
Coupled Electromagnetic and Elastic Dynamics
in Metamaterials

David A. Powell, Mingkai Liu and Mikhail Lapine

Abstract Metamaterials are well established in the field of electromagnetism, where
they have demonstrated a wide variety of exotic material properties. More recently,
mechanical metamaterials have also been shown to be quite promising in achieving
exotic properties for acoustic waves. Here we discuss an emerging class of metama-
terials with both electromagnetic and elastic properties, which are coupled to each
other, giving rise to a new range of metamaterial properties. In particular, this can
yield a very strong nonlinear response, including bistable states and self-oscillations.
We present several structures which exhibit these properties, and experimentally
demonstrate their feasibility.

1 Introduction

It is now well established that metamaterials can be engineered to provide a wide
variety of linear electromagnetic properties, as well as to demonstrate an impressive
range of nonlinear effects [1]. Additionally, the idea of metamaterials has also been
implemented successfully in acoustic waves [2–10], exploiting the universal physics
common to many types of wave propagation. Furthermore, metamaterial concepts
have been applied in mechanics, also allowing static mechanical properties to be
engineered in new ways [11].
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Here we consider a class of metamaterials which encompasses both electromag-
netic and mechanical functionalities. More importantly, these degrees of freedom
are coupled to each other, such that the electromagnetic response is sensitive to the
mechanical conformation of the structure, and the electromagnetic field also induces
significant forces on the structure. This coupling can give rise to two distinct effects.
First, manipulation of micro or nano scaled devices by electromagnetic waves can
be greatly enhanced. Second, by incorporating some elastic restoring force into the
structure, the conformation of the device changes, and this changed conformation
modifies the electromagnetic response.

To clarify this, consider the block diagram shown in Fig. 1, which compares three
different classes of metamaterials. Ordinary materials and the vast majority of elec-
tromagnetic metamaterials reported to date fall into the first category [Fig. 1(a)], as
they have a response which can be described using only electromagnetic degrees
of freedom. This category also includes many nonlinear and tunable metamateri-
als, where the polarisability may be nonlinear, but can ultimately be reduced to a
particular form of material constitutive relations.

The simplest form of coupled electromagnetic and mechanical dynamics is where
the electromagnetic forces induce some motion on the structure, Fig. 1(b). This
case is represented by optical tweezers [12], optical motors [13] and wrenches [14];
applications where the ultimate aim is to manipulate mechanical degrees of free-
dom. In most examples, the external fields dominate the electromagnetically in-
duced forces, although modification of the trapping potential through interaction
with a substrate has been reported [15]. We note that in such systems the motion of
the structure does effect the electromagnetic response, however the resultant scat-
tered field is not normally considered. While these systems can show a time-varying
electromagnetic response due to the mechanical motion, typically the response does
not have any of the interesting stationary points which will be shown here.

For the fully coupled case, Fig. 1(c), an elastic restoring force is introduced into
the system. This force opposes the electromagnetic force, allowing the system to
reach an equilibrium position. This equilibrium position is determined by the fre-
quency, polarisation and power of the incident field. It also has a strong influence
on the electromagnetic response of the structure, with the result that the electromag-
netic response of the structure depends on the incident field. Thus the system does
not obey superposition with respect to the incident field, and is clearly nonlinear.

Such a nonlinearity arising from coupled dynamics presents an alternative to
more conventional methods of introducing nonlinearity through a lumped circuit el-
ement or nonlinear optical material. See Refs. [16–18] for reviews and other chap-
ters of this book for detailed descriptions of such approaches.

This chapter will give an overview of several metamaterial systems which allow
such coupled nonlinear dynamics to occur. Such systems share several similarities
with the field of opto-mechanics [19, 20], particularly the interaction between the
optical and mechanical degrees of freedom. However the metamaterial approach
allows this interaction to be controlled at wavelengths much longer than in optics,
and allows the stored energy in near-fields to be manipulated through geometric
structuring [21].
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Fig. 1 A schematic representation of different physical processes in metamaterials: (a) Those
which have a purely electromagnetic response; (b) those which undergo motion due to optical
forces and (c) structures where electromagnetic forces are balanced by elastic restoring forces to
yield nonlinear coupled dynamics. The quantities in blue are representative of those which could
be involved in these processes.

2 Magneto-elastic metamaterials

The first conceptual demonstration of coupled electromagnetic and mechanical in-
teractions in metamaterials was with magnetoelastic metamaterials [22], as shown
in Fig. 2. In this configuration, a dense uniaxial array of split ring resonators is im-
mersed into an elastic supporting material. The structure is designed to be excited
with an incident plane wave having its magnetic field H0 perpendicular to the plane
of the rings.

It is well known that in such a system a substantial fraction of the electromagnetic
energy is stored in the fields between the rings, and the response has an essentially
collective nature [23] imposed via mutual inductance. The mutual interaction leads
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Fig. 2 Schematic of anisotropic magnetic metamaterial combined with an elastic medium [22].
Two layers of the bulk sample are shown. Left: metamaterial before the electromagnetic field is
applied. Right: metamaterial is compressed by the electromagnetic forces acting between the ele-
ments. Dimensionless lattice parameters a and b are normalized to the resonator radius r0.

to a remarkable shift of the resonance towards lower frequencies, depending on the
lattice constants in the array. In addition, there are Ampère forces between the rings,
being attractive if they are excited in phase. This attractive force is opposed by the
stiffness of the material between the rings.

For reasonable levels of input power, the elastic response of the structure must be
quite weak in order to observe nonlinear effects. However by utilising metamaterial
concepts, not only the electromagnetic, but also the elastic properties of the meta-
atoms may be controlled by using an appropriate geometry. Structures such as small
springs, wires and filaments can give the necessary compliance. On the basis of
theoretical estimates, it seems likely that the required stiffness is not reduced as
the structure is scaled to smaller wavelengths, thus leaving open the possibility of
observing the effects in THz and optical frequencies.

Since the mechanical response time is many orders of magnitude longer than the
electromagnetic response time, it is appropriate to model the electromagnetic re-
sponse for a slow-varying separation between the rings, without needing to account
for the mechanical dynamics. The magnetic interaction force is calculated exactly
the same way as for DC currents, and the electric interaction can be suppressed
by either the use of small gaps in the rings, utilising a pair of broadside coupled
resonators, or by orienting the rings with their gaps perpendicular. To describe the
system in metamaterial terms, it is also desirable to have the operating wavelength
as large as possible compared to the unit cell size.

An alternative implementation of such a structure has also been demonstrated
using a gravitational restoring force [24], where a fine tuning of the mechanical
balance of the resonators can provide very high sensitivity. The theoretical basics of
the operation of that system are, generally, the same.

