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Abstract— Realistic modeling of energy consumption is crucial
for accurate performance analysis of wireless-powered sensor
nodes. In this paper, we analyze the performance of wireless-
powered sensor transmissions taking into account both the energy
cost of sensing and transmission. We consider a sensor that is
harvesting energy from an ambient radio-frequency (RF) signal
and using this energy to perform sensing and transmission. Since
energy harvesting is time-varying in nature, it introducesa delay
in the sensor transmissions. We study two delay-related metrics,
one measuring how frequent the sensed information is updated at
the sink and the other measuring the time taken from the sensing
operation to successful transmission of sensed information. We
analytically characterize the statistical behavior of both metrics
and find an important tradeoff between them. In particular, our
results illustrate that more frequent update of sensed information
at the sink increases the time taken from the sensing operation
to successful transmission of sensed information.

I. I NTRODUCTION

Energy harvesting (EH) has been widely recognized as
an enabling technology for green and self-sustainable wire-
less communications, especially in wireless sensor networks
(WSNs) [1]. Apart from the traditional energy sources, wire-
less power transfer using radio-frequency (RF) signals has
recently emerged as a promising approach to enable energy
constrained WSNs [2–6]. Practical designs for sensor devices
powered by ambient RF signals, e.g., transmitted by TV towers
or macro base stations, were considered in [2], [3]. The
hardware and circuit design for RF powered wireless sensor
was studied in [4]. A cognitive communication protocol for
wireless-powered WSN was studied in [5]. Routing and link
layer protocol designs for wireless-powered WSN were studied
in [6].

An important design consideration for energy-constrained
wireless sensors is the modeling of energy costs. There are
three major operations in wireless sensors incurring energy
costs: RF transmission/reception (including idle listening [7]),
information sensing (and processing), and other basic process-
ing while active [8]. The majority of the current work on
wireless sensor communications considers the energy cost of
transmission, with the assumption that RF transceiver usually
consumes the majority of the sensor’s energy. It is usually true
that the basic processing for keeping a sensor active consumes
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relatively less energy compared with communications. This
assumption is also relevant when low-quality sensing is used.
However, due to the diversity of sensors, some commonly-
used sensing modules are designed with high-rate and high-
resolution A/D conversion and hence can be power hungry [9].
In fact, energy cost of sensing can be higher than energy cost
of transmission in such scenarios (from the citations in [9]).

For EH sensors, the delay of transmission of sensed in-
formation from the sensor to the sink becomes a more crit-
ical issue than that for conventional sensors with sufficient
(initial) power storage, because of the extra time required
for EH [10], [11]. The transmission completion time was
studied with several different data arrival processes in [10].
The focus in [10] was delay due to EH, while transmission
was assumed to be always successful. Transmission delay was
studied for a wireless-powered sensor with retransmissionin
[11]. Compared with conventional wireless sensors, for each
(re)transmission, a certain amount of time is required for EH
to provide enough energy for transmission, which increases
the delay.

We study the performance of an energy-constrained sensor
powered by ambient RF signals, e.g., signals from the nearest
TV tower or macro base station, taking both energy cost
of sensing and transmission into account. We consider the
application scenario where a certain condition or process needs
to be monitored constantly. Thus, the sensor is required to
sense information and transmit it to a sink on a periodic basis
[12]. Upon each successful transmission, the sink updates its
recoded information. However, for a wireless-powered sensor,
in order to perform the sensing and transmission, it needs to
harvest enough energy from an EH process of time-varying
nature. The time-varying EH process results in randomness
in the delay for performing sensing and transmission. Thus,
periodic update at the sink is generally impossible. Consid-
ering the fact that the EH rate from ambient RF signal is
typically low, we consider a harvest-then-use protocol where
the sensor performs sensing and transmission as soon as it has
harvested sufficient energy. We measure delay in terms of the
update cycle and successful transmission delay. The successful
transmission delay metric measures the time duration from
sensing to successful transmission of sensed information,
while the update cycle metric measures how frequent the
information is updated at the sink. Note that in conventional



WSNs, periodic sensing protocols have a fixed update cycle
[12]. In our scenario with wireless-powered sensor, the update
cycle becomes a random variable due to the randomness in
the amount of harvested energy. Our novel contributions are
as follows:
• The delay performance of a wireless-powered EH sensor

is assessed taking into account both energy cost of sensing
and transmission. The conditions under which sensing and
transmission occurs in order to achieve the best delay
performance, are then determined.

