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A B S T R A C T

Background: Phylogenetically independent sequence pairs (PIPs) are units of in­

formation on evolutionary processes. One of these processes is the rate of residue 

insertions and deletions (indels). PIPs are sufficient for investigating the effects of 

secondary structure components on indels. One way of studying these effects is by 

identifying hydrophilic residues in coding DNA, and employing a parameter to raise 

the background probability of these residues relevant to the background probabilities 

of all other residues. In RNA encoding, the indel rate can be studied in conjunction 

with the substitution rate which depends on the degree of conservation in regulatory 

and structurally important regions. The indel rate also plays an important role in 

the DNA pyrosequencing technology where we need to differentiate between indels 

due to evolutionary processes and indels caused by the inherent physics of the se­

quencing machine. Overall, therefore, a PIP can be seen as an envelope of types of 

information that can be spatially teased out, using suitable experimental settings, 

with the aim of studying evolutionary processes at the molecular level.

Methods: Along with the hydrophilicity parameter, I also introduced additional 

parameters to model secondary structure explicitly across the two broad regions of 

the molecule, namely, the conserved and non-conserved regions. Only sufficient pa­

rameters were added to the likelihood function to ensure that estimators I obtained 

from maximum likelihood were efficient. That is, my method aims at making best 

use of information contained in PIPs.

For the purpose of aligning PIPs, I employed two identical sets of parameters. 

One set models variations in parts of the molecule that are important to structure, 

function, regulation and catalyses. The other set models changes that are thought 

to be mostly random and inconsequential to phenotype. To each of these two sets of 

parameters I assigned a pair-hidden Markov model (PHMM). This modelling gives 

me two main advantages. First, it does not treat alignment sites independently. 

Through its dynamic program, namely the forward algorithm, each PHMM considers
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the preceding state before it resolves the current state. Second, it can deal directly 

with indels in the second sequence of the pairwise alignment. To optimise my two 

sets of parameters, I used simulated annealing to obtain maximum likelihood (ML) 

for all estimators endogenously.

My two PHMMs formed the lower layer of my model. A second higher layer 

consisted of a conventional two-state HMM designed to connect the two regional 

PHMMs. This configuration makes my model regional context dependent when I 

align PIPs made from any of the three biological encodings, namely, protein, codon, 

and RNA.

I constructed data sets consisting of (1) protein sequences from the BAliBASE 

database and (2) RNA sequences from the European ribosomal RNA database. In 

each case, I extracted PIPs from phylogenetic trees which I constructed from curated 

multiple alignments taken from these two databases. PIPs were selected using post­

order traversals to ensure that each PIP had a unique ancestor. I forced evolutionary 

distances of PIPs to he between 0.25 and 1.25 in the case of protein encoding and 

between 0.0 and 0.5 in the case of RNA encoding, after eliminating outliers. DNA 

equivalent PIPs of the protein PIPs were also used to construct the codon sample.

To investigate the error rate caused by the pyrosequencing machine, namely, 
the Roche GS 20, PIPs were constructed randomly within a specified bandwidth of 

percentage identity. Homopolymer insertions of exactly one base in length could be 

located in these PIPs using a three-region configuration with three independent sets 

of parameters.

Results: I found that

i the difference between rates of slow and fast replacements (or substitutions) in 

the two broad regions of the molecule is unequivocal across all three biological 

encodings, namely, RNA, protein, and codon,

ii under the assumption of regional heterogeneity, high substitution rates in coding 

DNA are mostly located on the surface of the molecule which is more amenable 

to water and furthest from the core,



iii in coding DNA, high indel rates - like high substitution rates are mostly located 

in the solvent parts of the molecule, but indel lengths, whether short or long, 

are not,

iv confounding is strong between hydrophilicity and substitution rates when align­

ing codon encoded biological sequences using the mechanistic GY94 model,

v substitution rates in the two regions are independent, and appear to be normally 

(lognormally) distributed in slow (fast) regions of codon encoded sequences,

vi the natural selection parameter u  plays a statistically significant role when it 

varies freely and independently in slow and fast rate regions, and can be esti­

mated efficiently with a two-step ML procedure,

vii the chemical agents of high codon usage and of codons that flank indels are 

mutually exclusive in fast rate regions of codon encoded pairwise alignments,

viii homopolymer insert errors of exactly one base committed by the Roche GS 20 are 

caused more often by cytosine and very rarely by thymine, even after imbalances 

of A/T and C/G extensions had been accounted for in the reads.

Conclusion: A regional context model, using a combination of two PHMMs and 

a classical HMM, provides a powerful method for aligning sequence pairs for all 

the three biological encoding types. Under this setting, and ensuring that sequence 

pairs are phylogenetically independent, biologically useful inferences can be made 

on molecular evolution.
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C H A P T E R  1
A S hort D iscourse on H M M s

1.1 T he H idden  Coins P rob lem

Churchill (1989) was first to use HMMs for the analysis of biological se­

quences. Earlier workers had used methods that could not deal effectively with the 

heterogeneity of DNA composition (Churchill, 1989). A more advanced model, 

such as an HMM, is more suitable for teasing out hidden processes that cause com­

positional variation. Other methods are also possible. For example, one can scan a 

DNA sequence with a fixed-size window and methodically compute statistical sum­

maries. This method, however, is subjective as it requires the arbitrary choice of 

window size (Churchill, 1989).

To analyse DNA data, Churchill (1989) did not strictly use an HMM. He 

constructed instead a state-space model which is a generalisation of the HMM and 

other stochastic models. He based his model on previous studies by K itagawa 

(1987) and other workers. Kitagawa had worked on models that perform smoothing 

on non-stationary time series. The smoothing problem in time series analyisis 
where data are noisy, and exhibit both an abrupt and a gradual change in the mean 

- is a long-standing problem found in many fields. For example, a type of state- 

space model called the Kalman Filter allows econometricians to infer the smoothed 

estimate of the GNP (gross national product) for a specific year given an economic 

time series spanning several years (Hamilton, 1994). Various smoothing methods 

exist, but the one proposed by Kitagawa is of especial interest in computational 

biology. Kitagawa’s method incorporates two procedures, namely, the forward and 

backward algorithms. In the discrete case of DNA data, these algorithms can effec­

tively be synthesised numerically using dynamic programming. Fundamentally, the 

model uses Bayes’ theorem together with the law of total probability and conditional 

probability. I set out to explain this basic model using the notation in Churchill 

(1989) in conjunction with a two-coin tossing experiment for illustration.
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1.1.1 T h e  G e n e ra l S ta te -S p a c e  M o d el

C hurchill (1989) considers a finite set of n random variables {Yj : i = 

1,2, ...,n}. Each of these variables has a probability distribution determined by 

a corresponding state {s; : i — 1,2, ...,n}. This means that Yt is not necessarily 

Gaussian distributed. The sequence of observed outcomes up to time t is denoted by 

yl — 2/i,2/2 , •••, Vt and the corresponding sequence of states by st = s i, s2, •••, st. Each 

observation has a probability distribution which is denoted by p(yt\st,y t~l). The 

term y*-1 simply emphasises that the observations are not necessarily independently 

and identically distributed (i.i.d.).

In a two-coin tossing experiment, in which the coins are hidden, the sequence 

of states is unobservable. All I can do is try to infer this sequence from the data. 

That is, I want to estimate a smoothed average from my noisy and non-stationary 

sequence of observations. Given the n observations, I do this by using the joint 

distribution of st and st+1, namely p(st, st+\\yn), and integrate out s*+i. To carry 

out this integration I use the following equation based on Kitagawa’s 2.51

/*oo

P{st \yn) = /  p{st,s t+1\yn)dst+1. (1.1)
J  —oo

The term p(st, st+1 1yn) in 1.1 can be reformulated using the definition of conditional 

probability, namely P(AD B) = P(A)P(B\A),  as

p(st, st+1\yn) = p{st+1\yn)p(st \st+1,y n). (1.2)

From the second term of the right-hand side of 1.2 it is easy to see that each time I 

estimate st+1 , observations that follow time t (that is, from yt+1 onwards) become 

redundant and can be discarded. This allows me to re-write 1.2 as

p(st, st+1\yn) = p(st+i\yn)p(st \st+uyt). (1.3)

By applying the definition of conditional probability, namely P(B\A) = —p ^ y ~, to 

the term p(st \st+i,yt) in 1.3, I can re-write 1.3 as

^ o r  a theoretical treatment and derivation of this equation, see K itagawa ( 1987) ,  p. 1033.
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p(st,s t+l\yn)
p(st+l\yn)p(st, st+l\yl)

pist+ily1)

and applying the definition once more, this time to the term p(st, sf+i|?/), I obtain

p(st+i|2/n)p(st+i|st)p(s(|2/<) „ „
p(S(’S(+l|y} = ---------- R T T Ö -----------' (1'4)

What remains now is to substitute 1.4 into 1.1 to obtain the following equation

/  I n \ ( I t \  [ ° °  P(st+l\yn)p(st+l\st) „  .
P(st \y ) =  P(st \ y ) J  x  ' p(st+l]yt) dst+1. (1.5)

Note that the term p{st\yt) in 1.5 can be taken outside of the integral sign because 

I want to integrate out st+\ and not st, as I stated earlier.

Equation 1.5 brings me close to computing a smoother for my sequence of 

observations yn. Before proceeding, however, there are some terms in this equation 

that deserve further attention.

First, p(st+i|s t) is a first-order Markov process which Churchill calls the state 

equation. In HMM terminology this is referred to as the transition matrix which 
is pre-specified by the investigator. Second, p(st+i\yt) is defined through the law of 

total probability, namely, P(A) = '^^P{A \B i)P(Bi). That is

roc
p(st \yt~l) =  / p(st\st- i , y t~1)p{st. 1\yt~l)dst. 1. (1.6)

<1 —00

To define the term p(st_i|?/ 1) in 1.6,1 appeal to Bayes’ theorem, namely, P(Bi\A) =

Z k P (B k)P(A\Bk)-  T h a t 1S

p(st \yt ^pjy t l suy1 *)

Finally, the term p(yt\stl yt~1) in 1.7 is defined by Churchill as the observation equa­

tion. In HMM terminology this is referred to as the emission matrix and, like the 

transition matrix, is pre-specified.
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The smoothed average of yn can now be obtained by employing Churchill’s 

forward and backward recursions.

1.1.1.1 Forward Recursions

I start with some arbitrary initial value y0 and a corresponding initial state s0 

before making the first forward pass. Substituting p(s0\y°) into 1.6 gives p(si\y°), 

and substituting this value into 1.7 gives p(si\y1). Thus, through the following

I obtain the value p(sn+\\yn).

1.1.1.2 Backward Recursions

The smoothed average can now be computed directly through recursive sub­

stitutions of the value obtained from the forward algorithm into 1.5, producing the 

following backward recursions:

recursions:

( 1.8 )

r
p(sn-\ \yn) = p(sn_i\yn~1) J ■oo

p ( S n  n —1 ) 7------ ------ as
—oo
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I should point out here that in 1.8 (the first backward pass) the integral is 

required to sum to one. This shows that the first order Markov process in HMM 

studies should always be specified as a row stochastic matrix.

1.1.2 The Discrete Case

When implementing Churchill’s state-space model to DNA, the observations 

take a discrete form, and therefore I need a discrete formulation of the key equations. 

I denote the transition matrix by T whose element describes a transition from 

the state that has index i to the state that has index j , and the emission matrix by 

E  whose element Ejk describes the emission of the item that has index k when the 

HMM is in the state that has index j. The number of states is finite and is denoted 

by r, and the number of observable items is also finite and is denoted by K. The 

key equations, namely, 1.5, 1.6, and 1.7 can be re-written respectively in discrete 

form as follows:

p ( s t ]\yn) =  p(s {tl)
i=i

TvP(4+i\yn)
pU+ily1)

1, 2,..., r. (1.9)

p ( s ? V  ') = ^ 2 TijP(st-i\yt *)> J = l,2 ,...,r . (1.10)
i=l

EjkPjst^y1 *)

j 2 E ikp(s{l)\yt- 1)
i=1

j  =  1 , 2 , r; k =  1 ,2 ,...,# . ( 1. 11)

A short draw, say, HHTHTHTTHHHH, from my two-coin experiment can 

now be used as an example to illustrate how these three equations are used to com­

pute the smoothed output of the sequence of heads (e) and tails (t). The transition 

and emission matrices shown in Figure 1.1 are specified first. These matrices are 

exogenous to the model since their elements are merely my best guess based on 

intuition. IB is the begin state of the system. Its sole purpose is to determine ran­

domly whether the system starts with coin 1 or coin 2. Similarly, (£ is the end state
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whose sole purpose is to randomly end the process either at coin 1 or coin 2. Both 

53 and (£ do not emit a symbol and hence they are referred to as silent states. The 

iterative computations using the three key equations in accordance with the forward 

and backward recursions are shown in Table 1.1.

s(!) 5(2) (£ H T
53 ' 0.2 0.8 0.0 ' " 0.0 0.0

( Coin 1) s(l) 0.3 0.7 o .o f 0.1 0.9
(Coin 2) s(2) 0.6 0.4 0.0+ 0.2 0.8

F ig u re  1.1: T he diagram  shows th e  two m atrices of a tw o-sta te  HMM em itting  one of two sym bols a t each 
tim e slot. T he first m atrix  is th e  transition  m atrix  T  and has two sta tes, namely, and T he second
m atrix  is th e  emission m atrix  E  and has two symbols, namely, HI and T. T he first two elem ents in th e  first 
row of the  transition  m atrix  form th e  initial vector and th e ir values are  set arb itrarily . T he th ird  elem ent in 
th is row is set to  zero because no flow is allowed from th e  begin s ta te  ® to  th e  end s ta te  e. T he o th er four 
elem ents in the  first two colum ns of th is m atrix  m odel th e  M arkov process w ith s ta te s  on th e  left-hand side 
being th e  source, whereby s ( represents th e  first hidden coin and represents th e  second. T he first two 
elem ents of th e  emission m atrix  are set to  zero because ® is silent and hence does not em it a  symbol.

tT hese  probabilities are  very sm all and are shown rounded to  0.0.

The first two rows of the computations in Table 1.1 are the emission proba­

bilities. They are invoked by the observed outcome shown in the first row of the 

table. This row shows the observed sequence with corresponding discrete time t 

slots in the second row. Together these two rows constitute the input of the dis­
crete space-time model. The last two rows of the computations show the posterior 

probabilities for each possible outcome (with K  = 2 in this case) at each time slot. 

The bottom row of the table shows the inference made by the investigator from the 

smoothed output, namely, the posterior probabilities. It is interesting to note that 

even with the parameters of the two matrices T  and E  being intuitively specified, 

the inference turns out to be accurate at every time slot. However, what should be 

noted here is that these parameters are not a major assumption of the model. I am 

more concerned about the fact that the model has two states. This choice is only 

tentative, and there is nothing to suggest as to why I should be assuming that the 

sequence is being generated by exactly two coins. Since these coins are hidden from 

me, I simply do not know how many coins there actually are. I still need the theory 

that can guide me in making a correct guess.

For this purpose, I first need a method that can help me find estimators that
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can "best" explain the observed sequence of heads and tails given the model. Such a 

method would provide me with a probability score of observing the data after I had 

hypothesised the number of coins. I would obtain a score for each number of coins in 

my hypothesis, say, one coin, or two coins. Using the appropriate statistic, I could 

then analyse the resulting scores in order to infer with some desired conhdence the 

correct number of coins.

This technique is useful in DNA analysis. For example, starting with a six- 

state model (or six coins by my analogy), CHURCHILL (1989) found that a four-state 

model best explained the composition of bacteriophage A DNA. His analysis was 

mostly in agreement with that obtained by earlier workers using density gradient 

centrifugation techniques. Both the GC content in the first homogeneous section 

of the molecule and the average G C  content in the second heterogeneous section 

were accurately measured. The only shortcoming of the state-space model in this 

application was that a discrete model could not faithfully describe compositional 

fluctuations in the highly heterogeneous region.

My motivation for using state-space modelling stems from the fact that the 

pairwise alignment is unobservable. It is the product of putative random processes 

whose generators are hidden and for their greater part not extant. The pairwise 
alignment problem is therefore best approached with a well structured probability 

model such as the state-space model. Furthermore, the intuitive notion that hetero­

geneity of the molecular structure has a significant effect on the "true" alignment 

of a DNA sequence pair continues to challenge computational biologists.

Pairwise alignment methods, both stochastic and deterministic, have tradi­

tionally assumed that the molecule is homogeneous. By employing Churchill’s state- 

space model within a larger HMM topology I propose a novel way of aligning pairs of 

DNA sequences. My method is regional context dependent. That is, the algorithm 

is freed from the usual constraint that each base pair and each indel at each site 

of the alignment has to be "smoothed" across the entire linear DNA molecule. My 

model has the additional degree of freedom to position or to "smooth" each base 

pair and each indel in either the region which is conserved or in the region where a 

putatively high rate of mutations does not pose a deleterious impact on phenotype.

7



Furthermore, the model can operate in each region independently from the other 

region, in the same way one coin shows a head or a tail irrespective of what the 

other coin is showing.

1.1.3 The HMM

The general state-space model described by C hurchill  (1989) does not ad­

dress the issue of computational efficiency. R abiner (1989) shows that to compute 

the probability P(yn\H MM),  that is, the probability of observing the sequence 

yn — yiy2---Vn given the HMM  model, would require computing the equation

P(y IH M M ) =  *BSlESiyiTSlS2ES2y2 . . .  TS(n_1)SnESnyn(£, (1-12)
S l  . . . S n

where in the case of my two-coin problem st G yt G {H,T} and t =

1,2, . . . , n.  Computing 1.12, in turn, would need (2 n — l)rn multiplications and 

rn — 1 additions (e.g. Rabiner, 1989, p. 262), recalling that r is the number of 

states assumed to be in the system. In the case of a two-state model with a short 

sequence of, say, 100 observations, these computations could be handled by a ma­

chine with relative ease. However, when dealing with alignments of long sections 

of DNA, an efficient dynamic program would be needed. Two equivalent dynamic 

programs are available for this purpose. One is the forward algorithm, which I list 

in matrix form as follows:

f t  = ( T ' f t_l) . E ( y tl  

P(yn\H M  M) = /'„<£,

8
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where f t is the forward score up to time t, t = 2, 3 , . . . ,  n, and 23 and <2: are both r x 1 

vectors of probabilities. R a b in e r  (1989) does not formally assign begin and end 

probabilities but others, such as D u r b in  et al. (1998) and I s a e v  (2004), do. E(yt) 

is the column of emission probabilities of the emission matrix E  corresponding to the 

item yt emitted at time slot t. T  is the transition matrix, and (•) is the Hadamard 

product 2.

The other is the backward dynamic program which I list in matrix form as 

follows:

bn =

bt = T(bt+i* E(y t+i )),

P(yn\HMM) = fB{b1. E ( y 1)),

where bt is the backward score up to time t, t = n — 1, n — 2, . . . ,1.

It can be shown (e.g. R a b in e r , 1989, p. 263) that these two dynamic pro­

grams can be combined to provide a direct way of computing a smoother for state 

«(*), given the data and the HMM, at time slot t with the following formulation:

r  (* ) l (* )

p ( s f \ y n, H M M ) =  — , (1.13)

3 = 1

and that the denominator of 1.13 is simply P(yn\HMM).  The latter quantity is 

very helpful in speeding up computations since it has to be computed only once. 

Using 1.13, I can reproduce the results obtained from Churchill's equations (Ta­

ble 1.1). These are shown in Table 1.2. They differ slightly from those obtained 

from Churchill’s equations because the two formulations treat the begin state dif­

ferently. The differences are in fact more noticeable over the initial time slots. It 

is easy to show that with long sequences computations from the two formulations 

converge to the same values.

2The Hadamard product of matrices Amxn and B mxn is defined by [T*ß] = [A] [B] V 1 <
i < m, 1 < j  < n.

10



1.1 .4  M ax im u m -L ik e lih o o d  E s tim a tio n

I have used the HMM as a stochastic signalling device to simulate a hypothet­

ical two-coin signal. I could potentially be receiving this signal from an unknown 

source of interest, and I wish to determine whether this signal was generated by 

exactly two coins and not, for example, by a single coin. For this purpose, I con­

vert my HMM from a signalling device to a signal receiver. That is, I adjust the 

parameters in order to "tune" my HMM to the incoming signal. To do so, I have 

to estimate the model parameters by maximising the likelihood function

n
/ (2/U 2/2, • • • , Vn\0) =  Y l  ( L 1 4 )

i=1

The right-hand side of 1.14 is the probability of receiving my particular signal 

consisting of a series of heads and tails -  on the assumption that the functions 

f ( y i , 0 ) , f ( y 2 i 0 ) , - - - , f ( y n.0)  are independent. Independence means that these 

functions have a joint distribution which is the likelihood function denoted by 

C(0\Y),  where Y  represents the data and 6 is the vector that holds all the pa­

rameters. In my two-coin experiment, these consist of all the cell values of the 

transition and the emission matrices of the HMM.
The aim is to find the 6 that maximises C(Q\Y). G reene  (1997, pp. 198- 

218) provides a discussion on how to deal with this problem. It is preferable if 

C(0\Y)  can be maximised by formally deriving first and second derivatives. How­

ever, formal derivations when working with HMMs, in general, are not practical 

(e.g. R ab in e r , 1989, p. 264). Alternatively, first and second derivatives can be ob­

tained by means of numeric approximations and P ress et al. (1992, pp. 186-9) deal 

with the critical issues that affect computer implementation. For the purpose of my 

experiments with biological sequences, I considered only those methods that do not 

require derivatives. One such method is the expectation-maximization (EM) 

algorithm by D e m p s t e r  et al. (1977). The EM method is known to be stable and 

intuitive, and its special case -  the Baum-Welch algorithm (Baum et al., 1970) - 

has been standardly used for parameter estimation for HMMs (D urbin et al., 1998, 

p. 63).
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The Baum-Welch algorithm is build around the following two definitions:
n

1. \yn, HMM)  is the expected number of visits to state s(l), i — 1,2,
t=l 

n

2. s^hly71, HMM)  is the expected number of transitions from
t=l
state to state s^\  i , j  = 1,2, ...,r,

where

p ( s ? V ,  HMM) =  !---- , j = 1 ,2 ,..., r,

i = i

f ( b T " I  p  l C?)

P t+ .+ i l s A t f M M )  = - - 7 -  t+1-----, h i  -  1,2,

* = i  i = i

and k is the index of the item emitted at time slot t + 1.

Using these definitions, together with the Lagrange multiplier, differential cal­
culus, and ensuring that probabilities in and in rows of T  and of E  add to one, 

it can be shown that

<Bj =p( 'S, s (f )\yn,HMM),  j  =  l , 2, . . . , r .  (1.15)

n —1

+  =  £ p ( 4 ' )+ i )1llA tfM M ), i , j  1.2....... r. (1.16)
t —2

«I =  P ( + ,  e|y", HMM),  i =  1 ,2 ,.. . ,  r. (1.17)

n

E~k = J 2 p ( st )\yn^HMM)6yt=Vk, j  = l , 2, . . . , r ;  =  1,2, . . . ,  AT. (1.18)
t=l

In 1.18, 5 is the Kronecker delta. It implies that has to be estimated for each
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element in the items set {ui, u2, . . . ,  v k}. In the case of the two-coin experiment, for 

example, E j has to be estimated twice since K  = 2.

Isaev (2004), R abiner (1989), and others show how 1.15 to 1.18 are used 

in conjunction with training data to re-estimate probabilities for 23, (£, T, and E  

using an iterative procedure, whereby the value of the likelihood function increases 

at each iteration up to convergence. Convergence guarantees optimal probabilities, 

and hence a global maximum, if the likelihood function is concave throughout its 

surface, otherwise we could have simply a local maximum. In the latter case, sev­

eral techniques can be tried to improve the maximum likelihood (ML) values. A 

common approach is to re-start the iterative procedure using different initial values 

-  drawn from some random distribution -  in the 23 vector.

M L T ( 1} rw -i("2 )
± 1 1 J 21 p(2) rd2)-^21 L R p - v a lu e

1 1.0 0.430 0.80162 0.26556 0.09577 0.87357 25.44852 0.00001

2 1.0 0.475 0.63112 0.46762 0.06062 0.99514 6.81287 0.07811

3 1.0 0.355 0.73617 0.32727 0.00169 0.81042 18.89060 0.00029

4 1.0 0.275 0.76680 0.64945 0.01348 0.99031 6.31871 0.09709

5 1.0 0.425 0.66355 0.45876 0.01118 0.99463 9.72834 0.02102

6 1.0 0.405 0.74869 0.36806 0.02155 0.96012 26.71640 0.00001

7 1.0 0.425 0.69439 0.45584 0.05189 0.98751 9.90730 0.01937

8 1.0 0.430 0.64122 0.47691 0.02006 0.98172 7.10719 0.06856

9 1.0 0.300 0.89237 0.16435 0.07527 0.65379 22.40755 0.00005

10 1.0 0.285 0.79738 0.52630 0.03895 0.95136 10.47002 0.01497

T ab le  1.3: T he tab le  shows results from ten sim ulated experim ents. In each experim ent, a continuous random  
stream  of heads and tails was generated using a  tw o-state  HMM. A large section of th is  stream  was sliced into 
ten sequences, each consisting of 200 observations. Each of these sequences was used as train ing  d a ta  first for 
a one-state  HMM and then for a  tw o-state  HMM, using a rb itra ry  in itial values for each. T he Baum-W elch 
algorithm  was used to  obtain th e  m axim um  likelihood (ML) estim ators for each. In the  second last colum n 
were recorded the  com putations of th e  likelihood ra tio  (LR) test for each experim ent w ith th ree  degrees of 
freedom. Superscrip ts indicate one- or two-coin, and subscrip ts indicate cell addresses of the  respective HMM.

Table 1.3 shows the optimal results after the Baum-Welch algorithm was ap­

plied to a one-coin and a two-coin ten experiments, with results from each experi­

ment recorded as shown in each row. The third column suggests that the signal of 

heads and tails, in my two hidden coins tossing experiment, is originating from a 

biased coin emitting heads approximately 40% of the time. This would be the con­

clusion of an untrained eye. However, p-values in the last column strongly suggest
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that the one-coin hypothesis is not true. Instead, the source turns out to be more 

complex than just a biased coin. With the exceptions of experiments 2, 4, and 8, 

at the 5% level of significance, the evidence is clearly in favour of the alternative 

hypothesis with three degrees of freedom.

The true emitter is almost certain to consist of two coins. Furthermore, from 

column four I can infer that once in state one, the system is likely to remain in 

state one, and likewise (from column five) for state two. However, the tendency to 

remain in the same state is higher for state one than for state two. At the same 

time, state one is more likely to emit tails, which explains the bias in favour of tails 

in the incoming stream.

My experiment illustrates the effectiveness of the HMM. It is a device that 

provides the investigator with the means to make good inference in what otherwise 

would be a highly arguable problem. The most remarkable characteristic of the 

HMM, in spite of its complex theory, is its simplicity when applied to real data.

The random processes of molecular evolution, stored in the four symbols of 

DNA, can be viewed as signals. These signals, like the series of heads and tails 

emitted by hidden coins, can also be studied and understood with a signalling device 

such as the HMM. In the next chapter I show how an HMM with three states can 
be optimised in order to identify the best alignment between two DNA sections 

drawn from two different molecules where one is considered to have evolved from 

the other through mostly random mutations consisting of DNA base substitutions, 

base insertions and base deletions.

1.1.5 Silent S tates in H M M s

I have discussed the HMM as having only -  with the exceptions of the begin 33 

and the end (£ states -  the type of states which, when visited, they emit an element 

from the finite set V of observable items {ui, U2 , . . . ,  Vk }- There is another type of 

state that can be incorporated in HMM design and is called silent state. This HMM 

element has the property of not emitting a symbol when visited. This means that a 

silent state, or a group of silent states, should not be looped back onto themselves as 

this would cause the HMM to degenerate into an uninteresting oscillator. Another
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implication is that when maximising the HMM, using a method such as the Baum- 

Welch algorithm, all possible paths between all possible pairs of states through all 

silent states have to be taken into account. For this reason, I define the transition 

matrix as shown in Figure 1.2. This matrix incorporates both the 53 and (£ vectors, 

and sets the probability of transiting from state 53 to state (£ to 0.0. Silent states 

are denoted by d̂ n\  n — 1 ,2 ,.. . ,  Z).

I also introduce the notation Qab defined as the probability of a transition from 

state "a" to state "b" through all the possible silent chains between "a" and "b". 

By a silent chain I mean a flow from state "a" to state "b" in which all transit states 

are silent. Furthermore, either "a" or "b" or both can be either emitting or silent. 

The former can also be 53 and the latter can also be (£. In Appendix A.l, I explain 

a method of how to determine all the possible silent chains between states "a" and 

"b" in an HMM with any number of silent states.

Isaev (2004) covers HMMs with silent states in some detail, and provides the 

fundamental algebra that generalises the forward algorithm. In Appendix A.2, I 

show how this algebra can be extended and summarised into compact formulas so 

that generalised forward, backward, and Baum-Welch algorithms for HMMs with 

any number of silent states can easily be implemented in computer code.

<n> d M . . . d ^ «9) s<2> .. . s(r) <£
53 T<sz T * z • • • T<Bz Trßj T<Bj . • T ^ j 0.0

d M T w T wz ••• T wz T w j T Wj  • T Wj T w £
d ^ T-L WZ T-*• wz T. . .  ± wz T wj T w j T'wj T w £

d ^ T-*■ wz T-1 wz T. . .  -1 wz T w j T Wj T w j T W(p
s(!) T■L IZ T-1 IZ . . .  T lz T ij T ij • T ij T i?
s(2) T-1 IZ T-1 IZ Tiz T ij T ij ■ ■ T ij T i t

s(r) 1
..

^
 .

.

. . .  T iz ^
 

■

4S
 •

• •• •• ^

F igure 1.2: The transition matrix of an HMM with silent states has to incorporate transitions which do not 
emit a character. These transitions are shown in the upper left quadrant with subscripts wz.

Silent states have been used successfully by B aldi et al. (1994) and 

K rogh et al. (1994) in the design of HMM profilers to identify, for example, ho-
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mologues for the globin and kinase families of protein sequences. In this type of 

HMM modelling, silent states were found to increase the likelihood in the presence 

of deletes in the amino acids sequence. In Chapter 3, I use one silent state in my 

HMM modelling.

1.1.6 O ptim ising th e  Likelihood

The Baum-Welch algorithm has two main disadvantages. First, the method 

is known to take long to converge (D e m p s t e r  et al., 1977). Methods to ob­

tain better convergence times have been developed, as described for example 

by J amshidian and J ennrich  (1997). Nevertheless, it is preferable to use a 

method which can deal directly with convergence when working with many align­

ments and hypotheses testing. Second, a Baum-Welch maximisation of a single 

pairwise alignment would typically require several re-runs with different starting 

values in order to increase its chance of finding the global optimum (see for example, 

Laan et al. (2006) and C huong and B atzoglou  (2008)). Repeating maximisa­

tion runs for a large number of pairwise alignments individually on a mainframe 

computer is impractical. A possible workaround would be to use training data, con­

sisting of "curated" pairwise alignments, to carry out pilot runs on suitable samples 
until high likelihood values can be detected. The corresponding estimators would 

then be used as starting values for the individual alignments. But this procedure 

would have been time costly because my experimental samples of sequence pairs were 

drawn from across a wide range of pairwise evolutionary distances. Furthermore, 

"curated" alignments of non-homologous pairs are not guaranteed to be "good" 

alignments since, by definition, an alignment is unobservable and hence a random 

variable. I needed, therefore, a method which has relatively short convergence times 

and which does not depend critically on initial values.

