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Abstract

We develop a real-time synthetic active vision system based upon ob-

servations of the primate vision system. Inspiration was sought from

existing knowledge of the biology of the primate visual brain, and

from existing models of the primate vision system and its compo-

nents. A minimal set of biologically plausible processing components

of vision was selected, and implemented on a real-time processing net-

work based around a biologically-inspired active vision mechanism.

The mechanism’s performance capabilities match that of the human

vision system, in terms of speed and range of motion.

The processing components include: active rectification for egocentric

spatiotemporal perception; a space-variant occupancy grid framework

tailored specifically for use with active vision that facilitates estima-

tion of scene structure, motion, and cue-surface correspondence; a

foveal MRF ZDF algorithm that permits real-time coordinated stereo

fixation upon, and segmentation and tracking of arbitrary, agile, and

rapidly deforming visual targets; and, an active-dynamic attention

system based on a set of biologically plausible bottom-up saliency

cues, that incorporates active-dynamic inhibition of return, an up-

dateable task-dependent spatial bias, moderation of covertly selected

saccade destinations before overt attention is deployed, and top-down

modulation of all saliency cues, biassing, and moderation parameters.

The system components are combined on a processing network that

permits concurrent serial and parallel processing pathways. Process-

ing tasks are distributed over server nodes in the network so as to

minimise processing latency and network bandwidth, and so that pro-

cessing routines are not duplicated. Based on these constraints, the
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best functioning solution is found to exhibit a structure broadly sim-

ilar to that of processing areas of the primate visual brain.

Psycho-physical experiments were conducted with humans to identify

inter-individual trends in human gaze behaviours. While viewing a

dynamic, repeatable, controlled 3D scene, participants’ unconstrained

gaze scanpaths were recorded. Parameters useful in characterising

human gaze behaviours were selected based upon two pilot trials.

Group statistics associated with each selected parameter were then

extracted from 20 subsequent human trials.

A comparison was then conducted between the behavioural charac-

teristics elicited by the synthetic vision system and the behavioural

benchmarks obtained during the human trials. The synthetic active

vision system was subjected to the same trial multiple times, each

with different configuration settings. Behavioural parameters were

extracted at each iteration. Good coherence was found between all

extracted behavioural parameters in the synthetic and biological pri-

mate vision systems. Though tunable to some extent by varying

system configuration parameters, the synthetic system elicited trial

behavioural parameters that fell within the variances of the human

benchmarks.
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Prelude

Hello world! RoboCop’s first bootup - “RoboCop”, 1987.

Hello World!

You have recently announced“Hello World!”, and if you are to become an in-

telligent robotic system, you are probably eager to explore your environment,

develop a conscience and experience emotion. But you learnt to walk before you

could run, and likewise, your first stepping stone towards an awareness of your

surroundings is to develop your basic visual competencies. Whether you are a

T-800 looking for a wardrobe, a ‘Hive’ security system waging biological war-

fare, a robot cop protecting humanity from its own shortcomings, or a military

machine zapped into peace-loving consciousness by a freak bolt of lightning, you

have probably found your first glimpse of the world a little daunting. But rest

assured, basic scene awareness is indeed within your reach, and if you pay partic-

ular attention to those who have gone before you (and possibly whose ponderings

and experiments are the very reason for your existence), you will soon be on your
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PRELUDE

way to deciding where to look next. After all, biology has had millions and mil-

lions of years addressing this question, so it is probably best to start with a little

biological inspiration before leaping towards the top of the evolutionary chain.

T-800 considers expanding his wardrobe - “Terminator 2”, 1991.

The Hive detects a possible intruder - “Resident Evil”, 2003.
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After being struck conscious, it doesn’t take long for Johnny-5 to master basic

visual competencies; in no time at all he amazes his friends with speed reading

demonstrations - “Short Circuit”, 1986.
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Chapter 1

Introduction

Figure 1.1: Towards human vision in nature: (from left) the proto-eye of a pla-

naria, and the eyes of a nautilus, reptile, mammal and human.

1.1 Introduction

Vision is a data-rich sensing modality useful for environmental perception, navi-

gation, search, hazard and novelty detection and communication. In this research,

we investigate machine vision for seeing in the real world. In terms of general

perception and flexibility, the best performing systems capable of interpreting

real-world visual data exist in nature. We aim to reduce the gap between biolog-

ical vision and synthetic vision, and to investigate primate-like visual perception.

We first outline the domain of this research. We then summarise the evolution

of biological vision. We highlight the success of biological vision as motivation for
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1. INTRODUCTION

biological inspiration in the development of synthetic vision systems for sensing

the real world. We compare the current capabilities of machine vision with the

capabilities of biological vision. Specifically, we justify the investigation of pri-

mate vision for improving synthetic systems. We suggest components of primate

vision from which machine vision may benefit, and we describe how to combine

these elements into a synthetic vision system.

The chapter concludes by summarising the research contributions presented

in this thesis. A roadmap of the subsequent contents of the thesis is provided.

1.2 Research Domain

In recent years, increased hardware performance versus component cost has brought

vision firmly into the realm of practical robot sensors. The domain of computer

vision has sufficiently matured to enable researchers to build and experiment with

systems that model and interact with what they observe. In particular, we inves-

tigate primate-like perception in the real world. We work towards reducing the

gap between the visual perception abilities of machines and primates.

We concern ourselves with refining a multi-purpose visual sensor system for

real-world, real-time, task-directed perception. The vision system should demon-

strate usefulness in performing a diverse range of visual tasks. It must be able to

intelligently gather data from its environment in a sufficiently timely fashion to

make the decisions for task-oriented behaviour.

A practical system is required to react to the real world in real time. Real

environments contain events occurring on all timescales. It is therefore practical

to consider real-time as a time period commensurate to the defined task. The real

world is an unstructured, possibly cluttered, dynamic environment that extends

beyond sensor range. An active vision system operating in the real world must

therefore be equipped with mechanisms to fixate its attention upon what is im-

portant within the time-frame of its relevance, while simultaneously disregarding

background irrelevancies. Appropriate sensory and processing resources must be

selected with these considerations in mind.

This research has applications in the development of autonomous agents, in-

vestigations into synthetic primate vision, human-computer interactions, auto-
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mated novelty detection, human visual assistance such as the development of

visual prosthetics, and facilitates exploration of what visual competencies can be

implemented in real-time within reasonable processing limitations.

1.2.1 Let There Be Light

Where there is light, vision is an especially useful sensing modality. In nature,

most animal species need to be able to detect, for example, food and predators.

In the presence of light, the eye allows the detection and observation of such

objects from a safe distance. The majority of pertinent matter that an overland

or marine based organism needs to be spatially aware of (particularly in terms

of survival) comprises of the surfaces of solids and liquids - a set of matter that

often reflects, refracts, absorbs or emits light. Of course, the naturally occurring

mixture of gasses in breathable air is also crucial for the survival of most species of

land animals, but it can reasonably be assumed that air does not usually need to

be sought or detected, that it is present while an organism is able to respire, and

that it does not need to be spatially located. Moreover, it is especially convenient

that air rarely interacts with light in a manner that is detectable by the eye,

other than where it borders solid or liquid matter (it is typically transparent),

allowing seeing animals to detect the far more pertinent set of matter beyond the

air immediately in front of their eyes. For marine-based species, water fills the

afore-mentioned role of air, and it is again convenient that water is often largely

transparent to a submerged marine animal’s eyes. Eyes could only evolve because

the environmental media in which organisms live submerged is transparent, and

illumination is present. In any case, overland and water based animals live in

an environmental media where pertinent matter may not always produce audible

sounds or detectable smells, but where all solid and liquid surfaces transmit,

reflect, refract or absorb light in a manner detectable by the eye.

Given illumination, the visual range is not limited to localised regions, rather,

it depends only upon the size of an object and the system’s visual resolution. This

range property arises because vision does not probe its environment (via touch or

by emitting decaying rays – in contrast to radar or laser range-scanning). Unlike

touch or smell, vision provides a large search space - the eye is capable of seeing
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Figure 1.2: Towards human vision: in science fiction (top); in research (bottom).

things from only millimeters away to the distance of stars. Whilst illumination

is present, information from all sources and reflectors of light in sensor view is

received simultaneously. The set of visually observable space is only reduced by

occlusions. Although light does not transmit detectably through most matter

or around corners, the lack of ambiguous reflections, refractions and interference

helps to disambiguate spatial localisation, unlike hearing. However, vision is not

without sources of error; the eye must cope, for example, with dynamic scene

illumination, shadows, aliasing, defocus and saturation.

Vision synergistically compliments our sense of touch when we interact with

our environment or manipulate objects. It is certainly very useful to be able to

visually locate something before we reach to interact with it, or before it attacks

us!

1.3 What Machines Have Seen

Fiction would have us believe that the time when robots will look, feel and func-

tion like humans is fast approaching. Indeed, research is progressing, and al-

though similarities are apparent (Figure 1.2), science fiction is still a few steps
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ahead of science fact (as it ought to be - we cannot build what we cannot imag-

ine). Nevertheless, cameras are becoming increasingly resolute, approaching the

acuity of human vision. Modern imaging technology enables us to see that which

we once could not.

1.3.1 Imaging Capabilities

The functioning of a camera is often compared to that of the single aperture

eye because both focus a projection of the observed scene onto a light-sensitive

medium. In the case of most common cameras this medium is film or an electronic

sensor [Holst (1998)]; in the case of the eye it is an array of photoreceptor cells.

Numerous types of imaging technologies exist that can see what we otherwise

could not. Hyper-spectral imaging, for example, allows us to see in infra-red

and ultraviolet light, including thermal images. With non-pinhole imaging, such

as x-ray, ultra-sound, radiological and magnetic resonance, we can see through

matter and inside objects such the human body. Electron microscopes can cap-

ture images of minute structures. Telescopic zoom lenses enable us to see long

distances. Satellite imagery allows us to see our own planet from orbit, and even

peer into space and back in time.

Cameras can act as remote ‘eyes’. We can send camera images around the

world to remote destinations, enabling common communication technologies such

as television and video-conferencing. We can record camera imagery and shift it in

time by playing it back when it suits us, or capture a moment with a photograph

to help us remember an event. Cameras can provide us with security by watching

over our belongings when we would rather be elsewhere. If we are to save time

by not manually interpreting camera images, we must give machines the ability

to automatically interpret images for us.

Computers may be programmed to automatically acquire and process camera

images. Computer vision and machine vision are the terms commonly associated

with the theory and technology of building artificial systems that interpret digital

images. Computer vision systems may be used to perform automatic visual or

physical tasks.
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1.3.2 What Success To Date?

The development of artificial vision systems was initially slow, its beginnings

emerging in the 1960s. It was not until the late 1970s when computers could

process large data sets, such as images, that the field of computer vision took

flight.

It was initially thought that, if given reasoning programs and sensors such as

cameras, actuators and manipulators, highly efficient autonomous systems would

emerge. In fact, it has proved much more of a challenge. Real autonomous agents

have to deal with the real world, not just the symbolic representations as assumed

by traditional artificial intelligence that human perception seems to extract with

ease. In the 1980s scientists instead focussed on reconstructing representations

of observed environments, and the shape, location and orientation of objects in

this environment, in order to give robots awareness of their surroundings. This

approach required a large amount of computational power, having the effect that

robotic systems could only operate in constrained environments.

Towards the late 1980s it was realised that it was impossible to deal with all

the information in a visual signal in real-time. Rather, it was suggested that

the robustness of vision systems could be improved through camera movements

and focusing procedures – an active vision approach. A passive system is unable

to change the way it views a scene, and must extract all the required informa-

tion from images captured with the same parameters. An active system is able

to acquire more relevant data by adjusting its parameters to recover the visual

information required for a task. Ballard published results to prove that moving

sensors significantly decreased such computational costs [Ballard (1991)].

Active vision signals a distinctive shift from data-driven to task-driven ap-

plications. A task-oriented system that uses an active sensor can select useful

information and ignore task-irrelevant parts of the scene. A purposive vision

regime changes the requirements of what needs to be perceived.

As well as mimicking ocular motion, researchers have also reproduced primate-

like active vision by, for example, using specialised log-polar cameras [Rougeaux

(1999)]. For computers and the brain alike, foveal vision reduces resolution away
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from the fixation point, and accordingly, reduces computational bandwidth. Un-

like the human vision system that has a periphery that extends to about 140◦, the

range of vision provided by a camera with a conventional lens is usually limited

to a much smaller angle (and a rectangular frame).

1.3.3 Application Domains

Algorithms that perform computer vision tasks often fall into one of the following

categories:

• Detection: image data is scanned for a specific condition.

• Recognition: one or several pre-specified or learned objects or object classes

can be recognised, usually together with their 2D positions in the image or

3D poses in the scene.

• Identification: an individual instance of an object is recognised, such as a

specific person’s face.

• Segmentation: pixel-wise extraction or categorisation of regions in 2D im-

ages.

• Tracking: following the movements of specific objects.

• Motion estimation: estimating camera egomotion or scene motion.

• Spatial reconstruction: 3D reconstruction of scene structure and surfaces.

These task categories have been applied to numerous application domains,

including:

• Medicine: extraction of information from image data for diagnosis. Image

data can be in the form of microscopy images, X-ray images, angiography

images, ultrasonic images and tomography images. For example, detection

of tumors and arteriosclerosis, 3D organ mapping, blood flow, functional

structure of brain.
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• Geophysics: satellite imagery, hyper-spectral imaging, agriculture, climate/weather

monitoring and prediction, mapping, geographical censuses.

• Industry: manufacturing process, quality control (automatic goods inspec-

tion), object manipulation.

• Military and surveillance: intrusion detection, missile/vehicle guidance,

communication, intelligence,“battlefield awareness”, traffic monitoring, crowd

monitoring, intrusion detection.

• Autonomous vehicles: either full autonomy or driver support, mapping,

navigation, feature and obstacle/incedent detection.

• Embedded devices: face detection on digital still cameras, video-conferencing

automatic target selection, vehicular pedestrian/sign detection, optical char-

acter recognition (OCR), augmented reality.

1.3.4 What’s Missing?

Computer vision is presently very useful for performing algorithmic visual tasks

that humans would otherwise find dangerous, monotonous or computationally

demanding. Today, more and more computer vision applications find their way

into commercial products. In terms of commercial devices (as opposed to pure

AI research), the trend seems to be towards modular, static, monocular systems.

Commercial products in particular, by virtue of the fact that consumers expect

a product to perform the task it was purchased for, are often developed for

reliability in performing a specific task within defined constraints. This is a valid

and very useful approach, especially for modular applications.

Task-specificity of vision systems may originate where computer vision so-

lutions are sought in specific scientific fields, for well-defined problems under

controlled conditions. As the complexity and applicability of computer vision

systems expands, it is important to reduce the brittleness of integrated system

components.

Research into artificial intelligence and humanoid vision is more interested

in primate-like scene awareness. The real world is dynamic in many respects,
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requiring flexible real-time visual sensing. Real environments contain events oc-

curring at all timescales. Processing resources are always limited to some extent.

Primates are able to integrate multiple interpretations of vision into a timely,

unified perception. There are certainly gains to be made from observations of

primate vision in this regard. We therefore investigate the integration of multiple

visual tasks on a primate-like vision platform.

For convenience, computer vision algorithms sometimes assume human-imposed

abstract starting conditions. For example:

• Fixed camera systems may negate the need for selection of visual field.

• Images out of their spatiotemporal context may eliminate need for tracking.

• Pre-segmentation may eliminate the need to select a region of interest.

• Clean backgrounds may ameliorate segmentation problems.

• Clean images may ameliorate the requirement to cope with noise.

• Assumptions about relevant features and the ranges of their values reduce

their search ranges.

• Assumed knowledge of the task domain may negate the need to search a

stored set of all domains.

• Assumed knowledge about which objects appear in scenes may negate the

need to search a stored set of all objects.

• Assumed knowledge of which events are of interest may negate the need to

search a stored set of all events.

Biological visual perception cannot rely upon such abstract starting assump-

tions. Such assumptions may help with data reduction and reduce processing

times, but they may also adversely affect perception. For example, addressing

data and search reduction by imposing a static reference frame may also impose

restrictions on perception. Biological reduction techniques, such as attention

and foveal vision, are unlikely to affect the successful completion of visual tasks,
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and are also less likely to restrict perception. As another example, biology is

known to use robust, flexible, low-level consistent scene representations, as a ba-

sis upon which higher-level interpretations, tasks and cognitions are computed.

