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In machine learning, pattern recognition and statistics, many algorithms 

significantly depends on an appropriate metric over the input vectors. Euclidean 

distance might be the most common (also simplest) metric. Nevertheless, the 

Euclidean distance does not utilize any information that could be available and 

helpful for the learning tasks. In theory, given a particular classification task, one 

should learn a metric by using as much information as possible. It has been an 

extensively sought-after goal to learn an appropriate distance metric for 

classification. In this thesis, two approaches to metric learning based on convex 

optimization for classification tasks are proposed.

The first algorithm uses sequential semidefinite programming to solve a trace 

quotient problem. It is shown that many dimensionality reduction (or metric 

learning) problems can be written into a trace quotient formulation. This new 

convex optimization based method can also accommodate other constraints like
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sparsity constraints. The second algorithm tries to learn a quadratic Mahalanobis 

distance from proximity comparisons. The learning problem can be formulated as 

a semidefinite program, which does not scale well on large-size problems. A new 

matrix-generation method, termed PSDBoost, is proposed. PSDBoost is inspired 

by boosting algorithms in machine learning. At each iteration, a linear program 

needs to be solved, which is computationally much cheaper. Numerical 

experiments arc presented.
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C hapter 1

Introduction

In this chapter, we present an overview of metric learning and convex 

optimization. Most relevant work to our algorithms will be given in each chapter. 

Here we focus on a brief introduction to general metric methods. We also provide 

fundamental backgrounds on convex optimization, in particular, linear 

programming and semidefinite programming.

1.1 D ista n ce  M etric  Learning

Many classical machine learning algorithms, such as k-nearest neighbor (A’-NN), 

usually rely upon the distance metric over the input data vectors. Distance Metric 

learning is to learn a distance metric for the input space of data, from a. set of pair 

of similar/dissimilar points that preserves the distance relation among the training 

data. Previous work has demonstrated that a learned metric can indeed greatly 

improve the performance in classification, clustering and other learning tasks 

[53, 31, 12, 15, 41. 22. 48. 42].

This topic has been extensively researched in the recent years. Depending on the 

training data's information, algorithms can be divided into two categories:
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imsupervised metric learning and supervised metric learning. For example, 

principal component analysis (PCA) and multidimensional scaling (MDS) that do 

not utilize any label information are unsupervised learning. In this thesis, we 

mainly focus on supervised learning for classification; i.e., learning a distance 

metric from side information that is usually presented in a set of pairwise (or 

distance comparison) constraints. The optimal distance metric is typically sought 

by preserving these constraints and at the same time, optimizing a certain 

regularized term.

In the following, we will review a few classical methods and those mostly related to 

ours. Spectral methods are a class of traditional algorithms used to discover 

informative linear projections of the input space. The linear projections can be 

viewed as learning Mahalanobis distance metrics. Note that typically the learned 

Mahalanobis metrics are rank deficient in this case. We review some widely-used 

spectral methods here. These linear methods can usually be kemelized using the 

kernel trick. The kernel versions of these methods are beyond the scope of this 

thesis.

Principal component analysis and linear discriminant analysis (LDA) are two 

classical dimensionality reduction techniques. PCA finds the subspace that has 

maximum variance of (lie input data. LDA tries to project the data onto a 

subspace by maximizing the between-class distance and minimizing the 

wit hin-class variance. Essentially both methods compute the linear transformation 

P such that the original data x  are projected to a low-dimensional space by PTx. 

The covariance matrix of the input data can be written as

1 N
C = — ^ 2 { x ?. -  fi)(xi -  n)T, (1.1)

i—1

Here \i is the sample mean. The linear projection matrix P  can be learned by 

maximizing the variance in the projected space under the constraint that P  is
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orthogonal. Mathematically it is

m axT r(P T C P), subject to PT P = I (1.2)

This problem can be solved by eigen-decomposition of C. As discussed, PCA does 

not use any class label information and it is an unsupervised method. In practice, 

PCA can be used to pre-process the input data, li has some de-noise functionality. 

By only keeping a few top eigenvectors of the decomposition, PCA projects the 

data into a low-dimensional space and thus reduces the computational complexity. 

In contrast, LDA finds the linear projection matrix P  that maximizes the 

between-class variance and at the same time minimizes the within-class variance.

If Sw and Sf, denote the within-class scatter matrix and between-class matrix 

respectively, the optimization problem we want to solve is

max Tr ((P TSWP ) ~ \ P TSbp f )  , subject to PTP = I. (1.3)

This problem can again be solved using generalized eigen-decomposition [23]. LDA 

has been widely used in many application due to its simplicity and effectiveness. 

There are many other variants of LDA. for example [52, 27]. In some scenarios, 

these variants perform better than LDA.

Until recently, work has been done on learning a metric using the pairwise 

constraints (a.k.a., equivalence constraints), which are formed bv the relationship 

of pairs of data. Given two training points x,  and Xj, if they belong to the same 

class, we ought to minimize the distance between x% and Xj ; otherwise we 

maximize their distance. In the context of learning a Mahalanobis distance, the 

problem can be written as

min ^  ||Xi — ;cj||x , subject to ||a;,- — Xj\\^ > 1 ,X  0. (1.4)
( x j . X j ) e S  ( x j . Xj ) €T>
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Here sets S  and V denotes the similarity set and dissimilarity set respectively.

Note that the positive semidefiniteness constraint A' )? 0 is needed to ensure a 

valid Mahalanobis matrix. \\xi — ccy| |^ =  (x } — Xj)TX ( x i  — Xj)  is the distance 

between x,  and x t with the Mahalanobis metric matrix X . The relationship 

between the Mahalanobis metric matrix X  and the linear projection matrix P  is:

A = PPT.

This is why methods like1 PCA or LDA can be viewed as metric learning 

algorithms. (1.4) always produces a rank-one solution [48]. To avoid this problem, 

the first constraint in (1.4) is changed to YhXi X)ev \J\\x i ~ x j llx —  ̂ 'n [48]. 

Although the resulting problem is a convex program and hence the global 

optimum is guaranteed, it may not be trivial to solve. It is in a general form and 

the semidefiniteness constraint makes (he problem not scale well. (1.4) was 

advocated to improve the performance of clustering algorithms like A'-ineans. It 

may not be appropriate for learning a distance metric for A--NN classification. 

Neighborhood component analysis (NCA) is proposed to learn a Mahalanobis 

distance for A’-NN classification bv minimizing the leave-one-out error [18]. Given a 

training point Xj, the probability that x,  being a. neighbor of X{ is ptj :

exp( —||PT Xj — PTXj\\2)
>lJ E f c ^ e x P H I ^ T ®i “  p T x k II2 ) '

If we denote the set of data that have the class label with Xj as <S;, then the 

probability that x,  being correctly classified is pt — YljeS Vij- The purpose is to 

maximize the expected number of correctly classified data points. That is. to 

maximize f {P)  =  Pj. The optimization can be solved using gradient descent 

algorithms. However, the problem is non-convex and hence no global optimum is 

guaranteed. NCA seems to over-fit the training data when one does not have a
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large number of training data, or the dimensionality of the data is high. NCA does 

not scale well because the number of parameters in the projection matrix is 

quadratic in the dimensionality. It becomes computationally intractable when the 

dimensionality is large.

A related algorithm, termed metric learning by collapsing classes (MLCC). was 

proposed in [17]. Unlike NCA, MLCC can be formulated as a convex optimization 

over the space of positive semidefinite matrices. A drawback of MLCC is that it 

implicitly assumes that the data points in each class have a unimodal distribution 

such that they can be collapsed to a single point in the transformed space.

In [46], a large margin nearest neighbor method is designed to learn a Mahalanobis 

metric. The goal is to make t he /.’-nearest neighbors always belong to the same 

class while examples from different classes are separated bv a large margin. As in 

support vector machines, the margin criterion leads to a convex optimization using 

the hinge loss. It can handle multi-class problems naturally. The problem is 

formulated as a standard semidefinite program, which can be solved using 

off-the-shelf solvers like SeDemi [43], CSDP [5], or SDPT3 [45].

Given that convex optimization becomes more and more important in machine 

learning and recent advances in metric learning have proved its usefulness, we 

review some fundamental concepts here. In part icular, we give an overview of 

linear programming and semidefinite programming, which arc our tools for the 

algorithms developed in the next two sections.

1.2 C onvex  O p tim ization

A mathematical programming problem has the form

min fo(x)

s.t. fi(x) < hi, i =  1,•• • , m. (1.6)
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The variable to be optimized is a. vector x. /o is the objective function and 

fj. i =  1. • • • , m, are the constraints. When all the functions involved in (1.6) are 

convex, the program is a special case, for which the global optimum is usually able 

to be efficiently found (in polynomial time). This class of problems is generally 

referred to as convex optimization problems. There is in general no analytical 

formula for the solution of convex optimization problems. However, there are 

effective methods for solving some special cases. The interior-point method is one 

of the methods [6]. We focus on two special cases of (1.6) here, namely linear 

programs and semidefinite programs.

1.2.1 Linear program m ing

In this section, we overview techniques of linear programs (LP). LP has a, linear 

objective function, and a. bunch of linear equality and linear inequality constraints. 

The st andard form of LP writes:

max cT x

s.t. Ax < b. (1.7)

x  is the vector of variables and c and b are vectors of known coefficients and the 

matrix A is also known. Many practical problems in operations research can be 

expressed as LPs.

Given an LP. referred to as a primal problem, there is a corresponding dual 

problem, which provides an upper bound to the optimal value of the primal 

problem. In matrix form, we can express the primal problem as:

max cTx

s.t. Ax < b. x > 0. (1.8)
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The corresponding dual problem is

min b] y

s.t. A1 y > c. y > 0. (1.9)

where y  is the dual variable.

