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ABSTRACT

Background: Phylogenetically independent sequence pairs (PIPs) are units of in-
formation on evolutionary processes. One of these processes is the rate of residue
insertions and deletions (indels). PIPs are sufficient for investigating the effects of
secondary structure components on indels. One way of studying these effects is by
identifying hydrophilic residues in coding DNA, and employing a parameter to raise
the background probability of these residues relevant to the background probabilities
of all other residues. In RNA encoding, the indel rate can be studied in conjunction
with the substitution rate which depends on the degree of conservation in regulatory
and structurally important regions. The indel rate also plays an important role in
the DNA pyrosequencing technology where we need to differentiate between indels
due to evolutionary processes and indels caused by the inherent physics of the se-
quencing machine. Overall, therefore, a PIP can be seen as an envelope of types of
information that can be spatially teased out, using suitable experimental settings,

with the aim of studying evolutionary processes at the molecular level.

Methods: Along with the hydrophilicity parameter, 1 also introduced additional
parameters to model secondary structure explicitly across the two broad regions of
the molecule, namely, the conserved and non-conserved regions. Only sufficient pa-
rameters were added to the likelihood function to ensure that estimators I obtained
from maximum likelihood were efficient. That is, my method aims at making best
use of information contained in PIPs.

For the purpose of aligning PIPs, I employed two identical sets of parameters.
One set models variations in parts of the molecule that are important to structure,
function, regulation and catalyses. The other set models changes that are thought
to be mostly random and inconsequential to phenotype. To each of these two sets of
parameters I assigned a pair-hidden Markov model (PHMM). This modelling gives
me two main advantages. First, it does not treat alignment sites independently.

Through its dynamic program, namely the forward algorithm, each PHMM considers
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the preceding state before it resolves the current state. Second, it can deal directly
with indels in the second sequence of the pairwise alignment. To optimise my two
sets of parameters, I used simulated annealing to obtain maximum likelihood (ML)
for all estimators endogenously.

My two PHMMs formed the lower layer of my model. A second higher layer
consisted of a conventional two-state HMM designed to connect the two regional
PHMMs. This configuration makes my model regional context dependent when I
align PIPs made from any of the three biological encodings, namely, protein, codon,
and RNA.

I constructed data sets consisting of (1) protein sequences from the BAliBASE
database and (2) RNA sequences from the European ribosomal RNA database. In
each case, I extracted PIPs from phylogenetic trees which I constructed from curated
multiple alignments taken from these two databases. PIPs were selected using post-
order traversals to ensure that each PIP had a unique ancestor. I forced evolutionary
distances of PIPs to lie between 0.25 and 1.25 in the case of protein encoding and
between 0.0 and 0.5 in the case of RNA encoding, after eliminating outliers. DNA
equivalent PIPs of the protein PIPs were also used to construct the codon sample.

To investigate the error rate caused by the pyrosequencing machine, namely,
the Roche GS 20, PIPs were constructed randomly within a specified bandwidth of
percentage identity. Homopolymer insertions of exactly one base in length could be
located in these PIPs using a three-region configuration with three independent sets

of parameters.

Results: I found that

i the difference between rates of slow and fast replacements (or substitutions) in
the two broad regions of the molecule is unequivocal across all three biological

encodings, namely, RNA, protein, and codon,

ii under the assumption of regional heterogeneity, high substitution rates in coding
DNA are mostly located on the surface of the molecule which is more amenable

to water and furthest from the core,
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in coding DNA, high indel rates — like high substitution rates — are mostly located
in the solvent parts of the molecule, but indel lengths, whether short or long,

are not,

confounding is strong between hydrophilicity and substitution rates when align-

ing codon encoded biological sequences using the mechanistic GY94 model,

substitution rates in the two regions are independent, and appear to be normally

(lognormally) distributed in slow (fast) regions of codon encoded sequences,

the natural selection parameter w plays a statistically significant role when it
varies freely and independently in slow and fast rate regions, and can be esti-

mated efficiently with a two-step ML procedure,

the chemical agents of high codon usage and of codons that flank indels are

mutually exclusive in fast rate regions of codon encoded pairwise alignments,

homopolymer insert errors of exactly one base committed by the Roche GS 20 are
caused more often by cytosine and very rarely by thymine, even after imbalances

of A/T and C/G extensions had been accounted for in the reads.

Conclusion: A regional context model, using a combination of two PHMMSs and

a classical HMM, provides a powerful method for aligning sequence pairs for all

the three biological encoding types. Under this setting, and ensuring that sequence

pairs are phylogenetically independent, biologically useful inferences can be made

on molecular evolution.
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CHAPTER 1
A Short Discourse on HMMs

1.1 The Hidden Coins Problem

CHURCHILL (1989) was first to use HMMs for the analysis of biological se-
quences. Earlier workers had used methods that could not deal effectively with the
heterogeneity of DNA composition (CHURCHILL, 1989). A more advanced model,
such as an HMM, is more suitable for teasing out hidden processes that cause com-
positional variation. Other methods are also possible. For example, one can scan a
DNA sequence with a fixed-size window and methodically compute statistical sum-
maries. This method, however, is subjective as it requires the arbitrary choice of
window size (CHURCHILL, 1989).

To analyse DNA data, CHURCHILL (1989) did not strictly use an HMM. He
constructed instead a state-space model which is a generalisation of the HMM and
other stochastic models. He based his model on previous studies by KiTAGAWA
(1987) and other workers. Kitagawa had worked on models that perform smoothing
on non-stationary time series. The smoothing problem in time series analyisis —
where data are noisy, and exhibit both an abrupt and a gradual change in the mean
— is a long-standing problem found in many fields. For example, a type of state-
space model called the Kalman Filter allows econometricians to infer the smoothed
estimate of the GNP (gross national product) for a specific year given an economic
time series spanning several years (HAMILTON, 1994). Various smoothing methods
exist, but the one proposed by Kitagawa is of especial interest in computational
biology. Kitagawa’s method incorporates two procedures, namely, the forward and
backward algorithms. In the discrete case of DNA data, these algorithms can effec-
tively be synthesised numerically using dynamic programming. Fundamentally, the
model uses Bayes’ theorem together with the law of total probability and conditional
probability. I set out to explain this basic model using the notation in CHURCHILL

(1989) in conjunction with a two-coin tossing experiment for illustration.



1.1.1 The General State-Space Model

CHURCHILL (1989) considers a finite set of n random variables {Y; : i =
1,2,...,n}. Each of these variables has a probability distribution determined by
a corresponding state {s; : ¢ = 1,2,...,n}. This means that Y; is not necessarily
Gaussian distributed. The sequence of observed outcomes up to time ¢ is denoted by
Yyt = Y1, Y9, ..., ¥s and the corresponding sequence of states by st = s1, s9, ..., s;. Each
observation has a probability distribution which is denoted by p(y:|s:, y*!). The
term y'~! simply emphasises that the observations are not necessarily independently
and identically distributed (i.i.d.).

In a two-coin tossing experiment, in which the coins are hidden, the sequence
of states is unobservable. All I can do is try to infer this sequence from the data.
That is, I want to estimate a smoothed average from my noisy and non-stationary
sequence of observations. Given the n observations, I do this by using the joint
distribution of s; and s;41, namely p(s;, s;+1]y"), and integrate out s;y1. To carry

out this integration I use the following equation based on Kitagawa’s 2.5

p(3t|yn)=/ P(8t, St41|y™)dst41- (1.1)

—00

The term p(st, S¢41|y™) in 1.1 can be reformulated using the definition of conditional
probability, namely P(AN B) = P(A)P(B|A), as

P(8t, 5e41[y") = P(Se41|y™)P(St|Se41, ™). (1.2)

From the second term of the right-hand side of 1.2 it is easy to see that each time I
estimate s;41, observations that follow time ¢ (that is, from y**! onwards) become

redundant and can be discarded. This allows me to re-write 1.2 as

p(st, Se41|Y™) = P(Se411y™)P(S¢] 8841, ¥°). (1.3)

P(ANB)

By applying the definition of conditional probability, namely P(B|A) = BA)

the term p(s;|si1,%") in 1.3, I can re-write 1.3 as

1For a theoretical treatment and derivation of this equation, see KITAGAWA (1987), p. 1033.



p(Ser1|y™)p(st, se411Y°)
S ,S ™) = 3
p( t t+1|y ) p(3t+1|yt)

and applying the definition once more, this time to the term p(ss, s¢11]y%), I obtain

p(3t+1 |yn)P(3t+1 |3t)p(3t|yt)
p(se11y")

P(84, 8¢41|y") = (1-4)

What remains now is to substitute 1.4 into 1.1 to obtain the following equation

sly™ = p(s t/oo p(3t+1|yn)p(3t+1|5t)d8 . 1.5
p(s:ly™) = p(sely’) . p(sera]y?) t+1 (1.5)

Note that the term p(s;|y*) in 1.5 can be taken outside of the integral sign because
I want to integrate out s;1; and not s, as I stated earlier.

Equation 1.5 brings me close to computing a smoother for my sequence of
observations y™. Before proceeding, however, there are some terms in this equation
that deserve further attention.

First, p(st+1|st) is a first-order Markov process which Churchill calls the state
equation. In HMM terminology this is referred to as the transition matrix which
is ﬁre—speciﬁed by the investigator. Second, p(s;+1|y*) is defined through the law of
total probability, namely, P(A) = Z P(A|B;)P(B;). That is

i

p(sey™™) = / p(8elst-1, ¥ H)p(s-1|y" V) dss1. (1.6)

—00

To define the term p(s;_1|y*~!) in 1.6, I appeal to Bayes’ theorem, namely, P(B;|A) =

P(Bi)P(A|B;) _
>k P(Bk)P(A|Bg) That is

p(sily’) = T p(sely* ™ )p(yelse, )

= . 1.7
= (sl )P (Yt]e, 9 )5 ()

Finally, the term p(y:|s;, ¥*!) in 1.7 is defined by Churchill as the observation equa-
tion. In HMM terminology this is referred to as the emission matrix and, like the

transition matrix, is pre-specified.



The smoothed average of y™ can now be obtained by employing Churchill’s

forward and backward recursions.

1.1.1.1 Forward Recursions

I start with some arbitrary initial value 1 and a corresponding initial state sq
before making the first forward pass. Substituting p(se|y®) into 1.6 gives p(s;]y°),
and substituting this value into 1.7 gives p(s;|y!). Thus, through the following

recursions:

P = [ plsilso, P pslyise

—00

p(s2lyt) = / p(s2]s1, ¥ )p(s1]yt)ds1,

—0oQ

[e o]

p(Spp1|y™) = / P(Sn+1lSn, ¥™")D(Sn|y™)dsn,

—00

I obtain the value p(snp41]y™).

1.1.1.2 Backward Recursions
The smoothed average can now be computed directly through recursive sub-
stitutions of the value obtained from the forward algorithm into 1.5, producing the

following backward recursions:

n n * p(5n+1|yn)p(3n+1|3n)
PSn = p(Sn dspi1, 1.8
(sol™) = ol ) [ Pty (18)

n nety [ 2(saly™)p(Snlsn—1)
Sn— = p(Sn— dsy,
p( lly ) ( 1|y )/_voo p(3n|yn_1)

plauly”) = plaiy’) [~ PR,



I should point out here that in 1.8 (the first backward pass) the integral is
required to sum to one. This shows that the first order Markov process in HMM

studies should always be specified as a row stochastic matrix.

1.1.2 The Discrete Case

When implementing Churchill’s state-space model to DNA, the observations
take a discrete form, and therefore I need a discrete formulation of the key equations.
I denote the transition matrix by T whose element Tj; describes a transition from
the state that has index 7 to the state that has index j, and the emission matrix by
E whose element Ej; describes the emission of the item that has index k¥ when the
HMM is in the state that has index j. The number of states is finite and is denoted
by r, and the number of observable items is also finite and is denoted by K. The
key equations, namely, 1.5, 1.6, and 1.7 can be re-written respectively in discrete

form as follows:

.
i i T P(S ly") .
p(8§”ly")=p(8§)lyt)ZL@%“T i=1,2..,m (1.9)
j=1 (s t+1|y )
p(sP 1) = Zﬂ,p O, j=1,2,..,r (1.10)

E. (@), t-1
( (J)|y) - jkp(st Iy ) , ]= 1,2,_._,7-; k‘=1,2,---,K- (111)

Z Eyp(s’ly*™)

i=1

A short draw, say, HHTHTHTTHHHH, from my two-coin experiment can
now be used as an example to illustrate how these three equations are used to com-
pute the smoothed output of the sequence of heads (1) and tails (). The transition
and emission matrices shown in Figure 1.1 are specified first. These matrices are
exogenous to the model since their elements are merely my best guess based on
intuition. B is the begin state of the system. Its sole purpose is to determine ran-

domly whether the system starts with coin 1 or coin 2. Similarly, € is the end state



whose sole purpose is to randomly end the process either at coin 1 or coin 2. Both
B and € do not emit a symbol and hence they are referred to as silent states. The
iterative computations using the three key equations in accordance with the forward

and backward recursions are shown in Table 1.1.

sB 5@ ¢ H T

B[02 08 00700 0.0

(Coin 1) s | 0.3 0.7 0.0 | 0.1 0.9
(Coin 2) s@ | 06 0.4 0.0 || 0.2 0.8

Figure 1.1: The diagram shows the two matrices of a two-state HMM emitting one of two symbols at each
time slot. The first matrix is the transition matrix T and has two states, namely, s(!) and s(?). The second
matrix is the emission matrix E and has two symbols, namely, H and T. The first two elements in the first
row of the transition matrix form the initial vector and their values are set arbitrarily. The third element in
this row is set to zero because no flow is allowed from the begin state 8 to the end state ¢. The other four
elements in the first two columns of this matrix model the Markov process with states on the left-hand side
being the source, whereby s(1) represents the first hidden coin and s(2) represents the second. The first two
elements of the emission matrix are set to zero because % is silent and hence does not emit a symbol.

TThese probabilities are very small and are shown rounded to 0.0.

The first two rows of the computations in Table 1.1 are the emission proba-
bilities. They are invoked by the observed outcome shown in the first row of the
table. This row shows the observed sequence with corresponding discrete time ¢
slots in the second row. Together these two rows constitute the input of the dis-
crete space-time model. The last two rows of the computations show the posterior
probabilities for each possible outcome (with K = 2 in this case) at each time slot.
The bottom row of the table shows the inference made by the investigator from the
smoothed output, namely, the posterior probabilities. It is interesting to note that
even with the parameters of the two matrices T and F being intuitively specified,
the inference turns out to be accurate at every time slot. However, what should be
noted here is that these parameters are not a major assumption of the model. I am
more concerned about the fact that the model has two states. This choice is only
tentative, and there is nothing to suggest as to why I should be assuming that the
sequence is being generated by exactly two coins. Since these coins are hidden from
me, [ simply do not know how many coins there actually are. I still need the theory
that can guide me in making a correct guess.

For this purpose, I first need a method that can help me find estimators that



can "best" explain the observed sequence of heads and tails given the model. Such a
method would provide me with a probability score of observing the data after I had
hypothesised the number of coins. I would obtain a score for each number of coins in
my hypothesis, say, one coin, or two coins. Using the appropriate statistic, I could
then analyse the resulting scores in order to infer with some desired confidence the
correct number of coins.

This technique is useful in DNA analysis. For example, starting with a six-
state model (or six coins by my analogy), CHURCHILL (1989) found that a four-state
model best explained the composition of bacteriophage A DNA. His analysis was
mostly in agreement with that obtained by earlier workers using density gradient
centrifugation techniques. Both the GC content in the first homogeneous section
of the molecule and the average GC content in the second heterogeneous section
were accurately measured. The only shortcoming of the state-space model in this
application was that a discrete model could not faithfully describe compositional
fluctuations in the highly heterogeneous region.

My motivation for using state-space modelling stems from the fact that the
pairwise alignment is unobservable. It is the product of putative random processes
whose generators are hidden and for their greater part not extant. The pairwise
alignment problem is therefore best approached with a well structured probability
model such as the state-space model. Furthermore, the intuitive notion that hetero-
geneity of the molecular structure has a significant effect on the "true" alignment
of a DNA sequence pair continues to challenge computational biologists.

Pairwise alignment methods, both stochastic and deterministic, have tradi-
tionally assumed that the molecule is homogeneous. By employing Churchill’s state-
space model within a larger HMM topology I propose a novel way of aligning pairs of
DNA sequences. My method is regional context dependent. That is, the algorithm
is freed from the usual constraint that each base pair and each indel at each site
of the alignment has to be "smoothed" across the entire linear DNA molecule. My
model has the additional degree of freedom to position or to "smooth" each base
pair and each indel in either the region which is conserved or in the region where a

putatively high rate of mutations does not pose a deleterious impact on phenotype.



Furthermore, the model can operate in each region independently from the other
region, in the same way one coin shows a head or a tail irrespective of what the

other coin is showing.

1.1.3 The HMM

The general state-space model described by CHURCHILL (1989) does not ad-
dress the issue of computational efficiency. RABINER (1989) shows that to compute
the probability P(y"|HM M), that is, the probability of observing the sequence
Y™ = Y1Ys...Yn given the H M M model, would require computing the equation

P(y"|HMM) = > B, Eey,To,Eay, - T Eq . €, (1.12)

* T8 (n-1)8n
51...5n
where in the case of my two-coin problem s, € {s!),s@}, v, € {H, T} and t =
1,2,...,n. Computing 1.12, in turn, would need (2n — 1)r™ multiplications and
r™ — 1 additions (e.g. RABINER, 1989, p. 262), recalling that 7 is the number of
states assumed to be in the system. In the case of a two-state model with a short
sequence of, say, 100 observations, these computations could be handled by a ma-
chine with relative ease. However, when dealing with alignments of long sections
of DNA, an efficient dynamic program would be needed. Two equivalent dynamic
programs are available for this purpose. One is the forward algorithm, which I list

in matrix form as follows:
fl =B E(y1)7

fe= (T/ft—l) e E(y1),

P(y"|HMM) = f,€,
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where f, is the forward score up to time ¢, t = 2,3,...,n, and B and &€ are both rx1
vectors of probabilities. RABINER (1989) does not formally assign begin and end
probabilities but others, such as DURBIN et al. (1998) and ISAEV (2004), do. E(y:)
is the column of emission probabilities of the emission matrix E corresponding to the
item vy, emitted at time slot ¢. T is the transition matrix, and (e) is the Hadamard
product 2.

The other is the backward dynamic program which I list in matrix form as

follows:
b, =€,
b = T'(bi10 E(ys41)),
P(y" |[HMM) = B(b1e E(y1)),
where b; is the backward score up to time ¢, t=n—1,n—2,..., 1.

It can be shown (e.g. RABINER, 1989, p. 263) that these two dynamic pro-
grams can be combined to provide a direct way of computing a smoother for state

s®, given the data and the HMM, at time slot ¢ with the following formulation:

, ()0
p(8§’)|y",HMM)=———,ft e (1.13)

Z ft(j)bgj)
j=1

and that the denominator of 1.13 is simply P(y"|HMM). The latter quantity is
very helpful in speeding up computations since it has to be computed only once.
Using 1.13, I can reproduce the results obtained from Churchill’s equations (Ta-
ble 1.1). These are shown in Table 1.2. They differ slightly from those obtained
from Churchill’s equations because the two formulations treat the begin state dif-
ferently. The differences are in fact more noticeable over the initial time slots. It
is easy to show that with long sequences computations from the two formulations

converge to the same values.

>The Hadamard product of matrices Amxn and By, is defined by [AeB] = [A] i [B] 471
i<m,1<j<n.
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1.1.4 Maximum-Likelihood Estimation

I have used the HMM as a stochastic signalling device to simulate a hypothet-
ical two-coin signal. I could potentially be receiving this signal from an unknown
source of interest, and I wish to determine whether this signal was generated by
exactly two coins and not, for example, by a single coin. For this purpose, I con-
vert my HMM from a signalling device to a signal receiver. That is, I adjust the
parameters in order to "tune" my HMM to the incoming signal. To do so, I have

to estimate the model parameters by maximising the likelihood function
n
f(yl’y%"' aynle) = Hf(yu 0) (114)
i=1

The right-hand side of 1.14 is the probability of receiving my particular signal —
consisting of a series of heads and tails — on the assumption that the functions
f(1,0), f(y2,0), -+, f(yn,0) are independent. Independence means that these
functions have a joint distribution which is the likelihood function denoted by
L(8)Y), where Y represents the data and @ is the vector that holds all the pa-
rameters. In my two-coin experiment, these consist of all the cell values of the
transition and the emission matrices of the HMM.

The aim is to find the @ that maximises £(6|Y). GREENE (1997, pp. 198-
218) provides a discussion on how to deal with this problem. It is preferable if
L(8)Y") can be maximised by formally deriving first and second derivatives. How-
ever, formal derivations when working with HMMSs, in general, are not practical
(e.g. RABINER, 1989, p. 264). Alternatively, first and second derivatives can be ob-
tained by means of numeric approximations and PRESS et al. (1992, pp. 186-9) deal
with the critical issues that affect computer implementation. For the purpose of my
experiments with biological sequences, I considered only those methods that do not
require derivatives. One such method is the expectation-maximization (EM)
algorithm by DEMPSTER et al. (1977). The EM method is known to be stable and
intuitive, and its special case — the Baum-Welch algorithm (BAUM et al., 1970) —
has been standardly used for parameter estimation for HMMs (DURBIN et al., 1998,
p. 63).

11
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The Baum-Welch algorithm is build around the following two definitions:

n
1. Zp(sy) |y"™, HM M) is the expected number of visits to state s, i = 1,2, ..., 7,
t=1

2. Z p( ng), EN +1|y HMM) is the expected number of transitions from

state s to state s¥), 4,5 =1,2,.

where
i)b(i)
p(sy HMM) = —tt — §=1,2,...,r,
th(J)b(]
and
(i)T__E_ b(j)
(s, s¥hly", HMM) = — f’j. YTRRL G i=1,2,...,T,
SNSRI Bl
i=1 j=1

and k is the index of the item emitted at time slot ¢ + 1.
Using these definitions, together with the Lagrange multiplier, differential cal-
culus, and ensuring that probabilities in 28, and in rows of T" and of F add to one,

it can be shown that

B; = p(B,sVy", HMM), j=1,2,...,7. (1.15)
n—1

Ty = p(st, sOhly", HMM), i,5=1,2,...,r. (1.16)

=p(sW, €ly", HMM), i =1,2,...,r. (1.17)

Ep =Y p(sVly" HMM)by—v,, j=1,2,...,1; k=1,2,...,K.  (1.18)

t=1

In 1.18, § is the Kronecker delta. It implies that E;x has to be estimated for each
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element in the items set {v1,vs,...,vk}. In the case of the two-coin experiment, for
example, FJ;; has to be estimated twice since K = 2.

IsaEv (2004), RABINER (1989), and others show how 1.15 to 1.18 are used
in conjunction with training data to re-estimate probabilities for 2B, &, T, and E
using an iterative procedure, whereby the value of the likelihood function increases
at each iteration up to convergence. Convergence guarantees optimal probabilities,
and hence a global maximum, if the likelihood function is concave throughout its
surface, otherwise we could have simply a local maximum. In the latter case, sev-
eral techniques can be tried to improve the maximum likelihood (ML) values. A
common approach is to re-start the iterative procedure using different initial values

~ drawn from some random distribution — in the B vector.

M ™ E® @ 1 E® B2 LR  p-value
1 10 0430 080162 026556 009577 0.87357 25.44852  0.00001
2 10 0475 063112 046762 0.06062 099514  6.81287  0.07811
3 1.0 0355 073617 032727 000169 0.81042 18.89060  0.00029
4 10 0275 076680 0.64945 0.01348 099031 631871  0.09709
5 10 0425 066355 045876 001118 0.99463  9.72834  0.02102
6 10 0405 074869 0.36806 0.02155 0.96012 26.71640  0.00001
7 1.0 0425 069439 045584 005189 0.98751  9.90730  0.01937
8 10 0430 064122 047691 002006 098172 710719  0.06856
9 10 0300 089237 016435 007527 0.65379 22.40755  0.00005

-
o

1.0 0.285 0.79738 0.52630 0.03895 0.95136 10.47002  0.01497

Table 1.3: The table shows results from ten simulated experiments. In each experiment, a continuous random
stream of heads and tails was generated using a two-state HMM. A large section of this stream was sliced into
ten sequences, each consisting of 200 observations. Each of these sequences was used as training data first for
a one-state HMM and then for a two-state HMM, using arbitrary initial values for each. The Baum-Welch
algorithm was used to obtain the maximum likelihood (ML) estimators for each. In the second last column
were recorded the computations of the likelihood ratio (LR) test for each experiment with three degrees of
freedom. Superscripts indicate one- or two-coin, and subscripts indicate cell addresses of the respective HMM.

Table 1.3 shows the optimal results after the Baum-Welch algorithm was ap-
plied to a one-coin and a two-coin ten experiments, with results from each experi-
ment recorded as shown in each row. The third column suggests that the signal of
heads and tails, in my two hidden coins tossing experiment, is originating from a
biased coin emitting heads approximately 40% of the time. This would be the con-

clusion of an untrained eye. However, p-values in the last column strongly suggest
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that the one-coin hypothesis is not true. Instead, the source turns out to be more
complex than just a biased coin. With the exceptions of experiments 2, 4, and 8,
at the 5% level of significance, the evidence is clearly in favour of the alternative
hypothesis with three degrees of freedom.

The true emitter is almost certain to consist of two coins. Furthermore, from
column four I can infer that once in state one, the system is likely to remain in
state one, and likewise (from column five) for state two. However, the tendency to
remain in the same state is higher for state one than for state two. At the same
time, state one is more likely to emit tails, which explains the bias in favour of tails
in the incoming stream.

My experiment illustrates the effectiveness of the HMM. It is a device that
provides the investigator with the means to make good inference in what otherwise
would be a highly arguable problem. The most remarkable characteristic of the
HMM, in spite of its complex theory, is its simplicity when applied to real data.

The random processes of molecular evolution, stored in the four symbols of
DNA, can be viewed as signals. These signals, like the series of heads and tails
emitted by hidden coins, can also be studied and understood with a signalling device
such as the HMM. In the next chapter I show how an HMM with three states can
be optimised in order to identify the best alignment between two DNA sections
drawn from two different molecules where one is considered to have evolved from
the other through mostly random mutations consisting of DNA base substitutions,

base insertions and base deletions.

1.1.5 Silent States in HMMs
I have discussed the HMM as having only — with the exceptions of the begin B

and the end € states — the type of states which, when visited, they emit an element
from the finite set 2 of observable items {v;,vs,...,vk}. There is another type of
state that can be incorporated in HMM design and is called silent state. This HMM
element has the property of not emitting a symbol when visited. This means that a
silent state, or a group of silent states, should not be looped back onto themselves as

this would cause the HMM to degenerate into an uninteresting oscillator. Another
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implication is that when maximising the HMM, using a method such as the Baum-
Welch algorithm, all possible paths between all possible pairs of states through all
silent states have to be taken into account. For this reason, I define the transition
matrix as shown in Figure 1.2. This matrix incorporates both the 2 and & vectors,
and sets the probability of transiting from state 28 to state € to 0.0. Silent states
are denoted by d™, n=1,2,...,D.

I also introduce the notation €2y, defined as the probability of a transition from
state "a" to state "b" through all the possible silent chains between "a" and "b".
By a silent chain I mean a flow from state "a" to state "b" in which all transit states
are silent. Furthermore, either "a" or "b" or both can be either emitting or silent.
The former can also be B and the latter can also be €. In Appendix A.1, I explain
a method of how to determine all the possible silent chains between states "a" and
"p" in an HMM with any number of silent states.

IsAEV (2004) covers HMMs with silent states in some detail, and provides the
fundamental algebra that generalises the forward algorithm. In Appendix A.2, I
show how this algebra can be extended and summarised into compact formulas so
that generalised forward, backward, and Baum-Welch algorithms for HMMs with

any number of silent states can easily be implemented in computer code.

dD 4@ . 4D ) @ i e
B | Tw, Tw, ... T Tm;j Twj ... Tw; 0.0
dY | Ty Twe - Twe Twj Twj - Twj Tue
dP | Ty Tz oo Twe Twj Twj - Tuwj Tue
dP | Ty Twe - Twe Twj Twi - Twi Twe
st T, T, ... T Tij Tij Tij Tie
5(2) ITiz 7_112 oo T‘iz T!ij ’I:ij LR ﬁj ’Tié
s | Ty T ... Tiw Ty Ty ... Ty Te

Figure 1.2: The transition matrix of an HMM with silent states has to incorporate transitions which do not
emit a character. These transitions are shown in the upper left quadrant with subscripts wz.

Silent states have been used successfully by BALDI et al. (1994) and
KROGH et al. (1994) in the design of HMM profilers to identify, for example, ho-
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mologues for the globin and kinase families of protein sequences. In this type of
HMM modelling, silent states were found to increase the likelihood in the presence

of deletes in the amino acids sequence. In Chapter 3, I use one silent state in my
HMM modelling.

1.1.6 Optimising the Likelihood

The Baum-Welch algorithm has two main disadvantages. First, the method
is known to take long to converge (DEMPSTER et al., 1977). Methods to ob-
tain better convergence times have been developed, as described for example
by JAMSHIDIAN and JENNRICH (1997). Nevertheless, it is preferable to use a
method which can deal directly with convergence when working with many align-
ments and hypotheses testing. Second, a Baum-Welch maximisation of a single
pairwise alignment would typically require several re-runs with different starting
values in order to increase its chance of finding the global optimum (see for example,
LAAN et al. (2006) and CHUONG and BATZOGLOU (2008)). Repeating maximisa-
tion runs for a large number of pairwise alignments individually on a mainframe
computer is impractical. A possible workaround would be to use training data, con-
sisting of "curated" pairwise alignments, to carry out pilot runs on suitable samples
until high likelihood values can be detected. The corresponding estimators would
then be used as starting values for the individual alignments. But this procedure
would have been time costly because my experimental samples of sequence pairs were
drawn from across a wide range of pairwise evolutionary distances. Furthermore,
"curated" alignments of non-homologous pairs are not guaranteed to be "good"
alignments since, by definition, an alignment is unobservable and hence a random
variable. I needed, therefore, a method which has relatively short convergence times
and which does not depend critically on initial values.