The primate visual brain, for example, interprets illumination-independent image

representations (similar to contrast images) passed from the retina along the optic

nerve, from which a perception is built [Rodieck (1998)]. Rather than address-

ing computer vision tasks by operating on camera images directly, conversions

to robust low-level image representations - that are, for example, illumination

independent, camera motion independent, or noise reduced - may be meritous. It

is likely that useful low-level, low-bandwidth representations of visual data could

be compiled once and then re-used in concurrent (or at least one) high-level com-

puter vision tasks. Like humans, autonomous machines may need to perform

multiple visual tasks simultaneously (such as spatial perception, mapping, locali-

sation, search and obstacle avoidance), as well as to be perceptive to novel visual

events.

Modular computer vision algorithms may provide insight into how the brain

may perform specific visual tasks. However, investigating how biology integrates

visual abilities from the lowest sensory level into general scene perception may

be more useful in proposing a generalresearch formulation of how more complex

computer vision problems can be solved. A key factor in the gap between animal

and machine vision could be machine vision’s general lack of low-level visual

perception. For intelligent systems and autonomous agents - regardless of their

final application - it may be beneficial to develop effective low-level visual scene

perception capabilities instead of directly constructing higher level interpretations

and models of the world. Machines exist in and perceive the same world as

animals. Exploring flexible synthetic scene perception may benefit considerably

from biological inspiration.

1.4 A Sense of Vision

We now look at the development of visual perception in biology. We consider the

evolution of sight from the conception of vision to primate vision.
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1.4.1 First Sight

It is widely accepted that all varieties of animal eyes evolved from a proto-eye

that first appeared around 540 million years ago [Halder et al. (1995); Parker

(2003)]. Anatomical and genetic features common to all eyes provide evidence in

support of such a common origin. The earliest forms of optical sensing in biology

were as simple as detecting the presence or absence of light via photoreceptor

cells [Land & Nilsson (2002)]. Patches of such cells evolved that could sense

the level of ambient lighting. By depressing the patch to form a pit, it became

possible for organisms to sense the direction towards light sources. Modern pla-

naria (Figure 1.1) and other early invertebrates (such as some slugs and snails)

that first appeared in the Cambrian period can differentiate the direction and

intensity of light sources because of their cup-shaped, heavily-pigmented retina

cells, which shield the light-sensitive cells from exposure in all directions except

for the single opening for the light. This proto-eye is more useful for detecting

the level of ambient light than the direction of its source. As the proto-eye pit

deepened and the number of photoreceptive cells grew, visual information could

be deciphered with increasing precision [Land & Nilsson (2002)]. Overgrowths

of transparent cells prevented contamination and parasitic infestation - the first

stage in the evolution of the lens [Land & Nilsson (2002)]. From such common

ancestry, multiple types and subtypes of visual sensors developed in parallel.

Trilobites, for example, were amongst the first animals to develop more ad-

vanced visual capabilities [Sherwin & Armitage (2003)]. The majority of trilobites

possessed a pair of compound eyes. Compound eyes are today found in arthro-

pods such as insects and crustaceans. A compound eye is comprised of several,

even thousands, of tiny independent photosensitive units (ommatidia) that are

oriented to point in slightly different directions [Sherwin & Armitage (2003)].

Each ommatidia consists of a cornea, lens, and photoreceptor cells. The image

perceived by a compound eye combines the input from the numerous ommatidia.

Single aperture eyes evolved from the proto-eye as the pit deepened into a cup,

then a chamber [Land & Nilsson (2002)]. By reducing the size of the chamber

opening, a 2D projection of the scene could be formed on retinal photoreceptor

cells at the rear of the chamber. Similar to the modern pinhole camera model
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(see Chapter 5), this type of eye allowed for finer directional sensing and even

some edge and shape detection. The nautilus (Figure 1.1) is an example of an

existing species that still possesses an early form of single aperture eye. Lacking

a cornea or lens, the nautilus eye provides poor resolution and dim imaging but

is a significantly more acute sensor than the proto-eye [Land & Nilsson (2002)].

Compared with single aperture eyes, compound eyes usually have lower image

resolution. However, they generally possess a larger viewing angle, the ability to

detect fast movement, a broader spectral response and, in some cases, the polari-

sation of light [Land & Nilsson (2002)]. For example, bees can see ultraviolet light

[Bellingham et al. (1997)]; the mantis shrimp possesses polarisation detection ca-

pability, hyperspectral capability1 [Cronin & King (1989)], and triple redundant

depth perception from both their eye constructions and their multiple eyestalk

motions (both 2D tracking, and axial rotation). The fact that these capabili-

ties are achieved using a compound eye shows the merit of radically divergent

evolution accelerated by an evolutionary visual “arms race” [Parker (2003)].

1.4.2 Towards Modern Vision

The majority of the advancements in early eyes are believed to have occurred

over only a few million years [Land & Nilsson (2002); Parker (2003)]. With

the emergence of the eye, a visual arms race began where prey and predator

species alike were forced to rapidly match or exceed any advancing capability of

their counterparts. As visual species diversified to find their niche environment,

the evolution of each species and how that species visualised their environment

became intricately coupled. For example, birds of prey evolved high visual acuity

[Land & Nilsson (2002)] - much greater than that of humans - complimenting their

evolving ability to hunt and detect prey from altitude, or through undergrowth

or camouflage. Animals such as rabbits and chameleons have eyes located so

as to reduce sensory overlap [Land & Nilsson (2002)], providing a wider field

of view suited to detecting the threat of an advancing predator. Many species,

including some mammals, birds, reptiles and fish, have eyes whose fields of vision

1The mantis shrimp’s hyperspectral capability incorporates three to four times the number
of receptors by range as humans (without including interpolation) over a wider spectral range
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largely overlap, to allow better depth perception (stereo vision - differences in

two simultaneous views of an object provide information about its distance).

By virtue of the fact that all animal species are able to move relative to their

surroundings, any animal equipped with a vision sensor is able to use that sensor

to actively investigate their environment from multiple perspectives. Motion of

the eye itself was the next progression in active visual sensing.

1.4.3 The Expanding Visual Brain

Links exist between the evolutionary emergence of vision and the expansion of

the animal brain [Parker (2003)]. Part of the increase in neural population in

vision-equipped species was undoubtedly to cope with the new and increasingly

vast channel of information. In fact, the sensory bandwidth of the visual channel

is so rich that processes exist to reduce the amount of data to that which is rel-

evant. For example, the contrast-sensitive response of ganglion cells occupies far

less bandwidth on the optic nerve (1/100th) than the amount of data hitting the

retina [Rodieck (1998)]. As we shall see (Chapter 8), saliency and attention in

the early brain instantiate an informational bottleneck that serves to detect the

most relevant visual regions to prioritise data search so that non-relevant regions

are represented with minimal bandwidth. Vision can provide spatial information

such as the location of free and occupied space; the ability to localise and navigate

within complex environments; novelty and hazard detection; communication; im-

itation and learning. Colour vision helps to further disambiguate, segment and

recognise borders, objects and regions. Colour can also contribute to commu-

nication efficiency. The neural population of the visual brain has undoubtedly

expanded to allow animals to develop such abilities.

1.5 Nurture From Nature

Machines and animals sense the same real world. We have seen that animals

have evolved invaluable visual abilities. With observations of biology, it may be

possible to accelerate the evolution of machine vision.
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1.5.1 Why Primates?

In terms of specific properties, the human eye is seemingly outdone by the eyes of

what we might otherwise consider to be “lesser species”. In many cases, primate

eyes have a narrower spectral response than other species. In daylight, human

visual acuity is significantly less than that of raptors in terms of spatial resolution,

and significantly less than various insects in terms of spectral response range. At

night, human vision is again less acute than that of raptors, as well as cats, and

even invertebrate molluscs such as squid and octopuses. So why focus on primate

vision?

• We are primates; self introspection gives us insight into how we interpret

light.

• Primates are able to provide high-level experimental feedback. Primates can

be more or less cooperative test subjects in psycho-physical experiments.

• Primates perform visual tasks seemingly effortlessly.

• We are interested in developing synthetic systems that can see how primates

see, so that we can learn about ourselves.

• Primates are highly intelligent species. They exhibit the visual abilities we

wish to synthesise.

• We are interested in investigating machines capable of producing human-

like visual abilities.

• We are interested in developing systems capable of assisting humans, for

example, via the development of prosthetic vision.

Primates use vision to perceive their environments efficiently and accurately.

We now consider how machines can benefit from biology, identifying which pri-

mate visual abilities we consider important for synthetic vision.
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1.6 Components of Perception

We now list and define components of perception considered important to primate

vision. We also discuss the relevance of these components to synthetic primate

vision. Evidence for the existence of components in the primate brain is presented

in the next chapter.

1.6.1 Active Vision

In terms of both biology and machine vision, active vision has over the years

been defined in various similar ways. In a recent 2007 keynote speech (ICVS’07),

Tsotsos summarised these as follows:

• Ullman (1984): “A set of visual routines”.

• Bajcsy (1985): “Active sensing is the problem of intelligent control strate-

gies applied to the data acquisition process which will depend on the current

state of data interpretation including recognition”.

• Aloimonos et al. (1988): “Geometric control of sensor”.

• Burt (1988): “Dynamic vision - foveation, tracking and high-level interpre-

tation”.

• Ballard (1991): “Gaze control in animate vision systems”.

• Blake & Yuille (1992): “Active vision emphasises the role of vision as a sense

for robots and real-time perception systems, with advantages for structure

from controlled motion, tracking, focussed attention and prediction”.

• Pahlavan et al. (1993): “An active visual system is a system which is able to

manipulate its visual parameters in a controlled manner in order to extract

useful data about the scene in time and space”.

• Aloimonos et al. (1993) expands his earlier definition, introducing: “Pur-

posive and qualitative active vision” to the concept of active perception.

Further, Tsotsos discusses that machines might use active vision to:
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• Attend a selected fixation location.

• Complete a task requiring multiple fixations, tracking or visual feedback

such as during object manipulation.

• Compensate for spatial non-uniformity of a processing mechanism such as

foveation.

• Track moving objects such that they become pseudo-stationary, reducing

motion blur.

• See a portion of the visual field otherwise hidden due to occlusion.

• Expand the visual search space.

• Improve acuity via sensor zoom or observer motion.

• Adjust stereo vergence for spatial perception.

• Disambiguate or eliminate degenerate views.

• Determine induced motion (kinetic depth).

• Address lighting changes (photometric stereo).

• Provide a viewpoint change when viewing a subject.

Of course, active abilities do not come without computational overheads. An

active system will also need to:

• Decide that some action is needed.

• Determine which changes are required and decide upon a priority sequence.

• Determine the spatial correspondence between the old and new viewpoints.

• Execute the change.

• Adapt the system to the new viewpoint.
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It is well understood that an active vision approach can offer computational

benefits for scene analysis in realistic environments [Bajczy (1988)]. In order to

incorporate active vision, the benefit must outweigh the cost of such overheads.

Tsotsos has described effeciency benefits of active over passive perception [Tsot-

sos (1992)]. As mentioned, Ballard published results to prove that instead of

increasing computation involved with computer vision, moving sensors actually

decreased the computational costs [Ballard (1991)]. Where animals use active

vision the benefits undoubtedly outweigh the costs. Biology has overwhelmingly

adopted active vision, suggesting it is a desirable proficiency in many circum-

stances, and perhaps a verification of Ballard’s findings.

Active vision permits foveal vision. Many species exhibit highest visual acu-

ity in a small central region of the retina known as the fovea. The human visual

system, for example, exhibits its highest resolution in the fovea, a region approx-

imately the size of a fist at arms length [Wandell (1995)]. It has been estimated

that if the human eye exhibited homogeneous resolution distribution, it would

weigh approximately 13,500 kg [Aloimonos et al. (1988)]. In this manner, foveal

vision permits significant data and processing reductions. The rest of the retina

constitutes the visual periphery. Despite being less resolute, the periphery is

very sensitive to motion [Schwartz (1980)]. By orienting the eye so as to place

the fovea over regions of interest in the focussed retinal projection of a scene (a

process known as fixation), a resolute perception of the scene can be constructed.

Humans centre and focus both eyes on surfaces of interest - originally detected in

the periphery - within the fovea for subsequent resolute processing. In fact, we

find it difficult to defocus our eyes or prevent fixation while our eyes are open.

Foveal vision is strongly complementary to both active vision and attention.

It is difficult to identify a vision-equipped animal that does not move to per-

ceive its surroundings from multiple perspectives (actively), or that does not have

the ability to direct its attention towards different locations in a scene. To in-

vestigate primate-inspired synthetic vision we would like to incorporate primate-

inspired attention, of which active vision is a required component.
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1.6.2 Attention

Attention is the cognitive process of selectively concentrating on one aspect of

the environment while ignoring less important stimuli. Visual attention is likely

to have evolved due to inherent capacity limits in visual processing resources in

combination with the evolutionary competitive need for increasingly resolute and

intricate perception.

Research has shown that purely feed-forward, unconstrained visual process-

ing seems to have an inherent exponential nature. However, even small amounts

of task guidance can turn an NP-complete problem into one with linear time

complexity [Tsotsos (1989)]. He defines visual attention as: “the set of mecha-

nisms that seek to optimise the search processes inherent in vision” [Tsotsos et al.

(1995)], and that the deployment of attention broadly incorporates:

• Select viewing parameters.

• Selection of spatial and feature dimensions of interest within the visual field.

• Selection of the general visual field - active vision.

• Selection of the visual field for detailed analysis - active vision.

• Selection of objects, events and tasks.

• Selection of a world model.

It is noted above that active vision is considered a component of attention.

Biological vision is heavily reliant upon visual attention. Animals are good at

selecting an appropriate visual field for performing tasks. They are also excellent

visual novelty detectors. Novelty detection and efficient task execution are im-

portant to survival. Attention helps reduce the amount of visual data presented

to the brain for consideration. It also assists visual search by prioritising the

evaluation of salient regions according to a visual task.

Research exists in the area of synthetic machine attention, but relatively few

implementations incorporate real-time active vision. The lack of active attention

implementations means less practical insight exists in current research. That
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is, implementing attentional saliency on an active head platform can produce

artifacts that may not have otherwise been predicted or accounted for in existing

models. Numerous models of attention have been proposed but few incorporate

the use of active cameras and dynamic 3D scenes in real-time. As we shall see,

active attention reveals issues that must be addressed.

1.6.2.1 Covert Vs Overt

Overt attention involves explicitly directing sensors towards a source of stimulus

such that information about that stimulus is maximised. Covert attention in-

volves the consideration of one stimuli in a non-overt manner. Covert attention

is thought to be a neural process that enhances the signal from a particular region

of the sensory panorama without overtly directing sensors towards that region.

The concept of covert attention was documented as early as 1890 when H. von

Helmholtz noted that he found himself “able to choose in advance which part

of the dark field off to the side of the constantly fixated pinhole [he] wanted to

perceive, by indirect vision” [Nakayama & Mackeben (1989)].

Humans and primates can overtly gaze in one direction but may covertly

attend in another. For example, if individuals attend to the right hand corner

field of view, movement of the eyes in that direction may have to be actively

suppressed while visual tasks are executed. It is likely that covert attention is a

mechanism for rapidly scanning the field of view for interesting locations and is

involved in the assessment of the next fixation point. In neural recording studies

with monkeys, scientists found they could predict the occurrence of saccades by

monitoring the activity of certain neurons [Sugrue et al. (2005)].

1.6.3 Dealing with Dynamics

The real world is dynamic. Incorporating active vision sensing introduces further

visual dynamics. In order to cope with dynamic lighting conditions, ganglion cells

in the retina convert the retinal projection of the scene into contrast response

output. The output on the optic nerve is similar to the output a difference-of-

Gaussian (DOG) convolution over the original image. Such a representation is

considerably more illumination-independent than the original image. Primates
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also cope with deliberate eye motions via an egocentric reference frame where

spatial locations of scene contents are related across eye motions. Monkeys retain

a short term memory of attended locations across saccades by transferring activity

among spatially-tuned neurons within the intra-parietal sulcus [Merriam et al.

(2003)], thus retaining accurate global representations of visual space across eye

movements.

Machine vision could benefit from illumination-independent image represen-

tations. Also, projecting images into a static egocentric reference frame would

relate active camera images over time and space, and from multiple cameras, into

a common representation.

1.6.4 Coordinated Fixation

Coordinated fixation involves enforcing stereo camera fixation upon a scene point.