The duality theory states that (1) the dual of a dual LP is the original primal LP; 

(2) Every feasible solution for an LP gives a bound on the optimal value of the 

objective function of its dual; (3) The strong duality theorem states the optimum 

of the dual and the optimum of the primal coincide. Therefore one can always 

solve an LP by solving its dual. See [6] for details about the weak and strong 

duality theorems and their conditions.

There are two main algorithms for solving LPs: simplex and interior point 

algorithms. The simplex algorithm solves LP problems by constructing an 

admissible solution at a vertex of the polyhedron and then walking along edges of 

the polyhedron to vertices with successively higher values of the objective function 

until the optimum is reached. The simplex method is usually fast in practice. 

However, the theoretical worst complexity is exponential time. In contrast, interior 

point methods finds the optimal solution by progressing along points on the 

boundary of a polyhedral set. Interior point methods start from the interior of the 

feasible region and converge to a vertex. There are many efficient off-the-self LP 

solvers, c.g., CPlex [26], Mosek [34]. CPlex can solve large-scale problems up to 

10(’ variables and constraints.

1.2.2 Sem idefin ite program m ing

Semidefinite programming (SDP) can be viewed as generalization of LP in the 

sense that the variable is now a matrix X  and the nonnegativeness constraint is 

replaced by a matrix cone constraint X  0, which means X  lies in a positive
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semidefinite cone. In general, an SDP has the form:

min (C. X)

s.t. (Ai, X)  = bi,i = 1. • • • . ra, ( 1. 10)

X  'rp 0.

The variable we want to optimize is X . Here (A. B) = Ylrj AjjBjj  calculates the 

inner product of two matrices.

We can also derive its dual problem as in the case of LP.

max (b. y)
m

s.t. ŷ yjAj ^  c. (1.11)
i=1

The dual variable is y. Here A =<! B  means A — B  ^  0 or B — A 0.

Like LP, the weak duality and strong duality hold for SDPs under some 

conditions. Usually the weak duality always holds even for non-convex problems. 

The weak duality can be used to find nontrivial lower bounds for difficult 

problems. The strong duality usually holds for convex problems. The conditions 

that guarantee strong duality in convex problems are called constraint 

qualifications. See [6] for details. Unlike LP where one can always recover the 

primal solution from the dual solution by solving a linear system, one may not 

always be able to find the primal solution of an SDP from its dual. However, 

interior point methods solve the primal and dual at the same time.

In convex optimization [6], many problems such as quadratic programs (QP), 

quadratically constrained quadratic programs (QCQP), and second-oder cone 

programs (SOCP) can be viewed as special cases of SDP. In machine learning, 

SDPs have gained more and more research interests because many problems, such
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as metric learning and kernel learning, can be formulated as SDPs. The desirable 

properties of these formulations are: (1) The global optimum is guaranteed. In 

other words, it is local-optimum-free; (2) For reasonable-scale problems (up to a 

few thousand variables), interior point methods work efficiently. Nevertheless, as 

mentioned before, current solvers do not scale very well, largely due to an inverse 

of the Hessian matrix needs to be calculated and stored, which requires cubic 

complexity. It is an active research topic to design first-order methods for solving 

SDPs. in which no Hessian is involved [6].

The next two chapters present our main algorithms and the thesis is concluded in 

the last chapter.
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Chapter 2

Supervised D im ensionality  

Reduction via Sequential SDP

Many dimensionality reduction problems end np with a trace quotient formulation, 

for example, the linear discriminant analysis method. Since it is difficult to 

directly solve the trace quotient problem, traditionally the trace quotient cost 

function is replaced by an approximation such that generalized 

eigen-decomposition can be applied. By contrast, we directly optimize the trace 

quotient in this work. It is reformulated as a quasi-linear semidefinite optimization 

problem, which can be solved globally and efficiently using standard off-the-shelf 

semidefinite programming solvers. Also this optimization strategy allows one to 

enforce additional constraints (for example, sparseness constraints) on the 

projection matrix. We apply this optimization framework to a novel 

dimensionality reduction algorithm. The performance of the proposed algorithm is 

demonstrated in experiments on several UCI machine learning benchmark 

examples, USPS handwritten digits as well as ORL and Yale face data.
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2.1 In trod u ction

In pattern recognition and computer vision, techniques for dimensionality 

reduction have been extensively studied [44, 46. 48, 42. 49]. Many of the 

dimensionality reduction methods, such as linear discriminant analysis (LDA) and 

its kernel version, end up with solving a trace quotient problem

W° argmax
wTw=ldxd

Tr(WJ SbW)
T r(ll/T.S',,I4/ ) ’

( 2. 1)

where Sb,S v are two positive semidefinite (p.s.d.) matrices (Sb 0, Sv ^  0), I the 

d x d identity matrix (sometimes the dimension of I is omitted when it can be 

inferred from the context) and Tr(-) denoting the matrix trace. W  G Wnxd is 

target projection matrix for dimensionality reduction (typically d D). In the 

supervised learning framework, usually Sb represents the distance of different 

classes while Sv is the distance between data points in the same class. For 

example. Sb is the inter-class scatter matrix and Sv is the intra-class scatter matrix 

for LDA. By formulating the problem of dimensionality reduction in a general 

setting and constructing Sb and Sv in different ways, we can implement many 

different methods in the above mathematical framework.

Despite the importance of the trace quotient problem, to date it lacks a direct and 

globally optimal solution. Usually, as an approximation, the quotient trace cost 

T r((lF TSVW)  1 (W’TSbW )) is instead used such that the generalized 

eigen-decomposition (GEVD) can be applied and a close-form solution is readily 

available. It is easy to check that when ran k (lF ) =  1. i.e., W  is a vector, then 

Equation (2.1) is actually a Rayleigh quotient problem. It can be solved by GEVD 

[19, 49]. The eigenvector corresponding to the eigenvalue of largest magnitude of 

the matrix S~ lSb gives the optimal W°. Unfortunately, when rank(lU ) > 1, the 

problem becomes much more complicated. Heuristically, the dominant eigenvectors
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of S ~1 Sb corresponding to the largest eigenvalues are used to form the optimal 

W°. It is believed that the largest eigenvalue contains more useful information. 

Nevertheless such a GEVD approach cannot produce an optimal solution to the 

original optimization problem (2.1) [49]. Furthermore, the GEVD approach does 

not yield an orthogonal projection matrix. It is shown in [8. 25] that orthogonal 

basis functions preserve the metric structure of the data better and they have 

more discriminating power. Orthogonal LDA (OLI)A) is proposed to compute a 

set of orthogonal discriminant vectors via the simultaneous diagonalization of the 

scatter matrices [52]. In [51] it is shown that solely optimizing the Fisher criterion 

does not necessarily yield optimal discriminant vectors. It is better to include 

correlation constraints into optimization. The features produced by the classical 

LDA could be highly correlated (because they are not orthogonal), leading to high 

redundancy of information. Including correlation constraints such as

H't (S„ +  Sb)W  = 0

could be beneficial for classification [51].

Recently semidefinite programming (SDP) or more general convex programming 

[6, 3] has been attracting more and more interests in machine learning due to its 

flexibility and desirable global optimality [47. 28. 31]. Moreover, there exist 

interior-point algorithms to efficiently solve SDPs in polynomial time. Large 

margin nearest neighbor (LMNN) [46] is an example of using SDP to learn a 

metric. LMNN learns a metric by maintaining consistency in data’s neighborhood 

and keeping a large margin at the boundaries of different classes. It has been 

shown in [46] that LMNN delivers the state-of-the-art performance among most 

distance metric learning algorithms.

In this chapter, we proffer a novel SDP based method for solving the trace 

quotient problem directly. It has the following appealing properties:

12



• The low target dimension is selected by the user and the algorithm 

guarantees a globally optimal solution using fractional programming. In 

other words, it is local-optima-free. Moreover, the fractional programming 

can be efficiently solved by a sequence of SDPs;

• The projection matrix is orthonormal naturally;

• Unlike the GEVD approach to Id)A. using our proposed algorithm, the data 

are not restricted to be projected to at most c — 1 dimensions. Here c is the 

number of classes.

To our knowledge, this is the first attempt that directly solves the trace quotient 

problem and meanwhile, a global optimum is deterministically guaranteed. We 

then develop methods to design Sb and Sv. The traditional LDA is only optimal 

when all the classes follow single Gaussian distributions that share the same 

covariance matrix. Our new Sb and Sv are not confined by this assumption.

The remaining content is organized as follows. In Section 2.2, we describe our 

algorithm in detail. Section 2.3 applies this optimization framework to 

dimensionality reduction. In Section 2.4. we briefly review relevant work in the 

literature. The experiment results are presented in Section 2.5. We discuss new 

extensions in Section 2.6. Finally concluding remarks are discussed in Section 2.7.

2.2 Solving th e  Trace Q uotien t P rob lem  U sing SD P

In this section, we show how the trace quotient is reformulated into an SDP 

problem.

13



2.2.1 S D P  fo rm u la tio n

By introducing an auxiliary variable S, the problem (2.1) is equivalent to

maximize
6,W

4' (2.2a)

subject to T r(WTSbW) > S ■ Tr{WTSvW) (2.2b)

XII (2.2c)

W  £ R Dxd. (2.2d)

The variables we want to optimize here are 5 and W.  But we are only interested in 

W  with which the value of ri is maximized. This problem is clearly not convex 

because the constraint (2.2b) is not convex, and in addition (2.2d) is actually a 

non-convex rank constraint. (2.2c) is quadratic in W . It is obvious that must be 

positive.

