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Abstract—In this paper, we propose a novel splitting receiver,
which involves joint processing of coherently and non-coherently
received signals. Using a passive RF power splitter, the received
signal at each receiver antenna is split into two streams which
are then processed by a conventional coherent detection (CD)
circuit and a power-detection (PD) circuit, respectively. The
streams of the signals from all the receiver antennas are then
jointly used for information detection. We show that the splitting
receiver creates a three-dimensional received signal space, due
to the joint coherent and non-coherent processing. We analyze
the achievable rate of a splitting receiver, which shows that the
splitting receiver provides a rate gain of3/2 compared to either
the conventional (CD-based) coherent receiver or the PD-based
non-coherent receiver in the high SNR regime. We also analyze
the symbol error rate (SER) for practical modulation schemes,
which shows that the splitting receiver achieves asymptotic SER
reduction by a factor of at least

√
M −1 for M -QAM compared

to either the conventional (CD-based) coherent receiver orthe
PD-based non-coherent receiver.

Index Terms—Receiver design, energy/power-detection based
communications, joint coherent and non-coherent processing, RF
signal splitting.

I. I NTRODUCTION

A. Background and Motivation

Wireless communications has witnessed several major the-
oretical advancements in the last few decades, which have
been quickly incorporated into communication standards, e.g.,
multiple input multiple output (MIMO) systems and orthog-
onal frequency division multiple access (OFDMA) [1]. The
baseband receiver design, underlying these technologies,has
been the receiver based on a coherent detection (CD), i.e., co-
herent receiver for short, which has been adopted exclusively
in nearly all the popular wireless communication standards.
The coherent receiver design has stayed virtually unchanged
throughout the evolution of wireless communication systems
to date.

The recent trend towards a large number of antennas at the
transmitter or receiver (such as in massive MIMO and millime-
ter wave systems [2], [3]) provides incentive to rethink the
coherent receiver design for future communication systems.
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This is because provision of accurate channel state information
(CSI) becomes challenging in scenarios with a massive number
of antennas. In this regard,power/intensity-detection(PD)
basednon-coherentreceivers have been proposed [4] and [5].
Although, in general, non-coherent receivers suffer from a
performance loss compared to coherent receivers, their low
cost and low power consumption makes them attractive for
systems with a large number of antennas. It is proved in [4]
that PD-based non-coherent modulation in a massive single
input multiple output (SIMO) system can achieve a scaling
law which is the same as the coherent modulation scheme
with an increasing number of antennas. It is also shown in [5]
that the performance of the PD-based non-coherent modulation
asymptotically approaches the performance of coherent detec-
tion in high SNR regimes. These studies show that PD-based
non-coherent receivers can offer a performance comparableto
coherent receivers in future wireless systems.

Another motivation for considering PD-based non-coherent
receivers comes from the recent interest in simultaneous
wireless information and power transfer (SWIPT) [6–9]. In
such systems, a user is assumed to be equipped with an energy
receiver which is based on non-coherent RF (radio frequency)-
to-DC (direct current) conversion, and a conventional coherent
(information) receiver. In SWIPT systems, the user employs
the energy receiver and the coherent receiverseparately: (i) In
time-switching, the user switches between the two receivers,
depending on whether it is in RF energy harvesting (EH) mode
or information detection mode, or (ii) in power-splitting,the
user splits the received signal into two streams, and then sends
one stream to the energy receiver and the other to the coherent
receiver.

Although the PD-based non-coherent receiver has received
more attention in wireless communication systems recently, it
has played an important role in optical communications for a
long time. For the low-cost wireless infrared communication
system [10],intensity modulation(IM) is the most commonly
adopted modulation scheme. For IM-based wireless infrared
communication, information is carried by the instantaneous
power of the carrier, and the receiver uses a photodetector to
produce a current proportional to the received instantaneous
power directly, i.e., PD-based non-coherent demodulation. The
wireless infrared communication channel is usually referred
to as the intensity channel or thenon-coherent additive white
Gaussian noise (AWGN) channel, echoing the coherent AWGN
channel. The modulation schemes and the capacity of the
non-coherent AWGN channel were studied in [11] and [12],
respectively.
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B. Novel Contributions

Motivated by the recent interest in the PD-based non-
coherent receiver, we consider a basic point-to-point commu-
nication system and revisit the design of the communication
receiver. Rather than focusing on an improved design for
either coherent receiver or non-coherent receiver alone, we
consider a receiver with joint coherent and PD-based non-
coherent processing. To the best of our knowledge, this is an
open problem in the literature and it is not immediately clear
whether joint processing will be better than either coherent
or PD-based non-coherent processing alone. In this work, we
show that it can in fact significantly improve the achievable
rate and also reduce the symbol error rate (SER).

The main contributions of the paper are summarized as
follows:

1) We propose a novel information receiver architecture fora
K-antenna receiver calledsplitting receiver. The received
signal at each antenna is split into two streams by a passive
power splitter with a certainsplitting ratio. One stream is
processed by a conventional (coherent) CD circuit, and the
other is processed by a (non-coherent) PD circuit, and then
the 2K streams of processed signal are jointly used for
information detection.

2) As a variant of the splitting receiver, we also propose a
simplified receiver where no power splitters are required
and a fixed number of antennas are connected to CD
circuits and the remaining antennas are connected to PD
circuits. Analytically, the simplified receiver can be treated
as a special case of a splitting receiver, where the splitting
ratio at each antenna can only take1 or 0.

3) We show that the splitting receiver (and also the simplified
receiver), increases the dimension of the received signal
space, since the noise adds linearly to the signal in the
coherent receiver part and the noise adds to the squared am-
plitude of the signal in the PD-based non-coherent receiver
part. This results in improved communication performance.

4) From an information-theoretic perspective, we model the
channel introduced by the splitting receiver as a splitting
channel. Assuming a Gaussian input to the splitting chan-
nel, in the high signal-to-noise-ratio (SNR) regime, we
show analytically that: (i) The asymptotic maximum mutual
information of the splitting channel is3/2 times that of
either the coherent AWGN channel or the non-coherent
AWGN channel, under the same average received signal
power constraint. (ii) For a splitting receiver with a single
receiver antenna, the asymptotic optimal power splitting
ratio is 1/3. (iii) For the simplified receiver with a large
number of receiver antennas, connecting half the antennas
to the CD circuits and the other half to the PD circuits is
the optimal strategy.

5) For transmissions based on practical modulations, we an-
alyze the symbol decision region and the symbol error
rate (SER) at the splitting receiver. Considering high SNR
regime, we derive the SER expression for a general modu-
lation scheme. The analytical results show that, compared
with the conventional coherent receiver, the splitting re-
ceiver achieves asymptotic SER reduction by a factor of
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Ỹ1,2

Y2,2

CD

PD
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(a) K-antenna splitting receiver architecture.

(b) Thekth antenna receiver architecture.

Fig. 1 The proposed splitting receiver architecture.

M − 1 for M -PAM (pulse amplitude modulation) and√
M − 1 for M -QAM (quadrature amplitude modulation).

C. Paper Organization and Notation

This paper is organized as follows. Section II presents the
system model, the proposed receiver architectures and the
splitting channel. Section III analyzes the mutual information
of the splitting channel with a Gaussian input. Section IV
presents the received signal constellation at the splitting re-
ceiver for practical modulation schemes. Section V shows the
SER results of practical modulation schemes. Finally, Section
VI concludes the paper.

Notation: ·̃ denotes a complex number.(·)∗ and | · | denote
the conjugate and the absolute-value norm of a complex
number, respectively.Real{·} and Imag{·} denotes the real
part and the imaginary part of a complex number, respectively.
Pr (·) denotes the probability of an event.h(·), h(·, ·), h(·|·)
denote the differential entropy, joint and conditional differ-
ential entropy, respectively.I(·; ·) denotes the mutual infor-
mation. Random variables and their realizations are denoted
by upper and lower case letters, respectively.erfc(·) is the
complementary error function, andQ(x) , 1

2erfc(
x√
2
) is the

Q-function.