For these reasons, the simulated annealing method proposed by G o f f e  et al. 

(1994) for maximising the likelihood function was more practical for my purpose. 

The tenet of this method is that for a given position in the search space, it considers 

several neighbouring possibilities. The higher the "temperature" the larger is the 

number of these possibilities. If none of these possibilities offer a better value,
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an inferior one can be chosen in accordance with some random distribution. This 

means that, unlike the Baum-Welch, this algorithm does not exclude the possibility 

of going downhill temporarily before proceeding uphill once again towards the global 

optimum. Through this lateral feature, simulated annealing avoids getting "stuck" 

in one of the local optima. As the system "cools", so the pool of alternatives 

reduces, and thus the probability of being forced to choose an inferior alternative 

keeps decreasing. As the limit of cooling is reached, however, it is hoped that 

the search is very close to the global optimum. Furthermore, the final outcome 

is largely independent of the starting values. This feature was very important in 

my work which involved sequences from many different species and constructed 

from the three types of biological encodings. In addition, my modelling involved 

several parameters. These factors adversely affect computational time, and hence 

it was essential that maximisation could be achieved with single runs that required 

starting values which I could readily judge as plausible.

Although simulated annealing also does not guarantee a global optimum, it 

has been shown by Goffe et al. (1994) that it offers excellent prospects under var­

ious types of modelling that require large numbers of parameters. They tested the 

method, for example, on a neural network function with ten hidden parameters. 
Although it failed to find the global optimum in this very difficult case, it con­

vincingly outperformed competing conventional algorithms, namely, the simplex, 

quasi-Newton and conjugate gradient methods.

Simulated annealing has its roots in statistical physics. In their seminal paper, 

M etro polis  et al. (1953) showed how a physical system of rigid spheres in two- 

dimensional space can attain optimal energy through a series of stochastic moves. 

The number of spheres is finite, and they are initially placed randomly in the X , Y  

plane. Spheres are then moved one at a time through a stochastic distance from 

(X, Y)  to {X + a-tx* Y  + a ' £y)? where a is some arbitrary constant and £y ~  
U[— 1,1]. After each move, the change in the energy of the system, namely, AE  is 

measured. If this change is negative -  a minimisation problem, in this case -  the 

move is accepted. Otherwise, the move is accepted only with probability given by 

e- AE/kT' jf this trial is unsuccessful, then no move is made. T  is the temperature
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of the system, which means that the probability of making a move away from the 

optimum will keep decreasing as T  decreases. It was shown that this procedure is 

ergodic. That is, irrespective of the initial configuration, every possible configuration 

of the spheres can potentially be visited until the minimum level of energy is attained 

before the system is allowed to cool. Ergodicity implies that initial values do not, 

in theory, have bearing on the final outcome although they affect the length of time 

needed to find the optimum.

In the context of the pairwise alignment, and of numerical analyses in general, 

the terms "temperature" and "cooling" are, of course, only notional. In the actual 

implementation, the components of the algorithm consist of

1. the vector X  of the values of the n parameters to be estimated, which only 

require some sensible initialisation at the start of the algorithm,

2. the function f ( X)  definition which enables the algorithm to evaluate the like­

lihood value at each step,

3. the vector V of the current step lengths of each element in X,

4. the variable T,  which holds the current "temperature", and

5. the random variable r ~  U[—1,1].

The algorithm starts by evaluating the function f { X 0) using the initial values 

of the elements in X , and both f ( X 0) and X 0 are stored in the optimum register. It 

then changes xi: i =  1, 2, . . . ,  n. For each i, x\ =  X{ +  r  and f (X' )  are computed. 

Each time f (X' )  > f (X) ,  X'  becomes the new X  in the optimum register, and 

we think of the algorithm as moving "uphill". If f (X' )  < f (X) ,  the probability 

p = (/'-/) is computed. Note that this probability is based on p — e~^ElkT that

was used in the Metropolis experiment, where k is the Boltzmann factor. In the 

case of my maximisation problem, this factor is not needed, and the analog to a 

change in energy E  is my change in the value of the likelihood function / .  It is 

this physical fundamental law that makes the simulated annealing algorithm highly 

functional and reliable when coded and used in numerical analyses.
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The probability p is used to conduct the Metropolis trial. If the trial is suc­

cessful, once again both f ( X )  and X  are updated in the optimum register, but this 

time we think of the algorithm as moving "downhill". If the trial fails, the algorithm 

simply stays put and moves on to the next step.

The right strategy on how T  and V  are managed by the experimenter are 

key to a successful optimisation. As a guide, T  is reduced gradually in accordance 

with a simple stochastic relation, namely, T' — t  • T , where r  ~  U[0,1], and V 

is adjusted so that trial failures increase at an increasing rate as the algorithm 

gets closer to the global optimum. This makes sense since the closer we get to the 

global optimum, the less we want to go downhill and the more we are willing to get 

"stuck" so to speak, rather then move past the optimum. The terminating criterion 

is also managed by the experimenter. We need to make sure that this criterion is 

strict enough so that the algorithm does not stop prematurely without reaching the 

optimum. At the same time, if it is too strict we run the risk of failing to stop even 

when the algorithm is "close enough" to the optimum. A conservative rule would 

be to store the most recent three or four /  values in the optimum register, and if 

they do not differ by a pre-specified amount e, the algorithm stops and declares the 

final optimum along with the estimators in the vector X . In my implementation, 

default values were pre-set for X0,T, V, r, and e across all optimisation runs. This 

ensured the elimination of subjectivity in my experiments.

G of f e  et al. (1994) found that the algorithm has several attributes. Two 

of these turn out to be particularly relevant to HMMs. First, the function f ( X)  

does not have to be differentiable. This is significant because in HMM modelling, 

as I discussed earlier in Section 1.1.4, the likelihood function is not analytically 

amenable. Second, simulated annealing can also deal effectively with rough surfaces. 

It is true that the forward algorithm provides a smooth surface because it sums 

the preceding probabilities at each iteration and across all possible alignments when 

aligning two sequences. However, the HMM models which I describe in later chapters 

use several emitting states. This makes more severe the problem of local maxima 

(D urbin et al., 1998, p. 63), and the smoothness of the surface of the likelihood 

function, therefore, is not necessarily ideal.
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C H A P T E R  2 
T he O ne-Region M odel

2.1 T he P robab ility  M atrix  from  Blocks M odel
For the purpose of aligning protein sequences, using standard applications 

such as BLAST, Fasta, and ClustalW, the PAM series (Dayhoff et al., 1978) and 

the BLOSUM series (H enikoff  and H e n i k o f f , 1992) have traditionally proved 

very useful. Nevertheless, these are score matrices restricted to classes of proteins 

that satisfy some specified percentage identity criteria. They also do not provide 

reliability measures in cases where the proteins under study do not belong to the 

body of data from which the matrices had been derived. Furthermore, when we 

compare biological sequences, we need to do more than simply compute a score if we 

wish to tease out hidden processes that underlie evolutionary change. For example, 

a more useful model would take into account both the multiple substitutions at 

individual sites and the complex processes of inserts and deletes (indels).

Biologists need an evolutionary model that can be adapted to any given pair of 

protein sequences. For this purpose, V eerassamy  et al. (2003) developed the pro­
tein replacement model displayed in Appendix B.2. This model is highly versatile 

because it can be applied across a wide range of evolutionary time. Equally impor­

tant, however, is the fact that it can also be coupled, as I show later in this chapter, 

to an HMM in order to allow the investigator deal stochastically with indels. Here I 

present a sketch of how these authors utilised the Blocks databases of BLOSUM in 

order to derive the probability matrix derived from blocks (PMB) of proteins that 

share a specified percentage c of homology, where c E C, C = {0, 30, 32, . . . ,  98,100}.

2.1.1 PM B Construction

To construct the PMB model, one starts with a BLOSUM frequency count 

matrix F  that has a clustering percentage taken from the set C . For a specified c,
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the observed amino acid frequencies 7r* (z = 1, 2 , . . . ,  20) are computed from

Eh? /  v U V  ’

3= 1 U = 1
1>=1

and each mutation matrix is computed from

20

k= 1

A mutation matrix models an evolutionary process, and hence can be expressed as 

a function of the evolutionary time t. One can therefore denote such a matrix as 

where t is unobservable, and one would want to estimate this parameter for 

each data block corresponding to c. To do so, one proceeds by initially expressing 

the average substitution rate as a function of the mutation matrix with t held fixed 

as follows

20

/(M «c>(t)) =  1 - 5 > { c)a4 c)(0. (2.1)
t = 1

One can now appeal to Taylor's series expansions to derive an equation that would 

allow the first derivative of f(M^c\ t ) )  in 2.1 to be estimated numerically. I present 

the derivation in Appendix B.l, and I write the equation for the present context 

(after applying the Chapman-Kolmogorov relation to each term in the summation) 

as follows

t f  ( M(c)(t))
25
y

2

E
v = —2

i.o+o.om
( 2.2)

2.1 and 2.2 can now be used to compute t f '  (M ^(t)) for every value in C, and 

when the results are plotted, they are found to have a quadratic form as shown in 

Figure 2.1.
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0.35

^  0.15

F ig u re  2.1: The plot of the nu­
merical expression t f  [M^c\ t ) )  versus 
the elements in c turns out to be a 
quadratic curve. (Note th a t only ele­
ments 0%, 30%, 40%, 60%, 80% and 100% 
are plotted here in order to simplify the 
diagram.)

The trick now is to run a standard linear regression of the form

y  = aix2 + a2x + a3 + e, e ~  A/”(/r, cr2). (2.3)

In 2.3, y  is the dependent vector, and represents values obtained from 2.2, while x 
is the independent vector, and represents values obtained from 2.1, with all values 

being computed for each element in C. The error vector e in 2.3 is assumed to 

be normally distributed, although the authors do not report the usual statistical 

analysis on e. They report, however, that R2 is sufficiently high to warrant a good 

fit.

Having estimated the coefficients for 2.3, it now remains to solve a separable 

differential equation of the form

~ dz 2
t —- = d\z +  a2z + a3, 

at

where z — f  (M ^(£)). The estimated evolutionary time corresponding to every 

element in C, can then be computed.
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2.1.1.1 T he S tationary M arkov M odel

Equation (16) in V eerassam y  et al. (2003) is the stationary Markov model. 

HASEGAWA et al. (1985) provide a description of this model using the DNA alpha­

bet. The principles behind this model are as follows.

Each amino acid (or some other character such as a nucleotide) can be seen to 

be evolving according to a Markov process. That is, a letter i from the alphabet is 

replaced by another letter j  from the same alphabet with probability Pij(t), where 

P(t) is some row stochastic matrix. What we want to model, here, is the time 

needed for this replacement to take place.

One starts with some substitution model that takes the form of a square matrix 

R. The elements of this matrix are pre-defmed. The well-known Jukes-Cantor R {JC\  

for example, is defined as

B C D  
i l l "

0 l l 
1 0  1 ’
1 1 0

with a four-letter alphabet suitable for DNA data, and we can extend it to a twenty- 

letter alphabet to deal with amino-acids. This dehnition means that as we try to 

model the substitution (or replacement) rate, we assume that when some letter is 

replaced by some other letter, substitutions are all equally likely. This, of course, is 

a naive scheme, but it is useful as a starting point. Biologists introduce parameters 

to allow certain substitutions to occur more (or less) frequently relative to other 

substitutions. For example, in the definition

R W  =

R(a)

A B C D
A ’ 0 1 CK 1
B 1 0 1 1
C 1 1 0 1
D 1 1 1 0

we introduce a parameter which would allow us to measure the rate of change from 

the letter A to the letter C relative to all other changes. If this parameter is smaller 

than one, then we infer that this substitution is less likely to occur than other 

substitutions, with everything else being equal. By imposing the restriction a = 1, 

and calling this restriction the null hypothesis, we can test the null against some
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alternative hypothesis of interest, say, a < 1. If the evidence that emerges from an 

experiment cannot reject the null, we would then infer that for the given body of 

data, R(a) is statistically the same as R (JC\

Rodriguez et al. (1990) present a number of substitution models for the nu­

cleotide alphabet. One thing to note about these models is that some are symmet­

rical while others are not. Throughout this work, I choose models only from among 

those that are symmetrical, commonly known as reversible models (e.g. Isaev, 2004, 

p. 126). Symmetry is a strong assumption, but for a typical data set of biological 

sequences used in this work it generally holds well, that is, the model proves to be 

robust and yielding reliable results.

My models also meet the four criteria of Rodriguez et al. (1990), namely, 

that a substitution rate is (a) site independent, (b) constant over time, (c) the same 

for the two sequences in the pairwise alignment, and (d) a process set against a 

background of letter frequencies which is computed from the two sequences and 

which is the same as that of the distant ancestor.

To do the computation in (d) I use

(R odriguez  et a/., 1990), where n is the size of the alphabet and x(t)ij is an ele­

ment of the divergence matrix X(t).  This matrix, however, is constructed from the 

pairwise alignment which is unobservable. Hence, the best I can do to compute qi 

is to do a simple count of each letter in the two sequences to construct X(t).

In theory, an element in X(t)  gives a count of how many times letter i G £, f  = 

some alphabet, matches (or mismatches) with letter j  E £ in the pairwise alignment 

at time t, bearing in mind that if we were to perform the alignment, say, one million 

years ago (that is, at t — 106) we would expect it to be different from what it would 

be today at time t measured in years. It is easy to see that at t =  0, x(0)y = qi if 

i = j, and is equal to zero otherwise. Thus X (0) = (qn <S> l j j  • I n x n ,  where (1) qn is 

the vector of background frequency counts whose n elements are usually normalised 

so that they sum to one and are then called the background probabilities; (2) the

n

(2.4)
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vector ln has all n elements equal to 1 and is first transposed before it is multiplied 

with qn; and (3) ( ® ) and (•) are the Kronecker and the Hadamard products, 

respectively. A final note about X(t)  is that in V eerassamy  et al. (2003) it is 

called the substitution frequency count matrix F. This is because these workers are 

constructing an approximation, or some "guess", of X(t)  using the Blocks databases 

for a specified element in C. This element is a discrete value that corresponds to 

some unobservable evolutionary time.

Two other important matrices are (1) the matrix of substitution rates Q and

(2) the evolutionary matrix P(t). RODRIGUEZ et al. (1990) define Q as the matrix 

whose elements are transient intensity functions of the stochastic process. Transient 

implies that Q is not a function of evolutionary time, and for this reason it is also 

commonly called the instantaneous rate matrix. For the purpose of my experiments, 

I implement Q in accordance with the following definition.

define : Q Rnxn Qn C l n)* Aixn  ̂ Inxm (2.5)

subject to :
n
X> = 1
i=l

i (1)

[ e h  = - 1, for i = 1, 2, • • • , n, and (2)

E [ofi = 0, for i =  1,2, • • • , n, (3)
3 =  1

where qn is the vector of background probabilities with n = 4, 20, or 61, depending 

on whether the alphabet is taken from biological encodings (BEs) DNA, protein, or 

codons, respectively. It is easy to see that Q is a function of the data -  owing to the 

presence of q -  and of the pre-definition of i?, and is not dependent on evolutionary 

time. Constraints (1), (2) and (3) ensure that background probabilities sum to one, 

and that elements in each row of the product of R and q also sum to one before the 

/  matrix is subtracted so that elements in each row of Q sum to zero.

To illustrate how Q is implemented, I shall use a simple numerical example.
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Let the substitution model be R(JC'\ that is, the Jukes-Cantor which I showed ear­

lier. Also, let q = (0.40,0.30,0.14,0.16). Substitution into 2.5 gives Q as

Q =

0 1 1 1  
1 0  1 1  
1 1 0  1 
1 1 1 0

0.40
0 .30
0 .14
0 .16

®  [ 1

\

/

1 0  0 0 
0 1 0  0 
0 0 1 0  
0 0 0 1

1 0  0 0 
0 1 0  0 
0 0 1 0  
0 0 0 1

- 1.000
0.571
0.465
0.476

0.500
- 1.000

0.349
0.357

0.233
0.200

- 1.000
0.167

0.267
0.229
0.186

- 1.000

(Cell entries for the computed Q are rounded to three decimal places for the purpose 

of this illustration.)

Now I deal with the matrix P(t), and to do so I appeal to Hasegawa et al. 

(1985). The probability PtJ (t) is designed to capture the event in evolution whereby 
a letter i changes to become letter j  over some amount of evolutionary time At, 

after evolution had been taking place over an arbitrary time t following the start of 

divergence. Since the matrix Q represents times that are transient, we can represent 

these Markovian transitions as

lim 
At— ►O

P(At) — /  T  QAt,

P{t +  At) = P(t)(I  +  QA£),

p(t + At) -  p(t))
At j At-° 1 At J

(2.6)

(2.7)

( 2.8)
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]  W ) d P { t )  =  J Qdt+

Qt = log eP(t) + (2.9)

P(t) = eQt. ( 2 . 10)

2.7 is an application of the Chapman-Kolmogorov equation. 2.8 is the standard 

form of the limiting theory of differential calculus. In 2.9, it should be easy to see

Veerassamy et al. (2003), although these authors use a slightly different notation, 

and they call M^c’ the mutability matrix.

To avoid notational ambiguities, from now on I shall use the following notation:

1. R : substitution (or replacement3) model matrix,

2. X(t)  : divergence matrix at time t,

3. Q : instantaneous rate matrix as a function of R  and of q ,

4. P(t) : evolutionary matrix at time t.

2.1.1.2 T h e P ro te in  R ep lacem en t M odel

In Section 2.1.1, I showed how V e e r a s s a m y  et al. (2003) constructed the

estimator i^  for any of the elements in the set C. Substituting these estimators

into 2.10 leads to a corresponding set of Q matrices, where = logeM ^ /ttc\  To

obtain a "universal" Q matrix for proteins, one can solve the non-linear program

3By convention, we use the term substitution for DNA and codon biological encodings (BEs) 
and the term replacement for protein BE.

that constant K' is zero since P (0) =  /. 2.10 is equivalent to M ^  = e&(<) in
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^  lie®' -  M<c>II 

minimise: > ,

subject to : Q = w^Q^c\
c

(1)

J2wic) = r

c

(2)

0 s: w[c) s: 1. ( 3 )

The R matrix of V eerassamy  et al. (2003) is displayed in Appendix B.2, 

with each element entered to four decimal places. Note that this matrix is derived 

from 2.5 after the optimised Q had been computed. This R  matrix is practical 

during implementation because unlike score matrices I can easily incorporate it as 

a "plug-in" within my modelling, along with other R  matrices.

2.2 T he G oldm an-Y ang M odel
The PMB instantaneous rate matrix Q(PA/ß) uses the amino acid as its unit of 

data. It is also constructed from the Blocks databases (H en ik o ff  and H e n ik o f f , 

1992), in which a large amount of evolutionary information is summarised. This 

means that Q^PAIB̂ can deal with sequence pairs that have a wide range of evolution­

ary times. In Chapter 3, I show how I constructed a protein data set by random sam­

pling of curated alignments stored in the BAliBASE database (T hom pson  et al., 

1999b) using Q^PAIB\  These pairs have relative evolutionary times (measured as 

the average number of replacements per amino acid) that vary widely between 0.25 

to 1.25.

The Q^PMB> matrix, however, does not account for several biological factors, 

namely, (1) the dependence of intra-codon nucleotides, (2) the difference among the 

substitution rates of intra-codon nucleotides, (3) the transit ion-transversion rate 

ratio, and (4) the nonsynonymous-synonymous rate ratio.
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n (G Y  94) 
Wij

0 for two codons that differ at more than one position

qj for synonymous transversion

\ k.Qj for synonymous transition (2-11)

ojQj for nonsynonymous transversion

ujnqj for nonsynonymous transition

To investigate phylogenetic trees, where selective constraints among lineages 

at the molecular level are of particular interest, Goldman and Yang (1994) and 

Yang (1998) developed the codon-based model Q ĜY94) shown in Equation 2.11.

While Q̂ PhIB̂ is an empirical model, Q 91) is a mechanistic model with two 

parameters (not including the q vector of background probabilities). One of these is 

the parameter k, which is designed to capture information on the ratio between the 

rate of transitions and the rate of transversions that accumulate between two species 

experiencing increasing divergence over evolutionary time. The other parameter is 

u whose role requires an understanding of the genetic code.

2.2.1 T he Standard G en etic  C ode

Table 2.1: Illustrating the redundancy property of the Standard Genetic Code.
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Table 2.1 shows the Standard Genetic Code as tabulated by the NCBI web 

site. Several other codes are also tabulated by NCBI, but in the present work only 

the standard code will be used.

The first thing to note about this table is that no matter which three letter 

combination we choose from a total of 64, the combination will always code for one 

of the 20 amino acids, with three exceptions, namely, TAA, TAG and TGA. These 

three are stop codons which, if present somewhere along the protein and not at the 

end, they would produce a truncated protein. Such a truncation would most likely 

be selectively deleterious. For this reason, a codon substitution model would, in 

general, impose the constraint that stop codons do not occur in a protein.

The next thing to note is that very often when we change the third letter, 

the new codon still codes for the same amino acid. For example, when we take a 

codon that codes for valine (Val), no matter how we change the third letter, the 

new codon still keeps coding for valine so long as we keep the first two letters intact. 

This redundancy is also true to a small extent for the first letter, but it is never true 

for the middle letter. If we were to assume that nucleotides are equally distributed 

across the genome, and that nucleotide substitutions occur randomly under a uni­

form distribution, we could then construct Table 2.2.

Position #  Synonymous #  Nonsynonymous % Synonymous % Nonsynonymous

1 8 166 4.6 95.4

2 0 176 0 100

3 126 50 72 28

Table 2.2: Variation of synonymous and nonsynonymous counts a t the three codon positions.

From this table we can see that on average no amino acid replacement results 

from 8 possible changes in the first position, but for the third position this number 

rises to 126. It is abundantly clear that we would expect the rate of nucleotide 

substitution to be highly variable among these two positions, and it is for this 

reason that the u  parameter plays an important role.

Before the u  parameter was introduced, N ei and G ojo bo r i (1986) and other 

workers had developed approximate methods to model codon substitutions. The
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N ei and G ojo bor i  (1986) method is centred on counting the number of synony­

mous sites 5, and the number of synonymous differences Sd, in a codons pairwise 

alignment with gaps removed. S  is a summation of constants for each codon in the 

alignment. For example, it is easy to see from Table 2.1 that codon TTA which 

codes for leucine (Leu) can change synonymously in only two different ways. To 

compute Sd, first, we have to determine by how many nucleotide sites each codon 

pair of the alignment differ, that is, 0,1,2, or 3. If the difference d is zero, then 

Sdm is zero for codon pair m (where m — 1,2, . . . ,  M  and M  is the length of the 

alignment) since no change occurred. If d is one, then Sdm is one if the change is 

synonymous, and is zero otherwise. If d is two, then we would have two possible 

pathways and a different transit codon in each path. In this case, Sdm is the total of 

synonymous changes from a total of four possible changes multiplied by J (assuming 

that pathways have equal probability). When the difference is three, we would then 

enumerate the six possible pathways with six different transit codons as shown in 

the following illustration using fictitious codons,

to similarly compute Sdm- $d is then determined by summing over m. The number 

of nonsynonymous sites N  and nonsynonymous differences N& are computed in a 

complementary way. Two statistics could then be estimated using the standard 

Jukes-Cantor formula (which takes into account multiple hits per site), that is, 

ds = — I logg (l — | ^ )  and dN — — |loge (l — | ^ )  (N ei and G o j o b o r i , 1986). I 

show estimates for ds and d^ in the first two rows of Table 2.3 for ten alignments of 

ten coding DNA sequence pairs randomly selected from BAliBASE for the purpose 

of this exercise.

The method of Nei and G oj obori  (1986) provides me with a precursor of
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A in  N u m 1 2 3 4 5 6 7 8 9 10

ds oo oo 1.179 oo oo 2.737 oo 1.783 0.676 oo

d u 0.265 0.256 0.185 0.307 0.270 0.198 0.205 0.147 0.205 0.339

k n 0) 0.257 0.236 0.172 0.275 0.269 0.202 0.198 0.165 0.155 0.294

* ( « - ! )
0.263 0.251 0.172 0.283 0.270 0.207 0.204 0.164 0.156 0.293

Ä( » a i ) 2.511 3.614 1.824 2.302 1.364 2.853 2.938 1.538 2.055 1.111

p  -  v a l u e (Hai  ) 0.001 0.000 0.070 0.009 0.406 0.000 0.000 0.440 0.014 0.810

* ("«a)
0.387 0.318 0.187 0.408 0.502 0.313 0.313 0.202 0.169 0.415

> a 2 ) 0.069 0.020 0.069 0.032 0.039 0.028 0.019 0.035 0.069 0.018

p - v a l u e (H a2 ) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

T able  2.3: ds  values, which depend on the  num bers of synonym ous substitu tions, are chaotic. T h is shows 
th a t it is very difficult to  m easure synonym ous su b stitu tions w ith th e  m ethod of Nei and Gojobori (1986). d/v 
values, which depend on th e  num bers of nonsynonym ous su b stitu tio n s are stab le  and am enable to  estim ation. 
Evolutionary tim e is cap tu red  by i using the  Goldman and Yang (1994) model, and is highly com parable to  
djv. k  is significant only when it is greater th an  two, and does not im pact on t. C ontrariw ise, Cj clearly shows 
signs of innovation, im pacting greatly  on t in m ost of the  alignm ents.

how the two distinct substitutions differ from each other. On the one hand, nonsyn­

onymous substitutions shown in row two are markedly stable. They also compare 

very well with the ML estimators shown in row three which are the average sub­

stitution rates computed using the GY94 model. The inference is that when we 

measure the average substitution rate in a pairwise alignment, what we could be 

measuring are those molecular changes that are well controlled (or constrained) by 
phenotypic dependencies, and hence also by natural selection. On the other hand, 

synonymous substitutions shown in row one are disparate, and most of them remain 

unmeasurable by this method. These type of substitutions do not generate amino 

acid replacements, and hence it appears that their behaviour is "erratic".

Questions that I posit here are, how do I develop a method that could give 

me better measurements of these erratic changes? Would it be possible to locate 

them positionally along the alignment and see how they cluster? If I could achieve 

this differentiation with statistical significance, would I then be able to estimate the 

transition-transvertion rate ratio k  and the nonsynonymous-synonymous rate ratio 

uj parameters within these non-conserved regions? How would these estimators differ 

from corresponding estimators within conserved regions?

Traditionally, the substitution rate has been studied as an average across the 

alignment. If we were to analyse the pairwise alignment purely as a biological
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device and not as an exercise in letter patterning, then we should incorporate sec­

ondary structure in our methods. Endogenously extracting knowledge on secondary 

structure can help us identify regions along the alignment that exhibit significantly 

higher substitution rates. In Chapter 3, I propose a two-region model that attempts 

to address these questions.

2.2.1.1 T he C odon S u b stitu tio n  M odel

The GY94 model is described in detail by Yang and N ielsen (2000) and 

in other places, (see for example G oldman and Yang (1994) and Yang (1998)). 

This model is parametric and requires the Maximum Likelihood (ML) method. It 

consists of a 61 x 61 instantaneous rate matrix Q (2.11). The diagonal entries of Q 

are scaled so that rows sum to zero, and

61 61

^   ̂QiQii ^   ̂QiQij 1 •
i=1 ?'=1

This formulation ensures that evolutionary time (captured by the estimator t ) is 

measured as the expected number of nucleotide substitutions per codon. What this 

means is that we have to divide t by three when we compare rates with those 
obtained using the PMB model.

In order to compute the ML, we require an explicit function that we can 

maximise using a numerical method such as simulated annealing. This function is 

defined as

61

log£(0|M) = lo§e , (2-12)
i,j=1

where A  is the pairwise alignment, and P(t) is the evolutionary matrix at time t. 

6 is the vector of parameters (t, ft, lj) that we want to maximise. For experimental 

purposes, we may not want to maximise all the parameters at once. Hence, I employ 

a binary vector, namely, b = (bi, b-2, 63) which allows me to select which parameters I 

want to keep fixed during optimisation in accordance with some specified hypothesis. 

Hence, to compute the estimates shown in row three of Table 2.3 under the
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null hypothesis, I set b = (1,0,0). This means that the optimisation routine will 

vary t only while keeping the other two parameters fixed to 1.0 during its search for 

the global optimum. For rows four and five b is set to (1,1,0), and for rows six and 

seven to (1,0,1), under alternative hypotheses one and two, respectively. To test 

for significance of k and uj, the \ 2 distribution is used with one degree of freedom.

From Table 2.3 we can see that the mutation parameter k gains in significance 

as it rises above 2.0 without, however, greatly affecting evolutionary time. On the 

other hand, the selection parameter lj is always highly significant even though it 

is very small across these ten alignments. At the same time, it impacts greatly on 

evolutionary time, indicating that we can view uj as an innovation parameter.

One remaining issue to be raised here is that 6 is estimated in 2.12 with A  

as given. This is too common in the literature. My contention is that a thorough 

analysis of a pairwise alignment should not assume that the given alignment is ex 

cathedra. What I mean is that the alignment itself is unobservable, that is, it too 

is a stochastic quantity and should, therefore, be part of the maximisation process 

using ML. In my formulation of the one-region model later in this chapter I show 

how alignment optimisation is incorporated in the ML procedure.

2.2.1.2 Com puting ds and d^

It remains to show how we can use the GY94 model to obtain ML estimators 

ds and dyv, and then compare these with corresponding estimators obtained earlier 

using the method of Nei and Gojobori (1986).

The vectors ( t , k , u  = 1) for all the ten alignments are shown in rows four 

and five of Table 2.3. These are estimators obtained before natural selection had 

a chance to operate at the amino acid level (Yang and Nielsen, 2000). We also 

require the corresponding vectors (i*,k*,u*) which are shown in Table 2.4. These 

estimators capture the effects of the innovation property of uo.

