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A bstract

E ssays in P opu lation , R& D and E conom ic G row th

by

Creina Day

Doctor of Philosophy in Economics 

The Australian National University 

Professor Steve Dowrick, Supervisor

This thesis examines the dynamic interplay between fertility and economic growth and both 

the general conditions for and characteristics of long run R&:D-based economic growth in 

the absence of population growth in a developed economy.

This thesis comprises five chapters. Chapter 1 motivates the topic, reviews the 

literature and provides an overview of the thesis. Chapters 2 -5  contain four essays, each 

developing a theoretical model to:

1. explain the baby boom-bust and the possibility of a baby bounce-back;

2. establish the general conditions for positive long run economic growth under the al­

ternative assumptions of a growing and stagnant population;

3. show that the notions of non-linear knowledge accumulation and non-scale growth are

logically independent;
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4. explain how individuals may become relatively ignorant over time in the absence of 

population growth.

Dynamics of Fertility and Growth: Baby Boom, Bust and Bounce-Back extends 

Galor &; Weil (1996) by introducing a Constant Elasticity of Substitution (CES) production 

function for child rearing. The existence of goods and services, as an alternative input to 

m aternal time, generates a baby boom-bust cycle: fertility rises in the first phase where 

women are at home, raising children full-time, and falls in the second phase where women 

engage in the labor force. Whilst fertility declines unambiguously at the beginning of the 

second phase, as women enter the labor force, it may bounce-back as income effects start 

to dominate.

Population and Endogenous Gro wth introduces a general growth model comprising 

three sectors (final production. R&D and human capital formation). When population is 

growing, strictly positive, balanced growth that does not essentially depend on population 

growth may arise if either growth in human capital or growth in ideas asymptotes to a 

strictly positive constant. CES technology in human capital accumulation illustrates. In 

the asymptotic limit, the matrix of structural elasticities is singular (|A| =  0) and yet the 

long run growth rate in per capita growth is non-scale. Our third paper, Conditions for 

Non-Scale Growth, investigates the general conditions for non-scale growth. When popula­

tion growth is zero, \A\ =  0 is the necessary condition for strictly positive, balanced growth. 

In turn, sectoral linearity is sufficient, but not necessary for \A\ = 0. Our fourth paper, 

Lab Equipment Models and Creative Ignorance, formalizes sufficient conditions for |^4| — 0 

and applies the condition of linearly dependent columns in a lab equipment framework.
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Conditions for Non-Scale Growth extends Eicher & Turnovsky’s (1999) general 

non-scale growth model by relaxing the assumptions that all factors are necessary for pro­

duction in all sectors and \A\ ^  0 and by introducing a second dimension of knowledge, 

which may be embodied or disembodied. Single input linearity in one dimension of knowl­

edge accumulation is one of the conditions sufficient for positive non-scale growth that does 

not essentially depend on population growth. Eicher & Turnovsky’s (1999) conditions are, 

in general, sufficient but not necessary for strictly positive, non scale growth. The notions 

of non-linear knowledge accumulation and non-scale growth are logically independent.

Lab Equipment Models of Research and Creative Ignorance extends Dalgaard & 

Kreiner (2001) by introducing increasing returns to scale in R&D and decreasing returns 

to scale in human capital formation. The balanced growth equilibrium is characterized by 

creative ignorance. Ideas and human capital increase in a virtuous circle, but the frontier 

of ideas grows faster than the knowledge embodied in individuals. Individuals become 

relatively ignorant over time in the absence of population growth.
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Chapter 1

O verview

1.1 In trod u ction

Imagine life as a typical American child in 1955. You are playing catch in the 

backyard with your three siblings. Dad arrives home from work, just as Mom is taking a 

pot roast out of her new oven. Now, span forward to 2000. You are an only child. Mom 

and Dad have finished work and are picking you up from child care. Their real income 

is approximately three times that of their 1950’s counterparts, reflecting trend growth of 

approximately two percent per annum.1 What will the population of the United States and 

other developed countries be in 2050? Will per capita income continue to grow in the long 

run?

Referring to Figure 1.1, total population of the OECD today may be one and

a half times what it was in 1950, but it is projected to remain stagnant for the next

’T his rough calculation is based on Gross Domestic P roduct (G D P) per cap ita  (1990 In ternational Geary 
K ham is dollars) of $9,561 and $28,403 in 1950 and 2000, respectively. Source: M addison (2001).
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OECD PopulationMllions Mllions

Source: Department of Economic and Social Affairs, United Nations Secretariat

Figure 1.1: OECD Population (actual and projected)

fifty years. The projection of zero population growth2 is based on a current trend of 

below replacement fertility. Put simply, even taking into account immigration, the number 

of people arriving in the OECD will exactly offset the number of people departing the 

OECD. These developments are quite pervasive - the United Nations (2005) projects global 

depopulation may occur after 2040.

This projection is supported by a surge in theoretical literature linking changes 

in fertility3 to economic growth. Existing models of endogenous fertility (Barro & Becker 

(1988), Becker, Murphy & Tamura (1990), Erlich & Lui (1991), Galor & Weil (1996) and 

Galor & Weil (2000)) typically predict a negative relationship between fertility and per 

capita income in developed economies that have progressed well beyond the Malthusian

poverty trap where subsistence incomes limit fertility. We observe that fertility has followed

2Curiously, Zero Population Growth (Z. P. G.) was the title of a kitsch 1970’s science fiction movie, which 
depicted an affluent world in which couples cared for robotic children whilst awaiting permission to have a 
natural child.

3Let Lt, denote population at time t. dLi /dt  =  (ji{ + n\n — dt^j Lt where n { , and dt denote the rate 
of fertility, immigration and mortality, respectively. We focus on declining fertility in most OECD countries 
over the last century as the main source of declining population growth.



CHAPTER 1. OVERVIEW 4

a non-monotonic path in the United States and other developed economies over the past 

fifty years. Can we develop a model that explains both past and possible future movements 

in fertility in a developed economy?

Juxtaposed against two centuries of population growth, innovation and improving 

living standards, the prospect of zero population growth is causing alarm. One source of 

this alarm is the prediction of early non-scale growth models (Jones (1995 a), Kortum (1997) 

and Segerstrom (1998)) that the long run growth rate of the economy is driven by the rate 

of innovation, which in turn is ultimately driven by population growth. The concern is that 

if we replenish, but fail to increase, the world’s population, we will lose a future Thomas 

Edison or Bill Gates.

This concern has generated a flurry of research and development (R&D)-based 

growth models investigating feasibility of long run economic growth in the absence of pop­

ulation growth. Modelling two aspects of R&D, Young (1998), Dinopolous & Thompson 

(1998), Peretto (1998) and Li (2000) predict that strictly positive population growth is 

conducive but non-essential to long run economic growth. Modelling R&D and the accu­

mulation of embodied knowledge, Dalgaard & Kreiner (2001), Funke & Strulik (2000) and 

Strulik (2005) predict that strictly positive population growth is not only non-essential but 

also detrimental to long run economic growth.

In a decentralized setting, the assumptions that ensure strictly positive equilib­

rium growth are obscured by the intricacy of these models. For instance, Strulik (2005) 

comprises 48 equations, not including those contained in the appendix. A clear under­

standing of the general conditions for strictly positive equilibrium growth that does not
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essentially depend on population growth is needed to assess whether existing assumptions 

are necessary and actually met in practice. Can we develop a simple, unified framework 

within which to analyze thee sector R&D-based growth models where equilibrium growth 

may be endogenous or semi-endogenous, scale or non-scale?

The new generation R&D-based growth models are largely derived from non-scale 

growth models that assume population growth is strictly positive. The precedent Römer 

(1990) type models assume population is constant and would therefore seem pertinent to 

the current theoretical challenge. However, such models are criticized for assuming linearity 

in the accumulation of knowledge.4 Are the notions of non-linear knowledge accumulation 

and non-scale growth logically independent?

According to existing models, zero population growth implies that ideas and the 

knowledge embodied in individuals grow at the same rate in the long run. We observe, 

however, that the frontier of ideas grows faster than the knowledge embodied in individuals. 

Can we develop a model that explains how growth in ideas may outstrip growth in human 

capital, even if population ceases to grow?

This thesis explores the theoretical relationship between population growth and 

economic growth. We investigate both directions of causality, focusing on endogenous 

fertility and R&D-based growth. This thesis comprises four essays, each addressing one of 

the four questions broadly defined above.

In addition to motivating the topic, this chapter reviews the theoretical literature,

overviews the four essays, showing how they are both interrelated and distinct, and sum-

4 Linearity implies th a t the  ou tp u t of new knowledge will double whenever we double the  existing stock 
of knowledge.
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marizes the key findings. This chapter clarifies both how this thesis contributes to the 

literature and how our key findings pertain to the projection of zero population growth.

1.2 R ev iew  o f  th e  literature

1.2.1 N eoclassica l O rigins

The neoclassical growth model of Solow (1956) and Swan (1956) highlights that 

the long run level of per capita output depends negatively on population growth, and that 

long run growth in per capita output requires technological change. According to the 

neoclassical growth model, declining population growth boosts physical capital per worker, 

thereby raising the growth rate of the economy, at least until the economy reaches a new 

long run equilibrium.

The literature on endogenous fertility explores the reverse causality. Endogenous 

fertility models void of human capital accumulation or technological progress (for example, 

Galor & Weil (1996)) retain the neoclassical prediction that per capita output ceases to grow 

in the long run. However, as we will see, analysis of transitional dynamics can generate 

rich results.

The R&D-based growth literature explains technological change. Earlier models 

of endogenous growth assume linearity in the accumulation of physical capital or human 

capital (Lucas 1988). As we discuss, more recent complex models of R&D-based growth 

models also use linearity to obtain endogenous growth (or long run growth in per capita 

that does not depend on population growth). We explore the possibility of endogenous

growth under alternative assumptions.
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On this point, Pitchford (1960) and Jones & Manuelli (1990) establish that en­

dogenous growth may arise in the standard neoclassical growth model when the marginal 

product is bounded below by a positive constant. Linearity may be an asymptotic require­

ment rather than something that must hold at all points in time - a concept that can be 

applied to the recent endogenous growth literature.

1 .2 .2  E n d o g en o u s  F er tility

The diversity of endogenous fertility models lies in how children enter into parental 

utility. Self-interested parents may view children as a consumption item (Gaior & Weil 1996) 

or as a source of income support in old age (Erlich & Lui (1991), Cigno & Rosati (1996)). 

Alternatively, parents may be altruistic (Barro & Becker (1988), Becker et al. (1990)). In 

each case, parental utility is increasing in the number of children.0

Common to endogenous fertility models is the idea that growth in per capita 

income raises the opportunity cost of time spent raising children. On the other hand, 

growing incomes make children more affordable. In a developed economy, the substitution 

effect dominates the income effect, so that fertility declines. There is scope for contributing 

to the literature through more sophisticated modelling of the cost of raising children.

N on -m on oton ic path

Evidence from the United States and other G5 countries suggest that fertility in

developed economies follows a non-monotonic path as per capita income rises.5 6 In the

5Becker e t al. (1990) and Erlich & Lui (1991) in troduce a child quan tity  - quality  trade-off, in which case, 
p a ren ts weigh the m arginal utility  of num ber of children against the  m arginal u tility  of children’s educational 
a tta in m en t.

6See Figure 2.1 in C hap ter 2.
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United States, the average number of births per woman in 1950 was 3.1. Fertility rose to 

a peak of 3.8 in 1957 and fell steadily thereafter before plateauing at 1.8 in 1974. Fertility 

began to rise again in 1987, reaching 2.1 in 2000.

Becker et al. (1990), Erlich & Lui (1991), Barrro & Sala-i-Martin (1999) and 

Galor & Weil (2000) model a positive relationship between income and fertility rates, but 

only in the context of Malthusian models of economies at very low levels of capital per 

person. Surprisingly, there is a dearth of economic theories explaining the twentieth century 

baby boom. Two notable exceptions are Easterlin (2000) and Greenwood, Seshandri & 

Vandebroucke (2004), who attribute the baby boom to modest parental consumption habits 

that were formed as children in the Great Depression and technological progress in the 

household sector, respectively. Unfortunately, neither model is able the explain why the 

baby bust levelled out or why we may be witnessing or expect to witness an upturn in 

fertility - a baby bounce-back. Like their Malthusian counterparts, fertility rates follow 

an inverted U-shape. Once fertility decline begins, it will continue so long as per capita 

incomes rise over time.

E x ten d in g  th e literature

Galor & Weil (1996) make an important contribution to the literature by capturing 

one of the most dramatic developments in advanced economies - the rise of female labor 

force participation. They define two distinct phases: women at home and raising children 

full time; women entering the work force and raising children part time. Their model 

predicts that fertility is constant and monotonically decreasing in the first and second

phase, respectively. We observe that this prediction follows directly from the assumption
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th a t a fixed fraction of maternal time is the only input into child rearing.' Could the 

existence of an alternative input to maternal time explain rising fertility in the first phase 

and a non-monotonic path in fertility in the second phase? Could the optimal mix of inputs 

change over time in response to rising female relative wages?

1.2 .3  R & D -based  G row th

The theoretical prediction that the long run economic growth either does not 

depend or does not essentially depend on population growth pertains to a balanced growth 

equilibrium. We append this chapter with definitions of both balanced growth and phrases 

italicized in the following discussion.

Let y denote income or output per capita, L the total population, H the stock of 

human capital and let gx denote the long run growth rate of any variable x. We review 

the literature as it pertains to the projection of zero population growth and classify models 

of R&D-based growth into two broad types: those that assume population is constant and

those th a t allow for population to grow over time.

7T he assum ption  th a t  parents derive direct u tility  from the  num ber of children simplifies th e  analysis 
b u t does n o t a lte r th e  prediction th a t  fertility declines in th e  second phase. After m aking th e  necessary 
extensions, th is  au th o r finds th a t economic growth, via rising female relative wages, generates a fertility  
decline in all th ree  m odels of parental utility.



CHAPTER 1. OVERVIEW 10

C onstant P opulation

Models of the first type, exemplified by Römer (1990) and Aghion & Howitt (1992),

predict8 9:

gy = a.H (1.1a)

where all constant exogenous and endogenous parameters are summarized by the term, 

a > 0.<J Endogenous parameters include the fraction of the labor force engaged in R&D. 

Thus, long run growth per capita growth is proportional to the skill employed in R&D. To 

the extent that the skill is embodied in the population, long run growth of the economy is 

still proportional to the size of the population. The implication that the growth rate of 

the economy will rise exponentially over time should population grow at a constant rate is 

not supported by evidence in Jones (19956).

Current models are derivative of these seminal models of R&D-based growth. The 

stock of labor in these models can be homogenized into either the stock of human capital or 

total population. Most literature stems from the latter assumption. However, an example 

of a model that assumes the former is Funke & Strulik (2000). They retain the assumption 

that population is constant and are therefore a first-type model. By endogenizing the 

accumulation of human capital, they remove the scale effect from the long run growth rate 

of the economy:

gy = a (1.1b)

8T he sem inal R& D-based growth models (Röm er (1990), Aghion & How itt (1992) and Grossm an & 
Helpman (1991)) are widely criticized for their scale effect: long run per cap ita  o u tp u t growth is proportional 
to  population  size. It is, in fact, a slight m isrepresentation of Röm er (1990) and Aghion & H ow itt (1992) 
to  say th a t  gy is proportional to  L, as predicted by G rossm an & Helpman (1991), since bo th  allow for 
heterogeneous labor.

9( l . l a )  is a generalized expression. Röm er (1990) assum es a =  5(1  —Z y ) ,  where 5 is an  exogenous 
p roductiv ity  param eter and Zy is the endogenously determ ined fraction of labor allocated to  final production . 
For gy >  0, H  m ust be sufficiently high th a t the non-negativity  constrain t of (1 — Z y )  H  is not binding.
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All these first type models share the common feature of sectoral linearity in a 

knowledge accumulation equation, whether knowledge he non-rivalrous ideas or rivalrous 

human capital. And so, sectoral linearity has become synonymous with endogenous growth 

models that treat population as an exogenous constant. Like the scale effect, linearity in the 

accumulation of knowledge is criticized. Jones (2001) argues that, with the exception of the 

population equation, the assumption of linearity is ad hoc. This brings us to R&D-based 

growth models of the second type, that introduce a linear population equation.

G row ing P opulation

Early examples of second-type models are Jones (1995a), Kortum (1997) and 

Segerstrom (1998). Their common feature is diminishing marginal returns to ideas (or 

knowledge spillovers of degree less than one) in the creation of new ideas. Diminishing 

marginal returns in the stock of ideas requires increasing effort to create an idea. This 

increasing effort can come from more researchers. Since the fraction of the labor force 

engaged in R&D is constant in steady state, strictly positive population growth satisfies the 

increasing efforts needed for strictly positive growth in technology and the overall economy.

In these models, R&D remains the engine of long run economic growth, but pop­

ulation growth is the fuel:

9y = cgL (1.1c)

where all constant exogenous parameters are summarized by the multiplicative term c > 0. 

On the flip side, strictly positive population growth is essential for long run economic growth. 

To establish feasibility of long run economic growth in the absence of population growth,

the most recent literature adapts second-type models. Three main branches have emerged.
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The first new branch of second type R&D-based models assumes two aspects of 

R&D. Examples are Young (1998), Dinopolous & Thompson (1998), Peretto (1998) and Li 

(2000). In brief, R&D may involve either the creation of new products, so that technological 

improvement is measured by increased variety of intermediate goods (Römer 1990) or the 

improvement of existing products as in Aghion &; Howitt’s (1992) quality-ladder model. 

We refer to these two aspects as simply variety R&D and quality R&D. Li (2000) shows 

that if there are no knowledge spillovers in variety R&D and spillovers of degree one (or 

linearity) in quality R&D then the long run growth rate of the economy is an additively 

separable function of population growth and a constant term:

gy = b + cgL (1 - Id)

where all constant parameters are summarized in the terms b and c. Since b summarizes 

endogenous parameters, the policy variance result of first type models is restored. The 

absence of knowledge spillovers in variety R&D implies a one-to-one correspondence between 

variety growth and population growth. This explains the second term of equation (l.ld). If 

population is static, the variety of intermediate goods stays constant. However, endogenous 

technological change is still possible through improving existing products, since linearity in 

quality R&D implies quality growth is proportional to the population size. This explains 

the first term of equation (l.ld). Consequently, strictly positive population growth is 

non-essential to long run economic growth.

A second branch assumes two dimensions of knowledge and models both R&D and 

human capital formation. Dalgaard & Kreiner (2001) and Strulik (2005) predict

9y —  ^  cgL ( l . l e )
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so that strictly positive population growth is not only nonessential but also detrimental 

to long run economic growth. Linearity in the accumulation of human capital implies 

population growth is not necessary for long run growth in per capita output, as per the first, 

term of equation (l.le). The embodiment of human capital, and the associated congestion 

or capital dilution effect, implies population growth is not conducive for long run growth in 

per capita output, as per the second term of equation (l.le).

A third branch endogenizes population (Jones 2001) or both population and human 

capital (Galor & Weil 2000). Just as Funke & Strulik (2000) removes the "strong" scale 

effect from the early endogenous growth models, these models remove the "weak" scale 

effect from semi-endogenous growth models. They predict a long run rate of growth in the 

economy:

gy = d (l.lf)

where d is a constant term summarizing, for example, exogenous efficiency parameters.

Extending the literature

Endogenous Growth Long run economic growth that does not depend on exogenous 

growth in the population is endogenous. The long run growth rates of (1.1a), (1.1b) 

and (l.lf) are endogenous and the long run growth rates of (l.ld) and (l.le) comprise an 

endogenous component, encapsulated by the summary parameter b.

Recent literature establishing endogenous growth is overwhelmingly derivative of 

the early semi-endogenous growth models that predict (1.1c), but this is not to say that 

the assumption of diminishing marginal returns prevails. In a decentralized setting, recent 

models are intricate. It is not clear what assumptions are necessary for endogenous growth.
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For the branch of the literature predicting (1.Id), Li (2000) establishes that linearity in 

quality R&D implies endogenous growth.10 Is linearity in the accumulation of knowledge, 

in general, necessary for endogenous growth?

We observe that each of the models predicting (1.1b), (l.ld) and (l.le) add a 

second dimension of knowledge accumulation to a seminal R&D-based growth model. Could 

we develop a generalized three sector framework for which (1.1a) - (l.le )* 11 are special 

cases? Using this framework, what are the general conditions for endogenous growth when 

population growth is assumed strictly positive and zero, respectively?

There is also scope to contribute to the literature by developing a specific model. 

Applying CES technology to R&D, Dalgaard & Kreiner (2003) predict (1.1c) or (l.ld), de­

pending on the degree of substitutability between ideas and researchers. A priori, however, 

we would expect a high degree of complementarity between the two R&D inputs. Could a 

more plausible application of CES technology to the formation of human capital generate 

(l.ld)?

Non-Scale Growth Eicher & Turnovsky (1999) make an important contribution to our 

understanding of the conditions for (1.1c) by abstracting from the microeconomic foun­

dations of R&D and modelling the decision making of a central planner in a generalized 

two-sector non-scale growth model. Eicher & Turnovsky (1999) assume the matrix of

structural elasticities is non-singular. Under this restriction, they establish that a strictly

10Li (2000) shows that growth is endogenous when the determinant of the coefficient matrix is singular. 
He proposes that this in turn requires that the return to variety and the return to quality is equated across 
variety and quality R&D. Zero returns to variety and constant returns to quality satisfy this necessary 
condition.

11 We extend the endogenous fertility literature in the first paper and place ( l .lf )  outside the scope of the 
last three essays.
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positive determinant, diminishing returns to physical capital in final production and dimin­

ishing returns to the existing stock of ideas in R&D are necessary and sufficient for strictly 

positive non-scale growth.

We observe that (1 .Id) and (l.le) are also examples of non-scale growth and that 

these second generation non-scale growth models all work in a similar way. Each model 

adds a second dimension of knowledge accumulation to a seminal non-scale model of R&D- 

based growth. The second type of knowledge may be embodied or disembodied. Could 

we extend Eicher &; Turnovsky (1999) by both introducing a third sector of knowledge 

accumulation and relaxing their restriction? What are the general conditions for strictly 

positive, non-scale growth? Are the conditions for strictly positive growth in the absence 

of population growth met in practice? Are the notions of non-scale growth and non-linear 

knowledge accumulation logically independent?

C reative Ignorance Existing models predict that the aggregate stocks of endogenous 

factors grow at the same rate along a balanced growth path. In a three sector model, 

gk — gA = 9Hi where K, A and H denote the aggregate stock of physical capital, ideas and 

human capital, respectively. It follows that, models with embodied knowledge, Dalgaard & 

Kreiner (2001) and Strulik (2005), predict gh — 9 A ~  n where h denotes human capital per 

person. Zero population growth will imply gh = ga , that is, individuals cease to become 

relatively ignorant over time.

Dalgaard & Kreiner (2001) is particularly interesting because it applies the lab 

equipment framework. Few endogenous growth models assume that the formation of knowl­

edge employs the same inputs as final production. Those that do, Rivera-Batiz & Römer
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(1991) and, more recently, Dalgaard & Kreiner (2001), assume that knowledge forms using 

the same input proportions as final production.

Mulligan & Sala-i-Martin (1993) make an important contribution to our under­

standing of the conditions for endogenous growth when knowledge accumulation features 

the same inputs as final production. However, they confine knowledge to human capital. 

What are the general conditions for endogenous growth when both R&D and human capital 

formation feature the same inputs as final production?

We observe that when stocks accumulate using the same inputs as final produc­

tion, the prediction that aggregate stocks grow at the same rate follows directly from the 

assumption that all sectors are subject to constant returns to scale. Could increasing re­

turns to scale in R&D explain why growth in ideas may outstrip growth in human capital 

per person in the long run, even if population ceases to grow?

1.3 R ev iew  o f  th e  thesis

This thesis comprises four essays. The first essay develops an overlapping gen­

erations model with endogenous fertility. The analysis of transitional dynamics reveals a 

baby boom, bust, bounce-back sequence. The next three essays make use of a generalized 

growth framework comprising three sectors producing final output, disembodied knowledge 

(ideas) and a second dimension of knowledge, which may be embodied or disembodied, al­

though each essay addresses a distinct question. Since the respective questions relating to 

endogenous growth, non-scale growth and creative ignorance pertain to the long run, these 

essays focus on the analysis of a balanced growth equilibrium, although dynamic analysis
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is provided where relevant.

1.3.1 E ssay 1 - D ynam ics o f Fertility  and G row th: B ab y B oom , B u st and  

B ou nce-B ack

This essay examines the dynamic interplay between economic growth and fertility 

as a developed economy moves through two distinct phases: women at home and raising 

children full time; women entering the work force and raising children part time. Women’s 

relative wages rise with economic growth, as per Galor & Weil (1996). Higher wages make 

children more affordable. On the other hand, children are more costly when maternal 

time, used in child rearing, could be supplied to the labor market. We extend Galor 

Sz Weil (1996) by introducing goods and services as a child rearing input. A Constant 

Elasticity of Substitution (CES) production function for child rearing allows for varying 

degrees of substitutability between goods and time. The existence of an alternative input 

to maternal time generates a baby boom-bust cycle: fertility rises in the first phase and falls 

in the second. Whilst fert ility declines unambiguously at the beginning of the second phase, 

as women enter the labor force, it may bounce-back as income effects start to dominate.

1.3 .2  E ssay 2 - P opu lation  and E ndogenous G row th

This essay introduces a general growth model comprising three sectors (final pro­

duction, R&D and human capital formation). The framework allows us to derive the 

central planner solution to models of endogenous, semi-endogenous, scale and non-scale 

growth. Using this framework, we establish general conditions for positive growth in per 

capita output along a balanced growth path under the alternative assumptions of a growing
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and stagnant population.

Under the assumption of strictly positive population growth, we establish that 

strictly positive, balanced growth that does not essentially depend on population growth 

may arise if either growth in human capital or growth in ideas asymptotes to a strictly 

positive constant. To illustrate this, we introduce CES technology to human capital ac­

cumulation. If the elasticity of substitution between human capital and physical capital 

exceeds one, long run per capita growth asymptotes to an additively separable function of 

population growth.

A question arises when solving the illustrative example of asymptotic linearity. 

In the asymptotic limit, the matrix of structural elasticities is singular (|A| =  0) and yet 

the long run growth rate in per capita growth is non-scale. This paper takes the general 

conditions for non-scale growth as given. For a general two sector model of non-scale 

growth, Eicher & Turnovsky (1999) establish that |A| > 0 is one of the conditions necessary 

and sufficient for strictly positive growth in output, capital, consumption and technology. 

What are the conditions for strictly positive growth in a general three sector model of non­

scale growth? Our third essay, Conditions for Non-Scale Growth, addresses this specific 

question.

Under the assumption of zero population growth, we establish that \A\ — 0 is the 

necessary condition for strictly positive growth in output, capital, consumption, technology 

and human capital. In turn, sectoral linearity is sufficient, but not necessary for \A\ = 0. 

Linearly dependent columns is also sufficient for \A\ = 0. We illustrate, by way of a 

numerical example, how increasing returns to scale in one sector offset by decreasing returns
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to scale in another sector provides linearly dependent columns.

This is an important result that needs developing. Our fourth essay, Lab Equip­

ment Models and Creative Ignorance, formalizes sufficient conditions for \A\ = 0 and applies 

the condition of offsetting returns to scale in a lab equipment model to explain "creative 

ignorance".

1.3.3 E ssay 3 - C onditions for N on -Scale  G row th

This essay extends Eicher & Turnovsky’s (1999) general non-scale growth model 

by relaxing the assumptions that all factors are necessary for production in all sectors and 

IA I 7  ̂ 0 and by introducing a second dimension of knowledge, which may be embodied 

or disembodied. We establish that single input linearity in one dimension of knowledge 

accumulation is one of the conditions sufficient for positive non-scale growth that does not 

essentially depend on population growth. Eicher & Turnovsky’s (1999) conditions are, 

in general, sufficient but not necessary for strictly positive, non scale growth. We show 

that the notions of non-linear knowledge accumulation and non-scale growth are logically 

independent. We review the empirical and policy implications of this result. Both in­

tuition and, in the case of disembodied knowledge, existing econometric evidence support- 

diminishing marginal returns to the existing stock of knowledge in the creation of new

knowledge.
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1.3.4 E ssay 4 - Lab E quipm ent M odels o f  R esearch and C reative Igno­

rance

This essay assumes Cobb-Douglas production technology for a general three sector 

growth framework. We establish three sufficient conditions for \A\ — 0, as required for 

endogenous growth. One condition is that all sectors feature constant returns to scale to 

endogenously accumulating factors, in which case all variables grow at a common rate. 

We show that identical production technology in existing lab equipment models renders 

constant returns to scale necessary for balanced growth.

Another condition is that increasing returns to scale to endogenously growing fac­

tors in one sector offset by decreasing returns to scale in other sectors such that the columns 

of A are linearly dependent. We extend Dalgaard & Kreiner (2001) by introducing increas­

ing returns to scale in R&D and decreasing returns to scale in human capital formation. 

This extension generates a balanced growth equilibrium characterized by creative ignorance. 

Ideas and human capital increase in a virtuous circle, but the frontier of ideas grows faster 

than the knowledge embodied in individuals. This characteristic is robust to the absence 

of population growth. In contrast to existing lab equipment models, we predict that rais­

ing the share of resources used in R&D has an unambiguously positive effect on long run 

economic growth.

1.3 .5  K ey  findings

We summarize the key findings of this thesis that are pertinent to the United 

Nations’s (2005) projection of zero population growth for the next fifty years.
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Dynamics of Fertility and Growth: Baby Boom, Bust and Bounce-Back predicts

1. Whilst fertility in a developed economy declines unambiguously at the beginning of 

the phase where women enter the labor force, it may cease to decline if maternal time 

becomes a sufficiently small part of the cost of child rearing;

2. Once fertility ceases to decline, any further wages growth, ceteris paribus, induces 

households to substitute child rearing goods and services for maternal time, enabling 

a rise in fertility or a baby bounce-back.

The implication of a possible upturn in fertility in developed economies is that 

zero population growth in the OECD may not eventuate.

Population and Endogenous Growth establishes:

1. When population is growing, asymptotically linear accumulation of knowledge (either 

ideas or human capital) is sufficient for endogenous growth. To illustrate, if human 

capital is sufficiently substitutable for physical capital in the formation of human 

capital, long run growth in the economy does not essentially depend on population 

growth;

2. When population growth is constant, singularity of the matrix of structural elastic­

ities (|^4| =  0) is necessary for endogenous growth. Linearity, either in the form of 

constant returns to scale to growing factors or constant returns to the existing stock 

of knowledge, in the accumulation of knowledge is sufficient but not necessary for

\A\ =  0.
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The implication is that if the projection of zero population growth proves cor­

rect, long run economic growth is feasible without imposing the restriction of linearity in 

knowledge accumulation.

Conditions for Non-scale Growth establishes

1. \A\ > 0, diminishing marginal returns to physical capital in final production (er# < 1) 

and diminishing marginal returns to knowledge in the accumulation of knowledge 

(r)A < 1 in a two sector model; ujq < 1 in a three sector model) are sufficient but not 

necessary for positive growth of output, capital, consumption and knowledge in a non­

scale growth model. The non-scale growth equilibrium implied by these conditions 

depends essentially on population growth;

2. \A\ — 0, crK < 1, r\A < 1 and a linear knowledge accumulation equation (wq =  1 

and uJi — 0Vi /  Q, holding asymptotically or at all points in time) is sufficient 

for positive growth of output, capital, consumption and knowledge in a non-scale 

growth model. The non-scale growth equilibrium implied by these conditions does 

not essentially depend on population growth. Equilibrium growth may even decrease 

with population growth if knowledge (Q) is embodied;

3. The notions of non-linear knowledge accumulation and non-scale growth are logically 

independent.

Intuition and existing empirical estimates support the assumption that the mar­

ginal return to existing knowledge in the formation of knowledge diminishes. By the third 

proposition, diminishing marginal returns may imply equilibrium growth that is either scale
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or non-scale. When population growth is zero, scale growth is positive, whereas non-scale 

growth is only positive if knowledge accumulation is asymptotically linear. The implication 

is that the prediction of long run economic growth in the absence of population growth is 

more robust in models of scale growth, an underdeveloped branch of the literature.

Lab Equipment Models of Research and Creative Ignorance establishes

1. Endogenous growth, with or without scale effects, is impossible unless the condition 

\A\ = 0 is met.

2. Sufficient conditions for \A\ = 0 include:

(a) All sectors feature constant returns to scale to endogenously accumulating fac­

tors, in which case all real variables grow at a common rate;

(b) Increasing returns to scale to endogenously accumulating factors in one sector, 

offset by decreasing returns to scale to endogenously accumulating factors in 

other sectors such that the columns of matrix A are linearly dependent, in which 

case real variable grow at different rates.

3. In a three sector Cobb-Douglas lab equipment economy, increasing returns to scale 

to A and Q (ideas and aggregate human capital, respectively) in R&D offset by 

decreasing returns to scale to A and Q in human capital formation (such that \A\ = 0) 

generates a balanced growth path along which = kgQ where k > 1. We refer to 

this characteristic as creative ignorance, meaning ideas and aggregate human capital 

increase in a virtuous circle, but the frontier of ideas grows faster than the knowledge

embodied in individuals.
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In the absence of population growth, gh = gQ, where h denotes human capital 

per person. Thus, the creative ignorance result implies that individuals may become 

increasingly ignorant over time even if zero population growth eventuates.



Part II

E ndogenous F ertility  - Essay 1
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Chapter 2

T he D ynam ics o f F ertility  and  

Growth: Baby B oom , B u st and  

B ounce Back

2.1 In trod u ction

This paper explores reasons why the developed economy ‘baby-boom’ of the 1950’s 

was characterized not only by a high level of fertility but also by rising fertility, why the 

boom was followed by a sharp decline in fertility, why the ‘baby-bust’ then leveled out and 

why we may be witnessing or expect to witness a rise in fertility rates -  a ‘baby bounce-back’.

There has been a recent surge in the theoretical literature linking changes in fer­

tility to economic growth. The existing literature predicts a negative relationship between 

fertility and income per capita in developed economies that have progressed beyond the
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Malthusian poverty trap where subsistence incomes limit fertility. By contrast, the model 

developed here is capable of explaining the non-monotonic path of fertility over the past 

fifty years.