2.1 Theory

The mechanism for the self action is the mutual interaction between the rings, which
depends on the normalised lattice constants a and b. In the quasi-static limit, mutual
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inductance between all rings in an array can be taken into account via the lattice
sum Σ , which depends on the lattice parameters [23]. We then seek the steady-
state solution for b which satisfies the balance between the Ampère’s force (FI) and
the restoring Hooke force (FS), with the direction conventions for each force being
shown in Fig. 3(a).

The axially-oriented interaction force between two isolated rings on the same
axis can be calculated as [25, 26]

Fi =
µ0I2

2
√

4+b2

(
E(κ)

2+b2

b2 −K(κ)
)
, (1)

where E and K are the complete elliptic integrals of first and second kind with
parameter κ2 = 4/(4+b2) and I is the current amplitude. If the inter-layer lattice
constant b is small compared to the lateral lattice constant a, then only rings stacked
directly above or below each other need to be taken into account when calculating
the total compression force. This greatly simplifies the calculation for any two rings
in bulk media, leading to:

FI(b)≈
N

∑
n=1

n ·Fi(nb)≈ π
2

1
b

Fi. (2)

In the absence of the external field, the lattice constant will have some initial
value b0. The elastic force will oppose any deviation from this configuration, ac-
cording to Hooke’s law

FS(b) = kr0(b−b0), (3)

Fig. 3 General explanation of magnetoelastic behaviour [22]. (a) Schematic of the forces acting
on a ring within a metamaterial, where the total compressing force resulting from current attraction,
FI, is countered by the elastic force FS, both being dependent on the lattice distance b which varies
with the current amplitude; (b) An example of force magnitudes depending on the lattice distance,
where attraction forces FI for several current amplitudes are shown with coloured peaks and the
counter-acting spring force FS with a black straight line. Stable equilibrium points are shown with
circles while unstable ones with crosses.
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with stiffness constant k. In practice the force will be linear only over a certain
range of positions. For simplicity, we represent this effect in the model by imposing
a threshold value bmin which sets a lower limit on the value of b.

The electromagnetic response of the system is determined by the following
impedance equation, which includes the electromagnetic interaction between rings,
and depends on the lattice constant b:

[Z + iωµ0r0Σ(a,b)] · I =−iωπr2
0µ0H0. (4)

This must be combined with the balance condition FI(b, I) = FS(b), substitut-
ing the expressions for the forces given by Eqs. (2) and (3). The solution of these
equations yields the lattice constant b and current in the rings I as a function of the
amplitude H0 and frequency ω of the incident magnetic field.

Fig. 3(b) gives a graphical picture of the forces as a function of the lattice constant
b, with the different curves for FI corresponding to different levels of excitation
current. Clearly, the balance condition of the forces corresponds to intersections of
FI and FS. However, not all such equilibrium points b0 are stable. In particular, if
there is some perturbation in position δb, we required that the resultant total force
is directed towards b0 in order to have stability. This is equivalent to requiring

dFI

db
>

dFS

db
. (5)

From Eq. (4), we see the resonant behaviour of FI and its dependence on b, which
is clearly reflected in Fig. 3(b).

It is clear that there can either be a single stable state, or three states, one of which
will be unstable. Once the current amplitude exceeds a threshold level [shown by
cross “2” in Fig. 3(b)], the initial “right-side” equilibrium (such as at circle “1”)
cannot be achieved, so the lattice constant b will reduce. This changes the mutual
interaction dramatically, leading to a significant shift of the resonance frequency, so
the current magnitude drops, enabling the system to enter the other equilibrium state
(Fig. 3, circle “4”), corresponding to the same force curve.

However, if the current amplitude is decreasing, the balance at circle “4” remains
stable as long as the peak attractive force is sufficient to counter the elastic force
(down to a threshold point, cross “3”), from where the system jumps back to the
corresponding “right-side” solution (circle “1”).

The magnetisation of the entire metamaterial M(H0,ω) can be then calculated as

M = Iνπr2
0 =

π
r0a2

I
b
, (6)

and shows a stronger dependence on the lattice constant b compared to that of the
current I, thanks to the explicit effect of the volumetric density ν = 1/(r3

0a2b).
Thus, the nonlinear magnetisation can be characterised as a function of the am-

plitude and frequency of the incident field (Fig. 4). Here the case of fixed frequency
is discussed, noting that even more exotic regimes can be found, including inaccessi-
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Fig. 4 Examples of power dependence of the metamaterial response [22]. Magnetization
M(H0,ω) in the metamaterial vs. incident amplitude H0, observed at ω = 0.55ω0 (a) and ω =
0.60ω0 (b), for increasing (blue circles) and decreasing (red bullets) amplitudes. The rings have
radius r0 = 5 mm, individual resonant frequency of 1 GHz and quality factor of 100. Metamaterial
parameters are a = 4, b0 = 0.3, bmin = 0.1, with a stiffness coefficient k = 0.44 mN/m.

ble regimes of bistability, if the incident field amplitude is fixed while the frequency
is varied [27].

At frequencies lower than the eigenfrequency of the initial state, a slightly non-
linear M(H0) dependence is observed as the amplitude grows, until the metamaterial
abruptly switches to a stronger compression. However, when the amplitude is de-
creased, the metamaterial remains in the compressed state until much lower magni-
tudes, exhibiting a hysteresis-like behaviour [Fig. 4(a)]. But close to the original res-
onance, the hysteresis disappears while the nonlinearity is quite strong [Fig. 4(b)].

2.2 Experimental demonstration

To demonstrate that these nonlinear effects are realistic, experiments were con-
ducted for three pairs of elastically coupled resonators, where there is coupling
within pairs but not between them. The governing equations for such a system are
the similar to those for the bulk, except that the lattice sum Σ is replaced with the
mutual coupling over the finite-sized sample, and the volumetric enhancement as in
Eq. (2) is not available.

Each ring is attached to a thin layer of cellulose acetate to ensure mechanical
stability and to prevent thermal expansion. A control experiment with a single ring
(not shown) detected no noticeable change in response with incident power. Thus it
is safe to assume that the measured response is entirely due to interaction between
the rings.

The rings are suspended from a dielectric rod with grooves to control their initial
spacing with b0 = 0.3r0, Fig. 5(a). When the attractive Ampère force is induced, the
rings are able to swing towards each other. The opposing Hooke’s force is created
by thin keratin filaments placed between the rings within each pair.
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Fig. 5 Experimental observation of the magnetoelastic nonlinearity in a system of three elastic
pairs within a WR229 rectangular waveguide [22]. (a) experimental layout; (b) measured trans-
mission spectra at low (−12.3 dBm) and high (29 dBm) power; (c) dependence of the resonance
frequency on the incident power, showing the experimental (circles with error bars) and theoretical
(solid line) results. The rings are made from 0.18 mm-thick copper wire and have 3 mm radius and
∼1 mm gap.