For these reasons, the simulated annealing method proposed by GOFFE et al.
(1994) for maximising the likelihood function was more practical for my purpose.
The tenet of this method is that for a given position in the search space, it considers
several neighbouring possibilities. The higher the "temperature" the larger is the

number of these possibilities. If none of these possibilities offer a better value,
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an inferior one can be chosen in accordance with some random distribution. This
means that, unlike the Baum-Welch, this algorithm does not exclude the possibility
of going downhill temporarily before proceeding uphill once again towards the global
optimum. Through this lateral feature, simulated annealing avoids getting "stuck"
in one of the local optima. As the system "cools", so the pool of alternatives
reduces, and thus the probability of being forced to choose an inferior alternative
keeps decreasing. As the limit of cooling is reached, however, it is hoped that
the search is very close to the global optimum. Furthermore, the final outcome
is largely independent of the starting values. This feature was very important in
my work which involved sequences from many different species and constructed
from the three types of biological encodings. In addition, my modelling involved
several parameters. These factors adversely affect computational time, and hence
it was essential that maximisation could be achieved with single runs that required
starting values which I could readily judge as plausible.

Although simulated annealing also does not guarantee a global optimum, it
has been shown by GOFFE et al. (1994) that it offers excellent prospects under var-
ious types of modelling that require large numbers of parameters. They tested the
method, for example, on a neural network function with ten hidden parameters.
Although it failed to find the global optimum in this very difficult case, it con-
vincingly outperformed competing conventional algorithms, namely, the simplex,
quasi-Newton and conjugate gradient methods.

Simulated annealing has its roots in statistical physics. In their seminal paper,
METROPOLIS et al. (1953) showed how a physical system of rigid spheres in two-
dimensional space can attain optimal energy through a series of stochastic moves.
The number of spheres is finite, and they are initially placed randomly in the X, Y
plane. Spheres are then moved one at a time through a stochastic distance from
X, Y)to(X+a-&, Y+a-&), where a is some arbitrary constant and &, &, ~
U[—1,1]. After each move, the change in the energy of the system, namely, AFE is
measured. If this change is negative — a minimisation problem, in this case — the
move is accepted. Otherwise, the move is accepted only with probability given by

e 2E/KT If this trial is unsuccessful, then no move is made. T is the temperature
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of the system, which means that the probability of making a move away from the
optimum will keep decreasing as T" decreases. It was shown that this procedure is
ergodic. That is, irrespective of the initial configuration, every possible configuration
of the spheres can potentially be visited until the minimum level of energy is attained
before the system is allowed to cool. Ergodicity implies that initial values do not,
in theory, have bearing on the final outcome although they affect the length of time
needed to find the optimum.

In the context of the pairwise alignment, and of numerical analyses in general,
the terms "temperature" and "cooling" are, of course, only notional. In the actual

implementation, the components of the algorithm consist of

1. the vector X of the values of the n parameters to be estimated, which only

require some sensible initialisation at the start of the algorithm,

2. the function f(X) definition which enables the algorithm to evaluate the like-

lihood value at each step,
3. the vector V of the current step lengths of each element in X,
4. the variable T, which holds the current "temperature", and

5. the random variable r ~ U[-1,1].

The algorithm starts by evaluating the function f(Xj) using the initial values
of the elements in X, and both f(Xj) and X, are stored in the optimum register. It
then changes z;, ¢ = 1,2,...,n. For each ¢, z; = z;+7-v; and f(X') are computed.
Each time f(X') > f(X), X’ becomes the new X in the optimum register, and
we think of the algorithm as moving "uphill". If f(X’) < f(X), the probability
p = et~ is computed. Note that this probability is based on p = e~2E/¥T that
was used in the Metropolis experiment, where k is the Boltzmann factor. In the
case of my maximisation problem, this factor is not needed, and the analog to a
change in energy E is my change in the value of the likelihood function f. It is
this physical fundamental law that makes the simulated annealing algorithm highly

functional and reliable when coded and used in numerical analyses.
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The probability p is used to conduct the Metropolis trial. If the trial is suc-
cessful, once again both f(X) and X are updated in the optimum register, but this
time we think of the algorithm as moving "downhill". If the trial fails, the algorithm
simply stays put and moves on to the next step.

The right strategy on how 7' and V are managed by the experimenter are
key to a successful optimisation. As a guide, T is reduced gradually in accordance
with a simple stochastic relation, namely, 77 = 7 - T, where 7 ~ U[0,1], and V
is adjusted so that trial failures increase at an increasing rate as the algorithm
gets closer to the global optimum. This makes sense since the closer we get to the
global optimum, the less we want to go downhill and the more we are willing to get
"stuck" so to speak, rather then move past the optimum. The terminating criterion
is also managed by the experimenter. We need to make sure that this criterion is
strict enough so that the algorithm does not stop prematurely without reaching the
optimum. At the same time, if it is too strict we run the risk of failing to stop even
when the algorithm is "close enough" to the optimum. A conservative rule would
be to store the most recent three or four f values in the optimum register, and if
they do not differ by a pre-specified amount ¢, the algorithm stops and declares the
final optimum along with the estimators in the vector X. In my implementation,
default values were pre-set for Xy, T, V, T, and € across all optimisation runs. This
ensured the elimination of subjectivity in my experiments.

GOFFE et al. (1994) found that the algorithm has several attributes. Two
of these turn out to be particularly relevant to HMMs. First, the function f(X)
does not have to be differentiable. This is significant because in HMM modelling,
as I discussed earlier in Section 1.1.4, the likelihood function is not analytically
amenable. Second, simulated annealing can also deal effectively with rough surfaces.
It is true that the forward algorithm provides a smooth surface because it sums
the preceding probabilities at each iteration and across all possible alignments when
aligning two sequences. However, the HMM models which I describe in later chapters
use several emitting states. This makes more severe the problem of local maxima
(DURBIN et al., 1998, p. 63), and the smoothness of the surface of the likelihood

function, therefore, is not necessarily ideal.

20



CHAPTER 2
The One-Region Model

2.1 The Probability Matrix from Blocks Model

For the purpose of aligning protein sequences, using standard applications
such as BLAST, Fasta, and ClustalW, the PAM series (DAYHOFF et al., 1978) and
the BLOSUM series (HENIKOFF and HENIKOFF, 1992) have traditionally proved
very useful. Nevertheless, these are score matrices restricted to classes of proteins
that satisfy some specified percentage identity criteria. They also do not provide
reliability measures in cases where the proteins under study do not belong to the
body of data from which the matrices had been derived. Furthermore, when we
compare biological sequences, we need to do more than simply compute a score if we
wish to tease out hidden processes that underlie evolutionary change. For example,
a more useful model would take into account both the multiple substitutions at
individual sites and the complex processes of inserts and deletes (indels).

Biologists need an evolutionary model that can be adapted to any given pair of
protein sequences. For this purpose, VEERASSAMY et al. (2003) developed the pro-
tein replacement model displayed in Appendix B.2. This model is highly versatile
because it can be applied across a wide range of evolutionary time. Equally impor-
tant, however, is the fact that it can also be coupled, as I show later in this chapter,
to an HMM in order to allow the investigator deal stochastically with indels. Here I
present a sketch of how these authors utilised the Blocks databases of BLOSUM in
order to derive the probability matrix derived from blocks (PMB) of proteins that
share a specified percentage c of homology, where ¢ € C, C = {0, 30, 32, ...,98,100}.

2.1.1 PMB Construction
To construct the PMB model, one starts with a BLOSUM frequency count

matrix F' that has a clustering percentage taken from the set C. For a specified c,
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the observed amino acid frequencies m; (i = 1,2,...,20) are computed from
20
A =3/ 3 R,
V=i
and each mutation matrix M® is computed from

20
MY = FY / SR,
k=1

A mutation matrix models an evolutionary process, and hence can be expressed as
a function of the evolutionary time ¢. One can therefore denote such a matrix as
M(©)(t), where t is unobservable, and one would want to estimate this parameter for
each data block corresponding to ¢. To do so, one proceeds by initially expressing
the average substitution rate as a function of the mutation matrix with ¢t held fized

as follows
F(MO@) = Zw“ (2.1)

One can now appeal to Taylor’s series expansions to derive an equation that would
allow the first derivative of f(M(9)(t)) in 2.1 to be estimated numerically. I present
the derivation in Appendix B.1, and I write the equation for the present context
(after applying the Chapman-Kolmogorov relation to each term in the summation)

as follows

o (190) = 2| S [(—1)”_—2]31”([M(C’(t)]l'o+0'01”) 2

2.1 and 2.2 can now be used to compute tf’ (M (t)) for every value in C, and
when the results are plotted, they are found to have a quadratic form as shown in

Figure 2.1.
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The trick now is to run a standard linear regression of the form
Y=ar1T’+ ax +az +¢€, €~N(uo?). (2.3)

In 2.3, y is the dependent vector, and represents values obtained from 2.2, while x
is the independent vector, and represents values obtained from 2.1, with all values
being computed for each element in C. The error vector € in 2.3 is assumed to
be normally distributed, although the authors do not report the usual statistical
analysis on €. They report, however, that R? is sufficiently high to warrant a good
fit.

Having estimated the coefficients for 2.3, it now remains to solve a separable

differential equation of the form

fdz—azz+a z2+a
di 1 2 3y

where z = f (M (@) (t)) The estimated evolutionary time (), corresponding to every

element in C, can then be computed.
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2.1.1.1 The Stationary Markov Model

Equation (16) in VEERASSAMY et al. (2003) is the stationary Markov model.
HASEGAWA et al. (1985) provide a description of this model using the DNA alpha-
bet. The principles behind this model are as follows.

Each amino acid (or some other character such as a nucleotide) can be seen to
be evolving according to a Markov process. That is, a letter ¢ from the alphabet is
replaced by another letter j from the same alphabet with probability P;;(t), where
P(t) is some row stochastic matrix. What we want to model, here, is the time
needed for this replacement to take place.

One starts with some substitution model that takes the form of a square matrix
R. The elements of this matrix are pre-defined. The well-known Jukes-Cantor R/©),

for example, is defined as

A B CD

A} O 1 1 1

(JC)=B 1 0 1 1
R c|lt1 1 0 1}

D] 1 1 1 O

with a four-letter alphabet suitable for DNA data, and we can extend it to a twenty-
letter alphabet to deal with amino-acids. This definition means that as we try to
model the substitution (or replacement) rate, we assume that when some letter is
replaced by some other letter, substitutions are all equally likely. This, of course, is
a naive scheme, but it is useful as a starting point. Biologists introduce parameters
to allow certain substitutions to occur more (or less) frequently relative to other

substitutions. For example, in the definition

- RO
= = O =W
_ O R Q O
(ol N - )

we introduce a parameter which would allow us to measure the rate of change from
the letter A to the letter C relative to all other changes. If this parameter is smaller
than one, then we infer that this substitution is less likely to occur than other
substitutions, with everything else being equal. By imposing the restriction oo = 1,

and calling this restriction the null hypothesis, we can test the null against some
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alternative hypothesis of interest, say, a < 1. If the evidence that emerges from an
experiment cannot reject the null, we would then infer that for the given body of
data, R(a) is statistically the same as R(/C),

RODRIGUEZ et al. (1990) present a number of substitution models for the nu-
cleotide alphabet. One thing to note about these models is that some are symmet-
rical while others are not. Throughout this work, I choose models only from among
those that are symmetrical, commonly known as reversible models (e.g. ISAEV, 2004,
p. 126). Symmetry is a strong assumption, but for a typical data set of biological
sequences used in this work it generally holds well, that is, the model proves to be
robust and yielding reliable results.

My models also meet the four criteria of RODRIGUEZ et al. (1990), namely,
that a substitution rate is (a) site independent, (b) constant over time, (c) the same
for the two sequences in the pairwise alignment, and (d) a process set against a
background of letter frequencies which is computed from the two sequences and
which is the same as that of the distant ancestor.

To do the computation in (d) I use

n
¢ =22(t)i+ > [zt)y +z(t);], i=1,2,...,m, (2.4)
j=1
(RODRIGUEZ et al., 1990), where n is the size of the alphabet and z(t);; is an ele-
ment of the divergence matrix X (). This matrix, however, is constructed from the
pairwise alignment which is unobservable. Hence, the best I can do to compute g;
is to do a simple count of each letter in the two sequences to construct X (¢).

In theory, an element in X (¢) gives a count of how many times letter i € £, £ =
some alphabet, matches (or mismatches) with letter j € £ in the pairwise alignment
at time ¢, bearing in mind that if we were to perform the alignment, say, one million
years ago (that is, at t — 10%) we would expect it to be different from what it would
be today at time ¢ measured in years. It is easy to see that at t = 0, 2(0);; = ¢; if
i = j, and is equal to zero otherwise. Thus X (0) = (g, ® 1},) ¢ Inxn, where (1) q,, is
the vector of background frequency counts whose n elements are usually normalised

so that they sum to one and are then called the background probabilities; (2) the
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vector 1, has all n elements equal to 1 and is first transposed before it is multiplied
with g,; and (3) (® ) and (e) are the Kronecker and the Hadamard products,
respectively. A final note about X (¢) is that in VEERASSAMY et al. (2003) it is
called the substitution frequency count matriz F. This is because these workers are
constructing an approximation, or some "guess", of X (t) using the Blocks databases
for a specified element in C. This element is a discrete value that corresponds to
some unobservable evolutionary time.

Two other important matrices are (1) the matrix of substitution rates @ and
(2) the evolutionary matrix P(t). RODRIGUEZ et al. (1990) define Q as the matriz
whose elements are transient intensity functions of the stochastic process. Transient
implies that @ is not a function of evolutionary time, and for this reason it is also
commonly called the instantaneous rate matriz. For the purpose of my experiments,

I implement @ in accordance with the following definition.

define : Q= Rnxn((qn ® 1;)-Im<n) — Lusn, (2.5)
subject to : zn:qi =1, (1)
im1
(@], =1, for i=1,2,--,n, and (2)
zn:[Q]ijzo, for i =1,2,---,n, (3)
=1

where @,, is the vector of background probabilities with n = 4, 20, or 61, depending
on whether the alphabet is taken from biological encodings (BEs) DNA, protein, or
codons, respectively. It is easy to see that () is a function of the data — owing to the
presence of g — and of the pre-definition of R, and is not dependent on evolutionary
time. Constraints (1), (2) and (3) ensure that background probabilities sum to one,
and that elements in each row of the product of R and g also sum to one before the
I matrix is subtracted so that elements in each row of ) sum to zero.

To illustrate how ) is implemented, I shall use a simple numerical example.
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Let the substitution model be RV, that is, the Jukes-Cantor which I showed ear-

lier. Also, let ¢ = (0.40,0.30,0.14,0.16). Substitution into 2.5 gives @ as

=]

= O -
- O

.000
.571
.465
476

0.4
0.3
012 |®[1 11 1]]e
0.16

(o
O O O =

0.500 0.233 0.267
-1.000 0.200 0.229
0.349 -1.000 0.186
0.357 0.167 -1.000

o O O

O = O O

O O O

= O O O

O O = O

O = OO

= O O C

(Cell entries for the computed @ are rounded to three decimal places for the purpose

of this illustration.)

Now I deal with the matrix P(t), and to do so I appeal to HASEGAWA et al.

(1985). The probability P;;(t) is designed to capture the event in evolution whereby

a letter ¢ changes to become letter j over some amount of evolutionary time A€,

after evolution had been taking place over an arbitrary time ¢ following the start of

divergence. Since the matrix () represents times that are transient, we can represent

these Markovian transitions as

P(at) = I +Qat,

P(t + at) = P(t)(I + Qat),

o [Pt +a8) - PO _ . [P®)QAL
N L)
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dP(t)

— = P)Q,

/#%M@=/WHK,
Qt = log, P(t) + K, (2.9)

P(t) = <. (2.10)

2.7 is an application of the Chapman-Kolmogorov equation. 2.8 is the standard
form of the limiting theory of differential calculus. In 2.9, it should be easy to see
that constant K’ is zero since P(0) = I. 2.10 is equivalent to M© = ¢ in
VEERASSAMY et al. (2003), although these authors use a slightly different notation,
and they call M(© the mutability matrix.

To avoid notational ambiguities, from now on I shall use the following notation:
1. R: substitution (or replacement®) model matrix,
2. X(t) : divergence matrix at time t,
3. @ : instantaneous rate matrix as a function of R and of g,
4. P(t) : evolutionary matrix at time ¢.

2.1.1.2 The Protein Replacement Model

In Section 2.1.1, I showed how VEERASSAMY et al. (2003) constructed the
estimator £ for any of the elements in the set C. Substituting these estimators
into 2.10 leads to a corresponding set of @ matrices, where Q) = log, M () / £© . To

obtain a "universal" () matrix for proteins, one can solve the non-linear program

3By convention, we use the term substitution for DNA and codon biological encodings (BEs)
and the term replacement for protein BE.
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€977 — M)

minimise : MO ,

subject to: @ = Zw(C)Q(C), (1)

> wl =1, (2)

0< w9 1. (3)

The R matrix of VEERASSAMY et al. (2003) is displayed in Appendix B.2,
with each element entered to four decimal places. Note that this matrix is derived
from 2.5 after the optimised @ had been computed. This R matrix is practical
during implementation because unlike score matrices I can easily incorporate it as

a "plug-in" within my modelling, along with other R matrices.

2.2 The Goldman-Yang Model

The PMB instantaneous rate matrix Q(F™5) uses the amino acid as its unit of
data. Tt is also constructed from the Blocks databases (HENIKOFF and HENIKOFF,
1992), in which a large amount of evolutionary information is summarised. This
means that QFMP) can deal with sequence pairs that have a wide range of evolution-
ary times. In Chapter 3, I show how I constructed a protein data set by random sam-
pling of curated alignments stored in the BAIBASE database (THOMPSON et al.,
1999b) using QPMB). These pairs have relative evolutionary times (measured as
the average number of replacements per amino acid) that vary widely between 0.25
to 1.25.

The QPMB) matrix, however, does not account for several biological factors,
namely, (1) the dependence of intra-codon nucleotides, (2) the difference among the
substitution rates of intra-codon nucleotides, (3) the transition-transversion rate

ratio, and (4) the nonsynonymous-synonymous rate ratio.
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ngqysm) .y

0
q;
K,q]'

qu'

L wKq;

for two codons that differ at more than one position

for synonymous transversion

for synonymous transition

for nonsynonymous transversion

for nonsynonymous transition

(2.11)

To investigate phylogenetic trees, where selective constraints among lineages

at the molecular level are of particular interest, GOLDMAN and YANG (1994) and
YANG (1998) developed the codon-based model Q(¢Y%%) shown in Equation 2.11.

While QPMB) is an empirical model, QY% is a mechanistic model with two

parameters (not including the g vector of background probabilities). One of these is

the parameter x which is designed to capture information on the ratio between the

rate of transitions and the rate of transversions that accumulate between two species

experiencing increasing divergence over evolutionary time. The other parameter is

w whose role requires an understanding of the genetic code.

2.2.1 The Standard Genetic Code

TTT — Phe | TCT — Ser | TAT — Tyr | TGT — Cys
TTC — Phe | TCC — Ser [ TAC — Tyr | TGC — Cys
TTA — Leu | TCA — Ser | TAA — Stp | TGA —  Stp
TTG — Leu | TCG — Ser | TAG — Stp | TGG — Tip
CTT — Leu | CCT — Pro| CAT — His | CGT — Arg
CTC — Leu | CCC — Pro| CAC — His | CGC — Arg
CTA: — Leu | CCA — Pro| CAA — Gln | CGA — Arg
CTG — Leu | CCG — Pro| CAG — Gln | CGG — Arg
ATT — Ile | ACT — Thr | AAT — Asn | AGT —  Ser
ATC — 1Ile ACC — Thr | AAC — Asn | AGC —  Ser
ATA — lIle | ACA — Thr | AAA — Lys | AGA — Arg
ATG — Met | ACG — Thr | AAG — Lys | AGG — Arg
GTT — Val | GOT — Ala | GAT — Asp | GGT — Gly
GTC — Val | GCC — Ala | GAC — Asp | GGC — Qly
GTA — Val | GCA — Ala | GAA — Glu | GGA — Gly
GTG — Val | GGG — Ala | GAG — Glu | GGG — Gly

Table 2.1: Illustrating the redundancy property of the Standard Genetic Code.

30



Table 2.1 shows the Standard Genetic Code as tabulated by the NCBI web
site. Several other codes are also tabulated by NCBI, but in the present work only
the standard code will be used.

The first thing to note about this table is that no matter which three letter
combination we choose from a total of 64, the combination will always code for one
of the 20 amino acids, with three exceptions, namely, TAA, TAG and TGA. These
three are stop codons which, if present somewhere along the protein and not at the
end, they would produce a truncated protein. Such a truncation would most likely
be selectively deleterious. For this reason, a codon substitution model would, in
general, impose the constraint that stop codons do not occur in a protein.

The next thing to note is that very often when we change the third letter,
the new codon still codes for the same amino acid. For example, when we take a
codon that codes for valine (Val), no matter how we change the third letter, the
new codon still keeps coding for valine so long as we keep the first two letters intact.
This redundancy is also true to a small extent for the first letter, but it is never true
for the middle letter. If we were to assume that nucleotides are equally distributed
across the genome, and that nucleotide substitutions occur randomly under a uni-

form distribution, we could then construct Table 2.2.

Position  # Synonymous # Nonsynonymous % Synonymous % Nonsynonymous

1 8 166 4.6 95.4
2 0 176 0 100
3 126 50 72 28

Table 2.2: Variation of synonymous and nonsynonymous counts at the three codon positions.

From this table we can see that on average no amino acid replacement results
from 8 possible changes in the first position, but for the third position this number
rises to 126. It is abundantly clear that we would expect the rate of nucleotide
substitution to be highly variable among these two positions, and it is for this
reason that the w parameter plays an important role.

Before the w parameter was introduced, NEI and GOJOBORI (1986) and other

workers had developed approximate methods to model codon substitutions. The
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NEI and GOJOBORI (1986) method is centred on counting the number of synony-
mous sites S, and the number of synonymous differences Sy, in a codons pairwise
alignment with gaps removed. S is a summation of constants for each codon in the
alignment. For example, it is easy to see from Table 2.1 that codon TTA which
codes for leucine (Leu) can change synonymously in only two different ways. To
compute Sy, first we have to determine by how many nucleotide sites each codon
pair of the alignment differ, that is, 0,1,2, or 3. If the difference d is zero, then
Sam is zero for codon pair m (where m = 1,2,..., M and M is the length of the
alignment) since no change occurred. If d is one, then Sy, is one if the change is
synonymous, and is zero otherwise. If d is two, then we would have two possible
pathways and a different transit codon in each path. In this case, Sy, is the total of
synonymous changes from a total of four possible changes multiplied by 4 (assuming
that pathways have equal probability). When the difference is three, we would then
enumerate the six possible pathways with six different transit codons as shown in

the following illustration using fictitious codons,

XBGC —»— XYC
XBC —»— XBZ

AYC —»— XYC
ABC XYz ,

AYC —— AYZ
ABZ —»— XBZ

ABZ —— AYZ

to similarly compute Sg,,. Sg is then determined by summing over m. The number
of nonsynonymous sites N and nonsynonymous differences Ny are computed in a
complementary way. Two statistics could then be estimated using the standard
Jukes-Cantor formula (which takes into account multiple hits per site), that is,
ds = —3log, (1 - %%‘i) and dy = —3log, (1 — 44¢) (NEI and GOJOBORI, 1986). 1
show estimates for ds and dy in the first two rows of Table 2.3 for ten alignments of
ten coding DNA sequence pairs randomly selected from BAIIBASE for the purpose
of this exercise.

The method of NEI and GOJOBORI (1986) provides me with a precursor of
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Aln Num 1 2 3 4 5 6 7 8 9 10

ds o] 00 1.179 oo o) 2.737 o] 1.783 0.676 (o]
dn 0.265 0.256 0.185 0.307 0.270 0.198 0.205 0.147 0.205 0.339
E(Ho) 0.257 0.236 0.172 0.275 0.269 0.202 0.198 0.165 0.155 0.294
E(Hal) 0.263 0.251 0.172 0.283 0.270 0.207 0.204 0.164 0.156 0.293
k(Hal) 2511 3.614 1.824 2302 1.364 2.853 2938 1538 2.055 1.111
p— value(Hal ) 0.001 0.000 0.070 0.009 0.406 0.000 0.000 0440 0.014 0.810
t(Hag) 0.387 0.318 0.187 0.408 0.502 0.313 0.313 0.202 0.169 0415
GJ(H%) 0.069 0.020 0.069 0.032 0.039 0.028 0.019 0035 0.069 0.018

p—value(Haz) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 2.3: dg values, which depend on the numbers of synonymous substitutions, are chaotic. This shows
that it is very difficult to measure synonymous substitutions with the method of NE1 and GOJOBORI (1986). dx
values, which depend on the numbers of nonsynonymous substitutions are stable and amenable to estimation.
Evolutionary time is captured by f using the GOLDMAN and YANG (1994) model, and is highly comparable to
dy. & is significant only when it is greater than two, and does not impact on £. Contrariwise, & clearly shows
signs of innovation, impacting greatly on # in most of the alignments.

how the two distinct substitutions differ from each other. On the one hand, nonsyn-
onymous substitutions shown in row two are markedly stable. They also compare
very well with the ML estimators shown in row three which are the average sub-
stitution rates computed using the GY94 model. The inference is that when we
measure the average substitution rate in a pairwise alignment, what we could be
measuring are those molecular changes that are well controlled (or constrained) by
phenotypic dependencies, and hence also by natural selection. On the other hand,
synonymous substitutions shown in row one are disparate, and most of them remain
unmeasurable by this method. These type of substitutions do not generate amino
acid replacements, and hence it appears that their behaviour is "erratic".

Questions that I posit here are, how do I develop a method that could give
me better measurements of these erratic changes? Would it be possible to locate
them positionally along the alignment and see how they cluster? If I could achieve
this differentiation with statistical significance, would I then be able to estimate the
transition-transvertion rate ratio x and the nonsynonymous-synonymous rate ratio
w parameters within these non-conserved regions? How would these estimators differ
from corresponding estimators within conserved regions?

Traditionally, the substitution rate has been studied as an average across the

alignment. If we were to analyse the pairwise alignment purely as a biological
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device and not as an exercise in letter patterning, then we should incorporate sec-
ondary structure in our methods. Endogenously extracting knowledge on secondary
structure can help us identify regions along the alignment that exhibit significantly
higher substitution rates. In Chapter 3, I propose a two-region model that attempts

to address these questions.

2.2.1.1 The Codon Substitution Model

The GY94 model is described in detail by YANG and NIELSEN (2000) and
in other places, (see for example GOLDMAN and YANG (1994) and YANG (1998)).
This model is parametric and requires the Maximum Likelihood (ML) method. It
consists of a 61 x 61 instantaneous rate matrix @ (2.11). The diagonal entries of @

are scaled so that rows sum to zero, and

61 61
~> aQi=) aQy=1.
i=1 j

Jj=1
i#j

This formulation ensures that evolutionary time (captured by the estimator f ) is
measured as the expected number of nucleotide substitutions per codon. What this
means is that we have to divide ¢ by three when we compare rates with those
obtained using the PMB model.

In order to compute the ML, we require an explicit function that we can

maximise using a numerical method such as simulated annealing. This function is
defined as

logL(0].A4) = Z log, [¢: P;;(t)] , (2.12)

,j=1

where A is the pairwise alignment, and P(t) is the evolutionary matrix at time t.
0 is the vector of parameters (¢, k, w) that we want to maximise. For experimental
purposes, we may not want to maximise all the parameters at once. Hence, I employ
a binary vector, namely, b = (by, by, b3) which allows me to select which parameters I
want to keep fixed during optimisation in accordance with some specified hypothesis.

Hence, to compute the estimates shown in row three of Table 2.3 under the

34



null hypothesis, I set b = (1,0,0). This means that the optimisation routine will
vary t only while keeping the other two parameters fixed to 1.0 during its search for
the global optimum. For rows four and five b is set to (1,1, 0), and for rows six and
seven to (1,0,1), under alternative hypotheses one and two, respectively. To test
for significance of 4 and @, the x? distribution is used with one degree of freedom.

From Table 2.3 we can see that the mutation parameter « gains in significance
as it rises above 2.0 without, however, greatly affecting evolutionary time. On the
other hand, the selection parameter w is always highly significant even though it
is very small across these ten alignments. At the same time, it impacts greatly on
evolutionary time, indicating that we can view w as an innovation parameter.

One remaining issue to be raised here is that @ is estimated in 2.12 with A
as given. This is too common in the literature. My contention is that a thorough
analysis of a pairwise alignment should not assume that the given alignment is ex
cathedra. What I mean is that the alignment itself is unobservable, that is, it too
is a stochastic quantity and should, therefore, be part of the maximisation process
using ML. In my formulation of the one-region model later in this chapter I show

how alignment optimisation is incorporated in the ML procedure.

2.2.1.2 Computing cis and (iN

It remains to show how we can use the GY94 model to obtain ML estimators
ds and dy, and then compare these with corresponding estimators obtained earlier
using the method of NEI and GOJOBORI (1986).