Ideally, it is the specific propensity to enforce fixation of multiple cameras upon

precisely the same scene point, rather than try to point each camera at each

location independently via some form of search. Humans find it impossible to

fixate both eyes on different scene points. If machines are to experience primate-

like vision, they should exhibit the same behaviour.

Implementations of real-time machine attention are not common, so there has

been no significant cause to investigate real-time coordinated stereo foveal fixa-

tion suited to such real-time attention. Coordinated fixation would compliment

attention, foveation and active vision, and help integrate multiple views of a scene

into the aforementioned common representation.

1.6.5 Spatial Perception

Vision provides animals with a 3D perception of free space and occupied space

in their vicinity. Animals are good at collision avoidance, even at high speeds.

Humans experience an egocentric spatial reference frame. Egocentric real-time

local spatial awareness would be especially useful for autonomous machines and

object manipulation.
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1.6.6 Efficient Representations

The bandwidth of visual data projected onto the primate retina is so rich that

processes exist to reduce the amount of data that reaches the visual brain. Ac-

cordingly, a synthetic visual system would benefit, in terms of data transfer and

bandwidth limitations, from efficient image representations. By efficient, we infer

that the bandwidth-reduced representation of the sensory image does not signif-

icantly impede perception. Subsequent (higher level) scene interpretations, such

as a spatial representation of the scene, should also be constructed in such a way

that they do not adversely affect performance.

1.6.7 Task Flexibility

Animals efficiently interpret retinal projections of scenes. They are able to rapidly

perform multiple visual tasks in parallel. Often their survival depends on this.

Primates perform multiple tasks simultaneously. Biology may therefore offer

some insight into how to structure such a processing framework. Similarly, a

synthetic vision system should be capable of rapidly performing multiple simul-

taneous visual tasks. The framework should permit concurrent serial and parallel

processing. Indeed, numerous scalable vision processing networks exist in current

research [Ude et al. (2005)]. Such frameworks are useful for investigating primate-

like capabilities for synthetic vision systems. The vision system is developed on

a processing network of high-end, yet common available, computers.

1.7 Building a Model

Over the last century, there have been extensive studies of eyes, neurons and the

brain structures devoted to processing visual stimuli in both humans and various

animals. This has led to a coarse, yet complicated, description of how biological

vision systems operate in order to solve certain vision-related tasks. These results

have led to a subfield within computer vision where artificial systems are designed

to mimic components, processing and behaviour of biological systems, at different

levels of complexity.
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We devise a model capable of primate-like perception that incorporates abil-

ities defined in the previous section, based upon literature and experimentation.

We consider existing neural and behavioral studies, and psycho-physical evidence.

We conduct psycho-physical trials to evaluate aspects of unconstrained 3D human

attention. We implement such desirable behaviours on a processing network by

minimising network bandwidth and latency. We consider the processing struc-

ture in light of neurobiological studies. The implementation incorporates both

biologically inspired, and computational algorithms from literature where possi-

ble, and additional functionality is engineered as necessary. We allow the cameras

to automatically adjust parameters such as contrast, brightness and saturation.

The algorithms used should subsequently be robust enough to cope with image

variations this may introduce.

The biological hardware of the brain has impressive capabilities. A computer

is capable of millions of exacting floating-point calculations per second. Of course,

different processing hardware exhibits different strengths and capabilities that

may not be transposable. We are, however, interested in what can be achieved on

computers in terms of primate-inspired vision. In using computer vision, it is only

possible to develop algorithms whose function is similar to human capabilities,

but it is not possible, or necessary, to use the exact implementation employed by

the brain. For example, the centre-surround contrast response of retinal ganglion

cells to the optic nerve can be synthesised by using a DOG convolution applied to

a memory buffer containing pixel intensities. The difference in hardware means

that in some instances it is necessary to use non-biological methods to generate

outputs that synthesise biological functionality. For example, we may produce

a depth map using area-based correlations, despite the fact that it is known the

brain does not determine scene depths the same way.

Finally, once we have a system capable of synthesising primate scene percep-

tion, we want to evaluate it. We want to assess its capabilities in terms of both

tangible metrics and primate-like behaviours. Little psycho-physical data exists

that evaluates unconstrained primate attention. When observing unbounded 3D

scenes humans are unlikely to exhibit behaviours identical to those exhibited

when they observe static pictures or 2D videos (as utilised in most attentional
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experimentation to date). Depth and covert (peripheral) object tracking, for ex-

ample, are likely to affect attention in a manner that the use of static images

cannot demonstrate.

1.8 In This Thesis

1.8.1 Contributions

We look to biology for inspiration in addressing the challenges of developing a

synthetic primate vision system. We develop a model of primate vision that does

not contradict behavioural observations of biology. We synthesise components of

the primate vision system. With consideration of biology, we develop a flexible

framework upon which components can be integrated. We integrate synthesised

components into a ‘minimal’ but expandable system suitable for many tasks. We

define methods to quantitatively evaluate unconstraind 3D primate attention.

We conduct pychophysical trials to compile behavioural human attention data.

Based on this data, we evaluate the implemented system according to behavioral

similarity to primate attention.

We investigate what can be implemented in real-time within reasonable pro-

cessing limitations. We address hardware limitations by implementing compo-

nents with outputs similar to biological functionality, but whose actual imple-

mentation may not resemble that of the primate brain. We produce a system

capable of simultaneous spatial awareness, novelty detection and performing vi-

sual tasks. In terms of deploying attention, the system behaves similarly to hu-

mans. The system allows the investigation of primate-inspired synthetic vision.

Its manifestation contributes practical insight into the development of machines

that are capable of producing human-like visual behaviours.

Specific contributions (subsequently defined in this thesis) are:

• Active online epipolar rectification.

• Active mosaicing, including spatio-temporal binding of active vision images

into a globally epipolar rectified static reference frame.
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• The ability to perform any static stereo algorithms on an active stereo

platform.

• A Bayesian occupancy grid framework for spatial awareness, incorporating

an egocentric reference frame.

• A Markov random field zero disparity filter (MRF ZDF) foveal segmenta-

tion, coordinated fixation and tracking.

• A real-time implementation of MRF optimisation using graph cuts.

• Primate-inspired synthetic active attention incorporating real-time bottom-

up visual saliency and task-dependent spatial biassing (TSB).

• Primate-inspired synthetic active-dynamic attention incorporating dynamic

inhibition of return (IOR).

• A psycho-physical evaluation of unconstrained 3D human attentional be-

haviours.

• Extraction of parameters from gaze data for evaluation of unconstrained

3D synthetic primate attentional behaviours.

• An expandable real-time vision processing network framework.

• A flexible real-time primate-inspired vision system.

1.8.2 Roadmap

Background information upon which this research builds is presented as follows:

• Chapter 2: We describe basic components of the primate vision system.

• Chapter 3: We introduce relevant existing synthetic models of human vision

and function of relevant components of human vision. We then propose our

system model.

• Chapter 4: We present the biologically-inspired research platform, including

its control and input and output (I/O) for system integration.
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Figure 1.3: Components of the synthetic vision system presented in this thesis.

After presenting background information, the system is described in terms of

its components. It incorporates: 1) hardware that produces data; which must

2) be put into spatiotemporal context, for 3) processing and interpretation. Fig-

ure 1.3 shows a broad system map divided into three sections: hardware, kine-

matics and processing. The diagram does not constrain the system in any way.

Its boundaries are not necessarily rigid, in particular, the divisions separating

rows in the processing column.

The next four chapters contain the major technical contributions in this thesis:

• Chapter 5: We develop methods necessary to cope with active vision in-

cluding active rectification and mosaicing.

• Chapter 6: We develop a real-time perception of spatial awareness.

• Chapter 7: We develop a robust real-time foveal algorithm that ensures

coordinated stereo fixation upon scene surfaces. The algorithm also enables

subject segmentation and tracking.

• Chapter 8: We consider where to look. We develop primate-inspired at-

tention suitable for concurrent visual tasks in dynamic scenes with active

vision.

The research system is based on properties of primate vision, so it should

reflect primate-like behaviours. The system is also designed to operate in the
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same environment as primates - the real world. We therefore conduct psycho-

physical human trials to extract some behavioural characteristics of unconstrained

human attention in a 3D scene. Having conducted the trials, we return to the

synthetic system to conduct identical synthetic trials for comparison with human

results. The corresponding chapters are:

• Chapter 9: Human trials; investigating behavioural characteristics of hu-

man visual attention while freely observing a 3D scene, given a simple search

task.

• Chapter 10: Synthetic trials; investigating behavioural characteristics of the

developed model of synthetic visual attention. A quantitative comparison

of the behaviour of the synthetic vision system and human vision.

Finally, the body of research is summarised, its implications discussed, and

the thesis is brought to conclusion in Chapter 11.

1.8.3 Summary

We investigate machine vision for seeing the real world. We explore what biology

finds relevant for visual perception in the real world. We conduct this research

using readily available equipment. We apply knowledge from literature, biology

and human experience.
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Chapter 2

Primate Vision System

Figure 2.1: Components of the human vision system. The approximate surface

profiles of areas in the primate visual cortex are shown.
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In this chapter we begin by reviewing components of primate vision. We then

discuss the locations in the brain where perceptions such as spatial awareness and

attention take place.

2.1 Introduction

We have motivated primate vision as inspiration for synthetic visual perception.

The visual system is the part of the nervous system that senses and interprets

the information available from visible light. Visual information is used to build

environmental perception. The visual system has the complex task of interpreting

a 3D world from 2D projections of that world.

We now investigate how the primate brain achieves scene perception and what

components contribute to perception. Before we can identify where visual per-

ceptions occur in the primate brain, we must first consider the structure of the

primate visual brain. We then look for evidence of perception within this struc-

ture.

We first consider the physical properties and mechanical extra-ocular structure

of the eye as inspiration for a synthetic platform. We also consider behavioural eye

movements so that we may incorporate such behaviours into a synthetic model,

and compare the resultant synthetic behaviours to that of primates. We look at

the acquisition of visual data in the retina and investigate the structure of the

visual brain by following the propagation of the retinal response to visual stim-

ulus through the brain. In doing so, we may provide insight into structuring a

synthetic vision processing architecture. For example, we observe the propaga-

tion of responses along somewhat separate channels in the brain, note the basic

neuronal responses, and observe where serial and parallel processing occurs. As

we shall see, following the propagation of response to retinal stimulus through

the brain yields evidence of characteristics such as parallel processing, and the

separation of stimulus into cues and other channels. We also consider how the

brain constructs efficient representations of visual data, and the interaction be-

tween processing areas, including the forward flow and feedback between brain

areas. When considering the physical structure of the visual brain, we do not

consider what is perceived on more than a local functional level.
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Having summarised the physical structure of the visual brain, we then consider

the components of primate visual perception as inspiration for the development of

the components of synthetic visual perception. We concentrate on those regions

involved in dealing with kinematics, spatial awareness and attention. We present

evidence of the components of perception, and look at existing literature for

information about where components of perception such as spatial awareness

and attention manifest within the visual cortex. We consider how the existence

of such components of perception have been confirmed. By localising where

perceptions occur within the visual brain, we can understand what input and

output responses are likely to be involved in each component of perception.

Figure 2.1 shows the main constituents of the primate visual system, including:

• The eye, including intra-ocular components such as the retina, and extra-

ocular components such as muscles.

• The optic nerve, chiasm and tract.

• The lateral geniculate nucleus (LGN) and optic radiations.

• The visual cortex.

• The dorsal and ventral streams.

2.2 The Primate Eye

For the purpose of gaining insight into the development of a synthetic vision

mechanism, we review the eye, including its structure, function and ocular per-

formance. Where not explicitly referenced otherwise, this section (Section 2.2)

makes reference to biology texts such as [Rodieck (1998)].

The structure of the primate eye (Figure 2.2) can be divided into two main

geographical segments: the anterior segment and the posterior segment. The an-

terior segment is the front third of the eye that includes the structures in front

of the vitreous humour: the cornea, iris, ciliary body, and lens. The posterior

segment is the back two-thirds of the eye that includes the anterior hyaloid mem-

brane, vitreous humor, retina, choroid and optic nerve. The structure can also
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Figure 2.2: Structure of the primate eye.
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be considered in terms of the appearance of its three main functional layers: the

fibrous tunic contains the cornea and sclera; the vascular tunic which includes

the iris, ciliary body and choroid; and the nervous tunic. The nervous tunic is

the inner sensory region which includes the retina.

The retina contains photosensitive rod and cone cells and associated neurons.

The retina is a relatively smooth layer with two distinct features - the fovea and

optic disc. The fovea is a dip in the retina directly opposite the lens. It is largely

responsible for sensing colour, and enables high acuity. The optic disc is a point

on the retina where the optic nerve enters the retina to connect to the nerve cells

on its inside. No photosensitive cells exist at the optic disc, which is why it is

sometimes referred to as the anatomical blind spot. The pupil, lens and retina

form an optical structure similar to that of the aperture, lens and focal plane

of modern cameras. Both systems may be approximated by the pinhole camera

model.

2.2.1 Interpreting Light - Retinal Structure

We now consider how the retina interprets projections of a scene. We can obtain

insight into how it encodes images into efficient representations and channels

for subsequent processing by the primate visual brain. An understanding of the

function of the human eye serves to distinguish functions occurring a sensory level

(retinal functions) as opposed to processing level (visual cortex functions). It also

serves to benchmark human vision performance for comparison with synthetic

vision systems.

Light enters the eye through the pupil. The lens focusses light on the retina

causing chemical reactions in photosensitive cells, the products of which trigger

nerve impulses that travel to the brain. The retina contains two forms of pho-

tosensitive cells that are structurally and metabolically similar - rods and cones.

Rod cells are highly sensitive to light, but they cannot discriminate colour. Cone

cells enable high visual acuity and need more intense light to elicit a response.

Different cone cells respond to different wavelengths of light, which allow primates

to perceive colour.
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Rod cells contain the protein rhodopsin which is highly sensitive across the

spectrum of visible light. Cone cells contain different proteins sensitive to each of

the three primary colours: red, green and blue. When subjected to electromag-

netic radiation, the proteins break down into two constituent products, creating

ion channels on the cell membranes that hyperpolarise the cell leading to a release

of transmitter molecules at the synapse.

The fovea, directly behind the lens, consists of mostly densely packed cone

cells. Each cone cell is connected to a single bipolar cell, increasing detail and

resulting in detailed visual acuity of the fovea, but also reducing low light sensi-

tivity. The density of rod cells increases towards the periphery. Several rod cells

are connected to a single bipolar cell, which then connects to a single ganglion

cell that relays input to the visual cortex. This allows rods to accumulate input

over an area for transmission at a single synapse. Figure 2.3 shows the interaction

of the layers of cells in the retina.

There are two functional modes of ganglion cells that produce different outputs

on the optic fibres: the on-centre and off-centre responses. For both, the strongest

ganglion response is elicited when the spatially central region of the receptive field

of the ganglion cell experiences opposite stimulus to its surroundings. This occurs,

for example, when the centre is illuminated but the surroundings are not, or vice

versa. Figure 2.4 shows the modes of stimulation, and the respective outputs, of

on-centre and off-centre ganglion cells.

Each ganglion cell produces either an on-centre or off-centre opponency re-

sponse. The response comes from either light-dark illumination opponency (from

rod cells), or red-green or blue-yellow colour opponency (from cone cells). A sin-

gle ganglion cell can take input from either rods, cones or both. In the fovea,

ganglion cell inputs are mostly from cones (colour opponency). Towards the pe-

riphery, the ganglion inputs are predominantly from rods (light-dark opponency).

Where ganglion cells take input from both rods and cones (in particular, within

the fovea), their output is either colour opponency or light-dark opponency. The

type of output elicited depends on the level of ambient lighting. In low lighting

conditions, the outputs are predominantly from light-dark responses from rod

cells. In good lighting, the outputs are predominantly colour opponency from

cone cells.
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Figure 2.3: Layers in the retina. Light enters from bottom.
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Figure 2.4: Output firing of ganglion cells during different modes of stimulation

of its receptive field, as described by [Rodieck (1998)].

There are several classes of ganglion cells, named according to the the type of

photoreceptors they connect to and the brain locations to which the optic fibres

project the output. Namely:

• Midget (Parvocellular, or P pathway) ganglions receive inputs from rela-

tively few rods and cones over a small centre-surround receptive field. They

primarily respond to changes in colour but respond weakly to changes in

contrast unless the change is great [Kandel et al. (2000)]. They project to

the parvocellular layers of the LGN. About 80% of retinal ganglion cells are

midget cells.