Fig. 5(b) shows the spectra measured in the linear regime (-12.3 dBm incident
power), and near the maximum (29 dBm incident power). It is seen that the res-
onance experiences a shift which is comparable to the width of the resonance.
Fig. 5(c) shows the shift of the resonant frequency as a function of the applied
power, achieving a maximum frequency shift of 13 MHz. For comparison purposes
the theoretical curve is also shown, obtained with the corresponding parameters and
assuming a stiffness coefficient of 0.13± 0.01 N/m. The contribution of gravity to
the restoring force (due to the inclination of the rings) is also taken into account,
amounting to around 20% at the maximum power level.

3 Torsional system

While the magneto-elastic system is very promising for showing strong nonlinear-
ity due to coupled electromagnetic and mechanical degrees of freedom, achieving
a sufficiently compliant mechanical restoring force is a significant challenge. To
overcome this disadvantage, it was proposed that instead of utilising compressional
forces between rings, rotational forces are utilised. We denote these torsional struc-
tures as nonlinear metamaterials with intrinsic rotation [28].

The idea here is to employ a rotational degree of freedom, having two or more
non-symmetric resonators free to rotate around a common axis against an elastic
feedback. Such rotation will affect the electromagnetic modes of the system and
therefore change the distribution and amplitudes of the induced charges and cur-
rents, altering the electromagnetic forces which drive the mutual rotation.

An example of experimental realisation is shown in Fig. 6: a pair of split rings
is arranged coaxially and allowed to rotate about a common axis. The elastic feed-
back is provided by a thin elastic wire connecting the two rings. The electromag-
netic torque is used to drive the meta-atom, modulating the resonant frequencies by
changing the internal rotation of the system. The major advantage of this system is
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Fig. 6 Conceptual layout of a new metamaterial and its rotational “meta-atom” [28]. The incident
wave propagates along the y direction, having a linear polarisation with the electric field along x
and magnetic field along z. The induced electromagnetic torque between the resonators changes
the mutual twist angle θ between the rings, connected by an elastic wire.

that the effective lever arm of the electromagnetic force can be much stronger than
that of the restoring force. Compared to collinear forces, this can lead to deformation
which is enhanced by several orders of magnitude.

For simplicity, it is assumed that one of the rings is fixed to a substrate, and the
other is suspended from above by a wire. This ring is connected to the wire by three
shorter wires, arranged to provide a stable orientation of the suspended ring and
prevent it from tilting. The result is that only rotation of the ring about its axis is
permitted, and all other motional degrees of freedom can be neglected.

As we see from Fig. 6, the rings start out with some angle between their slits,
which is a design parameter of the system. An incoming electromagnetic wave then
induces charges and currents on the rings, and the angle between the rings and the
spacing between them will determine the hybridised resonant frequencies of the
meta-atom [29]. For fixed excitation strength, the energy stored in this system varies
with the angle of twist, and the rings will tend to seek the equilibrium angles with
minimum energy. At any non-equilibrium angle, the rings will experience a torque,
with magnitude and direction dependent on the angle, the mode(s) excited in the
ring and the incident field strength [30].

The addition of the elastic wire introduces a restoring torque which opposes the
electromagnetic torque, and the equilibrium twist angle then depends on the balance
between the two. The design has an additional degree of freedom in choosing the
initial angle between the rings of the unexcited system. This will determine which
electromagnetic mode dominates the response of the system, which then determines
the strength and direction of the torque.

This torsional design therefore offers a tunable approach to achieving strong
nonlinearity in metamaterials, with a reponse much stronger than that provided by
lumped nonlinear circuit elements. We will show that this leads to a very strong
bistable response which can be observed experimentally.



10 D. A. Powell, Mingkai Liu and M. Lapine

3.1 Theoretical treatment

For a single isolated meta-atom a semi-analytical model is utilised. Fig. 6 shows the
two coaxial SRRs, separated by a distance s in the z direction, with angle θ between
the gaps. The incident wave propagates along y, with the electric field polarised
along x. The angle Φ describes the orientation of the gap of the bottom ring relative
to the electric field.

The currents on each ring are approximated by a single mode, and the near-field
interaction between them is calculated by integrating the Green’s function over both
rings to find the mutual impedance between them [29]. This model gives quite good
accuracy for the electromagnetic properties of such meta-atoms [30]. For simplicity,
the simulation is done with perfect electric conductor as the material for the SRRs,
so only the radiative component of the electromagnetic force is taken into account.

The current J and charge ρ on a meta-atom can be represented by a spatial distri-
bution j(r), the magnitude and phase of which is described by a frequency dependent
scalar Q(ω), with an assumed exp( jωt) time dependence [31]

J(r,ω) = jωQ(ω)j(r), ρ(r,ω) = Q(ω)q(r), q(r) =−∇ · j(r). (7)

For a pair of rings this leads to coupled equations for the mode amplitudes Q1,2:

Q1 = (E2Fm −E1Fs)/(F2
s −F2

m), Q2 = (E1Fm −E2Fs)/(F2
s −F2

m), (8)

where E1 and E2 represent the overlap of the incident electric field with the mode of
each ring, which for plane-wave incidence can be quite accurately calculated as

E1 = −Eext · le · e jk0aE cosΦ + jωBext ·ue · e jk0aM cosΦ , (9)
E2 = −Eext · le · e jk0aE cos(Φ+θ)+ jωBext ·ue · e jk0aM cos(Φ+θ), (10)

where a dipole approximation is used with the normalised electric le(θ ,Φ) =∫
V q(r)rdV , and magnetic ue(θ ,Φ) = 1

2
∫

V r× j(r)dV dipole moments.
The effective central positions of the electric and magnetic dipoles are

aE =

∫
V [q(r1)r1 · x̂](r1 · ŷ)dV1

|
∫

V q(r1)r1dV1|
, aM =

∫
V [r1 × j(r1) · ẑ](r1 · ŷ)dV1

|
∫

V r1 × j(r1)dV1|
, (11)

similar to the definition of centre of mass, and they are calculated based on the
charge and current distributions of the lower SRR when Φ = 0.

The phase term in coupling to the external field is due to the retardation expe-
rienced by the wave before reaching the SRRs. The self impedance Fs and mutual
impedance Fm are given by

Fs = 1/Cs −ω2Ls, Fm = 1/Cm −ω2Lm, (12)

where the effective capacitances C and inductances L can be calculated from the
modal current j(r) and charge q(r) distributions (see Ref. [31]).