Much of the current literature is motivated by the well publicized decline in fertility 

that occurred in most OECD countries in the latter half of the 20th century. The fact that 

fertility is currently below replacement level in all G5 countries, bar the United States, has 

perhaps biased developments in theory in favor of explanations for fertility decline. Just as 

we would not want theory of the 1960’s to have been unduly influenced by the preceding 

baby boom, we do not want recent experience to blind us to the possibility of a resurgence 

of fertility in developed economies.

Common to recent models of endogenous fertility is the idea that growth in income 

per capita raises the opportunity cost of time spent raising children. In a developed economy, 

the associated substitution effect dominates the income effect (due to increased affordability 

of children), so that fertility declines. As a slight variation on this theme, Becker et al. (1990) 

and Erlich & Lui (1991) introduce a child quantity -  quality tradeoff. In this case, fertility 

declines with economic growth because the opportunity cost of time spent raising children 

increases relative to the opportunity cost of time spent educating children.

The model of Galor & Weil (1996) has several advantages over its counterparts. 

Firstly, parents derive direct utility from the number of children, simplifying the analysis

without altering any empirically valid predictions.1 Secondly, a rise in female relative wages

1 Models endogenising fertility may be differentiated according to  how children enter into paren tal utility. 
Self-interested parents may view children as a consum ption item  (Galor & Weil 1996) or as a  source of 
income su p p o rt in old age (Erlich & Lui (1991), Cigno & R osati (1996)). A lternatively, paren ts m ay be 
a ltru istic  (B arro  & Becker (1988), Becker e t al. (1990)). After m aking the  necessary extensions, economic 
growth, via rising female relative wages, generates a fertility decline in all th ree  models of paren tal utility.
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drives the fertility decline.2 Thirdly, it captures one of the most dramatic developments 

in the recent economic history of the advanced economies -  the rise in female labor force 

participation.

Galor & Weil (1996) define two distinct phases of demographic development: in 

phase one, women are at home full time; in the second phase, women participate in the paid 

labor force. Throughout the initial phase, fertility is high but constant. Once women enter 

the labor force, fertility declines monotonically with growth in income per capita. These 

predictions contrast with the evidence from the US and the other G5 economies in two 

respects -  see Figure 2.1.3

Firstly, fertility was actually rising over the “baby boom” phase - whereas Galor 

& Weil (1996) predict constant fertility throughout a phase when married women allocate 

all of their time endowment to child rearing. This prediction follows directly from their 

assumption that a fixed fraction of maternal time is the only input into child rearing. 

Secondly, fertility decline in the leading developed economies has leveled off. In the US, 

there is clear evidence of an upturn in fertility since 1985.

This raises the question whether the existence of other inputs into child-rearing 

would enable the model to explain non-monotonicities in the relationship between fertil­

ity and income in developed economies.4 This question has been partially dealt with by

2Cigno & Rosati (1996) present evidence for US, UK, Germany and Italy that the recent decline in 
fertility corresponded to a steady rise in the female-male wage ratio. The gender wage gap has fallen, since 
1979, in the US and, since 1970, in other G5 countries. See Blau & Khan (2000) and Harkness & Waldfogel 
(1999).

3Figure 2.1 sourced from World Bank Tables; Historical Statistics of the US.
4Becker et al. (1990), Erlich &; Lui (1991), Barrro & Sala-i-Martin (1999) and Galor & Weil (2000) model 

a positive relationship between income and fertility rates, but only in the context of Malthusian models of 
economies at very low levels of capital per person. More relevant to Figure 2.1, is a model that tracks an 
advanced economy’s transition through two phases distinguished by female labor force participation.



CHAPTER 2. THE DYNAMICS OF FERTILITY AND GROWTH 29

1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 

---------- United States............. G5 (non US)

Figure 2.1: Total Fertility Rate (births per woman)

a footnote in Galor & Weil (1996) which deals with the second phase of demographic de­

velopment. If a fixed quantity of goods is required in addition to parental time, then the 

fertility decline may be eradicated if the goods input is sufficiently large. This raises the 

question: what factors determine the goods-time input mix? Whilst Apps & Rees (2001) 

extend the Galor and Weil approach by introducing a generic production function for child 

rearing, neither paper analyses the dynamics of fertility in the context of a child-rearing 

production function, nor do they deal with rising fertility during phase one. This is exactly 

what this paper sets out to do.

This paper extends Galor & Weil (1996) by introducing goods and services as a 

child rearing input and allowing the household to choose the optimal goods-time input mix. 

A Constant Elasticity of Substitution (CES) production function for child rearing allows

analysis of the degree of complementarity between goods and time.
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2.2 B asic  structure o f th e  m odel

An overlapping generations model in which people live for three periods describes 

the economy of Galor & Weil (1996). People spend the first period of life as children, 

consuming time, as well as goods and services, from their parents; the second period of 

life involves the supply of labor to the market and the raising of children; during the third 

period, people are retired from the labor force and consume the proceeds of their savings 

from the previous period. Men and women differ in their wage earning ability because of 

different labor endowments. The closed economy identity of savings and investment provides 

the link with growth in the capital stock, productivity and wages, which in turn influence 

fertility.

Intuitively, when children are a consumption item, higher wages have both an 

income effect, and a substitution effect when labor is used to rear children. These effects 

work in opposite directions. By construct, the substitution effect dominates. Specifically, 

if maternal time is the only child rearing input and female wages are a fraction of male 

wages, fertility unambiguously declines as female relative wages rise. Rising female relative 

wages are a consequence of economic growth. Women supply only one type of labor that is 

complementary to capital. Both male and female wages rise over time with the accumulation 

of capital per worker, but female wages rise relatively more. Combined with the neoclassical 

capital intensity effect, this final feature generates a feedback loop between growth in output 

per worker and declining fertility. Growth in capital per worker raises female relative wages, 

inducing a decline in fertility that, in turn, boosts capital per worker. Thus, Galor & Weil 

(1996) encapsulate in one model fertility decline as both a symptom and a cause of economic
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growth.

2.2 .1  P rod u ction  o f final ou tp u t

Physical capital (K), physical labor (Lp) and mental labor (L are factors of 

production, all with non-increasing marginal products. The greater the capital-labor ra­

tio in the economy, the more highly rewarded is mental labor relative to physical labor. 

This is consistent with the relative rise in rewards to mental labor in developed countries. 

Intuitively, capital does a better job of replacing human strength than human thinking. 

The production function is given by

Yt = A [aKpt + (1 -  a)(L™)p]1/P + bL\ p ±  0 (2-2)

where A >0, b >0, a 6 (0,1) and p G ( — oo, 1). The separability of the production function 

captures the assumption that, whereas, capital complements mental labor, physical labor 

is neither a complement nor a substitute for capital or mental labor.

The household production function is

Vt = Yt/Lp = A [akp + (1 -  Q.)mpt ]l/p + b (2.3)

where kt and are the per household supplies of capital and mental labor, respectively. 

Men supply inelastically 1 unit of physical labor and 1 unit of mental labor together. Women 

supply between 0 and 1 units of mental labor, so mental labor per working age household 

takes values: l<m*<2, where (m* — 1) measures female labor force participation.0 

Profit maximization and competitive markets imply

w™ = A( 1 — a)mp~l [akp + (1 — a)mp^~ p̂ p (2.4)

5The underlying assumption here is that men and women are equally endowed with “brains” but only 
men have “brawn”.
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wpt = b (2.5)

An increase in capital intensity will therefore raise the wageü for mental labor (tc™) while 

the wage for physical labor (ref) is constant. Men earn a wage of ref1 + ref; women earn a 

wage of ref1. It follows that growth in the capital stock over time will increase female wages 

proportionately more than male wages, thus reducing the gender wage gap.

2 .2 .2  H ou seh old  op tim iza tion

Households derive utility directly from the number of children. Children are es­

sentially a durable good. There is no bequest motive.

The household utility function' is

ut =  7 ln(nf) A (1 -  7)ln(c*+i) (2.6)

where q +i is consumption in retirement and denotes pairs of children (since the couple is

the basic unit of analysis), both chosen by the household at time t.6 * 8

To raise each pair of children, households purchase goods and services and employ

a fraction of maternal time, denoted x and z, respectively. Only the wife raises children,

znt < 1, because the opportunity cost of female labor is lower. Men allocate their labor

endowment to paid work only. This paper models the economy’s transition through the

Baby Boom and Bust during the latter half of the twentieth century. Neither phase saw

men withdrawing from the labor force to supplement women at home raising children full

time. Even the arrival of “Mr. Mom” in the modern era involved substitution for, rather

6This is the real wage, with the price of the aggregate good normalized to 1.
Consumption in the second period of life is assumed to be zero. Galor & Weil (1996) note that if couples 

had log utility from C t ,  the equation of motion would be altered only by a multiplicative constant.
8The model structure up to this point corresponds to Galor and Weil (1996). The analysis from this 

point is the original work of the author.
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than supplementation of, maternal time. For the purposes of this paper, therefore, it is 

assumed9 the following condition is met:

zt = znt < 1 (2.7)

The production function for child-care is of CES form:

nt = [(aizt)a + (a2xt)a}« ; a / 0  (2-8)

where x and 2  denote total child rearing goods and services and total time input, respec­

tively, and a determines the constant elasticity of substitution between time and goods, 

given by e = 1/ (1 — a). Define c*i =  and 0 2  = (1 — 5)1//a, where <5 is the distribution 

parameter that measures the relative factor shares in production. The limits of the CES 

child-rearing production function are:

• as 5 —► 1, the assumption of Galor & Weil (1996) that child rearing requires only time 

input;10

• as £ —> 0, a Leontief technology, where child-care goods and services and maternal 

time are used in fixed proportions.

Because the child-rearing production function is homogeneous of degree one, the 

household optimization problem can be solved in two stages. The household first chooses, 

for a given nt, the cost minimizing input mix and then chooses rq, given the efficient input

mix, so as to maximize utility subject to a budget constraint.
9 T o ensure that women enter the workforce, Galor & Weil (1996) assume 7 <1/2. By implication, the 

household’s optimal choice of fertility satisfies condition (2.7). The approach taken in this paper differs in 
that parameter values in the household optimization problem are not restricted so as to rule out the scenario 
where optimizing households would use child-rearing time in excess of the maternal time endowment if they 
could.

10In the limit, z — 1 /E , where E  is the level of production technology, analogous to A  in (2.2). Replacing 
the restriction E = 1 with E> 1 ensures 0 < z <  1.
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C ost m inim ization

Allowing for the possibility of a government subsidy (0 < ßt < 1) per unit of 

market goods and services used11, the total cost of rearing children is

Ct = w^zt  +  (1 -  ßt)xt (2.9)

There are two cases, constrained (c) and unconstrained (u), depending on whether the 

maternal time constraint, (2.7), is binding.

The household first chooses the input mix, for a given tit, so as to minimize (2.9) 

subject to (2.8), assuming, for the moment, the maternal time constraint (2.7) is not binding. 

Input demands for time and goods are, respectively,

z,*“ =  zn, = +  (1 -  ß  1/ a 2)a/a- I]~ 1/“ ( a , ) - “/“- 1« ’)17““ '»! (2.10)

*,*“ = xnt = [ ( O l ) “/o_1 + (1 "  5 ,/« 2)o/o_1] ~ ' /0 {o2 )-a/° - I{l -  ß,)Va- 'n ,  (2.11)

The unconstrained per unit cost function is

p « ,0 t) = k o o “/“- 1 + (i -
a— 1/a

( 2. 12)

When (2.7) is binding, z*c — znt — 1 and the required goods input, Xt, is derived by 

inverting equation (2.8).

U tility  m axim ization

When (2.7) is not binding, the household’s first period and second period budget 

constraints are, respectively

p(rc)71, ßt)nt + st < + 2w™ (2.13)
11 The price of goods and services is normalized to 1. By implication, the goods and services component of 

child rearing costs is denominated in terms of goods (final output). We can relax this simplifying assumption 
without loss of generality. If mental labor is the only input into child rearing services, the goods and services 
input still becomes relatively cheaper as the wage for mental labor rises. The subsidy is financed by a tax 
on old age consumption. See second period budget constraint below.
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ct+1 = st(l + rt+i )( l  -  Tt+1) (2.14)

where ry+i denotes the rate of return on savings, St , Tf+\ denotes the rate of taxation on 

old age consumption1“ and w™(2 — znt) + wp is the couple’s income.

The household then chooses n< and c*+1 to maximize (2.6) subject to (2.13) and 

(2.14), yielding

+ 2w?) 
p(w ?,ß)

»t*u =  ( i - 7 ) K  + M m)

(2.15)

(2.16)

When (2.7) is binding, the household’s first period budget constraint is

(1 -  ßt)xnt + st < wtm + (2.17)

Intuitively, when the wife is restricted to using her ent ire labor endowment to raise children, 

the husband is the sole income earner. His earnings are then allocated between goods used 

in child rearing and savings.

Maximizing (2.6) subject to (2.14) and (2.17) yields

7 {w? +  ivpt )x* =  xnt
( i  — ßt)

s;c = (i -  7 ) «  + ®?) =  <  -  (i -  ß , ) -

(2.18)

(2.19)

When znt = 1, substituting from (2.18) into the CES production function for child rearing, 

each household produces

nt
7 «  + Wt) \  

(1 ~ßt )  )

a- a

( 2 .20)

12The rate of subsidy and taxation are set so as to satisfy the balanced-budget constraint: 
ß txn t  [n t - \ L t - \ \  =  s t - i ( l  +  r t ) r t L t - 1- Although endogenous at the aggregate level, the rate of subsidy 
and taxation is treated as exogenous by each individual household.
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2 .2 .3  D yn am ic sy stem

Capital stock per working age couple fuels growth in this model. The capital stock 

in each period is determined by the saving of the working age households in the previous 

period:

K t+i =  Lts*t (2.21) 

The number of working age households at time t + 1 is

-^t+i — Lt+1 — nt Lt ( 2.22)

Capital stock per household is therefore given by

-  * + '  -  s * (2.23)
L t + i  n*

From (2.23), an equation of motion kt+i =  (f>(kt) is obtained, since both household savings 

and fertility choices are determined by w™, which in turn is a function of kt .

In Galor &; Weil (1996) capital per household evolves through two phases dis­

tinguished by female labor force participation. In the initial phase, women allocate their 

entire labor endowment to child rearing. Once capital per household reaches a sufficiently 

high level, women enter the paid labor force, marking the transition to the second phase. 

This paper has similar phases in respect of female labor force participation, but a different 

predicted path of fertility as the economy moves through the two phases.

The evolution of capital stock per household is governed by two distinct equations 

of motion, as the economy moves first through

• Phase 1: women are at home, raising children full time (z*c — 1); and, then

Phase 2: women participate in the labor force, raising children part time (z*u < 1).
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In te r d e p e n d e n c e  o f w age for m en ta l labor and  ca p ita l p er co u p le  in P h a se  2

The derivation of the equation of motion for Phase 2 is complicated by the fact 

that both the wage for mental labor and time spent raising children are interdependent. By 

(2.4), w™ is a function of m t, which in turn is a function of znt. That is, the wage paid to 

mental labor reflects its marginal product, affected by household supply of mental labor, 

which in turn depends on the time spent raising children. As previously demonstrated, znt 

is a function of w™\ time spent raising children falls with the wage for mental labor when 

women are in the labor force. Thus, we need to obtain an implicit function for zrit when

zrit < 1.

When znt < 1, noting that

i f
Lt(2 -  znt) 

Lt
2 — znt (2.24)

and substituting from (2.4), (2.15) and (2.24) into (2.10),

znt = f ( zn t,kt) (2.25)

Let G(znt,kt) — znt — f(znt,kt) = 0. Since G(znt,kt) = 0 has continuous derivatives, by 

the Implicit Function Theorem, if Gzn, ^  0 then there is a differentiable and invertible 

function <p(kt) such that znt = m in(l,^>{kt)) where

to '(k A  — J ? kl — d f  /dw]" .dw\" /dkt  q  q  r / q  m <  q (2.26)V \ Kt) —  Giii) —  [ \ - d f  /dw\" .dw\n/drru.dm, /dznt\  <  U  11 °J l OWt ^ U V '

With the exception of d f  /dw™, the signs of the partial derivatives in (2.26) are unambigu­

ous. Assigning a negative value to d f  /dw™ is tantamount to assuming that the female 

labor supply curve is never backward bending. The possibility of a backward bending sup­

d f  / dw)n .duo™ / dkt

ply curve arises in this model, since, as we shall see, fertility may rise with female relative
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wages in Phase 2. A backward bending labor supply curve would occur if the proportionate 

rise in the number of children exceeds the proportionate fall in the time input per child. 

For the purposes of this paper, df/div™ < 0 is assumed.13

Thus, by (2.26), as the economy grows in transition to steady state, time spent 

raising children falls even when an input substitutable for maternal time exists.14

The economy enters Phase 2 once a sufficiently high level of capital per couple has 

been accumulated. Let k* denote the highest level of capital per working age couple for 

which women raise children full time. That is,

znt
f  (kt) € (0,1] for kt > k* 

1 for kt < k*
(2.27)

2.3 E quation  o f m otion

Substituting from (2.15), (2.16) and (2.19), (2.20) into (2.23) and using the defin­

ition of k*, the equation of motion for the system is, therefore,

^t+i
' t+ 1 nt

if kt > k*
(2.28)

z  (w tm A w ?  - ( 1 -  ßt) f ) = V 111 ~ &) * [ikt < k*

Capital stock per couple evolves from a historically given initial level according to kt+\ = 

<f>{kt), which is readily derived from (2.28) by substituting for

A  (1 -  a) (2 — f  (kt))p~l [akf +  (1 -  a) (2 -  f  (kt))p]l- p/p if kt > k*
<  =  < (2-29)

A (1 — a) [akt +  (1 — a)]1 p/p if  kt < k*

13A backward bending female labor supply, although an interesting proposition in itself, adds an unnec­
essary layer of complication to the model.

14When a fixed fraction of time per child is the only input, total time spent raising children necessarily 
falls as the economy grows. See Galor and Weil (1996).
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By (2.29), w™ is a non-linear function of kt. It follows that the equation of motion is a first 

order non-linear difference equation.1 ’

2 .3 .1  P r o p e r tie s  

C urvature

By enabling rq to change, the introduction of a CES production function for child 

rearing complicates the analysis of the curvature of the equation of motion.

Recall that capital per household at £+1 equals savings per household (st) divided 

by household fertility (nt). If time is the only input or fixed quantities of time and goods are 

used in child rearing, fertility is necessarily constant in Phase 1. Consequently, capital per 

household follows the path of household savings, which increases one for one with the wage 

for mental labor. Hence, 4>(kt) is concave (convex) if the wage for mental labor increases 

at a decreasing (increasing) rate as capital per household accumulates. Referring to the 

Appendix, if the degree of complementarity between capital and mental labor is relatively 

low, then w™ is increasing and concave in kt over the interval (0,k*).

When goods are substitutable for time, both fertility and savings increase with the 

wage for mental labor. Proportionate to the increase in the efficient goods input, fertility 

rises less than savings rises. Capital per household therefore follows the path of the goods 

input per pair of children. As a result, the concavity (convexity) of 4>(kt) also depends on

how goods input per pair of children changes with the wage for mental labor.

15 T he log linear specification for household u tility  function ensures the equation is first order since fertility  
is a function of its own price. Should fertility be a function of the  real interest ra te , a higher order equation 
would be obtained.
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Proposition 2.1 Given a low degree of complementarity between mental labor and capi­

tal a low degree of complementarity between child-rearing goods and time is a sufficient 

condition for concavity of (fi(kt) over the interval (0, k*).

Proof. See Appendix. ■

Regardless of the elasticity of substitution between goods and time, goods input 

per pair of children rises with the total quantity of goods, which in turn rises with the 

wage for mental labor. Thus, <j)'{kt) = (1 — 7 )dx / dx.dx/ dw™.dw™/ dkt > 0. Is the sign of 

the second order derivative also unambiguous? Given an elasticity of substitution between 

mental labor and capital in excess of 1 , an elasticity of substitution between child-care goods 

and time exceeding 0.5 (corresponding to a >-l) is a sufficient condition for (p" (kt) < 0.

The intuition for this result lies in diminishing marginal returns. Growth in k,t 

raises the wage for mental labor, which in turn boosts the quantity of goods input per child. 

Input of mental labor is fixed to 1 in Phase 1. The wage (or marginal product) for mental 

labor increases at a decreasing rate when the degree of complementarity between mental 

labor and physical capital is relatively low. Similarly, goods input per pair of children 

increases at a decreasing rate when the degree of complementarity between goods and time 

is relatively low.

Proposition 2.2 <f>(kt) is increasing and concave in kt over the interval (k*, 00) regardless 

of the degree of complementarity between goods and time in child rearing.

Proof. See Appendix. ■

Referring to (2.28), kt+1 is proportional to child rearing costs per pair of children,
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p(rc™,/3). By Euler’s Theorem, dp/dw™ = z > 0. Demand for maternal time input, given 

by (2.10), is downward sloping: dz/dw™ = d2p/dw™2 < 0 V a € (-<», 1).

Thus, the per unit child rearing cost function is increasing and strictly concave 

in the wage for mental labor, regardless of the degree of complementarity between goods 

and time. Intuitively, an increase in the price of time input raises the per unit cost of child 

rearing, albeit at a decreasing rate, as the household uses less and less time input.

As in Galor & Weil (1996), the wage for mental labor is increasing and concave in 

capital per household. Given (2.26), their proof is applicable.

D isco n tin u ity

The equation of motion is discontinuous at k*. Substituting (2.15) into (2.10),

zn t =  1 => Wt

k* is readily obtained, after solving out for the wage for mental labor. Equality of the two 

equations in (2.28) is not satisfied for kt =  k*. Specifically, equality of the two equations 

of motion occurs at a lower wage for mental labor: w™ + ^(1 — ßt)

suggesting (f)(kt)kt->k*+ > <ß(h)kt^k*- given concavity of <t>(kt) throughout both Phase 1 

and Phase 2.

For the intuition, first consider why the equation of motion is continuous in the 

limiting cases, 5 —> 1 and e —> 0. In the case of fixed proportions,

(i-<S)iu,m
<5(1- 4 ,)

znt = \ => <  = + ^(1 -  ßt)j

In the case of time input only, the last term in the implied equality vanishes. In either 

case, equality of the two equations analogous to the system in (2.28) is satisfied for kt = k*.
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Intuitively, an optimizing household takes the child-rearing input(s) as given and chooses 

fertility so as to maximize utility. On the cusp of Phase 2, the wage for mental labor 

(corresponding to k*) induces a utility maximizing household to choose fertility such that 

z*=1. Continuity of the equation of motion at kt — k* is assured by the fact that the time 

input per child or the goods-time input ratio is, by assumption, fixed and therefore the 

same in Phase 1 as it is in Phase 2.

Allowing households to substitute child-care goods and services for time introduces 

another dimension to household decision-making. In addition to choosing fertility so as to 

maximize utility, an optimizing household chooses the child-rearing input mix so as to 

minimize cost. Once again, on the cusp of Phase 2, a utility maximizing household chooses 

fertility implying z* — 1. However, discontinuity in the equation of motion at kt= k* arises 

because the goods-time input ratio throughout Phase 1 differs from the goods-input ratio 

upon entering Phase 2. If the household cost minimizes throughout, why does this disparity 

arise? Throughout Phase 1, cost minimization corresponds to a non-tangent, corner solution. 

Growth in the wage for mental labor does not affect the goods-time input mix required for a 

given number of children. However, total goods used (equivalent to goods-time input ratio 

when z*=1) increases with fertility due to a pure (male wage) income effect. In Phase 2, 

cost minimization corresponds to a tangency point. Growth in the wage for mental labor 

raises the goods-time input ratio required for any number of children. The effect on fertility 

depends on competing substitution and (male and female) income effects.

2.3.2 Steady state equilibria

In steady state equilibrium, capital stock per household is stationary: k = (A:).
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E xisten ce

A steady state exists if

• (f)(0) > 0 ; and

• there exists some kt , such that <p(kt) < kt .

The first condition is indeed satisfied. Substituting from (2.18) into the equations 

for kt G (0, k*) of (2.28) and (2.29) implies (f)(0) =  z( 1 — 7 ) {a(l — a) 1̂  +  6} > 0.

Ensuring <f)(kt) < kt for some kt , lim (f)'(kt) = lim r -  =  0, since

=  z is bounded below by zero and the equation for kt G (k*,oo) of (2.29), together 

with (2.26), imply lim =  0 .16
k t —*00

(f)(kt) > kt V kt G [0, /c*) iniplies a steady state exists in Phase 2 rather than 

Phase 1. As in Galor & Weil (1996), this paper confines attention to this case. Thus, 

discontinuity of (f)(kt) poses no problem for existence provided (f>(kt)kt^k*+ > 4>(kt)kt—>k*-, 

which is satisfied, as required.

U niqueness /  M ultip licity

Given the conditions for existence are satisfied, multiple steady state equilibria

may exist if the Phase 1 equation of motion is convex. Figure 2.2 illustrates such a case.

As previously discussed, the convexity of (f)(kt) over the interval (0, k*) depends not only

on the degree of complementarity between capital and mental labor, as found by Galor &

Weil (1996), but also the degree of complementarity between child-care goods/services and

maternal time. Should (f>(kt) be convex over the interval (0, k*), a poverty trap (represented 

16For a formal proof of lim =  0, see Galor and Weil (1996).
fc( — > 00  (J K t
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h + i

Figure 2.2: Multiple Equilibria
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by the stable equilibrium k\) may emerge. The subsequent analysis deals with the case 

where there is no such low level steady state.

2.4  F ertility  dynam ics

Having established that, capital per household (and the wage for mental labor) rise 

throughout Phase 1 and Phase 2 until eventually converging to steady state in Phase 2, we 

can explore the dynamics of fertility.

Proposition 2.3 Throughout Phase 1, fertility necessarily rises with income per household.

Proof. It follows from (2.20) that rising wages for mental labor boost household 

fertility, regardless of the degree of complementarity between goods and time. Thus, growth 

in income per capita generates a baby boom during an era in which women do not participate 

in the paid labor force. ■

Recall the household’s fertility decision comprises 2 stages. The household, in 

the first stage, chooses the cost minimizing or efficient time-goods input mix given the 

production possibilities; and then, in the second stage, apportions the husband’s income to 

children and savings given the efficient cost of child rearing.

Figure 2.3 depicts cost minimization for Phase 1 at the point where the isoquant n\ 

intersects the vertical constraint, 2  =1. The slope of the isocost line is —w™/(l — ß t). The 

wage for mental labor is sufficiently small that z* = 1. Specifically, w™ < x l~a (5/1—5) (1 — ßt).

The isocost is flatter than the isoquant at the initial corner solution.1' That is, the house-

1' If the corner solution were a point of tangency, a rise in the wage for mental labour would imply a move 
to an interior solution and, therefore, a transition to Phase 2. We want to analyse the implications of a rise 
in the wage for mental labour while the economy is in Phase 1.
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hold would lower the cost of child rearing if it were able to employ time input in excess of 

the women’s total time endowment.

Consider a rise in the wage for mental labor that is not sufficient to induce women 

to enter the paid workforce. In terms of the diagram, the rotation of the isocost from the 

relatively flat solid line to the slightly steeper broken line does not yield an interior solution. 

The efficient goods-time input mix required to rear n\ pairs of children is unaltered.

At the same time, an increase in the wage for mental labor eases the household’s 

budget constraint. Due to a pure income effect, the demand for children (or, equivalently 

spending on child rearing goods) increases. An upward shift in the isoquant to ri2 depicts 

the corresponding scale effect in Figure 2.3.

Recall that for capital per household to accumulate over time, x  must rise. In 

addition to illustrating the baby boom in Phase 1, Figure 2.3 provides a diagrammatic 

proof that x rises with the wage for mental labor. When time input is bounded above by 

1, an increase in scale can only be met by raising goods input more than proportionate to 

the rise in n. Hence, x  necessarily rises.

Proposition 2.4 As income per household rises throughout Phase 2, fertility may either

1. decline monotonically;

2. rise monotonically; or

3. initially decline and then rise.
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x

Figure 2.3: The household’s child rearing production decision in Phase 1
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Proof. Referring to the Appendix, there exists a critical value of the wage for 

mental labor:

*-“ * * =  (■y )  '  ( j - T f )  f1 -  (2.30)

such that Qrtf /dw™ < 0  V w™ < wm * * 5 dn^/dw™ > 0  V w™ > wm * * ■

Let k * * denote the level of capital per household, corresponding directly to wm * * 

(as per (2.29)), sufficient to induce a baby bounce-back in Phase 2.

Three possible cases arise:

1) k* < k < k * * : drit/dw™ < 0  V kt € (A:*, k)

Thus, for a sufficiently large wm * *, fertility declines monotonically throughout 

Phase 2. Although the following section examines the determinants of wm * *, consider, for 

the moment, the influence of the production share of maternal time in child-rearing. As 

<5 —> 1, wm * * —» oo, ensuring that in the limit the above inequality holds, since the steady 

state value of capital per household is finite. That is, when time is the only input, fertility 

unambiguously falls with the wage for mental labor throughout Phase 2, confirming the 

result of Galor and Weil (1996).

2) k* = k * * < k : dny/dw? > 0  V kt G (A:*, k)

Should the wage for mental labor needed to induce a baby bounce-back equal the 

wage needed to induce women to enter the paid labor force, fertility rises monotonically 

throughout Phase 2. An instantaneous baby bounce-back, although possible, is unlikely. 

We can infer from the time input only case that substitution to child-care goods and services 

is integral to a baby bounce-back eventuating. Market substitutes for maternal time emerge

in response to continuing cost pressures.
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3 ) k * < k * * < k

In this case, growth in capital (income) per household generates a non-monotonic 

path in fertility throughout Phase 2:

dnf/dw™ < 0 V /ct G (fc*, fc * *) 5 dn^/dw™ > 0 V kt e ( k * * , k )

Although a steep rise in the opportunity cost of maternal time causes an initial 

decline in fertility, a further rise induces households to substitute out of maternal time, 

removing the pressure to reduce fertility and allowing the income effect to dominate. This 

pattern of gradual rather than instantaneous substitution fits with observed trends. ■

Before investigating the factors underpinning wm * *, equation (2.30) is restated 

so as to explore the intuition behind Proposition 4.18

Corollary 2.1 As income per household rises throughout Phase 2, fertility declines if and 

only if the child rearing goods/time input ratio is sufficiently high.

Proof. Referring to the Appendix, drif /dw™ < 0 if, and only if,19

1—<5
1-/3, 6 < w\' (2.31)

To abstract from the role of wage growth, for the moment, consider the limiting 

case, e —► 0. By assumption of fixed proportions, the input ratio (left hand side of (2.31)) 

remains fixed.
18Hereafter, Proposition 4 in the text of each chapter refers to Proposition C.4 where C denotes the chapter 

number.
19Alternatively, this condition can be expressed as 2 7  <  £n,. Hence the proposition: “If time spent in 

domestic child care is sufficiently small . . .  fertility increases with the female wage” (p.7 Apps & Rees 
(2001)).
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This is the assumption made by Galor & Weil (1996) who note briefly that in 

this case, a rise in female relative wages “reduces fertility if x is not too large” (footnote 

12, Galor &; Weil (1996)).2(1 Thus, the introduction of a second child rearing input, albeit 

in fixed proportions, is sufficient to demonstrate that fertility decline is not an inevitable 

consequence of rising female relative wages with economic growth.

Nonetheless, the assumption of fixed proportions seems unnecessarily restrictive. 

Goods and time are unlikely to be perfect complements in the rearing of children. Moreover, 

only by restoring wages as a determinant of the goods/time ratio can we see why the negative 

relationship between household income and fertility will unravel over time, as in the third 

case of Proposition 4.

The intuition lies in a comparison of substitution and income effects. When both 

husband and wife work, female wages constitute a portion of household income. A propor­

tionate increase in the wage for mental labor results in a less than proportionate rise in 

household income. To illustrate, if female wages are two thirds of male wages, a 10% rise 

in the wage for mental labor will increase household income by 8%.

In the limiting case, <5 —> 1, when maternal time is the only child rearing input, 

a 10% rise in mental wages will increase the cost of raising children by 10%. Hence, given 

our functional forms for parental utility and for child rearing, the substitution effect domi­

nates the income effect, and fertility necessarily declines. However, when a second input is 

introduced, the cost of the wife’s time is only a portion of the total cost of child rearing, so 

that the income effect may now dominate.21

20Clearly, by the corollary to Proposition 4, the conditions of Apps and Rees (2001) and Galor and Weil 
(1996) are equivalent.

21 The likely response of fertility to a rise in female relative wages at a point in time can be inferred from 
the composition of child rearing costs and household income. To illustrate, Haveman & Wolfe (1995) provide
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In the limiting case of fixed input proportions, e —> 0, both potential household 

income and the per unit cost of child rearing increase at a constant rate with wages growth. 

Thus, if the substitution effect dominates the income effect at the beginning of Phase 2, 

further wages growth will not reverse the dominance. However, when Galor Sz Weil (1996), 

the per unit cost of child rearing increases at a decreasing rate, whereas potential household 

income increases at a constant rate. It follows that the income effect of rising female 

relative wages may eventually dominate the substitution effect so that fertility rises instead 

of declining.

Thus, when £ > 0, the very aspect of economic growth that discourages fertility, 

rising female relative wages, ultimately remedies fertility decline by raising the goods-time 

input ratio.

We could simply append the previous discussion with the surmise that the goods- 

time input mix increases over time as higher wages induce households to switch goods and 

services for maternal time. However, factors other than higher wages are also at play, such 

as, households’ ability to substitute goods for time and the price of goods and services used 

in child rearing.

Overlooked in existing literature, a CES production function for child rearing 

allows the factors underpinning the child rearing input mix to be clearly identified. From 

this, we can demonstrate how changes in parameter values may either hasten or postpone 

the onset of a baby bounce-back.

lower and upper bound estimates of time’s share of the total cost of child rearing for the US in 1992: 18% 
and 73%, respectively. Since the upper bound estimate approximates female earnings as a percentage of 
male earnings in the same year, we would expect fertility in the US to rise with female relative wages at 
that time.
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Proposition 2.5 A high rate of subsidy to child-care goods and services prolongs fertility 

decline in Phase 2, if the degree of complementarity between child-care goods/services and 

time is relatively high.

Proof. Consider the case k* < k * * < k.