II. SYSTEM MODEL

Consider the communication between a single-antenna
transmitter and aK-antenna receiver. The average received
signal power at each antenna is denoted byP . The channel
coefficient at thekth receiver antenna is denoted byh̃k.

A. Proposed Receiver Architecture

Splitting receiver:The proposed splitting receiver architec-
ture is illustrated in Figs. 1(a) and (b). In the first stage, the
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Fig. 2 The proposed simplified receiver architecture.

received signal at each antenna is split into two streams by an
idealpassive RF power splitter. We assume there is no power
loss or noise introduced during the splitting process [13–
15]. One stream is sent to the (conventional) CD circuit
and the other to the PD circuit. The signals in the CD and
PD circuits are first converted to the baseband signals and
then sampled and digitized by the analog-to-digital converters
(ADCs) accordingly, for further processing. Specifically,the
rectifier-based PD circuit converts the RF signal into a DC
signal with a conversion efficiencyη. In the second stage,
all the 2K streams of signal of theK antennas are jointly
used for information detection.1 Note that although we focus
on the wireless communication application in this paper, the
proposed splitting receiver with single-antenna (K = 1) is also
applicable to cable and fibre-optical communication systems.

Simplified receiver:We also propose a simplified receiver,
as a variant of the splitting receiver, where no power splitters
are required. This is illustrated in Fig. 2. In the simplified
receiver,K1 antennas (1 ≤ K1 < K) are connected to the
CD circuit and the remaining antennas are connected to the
PD circuits. This is illustrated in Fig. 2. We assume that the
connections are determined offline, hence do not depend on
the instantaneous channel coefficients at each antenna.

B. Signal Model

In this section, we present the signal model for the splitting
receiver. Note that the simplified receiver can be analytically
treated as a special case of the splitting receiver with power
splitting ratios taking binary values only, i.e.,ρk ∈ {0, 1}, for
all k = 1, 2, ...,K.

1Although the CD and PD circuits may have different detectionsensitivity
level in practice [16], we assume both the circuits are able to detect arbitrarily
small power signal for tractability.

Based on [12], [15], the output signals from the CD and PD
circuits at thekth antenna are given by, respectively,

Ỹ1,k =
√

ρkP h̃kX̃ + Z̃k, (1)

Y2,k = η(1− ρk)|h̃k|2P|X̃|2 +N ′
k, (2)

where ρk ∈ [0, 1] is the power splitting ratio.X̃ is the
transmitted signal with normalized variance and̃X ∈ X ,
whereX denotes the set of all possible transmitted signals.
Z̃k is the post-processing complex AWGN of the CD circuit
with the mean of zero and the variance ofσ2

cov, which includes
both the RF band to baseband conversion noise and the ADC
noise.N ′

k is the post-processing noise of the PD circuit which
is also assumed to be real Gaussian noise [12], which includes
both the rectifier noise and the ADC noise. Note that we only
consider the post-processing noiseZ̃k andN ′

k, i.e., we ignore
the pre-processing noise, such as the antenna noise which is
almost at the thermal noise level and is much smaller than the
post-processing noise [15].

Without loss of generality, scaling (2) byη, the received
signalY2,k can be rewritten as

Y2,k = (1− ρk)|h̃k|2P|X̃|2 +Nk, (3)

where Nk , N ′
k/(η) is the equivalent rectifier conversion

AWGN with the mean of zero and the varianceσ2
rec.

C. Maximal Ratio Combining of Splitting Receiver

To detect the transmitted signal̃X , similar with a conven-
tional SIMO receiver, the optimal method is the maximal ratio
combining (MRC). We assume that the receiver has perfect
channel state information (CSI), i.e., knowledge ofh̃k. Since
theK-antenna received signals̃Y1,k andY2,k, k = 1, 2, ...,K,
lie in different signal spaces, we use MRC for coherently pro-
cessed signals (i.e.,̃Y1,k) and non-coherent signals (i.e.,Y2,k)
separately. Based on (1) and (3), the combined coherently and
non-coherently processed signals are given by, respectively,

Ỹ1 =

(
K∑

k=1

ρk|h̃k|2
)
√
PX̃ +

K∑

k=1

√
ρkh̃

∗
kZ̃k,

Y2=

(
K∑

k=1

(1−ρk)
2|h̃k|4

)

P|X̃|2+
K∑

k=1

(1−ρk)|h̃k|2Nk.

(4)

For convenience of analysis, after linear scaling, (4) can be
rewritten as

Ỹ1 =
√

Θ1

√
PX̃ + Z̃, Y2 =

√

Θ2P|X̃|2 +N, (5)

where

Θ1 =

K∑

k=1

ρk|h̃k|2, Θ2 =

K∑

k=1

(1 − ρk)
2|h̃k|4, (6)

and Z̃ and N follow the same distributions as̃Zk and Nk,
respectively. The two-dimensional signal̃Y1 and the one-
dimensional signalY2 form a triple (Ỹ1, Y2), which is the
equivalent received signal of theK-antenna splitting receiver.
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Fig. 3 Illustration of the signal space of the splitting receiver, ρ =
0.2, 0.5, 1.

It is interesting to see that since the two-dimensional signal
Ỹ1 lies on thein-phase-quadrature(I-Q) plane and the one-
dimensional signalY2 lines on thepower(P)-axis, the equiva-
lent received signal(Ỹ1, Y2) lies in the three-dimensional I-Q-
P space. This is different from the conventional coherent (two-
dimensional) and non-coherent (one-dimensional) receiver sig-
nal spaces. Thus, the splitting receiver expands the received
signal space and fundamentally changes the way in which the
signal is processed compared with the conventional receivers.

Considering the noiseless signal, i.e., lettingZ̃ andN = 0

in (5), we haveY2 =
√
Θ2

Θ1

|Ỹ1|2 from (5), which is a
paraboloid equation. From a geometric point of view, defining
~ρ , [ρ1, ρ2, ... ρK ], ~1 , [1, 1, · · · , 1]

︸ ︷︷ ︸

K

, and~0 , [0, 0, · · · , 0]
︸ ︷︷ ︸

K

,

the splitting receiver is actually bending the noiseless received
signal space into a paraboloid with~ρ as illustrated in Fig. 3.
When ~ρ = ~1, i.e., a non-splitting case, the splitting receiver
degrades to the coherent receiver. As the parameter

√
Θ2/Θ1

increases, e.g., each element of~ρ decreases, the splitting
receiver bends the signal plane to a paraboloid, which is taller
and thinner with a larger

√
Θ2/Θ1 , e.g., a smaller~ρ. When

~ρ = ~0, the splitting receiver degrades to the PD-based non-
coherent receiver.

In this paper, PD-based non-coherent receiver is named as
non-coherent receiverfor short, and we refer to both theK-
antenna coherent receiver (i.e.,~ρ = ~1) and theK-antenna non-
coherent receiver (i.e.,~ρ = ~0) as theconventional receivers.

D. Splitting Channel

From an information theory perspective, (5) can be rewritten
as [

Ỹ1

Y2

]

=

[
1 0
0 | · |2

] [√
Θ1

4
√
Θ2

]√
PX̃ +

[

Z̃
N

]

, (7)

where| · |2 is the squared magnitude operator. We name (7) as
the splitting channel, and the input and output of the splitting
channel regarded as random variables, are

√
PX̃ and(Ỹ1, Y2),

respectively.
The splitting channel can be treated as a SIMO channel,

since the channel has one input
√
PX̃ and two outputsỸ1

and Y2. It can also be treated as a degraded (due to the

power splitting) SISO channel with the outputỸ1 and a side
informationY2.

E. Performance Metrics and SNR Definition

We study the mutual information between the input and
output of the splitting channel for an ideal Gaussian input,and
study the SER performance for practical modulation schemes.