35



We can use (e.g. Yang and N ielsen, 2000, p. 34)

61

t* 6(i,j)qiQi:j(K*,uj*)

ds = — --------------------------, (2.13)
3 S(i, j)qiQij(k, lü = 1) 

i , j = i

where 6(i , j )  is one if ( i , j )  yield a synonymous change, and is zero otherwise, djy 

can be computed likewise after reversing the value of

A in  N u m 1 2 3 4 5 6 7 8 9 10

d s oo oo 1.179 oo oo 2.737 oo 1.783 0.676 oo

djsi 0.265 0.256 0.185 0.307 0.270 0.198 0.205 0.147 0.205 0.339

d N  / d s 0.000 0.000 0.157 0.000 0.000 0.072 0.000 0.082 0.303 0.000

0.405 0.316 0.187 0.414 0.515 0.316 0.313 0.203 0.181 0.414

* ( " a 3 )
1.556 1.502 1.449 0.654 1.131 1.179 0.890 1.384 2.850 0.905

* ( « 0 3  )
0.075 0.023 0.071 0.028 0.038 0.029 0.018 0.036 0.038 0.018

p  -  v a l u e ( H r i ) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

d s 2.194 1.970 0.954 2.213 3.159 1.839 2.118 1.282 0.996 3.268

d jv 0.333 0.299 0.237 0.415 0.346 0.256 0.255 0.213 0.214 0.377

diw / d s 0.152 0.152 0.248 0.188 0.110 0.139 0.120 0.166 0.215 0.115

T a b le  2.4: d s  and d ^  were com puted using the  GY94 model, p-values were com puted w ith two degrees of 
freedom.

Estimators ds and dn are shown in Table 2.4. They were obtained using the 

GY94 and maximum likelihood (ML). These estimators are asymptotically efficient 

under regulatory conditions owing to the ML property of invariance (e.g. G r e e n e , 

1997, p. 133).

From my ten randomly selected alignments, it can be seen once more that 

ds {dds — 0.75) is much more variable than d^ (o~dN = 0.07). Consistent with 

Yang and N ielsen (2000), the ratios of d^/ds  are underestimated when using the 

N ei and G o jobori (1986) method, with the only exception being alignment nine. 

This can be attributed to the high variability of ds . Finally, note the discrepan­

cies between Cj* and d^/ds- This reflects the fact that alignments consist of two
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sequences of finite length.

2.3 The H asegawa-K ishino-Yano M odel

The substitution model matrix R  in HASEGAWA et al. (1985) takes the follow­

ing form

T C A G
T ’ 0.0 a ß ß

R ( a , 0 ) =  CA
a
ß

0.0
ß

ß
0.0

ß
a

G ß ß a 0.0

where a and ß  are non-negative parameters designed to measure the transition and 

transversion substitution rates, respectively. It is common, however, to implement 

the model with only one parameter as follows

T 
T

R W  = CA

G

C A G
K 1.0 1.0

0.0 1.0 1.0
1.0 0.0 K

1.0 K 0.0

0.0
K

1.0
1.0

where k is the transition-transversion rate ratio parameter. The vector q of back­

ground probabilities for this model is estimated from the data using 2.4.

The HKY model in Hasegawa et al. (1985) was designed to deal with the 

relation between the rate of transition and the rate of transversion in Mitochon­

drial DNA taken from Hominoidea and from corresponding regions of bovine and 

mouse. The authors identified the transversion rate as the variable which, unlike the 

transition rate, could explain evolutionary time regardless of codon position. They 

employed their method with a multiple alignment of seven sequences -  with gaps 

removed -  to estimate times of divergence at each bifurcation of the phylogenetic 

tree. In the following I give an outline of this method. For this purpose I assume a 

pairwise alignment for simplicity.
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T

q ( H K Y ) _ C 
A
G

T c A G

- ( a g e  +  /3g.4 + 0Qg ) a q c 0QA 0QG

a q T ~ ( a q T +  0 q A + 0 q a ) 0Q A 0QG

0Qt 0QC ~ ( a q G + 0q  r  + 0<lc) a q G

0QT 0QC ocq a - ( a q A + 0 q T + 0 q a )

F igure 2.2: The Q m atrix  of Hasegawa et al. (1985), which I denote as ).

Figure 2.2 shows the HKY rate matrix ) as employed by the authors.

Note that they chose to retain a and ß in their formulation, and not reduce these 
two parameters to one, namely, n. They did this for the reason explained earlier, and 
they examined the transversion rate patameter ß rather than a when maximising 
the likelihood.

T C A G T C A G T C A G
1 ^ y 1 0 Q C Q y 1 etAl 0 0 0 <7t QC QA QG

1 - J y 1 0 - Q T Q y 1 0 e tA 2 0 0 Qr Qt q r q c - q y q a - Q Y Q G

1 - V QGQr 1 0 0 0 e tA 3 0 0 0 1 - 1

1 - V r - q a q r 0 0 0 0 gtA4 1 - 1 0 0

F igure 2.3: T he spectral decomposition of the  right hand side of 2.6 after applying the limiting theory of 
calculus and replacing Q with Q( HKy  ).

It can be shown that with this formulation the exponentiation of tQ(HAV  ̂ can 
be spectrally decomposed as in Figure 2.3. These three matrices can be multiplied 
to obtain the matrix in Figure 2.4. It can also be shown that the A’s in this matrix 
are as follows: Ai = 0, A2 = —/?, A3 = —qyß — qR&, and A4 = —qya — qRß , where 

qy = qr + qc and qR = qA + qG.
The aim is to construct analytically a likelihood function that can be max­

imised in order to obtain the ML estimator for the parameter vector 0, given the 

pairwise alignment A.

38



T C A G

T

c t X l q T  +

■ ' A2</y 1 1 R 1 T  +

t \ a - 1e 4 1 C 1 y

<7(7 +

e tA 2<7y 1 1 R 1 C ~  

e t X 4 1 C 1 y  1

c ' Al 1 A  -

e t X '2 ‘I A

e t x
i c  —

e l X 2 q G

C

e t A l 1 T  +

e t X 2 q Y  1 q R qrp -

e '  A4 q T q y  1

c t x U c -

e I X 2 q a

e ' A l < M -

*‘ a 2<m

, 1 x i c  -

<- 2 1 C

P ( t )  =

A
I X  ,<; 1 <!T  -

e l X 2 q r

e t X U C ~

e t X 2 q c

J A i
c 1 <M +

1 Y 1 A  +

t ' A3 q ( ; q H l

e t X 1 1 G  +

e t X 2  i j t 1 1 Y  1 G ~  

^ ^ i d R 1

G
e t X l  q ' p -

e t X 2 q T

t \  IC 1 q (7 -

t Ao ,t  2. q c

* t X l 1 A  +

e t X 2  1 f t 1 1 Y  1 A -  

e ‘ A 3 I A I r 1

c f \
1 1 C  +

r- I X 2 l J i 1 1 Y 1 C  +

t  A •} — 1
e R

F ig u re  2.4: P roduct of the  spectra l decom position of e t ( ^ { "  K  V .

Consider an alignment, with gaps removed, constructed from two sequences 

X  and Y  that belong to two species which diverged t million years ago. The align­

ment has length TV, and can be considered large enough to allow averages to be 

representative of the population means. Each site j  E {1,2, . . . ,  N}  is assumed to 
be independently and identically distributed (i.i.d.) and having a polynomial dis­

tribution with 42 possible states, as illustrated below

i.i.d. alignm ent site

XiX2- X j - X N 
YiY2- Yj Yn 

T
42 possible s ta tes per site

Note that in this illustration the superscript is 2 because I am considering a pairwise 

alignment. Had it been an alignment with three sequences, the polynomial distri­

bution would then have a total of 64 possible states, and so on. Denote the state 

at time t at site j  by Xj(t) in sequence X  and by yj(t)  in sequence Y,  where x and 

y can take any letter of the alphabet £ = {T, C, A, G}. It is also assumed that the 

process is stationary Markovian and reversible. Hence, for two extant characters
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a,b e {T,

P{xj(t) = a,yj(t) = b) = P{xj(t) = a,y}(t) = b \ =,j )P(=,j ), a ± b,

v qcPCa(t) Pcb(t), c is ancestral,

vqay^Pac(t)Pcb(t), (2.14)

vqaPab{2t), (2.15)

where Ej means that site j  mutates,

v is the probability that a given site mutates, 

2.14 is the Chapman-Kolmogorov equation, and 

?  =  {T,C,A,G}.

To construct the likelihood function, we need to compute counts Kn, Sm, av­

erages V(t),S(t),  variances and covariances ays, &sv of the number of mis­
matches in the alignment which are transversions (V ) and transitions (S ). Counts

N

are obtained using Vn — ^^<5j(a,b), where 8j{a,b) is one if the letters a, b on the
j =i

site j  yield a transversion, and zero otherwise. is similarly computed by setting 

the value of öj(a, b) to be one if the letters a, b on the site j  yield a transition.

To compute averages, we appeal to 2.15 and to the elements of the matrix in 

Figure 2.4. For the average number of transversions V(t),  we start by collecting the 

transversion terms from the matrix P(2t) and multiply each of these terms by vqa: 

with a G ( ,  as follows

vqT(e2tXlqA -  e2tX2qA), 

vqc (e2tXlqA -  e2tX2qA), 

isqA{e2tXlqT -  e2tX2qT), 

vqG(e2tXlqT -  e2tX2qT),

vqT(e2tXlqG -  e2tX2qG), 

isqc {e2tXlqG -  e2tX2qG), 

vqA{e2tXlqc -  e2tX2qc ), 

vqG(e2tXlqc -  e2tX2qc ).
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Adding these terms, recalling that X\ = 0 and A2 =  — /?, and that we have defined 

Qy  = Qt  + Qc arid qR = qA + qG, we obtain

V (t) = 2uNqYqR[\ -  e~2ßt}.

Similarly, for the average number of transitions S(t) , we collect the transition terms 

from the matrix P(2t) and multiply each of these terms by vqa) a € £, as before and 

obtain

vqT{etXlqc + etX2q y [qRqc  -  etXAqc qyl ),

vqc {etXlqT + etX2qy lqRqT -  etUqTqYX), 

uqA(etXlqG + etX2qRlqYqG -  etXzqGqr1), 

vqG{etXlqA + etX2q ^ lqYqA -  etXzqAqr1).

Adding these terms, and recalling that A3 =  —qYß  — qRa  and A4 = —qYa  — qRß , we 

obtain

S(t) = 2 i/N qrqc +  qAqc

+ {qrqc—  + qAqo— ) e  20 
'  Qy q R '

_ q A qC  ̂e - 2 t { q y  ß + q Ra) _  q^TßC^ ^ - 2 t { q Y a + q a ß )

qR qY

To compute variances and covariances, we use standard equations as follows

V(t)S( t )
CrV S — &SV  — ----------------------Tj -------------
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We can now define the following terms before constructing the likelihood function

D  =
CTSV <7|

Assuming D  ~  M(D,  3T2), the likelihood function can be written as

£(0 1.4) = (27rdet|n|)_^exp| -  i(£> -  D)'Sl-l (D -  D (2.16)

The parameter vector 6 has the elements (£, i/, <a, /?), and 2.16 can be maximised by 

minimising (D — — D).

Here it was possible for the authors to derive an optimisation criterion an­

alytically. This approach, however, is not practical when using HMMs to model 

heterogeneity of evolutionary rates with several parameters. For this reason, I 

had to consider other approaches for optimising the likelihood function. One such 

approach was the Baum-Welch algorithm, which I described in Chapter 1. This 

method, together with numerical approximation, allowed me to deal with a complex 

optimisation function which is not amenable to an analytical formulation.

2.4 In sertions and D ele tio n s

The three substitution models that I have described, namely, the PMB, GY94 

and HKY85, are all built around a sound mathematical structure. They are also 

amenable to exponentiation and to maximum likelihood so that they allow the evo­

lutionary time parameter to be computed as an asymptotically consistent estimator 

along a continuum while taking into account potential multiple hits on a single site. 

An important feature that they also share is versatility when applied to data sets 

that have a wide range of pairwise evolutionary times.

They have, however, a serious limitation. Each of these models is oblivious 

to insertions and deletions (indels). Intuitively, the greater the evolutionary time 

between two sequences, the more indels we can expect to encounter, and the substi­

tution model becomes less and less effective in comparative analysis. A substitution 

model, therefore, would require additional modelling to capture the effects of indels 

on the "true" alignment. We would want to consider a parameter that can capture
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the average rate of occurrence of indels, and a second parameter that can model the 

average length of these indels.

P a sc a r ella  and A rgo s (1992) studied indels in homologous pairs construct­

ed from a collection of 32 protein structural families stored in the Brookhaven Pro­

tein Data Bank. The results of these workers provide a strong motivation for the 

design of my one region model which I shall describe in this chapter. Here I give an 

overview of the relevant methods and results of PASCARELLA and A rg o s  (1992).

The authors considered all possible pairings of the aligned tertiary structures 

stored in the database at the time. The corresponding pairs of primary sequences 

were grouped according to the percentage identity c exhibited by each pair, with 

each c falling within a 5% interval. This grouping led to a histogram showing 

that most of the data had c values ranging from 5% to 35%, meaning that paired 

structures had accumulated a great amount of evolution. Within the context of this 

characteristic in the data, the following features emerged:

1. Once the length of an indel exceeded just one site in an alignment, the number 

of indels longer than one dropped sharply. This was evidence that the general 

assumption of species exercising great economy when mutating through dele­

tions and insertions of nucleotides would generally hold true. We would not, 
therefore, expect alignment models to produce excessively long gaps.

2. The behaviour of the average indel length {£) for c values between 5 and 60, re­

mained at about 2 for most of evolutionary time, and not until c dropped below 

25% that £ started to rise sharply. Even when £ increased, it did not reach more 

than 5, at which length it appeared to remain fixed. P a sc a r e ll a  and A rgo s 

(1992) stated that

The tendency then, once indel sites are established, is to reach an equilibrium 
length such that residues are inserted or deleted in a balanced manner with 
time. Furthermore, there is a limit, in general, to the size of an indel, around 
five.

This feature suggests that to model gaps, a discrete probability distribution 

which could rapidly reduce the probability of additional unit gaps occurring -

43



once a gap length had stabilised to about 2 -  would be suitable. For example, 

with the geometric distribution having parameter a set to 0.2, one could use 

the model

P(Indel Length = £) = (1 — a)a* 1 (2-17)

which would give a high probability of around 0.8 if £ was just 1. This prob­

ability would drop to just 0.15 if £ was 2, and to virtually zero if l  reached 

5.

3. An extrapolation after c had reached 4% showed that non-gapped sites of 

alignments converged to a length of about 8 sites. The inference here was 

that as the residue identity tends towards zero, the smallest average length of 

aligned residues is about eight, and this is approximately equal to the average 

length of an a-helix and a /3-strand. Here, therefore, was a strong indica­

tion that insertions and deletions do not target secondary structural elements. 

Pascarella and Argos (1992) stated that

... indels mostly intrude in turn and coil structures, and rarely encroach upon 
helices and strands...

It is, therefore, very important to incorporate secondary structure in pairwise 

alignment modelling.

4. The indel rate was shown to saturate at around 15% residue identity, or c — 15, 

where the rate was just over 5 insertions per 100 non-gapped sites. At lower 

c values, it was unclear how the rate of insertions actually occurred. This 

appears to be the reason why it becomes increasingly difficult, if not imprac­

tical, to align sequence pairs that expressed large divergence. Nevertheless, 

Pascarella and Argos (1992) made the observation that as c tended to 

approach zero, we would need on average seven non-gapped segments -  each 

having 8 aligned sites -  in order to have six insertions of 5 residues each. That 

makes a total of 86 sites, which is very close to 100 and is consistent with the 

previous features.
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For modelling purposes, the indel rate stays at around 1 per 100 aligned 

residues until c «  65%, after which it rises steeply, suggesting an exponen­

tial behaviour. Hence, in general, one could consider the model

Indel Rate = ^^^(o.eo-c/ioo) incjels/ aligned residue, (2.18)

where k\ and k2 are some suitable constants.

5. From among the 20 proteins, Glycine was the most frequent that flanked 

insertions, while Isoleucine was more likely to be located away from gaps. The 

proteins D, G, K, N, P, R, S and T, which are hydrophilic, were more likely 

to appear on the flanks of indels than other proteins.

This feature has been useful in deterministic modelling (T hompson  et al., 

1994). For the purpose of probability modelling, I have divided background 

probabilities into two sets, namely, the hydrophilic set 7i  and the nonhy- 

drophilic set 7i. By introducing the hydrophilicity parameter /i, I can re- 

estimate from the data the vector of background probabilites q using

q' = k(KHU(1 ~h)H (2.19)

where k is a suitable scalar so that the new elements in q' still sum to one.

The h parameter allows me to investigate whether there is a clear demar­

cation between hydrophilic and non-hydrophilic regions. It also allows me 

to test whether there exists a significant correlation, positionally in primary 

structure, between regions which are solvent and regions which exhibit faster 

(or slower) rate of evolution. Should I find that such a correlation exists, it 

would then be useful to know whether faster (or slower) rates of evolution are 

more likely to occur in hydrophilic regions of the molecule. This can shed light 

on evolutionary processes in coding DNA segments of the genome.
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2.5 T he P a ir H idden  M arkov M odel

H  M H <£

F igure 2.5: The PHMM with begin 53 state, end (£ state, align M state, delete X state and insert Y state. 
Transition probabilities are computed using the Knudsen-Miyamoto equations for specified parameters, namely, 
evolutionary time t, indel length a, and indel rate r. Note that probabilities a  and ß  emanating from 53 are 
the same as those emanating from M, and probabilities ß  and 7  entering (£ are the same as those entering M. 
States 53 and (£ are therefore redundant. However, 53 is useful when introducing starting values, and €  makes 
it easier to deal with the fact that sequences have finite and different lengths.

The pair hidden Markov model (PHMM) was formally introduced by 

D urbin et al. (1998) to address the issue of indels in probability modelling of pair­

wise alignments. Their formulation requires the estimation of a parameter vector 

that has five elements, namely, (q , ß, <5, e, 7 ) as shown in Figure 2.5. None of these 

five elements on its own can address directly the issues of indel length, indel rate 

and evolutionary time. To address these issues more directly and economically, 

K nudsen and M iyamoto (2003) proposed the theory that leads to a set of equa­

tions which I refer to as the Knudsen-Miyamoto (KM) equations. These equations 

reduce the number of parameters that need to be optimised down to three, includ­

ing the average indel length a and the average indel rate r. Together, these two 

parameters describe the indel component of the evolutionary process which had
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been studied empirically by Pascarella and A rgos (1992) as I described earlier. 

I summarise the KM equations as follows:

1 1 /f i w
a  =  - P l 1 - 2P4j - * ) \

\ap2V3 ~ (jpi  ~ 1)(1 ~ a) 
1 +

ß = l ~ P l ( l ~  ~P 2P s\

- _  | ( 1  ~  a ) a p 2 P A  +  | p i ( l  ~  a ) 2 

1 -  a + \ap2

e = \ap2(jpA + yz^) +  |P i( l  ~ a) + 

1 +  l a?>2(b ö )

where the probabilities pi, p2, P3 , and p4 are defined as

Pi =  1 ~ e P2 = f  -
Pi
2rF P3

1 — a a
1 7" ’ ^4 1 ' •
1 H” fl 1 “t-  CL

Probabilities p3 and p4 use the geometric distribution to model the indel length 

through the parameter a, while probabilities p\ and p2 use the exponential distri­

bution to model the indel rate through the parameter r. This is compatible with 
features 2 and 4, respectively, in the Pascarella and Argos (1992) study dis­

cussed earlier. The evolutionary time is measured in units of expected substitutions 

or replacements (Knudsen and M iyamoto, 2003) through the parameter t.

2.5.1 Transition P rob ab ilities M atrix

The transition probabilities are computed according to a Markov process rep­

resented by the matrix
M X Y £

<8 ’ ß a a 0

M ß a a ß
X 7 e S 7
Y 7 5 e 7

From the KM equations we can observe that each transition probability (with the
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exception of the 93 to (£ transition, which is set to zero since this transition is not 

interesting) depends on both the indel process and on evolutionary time between the 

two sequences. The PHMM, therefore, provides the additional modelling which is 

lacking in the substitution model. That is, it provides the explicit modelling of the 

insertion/deletion process through parameters a and r. Through p2, it also models 

instances when an indel event is followed by a second indel event at the same site 

of the alignment. This feature is important because the modelling of double indel 

events allow us to deal with sequence pairs that have a lower residue identity. The 

KM equation for the 5 transition probability also ensures that modelling for double 

events does not lead to fragmentation of gaps. Knudsen and Miyamoto (2003) 

stated that

... for a given evolutionary history, there is not always a unique alignment corre­
sponding to [that history].

For this reason they argue that it makes biological sense that we choose the align­

ment from all possible alignments that does not exhibit a high dispersion of gaps.

2.5.2 E m ission P robab ilities M atrix

The emission probabilities of the PHMM are constructed in accordance with 
Gönnet and Benner (1996), using (1) the emission matrices of the two sequences 

S i and S ‘2  being aligned, (2) the evolutionary matrix P(t), and (3) the vector q of 

background probabilities.

The emission matrix of a sequence would normally have elements that are zeros 

and ones. Due to machine error, however, some of the ones may have to be broken 

down to fractions wherever there is uncertainty in the identification of a nucleotide 

during the sequencing procedure. For example, let S i and S2 be the nucleotide 

sequences CTCGA and ASTCGT with emission matrices W  and Z, respectively. 

Note that the first sequence will have an emission matrix with only zeros and ones. 

This will not be the case with the second sequence since one of the letters does not 

belong to the DNA alphabet. There is sequencing uncertainty at the second position 

which has been designated as S. Hence, the emission matrices of 5i and 52 would 

take the following form
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C T c G A A S T c G T

T 0 1 0 0 0 T 0 0 1 0 0 1

C 1 0 1 0 0 C
, z  =

0 1
2 0 1 0 0

A 0 0 Ü 0 1 A 1 0 0 0 0 0

G 0 0 0 1 0 G 0 1
2 0 0 1 0

Note how the weight has been split into two for the alphabet letters C and G that 

correspond to the sequenced letter S in the second matrix.

Once the emission matrices are constructed, the matrix of emission probabili­

ties can be computed from the following matrix manipulations

Em„ ,  = ( P W ) ' ( ( q ® i n) * I nxn^PZ (2.20)

Exwxl = (PW)'q. (2.21)

Na,II
X

w
(2.22)

where n is the number of letters in the alphabet,

w and 2: are the lengths of ,Si and S 2 , respectively, 
the n elements of vector q sum to one, 

the n elements of vector 1 are all l ’s,

(0 ) and (•) are the Kronecker and Hadamard products, respectively, and 

t is omitted for notational convenience.

To simplify implementation, the three matrices EmwXz, Exwx1 and Eylxz are grouped 

together in one composite emission probabilities matrix as follows

For the simple example of S 1 and S2 , E  would take the form shown in Figure 2.6.
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M A S T C G T X

C E c a E c s E c t E c c E c g E c t E c -  1
T E t a E t s E t t E t c E t g E t t E t —
C E c a E c s E c t E c c E c g E c t E c -
G E g a E g s E g t E g c E g g E g t E g -
A E a a E a s E a t E a c E a g E a t E a -

Y L E _ a E - s E _ t E - c E _ g E _ t 0

F ig u re  2.6: In th e  (w +  1) X (z +  1) emission m atrix  E,  th e  top-left q u ad ran t holds emission probabilities for 
aligned positions of th e  pairw ise alignm ent. T he emission probabilities of every unique letter-pa ir com bination 
sum  to  one. T he top-righ t q u ad ran t holds emission probabilities for positions w ith deleted characters, while 
th e  bottom -left qu ad ran t holds emission probabilities for positions w ith inserted characters. In each case, 
probabilities corresponding to  unique characters sum  to  one. T he bo ttom -righ t quadran t is set to  zero since 
it is not interesting. M, X, and Y are th e  th ree  sta tes  of th e  PH M M , w ith  each s ta te  em itting  its respective 
m atrix  of emission probabilities th a t  sum  to  one.

T ransition 
Tn -1

Backward

Emission

Posterior

Forward

F ig u re  2.7: T he one-region m odel takes th ree  param eters, namely, evolutionary tim e t, indel length a, and 
indel ra te  r , along w ith  th e  d a ta  consisting of the  two sequences S i , S2 to  be aligned, i  is th e  estim ator for 
th e  expected num ber of substitu tions or replacem ents between th e  two sequences S \ , S 2 ■ It is also p a rt of 
the  PHM M  where ä and f  are  estim ated  by th e  M arkov chain according to  th e  transition  probabilities m atrix  
T. T his m atrix , together w ith emission m atrix  E,  is used w ith stan d ard  dynam ic program s to  com pute the  
set of forward probabilities m atrices F  and th e  set of backward probabilities m atrices B.  From these, the  
corresponding set of posterior probabilities m atrices T* are also com puted. T he la tte r  m atrices are used w ith  a 
stan d ard  trace-back procedure to  produce th e  alignm ent .4(0). T he index n is increm ented w ith each position 
of th e  alignm ent of sequences S i, S 2 . 0  is th e  vector of th e  ML estim ators i, ä and r. T here is also an additional 
param eter, namely, th e  sequence length s param eter, which optim ises for finite and unequal sequences. T his 
param eter plays a  relatively m inor role and is not shown.

2.5.3 O n e-R eg io n  M o d ellin g

Matrices T and E of transition and emission probabilities, respectively, are 

used with standard dynamic programs to compute the set of matrices F  and the
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set of matrices B  of forward and backward probabilities, respectively. These com­

putations are carried out iteratively as shown in Figure 2.7. The summation of 

the forward probabilities across all possible alignments at each iteration is used for 

maximising the following likelihood function

N

C(0\SltS2) =  J 2  n A m ( 0 ) ,  (2-23)
n=l ze<Si

je<s2

where Aijn{9) is the contribution of letters i and j  of sequences S\ and ^ 2 , 

respectively, of alignment n,

N is the number of all possible alignments, and 

6 is the parameter vector to be optimised.

Following maximisation, the ML estimator 6 is used to compute the set of tables 

T* of posterior probabilities. A standard trace-back procedure is then applied to 

construct the alignment A  from these tables, and to compute a posterior probability 

for each position of the alignment. Each of these posterior probabilities provides 

a measure of how strong the alignment is between the corresponding letter-pair at 

that position.

2.5.3.1 T he Trace-Back P rocedure

The trace-back procedure produces A from the three posterior probabilities 

tables T m , and Ty. It produces tim aligned character-pairs, nx inserts in Si, 

and riy deletes in Si from the three tables, respectively. The expectations E{um), 

E(nx)i and E{ny) of these three numbers is computed by summing all probabilities 

in each respective posterior probabilities table. By the property of invariance of 

ML, A(6) would -  asymptotically and under regulatory conditions -  also be the 

ML estimator (e.g. Greene, 1997, p. 133) of the true alignment if E(tim) =

IE(nM) — nM |, however, is a random variable whose distribution depends on the 

accuracy of the trace-back procedure. This procedure does not guarantee that this 

random variable is always not statistically different from zero. For this reason, A(9) 

is not strictly the ML estimator of the true alignment.
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C H A P T E R  3 

T h e T w o-R egion  M od el

3.1 M od ellin g  H eterogen eity  in M olecu lar E volu tion

Molecular evolutionists have long been aware that different segments of biolog­

ical sequences had been evolving at different rates ( F elsenstein and C hurchill , 

1996). Consider, for example, the argument that all morphological characters are 

ultimately controlled by DNA (Nei, 2005). These characters had been exposed to 

environmental changes over evolutionary time. It would follow, therefore, that sub­

stitution rates of DNA segments that control these characters would have evolved 

at different rates in order to allow corresponding parts of the phenotype to adapt 

to these environmental changes.

M argoliash and S mith (1965) and Zuckerkandl  and P auling (1965) 

had also argued that amino acid replacements are slower than neutral in regions of 

the protein that are functionally more important. That is, change in these regions 

had been suppressed to ensure that the species would not be adversely affected. On 

the other hand, in regions that are not critical to function, rates of replacement are 
faster than neutral. In this case, replacements are not detrimental to the species. 

They can also be slightly positively selected (N ei , 2005) because they provide better 

chances of survival to those individuals that acquire these variants.

It is therefore of interest to consider a pairwise aligner that takes into account 

potential heterogeneity of substitution rates along the two DNA homologues. It is 

not known, however, how this heterogeneity can best be stratified for the purpose 

of modelling. A reasonable starting point would be to divide heterogeneity into two 

broad regions, namely, the slow and the fast rates of substitutions. This would be 

compatible with secondary structure composition whereby a-helices and /^-sheets 

would constitute the conserved region at the core of the molecule, while loops, coils 

and turns would form the non-conserved region that is present on the hydrophilic 

surface. Given this setting, one would then expect substitutions to be scarce in 

the former region, while more common in the latter. From the empirical study of
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Pascarella and Argos (1992), for example, we know that indel processes are 

more likely to be active in the hydrophilic region which is the point of attack for 

this component of evolution.

T horne et al. (1992) pioneered the two-region pairwise aligner which assumes 

regional heterogeneity of substitution rates. This model treats regions along the 

evolving DNA as consisting of a variety of fragments, where each fragment evolves 

at its own rate and with a stochastic length drawn from some common probability 

distribution with one parameter. For the purpose of tractability, the authors cate­

gorise these fragments into two broad classes, namely, those that express a fast rate p 

and those that express a slow rate 1 — p. They also introduce a parameter k to relate 

these two regional substitution rates. From simulation results that they present, k 

appears to deviate greatly from the true value, and exhibits large variances. The 

parameter k may in fact be unnecessary since substitution rates in a region are likely 

to be dependent on secondary structure, and ultimately on phenotypic requirements 

related to that region, but not on the substitution rates of the other region. The 

authors also show concern that their model does not account for possible increases 

in the indel rate with increases in p. A more serious concern is, however, that the 

substitution rate p in the fast rate region is tied to the substitution rate 1 — p in the 
slow rate region. In reality, one would expect that the two rates are independent 

from each other; that is, one does not increase (or decrease) at the expense (or the 

benefit) of the other.

Independence between the two rates is necessary for the fact that slow and 

fast rates serve two unrelated purposes. The slow rate ensures that selection is more 

rigorous and precise, and hence needs more time to mature. On the other hand, 

the fast rate ensures that change does occur, even if the outcome of this change 

may not always be exactly what was needed. In fact, the outcome from the latter 

could even turn out to be slightly harmful, but still much better than if no change 

had occurred. Assuming that this premise is true, it should then follow that the 

two rates exist in parallel but separately. One would also not expect that the two 

putatively independent substitution rates, slow and fast, would be random variables 

necessarily drawn from the same probability distribution along the same stretch of
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DNA. One could consider, for example, that slow rates are normally distributed 

across species, while fast rates are drawn from some other non-normal distribution.

Independence between the fast and slow rate regions also lead me to reason­

ably hypothesise that there is a correlation between regional evolutionary rates and 

clearly defined parts of secondary structure. This correlation would be similar to the 

correlation suggested by G oldman et al. (1996), whereby species in a phylogeny 

are positioned in accordance with a hierarchy of evolutionary rates. Here, evolu­

tionary rates in different branches of the tree are non-independent, but they are 

also "averaged". Secondary structure in the data from which the phylogeny is de­

rived cannot be observed, but it can be estimated by employing a three state HMM, 

namely, a state for cuhelices (a), a state for /3-sheets (/?), and another state for ev­

erything else (L) (G oldman  et al., 1996). This approach leads to the modelling of 

evolution which takes place through amino acid replacements that are described by 

three phylogenetic trees rather than just one. Rates within each of these three trees 

are non-independent, but there is nothing to suggest that they are not independent 

between any two of the three distinct phylogenetic trees.

