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Abstract—We design linear precoders that perform confidential
broadcasting in multi-cell networks for two different forms
of base station (BS) cooperation, namely, multi-cell processing
(MCP) and coordinated beamforming (CBf). We consider a two-
cell network where each cell consists of an N -antenna BS and
K single-antenna users. For such a network, we design a linear
precoder based on the regularized channel inversion (RCI) for
the MCP and a linear precoder based on the generalized RCI
for the CBf. For each form of BS cooperation, we derive new
channel-independent expressions to approximate the secrecy sum
rate achieved by the precoder in the large system regime where
K,N → ∞ with a fixed ratio β = K/N . Using these results, we
determine the optimal regularization parameters of the RCI and
the generalized RCI precoders that maximize the secrecy sum
rate for the MCP and the CBf, respectively. We further propose
power-reduction strategies that significantly increase the secrecy
sum rate at high transmit signal-to-noise ratios when the network
load is high. Our numerical results substantiate the derived
expressions, verify the optimality of the determined optimal
regularization parameters, and demonstrate the performance
improvement offered by the proposed power-reduction strategies.

Index Terms—Physical layer security, confidential broadcast-
ing, multi-cell processing, coordinated beamforming, linear pre-
coder.

I. INTRODUCTION

W IRELESS devices have become ubiquitous in everyday
life with their great flexibility and mobility, which

results in a rapid growing amount of private and sensitive
data transmitted over wireless channels. Due to the unalterable
open nature of the wireless medium, how to secure the data
transmissions is one of the core problems that any wireless
network designer can face. As a complement to traditional
cryptographic techniques, physical layer security techniques
have been widely studied [2, 3] to ensure secure wireless data
transmission by exploiting the characteristics of wireless chan-
nels. The seminal work by Wyner [4] introduced the wiretap
channel model as a fundamental framework for physical layer
security and defined the secrecy capacity as the maximum
rate at which the message can be reliable transmitted to the
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legitimate receiver without being eavesdropped. This result
was then extended to the broadcast channel with confidential
messages in [5] and the Gaussian wiretap channel in [6].

In recent years, the increasing demand of high data rates
in practical wireless applications, e.g., high-quality video
streaming, has sparked a surge in the development of multiple-
input multiple-output (MIMO) techniques. This has triggered
an enormous amount of research activities investigating phys-
ical layer security in MIMO wiretap channels, where the
transmitter, the receiver and/or the eavesdropper are equipped
with multiple antennas. For instance, the secrecy capacity was
analyzed for the MIMO wiretap channel from the information-
theoretical perspective, e.g., [7–9], and some signal processing
techniques were proposed to improve the secrecy performance
of the MIMO wiretap channel, e.g., [10–13]. Apart from the
MIMO wiretap channel, some literatures have focused on the
physical layer security in multi-antenna broadcast networks,
aiming at achieving confidential broadcasting. Different from
the wiretap channel, confidential broadcasting requires mul-
tiple messages to be securely broadcasted to multiple users
in the network. Each of the multiple messages is intended
for one of the users but needs to be kept secret from the
other users. The secrecy capacity of the two-user multi-antenna
broadcast network was examined in [14, 15]. The confidential
broadcasting in the multi-user network where a multi-antenna
base station (BS) serves an arbitrary number of receivers in
a single cell was studied in [16–19]. While the confidential
broadcasting in a single cell has been elaborately studied, the
solution to confidentially broadcasting messages in multi-cell
networks has not been addressed in the literature. The primary
challenge to achieve confidential broadcasting in the multi-
cell network is to deal with not only the inter-cell information
leakage and interference but the intra-cell information leakage
and interference. Thus, the techniques achieving single-cell
confidential broadcasting in [16–19] cannot be directly applied
to achieve multi-cell confidential broadcasting.

In this work we build up an effective solution to tackle this
challenge. To this end, we design linear precoders at BSs that
achieve confidential broadcasting in the multi-cell network. In
the network, BS cooperation [20] is taken into consideration
such that the BSs can share control signals, channel state infor-
mation (CSI) and/or messages to cooperatively serve users in
multiple cells. With BS cooperation, we specifically consider
the confidential broadcasting in a symmetric two-cell network
where there are K single-antenna users and one N -antenna BS
in each cell. The two BSs cooperatively broadcast confidential
information to the users. For each message transmitted to the
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intended user, we consider the worst-case scenario where the
unintended users in both the same cell and the cross cell are
regarded as potential cooperating eavesdroppers. We focus on
two different forms of cooperation at the BSs: i) multi-cell
processing (MCP) and ii) coordinated beamforming (CBf). In
the MCP, the BSs fully cooperate such that they share their
CSI and messages to transmit. Alternatively, in the CBf the
BSs “partially” cooperate. As such, they do not share their
messages to transmit but allow users to feed back the CSI to
the cross-cell BS. In practice, the MCP is appropriate for the
networks where high-capacity backhaul links are established
to enable the sharing of CSI and messages between BSs, while
the CBf is suitable for the networks where such high-capacity
backhaul links are not available. Besides, the investigation of
the two-cell network in this work can be extended to general
multi-cell networks.

The primary contributions of this paper are summarized as
follows.

• We design a linear precoder as per the principles of
regularized channel inversion (RCI)1 [21] to perform
confidential broadcasting in the multi-cell network with
the MCP. We also design a linear precoder as per the
principles of generalized RCI [22] to perform confidential
broadcasting in the multi-cell network with the CBf. In
each precoder, the precoding matrix is designed to trade
off the intended received signal, the intra- and inter-
cell information leakage, and the intra- and inter-cell
interference via a regularization parameter.

• We derive new channel-independent expressions for the
secrecy sum rate achieved by the designed linear pre-
coders for both the MCP and the CBf in the large-system
regime. In this regime, we consider K,N → ∞ and
keep the ratio β = K/N constant. The large-system
expressions do not depend on the channel realizations,
and thus eliminate the computational burden of perfor-
mance evaluation incurred by Monte Carlo simulations.
Notably, numerical results confirm that our large-system
expressions are accurate even for finite K and N .

• We optimize the secrecy performance of confidential
broadcasting in the multi-cell network based on our
large-system expressions. We first determine the optimal
regularization parameters of the RCI and the generalized
RCI precoders in order to maximize the secrecy sum rate
for the MCP and the CBf, respectively. We then propose
power-reduction strategies for the MCP when β > 1 and
the CBf when β > 0.5, which significantly increase the
secrecy sum rate at high transmit signal-to-noise ratios
(SNRs) when the network load is high.

Notations: (·)T and (·)H denote the transpose and conjugate
transpose of a vector or a matrix, respectively, Tr(·) denotes
the trace of a matrix, ‖·‖ denotes the Euclidean norm of a vec-
tor, E{·} denotes the expectation operation, [x]+ = max(x, 0),
a.s−−→ and

i.p.−−→ denote almost sure convergence and convergence
in probability, respectively.

1The regularized channel inversion (RCI) is also sometimes called as
regularized zero forcing (RZF) in some literatures.

Fig. 1. Illustration of a symmetric two-cell broadcast network, where each
cell consists of one N -antenna BS and K single-antenna users.