For convenience of analysis, we define the operating SNR
as

SNR , min {SNRcoh, SNRnon−coh} , (8)

where

SNRcoh , H2
P

σ2
cov

, SNRnon−coh ,
√

H4
P
σrec

,

H2 ,

K∑

k=1

|h̃k|2, H4 ,

K∑

k=1

|h̃k|4.
(9)

SNRcoh and SNRnon−coh are the SNRs of the conventional
receivers, i.e.,~ρ = ~1 for the coherent receiver and~ρ = ~0 for the
non-coherent receiver, respectively. Specifically, the definition
of SNRnon−coh is consistent with [12]. Note that although√
H4P and σrec correspond to the standard deviation (not

variance) of the signal
√
H4P|X̃|2 and the noiseN at the PD

receiver, respectively,
√
H4P still has the physical meaning of

“power”. Thus, the signal-to-noise ratio is defined as
√
H4

P
σrec

not H4
P2

σ2
rec

.
In the following, we refer to the high SNR regime as

SNR → ∞ which is obtained by lettingP → ∞. Our
analysis will focus on the splitting receiver which includes
the simplified receiver as a special case.

III. SPLITTING CHANNEL : MUTUAL INFORMATION

In this section, we study the mutual information of the
splitting channel to determine the gain due to the joint coherent
and non-coherent processing. We also provide a discussion to
intuitively explain this processing gain.

Based on (7), the mutual information between the input and
outputs of the splitting channel with the splitting ratio~ρ is

I
(√

PX̃; Ỹ1, Y2

)

= h(Ỹ1, Y2)− h(Ỹ1, Y2|
√
PX̃)

= h(Ỹ1, Y2)− h(Z̃, N |
√
PX̃)

= h(Ỹ1, Y2)− h(Z̃, N)

= h(Ỹ1, Y2)− h(Z̃)− h(N)

= −
∫

Y2

∫

Ỹ1

fỸ1,Y2
(ỹ1, y2) log2

(

fỸ1,Y2
(ỹ1, y2)

)

dỹ1dy2

− log2(πeσ
2
cov)−

1

2
log2(2πeσ

2
rec).

(10)
The joint probability density function (pdf) of(Ỹ1, Y2) is

fỸ1,Y2
(ỹ1, y2)

=

∫

X̃

f1

(√

Θ1P x̃, ỹ1

)

f2

(√

Θ2P|x̃|2, y2
)

fX̃(x̃)dx̃,

(11)
where fX̃(x̃) is the pdf of X̃, and f1

(√
Θ1Px̃, ·

)

and f2
(√

Θ2P|x̃|2, ·
)

are the pdfs of the distributions
CN

(√
Θ1Px̃, σ2

cov

)
andN

(√
Θ2P|x̃|2, σ2

rec

)
, respectively.
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The mutual information expression in (10) needs five inte-
grals to evaluate, which is cumbersome and thus the maximal
mutual information theoretically achieved by the optimal dis-
tribution of X̃, cannot be obtained.

A. Mutual Information and Joint Processing Gain

For tractability, in the following analysis, we consider the
mutual information with a Gaussian input, i.e.,X̃ ∼ CN (0, 1),
and we have:

1) Letting ~ρ = ~1, the splitting channel is degraded to the
coherent AWGN channel, and the mutual information is
well-known as [17]

I
(√

PX̃; Ỹ1, Y2

)

= h(Ỹ1)−h(Z̃) = log2

(

1 +H2
P

σ2
cov

)

,

(12)
which is exactly the capacity of the coherent AWGN
channel, i.e.,C(~ρ = ~1).

2) Letting~ρ = 0, the splitting channel is degraded to the con-
ventional intensity channel in free-space optical communi-
cations [12]. Recall that we refer to the intensity channel
as the non-coherent AWGN channel, echoing the coherent
AWGN channel in this paper2. The mutual information of
the non-coherent AWGN channel is [12]

I
(√

PX̃; Ỹ1, Y2

)

(13)

= h(Y2)− h(N) (14)

= −
∞∫

−∞

fY2
(y2) log2(fY2

(y2))dy2 −
1

2
log2(2πeσ

2
rec)

(a)

≥ 1

2
log2

(

1 +H4
P2e

2πσ2
rec

)

, (15)

where Y2 =
√
H4P|X̃|2 + N follows an exponential

modified Gaussian distribution [18]:

fY2
(y2) =

1

2
√
H4P

exp

(
1

2
√
H4P

(
σ2
rec√
H4P

− 2y2

))

· erfc





σ2

rec√
H4P − y2√
2σrec



 .

(16)
The inequality (a) is given by [12], and (15) is the
asymptotic mutual information in the high SNR regime,
which is also the asymptotic capacity (with gap less than
| 12 log2

(
e
2π

)
| bits) of the non-coherent AWGN channel,

i.e., C(~ρ = ~0).

Comparing (12) and (15), it is easy to see that asSNR → ∞,
the coherent and non-coherent AWGN channels have the same
asymptotic capacity, i.e., limSNR→∞ C(~ρ = ~1)/C(~ρ = ~0) = 1.
In the following, we will show that the splitting receiver
with ~ρ 6= ~0 nor~1 provides a gain in the mutual information
compared with the conventional receivers. Firstly, we needthe
following definition.

2Note that in this paper, the non-coherent channel refers to the intensity
channel, and it does not refer to the kind of channel without CSI at the
transmitter or the receiver.
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PX̃ ; Ỹ1, Y2) versusρ, P = 10, K = 1, |h̃1| = 1.

The simulation results are marked with ‘o’s, and are curve fitted by
polynomials of degree of3.

Definition 1. The joint processing gain of the splitting receiver
is

G ,
sup{I(

√
PX̃; Ỹ1, Y2) : ~ρ ∈ [0, 1]

K}
max{I(

√
PX̃; Ỹ1, Y2)|~ρ=~0, I(

√
PX̃ ; Ỹ1, Y2)|~ρ=~1}

,

(17)
where sup{·} denotes for the supremum, and[0, 1]K is the
K-product space generated by the interval[0, 1].

If the joint processing gainG > 1, the splitting receiver
achieves higher mutual information compared with the con-
ventional receivers. If the joint processing gainG = 1
which means the joint coherent and non-coherent processing
is unnecessary, the splitting receiver should be degraded to
either one of the conventional receivers.

Due to the complicated form of (10), it is not possible to
accurately evaluate the mutual information3 for ~ρ ∈ [0, 1]

K

and prove whetherG is greater than1 or not. Hence, we
first use Monte Carlo based histogram method to simulate
the results. In Fig. 4, considering theK = 1 case, it is
observed that whenSNR is reasonably high, e.g.,P = 10,
σ2
cov = 1 and σrec = 1, the joint processing gainG is

greater than1. Inspired by this, we will focus on the analysis
on the mutual information in (10) and the joint processing
gain in Definition 1 in the high SNR regime in the following
subsection.

B. High SNR Analysis

Lemma 1. In the high SNR regime,I(
√
PX̃; Ỹ1, Y2) with

~ρ ∈ [0, 1]K \{~0,~1} is given by

I(
√
PX̃; Ỹ1, Y2)

≈ log2

(
Θ1P
σ2
cov

)

+
1

2 log(2)
exp

(
Θ1σ

2
rec

Θ22σ2
covP

)

Ei

(
Θ1σ

2
rec

Θ22σ2
covP

)

(18a)

≈ log2

(√
2P 3

2

√
Θ1Θ2

σcovσrec

)

− γ

2 ln 2
, (18b)

3A lower bound and an upper bound ofI(
√
PX̃; Ỹ1, Y2) with explicit

expressions can be found based on the basic inequalitiesI(
√
PX̃; Ỹ1, Y2) >

I(
√
PX̃ ; Ỹ1), I(

√
PX̃; Ỹ1, Y2) > I(

√
PX̃; Y2) andI(

√
PX̃; Ỹ1, Y2) <

I(
√
PX̃ ; Ỹ1) + I(

√
PX̃ ;Y2) [17]. Since the bounds are loose, we do not

pursue them here.
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whereEi(x) ,
∫∞
x

e−t

t dt is the exponential integral function,
andγ is Euler’s constant.

