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ABSTRACT 

This thesis investigates the performance of optimal simple monetary policy rules in 

dynamic macroeconomic models. In keeping with much modem macroeconomics the 

majority of the models considered contain forward-looking rational expectations. 

These expectation terms complicate policy analysis because they introduce time

inconsistency into optimal policy making. To overcome this problem this thesis 

develops techniques to examine both pre-commitment and discretionary rules. 

Three interrelated issues are focused on in this thesis. The first issue is how to 

construct simple policy rules whose performance closely approximates that of the 

optimal state contingent rule. This thesis argues that rather than comparing a range of 

simple rules and selecting the best one analysis should begin with the optimal state 

contingent rule. State variables can then be excluded from the optimal state 

contingent rule if their policy relevance is 'small'. The key to finding a simple rule 

that performs well is finding a small set of variables that is approximately sufficient 

for the information in the full system. 

The second issue investigated is whether simple rules that have been found to perform 

well in closed economy models also perform well in open economy models. For the 

United States it is widely held that a Taylor type rule closely approximates the optimal 

state contingent rule. In open economy models, however, exchange rate movements 

play an important role and consequently rules such as the Taylor rule that overlook the 

exchange rate may perform poorly. Results obtained in this thesis support the notion 

that rules developed in closed economy models do not perform well in open economy 

models. These results question the usefulness of studies that apply closed economy 

policy rules to open economy models. 

The final issue is whether information about the policy regime implemented by the 

monetary authority can be extracted from the policy rule it employs. A central bank's 

policy objectives and the intensity with which it goes about meeting these objectives 

are unobserved. However, policy reaction functions that relate the monetary 

authority's policy decisions to the state of the economy can be estimated. How policy 

makers respond to the economic state depends on its objectives and preferences . This 
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aspect of the thesis establishes conditions under which infonnation about policy 

preferences and objectives can be uncovered from estimated policy rules. 
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Chapter 1 

INTRODUCTION 

The introduction of rational expectations into main stream macroeconomi cs in the 

1970s has had major implications for monetary policy. On one level theory predicted 

that policy decisions would be ineffect ive because agents would have already 

accounted for them, and that only unanti cipated policy would effect the economy. By 

their nature these unanticipated poli cy ac ti ons would be random servin g onl y to create 

greater volatility in the economy. On a separate level the potenti al for time

incon sistency in poli cy deci sion making was believed to rule out control theory where 

the application was an economic model in which ex pectations were formed rati ona ll y. 

In the ea rl y 1980s it was reali zed that the rational expectations hypothesis by itself 

was insuffic ient to generate policy ineffec ti veness. What was also needed was the 

natural rate hypothesis whereby pri ce changes affec ted the suppl y si de of the economy 

only to the extent to whi ch they were unantic ipated . If thi s natura l rate hypothesis did 

not hold in each period, as sti cky price theories and over- lappin g wage contracting 

model s suggested, then a role for poli cy cou ld be motivated. At the same ti me control 

theory found ways to adapt to rational expectati ons. Time-inconsistency occulTed 

because of an inability to pre-commit. Imposin g pre-commitment as an optimi zation 

constraint led to optimal pre-commitment rules. Alternatively, one cou ld accept the 

pl an ner' s inab ility to pre-commit and solve for the opti mal time-consistent pol icy. 

Moreover, it was found that not all c lasses of rational expectation model led to time

inconsistency. Models where the ex pectati ons were of contemporaneous variables 

and not future va riables were found not to create time- inconsistency (Chow , 1980). 

Even though the control theory techniques have been established and the prominence 

of the po li cy ineffectiveness hypothesis has dec lined, the 1990s have not seen a great 

deal of research into optimal monetary policy in rational expectations model s. There 

are so me notab le exceptions of whi ch almost a ll ass ume pre-commitment before 

solving for the optimal policy rule. A much larger proportion of the monetary po li cy 



literature has shied away from analyzing optimal policy choosing instead to examine 

and contrast various simple rules. 

Against this backdrop this thesis at its widest interpretation examines monetary policy 

in rational expectations models. More specifically a large part of this thesis looks at 

the efficiency of optimal simple policy rules in dynamic open economy macro

economic models. Simple rules have merit because they are easy to construct, easy to 

evaluate, are highly transparent, and aid communication of policy decisions . 

Moreover, one simple rule - the Taylor rule - has been widely analyzed in closed 

economy settings and has been advocated as a stabilization tool. One focus of this 

thesis is on extending existing analysis of Taylor type rules to open economy models , 

thereby examining whether its performance in open economy models matches that it 

enjoys in closed economy frameworks . 

We begin in Chapter 2 by developing the numerical techniques required to solve for 

optimal simple rules in dynamic rational expectations models. The focus of this 

Chapter differs from standard treatments of optimal control in rational expectations 

models in that it emphasizes optimal simple rules rather than fully optimal rules. In 

particular, Chapter 2 offers a solution method for optimal simple rules in the absence 

of pre-commitment that is new to the literature. The techniques developed in Chapter 

2 are tested on existing models in the literature, and applied widely throughout the 

remainder of this thesis. 

Chapter 3 looks at the stabilizing properties of a specific policy rule: nominal GDP 

targeting. While it might not be the optimal policy rule to apply in any given model it 

is often felt that nominal GDP targeting is a robust policy rule, one that is likely to 

perform reasonably well across a range of plausible models. Chapter 3 formulates an 

economic framework that encompasses many popular theoretical models and uses 

analytical and numerical techniques to establish that where inflation expectations 

contain some forward-looking element nominal GDP targeting is unlikely to create 

instability in the economy. These analytic results confirm what numerical studies on 

more general models have typically found, and demonstrate the sensitivity of Ball's 

(1999) result showing nominal GDP targeting to be unstable. 
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Following our exploration into the stability properties of nominal GDP targeting, 

Chapters 4, 5, and 6 turn to the issue of how well optimal simple policy rules perform 

relative to the optimal state contingent rule. Chapter 4 builds a closed economy 

model, and contrasts optimal state contingent policy rules with the Taylor rule and the 

Henderson-McKibbin rule. Both pre-commitment and discretionary equilibria are 

solved for and compared. A version of the open economy Buiter-Miller model is 

constructed in Chapter 5 and using this model consumer price inflation targeting is 

contrasted with non-tradables inflation targeting. Only pre-commitment solutions are 

solved for, but optimal state contingent rules , optimal simple rules , and optimal 

Taylor type rules are considered. This analysis finds that optimal Taylor type rules do 

not perform well in open economy models, but that Taylor type rules extended with 

the inclusion of the real exchange rate perform much better. 

Building on a theme, Chapter 6 turns to an estimated model of the Australian 

economy. In Australia it is a stylized fact that the terms-of-trade and the real 

exchange rate are highly correlated with increases in the terms-of-trade leading to 

appreciations of the real exchange rate. With the terms-of-trade driving the real 

exchange rate Chapter 6 explores which of the terms-of-trade and the real exchange 

rate contains more useful information for policy makers. Simulation results reveal 

that monetary policy is more effective when it responds directly to the real exchange 

rate than it does when it responds directly to the terms-of-trade. Moreover, Taylor 

type rules are notable in this model for their poor performance. In this Australian 

model Taylor types rules are able to mount very little leverage over inflation and the 

output gap, and this compromises their ability to stabilize these variables. 

Methodologically, Chapters 4, 5, and 6 argue that the most nature benchmark against 

which to assess the performance of any simple policy rule is the optimal state 

contingent rule - the policy rule that optimally exploits all available information. The 

fact that a Taylor type rule performs better than a nominal GDP targeting rule in some 

given model is of secondary interest if both rules perform poorly relative to the 

optimal rule. Once the performance of the optimal policy rule is established, optimal 

simple policy rules that perform well can be constructed by individually removing 

state variables from the optimal rule and seeing how the exclusion of that variable 

affects the rule's performance. 
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Chapter 7 turns away from evaluating policy rules and instead looks at how 

information obtained from estimated policy reaction functions can be used to cast 

light of the objectives of policy makers. Consistent with the first part of the thesis the 

framework used is one where rational expectations are present, and where central 

banks optimize to set monetary policy. Chapter 7 establishes a number of 

identification conditions that must hold if the rational expectations model is to be 

identified, and subsequently if the parameters in the policy objective function are to be 

identified. 

The idea behind Chapter 7 rests on the fact that the feedback coefficients in the 

optimal policy rule are nonlinear combinations of the parameters in the economic 

model and those in the objective function. If the economic model can be identified 

and estimated, then these estimated parameters together with estimates of the policy 

feedback coefficients can possibly be used to extract information about the objective 

function parameters. A maintained assumption throughout this process is that the 

policy maker is optimizing some function . 

The final Chapter in this thesis continues with the theme of comparing pre

commitment and discretionary monetary policy. Chapter 8 takes the canonical ' rules 

vs discretion ' model and builds in an economic cost to anticipated inflation. This cost 

might be motivated by inflation tax considerations, indexing problems, or the menu 

cost/shoe leather cost literature. Chapter 8 shows that such an inflation cost has 

ambiguous implications for the magnitude of the discretionary inflation bias: the bias 

may go up or down. 
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Chapter 2 

SOLVING FOR OPTIMAL SIMPLE RULES IN RATIONAL 

EXPECTATIONS MODELS 

2.1) Introduction 

This chapter shows how to solve for optimal simple policy rules in dynamic rational 

expectations models . Such models naturally contain jump variables, variables that are 

not predetermined. Kydland and Prescott (1977) and Calvo (1978) were the first to 

bring to popular attention the implications these non-predetermined variables have for 

control theory. These implications, forcefully brought home by Barro and Gordon 

(1983), were that dynamic programming did not generate an optimal policy program, 

and that optimal programs were unlikely to be implemented due to time

inconsistency. This literature recommended that policy makers adhere to simple 

rules. 

Following Barro and Gordon (1983) numerous studies were performed where central 

banks and governments were assumed to follow simple rules. These studies, 

however, found it hard to resist evaluating the economic consequences of these simple 

policy rules, or to argue that one simple rule outperformed another according to some 

cri terion . Of course with a welfare criteria in place advocating one simple rule over 

another implicitly amounts to an inefficient form of numerical optimization. Which 

begs the question of how policy makers should choose the simple rule to implement. 

An alternate strand of the literature sought to develop techniques for applying control 

theory methods to rational expectations models. Initially this literature identified 

rational expectations models in which time-inconsistency did not arise. In this vein 

Taylor (1979) developed a model of overlapping wage contracts where wage 

expectations were formed rationally and solved for an optimal monetary policy rule 

using standard dynamic programming. This was possible because the expectations in 

Taylor's model were contemporaneous. Chow (1980) further argued the case for 
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control theory by formally showing that time-inconsistency would not arise if the 

expectations were not of future variables. Preston and Pagan (1982) followed up this 

point, establishing conditions for stabilizability in models with expectations of 

contemporaneous variables. 

In models with forward-looking rational expectations this strand of the literature did 

not pass up on optimization, but rather chose to formally build the requirement of 

time-consistency into the optimization problem. In this vein Cohen and Michel 

(1984) solved a one state variable problem for the optimal time-consistent rule , and 

subsequently Currie and Levine (1985), Oudiz and Sachs (1985), Mjller and Salmon 

(1985), and Backus and Driffill (1986) largely developed the theory of optimal control 

in rational expectations models. In this literature one can assume the existence of 

some pre-commitment mechanism and then solve for an optimal pre-commitment 

policy rule, or alternatively solve for an optimal time-consistent rule. 

While these optimization techniques have been available for some time, and there is 

an extensive literature on the properties of various monetary policy rules, relatively 

few studies have used control theory to develop policy rules. This is despite the fact 

that optimal rules are the natural benchmark against which to compare simple rules. 

However, Taylor (1979), McKibbin and Sachs (1988, 1991), Svensson (1994, 1998), 

Fair and Howrey (1996), Fuhrer (1997), and Rudebusch (1999) are notable for 

applying control theory to address monetary policy questions. 

Against this background this chapter has two aims. The first is to bring to wider 

attention the central methods in the literature for constructing optimal monetary policy 

rules in dynamic rational expectations models. The second aim is to address a gap in 

this literature. The solution methods currently available can solve for optimal and 

optimal simple pre-commitment rules, but only optimal discretionary rules , not 

optimal simple discretionary rules. This chapter presents methods for solving for 

optimal simple discretionary rules. 

We begin in Section 2.2 by briefly surveying the solution techniques in the literature. 

The emphasis in this Section is on closed-loop solution methods in discrete time 

models. Having discussed the available solution methods, Section 2.3 turns to the 
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outstanding problem of solving for optimal simple discretionary rules. Two methods 

are presented. The first, in Section 2.3.1, relies on matrix decomposition methods for 

solving the rational expectations model, the second, in Section 2.3.2, employs the 

method of undetermined coefficients. In Section 2.4 an example is presented and the 

methods in Section 2.3 applied to it. Section 2.5 concludes. Appendix A applies the 

techniques described in this chapter to a second example, Taylor (1979), while 

Appendix B uses an analytic example to compare the methods in Oudiz and Sachs 

(1985) with those developed here. 

2.2) Existing Approaches 

This Section examines the key papers in the literature, with an emphasis on closed

loop solution methods for optimal simple rules in discrete time models. The key 

references in this literature are: Oudiz and Sachs (1985); Backus and Driffill (1986); 

and the recent paper by Soderlind (1999). In principle we would like to be able to 

solve for four types of policy rule: optimal pre-commitment rules; optimal simple pre

commitment rules; optimal discretionary rules; and optimal simple discretionary rules. 

The latter two rules are time-consistent, the former two are only time-consistent in the 

presence of some pre-commitment mechanism. Simple rules are sub-optimal in that 

they exclude information from the policy rule that could improve welfare, as 

measured by some objective function. Each of these key papers solves for optimal 

pre-commitment rules and optimal discretionary rules. In addition, Oudiz and Sachs 

(1985), and Soderlind (1999) present methods for solving for optimal simple pre

commitment rules. What is absent from this literature is a method of solving for 

optimal simple discretionary rules. 

The solution methods in Oudiz and Sachs (1985), Backus and Driffill (1986), and 

Soderlind (1999) are very similar. Soderlind (1999) follows Oudiz and Sachs' (1985) 

Lagrangean approach to solve for optimal pre-commitment rules; Backus and Driffill 

(1986) use dynamic programming to achieve the same result. Both Soderlind (1999) 
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and Backus and Driffill (1986) draw heavily on Oudiz and Sachs (1985) to solve for 

optimal discretionary rules.! 

All of the solution methods contained in the references above are couched in terms of 

the following linear economic structure 

[ 
Ylt+1 ]=II1[Ylt]+II2Xt +[Vll+1], 

E,Y 2t+1 Y 2t 0 
Vlt - iid[O, :E]. (1) 

where Ylt is an (mxl) vector of predetermined variables, Y2t an ((n-m)xl) vector of 

jump, or free, variables, and Xt a (pxl) vector of policy instruments. Model 

coefficients are contained in the (nxn) and (nxp) matrices III and Il2 respectively. 

The expectation of Y2t conditional upon information up to and including time t is 

denoted E,y2t. Period t information, denoted I" is defined as It = {Ylt, Y2t, It.!} . 

Throughout this paper the policy objective function is taken to be 

Loss[O,oo] = tr[Wil], (2) 

where W is a symmetric, positive semi-definite, time-invariant matrix of known 

policy weights, Q is the variance-covariance matrix of the vector containing the 

predetermined variables, the jump variables, and the policy instruments, and 'tr' is the 

trace operator. 

2.2.1) Optimal Pre-Commitment Rules 

Because the focus of this paper is not on solving for optimal pre-commitment rules, 

the treatment given here, which follows Soderlind (1999), but with different notation, 

is brief. Form the Lagrangian 

L=EoL[y~VYt +2y~UXt +x~Rxt]+2p~+1[II1Yt +II2xt +~t -Yl+1], (3) 
t=O 

I See Currie and Levine (1985) for a treatment of optimal pre-commitment rules in continuous time 
models. 
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where Yt = [YltT Y2tT]T, ~l+! = [Vlt+!T (Y2l+rEtY2l+1)T]T, and Pl+! is a vector of Lagrange 

multipliers, and the dynamic constraints come from (1). The matrices V, U, and R are 

components of the weighting matrix W defined in (2). Differentiating (3) with respect 

to Pt+I. Yt and Xt and collecting the first order conditions in matrix form gives 

[
I 0 0][ Yt+!] [II! o 0 II; X,+! = - V 
o 0 - II; E,p ,+! UT 

II2 
-U 
R 

O][Y t] [~t + !] 1 x, + 0 . 

o P, 0 

(4) 

For the purposes of this paper it suffices to stop here. The important message from 

(4) is that the optimal pre-commitment policy rule depends not only on the state 

vector, but also the vector of Lagrange multipliers. Rules that exclude these Lagrange 

multipliers, such as simple rules, cannot be fully optimal and therefore will not be 

certainty equivalent. 

2.2.2) Optimal Simple Pre-Commitment Rules 

Consider the class of macroeconomic models in (1). Take the policy reaction function 

to be 

[YIt] x t =cp . 
Y 21 

(5) 

This policy rule sets the vector of instruments as a function of the vector of state 

variables. Together (1) and (5) imply 

[ Y It+! ] = II[Y It] + [v It+!], 
E,Y 2t+! Y 2t 0 

(6) 

where IT = IT! + IT2<jl. Taking the period t conditional expectation of (6), then 

applying a spectral decomposition to IT gives IT = M'!AM, where A is a matrix with 

the eigenvalues of IT along its leading diagonal , and zeros elsewhere. Partition A as 
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[
AI 

A-- 0 , and M confonnably, M = 0] [Mu 
A2 M21 

- , having reordered A such MI'] 
M22 

that the eigenvalues enter in ascending magnitude. All eigenvalues with modulus less 

than one are contained in Al and all those with modulus greater than one are contained 

in A2. The number of eigenvalues with modulus less than one and greater than one 

define the dimensions of Ai and A2 respectively. Provided a cp exists such that the 

number of eigenvalues in A2 equals the number of jump variables, the system is 

stablizable and has a unique rational expectations equilibrium. If the eigenvalues in 

A2 are distinct, M22 has full rank and can be inverted. To place the system on its 

saddle-arm requires 

Y 2' = -M;~M2IY It . (7) 

If M22 is singular, then a spectral decomposition of II cannot be used and a Jordan 

canonical fonn (Blanchard and Kahn, 1980) or a Schur decomposition (Klein, 2000) 

might be used instead. 

With the jump variables evolving according to (7) and the transition of the 

predetennined variables given in (6), the evolution of the entire system is determined 

as an implicit function of the policy parameters cpo The objective function (2) can be 

evaluated and then minimized with respect to cpo Minimization occurs subject to the 

constraint that the rank of A2 is 'n-m': that the system has a unique rational 

expectations solution. Some elements of q> can be fixed and the remaining 

unconstrained parameters optimized over. 

2.2.3) Optimal Discretionary Rules 

To solve for optimal discretionary rules, Oudiz and Sachs (1985) use dynamic 

programming methods. They summarize their solution procedure as follows: 

'The time-consistent, non-cooperative equilibrium is found as a limit to 

a finite time (T period) problem, for T large. The solution is derived in 

two steps. The finite-horiz.on problem is solved for the last period, T, 
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and then it is solvedfor period t given the solution for period HI. We 

find the limit of the rule for period 0 as T --) 00. ' 

Keep in mind that the optimization and time-recursion take place subject to the 

restriction that the system's rational expectations solution be unique. First take the 

Lagrangean function under pre-commitment, equation (3), and augment it with a 

constraint linking the jump variables to the predetermined variables: 

Y21 =N,Yll' (8) 

Minimization of the Lagrangean function continues as previously, generating a first 

order condition linking the instrument vector to the predetermined variables: 

X, =S,Yll' (9) 

Equations (8) and (9) are then solved simultaneously, (with Nt an implicit function of 

SI> and St an implicit function of Nt), subject to the restriction that Nt places the 

system on its stable manifold. The initial NT is chosen as the solution to the terminal 

period problem. Further details are provided in Backus and Driffill (1986), McKibbin 

and Sachs (1991), and Soderlind (1999). 

2.3) Optimal Simple Discretionary Rules 

Having briefly described existing techniques for solving for optimal rules in dynamic 

rational expectations models we now turn to the outstanding problem of solving for 

optimal simple discretionary rules. The approach we take to discretion is 

conceptually different to the Lagrangean approach discussed in Section 2.2.3. Under 

pre-commitment a policy rule is proposed whose structure cannot be altered as time 

passes. Knowing this agents form their expectations using the proposed rule and the 

feedback coefficients in the proposed rule are then optimized over. With discretion 

we look for a time-consistent rule: a rule that the monetary authority has no incentive 

to alter as time passes. The idea of discretion is implemented by drawing a distinction 

between the rule the monetary authority proposes to follow today and that it proposes 
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to follow in the future . Distinguishing between today ' s rule and the future rule 

captures the notion that today ' s monetary authority cannot tie the hands of future 

policy makers. 

Consider dynamic specifications of the form 

AoY, = A1Y'_1 + A2ESt+l + A3X, + v,, Vt - iid[O,L] (10) 

where Yt is an nxl vector of jump and predetermined variables, Xt is an px l vector of 

policy instruments, and Vt is an nxl vector of stochastic innovations. Ao, AI , A2, and 

A3 are matrices of policy invariant coefficients . The variance-covariance matrix L 

may be singular. Finally, Et is the mathematical expectation operator conditional 

upon period t information, It. As previously defined It = {Yt, It-I}. The model's 

structure and parameters are assumed known . 

Equation (10) is more general than may first appear. Systems with lags of the 

instrument vector or more general lead and lag structures in Yt can all be manipulated 

into the form (10). Moreover, by redefining variables, expanding the state vector, and 

exploiting the law of iterated expectations, expectations of future variables conditional 

on period t-s (s > 0) information are also possible (Binder and Pesaran, 1995). 

Provided A2 has full rank (10) and (1) are largely equivalent. The two specifications 

differ slightly in so much as (10) permits Xt to affect Yt contemporaneously, while in 

(1) a one period control lag is assumed. For the mechanics of the approach described 

below this difference is unimportant, a one period control lag could easil y be 

accommodated. 

The information available to the monetary authority when it sets policy is contained in 

the state vector, Yt.l, and the vector of innovations, Vt. Accordingly it is these 

variables that form the basis of the policy rule. Excluding Vt from the rule imposes 

the restriction that the rule is formed using period t-l information. With simple rules 

some state variables and/or innovation terms are omitted from the policy rule. 
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Alternatively, at the cost of elements in Yt-l and VI expectations of future variables 

may be built into the reaction function 2 

Recall that we draw a distinction between the policy rule proposed for today and that 

proposed for the future. Accordingly we posit the rule 

XI = rplY I-I + rp2E tY 1+1 + rp3 V I (11) 

for today, but a different rule 

X I +j = IjIIY l+j-I + 1j12E '+j Y l+j+1 + 1j13 V ' +j ' 'if j >0. (12) 

for the future. 3 An important special case of (11) and (12) is that where every state 

variable and stochastic innovation is included. In this case expected future variables 

contain no additional information and !jl2 and 'V'2 would naturally be restricted to equal 

null matrices. The special case identified relates to the optimal discretionary rule, 

illustrating that the methods presented below can be applied to solve for optimal as 

well as optimal simple discretionary rules. Two solution methods are presented; the 

first uses matrix decomposition methods to solve the rational expectations model 

while the second employs method of undetermined coefficients and solves a matrix 

quadratic . Uhlig (1999) discusses how these two rational expectations solution 

methods relate to each other. 

2.3.1) A Matrix Decomposition Solution Method 

To solve the system, while capturing the essence of time-consistency, we begin with 

the future period. Defining Zt = [YI
T x/f, advancing the time subscript on (10), and 

combining (10) with (12) gives the system 

2 Note that additional information can onl y be obtained from expectations of the future if some 
elements in y,.1 or v, are directly excluded from the rule. In which case placing expected future 
variables in the polic y rule amounts to an indirect way of accessing this information. 
3 Assuming the same policy rule for all future periods is without loss of generality. What is important 
is that policy decisions made today do not constrain future policy makers. Thus indexing the 1jI's by 
time would not alter the solution. Another way of thinking about this is that the optimization problem 
facing today's central bank has already been solved by future central banks. We are looking for a 
stationary solution so all future central banks implement the same policy rule. However, today's 
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A'z t+1 =B'zt +F'E t+1Zt+2 +G'u t+1 , Ut - iid[O,<I>] (13) 

whereA' = [OAo 
pxn 

-A 3 ], 

Ip 
B,=[AI 

\jI3 

Onxn] 
Opxp , 

F,=[A2 
\jI2 

Onxn] 
0pxp , 

and 

G' =[In 
\jI3 

Onxn] . . . T T T . . . The vanance-covanance matnx of Ut = [Vt 0] , <1> , IS dIrectly 
0pxp 

and clearly related to the variance-covariance matrix of Vt,~. Provided F' has full 

rank (13), with an expanded state vector to define Ut+2, can be re-expressed as 

[ 

ut+2] [Ut+l 
Zt+I =K Zt +0[u t+J, 

E t+1z t+2 Zt+l 

(14) 

wh'" K e[: 0 O]T 0 

: ],"d eel: 0 

-~·nn I -~, ~, 
0 I The case 

0 B' A' 0 0 

where F' is singular is discussed below. Equation (14) has a form analogous to (6), 

and is amenable to a variety of solution methods. Following our discussion of the pre

commitment case in Section 2.2, take the period t+l conditional expectation of (14) 

and apply a spectral decomposition to K. This decomposition gives K = M·IAM, 

where A contains the eigenvalues of K along its leading diagonal and otherwise equals 

the null matrix. As earlier, we now reorder the eigenvalues in A so that they are in 

ascending magnitude and partition A into A = [A.d o ] , where the dimensions of Al 
A.2 

and A2 are such that any eigenvalues in A2 have modulus greater than one. M is also 

reordered in accordance with A and it is then partitioned as M = [ Mu 
M2I 

M 12 ], 

M22 

conformably with A. Provided the number of eigenvalues in A2 equals the number of 

jump variables in Zt and the eigenvalues in A2 are distinct, M22 is non-singular and the 

unique stable solution is given by 

central bank does not know what the future period' s solution is and must take a guess at it. This guess 
is summarized in (12). 
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-1 [Ut+I] def. • 
Zt+1 =-M 22M 21 Z, =OIZ, +02Ut+I· (15) 

Where F* is singular (14) is not a valid representation of the system. Instead the 

model must be left in the form 

[
I 0 ° 1[ Ut+2 • [0 0 0 ][Ul+l] [I] o I 0 . Zt+1 = 0, 0, I. z, + 0 [U1+2], 

o 0 -F E'+l Z1+2 G B A ZI+1 0 

in which case it can then be solved using one of the methods described in Anderson 

and Moore (1985), King and Watson (1998) or Klein (2000). These methods all 

return a solution in the form of (15). Note that the solution (15) depends on the 

feedback parameters in the future policy reaction function , (12). 

Exploiting the definition of Zt, combining (10) and (11), and inserting the period t 

conditional expectation of (15) into the resulting system gives 

def 

Z, =[A-FO;r1[Bz,_1 +GU,]=OIZ'_1 +02U'+I' (16) 

provided of course that [A-FO j '] is nonsingular. The process driving Zt in (16) 

depends on the future policy rule through 8/ and on today's policy rule through F, B, 

and G. From (16) the unconditional variance-covariance matrix of Zt, Q , is easily 

obtained by solving for the fixed point of 

Q=8IQ8; +82<1>O~ . (17) 

As long as the spectral radius of 8 j is less than one - a result that holds if the system is 

stablizable - Q can be solved from (17) using standard fixed-point solution methods. 

Once Q is obtained the objective function (2) is easily evaluated and can then be 

maximized with respect to <PI. <P2, and <P3 holding constant \lfj , 1jJz, and \lf3. Now 

recognizing that the future monetary authority faces the same optimization problem as 

the current monetary authority we can use the newly optimized values of <pj , <pz, and 
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<P3 as a better guess at the rule applied by the future central bank. That is we set 'lfl = 
<PI , 'lf2 = <P2, and 'lf3 = <P3 , and with this new guess at the future policy reaction function 

re-solve the future period rational expectations model to obtain updated values of 91 * 

and 9t A new solution for (15) is obtained, the current central bank's objective 

function is evaluated and again minimized with respect to <PI, <P2, and <P3 while again 

holding 'lfl' 'lf2, and 'lf3, constant. This iterative procedure is continued until a fixed 

point is obtained whereby the newly optimized feedback parameters in today's policy 

rule equal those proposed in the future policy rule: <PI = 'lfl ' <P2 = 'lf2, and <P3 = 'lf3· 

Note that coefficients in the policy rule can be arbitrarily restricted and hence the 

solution obtained is that for an optimal simple discretionary rule.4 

2.3.2) An Undetermined Coefficients Solution Method 

Section 2.3.1 provided a solution method for optimal simple discretionary rules that 

relied on matri x decomposition methods to solve the underlying rational expectations 

model. Matrix decomposition solution methods are popular because they naturally 

impose the uniqueness and stability conditions arising from transversality conditions. 

But matrix decomposition solution methods are not always the most convenient 

technique to apply to a specific problem. Another popular solution method is the 

method of undetermined coefficients, and in this Section we show how the method of 

undetermined coefficients can be brought to bear in solving for optimal simple 

discretionary rules. 

From (13) the solution to the system is postulated to be 

Zt+l =O;Zt +O;ut+1 , (18) 

where 91* and 92* are parameter matrices whose values have yet to be determined. 

Advancing (18) and taking conditional expectations as necessary and substituting 

back into (13) and equating coefficients gives the restrictions 

4 However, for some simple rule structures convergence may not be obtained. In some cases no stable 
rule of the postulated form exists. More generally the convergence properties of the algorithm 
described are unknown. 
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[A' -C']9; =B' +[D' +F']9;2 

A'9; =F'9;9; +G'. 

(19) 

(20) 

From (20), 92' = [A'-F'Sl'rIG'. Equation (19) is a matrix quadratic in Sl' and thus 

permits multiple solutions. One solution, satisfying McCallum's (1983) continuity 

restriction that Sl * = 0 when B* = 0, designed to rule out sunspots, is 

9; =[(A' -c')-(D' +F')9;r'B' . (21) 

Provided [(A * -C')-(D' +F')Sl *] is non-singular, and (21) is a contraction mapping, 

standard fixed-point techniquesS can be employed to solve for Sl'. In the solution Sl' 

is implicitly a function of the future policy feedback parameters \jIl, \jI2, and \jI3. When 

setting policy today policy makers optimize over cpr, CP2, and CP3 recognizing that the 

decisions they make do not influence \jIr, \jI2, or \jI3. From the viewpoint of today' s 

policy maker the structure of the rule that will be implemented in the future is 

established. So in period t the policy maker can assume that the economy evolves 

according to (18), with the coefficient matrices in (18) given by the solutions to (20) 

and (21). 