• Two delay-related performance metrics, namely, update
cycle and successful transmission delay are analyzed. Both
the energy-carrying ambient RF signals and the sensor-
sink transmission experience time-varying fading channels,
making both delay metrics random variables. The complete
statistics of both metrics are derived in closed-form.

• An important tradeoff is found between the update cycle
and successful transmission delay when the energy cost of
sensing is comparable with or higher than the energy cost of
transmission: reducing the update cycle, i.e., more frequent
updates, comes at the price of longer successful transmission
delay. This tradeoff is relevant when the energy cost of
sensing is considered.

II. SYSTEM MODEL

We consider a simple transmission scenario (shown in
Fig. 1) where a sensor transmits its sensed information to the
sink. The sensor is a wireless-powered node which harvests
energy from the ambient RF signals. The sensor has two
main functions, i.e., sensing and transmission, each having
individual energy cost. In order to perform either sensing
or transmission, the sensor needs to spend a certain amount
of time on EH. Following current practical design of EH
sensors [13], the sensor adopts a time-slotted or block-wise
operation. We assume that one sensing operation or one
transmission is performed in one time block of durationT .
Although sensors may spend differing amounts of time on
one sensing operation [14], the assumed protocol and analysis
may be generalized to different sensing time durations other
thanT , which is outside the scope of this work. Considering
that a sensor may perform sensing, transmission, or RF energy
harvesting, we define the following types of time blocks, with
associated energy costs:
• Sensing Block (SB): the sensor samples the targeted envi-

ronmental information and then processes and packs sensed
information into a data packet. The energy cost in a SB is
denoted byESB.

• Transmission Block (TB): the sensor transmits the newest
generated data packet (from the last sensing operation) to
the sink with energy costETB, i.e., the transmit power is
PTB = ETB/T . If transmission is successful, we have a
successful transmission block (STB); otherwise, we have
a failed transmission block (FTB). We assume that suc-
cesses/failures of each TB are mutually independent [11],
[15]. The probability of a TB being a FTB, i.e., transmission
outage, is denoted byPout.

Sensor

SinkTransmission link

Battery

Sensing module Data buffer

Transmitter

RF energy harvesting

Energy flow

Data flow

Information transmission

Fig. 1 System model and sensor components.

• Energy-harvesting block (EHB): the sensor harvests energy
from RF signals and stores the energy in its battery. We
assume that the battery has sufficient capacity such that
the amount of energy stored in the battery never reaches
its maximum capacity. This assumption is a reasonable
since battery capacity is several joules to several thousand
joules [1], while the energy level in the battery in our system
is only severalµJ as shown in Sec. V.

A. RF Energy Harvesting

We assume the power source has a transmit power ofPWPT

and is located at distancedWPT from the sensor. The wireless
power transfer link experiences both large-scale path loss
and small-scale Rayleigh fading, where the fading coefficient
hWPT is constant within one time block of lengthT and varies
independently from block to block. From [11], the harvested
energy in each EHB is given by

EWPT(hWPT) = ηT
PWPT|hWPT|

2

dλWPT

,

whereη is the efficiency of RF energy harvesting plus storage
of the sensor [16] andλ is the path loss exponent. With the
Rayleigh fading assumption,|hWPT|

2 follows an exponential
distribution with unit mean, and hence,EWPT(hWPT) is an
exponential random variable with meanρ, whereρ represents
the average harvested energy in each EHB given by

ρ = ηT
PWPT

dλWPT

. (1)

B. Proposed Sensing and Transmission Protocol

Considering the energy cost of sensing, it is necessary to
harvest sufficient energy,ESB, before sensing can occur. How-
ever, it is unwise to perform sensing as soon as the harvested
energy reachesESB because there will be insufficient energy
left for transmission after the sensing operation. The timespent
on EH due to insufficient energy for transmitting the sensed
information results in unnecessary delay. To avoid such delay,
we define the condition for the sensing operation as when
the harvested energy in the battery exceedsESB+ETB. In this
way, a transmission of sensed information occurs immediately
following after the sensing operation. We allow for a certain



number of retransmissions, if transmission is not successful
due to the fading channel, between the sensor and sink.
Such retransmission schemes are commonly implemented in
conventional WSNs [17]. However, retransmissions result in
large delays. Therefore, it is important to properly adjustthe
number of maximum retransmissions (which should be much
smaller than that of conventional sensors) and start a new
sensing operation once that number is reached. We denote the
maximum number of transmission asN , that is, a maximum
of N − 1 retransmissions.