Let us define a new variable Z £ E I)xD.Z  -  W W T, and now the constraint (2.2b) 

is converted to Tv((Sb — SSV)Z) > 0 under the fact that

Tr(H/T5H ) =  TV(.S'U'U' ) =  T r(SZ). Because Z  is a matrix production of W  

and its transpose, it must be p.s.d. In terms of Z, the cost function (2.1) is a linear 

fraction, therefore it is quasi-convex (More precisely, it is also quasi-concave, hence 

quasi-linear [6]). The standard technique for solving quasi-concave maximization 

(or quasi-convex minimization) problems is bisection search which involves solving 

a sequence of SDPs for our problem. The following theorem due to [36] serves as a 

basis for converting the non-convex constraint (2.2d) into a linear one.

Theorem  2.2.1. Define sets Pi =  {W W T : WTW  =  Idxd} and

P 2 = {Z : Z = Z r , Tr (Z) — d. 0 Z =<( I}. Then P i is the set of extreme points of

P 2.

See [36] for the proof. Theorem 2.2.1 states, as constraints, Pi is more strict than
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il‘2 - Therefore constraints (2.2c) and (2.2d) can he relaxed into Tr(Z) =  d and 

0 ^  Z ^  I, which are both convex. When the cost function is linear and it is 

subject to S2‘2. the solution will be at one of the extreme points [37]. Consequently, 

for linear cost functions, the optimization problems subject to Qi and ilo are 

exactly equivalent.

With respect to Z and 6, (2.2b) is still lion-convex: the problem may have locally 

optimal points. But still the global optimum can be efficiently computed via a 

sequence of convex feasibility problems. By observing that the constraint is linear 

if 5 is known, we can convert the optimization problem into a. set of convex 

feasibility problems. A bisection search strategy is adopted to find the optimal S. 

This technique is widely used in fractional programming [6. 1]. Let denote the 

unknown optimal value of the cost function. Given 6* £ K. if the convex feasibility 

problem1

find Z (2.3a)

subject to Tr((Sb — 6*SV)Z) > 0 (2.3b)

Tr(Z) = d (2.3c)

0 ^  Z =<: I (2.3d)

is feasible, then we have 3° >3*. Otherwise, if the above problem is infeasible, 

then we can conclude 3° < 3*. This way we can check whether the optimal value 

3° is smaller or larger than a given value 3*. This observation motivates a simple 

algorithm for solving the fractional optimization problems using bisection search, 

which solves an SDP feasibility problem at each step. Algorithm 1 shows how it 

works.

Thus far, a. question remains unanswered: are constraints (2.3c) and (2.3d)

'A feasibility problem has no cost function. The objective is to check whether the intersection 
of the convex constraints is empty.
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A lgorithm  1 Bisection search.
Require: 5/: Lower bounds of S\ fi„: Upper bound of <5 and the tolerance a > 0.

while Slt — ()/ > ct do 
* _  Si+6tl
u 2
Solve the convex feasibility problem described in (2.3a)-(2.3d). 
if feasible th en  

Si = 6; 
else

Su =  s .
end if 

end while

equivalent to constraints (2.2c) and (2.2d) for the feasibility problem? Essentially 

the feasibility problem is equivalent to

maximize Tr!(Sk -  S'SV)Z) (2.4a)

subject to Tr(Z) =  d (2.4b)

o =<; Z I. (2.4c)

If the maximum value of the cost function is non-negative, then the feasibility 

problem is feasible. Conversely, it is infeasible. Because this cost function is linear, 

we know that can be replaced bv SU, i.e., constraints (2.3c) and (2.3d) are 

equivalent to (2.2c) and (2.2d) for the optimization problem.

Note that constraint (2.3d) is not in the standard form of SDP. It can be rewritten 

into the standard form as

Z 0 

0 Q
^  0 .

Z + Q = I,

(2.5a)

(2.5b)

where the matrix Q acts as a slack variable. Now the problem can be solved using 

standard SDP packages such as CSDP [5] and SeDuMi [43]. We use CSDP in all of

16



our experiments.

2.2.2 E stim atin g  bounds o f 5

The bisection search procedure requires a low bound and an upper bound of <5. 

The following theorem from [36] is useful for estimating the bounds.

Theorem 2.2.2. Let S  € D he a symmetric matrix, and

(fS.i > <Ps,2 > • • * > ‘rs.D he the sorted eigenvalues of S from largest to smallest.

then d
max TV(W't SW0 =  V W  

WTW = l dxd “

Refer to [36] for the proof. This theorem can be extended to obtain the following 

corollary (following the proof for Theorem 2.2.2):

Corollary 2.2.1. Let S  £ M.°xr) he a symmetric matrix, and

ips, 1 < ips,2 <  • • • <  ips.D b e  its sorted eigenvalues from smallest to largest, then

d
min rIV(IT S\V) =  V ^ Si.

VVT W = l dxd  “

Therefore, we estimate the upper bound of ():

s u  =  gr1 — (2-6)
z2z=\ v>sv,i

In the trace quotient problem, both Sb and Sv are p.s.d. That is to say, all of their 

eigenvalues are non-negative. Be aware that the denominator of (2.6) could be 

zeros and fiu  =  +oc. This occurs when the d smallest eigenvalues of Sv are all 

zeros. In this case, rank(5v) < D — d. In the case of LDA, 

rank(S,u) =  min(D,iV). Here N  is the number of training points. When 

N  < D — d. which is termed the small sample problem, 6U is invalid.
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A principle component analysis (PCA) preprocessing can always be performed to 

remove the null space of the covariance matrix of the data, such that Su becomes 

valid.

A lower bound of h is then

Si = ll-Sh.i

l ^ i  = 1 VSr.i
(2.7)

Clearly S[ > 0.

The bisection algorithm converges in [log2(<)~"~^)] iterations, and obtains the 

global minimum within the predefined accuracy of cr. The bisection procedure is 

intuitive to understand. Next we describe another algorithm Dinkelbach's 

algorithm less intuitive but faster, for fractional programming.

2.2.3 Dinkelbach’s algorithm

Dinkelbach algorithm [39] proposes an iterative procedure for solving the fractional 

program maximize® f(x) /g(x) ,  where x is constrained on a convex set and f ( x ) is 

concave, g{x) is convex. It considers the parametric problem.

maximize® f{x)  — Sg(x),

where S is a constant. Here we need to solve

maximize^ Tr((5)> — 6SV)Z). (2.8)

The algorithm generates a sequence of values of S's that converge to the global 

optimum function value. The bisection search converges linearly while the 

Dinkelbach’s algorithm converges super-linearly (better than linearly and worse 

than quadratically).

Dinkelbach s iterative algorithm for our trace quotient problem is described in 

Algorithm 2. We omit the convergence analysis of the algorithm which can be

18



A lgorithm  2 Dinkelbach algorithm.
R equire: An initialization Z ((,) which satisfies constraints (2.4b) and (2.4c).

Set
Tr(S^(»))
Tr(SvZ<°>)

and k = 0.
(★ ) k = k 4-1. Solve the SDP (2.8) subject to constraints (2.4b) and (2.4c) to get. 
the optimal Z ik\  given 6. 
if T r((Sb -  6SV)ZW) = 0 th en  

stop and the optimal Z°  =  Z^k\  
else 

Set
A _ T r (ShZ ^ )

Tr (S„Z<*))

and go to step (*).
end if

found in [39]. In Algorithm 2. note that: (1) A test of the form 

Tr((S'fe — ÖSv)Z(-k'1) > 0 is unnecessary since for any fixed k,

T r((Sb -  &SV)ZW) = maxz T r((Sb -  SSV) Z ) > Tr((Sb -  6SV)Z (k~V) = 0. However 

due to computer's numerical accuracy limit, in implementation it is possible that 

the value of Tr ((Sb — 5SV) Z ^ )  is a negative value which is very close to zero; (2) 

To find the initialization Z^(,) that must reside in the set defined by the 

constraints, in general, one might solve a feasibility problem. In our case, it is easy 

to find out that a square matrix Z (n) e R /,v n with d diagonal entries being 1 and 

all the other entries being 0 satisfies (2.4b) and (2.4c). This initialization is used in 

our experiments and it works well. Dinkelbach s algorithm needs no parameters 

and it converges faster. In contrast, bisection needs one to estimate the bounds for 

the cost function.
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2.2.4 C om puting W  from  Z

From the covariance matrix Z learned by SDP. we can calculate the projection 

matrix W  by eigen-decomposition. Let Vj denote the ifh eigenvector, with 

eigenvalue Xt. Let Ai > A2 > • • • > Xd be the sorted eigenvalues. It is 

straightforward to see that W =  diag(\/Ai, \f 2̂~ • • • , \/Xd) VT, where diag(-) is a 

square matrix with the input as its diagonal elements. To obtain a D x d 

projection matrix, the smallest I) — d eigenvalues are simply truncated. The 

projection matrix obtained in this wav is not the same as the projection 

corresponding to maximizing the cost function subject to a rank constraint. 

However this approach is a reasonable approximation. Moreover, like PC A. 

dropping the eigenvectors corresponding to small eigenvalues may de-noise the 

input data, which is desirable in some cases.

This is the general treatment for recovering a low dimensional projection from a. 

covariance matrix. In our case, this procedure is precise. This is obvious: A;, the 

eigenvalues of Z =  WWT, are the same as the eigenvalues of WTW =  Idxd- That 

means, Ai =  A2 =  • • • =  A<* =  1 and the remaining D — d eigenvalues are all zeros. 

Hence in our case we can simply stack the first d leading eigenvectors to obtain W.

