY € .M, z € M.

With the Hermitian metric, we can define a 2-form w, on M by
wg(X) Y) = _g(X, JY)
We call it the Kahler form of g.

Definition 1.2. A Kdhler metric on M is a Hermitian metric g such that the
associated Kahler form is closed, i.e., dwy = 0.

3



4 CHAPTER 1. EXTREMAL METRICS

Let V be the Levi-Civita connection of g, then the Kéahler condition, i.e.,
dw, = 0 is equivalent to that the complex structure J is invariant under parallel
transformation, i.e., VJ = 0.

Now, since we have an integrable complex structure, we can choose local
complex coordinates {z!,...,2"} such that 2 = 2t + v/—1%". In this coordinate
system,

6 _6 ;9 __90
ozt Oy’ "oyt Oxt
The complexified tangent bundle TM ® C is spanned by

0 1/ 0 a 0 1
=3 (o Tay) 553 (Vo)

We can extend the metric g C-linearly to TM ® C. One can verify that

8 0 o 0
(521’823) (az’ 823)

0

and
95 = 95 = Gij-
Hence, we can define a Hermitian inner product on the holomorphic tangent
bundle T4 M by
h= gﬁdzi ® dij.
In fact, the real part of h is the Riemannian metric g and the imaginary part is
the associated Kahler form. The Kahler form can be rewritten as
v -1 } .

Wy = —2--—g,-3dzZ A dZ’
in the complex coordinates. It is clear that on a Kéhler manifold, a Kéhler metric
is uniquely determined by its Kahler form, so we usually denote a Kahler metric
g by its Kahler form w,. Since w, is closed, it determines a cohomology class
[w,] € H*(M,R) N H:*(M, C), which is called the Kahler class of w,. The set of
Kahler forms that represent the class [wy] can be expressed by the set of Kahler
potentials as follows,

M(Er) = {6 € C¥(M,R) | wy =, + Y2086 > 0}

Note that the volume element of wg can be represented as ﬂ(= “—“’i\-n,ﬂ‘t) and
the volume V(M) = f v = depends only on the Kéhler class.
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1.1.2 Connection and curvatures

On a Kéahler manifold, we can naturally extend the Levi-Civita connection V and
the Riemannian curvature tensor C-linearly to the complexified tangent bundle
TM ® C. We denote by I'}; and Rapys the connection and curvature coeffi-
cients in the local complex coordinates {z!, ..., 2"}. Here indices o, 3, v, § could
be holomorphic or anti-holomorphic. When we use lower indices we indicate
anti-holomorphic indices with over-bars and holomorphic indices without. For
example, T'¥; and Ffj are defined by

P 0

0
k
=T —+F’j82k'

o]
v?s%f 9z 4§k

For a Kéhler metric g = g;;, the Kéhler condition implies that

09; _ 99

B2 = 92, Vi, 7,k
We have Pzﬁ = 0 unless a, G, v are all holomorphic or anti-holomorphic and
' S 89,7
E _ e _ k99
F;; = Pfj, and Fij =g .6_,2;'

For the curvature tensor, the only non-zero terms are R;3;. Moreover,

_ 329ij gpqagpi Ogrg
02,0% 0z 0z

By taking trace, the Ricci tensor in local coordinates can be written as

R =

5 = " Rizir = —(log det(gy1))i5-
Hence, we can also associate it with a (1,1)-form called Ricci form as follows,

v—1 ) .
Ric(wg) = — 5 (log det(gyr))i;dz" A dZ’

= — gaé(log det(gx1))-

It is well known that the cohomology class of the (1,1)-form %ﬂl is the first
Chern class ¢; (M) which depends only on the complex structure of M. As we use
Kahler forms to represent the Kéhler metrics, we also use Ricci forms to represent
Ricci curvatures.

Finally, by taking trace of Ricci tensor, we get the scalar curvature

S(wy) = —g” (log det(giD))s3-
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Note that when fixing a background metric w, and letting w, varies in the Kéahler
class [wy], the scalar curvature S(wy) is a fourth order operator on the space of
Kahler potentials.

Another fact on Kahler manifold is that when g is Kéhler, for any given
smooth function f, in the local coordinates the second order covariant derivative

V:iV;f equals azzafzj' Therefore,

- OPf
= 2
Agf g 6z,-<92j '

Here A, is half of the Laplace-Beltrami operator of the metric g.

1.2 Extremal metrics

In this section we introduce Calabi’s extremal metric as well as its energy func-
tionals.

Definition 1.3 ([Cal3]). For a Kahler metric w, Calabi’s energy is given by

C(w) = VﬁfMS’(wf%. (1.1)

Calabi {Cal3,4) proposed to study critical points of the functional in a fixed
Kébhler class [wy).

Definition 1.4 ([Cal3]). A Kéhler metric in [wy] is called extremal if it is a critical
point of Calabi’s energy.

According to [Cal3], by computing the Euler-Lagrange equation of Calabi’s
energy, wy is extremal if and only if

ViViS(wg) =0, 4,5 =1,..,n, (1.2)

i. e., the complex-valued gradient vector

0

X = g9(S(wp)ype

(1.3)
is holomorphic, where (g'¥) is the inverse of Hermitian matrix (97 + ¢i5)- In
particular, if X = 0, the extremal metric is a constant scalar curvature (CSC)
metric. Hence, if M admits no holomorphic vector fields, any extremal metric on

M is a constant scalar curvature metric.
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The existence of extremal metric is a rather difficult problem because (1.2)
is a 6th order nolinear PDE. However, the extremal holomorphic vector field X
given by (1.3) can be uniquely determined by the Kéhler class [w,] no matter
there exits an extremal Kahler metric on M or not. To explain it, we first define
a holomorphic invariant introduced by Futaki [Fut] as an analytic invariant on a
Fano manifold which arises in the study of Kéhler-Einstein metrics. This invariant
is formulated as a character of the Lie algebra of holomorphic vector fields and
can be defined in a general Kéhler class on any Kéhler manifold [Cal4].

Let n(M) be the space of all holomorphic vector fields on M. For any Kéhler
class [w], we pick a Kahler metric w, € [w]. It is known that there exists a smooth
function hy on M such that,

S(wg) — 8 = Aghy,

where

_ 1 wy
5= 7 S

is the average of the scalar curvature depending only on the Kahler class. The
Futaki invariant is defined by

) = [ o), Ve noa)

It was proved in |Cal4] that this invariant is independent of the choice of w, in
[w]. For convenience, we usually write the Futaki invariant by F(-) when the
Kahler class is fixed.

Now we determine the extremal vector field following [FM]. Let Aut’(M) be
the identity component of the holomorphisms group of M and Aut,.(M) be the
reductive part of Aut’(M). Then Aut,.(M) is the complexification of a maximal
compact subgroup K of Aut,.(M).  We denote the Lie algebra of Aut,(M) by
n-(M), which induces a set of holomorphic vector fields on M. Let v € n,(M)
so that its imaginary part generates a one-parameter compact subgroup of K.
Then if the Kéhler form w, is K-invariant, that is, invariant under the group K,
there exists a unique real-valued function 6, (called normalized potential of v)
such that o

v, = V=186,(w,), and /M Bulug) 22 = 0. (1.4)

For simplicity, we denote the set of such potentials 6, by =,,. Then the Futaki
invariant on 7, can be written as

Y3

F@) =~ [ 8w)(Ss) - 5. (15
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According to [FM], an extremal vector field X in the K&hler class [w,] is defined
by a gradient holomorphic vector field in 7.(M),

g (proj(S(wg»);a%,

where proj(S(wy)) is the L*-inner projection of the scalar curvature of wy to Z,,,,.
Futaki and Mabuchi proved that the definition of X is independent of the choice
of K-invariant metrics in [wy]. In fact X is uniquely determined by the Futaki
invariant F(-) as follows,

Y3

Fo) == [ 0n)oxn) 2, Vo€ n () (16)

Since F(-) is a character, the above relation is equivalent to

n

F0) = - [ Bulpx(n)E, Vven(), (L7)

where 7.(M) is the center of n,.(M). This shows that X belongs to n.(M). In
particular, wy can be replaced by a K -invariant Kéahler form, where K. is the
Abelian compact subgroup of Aut,(M) with the Lie algebra n.(M).

By the above discussion, one sees that a Kéhler metric wy in the Kahler class
[w,] is extremal iff the potential ¢ satisfies a fourth-order equation with respect
to the Kéhler potential function ¢,

S(wg) = 8 + Ox(ws), (1.8)

where S is the average of the scalar curvature of w, and fx(ws) = 0x(w,) + X ()
denotes the potential of the extremal vector field X associated to the metric wg
(cf. page 208-209 in [FM]). In particular, if we choose the Kéhler class to be
a multiple of the first Chern class and X vanishes, then the extremal metric, if
exists, is a Kéhler-Einstein metric. For example, when [wy] = 2m¢e; (M) > 0, and
both Ric(wy) and wy represent the first Chern class, then there exists a smooth
function hg, such that
Ric(w¢) — Wy = gaghqg
By taking trace,
S(wg) — S = Ahg.

Hence (1.8) implies Ahy = 0. Since the manifold is compact, hy must be a
constant, which immediately implies Ric(ws) = wy. In this case, the equation
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can be further reduced to a second order complex Monge-Ampere equation as
follows. Let hy be the smooth function satisfying

Ric(wy) —wy = 'T_lﬁghg.

Then if wy is Kahler-Einstein, we have

wg+—”2_laa'¢ = Ric(wy)

_ vl (e -

= - log (“_’E> + Ric(wy)

_ VT (:f) +uy+Y00n,
g

Hence, the equation is

v—1,2 n —¢, n
(wg + —2—88¢) = el 07, (1.9)
which is a complex Monge-Ampére equation. When ¢;(M) < 0 or = 0, the
Kéhler-Einstein metric equation can also be formulated as complex Monge-Ampere
equations with different right hand side terms.

In addition to Calabi’s energy, there is another important energy functional
concerning extremal metrics, called modified K-energy. The original K-energy
was introduced by Mabuchi [Mabl] for CSC Kéahler metrics. The modified K-
energy is defined on |w,] by

we) =~y [ [ S(wa) =5 -bxt@NZnat, (120

where ¢:(0 <t < 1) is a path connecting 0 to ¢ in M([w,]). When X = 0, u(¢)
reduces to Mabuchi’s K-energy. It can be shown that the functional w(¢) is well-
defined, i.e., it is independent of the choice of path ¢; (cf. [Gua2], [Mabl], [Sim]).
Thus ¢ is a critical point of u(-) iff ¢ satisfies (1.8). Moreover by the definition of
X and the relation (1.6), u(¢) is invariant under the group Aut,.(M). In [T2], Tian
defined an analytic condition called properness for a functional which is equivalent
to K-enegy. Then he proved that the existence of Kéhler-Einstein metric in the
positive first Chern class is equivalent to this properness. For the study of Kéhler-
Einstein metrics, different energy functionals have been introduced in [CT1, SW].

We finish this chapter by a brief review on the latest development of the study
of extremal metrics concerning the uniqueness and existence.
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On the uniqueness of extremal metrics, great progress has been made. The
uniqueness of Kéhler-Einstein metrics was pointed out by Calabi in 1950s in the
case when ¢;(M) < 0. In [BM], Bando and Mabuchi proved the uniqueness of
the Kéhler-Einstein metric in the case when ¢;(M) > 0. For the case of CSC
Ké&hler metrics, the answer is also positive. In [Ch], Chen proved the uniqueness
of CSC Kaéhler metrics in any Kahler class which admits a Kahler metric with
non-positive scalar curvature. In [D1], Donaldson proved the uniqueness of CSC
Kéhler metrics in rational Kahler classes on any projective manifold without non-
trivial holomorphic vector fields. The assumption on the holomorphic vector fields
was later removed by Mabuchi [Mab3]. A complete answer to general extremal
metrics was given by Chen and Tian. The theorem can be stated as follows.

Theorem 1.5 ([CT2]). Let (M, [w]) be a compact Kahler manifold with a Kéhler
class [w] € H*(M,R) N HY(M,C). Then there is at most one extremal Kdhler
metric in Kdhler class [w] modulo holomorphic transformations. Namely, if w,
and wy are two extremal Kdhler metrics in the same Kdhler class, then there is a
holomorphic transformation o such that o*w; = ws.

However, on the other hand, the existence of extremal metrics is still far from
being completely understood. For the Kahler-Einstein case, this problem has been
solved by Yau [Y2] when ¢;(M) = 0, known as Calabi Conjecture, and solved by
Yau, Aubin independently when ¢; (M) < 0[Y2, Aul]. When ¢;(M) > 0, it is still
unknown whether the manifold admits Kahler-Einstein metrics although there are
some remarkable work [Siu, T1-2, WZhu|. In general, the existence of extremal
- metrics have been conjectured to be related to various stabilities of the underlying
manifold in the sense of Geometric Invariant Theory. When the stabilities are
violated, many counterexamples to the existence of canonical metrics on certain
Kéhler manifolds have been found [BD, R, Stl1]. There are also some existence
results in several special cases, see, for example, [AP1-2, APS, ACGT, CLW, D1-
5, Gual]. In the next chapter, we will recall the development of extremal metrics

on toric manifolds.

1.3 Relative K-stability

The relation between various notions of stabilities and the existence of Calabi’s
extremal metrics have been recently studied ([T1], [D1-2], [Mab3-4], etc.). The
goal is to find a necessary and sufficient condition for the existence of extremal
metrics in the sense of Geometric Invariant Theory ([Y3], [T2]). There is now a
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famous conjecture called Yau-Tian-Donaldson conjecture that will be stated in
Section 1.3.1. In Section 1.3.2, we will recall Donaldson’s definition of Futaki
invariant for general polarized scheme. Then we state the notion of relative K-
stability by [Sz], which is a main object of study in this thesis.

1.3.1 Yau-Tian-Donaldson conjecture

Around the existence of Calabi’s extremal metrics, there is a well-known conjec-
ture (cf. [Y3], [T3]):

Conjecture 1.6 ([Yau-Tian-Donaldson]). Suppose that (M, L) is a compact com-
plex polarized manifold. Then M admits extremal metrics in 2me; (L) if and only
if (M, L) 1is stable in sense of Geometric Invariant Theory.

Here we would like to point out that this conjecture was stated in many dif-
ferent ways due to different notions of stabilities. The two best known stabilities
are the K-stability and the Chow-Mumford stability.

For the “only if” part of this conjecture, the first breakthrough was made by
G. Tian [T2]. By introducing the concept of K-stability, he gave an answer to
“only if” part for the first Chern class (if it is positive) on M (corresponding to a
Kahler-Einstein manifold). Later, Donaldson extended the K-stability to general
polarized varieties [D2] and made a conjecture on the relation between the K-
stability and the existence of constant scalar curvature Kahler metrics. Very
recently, Stoppa [St2] generalized Tian’s result to a compact Kéhler manifold M
with a CSC Kahler metric and without any non-trivial holomorphic vector field
on M. Meanwhile, a remarkable progress was made by Donaldson who showed
the Chow-Mumford stability is necessary for a polarized Kéahler manifold with
CSC metrics when the holomorphic automorphisms group Aut(M) of M is finite
[D1]. Donaldson’s result was later generalized by T. Mabuchi to any polarized
Kéhler manifold M which admits an extremal metric without any assumption on
Aut(M) [Mab4-5].

The definition of K-stability was extended by Szkelyhidi [Sz] to Kéhler classes
with nonzero extremal vector fields and was called relative K-stability. However
it is still unknown whether it is true that the existence of general extremal metrics
implies relative K-stability. Note that for Chow-Mumford stability, the answer
is yes by Donaldson-Mabuchi’s result. In the case of toric manifolds, we gave a
positive answer [Z72].
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The “if” part of this conjecture is more difficult because we have to solve
a fourth order elliptic equation. It is a challenge in differential geometry and
PDE theory. On some special manifolds, the conjecture was confirmed. On toric
manifolds, Donaldson [D2] set up a strategy for this problem and he proved the
conjecture for toric surface when the Kéhler class admits vanishing Futaki invari-
ant [D3-5]. We will discuss more about Donaldson’s strategy on toric manifolds in
the next chapter. Recently, another important progress was made on projective
bundles, see [ACGT].

1.3.2 Donaldson-Futaki invariant

In this subsection, we recall the definition of Donaldson-Futaki invariant. As
we said in Section 1.2, Futaki invariant was an holomorphic invariant first con-
structed by Futaki and Calabi on any Kéahler manifold. This definition was
extended to the case of Fano normal varieties in [DT]. Later, Tian defined the
notion of K-stability of a Fano manifold M using this invariant and some de-
generations of M. In [D2], Donaldson defined the general Futaki invariant for
polarized scheme in an algebraic way. Here we state this definition as follows.
Let (M, L) be a polarized scheme, where L is an ample line bundle. Let a be
a C*-action on (M, L). Then for any positive integer k, o induces a C*-action on

the vector space
Hy, = H'(M, L*).
Denote by dj the dimension of the vector space Hy and wi(a) the weight of the

induced action on the highest exterior power Hy. Then d; and wy are given by
polynomials of k£ as

di = agk™ + alkn—l + -
wk(a) = bokn+1 + b k™ + -

Definition 1.7 ([D2]). The Donaldon-Futaki invariant of @ on (M, L) is defined

to be
_ a1b0 — aob1

Fla)= 20—
Donaldson also proved that when M is a smooth manifold and the C*-action
is induced by a holomorphic vector field X, this definition coincides with Futaki’s

original result: let w be a Kéhler metric in 2mc; (L), then

Fla) = -W(l—M) /MX(g)—‘;-J;, (1.11)
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where

9= G(S(UJ) - g))

G is the Green’s operator, S is the average of scalar curvature. Note that the
integral in (1.11) is the original Futaki invariant in Section 1.2. Hence, when M is
a manifold, Donaldson-Futaki invariant is the original Futaki invariant multiplied
by a constant.

1.3.3 Notions of K-stabilities

The definition of K-stability for a polarized manifold (M, L) is related to its
degenerations, called test configuration.

Definition 1.8 ([D2]). A test configuration for a polarized Kéhler manifold
(M, L) of exponent r consists of

1. a scheme W with a C*-action;
2. a C*-equivariant ample line bundle £ on W;

3. a C*-equivariant flat family of schemes
m: W — C,

where C* acts on C by multiplication. We require that the fibers (W}, £|w,)
are isomorphic to (M, L") for any t # 0.

Note that since 7 is C*-equivariant, the C*-action can be restricted to the
central fiber. A test configuration is called trivial if W = M x C is a product.
Now the K-stability can be defined as follows.

Definition 1.9 ([D2]). A polarized Kahler manifold (M, L) is K-semistable if for
any test-configuration the Futaki invariant of the induced C*-action on (W;, £|w,)
is nonnegative. It is called K-stable if in addition the equality holds if and only
if the test-configuration is trivial.

It has been proved that this K-stability is a necessary condition for the ex-
istence of constant scalar curvature metrics in 2mc;(L) on a polarized K&hler

manifold (M, L) [St2].

As was pointed out, Futaki invariant is an obstruction to the existence of
constant scalar curvature metric. When Futaki invariant does not vanish, i.e.,
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the extremal vector field is nontrivial, we need a modification of the notion of K-
stability. In [Sz], Szekelyhidi introduced the notion of relative K-stability based
on a modified Futaki invariant as a generalization of the K-stability. Let us recall
the definition of relative K-stability.

To define the modified Futaki invariant, we first need an inner product for the
C*-actions [Sz]. Let a,  be two C*-actions on a polarized scheme (M, L). Sup-
pose that Ay and By are the infinitesimal generators of the actions on H°(M, L¥),
respectively. The inner product (o, B) is given by

T [(Ak - %":‘“)1) (Bk - -Jliﬁf)] = (o, ™2 + O(6™).

The relative K-stability is based on the following modified Futaki invariant,

(a, B)
(8,6)

where F(a) and F(8) are Futaki invariants of o and 3, respectively.
Let x be the C*-action induced by the extremal vector field X. We say that
a test configuration is compatible with x, if there is C*-action x on (W, £) such

Fp(a) = F(a) - F(8), (1.12)

that 7 : W — C is an equivariant map with trivial C*-action on C and the
restriction of ¥ to (W, £|w,) for nonzero ¢ coincides with that of x on (M, L")
under the isomorphism. Note that C*-action a on W induces C*-action on the
central fibre My = 771(0) and the restricted line bundle £[,. We denote by &
and X the induced C*-action of o and x on (Mpy, £|p,), respectively.

The relative K-stability is defined as follows.

Definition 1.10 ([Sz]). A polarized Kahler manifold (M, L) is relatively K-
semistable if F3(-) < 0 for any test-configuration compatible with x. It is called
relatively K-stable if in addition that the equality holds if and only if the test-
configuration is trivial.

Finally, we would like to point out that since Donaldson’s Futaki invariant can
be defined for polarized scheme, all the above notions are also well defined for
schemes. We only stated the definitions for polarized manifolds which is enough
for this thesis. The main objects we study in this thesis are toric manifolds. In
the next chapter, we will obtain a simplified definition for the K-stabilities on
toric manifolds.



Chapter 2
Toric reduction

In [D2], Donaldson built up a program of studying the existence of constant scalar
curvature metrics and stabilities on toric manifolds. He reduced the K-energy to a
real functional on a polytope in R™, and proved that the K-stability is equivalent
to the positivity of a linear functional on the polytope. Later, the reduction was
extended to more general Calabi’s extremal metrics [ZZ1]. In this chapter, we
will describe this reduction. We also reduce the scalar curvature equation (1.8)
to Abreu’s equation [ADbl].

2.1 Kahler geometry on toric manifolds

In this section, we recall some background materials related to toric Kahler man-
ifolds, for more details we refer the readers to [Abl-2, De, D2, Guil.

A complex manifold M is called toric, if there is a complex torus Hamiltonian
action 7¢ on M and the action has a dense free orbit, identified with T¢ =
(CH™ = (SH)" x R™.

Now we assume that (M, g) is an n-dimensional toric Kéhler manifold with
a torus action 77 = (C*)". Then the open dense orbit of T in M induces an
global coordinates (wy, ...,w,) € (C*)*. To do the reduction we use the affine
logarithmic coordinates

z; =logw; = & + vV —1n;.

Let Gy = (S)" be a maximal compact subgroup of 7. Then if g is a G¢-invariant
Kahler metric, w, is determined by a convex function 1)y which depends only on
&1,y .oy €n € R™ in the coordinates (z, ......, 2,), namely

w, = 2v/—1804y, on (C*)™.