Proof. See Appendix A. �

From Lemma 1, it is clear that the mutual information
of the splitting channel increases linearly withlog2(P) and
decreases linearly withlog2(σcov) and log2(σrec) in the high
SNR regime. Moreover, since the mutual information depends
on the power splitting ratio~ρ, which is contained in the term
Θ1Θ2, it is interesting to find the optimal~ρ that maximizes
the mutual information.

Based on Lemma 1, the following optimization problem is
proposed to obtain the optimal splitting ratio~ρ in the high
SNR regime:

(P1) max
~ρ∈[0,1]K\{~0,~1}

Θ1Θ2

⇔ max
~ρ∈[0,1]K\{~0,~1}

K∑

k=1

ρk|h̃k|2
K∑

k=1

(1− ρk)
2 |h̃k|4. (19)

It can be shown that (P1) is not a convex optimization problem.
Thus, the optimal splitting ratio can be obtained by numerical
methods. In what follows, we first focus on two special
scenarios and then discuss the joint processing gain for a
general splitting receiver.

1) Splitting receiver with single receiver antenna:When
K = 1, Θ1 = ρ1|h̃1|2 andΘ2 = (1 − ρ1)

2|h̃1|4, and thus,
the optimal power-splitting ratio is obtained by solving the

equation ∂ρ
1

3 (1−ρ)
2

3

∂ρ = 0. It is straightforward to obtain the
following results.

Proposition 1. For the splitting receiver with single receiver
antenna, the optimal splitting ratio in the high SNR regime is

ρ⋆ =
1

3
, (20)

and the maximal mutual information is given by

I
(√

PX̃ ; Ỹ1, Y2

)

|ρ⋆ ≈ log2

(

2
√
2

3
√
3

|h̃1|3P 3

2

σcovσrec

)

− γ

2 ln 2
.

(21)

2) Simplified receiver with a large number of antennas:
For the simplified receiver with a large number of antennas,
(19) can be rewritten as

max
1≤K1<K

K1∑

k=1

|h̃k|2
K∑

k=K1+1

|h̃k|4. (22)

Assuming that̃hk, k = 1, 2, ...K, are independent and identi-
cally distributed (i.i.d.) random variables, i.e.,the uncorrelated
scenario, due to the law of large numbers whenK is suffi-
ciently large, we have

lim
K→∞

K1∑

k=1

|h̃k|2
K∑

k=K1+1

|h̃k|4

= lim
K→∞

K1K2

K1∑

k=1

|h̃k|2/K1

K∑

k=K1+1

|h̃k|4/K2

(a)
= K1K2E

(

|h̃k|2
)

E

(

|h̃k|4
)

, (23)

whereK2 , K − K1, and (a) is because bothK1 andK2

are sufficiently large. Assuming that|h̃k|, k = 1, 2, ...K, are
identical with each other, i.e.,the free-space scenario which
is also a fully-spatially-correlated scenario, we have the same
expression with (23). Thus,K1K2 is maximized whenK1 =
K2 = K/2, and we have the following proposition.

Proposition 2. For the simplified receiver with a large number
of antennas, the optimal strategy for the spatially-uncorrelated
channel or the fully-spatially-correlated channel (i.e.,the free-
space scenario) in the high SNR regime is to connect half of
the antennas to the CD circuits and the other half to the PD
circuits, and the maximum mutual information is given by

I
(√

PX̃ ; Ỹ1, Y2

)

|~ρ⋆

≈ log2







KP 3

2

√

E

(

|h̃k|2
)

E

(

|h̃k|4
)

√
2σcovσrec







− γ

2 ln 2
.

(24)

Note that for the general spatially-correlated scenario, the
optimal strategy in the high SNR regime is not immediately
clear. We will investigate this scenario for future study.

3) Joint processing gain of splitting receiver withK re-
ceiver antennas:We assume that~ρ 6= ~0 nor~1, thus,Θ1 6= 0
andΘ2 6= 0. Then, based on (18b) of Lemma 1, (12) and (15),
we can show that

lim
SNR→∞

I
(√

PX̃ ; Ỹ1, Y2

)

|~ρ∈[0,1]K\{~0,~1}

max{I
(√

PX̃ ; Ỹ1, Y2

)

|~ρ=~0, I
(√

PX̃; Ỹ1, Y2

)

|~ρ=~1}

=
3

2
.

(25)
In other words, the asymptotic gain is the same no matter
what value~ρ takes, as long as~ρ 6= ~0 nor~1. Therefore, the
asymptotic optimal splitting ratio~ρ⋆ ∈ [0, 1]

K \{~0,~1}, and
we have the following result based on Definition 1.

Proposition 3. In the high SNR regime, the asymptotic
joint processing gain for a splitting receiver withK receiver
antennas is

lim
SNR→∞

G =
3

2
. (26)

C. Explanation of the Joint Processing Gain

The result of Proposition 3 shows that in the high SNR
regime, sinceG = 3/2 > 1, the splitting receiver provides
a processing gain. Note that although the joint processing
gain at any given SNR depends on the specific value of
the received signal powerP , the noise variancesσ2

cov and
σ2
rec, the asymptotic joint processing gain is independent of

the specific noise variances at the CD and PD circuits in
the high SNR regime.This implies that the reason for the
performance improvement lies in the joint coherent and non-
coherent processing.This is explained in detail using intuitive
and geometric arguments as follows.

Intuitive explanation of the rate improvement:Since the
degrees of freedom of a channel is commonly defined as
the dimension of the received signal space [1], the coherent
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AWGN channel has two degrees of freedom (I-Q plane) while
the non-coherent AWGN channel has one degree of freedom
(P-axis). For the splitting channel created by jointly utilizing
both the coherent and non-coherent AWGN channels, the
received signals are spread into a three-dimensional space, i.e.,
the I-Q-P space. Thus, the splitting channel can be treated
as a channel with three degrees of freedom. Therefore, the
splitting channel with a properly designed splitting ratiocan
take better advantage of the I-Q-P space, and achieve a better
channel rate performance compared with either the coherent
or non-coherent AWGN channel.

We would like to highlight that a ‘splitting receiver’, which
splits the received signal at each antenna into two streams and
sends both streams to CD circuits (i.e., two coherent AWGN
channels), does not provide any rate improvement. After MRC,
it is straightforward to see that the received signal space still
lies on the I-Q plane. Thus, the received signal space is the
same as for the conventional coherent receiver. For instance,
consider a single-antenna receiver for ease of illustration. It
can be proved that the best ‘splitting’ strategy is to send the
entire signal to the CD circuit with a smaller noise variance,
instead of splitting and sending signals to both CD circuits[1].
Therefore, there is no joint processing gain by using two
coherent AWGN channels, i.e.,G = 1. The same argument
holds for a ‘splitting receiver’ which splits the received signal
at each antenna into two streams and sends them to two PD
circuits (i.e., two non-coherent AWGN channels).

Therefore, the key to the rate improvement is the increased
dimension of the received signal space achieved by joint
coherent and non-coherent processing, where the coherent
channel adds noise linearly to the signal, and the noncoherent
channel adds noise to the square amplitude of the signal.

A geometric explanation of the asymptotic gain:As dis-
cussed in Sec. II.C, a splitting receiver with the splittingratio
~ρ maps the noiseless received signal space, i.e., the I-Q plane,
to a paraboloid in the I-Q-P space with parameter

√
Θ2/Θ1

which depends on~ρ. Considering a disk with radiusR and cen-
ter (0, 0) in the I-Q plane, the area of the disk isπR2, where
R is proportional to

√
P in this paper. After the mapping, the

disk is converted into a paraboloid with parameter
√
Θ2/Θ1

which is restricted by the condition that the projection of the
paraboloid in the I-Q plane should lie within the disk with
radius

√
Θ1R. WhenR is sufficiently large, the area of the

paraboloid can be shown to be approximated by3π
√
Θ1Θ2R

3

for ~ρ 6= ~0 nor ~1. It is well known that the optimal constellation
design for the I-Q space is equivalent to a sphere-packing
problem, i.e., packing two-dimensional spheres (disks) with a
certain radius, which is related to the detection error rate, on
the surface of the disk (i.e., the disk on the I-Q plane). The
number of spheres that can be packed is proportional to the
area of the disk. Thus, the communication rate can be written
asO

(
log(πR2)

)
∼ 2O(logR). Similarly, for the paraboloid,

the number of three-dimensional spheres4 (balls) that can be
packed on the surface is proportional to the paraboloid area,
and the rate can be written asO

(
log(3π

√
Θ1Θ2R

3)
)

∼
4Note that sphere-packing is considered only ifσ2

cov = 2σ2
rec, i.e., a

uniform three-dimensional noise sphere, otherwise, it is ellipsoid-packing.
Here we use sphere-packing for ease of illustration.