Coupled Electromagnetic and Elastic Dynamics in Metamaterials 11

After the mode amplitudes Q are found, the torque between the meta-atoms can
be calculated. Since the bottom ring is fixed, while the top ring is allowed to rotate
about the z axis, the torque on the top ring is of interest:

MEM =
∫

V2

ρ(r2)r2 ×E+ r2 × [J(r2)×B]dV2, (13)

where the integration is performed over the volume V2 of the top SRR.
It is convenient to split the torque into two physically distinct components, being

the external torque Mext due to the impinging field [30] and the internal torque
Mint which the excited rings exert upon each other. When the ring rotates about the
geometry centre, the magnetic part of the torque does not contribute to the torque in
the z direction. The explicit expressions for the external and internal torque are:

Mext,2 =
1
2

Re
[∫

V2

ρ∗(r2)r2 ×EextdV2

]
= −1

2
Re
[
Q∗

2(ω,Φ)e jk0aE cos(Φ+θ)
]

Eext · le sin(Φ +θ) · ẑ, (14)

Mint,2 =
1
2

Re
[∫

V2

ρ∗(r2)r2 ×Eint(r2)dV2

]
, (15)

with the internal field component given by

Eint(r2) = −∇ϕ(r2)−
∂
∂ t

A(r2)

= −
∫

V1

∇
ρ(r1)e jk|r2−r1|

4πε0|r2 − r1|
+

∂
∂ t

J(r1)e jk|r2−r1|

4πc2ε0|r2 − r1|
dV1. (16)

This yields the following expression for the internal torque

Mint,2 =
1
2

Re

{
Q1(ω)Q∗

2(ω)

4πε0

∫ ∫ q∗(r2)e jk|r1−r2|

|r1 − r2|

×
[

1− jk|r1 − r2|
|r1 − r2|2

q(r1)r1 × r2 + k2r2 × j(r1)

]
dV1dV2

}
. (17)

The elastic wire on which the SRR is suspended provides a restoring torque

MR =−πa4G(θ −θ0)/(2d), (18)

where a and d are the radius and the length of the wire, respectively, G is the shear
modulus and θ0 is the initial twist angle of the structure. The system will be at
equilibrium when the total torque is zero

MEM(θ ,PI)+MR(θ ,θ0) = 0. (19)
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3.2 Numerical results

To illustrate the rotational nonlinearity, the above model was applied to a specific
pair of twisted SRRs, with radius r = 6 mm and vertical spacing s = 2 mm. The
gap in each ring is expressed in angular form as α0 = 10◦. The elastic coupling
is provided with a wire of radius a = 50 µm and of length d=100 mm, made from
rubber with a shear modulus of G = 0.6 MPa.

The resulting mode amplitude Q2 and the total electromagnetic torque MEM =
Mext +Mint experienced by the top SRR as functions of frequency and twist angle
θ , are plotted in Figs. 7(a) and 7(b) respectively. A complication is that the angle
Φ between the bottom ring and the external field polarisation changes the strength
of excitation of the meta-atoms. However, physically important quantities such as
the direction of the electromagnetic torque are independent of Φ , since they depend
only on the mode profile and symmetry, thus we only consider the case Φ = 0.

The model takes into account radiation losses [31], thus the line shapes of the
mode amplitudes and their resonances are well described. This structure supports
two hybridised resonances, which are denoted the symmetric Q1 = Q2 and anti-
symmetric Q1 = −Q2 modes [29] (in terms of fields we can consider this to be the
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Fig. 7 Nonlinear response in rotatable meta-atoms [28]. (a) The mode amplitude Q2 and (b) the
electromagnetic torque MEM of the top rotatable ring. (c) The electromagnetic torque at 3.5 GHz
for different pump powers from 0 to 1 mW/mm2 in 0.2 mW/mm2 steps, and the restoring torque for
different initial twist angle θ0; (d) the corresponding paths of power-dependent twist angles under
different θ0.
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symmetry of the magnetic dipole moments). The phase difference between these
two modal excitations results in opposite directions of the electromagnetic torque.

If the rings are excited symmetrically, the configuration θ = 0◦ corresponds to
the electric dipole moments being parallel to each other, thus they tend to repel,
with the lowest energy state being θ = 180◦ in the absence of mechanical restor-
ing torque. For the anti-symmetric mode, the opposite orientations of the currents
mean that θ = 180◦ becomes unstable and θ = 0◦ is stable. The evaluated external
torque is about one order of magnitude smaller than the internal torque, and the total
torque is of the order of 10−10 Nm when the structure is pumped with a power den-
sity PI=1 mW/mm2. These modelling results are validated by numerical solution of
Maxwell’s equations (using CST Microwave Studio), followed by a surface integral
of the Maxwell stress tensor to find the induced torque.

Fig. 7(c) shows the electromagnetic and mechanical torques which oppose each
other to yield the equilibrium. The chosen pump frequency of 3.5 GHz [denoted by
the black dashed line in Fig. 7 (b)] corresponds to excitation of the symmetric mode.

Analogous to the balance of forces within the magneto-elastic system, shown
in Fig. 3(a), MEM is a Lorentz-like function of the twist angle, while the restoring
torques MR under different initial twist angles θ0 are approximated by linear func-
tions. The intersections of these two functions given by Eq. (19) correspond to the
equilibrium angles θe. However, stable solutions for the angles must satisfy

∂
∂θ

[MEM(θ)+MR(θ)]
∣∣∣∣
θ=θe

< 0. (20)

The twist angle as a function of pump power is depicted in Fig. 7(d), where the
power is increased then decreased to reveal bistable behaviour. We see the evolu-
tion from smooth nonlinear to bistable response as θ0 departs from the angle of
maximum electromagnetic torque. In principle, as θ0 moves further away from the
resonance, more noticeable rotation and hysteresis effects are expected, but higher
pump power is required (see the case for θ0 = 45◦). Such evolution of the power-
dependent nonlinear response can also be observed by fixing the initial twist angle
but changing the pump frequency, as will be demonstrated by experiments.

3.3 Experimental verification

The nonlinear response of these torsional structures is verified by performing pump-
probe experiments at microwave frequencies. The critical parameter to allow a
strong response to be observed is the restoring torque provided by the wire, which
must be small enough to allow strong rotation of the structure for a reasonable level
of input power.

The experimental confirmation was performed with the split rings having inner
radius r = 3.2 mm, track width 1 mm, copper thickness 0.035 µm and slit width
g = 0.2 mm and are printed on Rogers R4003 substrates with εr = 3.5, loss tangent
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Fig. 8 Experimental transmission coefficients |S21| for different pump frequencies and powers
[28]. The initial resonance locates around 3.256 GHz and the pump power is swept in 1 dB steps.
(a) and (b) pump at 3.18 GHz, power changes from 15.2 dBm to 27.2 dBm; (c) and (d) pump
at 3.21 GHz, power changes from 12.2 dBm to 27.2 dBm; (d) and (e) pump at 3.23 GHz, power
changes from 15.2 dBm to 27.2 dBm.