Note that S'r and S*2 in (18) depend upon \jIr, \jI2 , and \jI3 but not cpr, CP2 , or CP3. The 

current policy decision cannot influence how expectations are formed, but can alter 

the expectation formed, by changing the state Zt. With Zt+l formed by (18) the 

transition equation for Zt becomes 

d,r 
Z, = [(A-C)-(D+F)9;r' Bz t-l +[A - F9;r'Gu, =91Zt-l +9 2u,. (22) 

Equation (22) expresses Zt as a V AR(l) process. As earlier, Q can now be solved 

numerically using (17) provided the spectral radius of [(A-C)-(D+F)S'lrIB is less 

than one. With the system cast in the form of a V AR(l) process optimization follows 

directly that described in Section 2.3 .1. Guesses at the feedback parameters in the 

future rule are made. Conditional on this guess of the future rule optimal feedback 

5 This is Binder and Pesaran' s (1995) 'brute force' method. 
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parameters for today's rule are found, and these are used to revise the guess at the 

future rule. This iterative procedure stops once a fixed point is obtained with \jf1 = <pI, 

\jf2 = <P2, and \jf3 = <P3 occurring naturally as the outcome of the optimization. 

2.4) An Application 

Our example is taken from Clarida, Gali and Gertler's (1999) (CGG) Journal of 

Economic Literature paper. CGG's analysis is theoretical , but we take their New 

Keynesian model and parameterize it for simulation purposes. Their model has two 

key equations: those for the output gap and inflation. Both demand and supply shocks 

are persistent, modeled as simple auto-regressive processes. The model also has a 

policy reaction function determined optimally, so the combined system has five 

equations. Using standard notation, the system is6 

y, = E ,y<+1 -y[i, -E,lI '+l l+ g, 

1I, =E ,lI' +1 +A.y, +u, 

y>O 

A>O 

with the demand and supply shocks modeled respectively as 

g, = ~gt-l + E, 0:S;~<1 

u, = pu ,-I + v, . O:s;p<1 

In matrix notation the CGG model can be written 

[ 
1 0 Y][Y' ] [1 y - A. 1 0 1I, = 0 1 

o 0 1 i, 0 0 

0] [y'+I] [1 o E, lI'+1 + 0 

o 1'+1 qJI 

o 
O.[g,] 
~ u

o
' , 

qJ2 

with the error vector driven by 

(23) 

6 One important parameterization that is worth noting is that the coefficient on the expected inflation 
term in the Phillips curve would more generally equal the discount factor. Here the discount factor is 
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[

gt [11 0 °1[gt_
l
] [Et 1 

~t = ~ ~ ~ U~_l + ~t • 

As indicated in (23) the monetary authority sets the level of the nominal interest rate 

as a linear function of the two observed structural disturbances gt and Ul in order to 

minimize Loss[O,ooJ = aVar[YlJ + (l-a)Var[n,J. CGG's model assumes that period t 

expectations are formed, and period t policy decisions made, with all agents knowing 

the structure of the economy and aware of all variables dated period t or earlier. Thus 

policy makers know the demand and supply shocks before they set policy. 

Because demand innovations move output and inflation pro-cyclically, it is always 

optimal for policy makers to eliminate the influence of these demand innovations 

from the system - regardless of policy preferences. Consequently the coefficient 

applied to the demand disturbance in the optimal policy reaction function is invariant 

to the weight placed on output in the policy objective function , a . In what follows we 

solve the system using the method of undetermined coefficients, following Section 

2.3.2. 

Table 2.1 presents the optimal policy reaction functions for a range of values of a 

assuming the monetary authority can pre-commit to a course of action .? As expected 

the coefficient applied to the demand disturbance (gt) is invariant to a. Also observe 

that in the extreme cases where a = 0, 1 all volatility in inflation and output 

(respectively) can be completely eliminated. This is a consequence of agents and 

policy makers knowing the disturbances before they make their decisions. 

set to one to make the Phillips curve consistent with the loss function used, which weights the present 
and the future equall y. 
7 For simulation purposes we set: y = 0.8; A = 0.4; )l = 0.5; P = 0.5; and cr, = cr, = 1. The correlation 
between the supply and demand disturbances is set to zero. 
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Table 2.1 - Clarida-Gali-Gertler (1999) model under pre-commitment 

Feedback coefficients Std. Deviations % 

I-a gt Ut Yt 1tt it 

0 1.25 1.00 0.00 2.31 1.85 

0.2 1.25 1.08 0.40 1.99 1.91 

0.4 1.25 1.17 0.86 1.62 1.98 

0.6 1.25 1.28 1.41 1.18 2.06 

0.8 1.25 1.40 2.08 0.65 2.17 

1 1.25 1.56 2.89 0.00 2.31 

Table 2.2 derives optimal discretionary rules for the CGG model. Unsurprisingly, in 

the cases where a = 0, 1 the optimal pre-commitment and discretionary solutions 

coincide. In these two special cases the problem collapses to that where there is one 

instrument matched against a single policy goal. With one instrument and one goal 

the system is controllable, ruling out time-inconsistent behavior. 

Table 2.2 - Clarida-Gali-Gertler (1999) model under discretion 

Feedback coefficients Std. Deviations % 

I-a gt Ut Yt 1tt it 

0 1.25 1.00 0.00 2.31 1.85 

0.2 1.25 1.04 0.21 2.14 1.88 

0.4 1.25 1.10 0.51 1.90 1.92 

0.6 1.25 1.18 0.94 1.56 1.99 

0.8 1.25 1.32 1.62 1.01 2.10 

1 1.25 1.56 2.89 0.00 2.31 

Comparing Tables 2.1 and 2.2 reveals a property derived analytically in CGG: for a 

given value of a the variance of output is higher and the variance of inflation is lower 

under pre-commitment than discretion. CGG point to this property as a benefit 

accruing to pre-commitment, even in the absence of a discretionary bias. 
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Figure 2.1 plots the efficiency frontiers from the CGG model under pre-commitment 

and discretion. These frontiers map out a straight line and it is hard to distinguish 

between them. Clearly it is not the case that the efficiency frontier for the pre

commitment case dominates that for discretion. So while for a given value of a pre

commitment generates a lower variance of inflation and a higher variance of output 

than discretion does, by choosing a suitably, discretion can match the variances of 

both inflation and output produced by pre-commitment. Intuitively it is clear that to 

match both the variance of output and inflation the a under discretion must be less 

than that under pre-commitment. This is an example where appointing a Rogoff 

(1985) optimally conservative central banker would eliminate the time-inconsistency. 

2.S) Conclusions 

In dynamic economies where agents' form rational forward-looking expectations 

optimal policy rules are typically time-inconsistent. Control theory has addressed this 

problem by developing techniques to solve for optimal pre-commitment rules and 

optimal time-consistent (discretionary) rules. In the case of pre-commitment the 
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literature contains methods that solve for optimal rules and for optimal simple rules. 

But for discretion solution methods are currently only available to solve for optimal 

discretionary rules. This paper expands on this literature by presenting algorithms 

that solve for optimal simple discretionary rules. 

We began in Section 2.2 by surveying the techniques currently available in the 

literature for solving for optimal rules in rational expectations models. Here, the 

methods in Oudiz and Sachs (1985) that solve for optimal pre-commitment rules , 

optimal discretionary rules, and optimal simple pre-commitment rules in discrete time 

models were focused on. Section 2.3 presented two methods for solving for optimal 

simple discretionary rules. The first method, given in Section 2.3.1 , solves a similar 

class of models to that considered in Oudiz and Sachs (1985). It relies on matrix 

decomposition methods to solve the underlying rational expectations model. Section 

3.2 shows how optimal simple discretionary rules can be solved using the method of 

undetermined coefficients. As natural byproducts Sections 2.3.1 and 2.3.2 also show 

how to solve for optimal simple pre-commitment rules as well as optimal 

discretionary rules. Having presented the solution algorithms, Section 2.4 took a 

recent paper by Clarida, Gali , and Gertler (1999) and applied the methods in Section 

2.3 to their model. 

The techniques derived in this paper are widely applicable. Much of the literature on 

monetary policy considers the properties and relative merits of simple rules. 

Relatively few papers analyze rules constructed using optimization and those that do 

invariably impose pre-commitment as a constraint. Optimal discretionary rules are 

rarely considered, and optimal simple di scretionary rules have been completely 

neglected. Yet only by comparing pre-commitment rules with discretionary rules can 

the advantages of pre-commitment be assessed. Moreover, it is as interesting to 

compare optimal rules with optimal simple rules under discretion as it is for pre

commitment. 

22 



~ 
Appendix A: Taylor (1979) 

This example comes from Taylor's (1979) Econometrica paper. Taylor's model has 

five equations, two of which are estimated behavioral equations. These two estimated 

equations are for output and inflation respectively. Their structures are as follows 

y, =a,d, +a 2 y,_, +a 3 Y'_2 +a.d ,_, +asE,_,11:, +a 6 E,_, +11" 

11:, =bl11:'_l +b2E,_, +b 3E'_lY' +E,. 

Real money balances are denoted d" 111 and £, are demand and supply innovations 

respectively and the remaining notation is standard. Two identities (Yl.! = Yt.! and £,.! 

= £,.!) are used to manipulate the system into companion form. The fifth equation is a 

policy reaction function linking the policy instrument, d" to the observed state. 

The objective function Taylor uses is a weighted average of the unconditional 

variances of output and inflation with a representing the weight placed on output 

stabilization and I-a that on inflation stabilization. Applying the pre-commitment 

algorithm of Section 2.3.2 to this model produces the following optimal closed-loop 

policy reaction functions 8 

Table 2.3 can be compared to Table II in Taylor (1979); some differences are 

evident9 In light of Chow (1980), Preston and Pagan (1982) it is unsurprising that the 

results in Table 2.3 also pertain to the case of policy discretion. Quite why these 

results differ from those in Taylor is unclear. Notably, the three coefficients that both 

algorithms agree on are those stemming from the demand side of the model. From a 

control perspective it is always optimal to fully offset shocks propagated through the 

demand side of the model because such shocks move output and inflation pro

cyclically. Observe also that the differences between those here and Taylor's are 

increasing in a. 

8 The simulations use Taylor' s estimated parameters: a, = 0.578; a2 = 1.167; a3 = -0.324; a4 = -0.484; as 
= -0.447; a,; = 0.38; b, = 1; b2 = -0.67; b3 = 0.018. Further 0" = 0.7916% per quarter, o , = 0.3661 % per 
quarter, and the correlation between the demand and supply shocks is 0.012. 
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Table 2.3 - Taylor (1979) model under pre-commitment and discretion 

Feedback coefficients Std. Deviations % 

ex Yt-I Yt-2 1tt-1 Ct_1 dt_1 sd(Yt) sd(1tt) 

0.01 -2.02 0.56 -15.09 9.46 0.84 2.16 1.64 

0.1 -2.02 0.56 -4.32 2.24 0.84 1.36 2.05 

0.2 -2.02 0.56 -2.65 1.12 0.84 1.20 2.30 

0.5 -2.02 0.56 -0.96 -0.02 0.84 1.02 2.92 

0.7 -2.02 0.56 -0.36 -0.42 0.84 0.94 3.46 

0.9 -2.02 0.56 0.19 -0.79 0.84 0.87 4.64 

ex Some Representative Results from Taylor (1979) 

0.01 -2.02 0.56 -15.11 9.49 0.84 2.14 1.64 

0.5 -2.02 0.56 -0.86 -0.09 0.84 1.01 2.88 

0.9 -2.02 0.56 0.29 -0.86 0.84 0.85 3.96 

9 In an effort to understand why these differences are occurring I have also solved the model using 
standard dynamic programming, following Taylor (1979). The results obtained were the same as those 
generated from my algorithm. The reason for these differences in results remains unresolved. 
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Appendix B: A Simple Analytic Example 

Consider the following simple model. Output, y" is described by the process 

y, =~E'Y'+l +yr, +u,. O:o::B:o:: l,y<O (Bl) 

The policy instrument is the real interest rate, rt. Demand shocks, u" follow the AR(1) 

process 

u, = PU'_l + c,. O:O::p<1 

All variables have had their averages removed. The objective function is a weighted 

average of the unconditional variances of output and the policy instrument: 

Loss[O,oo 1 = aVar(y,) + (1- a)Var(r,). O:O::a:O::l (B2) 

Bl) The Optimal Rule under Pre-Commitment using the Method of 

Undetermined Coefficients 

The state variable for the system is the demand shock, u" so the policy reaction 

function takes the form 

r, = qm, (B3) 

Substituting (B3) into (Bl) gives 

y, =~E'Y'+l +(I+y<p)u,. (B4) 

To solve this rational expectations model we posit the solution 

y, = eu, (B5) 
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I 
and proceed to solve for 6. Leading (BS) by one period and taking the conditional 

expectation results in 

E,y'+l =6pu,. (B6) 

Substituting (B6) and (BS) into (B4) and equating coefficients gives 6 = (1 + y<p) , and 
(1- p~) 

therefore from (BS) the solution for output is 

(l+y<p) u 
y, = (l-p~) , (B7) 

The objective function is now written as LOSS[0,ool=Jl+y<PJ2cr~+(I-a)<p 2 cr ~ . '1 1- p~ 

Minimizing this loss function with respect to <p produces <p = - ay 2 ' , 
(l-a)(l-p~) +ay 

which is positive under the parameter assumptions above: policy tightens in response 

to positive demand shocks . In the special case where p = 0, ~ does not appear in the 

solution and the forward-looking component of (Bl) is non-consequential. 

B2) The Optimal Rule under Pre-Commitment using Oudiz and Sachs (1985) 

Recall that the model under consideration is 

y, = ~E , y,+, +yr, + u, O~~~I,y<O (BS) 

U, =PU '_l +€ " O~p<1 

Where the problem is to set the real interest rate, r" as a function of Ut to minimize 

(B2). This system can be expressed in matrix form: 

[ 
U ,+1 ] [ p 0 ] [u , ] [€ ,+t ] 

E,y '+l = _~ -l(1+y<p) ~-I y, + 0 . 
(B9) 
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<p is the feedback parameter to be optimally selected in the simple rule rt = <pUt. The 

eigenvalues of the coefficient matrix are clearly p and Wl
, thus our assumptions 

regarding these two parameters (0 < p, ~ < 1) ensure that our system has a saddle

point independent of policy. That the system is stablizable with a unique rational 

expectations solution follows. We assume that these eigenvalues are distinct and 

employ a spectral decomposition to solve the system. 10 Specifically: 

u t +1 _ l+y<p 
[ 

1 

[EtYtJ - I-p~ O][P ~I ][_ Il Y<I> 
1 ° ~ 1- P~ ~I~:H'~'l 

Restricting the system to lie on its saddle-arm implies y, = (1+Y<I» u t ' which gives 
(1- p~) 

the same transition equation for output as that derived using the method of 

undetermined coefficients, equation (B7). Therefore, the optimal value of <p will also 

be the same, given the same objective function. 

83) The Optimal Rule under Discretion using the Method of Undetermined 

Coefficients 

To solve the system we assume that current policy is set using the rule (B3) while 

future policy follows r'+j = 'l'u t+j , \;f j ~ 1. We are looking for a stationary solution, so 

the equilibrium will have \jf = <p, but the important point is that policy makers today 

must optimize over their choice of <p allowing for the fact that the process by which 

agents form their expectations will be a function of 1J! and not ({J. 

Consider the period t+l problem. The transition equation is 

Yt+1 =~Et+tYt+2 + (1+Y'I')U'+I' (BlO) 

Positing the solution 

10 That the eigenvectors have been arbitrarily normalized and not normalized to length one, as is 
common, in no way alters the solution. The normalization applied was chosen for convenience. 
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r 
Y'+l = 9U'+l (Bll) 

and using the method of undetermined coefficients produces the solution for 9: 

I+H' 
9 = I-pP . (BI2) 

Using (BI2) and (Bll) in (BlO) gives y, = [ 1 + Y<P + pp 1 + Y'VJu,. The loss function 
I-pP 

is therefore given by LOSS[0'OO]=Jl+Y<P+pp l+ YIjfJ2cr~+(I-a)<p2cr~, which '1 1- pp 

when differentiated with respect to <p - holding ljI constant - gives the first order 

condition 

------''---'-....::. = 2cr u ay 1 + Y<P + pp-- + 2(1- a)<pcr~. dLoss[O,oo] 2 [ I+ YIjf J ' 
d<p 1- pp 

(BI3) 

Now, recognizing that the objectives, incentives, and constraints facing future policy 

makers are the same as those faced today, we set Ijf = <p and find the zero of (BI3): 

-ay 
<P = , . 

(1- a)(I- pP) + ay-
(BI4) 

Under our parameter assumptions the feedback coefficient under discretion is positive 

with slightly smaller magnitude than that under commitment, implying a less activist 

stance. The feedback coefficients under pre-commitment and discretion are the same 

only in the special case where p = 0, or ex = 0, 1. The latter two cases correspond to 

situations where the number of instruments equals the number of goals. 
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B4) The Optimal Rule under Discretion using Oudiz and Sachs (1985) 

To trans late the example above to one with a finite time horizon the policy loss 

T 

function is taken to be Loss[O, T] = l: a[Yi] 2 + (1- a)[ri]2. The dynamic constraints 
i=O 

are: 

y, =~E,y,+, +yr, +u" 

U,=PU ,_,+E,. 

O::;~::; I , y<O 

O::;p<I 

(BI5) 

(BI6) 

Consider the period T problem. Expected variables can be written as a function of the 

state and therefore 

ETYT+, =HT+,ETu T+, =HT+,PU T, (BI7) 

where HT+I has yet to be determined. Importantly, HT+I is independent of the current 

policy. Substituting (BI7) into (BI5) gives 

YT = (1 + P~HT+ I )u T + yrT· (BI8) 

Equation (BI8) allows a standard dynamic programming solution and we therefore 

proceed to minimize the period T loss function, Loss[T,TJ, subject to (BI8). The first 

order condition gives the policy reaction function 

rT =-ay[(l-a)+ay2r'[I+p~HT+,]uT· (BI9) 

Next substitute (B 19) back into (B 18) producing 

YT =(I-a)[(l-a)+ay2r'[1+p~HT+,]uT =HTu T. 

We look for a time-invariant solution and therefore seek Ho = H generated from the 

time-recursion as T ~ -= of 
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HT = (1-a)[(1-a)+ay 2 r 1[1+ppHT+1 l (B20) 

The fixed-point, H, of (B20) is 

I-a 
H= . 

(1- a) + ay2 - app 
(B2l) 

Finally substituting (B2l) into (B19) yields 

-ay 
f [ = ., u t • 

[(1- a)(l- pP) + ay-l 
(B22) 

The solution given by (B22) is identical to that derived using the method of 

undetermined coefficients, equation (B14). In general numerical methods are needed 

to solve for the fixed-point of (B20). In the example given any sensible value for HT+I 

is permissible as a starting value in the time recursion used to solve for H. This is 

because the system has a saddle-point independently of policy and (B20) is a 

contraction mapping. More generally, the starting value for HT+I must place the 

system on its stable-manifold. To make this clearer, assume that the solution to the 

period T problem gives the feedback rule 

rT = bTu T· (B23) 

where bT is a non-linear function of the system parameters, determined by the period 

T optimization. I I We now allow for the fact the Yt is a jump variable and impose the 

restriction that the system has a saddle-point. To do this , substitute (B23) into (BlS) 

and combine (BlS) with (B16) in matrix form 

[ 
UT+l ] [ p 0 ][u T] [lO T+I

] 
ETYT+l = -P-l(l+ybT) p-l YT + 0 . 

(B24) 

II This optimization requires imposing a terminal condition. Here we set ETYT+I = O. Optimizing 
subject to this terminal condition produces the solution ~ = -ay/[(l-a)+CLYJ. This value of ~ would 
be used to initialize the time-recursion. 
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Note that equation (B24) has the same fonn as (B9), and that under the parameter 

assumptions of the model the system is saddle-point stable independent of policy. As 

with the system (B9) for the system to be on its sable-arm requires 

(1+ybT )U
T

. 

YT = (1- p~) 

With output in the last period given by (B25) , 

HT = (1 + yb T ) 

(l-p~) . 

(B25) 

(B26) 

Clearly HT depends on hT. Now consider the period just prior to the terminal period. 

From (B25) ET-1YT = (1 + ybT) PUT_I' which implies 
(1- p~) 

- [1 + P~ybT ]U
T

_1 + yr
T

_1. 
YT-l - 1-p~ (B27) 

The next step is to minimize the loss function Loss[T-1,T] subject to (B27) as a 

constraint. This minimization gives the policy reaction function rT_1 = bT_1 U T_1 where 

b T_1 =-y(1-a+ ay 2) -IHT • (B28) 

Finally, use (B28) to find the time-invariant steady-state policy feedback parameter. 

The solution to the problem is found as the joint backward time-recursion of (B26) 

and (B28) until convergence. The solution is 

b 
-ay 

(B29) 
(l-a)(l-p~)+ay2 . 

Equation (B29) is of course identical to (B14). Consequently, Oudiz and Sach' s 

(1985) method produces the same solution as the techniques developed in this paper. 
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Chapter 3 

INSTABILITY UNDER NOl\flNAL GDP TARGETING: THE ROLE OF 

EXPECT A TIONS 

3.1) Introduction 

Over recent years there has been increasing interest in monetary policy, with much of 

this interest focussing upon the properties of monetary policy rules. Whether they 

employ activist or non-activist methods the common basis shared by these rules is that 

they aim to provide the economy with a nominal anchor. Three rules that have 

received particular, and recent, attention are Bryant, Hooper and Mann (1993) (BHM) 

rules (of which Taylor rules - Taylor, 1993 - are a special case), Nominal GDP 

targeting rules (McCallum, 1989a), and inflation forecast targeting rules (Svensson, 

1997a). 

The BHM rule first came to popular attention when Taylor (1993) showed that his 

variant of it could accurately describe actual U.S monetary policy decisions over 

recent years.! It also has the virtue of being simple and easy to compute. Subsequent 

studies have suggested that monetary policy in a range of other countries can be well 

approximated by BHM type rules (Clarida, Gali, and Gertler, 1998). One of the 

criticisms leveled at BHM rules is that in their proposed form they are not operational. 

They assume unreali stically that policy makers know the current levels of output, 

potential output, and inflation when they set policy. Publication lags along with 

subsequent data revisions (Orphanides , 1997) suggest that these informational 

requirements are too stringent. 

An operational BHM rule could, therefore, be more usefully based on lagged values 

of these variables or on current expected values formed using period t-l information. 

Rudebusch and Svensson (1998), on the other hand, argue that central banks do have 

information in addition to that held by private agents. While central banks may not 
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know the current values of output and inflation, assuming that they do may usefully 

capture the presence of this additional information. 

Proponents of nominal GDP targeting, McCallum (1989a, 1989b), Hall and Mankiw 

(1994) for example, have emphasised its operationality - it depends only on variables 

known to policy makers - and its robustness. Because policy makers do not know the 

correct specification of the economy they require a rule that performs adequately over 

a range of models rather than optimally over just one. They argue that nominal GDP 

targeting provides such a rule. Finally, Svensson (1997a, 1997b) has argued that a 

central bank's inflation forecasts provide the ideal intermediate target and that 

inflation forecast targeting better captures the forward-looking nature of actual policy 

making. 

In an interesting and important paper, Ball (1999) uses a simple macro-economic 

model to analyse the properties of each of these three policy rules. First Ball (1999) 

finds that a BHM rule is optimal regardless of the preferences of policy makers and, 

moreover, that inflation forecast targeting rules can always be expressed as a BHM 

rule. Thus Ball (1999) unites BHM rules and inflation targeting rules and shows them 

to have many desirable properties. Ironically, Ball (1999) further shows that nominal 

GDP targeting is not robust to his specification. Instead nominal GDP targeting is 

'disastrous' leading to instability in inflation and output. Svensson (1997b) replicates 

Ball's instability result and suggests that it is the stylised fact that policy affects real 

output before inflation that Ball builds into his model that is at the heart of the 

instability result. 

In reply to Ball (1999) and Svensson (1997b), McCallum (1997) argues that the Ball

Svensson instability result is a special case, and, furthermore, not a very interesting 

case. McCallum (1997) shows that the stability properties of the system come down 

to how the Phillips curve, or supply-side of the economy, is specified. By considering 

a range of five different supply-side formulations - all of which result in stable 

systems - McCallum (1997) concludes that the Ball-Svensson instability result is 

fragile. 

I This does not imply, however, that the US federal Reserve actually follows a Taylor rule when 

33 



This dependence of the properties of nominal GDP targeting on the supply side of the 

economy parallels an earlier debate between Bean (1983) and West (1986). In an 

early analytical paper examining the properties of nominal GDP targeting, Bean 

(1983) uses a rational expectations model , with inelastic labour supply, and the policy 

objective of stabilising real output, to show that nominal GDP targeting is the optimal 

policy. When labour supply is elastic, Bean (1983) shows that a nominal GDP rule 

responds optimally to demand shocks but is sub-optimal in the face of supply shocks. 

In response to Bean (1983), West (1986) shows that Bean's results depend crucially 

upon how the supply side of the economy is specified. By modifying the supply side 

of the model West (1986) generates results precisely the opposite to those derived by 

Bean (1983). 

In this paper we examine further the nature and robustness of the Ball-Svensson 

instability result. Our examination focuses on the important role expectations play in 

the short-run aggregate supply curve. Ball (1999) uses an accelerationist Phillips 

curve that essentially takes agents' expectation of inflation to equal last period' s 

inflation rate. We show that if inflation expectations are formed using any of a 

number of other processes, then economic stability generally prevails. We further 

show that this is true for nominal GDP growth targeting and nominal GDP level 

targeting. 

The structure of this paper is as follows. We begin in Section 3.2.1 by presenting and 

discussing the Ball-Svensson instability result, and discussing the time-series 

properties of the unstable system. We use Sections 3.2.2, 3.2.3, and 3.2.4 to 

generalise on the accelerationist Phillips curve and show that stability is restored 

under adaptive expectations, fully forward-looking expectations, and partly forward

looking expectations respectively. Section 3.2.5 provides a discussion of these 

results . 

Section 3.3 turns to nominal GDP level targeting. We begin by outlining the stability 

of the system using the baseline accelerationist Philips curve. Next we examine level 

targeting when private agents form adaptive expectations. We find for both of these 

supply-side specifications that exact level targeting generates identical stability 

making its decisions. 
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properties to growth targeting, and we present a result showing why this must be the 

case. 

Inexact targeting is briefly discussed in Section 3.4. Here we show that when inexact 

targeting rather than exact targeting is applied to Ball ' s (1999) system then the model 

is stable for all plausible parameter values. Sections 3.5 discusses interest rate 

smoothing while Section 3.6 concludes. 

3.2) Growth targeting 

Consider the simple two equation model of inflation and excess demand 

y, = 'AY'_I - yr'_1 + v, ' y> 0, 0::; A::; 1; (1) 

It, = lt ~ + UY '_I + u,' u>o (2) 

where Yt is the output gap measured as a percent, nt is the difference between inflation 

and its target rate, n t
e is a measure of expected 14, and rt is the difference between the 

real interest rate and its equilibrium level. The stochastic errors, Ut and vt, are 

assumed to be independent iid[O,cr2
] processes. 

The instrument available to the monetary authority is assumed to be rt. Policy makers 

actually set the nominal interest rate , but by setting it equal to their desired real 

interest rate plus expected inflation they effectively set rt itself. Setting to one side 

inflation expectations, monetary policy impacts on real demand through the IS curve, 

equation (1), after one period with aggregate demand then having a flow on effect to 

inflation after a further period. With these policy lags the model is best viewed as an 

annual one. 

Policy makers are assumed to target nominal GDP growth . That is they set the current 

level of the real interest rate such that next period' s expected nominal GDP growth 

equals zero2 In mathematical terms rt_l is set so that 

2 A target rate of zero is chosen for simpliCity. Any other rate could be chosen without affecting the 
stability propenies we derive. 
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E,_, (11:, + y, - y'_I) = 0, (3) 

where Et_1 is the mathematical expectations operator conditional upon all information 

dated period t-1 and earlier. The monetary authority, therefore, is assumed to form its 

expectations rationally even if private agents do not. Moreover, we are assuming that 

the monetary authority fully knows the state of the system when it sets its policy 

instrument, ie it sets rt-I with an information set that includes t-1 information. 

Next we examine the stability of output and inflation under a range of assumptions 

about how private agents form their inflation expectations - assuming that monetary 

policy is constrained by equation (3). 

3.2.1) Accelerationist Phillips Curve 

Result one (Ball-Svensson): Assume that the system is given by equations (1), (2), and 

(3) and that nt
e = 1I:t-l, ie that the short-run Phillips curve is of the 

accelerationist variety. Then the system is unstable with inflation and output 

non-stationary processes. 

Setting nte = nt-I in (2) and substituting (1) and (2) into (3) produces the following 

state-contingent policy reaction function: 3 

1 
rH =-[11:'_1 +(a+A.-1)Y,_t]· 

y 
(4) 

Substituting (4) back into (1) and ignoring the stochastic error terms gives us the 

V AR(l) model 

[
y, ] = [1- a -l][Y ,_t] . 
11:, a 1 1I:H 

(5) 

3 Interestingly, we see that the implied policy reaction function from the moment condition (3) is in the 
form of a BHM rule. 
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Stability depends upon the eigenvalues of the coefficient matrix. These eigenvalues 

can be found by solving for the roots of the quadratic 

11 2 -(2-a)Il+1=O. 

These roots are 

Il L2 = (2-a)±~ 
2 

(6) 

For a > 4, one of either Ill, 112 lie outside the unit circle. When a < 4 the modulus of 

III and 112 equal 

J( 2-a)2 (4-a) - +a--, 
2 4 

which after canceling terms can be seen to equal 1. Thus when the roots are 

imaginary they lie on the unit circle. Finally, when a = 4 both roots equal -l. 

Consequently, for all values of a > 0 the system is either unstable or has roots on the 

unit circle. In either case Yt and 11:t are non-stationary. This is the Ball-Svensson 

instability result. 

Note that the roots of the system depends only on a and not on f... or y. The 

specification of the IS curve in no way affects the stability of the system (see also 

McCallum, 1997). 