From (2.30), Qwm * */dßt > 0  ^  e < 1 • Since wm * * is increasing over time, 

the higher wm * *, the later the onset of a baby bounce-back. ■

For the intuition on this result, note that the net price of goods and services used 

in child rearing appears on both sides of the inequality in (2.31). Accordingly, a subsidy to 

child-care goods and services affects the fertility response to higher female relative wages in 

two ways:

1. For a given goods-time input mix, a subsidy raises maternal time’s portion of the total 

cost of child rearing, accentuating the substitution effect that induces fertility decline;

2. A subsidy lowers the net price of goods and services, prompting households to raise 

the goods-time input ratio (left hand side of (2.31)). A higher goods-time input ratio 

weakens the substitution effect.

Unless the input mix is highly responsive to changes in relative input prices, the 

first effect will dominate.

Intuitively, when the degree of complementarity between child-care goods and 

services and maternal time is relatively high, subsidizing child-care goods and services has 

a negligible effect on the goods-time input mix. Under these circumstances, a subsidy serves 

only to boost time’s share of the total cost of child rearing. Accordingly, subsidization of
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child-care goods and services prolongs the decline in fertility due to rising female relative 

wages.

A priori, we might expect subsidizing child-care goods and services would itself 

induce a baby bounce-back. Note that Proposition 5 deals specifically with an indirect 

effect of subsidization. A high rate of subsidy implies a high wm * *, thereby postponing 

the onset of a naturally occurring baby bounce-back induced by rising wages.

The partial derivatives of wm * * with respect to other parameters are straightfor­

ward. In brief, the lower maternal time’s share in production (5) or the lower the wage for 

physical labor, the earlier the onset of a baby bounce-back.

For the intuition, recall that rising female relative wages boost fertility when the 

income effect dominates the substitution effect. The lower 5, the smaller maternal time’s 

share of child rearing costs and hence, the weaker the substitution effect. The lower the wage 

for physical labor, the greater female wages’ contribution to household income, amplifying 

the income effect.

Referring to the Appendix, for given rates of subsidy and a given wage for physical 

labor, a higher elasticity of substitution hastens the onset of a baby bounce-back.

Proposition 2.6 In Phase 2, rising female labor force participation is necessary but not 

sufficient for declining fertility.

Proof. Recall that female labor supply is given by 1 — zn t.

Necessity

dnf /dw™ < 0  V kt e (k*, k **) i together with d z /d w f1 < 0 

imply <9(1 — znfj/dw™  > 0
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Sufficiency

By (2.26), <9(1 — znt)/dw™ < 0, which need not imply declining fertility.

Provided k * * < k, dn^/dw?1 > 0  V kt <E (k * *, k) • ■

In the limit as 5 —> 1, & * * = qq > £ and the Galor and Weil (1996) result 

that rising female labor force participation is both necessary and sufficient for declining 

fertility is obtained. Since time input per pair of children is fixed, the proof that rising 

female labor supply implies declining fertility is incidental.

2.5 D iscu ssion

2.5 .1  Joint evo lu tion  o f popu lation  grow th and incom e per household

Household fertility and income evolve jointly according to the dynamic system 

explored in Section 2.3. Figure 2.4 depicts the path of fertility in transition to a unique 

globally stable steady state, corresponding to k, in Phase 2. £*,£** and t denote the time 

periods after which women enter the paid labor force, a baby bounce-back commences and 

the economy reaches steady state, respectively.

Figure 2.4(b) depicts the general results. For contrast, Figure 2.4(a) depicts the 

limiting cases, 5 —> 1 and e —> 0, when maternal time cannot be substituted for child-care 

goods and services.

Whilst allowing for the substitution of child-care goods and services for maternal 

time has striking implications for the path of fertility, a feature common to both Figure 

2.4(a) and 2.4(b) is the dramatic change in pace of capital accumulation as the economy 

enters Phase 2. The pace of capital accumulation slows as the economy nears the end of
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Phase 1. On entering Phase 2, a boost to the supply of mental labor fuels an immediate 

take-off in growth. There is a corresponding steep decline in fertility. The pace of capi­

tal accumulation slows again as the economy approaches steady state. This pattern is a 

consequence of concavity of </>(&*) in both phases.

In Figure 2.4(a), the time path for fertility derived for a given goods-time input 

ratio (e =  0) follows a similar path to that derived under the assumption of time input only 

(5 —0). Overall, allowing for a fixed quantity of goods to be used in child rearing has no 

dramatic implications for the joint evolution of income per household and fertility.

Compared with the time input only case, household capital and income is lower 

at any given time period in Phase 1, since spending on child rearing goods and services 

absorbs some household savings. Accordingly, k* is lower. That is, women enter the paid 

workforce at a lower income per capita.“

In Phase 2, household savings is the same under either assumption, but the per 

unit cost of child rearing is higher when goods are an input. Consequently, fertility is 

lower at any given time period. Less capital dilution implies higher capital (income) per 

household. Compared with the time input only case, the economy converges to a higher 

income per capita and lower fertility rate.

Figure 2.4(b) depicts the richer, more general result of a non-monotonic path in 

fertility. As per Proposition 3, growth in income per household generates a baby boom in 

Phase 1. Throughout Phase 1, the maternal time constraint is binding. Because household 

time allocation is at a corner solution, a marginal change in household income has only

an income effect and demand for children increases. The rise in fertility becomes less 

22See Section 2.3 for verification.
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pronounced as the economy nears the end of Phase 1, due to the concavity of the equation 

of motion.

This contrasts Figure 2.4(a), where fertility is constant throughout Phase 1. In 

either limiting case, because the household cannot substitute goods for maternal time, in­

creases in household income are entirely absorbed as additional savings. Since the maternal 

time constraint is binding, the assumption that maternal time input per pair of children is 

fixed constrains fertility to a constant, rq = l/z.  Thus, the introduction of child rearing 

goods is, in itself, not sufficient to generate a baby boom in Phase 1.

Phase 2, in Figure 2.4(b), begins with accelerated growth in capital (income) per 

household and a corresponding steep decline in fertility. As per Proposition 4, the inverse 

relationship between income per household and fertility may break down before the economy 

converges to a steady state. Rising female relative wages induce households to substitute 

child-care goods and services for maternal time. Once the maternal time input in child 

rearing is sufficiently low, the effect of rising wages on the cost of children is offset by the 

income effect. Thus, at time t * *, fertility ceases to decline with growth in income per 

capita. Any further rise in the wage for mental labor generates a baby bounce-back until 

the economy reaches steady state and fertility levels off because capital and income per 

household are no longer rising.

This contrasts Figure 2.4(a) where, so long as income per capita is rising, fertility 

must decline. Of course, the path in Figure 2.4(a) is derived for a given goods-time input 

ratio. By the Corollary to Proposition 4, fertility will cease to decline with growth in income

per household if goods and services come to dominate child-care inputs. However, in the
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limiting case e —> 0, the likely path of the goods-time ratio over time remains a conjecture 

insofar as the input mix is an exogenous variable.

2.5.2 Im plications

Given that advanced economies are currently moving through Phase 2, with in­

creasing labor force participation by women, what inferences can we draw for current policy 

debates?

As income per capita rises, what would the model presented in this paper predict?

1. Female labor force participation rises unambiguously, albeit at a decreasing rate.

2. Rising female labor force participation need not imply declining fertility because pur­

chased goods and services can substitute for maternal time.

3. Fertility may cease to decline before the economy reaches zero growth in per capita 

income in steady state. Once fertility ceases to decline, any further wages growth 

generates a baby bounce-back.

4. A high rate of subsidy to child-care goods and services will raise the level of fertility 

but may postpone the onset of a naturally occurring baby bounce-back.

Forward projections of fertility decline should consider two questions: Will female 

wages rise relative to male wages to the same extent in the future? Has the wages growth 

to date caused households to substitute child-care goods and services for maternal time? 

Galor and Weil (1996) consider the first question in isolation. They present a special case 

of our model: as 5 —► 1, fertility must decline monotonically as income per capita rises
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(a) Fixed quantities of time and goods
(b) CES child rearing function

Figure 2.4: Evolution of capital per household and fertility
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in transition to steady state. Once we consider the second question, predicted fertility 

may assume a non-monotonic path in transition to steady state. This paper identifies the 

parameters central to answering the second question. From this, we may predict different 

paths in fertility for different advanced countries. We anticipate that the baby bounce-back, 

which has been observed in the US since 1985, is likely to occur in other advanced economies 

where fertility has ceased declining and real wages continue to rise.

2.6 C onclusion

The model presented in this paper generates a non-monotonic path in fertility for 

a developed economy moving through two phases, distinguished by a dramatic rise in female 

labor force participation. The introduction of a CES production function for child rearing 

to Galor and Weil (1996) yields a rich dynamic interplay between fertility and income per 

capita.

As income per household grows over time, fertility:

• initially rises during the first phase when women allocate their total time endowment 

to child rearing;

• then declines as women enter the paid work force; and

• then may bounce-back.

The inverse relationship between fertility and per capita income applies only over 

the initial part of Phase 2, as women are starting to enter the labor force. In contrast to

previous models, a positive relationship between fertility and income is predicted to occur
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in Phase 1 and, possibly, towards the end of Phase 2. Where maternal time is the only 

input into child-rearing, there is an absolute limit on fertility when women are full-time 

carers; when we allow for purchased inputs into child-rearing, the limit is removed enabling 

a baby-boom. As women start to participate in the labor force, the rising opportunity 

cost of maternal time causes fertility to decline -  a feature common to most models. In 

our model, however, rising female relative wages induce households to substitute child-care 

goods and services for maternal time. Once maternal time is a sufficiently small part of 

total child-rearing costs, any further rise in wages causes an upturn in fertility as the income 

effect starts to dominate.

Some interesting policy implications arise. A concomitant rise in fertility and 

female relative wages, when women are in the labor force, challenges the belief that reversing 

current fertility trends necessitates a reduction in female labor force participation. When 

purchased inputs can substitute for maternal time, as real wages rise and purchased inputs 

become relatively cheap, fertility may naturally bounce back. Subsidies to child-care inputs 

will unambiguously raise fertility at any point in time, though they may delay the onset of 

the fertility bounce-back.

Whilst the resemblance of the generated path in fertility to the G5 data illustrated 

in Figure 2.1 is compelling, I do not deny the importance of social and political changes 

in developed economies over this period. Arguably, some of these changes, such as the 

emancipation of women, are linked to growth in income per capita. Boongarts (1999) 

offers a novel non-economic explanation for fluctuations in fertility. He argues that sudden 

changes in the mean age of child bearing distort measured fertility rates. A fall in the
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mean age of child bearing following World War II meant that births of successive cohorts 

overlapped in the same period, boosting observed fertility. Conversely, a rise in the mean 

age of child bearing over recent decades deflated observed fertility. However, after adjusting 

fertility rates for this distortion, van Imhoff & Keilman (2000) still found a remarkable 

baby boom-bust sequence. There are some further implications of the model that concern 

the dynamics of labour force participation and relative wages. These implications are also 

present in the original model of Galor and Weil (1996). For example, the model predicts 

that during Phase 2 women’s labor force participation and their relative wages are both 

rising. For some countries this prediction may be counterfactual. Goldin (1986) presents 

evidence for the United States that the ratio of female to male earnings across all sectors 

was virtually constant from 1955 through to 1979. Whilst the model broadly captures the 

Baby Boom and Bust eras, extensions to the model may be able to capture a richer array 

of stylized facts. One possibility is to incorporate falling costs of child rearing goods and 

services relative to final consumption goods as a consequence of economic growth.

It would be useful to extend the analysis in several directions, such as recognizing 

human capital accumulation as central to both the wage story and fertility. Considerable 

richness and realism would be gained by drawing on the R&D based models of endogenous 

growth of Römer (1990) and Jones (1995a). Both identify population, in level and growth 

rates, respectively, as the key determinant of technological progress. Galor & Weil (2000) 

incorporate endogenous fertility into a descriptive model of endogenous growth inspired 

by Römer (1990). Nesting endogenous fertility within a well-specified model of R&D is a 

feasible and challenging direction for future research.
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Chapter 3

P opu lation  and E ndogenous 

G row th

3.1 Introduction

Total population of the OECD today may be one and half times what it was in 

1950, but it is expected to be static for the next fifty years (United Nations 2005). This 

projection takes into account immigration and moderate fertility assumptions. In fact, 

depopulation is anticipated if fertility remains constant. The prospect of zero population 

growth in the world’s hub of research and development (R&D) has generated a flurry of 

R&D based growth models investigating feasibility of long run economic growth in the 

absence of population growth.

This new branch of the literature is largely derived from semi-endogenous growth 

models that assume strictly positive population growth. The precedent Römer (1990) type
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models treat- population as an exogenous constant and would therefore seem pertinent to 

the current theoretical challenge. However, such models have been overlooked because they 

typically assume linearity in the accumulation of knowledge. Linearity implies that the 

output of new knowledge will double whenever we double the existing stock of knowledge. 

Semi-endogenous growth models feature the more palatable assumption of diminishing mar­

ginal returns to knowledge. This paper examines the tenability of this association between 

(non-)linearity and (semi-)endogenous growth.

The objective of this paper is two fold. First, to establish general conditions for 

positive growth in output per capita along a balanced growth path under the alternative 

assumptions of a static population and a growing population. Second, to construct a 

specific model that delivers long run growth in the economy with or without population 

growth, using the most realistic application of these general conditions.

Since Romer’s (1990) seminal paper, models of R&D-based growth have become 

increasingly sophisticated. A recent paper (Strulik 2005) comprises 48 equations, not 

including those contained in the appendix. The new breed of semi-endogenous growth 

models typically comprise two aspects of R&D or endogenous fertility. In a decentralized 

setting, the assumptions that are critical to positive and balanced growth are obscured by 

the intricacy of these models. Often, simplifying assumptions that make these models 

tractable, for example, the absence of physical capital, are costly in terms of realism. We 

overcome such difficulties by abstracting from the microeconomic foundations of R&D and 

modelling the decision making of a central planner.

This paper introduces a general model comprising three sectors (final output, R&D
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and human capital accumulation) in order to prove the following assertions. First, in any 

model, positive growth along a balanced growth path requires restrictions in terms of a 

matrix of structural elasticities. Second, if strictly positive population growth is assumed, 

the notions of diminishing marginal returns and semi-endogenous growth are logically in­

dependent. Third, if zero population growth is assumed, linearity in the accumulation of 

knowledge is not necessary for endogenous growth.

Because we also seek to extend previously underdeveloped areas of the literature, 

the general model comprises human capital formation rather than a second aspect of R&D 

and assumes exogenous population growth. We allow for all inputs to be productive in all 

sectors and also allow for heterogenous labor, an assumption which has been absent from 

the literature since Römer (1990).

Previous generalized models (Eicher & Turnovsky (1999), Christiaans (2004) and 

Steger (2005)) comprise two sectors, final production and R&D. By including a third 

sector, human capital accumulation, we obtain richer results. More importantly, this is the 

first generalized model that allows for either a growing or static population. In doing so, 

this paper provides a simple, unified treatment of endogenous and semi-endogenous growth 

models. This paper further contributes by exploring asymptotic linearity in either R&D 

or human capital accumulation as a general condition for endogenous growth.

The benefits of this work are manifold. This paper contributes to the literature 

both by establishing conditions for positive economic growth with or without population 

growth in a general three sector growth model and by constructing a specific model where 

Constant Elasticity of Substitution (CES) technology describes the accumulation of human
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capital. This paper also provides a useful framework for summarizing the two main strands 

of the literature and a methodology for obtaining central planner solutions for endogenous 

and semi-endogenous growth models alike.

3.2  B ackground

Let. y denote income or output per capita, L the total population, H the stock 

of human capital and let gx denote the long run growth rate of any variable x. We 

classify models of R&D-based growth into two broad types: those that assume population 

is constant and those that allow for population to grow over time.

Models of the first, type, exemplified by Römer (1990), Aghion & Howitt (1992) 

and Grossman & Helpman (1991), are widely criticized for their scale effect: long run per 

capita output growth is proportional to population size. The implication that the growth 

rate of the economy will rise exponentially over time should population grow at a constant 

rate is not supported by empirical evidence. It is, in fact, a slight misrepresentation of 

Römer (1990) and Aghion & Howitt (1992) to say that gy is proportional to L. By allowing 

for heterogeneous labor, both predict:

gy = a.H (3.1a)

where all constant parameters are summarized by the term, a > 0.1 Thus, long run 

growth in per capita output is proportional to the skill employed in R&D. However, to the

extent that the skill is embodied in the population, long run growth of the economy is still

1(3.1a) is a generalized expression. Römer (1990) assumes a =  <5 (1 — Zy), where ci is an exogenous 
productivity parameter and Zy is the endogenously determined fraction of labor allocated to final production. 
For gy >  0, H  must be sufficiently high that the non-negativity constraint of (1 — Zy) H is not binding.
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proportional to the size of the population.

Regardless, presenting the prediction in its original form shows how recent models 

are derivative of these seminal models of R&D-based growth. The stock of labor in these 

models can be homogenized into either the stock of human capital or total population. Most 

literature stems from the latter assumption. However, an example of a model that assumes 

the former is Funke &; Strulik (2000). They retain the assumption that population is an 

exogenous constant and are therefore a first-type model. By endogenizing the accumulation 

of human capital, they remove the empirically inconsistent scale effect from the long run 

growth rate of the economy:

gy = a (3.1b)

All these first type models share the common feature of sectoral linearity in a 

knowledge accumulation equation, whether knowledge be non-rivalrous ideas or rivalrous 

human capital. And so, sectoral linearity has become synonymous with endogenous growth 

models that treat population as an exogenous constant. Like the scale effect, linearity in 

the accumulation of knowledge is widely criticized. Jones (2001) argues that, with the 

exception of the population equation, the assumption of linearity is ad hoc. This brings 

us to R&D-based growth models of the second type, that introduce a linear population 

equation.

Early examples of second-type models are Jones (1995a), Kortum (1997) and 

Segerstrom (1998). Their common feature is diminishing marginal returns to ideas (or 

knowledge spillovers of degree less than one) in the creation of new ideas. Diminishing mar­

ginal returns in the stock of ideas requires increasing effort to create an idea. This increasing
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effort can come from more researchers. Since the fraction of the labor force engaged in 

R&D is constant in steady state, strictly positive population growth enables the increasing 

efforts needed for strictly positive growth in technology and the overall economy. This is 

the intuition behind semi-endogenous growth. Jones (1995a) coined the phrase, which 

basically means technological change is endogenously determined, but long run growth in 

the economy requires growth in a factor exogenous to the model, population. And so, 

diminishing marginal returns to knowledge has become synonymous with semi-endogenous 

growth.

Population growth is the engine of long run economic growth in these models:

9y = c9l (3.1c)

where all constant parameters are summarized by the multiplicative term c > 0. On 

the flip side, long run per capita growth of the economy depends essentially on population 

growth. To establish feasibility of long run economic growth in the absence of population 

growth, recent literature adapts second-type models. Two main branches have emerged.

The first new branch of second type models assume two aspects of R&D in the one 

model. Examples are Young (1998), Dinopolous & Thompson (1998), Peretto (1998) and Li 

(2000). In brief, R&D may involve either the creation of new products, so that technological 

improvement is measured by increased variety of intermediate goods (Römer 1990) or the 

improvement of existing products as in Aghion & Howitt’s (1992) quality-ladder model. 

We refer to these two aspects as simply variety R&D and quality R&D. Li (2000) shows 

that if there are no knowledge spillovers in variety R&D and spillovers of degree one (or 

linearity) in quality R&D then the long run growth rate of the economy is an additively
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separable function of population growth and a constant term:

gy = b + cgL (3.Id)

where all constant parameters are summarized in the terms b and c. The absence of 

knowledge spillovers in variety R&D implies a one-to-one correspondence between variety 

growth and population growth. This explains the second term of equation (3.Id). If

population is static, the variety of intermediate goods stays constant. However, endogenous 

technological change is still possible through improving existing products, since linearity in 

quality R&D implies quality growth is proportional to the population size. This explains 

the first term of equation (3.Id). Consequently, the long run growth rate of the economy 

can be strictly positive without strictly positive population growth. To obtain this result, 

note that these models move away from diminishing marginal returns to knowledge in the 

form of quality improvement. Thus, the strong association between diminishing marginal 

returns and semi-endogenous growth prevails.

The second branch of second-type R&D-based growth models endogenize either 

population (Jones 2001) or human capital (as in, Strulik (2005) and Dalgaard & Kreiner 

(2001)) or both (Galor & Weil 2000). Just as Funke & Strulik (2000) removes the "strong" 

scale effect from the early endogenous growth models, these models remove the "weak" scale 

effect from semi-endogenous growth models by endogenizing the culpable variable. They 

predict a long run rate of growth in the economy:

gy = d (3.1e)

where d is a constant term summarizing, for example, exogenous efficiency parameters. In

a decentralized setting, these models are intricate. Simplifying assumptions prevent the
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models from being unwieldy. Examples of such assumptions are the absence of physical 

capital in final production in Dalgaard & Kreiner (2001) and a reduced form specification 

of R&D in Galor &; Weil (2000). There is a trade-off between sophistication and realism.

Thus, to establish feasibility of long run growth in the economy in the absence of 

population growth, existing literature extends semi-endogenous theory by either modelling 

two aspects of R&D or endogenizing fertility. To explore the reasoning behind founding 

this development in semi-endogenous growth theory, this paper establishes conditions for 

perpetual growth in a generalized setting. To be inclusive of the early endogenous growth 

theory, we allow for population growth to be either zero or strictly positive. Interested in 

exploring new ways to establish long run growth in the economy without population growth, 

we assume one aspect of R&D and exogenize population growth.

3.3 A  G eneral T hree Sector G row th M odel

The model is general in four aspects: Firstly, two types of labor, skilled and un­

skilled, accumulate.2 The allowance for both types of labor, albeit as exogenous constants, 

appears in Römer (1990), but has been absent from the R&D based growth literature since. 

Secondly, the economy consists of three sectors (final goods, the accumulation of ideas and 

the accumulation of human capital) enabling us to replicate the features of a wide variety 

of R&D-based growth models. Only the accumulation of physical labor is exogenized. 

Thirdly, each factor of production is allowed to be productive in each sector. Finally, non-

parameterized general production functions are employed. Restrictions on parameters and

2The assumption of heterogeneous labor confers realism to the model. Explored in a follow on paper, 
a secondary motivation for this assumption is the possibility of rising research intensity along a balanced 
growth path.
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functional forms are introduced only to clarify certain issues.

We model the decision making of a central planner over our three generalized 

sectors. In doing so we abstract from issues related to the microfoundations of R&D-based 

growth models, such as household decision making, the patenting of ideas, monopoly power 

in the intermediate goods sector and perfect competition in final goods sector. In the words 

of Eicher & Turnovsky (1999) (p.397),

We make these abstractions, not because we feel that such issues are unim­
portant, but to facilitate the identification of the characteristics common to 
alternative approaches.

All the models presented in this paper, whether original or central planner versions 

of existing models, can be given microfoundations, and in each case the equilibrium growth 

rates in the corresponding decentralized economy can be derived. It is worth noting that 

growth rates derived for a corresponding decentralized economy differ only by the absence 

of terms, such as a monopoly markup, that capture the negative spillovers that a central 

planner internalizes.

The economy produces final output (Y), change in technology (the stock of which 

is denoted by A) and change in human capital (the stock of which is denoted by H) and 

accumulates stocks of physical capital (K ) and physical labor (L ). H is measured by total, 

not average, years of education attained by a pool of workers, so that L is measured by a 

count of people in the labor force.3 Alternatively, H  could refer to the number of skilled 

workers and L to the number of unskilled workers. Under either interpretation, H can

vary separately from L and replicating a given pool of workers requires that both H and L

3Physical labor can be thought of as brawn and basic skills th a t  do not need to  be tau g h t, such as, 
eye-hand co-ordination.
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double.

Consider the following general three-sector production structure:

Y = F{aYA,hYH,lYL,kYK) (3.2a)

A = J (aAA, hAH, lAL , kAK) (3.2b)

H = Q(aHA,hHH.lHL,kHK) (3.2c)

where the sectoral allocations of factor Xi (x = a,h,l,k\ i = Y, A, H, L) assume values 

to reflect general assumptions, that are both intuitive and standard in endogenous growth 

models. We start with the broad assumption that, with the exception of physical labor, 

which is used only in human reproduction and the production of final output, inputs may 

be productive in all sectors. If Y!ixi ~  IV«, the respective input is private. If X{ = IV«, 

the input is non-rivalrous in use. Thus, we distinguish rivalrous private knowledge (H) 

from non-rivalrous knowledge (A). Letting h denote the average skill level, we note that 

H =  hL. Finally, since physical labor is non-rivalrous in its employment in final production 

and human reproduction, let li denote the portion of human capital (or equivalently, the 

portion of labor with a given average skill level) allocated to sector i.

After imposing the general assumptions, the generalized production structure sim­

plifies to:

Y = F (A, (1 — lA — lH) H, L, (1 — kA — kH) K) (3.3a)

A -  J{A,lAH,kAK ) (3.3b)

H = Q(A,IhH, kHK) (3.3c)

where L =  nL and n > 0. By allowing for either a growing or static population, our
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generalized framework can be used to analyze the two main branches of existing R&D- 

based literature.

Eicher & Turnovsky (1999) can be viewed as a special case of (3.3). They analyze 

a general non-scale growth model comprising (3.3a) and (3.3b) under the assumptions that 

both sectors employ homogeneous labor, L , and n > 0.

The representative agent of the economy derives utility solely from the consump­

tion of the final output good. As is standard in the existing literature, the representative 

agent of the economy has intertemporal utility of isoelastic form:

/<0°° e~pt j z j d t  p >  0; 0 >  0

where c denotes consumption per capita, to be replaced by aggregate consumption, C , 

when n = 0. In the absence of depreciation, physical capital accumulates as a residual 

after aggregate consumption needs have been met:

K  = Y - C  (3.3d)

The central planner chooses consumption, and the fractions of labor and capital 

employed in each sector so as to maximize intertemporal utility of the representative agent 

subject to the production and accumulation constraints, equations (3.3a) - (3.3d). For the 

purposes of this paper, we note that the following discussion is premised on sectoral alloca­

tions of factors that are strictly positive and constant, as required for balanced growth.4

4We can solve for sectoral allocations of factors from the first order optimality conditions provided in the 
appendix.
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3.4  B alan ced  G row th Equilibrium

Definition 3.1 A balanced growth path is a path along which all real variables grow at 

constant, though not necessarily egual, rates.

The balanced growth rates of the real variables (Y, K, A , H) are obtained by total 

differentiation of the production functions (3.3a) - (3.3c), noting that constant growth rates 

requires gy = 9k ? 9J4 =  9A and 9h = 9H- The resulting system of equations can be 

expressed in matrix form:
“ " “

( 1  -  &k ) - a A - V h 9 k a L n

~ 9 k  (1  - 9  a ) ~ 9 h 9A = 0

—w k  - u a  ( 1 - w/ / ) 9 h 0

where = F ii/F  ^  0, 7̂  = J ii/J  ^  0 and uii = Qii/Q  ^  0; i = K, A, H  denote the 

structural elasticities in the production, technology and human capital sectors, respectively. 

The structural elasticities are not necessarily constant.

The system of linear equations in (3.4) is non-homogeneous (Ax = d in matrix 

form) or homogenous (Ax = 0) depending on whether the population is growing or static, 

respectively.

3.4.1 General Conditions for Positive and Balanced Growth w ith a grow­

ing population

First, consider the case where population growth is strictly positive. The system

of equations in (3.4) jointly determine the growth rates of real variables as functions of

°The growth rate in physical capital, given by gK ~  y  — y  ~ y  7cAs constant if Y , K  and C  grow at 
the same rate.
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population growth and the structural elasticities:

9 k

9A

9H

° l [(1 -  9a ) (!  -  u h ) -  ^ aVh \ n 

° l [Vk  (!  -  “ h ) +  u k Vh \ n
\A\

°L [Vk ^A +  UK (1 -  Va )\ n
\ A \

(3.5a)

(3.5b)

(3.5c)

S trictly  P ositive  G rowth and D im inishing M arginal R eturns

For the present, we assume that physical capital, technology and human capital 

are necessary for production in all three sectors, so that all elasticities in the coefficient 

matrix are strictly positive. In Section 3.4.3 below we will examine a special case which 

allows for elasticities to be zero.

Consider the conditions under which for crL > 0, n > 0 the equilibrium growth 

rates (3.5a) - (3.5c) are positive. System (3.4) is of the form analyzed by Hawkins Simon 

(1949) if \A\ — |oy| /  0 and < 0 for all i ^  j; an > 0 for all i. By their theorem for

stationary solutions with all variables positive, a necessary and sufficient condition that gx, 

gA and gn satisfying (3.4) be all positive is that all principal minors of the coefficient matrix 

in (3.4) be positive. Denoting \Ai\ as the ith principal minor of coefficient matrix A , the 

Hawkins-Simon conditions provide |Ai| =  (1 — a x )  >  0, IA2 I =  (1 — a x )  {I ~  9a )~VKa A > 

0 and I A3 1 = |A| >0. These conditions, in turn, imply restrictions on structural elasticities:

IAi| > 0 a x  < l .G |Ai | > 0 and |A2 1 > 0 together imply gA < 1> while |A2 1 > 0 and

60 n  first inspection of (3.5a) - (3.5c), diminishing returns to capital in the production of final output 
(crjc <  1) does not seem a condition for positive growth. As a check of the Hawkins-Simon conditions, 
u k  < 1, together with rjA < 1, cjh < 1 and |A| >  0, implies and is implied by gn > 0, gA > 0, >  0, since
(1 -  u K) [(1 -  VA) (1 -<*>«)- u a Vh\ > [Vk ( ! - « « )  +  u k i7/,] + crH [v k u a + w«- (1 -  gA)\ ** \A \ >  °- 

Note that \A\ > 0 imposes a relationship between structural elasticities. The inequality (1 — gA) / rlhi > 
cua/ ( 1  —u h ) relates returns to scale to technology and human capital across the two sectors. If we have 
decreasing returns to technology and human capital in the R&D sector, we must also have decreasing returns
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\A\ > 0 together imply cvh < 1.

We summarize these results with the following proposition:

Proposition 3.1 (Conditions for Positive Growth) When strictly positive growth in 

the economy requires strictly positive population growth, |A| > 0 and a k < \, r)A < \ and 

coh < 1, together with r]K > 0 and/or u k  > 0, are necessary and sufficient for strictly 

positive growth in output, capital, consumption, technology and human capital.

We discuss two points arising from this proposition.

First, the conditions for positive equilibrium growth rates have an intuitive appeal. 

The conditions cr^ < 1, r]A < 1 and uh < 1 reflect diminishing marginal returns to capital, 

human capital and technology in the sector that produces each input, respectively. Sectoral 

linearity is ruled out when equilibrium growth rates in the economy depend on growth of an 

exogenous factor, raw labor. In our model, raw labor is only employed in final production. 

Diminishing marginal returns to capital in the production of final output requires increasing 

effort for capital (unconsumed final output) to grow over time. A growing raw labor force 

provides this increasing effort. By similar reasoning, because capital is employed in the 

accumulation of knowledge, diminishing marginal returns to knowledge is a condition for 

positive, non-explosive growth in the stock of technology and human capital.

Second, whilst (3.4) is a non-homogeneous system of the form analyzed by Hawkins 

&; Simon (1949), it does not satisfy the stronger assumption [d{ > 0] since some elements of 

vector d are zero. Hawkins & Simon (1949) state, in a footnote,

The stronger condition ... ([d; > 0]) ... because of the continuity of solutions of

to  technology and hum an capital in th e  hum an capital accum ulation sector.
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these equations with respect to variations of these coefficients, does not involve 
any essential loss of generality.

Whilst Hawkins & Simon (1949) suggest their theorem applies when some but not 

all of the di are zero, the proof of their theorem seems to assume [d{ > 0]. For completeness, 

we append this paper with a proof of a corollary to Hawkins & Simon’s (1949) general 

theorem.

Under the weaker assumption [di > 0] with at least one di > 0, the assumption that 

all elasticities in the coefficient matrix are strictly positive becomes critical. We include the 

condition r/K > U and/or > 0 in Proposition l 7, since physical capital must be productive 

in either R&D or human capital, to obtain positive growth in either sector. This condition 

results from our allowance for heterogeneous labor and the assumption that physical labor 

is employed only in the production of final output. Exogenous growth in population or 

raw labor therefore drives growth in final output and physical capital, and, indirectly, R&D 

and human capital only if physical capital is employed in these sectors.

Introducing a Lucas (1988) specification for human capital accumulation (with 

diminishing returns) and a Jones (1995 a) type R&D sector to our three sector model implies 

zero growth in both types of knowledge, since r}K ~  0 and ujk =  0 and therefore would 

be redundant. There is a trade-off between the realism of heterogeneous labor and the 

simplicity of single input knowledge accumulation equations, such as u)j< = 0;uja = 0;ujh = 

1. Existing literature opts for the latter and we introduce the restriction of homogeneous

labor later in the paper to illustrate these models as special cases of our general model.

7H ereafter, P roposition  1 in the  tex t of each chap ter refers to  Proposition  C .l where C denotes th e  chap ter 
num ber.
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Corollary 3.1 (to Proposition 3.1) A further sufficient condition for strictly positive 

growth in per capita output and capital is <jl  > (1 — <Jk )-

From equation (3.5a),8 the economy grows at the per capita rate:

gy =  { ° L  ~  (1 - < r K )} —  +  ° A —  + o - H —  (3.6)
&L  c l

where a i  >  (1 — <T/c) =>• gy > 0, given the above conditions for positive growth in output, 

physical capital, technology and human capital are satisfied. Eicher & Turnovsky (1999) 

obtain the same condition for a general two sector growth model with homogeneous labor. 

Thus, the condition has generality. It implies increasing returns to scale in the final output 

sector, since u i  + ak > 1, together with non-negativity of oy, implies ai > 1- Note 

that this condition is sufficient but not necessary for strictly positive growth in per capita 

output. That is, growth in per capita output may still be strictly positive if < (1 — crx). 

For instance, if <jl  + <jk  =  1, growth in per capita output is strictly positive, given strictly 

positive growth in technology and human capital.

3.4.2 Balanced Growth and Cobb-Douglas or C onstant Returns to Scale 

Technology

While positive growth is provided by Proposition 1, balanced growth requires con­

stancy of the growth rates in (3.5a)-(3.5c), which, in turn, requires constant population 

growth and constant multiplicative terms.