15
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Since the torus action T' is Hamiltonian, there exists a moment map

m: M — R"
and the image is a convex polytope in R™. Note that
2+ 2,‘ 2 — Z
§i = 2 ? T’i = 2i b
we have 5%
o
Wy = ; A dnj.
= Fgag
Hence, through
dmyg = —1 #ak Wy,

the moment map is given by

(g, oo ) = (‘9‘”" ...... Q‘f’ﬂ) ,

06T O,
that is the gradient of ¢y. Denote the image by
P = Dyy(R").

Then P is a convex polytope. This polytope is independent of the choice of the
metric g in the class [w,]. However, P can not be an arbitrary polytope in R*. An
interesting result [De] says that P satisfies several special conditions. Delzant’s
conditions can be stated as follows [Abl]:

1. There are exactly n edges meeting at each vertex p.

2. The edges meeting at the vertex p are rational, i.e., each edge is of the form
p+tv;, 0<t< o0, v €Z"

3. The vectors vy, --- , v, can be chosen to be a basis of Z".

As a conclusion, for an n-dimensional compact toric manifold M, together with
an associated Kéhler class [w,], (M, [wy]), there is an associated bounded convex
polytope P C R" satisfying Delzant’s conditions. Conversely, from a convex
polytope P C R" satisfying Delzant’s conditions, one can recover a toric manifold
and the associated Kéhler class (M, [wy]). See [De] for details.

We will characterize the metric under the polytope coordinates. The polytope
P can be represented by a set of inequalities of the form

P={$€Rn2 (.’L’,E,)S)\,, 'i=1,2,~'-,d}, (21)

where /; is the normal to a face of P, ); is a constant, and d is the number of
faces of P. Delzant’s conditions can be equivalently stated as follows.
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1. There are exactly n faces meeting at each vertex p.
2. The normals 4; (i =1,2,---,d) are vectors in Z".

3. At any given vertex p, let 4;,, ..., 4;, be the normals to the faces at p, then
det(&l, ...,Zin) = #£1.

Remark 2.1.

(1) Note that if det(4y, ...,4,) = 1 and if ¢; € Z™, the matrix (¢,---,4,) can be
reduced to the unit matrix by Gauss elimination. Therefore (¢3,--- ,£,) is a basis
of Z™. }
(ii) The constants Ay, - -+ , A\g are not necessarily integers, and can change contin-

uously. When they are all integers, the associated Kéahler class is called integral
[Gui] and from the polytope P we can recover a polarized toric manifold.

(iii) Two different polytopes may correspond to the same toric manifold (M, [wy]).
Indeed, all Delzant triangles correspond to the complex projective space CP2. We
will discuss equivalent classes of Delzant’s polytopes in Chapter 4.

(iv) We also note that the set of all Kahler classes on a toric manifold M is a
finite dimensional convex cone. Moreover, a Kéhler class is the first Chern class
if and only if \; =1 foralli=1,---,d (up to translation of coordinates).

By using the Legendre transformation £ = (D) '(z), one sees that the
function (Legendre dual function) defined by

uo(z) = (€, Dyo(§)) — to(§) = (£(z),z) — %o({(2)), VT € P

is convex. In general, for any Go-invariant potential ¢ in [w,], one gets a convex
function ug4(z) on P by using the above relation while 1y is replaced by vy + ¢.
Set

C={u=ug+v|uis a convex function in P, v € C*(P)}.

It was shown in [Abl] that there is a bijection between functions in C and Gyp-
invariant functions in M([w,]). Denote the latter by Mg, ([w,]). For any function
ug in C, it can be explicitly given by ([Gui, Ab2]):

d
up =5 Y (i = (b, 2))log(hi = (&,2)) + (2.2)

1

and it defines the form

wg, = 2v/—100m*((z, Dug) — uy)
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on m~!(P), where f is a function smooth up to boundary of P, m* is the pull-
back map of m. We usually say that a function satisfies Guillemin’s boundary
condition if it can be written in the form of (2.2).

In the coordinates {z, ..., z,}, the scalar curvature of g4 is given by [Abl]

n 32uij

where u is the Legendre function of ¥ = vy + ¢, (u¥) is the inverse matrix of
(uij) = (322 o 6:1: ) For simplicity in the following we will write the right hand side

of (2.3) as uzJ The gradient of the scalar curvature is given by

oS 0o

(1,0) ij 2
VTS =9 363 8z’

Note that g¢ is extremal metric if and only if V9§ is holomorphic. Since
WJ £2 ig real, it is holomorphic if and only if S is an affine linear function
in the :v-coordmates. In fact, we can determine the potential function of the
extremal vector field. As in §1.2, Let (M) be the Lie algebra of the reductive
part of Aut®(M), then n.(M) is the Lie algebra of the torus action 7" on M. By
(1.7) we have

Lemma 2.2 ([ZZ1]). Let ¢ be a Go-invariant potential in [wy] on M and v €
ne(M). Let 8, = 0,(wy) be a normalized potential of v associated to wy as in
(1.4). Then there are 2n-numbers a; and c; such that

01, = Za,-(zi + Cz)
=1

Moreover, if v is extremal, a; and c; are determined uniquely by 2n-equations,

11)/0(l.(7\1;)) (_) - —/ ;aﬂ(% +e)(zi +e)dz, i=1,...,n, (24)
/(:171 +c¢)dr=0,i=1,..,n, (2.5)
P

where F(-) is the Futaki invariant.

Therefore, let 8x be the affine linear function determined by (2.4), (2.5), the
scalar curvature equation becomes a equation on the polytope,

=85+ 0y, (2.6)
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This equation is called Abreu’s equation.

Hence, on toric manifolds, the existence of extremal metric reduces to a
real PDE problem of finding smooth solutions u to equation (2.6) defined on a
Delzant’s polytope P such that u satisfies Guillemin’s boundary condition, which
is given by (2.2).

2.2 Donaldson’s reduction

2.2.1 Reduction of Futaki invariant

Let dog be the Lebesgue measure on the boundary 8P and v be the outer normal
vector field on OP. Then we define a measure

(v, z) 1
— = 2.
do /\1, do 0 | £¢| do (1} ( 7)

on the face (¢;,z) = \; of P. Donaldson obtained the following simplification for
Futaki invariant.

Lemma 2.3 ([D2]). The Futaki invariant can be computed on the polytope by

Vol(P) ., O ( / = / )
F(—)=— r;do— S | z;dx ). 2.8
V(M ) 6z,-) aP P ( )
For simplicity, we denote A := S + 6x, and define a linear functional £ by
L(u) = / udo — / Audz. (2.9)
aP P

Let C; be the set of general convex functions with L' boundary value. The linear
functional £ is well defined in C;. By Lemma 2.2 and 2.3, A is an affine linear
function in the polytope coordinates {1, ..., Z, }, which can be determined by the
parameters in (2.1) as follows.

Proposition 2.4. Let A = ag + Y 7 aiz;. Then ag,a, ...,an can be determined
uniquely by the n + 1-equation system

L(1) =0, L(z:) =0, i=1,...n. (2.10)

In Chaper 4, we will use this proposition to determined all the Delzant’s
polytopes with no more than 6 vertices and with vanishing Futaki invariant. The
linear functional £ will also play an important part in the study of K-stability
later.
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2.2.2 Reduction of K-energy

In this section, we transform the modified K-energy to a real functional for func-
tions in C. This version of K-energy was first introduced by [D2], we extended it
to modified K-energy [ZZ1].

Proposition 2.5 (|[D2, ZZ1]). Let u be the Legendre function of ¥ = 1o+ @, then
there is a constant C independent of ¢, such that

(27T "
where
K(w) = — / log det D?u dz + £(u). (2.12)
P

Proof. One can derive the formula (2.11) as in [D2]. Here we give a different
proof. Denote by u; the Legendre function of ¢,. By definition,

¢1(x) = zéi(z) — ws(&s()).

Differentiating it and using the fact g—g—;’e = z;, we have

¢t szdftz 2y — Z ;iZt dj;z = —1i;.

Changing the coordinates from & to z, we obtain

(¢:)" (log det D?¢,);; = —[(log det D*u;)xi(u;)™ + (log det Duy)x (uz)¥],

(¢1)i = i, (2.13)
det D?¢,d¢ = dx,

Therefore, functional (1.10) becomes
dt[(log det D%uy); (ug)* + (log det D2ut)k(ut)fk] dxdt

(27T / A’Mt dxdt.

Integrating by parts, we have

()

1
— / / 1z (log det D?uz) ki ()™ + (log det D?uy) g (us)*dzxdt
o Jp

1 1
- / / tg (log det D?uy )y (1) *v; dogdt — / / (1ig);(log det D%uy) (uy)* dxdt.
o Jop o Jp
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By Guillemin’s boundary condition, it holds [D2-3]
(us)¥*vidoy = do

on the boundary dP. Hence the first term is

1 1
- / / 1 (log det D%uy) g (ug)*v; dogdt = / / 1y (1) v; dogdt
o Jop o Jop

1
0 JoP

/01 /,;(dt)"(ut)pq(ut)qu(ut)ik dxdt

- /0 1 /P (ti)g ()P dlt

_ /‘ ! / d(log det D%u;) gt
o Jp dt )
Therefore we have

(g) = — @em™ [t d(fplogdet D*uydz — [y, uzdo + [, Au, dzdt) dodt.
VoD J, dt

The second term is

1
/ / (iz); (log det D%u;) s (u)™* dzdt
o Jp

The proposition follows. O

2.2.3 Reduction of K-stability

Now we consider the relative K-stability of a polarized toric manifold (M, L)
which corresponds to an integral polytope P in R™ (i.e. when ); in (2.1) are
integers). In [D2], Donaldson induced toric degenerations as a class of special
test configuration induced by positive rational, piecewise linear functions on P.
The reduction of the stability is based on these degenerations.

Recall that a piecewise linear (PL) function u on P is of the form

u = max{u', ..., u"},

where u* = 3" a}z; + >, A = 1,...,r, for some vectors (a3, ...,a)) € R" and some

numbers ¢* € R. u is called a rational PL-function if the coefficients a} and

numbers ¢* are all rational. ' ‘
For a positive rational PL function u on P, we choose an integer R so that

Q={(z,t) |z€ P, 0<t<R—u(z)}
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is a convex polytope in R"*1. Without loss of generality, we may assume that
the coefficients a} are integers and @ is an integral polytope. Otherwise we
replace u by lu and @ by [Q for some integer [, respectively. Then the n + 1-
dimensional polytope @ determines an (n+ 1)-dimensional toric variety Mg with
a holomorphic line bundle £ — Mg. Note that the face Q N {R™ x {0}} of
Q is a copy of the n-dimensional polytope P, so we have a natural embedding
i : M — Mg such that £|yy = L. Decomposing the torus action Tg+! on Mg
as T¢ x C* so that T¢ x {Id} is isomorphic to the torus action on M, we get

C*-action a by {Id} x C*. Hence, we define an equivariant map
7 : Mg — CP!

satisfying 771 (c0) = i(M). One can check that W = Mg\i(M) is a test configu-
ration for the pair (M, L), called a toric degeneration [D2]. This test configuration
is compatible to the C*-action x induced by the extremal holomorphic vector field
X on M. In fact, x as a group is isomorphic to a one parameter subgroup of
T¢ x {Id}, which acts on W. Since the action is trivial in the direction of a, the
test configuration is compatible.

The modified Futaki invariant for a toric degeneration has an explicit formula
in polytope coordinates. Indeed, the following proposition relates the K-stability

to the positivity of functional (2.9). It can be regarded as a generalization of
Proposition 4.2.1 in [D2)].

Proposition 2.6 ([D2, ZZ1]). For a C*-action o on a toric degeneration on M
induced by a positive rational PL-function u, we have

1

Fz(@) = ~3Vol(P)

£(u), (2.14)
where x is the C*-action induced by the extremal holomorphic vector field X, and
Fy(@) is given by (1.12).

According to the above reduction, we will use the positivity of £ as the def-
inition of relative K-stability on toric manifolds and we usually omit the words
“relative” and “for toric degenerations” for simplicity.

Definition 2.7 (|[D2]). We call (M, L) is relatively K-stable for toric degenera-
tions if its associated polytope satisfies £(u) > 0 for all rational PL functions
w on P and if £(u) = 0 for a rational PL function u, then w must be a linear

function.
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Remark 2.8.

(i) In [D2] the K-stability was defined on polarized toric manifolds, that is the
case when the constants )\; in (2.1) are integers. But obviously his definition
can be extended to general polytopes. (When the constants ); in (2.1) are not
integers or rational numbers, we need to drop the word “rational” in the above
definition). -

(ii) The K-stability is related to Kéhler class and is an intrinsic property. So if
two polytopes corresponds to the same Kahler class of a toric manifold, then the
K-stability of one polytope implies that of the other.

In dimension 2, that is, on toric surfaces, there is a further reduction on
the positivity of £. Following Donaldson, we say a function u is simple PL if
there is a linear function £ such that v = max{0,£}. If u is simple PL, the set
Z, = PN{¢ = 0} is called the crease of u. We still denote by C; the set of general
convex functions with L' boundary value.

Proposition 2.9 ([D2]). Let P be a convez polytope P C R2. Assume that A
is positive and satisfies (2.10). Suppose that L(u) > 0 for all conver functions
u € Cy but there is a nonlinear convez function u € C; such that L(u) = 0. Then
there is a simple PL function 4 with its crease Ty # O such that £(4) = 0.

We will remove the assumption A > 0 in the next chapter.
In the end of this section, we restate the conjecture of Yau-Tian-Donaldson
on toric manifolds.

Conjecture 2.10 ([D2]). A polarized toric manifold M admits extremal metrics
in 2mey (L) if and only if (M, L) is relatively K-stable for toric degenerations.

2.3 Recent progress on toric manifolds

In this section, we review some main results on extremal metrics on toric mani-
folds.

The ‘only if’ part of Conjecture 2.10 was proved in [ZZ2].

Theorem 2.11 ([ZZ2]). Let (M, L) be a polarized toric manifold which admits
an extremal metric in 2mci(L). Then (M, L) is relatively K-stable for toric de-
generations.
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As we explained in last section, the relative K-stability for toric degenera-
tions means the positivity of £ for all PL-functions. Using Abreu’s equation and
Guillemin’s boundary condition, one can show that

o) = [ w0 s, Fec (2.15)

where u is the solution to Abreu’s equation satisfying Guillemin’s boundary con-
dition. By (2.15), L is strictly positive for functions in C. Hence, Theorem 2.11
implies that if M admits an extremal metric in 27¢; (L), then for any PL-function
f on P, we also have

L(f) 2 0.

Moreover the equality holds if and only if f is a linear function.

The ‘if’ part of the conjecture is rather difficult. Most of the recent develop-
ments occur in dimension 2. In [D2], Donalson proved that on a toric surface, if
the Kéhler class has vanishing Futaki invariant, then K-stability implies that the
K-energy is bounded from below. Later in a series of papers [D3-5], Donaldson
gave a confirmative answer to Conjecture 2.10 in this special case by a continuity
method.

Theorem 2.12 ([D5]). M admit a constant scalar curvature metric in 2mwci(L)
if and only if (M, L) is K-stable and Futaki invariant vanishes.

In his proof, the degeneration family of the continuity method was chosen
to be the perturbation of the triple (P, A,do). In [D3], he obtained the interior
estimates of Abreu’s equation. Then under an analytical condition called M-
condition, he obtained boundary estimates by blow-up arguments [D4]. These a
priori estimates can be used to solve the existence of constant scalar curvature
metrics. Finally, the conjecture was solved by showing that K-stability implies
the a priori estimate of M-condition [D5]. In the general case with nonzero
Futaki invariant, i.e., A is not a constant, the existence of solutions is still an
cpen problem.

Another progress was made on toric Fano surfaces. A complex manifold is
called Fano if its first Chern class is positive definite. It is well known that toric
Fano surfaces are classified into five different types, i.e., CP?, CP! x CP! and the
blowing-up spaces CP?>#ICP?,[ = 1,2,3. In [CLW], X. Chen, C. Lebrun and B.
Weber proved the existence of extremal metrics on CP2#2CP2, especially in its
first Chern class. Together with the existence of Kihler-Einstein metrics on CP?,
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CP' x CP', CP?>#3CP? [TY, Siu] and Calabi’s construction of extremal metrics on
CP2#1CP? [Cal3], this implies that every toric Fano surface admits an extremal
metric in its first Chern class.

In higher dimension, very little of existence result is known. In [ZZ3], under
the assumption of a variational condition on the modified K-energy, the authors
proved the existence of weak solutions for the extremal metrics in any dimension
in the sense of general convex functions minimizing the modified K-energy. This
variational condition generalizes Tian’s properness condition dealing with Kéahler-
Einstein metrics in the positive first Chern class [T2]. The properness condition
is a generalization of Moser-Trudinger inequality [T2, PSSW]. The uniqueness
and regularity of this weak solution is still unknown.

In the special case for Kahler-Einstein metrics, the problem has been com-
pletely solved by Wang and Zhu.

Theorem 2.13 ([WZhu)). A toric manifold with positive first Chern class admits
a Kdhler-Einstein metric if and only if the Futaki invariant vanishes in its first
Chern class.

2.4 Main results in this thesis

In Part II, we study the existence of extremal metrics and K-stability of Kéhler
classes on toric Kahler surfaces.

A fundamental property of toric Kéhler surface is that every compact toric
Kahler surface can be obtained from CP? or Hirzebruch surfaces F, (k = 0,1,2,--+)
by a succession of blow-ups at T2-fixed points [Ful]. In §3.1 we use this prop-
erty and a result by Arrezo-Pacard-Singer [APS] to prove that on every toric
surface, there exists a Kahler class which admits extremal metrics. We restate
Arrezo-Pacard-Singer’s theorem as Theorem 3.2 in §3.1.

In §3.2 we give examples of Kahler classes on toric surfaces which are not K-
stable. By Donaldson’s reduction of the K-stability, Definition 2.7, it suffices to
find a polytope P C R? satisfying Delzant’s conditions and a PL function u such
that the functional £(u) < 0. Such kind of examples was found by Donaldson
but we found an unstable polytope P C R? with 9 T¢-fixed points (the number
of vertices of the polytope).

In §3.3, we remove the condition A > 0 in Proposition 2.9. Our proof uses
properties of solutions to degenerate Monge-Ampére equation.

In Chapter 4, we are concerned with the existence of constant scalar curvature
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metrics on toric surfaces. To apply Donaldson’s Theorem 2.12, we want to check
when a toric surface has vanishing Futaki invariant and whether it is K-stable.
It is known that a toric surface with 3 or 4 T¢-fixed points must be CP? or a
Hirzebruch surface, and among these toric surfaces, CP? and CP! x CP! are the
only ones which have vanishing Futaki invariant and all the Ké&hler classes on
them are K-stable. In this chapter we verify toric surfaces with 5 or 6 T3-fixed
points.

In §4.1, we introduce a classification of polytopes in R? which satisfy Delzant’s
conditions. That is, we regard a family of polytopes as the same class if they
correspond to the same Kahler class on a toric surface. This classification is built
upon the fundamental property of toric surfaces stated above.

In §4.2, we prove that among all toric surfaces with 5 or 6 T2-fixed points,
CP?#3CP? is the only one which admits Kahler classes with vanishing Futaki
invariant. The verification of vanishing Futaki invariant involves complicated
computation, as we have to check all Delzant’s polytopes one by one. This was
done in [WZho] but in this thesis we present a different verification for some cases
of the polytopes.

In §4.3, we prove that the Kéahler classes with vanishing Futaki invariant
on CP2#3CP? are K-stable. To verify the K-stability, by Definition 2.7 and
Proposition 2.9, we need to show that the linear functional £L(u) > 0 for all
nontrivial simple PL functions. Again the verification of K-stability is technically
a difficult problem, even the number of vertices is 6.

In Part III, we study Abreu’s equation. It is a fourth order partial differential
equation and resembles in certain aspects to the affine maximal surface equa-
tion arising from affine geometry. We study the Bernstein theorem and the first
boundary value problem for this equation.

In Chapter 5 we prove the Bernstein theorem for Abreu’s equation in dimen-
sion 2. That is, we prove a smooth convex solution to

2 y
Zi,j:l(uw)‘”i‘”j =0

in the entire space R? is a quadratic function, where (u¥) is the inverse matrix
of (uij).

For the affine maximal surface equation this result was proved in [TWI]J.
Our proof is based on the a priori estimates and a rescaling argument (§5.5).
This idea is similar to that for the Monge-Ampére equation [P] and the affine
maximal surface equation [TW1]. But Abreu’s equation is not invariant under
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linear transformation of coordinates R™*!. When we rotate the coordinates in
R"*! we get a more complicated 4th order pde (§5.3). We need to establish
not only the a priori estimates for Abreu’s equation (§5.2) but also for the new
equation (§5.3). |

The a priori estimates also rely on the strict convexity of solutions, which
involves subtle convexity analysis, and is done in §5.4. Our convexity analysis
follows in a certain way the treatment in [TW1, 5]. In §5.6 we consider a variant
of the Bernstein theorem. That is we prove in dimensions 2-4 that a solution to
Abreu’s equation is a quadratic function if its graph is complete when equipped
with Calabi’s metric.

In Chapter 6, we deal with a boundary value problem for Abreu’s equation,
which can be formulated as a variational problem for the energy functional

Jo(u)=/1ogdetD2uda:—/fudx.
Q Q

The Euler equation of the functional is 3.7, (u¥)z,s; = f. We prove that in
dimension 2, there exists a unique, smooth convex maximizer of Jy in

S, = {u € C*(Q) | u is convex u|sg = ¢(x), Du(Q) C Dp(Q)}, (2.16)

where €2 is a bounded domain in R™ with smooth boundary and ¢ is a convex,
smooth function defined in a neighborhood of Q.

The proof is inspired by Trudinger-Wang’s variational approach and regularity
arguments in solving the affine Plateau problem. But due to the singlila,rity of
the function logd near d = 0 (d = det D?u), the approximation argument in
[TW3, 5] does not apply directly to our problem. To avoid this difficulty we
introduce in §6.2 a sequence of modified functionals Ji to approximate Jp, such
that the integrand in Ji is Holder continuous at d = 0, and prove the existence
and uniqueness of a maximizer of the functional Jj in the set S|y, Q).