II. NETWORK MODEL

We consider a symmetric two-cell broadcast network, as
depicted in Figure 1. In each cell, there are K single-antenna
users and one N -antenna BS. The two BSs cooperate to serve
the users in two cells. For this network, we consider two forms
of BS cooperation in this paper, i.e., the MCP and the CBf, the
practicality of which are presented in Section I. For the sake of
brevity, throughout the paper we denote BS (i) and user (k, j)
as the BS in cell i and the user k in cell j, respectively, where
i ∈ {1, 2}, j ∈ {1, 2} and k ∈ {1, 2, · · · ,K}. Moreover,
we adopt the following notations to represent the channel
coefficients in the two-cell broadcast network:

1) The channel vector from BS (i) to user (k, j) is denoted
by the row vector hk,j,i.

2) The 2K × N channel matrix from BS (i) to all
the users in both cells is denoted by Hi =[
hH1,1,i h

H
2,1,i · · ·hHK,1,i hH1,2,i hH2,2,i · · ·hHK,2,i

]H
.

3) The channel vector from both BSs to user (k, j) is
denoted by hk,j = [hk,j,1 hk,j,2].

4) The 2K × 2N channel matrix from both BSs to
all the users in both cells is denoted by H =[
hH1,1 hH2,1 · · ·hHK,1 hH1,2 hH2,2 · · ·hHK,2

]H
.

5) The channel vector between a user and the same-cell BS
is denoted by hk,j,j .

6) The channel vector between a user and the cross-cell BS
is denoted by hk,j,j̄ where j̄ = 1 if j = 2 and j̄ = 2 if
j = 1.

We assume that the antennas at the BSs and the users
are sufficiently spaced apart such that all links between
the transmit and receive antennas are uncorrelated. We also
assume that the data are transmitted over the block fading
channel where the coherence time of the channel is larger than
the symbol interval. In addition, we consider a homogenous
scenario where all users in the same cell to a BS have the
same average power. This is a widely-adopted consideration
for multi-user networks where the users in the same cell are
located at the same distance away from the BS. A practical
example of this scenario is that the users in the same cell
are close together, e.g., in an office building, but far from
the BS. Then, the channels between a user and the same-
cell BS are modeled as independent and identically distributed
(i.i.d.) complex Gaussian variables with zero mean and unit
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variance, i.e., hk,j,j ∼ CN (0, IN ), whereas the channels
between a user and the cross-cell BS are modeled as i.i.d.
complex Gaussian variables with zero mean and variance ε,
i.e., hk,j,j̄ ∼ CN (0, εIN ). Here, 0 < ε ≤ 1 represents the
cross-cell interference level, which characterizes the severity
of interference between two cells. In addition, we assume that
each user (k, j) perfectly knows hk,j and feeds back hk,j,j
to the same-cell BS and hk,j,j̄ to the cross-cell BS through
corresponding uplink channels. Finally, we assume that the
BSs perfectly recover the CSI from feedback information2.

Given the aforementioned assumptions and notations, the
received signal at user (k, j) is given by

yk,j = hk,j,1x1 + hk,j,2x2 + nk,j , (1)

where xi ∈ CN×1, i ∈ {1, 2} is the transmitted data from
BS (i) and nk,j ∼ CN (0, σ2

d) is the additive white Gaussian
noise (AWGN) at user (k, j). We clarify that xi consists of
the linearly precoded symbols for the users to be served. We
also clarify that the generation of xi depends on the form of
BS cooperation considered, as will be detailed in Sections II-B
and II-C. The vector equation of received signals at all users
is given by

y = H1x1 + H2x2 + n, (2)

where y = [y1,1 y2,1 · · · yK,1 y1,2 y2,2 · · · yK,2]
T and n =

[n1,1 n2,1 · · ·nK,1 n1,2 n2,2 · · ·nK,2]
T .

A. Confidential Broadcasting and Performance Metric

The aim of this work is to design linear precoders to achieve
confidential broadcasting in the two-cell broadcast network.
To meet the requirement of confidential broadcasting, the
message for each user (k, j) needs to be securely transmitted
such that the unintended users obtain zero information. We
consider a worst-case scenario in the two-cell network. In such
a scenario, we assume that for the message to each user (k, j),
all remaining 2K−1 users in both cells act as eavesdroppers,
and they jointly eavesdrop on the message in a collaborative
manner. The cooperating eavesdroppers decode their own
signals and share them with each other. It follows that the
cooperating eavesdroppers are able to perform interference
cancellation, leaving only the signal for the intended user. The
alliance of 2K − 1 cooperating eavesdroppers is equivalent
to a single eavesdropper with 2K − 1 distributed receive
antennas, which is denoted by the eavesdropper (k̃, j̃). The
consideration of the worst-case scenario is motivated by the
fact that the malicious behaviors of the potential eavesdroppers
in the network are not fully controllable or predictable at the
BSs. As a result, the weaker assumption of non-colluding
eavesdroppers (or equivalently, eavesdroppers are interfered
by each other) cannot lead to any true guarantee of security.
Furthermore, we clarify that intentionally sharing the received
messages by potential eavesdroppers does not disobey the
rule of confidential broadcasting. This is due to the fact
that confidential broadcasting requires the BSs to securely

2Although this work adopts the assumption of perfect CSI at the base
station, we note that if channel estimation errors exist, the achievable secrecy
rates of the proposed schemes would become worse.

transmit messages to each user, but does not control the users’
behaviors after receiving messages. Due to the aforementioned
necessity, we highlight that the consideration of the worst-
case scenario is widely adopted in designing confidential
broadcasting networks, e.g., [16–19].

The secrecy performance in the two-cell broadcast network
is measured by the secrecy sum rate, denoted by Rs. It is
mathematically formulated as

Rs =

2∑
j=1

K∑
k=1

Rkj , (3)

where Rkj is the secrecy rate for the message to user (k, j).
According to the principles of physically layer security, Rkj
is given by

Rkj =
[
log2 (1 + SINRk,j)− log2

(
1 + SINRk̃,j̃

)]+
, (4)

where SINRk,j and SINRk̃,j̃ denote the signal-to-interference-
plus-noise ratios (SINRs) at the intended user (k, j) and the
eavesdropper (k̃, j̃), respectively.

B. Multi-Cell Processing with RCI Precoder

In the MCP, the two BSs fully cooperate to serve the
users in the two cells based on the mutually shared CSI and
messages to transmit. We note that the two-cell broadcast
network with the MCP may appear to be similar to a single-
cell broadcast network with 2N transmit antennas and 2K
single-antenna users. However, it is worth mentioning that the
design of transmission schemes and the corresponding analysis
for confidential broadcasting in the MCP, which take the cross-
cell interference level ε into consideration, are fundamentally
different from those for confidential broadcasting in a single
cell, e.g., [17]. As previously mentioned, the cross-cell in-
terference level, ε, characterizes the severity of interference
between two cells. For the single-cell network considered
in [17], the average SNRs for all channels between the BS
and the users are assumed to be the same. This implies that
all channels are identically distributed. Different from [17],
for the MCP in this paper, the average SNRs of the same-cell
channels are different from the average SNRs of the cross-
cell channels. This implies that all channels are non-identically
distributed. Therefore, the large-system analysis of the secrecy
sum rate in [17] cannot be directly applied in the MCP, and
new large-system analysis needs to be conducted to address
the non-identically distributed channel coefficients. Of course,
when ε = 1, the MCP reduces to the single-cell network,
which shows that the result in [17] is a special case of the
result for the MCP in this paper.