2.3 A p p lic a tio n  to  D im e n s io n a lity  R e d u c tio n

There are various strategies to construct the matrix Sb and Sv, which represent 

the inter-class and intra-class scatter matrices respectively. I11 general, we have a 

set of data {xp}*^ € R n and we are given a similarity set S and a dissimilarity 

set V. Formally, {S : (x p, x q) € S if xp and x q are similar} and 

{V : (xp, x q) G V if x p and x q are dissimilar}. We want to maximize the distance

dist w( xp, x q) =  \\WTX p - W T X q \\2

( p .q ) eV {p-q)€V

20



©
o

#  O  are different classes

Figure 2.1: The connected edges in (1) define the dissimilarity set V and the con
nections in (2) define the similarity set S. As shown in (1), the inter-class marginal 
samples are connected while in (2). each sample is connected to its k' nearest neigh
bors in the same class. For clarity only few connections are shown.

where St, =  Y2(p q)eT>(xp ~~ x q)(xp ~~ x q)' • This distance measures the inter-class 

distance. We also want to minimize the intra-class compactness distance:

Inspired by the marginal fisher analysis (MFA) algorithm proposed in [50], we 

construct similar graphs for building Sb and Sv. Figure 2.1 demonstrates the basic 

idea. For each class, assuming x p is in this class, and if the pair (p, q) belongs to 

the k closest pairs that have different labels, then (p. q) V. The intra-class set S  

is easier: we connect each sample to its k' nearest neighbors in the same class, k 

and k! are parameters defined by the user.

(p,q)eT>

Tr (SbZ)

Y .  d is t\y(xp, X q )  =  Tl' (SVZ ) 
(p.q)eS

with Sv =  ^2
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This strategy avoids certain drawbacks of LDA. We do not force all the pairwise 

samples in the same class to be close (This might be a too strict requirement). 

Instead, we are more interest in driving neighboring samples as closely as possible. 

We do not assume any special distribution on the data. The set V characterizes 

the margin information between classes. For non-Gaussian data, it is expected to 

better represent the separability of different classes than the inter-class covariance 

of LDA. Therefore we maximize the margins while condensing individual classes 

simultaneously. For ease of presentation, we refer this algorithm as SDPi, whose 

Sb and Sv are calculated by the above-mentioned strategy.

[16] defines a 1-nearest-neighbor margin based on the concept of the nearest 

neighbor to a point x  with the same and different label. Motivated by their work, 

we can slightly modify MFA's inter-class distance graph. The similarity set S 

remains unchanged as described previously. But to create the dissimilarity set V. a. 

simpler way is that, for each xp we connect it to its k differently-labeled neighbors 

ay s  (xp and x q have different labels). The algorithm that implements this concept 

is referred to as SDP2 . It is difficult to analyse which one is better. Indeed the 

experiments indicate for different data sets, no single method is consistently better 

than the other one. One may also use support vector machines (SVMs) to find the 

boundary points of the separation plane and then create T> (and then Sb) based on 

those boundary points [15].

2.4 R e la te d  W o rk

The closest work to ours is [49] in the sense that it also proposes a method to solve 

the trace quotient directly. [49] finds the projection matrix W  in the Grassmann 

manifold. Compared with optimization in the Euclidean space, the main 

advantage of optimization on the Grassmann manifold is fewer variables. Thus the 

scale of the problem is smaller. There are major differences between [49] and our
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method: (1) [49] optimizes Tr(U T S^W — 4 • WTSVW)  and they do not have a 

principled way to determine the optimal value of 4. In contrast, we optimizes the 

trace quotient function itself and a deterministic bisection search or the 

Dinkelbach's iteration guarantees the optimal 4: (2) The optimization in [49] is 

non-convex (difference of two quadratic functions). Therefore it is likely to become 

trapped into a local maximum, while our method is globally optimal.

[32] simply replaces LDA’s cost function with Tr(WTS^W — WTSVW),  i.e., setting 

4 = 1. Then GEVD is used to obtain the low rank projection matrix. Obviously 

this optimization is not equivalent to the original problem, although it avoids the 

matrix inversion problem of LDA.

[48] proposes a convex programming approach to maximize the distances between 

classes and simultaneously to clip (but not to minimize) the distances within 

classes. Unlike our method, in their approach the rank constraint is not 

considered. Hence it is metric learning but not necessary a dimensionality 

reduction method. Furthermore, although the formulation of [48] is convex, it is 

not an SDP. It is more computationally expensive to solve and general-purpose 

SDP solvers are not applicable. SDP (or general convex programming) is also used 

in [46. 17] for learning a distance metric. [46] learns a metric that shrinks distances 

of neighboring similarly-labeled points and repels points in different classes bv a 

large margin. [17] also learns a metric using convex programming.

We borrow the idea from [50] to construct the similarity and dissimilarity sets.

The MFA algorithm in [50] optimizes a different cost function. It originates from 

graph embedding. Note that there is a kernel version of MFA. It is straightforward 

to kernelize our problem since it is still a. trace quotient for the kernel version. We 

leave this topic for future research.
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2.5 E xp erim en ts

In mH our experiments, the Bisection Algorithm 1 and Dinkelbach's Algorithm 2 

output almost identical results but Dinkelbach converges as twice faster as 

Bisection does.

We observe that the direct solution indeed yields larger trace quotient than the 

quotient trace using GEVI) because that is what we maximize.

D ata  visualization. As an intuitive demonstration, we run the proposed SDP 

algorithms on an artificial concentric circles data set [18]. which consists of four 

classes (shown in different colors). The first two dimensions follow concentric 

circles while the remaining eight dimensions are all Gaussian noise. When the 

scale of the noise is large, PGA is distracted by the noise. LDA also fails because 

the data set is not linearly separable and each class' center overlaps in the same 

point. Both of our algorithms find the informative features (Figure 2.2-(3)(4)). 

Ideally we should optimize the projected neighborhood relationship as in [18]. 

Unfortunately it is difficult. [18] utilizes soft max nearest neighbors to model the 

neighborhood relationships before the projection is known. However the cost is 

non-convex. As an approximation, one usually calculates the neighborhood 

relationships in the input space. Laplaeian eigenmap [2] is an example. ?

noise is large enough, the neighborhood obtained in this way may not faithfully 

represent t he true data structure. We deliberately set the noise of the concentric 

data set very large, which breaks our algorithms (Figure 2.2-(5)(6)). Nevertheless 

useful prior information can be used to define a meaningful V and S  whenever it is 

available. As an example, we use the sets T> and S  of Figure 2.2-(3)(4) and then 

calculate Sb and Sv with the highly noisy data, our algorithms are still able to find 

the first two useful dimensions perfectly, as shown in Figure 2.2-(7)(8). 

Classification. In the first classification experiment, we evaluate our algorithm 

on different data sets and compare it with PCA. LDA and large margin nearest
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neighbor classifier (LMNN)2. Note that our algorithm is much faster than LMNN 

in [46]. especially when the number of training data is large. That is because the 

complexity of our algorithm is independent of t he number of data while in [46] 

more data produce more SDP constraints that sknv down the SDP solver. A 

description of the data sets is in Table 2.1.

PC A is used to reduce the dimensionality of image data (USPS handwritten 

digits'5 and ORL face data4) as a preprocessing procedure for accelerating the 

computation. For five data sets the results are reported over 50 random 70/30 

splits of the data. USPS has a predefined training and testing sets.

In the experiments, we did not carefully tune the parameters (k,k') associated 

with our proposed SDP approaches due to computational burden. However, we 

find that the parameters are not sensitive in a wide range. They can be optimally 

determined by cross-validation. We report a 3-NN (nearest neighbor) classifier’s 

testing error. The result is shown in Table 2.2. where the baseline is obtained bv 

directly apply 3-NN classification on the original data. Next we present details of 

tests.

UCI data sets: Iri. Wine and Bal. These are small data sets with only 3 classes, 

which are from UCI machine learning repository [35]. Except the Wine data, 

which are well separated and LDA performs best, for the other two data, our SDP 

algorithms present competitive results.

USPS digit recognition. Two tests are conducted on the USPS handwriting digit 

data set. In the first test, we use all the 10 digits. USPS has predefined training 

and testing subsets. The training subset has 7291 digits. We randomly split the 

training subset: 20% for training and 80% for testing. The dimensionality of these 

16 x 16 images are reduced to 551) by PCA. 90.14% of the variance is preserved.

" The codes are obtained from the authors’ website h t t p : //www. weinbergerweb. net/Dow nloads/  
LMNN. html

’h t t p ://www. g a u s s ia n p r o c e s s . o rg /g p m l/d a ta /
'h t t p : //www. c l . ca m .ac .u k / r e s e a r c h /d t g / a t t a r c h iv e / f a c e d a t a b a s e . html
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LMNN gives the best result with an error rate 4.22%. Our SDPs have similar 

performance. For the second test, it is only run once with the predefined training 

subset and test subset. The digits 1.2 and 3 are used. On this data set. our two 

SDPs deliver lowest test errors. It is worth noting that LDA performs even worse 

than PCA. This is likely due to the data’s non-Gaussian distribution.

ORL face recognition. This data set consists of 400 faces of 40 individuals: 10 per 

each. The image size is 5G x 46. We down-sample them by a factor of 2. Then 

PCA is applied to obtain 42D eigenfaces. which captures about 81%> of the 

variance. Again two tests are conducted on this set. The training and testing sets 

are obtained by 7/3 and 5/5 sampling for each person respectively. For both tests, 

LMNN performs best, and SDPj is the second best one. Also note that for each 

method, its performance on OH LI is better than its corresponding result on 

ORL2. This is expected since OH Li contains more training examples.

For all the tests, our algorithms are consistently better than PCA and LDA. The 

state-of-the-art LMNN outperforms ours on tasks with many classes such as 

USPS1, ORLl and ORL2. It might be due to the fact that, inspired bv SVM, 

LMNN enforces constraints on each training point. These constraints ensure that 

the learned metric correctly classifies as many training points as possible. The 

price is that LMNN's SDP optimization problem involves many constraints. With 

a large amount of training data, the required computat ional demand could be 

prohibitive. This is because the number of variables of LMNN is linear in the 

number of training data points. Therefore as SVM, it is difficult to scale it to large 

size problems. In contrast, our SDP formulation is independent of the amount of 

training data. The complexity is entirely determined by the dimension of the input 

data.