0.0027, substrate thickness 0.5 mm. The pair of SRRs is placed within WR229 rect-
angular waveguide, with the lower SRR in the centre, fixed at the angle Φ = 0◦,
and the upper SRR suspended 0.75 mm above the lower by the rubber wire (radius
a = 50µm, length d = 20 mm) such that it is free to rotate. Care is taken to ensure
that the SRRs are aligned with each other, and the twist angle of the unexcited struc-
ture is fixed at approximately 70◦. The shear modulus of the material G ≈ 0.69 MPa
was assessed by measuring the Young’s modulus, estimated as 2.06 MPa through
the elongation of the wire due to loading by the sample.

The difference between the pump frequency and the linear resonance is a crit-
ical parameter in determining the nonlinear behaviour observed. The pump power
is swept in 1 dB steps, with the system allowed to reach steady state before mea-
surement. This takes approximately 30 seconds due to the low mechanical damping
of the system, and if the system is opened it is possible to observe the oscillating
rotation of the structure due to the change in incident power. This rules out other
mechanisms for the observed nonlinear behaviour, such as thermal expansion.

Fig. 8 shows the transmission spectra found in experiment, with the extracted res-
onant frequencies shown in Fig. 9(a), (c) and (e). It can be clearly seen that the sys-
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Fig. 9 Comparison of experimentally measured (a), (c), (e) and numerically calculated (b), (d), (f)
resonant frequency sweeps for identical geometry [28]. The corresponding stable twist angles are
shown on the right axes. (a) and (b) pump at 3.18 GHz; (c) and (d) pump at 3.21 GHz; (e) and (f)
pump at 3.23 GHz.

tem changes from bistable behaviour to a smooth nonlinearity. The initial resonance
(symmetric mode) without the pump is located around 3.256 GHz, and it red-shifts
as the pump power increases, which indicates that the twist angle is increased. When
the pump frequency is at the red tail of the resonance, a large spectral “jump” (about
three times the resonance linewidth) is observed when the pump power passes a cer-
tain threshold [Fig. 9(a)]. The thresholds are different for increasing and decreasing
pump powers. As the pump frequency approaches the initial resonance, the spectral
“jump” becomes smaller [Fig. 9(c)] and finally disappears [Fig. 9(e)]. Similar ef-
fects were also observed (not shown) when the pump frequency is at the red tail of
the antisymmetric mode, in which case the two resonances approach each other due
to the opposite direction of the electromagnetic torque.

Although these simulations and experiments are conducted for a single element
in a waveguide, it should be noted that the mirror images on the waveguide walls
make this system qualitatively similar to an array. This has been verified numeri-
cally, and it has been shown that the dynamics in a dilute array are qualitatively
similar to those shown in the waveguide system [28].
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4 Dynamic response

Nonlinear dynamic phenomena, such as self-oscillations and chaos, have been
widely studied in different types of systems [32, 33]. Recent research in optome-
chanics also demonstrated exotic coupling effects between optical resonance and
mechanical vibration [34, 35]. In optomechanical systems, the excitation of self-
oscillation requires a phase lag between the optical force and mechanical vibration.
This phase lag can be introduced by either retarded radiation pressure or bolometric
force [36, 37]; the former mechanism requires the spectral linewidth of the opti-
cal resonance to be comparable with the mechanical oscillation frequency; while
the latter arises from the photo-thermal effect, with a typical response time at the
sub-millisecond scale, which can be significant for micro-nano mechanical oscilla-
tors [37, 38].

With regards to torsional metamaterials, it was demonstrated [39] that the system
of three elastically coupled rings supports self-oscillations, and in contrast to most
previously studied optomechanical systems this oscillation can be supported even
with very strong damping.

4.1 Model of the system

Figure 10 shows the torsional structure, consisting of three coaxial split-ring res-
onators connected by wires. The twist angles with respect to the y axis are θm,

Fig. 10 (a) Schematic of the torsional metamaterials and (b) the three eigenfrequencies supported
by the hybridised meta-molecule [39]. Each meta-molecule consists of three coaxial split-ring
resonators connected elastically. The first ring is fixed, while the second and the third rings are free
to rotate about the common axis z. The twist angles θ strongly modify the eigenfrequencies and
are defined as the angle between the slit and the y axis.
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m ∈ [1,2,3]. We fix the first ring at θ1 = 0◦ so that the structure as a whole cannot
rotate, only the second and third rings. Since this system has an additional mechan-
ical degree of freedom introduced, we can consider it as a “meta-molecule” made
from elastically and electromagnetically coupled meta-atoms.

In contrast to a pair of rings, the eigenmodes of the three ring system have a more
complicated distribution. However, these hybridised modes can be found using our
semi-analytical method [31], which we extend to account for higher order eigen-
modes of the individual rings. The frequencies of these hybrid modes are shown in
Fig. 10 as a function of the two twist angles θ2 and θ3. The radius of each SRR
is 6 mm, the slit width is 1 mm, and the inter-ring distance is 3 mm. The incident
wave propagates along the z direction, and excites some combination of the reso-
nant modes which depends on their overlap with the incoming field.

The SRRs are connected with cylindrical thin elastic wires, and the restoring
torques are approximated by Hooke’s law:

MR,2 =−κ
[
2(θ2 − θ̆2)− (θ3 − θ̆3)

]
, MR,3 =−κ

[
(θ3 − θ̆3)− (θ2 − θ̆2)

]
, (21)

with κ = πa4G/(2d); a and d are the radius and the length of the wires, respectively;
G is the shear modulus and θ̆ are the initial twist angles. The dynamic equation of
the m-th SRR (m = 2,3) can then be expressed as

θ̈m +Γ θ̇m =
I

Mm
, where Mm = (MEM,m +MR,m) · ẑ. (22)

Here, I is the moment of inertia, Γ is the damping coefficient, and Mm is the total
torque experienced by the m-th SRR.

As with the two ring system, the mechanical response time is many orders of
magnitude slower than the lifetime of the electromagnetic resonant modes. There-
fore the electromagnetic torque can be considered as a function of the ring angles
without the need to account for their angular velocities. For a pair of rings with one
angle fixed, there is only a single mechanical degree of freedom, and the total work
done by the external field over each period of oscillation is zero. This means that
the system will undergo damped oscillations, and will eventually become stable. In
contrast, the three ring system has two mechanical degrees of freedom, and in par-
ticular it is possible for the oscillations of the two free rings to have some phase
delay between them. This can enable the electromagnetic field to do non-zero work
on the system over an oscillation cycle, which can compensate for the mechanical
losses and can also lead to dynamic steady-state solutions.