We next detail the precoder design for the MCP. In our
design, the RCI precoder [21] is adopted at BSs to achieve
confidential broadcasting. As a linear precoder, the RCI pre-
coder has a low signal-processing complexity and the ability of
controlling the information leakage as well as the interference
amongst the users [17, 19]. As per the rules of the RCI
precoder, the precoding vector for the message to user (k, j)
is given by

wk,j = c
(
HHH + αI2N

)−1
hHk,j , (5)
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where c is a scaling factor to ensure the power constraint at
BSs and α is a real non-negative regularization parameter.
Notably, the regularization parameter α achieves a tradeoff
between the signal power at the intended receiver and the
amount of information leakage as well as interference amongst
users. Using wk,j , the transmitted data vector x = [x1;x2] is
written as

x =

2∑
j=1

K∑
k=1

wk,jsk,j , (6)

where sk,j denotes the message to be transmitted to user
(k, j). We assume that the messages for different users are
independent and impose a unit average power constraint on
sk,j such that E

{
ssH

}
= I2K with s = [s1; s2] and sj =

[s1,j s2,j · · · sK,j ]T . We also assume that the BSs are subject
to an average sum-power constraint such that E

{
‖x‖2

}
= Pt.

Accordingly, the scaling factor c is determined by

c2 =
Pt

Tr
(

(HHH + αI2N )
−2

HHH
) . (7)

Based on (5) and (6), the received signal at the intended
user (k, j) is written as

yk,j = chk,j
(
HHH + αI2N

)−1
HHs + nkj

= chk,j
(
HHH + αI2N

)−1
hHk,jsk,j

+ chk,j
(
HHH + αI2N

)−1
HH
k̃,j̃

sk̃,j̃ + nkj , (8)

where Hk̃,j̃ and sk̃,j̃ are obtained from H and s by removing
the row corresponding to user (k, j), respectively. Moreover,
the received signal vector at the eavesdropper (k̃, j̃) is written
as

yk̃,j̃ = cHk̃,j̃

(
HHH + αI2N

)−1
hHk,jsk,j + nk̃,j̃ , (9)

where yk̃,j̃ and nk̃,j̃ are obtained from y and n by removing
the row corresponding to user (k, j), respectively. Based on (8)
and (9), the SINRs for the message sk,j at the intended user
(k, j) and the eavesdropper (k̃, j̃) are given by

SINRk,j =
c2
∣∣∣hk,j (HHH + αI2N

)−1
hHk,j

∣∣∣2
c2ψ + σ2

d

(10)

and

SINRk̃,j̃ =
c2
∣∣∣Hk̃,j̃

(
HHH + αI2N

)−1
hHk,j

∣∣∣2
σ2
d

, (11)

respectively, where

ψ=hk,j
(
HHH + αI2N

)−1
HH
k̃,j̃
Hk̃,j̃

(
HHH + αI2N

)−1
hHk,j .
(12)

As such, the secrecy sum rate achieved by the RCI precoder
for the MCP is obtained as (13), shown at the top of the next
page.

C. Coordinated Beamforming with Generalized RCI Precoder

In the CBf, the two BSs partially cooperate based on the
CSI from all users. Since the BSs do not know the messages
for the cross-cell users, they only transmit data for the users
in their own cells. Also, the two BSs cooperate to control the
information leakage in both cells. Furthermore, they cooperate
to control the interference power amongst the users in both
cells (or equivalently, the received signal power at unintended
users) by properly designing the precoder and wisely choosing
the regularization parameter α [22, 23].

We now detail the precoder design for the CBf. In this
design, we consider the generalized RCI precoder [22] at
BSs to achieve confidential broadcasting, since using the
generalized RCI precoder for the CBf allows each BS to
control the interference and information leakage amongst the
users not only in the same cell but also in the cross cell3. As
per the rules of the generalized RCI precoder, the precoding
vector for the message to user (k, j) is given by

wk,j = cjŵk,j

= cj

 ∑
(l,m)6=(k,j)

hHl,m,jhl,m,j + αIN

−1

hHk,j,j , (14)

where cj is the scaling factor to ensure the power constraint at
BS (j) and α is the real non-negative regularization parameter
achieving the tradeoff between the signal power at the intended
receiver and the amount of information leakage as well as
interference amongst users. The transmitted data vector at the
BS (j) is written as

xj =

K∑
k=1

wk,jsk,j , (15)

where sk,j denotes the message to be transmitted to user (k, j)
with the same property as that in the MCP. From (14) and (15),
we find that BS (j) only requires the CSI from itself to users,
hk,i,j , to construct the precoding matrix. That is, BS (j) does
not need the CSI from the other BS (j̄) to users, hk,i,j̄ , for
the precoding matrix construction. Different from the average
sum-power constraint for two BSs in the MCP, we consider in
the CBf that each BS is subject to an average power constraint,
such that E

{
‖xj‖2

}
= Pj . Then the total power constraint for

two BSs is given by Pt = P1 +P2. Here we assume the same
average power constraint at both BSs, i.e., P1 = P2 = P =
Pt/2. Hence, the scaling factor cj in (14) is determined by

c2j =
Pj∑K

k=1 ‖ŵk,j‖2
. (16)

Based on (14) and (15), the received signal at the intended
user (k, j) is written as

yk,j = hk,j,jwk,jsk,j +
∑

(k′,j′)6=(k,j)

hk,j,j′wk′,j′sk′,j′ + nk,j .

(17)

3We clarify that the principle of the generalized RCI precoder is different
from that of the RCI precoder. If we adopt the RCI precoder in the CBf, as
we do in the MCP, each BS transmits data and controls the interference and
information leakage amongst the users only in the same cell.
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Rs,MCP =

2∑
j=1

K∑
k=1

log2


1 +

c2
∣∣∣hk,j(HHH+αI2N)

−1
hHk,j

∣∣∣2
c2hk,j(HHH+αI2N )−1HH

k̃,j̃
Hk̃,j̃(H

HH+αI2N )−1hHk,j+σ
2
d

1 +
c2|Hk̃,j̃(H

HH+αI2N )−1hHk,j|2
σ2
d




+

. (13)

Moreover, the received signal vector at the eavesdropper (k̃, j̃)
is written as

yk̃,j̃ = Hk̃,j̃,jwk,jsk,j + nk̃,j̃ . (18)

where Hk̃,j̃,j and nk̃,j̃ are obtained from Hj and n by
removing the row corresponding to user (k, j), respectively.
Based on (17) and (18), the SINRs for the message sk,j at the
intended user (k, j) and the eavesdropper (k̃, j̃) are given by

SINRk,j =
c2j |hk,j,jŵk,j |2∑

(k′,j′)6=(k,j) c
2
j′ |hk,j,j′ŵk′,j′ |2 + σ2

d

(19)

and

SINRk̃,j̃ =

∑
(k′,j′) 6=(k,j) c

2
j |hk′,j′,jŵk,j |2

σ2
d

, (20)

respectively. Aided by (19) and (20), the secrecy sum rate
achieved by the generalized RCI precoder for the CBf is
obtained as (21), shown at the top of the next page.