The regularity of the maximizer is our main concern. In §6.3 we establish a
uniform (in k) a priori estimates for the corresponding Euler equations. In §6.4,
we establish the uniform (in k) a priori estimates for the equations obtained after
coordinates rotation in R+

As the maximizer may not be smooth, to apply the a priori estimates we
need to prove that the maximizer can be approximated by smooth solutions. We
cannot prove the approximation for the functional Jy directly as log d is singular
near d = 0. But for maximizers of Ji, the approximation can be proved similarly
as for the affine Plateau problem [TW3, TW5]. We include the proof in §6.5 and
86.6 for completeness. '
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The a priori estimates also relies on the strict convexity of solutions. The
proof for one case is similar to that in Chapter 5 (§6.7) but for the other case
the proof uses the a priori estimates, the Legendre transform and in particular a
strong approximation Theorem 6.21 and is contained in §6.8.
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Chapter 3

Existence and nonexistence

In this chapter focus on the two dimensional case. We will not distinguish
K-stability and relative K-stability for toric degenerations. We always call K-
stability. We first show that every toric surface admits an extremal metrc in
Section 3.1 following the recent work [APS]. Then in Section 3.2, we present
some examples of unstable Kahler class on toric surfaces. A further reduction to
simple PL functions for the verification of K-stability will be given in Section 3.3.
Results in this chapter are contained in [WZho].

3.1 An existence theorem

In this section, we show the following result.

Theorem 3.1. On every toric Kdhler surface M, there is a Kdhler class such
that M admits an extremal metric of Calabi in the class.

Theorem 3.1 is essentially due to [APS]. Let us recall a main result in [APS].
Let (M,w,) be an n-dimensional compact Kéhler manifold whose associated
Kéhler metric g is an extremal metric,

Zs=JVS++Vv-1VS

is a holomorphic vector field on M, where S is the scalar curvature and J is the
complex stucture. Suppose that G is a compact subgroup of Isom(M,g) and
its Lie algebra is g. Denote by h the vector space of G-invariant hamiltonian
real-holomorphic vector fields on M. Then

Theorem 3.2 ([APS, Theorem 2.1]). Suppose (M, g) is extremal and § C g,
JVs € g. Let Go be the identity component of G. Given p1,...,pm € Fiz(Gy)

31
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and ay, ..., am > 0 such that a;, = a;, if p;, and p;, are in the same G-orbit, there
ezxists €g > 0 and, for any € € (0,€p), there exists a G-invariant extremal Kihler
metric w, on the blow-up space M at D1y -y Pm, Such that we lies in the class

*[w] — (@7 PD|Ey] + ... + ai* PD[E,]), (3.1)

where ™ : M — M 1s the standard projection map, PDIE;] are the Poincare duals
of the (2n — 2)-homology class of the exceptional divisors of the blow up at p;.

Note that when M is a toric manifold and G = Gy is the compact torus
action T™, one has h = g and JVs € g, so the conditions in the theorem hold
automatically, as pointed out in corollary 2.2 in [APS].

Now we apply the above result to toric Kahler surfaces. It is known that every
compact toric Kahler surface can be obtained from CP? or Hirzebruch surfaces
Fy (k = 0,1,2,---) by a succession of blow-ups at T¢-fixed points [Ful]. More
precisely, let M be a toric surface with Kahler class K corresponding to a polytope
P. Then a T¢-fixed point X of M corresponds to a vertex p of the polytope P. A
blow-up of M at X is a new toric Kahler surface which corresponds to a convex
polytope P obtained by chopping off a corner of the polytope P at p. Moreover,
it is known [Ful] that a Delzant polytope with m vertices (m > 5) can be obtained
by chopping off a corner from a Delzant polytope with m — 1 vertices. Theorem
3.2 means that if there is an extremal metric on M, in the Kéhler class K, then
there is an extremal metric on M in the class K corresponding to 13, provided
the chopped-off corner is small and P satisfies Delzant’s conditions. Furthermore,
the Kéhler class K is exactly the class given in (3.1) [Gui].

It is well known that on CP?, the Fubini-Study metric is a Kéhler-Einstein
metric in the first Chern class. For the Hirzebruch surface Fj, the existence of
extremal metrics in any Kéhler class can be reduced to an ODE and can be found
in [Cal3]. Therefore Theorem 3.1 follows from the above Theorem 3.2.

3.2 Unstable examples

Donaldson [D2] found Delzant polytopes with large number of vertices which are
not K-stable. Here we provide different examples. We wish to find an unstable
Delzant’s polytope with least number of vertices.

Theorem 3.3. For any m > 8, there ezists a toric Kahler surface M™) with
unstable Kihler class, and so there is no extremal metric on M™ in the class,
where M™ denotes a toric surface with m T2-fized points.
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3.2.1 An example

Our first example is symmetric with respect to both the z; and the z; axes. So
it suffices to give the vertices in the positive quarter

{m = (z13x2) € ]R2 | x> 09 H) > O}

Let a,n (o >> n > 1) be integers to be determined later. The intersection of
OP with the positive axes are the two points (0,0*) and (n + 1,0) (both points
are not vertex of P), where

1
a*=a+L1gl-_)

The vertices in the positive quarter are given by
= (1’ Ol*),

b2 = (2,0!* - 1)’
b3 = (3a o — (1 + 2))7

......

The vertices in other quarters are reflections of py, - - - , pp+1 in the axes.

Let Ejy be the edge connecting the vertex (—1,a*) to p1, and Ej be the edge
connecting the vertices py and pg+1, £k = 1,2,--- ,n, and E,4; be the edge con-
necting pn4+1 to (n+ 1, —a). Let 4; be a normal at the edge E;, given by

‘€0 = (0) 1 )
‘61 = (15 1 9
62 - (2, 1)a
gk - (k7 1),
4, = (n,1),
£n+1 = (1)0)

One easily verifies the polytope P satisfies Delzant’s conditions.
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We show that the polytope P given above is not K-stable when a,n are
sufficiently large (o >> n). As was pointed out above, it suffices to show that

E(u)=/a‘Puda—/PAudm<O (3.2)

for some PL function u. Note that when computing the integral f ap 40, We have
do=1fori=1,---,n, (3.3)

Note that P is symmetric with respect to the axes, the linear function A is
necessarily a constant, namely A = ag (so an extremal metric must be a CSC
metric if it exists). To compute the constant ag, letting ug = 1 we have

E(UO) = 4(0[ +n+ 1) — ao|P|
= 4(a+n+1) —dag[a(n + 1) + O(n®)],

where | P| is the area of the polytope P. Hence
1 1
ag = 1 + O(a) (3.4)

We choose a >> n such that O(é) is so small that can be neglected.
Now we choose the function

@ = max{0, z; — a}. (3.5)

It is a simple PL function, with crease Z; = P N {z2 = a}. By (3.3), one easily
verifies that
/ ido < 2(n+ 1)supa = n(n + 1)
aP P

and
5

A n
idr > |P|linfd = —
/Pu z > | |1r}%u 198"
where P = PN {a+ %n2 <z < a+ %n2}. Hence when n is sufficiently large

and when o >> n, by (3.4) we have

L(4) = / tdo — aO/ tdr < 0. (3.6)
opP P

Hence, the corresponding toric surface is not K-stable. Note that the polytope P
above is integral, namely the corresponding constants A; in (2.1) are integers.
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3.2.2 Unstable polytopes with less vertices

It is interesting to find polytopes with less vertices such that the corresponding
toric manifolds are not K-stable. In dimension 2, if the polytope has 3 vertices,
it can only be CP2. If it has 4 vertices, the toric manifold must be a Hirzebruch
surface. Both of them admit extremal metrics in any Kahler class. Hence, in
dimension 2, a polytope of an unstable toric manifold has at least 5 vertices.
Let us first consider the polytope P in Section 3.2.1. We want to find the
least n such that P is not K-stable. Instead of the test function (3.5), now we
choose
@ = max{0,z; — a + k}, (3.7)

so that & = 0 when 25 < o — k and 1 is linear when zo > a — k. Let n=3. We
have

/ ddo = k*+8k+O(1),

oP

/adx = 4k® + 34k + O(1),
P

where O(1) are absolute constants (depending only on 7, but here n = 3 is fixed),
and the number 34 is the area of PN {z3 > a}. Hence when £ is sufficiently large
and a >> k,

£(a) =/ ada—lfadx='—1k+0(1) <o. (3.8)
ap 4 /p 2

Therefore when n = 3, the corresponding toric manifold is not K-stable. The
polytope P has totally 16 vertices.
Let
P'=Pn{z; > —a}, (3.9)

where P is the above polytope, with n = 3, so that P’ has only two vertices in
{z2 < 0} and has totally 10 vertices. It is symmetric in z; but not z,. The
linear function A associated with P’ has now the form A = ag + ayz;. By direct
computation,

1 1 1
ag = Z + O(a), ag = O(ZME)

We can choose a large enough such that O(2) and O(Z;) are sufficiently small
and can be ignored in the computation of £(%), where @ is given in (3.7). Hence
when k is sufficiently large and o >> k, as above we have £(%) < 0. Hence the
corresponding toric manifold is not K-stable.
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Let P* be the polytope with vertices given by

Do = (O,Q*),
D= (1,01*),
b2 = (2,0[* - l)a

ps = (3,0" — (1+2)),

ps= (4,0 = (14+2+3)),

ps = (5,0 — (1 + 2+ 3+ 4)),

pe= (7,0 = (14+2+34+4+4+10)) = (7,0),
pr=(7,~a),

ps = (0, —a),

where a > 0 is a large constant and o* = o+ (1 + 2+ 3+ 4+ 10). Then

2 1

a0=?+0( ), a1=O(

1
a a)v az = O(_)

o2
Let @ be the test function in (3.7). Denote u; = max{0,z2 — o +t}. Then when
a>>t>>1, we have

() = / do — / Adz +0(3).
dt 8P*N{zy>a)} P*n{z2>a} a

Therefore if

/ do < —5+ / Adz (3.10)
OP*N{z2>a} P*n{z2>a}

for some § > 0 independent of a, then £(@) < 0 when k is sufficiently large.
Direct computation gives

/ do = 27, / Adz = 271.
8P*M{z2>a} P*n{zz>a} 7

The polytope P* has totally 9 vertices. It is the polytope of least vertices we
have found such that the corresponding toric manifold is not K-stable.

An interesting question is whether a polytope P C R? is K-stable if it has 8 or
less vertices. We believe the answer is yes for polytopes with 7 or less corners. Our
computation suggests the case of 8 corners is the borderline case. The verification
of K-stability is techmically a difficult problem, even for the polytope with 5
vertices. In the next chapter, we consider the K-stabilty in the case A is constant.
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3.3 K-stability and simple PL functions

Let P be a convex polytope P C R", n > 2. As in [D2] we denote by C; the
set of convex functions f on P such that f. op f do < 0o. Note that for a convex
function f € Cy, (i) f is locally uniformly Lipschitz continuous in P; (ii) when
restricted to a codimension 1 face of P, f is also a convex function, (iii) f may
not be continuous near the boundary, such as the function f =0in P and f =1
on OP; (iv) f may not be uniform bounded at the vertices of P, but the value of
f at vertices has no effect on the integral [ op f do. In this section we prove

Theorem 3.4. Let P be a convex polytope P C R?. Suppose that L(u) > 0 for
all convex functions u € C; but there is a nonlinear conver function u € C; such
that L(u) = 0. Then there is a simple PL function @ with its crease Iz # 0 such
that L(4) = 0.

Theorem 3.4 was proved by Donaldson [D2] under the assumption A > 0
(Proposition 5.3.1, [D2]). Here we remove the condition A > 0. Theorem 3.4 is
needed if one wishes to verify the K-stability of polytopes. Namely to verify the
K-stability for a polytope P € R?, by Theorem 3.4 it suffices to verify £(u) > 0
for all simple PL functions u.

Note that in Theorem 3.4, P can be any polytope, or any bounded convex
domain. From the proof of Theorem 3.4, we also have the following

Corollary 3.5. Let P be a convez polytope P C R2. If there is a convez function
u € C; such that L(u) < 0, then there is a simple PL function @ such that
L(d) <0.

To prove Theorem 3.4, we first introduce some terminologies and related prop-
erties.

Extreme point. Let 2 be a bounded convex domain in R®, n > 2. A boundary

point z € O is an extreme point of Q if there is a hyperplane L such that

z = LN O, namely z is the unique point in LN OS. It is known that any interior
point of 2 can be expressed as a linear combination of extreme points of §2. If

is a convex polytope, a boundary point z € 0f2 is an extreme point if and only if

it is a vertex of Q2.

Supporting plane. Let u be a convex function in a domain 2 C R™ and z € Q2 be
an interior point. A hyperplane L, given by L = {z,41 = ¢(z) | z € R*}, is a
supporting plane of u at z if u(2) = ¢(2) and u(z) > ¢(z) for any z € Q. When
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u is C! at z, then there is a unique supporting plane, which is the tangent plane,
of u at z. For convenience we call ¢ the supporting function of u at z.

Normal mapping. Let u be a convex function in a domain 2 C R™ and z € Q2 be
an interior point. The normal mapping of u at z, N,(2), is the set of gradients
of the supporting functions of u at z. For any subset 2’ C 2, denote N,(Q') =
U,eqr Nu(2). If uis C', the normal mapping N, is exactly the gradient mapping
Du.

A degenerate Monge-Ampére equation. Let 2 be a bounded convex domain in
R", and ug be a convex function on . Then

u(z) = sup{€(z) | £ is a linear function in © with £ < uy on 6Q} (3.11)

is the unique convex solution (generalized solution in the sense of Aleksandrov)
to the Monge-Ampere equation [Gut, TW4]

det D*u =0 (3.12)

in €, subject to the Dirichlet boundary condition u = ug on 9€2. Here we say a
(nonsmooth) convex function u is a generalized solution to the degenerate Monge-
Ampeére equation (3.12) if yu, = 0, where the measure p, is defined by

pu(w) = | Ny (w)] (3.13)

for any Borel set w C 2, and | - | denotes the Lebesgue measure in R™. It is
well known that p, is a measure defined in €2, and is called the Monge-Ampere
measure [TW4]. When v is a smooth convex function,

ty(w) = /det D*udz.

A basic property of the Monge-Ampére measure is that if a sequence of convex
function u,, converges to u (locally) uniformly in €, then p,,, — u, weakly [Gut,
TW4]. '

Let u be a generalized solution of (3.12), given by (3.11). For any interior
point z € , let L, = {z,+1 = ¢(z),x € R"} be a supporting plane of u at z. By
convexity, the set 7 := {z € Q | u(z) = ¢(z)} is convex. By (3.11), 7 cannot be
a single point.

Lemma 3.6. An extreme point of T must be a boundary point of 2.
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Lemma, 3.6 is often used in the study of Monge-Ampére equation. It can be
proved as follows. If there is an interior point y € Q which is an extreme point
of T, by choosing proper coordinates we assume that y =0, 7 C {z, < 0}, and
the origin 0 is the only point of 7 N {z, = 0}. By subtracting a linear function,
we assume that L, = {z,+; = 0}, namely ¢ = 0. Then for a sufficiently small
€ > 0, since the origin is an extreme point of 7', we must have u(z) > e(z, + 1)
on 02, which is in contradiction with (3.11).

The above results are well known to researchers in the real Monge-Ampere
equation. We are now in position to prove Theorem 3.4.

Proof of Theorem 3.4. Denote P, = {x € P | A(z) >0}, P_={z € P | A(z) <
0}. If u; and uy are two convex functions in C; satisfying u; > us in ?.i., U < Us
in P_, and u; = uy on AP, then L(u;) < L(uy).

(i) Since for any codimension 1 face F of P, the area of F' is bounded by
CJ pdo for some constant C' > 0 depending only on P, there exist a small
positive constant 6 > 0, depending only on P, such that for any simple PL
function @ with the Lebesgue measure |[{z € P | @(z) > 0} < &, we have
L(#) > 0. Therefore if £(u) > 0 for all simple PL functions, there exists go > 0
such that £(u) > ¢ for any simple PL function u = max(0, £) with |D{| = 1 and
{z € P | u(z) > 0} > do.

(ii) Let u be a nonlinear convex function in C;, which is not simple PL, such
that £(u) = 0. We show that u is continuous at any codimension 1 face F' (not
including its codimension 2 boundary). Indeed, for any z, € F, since u is convex,
one easily verifies that m,epg—zou(z) = limgcp, 5, u(x). Hence we can define a
convex function @ € C; by letting & = w in P and @ = limzep gy u(z) for zo € F
(the value of % on the codimension 2 edges does not affect the integral [, do).
If there is a point zo € F at which @ < u, then we have £(%) < L(u) = 0, a

contradiction with the assumption that £(v) > 0 for any v € C;.
Let

u4(z) = sup{€(z) | £ is a linear function with £ < u in P_ U dP}. (3.14)

Then uy = v in P_ and on 0P, and uy > u in P;. If there is a point z € Py
such that ui(z) > u(z), then L(uy) < L(u) = 0, in contradiction with the
assumption that £(v) > 0 for all v € C;. Hence uy = u in P. By (3.11), u
satisfies the degenerate Monge-Ampere equation (3.12) in Pj.
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Next let

u_(z) = sﬁp{Z(x) | £ is a supporting function of u at some point z € Py }.
(3.15)

Then u_ = u in P, and u_ < u in P_. If there is a point z € P_ such
that u_(z) < u(z), then L(u_-) < L(u) = 0, contradicting the assumption that
L(v) >0 for all v € C;. Hence u_ = u in P.

We claim that u satisfies the degenerate Monge-Ampére equation (3.12) in
the whole polytope P. Indeed, we have shown det D?z = 0 in P*. Hence
|N.(PT)| = 0. Note that the function u_ in (3.15) can be approximated by

ué (z) = sup{(x) |¢ is a supporting function of u at some point z € P{},

(3.16)
where P{ = {z € P | A(z) > ¢} C P;. By (3.16), a supporting plane of u¢
at some point in P must also be a supporting plane of u at some point in P5.
But since u is a generalized solution of (3.12) in Py, we have |N,(P5)| = 0 by
definition. Hence |N,(P)| = 0 and so ut is a generalized solution to (3.12) in P.
By the weak convergence of the Monge-Ampeére measure, u = lim._o u¢ is also a
generalized solution to (3.12) in P.

Alternatively, the claim that uf is a solution to (3.12) also follows from a
theorem of Aleksandrov, which states that for any convex function w € C(Q), the
set {p € R* | p € Ny(z) N Ny(y) for two different points z,y € 2} has measure
zero, because a supporting plane of u¢ at some point in P_ is also a supporting
plane of u at some point in P§.

(iii) Let zo be the mass center of P. By a translation of the coordinates we
assume 2o = 0 is the origin. Let L = {zn+1 = ¢(z)} be a supporting plane of u
at zo. By subtracting a linear function we assume that ¢ = 0. By Lemma 3.6,
the extreme points of 7 = {z € P | u(z) = 0} are located on dP.

Assume n = 2. Then 7 is either a line segment with both endpoint on 4P, or
T is a polytope (which is a convex subset of P) with vertices on P, by Lemma
3.6.

By a rotation of the coordinates, we assume 7 is contained in the z;-axis in
the former case, or an edge of 7 is contained in the z;-axis and 7 C {z2 < 0} in
the latter case. For any point (z1,0) € P, let

.1
a(@) = im 5 (u(e, 1) — u(e, )

By convexity the limit exists and is nonnegative. Let ap = inf a(z;). We must
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have ag = 0, otherwise denote

and u; = ux—, U2 = (u — apth)X+, where x_ = 1 in {zy < 0} and x- = 0 in
{z2 > 0}, and x4+ =1 — x—. Then ¢ is a simple PL function,

U = u; + us + ag,
and u; + uy is convex in P. Hence
L(u) = L(ug + u2) + aoL(Y) = agop > 0,

where oy > 0 is the constant in (i) above. We reach a contradiction.
Since u > 0 in P N {zz > 0} and the set G, := {z € P | u(z) < ey(z)} # 0,
we have
GeC{0<zy<d} withd—0ase—0 (3.18)

(otherwise by taking limit we would reach a contradiction as 7 C {z2 < 0}).
Denote

U = ux-—,

Uy = ('U. - 6¢)X+7

iy = max(ug, 0).

Then u = u; + ug + €y and u; + 1y is convex in P. Denote & = u; + @iy + €. By
(ii) above we have

L(@) = L{uy + 1) + eL(9) > eL () > €0

On the other hand, observing that 0 < iy — uy < €d, we have u < 4 < u+ €. It
follows that
L(@) < L(u) + Ced = Ceé.

We obtain egy < Ced. But recall that § — 0 as ¢ — 0. Hence when € > 0 is
sufficiently small, we reach a contradiction. d

Remark 3.7. Part (iii) in the above argument does not apply directly to high
dimensions, because (3.18) holds only when {z, = 0} N P C 7, which is usually
not true in high dimensions.
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Chapter 4

Constant scalar curvature metrics

It is known that a toric surface with 3 or 4 T¢-fixed points must be CP? or a
Hirzebruch surface, and the Futaki invariant vanishes only for CP? and CP! x CP*.
When a toric surface has large number of T¢-fixed points, the verification of
vanishing Futaki invariant is technically a complicated problem. In Section 4.2
we prove that among all toric surfaces of 5 or 6 T2-fixed points, CP2#3CP? is
the only one which allows vanishing Futaki invariant. In Section 4.3 we will
check the K-stability of CP243CP2. By Donaldson’s recent work, this means the
existence of constant scalar curvature metrics on the toric surface. For general
toric surfaces with m > 5 T2-fixed points, the verification of K-stability is also
a very complicated problem. We still denote by M(™ a toric surface with m
Tg-fixed points.

4.1 Equivalent class

Let P(™ be a Delzant polytope with m vertices pg, p1, -« - , Pm With pg = pm. Let
E; be the edge connecting p; and p;1, #; be the normal to the edge E;. Also we
set {m = Ly, Eg = Ey.

Denote

SL(2,Z) = {( e ) Dqugez — quzgn = £1, g5 € Z}- (4.1)
21 g2

For any Delzant polytope P, and any transform Q € SL(2,Z), P = QP is

also a Delzant polytope. From [De], the corresponding Kéhler manifold Mp: is

symplectomorphic to Mp, and Mp: has the same complex structure and Kéhler

class. By this property we can introduce equivalent classes for Delzant polytopes.