In Fig. 11 we show the torque on each ring for the angles θ2 =−θ3 = 30◦. These
results were also confirmed by comparison with full wave simulation. For the pair of
rings studied in Section 3, the direction of the torque on the rings is related directly
to the symmetry of the mode which is excited. However, for the meta-molecule with
three or more resonators, the torque must be summed over the contributions from
each ring, whose direction also depends on the relative strength of the modes of the
hybridised system. This creates a complex frequency-dependence of the torque in
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Fig. 11 Electromagnetic torques MEM experienced by the three rings with configuration θ2 =
−θ3 = 30◦ [39]. The incident wave propagates along the z direction, with its electric field compo-
nent in the x direction (Φ = 0◦). The torques are normalised to a power density of 1 mW/mm2. The
inset on the right magnifies the details within the dashed rectangle, and the green shading shows
the regime where self-oscillations can exist.

the system, including the highly asymmetric Fano type resonance shapes, such as
that shown in the inset of Fig. 11.

It is assumed that each ring is placed within a polyurethane foam package which
enables connection of the elastic wires, but which has a permittivity near unity and
is thus transparent to electromagnetic waves. This results in a calculated moment of
inertia for each ring as I≈ 3.755×10−10 kg ·m2, and the elastic wire is assumed to
have radius 50 µm and shear modulus 1 MPa.

4.2 Self-oscillations

The system of coupled equations can be solved to find the dynamics of the meta-
molecule as a function of pump frequency and power. The pump frequency is as-
sumed fixed, and the incident wave intensity is swept from zero to a maximum of
60 mW/mm2 in 1 mW/mm2 steps, then swept along the reverse path to reveal any
regimes of bistable behaviour.

The twist angles θ2 and θ3 undergo damped oscillations as the power is changed,
and in most cases they converge to a stable angle. Near the resonances a very strong
nonlinear response can be found, which can show bistability similar to that in a
pair of rings, and can even exhibit tristability. But the most interesting behaviour,
which occurs for a limited range of input power and frequency, is that the system
becomes unstable, and the rings continue to oscillate indefinitely, with the energy
lost to mechanical damping being compensated by energy from the pump.

Due to its role in balancing the energy gain from the pump, the mechanical damp-
ing plays a critical role in the dynamics of the system. In Fig. 12 (a) and (b) we show
the nonlinear response of this meta-molecule for two different values of damping,
using the same initial twist angles as in Fig. 11. On the vertical axis we plot the inci-
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densities of bistable hopping. Results with different damping coefficients are compared, (a) Γ =
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dent power, with the lower part of the scale showing the results for increasing power,
and the upper part showing the results as power is decreased. The coloured regions
correspond to the regimes of self-oscillation, with the colour corresponding to the
magnitude of the oscillation in degrees. This self oscillation region corresponds to
the green shaded area of Fig. 11, which is on the red side of the resonance denoted
(↑↓↑) in Fig. 10.

In Fig. 12(b) the mechanical damping has been increased drastically to Γ =
1.42 Hz, which corresponds to the viscous damping which would occur in water.
This high level of damping eliminates the self oscillatory behaviour for many pump
frequencies, with the system instead reverting to a bistable stationary response. The
orange circles plotted in Fig. 12 show the threshold power levels for bistable hop-
ping. However, it is interesting to note that the regime of self-oscillation from 4.14
to 4.16 GHz is preserved.

4.3 Stability analysis

We now investigate further why some regimes of self oscillation are highly robust
even to very strong damping, while other regimes are quenched quite easily. This
difference can be understood by analysing the local stability about the equilibrium
points. The equilibrium positions of the structure clearly require the total torques
M2,3 to be zero. These points can be found from the intersection of the curves
M2(θ2,θ3, fP,PI) = 0 and M3(θ2,θ3, fP,PI) = 0. Fixing the pump frequency, we
can calculate these torques as a function of θ2,θ3 and study how the equilibrium
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points change with increasing input power PI . Since at equilibrium θ̇2 = θ̇3 = 0, we
need only consider the projection of the full phase diagram onto (θ2,θ3) to show
the dynamic trajectory. The key to understanding this trajectory is to study the local
stability of the equilibria.

The local stability of the system around equilibria is estimated by analysing the
eigenvalues of its linear variational dynamic equations [33], where the coefficients
can be written in a compact matrix form:

∂F2
∂θ2

∂F2
∂Ω2

∂F2
∂θ3

∂F2
∂Ω3

∂G2
∂θ2

∂G2
∂Ω2

∂G2
∂θ3

∂G2
∂Ω3

∂F3
∂θ2

∂F3
∂Ω2

∂F3
∂θ3

∂F3
∂Ω3

∂G3
∂θ2

∂G3
∂Ω2

∂G3
∂θ3

∂G3
∂Ω3


=


0 1 0 0

C1 −Γ C2 0
0 0 0 1

C3 0 C4 −Γ

, (23)

with F2,3 = Ω2,3 = θ̇2,3, and G2,3 = Ω̇2,3 = θ̈2,3 = M2,3/I−Γ Ω2,3, and Cn being
determined by numerical differentiation of the total torque terms. The eigenvalues
of the matrix have explicit expressions

λ1,2,3,4 =
−Γ

2
±
{
(C1 +C4)

2
+

Γ 2

4
± 1

2
[
(C1 −C4)

2 +4C2C3
]1/2
}1/2

, (24)

For an equilibrium point to be stable, all four eigenvalues must have negative real
parts, otherwise it is unstable. For any finite mechanical damping, all four eigenval-
ues have finite real parts. This makes the equilibria hyperbolic, and allows the vari-
ational equations to model the local behaviour of the nonlinear system [33]. From
this analysis, we can show that the difference in robustness of the self-oscillation to
damping seen in Fig. 12 is due to the difference in stability of the equilibria.

By analysing the evolution of the equilibria, we found that the distinct behaviour
of self-oscillations shown above corresponds to two different mechanisms. The dif-
ference between these two regimes is demonstrated in Fig. 13(a,b) for pump fre-
quencies of 4.134 and 4.15 GHz. θ3 is plotted as a function of power, with red indi-
cating increasing and blue indicating decreasing power. The dashed lines show the
amplitude of the oscillation when Γ = 0.71 Hz, while the circles show the stable
positions.

4.3.1 Self-oscillations resulting from limited local stability

The case shown in Fig. 13 (a), with the 4.134 GHz pump, corresponds to self oscil-
lations induced by the limited local stability of the equilibria. Once the input power
exceeds ∼25 mW/mm2, the stable equilibrium terminates and the system enters a re-
gion of unstable oscillation, which continues until the power reaches ∼55 mW/mm2.
However, strong damping can change this dynamic behaviour, and cause the system
to be attracted to another stable equilibrium point. This is exactly the case in Fig. 12
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shown in (d). The vectors show the direction of M.