It is evident that the secrecy sum rates in (13) and (21)
depend on the realization of each channel, hk,j,i. Based on
them, we can only evaluate the secrecy performance by time-
consuming numerical simulations. This motivates us to seek
channel-independent expressions that reduce the complexity
of performance evaluations. Therefore, in the next section we
resort to the large-system analysis to explicitly characterize the
secrecy sum rate of confidential broadcasting in the two-cell
broadcast network.

III. SECRECY SUM RATE IN THE LARGE-SYSTEM REGIME

In this section, we derive channel-independent expressions
for the secrecy sum rate of the two-cell broadcast network in
the large-system regime. In such a regime, both the number of
users in each cell, K, and the number of transmit antennas at
each BS, N , approach infinity with a fixed ratio, β = K/N .
Besides, we denote γ = Pt/(2σ

2
d) = P/σ2

d as the average
transmit SNR at each BS. As will be shown later in numerical
simulations, the analytical result in the large-system regime
can accurately approximate the secrecy sum rate of the net-
work even with finite K and N .

A. Large-System Analysis

In the large-system analysis for the symmetric two-cell
network with K,N → ∞, the secrecy rate for all messages
sk,j converge to the same non-random function. This function
does not depend on the realization of each channel hk,j,i.
Thus, the secrecy sum rate is analytically approximated by

R∞s = 2K
(
R∞k,j

)
= 2K

[
log2

1 + SINR∞k,j
1 + SINR∞

k̃,j̃

]+

, (22)

where R∞k,j denotes the large-system secrecy rate for each user,
SINR∞k,j and SINR∞

k̃,j̃
denote the large-system approximations

of the SINRs at the intended user and the eavesdropper,
respectively.

In the following Theorem 1 and Theorem 2, we present the
large-system secrecy sum rate achieved by the RCI precoder
for the MCP and the large-system secrecy sum rate achieved
by the generalized RCI precoder for the CBf, respectively.

Theorem 1: In the large-system regime, the secrecy sum
rate achieved by the RCI precoder for the MCP converges in
probability to a deterministic quantity given by (23), where
ρM = (1 + ε)−1α/N and g(β, ρM ) is the solution of x to

x =
(
ρM + β

1+x

)−1

.
Proof: See Appendix A.

Theorem 2: In the large-system regime, the secrecy sum
rate achieved by the generalized RCI precoder for the CBf
converges almost surely to a deterministic quantity given
by (24), where ρC = α/N , Λ is the solution of x to

x =
(
ρC + βε

1+εx + β
1+x

)−1

and Λ0 is the solution of x to

x =
(

βε
1+εx + β

1+x

)−1

.
Proof: See Appendix B.

We provide several remarks about the large-system secrecy
sum rates derived in Theorems 1 and 2, as follows:

Remark 1: Theorems 1 and 2 provide closed-form and
channel-independent expressions for the large-system secrecy
sum rates for the MCP and the CBf, respectively. We highlight
that these expressions eliminate the computational burden of
performance evaluation incurred by Monte Carlo simulations.
Notably, these expressions allow us to evaluate and optimize
the secrecy performance efficiently. The comparison of the
optimal achievable secrecy performance between the MCP and
the CBf will be conducted in Section IV-A.

Remark 2: The results for both the MCP and the CBf con-
tain the parameter ε, such that they characterize the impact of
the cross-cell interference level on the secrecy sum rate. This
demonstrates that the analysis of confidential broadcasting in
multi-cell networks is fundamentally different from that in
single-cell networks which did not consider ε, e.g., [17].

Remark 3: We note that the result in Theorem 1 with
ε = 1 reduces to the result for the single-cell confidential
broadcasting given in [17], which demonstrates the generality
of our analysis. This is due to the fact that the confidential
broadcasting in a single cell with one 2N -antenna BS and
2K single-antenna users is equivalent to a special case of the
confidential broadcasting in the MCP.

B. Numerical Results
In this subsection, we examine the accuracy of the large-

system results by comparing the large-system secrecy sum
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Rs,CBf =

2∑
j=1

K∑
k=1

log2

1 +
c2j |hk,j,jŵk,j |

2∑
(k′,j′)6=(k,j) c

2
j′ |hk,j,j′ ŵk′,j′ |

2
+σ2

d

1 +
∑

(k′,j′) 6=(k,j) c
2
j |hk′,j′,jŵk,j|2
σ2
d




+

. (21)

R∞s,MCP =


2K

log2

 1+(1+ε)γg(β,ρM )
1+

ρM
β (1+g(β,ρM ))2

(1+ε)γ+(1+g(β,ρM ))2

1+
(1+ε)γ

(1+g(β,ρM ))2

+

, if α 6= 0

2K log2

(
1 + (1−β)(1+ε)γ

β

)
, if α = 0 and β ≤ 1

2K
[
log2

(
β3(β+(β−1)(1+ε)γ)

(β2+(β−1)2(1+ε)γ)2

)]+
, if α = 0 and β > 1.

(23)

R∞s,CBf =



2K

log2

 1+

Λ
β

(
ρC+

βε

(1+εΛ)2
+

β

(1+Λ)2

)
1
γ

+ ε
(1+εΛ)2

+ 1
(1+Λ)2

1+γ
(

ε
(1+εΛ)2

+ 1
(1+Λ)2

)



+

, if α 6= 0

2K log2

(
1 + (1−2β)γ

β

)
, if α = 0 and β ≤ 0.5

2K

log2

 1+

Λ0
β

(
βε

(1+εΛ0)2
+

β

(1+Λ0)2

)
1
γ

+ ε
(1+εΛ0)2

+ 1
(1+Λ0)2

1+γ
(

ε
(1+εΛ0)2

+ 1
(1+Λ0)2

)



+

, if α = 0 and β > 0.5.

(24)
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Fig. 2. The normalized rate difference versus the number of antennas at
each BS for ε = 0.5, α = 0.2, β = 0.5 and γ = 10 dB.

rate, R∞s , with the average secrecy sum rate of networks
with finite K and N , E {Rs}. To this end, we introduce the
normalized rate difference defined by

∆Rs =
|E {Rs} −R∞s |

E {Rs}
, (25)

which quantifies the rate difference between R∞s and E {Rs}
for finite K and N .

We first demonstrate the accuracy of the large-system ap-
proximation over the size of network. Figure 2 plots ∆Rs
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Fig. 3. The normalized rate difference versus the cross-cell interference level
for N = 20, α = 0.2, β = 0.5 and γ = 10 dB.

versus N for the MCP and the CBf4. As depicted in the figure,
∆Rs decreases as N increases. This indicates that the large-
system approximation becomes more accurate as the size of
network increases. Moreover, we find that the rate difference
for the MCP is very small across the whole range of N , which
indicates that R∞s,MCP in (23) is a very accurate approximation.