Focusing on these processes that are likely to have generated the data, I can 

now visualise a novel device to model a pairwise alignment. This device consists 
of two-tiered HMMs. The first layer seeks to tease out the true substitution and 

indel processes as in D urbin et al. (1998) and in K nudsen and M iyamoto (2003), 

while the second layer attempts to exp e correlation of the aligned sites with 

different parts of secondary structure, as I shall demonstrate later in this chapter 

and which we showed in Sammut  et al. (2006).

F elsenstein and C hurchill (1996) employ an HMM to allocate, to each 

site, a rate selected (that is, "emitted") from a category of pre-defined and finite 

number of rates. The category, here, represents the region along the molecule which 

is experiencing a slow or a fast rate of substitution. Thus, a region would consist 

of a "cluster" of rates contiguously emitted from the same category. These clusters 

are in turn correlated through a parameter A, which is equivalent to the parameter 

p in the T horne  et al. (1992) model. A is the probability that a rate from a 

category is followed by a rate from the same category. Note here that unlike in the
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T h o r n e  et al. (1992) model, regions, and rates from within the same region (that 

is, category), are assumed to be correlated, but no correlation is assumed between 

rates drawn from different categories. This seems to be the preferred specification, 

although rates in the F e l se n st e in  and C h u r c h il l  (1996) model are not estimated 

from the data, making this model a naive one-layered HMM, and hence is limited 

in what it can do.

Incidentally, at time of writing, I became aware of L ö y t y n o ja  and G oldm an  

(2008) who use the same two-tiered model with exactly the same HMM-PHMM 

topology as in Sa m m u t  et al. (2006). 4 These authors, however, parametrize their 

model using affine gap penalties for each of the two PHMMs (lower level), and prob­

abilities which are predefined and fixed to switch between the two PHMMs (upper 

level). At both levels, parameters are estimated from training data, namely, biolog­

ical sequences for parameters within each PHMM, and biological structure classes 

for parameters that switch between the two PHMMs. L ö y t y n o ja  and G oldm an  

(2008) aim to model multiple structure classes in multiple alignment settings.

3.2 The Two-Tiered HM M -PHM M  Topology
The PHMM has been formally presented by D u r b in  et al. (1998). My ap­

proach in applying this device for the purpose of aligning two biological sequences 

is based on the theory proposed by K n u dsen  and M iy a m o to  (2003). The mo­

tivation stems from the knowledge that the substitution rate is not homogeneous 

along the DNA (C h u r c h il l , 1989). There also appears to be a correlation between 

substitution rates and secondary structure (G o ld m a n  et al., 1996), and between 

indel processes and hydrophilic regions of the molecule (P a sc a r e ll a  and A r g o s , 

1992). My approach uses more than one PHMM to model different substitution 

and indel rates in different regions. It is not known what the optimal number of 

PHMMs should be, or whether such an optimal number exists. However, as I dis­

cussed earlier, it is reasonable to assume that heterogeneity can be categorised into

4LÖytynoja and Goldman (2008) have not cited Sammut et al. (2006). I presented the 
topology and the results at the poster session of the 11th International Congress of Human Genetics 
held at the Brisbane Convention & Exhibition Centre, Brisbane, Australia between August 6 - 10, 
2006. The abstract is published on-line courtesy ICMS who also hold a copy of the accompanying 
PDF file.
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two broad regions, namely, the fast and slow rates. Hence, my initial model is as 

in Sammut et al. (2006). That is, it consists of two PHMMs conjoined by a silent 

state denoted by © as shown in Figure 3.1.

F ig u re  3.1: T he double PH M M  topology (Sammut et a l 2006) has one silent 6  sta te . T h e  silent s ta te  
conceptually replaces the  begin and the  end s ta tes of th e  one-region model. It allows one to  join two PH M M s 
in such a  way whereby each PH M M  is allowed to  operate  independently from th e  other. T hus, when a sw itch 
occurs from P H M M o  to  P H M  M \ , & behaves as the  end s ta te  of P H M M o  and as th e  begin s ta te  of P H M M \ . 
Similarly, when a  switch occurs from P H M M \  to  P H M  Mo, & behaves as the  end s ta te  of P H M M \  and as 
th e  begin s ta te  of P H M M q- An im portan t property  of th e  silent s ta te  is th a t  it allows th e  KM  equations to  
be applied independently  to  each of the  two PHM M s. T his greatly  simplifies param eter ML estim ation  during  
optim isation. M ore im portantly , however, it models th e  two separa te  p a rts  of secondary struc tu re , namely, 
th e  conserved and th e  non-conserved regions.

3.2.1 T he T w o-R egion  Transition M atrix

The aim of the two-region model shown in Figure 3.1 is to capture each of the 

two broad categories of evolutionary rates by each of the two PHMMs, one with its 

own set of parameters optimised for slow rates and the other also with its own set of 

parameters optimised for fast rates. These two sets of parameters lead to two sets of 

transition probabilities as shown in the composite transition matrix in Figure 3.2. 

In this matrix, one set of probabilities is indexed zero to signify that they belong to
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PHMMo  that models one region, while the other set is indexed one to signify that 

they belong to P H M  Mi that models the other region.

Mo X0 Y0 M i X! Y i 6
6 do c*0 QO di a i Oi i 0

M 0 do QO oo 0 0 0 do
X 0 7o €0 *0 0 0 0 7o
Y0 7o <5o Co 0 0 0 7o

0 0 0 dl O i\ Q l d i
Xi 0 0 0 7i ei S i 7i
Y i 0 0 0 7i h €l 7i

F ig u re  3.2: T he conceptual transition  m atrix  T  of th e  two-region m odel is a  com posite of two 3 x 3  transition  
m atrices, one from each of the  two PH M M s in th is  model. A tran sitio n  w ith in  one of th e  PH M M s is sim ilar to 
th a t of th e  one-region model. However, a  transition  from one PH M M  to  th e  o ther PH M M  has to  be channelled 
th rough  the  silent s ta te  ©. Note th a t during an inter-region transition , th e  silent s ta te  acts as th e  end s ta te  
of th e  source PHM M  and as the  begin s ta te  of th e  sink PH M M , sim ultaneously.

The topology in Figure 3.1 constitutes the first layer of the two-tiered HMM- 

PHMM model. A second layer is needed to capture the alternating regions of slow 

and fast evolutionary rates along the DNA. This alternate behaviour of rate het­

erogeneity can be assumed to be a two-state Markov process which I model by a 

two-state HMM (Sammut et al., 2006) as shown in Figure 3.3 and which has a 

2 x 2  transition matrix. Transition probabilities po and pi can be viewed as region 
switching probabilities. Each determine when the flow in the current PHMM should 

traverse to the other PHMM via the silent state. Churchill (1989) showed that 

under stable DNA heterogeneity, these probabilities would normally be small. That 

is, I can expect heterogeneity not to be fragmented.

The begin state 93 plays a role only during the first step of the alignment 

process. The starting probability from 93 to the PHMMs is multiplied by the sta­

tionary probabilities 0j, j  G {0,1}, to average out the initial uncertainty of the 

forward dynamic program. Similarly, the end state (£ plays a role only during the 

last step. The last probability from each of the forward tables to (£ is multiplied by 

the sequence length parameter t*, i G {0,1}, in order to take into account the fact 

that the sequences being aligned do not have infinite length.

Transiting from one state of P H M M p  G {0,1}, to another state of the same 

PHMM has the same probability as that which is computed from the KM equations
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1 -  Po

F ig u re  3 .3 : T he tw o-sta te  HMM m odels the  two regions of th e  m olecular secondary stru c tu re , namely, 
th e  conserved and non-conserved regions. S ta tes Ro and R i em it PHM M o and PH M M i, respectively w ith 
probability  1.0. 53 and (£ are silent s ta tes  which are replaced by a  single silent s ta te  S  in th e  conceptual 
transition  m atrix  T  of th e  two-region model.

except that this probability is now multiplied by 1 — pv. Transiting from one state of 

PH MMv, T] G {0,1} to another state of PHMMi-v would require two probabilities 

computed from the KM equations, and both are multiplied by p v . For example, a 

transition from state M0 to state Y\ would be the product of do, Qi, and p0-

M 0 X 0 Y 0 M i Xi Y i

do 00 O 000 a o 0 o d l  01 a i 0 i a i 0 i 0

Mo d o ( l  -  Po) Q o(l — Po) o 0( l  -  Po) dodipo d od ip o do£*iPo do r 0

X 0 7 o ( l  -  Po) eo ( l  -  Po) <5o(l -  Po) 7odiPo 7oOipo 7o£*ipo 7oTo

Y 0 7 o ( l  -  po) S 0 ( l  — Po) eo ( l  — Po) 7odiPo 7oOipo 7o£*ipo 7oTo
M i d id o p i dlOoPl dlOoPl d i ( l  ~  Pi) c t i ( l  -  p i ) £*i(l -  p i ) d m
X i 7 id o P i 7ictoPi 7 i QoPi 7 i ( l  -  Pi) e i ( l  -  Pi) <h(l -  Pi) 7lT l

Y! 7 id o p i 7i£*oPi 7 i a oPi 7 i ( l  -  Pi) S i ( l  -  p i) e i ( l  -  Pi) 7 m

F ig u re  3.4: T he im plem entation of th e  two-region transition  m atrix  T  has transition  probabilities consisting 
of p roducts of probabilities taken bo th  from th e  conceptual tran s itio n  m atrix  and from th e  tw o-state  region 
HMM. Each row is norm alised to  make T  row stochastic. Note also th a t th e  silent s ta te  6  is now replaced by 
th e  begin s ta te  03 in the  first row and by the  end s ta te  (£ in th e  last column.

Figure 3.4 shows all the probability transformations that produce the two- 

region transition matrix that can be implemented in dynamic programming after
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each row had been normalised and made to sum to one. Note also that the begin 

state 93 and the end state £ are also restored as a result of this transformation.

3.2.2 Emission Matrices for the Two-Region Model

A s T C G T X r,

C E ^ c a E u,CS E»j,c t E u,C C E r,,C G E r,,C T E r ,,C —
T E ^ t a E u ,TS E ^ t t Er?,TC E r,,T G E r ,,T T T N , t —
C E ^ c a E u,cs e u ,c t E u ,c c E r,,C G E r,,C T ^ E t, ,c -

G E?7,GA e u ,g s E u ,GT e u ,g c E r,,CC E r ,,C T ^ E tj.G -
A E t7,AA E „ ,a s E r,, AT E r ,,AC E r,,A G E r,, AT E t,,A  —

Y u - E ^ - a E?7.-S E ^  - T Er,,—C E t,> —G E r,, —T 0

F ig u re  3 .5 : T he emission m atrix  E of Figure 2.6 is extended to  cater for two PH M M s by introducing the 
index 77 € {0, 1}. E is now a  vector of emission m atrices w ith num ber of elem ents equal to  num ber of regions.

The emission matrix of each PHMM in the two-region model is the same as 

that specified for the one-region model described in Chapter 2 . Each matrix is 

indexed according to the regional PHMM it is assigned to. Emission matrix E 

shown in Figure 3.5 is therefore a vector of matrices whose elements are ordered, 

starting from region zero, and the number of these elements is equal to the number 

of regions being modelled. Each element is indexed by 77 and inherits the same set 
of parameters assigned to the region 77 it belongs to, and receives corresponding 

estimators determined by ML during optimisation.

3.2.3 Two-Region Modelling

Figure 3.6 shows the two-region model in schematic form. The PHMM in each 

region is represented by the corresponding transition and emission matrices. As in 

the one-region model, these two matrices share the same substitution (or replace­

ment) rate parameter tv, 77 E {0,1}, which is assigned to its region independently 

of the other parameter t i - v assigned to the other region. Likewise, parameters av 

and rv are assigned to corresponding transition matrices.

The two-region model differs from the one-region model in three important- 

ways. First, the transition matrix of each PHMM now has an additional parameter, 

namely, pv. This parameter is also estimated from the data. Its estimator decides
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F o , n - l

to, S i  , S 2

’0 , n — 1

t l ,  S i ,  S 2

l , n —1

Region Switch

Emission
E ' l . n - l

Backward
B \ n

Transition

Posterior
_  F  l . n X ß ]

Forward

Transition

Emission

Backward

Posterior
_  F p . T l  X B l ) .  7t

Forward

F ig u re  3.6: In th e  two-region model, each region is identified by th e  index num ber of th e  input param eters 
tv , av , and  rv , and of the  m atrices Ev , Tv , F and of each P H  M M v , 77 €  {0,1}. T he region switch 
connects directly  to  th e  transition  m atrix  of each PHM M , and sw itches from P H M M o  to  P H M M \  th rough 
param eter po, and from P H M M \  to  P H M M o  th rough p a ram ete r p\.  T he dynam ic program  in each PHM M  
steps forward and backward th rough th e  index {n: n = 1 , 2 , . . . ,  N},  where N  is the  num ber of all possible 
alignm ents. T he num erical optim iser reads from th e  th ree  forward m atrices in Fo  of region one and from 
th e  th ree  forward m atrices in F 1 of region two to  com pute th e  m axim um  likelihood C (2.23). Likewise, the  
trace-back procedure reads from the  th ree  posterior m atrices in T'o of region one and from th e  th ree  posterior 
tab les in of region two to  produce th e  alignm ent A(6).

which region each alignment site should belong to in order to achieve a better 

likelihood. Thus, pv would switch the HMM signal from PHMM^  to PHMMi  

if this would cause the likelihood to rise, otherwise, pi^v would switch the signal
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from P H M M i-v to P H M M V. Second, the likelihood function C(6\S\, S 2 ) is now 

dependent on a parameter vector 6 which is a collection of parameters sourced from 

two PHMMs rather than just one during optimisation. Nevertheless, the optimiser 

remains oblivious to the fact that more than one region are being modelled. It simply 

continues to receive values that are additive from the forward dynamic program of 

each corresponding PHMM. Finally, the trace-back procedure reads from six rather 

than three posterior probabilities matrices; that is, three tables belonging to region 

7] G {0,1} are collected in ^ v, whereby each of this set of three tables had been 

computed through the forward and backward probability tables of the corresponding 

region.

3.3 M od el T esting

Figure 3.7 shows simulation results consisting of one-sample t-tests and of two- 

factor ANOVA tables for each biological encoding (BE), namely, protein, codon, and 

DNA.

Knudsen and M iyamoto (2003) tested the parameterisation of the PHMM. 

My aim here was to test the double PHMM topology as a two-region model by 

varying one parameter at a time across two regions. To carry out the test, I simulated 
sets of 12 alignments for each BE under the corresponding regimes of parameter 

values, as shown in the three tables on the left of Figure 3.7. Each cell in these 

tables, for each combination of parameter values, gives a p-value obtained from a 

one-sample t-test. Each of these p-values is computed from a data set consisting 

of 24 point estimators. These were obtained by optimising the likelihood over two 

parameters across the 12 alignments of the corresponding set.

3.3.1 Sim ulations

The same 24 point estimators were used to carry out two-factor ANOVA anal­

yses with Kij = 24 (i.e. D e v o r e , 1990, p. 413). Factor A is made up of the three 

evolutionary distances shown in the first row of the three tables on the left. Factor 

B is made up of parameter settings shown in column five of the same tables.

The p-values obtained from the one-sample t-tests show that H0: x = x0 is
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retained for all parameter combinations for the protein and DNA BEs at the 5% 

level of significance. For the codon BE, however, H0 is rejected once at t\ = 0.4 and 

four times at t\ > 0.4. This can be expected owing to the fact that the GY94 model 

is designed for close homologues, where the distance is assumed to be less than 0.4.

The p-values obtained from the ANOVAs provide a similar picture at the 5% 

level of significance. First, Factor AB is not significant in all three tables. That is, 

there is no significant interaction between distance t point estimators and all other 

point estimators. This means that I can interpret directly the effects of Factor A 

and Factor B on model performance.

Second, for all three BEs, Factor B has no significance on model performance. 

That is, model performance can be expected to be the same regardless over which 

parameter, other than the distance t parameter, I am optimising the likelihood.

Finally, for the protein BE, Factor A has no significance on model performance. 

That is, I can align sequence pairs with evolutionary distances of at least 0.8 without 

compromising alignment quality. This is not the case, however, with the codon and 

DNA BEs. Once again, this is expected since both the GY94 and the HKY85 were 

designed for close homologues. On the other hand, as I discussed in chapter 2, the 

PMB model is based on the H enikoff  and H f ni kof f  (1992) BLOSUM matrices 

and is linearly informative on a wide range of replacement rates.

3.4 D a ta  S e ts

The main aim throughout this work was to investigate the effect of secondary 

structure elements (such as (1) a-helices, /^-sheets, and coils in protein polypep­

tide chains, and (2) base-pair helices and bulges in RNA strands) on the substi­

tution rates between biological sequence pairs, whereby each pair is considered 

to have diverted independently and over evolutionary time. To carry out the in­

vestigation, protein sequence pairs were sourced from the BAliBASE 3.0 database 

( T hompson  et al., 2005), and RNA sequence pairs were sourced from the European 

ribosomal RNA database (W uyts et al, 2004).
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From each of these two databases, multiple sequence alignments that were 

deemed suitable for my experiments were downloaded. From each of these align­

ments, a phylogeny was constructed in two steps. First, pairwise evolutionary dis­

tances were computed using the standard Neighbour-Joining method. Second, Max­

imum Likelihood was employed to optimise the likelihood function of the tree that 

had been obtained from the first step.

To each phylogeny, a post-order traversal was applied in order to extract se­

quence pairs that do not share the same immediate ancestor within the same phy­

logeny. Figure 3.8 shows an example of a phylogeny constructed from a multiple 

alignment taken from the BAliBASE database after searching under the unique 

key BBS 12002. Following maximisation of the likelihood function of this tree, a 

post-order traversal yielded three sequence pairs, namely, (1) RLl_HALVO and 

RL1_BUCAP with an evolutionary distance of 1.647 and sharing ancestor num­

ber 1, (2) R10A-TRYBR and R10A_ENTHI with an evolutionary distance of 0.987 

and sharing ancestor number 2, and (3) lcjs_A and lmzp_A with an evolutionary 

distance of 1.121 and sharing ancestor number 3. The distance between each of 

these three pairs is indicated by the bolded line sections within the phylogeny in 

Figure 3.8. The important feature of each of these three bolded lines is that each 
is separate from the other two, and each is bifurcated by a different ancestor. That 

is, for experimental purposes I can assume that each of the three pairs never shared 

evolutionary events with either of the other two, and evolved independently over evo­

lutionary time. Hence, I call these units phylogenetically independent pairs (PIPs). 

PIPs that had been randomly sampled can also be assumed to be independently 

and identically distributed (i.i.d.), and hence they constitute a data set which is 

amenable to standard inferential techniques that are based on the Central Limit 

Theorem and Maximum Likelihood.

3.4.1 T h e P ro te in  D ata  Set

A total of 808 protein PIPs were extracted from Reference Sets 1, 2, 3, and 5 

of the BAliBASE 3.0 database. I excluded Reference Set 4 because this set contains 

alignments with very long extensions. This characteristic could be problematic when 

searching for a "good" alignment. For the same reason, I used only BAliBASE
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1

RL1-HALV0 RIOAARYBR R10A_ENTHI RL1-BUCAP l c j  S-A lmzp_A

Figure 3.8: The phylogeny is constructed from a multiple alignment stored in the BAliBASE database under 
the unique key BBS12002. The alignment consists of six protein sequences resulting in six tips. A post-order 
traversal classified these tips into three pairs whereby each pair does not share the same immediate ancestor, 
and hence can be considered as having diverged independently for experimental purposes.

truncated alignments under search keys prefixed by BBS in order to construct PIPs. 

This approach avoids effects due to large end gaps and increases the chance of 

the optimiser finding global optima, rather than mere local optima, by exploiting 

homologous domains (T hompson et al., 2005). Figure 3.9 shows a boxplot of the 

relative evolutionary times -  or distances -  of the 808 PIPs. For the purpose of 

my experiments, the spread of these distances was too wide, ranging from 0.03 to 

2.36 with numerous mild and severe outliers all located at the upper end and hence 

heavily skewing the data set. The lower and upper fourths show that most PIPs have 

distances concentrated around a median of 0.71 with a spread of about 0.4 on either 

side. I decided, therefore, that a suitable range of distances for my experiments 

would lie approximately between 0.3 and 1.2.

In designing a data set, a good strategy was to subdivide the sample into
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bins with a bandwidth of 0.25. A narrow bandwidth would not contain enough 

PIPs to sample from effectively, while a wide bandwidth could lead to non-uniform 

sampling. Table 3.1 shows nine bins, starting from the smallest distance. It is 

clear that bins 2 to 5 (with shaded colour) contain PIPs whose statistics are better 

in that differences in the means are precisely 0.25, and differences in the standard 

deviations are uniform and small. At the same time, each of these four bins turn out 

to have sizes large enough to allow random sampling of 30 PIPs per bin that lead 

to a large number of potential unique experimental samples. Any of these samples 

can be constructed in order to allow experiments to be repeated. Figure 3.10 shows 

boxplots for each of these four bins, whereby each boxplot reveals a wide fourth 

spread and no outliers in each bin, hence eliminating skewness in each.

CDOD OECCDOO O OO

Figure 3.9: The boxplot shows that PIPs extracted from the BAliBASE database have a large fourth spread 
and a large number of outliers. Lower and upper fourths indicate that a suitable data set would consist of 
PIPs with distances ranging between 0.25 and 1.25.

3.4.2 The Codon D ata Set

Part of the objective in this work was to repeat experiments carried out using 

protein sequence pairs with codon equivalent sequences. For this purpose I obtained 

the DNA equivalents of the 808 protein PIPs using a Python script written by Peter 

Maxwell. Using the script, I accessed the NCBI Protein and Nucleotide sequence 

databases. Protein records for all truncated sequences extracted from BAliBASE 

were fetched using protein codes. Cross-references from each protein record were 

used to identify the corresponding DNA sequence. The coding sequence, identified 

using the feature table of the DNA record, was extracted. After removing the ter­

minal stop codon, it was then stored in a fasta formatted file. Using this procedure,
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B in S ize M in M ax M ed ia n M ea n D iff-M S D D iff-S D

1 99 0.027 0.249 0.196 0.176 - 0.061 -

2 185 0.250 0.498 0.378 0.372 0.196 0.075 0.014

3 140 0.502 0.749 0.607 0.618 0.246 0.071 -0.004

4 126 0.750 0.995 0.875 0.871 0.254 0.068 -0.002

5 78 1.004 1.249 1.109 1.124 0.253 0.071 0.003

6 64 1.251 1.497 1.374 1.373 0.248 0.077 0.006

7 40 1.500 1.734 1.611 1.617 0.244 0.072 -0.005

8 25 1.761 1.993 1.839 1.869 0.252 0.077 0.005

9 14 2.009 2.153 2.071 2.078 0.209 0.047 -0.030

T a b le  3.1: T he BAliBASE sam ple of 808 P IP s yields bins of varying sizes. Nine bins are constructed  on the 
basis of distances, w ith a  bandw idth  of 0.25 per bin. Bins 2 to  5 are su itab le  for experim ental purposes since 
they  cover th e  range of interest, namely, 0.25-1.25. They also present inter-m ean differences of precisely 0.25 
and present also the  sm allest in te r-standard  deviation differences of ju s t ±0.003 approxim ately. T he size of 
these four bins also allows a  large num ber of unique experim ental sam ples to  be draw n, w ith 30 P IP s per bin, 
and hence provide th e  m eans for repeating  experim ents and replicating  results.

I collected a total of 1187 DNA sequence equivalents as compared to the 3359 pro­

tein truncated sequences stored in BAliBASE 3.Ü. The final data set of 808 PIPs 

was then derived from the intersection of these DNA and protein sequence pools 

following ML maximisation of the protein trees as described in 3.4.1.

3.4.3 T he R N A  D ata  Set

Figure 3.11 shows two boxplots of the RNA data set. The first boxplot shows 

the spread of two sets of PIPs extracted from two RNA trees that had been down­

loaded from the European ribosomal RNA database. The first tree yielded 74 PIPs 

while the second yielded 151 PIPs, a total of 225 unique PIPs. However, the spread 

of the distances of these PIPs was very narrow, just 0.00 — 0.25 approximately, 

with severe outliers at each end.

To increase the spread, and to reduce outliers, I decided to prune several times 

the second tree (since this was larger than the first tree), collecting PIPs with larger 

distances at each pass. This procedure yielded 105 unique PIPs which, together with 

the 74 PIPs from the first tree produced the second boxplot. From this boxplot it can 

be seen that the spread of distances increased to 0.00 — 0.44 with no outliers. From 

the 105 PIPs from the second tree, 25 were randomly selected, and together with 

the 74 from the hrst tree, an RNA experimental sample of 99 PIPs was constructed.
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0.25 0.38 0.50

0.31 0.44

0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

1.00 1.11 1.25

----------------- 1 i ~ l -------------------
1.06 1.19

0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30

F ig u re  3 .10: B oxplots for bins 2 to  5 from th e  nine bins shown in Table 3.1. All four bins exhibit no outliers, 
and exhibit also reasonably large fourth  spreads. These p roperties make these bins su itable for sam pling, w ith 
30 random ly selected P IP s per bin.

3.5 T h e E xp erim en ta l S ettin g

The data sets were constructed to carry out experiments for the purpose of 

testing hypotheses. Some of these hypotheses address the question as to whether 

there exist two broad classifications, along the DNA or protein, of some element of 

interest that contributes to evolutionary processes. The most important of these 

elements is the substitution (or replacement) rate t. Hence, a test can typically be
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o o o
0.11 0.17

F ig u re  3.11: T he first boxplot shows the  spread of RNA P IP s  d istances before pruning, while the  second 
shows th e  spread after pruning. T he pruning procedure increased the  range while e lim inating all outliers. 
Equally im portan t, it moved th e  m edian closer to  th e  centre, thus greatly  reducing skew in the  experim ental 
data .

set as follows. In order to test whether there is a significant difference between 11 in 

region one and t2 hi region two, of the two sequences being aligned, define

H0: t\ = t2, versus (3.1)

Ha■ ti ±  t2.

To test 3.1, I would maximise the likelihood function 2.23 twice. For protein se­

quences, first use the vector 0o =  (t\ = t2, aq =  a2, rq = r2, h\ = h2, p\ =  p2 = 0.5) 

under the null5. Then use the vector 6a = ( h , t2,ai = a2,ri = r2Ji\ — h2, pu P2 ) 

under the alternative. I set the level of significance at 5%, and compute a p-value 

with 3 degrees of freedom. The latter is 3 because under Ha, the parameter t is 

allowed to vary as two independent parts, one in each region, instead of one, thus

5Note that under the null the topology is equivalent to a one-region model. Hence, p \ and p 2 
can also be allowed to vary freely without affecting the degrees of freedom. This would not have 
any significant effect on the null but would considerably increase computational time.
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increasing the degrees of freedom by one. At the same time, region switch parame­

ters pi and p2 are also relaxed in order to find the best region for the substitution 

(or replacement) rates at each site of the alignment. This relaxation increases the 

freedom by a further two degrees.

Let C 0 be the log-likelihood obtained from the likelihood function under the 

null and C a be the log-likelihood obtained under the alternative. It can be shown 

that a X2 statistic can be constructed as

for each alignment.

Since alignments are made from PIPs which are assumed to be i.i.d. (as I 

explained in Section 3.4), a \ 2 statistic can also be constructed over a set £ of n 

alignments whereby each alignment in the set has ip > 0. This condition would 

not be satished if the optimiser were not able to locate the global maximum for 

a particular alignment, as I explained in Chapter 2. In most cases, however, the 

two PHMMs in the two-region model shown in Figure 3.6 produce a smooth surface 

while maximising the likelihood function. This is due to the nature of the forward 

dynamic programs that sum over all possible alignments at each iteration. As a 

result of this property, only a few PIPs (if any) result in <p < 0 and would need to 

be removed from the set £. To test for 3.1 over the set £, the y2 statistic is now 

constructed as

where n is the number of alignments that have p > 0.

3.6 R esu lts

3.6.1 H yp oth eses T esting -  P rote in

Table 3.2 shows nine null hypotheses that I have tested against their corre­

sponding alternatives using the two-region model in Figure 3.6, together with (1)

V? — 2 ( £ a C o )  ~  X (a=0.05, 3) (3.2)

n

(3.3)
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T est H0 Ha d . f . n m X>T. d . f - s p —v a l u e r C o n e  h 0 C o n c n a

(1) (2) (3) (4) (5) (6) (V (8) (9) (10) (11)

1 Xl=X2 h\^h2 3 114 10 390.12 342 3.71 x 10~2 0.9085 0.9081

2 Xl=X2 t\^ t2 3 116 64 1304.99 348 1.30 X  1 0 - 110 0.9425 0.9437

3 X1 —X2
a\^a2,
r\±r2 4 93 18 417.96 372 5.01 X  10~2 0.8960 0.8843

4 h i^ h 2
h i ^ / 1 2 ,
£1 7 ^ 2

1 110 78 1179.88 110 1.24 X  IO "178 0.9455 0.9497

5 t \^ t2 t \^ t2 1 102 37 353.14 102 2.11 x 10~29 0.9576 0.9658

h\^h2,
6 h\^h,2 ai^a2,

r\^T2
2 99 29 408.13 198 1.09 x IO-16 0.9187 0.9052

7
a\^a2,
n # r 2

hi^h2, 
a\^ü2, 
r \ ^ r  2

1 113 40 384.62 113 2.58 x IO“ 31 0.9476 0.9548

£1 7^ 2 ,
8 t \^ t2 a i^ a 2 ,

r\+V2
2 73 4 136.68 146 6.98 x 10“ 1 0.9544 0.9606

9
01̂ 0 2 ,
n ^ r 2

£it^£2, 
a i^ a 2 ,  
r 1 ^x 2

1 92 54 776.08 92 8.93 x IO "109 0.9326 0.9444

Table 3.2: T able shows resu lts of th e  nine tes ts  which use th e  protein  d a ta  set. Colum n num bers are shown 
in brackets under each title  heading. C olum ns 2 and 3 show th e  experim ental se tting  under H0 and Ha, 
respectively for each test, where the  no tation  is as described in th e  tex t. C olum n 4 shows th e  num ber of 
degrees of freedom applicable for each corresponding test. C olum n 5 shows th e  num ber n of alignm ents th a t 
had ip >  0. C olum n 6 shows th e  num ber m  of alignm ents from th e  corresponding n  alignm ents th a t were 
significant a t th e  5% level (p-values w ith d.f. degrees of freedom  not shown). C olum n 7 shows th e  sum  of 
tp (as per 3.3) across th e  corresponding n alignm ents. C olum n 8 is th e  p roduct of th e  corresponding d.f. 
and n. C olum n 9 is th e  p-value com puted for th e  %2 d istrib u ted  s ta tistic  ip£ in colum n 7 w ith degrees of 
freedom equal to  d.f.?, in colum n 8. Colum ns 10 and 11 show th e  average concordances of th e  n alignm ents 
w ith corresponding curated  alignm ents under H0 and  Ha, respectively. (Note th a t  these average concordances 
depend also on m.  For exam ple, C oneh d is different for Tests 1, 2, and 3 because m  is different for these th ree  
tests.)

the protein data set and (2) the experimental setting. I described the latter two 

in sections 3.4.1 and 3.5, respectively. xa = xb means that, with the exception of 

Pa — Pb — 0.5, all corresponding parameters in regions a and b are restricted to 

vary equally in the two regions. A not-equal sign means that the two parameters 

indexed a and 6, along with pa and pb, are allowed to vary freely and independently 

in regions a and 5, respectively. An important aspect of this table lies in the n
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values of column 5. These vary from 73 in Test 8 to 116 in Test 2. As I mentioned 

earlier, the optimiser does not find a global optimum in some cases, and this artifact 

required me to trim my sample size at each test. The average trim across the nine 

tests was 15.6% which I consider to be reasonable since, throughout my experiments, 

(1) I always used the same initial values to reduce computational time, and (2) I 

always retained the optimiser "default values" to ensure there was no subjective 

manipulation among alignments. Thus, although I had to prune a small number 

of alignments in each test, I also ensured that no optimisation bias was introduced 

among the remaining alignments.