(b), and is further illustrated by the dashed line in Fig. 13 (c), showing the trajectory
from stable equilibrium SA to SB, which are the points labelled in Fig. 13(a).

For sufficiently low damping, instead of terminating at SB, the trajectory is able to
create a limit cycle, show by the black curve in Fig. 13 (c). This occurs because the
system has sufficient kinetic energy to overcome the attraction to the equilibrium
point, which is only locally stable. The limit cycle occurs when the mechanical
damping exactly compensates the energy coupled into the system from the torque
induced by the electromagnetic wave.
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As the power further increases, the equilibria become more strongly attracting,
until the trajectory is no longer able to escape and falls into a stable state. If the
power is subsequently decreased, the state remains stable, as sufficient kinetic en-
ergy is not developed to enable self oscillations. The trajectory follows a stable
branch, until a power of ∼18 mW/mm2, where it undergoes a bistable jump back
to the original state shown by the blue circles. This gives rise to the the features
observed in Fig. 12 which depend on whether the power is increasing or decreasing.

4.3.2 Self-oscillations resulting from local instability

For the pump frequency of 4.15 GHz, in Fig. 13 (b) we also see two branches of
the stable nonlinear response. However, when the first branch ends at input power
of ∼9 mW/mm2, it is replaced by a series of locally unstable equilibria, which
are shown by the green squares. This results in a different mechanism of self-
oscillations, with the amplitudes again shown by the lines. At an input power of
∼17 mW/mm2 the equilibria again become stable. The key difference is that the
local instability means that additional kinetic energy is not required, thus when re-
ducing the input power, a very similar regime of self-oscillations occurs. Note that
the equilibrium point and its local stability remain the same if MEM and MR are
increased by the same factor; this indicates that self-oscillations due to local insta-
bility are still observable at the same regime of pump frequency and power density,
and the speed of oscillation will increase accordingly.

In Fig. 13 (d) the projected phase diagram is shown as a function of the damp-
ing coefficient. It can be seen that the oscillations remains extremely robust against
very high values of damping, as shown in the dotted lines. The blue dotted line
indicates the trajectory which the system approaches as damping is increased, al-
though the increasing damping does change the frequency of oscillation. To under-
stand this, we visualise the torques M2 and M3 in a two dimensional vector form:
M = M2êθ2 +M3êθ3, where êθ2 and êθ3 denote the unit vectors in the θ2 and θ3
directions. Fig. 13 (e) shows this distribution of torques about the unstable equi-
librium point (marked by the green square). It can be seen that the torque always
pushes the system away from this equilibrium point, and will develop into a limit
cycle if there is no stable equilibrium point which will attract the system. This fea-
ture is distinct from many previously studied optomechanical systems, in which self-
oscillations can not survive strong damping. Although the regime of self-oscillations
varies when the configuration changes, the two mechanisms shown above are gen-
eral. For meta-molecules with more than three rings, self-oscillations can also be
observed.
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5 Nonlinear chirality of helical resonators

An alternative approach which exploits mechanical compression for elastic feed-
back, is implemented with metallic helices [40, 41]. The idea is that the helix is at
once a chiral electromagnetic resonator and a mechanical spring. The currents in-
duced in the windings by an incident electromagnetic wave, will impose attractive
forces between them, so mechanical compression occurs until the Ampère forces are
balanced by the spring forces. However, this compression changes the pitch of the
helix, altering the effective capacitance and shifting the resonant frequency. Further-
more, as the helix is a chiral electromagnetic resonator [42, 43] and its chirality is
related to the pitch, the response of the helix manifests itself with nonlinear chirality.

The arising nonlinear feedback is qualitatively similar to that observed in mag-
netoelastic metamaterials, but the difference is that in the magnetoelastic system
the mutual interaction between different elements is affected, whereas in helices
the effect occurs within each resonator individually, providing an intrinsic structural
nonlinearity. We note that, similar to magnetoelastic behaviour, the acting electro-
magnetic forces in flexible helices are time-averaged with respect to electromagnetic
oscillations, and that any mechanical dynamics occurs at a time scale incomparably
slow with respect to that of electromagnetic response.

The resonant frequency of a helix is determined by its geometry (Fig. 14). Con-
sider a helix with winding radius r, and dimensionless parameters ξ for the ratio of
the pitch to r, and w for the ratio of the wire radius to r. For two turns, electromag-
netic resonance can be described with a simple circuit model [44], with the same
inductance L and resistance R as that of a single turn, and the capacitance C taken
as a sum of the parallel capacitances between the cylindrical wire turns:

ω2 =
1√
LC

with L = µ0r
(

ln
8
w
−2
)
, C =

2πε0 ·πr
cosh−1(ξ/2w)

. (25)

The resulting resonance frequency ω2 was confirmed to be an exact match to the
results of numerical simulations for a wide range of 0.022 < ξ < 0.1 [40].

For multi-turn (N > 2) helices, this simple circuit model is not applicable, how-
ever the same functional form for the resonant frequency can be extrapolated:

ωs =
c

πr

(
cosh−1(ξ/2w)

2(N −1)ψ
(
ln(8/w)−2

))1/2

, (26)

Fig. 14 Conceptual schematic and geometrical parameters of nonlinear flexible helices.
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where it is assumed that with the increase in the number of windings either capac-
itance or inductance must be multiplied with (N − 1), and an additional factor ψ
stands for the discrepancy with the exact results. Indeed, a comparison of the an-
alytical expression (26) with the results of full-wave numerical simulations (CST
Microwave Studio) for various ξ and N up to 9, demonstrated good agreement [41];
the correction factor ψ slightly increases from ψ ≈ 1 at N = 2 to ψ ≈ 1.36 at N = 9.
This said, it is important to emphasise that a multi-turn helix cannot be directly de-
scribed with the localised L and C circuit parameters, and the equation (26) fails to
describe long helices.

The mechanical properties of the helix are described by the stiffness coefficient,
which equals to k = Grw4

/
4 for one turn, where G is the shear modulus of the

material which makes the wire of the helix. Note that the characteristic frequency
of mechanical oscillations, ωM = w

√
3G/2ρ

/
(2πrN) is many orders of magnitude

smaller than the electromagnetic frequencies involved, so the analysis of the spiral
geometrical reconfiguration is essentially static and is determined by time-averaged
amplitudes of the current. The spring response is then described with the Hooke’s
law, so the compression force linearly increases with the deviation from the initial
pitch value ξ0: Fs = kr(ξ − ξ0). This compression balances the attractive force Fc,
induced by the current excited in the helix.