The cause of this instability can best be understood as follows. In period t when 

policy makers are setting rt they do so on the basis that EtTI:t+1 and EtYt are 

predetermined. Thus the policy objective is met by policy makers fixing rt to set 

EtYt+1 appropriately. Policy makers behave this way every period so rt+1 is set taking 

Et+I11:t+2 and Et+lYt+1 as predetermined. Consequently the policy objective is met with 

policy makers only considering the interest rate's effect on the output gap and 

ignoring the subsequent effect the output gap has on inflation. But the output gap 
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pennanently alters the following period's inflation rate. Because of this follow on 

effect, the interest rate setting in period t pennanently effects both Et+l1tt+2 and 

Et+1Yt+l, but this effect is ignored by policy makers when they set rt. Since the channel 

policy makers are ignoring has pennanent implications for inflation in subsequent 

periods policy makers find themselves having to offset the pennanent effect of earlier 

policy decisions. This sets up a pennanent cycle in the interest rate, which transmits 

itself into the output gap and inflation. 

Ball-Svensson instability is an example of instrument instability. One proposed 

solution to instrument instability is to take a more medium tenn or forward-looking 

approach to policy (Holbrook, 1972). In this spirit, Svensson (1997b) shows that if 

monetary policy is constrained by a restriction such as Et.1(1tH I + Yt - Yt-l) = 0, then 

instability would not appear. The intuition here is that monetary policy affects both 

1rt+l and Yt - Yt-l with the same lag, and hence policy makers consider policy's effect 

on both Et1tH 2 and EtYt+l when setting rt. Policy makers no longer find themselves 

having to fully offset earlier policy decisions. Yet constraining Et-1(1tt+l + Yt - Yt-l) is 

unsatisfactory because it has no natural interpretation or justification. 

The policy constraint (3) can be obtained from the first order condition of the 

minimisation problem 

Loss[O,oo]=E'_ILqJi(7t'+i +Y'+i -Y'_I+i)2, 
i=O 

subject to equations (1), (2). 

0<<p::;1 

Accordingly the Ball-Svensson instability result depends upon policy makers being 

constrained by a loss function that has perfect substitutability between inflation and 

output growth. The levels of inflation and output themselves do not matter. But if the 

policy loss only depends upon the level of nominal GDP growth why are we then 

concerned that this loss function leads to infinite variances in output and inflation? 

Afterall, output and inflation do not separately enter the loss function. Alternatively, 

if policy makers are concerned with the variances in inflation and output, why do we 
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impose on them a loss function that states that only the sum of inflation and output 

growth matter? 

To better analyse the statistical nature of the instability present in this system we 

represent the system (5) as 

Yt = (2-a)Yt_l -Yt-2 -U t +V t -Vt_1 (7) 

and 

11: t = (2-a)11: t_1 -11: t_2 +av t_1 +U t -(1-a)u t_1 • (8) 

Equations (7) and (8) have identical autoregressive structures. Therefore any unit 

root(s) present must lie at the same point(s) in the spectrum for both Yt and 71:t. We 

note that in the special case when a = 0 both Yt and 14 contain double unit roots; the 

system is unstable but does not contain a cycle. When a = 2 Yt and 71:t are integrated 

with roots of L = ± i, suggesting a cyclical pattern in which a full cycle is completed 

every four years. Similarly, for a = 4 Yt and 71:t are integrated, each containing the two 

roots L = -1, -1. The root L = -1 indicates the presence of a cycle with a two year 

duration. We note that as a declines from 4 toward 0 the length of the cycle 

increases. 

In the literature on seasonality, roots of L = -1, ± i represent integration at seasonal 

frequencies (Hylleberg, Engle, Granger, and Yoo, 1990). But as we discussed earlier 

our model is best interpreted in annual terms, and hence the roots described above do 

not represent seasonality. Instead they indicate the presence of something akin to a 

business cycle. By targeting nominal GDP in this model, policy makers, instead of 

controlling inflation by eliminating the demand cycle, by their very actions introduce 

a pronounced cycle into the economy. 

3.2.2) Adaptive expectations 

Consider now an alternative form of backward-looking expectations - adaptive 

expectations. Under adaptive expectations we write 
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n; =nH +o(n;_1 -n H ), 0::; 0::; 1. (9) 

When 0 = 0 adaptive expectations simplifies to produce an accelerationist Phillips 

curve. Alternatively, 0 = 1 implies that inflation expectations equal some fixed 

constant. 

Result two: Assume that the system can be represented by equations (1), (2) , and (3) , 

and that inflation expectations are formed adaptively by (9). Then the system 

is stable provided 0 < 0 < 1 and 0 < a < 2. As a increases above 2 stability 

requires smaller values for o. The model is unstable for a ~ 4. 

Introducing the lag operator (Z,.j = Lz,), (9) can be written as 

e (l-o)L 
n =--n 

, (l-oL) , . (10) 

Substituting both (10) and (2) into (3) yields 

E'_llc+(l-L)-I(u, -ou H +aY'_1 -aoy,_J+y, -Yt-lJ=O, 

where c is an arbitrary constant. Multiplying through by the difference operator (I-L) 

and recognizing that E,.ry, = y, + £" where £, is an innovation orthogonal to the 

monetary authority's information set, produces the AR(2) process 

y, + (a - 2)y t-1 + (1- ao)y t-2 = E, + OU t-I . (11) 

Equation (11) will be stable provided the following three conditions are met (see 

Harvey, 1981, or Sargent, 1987): 

a) 1 + (a-2) + (l-ao) > 0; 

b) 1 - (a-2) + (l-ao) > 0; 

c) 1 - (1-all) > O. 
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Because we have assumed that a > 0, condition c) is satisfied provided 0 > O. 

Similarly, condition a) is met if we further restrict 0 < 1. Re-writing condition b) we 

obtain a(1 +0) < 4. Consequently, provided 0 < 0 < 1 the system is stable if 0 < a < 2. 

As a increases above 2 the system requires increasingly smaller values of 0 if stability 

is to be obtained. For a ~ 4 the system is unstable. However, if Svensson (1997b, 

page 20) is correct in his conjecture that a < 1, then the system is stable under 

adaptive expectations except in the extreme cases where 0 = 0, 1. 

3.2.3) Rational expectations 

Now let us assume that inflation expectations are formed by n,e = E t • l 1tt+l. Thus it is 

next period's inflation rate that is relevant for the Phillips curve, and we assume that 

private agents form their expectations rationally using all information dated period t-l 

or earlier. 

Roberts (1995) shows that a Phillips curve with inflation expectations of this form can 

be justified by a number of models including the costly price adjustment model of 

Rotemberg (1982), and the staggered contracts time-dependent pricing model of 

Calvo (1983). In these models it is the firm's inability to set prices costlessly and 

instantaneously that directs firms to anticipate future price movements when setting 

prices today. 

Result three: Assume that the system can be represented by (1), (2), and (3) and that 

1tt
e = Et - l1tt+l . Then the system is stable provided 0 < a < 4. 

Using (1), (2) and (3) along with our assumption that n,e = Et . l 1tt+l we obtain the 

optimal state contingent policy reaction function4 

4 We should note that the expectation E,. !1lt+! is not predetermined at time t-l , and that this reduces the 
control lag to inflation to that of output: one period. Svensson (l997b) argues this situation is 
conducive to stability. That it is the expectations channel and not the reduced control lag that is behind 
Result three can be seen by the fact that E,.21lt+! and E,.!1lt+! differ onl y in that with the latter agents 
know u,. ! and v,.!. But E'.21lt+! is predetermined at t-I , and these innovation terms do not affect the 
system' s stabi lity. Thus the stability properties of the system are the same regardless of whether 
expectations are formed using t-l or t-2 information. 
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1 
r'_1 = -[E'_I1t '+1 + (a + A. -1)y '-I ]' 

Y 

Substituting (12) into (1) results in the reduced fonn system 

y, = -E'_I1t'+1 -(a-l)Y'_1 + v, 

1t, =E'_I1t'+1 +aY '_1 +u,. 

The state variables of (13), (14) are YI_I, VI and ul · Thus we posit the solution 

y, =8"Y'_1 +812U, +8I3 v, 

1t, =8 zI Y, _1 +8 zz u, +8 Z3 v,. 

From (15) and (16) 

E '_I 1t '+1 = 821 8" Y'-I' 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

Note that stability of the system depends only upon the magnitude of 8 11 . Substituting 

(15), (16), and (17) into (13) and (14) and equating coefficients gives the following set 

of restrictions on the undetermined coefficients : 

i) 8" =-8 z1 8,, -(a-I); 

ii) 81z =0; 

iii) 813 = I ; 

iv) 8z1 =8 z1 8" +a ; 

v) 8Z2 = 1; 

vi) 8 23 =0. 

We can solve for 8 11 from (i) and (iv) by recognizing that 8 11 + 82 1 = 1. Following 

this strategy we substitute 821 = 1 - 811 into (i) resulting in the quadratic 

8 ;1 -28" + 1-a=O . (18) 
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Solving (18) for 8 11 yields 

811 = li.Ja . 

From (13) and (14), however, we know that when a = 1, Yt-I cannot affect Yt. Then 

McCallum's (1983) minimum state variable criteria dictates that we take the negative 

root, which ensures that our model is stable for all 0 < a < 4. Inflation and the output 

gap are non-stationary when a 2': 4, but a < 4 is the relevant case. Notice, however, 

that for 1 < a < 4, 8 11 is negative implying that output is negatively correlated with its 

own first lag over this parameter range. Under Svensson's (1997b) conjecture that a 

< 1 this correlation is positive. 

3.2.4) Mixed Expectations 

In our final example we consider the generalisation whereby inflation expectations 

contain forward-looking and backward-looking components: 

11:: = ~E t-J1I: t+l + (1- ~)11: ' -i' O:5~:51. (19) 

This specification for inflation expectations arises naturally from the analyses in 

Sections 3.2.1 and 3.2.3 . With instability present when ~ = 0 but absent when ~ = 1 it 

is natural to examine f3 values between 0 and 1 to uncover the cross-over point 

between stability and instability. Moreover, equation (19) could arise if some agents 

were forward-looking and others backward-looking (heterogenous expectations) or 

possibly through contracting behaviour. When f3 = 0 equation (19) reduces to the 

accelerationist Phillips curve we studied in Section 3.2.1. Alternatively, when ~ = 1 

we have the fully forward-looking case studied in Section 3.2.3. 

Result four: Assume that the system can be represented by (1), (2), and (3), and that 

inflation expectations are formed by (19). Then for 0 < f3 :5 1 the system is 

stable provided 0 < a < 4. 
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By substituting (19) into (2) and then (1) and (2) into (3) we can easily derive the 

optimal policy reaction function. We then substitute this policy reaction function 

back into (1) to produce the reduced form system below. 

Yt = -~Et_l7Ct+1 -(I-~)7Ct_1 -(a-l)Yt_1 + v t 

7C t =~Et_l7Ct+1 +(I-~)7Ct_1 +aYt_1 +u t · 

(20) 

(21) 

The state variables for this system are: nt.l, Yt. l, Ut and vt. Accordingly we posit the 

solution 

Yt =8 Il Yt_1 + 812 7C t_1 +8 13 u t +8 14 v t 

7C t = 8 21 Yt_1 + 8 22 7C t-l + 8 23 u t + 824 v t · 

(22) 

(23) 

Using (22) and (23) along with (20) and (21) we equate coefficients to derive the 

following restrictions upon 8 11 , 8 12, 621 and 622 (we ignore the remaining coefficients 

because they do not affect the stability of the system). 

i) 811 =-~821811 -~822821 +1-a; 

ii) 612 = -~821812 - ~6~2 -1 + ~ ; 

iii) 6 21 = ~82161l + ~822821 + a; 

iv) 6 22 = ~821612 + ~8~2 + 1- ~. 

From ii) and iv) we observe that 6 12 = - 6n. Similarly, i) and ii) imply the relationship 

6 11 + 621 = 1. Using these relationships we can reduce our system down to two non

linear simultaneous equations in 621 , 822 . 

~8~2 -(1+~821)822 +1-~ =0 

~8~1 -(~+~822 -1)8 21 -a=O 

From (24) the solutions for 822 are 

(24) 

(25) 
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8 = ~821 + 1 + ~(1 + ~821)2 -4(1- ~)~ 
22 2~ - 2~ . 

However, from Section 3.2.3 we know that when /3 = 1,822 must equal zero because 

1Ct -1 is no longer a member of the minimum set of state variables. Therefore, the 

appropriate root is the negative one and the solution for 822 is 

8
0

? = ~821 + 1 _ ~(1 + ~82Y - 4(1- ~)~ 
-- 2~ 2~ 

(26) 

Similarly, the roots of (25) are 

821 
~ + ~822 -1 + ~(~ + ~822 _1)2 + 4a~ 

2~ 2~ 

But from Section 3.2.3 we know that when /3 = 1, 822 = 0 and 821 = ~(J. . Therefore, the 

appropriate root is the positive one and the solution for 821 is 

8 = ~ + ~822 -1 + ~(~ + ~822 _1)2 + 4a~ 
21 2~ 2~ ' 

(27) 

Clearly (26) and (27) are not closed form solutions for 821 and 822• However, given 

values for (J. and /3 we can numerically solve for 821 and 822 . Once we know 821 and 

822 we can easily determine the stability of the system by checking the roots of 

~2 -(1-8 21 +822)~+822 =0. 

Performing these numerical simulations reveals that for 0 < (J. < 4, 0 < /3 :5 1, the 

system is stable. Figures 3.1 and 3.2 graph the modulus of the roots of the system 

over these parameter ranges. These figures show that when /3 = 0 the model is 

unstable (the Ball-Svensson result) and that for all other values of /3 the model is 

stable provided 0 < (J. < 4. Thus for plausible values of (J. the system will be stable 
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provided private agents ' inflation expectations place some positive weight on future 

inflation outcomes. 
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3.2.5) Expectations and Stability 

We described earlier how the cause of the Ball-Svensson instability was generated by 

the fact that monetary policy affects inflation and real growth with different lags. 

When a temporary positive inflation shocks hits the economy policy makers can 

initially do nothing and the shock passes directly into inflation. In the next period 

policy makers raise the interest rate to lower real demand and hence bring nominal 

GDP growth back to target. The nature of the Phillips curve is such that these policy 

actions are then transmitted permanently into inflation. Thus in following periods 

policy makers find themselves in the position of having to repeatedly offset previous 

policy actions. 

The problem the monetary authority faces is that it cannot exert any leverage over 

inflation, but must act upon it indirectly through real demand, and this takes an 

additional period. However, when agents have forward-looking expectations they 

anticipate future policy actions and moderate their inflation expectations accordingly. 

Through inflation expectations, therefore, the monetary authority has a channel 

through which it can exert some influence over current inflation. By changing the 

timing with which monetary policy affects inflation, inflation expectations eliminate 

any permanent cycle - any cycle that exists will be in the form of damped oscillations. 

Agents do not need to be fully forward-looking to prevent a permanent cycle from 

developing - even a small amount of forward-looking behaviour provides a channel 

through which monetary policy can affect current inflation. 

3.3) Level Targeting 

Having discussed the case of nominal GDP growth targeting we now turn to nominal 

GDP level targeting. Ball (1999) has shown that GDP level targeting with an 

accelerationist Phillips curve also creates instability. Consider the system 

Yt = "AYt_l -yrt-J +v t ' 

1t t = 1t~ + ay t-l + U t ' 

Pt = Pt-l + 7C t , 

y>O,O~A~l; 

0:>0 

(28) 

(29) 

(30) 
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where Pt is the (logged) current price level. The monetary authority is assumed to 

choose the interest rate in period t -1 such that 

Et_t(p, +Y,)=z 0< z < 00. (31 ) 

Result five (Ball): Assume that the system can be represented by (28), (29), (30) with 

1It< = 1It-l , and that policy is constrained by (31). Then the system will be 

unstable with properties identical to those of Result one. 

Deriving the optimal policy reaction function, substituting it back into (28), and 

ignoring the constant and innovation terms, which do not affect stability, results in the 

VAR(l) model 

[
y,] [-a -1 
1t, = a 1 

p, a 

-ll[y'-I]. o 1t'_1 

1 P'_I 

Clearly the coefficient matrix is singular and can have at most two non-zero 

eigenvalues. Using a co-factor expansion the eigenvalues of the system can be found 

by solving for J.t in 

11[11 2 
- (2 - a)11 + 1] = O. 

As expected one eigenvalue is zero while the remaining two are determined by the 

quadratic expression in the square brackets. However, this quadratic is identical to 

equation (6) used to determine stability under nominal GDP growth targeting with an 

accelerationist Phillips curve. Therefore the stability properties of the model under 

level targeting are the same as those under growth targeting: the model is unstable. 

Result six: Assume that the system can be represented by (28), (29), (30), and (31) 

with inflation expectations formed adaptively through (9). Then the system 

has stability properties identical to those of Result two. 

Equations (28), (29), and (30) become 
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y, = AY'_1 -yr'_l +v" y>O,O::;;A,::;; 1; 

7I, = (l-o)L 
(1_0L)7I, +aY '_1 +u 

" 
co 0, 0::;; 0::;; 1 (32) 

p, = P'-l + 7I , . (33) 

Canceling terms (32) can be re-written as 

1 
7I , =c+--[(l-oL)u, +aY'_1 -aoy,_? ], 

l-L -
(34) 

where again c is an arbitrary constant. Similarly, (33) can be expressed as 

1 
p, =a+

1
_

L
[7I,l. (35) 

By using (34) and (35) in (31) we produce 

Et-t [ a +_1_[c+_
1
_((l_OL)U , +aY t-t -aoy ,_? )] + y,] = z . 

(l-L) (l-L) -
(36) 

Multiplying (36) through by (1_L)2 and recognising that y, = E'- JY' + 10, allows us to 

express (36) as the AR(2) process 

y, + (a - 2)y t-t + (1- ao)y ,- 2 = E, + OU '_I· (37) 

Equation (37), however, is simpl y a re-statement of the AR(2) process we derived 

under nominal GDP growth targeting with adaptive expectations (equation 11). 

Clearly the characteristic equations of (37) and (11) are the same and therefore the 

systems have the same roots , implying that their stability properties are identical. As 

with the accelerationist Phillips curve, here again with adaptive expectations we have 

the result that the system' s stability properties are identical under either nominal GDP 

growth or nominal GDP level targeting. 
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That level targeting and growth targeting produce identical stability properties under 

an accelerationist Phillips curve and adaptive expectations is no coincidence. The 

stability properties will be the same regardless of how private agents form their 

expectations. We now show this result. 

Result seven: Assume that the monetary authority knows the system and forms its 

expectations rationally using current period information. Then the stability 

properties of the system under nominal GDP level targeting are identical to 

those under nominal GDP growth targeting. 

Define the current price level as Pt = pt-l + n,. Now general forms of exact nominal 

GDP growth targeting and exact nominal GDP level targeting can be represented by 

the following constraints respectively. 

E t_1(1I: t +Yt -Y t-l)= q , 

E t-l (p, + y,) = z" Zt> 0 V t, 

(growth targeting) 

(level targeting) 

(38) 

(39) 

We assume that qt and Zt are independent of Yt and n, and hence note that setting (38) 

and (39) to target qt and Zt respectively is arbitrary and does not affect the stability of 

the system. By substituting Pt = Pt-l + n, into (39) we obtain 

E '_I(Pt-l +11:, +Y,)=z, (40) 

However, since the monetary authority targets nominal GDP in each period, it must be 

the case that we also have 

E'_2 (P'-l + Y t-l) = Z'_l 

and hence that 

E '_2P '_1 = -E'_2Y'_1 + Z'_l' (41) 

Adding and subtracting E,.2Pt-l from the LHS of (40) and exploiting (41) gives us 
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E H (pt-l- E t-2Pt-l +1t t +Yt -Et_ZYt_l)=Zt -Zt_l· (42) 

Now, provided the monetary authority forms its expectations rationally we can define 

pt-I = Et-ZPt-1 + 11t·1 and Yt.1 = Et-2Yt-1 + Et-I, where Et-I and 11t-1 are forecast errors 

orthogonal to the monetary authority 's period t-2 information set, but known to policy 

makers in period t-1. Substituting these definitions into (42) and canceling terms 

yields 

E t_l (1t, +Yt -Yt-l)=Zt -Zt-l-Et-l-Tl H · (43) 

But (43) is identical to (38) where qt = (I-L)zt - EI-I - 11t-l , thus the stability properties 

of the two targeting rules are identical. This result obtains because once we know the 

nominal GDP level forecast error, we can offset this error the next period by 

essentially choosing a time varying growth rate target. However, the result shows that 

whether we offset these forecast errors or not does not alter the system's stability 

properties. 

Note that this result has been derived quite independently of the underlying behavioral 

economic model. The model itself is not important provided the monetary authority 

knows what it is. Moreover, the result has been derived without reference to how 

private agents form their expectations. All that matters is that the monetary authority 

forms its expectations rationally. 

To give an example of the usefulness of Result seven let us consider the simulation 

study of Hall and Mankiw (1994). In their study of how nominal GDP targeting 

would have affected the US economy, Hall and Mankiw (1994) calibrated a small 

stylised model of the US economy. This model's supply side was a Phillips curve 

with adaptive expectations and was in the form of (9) with parameter values (in our 

notation) of 8 = 0.9 and a = 0.05. When applying exact nominal GDP targeting to 

their model they found first that their model was stable and second that nominal GDP 

growth targeting and nominal GDP level targeting produced identical output and 

inflation variances. Commenting on these results Hall and Mankiw (1994) simply 

observed without explanation that 'with perfect achievement of the target, the level 

and growth rate policies are the same.' 
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With <') = 0.9 and a = 0.05 the conditions of Result two and Result six are satisfied. 

Result two tells us that with these parameter values the system will be stable. Result 

six, or the more general Result seven, tells us that not only will the system be stable 

but that the model stability properties will be identical under the two targeting rules. 

3.4) Exact versus Inexact Targeting 

To this point our entire analysis has been couched in terms of exact targeting, rather 

than the less stringent inexact targeting. Exact targeting requires that the monetary 

authority meet its targeted objective up to a random error each and every period. In 

the Ball model studied above the monetary authority is able to achieve this because r,.1 

has leverage over y, even though y,.1 and 11, are predetermined. Inexact targeting on 

the other hand requires only that the monetary authority act to move nominal GDP 

growth (say) back towards the target rate period by period - systematic misses are 

allowed (see Bryant, Hooper and Mann, 1993). 

Again consider the model 

y, = AY'_I -yr'_1 +v" 

7t , = 7tH + aY'_1 + u t' 

y> 0, 0:0; f...:o; 1; 

a>O, 

but now append to it the policy reaction function 

r' _1 =pE'_I(7t, +y, -y'_I)' O<p<oo. 

(44) 

(45) 

(46) 

This policy reaction function is the natural analogue to the exact targeting case 

because in the limit as p --+ 00 exact targeting results. Consequently we must expect 

instability to occur in this limiting situation. We further eliminate the no adjustment 

case, p = 0, because it is not an example of nominal GDP targeting. However, it is 

trivial to show that with the policy instrument held fixed the system is unstable with 11, 

following a random walk. 
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Result eight: Assume that the system can be represented by (44), (45), and (46). Then 

the system is stable provided A < 1 and a < 4. If a > 4, then the system will 

still be stable provided p is 'small '. 

Substituting (46) into (44) gives 

y, = AY'_I - ypE'_IY' - ypE'_I7t, + YPY,_I + v, . (47) 

Taking conditional expectations of (45) and (47) produces 

E,_, 7t , = 7t'_1 + ay,_l' (48) 

and 

(A+YP) Y -~E'_I 7t ,. 
E '_IY' = (l+yp) ,-I ( l+ yp) (49) 

Inserting (48) and (49) in (47) and (45) allows us to derive the reduced form system 

y, 
(A + yp(l- a» yp 
-'------'--'-'---'-'- Y'-I ---7t t-! +v" 

(l+yp) l+ yp 
(50) 

7t ,= 7t t-! + aY'_1 +u,. (51) 

Using (5 1) to solve for n" lagging, substituting into (50), and collecting terms 

produces the AR(2) process for YI (where again error terms have been ignored) 

y, 
1 + A + yp(2 - a) A + yp 

1 + yp Y'-I - 1 + yp Y'-2 . 

For our system to be stable we now require three conditions to hold: 

i) 1 + A + yp(2 - a) A + yp < 1 
1 +yp l +yp ' 

(52) 
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ii) 

iii) 

_(1+A+YP(2-a) 1_ A+YP <1 , 
1 + YP ) 1 + YP 

(
A+YP tl. 
l+yp) 

(53) 

(54) 

We consider each of these conditions in tum. First, by cancelling terms, (52) reduces 

to the requirement that -exyp < O. The parameter restrictions we have placed on the 

system mean that this condition is satisfied. Second, provided Ipl < =, (54) amounts 

to the requirement that A. < 1. We had earlier assumed that A. ~ 1 but by ruling out A. = 

1 condition (54) is met. Notice, here, that under exact targeting the stability of the 

system did not depend on the demand side of the model - any value of A. was 

admissible. Now under inexact targeting the demand side of the economy is relevant, 

but only a very mild restriction is placed on it. 

Finally, (53) implies the restriction 

2(1 + A) 
P < --- , when ex > 4 

y(a-4) 

2(1 + A) 
P > --- , when ex < 4. 

y(a-4) 

In the unlikely case that ex > 4, stability requires that p be small, and instability is 

associated with large values of p, or, equivalently, more aggressive policy behaviour. 

If we take the more likely case where ex < 4, then the system is stable under our 

assumption that 0 < p < = . 

Consequently, under a very mild restriction upon the demand side of the economy and 

the plausible restriction that ex < 4, the system is stable under inexact targeting. 

Clearly, once we get away from the extreme case of exact targeting, nominal GDP 

growth targeting does not cause instability even if private agents form their inflation 

expectation using a simple naive backward-looking process. 
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3.5) Interest Rate Stabilization 

Along with their other duties, central banks also often have the role of overseeing or 

ensuring the soundness and stability of the financial sector. One way of modelling 

this responsibility is to constrain the movements of financial variables, such as interest 

rates. This process leads to interest rate smoothing. A further reason explaining why 

central banks smooth interest rates is that the costs of reversing a policy decision are 

such that it pays to alter policy stance gradually rather than in large movements (Lowe 

and Ellis, 1997). 

In the Ball-Svensson framework (Section 3.2.1) the instability in 111 and Yt is translated 

into interest rates through the policy reaction function. In this framework the standard 

loss function , which penalises separately deviations of 111 and Yt from their target 

values, results in a stable system. Consequently, we might expect that a loss function 

that imposes stability upon the policy instrument, r" combined with a nominal GDP 

growth target, would also result in a stable system. 

To capture the effects of interest rate stabilization on the economy we assume that the 

central bank minimises the loss function 

1 ~. " Loss[O,oo] = - E t_1 .L,.<P' [(11: t+; + y ,+; - Y'-1+J- + Q(r,+; t], 
2 ;:0 

(55) 

where Q is the relative weight placed upon financial stability and 0 < <p :0; 1 is the 

discount factor, subject to the transition equations 

[

11:'+1] [1 
y;~1 = ~ 

a °l[ 11:, 1 [01 [U'+1 l [11:' - [ U'+1] 
Ie ~J :~1 + -oy [d+ V;1 r A :~1 +B[d+ V;1 . 

(56) 

Denoting the vector [nt y, Yt_dT by Zt the loss function can be written recursively as 

L(z,) = max,[z;Rz, +r,Qr, + <pEt-lL(zt+1)]' (57) 
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where 

[ 

1 1 [ 1 1 -11 R = 1 [1 1 - 1] = 1 1 - 1 . 

-1 -1 -1 1 

The system (56), (57) is an example of the 'stochastic linear optimal regulator 

problem' (Sargent, 1987), and is known to have a solution of the following form: 

L(z,)=z;Pz, +d; 

d=~tr[PQ]; 
1-cp 

r
t 

= -cp(Q + cpBTpB) -I BTpAz,; 

P = R + cpA TpA - cp2 A TpB(Q + cpBTpB)-IB TpA , 

(58) 

(59) 

where .Q is the (singular in our case) variance-covariance matrix of the innovation 

vector rUt Vt O]T. Following Rudebusch and Svensson (1998) and Svensson (1998), in 

the limit as <p -7 1 the loss function (55) converges to the unconditional mean of the 

period loss function. For our problem we define <p = 1 and reinterpret the 

intertemporal loss function as 

Loss[O,=] = Var[1C t + Y t - Y l-i] + QVar[rt ]· 

Consistent with <p = 1, (58) and (59) become 

r, =-CQ+BTpB)-IBTpAz
t 

=-Fz
t

, 

P = R+ATpA -ATpB(Q+BTpB)-IBTpA , 

respectively. Substituting (60) into (56) results in the reduced form system 

Zt+! = [A - BF]z" 

(60) 

(61) 
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where the stochastic error tenns have been ignored. The system's stability properties 

are then determined by the eigenvalues of [A - BF]. 

The parameter Q indexes the degree of interest rate stabilization. We know from 

Section 3.2.1 that when Q = 0 our system is unstable. Similarly, in the limit as Q ~ 

00 the loss function restricts the policy instrument to a constant. This limiting case is 

therefore identical to the inexact targeting case (Section 3.4) where p = O. As we 

mentioned in Section 3.4, this perverse case leads to instability, but is not an example 

of nominal GDP targeting. Nevertheless, in the limiting cases where Q = 0, 00 the 

system is unstable. The remainder of this Section considers the stability of the system 

for Q E (0,00). 

To address this issue we proceed numerically as follows. We allow the parameters a, 

y, A., and Q to vary independently over the closed intervals [0.1 , 4], [0.1,2], [0,1], and 

[0.2,5] in increments 0.1 , 0.1 , 0.1 , and 0.2 respectively. For each of these parameter 

values we construct the matrices A, B, and Q. With R known we then iterate over 

(61) until convergence to establish the P matrix5 The vector F is now easily 

constructed and the stability of the system can be checked by examining the 

eigenvalues of [A - BF]. With 40 different values of a, 20 different values for y, 11 

different values for A., and 25 different values for Q, this process requires solving for 

220,000 different F vectors. With three eigenvalues associated with each [A - BF] 

matrix we generate 660,000 eigenvalues in total. Each of these eigenvalues were 

examined and found to be less than one in magnitude. Thus for all 220,000 

specifications we consider, nominal GDP growth targeting combined with some 

degree of interest rate smoothing did not produce instability. 

3.6) Conclusions 

In this paper we have explored the Ball-Svensson result that nominal GDP targeting 

can cause economic instability. Following McCallum (1997) we have shown that the 

stability properties of the system depend on how the supply side of the economy is 

5 To iterate over P we express the matrix Riccati difference equation in the following iterative form 
Pj., = R+ATpjA-A TpjB[Q+BTpjBf'BTpjA. We begin the iteration with Po = R. 
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specified. This sensitivity to the supply side of the model parallels the earlier debate 

between Bean (1983) and West (1986) on conditions under which nominal GDP 

targeting is optimal. 