Tests 1 to 3 show that while all other parameters in region one were set equal 

to their corresponding parameters in region two, the hydrophilicity parameter h in 

Test 1, the replacement rate parameter t in Test 2, and the indel parameters a and 

r in Test 3, contributed to a significantly higher likelihood when allowed to vary 

freely and independently in two regions at each test. From these three tests, I make 

the following inferences.

Test 1 : More hydrophilic content is present in one part of the molecule than in 

another. This is as I had expected because it is known that solvency exists 

more abundantly near the surface rather than at the core.

Test 2 : Replacement rates produce a very clear demarcation between slow and 

fast rates of replacement along the primary structure of amino acids. This 

result was also expected, but the extremely small p-value is notable, providing 

strong evidence that the difference between rates of replacements in two regions 

of the molecule is unequivocal.

Test 3 : Although the evidence is weak, there is also a significant difference be­

tween the joint effect of indel length and indel rate (i.e. a U r) in one region 

and in the other on the likelihood. This difference has not been quantified 

in the literature because similar models often omit gaps in the alignments 

under study. One exception is ClustalW whereby one of its main assump­

tions is that indels occur more frequently in hydrophilic regions as reported in 

Pascarella and Argos (1992). Even in ClustalW, however, quantification
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is made indirectly and subjectively with the aim of "improving" the alignment 

(T hompson et al., 1994).

These three tests show that the model components, namely, h, t , and a U r 

play a different role in one region of the molecule than they do in another region 

of this molecule. They also show that the difference between the two roles is very 

strong for t but is somewhat weak for h and for a U r. These weaknesses could be 

attributed to the data set consisting of protein BE. What these tests do not show 

is whether the two roles are positionally concomitant along the primary structure 

of the protein among the three components. For example, I cannot infer whether 

a region of component h positionally coincides with a region of component a U r 

along the polypeptide.

I designed the remaining tests to investigate collocation among these three 

components. I define collocation between any two components, whose parameters 

are allowed to vary freely and independently in two regions under the alternative, 

to exist if the levels of the estimators for the two components are both high (or both 

low) in the same region.

Test 4 : The number n of alignments that have <p > 0 decreases when h and t vary 
freely and independently in two regions simultaneously. This suggests that 

there is some degree of confounding between h and t in the model, making 

it harder for the optimiser to hnd the global maximum. While the optimisa­

tion performance is marginally reduced, however, the number m of significant 

alignments increases from 64 to 78. At the same time, p-value^ is much lower 

than that obtained in Test 2. This suggests that collocation between hv and 

iv, 7] E {1,2}, is most likely.

Test 5 : Again n decreases from 114 to 102, while m  increases from just 10 to 

37. The latter is a substantial increase, while p-value^ drops sharply. These 

results further confirm that the evidence of collocation is strong. That is, 

hydrophilicity and replacement rate need to be modelled together in two regions 

in order to test for a potentially better likelihood when using protein BE.
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Test 6 : Collocation also appears to exist between hydrophilicity and indels. Now, 

however, n increases from 93 to just 99, providing some indication that these 

two components do not seem to be confounded. That is, it is somewhat easier 

for the optimiser to find the maximum likelihood when h and a U r vary 

freely and independently in two regions simultaneously. Furthermore, p-values 

shows that in the presence of hydrophilicity, indels are easily identifiable, with 

m increasing from 18 to 29. This is an improvement on the result I obtained in 

Test 3 where I allowed a U r to vary freely and independently while restricting 

all other components to vary equally in two regions. In Test 3, the evidence 

on the basis of the p-values was weak.

Test 7 : Similarly, n remains essentially the same, while m increases from just 10 

to 40 and p-values drops sharply. The results obtained from Tests 6 and 7 are 

consistent with results reported in P ascarella  and A rgos (1992) where it 

is shown that indels are more likely to be found in solvent regions.

Tests 8 and 9 : In a similar vein, replacement rates and indels varying freely and 

independently in two regions are confounded -- note the large drop in n from 

116 in Test 2 down to 73 in Test 8. There is insufficient evidence here to 
suggest that collocation between t and a U r exists.

3.6.2 Replacement Rates in Hydrophilic Regions

In this section I investigate further the hypothesised collocation between hy-

drophilicity and replacement rates. For this purpose I define a new test as follows

H0: X \  = £2 , versus (3.4)

Ha: hi 7̂  /i2, ti 7̂  t2.

The results from test 3.4 were n = 120, m  = 63, and p-value^ =  4.39 x 10-113 with 

d.f.Y, = 480. Furthermore, I counted the number of times, among the m(= 63) 

alignments under Ha, the feature of interest, namely, fast replacement rates and 

high hydrophilicity are collocated, occurred. For notational convenience, I denote 

this feature by $(h,t)-
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F ig u re  3 .12: T he graph illustra tes a  sta tistica l tes t whereby th e  null, namely, th e  population  proportion  
p = p a of P IP s possess a  specified quality, is tru e  when p lies between 79% and 92%. T he valid ity  rule (i.e. 
Devore, 1990, p. 308) is applied due to  a  reduced sam ple size after testing  for significance of th e  su b stitu tion  
ra te  and of th e  hydrophilicity param eters during pairw ise alignm ent. T ype II erro r against th e  a lternative  
hypothesis, nam ely H a ■ p =  0.70, is also shown.

The graph in Figure 3.12 illustrates the statistical test concerning the popu­

lation proportion p of protein PIPs that have the feature Q(h,t)- The null hypothesis 

is stated as pQ% of PIPs have this feature, and the alternative is stated as The null 

is untrue. From a random sample of m =  63 PIPs, X  = 56 were found to have the 

feature Q(h,t)i where X  is assumed to have approximately the binomial distribution. 

Considering that m is large, both X  and p — X/m  are also approximately normally 

distributed with E(p) = p and ap = y/p{l — p)/m. When H0 is true, E(p) =  p0, 

<jp = y/p0( 1 — p0) /m , and the test statistic is

__ P Po ATfC\  1 \
Z ~  /  / 1 w =  ~\JPo\ 1 - P o ) / m

(i.e. D e v o r e , 1990, p. 308). The test is valid only if both mp0 and m (l — pQ) are 

equal or greater than 5. As can be seen in Figure 3.12, the sample of 63 observations 

is not large enough to span the potential range of H0 not being rejected. The validity
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rule slightly truncates the right hand side of the range of proportions that can be 

hypothesised to be true under the null. Nevertheless, the sample is large enough 

to allow me to infer that conditional on the replacement rate and the hydrophilic 

content present in the molecule being statistically significant, a very high percentage 

of protein sequences -  approximately between 80% to 90% -  exhibit collocation of 

these two components that contribute to evolutionary processes. That is,

under th e  a ssu m p tio n  o f  reg ion a l h e te r o g e n e ity  o f  su b s titu tio n  ra tes , high  

su b s t itu t io n  ra tes in  co d in g  D N A  are m o stly  to  b e  found on  th e  surface  

o f  th e  m o lecu le  w h ich  is m ore a m en a b le  to  w ater  and fu rth est from  th e  

core.

Type II error probabilities, (e.g. D e v o r e , 1990, p. 309), after setting the alternative 

hypothesis to some reasonable level, say, Ha: p = 70%, are also shown in Figure 3.12. 

My choice of 70% is conservative. I am safe to assume that if the null turned out to 

be untrue, the probability p being as small as 70% is very small, and the probability 

p being less that 70% would be even smaller still. Another alternative would be 

p greater than 92%, but for the purpose of my investigation, this range is not 

interesting.

3 .6 .3  In d e ls  in  H y d ro p h ilic  R eg io n s

To investigate collocation between hydrophilicity and indels, I defined the 

following test

H0: x\ = x2, versus (3.5)

H a -  hx % h2, ai % a2, n  ^  r2.

The results from this test were n = 114, m =  23, and p-values =  1.16 x 10-8 

with d ./.s =  570. That is, the percentage of significant alignments was just 20%, 

and this is much lower than that obtained from 3.4, which was just over 50%. 

Indels, therefore, are not as heterogeneous as replacement rates. It was interesting, 

therefore, to examine indel lengths and indel rates separately.

Among the 23 significant alignments, 20 had the feature Q^r) and just 10 

had the feature Q(/,,a)- An upper-tailed sign test gave a p-value of 0.00024 for the
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former feature, and 0.7976 for the latter. This means that high indel rates, like high 

replacement rates, are collocated with the solvent regions of the molecule, but indel 

lengths, whether short or long, are not.

These two results are consistent with two important findings reported in 

P ascarella  and A rgos (1992), and which I discussed in Section 2.4. The first 

was that indel lengths have a tendency to reach equilibrium. That is, the evolution­

ary process of insertions and deletions takes place in a balanced manner, irrespective 

of how much evolution had taken place. In the two-region context, this means that 

indel lengths would reach saturation whether they are located in regions experienc­

ing slow, or in regions experiencing fast, replacement rates. This property makes it 

difficult for the optimiser to distinguish indels in slow regions -  core -  from indels in 

fast regions -  solvent -  of the pairwise alignment, thus resulting in less alignments 

possessing the feature Q(h,a)-
The second important result in PASCARELLA and A rgos (1992) was that in­

dels are more tolerated in those regions which are more solvent, that is, indels occur 

more often in regions that consist of turn and coil structures. This makes it easier 

for the optimiser to distinguish indel rates that are fast in one region from those that 

are slow in the other region, resulting in more alignments with the feature Q(h,r)-
To confirm these two results, 1 defined one last test, namely,

H0: x\ = x2, versus (3-6)

Ha: ti ± t2, ai ±  a2, r l ±  r2.

The results from this test were n — 101, m = 42, and p-value^ =  2.10 x 10~5' with 

d-f-z = 505. Thus, of the 42 significant alignments, 31 had the feature Qq,r), and 

just 19 had the feature §(t ,a)-  For the former, a sign test gives a p-value of 0.0014, 

and for the latter, a p-value of 0.322. These two results are expected since I had 

established that fast replacement rates are collocated with solvency. That is, indel 

rates can be expected to behave similarly when observed in fast replacement regions 

and in hydrophilic regions of protein sequences.
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3.6 .4  H yp oth eses T esting  -  Codon

I repeated the protein experiments using (1) the same data set in codon BE 

and (2) replacing the PMB model with the GY94 model -  the latter I described in 

Section 2.2. In order to reduce the number of degrees of freedom, I set u  =  1.0 in the 

GY94 model throughout- the codon experiments. I explain further on this setting 

and deal with uj varying freely and independently in two regions in Chapter 4.

The results obtained from the codon alignments are shown in Table 3.3. As in 

the protein experiments, all three components, namely, hydrophilicity, substitution 

rates, and indels, are significantly different between two regions. Note especially the 

zero measures of the p-valuess in column 9 for hv and for tv, r/ E {1,2}. Also, the 

significance of the joint effect of äv and rv varying freely and independently in two 

regions is now clearer. Finally, the transition-transversion rates ratio estimators k^ 

have no statistical significance, and hence the k parameter will not be considered 

further in a two-region context.

3.6.5 C ollocations — C odon

Tests of hypotheses on collocation, using the codon data set, are summarised in 

Table 3.4. This table shows that with the GY94 model, only the feature §(t,h) comes 
out as significant. This can be attributed to the fact that confounding is strong 

when using this model, as I mentioned earlier. This model has the disadvantage 

of not allowing the optimiser to detect collocation effectively. This point is further 

illustrated in Figure 3.13 which shows that the proportion of alignments that have 

the feature §(t,h) varies over a range of percentages that- are much lower than those 

shown in Figure 3.12. Note also that Type II error probabilities, with Ha: p = 55%, 

rise rapidly as the range approaches the alternative.

3.6.6 M odel D ep en d en ce

When nesting hypothesis, the codon data set yielded m:n ratios that were 

different from those that had been obtained with the protein data set. These ratios, 

together with the corresponding p-valuess (shown in brackets), are summarised in 

Table 3.5 both for protein and codon BEs.
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T e s t H 0 H a d . f . n m d- f -Y. p —valu e j: C o n c f i o C o n c Ha

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

1 Xi=X2 h\^h,2 3 119 117 8173.09 357 0.00 0.9327 0.9465

2 X1 —X2 t l f r 2 3 119 108 3630.86 357 0.00 0.9283 0.9319

3 X\~X2
a i ^ a 2,
n ^ r 2 4 103 29 738.04 412 7.88 x 10~21 0.8712 0.8444

4 X\ ~X2 Kl7^K2 3 120 3 130.68 360 1.00 0.7341 0.7391

5 h\^h,2
hi^h2,

2
1 113 53 976.26 113 1.98 X I O “ 137 0.9306 0.9487

6 t l#*2
h\^h,2,
t\^t,2 1 118 109 5359.65 118 0.00 0.9352 0.9458

h\=£fi2,
7 h\^h,2 ai^CL2,

r i / r 2
2 94 5 259.53 188 4.24 x 10“ 4 0.7670 0.8932

8
a i # a 2,

a i / a 2 ,
r i # r 2

1 117 103 6151.61 117 0.00 0.9312 0.9479

0 # <2 ,
9 t\^t,2 a i ^ a 2,

n # r 2
2 98 4 140.01 196 9.99 x IO“ 1 0.8729 0.8837

10
a i ^ a 2,
n ^ r 2

U t̂ 2 ,
ai7^a2,
r i ^ r 2

1 119 104 2769.99 119 0.00 0.9100 0.9315

T a b le  3.3: Table shows ten  tes ts  using th e  codon d a ta  set and  th e  experim ental setting . T he notation  is the  
sam e as in Table 3.2. C olum n num bers are shown in brackets under each title  heading, u  was set to  1.0 in 
each test.

Ratios for protein BE increased each time I changed the nested hypothe­

ses. For example, starting with the nested hypothesis Hnested'. X\ = X2 shown in 

columns 2 and 4, I obtained m\n ratios 0.0877 and 0.5517, respectively. Each of 

these two ratios increased substantially when I changed the nested hypothesis. The 

first ratio increased from 0.0877 to 0.3627 when I changed the nested hypothesis to 

Hnested'■ T 7̂  t2 (column 3). The second ratio increased from 0.5517 to 0.7091 when 

I changed the nested hypothesis to Hnested'. h\ ^  h2 (column 5). For the codon BE, 

however, the reverse is true. The two ratios in columns 3 and 5 can be seen to have 

decreased; the second one substantially. A similar behaviour was observed when I
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F eature m:g p -value

Q(t,h) 120:83 1.62x 10-5

Q(/i,a) 111:35 9.99x 10_1

£(h , r ) 111:62 1 .2 7 x l0 _1

Q(t,a) 96:40 9.59X 10"1

Q(t,r) 96:43 8.69x 10-1

Table 3.4: Collocations computed from the codon data set.

z-statistic

Type II Error Probability

to 080

0.767 0.780.605

Proportion (p) under the Null

Figure 3.13: Statistical test concerning the population proportion p of protein PIPs that have the feature 
using the codon data set. Type II error against the alternative hypothesis, namely Ha: p =  0.55, is also 

shown. The validity rule is omitted because m  =120 is a large sample and makes the rule unnecessary.

nested hypotheses using indel parameters (summaries not shown).

It is clear that inference drawn on parameters that are allowed to vary freely 

and independently in two regions is model dependent. This conclusion is based on 

the fact that I have used the same data set, and the same experimental setting, 

with each of the two models, namely, PMB and GY94. This model dependency is 

explained by the fact that the two models are structurally different as I explained 

in Chapter 2. The PMB model is in its great part an empirically derived model, 

using BLOSUM matrices, while the GY94 is a mechanistic model. The PMB model 

is based on averages that span a wide range of evolutionary distances and therefore
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B E X l = X 2
h i  ^ h 2

t l ^ t - 2 .
t i ^ t - 2 ,  h i ^ h 2

X \  — X 2  
t l ^ t 2

h i ^ h 2
h \ ^ h 2 ,  t i ^ t 2

(1) (2) (3) (4) (5)

P ro te in
0.0877 0.3627 0.5517 0.7091

(3.71 x 10~2) (2.11 x 10-2 9 ) (1.30x 10-110) (1.24x 10-178)

C o d o n
0.9832 0.9237 0.9076 0.4690
(0.00) (0.00) (0.00) (1.98X 10~137)

T a b le  3.5: Table shows rrv.n ra tios obtained from each of th e  four tests , using protein and  codon BEs. Values 
in brackets are corresponding p-values^. Colum n num bers are shown in brackets under each title  heading.

it is less sensitive to model parameters. That is, information on evolution which the 

model extracts depends more on its own specification and less on parameter values. 

This feature makes it easier for the optimiser to find the best likelihood at each 

alignment since much of the information is provided a priori

3 .6 .7  H yp oth eses T esting -  R N A

Table 3.6 shows the results of three hypotheses using the RNA data set. Test 

1 shows once more a clear demarcation between slow and fast regions, with 91% of 

the alignments showing significance, p-values of these alignments is zero, suggesting 

that the distinction between the two rates is unequivocal and essentially ubiquitous.

T e s t H o H a d . f . n m d - f - s . p —v a l u e r , Conc//Q Concna

1 X 1 = X 2 tl7^2 3 98 90 5085.40 294 0.00 0.9555 0.9639

2 t\^ t 2
tl^t2,

2 1 87 7 140.23 87 2.62 x 10“ 4 0.9721 0.9704

3 X \ = X 2 ri^r2 4 98 86 5163.10 392 1.30 x IO“ 110 0.9543 0.9630

T ab le  3.6: Table shows th ree  tes ts  using th e  RNA d a ta  set and th e  experim ental setting. The notation  is 
th e  sam e as in Table 3.2.

Test 2 shows that there is confounding between indel rate and substitution 

rate when they are allowed to vary freely and independently in two regions simul­

taneously, with n dropping substantially from 98 to 87. Although p-values shows 

clearly that indel rates varying freely and independently in two regions are distinct 

between the two regions, this distinction is not common among alignments since m

81



is just 7. That is, only 8% of the alignments that expressed p > 0 were significant 

in this sample of 99 alignments.

In these tests, using the RNA data set, I did not test for the indel length 

varying freely and independently in two regions. The previous tests had shown 

that there is no evidence of collocation between the substitution rate and the indel 

length, and hence I decided to omit testing for whether indel lengths varying freely 

and independently in two regions contribute significantly to the likelihood. I also 

did not include rq r2 in H0. The reason for this is that from Test 10 in Table 3.3

it is clearly shown that nesting rq ^  r2 did not have any effect on the likelihood. 

Considering that r and t are multiplied together, or "coupled", in the KM equations, 

the impact is derived solely from the substitution rate, and further testing would be 

unnecessary.

The purpose of Test 3 was to test for collocation of fast substitution rates with 

fast indel rates. Of the 86 significant alignments (m =  86), only 41 had the feature 

Q(tjr). A sign test gave a p-value of 0.705, thus showing clearly that the two rates are 

not collocated. I conclude, therefore, that collocation seems to be a property solely 

of the hydrophilicity component in protein data.

3 .6 .8  C on cord an ces

For each test in Tables 3.2, 3.3, and 3.6, concordances were computed and 

averaged only for the m  alignments that were significant at the 5% level. (This 

is the reason, for example, Concn0 is different for Tests 1, 2, and 3 in Table 3.2.) 

Also, for each test, the average concordances were computed twice, that is, under 

H0 and under Ha, each time using corresponding estimators. This regime provided 

me with a practical measure of by how much additional parameters varying freely 

and independently in two regions may (or may not) improve alignment "quality". 

For example, from Tests 1, 5, and 7 in Table 3.2, I can reasonably assume that 

allowing component h to vary freely and independently in two regions on its own is 

not likely to improve quality (Test 1). However, quality appears to improve in the 

presence of component t (Test 5) and in the presence of components a and r (Test

7).
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To compute the concordance of an alignment, the column score (CS) defined
M

in T hompson  et al. (1999a) was used. That is, CS = ^  C*, where M  is the
i =  1

number of sites in the test alignment, and C\ is 1 if site z, z = 1 ,2 , . . . ,  A/, is the 

same as the corresponding reference site, else C* is 0. In both Tables 3.2 and 3.3, the 

best average concordance occurs when the substitution rate and the hydrophilicity 

parameters are optimised simultaneously under the two-region assumption, namely, 

Test 5 under Ha. Here the average concordance is 95 to 96 %. This is a good 

result when compared to what is often reported in the literature. E dgar  (2004), 

for example, reported that multiple aligners MUSCLE, MUSCLE-p, T-Coffee, and 

ClustalW, all performed at about the 88% mark when benchmarked with BAliBASE 

curated alignments. The disadvantage of these aligners is that they are based on 

heuristics. My two-region model, on the other hand, is a dynamic programming 

algorithm that constructs the alignment on the basis of ML estimators which, under 

regulatory conditions, are asymptotically efficient (e.g. G r e e n e , 1997, p. 133). The 

only limitation of my two-region model lies in the trace-back procedure which selects 

a "good" alignment from among many possible good alignments but not necessarily 

the "true" alignment.

The true alignment is a random variable, and hence it is also unobservable. For 
this reason, concordance measures should be treated only as a guide. All alignments, 

including curated alignments such as those stored in BAliBASE, are statistics which 

only try to be as close as possible to the true alignment. We cannot know which 

of these alignments is the closest to the true alignment. My aim was to build a 

model based on maximum likelihood (ML). This approach allowed me to obtain 

ML estimators which, given that the biological sequences are long enough, can be 

expected to be efficient under the usual regulatory conditions (e.g. G r e e n e , 1997, 

p. 133). This feature is the linchpin of my alignments. I can assume, therefore, that 

my pairwise alignments are the best that one can possibly construct given the data. 

On the basis of this assumption, I can postulate that when using protein or codon 

BEs, a good approach to obtaining the best possible pairwise alignment would be 

as follows.

First, model either the substitution rate parameter or the hydrophilicity pa-
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rameter to vary freely and independently in two regions, while each of the other 

parameters is forced to vary equally in these two regions. Define this alignment 

as the null alignment. Then model both the substitution rate parameter and the 

hydrophilicity parameter to vary freely and independently in the two regions simul­

taneously, while each of the other parameters is forced to vary equally in the two 

regions. If a likelihood ratio (LR) test shows that this alignment is significantly bet­

ter than the null alignment, then consider this alignment as the "best" alignment 

under the two-region assumption.

From Table 3.6, the highest concordance was achieved in Test 2 under H0. It 

should not be hard to see that this does not mean that alignments in Test 2 under 

H0 were the best alignments. What it actually means is that the curated alignments 

are further from the "true" alignments than the alignments obtained in Test 2 under 

H a .
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C H A P T E R  4 
F u rth e r R esu lts

4.1 E volu tionary  R ates D istribu tions

To investigate the distribution of substitution rates in each region, I plotted 

histograms of the slow and fast substitution rates point estimators obtained from 

the 108 significant PIPs of the codon experiment under Test 2 in Table 3.3.

F ig u re  4.1: T he histogram  with ten  bins 
of th e  108 slow su b stitu tion  ra tes point 
estim ators obtained under Test 2 in Ta­
ble 3.3.

The histogram of slow substitution rates point estimators is shown in Fig­
ure 4.1. This plot reveals that the distribution appears to be normal. A Shapiro- 

Wilk test showed that the null hypothesis should be retained, with a p-value of 

0.2419. That is, there is evidence to suggest that slow substitution rates point 

estimators from my sample of 108 PIPs are normally distributed.

A similar plot (shown in panel 1 of Figure 4.2) of fast substitution rates point 

estimators reveals that the distribution is clearly not normal. A Shapiro-Wilk test 

now had a p-value of just 0.0138 after taking the natural logs, thus strongly rejecting 

the null. This was expected because fast substitution rates estimators were highly 

erratic throughout my experiments in Chapter 3. Another observation was that 

some of these estimators exceeded the upper limit of 50.0, which I had set arbitrarily 

during the experiment.

Panel 1 of Figure 4.2 shows the fourth test of a series of ten tests that I 

carried out for fast substitution rates estimators. The results from these ten tests
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Test Trim P IP s p-value

1 50 89 0.0002

2 45 84 0.0018

3 40 82 0.0034

4 35 79 0.0138

5 30 76 0.0723

6 25 72 0.5893

7 20 70 0.9191

8 15 67 0.9345

9 10 63 0.3773

10 5 43 0.0384

Table 4.1: Ten tests for normality of the natural log of fast substitution rates point estim ators were carried 
out. PIPs were trimmed at each test, eliminating those tha t had fast substitution rates estimators higher than 
the pre-set level shown in column two. p-values were obtained using the Shapiro-Wilk test.

2 3 4 5 6 7 8 9  10
Bins of Fast Rate PIPs

Test 5
Number of PIPs = 76 
p-value = 0.0723

Number of PIPs = 70 
p-value = 0.9191

Number of PIPs = 63 
p-value = 0.3773

Bins of Fast Rate PIPs

F igure 4.2: Ten tests were carried out to investigate the distribution of fast rates. The six panels show 
histograms for those among the ten tests, namely Tests 4 to 9, tha t had the highest Shapiro-Wilk test statistic 
in Table 4.1 with sufficiently high number of PIPs.

are listed in Table 4.1. At each test, I trimmed the PIP data set so that all PIPs 

remaining had fast substitution rates estimators that were not greater than a pre-set 

level. These pre-set levels are shown in column two of Table 4.1. An inspection of 

this table reveals that the p-values obtained from the Shapiro-Wilk statistic increase 

substantially under Tests 6 to 9. The corresponding histograms in Figure 4.2 appear
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to take the shape of a lognormal distribution.

The largest p-value is obtained under Test 8. The corresponding panel (the 

fifth panel) in Figure 4.2 shows distinctively five bars -  starting from the left -  de­

creasing monotonically with about one half of the distribution concentrated in the 

first two bars. This strongly suggests a lognormal distribution with cr ~  1. At this 

largest p-value, the pre-set level was set to 15.0.

Region D istribution A a
1 Normal 0.58 0.22
2 Lognormal 1.42 0.56

Table 4.2: Moments estimators for the Normal (Lognormal) distributions of slow (fast) rates point estimators. 
PIPs that had fast rates higher than 15.0 were removed from the final sample.

Considering that my analyses are based on point estimators and not on ob­

served data, I cannot infer what the limiting distributions of slow and fast substi­

tution rates would be. The correlation between the 108 slow and fast estimators is 

small, just 0.34, and a tentative conclusion would be that the two distributions are 

independent (or weakly dependent), and normal (lognormal) for slow (fast) rates. On 

the basis of my sample, these distributions have first and second moments estimated 

as shown in Table 4.2, after removing PIPs that had fast rates higher than 15.0. 

This is because I consider rates that are higher than this level to be non-informative, 

that is, they are artifacts of the optimiser searching along a flat surface.

4.2 O ptim ising u> in the Tw o-R egion M odel

During the initial development of my two-region model I discovered that chang­

ing the to parameter in the GY94 substitution model along with the substitution 

rate parameter t , was leading to unexpectedly high estimators for uj. This compelled 

me to fix u; to 1.0 throughout the experiments that were based on the codon data 

set.

In hindsight, it is not hard to see that the uj estimator can be expected to have 

a distribution which is very different from that of the t estimator. The parameters 

u; and t were designed to deal with two very different evolutionary processes. I also 

suspected that these two processes are highly interdependent. Unlike the parameters
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in the KM equations, I had no theory that could enable me to relate uj with t in 

my likelihood function. For this reason, it was meaningless to allow for these two 

parameters to vary together during the optimisation of this function.

Murphy and Topel (1985) describe two-step estimation procedures that can 

overcome this type of problem. One of these procedures allows for both the auxiliary 

and the second-step models to be estimated by maximum likelihood. They propose 

that the marginal distributions of the two random vectors y\ and y2 (or, in my case, 

the two random alignments A\ and A 2, respectively) can be stated as Fi(y1;61 )  

and F2(?/2;0 i,02), where 6\ and 62 are to be estimated from the data. Under this 

formulation, the two-step procedure to maximise 2.23 can be stated as follows:

Step One T  ̂ =  0, (4.1)
t—' 66
71 =  1

Step Two j h  S& (A 2n\ =  0 (4.2)
7 1 = 1

In 4.1, I fix uj of the GY94 substitution model to 1.0, and hence uj is considered not 

to be part of the parameter set. In 4.2, uj is allowed to vary either in a one-region 

(the null) or in a two-region (the alternative) setting, with other parameters held 

fixed at their corresponding estimated levels computed in Step One.

Under the usual regulatory conditions, the Step One maximum likelihood 6 

is consistent (e.g. Murphy and Topel, 1985, p. 377). It can also be shown that 

maximising Y ^  £ 2(-A2ti; 0, u>) with respect to uj is asymptotically equivalent to 

maximising T ^  £ 2(M2n; 0% &)■> where 0 *  is the vector of ML estimators obtained 

from Step One and is held fixed during optimisation in Step Two. Asymptotically, 

therefore, uj is also consistent. By "asymptotically" here I mean that if the two 

sequences Si and <S2 of PIPj ,  j  =  1, 2 , . . . ,  108 (under Test 2 in Table 3.3), are long 

enough, I can assume that uj is consistent without any adverse effect on inference.
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4.2.1 T w o-Step  E stim ation  o f lj

To implement the two-step estimation procedure for estimating l j , I re-used 

the 108 alignments that I had obtained from Test 2 under Ha in Table 3.3. ML esti­

mators from each of these alignments constitute the vector 6 for 4.1 of Tests 1 and 2 

shown in Table 4.3. To carry out Step Two estimations, alignments were first re- 

estimated under Test 1, where lj  was allowed to vary under Ha but was kept equal 

across the two regions. Alignments were then re-estimated again under Test 2 where 

uj was now allowed to vary freely and independently between the two regions un­

der Ha. Under Test 1, 78 alignments were significant at the 5% level, whereby 

p-values were computed with one degree of freedom. Under Test 2, 76 alignments 

were significant at the 5% level, whereby p-values were computed with three degrees 

of freedom. These results are summarised in Table 4.3.