4Throughout this paper we present numerical results by considering some
particular examples of networks. For instance, we adopt ε = 0.5, α =
0.2, β = 0.5 and γ = 10 dB in Figure 2. Of course, these examples do not
restrict the generality of our results for arbitrary network parameters, unless
otherwise stated.
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Furthermore, we find that the rate difference for the CBf is a
bit higher than that for the MCP for small N , but decreases
rapidly when N grows large. Notably, the rate differences for
both the MCP and the CBf are extremely small for large N ,
e.g., ∆Rs < 1% for N ≥ 40.

We then confirm the accuracy of the large-system approxi-
mation over the entire range of ε. Figure 3 plots ∆Rs versus
ε for the MCP and the CBf. In this figure, we consider the
network with N = 20. We find that the highest rate difference
for the MCP is lower than 3 × 10−3 and the highest rate
difference for the CBf is approximately 4 × 10−2. As such,
our large-system approximations provide reasonable accuracy
across the entire range of ε.

IV. OPTIMIZATION OF SECRECY SUM RATE

In this section, we maximize the large-system secrecy
sum rate for the MCP and the CBf based on the derived
channel-independent large-system approximations. We first
determine the optimal regularization parameter that maximizes
the large-system secrecy sum rate. Moreover, we propose
power-reduction strategies to maintain the maximum large-
system secrecy sum rate when an increasing transmit SNR
cannot sustain a growing large-system secrecy sum rate for a
high network load.

A. Optimal Regularization Parameter

In this subsection, we seek the optimal α which maximizes
the secrecy sum rate in the large-system regime. We note that
the regularization parameter in the linear precoding matrix, α,
plays a pivotal role in determining the network performance.
This is due to its ability of handling the trade-off between
the signal power at the intended receiver and the amount of
information leakage as well as interference amongst users. We
denote α∗MCP = arg max

α
R∞s,MCP and α∗CBf = arg max

α
R∞s,CBf

as the optimal regularization parameters for the MCP and the
CBf, respectively.

1) α∗MCP for MCP: We now determine α∗MCP. By taking the
first order derivative of R∞s,MCP in (23) with respect to α, we
find that there are two possibilities for the sign of ∂R∞s,MCP/∂α
when α ≥ 0: 1) ∂R∞s,MCP/∂α is always negative or 2)
∂R∞s,MCP/∂α is positive for small α and becomes negative
as α increases. This implies that the optimal value of α that
maximizes R∞s,MCP is equal to either zero or a unique positive
value. Then we obtain the value of α∗MCP by seeking the
solution of α to ∂R∞s,MCP/∂α = 0. After performing a series
of complicated algebraic manipulations, we obtain α∗MCP as

α∗MCP =

[
β2 − φ2

1 − (β + φ1)
√
β2 + βφ2 + φ2

1 + 3φ3
3γ
N (β + φ2)

]+

,

(26)
where φ1 = (1 + ε) (β − 1) γ, φ2 = (1 + ε)(β + 2)γ and
φ3 = (1 + ε)βγ. The optimality of α∗MCP will be verified in
Section IV-A3.

2) α∗CBf for CBf: We note that the closed-form expression
for α∗CBf is mathematically intractable. As such, we present
Algorithm 1 to numerically determine α∗CBf. By taking the
first order derivative of R∞s,CBf in (24) with respect to α, we

Algorithm 1 Numerical Search for α∗CBf

1: Input: f(x) =
∂R∞s,CBf
∂α (α = x);

Acceptable error d (e.g., d = 10−10);
Initial search point αp (e.g., αp = 1);

2: Output: α∗CBf that satisfies |f(α∗CBf)| ≤ d;
3: Initialize iteration counters: c = 0;
4: if |f(αp)| ≤ d then
5: return α∗CBf = αp; {The value of α∗CBf is obtained.}
6: end if
7: if f(αp) > 0 then
8: Initialize the lower bound of α∗CBf by

αl = αp;
9: while f(αl + 2c) > 0 do

10: Update the lower bound by αl = αl + 2c;
11: Exponentially increase the one-side search step 2c by

c = c+ 1;
12: end while
13: Set the upper bound of α∗CBf by αu = αl + 2c;
14: else
15: Initialize the upper bound of α∗CBf by

αu = αp;
16: while f(αu × 10−1) < 0 do
17: Update the upper bound by

αu = αu × 10−1;
18: end while
19: Set the lower bound of α∗CBf by

αl = αu × 10−1;
20: end if
21: if |f(αl)| ≤ d then
22: return α∗CBf = αl; {The value of α∗CBf is obtained.}
23: end if
24: if |f(αu)| ≤ d then
25: return α∗CBf = αu; {The value of α∗CBf is obtained.}
26: end if
27: Initialize the mid-point αm = (αl + αu)/2;
28: while |f(αm)| > d do
29: if f(αm) > 0 then
30: αl = αm;αu = αu;
31: else
32: αl = αl;αu = αm;
33: end if
34: αm = (αl + αu)/2;
35: end while
36: return α∗CBf = αm; {The value of α∗CBf is obtained.}

find that there are two possibilities for the sign of ∂R∞s,CBf/∂α
when α ≥ 0: 1) ∂R∞s,CBf/∂α is positive for small α and
becomes negative as α increases or 2) ∂R∞s,CBf/∂α is always
negative. This implies that, from the theoretical perspective,
the optimal value of α that maximizes R∞s,CBf is a unique
positive value or approaches zero. Therefore, the value of α∗CBf
can be obtained by numerically searching the value of α that
satisfies ∂R∞s,CBf/∂α = 0, with the aid of Algorithm 1.

3) Numerical Results: In the following numerical results,
we verify the optimality of the determined α∗MCP and α∗CBf.
Figure 4 plots the large-system secrecy rate per transmit
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MCP with MCP
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CBf with CBf

α*α = CBf

Fig. 4. The large-system secrecy rate per antenna versus the cross-cell
interference level for different designs of the regularization parameter with
N = 20, β = 0.5 and γ = 10 dB.

antenna, R∞s /(2N), versus ε. Specifically, we compare the
performances for two different designs of α: 1) the optimal α
that maximizes the large-system secrecy sum rate, i.e., α∗MCP
given by (26) for the MCP or α∗CBf obtained by Algorithm 1
for the CBf and 2) the optimal α that maximizes the large-
system sum rate without secrecy considerations given by [24],
i.e., α̃∗MCP for the MCP or α̃∗CBf for the CBf. We find that the
performance achieved by α∗MCP or α∗CBf is always better than
that achieved by α̃∗MCP or α̃∗CBf. We note that the difference
between the performances achieved by α∗MCP and α̃∗MCP is not
as obvious as that for the CBf. This is due to the values
of network parameters (i.e., β and γ) chosen in the figure.
Actually, the advantage of using α∗MCP against α̃∗MCP can be
very obvious as well if some other network parameters are
considered, e.g., β = 1. These observations indicate that
the optimal values of α without secrecy considerations given
by [24] are no longer optimal for the networks with secrecy
considerations.