We began by outlining the Ball-Svensson instability result , relating it to the timing 

lags with which monetary policy affects output and inflation, and discussed the 

statistical nature of the instability. Concentrating on the role of inflation expectations 

in the Phillips curve, we then extended Ball ' s model to allow for adaptive 

expectations, rational forward-looking expectations, and partly rational forward

looking and partly backward-looking expectations. For each of these expectations 

processes we showed that, for plausible parameter values, exact nominal GDP growth 

targeting does not lead to instability. 

Turning from nominal GDP growth targeting to level targeting we showed that while 

exact level targeting may generate instability with an accelerationist Phillips curve, 

other expectation formulations result in stability. Specifically, for plausible parameter 

values, we showed that adaptive expectations and forward-looking expectations lead 

to stable models under exact nominal GDP level targeting. Moreover, we derived 

conditions under which a model ' s stability properties when level targeting would be 

the same as those under growth targeting, and showed that Ball's model met these 

conditions. Lastly, we used our results to explain some of the simulations results 

found in Hall and Mankiw (1994). 

In Section 3.4 we explored inexact targeting and found that even if an accelerationist 

Phillips is an appropriate specification of the short-run aggregate supply curve, that 

inexact targeting does not generally lead to instability. 

Finally, in Section 3.5 we presented simulation evidence indicating that nominal GDP 

growth targeting together with the simultaneous objective of smoothing interest rates 

was likely to generate a stable system. This stability arises because the optimal policy 

reaction function has the interest rate as a linear combination of output and inflation. 

With the policy objective function restricting the variance of the interest rate to be 

finite the variances of output and inflation are similarly constrained. Thus ruling out 

Ball-Svensson type instability. 
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The over-riding conclusion of this paper is that while the Ball-Svensson instability 

result is interesting in itself, it appears fragile and does not carryover to more general 

specifications of the Phillips curve, or policy loss function . The analysis in McCallum 

(1997) supports this conclusion. We should point out however that the fact that 

nominal GDP targeting is unlikely to result in instability does not impl y that it should 

be applied in practice. We have not argued that nominal GDP targeting is optimal in 

any sense, but rather that it is unlikely to be 'disastrous. ' 
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Chapter 4 

OPTIMAL INFLA TION TARGETING IN A SIMPLE CLOSED ECONOMY 

MODEL UNDER COMMITMENT AND DISCRETION 

4.1) Introduction 

Viewed as an application of control theory monetary policy has an easy solution. The 

monetary authority is given control over one or more instruments and is assigned an 

objective, or loss function, by the government. With instrument independence, but 

not goal independence, the monetary authority then minimizes this loss function , 

subject to the (dynamic) constraints represented by the structure of the economy. 

From this minimization the monetary authority uncovers the implicit instrument rule it 

should optimally follow. 

But in practice policy makers face several important complications . The macro

models, which constrain the optimization , are often large making the optimization 

process complicated, and the resulting policy reaction function large and potentially 

unwieldy. Moreover, imprecisely estimated relationships and uncertainty over the 

form of economic relationship to be estimated, cast doubt on the appropriateness and 

robustness of any optimal rule. Finally, the presence of forward-looking expectations 

in the dynamic constraints introduces the possibili ty of time-inconsistency, a 

divergence between the optimal discretionary and optimal commitment rules, 

potentially leading to an inflation bias (see Kydland and Prescott, 1977 or Barro and 

Gordon, 1983). 

For these reasons, among others, a blossoming literature on monetary policy has 

turned away from optimal control, exploring instead the relative properties and merits 

of various simple instrument rules. A short list of such simple instrument rules would 

include: price level targeting; inflation targeting; inexact nominal GDP level targeting; 

inexact nominal GDP growth targeting; the Henderson and McKibbin rule (Henderson 

and McKibbin, 1993); and the popular Taylor rule (Taylor, 1993). One advantage 
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simple rules have over optimal rules is that they are not motivated from the standpoint 

of any given model , suggesting that they may perform well across a range of models . 

Furthermore, they are simple to compute, highly transparent, and can potentially be 

calibrated to loosely replicate historical outcomes. 

But in the presence of forward-looking agents simple rules do not overcome the 

problem of time-inconsistency (Fair and Howrey, 1996). If a simple rule can be 

calibrated to match historical outcomes, then it can also be calibrated to attain some 

other goal. In practice, policy simulations with simple rules have simply assumed the 

existence of some pre-commitment technology. 

Despite the weaknesses of optimal policy rules raised above it remains the case that, 

in the context of any given model, optimal policy rules still provide a valuable 

benchmark against which the performance of simple rules can be compared. Because 

analyses of simple rules assume commitment to these rules, comparisons between 

simple rules and optimal rules should probably take the optimal commitment rule as 

the baseline, rather than the optimal discretionary rule. 

But there are further advantages to analyzing optimal policy rules. By comparing the 

optimal discretionary rule to the optimal commitment rule the practical effects of not 

having a commitment technology can be measured. This measurement can take place 

not just in terms of the variances of variables but also in terms of the feedback 

coefficients applied to variables in the policy rule. Additionally, one would hope that 

the variables entering the optimal policy rule would include in a non-trivial way those 

variables whose movements policy makers use to justify their policy interventions. 

These 'significant', or important, variables should arguably form the basis of any well 

performing simple rule. 

With the prospect that some, or many, variables may enter the optimal rule in a trivial , 

or negligible, way, the possibility presents itself that these variables could be excluded 

from the optimal rule without significantly impairing the rule's performance.! By 

excluding some state variables one may gain some of the simplicity and transparency 

advantages of simple instrument rules while retaining the good properties of fully 
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optimal rules. Such conditionally optimal rules, as we might call them, may be of 

particular use to institutions who wish to analyze or predict central bank behavior but 

who do not have available, or cannot afford, the entire data-set available to the 

monetary authority. 

With these issues in mind, this paper explores two avenues. The first avenue is an 

analysis and comparison of optimal discretionary policy with optimal policy assuming 

commitment. Results from these two optimal policies are contrasted with those 

produced by a Taylor rule and two variants of the Henderson and McKibbin rule. The 

second avenue is an examination of the feasibility and performance of conditionally 

optimal rules. This examination takes place under both discretion and commitment. 

The paper proceeds as follows. In Section 4.2 we outline a simple descriptive closed 

economy macroeconomic model of the type previously used by Ball (1999) and 

Svensson (1997a, 1997b). Using this macroeconomic model Section 4.3 uses both 

analytical methods and simulations to construct and compare the performance of a 

Taylor rule and two Henderson and McKibbin rules with optimal commitment and 

optimal discretionary rules. Variations on the model of Section 4.2 are used to check 

the robustness of the results, and impulse response functions are presented to illustrate 

the properties of each model. Section 4.3 also plots and discusses the efficiency 

frontiers for each model specification. 

Section 4.4 introduces the conditionally optimal rule to be analyzed, and compares its 

structure to a simple inflation targeting rule. Following this introduction, Section 4.4 

addresses whether the conditionally optimal rule can stabilize the economy, and when 

it can asks how effective it is at doing so. As with Section 4.3, the analysis in Section 

4.4 takes place under both discretion and commitment. Section 4.5 concludes and 

discusses further applications of the techniques used in the paper. Appendix A 

contains proofs and technical details, while Appendix B performs sensitivity analysis 

to investigate how robust the results are to the exact parameter values employed. 

1 Cecchetti (1997) argues that . if the solution to the complex problem can be approximated by a 
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4.2) A Simple Closed Economy Model 

To introduce the ideas and techniques used throughout this paper consider the 

following simple closed economy macroeconomic model: 

y, = AY'_1 -y[i, -TjEt-l1t'+1 -(1-Tj)1tt-l]+ V,, 

1t, =8E'_I1t'+1 + (1-8)1tt-l +aY '_1 +u,. 

09.<1 , 0::;11::::;1 , '(>0 

a> 0, 0::; Ii::; 1 

(1) 

(2) 

All variables have been de-meaned and represent: the output gap, Yt: the nominal 

interest rate, it: and inflation, 7t" respectively. Demand and supply innovations are 

represented by Vt and u" and are assumed to follow independent iid[O, a2
] processes. 

Finally Et.\ represents the mathematical expectations operator conditional upon period 

t-1 information. Equation (1) is a dynamic IS relationship expressed in real interest 

rate/output gap space, while equation (2) represents a short-run aggregate supply 

curve, or expectations augmented Phillips curve. The nominal interest rate, it, is 

assumed to be the monetary policy instrument. Real interest rate changes effect 

excess demand during the first period with the flow on effect of demand through to 

inflation coming after an additional period. In the special case where Ii = 11 = 0, this 

model has been studied previously by Svensson (1997a, 1997b), Ball (1999), and 

McCallum (1997).2 

In our numerical work we take)'" to equal 0.9, y to equal 0.8, and a to equal 0.4 -

implying a sacrifice rati03 of 2.5 (lIa) when Ii = 11 = O. The standard deviation of 

each innovation is set to one. The timing of events is as follows. At the end of period 

t-1 period t-1 variables are realized. Then, during period t the monetary authority sets 

the value of the nominal interest rate, it. Subsequently, period t shocks, Ut and v" 

occur, and Yt and 7tt are realized. With this timing the monetary authority makes its 

period t policy decision based on period t-1 information and the ex ante distributions 

of the innovations . 

simple rule, there may be substantial virtue in adopting the approximate solution. ' 
2 This model differs slightly in the timing with which the real interest rate impacts on demand fro m that 
used by the authors referenced above. Here we have the impact occurring contemporaneously while 
they impose a one period lag. 
3 Here we define the sacrifice ratio in terms of the transition between two steady states. A sacrifice 
ratio of 2.5 means that if the inflation rate is one percentage point lower in the second steady state than 
the first then the cumulative output loss between the two steady states will be 2.5%. 
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We test the robustness of our results by considering three variants of this model. 

These variants are indexed by their values for 8 and 1'], and are denoted: Model A; 

Model B; and Model C. Model A is backward-looking with 8 = 1'] = 0, Model B has 

rational financial markets, 1'] = 1, but other markets form naive backward-looking 

expectations, 8 = 0, and Model C is fully forward-looking with 8 = 1'] =1. 

4.3) Analysis of Results: Efficiency Frontiers and Impulse Responses 

The loss function faced by the monetary authority when deriving its optimal policy 

rule is4 

Loss[O,oo 1 = (1- ~)Var(y t) + ~Var(7t.) , 0::;~::;1 (3) 

where Var(Yt) and Var(1tt) are the unconditional variances of the output gap and 

inflation 5 Rudebusch and Svensson (1998) and Svensson (1998) show that this loss 

function can be motivated from the standard intertemporal quadratic loss function as 

the limiting case where future losses are valued equally with current losses. 

Two of the model specifications described above - Models Band C - contain 

forward-looking variables. For these models the optimal discretionary rule and the 

optimal commitment rule may differ. Rather than just presenting results for just the 

discretionary case or just the commitment case, this paper presents results for both 

cases. This is done for two reasons. First, it is interesting in itself to see how the 

optimal discretionary and the optimal commitment rules differ in the absence of a 

discretionary inflation bias. 

Second, we wish to compare how simple rules - such as the Taylor rule or a simple 

inflation targeting rule - compare to optimal rules. If the monetary authority 

4 Svensson (l997a) argues that this loss function is consistent with the motivation behind inflation 
targeting. 
5 Because all variables in the system have been demeaned this loss function implicitl y targets a value 
for 1lt of zero. Because of the demeaning, however, this is without loss of generality. Further, although 
it is the inflation rate that is targeting by policy makers, the price level is still determined by the system. 
Each of the model specifications considered are sticky price models and as a result today's price level 
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announces that it will follow a Taylor rule and agents believe this, then the monetary 

authority will then face an incentive to depart from the Taylor rule. Because of this 

incentive, simulations performed using a Taylor rule assume that a commitment 

mechanism exists holding the central bank to its rule. For this reason simulation 

results for the Taylor rule should most appropriately be compared to those from the 

optimal commitment rule. But in general central banks do not commit themselves to 

predetermined courses of action. As a consequence, the optimal discretionary rule 

also provides a useful benchmark for comparison. 

4.3.1) Model A 

Model A contains two state variables (excluding the innovations, Ut and v" which are 

not part of the period t-l information set): Yt-I and 11:t.l . Accordingly, the optimal 

policy reaction function may be represented as a linear combination of these two 

variables, with parameters CPI , CP2 respectively. Table 4.1 contains the optimal policy 

rules as well as the variances of inflation, output and the nominal interest rate for both 

'strict inflation targeting' (SIT, ~ = 1) and 'flexible inflation targeting ' (FIT, ~ = 0.5). 

Comparative results for the Taylor rule6 and two Henderson and McKibbin7 rules are 

also included. 

There is no unambiguously superior rule among those in Table 4.l. However, the 

Taylor rule and the second of the two Henderson and McKibbin rules is strictly 

dominated by FIT. Interestingly, Table 4 .1 illustrates that as we move from FIT to 

SIT the optimal policy rule places increased rather than reduced weight on output. By 

placing a larger weight on output SIT is able to dampen future inflationary pressures, 

but at the cost of greater output fluctuations . Further we see that the Taylor rule 

places too little weight on output.8 Also note that the optimal rules apply a coefficient 

greater than one to inflation. This ensures that monetary policy 'leans against the 

wind', and does not accommodate inflation increases . 

is anchored by last period's price level. Under these assumptions the price level will follow a random 
walk. 

6 The Taylor rule considered in this paper is based on the observed variables: y,.!; and ltc.! with 
coefficients of 0.5 and 1.5 respectively. 
7 The two Henderson and McKibbin rules are used here. The first applies the feedback coefficient 1.5 
to both y,.! and ltc.J, the second the feedback coefficient 2. Feedback coefficients less than one generate 
instability. 
8 This result has been derived analytically by Ball (1999). 
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Table 4.1 

Regime Var(Yt) Var(n.) Var(it) <P, (Yt-I) q>z (n.-I) 

FIT 2.42 3.12 7.7 1.535 2.025 

SIT 8.25 2.16 26.47 2.375 4.125 

Taylor 3.41 4.89 8.96 0.5 1.5 

H-M 1.61 5.25 8.37 1.5 1.5 

H-M 2.55 3.55 10.33 2 2 

Among the simple rules the Henderson and McKibbin rule with a feedback coefficient 

of 2 dominates the Taylor rule and comes closest to matching the performance of FIT. 

The Henderson and McKibbin rule with l.5 as its feedback coefficient performs best 

in terms of the output gap 's variance, but worst in terms of inflation's variance. 

To better illustrate the properties of the model, Figures 4 .1 and 4.2 plot impulse 

response functions for independent, temporary, 1 % demand and supply shocks 

respectively. Here we are interpreting v" the innovation to the dynamic IS curve, as 

the demand shock, and u" the innovation in the Phillips curve, as the supply shock. 

These responses are drawn for FIT (~ = 0.5). 

From Figure 4.1 , in period 10 when the demand shock hits , output increases by the 

full 1 % with no inflation or interest rate response. This increase in demand pressure 

flows through to inflation in subsequent periods causing inflation to rise and eliciting 

a tightening in monetary policy. Interest rates rise by more than the rate of inflation 

and the higher real interest rate reduces demand pressure. Excess capacity results, 

lowering inflation . Subsequently, the output gap, inflation, and the nominal interest 

rate all converge geometrically back to baseline. The shock passes through the system 

after about 10 periods. 
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The supply shock impulse responses are plotted in Figure 4.2. In response to the 

supply shock inflation increases directly by the full 1 %. Higher inflation generates a 

policy tightening so the nominal interest rate rises the following period, and rises by 

more than inflation does to generate a real interest rate rise. In turn the higher real 

interest rate dampens demand pressure and the excess capacity puts downward 

pressure on the inflation rate, returning inflation to baseline. As the supply shock 

passes through the system inflation gradually declines and as it does so the output gap 

and interest rate also return to baseline. Again after 10 periods the shock has almost 

completely passed through the system 
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Figure 4.2: Model A - 1 % Supply Shock 
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Finally, we should note that in Model A we arrive at identical policy conclusions 

regardless of whether we consider the real or nominal interest rates as the policy 

instrument. The reason for this is that with backward-looking expectations, inflation 

expectations are a state variable of the system. Hence we can write the optimal rule: 
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i, = <PlY ,-I + <P2 1t '_1 

as 

r, +1t'_1 = <PlY'-1 + <P2 1t ,_i' (4) 

where rl is the real interest rate. Equation (4) can easily be rearranged as 

r, = <PI y'-I + (<P2 -1)1t'_1 . 

Thus the shift to treating the real rather than the nominal interest rate as the policy 

instrument only alters the coefficient on lagged inflation in the optimal policy rule.9 

4.3.2) Model B 

In Model B agents operating in financial markets are forward-looking while the 

remainder are backward-looking. Both YI.! and 1tt .! remain state variables and form 

the basis for the policy rule. Table 4.2 presents simulation results for SIT, FIT, the 

Taylor rule and the two Henderson and McKibbin rules, along with the respective 

feedback coefficients for each policy rule. The first thing we observe from Table 4.2 

is that the Taylor rule performs poorly, generating instability, but that the Henderson 

and McKibbin rule with feedback coefficient of 1.5 performs well. By implication it 

is the low parameter of 0.5 on Yt.! in the Taylor rule that is causing the instability. 

Interestingly, the optimal commitment and optimal discretionary rules coincide, and 

not just in the case of strict inflation targeting, where with one instrument and one 

goal variable we might expect the two rules to be the same. Not only are the 

commitment and discretionary variances the same for a given value of ~, but they are 

also the same as those from Model A. Models A and B differ only in how the 

dynamic IS curve is specified, thus these results underscore the point that it is 

9 When inflation expectations contain some forward· looking element both coefficients in the optimal 
policy rule change when we transform the policy rule from the nominal to real interest rate. When Ii = 
\, n,.1 is no longer a state variable for the system. 
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parameters in the supply side of the system that determine the shape of the efficiency 

frontier. 

Table 4.2 

Regime Var(Yt) Var(711) Var(it) <PI (Yt.l) <i>2 (711.1) 

Discretion FIT 2.42 3.12 6.23 1.804 1.697 

SIT 8.25 2.16 24.58 2.375 3.125 

Commitment FIT 2.42 3.12 6.23 1.804 1.697 

SIT 8.25 2.16 24.58 2.375 3.125 

Taylor = = = 0.5 1.5 

H-M 2.29 3.55 5.44 1.5 1.5 

H-M 3.18 2.65 8.23 2 2 

Figures 4.3 and 4.4 plot the dynamic responses of Model B to demand and supply 

innovations in the case of both policy commitment and policy discretion. With 

private agents forward looking the decisions of the monetary authority are anticipated, 

helping policy makers stabilize the economy. With a 1 % demand shock (Figure 4.3) 

output rises by 1 % and this positive output gap places upward pressure on inflation. 

Anticipating higher inflation policy makers tighten policy and agents anticipating this 

tightening moderate their inflation expectations. The policy tightening leads to an 

excess of capacity that places downward pressure on inflation. As inflation declines, 

policy begins to ease and output starts to rise, returning the economy to baseline. 
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The 1 % supply shock, shown in Figure 4.4, increases inflation by 1 %. However, once 

agents identify the shock the monetary authority lifts the interest rate, contributing to a 

fall in the output gap, which reduces inflationary pressures. Subsequently, policy 

eases and inflation and the output return to baseline. 

Figure 4.4: Model B-1 % Supply Shock 
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In many ways the simulation results for Model B are similar to those of Model A. 

The key difference is that with forward-looking financial markets inflation 

expectations return to the inflation target faster than lagged inflation does, and this 

allows the monetary authority to shorten the duration of policy activism. 

4.3.3) Model C 

In this model all agents are forward-looking and rational, which, as we might expect, 

greatly helps policy makers achieve their objectives. The forward-looking 

expectation in the short-run aggregate supply curve can be motivated by two period 

overlapping wage contracts (Taylor, 1980), or by price adjustment costs (Roberts, 

1995). Figures 4.5 and 4.6 show that demand and supply shocks pass through the 

economy with only minor disruption when agents are forward-looking and the 

monetary authority can commit to a rule. The analogous shock responses under 

policy discretion, which are depicted in Figures 4.7 and 4.8 , tell a very similar story to 

those produced assuming commitment. 
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Figure 4.5: Model C - Commitment rule, 1 % Demand 
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Shock 

r-
N 

[=-Output - - - -Inflation - - - - - ·Interest rate I 

OJ 
N 

1.5 

0.5 

0 I ,~, T" ,. , ",I 
'" l!l 

r-- OJ '" l!l r--

Time 

OJ N '" N 
l!l r-- OJ 
N N N 

Figure 4 . 7: Model C - Discretionary rule, 1 % 
Demand Shock 

I----Output ----Inflation ----- · Intere stRate I 

. 5 l 
0 . 5 L«\: 

o . . d,\... i i 

~ ~ 0 ·M ~ m N ~ ro 
...L-_ _----=--==-----=~--==--~ ----"!N~N ~N -0.5 

Tim e 

71 



Figure 4.8: Model C - Discretionary rule, 1% 
Supply Shock 
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Table 4.3 

Var(1t,) Var(i,) 

1.13 1.52 

1.10 4.93 

1.13 1.50 

1.09 3.48 

1.73 6.81 
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1.66 47.55 

N 
N 
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As with Table 4.2, Table 4.3 points to the inferior properties of the simple rules 

relative to either FIT or SIT, under either commitment or discretion . Again - as 

expected - neither FIT nor SIT dominate the other, although with commitment FIT 

seems to gain a large reduction in output ' s variance with only a small increase in 

inflation's variance. This result seems to imply that the variance ' s'acrifice ratio ' in 

the economy is large. 

4.3.4) Efficiency Frontiers 

Efficiency frontiers depict the trade-off between inflation ' s variance and the output 

gap ' s variance as the policy preference parameter ~ varies. Points below and to the 

left of the frontier are infeasible while points above and to the right are sub-optimal. 

Figure 4.9 plots the efficiency frontiers for our three models assuming commitment. 

Model C has an efficiency frontier that strictly dominates those of Models A and B, 

72 



due, of course, to the fact that all agents in Model C are forward-looking and rational. 

The forward-looking expectations help stabilize the economy and improve the 

variance trade-off available to the monetary authority. 
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As noted earlier the efficiency frontiers for Models A and B coincide. Models A and 

B differ only in how inflation expectations are formed in the Fisher equation. 

Consequently, Models A and B differ only in their specifications of the dynamic IS 

curve. The demand side of the economy does not change what monetary policy can 

optimally achieve, but it does change the policy rule needed to achieve it. This point 

can be understood more readily once one appreciates that it is the existence of the 

supply innovation, Ub that produces the variance trade-off to begin with (Clarida, Gali, 

and Gertler, 1999). 

Figure 4.10 plots the corresponding efficiency frontiers for the three models under 

discretion. Again the efficiency frontier for Model C strictly dominates those for 

Models A and B. As with commitment, under discretion the efficiency frontiers for 

Models A and B coincide. 
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Figure 4.10: Output Gap and Inflation Variance Trade-off under 
Discretion 
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4.4) Conditionally Optimal Rules 

8 10 

As outlined in the introduction , conditionally optimal rules are rules that optimize the 

central bank's loss function conditional upon a policy reaction function that excludes 

some state variables. For a conditionally optimal rule to perform well only variables 

that have 'small' coefficients in the optimal rule should be excluded. Conditionally 

optimal rules may be useful because they merge the properties of simple rules with 

those of optimal rules. Any advantages of conditionally optimal rules are likely to 

become clearer in larger scale macroeconomic models. It is in these large models that 

the optimal policy rule becomes truly complicated, and where many variables in the 

rule may have negligible coefficients. With this point in mind, this Section is 

intended only to provide a simple illustration of conditionally optimal rules. 

The model of Section 4.2, together with the assumption that expectations are formed 

using period t-l information, means that the optimal policy rule is a linear 

combination of the two state variables lo 
Yt.1 and n,.I . Naturally, then, the conditionally 

optimal rule we consider is of the form: II 

it = <r2 1t t_t · 

10 In Model C, which has all agents forward-looking and rational, n,.t is not a state variable for the 
system. 

II The other possible conditional rule: i, = <PlY,. 1 is not formally considered because it has the nominal 
policy instrument responding to a real variable and is therefore likely to lead to indeterminacy (Edey, 
1989). 
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This conditional rule differs from a simple inflation targeting rule only in that the 

parameter <jJ2 is chosen to optimize a loss function and not simply imposed. 

4.4.1) Model A 

Proposition one: The conditional rule will stabilize Model A provided the feedback 

parameter <jJ2 satisfies the restriction 1 < <jJ2 < 1-(A-l)/ay. 

Proof 

See Appendix A. I 

Proposition one is very intuitive. If <jJ2 is less than 1, then the nominal interest rate 

rises less than one-for-one with inflation expectations, so the real interest rate 

declines. A decline in the real interest rate in tum stimulates future inflation. The 

process repeats itself ending in instability. Alternatively, if <jJ2 is too large then 

inflation stimulates a real interest rate rise that it too contractionary, generating 

unstable oscillations. 

Minimizing the loss function , (3), subject to the restrictions imposed by the structure 

of Model A and the conditional rule produces results for SIT and FIT as summarized 

in Table 4.4. 

Table 4.4 

Regime Var(Yt) Var(1tt) Var(it) C/ll (Yt.') <i>2 (1tt., 

FIT 10.46 43.88 55.08 0 1.120 

SIT 11.88 43.25 56.08 0 1.139 

Taylor 3.41 4.89 8.96 0.5 1.5 

H-M 1.61 5.25 8.37 1.5 1.5 

H-M 2.55 3.55 10.33 2 2 

Table 4.4 clearly illustrates that while Model A can be stabilized using a policy rule 

based solely of lagged inflation such a rule is not very effective, producing large 

variances in both output and inflation. The simpler rules, which use the optimal 
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information set, but with sub-optimal parameter values, easily dominate both FIT and 

SIT derived as conditionally optimal rules. The underlying reason for the poor 

performance of the conditionally optimal rule in Table 4.4 is the fact that in the 

optimal rule for Model A the coefficient on y,.1 is far from zero. 

4.4.2) Model B 

Model B has forward-looking inflation expectations in financial markets but 

backward-looking inflation expectations elsewhere. However, we know from Section 

4.3 that for Model B the optimal commitment and optimal discretionary rules 

coincide. 

Proposition two: For Model B the conditional rule will only stabilize the economy in 

the event that ay < (I-A)/2 or ay > (3+A)/2. 

Proo!, 

See Appendix A. I 

The numerical model from which our simulations are drawn assumes a = 0.4, Y = 0.8 

and A = 0.9. Consequently, for our system neither the condition that ay < (I-A)/2 nor 

ay > (3+A)/2 hold so the system cannot be stabilized by a conditionally optimal rule 

based on lagged inflation. 

4.4.3) Model C 

In Model C the only period t-I observable state variable is Y'.I , and Table 4.3 clearly 

shows that the economy can be stabilized with policy based solely on this variable. 

However, with forward-looking agents the possibility presents itself that the economy 

can be stabilized using extraneous information, information that is not directly 

informative of the state of the economy; TC'.I is such a variable. Agents will base their 

expectations on TC,·I if they believe policy makers are using this variable to set policy. 

A correlation between n,.1 and both n, and y, is then formed that is available for policy 

makers to exploit. Once agent's inflation expectations depend on TC,.I , n,.1 effectively 
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becomes a state variable containing information exploitable by policy makers. Note 

that this policy channel arises as a simple consequence of self-fulfilling behavior. 

Proposition three: Assuming commitment, for Model C policy makers can stabilize 

the economy using the conditional rule provided 0 < ay < 4. 

Proof 

See Appendix A. I 

Table 4.5 presents simulation results based on the conditionally optimal rule. 

Table 4.5 

Regime Var(Yt) Var(1tt) Var(it) <PI (Yt.l) <P2 (1tt.I) 

Discretion FIT 6.74 4.79 3.31 0 0.831 

SIT 6.24 4.15 3.29 0 0.890 

Commitment FIT 5.88 2.99 4.29 0 1.199 

SIT 7.39 2.73 7.58 0 1.666 

Taylor 4.55 1.73 6.81 0.5 1.5 

H-M 4.56 1.34 13.41 1.5 1.5 

H-M 12.42 1.66 47.55 2 2 

As with Model B, the simple rules (excluding the Henderson and McKibbin rule with 

feedback parameter 2) dominate the conditionally optimal rule for both FIT and SIT. 

What is most interesting about Table 4.5 is that under discretion the variances of 

inflation and the output gap are simultaneously reduced as ~ ~ 1. Appointing a 

central bank governor who cares only about inflation - an 'inflation nutter' is optimal. 

The inability of the central bank to commit to policy announcements, combined with 

the fact that lagged inflation is only a useful variable for policy makers if agents 

believe the rule, leads to an optimal rule where policymakers ' accommodate ' inflation 

increases. As the weight on inflation in the loss function is increased the degree of 

accommodation is reduced, producing a joint reduction in the variances of inflation 

and the output gap. 
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4.5) Conclusions 

In some respects the conclusions drawn here are unsurprising. The more agents look 

to the future the easier it is for policy makers to achieve their policy objectives, the 

more stable the system is, and the quicker the effects of supply and demand shocks 

dissipate. However, there are also a number of results that could not so obviously be 

anticipated: 

i) In a dynamic setting with discretionary policy appointing an ' inflation nutter' 

can be optimal. 

ii) In a relative sense, the simple rules perform best where there is no forward

looking expectations. With forward-looking agents SIT and FIT dominate all 

three simple rules. 

iii) Sometimes - depending on parameter values and how much information is 

discarded - policy makers can stabilize the economy using conditional rules. 

iv) When all agents are forward-looking and rational , the monetary authority can 

stabilize the economy using variables that, if not used by policy makers, would 

not be informative about the state of the economy. 

v) The three simple rules, which apply sub-optimal coefficients to an optimal 

state variable set, tend to out-perform the conditionally optimal rule we 

consider, which applies optimal coefficients to a sub-optimal state variable set. 

vi) Simple inflation targeting rules perform poorly, particularly in the context of 

models without forward-looking agents. 

While the model of this paper is descriptive and highly simplified it does demonstrate 

that a conditionally optimal inflation targeting rule can stabilize the economy. The 

poor performance of the conditionally optimal rule in this paper stems from the fact 

that with only two state variables in the system a huge amount of information is lost 

when the output gap is omitted from the policy rule. Equivalently, in the optimal rule 

the output gap does not have a coefficient close to zero. To better understand whether 

conditionally optimal rules can make a useful contribution to monetary policy, a 

larger, more comprehensive, model that accounts for a wider range of shocks might be 

used. In light of the fact that currently all explicit inflation targeting countries have 
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large tradable goods sectors, future work on conditionally optimal rules could usefully 

be placed in the context of a small open economy. 
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Appendix A: Conditionally Optimal Rules 

Proof of proposition one: The conditional rule will stabilize Model A provided the 

feedback parameter <jl2 satisfies the restriction 1 < <jl2 < 1+(I-A)/ay. 