43
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Definition 4.1. We say two Delzant polytope P and P’ are equivalent if there
exists a transform @ € SL(2,Z) such that after proper translation and dilation,
P’ = QP. For any Delzant polytope, we denote by [P] the equivalent class.

For any Delzant polytope P, and any vertex p of P, we can make a translation
and transform @ € SL(2,Z) such that p is the origin, the edges at p lie in the
coordinates axes, and P is contained in the positive quarter {z; > 0,z > 0}.
It implies that at any vertex of a Delzant polytope M{™, one can chop off the
corner to get a new Delzant polytope M(™+1),

It is easy to verify that a Delzant polytope with 3 vertices must be equivalent
to the polytope with vertices

p0=(0’0)a by = (_1a0))
p=01), f=(1), (42)
ps = (1,0), £ = (0,-1).
It is also known [Ful] that a Delzant polytope with 4 vertices must be equivalent
to P@[k] for some k = 0,1,2,---, where P?[k] is the polytope with vertices

Do = (0)0)) ZO = (_170)7
b= (Oa h)-) 82 = (_ka l)a
b2 = (l,h-l- k)a l3 = (17O)a (43)
p3 = (1,0), €= (0,-1),

where A > 0. Note that P®[k] has two parallel edges F; and E,.

To work out the equivalent classes of Delzant polytopes with 5 or 6 vertices,
we need the following lemma.

Lemma 4.2 ([Ful]). For m > 4, every Delzant polytope P can be obtained
by chopping off a corner from a Delzant polytope P(™.

From (4.3) and Lemma 4.2 we see that a Delzant polytope P(™ with m > 5
must contain a pair of parallel edges, located respectively in {z; = 0} and {z; =
1} after proper choice of coordinates. From (4.3) and Lemma 4.2 we also have

Lemma 4.3. A Delzant polytope P®) must belong to an equivalent class of the
polytope PO)[k] for some k =0,1,2,---,

Po = (0’0)7 by = (_170)7

» = (0,h), by =(-k-1,1),

p2 = (t,h+ (k+ 1)t), ly = (—k,1), (4.4)
ps=(Lh+(k+1t+k(1-1¢), {L3=(1,0),

ps=(1,0), £y =(0,-1),
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where t, h are positive constants and t < 1.

Lemma 4.3 follows from Lemma 4.2 immediately. Note that if P(® is obtained
by chopping off the corner py or p3, we need a translation, a dilation and a
transform @ € SL(2,Z) to get the expression (4.4).

Similarly by (4.4) and Lemma 4.2, we have

Lemma 4.4. A Delzant polytope P® must belong to an equivalent class of the
polytope PO)[i; k] for some i = 1,2 or 3 and some integer k =0,1,2,---, where
(i) PO1; k] is given by

=(0,0), = (-1,0),
=(0,h), =(-k-2,1),
= (t,h + (k + 2)t), ——( —k—-1,1), (4.5)
=(s+t,h+ (E+2)t+ (k+1)s), b3 = (—k,1),
pa=(h+(k+2)t+ (k+1)s+k(1—s—1)), £ =(1,0),
= (1,0), €5 = (0,-1),
where h, t, s are positive constants, t + s < 1.
(i) PO®)[2; k] is given by
po = (0,0), b =(-1,0),
p1 = (0,h), b4 = (-k—1,1),
p2 = (t,h + (k+1)1), = (—2k-1,2),

(4.6)
p3=(t+sh+(k+1t+ (k+3)s), by = (—k,1),
pe=(Lh+(k+1t+(k+3)s+k(l—s—1t), £ =(1,0),
ps = (1,0), s = (0,-1),

where h, t, s are positive constants, t + s < 1.
(iii) P©[3; k] is given by
Po = ( ) by = (_1a0)7 v
= (0, h), 6 =(-k-1,1),
= (s,h+ (k+ 1)s), b = (—k,1), (47)
=(1 h+(k+1)s+k(1-3s)), £5=(1,0),
= ( 7(1 - t)), ly= (1?—1)7
= (t,0), s =(0,-1),

where h, t, s are positive constants such that t,s < 1, and k > 0 is an integer.

The verification of Lemma 4.4 is straightforward, we leave it to the reader. But
we would like to point out that if the new polytope P’ is obtained by chopping off
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the corner (0, 0) of P®)[k] in (4.4), then P’ is in the equivalent class of P()[3; k+1].
We also point out that P(®[1;0] and P®[2; 0] are in the same equivalent class. In
(i) above, we can allow k = —1, but P®)[1;—1] is in the same class as P(®[3;1].

4.2 Polytopes with vanishing Futaki invariant

4.2.1 Futaki invariant

We verify whether the Futaki invariant vanishes for the polytopes given above.
Denote

bo—/ dO‘, b1 /wlda, b2 xlda,
aP oP _

vo—fdm, v = /xld:c, v2=/w1dx,
P

Fi1 = voby — v1by, JF2 = voby —vby, F3 = vibs — vaby.
By Proposition 2.4, the linear function A = ag + @12; + asz is determined by
L(1) =0, L(z;) =0, L(z2) =0.
Therefore agy, a3, ay satisfy

Qoo + a1v1 + asvs = by,

a0’01+a1/.’l)%+(12/$1$2=b1,
P P

aovz+a1/:c1$2+a2/x§=b2.
P P

Recall that the Futaki invariant vanishes if and only if A is a constant, namely
a; = az = 0. Since P is contained in {z; > 0,z > 0}, we have v;,v; > 0. Hence
if the Futaki invariant vanishes, the above linear equations can be reduced to

h_b_b ws)
Yo V1 U2 ) '

Therefore we obtain
Lemma 4.5. The Futaki invariant vanishes if and only if F1 = Fo = F3 =0.

With Lemma 4.5, we can verify when a Delzant polytope has vanishing Futaki
invariant.

To estimate Fi, we introduce another way of expression of P, m > 5. For
convenience, we use {z,y} instead of {z1,z2} to stand for the coordinates. We
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still assume that a pair of edges are located respectively in {z = 0} and {z = 1}
as in the last section. Furthermore, we may assume that the origin is a vertex
and the other edge passing the origin is contained in y = 0. It is clear that all
the other edges form two piecewise linear functions fi, fo. Then we have

P™ = {(z,9) | fo(z) <y < fi(2)}.

For simplicity, we can use the pair (fi, fo) to express the polytope. Without
loss of generality, we may also assume that {y = f,} contains no less edges than

{y=fo}
We first compute F; with the data of (fi, fo). Note that f; is a concave
function while f; is convex. We denote the following parameters:

h = fl(O)v a= fl(l) - fl(o), b= f2(1)’ k= f{(l), l= fé(l)a

where k,[ are integers, [ > 0 and h,a,b > 0, b < a + h. For polytopes given in
84.1, it is clear that kK < a, b < I. Let do; and do,; be the boundary measures
on OP™) at the boundary parts determined by {y = fi(z)} and {y = fi(z)},
respectively. As we pointed out in (2.7), do; is piecewisely a scalar multiplication
of dz with the scalars determined by the outer normals of the edges. We would
like to point out in particular that all the parameters h, a, b, k, [ and the boundary
measures do; are not chosen arbitrarily. They come from a Delzant polytope in
§4.1. Hence, by computation,

. 1 1
bp=2h+a—-b+ / doy +/ dos, v = / fi(z) — fa(z)dz,
0 0 0
1 1 1
by=h+a- b+/ zdoy +/ xdos, v = / z(fi(z) — fo(z))dz.
0 0 0

Furthermore, write
fi=h+az+g, fo=0br+ge.
Then

F1 = wvoby —uibo

1 1 1
= (h+a—b+/ a:d01+/ xdﬂz)/ h+(a—Db)z+ g1 — godz
0 0 0

1 1 1
—(2h+a—b+/ d01+/ d02>/ zlh+ (a —b)z + g1 — goldz
0 0 0

1 1 1
= Kh+L(a—b)+(h+a—b+/ $d01+/ !IJdUz)/ g1 — 920z
. 0 0 0

, 1 1 1
— <2h +a-—b +/ doy + / da:z) / z(g1 — g2)dz,
0 0 0
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/mdal——/ da'1+/ .rdaz——/ dosy,
L = a—b'f‘l‘/ mdal——/ d0'1+ /.’L‘ddz——/ d0'2
6 2 /o

Now we treat F; as a functional of (g1, g2). We consider more general functions
(91, 92). Define

where

K =

={g | g is concave and g(0) = g(1) =0, ¢'(1) = k —a},
S2 ={g | g is convex and g(0) = g(1) =0, ¢'(0) = =b, ¢'(1) =1 —b}.
Hence, we formulate a minimizing problem

inf .7:1. (49)

91€81,92€52
For simplicity, we denote by

2h+a—b+ [y doy + [ doy
h+a—b+f01xdcrl+f01xda2‘

&=
Then we have
1 1
Fi1=Kh+L(a—b)+ (h +a-b +/ zdoy +/ xdaz) [®(g1) — @(g2)], (4.10)
0 0

where
T

<I>(g)=/0 (l—g)g-

Note that ®(g;) and ®(g2) are independent when fixing h, a, b, k, I.

Lemma 4.6. We have the following reduction.

Jnf ®(g) = Inf (k—a)T(t), (4.11)
infecsc1(l — 0)¥(s), >
sup (gg) = | sl ZDV), FE2 (4.12)
926852 inf%SKl(l —b)U(s), ifé<?,
where U is a function given by
2z 1 1
\Il(.’t) = —@ + 5 + & e 5 (413)
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Proof. We first consider infg, s, ®(g1). Define

oDy g e(0,0),
g =
YTl —a)@—1), ze)

where £ <t < 1. It is clear that g;; € S;. We claim

inf ‘I>(gl)— 1nf <I>(g“) (4.14)

91€S81

Indeed, for any g; € Sy, let §o = g1(§), then & < g1£(€). There exists a tg € [€,1)
such that & = g14,(to). Since g1 € Sy, by the concavity of g; and g; 4, we have

91() = g1,4,(z) for z € [0,¢),
91(%) < g140(2) for z € [, 1].

It implies ®(g1) > ®(g1,4,)- Hence, it suffices to compute ®(g1,:). We have
va) = [0-HELEe im0 [a-De-
= (k—a \I'(t)

where ¥(t) is given as in (4.13).
Next, we consider sup,cs, D(go). If € > %, we define

(=9(=1) t("l T, z € (0,s),
g2,s =
(I=-b)(z-1), ze€(s]),

where s € [£,1). If £ < 3, go; is defined for s € [2,1). In either case, by a similar
argument as for (4.14), one can prove

sup &(g) = sup &(gz,s)- (4.15)
92€S2
Therefore the lemma follows by a computation of ®(go). O

The infimum of F; can be estimated in the following special case.

Proposition 4.7. Suppose that k > 1+ 1. If the boundary measures satisfy
dos = dz and do, = dz, % piecewisely, then F; > 0.
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Proof. The assumption k > [+ 1 impliesa — b > k — 1 > 1. Note that

¥(1) =0,
b= GE7DED
3¢, _ (3¢ —2)

where U is given by (4.13).
First, we discuss the infimum of F; in two cases.
i) When % > 1,ie., L > % F attains its minimum when t = s = 1. Then
2 6

inf F; = Kh+ L(a—Db)

_ 1 1 1 1
> (a b +/ .’I7d0'1 — l/ d0'1 +/ $d02 — l/ dO’z) h:= Ml.
2 0 2 0 0 2 0

(ii) When ¥ < 1, we have L < % In this case, ¥(t) attains its maximum at
%{. If %5 > %, U(s) attains its maximum at %§ For ¥(s), it has two possibilities.
If £ < b U(s) attains its maximum at . Note that ¥(?) < ¥U(%). Hence, we
always have

inf.ﬂ
1 1 3¢
2 Kh+L(a—b)+(h+a—b+/0 xd01+/;xdaz)(k+b—a—l) (2)
1 1 o S
= Kh+L(a—b)+<h+a—b+/ xd01+/ $d0'2) (k+b—a—-1)(3¢-2)
: 0 0 24§
= M2,

Next, we use the boundary measure condition to estimate inf F; in the above
two cases. By the assumption dos =

K = a—-b /xdal——/ doy,
L = 6 —/ mdal——/ doy —

For case (i), we have

a—b 1 1!
inf 71 > M, =( +/ .’L‘dO’l——/ d0'1> h > 0.
2 0 2.Jo

For case (ii), we first need to estimate L from below. Assume that the pa-

rameters h,a,b,k,l and do; are determined by the polytope (f1, f2). We prove
that

a—>b

L>
- 6

D=
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under the assumption of this proposition. If doy; = dz, then L = “T_b — é. Then
we assume that there is a segment [y, zo+7] with doy = €. Since (f1, f2) defines
a Delzant’s polytope, we denote by Ey the edge determined by the restriction of
f1 in the segment (zg,zo + r). Ep has two adjacent edges F;, E;. By Delzant’s
condition, the directional vectors of Ej, Ey, E» are (1,i + 1), (2,2 + 1), (1,1)
for some positive integer i, respectively. Let I(z) be the linear function that

l(z) = fi(z) on E,. We construct a new polytope ( fi, fz) by

fi(z), z € [0, zo),
fo=f h=SlU@) -1, z¢€lzo,m+7)
filz) =5, z€[mo+m1]

It is easy to check that the polytope ( fl, fz) still satisfies Delzant’s condition. For
the new polytope (fi, f2), all the parameters are the same as (f, f2) except that
a = a — 5. The boundary measure d; = dzr on [0, zo + 7] and d&y = doy on
[0, 1} \ [zo, Zo + 7], while d&; = dop. By a simple computation,

. r 1 [%F1 1 r 1 [Tt
[ - [ = —— 4= 2 — \dp = — 4 = <0.
L 12+2/z° (2:7: 3)dac 4+4/zo rzdr <0

Repeat the above construction until there is no segments that do; = % Note

that after each construction L becomes smaller. Hence,

It is clear that

It follows
: 1 1 _22
M, = Kh+L(a—b)+(h+a—b+/ xd01+—)(k+b—a—l)£-3—£——)—
0 2 24€
h a-b (L+h—=3[ zdoy+2[ doy—a+b)?
> [(a=b)—(k=D]- |7+ — -2 lfo Jy T
3 6 24(5+h+a—b+f0 ZL‘dO’l)

Since do; = dz or %’”—,

1 1
> -
A $d0'1 Z 4,

1 1 2
—3/ IEdO'l + 2/ dO'l < /3(—31' + 2)d$ =
0 0 0

Wl N
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Here weused a — b >k —1> 1. Then

— T4+ h— b)2
inf F; > My > [(a—b) — (k=1)] - %_'_a b (5+ a+b) ] 0.

6 24 +h+a-b)
The proposition follows. (]

4.2.2 P™ with m =5,6
First we verify the polytope P®)[k], given in (4.4).

Proposition 4.8. The linear function A associated with P®[k] is not a constant
for all k =0,1,2,---. Hence there is no toric surface M® of which the Kahler

classes admit vanishing Futaki invariant.

Proof. If k > 1, by Proposition 4.7, 71 > 0. If k£ = 0, we may assume that
h > 1 —t. Otherwise we can make a translation, a dilation and a SL(2,Z)-

transformation such that p, is located at the origin. By a simple computation,
bo=2+2h+t,
by =1+ h+t,
vo=h+t— 32

Ty = %h'\" lz't— -]ét3

Therefore
Fi o= §tt— i+ (5t — 32+ 3P
> gtt— 33+ (5t - 32+ 35 (1 - 1)
=i1-t)?+ 3 -tY) >0.
This completes the proof. O

Next we turn to P®. The verification of whether F; = F; = F3 = 0 is ele-
mentary but for polytope with 6 vertices, the formulae are longer. Some formulas
are calculated by using Maple.

Proposition 4.9. Among the Delzant polytopes P® [¢; k] in Lemma 4.4, where
1=1,23and k=0,1,2,---, the polytope with vanishing Futaki invariant must
be P®)[3;0], and the parametert, s, h must satisfy either

s+t=1, (4.16)

or
h=1—-t=1—s. (4.17)
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Proof. We check P®[i; k] for i = 1,2,3 case by case.
(i) Verification for P©[1;%]. If k > 1, by Proposition 4.7, F; > 0.

If £k = 0, we need to consider both F; and F,. By computation,

bo=2+2h+2t+s,

by=1+h+2+s,
vo=+h+2t+s—12—ts— Ls?,

v =Jh+t+s— 1P — 13— Lt — Lts?,
by=s+2t+1t2+ts+ (1+5+2)h+h?

vy = 387 — 1% + 2t + 2ts — 313 — 2t%s

N

—3t? + (s+2t—ts— 12— 1s®)h + 2.
Hence
Fi =st+12— 25t — %t — 313 — 3153+ 25247 + 33 + B¢t 4 1ot + St
+(t+ s — st —t2 — 1% + 1% + $%t + st? + 2t%)h,
Fy =—353— 25t —ts® — 3+ Qstd + 126% + 3% + 3¢t 4 11
+(—2st — 2t% — 3% + 4st® + 3ts® + $t3 + 25%)h
+(—3s —t+ 12+ ts+ 2sP)R2.
So F; — Fo = U + Vh + Wh?2, where
U=t +st+5s° — §s* —t* — 2583 — 21257 — 2¢5°,
V=t+1is+st+t>—1s® - 2ts? — 3st® — 2t3,
W=t—t—ts+1s— 1%
By t > t(t + s),s > s(t + s), it is clear that W > 0, and
U > 134 2t%s + 5%t — t* — 2st® — 2¢%s% — 3ts3 > 0,
V > 2% + 3st + 157 — 3% — 2ts? — 3st? — 2t° > 0.
Hence F; — F, > 0.

As noted after Lemma 4.4, P®)[3;1] = P©[1;—1] (in the same class). We
will check P©[1;—1] instead of P®)[3;1].

We found that F; # 0 or 3 # 0 is not true, and cannot find a combination of
F1 and F, which does not vanish for all admissible A, s,t. We have to employ F3.
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We found the computation is simple if we choose a different coordinate system.

Since P(®[1;—1] is obtained by chopping off two corners on the same edge of a

rectangle. Let us assume the corners of the rectangle is (0,0), (0, k), (1, k), and

(1,0). Let P®J[1;—1] be obtained by chopping off the corner {z; > 0,2z, >

0,z1 + z2 < t} at (0,0) and the corner {z; < 1,22 > 0,22 < 21 +1—r} at (1,0),

where t,r > 0,t+ 7 < 1, and r,t < h. There is no loss in assuming that r > t.
By direct computation we have

by=1+h-—r,
by = h? + h,
vy = th— $t3 — 2r2 4 38,

vy = $h? — * — Ll

(=

and

Fy=1h*(r—r2+1r’ = 1% — 2h(r? = 2r®) + L(1 — r)(r® + 7).

Regard F; is a function of h. Recall that h > max(t,r) = r. It suffices to verify
that F3(r) > 0, Fi(r) > 0 and F§(h) > 0V h > r. By direct computation,

Fa(r) =31 —r)? + 21 —r—712) >0,
Fi(r)=2r21—r)2+3r2 - 2rt3 > 0,

Fy(hy=r—r?+3r3-3t3>0,
where we used the conditions 1 —r > ¢, r > ¢,and ¢t < 3.

(ii) Verification for P®[2;%]. If k > 1, by Proposition 4.7, F; > 0.
As noted in §4.1, P®[2;0] and P®)[1;0] are in the same class, so we do not
need to verify P®[2;0] here.

(iii) Verification for P®)[3;k]. Recall that P®[3;1] is in the same class as
P®)[1; —1], and the latter has been verified before. We need only to consider the
cases k> 2 and k= 0.

If £ > 2, by Proposition 4.7, F; > 0.
If k = 0, the corresponding toric surface is CP?#3CP2. In this case the three
pairs of edges (Ey, F3), (F1, E4), and (Fs, E5) are parallel. We may assume that

h > max{l —t,1— s}. (4.18)
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Otherwise by discussion in §4.1.1, we can take a SL(2,Z)-transformation and
re-label the vertices such that (4.18) holds. By direct computation, we have
bo=1+2h+t+s,
by=h+t+s,
vo=—L+h+t+s—Lit+s?),
vy =—1+3h+3t+ 35— (3 +5°).
Hence F; = U + Vh with
U = (3t + 30+ (<R 3 + bt + B (<30 - 1)
+(st — 3125 — 1ts?) + L(st® + ts°), (4.19)
V =-l4+lt+ls— 12124+ 18+ 168
U, V can be simplified as
U = 1—%{(1 —)[(1—8?++t(1—9)]+(1—s)[1-1)2+ > +s(1 —t)]},
v =-1—-;;s-{[(1-s)2+t2+t(1-s)]+[(1—t)2+s2+s(1-t)]}.
Hence
F o= 1—46—-2{(1 —t—h)[(1 — 8)2 + £ + £(1 — 5)]
+(1-s—R)[(1-t)2+s?+s(1 —t)]}.

Hence F; = 0 if and only if ¢t + s = 1, namely (4.16), or
Q—t-h)[1-s?+E+t(l-98)]+(1-s-h)[Q-t)2+s*+s(1—t)]=0.

By h > max{l —t,1 — s}, the latter case is equivalent to (4.17).

In the case (4.16), each parallel pair of the edges (Fy, E3), (E1,Ey), and
(E,, E5) have the same length. In the case (4.17), the edges Ey, Es, E4 have the
same length, and edges F;, E3, F5 have the same length. Under either (4.16) or
(4.17), one can easily verify that F, = 0. '

From the above verification, we see that among all Delzant polytopes P©),
the polytope with vanishing Futaki invariant must be P(®[3;0] and the length of
the edges satisfies either (4.16) or (4.17). O

Remark 4.10.
(1) Note that the polytope satisfying (4.16) is obtained by chopping-off the same
sized corner from the opposite vertices of a rectangle, and the polytope satisfying
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(4.17) is obtained by chopping-off a same sized corner from each vertex of the
triangle. So it is easy to see that the toric surface CP2#3CP?, with a Kéahler
class corresponding to a polytope P satisfying (4.16) and (4.17), has vanishing
Futaki invariant. This property was also observed in [LS], Example 3.2.
(i) The polytope satisfying (4.16) can also be obtained from the triangle by
chopping off three different sized corners. Therefore in the both cases (4.16) and
(4.17), the corresponding toric surface is CP?#3CP2.
(iii) Let H be the hyperplane divisor of CP?, and D;, D, D3 be the three
exceptional divisors. Then after a dilation, the Kahler class corresponding to
(4.16) is

3H —aD; —bDy— (3—a—b)D; (4.20)

and the Kéahler class corresponding to (4.17) is
3H — C(D1 + Dy + D3), (4.21)

where a, b, ¢ are positive constants, a + b < 3, and ¢ < %

In conclusion, we have

Theorem 4.11. If a toric surface M™, m < 6, admits a Kéhler class with
vanishing Futaki invariant, then it must be one of the following manifolds:

CP?, CP! x CP!, or CP?#3CP2.