The vectors (f, R,w = 1) for all the ten alignments are shown in rows four
and five of Table 2.3. These are estimators obtained before natural selection had
a chance to operate at the amino acid level (YANG and NIELSEN, 2000). We also
require the corresponding vectors (£*, *,&*) which are shown in Table 2.4. These

estimators capture the effects of the innovation property of w.
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We can use (e.g. YANG and NIELSEN, 2000, p. 34)

61
& Z (i, )@ Qu; (K*, w*)
i,j=.1
dg = 6:#1 , (2.13)
3 Z 6(1,7)@iQij (R, w = 1)

ij=1
i#]

where 6(i,j) is one if (i,7) yield a synonymous change, and is zero otherwise. dy

can be computed likewise after reversing the value of 6(7, j).

Aln Num 1 2 3 4 5 6 7 8 9 10
dg (o) oo 1.179 o0 00 2.737 oo 1.783 0.676 oo
dn 0.265 0.256 0.185 0.307 0.270 0.198 0.205 0.147 0.205 0.339
dn /ds 0.000 0.000 0.157 0.000 0.000 0.072 0.000 0.082 0.303 0.000
E’EHQS) 0.405 0.316 0.187 0.414 0515 0.316 0.313 0.203 0.181 0.414
R:’EHQS) 1.556 1.502 1.449 0.654 1.131 1.179 0.890 1.384 2.850 0.905
QEHGS) 0.075 0.023 0.071 0.028 0.038 0.029 0.018 0.036 0.038 0.018
p— 'val'u,e(Has) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
dg 2194 1970 0954 2.213 3.159 1.839 2.118 1.282 0.996 3.268
&N 0.333 0.299 0.237 0.415 0.346 0.256 0.255 0.213 0.214 0.377
dn /Js 0.152 0.152 0.248 0.188 0.110 0.139 0.120 0.166 0.215 0.115

Table 2.4: (fs and dy were computed using the GY94 model. p-values were computed with two degrees of
freedom.

Estimators (fs and ciN are shown in Table 2.4. They were obtained using the
GY94 and maximum likelihood (ML). These estimators are asymptotically efficient
under regulatory conditions owing to the ML property of invariance (e.g. GREENE,
1997, p. 133).

From my ten randomly selected alignments, it can be seen once more that
ds (645 = 0.75) is much more variable than dy (64, = O‘.07). Consistent with
YANG and NIELSEN (2000), the ratios of dy/dg are underestimated when using the
NEI and GOJOBORI (1986) method, with the only exception being alignment nine.
This can be attributed to the high variability of ds. Finally, note the discrepan-

cies between &* and dy / ds. This reflects the fact that alignments consist of two
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sequences of finite length.

2.3 The Hasegawa-Kishino-Yano Model

The substitution model matrix R in HASEGAWA et al. (1985) takes the follow-

ing form
T C A G
T[00 o B 8
_C| o 00 B pB
R(O(,ﬂ) - A ﬂ ,8 0.0 a >
G| 8 B8 a 00

where o and ( are non-negative parameters designed to measure the transition and
transversion substitution rates, respectively. It is common, however, to implement

the model with only one parameter as follows

T C A G
T{00 ~ 10 1.0
C| « 00 10 1.0
Al 10 10 00 « |’
G|10 1.0 ~ 0.0

R(k) =

where k is the transition-transversion rate ratio parameter. The vector g of back-
ground probabilities for this model is estimated from the data using 2.4.

The HKY model in HASEGAWA et al. (1985) was designed to deal with the
relation between the rate of transition and the rate of transversion in Mitochon-
drial DNA taken from Hominoidea and from corresponding regions of bovine and
mouse. The authors identified the transversion rate as the variable which, unlike the
transition rate, could explain evolutionary time regardless of codon position. They
employed their method with a multiple alignment of seven sequences — with gaps
removed — to estimate times of divergence at each bifurcation of the phylogenetic
tree. In the following I give an outline of this method. For this purpose I assume a

pairwise alignment for simplicity.
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T C A G

T | —(agc + Bea + Bac) agqe Baa Bac
QUKY) _ C agr —(oqr + Baa + Bag) Baa Bac

A Bar Bac —(agg + Bar + Bac) agqe

G Bar Bac agp —(agqa + Baer + Bac)

Figure 2.2: The Q matrix of HASEGAWA et al. (1985), which I denote as Q(HKY),

Figure 2.2 shows the HKY rate matrix QXY) as employed by the authors.
Note that they chose to retain « and § in their formulation, and not reduce these
two parameters to one, namely, k. They did this for the reason explained earlier, and

they examined the transversion rate patameter § rather than o when maximising
the likelihood.

T C A G T C A G T c A el
T[1 o 0 gcay’ e 0 0 0 qr qc qa qc
piy=C ! q;_ll o —gray’ || O ez 0 0 | grer drac -avaa —avdc
Al 1l —gg' acan 0 0 0 e300 0 0 1 -1
G|l 1 —qg' —qadp! 0 0 0 0 etM 1 -1 0 0

Figure 2.3: The spectral decomposition of the right hand side of 2.6 after applying the limiting theory of
caleulus and replacing Q with QUHKY),

It can be shown that with this formulation the exponentiation of tQ%Y) can
be spectrally decomposed as in Figure 2.3. These three matrices can be multiplied
to obtain the matrix in Figure 2.4. It can also be shown that the A’s in this matrix
are as follows: A\; = 0, A2 = =3, \3 = —¢qv8 — qra, and \y = —qya — qrf, where
gy =gqr +qc and gr = qga + gc-

The aim is to construct analytically a likelihood function that can be max-
imised in order to obtain the ML estimator for the parameter vector 8, given the

pairwise alignment A.
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T C A G
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etA2q, e2gg
trag g1 etrag o=l
3 ¢y acy
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Figure 2.4: Product of the spectral decomposition of et@" ¥

Consider an alignment, with gaps removed, constructed from two sequences
X and Y that belong to two species which diverged ¢ million years ago. The align-
ment has length N, and can be considered large enough to allow averages to be
representative of the population means. Each site j € {1,2,..., N} is assumed to
be independently and identically distributed (i.i.d.) and having a polynomial dis-
tribution with 42 possible states, as illustrated below

i.i.d. alignment site

$
X1Xz-XjXN
Y1Y2--Yj YN
T

‘ 42 possible states per site
Note that in this illustration the superscript is 2 because I am considerihg‘va pairwise
alignment. Had it been an alignment with three sequences, the polynomial distri-
bution would then have a total of 64 possible states, and so on. Denote the state
at time t at site j by z;(¢) in sequence X and by y;(t) in sequerice Y, where z and
y can take any letter of the alphabet £ = {T,C, A, G}. It is also assumed that the

process is stationary Markovian and reversible. Hence, for two extant characters
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a,be {T,C,A,G)}

P(z;(t) = a,y;(t) = b) = P(;(t) = a,4;(t) = b| Z)) P(E;), a #b,

=v ch ea(t)Pep(t), ¢ is ancestral,
ceg

= s Y Pac(t) Pa(t), (2.14)

ceg
= vq, Py (2t), (2.15)

where Z; means that site j mutates,
v is the probability that a given site mutates,

2.14 is the Chapman-Kolmogorov equation, and
¢={T,C, A G}

To construct the likelihood function, we need to compute counts V,,, S,,, av-
erages V (t), S(t), variances 0%, 0% and covariances oyg, osy of the number of mis-

matches in the alignment which are transversions (V') and transitions (S). Counts
N

are obtained using V,, = Z 8;(a,b), where 6;(a,b) is one if the letters a,b on the
j=1
site 7 yield a transversion, and zero otherwise. S,, is similarly computed by setting

the value of §;(a, b) to be one if the letters a, b on the site j yield a transition.

To compute averages, we appeal to 2.15 and to the elements of the matrix in
Figure 2.4. For the average number of transversions V (t), we start by collecting the
transversion terms from the matrix P(2t) and multiply each of these terms by vq,,

with a € &, as follows

vgr(e**ga — e*2qa), var(e* g — €#2qq),
vac (e qa — €772q,), VQC(G%\1 g — €€™qc),
vga(e®qr — €2qr), vga(ego — e¥*2qp),
vac(e* M gr — e¥2qr), vge(e#™ge — e qc).
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Adding these terms, recalling that \; = 0 and Ay = —f3, and that we have defined
gy = qr + qc and qg = qa + qg, We obtain

V(t) = 2vNgyqg[l — e,

Similarly, for the average number of transitions S(¢), we collect the transition terms

from the matrix P(2t) and multiply each of these terms by vq,, a € £, as before and

obtain

var(e™ge + €2y qrge — e qegyt),
vao(e™gr + €™2¢y qrar — eMargyt),
vga(e™Mge + € qz gy ge — €™ qeqzt),

tA3

vac(e™aa + €2z qyaa — €™ qagzt).

Adding these terms, and recalling that A3 = —gy 8 — gra and Ay = —gya — grf3, we

obtain

S(t) =2vN [qch + qa9c

4dr gy \ _
+(q:rqc— + quG—)e %p
qy dr

_gﬁ%e—?t(qylﬂ-qna) _ @e—%(waﬂnﬂ)] )
qr Qy

To compute variances and covariances, we use standard equations as follows

oy

ot =50)(1- 22,

o V®»s®)
oys = 0gy = TN
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We can now define the following terms before constructing the likelihood function

— Vi o2 o
D:(V"), D:(‘_"“), and 0 =(" Vf).
Sm S(¢) osv Og
Assuming D ~ N (ﬁ, ), the likelihood function can be written as

£(0]4) = 2rdeti @) Fexp{ - >(D-DYQ (D-D)}.  (216)

!
2
The parameter vector 8 has the elements (¢, v, «, §), and 2.16 can be maximised by
minimising (D — D)~ }(D — D).

Here it was possible for the authors to derive an optimisation criterion an-
alytically. This approach, however, is not practical when using HMMs to model
heterogeneity of evolutionary rates with several parameters. For this reason, I
had to consider other approaches for optimising the likelihood function. One such
approach was the Baum-Welch algorithm, which I described in Chapter 1. This
method, together with numerical approximation, allowed me to deal with a complex

optimisation function which is not amenable to an analytical formulation.

2.4 Insertions and Deletions

The three substitution models that I have described, namely, the PMB, GY94
and HKYS85, are all built around a sound mathematical structure. They are also
amenable to exponentiation and to maximum likelihood so that they allow the evo-
lutionary time parameter to be computed as an asymptotically consistent estimator
along a continuum while taking into account potential multiple hits on a single site.
An important feature that they also share is versatility when applied to data sets
that have a wide range of pairwise evolutionary times.

They have, however, a serious limitation. Each of these models is oblivious
to insertions and deletions (indels). Intuitively, the greater the evolutionary time
between two sequences, the more indels we can expect to encounter, and the substi-
tution model becomes less and less effective in comparative analysis. A substitution
model, therefore, would require additional modelling to capture the effects of indels

on the "true" alignment. We would want to consider a parameter that can capture
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the average rate of occurrence of indels, and a second parameter that can model the
average length of these indels.

PASCARELLA and ARGOS (1992) studied indels in homologous pairs construct-
ed from a collection of 32 protein structural families stored in the Brookhaven Pro-
tein Data Bank. The results of these workers provide a strong motivation for the
design of my one region model which I shall describe in this chapter. Here I give an
overview of the relevant methods and results of PASCARELLA and ARGOS (1992).

The authors considered all possible pairings of the aligned tertiary structures
stored in the database at the time. The corresponding pairs of primary sequences
were grouped according to the percentage identity ¢ exhibited by each pair, with
each c falling within a 5% interval. This grouping led to a histogram showing
that most of the data had ¢ values ranging from 5% to 35%, meaning that paired
structures had accumulated a great amount of evolution. Within the context of this

characteristic in the data, the following features emerged:

1. Once the length of an indel exceeded just one site in an alignment, the number
of indels longer than one dropped sharply. This was evidence that the general
assumption of species exercising great economy when mutating through dele-
tions and insertions of nucleotides would generally hold true. We would not,

therefore, expect alignment models to produce excessively long gaps.

- 2. The behaviour of the average indel length (¢) for ¢ values between 5 and 60, re-
mained at about 2 for most of evolutionary time, and not until ¢ dropped below
25% that £ started to rise sharply. Even when ¢ increased, it did not reach more

‘than 5, at which length it appeared to remain fixed. PASCARELLA and ARGOS
(1992) stated that

The tendency then, once indel sites are established, is to reach an equilibrium
length such that residues are inserted or deleted in a balanced manner with
time. Furthermore, there is a limit, in general, to the size of an indel, around

five.

This feature suggests that to model gaps, a discrete probability distribution
which could rapidly reduce the probability of additional unit gaps occurring —

43



once a gap length had stabilised to about 2 — would be suitable. For example,
with the geometric distribution having parameter a set to 0.2, one could use

the model
P(Indel Length = £) = (1 — a)az_1 (2.17)

which would give a high probability of around 0.8 if £ was just 1. This prob-
ability would drop to just 0.15 if £ was 2, and to virtually zero if ¢ reached
o.

. An extrapolation after ¢ had reached 4% showed that non-gapped sites of
alignments converged to a length of about 8 sites. The inference here was
that as the residue identity tends towards zero, the smallest average length of
aligned residues is about eight, and this is approximately equal to the average
length of an a-helix and a (-strand. Here, therefore, was a strong indica-
tion that insertions and deletions do not target secondary structural elements.

PASCARELLA and ARGOS (1992) stated that

...indels mostly intrude in turn and coil structures, and rarely encroach upon

helices and strands. ..

It is, therefore, very important to incorporate secondary structure in pairwise

alignment modelling.

. The indel rate was shown to saturate at around 15% residue identity, or ¢ = 15,
where the rate was just over 5 insertions per 100 non-gapped sites. At lower
¢ values, it was unclear how the rate of insertions actually occurred. This
appears to be the reason why it becomes increasingly difficult, if not imprac-
tical, to align sequence pairs that expressed large divergence. Nevertheless,
‘PASCARELLA and ARGOS (1992) made the observation that as ¢ tended to
approach zero, we would need on average seven non-gapped segments — each
having 8 aligned sites — in order to have six insertions of 5 residues each. That
makes a total of 86 sites, which is very close to 100 and is consistent with the

previous features.
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For modelling purposes, the indel rate stays at around 1 per 100 aligned
residues until ¢ = 65%, after which it rises steeply, suggesting an exponen-

tial behaviour. Hence, in general, one could consider the model
Indel Rate = k;e2(065-¢/100) indels/aligned residue, (2.18)

where k; and ky are some suitable constants.

. From among the 20 proteins, Glycine was the most frequent that flanked
insertions, while Isoleucine was more likely to be located away from gaps. The
proteins D, G, K, N, P, R, S and T, which are hydrophilic, were more likely

to appear on the flanks of indels than other proteins.

This feature has been useful in deterministic modelling (THOMPSON et al.,
1994). For the purpose of probability modelling, I have divided background
probabilities into two sets, namely, the hydrophilic set H and the nonhy-
drophilic set H. By introducing the hydrophilicity parameter h, I can re-

estimate from the data the vector of background probabilites q using
¢ =k(hH U (1 - h)H), (2.19)

where k is a suitable scalar so that the new elements in g’ still sum to one.

The h parameter allows me to investigate whether there is a clear demar-
cation between hydrophilic and non-hydrophilic regions. It also allows me
to test whether there exists a significant correlation, positionally in primary
structure, between regions which are solvent and regions which exhibit faster
(or slower) rate of evolution. Should I find that such a correlation exists, it
would then be useful to know whether faster (or slower) rates of evolution are
more likely to occur in hydrophilic regions of the molecule. This can shed light

on evolutionary processes in coding DNA segments of the genome.
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2.5 The Pair Hidden Markov Model

Figure 2.5: The PHMM with begin B state, end € state, align M state, delete X state and insert Y state.
Transition probabilities are computed using the Knudsen-Miyamoto equations for specified parameters, namely,
evolutionary time t, indel length a, and indel rate r. Note that probabilities o and 3 emanating from B are
the same as those emanating from M, and probabilities 8 and ~ entering & are the same as those entering M.
States B and € are therefore redundant. However, B is useful when introducing starting values, and & makes
it easier to deal with the fact that sequences have finite and different lengths.

The pair hidden Markov model (PHMM) was formally introduced by
DURBIN et al. (1998) to address the issue of indels in probability modelling of pair-
wise alignments. Their formulation requires the estimation of a parameter vector
that has five elements, namely, («, 8,0, €,7) as shown in Figure 2.5. None of these
five elements on its own can address directly the issues of indel length, indel rate
and evolutionary time. To address these issues more directly and economically,
KNUDSEN and M1yAMOTO (2003) proposed the theory that leads to a set of equa-
tions which I refer to as the Knudsen-Miyamoto (KM) equations. These equations
reduce the number of parameters that need to be optimised down to three, includ-
ing the average indel length a and the average indel rate r. Together, these two

parameters describe the indel component of the evolutionary process which had
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been studied empirically by PASCARELLA and ARGOSs (1992) as I described earlier.

I summarise the KM equations as follows:

1 1 1 1
« 2?1[ 2?2(2 P4)], B pl( 4172133),

tapops — (Zp1 — 1)(1 —a) 1(1 = a)apops + 2p1(1 — a)?

v = ; 6=
T+ o) atiom
o 39p2(Pat 12%5) +am(1—a) +a
L+ 3ap2(15) ’
where the probabilities py, ps2, ps3, and p4 are defined as
p=l-e, p=1-IL P3=1—a pi=—
! ’ 2rt’ 1+a’ 1+a

Probabilities p3 and p4 use the geometric distribution to model the indel length
through the parameter a, while probabilities p; and p, use the exponential distri-
bution to model the indel rate through the parameter r. This is compatible with
features 2 and 4, respectively, in the PASCARELLA and ARGOS (1992) study dis-
cussed earlier. The evolutionary time is measured in units of expected substitutions

or replacements (KNUDSEN and MIYAMOTO, 2003) through the parameter ¢.

2.5.1 Transition Probabilities Matrix

The transition probabilities are computed according to a Markov process rep-

resented by the matrix

M X Y ¢

Bl B a a 0
T=Mﬂaaﬂ
X| v € § ¢«
Y| v 6§ € ~

From the KM equations we can observe that each transition probability (with the
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exception of the B to € transition, which is set to zero since this transition is not
interesting) depends on both the indel process and on evolutionary time between the
two sequences. The PHMM, therefore, provides the additional modelling which is
lacking in the substitution model. That is, it provides the explicit modelling of the
insertion/deletion process through parameters a and r. Through p,, it also models
instances when an indel event is followed by a second indel event at the same site
of the alignment. This feature is important because the modelling of double indel
events allow us to deal with sequence pairs that have a lower residue identity. The
KM equation for the § transition probability also ensures that modelling for double
events does not lead to fragmentation of gaps. KNUDSEN and M1yAMOTO (2003)
stated that

...for a given evolutionary history, there is not always a unique alignment corre-

sponding to [that history].

For this reason they argue that it makes biological sense that we choose the align-

ment from all possible alignments that does not exhibit a high dispersion of gaps.

2.5.2 Emission Probabilities Matrix

The emission probabilities of the PHMM are constructed in accordance with
GONNET and BENNER (1996), using (1) the emission matrices of the two sequences
S1 and Sy being aligned, (2) the evolutionary matrix P(t), and (3) the vector g of
background probabilities.

The emission matrix of a sequence would normally have elements that are zeros
and ones. Due to machine error, however, some of the ones may have to be broken
down to fractions wherever there is uncertainty in the identification of a nucleotide
during the sequencing procedure. For example, let S; and S; be the nucleotide
sequences CTCGA and ASTCGT with emission matrices W and Z, respectively.
Note that the first sequence will have an emission matrix with only zeros and ones.
This will not be the case with the second sequence since one of the letters does not
belong to the DNA alphabet. There is sequencing uncertainty at the second position
which has been designated as S. Hence, the emission matrices of S; and S, would

take the following form
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CTCGA ASTCGT
T{0 1 0 0 0 T{0 0 1 0 0 1
cC|1 0 1 0 0 Cl0 3 0 1 00
W = , zZ = 2

A0 0 0 0 1 Al1 000 00O
G|0O 00 1 0 G|o £ 00 10

Note how the weight has been split into two for the alphabet letters C and G that
correspond to the sequenced letter S in the second matrix.
Once the emission matrices are constructed, the matrix of emission probabili-

ties can be computed from the following matrix manipulations

My, = (PW) ((q ®1,)e Inxn) PZ, (2.20)
Exya = (PW) 4, (2.21)
Ev,., = 4 PZ, (2.22)

where n is the number of letters in the alphabet,
w and z are the lengths of S; and Ss, respectively,
the n elements of vector g sum to one,
the n elements of vector 1 are all 1’s,
(®) and (e) are the Kronecker and Hadamard products, respectively, and
t is omitted for notational convenience.

To simplify implementation, the three matrices Ey Ex

together in one composite emission probabilities matrix as follows

and Ev, , are grouped

wXz? wXx1

For the simple example of S; and S, £ would take the form shown in Figure 2.6.
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M A S T C G T X
C [ Eca Ecs Ecr Ecc Ece Ecr ! Ec- ]
T | Era Ers Err Erc Erg Evr i Er-
B C | Eca Ecs Ecr Ecc Ece Ect ! Ec-
= G| Eeca Egs Eor Egc Ecge Egr ! Ea-
A | Ean Eas Ear Esc Eac BEar | Ba-
YLE.s E.s E.1 E.c E.¢ E_1r! 0

Figure 2.6: In the (w+ 1) x (2 + 1) emission matrix E, the top-left quadrant holds emission probabilities for
aligned positions of the pairwise alignment. The emission probabilities of every unique letter-pair combination
sum to one. The top-right quadrant holds emission probabilities for positions with deleted characters, while
the bottom-left quadrant holds emission probabilities for positions with inserted characters. In each case,
probabilities corresponding to unique characters sum to one. The bottom-right quadrant is set to zero since
it is not interesting. M, X, and Y are the three states of the PHMM, with each state emitting its respective
matrix of emission probabilities that sum to one.

Fn—l <
t, 81, 52 Emission Forward
En—l Y Fn
i
vi Posterior _4_(9 )
! U, = F:L.XB,.
' ™7 L£(8151,52)
)
a,r Transition A Backward
——
Tn—l Bn
B,-1 -

Figure 2.7: The one-region model takes three parameters, namely, evolutionary time ¢, indel length a, and
indel rate r, along with the data consisting of the two sequences S7,S2 to be aligned. £ is the estimator for
the expected number of substitutions or replacements between the two sequences Si,S2. It is also part of
the PHMM where d and + are estimated by the Markov chain according to the transition probabilities matrix
T. This matrix, together with emission matrix E, is used with standard dynamic programs to compute the
set of forward probabilities matrices F and the set of backward probabilities matrices B. From these, the
corresponding set of posterior probabilities matrices ¥ are also computed. The latter matrices are used with a
standard trace-back procedure to produce the alignment A(é). The index n is incremented with each position
of the alignment of sequences S, Sa. 0 is the vector of the ML estimators t,d and 7. There is also an additional
parameter, namely, the sequence length s parameter, which optimises for finite and unequal sequences. This
parameter plays a relatively minor role and is not shown.

2.5.3 One-Region Modelling
Matrices T and E of transition and emission probabilities, respectively, are

used with standard dynamic programs to compute the set of matrices F and the
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set of matrices B of forward and backward probabilities, respectively. These com-
putations are carried out iteratively as shown in Figure 2.7. The summation of
the forward probabilities across all possible alignments at each iteration is used for

maximising the following likelihood function

L(8S1,S,) = Z IT Ain(6) (2.23)

n=1 €S
JES2
where A;;,(0) is the contribution of letters ¢ and j of sequences S; and S,
respectively, of alignment n,
N is the number of all possible alignments, and

0 is the parameter vector to be optimised.

Following maximisation, the ML estimator 0 is used to compute the set of tables
W of posterior probabilities. A standard trace-back procedure is then applied to
construct the alignment A4 from these tables, and to compute a posterior probability
for each position of the alignment. Each of these posterior probabilities provides
a measure of how strong the alignment is between the corresponding letter-pair at

that position.

2.5.3.1 The Trace-Back Procedure

The trace-back procedure produces A from the three posterior probabilities
tables Wys, ¥x, and ¥y. It produces nys aligned character-pairs, nx inserts in Si,
and ny deletes in S; from the three tables, respectively. The expectations E(nyy),
E(nx), and E(ny) of these three numbers is computed by summing all probabilities
in each respective posterior probabilities table. By the property of invariance of
ML, A(8) would — asymptotically and under regulatory conditions — also be the
ML estimator (e.g. GREENE, 1997, p. 133) of the true alignment if E(ny) = np.
|E (nar) — nM|, however, is a random variable whose distribution depends on the
accuracy of the trace-back procedure. This procedure does not guarantee that this
random variable is always not statistically different from zero. For this reason, A(é)

is not strictly the ML estimator of the true alignment.
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CHAPTER 3
The Two-Region Model

3.1 DModelling Heterogeneity in Molecular Evolution

Molecular evolutionists have long been aware that different segments of biolog-
ical sequences had been evolving at different rates (FELSENSTEIN and CHURCHILL,
1996). Consider, for example, the argument that all morphological characters are
ultimately controlled by DNA (NE1, 2005). These characters had been exposed to
environmental changes over evolutionary time. It would follow, therefore, that sub-
stitution rates of DNA segments that control these characters would have evolved
at different rates in order to allow corresponding parts of the phenotype to adapt
to these environmental changes.

MARGOLIASH and SMITH (1965) and ZUCKERKANDL and PAULING (1965)
had also argued that amino acid replacements are slower than neutral in regions of
the protein that are functionally more important. That is, change in these regions
had been suppressed to ensure that the species would not be adversely affected. On
the other hand, in regions that are not critical to function, rates of replacement are
faster than neutral. In this case, replacements are not detrimental to the species.
They can also be slightly positively selected (NEI, 2005) because they provide better
chances of survival to those individuals that acquire these variants.

It is therefore of interest to consider a pairwise aligner that takes into account
potential heterogeneity of substitution rates along the two DNA homologues. It is
not known, however, how this heterogeneity can best be stratified for the purpose
of modelling. A reasonable starting point would be to divide heterogeneity into two
broad regions, namely, the slow and the fast rates of substitutions. This would be
compatible with secondary structure composition whereby a-helices and [-sheets
would constitute the conserved region at the core of the molecule, while loops, coils
and turns would form the non-conserved region that is present on the hydrophilic
surface. Given this setting, one would then expect substitutions to be scarce in

the former region, while more common in the latter. From the empirical study of
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PASCARELLA and ARGOS (1992), for example, we know that indel processes are
more likely to be active in the hydrophilic region which is the point of attack for
this component of evolution.

THORNE et al. (1992) pioneered the two-region pairwise aligner which assumes
regional heterogeneity of substitution rates. This model treats regions along the
evolving DNA as consisting of a variety of fragments, where each fragment evolves
at its own rate and with a stochastic length drawn from some common probability
distribution with one parameter. For the purpose of tractability, the authors cate-
gorise these fragments into two broad classes, namely, those that express a fast rate p
and those that express a slow rate 1 —p. They also introduce a parameter k to relate
these two regional substitution rates. From simulation results that they present, k
appears to deviate greatly from the true value, and exhibits large variances. The
parameter k£ may in fact be unnecessary since substitution rates in a region are likely
to be dependent on secondary structure, and ultimately on phenotypic requirements
related to that region, but not on the substitution rates of the other region. The
authors also show concern that their model does not account for possible increases
in the indel rate with increases in p. A more serious concern is, however, that the
substitution rate p in the fast rate region is tied to the substitution rate 1 —p in the
slow rate region. In reality, one would expect that the two rates are independent
from each other; that is, one does not increase (or decrease) at the expense (or the
benefit) of the other.

Independence between the two rates is necessary for the fact that slow and
fast rates serve two unrelated purposes. The slow rate ensures that selection is more
rigorous and precise, and hence needs more time to mature. On the other hand,
the fast rate ensures that change does occur, even if the outcome of this change
may not always be exactly what was needed. In fact, the outcome from the latter
could even turn out to be slightly harmful, but still much better than if no change
had occurred. Assuming that this premise is true, it should then follow that the
two rates exist in parallel but separately. One would also not expect that the two
putatively independent substitution rates, slow and fast, would be random variables

necessarily drawn from the same probability distribution along the same stretch of
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DNA. One could consider, for example, that slow rates are normally distributed
across species, while fast rates are drawn from some other non-normal distribution.

Independence between the fast and slow rate regions also lead me to reason-
ably hypothesise that there is a correlation between regional evolutionary rates and
clearly defined parts of secondary structure. This correlation would be similar to the
correlation suggested by GOLDMAN et al. (1996), whereby species in a phylogeny
are positioned in accordance with a hierarchy of evolutionary rates. Here, evolu-
tionary rates in different branches of the tree are non-independent, but they are
also "averaged". Secondary structure in the data from which the phylogeny is de-
rived cannot be observed, but it can be estimated by employing a three state HMM,
namely, a state for a-helices (@), a state for 3-sheets (), and another state for ev-
erything else (L) (GOLDMAN et al., 1996). This approach leads to the modelling of
evolution which takes place through amino acid replacements that are described by
three phylogenetic trees rather than just one. Rates within each of these three trees
are non-independent, but there is nothing to suggest that they are not independent
between any two of the three distinct phylogenetic trees.

Focusing on these processes that are likely to have generated the data, I can
now visualise a novel device to model a pairwise alignmént. This device consists
of two-tiered HMMs. The first layer seeks to tease out the true substitution and
indel processes as in DURBIN et al. (1998) and in KNUDSEN and M1YAMOTO (2003),
while the second layer attempts to exploit the correlation of the aligned sites with
different parts of secondary structure, as I shall demonstrate later in this chapter
and which we showed in SAMMUT et al. (2006).