Having the protocol for sensing and transmission operations
described above, the sensor operates as follows: First, the
sensor uses several EHBs to harvest enough energy,ESB+ETB,
and then a SB and a TB occur. If the transmission in the TB
is successful, i.e., having a STB, the sensor harvests energy
(taking several EHBs) for the next sensing period when the
battery energy exceedsESB + ETB. If the transmission in the
TB fails, i.e., having a FTB, the sensor goes back to harvesting
energy (taking several EHBs) and performs a retransmission
when the battery energy exceedsETB. Retransmission may
occur several times until the sensed information is successfully
transmitted to the sink or the maximum transmission number
N is reached. Then, the data packet at the sensor is dropped
and the sensor goes back to harvest the energy for a new
sensing operation.

Fig. 2 illustrates this process with the maximum number of
transmissions set toN = 3. The first block in Fig. 2 is a SB,
followed by two FTBs (and two EHBs in between). Since the
third TB is a STB, the sensed information in the first SB is
successfully transmitted to the sink. Then, the sensor usesone
EHB to harvest energy to conduct sensing in the next SB. After
the second SB, there are three FTBs. Thus, the retransmission
process is terminated afterN = 3 is reached. As a result, the
sensed information in the second SB is not transmitted to the
sink. Note that the time indices shown in Fig. 2 will be defined
in Sec. III.

III. D ELAY RELATED METRICS

As described in the previous section, both sensing and
(re)transmission requires a variable amount of time for EH,
which may result in significant delays in obtaining the targeted
environmental information at the sink. In this section, we
define two metrics to measure the delay performance of the
considered sensing and transmission protocol. To enable usto
define the two metrics as random variables, we first present
Lemma 1.

Lemma 1. The amount of energy in the sensor’s battery after
each TB is an exponentially distributed random variable,Eo,
with pdf:

fEo
(ǫ) =

1

ρ
e−

ǫ
ρ , (2)

whereρ is the average harvested energy in each EHB given
in (1).

Proof. Because the harvested energy in each EHB,
EWPT(hWPT) is an exponentially distributed random

variable with parameterρ, as we have mentioned in Sec. II.A,
the energy accumulation process by consecutive EHBs can be
treated as aPoisson process [18]. Using the memorylessness
property of the Poisson process [18, pp. 134], conditioned on
that the available energy is higher than any given threshold
value, the amount of energy exceeding that threshold,Eo,
has the same distribution with the harvested energy in each
time block, i.e.,EWPT(hWPT). This proof is identical to [15,
Lemma 1]. �

For the convenience of describing the two metrics, as shown
in Fig. 2, we usetSTB,j to denote the block index for the
jth STB during the entire sensing and transmission operation.
Note that a successful transmission also means an information
update at the sink. Also, it is important to associate each
transmission with its information content. To this end, we
use tSB,j to denote the block index for the SB in which
the sensed information is transmitted in thejth STB. In
other words, environmental information sensed attSB,j is
successfully transmitted to the sink attSTB,j. Next, we define
two delay-related metrics. For simplicity and without lossof
generality, we use the number of time blocks as the delay
metric.