3O(logR). Therefore, it is straightforward to see that there is
a 3/2 fold rate gain provided by the splitting receiver whenR
is sufficiently large. To sum up, bending the signal space from
a two-dimensional plane to a three-dimensional paraboloid
increases the effective area of the signal space which boosts
the communication rate.

The complexity of splitting receiver:Although the splitting
receiver is able to provide a performance gain, it is clear
that for the information detection in the digital domain,
the splitting receiver requires a three-dimensional detection,
while the conventional CD/PD receiver only needs a two/one-
dimensional detection, respectively. Specifically, when apply-
ing the minimum distance detection for practical modulation,
the splitting receiver needs to calculate the distance between
two signal points in the three-dimensional space, while the
conventional CD/PD receiver only needs to calculate the dis-
tance in the two/one-dimensional space. Thus, the splitting re-
ceiver requires a higher computation complexity to achievethe
performance gain. Regarding the circuit complexity, for each
antenna branch, the splitting receiver requires two detection
circuits, while the conventional CD/PD receiver only needs
one detection circuit. On the other hand, the proposed sim-
plified receiver has a lower complexity than the CD receiver
and a higher complexity than the PD receiver. Therefore, we
should consider both the performance gain and the complexity
(and the cost) when adopting a splitting receiver in practical
systems.

D. Numerical Results

In the last two subsections, we have shown and explained
that the splitting receiver achieves a3/2 fold rate gain com-
pared with the non-splitting channels in the high SNR regime.
This suggests that a notable performance improvement can
be found within a moderate SNR range, which is verified
as follows. Also, we verify the tightness of the asymptotic
analytical results presented in Sec. III.B.

1) Single-antenna scenario:We set the channel power gain
|h̃1|2 = 1 for simplicity.

Fig. 5 depicts the mutual information approximation given
in (18a) and also the simulated mutual information with
different received signal power. We see that the approximation
and simulation results have the same general trend, and the
percentage difference between the approximation and simula-
tion results decreases asP increase (e.g., fromP = 10 to
100). Also we see that the optimal splitting ratios are (almost)
the same for both the approximation and simulation results.
WhenSNR is sufficiently large, e.g.,20 dB, ρ = 0.33 makes
the mutual information at least20% larger than that of the
conventional cases (i.e.,ρ = 0 or 1), and the joint processing
gain is shown to beG ≈ 1.3. When SNR = 30 dB (i.e.,
P = 1000), the approximation is tight, and the joint processing
gain with ρ = 0.33 is close to1.5. Thus, the tightness of the
mutual information expressions in Lemma 1 and Proposition 1
(which is obtained by takingρ = 1/3 into Lemma 1) and also
the asymptotic joint processing gain given by Proposition 3
are verified.

Fig. 6 depicts the optimal splitting ratioρ (obtained by
simulation) versus the received signal powerP . It is observed
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that the optimal splitting ratio approaches1/3 quickly asP
increases, i.e.,ρ = 1/3 whenP > 35. Thus,ρ = 1/3 is a
near-optimal choice even at moderate SNRs, and the tightness
of the asymptotic optimal splitting ratio in Proposition 1 is
verified.

Fig. 7 depicts the approximation of the splitting chan-
nel mutual information given in (18a) withρ = 1/3, and
the optimal non-splitting channel mutual information, i.e.,
max{(12), (15)}. It is observed that the splitting channel
mutual information increases much faster w.r.t.P as compared
with the coherent and non-coherent AWGN channels. When
SNR > 20 dB (e.g.,P > 100, σ2

cov = 1 andσ2
rec = 0.1, or

P > 1000, σ2
cov = 1 andσ2

rec = 10), one can clearly see the
mutual information improvement due to splitting.

Fig. 8 depicts the joint processing gain obtained by taking
(18a) into Definition 1. It is observed that the joint processing
gain increases withP and slowly approaches the constant3/2.
The gain at a practically high SNR, e.g.,30 dB, is notable,
e.g.,1.2 ∼ 1.4.

2) Multi-antenna scenario:Fig. 9 depicts the average mu-
tual information over103 channel realizations using (18b),
where the channel power gain|h̃k|2 is assumed to follow an

exponential distribution with the mean of1, andP = 100.
Three splitting strategies are considered: (i) the numerically
searched optimal splitting ratios by solving (P1) for every
channel realization (i.e., optimal splitting), (ii) the simplified
receiver with the strategy in Proposition 2, and (iii)ρk = 1/3
for all k = 1, 2, ...,K. It is observed that the splitting receiver
with the optimal splitting strategy is better than the simplified
receiver. On the other hand, the splitting receiver can perform
worse than the simplified receiver if some sub-optimal splitting
strategy is used, e.g.,ρ = 1/3, which is the optimal for a
single-antenna receiver, but generally not necessarily optimal
for a multi-antenna receiver.

Fig. 10 depicts the optimal ratio of antennas allocated
for coherent processing for a simplified receiver obtained by
simulation using104 random channel realizations.It shows
that the optimal ratio is within the range of(0.45, 0.55) when
K > 40, and the optimal ratio converges to1/2 as K
increases further, which verifies Proposition 2.

IV. SPLITTING RECEIVER: PRACTICAL MODULATION

In this section, we consider commonly used modulation
schemes and assume that each signal of the constellation is
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transmitted with the same probability. Note that, in this section,
x andy denote the in-phase and quadrature signals in the CD
circuit, respectively, andz denotes the signal in the PD circuit,
which are different from the notation in Sec. III. This change
of notation is adopted for ease of presentation of results.

A. Transmitted Signal Constellation

We consider the transmitted signal constellation of a gen-
eral M -ary modulation scheme isΩgen, which is a two-
dimensional constellation placed on the I-Q plane. Theith
symbol is denoted by the tuple(xi, yi) on the I-Q plane,
i = 1, 2, ...,M . Specifically:

(i) For theM -PAM scheme [1], which is a one-dimensional
modulation scheme on the I-axis, we havexi = 2i − 1
for i = 1, 2, ...,M/2, andxi = −xi−M/2 for i = M/2+
1, ...M , andyi = 0 for all i.

(ii) For the M -QAM scheme, which is a two-dimensional
modulation scheme on the I-Q plane, we havexi =

2
(

i mod
√
M
2

)

− 1, yi = 2
⌊

i−1√
M/2

⌋

− 1, i =

1, 2, ...,M/4, which are the first quadrant symbols on the
I-Q plane. Due to the symmetry property ofM -QAM,
the other quadrant symbol expressions are omitted for
brevity.

(iii) For the M -IM scheme, which is a one-dimensional
modulation scheme on the positive I-axis where the
information is carried by the signal power but not phase,
we havexi =

√

2(i− 1) andyi = 0, i = 1, 2, ...,M .

B. Noiseless Received Signal Constellation

Based on the received signal expression after MRC in (5),
the average signal power of the coherently and non-coherently
processed signals areΘ1P and

√
Θ2P , respectively. Thus,

with such average power constraints, we define the noiseless
received signal constellation̆Ωgen, and theith symbol inΩ̆gen

is denoted by the tuple(x̆i, y̆i, z̆i), and x̆i = k1
√
Θ1Pxi,

y̆i = k1
√
Θ1Pyi, z̆i = k2

√
Θ2P

(
x2
i + y2i

)
. Herek1 andk2 ,

k21 are the power normalization parameters determined only

by the geometric property of a certain modulation scheme.
Specifically, we have

k1 =







√

3

M2 − 1
, M -PAM,

√

3

2(M − 1)
, M -QAM,

√

1

M − 1
, M -IM .