Because we have observed that for the data sets with few classes, our SDP 

approaches usually are better than LMNN. we now verify this observation with
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more experiments. We run SDPs and LMNN on the data set ORL2. We vary the 

number of classes c from 5 to 32. The first c individuals’ images are used. The 

parameters of SDP2 remain unchanged: k = 2 and k' =  3. For each value of c, the 

experiment is run 10 times. We report the classification result in Table 2.3. This 

result confirms that our SDPs perform well for tasks with few classes. It also 

explains why LMNN outperforms our SDPs for data sets having many classes. It 

might also be possible to include constraints as LMNN does in our SDP 

formulation.

The second classification experiment we have conducted is to compare our methods 

with two LDA's variations, namely, uncorrelated linear discriminant analysis 

(ULDA) [27] and orthogonal linear discriminant analysis (OLDA) [52]. ULDA was 

proposed for extracting feature vectors with uncorrelated attributes. The crucial 

property of OLDA is that the discriminant vectors of OLDA are orthogonal to 

each other (In other words, the transformation matrix of OLDA is orthogonal). 

The Yale face database5 is used here. The Yale database contains 165 grav-scale 

images of 15 individuals. There are 11 images per subject. The images 

demonstrate variations in lighting condition, facial expression (normal, happy, sad. 

sleepy, surprised, and wink). The face images are manually aligned and cropped 

into 32 x 32 pixels, with 256 gray levels per pixel. The 11 faces for each individual 

is randomly split into training and testing sets by 4/7. 5/6 and 6/5 sampling.

PC A is performed to reduce 1024D into 50D. which contains above 98% of the 

total variation.

An important parameter for most subspace learning based face recognition 

methods is dimensionality estimation. Usually the classification accuracy varies in 

the number of dimensions. Cross validation is often needed to estimate the best 

dimensionality. We simply set the dimensionality to c — 1, where c is the number 

’http://cvc.yale.edu/projects/yalefaces/yalefaces.html
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of classes. That means, on the Yale dataset, the final dimensions for all algorithms 

are 14. As in the first experiment, we also fix the parameters of SDPo: k = 2 and 

k! =  3.

4 Train 5 Train 6 Train
baseline 47.76(4.18) 44.40(3.61) 40.87(5.12)

LDA 39.38(8.34) 24.17(2.88) 21.40(3.07)
ULDA 29.14(5.17) 25.61(2.85) 22.80(4.12)
OLDA 27.57(5.55) 24.61(3.35) 20.53(3.33)
S1)P2 27.05(5.65) 23.17(3.31) 20.73(2.85)

Table 2.4: Classification error of a 3-NN classifier on the Yale face database in 
the format of m ean(std)% . Each case is run 20 times to calculate the mean and 
standard deviation. SDP2 performs slightly better than OLDA.

Table 2.4 summarizes the classification results. We see that ULDA performs 

similarly with the traditional LDA. OLDA achieves higher accuracies than ULDA 

and LDA. The proposed SDP algorithm is slightly better than OLDA. Since both 

OLDA and the proposed SDP algorithm produces orthogonal transformation 

matrix, we may conclude that orthogonality does benefit subspace based face 

recognition.

As mentioned, for the LDA algorithm and its variations, the data are restricted to 

be mapped to at most c — 1 dimensions. Our SDP algorithms do not have this 

restriction. We have compared the final classification results on Yale when the 

final dimensionality varies using the SDP2 algorithm in Table 2.5. It can be 

observed that c — 1 is not the best dimensionality for SDP2 in this case.

final dimensions 14 20 24 30
s d p 2 27.05(5.65) 26.43(5.14) 26.86(4.18) 28.62(5.27)

Table 2.5: Classification error of a 3-NN classifier on the Yale face database with 4 
training examples. Each case is run 20 times.

A disadvantage of the proposed SDP algorithms is that it is computationally more 

expensive than spectral methods. In the above experiment, the Dinkelbach
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algorithm needs around 80 seconds to converge. In contrast, LDA, ULDA or 

OLD A needs about 2 seconds6.

2.6 E x te n s io n : E x p lic itly  C o n tro ll in g  S p a rsen e ss  o f W

In this section, we show that with the flexible optimization framework, it is 

straightforward to enforce additional constraints on the projection matrix. We 

consider the sparseness constraints here.

Sparseness builds one type of feature selection mechanism. It has many 

applications in pattern analysis and image processing [20. 21. 24. 11]. 

Mathematically, we want the projection matrix W  to be sparse. That is,

Card(VF) < Ö (0 < 0  < Dd). Here 0  is a predefined parameter. C ard  (IF) 

denotes the cardinality of the matrix IF, i.e., the number of non-zero entries in the 

matrix W . Since Z — 1111' . we rewrite C a rd (11) < 0  as C ard(Z) < O2. The 

discrete non-convex cardinality constraint can be relaxed into a weaker convex one 

using the technique discussed in [11].

For any u £ WLn . Card( u) - 0  means the following inequality holds:

\\u\\i < \ /0  ||u||, • We can then replace the non-convex constraint C ard(Z) < 0 2 

by a convex constraint: ||Z||i <  0  ||Z ||F. ||.4||F =  yJ'Yhij stands for the 

Frobenius norm. Since ||Z ||F = ||IFIFt ||f =  | | I F I F | | f =  ||Irfxrfllf =  now the 

sparseness constraint becomes convex (it is easy to rewrite it into a sequence of 

linear constraints)

||Z ||, < (2.9)

By inserting the constraint (2.9) into Algorithm 1 or 2. we obtain a sparse

projection. Note that (2.9) is a. convex constraint,' which can be viewed as a

(>Thc computation environment is: Matlab 7.4 on a desktop with a P4 3.4GHz CPU and 1G 
memory. The SDP solver used is CSDP 6.0.1.

1 There is a standard trick from mathematical programming for expressing the G-norni as a linear 
function. By decomposing the variable Z  — Z+ — Z  into positive and negative parts respectively.
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convex lower bound on the function C a rd (Z). It can be decomposed into 0 ( D 2) 

linear constraints. For a large Z), the memory requirements of Newton's method in 

interior-point algorithms could be prohibitive.

We first run a simple experiment on artificial data to show how the sparseness of 

the projection matrix W  changes as the value of 0 \ /a  varies. For simplicity, we set 

d = 1: i.e., W  is a 11) vector. We randomly generate the matrices St, and Sv in this 

way: S  =  UTU 4- l(rirrw. Here S  means both St, and Sv but Sf, ^  Sv. U <E R in>< 1(1 is 

a random matrix with all its elements following a uniform distribution in [0.1] and

w = [1.0.1.0.1.0.1.0.1.0].

We sample 40 different pairs of matrices and Sv. We then input St, and Sv into 

the Dinkelbach algorithm with the additional sparseness constraint (2.9). For each

0  between 1 and 10, we solve the SDP. W  is extracted by computing the first 

eigenvector of Z. The cardinality of W  as a function of 0  is illustrated in 

Figure 2.38. We can see that 0  is indeed a good indicator of the cardinality. Note 

that when 0 = 1 ,  one always gets a W  with a single element being one and all 

others being zeros in this example. We also plot an example of the obtained W  

with © =  3 and W  without sparseness constraints for an intuitive comparison in 

Figure 2.4.

The second experiment is conducted on the Wine data described in Table 2.1. St, 

and Sv are constructed using SDP] using the same parameters shown in Table 2.1. 

The final projected dimension is 8. We want each column of W  to be sparse. In 

other words, only a subset of features are selected. We compare our performance 

against the simple thresholding method [7]. Table 2.6 reports the classification

(2.9) is written into 1T(Z+ + Z_) 1 < (~)\/d and Z+ > 0. Z_ > 0 (element-wise non-negative). Here
1 is a column vector with all elements being ones.

sFor calculating cardinality, an clement is regarded as non-zero if its absolute magnitude is larger 
than 10% of the vector’s maximum absolute magnitude.
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error. As expected, the proposed algorithm performs better than the simple 

thresholding method.

cardinality 1 5 6
SDP with sparseness 6.98(3.63) 5.47(2.44) 5.09(2.74)
simple thresholding 7.55(2.52) 7.55(3.72) 8.02(3.35)

Table 2.G: Classification error of a 3-NN classifier on the Wine dataset w.r.t. the 
cardinality of each row of W . Each case is run 20 times.

2.7 C onclusion

In this work we have presented a new supervised dimensionality reduction 

algorithm. It has two key components: a global optimization strategy for solving 

the trace quotient problem; and a new trace quotient cost function specifically 

designed for linear dimensionality reduction. The proposed algorithms are 

consistently better than LDA. Experiments show that our algorithms’ performance 

is comparable to the LMNN algorithm but with computational advantages. Future 

work will be focused on the following directions. First, we have confined ourself to 

linear dimensionality reduction in this chapter. We will explore the kernel 

approach. We already know that some nonlinear dimensionality reduction 

algorithms like kernel LDA also need to solve trace quotient problems. Second, 

new strategies will be devised to define an optimal discriminative set V.  [15] might 

be a direction. Third, SDP's computational complexity is heavy. New efficient 

methods are desirable to make it scalable to large-size problems.
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Figure 2.2: Subfigures (1)(2) show the data, projected into 2D using PCA and LDA. 
Both fail to recover the data structure. Subfigures (3)(4) show the results obtained 
by the two SDPs proposed in this chapter. The local structure of the data is pre
served after projected by SDPs. Subfigures (5)(6) are the results when the rear eight 
dimensions are extremely noisy. In this case the neighboring relationships based on 
the Euclidean distance in the input space are completely meaningless. Subfigures 
(7)(8) successfully recover data’s underlying structure given user-provided neighbor
hood graphs.
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Figure 2.3: Cardinality of W  v.s. 0 . The error bar shows the standard deviation 
averaged on 40 runs.
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Figure 2.4: The projection vector W  obtained with sparseness constraints 0  =  
3 (left) and no sparseness constraints (right). Clearly the sparseness constraints 
do produce a sparse W  while most of I F 's elements are active without sparseness 
constraints.
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Chapter 3

P S D B oost: M atrix -G en era tio n  

L inear P ro g ram m in g  for 

M ahalanobis M etric  L earning

In this chapter, we consider the problem of learning a positive semidefinite matrix. 