In [WZho] we proved Propositions 4.8, 4.9 by verifying the Futaki invariant
for all the polytopes P©)[i; k] case by case directly. Here we verified the Futaki
invariant for some polytopes by a different way, using Proposition 4.7 in §4.2.1.

4.3 Verification of K-stabiity

In a series of papers [D2-D5], Donaldson made a great progress on Conjecture
2.10 on toric surfacs.

Theorem 4.12 ([D5]). M admits CSC(constant scalar curvature) metrics in
2mey (L) if and only (M, L) is K-stable and Futaki invariant vanishes.

As in previous section, we have worked out all the toric surfaces M), where
m < 6 with vanishing Futaki invariant. As we mentioned in Section 4.1, the
existence is well-known when m = 3 or 4. When m = 6, the only toric surface
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allowing vanishing Futaki invariant is CP?#3CP2. All such Kahler classes have
been characterized in Section 4.2. We will check the K-stability of these classes.
Combing with Donaldson’s theorem, we have

Theorem 4.13. The toric manifold CP?#3CP? is K-stable, and admits a CSC
metric, in any Kdhler class with vanishing Futaki invariant.

As shown in last section, the polytope corresponding to CP?#3CP2 is P(©)[3; 0],
whose vertices are given in (4.7) with k = 0. If CP?#3CP? has vanishing Futaki
invariant in a Kéhler class, the parameters h, s, t must satisfy either (4.16) or
(4.17).

Proposition 4.14. Let P := P®)[3;0] be the polytope given in (4.7) with k =0
and h, s,t satisfying either (4.16) or (4.17). Then for any nontrivial simple PL
function u with its crease I,, # 0, we have L(u) > 0.

Proof. Let u be a simple PL function. We can write it as
u(z) = up,(r) = max{z, cosf + zosinf — r,0} (4.22)

where (cos 6, sin ) is the normal to the crease Z,,, r € R! is the distance from the
crease I, to the origin (when 8 € (0, 7)).
Denote
I, = {z € P | ugy(z) = 0},
P.={z € P | ug,(z) > 0},

where Z, = I, is the crease of u,. In our proof below, we will fix 8 and let the
parameter r change. So in the following we will drop the parameter 6. Define

F(r)=L(u),  f(r)=F"(r).

Assume 7, # @ for r € (r,7) and Z, = @ when r < r or 7 > 7. Obviously
F(r) = F(f) = 0. We want to prove F(r) > 0 for all r € (r,7).
A simple computation shows that F € C(r, ), and

F(r) = /6 o o= AR (4.23)

Let y,, y. be the two end points of the crease Z,, lying respectively on the edges
E and E'. If none of y, or y. is a vertex of P, F' is twice differentiable in r and

_o(y) | oly)
f(r)= . + o Al,, (4.24)
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where [, is the length of the crease Z,, o, o are respectively the angles between
P g

the crease Z, and E, E’, and o(y,), o(y.) are the values of the density function

of the measure do on the edges F and E’. Since P has 6 vertices only, f has at

most 4 discontinuous points.

Proposition 4.14 now follows from the following observations.

()

(i)

(iv)

(vii)

By our choice of r and 7, obviously F(r) = F(7) = 0. By (4.24) we also
have F'(r) > 0 for r > r, near 7; and F'(r) < 0 for r < 7, near 7. Hence
F(r) > 0 for r > 1, near r; and for r < 7, near 7.

Note that at r = r or r = 7, the crease Z, must contain a vertex of P.
By making a transform @ € SL(2,Z), where SL(2,Z) is given in (4.1), we
may assume that py = (0,0) is the vertex contained in Z, at r = r. By the
expression (4.23), we have r = 0. Then p; is the vertex contained in Z, with
r =7, and r is the distance from 0 to the crease Z,.

When we increase the value of r from r to 7, the crease Z, will pass across
the other 4 vertices at r = ry, 19,13, 7y Withr <71 <719 <713 <714 <7. The
crease may contain at most two vertices. Choose # € [rq, r3] such that there
are three vertices on each side of the crease Z;, or there are two vertices on
each side of Z; and two on the line Z;. The positivity of F' in the latter case
is immediate when the former case is proved. There are three sub-cases in
the former case,

(a) po,p1,Ps I D2,P3,P4; (b) Po,Pa, Ps | P1,P2,03; (C) Po, 1, P2 l P3,P4,Ps5.

The length [, is monotone increasing for r € (r,7). At any given r € (r, ),
if Z, contains no vertex of P, the quantity olor) 4 olur) g locally a constant,

sina sin o’
and so f(r) is monotone decreasing near 7.

Since the edge Ey and E5 at pg are located respectively in the x2-axis and x;-
axis, one easily verifies that when the crease Z, passes through the vertices

p1 or ps (as r increases), the quantities :l(g; + ;’%}% has a jump-down.

Therefore in case (a), f(r) is monotone decreasing for r € (r,#), and in-
creasing for r € (7,7). The monotonicity of f implies that F' has only one
local maximum in (r,7) and so by (i) above, F' must be positive in (r, 7).

In case (b), then the crease Z, passes through ps at r; and passes through
pygatre, andr <r; <71y <7 <713. When r € (r9,73), the end points y,, ¥/
of the crease Z, are on the parallel edges Ey and F3. From (vi) above, f(r)
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is monotone decreasing in (r,7s) (and increasing in (r3,7)). Assume for a
moment that f is a negative constant for 7 € (r3,73). Then as in (vi) we
infer again that F' has only one local maximum point in (r,#), and so F
must be positive.

When r € (rg,73), the end points y,, y. of the crease Z, are on the parallel
edges Ey and E3. Hence we have & = a and f = Fﬁa‘ — ﬁ-. In the case
(4.16), we have A = % > 2 and so f < 0. In the case (4.17), we have

A= 5= >2andalso f <0.

In case (c), note that by a dilation, a translation, and a transform @ €
SL(2,Z) of the coordinates, we can take any vertex of P at the origin.
Hence a similar proof as (vii) implies that F(r) > 0 for r € (r, 7). O

Remark 4.15. The existence of CSC metrics for case (4.17) was also obtained in
[CH] by Calabi flow method. Whent = s = h = %, the Kahler class on CP?#3CP?

2

is half of the first Chern class, in this case the CSC metric is a Kéhler-Einstein
metric, and was obtained in [Siu], [TY].
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Chapter 5

Bernstein theorem

5.1 Introduction

In this chapter, we study convex solutions to Abreu’s equation
n "
82’11,”
=0 5.1

on R”, where (u*) is the converse matrix of (u;;). For simplicity in the following

we will write the left hand side as u:j It is locally the Euler-Lagrange equation
of the functional
Ap(u) = / log det Du dz. (5.2)
Q

Abreu’s equation can also be written in the following form
UYw;; = 0, w = [det D?u] ™!, (6.3)
where (U%) is the cofactor matrix of (ui;). It is known that (U%) is divergence

S,

1

free, namely

Abreu’s equation is similar to the affine mazrimal surface equation
Ulw; = 0, w = [det D?*u]~ (179, (5.4)
whose energy functional is the affine area functional [Cal2]
Ap(u) = /Q [det D?u)dz, (5.5)

where 6 = nL

63



64 CHAPTER 5. BERNSTEIN THEOREM

In [TW1], the authors proved the Bernstein theorem for (5.4) in the two
dimensional case, which was conjectured by S.S. Chern. Namely a smooth convex
solution to (5.4) in the entire space R? is a quadratic function. The main result
of this chaper is the following Bernstein theorem for Abreu’s equation.

Theorem 5.1. Let n = 2 and u be an entire conver solution to (5.1). Then u is
a quadratic polynomial.

Remark 5.2. The Bernstein theorem has an interesting geometric explanation.
Let us define the metric

g = u;;dz'dz’ + v’ dy,dy;
under the coordinates (z!,z2,y;,%2) on R*, or
g' = u,-jdxidmj + uide,-dBj

under the coordinates (z', 22,61, 0;) on R? x (S')%. These metrics are Kihlerian
and their scalar curvatures are —ug Therefore the above result implies that if
(R4, g) or (R? x (S')2, ') is scalar flat, it must be flat.

5.2 Interior estimates

In this section, we establish a priori estimates for Abreu’s equation. We consider
the more general equation with non-homogeneous right hand term

Uw;; = f, w=[det D*u|™" in Q, (5.6)

where Q is a bounded convex domain and f € L*(Q2). The functional Ag(u) is
replaced by

Jo(u) = Ap(u) — /qu dz. (5.7)

First we recall an upper bound of the determinant obtained by Donaldson
[D2].

Lemma 5.3. Let u be a convex smooth solution to Abreu’s equation in ). Suppose
that u satisfiesu < 0 in Q andu = 0 on 02. Then there is a constant C depending
only on supq |Vul, supq |u|, sup | f| such that

C

det D%y < ——.
(—u)m

(5.8)
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Proof. Let
= —logw + log (—u)? + | Duf?,

where [ is a positive number to be determined later. Then 2 attains its maximum
at a point p € 2. Hence, at p, it holds

;= 0, u”zij S 0.

By computation,

U;
2= —— + ﬂ— + 2up;ug, (5.9)
w u
W;4 wW; W4 Uiq U; U4
Zij = —— 4+ 2J + Bus '6 L+ 2Upijur + 2Uki Uk (5.10)
w w u 'u,

On the other hand, since det D?u = w1,
UPugy = (—logw); = ——.

Therefore we have

y W W | Pn uduuy  wy
ugy = —uf 2L 4 1L+ — — f——2 — 22— + 2/
w u u w
By (5.9),
wWw; wiu;  48|Dul?
12.7 ﬁ2 ig J I | +4uijuiuja
w u
2
Wi Du
— U = él—‘—l— + 2u,-,~u,—uj.
w u

By (5.10) and equation (5.6),

2
Uz = —f+ D ioAu+ ,3|SUI + (8% — B)u u’ <0.
Choosing 8 = n, we have

2 2wl D 2
—f+%+2Au+ n| Dyl

<0.
U

Hence,
(—u)[det D*u}s < (—u) Au< C

at p. The lemma follows. a

Remark 5.4. In the 2 dimensional case, we point out that the assumption u = 0
on 9§} can be removed by using the cut off function 1 = log(R? — |z|?) and the

relation
22 YANT)

11
U AUt = .
det D2y

See [TW3|.
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To estimate the determinant from below, we consider the Legendre function
of u. If u is smooth, the Legendre function of u is defined on the domain Q* =
Du(Q), given by

u(y) =z -y — u(z), (5.11)

where z is the point determined by y = Du(z). By differentiating the formula
y = Du(z), we have

Hence we have
det D*u(x) = [det D*u*(y)] ™.

The Legendre transform of »* is u, and
uwz) =z y—u(y)

at £ = Du*(y). The dual functional with respect to the Legendre function is
given by

Jy(u*) = Aj(u*) — / f(Du*)(yDu* — u*) det D*u*dy, (5.12)
Ql‘
where
An(u*) = — / [det D%u*] log det D*u* dy. (5.13)
Q*

If u is a solution to Abreu’s equation (5.6) in €, it is a local maximizer of the
functional Jy. Hence u* is a critical point of J; under local perturbation, so it
satisfies the Euler equation of the dual functional Jj, namely in £2*

U w}; = f(Du*)det D*u*, w* = logdet D*u*, (5.14)
where (U*7) is the cofactor matrix of (uf;).

Lemma 5.5. Let u* be a smooth convez solution to (5.14) in Q* in dimension 2.
Assume that u* < 0 in Q*, u* = 0 on OQ*. Then there is a constant C depending
only on supgq. |Vu*|, supg« [u*|, sup |f| such that

C

(_u*)2 :

det D?*u* <

Proof. Consider
2 = w* + log(—u*)? + B Vurp,
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where the constants a and § will be given below. By assumption, z tends to —oo
near 02, so it attain its maximum at some point p € Q. At p we have

2= 0, u*”zij < 0,

where

*

u?
z=w; + oz—z + 20Buy;ug,
" u 'u - 'U:,L uJ
Zij = ’w,] + a"""—"—_u* - + Zﬁukuuk + 2ﬂuk1’uk]

*TJ )k ok
Note that u*“uy;; = wg. Hence,

nu* u* l_] u* u*

0>uz; = uwuwlj+a s L 4 2Bwiur + 28 Aut
nu* — w*Yurut Uy
= f+a =3 L 2ﬁ(a—’5 + 2Bupuy )uy, + 28 A u*
w | Vu*|? Vu 2
> f- Z—I—|+2 ,Bl | + 26(1 — 26|Vu* |2)Au +
Choosing g = Ru—pTID'W and using u*'!' +u*?? = aﬁ—g;;—; in dimension 2, we obtain
Vu*[2 Au* V
! 8 Ve Aw
u* U
2 Auv'—a u*?  det D2u* <0,
we obtain

(—u*)?det D*u* < C
at p. Otherwise, we have

IV *I2

F 420810 2Au*+-°@so.

u

Therefore, we also obtain
(—u*)?det D*u* < (—uM)}(Au)? < C
at p. The lemma follows by choosing a = n = 2. O

To apply the above determinant estimates, we first introduce the modulus of
convezity for convex functions. The modulus of convexity of u at x is defined by

hyg(r) =sup{h > 0| Spu(z) C B.(z)}, 7 >0 (5.15)
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and the modulus of convexity of u on {2 is defined by
hu,Q('r) = al:lelsf“.t hu,m(r)a (516)

where
Shulr) = {y € Q| uly) < h+as(y)}

and a, is a tangent plane of u at z. When no confusions arise, we will also write
Sh,u(z) as Shy or Sh, for brevity.

For a convex domain Q@ C R™, it is known [TW4] that there is a unique
ellipsoid £ C R" containing €2, which attains the minimal volume among all
ellipsoids containing €2, such that

lEchE,
n

where 1E = {1(z — z) | £ € E} and z, is the centre of E. When E is a unit

ball, we say  is normalized.

Proposition 5.6. Let u be a solution to equation (5.7). Assume f € C*(QQ),
u =0 on 99N, and infqu = —1. Assume also that Q is normalized. Then for
any ¥ C Q, there is a constant C depending only on a, dist(SY,0%), f and the
modulus of convezity h, o such that

Iulc4,a(nl) S C.
Proof. For any z € €0, by Lemma 5.4, we have
det D?u(z) < C

where C'is a constant depending only on f and § = dist(z,09). Let y = Du(z) €
Q*. By (5.15), (5.16), we have

S6*,u* (y) - Q*;

where 6% = hyq($). Furthermore, since | Du*| < diam(f), we also have

6*

: W _ 0
dist(y, o) 2 2diam(Q2)

Hence, by Lemma 5.5,

det D*u(z) = [det D*u*(y)]™ > C,
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where C’ is a constant depending only on f, § and h,q.

Once the determinant det D?u is bounded, we also have the Hélder continu-
ity of det D*u by Caffarelli-Gutierrez’s Holder continuity for linearized Monge-
Ampere equation [CG]; and the C% regularity for u by Caffarelli’s C%* estimates
for Monge-Ampére equation [Cafl, JW]. Higher regularity then follows from the
standard elliptic regularity theory. O

We will estimate in §5.4 the modulus of convexity for the solution » in dimen-
sion 2. In §5.3 we consider the change of Abreu’s equation under a coordinate
transformation and establish the a priori estimates for the equation after the
transformation.

5.3 Equations under transformations in R**!

From this section, we always assume that f = 0. Abreu’s equation is invariant
under transformations of the z-coordinates in R", but it changes when taking
transformations in R™*!, We note that the affine maximal surface equation is
invariant under uni-modular transformations in R®*!, which plays an important
part [TW1]. In this section we will derive the new equation under a rotation in
R™*! and establish the a priori estimates for it.

For our purpose it suffices to consider the rotation z = Tz, given by

21 = —ZTp+t1, (5.17)
29 =T, ..oy Zn = Ty, (5.18)
Zn+1 = T1, (5-19)

which fixes o, ..., Z, axes.

Assume that the graph of u, M = {(z,u(z)) € R™*! | z € Q} can be repre-
sented by a convex function z,41 = v(21, ..., 2,) in 2-coordinates, in a domain Q.
To derive the equation for v, we compute the change of the functional A,.

Ao(u) = / log det D*u dz (5.20)
Q
= lo — +log(1 + |Du|?)™? | dx
/Q[g(mpum% (1 -+ | Duf?) }

- / [log K +1og(1 + | Du?)*] (1 + |Dup) 44z,
M
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where K is the Gaussian curvature of M and dX the volume element of the
hypersurface. It is easy to verify that

Uy = ——, Ug = —, ..., Up = —, (5.21)

where v; = g—;’f. So we have

1+ |Dv|?
1+|Du|2=__"'_|_2_’_’|__
U1

Lemma 5.7. Let u be a solution of (5.1). Let T and v be as above. Then v
satisfies the equation
ViI(dh)y = g, (5.22)

where (V%) is the cofactor matriz of (vi;), d = det D*v and

1
9= 20—~ (n+ 25 ki (5.23)
1

Proof. By (5.20) we have
Ao(w) = / [log K + log(1 + [ Duf) ] (1 + | Duf?)~dx

—_ detD2 1+]D’Ul )
= L[log (1+ D |2)E|-_2 +log(———v% )% }(7)1) dz

= / [log det D?*v —
Q

10%('”1 )]('Ul) 2dz = AO('U)

One can now verify directly that (5.22) is the Euler-Lagrange equation of Ag(v).
O

Next we prove a determinant estimate for equation (5.22). Assume v satisfies

v>0, v>2, v1 >0, and

_ (5.24)
v(0) is as small as we want.

Let

~

9=v—ex—c and Qe = {2 | 9(z) < 0},

where € and c are positive constants in (0, 5). Then 9 satisfies

NI 1 D11
Vi(d™);: = 20" —(n+2)——— = 3.
( )J ki1 A1+€ ( )(1,)1‘1'6)2 g




5.3. EQUATIONS UNDER TRANSFORMATIONS IN RN+1 71

For simplicity, we omit the hat on v and write the above equation as
VI(d )y =g, (5.25)

where

V11
- 2)———. 2
v+ € (n+ )('u1+e)2 (5:26)

Lemma 5.8. Let v (= 0) be as above. Then there exists a positive constant C

kl
g= 2v Vel

depending only on supg__|v| and supg__ |Dv|, such that

det D*v <

C
(o)™
Proof. Consider
z = logw — Blog (—v) — A|Dv|?,

where w = d~! and (3, A are positive numbers to be determined below. Observe
that v < 0 in Qe,c and v = 0 on 8(2“. Then z attains its minimum at a point p
in Qe,c. Hence, at p, it holds

z2; = 0, vijzij 2 0.

By computation,

5= — — — — 2Av,vy, (5.27)
wy;  wiw;  PBuy | Puy;
=" "3 _ +
w w v v
= —’Uij’l)ijk. (5‘29)

- 2Avkij'uk - 2A’Uki’l)kj, (528)

Hence,

w; 1 V11
= o2 (42—
J wv+€ (n+ )('01+e)2

Therefore, by (5.28) and equation (5.25),

o 1 (n+2vy v ww; _fBn N Bvv;v;
wuv+€e (v +e)? w? v v?
+2A%'u,C — 2AAwv.
w

’U1"7 Z,,;j

By (5.27),

2 UiU5
= = P+ 448
wo_ Pu
w v
w Vo|?
—kvk = M + 2A’U¢j'U7;Uj.
w v

| Dof?
v

v ww;

2
+ 4A Vi3V V5,

+ 2A’Uk1’l}k,
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It follows
y V1101 U1k Uk U1
Wy = U 44 —4 2 : —98— 1
v % (n+2)( +e) v+ € A S+ € (v1+e)v
2
——-ﬂ” —24Av—248 'D o (52— ot =3

We choose 3 > 1 such that 32— 3 > 0. By the positive definiteness of v;;, it holds
v, < vivkg for any k = 2,...,n, so there is C’ depending on |Dv|, such that

|v1k'vk| ' '
- C— A C— 5.30
I N e AR e

Then we have

C(2tn—240) U _gqtut 2y Bn s (531)
(v1+€)? vi+e (vi+ev v

Choose A small enough such that
2+n—2AC">0.

By a Schwarz inequality, there is a Cp > 0 depending on |v;| such that

—(2+n—240")—2L OETy 4A;’1“j:1€ < CoA?uy. (5.32)
Now by (5.31), (5.32), we have

20v, on 2

< __Fn P A
0 < s~ (A= Gt
20e B(n+2

- ( - ) (A= Coh?) A
< —5(”—:2_) (A= CoA) Aw.

Finally, we choose A small enough such that A — CoA% > 4. It follows
(—v)Au(p) < C
at p. Hence, choosing # = n, the lemma follows by

ez(z) > ez(p) =d ( ,v)—n —A|D-u|2 [ A’U( ’U)] —-n —A]Du|2 > C.
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5.4 Modulus of convexity estimate

In this section, we establish the modulus of convexity estimate for solutions to
Abreu’s equation in dimension 2 with vanishing boundary condition.

Let u®) be a sequence of solutions to Abreu’s equation in normalized domains
QF with vanishing boundary condition, and let M* be their graphs. By taking
a subsequence, we suppose that QF converges to a convex domain Q in R?, and
u®) converges to a convex function u defined on €.

As in [TW1], we consider the domains

D* = {(z,z3) € R® | u®(z) < 23 < 0}, (5.33)
D = {(z,73) € R®| u(z) < 3 < 0}. (5.34)
Then D* converges to D. The graph M of u is understood as D — {z3 = 0}, so

MP converges in Hausdorff distance to M. We extend the definition of u to 6Q
such that for any boundary point z,

u(zo) = liminf wu(z).

T—z0, TEQN

For any given interior point zj, let I(z) be a supporting function of u. Denote
the contact set by

C={z | ulz) =U(z)}.

We first prove a key lemma.
Lemma 5.9. If z; € 02N JC, then u(zy) = 0.