(27)

For the single-antenna scenario, Figs. 11(a) and 11(c) show
that the splitting ratioρ ∈ (0, 1) bends the received signal
constellation from the I-axis to a paraboloid in the I-P plane,
for 4-PAM and4-IM, respectively. Fig. 11(b) shows that the
splitting ratioρ ∈ (0, 1) bends the received signal constellation
from the I-Q plane to a paraboloid in the I-Q-P space.

C. Decision Region

Since all the transmitted symbols are of equal probability,
the optimal signal detection method is the maximum likelihood
(ML) method [1]. The decision region for theith symbol is
defined as

Vi ,
{
v|f(v|i) ≥ f(v|j), ∀j 6= i,v ∈ R

3
}
, (28)

wherev , (x, y, z) is the three-dimensional post-processing
(noise added) signal in the splitting receiver, andf(·|·) is the
conditional pdf.

From Sec. III, since both the CD and PD circuits introduce
additive Gaussian noise, the received signal is surroundedby
the noise sphere (ellipsoid) in the I-Q-P space, andf(v|i) is
thus given by

f(v|i) = 1

σ2
covπ

√

2σ2
recπ

· exp
(

− (x− xi)
2

σ2
cov

− (y − yi)
2

σ2
cov

− (z − zi)
2

2σ2
rec

)

.

(29)

Therefore, (28) is rewritten as

Vi , {(x, y, z) : di(x, y, z) ≤ dj(x, y, z), ∀j 6= i} , (30)
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where

dj(x, y, z) ,
(x− xj)

2

σ2
cov/2

+
(y − yj)

2

σ2
cov/2

+
(z − zj)

2

σ2
rec

. (31)

From (30) and (31), after simplification, the decision region
of the ith symbol,Vi is given by

Vi =

{

(x, y, z) :
x̆j − x̆i

σ2
cov

x+
y̆j − y̆i
σ2
cov

y +
z̆j − z̆i
2σ2

rec

z

≤
x̆2
j + y̆2j − x̆2

i − y̆2i
2σ2

cov

+
z̆2j − z̆2i
4σ2

rec

, ∀j 6= i

}

,

(32)
wherex̆i, y̆i and z̆i are defined in Sec. IV.B above (27). It is
easy to see thatVi is bounded by planes. The plane implied
in (32), which divides the decision region between theith and
jth receive symbols, is given by

Ai−j ,

{

(x, y, z) :
x̆j − x̆i

σ2
cov

x+
y̆j − y̆i
σ2
cov

y +
z̆j − z̆i
2σ2

rec

z

=
x̆2
j + y̆2j − x̆2

i − y̆2i
2σ2

cov

+
z̆2j − z̆2i
4σ2

rec

}

.

(33)
The decision regions for8-PAM, 36-QAM (only for the

symbols within the first quadrant of the I-Q-P space) and4-
IM are illustrated in Figs. 12(a), 12(b), and 12(c), respectively.

D. Joint Processing Gain in SER

To quantify the reduction in SER by the splitting receiver,
we define the joint processing gain in terms of SER as:

Definition 2 (Joint processing gain in SER). Given a certain
modulation scheme, the joint processing gain of the splitting
receiver is

G ,
min~ρ=~0,~1 Pe

inf{Pe : ~ρ ∈ [0, 1]K}
, (34)

whereinf{·} denotes for the infimum, andPe is the SER for
a given~ρ.

The joint processing gain represents the maximum SER
reduction provided by the splitting receiver, compared with
the best of the conventional receivers.

V. SPLITTING RECEIVER: SER ANALYSIS

In this section, we derive the SER at a splitting receiver
for practical modulation schemes with the transmitted signal
constellationΩgen in the I-Q plane and the received signal
constellationΩ̆gen in the I-Q-P space.

The SER can be written as

Pe =
1

M

M∑

i=1

(1− Pi) , (35)
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Fig. 13 (a) and (b) Two transmitted signal constellation maps with 3 pairs of symbols that are dominant on detection error probability,
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wherePi is the symbol success probability of theith symbol,
which is given by

Pi=

∫∫∫

Vi

exp

(

−(x− x̆j)
2

σ2
cov/2

− (y − y̆j)
2

σ2
cov/2

− (z − z̆j)
2

σ2
rec

)

dxdydz.

(36)
Based on Sec. IV.B, whenSNR → ∞ and

~ρ ∈ [0, 1]
K \{~0,~1}, the received symbols(x̆i, y̆i, z̆i)

and (x̆j , y̆j , z̆j) belonging to different power tiers, i.e.,
z̆i 6= z̆j, are easily distinguished because they are separated
by a distance proportional toP in the power domain. In
contrast, the symbols belonging to the same power tier are
only separated with a distance proportional to

√
P on the

I-Q plane. Thus, the intra-tier detection error probability
dominates the overall SER in the high SNR regime.

Therefore, there are basically two cases for the SER analysis
in the high SNR regime:

1) ForΩgen having symbols that belong to the same tier as
illustrated in Fig. 13(a), such asM -PAM, M -QAM and
M -PSK (phase-shift keying), the intra-tier detection error
probability is dominant. Moreover, the detection error
caused by the pair symbols with the minimum distance
on the I-Q plane is dominant (see Fig. 13(a)).

2) For Ωgen in which every symbol belongs to a different
tier as illustrated in Fig. 13(b), such as aM -IM, the inter-
tier detection error probability is dominant. Moreover,
the detection error caused by the pair of symbols with
the minimum distance in the P-axis (power domain) is
dominant.

Consider a transmitted signal constellationΩgen with W
pairs of dominant symbols as mentioned above and the mini-
mum distance beingdmin. The approximated SER is calculated
as [1]

Pe ≈
1

M

W∑

i=1

2Q

(
dmin

2σ

)

, (37)

whereσ =
√

σ2
cov/2 or σrec for cases 1) and 2), respectively.

It is straightforward to see that: ForM -PAM, we haveW =
1, i.e., the pair of symbols with the lowest power having the
minimum distance given bydmin = 2x̆1. For M -QAM, we
haveW = 2

√
M , as illustrated in Fig. 13(c), anddmin = 2x̆1.

For M -IM, we haveW = M − 1, as illustrated in Fig. 13(b)
anddmin = x̆2 − x̆1. Then, based on (37), we can obtain the
following results.

A. M -PAM

Proposition 4. For the M -PAM scheme and~ρ ∈
[0, 1]

K \{~0,~1}, the SER in the high SNR regime is given by

Pe ≈
2

M
Q

(√
2x̆1

σcov

)

. (38)

Based on Proposition 4, we can see that when~ρ 6=
~1 and ~ρ → ~1, x̆1 ≈

√

3H2P/(M2 − 1), and Pe ≈
2
MQ

(√
6H2P

σ2
cov

(M2−1)

)

, which is smaller than the SER of the

~ρ = ~1 case, i.e., 2(M−1)
M Q

(√
6H2P

σ2
cov

(M2−1)

)

, and is also

smaller than the SER of the~ρ = ~0 case in which the SER can
be as large as0.5. Thus, we have the following proposition:

Proposition 5. ForM -PAM, the asymptotic joint processing
gain in the high SNR regime is

GPAM =
min

{

0.5, 2(M−1)
M Q

(√
6H2P

σ2
cov

(M2−1)

)}

2
MQ

(√
6H2P

σ2
cov

(M2−1)

)

= M − 1. (39)

Note that although the joint processing gain depends on
P , σ2

cov and σ2
rec, the asymptotic joint processing gain is

independent of the specific noise variance at the CD and PD
circuits in the high SNR regime.