FELSENSTEIN and CHURCHILL (1996) employ an HMM to allocate, to each
site, a rate selected (that is, "emitted") from a category of pre-defined and finite
number of rates. The category, here, represents the region along the molecule which
is experiencing a slow or a fast rate of substitution. Thus, a region would consist
of a "cluster" of rates contiguously emitted from the same category. These clusters
are in turn correlated through a parameter A\, which is equivalent to the parameter
p in the THORNE et al. (1992) model. A is the probability that a rate from a

category is followed by a rate from the same category. Note here that unlike in the
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THORNE et al. (1992) model, regions, and rates from within the same region (that
is, category), are assumed to be correlated, but no correlation is assumed between
rates drawn from different categories. This seems to be the preferred specification,
although rates in the FELSENSTEIN and CHURCHILL (1996) model are not estimated
from the data, making this model a naive one-layered HMM, and hence is limited
in what it can do.

Incidentally, at time of writing, I became aware of LOYTYNOJA and GOLDMAN
(2008) who use the same two-tiered model with exactly the same HMM-PHMM
topology as in SAMMUT et al. (2006). ¢ These authors, however, parametrize their
model using affine gap penalties for each of the two PHMMs (lower level), and prob-
abilities which are predefined and fixed to switch between the two PHMMs (upper
level). At both levels, parameters are estimated from training data, namely, biolog-
ical sequences for parameters within each PHMM, and biological structure classes
for parameters that switch between the two PHMMs. LOYTYNOJA and GOLDMAN

(2008) aim to model multiple structure classes in multiple alignment settings.

3.2 The Two-Tiered HMM-PHMM Topology
The PHMM has been formally presented by DURBIN et al. (1998). My ap-

proach in applying this device for the purpose of aligning two biological sequences
is based on the theory proposed by KNUDSEN and M1YAMOTO (2003). The mo-
tivation stems from the knowledge that the substitution rate is not homogeneous
along the DNA (CHURCHILL, 1989). There also appears to be a correlation between
substitution rates and secondary structure (GOLDMAN et al., 1996), and between
indel processes and hydrophilic regions of the molecule (PASCARELLA and ARGOS,
1992). My approach uses more than one PHMM to model different substitution
and indel rates in different regions. It is not known what the optimal number of
PHMMSs should be, or whether such an optimal number exists. However, as I dis-

cussed earlier, it is reasonable to assume that heterogeneity can be categorised into

4L6YTYNOJA and GOLDMAN (2008) have not cited SAMMUT et al. (2006). I presented the
topology and the results at the poster session of the 11th International Congress of Human Genetics
held at the Brisbane Convention & Exhibition Centre, Brisbane, Australia between August 6 - 10,

2006. The abstract is published on-line courtesy ICMS who also hold a copy of the accompanying
PDF file.
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two broad regions, namely, the fast and slow rates. Hence, my initial model is as

in SAMMUT et al. (2006). That is, it consists of two PHMMSs conjoined by a silent

state denoted by & as shown in Figure 3.1.

Figure 3.1: The double PHMM topology (SAMMUT et al., 2006) has one silent & state. The silent state
conceptually replaces the begin and the end states of the one-region model. It allows one to join two PHMMSs
in such a way whereby each PHMM is allowed to operate independently from the other. Thus, when a switch
occurs from PHM My to PHM M, & behaves as the end state of PHM My and as the begin state of PHM Mj.
Similarly, when a switch occurs from PHMM; to PHM My, G behaves as the end state of PHMM; and as
the begin state of PHM M. An important property of the silent state is that it allows the KM equations to
be applied independently to each of the two PHMMs. This greatly simplifies parameter ML estimation during
optimisation. More importantly, however, it models the two separate parts of secondary structure, namely,
the conserved and the non-conserved regions.

3.2.1 The Two-Region Transition Matrix

The aim of the two-region model shown in Figure 3.1 is to capture each of the
two broad categories of evolutionary rates by each of the two PHMMSs, one with its
own set of parameters optimised for slow rates and the other also with its own set of
parameters optimised for fast rates. These two sets of parameters lead to two sets of
transition probabilities as shown in the composite transition matrix in Figure 3.2.

In this matrix, one set of probabilities is indexed zero to signify that they belong to
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PH M M, that models one region, while the other set is indexed one to signify that
they belong to PH M M, that models the other region.

My Xo Yo My X3 Yy
S [h a a /Hh a o 0]
Mo| o ap a0 O O 0 fo
Xo| % €@ do 0 0 0
T = Yg Yo 50 €0 0 0 0 Yo
M; 0 0 0 B/ o1 o1 B
X1 0 0 0 m @ & m
Yi[0 0 0 m & a m

Figure 3.2: The conceptual transition matrix T of the two-region model is a composite of two 3 X 3 transition
matrices, one from each of the two PHMMs in this model. A transition within one of the PHMMs is similar to
that of the one-region model. However, a transition from one PHMM to the other PHMM has to be channelled
through the silent state &. Note that during an inter-region transition, the silent state acts as the end state
of the source PHMM and as the begin state of the sink PHMM, simultaneously.

The topology in Figure 3.1 constitutes the first layer of the two-tiered HMM-
PHMM model. A second layer is needed to capture the alternating regions of slow
and fast evolutionary rates along the DNA. This alternate behaviour of rate het-
erogeneity can be assumed to be a two-state Markov process which I model by a
two-state HMM (SAMMUT et al., 2006) as shown in Figure 3.3 and which has a
2 x 2 transition matrix. Transition probabilities py and p; can be viewed as region
switching probabilities. Each determine when the flow in the current PHMM should
traverse to the other PHMM via the silent state. CHURCHILL (1989) showed that
under stable DNA heterogeneity, these probabilities would normally be small. That

is, I can expect heterogeneity not to be fragmented.

The begin state B plays a role only during the first step of the alignment
process. The starting probability from B to the PHMMs is multiplied by the sta-
tionary probabilities ¢;, j € {0,1}, to average out the initial uncertainty of the
forward dynamic program. Similarly, the end state & plays a role only during the
last step. The last probability from each of the forward tables to € is multiplied by
the sequence length parameter 7;, i € {0, 1}, in order to take into account the fact
that the sequences being aligned do not have infinite length.

Transiting from one state of PHMM,, n € {0, 1}, to another state of the same
PHMM has the same probability as that which is computed from the KM equations

o7



Ro R, ¢ PHMM, PHMM,

B do 01 0 0 0
Ro | 1—=po po 7o 1 0
R4 pr l—=—pp n 0 1

1—p

Figure 3.3: The two-state HMM models the two regions of the molecular secondary structure, namely,
the conserved and non-conserved regions. States Ro and R; emit PHMM and PHMM], respectively with
probability 1.0. 28 and & are silent states which are replaced by a single silent state & in the conceptual
transition matrix T of the two-region model.

except that this probability is now multiplied by 1— p,. Transiting from one state of
PHMM,, n € {0,1} to another state of PHM M;_, would require two probabilities
computed from the KM equations, and both are multiplied by p,. For example, a

transition from state My to state Y; would be the product of Gy, a1, and pq.

Mg Xo Yo M, X3 Y, ¢
B[ fogo oo apdo B191 a1y 191 0 ]

Mo | Bo(1—po) ao(l—po) ao(l—po) Bobipo Boa1po Bocrpo  BoTo

Xo | (1 —po) eo(l—po) Go(l—=po)  Y0B1po Yocr1po Yooipo  YoTo

T= Yo | v%(l1—po) do(l—po) eo(l—po) Y0Bipo Y0010 Yocupo  YoTo
M, B1Bop1 Braopr Praopr  Bi(l—p1) a1(l—p1) ar(l—p1) Bim

Xy 11B0p1 T100p1 Ticopr M(l—p1) ea(l—p1) G(l-p1)) mm

Yi | mBom Y100p1 Yiewpr M(l—p1) 6(1—p1) ea(l-p1) mn

Figure 3.4: The implementation of the two-region transition matrix T has transition probabilities consisting
of products of probabilities taken both from the conceptual transition matrix and from the two-state region
HMM. Each row is normalised to make T row stochastic. Note also that the silent state & is now replaced by
the begin state 2B in the first row and by the end state & in the last column.

Figure 3.4 shows all the probability transformations that produce the two-

region transition matrix that can be implemented in dynamic programming after
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each row had been normalised and made to sum to one. Note also that the begin

state B and the end state & are also restored as a result of this transformation.

3.2.2 Emission Matrices for the Two-Region Model

M, A S T C G T X,
C [ Epnca Ejcs Encr Ence Ence Enpcr ! Enc- T
T | Eyra Eprs Enrr Epte Epre Enrr | Eqr-
g— C|Enca Egos Baor Epco Ence EyoriByo-
- G | Egea Ejes Ener Encee Ejee Eger i Epc-
A | Epaa Ejas Egar Ejac Enpac Epar | Epa-
Yn L En,—A En -8 En,—T En,—c En,—G En,—TE (VN

Figure 3.5: The emission matrix E of Figure 2.6 is extended to cater for two PHMMs by introducing the
index n € {0,1}. E is now a vector of emission matrices with number of elements equal to number of regions.

The emission matrix of each PHMM in the two-region model is the same as
that specified for the one-region model described in Chapter 2. Each matrix is
indexed according to the regional PHMM it is assigned to. Emission matrix E
shown in Figure 3.5 is therefore a vector of matrices whose elements are ordered,
starting from region zero, and the number of these elements is equal to the number
of regions being modelled. Each element is indexed by 7 and inherits the same set
of parameters assigned to the region 7 it belongs to, and receives corresponding

estimators determined by ML during optimisation.

3.2.3 Two-Region Modelling

Figure 3.6 shows the two-region model in schematic form. The PHMM in each
region is represented by the corresponding transition and emission matrices. As in
the one-region model, these two matrices share the same substitution (or replace-
ment) rate parameter t,, n € {0,1}, which is assigned to its region independently
of the other parameter ¢;_, assigned to the other region. Likewise, parameters a,
and r, are assigned to corresponding transition matrices.

The two-region model differs from the one-region model in three important
ways. First, the transition matrix of each PHMM now has an additional parameter,

namely, p,. This parameter is also estimated from the data. Its estimator decides
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1
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Ein-1 B,
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Figure 3.6: In the two-region model, each region is identified by the index number of the input parameters
tn, Gy, and 7y, and of the matrices Ey, Ty, Fy, By, and ¥y, of each PHM My, n € {0,1}. The region switch
connects directly to the transition matrix of each PHMM, and switches from PHM My to PHM M; through
parameter pg, and from PHM M; to PHM My through parameter p;. The dynamic program in each PHMM
steps forward and backward through the index {n: n =1,2,..., N}, where N is the number of all possible
alignments. The numerical optimiser reads from the three forward matrices in Fgy of region one and from
the three forward matrices in F'1 of region two to compute the maximum likelihood £ (2.23). Likewise, the
trace-back procedure reads from the three posterior matrices in ¥¢ of region one and from the three posterior
tables in ¥ of region two to produce the alignment .4(9).

which region each alignment site should belong to in order to achieve a better
likelihood. Thus, p, would switch the HMM signal from PHMM, to PHMM,_,

if this would cause the likelihood to rise, otherwise, p;—, would switch the signal
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from PHMM,_, to PHMM,,. Second, the likelihood function £(8|S;, S;) is now
dependent on a parameter vector @ which is a collection of parameters sourced from
two PHMMs rather than just one during optimisation. Nevertheless, the optimiser
remains oblivious to the fact that more than one region are being modelled. It Simply
continues to receive values that are additive from the forward dynamic program of
each corresponding PHMM. Finally, the trace-back procedure reads from six rather
than three posterior probabilities matrices; that is, three tables belonging to region
n € {0,1} are collected in W,, whereby each of this set of three tables had been
computed through the forward and backward probability tables of the corresponding

region.

3.3 Model Testing

Figure 3.7 shows simulation results consisting of one-sample t-tests and of two-
factor ANOVA tables for each biological encoding (BE), namely, protein, codon, and
DNA.

KNUDSEN and M1YAMOTO (2003) tested the parameterisation of the PHMM.
My aim here was to test the double PHMM topology as a two-region model by
varying one parameter at a time across two regions. To carry out the test, [ simulated
sets of 12 alignments for each BE under the corresponding regimes of parameter
values, as shown in the three tables on the left of Figure 3.7. Each cell in these
tables, for each combination of parameter values, gives a p-value obtained from a
one-sample t-test. Each of these p-values is computed from a data set consisting
of 24 point estimators. These were obtained by optimising the likelihood over two

parameters across the 12 alignments of the corresponding set.

3.3.1 Simulations

The same 24 point estimators were used to carry out two-factor ANOVA anal-
yses with K;; = 24 (i.e. DEVORE, 1990, p. 413). Factor A is made up of the three
evolutionary distances shown in the first row of the three tables on the left. Factor
B is made up of parameter settings shown in column five of the same tables.

The p-values obtained from the one-sample t-tests show that H,: x = z, is
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retained for all parameter combinations for the protein and DNA BEs at the 5%
level of significance. For the codon BE, however, H, is rejected once at ¢; = 0.4 and
four times at ¢; > 0.4. This can be expected owing to the fact that the GY94 model
is designed for close homologues, where the distance is assumed to be less than 0.4.

The p-values obtained from the ANOVAs provide a similar picture at the 5%
level of significance. First, Factor AB is not significant in all three tables. That is,
there is no significant interaction between distance ¢ point estimators and all other
point estimators. This means that I can interpret directly the effects of Factor A
and Factor B on model performance.

Second, for all three BEs, Factor B has no significance on model performance.
That is, model performance can be expected to be the same regardless over which
parameter, other than the distance ¢ parameter, I am optimising the likelihood.

Finally, for the protein BE, Factor A has no significance on model performance.
That is, I can align sequence pairs with evolutionary distances of at least 0.8 without
compromising alignment quality. This is not the case, however, with the codon and
DNA BEs. Once again, this is expected since both the GY94 and the HKY85 were
designed for close homologues. On the other hand, as I discussed in chapter 2, the
PMB model is based on the HENIKOFF and HENIKOFF (1992) BLOSUM matrices

and is linearly informative on a wide range of replacement rates.

3.4 Data Sets

The main aim throughout this work was to investigate the effect of secondary
structure elements (such as (1) a-helices, B-sheets, and coils in protein polypep-
tide chains, and (2) base-pair helices and bulges in RNA strands) on the substi-
tution rates between biological sequence pairs, whereby each pair is considered
to have diverted independently and over evolutionary time. To carry out the in-
vestigation, protein sequence pairs were sourced from the BAIIBASE 3.0 database
(THOMPSON et al., 2005), and RNA sequence pairs were sourced from the European
ribosomal RNA database (WUYTS et al., 2004).

62



‘(gaoyoey) s1erewrered 19130 [[e sso1oe
souewiojred [Ppow pur ‘(yI0308]) SOURISIP JUSISYPIP ssorve sdueuriojred [opowr (gv10308]) SI0YRUITISO USOM]S] UO[JOBISIUL I0] 159} O} Pasn a1om (paxy Py oiom
s1ejeurered JI9Y)0 (e S[IYMm ‘SUOLIDI OM) SSOIOE ATeA 03 oW} ' Je Jejewrered suo Summore 1oe) Fg = ‘237 YIm SYAONY 10908 -om], “1ojewrered yoes I10] O # & :Pff
SnSIeA °% =  :°f Buryse} Aq eouewtojiod [opour 199 0} PISN olem §9s9)-7 ofdwres-su() ‘e[ oY) UO S9[qe) 90IY} OY} Ul UMOYS SB ON[eA S[QISUSS SUIOS O} 49S OIoM
swejeurered Y30 IV "H VNA 10} (70 ‘T°0) Pue (€°0°T°0) ‘(¢'0 ‘T'0) 03 pue ‘sgg uopoo pue uwejoid 10 (8'0 z'0) PUe (9'0°2°0) ‘(7°0 ‘Z'0) 03 39S o1om (%3 13) soouelsIp
Areuorinjoas 10y senjea Iejewrered “YN( Pue ‘uopod ‘ujord ‘Apureu ‘(Ag) Surpoous [ed180[01q [OBS O] POJR[NUIIS 9Iom DS Sjuowiudie g Jo S19S :4°@ aan3r g

68°'€E8LT 18T [e0L,

0Z'6 81'889% 9L Joug 0Z'T ‘05T (% ‘T¥) sojer uorisuel], yOv1°0 68090 6098°0
GE8T'0 8YFCT  SPIT 6989 9 gviojoeq 80°0 ‘G0°0 (s ¢14) soyer jopuy ¥6£6°0 $008°0 81I8¥°0
SF9T0 GOI8'T 19T 15°e¢ Z qI109108,] 05°0 ‘080 (%0'To) sysBusy PPUT  G6L6'0  8SFTO  SFE0°0
$810°0 €86€'¢  121E 29'€6 g Y0308 010 (22) oyex uoynynsqng 66200 0%01°0 18S1°0
asenbs saxenbs uoijeriea s3urj3es smwojeweIed P0=17 g0=11 zo=12

anfea-d 1s9)-] UEDA jo wng Jp  JO 92Inog
1s93-7 a[dureg-ouQ PPOIN VN

vz = ‘13 YIM YVAONYV 1030ed-0mT, PPON VNA
9%°9099T  Te¥ [ej0L 040 ‘0%°0 (ey ‘1y) sepyroIydoIpA 8€€0°0 0200°0 0291°0
£6°G¢ SL9L8VT  PIF 1011y 02’1 ‘08°0 (m*1m) sorye1 uorjoe[es uelUIMIE] £70€°0 9TIPT 0 $S10°0
209€°0 8660'T 2968 12°G6€ 01 gvioRe 0Z'T ‘08°'0 (%% ‘Tar) SOIYRI UOISIBASURI}-UOI}ISUEL], G86%°0 €700 L820°0
Zv90°0 ¥P9LC  $£'66 89°861 4 gi0yeq S0°0 ‘€0°0 (a4 14) soyer jopuy $S10°0 96T0°0 ¥060°0
0000°0 1994°¢  9T°.02  T8GE0T  § V10308, 0£°0 ‘020 (%0 ‘1) syyBuel (epug €€€0°0 L60%°0 0S16°0
0Z°0 (23) oye1 uonnyysqng 8922°0 6L91°0 11€0°0

arenbs sesenbs uoIjRLIRBA
enjea-d 3se9)-] UBSA jo wung ‘3P JO 8danog s3uryjyeg smwjpweregd 0= 90=12 F0o=012
1s93-7 ajdureg-auQ BPOJA uopo)

¥ = “3 UM VAONYV 103984-0MI,  [9POIN UOPOD

. ereet L8t resaL 0.0 ‘0v0  (*y‘Ty) somyoumydopAH  OT1L'0  88V0'0 20250

. L. 390 6e9st 9Lt B 00 ‘080 (4‘1s) soyexopul  8ZI80  €PI90  G8QT0

66190 10.80  g¥'0 122 9 gyioieg 080 ‘02°0 (2010) syjBuel PPUT  SIEE0  LSZ0  Z9VSO

66650 61120 9€0 690 4 103084 02°0 (27) oye1 woynIsqNS  £yGI0  Q98T0  60ETD
£1180 69617 180 e ¢ yi0300g

‘0= 1T NERS ‘N=T_T

asenbs sairenbs uoljerIRA s8unies Siejetresed 80 90 rovo *

onjea-d }s9)J UEBSN JO wNng JP JO 92INOS 15017 olduIES 010 I

7= 73 YUm YAONYV I10108J-0M T, [PPOIAl uIdjoxg

63



From each of these two databases, multiple sequence alignments that were
deemed suitable for my experiments were downloaded. From each of these align-
ments, a phylogeny was constructed in two steps. First, pairwise evolutionary dis-
tances were computed using the standard Neighbour-Joining method. Second, Max-
imum Likelihood was employed to optimise the likelihood function of the tree that
had been obtained from the first step.

To each phylogeny, a post-order traversal was applied in order to extract se-
quence pairs that do not share the same immediate ancestor within the same phy-
logeny. Figure 3.8 shows an example of a phylogeny constructed from a multiple
alignment taken from the BAIIBASE database after searching under the unique
key BBS12002. Following maximisation of the likelihood function of this tree, a
post-order traversal yielded three sequence pairs, namely, (1) RL1_ HALVO and
RL1_ BUCAP with an evolutionary distance of 1.647 and sharing ancestor num-
ber 1, (2) RI0A_-TRYBR and R10A_ENTHI with an evolutionary distance of 0.987
and sharing ancestor number 2, and (3) 1cjs_A and 1mzp_A with an evolutionary
distance of 1.121 and sharing ancestor number 3. The distance between each of
these three pairs is indicated by the bolded line sections within the phylogeny in
Figure 3.8. The important feature of each of these three bolded lines is that each
is separate from the other two, and each is bifurcated by a different ancestor. That
is, for experimental purposes I can assume that each of the three pairs never shared
evolutionary events with either of the other two, and evolved independently over evo-
lutionary time. Hence, I call these units phylogenetically independent pairs (PIPs).
PIPs that had been randomly sampled can also be assumed to be independently
and identically distributed (i.i.d.), and hence they constitute a data set which is
amenable to standard inferential techniques that are based on the Central Limit

Theorem and Maximum Likelihood.

3.4.1 The Protein Data Set

A total of 808 protein PIPs were extracted from Reference Sets 1, 2, 3, and 5
of the BAIiBASE 3.0 database. I excluded Reference Set 4 because this set contains
alignments with very long extensions. This characteristic could be problematic when

searching for a "good" alignment. For the same reason, I used only BAIiBASE
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RL1_HALVO R10A_TRYBR R10A_ENTHI RL1_BUCAP icjs_A imzp_A

Figure 3.8: The phylogeny is constructed from a multiple alignment stored in the BAliBASE database under
the unique key BBS12002. The alignment consists of six protein sequences resulting in six tips. A post-order
traversal classified these tips into three pairs whereby each pair does not share the same immediate ancestor,
and hence can be considered as having diverged independently for experimental purposes.

truncated alignments under search keys prefixed by BBS in order to construct PIPs.
This approach avoids effects due to large end gaps and increases the chance of
the optimiser finding global optima, rather than mere local optima, by exploiting
homologous domains (THOMPSON et al., 2005). Figure 3.9 shows a boxplot of the
relative evolutionary times — or distances — of the 808 PIPs. For the purpose of
my experiments, the spread of these distances was too wide, ranging from 0.03 to
2.36 with numerous mild and severe outliers all located at the upper end and hence
heavily skewing the data set. The lower and upper fourths show that most PIPs have
distances concentrated around a median of 0.71 with a spread of about 0.4 on either
side. I decided, therefore, that a suitable range of distances for my experiments
would lie approximately between 0.3 and 1.2.

In designing a data set, a good strategy was to subdivide the sample into
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bins with a bandwidth of 0.25. A narrow bandwidth would not contain enough
PIPs to sample from effectively, while a wide bandwidth could lead to non-uniform
sampling. Table 3.1 shows nine bins, starting from the smallest distance. It is
clear that bins 2 to 5 (with shaded colour) contain PIPs whose statistics are better
in that differences in the means are precisely 0.25, and differences in the standard
deviations are uniform and small. At the same time, each of these four bins turn out
to have sizes large enough to allow random sampling of 30 PIPs per bin that lead
to a large number of potential unique experimental samples. Any of these samples
can be constructed in order to allow experiments to be repeated. Figure 3.10 shows
boxplots for each of these four bins, whereby each boxplot reveals a wide fourth

spread and no outliers in each bin, hence eliminating skewness in each.

-7 77—
0.03 0.71 2.36
—{ 7 cmwwmmmwwo®w 6 8 o o
0.39 1.18
1 I L I 3 1 i 1 1 L " 1 It n 1 1 1 L I 1 i 1 1 1 1 TR 1 1 1 1 1 1 It
1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0

Figure 3.9: The boxplot shows that PIPs extracted from the BAliBASE database have a large fourth spread
and a large number of outliers. Lower and upper fourths indicate that a suitable data set would consist of
PIPs with distances ranging between 0.25 and 1.25.

3.4.2 The Codon Data Set

Part of the objective in this work was to repeat experiments carried out using
protein sequence pairs with codon equivalent sequences. For this purpose I obtained
the DNA equivalents of the 808 protein PIPs using a Python script written by Peter
Maxwell. Using the script, I accessed the NCBI Protein and Nucleotide sequence
databases. Protein records for all truncated sequences extracted from BAIIBASE
were fetched using protein codes. Cross-references from each protein record were
used to identify the corresponding DNA sequence. The coding sequence, identified
using the feature table of the DNA record, was extracted. After removing the ter-

minal stop codon, it was then stored in a fasta formatted file. Using this procedure,
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Bin Size Min Max Median Mean Diff-M SD Diff-SD

1 99 0027 0249  0.196  0.176 - 0061 -

2 185 0250 0498 0378 0372 0196 0075  0.014

3 140 0502 0749  0.607 0618  0.246 0071  -0.004 -
4 126 0750 0995 0875 0871 0254 0.068  -0.002
5 78 1004 1249 1100 1124 0253 007l  0.003
6 64 1251 1497 1374 1373  0.248 0077  0.006
7 40 1500 1734 1611 1617 0244 0072  -0.005

8 25 1761 1.993  1.839 1869  0.252 0077  0.005

9 14 2009 2153 2071  2.078  0.200  0.047  -0.030

Table 3.1: The BAIiIBASE sample of 808 PIPs yields bins of varying sizes. Nine bins are constructed on the
basis of distances, with a bandwidth of 0.25 per bin. Bins 2 to 5 are suitable for experimental purposes since
they cover the range of interest, namely, 0.25-1.25. They also present inter-mean differences of precisely 0.25
and present also the smallest inter-standard deviation differences of just £0.003 approximately. The size of
these four bins also allows a large number of unique experimental samples to be drawn, with 30 PIPs per bin,
and hence provide the means for repeating experiments and replicating results.

I collected a total of 1187 DNA sequence equivalents as compared to the 3359 pro-
tein truncated sequences stored in BAIIBASE 3.0. The final data set of 808 PIPs
was then derived from the intersection of these DNA and protein sequence pools

following ML maximisation of the protein trees as described in 3.4.1.

3.4.3 The RNA Data Set

Figure 3.11 shows two boxplots of the RNA data set. The first boxplot shows
the spread of two sets of PIPs extracted from two RNA trees that had been down-
loaded from the European ribosomal RNA database. The first tree yielded 74 PIPs
while the second yielded 151 PIPs, a total of 225 unique PIPs. However, the spread
of the distances of these PIPs was very narrow, just 0.00 — 0.25 approximately,
with severe outliers at each end.

To increase the spread, and to reduce outliers, I decided to prune several times
the second tree (since this was larger than the first tree), collecting PIPs with larger
distances at each pass. This procedure yielded 105 unique PIPs which, together with
the 74 PIPs from the first tree produced the second boxplot. From this boxplot it can
be seen that the spread of distances increased to 0.00 — 0.44 with no outliers. From
the 105 PIPs from the second tree, 25 were randomly selected, and together with
the 74 from the first tree, an RNA experimental sample of 99 PIPs was constructed.
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Figure 3.10: Boxplots for bins 2 to 5 from the nine bins shown in Table 3.1. All four bins exhibit no outliers,
and exhibit also reasonably large fourth spreads. These properties make these bins suitable for sampling, with
30 randomly selected PIPs per bin.

3.5 The Experimental Setting

The data sets were constructed to carry out experiments for the purpose of
testing hypotheses. Some of these hypotheses address the question as to whether
there exist two broad classifications, along the DNA or protein, of some element of
interest that contributes to evolutionary processes. The most important of these

elements is the substitution (or replacement) rate t. Hence, a test can typically be
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Figure 3.11: The first boxplot shows the spread of RNA PIPs distances before pruning, while the second
shows the spread after pruning. The pruning procedure increased the range while eliminating all outliers.

Equally important, it moved the median closer to the centre, thus greatly reducing skew in the experimental
data. '

set as follows. In order to test whether there is a significant difference between ¢; in

region one and t, in region two, of the two sequences being aligned, define

H,: ty =ty,  versus (3.1)
Hal tl 7é tg.

To test 3.1, I would maximise the likelihood function 2.23 twice. For protein se-
quences, first use the vector 8, = (t; = t3,a; = as, 71 = T2, h1 = ha, py = pa = 0.5)
under the null®. Then use the vector 8, = (t1,ts,a1 = as,71 = T2, hy = hg, p1, p2)
under the alternative. I set the level of significance at 5%, and compute a p-value
with 3 degrees of freedom. The latter is 3 because under H,, the parameter ¢ is

allowed to vary as two independent parts, one in each region, instead of one, thus

5Note that under the null the topology is equivalent to a one-region model. Hence, p; and po
can also be allowed to vary freely without affecting the degrees of freedom. This would not have
any significant effect on the null but would considerably increase computational time.
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increasing the degrees of freedom by one. At the same time, region switch parame-
ters p; and po are also relaxed in order to find the best region for the substitution
(or replacement) rates at each site of the alignment. This relaxation increases the
freedom by a further two degrees.

Let £, be the log-likelihood obtained from the likelihood function under the
null and £, be the log-likelihood obtained under the alternative. It can be shown

that a x? statistic can be constructed as

p=2(Ly— L) ~ X%a=0.05, 3) (3:2)

for each alignment.

Since alignments are made from PIPs which are assumed to be i.i.d. (as I
explained in Section 3.4), a x? statistic can also be constructed over a set ¢ of n
alignments whereby each alignment in the set has ¢ > 0. This condition would
not be satisfied if the optimiser were not able to locate the global maximum for
a particular alignment, as I explained in Chapter 2. In most cases, however, the
two PHMMs in the two-region model shown in Figure 3.6 produce a smooth surface
while maximising the likelihood function. This is due to the nature of the forward
dynamic programs that sum over all possible alignments at each iteration. As a
result of this property, only a few PIPs (if any) result in ¢ < 0 and would need to
be removed from the set (. To test for 3.1 over the set ¢, the x? statistic is now

constructed as

n
Ys = Z wi X?a=0.05, 3n) (3.3)

i=1

where n is the number of alignments that have ¢ > 0.