Comparing the results for the MCP and the CBf, it is evident
that the secrecy rate for the MCP is in general higher than that
for the CBf. This is due to the fact that the BSs in the MCP
share messages to transmit while the BSs in the CBf do not.
Note that such an advantage of secrecy rate necessitates the
high-capacity backhaul links in the MCP. Moreover, we find
that the secrecy rate for the MCP increases with ε. In contrast,
the secrecy rate for the CBf decreases with ε. This observation
can be explained as follows. The value of ε determines the
average channel gain from the cross-cell BS to the users.
In particular, a higher ε increases the power of the received
signals from the cross-cell BS. In the MCP where BSs share
messages to transmit, a higher ε increases the received signal
power at the intended user, although the interference power
at the intended user and the received signal power at the
eavesdropper increase as well. Thus, the secrecy rate for the
MCP can increase as ε increases. On the other hand, the BSs
cannot share messages to transmit in the CBf. As such, a
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Fig. 5. MCP: the large-system secrecy rate per antenna versus the average
transmit SNR per BS for different designs of the regularization parameter
with β = 0.8, 1, 1.2, N = 20 and ε = 0.5.
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Fig. 6. CBf: the large-system secrecy rate per antenna versus the average
transmit SNR per BS for different designs of the regularization parameter
with β = 0.4, 0.5, 0.6, N = 20 and ε = 0.5.

higher ε only increases the interference power at the intended
user and the received signal power at the eavesdropper, but
does not increase the received signal power at the intended
receiver. It follows that the secrecy rate for the CBf always
decreases as ε increases.

We next demonstrate the optimality of the determined α∗MCP
and α∗CBf over the average transmit SNR per BS, γ, and
examine the impact of γ on the large-system secrecy sum rate.
Figures 5 and 6 plot R∞s /(2N) versus γ for the MCP and
the CBf, respectively. We compare the performance achieved
by the obtained optimal α with the performance achieved
by an arbitrarily chosen α, i.e., α = 0.2, in the figures. As
shown in both figures, the secrecy rate achieved by the optimal
regularization parameter is always higher than that achieved
by α = 0.2 for both the MCP and the CBf, which confirms the
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Fig. 7. The large-system secrecy rate per antenna versus the average transmit
SNR per BS for different designs of the regularization parameter with N = 20
and ε = 0.5.

optimality of α∗MCP and α∗CBf. Besides, we note that the secrecy
rate achieved by α = 0.2 always reduces to zero when γ grows
large. This can be explained based on (23) and (24), i.e.,

lim
γ→∞

R∞s,MCP = lim
γ→∞

R∞s,CBf = 0, if α 6= 0. (27)

Differently, the secrecy rate achieved by the optimal regular-
ization parameter may not reduce to zero when γ is high.
For the MCP, Figure 5 shows that the secrecy rate achieved
by α = α∗MCP monotonically increases with γ if β ≤ 1, but
goes to zero at high transmit SNRs if β > 1. For the CBf,
Figure 6 shows that the secrecy rate achieved by α = α∗CBf
monotonically increases with γ if β ≤ 0.5, but goes to
zero at high transmit SNRs if β > 0.5. These observations
reveal that the increase in γ benefits the secrecy performance
achieved by the optimal α, when the network load is low. We
now analytically explain these observations as follows. From
the analytical results, we find that the optimal regularization
parameter goes to zero as γ increases for both the MCP and
the CBf. When α→ 0, we find from (23) that limα→0R

∞
s,MCP

monotonically increases with γ if β ≤ 1, while limα→0R
∞
s,MCP

approaches to zero at high transmit SNRs if β > 1. Similarly, it
is found from (24) that limα→0R

∞
s,CBf monotonically increases

with γ if β ≤ 0.5, while limα→0R
∞
s,CBf goes to zero at high

transmit SNRs if β > 0.5.
Finally, we demonstrate the advantage of the proposed

precoders relative to the channel inversion precoder in the two-
cell network. The channel inversion precoder (also called as
zero-forcing precoder) is a well-known linear precoder that
can eliminate the interference amongst users in the multi-
user multi-input single-output (MISO) broadcasting network
where the number of users is less than or equal to the
number of transmit antennas at the BS, i.e., β ≤ 1 for the
MCP or β ≤ 0.5 for the CBf5. Figure 7 plots R∞s /(2N)

5The well-known block-diagonalization (BD) precoder is a generalization
of the channel inversion precoder to the scenario where multiple antennas are
equipped at each user [25–27].

versus γ for the proposed precoders and the channel inversion
precoder. The proposed precoders include the RCI precoder
with α = α∗MCP for the MCP and the generalized RCI
precoder with α = α∗CBf for the CBf. For the MCP, the RCI
precoder with α = 0 reduces to the channel inversion precoder
considered for comparison. For the CBf, the generalized RCI
precoder with α = 0 is considered for comparison, since
the conventional channel inversion precoder cannot achieve
confidential broadcasting in the CBf. Note that the regularized
RCI with α = 0 can eliminate the interference amongst users,
which has the same effects as the channel inversion precoder
in the single-cell network or the MCP. It is evident from the
figure that the proposed precoders outperform the channel
inversion precoder for both the MCP and the CBf. We find
that the proposed precoders exhibit a profound performance
gain over the channel inversion precoder in the regime of
low transmit SNR. We also find that this performance gain
decreases when the transmit SNR increases. This can be
explained by the fact that the optimal regularization parameter
approaches zero when the transmit SNR grows large. Besides,
it is worth mentioning that the channel inversion precoder
achieves confidential broadcasting only when the number of
users is less than or equal to the number of transmit antennas
at the BS, i.e., β ≤ 1 for the MCP or β ≤ 0.5 for the CBf.
Differently, the proposed precoders can achieve confidential
broadcasting even if β > 1 for the MCP or β > 0.5 for the
CBf.

B. Power-Reduction Strategy
We find from Figures 5 and 6 that the large-system secrecy

sum rate achieved by the optimal regularization parameter,
denoted by R∞∗s , does not monotonically increase with γ when
the network load is high. Specifically, R∞∗s decreases as γ
increases at high transmit SNRs when β > 1 for the MCP
or β > 0.5 for the CBf. Hence, we propose power-reduction
strategies to compensate for the secrecy sum rate loss at high
transmit SNRs for a high network load. We highlight that
although the principle of the power reduction strategy in our
work is similar to that in [17], the prominent challenge of
designing our power reduction strategy is to determine the
optimal transmit SNR that maximizes the secrecy sum rate
using our newly derived expressions for the secrecy sum rate.
As such, the design of the power reduction strategy in our
paper is different from that in [17]. To this end, we first obtain
the optimal transmit SNR that maximizes the large-system
secrecy sum rate for each of the MCP and the CBf.