A. Successful Transmission Delay

If the sensed information is successfully transmitted to
the sink, we need to know how long it takes from sensing
the information to the successful transmission of the sensed
information, i.e., thesuccessful transmission delay. A longer
successful transmission delay means a more outdated informa-
tion is received by the sink. For thejth STB, the successful
transmission delay is given by the number of time blocks from
tSB,j to tSTB,j (shown in Fig. 2). The successful transmission
delay is quantified as

TSTD,j = tSTB,j − tSB,j , j = 1, 2, 3, ... (3)

According to the sensing and transmission protocol defined
in the previous section, each SB is directly followed by a
TB. From Lemma 1, the distribution of available energy after
any TB is the same. Hence, the distribution of the available
energy after the first TB followingtSB,j is the same for all
j. Consequently,TSTD,j j = 1, 2, ..., are independent and
identically distributed (i.i.d.). For convenience, we remove
subscriptj for TSTD in (3).

Note that the definition of successful transmission delay is
the same as that in [10], which is the delay since a packet
arrives at the source until it is successfully transmitted to the
destination. But in our scenario, due to the transmission outage
and an imposed maximum number of transmissions, some
sensed information may not be successfully transmitted to the
sink. The term successful transmission delay reflects the fact
that this metric is only concerned with successful transmission
of sensed information.

B. Update Cycle

Each successful transmission means an update of the sensed
information held by the sink. Therefore, we are also interested
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Fig. 2 Illustration of update cycle and successful transmission delay.

in measuring how often the sensed information is updated at
the sink. We define the number of time blocks between two
adjacent STBs as theupdate cycle (shown in Fig. 2). A short
update cycle means that the sensed information is updated at
the sink very frequently. The update cycle is defined as

TUC,j = tSTB,j+1 − tSTB,j , j = 1, 2, 3, ... (4)

Using Lemma 1, it is also easy to show thatTUC,j are
independent and identically distributed (i.i.d.) for allj. For
convenience, we remove the subscript ofj for TUC in (4). We
also useUC to denote the sequence of time blocks from an
arbitrary STB to the next STB.

IV. A NALYTICAL RESULTS

In this section, we derive the probability mass functions
(pmfs) of the delay-related metrics,TSTD and TUC in order
to complete the statistical characterization. Using thesepmfs,
the average values ofTSTD andTUC are derived.

A. Successful Transmission Delay

Theorem 1. The pmf of successful transmission delay is given
by

Pr {TSTD=k} =

min{k,N}
∑

n=1

(1− Pout)(Pout)
n−1

(

(n−1)ETB

ρ

)k−n

exp(− (n−1)ETB

ρ
)

(1− (Pout)N ) (k − n)!
, k≥1.

(5)

wherePout andESB are defined in Sec. II andN is defined
in Sec. III.
Proof. See Appendix B (which uses the definitions in Ap-
pendix A). �

From (5), the average value ofTSTD can be easily deter-
mined.

Corollary 1.1. The average successful transmission delay is
given by

T̄STD = Asuc + (Asuc − 1)
ETB

ρ
, (6)

where

Asuc =
N(Pout)

N+1 − (N + 1)(Pout)
N + 1

(1− (Pout)N )(1− Pout)
. (7)

As a special case, we consider removing the constraint
on the maximum number of transmissions so that all sensed
information is eventually transmitted to the sink.

Corollary 1.2. T̄STD increases withN , and whenN → ∞,
the asymptotic upper bound of̄TSTD is given by

lim
N→∞

T̄STD =
1 + ETB

ρ
Pout

1− Pout
. (8)

Proof. It can be shown that the derivative of̄TSTD w.r.t.
N (treatingN as a continuous real number) is larger than
0. In addition, whenN → ∞, we have (Pout)

N →
0 andN(Pout)

N → 0. The upper bound is easily ob-
tained. �

Remark 1. From the above analytical results, we have that:

i) From Theorem 1, we know thatTSTD is independent of
the energy cost of sensing,ESB,2 because the delay is only
affected by the energy harvesting and retransmissions that
happen after the sensing operation.

ii) Allowing a larger maximum number of transmissions
increases the average successful transmission delay. This
might suggest that retransmissions should be avoided.
However, the successful transmission delay does not take
into account the cases where sensed information is not
successfully transmitted to the sink. In this regard, the
update cycle implicitly captures such cases.

B. Update Cycle

Theorem 2. The pmf of update cycle is given in (9), shown
at the top of the next page.