3.6 Results
3.6.1 Hypotheses Testing — Protein

Table 3.2 shows nine null hypotheses that I have tested against their corre-

sponding alternatives using the two-region model in Figure 3.6, together with (1)
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Test H, H, d.f. n m 735 d.f.s p—values Concy, Concy,
(1) (2) (3) (4 () (8) (7) 8 (9 (10) (11)

1 r1=x2 hi1#h2 3 114 10 390.12 342 3.71x 10~2 0.9085 0.9081

2 T1=T2 t1#t2 3 116 64  1304.99 348 1.30 x 10110 0.9425 0.9437

' (11560.2, 2

8 wm=w2 .0 4 93 18 41796 372 501x10 0.8960  0.8843
hi#hs,

4 hithy tllit; 1 110 78 1179.88 110 124x10-178 00455  0.9497
h1§£h2a

5 t1#t2 t1t 1 102 37 3563.14 102 2.11 x 10—2° 0.9576 0.9658

hl'-,'éth
6 hi#ha  a1#a2, 2 99 29 408.13 198 1.09 x 1016 0.9187 0.9052
T1#72
hi#ha,
a1#az, -31
7 a17#a2, 1 113 40 384.62 113 2.58 x 10 0.9476 0.9548
r1#£r2
r1#T2
tl?étZy
8 t1#£t,  a1#a2, 2 73 4 136.68 146 6.98 x 10~1 0.9544 0.9606
T1#72
t1#t2,
a1#£az, —109
9 a1#az, 1 92 54 776.08 92 8.93 x 10 0.9326 0.9444
T17£T2 ristra

Table 3.2: Table shows results of the nine tests which use the protein data set. Column numbers are shown
in brackets under each title heading. Columns 2 and 3 show the experimental setting under H, and H,,
respectively for each test, where the notation is as described in the text. Column 4 shows the number of
degrees of freedom applicable for each corresponding test. Column 5 shows the number n of alignments that
had ¢ > 0. Column 6 shows the number m of alignments from the corresponding n alignments that were
significant at the 5% level (p-values with d.f. degrees of freedom not shown). Column 7 shows the sum of
¢ (as per 3.3) across the corresponding n alignments. Column 8 is the product of the corresponding d.f.
and n. Column 9 is the p-value computed for the x? distributed statistic ¢x in column 7 with degrees of
freedom equal to d.f.s in column 8. Columns 10 and 11 show the average concordances of the n alignments
with corresponding curated alignments under H, and H,, respectively. (Note that these average concordances
depend also on m. For example, Concy, is different for Tests 1, 2, and 3 because m is different for these three
tests.)

the protein data set and (2) the experimental setting. I described the latter two
in sections 3.4.1 and 3.5, respectively. x, = x; means that, with the exception of
pa = pp = 0.5, all corresponding parameters in regions a and b are restricted to
vary equally in the two regions. A not-equal sign means that the two parameters
indexed a and b, along with p, and py, are allowed to vary freely and independently

in regions a and b, respectively. An important aspect of this table lies in the n
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values of column 5. These vary from 73 in Test 8 to 116 in Test 2. As I mentioned
earlier, the optimiser does not find a global optimum in some cases, and this artifact
required me to trim my sample size at each test. The average trim across the nine
tests was 15.6% which I consider to be reasonable since, throughout my experiments,
(1) I always used the same initial values to reduce computational time, and (2) I
always retained the optimiser "default values" to ensure there was no subjective
manipulation among alignments. Thus, although I had to prune a small number
of alignments in each test, I also ensured that no optimisation bias was introduced
among the remaining alignments.

Tests 1 to 3 show that while all other parameters in region one were set equal
to their corresponding parameters in region two, the hydrophilicity parameter h in
Test 1, the replacement rate parameter ¢ in Test 2, and the indel parameters a and
r in Test 3, contributed to a significantly higher likelihood when allowed to vary
freely and independently in two regions at each test. From these three tests, I make

the following inferences.

Test 1 : More hydrophilic content is present in one part of the molecule than in
another. This is as I had expected because it is known that solvency exists

more abundantly near the surface rather than at the core.

Test 2 : Replacement rates produce a very clear demarcation between slow and
fast rates of replacement along the primary structure of amino acids. This
result was also expected, but the extremely small p-value is notable, providing
strong evidence that the difference between rates of replacements in two regions

of the molecule is unequivocal.

Test 3 : Although the evidence is weak, there is also a significant difference be-
tween the joint effect of indel length and indel rate (i.e. a U r) in one region
and in the other on the likelihood. This difference has not been quantified
in the literature because similar models often omit gaps in the alignments
under study. One exception is ClustalW whereby one of its main assump-
tions is that indels occur more frequently in hydrophilic regions as reported in

PASCARELLA and ARGOS (1992). Even in ClustalW, however, quantification
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is made indirectly and subjectively with the aim of "improving" the alignment

(THOMPSON et al., 1994).

These three tests show that the model components, namely, h, t, and a U r
play a different role in one region of the molecule than they do in another region
of this molecule. They also show that the difference between the two roles is very
strong for ¢ but is somewhat weak for A and for a U r. These weaknesses could be
attributed to the data set consisting of protein BE. What these tests do not show
is whether the two roles are positionally concomitant along the primary structure
of the protein among the three components. For example, I cannot infer whether
a region of component h positionally coincides with a region of component a U r
along the polypeptide.

I designed the remaining tests to investigate collocation among these three
components. I define collocation between any two components, whose parameters
are allowed to vary freely and independently in two regions under the alternative,

to exist if the levels of the estimators for the two components are both high (or both

low) in the same region.

Test 4 : The number n of alignments that have ¢ > 0 decreases when h and ¢ vary
freely and independently in two regions simultaneously. This suggests that
there is some degree of confounding between h and ¢ in the model, making
it harder for the optimiser to find the global maximum. While the optimisa-
tion performance is marginally reduced, however, the number m of significant
alignments increases from 64 to 78. At the same time, p-valuey is much lower
than that obtained in Test 2. This suggests that collocation between ﬁn and
t,, 1 € {1,2}, is most likely.

Test 5 : Again n decreases from 114 to 102, while m increases from just 10 to
37. The latter is a substantial increase, while p-values drops sharply. These
results further confirm that the evidence of collocation is strong. That is,
hydrophilicity and replacement rate need to be modelled together in two regions

in order to test for a potentially better likelihood when using protein BE.
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Test 6 : Collocation also appears to exist between hydrophilicity and indels. Now,
however, n increases from 93 to just 99, providing some indication that these
two components do not seem to be confounded. That is, it is somewhat easier
for the optimiser to find the maximum likelihood when h and a U r vary
freely and independently in two regions simultaneously. Furthermore, p-values
shows that in the presence of hydrophilicity, indels are easily identifiable, with
m increasing from 18 to 29. This is an improvement on the result I obtained in
Test 3 where I allowed a U r to vary freely and independently while restricting
all other components to vary equally in two regions. In Test 3, the evidence

on the basis of the p-valuey was weak.

Test 7 : Similarly, n remains essentially the same, while m increases from just 10
to 40 and p-valueys, drops sharply. The results obtained from Tests 6 and 7 are
consistent with results reported in PASCARELLA and ARGOS (1992) where it

is shown that indels are more likely to be found in solvent regions.

Tests 8 and 9 : In a similar vein, replacement rates and indels varying freely and
independently in two regions are confounded — note the large drop in n from
116 in Test 2 down to 73 in Test 8. There is insufficient evidence here to

suggest that collocation between t and a U r exists.

3.6.2 Replacement Rates in Hydrophilic Regions
In this section I investigate further the hypothesised collocation between hy-

drophilicity and replacement rates. For this purpose I define a new test as follows

H,: z; = x,, versus (3.4)

Hg: by # ha, 81 # ta.

The results from test 3.4 were n = 120, m = 63, and p-values; = 4.39 x 107113 with
d.f.y = 480. Furthermore, I counted the number of times, among the m(= 63)
alignments under H,, the feature of interest, namely, fast replacement rates and
high hydrophilicity are collocated, occurred. For notational convenience, I denote

this feature by ¢,
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Figure 3.12: The graph illustrates a statistical test whereby the null, namely, the population proportion
p = po of PIPs possess a specified quality, is true when p lies between 79% and 92%. The validity rule (i.e.
DEVORE, 1990, p. 308) is applied due to a reduced sample size after testing for significance of the substitution
rate and of the hydrophilicity parameters during pairwise alignment. Type II error against the alternative
hypothesis, namely H,: p = 0.70, is also shown.

The graph in Figure 3.12 illustrates the statistical test concerning the popu-
lation proportion p of protein PIPs that have the feature ¢, ). The null hypothesis
is stated as p,% of PIPs have this feature, and the alternative is stated as The null
s untrue. From a random sample of m = 63 PIPs, X = 56 were found to have the
feature ¢ 1), where X is assumed to have approximately the binomial distribution.
Considering that m is large, both X and p = X/m are also approximately normally
distributed with E(p) = p and o5 = \/p(1 — p)/m. When H, is true, E(p) = Do

05 = \/Po(1 — po)/m, and the test statistic is

p= L Do ~ N(0,1),
Do(1 — po)/m

(i.e. DEVORE, 1990, p. 308). The test is valid only if both mp, and m(1 — p,) are
equal or greater than 5. As can be seen in Figure 3.12, the sample of 63 observations

is not large enough to span the potential range of H, not being rejected. The validity
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rule slightly truncates the right hand side of the range of proportions that can be
hypothesised to be true under the null. Nevertheless, the sample is large enough
to allow me to infer that conditional on the replacement rate and the hydrophilic
content present in the molecule being statistically significant, a very high percentage
of protein sequences — approximately between 80% to 90% - exhibit collocation of
these two components that contribute to evolutionary processes. That is,

under the assumption of regional heterogeneity of substitution rates, high

substitution rates in coding DN A are mostly to be found on the surface

of the molecule which is more amenable to water and furthest from the

core.

Type Il error probabilities, (e.g. DEVORE, 1990, p. 309), after setting the alternative
hypothesis to some reasonable level, say, H,: p = 70%, are also shown in Figure 3.12.
My choice of 70% is conservative. I am safe to assume that if the null turned out to
be untrue, the probability p being as small as 70% is very small, and the probability
p being less that 70% would be even smaller still. Another alterné,tive would be
p greater than 92%, but for the purpose of my investigation, this range is not

interesting.

3.6.3 Indels in Hydrophilic Regions

To investigate collocation between hydrophilicity and indels, I defined the

following test

H,: 21 = zo, Versus (3.5)

Hy: by 75 he, a1 75 G2, T 75 T2.

The results from this test were n = 114, m = 23, and p-values; = 1.16 x 1078
with d.f.s, = 570. That is, the percentage of significant alignments was just 20%,
and this is much lower than that obtained from 3.4, which was just over 50%.
Indels, therefore, are not as heterogeneous as replacement rates. It was interesting,
therefore, to examine indel lengths and indel rates separately.

Among the 23 significant alignments, 20 had the feature ¢ and just 10
had the feature ¢, .. An upper-tailed sign test gave a p-value of 0.00024 for the
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former feature, and 0.7976 for the latter. This means that high indel rates, like high
replacement rates, are collocated with the solvent regions of the molecule, but indel
lengths, whether short or long, are not.

These two results are consistent with two important findings reported in
PASCARELLA and ARGOS (1992), and which I discussed in Section 2.4. The first
was that indel lengths have a tendency to reach equilibrium. That is, the evolution-
ary process of insertions and deletions takes place in a balanced manner, irrespective
of how much evolution had taken place. In the two-region context, this means that
indel lengths would reach saturation whether they are located in regions experienc-
ing slow, or in regions experiencing fast, replacement rates. This property makes it
difficult for the optimiser to distinguish indels in slow regions — core — from indels in
fast regions — solvent — of the pairwise alignment, thus resulting in less alignments
possessing the feature ¢ q).

The second important result in PASCARELLA and ARGOS (1992) was that in-
dels are more tolerated in those regions which are more solvent, that is, indels occur
more often in regions that consist of turn and coil structures. This makes it easier
for the optimiser to distinguish indel rates that are fast in one region from those that
are slow in the other region, resulting in more alignments with the feature ¢ ).

To confirm these two results, 1 defined one last test, namely,

H,: 1 =z9,  versus (3.6)

Hgy: ty # o, a1 # ag, 71 # To.

The results from this test were n = 101, m = 42, and p-valuey;, = 2.10 x 10757 with
d.f.x = 505. Thus, of the 42 significant alignments, 31 had the feature ¢ ), and
just 19 had the feature ¢ o). For the former, a sign test gives a p-value of 0.0014,
and for the latter, a p-value of 0.322. These two results are expected since I had
established that fast replacement rates are collocated with solvency. That is, indel
rates can be expected to behave similarly when observed in fast replacement regions

and in hydrophilic regions of protein sequences.
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3.6.4 Hypotheses Testing — Codon

I repeated the protein experiments using (1) the same data set in codon BE
and (2) replacing the PMB model with the GY94 model — the latter I described in
Section 2.2. In order to reduce the number of degrees of freedom, I set w = 1.0 in the
GY94 model throughout the codon experiments. I explain further on this setting
and deal with w varying freely and independently in two regions in Chapter 4.

The results obtained from the codon alignments are shown in Table 3.3. As in
the protein experiments, all three components, namely, hydrophilicity, substitution
rates, and indels, are significantly different between two regions. Note especially the
zero measures of the p-valuesy in column 9 for izn and for f,,, n € {1,2}. Also, the
significance of the joint effect of 4, and 7, varying freely and independently in two
regions is now clearer. Finally, the transition-transversion rates ratio estimators &,
have no statistical significance, and hence the x parameter will not be considered

further in a two-region context.

3.6.5 Collocations — Codon

Tests of hypotheses on collocation, using the codon data set, are summarised in
Table 3.4. This table shows that with the GY94 model, only the feature ¢ ) comes
out as significant. This can be attributed to the fact that confounding is strong
when using this model, as I mentioned earlier. This model has the disadvantage
of not allowing the optimiser to detect collocation effectively. This point is further
illustrated in Figure 3.13 which shows that the proportion of alignments that have
the feature ¢ ) varies over a range of percentages that are much lower than those
shown in Figure 3.12. Note also that Type II error probabilities, with H,: p = 55%,

rise rapidly as the range approaches the alternative.

3.6.6 Model Dependence
When nesting hypothesis, the codon data set yielded m:n ratios that were
different from those that had been obtained with the protein data set. These ratios,

together with the corresponding p-valuesy (shown in brackets), are summarised in
Table 3.5 both for protein and codon BEs.
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Test H, H, d.f. n m Yx d.f.x p—values Concyg, Concy,
(1) () (3) 4) (58) (6) (M 8 9 (10) (11)

1 z1=y  hi1#hs 3 119 117 8173.09 357  0.00 0.9327 0.9465
2 z1=x2  t17t2 3 119 108 3630.86 357  0.00 0.9283 0.9319
a1#az, —21
3 w=z2 4 103 29 738.04 412  7.88x 10 0.8712 0.8444
4 T1=T2 K1FK2 3 120 3 130.68 360  1.00 0.7341 0.7391
hi#ha,
5  hiths tllit: 1 113 53 97626 113  1.98x 10137  0.9306 0.9487
hl?éhz,
6 t1ts 1ty 1 118 109 5359.65 118  0.00 0.9352 0.9458
h1#ha,
7 hi#hy  a1#ag, 2 94 5 259.53 188 4.24 x 1074 0.7670 0.8932
T1£7T2
al#a2 h’l#th
8 ' ar#az, 1 117 103 6151.61 117 0.00 0.9312 0.9479
T1#7T2
T1#T2
tl?‘ét27
9 ti#ty  a1#a2, 2 98 4 140.01 196  9.99 x 10! 0.8729 0.8837
T1£7T2
tl?ét'h”
al?éa'Zv
10 a1#az, 1 119 104 2769.99 119  0.00 0.9100 0.9315
mi#T2 r1#7T2

Table 3.3: Table shows ten tests using the codon data set and the experimental setting. The notation is the
same as in Table 3.2. Column numbers are shown in brackets under each title heading. w was set to 1.0 in
each test.

Ratios for protein BE increased each time I changed the nested hypothe-
ses. For example, starting with the nested hypothesis Hyesteq: T1 = 22 shown in
columns 2 and 4, I obtained m:n ratios 0.0877 and 0.5517, respectively. Each of
these two ratios increased substantially when I changed the nested hypothesis. The
first ratio increased from 0.0877 to 0.3627 when I changed the nested hypothesis to
Hpestea: t1 # ta (column 3). The second ratio increased from 0.5517 to 0.7091 when
I changed the nested hypothesis to Hyesteq: b1 # he (column 5). For the codon BE,
however, the reverse is true. The two ratios in columns 3 and 5 can be seen to have

decreased; the second one substantially. A similar behaviour was observed when I
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Feature m:g p-value

St,h) 120:83  1.62x107°
G(h,a) 111:35  9.99x107!
S(h,r) 111:62  1.27x107!
S(¢,a) 96:40 9.59x1071!
St,r) 96:43  8.69x1071

Table 3.4: Collocations computed from the codon data set.
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Figure 3.13: Statistical test concerning the population proportion p of protein PIPs that have the feature
G(h,t), using the codon data set. Type II error against the alternative hypothesis, namely Hy: p = 0.55, is also
shown. The validity rule is omitted because m =120 is a large sample and makes the rule unnecessary.

nested hypotheses using indel parameters (summaries not shown).

It is clear that inference drawn on parameters that are allowed to vary freely
and independently in two regions is model dependent. This conclusion is based on
the fact that I have used the same data set, and the same experimental setting,
with each of the two models, namely, PMB and GY94. This model dependency is
explained by the fact that the two models are structurally different as I explained
in Chapter 2. The PMB model is in its great part an empirically derived model,
using BLOSUM matrices, while the GY94 is a mechanistic model. The PMB model

is based on averages that span a wide range of evolutionary distances and therefore
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BE Razhy ot hhg Aty b sty
@ (2) (3) (4) (5)
Protein 0.0877 0.3627 0.5517 0.7091
(3.71x1072)  (2.11x10729)  (1.30x10~10)  (1.24x10~178)
Codon 0.9832 0.9237 0.9076 0.4690
(0.00) (0.00) (0.00) (1.98x107137)

Table 3.5: Table shows m:n ratios obtained from each of the four tests, using protein and codon BEs. Values
in brackets are corresponding p-valuesy,. Column numbers are shown in brackets under each title heading.

it is less sensitive to model parameters. That is, information on evolution which the
model extracts depends more on its own specification and less on parameter values.
This feature makes it easier for the optimiser to find the best likelihood at each

alignment since much of the information is provided a prior:.

3.6.7 Hypotheses Testing — RNA

Table 3.6 shows the results of three hypotheses using the RNA data set. Test
1 shows once more a clear demarcation between slow and fast regions, with 91% of
the alignments showing significance. p-valuey; of these alignments is zero, suggesting

that the distinction between the two rates is unequivocal and essentially ubiquitous.

Test H, H, df. n m 73> d.f.ss p—values Concy, Concgy,
1 1= t1#t2 3 98 90 5085.40 294 0.00 0.9555 0.9639
t1 #t‘lv —4
2 t1#t2 ., 1 87 7 140.23 87 2.62 x 10 0.9721 0.9704
ti#ta, —110
3 r1=2T2 177 4 98 86 5163.10 392 1.30 x 10 0.9543 0.9630

Table 3.6: Table shows three tests using the RNA data set and the experimental setting. The notation is
the same as in Table 3.2.

Test 2 shows that there is confounding between indel rate and substitution
rate when they are allowed to vary freely and independently in two regions simul-
taneously, with n dropping substantially from 98 to 87. Although p-valuesy shows
clearly that indel rates varying freely and independently in two regions are distinct

between the two regions, this distinction is not common among alignments since m
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is just 7. That is, only 8% of the alignments that expressed ¢ > 0 were significant
in this sample of 99 alignments.

In these tests, using the RNA data set, I did not test for the indel length
varying freely and independently in two regions. The previous tests had shown
that there is no evidence of collocation between the substitution rate and the indel
length, and hence I decided to omit testing for whether indel lengths varying freely
and independently in two regions contribute significantly to the likelihood. I also
did not include r; # 79 in H,. The reason for this is that from Test 10 in Table 3.3
it is clearly shown that nesting r; # 73 did not have any effect on the likelihood.
Considering that r and ¢ are multiplied together, or "coupled", in the KM equations,
the impact is derived solely from the substitution rate, and further testing would be
unnecessary.

The purpose of Test 3 was to test for collocation of fast substitution rates with
fast indel rates. Of the 86 significant alignments (m = 86), only 41 had the feature
G(t,r)- A sign test gave a p-value of 0.705, thus showing clearly that the two rates are
not collocated. I conclude, therefore, that collocation seems to be a property solely

of the hydrophilicity component in protein data.

3.6.8 Concordances

For each test in Tables 3.2, 3.3, and 3.6, concordances were computed and
averaged only for the m alignments that were significant at the 5% level. (This
is the reason, for example, Concy, is different for Tests 1, 2, and 3 in Table 3.2.)
Also, for each test, the average concordances were computed twice, that is, under
H, and under H,, each time using corresponding estimators. This regime provided
me with a practical measure of by how much additional parameters varying freely
and independently in two regions may (or may not) improve alignment "quality".
For example, from Tests 1, 5, and 7 in Table 3.2, I can reasonably assume that
allowing component h to vary freely and independently in two regions on its own is
not likely to improve quality (Test 1). However, quality appears to improve in the
presence of component ¢ (Test 5) and in the presence of components a and r (Test
7).
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To compute the concordance of an alignment, the column score (C'S) defined
M

in THOMPSON et al. (1999a) was used. That is, CS = Z C;, where M is the

i=1
number of sites in the test alignment, and C; is 1 if site 4, ¢ = 1,2,..., M, is the

same as the corresponding reference site, else C; is 0. In both Tables 3.2 and 3.3, the
best average concordance occurs when the substitution rate and the hydrophilicity
parameters are optimised simultaneously under the two-region assumption, namely,
Test 5 under H,. Here the average concordance is 95 to 96 %. This is a good
result when compared to what is often reported in the literature. EDGAR (2004),
for example, reported that multiple aligners MUSCLE, MUSCLE-p, T-Coffee, and
ClustalW, all performed at about the 88% mark when benchmarked with BAIiBASE
curated alignments. The disadvantage of these aligners is that they are based on
heuristics. My two-region model, on the other hand, is a dynamic programming
algorithm that constructs the alignment on the basis of ML estimators which, under
regulatory conditions, are asymptotically efficient (e.g. GREENE, 1997, p. 133). The
only limitation of my two-region model lies in the trace-back procedure which selects
a "good" alignment from among many possible good alignments but not necessarily
the "true" alignment.

The true alignment is a random variable, and hence it is also unobservable. For
this reason, concordance measures should be treated only as a guide. All alignments,
including curated alignments such as those stored in BAliBASE, are statistics which
only try to be as close as possible to the true alignment. We cannot know which
of these alignments is the closest to the true alignment. My aim was to build a
model based on maximum likelihood (ML). This approach allowed me to obtain
ML estimators which, given that the biological sequences are long enough, can be
expected to be efficient under the usual regulatory conditions (e.g. GREENE, 1997,
p. 133). This feature is the linchpin of my alignments. I can assume, therefore, that
my pairwise alignments are the best that one can possibly construct given the data.
On the basis of this assumption, I can postulate that when using protein or codon
BEs, a good approach to obtaining the best possible pairwise alignment would be
as follows.

First, model either the substitution rate parameter or the hydrophilicity pa-
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rameter to vary freely and independently in two regions, while each of the other
parameters is forced to vary equally in these two regions. Define this alignment
as the null alignment. Then model both the substitution rate parameter and the
hydrophilicity parameter to vary freely and independently in the two regions simul-
taneously, while each of the other parameters is forced to vary equally in the two
regions. If a likelihood ratio (LR) test shows that this alignment is significantly bet-
ter than the null alignment, then consider this alignment as the "best" alignment
under the two-region assumption.

From Table 3.6, the highest concordance was achieved in Test 2 under H,. It
should not be hard to see that this does not mean that alignments in Test 2 under
H, were the best alignments. What it actually means is that the curated alignments

are further from the "true" alignments than the alignments obtained in Test 2 under
H,.
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CHAPTER 4
Further Results

4.1 Evolutionary Rates Distributions

To investigate the distribution of substitution rates in each region, I plotted
histograms of the slow and fast substitution rates point estimators obtained from

the 108 significant PIPs of the codon experiment under Test 2 in Table 3.3.

Shapiro-Wilk normality test
Number of PIPs = 108

p-value = 0.2419

Figure 4.1: The histogram with ten bins
of the 108 slow substitution rates point
estimators obtained under Test 2 in Ta-
ble 3.3.

PIPs per Bin

o

1 2 3 4 5 6 7 8 9 10
Bins of Slow Rate PIPs

The histogram of slow substitution rates point estimators is shown in Fig-
ure 4.1. This plot reveals that the distribution appears to be normal. A Shapiro-
Wilk test showed that the null hypothesis should be retained, with a p-value of
0.2419. That is, there is evidence to suggest that slow substitution rates point
estimators from my sample of 108 PIPs are normally distributed.

A similar plot (shown in panel 1 of Figure 4.2) of fast substitution rates point
estimators reveals that the distribution is clearly not normal. A Shapiro-Wilk test
now had a p-value of just 0.0138 after taking the natural logs, thus strongly rejecting
the null. This was expected because fast substitution rates estimators were highly
erratic throughout my experiments in Chapter 3. Another observation was that
some of these estimators exceeded the upper limit of 50.0, which I had set arbitrarily

during the experiment.

Panel 1 of Figure 4.2 shows the fourth test of a series of ten tests that I

carried out for fast substitution rates estimators. The results from these ten tests
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Test Trim PIPs p-value

1 50 89 0.0002
2 45 84 0.0018
3 40 82 0.0034
4 35 79 0.0138
5 30 76 0.0723
6 25 72 0.5893
7 20 70 0.9191
8 15 67 0.9345
9 10 63 0.3773
10 5 43 0.0384

Table 4.1: Ten tests for normality of the natural log of fast substitution rates point estimators were carried
out. PIPs were trimmed at each test, eliminating those that had fast substitution rates estimators higher than
the pre-set level shown in column two. p-values were obtained using the Shapiro-Wilk test.

Test4 Test 5
Number of PIPs = 79 Number of PIPs = 76
p-value = 0.0138 p-value =0.0723

PIPs per Bin

n
[eila]

Test 6 Test7
Number of PIPs = 72 Number of PIPs = 70
< p-value = 0.5893 p-value = 0.9191
3
o
4
a
0 ]
30 74 S A AL ]
Test 8 Test9
Number of PiPs = 67 Number of PIPs = 63

p-value = 0.9345 p-value = 0.3773

PIPs per Bin

o

1 2 3 4 5 6 7 8 9 10 i 2 3 4 5 6 7 8 9 10
Bins of Fast Rate PIPs Bins of Fast Rate PIPs

Figure 4.2: Ten tests were carried out to investigate the distribution of fast rates. The six panels show
histograms for those among the ten tests, namely Tests 4 to 9, that had the highest Shapiro-Wilk test statistic
in Table 4.1 with sufficiently high number of PIPs.

are listed in Table 4.1. At each test, I trimmed the PIP data set so that all PIPs
remaining had fast substitution rates estimators that were not greater than a pre-set
level. These pre-set levels are shown in column two of Table 4.1. An inspection of
this table reveals that the p-values obtained from the Shapiro-Wilk statistic increase

substantially under Tests 6 to 9. The corresponding histograms in Figure 4.2 appear
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to take the shape of a lognormal distribution.

The largest p-value is obtained under Test 8. The corresponding panel (the
fifth panel) in Figure 4.2 shows distinctively five bars — starting from the left — de-
creasing monotonically with about one half of the distribution concentrated in the
first two bars. This strongly suggests a lognormal distribution with ¢ =~ 1. At this

largest p-value, the pre-set level was set to 15.0.

Region Distribution 0 &

1 Normal 0.58 0.22
2 Lognormal 142 0.56

Table 4.2: Moments estimators for the Normal (Lognormal) distributions of slow (fast) rates point estimators.
PIPs that had fast rates higher than 15.0 were removed from the final sample.

Considering that my analyses are based on point estimators and not on ob-
served data, I cannot infer what the limiting distributions of slow and fast substi-
tution rates would be. The correlation between the 108 slow and fast estimators is
small, just 0.34, and a tentative conclusion would be that the two distributions are
independent (or weakly dependent), and normal (lognormal) for slow (fast) rates. On
the basis of my sample, these distributions have first and second moments estimated
as shown in Table 4.2, after removing PIPs that had fast rates higher than 15.0.
This is because I consider rates that are higher than this level to be non-informative,

that is, they are artifacts of the optimiser searching along a flat surface.

4.2 Optimising w in the Two-Region Model

During the initial development of my two-region model I discovered that chang-
ing the w parameter in the GY94 substitution model along with the substitution
rate parameter ¢, was leading to unexpectedly high estimators for w. This compelled
me to fix w to 1.0 throughout the experiments that were based on the codon data
set.

In hindsight, it is not hard to see that the w estimator can be expected to have
a distribution which is very different from that of the ¢ estimator. The parameters
w and t were designed to deal with two very different evolutionary processes. I also

suspected that these two processes are highly interdependent. Unlike the parameters

87



in the KM equations, I had no theory that could enable me to relate w with ¢ in
my likelihood function. For this reason, it was meaningless to allow for these two
parameters to vary together during the optimisation of this function.