The multiplicative terms in (3.5a)-(3.5c) are constant if the structural elasticities 

are constant (as for Cobb-Douglas production functions). In this case, the constancy of the
8  __  _  „  _  { o - / , - ( l - g K ) } [ ( l - ^ A ) ( l - ^ / / ) - ^ A r/ / / ] + < TA h K ( l - ^ j j ) + ^ K T/ » i + g J J  {*1k U A + u k { 1 - V a )} „

y y  —  y h  it' —  I a \ n
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multiplicative terms is independent of the returns to scale, so that output, technology and 

human capital may grow at different rates. If the structural elasticities are not constant 

(as for Constant Elasticity of Substitution (CES) production functions), balanced growth 

requires that production in each sector exhibit constant returns to scale (i.e. =

1 ;Y^Vi =  = 1), in which case the multiplicative terms reduce to unity and all

sectors grow at the common rate: gy  =  Qk  = 9a ~  9h — n . <J

Thus, for a constant rate of population growth, Cobb-Douglas production tech­

nology or constant returns to scale in all sectors are sufficient conditions for balanced 

growth. This result is known, albeit for a two sector generalized growth model (see Eicher 

& Turnovsky (1999), who also discuss a third condition, that of homogeneously separable 

forms). Accordingly, this paper does not state these conditions in a formal proposition. 

However, since these conditions are widely used, but obscured in sophisticated models, we 

note some of their implications.

Constant returns to scale, particularly in the production of final output, is unlikely. 

When non-rivalrous knowledge is employed, final production most likely exhibits increasing 

returns to scale (Römer 1990). Moreover, constant returns to scale in all sectors implies 

zero growth in per capita output. This may explain why Cobb-Douglas technology most 

commonly appears in the literature, but this is not without its limitations, since it assumes 

input shares are exogenous constants. An all or nothing approach is not required. For 

instance, we may assume Cobb-Douglas technology in one sector, CES technology in another

or even CES technology nested within Cobb-Douglas production function.

9T o aid the reader in verifying this, if =  h X ) 7?» =  I jX )4*7* =  1 then |A| =
&h {u kVh +V k ( w a  + ^ k ) } -
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Notwithstanding these caveats, the main problem with these sufficient conditions 

for balanced growth is the implication that (positive) balanced growth seems inextricably 

dependent on a (positive) constant population growth. We now establish that positive, 

balanced growth arises without positive population growth if growth in either technology 

or human capital asymptotes to a positive constant.

D oes S trictly  P ositive and B alanced G rowth require S trictly  P ositive P opulation  

G rowth?

Differentiating (3.3a) with respect to time, and noting that constant gx requires 

that Y  and K  grow at the same rate, yields:

&A , & H , °  L
9 y  = 9 K  = ;---- — 9A + ---- — 9H  4- ---------n (3.7)

1 — er K  1 -  cr k  1 — & k

When both qa and gx depend on gx, equation (3.7) reduces to equation (3.5a).

However, if either g \  or gx  are independent, of g x , then gy is an additively separable 

function of two terms, only one of which is a function of population growth. Hence, strictly 

positive, balanced growth no longer requires strictly positive population growth.

Assuming that physical capital is not employed in one knowledge sector does not 

imply gA or gx are independent of gx- To illustrate, if physical capital is used in human 

capital accumulation but not in R&D, under normal conditions, gA is still a function of gx 

because human capital is used in R&D. This raises the question, under what condition(s) 

is either gA or gx independent of g x? The answer lies in the asymptotic nature of gA or 

gx- For instance, if either asymptotes to a positive constant that exceeds gx-, then gy is

an additively separable function, as required.
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Equations (3.3b) and (3.3c) describe the accumulation of non-rivalrous ideas and 

rivalrous human capital, respectively. The accumulation of each type of knowledge is a 

function of its own stock, the stock of the alternative knowledge and the stock of physical 

capital. As a result, there are several ways by which asymptotic limits may imply growth 

in one type of knowledge is independent of growth in physical capital. To simplify, we 

confine our analysis to the case where knowledge accumulation is a function of its existing 

stock of knowledge and one other input,.10 In order to generalize the following proposition, 

we could define two generic types of knowledge. However, this is a redundant exercise if 

we consider that certain input combinations are implausible. For instance, can innovation 

occur through the interaction of existing ideas and physical capital? Researchers are most 

likely an essential input in R&D. Accordingly, from equations (3.3b) and (3.3c), the two 

types of knowledge grow at the rates:

9A

Oh
Q (Ih H, kHK )
------- H-------

(3.8a)

(3.8b)

where ßA and ßH are shift parameters encapsulating, respectively, lA and ///,&//. The 

growth rates asymptote to:

\ imj(A,H-,ß A) = (3.9a)
A—* oo

lim q{H.K-,ß„) = q(K-,ß„) (3.9b)
H—»00

where j  and q are constants, that may depend on the shift parameters.

10The following section introduces CES technology to illustrate the implications of positive asymptotic 
limits. Whilst it is neater to discuss the degree of substitutability between two inputs, we could apply CES 
technology to three inputs or nest a CES technology (with two inputs) within a Cobb-Douglas production 
function (with a third input).
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Proposition 3.2 (Condition for Positive, Balanced Growth and Population) Strictly 

positive balanced growth may arise without population growth if q (K; ßH) > 0.

Strictly positive balanced growth requires strictly positive, constant population growth 

i f q (K-ßH) = 0, unless j  {H;ßA) > 0.

The first part of Proposition 2, refers to the case where gn asymptotes to a positive 

constant. If this positive constant exceeds gj<, then gh does not depend, indirectly on 

n. Thus, the accumulation of human capital features an endogenous stock of knowledge. 

Curve 1 in Figure 3.1 illustrates such a case. Substituting q for gn in equation (3.7) then, 

regardless of whether or not gA is a function of ga, gy is an additively separable function 

of two terms, one of which does not depend on population growth.

If gn asymptotes to zero, as in the second part of Proposition 2, then gh depends on 

gx  in steady state (see Curve 2 in Figure 3.1). Two possibilities arise. If gA asymptotes to 

zero, implying gA is a function of g//, then growth in both types of knowledge requires growth 

in physical capital. Substituting for gA and gx in equation (3.7) gives unambiguous semi- 

endogenous growth: strictly positive, constant growth in output requires strictly positive, 

constant population growth. However, if gA asymptotes to a positive constant that exceeds 

gx,  then gA is independent of gn- Substituting j  for gA in equation (3.7) yields an additively 

separable function for gy, so that strictly positive balanced growth does not require strictly 

positive, constant population growth.

This proposition provides a basis for distinguishing endogenous and semi-endogenous 

growth, often synonymous in the literature with scale and non-scale growth, respectively, 

which in turn are strongly associated with sectoral linearity and diminishing marginal re-



CHAPTER 3. POPULATION AND ENDOGENOUS GROWTH 83

9H

Curve 1

Figure 3.1: Asymptotic Growth in Human Capital
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turns, respectively. Endogenous growth differs from semi-endogenous growth in that eco­

nomic growth does not require strictly positive growth in an exogenous factor, such as 

population. Proposition 2 reminds us that endogenous growth requires only that growth 

in knowledge asymptote to a strictly positive constant. Both curves in Figure 3.1 are 

monotonically decreasing, reflecting diminishing marginal returns to knowledge in the ac­

cumulation of knowledge. However, Curve 1 implies endogenous growth, while Curve 

2 implies semi-endogenous growth. Thus, the association between diminishing marginal 

returns and semi-endogenous growth is tenuous.

CES technology  - which sector?

Pitchford (1960) and Barrro & Sala-i-Martin (1999) demonstrate the capacity for 

endogenous growth with CES technology in the standard neoclassical growth model.11 More 

recently, this has been extended to a Römer (1990) type R&D-based growth model by Zuleta 

(2004), where the production function for final output is a CES combination of physical 

capital and labor. Whereas Zuleta (2004) introduce CES technology to the production 

of final output, Proposition 2 suggests introducing CES technology to the accumulation of 

knowledge: the growth in knowledge will asymptote to zero or a positive constant, depending 

on whether the elasticity of substitution between inputs is less than one or greater than one, 

respectively. To which knowledge accumulation sector do we introduce CES technology?

Taking inspiration from Dalgaard &: Kreiner (2003), we could introduce CES tech­

nology to the accumulation of non-rivalrous knowledge, J (A, lj\H,). Because they assume

physical labor rather than human capital is employed in the production of new ideas, their

11 Technically, endogenous growth may arise in the neoclassical growth model when the marginal product 
of capital is bounded below by a positive constant, as demonstrated by Jones & Manuelli (1990).
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application of CES technology addresses a direct relationship between ga and n. Except 

for the fact that the relationship between qa and n is indirect in our model, therefore, intro­

ducing CES technology to J  ( A J aH ,) would effectively replicate existing literature. This 

is not to suggest that simply by introducing CES technology to an alternative sector we 

contribute to the literature. In the following section, we introduce CES technology to the 

accumulation of human capital Q (IhH , kf{K) not only because it hasn’t been done before, 

but also because it is the more plausible application of CES technology.

Applying l’Hopital’s rule12 to equation (3.8b),

lim q{H, K \ ß H) = lim QH (3.10)
H —> oo H —>oo

where Qh is the marginal product of human capital in the generation of new human capi­

tal. Thus, another interpretation of Proposition 2 is that endogenous growth arises if the 

marginal product of knowledge in producing new knowledge tends to a positive constant as 

the stock of knowledge tends to infinity. This suggests one criterion for introducing CES 

technology.

Dalgaard & Kreiner (2003) argue that while the marginal product of physical cap­

ital most likely tends to zero as the stock of physical capital becomes infinite, the marginal 

product of knowledge is bounded below by a positive constant. In their words,

...why would a new piece of information be completely unproductive in pro­
ducing new ideas even if there did in fact exist infinitely many other pieces of 
information?

They make a good point. Ideas are boundless. On this criterion, our application 

of CES technology to human capital accumulation is closer to Barrro Sz Sala-i-Martin’s
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(1999) application, since human capital is embodied knowledge. However, this is not the 

only criterion for introducing CES technology.

Positive asymptotic limits arise with CES technology only when the elasticity of 

substitution exceeds one. This suggests we should look to define CES technology over 

inputs that, a priori, we expect may be highly substitutable. In this sense, Barrro & Sala- 

i-Martin’s (1999) application of CES technology has an intuitive appeal that Dalgaard & 

Kreiner (2003) lacks. There are several real world examples, such as the demise of the typist 

pool, where physical capital has replaced physical labor in the production of final output. 

Moreover, empirical evidence supports an elasticity of substitution between physical capital 

and labor higher than one (Duffy &: Papageorgiou 2000).

In contrast, it is hard to think of examples where ideas have replaced researchers 

in the process of innovation. A scientist works with an existing idea, say e = me2, to create 

new ideas, suggesting a high degree of complementarity between the two inputs in R&D. 

The notion that ideas may be increasingly substituted for physical capital in the process 

of R&D may be more palatable. Contrast the physical capital requirements of a modern 

researcher with those of, say, Thomas Edison. Or better still, consider the way the idea to 

use silicon in a microchip means researchers no longer require computers that take up a 

floor of a building. There are also examples of physical capital complementing ideas in 

the process of R&D. However, the notion that knowledge can be substituted for physical 

capital is more plausible than the notion that knowledge can be substituted for researchers 

in R&D.

We could broaden Proposition 2 to the case of three inputs and introduce CES
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technology to the employment of ideas and physical capital in R&D. However, we need 

not do this if we consider that just as non-rivalrous knowledge (ideas) may replace physical 

capital in the process of R&D, private knowledge may replace physical capital in the process 

of learning. For instance, as an economy’s stock of human capital accumulates, increased 

reliance on self-education may be consistent with rivalrous knowledge replacing physical 

infrastructure. The degree of complementarity between human capital and physical capital 

in the accumulation of human capital may be high or low, whereas, a priori, the degree of 

complementarity between human capital and ideas in R&D is high. This reasoning suggests 

introducing CES technology to Q (Ih H, k n K)  rather than J (A,Ia H).

3.4 .3  A  Specific M odel o f E ndogenous G row th w ith  or w ith ou t popu la­

tion  grow th

Consider an economy comprised of three sectors with the following production 

technologies:

Y  = Aa* ((1 -  lA) H)° h La ((1 -  kH) K ) ° K ; 0 < a K < l ; a i >  0Vi (3.11a) 

Ä = A^a (Ia H)71" ; 0 < r]A < 1; r]H > 0 (3.11b)

H=[{<f>1H)p + {<f>2kHK )p]1/p ; —oo < p < 1; p ^  0 (3.11c)

where all exponents are constant and p (the substitution parameter) determines the constant 

elasticity of substitution between human capital and physical capital in the accumulation of 

human capital, given by e = 1/ (1 — p) : e > 0, e /  0. Define =  a l/p and 02 =  (1 — a ) 1̂ ,

where a € (0,1) is the distribution parameter.13 The parameters satisfy 0 < n < gx  < <f>i-

13When Dalgaard & Kreiner (2003) introduce CES technology to the interaction of A  and Ia L in R&D, 
they assume the equivalent parameter to is not a function of p and a  and impose the restriction 4>1 €  (0 ,1).
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We keep the model as close as possible to the generalized production structure in 

(3.3). For simplicity, physical capital and the stock of technology are dropped as inputs to 

R&D and human capital accumulation, respectively, but these assumptions can be relaxed 

without loss of generality.14 Also for simplicity, we assume Ih — 1, meaning human capital 

is as a private input allocated to the production of final output and R&D, while at the same 

time being used in the accumulation of human capital. This assumption is not critical. If 

we relax the assumption, steady state growth in human capital will be a function of but 

the presence of this term is innocuous since sectoral shares of labor and capital are constant 

along a balanced growth path.

Differentiating gn  with respect to time and recognizing that ujh — 9h )P and 

ui X = 1 — (</>!/9h )p (see Appendix for detail), we obtain:

9 h  =  9 h  ( 9 k  —  9 h ) — I (3.12)

This equation has three steady states: gn = 0 , gn = gK and gx = 4>i- Referring 

to Figure 3.2, gx converges to either gx or 01? depending on whether e is less than one 

or greater than one, respectively. In the case where e > 1, the growth in human capital is 

bounded below by <f>l .

Thus, when e > 1, human capital grows permanently, independent of and at a

higher rate than physical capital. As suggested in the previous section, the intuition for

In a standard CES production function, such as equation (3.11c), c/)1 = a l p̂ ^ 1, depending on p E ( —oo, 1); 
p ^  1. A standard CES production is consistent with a growth rate less than 1, since gK only converges to 
4>y when p >  0, implying gK — <P\ <  1.

"By dropping physical capital from R&D, our solution for gK more closely resembles (3.7). Also, 
this aids derivation of research intensity, measured by la - Allowing for physical capital as an in­
put to R&D, the long run growth rate of output is still independent of n  when e >  1: gy —

[{ (T ^ T  +  } *1 +  '
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9h

(a) Dynamics when e > 1

9H

t

(b) Dynamics when e < 1

Figure 3.2: Dynamics of Growth in Human Capital
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this result lies in the fact that human capital is increasingly substituted for physical capital 

as the accumulation of human capital proceeds.

To solve for the growth rates of the other real variables in the model, we note 

that when e > 1, we cannot use the solutions given by (3.5a) and (3.5b), obtained by 

Cramer’s Rule, since gn = <t>\ implies u// =  1 and = 0, which in turn imply \A\ = 0 

for the matrix system (3.4). We therefore proceed with total differentiation of (3.11b) and 

substitution for gJ4 and gn in (3.7). The balanced growth rates in physical capital, output 

and consumption on the one hand and technology on the other are:

9k  =  r 0 i +  v n

if e > 1

9A Vn
U - v a ) <t> i

(3.13a)

9k  =

if e < 1 (3.13b)

(1 ~ V a ) ^ K  ,

where r  = (i-%A) + (i-aK) an<̂  v ~  i - i r • When e < 1, strictly positive rates

of growth requires (1 — r) > 0, as implied by \A\ > 0.1’ When e > 1, strictly positive 

growth in output no longer requires strictly positive population growth, n. This is the key 

result. Note that the restriction gx < </q requires that cr; and gi satisfy y^r < As 

an illustration, if we assume constant returns to scale in final production and R&D (i.e.

— 1; rh =  1) restriction simplifies to 0X > n.

15|d| -  [(1 -  <7k) (1 -  VA) ~  CTa Vh -  (711 (1 -  VA)} UK
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The long run per capita growth rate of the economy is given by:

T0J T  (v — 1) 77. if e >  1

9 y  — < (3.14)

( l3F-l)rc i f «<l

where v > 1 is sufficient for positive per capita growth, as per Corollary 1 to Proposition 

1, given r  > 0 and 0X > 0, by definition.

Thus, growth in the economy does not require growth in the population, when 

knowledge is highly substitutable for physical capital in the accumulation of knowledge.

3.4.4 General Conditions for Positive Growth with a static population

Consider now the case where population is static. If n = 0, vector d in matrix 

system (3.4) is a null vector.

Proposition 3.3 (Condition for Positive Growth) For a static population, |A| = 0 is

necessary for strictly positive growth in output, capital, consumption, technology and human 

capital.

It is a well known result of linear algebra that a homogeneous linear system of 

equations (in matrix form Ax — 0) has non trivial solutions iff |A| =  0. So the existence 

of a solution with positive growth rates implies |yl| = 0. However, |A| = 0 does not imply 

positive growth since a non trivial solution may be one of negative growth. Thus, for 

a static population, \A\ = 0 is necessary for strictly positive growth in output, capital,

consumption, technology and human capital.
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Corollary 3.2 (to Proposition 3.3) Sectoral linearity is a sufficient but not necessary 

condition for \A\ = 0 .

A sufficient condition for |A| = 0  is that each of the entries in one or more of the 

rows or columns in matrix A is zero. Existing models with a static population commonly 

assume that either (3.3b) or (3.3c) are single input linear equations (as in a Römer (1990) 

type R&D equation (t)a — 1) or a Lucas (1988) specification for human capital accumulation 

(coh — 1))- This sectoral linearity assumption implies each of the entries in either the second 

or third rows of the coefficient matrix in the system (3.4) is zero. Thus, sectoral linearity 

is introduced to a knowledge accumulation equation in order to solve for strictly positive 

rates of growth in the real variables of the model. This assumption is widely criticized. 

To quote Jones (2001) (p.5),

The linearity in existing models is assumed ad hoc, with no motivation other 
than that we must have linearity somewhere to generate endogenous growth.

It is therefore worth considering whether we can solve for strictly positive rates of 

growth under an alternative, more palatable assumption.

Another sufficient condition for |A| = 0 is that one row (column) is a linear combi­

nation of the other rows (columns) of the matrix. To explore this further, letting Vi denote 

the ith column vector of the coefficient matrix A , the system Ax — 0 can be written as the 

vector equation:

9 k v  i +  gAV  2 +  ÖHV 3 =  0
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where

( 1  -  CTk )
(  \

- < ?  A
(  \  

- a H

V \  - - V  K , V2 = ( 1  - V a ) , ^ 3  = ~ V h
(3.15)

V ) \  - U A  ) ^ ( 1  -  c j h ) !

\A\ =  0, as required to obtain a strictly positive solution to the system, if the three vectors 

are linearly dependent:

v\ — av2 +  bv3 a <  0; b < 0 (3.16)

The easiest and most obvious case to consider is that of constant returns to scale 

to growing factors (a =  b = — 1). Note that, because we have physical labor employed in 

the production of final output, this case corresponds to increasing returns to scale in final 

production QT] ai > 1 ) .

However, we can move away from constant returns to scale to growing factors and 

still obtain \A\ =  0. In the case where a =  b = —k, we have increasing or decreasing returns 

to scale to growing factors in the final output sector, when k is less than or greater than one, 

respectively, with ambiguous returns to scale in the other sectors. We can solve for strictly 

positive growth rates in the physical capital, technology and human capital with varying 

degrees of returns of scale across sectors, so long as the vectors are linearly dependent.

E x am p le  1 Consider a Cobb Douglas economy where (1 — <t k ) =  cra — &H — 0.66; t]k  = 

Va — Vh =  0.25; cJk  = = 0.25. These values suggest increasing returns to scale

in final output and decreasing returns to scale in both knowledge accumulation sectors. The 

three column vectors are linearly dependent: v\ =  —0.5^2 — 0.5t>3, as required to obtain a

strictly positive solution to the system.
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To demonstrate that linear dependence and sectoral linearity are both sufficient 

for |A| = 0, as required for strictly positive growth, we can use the generalized setting 

to describe the decentralized two sector R&D-based growth models of Römer (1990) and 

Rivera-Batiz &; Römer (1991). With no accumulation of human capital and population an 

exogenous constant, the system of equations which determine positive growth rates reduces 

to:

( 1  -  o-k ) - a  a 9 k 0

~ V k ( 1  ~ V a ) 9A 0

(3.17)

Both papers assume the same Cobb-Douglas specification for the production of 

final output, which in a centralized decision making model is given by:

Y  = rj(<TH+aL̂ ~1A<TH+crL ((1 -  lA) H f "  LaLK 1~ ^ " +<TL) (3.18a)

where r/ is a constant term that, in a decentralized setting measures the units of foregone 

consumption (or equivalently, physical capital) required to create one unit of any type of 

intermediate good.1*’ The term Ia is absent in Rivera-Batiz & Römer (1991) since R&D 

uses units of final output.

The modelling of the R&D sector is the major distinction between the two papers. 

Römer (1990) assumes neither physical capital nor physical labor are productive in R&D:

Ä — 5 (IaH) A (3.18b)

where S is a constant efficiency parameter. Rivera-Batiz & Römer (1991), on the other

hand, allow for both physical capital and physical labor to be productive inputs in R&D. 

16In a decentralized setting, A determines the range of intermediate goods that can be produced.
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They propose the lab equipment model of R&D:

Ä = BA<TH+<TLH(THLCTLK l- (aH+<TL) (3.18c)

where B is the share of final output invested in R&D.

Substituting for the sectoral elasticities from (3.18b) in (3.17):

(v h  +  v l ) - ( o~h + v l )

0 0

where Romer’s assumption of sectoral linearity implies |̂ 4| = 0. We can therefore solve 

the system for strictly positive rates of growth in physical capital and technology. From 

(3.19), we have one equation with two unknowns: gx = gA■ Because |.A| = 0, we employ a 

different solution method to that used in Section 3.4.1. From (3.18b), gA — 8 (IaH ), where 

8 and H  are exogenous constants and la , the portion of human capital allocated to R&D. 

is constant, as required for balanced growth.11

Substituting for the sectoral elasticities from (3.18c) in (3.17):

9k

gA
(3.19)

(<7H +  CTl ) -  (o-H +  C L ) 9 K 0

{v h  +  v l ) ~  1 1 -  {<t h  +  o 'l ) 9 a 0

(3.20)

where iq =  — V2 , sufficient for \A\ = 0 . Thus, instead of introducing sectoral linearity to 

the accumulation of knowledge, Rivera-Batiz & Römer (1991) assume diminishing marginal 

returns to the stock of existing ideas in the creation of new ideas (r}A < 1). Constant 

returns to scale to physical capital and ideas, the growing factors, is sufficient for strictly 

positive rates of growth. From (3.20), we have one equation with two unknowns which 

again is simply gK = ga -

rAn expression for l a  can be derived from the first order conditions.
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Thus, we have demonstrated that static population R&D-based growth models 

can be solved for strictly positive growth without introducing sectoral linearity to the ac­

cumulation of knowledge. Note that while Rivera-Batiz & Römer (1991) have assumed 

constant returns to scale to the growing factors, we know from our discussion of Corollary 

2 and the numerical example that, we could have varying returns to scale across sectors in 

a three sector model.

3.5 H om ogen eou s Labor

In order to evaluate existing R&D based growth models as special cases of our 

general three sector model, the restriction of homogeneous labor is introduced. We assume 

all labor is skilled, in order to analyze both endogenous and exogenous labor accumulation.

3 .5 .1  E n d o g en o u s L abor

If the accumulation of skilled labor is endogenized, we obtain a homogeneous form 

(in matrix algebra, Ax — 0) of the system of equations in (3.4).

Illustration  o f P roposition  3

Funke & Strulik (2000) model the development to an innovative economy. We 

simplify their model only by removing an exogenous productivity parameter and a distinc­

tion between the stock of intermediate goods and physical capital which, in an innovative 

economy, are one and the same. Their decentralized model is detailed, comprising forty 

six equations. We can use our generalized model to reveal the salient features of their
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innovative economy. The production structure is:

Y = A l~a {{l - l A - l H) H) l~a K ar]-G (3.21a)

Ä = 6(lAH) (3.21b)

H = £(lHH) (3.21c)

where S and £ are constant efficiency parameters.

As per Proposition 3, Funke & Strulik’s (2000) assumption of sectoral linearity 

in the human capital accumulation equation implies positive rates of growth in physical 

capital, (output, consumption) and technology and human capital, as jointly determined 

by the system:

( 1 - c r )  -  (1 -  er) — (1 — cr) 9 k 0

0 1 - 1 9A = 0

0 0 0 9H 0

(3.22)

Because |A| = 0, we employ a different solution method to that used when there 

is an exogenously growing factor. Sectoral linearity in the human capital accumulation 

equation gives us two equations with three unknowns, which Funke & Strulik (2000) reduce 

to one equation with two unknowns by assuming no physical capital is employed in R&D. 

From (3.22), gx — 2 gA = 2 gn- Referring to the Appendix, we use the first order optimality 

conditions to solve. Final output and the two types of knowledge in the economy grow at 

the rates:

9 Y  =  9  A =  9 h  — ^ q - (3.23)



CHAPTER 3. POPULATION AND ENDOGENOUS GROWTH 98

3.5 .2  E xogenous Labor

Since H — hL , where h is the average skill level, skilled labor accumulates over 

time due to growth in the average skill level (measured by growth in average educational 

attainment, e) and/or growth in the labor force (measured by population growth, n). The 

system of equations which determine positive and balanced growth rates reduces to:

(1-<tk ) - a  a 9 k a H (e + n)
i

1rH*c~1 9A Vh  (e +  n)

Despite empirical evidence that a significant portion of income growth (equivalent 

to gx in (3.24)) is attributable to growth in educational attainment, e is absent from existing

models of R&D-based growth. The reason for this is best articulated by Jones (2001):

...roughly 80 percent of post-war US growth is due to increases in human 
capital investment rates and research intensity and only 20 percent is due to the 
general increase in population (Jones 2002). However, ... neither educational 
attainment nor the share of labor force devoted to research can increase forever.
So unless there is an ad-hoc Lucas-style linearity in human capital accumulation, 
population growth remains the only possible source of long run growth...

Introducing the restriction that skilled labor accumulates at the exogenous rate 

of population growth, n, yields the general two-sector growth model analyzed by Eicher 

& Turnovsky (1999). Note that the generalized growth rates of real variables, jointly 

determined by (3.24), are not obtained by setting Ui =  0 in (3.5a) and (3.5b). However, 

the rates of growth of physical capital, output and consumption, on the one hand, and 

knowledge, on the other, are readily obtained (see p. 400 of Eicher & Turnovsky (1999) for 

a full analysis).

Whilst the general model encompasses several well known non-scale R&D-based 

growth models as special cases, this paper focuses on the dependency of economic growth
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on population growth and we discuss an example from the literature that, best reflects this 

focus, namely, a re-parameterization of Jones (1995a), suggested by Proposition 1 (Corollary 

1 ) .

Illustration  of P roposition  1 (especially  Corollary 1)

The model of Jones (1995a) is well known. He obtains non-scale growth by 

introducing diminishing marginal returns to the stock of ideas in R&D (r)A < 1) to a 

homogenized labor version of Römer (1990). The production structure is:

Y = (A{1 -  lA) H)a K 1-" (3.25a)

Ä = 8Ar]̂ { lAH)nH (3.25b)

where H — nH , so that population growth is the only exogenous source of growth in the 

economy.

As per Proposition 1, diminishing marginal returns implies positive rates of growth 

of physical capital, output and consumption, on the one hand, and knowledge, on the other, 

as jointly determined by the system:

— a

0 ( I - V a )

" "

9k a Hn

9a r]Hn
(3.26)

Technology and per capita output, physical capital and consumption grow at a 

common rate determined by population growth and the shares of labor and stock of knowl­

edge in the R&D sector:

9A = 9y = 'tpn (3.27)
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where ip = rjH/  (1 — r]A). Constant population growth and Cobb-Douglas technology imply 

balanced growth.

Of most interest, however, is the implication of Jones’s (1995a) final production 

parameter restrictions for the rate of growth in per capita output. In the general two sector 

growth model, per capita rates of growth of physical capital, output and consumption are 

given by:

g =  \ { ° H  — (1 — a K )} (1 ~ Va ) + (Vh  + Vk ) <?a ] n (3.28)
[ ( 1  - o k ) ( 1  - V a ) - V k ^a ]

By introducing the restriction cr# = (1 — ctk) =  &a = o', together with r)K — 0, Jones 

(1995 a) obtains a long run growth in per capita output that is determined by relative 

structural elasticities in the R&D sector, as encapsulated in the parameter ip.

Jones (2002) provides estimates of ip for the United States (U.S.) economy, ranging 

from a low value of 0.05 to a high value of 1/3. These estimates suggest a long run rate 

of growth of per capita output that is less than a third of the rate of population growth, 

from which Jones (2002) draws two inferences. Firstly, growth rates in the U.S. for the 

last century are not indicative of steady state. Secondly, we should anticipate a future 

slowdown as the economy transits to a long run rate of growth that is lower than the rate 

of population growth.

Would alternative parameter restrictions suggest a less pessimistic outlook for long 

run growth of the U.S. economy? The restriction er# > (1 — <tk) = aA = cr, by Corollary 

1 to Proposition 1, is sufficient for positive per capita growth in output:

9y = (X + ' p -  l ) n (3.29)

where x =  °~hI {1 —&!<)■ Since x > our re-parameterization of Jones (1995a) yields
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a higher long run rate of growth in per capita output. Moreover, if (x — 1) > (1 — ip), a 

restriction which does not violate any of the conditions for positive and balanced growth18, 

the economy will transit to a long run rate of growth that is higher than the rate of 

population growth.

3.6 Seven  P rincip les for M odel C on stru ction

We bring together the formal propositions of this paper in a set of principles for 

constructing a model of either endogenous or semi-endogenous growth. These principles 

were derived using a generalized model where physical capital and two types of knowledge 

grow endogenously and the optimization problem is that of a central planner. Because the 

principles are general, they can be applied to any R&D-based growth model with specific 

microfoundations and decentralized decision making. They are equally applicable to models 

with two or three endogenous factors; homogeneous labor or heterogeneous labor. Recog­

nizing the two broad approaches in the literature, we tailor the principles to the treatment 

of population as a growing or static factor.

If you want to allow for the possibility that population can grow at an exogenous 

rate, we propose five principles for constructing a model:

1. To obtain strictly positive growth in output, capital, consumption, technology and 

human capital that depend essentially on population growth, it is necessary and suf­

ficient to assume diminishing marginal returns to each input in its productive sector

and a relationship between the structural elasticities such that |A| > 0.

18|d| > 0 is the only condition that relates relative factor shares in the R&D sector to relative factor 
shares in the final output sector: |T| > 0 =>
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2. In terms of obtaining a balanced growth path, Cobb-Douglas production functions 

have the benefit of allowing for varying degrees of returns to scale. Constant returns 

to scale must be assumed if you use CES production functions.

3. For strictly positive per capita growth in the economy, it is sufficient to assume in­

creasing returns to scale to physical capital and physical labor in the production of 

final output.

4. Strictly positive balanced growth may arise without population growth if growth in 

knowledge (either non-rivalrous ideas or human capital) asymptotes to a positive 

constant. CES technology is one such production technology for which this is possible.

5. The notions of diminishing marginal returns and semi-endogenous growth are logically 

independent. Given our fourth principle, diminishing marginal returns to knowledge 

is consistent with both endogenous growth (i.e. growth in the economy without ex­

ogenous population growth) and semi-endogenous growth.

The first three principles are known, albeit for two sector R&D-based growth 

models, but are often hidden behind the complexity of the decentralized solutions to these 

models. With the introduction of additional sectors, such models become increasingly 

complex. This paper demonstrates the generality of these principles to multi-sector growth 

models, even when we allow for heterogenous labor. Even if these principles are known 

for two sector R&D-based growth models, they are not always fully utilized. This is 

demonstrated in the previous section, by applying the third principle to a well-known model

to achieve a more general result.
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The last two principles are based on new results obtained in this paper. Introduc­

ing CES technology to a knowledge accumulation equation to obtain endogenous growth is 

more than a mathematical peculiarity. We recommend that CES technology be introduced 

where the inputs are, a priori, highly substitutable. A CES combination of human capital 

and physical capital in the accumulation of human capital, as analyzed in Section 3.4.3 is 

such a plausible application.

If you start out with the assumption that, population is static, we propose two 

principles:

1. To obtain strictly positive growth in output, capital, consumption, technology and 

human capital, it is necessary to assume |A| = 0.

2. Diminishing marginal returns to existing knowledge in the accumulation of knowledge 

is consistent with strictly positive growth. Sectoral linearity is sufficient for |A| =  0. 

However, constant returns to scale to growing factors is also sufficient. Moreover, 

we can move away from constant returns to scale, so long as the degree of returns to 

scale vary across sectors such that the column or row vectors of matrix A are linearly 

dependent.

These two principles are also based on new results in this paper and shed new 

light on early R&D-based growth models. Being able to construct such models without 

resorting to sectoral linearity, theorists may rediscover early endogenous growth theory 

in their endeavour to establish strictly positive long run economic growth with a static

population.
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3 .7  C onclusion

Positive and balanced growth in an economy cannot be obtained without knife 

edge conditions, whether growth is endogenous or semi-endogenous. By construction of a 

general three sector growth model, these conditions can be expressed in terms of a matrix 

of structural elasticities and tailored to the treatm ent of population as a growing or static 

factor.

If population grows at a positive, exogenous rate, as in semi-endogenous growth 

models, diminishing marginal returns and a positive determinant of structural elasticities 

are necessary and sufficient for positive growth in real variables of the models. However, 

diminishing marginal returns is consistent with endogenous growth if growth in human 

capital asymptotes to a positive constant. If population is static, the necessary condition 

for positive growth is singularity of the m atrix, which is achieved by imposing either sectoral 

linearity, constant returns to scale to growing factors or returns to scale that vary across 

sectors such that vectors of the elasticity matrix are linearly dependent.

Since our general three sector growth model allows for heterogeneity of knowledge 

and labor, the conditions are universal. That is, they apply to growth models with either 

R&D or human capital accumulation or both and either physical labor or human capital 

augmented labor or both.

The key conditions challenge the convention in growth theory that diminishing 

marginal returns is synonymous with semi-endogenous growth and linearity is synonymous 

with endogenous growth.