Proof. We prove this lemma by contradiction as in [TW1]. If u(z) < 0, by
the convexity of w, the segment connecting (zo,u(zo)) and (xp, u(zg)) lies on
M. Denote py = (z9,u(z)) € M. Since the equation is invariant under linear
transformation of the x variables, we may suppose without loss of generality that

To = (—1,0), $6 = (0,0),

and
QcC {.’Bl > —1}.

Then the segment
{(0,0,t) | u(—-1,0) <t < 0}

lies in M. Adding a linear function to u® and u, we can further suppose that

u(-1,0)=-1, l = -z, — 2,
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which is a supporting function of u at zj,. In addition, we consider the line
L={(-1,t,-1) | t e R}.

It is clear that M N L must be a single point (Case I) or a segment (Case II). In
Case 11, we may suppose that po is an end point of the segment which is

{(-1,t,-1) | —1<t<0}.
Later, we will discuss the two cases separately.

Now we can first translate the origin to pp and then make the rotation (5.17)-
(5.19) such that M can be represented by a convex function v near py. Therefore,
we have the change of coordinates

Z1=—x3—1, 2=y, 2zz3=2z1+1.

By convexity, M¥ can also be represented by z3 = v*¥) (21, 2;) near py, respectively.
By Lemma 5.7, v(¥) is a solution of the equation (5.22) near the origin. As we
know that MF* converges in Hausdorff distance to M, in new coordinates, v*)
converges locally uniformly to v. It is clear that

v(0) =0, v>0, when —1<2 <0and
v>2, when0 <2 <1

and the two line segments
{(#,0,0) | —1<t<0}, {(t,0,t)|]0<t<1}

lie on the graph of v.
As in (5.25), let 3®) = v®) — 12 and & = v — 1z;. Also as in (5.25), in the
following computation we omit the hat for simplicity. Then

1 1
v > §|zl| and v(z,0) = §|z1|. (5.35)

Let
C={z|v(z) =0}.

Observe that
MNL={(z,2,0) | (21,2) € C}

in z-coordinates.
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Case I In this case, v is strictly convex at (0,0). The strict convexity implies
that Dv is bounded on S}, ,(0) for small A > 0. Hence, by locally uniform conver-
gence, Dv®) are uniformly bounded on S 5 ,-v(k)(O)- By Lemma 5.8, we have the
determinant estimate

det D*v® < € (5.36)

near the origin.
For § < %, by (5.35), S50(0) C {—16 < z < 16} and (££,0) € 8S5,(0). In
the 2, direction, we define

ks = sup{|zo| | (21,22) € S5,(0)}.

By comparing the images of S;,(0) under normal mapping of v and the cone with
bottom at 0S5,(0) and top at the origin,

INo(S50(0))] 2 O (5.37)

The definition of normal mapping N, has been given in §3.3.
On the other hand, by the lower semi-continuity of normal mapping,

N, (S5,(0)) C lién inf Nk (S5,(0)).
By (5.36),

INv(S«S,v(O))I < li{g&lf | Ny (35,,,,(0))|

k—o0

lim inf / det D%*v®)
S«S,u(o)

Cl‘Sé','v (O)l
Ciks. (5.38)

IA A

Hence, (5.37), (5.38) imply x5 > C > 0, where C is independent of §. Again by
the strict convexity, ks — 0 as 6 — 0. The contradiction follows. '

Case II. In this case,
C={(0,2)] —1< 2z <0}

We define the following linear function:
l(2) = 0ezp + €

and w, = {z | v(2) < [}, where . is chosen such that

=1(0,——

€ € €
v(0, 5_5) = (0, 5_5) = 2¢, v(0,—— 55)

5) =0.
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We can suppose that € is small enough such that w, is contained in a small ball
near the origin. Hence, Dv™®) is uniformly bounded. By comparing the image of
we under normal mapping of v and the cone with bottom at dw. and top at the

origin, we have |
IN,(we)] = Cé.. (5.39)

On the other hand, we C {—€ < 2z < €} since v > %|z1|. By the convexity
and the assumption above, w, C {—;—E <zn< ;—E} Therefore,

62

lwe| < C(se.

v® — [, still satisfies equation (5.22). Applying the determinant estimate in
Lemma 5.8 to v®) — I, and by a similar argument as in (5.38),

62

| Ny (we)| < C(S .

(5.40)

Combining (5.39) and (5.40), we have

However, according to our construction, 5 goes to 0 as € goes to 0, which induces
€
a contradiction. O

Remark 5.10. The following property has been used in the above proof, and
will also be used in the next chapter. Assume that u is a 2-dimensional convex
function satisfying

w(0) =0, wu(z) >0 for z # 0 and u(z,0) > C|zq|- (5.41)
Then
|N‘u(Sh,'u(0))| — 00 as h — 0
|Sh,u(0)] '
In other words, if
det D2u < C

and u vanishes on boundary, then u is C* in . This property can be extended
to high dimension if

u(0) =0, u(2',z,) > C|z,| and u(z’, z,) > C|z'|?, (5.42)

where 2’ = (21, ..., Zn_1)-
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It is also known that a generalized solution to
det D*u > C

in a domain in R? must be strictly convex. This result was first proved by
Aleksandrov but a simple proof can be found in [TW4].

Now we can prove the estimate for the modulus of convexity.

Proposition 5.11. Let u® be a solution to Abreu’s equation in a normalized
domain QF with vanishing boundary value and infqr u = —1. Then there is a
positive function h(r) (r > 0) such that the function

h’u(k),Q" (T) > h(T),
where hy,w or s defined in (5.16).

Proof. We also prove this proposition by contradiction. Let 2% — Q and u®) —
as before. If there exists o > 0 such that h,w (o) — 0, then the limit u is not
strictly convex. So we may assume the contact set

C={z | u(z) = Uz)}

is not a single point set, where [(z) is a supporting function of u at the origin.

By Lemma 5.9, there must be an point p € 3C lying in the interior of Q. By
making a linear transformation of r and adding a linear function to u, there is
no loss of generality in assuming that p = (0,0), [(z) = 0, and the segment

{(£1,0) | 1<z, <0}

lies in C. Here the transformation does not change Abreu’s equation.
To reduce this case to the model as in Lemma 5.9, we make the following
construction. For any € > 0, we consider a linear function

le=ex;+¢€

and a subdomain Q. = {u < l.}. Let T, be the coordinates transformation that
normalizes 2, and

1 -
ue(y) = —E-u(:v), y € Q.

wherey = T.z and Q. = T.(Q). Note that Abreu’s equation is invariant under the
above transformation. By choosing a subsequence, Q. converges to a normalized
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domain Q, u, converges to a convex function 4 on Q. Denote by M. the graph
of u,. We also have M, sub-converges in Hausdorff distance to a convex surface
M € R3. It is clear that (0,0) is a boundary point of ? and M contains the two
segments

{(t,0,0) | -1<t< 0}, {(an’t) | 0<t< 1}

By Lemma 5.9 we reach the contradiction. O

5.5 Proof of Theorem 5.1

Let u be an entire solution to Abreu’s equation on R2. By adding a linear function,
we assume u attains its minimum 0O at the origin. We claim that there are
constants C' > 0 such that

0<C<detD*u<C™. (5.43)
To prove it, we first recall a lemma.

Lemma 5.12 ([Caf2]). Let u be a locally uniformly convez function in R™. Then
for any y € R™ and h > 0, there is a point x such that y is the centre of mass of
the level set Sp.(z).

By Lemma 5.12, for any h > 0, there is z;, € R™ such that 0 is the centre of
mass of Sy u(zr). Let Ty be the linear transformation which normalizes Sy, ,(zn)
and

uny) = u(z) — u(zn) -—}f)u(mh)(m - :I:h)’ . (5.44)

where y = Th(z) and Qp, = Th(Shu(zr)). Noting that 0 is the centre of mass
of Qn, we have up = 1 on 99, and infg, up = up(Th(zrn)) = 0. By Proposition

5.11, uy is strictly convex, uniformly in h. By Lemmas 5.3 and 5.5, we have the

estimate
Cl < det DZUh < 02 in Bl/gn(O). (545)

Hence by Proposition 5.6, ||us||c4(s, Jan(0)) < C for some C independent of h. We
obtain
Cilyl* < un(y) — Dun(0)y — un(0) < Caly|*. (5.46)

Note that by (5.44),

) _ iu(y) — Dun(0)y — ua(0).
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It follows
CiThz|* < hlu(z) < Co|Thzl.

Let Aj, A\p be the largest and the least eigenvalues of the transformation Tj,. Then
An < Csh™3, My > Cuh73, (5.47)

where C3 depends on C, C; and supyp, u and Cy depends on Cy, C; and infap, u.
Letting h — oo, we obtain (5.43).

Finally, the Bernstein theorem for Abreu’s equation in dimension 2 follows
from the following result for two dimensional elliptic equations.

Proposition 5.13 ([B, Ho, Mi]). Suppose u is a solution to the elliptic equation

2
Z QijUi; = 0 in R2 (548)
i,j=1

such that

lu(z)| = o(|z|) as |z| — oo. (5.49)

Then u is a constant.

The use of Proposition 5.13 is inspired by [Tr]. Instead of using the above
proposition, we can also use Proposition 5.6 and a rescaling argument, as in
[TW1, 2].

5.6 A variant of Bernstein theorem

In this section, we will prove a Bernstein property for Abreu’s equation under
the assumption of completeness in Calabi’s metric. The argument originates
from Yau’s gradient estimate for harmonic functions on Complete Riemannian
manifolds [Y].

Let €2 be a domain in R™ and u be a strictly smooth convex function on €.
Denote by M, the graph of u. Calabi introduced an Riemannian metric on M,,
given by [Call]

g = udz'dz’. (5.50)

In [JL], [Mc], the authors proved the Bernstein property for affine maximal sur-
faces in dimensions 2 and 3 under the assumption of completeness with respect
to Calabi’s metric. In the case of Abreu’s equation, we have a similar result.
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Theorem 5.14. Let u be a solution to (5.1). Assume 2 < n < 4 and the graph
M., is complete with respect to g. Then u is a paraboloid.

Denote by V and A the gradient and Laplace operators in the Calabi metric.
Let f be a smooth function on Q. Then

IVfI? = u” £, f5, (5.51)
Af =4 fij + %u?’ iy (5.52)

where the subscripts 4, j means the usual partial derivatives in z; and z;. Note
that Abreu’s equation can be written as

uijLij - UijLiLj = O, (553)

where
L = log det D%u.

Hence, Abreu’s equation can also be rewritten as a second order equation in
Calabi’s metric,

AL = %|VL|2. (5.54)

By direct computation, Ricci curvature of Calabi’s metric is given by [Call, JL]
1 Dq,,Ts Pq,,TS
R;; = Z(u U Uprillgsj — UPTU  Upgrilsij)-
Lemma 5.15. The following formula holds in all dimensions,
1
R; > —E|VL|2uij. (5.55)

Proof. For any point p € €, we can make a linear transformation to the coordi-
nates such that at p, u;; = d;; and R;; is diagonal. Then

1
R; = Z(“ﬁm — Upprlirii)
1
= Z(ud,— L) > ——|VL[2
(1 — Lot > ~[ VL

pre -

Lemma 5.16. We also have

A|VL? > %’-lvw +(VL,V|VL[?). (5.56)
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Proof. For any point p € 2, as above we make a linear transformation to the
coordinates such that at p, u;; = 6;; and Lx = 0 for £ > 1. Then

Ric(VL,VL) = 32 (4201 = tgprrsn)
= Z( rurll %
> Z( = Lyum)L

1
Z(Ulu = Lyun + Z uppl)L%

p22

Using an elementary inequality, we have

. 1
Ric(VL,VL) > ulyy — Ly + ——=( pm)? | L3
n—1 o~

2
uiy — L +

— 1(L1 - Uul)z] L3

n 4 n-+ 1
—u
n—1"1" 51

|
NN TN

L1U111 + 1L2:| L2

e I EE L
Applying (5.54), (5.57) to the Bochner formula,
A|VL? = 2|V2L|2+2Rz’c(VL VL) +2(VL,VAL)
> —|AL|2 |VL|4 (VL,V|VL|?
= —n|VL|4 + (VL,V|VL|2). | (5.58)
O

Proof of Theorem 5.14. Fix a point p in R™. Denote the geodesic ball centered
at p with radius R by Bg(p). Let r be the distance function

T(') = dg(p) )
Assume
z = 2log(R? — r?) + log |VL|2.
Since z = —oo on the boundary of the ball, it attains its maximum at an interior

point g. We may suppose that g lies outside the cut-locus of p, that is, r? is
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smooth at g. Otherwise, we can use the approximation argument as in [SY] or
[JL, Mc].
Choosing the normal coordinates at the maximum point, we have

z;=0, z; <0.

By computation,

()i (VL)
=2t VIP (5.59)
_ (r*); (), (VLP)a (VL)
w= 2@y 2popt N wip o 080
Using the fact |Vr| = 1, we have
AP =2r Ar+2. (5.61)

Substituting (5.59) and (5.61) into Az < 0, we obtain
T2 2rAr+2  A|VL?
2 +

- - <40. .
24(R2 — ) 2 VIR S 0 (5.62)
By Lemma 5.16,
A|VL? 5 -n._ .o (VL rVr)
> 2
VIE 2 |VL| +8 2
5 n r?

where C, is a positive constant depending on the small ¢ > 0.
Next, we deal with the term r A r. Denote R* = dy(p,q). Assume R* > 0.
When 2 < n <4, by Lemma 5.16,

A|VL|? > (VL,V|VL?.
Hence, by the maximum principle,

max |VL|? = max |VL|2
Bg+(p) OB

2

However, z = (R% — r%)|V L|? attains its maximum at g. So

max |VL? = max |VL|2 |VL|*(q).
Bgr+(p)

Therefore from Lemma 5.15 we have the Ricci curvature bound,

Rij(z) > ——IVLI (@)uss(2) > ——-IVLI (@)us;(2)
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for any z in Bg«(p). By the Laplace comparison theorem,
rAr < (n—1)[1+|VL|(g)r] (5.64)

in Bg«(p). This inequality also holds at ¢ when R* = (. Indeed, when R* =0, it
means ¢ = p. For any § > 0, we have

Ry(o) 2 - (FIVLP@)+8) uy(e)

in B,(q) provided s is sufficiently small. Then the inequality follows by taking
6 —0.
Substitute (5.63), (5.64) into (5.62) to get

r? (n—1)1+|VL|(g)r) +1
> -
02 24(R2—r2)2 4 R2 _ 12
5—n 9 r?
+(W —€)|VLI*(g) - Cem.
Con e OVLPg) — (244 Cot Co)g e — AT
8n 7 T R =122 T RZ— 2

When 2 < n < 4, choosing € and € small enough, we obtain
e < C\R* + C,.
Here Cy, C; are positive constants independent of R. Thus by the definition of z,
(R* — r)?|VL|*(z) = @ < 5@ < CR? 4 C.

This implies |VL|(p) = 0 by letting R — 0. Since p can be any point, so L
must be a constant. Namely det D?u =const.. Hence u defines an affine complete
parabolic affine hypersphere. By [Call], u is a paraboloid.
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Chapter 6
Boundary value problems

We continue to investigate Abreu’s equation. In this chapter, we study a bound-
ary value problem for Abreu’s equation, which can be formulated as an variational
problem for the energy functional.

6.1 Introduction

Let Q be a smooth, bounded domain in R™ and ¢ a smooth, uniformly convex
function defined in a neighborhood of Q. Define

Slp, Q) = {u € C*(Q) | u is convex u|sq = p(z), Du(Q) C Dp(Q)}.  (6.1)

In [TW3, 5], N. Trudinger and X.J. Wang studied the affine Plateau problem. A
special case of the affine Plateau problem is to maximize the affine area functional

Ag(u) = / (det D?u]fde, (6.2)
Q
in S[p, 2], where 6 = n+r2 We formulate an analogous variational problem for the

energy functional of Abreu’s equation as follows. As we pointed out in Chapter
5, the energy functional is given by

Ap(u) = / log det D*u dx. (6.3)
Q
As in [TW3], we can consider the more general functional,
Jufu) = Ao(w) - [ fuds, (6.4)
Q

85
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where f € L*°(f2). So we have a similar variational problem for Abreu’s equation,
that is to find a function u in S[yp, Q] such that

Jo(u) = sup{Jo(v) | v € S|y, Q]}. A (6.5)
The Euler equation of the functional (6.4) is Abreu’s equation
Udwy; = f, (6.6)

where
w = [det D*u] ™" (6.7)

In [TW3], Trudinger and Wang proved the existence of smooth maximizers of
Jp in S[p, ). The main result in this chapter is as follows.

Theorem 6.1. Suppose the domain Q is bounded and smooth. Assume f €
C>(Q). If n = 2, there exists a unique, smooth, locally uniformly convex mazi-
mizer u of the variational problem (6.5).

The variational problem (6.5) extends the first boundary value problem for
equation (6.6),

u = ¢ ond, (6.8)
Du = Dy on 9. (6.9)

Indeed, if we have a classical, locally uniformly convex solution u € C*(2) N C*(Q)
to (6.6), u will also solve (6.5) uniquely. The uniqueness follows from the concav-
ity of the functional Ajg.

The proof of Theorem 6.1 is inspired by Trudinger-Wang’s variational ap-
proach and regularity arguments in solving the affine Plateau problem. But due
to the singularity of the function logd near d = 0, the approximation argument
in [TW3, 5] does not apply directly to our problem. To avoid this difficulty we
introduce a sequence of modified functionals J; to approximate Jy, and prove
that the limit of the maximizers of Ji is a maximizer of (6.5). For the regularity,
we need to establish uniform a priori estimates for maximizers of Jj.

6.2 A modified functional

Since the set S[p, ] is not closed, we introduce

S, Q) = {u € C°(Q) | u is convex u|aq = p(z), Nu(Q) C Dp(Q)},  (6.10)
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where N, is the normal mapping of u, introduced in §3.3. Note that S[p, Q] is
closed under the locally uniform convergence of convex functions. In [ZZ3], we
proved the upper semi-continuity of the functional Ay, which implies the existence
of a maximizer of Jp in S|y, Q). To apply the a priori estimates to the maximizer,
we need a sequence of smooth solutions to Abreu’s equation to approximate the
maximizer. Since the penalty method in [TW3] does not apply to Jy, we consider
a functional of the form ’

J(u) = A(u) — ‘/ﬂfudx, (6.11)

where

Au) = ‘/Q G(det D*u)dz. (6.12)

Here G(d) = Gs(d) is a smooth concave function on [0, 00) which depends on a
constant § € (0,1) and satisfies the following conditions.

(a) G(d) =logd when d > 4.

(b) G'(d) > 0 and there exist constants Cj, Cy > 0 independent of § such that
for any d > 0

G"(d) > —-Cyd7?,

dG"(d)

G"(d)

(c) The function F(t) = G(d), where t = d=, is smooth in (0,+00) and
satisfies

< (.

F(0) > —o0, F"(t) <0,
lim;—o F'(t) = 00, lim;otF'(t) < Cs,
where Cs is a positive constant.
Remark 6.2.
(i) The condition F”(t) < 0 in (c) implies that the functional A is concave.
(ii) The concavity of F, F"(t) < 0, is equivalent to dG"(d) + 2=2G’'(d) < 0; and
limg_o F'(£) = oo is equivalent to d*= G'(d) — oo as z — 0.
(ili) A function G satisfying properties (a)-(c) will be given in (6.18) below.

The Euler equation of the functional J is

Uijwij = f, . (613)

where
w = G'(det D*u) (6.14)

and (U%) is the cofactor matrix of D%u.
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Remark 6.3. Equation (6.13), (6.14) is invariant under unimodular linear trans-
formation. If we make a general non-degenerate linear transformation T : y = Tx
and let @(y) = u(z), then #(y) is a solution of

Uy = f, = G'(det D*@),

where G(d) = G(|T|?d), d = det D%*i. Here G is a smooth concave function
satisfying (a), (b), (c) with & = |T'|728, €y = Cy, Cy = Cy, Cs = Cs.

Now we study the existence and uniqueness of maximizers to the functional
J(u). The treatment here is similar to that in [TW3] and [ZZ3].

First, we extend the functional J to S[p, ). It is clear that the linear part
in J is naturally well-defined. It suffices to extend A(u) to S[p,Q)]. Since u
is convex, u is almost everywhere twice-differentiable, i.e., the Hessian matrix
(D?u) exists almost everywhere. Denote the Hessian matrix by (6%u) at those
twice-differentiable points in 2. Recall that a convex function on 2 induces a
Monge-Ampére measure pfu] through its normal mapping. This measure is a
Radon measure and can be decomposed into a regular part and a singular part
as follows,

plu] = pelu] + psly].
It was proved in [TW3]| that the regular part u.[u] can be given explicitly by

ur[u] = det O*udz

and det 5%u is a locally integrable function. Therefore for any u € S[p, Q], we

can define
Alw) = / G(det %u)dz. (6.15)
Q

Next, we state an important property of A(u). For any Lebesgue measurable
set E, by the concavity of G and Jensen’s inequality,

det 52
/ G(det8%uw)dz < |E|G (W) (6.16)
E

< |EIG(E™ plul(E)).
By the assumption (a), d*G(d) — 0 as d — oo. Note that G is bounded from

below. So the above integral goes to 0 as |E| — 0. With this property, we have
an approximation result for the functional A(u). For u € S|y, Y], let

@ =" [ o
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where h > 0 is a small constant and p € C§°(B1(0)) with || By(0)P = 1. Suppose
that u is defined in a neighborhood of €2 such that wu, is well-defined for any
z € Q. A fundamental result is that that (D?us) — (6%u) almost everywhere in
Q [Z]. We have therefore obtained as in [TW1], '

Lemma 6.4. Let u € S[p, )], we have
/ G(det 6*u)dz = lim / G(det 6%uy)dz.
Q h—0 Q

Finally, the existence of maximizers of J in S[ip, 2] follows from the following
upper semi-continuity of the functional A(u) with respect to uniform convergence.

Lemma 6.5. Suppose that u, € 5[90, Q] converge locally uniformly to u. Then

lim sup f G(det 6%uy,)dr < / G(det 0%u)dz.
n—oo JQ Q
Proof. The proof is also inspired by [TW1], see also [ZZ3]. Subtracting G by the
constant G(0), we may suppose that G(0) = 0. By Lemma 6.4, it suffices to prove
it for u, € C?(Q) and we may assume that u,, converges uniformly to u in €.