Proof. See Appendix C. �

Corollary 2.1. The average update cycle is given by

T̄UC = NEH +
(Pout)

N

1− (Pout)N
(N + 1) +Asuc + 1, (10)

where

NEH =

(ESB+NETB)(Pout)
N

1−(Pout)N
+ (ESB +AsucETB)

ρ
. (11)

2This is different to the case ofTUC, shown in the next page.



Pr {TUC = k} =

min{k−1,N}
∑

n=1

(1− Pout)(Pout)
n−1

⌊ k−n−1
N+1 ⌋
∑

m=0

(Pout)
Nm

(

(1 +m)ESB + (n+Nm)ETB

ρ

)k−(n+1)−m(N+1)

·

exp

(

−
(1 +m)ESB + (n+Nm)ETB

ρ

)

1

(k − (n+ 1)−m(N + 1))!
, k ≥ 2.

(9)

Corollary 2.2. T̄UC decreases withN , and whenN → ∞,
the asymptotic lower bound of̄TUC is given by

lim
N→∞

T̄UC =
1

ρ
(ESB + ETB/ (1− Pout))+1/ (1− Pout)+1.

(12)

Proof. The proof is similar to Corollary 1.2, hence is omitted
for brevity. �

Remark 2. From the above analytical results, we have that:

i) From Theorem 2, we know thatTUC is affected by the
energy cost of sensing,ESB. A larger ESB means more
EHBs are required to harvest a sufficient amount of
energy to have a SB or multiple SBs between adjacent
STBs.

ii) A larger maximum number of transmissions shorten the
average update cycle, because allowing more retrans-
missions increases the chance of having a successful
transmission. This might suggest that it is also better to
increaseN to reduce the update cycle. But increasingN
also increases the successful transmission delay. There-
fore, there is clearly a tradeoff between the two metrics.

V. NUMERICAL RESULTS

In this section, we present numerical results on the suc-
cessful transmission delay and update cycle. We assume a
1 MW TV tower [3] as the ambient RF power source at
a distance of1.71 km from the sensor. We set the distance
between the sensor and the sink asd = 50 m and the noise
power at the sink asσ2 = −90 dBm [19]. For both the power
transfer link and the sensor-sink transmission link, the path
loss exponent is set asλ = 3 [11]. The energy conversion
efficiency is set asη = 0.5 [16]. The duration of a time block
is T = 1 millisecond [15]. Under such a setting, the average
harvested energy at the sensor during each EHB isρ = 0.1 µJ
(i.e., the average received power is0.2 mW and the average
harvested power is0.1 mW)3. Unless otherwise stated, we set
N = 10 andETB = 1 µJ (i.e.,PTB = 1 mW)4.

In the following, we assume that the transmission outage
from the sensor to the sink occurs when the SNR at the sink
γ, is lower than SNR thresholdγ0 = 40 dB [20]. Thus, the
outage probabilityPout is given by

Pout = Pr {γ < γ0} . (13)

3Such a received power is sufficient to properly activate the RF EH circuit,
e.g., a typical input power sensitivity level at the RF-DC converter is
−20 dBm [16].

4The typical transmit power of wireless sensors is several milliwatts [8].
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The SNR at the sink can be written as

γ =
|h|2PTB

dλσ2
, (14)

wherePTB = ETB/T , andh is the source-sink channel fading.
For the numerical results, we assume thath is block-wise
Rayleigh fading. The outage probability can then be written
as

Pout = 1− exp

(

−
dλσ2γ0
PTB

)

. (15)

By applying (15) to the analysis in the previous section, we
compute the expressions of the pmfs ofTSTD andTUC as well
as their average values̄TSTD and T̄UC.

Fig. 3 shows the pmfs ofTSTD and TUC given in Theo-
rems 1 and 2, respectively. Note that the pmfs generally cannot
be accurately approximated by well-known distributions, such
as Binomial, Geometric or Poisson.

Fig. 4 showsT̄STD and T̄UC with different N . We see
that the average update cycle increases with energy cost of
sensing, while the average successful transmission delay does
not change with energy cost of sensing. AsN increases,
T̄UC approaches its analytical lower bound Eq. (12), while
T̄STD approaches its analytical upper bound Eq. (8). Since the
existing studies in the literature commonly ignore the energy
cost of sensing, we also include the result with zero energy
cost of sensing, i.e., settingESB = 0 µJ. WhenESB = 0 µJ,
we see that̄TUC is almost constant around the value of40 and
does not change much withN .