1) Power Reduction for MCP: For the MCP, we focus on
the network with β > 1, since R∞∗s,MCP does not monotonically
increase with γ when β > 1. We first derive the optimal
transmit SNR, γ∗MCP, that maximizes the large-system secrecy
sum rate achieved by α∗MCP, i.e., γ∗MCP = arg max

γ
R∞∗s,MCP. By

taking the first-order derivative of R∞∗s,MCP with respect to γ
and equating it to zero, we obtain γ∗MCP as

γ∗MCP =
β(2− β)

(1 + ε)(β − 1)2
. (28)

Based on (28), we propose the power-reduction strategy to
reduce the total transmit power such that the maximum large-
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system secrecy sum rate is maintained. The precoding vector
with the power-reduction strategy is given by

wPR =

{ √
γ∗MCP
γ w∗ β > 1 and γ > γ∗MCP,

w otherwise,
(29)

where w is the original RCI precoding vector given in (5)
with α = α∗MCP and w∗ is the original RCI precoding vector
with α = α∗MCP at γ = γ∗MCP. We highlight that

√
γ∗MCP/γ is

the power-reduction coefficient for the MCP, which is adopted
when β > 1 and γ > γ∗MCP. As such, we refer to the RCI
precoder using wPR in (29) as the RCI-PR precoder. Note that
the reduced transmit SNR by adopting the RCI-PR precoder
becomes

γPR
MCP =

{
γ∗MCP, β > 1 and γ > γ∗MCP
γ, otherwise. (30)

2) Power Reduction for CBf: For the CBf, we focus on the
network with β > 0.5, since R∞∗s,CBf does not monotonically
increase with γ when β > 0.5. We first determine the optimal
transmit SNR, γ∗CBf, that maximizes the large-system secrecy
sum rate achieved by α∗CBf, i.e., γ∗CBf = arg max

γ
R∞∗s,CBf. Since

the closed-form expression for γ∗CBf cannot be derived, we
obtain γ∗CBf through numerical search. Using γ∗CBf, we propose
the power-reduction strategy to reduce the total transmit power
and maintain the maximum large-system secrecy sum rate. The
precoding vector with the power-reduction strategy is given by

wPR =

{ √
γ∗CBf
γ w∗ β > 0.5 and γ > γ∗CBf,

w otherwise,
(31)

where w is the original generalized RCI precoding vector
given in (14) with α = α∗CBf and w∗ is the original generalized
RCI precoding vector with α = α∗CBf at γ = γ∗CBf. We highlight
that

√
γ∗CBf/γ is the power-reduction coefficient for the CBf,

which is adopted when β > 0.5 and γ > γ∗CBf. Therefore, we
refer to the generalized RCI precoder using wPR in (31) as the
generalized RCI-PR precoder. Notably, the reduced transmit
SNR by adopting the generalized RCI-PR precoder becomes

γPR
CBf =

{
γ∗CBf, β > 0.5 and γ > γ∗CBf
γ, otherwise. (32)

3) Numerical Results: Figures 8 and 9 demonstrate the
performance improvement offered by the proposed power-
reduction strategy for the MCP and the CBf, respectively.
Figure 8 plots R∞s /(2N) versus γ for the MCP, where the
curve of MCP RCI-PR is for the proposed power-reduction
strategy and the curve of MCP RCI is for the RCI precoding
with α = α∗MCP. Figure 9 plots R∞s /(2N) versus γ for the
CBf, where the curve of CBf Generalized RCI-PR is for
the proposed power-reduction strategy and the curve of CBf
Generalized RCI is for the generalized RCI precoding with
α = α∗CBf. We clarify that the actual transmit SNR of the RCI-
PR precoder in Figure 8 is γ∗MCP when γ > γ∗MCP, as indicated
by (30), and the actual transmit SNR of the generalized RCI-
PR precoder in Figure 9 is γ∗CBf when γ > γ∗CBf, as indicated
by (32). As shown in both figures, the proposed power-
reduction strategies efficiently prevent the secrecy rate from
decreasing at high transmit SNRs. Particularly, the power-
reduction strategy allows the secrecy rate at high transmit
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Fig. 8. MCP: the large-system secrecy rate per antenna versus the average
transmit SNR per BS for the transmissions with and without power-reduction
strategy. The other system parameters are β = 1.2, 1.5, N = 20 and ε = 0.5.
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Fig. 9. CBf: the large-system secrecy rate per antenna versus the average
transmit SNR per BS for the transmissions with and without power-reduction
strategy. The other system parameters are β = 0.6, 0.8, N = 20 and ε = 0.5.

SNRs to be equal to the maximum secrecy rate achieved
at the optimal transmit SNR. It is worth nothing that the
improvement in the secrecy rate at high transmit SNRs is
achieved by using a lower transmit power compared with the
transmission without the power-reduction strategy.

V. CONCLUSION AND FUTURE WORK

In this paper, we designed the RCI precoder and the gener-
alized RCI precoder for the MCP and the CBf, respectively, to
achieve confidential broadcasting in a two-cell broadcast net-
work. For each form of BS cooperation, we derived accurate
large-system expressions for the secrecy sum rate achieved by
the linear precoder. Based on these expressions, we determined
α∗MCP and α∗CBf which are the optimal regularization parameters
maximizing the large-system secrecy sum rate for the MCP
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and the CBf, respectively. Furthermore, we proposed the RCI-
PR precoder for the MCP and the generalized RCI-PR pre-
coder for the CBf, which can significantly increase the secrecy
sum rate at high transmit SNRs by power-reduction strategies.
Using numerical results, we demonstrated the accuracy of our
large-system expressions, the optimality of α∗MCP and α∗CBf, and
the secrecy sum rate improvement provided by the RCI-PR and
the generalized RCI-PR precoders. Notably, our analytical and
numerical results allow us to examine the impact of the cross-
cell interference level on the secrecy sum rate. Besides, it is
worth mentioning that the results in this paper are primarily
theoretically oriented and offer a useful theoretical design
guide for the two-cell wireless network where in each cell
a BS securely broadcasts messages to multiple user terminals.

One direction of future work is to investigate confidential
broadcasting in a general N -cell network. For this N -cell
network, we can apply the same precoder designs and similar
methodologies as described in this paper to examine the
impact of the number of cells on the achievable secrecy sum
rate. Moreover, an extension from the homogenous scenario
considered in this work to the non-homogenous scenario,
where the channels from different users to the BS have
different average powers, would be of practical interests.
Furthermore, using other physical layer security techniques
to achieve confidential broadcasting in multi-cell networks is
another research direction. For example, it is interesting to
study the artificial noise technique in multi-cell networks.

APPENDIX A
PROOF OF THEOREM 1

We first derive the large-system approximations of the
SINRs for message sk,j at the intended receiver and the
eavesdropper. Based on the approximations, we then obtain
the large-system secrecy sum rate using (22).

We recall that the following equality holds:(
HHH + αI2N

)−1
=
(
HH
k̃,j̃

Hk̃,j̃ + hHk,jhk,j + αI2N

)−1

.

(33)
By applying the matrix inversion lemma, we obtain(
HHH + αI2N

)−1
=
(
HH
k̃,j̃

Hk̃,j̃ + αI2N

)−1

−

(
HH
k̃,j̃

Hk̃,j̃ + αI2N

)−1

hHk,jhk,j

(
HH
k̃,j̃

Hk̃,j̃ + αI2N

)−1

1 + hk,j

(
HH
k̃,j̃

Hk̃,j̃ + αI2N

)−1

hHk,j

.