T e s t H o  H a d . f . n m d o f e p —v a l u e r

1 W l = W 2  =  1.0 U ) l = U J 2 1 80 78 10870.0 80 0.00

2 U > \= U > 2  U ) \ ^ U > 2 3 78 76 4564.7 234 0.00

T a b le  4 .3 : R esults from Step Two estim ations of u. From th e  108 alignm ents ( th a t were ob tained under Ha 
of Test 2 in Table 3.3), 80 expressed a x 2 s ta tistic  g reater th an  zero under Test 1 of the  tab le  above, p-values 
were com puted w ith one degree of freedom, and 78 of these were significant a t th e  5% level. U nder Test 2, all 
of th e  rem aining 78 alignm ents expressed a x 2 sta tis tic  g reater th a n  zero, p-values were com puted w ith  th ree  
degrees of freedom, and 76 of these were significant a t th e  5% level.

This shows that in 76 alignments, out of 120 alignments of my codon sample, 

the natural selection parameter u  played a statistically significant role in the slow 

and fast rate regions. Of these 76 alignments, only two expressed an lj estimator 

with a level higher than 1.0, and both were located in the fast rate region, as shown 

in Table 4.4. In both alignments, the fast substitution rate point estimator reached 

the upper limit of 50.0 which I had pre-set during the experiment. As I had stated in 

Section 4.1, this high level is an artifact of the optimiser, and the actual substitution 

rate can be considered to be about 15.0.

In both alignments that had > 1.0, the level of the estimator was only 

slightly higher than one, while all other u  estimators in the 76 alignments were 

mostly very small, the highest level being just 0.4. It would be tempting to suggest,
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A in ti t 2 U>1 (jJ2

88 0.6299 50.0 0.0517 1.1986

117 0.9700 50.0 0.0877 1.1000

T ab le  4 .4 : Two alignments expressed UJ2 >  1 0  following a two-step estimation.

therefore, that positive selection was detected under weak selection in two cases. 

Whether these are true positives, however, is not the central issue here. My main 

aim in this experiment was to determine, for reasons I explained at the start of this 

section, whether u  could be estimated separately from all other parameters, using a 

two-step estimation approach. In addition, I wanted to ascertain whether u  varying 

freely and independently in two regions under Ha would increase the likelihood by 

a significant amount, hence showing that selection can be detected in a two-region 

context. My results here show that under the assumptions of the GY94 model at 

least, Lj does play a significant role in this setting.

Admittedly, the GY94 is a purely mechanistic model (K osiol et al., 2007), 

in the same way the PMB is a purely empirical model as I illustrated in Chapter 2. 

The lj parameter in the GY94 model is interpreted strictly as a rate ratio. That 

is, it represents the absolute nonsynonymous-synonymous rate ratio (K osiol et al., 
2007). What I would need to do to obtain better inference on selection (if any) 

present in PIPs randomly drawn from BAliBASE -  is to adopt the approach 

of K osiol et al. (2007), whereby u  would measure the relative rather than the 

absolute strength of selection. In this approach, I would then need to estimate the 

average level of selection strength which is implicit in BAliBASE and use this as 

the reference, (i.e. the expectation of u  under neutral selection).

Thus, the new lj would be the ratio where E  is the expectation

operator. The expectations are as derived in N ei and G ojobori (1986), and p^ 

and ps are computed as in G oldman and Yang (1994). In the latter case, however, 

qij, which I denote as HG07̂ ? would now be specified as follows
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0 if i or j  is a stop codon
q {k hgo7) _  I if z —> j  is a synonymous change (4-3)

y Sij7TjK(i, j)uj if z —> j  is a nonsynonymous change

(K osiol et al., 2007), where stJ would be exchangeabilities estimated from multiple

alignments stored in BAliBASE, and tt(z, j)  is now a function of the number of nu­

cleotide changes as defined in (K osiol et al., 2007). That is, transition-transversion 

bias is now modelled by several parameters to allow for double and triple nucleotide 

changes. This makes Q\^HG07̂ a context dependent instantaneous rate matrix that 

can model biological mechanisms involving changes in 2 and 3 neighbouring nu­

cleotides. The construction of Q[^HG07̂ using BAliBASE data, together with re- 

estimation of my sample, could be part of future work using my two-region model.

4.3  Indel A nalyses

In Appendix B.3, I summarise the scheme of P ascarella  and A rgos (1992). 

I shall use this summary for my analyses in this section.

4.3.1 R egional Indel A verages

From my results using the codon sample, I obtained = 0, = 9.30,
f(R\) _  (y ancj f{R2 ) — 0.00327, where R\ and R2 represent portions of alignments 

that belong to slow and fast substitution rates, respectively. These measurements 

reflect the fact that indels in my codon alignments under Test 2 in Table 3.3 are 

concentrated in fast rate regions as I had expected. Furthermore, I applied the 

scheme strictly, whereby I discarded indels which overlapped the two regions. I also 

discarded alignments that did not yield at least one indel. To ensure that my regime 

was very strict, I applied a standard Runs test on each alignment to confirm that 

the regionsJ pattern was not random. This to allow for the fact that the trace-back 

procedure does not guarantee the true alignment, as I had explained in Section 

2.5.3.1.

In all, I had remaining in my final sample 72 alignments that were interesting.
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Between them they had a total of 25,070 aligned sites. Among aligned sites that 

were in fast rate regions, I had a total of 82 indels to work with. The two averages, 

namely, = 9.30 and r ^ 2'1 = 0.00327 are based on these 82 indels in my final 

sample. The corresponding two averages of point estimators obtained across the 120 

alignments were aaupjps = 0.3819 and raupips = 0.00159.

The first statistic, namely, aa//F/Fs means that the probability of no indels in 

an alignment is 0.62, while the probability of an indel of length one is 0.24. This 

is reasonable since several alignments did not have indels, while several others had 

indels one-gap long. Therefore, ha//F/Fs compares reasonably well with l ^ 2̂ since 

the lattar is measured only in the fast rate regions of the remaining 72 alignments 

that passed all the criteria. In a similar vein, raupjps was measured across the entire 

alignment of each of the 120 PIPs, while is now measured across the fast rate 

regions only. In total, fast rate regions can be considered to be, overall, about half 

the length of each alignment. On average, therefore, indels are likely (1) to be about 

nine times longer, and (2) to have twice the rate, in fast rate regions than when 

measured across the entire length of the alignment.

4.3.2 R egional C odon P reference

Using B.10 and B .ll, I computed the preference index p and the corresponding 

standard deviation for each codon in the 72 alignments, and listed these in Table C.l. 

I then sorted this table by p.

What becomes clear is that among the top 12 of the 61 codons in this table, 

only half code for hydrophilic amino acids. This is contrary to what was reported by 

Pascarella and Argos (1992). In their study using polypeptides, amino acids 

that flanked indels were mostly hydrophilic, and the authors found that hydrophilic 

residues are target points for indels. In my pairwise alignments using codon data, 

however, codons flanked indels randomly between codons that code for hydrophilic 

amino acids and those that do not.

The disparity could be attributed to the fact that Pascarella and Argos 

(1992) used data that consisted of tertiary structures. It appears that the prefer­

ential positioning of residues flanking indels in a 3-dimensional folding topology is
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different from the preferential positioning of codons flanking indels in primary struc­

tures within fast rate regions. This unless bias was introduced when alignments were 

manually curated using tertiary structure as a guide.

4.3.3 Regional Codon Usage

To investigate codon usage as opposed to codon preference, I measured the 

frequency of each codon (and of gaps) in slow and fast rate regions of each of the 

72 alignments. The results are tabulated in Table C.2 which is sorted by slow+fast 

in the fifth column.

Codons that are used most in fast rate regions have a smaller slow:fast ratio, 

and hence are located further up this table. The interesting result here is that the 

top twelve positions, bar just one, are occupied by codons that code either for Serine 

or for Arginine. Neither of these two amino acids are in the top twelve positions of 

Table C.l.

It is clear from this result that there is a demarcation between codons that 

are conducive to fast substitutions and codons that have a tendency for flanking 

positions. Although fast substitutions and indels are mostly located in the same 

region, their chemical agents are mutually exclusive.
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C H A P T E R  5

D e te c tin g  P y ro se q u e n c in g  E rro r s

5.1 R e a l-T im e  S eq u en c in g

To investigate the possibility of a single base mutation in the HIV-1 pol gene, 

N yren et al. (1993) performed a novel piece of DNA sequencing that required nei­

ther electrophoresis nor any radioactive materials. This pioneering procedure, called 

the ELIDA, consisted of a series of steps. Each step required only an enzymatic re­

action, as illustrated in Figure 5.1, to complete a one nucleotide assaying process.

5.1.1 T he ELID A  C oncept

Step Enzymatic Reaction
-i , D N A  P o ly m e r a s e1 (DNA)n + d N T P --------- ------- >{DNA)n+i + PPi

2 PPi  +  A P S  ATP Pol̂ merase ,ATP  + S 0 l ~

3 AT P  + luciferin + 'A M P  + PPi  +  oxyluciferin +  CO 2 + hv

F ig u re  5.1: The diagram shows Nyren’s method of minisequencing, requiring just three enzymatic reactions 
and without the need for labels or electrophoresis. The three steps are reproduced from N yren et al. (1993). 
Together they form the ELIDA.

The procedure can be described as follows. A single strand DNA template is 

first prepared, and then incubated with the necessary enzymes. Each of the four 

dNTPs, (deoxynucleoside triphosphates which target one of A, C, G , and T  during 

the sequencing elongation), is added sequentially. With each addition, incorpora­

tion, if any, takes place by the catalysis of the DNA polymerase enzyme and the 

current dNTP. If the next base in the template is the complement to the current 

dNTP, an incorporation "event" is said to occur, resulting in the release of PPi 

(inorganic pyrophosphate). The quantity released is measured accurately, as this 

translates to a count on how many homopolymer bases have been incorporated 

during the current addition.
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Accurate measurement is provided by the catalysis of the ATP sulfurylase 

enzyme and the APS (adenosine-5'-phosphosulphate). This reaction produces the 

ATP (adenosine-ö'-triphosphate) substrate for the next reaction between the lu- 

ciferase enzyme and luciferin, yielding the byproduct oxyluciferin. Detection of 

light generated by these reactions is by a luminometer whose peak is recorded by a 

potentiometer, and translated to a direct count of the homopolymer bases added. 

Thus, the homopolymer length is resolved -  one or more bases -  at the current 

incorporation, if any.

Flush the immobilised DNA 
before each nucleotide addition.

Flush
switching.

Sequential addition 
of the four different dNTPs.

ELiDA

Signalling
cycle completion.

Nucleotide 
incorporation count.

Figure 5.2: The ELIDA was automated to process DNA sequencing in real-time. The illustration is based 
on Ronaghi et al. (1996).

The method of DNA sequencing using an enzymatic luminometric inorganic 

pyrophosphate detection assay (ELIDA) was first employed by N y r e n  (1987) for 

reading a single DNA letter of interest. This method was suitable only for exper­

imental purposes where bases had to be detected one at a time. RONAGHI et al. 

(1996) later worked on how the ELIDA could be enhanced, using a cyclical incubation- 

flush process. This led to the system illustrated in Figure 5.2.
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Here, in effect, was the introduction of DNA sequencing in real time. This 

new technology was developed by Pyrosequencing AB in Uppsala, Sweden. This 

company was renamed Biotage, and in 2003 licensed the technology to 454 Life 

Sciences Corporation which is a subsidiary of CuraGen Corporation.

5.2 M assiv e ly  P a ra lle l  P y ro se q u e n c in g

In less than twenty years after the introduction of the ELIDA by Nyren, real­

time DNA sequencing was to make the next leap forward following the work of 

Margulies et al. (2005).

In summary, the genome is first broken down into random fragments. Each 

fragment is captured in a separate bead, where it is cloned and amplified within an 

emulsion, and is turned into a template. Sequencing of templates is then performed 

by syntheses simultaneously in open wells of a fibre-optic slide. A slide typically 

contains 1 to 2 million wells, each well housing a template. The slide, in turn, is 

housed inside a flow chamber, with wells resting in a vertical position.

A second fibre-optic element makes contact with individual wells at the base, 

and this element channels photons to a sensor. Reagents flow by convection through 

wells inside which ELIDA like enzymatic reactions occur in parallel. This leads to 
base extensions -  where the length of the homopolymer incorporated is proportional 

to quanta released by corresponding photons -  on templates, with a very large econ­

omy of scale (a system now commonly termed massively parallel pyrosequencing). 

Following each extension, residue nucleotides are thoroughly flushed by means of 

the enzyme apyrase to ensure that prior nucleotides do not remain in wells before 

the next nucleotide is introduced.

Massively parallel pyrosequencing was developed by 454 Life Sciences and is 

marketed by Roche Diagnostics. Their introductory machine, the Roche GS 20, 

could generate reads of approximately 100 bps in length and at a rate of 25 x 106 

bps per one four-hour run. Their latest machine which is being marketed presently, 

namely, the Roche GS FLX, can generate reads of between 200 and 300 bps in length 

and at a rate of 50 x 106 bps per one four-hour run. This means, for example, that 

with the FLX, operators can sequence the Human Genome over a ten-day continuous
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active time consisting of 24-honr runs at 300 x 10(> bps per run. In October 2008, 

Roche Diagnostics released the Genome Sequencer FLX Titanium Series reagents, 

which enable 1 million reads at 400 base pairs in length to be produced.

Over the next few years, 3rf/ generation sequencing systems by Roche, Illumina, 

Applied BioSystems, and by other contenders who are expected to enter the market 

as early as 2010, are poised to challenge the scientific community and their funding 

agents. These systems will be based on the single-molecule analysis technology, and 

are being developed by VisiGen and Helicos (Schuster, 2008).

In the face of these rapid advances, together with cost reductions, it is clear 

that there will be the need to develop DNA data modelling that can deal with this 

large data availability in a fast, effective, and practical way without compromising 

the mathematical structure around which this modelling is built. In the following 

section, I deal briefly with a specific inherent problem of pyrosequencing that has 

been acknowledged in many parts of the literature -  for example, Margulies et al. 

(2005), Meyer et al. (2008), and Schuster (2008).

5.3 T h e  H o m o p o ly m e r P ro b le m

When operating the Roche GS 20, a chain of responses occurs with each in­
corporation inside wells. A chain starts with the release of inorganic pyrophosphate. 

This release produces quanta which translate to signal intensities that have to be 

separated from noise and then normalised. Signal levels following normalisation are 

equimolar to the number of nucleotide repeats that form a homopolymer, up to a 

length of eight bases. However, due to the physics inherent in the technology, this 

linearity property is not guaranteed, and the true length of the homopolymer may 

not always be accurately resolved, resulting in inadvertent overshooting (inserts) or 

incomplete extensions (deletes). MARGULIES et al. (2005) provide details on this 

homopolymer effect.

Huse et al. (2007) conducted a study on error rates generated by Roche GS 

20 pyrosequencing. 340,150 reads were generated using a PCR amplicon library 

prepared from 43 reference templates. Each of these templates contained a dis­

tinct ribosomal RNA gene -  which included the V6 hyper-variable region -  from a
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collection of 43 divergent bacteria. The inclusion of the V6 region was important 

because it contains homopolymers which are neither long nor frequent. Overall, the 

percentages of homopolymers in these reference sequences were composed of 45% 

and 55% of A/T and C/G, respectively.

The authors constructed a separate multiple alignment for each read against 

the 43 reference sequences. This enabled them to identify the reference sequence 

that had the best mapping with the corresponding read, thus forming a sequence 

pair, namely, the test sequence and its reference. To compute error rates for each 

pair, they used the Needleman-Wunsch algorithm with optimised settings of gap 

opening penalty of 5.75 and of gap extension penalty of 2.75.

From a total of 32,801,420 bases in their data set of 340,150 pairs, 159,981 

bases were miscalled -  a total error rate of 4.877 x 10-3. A portion of this error 

rate was attributed to the homopolymer effect, with overshooting being the most 

prominent, having a net error rate of 1.756 x 10-3 due to inserts of one or more 

bases. A high percentage of 86% of the reads contained no errors, and those reads 

which between them constituted 50% of all errors all expressed a percentage identity 

of less than 95%.

5.3.1 T he H om opolym er Effect — E xperim ental S ettin g

Here I describe how I have tested for the presence (or absence) of the ho­

mopolymer effect that results in an overshoot of exactly one base, namely, monoin­
serts. Huse et al. (2007) reported monoinserts due to the homopolymer effect to be 

the most common among homopolymer inserts in sequences that had been produced 

from the same sequencer run.

5.3.1.1 T h e E xperim ental D a ta  Set

I randomly sampled pyrosequenced reads from the data set of Huse et al. 

(2007) which consists of 340,150 reads. I aligned each of these reads on the fly with 

each of the 43 cognate reference sequences, using ClustalW and its standard in­

build DNA evolutionary model. I retained the first 100 of these pairwise alignments 

that had a percentage identity of between 0.75 and 0.96, and discarded the rest. 

I converted these alignments to corresponding 100 non-gapped sequence pairs to
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produce my experimental data set. In each pair, I made the first sequence to be the 

pyrosequenced read and the second sequence to be the cognate DNA reference.

5 .3 .1 .2  T he T hree-R egion  M odel

To re-align the 100 pairs in my experimental data set, I constructed a three 

region model which consists of three PHMMs conjoined by one silent state, as shown 

in Figure 5.3. This construction is similar to that shown in Figure 2.5, except 

that now I have added a third PHMM. To each I assigned the parameter vector 

(av, ßrj, 5V, Cry, 7v), 7] G {1, 2, 3}, and constructed the initial 10 x 10 transition matrix 

(not shown) similar to that shown in Figure 3.2.

F ig u r e  5 .3 : T he three-region model has th ree  PH M M s, each having th e  p a ram ete r vector
(otr), ß v , 6V, tr]i Tr?)> V € (1 ,2 ,3 } ,  and they  are conjoined by one silent s ta te  © in a  sim ilar way as in F igure 2.5. 
T h is conceptual topology forms the  lower layer of th e  three-region model.

After applying the Knudsen-Miyamoto (KM) equations to each of the three 

PHMMs, factoring out the transition probabilities associated with the silent state, 

and adding a second HMM layer that has three emitting states, the topology is
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enhanced to a two-tiered HMM-PHMM model as shown in Figure 5.4. Each of the 

three emitting states of the upper HMM layer emits one of the three PHMMs in 

the lower layer with probability 1 — pv, r/ 6  {1,2,3}. Each PHMM is parametrised 

with the KM parameter vector (tv, r^), 77 £ {1,2,3} where, as in Section 2.5, 

tv, av, and rn capture the substitution rate, the indel length, and the indel rate, 

respectively, in region r/.

1  -  pi
Evolution

Non-Monoinserts

Monoinserts

F ig u re  5.4: T he K nudsen-M iyam oto (KM ) equations listed in Section 2.5 are applied in order to  derive 
th e  param eter vector {tv , av ,rn, pr/),'n € {1 ,2 ,3} , for each P H M M V. P H M M \  is designed to  m odel indels 
which are due to  evolutionary processes. P H  MM2  is designed to  m odel monoinserts which are due to  th e  
hom opolym er effect. P H M M 3  is designed to  model all o ther hom opolym er effects. For region one, th e  
probability  of m odelling in region one is 1 — p i, and th e  probability  of leaving region one in order to  model in 
e ither of the  o ther two regions is ^ p i ; and sim ilarly for regions two and three. T he begin 03 and end £  s ta tes  
are not shown.

With a two-tiered three-region topology, my aim was to model (1) evolutionary 

processes with the PHMM in region one, (2) monoinserts with the PHMM in region 

two, and (3) everything else with the PHMM in region three. The idea here is that 

during the pairwise alignment of a pyrosequenced read and its cognate DNA, the 

model would remain mostly in region one. However, it would not be unreasonable
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to expect that upon encountering a machine error, the model would switch to either 

region two if it encounters a machine error consisting of a monoinsert or region three 

if the machine error is otherwise.

5.3 .1 .3  Second Order M arkov Chain

In designing the emission matrices for the three-region model, my aim was to 

spatially target monoinsert patterns in the pairwise alignments -  made of adenine, 

cytosine, guanine, or thymine, as illustrated in the following table:

B a s e P a t t e r n  1 P a t t e r n  2

A A A A
Adenine A - - A

C C C C
C ytosine C - - C

G G G G
G uanine G - - G

T T T T
T hym ine T - - T

where the single gap due to the homopolymer effect, if present, is always located in 

the second sequence as a result of the corresponding monoinsert in the first sequence. 

To achieve "monoinsert targeting", I employed a second order Markov chain for the 

construction of the emission matrices Emwxz in 2.20, EXwxl in 2.21, and Eylxz in 

2.22. For this purpose I needed an alphabet with 16 symbols which are

A A , AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA , TC, TG, T T .

To construct the evolutionary rate matrix P(t) for this alphabet, I also needed a 

16 x 16 instantaneous rate matrix Q. Hence I put a 16 x 16 Jukes-Cantor substi­

tution model R and the vector of uniformly distributed background probabilities q 

into equation 2.5, giving (to three decimal places)
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AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

AA -1 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7

AC 0 .0 6 7 -1 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7

AG 0 .0 6 7 0 .0 6 7 -1 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7

AT 0 .0 6 7 0 .0 6 7 0 .0 6 7 -1 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7

CA 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 -1 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7

CC 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 -1 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7

CG 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 -1 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7

CT 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 -1 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7

GA 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 -1 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7

GC 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 -1 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7

GG 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 -1 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7

GT 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 -1 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7

TA 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 -1 0 .0 6 7 0 .0 6 7 0 .0 6 7

TC 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 -1 0 .0 6 7 0 .0 6 7

TG 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 -1 0 .0 6 7

TT 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 0 .0 6 7 -1

before computing the exponentiation P(t) = eQt and substituting into equations 

2.20, 2.21, and 2.22.

This choice of R  and q were suitable for the purpose of this experiment where 

my aim was not to tease out features of evolutionary processes as in Chapters 3 

and 4 but to "target" nucleotide patterns in the DNA pairwise alignment caused 

by machine and not by evolution. Obviously, evolutionary processes were not in­

teresting in this setting, and hence it was justifiable to provide a level playing field 

to the four nucleotides. My interest here was in how well my model specification 

could differentiate between naturally occurring indels in the pairwise alignment and 

monoinserts in the first sequence. This experiment was, essentially, about pattern 

recognition using an HMM technique whereby everything was to be averaged except 

for the pattern of interest.

5 .3 .1 .4  E m ission  P robab ilities o f M onoinserts

The method I use to code the DNA sequences emission matrices W  and Z in 

equations 2.20, 2.21, and 2.22 is illustrated in Figure 5.5. Recall that matrix W  

codes the first sequence of the pairwise alignment while matrix Z  codes the second 

sequence. For illustration purposes, I shall use a short fictitious sequence, namely, 

a g a a c g t t a c , to represent the first sequence of a typical DNA sequence pair in my 

data set. Hence, the matrices shown in Figure 5.5 are all designated IT, and I 

have three of these matrices; one for each PHMM in my three-region model. (The 

illustration also applies to the second sequence except that the resulting matrices 

would be designated Z.)

Each of the 10 letters in this sequence serves as a column heading in each of
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the three sequence emission matrices shown in Figure 5.5. Similarly, each of the 16 

emission symbols in the alphabet of the second order Markov chain serves as a row 

heading in each of these three sequence emission matrices.

I V R egionl

Regton‘2

I V R eg io n i

A G A A c G T T A c
AA 0.0625 0 0 1 0 0 0 0 0 0
A C 0.0625 0 0 0 1 0 0 0 0 1
A C 0.0625 1 0 0 0 0 0 0 0 0
A T 0.0625 0 0 0 0 0 0 0 0 0
C A 0.0625 0 0 0 0 0 0 0 0 0
C C 0.0625 0 0 0 0 0 0 0 0 0
C G 0.0625 0 0 0 0 1 0 0 0 0
C T 0.0625 0 0 0 0 0 0 0 0 0
C A 0.0625 0 1 0 0 0 0 0 0 0
G C 0.0625 0 0 0 0 0 0 0 0 0
G G 0.0625 0 0 0 0 0 0 0 0 0
G T 0.0625 0 0 0 0 0 1 0 0 0
T A 0.0625 0 0 0 0 0 0 0 1 0
T C 0.0625 0 0 0 0 0 0 0 0 0
T G 0.0625 0 0 0 0 0 0 0 0 0
T T 0.0625 0 0 0 0 0 0 1 0 0

A G A A c G T T A C
AA 0.0625 0.0625 0.0625 1 0.0625 0.0625 0.0625 0 0.0625 0.0625
A C 0.0625 0.0625 0.0625 0 0.0625 0.0625 0.0625 0 0.0625 0.0625
AG 0.0625 0.0625 0.0625 0 0.0625 0.0625 0.0625 0 0.0625 0.0625
A T 0.0625 0.0625 0.0625 0 0.0625 0.0625 0.0625 0 0.0625 0.0625
C A 0.0625 0.0625 0.0625 0 0.0625 0.0625 0.0625 0 0.0625 0.0625
C C 0.0625 0.0625 0.0625 0 0.0625 0.0625 0.0625 0 0.0625 0.0625
C G 0.0625 0.0625 0.0625 0 0.0625 0.0625 0.0625 0 0.0625 0.0625
C T 0.0625 0.0625 0.0625 0 0.0625 0.0625 0.0625 0 0.0625 0.0625
G A 0.0625 0.0625 0.0625 0 0.0625 0.0625 0.0625 0 0.0625 0.0625
G C 0.0625 0.0625 0.0625 0 0.0625 0.0625 0.0625 0 0.0625 0.0625
G G 0.0625 0.0625 0.0625 0 0.0625 0.0625 0.0625 0 0.0625 0.0625
G T 0.0625 0.0625 0.0625 0 0.0625 0.0625 0.0625 0 0.0625 0.0625
T A 0.0625 0.0625 0.0625 0 0.0625 0.0625 0.0625 0 0.0625 0.0625
TG 0.0625 0.0625 0.0625 0 0.0625 0.0625 0.0625 0 0.0625 0.0625
T G 0.0625 0.0025 0.0625 0 0.0625 0.0625 0.0625 0 0.0625 0.0625
TT 0.0625 0.0625 0.0625 0 0.0625 0.0625 0.0625 1 0.0625 0.0625

A G A A C G  T T A C
AA ' 0.0625 0 0 0.0625 0 0 0 0.0625 0 0 '
A C 0.0625 0 0 0.0625 1 0 0 0.0625 0 1
A G 0.0625 1 0 0.0625 0 0 0 0.0625 0 0
A T 0.0625 0 0 0.0625 0 0 0 0.0625 0 0
C A 0.0625 0 0 0.0625 0 0 0 0.0625 0 0
C C 0.0625 0 0 0.0625 0 0 0 0.0625 0 0
C G 0.0625 0 0 0.0625 0 1 0 0.0625 0 0
C T 0.0625 0 0 0.0625 0 0 0 0.0625 0 0
G A 0.0625 0 1 0.0625 0 0 0 0.0625 0 0
G C 0.0625 0 0 0.0625 0 0 0 0.0625 0 0
G G 0.0625 0 0 0.0625 0 0 0 0.0625 0 0
G T 0.0625 0 0 0.0625 0 0 1 0.0625 0 0
T A 0.0625 0 0 0.0625 0 0 0 0.0625 1 0
TG 0.0625 0 0 0.0625 0 0 0 0.0625 0 0
T G 0.0625 0 0 0.0625 0 0 0 0.0625 0 0
T T 0.0625 0 0 0.0625 0 0 0 0.0625 0 0

F ig u r e  5 .5 : A second order M arkov process is used to  code th e  th ree  sequence emission m atrices shown 
here for the  fictitious sequence A G A A C G T T A C .  T he first m atrix  is designed to  spatially  cap tu re  evolutionary 
processes, th e  second m atrix  is designed to  spatia lly  cap tu re  errors due to  hom opolym er effects w ith exactly  
one insertion, and th e  th ird  m atrix  is designed to  spatially  cap tu re  all o ther m achine errors. Each design is 
coded by assigning probabilities a t two letters a t a  tim e in each row, as explained in th e  text.

In each of the three matrices, the first column probabilities are always uni-
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formly distributed because this column by itself cannot differentiate two contiguous 

nucleotides from other nucleotides, as the succeeding columns do. The first matrix 

is assigned to region one, and is designed to spatially model processes due solely to 

evolution. Hence, every column -  following the first, column -  in this matrix is as­

signed a 1 at the position corresponding to the current and the preceding nucleotide, 

while all other positions are assigned a 0. For example, in the second column whose 

heading is G , and whose preceding heading is A, is assigned a probability 1 at the 

row with heading AG , while all other positions in this second column are assigned 

probability 0.

The second matrix is assigned to region two, and is designed to spatially model 

monoinserts that are due solely to the homopolymer effect that results in exactly 

one insertion. This is achieved by differentiating contiguous like nucleotides, two at 

a time, from all other nucleotides. Hence, if the current heading is different from the 

preceding heading, probabilities in the current column are uniformly distributed. If, 

on the other hand, the two were the same, a probability 1 is then assigned at the 

position whose row heading is the same as these two contiguous like nucleotides. 

For example, heading of the second column is different from the preceding column 

heading, and hence this column has uniformly distributed probabilities. So does the 
third column. The fourth column, however, has A as the heading which is the same 

as the preceding heading. Hence, probability 1 is assigned to this column at the 

position whose row heading is AA, and 0 in all other positions.

The third matrix is assigned to region three, and is designed to spatially model 

all other machine errors which are not modelled by the second matrix. In fact, this 

matrix is the "contrast" of the second matrix, that is, it operates in exactly the 

opposite way of the second matrix. Thus, for example, because the heading of the 

second column of the third matrix is different from the preceding column heading, 

this column is now assigned probability 1 at the position where the row heading 

is AG, and probability 0 in all other positions. Similarly, the third column has 

probability 1 assigned at the position where the row heading is GA since the heading 

of this column is A and the heading of the preceding column is G. However, the 

probabilities of the fourth column are now uniformly distributed since the heading
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of this column and the heading of the preceding column are the same. In this 

way, each two contiguous sites of the alignment, whose alignment is neither due to 

evolutionary processes nor due to the homopolymer effect with exactly one insertion, 

will be spatially modelled by this matrix.

Owing to their specific formulation, these three matrices produce three differ­

ent sets of emission probabilities, that is, one set for each region in a three-region 

model. Each region also has its own 3 x 3  transition matrix as in the two-region 

model. That is, states M, X, and Y in each of the three regions still follow a first 

order Markov process. However, to switch between three regions, now I needed a 

3 x 3  region switching matrix as shown in Figure 5.7. This matrix has three switch­

ing parameters, namely, pi, p2, and p$. Each of these allows the model to exit the 

current region and to enter one of the other two regions with equal probability, as 

shown in Figure 5.7. Under this regime, I would expect that single gaps that are 

due to the homopolymer effect with exactly one insertion will be best predicted, on 

average, by p2. This is because the set of emission probabilities of region two will 

spatially "target" those nucleotides that yield these gaps when these are present 

since each of these gaps in the second sequence corresponds to two like contiguous 

nucleotides in the first sequence. The converse applies to p3, while p\ would keep 
the model in region one at those sites which are aligned according to evolutionary 

processes and not due to machine errors.