Fig. 5 shows the tradeoff between̄TSTD and T̄UC. The
different points on the same curve are achieved with different
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N . When the energy cost of sensing is comparable to or larger
than the energy cost of transmission, e.g.,ESB = 1 µJ and
ESB = 2 µJ, the reduction inT̄STD requires a significant
increase inT̄UC, and vice versa. However, when the energy
cost for sensing is negligible, e.g.,ESB = 0 µJ, such a tradeoff
becomes almost unnoticeable: a significant change inT̄STD

does not result in a noticeable change inT̄UC. The trends
in Fig. 4 and 5 are in accordance with our observations in
Remarks 1 and 2.

Fig. 6 shows howT̄STD and T̄UC change with the energy
cost of transmissionETB (or effectively the transmit power).
We see thatT̄UC first decreases and then increases with
increasing transmit power. This is as expected: if the transmit
power is very small, thePout is very high, resulting in a
large number of retransmissions until the sensed information
is successfully transmitted orN = 10 is reached. As a result,
T̄UC is large when the transmit power is small. If the transmit
power is too large, a significant amount of time is spent on
charging the sensor in order to reach the required transmit
power, thusT̄UC is large as well. In contrast with̄TUC, we see
that T̄STD first increases and then decreases with increasing
transmit power. Firstly, the number of transmissions cannot
be larger thanN . If the transmit power is almost zero, not
much time is needed to charge the sensor to perform all the
necessary (re)transmissions. Hence,T̄STD is very small with
sufficiently small transmit power. When the transmit power is
very large, the probability of successful transmission is very
high, i.e., the occurrence ofTSTD = 1 is often, and thus̄TSTD

is small.

VI. CONCLUSIONS

In this work, we investigated two delay-related metrics for
transmission of information with energy harvesting, taking into
account the energy costs of both sensing and transmission. We
illustrated the tradeoff between successful transmissiondelay
and update cycle, which is an important design consideration
when the energy cost of sensing is comparable to the energy
cost of transmission. Closed-form expressions were derived
for both metrics which can be used to assist the transmission
design of future wireless-powered sensor networks.

APPENDIX A: EVENT DEFINITIONS

To assist the proofs of the main results, we define several
events (according to [18]) for convenience:

• ΛSB−FTBs: Given a SB, it is followed byN FTBs, i.e.,
all theN transmissions are failed.

• ΛSB−STB,i, 1 ≤ i ≤ N : Given a SB, it is followed byi
TBs before the next SB, i.e., the firsti−1 TBs are FTBs,
while the last TB is a STB.

• ΛEHB,i,ǫ: i EHBs occur after a TB to make the available
energy no less thanǫ.

From the definitions, we know thatΛSB−FTBs andΛSB−STB,i

are mutually exclusive events, and they collectively complete
the set of all possible sequences of TBs after a SB before
the next SB occurs. Thus, the union set ofΛSB−STB,i, for
i = 1, 2, ..., N , is denoted as̄ΛSB−FTBs which is the comple-
mentary set ofΛSB−FTBs. Also we have

Pr {ΛSB−FTBs} = (Pout)
N , (16)

Pr {ΛSB−STB,i} = (Pout)
i−1(1− Pout) = (Pout)

i−1(1− Pout).
(17)

From Lemma 1 and its proof, we know that the energy
accumulation process during EHBs after a TB is a Poisson
process, thus, we have

Pr {ΛEHB,i,ǫ} =
(ǫ/ρ)ie−ǫ/ρ

i!
, i = 0, 1, 2, ... (18)

APPENDIX B: PROOF OFTHEOREM 1
The definition of TSTD implies that one of the events

ΛSB−STB,i, for i = 1, 2, ..., N , occur, i.e.,Λ̄SB−FTBs occurs.
Thus, we have

Pr {TSTD = k} = Pr
{

TSTD = k|Λ̄SB−FTBs

}

. (19)

From the law of total probability

Pr {TSTD = k} = Pr
{

TSTD = k|Λ̄SB−FTBs

}

=
∑

n

Pr
{

TSTD = k|ΛSB−STB,n, Λ̄SB−FTBs

}

·

Pr
{

ΛSB−STB,n|Λ̄SB−FTBs

}

,

(a)
=====

∑

n

Pr {TSTD = k|ΛSB−STB,n}Pr
{

ΛSB−STB,n|Λ̄SB−FTBs

}

,

(20)
wheren represents the number of TBs duringTSTD blocks,

and(a) is true sinceΛSB−STB,n is a subset of̄ΛSB−FTBs. It is
easy to see that whenn > k, Pr {TSTD = k|ΛSB−STB,n} = 0.