The critical issue is how to preserve positive semidefiniteness d u rin g  the course of 

learning. Our algorithm is mainly inspired by LPBoost [13] and the general greedy 

convex optimization framework of Zhang [54]. We demonstrate the essence of the 

algorithm, termed PSDBoost (positive semidefinite Boosting), by focusing on a 

few different applications in machine learning. The proposed PSDBoost algorithm 

extends traditional Boosting algorithms in that its parameter is a positive 

semidefinite matrix with trace being one instead of a classifier. PSDBoost is based 

on the observation that any trace-one positive semidefinite matrix can be 

decomposed into linear convex combinations of trace-one rank-one matrices, which 

serve as base learners of PSDBoost . Numerical experiments are presented.
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3.1 In trod u ction

Column generation (CG) [33] is a technique widely used in linear programming 

(LP) for solving large-sized problems. Thus far it has mainly been applied to solve 

problems with linear constraints. The proposed work here which we dub matrix 

generation (MG) extends the column generation technique to noil-polyhedral 

semidefinite constraints. In particular, as an application we show how to use it for 

solving a semidefinite metric learning problem. The fundamental idea is to 

rephrase a bounded semidefinite constraint into a polyhedral one with infinitely 

many variables. This construction opens possibilities for use of the highly 

developed linear programming technology. Given the limitations of current 

semidefinite programming (SDP) solvers to deal with large-scale problems, the 

work presented here is of importance for many real applications.

The choice of a metric has a direct effect on the performance of many algorithms 

such as the simplest k-NN classifier and some clustering algorithms. Much effort 

has been spent on learning a good metric for pattern recognition and data mining. 

Clearly a good metric is task-dependent: different applications should use different 

measures for (dis)similarity between objects. We show how a. Mahalanobis metric 

is learned from examples of proximity comparison among triples of training data. 

For example, assuming that we are given triples of images a,, a a n d  (a,, a, 

have same labels and a,, a^ have different labels, a* G M/}), we want to learn a 

metric between pairs of images such that the distance from a j to a * (d is t^ ) is 

smaller than from a^ to a,; (d ist^). Triplets like this are the input of our metric 

learning algorithm. By casting the problem as optimization of the inner product of 

the linear transformation matrix and its transpose, the formulation is based on 

solving a semidefinite program. The algorithm finds an optimal linear 

transformation that maximizes the margin between distances d is t?J and dist,/;-.

A major drawback of this formulation is that current SDP solvers utilizing
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interior-point (IP) methods do not scale well to large problems with computation 

complexity roughly 0 (n 4 5) (n is the number of variables). On the other hand, 

linear programming is much better in terms of scalability. State-of-the-art solvers 

like CPLEX [26] can solve large problems up to millions of variables and 

constraints. This motivates us to develop an LP approach to solve our SDP metric 

learning problem.

We define some notations here. A bold lower case letter x  represents a column 

vector and an upper case letter A' is a matrix. We denote the space of D x D 

symmetric matrices by S^, and positive semidefinite matrices by §+. Tr(-) is the 

trace of a square matrix and (X . Z ) =  Tr(A"ZT) = XijZjj  calculates the inner 

product of two matrices. An element-wise inequality between two vectors writes 

u < v, which means Ui < v t for all i.

We use A" 0 to indicate that matrix A" is positive semidefinite. For a matrix 

X  € SD, the following statements are equivalent: (1) X  0 (X  € §+); (2) All 

eigenvalues of X  are nounegative (Ai (X) > 0, 2 =  1,--- , D)\ and (3) Vw e 

ii X u  > 0.

3.2 R ela ted  W ork

We overview some relevant work in this section.

Column generation was first proposed by Dantzig and Wolfe [10] for solving some 

special structured linear programs with extremely large number of variables. [33] 

has presented a comprehensive survey on this technique. The general idea of CG is 

that, instead of solving the original large-scale problem (master problem), one 

works on a restricted master problem with a reasonably small subset of variables 

at each step. The dual of the restricted master problem is solved bv the simplex 

method, and the optimal dual solution is used to find the new column to be 

included into the restricted master problem. LPBoost [13] is a direct application of
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CG in Boosting. For tlie first time, LPBoost shows that in an LP framework, 

unknown weak hypotheses can be learned from the dual although the space of all 

weak hypotheses is infinitely large. This is the highlight of LPBoost, which has 

directly inspired our work.

Metric learning using convex optimization has attracted a lot of attention recently 

[48. 46. 38]. These works have made it possible to learn distance functions that are 

more appropriate for a specific task, based on partially labeled data or proximity 

constraints. These techniques improve classification or clustering accuracy by 

taking advantage of prior information. There is plenty of work reported. We list a 

few that are most relevant to ours. [48] learns a Mahalanobis metric for clustering 

using convex optimization to minimize the distance between examples belonging to 

the same class, while at the same time restricting examples in difference classes 

not to be too close. The work in [46] also learns a Mahalanobis metric using SDP 

by optimizing a modified L-NN classifier. They have used first-order alternating 

projection algorithms, which are faster than generic SDP solvers. The authors in 

[38] learns a Mahalanobis by considering proximity relationships of training 

examples. The final formulation is also an SDP. They replace the positive 

semidefinite (p.s.d.) conic constraint using a sequence of linear constraints under 

the fact that a. diagonal dominance matrix must be p.s.d. (but not vice versa). In 

other words t he conic constraint is replaced by a more strict one. The feasibility set 

shrinks and the solution obtained is not necessarily a solution of the original SDP.

3.3 P relim in aries

We begin with some basic definitions that will be useful.
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3.3.1 E xtrem e p oin ts o f trace-on e sem idefin ite  m atrices

Before we present our main results, we prove an important theorem that serves the 

basis of the proposed algorithm.

Definition 3.3.1. For any positive integer M . given a set o f points { x \ ,

in a real vector or matrix space Sp. the convex hull of Sp spanned by M  elements

in Sp is defined as:

convA/(Sp) =  < > i OiXi Oj > 0. y i 0i = 1, x % € Sp >

Define the convex hull1 of Sp as:

conv(Sp) =  |^JconvA/(Sp)
M

f ̂ —> A/ I M )
= I ] 0*®*| 0* > Q- y :  1 o{ = i,®* e sp, m  <= z+j .

Here Z+ denotes the set of all positive integers.

Definition 3.3.2. Let us define I'i to be the space of all positive semidefinite 

matrices X  G §+ with trace equaling one:

I'i =  { X IX > 0, Tr(X) = 1} ;2

and to be the space of all positive semidefinite matrices with both trace and 

rank equaling one:

fti =  {Z  I Z ^ 0, Tr(Z) = 1, rank(Z) -  1} .

1 Strictly, the union of convex hulls may not be a convex hull in general. It is a linear convex 
span.

"Such a matrix X  is called a density matrix, which is one of the main concepts in quantum 
physics. A density matrix of rank one is called a pure state, and a density matrix of rank higher 
than one is called a mixed state.

41



We also define I 2 as the convex hull o f LIi, i.e..

I12 =  conv(Qi).

Lemma 3.3.3. Let iU be a convex polvtope defined as 0,2 = {A G R /;| > 0.

V/c =  1, • • • , D. Y k= i Afc =  1}, then the points with only one element equaling one 

and all the others being zeros are the extreme points (vertexes) ofilo- All the 

other points cannot be extreme points.

Proof: Without loss of generality, let us consider such a point A' =  {1,0, •• • ,()}.

If A' is not an extreme point of ih ,  then it must be expressed as an convex 

combination of a few other points in A; =  Y iL i  0i > 0, Y iL i  Qi — 1 and 

A' ^ A '. Then we have equations: Y fL i  ÂAj. =  0, VA: =  2, • • • , D. It follows that 

Alk =  0, V/ and k = 2. • • • , D. That means, A| =  1 Vi. This is inconsistent with 

A' A '. Therefore such a convex combination does not exist and A' must be an 

extreme point. It is trivial to see that any A that has more than one active 

element is an convex combination of the above-defined extreme points. So they 

cannot be extreme points. □

Theorem  3.3.4. \ \  equals to I 2 : he.. I’i is also the convex hull o f i l \ .  In other 

words, all Z  G Hi, forms the set o f extreme points o f I \ .

Proof: It is easy to check that any convex combination Y i  0 ,Z \  such that 

Z ’ G f2i, resides in Ifi, with the following two facts: (1) a convex combination of 

p.s.d. matrices is still a p.s.d. matrix; (2) Tr (^T 6tZ l) =  £T(0äTr(Z*)) =  1.

By denoting Ai > • • • > Xo > 0 the eigenvalues of a Z  G I i, we know that Ai < 1 

because A; =  Tr(Z) =  1. Therefore, all eigenvalues of Z  must satisfy:

Ai G [0,1 ], V/ =  1, • • • , D  and Y ?  A* =  1. Bv looking at the eigenvalues of Z  and 

using Lemma 3.3.3, it immediately follows that a matrix Z such that Z 0,

Tr(Z) =  1 and rank(Z) > 1 cannot be an extreme point of I \ .  The only
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candidates for extreme points are those rank-one matrices (Ai = 1 and 

A‘2. .. ,d — 0). Moreover, it is not possible that some rank-one matrices are extreme 

points and others are not because the other two constraints Z )? 0 and T r(Z) =  1 

do not distinguish between different rank-one matrices.