MURPHY and TOPEL (1985) describe two-step estimation procedures that can
overcome this type of problem. One of these procedures allows for both the auxiliary
and the second-step models to be estimated by maximum likelihood. They propose
that the marginal distributions of the two random vectors y; and ys (or, in my case,
the two random alignments A; and A, respectively) can be stated as Fi(y;;01)
and F3(yo;61,02), where 0; and 6, are to be estimated from the data. Under this

formulation, the two-step procedure to maximise 2.23 can be stated as follows:

N Bl = =
Step One OL1(Ar; Bl — L05u%) o ()
n=1
N A
Step Two Z 6£2(A2n,gu,)w|81, S2) _ 0. (4.2)
n=1

In 4.1, I fix w of the GY94 substitution model to 1.0, and hence w is considered not
to be part of the parameter set. In 4.2, w is allowed to vary either in a one-region
(the null) or in a two-region (the alternative) setting, with other parameters held
fixed at their corresponding estimated levels computed in Step One.

Under the usual regulatory conditions, the Step One maximum likelihood ]
is consistent (e.g. MURPHY and TOPEL, 1985, p. 377). It can also be shown that
maximising %Eﬁg(Agn; é,d)) with respect to w is asymptotically equivalent to
maximising + Y Lo(Aszn; 6*,&), where 6* is the vector of ML estimators obtained
from Step One and is held fixed during optimisation in Step Two. Asymptotically,
therefore, @ is also consistent. By "asymptotically" here I mean that if the two
sequences S; and S; of PIP;, j =1,2,...,108 (under Test 2 in Table 3.3), are long

enough, I can assume that @ is consistent without any adverse effect on inference.
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4.2.1 Two-Step Estimation of w

To implement the two-step estimation procedure for estimating w, I re-used
the 108 alignments that I had obtained from Test 2 under H, in Table 3.3. ML esti-
mators from each of these alignments constitute the vector 6 for 4.1 of Tests 1 and 2
shown in Table 4.3. To carry out Step Two estimations, alignments were first re-
estimated under Test 1, where w was allowed to vary under H, but was kept equal
across the two regions. Alignments were then re-estimated again under Test 2 where
w was now allowed to vary freely and independently between the two regions un-
der H,. Under Test 1, 78 alignments were significant at the 5% level, whereby
p-values were computed with one degree of freedom. Under Test 2, 76 alignments
were significant at the 5% level, whereby p-values were computed with three degrees

of freedom. These results are summarised in Table 4.3.

Test H, H, df. n m 3> dofss p—wvalues
1 wi=ws=1.0 wi=ws 1 80 78 10870.0 80 0.00
2 w1=wsy w1Fwa 3 78 76 4564.7 234 0.00

Table 4.3: Results from Step T'wo estimations of w. From the 108 alignments (that were obtained under H,
of Test 2 in Table 3.3), 80 expressed a x? statistic greater than zero under Test 1 of the table above. p-values
were computed with one degree of freedom, and 78 of these were significant at the 5% level. Under Test 2, all
of the remaining 78 alignments expressed a x2 statistic greater than zero, p-values were computed with three
degrees of freedom, and 76 of these were significant at the 5% level.

This shows that in 76 alignments, out of 120 alignments of my codon sample,
the natural selection parameter w played a statistically significant role in the slow
and fast rate regions. Of these 76 alignments, only two expressed an w estimator
with a level higher than 1.0, and both were located in the fast rate region, as shown
in Table 4.4. In both alignments, the fast substitution rate point estimator reached
the upper limit of 50.0 which I had pre-set during the experiment. AsIhad stated in
Section 4.1, this high level is an artifact of the optimiser, and the actual substitution
rate can be considered to be about 15.0.

In both alignments that had ws > 1.0, the level of the estimator was only
slightly higher than one, while all other w estimators in the 76 alignments were

mostly very small, the highest level being just 0.4. It would be tempting to suggest,
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Aln t1 t2 w1 w2

88 0.6299 50.0 0.0517 1.1986

117 0.9700 50.0 0.0877 1.1000

Table 4.4: Two alignments expressed w2 > 1.0 following a two-step estimation.

therefore, that positive selection was detected under weak selection in two cases.
Whether these are true positives, however, is not the central issue here. My main
aim in this experiment was to determine, for reasons I explained at the start of this
section, whether w could be estimated separately from all other parameters, using a
two-step estimation approach. In addition, I wanted to ascertain whether w varying
freely and independently in two regions under H, would increase the likelihood by
a significant amount, hence showing that selection can be detected in a two-region
context. My results here show that under the assumptions of the GY94 model at
least, w does play a significant role in this setting.

Admittedly, the GY94 is a purely mechanistic model (KosioL et al., 2007),
in the same way the PMB is a purely empirical model as I illustrated in Chapter 2.
The w parameter in the GY94 model is interpreted strictly as a rate ratio. That
is, it represents the absolute nonsynonymous-synonymous rate ratio (KosIoL et al.,
2007). What I would need to do to obtain better inference on selection (if any)
— present in PIPs randomly drawn from BAIIBASE - is to adopt the approach
of KoSIOL et al. (2007), whereby w would measure the relative rather than the
absolute strength of selection. In this approach, I would then need to estimate the
average level of selection strength which is implicit in BAIIBASE and use this as
the reference, (i.e. the expectation of w under neutral selection).

Thus, the new w would be the ratio %’z’;/g%’)—), where F is the expectation
operator. The expectations are as derived in NEI and GOJOBORI (1986), and py
and pg are computed as in GOLDMAN and YANG (1994). In the latter case, however,

(KHGOT)

g;j, which I denote as Q;

i , would now be specified as follows
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0 if 2 or j is a stop codon
Q(KHGW =< symik(i,j)  if 4 — j is a synonymous change (4.3)

8i;mik(4, j)w if ¢ — j is a nonsynonymous change

(KosioL et al., 2007), where s;; would be exchangeabilities estimated from multiple
alignments stored in BAIIBASE, and «(%, j) is now a function of the number of nu-
cleotide changes as defined in (KOSIOL et al., 2007). That is, transition-transversion
bias is now modelled by several parameters to allow for double and triple nucleotide

changes. This makes Q(KHGW)

a context dependent instantaneous rate matrix that
can model biological mechanisms involving changes in 2 and 3 neighbouring nu-
cleotides. The construction of Q(KHGO7) using BAIIBASE data, together with re-

estimation of my sample, could be part of future work using my two-region model.

4.3 Indel Analyses

In Appendix B.3, I summarise the scheme of PASCARELLA and ARGOS (1992).

I shall use this summary for my analyses in this section.

4.3.1 Regional Indel Averages

From my results using the codon sample, I obtained ¢(f1) = 0, #(F2) = 9.30,
7F1) = 0, and 7(F2) = 0.00327, where R; and R, represent portions of alignments
that belong to slow and fast substitution rates, respectively. These measurements
reflect the fact that indels in my codon alignments under Test 2 in Table 3.3 are
concentrated in fast rate regions as I had expected. Furthermore, I applied the
scheme strictly, whereby I discarded indels which overlapped the two regions. I also
discarded alignments that did not yield at least one indel. To ensure that my regime
was very strict, I applied a standard Runs test on each alignment to confirm that
the regions’ pattern was not random. This to allow for the fact that the trace-back
procedure does not guarantee the true alignment, as I had explained in Section

2.5.3.1.

In all, I had remaining in my final sample 72 alignments that were interesting.

91



Between them they had a total of 25,070 aligned sites. Among aligned sites that
were in fast rate regions, I had a total of 82 indels to work with. The two averages,
namely, £F2) = 9.30 and 7%2) = 0.00327 are based on these 82 indels in my final
sample. The corresponding two averages of point estimators obtained across the 120
alignments were Gqouprps = 0.3819 and 7qprps = 0.00159.

The first statistic, namely, daup1ps means that the probability of no indels in
an alignment is 0.62, while the probability of an indel of length one is 0.24. This
is reasonable since several alignments did not have indels, while several others had
indels one-gap long. Therefore, dq;prps compares reasonably well with £(72) since
the lattar is measured only in the fast rate regions of the remaining 72 alignments
that passed all the criteria. In a similar vein, Faiprps Was measured across the entire
alignment of each of the 120 PIPs, while 7#(#2) is now measured across the fast rate
regions only. In total, fast rate regions can be considered to be, overall, about half
the length of each alignment. On average, therefore, indels are likely (1) to be about
nine times longer, and (2) to have twice the rate, in fast rate regions than when

measured across the entire length of the alignment.

4.3.2 Regional Codon Preference

Using B.10 and B.11, T computed the preference index p and the corresponding
standard deviation for each codon in the 72 alignments, and listed these in Table C.1.
I then sorted this table by p.

What becomes clear is that among the top 12 of the 61 codons in this table,
only half code for hydrophilic amino acids. This is contrary to what was reported by
PASCARELLA and ARGOS (1992). In their study using polypeptides, amino acids
that flanked indels were mostly hydrophilic, and the authors found that hydrophilic
residues are target points for indels. In my pairwise alignments using codon data,
however, codons flanked indels randomly between codons that code for hydrophilic
amino acids and those that do not.

The disparity could be attributed to the fact that PASCARELLA and ARGOS
(1992) used data that consisted of tertiary structures. It appears that the prefer-

ential positioning of residues flanking indels in a 3-dimensional folding topology is
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different from the preferential positioning of codons flanking indels in primary struc-
tures within fast rate regions. This unless bias was introduced when alignments were

manually curated using tertiary structure as a guide.

4.3.3 Regional Codon Usage

To investigate codon usage as opposed to codon preference, I measured the
frequency of each codon (and of gaps) in slow and fast rate regions of each of the
72 alignments. The results are tabulated in Table C.2 which is sorted by slow--fast
in the fifth column.

Codons that are used most in fast rate regions have a smaller slow:fast ratio,
and hence are located further up this table. The interesting result here is that the
top twelve positions, bar just one, are occupied by codons that code either for Serine
or for Arginine. Neither of these two amino acids are in the top twelve positions of
Table C.1.

It is clear from this result that there is a demarcation between codons that
are conducive to fast substitutions and codons that have a tendency for flanking
positions. Although fast substitutions and indels are mostly located in the same

region, their chemical agents are mutually exclusive.
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CHAPTER 5

Detecting Pyrosequencing Errors

5.1 Real-Time Sequencing

To investigate the possibility of a single base mutation in the HIV-1 pol gene,
NYREN et al. (1993) performed a novel piece of DNA sequencing that required nei-
ther electrophoresis nor any radioactive materials. This pioneering procedure, called
the ELIDA, consisted of a series of steps. Each step required only an enzymatic re-

action, as illustrated in Figure 5.1, to complete a one nucleotide assaying process.

5.1.1 The ELIDA Concept

Step  Enzymatic Reaction

1 (DNA), + dNTp-2NA Fovmersse  p N A)ps1 + PPi
2 PPi + Aps2IZ Fobymerse ,pp 4 502-
N Luciferase .
3 ATP + luciferin + O3 AMP + PPi + oxyluciferin + CO2 + hv

Figure 5.1: The diagram shows Nyrén’s method of minisequencing, requiring just three enzymatic reactions
and without the need for labels or electrophoresis. The three steps are reproduced from NYREN et al. (1993).
Together they form the ELIDA.

The procedure can be described as follows. A single strand DNA template is
first prepared, and then incubated with the necessary enzymes. Each of the four
dNTPs, (deoxynucleoside triphosphates which target one of A,C, G, and T during
the sequencing elongation), is added sequentially. With each addition, incorpora-
tion, if any, takes place by the catalysis of the DNA polymerase enzyme and the
current dANTP. If the next base in the template is the complement to the current
dNTP, an incorporation "event" is said to occur, resulting in the release of PPi
(inorganic pyrophosphate). The quantity released is measured accurately, as this
translates to a count on how many homopolymer bases have been incorporated

during the current addition.
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Accurate measurement is provided by the catalysis of the ATP sulfurylase
enzyme and the APS (adenosine-5-phosphosulphate). This reaction produces the
ATP (adenosine-5'-triphosphate) substrate for the next reaction between the lu-
ciferase enzyme and luciferin, yielding the byproduct oxyluciferin. Detection of
light generated by these reactions is by a luminometer whose peak is recorded by a
potentiometer, and translated to a direct count of the homopolymer bases added.
Thus, the homopolymer length is resolved — one or more bases — at the current

incorporation, if any.

Flush the immobilised DNA
before each nucleotide addition.

Flush Sequential addition
switching. of the four different dNTPs.
4 ELIDA
Signalling Nucleotide
cycle completion. incorporation count.

Figure 5.2: The ELIDA was automated to process DNA sequencing in real-time. The illustration is based
on RONAGHI et al. (1996).

The method of DNA sequencing using an enzymatic luminometric inorganic
pyrophosphate detection assay (ELIDA) was first employed by NYREN (1987) for
reading a single DNA letter of interest. This method was suitable only for exper-
imental purposes where bases had to be detected one at a time. RONAGHI et al.
(1996) later worked on how the ELIDA could be enhanced, using a cyclical incubation-
flush process. This led to the system illustrated in Figure 5.2.
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Here, in effect, was the introduction of DNA sequencing in real time. This
new technology was developed by Pyrosequencing AB in Uppsala, Sweden. This
company was renamed Biotage, and in 2003 licensed the technology to 454 Life

Sciences Corporation which is a subsidiary of CuraGen Corporation.

5.2 Massively Parallel Pyrosequencing

In less than twenty years after the introduction of the ELIDA by Nyrén, real-
time DNA sequencing was to make the next leap forward following the work of
MARGULIES et al. (2005).

In summary, the genome is first broken down into random fragments. Each
fragment is captured in a separate bead, where it is cloned and amplified within an
emulsion, and is turned into a template. Sequencing of templates is then performed
by syntheses simultaneously in open wells of a fibre-optic slide. A slide typically
contains 1 to 2 million wells, each well housing a template. The slide, in turn, is
housed inside a flow chamber, with wells resting in a vertical position.

A second fibre-optic element makes contact with individual wells at the base,
and this element channels photons to a sensor. Reagents flow by convection through
wells inside which ELIDA like eniymatic reactions occur in parallel. This leads to
base extensions — where the length of the homopolymer incorporated is proportional
to quanta released by corresponding photons — on templates, with a very large econ-
omy of scale (a system now commonly termed massively parallel pyrosequencing).
Following each extension, residue nucleotides are thoroughly flushed by means of
the enzyme apyrase to ensure that prior nucleotides do not remain in wells before
the next nucleotide is introduced.

Massively parallel pyrosequencing was developed by 454 Life Sciences and is
marketed by Roche Diagnostics. Their introductory machine, the Roche GS 20,
could generate reads of approximately 100 bps in length and at a rate of 25 x 10°
bps per one four-hour run. Their latest machine which is being marketed presently,
namely, the Roche GS FLX, can generate reads of between 200 and 300 bps in length
and at a rate of 50 x 10° bps per one four-hour run. This means, for example, that

with the FLX, operators can sequence the Human Genome over a ten-day continuous
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active time consisting of 24-hour runs at 300 x 108 bps per run. In October 2008,
Roche Diagnostics released the Genome Sequencer FLX Titanium Series reagents,
which enable 1 million reads at 400 base pairs in length to be produced.

Over the next few years, 3"¢ generation sequencing systems by Roche, Illumina,
Applied BioSystems, and by other contenders who are expected to enter the market
as early as 2010, are poised to challenge the scientific community and their funding
agents. These systems will be based on the single-molecule analysis technology, and
are being developed by VisiGen and Helicos (SCHUSTER, 2008).

In the face of these rapid advances, together with cost reductions, it is clear
that there will be the need to develop DNA data modelling that can deal with this
large data availability in a fast, éffective, and practical way without compromising
the mathematical structure around which this modelling is built. In the following
section, I deal briefly with a specific inherent problem of pyrosequencing that has
been acknowledged in many parts of the literature — for example, MARGULIES et al.
(2005), MEYER et al. (2008), and SCHUSTER (2008).

5.3 The Homopolymer Problem

When operating the Roche GS 20, a chain of responses occurs with each in-
corporation inside wells. A chain starts with the release of inorganic pyrophosphate.
This release produces quanta which translate to signal intensities that have to be
separated from noise and then normalised. Signal levels following normalisation are
equimolar to the number of nucleotide repeats that form a homopolymer, up to a
length of eight bases. However, due to the physics inherent in the technology, this
linearity property is not guaranteed, and the true length of the homopolymer may
not always be accurately resolved, resulting in inadvertent overshooting (inserts) or
incomplete extensions (deletes). MARGULIES et al. (2005) provide details on this
homopolymer effect.

HUSE et al. (2007) conducted a study on error rates generated by Roche GS
20 pyrosequencing. 340,150 reads were generated using a PCR amplicon library
prepared from 43 reference templates. Each of these templates contained a dis-

tinct ribosomal RNA gene — which included the V6 hyper-variable region — from a
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collection of 43 divergent bacteria. The inclusion of the V6 region was important
because it contains homopolymers which are neither long nor frequent. Overall, the
percentages of homopolymers in these reference sequences were composed of 45%
and 55% of A/T and C/G, respectively.

The authors constructed a separate multiple alignment for each read against
the 43 reference sequences. This enabled them to identify the reference sequence
that had the best mapping with the corresponding read, thus forming a sequence
pair, namely, the test sequence and its reference. To compute error rates for each
pair, they used the Needleman-Wunsch algorithm with optimised settings of gap
opening penalty of 5.75 and of gap extension penalty of 2.75.

From a total of 32,801,420 bases in their data set of 340,150 pairs, 159,981
bases were miscalled — a total error rate of 4.877 x 1072, A portion of this error
rate was attributed to the homopolymer effect, with overshooting being the most
prominent, having a net error rate of 1.756 x 1073 due to inserts of one or more
bases. A high percentage of 86% of the reads contained no errors, and those reads

which between them constituted 50% of all errors all expressed a percentage identity
of less than 95%.

5.3.1 The Homopolymer Effect — Experimental Setting

Here I describe how I have tested for the presence (or absence) of the ho-
mopolymer effect that results in an overshoot of exactly one base, namely, monoin-
serts. HUSE et al. (2007) reported monoinserts due to the homopolymer effect to be
the most common among homopolymer inserts in sequences that had been produced

from the same sequencer run.

5.3.1.1 The Experimental Data Set

I randomly sampled pyrosequenced reads from the data set of HUSE et al.
(2007) which consists of 340,150 reads. I aligned each of these reads on the fly with
each of the 43 cognate reference sequences, using ClustalW and its standard in-
build DNA evolutionary model. I retained the first 100 of these pairwise alignments
that had a percentage identity of between 0.75 and 0.96, and discarded the rest.

I converted these alignments to corresponding 100 non-gapped sequence pairs to
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produce my experimental data set. In each pair, I made the first sequence to be the

pyrosequenced read and the second sequence to be the cognate DNA reference.

5.3.1.2 The Three-Region Model

To re-align the 100 pairs in my experimental data set, I constructed a three
region model which consists of three PHMMs conjoined by one silent state, as shown
in Figure 5.3. This construction is similar to that shown in Figure 2.5, except
that now I have added a third PHMM. To each I assigned the parameter vector
(an, By Ons €4, V), M € {1,2,3}, and constructed the initial 10 x 10 transition matrix

(not shown) similar to that shown in Figure 3.2.

(011, B, 01, €1, ’)’1)

(043, B3, 03, €3, ’73)

(a2a ﬁ?) 52) €2, '72)

Figure 5.3: The threeregion model has three PHMMSs, each having the parameter vector
(on, By Ons €051m), m € {1, 2,3}, and they are conjoined by one silent state & in a similar way as in Figure 2.5.
This conceptual topology forms the lower layer of the three-region model.

After applying the Knudsen-Miyamoto (KM) equations to each of the three
PHMMs, factoring out the transition probabilities associated with the silent state,

and adding a second HMM layer that has three emitting states, the topology is

99



enhanced to a two-tiered HMM-PHMM model as shown in Figure 5.4. Each of the
three emitting states of the upper HMM layer emits one of the three PHMMs in
the lower layer with probability 1 — p,, 7 € {1,2,3}. Each PHMM is parametrised
with the KM parameter vector (t,, a,, ), n € {1,2,3} where, as in Section 2.5,
ty, ay, and r, capture the substitution rate, the indel length, and the indel rate,

respectively, in region 7.

I—p

Evolution

Non-Monoinserts

(t2) ag, 7‘2)

Figure 5.4: The Knudsen-Miyamoto (KM) equations listed in Section 2.5 are applied in order to derive
the parameter vector (ty, an,ry,pn),n € {1,2,3}, for each PHMM,. PHMM; is designed to model indels
which are due to evolutionary processes. PHM M3 is designed to model monoinserts which are due to the
homopolymer effect. PHM M3 is designed to model all other homopolymer effects. For region one, the
probability of modelling in region one is 1 — p;1, and the probability of leaving region one in order to model in
either of the other two regions is %pl; and similarly for regions two and three. The begin B and end € states
are not shown.

With a two-tiered three-region topology, my aim was to model (1) evolutionary
processes with the PHMM in region one, (2) monoinserts with the PHMM in region
two, and (3) everything else with the PHMM in region three. The idea here is that
during the pairwise alignment of a pyrosequenced read and its cognate DNA, the

model would remain mostly in region one. However, it would not be unreasonable
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to expect that upon encountering a machine error, the model would switch to either
region two if it encounters a machine error consisting of a monoinsert or region three

if the machine error is otherwise.

5.3.1.3 Second Order Markov Chain
In designing the emission matrices for the three-region model, my aim was to
spatially target monoinsert patterns — in the pairwise alignments — made of adenine,

cytosine, guanine, or thymine, as illustrated in the following table:

Base Pattern 1  Pattern 2

A A
Adenine A - /:\ 2
. ccC ccC
Cytosine c . Cc
Guani GG ag ’
uanine G .G
Thymine l 1_- T $

where the single gap due to the homopolymer effect, if present, is always located in
the second sequence as a result of the corresponding monoinsert in the first sequence.
To achieve "monoinsert targeting", I employed a second order Markov chain for the
construction of the emission matrices Ep,,, in 2.20, Ex, , in 2.21, and EBy,,, in

2.22. For this purpose I needed an alphabet with 16 symbols which are
AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, TT.

To construct the evolutionary rate matrix P(t) for this alphabet, I also needed a
16 x 16 instantaneous rate matrix ). Hence I put a 16 x 16 Jukes-Cantor substi-
tution model R and the vector of uniformly distributed background probabilities ¢

into equation 2.5, giving (to three decimal places)
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AL AC AG AT ca cc CG cT GA GC GG GT TA TC TG TT
a [ -1 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067
AC 0.067 -1 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067
AG 0.067 0.067 -1 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067
AT 0.067 0.067 0.067 -1 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067
CA 0.067 0.067 0.067 0.067 -1 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067
cC 0.067 0.067 0.067 0.067 0.067 -1 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067
CG 0.067 0.067 0.067 0.067 0.067 0.067 -1 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067
0.067 0.067 0.067 0.067 0.067 0.067 0.067 -1 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067
0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 -1 0.067 0.067 0.067 0.067 0.067 0.067 0.067 Y
0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 -1 0.067 0.067 0.067 0.067 0.067 0.067
0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 -1 0.067 0.067 0.067 0.067 0.067
0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 -1 0.067 0.067 0.067 0.067
TA 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 -1 0.067 0.067 0.067
TC 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 -1 0.067 0.067
TG 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 -1 0.067
T 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 0.067 -1

588¢g3

before computing the exponentiation P(t) = €9 and substituting into equations
2.20, 2.21, and 2.22.

This choice of R and q were suitable for the purpose of this experiment where
my aim was not to tease out features of evolutionary processes as in Chapters 3
and 4 but to "target" nucleotide patterns in the DNA pairwise alignment caused
by machine and not by evolution. Obviously, evolutionary processes were not in-
teresting in this setting, and hence it was justifiable to provide a level playing field
to the four nucleotides. My interest here was in how well my model specification
could differentiate between naturally occurring indels in the pairwise alignment and
monoinserts in the first sequence. This experiment was, essentially, about pattern
recognition using an HMM technique whereby everything was to be averaged except

for the pattern of interest.

5.3.1.4 Emission Probabilities of Monoinserts

The method I use to code the DNA sequences emission matrices W and Z in
equations 2.20, 2.21, and 2.22 is illustrated in Figure 5.5. Recall that matrix W
codes the first sequence of the pairwise alignment while matrix Z codes the second
sequence. For illustration purposes, I shall use a short fictitious sequence, namely,
AGAACGTTAC, to represent the first sequence of a typical DNA sequence pair in my
data set. Hence, the matrices shown in Figure 5.5 are all designated W, and I
have three of these matrices; one for each PHMM in my three-region model. (The
illustration also applies to the second sequence except that the resulting matrices
would be designated Z.)

Each of the 10 letters in this sequence serves as a column heading in each of
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the three sequence emission matrices shown in Figure 5.5. Similarly, each of the 16

emission symbols in the alphabet of the second order Markov chain serves as a row

heading in each of these three sequence emission matrices.

A
AA T 0.0625
AC | 0.0625
AG | 0.0625
AT | 0.0625
cA | 0.0625
cc | 0.0625
CcG | 0.0625
Weo = CT | 0.0625
Regionl = GA | 0.0625
GC | 0.0625
GG | 0.0625
GT | 0.0625
TA | 0.0625
TC | 0.0625
TG | 0.0625
TT | 0.0625

A
AA [ 0.0625

AC | 0.0625

AG | 0.0625

AT | 0.0625

CA | 0.0625

cc | 0.0625

cG | 0.0625

Wos = CT | 0.0625
Region2 = GA | 0.0625
GC | 0.0625

GG | 0.0625

GT | 0.0625

TA | 0.0625

TC | 0.0625

TG | 0.0625
{o.oezs

A
AA [ 0.0625
AC | 0.0625
AG | 0.0625
AT | 0.0625
CA | 0.0625
CC | 0.0625
CG | 0.0625
Weee s = CT | 0.0625
Regions = GA | 0.0625
GC | 0.0625
GG | 0.0625
GT | 0.0625
TA | 0.0625
TC | 0.0625
TG | 0.0625
TT | 0.0625
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Figure 5.5: A second order Markov process is used to code the three sequence emission matrices shown
here for the fictitious sequence AGAACGTTAC. The first matrix is designed to spatially capture evolutionary
processes, the second matrix is designed to spatially capture errors due to homopolymer effects with exactly
one insertion, and the third matrix is designed to spatially capture all other machine errors. Each design is
coded by assigning probabilities at two letters at a time in each row, as explained in the text.

In each of the three matrices, the first column probabilities are always uni-
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formly distributed because this column by itself cannot differentiate two contiguous
nucleotides from other nucleotides, as the succeeding columns do. The first matrix
is assigned to region one, and is designed to spatially model processes due solely to
evolution. Hence, every column — following the first column — in this matrix is as-
signed a 1 at the position corresponding to the current and the preceding nucleotide,
while all other positions are assigned a 0. For example, in the second column whose
heading is GG, and whose preceding heading is A, is assigned a probability 1 at the
row with heading AG, while all other positions in this second column are assigned
probability 0.

The second matrix is assigned to region two, and is designed to spatially model
monoinserts that are due solely to the homopolymer effect that results in exactly
one insertion. This is achieved by differentiating contiguous like nucleotides, two at
a time, from all other nucleotides. Hence, if the current heading is different from the
preceding heading, probabilities in the current column are uniformly distributed. If,
on the other hand, the two were the same, a probability 1 is then assigned at the
position whose row heading is the same as these two contiguous like nucleotides.
For example, heading of the second column is different from the preceding column
heading, and hence this column has uniformly distributed probabilities. So does the
third column. The fourth column, however, has A as the heading which is the same
as the preceding heading. Hence, probability 1 is assigned to this column at the
position whose row heading is AA, and 0 in all other positions.

The third matrix is assigned to region three, and is designed to spatially model
all other machine errors which are not modelled by the second matrix. In fact, this
matrix is the "contrast" of the second matrix, that is, it operates in exactly the
opposite way of the second matrix. Thus, for example, because the heading of the
second column of the third matrix is different from the preceding column heading,
this column is now assigned probability 1 at the position where the row heading
is AG, and probability O in all other positions. Similarly, the third column has
probability 1 assigned at the position where the row heading is GA since the heading
of this column is A and the heading of the preceding column is G. However, the

probabilities of the fourth column are now uniformly distributed since the heading
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of this column and the heading of the preceding column are the same. In this
way, each two contiguous sites of the alignment, whose alignment is neither due to
evolutionary processes nor due to the homopolymer effect with exactly one insertion,
will be spatially modelled by this matrix.

Owing to their specific formulation, these three matrices produce three differ-
ent sets of emission probabilities, that is, one set for each region in a three-region
model. Each region also has its own 3 x 3 transition matrix as in the two-region
model. That is, states M, X, and Y in each of the three regions still follow a first
order Markov process. However, to switch between three regions, now I needed a
3 x 3 region switching matrix as shown in Figure 5.7. This matrix has three switch-
ing parameters, namely, p;, p2, and p3. Each of these allows the model to exit the
current region and to enter one of the other two regions with equal probability, as
shown in Figure 5.7. Under this regime, I would expect that single gaps that are
due to the homopolymer effect with exactly one insertion will be best predicted, on
average, by pp. This is because the set of emission probabilities of region two will
spatially "target" those nucleotides that yield these gaps when these are present
since each of these gaps in the second sequence corresponds to two like contiguous
nucleotides in the first sequence. The converse applies to ps, while p; would keep
the model in region one at those sites which are aligned according to evolutionary

processes and not due to machine errors.

5.3.2 The Homopolymer Effect — Hypothesis Testing

To carry out a test for each pairwise alignment, I defined H, and H, as shown
below. That is, under the null, there are no sequencing errors in the pairwise
alignment that are due to the homopolymer effect with exactly one insertion. Hence
the model is equivalent to a two-region model under the null, namely, the region
of evolutionary processes and the region of sequencing errors. I needed to test this
hypothesis against the alternative hypothesis, namely, the null is untrue. That is, the
pairwise alignment has gaps in the second sequence that are due to the homopolymer
effect with exactly one insertion. Under the alternative, therefore, the model has

three regions.
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The hypotheses are

H, : x1 # 13 = 23, p1 # p2 = p3, versus

H, :t1 # ty =13, a1 # ax # a3, "1 # T2 # T3, p1 # P2 F P3.

where the subscripts refer to the region number. z, means all the parameters in
region 1, n € {1,2,3}, while ¢, a, and r are the substitution rate, the indel length
and the indel rate parameters, respectively, as in Chapter 3.