For small ξ , the Ampère force acting between the windings of the helix, can be
calculated as that between the two parallel wires of the corresponding length. Gen-
erally, it is Fc = µ0I2

/
2ξ between two windings. For multiple turns, it is reasonable

to neglect the effect on the edges, and write the force balance in each turn as

Gr2w4(ξ −ξ0)ξ +2Ξ µ0I2 = 0, (27)

where an additional enhancement factor Ξ is due to the interaction of multiple wind-
ings; for 9 turns, for instance, Ξ ≈ 2 [41]. However, for a helix with two turns, the
actual current distribution [44] results in a smaller net total force, F2 = µ0I2

/
12ξ ,

so for a short helix the equation (27) is modified by letting Ξ = 1/3. Thus, a 9-turn
helix experiences a 6 times stronger compression for a given current magnitude.

The equation (27) may seem to be a quadratic equation for ξ , however it is in fact
more complicated as the current I also depends on ξ and r through the impedance
equation. The latter depends on the type of experiment to be conducted. In a pump-
probe experiment, as in Ref. [40], a complete impedance equation should be used,
which in the case of two-turn helix can be explicitly written as(

R+ iωL− i
ωC

)
· I =−iωµ0πr2H0. (28)

As in Eq. (4), H0 is the amplitude of the magnetic field of the incident wave (we
imply that the incident polarization with H0 is parallel to the spiral axis), but the
difference is that the dependence on geometric parameters manifests itself in the
self-capacitance rather than in mutual inductance as in Eq. (4).

When, instead, a frequency scan at variable power is adopted, and sufficient time
is allowed for the frequency sweep, the helix should be at the equilibrium position
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while at resonance (whereas the frequency of the resonance changes depending on
the power), in which case the impedance is reduced to the resistance and the equa-
tion takes the form

1
w

√
ωsµ0

2σ
I = E(ω,P), (29)

where E(ω,P) is the effective electro-motive force acting per turn of the helix de-
pending on the frequency and power of the incident wave.

Taken together, the equations (25) [or (26)], (27), and (28) [or (29)], form a sys-
tem of coupled equations, which can be numerically solved for ξ and I for a given
frequency ω and amplitude H0 of the incident field.

Note that an additional effect on the nonlinear response of the helices is pro-
vided by its thermal expansion (so that r depends on temperature, affecting the
self-inductance and resistance) as well as by the temperature dependence of metal
conductivity. The thermal effect also shifts the resonant frequency, leading to even
more complicated nonlinear feedback (see Ref. [40] for details).

In accordance with this analysis, nonlinear self-action has been predicted to occur
in a way, similar to magnetoelastic metamaterials, with nonlinear or even bistable
response in the power-dependence of the resonance frequency and chirality [40].

The first experimental attempt to observe the intrinsic structural nonlinearity [40]
was performed with two-turn helices and revealed a thermal contribution dominat-
ing over the mechanical response. To overcome this problem, an improved fabrica-
tion approach was employed with multi-turn helices [41], manufactured with high
geometrical precision and thermal annealing of the helices to improve their stabil-
ity. As a result, a remarkable power-dependent shift of the resonant frequency was
observed in the arrays of multi-turn helices, which was mostly due to mechanical
compression: it is estimated that the thermal contribution did not exceed 12%.

The outcome of the measurements on the multi-turn helices [41] are presented in
Fig. 15, where the change in the helix pitch is recalculated from the experimental
data based on the measured resonant frequencies, and compared with the theoretical
fit in accordance with the above analysis. Chiral properties of the helix are directly
proportional to its pitch, and can be characterised [45] with the normalised (dimen-
sionless) ratio between the electric p and magnetic m dipole moments along its axis,

γ =
|p|
|m|

· c = cξ
ωπr

=
ξ
π
· λ

2πr
, (30)

where λ is the wavelength and c is the light velocity. The auxiliary axis on the right
of Fig. 15 indicates the magnitude of γ for the data presented in the figure, calculated
at the initial frequency of the resonance in the array.

By choosing an appropriate arrangements of helices, either anisotropic or isotropic
lattices can be assembled, and also non-chiral (but still nonlinear) arrays be realised
using a racemic mixture of helices with opposite chirality. At the same time, a more
rigorous analysis should be developed to account for the effects of non-uniform
compression and thermal expansion, taking actual current distribution into account.
Such calculations however are not likely to be analytically plausible and must in-



26 D. A. Powell, Mingkai Liu and M. Lapine

Fig. 15 Change of the relative helix pitch ξ with power, recalculated from the experimental data
on the resonance shift with power. Blue circles represent the data obtained for a single resonator,
and red squares for the lattice; the size of the symbols commensurate with the measurement errors.
Black solid curve shows the theoretical fit to the presented data. The axis on the right indicates γ
as a measure of chirality.

volve numerical simulations. It would be particularly interesting to study wave prop-
agation in large chiral arrays, where polarisation rotation over the course of wave
propagation through the sample will eventually impose a kind of dynamic grating
of domains with different chirality, resulting in weird patterns of wave dynamics.

6 Conclusion and Outlook

We have presented several metamaterial structures which couple electromagnetic
and elastic dynamics within the elements. The magnetoelastic metamaterial under-
goes compression in response to an electromagnetic force, which results in strong
nonlinear behaviour including a bistable response. This is a rare example of nonlin-
ear mutual interaction of the elements with linear self-response.

Alternatively, it is possible to combine the functionality of electromagnetic res-
onator and mechanical spring into a single structure, by utilising self-compressing
helices. This approach has been also demonstrated experimentally, whereby the un-
desirable thermal side effects can be overcome by using compact multi-turn helices.

The meta-atoms with intrinsic rotation utilise an alternative degree of freedom.
They rely on electromagnetic torque, which can be balanced by a very soft mechan-
ical restoring torque, leading to a much stronger nonlinear response. The system ex-
hibits similar qualitative features to the magneto-elastic structure, and has a strong
bistable response which was demonstrated experimentally.

Extending the rotational system to a three-ring meta-molecule leads to the possi-
bility of self-oscillations. Furthermore, it turned out that these self-oscillations occur
due to two distinct physical mechanisms. The system with local instability has the



Coupled Electromagnetic and Elastic Dynamics in Metamaterials 27

remarkable property of being extremely insensitive to damping, with mechanical
self-oscillations being undisturbed even for strong damping.

The structures outlined here rely on the dynamics of an individual meta-atom
or meta-molecule to achieve their physical properties. This means that the analy-
sis and experimental results presented here are directly applicable to dilute arrays,
whereby neighbouring elements do not exert significant electromagnetic forces on
each other. The densely packed array regime is expected to show further complexity
of behaviour, and thus a bulk metamaterial based on these principals is an intriguing
possibility. Another direction of great interest is to extend such structures to shorter
wavelength regimes. The optical regime is naturally promising due to the high power
density available in lasers, however the fabrication of analogous structures at these
length scales would be a significant challenge.
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