Denote by S the supporting set of y;[u], whose Lebesgue measure is zero. By
the upper semi-continuity of the Monge-Ampére measure, for any closed subset
FcQ\S,

lim sup / det D*u,dz < / det 0%u dx. (6.17)
F

n—oo F

For given ¢,¢ > 0, let
Q={z€Q\S|(k—1)e <detd’u < ke}, k=0,1,2,..,

and wy C 2, be a closed set such that

€I

|Qk\wk[ < ok

For each wy, by concavity of G and (6.17), we have

|

G fwk det B%udz
lwr]

< G(ke).

. 1 ) _ [, det D*urdz
lim sup Torl G(det D*uy)dz < limsupG
n—00 wi n—00

IA
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It follows
1imsup/ G(det D*u,)dz < G(ke)|wy|
Wk

n—oo

IA

G((k — 1)e)|wk| + G(€)|wil
G(det 6*u)dx + G(€)| .

Q

IN

Hence,
lim sup G(det D?u,,)dz < / G(det 8%u)dz + G(€)|9|.
n—o0o ka (93
By (6.16), letting € go to 0, we can replace the domain of the left hand side
integral by 2. The lemma is proved. O

For the uniqueness of maximizers, one can check that Lemma 2.3 in [TW3]
also holds for J(u). That is

Lemma 6.6. For any mazimizer u of J(-), the Monge-Ampére measure ulu] has
no singular part.

In conclusion, we have obtained the existence and uniqueness of maximizers
of J in S[p, Q1]
Theorem 6.7. Let Q2 be a bounded, Lipschitz domain in R™. Suppose ¢ is a

convex Lipschitz function defined in a neighborhood of Q and f € L®(Q). There
ezists a unique function in Sy, Q] mazimizing J.

Proof. The existence follows from the upper semi-continuity of A(u). For the
uniqueness, note that by the concavity of the functional, if there exist two maxi-
mizers u and v, then 8%y = 6%v almost everywhere. Hence by Lemma 6.6 we have
plu] = plv]. By the uniqueness of generalized solutions to the Dirichlet problem
of the Monge-Ampere equation, we conclude that v = v. |

In Theorem 6.7, we only need the Lipschitz condition on 2 and ¢. But later
for the regularity, we must assume the smoothness as stated in Theorem 6.1.
We also point out that the above argument applies to the functional Jy, and the
existence and uniqueness of maximizers also hold for J;.

At the end of this section we also point out the existence of functions G
satisfying properties (a)-(c) above. A function in our mind satisfies

G(d) = o(‘l'j’o)do — 8 d+logd— 1 d<g,
logd, d2>9,

(6.18)
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where § = —=. One can check that G € C?(0,00) and C? except at d = 4. It
is easy to see that G satisfies (a) and (c). We can also check that G satisfies (b)
except at d = §. Hence, we can always mollify G to have a sequence of smooth
functions satisfying the properties (a)-(c) to approximate it.

For our purpose of studying Jy, we choose a sequence of functions G, = G,
satisfying (a)-(c) with & — 0 as k — oo, and consider the functionals

Je(u) = Ak(u) — /(;fu dz, (6.19)

where
Au(u) = / Gr(det D?u)ds. (6.20)
Q

By Theorem 6.7, there exists u*) € S|y, Q] maximizing the functional Ji in
S, Q). It is clear that u*) converges to a convex function ug in S, ). In the
rest of this chaper, we will prove that in dimension 2, ug solves the problem (6.4).
It suffices to prove that ug is smooth in 2 and satisfies Abreu’s equation.

6.3 Interior estimates

In this section, we establish the interior estimates for the equation (6.13).

Lemma 6.8. Let u be the convexr smooth solution to (6.13) in 2. Assume that
u<0in2andu=0 on 0S2. Then there is a positive constant C depending only
on sup |Vul|, sup |ul|, sup |f| and independent of §, such that

C
(—u)™

det D*u <

Proof. Let :
z = —logd —log (—u)? — |Vul?,

where [ is a positive number to be determined later. Then z attains its minimum
at a point p in Q. We may assume that d(p) > & so that w = d™! in a small
neighborhood of p. Otherwise, the estimate follows directly. Hence, at p, it holds

Zi = 0, ‘U,“Zij 2 0.

We can rewrite z as

z =logw — log (—u)? — |Vu|?
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near p. By computation,

w; U
Z=—— Bus _ 2Uk;tk, (6.21)
w u
wy;  wiw;  Puy Puy;
Zij = ,L;J ,;2] u” uzz 2 — QUpiup — Uit (6.22)
On the other hand, since det D%y = w™!,
w.
gy = (—logw); = —;’.
Therefore we have
ut z,J = uY ij Wi —u”g—uilgl — ,B_n +,6u u;uj 2—uy — 2Au
w u u
By (6.21),
. WiW; 43| Dul?
zjw 1;).7 — ﬂ2 ij u] + /8| u’l +4uijuiuj,
w
w Du 2
—EUk = ,Bl | + 2uiju,-uj.
w U
It follows
.. 28| D 2
u”zij:f—ﬂn 2A u ﬁ'uu| ( ﬁ) ij 'U.J > 0.

Choosing @ = n, we have
(—u)[det Dzu]% <(-u)Au<C
at p. The lemma follows. 0

For the lower bound estimate of the determinant, we consider the Legendre
function u* of u. As we mentioned in §5.2, if u is smooth, u* is defined on
O* = Du(Q), given by '

u'(y) =z-y—u(z),
where z is the point determined by y = Du(z). Differentiating y = Du(z), we

have
det D*u(z) = [det D*u*(y)]™ .

The dual functional with respect to the Legendre function is given by

J*(u*) = A*(u*) — /Q‘ f(Du*)(yDu* — u*) det D*u*dy,
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where

A*(u*) = . G([det D*u*]™") det D%u*dy.

If u is a solution to equation (6.13) in €, it is a local maximizer of the functional
J. Hence u* is a critical point of J* under local perturbation, so it satisfies the
Euler equation of the dual functional J*, namely in *

wwl = — f(Du*), (6.23)
where
w* = G(d* ™) — d&*IG(d* 7Y, dF = det D%u*. (6.24)
Note that on the left hand side of (6.23), it is u*¥, the inverse of (u};).

Lemma 6.9. Let u* be a smooth convez solution to (6.23) in Q* in dimension 2.
Assume that u* < 0 in Q* and u* = 0 on ON*. Then there is a positive constant
C depending only on sup |Vu*|, sup |u*|, inf f and independent of & such that

det D> < ——C—
(_u*)2

Proof. We consider
z = —logd® — log(—u*)® — a|Vu*|?,

where «, [ are positive numbers to be determined below. Since z tends to oo on
OY*, it must attain its minimum at some point p € Q*. At p we have

Z; = O, u*ijzij > 0.
By (6.24), we compute

wf = G'(d*Hd3dr, (6.25)

7

* x—1\ pk—5 7% 1% x—1\ pk—4 g 7% =1\ 3%—3 3%
wh = —G"(@ N - 3G"(d ) d ) + GY(d*Y)d Y (6.26)

Y

On the other hand, by computation,

d¥ u} . %
2= —d_i - ﬂu—i — 20Uy, (6.27)
dy | didy  ug o uiul . .
Z'ij = —ﬁ —+ F — IBE‘_ + IBF — 2au2ijuk — ZQ‘UZ,’:’U,kj. (628)
It follows
i wd  wYdid n w Itk de . .
u iz =~ d*J d*2]_ﬁa;+ﬁ 2 ’—Zaa%uk—2aAu.
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By (6.26) and equation (6.23), we have

u* g d*2 a1 G"'( d*—l) u d: d;f u*Y d: d;g

i
d* _— G"(d*_l)f+ Gll(d*_l) d*2 + d*2

We may assume that f(p) < 0. By the condition (b) for G,

d*2 » d*—lGlll(d*—l)
G@n =T [Teey |5
Hence, - B
u*dr. u* d*d*
—2 > Crtinf f + (3 — Cy) —=—-2
d* d*
So we have
*1] -1 u*ijd:d*f /Bn u*iju’:u"f d;:: * *
u*V2;; > —C7linf f + (Cy — 2) pr z — + 4 = Z —ZQEuk—%zAu )
By (6.27),
u*ijd:d"f *‘l],u* * u* 2
d*2 2 = ﬂ2 4 ﬁl | +4a Ulkuluk,
d* * |Vu l2 %* * %
d* = _ﬁ o - 2aulkul uk.
Therefore

—Crtinf f + [6+ (C; — 2)67] *’;it;‘u -

+ [4(Cy — 2) + 4)Puf ufuf — 2a A u* > 0.

u*
| *l2

+[4(C2 - 2) + 2]ap
Choose a small enough such that

[4(02 bl 2) + 4]a ’ulku, U’k < [8]) A u

Using the fact u*'! 4+ u*?% = de,ﬁ‘)‘%* in dimension 2, we have

vl Ve Aw
u*?  det D2u*’

U*2
It follows
|Vu**  Auw*  fn

O”
u*2 det D2u*  u*

—Clinf f+C' —alAu* >0,

[Vu[?
u*

where C’, C" are constants depending only on «, 3, C; and Cs. If

C,,|Vu 2 Au*

a
- A *
2 u*? det D2y* —
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we obtain
(—u*)*det D*u* < C
at p. Otherwise, we have
Bn Vu*?  «
*

-+ O~ 2 Aw 20

—Clinf F = 2=
C{ inf f " -

Hence, we also obtain
(—u*)?det D*u* < (Au*)(—u*)? < C
at p. The lemma follows by choosing § =n = 2. O

We would like to point out that

(i) the determinant estimates above is independent of 4. This leads us to use
the approximation {Gi};

(ii) The estimate depends only on inf f. This is crucial in §6.8;

(iii) In Lemma 6.9, the estimate only holds in dimension 2. Since we do not
have the relation u*!! + u** = ﬁ‘%‘;, we can not deal with the term ’"Z—;‘Eﬁ in
the proof. This is why we can not extend Theorem 6.1 to higher dimensions.

By Caffarelli-Gutierrez’s Holder continuity for linearized Monge-Ampere equa-
tion [CG] and Caffarelli’s C*>* estimates for Monge-Ampére equation [Cafl, JW],
we have the following a priori estimates.

Lemma 6.10. Let u € C*(Q) be a locally uniformly convez solution of (6.18) in
dimension 2.

(i) Assume f € L*(). Then
lullwar@) < C

forany p > 1 and Q' CC Q, where C depends on n, p, sup |f|, dist(Y',09Q) and
the modulus of convexity of u.
(it) Assume f € C*(Q). Then

”Uchl,a(Q/) S C

for any a € (0,1) and Q' CC 2, where C depends on n, «, sup|f|, dist(,00)
and the modulus of convezity of u.

Note that the modulus of convexity has been explained in §5.2.
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6.4 Equations after rotations in R"*!

In order to establish the estimate of the modulus of convexity, we also need to
consider the equation under rotations in R"**!.
As in §5.3, we consider the rotation z = T'z, given by

21 = —ZTn41, (6.29)
29 = T3, ..., Zn = Inp, (6.30)
Zn+1 = I, (631)

which fixes z,...,Z, axes. Assume that the graph of u, M = {(z,u(z)) €
R™*! | £ € Q} can be represented by a convex function z,4+1 = v(z1,...,2,) in
z-coordinates, in a domain 2. To derive the equation for v, we compute the
change of the functional A,.

Aw) = /Q G(det D*u)dz (6.32)

2 2
= / o —22 14 1pup) ) do
o \(1+|Dup2)*F

/ & (K + (Duf)™) (1 + | Duf)Has,
M

where K is the Gaussian curvature of M and d¥ the volume element of the
hypersurface. Following the computation in §5.3, we have

2
1+ |Duf? = w,
U1
Hence we obtain
Alu) = / Gy ™ det D%)(v?)7dz == A(v). (6.33)
Q

In addition,
[rout@as = [ fu+|puyaz
Q
= /f(’U 225005 % Zl)(’Ul)de

Let

/f Uy 22y ey Z zl)(v1)2dz

After computing the Euler equation for the functional J (v), we have
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Lemma 6.11. Let u be a solution of (6.13). Let T and v be as above. Then v
satisfies the equation

VI(d )y =g- han+ ha+f (6.34)

in the set {z | vy " 2d > 8}, where (V%) is the cofactor matriz of (vy;), d =
det D%v and

1 v
_ Kkl - ‘i
= 2v"un " (n + 2) ’U% ,
f = f('U,Zz,...,Zn),
0
.fl = aa‘fl(v,z%"')zn)-

Remark 6.12. In the proof of strict convexity in §6.7, we will use the upper
bound estimate for det D?v given below. Since the lower bound for det D?v is
not needed, we do not give the explicit form of the equation for v outside the set
{z | v7"*®d > 6} in this lemma.

Next we prove a determinant estimate for v. Assume v satisfies

v2>20,v2>2, vy>0 and

! (6.35)
v(0) 1is as small as we want.
Let
b=v—ez —cand Q= {z]|9(z) <0},
where € and ¢ are positive constants in (0, 1). Then 9 satisfies
Vij((i_l)ij = _rj - flzl(?’h + 6) + flzl + f (636)
in the set {z | (81 + €)"*2d > §} N Q ., where d = det D%, and
. Sl 1 U1
= 20" - 2)——— 6.37
g v ’Ukll,{)l_'_6 (n+ )('01—!—6)2’ (6.37)
f = fo+en+ca,..2) (6.38)
X of .
fi = —f(v + €21+ €, 29y ey 2n)- (6.39)

6$1

Lemma 6.13. Let © be as above. Then there exists C' > 0 depending only on
sup | f |, sup |V fl, supg__ || and supg,__|D79|, but independent of 4, such that

(=9)"det D*» < C.
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Proof. Consider
z = logw — Blog (=) — A|Dd|?,

where w = dA‘l, and 3, A are positive numbers to be determined below. Then 2

attains its minimum at a point p Qe,c. Hence, at p, it holds
ni =0, 99n; > 0.

We can suppéée that p € {z | (¢, + €)~*?d > §}. Otherwise, we have
(04 € Dd<§

and then the estimate follows. By computation,

T Yi_ _,B-v_z — 2 A0 0k, (6.40)
w D
w.. w.w. IBU“ ﬁi}.'i}. " . n R
N = E"J- — ;)21 - ’8” + '[112 1 - 2A’Uk¢j’vk - 2Avk,~'vkj, (641)
wk TN
T.U— = —U”’Uijk. (642)
By (6.37),
. w; 1 11
=2 -
g w b+ € ( )(A +¢€)?
Therefore we have
. waw; w2 Bn 011 B9 ;0 Wk .
U = — ] _ = - — - 2 L 4+ 24—
i w? wi+e O (n+ )(“ +e)2+ 02 Uk

—2AND — flzl(ﬁl + E) -+ f12'1 =+ f

By (6.40),
w0 D2
bl e A ﬁ%’f%+4A2@ﬁmj++4Aﬂ| |
. w v
wn 2 _ 2,3’01 A'ﬁlkﬁk
wi+e  (h+e)d D +¢€
w Di|?
Weo — gl + 2A%,;0;0;.
w v

Hence, we have

i D11 D1l |~ Ol 200,
Fin = () _gq [ b g L SNRPYUN
i ( )(v1+e)2 (v1+e kz;vl+e) (B + €)d v
n  2AB|Do|? Y 0;0;
*% - # - (6” - ﬂ)v_ — Az (01 +€) + iz + F.(6.43)
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We choose 3 > 1 such that 3> — 3 > 0. By the positive definiteness of @;;, it
holds 9%, < 930k for any k = 2,...,n, so there is C’ depending on n and |D3],
such that

n
lﬁlk@k‘ ! 'Ull 1, . ' n
— < - <-A+C'———. 6.44
;@1+e_ ZU’“”C G+ 1 T Gt ep (6.44)
It follows
_ (2n +4 - 4AC,)’811 _4A @11’01 _ 2ﬂ’l71 N ﬁn
(01 +€)? hh+e (D1+e)d
|Dv|2 ;. . .
—2A0 — fiz(b+€) + hzn+ f 2 0. (6.45)

Choosing A small enough such that 2n + 4 — 4AC’ > 0. Then by a Schwarz
inequality, there exists a Cyp > 0 depending only on [D9| such that

_ (2n +4 - 4AC/)1711 ?}11’31

- < CoA?hy,. .
(’ﬁl n 6)2 4A'{}1 Te— C()A V11 (6 46)
By (6.45), (6.46), we have
209 Di|* - A
0 < CQA 'Uu— _—&T— @—AA'&—QAB' }) —f121(’l71+6)+f121+ f.
(1 +ed D

Choosing A small enough furthermore such that CpA4% < %, and observing that

280, 28 28 _ 28
R e s S S
(1+€d & (h+e)d~ o

b

we have

fln+2) A
) 2

o Do)z, . .
AU—-ZA,B — —f121(111+6)+f121+f20,

which implies
(-0)A < C

at p. Hence, choosing 8 = n, the lemma follows by

(—0)AD

@) > e®) — d‘ ( ) n —A|Dv|2 > [
n

]—n ~A|D|? > C.
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6.5 Second boundary value problem

In order to construct approximation solutions to the maximizer of J(u), we study
the second boundary value problem for equation (6.13). This section is just a
modification of the second boundary problem in [TW3]. We include it here for
completeness. Throughout this section, we will denote by d the determinant
det D?u for simplicity.

We study the existence of smooth solutions to the following problem.

Ubw;; = f(z,u), in €, (6.47)
w = G'(d), in 9, (6.48)
w = 1), on 0L, (6.49)
u =, on 0, (6.50)

where Q is a smooth, uniformly convex domain in R™, ¢, 9 are smooth functions
on 0N with

0<Cyt <y <Gy

f € L*(Q x R) is nondecreasing in u and there is ¢, < 0 such that
Flz,t) <0, t <t

We note that this condition is not needed if u is bounded from below.

By Inverse Function Theorem, w = G’(d) has an inverse function d = g(w).
g is an decreasing function which goes to 0 as w — oo and goes to co as w — 0.
To solve the problem (6.47)-(6.50), we first consider the approximating problem

Uijw,-j = f, in Q, (651)
det D*u = mg(w) + (1 — ne), in Q, (6.52)

where ¢ and 1 satisfy (6.49), (6.50) and n, € C$°(R2) is the cut-off function
satisfying mx = 1 in O = {z € Q | dist(z,00) > £}.

Proposition 6.14. Suppose that f € L™ satisfies the condition above. If (u,w) is
the C? solution of (6.51), (6.52), there is a constant depending only on diam(S),
f, @, ¥ and independent of k, such that

Cl'<w<C, inQ, (6.53)
lw(z) — w(zo)| < Clz — 0|, for any x € Q, x4 € ON. (6.54)
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Proof. The proof of the upper bound for w is totally the same as that for affine
maximal surface equation in [TW3] by considering the auxiliary function

z=logw + Alz|?

and using the condition F'(0) = oo in (c). By w < C, we have det D?u > C.
Suppose that v is a smooth, uniformly convex function such that D*v > K > 0
and v = 9 on 0. Then, if K is large,

Ut > KU% > K[det D%]™s > CK > f,

which implies U%(v — w);; > 0. By maximum principle, v — w < 0. We thus
obtain
w(z) — w(zg) > —C|z — 2|, for any z € 2,z € ON2. (6.55)

To prove the lower bound of w, let
z =logw + w — ah(u),

where o > 0 is a constant to be determined later and h is a convex, monotone
increasing function such that,

h(t) =t, when t > —tg and h > —tg — 1, when ¢t < —t,.

Assume that z attains its minimum at zo. If 7o is near 0, by (6.55), z(zo) > —C.
Otherwise, xz, is away from the boundary. Hence, we have, at x,

w.
0= Zi = -'l—l)l + w; — ah'(u)ui,
w.. w.w.
0< 2= ﬁ - # + wij — ah” (W uu; — ab'(u)u;;.

By maximum principle,

OS ijZij dw w2 . d ”( ) v v /( )
f f '
< = A .

If u(zo) < to, f <0, which immediately induces a contradiction. Hence, u(zg) >
to, and A'(u(zg)) > h'(ty). Then choosing o large enough, we obtain d < C at z
by the assumption (a). Using the relation between w and d, we have w(zg) > C.
By definition,

z=logw + w — ah(u) > z(zy) > —C.
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This implies w > C.
Similarly, with the upper bound of the determinant, we can construct a barrier
function v from above for w and prove

w(z) — w(zo) < Clz — o).
In conclusion, the proposition has been proved. O

With the above estimates, we have the higher order and global estimates
of (6.51), (6.52) by using Caffarelli-Gutierrez’s Holder continuity for linearized
Monge-Ampere equation [CG] and Caffarelli’s C?* estimates for Monge-Ampére
equation [Cafl, JW] repeatly. By an application of the degree theory (see [TW3|
for details), there exists a solution uy to the approximating problem (6.51), (6.52).
Finally, taking k¥ — oo, we obtain

Theorem 6.15. The second boundary problem (6.47)-(6.50) admits a solution
u € W22 N C% () (p > 1) with det D*u € C°(Q). Moreover, if f € C*(Q x R)
(0 < a < 1), then u € C**(Q) N CO1(QY).

6.6 Approximation

We will use a penalty method and solutions to the second boundary value problem
to construct a sequence of smooth convex solutions to (6.13) to approximate the
maximizer of J(u). This section is similar to §6 in [TW3].

First, we consider a second boundary value problem with special non-homogenous
term f. Let B = Bg(0) be a ball with Q@ CC B and ¢ € C*(B) be a uniformly
convex function in B vanishing on dB. Suppose H is a nonnegative smooth
function defined in the interval (—1,1) such that

_Ja=-n7n te 3,
HeE) = (1482, te(-1,1). (6:56)

Extend the function f to B such that
fl@,u) =

where h(t) = H'(t).
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Lemma 6.16. Let f(z,u) be as above. Suppose OS2 is Lipschitz continuous. Then
there exists a locally uniformly convex solution to the second boundary problem

U%w; = f(z,u) in B, (6.57)
w = G'(d), in B,
u = ¢ on0B,
w = 1 onoOB

with u € WP (B) N C%Y(B), for all p < 0o, and w € CO(Q).

loc

Proof. By the discussion of the second boundary problem in last section, it suffices
to prove that for any solution u to (6.57), |f(z,u)| < C for some constant C
independent of u. Note that by our choice of H, a solution to (6.57) is bounded
from below.