Under the null, region one models evolutionary processes with its own set
of parameters. At the same time, parameters in region two and corresponding
parameters in region three are forced to be equal. This means that regions two
and three are equivalent to one region with its own set of parameters and models
all types of errors with the same expectation since it assumes that there are no
significant monoinserts.

Under the alternative, region one retains the same set of parameters, and again
models evolutionary processes independently from regions two and three. However,
all parameters, except the substitution rate parameters, are now relaxed under the
alternative in regions two and three. These two regions, between them, model the
same substitution rate (which is assumed to be the same among all types of errors
due to machine). Thus, the only differentiating factor between regions two and
three are the monoinserts — captured in region two, but not in region three — and
all other pyrosequencing errors that are not interesting and which are captured in
region three but not in region two.

With three regions and several parameters, and considering that reads are
only about 100 nucleotides long, I expected this test to have low power, and hence
I set the level of significance at 10% a priori. Three regions were necessary for this
experiment because there are three distinct types of indels which the optimiser was
required to differentiate from each other, namely, indel processes due to evolution
(region 1), indel processes due to monoinserts (region 2), and indel processes due to

sequencing errors caused by all other machine artifacts (region 3).
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5.3.3 The Homopolymer Effect — Results

Before studying the results obtained from the homopolymer experiment, I
briefly revise the meaning of the indel length parameter a and of the region switch
parameter p.

Figure 5.6 illustrates how a very small value of a, say 0.01, would mean that
the corresponding region would allow, in all probability, indels that are at most one
gap in length. At the other end of the scale, a large value of a, say 0.75, would mean
that indels in this region are unlikely to be of the same length, and that their exact
length would be harder for the trace-back procedure to resolve accurately. In each
case, however, whether an indel would occur would still be determined solely by the
indel rate parameter r of that region.

Figure 5.7 shows the three switching parameters of the three-region model that
I used for this experiment. These parameters determine the transition probabilities
of the three-state HMM that assigns regions to sites. One point to note here is that
a large value of p belonging to a region would mean that the three-region model is
spending very little time in that region. Another important point is that p values
are independent from each other in the sense that they do not necessarily add to
one. For example, one p value does not increase directly at the expense of any of
the other two.

Each panel in Appendix D shows three pairwise alignments. The first is con-
structed by the trace-back procedure under the null and the second under the alter-
native. The third alignment is produced by ClustalW. The first sequence in these
alignments is always the pyrosequenced read while the second is the cognate ref-
erence sequence. This means that only homopolymer patterns with a single gap
in the second sequence are of interest in this experiment since I am restricting my

investigation to homopolymer inserts (in the first sequence) of exactly one base.

The first thing to notice in these panels is that ClustalW alignments are always
the longest, while alignments under H, are always the shortest. This shows that the
three-region model is very economical in gap insertions, and considering that these
sequence pairs have a high percentage identity, this behaviour was expected. The

reason for the longer alignments of ClustalW could be attributed to the fact that I
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Figure 5.6: The plots show different responses to corresponding values of the parameter {a : 0 < a < 1}
using P(Indel Length = n gaps) = (1 — a)a™!. In the first panel, it is shown that a very low level of the
estimator @ would suggest that given an indel in the pairwise alignment, there is a very high probability that
the length of this indel would be of just one gap. On the other hand, a very high level (the fourth panel)
would suggest that it is hard for the optimiser to resolve the true length. Given that pairwise alignments in
this experiment consist of close homologues, a very low level would mean that there is a high probability that
no gaps are present.

arbitrarily used a gap opening penalty of 1 and a gap extension penalty of 3 together
with a Jukes-Cantor substitution model. In my experiment, these settings were not
critical since I needed ClustalW alignments solely for the purpose of computing
percentage identities before randomly selecting pairs to construct my sample. What
is important here is that the high percentage identities are compatible with the fact
that alignments under H, never expressed insertions that are longer than one gap,
as was expected.

Table 5.1 gives a summary of the nine panels. Columns 2, 3, and 4 have three
numbers in each row for regions 2 and 3. The first is the level under the null, which
is the same in regions 2 and 3 under the assumption of no homopolymer effect. The

second and third are levels under the alternative in regions 2 and 3, respectively.

All levels in column 2, with only one exception, are very low as expected. This
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Figure 5.7: A three-region model requires a 3-state HMM with three switching parameters, namely,
p1, p2, and p3. The smaller the value of the switching parameter in a region, the higher the probability
the three-region model will remain in that region. When the model exits that region, it will then enter either
of the other two regions with equal probability.

is because, as mentioned earlier, we do not expect insertions to have more than
one gap. Levels in column 3 are also very low as expected since sequence pairs are
made from close homologues. All third levels in column 4 are high, indicating that
the model did not spend too much time resolving non-homopolymer effects, while
it spent most of its time in resolving homopolymer effects in region two. Note that
second levels in this column are always less than or equal to first levels under the
null. This indicates the small homopolymer effect detected under the alternative
with three regions. Finally, number of insertions (and deletions) — shown in the
last column — due to evolutionary processes are just two in each alignment, which
is plausible and consistent with the fact that I kept percentage identity within a
narrow range.

In all, I counted just ten insertions that were due to the homopolymer effect,
namely, 7 cytosines, 2 adenines, 1 guanine, and none thymine. With a sample of 89
pairs (after discarding 11 pairs which did not yield a positive LR), and a conservative
average of, say, 108 bases per read, this gives me an error rate of 1.040 x 10~2 within
the class of reads that have a percentage identity between 0.75 and 0.96. This is
about half as much as that stated by HUSE et al. (2007), which was 1.756 x 102 for
errors attributed to homopolymer insertions across all reads. However, HUSE et al.
(2007) based their computation on insertions of all possible lengths and not just
one-residue overshoots as in my experiment, and this would be the reason for the

disparity. That is, the error rate of overshoots that are longer than one would be
about 0.7 x 1073,
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Homopolymers
Panel a r.tt P Indelst

(monoinserts)§

0.00* 0.04% 0.19%
1 0.00* 0.04®> 0.7 1(C) 2
0.24°  0.00° 0.99¢

0.00 0.01 0.19
2 0.00 0.01 0.16 0 2
0.24 0.01 0.97

0.00 0.02 0.41
3 0.00 0.03 0.18 0 2
0.01 0.02 0.51

000 004 020
4 000 004 018 2 (C, C) 2
004 004 099

0.00 0.04 0.20
5 0.00 0.02 0.20 2 (A, C) 2
0.12 0.22 0.99

0.40 0.02 0.16
6 0.26 0.02 0.15 2 (C, G) 2
0.41 0.00 0.99

0.00 0.04 0.17
7 0.00 0.04 0.17 1 (C) 2
0.78 0.00 0.99

0.00 004 020
8 0.00 003 020 2 (A, ©) 2
006 021 099

0.00 0.01 0.19
9 0.00 0.01 0.16 0 2
0.14 0.01 0.97

¢ Estimators level in regions two and three, under the null: no
homopolymer effect.

b Estimators level in region two under the alternative:
homopolymer effect.

¢ Estimators level in region three under the alternative:
homopolymer effect.

T Both t and r are expected to be small under both the null
and the alternative, and hence the product of these two
rates is more informative in this setting.

§ Monoinserts i.e. Homopolymers that result in an overshoot
of exactly one insertion.

! Indels solely due to evolutionary processes.

Table 5.1: Summary of the nine panels in Appendix D.

5.3.4 Conclusions

Although HUSE et al. (2007) used the V6 hyper-variable region to construct
the reference sequences, extensions in the reads were not uniform across the four
bases A, C, G, and T. They found that the frequency of A/T extensions was 24%

higher than expected, and that of C/G extensions was concomitantly less, in the
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reads. Yet, my results show that homopolymer errors consisting of extensions with
one-residue overshoot in the reads are caused mostly by cytosine nucleotides and
very rarely, if ever, by thymine. Considering that A/T extensions were by far more
prevalent in the HUSE et al. (2007) data, I had expected a bias in favour of A and
T in my results on errors due to homopolymer effects with exactly one insertion,
but this is not the case. With these data, and on the basis of my results, machine
accuracy has clearly not been uniform across A, C, G, and T, but heavily biased
in favour of T. This could be attributed to either a machine artifact or to the fact
that the V6 region favoured C/G extensions against A/T extensions in the reference
sequences by a ratio of 55:45, as reported by HUSE et al. (2007).

The authors also reported that the GS 20 provides a quality score for every
position in a read. The score is a measure of confidence that the homopolymer
length at that position is accurately resolved. At one end, a high score indicates
that no homopolymer is present, and the position is therefore easier to resolve. At
the other end, a low score indicates that a long homopolymer is present, and the
position is difficult to resolve.

However, they also found three effective criteria for reducing the error rate.
That is, they found that by removing reads (1) which contain at least one N, (2)
whose lengths are aberrantly short or long, and (3) which do not match perfectly to
the primer, the error rate decreases from 0.49% to 0.16%. This reduction would be
practical since only about 10% of total reads would have to be culled.

An implication here is that filtering based on these criteria would raise the
level of quality scores. Quality scores could then be used in a correlation test after
monoinserts — due to homopolymer effects — had been identified as described here
using three-region HMM-PHMM modelling. Since quality scoring and predicting
monoinserts are two independent methods, a high correlation would confirm whether
quality scores are compatible with the predictions obtained from the HMM-PHMM

model.
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CHAPTER 6

Discussion

I have addressed the issue of heterogeneity in evolutionary rates along the DNA
taken from a broad range of randomly sampled species. Two of these rates that are
central to understanding evolution are (1) the rates of substitution in the case of
DNA /codon biological encodings (BEs) and of replacement in the case of protein
BE, and (2) the rates of indels.

Biologists had for long been aware of heterogeneity, and several methods had
been used to uncover its causes. My approach was to take into account the role of
secondary structure in these evolutionary rates within the species. When working
with protein and codon BEs, my idea was to devise a parameter that can sense
hydrophilic amino acids, or their cognate codons, and use this parameter to augment
their corresponding background probabilities. This was a novel idea based on the
method used successfully in the multiple sequence aligner ClustalW, whereby the
opening gap penalty and the gap extension penalty are reduced whenever patches of
hydrophilic amino acids are encountered. For my purpose, however, this parameter
was not useful on its own. I needed to study its behaviour in conjunction with
the classical parameters, namely, the parameter that models rates of replacement
(or substitution) and the indel parameter set — composed of the length and rate
parameters — which models indel behaviour.

The classical parameters had been employed successfully in a PHMM setting
by KNUDSEN and M1yAMOTO (2003) (KM), and therefore I only required to incor-
porate the hydrophilicity parameter in this device. In addition, however, I needed
to allow all parameters to vary freely and independently in the different regions
implicit in the data in accordance with secondary structure components. I needed,
therefore, yet another novel idea that would allow me to combine the classical HMM
with a pair of KM-PHMMs in order to model the two broad types of heterogeneity.
To achieve this, I employed a stationary Markov chain of hidden states, with one

hidden state for each region (or more precisely one for each KM-PHMM). This led
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me to a two-tiered HMM-PHMM topology suitable for pairwise alignments with
secondary structure regional context.

HMM-PHMM topologies had been used successfully by various workers in
the field of gene finding. MEYER and DURBIN (2002) for example, used an HMM-
PHMM topology to exploit the similarities between a pair of DNA sequences, to-
gether with splicing and coding information, to simultaneously predict gene struc-
ture and a pairwise alignment. HOBOLTH and JENSEN (2005) extended this concept
with three homologous DNA sequences, taken from prokaryotic organisms, thus en-
larging the three state PHMM to a set of 15 states. For what I had set out to
achieve, namely, a better pairwise alignment, a simple HMM-PHMM configuration
with a single silent state at the centre sufficed and proved to be very effective. This
is because my aim was not to predict structures but rather to exploit the biological
fact that secondary structure is a very important determinant of evolutionary rates.

Two important components of secondary structure in coding DNA are the
hydrophilic and the conserved regions. It had always been reasonable to assume
that slower rates of evolution would occur at the core, where the DNA codes for
important functions and structures, while faster rates would occur on the surface.
It had never been shown quantitatively, however, that the solvent regions and the
much faster rates of both substitution and indel rates coexist at least spatially
in all likelihood. This also implied that the two rates are also mostly co-located
in the solvent regions. In non-coding DNA, however, the two fast rates were no
longer, or at most weakly, co-located. In this case, the distinction between slow and
fast substitution rates was sharp, reflecting upon the fact that the evolutionarily
conserved secondary structure in rRNA molecules are well defined (WUYTS et al.,
2004). Here, however, conservation was not a strong determinant on the placement
of indels, thus suggesting that the co-location of the two fast rates — substitutions
and indels — is a property solely of the solvent regions. |

Several serendipitous topics for investigation emerged following my successful
application of the HMM-PHMM topology in this work. First was the distribution
— across PIPs, and hence across pairs of unique species — of slow substitution rates

in one region and the distribution of fast substitution rates in the other region. I
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was not surprised to find that the two distributions are largely independent of each
other. This considering that secondary structure components are highly distinct. I
had also expected that the two distributions would be radically different. It was
natural that I tested first for the distribution of the slow rates. They turned out
to have a normal distribution, as is often the case with random variables that are
much better understood. On the other hand, however, I had initially thought that
the fast rates would be largely erratic, and that their distribution would be merely
noise and not convey any information. Not until I realised that the occasionally
and exceedingly high substitution rates were mere artifacts of the optimiser did I
start to notice the log-normality of the fast rates. There is reason here to believe
that although the two rates — slow and fast — appear to be remote from each other,
yet they turn out to be closely related. My conjecture at this point would be that
both rates are contributing to survival, but in a different and in what appears to
be a complementary way. Second is the ratio between the synonymous and the
non-synonymous rates of substitutions. The parameter modelling this ratio has a
distribution which is poorly understood. Here I have proposed a way how to deal
with this parameter separately from all the other parameters in the model, using
a two-step estimation procedure that had not been tried before in the literature.
In attempting to detect positive selection in my data set, it was unfortunate that
I was let down by the GY94 model. This model, being purely mechanistic and
modelling only single base substitutions in each codon, and not being neighbour
context aware, could not deal effectively with the fast rate regions. Nevertheless, 1
have shown that this parameter plays a significantly different role in the two regions,
and with a richer substitution model, the two-step estimation can prove to be very
useful. Third, it is clear that codon usage is different in the two regions. At the same
time, the chemical agents that determine which codons are predominantly located
in the fast regions are mutually exclusive from the chemical agents that determine
which codons are most accommodating to indels in this region. There is a strong
indication that a systematic interplay among chemical agents that control codon
behaviour exist in the fast rate regions and is yet to be understood.

My HMM-PHMM topology can go beyond the comparative prediction of

114



purely evolutionary processes. I found that the topology is versatile and can also be
used for detecting pyrosequencing errors efficiently through sampling. The experi-
mental setting for this purpose turned out to be more elaborate than I had expected.
First it required me to increase the number of regions from two to three. This meant
that now I needed a Markov chain with three states to switch in between three KM-
PHMMSs. Second, to differentiate between evolutionary indels and machine induced
indels, I was also required to raise the order of the emission probabilities Markov
chains to two. The increase in the number of parameters in the model, together with
the fact that the difference between the two types of indels is very subtle, meant that
the model will have low power in this setting. Nevertheless, a good estimate of the
rate of sparse errors caused by the homopolymer effect inherent in the technology
could still be obtained.

The effectiveness of the topology could perhaps be increased by increasing the
order of the Markov chain within the state transition matrices. This approach pre-
sented me with the computational difficulty in that transition probabilities would
now have much finer gradations, and this tended to cause underflow errors. A more
serious problem is computational time. Each pairwise alignment was taking, on
average, approximately ten to fifteen minutes to complete on a Cray XD1 Super-
computer. With large samples of, say, 100-200 PIPs, experiments are therefore very
costly to carry out to completion. Implementing better coding techniques may help
to alleviate these problems. Shorter computational times would allow me to pro-
duce replications of my experiments and thus confirm with higher certainty that the
results that I have obtained in this work are repeatable.

Another shortcoming in my work, due to long computational times, is the
omission (for expeditious reasons) of confidence intervals of my estimators. All
my inferences have been based on point estimators without regard to statistical
reliability. To make matters worse, when I first started this work in late 2004, there
was no theory that could show whether estimators computed with two sequences
using a pair HMM were consistent. It had been known that estimators computed
with just one sequence using a classical HMM are consistent (ARRIBAS-GIL et al.,

2006), but with two sequences I was working with uncertainty. It was very relieving
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that after more than two years since I had started, I discovered that consistency
of maximum likelihood estimators holds also for two sequences given that their
observed length is sufficiently informative, even if the evolutionary distance between
them is not known (i.e. ARRIBAS-GIL et al., 2006, p. 657).

Until now, the construction of phylogenetic trees had been based on the align-
ment of the corresponding biologically encoded sequences. The fact that this align-
ment is invariably given prior to the construction implies that there is a major flaw
in this approach to phylogeny based studies. The two important evolutionary prob-
lems, namely, alignment and phylogeny, are profoundly interdependent, and their
respective maximisation by the maximum likelihood method need to be formulated
as one problem. Furthermore, the probability of the alignment itself had also been
assumed to be the sum over different alignments that represent the set of evolution-
ary events, namely, mutations, insertions, and deletions. With my HMM-PHMM
topology I have added a new element to this set, namely, secondary structure. On
the one hand I am very disappointed that LOYTYNOJA and GOLDMAN (2008) did
not acknowledge my announcing this new element in the pairwise alignment method
at the Brisbane International Congress just over two years ago, but on the other
hand I am also very pleased that this concept is already proving to be useful and
may become the norm over the coming years within the community of researchers

working in this field.
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APPENDIX A
Chapter One

A.1 Silent Chains

I discuss here a method of how to determine all possible silent chains between
states a and b in an HMM that has D silent states. I am not aware of a mathematical
expression that can directly identify these chains, and until the time of writing I
have not been able to derive such an expression myself. I have chosen, at this stage,

to take the following approach.
Consider, for example, an HMM with D = 4. The set of all possible silent

chains between states a and b can be enumerated from 1 to 16 as follows:

1 (a, b)

2 (a, 1, b)

3 (a, 1,2, b)

4 (a,1,2,3,b)
5 (a, 1,23, 4,b)
6 (a, 1,2 4,b)
7 (a, 1, 3, b)

8 (a, 1,3, 4, b)
9 (a1, 4, b)
10 (a, 2, b)

11 (a, 2, 3, b)
12 (a, 2, 3,4, b)
13 (a, 2, 4, b)
14 (a, 3, b)

15 (a, 3,4, b)
16 (a, 4, b)

It turns out to be relatively simple to construct the following corresponding

matrix, which I call the silent mapping matriz.
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1 2 3 4 5 4 3 4 3 2 3 4 3 2 3 2
6 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
o 8 7 6 5 4 3 2 1 4 3 2 1 2 1 1
o 0 4 3 2 1 2 1 1 0 2 1 1 0 1 O
o o o 2 1 1 0 1 0 O O 1 0 0 O O
0 o o 06 1. 0 06 0O 0O 0 0 o0 0 o0 0

To start with, the number of columns in this matrix is equal to 2°, and the
number of rows is equal to D + 2. The first row has what I call peak integers. 1
define a peak integer as an integer whose both abutting integers are smaller, and
I denote it by ¢, where v = 1,2,...,D. Hence, for D = 4, I have peak integers
p1=D5,p2 =4,p3 =4, and p4 = 3, and they correspond to silent chains numbered
earlier as 5,8,12, and 15 respectively. The challenge now is to locate each peak
integer and determine its value.

To do this, I first have to construct rows 2 to D + 2. Row 2 is simply filled
with integers starting from 2P all the way down to 1 decrementing by one from left
to right. Row 3 is filled with integers starting from 2°~! in the second column all
the way down to 1 from left to right, and then start again with 2°~2, and keep
repeating until I place 2° in the last cell. I repeat this process in row 3, although
now [ start with 2°-2 in the third column, and I keep repeating with 2273, until it
only remains to place 2° in column D + 1 of the last row.

Across the entire matrix, I next identify all the ones that are immediately
preceded by a zero. Each of these ones point at the column of each peak integer.
For example, ¢ is in the same column of the one preceded by a zero in the last row.
2 and p3 are in the columns of the two ones preceded by a zero in the second last
row, and so on. The value of each peak integer is equal to the number of integers in
its column. For example, p; has five integers in its column, and hence gp; = 5.

Once the peak integers in the first row have been determined, filling the cells
in between with decrementing integers is trivial. Denote each of these integers by
¢j,j=1,2,...,2P, where j is the column number. Then, the number of silent states
in silent chain j is equal to ¢; — 1.

What is left to be done is to determine the index of each silent state in each
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silent chain. Define the sets {29,2¢9 — 1,...,1} for ¢ = D —1,D — 2,...,0, and
number these sets 1,2, ..., D respectively. From now on I consider only the last D
rows of the silent mapping matriz. |

All elements in column one are zero, and hence, the first silent chain is empty.
That is, flow is directly from state a to state b. In the second column, I only have
integer 8 which belongs to set number 1. Hence, the second silent chain has only
one silent state with index w = 1. In the third column I have two integers, namely,
7 and 4. The first belongs to set number 1 and the second belongs to set number 2.
Hence, the third silent chain has two silent states with indexes w = 1 and w = 2.
Continuing in this manner, I find that in column 2P I only have the integer 29, ¢ = 0,
which belongs to set number D. This means that the last silent chain has only one
silent state with index w = D.

This procedure for constructing the silent mapping matriz and deducing silent
chains may seem elaborate. I have found, however, that once the mosaic of this
matrix reveals itself, it becomes a straightforward task to implement this procedure
in computer code in order to construct all the possible silent chains between any two
given states for a given HMM with D silent states. The availability of these chains
makes it possible to compute €2, and then generalise the forward, backward, and
Baum-Welch algorithms which I have formulated independently as shown below.

I should at this point mention that similar generalised algorithms may have
been implemented by the authors of the HMMER (EDDY, 2003) computer program.

I may contact these authors for possible discussion on this issue at some stage.

A.2 General Formulas

A.2.1 Notation for the General Forward, Backward and Baum-Welch
Algorithms

(i) P(y"|HMM): the probability of observing sequence y of length n given the
HMM,

(i) sf): the emitting state with index 7,4 = 1,2,...,r, of the HMM at position
t,t=1,2,...,n,
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(iii) dﬁw): the silent state with index w, w =1,2,..., D, of the HMM at position ¢,
iv y(k): the observable item with index k, k =1,2,..., K, emitted at position ¢,
t

(v) ft(i) (bgi)): the forward (backward) score contributed by state s® up to

position t,
(vi) Tgp: the transition probability from state a to state b,

(vii) Eji: the emission probability of the observable item y*) by the current

state s,
(viii) B (€): the begin (end) state,

(ix) Qgp: the total probability of transitions from state a to state b through all the

possible silent chains between state a and state b.

dV 4@ O ¢ A B
B [ 08 00 02 00 0.0 0.0
dY | 00 0.7 03 0.0 0.0 0.0
d? | 00 0.0 09 0.1 0.0 0.0
sl 08 0.1 0.1 0.0 0.2 0.8

Figure A.1: Example 3.10 in ISAEV (2004)

A transition matrix T with silent states d®),w =1,2,..., D, such as the one
shown in Figure A.1 with D = 2, can be reduced to a transition matrix denoted
by T*, whereby the silent chains are eliminated. It is trivial to apply the method
described in Section A.1 for obtaining silent chains, and then sum silent chain prob-
abilities V a, b to construct the reduction from 7" to T*. For example, the matrix
T* and the associated HMM shown in Figure A.2 is obtained after reducing the
matrix T in Figure A.1. The purpose of this reduction is to simplify the general
Baum-Welch.

In what follows, source emitting and source silent states will be indexed by i
and w respectively, and similarly, sink emitting and sink silent states will be indexed

by 7 and z respectively.
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s ¢ A B
B [ 0944 0.056 [ 0.0 0.0
sU1 0.934 0.066 || 0.2 0.8

0.056

Figure A.2: Reduction of transition matrix T with silent states shown in Figure A.1 to a matrix 7™ without silent
states.

A.2.2 The General Forward Algorithm

D

w=1

2 =3P,
i=1

where

t=1,2,...,n—1.
. r . D
9 = (Z T+ Y fi‘_"%ij) Ejy,
i=1 w=1
where
t=2,3,...,n.

Py [HMM) = fiQe,

i=1

where
1=12,...,r,
z=1,2,...,D,

ke{1,2,...,K}.
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A.2.3 The General Backward Algorithm

D
bg) = Ti@ + ZTizQz&

z=1

,
B =Y Quy Ebl?,
j=1

where

t=n,n-—1,...,2.

T D
b =D TyEpubh + ) Tibih,

j=1 2=1
where

t=n—1,n—2,...,1.

Py HMM) =3 Qb
j=1

where

A.2.4 The General Baum-Welch Algorithm

For brevity, formulas are for the transition matrix only. One sequence of

training data is assumed for simplicity. The normalisation factor is omitted.
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Emitting states only cases

Tj = T Enb?,

—

n—

Ty=>_ T,

*
ij
t

U
)

T = /0T

Silent states only cases

Tz = [T b7

Mixed cases

TQBz = T%zb§2) )

m _ ft(w)ijbgj),
Tp. = fOTu00,
m = fyg,w)TwG-

In each case

1’=1)29 T
w=12,...,D,
ke{1,2,...,K}

Ejkbgl-)la
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APPENDIX B
Chapter Two

B.1 Taylor Series Expansions

I am grateful to David Eberly for his instructive ideas which enabled me to

construct the following derivation.

Consider the following Taylor series expansions

Fla+a) = £(2) + af (@) + S /(@) + 5 F(@) +<l4),

3

f@—a) = f(2) - af (@) + 5£"(2) = 51" (@) +€(4),

where €(n) is the error term of order n. Subtract B.2 from B.1

3

flz+a)~ [z~ a) = 20f(a) + 2 f"(z) +(5),

2402

flta) = fla=a) o

a 3

" () + €(4).

Consider further the following expansions

3

f(z+2a) = f(z) + 2af'(x) + 22 f"(z) + 83ilf”’(:c) +€(4),

B 8a®

flz = 20) = §(z) - 20f'(z) + 20°1"(2) - 5
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(B.2)

(B.3)

(B.4)
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Subtract B.5 from B.4

f(z +2a) — f(z — 2a) = daf'(z) + 1—;?—3f”'(x) + €(5),

f(z+2a) — f(x — 2a) 16a?

- = 4f'(2) + —1-1"(2) + (8).

It now remains to subtract B.6 from B.3 to obtain

fo)=4

fa+a) = f(o = o) = [f(+20) - f(z— 20)]

12a

125

(B.6)



Y xuyeN gNd oYL :T°d 9198l

- 891.L°0 96270 L6688’ GL0S°0  €I9S'0 8EB6'0  VLEL'T 29280 TIEIT'Z 8200’8  8S08'0  LPIE'0  9429°0  ¥PEQ0  6866'0  L9LT0  ¥PLPO  L88E0 1€90°'2 1eA
- - 2966'7  9ECS0  8E6S'0  LEEY'0  LY68'S  9TE6'0  6V99°0  OTI80 90,80 0112’7  LPSZ0  CL0S0  06ZL0  €999°0  Z9EV'0  00ZL0 98290  gELS0 AL,
- - - L1E88°0  €967°0  666%'0  TI6T'E  YROL'0  PEEP'0  8Y6L'0  £9TIS0  FYELO 8.0  €I9T0  POTLO  LSPP'O  9E9E'0  ¥eev'0o 88190  T0se'0  daf,
- - - - 06%%'F  608.°0 68140 GIGS'T 20621 86440 I¥PIL'T  %0€8°0 2Cve0 9660 90ZE'T  €LP8'0  ZPE6'0  2€e8'T  €S68'0  PISL'T  aYJ,
- - - - - LL1TT  TEI90  PSYE'0  9¥ET'T  SZOV'0  90£9°0 00080  IZOV'T  SS0Z'T  E8VE'T  L866'0  60FP'L  9TLST 10160  €2SV'E  JOG
- - - - - - 11870  GL€e°0 19€0°T  TOEP'0 29980 19990 €880 9¥6L°0  T0S8'0 L8610  964.4°0 SITL'0 89990 9IFE'T  0OId
- - - - - - - 690€'c  S692°0  9%6€'T  €96V'T  ¢9LS0  OPSE0  TPZEO0  090P'0 26990 06120  29ZV'0  VEOE0  Z9PS0  9Yd
- - - - - - - - 1199°'0  €200'S 1899'C  608€'0 €99%°0 BIES'0  $L90'Z 98190 6IPE0 84820  GEISO  L9%S'T 9N
- - - - - - - - - 086%°0 8PLE'0  6S86°0 0T8S'0 09TF'Z  €I29'€  2ZFLZ0  THIT'T  9LE0'C  99S6'F  0Z€8'0  SAT
- - - - - - - - - - gzZ9T'y  OP98'0  6692°0 8OZE'D 8290  8OSHF'O  1692°0  TOTFO  LOZSO  ¥ROS0 MO
- - - - - - - - - - - 79820 TOSI'0  CPOE'0  ESTE0  SATP'O  8992°0  T9ZF0  96SE°0  9V9V0 alxr
- - - - - - - - - - - - €9LV'0  8LL8'0 TZIST  SITP'0  E6E8'0  0€8C'Z  TLSP'T 80850  SIH
- - - - - - - - - - - - - 8€9%'0 89690  TLIE0  0SEL0  6VLET  8€TS0 0889’1  A[D
- - - - - - - - - - - - - - 68T 11600  000¥'% 842’1 8I0C'T -€9%0°'T N[O
- - - - - - - - - - - - - - - 25v2°0 19891  8662'% 84967 SIIT'T  U[D
- - - - - - - - - - - - - - - - 0L¥2'0  6689°0 FYIE0  ¥990'T  SAD
- - - - - - - - - - - - - - - - - yeLg'e 99090 sgovo  dsy
- - - - - - - - - - - - - - - - - - 1681'T  9689°0 USY
- - - - - - - - - - - - - - - - - - - 0s.90 Say
- - - - - - - - - - - - - - - - - - - - e[y
eA 14T dag, ay x, RET oxd aydg 1IN sk nory a[I SIH £A1D non un s£D) dsy usy say L1074 DD

[PPOIN Juswede[doy urejold oYL,

¢d

126



B.3 Pascarella and Argus Methods

In their analyses, PASCARELLA and ARGOS (1992) adopted the following scheme
to detect the preferred environment, where arrows point at residues that flank an

indel (in this case a deletion)

1l i
XXZZXXZZXXXX
YYZ----ZYYYY

T T

Define ¢ = percentage residue identity interval 2 € {1 —5,...,95 — 100},
n® = number of indels within s,
¢ = length of the ith indel within s,
K® = number of pairs within ¢,
X ,g') = length of sequence X in pair k within 2,
r® = number of indels per aligned site in interval ¢,
m; = number of occurrences of flanking amino acid j,

p; = preference for amino acid j.