• Parasol (Magnocellular, or M pathway) ganglions receive input from numer-

ous rod and cone cells. They respond well to contrast (even low contrast)

stimuli, but are not very sensitive to changes in colour [Kandel et al. (2000)].

They have much larger centre-surround receptive fields. They project to the

magnocellular layers of the LGN. About 10% of retinal ganglion cells are

parasol cells.

• Bistratified (Koniocellular, or K pathway) ganglions project to the konio-

cellular layers of the LGN. About 10% of retinal ganglion cells are bistrat-
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ified. They receive inputs from intermediate numbers of rods and cones.

They have moderate spatial resolution and can respond to moderate con-

trast stimuli. They may be involved in colour vision. They have very large

receptive fields that only have centres (no surrounds).

Other smaller populations of ganglion cell types exist. These project to the

suprachiasmatic nucleus (SCN) for moderating circadian rhythms; to the superior

colliculus for controlling eye movements; and to the Edinger-Westphal nucleus

(EW) for control of the pupillary light reflex [Kandel et al. (2000)].

2.2.2 Retinal Performance

Retinal performance parameters may be used to quantify the visual abilities that

humans have evolved. It is desirable that a synthetic primate vision sensor ex-

hibits similar performance. The acuity and dynamic response of the human eye

have been determined using various metrics.

Visual Acuity: Cycles per degree (CPD), is the most common method used

by optometrists to measure human angular resolution. The test involves discrim-

inating equal width black and white lines at a distance of 1m. Various estimates

have been documented, reporting ‘average’ human performances ranging between

60CPD [Curcio et al. (1990)] and 150CPD [Campbell & Green (1965)], the for-

mer corresponding to line widths of 0.93mm at a distance of 1m for the fovea

centralis. The angle of sharp foveal vision is just a few degrees (typically ∼ 2o)

over which 60CPD corresponds to a resolution of approximately one megapixel.

Equivalent Resolution: The perception of wide and sharp human vision is

based on actively turning the eyes towards multiple points of interest in the field

of view. The brain augments resolute foveal imagery over time and spatial sac-

cades into the unified perception. Various estimations of equivalent resolution

have been conducted by extrapolating the resolution of the fovea centralis over

the entire visual field. For example, for a ‘conservative’ square field of view of

120o, it has been estimated as from 81 megapixels [Fischer & Tadic (2000)] to

576 megapixels [Clark (2005)]. The attentional scanpaths chosen by the observer

39



2. PRIMATE VISION SYSTEM

in building such a resolute perception, as we shall discuss later, is highly depen-

dent on scene content.

Dynamic range: It is generally accepted that the human retina has a static

contrast ratio of around 100:1, and a total dynamic contrast ratio of about

1,000,000:1, depending on illumination. The eye re-adjusts exposure sensitiv-

ity both chemically, and by adjusting the iris. Peak adaptation typically occurs

within 30 minutes. The adjustment rate is non-linear and often interrupted by

illumination variations or saccades. Significant adaptation takes place within sec-

onds of perturbation.

Spectral response: The visible spectrum of light ranges approximately from

400 to 700nm.

Modern video cameras commonly exhibit a broader spectral response than

humans. The human periphery extends over a field of view of approximately

140o. Pinhole model cameras can achieve fields of view up to 180o, depending

upon lens choice. Camera acuity depends largely upon zoom lenses, but the res-

olution of existing CCD/CMOS sensors per unit area is significantly lower than

that of the human retina. An active vision system’s equivalent resolution would

depend upon the image sampling resolution as well as methods used to integrate

images across pan and tilt motions.

2.2.3 Extraocular Structure - Eye Motion

An understanding of the extraocular structure of the eye potentially provides

insight into factors important in the design of a synthetic active vision mechanism.

It reveals the degrees of freedom and the ranges of motion that evolution considers

important for vision in the real world.

Each eye has six muscles that control its movements: the lateral rectus, the

medial rectus, the inferior rectus, the superior rectus, the inferior oblique and

the superior oblique. The actuating muscles of the human eye are shown in

Figure 2.5. When the muscles exert different tensions, a torque is exerted on the
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Figure 2.5: Actuating muscles of the human eye.

eye that causes it to move. This is an almost pure rotation, with only about

1mm of translation. The eye is commonly approximated as undergoing rotations

about a single point in the centre of the eye.

2.2.3.1 Agility

Human eyes are capable of tracking objects moving across the field of view at up

to around 100o/s. Attention shifts can achieve velocities around 400o/s. Humans

are typically capable of performing a maximum of three point-to-point-return

fixations per second. They can typically focus on surfaces from around 10cm dis-

tance up to infinity. An approximate control resolution for eye motions is around

0.2o, however visual perception may provide the sensation of greater accuracy

(see Section 2.2.3.2).
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2.2.3.2 Behavioural Eye Movements

Primates exhibit various instinctual and reflexive eye motions that help to sta-

bilise the projection of a scene onto the retina. Knowledge of these behaviours

provides useful information for comparison with those elicited by a synthetic sys-

tem. It also highlights the usefulness of active eye motion and provides insight

into how primates control gaze. Behavioural eye movements include:

Vestibulo-ocular reflex: This is the ability to physically counteract shifts in

the projection of a scene onto the retina during head movement by instinctively

producing an eye movement in the direction opposite to such head movements,

thus preserving the image on the centre of the visual field. For example, when

the head turns to the right, the eyes turn to the left, and vice versa.

Smooth pursuit: The is the ability to track moving objects. Tracking updates

occur with less accuracy and at a slower rate than the vestibulo-ocular reflex,

as pursuit requires cognitive processing of incoming visual information and the

supply of feedback. During smooth pursuit the eyes will often ‘jump’ to keep up

with a moving target and to correct tracking errors.

Saccades: Rapid simultaneous movements of both eyes towards the same vi-

sual target.

Microsaccades: When concentrating on a single scene point, though appar-

ently stable, gaze occasionally exhibits tiny saccades. This motion is thought to

stimulate individual retinal photoreceptor cells that would otherwise stop gener-

ating output. Microsaccades typically move the eye less 0.2o.

Vergence: Binocular attention towards an object involves rotating the eyes

around a vertical axis so that the projection of the image is aligned in the centre of

the retina of both eyes. In observing an object closer than the previously attended

location, the eyes converge; for an object farther away, they diverge. Vergence

movements are closely connected to focal adjustments (accommodation). A shift
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in fixation to an object at a different depth will involve both vergence and ac-

commodation.

Optokinetic reflex: When in motion, the optokinetic reflex cyclically saccades

and smoothly pursues stationary objects as they are passed.

2.3 Structure of the Visual Brain

Figure 2.1 shows the main areas involved in acquiring, transferring and processing

visual information in the primate brain. We now look at physical connections in

the visual brain and the associated flow of information. The processing response

to retinal visual stimulus first propagates from the retina to the visual cortex.

From the visual cortex it propagates into the dorsal and ventral streams. In

this section we summarise the flow of information along these streams and look

briefly at the specific function of regions in the visual cortex. Where not explicitly

referenced otherwise, this section (Section 2.3) makes reference to biology texts

such as [Kandel et al. (2000)].

2.3.1 From the Retina to the Visual Cortex

Neural responses to visual stimuli propagate to the visual cortex according to

where they originated in the retina. This provides further evidence for the preser-

vation of separate channels during processing in the visual brain, according to how

channels were generated in the retina. For example, the response generated by K

cells (colour) in the left retina are coherently transferred to a different processing

area than responses generated by right retinal M cells (contrast/texture).

The main components involved in propagating retinal responses from the eye

to the visual cortex are:

Optic nerve: About 90% of retinal ganglion cells transfer information to the

brain via axons along the optic nerve.

Optic chiasm: The optic nerves from both eyes meet and cross at the optic
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chiasm, at the base of the hypothalamus. At this point the information coming

from both eyes is combined and then splits according to the visual field. The

corresponding halves of the field of view (right and left) are sent to the left and

right halves of the brain, respectively, to be processed. That is, the right side of

primary visual cortex deals with the left half of the field of view from both eyes,

and similarly for the left brain [Nolte (2002)]. A small region in the centre of the

field of view is processed redundantly by both halves of the brain.

Optic tract: Information from the right visual fields of each eye travels along

the left optic tract. Similarly, information from the left visual fields travels along

the right optic tract. Each optic tract terminates in the LGN.

Lateral geniculate nucleus LGN: The LGN is a sensory nucleus in the tha-

lamus of the brain. It consists of six layers in humans and most other primates

[Nolte (2002)]. Layers one, four, and six correspond to information from one eye;

layers two, three, and five correspond to information from the other eye. Layer

one connects to the M cells (depth and/or motion) of the optic nerve of the op-

posite eye. Layers four and six also connect to the opposite eye, but to the P

cells (colour and edges) of the optic nerve. In contrast, layers two, three and five

connect to the M cells and P cells of the optic nerve for the same side of the

brain as its respective LGN. In between the six layers are smaller cells that re-

ceive information from the K cells (colour) in the retina. The output of the LGN

propagates to the primary visual cortex (V1) via the optic radiations. Recent

research suggests that some modulation responses are elicited in the LGN, and

that it may not merely function as a relay nucleus [Sherman (2006)].

Optic radiations: Information is transferred from the LGN to the visual cortex

via the optic radiatoins. The P layer neurons of the LGN relay to the V1 layer

known as 4C β. The M layer neurons relay to the V1 layer known as 4C α. The

K layer neurons in the LGN relay to large neurons called blobs in layers 2 and 3

of V1.
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There is a direct correspondence from an angular position in the field of view

of the eye, all the way through the optic tract to a nerve position in V1. From

there, more cross-connections exist within the visual cortex.

2.3.2 Visual Cortex

In this section, we follow the response to visual stimulus as it propagates through

the visual cortex. This enables us to understand the extent of the preservation

of the initial separation of visual responses according to the retinal origin such

as colour or intensity channels, or left and right visual field channels. We may

also extract information about modulation and feedback, which provides insight

into how some visual functions are affected by higher brain areas and cognition,

and the sequencing of processing. The main processing areas in the visual cortex

include the primary visual cortex (V1), V2, V3, V4 and MT (V5).

2.3.2.1 Primary Visual Cortex (V1)

The primary visual cortex (V1) is the earliest cortical visual area. Visual in-

formation relayed to V1 is more or less coded in terms of local contrast levels.

There is a well-defined spatial mapping of the visual image from retina to V1

- even the blind spots are mapped into V1. V1 is divided into six functionally

distinct layers. Layer four receives most of the visual input from the LGN.

V1 processes information about static and moving objects, and pattern recog-

nition. Neurons in V1 have the smallest receptive field size of any visual cortex

region, perhaps for the purpose of accurate spatial encoding. Individual V1 neu-

rons tune to one of the two eyes (ocular dominance). Early neuron responses

(up to 40ms in propagation time into V1) are thought to consist of tiled sets of

selective spatiotemporal filters that can discriminate small changes in spatial fre-

quency, orientation, motion, speed, colour, and other spatiotemporal features. In

the visual cortex in general, neurons with similar tuning properties tend to clus-

ter together as cortical columns. The exact organisation of such cortical columns

within V1 is not known.

Later in propagational time (beyond 100ms into V1), neurons are progressively

more sensitive to the global organisation of the scene [Lamme et al. (2000)]. This
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property may stem from recurrent processing (the proximity influence of higher-

tier cortical areas) and lateral connections. As information relayed beyond V1,

it is increasingly non-local in character.

2.3.2.2 V2

Visual area V2 is the second major area in the visual cortex. It receives strong

feed-forward connections from V1 and sends strong connections to V3, V4 and V5.

It also sends strong feedback connections to V1. V2 is split into four quadrants:

a dorsal and ventral quadrant in each of the left and the right hemispheres.

Together, these four regions provide a complete spatial map of the visual world.

Functionally, V2 has many properties in common with V1. Cells are tuned to

simple properties such as orientation, spatial frequency and colour. The responses

of many V2 neurons are also modulated by more complex properties, such as the

orientation of illusory contours, and whether the stimulus is part of the foreground

or the background [Qiu & von der Heydt (2005)].

2.3.2.3 V3

Visual area V3 is the cortical area located immediately in front of V2. A distinc-

tion is often made between “dorsal V3” and “ventral V3” (or ventral posterior

area, VP) according to their upper and lower cerebral hemisphere locations re-

spectively. They also have distinctly separate connections with other parts of the

brain, appear physically different, and contain neurons that respond to different

combinations of visual stimulus (for example, colour-selective neurons are more

common in ventral V3).

Dorsal V3 is normally considered to be part of the dorsal stream, mainly re-

ceiving inputs from V2, and projecting to the posterior parietal cortex. Other

studies prefer to consider dorsal V3 as part of a larger area, named the dor-

somedial area (DM), which is thought to contain a representation of the entire

visual field. Work with functional magnetic resonance imaging (fMRI) has sug-

gested that area V3 may play a role in the processing of global motion [Braddick

& O’Brian (2001)]. Neurons in area DM respond to coherent motion of large

patterns covering extensive portions of the visual field.
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VP has much weaker connections from the primary visual area, and stronger

connections with the inferotemporal cortex. It was originally thought that VP

contained a representation of the upper part of the visual field but it is now

thought that it contains a complete visual representation.

2.3.2.4 V4

V4 is the third cortical area in the ventral stream, receiving strong input from

V2 and projecting strong connections to the posterior inferotemporal (PIT) cor-

tex. It also receives inputs from V1, especially for central space. It has weaker

connections to V5 and some other areas.

V4 is the earliest area in the ventral stream shown to be modulated by atten-

tion [Moran & Desimone (1985)]. Most studies indicate that selective attention

can change firing rates in V4 by about 20%. Like V1, V4 is tuned to orientation,

spatial frequency and colour. It is also tuned for object features of intermedi-

ate complexity, like simple geometric shapes. The full extent of tuning in V4 is

not known. Unlike other areas in the inferotemporal cortex, V4 is not tuned for

complex objects such as faces.

2.3.2.5 V5/MT

There is uncertainty as to the exact function of area visual area V5, also known

as visual area MT (middle temporal). It is thought to play a major role in the

perception of motion, the integration of local motion signals into global precepts,

and the guidance of some eye movements [Born & Bradley (2005)].

MT is connected to numerous cortical and subcortical brain areas. V1 provides

the strongest feed-forward connection to MT. Input is also received from V2,

dorsal V3 and the koniocellular regions of the LGN. MT sends its major outputs

to areas located in the cortex immediately surrounding it, including the floor

of the superior temporal sulcus (FST), the superior temporal area (MST) and

V4t (the middle temporal crescent). It also projects to the eye movement-related

areas of the frontal and parietal lobes.
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2.4 Perception in the Primate Visual Brain

We have described the major physical connections between areas in the visual

brain, and the general increase in functional complexity that occurs as responses

propagate through these areas. We now consider the development of perception

in the visual cortex, and along the dorsal and ventral streams. We concentrate

on cue extraction and modulation, and the components of spatial perception

and attention. We do not consider higher cognition such as recognition. We

summarise neurobiological and psycho-physical evidence for the existence and

interaction/ordering of such components. This process highlights the importance

of such components in human perception. Moreover, it provides insight into the

integration of relevant components into a primate-inspired system.

2.4.1 Early Visual Cues

Pre-attentive computation of visual cues occurs across the entire visual field

[Itti & Koch (2001)]. Cue processing takes around 25-50ms. Cue feature maps

are computed in parallel but separate cortical streams (hypercolumns) [Dacey

(1996)], and computation is not solely feed-forward. Top-down modulation of

cue pre-attentive cue processing is known to occur, affecting things like cue pri-

ority and cue sensitivity. Pre-attentive computation has been shown to occur

persistently; neurons involved in pre-attentive cue processing fire vigorously even

if the subject is attending away from the receptive field or is anesthetised [Treue

& Maunsell (1996)]. Neuronal tuning becomes increasingly specialised with pro-

gression from low to mid-level visual areas. Mid-levels include those that respond

to corners or junctions [Pasupathy & Connor (1999)], shape-from-shading [Braun

(1993)], and basic object recognition.

As described, neurons at the earliest stages are known to respond to simple

features such as intensity contrast, colour, orientation, motion and stereo dis-

parity. Spatial feature contrast is important, not local absolute feature strength

[Nothdurf (1990)]. Early visual neurons are tuned to spatial contrast in cues,

and neuronal responses are strongly modulated by context, in a manner that ex-

tends far beyond the range of the classical receptive field (CRF) [Allman et al.
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Figure 2.6: Main forward propagation of responses to visual stimulus through

the human brain. The ventral stream passes through the inferotemporal lobe,

the dorsal stream through the parietal lobe. Not all pathways shown.