B. M -QAM

Proposition 6. For M -QAM and ~ρ ∈ [0, 1]
K \{~0,~1}, the

SER in the high SNR regime is given by

Pe ≈
4√
M

Q

(√
2x̆1

σcov

)

. (40)

Letting~ρ → ~1, i.e.,x̆1 →
√

3H2P
2(M−1) , the approximated SER

in Proposition 6 is minimized asPe ≈ 4√
M
Q
(√

3H2P
(M−1)σ2

cov

)

,
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which is smaller than the SER obtained by setting~ρ = ~0 or
~1. Thus, we have the following result:

Proposition 7. ForM -QAM, the asymptotic joint processing
gain in the high SNR regime is

GQAM = lim
SNR→∞

1−
(

1− 2
(

1− 1√
M

)

Q
(√

3H2P
(M−1)σ2

cov

))2

4√
M
Q
(√

3H2P
(M−1)σ2

cov

)

= lim
SNR→∞

4
(

1− 1√
M

)

Q
(√

3H2P
(M−1)σ2

cov

)

4√
M
Q
(√

3H2P
(M−1)σ2

cov

)

=
√
M − 1. (41)

Therefore, in the high SNR regime, forM -PAM and
M -QAM, there always exists a non-trivial~ρ that ~ρ ∈
[0, 1]

K \{~0,~1} and achieves a lower SER than the conventional
receivers, i.e.,~ρ = ~0 or ~1, no matter what valuesσ2

cov andσrec

take.

C. M -IM

Proposition 8. For M -IM, the SER in the high SNR regime
is given by

Pe ≈
2(M − 1)

M
Q

( √
Θ2P

(M − 1)σrec

)

. (42)

From Proposition 8, as~ρ → ~0, the minimum approximated
SER is obtained asPe =

2(M−1)
M Q

( √
H4P

(M−1)σrec

)

, which equal

to the SER when~ρ = ~0. Thus, the splitting receiver cannot
improve the SER performance compared with the conventional
receivers, and we have the result:

Proposition 9. For M -IM, the asymptotic joint processing
gain in the high SNR regime is equal to one.

D. Numerical Results

We present the numerical results usingM -QAM for (i)
the splitting receiver with single receiver antenna assuming
|h̃1|2 = 1, and (ii) the simplified receiver with multiple

receiver antennas. The SER results forM -QAM are plotted
based on Monte Carlo simulation with109 points using the
detection rule (32). The results forM -PAM and M -IM are
omitted due to space limitation.

1) Splitting receiver with single receiver antenna:Fig. 14
plots the SER versus the splitting ratioρ for differentM and
differentP , where the approximation results are plotted using
Proposition 6. It shows that the SER first decreases and then
increases asρ increases. We can see that the optimalρ that
minimizes the SER, increases withP and approaches1 but
decreases with the increasing of the order of constellationM .
Also we can see that whenSNR is sufficiently large, e.g.,
23 dB (i.e.,P = 200, andσ2

cov = σ2
rec = 1), the approximation

of the SER is very close with the accurate SER for the value
of ρ in the range(0, ρ⋆), whereρ⋆ is the optimal splitting
ratio. Note thatρ⋆ approaches1 asSNR increases. This means
the mismatch aroundρ = 1 is minimized asSNR increases.
Therefore, the approximation in Proposition 6 is accurate for
the values ofρ ∈ (0, 1) whenSNR is sufficiently large.

Fig. 15 shows the joint processing gain versusP using
Definition 2. We can see that the joint processing gain increase
with P and approaches3 and 5 for 16-QAM and 36-QAM,
respectively, whenP = 100, σ2

cov = 1 andσ2
rec is sufficiently

small, e.g.,10−3. These results approach the asymptotic joint
processing gain in Proposition 7. Also we see that only half
the joint processing gain is achieved whenP = 100 andσ2

rec is
large, e.g.,σ2

rec = 1. However, the increasing trend of the joint
processing gain in Fig. 15 suggest that the asymptotic joint
processing gain can be eventually achieved, whenP is much
larger than100. Therefore, the asymptotic joint processing gain
in Proposition 7 may not be approached in a normal range of
the received signal power and the noise variance, but half of
the joint processing gain is achievable.

2) Simplified receiver with multiple receiver antennas:For
the simplified receiver, we assume that the channel power gain
at each antenna is independent and follows an exponential
distribution with the mean of1. Fig. 16 plots the optimal
number of antennas allocated for coherent processing, i.e.,
K⋆

1 , versus the total number of antennas for the36-QAM
scheme obtained by using103 random channel realizations.
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It shows thatK⋆
1 increases withK, and approaches toK − 1

in the high SNR regime, e.g,K⋆
1 ≈ K − 5, K − 2 and

K−1 whenP = 2, 10 and200, respectively. This is because
that the optimal ratio~ρ → ~1 but never reaches~1 based on
Proposition 4 in the high SNR regime. In other words, for the
simplified receiver (whereρk ∈ {0, 1}), most of the antennas
should be connected to the CD circuits and at least one antenna
should be connected to a PD circuit to achieve the highest joint
processing gain.

Note that in practice, the degradation of ADC noise is usu-
ally modeled by the signal-to-quantization-noise ratio (SQNR),
approximately given by6K dB, whereK is the number of
quantization bits [15]. Here, by assumingP = 2 and the noise
variance of the ADC equals to0.1 (i.e., less thanσ2

cov and
σ2
rec), the SQNR equals to13 dB, which impliesK ≈ 2 bits.

Similarly, by assumingP = 200, the SQNR equals to33 dB,
which impliesK ≈ 5 bits. Therefore, the parameter settings
are practical.

VI. CONCLUSIONS

In this paper, we have proposed a splitting receiver, which
fundamentally changes the way in which the signal is pro-
cessed. With the same received signal power, the analytical
results show that the splitting receiver provides excellent
performance gain in the sense of both the mutual informa-
tion (Gaussian input) and the SER (practical modulation),
compared with the conventional coherent and non-coherent
receivers. Future research may focus on the topics such as
the MIMO system with a multi-antenna splitting receiver,
and the design of constellations and coding schemes for
the communication systems with splitting receiver. Moreover,
some practical issues can also be taken into account, such as
the effects of the antenna noise, the power splitter losses and
the different receive sensitivity level at the CD and PD circuits
of the splitting receiver.

APPENDIX A
PROOF OFLEMMA 1

We assume that~ρ ∈ [0, 1]K\{~0,~1}. Thus, based on (6),
Θ1 > 0 andΘ2 > 0.

A. Proof of (18a)

Based on the property of mutual information invariance
under scaling of random variables [19], a scaled received
signal expression based on (7) is given by

Ỹ1 =
√

Θ1X̃ +
Z̃√
P
,

Y2 =
√

Θ2k
√
P|X̃|2 + k

N√
P
,

(A.1)

wherek , σcov√
2σrec

. Thus, it is easy to verify that the real and

imaginary parts of Z̃√
P and k N√

P are independent with each

other and follow the same distributionN (0,
σ2

cov

2P ).
We define two random variables as

X̃1 ,
√

Θ1X̃ , andX2 ,
√

Θ2k
√
P|X̃|2. (A.2)

Because of the Markov chain
√
PX̃ → (X̃1, X2) → (Ỹ1, Y2)

and the smooth and uniquely invertible map from
√
PX̃ to

(X̃1, X2), we have

I(
√
PX ; Ỹ1, Y2) = I(X̃1, X2; Ỹ1, Y2). (A.3)

Before the analysis ofI(X̃1, X2; Ỹ1, Y2), we first define
a new coordinate system named as paraboloid-normal (PN)
coordinate system which is based on a paraboloidU . The
paraboloidU is defined by the equation

cP = k
√
P
√
Θ2

Θ1
(c2I + c2Q), (A.4)

wherecI , cQ andcP are the three axes of Cartesian coordinate
system of the I-Q-P space. By changing coordinate system, the
point (c1, c2, c3) is represented as(ã, l) in the PN coordinate
system, wherẽa is the nearest point on the paraboloidU to
the point(c1, c2, c3), and |l| is the distance. In other words,
the point(c1, c2, c3) is on the normal line at the point̃a on the
paraboloid. Specifically, the sign ofl is positive when the point
(c1, c2, c3) is above the parabolic, otherwise, it is negative.