(34)

Then let us define

Zk,j = Ok,j −
Ok,j

(
1
N hHk,jhk,j

)
Ok,j

1 + 1
N hk,jOk,jhHk,j

, (35)

where

Ok,j =

(
1

N
HH
k̃,j̃

Hk̃,j̃ +
α

N
I2N

)−1

. (36)

This allows us to rewrite (34) as(
HHH + αI2N

)−1
=

1

N
Zk,j . (37)

Moreover, we rewrite (10) and (11), respectively, as

SINRk,j =
c2
∣∣∣ Ak,j

1+Ak,j

∣∣∣2
c2Bk,j + σ2

d

, (38)

SINRk̃,j̃ =
c2Bk,j
σ2
d

, (39)

where
Ak,j =

1

N
hk,jOk,jh

H
k,j , (40)

and

Bk,j =
1

N
hk,jZk,j

(
1

N
HH
k̃,j̃

Hk̃,j̃

)
Zk,jh

H
k,j . (41)

Aided by [24], we obtain

Ak,j
i.p.−−→ g(β, ρM ), (42)

Bk,j
i.p.−−→ 1

(1 + g(β, ρM ))
2

(
g(β, ρM ) + ρM

∂g(β, ρM )

∂ρM

)
,

(43)
and

c2
a.s.−−→

1
2 (1 + ε)Pt

g(β, ρM ) + ρM
∂g(β,ρM )
∂ρM

, (44)

where ρM = (1 + ε)−1α/N and g(β, ρM ) is the solution of

x to x =
(
ρM + β

1+x

)−1

. In addition, we find that

g(β, ρM )+ρM
∂g(β, ρM )

∂ρM
=

βg(β, ρM )

β + ρM (1 + g(β, ρM ))2
. (45)

Therefore, substituting (42), (43) and (44) into (38), we
derive the large-system approximate SINR at the intended user
as

SINR∞k,j = (1 + ε)γg(β, ρM )
1 + ρM

β (1 + g(β, ρM ))
2

(1 + ε)γ + (1 + g(β, ρM ))
2 .

(46)
Also, substituting (43) and (44) into (39), we derive the large-
system approximate SINR at the eavesdropper as

SINR∞
k̃,j̃

=
(1 + ε)γ

(1 + g(β, ρM ))
2 . (47)

Finally, by substituting (46) and (47) into (22), we obtain
R∞s,MCP for α 6= 0 in (23). If α = 0, we derive the desired result
in (23) by calculating R∞s,MCP(α = 0) = limα→0R

∞
s,MCP. This

completes the proof of Theorem 1.

APPENDIX B
PROOF OF THEOREM 2

We first derive the large-system approximations of the
SINRs for message sk,j at the intended receiver and the
eavesdropper, based on which we obtain the large-system
secrecy sum rate with the aid of (22).

Let us define

Aj =

(
ρC +

1

N

2∑
m=1

K∑
l=1

hHl,m,jhl,m,j

)−1

(48)
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and

Akj =

ρC +
1

N

∑
(l,m)6=(k,j)

hHl,m,jhl,m,j

−1

, (49)

where ρC = α/N . Due to the consideration of P1 = P2 = P ,
we have cj = cj′ = c in (19) and (20). Then, (19) and (20)
can be, respectively, rewritten as

SINRk,j =
c2
∣∣∣ 1
N hk,j,jAkjh

H
k,j,j

∣∣∣2∑
(k′,j′)6=(k,j)

c2

N θk,j + σ2
d

, (50)

and

SINRk̃,j̃ =

∑
(k′,j′)6=(k,j)

c2

N θk̃,j̃
σ2
d

, (51)

where θk,j = hk,j,j′Ak′j′h
H
k′,j′,j′hk′,j′,j′Ak′j′h

H
k,j,j′ , θk̃,j̃ =

hk′,j′,jAkjh
H
k,j,jhk,j,jAkjh

H
k′,j′,j , and

c2 =
P∑K

k=1 ‖ŵk.j‖2
=

P∑K
k=1

1
N2hk,j,jA2

kjh
H
k,j,j

. (52)

According to [24], we have

max
j=1,2,k≤K

∣∣∣∣ 1

N
hk,j,jAkjh

H
k,j,j −

1

N
Tr(Aj)

∣∣∣∣ a.s−−→ 0, (53)

max
j=1,2,k≤K

∣∣∣∣ 1

N2
hk,j,jA

2
kjh

H
k,j,j −

1

N
Tr(A2

j )

∣∣∣∣ a.s−−→ 0, (54)

max
j,j′=1,2, k,k′≤K, (k,j)6=(k′,j′)

∣∣∣∣ 1

N
θk,j − ϑj′

∣∣∣∣ a.s−−→ 0, (55)

max
j,j′=1,2, k,k′≤K, (k,j) 6=(k′,j′)

∣∣∣∣ 1

N
θk̃,j̃ − ϑj

∣∣∣∣ a.s−−→ 0, (56)

where ϑj′ =
ωjj′

Tr(A2
j′ )

N(
1+ωjj′

Tr(A
j′ )

N

)2 , ϑj =
ωjj′

Tr(A2
j )

N(
1+ωjj′

Tr(Aj)

N

)2 , and

ωjj′ =

{
1 if j = j′,
ε if j 6= j′.

(57)

In addition, we find that

Tr(Aj)

N
=

Tr(Aj′)

N

a.s.−−→ Λ, (58)

Tr(A2
j )

N
=

Tr(A2
j′)

N

a.s.−−→ − ∂Λ

∂ρC
, (59)

where Λ is the solution of x to

x =
1

ρC + β
1+x + βε

1+εx

. (60)

Therefore, we obtain the following approximations as

|hk,j,jŵk,j |2
a.s.−−→ Λ2, (61)∑

(k′,j′)6=(k,j)

|hk,j,j′ŵk′,j′ |2

a.s.−−→ −
(

βε

(1 + εΛ)2
+

β

(1 + Λ)2

)
∂Λ

∂ρC
, (62)

∑
(k′,j′) 6=(k,j)

|hk′,j′,jŵk,j |2

a.s.−−→ −
(

βε

(1 + εΛ)2
+

β

(1 + Λ)2

)
∂Λ

∂ρC
, (63)

and

c2
a.s.−−→ − P

β ∂Λ
∂ρC

, (64)

with

− ∂Λ

∂ρC
=

Λ

ρC + βε
(1+εΛ)2 + β

(1+Λ)2

. (65)

Substituting (61), (62) and (64) into (50), we derive large-
system approximate SINR at the intended user as

SINR∞k,j =

Λ
β

(
ρC + βε

(1+εΛ)2 + β
(1+Λ)2

)
1
γ + ε

(1+εΛ)2 + 1
(1+Λ)2

. (66)

Also, substituting (63) and (64) into (51), we derive derive
large-system approximate SINR at the eavesdropper as

SINR∞
k̃,j̃

= γ

(
ε

(1 + εΛ)2
+

1

(1 + Λ)2

)
, (67)

Finally, by substituting (66) and (67) into (22), we obtain
R∞s,CBf for α 6= 0 in (24). If α = 0, we derive the desired
result in (24) by calculating R∞s,CBf(α = 0) = limα→0R

∞
s,CBf.

This completes the proof of Theorem 2.
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