Semi-endogenous growth models are premised on the possibility that population
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grows at a positive rate. However, endogenous growth, or growth independent of the growth 

rate of population, may arise in such models if growth in human capital asymptotes to a 

positive constant. This is consistent with diminishing marginal returns to human capital 

as human capital accumulates. Admittedly, the tendency of growth in human capital to a 

positive constant implies linearity, albeit asymptotic.

Perhaps the more powerful result of this paper pertains to the early endogenous 

growth models which assume population is static. We establish that diminishing marginal 

returns to knowledge in the accumulation of knowledge is consistent with singularity of the 

matrix of structural elasticities, the only necessary condition for strictly positive rates of 

growth in real variables. Endogenous growth models, premised on the assumption of zero 

population growth, can be solved for a strictly positive growth rate in the economy without 

imposing the restriction of sectoral linearity.

Thus, whether population is growing or static, strictly positive long run economic 

growth, driven by knowledge accumulation, can be obtained under the more palatable 

assumption of diminishing marginal returns to knowledge in the accumulation of knowledge.

All this suggests that concerns of zero long run economic growth due to forward 

projections of zero population growth in the world’s hub of R&D may be misplaced. Such 

fears generate pressure on public policy to boost fertility and immigration rates. To the 

extent that, under reasonable assumptions, the long run growth rates of economies engaging 

in R&D may be strictly positive without population growth, these policy reforms are, at 

best, innocuous.

Because the knife edge conditions for positive growth along a balanced growth path
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are in terms of structural elasticities, we provide a neat and concise framework for analyzing 

the long run central planner solutions for endogenous and semi-endogenous growth models 

alike. CES production function are sometimes characterized as cumbersome and difficult 

to manipulate (Sato 1987). However, using our framework, we solve for the growth rates 

of all real variables along a balanced growth path in a three sector economy where CES 

technology describes the accumulation of human capital in less than one page. Similarly, 

we solve a central planner version of Funke & Strulik (2000) from a single matrix system 

and four optimality conditions.

A simple, unified framework for analyzing the solutions along a balanced growth 

path has several benefits. Firstly, we can apply our conditions to well-known models to 

achieve a more general result, such as, our reparameterisation of Jones (1995a). Secondly, 

we can select the most realistic application of conditions to construct original models to 

address empirical anomalies, such as, our introduction of CES technology to human capital 

accumulation to establish the result that growth in the economy does not require growth in 

population.

All the models presented in this paper, whether original or central planner versions 

of existing models, can be given microfoundations, and in each case the equilibrium growth 

rates in the corresponding decentralized economy can be derived. It is worth noting that 

growth rates derived for a corresponding decentralized economy differ only by the intro­

duction of terms, such as a monopoly markup, that capture the negative spillovers that a 

central planner internalizes.

We can improve the analysis of our general three sector growth model with a static
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population by formally defining the relationship between returns to scale across sectors, as 

implied by equation (3.16). Mulligan & Sala-i-Martin (1993) and Rebelo (1991) analyze a 

similar relationship for two sector endogenous growth. We may also flesh out the stability of 

the system by reference to the first order optimality conditions and analyze the transitional 

dynamics.

As it is straightforward to generalize conditions in terms of determinants to higher 

dimensions, the model is readily extended along the lines suggested by Papageorgiou (2003), 

which allows for technological imitation in addition to innovation.
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Part IV

N on-S ca le  G ro w th  - E ssay  3
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Chapter 4

Conditions for Non-Scale Growth

4.1 In trod u ction

Diminishing marginal returns to the existing stock of knowledge in the creation 

of new knowledge is a hallmark of non-scale models of research and development (R&D)- 

based growth. This paper challenges the conventional wisdom that (non-)linear knowledge 

accumulation and (non-)scale growth are synonymous.

Romer’s (1990) seminal model of R&D-based growth predicts the long run growth 

rate of the per capita output is increasing in the scale of the economy, typically measured by 

population size. Jones (1995a) observes empirical trends of the past century do not support 

this prediction and identifies an arbitrary assumption, linearity in R&D, as the source of 

the prediction. An alternative assumption of diminishing marginal returns to ideas implies, 

ceteris paribus, the growth rate of ideas will fall over time. In long run equilibrium, an 

increasing population provides the additional R&D effort needed for the stock of ideas, and

output per capita, to grow a positive, constant rate.
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Early non-scale models of R&D-based growth (Jones (1995a), Kortum (1997) and 

Segerstrom (1998)) predict strictly positive population growth is essential to long run eco­

nomic growth. In response to an impending slowdown in population growth1, a second 

generation of non-scale growth models establish that the economy may grow independent of 

population growth. Modelling two aspects of R&D, Young (1998), Dinopolous & Thomp­

son (1998), Peretto (1998) and Li (2000) predict that strictly positive population growth 

is conducive but non-essential to long run economic growth. Modelling R&D and the ac­

cumulation of embodied knowledge. Dalgaard & Kreiner (2001) and Strulik (2005) predict 

that strictly positive population growth is not only non-essential but also detrimental to 

long run economic growth.

Hall & van Reenen (1999) estimate an additional dollar of tax benefits stimulates 

an additional dollar of R&D expenditure. Unlike early non-scale growth models, second 

generation non-scale growth models maintain the potency of such government policy to 

promote long run growth.

The empirical and policy relevance of second generation non-scale growth models 

warrants careful examination and thorough understanding of their general properties. The 

primary objective of this paper is to establish the general conditions in R&D-based models of 

non-scale growth that ensure strictly positive long run economic growth does not essentially 

depend on strictly positive population growth.

The complexity of second generation non-scale growth models in a decentralized

setting obscures the conditions for strictly positive equilibrium growth. A recent paper

1U nited N ations (2005) p rojects population growth in th e  OECD, the  w orld’s hub of R&D, will approx­
im ate zero for th e  next fifty years. In fact, projections indicate negative population growth m ay arise after 
2030.
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(Strulik 2005) comprises 48 equations, not including those contained in the appendix. Li 

(2000) shows that long run economic growth is an additively separable function of population 

growth if the returns to existing ideas in the two aspects of R&D are zero and constant, 

respectively. Whilst consideration of Li (2000) and other specific examples of second 

generation non-scale growth models reveals a non-scale growth model need not feature non­

linear knowledge accumulation, a clear cut distinction of these notions is missing, primarily 

due to the lack of a simple, unified framework within which to analyze these non-scale 

growth models.

Eicher & Turnovsky (1999) makes an important contribution to our understanding 

of non-scale models of R&D-based growth. Abstracting from the microeconomic founda­

tions of R&D and modelling the decision making of a central planner in a generalized 

two-sector non-scale growth model, Eicher & Turnovsky (1999) assume all factors of pro­

duction are necessary for production in both sectors and the matrix of structural elasticities 

is non-singular. Under these restrictions, Eicher & Turnovsky (1999) establish diminish­

ing returns to the existing stock of technology in R&D as one of the conditions that are 

necessary and sufficient for strictly positive equilibrium growth rates in their generalized 

model.

We aim to establish conditions for strictly positive, non-scale growth that are 

universal to a class of models broader than that allowed by Eicher & Turnovsky’s (1999) 

restrictions. Since the issue of non-scale growth pertains to the long run, we focus on the 

balanced growth equilibrium of an economy.

We observe that second generation non-scale growth models all work in a similar
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way. Each model adds a second dimension of knowledge accumulation to a seminal non­

scale model of R&D-based growth. The second type of knowledge may be embodied or 

disembodied.

This paper introduces a generalized three-sector non-scale growth model and ex­

tends Eicher & Turnovsky (1999) both by relaxing the assumption that all factors are 

necessary for production in all sectors and by allowing the matrix of structural elastici­

ties to be either singular or non-singular. With these extensions, we prove the following 

assertions. First, provided the matrix of structural elasticities is non-singular, Eicher & 

Turnovsky’s (1999) conditions are necessary and sufficient for strictly positive non-scale 

equilibrium growth even when not all factors are necessary for the production of all goods. 

Second, single input linearity in one dimension of knowledge accumulation, implying a sin­

gular matrix of structural elasticities, is sufficient for strictly positive non-scale equilibrium 

growth which does not essentially depend on population growth. Third, following from 

our second assertion, Eicher & Turnovsky’s (1999) conditions are, in general, sufficient but 

not necessary for strictly positive non-scale equilibrium growth. Fourth, the notions of 

non-linear knowledge accumulation and non-scale growth are logically independent.

The following section outlines the model and summarizes the conditions for strictly 

positive equilibrium growth rates in a series of propositions. Despite the technical nature of 

some of these propositions, our results have practical significance. Section 4.3 explores the 

case of embodied knowledge. The two examples demonstrate how our general framework 

is useful for gaining insight into existing models and developing new ones. Section 4.4 

establishes the logical independence of non-linear knowledge accumulation and non-scale



CHAPTER 4. CONDITIONS FOR NON-SCALE GROWTH 113

growth. In light of this result, section 4.5 reviews empirical evidence and some conventions 

in model construction. Section 4.6 concludes.

4.2  G eneral M odel o f N on -Scale  G row th

Growth is non-scale if the long run growth rate of per capita output does not 

vary with the size of the economy as measured by its population. Diminishing returns to 

the existing stock of ideas in R&D implies the output of new ideas (R&D) will less than 

double whenever the existing stock of ideas doubles. In this paper, non-linearity refers to 

diminishing returns.

Let Y  denote the output of the final good, K  the stock of physical capital and L the 

population (labor force), which grows at the exogenous rate n = L/L. A denotes the stock 

of non-rivalrous knowledge, as measured by the existing variety of intermediate goods. Q 

denotes either an alternative stock of non-rivalrous knowledge (such as, the existing quality 

of intermediate goods) or rivalrous knowledge (specifically, embodied human capital).

Consider the following general three-sector production structure:

Y = F(A,  (1 - a A - a Q) K 1qYQ,(l - I  a -  Iq ) L) (4.1a)

Ä =  J (A,aAK,qAQ,lAL) (4.1b)

Q — H ( A ^ q K ^ q Q ^ q L )  (4 . 1c)

where Qj and (i = Y, A , Q) are the fractions of physical capital and labor, respectively, 

allocated to sector i. Equation (4.1c) may represent either human capital accumulation or 

quality R&D. In the case of human capital accumulation, ^  ■ qi = 1 if embodied knowledge
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is rival in use across all three sectors. In the case of R&D, qi = lVi, since this type of 

knowledge is non-rivalrous in use.

The representative agent of the economy has intertemporal utility of isoelastic

form:

J0OOe - ',,^ r >

where c denotes consumption per capita. In the absence of depreciation, physical capital 

accumulates as a residual after aggregate consumption needs have been met:

K  = Y  - C  (4.Id)

The central planner chooses consumption, and the fractions of labor and capital 

employed in each sector so as to maximize intertemporal utility of the representative agent 

subject to the production and accumulation constraints, equations (4.1a) - (4.Id). For 

the purposes of this paper, we note that the following discussion is premised on sectoral 

allocations of factors that, are strictly positive and constant, as required for a balanced 

growth equilibrium.

The balanced growth rates of the real variables (Y, K , A , Q) are obtained by total 

differentiation of the production functions (4.1a) - (4.1c), noting that constant growth rates 

requires gy = gK? 9 \ — 9A and <?q = 9q■ This leads to the following system of three 

linear equations:

( 1  — & k ) - v  a  - ° q 9 K a Ln

- 9 k  ( 1 - V a ) ~ V q 9 A = 9 l u

- U K  - U a  ( 1  - U q ) 9 Q ujLn

2The growth rate in physical capital, given by gK =  ^  — y  is constant if Y yK  and C  grow at
the same rate.
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where oy = Fii/F , ?/j =  J{i/J and uii = Hji/H\ i =  K,A,Q ,L  denote the structural 

elasticities in the production, variety R&D and human capital accumulation (or quality 

R&D) sectors, respectively and n > 0. The structural elasticities are not necessarily 

constant. Non-linearity, or diminishing marginal returns to knowledge, in variety R&D 

and quality R&D (or human capital accumulation) correspond to r]A < 1 and ujq < 1, 

respectively.

Dropping from equations (4.1a) - (4.Id), both equation (4.1c) and Q as an input, 

yields the system of two linear equations analyzed by Eicher & Turnovsky (1999) and 

Christiaans (2004):

(1 -  07f) -<*A 9k aLn

- V  K (! ~ V a ) 9A V L n

Both systems (4.2) and (4.3) are non-homogeneous, Ax — d, in matrix notation, 

provided > 0 and/or r/L > 0 and/or ul > 0.

For a non-homogeneous system of equations

Y /1j L i a i j x j  =  d i (* =  1 > •••>m )

where < 0 for all i /  j; an > 0 for all i and \A\ = \aij\ ^  0, Hawkins Sz Simon (1949) 

prove that a necessary and sufficient condition that the Xj satisfying (4.4) be all strictly 

positive is that all principal minors of the matrix ||ay|| be strictly positive.

In order to apply the Hawkins-Simon conditions for a strictly positive solution, 

Eicher & Turnovsky (1999) impose the restrictions \A\ ^  0 and crj > 0,7^ > (M. Under 

these restrictions, Eicher & Turnovsky (1999) establish ( J k  <  U r } A  <  1 and |A| > 0 as
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necessary and sufficient conditions for the equilibrium growth rates in (4.3) to be strictly 

positive, where the two conditions <tk < 1 and |A| > 0 are provided for by the Hawkins- 

Simon conditions, and together imply r/A < 1.

Put simply, Eicher & Turnovsky (1999) establish that, under certain restrictions, 

non-linearity in R&D and a strictly positive determinant of structural elasticities are es­

sential to solving a non-scale growth model for strictly positive equilibrium growth rates. 

However, few existing non-scale growth models comply with the certain restrictions.

The restriction oy > 0, rji > 0Vi implies all factors are essential for the production 

of both goods, final output and R&D. Excepting the Cobb-Douglas hybrid model (Eicher 

& Turnovsky (1999), p. 410), physical capital does not feature as an R&D input in most 

non-scale growth models. The restriction |̂ 4| ^  0 excludes the linear R&D technology 

featuring in more recent non-scale growth models.

In the following sections, we relax these restrictions to establish, first, that Eicher 

& Turnovsky’s (1999) conditions apply to first generation non-scale growth models in which 

physical capital is not an R&D input, and. second, Eicher & Turnovsky’s (1999) conditions 

are sufficient but not necessary for strictly positive equilibrium growth rates in any non-scale 

growth model.

4.2.1 Hawkins-Simon Conditions when =  0 for som e i ^  j

Consider a non-homogeneous system of two equations, in matrix notation, Ax — d:

" “ " ~
an «12 X\

—
di

0 a22 X2 d2
(4.5)
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where \A\ ^  0, an > 0; [di > 0] for all i, assumptions underlying the Hawkins-Simon 

conditions. «12 < 0 and «21 =  0 satisfy a weaker assumption of aij < 0 for all i ^  j .

Corollary 4.1 (to  Hawkins &: S im on’s (1949) T heorem ) A necessary and sufficient 

condition that the X{ satisfying ( 4 - 4 )  be all strictly positive for any a i j  < 0 for all i ^  j  is 

that all principal minors of the matrix ||<2y|| be strictly positive.

Proof. Since conditions in terms of determinants are generalizable to higher 

dimensions, we prove this corollary by reference to the two dimensional system in (4.5). 

Substituting from the second equation into the first equation in (4.5) yields

a22x 2 = ^2 (4.6)

al la22x l = a22^l — ai2G?2 (4.7)

Suppose (x \ ,X 2 ) satisfying (4.6) and (4.7) are positive, but not all the principal 

minors of A  in (4.5) are positive. Specifically, the first, principal minor is positive, but the 

second principal minor is non-positive: |Ai| =  on  > 0; | 4̂.21 — \A\ = a n 022 <  0. We show 

that an(Z22 < 0 implies an inconsistency. Together, an  > 0 and a n 022 <  0 imply 022 <  0, 

a contradiction of the underlying assumption an > 0 for all i. From the solutions in (4.6) 

and (4.7), if x\  > 0  and X2 > 0, then 022 <  0 contradicts the underlying assumptions 

[di > 0] for all i and a i2 < 0. Thus, that all principal minors of matrix A  be positive is a 

necessary condition for {x\ ,X2 ) satisfying (4.5) to be all positive.

To prove that all principal minors of matrix A  be positive is a sufficient condition 

for (#1,2:2) we show that if |zli| =  an > 0; I-A2I = \A\ = «11̂ 22 > 0 then either x\  <  0 

or X2 < 0 implies a contradiction. Together, a\\ > 0 and a n a 22 > 0 imply 022 > 0.
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For X2 < 0, the equality in (4.6) requires < 0, contradicting the underlying assumption 

[di > 0] for all i.

When |A| 0, system (4.3) has the solution

9y

9A

K ( 1  - 9  a ) + 9 l Va }„ 
9C = 9K = ------------- — ------------- n

\ A \

[(1 -  <t k ) v l + tik (t l }

14

(4.8a)

(4.8b)

In order to apply the Hawkins-Simon conditions for a strictly positive solution, Eicher &: 

Turnovsky (1999)

... assume that all three factors of production are necessary for the production 
of both goods, so that all elasticities are strictly positive, (p.400)

By Corollary 1, we need only assume that structural elasticities are non-negative in 

order to apply the Hawkins-Simon conditions for a strictly positive solution. Non-negative 

structural elasticities allow for the possibility that not all factors are used in some sectors.

For special cases, Eicher &: Turnovsky (1999) show that their conditions for a 

strictly positive solution apply when not all factors are used in some sectors. For instance, 

Jones (1995a) assumes r]K = 0, but is used as a benchmark. In this sense, Corollary 1 and 

its proof provides completeness. As the number of sectors increase, the more likely not all 

factors are used in some sectors. By Corollary 1, we need not predicate conditions for a 

positive solution on the assumption that all four factors are necessary for production in all 

three sectors of our general model.

We assume oy > 0, r)i > 0 and ui{ > 0 Vi, meaning all factors of production are 

necessary for the production of the final good, but some factors of production may not be
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used in variety R&D and quality R&D (or human capital accumulation). Without the 

first assumption, modelling the accumulation of factors is inconsequential to the long run 

growth rate of the economy.

We impose no restrictions on jA|. allowing for the coefficient matrix A to be non­

singular or non-singular.

4 .2 .2  P ositive  Solution  w hen \A\ = \aij\ = 0

Define an augmented matrix, Ad, comprising A in the first columns and d in 

the last column. It is a standard result of linear algebra that a necessary and sufficient 

condition for a linear system of equations to have at least one solution is that the rank"* 

of the coefficient matrix equals the rank of the augmented matrix: Ax -- d has a solution 

<=> r (A) = r (Ad)- When the common rank of A and Ad equals the number of equations, 

|j4| ^  0. When the common rank A and Ad is less than the number of equations, |̂ 4| =  0. 

In either case, the system of equations has a solution.

Two Equation System

Following on from our discussion of Eicher & Turnovsky’s (1999) conditions for a 

positive solution in the previous section, consider the augmented matrix for the two equation 

system (4.3):

(1 ~<t k ) a  o Ln
Ad

-V K  (1 - V a ) VLn 

When \A\ 7  ̂0, r (A) — r (Ad) = 2 and system (4.3) has a unique solution which, as

(4.9)

per the Hawkins-Simon conditions, is strictly positive iff \A\ > 0, <j k  < 1 and r}A < 1, where
The rank of a matrix is equal to the order of the largest minor that is different from 0.
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the final condition is implied by the first two conditions. These conditions are sufficient for 

a positive solution to system (4.3). When the stock of ideas is endogenously determined 

through R&D and the labor force is growing, diminishing marginal returns to the stock of 

ideas in R&D (77̂  < 1) implies positive growth in the stock of ideas and output.

Intuitively, diminishing returns in the stock of ideas requires increasing effort in 

R&D for the stock of ideas to grow. This increasing effort can come from other inputs such 

as the number of researchers. While the fraction of inputs allocated to R&D is constant 

along a balanced growth path, strictly positive population growth satisfies the increasing 

R&D effort needed for strictly positive growth in the stock of ideas and the overall economy.

However, the proposition that these conditions are necessary for a positive solution 

to system (4.3) is conditional on the assumption \A\ ^  0. System (4.3) also has a solution 

when |A| = 0, provided r (A) = r(Ad)- Moreover, we can show that a positive solution 

exists in this case.

Proposition 4.1 A solution to a non-scale growth model exists when \A\ = 0 only if a 

sector features single input linear technology

Proof. When r (A) = r (Ad) — 1 < 2, system (4.3) has a solution although one 

equation is superfluous to solving the system. Whereas |A| 7̂  0 r (A) = r (Ad) =  2,

IA\ = 0 is necessary but not sufficient for r (A) = r (Ad) < 2. To see this, constant returns 

to scale to endogenous factors in both sectors (<7k  +  a a  =  1; Vk  +  Vl = 1) yields \A\ — 0. 

All elements of A are non-zero. The minor of Ad obtained by deleting either the first or 

second column is non-zero. Thus, r (A) = 1 < r (Ad) =  2 and the system has no solution. 

When IA2I = \A\ = 0 and \Ad%\ = 0, r (A) — r (Ad) < 2 and the system has a solution. For
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both \A\ =  0 and | 4̂̂ 21 = 0, Ad must contain a row of zeroes. The implication is a single 

input linear technology.

As it is straightforward to generalize conditions in terms of minors to higher di­

mensions, this proof is applicable to system (4.2) resulting from our three sector model of 

non-scale growth. ■

Consider such a linear technology for the R&D sector: gK = gL = (1 — rjA) =  0. 

Assuming a x  < 1, r (A) = r (Ad) = 1 < 2. The second equation in system (4.3) is 

superfluous, reducing to gA = Ä/A — m, where m is an exogenous positive constant. 

Differentiating Y  = F (A, (1 — kA) K , (1 — lA) L ) with respect to time, noting that constant 

gx requires that Y  and K  grow at the same rate yields the solution

9y 9C  =  9 K
a A , CTL-----------m  + -----------n

(1 -<Tk ) (1 -<7k )
(4.10)

9a  = TO (4.11)

which is strictly positive iff a x  < 1. All other variables in the above solution are strictly 

positive by assumption. This result provides alternative conditions sufficient for a positive 

solution to system (4.3), which we summarize with the following proposition:

Proposition 4.2 a x  < 1, rjA — 1 and rji = 0 Vi A is sufficient for positive growth of 

output, capital, consumption and knowledge in a two sector non-scale growth equilibrium.

Intuitively, linear technology in R&D (rjA = 1) implies the stock of ideas will grow 

at a constant positive rate with no increased effort from other inputs of R&D. Recall that 

system (4.3) was derived under the requirement of constant growth rates. With strictly 

positive population growth, the number of researchers is increasing. Growth in the stock
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of ideas will be explosive if increasing amounts of other inputs are used in R&D. Hence, 

no researchers (rjL = 0) is an additional condition for a positive solution to system (4.3) in 

this case. Following the intuition for rjA < 1 in the previous case, diminishing marginal 

returns in final production (<jk  < 1) implies positive growth in output, physical capital 

and consumption. With positive growth in physical capital, no physical capital in R&D 

(rjK =  0) is also a condition for a positive solution to system (4.3).

Corollary 4.2 (to Proposition 4.2) Iff, further, aA + &k + &l > 1 the growth rate of 

per capita output in this two sector non-scale growth equilibrium will be positive.

This additional condition follows immediately from (4.10): gy = gy — n > 0 

aA > [1 — (<tk 4- <7l )] n/m. As we will discuss, the type of single input linear technology 

viable for R&D is asymptotic, in which case m > n, simplifying the condition to a a > 

1 -  (crK + (?l ) > [1 -  {<tk + or,)] n/m.

By the corollary, increasing returns to scale in the production of final output 

is necessary and sufficient for positive per capita growth of output, given the conditions of 

Proposition 4.2. For their positive solution, Eicher & Turnovsky (1999) establish increasing 

returns to scale in the two private factors, physical capital and labor, in the production of 

final output (crx + crL > 1), suffices for positive per capita growth of output, independent 

of further production conditions in the R&D sector. The sufficiency of increasing, or even 

constant, returns to scale in the two private factors clearly holds for our positive solution. 

In contrast, the long run growth rate of the economy is positive with decreasing returns to 

scale in the two private factors, provided the decreasing returns are more than offset by the 

marginal return to ideas used in production of final output.
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The interesting point of the corollary is that positive growth in the economy in 

a non-scale growth equilibrium provided by a single input linear technology requires less 

restrictions on individual marginal returns in the production of final output.

Unfortunately, in a two sector R&D-based growth model, the applications of lin­

ear technology are limited. Whereas human capital is rivalrous, ideas are a public good. 

As such, with a simple linear technology, human capital accumulation remains endogenous 

(H =  mhnH),  but R&D reduces to an exogenous accumulation of ideas (A = mA). For 

the R&D process to remain endogenous, we require a technology where growth in the stock 

of ideas asymptotes to m > n. An example of such a technology is Dalgaard &; Kreiner’s 

(2003) Constant Elasticity of Substitution (CES) R&D equation with elasticity of substi­

tution greater than one. This example, whilst technically correct, lacks intuitive appeal. 

Researchers work with existing ideas to create new ideas, and it is hard to conceive that 

ideas could be substituted for researchers to the point where R&D requires no researchers. 

This motivates the inclusion of a third sector featuring sectoral linearity.

T h ree  E q u a tio n  S y stem

Consider the augmented matrix for the three equation system (4.2):

(1 ~<*k ) - ° A ~ a Q a Ln

Ad = - V  K (1 ~ V a ) - V q

-U>K ~<*>A (1 -  WQ) ujLn

When |A| /  0 r (A) = r (Ad) = 3, system (4.2) has a unique solution. As per 

the Hawkins-Simon conditions, this solution is positive iff |A| > 0 and <Jk < 1 , 77^4 < 1
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and u>q < 1, where the final condition is implied by the first three conditions.4 These 

conditions are sufficient but not necessary for a positive solution to system (4.2).

Intuitively, |A| > 0 means the three factor accumulation sectors are capable of 

generating more than their individual growth needs, implying the growth rates produced 

by this group of sectors are positive. Diminishing returns to each factor in its accumulation 

sector (ak  < 1, r]A < 1 and u>q < 1) implies each endogenous growth rate is proportional to 

the population growth rate. With diminishing returns, increasing effort from other factors 

employed in the accumulation sector implies positive growth in the accumulating factor. 

Along a balanced growth path, sectoral allocations of factors are constant. Accordingly, 

positive growth in the only exogenous factor, population, provides the increasing effort 

which implies positive growth in each endogenously accumulating factor.

When IAI31 = |A| = 0 and lA^I = 0 «=> r (A) = r(Ad) < 3, system (4.2) has a 

solution, although there exist one or more superfluous equations. Consider the case where 

\A2\ = ( l - a K)( l  - r ]A) -  rjKaA +  0, implying r (A) = r {Ad) = 2 < 3. Consider a 

production technology for the knowledge accumulation sector, Q = H (.), such that ojk = 

u>A — (1 — wq) — ujl — 0. The third equation in system (4.2) is superfluous, reducing 

to qq = Q/Q =  qQm where m is an exogenous positive constant and qQ < 1 or qQ = 1, 

depending on whether Q is rival or non-rival in use, respectively. If Q is rival in use across 

all sectors, as may be the case for human capital, the fraction of human capital allocated

to human capital accumulation, qQ, is constant along a balanced growth path, as required

4\A\ -  (1 - o  /c)(l ~T]A){1 - u q ) -  (1 -  ctk) u a Vq  -  d A [T]K ( l - u j Q ) + u KrjQ] -
du  \r)Ku A + U K  (1 -  qA)}
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for constant gQ. System (4.2) reduces to a system of two equations:

b1b1H

9 k <7Q 4Q m  +  <?Ln

~ V k  (1 - V a ) 9A Vq QQM  +  9 L n

(4.13)

which has the solution

9Y

9A

[^q {  ̂ - 9 a ) T i1q (Ta \ , - r j A) + r )L<JA\
9 c = 9 k = ----------- \m \----------- + ----------------- r a ---------- n
[(1 -  <JK ) tjq + V k ctq] [(1 ~  ^ k )V l + 1 k ^ l \
--------- no--------- (iQm  + --------- mi---------n

(4.14a)

(4.14b)

where the above solution is positive iff \Ä2\ = (1 — &k ) (1 — 9 a ) ~ 9 k (JA > 0 and ctk < 1, 

together implying < 1. With the exception of 77̂  all other variables in the above 

solution are strictly positive by assumption. No further assumptions are required to obtain 

positive growth of output, although we may reasonably assume that r]i > 0 for any but not 

necessarily all i ^  A to ensure positive growth in ideas. This result provides alternative 

conditions sufficient for a positive solution to system (4.2), which we summarize with the 

following proposition:

Proposition 4.3 a k  < 1, I-A2 1 > 0  (and 71a < lj, ^ q = 1 and uji — 0 V? 7  ̂Q is sufficient 

for positive growth of output, capital, consumption and knowledge in a three sector non-scale 

growth equilibrium.

Intuitively, | v4.21 > 0 means the physical capital accumulation and variety R&D 

sectors are capable of generating more than their individual growth needs, implying the 

growth rates produced by this group of sectors are positive. Linear technology in the third 

sector (cvq = 1 and cOi = 0 \/i 7̂  Q) implies all corresponding minors are zero. This means 

the third sector, quality R&D or human capital accumulation, is just capable of satisfying
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its growth needs and grows independent of the rest of the group, when the use of Q in 

accumulating knowledge is non-rival in use, at the rate m > 0.

As per the intuition when \A\ > 0, diminishing returns to physical capital and 

variety of ideas in their respective sectors (er# < 1 and r\A < 1) implies both endogenous 

growth rates are proportional to independent growth in quality ideas (or human capital), 

on the one hand, and population, on the other.

Vq +Vk +Vl

P - V a )
(t a  +  o-q  T  a K  T  (JL >  1Corollary 4.3 (to Proposition 4.3) Iff, further, 

the growth rate of per capita output in this three sector non-scale growth equilibrium will be 

positive.

This additional condition follows immediately from (4.14a) and the assumption

m > n.

By the corollary, a relationship between returns to scale in the production of final 

output and returns to scale in variety R&D is necessary and sufficient for positive per 

capita growth of output. The bracketed term is less than, equal to or greater than one 

depending on whether variety R&D exhibits decreasing, constant or increasing returns to 

scale, respectively. Increasing returns to scale in both variety R&D and the production of 

final output suffice for positive per capita growth, but so to do offsetting returns to scale. 

For instance, constant or decreasing returns to scale in variety R&D simplifies the condition 

to increasing returns to scale in the production of final output: cra + &q + + <Jl >

[.]<ta +  0Q + & K  + ° l >  1 .

Constant returns to scale to factors other than variety of ideas in the production 

of final output (ctq + <tk  + &l = 1) clearly suffices for positive per capita growth of output,
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independent of further conditions in the variety R&D sector. First and second generation 

non-scale growth models, alike, typically impose this restriction, which first featured in 

Römer’s (1990) scale growth model.

The interesting point of the corollary is that a non-scale growth model featuring 

linearity in a third sector generates positive per capita growth with minimal restrictions only 

on the overall returns to scale in the first two sectors. Constant or decreasing returns to scale 

in one sector requires increasing returns to scale in the other, but further restrictions within 

a sector are unnecessary. The implication is that a second generation non-scale growth 

model could move away from the more stringent parameter restrictions of first generation 

non-scale growth models and still predict positive long run growth in the economy.

The above propositions state linear technology in knowledge accumulation (and 

\A\ — 0) implies a positive non-scale growth equilibrium. \A\ > 0 and diminishing marginal 

returns in knowledge accumulation also implies a positive, albeit different, non-scale growth 

equilibrium. Thus, a positive solution to a non-scale growth model implies neither dimin­

ishing marginal returns nor linear technology in knowledge accumulation. We summarize 

the role of non-linear knowledge accumulation in generating a positive non-scale growth 

equilibrium with the following proposition:

Proposition 4.4 \A\ > 0, a x  < 1 and diminishing returns in knowledge accumulation 

(r\A < 1 in a two sector model; ujq < 1 in a three sector model) are sufficient but not 

necessary for positive growth of output, capital, consumption and technology in a non-scale 

growth model.

The positive non-scale growth equilibrium implied by a linear knowledge accumu-
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lation equation has particular appeal because population growth appears as an additively 

separable term (see (4.14)). This lessens the significance of an impending slowdown in 

population growth for long run growth in the economy.

The question remaining is which linear production technology describes knowledge 

accumulation in the third sector. If the knowledge is rival in its use across sectors, knowl­

edge accumulation remains endogenous with a single input linear equation: Q = 

where qQ < 1. If the knowledge is non-rival in its use across sectors (qq = 1), knowledge ac­

cumulation remains endogenous with a multiple input technology where growth asymptotes 

to an exogenous rate.

Moreover, whether knowledge is disembodied or embodied has interesting implica­

tions for the sign of the additively separable population growth term. Existing R&D-based 

models of non-scale growth obtain equilibrium growth rates of the additively separable form 

in (4.14) by allowing for two aspects of R&D, variety of products and quality improvement, 

where quality R&D features linearity. The partial dependence of the long run growth rate 

of the economy (as measured by per capita output) is positive. In R&D-based models of 

non-scale growth featuring embodied knowledge, the long run growth rate of the economy 

is independent of or negatively dependent on population growth, depending on whether 

population is assumed constant or growing at a positive rate, respectively.

We explore the accumulation of embodied knowledge, or human capital, further,

within our general framework.
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4.3  Exam ple: H um an C apital A ccu m u lation

4.3 .1  S ingle Input Linear E quation ( u K — cjA =  ujl  —  0 ;ujq =  1)

Consider an economy comprising three sectors with the following production tech­

nologies:

Y  =  Aa* K ° « \ { \ - q A - q Q)Q Y « U " ' (4.15a)

Ä =  AT]A {qAQ)T]Q (4.15b)

Q = qqQ (4.15c)

where qq and denote the fractions of human capital allocated to the accumulation of 

new human capital and R&D. respectively. All exponents are positive constants. The 

parameters satisfy qq > nji\). Because human capital is embodied, Q = hL , where h 

denotes human capital per capita. For the present we assume homogeneous labor, embodied 

with human capital, and set a i  =  0.