(1985)]. A broad inhibitory effect occurs when a neuron is excited with its pre-

ferred stimulus but that stimulus extends beyond the neuron’s CRF. Conversely,

little inhibition occurs when the stimulus is restricted to the CRF, and surrounds

contain non-preferred stimulus [Sillito et al. (1995)]. Additionally, long-range ex-

citatory connections in V1 appear to enhance responses of orientation-selective

neurons when stimuli extend to form a contour [Gilbert et al. (2000)]. A result is

that monkeys exhibit sparse activity when viewing complex natural scenes, com-

pared to the vigorous response elicited by small laboratory stimuli in isolation.

These observations point towards non-classical surround modulation.

2.4.2 Perception in the Dorsal and Ventral Streams

After reaching the visual cortex, responses propagate towards ’higher’ levels along

two general pathways - the dorsal and ventral streams (Figure 2.6). The dorsal

stream connects the visual cortex to the posterior parietal lobe. The ventral

stream connects the visual cortex to the inferotemporal lobe.

The dorsal stream is primarily involved in spatial localisation and directing

gaze towards objects of interest in a scene. The control of attention is believed

to take place in the dorsal stream. The dorsal stream is often generalised as the
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“where” stream [Rodieck (1998)].

The ventral stream is mainly concerned with recognition and identification. It

is also involved in the representation of the attended objects that pass through the

attentional bottleneck. Although probably not directly involved with the control

of attention, the ventral stream areas have been shown to receive attentional

feedback modulation [Moran & Desimone (1985)]. The ventral stream is often

generalised as the “what” stream.

The dorsal and ventral streams interact because scene understanding involves

both recognition and spatial deployment of attention. Some such interactions

occur in the prefrontal cortex, which is bi-directionally connected to both the

inferotemporal cortex and the posterior parietal cortex [Kandel et al. (2000)].

The prefrontal cortex is responsible for planning and action and as such has a

role in modulating, via feedback, the dorsal and ventral processing streams.

2.4.3 Spatial Perception

Humans experience a rich egocentric perception of scene structure and motion.

Mechanisms of spatial updating maintain accurate representations of visual space

across eye movements. We now consider how and where this perception develops

within the brain.

2.4.3.1 Motion Perception

First order motion perception refers to the perception of the motion of an object

that differs in luminance from its background, such as a black bug crawling across

a white page. Second order motion occurs when a moving contour is defined by

contrast, texture, flicker or some other quality that does not result in an increase

in luminance or motion energy of the stimulus. There is evidence to suggest

that early processing of first and second order motion is carried out by separate

pathways [Nishida et al. (2001)]. As described earlier, individual neurons early in

the visual system (LGN, V1 and even V3) respond to motion that occurs locally

within their receptive field. Each local motion-detecting neuron may suffer from
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the aperture problem 1, so that the estimates from many neurons need to be

integrated into a global motion estimate. This appears to occur in area MT/V5

in the human visual cortex where first and second order signals appear to be fully

combined [Kandel et al. (2000)].

While the eye is stationary, primates can perceive relative velocities of scene

surfaces with high accuracy. However, during eye movements accuracy is reduced.

When a non-fixated object moves towards or away from an observer without being

attended, the ability to discern absolute and relative velocities is still present,

although not as accurate, via disparity. Velocity estimations also improve with

lighting intensity.

2.4.3.2 Depth Perception

Depth perception is the visual ability to perceive the world as three-dimensional.

Stereopsis is depth perception from binocular vision that exploits parallax dis-

parities. Animals that have their eyes placed frontally can also use information

derived from the different projection of objects onto each retina to judge depth.

By using two images of the same scene obtained from slightly different angles, it

is possible to triangulate the distance to an object with a high degree of accuracy.

If an object is far away, the disparity of that image falling on both retinas will

be small. If the object is close or near, the disparity will be large.

In the 1980s, neurons were found in V2 of the monkey brain that responded to

the depth of random-dot stereograms [Poggio et al. (1988)]. It is now known that

numerous visual brain areas contain neurons involved in depth perception. Re-

cent experimental results [Neri et al. (2004)] determined that dorsal areas (V3A,

MT/V5, V7) show more adaptation to absolute than to relative disparity; ventral

areas (hV4, V8/V4) show an equal adaptation to both; and early visual areas (V1,

1Each neuron in the visual system is sensitive to visual input in a small part of the visual
field, as if each neuron is looking at the visual field through a small window or aperture.
The motion direction of a contour is ambiguous, because the motion component parallel to
the line cannot be inferred based on the visual input. This means that a variety of contours
of different orientations moving at different speeds can cause identical responses in a motion
sensitive neuron in the visual system.
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V2, V3) show a small effect in both experiments. These results indicate that pro-

cessing in dorsal areas may rely mostly on information about absolute disparities,

while ventral areas split neural resources between the two types of stereoscopic

information so as to maintain an important representation of relative disparity.

Primate depth perception benefits from binocular vision, but it also uses nu-

merous other monocular cues to form the final integrated perception. Monocular

cues that contribute to the perception of depth include:

Motion parallax: When an observer moves, the apparent relative motion of

several stationary objects against a background gives hints about their relative

distance. This effect can be seen clearly when driving in a car - nearby things

pass quickly, while far-off objects appear almost stationary.

Kinetic depth perception: As objects in motion recede into the distance they

appear to become smaller. Conversely, uniformly expanding objects appear to be

coming closer. Kinetic depth perception enables the brain to calculate time to

collision (TTC) assuming a particular velocity.

Perspective: Parallel lines converge at infinity, allowing us to reconstruct the

relative distance of two parts of an object, or of landscape features.

Relative size: Objects that are close to us look larger than similar objects

far away; our visual system exploits the relative size of similar (or familiar) ob-

jects to judge distance.

Focus: The lens of the eye can change its shape to bring objects at different

distances into focus. Knowing at what distance the lens is focused when viewing

an object means knowing the approximate distance to that object.

Accommodation: This is an oculomotor cue. When focussing on distant ob-

jects, ciliary muscles stretch the eye lens, making it thinner. The kinesthetic sen-

sations of contracting and relaxing ciliary muscles (intraocular muscles) are sent

to the visual cortex where they contribute to interpreting depth [Zajac (1960)].
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Convergence: This is also an oculomotor cue. By virtue of stereopsis the two

eyes can converge on the same object. The angle of convergence is larger when

the eye is fixating on far away objects. The convergence will stretch the extraoc-

ular muscles. Kinesthetic sensations from these extraocular muscles also help in

depth/distance perception.

Shading: The intensity of the surface of 3D objects changes according to the

location of light sources. The location of light sources and the shape of a surface

can be inferred from such intensity gradients.

Occlusion: Depth ordering of objects can be inferred by occlusions.

Texture gradient: Textures (for example, that of an area of grass at one’s

feet) transition to a more homogonous appearance (that cannot be clearly dis-

cerned as textured) with increased distance.

Other monocular phenomenon can also contribute to the perception of depth.

The colour of distant objects may, for example, be shifted towards the blue end

of the spectrum (for example, distant mountains). Due to light scattering by the

atmosphere, objects that are a great distance away may also look hazy.

Of all the above cues, only convergence, focus and object familiarity provide

direct absolute distance information. When combined with gaze geometry infor-

mation from kinesthetic feedback, disparity estimation provides absolute depth

information. It is likely that primates use depth estimates from absolute disparity

to ground the relative estimations provided by other depth relative depth cues.

2.4.4 Attention

Primates use foveal attention with rapid eye movements to analyze complex visual

inputs in real time [Vidyasagar (1999)]. Attention breaks down scene understand-

ing into a rapid series of computationally less demanding, localised visual analysis
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problems. It selectively reduces the quantity of visual input that reaches short-

term memory and visual awareness [Desimone & Duncan (1995); Crick (1998)].

In this section, we present observations of the components of primate visual at-

tention based on the thorough review of the field provided by Itti & Koch (2001).

Psycho-physical experimentation confirms the propensity for primates to re-

spond to unique/salient features (bottom-up attention). Conversely, during the

execution of a task, attention can be likened to a “stagelight” that strategically il-

luminates different scene regions for specific analysis as they are reasoned to be in-

teresting with respect to the current task (top-down attention). In the latter case,

attention is task-dependent, and can vigorously modulate early visual processing

in both spatial and feature-specific manners [Reynolds et al. (2000); Weichsel-

gartner & Sperling (1987)]. In both instances, attention implements a bottleneck

that reduces the quantity of visual information to be processed. Top-down atten-

tion involves cognition and is slower than bottom-up attention. Psycho-physical

experiments can also provide insight into how such feature maps are computed.

For example, Zetzsche used eye trackers to observe that humans preferentially

fixate on regions with multiple orientations, such as corners [Zetzsche (1998)].

Zetzsche then computed feature maps that highlighted these preferential features

using Gabor wavelets. Similarly, spatial contrast neuronal responses can be syn-

thesised using a DOG pyramid approximation.

Attention can be involved in triggering visual and/or physical behaviours, and

is intimately related to recognition, planning and motor control [Miller (2000)].

Detection of visual stimulus may initiate instinctual reactions. Further, it has

been shown that primates can recognise objects by explicitly replaying a sequence

of eye movements and matching expected features with those observed [Rybak

et al. (1998)] . As such, purposeful gaze direction is selected based upon what

features are expected at particular spatial locations (based on past experience),

not merely on the cue responses elicited by the visual stimulus that actually is

at that location. This observation supports the notion of top-down modulation

of early cues, but such modulation is used to verify or oppose the existence of

expected features, rather than for detecting present features.

Gaze-directed attention is not necessarily mandatory for early vision: humans

can make simple judgements about objects they are not attending [DeSchepper
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& Treisman (1996)], but these judgements may be less accurate than attended

objects. This type of judgement is often referred to as covert attention.

2.4.4.1 Evidence of Attentional Maps

Most of the early visual processing areas participate in attention. A possible ex-

planation for widespread attentional activity throughout most visual areas could

be that some neurons in all those areas are concerned with the explicit com-

putation of saliency, but are found at different stages along the sensory-motor

processing stream [Itti (2005)]

Single unit recordings in the visual system of the macaque monkey indicate

the existence of a number of maps of the visual environment that appear to

encode salience, and/or the behavioural significance of targets [Murthy et al.

(2001)]. Such maps were concluded to exist in the superior colliculus, infero and

lateral subdivisions of the pulvinar, the frontal eye fields, and areas within the

intraparietal sulcus. Numerous neural correlates throughout the human brain,

including areas in the lateral intraperietal sulcus of the posterior parietal cortex,

the frontal eye fields, the inferior and lateral subdivisions of the pulvinar, the

superior colliculus, the retina and the LGN suggest it is not likely that a single or

centralised saliency map exists [Kustov & Robinson (1996); Gottlieb et al. (1998);

Suder & Worgotter (2003)].

It is generally accepted that early visual features or cues are computed in

topographic feature maps in V1. Salience may then be expressed as a modulation

onto such feature responses [Zhaoping (2005)]. Further, Desimone and Duncan

suggest that salience is not explicitly represented by specific neurons, instead it is

implicitly encoded in a distributed modulatory manner across the various feature

maps [Desimone & Duncan (1995)].

These neurons are found in different parts of the brain that specialise in

different functions, so they may encode different types of salience. [Navalpakkam

et al. (2005)] propose that the posterior parietal cortex encodes a visual salience

map; the pre-frontal cortex encodes a top-down task relevance map; and the

final eye movements are subsequently generated by integrating information from

both regions to form an attention guidance map possibly stored in the superior

colliculus.
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2.4.4.2 Integration of cues for attention

Attention is thought to activate a winner-take-all competition amongst neurons

tuned to different orientations and spatial frequencies within one cortical hyper-

column [Lee et al. (1999); Carrasco et al. (2000)]. Different cue features contribute

with different strengths to perceptual saliency [Braun & Julesz (1998)]. This rel-

ative feature weighting can be influenced by top-down modulation and training.

Within a broad feature dimension, strong local interactions between filters (for

example, various orientations within the general orientation feature) have been

characterised via neuronal correlates [Carandini & Heeger (1994)]. Less evidence

exists for within-feature competition across different spatial scales [Itti & Koch

(2000)].

2.4.4.3 Inhibition of Return and Attentional Memory

It is necessary for efficiency to have some coarse short-term knowledge of past

fixation locations so as to reduce the likelihood of unnecessarily returning to the

same scene location. Inhibition of return (IOR) encapsulates the notion that the

gaze is temporarily prevented from unnecessarily re-attending saliency maxima.

Experimental support exists for transiently inhibiting neurons in the saliency map

at the currently attended location [Klein (2000)]. In the intraparietal sulcus of

monkeys, the activity of spatially-tuned neurons at salient locations was shown to

be transferred to other neurons according to eye motion [Merriam et al. (2003)].

A short-term inhibitory effect then prevents previously attended stimuli from

being immediately re-attended.

Horowitz and Wolfe proposed that visual search is memoryless - when elements

of a search array randomly reorganised while subjects searched for a specific tar-

get, search efficiency was not degraded [Horowitz & Wolfe (1998)]. Performance

gains for searches on a stable array would indicate memory use. However, this

may just preclude perfect memorisation and does not necessarily preclude the

possibility that the last few attended locations are remembered, in accordance

with the limited lifespan of IOR.

Kahneman and Treisman proposed that a short-term memory maintains infor-

mation about visual features and their locations (“object files”) across saccades
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[D Kahneman (1984)]. Psycho-physical experimentation suggests that up to three

or four object files may be retained [Irwin & Zelinsky (2002)]. Wilson provides ev-

idence suggesting two concurrent, dissociated types of memory: one stores object

features, the other stores spatial location information [Wilson et al. (1993)].

2.4.4.4 Task-Dependency and Top-down Modulation

In the first few hundred milliseconds after viewing novel stimulus, bottom-up

uniqueness detection across cue features may well describe how attention is de-

ployed. However, a more complete primate model must include top-down biasing.

Top-down modulation is thought to be controlled from higher areas including the

frontal lobes, which are known to connect directly to the visual cortex and ear-

lier visual areas. Responses along these more cognitive pathways take 200ms or

more, comparable to the time required to effect eye motion. Task-dependency

modulates neural activity by enhancing the response of early stage visual neurons

tuned to the location and features of a stimulus [Desimone & Duncan (1995)].

As discussed previously, attention can be seen as “stagelight” successively illu-

minating different regions as they are reasoned to be interesting [Weichselgartner

& Sperling (1987)]. Such feedback is believed to be essential for binding the differ-

ent visual attributes of an object, such as colour or form, into a unitary precept

[Trieisman & Gelade (1980)]. Knowledge of an object enhances its extraction

from visual clutter - the unitary precept suggesting also that cues and features

are bound to the representation of an object. The known features of an object

help us identify it, and look for other expected identifying features to verify initial

perception. Attention is involved in selecting a location of interest for evaluation,

and enhances the cortical representation of the object at that location.

2.4.4.5 Top-down Search

During search, knowledge of a target amplifies its salience. The prefrontal cortex

implements attentional control by amplifying task-relevant information relative to

distracting stimuli [Nieuwenhuis & Yeung (2005). For example, vertical lines are

more salient if we are looking for them [Blaser et al. (1999)]. A better knowledge

of a target also leads to faster search. For example, an exact picture of a target will
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facilitate a faster search than a semantic description [Kenner & Wolfe (2003)].

Similarly, Wolfe proposed that top-down knowledge emphasises features which

may distinguish a target from surrounding clutter [Wolfe (1996)] . For example,

if searching for a red object, the contribution of colour cue would be emphasised

while orientation cue may be reduced.

Triesman showed that there is a performance distinction between “pop-out”

and “conjunctive” search tasks. Specifically, that a conjuctive search task (for

example, colour and orientation: find red vertical oriented target amongst red

horizontal oriented targets) is slower than pop-out search task (for example, a

red target amongst green surroundings) [Trieisman & Gelade (1980)]. This elim-

inates the possibility of primates generating new composite features on-the-fly,

and imposes constraints on possible biasing mechanisms.

Humans achieve nearly optimal search performance even though they inte-

grate information poorly across fixations [Najemnik & Geisler (2004)]. This sug-

gests that there is little benefit from perfect integration across fixations, rather,

that efficient processing of information during each fixation is more important.