5.3.2 T he H om opolym er Effect — H yp o th esis  T esting

To carry out a test for each pairwise alignment, I defined H0 and Ha as shown 

below. That is, under the null, there are no sequencing errors in the pairwise 

alignment that are due to the homopolymer effect with exactly one insertion. Hence 

the model is equivalent to a two-region model under the null, namely, the region 

of evolutionary processes and the region of sequencing errors. I needed to test this 

hypothesis against the alternative hypothesis, namely, the null is untrue. That is, the 

pairwise alignment has gaps in the second sequence that are due to the homopolymer 

effect with exactly one insertion. Under the alternative, therefore, the model has 

three regions.
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The hypotheses are

H0 : x i ^ x 2 = x3, pi ± p2 = p3, versus

Ha : ti ±  t2 = t3, ai % a2 ±  a3, n  % r 2 7  ̂ r 3, Pi % p2 % Pz-

where the subscripts refer to the region number. xv means all the parameters in 

region 77, 77 6  {1,2,3}, while t, a, and r are the substitution rate, the indel length 

and the indel rate parameters, respectively, as in Chapter 3.

Under the null, region one models evolutionary processes with its own set 

of parameters. At the same time, parameters in region two and corresponding 

parameters in region three are forced to be equal. This means that regions two 

and three are equivalent to one region with its own set of parameters and models 

all types of errors with the same expectation since it assumes that there are no 

significant monoinserts.

Under the alternative, region one retains the same set of parameters, and again 

models evolutionary processes independently from regions two and three. However, 

all parameters, except the substitution rate parameters, are now relaxed under the 

alternative in regions two and three. These two regions, between them, model the 

same substitution rate (which is assumed to be the same among all types of errors 

due to machine). Thus, the only differentiating factor between regions two and 

three are the monoinserts -  captured in region two, but not in region three -  and 

all other pyrosequencing errors that are not interesting and which are captured in 

region three but not in region two.

With three regions and several parameters, and considering that, reads are 

only about, 100 nucleotides long, I expected this test to have low power, and hence 

I set the level of significance at, 10% a priori Three regions were necessary for this 

experiment because there are three distinct, types of indels which the optimiser was 

required to differentiate from each other, namely, indel processes due to evolution 

(region 1 ), indel processes due to monoinserts (region 2 ), and indel processes due to 

sequencing errors caused by all other machine artifacts (region 3).
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5.3 .3  T h e  H o m o p o ly m er E ffect -  R e su lts

Before studying the results obtained from the homopolymer experiment, I 

briefly revise the meaning of the indel length parameter a and of the region switch 

parameter p.

Figure 5.6 illustrates how a very small value of a, say 0.01, would mean that 

the corresponding region would allow, in all probability, indels that are at most one 

gap in length. At the other end of the scale, a large value of a, say 0.75, would mean 

that indels in this region are unlikely to be of the same length, and that their exact 

length would be harder for the trace-back procedure to resolve accurately. In each 

case, however, whether an indel would occur would still be determined solely by the 

indel rate parameter r of that region.

Figure 5.7 shows the three switching parameters of the three-region model that 

I used for this experiment. These parameters determine the transition probabilities 

of the three-state HMM that assigns regions to sites. One point to note here is that 

a large value of p belonging to a region would mean that the three-region model is 

spending very little time in that region. Another important point is that p values 

are independent from each other in the sense that they do not necessarily add to 

one. For example, one p value does not increase directly at the expense of any of 
the other two.

Each panel in Appendix D shows three pairwise alignments. The first is con­

structed by the trace-back procedure under the null and the second under the alter­

native. The third alignment- is produced by ClustalW. The first sequence in these 

alignments is always the pyrosequenced read while the second is the cognate ref­

erence sequence. This means that only homopolymer patterns with a single gap 

in the second sequence are of interest in this experiment since I am restricting my 

investigation to homopolymer inserts (in the first sequence) of exactly one base.

The first thing to notice in these panels is that ClustalW alignments are always 

the longest, while alignments under Ha are always the shortest. This shows that the 

three-region model is very economical in gap insertions, and considering that these 

sequence pairs have a high percentage identity, this behaviour was expected. The 

reason for the longer alignments of ClustalW could be attributed to the fact that I
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F igure 5.6: The plots show different responses to corresponding values of the parameter {a : 0 < a < 1} 
using P(Indel Length =  n gaps) =  (1 — a)an_1. In the first panel, it is shown that a very low level of the 
estimator ä would suggest that given an indel in the pairwise alignment, there is a very high probability that 
the length of this indel would be of just one gap. On the other hand, a very high level (the fourth panel) 
would suggest that it is hard for the optimiser to resolve the true length. Given that pairwise alignments in 
this experiment consist of close homologues, a very low level would mean that there is a high probability that 
no gaps are present.

arbitrarily used a gap opening penalty of 1 and a gap extension penalty of 3 together 

with a Jukes-Cantor substitution model. In my experiment, these settings were not 

critical since I needed ClustalW alignments solely for the purpose of computing 

percentage identities before randomly selecting pairs to construct my sample. What 

is important here is that the high percentage identities are compatible with the fact 

that alignments under H a never expressed insertions that are longer than one gap, 

as was expected.

Table 5.1 gives a summary of the nine panels. Columns 2, 3, and 4 have three 

numbers in each row for regions 2 and 3. The first is the level under the null, which 

is the same in regions 2 and 3 under the assumption of no homopolymer effect. The 

second and third are levels under the alternative in regions 2 and 3, respectively.

All levels in column 2, with only one exception, are very low as expected. This
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F igure 5.7: A three-region model requires a 3-state HMM with three switching parameters, namely,
pi, p2 , andp 3 . The smaller the value of the switching parameter in a region, the higher the probability 
the three-region model will remain in that region. When the model exits that region, it will then enter either 
of the other two regions with equal probability.

is because, as mentioned earlier, we do not expect insertions to have more than 

one gap. Levels in column 3 are also very low as expected since sequence pairs are 

made from close homologues. All third levels in column 4 are high, indicating that 

the model did not spend too much time resolving non-homopolymer effects, while 

it spent most of its time in resolving homopolymer effects in region two. Note that 

second levels in this column are always less than or equal to first levels under the 

null. This indicates the small homopolymer effect detected under the alternative 

with three regions. Finally, number of insertions (and deletions) -  shown in the 

last column -  due to evolutionary processes are just two in each alignment, which 

is plausible and consistent with the fact that I kept percentage identity within a 

narrow range.

In all, I counted just ten insertions that were due to the homopolymer effect, 

namely, 7 cytosines, 2 adenines, 1 guanine, and none thymine. With a sample of 89 

pairs (after discarding 11 pairs which did not yield a positive LR), and a conservative 

average of, say, 108 bases per read, this gives me an error rate of 1.040 x 10-3 within 

the class of reads that have a percentage identity between 0.75 and 0.96. This is 

about half as much as that stated by H use et al. (2007), which was 1.756 x 10-3 for 

errors attributed to homopolymer insertions across all reads. However, H use et al. 

(2007) based their computation on insertions of all possible lengths and not just 

one-residue overshoots as in my experiment, and this would be the reason for the 

disparity. That is, the error rate of overshoots that are longer than one would be 

about 0.7 x 10~3.
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P a n el a r . f t P
H omopolym ers

(m ono in se r tsb
Indels*

0.00" 0.04" 0.19"
1 0.00'' 0.04b 0.17'' 1 (C) 2

0.24" 0.00" 0.99"

0.00 0.01 0.19
2 0.00 0.01 0.16 0 2

0.24 0.01 0.97

0.00 0.02 0.41
3 0.00 0.03 0.18 0 2

0.01 0.02 0.51

0.00 0.04 0.20
4 0.00 0.04 0.18 2 (C, C) 2

0.04 0.04 0.99

0.00 0.04 0.20
5 0.00 0.02 0.20 2 (A, C) 2

0.12 0.22 0.99

0.40 0.02 0.16
6 0.26 0.02 0.15 2 (C, G) 2

0.41 0.00 0.99

0.00 0.04 0.17
7 0.00 0.04 0.17 1 (C) 2

0.78 0.00 0.99

0.00 0.04 0.20
8 0.00 0.03 0.20 2 (A, C) 2

0.06 0.21 0.99

0.00 0.01 0.19
9 0.00 0.01 0.16 0 2

0.14 0.01 0.97

a Estimators level in regions two and three, under the null: no 
homopolymer effect.

b Estimators level in region two under the alternative: 
homopolymer effect.

c Estimators level in region three under the alternative: 
homopolymer effect.

 ̂Both t and r are expected to be small under both the null 
and the alternative, and hence the product of these two 
rates is more informative in this setting.

§ Monoinserts i.e. Homopolymers that result in an overshoot 
of exactly one insertion.

 ̂Indels solely due to evolutionary processes.

T a b le  5.1: Sum m ary of th e  nine panels in A ppendix D.

5.3 .4  C o n clu sio n s

Although H use et al. (2007) used the V6 hyper-variable region to construct 

the reference sequences, extensions in the reads were not uniform across the four 

bases A, C, G, and T. They found that the frequency of A/T extensions was 24% 

higher than expected, and that of C/G extensions was concomitantly less, in the
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reads. Yet, my results show that homopolymer errors consisting of extensions with 

one-residue overshoot in the reads are caused mostly by cytosine nucleotides and 

very rarely, if ever, by thymine. Considering that A /T  extensions were by far more 

prevalent in the Huse et al. (2007) data, I had expected a bias in favour of A and 

T in my results on errors due to homopolymer effects with exactly one insertion, 

but this is not the case. With these data, and on the basis of my results, machine 

accuracy has clearly not been uniform across A, C, G, and T, but heavily biased 

in favour of T. This could be attributed to either a machine artifact or to the fact 

that the V6 region favoured C/G extensions against A /T  extensions in the reference 

sequences by a ratio of 55:45, as reported by Huse et al. (2007).

The authors also reported that the GS 20 provides a quality score for every 

position in a read. The score is a measure of confidence that the homopolymer 

length at that position is accurately resolved. At one end, a high score indicates 

that no homopolymer is present, and the position is therefore easier to resolve. At 

the other end, a low score indicates that a long homopolymer is present, and the 

position is difficult to resolve.

However, they also found three effective criteria for reducing the error rate. 

That is, they found that by removing reads (1) which contain at least one N, (2) 

whose lengths are aberrantly short or long, and (3) which do not match perfectly to 

the primer, the error rate decreases from 0.49% to 0.16%. This reduction would be 

practical since only about 10% of total reads would have to be culled.

An implication here is that filtering based on these criteria would raise the 

level of quality scores. Quality scores could then be used in a correlation test after 

monoinserts -  due to homopolymer effects -  had been identified as described here 

using three-region HMM-PHMM modelling. Since quality scoring and predicting 

monoinserts are two independent methods, a high correlation would confirm whether 

quality scores are compatible with the predictions obtained from the HMM-PHMM 

model.
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C H A P T E R  6 
D iscussion

I have addressed the issue of heterogeneity in evolutionary rates along the DNA 

taken from a broad range of randomly sampled species. Two of these rates that are 

central to understanding evolution are (1) the rates of substitution in the case of 

DNA/codon biological encodings (BEs) and of replacement in the case of protein 

BE, and (2) the rates of indels.

Biologists had for long been aware of heterogeneity, and several methods had 

been used to uncover its causes. My approach was to take into account the role of 

secondary structure in these evolutionary rates within the species. When working 

with protein and codon BEs, my idea was to devise a parameter that can sense 

hydrophilic amino acids, or their cognate codons, and use this parameter to augment 

their corresponding background probabilities. This was a novel idea based on the 

method used successfully in the multiple sequence aligner ClustalW, whereby the 

opening gap penalty and the gap extension penalty are reduced whenever patches of 

hydrophilic amino acids are encountered. For my purpose, however, this parameter 

was not useful on its own. 1 needed to study its behaviour in conjunction with 

the classical parameters, namely, the parameter that models rates of replacement 

(or substitution) and the indel parameter set -  composed of the length and rate 

parameters -  which models indel behaviour.

The classical parameters had been employed successfully in a PHMM setting 

by Knudsen and Miyamoto (2003) (KM), and therefore I only required to incor­

porate the hydrophilicity parameter in this device. In addition, however, I needed 

to allow all parameters to vary freely and independently in the different regions 

implicit in the data in accordance with secondary structure components. I needed, 

therefore, yet another novel idea that would allow me to combine the classical HMM 

with a pair of KM-PHMMs in order to model the two broad types of heterogeneity. 

To achieve this, I employed a stationary Markov chain of hidden states, with one 

hidden state for each region (or more precisely one for each KM-PHMM). This led
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me to a two-tiered HMM-PHMM topology suitable for pairwise alignments with 

secondary structure regional context.

HMM-PHMM topologies had been used successfully by various workers in 

the field of gene finding. M eyer  and D urbin  (2002) for example, used an HMM- 

PHMM topology to exploit the similarities between a pair of DNA sequences, to­

gether with splicing and coding information, to simultaneously predict gene struc­

ture and a pairwise alignment. H obolth and J ensen (2005) extended this concept 

with three homologous DNA sequences, taken from prokaryotic organisms, thus en­

larging the three state PHMM to a set of 15 states. For what I had set out to 

achieve, namely, a better pairwise alignment, a simple HMM-PHMM configuration 

with a single silent state at the centre sufficed and proved to be very effective. This 

is because my aim was not to predict structures but rather to exploit the biological 

fact that secondary structure is a very important determinant of evolutionary rates.

Two important components of secondary structure in coding DNA are the 

hydrophilic and the conserved regions. It had always been reasonable to assume 

that slower rates of evolution would occur at the core, where the DNA codes for 

important functions and structures, while faster rates would occur on the surface. 

It had never been shown quantitatively, however, that the solvent regions and the 
much faster rates of both substitution and indel rates coexist at least spatially 

in all likelihood. This also implied that the two rates are also mostly co-located 

in the solvent regions. In non-coding DNA, however, the two fast rates were no 

longer, or at most weakly, co-located. In this case, the distinction between slow and 

fast substitution rates was sharp, reflecting upon the fact that the evolutionary 

conserved secondary structure in rRNA molecules are well defined (W uyts et a/., 

2004). Here, however, conservation was not a strong determinant on the placement 

of indels, thus suggesting that the co-location of the two fast rates -  substitutions 

and indels -  is a property solely of the solvent regions.

Several serendipitous topics for investigation emerged following my successful 

application of the HMM-PHMM topology in this work. First was the distribution 

-  across PIPs, and hence across pairs of unique species -  of slow substitution rates 

in one region and the distribution of fast substitution rates in the other region. I
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was not surprised to find that the two distributions are largely independent of each 

other. This considering that secondary structure components are highly distinct. I 

had also expected that the two distributions would be radically different. It was 

natural that I tested first for the distribution of the slow rates. They turned out 

to have a normal distribution, as is often the case with random variables that are 

much better understood. On the other hand, however, I had initially thought that 

the fast rates would be largely erratic, and that their distribution would be merely 

noise and not convey any information. Not until I realised that the occasionally 

and exceedingly high substitution rates were mere artifacts of the optimiser did I 

start to notice the log-normality of the fast rates. There is reason here to believe 

that although the two rates -  slow and fast -  appear to be remote from each other, 

yet they turn out to be closely related. My conjecture at this point would be that 

both rates are contributing to survival, but in a different and in what appears to 

be a complementary way. Second is the ratio between the synonymous and the 

non-synonymous rates of substitutions. The parameter modelling this ratio has a 

distribution which is poorly understood. Here I have proposed a way how to deal 

with this parameter separately from all the other parameters in the model, using 

a two-step estimation procedure that had not been tried before in the literature. 
In attempting to detect positive selection in my data set, it was unfortunate that 

I was let down by the GY94 model. This model, being purely mechanistic and 

modelling only single base substitutions in each codon, and not being neighbour 

context aware, could not deal effectively with the fast rate regions. Nevertheless, I 

have shown that this parameter plays a significantly different role in the two regions, 

and with a richer substitution model, the two-step estimation can prove to be very 

useful. Third, it is clear that codon usage is different in the two regions. At the same 

time, the chemical agents that determine which codons are predominantly located 

in the fast regions are mutually exclusive from the chemical agents that determine 

which codons are most accommodating to indels in this region. There is a strong 

indication that a systematic interplay among chemical agents that control codon 

behaviour exist in the fast rate regions and is yet to be understood.

My HMM-PHMM topology can go beyond the comparative prediction of
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purely evolutionary processes. I found that the topology is versatile and can also be 

used for detecting pyrosequencing errors efficiently through sampling. The experi­

mental setting for this purpose turned out to be more elaborate than I had expected. 

First it required me to increase the number of regions from two to three. This meant 

that now I needed a Markov chain with three states to switch in between three KM- 

PHMMs. Second, to differentiate between evolutionary indels and machine induced 

indels, I was also required to raise the order of the emission probabilities Markov 

chains to two. The increase in the number of parameters in the model, together with 

the fact that the difference between the two types of indels is very subtle, meant that 

the model will have low power in this setting. Nevertheless, a good estimate of the 

rate of sparse errors caused by the homopolymer effect inherent in the technology 

could still be obtained.

The effectiveness of the topology could perhaps be increased by increasing the 

order of the Markov chain within the state transition matrices. This approach pre­

sented me with the computational difficulty in that transition probabilities would 

now have much hner gradations, and this tended to cause underflow errors. A more 

serious problem is computational time. Each pairwise alignment was taking, on 

average, approximately ten to hfteen minutes to complete on a Cray XD1 Super­
computer. With large samples of, say, 100-200 PIPs, experiments are therefore very 

costly to carry out to completion. Implementing better coding techniques may help 

to alleviate these problems. Shorter computational times would allow me to pro­

duce replications of my experiments and thus confirm with higher certainty that the 

results that I have obtained in this work are repeatable.

Another shortcoming in my work, due to long computational times, is the 

omission (for expeditious reasons) of confidence intervals of my estimators. All 

my inferences have been based on point estimators without regard to statistical 

reliability. To make matters worse, when I first started this work in late 2004, there 

was no theory that could show whether estimators computed with two sequences 

using a pair HMM were consistent. It had been known that estimators computed 

with just one sequence using a classical HMM are consistent (A rribas-G il et a/., 

2006), but with two sequences I was working with uncertainty. It was very relieving

115



that after more than two years since I had started, I discovered that consistency 

of maximum likelihood estimators holds also for two sequences given that their 

observed length is sufficiently informative, even if the evolutionary distance between 

them is not known (i.e. Arribas-G il et a/., 2006, p. 657).

Until now, the construction of phylogenetic trees had been based on the align­

ment of the corresponding biologically encoded sequences. The fact that this align­

ment is invariably given prior to the construction implies that there is a major flaw 

in this approach to phylogeny based studies. The two important evolutionary prob­

lems, namely, alignment and phylogeny, are profoundly interdependent, and their 

respective maximisation by the maximum likelihood method need to be formulated 

as one problem. Furthermore, the probability of the alignment itself had also been 

assumed to be the sum over different alignments that represent the set of evolution­

ary events, namely, mutations, insertions, and deletions. With my HMM-PHMM 

topology I have added a new element to this set, namely, secondary structure. On 

the one hand I am very disappointed that Löytynoja and Goldman (2008) did 

not acknowledge my announcing this new element in the pairwise alignment method 

at the Brisbane International Congress just over two years ago, but on the other 

hand I am also very pleased that this concept is already proving to be useful and 
may become the norm over the coming years within the community of researchers 

working in this field.
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A PPE N D IX  A 
Chapter One

A .l  Silent Chains
I discuss here a method of how to determine all possible silent chains between 

states a and b in an HMM that has D silent states. I am not aware of a mathematical 

expression that can directly identify these chains, and until the time of writing I 

have not been able to derive such an expression myself. I have chosen, at this stage, 

to take the following approach.

Consider, for example, an HMM with D — 4. The set of all possible silent 

chains between states a and b can be enumerated from 1 to 16 as follows:

1 (a, b)
2 (a, 1, b)
3 (a, 1, 2, b)
4 (a, 1, 2, 3, b)
5 (a, 1, 2, 3, 4, b)
6 (a, 1, 2, 4, b)
7 (a, 1, 3, b)
8 (a, 1, 3, 4, b)
9 (a, 1, 4, b)

10 (a, 2, b)
11 (a, 2, 3, b)
12 (a, 2, 3, 4, b)
13 (a, 2, 4, b)
14 (a, 3, b)
15 (a, 3, 4, b)
16 (a, 4, b)

It turns out to be relatively simple to construct the following corresponding 

matrix, which I call the silent mapping matrix.
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1 2 3 4 5 4 3 4 3 2 3 4 3 2 3 2

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0 8 7 6 5 4 3 2 1 4 3 2 1 2 1 1

0 0 4 3 2 1 2 1 1 0 2 1 1 0 1 0

0 0 0 2 1 1 0 1 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

To start with, the number of columns in this matrix is equal to 2D, and the 

number of rows is equal to D + 2. The first row has what I call peak integers. I 

define a peak integer as an integer whose both abutting integers are smaller, and 

I denote it by pu where u =  1,2,...,_D. Hence, for D =  4, I have peak integers 

pi = 5, p 2  =  4, p3 = 4, and p4  =  3, and they correspond to silent chains numbered 

earlier as 5,8,12, and 15 respectively. The challenge now is to locate each peak 

integer and determine its value.

To do this, I hrst have to construct rows 2 to D +  2. Row 2 is simply filled 

with integers starting from 2D all the way down to 1 decrementing by one from left 

to right. Row 3 is Riled with integers starting from 2D_1 in the second column all 

the way down to 1 from left to right, and then start again with 2D~2, and keep 

repeating until I place 2° in the last cell. I repeat this process in row 3, although 

now I start with 2°~2 in the third column, and I keep repeating with 2n~3. until it 

only remains to place 2° in column D + 1 of the last row.

Across the entire matrix, I next identify all the ones that are immediately 

preceded by a zero. Each of these ones point at the column of each peak integer. 

For example, pi is in the same column of the one preceded by a zero in the last row. 

p2 and p3  are in the columns of the two ones preceded by a zero in the second last 

row, and so on. The value of each peak integer is equal to the number of integers in 

its column. For example, pi has five integers in its column, and hence pi =  5.

Once the peak integers in the first row have been determined, filling the cells 

in between with decrementing integers is trivial. Denote each of these integers by 

Cj, j  = 1, 2, . . . ,  2d , where j is the column number. Then, the number of silent states 

in silent chain j  is equal to Cj — 1.

What is left to be done is to determine the index of each silent state in each
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silent chain. Dehne the sets {2q, 2q — 1 , . . . ,  1} for q = D — 1, D — 2 , . . . ,  0, and 

number these sets 1, 2, . . . ,  D respectively. From now on I consider only the last D 

rows of the silent mapping matrix.

All elements in column one are zero, and hence, the hrst silent chain is empty. 

That is, how is directly from state a to state b. In the second column, I only have 

integer 8 which belongs to set number 1. Hence, the second silent chain has only 

one silent state with index w = 1. In the third column I have two integers, namely, 

7 and 4. The hrst belongs to set number 1 and the second belongs to set number 2. 

Hence, the third silent chain has two silent states with indexes w = 1 and w — 2. 

Continuing in this manner, I hnd that in column 2° I only have the integer 2q, q — 0, 

which belongs to set number D. This means that the last silent chain has only one 

silent state with index w = D.

This procedure for constructing the silent mapping matrix and deducing silent 

chains may seem elaborate. I have found, however, that once the mosaic of this 

matrix reveals itself, it becomes a straightforward task to implement this procedure 

in computer code in order to construct all the possible silent chains between any two 

given states for a given HMM with D silent states. The availability of these chains 

makes it possible to compute Qab and then generalise the forward, backward, and 
Baum-Welch algorithms which I have formulated independently as shown below.

I should at this point mention that similar generalised algorithms may have 

been implemented by the authors of the HMMER (Eddy, 2003) computer program. 

I may contact these authors for possible discussion on this issue at some stage.

A .2 G eneral Form ulas
A .2.1 N otation  for the  General Forward, Backward and Baum-W elch 

A lgorithm s

(i) P(yn\HMM)\ the probability of observing sequence y of length n given the 

HMM,

(ii) the emitting state with index z, i = l , 2 , . . . , r ,  of the HMM at position 

£, t = 1,2,
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(iii) gQ . the silent state with index w, w = 1, 2, . . . ,  D, of the HMM at position t ,

(iv) yt : the observable item with index k, k =  1, 2, . . . ,  K, emitted at position t ,

(v) the forward (backward) score contributed by state up to 

position t ,

(vi) Tab: the transition probability from state a to state 6,

(vii) Ejk\ the emission probability of the observable item yW by the current 

state s ^ \

(viii) 93 ((£): the begin (end) state,

(ix) Qab: the total probability of transitions from state a to state b through all the 

possible silent chains between state a and state b.

d(1) d(2) s(1) £ A B
93 o bo o Ö o to o Ö __

_1

'  0.0  0.0  "

0.0  0.7  0.3  0.0 0.0  0.0
0.0  0.0  0.9  0.1 0.0  0.0

s b ) _  0.8  0.1  0.1 0.0 0.2  0.8

F ig u re  A . l :  E xam ple 3.10 in ISAEV (2004)

A transition matrix T  with silent states S w\  w = 1,2, . . . ,  D, such as the one 

shown in Figure A.l with D = 2, can be reduced to a transition matrix denoted 

by T*, whereby the silent chains are eliminated. It is trivial to apply the method 

described in Section A.l for obtaining silent chains, and then sum silent chain prob­

abilities V a, b to construct the reduction from T  to T*. For example, the matrix 

T* and the associated HMM shown in Figure A.2 is obtained after reducing the 

matrix T in Figure A.l. The purpose of this reduction is to simplify the general 

Baum-Welch.

In what follows, source emitting and source silent states will be indexed by i 

and w respectively, and similarly, sink emitting and sink silent states will be indexed 

by j  and z respectively.
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0.934

0.0660.944

0.056

s (!) £ A B
53 ' 0.944 0.056 ' ' 0.0 0.0 '

s (!) 0.934 0.066 0.2 0.8

F igure A .2: Reduction of transition matrix T with silent states shown in Figure A.l to a matrix T* without silent 
states.

A .2.2 The General Forward Algorithm

f \ ] —  ^7«j +  ^ 03wTWj \ Ejk,

i= l

where

£ =  1, 2 , . . . ,  n — 1.

V  z — 1 z n = l

where

t — 2, 3 , . . .  ^

r

P(9"|ÄMM) = ^ / f ü je,
Z =  1

where

j  =  1,2,

2 =  1, 2 ,

k G {1 , 2 , . . . ,  A }.
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A .2.3 T he G eneral Backward A lgorithm

D

b̂n =  TiZQZ£,
z— 1

3= 1

where

t = n,n — 1 , . . . ,  2.

j = l 2=1

where

£ = n — 1 , n — 2 , . . . ,  1 .

r

P(yn\HMM)  =  ^  f2B:)6(/ ), 
j = l

where

i =  1,2,

w =  1,2,.

k €  { 1 , 2 , . . . ,  /C}.

A .2.4 T he G eneral B aum -W elch A lgorithm

For brevity, formulas are for the transition matrix only. One sequence of 

training data is assumed for simplicity. The normalisation factor is omitted.
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Em itting states only cases

T  ____  T *  Z ?

-  I ' Z j t i j k O i  x

'T1 _ \   ̂ T-i 7 (j)
1 i j t j j kÖt + 1 ’

t = 2

^  =  / ä

Silent states only cases

' P  __ f ( w ) rn A z )
1  XV Z  J  t  1  XVZU t

Mixed cases

TW = Tfgzb[z\

p  __  Aw)'-r A j )
1 xvj J t 1 xvjut x

rr  __  f(i)rp Az )
t z  —  J t  J-iz^t  x

T A  =  f i w ) T

In each case

« =  1,2, . . . , n -  1,

i =  1,2, . . . ,r,

ic =  1,2, . . . , A

/c E {1, 2 , . . . ,  X}.
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A P P E N D IX  B 
C h ap te r Two

B .l  Taylor Series E xpansions
I am grateful to David Eberly for his instructive ideas which enabled me to 

construct the following derivation.

Consider the following Taylor series expansions

f ( x  + a) = f i x)  + af ' ix) + - f i x )  +  ^ / '" (x )  +  e(4), (B.l)

f i x  - a )  = f i x )  -  af ' ix) + ^ / " ( x ) -  ^ / '" ( x )  +  e(4), (B.2)

where e(n) is the error term of order n. Subtract B.2 from B.l

2a3
/(x  + a) -  f ( x  - a )  = 2af'(x) +  -^ -/'" (x ) +  e(5),

f ± ± a ) - f i x - a )  = +  +
a <3!

Consider further the following expansions

/(x  +  2a) = f (x)  + 2 a f ( x )  + 2 a2f"(x)  + ^ - /" '( x )  + e(4), (B.4)

/(x  -  2a) = f{x)  -  2af ( x )  + 2a2f"(x)  -  ^ j-/ '" (x ) + e(4). (B.5)
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Subtract B.5 from B.4

16a3
f ( x  +  2a) -  f ( x  -  2a) = 4af ' (x)  + +  e(5)>

f ( x  +  2g) -  f ( x -  2a) =  4 + 16a^ +
a 3!

(B.6)

It now remains to subtract B.6 from B.3 to obtain

=  8 [f (x +  a) -  f ( x  -  a)} -  [f (x +  2a) -  f ( x  -  2a)]
j  \ > i
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B .3  P a s c a re lla  a n d  A rg u s  M e th o d s

In their analyses, Pascarella and Argos (1992) adopted the following scheme 

to detect the preferred environment, where arrows point at residues that flank an 

indel (in this case a deletion)

u uxxzzxxzzxxxx
YYZ------ ZYYYYt T

Define i = percentage residue identity interval z G {1 — 5, . . . ,  95 — 100},

= number of indels within z,

= length of the zth indel within z,

=  number of pairs within z,

X k = length of sequence A" in pair k within z, 

r (i) =  number of indels per aligned site in interval z, 

m,j =  number of occurrences of flanking amino acid j,

Pj =  preference for amino acid j.