When n > N , Pr
{

ΛSB−STB,n|Λ̄SB−FTBs

}

= 0. Thus,
in (20), the summation should be taken fromn = 1 to
min {k,N}. Thus, ink time blocks, except forn TBs, there
arek − n EHBs to harvest energy for conductingn− 1 TBs.
The first TB happens directly after the SB, hence, does not
require extra EHBs. From (18), the conditional probabilityin
(20) is given by

Pr {TSTD = k|ΛSB−STB,n} = Pr
{

ΛEHB,k−n,(n−1)ETB

}

=

(

(n−1)ETB

ρ

)k−n

exp(− (n−1)ETB

ρ
)

(k − n)!
.

(21)

From (16) and (17), we have

Pr
{

ΛSB−STB,n|Λ̄SB−FTBs

}

=
(Pout)

n−1(1− Pout)

1− (Pout)N
. (22)

By taking (21) and (22) into (20), we obtain the pmf ofTSTD

given in Theorem 1.

APPENDIX C: PROOF OFTHEOREM 2

During aUC of TUC time blocks, zero or several consec-
utive Λ̄SB−FTBs happens first, then aΛSB−STB,i, 1 ≤ i ≤ N
happens. In other words, for all the SBs in a UC, only the
last one is followed by āΛSB−FTBs (successful transmission
for the sensed information), while all the previous SBs are
followed byΛSB−FTBs (all the transmissions are failed). From
the law of total probability, we have

Pr {TUC = k}

=
∑

n

∑

m

Pr
{

TUC = k| m Λ̄SB−FTBs followed by

a ΛSB−STB,n in the UC}

· Pr
{

Λ̄SB−FTBs happensm times, then aΛSB−STB,n happens} ,
(23)

wherem represents the number ofΛSB−FTBs in the UC. From
the definition ofTUC, an update cycle should at least include
one SB and one TB. Thus, in (23),

k ≥ 2, n+ 1 ≤ k andn ≤ N. (24)

Because aΛSB−FTBs contains1 SB andN TBs (at leastN+1
time blocks), and aΛSB−STB,n contains1 SB andn− 1 TBs
(at leastn+ 1 time blocks), the number ofΛSB−FTBs in the
UC with k time blocks should satisfy

0 ≤ m ≤

⌊

k − (n+ 1)

N + 1

⌋

. (25)

Thus, for thek time blocks in theUC, except form+1 SBs
andn+Nm TBs, there arek− (n+1)−m(N +1) EHBs to
harvest enough energy for the aforementioned SBs and TBs.
From (18), the conditional probability in (23) is given by

Pr
{

TUC = k|m Λ̄SB−FTBs followed by aΛSB−STB,n in theUC}

= Pr
{

ΛEHB,k−(n+1)−m(N+1),(1+m)ESB+(n+Nm)ETB

}

=

(

(1 +m)ESB + (n+Nm)ETB

ρ

)k−(n+1)−m(N+1)

·
exp

(

− (1+m)ESB+(n+Nm)ETB

ρ

)

(k − (n+ 1)−m(N + 1))!
.

(26)

Since the probabilities ofΛSB−FTBs andΛSB−STB,n do not
change with time (see Lemma 1 and Appendix A), we have

Pr
{

Λ̄SB−FTBs happensm times, then aΛSB−STB,n happens}

= Pr {ΛSB−FTBs}
m Pr {ΛSB−STB,n} = Pr {ΛSB−FTBs}

m .
(27)

Therefore, by taking (16), (17), (27), (26), (25) and (24)
into (23), the pmf ofTUC is given in Theorem 2.
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