Hence, all Z £ £2i forms the set of extreme points of I'i. Furthermore, I'i is a 

convex and compact set, which must have extreme points. Krein-Milman Theorem 

[29] tells us that a convex and compact set is equal to the convex hull of its 

extreme points. □

This theorem is a special case of the results from [36] in the context of eigenvalue 

optimization. A different proof for the above theorem’s general version can also be 

found in [14]. In the context of SDP optimization, what is of interest about 

Theorem 3.3.4 is as follows: it tells us that a bounded p.s.d. matrix constraint 

£ I'i can be equivalently replaced with a set of constrains which belong to IA.

At first glance, this is a highly counterintuitive proposition because IA involves 

many more complicated constraints. Both 0j and Zl (V? =  1, - • • , M)  are unknown 

variables. Even worse, M could be extremely (or even indefinitely) large.

3.3 .2  B oostin g

Boosting is an example of ensemble learning, where multiple learners are trained to 

solve the same problem. Typically a boosting algorithm [40] creates a single strong 

learner by incrementally adding base (weak) learners to the final strong learner. 

The base learner has an important impact on the strong learner. In general, a 

boosting algorithm builds on a user-specified base learning procedure and runs it 

repeatedly on modified data that are outputs from the previous iterations.

The inputs to a boosting algorithm are a set of training example x. and their
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corresponding class labels y. The final output strong classifier takes the form

Here ./)(•) is a base learner. From Theorem 3.3.4. we know that a matrix X  G I'i 

can be decomposed as

By observing the similarity between Equations (3.1) and (3.2), we may view Z ’ as 

a weak classifier and the matrix X  as the strong classifier we want to learn. This is 

exactly the problem that boosting methods have been designed to solve. This 

observation inspires us to solve a special type of SDPs using boosting techniques.

A sequential greedy approximation algorithm proposed by Zhang [54] is an efficient 

way of solving a class of convex problems, which provides fast convergence rates.

It is shown in [54] that boosting algorithms can be interpreted within the general 

framework of [54]. The main idea of sequential greedy approximation is as follows. 

Given an initialization u {) 6 V. V can be a subset of a linear vector space, a matrix 

space or a functional space. The algorithm finds u l G V. i =  1, • • • , and 0 < A < 1 

such that the cost function F ((l — A)rd_1 -f Aw*) is approximately minimized; Then 

the solution u l is updated as u l =  (1 — X)u'~] + Xu’ and the iteration goes on.

3 .4  L arge-m argin  S em idefin ite  M etric  Learning

We consider the Mahalanobis metric learning problem as an example although the 

proposed technique can be applied to many other problems in machine learning 

such as nonparametric kernel matrix learning [30].

We are given a set of training examples a, G R n . i =  1,2,*--. The task is to learn 

a distance metric such that with the learned metric, classification or clustering will 

achieve better performance on testing data. The information available is a bunch

(3.1)

(3.2)
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of relative distance comparisons. Mathematically we are given a set S  which 

contains the training triplets: S  =  { (aj,a ; . a^)| d is t?j < dist**.}, where dist,j 

measures distance between a, and a y with a certain metric. In this work we focus 

on the case that d ist calculates the Mahalanobis distance. Equivalently we are 

learning a linear transformation P  G WLD <d such that d ist is the Euclidean 

distance in the projected space: d is t?J =  ||P1 a, — PTa j ||“ =

(ai —  aJ)TPPT(a, — aj ) .  It is not difficult to see that the inequalities in the set S  

are non-convex because a difference of quadratic terms in P is involved. In order 

to convexify the inequalities in S. a new variable X  =  P P T is instead used. This is 

a typical technique for modeling an SDP problem [6]. We wish to maximize the 

margin that is defined as the distance between d is tij and d is t^ . That is. p 

(list ,/, — distfj =  (a, — a/t)TA(a,- — a*.) — (a, — a?)TA'(a, — aj). Also one may use 

soft margin to tolerate noisy data. Putting these thoughts together, the final 

convex program we want to optimize is:

max
p.X4

P ~ £>r

s.t. A ^  O.Tr(A) =  l .£  > 0,

(a, -  ak)TX{a t -  ak) -  (a, -  a )̂7 A(a, -  aj) > p -  ^r ,

V(a,-. aj, ak) G S.

( 3 . 3 )

Here r indexes the training set S. \S\ denotes the size of S. C is a trade-off 

parameter that balances the training error and the margin. Same as in support 

vector machine, the slack variable £ > 0 corresponds to the soft-margin hinge loss. 

Note that the constraint Tr(A) = 1 removes the scale ambiguity because the 

distance inequalities are scale invariant.
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To simplify our exposition, we write

Ar = (a,: -  ak)(a, -  ak)T -  (a; -  aj)(a; -  aj)T. (3.4)

The last constraint in (3.3) is then written

(Ar'. X) > p — V A r built from S i r  = 1, • • • |<S|. (3.5)

Problem (3.3) is a typical SOP since it has a linear cost function and linear 

constraints plus a p.s.d. conic constraint. Therefore it can be solved using 

off-the-shelf SDP solvers like CSDP [5]. As mentioned general interior-point SDP 

solvers do not scale well to large-sized problems. Current solvers can only solve 

problems up to a few thousand variables, which makes many applications 

intractable. For example, in face recognition if the inputs are 30 x 30 images, then 

D — 900 and there would be 0.41 million variables. Next we show how we 

reformulate the above SDP into an LP.

3.5 B o o stin g  v ia  M atrix -G en eration  Linear  

P rogram m ing

Using Theorem 3.3.4. we can replace the p.s.d. conic constraint in (3.3) with a 

linear convex combination of rank-one unitary p.s.d. matrices: A' =  YliLi ■ 

Substituting X  in Problem (3.3). we obtain

s.t. £ > 0.

< V .£ '=1  n,z’) = E ä i  ( V ,z*)0i > p - ( r ,

VAr built from Si r  = |<S|, (Pi)
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YdUOi =  1.0 >o ,

Z? e i l l = !.-•• , M.

This above problem is still very hard to solve since it has non-convex rank 

constraints and an indefinite number of variables (M is indefinite because there 

are an indefinite number of rank-one matrices). However if we somehow know 

matrices Zl (i =  1, • • •) a priori, we can then drop all the constraints imposed on 

Zl (?' =  !, -••) and the problem becomes a linear program; or more precisely a 

semi-infinite linear program (SILP) because it has an infinitely large set of 

variables 0.

Column generation is a state-of-the-art method for optimally solving difficult 

large-scale optimization problems. It is a method to avoid considering all variables 

of a problem explicitly. If an LP has extremely many variables (columns) but 

much fewer constraints, CG can be very beneficial. The crucial insight behind CG 

is: for an LP problem with many variables, the number of non-zero variables of the 

optimal solution is equal to the number of constraints, hence although the number 

of possible variables may be large, we only need a small subset of these in the 

optimal solution. It works by only considering a small subset of the entire variable 

set. Once it is solved, we ask the question: “Are there any other variables that can 

be included to improve the solution?” . So we must be able to solve the subproblcm: 

given a set of dual values, one either identifies a variable that has a favorable 

reduced cost, or indicates that such a variable does not exist. In essence, CG finds 

the variables with negative reduced costs without explicitly enumerating all 

variables. For a general LP. this may not be possible. But for some types of 

problems it is possible.

We now consider Problem (Pi) as if all Zl. (?’ : !, •••) were known. The dual of
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(Fi) is easily derived:

min 7T
n.w

s.t. E S i ( i4r ,Z i)«;r < 7 r,t =  l 1- - - , M,  (Di)

e S i «V = l.
0 < wr < C, r  =  1, • • • , |«S|.

For convex programs with strong duality, the dual gap is zeros, which means the 

optimal value of the primal and dual problems coincide. For LPs and SDPs, strong 

duality holds under very mild conditions (almost always satisfied by LPs and SDPs 

considered here) [G],

We now only consider a small subset of the variables in the primal; i.e.. only a 

subset of Z  (denoted by Z )A is used. The LP solved using Z  is usually termed 

restricted master problem (RMP). Because the primal variables correspond to the 

dual constraints, solving RMP is equivalent to solving a relaxed version of the dual 

problem. With a finite Z, the first set of constraints in (Di) are finite, and we can 

solve the LP that satisfies all the existing constraints.

If we can prove that among all the constraints that we have not added to the dual 

problem, no single constraint is violated, then we can conclude that solving the 

restricted problem is equivalent to solving the original problem. Otherwise, there 

exists at least one constraint that is violated. The violated constraints correspond 

to variables in primal that are not in RMP. Adding these variables to RMP leads 

to a new RMP that needs to be re-optimized. In our case, bv finding the violated 

constraint, we generate a rank-one matrix Z '. Hence, as in LPBoost [13] we have a 

HWe also use 0, n and w etc. to denote the solution of the current RMP and its dual.
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base learning algorithm as an oracle that either finds a, new Z' such that

Y}fiMr-Z')wT > 7T,

where tt is the solution of the current restricted problem, or a guarantee that such 

a Z' does not exist. To make convergence fast, we find the one that has largest 

deviation. That is.

Again here wr (r = 1, • • • , |*S|) are obtained by solving the current restricted dual 

problem (Di). Let us denote Opt(Bi) the optimal value of the optimization 

problem in (Bi). We now have a criterion that guarantees the optimal convex 

combination over all Z's satisfying the constraints in I 2 has been found. If 

Opt(Bi) < 7T, then we are done—we have solved the original problem.

The presented algorithm is a variant of the CG technique. At each iteration, a. new 

matrix is generated, hence the name matrix generation.

3.5 .1  B ase learning algorithm

In this section, we show that the optimization problem (Bi) can be exactly and 

efficiently solved using eigen-decomposition.