Take the system 

y, = AY' _I - y[i , -7t '_I)+ v, 

7t, = 7t H + aY'_1 + u , 

and add to it the policy reaction function : 

i, =<P27t H' 

O$A<I ,y >O 

a>O. 

(AI) 

(A2) 

(A3) 

Eliminating the nominal interest rate from the system, then exploiting the lag operator 

gives the IS curve 

y(l-<p , ) 1 
Y = - 7t +-- v , 1- AL ,-I 1 - AL ,. (A4) 

Lagging A4, and substituting into A2, gives the inflation equation 

7t, = (1 + A)7t '_1 + (ay(I-<P2)-A)7t!-2 +av'_1 +u , -AU'_I' which will be stable 

provided 

i) 1 + A + ay(l - <jl2) - A < 1; 

ii) -1-A+ay(I-<jl2)-A<I; 

iii) -ay(1 - <jl2) + A < 1. 

Now (i) requires <jl2 > 1. With a, y > 0 and 0 $ A < 1 condition (ii) always holds when 

(i) does. Finally, condition (iii) requires <jl2 < 1 +(l-A)/ay. Ruling out A = 1, (I-A)/ay 

is always positive, so there exists a range of values for <jl2, 1 < <jl2 < 1+(I-A)/ay, for 

which the system is stable. I 
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Proof of proposition two: For Model B the conditional rule will only stabilize the 

economy in the event that a:y < (1-)..)/2 or a:y > (3+)..)/2. 

The model is 

y, = AYH -y[i, -E'_I IT'+I]+ v, 0:::;).. <1, y> 0 

IT , =IT'_I +aY'_1 +u, a>O. 

i , = <P2 IT H· 

Combining A 7 with AS yields 

y, = AYH -Y<Pz IT ' _1 +yE'_IIT'+1 + v, 

To solve this rational expectations system we propose the solution 

y, =8 1I Y,_1 +8 12 IT'_1 +8 Il v, +8 14 U, 

IT, = 8zIY'_1 + 822IT H +8 2)v , + 8 24 U ,. 

(AS) 

(A6) 

(A7) 

(AS) 

(A9) 

(AlO) 

Now substituting A9 and AlO into AS and A6 and equating coefficients gives 

8 11 = A+y(8 z1 8 11 +8 228 21 ) 

8 12 = - y<pz + y(8 21 8 1z + 8;z) 

8 =a 21 

822 =l. 

Exploiting A14 and A13 we get l 2 8 11 = A + ay and 8 1z 1-ay 

y(l-<P2) 

l-ay 

(All) 

(A12) 

(Al3) 

(A14) 

The system can 

be expressed as the process y, = (1 + 8 11 )y ,-I - (8 11 - a8 1z}y ,-z + t.v, + U, _I' so 

stability requires the three conditions: 

i) 1+a812 < 1; 
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ii) a8 12 -28 w 1<1; 

iii) a812 -8 11 > -1. 

First consider the case where ay < 1. For condition (i) to hold then requires <1>2 > 1. 

Condition (ii) holds provided <1>2 > (ay-2(I+A»/ay, which is implied by <1>2 > 1. 

Finally condition (iii) holds when <1>2 < (l-A-ay)/ay. For a stabilizing policy rule to 

exist therefore requires (l-A-ay)/ay > 1, which holds when ay < (1-A)/2. So in the 

unlikely case that ay < (1-A)/2 a conditionally optimal rule based on 1tt.1 exists that 

stabilizes the economy. 

Alternatively consider the case where ay > 1. Condition (i) requires <1>2 < 1. 

Similarly, condition (ii) requires <1>2 < (ay-2(1+A»/ay, which implies <1>2 < l. Finally 

condition (iii) holds when <1>2 > (l-ay-A)/ay. Accordingly, stability can be achieved 

provided (ay-2(1+A»/ay > (l-ay-A)/ay. But this restriction only holds when ay> 

(A+3)/2. Therefore a conditionally optimal rule based on nt.1 that stabilizes the 

economy only exists when ay < (1-A)/2 or ay > (3+A)/2. I 

Proof of proposition three: Assuming commitment, for Model C policy makers can 

stabilize the economy using the conditional rule provided 0 < ay < 4. 

Consider the system 

y, = AYt_t -y[i t -Et_11I:t+I]+Vt' 

1I: t = E t_11I: t+1 + aY t_1 + ut' 

it =<il211:t_I' 

O:O;A<l,y>O 

a>O 

(A1S) 

(A16) 

(A17) 

We eliminate the nominal interest rate from the system by substituting A17 into A1S 

giving 

Yt = AY t_1 -Y<il211:t_1 +yE t_11I: t+1 +v t · (A18) 

12 The case where ay = I leads directly to instability. 
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The postulated solution is 

y, =8 I1 Y,_1 +8 121[t-l +813 v , +8 14 U" 

1[, = 8 21 Y'_1 +8 22 1['_1 +8 23 V, +8 24 u ,. 

(AI9) 

(A20) 

Substituting A20 and A19 into A18 and A16 and equating coefficients produces 

811 = Ie + y(8 21 811 +8 22821 ) 

812 = -Y<Jl2 + y(8 21 812 + 8;2) 

821 = a + 8 21 811 + 8 22821 

8 22 = 8 21 812 +8;2 

(A21) 

(A22) 

(A23) 

(A24) 

From A23 and A21 we deduce 811 = Ie + y(8 21 - a) , and similarly from A24 and 

A22,8 12 = -Y<Jl2 + y8 22 · Substituting these relationships back into A23 and A24 

produces the two quadratic equations 8;2 - (1- y8 21 )8 22 - Y<Jl2821 = 0, 

y8;1 + (Ie - ay -1 + 8 22 )8 21 + a = 0, which can be solved as 

822 
(l-y8 21 ) + ~(82Iy-l)2 +4<Jl282IY 

2 - 2 (A25) 

and 

8 = (l+aY-le-8 22 ) + ~(1e+8 22 -aY-l)2 -4ay 
21 2y 2y' (A26) 

Clearly A25 , A26, together with A21 and A22 do not represent a unique solution. 

However, we know that when </l2 = 0, then 822 = 812 = 0, suggesting that we take the 

positive root of A25. Furthermore, when a = A = 0 we expect 811 = 821 = 0 implying 

that the positive root of A26 is the appropriate one. Ignoring the innovation terms our 

system can be written as 
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[
YtJ=[8 11 812J[Yt-IJ. 
IT, 8 21 822 ITt-! 

(A27) 

For our system to be stable we require the eigenvalues of the coefficient matrix in 

A27 to both have a modulus less than one. The two eigenvalues are: 

" = (8 11 + 82z) + ~(811 + 822 )2 - 4(8 128 21 + 811 822 ) 
r 2 2 . (A28) 

Now consider <jJ2 = O. Under this restriction we know that 822 = 812 = 0 and, further 

from A28, that J..l = 0, 811 . Thus we only need to show that 18 11 1 < 1 to prove that the 

system can be stabilized when <jJ2 = O. Under these restrictions 

811 
(1+A.-ay) ~(A.-ay-l)2 -4ay 
-'------'-'- + . 

2 2 

First consider the case where (A.-aY-l)2 < 4ay, which is where 8 11 is complex. The 

modulus of 811 is 

[(' -~ + 1) J' +[ ~4n,- (\-a, -1)' J (A29) 

After expanding, canceling terms, and simplifying, A29 reduces to.Ji. However we 

have restricted 0 :s; 'A < 1, and hence 811 always has a modulus less than one. The 

condition ('A-ay-l)2 < 4ay requires l+ay-2,Jay < 'A < l+ay+2,Jay. But with a, y> 0 

and 'A < 1 the upper constraint is non-binding. Hence provided 'A lies in the parameter 

range l+ay-2,Jay < A < 1 the system will be stable. For this condition to have any 

chance of holding we require 0 < ay < 4. 

Next consider the case where ('A-ay-li = 4ay, i.e. when 'A = l+ay-2,Jay, then 811 will 

have a modulus less than one provided 0 < ay < 4. Finally consider the case where 

('A-ay-l)2 > 4ay, that is where 'A < 1+ ay-2,Jay. Now when 0 < ay < 4, 811 < 1. 
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Furthermore, the function l--.Jay is everywhere below 8 11 over the interval 0 < ay < 4. 

To show this we subtract 1--.Jay from 8 11 giving 

~(A. - ay _1)2 - 4ay A. - (1 + ay - 2.fo.Y) 
--'-------'-------'- + . 

2 2 
(A30) 

But we know that A. -(I+ay-2-.Jay) , which we denote by <jl , is negative. Adding and 

b . 2. 1 . h d fA30' f' d ~q/-4q;.fo.Y q; su tractmg 'I ay m t e square part 0 s lrst term pro uces + - . 
2 2 

That 1--.Jay lies below 8 11 for 0 < ay < 4 now follows directly from the fact that <jl < O. 

The function 1--.Jay, however, lies strictly between -1 and 1 when 0 < ay < 4, which 

completes the proof. I 

Comment: Our method of proving Result three has been to show that when 0 < ay < 4, 

setting <jlz 0 produces a stable system. If <jlz = 0 is the only parameter value 

producing a stable system, then <jlz = 0 is obviously the optimal policy. More 

generally a range of values for <jlz - about 0 - will stabilize the economy and the policy 

maker will choose that value that minimizes the policy loss function. If, however, the 

above condition, 0 < ay < 4, does not hold, then this proof does not rule out that the 

system can be stabilized. It does, however, say that the range of values for <jlz that 

might stabilize the economy under these circumstances does not include <jlz = O. 
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Appendix B: Sensitivity Analysis 

The results of the main text were generated for specific parameter values. Of course 

in practice we are never sure of what the exact parameter values in any given 

economy are. In the absence of analytical solutions for the unconditional variances of 

y" 71:" and i" the robustness of the results can be checked using sensitivity analysis. In 

essence sensitivity analysis amounts to changing the parameters in the model and 

seeing how the variances respond. 

Some observations about the robustness of the simulation results can be made , 

however, without resorting to further simulations. In particular, it is always optimal 

for the monetary authority to offset demand pressures coming through the output gap, 

regardless of the policy preference parameter,~. Demand pressure represents future 

inflationary pressure. Thus by stamping down on demand shocks the monetary 

authority can simultaneously reduce the variances of both the output gap and inflation, 

which is always optimal. Consequently, changes to the parameters in the demand side 

of the economy do not shift the efficiency frontier. Instead, such parameter changes, 

alter the policy rule required to reach any point on the efficiency frontier. The 

variances of y, and 71:, (but not i,) are therefore invariant to the parameters A. and y 

(excluding y = 0). The same, however, cannot be said for parameter changes in the 

Phillips curve, because they do move the efficiency frontier. 

Consider the macroeconomic model given by: 

y, = AYt_' + (1-A)E'_' Yt+l -y[i t -E ,_,7t,+, l +v, 

7t t = E t-l 7t ,+, +ay,_, +u t • 

(B1) 

(B2) 

In the case where A. = 1 the dynamic IS curve (B 1) is the same as that used for Model 

C. Alternatively, when A. = 0, it is the same as that used by Clarida, Gali and Gertler 

(1999) and McCallum (1997), and can be supported by utility maximizing agents. 

The Phillips curve, equation (B2), is also that used in Model C, and it can be derived 

from a firm optimizing in the face of price adjustment costs (Roberts, 1995). Under 

policy commitment this system will produce variances for y, and 71:, identical to those 
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of Model C - independently of the values for)'" and y (excluding y = 0). Similarly, 

replacing Et.jnt+j in equation (B2) with nt.j and setting (J. = 0.4 and assuming 

commitment, the system above will produce variances for Yt and nt identical to those 

of Models A and B. 

By earlier considering two processes for inflation expectations (fully backward and 

fully forward/rational) the robustness of the results to that aspect of the Phillips curve 

has already been considered. It just remains to examine how/whether the results 

change as (J. varies . Figure B4.1 plots how the value of the minimized loss function 

changes as (J. varies between 0 and 1. Models Band C are considered with ~ = 0.5 

under the assumption of policy commitment. The parameters)... an y are kept at 0.9 

and 0.8 respectively. 

OIl 
OIl o 

...:l 

Figure B4.1 - Sensitivity of loss function to 
Alpha, assuming Commitment 

1 ~ t ~=-?_~-_ i _ _ _ _ _ _ _ _ j ---Model B 

- - - - - Model C 

o 0.2 0.4 0 .6 0.8 

Alpha 

Figure B4.1 illustrates that for Model C the results are very insensitive to the value of 

(J., with the evaluated loss remaining pretty constant for all values of (J. between 0 and 

1. For Model B the evaluated loss is relatively insensitive to values of (J. greater than 

0.2. 
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Chapter 5 

OPTIMAL AND CONDITION ALL Y OPTIMAL TARGETING RULES FOR 

SMALL OPEN ECONOMIES 

5.1) Introduction 

In closed economy macroeconomic models there are three key monetary policy 

transmission mechanisms. The first of these is the demand pressure channel: output 

above capacity places upward pressure on inflation as workers demand higher wages 

in compensation for the increased working hours. The second channel is through 

inflation expectations. If people expect higher inflation in the future then inflation 

will rise now as workers negotiate wage contracts that insure them against future 

expected price rises. Monetary policy credibility plays an important role in anchoring 

inflation expectations. Finally, if collateral is important or if agents are liquidity 

constrained, then there may also be a policy channel through asset markets. 

Over-and-above these channels, monetary policy in small open economies also 

operates through the exchange rate. Interest rate movements affect the nominal 

exchange rate, and the exchange rate in tum influences tradable goods prices, which 

form a component of consumer prices. In theory, the quickest acting of these 

channels should be the expectations channel. In practice the expectations channel 

appears less important for lowering inflation than it does for maintaining a low rate of 

inflation. That is the inflation expectations channel provides a useful long-run anchor 

for inflation but is less effective as a short-run anchor. 

It is a stylized fact however, that monetary policy' s effect on inflation through the 

exchange rate channel is swifter acting than its effect through aggregate demand. 1 As 

a direct consequence, the policy control lag in a small open economy is shorter than 

that of a closed economy. A corollary of this shorter control lag is that in a small 

open economy the effects of policy decisions can be more closely associated with the 

I See Ball (1998) and Reserve Bank of New Zealand (1996). 
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decision maker. This may have contributed to the fact that the recent shift toward 

inflation targeting has been concentrated among central banks in small open 

economies. It is these central banks that can be more effectively held accountable for 

their actions. 

When setting monetary policy to meet its objectives, the central bank must take all of 

these channels into account. The task of satisfying these objectives can be viewed as 

an exercise in control theory. The monetary authority sets its instrument (typically a 

short -term nominal interest rate) to minimize the stipulated objective function subject 

to dynamic constraints imposed by the structure of the economy. 

Yet a large part of the literature on monetary policy concerns itself with analyzing the 

relative merits and advantages of different simple instrument rules2 at meeting various 

policy objectives.3 The aim of this literature is to find a simple transparent instrument 

rule that performs well across a range of plausible models, but which is not 

necessarily optimal for any given model. A rule that is optimal in some given model 

may perform poorly - perhaps even generating instability - in the context of another 

economic framework. In the face of uncertainty over which model best reflects 

reality, robustness - not optimality - is the over-riding criteria. 

Nevertheless, the techniques of control theory can still make a useful contribution to 

the analysis of monetary policy and policy rules. In the context of any given model 

the optimal rule provides a benchmark, or lower bound, against which the 

performance of other simple rules can be compared. Moreover, as policy makers form 

stronger views about the structure and interactions of their economy the set of models 

over which a rule needs to be robust declines and the importance of optimality 

increases. And it remains the case that if simple rules are to be useful they must 

incorporate or be based around information that features significantly in the optimal 

rule. 

2 Such simple rules include inexact nominal GDP targeting (McCallum, 1989a, and Bryant, Hooper and 
Mann, 1993), the Taylor rule (Taylor, 1993), the Henderson and McKibbin rule (Henderson and 
McKibbin, 1993). Further examples include partial adjustment rules involving deviations of inflation 
from target or deviations of the price level from target (see for example Edey, 1997). 
3 Examples include targeting linear combinations of output' s variance, inflation 's variance, and the 
price level's variance, along with associated special cases (such as inflation targeting and price level 
targeting). 
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It is on this latter point that this paper makes its main contribution. In the context of a 

small open economy we ask the question which variables are important in the optimal 

policy rule (given, of course, some pre-specified objective). Alternatively, we ask the 

question how much is lost if some variables are excluded from the optimal policy rule. 

These rules, which are based on a restricted set of state variables, are called 

conditionally optimal rules, and they will perform well provided the information 

retained in the conditionally optimal rule adequately summarize the current state of 

the system. It is possible that some simple rules (Taylor rule, Henderson and 

McKibbin rule, etc) can be reinterpreted as conditionally optimal rules. That is some 

simple rules may be sub-optimal in the broader context, but optimal conditional upon 

a given information set. Knowing which variables are important for the performance 

of the optimal rule should help in the design of simple instrument rules. 

Rudebusch and Svensson (1998) and Chapter 4 have previously examined 

conditionally optimal rules in the context of closed economy models. In these studies 

conditionally optimal rules performed badly, generally being dominated by simple 

rules such as the Taylor rule. The poor performance of conditionally optimal rules in 

these closed economy environments was due to the fact that the models had few state 

variables to begin with. Too much information was lost when some state variables 

were discarded. Essentially, the optimal policy rules in those models had no state 

variables with coefficients close to zero. 

This paper is structured as follows. Section 5.2 introduces the model, which in many 

ways can be viewed as a discrete time version of the Buiter and Miller (1981) model. 

Buiter and Miller (1981) is in tum an extension of Dornbusch ' s (1976) seminal sticky 

price exchange rate model. Section 5.3 considers the stabilizing properties of optimal 

inflation targeting rules for two model specifications. The first where all agents are 

backward-looking; the second where all agents are to some extent forward-looking 

and rational. Impulse response functions are presented to better analyze the effects 

shocks have on the system. 

Conditionally optimal rules are discussed and analyzed in Section 5.4, where it is 

found that rules based on only two or three particular state variables can well 

approximate the optimal rule. Monetary Conditions Indicators (MCIs), indicators that 
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supposedly summarize the stance of monetary policy in small open economies, are 

introduced in Section 5.5 and discussed as a tool for aiding policy makers. Finally, 

Section 5.6 offers concluding comments and directions for future research. Appendix 

A analyses the sensitivity of the results of Section 5.3 to different parameterizations of 

the model. 

5.2) A Small Open Economy Framework 

This Section introduces a small open economy model. The model considered has its 

origins in Dornbusch (1976) and is developed further in Buiter and Miller (1981). Its 

structure is as follows: 

5.2.1) Domestic Economy4 

y, =/cY '_1 -y[i, -n ;,C ]+f.lq t-l + 9Y:_I +v, y, f.l, 8 > 0, 0 ::; A < 1 (1) 

n;'C = oEt-ln:+1 + (1- o)n:_l 0::;8::;1 (2) 

n, = pE '_In ,+1 + (1- p)n t-l + aY'_1 + u , u> 0, 0::; p::; 1 (3) 

rr: = Kn; + (1- K)n , O::;K::;1 (4) 

i f p, = e, + p , (5) 

e, =OE'_le'+1 + (l-o)et-l +i: -it +10, (6) 

q , = e, +P: -P: (7) 

Where: y, = domestic output gap 

TCt = nontradables inflation rate 

Ttt
C = consumer price inflation rate 

1t
t
e.c = expected consumer price inflation rate 

11:t
i 

= import price inflation (in domestic dollars) 

pi = import price level 

Pt
C = consumer price level 

p, f = foreign price level 

91 



i, = domestic nominal interest rate 
. f I, = foreign nominal interest rate 

q, = real exchange rate 

Y, 
f = foreign output gap 

e, = effective nominal exchange rate 

v, = domestic demand shock 

u, = domestic supply shock 

c, = portfolio preference shock. 

5.2.2) Foreign Economy 

Y; =/cfY;_1 -'/[i; -n;.f]+v; 

n;.f = 1Et-Jn;+1 + (1-1)n;_1 

n; =coE'_ln;+1 + (l-co)n'_1 +afY;_1 +u; 

i; = <p~ Y;_I + <p;n;_1 

Where: f n, = foreign inflation rate 

y> 0, 0 $)...f <1 

0$1$1 

r/ > 0 , 0 $ 0)$1 

n,e,f = foreign expected inflation rate 

v/ = foreign demand shock 

u/ = foreign supply shock. 

(8) 

(9) 

(10) 

(11) 

Aside from the interest rates and the inflation rates, all variables are in logs, and all 

price levels are linked to inflation rates using the standard identity. 

Equation (1) is a dynamic IS curve expressed in interest rate/output gap space, but 

where the curve is conditioned upon the real exchange rate, q,_I, and the foreign output 

gap, /'-1' Expectations of consumer price inflation are formed using equation (2)_ 

Nontradables inflation is driven by a Phillips curve, equation (3). Consumer price 

inflation, equation (4), is a weighted average of tradable goods price inflation and 

nontradables inflation, where the weight on tradable goods inflation is the direct 

4 Throughout this paper the domestic economy will be associated with the small open economy and the 
foreign economy with the large economy. 
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exchange rate pass-through coefficient.5 Equation (5) defines import prices in term of 

foreign prices and the' nominal exchange rate. The nominal exchange rate, e" 

represents the number of domestic dollars it takes to purchase one foreign dollar. An 

increase in et represents a nominal exchange rate depreciation. 

We model the nominal exchange rate using (6), which is simply an uncovered interest 

parity (UIP) condition, but with mixed expectations as per equation (2). This UIP 

condition simply states that the expected change in the exchange rate fully offsets the 

foreign-domestic nominal interest rate differential. The real exchange rate is defined 

by equation (7) in terms of consumer prices rather than the nontradable output price. 

However, these two measures of the real exchange rate are related. If we denote qtd as 

the real exchange rate in tenns of domestic goods prices, then qt = (1-K)qtd
. 

Consequently, either real exchange rate measure can be used in practice. Throughout 

we define our real exchange rate in terms of consumer prices and to keep things 

consistent we also define our real interest rate in tenns of consumer price inflation. 

The inflation expectation present in the Phillips curve relates to nontradable goods 

prices6 

The foreign sector of the system we model is of the same genre used by Svensson 

(1997a) and Ball (1999). In addition we have an explicit policy reaction function, 

equation (11). 

To reduce the dimensions of our system we exploit the real exchange rate definition 

and write the UIP equation in real tenns. 

q, =q~+1 +[i : -lI~:ll-[i, -lI~:ll+E, . (12) 

Substituting (7) into (5) gives 

p; =q, +P:, (13) 

5 This direct exchange rate pass-through coefficient is a partial elasticity. In the long-run a 1 % 
permanent depreciation of the nominal exchange rate will cause both domestic prices and consumer 
rices to rise by 1 %. Thus the long-run exchange rate pass-through coefficient is one, not K. 

Svensson (1998) in his study of open economy inflation targeting takes the alternati ve approach of 
defining the real exchange using domestic goods prices and then also using expected domestic goods 
inflation when defining the real interest rate. 
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which when differenced produces 

n: = .0.q, +n:. (14) 

Import price inflation, from equation (14), can now be substituted into the definition 

of consumer price inflation, equation (4), resulting in 

c K 
n, = --.0.q, + n,. 

l-K 
(15) 

This simplified model, which excludes the levels of all nominal variables, now 

contains just seven endogenous variables, of which only five are stochastic 

endogenous. The system is: 

y, = AY,_, - y[i , - 8E '_In:+l - (1- 8)n:_ll + Ilq'-l + 8Y:_l + v, 

n, = pE '_ln'+1 + (1- p)n[-[ + aY'_1 + u , 

c K 
n, = --.0.q, + n, 

l-K 

(16) 

(17) 

(18) 

q, = 8E[-[q'+1 +(1-8)q '_1 +[i: -tE,_ln:+1 -(I-t)n:_I]-[i , -8E[-[n:+1 -(1-8)n:_ll+E , 

(19) 

Y: =AfY:_I-l[i: -tE,_ln :+I-(I-T)n:_I]+v: (20) 

n: = wE [-[n:+1 +(I-w)n:_1 +afY:_I +u: (21) 

i: = <jl~ Y:_I +<jl~n:_1 (22) 

Events occur in this model as follows. At the end of period t-l all t-l variables are 

realized. Then, during period t, policy makers set the level of their instrument and 

expectations are fonned. After policy is set and expectations are fonned shocks occur 

and period t variables are realized. With this timing of events and lag structure the 

model is best thought of as an annual one with policy set and expectations fonned on 

the basis of period t-l infonnation and the ex ante distributions of the shocks. 

The two model specifications considered in this paper, which vary in how 

expectations are fonned, have not been estimated or fonnally calibrated using any 
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economy's data. An advantage of this is that the results produced are not specific to 

anyone country. Following Svensson (1998) the aim has been to set values for a, y, 

8, etc that are not obviously at odds with those one might expect to find if the model 

were estimated. In Appendix A, sensitivity analysis is performed to examine the 

robustness of the results to different parameter settings. 

Considering the foreign economy first we set "Af = 0.9 and I = 0.8 in the dynamic IS 

curve. In the Phillips curve we set a l = 0.4. The parameters <pI, and <p12 are chosen 

using an optimization procedure. The foreign central bank sets <pI, and <p12 to 

minimize the loss function: ? 

Loss f [0,00 1 = (1- ~ f )Var(y:) + ~f Var(n:) (23) 

with ~I = 0.5 , that is with equal weight placed on the unconditional variances of 

output and inflation. 

The parameters in the domestic economy are set in symmetry with those of the foreign 

economl. That is a = 0.4 in the Phillips curve, A = 0.9 , and y = 0.8 in the dynamic IS 

curve. To complete the IS curve specification we set).l = 0.4, and e = 0.1. This value 

for ).l implies that the IS curve has a Monetary Conditions Ratio (MCR) of 2. A 

typical estimate of the MCR for a small open econom/ is between 1.5 and 3.5. Our 

ratio is comfortably within this range. The direct exchange rate pass-through 

coefficient is set equal to 0.3, K = 0.3. We complete the stochastic specification of the 

system by setting cru = crv = crE = cr/ = cr/ = 1, and all covariance terms to zero. With 

only five stochastic endogenous variables (and two identities) the covariance matrix 

for the random disturbances is singular with rank five. 

7 This loss function , as well as that presented later for the domestic monetary authority, is in terms of 
the variances of variables, which assumes that variable averages are being targeted. Ball (1999), Fair 
and Howrey (1996), and Rudebusch and Svensson (1998) also take this approach, which leaves the 
question of what the optimal levels to target is unanswered (see Pagan, 1997). 
8 An advantage of assuming symmetry here is that it makes clear that the differing results between the 
domestic and foreign sectors are due to the small open economy nature of the domestic economy and 
not due to other forms of asymmetry brought about by coefficient differences. 
9 See Duguay (1994), Gerlach and Smets (1996), and Eika, Ericsson, and Nymoen (1996) for typical 
MeR estimates for small open economies. 
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Two model specifications are considered in this paper, each specification differing in 

how expectations are formed. The first model - Model A - has all expectations 

backward-looking. That is Ii = p = 't = (J) = 0 and all agents simply take last period' s 

value of a variable as their expectation of next period' s value. The second model -

Model B - introduces rational forward-looking behavior. Agents operating in 

financial markets are taken to be fully forward-looking and rational (Ii = 't = 1) while 

agents operating in factor markets form mixed expectations (p = (J) = 0.5) . 

5.3) Optimal Policy Rules 

Consider the loss, or objective, function 

Loss[O,oo] = (1- ~)Var(Yt) + ~Var(n;) (24) 

where because policy makers can target either consumer price inflation or 

nontradables inflation nt* may represent either nt or nt
e. The parameter ~ describes the 

preferences of the monetary authority and it dictates the propensity for policy makers 

to either ' lean against the wind' or accommodate supply shocks. When ~ = 1 the 

policy regime is referred to as Strict Inflation Targeting (SIT): when ~ = 0.5 the 

regime is called Flexible Inflation Targeting (FIT) .1O For a given value of ~ the 

domestic monetary authority minimizes equation (24) subject to the dynamic 

constraints provided by the structure of the economy - either Model A or Model B. 

The method used to solve for these optimal policy rules is described in Chapter 2. 

5.3.1) Model A 

Recall that in Model A all agents are assumed to be naiVe and backward-looking: the 

parameters Ii, p, 't, and (J) are all set to zero. The observed state variables upon which 

the monetary authority bases its feedback policy rule are: Yt. !: nt.! : net.!: qt.! : / t.!: and 

n f
t.!. Recall also that the foreign policy reaction function is set by minimizing 

equation (23) with ~f = 0.5 . Table 5.1 presents summary simulation results in the 
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fonn of unconditional variances produced by optimal policy rules under a selection of 

policy regimes. The respective optimal policy rules themselves are presented in Table 

5.2. 

Table 5.1: Unconditional Variances for Model A 

Regime Var(Yt) Var(ii) 

FIT(1tt) 2.42 7.70 

SIT(1tt) 8.25 2.16 7.12 22.56 63.90 2.42 3.12 7.70 

FIT(1ttC
) 2.52 3.21 4.15 8.55 8.02 2.42 3.12 7.70 

SIT(1ttC
) 8.80 3.29 3.02 18.31 11.67 2.42 3.12 7.70 

Table 5.1 shows how the variances of the eight variables in the system (including the 

domestic nominal interest rate) are affected by the particular policy reaction function 

used by policy makers. Unsurprisingly, SIT - based on either nontradables inflation 

or consumer price inflation - leads to greater variances for output and the real 

exchange rate than FIT. For each of the values of ~ considered targeting Ttt
C rather 

than Ttt leads to a lower variance for the real exchange rate and the domestic nominal 

interest rate. Intuitively this result occurs because dampening that variance of 

consumer price inflation requires dampening the variance of tradable goods inflation. 

A volatile nominal interest rate generates a volatile nominal exchange rate, which 

given the sluggish price adjustment present in the model translates into increased 

variances for the real exchange rate and tradable goods prices. 