First, we prove an estimate of the determinant near the boundary 6B. By the
definition of H and the convexity of u, f is bounded from above near 8B. For any
boundary point o € 0B, we suppose by a rotation of axes that 2o = (R,0, ..., 0).
There exists dy > 0 independent of zy such that f is bounded from above in
BN{z; > R—dp}. Choose a linear function ! = az;+b such that I(z) < u(zp) =0
and [ > uon z; = R— 4. Let

z=w+ logw — Blog(u — 1),

where 3 > 0 is to be determined below. If z attains its minimum at a boundary
point on dB, by the boundary condition w = 1, z > —C near 9B. If z attains
its minimum at a interior point yo € {u > [}, we have, at yq,

0=z = w+2 gzl (6.58)

= e - o0 SO os
By (6.58), 5 )
W; _ U—1);

w 14+w u—1"
It follows by (6.59) and equation (6.57)
” f_f  bBn B2 ] u(u = Di(u—1);
<y — — _
05wz =4 b= avap (u—1)
We may suppose that w < 1. Choose (3 large enough such that
ﬂ2

——<0.
Arwp =0

IB_
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So we have w(yy) > C. Therefore, det D?u < C near 6B.
By the above determinant estimate near 9B, it follows that |Du| is bounded
near 0B. By the convexity of u,

sup |Du| < C.
B

Next, we prove that f is bounded from below. We note that by the Lipschitz
continuity of 9, there exists positive constants r, x such that for any p € B\ Q,
there is a unit vector « such that the round cone Cp ., C B\ §2, where

Comrr ={z €R™| |z —p| <7, (z—p,7) > cosk}.

Assume that M = —infp f is attained at 2o € B. If 25 € £, then M = || ]| Lo (q)-
If o € B\ 2, we have

M = 2n[1 + u(o) — p(z0)] "7,

that is, ,
1
M\~ F
w(zo) — p(zo) = (%) - 1.

Let Iy be the tangent plane of ¢ at xg. Since we have the gradient estimate of u,
there exists a uniform &y such that

o1
0§1+u(m)—go(x)$2(12u—n> o

and

L1
2n+1

0<1+u(z) —lo(z) < 2 (%)

in the cone Czo,'y,éo (2 )_2?1_“’”. Let wo = {z | u(z) < lo(z)}. It is clear that when

M is sufficiently large,

C - C wp.
20,7,50(%) 2?14:1"” 0
Integrating by parts, we have
Uw(u —lo)dz = —/ Uw;(u — lp)idx
wo wo

= -/ inj(u—lo)i'yde+/ wdet D*u dx,
Owo

wo
where dS is the volume element of dwy. u — ly vanishes on the boundary, so
U'(u — ly)iy; > 0. The first integral on the right-hand side is negative. Hence,
we obtain

/ flz,u)(u—lp)dz < / wdet D*udx < C. (6.60)
wo wo
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Note that the last inequality follows by the condition lim; ,qtF”(t) < Cs in the
assumption (c) on G. Estimating the integral in the cone, we have

/w 0 flz,u)(u—lp)dz > 271 M. [1 —~2 (glﬁ) _m] C- (%) o . (6.61)

Therefore M < C follows from (6.60), (6.61).
Finally, we prove that f is bounded from above. For any ¢ > 0, let

Qs = {u < -—5} CB
and v be the unit outward normal on 0€s. We have

Uwij(u+8)de = — | Uwude
Qs Qs

s Qs
> —/ wUYu;;dS

[2/97]

Qs

= - / wuy K,dS
s

> —Csupwsup |Dul",
2 97] B

where dS is the volume element of 0€2s and K is the Gaussian curvature of 0€2;.
Letting § — 0, by w = 1 on B and the gradient estimate,

/ flz,w)udz > —-C.
B

By a similar argument as in the proof of lower bound, if u — ¢ is sufficiently close
to 1 at some point z € B\ , u — ¢ is sufficiently close to 1 nearby in B \ .
This implies the integral can be arbitrary large, which is a contradiction. Hence,
f is bounded and the lemma follows. ]

Now we prove that the maximizer of J(u) can be approximated by smooth
solutions to (6.13). This approximation was proved for the affine Plateau problem
in [TW3] by a penalty method. We will also use this method.

Theorem 6.17. Let Q and ¢ be as in Theorem 6.7. Suppose OS2 is Lipschitz
continuous. Then there erist a sequence of smooth solutions to equation (6.13)
converging locally uniformly to the mazimizer u.
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Proof. The proof for this approximation in [TW3] is very complicated, so we use
a simplified proof in [TW5].

Let B = Bg(0) be a large ball such that Q C Bg. By assumption, ¢ is defined
in a neighborhood of €2, so we can extend u to B such that ¢ is convex in B,
¢ € C%(B) and ¢ is constant on §B. Adding (|z] — R+ )% to ¢, where

1 1
(12l = R+ 3)+ = max{la| — R+ 3,0},

we assume that ¢ is uniformly convex in {z € R | R— 1 < |z| < R}. Consider
the second boundary value problem (6.57) with

o) = f in Q,
T | Hiu—¢) inBa\Q,

where H;(t) = H(4’t) and H is defined by (6.56). By Lemma 6.16, there is a
solution u; satisfying
lu; — | <477, z € Bg\ Q. (6.62)

By the convexity, u; sub-converges to a convex function # in Bg as j — co. Note
that @ = ¢ in Bg \ Q. Hence, % € S[p, 2] when restricted in 2. We claim that %
is the maximizer.

Let v; be an extension of u, given by

vy =sup{l | l € ®;},
where ®; is the set of linear functions in Bpg satisfying
l(z) < p(z) when |z|]=Ror|z| < R- %, and
l(z) <uj(x) when R— % < |z| < R.

By our assumption, ¢ is uniformly convex in Bpg \ B%_ . By (6.62), |u; — ¢| <
477 = o(j72), z € Br \ Q. So we have

vj=u; in Bg\ Bp_ 1, (6.63)
J
vj=¢ inBp:\Q, (6.64)
2
loj =l <fu;—¢| i Bp 1\ Bgz:=Dj (6.65)

Now we consider the functional ‘

Ji(v) = [ G(det8®v)dz — / fvdz — H;(v — ¢)dz.
Q Br\Q

Br
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Subtracting G by the constant G(0), we may assume that G(0) = 0. Note that
u; is the maximizer of J; in S[u;, Bg] and v; € S[u;, Bg]. So we have

Jj(v5) < Jj(uy).

In the following, we denote by J;(v, E) the functional J; over the domain E. By
(6.63), we have

Ji(vj, Bp-L) < Jj(uj, B_1)- (6.66)
By (6.64), (6.65), we obtain
- / Hy(u; — o)de < — / H,(v; — ¢)da. (6.67)
B, 1 \Q B, 1\0 ‘
27 27

For any € > 0, by the upper semi-continuity of the functional A(u),

/ G(det 8*uj)dz < / G(det 8%p)dz + ¢
By 2\Q BR—%\Q

T

\ = / G(det 6%v;)dz + € (6.68)
Bp_3\0

provided j is large enough. In addition, by (6.16),
0< [ GdetePo)do < DIG(D; I ulbl(Dy) — 0 (6.69)
D;

as j — oo, where v = u; or v;.
Hence, by (6.66)-(6.69) and the upper semi-continuity of the functional A(u),

J(’LL) = J(’Uj) < J(Uj)+€ < J(ﬂ)+2€.

provided j is large enough. By taking € — 0, this implies @ is the maximizer. By
the uniqueness of maximizers in Theorem 6.7, we obtain @ = u. a

Remark 6.18. We remark that the above approximation does not holds for the
maximizer of the functional Jy. The reason is that since logd is not bounded
from below, we do not have the property

_)O’

/ log det 6%u dz
E

as |E| — 0. This is why we introduce the function G and consider the modified
functional J(u).
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By Theorem 6.17, for each k, there exists a smooth solutions ug.k) to
Uiy = |, (6.70)

where
w = Gj(det Du), (6.71)

which converges locally uniformly to the maximizer u*) of (6.19). Then we have

u®? — o, 4,k — oco. 6.72
J

As we explained in §6.3, if ug is strictly convex, the interior a priori estimates of
ug.k) will be independent of k¥ and j. Hence, by taking limit, we have the interior
regularity of ug in 2. Moreover, by the construction of G, up will be a solution

to Abreu’s equation (6.6). Therefore we have

Theorem 6.19. Let ug be as above. Assume that f € C®(Q). Then if up is a
strictly convex function, ug € C*(Q) and solves (6.5).

In the last two sections, we will show the strict convexity of ug.

6.7 Strict convexity I

We prove the strict convexity of uy in dimension 2. Let Mg be the graph of .
If up is not strictly convex, My contains a line segment. Let I[(z) be a tangent
function of uy at the segment and denote by

C={zeQfuz) =I(z)}

the contact set. According to the distribution of extreme points of C, we consider
two cases as follows. For the definition of extreme point, see §3.3.

Case (a) C has an extreme point 2y which is an interior point of Q.

Case (b) All extreme points of C lie on 9.

In this section, we exclude Case (a).

Proposition 6.20. C contains no extreme points in the interior of 2.

Proof. Since zg is an interior point in 2, there is a linear function a such that
a(zg) > up(zo) and a < u on 9.

By (6.72), we can choose a sequence of smooth functions uy = uy:) converging
to up such that uy is the solution to (6.70). Let My be the graph of ux. Then My,
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converges in Hausdorff distance to Mj. There is no loss of generality in assuming
that [(z) = 0, zo is the origin and the segment {(z1,0) | 0 < z; <1} CC.
For any € > 0, we consider a linear function

.= —€ex1 +¢€

and a subdomain Q, = {u < [;}. Let T, be the coordinates transformation that
normalizes €2.. Define

1 1 ~
ue(y) = Zu(x)y Uk,e = Zuk($)7 Y€ Qe (673)

where y = T,z and Q, = T.(). After this transformation, we have the following
observations:

(i) By Remark 6.3, uy . satisfies the equation (6.13) with

2 Ok
G = Gie(d) = Ge(€|TL|*d), 6 = bpe = —
€[ Te?
and the right hand term ef. Note that |T.| > Ce™?, so 6 < Cé — 0 for a
constant C independent of e.

(ii) Denote by M., My the graphs of u,, uk, respectively. Taking k — oo,
it is clear that ux. — u. and My converges in Hausdorff distance to M,. Then
taking € — 0, we have that the domains 2, sub-converges to a normalized domain
Q and w, sub-converges to a convex function % defined in ). We also have M,
sub-converges in Hausdorff distance to a convex surface Mg € R3.

(iii) The convex surface M, satisfies

Mo C {y; >0} N {ys > 0} (6.74)
and M, contains two segments
{0,0,9) 0 < ys <1}, {(4,0,0) [0y <1}, (675)
Hence, by (i), (ii), (iii), we can suppose that there is a solution iy to
Uijwij = e, f in €, (6.76)

where
w = G5 (det D?u), (6.77)

and &, € — 0, such that the normalized domain converges to €, i converges
to @ and the graph of 4, denoted by M, converges in Hausdorff distance to M.
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It is clear that in y-coordinates, M is not a graph of a function near the origin,
so we need to rotate the R3 coordinates. Since the equation (6.13) is invariant
under unimodular transformation, we may suppose

QC {x >0}
Adding a linear function to 4, i, we replace (6.74), (6.75) by

Mo C{y1 20} n{ys > -y} (6.78)

and M, contains two segments
{(0,0,t) |0 <t <1}, {(t,0,—t) |0<t<1}. (6.79)

Let
L= {(y1,72,y3) € M, | 1h =ys =0}.

L must be a single point (Case I) or a segment (Case II). In Case II, we may also
suppose that 0 is an end point of the segment which is

{(0,¢,0) | —1<t<0}.

Later, we will discuss the two cases separately.

Now we make the rotation
21 = —Y3, 22=1Y2, Z3=U1

such that M, can be represented by a convex v near the origin. By convexity,
M, can also be represented by 23 = v*)(21, 2;) near pq, respectively. v® is a
solution of the equation given in Lemma 6.11 near the origin. As we know that
M, converges in Hausdorff distance to M, in new coordinates, v® converges
locally uniformly to v. It is clear that

v(0) =0, v>0, when —1< 2 <0 and
v>2z, when0< 2, <1

and the two line segments
{(t)070)| —1StS0}a {(t,O,tHOStSl}

lie on the graph of v.
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Asin (6.36), let 8 = v® —12 and 6 = v—1z. In the following computation

we omit the hat for simplicity. Then
1 1
v > §|z1| and v(z,0) = §|z1|. (6.80)
Let
C ={z | v(z) = 0}.
Observe that
L ={(z,22,0) | (21,22) € C}

in z-coordinates. The contradiction arguments for the Cases I, II are very similar

to those in Lemma 5.9 in Chapter 5. For completeness, we include the details
here.

Case I. In this case, v is strictly convex at (0,0). The strict convexity implies
that Dv is bounded on S ,(0) for small A > 0. Hence, by locally uniform con-
vergence, Dv®) are uniformly bounded on S B o) (0). By Lemma 6.13, we have
the determinant estimate
det D*v® < C (6.81)

near the origin.

For § < 2, by (6.80), S5,(0) C {—% < 31 < £} and (££,0) € 8S5,(0). In the
2y direction, we define

ks = sup{|za| | (21,22) € S54(0)}.

By comparing the images of Sj,(0) under normal mapping of v and the cone with
bottom at 0S5,(0) and top at the origin,

[No(S5a(OD)] 2 O

By the lower semi-continuity of normal mapping,
N.,,(SJ,U(O)) g lim infk_,oova (Sa,v (0)),

then
Ny(S5(0)) = Ny(S5,(0)) C liminfy oo Ny (S50(0)).
By (6.81),

IN(SG)| < liminfu ool Nyer (S5 (0))
= liminf;_ o / det D*v®
S5,(0)()

< Clsé,v(o)l
< Cérs. (6.82)
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Hence, k5 > C' > 0, where C is independent of §. Again by the strict convexity,
ks — 0 as § — 0. The contradiction follows.

Cuase II. In this case,

C={(0,2)] —1<z <0}
We define the following linear function:
l(2) = bez0+ €

and w, = {2z | v(2) <}, where §, is chosen such that

€

de

€

=2
e, v(0, 5

) =1(0,—=) =0.
We can suppose that € is small enough such that w, is contained in a small ball
near the origin. Hence, Dv(® is uniformly bounded. By comparing the image of
w, under normal mapping of v and the cone with bottom at dw, and top at the
origin,

[Ny (we)| = C.. (6.83)

On the other hand, w, C {—€ < 2, < €} since v > |z|. By the convexity and
the assumption above, we C {—3 < 22 < £}. Therefore,

e2

< .
|we| < 055

Furthermore, subtracting all v*) by I, they still satisfy the same equation. By
the determinant estimate in Lemma 6.13 and a similar argument as in (6.82),

2 ,
[N(wo)] < O (6:84)
€
Combining (6.83) and (6.84),
However, according to our construction, 6_65 goes to 0 as € goes to 0. The contra-

diction follows.
O
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6.8 Strict convexity II

In this section, we rule out the Case (b) that all extreme points of C lie on the
boundary 0f2.
First, we need a stronger approximation. In the case of the affine Plateau

problem, this approximation was obtained by [TW5]. Here, we extend it to our
functional J(u).

Theorem 6.21. Let ¢, 2 be as in Theorem 6.7 and u be the mazimizer of the
functional J in S[p, Q). Assume that O is lipschitz continuous. Then there exist
a sequence of smooth solutions u, € W4P(Q) to

Uijwij =fm=f+ ﬁmXDm mn Q (685)

such that
Um — U uniformly in Q, (6.86)

where D, = {z € Q | dist(z,00) < 2™}, x is the characteristic function, and
Bm is a constant. Furthermore, we can choose By, sufficient large (B, — oo as
m — 00) such that for any compact subset K C N,(2),

K C N, (Q) (6.87)
provided m is sufficient large.

Proof. We assume that G(0) = 0 and G > 0 by subtracting the constant G(0).
The proof are divided into four steps.

(i) Let B = Bg(0) be a large ball such that Q C Bg. By assumption, ¢ is
defined in a neighborhood of €2, so we can extend u to B such that ¢ is convex
in B, ¢ € C*(B) and ¢ is constant on dB. Consider the second boundary value
problem with

fm,j =
Hi(u—¢) inBgr\,

where H;(t) = H(47t) is given by (6.56). By Lemma 6.16, there is a solution um, ;
satisfying
|um,j — (pl < 4_j, T € Bg \ Q. (688)

(ii) By the convexity, u,, ; sub-converges to a convex function u,, as j — oo
and u,, = ¢ in Br\ . Note that u,, € S[p, ] when restricted in . By Theorem



114 CHAPTER 6. BOUNDARY VALUE PROBLEMS
6.17, u,, is the maximizer of the functional

Jn(v) = /Q G/(det 6%)dz ~ /Q (F + BXpy, )vdz (6.89)

in S[p, Q).

(i) Since u, € S[p, ), um converges to a convex function ue in S[p, )] as
m — 0o0. We claim that u., is the maximizer u. The proof is as follows.
Define '

@, = sup{l(x) | [ is a tangent plane of ¢ at some point in By \ Q}.

~ Then ¢, € S[p,9] and v > @, for any v € S[p,Q]. We consider the maximizer
u. Let
Um = sup{l(z) | ! is linear, ! < u in Q and | < ¢, in D,,}.

Then @,, € S[p, Q] and 4, = @, in D,,. Since u is convex, it is twice differentiable
almost everywhere. By the definition of @y, i, = u at any point where D?u > 0
when m is sufficiently large. Therefore, we have det 8%@,,, — det 6%u a.e.. By the
upper semi-continuity of the functional A(u) and Fatou lemma,

lim [ G(det8%iy,)dx = / G(det 8%u)dz.
m=e Ja Q
It follows that for a sufficiently small €5 > 0,

J(u) < J(am) + € (6.90)

provided m is sufficiently large.
On the other hand, we consider the functional J,,. By (ii), ¢, is the maximizer
of J, in S[p,Q), so we have :

I (Um) < I (Um)- (6.91)
Note that u,, > ¢, = @, in D,,. Hence, we obtain

Brmtmdr > Brlimdz.
Dm Dy,

By the definition of J,, it follows
J(ﬂm) < J(um) + €o. ) (6'92)

for sufficiently large m.



6.8. STRICT CONVEXITY II 115

Finally, by (6.90), (6.92) and the upper semi-continuity of A(u),

J(u) J(lim) + €0
J(um) + €0

J(Uoo) + 2€0.

IN A

IN

By taking €y — 0, this implies that 1, is the maximizer. By the uniqueness of
maximizers, Uo, = U.

(iv) It remains to prove (6.87). We claim that for any fixed m,

Im un(z) < @uz). (6.93)

Bm—00

We prove it by contradiction. Suppose that there is zg € Dy, such that um,(z¢) >
(o) + €9 for some €9 > 0. Since u,, and , are uniformly Lipschitz continuous,
Um(z) > @u(r) + 2 in a ball Bee,(20) for some constant C. Let

Ums = sup{l(z) | I is linear, | < u,, in Q and I < ¢, in D, }.
Then u,,. € S[p, ], and satisfies
Ums < Uy iD Q) Umsx = Px in BCeo (:170)

Hence,

T (ti) = Jon(tns) = (1) — T (t1) — i / o — Uped

m

becomes negative when g, is sufficiently large. This is a contradiction to that
U, 1S & maximizer of J,,. O

Remark 6.22. If ¢ € C!, we can restate (6.87) in the theorem as

|D(tm — @)| — 0 uniformly on 09. (6.94)

Now we deal with Case (b). By Theorem 6.22, there exists a solution u®) to
Ulwj = fm, | (6.95)

where
w = GY(det D?u), (6.96)

such that
uﬁ,’:) — u(k), m — 00.
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and for any compact set K C Dp(Q),
K C Du®(Q) (6.97)
for large m. Hence, we can choose a sequence my — 0o such that
U = uf,’f,)c — Up. (6.98)

Lemma 6.23. Assume that 2 and ¢ are smooth. Then Mg contains no line
segments with both endpoints on OM,.

Proof. Suppose that L is a line segment in Mg with both end points on OM.
By subtracting a linear function, we suppose that uy > 0 and [ lies in {z3 = 0}.
By a translation and a dilation of the coordinates, we may further assume that

L={(0,2,0) | —1<z,<1} (6.99)

with (0,£1) € 9Q. Note that by Remark 6.3, these transformations do not change
the essential properties of equation (6.13).

Since ¢ is a uniformly convex function in a neighborhood of 2 and ¢ = up at
(0,£1), L must be transversal to 0Q at (0,+1). Hence, by uy = ¢ on 992 and
the smoothness of ¢ and 02, we have

up(z) = p(z) < %x%, T € O80.

By the convexity of ug, o
up(z) < Em%, T €. (6.100)

Now we consider the Legendre function ug of ug in Q* = Dy(2), given by
ug(y) = sup{z -y —uo(z),z € U}, y € Q".

Note that (0,£1) € 9Q. By the uniformly convexity of ¢, 0 ¢ Dp(99). Hence,
0 € OQ*. By (6.99), (6.100) and the smoothness of , we have

u(0,32) = |yl (6.101)
1
* > 2. )
u'(y) 2 e (6.102)

On the other hand, by the approximation (6.98), the Legendre function of u,
denoted by u} satisfying the equation

Uws; = — frn, (D), (6.103)
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where
w* = Gp(d* ™) — &G (d* ). (6.104)

By (6.97), uj is smooth in Qf with €, — 0 as k — oo, where
Q:, = {y € " | dist(y,00%) > e}

By (6.101), (6.102), ug is strictly convex at 0. Then {y | u§ < h} C O,
providing m is sufficiently large. Note that uj converges to u;. By Lemma 6.9,
we have the estimate

det Dzuz <C

near the origin in 2*. Note that in Lemma 6.9, C depends on inf f but not on
sup f. In other words, the large constant G,,, in (6.85) does not affect the bound
C. Therefore sending k — oo, we obtain

det Dzus <C

in the sense that the Monge-Ampeére measure of ug is an L*> function. This is a
contradiction with (6.101), (6.102) according to Remark 5.10. O

In conclusion, we have proved that v is strictly convex in €2 in dimension 2.
Theorem 6.1 follows from Theorem 6.19.
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