Along a balanced growth path, positive growth rates in output, ideas and aggregate 

human capital are jointly determined by the system:

(1 -  a k ) - & A  - v q 9 k 0

0 (1 - V a ) - V q 9A = 0

i
ooo

_9q 0

(4.16)

where gQ = qQip. Recognizing qQ is constant along a balanced growth path, system (4.16) 

reduces to a system of two equations:

1------------

b1b1H

9 k VQQQip

0 ( L - V a ) 9A 9 q 4Q^

(4.17)
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which is of the form (4.13). Notably, because knowledge is embodied in homogeneous 

labor, the additively separable population growth terms are absent. System (4.17) has the 

solution:

9Y

9A

9C =  9 k
[ ^q (1 ~ 9 a ) +  Vq ^ a ] 

(1 - < t k )(1 ~ 9 a )
QQ'ip

9q

(T

(4.18a)

(4.18b)

where the growth rates are both strictly positive, by Proposition 3, iff a k < 1 and r]A < 1 

and fully endogenous, since qQ is a choice variable, for which we can solve from the first 

order optimality conditions.

The long run growth rate of the economy is

9y =  9Y ~ n
[°q (1 ~ V a ) + V q Va \ 

{ l - a K) ( l - r j A) qQxp -  n (4.19)

where, by Corollary 3, [pq/  (1 — pA)} &A + ctq -f ak > 1 is sufficient for a strictly positive 

rate of growth. For instance, with constant returns to scale in both production of final 

output and R&D, = 1 and = respectively, the long run growth rate of the

economy simplifies to gy = qQifj — n > 0.

Interestingly, the long run growth rate of the economy is decreasing in the growth 

rate of population. Before explaining the intuition, it should be mentioned that this result 

is sensitive to the specification of household preferences. In our general model, the central 

planner maximizes intertemporal utility of consumption per capita for a representative 

household. If the central planner were to use the Benthamite criteria and maximize utility 

of consumption of all members of a household’s dynasty, intertemporal utility would be 

discounted at the rate, (p — n). In the case of Benthamite preferences, the long run growth
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rate of per capita output is independent of population growth.0

The per capita human capital accumulation equation provides the growth rate in 

per capita human capital, g^. Although this equation is not needed to solve for the long 

run growth rate of the economy, its derivation illuminates why the long growth rate of the 

economy is decreasing in population growth.

Total differentiation of Q = hL with respect to time yields

h ipqQh — nh (4.20)

where the first term, t/jqg/i, conceals a congestion effect in per capita human capital for­

mation, Q /L , specifically a larger population reduces the human capital acquired by the 

average person, and the second term, —nh , captures a depreciation effect of population 

growth, associated with bringing the skill level of uneducated newborns up to average level 

of the existing population. Equation (4.20) is the specification adopted in R&D-based non­

scale growth literature (see, for example. Dalgaard & Kreiner (2001) and Strulik (2005)).

Equation (4.20) is reminiscent of the per capita physical capital accumulation

equation of the neoclassical growth model. Lucas (1988) reminds us that

human capital accumulation is a social activity, involving groups of people in a 
way that has no counterpart in the accumulation of physical capital, (p.19)

The depreciation term is absent in Lucas’s (1988) original specification, which may 

be more appropriate considering inherited skill and passive learning within a family. If the 

second term of (4.20) is omitted, the growth rate of human capital, gh, is ggi/; instead of 

qQ'ip — n, although the growth rates of all other variables along a balanced growth path are 

unaltered.
5See Dalgaard & Kreiner (2001) and Strulik (2005) for a detailed discussion of this case.
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The intuition for population growth being neither necessary nor conducive for long 

run economic growth lies in the congestion effect. First, recall that growth in the overall 

economy is R&D driven. Referring to (4.15b), the aggregate stock of human capital (Q) 

takes over the role of population size as the source of increasing effort in R&D. As per the 

intuition accompanying Proposition 3, single input linearity in the endogenous accumulation 

of human capital implies $q, g \ and gy are proportional to a constant term, as per the 

first additively separable term in (4.14). Second, according to the congestion effect, the 

larger the population to be educated (L), ceteris paribus, the lower the quality of the 

average student (h). The congestion effect dissipates any scale effects from the size of 

the population so that growth in the aggregate stock of human capital, gQ, is unaffected 

by population growth. Accordingly, the additively separable population growth term is 

absent from the growth rate of total output in (4.18). Because total output grows at a 

constant rate, independent of population growth, it follows that growth in per capita output 

is decreasing in population growth.

To sum up, single input linearity in the accumulation of knowledge implies pop­

ulation growth is not necessary for long run growth in per capita output. Embodiment 

of knowledge, and the associated congestion effect in per capita human capital production, 

implies population growth is not conducive for long run growth in per capita output.

4 .3 .2  A sy m p to tic  L inearity ( u j q  —> 1)

Two questions arise from the above analysis of human capital accumulation. First, 

single input linearity in the accumulation of embodied knowledge is open to the same 

criticism as Romer’s (1990) equation for the accumulation of disembodied knowledge. Could
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we obtain the result that population growth is nonessential for long run economic growth 

if the accumulation of embodied knowledge uses multiple inputs and features diminishing 

marginal returns to knowledge?0 Second, Dalgaard & Kreiner (2001) and Strulik (2005) 

note that the result that long run economic growth is decreasing in population growth 

is sensitive to the specification of household utility. Is the result sensitive to other key 

assumptions?

Consider an economy comprising three sectors with the following production tech­

nologies:

Y  =  A‘’* \ ( l - a Q)K } " < \( l -q A - qQ)Q}'’* V ’L (4.21a)

A = AVa (gA Q ) n a  (4.21b)

Q = \(4>mQ)P + (4>2<*q K T } 1/1’ (4.21c)

where the constant elasticity of substitution between human capital and physical capital is 

e = l / ( l — p) : e > 0, e /  0 and the parameters satisfy 4>\qQ > 9k  > n > 0. We relax the 

assumption that final production employs homogeneous labor and allow er/, > 0, where L 

denotes physical labor or raw skills that do not have to be taught.

Along a balanced growth path:

(1  -  (7k ) -< J a  - V Q 9 k crLn

o (1 - V a ) - V q 9A = 0

— (1 —  cj) 0  (1 —  o j) 9 Q 0

(4.22)

6In Dalgaard &; Kreiner (2001), both ideas and human capital are produced using units of final output 
which, in turn, comprises inputs, ideas and human capital, and features diminishing returns to human 
capital. By implication, human capital accumulation also features diminishing returns, but at the cost of 
restricting final production, R&iD and human capital accumualtion to an identical production technology.
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where, referring to the appendix, to =  [{qQ<j)i) /  9 q ]P ■ When e > 1, qq —* qQ^i and to —> 1. 

Thus, except for the asymptotic limit, human capital accumulation features diminishing 

marginal returns to the existing stock of human capital (to <  1 ) .

The long run growth rate of the economy asymptotes to

9y
v a V q + aQ

_ ( l - a K ) ( l - r / A) ( l - ( j K).
a L  -  ( 1  -  a K )

qQ*'+ a-,*) (4.23)

where, by Corollary 3, \j ]q /  (1 — r)A)] G A +  &Q + &K +  > 1 is sufficient for a strictly

positive rate of growth.

Thus, when human capital is highly substitutable for physical capital in the ac­

cumulation of human capital, long run economic growth asymptotes to a rate that does 

not essentially depend on population growth. Intuitively, population growth is essential to 

growth in physical capital. More brawn generates more final output, and thus more phys­

ical capital, the residual after consumption needs are met. If human capital is substituted 

for physical capital in human capital accumulation to the point where physical capital’s 

share tends to zero, then the growth rate of human capital tends to a constant rate that 

is independent of growth in physical capital, and hence population growth. Growth in 

aggregate output remains partially dependent on population growth, because raw labor is 

employed in the manufacture of final output.

However, whether population growth is conducive, irrelevant or detrimental to the 

asymptotic long run growth rate of the economy depends on returns to scale to L and K  

in the production of final output are increasing, constant or decreasing, respectively.

C ase 1 (ctl +  &k ) > 1 dgy/dn  > 0
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Case 2 (cr  ̂+ ax) = 1 <=> dgy/dn  = 0 

Case 3 (<j l  + <j k ) < 1 «=> dgy/dn < 0

Thus, the result of R&D-based growth models with endogenous human capital 

accumulation that long run economic growth is decreasing in population growth is not 

robust. In the above model of heterogeneous labor, long run economic growth is decreasing 

in population growth only if returns to scale to physical capital and raw labor in final 

production are decreasing.

4 .4  N on -L in earity  and N on -Scale  G row th

Our general three-sector production structure, (4.1a) - (4.Id), comprises the pro­

duction sectors of several wrell-known models of non-scale, as well as scale, growth. Among 

these are the models of Jones (1995a), Young (1998) and Römer (1990). Whereas Jones 

(1995a) predicts non-scale growth with diminishing returns in R&D, Young (1998) predicts 

non-scale growth with linearity in R&D. Our example predicts non-scale growth with both 

diminishing returns and asymptotic linearity in R&D. Römer (1990) and other models that 

predict scale growth (notably, Aghion & Howitt (1992) and Grossman & Helpman (1991)) 

assume linearity or constant returns in R&D. To prove the logical independence of the no­

tions of non-linearity and non-scale growth, we require an example of a model that features 

non-linearity (diminishing marginal returns to ideas) in R&D and predicts scale growth.

If n = 0, system (4.2) is a homogeneous linear system of equations (in matrix form 

Ax =  0). It is a well known result of linear algebra that such a system has a positive

solution only if |A| = 0. However, whereas a positive solution in our non-homogeneous
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system implies a row of zeroes, linearly dependent columns suffice for a positive solution 

to our homogeneous system. The implication is that it is not necessary to assume linear 

production technology in R&D to solve for a positive scale growth equilibrium. Let Vi 

denote the ith column vector of the coefficient matrix A. If Vl = av<1 _(_ 7̂  a < 0; 6 < 0 > 

we can solve for a positive scale growth equilibrium. Constant returns to scale to growing 

factors (a = 6 = —1) is an obvious case.

As this is an example to show the logical possibility of scale growth with non-linear 

R&D, we abstract from the central planner’s choice of consumption and factor allocations 

between sectors'. Let

Y = [( 1 -  aA) K]l~a [(1 — la ) L\a , 0 < er < 1 (4.24a)

Ä =  B [qaK]1̂  A* [IaL^  , B >  0,0 < 77 < 1 (4.24b)

K  = sY 0 < s < 1 (4.24c)

where a,4,  Ẑ , s and B are exogenous, positive constants. Note that in the special case of 

a =  77, we may drop aA and lA, so that B measures the share of total output invested in 

R&D. Variety R&D features diminishing marginal returns to the existing stock of ideas 

since rj < 1. The requirement of constant growth rates implies the following system of 

three linear equations:

<j —a

- ( I - 7 7 )  ( I - 7 7 )

where v\ =  — V2 => \A\ = 0. Referring to the appendix, the long run equilibrium growth

7Both abstractions are innocuous since sectoral allocations of factors are constant in a balanced growth 
equilibrium and an endogenous savings rate is constant by the Euler condition, go =   ̂ [(1 — a) ^  — p \ .

9K  

9 A

(4.25)
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rate of the economy is

9y=9A = (ßK' - nßA°L,’)X (4-26)

where ß K — s (1 — (1 -  Ia T , Pa = & (<A4 )1_7? (Ia )V and A = 1/ (er +  1 — 77) : 0 <

A < 1.

The long run growth rate of the economy is unambiguously increasing in the scale 

of the economy, as measured by population level:

ß  9 y    ® 9y

dL (a + 1 — r/) L > 0 (4.27)

Not surprisingly, the magnitude of the scale effect is increasing in a and 77, labor’s share of 

final production and R&D, respectively. Interestingly, an increase in labor’s share of R&D 

magnifies the scale effect proportionately more.

The R&D sector features non-linearity or diminishing returns and the long run 

growth rate of the economy exhibits scale effects. This proves

Proposition 4.5 The notions of non-linear knowledge accumulation and non-scale growth 

are logically independent

4.5 D iscu ssion

4.5.1 Empirical Studies

By Proposition 5, a model of non-scale growth need not feature diminishing returns 

to knowledge in the accumulation of knowledge. And, vice versa, a model featuring a non­

linear knowledge accumulation equation need not predict non-scale growth. In light of
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this logical independence, it is worth considering which has more empirical support: "the 

means" of (non-)linear knowledge accumulation or "the end" of (non-)scale growth?

Dim inishing Marginal Returns to Knowledge in Knowledge Accumulation

Diminishing marginal returns to knowledge captures the hypothesis that the higher 

the stock of knowledge, the more difficult it becomes to create new knowledge. As such, the 

creation of new knowledge increases at a decreasing rate. This is intuitive when knowledge 

is embodied, but less obvious when knowledge is disembodied.

Disem bodied Knowledge Regarding disembodied knowledge, r/A < 0 and r/A > 0 cor­

respond to the case of negative and positive external returns in R&D, respectively. With 

negative returns, the discovery of new ideas decreases with the level of knowledge because 

the most obvious ideas are discovered first or. in Jones’s (2004) terminology, "fished out". 

In the case of positive returns, the creation of new ideas is increasing in the level of knowl­

edge because researchers "stand on the shoulders of giants". Whereas we may intuit that 

researchers face diminishing marginal returns to their effort (r/L < 1), there is nothing innate 

in the R&D process to indicate whether positive returns to ideas in R&D are diminishing, 

constant or increasing, rjA < 1, rjA = 1 and j]A > 1, respectively. Having said this, some 

cases may be less intuitive than others. For instance, r]A — 1 requires the number of new

ideas to exactly double when the stock of existing ideas doubles. Jones (2004) argues

The case of 0 = 1  appears to have little in way of intuition or evidence to 
recommend it. (p.63)

Empirical estimates of r\A (termed 0 by Jones (1995a)) for the United States (US) 

and other OECD countries support diminishing marginal returns to the existing stock of
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knowledge in R&D (r/A < 1).

Jones (2002) constructs a multifactor productivity index, as a measure of A , for 

the US economy, 1950 - 1993. Using this index, he obtains an upper bound non-linear 

least squares estimate of 0.3 for 7 = gL/  (1 — gA), from which an upper bound estimate 

of 0.16 for r]A can be inferred for a plausible value of 0.25 for r]L,8 Separately identified 

estimates of r]A and gL reflect Jones’s (2002) specification of the R&D equation which 

assumes r]K = 0. Notwithstanding this caveat, the upper bound estimate is consistent with 

estimates obtained in independent empirical studies.

Also using time series data, 1962 - 1996, Gong, Greiner & Semmler (2004) obtain 

a non-linear least squares estimate of rjA of 0.1 and 0.08 for U.S. and Germany, respectively. 

Using the perpetual inventory method, they compute the stock of knowledge, A , and the 

stock of embodied knowledge allocated to R&D, Ia H, from total expenditure for R&D 

and cumulated salaries in R&D, respectively. Whereas Jones (2002) employs calibration 

techniques, Gong et al. (2004) directly estimate the implied parameters of R&D-based 

growth models. Their estimate of r]A does reflect a Jones (2002) specification of R&D. To 

allow for other economic variables, such as physical capital, in R&D, Gong et al. (2004) 

also regress ga on (Ia H)riL and a coefficient with an exogenous time trend. The estimated 

coefficient depends negatively on time, from which they infer evidence that other economic 

variables, such as, physical capital are relevant for the accumulation of knowledge.

Embodied Knowledge The notion of diminishing marginal returns to embodied knowl­

edge, or human capital, in the accumulation of embodied knowledge has intuitive appeal.

8 7 < 1/3 => riA < 1 — Note that r)L > 1/3 =>■ rjA < 0, suggesting negative returns (or negative
spillovers) in R&D.
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To cite Jones’s (2001) rhetorical question (p.12)

If a 7th grader and a high school graduate each go to school for 8 hours per day, 
does the high school graduate learn twice as much?

According to the Mincerian wage regression evidence, each year of schooling ap­

pears to raise a worker’s wage by a constant percentage. However, this is not evidence of a 

linear human capital accumulation equation, that is, u>q = 1 where Q denotes rivalrous hu­

man capital, since Bils & Klenow (2000) shows that a human capital accumulation equation 

featuring diminishing marginal returns to human capital (u)q < 1) captures this evidence.

Empirically, if diminishing marginal returns are present, then, ceteris paribus, we 

can expect to observe that the growth rate of knowledge capital declines as the stock of 

knowledge as a level variables rises.”

Using a Mincerian equation10, we compute the stock of human capital per person, 

/i, from average years of schooling of the population aged 15-64 who is not studying. Years 

of schooling is itself a common proxy for human capital. However, as Cohen & Soto (2001) 

point out, according to the years of schooling proxy, countries with low initial levels of 

human capital show the fastest rates of growth in human capital.* 11

Figure 4.3 plots the growth rate of human capital against the level of human capital 

for G7 countries, 1960 - 2000. With the exception of Italy, the growth rate of human capital 

declines as the stock of human capital as a level variable rises. We discern two patterns. In

the top panel, the growth rate of human capital declines unabated, whereas in the bottom

9 A s in Figure 3.1 in C hap ter 3. See also D algaard & K reiner (2003) and Gong et al. (2004).
10Specifically, we m easure hum an capital a t tim e t as hi — e0 07st, a special case of the  Bils & Klenow 

(2000) form ulation suggested by Jones (2002). s is average years of schooling of the  population  aged 15-64 
who is not studying, as provided by Cohen & Soto (2001).

11 We confirm th is  result. Proxying hum an capital by years of schooling, F rance’s 1960-1970 grow th ra te  
in hum an cap ital (1.75%) exceeds G erm any’s (1.57%), which, in tu rn , approxim ately equals I ta ly ’s (1.53%). 
Overall, the grow th ra tes in hum an capital are typically above 1%, higher th an  those depicted in Figure 4.3.
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panel, the growth rate of human capital asymptotes to a constant.

To infer from these two patterns evidence of diminishing marginal returns and 

asymptotic linearity, respectively, we would need to control for both the fraction of human 

capital allocated to and other factors employed in human capital accumulation.

Regardless, the patterns in growth rates of human capital depicted in Figure 4.3 

are more reliable than those suggested by Barro & Lee (1993), the data set most widely 

used in econometric studies. For the period, 1960 - 1990, Serrano (2003) show the growth 

rate of schooling in the OECD is more accurately measured by de la Fuente & Donenech 

(2000). The source for Figure 4.3, Cohen & Soto (2001) retains the accuracy of de la Fuente 

& Donenech (2000), whilst providing a longer series, 1960 - 2000.

Thus, other things equal, Figure 4.3 is suggestive of diminishing marginal returns 

to human capital and, possibly, asymptotic linearity, in human capital accumulation.

Scale Effects

In the empirical literature, the jury is out on whether the scale of the economy, 

typically captured by population size, affects the long-run growth rate. With the advent 

of first generation non-scale growth models, came an empirical verdict against strong scale 

effects in growth12.

To cite Jones (1995a),

The evidence [against strong scale effects in growth] is compelling ... One might 
worry about the relevant unit of observation (the world vs. a single country)

12Typically, the theoretical literature distinguishes models of scale or non-scale growth, or growth with or 
without scale effects. The convention in the empirical literature is to refer to evidence of either strong or 
weak scale effects in growth, meaning the growth rate of the economy is increasing in the size or growth rate 
of the population, respectively. Thus, strong scale effects in growth is equivalent to scale growth and weak 
scale effects in growth is equivalent to non-scale growth.
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or the lags associated with R&D, but it should be clear ... that these concerns 
cannot overturn the rejection of scale effects.

The debate seemed settled until a recent resurgence of evidence supporting strong 

scale effects in growth (Todo & Miyamoto 2002).

Typically, empirical studies find for or against scale growth depending on whether 

data is cross-country or time series and whether evidence is historical or modern.

Cross Sectional The ideal cross-sectional evidence would observe two regions at a point 

in time, one with a larger population, that are otherwise identical. The two regions would 

not interact via flows of ideas, goods, capital or labor. The only source of ideas in a region 

would be it’s own population. If scale affects growth, then, in the long run, we would 

expect the region with the larger population to grow more. Of course, regions do interact 

and things other than population are not equal across regions. Thus, econometric evidence 

attempts to control for cross-country interaction and differences.

To the extent that, a country open to trade is also open to ideas, Backus, Kehoe 

& Kehoe (1992), Barrro & Sala-i-Mart,in (1999) and Alcala & Ciccone (2002) find evidence 

that growth rate in per capita output is affected by the growth rate of the population. 

Alcala & Ciccone (2002) control for institutions, as well as trade. Whilst in these studies 

the estimated elasticity of per capita output with respect to population is positive, it is small 

(0.02 and 0.2 in Barrro & Sala-i-Martin (1999) and Alcala & Ciccone (2002), respectively) 

and, more importantly, statistically insignificant at the usual critical levels. Also, the 

estimated coefficient on population growth is not an estimate of the structural parameter 

in (4.8). A theory of cross-country technology adoption (as suggested by Papageorgiou
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(2003)) is needed to make sense of the estimates. Thus, cross-country evidence favors 

models of non-scale growth, but the evidence is not robust.

An alternative way to control for international knowledge diffusion is to focus on 

large regions, such that, ideas flow within but not across regions. With modern transporta­

tion, telecommunications and, more recently, information technology, ideas may flow to all 

places, almost instantaneously. No two regions are isolated. Thus, Kremer (1993) looks 

to historical data for evidence of strong scale effects in growth.

From the end of the ice age in 10,000 B.C. until the advent of larger sailing ships 

in 1500, five regions were mutually isolated from each other. Ranked by population size in 

10,000 B.C., in descending order, the five regions comprise the Eurasian/African continents, 

the Americas, Australia, Tasmania and Flinders Island. Kremer (1993) observes a region’s 

technological rank 12,000 years later exactly matches it’s initial population rank. The 

larger the initial population size, the higher the long run growth rate of the economy, as 

predicted by models of scale growth.

Kremer’s (1993) cross-sectional evidence of strong scale effects in growth is the 

most convincing. However, to the extent that each region’s initial population size and 

population growth rate over the period is positively correlated, it is not clear whether this 

evidence supports scale or non-scale models of R&D-based growth. Moreover, we have no 

reason to believe that the same processes continue to govern the creation of ideas in the 

modern era.

Time Series Also using historical data and retaining region as the unit of observation, 

Todo &; Miyamoto (2002) find time series evidence of strong scale effects in growth. Sourcing
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historical series (1 A.D. to 1998 A.D.) of per capita output and population from Maddison 

(2001), they focus on a single region, comprising the current seventeen most advanced 

countries14.

Before 1870, data for the region’s full sample are available for 1 A.D., 1000, 1500, 

1700, 1820 and 1850. Todo &; Miyamoto (2002) divide yearly data, available from 1870, into 

periods of thirty and twenty years. The rationale is that such period lengths are sufficient 

for most regional knowledge developed in the period to be dissipated to all countries by 

the end of that period. The consequence is that the number of observations for regression 

analysis is reduced to twelve and the time series are smoothed via ad hoc period selection, 

rather than a five or ten year moving average.

For the reduced sample size, Todo & Miyamoto (2002) regress growth in per capita 

output on initial population and growth in population.14 The estimated coefficient on 

initial population is positive and statistically significant, whereas the estimated coefficient 

on population growth is insignificant. They also regress population growth on population 

size and, since the R-squared from this regression is less than the R-squared from the main 

regression, they reject multicollinearity.

Prior evidence suggests population growth and initial population size are highly 

correlated for much of the period studied by Todo & Miyamoto (2002) (see Figure 1 of 

Kremer (1993)). Although the estimated coefficients on initial population and population

growth remain unbiased in the presence of multicollinearity, interpretation of each coefficient

13A ustralia , A ustria , Belgium, C anada, D enm ark, F inland, France, Germ any, Italy, Jap an , N etherlands, 
New Zealand, Norway, Sweden, Sw itzerland, U nited K ingdom , U nited  S tates. Jap an  is excluded until 1870. 
A ustralia , C anada, New Zealand and U nited S ta tes are excluded until 1820.

14A fter diagnostic tests , Todo & M iyamoto (2002) correct for heteroskedasticity  generated  by period 
lengths, au tocorrela tion  and non-stationarity .
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becomes difficult. Todo & Miyamoto’s (2002) estimated coefficient of initial population 

implies growth in per capita output (%) is approximately four times initial population size 

(billion), other things being equal. Clearly, other things are not equal if population growth 

increases whenever initial population increases.

There are other tests for multicollinearity. For instance, if dropping population 

growth from the regression equation lowers the standard error of population size, multi­

collinearity will usually be the source of the problem.10

However, a plot of population size, growth in population and growth in per capita 

output, 1 A.D. to 2003, for the same group of seventeen advanced countries, without Todo 

& Miyamoto’s (2002) post 1870 adhoc period aggregation, illuminates the episode of mul­

ticollinearity. Referring to Figures 4.1 and 4.2, we divide the series according to the 

availability of yearly observations in Maddison’s (2001) data.

Figure 4.1(a) reveals near perfect collinearity between population size and pop­

ulation growth, 1 A.D. to 1870. This subset of the series comprises seven of the twelve 

observations used by Todo & Miyamoto (2002)16. For this subset, the estimated coefficient 

on initial population would approximate Todo & Miyamoto’s (2002), but would be unin­

terpretable as evidence of strong scale effects, because of almost perfect collinearity. To 

illustrate, 1850 - 1870, the average annual growth rate in per capita output is 0.78 (%), 

approximately four times the initial 1850 population, 0.17 (billion) and also approximately 

four times the average annual growth rate in population, 0.177 (%). As in Kremer (1993),

is a positive estimate of the coefficient on population size for 1 A.D. to 1870 evidence of a

15For fu rther explanation  and o ther tests for m ulticollinearity, see Farrer & G lauber (1967).
16Thus, their finding for strong scale effects in growth reflects prim arily  Figure 4.1 and  a selection of only 

five observations from Figure 4.2.
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model of scale or non-scale growth?

After 1870, initial population size and population growth are no longer positively 

correlated, as shown in Figure 4.2(a). Thus, most econometric studies of scale effects in 

growth use a modern data series, such as provided in Figure 4.2.

Using modern data, Jones (19956) provides the simplest and most compelling 

evidence against strong scale effects in growth. For the US economy, 1880 - 1997, he 

observes that a simple linear trend fits per capita output (in logs) extremely well. The 

implication is that either nothing has had a large, persistent effect on the growth rate or 

whatever persistent effects have occurred have been offsetting. According to R&D-based 

models of scale growth, the exponential trend in the level of the labor force should lead to 

an exponential trend in per capita output growth. It is difficult to think of any variable(s) 

that could offset the exponential scale effect.

More rigorous analysis, specifically, a time trend test, an augmented Dickey-Fuller 

test and a difference of means test omitting the Great Depression confirms his casual ob­

servation that US growth fluctuates around a constant mean and exhibits no time trend1' . 

For the period 1900 - 1987, he also observes fluctuation in growth about a constant mean in 

fourteen other OECD countries, although a few countries exhibit a positive mean shift and 

a post-World War II downward trend. For the period 1871 - 1988, and the same countries, 

Papageorgiou (2003) confirms Jones’s (19956) results, although he reports positive (albeit 

small), statistically significant coefficients on the time trend test for most countries, 1871 - 

194918. Figure 4.2(b) depicts the positive mean shift in growth of per capita output for an

17More correctly, the coefficient estimate from the time trend test is statistically insignificant at the normal 
confidence levels.

18For 1900 - 1987, Jones (19956) reports coefficient estimates from the trend test that are statistically
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aggregate sample of seventeen OECD countries.

Jones (19956) attributes the positive mean shift and downward trend to the deci­

mation of physical capital in World War II. This explanation draws attention to fact that 

much of what is observed from modern data series is actually transitional dynamics, calling 

into question inferences from modern data about the long-run growth rate of the economy. 

In the words of Temple (2003),

Empirically, the question of whether or not long-run growth depends on scale is 
probably unanswerable ... We do not observe the long-run growth rate; even if 
we could, we cannot test long-run predictions against the data, unless we make 
some truly heroic assumptions about relevant unobservable variables; and the 
long run equilibrium may be so distant in the future that we have neither the 
ability to resolve the debate, nor any practical need to do so.

Recognition of transitional dynamics in modern data does not overturn Jones’s 

(19956) finding against strong scale effects in growth, since in transition, a model of scale 

growth predicts growth in per capita output outstrips population size. Also, what unob­

servable variable would offset, the three-fold increase in the scale of the economy, depicted 

in Figure 4.2(a), to generate the relatively stable growth in per capita output for more than 

a century, depicted in Figure 4.2(b)?

For the purposes of empirical testing, the hypothesis of scale effects could be 

reformulated in terms of level effects. This would avoid the need to "measure" long-run 

equilibrium growth. Moreover, whether, other things equal, the level of per capita output 

is dependent or independent of the level of population level is an empirical test of first 

generation versus second generation non-scale growth models.

insignificant at the normal confidence levels for all countries.
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Summary

Both intuition and, in the case of disembodied knowledge, econometric evidence 

support diminishing marginal returns to the existing stock of knowledge in the creation of 

new knowledge.

Historical evidence reveals long run growth in per capita output is positively cor­

related with the scale of an economy, as measured by initial population size. However, 

to the extent that initial population size and long run growth in population are positively 

correlated in historical series, it is not clear whether this evidence supports an R&D-based 

models of scale or non-scale growth. Notwithstanding that much of what is observed is 

transitional dynamics, modern evidence rejects strong scale effects in growth.

The question remaining is whether modern evidence supports first or second gen­

eration models of non-scale growth. That is, other things equal, is the long run level of per 

capita output dependent or independent of the level of population, weak or no scale effects, 

respectively?

Overall, there is more support for the means (diminishing marginal returns to 

knowledge in the accumulation) than the end (strong scale effects, weak scale effects or no 

scale effects).

4 .5 .2  Im p lications

The results obtained in this paper, in particular, the clear distinction between 

non-linearity in the accumulation of knowledge and non-scale growth, have interesting im­

plications for both assessing existing models and constructing new models of R&D-based
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growth. We draw on this distinction to dispel some common misconception:

M isconception 1 The linearity critique is the mam argument in favor of models of non­

scale growth

The conventional wisdom is that linearity is an essential feature of a model pre­

dicting scale growth. Accordingly, the case for models predicting non-scale growth is 

built on intuition or evidence of non-linearity (diminishing marginal returns to the stock of 

knowledge) in R&D.

The example given in the proof to Proposition 5 dispels the critique that if di­

minishing returns is introduced to the stock of ideas, a scale growth model cannot generate 

long run growth. Moreover, by Propositions 2 and 3, a model predicting non-scale growth 

may feature a linear R&D equation. Thus, the linearity critique is an argument neither for 

nor against scale or non-scale growth.

A more robust argument for models of non-scale growth is empirical evidence 

against scale effects in the long run growth rate of the economy.

M isconception 2 (Non-) linearity in knowledge accumulation is the source of policy (in)variance 

in the long run growth rate of the economy

To cite Jones (2004),

if < 1 (r)A < 1 in our model), then the long run growth rate depends on 
elasticities of production functions and on the rate of population growth. To 
the extent that these parameters are unaffected by policy, policy changes such 
as a subsidy to R&D or a tax on capital will have no affect on the long run 
growth rate, (p.45)

This link between diminishing returns in R&D and policy variance, whilst true for

his model, does not generalize.



CHAPTER 4. CONDITIONS FOR NON-SCALE GROWTH 150

Jones (2004) discusses how second generation non-scale growth models, specifically, 

Young (1998), Dinopolous & Thompson (1998) and Peretto (1998)), restore policy variance 

in the long run growth rate by imposing a knife edge restriction in R&D. It is interesting 

that whereas the first generation non-scale growth models assume diminishing marginal 

returns in R&D and predict policy invariant long run growth, the early scale growth models 

and second generation non-scale growth models assume linearity in R&D and predict policy 

variant long run growth.

However, two results in this paper run contrary to this association between (non­

linear R&D and policy (in)variance. First, production structure (4.24) features rjA < 1 and 

predicts a long run growth of the economy that depends on the fraction of labor and capital 

allocated to R&D, and is therefore, policy variant. Second, in the example accompanying 

Proposition 1, despite assuming tja =  1, the long run growth rate of the economy implied 

by (4.10) is policy invariant.

These two results highlight that the primary source of policy variance is the de­

pendence of the long run growth rate on the fraction of inputs allocated to R&D (l a and/or 

Isa)- Not surprisingly, regardless of whether r]A = 1 or r]A < 1, a scale growth model will 

predict policy variance because the long run growth rate of the economy is, by definition of 

scale growth, proportional to the total number of researchers (IaL).

M isconception 3 If an R&D-based growth model assumes strictly positive population growth 

it is because linearity must feature somewhere and population growth is the least ob­

jectionable place to locate a linear differential equation
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For a homogeneous system, Christiaans (2004) shows that a steady state with 

positive growth rates does not exist unless the matrix of structural elasticities is singular. 

From this, he discusses how existing models assume a differential equation is linear in its 

stock variable and, consistent with Jones (2001), argues that with the exception of the 

population equation, the linearity assumption is ad hoc.

However, as the example proving Proposition 5 illustrates, singularity of the matrix 

of structural elasticities in a homogenous system does not imply a differential equation is 

linear in its stock variable.

Population growth may be the least objectionable place to locate a linear differ­

ential equation, but a model of R&D-based growth can be solved for a steady state with 

positive growth rates without featuring a linear differential equation anywhere.

4.6  C onclusion

Recent non-scale models of R&D-based growth introduce a second dimension of 

knowledge accumulation and predict that long run economic growth, as measured by growth 

in per capita output, does not essentially depend on population growth. If knowledge is 

embodied, strictly positive population growth diminishes long run economic growth.

The general three sector model of non-scale growth presented in this paper encom­

passes both seminal models and second generation models, where the second dimension of 

knowledge may be embodied or disembodied. We find that, in general, diminishing returns 

to the existing stock of knowledge in the creation of new knowledge is sufficient but not 

necessary for strictly positive non-scale growth.
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Linearity, or constant returns to the existing stock of knowledge, in the creation 

of new knowledge is sufficient for positive non-scale growth. In this case, the long run 

growth rate of the economy does not essentially depend on population growth. Intuitively, 

linearity implies the stock of knowledge grows at a constant positive rate with no increasing 

effort from other inputs. New knowledge drives growth in the overall economy. Thus, the 

long run growth rate of the economy is a function of an additively separable term that does 

not depend on exogenous growth in the population.

A congestion effect in per capita knowledge production, associated with the embod­

iment of knowledge, further implies long run economic growth is decreasing in population 

growth. However, we find this result is not robust. In the case of heterogeneous labor, 

population growth has an ambiguous effect on the long run growth rate of the economy.