From Z > 0 and rank(Z) = 1. we know that Z has the format: Z =  u u  , u  £ Kr); 

and Tr(Z) =  1 means \\u\\2 = L We have

Z' — argmax^ Z)ti)r , s.t. Z G (Bi)

By denoting

( 3 .6 )
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the optimization in (Bi) equals:

max i/T H u. subject to ||u ||2 = 1. (3.7)
u

It is clear that the largest eigenvalue of H, Amax(H), and its corresponding 

eigenvector u\  give the solution to the above problem. Note that H is symmetric. 

Therefore we have the solution of the original problem (Bi): Opt(Bi) =  Ainax(H) 

and Z' = u iu \ .

There are approximate eigenvalue solvers, which guarantee that for a symmetric 

matrix U and any e > 0. a vector v  is found such that ir  Uv > Amax — e. To 

approximately find the largest eigenvalue and eigenvector can be very efficient 

using Lanczos or power method. We use the MATLAB function cigs to calculate 

the largest eigenvector, which calls mex files of ARPACK. ARPACK is a collection 

of Fortran subroutines designed to solve large scale eigenvalue problems. When the 

input matrix is symmetric, this software uses a variant of the Lanczos process 

called the implicitly restarted Lanczos method [9].

Putting all the above analysis together, we summarize our PSD Boost algorithm for 

metric learning in Algorithm 3. Note that, in practice, we can relax the 

convergence criterion by setting a small positive threshold s' > 0 in order to obtain 

a good approximation quickly. Namely the convergence criterion is 

Opt(Bi) < 7T +  s '.

The algorithm has some appealing properties. Each iteration the solution is 

provably better than the preceding one, and has rank at most one larger. Hence 

after M  iterations the algorithm attains a solution with rank at most M . The 

algorithm preserves CG's property that each iteration improves the quality of the 

solution. The bounded rank follows the fact that 

rank(A 4- B) < ran k (A) +  rank(Z?), V matrices A and D.

An advantage of the proposed PSDBoost algorithm over standard boosting

50



schemes is the totally-corrective weight update in each iteration, which leads faster 

convergence. The coordinate descent optimization employed by standard boosting 

algorithms is known to have a slow convergence rate in general. However, the price 

of this totally-corrective update is obvious. PSDBoost spans the space of the 

parameter X  incrementally. The computational cost for solving the subproblem 

grows with the number of linear constraints, which increases by one at each 

iteration. Also it needs more and more memory to store the generated base learner 

Z l as represented by a series of unit vectors. To alleviate this problem, one can use 

a selection and compression mechanism as the aggregation step of bundle methods 

[4]. When the size of of the bundle becomes too large, bundle methods select 

columns to be discarded and the selected information is aggregated into a single 

one. It can be shown that as long as the aggregated column is introduced in the 

bundle, the bundle algorithm remains convergent, although different selection of 

discarded columns may lead to different convergence speeds. See [4] for details.

3.6 E xp erim en ts

In the first experiment, we have artificially generated 600 points in 24 dimensions. 

Therefore the learned metric is of size 24 x 24. The triplets are obtained in this 

way: For a point a,, we find its nearest neighbor in the same class a ; and its 

nearest neighbor in the different class a/,.. We subsample to have 550 triplets for 

training. To show the convergence, we have plotted the optimal values of the dual 

problem (Di) at each iteration in Figure 3.1. We see that PSDBoost quickly 

converges to the near-optimal solution. We have observed the so-called tailing-off 

effect, of CG on large datasets. While a near-optimal solution is approached 

considerably fast, only little progress per iteration is made close to the optimum. 

Stabilization techniques have been introduced to partially alleviate this problem 

[33]. However, approximate solutions are sufficient for most machine learning
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tasks. Moreover, we usually are not interested in the numerical accuracy of the 

solution but the test error for many problems such as metric and kernel learning. 

The second experiment uses t he Pendigits data from the UCI repository that 

contains handwritten samples of digits 1. 5, 7, 9. The data for each digits are 

16-dimensional. 80 samples for each digit are used for training and 500 for each 

digit for testing. The results show that PSDBoost converges quickly and the 

learned metric is very similar to the results obtained by a standard SDP solver. 

The classification errors on testing data with a 1-nearest neighbor are identical 

using the metrics learned by PSDBoost and a standard SDP solver. Both are 1.3%.

3 .7  C onclusion

We have presented a new boosting algorithm. PSDBoost. for learning a positive 

semidefinite matrix. In particular, as an example, we use PSDBoost to learn a 

distance metric for classification. PSDBoost can also be used to learn a kernel 

matrix, which is of interest in machine learning. We are currently exploring new 

applications with PSDBoost. Also we want to know what kind of SDP 

optimization problems can be approximately solved by PSDBoost.

52



A lgorithm  3 PSDBoost for semidefinite metric learning.
Inpu t: Training set triplets (a^.ay. a*.) £ S: Calculate Ar, r =  l,--- from S  using 

Equation (3.4).
In itialization:

1. M  = 1 (no bases selected);

2. 6 = 0 (all primal coefficients are zeros);

3. 7T — 0:

4. irr = njr, r = 1. • • • , |<S| (uniform dual weights), 

while true do

1. Find a new base Z' by solving Problem (Bi), i.e., eigen-decomposition of H 
in (3.6);

2. if Opt(Bi) < 7T th e n  break (problem solved);

3. Add Z' to the restricted master problem, which corresponds to a new con
straint in Problem (D\);

4. Solve the dual (Di) to obtain updated tt and wr (r — 1, • • • , |«S|);

5. M  = M  + 1 (base count).

end
Output:

1. Calculate the primal variable 6 from the optimality conditions and the last 
solved dual LP;

2. The learned p.s.d. matrix X  £ R r^ D, X  = •
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Figure 3.1: The objective value of the dual problem (Di) on the first (top) and 
second (bottom) experiment. The dashed line shows the ground truth obtained by 
directly solving the original primal SDP (3.3) using interior-point methods.

54



Chapter 4

C onclusion

We have studied distance metric learning in this thesis. Two methods are 

proposed for learning a Mahalanobis metric. The first algorithm uses sequential 

semidefinite programming to solve a trace quotient problem. It is claimed that 

many dimensionality reduction (or metric learning) problems can be written into a 

trace quotient formulation. We have also shown that within this new convex 

optimization framework, other constraints like sparsity constraints can be easily 

accommodated.

The second algorithm tries to learn a quadratic Mahalanobis distance from 

proximity comparisons. It does not directly use the label information. The 

learning problem can be formulated as a semidefinite program, which does not 

scale well on large-size problems. In order to improve its scalability, a new 

matrix-generation method, termed PSDBoost. is proposed. PSDBoost is inspired 

by boosting algorithms in machine learning. At each iteration, a linear program 

needs to be solved, which is computationally much cheaper.

We have only covered a small part of the metric learning topic.

Although a large body of work has been done on this topic in the literature, many 

issues are not truly solved so far. We list a few in the following.
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1. Unsupervised distance metric learning. Dimension reduction has been 

extensively studied, unsupervised distance metric learning is a more general 

problem. There is no general principle framework to learn a distance metric 

without pairwise constraints and side-information, although unsupervised 

distance metric learning has many potential applications.

2. Efficiency and scalability. As discussed before, many exist ing metric learning 

techniques have difficulties to handle large-scale problems, e.p., [48. 46]. 

Efficient and simple methods are needed. A research direction is how to 

simplify the learning problem while improving the performance with less 

training samples and larger dimensions.

3. Nonlinear distance metric learning. We have only discussed linear metric 

learning problems in this thesis. However, most real problems are nonlinear 

and experiments show nonlinear methods usually perform better. Although 

many metric learning formulation can be kernelized using the so-called kernel 

trick, it is an interesting topic to learn an explicit nonlinear distance metric.

Conclusively, as an important technique in machine learning and statistics, there 

are still many open problems in distance metric learning.
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G lossary  of Term s

T e rm E x p la n a t io n

hinge loss T he  hinge loss function is defined as h inge(^) =  m ax(ö, 1 — z),  

which is a  typical loss function for classification.

convex cone A set A' is called a  convex cone if for any x. y  G A' and  any scalars 

a > 0 and  h >  0, a x  +  by G X .

tra ce  quo tien t problem For a given p a ir (A,  B)  of real sym m etric  positive sem idefinite m a

trices, and  a given non-zero m atrix  A', th e  trace  quo tien t problem  

in th is  thesis is defined as

fl, n . T r ( X T A X )
f ( A . B , X  ) = T r { X J B x y

Rayleigh quo tien t problem For a  given pa ir (A, B)  of real sym m etric  positive sem idefinite 

m atrices, and  a given non-zero vector x : th e  generalized Rayleigh 

q u o tien t p roblem  is defined as

„ v X T A x
f ( A , B ; x ) =  x T B X

W hen B  is an  iden tity  m atrix , th e  problem  is called th e  s tan d a rd  

Rayleigh qu o tien t problem .
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fractional p rogram m ing Let /(•).<'/{■) and  /?(•) be  real-valued functions defined on a  subset 

of R " . Fractional p rogram m ing  solves th e  following problem :

m m  , s.t. g ( x )  <  0.
x h \ x )

Lanczos power m ethod It is an ite rative  algorithm  invented by C. Lanczos th a t is an ad ap 

ta tio n  of power m ethods to  find eigenvalues and  eigenvectors of a 

square  m atrix  or th e  singular value decom position of a rec tan g u la r 

m atrix .

p.s.d . positive sem idefinite

PCA principal com ponent analysis

LDA linear d iscrim inan t analysis

NCA neighborhood com ponent analysis

LM NN large m argin  nearest neighbor

CG colum n generation

G EV D generalized eigenvalue decom position

R M P restric ted  m aste r p roblem

Frobenius norm T he Frobenius norm  of a m atrix  X  is ca lcu lated  as ||A '||F =  

x f j •

(A, B ) (A. B)  =  A j j B j j  is th e  inner p ro d u ct of two m atrices.

A ) p  D A >  B  m eans A  — B  is positive sem idefinite, A — B  0.
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