Visibility peaks at the optical centre where more identification processing re-

sources are allocated, so foveal saliency is better trusted for verification of the

presence/absence of a feature/object. As such, a visual surface is attended for

confirmation that it conforms to search criteria. In terms of search efficiency, it

may be necessary to have some coarse record of such past fixation locations so as

to reduce the likelihood of unnecessarily returning gaze to the same scene region

[Itti & Koch (1998)].

2.4.4.6 Contextual Search

Contextual information is known to guide eye movements in primate attention

[Oliva (2005)]. The “gist” of a scene (for example, “road scene”, “beach”, etc) is

thought to be computed rapidly (within 150ms of scene onset), but supporting

neural correlates of this computation are yet to be revealed [Rullen (2003)]. Scene

gist is believed to be used as a contextual guide in search and attention schema

to compliment target saliency. For example, if searching for a car in a road scene,

one would expect to find it on the road, and would search that area preferentially.
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2.5 Summary

We have reviewed components of primate vision useful for developing synthetic

primate vision systems. Primates benefit from active vision in several ways. It

enables continual alignment of the fovea with objects in the scene. It permits

correction of retinal shifts induced by head perturbations within reflexive, rather

than cognitive, timespans. It permits coordinated fixation and smooth pursuit

of targets such that target motion blur is reduced. Active foveal perception and

attention allows data reduction and high equivalent resolutions in observing a

scene. An egocentric spatial perception provides primates with an awareness of

the location of visual surfaces in a scene, and their motion.
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Chapter 3

Synthesising Primate Vision

In this chapter we examine hypothesised and implemented models of vision that

are built upon observations of the components of the primate vision system de-

scribed in the previous chapter. In consideration of such models we motivate and

propose components of a synthetic primate vision system.

3.1 Introduction

We concern ourselves with refining a multi-purpose visual sensor system for real-

world, real-time, task-directed applications, capable of supporting investigations

into synthetic primate vision and perception. It is desirable that the vision system

is capable of performing a diverse range of tasks. Processing resources are always

limited to some extent. The system must be able to intelligently gather data from

its environment rapidly enough for it to make the decisions for task-oriented be-

haviour and to react to novel events. Real environments contain events occurring

at many timescales. It is therefore practical to consider real-time as a time period

commensurate to the defined task. The real world is an unstructured, possibly

cluttered, dynamic environment that extends beyond sensor range.

The success of biological vision justifies the use of primate inspiration in de-

veloping a real-world vision system. Having broadly reviewed the functional com-

ponents of early visual perception in the primate brain (Chapter 2), we highlight

important aspects of primate vision from neurobiological and psycho-physical

research observations. We also consider existing models of the components of
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primate vision. We revisit the main biological relevance of each component and

briefly propose the minimal engineering requirements of each. Components must

be necessary for basic scene awareness, and be suitable for real-time implemen-

tation. The model is tailored such that it does not significantly (preferably not

at all) violate observations of biology. Finally, we consider the integration of

components into a unified system.

3.2 Components of a Synthetic Primate Vision

System

We now consider some important basic components of a synthetic vision system,

based on the observations of primate vision. Where possible, we consider exist-

ing theoretical and synthetic models of such components. Components can be

broadly separated into classes summarised by the processing loop shown in Fig-

ure 3.1. These classes may not represent the grouping of functions in the brain,

they merely group conceptually similar functions for the purpose of presenting a

synthetic system. Beyond image acquisition, component classes discussed include:

an egocentric reference frame, attention, spatial awareness and foveal fixation.

3.2.1 Egocentric Reference Frame

Binocular primate vision combines visual stimulus from two eyes into a unified

representation that accounts for convergence in interpreting retinotropic stimu-

lus. When perceiving scene motion, estimates from many neurons need to be

integrated into a global motion estimate. First and second-order flow perceptions

appear to be fully combined at the level of area MT/V5. A similar global inte-

gration exists for depth perception: local disparities and cues are converted to a

global, egocentric perception.

Recent experimental results [Neri et al. (2004)] indicate that processing in dor-

sal areas may rely mostly on information about absolute (egocentric) disparities,

while ventral areas split neural resources between the two types of stereoscopic

information so as to maintain an important representation of relative (retinal)

disparity. Dorsal areas (V3A, MT/V5, V7) showed more adaptation to absolute
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Figure 3.1: Classes of components of synthetic primate vision.

than to relative disparity; ventral areas (hV4, V8/V4) showed an equal adapta-

tion to both; and early visual areas (V1, V2, V3) showed a small response to

both absolute and relative disparities. These observations may suggest that the

dorsal stream is involved in egocentric perception.

As discussed, monkeys transfer the response of spatially-tuned neurons across

eye movements, thus retaining accurate global representations of visual space.

The high equivalent ocular resolution of primates is due to this incorporation of

visual information over time and gaze shifts. Accordingly, a synthetic system

may benefit by transferring imagery from a retinotropic coordinate system to a

global and static reference frame so that the relations between left and right, and

between successive images, are known despite camera motions such as smooth

pursuit and saccade.

Few synthetic vision models deal with active vision convergence by project-

ing visual stimulus into a static, egocentric (absolute) reference frame. They

may instead operate in a retinal (relative) reference frame. To achieve absolute

egocentric perception, a synthetic system should be capable of accounting for

convergence. We propose a method to achieve a global reference frame based
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on online image rectification that integrates images and accounts for perspec-

tive changes across time and camera motions. Rectification involves determining

and accounting for camera geometry changes so that binocular image pairs can

be projected into the static reference frame. As we shall see (Chapter 5), this

characterisation also enables the operation of static stereo algorithms with an

active stereo platform. Rectification also accounts for lens effects such as barrel

distortion.

3.2.2 Spatial Awareness

Transferring to an egocentric reference frame enables head-centred egocentric

spatial perception. Components of spatial awareness include perception of scene

structure and scene motion.

3.2.2.1 Scene Structure

Although numerous cues provide spatial information, primates mainly interpret

scene depth from estimates of binocular disparity. Absolute disparities are likely

to be interpreted in dorsal areas (V3A, MT/V5, V7). Early visual areas (V1,

V2, V3) and ventral areas (hV4, V8, V4) are likely to be involved in processing

both absolute and relative disparities. Gaze convergence, focal length and prior

familiarity with an object’s size can provide information for conversion from rela-

tive to absolute depth distances. Gaze convergence stretches extraocular muscles.

Kinesthetic sensations from these extraocular muscles have long been known to

contribute to absolute depth perception in primates [Zajac (1960)].

As we describe in Chapter 5, there are various ways to calculate disparity

from multiple camera views of a scene. These include correlation-based and

frequency/phase-based techniques, as well as geometric analysis methods. Many

such methods assume fronto-parallel camera geometries to determine relative

disparities. Other methods assume static non-parallel geometries and are able

to account for non-parallel epipolar geometry to determine absolute disparities.

However, the latter methods do not account for camera motions (pan/tilt) and

the induced variable epipolar geometry. Moreover, few methods account for vari-

ations in epipolar geometries due to dynamic camera convergence at frame rate,
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or provide an egocentric 3D perception of scene structure across time and gaze

changes.

3.2.2.2 Scene Motion

As with depth perception, there are various ways to calculate optic flow within

2D camera projections of a scene. For our purposes, the main criterion for the

selection of a suitable synthetic method is real-time performance. Again, few

methods calculate absolute scene flow, that is, account for the image frame effects

of deliberate camera motions. Additionally, most methods deal with retinal flow,

not absolute scene flow. The method of Kagami [Kagami et al. (2000)], though

not tailored for active vision or an egocentric perception, seems most promising for

real-time 3D scene motion estimation. Kagami uses a static stereo rig. Relative

retinal optic flow operations are used to estimate scene horizontal and vertical

components of flow while analysis of consecutive depth maps provides the third

component of 3D scene flow.

3.2.3 Attention

Over the decades, various definitions of attention have emerged to utilise the

associated benefits of reduction in complexity. Various general models of attention

have been developed for specific purposes:

• Early Selection (Broadbent 1958).

• Attenuator Theory (Treisman 1960).

• Late Selection (Norman 1968, Deutsch & Deutsch 1963).

• Neural Synchrony (Milner 1974).

• Spotlight (Posner 1978).

• Feature Integration Theory (Treisman & Gelade, 1980).

• Object-based (Duncan 1984).

• Zoom Lens (Eriksen & St. James 1986).
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• Premotor Theory of Attention (Rizzollati et al. 1987).

• Biased Competition (Duncan & Desimone 1995).

• Feature Similarity Gain (Treue & Martinez-Trujillo 1999).

Noton and Stark developed a “scanpath theory” [Noton & Stark (1971)],

proposing that what we see is only remotely related to the patterns of activation

in our retinas. This suggestion was based on our permanent illusion of crisp

perception over the entire visual field, although only the central two degrees are

actually crisp. He suggested a cognitive model where what we expect to see is a

basis of perception; the sequence of eye movements is then controlled top-down

by our cognitive model of the scene. This theory has been used to restrict analysis

of video to a small number of circumscribed regions important for a given task.

Rensink proposed a triadic architecture incorporating: 1) pre-attentive processing

where low-level visual features are computed in parallel over the entire visual field,

up to levels of complexity termed proto-objects; 2) identification of scene gist and

structure/layout; 3) attentional vision with detailed object recognition within the

fovea (proto-objects are combined for object identification) [Rensink (2000)] .

Such models of attention are plausible and useful, however they have not

generally been tested on real-time active vision systems with novel stimulus. They

also do not propose how a synthetic egocentric 3D perception of attention is

obtained. Rather than assessing high-level models such as those described above,

we look at the basic components of vision common to most models of primate

attention. We first look at bottom-up attention, then top-down modulation of

attention.

3.2.3.1 Bottom-up Attention

Neurons at early stages in the primate visual brain are tuned to simple features

like intensity contrast, colour opponency, gradient orientation, motion and stereo

disparity. Koch and Ullman proposed that several such feature maps are com-

puted in parallel. They are then combined into a single saliency map from which

a selection process sequentially deploys attention to locations in decreasing order

of saliency [Koch & Ullman (1985)]. Itti’s widely accepted model proposes that
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spatial competition for saliency is directly modelled upon non-clasical surround

modulation effects [Itti & Koch (1998)] . He uses an iterative spatial competition

scheme where, at each iteration, a feature map is convoluted with a 2D difference-

of-Gaussian. This is currently accepted as the basis of many models of synthetic

attention. After competition, all feature maps are weighted and summed to yield

a scalar saliency map. Many models [Tsotsos et al. (1995); Cave (1999); Itti

(2005)] adopt the winner-take-all method in finally selecting attentional loca-

tions. More complex models have been proposed. Milanese used a relaxation

process to optimise an energy measure consisting of four contributing factors:

1) inter-feature incoherence favours regions that excite several feature maps; 2)

minimising intra-feature incoherence favours grouping of initially spread activity

into small numbers of clusters; 3) minimising total activity in each map enforces

intra-map spatial competition for saliency; and, 4) maximising the dynamic range

of each map ensures process does not converge towards uniform maps at some

average value [Milanese et al. (1994)] .

Synthetic implementations of attention do not all deal with active cameras or

dynamic scenes. It is often assumed that cameras are already pointing appropri-

ately, and that saliency only needs to be determined within a static image frame.

One of the functions of attention in primates is to guide gaze for foveal vision

and data/search reduction. Non-active attentional implementations may help

low-level investigations of attention, but do not synthesise this main function.

In incorporating eye motion, a representation of visual space may be required to

integrate information across such movements, and to enable a history of past lo-

cations to be retained. In monkeys, salient locations are retained across saccades

by transferring activity among spatially-tuned neurons within the intraparietal

sulcus [Merriam et al. (2003)]. A short-term inhibitory effect prevents previously

attended stimuli from being immediately re-attended. Few synthetic attention

systems address this type dynamic prioritising of attention with moving cameras

or in dynamic scenes where objects move, in real time. Real-time functionality is

important for active attention - if attention is to be deployed towards a moving

target, low latency functionality is important.
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3.2.3.2 Inhibition of Return

Koch [Koch & Ullman (1985)] implemented synthetic IOR where, after inhibition,

a winner-take-all network then shifts attention towards the next most salient

location. This process repeats, generating attentional scanpaths over a static

image.

3.2.3.3 Top-down Modulation of Attention

The prefrontal cortex implements attentional control by amplifying task-relevant

information relative to distracting stimuli [Nieuwenhuis & Yeung (2005); Wolfe

(1996)]. Various manifestations of this type of top-down search have been imple-

mented and shown to assist search in static images: Wolfe [Wolfe (1996)] used

the Koch and Ullman model [Koch & Ullman (1985)] with feature-based biasing

by weighting feature maps in a top-down manner (for example, bias red features

when searching for a “red book”). Navalpakkam proposed a method to optimally

set relative feature weights for this type of search [Navalpakkam & Itti (2004)].

A “feature gate” model has also been proposed where a neural network im-

plementation is adopted to determine which cue weightings are relevant for a

search task, and modulates bottom-up cue extraction mechanisms accordingly

[Cave (1999)]. Similarly, Rao proposed that saliency can be computed from the

Euclidean distance between target feature vector and feature vectors extracted

at all locations in visual input [Rao et al. (1997)]. Torralba extended upon this,

developing a Bayesian framework with coarse global analysis where gist gives

guidance cues (for example, when in a road-scene, attention may be preferentially

deployed to the road and cars) [Torralba (2005)]. Torralba a holistic represen-

tation of a scene based on spatial envelope properties (for example, openness,

naturalness, etc) that represents the scene as a single identity, bypassing analysis

of component objects [Torralba (2005)]. The scene gist is formalised as a vector

of the contributing features. Torralba then used learning to find the associations

between scene context and categories of objects such as their typical locations,

sizes, scales, etc.

Knowledge of the gist of a scene can be used as a contextual guide in search/attention

schema to compliment target detection. Extending on Oliva’s analysis of the gist
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of a scene [Oliva (2005)], Siagian and Itti propose that by sampling a full im-

age, a vector that contains a summary of cue responses for a particular scene

can be created [Siagian & Itti (2007)]. Such vectors can be used to identify the

type of scene that is being viewed, and recording such vectors can be used in

re-localisation.

Top-down bias may also be preempted for regions of the scene not currently in

view, but whose position relative to the current fixation point is known. It may

accordingly predict the spatial location of cue responses. For example, scanpath

theory proposes that attention is guided in a top-down manner based on an

internal model of the scene [Noton & Stark (1971)]. Rybak’s model proposed is

related - scanpaths are learned and then executed for each object to be recognised

[Rybak et al. (1998)]. This method reduces the emphasis on bottom-up attention

and may be difficult to apply to dynamic environments or flexible or moving

subjects.

These top-down methods may not be specifically required for scene awareness,

but the general ability to modulate bottom-up attention (for whatever reason or

by whatever top-down or task-specific process) is seen as a useful feature for a

synthetic primate vision system.

3.2.3.4 Covert and Overt Attention

There are three generally accepted models of the interaction between covert and

overt attention:

• Independence Model: covert and overt attention are independent and co-

occur because they are driven by the same visual input [Klein (1980)].

• Sequential Attention Model: eye movements are necessarily preceded by

covert attentional fixations [Henderson (1992)].

• Pre-motor Theory of Attention: covert attention is the result of activity of

the motor system that prepares eye saccades - attention is a by-product of

the motor system [Rizzolatti et al. (1987)].
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In each of these models, covert attention involves consideration of factors not

directly associated with the current target at fixation. It involves consideration of

regions towards or beyond the periphery, whether real, expected or hypothetical.

3.2.4 Foveal Fixation

As discussed previously, attention can be seen as “stagelight” that successively

illuminates different scene regions as they are considered interesting [Weichsel-

gartner & Sperling (1987)]. Such feedback is believed to be essential for binding

the different visual attributes of an object, such as colour or form, into a unitary

precept [Trieisman & Gelade (1980); Reynolds et al. (2000)]. Feature Integration

Theory proposes that only simple visual features are computed in a massively

parallel manner over the entire visual field [Trieisman & Gelade (1980)]. Atten-

tion binds such early features into a unified object representation. Triesman then

suggests that the selected bound object representation is the only part of the

visual world that passes through the attentional bottleneck. We do not neces-

sarily need to bind such precepts for the purposes of target identification. We

would primarily like to perform foveal figure-background subject segmentation

and coordinated fixation, leaving processes such as identification/representation

to higher-level processes.