Table 5.2: Optimal Policy Rules for Model A 

Regime Yt.l 'Tit -1 

FIT(1tt) 1.535 0.000 

SIT(1tt) 2.375 3.125 1.000 0.500 0.125 0.000 

FIT(1ttC
) 1.307 0.883 1.000 0.433 0.347 0.173 

SIT(1ttC
) 1.206 1.565 1.000 0.293 0.822 0.530 

In Table 5.2 we present the policy reaction functions associated with each of the 

policy regimes considered in Table 5.1. Rows one and two reveal that when domestic 

10 This terminology follows Svensson (1998) . There is, however, no obvious reason why Flexible 
Inflation Targeting could not alternatively be called Flexible Output Targeting. 
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inflation is targeted monetary policy responds similarly to foreign variables and the 

real exchange rate regardless of the policy preference parameter /3. The reason for this 

is that nontradables inflation is affected by foreign variables and the real exchange 

rate only through their influence on excess demand. By setting these coefficients to 

offset foreign demand and supply shocks policy makers can then concentrate on 

minimizing the effects of domestic shocks on output and domestic inflation. Clearly, 

none of the rules in Table 5.2 resembles the Taylor rule. In fact the Taylor rule is sub

optimal and inefficient for two reasons: first it is based on a sub-optimal set of state 

variables; and second it applies inappropriate coefficients to lagged output and 

inflation. 

To better understand the dynamic properties of Model A, and to appreciate how 

monetary policy responds to shocks, Figures 5.1 through 5.3 present impulse response 

functions for the system. In these impulse response functions the foreign monetary 

authority is assumed to optimize policy over the two foreign state variables (with /3 f = 

0.5) while the domestic monetary authority minimizes a weighted average (/3 = 0.5) of 

the variances of output and consumer price inflation.!! 

In response to a domestic demand shock Figure 5.1 shows that output rises 

immediately by 1 %, the full size of the shock. In the following period the increased 

output gap flows through to higher nontradables inflation and monetary policy 

tightens, raising the nominal interest rate. The higher nominal interest rate brings 

about a rise in the real interest rate which generates an appreciation of the real 

exchange rate and a reduction in tradable goods prices, which lowers consumer price 

inflation . The policy tightening also dampens aggregate demand leading to an excess 

supply of capacity, which in turn places downward pressure on nontradables inflation. 

As nontradable inflationary pressures begin to ease policy loosens, the interest rate 

falls and the real exchange rate starts to appreciate. After 10 periods or so the 

economy has returned to baseline. 

II These impulse response functions trace the effect of temporary I % supply, demand, and portfolio 
preference shocks. However, because each of the disturbance terms has unit variance a I % shock is the 
same as a one standard deviation shock. 
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Figure 5.1: Model A - 1% Demand Shock 
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The effects of a 1 % domestic supply shock are shown in Figure 5.2. Both domestic 

inflation and consumer price inflation rise by 1 % contemporaneously with the shock. 

Subsequently monetary policy tightens raising the nominal interest rate and the 

inflationary pressures subside. The higher interest rate, however, leads to a fall in 

output and an appreciation of the real exchange rate. This excess capacity puts further 

downward pressure on inflation and allows the interest rate to begin to fall . As the 

interest rate falls output recovers and the real exchange rate begins to depreciate, 

returning the economy to baseline. 
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Figure 5.2: Model A-I % Supply Shock 
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Figure 5.3: Model A-I % Portfolio Preference Shock 
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Finally, Figure 5.3 reveals the effects of a portfolio preference shock. This portfolio 

preference shock comes in the form of a preference for domestic agents to hold their 

assets in foreign currency. Its immediate effect is to depreciate the real exchange rate 

by 1 %, which contemporaneously results in a rise in consumer price inflation as 

tradable goods prices rise. Monetary policy tightens in response to the higher 
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consumer price inflation, partly offsetting the stimulus the depreciating real exchange 

rate has on real output. Real output still rises in the short-term. The higher interest 

rate attracts capital back into the country and as the innovation only lasts for one 

period the real exchange rate ends up appreciating and consumer price inflation falls 

below baseline before returning to baseline. 

Figure 5.4: Model A . Efficiency Frontier 
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The efficiency frontier for Model A, which traces out the volatility trade·off between 

the output gap and consumer price inflation as ~ varies, is plotted in Figure 5.4. This 

figure reveals that the standard deviation of consumer price inflation can be reduced 

quite drastically with only a marginal increase in the standard deviation of the output 

gap. Only when the monetary authority clamps down hard on inflation's variance, as 

it does under SIT, does the reduced variance of inflation translate into a large increase 

in the variance of the output gap. 

5.3.2) Model B 

Unlike Model A, which assumes all agents are backward-looking, Model B assumes 

that financial markets form rational forward-looking expectations (8 = T = 1). 

Furthermore, other agents are assumed to form mixed expectations, their expectations 

are partly forward-looking and partly backward-looking (p = (0 = 0.5). Because 

financial market expectations are now forward-looking 110,.1 is now longer a state 
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variable in the system. The set of observable state variables is: Yt-I; 1tt-l; qt-I; /t-I; and 

f 
1t t-i. 

With forward-looking agents in the model the optimal discretionary policy rule and 

the optimal commitment policy rule no longer coincide.12 The results of this Section 

are generated assuming policy commitment. 13 Policy commitment can be achieved by 

either an optimal contracting arrangement between the government and the governor 

(Walsh, 1995) or through reputation effects (Barro and Gordon, 1983). Under policy 

commitment policy makers find the cost of stabilizing inflation, in terms of output's 

variance, lower than under discretion. Consequently, inflation 's variance when there 

is commitment to a rule is lower than that achieved under policy discretion (see 

Clarida, Gali, and Gertler, 1999). 

All variances in Table 5.3 are smaller than those in Table 5.1. With forward-looking 

agents and the knowledge that the monetary authority is committed to its policy 

announcements the economy becomes easier to stabilize. The differences between 

Models A and B show up especially in the variances of the real exchange rate and the 

domestic nominal interest rate, indicating the less activist role monetary policy plays 

in stabilizing the economy when agents are forward-looking. 

Table 5.3: Unconditional Variances for Model B 

Regime Var(Yt) Var(ii) 

FIT(rc,) 1.27 3.01 

SIT(rc,) 2.80 1.33 4.18 6.38 26.21 1.27 1.57 3.01 

FIT(rc,') 1.29 1.67 2.97 3.07 5.15 1.27 1.57 3.01 

SIT(rc,') 2.19 1.65 2.74 3.42 5.76 1.27 1.57 3.01 

Table 5.4 presents the policy reaction functions associated with each of the targeting 

regimes shown in Table 5.3. 

12 The policy objective function used throughout this study directs the monetary authority to target 
potential output - not some rate of output above potential. As a consequence the difference between 
the optimal commitment and discretionary rules does not manifest itself in the form of an inflation bias. 
However, the time inconsistency does alter the trade-off between the variances of output and inflation 
facing the monetary authority, which changes the slope of the efficiency frontier. 
13 Assuming commitment has the advantage that the simulation results presented can be easily be 
compared with studies exploring the performance of simple rules, which implicitly assume the 
existence of some pre-commitment technology. 
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Table 5.4: Optimal Policy Rules for Model B 

Regime y,., 1f,., 

FIT(n.) 2.185 -0.221 

SIT(n.) 2.796 1.683 0.710 -0.431 -0.220 

FIT(n.') 1.954 0.770 0.595 -0.257 -0.145 

SIT(n.') 1.707 0.898 0.348 0.062 -0.025 

Of special interest is the fact that with forward-looking agents monetary policy now 

optimally responds negatively to the foreign output gap and foreign inflation 

(excluding SIT(n\) where policy tightens in response to /,.,). In Table 5.2 the 

feedback coefficients applied to /,., and nf
,., were positive across all policy regimes 

considered. The intuition behind these negative feedback coefficients is unclear, but 

may well involve the interaction between domestic and foreign monetary policies. 

The foreign monetary authority responds positively (raises interest rates) in response 

to both /,., and nf
,.,. The higher foreign interest rate causes capital to flow from the 

domestic to the foreign economy inducing the exchange rate to depreciate. 

Consequently, movements in the foreign output gap and foreign inflation always 

occur in conjunction with movements to the real exchange rate. Table 5.4 shows that 

domestic monetary policy responds more aggressively to the real exchange rate when 

agents are forward-looking, which may in part explain the negative feedback 

coefficients in columns six and seven of Table 5.4. 

Observe also that as monetary policy places greater weight on stabilizing inflation's 

variance, the feedback coefficient applied to y,., rises under nontradables inflation 

targeting, but falls under consumer price inflation targeting. This feature is also 

present in Table 5.2. Under nontradables inflation targeting a more aggressive 

response to the domestic output gap serves to dampen future inflationary pressures. 

When consumer price inflation is being targeted such a strong response to the 

domestic output gap creates large swings in the domestic interest rate and the 

exchange rate. Volatility in the exchange rate adds directly to volatility in tradables 

inflation, raising the variance of consumer price inflation. Because variability of 

consumer price inflation is to be avoided the response of policy makers is to lower to 

feedback coefficient applied to y,.\ in the optimal policy reaction function. 
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Impulse response functions showing the dynamic responses of Model E 

supply, and portfolio preference innovations are shown in Figures 5.5 

These impulses relate to the policy regime FIT(nC,). 
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pressures ease, and a negative output gap opens. As inflationary pressures dissipate 

monetary policy eases and the economy returns to baseline. 

Figure 5.6: Model B - Commitment, 1% Supply 
Shock 
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Figure 5.7: Model B - Commitment, 1 % Portfolio 
Preference Shock 
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The efficiency frontier for Model B is plotted in Figure 5.8. Given the unconditional 

variances shown in Table 5.3 it is no surprise that the efficiency frontier for Model B 

lies closer to the origin than that for Model A. 
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Figure 5.8: Model B - Efficiency Frontier 
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5.4) Conditionally Optimal Rules 

Having presented simulation results for fully optimizing rules in Section 5.3, this 

Section turns to the relative efficiency and stabilizing properties of conditionally 

optimal rules. Conditionally optimal rules are rules that endeavor to optimize the 

policy maker's objective function conditional upon a restricted state variable set. That 

is , they use a sub-optimal information set to set policy. By construction these 

conditionally optimal rules will have a performance (measured in terms of the policy 

loss function) that is inferior to the optimal rule. Nevertheless, it is useful to examine 

the performance of conditionally optimal rules because through such an analysis one 

can uncover those variables that are of fundamental importance to the performance of 

the optimal rule. Knowing which variables underpin the performance of optimal rules 

is important for explaining the performance of simple. Moreover, this knowledge will 

help in developing other simple rules that perform well. 1 

By way of example, consider Model A under the regimes of nontradable inflation 

targeting (Table 5.1). The coefficients on the two foreign variables: /t-I and 7lt,I are 

each either zero or very close to zero. Removing these two foreign variables from the 

14 Cecchetti (1997) makes the observation that ' .,.if the solution to the complex problem can be 
approximated by a simple rule, there may be substantial virtue in adopting the approximate solution ' . 
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set of state variables forming the policy rule is therefore unlikely to drasticall y 

undermine the performance of the optimal rule . Effectively one might expect the four 

variables: Yt.l; nt.l; net.l; and qt.1 to come close to forming a sufficient statistic for the 

state of the economy. As shown below this is indeed the case. 

In this Section three conditional rules are considered for each of Models A and B. 

The three rules are: 

it = <j)IYt-l + <j)2 1t t-l +<j) 3 1t ~_ 1 + <j)4qt -l; (rule one) 

i t = <j)IYt-l + <j)2 1t t_1 + <j)4qt -l ; (rule two) 

i t = <j)IY t-1 +<j)31t~_1 + <j)4qt-I ' (rule three) 

Rules two and three are nested inside rule one and each of the three rules exclude the 

two foreign variables /t.1 and nft.l . In addition, for Model A, we also consider the two 

rules: 15 

it = <j)IY t-l + <j) 3 1t~_1 ; (rule four) 

it = <j)IY t-l + <j)2 1t t_l' (rule five) 

Rules four and five represent the class of Bryant, Hooper, and Mann (1993) rules. In 

the case where CPI = 0.5 and CP3 = 1.5 rule four can be thought of as a form of Taylor 

rule (similarly when CPI = 0.5 and CP2 = 1.5 in rule five). Alternatively, when CP I = CP3 

(in rule four) and CPI = CP2 (in rule five) rules four and five can be thought of as 

examples of Henderson and McKibbin (1993) rules. Rules two and three generalize 

on the Bryant, Hooper, and Mann class of rules by including the level of the real 

exchange rate. Intuitively, adding the real exchange rate is an obvious and potentiall y 

important extension for a small open economy model. 

The results of this Section can best be illustrated in the form of efficiency frontiers. 

Figure 5.9 plots the efficiency frontiers for the optimal rule, rule one, rule two, and 

rule three for Model A, assuming it is nontradables inflation that is included in the 

15 These two rules were not considered for Model B because convergence problems prevented results 
from being constructed with any useful accuracy. 
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policy objective function. 16 Analogous results for Model B are presented in Figure 

5.11, while Figure 5.10 compares rule four and rule five with the optimal rule for 

Model A. 
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Figure 5.9: Model A - Efficiency Frontiers for 
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Beginning with Figure 5.9, the efficiency frontiers for the optimal rule and for rule 

one basically lie on top of each other. From a practical standpoint very little is lost by 

excluding the two foreign variables it-I and 1lt_1 from the rule. Rule three is superior 

to rule two except in the extreme case of strict inflation targeting. Thus, conditional 

upon the output gap and the real exchange rate, consumer price inflation contains 

more useful information than nontradables inflation regarding the state of the 

economy. This point is further underscored in Figure 5.10 where rule four (which 

contains Yt-I and nCt_l) is vastly superior to rule five (which uses Yt-I and nt-I) . From 

Figures 5.9 and 5.10, together with Table 5.2, it appears that in Model A the three 

most important state variables are the output gap, consumer price inflation , and the 

real exchange rate. 

16 Results for the case where it is consumer price inflation that is included in the policy objective 
function follow closely those for the nontradable inflation targeting case. 
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Figure 5.10: Model A - Efficiency Frontiers for Rules four and five 
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Figure 5.11: Model B - Efficiency Frontiers for Conditionally 
Optimal Rules 

5 

.... = 2~--------------------------~ 
: = 
2~ 
0'-' 
.0.. .. ~ 

C'-' 
-0 ..-
rrJ 

1 .8 -j--------.-----------------------------------i 
1.6 
1.4 
1.2 

1 

• -.Rule three . . ... .. ......... . 
+ •• - •••• •... - ...... 

Optimal rule •••••• • Rui:s one a1td two 

1.2 1.4 1.6 1.8 2 
Std. Dev. of Nontradables Inflation (%) 

Figure 5.11 shows that in Model B information is lost when the foreign variables (it-! 

and n
f
t_l) are excluded. Note that for Model B lagged consumer price inflation is not a 

state variable for the system: it provides no additional information about the state of 

the economy. When the two foreign variables are excluded, however, lagged 

consumer price inflation does become informative, but only marginally so. Rules one 

and two, which only differ in that rule two excludes nC
t_l perform nearly identically. 

The fact that rule three performs worse than rule two points to the superior 
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infonnation present in nontradables inflation over consumer price inflation, which is 

the opposite of the result found for Model A. 

It is of interest to know whether either of the conditionally optimal rules generated by 

rule four and rule five look like either the Taylor rule or a Henderson and McKibbin 

rule. For this purpose we represent the Taylor rule as 

it = 0.5y t-l + 1.5<_1' (Taylor) 

where n"t-l may represent either nontradables inflation or consumer price inflation. 

Similarly we represent the Henderson and McKibbin rule as 

it = 0[Yt-l + n;_l]· (HM) 

Tables 5.5 and 5.6 show optimal conditional feedback rules for a number of policy 

regimes generated from Model A. 

Table 5.5: Conditionally Optimal Rules for Model A. Targeting the Output 

Gap and Consumer Price Inflation 

~ Yt.! Itt-I 1t
e

t.] 

Rule four 0.25 1.72 1.588 

0.5 1.585 1.723 

0.75 1.455 1.83 

Rule five 0.25 1.892 1.208 

0.5 1.721 1.271 

0.75 1.499 1.311 

The feedback coefficient on the lagged output gap is much greater than 0.5 for all of 

the policy regimes considered in Table 5.5. The Taylor rule's coefficient of 1.5 on the 

lagged inflation tenn is, however, broadly of the correct magnitude. If we were to set 

(j = 1.6 (roughly), then a Henderson and McKibbin rule would approximate 

reasonably well the simulation results for rule four. 
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Table 5.6: Conditionally Optimal Rules for Model A. Targeting the Output 

Gap and Nontradables Inflation 

(3 Yl-l 1tt-l n\.l 

Rule four 0.25 1.804 1.609 

0.5 1.744 1.779 

0.75 1.697 1.935 

Rule five 0.25 2.14 1.24 

0.5 2.273 1.37 

0.75 2.477 1.541 

Table 5.6 tells a similar story. The feedback coefficient on the output gap for the 

Taylor rule needs to be raised considerably if it is to be interpreted as a conditionally 

optimal rule_ But with (J = 1.7 (or so) a Henderson and McKibbin rule is not 

dissimilar to the conditionally optimal rule generated by rule four. 17 

5.5) The Role of Monetary Conditions Indicators 

Monetary Conditions Indicators (MCI) are meant to be summary indicators of the 

current stance of monetary policy in small open economies. They are formed as a 

linear combination of the interest rate and the exchange rate, and are used by some 

central banks - notably the Bank of Canada and the Reserve Bank of New Zealand -

as operating targets. This Section explores the role Monetary Conditions Indicators 

have in setting monetary policy and asks the question of whether using an MCI can 

lead to improved policy outcomes. Our findings are summarized in two results. 

Proposition one: Using a Monetary Conditions Indicator as an operational target does 

not hamper the monetary authority in meeting its policy objectives. Nor does 

it allow the monetary authority to achieve superior outcomes. 

17 While it is interesting that a Henderson and McKibbin rule based on the lagged output gap and 
lagged consumer price inflation can be viewed (loosely) as a conditionally optimal rule for Model A, it 
is not surpri sing that the Taylor rule cannot. The Taylor rule imposes two restrictions upon the 
feedback coefficients in the conditional rule while the Henderson and McKibbin rule only imposes one. 
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Proof: 

Denoting the vector of known state variables by YI-l the optimal policy reaction 

function has the form: 

i, = Ij/Y'_I' (25) 

where \jf* represents the unigue parameter vector that minimizes the monetary 

authority's objective function. Now define the MCI as l8 

MCI, = E'_l[i, - Xg'-l)· (26) 

This MCl 19 is an operating target that is set as a linear function of the state vector YI_), 

giving 

MCI, = fy ,-I . (27) 

Because the nominal interest rate is set to keep the operating target on track (26) can 

be combined with (27) to produce the implied policy reaction function 

i , = fY' _1 + Xg ,-I . (28) 

Introducing the selection vector s = [0, 0, .. , 1,0, .. ,0], where the 1 corresponds g'_I , 

(28) can be written as 

i, = [f + xs)y t-1 (29) 

Thus for the Henderson and McKibbin rule we have a degree of freedom with which to fit the rule to 
the data. 
IS By defini ng our Mel as we have, and recognizing that with q,., predetermined when it is set, the Mel 
can be manipulated as one wou ld a policy instrument. Viewed in this way the result of this proof is 
unsurprising. 
'9 As we have defined it, our Mel is a combination of the nominal interest and the real exchange rate. 
This differs from the Mels used by policy makers, which are typically based on nominal variables . 
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With the vector f and the parameter X free to be chosen by the policy maker it is 

always possible to choose a vector f, f*, such that f* + XS = 'V'*. Accordingly, when 

using an Mel as an operating target one can always re-create the optimal policy rule.2o 

I 

Proposition two: When monetary policy is based on a restricted set of state variables, 

using an Mel as an operational target may produce better outcomes than the 

conditionally optimal rule. 

Proof 

The conditionally optimal rule is based on a subset of the complete set of state 

variables. Let us denote the variables included in the rule by the vector Zt, where Zt = 

Kyto and K is a conformable selection matrix. We write the conditionally optimal rule 

as 

it = ",··Zt_t, (30) 

where 'V'** is the unique parameter vector that optimizes the policy maker's loss 

function. As before our Mel is defined as the linear combination 

MCI, =E'_l[i, -Xqt-1j. (31) 

Similarly, the optimal rule will express the operational target as a linear combination 

of the included state variables 

Mel, = fZ'_1 . (32) 

Now substituting (32) into (31) and re-arranging produces the relationship 

i, = fZ'_1 + Xq'-l ' (33) 

20 Svensson (1998) also finds this result in his model, which uses a different definition of the Mer. 
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Remembering that the policy maker can choose the vector f and the parameter X two 

possibilities present themselves. First, if qt-! is an element of Zt.J, then a vector f , f* , 

can always be found, for any choice of X, such that the conditional Mel rule (32) 

replicates the conditionally optimal rule. The conditional Mel rule cannot improve 

upon the optimal conditional rule. Second, if qt.l is not an element of the vector Zt·J, 

then by setting f = '1'** in equation (33) with X = 0 the monetary authority can 

replicate the conditional optimal rule. However, with X a free parameter and qt·! 

representing additional information , the policy maker can always find a value for X 

such that the conditionally optimal Mel rule outperforms the conditionally optimal 

instrument rule 2 ! 

I 

Ii 5.6) Conclusions 

If 
I 

The first part of this paper considered the stabilizing properties of optimal rules under 

a number of targeting regimes. These optimal rules were expressed in the form of 

feedback relationships, which allowed us to visually assess the respecti ve 

contributions various state variables made to the optimal policy rule. When agents 

form rational forward-looking inflation expectations we found that the system was 

easier to stabilize with the variances of all variables lower than those generated under 

extrapolative expectations. 

In the second part of the paper the stabilizing properties of conditionally optimal rules 

were examined. Overall foreign variables - specifically the lagged foreign output gap 

and lagged foreign inflation - were found to be relatively unimportant; omitting these 

two variables from the rule did not seriously detract from its performance. The 

process by which inflation expectations were formed was found to alter the relative 

performance of consumer price inflation and nontradables inflation in the optimal 

rule. When financial market expectations were formed in a simple backward manner, 

consumer price inflation was found to be more informative than nontradables 

21 The key reason why using an MCI produces superior outcomes is that it exploits a broader 
information set. Because the real exchange rate is likely to feature as an important variable in any 
small open economy policy reaction function , it is unlikely that using an MCI as an operational target 
wi ll produce superior economic outcomes in practice. 
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inflation. When financial market expectations were formed rationally the opposite 

was the case. 

Of the three principle conditional rules considered in this paper the best perlorming 

was rule one, which only excluded the two foreign variables. Given that this 

conditional rule encompasses the other conditional rules considered this result is 

unsurprising. More interesting is the fact that rule two (based on Yt-I , 1tt- I, and qt-I) and 

rule three (based on Yt-I, net_I , and qt-I) perform well relative to the fully optimal rule. 

Indeed, in Model A, where agents form backward-Iooldng expectations, the 

conditional rule containing only Yt-I and net_1 performs surprisingly well. None of 

these conditionally optimal rules , however, correspond to the Taylor rule, but for 

values of the policy preference parameter, ~ , between about 0.25 and 0.75 the 

conditionally optimal rule using Yt-I and n et_1 resembles a Henderson and McKibbin 

rule. 

This paper also examined the role of Monetary Conditions Indicators as a tool for 

setting monetary policy in small open economies with relatively large tradable goods 

sectors. For plausible contexts in which the central bank accounts for the exchange 

rate when setting the nominal interest rate no advantages to using an MCI were found. 

This result confirms the finding of Svensson (1998). 

Throughout our analysis we have assumed that the model structure, parameter values, 

and ex ante distributions of disturbances are known with certainty. The only 

uncertainty present in the model relates to the realization of the structural 

disturbances. But clearly while our assumption of model certainty is a common and 

convenient one it is far from realistic. In practice neither policy makers nor private 

agents know the true structure of the economy, and this uncertainty is likely to affect 

their decisions. Uncertainty about the structure of the economy can be allowed for 

with optimizing agents through the use of risk-sensitive optimal control (Whittle, 

1990) or robust optimal control (Zhou, Doyle and Glover, 1996). Applying risk

sensitive optimal control to our analysis may well be a fruitful avenue for further 

research. 
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Finally, one weakness of this paper is that the model supporting it has not been 

estimated. In one sense this is an advantage because it does not tie the analysis down 

to a specific country's economy, but is it also a disadvantage in that it no policy 

recommendations can be made. Exploring conditionally optimal rules within the 

context of an estimated model for a small open economy is an obvious direction for 

further analysis. 
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Appendix A: Some Sensitivity Analysis for Section 5.3. 

This appendix investigates the robustness of the results presented in Section 5.3 to 

different parameterizations of the model. The system has fourteen parameters: too 

many to be systematically explored, especially if interactions between parameters are 

also considered. The two specifications considered in the text of the paper go some 

way toward illustrating how the process by which expectations are formed affects the 

results. So the sensitivity of our results to changes in the parameters p, 8, "t, and ill is 

not considered here. The parameters in the foreign sector of the model CAf, r:/, and -() 

are also not considered because they are likely to only have a second order effect on 

the variances of domestic variables. This leaves the six domestic parameters: a ; K; A; 

Y; /-l; and 8. 

To analyze the sensitivity of the model to changes in these six parameters, we evaluate 

the minimized policy loss function as these six parameters vary between 0.05 and 

0.95 . Both Model A and Model B of Section 5.3 are considered and the policy regime 

maintained throughout is FIT(nC
,) (~ = 0.5) for the domestic monetary authority and 

FIT(n,) (~f = 0.5) for the foreign monetary authority. Results are summarized in 

figures AS.l and AS.2. 

Figure AS.l shows that Model A is most sensitive to a and K. These two parameters 

are the inverse of the sacrifice ratio and the direct exchange rate pass-through 

coefficient respectively. That our results are sensitive to the values of these two 

parameters is perhaps not surprising given that both are of direct importance to the 

policy transmission mechanism. The results are also sensitive to y. However, the 

minimized loss function is relatively flat locally about the values of a (0.4) and y (0.8) 

chosen. For K our results are quite robust for values less than that chosen (0.3), but 

sensitive to values above 0.3 . 
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: Model A - Sensitivity Analysis Figure AS.I: 

1---alpha --kappa - .. - lambda ..... gamma - . ...: . mu --theta I I---alpha --kappa-· 

til 15 
til 
0 \ 
:; 10 

Il.> \ ..... "-0: 
::I 5 ~ - .... -"::'-

-.a --~--.:-~ .. ==-._ - _~_~- -: - -.I .. ~-"_"!::!,~_~_=-::;::?~:::::,,,=-==_:...:;: 

~ 
0 

<::)~ ,~ ~ 
<::). <::). <::). c:: 

t;)~ ~ ~~ Q)~ ~~ CO~ O)~ 
<::). <::). <::). <::)- C). <::). 

Parameter Value 

For Model B the results are simi I ar: our results are most sensitive to the parameters a 

and K, while the parameter y does not appear as important. 

Figure AS.2: ,: M:rlel B - Sensitivity Analysis 
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Chapter 6 

EXPLORING THE ROLE OF THE TERMS-OF-TRADE IN AUSTRALIAN 

MONETARY POLICY 

6.1) Introduction 

This paper inquires into the information content of the terms-of-trade as a measure of 

external competitiveness for Australian monetary policy. Accepting that the terms-of

trade drives the real exchange rate , and the real exchange rate has important effects on 

aggregate demand, we ask how important is the terms-of-trade as a state variable in 

the optimal monetary policy rule? This inquiry is not a theoretical one, but is based 

on a well known, data based, model of the Australian economy: the de Brouwer

O'Regan model. A second objective of the paper is to investigate the usefulness of 

Taylor type rules in a small open economy. Taylor type rules have been shown to 

perform well for the United States (Rudebusch and Svensson, 1998, and Rudebusch 

1999), but they ignore measures of external competitiveness , suggesting they may not 

perform well in small open economies. We consider both inflation targeting and price 

level targeting objecti ves. 

In many small open economy models the real exchange rate and the terms of trade 

coincide. Such models typically have the home economy producing an importable 

and an exportable and solve for an interior solution; the forms of the production and 

utility functions rule out boundary solutions. When a third good - a non-tradable 

good - is introduced the real exchange rate and the terms-of-trade may differ, and how 

the real exchange rate is measured becomes an issue. 

A country's terms-of-trade is defined as the ratio of its export price relative to its 

import price, measured in terms of that country' s dollars. The terms-of-trade 

therefore measures how many foreign goods can be imported for an additional home 

good exported. The real exchange rate is typically defined as the ratio of the foreign 

country price level to the home country price level, once both price levels are 
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measured in tenns of the same currency. As such the real exchange rate measures 

how many home goods must be given up in exchange for a single foreign good. With 

an importable, an exportable, and a non-traded good there are three prices and two 

relevant relative prices. Choosing the import price as the numeraire the relative prices 

of interest are the tenns-of-trade and the non-traded price relative to the import price 

(Pitchford, 1993). 

Measuring the prices of non-traded goods is difficult. As a consequence standard 

practice is to employ a real exchange rate measured using the ratio of national price 

levels. Provided all relative prices are constant whether one uses non-traded goods 

prices or aggregate price levels is immaterial. When relative prices are allowed to 

vary Dwyer and Lowe (1993) show how tenns-of-trade changes affect the real 

exchange rate. The relationship between the real exchange rate and the tenns-of-trade 

depends on whether the nominal exchange rate is fixed or floating, and on whether the 

tenns-of-trade change arises through an import or an export price change. Gruen and 

Dwyer (1995) use a small theoretical model to show that with a fixed exchange rate 

tenns-of-trade increases are inflationary, and that with a floating exchange rate the 

effect of tenns-of-trade rises on inflation is ambiguous. 

Empirically the Australian evidence is that the tenns-of-trade is a stationary variable 

(the tenns-of-trade decline around a detenninistic trend, Gruen and Kortian , 1996), 

and that there is a strong relationship between the tenns-of-trade and the real 

exchange rate. Increases in the tenns-of-trade cause the real exchange rate to 

appreciate (Blundell-Wignell and Gregory, 1990). These stylized facts are built into 

models of the Australian economy, particularly that of de Brouwer and O'Regan 

(1997). 

Using closed-loop control methods this study expresses the optimal policy reaction 

function as a linear combination of the system's state variables. Then using exact 

methods, rather than stochastic simulations, unconditional variances for each variable 

in the system are obtained. These techniques allow us to integrate points on the 

efficiency frontier, policy reaction functions, with parameters in the policy objective 

function. Moreover, they allow us to easily optimize over a restricted set of state 

variables to assess the relative contributions the real exchange rate and the tenns-of-
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trade have to the location of the efficiency frontier. 

The structure of the paper is as follows. In the following Section the basic economic 

model underlying the paper is discussed. The model itself is a simplified version of 

the de Brouwer-O'Regan model, revised and estimated using data up to June 1998. 

Section 6.3 describes the policy rules considered in the study and summarizes the 

results. Both inflation targeting and price level targeting are examined. Section 6.4 

examines how dynamic homogeneity affects the slope of the efficiency frontier. 