In addition to establishing general conditions for positive, non-scale growth, we 

show that the notions of non-linear knowledge accumulation and non-scale growth are log­

ically independent.

Our findings have several implications. Primarily, the well-known linearity critique 

is an argument neither for nor against models of scale or non-scale growth.

Discussion of second generation non-scale growth models focuses on the empirical 

and policy relevance of the predicted long run growth rate of the economy. The findings of 

this paper remind us to give due consideration to whether conditions for non-scale growth 

without population growth are met in practice. Both intuition and, in the case of disembod­

ied knowledge, econometric evidence support diminishing marginal returns to the existing 

stock of knowledge in the creation of new knowledge. The case of asymptotic linearity may
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be a more empirically consistent means of achieving an end where long run economic growth 

tends to a rate where strictly population growth is non-essential, and possibly irrelevant.

Second generation non-scale growth models follow convention by imposing lin­

earity in knowledge accumulation to obtain the policy relevance result of seminal scale 

growth models. However, convention may belie the conditions that generate such results. 

For instance, our general framework reveals that a scale growth model will predict policy 

variance regardless of linearity or diminishing marginal returns to existing ideas in R&D, 

and linearity, without rivalry in knowledge, implies policy invariance in a non-scale growth 

model.

Our general solution for non-scale, long run economic growth illuminates condi­

tions for strictly positive growth but is subject to some caveats, which also guide further 

research.

The general conditions provided in this paper are for strictly positive growth in 

a balanced growth equilibrium, which is characterized by constant growth rates in real 

variables. For their two sector non-scale growth model, Eicher &; Turnovsky (1999) also 

provide general conditions for balanced growth. We note that constancy of exogenous 

parameters, specifically, structural elasticities and population growth, is sufficient but not 

necessary for constant growth rates in real variables. Constant population growth is a 

standard assumption in models of non-scale growth. Structural elasticities are constant if 

Cobb-Douglas technology describes the economy. If structural elasticities are not constant, 

as in the case of CES technology, restrictions on returns to scale imply constant growth

rates. We could extend our analysis to include general conditions for balanced growth.
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Such an extension is interesting to the extent that the conditions on returns to scale in our 

three sector non-scale growth model differ from those in the two sector model.

As required for a balanced growth equilibrium, the sectoral allocations of factors 

are assumed strictly positive and constant. This assumption, which also features in Eicher 

&; Turnovsky (1999), serves the purposes of this paper. Moreover, sectoral allocations of 

labor and physical capital do not affect long run economic growth in non-scale models and 

the sectoral allocation of knowledge affects long run economic growth only if knowledge is 

rivalrous in use across sectors. Nonetheless, we recognize that factor allocations are endoge­

nous. A general solution for sectoral allocations would enrich not only the equilibrium but 

also discussion of its policy and empirical implications. For instance, a general expression 

for the allocation of labor to R&D may offer insight into the empirical anomaly of rising 

research intensity and relatively stable growth in per capita output for more than a century.
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Figure 4.1: Population and Economic Growth in Advanced Countries: 1AD - 1870
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(b) Annual growth rate in GDP per capita (5 year moving average)

Figure 4.2: Population and Economic Growth in Advanced Countries: 1870 - 2003
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Figure 4.3: Human Capital per person: Growth versus Initial Stock in G7 countries
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Chapter 5

Lab E quipm ent M odels o f  

R esearch and C reative Ignorance

5.1 Introduction

This paper explores the possibility that growth in ideas may outstrip growth in 

human capital in the long run, the reason why individuals may become relatively ignorant 

over time and how resources may be reallocated to research and development (R&D) so as 

to have an unambiguously positive effect on the long run growth rate of the economy.

The endogenous growth literature chiefly originates from Römer (1990) and Lucas 

(1988), who model long run economic growth as driven by innovation and investment in 

human capital, respectively. In neither model does long run growth in the economy require 

growth in an exogenous factor, typically, population growth. An impending worldwide

slowdown in population growth has led a resurgence of interest in the literature. Re-
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cent models of endogenous growth consolidate R&D and investment-based growth (see, for 

instance, Funke & Strulik (2000), Dalgaard & , Kreiner (2001) and Strulik (2005).

When we consider Thomas Edison’s use of three thousand light globes or Bill 

Gates’ employment of a team of programmers and personal computers, it is clear that, in 

addition to human capital and the existing stock of ideas, innovators may work with factors 

such as physical capital. Similarly, the acquisition of skill may require an individual to use 

ideas, encapsulated in the application of skill and, possibly, physical capital.

Interestingly, few endogenous growth models assume that R&D and human capital 

formation employ the same inputs as final production. This can be attributed to their 

origins. Lucas (1988), for instance, assumes human capital accumulates only from the 

existing stock of human capital. A notable exception is Dalgaard &; Kreiner (2001), who 

apply the lab equipment framework of Rivera-Batiz & Römer (1991).

The literal definition of lab equipment is machinery and equipment housed in a 

room or building for research. In their seminal lab equipment model of R&D, Rivera- 

Batiz &: Römer (1991) assume researchers employ physical capital. However, Dalgaard & 

Kreiner (2001) describe their model of R&D as applying the lab equipment framework even 

though no physical capital is used. The commonality of the two models is that R&D uses 

the same inputs, in the same proportion, as final production. The assumption that R&D 

uses physical capital and/or other inputs of final production, in the same proportion, as 

the manufacturing sector potentially contradicts the notion of inputs equipped to meet the 

specific requirements of R&D. Accordingly, we define a lab equipment model of research to 

be one in which all sectors employ the same factors, although not necessarily in the same
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proportion.

In existing lab equipment models of R&D, new ideas and human capital are created 

using units of final output. This feature has interesting empirical and policy implications. 

First, since the production of final output features diminishing marginal returns to the stock 

of ideas, R&D does not attract the well known linearity critique of other endogenous growth 

models. Recent empirical estimates support diminishing marginal returns to the stock of 

ideas in R&D (Gong et al. 2004). Second, the long run growth rate of the economy is 

increasing in the shares of output spent on R&D and education, suggesting implications for 

government policy.

The existing lab equipment approach suffer two key limitations. First, new knowl­

edge is created using the exact same technology as the production of final output. We may 

reasonably expect the share of skill in the creation of knowledge to exceed the share of skill 

in final production. Empirical estimates confirm a priori expectations. Gong et al. (2004) 

estimate the structural elasticity of human capital in R&D is 0.48 for the United States1, 

higher than the estimates of human capital’s share of final production provided by Temple 

(1999), de la Fuente & Donenech (2000) and Hojo (2003). Second, the creation of ideas and 

skill feature constant returns to scale. The knife edge restriction of linearity prevails.

This paper has two main objectives. First, to understand why existing lab equip­

ment models of research assume identical production and knowledge accumulation technolo­

gies and investigate the implications of this assumption. Second, to establish why constant

returns to scale in the creation of knowledge is necessary in the two sector lab equipment

'N oteab ly , Gong et al. (2004) control for the  possibility th a t factors o ther th an  the  existing stock of ideas 
and  researchers affect R&D. T heir estim ate is therefore relevant to  the  lab equipm ent model of research 
where physical cap ital is a R&D input.
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framework and explore the implications of relaxing the restriction of linearity in a three 

sector framework.

Mulligan & Sala-i-Martin (1993) make an important contribution to our under­

standing of the conditions for endogenous growth when knowledge accumulation features 

the same inputs as final production. They confine their analysis to human capital. Be­

cause human capital is embodied in individuals, their production functions are expressed 

in per capita terms. Recognizing the inherent public good characteristics of disembodied 

knowledge, we endeavour to establish the knife edge conditions for endogenous growth when 

both innovation and human capital formation feature the same inputs as final production.

This paper presents a generalized model of endogenous growth with three accu­

mulating stocks, physical capital, ideas and human capital. Following Römer (1996), we 

make two major simplifications. First, we assume all sectors are generalized Cobb-Douglas 

production functions. The production functions remain generalized in that, apart from 

constancy, we impose no further restrictions on the structural elasticities. Second, the 

fraction of output saved and the fractions of inputs allocated to each sector are exogenous 

and constant. These assumptions do not affect the main implications of our general model.

We seek to make a general contribution to the endogenous growth literature by 

establishing knife edge conditions for endogenous growth. We also extend the lab equipment 

branch of the literature with a specific application that generates an interesting result, which

we term creative ignorance.
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5.2 G eneral C obb-D ouglas M odel o f  Lab E quipm ent R esearch

Let Y  denote the output of the final good, K  the stock of physical capital and 

L the population (labor force), which is exogenous. A denotes the stock of non-rivalrous 

knowledge, as measured, in a decentralized economy, by the existing variety of intermediate 

goods. Q denotes either an alternative stock of non-rivalrous disembodied knowledge (such 

as, the existing quality of intermediate goods) or rivalrous embodied knowledge (or human 

capital).

Consider the following general three-sector Cobb-Douglas production structure:

Y =  A ° A [ ( l - a A - a Q)K ]aK[qYQ]<TQ[ ( l - l A - l Q ) L } c'L 0 <  <n <  IV* (5-la ) 

Ä = BaAVa [aAK]rtK [qAQ\r]Q [UL]111 0 < ^  <  lVi BA > 0 (5-lb)

Q =  BqAUa [aQK]WK [qQQ]UQ [IqL]Ul 0 < t* < lVi B q  > 0 (5-lc)

where ai and U (i = Y, A, Q) are the fractions of physical capital and labor, respectively, 

allocated to sector i. Bi is an exogenous shift parameter, which in the special case of 

identical input proportions also measures the share of total output invested in each aspect 

of knowledge accumulation.2

Equation (5.1c) may represent either human capital accumulation or quality R&D. 

In the case of human capital accumulation, ^  =  1 if embodied knowledge is rival in use

across all three sectors. Because knowledge is embodied, Q = hL , where h denotes per

capita human capital. If labor is homogeneous, we set l{ = OVi, and qi denotes both the

2If eri = Pi — Wj for each i = A, K ,Q ,  L, the share of o u tp u t invested in R&D is Ä / Y  = 
B a  [oi aI &y Y *  [<m /<3,v ]<7q [Ia / I y ]"1" and the  share of o u tp u t invested in hum an cap ital form ation is Q / Y  =  
B Q [ a Q / a Y } aK [qQ/qY}aQ [Iq / W ] <Tl - If a  a  =  chq =  a Y ;qA =  qQ — qY] I a  =  Iq  =  W ,  then  Ä / Y  =  B a  and 
Q / Y  = B q .
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fraction of human capital and the fraction of labor allocated to sector i. In the case of 

R&D, qi = 1 Vi, since this type of disembodied knowledge non-rivalrous in use.

The stock of labor grows at the rate of population growth: L =  nL, where n > 0. 

We confine our analysis of n > 0 to the case of knowledge embodied in homogeneous labor. 

If knowledge is disembodied and non-rivalrous, we assume n = 0.

In the centralized version of R&D-based growth models, the rate of savings and the 

fractions of labor, physical capital and human capital are endogenous. The central planner 

chooses consumption, and the fractions of labor and capital employed in each sector so as 

to maximize intertemporal utility of the representative agent subject to the production and 

accumulation constraints, equations (5.1a) - (5.1c) and the constraint that physical capital 

accumulates as a residual after aggregate consumption and any knowledge accumulation 

needs are met.

For the purposes of this paper, we assume that, as required for balanced growth, 

the sectoral allocations of factors and savings rate are strictly positive and constant. The 

physical capital accumulation equation is given by

k  = sY; s > 0 (5-ld)

where s measures the share of total output invested in physical capital accumulation.

Definition 5.1 In a balanced growth equilibrium all real variables grow at constant, al­

though not necessarily equal, rates.

The balanced growth rates of the real variables (Y, K, A, Q) are obtained by total 

differentiation of the production functions (5.1a) - (5.1c), noting that constant growth rates
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requires gy = 9k , 9ä = 9A and 9q = 9q - Note also that unless knowledge is embodied in 

homogenous labor (in which case = OVi) we assume n  =  0.

A balanced growth equilibrium is therefore characterized by the following system 

of three linear equations:

(1 -  0 k ) -& A - V Q 9k 0

~ 9 k  (1 ~ 9 a ) - V  q 9A = 0

-CÜK -OJA (1 —ojq) 9q 0

(5.2)

which is homogeneous (in matrix form Ax = 0).

It is a well known result of linear algebra that such a system has a solution other 

than gK  = 9a  — 9Q = 0 only if |A| = 0. From (5.2), the growth rate in output in a 

balanced growth equilibrium simplifies to:

a  a + (1 - t ) a )  — u>A
(1  -  c t k )  + 9 K  +  u > K

9 A +
aQ ~ 9q + (! -  uq)

.(1 - ^ k ) +  9 k  +  UK . 9Q (5.3)

The solution is one of endogenous growth since growth in the endogenous variables does 

not depend on growth in an exogenous variable. Having said this, equilibrium growth is 

dependent on or independent of the exogenous level of population, depending on whether 

Q denotes disembodied or embodied knowledge, respectively. Thus, \A\ = 0 is the key 

condition that must hold if the model is to deliver endogenous growth at positive, constant 

rates. We summarize this discussion with the following proposition:

Proposition 5.1 (Necessary Condition for Endogenous Growth) Endogeneous growth, 

with or without scale effects, is impossible unless the knife edge condition \A\ =  0 is met

Most models of endogenous growth obtain |A| = 0 by assuming that one of the 

knowledge accumulation equations in system (5.2) is linear. For instance, a Römer (1990)
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type R&D equation and a Lucas (1988) type human capital accumulation equation implies 

zero entries in the second and third rows, respectively.

Despite being widely considered a necessary condition for endogenous growth (see 

for instance, Jones (2001)), linearity in knowledge accumulation is only one of the conditions 

sufficient for |̂ 4| = 0. It is, in fact, \A\ —  0 that is necessary for endogenous growth.3

Also sufficient for |A| = 0 is that the columns of A are linearly dependent in such 

a way that

v\ — av2 + bv3 (a < 0; b < 0) => |A\ = 0 (5-4)

where Vi denotes the ith column vector of the coefficient matrix A. Existing lab equipment 

models satisfy (5.4) by assuming constant returns to scale in growing factors (a =  b — —1). 

We elaborate on this in the following section.4 For now, we summarize the general condi­

tions that imply balanced growth with the following proposition:

Proposition 5.2 (Sufficient Conditions for \A\ = 0) \A\ = 0 if either:

1. In a knowledge accumulation sector, existing knowledge exhibits constant marginal 

returns and, if n > 0, is the sole input or, if n =  0, is a joint input with labor.

2. All sectors are subject to constant returns to scale to endogenously accumulating fac­

tors, in which case all variables grow at a common rate gy =  gK — 9A =  9q -

3For a two sector growth model where growth in population is exogenous, Christiaans (2004) also es­
tablishes that a singular matrix of structural elasticities in necessary for endogenous growth and/or growth 
with scale-effects.

4For a system of two equations in gA and gQ where Q denotes disembodied knowledge in the form 
of quality improvements, Li (2002) proposes that singularity of the structural elasticities matrix in turn 
requires, in our notation, tja = u a and tjq — u jq . We will see that identical structural elasticities across 
sectors renders constant returns to scale necessary for balanced growth and is therefore a special case of our 
second sufficient condition for |A| =  0.
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3. Increasing (decreasing) returns to scale to endogenously accumulating factors in final 

production are offset by decreasing (increasing) returns to scale to growing factors 

in the knowledge accumulation sectors such that kv\ — — (u2 + v3), in which case 

9y  = 9k  = kgA =  kgQ, where k ^  1 .

Proof. Define x i  where x = <7 , 77,0;. System (5.2), which characterizes balanced 

growth, is homogeneous provided x^ — 0 or n = 0. Each of the following cases implies 

\A\ = 0, as required for a non-trivial solution to system (5.2):

1 . Zero entries in the second and third row is provided by nA =  1; 77̂  =  0\/i A, L and 

ojq =  l;u)i = 0Vi 7̂  Q, respectively.

2. X] (Ji = 1; Y, Vi = !; E = IV* 7̂  L => v\ = - v 2 -  u3

3. Increasing (decreasing) returns to scale to endogenously accumulating factors in final

production correspond to ^  respectively. Let (1 — ctk) = o'. The

relationship kv\ = — (v2 + u3) =>• a i = 1 + (k — l)<7 ^ l 4=>/c^l. Similarly,

E v i ^ i  ^  1 ^  1 and E v i /L ^  ^  1 ^  1 .

Set <7,4 = <7q in (5.3). Substituting ^  =  1 ; E W* =  1 V* ^  T gives

9y  = 9k  = 9A =  9Q- Substituting (o^ + <7g) = fc (1 -  o k ), (*7a + t?q) =  (1 -  krjK) and 

(uja +  ujq) = (1 -  kujK) gives gY = gK = A:&a =  ^ g .  ■

5.3 C on stan t R eturns in T w o Sector M odels

The few applications of the lab equipment framework in the R&D-based growth 

literature feature restrictive assumptions. Both Rivera-Batiz k  Romer’s (1991) seminal lab
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equipment model of research and Dalgaard & Kreiner (2001) assume R&D uses not only 

the same inputs but also the same input proportions as the final production technology.

We consider a two sector model of R&D-based growth, to illustrate the generality 

of the above propositions and to explore both why existing models restrict production 

technology to be identical across sectors and the implications of such a restriction. We 

also simplify our exposition of the conditions for balanced growth with a phase diagram 

analysis.

A general two sector lab equipment model is described by equations (5.1a), (5.1b) 

and (5.Id), setting aq = t]q = aQ — Iq = 0:

K  =  sAaA [ ( l - a Ä)K}aK [ ( l - l A)L)°L 0 < er; < lVi (5-5a)

Ä =  B aA '^  [ocAK\riK [lAL]r,L 0 < rji < 1 Vi (5-5b)

where L. Corresponding to the two accumulating sectors are the isoclines:

Qk  =  -  (1 -  (?k )9 k  + °A9A = 0 (5.6a)

9A = Vk Qk -  (1 -  Va ) 9a = 0 (5.6b)

Recalling the definition of balanced growth, the A and K  isoclines intersect where 

both Ä and K  equal zero. The arrows of motion in a phase diagram give a rough picture 

of what the trajectories look like and whether they move towards balanced growth. Like 

system (5.2), the phase diagram does not tell us what balanced growth path the economy 

converges toJ, but it does reveal the conditions for a unique balanced growth path.

The phase diagram in Figure 5.1 illustrates Proposition 1. Specifically, (1 — ax)  (1 — rjA) — 

rjKa A = \A\ = 0 is necessary for balanced growth (g^ = gA — 0). The top and bottom

As we will see, the economy’s growth rate on that path is a complicated function of the parameters.
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panels illustrate \A\ > 0 and \A\ < 0, respectively. For the intuition of this result, consider 

the case, conventional in growth literature, where final production features constant returns 

to scale to growing factors: the K  isocline has a slope of unity. The economy exhibits zero 

or explosive growth depending on whether returns to scale in R&D are decreasing or increas­

ing. The intuition is essentially the same as the intuition for why increasing (decreasing) 

returns to the existing stock of ideas generates explosive (zero) growth in Romer’s (1990) 

model of R&D-based growth.

Strictly positive, but constant growth in A and K  requires that either the A 

isocline is vertical at some > 0 or the A and K  isoclines lie directly on top of one

another. Figure 5.2 illustrates a vertical A isocline: (1 — rjA) = =  0 => |>1| = 0. qa is

constant regardless of its initial situation. In this case, knowledge is just useful enough in 

producing new knowledge that the level of A has no impact on its growth rate. The figure 

shows that, regardless of where the economy begins, it converges to a balanced growth path 

where gx  = &a /  (1 — &k ) BIaL. This illustrates case 1 of Proposition 2.

Alternatively, the A and K  isoclines lie directly on top of one another: (1 — gA) /Vk  =  

a a /  (1 — &k ) =>• \A\ = 0. This illustrates cases 2 and 3 of Proposition 2. That is,

(1 —tja) /9k  ~  aa ! (1 —v k ) — k, such that balanced growth is implied by either con­

stant returns to scale in both sectors (k = 1) or increasing (decreasing) returns to scale in 

final production offset by decreasing (increasing) returns to scale in R&D (k ^  1).

In a two sector lab equipment model, the growth rate in output in a balanced 

growth equilibrium simplifies to

9y 9K =
a a +  (1 ~ 9 a ) 
(1 -  crK) +rjK 9A kgA (5.7)
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where k ^  1 denotes decreasing, constant and increasing returns to scale to growing factors 

in the production of final output, respectively, with offsetting returns to scale to growing 

factors in R&D and gy  ^  gA O  k ^  1. Constant returns to scale satisfies the requirement 

of strictly positive, constant growth rates where the ratio Y /A  is also constant in a balanced 

growth equilibrium.

Thus, as in our three sector model, constant returns to scale in both sectors or 

increasing returns to scale in one sector offset by decreasing returns in the other are sufficient 

for a balanced growth equilibrium in a two sector model. Why then do existing two sector 

lab equipment models of research restrict the production function in both sectors to be 

identical?

Rivera-Batiz & Römer (1991) draws our attention to constant returns to scale as

a key implication of identical production functions.

... the output of patents at any date increases in proportion to the resources de­
voted to R&D. This permits the solution for balanced growth paths using linear 
equations, but it cannot be a good description of actual research opportunities. 
Rivera-Batiz & Römer (1991) p. 551

We summarize the relationship between identical production functions and con­

stant returns to scale with the following proposition:

P rop osition  5.3 In a two sector Cobb-Douglas lab equipment model of research where 

sectors share identical production technology, constant returns to scale is necessary and 

sufficient for balanced growth

P roof. If rjA — a A and rjK =  cr^, then, by (5.7), regardless of the degree of 

returns to scale, gy — g K  — 9A-  The dynamics of growth in output is determined by the
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dynamics of growth in knowledge, which is given by

9  A =  {&A -  1 ) 9  A + ° K 9 K  =  (<?A +  ° K  ~  1 ) 9 A

where ^ 0 <t4> (a a -f ak  — 1) ^ 0. 9a 0 implies explosive and ever-decreasing growth, 

respectively, and is inconsistent with balanced growth. Thus, constant returns to scale is 

necessary and sufficient for a balanced growth equilibrium: (a a + crx) = 1 ^  9a — 9k  = 0.

■

Identical production technology renders constant returns to scale necessary for 

balanced growth, but constant returns to scale is itself only sufficient for balanced growth. 

Why then impose identical production functions? As we will see in the following analysis 

of special cases, solving the centralized versions of lab equipment models with identical 

production functions is straightforward using our framework.

However, as the second sentence of the above quote suggests, it is the linearity of 

the equations, provided by constant returns to scale to accumulating factors, that makes 

lab equipment models easy to solve. To see this, consider (5.5). When each sector features 

constant returns to scale in accumulating factors (aa + <?k  — 1 ',9a + 11 — 1)» our analysis 

of (5.5) simplifies to an analysis of the dynamic evolution of a single variable x =  A / K , 

where gx =  0 in balanced growth. However, apart from the fact that the equilibrium value 

of x is dependent on a and 77, solving under constant returns to scale without identical 

production functions involves little additional difficulty.

Rivera-Batiz & Römer (1991) and Dalgaard &; Kreiner (2001) are special cases, 

with, and without, scale effects, respectively, of our general Cobb-Douglas model of lab 

equipment research. It is instructive to show how easily the general framework replicates
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the traditional lab equipment models of research, and to show how their structures and 

growth rates fit into our framework of propositions.

5.3.1 Ideas and Physical Capital

Rivera-Batiz & Romer’s (1991) seminal lab equipment model of research introduces 

a technology for R&D that uses the same inputs as the manufacturing technology, in the 

same proportions. The production possibility frontier in the space of new ideas (designs) 

and final goods (manufactured goods) is a straight line, as opposed to the usual, concave 

to the origin, shape, in Romer’s (1990) model. In the lab equipment model, if the output 

of final goods is reduced by one unit and the inputs released are transferred to the R&D 

sector, they yield Ba patents (new ideas). The opportunity cost of producing one unit of 

final goods is Ba units of new ideas.

Looking at the big picture, Rivera-Batiz & Römer (1991) take the aggregation of 

sectors to another level. In Römer (1990), since physical capital goods and consumption 

goods have the same production technology, they are integrated them into a single manu­

facturing sector (i.e. Y  = C + K). Rivera-Batiz & Römer (1991) aggregates manufacturing 

and research into a single sector (i.e. Y = C + K  + A /B a )-

The centralized version of Rivera-Batiz & Römer (1991) with an exogenous savings 

rate is described by (5.1a), (5.1b) and (5.Id), setting a* = qi — li = 0:

Y = d ^ +a'-if1-( ‘T«+<T̂ Q a«L(7f' 0 < uq < 1; 0 < aL < 1 (5-8a)

Ä = B aY  (5.8b)

where Ba measures the share of total output invested in R&D and Q and L denote human
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capital and unskilled labor, respectively. The heterogeneity of labor does not complicate 

the balanced growth solution, since both types of labor are assumed to be stagnant: Q and

L.

Substituting for the structural elasticities from (5.8) in (5.2):

(5.9)
(<tq +  <7l ) -(<7Q +  c L) 9K 0

-  (1 -  ( o - Q +  0-L)) ( l - { a Q + a L)) 9A 0

where v\ = —1>2 , sufficient for |A| = 0. Constant returns to scale to physical capital and 

ideas, the growing factors, is sufficient for strictly positive, balanced growth. From (5.9), 

we have one equation with two unknowns which implies gx = ga -

To solve the model, we define \  = A /K . The dynamic evolution of \ t is subse­

quently derived from equations (5.8a), (5.8b) and (5.Id):

9x =  9a - 9k  =  -  •x l'* * '1' )  W -  (5.10)

Along a balanced growth path, where gy is constant, ideas and physical capital have to grow 

at the same rate, as implied by (5.9). Thus, gx — 0 implies a steady state ratio of ideas to 

physical capital:

X =
B a

s (5.11)

which, by (5.10), is stable.

Using equations (5.Id), (5.8a), (5.8b) and (5.11), the long run growth rate of per 

capita output is

9y =  3Y =  9K =  9A = ( ( 5 . 1 2 )

which is positively dependent on the scale of the economy, as measured by the size of human
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capital (Q) and/or the size of the population (L) and positively dependent on the share of 

output invested in R&D and physical capital accumulation, Ba and s , respectively.6

5.3 .2  Ideas and H um an C apital

The centralized version of Dalgaard & Kreiner (2001) is described by (5.1a), (5.1b) 

and (5.1c), setting a x  = c ll  = 0 ( a  = < 7 ,7 7 ,0 ;)  and q i  = 0:

Y = A l~aQa 0 < <7 < 1 (5.13a)

ä  = b ay (5.13b)

Q = b qy (5.13c)

where Q  — h L  represents embodied knowledge and n > 0. B a  and B q  measure the share 

of total output invested in R&D and used to produce to human capital, respectively. 

Substituting for structural elasticities from (5.13) into (5.2):

—<7 9A

9Q
(5.14)

— (1—<t) ( l - f f )

where v\ = — U2, sufficient for |̂ 4| = 0. Constant returns to scale to the endogenously 

growing factors, is sufficient for strictly positive, balanced growth. (5.14) provides one 

equation with two unknowns which implies 9a = 9Q-

To solve the model, we define ip = Q/A. The dynamic evolution of ipt is subse­

quently derived from equations (5.13a), (5.13b) and (5.13c):

9 * = g Q -9 A  = ( B A t r 1 - B Qr t ) (5.i5)

6In Rivera-Batiz &; Römer (1991), the savings rate, s, is endogenous, as per a Ramsey con­
sumer, so that the long run growth rate of per capita output is gy — (TQaQ I T L — p ) / a  where T =  
( B a ) ^ q+,Tl  ̂ (<7q  +  <7L) ( ^ +^ )  (1 -  (<jq  + a L) )2~ ^ Q+(TL\
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Along a balanced growth path, ideas and aggregate human capital grow at the same rate, 

as implied by (5.14). Thus, = 0 implies a steady state ratio of aggregate human capital 

to ideas:

* =  (5.16)

which, by (5.15), is stable.

Using equations (5.13a), (5.13b), (5.13c) and (5.16), along a balanced growth path: 

9A = 9Q = 9h + n =  (BA)l~a {Bq )° (5.17)

and from (5.13a), the long run growth rate of per capita output is

9y =  (Ba )'-'’ (Bq )’  -  n (5.18)

which, apart from the independence of scale (i.e. independence of L), resembles (5.12). In 

contrast to Jones (1995a) and other non-scale growth models', scale effects are also absent 

from the level of per capita output:

(5.19)

It is Dalgaard & Kreiner’s (2001) endogeneity of embodied knowledge, rather than

the lab equipment specification, that removes scale effects from both the long run growth

rate and the level of per capita output.7 8 Aside from scale effects, the similarity of (5.12)

and (5.18) is stark. The assumption that R&D and final production are described by

identical production functions has implications for the long run growth rate of economy.

7Strulik (2005) is a noteable exception.
8T o see this, replace (5.13c) with a Lucas (1988) specification and solve for the balanced growth 

equilibrium.
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5.3 .3  Im p lications o f Identical P rod u ction  Functions

Referring to (5.12) and (5.18), two features stand out. First, the share of output 

invested in the accumulation of endogenous factors determines the long run growth rate and 

level of per capita output. Both Rivera-Batiz & Römer (1991) and Dalgaard &; Kreiner 

(2001) predict that increasing the share of output invested in R&D, Ba , raises the long run 

growth rate of the economy. The long growth rate of the economy is also increasing in 

either the share of output invested in the production of physical capital or human capital, 

s or B q , in Rivera-Batiz & Römer (1991) and Dalgaard & Kreiner (2001), respectively. 

Second, endogenously accumulating factors grow at the same rate in the long run. Rivera- 

Batiz & Römer (1991) and Dalgaard & Kreiner (2001) predict the ratios K/A  and Q/A, 

respectively, are constant along a balanced growth path.

The first feature has clear policy implications. Economic incentives and policy 

may affect the long run growth rate of the economy through B a and s or Bq , which are 

chosen by an optimizing central planner or household.

The first implication is that the rate of return on investment in output is an avenue 

for government policy. In a decentralized setting, households choose the portion of income 

consumed and invested in the production of both human capital and ideas. Households 

earn a return on investment in human capital and ideas in the form of income from wages 

and dividends, respectively. Financed by a lump sum tax, a government can boost B a 

either by subsidizing the dividend from R&D investment or through the direct provision of 

R&D output.

The key point is that the long run growth rates, (5.12) and (5.18), focus policy
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on the sectoral allocation of production rather than the sectoral allocation of factors, such 

as physical capital and labor. For instance, the success of a policy program aimed at 

encouraging R&D would be measured by an increase in R&D spending as a proportion of 

Gross Domestic Product (GDP) rather than an increase in the proportion of the labor force 

employed in R&D. This is a direct implication of assuming that R&D uses units of final 

output rather than unique proportions of inputs.

The second implication is one of a policy trade-off, which we illustrate by reference 

to (5.18). If the share of output used in R&D, B A, can only be raised at the expense of 

the share of output used in human capital formation, Bq , then the long run growth rate of 

the economy may fall.

Remark 5.1 In a lab equipment model of research featuring identical production functions 

across sectors, an increase in the share of output spent on R&D has an ambiguous effect on 

the long run growth rate of the economy

To simplify our exposition of this remark, we assume n = 0. The total derivative 

of (5.18) yields

%ABa > => % A gy ^  0 (5.20)% ABq < (1 -  a)

which implies an increase in BA that, is offset by a proportionate fall in B q boosts the long 

run growth rate of the economy only if a < 1/2, that is, if ideas’ share of final production 

exceeds human capital’s share of final production.

The suggestion that policy makers face such a trade-off is reasonable. To see this,

recognize that, (BA + B q ) represents total investment as a portion of total output. Suppose 

that, as in Dalgaard & Kreiner (2001), subsidies to boost BA and B q are financed through
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a lump sum tax, T, and that the government maintains a balanced budget (G — T). The 

closed economy expenditure identity, Y = C-\-I + G = C + A + Q + T  yields

(1 — c) = (Ba + Bq) + t  (5-21)

where c denotes C /Y  and r  denotes T / Y , measuring the size of government as a portion 

of total output. If government is neither willing nor able to reduce either r  or c,<J then an 

increase in B a  must be offset by a proportional decrease in B q .

Dalgaard & Kreiner (2001) present the implication that economic policy may shape

long-run growth through increases B a and B q as interesting, whilst conceding in a footnote

However, the growth rate is not necessarily increasing in the share of resources 
used on R&D ... If the share is raised at the expense of resources used for human 
capital formation growth may decrease (footnote 13, page 202).

The implication of a policy trade-off, analyzed more fully in this paper, reveals 

an important shortcoming of the existing lab equipment approach. The trade-off between 

boosting R&D’s share of output and boosting human capital accumulation’s share of output 

is a direct implication of assuming that R&D and human capital accumulation use the same 

input proportions as the final production technology. We therefore relax the assumption 

of identical production functions across sectors and explore the policy implications.

The second feature, that endogenous accumulating factors grow at the same rate, is 

a direct implication of constant returns to scale, which identical production functions renders 

necessary for balanced growth. Recalling the definition, balanced growth requires only 

that variables grow at constant rates. We have established that non-identical production

technology with decreasing or increasing returns to scale in R&D also permits a solution

9For instance, demographic pressures in an economy may account for upward pressure on both consump­
tion and government spending, as a percentage of GDP.
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for a balanced growth equilibrium, where the endogenously accumulating factors grow at 

constant, but not equal rates.

A priori reasoning does not suggest returns to scale are constant in all sectors. On 

the one hand, coordination and other problems at the micro level suggest decreasing returns 

to scale. On the other hand, positive spillovers in disembodied knowledge may suggest 

increasing returns to scale in R&D. As the number of sectors increase, the assumption of 

that all sectors feature constant returns to scale becomes less plausible.

5.4  V a ry in g  R e tu rn s  to  Scale

Corresponding to the general three sector lab equipment model described by equa­

tions (5.1a) - (5.Id) are the isoclines:

9k  =  — (I  — <?k ) 9K +  &A9A +  &Q9Q =  Q (5.22a)

9 A =  Vk 9k - { 1 - V a ) 9 a E 9 q 9Q = ^  (5.22b)

9q =  ^ k 9k  + u A9a  + (1 ~ u Q)gQ =  0 (5.22c)

where the intersection of all three (gx = 9a — 9Q — 0 => |A| = 0) is necessary for balanced 

growth. The intersection of all three isoclines in the positive orthogonal requires that all 

three isoclines lie directly on top of one another in three dimensional (gx,  9a , 9q ) space. 