Monkeys exhibit vigorous responses elicited by small laboratory stimuli in iso-

lation, compared to sparse neuronal activity when viewing broad scenes [Vinje &

Gallant (2000)]. In humans, long range excitatory connections in V1 appear to

enhance responses of orientation selective neurons when stimuli extend to form a

contour [Gilbert et al. (2000)]. One cue useful in rapidly extracting the bound-

ary of an attended object is zero disparity: an attended object appears at near

identical positions in left and right retinas, whereas the rest of the scene usually

does not. The attended object appears once and crisp in our fused cyclopean

view. During stereo fixation, the foveas are aligned over the target in a truly co-

ordinated manner, requiring accurate vergence control. Accordingly, a synthetic

system may benefit from a response to the contours of the object upon which

fixation occurs. In this manner, foreground objects can be extracted for higher-

level consideration such as identification. Of course, accurate segmentation also
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assists target tracking.

3.3 The Proposed Model

We propose a model for reactive visual analysis of dynamic scenes in terms of

a system specification. We specify a minimal set of system features for basic

scene perception, based upon biological observations. It is desirable that system

operation does not contradict known properties of the primate vision system.

Where possible, we use observations of biology to specify methods to deal with

active cameras, to define features of fixation control, and to choose a relevant set

of early visual cues.

3.3.1 System Components

We now list important basic components of a primate-inspired synthetic vision

system.

3.3.1.1 Image Aquisition

• cameras

• active platform

• camera parameter control

• simultaneous, accurate head axis motion control

3.3.1.2 Rectification

• camera barrel rectification

• epipolar rectification for use of static stereo algorithms on active platform

• accounting for convergence

• converting from retinal to head-centred egocentric reference frame
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• distribution of rectified camera data (colour opponents, intensity) and rec-

tification parameters

3.3.1.3 Attention

Where to look:

• during novel visual stimulus

• during tasks

Permit online top- down modulation from higher processes:

• for search

• for tasks

Cues:

• colour opponency

• intensity centre-surround

• depth

• optic flow

• orientations

• TTC

Coping with the real world and active cameras:

• egocentric IOR for retaining suppression over gaze shifts

• dynamic IOR for propagating suppression as objects move

• TSB
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3.3.1.4 Spatial Awareness

An egocentric 3D perception for determining:

• scene structure

• scene motion

• cue-surface correspondences

3.3.1.5 Coordinated Foveal Fixation

Once attention directs foveas to interesting location:

• extract target

• track target

3.3.1.6 Flexibility

Incorporating rapid I/O and real-time performance for:

• environmental data distribution

• task specific tuning (search/track/mapping/etc)

• top-down modulation of attention

3.3.2 Discussion

In any implementation, processing resources are limited. For this reason com-

ponent implementations need to balance the trade-off between processing time

and accuracy. Similarly, it may not always be possible to implement algorithms

exactly as hypothesised in primate vision. We have defined components based on

the minimum requirements required for primate-like awareness.

We leave camera parameter control on automatic settings, handled by the

cameras themselves, where possible. For example, camera hue, saturation, con-

trast, brightness, etc are controlled automatically by the cameras. We therefore
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adopt algorithms, where possible, that can cope with these variations. For ex-

ample, we employ the use of difference-of-Gaussian representations where images

are intensity-normalised.

We can use existing research for many components of the system, such as the

implementation of cues like disparity and optic flow. The parts of the system for

which further research is required are:

• Egocentric/absolute perceptions developed from active cameras.

• Coordinated fixation and target segmentation.

• Active-dynamic attention.

These areas are discussed further in subsequent chapters.

Of course, having proposed such a system based on primate vision, we want

to evaluate it. We want to assess its capabilities in terms of both tangible metrics

and primate-like behaviours. There exists little psycho-physical data for evalu-

ating unconstrained human attention for such a comparision. It is unlikely that

when observing unbounded 3D scenes humans exhibit behaviours identical to

when they observe static pictures or 2D videos, as utilised in most attentional

experimentation to date. Depth and covert (peripheral) object saliency suppres-

sion, for example, are likely to affect attention in a manner that the use of static

images and image frames cannot demonstrate.

3.4 Aspects of Implementation

We now consider the underlying requirements necessary to support such process-

ing capabilities. We consider the nature of the processing structure and engineer-

ing components, including hardware and software.

3.4.1 An Expandable Processing Network

Real-time vision processing requires significant processing power, such as that

available via a network or cluster. Such a processing network would require:
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• Support for multiple processors with vector processing capabilities.

• Efficient data distribution.

• Simultaneous serial and parallel processing.

• Expandability.

3.4.2 Framework Components

The synthetic vision architecture comprises of hardware and software compo-

nents.

3.4.2.1 Hardware

We use readily available off-the-shelf components. Hardware includes:

• Video cameras - 2 x Sony FCB EXT-37 series analog.

• Video capture cards - 2 x Brooktree type-29 framegrabbers.

• An active vision head capable of moving cameras at high speed - CeDAR

(see next chapter).

• Motion axis amplifiers.

• Motion control card for head axis control - Servo-To-Go inc. (STG).

• Processing computers - dual CPU 3.2GHz.

• Network components such as 10/100/1000Mbit ethernet cards and hubs.

3.4.2.2 Software

The system is capable of supporting processing on multiple computer nodes si-

multaneously with cross-communication of data. We use CORBA (client ob-

ject request broker) to distribute data over the network and to initiate remote

procedure calls (RPC). For example, motion control and video capture drivers

are embedded within CORBA wrappers that allow control of head motion and
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camera parameters by RPCs. CORBA enables serial and parallel processing on

computers in the network. It facilitates expansion of the processing network

by permitting the addition of extra processing nodes without affecting existing

network functionality.

Processing algorithms onboard each computer are multi-threaded, allowing

further simultaneous serial and parallel processing within a node. Built on a Linux

environment, programmes are written in C++ and make use of OpenGL, MMX

and SSE hardware accelerations. We use Intel’s Intel Performance Primitives

(IPP) library to take advantage of the MMX/SSE vector processing instruction

set, and OpenGL for graphics card display acceleration. Beyond these libraries,

functions are written in-house for system performance optimisation and fine-

grained control.

3.4.3 Network Structure

We adopt a CORBA client-server architecture to allow concurrent serial and par-

allel functional network processing. At the lowest level, a video server controls

image capture, handles remote requests for images, and distributes images to

other computers (nodes) for subsequent processing. Similarly, a motion control

server handles head motion requests and distributes head status parameters to

nodes. To minimise network bandwidth, to cope with the processing load of each

frame, and to prevent repetition of computations, nodes in the structure are con-

figured simultaneously as clients of processes preceding them in the functional se-

rial pathway, and as servers to nodes following (dependent upon) them. Multiple

such serial processing pathways can also exist in parallel. Each node corresponds

to a physically separate PC and all are dual CPU hyper-threaded machines, with

two physical CPUs amounting to four virtual processors. Trade-offs exist between

splitting tasks into subtasks, passing subtasks to additional nodes and minimis-

ing network traffic. The best performing solution involves grouping of serialised

tasks on each server, and that as many operations are done on the image data

on the same server as possible, so there is minimal CPU idle time and minimal

network traffic between servers. The serial nature of cue computations means
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there is often no gain possible in distributing the task – in fact further network

transfer of data between servers would slow performance significantly.

3.4.4 Data Transfer

Data transfer between nodes can be either push or pull. That is, a node can

expect or request data from preceding nodes (respectively). The type of data

transfer selected depends upon the function of the node. For example, if node

processing is heavy, it may not operate at the same rate as the preceding node

can distribute images. In this case, depending on the function, we could either

stop processing on the current frame and move into the next available frame as

it arrives (push), or complete processing on the current frame, perhaps dropping

a few frames available from the previous node, and then request the next image

when ready (pull). Alternatively, if it is possible to estimate the processing time

remaining on a frame, and the network data transfer latency is known, the node

may request (pull) the next frame before it has finished processing the current

frame, such that it arrives in a timely fashion (as if pushed) when processing on

the current frame is finished. In this manner, CPU idle time can be minimised,

and no CPU time is expended managing a buffer.

Ideally, images are time-stamped upon capture so that if a later processing

node requests images from two preceding nodes that take different processing

times, they can be matched. Alternatively, algorithms may be designed such

that precise synchrony is not essential; instead discrepancies due to a few frames

of delay can be absorbed.

3.5 Summary

We have looked at existing models of primate vision and justified components

using biological inspiration. We have presented a list of desirable basic compo-

nents of a synthetic primate vision system for basic scene awareness. We have

considered aspects of implementation of components, and of a framework capable

of supporting distributed image processing.
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Chapter 4

Active Vision Platform

Figure 4.1: CeDAR (Cable-Drive Active-vision Robot).

In this chapter we describe the biologically-inspired active vision mechanism

with which this research is conducted. We motivate and present aspects of its

design and control that make it particularly suited to investigating synthetic

primate vision. We demonstrate its mechanical performance.
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4.1 Introduction

The concept of controlled camera movements to facilitate vision undoubtedly

originated from observations of the biological world. As discussed in Chapter 2,

primates benefit from active vision in several ways. Active foveal perception

allows data reduction and high equivalent resolutions in observing a scene. It

enables continual foveal alignment of objects in the scene. It permits correction

of retinal shifts induced by head perturbations within reflexive, rather than cog-

nitive, timespans. It permits smooth pursuit of targets such that target motion

blur is reduced. The same benefits are possible for a synthetic vision system.

An active mechanism has several benefits over the use of high resolution

wide-angle static cameras that may or may not incorporate moveable virtual,

pseudo-foveal processing areas (for data reduction). Narrow angle video cameras

are common, provide images of resolutions suitable for sustainable processing at

frame rate, exhibit increasingly small form factors, and are financially economi-

cal. A high resolution camera with or without variable virtual fovea processing

would need a high frame rate to remove motion blur of moving objects. Objects

tracked in a virtual fovea will exhibit motion blur that can be largely removed

by physical foveal tracking (for example, a moving car photographed at the same

shutter speed will exhibit less motion blur if the camera is panned with the car

than if it is held stationary). Physical active vision can therefore provide more

resolute information about selected targets in the deployment of attention if the

subject (or the active vision platform itself) is moving. High resolution, high

frame rate cameras produce large amounts of data requiring accordingly large

computational resources for real-time processing, and may require high volumes

of processor-intensive memory writes, even if a virtual cropped fovea is selected.

Lack of physical gaze direction would require a wide-angle lens to achieve a large

range of vision. Wide-angle lenses introduce lens distortions that must be ac-

counted for. This can be an expensive operation for high resolution cameras,

and errors may compromise image resolution, especially towards the image edges

where most distortion exists. A virtual fovea in a static camera would exhibit

an asymmetric periphery which may impede primate-like perception. High frame

rate mechanical image stabilisation, such as the vestibulo-ocular reflex, is also not
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possible with static mechanisms. Biology achieves high equivalent resolutions,

large and redirectable peripheries, high tracking acuity and retinal stability using

physical foveal active vision.

These benefits point strongly towards the use of an active mechanism. Scien-

tists have endeavored to mimic the abilities of biology when designing synthetic

active vision systems. Synthetic binocular active vision systems are usually com-

posed of a pair of cameras that, mimicking the coordination of successful biolog-

ical systems, share a common tilt axis and rotate symmetrically about separate

vertical axes for the control of vergence, or independently for both vergence and

version. Other systems go further, mimicking neck rotation and/or the small tor-

sional rotations of the human eye around its optical axis enabled by the superior

oblique muscle.

We proceed by presenting relevant existing active vision platforms. We then

present background information about the mechanism with which this research is

conducted. The mechanism was modelled and manufactured in house by Harley

Troung et al. prior to commencement of this research [Troung (1998)]. We sum-

marise the previous work, including the platform’s mechanical design, kinematics

and mechanical performance evaluation. Previous work also involved the im-

plementation of biologically-inspired low-level motion control [Sutherland et al.

(2000)]. Standard methods to stabilise images obtained from an active vision

platform have been implemented and are presented as background knowledge.

Because of the system’s reliance upon the active vision mechanism, it is impor-

tant that the capabilities of the active vision platform are understood. It is

also important that its mechanical capabilities reflect those of the primate vision

system from which the synthetic vision system is inspired.

After presenting this background work we discuss integration of the platform

into a network-based flexible vision processing structure. We describe the regime

used to allow distributed network access to images captured by the platform’s

cameras, and to the platform’s mechanical status and motion control.
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4.1.1 Related Work

The human eye achieves extraordinary performance through its low weight and

low inertia muscle actuation. Accordingly, existing synthetic vision systems have

been built that endeavour to mimic the properties of biological vision systems.

A brief overview of recent active vision devices reveals a trend towards smaller,

more agile systems. In the past the goals were to experiment with different con-

figurations using large systems with many degrees of freedom like the KTH active

head [Pahlavan & Eklundh (1992)] with its 13 degrees of freedom and Yorick 11-14

[Sharkey et al. (1997)] with a 55cm baseline1 and reconfigurable joints. Although

useful for experimentation, these systems were cumbersome, affecting agility and

rendering them difficult to configure for mobility. Smaller active heads such as

the palm-sized Yorick 5-5C [Sharkey et al. (1997)] and ESCHeR [Kuniyoshi et al.

(1995)] (with an 18cm baseline), were developed as light-weight systems suitable

for mobile robot and teleprescence applications. All three versions of Yorick as

well as ESCHeR use harmonic or gear drive technology. A limitation of the tech-

nology is an unavoidably large speed-reduction ratio that limits the output speed

to less than 100rpm. In many instances the size of the motors and cameras limits

the compactness of the active head and the motors themselves add to the inertia

of the moving components. An exception is the Agile Eye [Gosselin et al. (1996)]

where no motor carries the mass of any other.

Active vision heads used in humanoid research also tend to incorporate a

smaller baseline, in line with the human vision system. A narrow baseline has

the disadvantage of eliciting less binocular disparity for a given camera resolution.

Sometimes, due to power and payload requirements, humanoid heads exhibit less

agility than vision-specific robots. Notable exceptions include the DB vision head

at ATR Japan [Ude et al. (2005)], and the SARCOS2 head that is able to achieve

angular accelerations and velocities beyond that of a human.

1The baseline is the distance between camera optical centres.
2Sarcos Research Corporation - http://www.sarcos.com.
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Figure 4.2: CeDAR’s development. An early prototype (left) and the Helmholtz

configuration of CeDAR (right).

4.2 Mechanical Design

The mechanism was designed to incorporate aspects of design from other lab-

oratories and the mechanics of the human visual system [Truong et al. (2000)].

Muscles are lightweight, exhibit high accelerations and minimal backlash. Muscle-

skeletal structures do not suffer significantly from the common problem encoun-

tered in serial active head designs whereby each degree of freedom requires suf-

ficiently powerful actuators to move all previous degrees of freedom, including

their actuators. By adopting a parallel architecture and relocating the motors to

a fixed base, thereby reducing the inertia of the active components to little more

than the mass of the cameras, problems inherent in serial design were alleviated

[Brooks et al. (1997)]. However, the parallel architecture does have the added

complexity of coupling, where the motion of one axis causes the movement of an-

other. This effect is counteracted through a software decoupling function [Truong

et al. (2000)]. To map between the joint and actuator spaces, the coupling ratio

(which defines the amount of vergence compensation required to decouple the

verge joint from the tilt joint) is determined.

Backlash-free speed reduction is essential for high-speed performance, so the

choice of transmission system for the parallel architecture is important. During

high-speed movements such as saccades, where motors are driven at maximum
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acceleration, velocity saturation for harmonic-drive gearboxes is of concern. Cable

drive, a novel alternative for use with repeated bounded motion, does not induce

speed limitations, operates lubricant-free with low friction, exhibits high torque

transmission, and is low-cost.

An earlier prototype [Brooks et al. (1997)] (Figure 4.2) proved the usefulness

of cable drive transmissions and parallel mechanical architectures in a two-degree-

of-freedom active ‘eye’ system. The prototype was fast (able to achieve an angu-

lar velocity of 600os−1 for each axis), responsive (angular accelerations of up to

72000os−2) and accurate (to a resolution within 0.01o). In 2000, the prototype’s

architecture was transferred to a stereo Helmholtz configuration [Murray et al.

(1992)] (Figure 4.2), resulting in the present mechanical design of CeDAR (Fig-

ure 4.3). The platform has three mechanical degrees of freedom. The cameras

share a common tilt axis, while the independent left and right verge axes enable

asymmetric vergence. In this manner, any 3D scene location in front of the plat-

form may be attended by both cameras simultaneously (within the range limits

of each axis). This configuration is similar to the human vision system, as human

eyes are also able to move independently for asymmetric vergence. Even though

the eyes have separate muscles to tilt each eye up and down, they are normally

constrained to move together within the same horizontal plane.