The following are the essential Pascarella and Argus statistics:

, ( * )

i= 1
(B.7)

r w _

k(')

E
k=1

. ( » )

k m

E min( T '). h ,))
k=1

(B.8)

20

N  =  E m3-
j=l

(B.9)
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Pj =
™± 
N  ’

(B.10)

<7Pj
Pj(l -  Pj) 

N
(B.ll)
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A PPE N D IX  C 
Chapter Four

C .l Codon Preference

C o d o n P r e f e r e n c e  ( p ) S D ( p ) A m i n o  A c i d H y d r o p h i l i c

A A G 0 .0 5 7 1 4 0 .0 1 9 6 2 L y s in e Y es

G C A 0 .0 5 0 0 0 0 .0 1 8 4 2 A la n in e N o

A A A 0 .0 4 2 8 6 0 .0 1 7 1 2 L y s in e Y es

A C A 0 .0 4 2 8 6 0 .0 1 7 1 2 T h r e o n in e N o

G A G 0 .0 4 2 8 6 0 .0 1 7 1 2 G lu ta m ic  a c id Y es

T A T 0 .0 3 5 7 1 0 .0 1 5 6 8 T y r o s in e N o

A C T 0 .0 2 8 5 7 0 .0 1 4 0 8 T h r e o n in e N o

C T G 0 .0 2 8 5 7 0 .0 1 4 0 8 L e u c in e N o

G A T 0 .0 2 8 5 7 0 .0 1 4 0 8 A s p a r t i c  a c id Y es

T G G 0 .0 2 8 5 7 0 .0 1 4 0 8 T r y p to p h a n N o

G G C 0 .0 2 8 5 7 0 .0 1 4 0 8 G ly c in e Y es

G A C 0 .0 2 8 5 7 0 .0 1 4 0 8 A s p a r t i c  a c id Y es

G C C 0 .0 2 8 5 7 0 .0 1 4 0 8 A la n in e N o

A T C 0 .0 2 1 4 3 0 .0 1 2 2 4 Is o le u c in e N o

A TA 0 .0 2 1 4 3 0 .0 1 2 2 4 Is o le u c in e N o

A G C 0 .0 2 1 4 3 0 .0 1 2 2 4 S e r in e Y es

C A T 0 .0 2 1 4 3 0 .0 1 2 2 4 H is t id in e N o

A A T 0 .0 2 1 4 3 0 .0 1 2 2 4 A s p a r a g in e Y es

G G T 0 .0 2 1 4 3 0 .0 1 2 2 4 G ly c in e Y es

G G G 0 .0 2 1 4 3 0 .0 1 2 2 4 G ly c in e Y es

G T G 0 .0 2 1 4 3 0 .0 1 2 2 4 V a lin e N o

G C T 0 .0 2 1 4 3 0 .0 1 2 2 4 A la n in e N o

C T T 0 .0 1 4 2 9 0 .0 1 0 0 3 L e u c in e N o

C C T 0 .0 1 4 2 9 0 .0 1 0 0 3 P r o l in e Y es

A G A 0 .0 1 4 2 9 0 .0 1 0 0 3 A r g in in e Y es

C A C 0 .0 1 4 2 9 0 .0 1 0 0 3 H is t id in e N o

A C G 0 .0 1 4 2 9 0 .0 1 0 0 3 T h r e o n in e N o

A G T 0 .0 1 4 2 9 0 .0 1 0 0 3 S e r in e Y es

C C C 0 .0 1 4 2 9 0 .0 1 0 0 3 P r o l in e Y es

C A G 0 .0 1 4 2 9 0 .0 1 0 0 3 G lu ta m in e Y es

C G C 0 .0 1 4 2 9 0 .0 1 0 0 3 A r g in in e Y es
T A C 0 .0 1 4 2 9 0 .0 1 0 0 3 T y to s in c N o

T C G 0 .0 1 4 2 9 0 .0 1 0 0 3 S e r in e Y es

T T A 0 .0 1 4 2 9 0 .0 1 0 0 3 L e u c in e N o

G T A 0 .0 1 4 2 9 0 .0 1 0 0 3 V a lin e N o

T T G 0 .0 1 4 2 9 0 .0 1 0 0 3 L e u c in e N o

A T G 0 .0 0 7 1 4 0 .0 0 7 1 2 M e th io n in e N o

A A C 0 .0 0 7 1 4 0 .0 0 7 1 2 A s p a r a g in e Y es

A T T 0 .0 0 7 1 4 0 .0 0 7 1 2 I s o lc u c in e N o

C T A 0 .0 0 7 1 4 0 .0 0 7 1 2 L e u c in e N o

C T C 0 .0 0 7 1 4 0 .0 0 7 1 2 L e u c in e N o

C C G 0 .0 0 7 1 4 0 .0 0 7 1 2 P r o l in e Y es

C A A 0 .0 0 7 1 4 0 .0 0 7 1 2 G lu ta m in e Y es

T G T 0 .0 0 7 1 4 0 .0 0 7 1 2 C y s te in e N o

T T T 0 .0 0 7 1 4 0 .0 0 7 1 2 P h e n y la l a n in e N o

G G A 0 .0 0 7 1 4 0 .0 0 7 1 2 G ly c in e Y es

C G T 0 .0 0 7 1 4 0 .0 0 7 1 2 A rg in in e Y es

G A A 0 .0 0 7 1 4 0 .0 0 7 1 2 G lu ta m ic  a c id Y es

T C A 0 .0 0 7 1 4 0 .0 0 7 1 2 S e r in e Y es

G T C 0 .0 0 7 1 4 0 .0 0 7 1 2 V a lin e N o

G C G 0 .0 0 7 1 4 0 .0 0 7 1 2 A la n in e N o

T T C 0 .0 0 7 1 4 0 .0 0 7 1 2 P h e n y la la n in e N o

G T T 0 .0 0 7 1 4 0 .0 0 7 1 2 V a lin e N o

T C C 0 .0 0 7 1 4 0 .0 0 7 1 2 S e r in e Y es

T C T 0 .0 0 7 1 4 0 .0 0 7 1 2 S e r in e Y es

A G G 0 .0 0 0 0 0 0 .0 0 0 0 0 A r g in in e Y es

C C A 0 .0 0 0 0 0 0 .0 0 0 0 0 P r o l in e Y es

C G A 0 .0 0 0 0 0 0 .0 0 0 0 0 A r g in in e Y es

C G G 0 .0 0 0 0 0 0 .0 0 0 0 0 A r g in in e Y es

T G C 0 .0 0 0 0 0 0 .0 0 0 0 0 C y s te in e N o

A C C 0 .0 0 0 0 0 0 .0 0 0 0 0 T h r e o n in e N o

Table C .l:  This table shows the preference index of each codon in fast rate regions. None of the gaps in slow 
rate regions had flanking codons that met the criteria illustrated in Section B.3. The table is sorted by the 
preference index p in the second column.
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C .2  C o d o n  U sag e  in R eg io n s 1 a n d  2

C o d o n S lo w F a s t Slow -I-Fast S lo w - fF a s t A m in o  A c id H y d r o p h i l i c

— 0.00008 0.01962 0.01970 0.00416 gap NA
AGC 0.00459 0.00695 0.01154 0.65962 Serine Yes
AG T 0.00328 0.00481 0.00809 0.68136 Serine Yes
C G T 0.00413 0.00560 0.00973 0.73761 A rgin ine Yes
TC A 0.00385 0.00517 0.00903 0.74448 Serine Yes
AGA 0.00428 0.00514 0.00942 0.83175 A rgin ine Yes
T C T 0.00588 0.00669 0.01257 0.87805 Serine Yes
TC G 0.00330 0.00375 0.00705 0.87826 Serine Yes
CG C 0.00690 0.00723 0.01413 0.95485 A rgin ine Yes
CGG 0.00233 0.00243 0.00477 0.95973 A rgin ine Yes
AGG 0.00299 0.00274 0.00573 1.08929 A rgin ine Yes
CGA 0.00194 0.00170 0.00364 1.14423 A rgin ine Yes
C T T 0.00761 0.00650 0.01410 1.17085 Leucine No
CAA 0.00901 0.00746 0.01647 1.20788 G lu tam in e Yes
CAG 0.00894 0.00733 0.01627 1.22049 G lu tam in e Yes
ACA 0.00690 0.00539 0.01229 1.28182 T h reo n in e No
T T G 0.00792 0.00612 0.01404 1.29333 Leucine No
TTA 0.01009 0.00744 0.01753 1.35526 Leucine No
ACG 0.00537 0.00395 0.00932 1.35950 T h reo n in e No
TC C 0.00570 0.00406 0.00976 1.40161 Serine Yes
AAA 0.01906 0.01351 0.03257 1.41063 Lysine Yes
A C T 0.00720 0.00506 0.01226 1.42258 T h reo n in e No
CTA 0.00312 0.00209 0.00521 1.49219 Leucine No
GCG 0.00868 0.00576 0.01444 1.50708 A lanine No
C T C 0.00916 0.00584 0.01500 1.56704 Leucine No
GTA 0.00640 0.00405 0.01044 1.58065 Valine No
ATA 0.00800 0.00501 0.01301 1.59609 Isoleucine No
A AT 0.01358 0.00850 0.02208 1.59693 A sparag ine Yes
ACC 0.01074 0.00664 0.01738 1.61671 T h reo n in e No
GCA 0.01066 0.00638 0.01704 1.67008 A lan ine No
T G T 0.00431 0.00258 0.00689 1.67089 C ysteine No
AAG 0.01660 0.00976 0.02636 1.70067 Lysine Yes
CCA 0.00640 0.00353 0.00992 1.81481 P ro line Yes
CAC 0.00860 0.00473 0.01333 1.81724 H istid ine No
CAT 0.00788 0.00423 0.01211 1.86486 H istid ine No
CCG 0.00690 0.00366 0.01056 1.88839 P ro lin e Yes
C C T 0.00754 0.00398 0.01152 1.89344 P ro line Yes
AAC 0.01340 0.00702 0.02042 1.90930 A sparag ine Yes
T G C 0.00496 0.00258 0.00754 1.92405 C ysteine No
G CC 0.01785 0.00924 0 02709 1 93286 A lanine No
CCC 0.00633 0.00326 0.00960 1.94000 P ro line Yes
C T G 0.01521 0.00777 0.02298 1.95798 Leucine No
G C T 0.01384 0.00707 0.02091 1.95843 A lan ine No
GAG 0.01875 0.00942 0.02817 1.99133 G lu tam ic  acid Yes
G T T 0.01142 0.00571 0.01714 2.00000 Valine No
A TT 0.01689 0.00836 0.02525 2.02148 Isoleucine No
GAA 0.02588 0.01224 0.03812 2.11467 G lu tam ic  acid Yes
G TG 0.01505 0.00710 0.02215 2.11954 Valine No
TAT 0.01262 0.00573 0.01834 2.20228 T yrosine No
GAT 0.02277 0.00961 0.03238 2.36842 A sp artic  acid Yes
ATC 0.01608 0.00671 0.02278 2.39659 Isoleucine No
G G A 0.01237 0.00504 0.01741 2.45307 G lycine Yes
ATG 0.01498 0.00592 0.02091 2.52893 M ethionine No
T T T 0.01472 0.00561 0.02033 2.62209 P h en y lalan in e No
TG G 0.00917 0.00346 0.01263 2.65094 T ry p to p h an No
TAC 0.01364 0.00514 0.01878 2.65397 T yrosine No
T T C 0.01410 0.00501 0.01911 2.81433 P h en y lalan in e No
GAC 0.02102 0.00739 0.02841 2.84327 A sp artic  acid Yes
G T C 0.01226 0.00424 0.01650 2.88846 Valine No
G G G 0.00796 0.00273 0.01069 2.92216 G lycine Yes
G G T 0.01466 0.00468 0.01934 3.12892 G lycine Yes
G G C 0.02153 0.00622 0.02774 3.46194 G lycine Yes

Table C.2: This table shows the frequency of codons and of gaps in regions one and two. The table is sorted 
by the ratio slow-i-fast in the fifth column.
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A PPE N D IX  D 
Chapter Five

The following nine panels show results of pairwise alignments that had significance 

at the 10% level in the homopolymer experiment. This experiment consisted of 89 

pyrosequenced reads. Each read was aligned with a cognate reference sequence using 

a three-region model as described in Chapter 5.

Each panel shows three pairwise alignments: the first was obtained under the 

null, the second under the alternative, and the third is the ClustalW alignment. 

The third row of the first and second alignments shows the predicted region number 

at each site. The third row of the third alignment shows the position number of 

each site. The table under these alignments shows estimator levels obtained under 

the null (first alignment) and under the alternative (second alignment). Only the 

second alignment was used for counting monoinserts.

P a n e l  One

Alignments 46 (p-value = 0.0S20)
CAACGCGAAGAACCTTACCTGGGTTTGACAT-CCTTTGACACCCCTGGAAACAGGGTTTTCCCGACTTGTCGGGACAGAGTGACAGGTGCTGCATGGCTGTCG 
CAACGCGAAGAACCTTACCTGGGCTTGACATGTACATGCCGGCCGTGGAAACACGGCTTTC - CAGCTTG - CTGGACGTGTACACAGGTGNTGCATGGCTGTCG 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 2 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAACGCGAAGAACCTTACCTGGGTTTGACAT-CCTTTGACACCCCTGGAAACAGGGTTTTCCCGACTTGTCGGGACAGAGTGACAGGTGCTGCATGGCTGTCG 
CAACGCGAAGAACCTTACCTGGGCTTGACATGTACATGCCGGCCGTGGAAACACGGCTTTC - CAGCTTG - CTGGACGTGTACACAGGTGNTGCATGGCTGTCG 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 2 1 1 1 1 1 2 0 2 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CAACGCGAAGAACCTTACCTGGGTTTGACATC- - CTTTGACACCCCTGGAAACAGGGTTTTCCCGACTTGTCGGGACAGAGTG- ACAGGTGCTGCATGGCTGTCG 
CAACGCGAAGAACCTTACCTGGGCTTGACATGTACAT- GCCGGCCGTGGAAACACGGCTTTCCAG- CTTG- CTGGAC- GTGTACACAGGTGNTGCATGGCTGTCG 
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

H yp E s t R1 R2 R3

N u l l h >  <2> h 0 . 0 0 0 0 0 0 . 0 0 3 6 9 0 . 0 0 3 6 9

ä l > “ 2 - “ 3 0 . 1 0 5 4 2 0 . 0 0 0 0 0 0 . 0 0 0 0 0
f i ,  r 2 , r 3 0 . 9 9 7 0 6 9 . 9 4 4 3 2 9 . 9 4 4 3 2

Pl>  P2> P3 0 . 0 8 4 5 2 0 . 1 8 7 8 3 0 . 1 8 7 8 3

A l t *1> *2- h 0 . 0 0 0 0 0 0 . 0 0 4 4 5 0 . 0 0 4 4 5

“ 1 - “ 2> “ 3 0 . 2 0 2 4 1 0 . 0 0 0 0 0 0 . 2 3 8 1 7

* 1 .  r 2 , V3 6 . 8 3 5 6 7 9 .9 3 8 0 3 0 . 0 2 0 6 9

P\< P2< P3 0 . 1 0 6 6 9 0 .1 7 2 6 2 0 . 9 8 9 7 1
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Panel Two
Alignments 47 (p-value = 0.0864)
CAACGCGAAGAACCTTACCCGGGCTCAAATGCTGGACGACAGTCCCTGA-AAGGGGATCTCCTTCGGG-CGTCCAGCAAGGTGCTGCATGGCTGTCG
CAACGCGAAGAACCTTACCTGGGCTTGAACCGCAGATGAAATCCCCTGAAAAGGGGCTTTCCTTCGGGACATCTGTAGAGGTGNTGCATGGCTGTCG
0000000000000000001111122111111111111111111110000000000111110000000111111111111000000000000000000

CAACGCGAAGAACCTTACCCGGGCTCAAATGCTGGACGACAGTCCCTGA-AAGGGGATCTCCTTCGGG-CGTCCAGCAAGGTGCTGCATGGCTGTCG
CAACGCGAAGAACCTTACCTGGGCTTGAACCGCAGATGAAATCCCCTGAAAAGGGGCTTTCCTTCGGGACATCTGTAGAGGTGNTGCATGGCTGTCG
0000000000000000001111000111111111111111111110000000001111110000000111111111111000000000000000000

CAACGCGAAGAACCTTACCCGGGCTCAAAT-GCTGGACGACAGTCCCTGAAA-GGGGATCTCCTTCGGG-CGTCCAGCA-AGGTGCTGCATGGCTGTCG 
CAACGCGAAGAACCTTACCTGGGCTTGAACCGCAG-ATGAAATCCCCTGAAAAGGGGCTTTCCTTCGGGACATCT-GTAGAGGTGNTGCATGGCTGTCG 
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789

Hyp Param R1 R2 R3

Null h  ’ h ’ h 0.00089 0.00134 0.00134
“1>“2> “3 0.00019 0.00040 0.00040

r2, r3 9.84885 9.61214 9.61214
Pi. P2- P3 0.08270 0.19471 0.19471

Alt *1> f2> *3 0.00081 0.00147 0.00147
“1>“2> “3 0.00001 0.00049 0.24455
fi, f2, r3 9.98295 9.51716 9.94296
Pi. P2> P3 0.09783 0.15918 0.96872

Panel Three
Alignments 60 (p-value = 0.0438)
CAACGCGAAGAACCTTACCTGGGCTCAAATGCAGAGTGACAGTCCCTGA-AAGGGGATTTTC--TTCGG-ACAGTCTGCAAGGTGATGCATGGCTGTCG 
CAACGCGAAGAACCTTACCTGGGCTTAAATGTATGATGACCGCTTCTGAAAAG- - GAGTTTCCCTTCGGGGCATTATACAAGGTGNTGCATGGCTGTCG 
000000000000000000000000011000022222200022212200000000000220000000000011122111100000000000000000000

CAACGCGAAGAACCTTACCTGGGCTCAAATGCAGAGTGACAGTCCCTGAAAGGGGATTTT-CTTCGG-ACAGTCTGCAAGGTGATGCATGGCTGTCG
CAACGCGAAGAACCTTACCTGGGCTTAAATGTATGATGACCGCTTCTGAAAAGGAGTTTCCCTTCGGGGCATTATACAAGGTGNTGCATGGCTGTCG
0000000000000000000000000111102111111222111122200011111111111100001111111111100000000000000000000

CAACGCGAAGAACCTTACCTGGGCTCAAATGCA-GAGTGACAGTCCCTGAAAGGGGATTTTC--TTCGGA-CAGTCTGCAAGGTGATGCATGGCTGTCG 
CAACGCGAAGAACCTTACCTGGGCTTAAATGTATGA-TGACCGCTTCTGAAAAGG-AGTTTCCCTTCGGGGCATTATACAAGGTGNTGCATGGCTGTCG 
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789

Hyp Param R1 R2 R3

Null *i> *2’ h 0.00186 14.37794 14.37794
äl.“2> a 3 0.37635 0.00086 0.00086
f l, f2 , f3 9.97557 0.00145 0.00145
Pi> P2> P3 0.08094 0.41164 0.41164

Alt *1> 42- *3 0.00000 0.00312 0.00312
“i,ä2, a3 0.73446 0.00066 0.01016
1̂. ̂ 2- f3 2.60959 9.91673 5.37811
Pl> P2> P3 0.08521 0.17917 0.51335
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Panel Four
Alignments 68 (p-value = 0.0682)
CAACGCGAAGAACCTTACCTGGGTTTGACAT-CCTTTGACACCCCTGGAAACAGGGTTTTCCCGACTTGTCGGGACAGAGTGACAGGTGATGCCATGGCTGTCG 
CAACGCGAAGAACCTTACCTGGGCTTGACATGTACATGCCGGCCGTGGAAACACGGCTTTC-CAGCTTG-CTGGACGTGTACACAGGTGNTGC-ATGGCTGTCG 
00000000000000000000001111000001111111111111110000000111111111111100011111001111111000000000000000000000

CAACGCGAAGAACCTTACCTGGGTTTGACAT-CCTTTGACACCCCTGGAAACAGGGTTTTCCCGACTTGTCGGGACAGAGTGACAGGTGATGCCATGGCTGTCG 
CAACGCGAAGAACCTTACCTGGGCTTGACATGTACATGCCGGCCGTGGAAACACGGCTTTC - CAGCTTG - C TGGACGTGTACACAGGTGNTG C - ATGGCTGTCG 
00000000000000000000001110000001111111111111110000000111111101111100011111001111111000000000000000000000

CAACGCGAAGAACCTTACCTGGGTTTGACATC--CTTTGACACCCCTGGAAACAGGGTTTTCCCGACTTGTCGGGACAGAGTG-ACAGGTGATGCCATGGCTGTCG 
CAACGCGAAGAACCTTACCTGGGCTTGACATGTACAT-GCCGGCCGTGGAAACACGGCTTTCCAG-CTTG-CTGGAC-GTGTACACAGGTGNTGC-ATGGCTGTCG 
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456

Hyp Param Rl R2 R3

Null h ’ h >  h 0.00052 0.00423 0.00423
“1>“2’ “3 0.00378 0.00001 0.00001
fj,f2, r3 9.98117 9.99302 9.99302
PI. P2’ P3 0.10275 0.20392 0.20392

Alt *1> *2 > *3 0.00076 0.00412 0.00412
“1> ä2> “3 0.00001 0.00005 0.03863
ri, f2, r3 9.92112 9.95712 9.87374
Pl>P2> P3 0.11122 0.17970 0.98975

Panel Five
Alignments 69 (p-value = 0.0480)
CAACGCGAAAGAACCTTACCTGGGTTTGACAT-CCTTTGACACCCCTGGAAACAGGGTTTTCCCGACTTGTCGGGACAGAGTGACAGGTGTTGCATGGCTGTCG 
CAACGCGA-AGAACCTTACCTGGGCTTGACATGTACATGCCGGCCGTGGAAACACGGCTTTC - CAGCTTG - C TGGACGTGTACACAGGTGNTGCATGGCTGTCG 
00000000000000000000000111100000111111111111111000000011111111111110001111102111111100000000000000000000

CAACGCGAAAGAACCTTACCTGGGTTTGACAT-CCTTTGACACCCCTGGAAACAGGGTTTTCCCGACTTGTCGGGACAGAGTGACAGGTGTTGCATGGCTGTCG 
CAACGCGAA-GAACCTTACCTGGGCTTGACATGTACATGCCGGCCGTGGAAACACGGCTTTC - CAGCTTG - C TGGACGTGTACACAGGTGNTGCATGGCTGTCG 
00000000020000000000000111000000211111111111111000000011111110111110002111100111111100000000000000000000

CAACGCGAAAGAACCTTACCTGGGTTTGACATC--CTTTGACACCCCTGGAAACAGGGTTTTCCCGACTTGTCGGGACAGAGTG-ACAGGTGTTGCATGGCTGTCG 
CAACGCGAA-GAACCTTACCTGGGCTTGACATGTACAT-GCCGGCCGTGGAAACACGGCTTTCCAG-CTTG-CTGGAC-GTGTACACAGGTGNTGCATGGCTGTCG 
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456

Hyp Param Rl R2 R3

Null *i> *2’ h 0.00087 0.00378 0.00378
“ 1.®2> “3 0.00058 0.00003 0.00003
r1 . r2 , f3 9.94202 9.88836 9.88836
Pl> P2> P3 0.08960 0.19874 0.19874

Alt *1> *2- h 0.00001 0.02245 0.02245
®1>“2- a3 0.60435 0.00094 0.12263
»*1» ̂ 2> f3 0.90311 0.97378 9.96981
Pl> P2> P3 0.12911 0.20509 0.98978
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Panel Six
Alignments 71 (p-value = 0.0693)
CAACGCGAAGAACCTTACCGGGGCTTGACATTCCCCTGAAGTCCCCGAGAAATCGGGGATCTCCCTTCGGGGACAGGGGAACAGGTGATGCATGGCTGTCG 
CAACGCGAAGAACCTTACCTGGGCTTGAACCGCAGATGAAATCCCCTGAAAA - - GGGGCTTT C - CTTCG - GGACATCTGTAGAGGTGNTGCATGGCTGTCG 
00000000000000000011110000001111111112011111111111111111111111000000000000011111111000000000000000000

CAACGCGAAGAACCTTACCGGGGCTTGACATTCCCCTGAAGTCCCCGAGAAATCGGGGATCTCCCTTCGGGGACAGGGGAACAGGTGATGCATGGCTGTCG 
CAACGCGAAGAACCTTACCTGGGCTTGAACCGCAGATGAAATCCCC-TGAAAA-GGGGCTTTC-CTTCG- JGACATCTGTAGAGGTGNTGCATGGCTGTCG 
00000000000000000011110000001111111110011111111111111111111111000000000000011111111000000000000000000

CAACGCGAAGAACCTTACCGGGGCTTGACATTCCCC TGAAGTCCCC-GAGAAATCGGGGATCTCCCTTCGGGGACAGGGGAACAGGTGATGCATGGCTGTCG
CAACGCGAAGAACCTTACCTGGGCTTGA-A--CCGCAGATGAAATCCCCTGA-AAA--GGGGCTTTCC-TTCGGG-ACATCTGTAGAGGTGNTGCATGGCTGTCG 
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345

Hyp Param R1 R2 R3

Null 4  > *2- h 0.00161 0.00177 0.00177
“1>“2- “3 0.00018 0.38727 0.38727
rl, r2, r3 9.99143 9.97385 9.97385
Pi> P2> P3 0.08015 0.16391 0.16391

Alt *1> *2’ *3 0.00152 0.00242 0.00242
“1>“2> “3 0.00035 0.26041 0.40765
n , r 2, f3 9.94516 9.96302 0.08563
Pi. P2> P3 0.09735 0.14854 0.98846

Panel Seven
Alignments 79 (p-value = 0.0495)
CAACGCGAAGAACCTTACCTGGGTTTGACAT-CCTTTGACACCCCTGGAAACAGGGTTTTCCCGACTTGTOGGGACAGAGTGACAGGTGGTGCATGGCTGTCG 
CAACGCGAAGAACCTTACCTGGGCTTGACATGTACATGCCGGCCGTGGAAACACGGCTTTC - CAGCTTG - CTGGACGTGTACACAGGTGNTGCATGGCTGTCG 
0000000000000000000000111100000111111111111111000000011111111111110001111122111111100000000000000000000

CAACGCGAAGAACCTTACCTGGGTTTGACAT-CCTTTGACACCCCTGGAAACAGGGTTTTCCCGACTTGTQGGGACAGAGTGACAGGTGGTGCATGGCTGTCG 
CAACGCGAAGAACCTTACCTGGGCTTGACATGTACATGCCGGCCGTGGAAACACGGCTTTC-CAGCTTG ’TGGACGTGTACACAGGTGNTGCATGGCTGTCG 
0000000000000000000000111000000111111111111111000000011111112111112021111100111111100000000000000000000

CAACGCGAAGAACCTTACCTGGGTTTGACATC--CTTTGACACCCCTGGAAACAGGGTTTTCCCGACTTGTCGGGACAGAGTG-ACAGGTGGTGCATGGCTGTCG 
CAACGCGAAGAACCTTACCTGGGCTTGACATGTACAT-GCCGGCCGTGGAAACACGGCTTTCCAG-CTTG-CTGGAC-GTGTACACAGGTGNTGCATGGCTGTCG 
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345

Hyp Param R1 R2 R3

Null *1. *2> *3 0.00001 0.00388 0.00388
“1. ®2> ä3 0.35452 0.00037 0.00037
ri, r2 , r3 0.16948 9.99292 9.99292
Pi’ P2’ P3 0.08183 0.18493 0.18493

Alt *1’ *2- *3 0.00000 0.00451 0.00451
al>“2- “3 0.63219 0.00031 0.78393
1̂- ̂ 2’ f3 5.57370 9.84978 0.01569
Pi. P2’ P3 0.10670 0.17474 0.98977
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Panel Eight
Alignments 82 (p-value = 0.0509)
CAAACGCGAAGAACCTTACCTGGGTTTGACAT-CCTTTGACACCCCTGGAAACAGGGTTTTCCCGACTTGTCGGGACAGAGTGACAGGTGTTGCATGGCTGTCG 
CA - A CGCGAAGAACCTTACCTGGGCTTGACATGTACATGCCGGCCGTGGAAACACGGCTTTC - CAGCTTG - C TGGACGTGTACACAGGTGNTGCATGGCTGTCG 
00000000000000000000000111100000111111111111111000000011111111111110001111102111111100000000000000000000

CAAACGCGAAGAACCTTACCTGGGTTTGACAT-CCTTTGACACCCCTGGAAACAGGGTTTTCCCGACTTGTCGGGACAGAGTGACAGGTGTTGCATGGCTGTCG 
CAA - CGCGAAGAACCTTACCTGGGCTTGACATGTACATGCCGGCCGTGGAAACACGGCTTTC - CAGCTTG - C TGGACGTGTACACAGGTGNTGCATGGCTGTCG 
00020000000000000000000111000000211111111111111000000011111110111110002111100111111100000000000000000000

CAAACGCGAAGAACCTTACCTGGGTTTGACATC--CTTTGACACCCCTGGAAACAGGGTTTTCCCGACTTGTCGGGACAGAGTG-ACAGGTGTTGCATGGCTGTCG 
CAA-CGCGAAGAACCTTACCTGGGCTTGACATGTACAT-GCCGGCCGTGGAAACACGGCTTTCCAG-CTTG-CTGGAC-GTGTACACAGGTGNTGCATGGCTGTCG 
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456

Hyp Param R1 R2 R3

Null h > *2’ h 0.00066 0.00408 0.00408
“1>®2> “3 0.00028 0.00001 0.00001
Tl. r2 , r3 9.81561 9.97371 9.97371
Pi. P2> P3 0.09486 0.19987 0.19987

Alt h > *2’ *3 0 .00000 0.02136 0.02136
“1- “2> “3 0.24813 0.00000 0.05980
r 1. r2 , r3 7.33091 1.22906 9.96107
Pi. P 2 ’ P3 0.12778 0.20234 0.98990

Panel Nine
Alignments 84 (p-value = 0.0925)
CAACGCGAAGAACCTTACCCGGGCTCAAATGCTGGACGACAGTCCCTGA-AAGGGGATCTCCTTCGGG-CGTCCAGCAAGGTNCTGCATGGCTGTCG 
CAACGCGAAGAACCTTACCTGGGCTTGAACCGCAGATGAAATCCCCTGAAAAGGGGCTTTCCTTCGGGACATCTGTAGAGGTGNTGCATGGCTGTCG 
0000000000000000001111122111111111111111111110000000000111110000000111111111111000000000000000000

CAACGCGAAGAACCTTACCCGGGCTCAAATGCTGGACGACAGTCCCTGA-AAGGGGATCTCCTTCGGG-CGTCCAGCAAGGTNCTGCATGGCTGTCG 
CAACGCGAAGAACCTTACCTGGGCTTGAACCGCAGATGAAATCCCCTGAAAAGGGGCTTTCCTTCGGGACATCTGTAGAGGTGNTGCATGGCTGTCG 
0000000000000000001111000111111111111111111110000000001111110000000111111111111000000000000000000

CAACGCGAAGAACCTTACCCGGGCTCAAAT-GCTGGACGACAGTCCCTGAAA-GGGGATCTCCTTCGGG-CGTCCAGCA-AGGTNCTGCATGGCTGTCG 
CAACGCGAAGAACCTTACCTGGGCTTGAACCGCAG-ATGAAATCCCCTGAAAAGGGGCTTTCCTTCGGGACATCT-GTAGAGGTGNTGCATGGCTGTCG 
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789

Hyp Param R1 R2 R3

Null *i> *2> h 0.00092 0.00126 0.00126
®1> “2> ®3 0.00037 0.00089 0.00089
r\, f2 , f3 9.97271 9.96385 9.96385
Pi > P2> P3 0.08403 0.19355 0.19355

Alt *1- *2- h 0.00081 0.00158 0.00158
“1.“2> “3 0.00124 0.00012 0.13754
f l . ̂ 2- ^3 9.82411 8.84830 9.26460
Pl> P2> P3 0.09821 0.16224 0.97448
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