Phase diagram analysis in three dimensional space depicts sufficient conditions for a unique 

balanced growth equilibrium, but does not tell us to what equilibrium the economy con­

verges.

Figures 5.3 and 5.4 depict the isoclines in two dimensional space. The top and 

bottom panels of Figure 5.3 depict the K  and A isoclines, for a given gQ, and the K  and Q
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isoclines, for a given gA, respectively. Figure 5.4 depicts the Q and A isoclines, for a given 

9 k -

Viewing the isoclines in this way is useful for two reasons. First, it depicts the 

proportionality of growth rates in a balanced growth equilibrium, allowing us to illustrate 

how varying the returns to scale in each sector alters the proportionality. Second, it 

allows a more detailed analysis of constant marginal returns (or linearity) in knowledge 

accumulation, as per the first condition of Proposition 2.

Referring to the top panel of Figure 5.3, for a given strictly positive and constant 

gq, strictly positive and constant gA and gx requires that the A isocline is steeper than 

the K  isocline in <m ) space. Consider the case of constant returns to scale to growing 

factors in all sectors. The slope of the K  isocline must be less than unity (crA + aK < 1) 

and the slope of the A isocline must be exceed unity (r]A + gK < 1), in {gx,9A) space. For 

a strictly positive and constant $q , the isoclines must cross at gx = gA = 9Q > 0. Consider 

a move away from constant returns to scale. Introducing increasing returns to scale in final 

production and decreasing returns to scale in R&D steepens the K  isocline and A isocline, 

respectively. For instance, if the slope of the K  isocline is unity (aA + &x = 1), then final 

production features increasing returns to scale to growing factors (aA + &x + &Q > 1)- The 

isoclines now cross at gx = kgA = kgQ > 0, where k > 0. This illustrates cases 2 and 3 of 

Proposition 2.

Consider case 1 of Proposition 2. If u>x —  ^ a  =  ( 1  —  u q ) = 0, then gQ = B qqq > 

0. The Q isocline is vertical at gQ = Bqqq in (gx,9Q) and (gA-,QQ) space. Thus, the top 

panel of Figure 5.3 provides a complete analysis of the conditions for balanced growth. If
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final production features constant returns to scale to A and K , the slope of the K  isocline 

is unity. It follows that variety R&D must feature decreasing returns to scale to A and K  

for gA and gx to be strictly positive and constant, as required for balanced growth. The 

intuition for decreasing returns to A and K  in variety R&D when the Q equation is linear 

is similar to the intuition for diminishing marginal returns to A in variety R&D when the 

L equation is linear, as in Jones (1995 a).

As an example of varying returns to scale in a three sector lab equipment model, 

let

Y = A°  [(1 - a A -  aQ) K\ l~a [(1 -  qQ) Q] Q°L ° , l > a > 0 (5-23a)

Ä =  6A7! [cMA'](1_r?)/2 L*1, 5 > 0,1 > r] > 0 (5.23b)

Q = i  [aQA](1- w)/2 [qQQY L“, £ > 0,1 > ca > 0 (5-23c)

where L. Production of final output exhibits increasing returns to scale and both variety 

and quality R&D exhibit decreasing returns to scale to growing factors. The balanced 

growth equilibrium solves the following system of three linear equations:

b1b1b

i_____ 9 k 0

( 2r?) i 1 *7) 0 9A - 0

(12W) 0 (1 U>) 9 q 0

(5.24)

where v\ = 0.5^2 + 0.5t>3 => \A\ = 0. From (5.24), gx = 2gA — 2gQ. We can see this 

diagrammatically. Figure 5.6 depicts the interception of A and Q isoclines in (gA, gQ) space 

at gA = 9q — In (9k ,9 a ) and (9x ,9q ) space, the A and Q isoclines will have (0,0)

intercepts and intersect at gx — 2gA = 2gQ.
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5.5 A pplication: A M odel o f C reative Ignorance

5.5 .1  A P lau sib le  B alanced G row th Equilibrium ?

By relaxing the assumption that production technology is identical across sectors, 

constant returns to scale is no longer necessary for balanced growth. If increasing (decreas­

ing) returns to scale in final production is offset by decreasing (increasing) returns to scale 

in both R&D and human capital formation, real variables grow at constant, but unequal 

rates in a balanced growth equilibrium. We have illustrated a three sector R&D-based 

growth model which predicts both K/A  and K /H  rise over the long run.

In their discussion of Mulligan & Sala-i-Martin’s (1993) two sector education- 

based growth model, Barrro & Sala-i-Martin (1999) suggest that only the balanced growth 

equilibrium implied by constant returns to scale in both final production and human capital 

formation is plausible:

Since the alternative in which K /H  rises or falls forever seems implausible, we 
assumed ... that constant returns held in each sector, (p.200)

Extrapolating to a three sector model, we consider whether an equilibrium in 

which both K/A  and K /H  rise (or fall) forever, is implausible. We define an implausible 

equilibrium as one which is not empirically supported and/or lacks intuitive appeal.

For empirical support, we would examine the long run trend in K/A  and K / H , 

controlling for other factors. The measurement of A, the stock of ideas, poses an immediate 

challenge. A common proxy for the stock of ideas or technology is multi-factor productivity, 

an index constructed from measured output and measured factors of production. Two key 

problems arise. First, for the index to measure residual or unaccounted for output, all
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factors of production must be properly accounted. Second, inferring that residual growth 

in output measures growth in ideas imposes a theory of R&D-based growth. Theory decides 

what we observe. Patent counts provides a simple, alternative measure of the number of 

ideas produced.10 However, not all ideas are patented. More importantly, not all ideas 

that are patented are valuable, in the sense that they drive growth in the overall economy. 

Patented ideas that are valuable are certainly not equally valuable.

In terms of intuitive appeal, we consider the inherent characteristics of physical 

capital, human capital and ideas. Both physical capital and human capital are private 

goods. The use of either type of capital in one sector rivals its use in another sector. 

Capital use within a sector is also rivalrous. The embodiment of human capital implies 

that additional labor congests its use, as with physical capital. In contrast, ideas have public 

good characteristics. Ideas are non-rival across sectors and, possibly, within a sector.

Both the amount of physical capital and human capital equipping an individual 

in their lifetime is finite. In contrast, the number of ideas may grow without bound. 

Consequently, the suggestion that growth in ideas could outstrip growth in either type of 

capital seems reasonable.

A three sector model affords us the choice of which two real variables grow at 

different rates. On balance, the result that K/A  falls over the long run is more plausible 

than the result that K /H  falls over the long run. However, the associated fall in Y/A  along 

a balanced growth path may be less palatable. If the creation of new ideas ultimately

drives growth in final output, it may be reasonable to predict that growth in output equals

10P o rter & Stern (2000) and, more recently, Ulku (2004), use aggregate level p a ten t d a ta  to  m easure the  
stock of disem bodied knowledge.
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growth in ideas in the long run. Therefore, a balanced growth equilibrium in which A/H  

rises, but Y/A  is constant, may be most plausible.

5.5.2 M odel

Consider the following three-sector Cobb-Douglas economy:

Y  = ACTA[ { l - q A - q Q)Q]<TQ Za^ 0 < a* < lVi (5.25a)

Ä = B AAriA [qAQ]riQ ZP* 0 < 77; < lVi Ba > 0 (5.25b)

Q = BqA“a [qQQ]UJQ Z “z 0 < u)i < IV* Bq > 0 (5.25c)

where Z  is a fixed factor of production, say, land, and Q =  hL. We abstract from the fixed 

factor of production by normalizing Z  to 1. We also assume n — 0, so that gQ — g^.

From (5.25a), the long run growth rate of the economy is given by gy =  crAgA + 

<tq9q , which is constant, as required for balanced growth, if both gA and gQ are constant. 

The conditions for a balanced growth equilibrium are therefore provided by the solution to 

the following system of two linear equations:

(l ~ rU) ~Vq 

-U>a ( 1 - W q )

where |A| =  0 is necessary for a solution and = — kv\ is sufficient for \A\ = 0 . In a 

balanced growth equilibrium, the growth rate of ideas satisfies

Vq T {I — wq)

9A 0

9Q 0
(5.26)

, {1 ~ V a ) + u a .
9Q =  kgQ (5.27)

where k ^ 1 denotes decreasing, constant and increasing returns to scale to growing factors 

in R&D, respectively, with offsetting returns to scale to growing factors in human capital 

accumulation and gA ^ gQ <=> k ^ 1.
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5 .5 .3  C reating  Ideas and Ignorance

Consider the introducing the following parameter restrictions to (5.25b) and (5.25c):

VA =  ( l ~ rl ) ;  ?? q  =  krj (5.28a)

u ja  =  u >; l>j q  =  1  — k o j (5.28b)

where l/u> > k > 1 implies increasing returns to scale to growing factors in R&D (1 + (k — 1) 77 > 1) 

and decreasing returns to scale to growing factors in human capital accumulation (1 4- (1 — k)u  < 1). 

Substituting for the structural elasticities from (5.28) into (5.26):

1

1 -3
__

__
__

_
1

9  A 0

-----
1

331 9Q 0

(5.29)

where v2 = —kv\ is sufficient for I A( =  0, as required for a balanced growth equilibrium.

To solve the model, we define </> = A/Qk. The dynamic evolution of (f)t is subse­

quently derived from (5.25a), (5.25b) and (5.25c), after imposing (5.28):

9<t> =  9 A -  kgQ = (ßA4>t 77 -  kßQ<f%} (5.30)

where ßA = BA (qA)kr} and ßq — Bq (gg)1_fcw. Along a balanced growth path, ideas grow 

proportional to aggregate human capital, as implied by (5.29). Thus, g# — 0 implies a 

steady state value of:

4> =

l/(w+77)

(5.31)

which, by (5.30), is stable.

Using equations (5.25b), (5.25c), with (5.28), and (5.31), along a balanced growth
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path:

gA =  fci/<"+i> (aArJ!‘:"+’n (5.32a)

9q =  g„ = k - ^ l ^ ( ß Ar l ^ ( ß l (5.32b)

where gA = kgQ > gQ.

We refer to the result gA > gQ as creative ignorance, meaning that the frontier of 

disembodied knowledge (ideas) grows faster than the knowledge embodied in individuals. 

An individual’s average skill level is given by gh = gQ- Accordingly, even in the absence of 

population growth, individuals tend to become relatively more ignorant over time, gA > gh-

The creation of new ideas draws on embodied knowledge, which in turn, accumu­

lates by drawing on new ideas. Creative ignorance is a by-product of a virtuous circle of 

increasing ideas and human capital.

The notion that human capital continues to grow over time, but cannot keep 

abreast of innovation is consistent with anecdotal evidence from technology revolutions, 

including the recent information technology revolution. Innovation is a double-edged sword. 

Advances in technology drive long run growth in the economy and generate skill obsolescence 

in the process.

Intuitively, both ideas and human capital are employed in the creation of new 

ideas and in the production of human capital, but doubling ideas and human capital less 

than doubles the output of human capital and more than doubles the output of new ideas. 

If the returns to scale offset each other, ideas and human capital grow at constant rates, 

as required for a balanced growth equilibrium. However, the increasing returns to R&D 

implies growth in ideas will outstrip growth in human capital.
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From (5.25a), the long run growth rate of per capita output is

9y = (cta + j r  J 9A =  +  ° q ) 9h (5.33)

where gy ^  gA <=> &q ^  k (1 — cta)- These parameter restrictions, together with k >  1, 

imply returns to scale in final production. For instance, ctq =  k (1  — <J a ) implies increasing 

returns to scale to growing factors in the production of final output (k + (1 — k) a a > 1) .

5 .5 .4  D iscu ssion

Dalgaard & Kreiner (2001) also predict that individuals tend to become relatively 

ignorant over time, but for a fundamentally different reason. Specifically, constant returns 

to scale implies that the total stock of knowledge embodied in individuals grows at the same 

rate as the stock of ideas: gA — 9q ■ Constant growth in the total stock of human capital, 

as required for balanced growth, in turn implies that, in the presence of population growth, 

growth in human capital per person must be less than growth in the aggregate stock of 

human capital: gQ — 9h = n > 0. It follows that, provided population grows at a strictly 

positive rate, 9a > 9h-

Thus, Dalgaard & Kreiner (2001) attribute the relative ignorance of individuals to 

a growing population. There is nothing innate in the processes of R&D and human capital 

production to generate a perpetual lagging of growth in human capital in the absence of 

population growth.

The implication of their result is that as population growth tends to zero, the gap 

between growth in ideas and growth in human capital per person vanishes. In contrast, 

our creative ignorance result is robust to the absence of population growth and has unique
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implications for policy which we discuss below.

Policy Implications

The balanced growth equilibrium described by (5.32a), (5.32b) and (5.33) has two 

implications for policy. First, the long run growth in ideas, g^, is proportionally higher than 

the long run growth in human capital, gg, by the factor (k — 1), which reflects the degree 

of increasing and decreasing returns to scale in R&D and human capital accumulation, 

respectively. As the returns to scale in both R&D and human capital accumulation tend 

to constant returns to scale, k —> 1, the gap between gA and gQ vanishes. However, to 

the extent that economic incentives cannot alter sectoral returns to scale, the creative 

ignorance result is impervious to government policy. Thus, in contrast to Dalgaard & 

Kreiner (2001), we predict that individuals may remain relatively ignorant, even if the 

government targets zero population growth. No government action may be preferable to 

misdirected government action.

Second, economic incentives and policy may affect the long run growth rate of 

the economy through qA and qQ, the portion of the labor force employed in R&D and 

human capital, respectively. This contrasts with existing lab equipment models where the 

policy target is R&D expenditure as a portion of total output. Importantly, increasing 

qA is consistent with increasing qQ. In contrast to Dalgaard & Kreiner (2001), raising the 

share of resources used in R&D is not at the expense of resources used for human capital 

formation.

Remark 5.2 If a lab equipment model features non-identical production functions, an in-
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crease in the portion of the labor force engaged in R&D has an unambiguously positive effect 

on the long run growth rate of the economy

To simplify our exposition of this remark, we assume <7q = k (1 — a a ) , so that 

gy — g^. The total derivative of (5.32a) yields

= - ^ - % A < m + (5.34)
(uj+r/) (w + 7?)

which is unambiguously positive if both qa and qQ increase.

Given a fixed pool of labor, we may raise the share of labor allocated to both 

R&D and human capital formation {qA + Qq ) by lowering the share of labor used in final 

production (1 — qA — Qq )- An unambiguously positive effect on the long run growth rate of 

per capita output may at first seem counterintuitive. How can we withdraw resources from 

the production of final output and achieve higher growt h in final output? The simple answer 

is that we achieve higher growth by investing the resources taken from final production in 

accumulating stocks which ultimately drive growth.

For the full intuition, we distinguish instantaneous, transitional and long run ef­

fects. Referring to Figure 5.5, a decrease in the portion of labor allocated to the production 

of final output (1 — qA — Qq ), at time to, results in an instantaneous drop in the level of per 

capita output. Intuitively, up to and including at time to, the level of per capita output 

is determined by the initial steady state growth in ideas, gA- After to, the investment of 

additional labor in R&D and human capital accumulation raises both gA and pg. The 

economy transits to a new balanced growth path, where both the long run growth rate and 

level of per capita output are higher, as illustrated by the increased gradient and position

of In yt .
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From (5.25a), the long run level of per capita output is

ct/ ( w + ? 7 )

(1 -  QA -  QQ)H1~a> (fc- 1> (h0 )k e°*< (5.35)

By (5.35), the exponential effect of a higher overshadows the multiplicative effect of 

lower (1 — q A  — <j q ), so that an increase in (q a + Qq ) unambiguously raises both the growth 

rate and level of output per capita in the long run.

E uler’s T heorem  and Factor Paym ents

equilibrium corresponding to (5.32a), (5.32b) and (5.33) can be derived. A decentralized 

economy comprises a household sector and firms in the sectors of manufacturing, intermedi­

ate goods, R&D and education. The R&D sector produces designs for intermediate goods, 

which are patentable.

cations for how equilibrium in the R&D sector is decentralized. Existing lab equipment 

models of R&D assume the output of designs is the same constant returns to scale pro­

duction function as in the manufacturing sector and/or the education sector. By Euler’s 

Theorem11, when the production function is homogeneous of degree one, all factors are paid 

their value of marginal product.

With increasing returns to scale, it is no longer possible for both of the inputs A

and H to be paid the value of their marginal product. Since a central requirement of a 

n If the function Y  (A, H ) is homogeneous of degree k , then

The creative ignorance model can be given microfoundations and a decentralized

Introducing increasing returns to scale to the R&D sector has important impli­
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competitive equilibrium is that factors are paid their value of marginal product, increasing 

returns to scale necessitates imperfect competition.

Römer (1990) is a well-known precedent of a decentralized equilibrium for a R&D 

sector with increasing returns to scale. The production of ideas (in our notation, A = 

BaA[qaQ]) is homogeneous of degree two. Since it is impossible for both inputs to be 

paid their value of marginal product, the assumption is made that A receives no compen­

sation. Holders of patents on previous designs have no means of preventing inventors of 

new intermediate goods from using the ideas encapsulated in existing designs.

However, holders of patents on designs have legal means of preventing the man­

ufacture of intermediate goods. Thus, imperfect competition appears in the intermediate 

goods sector. Firms in this sector own the patents for designs, enabling them to sell in­

termediate goods at a price greater than marginal cost. However, monopoly profits are 

extracted by the inventors in the form of compensation for their time spent researching 

or "searching" for new designs. The framework is one of monopolistic competition. No 

economic profits accrue: all rents compensate some factor input. In aggregate, physical 

capital is paid less than its marginal product and the remainder is used to compensate 

researchers for the creation of new ideas.

Increasing returns to scale to R&D in the creative ignorance model necessitates 

the same monopolistic competition framework. The lab equipment specification in R&D 

introduces some additional complexity. Whereas in Römer (1990), R&D is undertaken by 

researchers, in Rivera-Batiz & Romer’s (1991) lab equipment model, we conceive R&D as 

being undertaken by separate firms that hire physical capital and labor. Whereas in Römer
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(1990), the stock of human capital used in R&D is an exogenous constant, in the creative 

ignorance model, we conceive households investing in human capital.

Thus, the additional complexity appears in the household sector. Firms decide 

on resources employed in R&D and in the production of intermediate goods. Households 

decide on investing in human capital. The representative household earns a wage from 

investing in human capital, which it compares with a dividend from investing in patents. 

Decreasing returns to scale in human capital formation implies that H is paid more than 

its value of marginal product. This is consistent with a portion of the monopoly profits in 

the intermediate goods sector being extracted by households to compensate for investing in 

human capital.1" Provided the total return on investment in human capital equals the total 

return on investment in ideas, the household will invest in both R&D and human capital 

formation.

Specifying the microfoundations of the creative ignorance model and solving for 

the decentralized equilibrium is therefore a challenging, but feasible exercise.

5.6 C onclusion

In the words of Solow (1956) p.65

All theory depends on assumptions which are not quite true. That is what makes 
it theory. The art of successful theorizing is to make the inevitable simplifying 
assumptions in such a way that the final results are not very sensitive.

Existing lab equipment models of R&D assume researchers use not only the same

inputs but also in the same input proportions as the final production technology. Under 

12We may also consider payment of rent to the fixed factor, Z.
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the assumption of identical input proportions, constant returns to scale to growing factors 

in all sectors becomes a necessary condition for a balanced growth equilibrium. This paper 

finds that, in general, constant returns is not necessary for balanced growth. Moreover, 

allowing for different returns to scale in R&D and human capital formation generates richer 

results.

The model presented in this paper generates a balanced growth equilibrium char­

acterized by creative ignorance. Ideas and human capital increase in a virtuous circle, but 

the frontier of ideas grows faster than the knowledge embodied in individuals. The result 

that growth in ideas outstrips growth in human capital in the long run is consistent with 

a priori reasoning. Contrary to human capital and physical capital, ideas are innately 

non-rival and may therefore grow without bound.

The balanced growth equilibrium has a number of interesting characteristics. In­

dividuals become relatively ignorant over time. Raising the share of resources used in R&D 

has an unambiguously positive effect on the long run growth rate of the economy.

These results are important when it comes to assessing future prospects and policy 

implications. According to existing literature, growth in ideas outstrips growth in human 

capital per person only if population grows at a strictly positive rate. By implication, 

zero population growth in the long run remedies the relative ignorance of individuals. In 

contrast, the model presented in this paper predicts that individuals become relatively 

ignorant over time, regardless of whether their population grows. In light of the United 

Nations’s (2005) forward projection of zero population growth in the OECD, a source of 

relative ignorance other than population growth warrants further investigation.
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In contrast to existing lab equipment models, raising the share of resources used 

in R&D has an unambiguously positive effect on the long run growth rate of the economy. 

When R&D and human capital formation use the same input proportions as final produc­

tion, an increase in R&D’s share of output is at the expense of education’s share of output. 

Allowing for different input proportions, the share of resources invested in both R&D and 

human capital formation may be raised.

The conclusions of our model must be tempered by two key qualifications. First, 

increasing returns to scale to growing factors in R&D must be offset by decreasing returns 

to scale to growing factors in human capital formation in such a way that, the matrix of 

structural elasticities is singular. Endogenous growth requires such knife edge restrictions. 

Whether the equations that, are the engine of growth are homogeneous of a degree other 

than one is a matter for empirical investigation.

Second, there are many details of R&D at the micro level from which our model 

abstracts. Importantly, increasing returns to scale in R&D necessitates imperfect compe­

tition, for which Römers (1990) monopolistic framework is a precedent. The equilibrium 

growth rates in a decentralized economy will resemble those provided in this paper, ex­

cept for terms that capture the negative spillovers of imperfect competition that, a central 

planner internalizes. A decentralized analysis should confirm and provide insight into our 

results.

Given these qualifications, our only claim is to have formalized, and we hope il­

luminated, an effect that is potentially important,. There are other explanations, but in 

future empirical and theoretical work, we argue that creative ignorance induced by increas-
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ing returns to scale in R&D is worth considering.
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slope =  (1 - 1u) / lK

slope =  trA/( l  -  c K)

(a) Zero Growth

9k

\
slope =  <m /(1 -  <7k )

slope =  (1 -  t)a)/vk

(b) Explosive Growth

Figure 5.1: Phase Diagram in Growth of Physical Capital and Ideas
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9k

♦

slope =  a A / { I  -  o k )

9a = B lAL

Figure 5.2: Phase Diagram in Growth of Physical Capital for a Romer-type Linear R&D 
equation



CHAPTER 5. A MODEL OF CREATIVE IGNORANCE 198

slope =  oA/( l  -  ok)

slope =  (1 — uiq)/ujk

slope =  <7g/(l — ok)

Figure 5.3: Phase Diagram in Growth of Capital and Two Aspects of Knowledge
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slope =  ( 1  — u i q ) / u a

Figure 5.4: Phase Diagram in Growth of Two Aspects of Knowledge

lnyt

slope =  gA

to

Figure 5.5: Intertemporal effect of an increase in (qa +  qQ) at to
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9a

‘ 9q =  0

r n

L J
9q =  ( C ^ 9 k

Figure 5.6: Phase Diagram for example (5.24)
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A p p en d ix  A

A p p en d ix  to  C hapter 1

Definition A .l A balanced growth equilibrium is an equilibrium in which all real vari­

ables grow at constant, though not necessarily equal rates.

Definition A.2 A linear differential equation is of the form dX/dt  = X  =  X  , where 

the blank may be endogenous and/or exogenous. Examples from the R&D-based literature 

include the population equation L = nL (Jones 1995a), a human capital accumulation 

equation H = lj\H (Lucas 1988), and a R&D equation Ä — l^LA  (Römer 1990).

Definition A .3 Sectoral linearity in the accumulation of knowledge implies that the 

output of new knowledge will double whenever we double the existing stock of knowledge. 

H = Ia H and A =  l^LA  are examples of sectoral linearity in the human capital formation 

and R&D sectors, respectively. We distinguish sectoral linearity from linearity, in general,

which can take the form of constant returns to scale in models with multiple state variable.



The following definitions relate to the characteristics of the growth rate of the 

economy, as measured by the growth in per capita output, in a balanced growth equilibrium.

Definition A .4 Growth is endogenous if long run growth in the economy is determined 

within the model, rather than by some exogenously growing variables like population growth 

or unexplained technological progress.

Definition A .5 Growth is semi-endogenous if technological change is endogenously de­

termined, but long run growth in the economy requires growth in a factor exogenous to the 

model, population. (1-lc) is an example.

Definition A .6 Growth is scale or exhibits strong scale effects if both the growth rate and 

level of per capita output are increasing in the population level. (1.1a) is an example.

Definition A .7 Growth is non-scale if the long run growth rate of the economy does not 

vary with the size of the economy as typically measured by its population. Examples of 

non-scale growth are (1.1c), ( l.ld ) and (l.le). Thus, non-scale growth need not imply 

semi-endogenous growth. Christiaans (2004) shows that the notions of non-scale growth 

and semi-endogenous growth are logically independent.

Definition A .8 Growth exhibits weak scale effects if the growth rate of per capita output 

does not vary with population level, but the level of per capita output is increasing in the 

population level. For example, (1-lc) exhibits weak scale effects; ( l.le )  does not exhibit

weak scale effects.
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B . l  P ro o f o f P rop osition  2.1

0 ' ( i t ) =  ^ 2 ( l - / 3 « ) g 4 r ^ - > O  V k, e  (0, fc*)

Using Xt — xrit and rearranging from (2.20),

dx
dx

d(x /n)
dx a l [a l +  (a 2Xt)a] a > 0

> 0

dw™

~dk~t

d w ?  (1 -  ß t) 

aA(  1 -  a)( 1 -  p) [akp +  (1 -  a)]1/p~2 kp~ l > 0

4>" (kt ) = (1—7 )0:“ [af +  {a2x t )a}'

Noting that,

^2? .771
=  oA (l -  « )(!  “  P)t f~2 [<*kt +  (1 -  a)}1 P~3 {(1 -  a)(p  -  1) -  apkp}



where

£Lm,k > 1  <$■ p £ [0,1) => d2w™/dk2 < 0

(—1 — a) < 0 <4- ex,z > 0.5

Given eLmfK > 1, > 0.5 => 4>"{kt) < 0

B .2  P ro o f o f  P rop osition  2.4

Noting that (2.12) is homogeneous of degree 1, zf  =  dp/dw™.nt and

dnt * /dw\
72 [w™.dp/ dw™ +  (1 — ßt). — dp/dßt\ — 7 (Wf +  2w™)dp/dw

\p(wp,ßt)\

dn ,* /dwT = ^ l - S t ) . - d p / d ß , \  - - r i d p / O w ?  <  0

dnt/dw™ < 0 <=>

Substituting from (2.10) and (2.11),

\p(w?ißt)Y
- dp/dßt <
dp/dw™ '  2 [1 -  ß t]

dn,/dK  <  0 » ( ° 2 r a / ^ 1 ( i - / j ‘.) : / a : 1 <
( a i ) - a/a~l (w™)1/a 1 2 [1 ~  ßt]

dnt/dw™ < 0 ^ 1  — a 2

Given the definition of 07, 0 .2  and e,

dnt/dw™ < 0  <=>

1 - ß t <
2[1 -ft]

1 - 5
1-/8, "3“ <

2 [ l - & ]

ön , /ö<>  = 0 »  <  =  «,”*** = ( f ) 1 /! ( T 7 ) ( l - i 9 t)<e“ 1)/e

dp/dßt .nt .



B .3  P ro o f accom panying d iscussion  o f  P rop osition  2.5

dwm *  *  

de

w *  *  =
1 - 5

3ln ( l - ß t ) (e—l) /e  

, P \  1/e

3l n « / 2 ) 1/e

r1 * ? ' - « “-” (? )  > < - « - " ( ? ) }
*  *

< 0  »  ^  > (1
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C .l  T h e central p lan ner’s op tim iza tion  problem

The central planner’s control variables are c, l a , kA and ■ Utilizing relation­

ships, such as, Fh — (1 — I a — Ih ) -hi )H > the first order optimality conditions can be

summarized in terms of Fj, Jj  and Qj  (j  = A  A', if):

c- e XL (C .la)

\ Jh _ Q h

(1  -  Ia  — Ih ) * Ia ' Ih

,  F « /Jk _,Qk

( 1  — k A -  k H ) 1 kA kn

P ~  = Fk  +  ^ Jk  +  \ Q k

p — — = —Fa + Ja ~\— QaH P  P

p ----= Fh +  —Jh +  Qh
7 7

(C .lb)

(C.lc)

(C .ld)

(C.le)

(C .lf)

where A, p and 7 are the shadow values of aggregate physical capital, ideas and human 

capital, respectively. If n — 0, we replace the first condition with C ~6 =  X.



C .2 H aw kins-S im on C onditions w hen  [dn > 0]

Consider a non-homogeneous system of equations:

YJjL\ aijx j = di (* =  1 , —,m)  (C-2)

where a^ < 0 for all i ^  j; an > 0 for all i and |̂ 4| = |ay| ^  0. System (C.2) expressed in 

matrix form is Ax = d, where A is an m x m matrix.

Corollary C .l (to Hawkins &: Simon’s (1949) Theoreom) A necessary and sufficient 

condition that the Xi satisfying (C.2) be all positive for any set [di > 0] with at least one 

di > 0 is that all principal minors of the matrix ||aij|| be positive.

Proof. Since conditions in terms of principal minors and determinants are gen- 

eralizable to higher dimensions, we prove this corollary by reference to a two dimensional 

system:

an ai2 

Ü21 022

where < 0 for all i ^  j; an > 0 for all i , assumptions underlying the Hawkins-Simon 

conditions. d\ > 0 and = 0 satisfy a weaker assumption of [di > 0] with at least one 

di >  0 .

Suppose (£1,2:2) satisfying (C.3) are positive, but not all the principal minors of 

A in (C.3) are positive. Specifically, the first principal minor is positive, but the second 

principal minor is non-positive: |^4i| =  an  > 0; \A2 \ — \A\ = anU22 — a2iai2 < 0. We show 

that \A\ < 0 implies an inconsistency. Substituting from the first equation in (C.3) for aq

XI d\

£ 2 0

(C.3)



in the second equation gives

(ana22 -  0 2 1 ^ 1 2 ) ^ 2  =  - a 2\di (C.4)

For the equality in (C.4) to hold, X2 > 0 together with (ana22 — a2ia i2) < 0 implies 

—a2idi < 0, which can only be true if either a2i > 0 (and d\ > 0) or d\ < 0 (and a2i < 0), 

a contradiction of either â - < 0 for all i /  j  and d\ > 0, both underlying assumptions, 

which together imply — a2idi > 0. Thus, all principal minors of matrix A are positive is a 

necessary condition for (xi,x2) satisfying (C.3) to be all positive.

To prove that all principal minors of matrix A be positive is a sufficient condition 

for (x i,x2) we show that if \A\\ = an  > 0; |yl2| = \A\ — an a 22 — a2ia i2 > 0 then either 

x\ < 0 or X2 < 0 implies a contradiction. Consider |A| = an a22 — a2ia i2 > 0, but x2 < 0. 

The equality in (C.4) requires — a2idi < 0, which contradicts either < 0 for all i ^  j  or 

d\ > 0, both underlying assumptions. ■

C .3 D erivation  o f  equation  (3 .12)

H Q( H, kHK)
9H ~  H ~ H

Differentiating gn with respect to time,

( QkHkH + QhH + Qk K ) H -  Q(H,  kHK)  H
Q h  = -----------------------------------------^ 2 -----------------------------------------

Noting that kn — 0 and cj# = Q-q * and , we obtain:

9h =  Qh {u h 9h  +  u k 9k  ~  9h }



Substituting for c j h  and ^ K -

i d H
( 0 i  H ) P

IfaHY + fakHK)*}

(0! H )

[ ( 0 !^ + (0 2̂ n pii/p

p

{<b2 k H K ) p

[(<hH)p +  (4>2k „ K y \

gives us equation (3.12).

C .4  S o lu tion  to  Section  3.5.1

For the production structure (3.21a)-(3.21c), the first order optimality conditions

relevant to solving the model are:



c ~ e = A (4a’)

A(1 a) ( l - l A - l H) H = (4b’)

\ Y= pA-cr —A (4d’)

7 = PI ~ Z l (4f)

Total differentiation of (4a’) with respect to time, after inserting (4d’) gives Euler’s 

equation: gc — \  {a Tc — p). As shown in the beginning of Section 4, the growth rate in 

physical capital is constant when gx  =  gy — 9C■ Differentiating (4b’) with respect to 

time, we obtain A(1 — a) = so that from (4d) and (4f), we get cr̂  = £.

Substituting for = £ in Euler’s equation yields:

£ - p
Qy  =  Ok  =  9c 0
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D .l  D erivation  o f u; in (4.22)

From u)q = ail<̂  '

_  (0 iqqQ)p

[(01 Qq Q Y  +  (<t>2*QK )p]



( fa a q K Y
U>1' {(Öi I q Q Y  +  (<t>2a QK )P]

(4j m Q Y  +  (<h<*qKY -  (01 qqQY
{(<hqqQY + ( ^ qKY]

= 1 . ( t m Y  =1 _ uV SQ )

Differentiating gQ = % = with respect to time and noting that qq = 0

and an = 0 along a balanced growth path, and — oj and H-fj~ =  1 — ayields

9Q =  9Q (9k  -  9Q) jl - }
which implies a stable steady state of gk or qQ<p 1? depending on whether e < 1 or e > 1, 

respectively.

D .2  D erivation  o f (4 .26)

We define \  =  A/K.  The dynamic evolution of \ t  is subsequently derived from 

equations (4.24a) - (4.24c):

gx  =  S A - 9 K  =  ß A x T XL q - ß K x ° ,L °  (D.l)

where ß K =  s(1 -  a A)'° (1 -  lAYand 0A =  Bn (UY-

Along a balanced growth path, where gy is constant, ideas and physical capital 

have to grow at the same rate, as implied by (4.25). Thus, gx — 0 implies a steady state 

ratio of ideas to physical capital:

X =
0 aL^ l/(<7 + l-fj)

(D.2)



which simplifies to x = B/ s  in the special case where final production and R&D have the

same production technology (77 = a). Substituting for (D.2) in (4.24a) gives the long run 

growth rate of per capita output:

gy = 9 Y  = 9 K  =  9A = ( f c '- ’V C ) 171'" '  (D.3)

and, simplified for the case of 77 = cr, the long run level of per capital output:

yt =
Y t _

Lt
A0e9yt (D.4)