Section 6.5 concludes. 

6.2) Model Outline 

The model analyzed in this paper is a slightly simplified version of the de Brouwer

O'Regan model. For the most part the simplifications made are those necessary to 

convert the model to a V AR(2) process. Expressing the model as a V AR(2) process is 

useful because it facilitates solving for the optimal policy rule. 

The model is: 

y, =O.75Y' _1 -O.lqt-l +O.05Tt-l -O.22[it-l -41t '_I ]+P t (1) 

1t t =-.16Pt-l +.llc'_l +.05p; _1 +.15Llct-l +.16Y '_2 - .18Llc t_2 + .021t; _2 +e, (2) 

q, = l.09LlTt + O.63qt-l + O.25T'_1 + O.66[i' _1 - 41t' _l l + v t (3) 

c t =O.9c t_1 +O.IPt-l +O.2Yt-l +0.421t t_1 +O.581t'_2 +c t (4) 

p; = .581t t -.58q t +.66p;_1 +. 191t t-l +.34Pt_l +.05qt_l -.211t;_1 +.19qt_2 +11, (5) 

Tt =1.68Tt_1 -O.8ITt_2 +CD t (6) 

Where: Yt = domestic output 

qt = real exchange rate 

Tt = terms-of-trade 

nt = quarterly consumer price inflation 

it = annualized nominal short term interest rate 
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p, = level of consumer prices 

c, = unit labor costs 

pi, = level of import prices (in domestic dollars) 

7i, = quarterly import price inflation. 

All variables are represented as deviations from steady-state. Each stochastic 

innovation is assumed to be a zero mean white noise process, uncorrelated with the 

other shocksl Equation (1) is a dynamic open economy IS curve. The output gap 

depends on its lag, the real exchange rate, the terms-of-trade, and an ex post measure 

of the real interest rate. Consumer price inflation is modeled using a mark-up pricing 

equation, (2). The terms-of-trade and the ex post real interest rate drive the real 

exchange rate, equation (3), shocks to which are propagated by the lagged real 

exchange rate. The unit labor costs equation, equation (4), restricts unit labor costs to 

equal the price level in the long-run, with the change in unit labor costs equaling the 

consumers' price inflation rate. Equation (5) describes the evolution of import prices. 

Import prices rise proportionally with foreign price level increases and depreciations 

in the nominal exchange rate in the long-run. The stochastic process underlying the 

terms-of-trade is summarized in equation (6). Note that while static homogeneity 

holds for each of consumer prices, import prices, and unit labor costs, dynamic 

homogeneity only holds for unit labor costs2 

More generally the de Brouwer-O 'Regan model contains foreign variables, such as 

foreign output, foreign prices, and the foreign interest rate. This paper does not 

consider foreign variables as a source of shocks and excludes these variables from the 

system. The main reason for this exclusion is that each foreign variable in the de 

Brouwer-O 'Regan model is modeled autoregressively without interaction . 

Consequently, foreign demand can rise above potential without affecting foreign 

prices, and foreign interest rates can rise without reducing foreign demand. Without 

these interactions foreign shocks are unlikely to propagate into the domestic economy 

realistically, and hence they are omitted. 

1 The variances of p" e" v" t" Ti" and Ole are 0.2855, 0.0454, 8.172,0.07427,0.7704, and 3.0276 
respectively. At time of writing these variances come from the most recently estimated equations, 
using data extending to 1998q2. The exact sample sizes and periods differ across equations. 
2 For this reason this paper does not consider the policy implications of changes to the central banks 
inflation target, preferring to keep the inflation target constant. 
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I' I 

Aside from the coefficients on the real exchange rate and the terms-of-trade in 

equation (1), and the long-run of the unit labor costs equation, all coefficients are 

estimated. The two non-estimated coefficients in equation (1) have their values taken 

from Shuetrim and Thompson (1999). The long-run of the unit labor costs equation, 

equation (4), is chosen to impose the theoretical property of static homogeneity, but 

with an adjustment speed slow enough to only marginally affect the short-run 

dynamics. In addition there are several identities linking levels and growth rates. 

In this model the instrument of monetary policy is the nominal interest rate. Because 

prices adjust slowly in the model , increases in the nominal interest rate raise the real 

interest rate, which in turn causes the real exchange rate to appreciate. The higher real 

interest rate and real exchange rate dampen aggregate demand, which lowers output 

and the mark-up in the price equation. Price changes eventually pass-through fully 

into unit labor costs. The change in the real exchange rate also has a direct impact on 

prices through its effect on traded goods prices. 

The model has several key features. The first is that monetary policy is not all that 

effective in the model , having a relatively weak influence on aggregate demand. The 

real interest rate does have a large influence on the real exchange rate, but the real 

exchange rate too has a very modest affect on aggregate demand. Consequently, 

monetary policy has only weak influence on firms ' mark-Ups, and gains most of its 

kick through the direct exchange rate channel into prices. 

The second key feature is that dynamic homogeneity does not hold in the modeL It 

follows that the model's steady-state has real variables affected by nominal variables, 

and inflation is not super-neutraL The absence of dynamic homogeneity has an 

impact on the slope of the policy efficiency frontiers derived later. In particular, 

dynamic homogeneity appears necessary if standard rectangular efficiency frontiers 

are to be obtained. 

The final key feature of the model is the reliance of the real exchange rate on the 

terms-of-trade. Real interest rate differentials are important for the real exchange rate, 

but more important is the terms-of-trade. Movements in these two driving factors are 

propagated through time by the lagged real exchange rate. From equation (3), 
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III 

increases in the terms-of-trade are found to generate numerically large appreciations 

in the real exchange rate. 

To complete the model specification we summarize the policy makers ' preferences 

through all objective function 

Loss[O,oo] = aVar[y,] + ~Var[1t ; ] + yVar[p,]. a,~, y::::O 

The terms Var[y.] , Var[na
,] and Var[p,] each represent unconditional variances.3 This 

objective function can be motivated from an intertemporal objective function under 

the assumption of zero discounting (see Rudebusch and Svensson , 1998, and 

Svensson, 1998). Under inflation targeting we set y = 0 and restrict a + ~ = 1; under 

price level targeting we set ~ = 0 and restrict a + y =l. 

6.3) Study Design and Results 

In this Section we consider optimal simple inflation and price level targeting rules , 

and their effects on the economy as summarized by unconditional standard deviations. 

Of interest is how these standard deviations change, particularly those of output, 

inflation, and the price level, as the real exchange rate and the terms-of-trade are 

alternately included and excluded from the policy rule. Both inflation targeting and 

price level targeting regimes are considered. 

Because dynamic homogeneity does not hold in the model it is worthwhile discussing 

the nature of the policy regime. In models where the Classical dichotomy holds in the 

long-run the issue of what price level or rate of inflation to target is of second-order 

importance. In such models the nominal steady-state does not impose a real cost, so 

the natural question to address is that of how monetary policy can minimize the cost 

of bringing the economy to its steady-state. In models like that used in this paper 

where the Classical dichotomy does not hold in the long-run , the issue of what price 

level or inflation rate to target is important. For every nominal steady-state there is an 

3 In all simulations it is the annualized inflation rate (11" = 4xn.) that enters the policy loss function. 
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associated real steady-state. The question of what inflation rate should optimally be 

targeted is an interesting one, and one that could potentially be explored in the de 

Brouwer-O'Regan model. However we do not investigate that question in this paper. 

Instead we assume that the monetary authority has chosen the inflation rate or price 

level it wants to target. Associated with this nominal target is some real steady-state. 

The monetary authority is then assumed to respond to shocks by returning the 

economy to this steady-state in a way that minimizes the costs of doing so. These 

costs are defined by the quadratic policy objective function above. Implicitly we are 

assuming that the unconditional means of inflation and the price level can be chosen 

independently of a, 0, and y. 

For purposes of exposition it is convenient to present the results in two subsections: 

inflation targeting and price level targeting. 

6.3.1) Inflation Targeting 

For inflation targeting the policy loss function is taken to be 

Loss[O,=] = aVar[Yt] + (1- a)Var[lI;] 0::; a::; 1. 

The policy preference parameter a regulates how the policy maker trades-off the 

variances of output and inflation in response to supply shocks. It also indexes how 

quickly policy returns inflation to its target rate following shocks. 

Four simple policy rules are considered. The monetary authority is assumed not to 

know the values of period t variables when setting the nominal interest rate in period t, 

so only lagged variables enter the policy rule. The four policy rules considered are: 

it = <PlYt-l + <P2 1I t-l + <P3qt-l + <p.Tt_1 

it = <PlYt-l + <P2 1I t-l + <P3qt-l 

it = <PlYt-l + <P2 1I t-l + <p.Tt_1 

i t = <PlYt-l + <P2 1I t-l 

(II) 

(12) 

(13) 

(4) 
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Rules 12, 13, and :4 are nested within rule II . Rule:4 represents the class of Taylor type 

rules. If a Taylor type rule were appropriate for Australia, then rules II, 12, and 13 

would offer little improvement over rule :4 in terms of the variances of output and 

inflation . Similarly, if the real exchange rate offers more information for policy 

makers than the terms-of-trade, then the efficiency frontier associated with rule 12 will 

lie closer to the origin than that for rule 13. In this Section we are interested in how the 

Taylor type rule performs relative to the fully optimal rule , and also in how rules 12 

and 13 compare to II. 

Table 6.1 presents the unconditional standard deviations for the key variables in the 

system, for each of the four policy rules , under two targeting regimes: flexible 

inflation targeting (FIT, ex = 0.5) and strict inflation targeting (SIT, ex = 0). These two 

regimes are presented to allow comparisons with previous studies (Svensson, 1998, 

and Chapter 5). For inflation, it is the unconditional standard deviation of annualized 

inflation that is shown. 

Table 6.1 

Unconditional Std. Deviations 

Regime y 1t" p q u i 

Rule 11 FIT 0.87 1.70 00 6.85 00 3.64 

SIT 0.94 1.69 00 6.70 00 4.05 

Ruleh FIT 0.98 1.74 00 6.80 00 3.90 

SIT 1.05 1.73 00 6.61 00 4.31 

Ruleh FIT 1.30 2.03 00 7.53 00 4.38 

SIT 1.35 2.02 00 7.37 00 4.74 

Rule I. FIT 1.40 2.17 00 8.18 00 4.23 

SIT 1.40 2.17 00 8.16 00 4.3 1 

Comparing first rule II with rule Iz we note that excluding the terms-of-trade from the 

policy reaction function raises the variance of output slightly while the variance of 

inflation remains essentially unchanged. In contrast, comparing rule 13 with rule II we 

observe that excluding the real exchange rate from the policy reaction function 

significantly raises both the variance of output and the variance of inflation. In fact 
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the perfonnance of rule 13 appears closer to that of rule 14 (the Taylor type rule) than it 

does to rule II, implying that the tenns-of-trade does not contain much infonnation 

over-and-above that in output and inflation . Also of interest is the fact that the 

variance of inflation does not change much as the policy regime, a , changes, for each 

of the four rules. 

The policy reaction functions associated with each rule and regime in Table 6.1 are 

given in Table 6.2. For each policy rule as we move from flexible inflation targeting 

(FIT) to strict inflation targeting (SIT) the coefficient applied to (quarterly) inflation 

rises while that applied to output falls. This result is consistent with the simulation 

studies of Svensson (1998), Chapters 4 and 5, and with the analytical work in Ball 

(1999). Note that output features significantly in the policy reaction function even 

when it is absent from the policy objective function . This result occurs because 

higher output today represents higher inflation tomorrow. By responding to current 

demand pressures policy makers can help stabilize inflation. 

Table 6.2 

Policy Reaction Function Coefficients 

Regime Yt-I 1tt·1 qt-I Tt_1 

Rule FIT 1.644 0.823 -0.581 0.232 

II SIT 1.709 0.970 -0.636 0.224 

Rule FIT 2.334 -0.418 -0.399 -

12 SIT 2.358 0.098 -0.466 -

Rule FIT 3.091 -0.747 - -0.214 

13 SIT 3.227 -0.552 - -0.271 

Rule FIT 2.8l7 0.886 - -

I. SIT 2.795 1.168 - -
-----

A typical property of optimal policy rules is that the real interest rate must rise in 

response to higher inflation if the system is to have a unique stable equilibria. In 

tenns of the simulation results , this typically means that the feedback coefficient 

applied to inflation in the policy rule should be greater than 4 (rt, is quarterly inflation 

while i, is an annual interest rate). The policy rules in Table 6.2 to not reflect this 

theoretical property, and may seem unusual as a consequence. It is the fact that 
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dynamic homogeneity does not hold in the de Brouwer-O'Regan model that accounts 

for this unusual result. One consequence of dynamic homogeneity not holding is that 

the uncontrolled model is stable with respect to inflation. In the uncontrolled 

economy inflation does not have a unit root and thus the role for policy makers in the 

economy is reduced. 

Also of interest in Table 6.2 is the coefficient applied to the real exchange rate in each 

policy reaction function. Chapter 5 shows that the real exchange rate coefficient in 

the policy reaction should be closely related to (minus) the ratio of the real exchange 

rate and the real interest rate coefficients in the IS curve. From equation (1) this ratio 

of coefficients is 0.45 , which after allowing for the minus sign is broadly consistent 

with the results in Table 6.2.4 Observe also that with the exception of the Taylor type 

rule the coefficients on both output and inflation rise as increased weight is placed on 

inflation in the objective function. Increased weight on inflation stabilization involves 

responding to current inflation and future inflation, as indicated by demand pressures. 

To drive home the results of Table 6.1, Figure 6.1 depicts the efficiency frontiers for 

each of the four policy rules, along with that for the fully optimal rule. This figure 

clearly reveals the superior performance of rule h over rule 13 emphasizing the 

usefulness of the real exchange rate as a state variable for policy makers over that of 

the terms-of-trade. Intuitively, this result arises because the real exchange rate itself is 

influenced by monetary policy while the terms-of-trade is not. Having the real 

exchange rate in the policy reaction functions allows policy makers to partly mitigate 

the economic consequences of real exchange rate shocks. 

, The coefficient applied to the real exchange rate in the policy rule would equal -0.45 if all state 
variables entered the rule and a 100% weight were placed on output in the policy objective function. 
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Figure 6.1: Efficiency Frontiers under Inflation 
Targeting 
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The perfonnance of each rule is clearly and unambiguously ranked in Figure 6.1, 

where the efficiency frontiers of rules II - 14 are plotted alongside that for the optimal 

rule, which is presented as a benchmark. Of particular interest is that rule 13 is far 

superior to rule 12. This reflects the superior infonnation present in the real exchange 

rate over-and-above that in the tenns-of-trade. Another interesting feature of Figure 

6.1 is the weak influence monetary policy has over the variance of inflation. For all 

five rules (including the optimal rule) moving along the frontier brings much greater 

change in the variance of the output gap than it does the variance of inflation . A 

plausible explanation of this feature is the lack of dynamic homogeneity in the pricing 

sector of the model. The absence of dynamic homogeneity means that lagged 

inflation, which is included in all rules considered, is not very infonnative about 

future inflation. Consequently the variables contained in rules II - 14 have very little 

effect on inflation, contributing to the relatively flat efficiency frontiers. 

6.3.2) Price Level Targeting 

To complement our analysis of inflation targeting, this subsection explores whether 

the standing of the tenns-of-trade as a state variable for monetary policy is raised 
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under price level targeting. By price level targeting we mean that the monetary 

authority has the objective function: 

Loss[O,oo] = yVar[Yt] + (1- y)Var[p,]. 0:s;y:S;1 

It turns out that none of the four rules considered earlier are suitable for price level 

targeting because they omit levels variables such as unit labor costs and the price 

level. Without a variable such as unit labor costs or the price level in the policy 

reaction function the pennanence of shocks propagating into the price level cannot be 

offset. The price level then follows a random walk and has infinite unconditional 

variance (see Table 6.1) . Consequently, the rules considered under price level 

targeting are each conditioned on the price level. The following rules are examined: 

i, = 9,y,., +9 2Jt t., +9 3qt., + 94Tt., +9sp, _, 

i, = 9,y ,_, + 92 Jt t-l + 93qt-l +9 SPt_' 

i, =9,y,_, + 92 Jt t-l + 94Tt_, +9 SPt_' 

it = 9,y,_, + 92 Jt t-l +9 sp,_, 

it = 8,Y t-l +9SPt_' 

(PI) 

(P2) 

(P3) 

(P4) 

(Ps) 

Capturing our interest is the perfonnance of rules P2 and P3 relati ve to rules P I and P 4. 

Note that Taylor type rules are inappropriate for price level targeting because they 

cannot stabilize the price level. The perfonnances of these five rules under flexible 

price targeting (FPT, y = 0.5) and strict price targeting (SPT, y = 0) are summarized in 

Table 6.3. 
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Table 6.3 

Unconditional Std. Deviations 

Regime y rca p q u i 

Rule FPT 1.32 1.89 1.38 6.82 1.68 5.29 

PI SPT 2.41 2.58 1.09 7.77 1.62 10.06 

Rule FPT 1.44 1.93 1.43 6.74 1.75 5.53 

P2 SPT 2.54 2.63 1.13 7.73 1.74 10.22 

Rule FPT 1.84 2.33 1.82 7.75 2.23 6.60 

P3 SPT 3. 13 3.26 1.48 9.47 2.12 12.64 

Rule FPT 1.96 2.55 2.09 8.66 2.56 6.67 

p. SPT 3.34 3.69 1.77 11.02 2.37 13.68 

Rule FPT 1.97 2.56 2.09 8.70 2.57 6.78 

Ps SPT 2.93 3.33 1.81 10.11 2.36 11.08 

Aside from the variances of the price level and unit labor costs, the variances of all 

variables are greater under price level targeting than inflation targeting; the cost of not 

allowing bygones be bygones. Rule P 2, which contains the real exchange rate, 

produces lower variances for all variables than Rule P3, suggesting that the real 

exchange rate is more informati ve for monetary policy than the terms-of-trade. In the 

steady-state of the system unit labor costs equal consumer prices. Yet for all regimes 

considered the volatility in unit labor costs is higher than that for consumer prices. By 

targeting consumer prices the central bank prevents the price level from changing to 

clear the labor market. Instead the nominal wage rate moves to clear the labor market, 

making unit labor costs more volatile than consumer prices. 

Table 6.4 complements Table 6.3 and shows the policy reaction functions associated 

with each of the policy regimes presented above. 
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Table 6.4 

Policy Reaction Function Coefficients 

Regime Yt-l 1tt-1 qt-l Tt-l pt-l 

Rule FPT 2_116 1.866 -0_703 0.273 1.358 

PI SPT 2.568 2.092 -1.025 0.337 4.173 

Rule FPT 2.887 0.662 -0.478 - 1.302 

P2 SPT 3.509 0.543 -0.734 - 4.416 

Rule FPT 3.909 -0.711 - -0.275 1.331 

P3 SPT 5.441 -3.188 - -0.532 4.433 

Rule FPT 3.659 0.458 - - 1.352 

P4 SPT 5.519 -3.084 - - 4.883 

Rule FPT 3.817 - - - 1.446 

Ps SPT 4.427 - - - 2.950 

Table 6.4 indicates that the feedback coefficients are typically very large, implying an 

aggressive policy adjustment in response to state variables, which helps explain the 

large standard deviations in Table 6.3. The magnitude of these feedback coefficients 

typically rises as the policy regime switches from flexible price targeting to strict 

price targeting. Finally, Figure 6.2 plots the efficiency frontiers for each of the policy 

rules in price standard deviation/output standard deviation space. An efficiency 

frontier for the fully optimal rule is also provided as a benchmark. Aside from the 

fully optimal rule and Rule PI, that closest to the origin is Rule P2 - that containing 

the real exchange rate. Rule P2 clearly dominates Rule P3, which contains the terms

of-trade in place of the real exchange rate, but is otherwise identical in structure. 

Thus under price level targeting, as with inflation targeting, the real exchange rate 

appears to be a more important variable than the terms-of-trade for the monetary 

authority to base policy on - despite the fact that the terms-of-trade is a key driver of 

real exchange rate movements. 
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Figure 6.2: Efficiency Frontiers under Price Level Targeting 
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6.4) Dynamic Homogeneity and the Shape of the Efficiency Frontier 

4 

An intriguing feature of Figure 6.1 is how flat the efficiency frontiers are. This 

flatness translates into the inflation rate being relatively impervious to the parameters 

in the policy objective function . Debelle and Stevens (1995) also found similar flat 

efficiency frontiers in their policy control simulations, using a model simpler, but not 

dissimilar, to the de Brouwer-O'Regan model. This flatness is unusual in the context 

of the literature, which typically finds the efficiency frontier to be roughly a 

rectangular hyperbola. 

One explanation for the frontiers obtained in the de Brouwer-O'Regan model is that 

they are a consequence of dynamic homogeneity not holding. With the inflation' s 

dynamic coefficients summing to much less than one, inflation has an automatic 

stabilizer. In fact inflation has finite variance even in the case where only the variance 

in the output gap is targeted. Normally with such a policy regime inflation would 

follow a unit root and have infinite variance. Moreover, without the lags of inflation 

present for dynamic homogeneity to hold, past inflation contains very little power for 

predicting future inflation. The output gap's impact on inflation through the mark-up 
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term is also small and together these features make Taylor type rules an ineffective 

stabilization tool. 

To assess the importance dynamic homogeneity has for the slope of the efficiency 

frontier, this Section imposes dynamic homogeneity on the model and constructs the 

resulting efficiency frontier assuming a Taylor type rule is used.5 The results can be 

seen in Figures 6.3 and 6.4. Figure 6.3 takes the efficiency frontier for the Taylor type 

rule from Figure 6.1 while Figure 6.4 shows the efficiency frontier with dynamic 

homogeneity imposed. 
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Figure 6.3: Taylor type rule without dynamic 
homogeneity 
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Note the scale of Figure 6.3 is such that changes to the policy objective function's 

parameterization lead to very small changes in the variances of inflation and the 

output gap. This illustrates the ineffectiveness of the Taylor type rule as a 

stabilization tool in this model. Along the frontier the variance of the output gap 

changes by more that that for inflation. 

5 There is no unique way of introducing dynamic homogeneity into the model so there is a certain 
amount of arbitrariness in this process. Nevertheless, it is likely that imposing dynamic homogeneity is 
more important for the frontier than the lag structure assumed. For this reason the results obtained are 
illustrative if not conclusive. 
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Figure 6.4: Taylor type rule with dynamic 
homogeneity 
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In comparison, Figure 6.4 shows that with dynamic homogeneity the Taylor type rule 

becomes more effective in obtaining leverage over inflation and the output gap. The 

variances of inflation and the output gap change a lot more in response to weighting 

changes in the objective function. Moreover, with dynamic homogeneity imposed the 

variance of inflation changes by much more than that for the output gap as we move 

along the frontier. Nevertheless, the efficiency frontier in Figure 6.4 is still unusual in 

the context of the literature. Only when a. rises above 0.9 does inflation really begin 

to rise to any great extent, thus the flat shape of the de Brouwer-O 'Regan model 's 

efficiency frontier is not completely explained by the absence of dynamic 

homogeneity. It may well be the case that it is the presence of the error correction 

terms, which introduces feedback from levels into growth rates, that is at the heart of 

the explanation behind the frontier's shape. 

6.5) Conclusions 

This paper takes the de Brouwer-O 'Regan model of the Australia economy and uses it 

to explore the relative infonnation content in the terms-of-trade and the real exchange 

rate. In Australia these two variables have a strong statistical association with the 

terms-of-trade the dominant force behind real exchange rate movements in the model. 

Using control theory, optimal simple rules that alternately included and excluded the 

real exchange rate and the terms-of-trade were constructed, motivated on inflation 
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targeting and price level targeting policy objectives. Altering the relative weights 

assigned to the variables in the policy objective function allowed efficient policy 

frontiers to be mapped out, with the location of these frontiers affected by the 

information content in the variables supporting each rule. 

The results obtained suggest the despite the terms-of-trade being the driving force 

behind the real exchange rate there is more information for policy makers in the real 

exchange rate. A policy rule that includes the real exchange rate at the expense of the 

terms-of-trade outperforms a rule containing the terms-of-trade at the cost of the real 

exchange rate. Intuitively this is because monetary policy can influence the real 

exchange rate and therefore partly offset real exchange rate shocks while it cannot 

influence the terms-of-trade. 

Regarding the performance of Taylor type rules, the simulations show that Taylor 

type rules perform poorly in the de Brouwer-O'Regan model, a result that is in stark 

contrast to findings from closed economy models . Intuitively this is because in open 

economy models inflation and the output gap are influenced by a greater range of 

variables than just lags of the output gap and lags of inflation. Consequently, lags of 

the output gap and inflation are poor predictors of where future inflation and excess 

demand are heading, and rules based on just these variables will naturally tend to 

perform poorly. 

In Section 6.4 we explored how the shape of policy efficiency frontiers was affected 

by whether dynamic homogeneity held in the model. The standard de Brouwer

O'Regan model does not possess dynamic homogeneity and its efficiency frontiers are 

unusually shaped. Imposing dynamic homogeneity did remove some of this flatness, 

making the frontiers more of a standard rectangular hyperbola shape, but this was not 

the whole answer. It is possible that it is the error correction terms that the de 

Brouwer-O 'Regan model has that many monetary policy models do not have that 

provides the final piece of the answer. 

Future work analyzing Australian monetary policy might concentrate on actual 

outcomes and ask the question how close to optimal is the Reserve Bank's behavior. 

Alternatively, one could go a step further and attempt to estimate the policy 
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preference parameters assuming that they were behaving optimally. Chapter 7 

explores how these parameters might be identified and estimated. 
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Chapter 7 

STEPS TOWARD IDENTIFYING CENTRAL BANK POLICY 

PREFERENCES 

7.1) Introduction 

Modem analyses of central bank behavior begin with a policy objective function and 

construct policy rules by optimizing the objective function subject to a system of 

constraints. Descriptions of actual central bank behavior can also be obtained by 

estimating policy reaction functions directly. For the United States, Clarida, Gali , and 

Gertler (1998), Fuhrer (1997), and Judd and Rudebusch (1998) have all estimated 

reaction functions for the Federal Reserve. Taylor (1993) also developed a rule 

describing Federal Reserve policy decisions, popularly known as the Taylor rule. 

Clearly these estimated policy reaction functions and those developed through 

optimization are not unrelated. Optimal policy rules set the policy instrument as a 

linear function of the state vector. The feedback coefficients in these optimal rules are 

nonlinear functions of the parameters in the model constraining the optimization, as 

well as the parameters in the policy objective function. In principle it is these 

nonlinear parameter combinations that applied studies estimate. 

A better understanding of monetary policy decisions can be had if the monetary 

authority's preferences can be disentangled and extracted from estimated policy rules. 

With these preferences in hand we would know which variables enter the policy 

objective function; which aspects of the economy the central bank is concerned about; 

and how senior central bank appointments affect the policy regime in operation. 

Because they relate directly to the policy regime in place, policy preferences, not 

estimated policy rules , are more informative of the objectives and incentives 

underpinning policy decisions. 

Given a plausible economic model, and provided the estimated policy rule is the 

outcome of a constrained optimization process, it should be possible to find objective 
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function parameters such that the optimal rule closely resembles the estimated rule. 

Of course, if these implied policy objective function parameters are to be informative 

it is important that the model constraining central bank behavior realistically capture 

the relationships at work in the economy. The objective of this chapter is to present 

conditions under which a policy regime in operation can be uncovered from the data.! 

One of the most common objective functions employed in the monetary policy rules 

literature defines loss in terms of a linear combination of the unconditional variances 

of a vector of economic variables? To formalize this, let Zt be a vector of economic 

variables, including the policy instrument(s). We assume that Zt is weakly stationary 

with unconditional mean vector z\. Each element in Zt has its counterpart in z't. 

Without loss of generality z't is taken to equal the null vector3 Further, it is assumed 

that policy makers target the unconditional mean of Zt, and therefore that z\ is also the 

target vector. With this notation every variable in Zt has a nominal target value. Of 

course, for many of these variables zero weight may be applied to their deviations 

from target in the objective function. 

Denote the unconditional variance-covariance matrix of Zt by Q. Let W be a 

symmetric, positive semi-definite, matrix of policy weights; Q and W share the same 

dimensions. The infinite horizon policy objective function is: Loss[O,=J = tr[WQ], 

where 'tr' is the trace operator. In many applications W is a diagonal matrix. Given 

this objective function, a policy regime is defined by the matrix of policy weights 

(preferences), W, and the vector of targets, z·t. It is the elements in this W matrix that 

we seek to identify. 

The structure of the chapter is as follows. Section 7.2 develops the general economic 

structure within which subsequent analysis takes place. Using this general economic 

framework Section 7.3 systematically examines the conditions under which policy 

preferences can be identified. To illustrate how the identification conditions are 

applied in practice Section 7.4 considers several popular models and examines 

I Soderlind (1999) estimates the parameters in an objective function using a model of the United 
States. He does not consider identification however. 
2 See, for example, Ball (1997), Svensson (1999) , Svensson (1998) , Fair and Howrey (1996), 
Rudebusch and Svensson (1998), Clarida, Gali , and Gertler (1999), and Fuhrer (1997), among others. 
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whether their structure permits identification of the policy regime. Section 7.5 

concludes. 

7.2) A General Macroeconomic Setting 

Consider the following macroeconomic specification: 

AoYt =AIYt_1 +A 2E t_IYt+1 +A3Xt +V" VI - iid[O, L] (1) 

where YI is an nxl vector of dependent variables, XI a pxl vector of policy 

instruments, VI an nxl vector of stochastic innovations, and Et.1 is the mathematical 

expectations operator conditional upon information set 1,.1 , where It = {YI, X" I,.I}. 

Matrices Ao, A! , A2, and A3 contain structural parameters with dimensions 

conformable with YI and XI as needed. An alternative specification would have the 

expectations in (1) formed using period t rather than period t-l information. More 

will be said about this alternative specification later, particularly in Section 7.4. 

Specification (1) is more general than may first appear. Models with complicated lag 

and lead structures can be manipulated into this form (Binder and Pesaran, 1995). 

Variables that are predetermined and time changes in policy instruments may be 

included in y,. 

Assumption one: The instrument vector, XI, is set as a linear function of the state 

vector, YI.!' 