The following are the essential Pascarella and Argus statistics:

n("')

- 1
7o = e’ >, (B.7)
i=1
K®
>l
0 = k=l , (B.8)
Y min(X, v,)
k=1
20
N=> m,, (B.9)
j=1
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APPENDIX C
Chapter Four

C.1 Codon Preference

Codon  Preference (p) SD(p) Amino Acid Hydrophilic

AAG 0.05714 0.01962 Lysine Yes
GCA 0.05000 0.01842 Alanine No
AAA 0.04286 0.01712 Lysine Yes
ACA 0.04286 0.01712  Threonine No
GAG 0.04286 0.01712 Glutamic acid Yes
TAT 0.03571 0.01568  Tyrosine No
ACT 0.02857 0.01408 Threonine No
CTG 0.02857 0.01408  Leucine No
GAT 0.02857 0.01408 Aspartic acid Yes
TGG 0.02857 0.01408 Tryptophan No
GGC 0.02857 0.01408  Glycine Yes
GAC 0.02857 0.01408 Aspartic acid Yes
[elele] 0.02857 0.01408 Alanine No
ATC 0.02143 0.01224  Isoleucine No
ATA 0.02143 0.01224 Isoleucine No
AGC 0.02143 0.01224 Scrine Yes
CAT 0.02143 0.01224  Histidine No
AAT 0.02143 0.01224 Asparagine Yes
GGT 0.02143 0.01224  Glycine Yes
GGG 0.02143 0.01224 Clycine Yes
GTG 0.02143 0.01224  Valine No
GCT 0.02143 0.01224 Alanine No
CTT 0.01429 0.01003  Leucine No
CCT 0.01429 0.01003 Proline Yes
AGA 0.01429 0.01003 Arginine Yes
CAC 0.01429 0.01003 Histidine No
ACG 0.01429 0.01003  Threonine No
AGT 0.01429 0.01003 Serine Yes
cce 0.01429 0.01003  Proline Yes
CAG 0.01429 0.01003 Glutamine Yes
CGC 0.01429 0.01003 Arginine Yes
TAC 0.01429 0.01003 Tyrosine Ne
TCG 0.01429 0.01003 Serine Yes
TTA 0.01429 0.01003  Leucine No
GTA 0.01429 0.01003 Valine No
TTG 0.01429 0.01003  Leucine No
ATG 0.00714 0.00712 Methionine No
AAC 0.00714 0.00712 Asparagine Yes
ATT 0.00714 0.00712 Isoleucine No
CTA 0.00714 0.00712  Leucine No
CTC 0.00714 0.00712 Leucine No
CcCG 0.00714 0.00712  Proline Yes
CAA 0.00714 0.00712 Glutamine Yes
TGT 0.00714 0.00712 Cysteine No
TTT 0.00714 0.00712 Phenylalanine No
GGA 0.00714 0.00712 Glycine Yes
CGT 0.00714 0.00712  Arginine Yes
GAA 0.00714 0.00712  Glutamic acid  Yes
TCA 0.00714 0.00712  Serine Yes
GTC 0.00714 0.00712 Valine No
[elele] 0.00714 0.00712  Alanine No
TTC 0.00714 0.00712 Phenylalanine No
GTT 0.00714 0.00712 Valine No
TCC 0.00714 0.00712  Serine Yes
TCT 0.00714 0.00712  Serine Yes
AGG 0.00000 0.00000 Arginine Yes
CCA 0.00000 0.00000  Proline Yes
CGA 0.00000 0.00000 Arginine Yes
CGG 0.00000 0.00000 Arginine Yes
TGC 0.00000 0.00000 Cysteine No
ACC 0.00000 0.00000  Threonine No

Table C.1: This table shows the preference index of each codon in fast rate regions. None of the gaps in slow
rate regions had flanking codons that met the criteria illustrated in Section B.3. The table is sorted by the
preference index p in the second column.
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C.2 Codon Usage in Regions 1 and 2

Codon Slow Fast Slow+Fast  Slow-Fast Amino Acid Hydrophilic
— 0.00008 0.01962 0.01970 0.00416 gap NA
AGC 0.00459 0.00695 0.01154 0.65962 Serine Yes
AGT 0.00328 0.00481 0.00809 0.68136 Serine Yes
CGT 0.00413 0.00560 0.00973 0.73761 Arginine Yes
TCA 0.00385 0.00517 0.00903 0.74448 Serine Yes
AGA 0.00428 0.00514 0.00942 0.83175 Arginine Yes
TCT 0.00588 0.00669 0.01257 0.87805 Serine Yes
TCG 0.00330 0.00375 0.00705 0.87826 Serine Yes
CGC 0.00690 0.00723 0.01413 0.95485 Arginine Yes
CGG 0.00233 0.00243 0.00477 0.95973 Arginine Yes
AGG 0.00299 0.00274 0.00573 1.08929 Arginine Yes
CGA 0.00194 0.00170 0.00364 1.14423 Arginine Yes
CTT 0.00761 0.00650 0.01410 1.17085 Leucine No
CAA 0.00901 0.00746 0.01647 1.20788 Glutamine Yes
CAG 0.00894 0.00733 0.01627 1.22049 Glutamine Yes
ACA 0.00690 0.00539 0.01229 1.28182 Threonine No
TTG 0.00792 0.00612 0.01404 1.29333 Leucine No
TTA 0.01009 0.00744 0.01753 1.35526 Leucine No
ACG 0.00537 0.00395 0.00932 1.35950 Threonine No
TCC 0.00570 0.00406 0.00976 1.40161 Serine Yes
AAA 0.01906 0.01351 0.03257 1.41063 Lysine Yes
ACT 0.00720 0.00506 0.01226 1.42258 Threonine No
CTA 0.00312 0.00209 0.00521 1.49219 Leucine No
GCG 0.00868 0.00576 0.01444 1.50708 Alanine No
CTC 0.00916 0.00584 0.01500 1.56704 Leucine No
GTA 0.00640 0.00405 0.01044 1.58065 Valine No
ATA 0.00800 0.00501 0.01301 1.59609 Isoleucine No
AAT 0.01358 0.00850 0.02208 1.59693 Asparagine Yes
ACC 0.01074 0.00664 0.01738 1.61671 Threonine No
GCA 0.01066 0.00638 0.01704 1.67008 Alanine No
TGT 0.00431 0.00258 0.00689 1.67089 Cysteine No
AAG 0.01660 0.00976 0.02636 1.70067 Lysine Yes
CCA 0.00640 0.00353 0.00992 1.81481 Proline Yes
CAC 0.00860 0.00473 0.01333 1.81724 Histidine No
CAT 0.00788 0.00423 0.01211 1.86486 Histidine No
CCG 0.00690 0.00366 0.01056 1.88839 Proline Yes
CCT 0.00754 0.00398 0.01152 1.89344 Proline Yes
AAC 0.01340 0.00702 0.02042 1.90930 Asparagine Yes
TGC 0.00496 0.00258 0.00754 1.92405 Cysteine No
GCC 0.01785 0.00924 0.02709 1.93286 Alanine No
cccC 0.00633 0.00326 0.00960 1.94000 Proline Yes
CTG 0.01521 0.00777 0.02298 1.95798 Leucine No
GCT 0.01384 0.00707 0.02091 1.95843 Alanine No
GAG 0.01875 0.00942 0.02817 1.99133 Glutamic acid Yes
GTT 0.01142 0.00571 0.01714 2.00000 Valine No
ATT 0.01689 0.00836 0.02525 2.02148 Isoleucine No
GAA 0.02588  0.01224 0.03812 2.11467 Glutamic acid  Yes
GTG 0.01505 0.00710 0.02215 2.11954 Valine No
TAT 0.01262 0.00573 0.01834 2.20228 Tyrosine No
GAT 0.02277 0.00961 0.03238 2.36842 Aspartic acid Yes
ATC 0.01608 0.00871 0.02278 2.39659 Isoleucine No
GGA 0.01237 0.00504 0.01741 2.45307 Glycine Yes
ATG 0.01498 0.00592 0.02091 2.52803  Methionine No
TTT 0.01472 0.00561 0.02033 2.62209 Phenylalanine No
TGG 0.00917 0.00346 0.01263 2.65094 Tryptophan No
TAC 0.01364 0.00514 0.01878 2.65397 Tyrosine No
TTC 0.01410 0.00501 0.01911 2.81433 Phenylalanine No
GAC 0.02102 0.00739 0.02841 2.84327 Aspartic acid Yes
GTC 0.01226 0.00424 0.01650 2.88846 Valine No
GGG 0.00796  0.00273 0.01069 2.92216 Glycine Yes
GGT 0.01466 0.00468 0.01934 3.12892 Glycine Yes
GGC 0.02153 0.00622 0.02774 3.46194 Glycine Yes

Table C.2: This table shows the frequency of codons and of gaps in regions one and two. The table is sorted
by the ratio slow-fast in the fifth column.
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APPENDIX D
Chapter Five

The following nine panels show results of pairwise alignments that had significance
at the 10% level in the homopolymer experiment. This experiment consisted of 89
pyrosequenced reads. Each read was aligned with a cognate reference sequence using
a three-region model as described in Chapter 5.

Each panel shows three pairwise alignments: the first was obtained under the
null, the second under the alternative, and the third is the ClustalW alignment.
The third row of the first and second alignments shows the predicted region number
at each site. The third row of the third alignment shows the position number of
each site. The table under these alignments shows estimator levels obtained under
the null (first alignment) and under the alternative (second alignment). Only the

second alignment was used for counting monoinserts.

Panel One
Alignments 46 (p-value = 0.0520)

CARCGCGAAGAACCTTACCTGGGTTTGACAT - CCTTTGACACCCCTGGAAACAGGGTTTTCCCGACTTGTCGGGACAGAGTGACAGGTGCTGCATGGCTGTCG
CAACGCGAAGAACCTTACCTGGGCTTGACATGTACATGCCGGCCGTGGAAACACGGCTTTC-CAGCTTG- CTGGACGTGTACACAGGTGNTGCATGGCTGTCG
0000000000000000000000111100000111111111111111000000011111111111110001111122111111100000000000000000000

CAACGCGAAGAACCTTACCTGGGTTTGACAT - CCTTTGACACCCCTGGAAACAGGGTTTTCCCGACTTGTCGGGACAGAGTGACAGGTGCTGCATGGCTGTCG
CAACGCGAAGAACCTTACCTGGGCTTGACATGTACATGCCGGCCGTGGAAACACGGCTTTC -CAGCTTG - CTGGACGTGTACACAGGTGNTGCATGGCTGTCG
00000000000000000000002111000000111111111111111000000011111112111112021111100111111100000000000000000000

CAACGCGAAGAACCTTACCTGGGTTTGACATC- -CTTTGACACCCCTGGAAACAGGGTTTTCCCGACTTGTCGGGACAGAGTG-ACAGGTGCTGCATGGCTGTCG
CAACGCGARAGAACCTTACCTGGGCTTGACATGTACAT - GCCGGCCGTGGAAACACGGCTTTCCAG - CTTG - CTGGAC- GTGTACACAGGTGNTGCATGGCTGTCG
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345

Hyp Est R1 R2 R3

Null £y, £3, 3 0.00000  0.00369  0.00369
41,82, a3 0.10542  0.00000  0.00000
f1,72, 3 0.99706  9.94432  9.94432
P1,P2, P3 0.08452  0.18783 0.18783

aAlt 1, f5, 3 0.00000  0.00445  0.00445
a1,d9, a3 0.20241  0.00000  0.23817
7y, fg, f3  6.83567  9.93803  0.02069
P1; P2, P3  0.10669  0.17262  0.98971
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Panel Two
Alignments 47 (p-value = 0.0864)

CAACGCGAAGAACCTTACCCGGGCTCAAATGCTGGACGACAGTCCCTGA-AAGGGGATCTCCTTCGGG- CGTCCAGCAAGGTGCTGCATGGCTGTCG
CAACGCGAAGAACCTTACCTGGGCTTGAACCGCAGATGAAATCCCCTGAAAAGGGGCTTTCCTTCGGGACATCTGTAGAGGTGNTGCATGGCTGTCG
00000000000000000011111221111111321111131111110000000000111110000000111111111111000000000000000000

CAACGCGAAGAACCTTACCCGGGCTCAAATGCTGGACGACAGTCCCTGA -AAGGGGATCTCCTTCGGG-CGTCCAGCAAGGTGCTGCATGGCTGTCG
CAACGCGAAGAACCTTACCTGGGCTTGAACCGCAGATGAAATCCCCTGAAARGGGGCTTTCCTTCGGGACATCTGTAGAGGTGNTGCATGGCTGTCG
0000000000000000001111000111112111113111111110000000001111110000000111111111111000000000000000000

CAACGCGAAGAACCTTACCCGGGCTCAAAT -GCTGGACGACAGTCCCTGAAA -GGGGATCTCCTTCGGG-CGTCCAGCA -AGGTGCTGCATGGCTGTCG
CAACGCGAAGAACCTTACCTGGGCTTGAACCGCAG-ATGAAATCCCCTGAAAAGGGGCTTTCCTTCGGGACATCT -GTAGAGGTGNTGCATGGCTGTCG
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789

Hyp Param R1 R2 R3

Null £y, i, 3 0.00089 0.00134 0.00134
Gq,8p,43 0.00019 0.00040 0.00040
#1, 72, f3 9.84885 9.61214 9.61214
p1.h2, A3 0.08270 0.19471 0.19471

Alt iy, g, £3  0.00081 0.00147 0.00147
ay,ag, a3 0.00001 0.00049 0.24455
71, g, f3  9.98295 9.51716 9.94296
p1:P2, P3 0.09783 0.15918 0.96872

Panel Three
Alignments 60 (p-value = 0.0438)

CAACGCGAAGAACCTTACCTGGGCTCAAATGCAGAGTGACAGTCCCTGA - AAGGGGATTTTC - - TTCGG-ACAGTCTGCAAGGTGATGCATGGCTGTCG
CAACGCGAAGAACCTTACCTGGGCTTAAATGTATGATGACCGCTTCTGAAAAG- -GAGTTTCCCTTCGGGGCATTATACAAGGTGNTGCATGGCTGTCG
000000000000000000000000011000022222200022212200000000000220000000000011122111100000000000000000000

CAACGCGAAGAACCTTACCTGGGCTCAAATGCAGAGTGACAGTCCCTGARAGGGGATTTT - CTTCGG - ACAGTCTGCAAGGTGATGCATGGCTGTCG
CAACGCGAAGAACCTTACCTGGGCTTAAATGTATGATGACCGCTTCTGAAAAGGAGTTTCCCTTCGGGGCATTATACAAGGTGNTGCATGGCTGTCG
0000000000000000000000000111102111111222111122200011111111111100001111111111100000000000000000000

CAACGCGAAGAACCTTACCTGGGCTCAAATGCA -GAGTGACAGTCCCTGARAGGGGATTTTC - - TTCGGA - CAGTCTGCAAGGTGATGCATGGCTGTCG
CAACGCGAAGAACCTTACCTGGGCTTAAATGTATGA-TGACCGCTTCTGAAAAGG-AGTTTCCCTTCGGGGCATTATACAAGGTGNTGCATGGCTGTCG
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789

Hyp Param R1 R2 R3

Null ty, 9, 3 0.00186 14.37794 14.37794
41,49, 843 0.37635 0.00086 0.00086
71, fg, *3  9.97557 0.00145 0.00145
p1,h2, P3  0.08094 0.41164 0.41164

Alt £y, t5, £3  0.00000 0.00312  0.00312
41, a9, a3 0.73446 0.00066 0.01016
71, fg, 73  2.60959 9.91673 5.37811
p1, P2, P3  0.08521 0.17917 0.51335

132



Panel Four

Alignments 68 (p-value = 0.0682)

CAACGCGAAGAACCTTACCTGGGTTTGACAT ~CCTTTGACACCCCTGGAAACAGGGTTTTCCCGACTTGTCGGGACAGAGTGACAGGTGATGCCATGGCTGTCG
CAACGCGAAGAACCTTACCTGGGCTTGACATGTACATGCCGGCCGTGGAAACACGGCTTTC-CAGCTTG-CTGGACGTGTACACAGGTGNTGC-ATGGCTGTCG
00000000000000000000001111000001111111111111110000000111111111111100011111001111111000000000000000000000

CAACGCGAAGAACCTTACCTGGGTTTGACAT -CCTTTGACACCCCTGGAAACAGGGTTTTCCCGACTTGTCGGGACAGAGTGACAGGTGATGCCATGGCTGTCG
CAACGCGAAGAACCTTACCTGGGCTTGACATGTACATGCCGGCCGTGGAAACACGGCTTTC - CAGCTTG - CTGGACGTGTACACAGGTGNTGC - ATGGCTGTCG
00000000000000000000001110000001111111111111110000000111111101111100011111001111111000000000000000000000

CAACGCGAAGAACCTTACCTGGGTTTGACATC - - CTTTGACACCCCTGGARACAGGGTTTTCCCGACTTGTCGGGACAGAGTG - ACAGGTGATGCCATGGCTGTCG
CAACGCGAAGAACCTTACCTGGGCTTGACATGTACAT -GCCGGCCGTGGAAACACGGCTTTCCAG - CTTG-CTGGAC-GTGTACACAGGTGNTGC-ATGGCTGTCG
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456

Hyp Param R1 R2 R3

Null £y, 83, £3  0.00052 0.00423  0.00423
a1,a9, a3 0.00378 0.00001 0.00001
71, f2, f3 9.98117 9.99302 9.99302
P1: P2, P3  0.10275 0.20392 0.20392

Alt ty, iy, I3 0.00076  0.00412  0.00412
41,49, a3 0.00001 0.00005 0.03863
7y, #9, 73 9.92112 9.95712 9.87374
p1, P2, P3 0.11122 0.17970 0.98975

Panel Five

Alignments 69 (p-value = 0.0480)

CAACGCGAAAGAACCTTACCTGGGTTTGACAT - CCTTTGACACCCCTGGAARACAGGGTTTTCCCGACTTGTC GGGACAGAGTGACAGGTGTTGCATGGCTGTCG
CAACGCGA-AGAACCTTACCTGGGCTTGACATGTACATGCCGGCCGTGGAAACACGGCTTTC - CAGCTTG - CTGGACGTGTACACAGGTGNTGCATGGCTGTCG
00000000000000000000000111100000111111111111111000000011111111111110001111102111111100000000000000000000

CAACGCGAAAGAACCTTACCTGGGTTTGACAT -CCTTTGACACCCCTGGAAACAGGGTTTTCCCGACTTGTCGGGACAGAGTGACAGGTGTTGCATGGCTGTCG
CAACGCGAA-GAACCTTACCTGGGCTTGACATGTACATGCCGGCCGTGGAARACACGGCTTTC - CAGCTTG - CTGGACGTGTACACAGGTGNTGCATGGCTGTCG
00000000020000000000000111000000211111111111111000000011111110111110002111100111111100000000000000000000

CAACGCGAAAGAACCTTACCTGGGTTTGACATC- ~CTTTGACACCCCTGGAAACAGGGTTTTCCCGACTTGTCGGGACAGAGTG -ACAGGTGTTGCATGGCTGTCG
CAACGCGAA-GAACCTTACCTGGGCTTGACATGTACAT - GCCGGCCGTGGAAACACGGCTTTCCAG-CTTG-CTGGAC-GTGTACACAGGTGNTGCATGGCTGTCG
1234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456

Hyp Param R1 R2 R3

Null i, i, i3 0.00087  0.00378  0.00378
41,4, 43 0.00058 0.00003 0.00003
71, fo, f3  9.94202 9.88836 9.88836
p1, P2, P3 0.08960 0.19874 0.19874

Alt £y, 3, £3 0.00001  0.02245  0.02245
41,89, 43 0.60435  0.00094  0.12263
f1, 72, 73 0.90311  0.97378  9.96981
p1,Ph2, A3 0.12911  0.20509  0.98978
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Panel Six
Alignments 71 (p-value = 0.0693)

CAACGCGAAGAACCTTACCGGGGCTTGACATTCCCCTGAAGTCCCCGAGAAATCGGGGATCT CCCTTCGGGGACAGGGGAACAGGTGATGCATGGCTGTCG
CAACGCGAAGAACCTTACCTGGGCTTGAACCGCAGATGAAATCCCCTGAAAA - -GGGGCTTTC-CTTCG-GGACATCTGTAGAGGTGNTGCATGGCTGTCG
000000000000000000111100000011111111120111112122213111111111111000000000000011111111000000000000000000

CAACGCGAAGAACCTTACCGGGGCTTGACATTCCCCTGAAGTCCCCGAGAAATCGGGGATCT CCCTTCGGGGACAGGGGAACAGGTGATGCATGGCTGTCG
CAACGCGAAGAACCTTACCTGGGCTTGAACCGCAGATGAAATCCCC-TGAAAA -GGGGCTTTC- CTTCG-GGACATCTGTAGAGGTGNTGCATGGCTGTCG
0000000000000000001111000000111111111001111211211111111111111111000000000000011111111000000000000000000

CAACGCGAAGAACCTTACCGGGGCTTGACATTCCCC- - - TGAAGTCCCC-GAGAAATCGGGGATCTCCCTTCGGGGACAGGGGAACAGGTGATGCATGGCTGTCG
CAACGCGAAGAACCTTACCTGGGCTTGA-A- -CCGCAGATGAAATCCCCTGA-RAA- -GGGGCTTTCC- TTCGGG-ACATCTGTAGAGGTGNTGCATGGCTGTCG
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345

Hyp Param R1 R2 R3

Null £y, 45, 13 0.00161 0.00177 0.00177
aq,d9, a3 0.00018 0.38727 0.38727
71,7, 3 9.99143 9.97385 9.97385
P1, P2, P3  0.08015 0.16391 0.16391

Alt ty, &5, t3  0.00152 0.00242 0.00242
41,89, &3 0.00035 0.26041 0.40765
7y, 79, 73 9.94516 9.96302 0.08563
A1, P2, P3 0.09735 0.14854 0.98846

Panel Seven
Alignments 79 (p-value = 0.0495)
CAACGCGAAGAACCTTACCTGGGTTTGACAT - CCTTTGACACCCCTGGAAACAGGGTTTTCCCGACTTGTCGGGACAGAGTGACAGGTGGTGCATGECTGTCG

CAACGCGAAGAACCTTACCTGGGCTTGACATGTACATGCCGGCCGTGGARACACGGCTTTC-CAGCTTG-CTGGACGTGTACACAGGTGNTGCATGGCTGTCG
0000000000000000000000112100000111111111111111000000011111111111110001111122111111100000000000000000000

CAACGCGAAGAACCTTACCTGGGTTTGACAT - CCTTTGACACCCCTGGAAACAGGGTTTTCCCGACTTGTCGGGACAGAGTGACAGGTGGTGCATGGCTGTCG
CAACGCGAAGAACCTTACCTGGGCTTGACATGTACATGCCGGCCGTGGAAACACGGCTTTC - CAGCTTG - CTGGACGTGTACACAGGTGNTGCATGGCTGTCG
00000000000000000000001110000001111121111211111000000011111112111112021111100111111100000000000000000000

CAACGCGAAGAACCTTACCTGGGTTTGACATC- - CTTTGACACCCCTGGAAACAGGGTTTTCCCGACTTGTCGGGACAGAGTG - ACAGGTGGTGCATGGCTGTCG
CAACGCGAAGAACCTTACCTGGGCTTGACATGTACAT -GCCGGCCGTGGAAACACGGCTTTCCAG-CTTG-CTGGAC-GTGTACACAGGTGNTGCATGGCTGTCG
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012345

Hyp Param R1 R2 R3

Null £y, 5, 3 0.00001 0.00388 0.00388
Gy, 49, a3 0.35452 0.00037 0.00037
71,72, 73 0.16948 9.99292 9.99292
p1,P2, P3  0.08183 0.18493 0.18493

Alt i1, 2y, £3 '0.00000  0.00451  0.00451
ay,ag, a3 0.63219 0.00031 0.78393
7y, f9, f3  5.57370 9.84978 0.01569
p1, P2, 3 0.10670 0.17474 0.98977
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Panel Eight
Alignments 82 (p-value = 0.0509)

CAAACGCGAAGAACCTTACCTGGGTTTGACAT -CCTTTGACACCCCTGGAAACAGGGTTTTCCCGACTTGTCGGGACAGAGTGACAGGTGTTGCATGGCTGTCG
CA-ACGCGAAGAACCTTACCTGGGCTTGACATGTACATGCCGGCCGTGGAAACACGGCTTTC - CAGCTTG - CTGGACGTGTACACAGGTGNTGCATGGCTGTCG
00000000000000000000000111100000111111111111111000000011111111111110001111102111111100000000000000000000

CAAACGCGAAGAACCTTACCTGGGTTTGACAT - CCTTTGACACCCCTGGAAACAGGGTTTTCCCGACTTGTCGGGACAGAGTGACAGGTGTTGCATGGCTGTCG
CAA-CGCGAAGAACCTTACCTGGGCTTGACATGTACATGCCGGCCGTGGAAACACGGCTTTC - CAGCTTG - CTGGACGTGTACACAGGTGNTGCATGGCTGTCG
00020000000000000000000111000000211111111111111000000011111110111110002111100111111100000000000000000000

CAAACGCGAAGAACCTTACCTGGGTTTGACATC- -CTTTGACACCCCTGGAAACAGGGTTTTCCCGACTTGTCGGGACAGAGTG -ACAGGTGTTGCATGGCTGTCG
CAA-CGCGAAGAACCTTACCTGGGCTTGACATGTACAT - GCCGGCCGTGGAAACACGGCTTTCCAG-CTTG- CTGGAC-GTGTACACAGGTGNTGCATGGCTGTCG
1234567890123456789012345678501234567890123456789012345678901234567890123456789012345678901234567890123456

Hyp Param R1 R2 R3

Null £y, 15, £3  0.00066 0.00408 0.00408
&1,ag, 43 0.00028 0.00001 0.00001
71, fo, f3  9.81561 9.97371 9.97371
P1,P2: P3  0.09486 0.19987 0.19987

Alt f1,1%3, 3 0.00000  0.02136  0.02136
&1,a9, 43 0.24813 0.00000 0.05980
71, 2, #3  7.33091 1.22906 9.96107
p1, P2, 3 0.12778 0.20234 0.98990

Panel Nine
Alignments 84 (p-value = 0.0925)
CAACGCGAAGAACCTTACCCGGGCTCAAATGCTGGACGACAGTCCCTGA - AAGGGGATCTCCTTCGGG - CGTCCAGCARGGTNCTGCATGGCTGTCG

CAACGCGAAGAACCTTACCTGGGCTTGAACCGCAGATGAAATCCCCTGARRAGGGGCTTTCCTTCGGGACATCTGTAGAGGTGNTGCATGGCTGTCG
0000000000000000001111122111311111111111111110000000000111110000000111111111111000000000000000000

CAACGCGAAGAACCTTACCCGGGCTCAAATGCTGGACGACAGTCCCTGA -ARGGGGATCTCCTTCGGG - CGTCCAGCAAGGTNCTGCATGGCTGTCG
CAACGCGAAGAACCTTACCTGGGCTTGAACCGCAGATGAAATCCCCTGAARAGGGGCTTTCCTTCGGGACATC TGTAGAGGTGNTGCATGGCTGTCG
00000000000000000011110001111131111111111211110000000001111110000000111111111111000000000000000000

CAACGCGAAGAACCTTACCCGGGCTCAAAT -GCTGGACGACAGTCCCTGAAA -GGGGATCTCCTTCGGG - CGTCCAGCA-AGGTNCTGCATGGCTGTCG
CAACGCGAAGAACCTTACCTGGGCTTGAACCGCAG-ATGAAATCCCCTGAAAAGGGGCTTTCCTTCGGGACATCT -GTAGAGGTGNTGCATGGCTGTCG
123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789

Hyp Param R1 R2 R3

Null t1, i3, £3  0.00092 0.00126  0.00126
4q,a9, 83 0.00037 0.00089 0.00089
7y, g, f3 9.97271 9.96385 9.96385
A1, P2, A3 0.08403 0.19355 0.19355
Alt iy, &g, 3 0.00081 0.00158 0.00158
41,69, 43 0.00124 0.00012 0.13754
71,79, f3  9.82411 8.84830 9.26460
P1i P2, 3 0.09821 0.16224 0.97448
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