Based on the property of mutual information invariance
under a change of coordinates [19], representing Cartesian
coordinate based random variables(X̃1, X2) and (Ỹ1, Y2)
under the PN coordinate system as(ÃX , LX) and (ÃX +
ÃZ̃,N , LZ̃,N), respectively, gives

I(X̃1, X2; Ỹ1, Y2) = I(ÃX , LX ; ÃX + ÃZ̃,N , LZ̃,N ), (A.5)

where the noise-related random variablesÃZ̃,N and LZ̃,N ,
which are generated bỹZ and N , are correlated with the
random variableÃX . SinceX2 = k

√
P

√
Θ2

Θ1

|X̃1|2, (X̃1, X2)
lies on the paraboloidU , i.e.,LX is a constant which is equal
to zero,ÃX can be represented by(X̃1, X2) for brevity. Thus,
we have

I(X̃1, X2; Ỹ1, Y2)

= I(ÃX ; ÃX + ÃZ̃,N , LZ̃,N )

= h(ÃX + ÃZ̃,N , LZ̃,N )− h(ÃX + ÃZ̃,N , LZ̃,N |ÃX)

= h(ÃX + ÃZ̃,N ) + h(LZ̃,N |ÃX + ÃZ̃,N )

−
(

h(ÃX + ÃZ̃,N |ÃX) + h(LZ̃,N |ÃX , ÃX + ÃZ̃,N )
)

.

(A.6)
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Since the expectationsE
(

Z̃
)

= (0, 0) andE (N) = 0, and

the variancesVar( Z̃√
P ) → 0 andVar(k N√

P ) → 0 asP → ∞,

it is easy to see that the noise variablẽAZ̃,N converges in
probability towards(0, 0). Thus, ÃX + ÃZ̃,N converges in
probability towardsÃX .

Furthermore, since convergence in probability implies con-
vergence in distribution and the entropy functionh(·) is con-
tinuous and defined based on the probability distribution ofthe
input random variable [17], we haveh(ÃX+ÃZ̃,N ) → h(ÃX)
asP → ∞. Similarly, we have the convergence of the random
variable, i.e.,

(

LZ̃,N , ÃX + ÃZ̃,N

)

→
(

LZ̃,N , ÃX

)

, hence

the convergence of entropy, i.e.,h(LZ̃,N , ÃX + ÃZ̃,N ) →
h(LZ̃,N , ÃX).

Therefore, the conditional entropyh(LZ̃,N |ÃX + ÃZ̃,N) ,

h(LZ̃,N , ÃX + ÃZ̃,N ) − h(ÃX + ÃZ̃,N ) converges
to h(LZ̃,N |ÃX) , h(LZ̃,N , ÃX) − h(ÃX), i.e.,
h(LZ̃,N |ÃX + ÃZ̃,N) → h(LZ̃,N |ÃX). Similarly, we have
h(LZ̃,N |ÃX , ÃX + ÃZ̃,N) → h(LZ̃,N |ÃX , ÃX). Together
with the fact thath(LZ̃,N |ÃX) = h(LZ̃,N |ÃX , ÃX) [17], we
haveh(LZ̃,N |ÃX + ÃZ̃,N )− h(LZ̃,N |ÃX , ÃX + ÃZ̃,N) → 0
as P → ∞. Thus, the mutual information in (A.6) can
asymptotically be rewritten as

I(X̃1, X2; Ỹ1, Y2) = h(ÃX)− h(ÃX + ÃZ̃,N |ÃX). (A.7)

Then we calculateh(ÃX) and h(ÃX + ÃZ̃,N |ÃX) as
follows.

1) h(ÃX): Due to the fact that the probability contained in
a differential area should not alter under a change of variables,
we have

|fX̃(x̃)dS| = |fÃX
(ã)dΣ|, (A.8)

wheredS = dudv, u = Real{x̃}, v = Imag{x̃}, ã is the PN
coordinate system representation of the point(x̃1, x2), dΣ is
the differential area on the paraboloidU , fÃX

(ã) andfX̃(x̃)

are the pdfs ofÃX andX̃, respectively, and

fX̃(x̃) =
1

π
exp

(
−|x̃|2

)
. (A.9)

Assuming thatr = (Real{x̃1}, Imag{x̃1}, x2), which is a
point on the paraboloidU , and thus, based on (A.2), we have

∂r

∂u
= (
√

Θ1, 0, 2k
√
P
√

Θ2u),

∂r

∂v
= (0,

√

Θ1, 2k
√
P
√

Θ2v),

dΣ =

∣
∣
∣
∣

∂r

∂u
× ∂r

∂v

∣
∣
∣
∣
dudv = Θ1

√

4
k2PΘ2

Θ2
1

|x̃1|2 + 1 dudv,

(A.10)
where× is the cross product operator. Taking (A.10), (A.9)
and x̃ = x̃1√

Θ1

into (A.8), after simplification, we have

fÃX
(ã) = fÃX

(x̃1, x2)

=
1

πΘ1

√

4k2PΘ2

Θ2

1

|x̃1|2 + 1
exp

(

−|x̃1|2
Θ1

)

. (A.11)

The differential entropy ofÃX is derived as

h(ÃX) =

∫∫

−fÃX
(ã) log2

(
fÃX

(ã)
)
dΣ. (A.12)

Taking (A.11) and (A.10) into (A.12), we have

h(ÃX)

=

∞∫

−∞

∞∫

−∞

−
exp

(

− |x̃1|2
Θ1

)

π
log2




exp

(

− |x̃1|2
Θ1

)

πΘ1

√

4k2PΘ2

Θ2

1

|x̃1|2+1



dudv

(a)
= 2π

∫ ∞

0

−
exp

(

− r2

Θ1

)

πΘ1
log2




exp

(

− r2

Θ1

)

πΘ1

√

4k2PΘ2

Θ2

1

r2 + 1



 rdr

= log2(πeΘ1) +
1

2 log(2)
exp

(
Θ1

4k2PΘ2

)

Ei

(
Θ1

4k2PΘ2

)

,

(A.13)
where(a) is because of the polar transformation.

2) Asymptotich(ÃX + ÃZ̃,N |ÃX): For a given value of
ÃX , based on the definition of the PN coordinate system, the
random variableÃX + ÃZ̃,N is treated as the projection of
the three-dimensional circular symmetric Gaussian noise,i.e.,
( Z̃√

P , k N√
P ) shifted byÃX , on the parabolicU by the normal

vectors of it.
As P → ∞, ÃX + ÃZ̃,N converges in probability toward

ÃX , thus, for a given value of̃AX , the effective range of the
random variableÃX + ÃZ̃,N on the paraboloidU , is very
small, which is close to the tangent plane ofU at the point
ÃX . Therefore, the random variablẽAX + ÃZ̃,N converges
in probability toward the random variable generated by the
projection of the three-dimensional circular symmetric Gaus-
sian noise on the tangent plane ofU at the pointÃX by the
normal vector of the point̃AX , which is the well-known two-
dimensional complex Gaussian random variable with variance
σ2
cov/P . Therefore, givenÃX , the entropyh(ÃX + ÃZ̃,N ) is

approaching tolog2(πeσ
2
cov/P) which does not rely oñAX .

Thus, asP → ∞, the asymptotic conditional entropy is

h(ÃX + ÃZ̃,N |ÃX) = EÃX

[

h(ÃX + ÃZ̃,N |ÃX = ãX)
]

≈ log2

(
πeσ2

cov

P

)

. (A.14)

3) AsymptoticI(
√
PX ; Ỹ1, Y2): Taking (A.13) and (A.14)

into (A.7), (18a) is obtained.

B. Proof of (18b)

Based on the power series expansion of the exponential
integral function [20]

Ei(x) = −γ − lnx−
∞∑

n=1

(−x)n

n n!
, x > 0, (A.15)

where γ ≈ 0.5772 is Euler’s constant, asP is sufficiently
large, we have

lim
P→∞

exp

(
Θ1σ

2
rec

2σ2
covPΘ2

)

Ei

(
Θ1σ

2
rec

2σ2
covPΘ2

)

= −γ + ln

(
2σ2

covPΘ2

Θ1σ2
rec

)

.

(A.16)

Substituting (A.16) into (18a), (18b) is obtained.
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