Policy therefore follows the rule: 

X t = 'I'y t-I ' (2) 

where the pxn matrix '¥ contains the policy feedback coefficients. Where necessary, 

lags of the instrument vector enter into this rule through YI.!. It is desirable to allow 

3 Normalizing z't to equal zero is without loss of generality when policy decisions are constrained by a 
system of linear equality constraints. This normalization is not appropriate if some of the constraints 
are inequality constraints, such as a constraint preventing the nominal interest rate from going negative. 
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some elements of,¥ to equal zero or be otherwise restricted, thereby accommodating 

simple rules. Let the unrestricted elements of,¥ not set to zero be represented by the 

(bxl) vector cpo 

Defining Zt = [Yt
T 

XtT]T and combining (1) and (2) produces the system: 

BOZt = B,z t_, + B2Et_tzt+1 + u t · Ut - iid[O, E] (3) 

Clearly Zt has dimensions (n+p)xl , and hence Q and W are (n+p)x(n+p) matrices. 

The central bank's behavior is formalized as follows : 

Assumption two: The monetary authority operates under the regime: W , z*t = 0 T;j t, 

and selects the unique cp E Q C ':J\b, Q convex, that minimizes Loss[O,oo] = 
tr[WQ], subject to (3). 

7.3) Identifying the Policy Preference Matrix 

This Section is central to the chapter. It provides necessary and sufficient conditions 

for identification of the policy preference matrix W. Before turning to the details of 

these identification conditions, which are presented in a sequence of propositions, it is 

useful to underline from the outset what is known and what is to be determined. 

Substituting (2) into (1) gives: 

AoYt =(A 1 +A3'1')Yt-I +A 2E t _ tYt+ l +V t · (4) 

The solution to (4) takes the form (see McCallum, 1983, or Uhlig, 1999): 

Yt =II,Yt_, +II 2 v t , (5) 

where 112 = Ao· t and 111 satisfies: 
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AoIII = Al + A3 'I' + A2II~ . (6) 

It is assumed that the reduced form parameters III, and II2 and the feedback 

coefficients in the policy rule, 'P, are known. The identification strategy that follows 

does not impose restrictions on the error variance-covariance matrix and as a 

consequence information in II2 is not employed for identification. Clearly this 

assumption could be relaxed and the information in II2 brought into play. 

Nevertheless, using just III and 'P, this Section establishes conditions for identifying 

w. 

Identification problems arise on several levels: first because the system is 

simultaneous; second because rational expectations terms are present; and third 

because the system is subject to control. As a consequence the identification strategy 

proposed below is a recursive one. 

At its most simplistic the identification problem is one of imposing enough structure 

on the system so that estimates of the structural parameters can be backed out from the 

reduced form. 4 Elements in the feedback matrix 'P are nonlinear functions of the 

structural parameters, Ao, AI, A2, and A3 , and the policy preferences, W. The 

variables in the 'p' policy reaction function(s), entering nontrivially are predetermined 

state variables so identifying 'P is not an issue. 

For ease of exposition, define: 

def 

C=A I +A3'1'· 

This C matrix is a commingling of the parameters applied to the state vector in 

equation (4). Now, variance-covariance matrix restrictions aside, (6) implies : 

4 Identification of simultaneous systems is analyzed thoroughly in Fisher (1966). Pesaran (1988) 
examines identification in rational expectations models. 
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[Ao -c [IT' ]d f -A21~i ~[H!r]=[O], (7) 

where, in matrix form 

{I ]def [C]= [A, A3L'I' = [A!A]. (8) 

7.3.1) Step One 

The first step in the recursive identification strategy involves identifying H in 

equation (7). Necessary and sufficient conditions for identifying H are summarized 

in: 

Proposition one: Let the parameters in the i'th row of H, hi (1x3n), be subject to 'ri ' 

linear inhomogeneous restrictions, hiRi = ri , where Ri has dimensions (3nxri), 

then a necessary condition for identifying H is ri ~ 2n, '<;j i E [1 , ... ,n]. A 

sufficient condition for identifying H is rank[r Rd = 3n, 'if i E [1, ... ,n]. 

Proof 

The row vector hi is subject to the following linear inhomogeneous restrictions: 

[hJRJ= [rJ (9) 

Combining (7) with (9) produces: 

[hJr Ri ]= [0 rJ 

The dimensions of hi, r , and Ri are 1x3n, 3nxn, and 3nxri respectively. Accordingly, 

hi contains 3n parameters jointly subject to n+ri restrictions. The restrictions in (9) 

include the normalization restriction arising when a dependent variable is chosen. 

Consequently, identifying hi necessarily requires ri ~ 2n. For these linear 

143 



inhomogeneous restrictions to be sufficient requires [r R j] to be such that ranker Rj] 

= 3n (see Fisher, 1966). 

I 

Proposition one is very intuitive. In a standard simultaneous equations system 

without rational expectations identifying an equation requires at least as many 

restrictions be imposed as there are endogenous variables (rj ~ n). With the rational 

expectations term present each equation has an additional 'n' parameters to identify, 

but the number of reduced form parameters available is unchanged. It directly follows 

that ' n' additional restrictions must be imposed to achieve identification. 

7.3.2) Step Two 

While proposition one provides conditions under which H is identified, and 

identification of H implies identification of C, it does not separately identify Al and 

A3. This leads to: 

Proposition two: Let the i' th row of A, aj (lx(n+p)), be subject to 'qj' linear 

inhomogeneous restrictions, ajQj = qj, where Qj has dimensions «n+p)xqj), 

then a necessary condition for identifying A is qj ~ p, ViE [1 , . .. ,n] . A 

sufficient condition for identifying A is that rank[A Qd = n+p, V iE [1 , ... ,n]. 

Proof 

From equation (8): 

[AIAl= [cl· (10) 

Assume further that aj is subject to 'qj ' restrictions of the form: 

[aJQ.l= [qJ (11) 

Combining (10) and (11) gives: 

[aJA Q; 1 = [C; qJ 
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The dimensions of ai, A, and Qi are 1x(n+p), (n+p)xn, and (n+p)xq; respectively. 

Therefore ai contains n+p parameters that are collectively subject to n+q; linear 

restrictions. Consequently, a necessary condition for identification is qi ~ p. A 

sufficient condition for identification of ai is rank[A Qi] = n+p. 

I 

In terms of the recursive identification strategy the role of proposition two is to 

disentangle the elements in A3 from those in AI. The elements in these two matrices 

are mingled because monetary policy is set conditional upon the state vector. In 

words propositions two states that a necessary condition for identification is that a 

restriction on the elements in Al and A3 be imposed for each control variable in the 

system. Clearly if an equation contains all state variables and an instrument is set as a 

linear function of all of the state variables, then the coefficient in A3 associated with 

that instrument in that equation cannot be identified. 

7.3.3) Step Three 

Thus far in the identification strategy information contained in the policy feedback 

matrix 'P has not been used. As long as the rank conditions of proposition one and 

two hold, then information in the reduced form coefficients, III is sufficient to identify 

all the coefficients in the structural model. In this final identification step we 

introduce 'P. If 'P is determined optimally, then its elements will be nonlinear 

functions of the structural parameters (Ao, Alo A2, and A3), and also W. Provided the 

structural parameters are identified a crucial ingredient in 'P is known. This third and 

final step establishes necessary and sufficient conditions under which knowledge of 'P 

and the structural parameters can be used to identify W. These conditions are 

summarized in: 

Proposition three: Let the column vector w = vech(W) be subject to's' linear 

inhomogeneous restrictions, STw = s, then a necessary condition for global 

'd 'f' . fW' (n+p)(n+p+l) b A ff" d" f 1 entl lcatIOn 0 IS: S ~ . su lclent con ItIOn or 
2 

global identification of W is: rank[J(w*Y S]T = k = [(n+p)(n+p+1)/2], V w** 

145 



E Pc 9\\, where J(w") is the Jacobian of the transform f: P ~ Q defined 

below. 

Proal 

In its most general form W is a square, symmetric, matrix containing (n+p)2 

parameters. Symmetry reduces the number of independent parameters in W to 

[(n+p)(n+p+l)]/2. In what follows let k = [(n+p)(n+p+1)/2]. 

An outcome of the policy optimization is a continuously differentiable function f: P ~ 

Q relating the policy preferences to the coefficients in the policy rule:5 

(jI = f(w). (12) 

Recall that (jI is a (bx1) vector containing the elements of,¥ that are unrestricted. w is 

also subject to's' linear inhomogeneous restrictions of the form: 

STW =s. (13) 

The policy objective function is only defined up to a scalar allowing one element of w 

to be normalized upon. This normalizing restriction is subsumed into (13). 

Remaining restrictions on w are most likely to take the form of exclusion restrictions, 

particularly on the covariance elements of Q . The non-linearity of (12) complicates 

identification. From the mean value theorem there exists a w" between w· and w, 

each elements of P, such that: 

(jI' = (jI+J(w")(w' -w) , (14) 

where J(w") is an bxk Jacobian matrix. Combining (13) and (14) allows the 

restrictions on w to be represented as: 

5 The structural parameters have been subsumed into the functional form. 
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[Jc;")]w = [~-~. + ~(w")w·]. (15) 

From (15) a sufficient condition for global identification of w is rank[J(w'Y S]T = k, 

'(j W" E P (see ·Rothenberg, 1971). Notice, however, that '(j n, p > 0, k > np ~ b. 

Therefore, rank[J(w**)] is at most 'b', which implies that a necessary condition for 

global identification is s ~ k-b, or after substituting for k, s ~ (n + p)(n + p + 1) b. 
2 

I 

The necessary condition of proposition three has a clear interpretation: the 'b ' 

coefficients in <p can be used to identify at most 'b' elements in W. An interesting 

aspect of proposition three is that the Jacobian matrix J(w**) itself need not have full 

rank for all w·· E P. A singularity in the Jacobian matrix means that there is no 

information in the functional relationship between wand <p to tie down one or more 

parameters in w. However, provided this lack of information in J(w") can be offset 

by additional outside information in the form of additional columns in S identification 

is still possible. 

7.3.4) In Addition ... 

Of course equation (2) implies that the relationship between the policy instruments 

and the predetermined variables is a deterministic one. Rarely would this be the case. 

In practice the information set used by agents to form their expectations, and that an 

econometrician uses when estimating policy reaction functions, may only be a subset 

of that available to the monetary authority when it sets policy. This can arise if the 

monetary authority uses a more recent information set than other agents. Where this 

is the case deviations between the actual path of Xt and that predicted by (2) are to be 

expected. These deviations are accommodated by adding a pxl innovation vector et, 

uncorrelated with Vt and Yt.lo to equation (2) giving: 

X, = 'l'y t-1 + et . (16) 
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Intuitively, adding this innovation vector facilitates identification of AI and A3 

because it automatically imbues Xl with volatility absent from Yl-I- The addition of the 

policy innovation term leads to: 

Proposition four: Given (1) and (16) Al and A3 are identified provided the rank 

condition of proposition one holds_ 

Prool 

Substituting (16) into (1) produces: 

AoYt =(A 1 +A 3'1')Yt-l +A 2E t-iYt+l +A 3et +V t - (17) 

Equation (16) is identified because it contains only predetermined variables and 

therefore both 'P and el are assumed to be known. The rational expectations solution 

to (17) takes the form: 

Yt =IItYt_l + II 2 vt + II 3et , (18) 

where ITz = Ao- 1
, ITI satisfies (6), and IT3 = AO-

1 A3. The reduced form parameter 

matrices ITI and IT3 are known and the solution to (17) asserts that once Ao is 

identified so too is A3. Proposition one presents a sufficient condition for Ao to be 

identified. 

I 

Finally, we may wonder how these identification conditions would be affected if the 

expectations in (1) were formed using period t rather than period t-l information . It is 

not difficult to show that provided variance-covariance matrix restrictions are not used 

for identification, and provided the policy rule continues to depend only on Yl-I and 

does not contain Vb propositions one - four remain unaffected. The intuition behind 

this result is that the solution for ITI is unaltered by the change to period t information. 

The solution for ITz does change, but it is not required for identification provided Vt 

does not enter the policy rule. 
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7.4) Some Examples 

This Section takes some popular models from the literature and examines whether 

they satisfy the conditions necessary for identification of policy regimes. The aims of 

this Section are twofold. First the Section aims to illustrate how propositions one, 

two, and three are applied in practice. Second, the Section aims to investigate the 

suitability of various models as vehicles for identifying policy regimes. 

All models considered contain the variables: y" 1f" and i" representing the output gap, 

inflation and the nominal interest rate respectively, and as a consequence the policy 

objective function used throughout this Section is taken to be: 

Loss[O,oo] = aVar[7C,] + (1- a)Var[y,] + crVar[i,] . 

Accordingly, the systems examined require that we identify just two policy preference 

parameters. As such, for each system S has four independent columns implying s = 4. 

7.4.1) Example One 

Consider the following system: 

y, = ~Y'-I - y[i, - E'_I7CaI] + g, ' 

7C, = 7C H + AY'_I + u,' 

i, = {j)yy ,-I + {j).7Ct-J. 

(19) 

(20) 

(21) 

Equation (19) is a dynamic IS curve, (20) an accelerationist Phillips curve, and (21) 

the policy reaction function. The stochastic terms - gt and Ut - are assumed to be finite 

variance white noise processes. Observe first that equations (20) and (21) are 

identified in so much as for them the rank conditions of propositions one and two 

hold. For subsequent identification of other coefficients the coefficients in equations 

(20) and (21) are assumed known. Next note that with two feedback parameters in 

(21) and two independent policy preference coefficients the necessary condition of 

proposition three is satisfied. It just remains to be seen whether propositions one and 

two hold when applied to (19). 
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In tenns of equation (4) an unconstrained representation of (19) takes the fonn: 

ThY, = Ih1t , +CIY'_I +c 21t t-l +pIEt-lY'+1 +P2E '_I 1t '+1 +g,. (22) 

The system (19) - (21) has n = 2 and p = 1. Therefore, the order condition of 

proposition one requires that (19) place at least four restrictions (ri ~ 2n) on the 

structure of (22). Relative to (22), equation (19) imposes: 111 = 1; 112 = 0; PI = 0; and 

P2 = C2/!fJn. Thus proposition one's order condition for identification is satisfied. 

Proposition two requires the number of restrictions on the elements of Ai and A3 

associated with the IS curve be greater than or equal to the number of policy 

instruments. It is useful to rewrite (22) as: 

TIIY, =TI z1t, +AIY,_I +A 21t'_1 +PIE'_IY'+I +PZEt-l1t'+1 +yi, +g ,. (23) 

In light of (23) , the restrictions on the IS curve's structural parameters take the fonn: 

[AI AZ -y{ ~ 
(jJy 

o 

!]=k Cz 0]. 
(jJ, 

Provided 11:,.1 enters the policy reaction function non-trivially (!fJn 7= 0) the rank 

condition of proposition two is satisfied.6 In this system the policy regime can be 

identified. 

7.4.2) Example Two 

The second example is adapted from McCallum (1997) and consists of the following 

equations for the output gap and inflation: 

6 Notice that CPy can equal zero, but not cp" and the system is still identified. Thus the optimal simple 

inflation rule i, = (jJ,TCt-l can still be examined. A policy rule where the interest rate responds only to 

the output gap might usually be expected to lead to nominal indeterminacy. In this model it produces 
an unidentified system. Moreover, with only one parameter in the policy rule the order condition for 
proposition three is not met so the two policy preference parameters cannot be identified . 
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Y t = E t_, Y t+1 - y[i t - E t_,lI t+, ] + gt 

lI t = E t_,lI t+, + AY t + Ut · 

To add some persistence both gt and Ut are assumed to follow AR(1) processes : 

[gt]=[~1 0 ][gt-t]+[~t l . 
u t 0 ~2 u t _ 1 U 

t 

McCallum ' s system is completed by the addition of the policy reaction function: 

it = <P ggt-I +<Puu t_l · 

(24) 

(25) 

(26) 

Analogous to example one the policy reaction function (26) is identified and contains 

two feedback coefficients. With only two independent parameters in the policy 

objective function proposition three 's order condition is meet. Unfortunately neither 

(24) nor (25) are identified. In unrestricted form equation (25) has the form : 

TlI lI t = ThY t +Thg t +114 Ut + AtlI t_t +A 2 Yt_1 +A Jg t_1 +A4Ut_1 

+p,E t_, lI t+ ' +P2E t_IYt+1 +P JE t-,gt+' +P4Et_I Ut+1 +Ut. (27) 

Comparing equation (25) with (27) the independent restrictions imposed on (27) are: 

111=1 ; 113=0; 114=0; 1..1=0; 1..2=0; 1..3 = 0 ; P1=1; P2=0; P3=0; and P4=0. These restrictions 

number ten while the order condition of proposition one requires onl y ei ght 

restrictions. In terms of this necessary condition equation (25) is over-identified. 

Appearances are deceiving, however. For while equation (25) satisfies proposition 

one' s order condition it fails the rank condition. To see this, observe that the 

restrictions listed exclude Tet.l, Yt.l, and gt. l from the system. At the same time the 

rational expectations solution to the system expresses Tet and Yt in terms of just Ut.1, 

also excluding7 Tet.l Yt.1, and gt.1. Thus three of the columns in the [r Rj ] matrix 

7 That all elements in ITl associated with ~. I and Yt.1 equal zero is clear because these two variables do 
not appear in the system ' s structure and hence only enter the system 's state vector triviall y. That the 
elements associated with gt.1 also equal zero (or for one equation Ill) is a consequence of the system 
being subject to control. 
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associated with (25) depend linearly on the others and [r R i ] has rank = 11 < 12 (3n, 

where n = 4). In a similar vein it can be shown that equation (24) is also unidentified. 

7.4.3) Example Three 

Our final example comes from Clarida, Gali and Gertler (1999) and is of the same 

genre to those just analyzed. It differs, however, in that the persistence in the system 

is endogenous, determined by lagged dependent variables, and not exogenous, driven 

by autocorrelated shocks. In fact the shocks gt and Ut are assumed to be finite variance 

white noise processes. 

YI =~YI-I +(1-~)EI_IYI+I -y[i , -EI_I1t I+I]+gl 

1t I = 01t t-l + (1- o)E I_I 1t 1+1 + AY I + u I 

i , = <iJyYI-I + <iJ,1t I_I 

(28) 

(29) 

Like the previous two examples the order condition of proposition three is satisfied 

because the policy reaction function contains two feedback coefficients. Now 

consider equation (28). In the structure of equation (4), at its most general, equation 

(28) becomes: 

11 IYI = 1121t, +CIYI_I +C 21t I_I +PIEI_IYI+I +P2EI_I1tI+I +gl' (30) 

Relative to (28) equation (30) imposes the four restrictions: 111 = 1; 112 = 0; C2 = -P2<iJ,,; 

and CI = 1-PI-P2<iJy, which with n = 2 means that the order condition of proposition 

one is met. Provided neither ~ nor 0 equal zero the rank condition is also satisfied.s 

Moreover, if <iJ" is non-zero the rank condition of proposition two is also satisfied 

implying that equation (28) is identified. If <iJ" does equal zero, then the order 

condition of proposition three does not hold and the policy preference parameters 

cannot be identified. 

Now consider the Phillips curve, equation (29). The unrestricted Phillips curve is: 
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ll z1t, =l1tY , +ctY,_t +c z1t t-l +PtE,-ty ,+t +P zE,_t 1t t+t +u, (31) 

Relative to (31) equation (29) imposes the restrictions: 112 = 1; CI = 0; Cz + P2 = 1; and 

PI = O. These four restrictions satisfy proposition one's necessary condition for 

identification. Like the IS curve (28), provided neither ~ nor <5 equal zero the rank 

condition of proposition one is also met. As a consequence for this system the policy 

regime is identifiable. 

What these three examples illustrate is that provided we consider only the order 

condition for identifying the policy preferences (proposition three) the major obstacle 

faced when identifying W is that of identifying the structure of the economy. 

Identifying the economy's structure is essential, however, because it constrains the 

optimization process leading to the policy rule. 

7.5) Conclusions 

The aim of this chapter was simple. We wanted to lay the foundations for estimating 

central bank policy preferences by establishing conditions under which these 

preference parameters could be identified. It was demonstrated that optimizing 

central banks apply policy rules whose feedback coefficients are nonlinear functions 

of its policy preferences. Before these policy preferences can be backed out from 

these feedback coefficients several identification conditions need to hold. As a 

consequence this chapter proposes a recursive identification strategy consisting of 

three steps. The first two steps, summarized in propositions one and two, identify the 

parameters in the structural model constraining the central bank' s optimization . Only 

once the structural model is identified can enough structure be placed on the policy 

reaction function to disentangle the policy preference coefficients. Proposition three 

provides necessary and sufficient conditions for the policy preference coefficients to 

be identified. 

8 When 13 = 0, for example, y,.t is not a state variable in the system and qJy appropriately equals zero. 
Consequently, the column of ITt associated with y,. , equals zero, leading to the rank condition of 
proposition one failing. 
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To illustrate how the conditions developed in propositions one, two and three are 

applied in practice three examples were provided and their identification properties 

examined. The identification conditions developed in this chapter are important 

because only by identifying and estimating the policy regime in operation can we tell 

what the objectives of the monetary authority truly are. In particular, this chapter 

serves to emphasize that it is not necessarily possible to say anything meaningful 

about a policy regime purely on the basis of an estimated policy rule. Future work 

will seek to identify and estimate actual policy regimes in operation, and to document 

how these policy regimes have changed over time. 
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Chapter 8 

DISCRETIONARY MONETARY POLICY WITH COSTLY INFLATION 

8.1) Introduction 

Following Kydland and Prescott (1977) it is commonly recognized that through time 

inconsistency discretionary monetary policy can lead to a positive inflation bias. 

Several authors have addressed this issue proposing methods to either reduce or 

eliminate this inflation bias. Rogoff (1985) suggests appointing an inflation averse 

central bank governor while Walsh (1995) shows that an optimal contract for the 

central bank governor can solve what is essentially a principal agent problem. Other 

approaches rely on the central bank governor either being concerned with their 

reputation as an 'inflation fighter' or making the governor deposit a nominal bond that 

is released only at the conclusion of their contract. 

More recently Pearce and Sobue (1997) demonstrate that any inflation bias present is 

lowered when the central bank is uncertain about the strength with which its policy 

instrument affects inflation. Uncertainty leads policy makers to err on the side of 

caution, resulting in cautious policy, and a lower inflation bias. 

This paper explores the implications for discretionary monetary policy of costly 

inflation. We consider a Phillips curve where a sub-optimally high inflation rate 

reduces welfare by permanently lower real output. Section 9.2 motivates the case for 

a non-vertical Phillips curve and describes the economic model used to analyze 

discretionary policy. Section 9.3 examines how costly inflation effects the magnitude 

of the discretionary inflation bias. Section 9.4 concludes. 
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8.2) Rules versus Discretion with Costly Inflation 

Many authors have suggested that there may be a negative relationship between 

inflation and output or, alternatively, between inflation and output growth. Feldstein 

(1982) argues that inflation can interact with a nominal based tax system raising the 

cost of capital and lowering investment and output. De Gregorio (1993) moots that 

firms have to hold money balances to purchase capital. The cost of holding money 

increases as inflation rises , thus high inflation retards investment, which lowers 

output. 

\ 

Another common argument is that inflation distorts price signals inducing agents to 

waste resources searching for bargains or otherwise avoiding the effects of inflation 

(menu costs, shoe leather costs, etc). Similarly, high inflation is generally thought to 

come hand-in-hand with high inflation variability, or inflation uncertainty. In the face 

of this uncertainty, Fischer (1993) argues, firms may delay investing until the 

uncertainty is resolved, and this delay lowers output. l 

It is standard in the monetary policy literature (see Walsh, 1998) for the central bank 

to choose inflation to minimize the loss function: 2 

1 '2 A '2 A Loss = Et-I ["2 (11:, -11:) +"2(Y' -ky ,) ], k>l, >0, (1) 

subject to 

y, = y; +a(1I:, -Et-I1I:,)+u" a>O. (2) 

where 1tt is the inflation rate, 1t' is the inflation target, Yt represents (logged) real 

output, y; represents (logged) potential real output, and Ut - iid[0,cr2] is a supply 

shock. Finally Et. l is the mathematical expectations operator conditional upon period 

I Further arguments regarding the costs of inflation can be found in De Gregorio (1993) and Stockman 
(1991). Alternatively, the Tobin effect suggests that inflation may not always be detrimental for output, 
Tobin (1965). 
2 We use this loss function because it is standard in the literature and because we want to explore the 
consequences of costl y inflation for the inflation bias in the context of the core literature. An 
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t-l infonnation. We assume that period t-l infonnation includes all variables dated 

period t-l or earlier as well as the structure of the economy. 

At this juncture it is useful to ask what is optimal about the inflation target rate n*, or, 

more fundamentally, why inflation is in the loss function at all? The point to be made 

is that in the economy described by equation (2) only unanticipated inflation matters. 

Anticipated inflation has no effect on the economy - even in the short run - making it 

unclear why the loss function contains inflation. Moreover, with neutral inflation any 

rate of anticipated inflation is as good as any other; any rate of inflation is optimal. 

In light of these arguments, and the literature on costly inflation discussed above, we 

respecify the (inverted) Phillips curve as 

y, = y; +a(n, -E,_,n,)-f(n,)+u" u>o (3) 

where fen,) , f ' = ~ 2: 0, represents the output cost associated with anticipated inflation. 

We assume that fen,) equals zero at n*. It is in this sense that n* is an optimal 

inflation rate - it eliminates any effect of anticipated inflation on output. A linear 

Taylor series approximation to fen,) about n* gives 

f(n , ) = fen') + ~(n , - n'). (4) 

Imposing f(n*) = 0 and substituting (4) into (3) generates the Phillips curve 

y, = y; +a(n, -E,_,n,)-~(n, -n' )+u , . (5) 

8.3) Discretionary Inflation Bias 

Substituting (5) into (1) and maximising, while holding inflation expectations 

constant, yields the inflation equation 

alternative approach might have used a utility based loss function following Cubitt (1993) or Ireland 
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• (k-l)(a-~)AY; 
1[, = 1[ + . 

(1- (a - ~)A~) 
(6) 

The second tenn on the RHS of (6) represents the inflation bias. If we had used the 

Phillips curve (2) in place of (5), then the inflation bias would be (k-l)aAy;. There 

are several points we can make about the magnitude and sign of the inflation bias 

when anticipated inflation is costly. 

1) When [3 = ° the bias collapses down to (k-l)aAYt*: the costless inflation case. 

2) Depending on a and [3 the inflation bias can be either positive or negative. 

When [3 = ° the inflation bias is strictly non-negative. 

3) When [3 = a the output cost of anticipated inflation completely offsets any 

benefits to surprise inflation and the inflation bias equals zero. 

4) In the limit as [3 --7 = , the inflation bias --7 ° from below. 

5) If [3 > a, then the inflation bias with costly inflation must be smaller that the 

inflation bias without the output cost. 

The inflation bias under costless inflation equals that for costly inflation when 

(a-~) = a. This occurs when [3 = 0, (a2).-I)/aA, which we denote [31 and [32 
(1- (a - ~)A~) 

respectively. The first of these roots, [31, produces the familiar result that, if [3 = 0, 

equation (5) collapses to equation (2). With the second root, [32, note that the 

denominator aA is always positive, implying that [32 will be positive or negative 

depending on whether ( 2)._1 is greater or less than zero. Given our theoretical 

assumption that [3 is non-negative the only economically interesting case is that where 

( 2)._1 2: 0. 

To examine how the inflation bias changes with [3 we differentiate it with respect to [3, 

holding all else constant. Evaluating this derivative at [3 = ° gives 

d(bias) I ~=O = (k -1)A)A 2A -1)y; 
d~ 

(1997). 

(7) 
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When (121..-1 > 0, the slope of the bias equation is positive at 13 = 0, and conversely 

negative if (121..-1 < O. 

Similarly, the derivative of the bias with respect to 13, evaluated at 132, equals 

d(bias) I 
dP p=p, 

(1- k)(a 2,,-I)y; 

(1-(a-p)"p)2 
(8) 

Clearly the denominator of (8) is positive. Consequently, because k > 1, we have the 

result that at 13 = 132 the derivative is positive if (121..-1 < 0 and negative if (121..-1 > 0 

Therefore, we can make two further observations about the inflation bias 

6) If (121..-1 < 0, then so too is 132, and the only economicall y interesting point 

where the biases are equal is at 13 = O. The slope of the bias function is 

negative at 13 = 0 indicating that the bias with costly inflation is less that that 

where inflation is costless for all 13 > O. 

7) If (121..-1 > 0, then there are two economically interesting points at which the 

biases are equal. For 13 E [131. 132] the bias with costly inflation is higher than 

that for costless inflation. As 13 increases above 132 the opposite result 

prevails.3 

Of interest here is the fact that when (121..-1 > 0, for all 13 E [0, (12A.-l)/aA] the 

inflation bias actually increases despite the fact that this inflation bias has a permanent 

output cost. The inflation bias rises when (1 and A. are large and 13 is small. This is the 

case where the monetary authority places a large weight on output stabilization and 

gains a large benefit from surprise inflation. If the permanent cost of inflation is small 

then the monetary authority is prepared to incur this cost, but to offset the lost output 

due to the inflation cost the monetary authority must create a greater inflation surprise 

than it otherwise would. Consequently, the inflation bias is greater in this case than it 

would be if inflation were costless. 

Here we further assume that riA < 4 to rule out discontinuous jumps in the bias as ~ increases. 

159 



Figure 9.1 graphs the inflation bias (as a percent of potential output) under 

hypothesized values for ex, and k, for two values of A. as p changes. The solid line has 

ex2A.-1 < 0 while the dashed line has ex2A.-1 > O. 

To examine whether anticipated costs of inflation are likely to have any material 

impact of the size of the inflation bias we parameterize the f(n.) function using 

estimates from Fischer (1993). Table 4 of Fischer (1993) presents an estimate for p of 

0.046 using panel estimation 4 Taking P = 0.046, A. = 0.5 (inflation receives twice the 

weight of output in the loss function) , k = 1.02, and ex = 2.5 gives an inflation bias of 

0.025% of potential when inflation is not costly and a bias that is approximately 

0.026% of potential when inflation is costly. In this example the presence of an 

output cost of inflation actually raises the inflation bias by about 4%. While small this 

increase in inflation is nevertheless noteworthy, given the plausibility of the 

underlying parameters . 

8.4) Conclusions 

In this paper we have extended the standard 'rules versus discretion ' model to include 

the case where anticipated inflation has a permanent output cost. When inflation is 

costly we have shown that the inflation bias associated with discretionary policy is 

generally smaller than that when inflation is costless. Interestingly, if the marginal 

cost of inflation is large enough the inflation bias can even be negative. Finally, we 

have also shown that for some parameter values the presence of costly inflation 

actually increases the size of the bias. Interestingly, using an estimate of the cost of 

anticipated inflation we have presented an example where the inflation bias actually 

increases. 

4 Details of the sample period and countries included to generate this estimate are available in Fischer 
(1993). 
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Figure 9.1: Inflation Bias. 
Alpha = 1.5, k =1.02 
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