An important kinematic property of the design is that the axes intersect at

the optical centre of each camera, minimising kinematic translational effects.

This property of the stereo camera configuration reduces complexity in stereo

algorithms such as depth reconstruction through image disparity calculations, a

competency that biological vision systems exhibit [Wilson & Cowan (1972)].

Actuation has been transferred through cable drive circuits that integrate with

the parallel architecture. Power ratings for the actuators (70W tilt axis, 20W each

verge axis) are such that the unit can operate in mobile robotic situations, where

low power consumption is desirable.

A multi-modal systems approach was adopted where the mechanism and its

control were developed in parallel, with integration in mind [Brooks et al. (1998)].

The system was designed to achieve the mechanical capabilities of existing syn-

thetic vision systems and the abilities of the human vision system, while in-

corporating reasonably sized payloads (for example, two 700g cameras). The
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Figure 4.3: CAD model of CeDAR [Troung (1998)]. The rear view (bottom)

shows CeDAR’s parallel architecture and cable drive (bottom).
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mechanism and control modules have been conceived with the purpose of having

a high-level of mechanical performance to allow rapid motion and short reaction

times, as well as being reconfigurable for application to many situations with

minimal modification. The control and vision processing modules have been de-

veloped for use with standard digital visual hardware operating at a 30Hz frame

rate. Low cost, ease of reproduction and configurability for mobility were also

significant factors in the evolution of the design.

4.3 Kinematics

We can relate the position of the joints, as measured by the encoders, to the

position of the active head in a real world coordinate system. The cameras share

a common tilt plane, and have independent verge axes to enable both vergence

and version. The coordinate frame for each joint is shown in Figure 4.4. Each

joint has been placed in its respective home position, where the tilt axis frame

coincides with the defined world coordinate system [x, y, z]. The [XV L, YV L, ZV L]

and [XV R, YV R, ZV R] coordinate frames are fixed to the left and right cameras,

with the Z-direction pointing along their optical axes and the X-Y planes parallel

to the camera image planes. From the definitions in Figure 4.5, we can relate

axis angles to real-world Cartesian coordinates as follows:

x =
tan θL

y
(4.1)

y =
l tan θR

tan θL + tan θR

(4.2)

z = x tan θT (4.3)

where l is the baseline length separating the cameras (30cm).

4.4 Mechanical Performance

The maximum velocity of each joint actually exceeds the maximum velocity

achievable by the human eye. The CeDAR can exceed 600◦s−1, whereas the
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Figure 4.4: Joint kinematics.

Figure 4.5: Conversion from Cartesian coordinates to axis angles.
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human eye is limited to 400◦s−1 [Rodieck (1998),Truong et al. (2000)]. The max-

imum acceleration, which is greater than 18 000◦s−2 is also comparable to the

human eye.

The angular resolution and repeatability of each joint was measured to be

0.01◦, which enables highly accurate control of both position and speed during

any necessary motions including saccade, smooth pursuit and fixation.

The performance figures traditionally reported for active vision mechanisms

consist of maximum angular velocity, maximum angular acceleration, angular

resolution and axis range. While the latter two are highly relevant, we consider

the others to be not especially useful in that they do not detail any form of

specific task competency. Additional specifications for an active vision system

which not only involve the speed and acceleration of the axes, but also express

the usage intention of the system in the form of a functional requirement, are

given in Table 4.1. The tabled values need to be achieved in order to satisfy

constraints related to desired motion abilities. CeDAR’s maximum allowable

full-speed saccade time was required to be 0.18s to enable three 90o gaze shift

saccades, with an allowance for each to be preceded by four target location video

frames and succeeded by one stabilisation video frame per second. Just over five

frames are captured during the saccade itself.

The minimum allowable full speed stop-to-stop angular change within one

video frame was required to be 15o, which equates to the ability to track an

object moving past the cameras at up to 4ms−1 at a distance of 1m. The angular

resolution has been selected with the aim of allowing the platform to perform

meaningfully small camera movements and to allow single pixel selection.

The required maximum range, payload and baseline specifications were based

on the desire to use commonly available motorised zoom cameras. However the

unit is reconfigurable to incorporate many off-the-shelf cameras. With the po-

tential to incorporate smaller cameras, minor improvements in mechanical per-

formance are likely.

The saccade rate and pointing accuracy were chosen to reflect biological sys-

tem performance. It is desirable that the system can rapidly attend novel or

salient visual events.
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Table 4.1: Performance specifications and test results.

Test Specification

Specification Tilt Vergence Tilt Vergence

Max velocity 600os−1 800os−1 600os−1 600os−1

Max acceleration 18, 000os−2 20, 000os−2 10, 000os−2 10, 000os−2

Saccade rate 5s−1 6s−1 5s−1 5s−1

Ang repeatability 0.01o 0.01o 0.01o 0.01o

Ang resolution 0.01o 0.01o 0.01o 0.01o

Max range 90o 90o 90o 90o

Payload Two 700g cameras

Baseline 30cm

Speed performance was determined by driving the joints to their maximum

range, speed and acceleration in a cyclical fashion (repeated saccades) [Troung

(1998)]. The command positions and actual positions of the joints were logged

at millisecond intervals. The position data was then differentiated using a three-

point rule and filtered using a seven-point moving average to obtain velocity and

acceleration profiles.

A series of accuracy tests were also conducted using laser pointers mounted

on the robot head [Troung (1998)]. Repeatability, the ability to return to an

absolute position after a series of complex movements, was demonstrated by

moving the joints to an arbitrary position, relocating to another location and then

returning to the original point. In systems that suffer from backlash, friction or

poor compliance, the return point differs from the original. Angular resolution,

the smallest angle that can be actuated was measured by moving the joints a

minimal increment. Coordinated motion, the joints’ ability to move in unison,

was demonstrated by verging both laser pointers to the same location on a wall

then commanding the system to follow a predetermined trajectory. Coordination

was evaluated according to how closely the lasers were converged throughout the

motion. Table 4.1 lists results of the accuracy tests along with results of the speed

tests and the design specifications.
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4.5 Motion Control

4.5.1 I/O

Motion commands need to be transformed into voltage and current signals as in-

puts to the motors in order to move the joints. A Servo-To-Go Inc (STG) motion

controller card is used to transform the motion commands into an analogue sig-

nal output to the pulse-width modulated (PWM) amplifiers using a proportional-

integral-derivative (PID) control algorithm. The low-level PID controller com-

pares the actual position of each joint to the command position at each time-step,

and the resulting error is used for adjustment.

The PWM amplifiers amplify the analogue signals from the STG card to drive

the three motors at the base of the active head. The actual positions of the joints

are determined by the optical encoders, which are attached to each motor. The

particular encoders used on CeDAR have a high-level of precision, guaranteed to

0.01o. The position measured by the optical encoders is fed back to the motion

control card to be used by the PID controller. The STG card in turn feeds the

positions back to the computer to be used by the high-level software controller.

The range of motion of each joint is discretised into a defined number of

positions in accordance with encoder resolution. The (tiny) detectable constant

distance between adjacent discrete encoder positions is known as a click. The

STG card reports all information back to the software control level in terms of

clicks and the current click position. Joint positional and velocity information

can be directly converted to degrees and degrees per second for intuitively easier

understanding.

4.5.2 Trapezoidal Profile Motion

As observed in nature, gaze control can be broken down into two basic tasks:

saccade and smooth pursuit. CeDAR’s control routines are an extension of work

undertaken by [Murray et al. (1992)] on trapezoidal profile motion (TPM). In

particular, the approach allows for the implementation of a single algorithm for

both saccade and smooth pursuit, enhancing the simplicity and compactness of
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Figure 4.6: Trapezoidal profile motion (TPM) velocity control profiles.

the controller design. We describe the TPM control regime as implemented by

Sutherland et al. [Sutherland et al. (2000)].

The essence of the TPM problem is to detect and transfer gaze to the desired

target point a distance from the image centre either in the shortest time possi-

ble (saccade) or as smoothly as possible (smooth pursuit). Both the joints’ and

target’s starting velocity are potentially non-zero and disparate. As the name of

the controller suggests, the trajectory calculated is completely characterised by

a trapezoidal-shaped velocity profile. The profile consists of three main stages,

and the starting point is taken to be the current velocity of the joint. Specif-

ically, we cause each visual axis to accelerate constantly to a calculated ceiling

velocity1, coast at this velocity for a given period, then decelerate at the same

constant rate as the acceleration until the target velocity is reached (Figure 4.6).

Mathematically, it is a four-dimensional problem per axis where the acceleration

a, ceiling velocity v, move time T and total distance travelled x are unknown.

The initial joint velocity v1, target velocity v2 and the target’s initial distance

from the image centre x0 are the givens.

If the acceleration a is assumed to be constant, the time taken by the head to

accelerate from its initial velocity to the ceiling velocity is

Ta =
sv − v1

sa
, (4.4)

1The maximum absolute velocity of the TPM trajectory
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Where s is positive for v1 < v and negative for v1 > v. Similarly, the time to

decelerate to target velocity is

Td =
sv − v2

sa
. (4.5)

Note that acceleration and deceleration rates are equal. If Tc is the time spent

coasting at the ceiling velocity, the total time for TPM is

T = Ta + Tc + Td. (4.6)

The distance travelled by the head in time T is

x =
sv + v1

2
Ta + svTc +

sv + v2

2
Td, (4.7)

but can also be considered as the sum of the initial distance of the target from

the foveal centre x0 and the distance travelled by the target during the move

x = x0 + Tv2. (4.8)

These general equations can be used to develop the case for saccade and smooth

pursuit.

4.5.2.1 Saccade

Saccade involves changing the head’s current position and velocity state to that

of the target, as inferred by its previous states, in the shortest time possible.

Motion smoothness is not a concern and hence acceleration is set to its maximum

possible magnitude. Two cases can arise:

1. The ceiling velocity required for the action is less than the maximum allowed

velocity and hence no time is spent coasting.

2. The theoretical ceiling velocity required for the action is greater than the

maximum allowed velocity and hence some time must be spent coasting.

It is useful to assume Tc is initially zero so that T can be deduced from Equation

4.4 to 4.8 with sv calculated as

sv = v2 ±
1

2

√
4sx0a− 2(v2

1 + v2
2 − 4v1v2, (4.9)
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where the smaller value is taken for v2 > v1 and vice-versa. If v exceeds the

maximum allowed velocity, a and v are replaced by their maxima. Then

Tc =
kTa − x0

v2 − sv
, (4.10)

where

k = sv − v1 + v2

2
(4.11)

is calculated to deduce T . Equation 4.9 also defines the value of s so that the

operand of the radical is greater than or equal to zero

s =

{
1 for (v1 − v2)

2 + 4x0a ≥ 0 ,
−1 otherwise.

(4.12)

An example of a saccade trapezoidal velocity profile that reaches maximum

achievable velocity is depicted in Figure 4.6 (marked “saccade”).

4.5.2.2 Smooth Pursuit

Smooth pursuit involves moving from one position and velocity state to the next in

a given amount of time with optimal smoothness. To achieve this, the acceleration

in moving to and from the ceiling velocity must be as small as possible. Again

both the coasting and non-coasting cases are relevant. With the assumption that

the coasting velocity is initially zero, Equations 4.4 – 4.8 yield

v =
x

T
± 1

2T

√
4x2 − 4Tx(v1 + v2) + 2T 2(v2

1 + v2
2) (4.13)

If these values are in excess of the maximum allowable velocity of the head, the

time constraint is unrealisable. In this instance, a saccade is initiated.

The coast at constant velocity is not always necessary if the ceiling velocity

is less than or equal to the maximum velocity achievable. An example is the

velocity profile of a smooth pursuit motion to acquire a target moving at a non-

zero velocity is displayed in Figure 4.6 (marked “smooth pursuit”).

As discussed, the parallel mechanism architecture prevalent in the design of

the CeDAR results in a coupling effect between the tilt axis and the vergence axes.

When motion occurs in the tilt joint, the left and right vergence axes also move

even if their respective motors are stationary. Therefore a function was written to
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compensate each parameter calculated by the TPM algorithm, before any motion

commands were sent to the PID controller. This was achieved by implementing

the translation from joint to motor space. Coupling ratios have been determined

and their complimenting decoupling ratios are used to counteract this coupling

effect.

4.5.3 Gaze Stabilisation

Gaze stabilisation is an important aspect of platform control. The primate vision

system incorporates both image-based and gyro-based vision stabilisation. We

look briefly at how stabilisation is achieved in the primate vision system, and

how these features are commonly implemented to help stabilise synthetic vision

platforms. Research in subsequent chapters is performed under stable laboratory

conditions where stabilisation is not required. However, stability is an important

component of primate vision, and would be highly relevant for gaze stabilisation

in mobile applications for a synthetic vision system. Both gyro-based and image-

based gaze stabilisation have been previously implemented on various active vi-

sion systems [Panerai et al. (2000)]. To demonstrate the primate-like capabilities

of the CeDAR platform we now discuss biological evidence for these reflexes, and

present a simple implementation largely similar to previous implementations.

4.5.3.1 Gyro-based Stabilisation

The vestibulo-ocular reflex (VOR) is a reflex eye movement that stabilises im-

ages on the retina during head movement by producing an eye movement in the

direction opposite to head movement that preserver the location of the image on

the retina. For example, when the head moves to the right, the eyes move to the

left, and vice versa. Since slight head movements are present all the time, the

VOR is important for stabilising vision. The primate vision system struggles to

capture visual information if the projected image slips across the retina at more

than a few degrees per second [Westheimer and McKee, 1954]. For humans to be

able to see with acuity while the head is moving relative to the world or a visual

target, the vision system must compensate for the motion of the head by turning

the eyes to stabilise the image in the retina. Patients whose VOR is impaired find
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it difficult to read print because they cannot stabilise the eyes during small head

tremors [Baloh et al. (1981)]. The VOR reflex does not depend on visual input

and works even in total darkness or when the eyes are closed [Rodieck (1998)].

The “gain” of the VOR is defined as the change in the eye angle divided by

the change in the head angle during the head turn. If the gain of the VOR is

wrong, for example, if eye muscles are weak, or if a person puts on a new pair of

eyeglasses - then head movements result in image motion on the retina, resulting

in blurred vision. Under such conditions, motor learning adjusts the gain of the

VOR to produce more accurate eye motion. This is referred to as VOR adaptation

[Gluck et al. (1990)].

The main neural circuit for the VOR is simple [Kandel et al. (2000)]: vestibu-

lar nuclei in the brainstem receive signals related to head movement from the

scarpa ganglions located in CN VIII and the vestibular nerve. From the vestibu-

lar nuclei, excitatory fibres cross to the contralateral CN VI nerve nucleus where

they split into two additional pathways. One projects directly to the lateral

rectus of the eye. The other projects to the oculomotor nuclei, which contains

motorneurons that drive eye muscle activity, specifically activating the medial rec-

tus muscles of the eye. The cerebellum is essential for motor learning to correct

the VOR in order to ensure accurate eye movements [Gluck et al. (1990)].

A seven degree-of-freedom SARCOS stereo head was equipped with high-

speed, high-precision four-axis independent pan and independent tilt gaze control.

A six-axis gyro/accelerometer unit was rigidly attached to the head at the centre

of its rotation, fixed with respect to the baseline of the stereo camera pair. This

meant that external perturbations to the robot head could be detected at a much

higher frequency than the camera frame rate, such that a compensation signal

could be injected into the gaze control loop that minimised the effect of such

perturbations on gaze direction, significantly compensating for such perturbations

so that their effect on visual tasks is reduced. Translational perturbations that

induce forwards/backwards motions of the head require a corrective motion that

depends on the distance to the attended object, unless the object is directly in

front of the head and located near infinity. Where objects are located in the near

foreground, forwards/backwards translations induce scale variations that cannot

be corrected using only pan/tilt motions. Horizontal and vertical translational

95



4. ACTIVE VISION PLATFORM

perturbations require corrective measurements that depend on the distance to the

attended object. However, forwards/backwards, lateral, and vertical translational

perturbations elicit only minor image frame shifts in comparison to rotational

perturbations. This, and the added complexity associated with depth-dependent

corrections, means that we concentrate on detecting and correcting for rotational

perturbations.

The head is not capable of rotating the cameras about their optical axes.

Primate exhibit minimal rotational abilities in this regard. Therefore only per-

turbation rotations that can be corrected by pan and tilt motions were consid-

ered. Gyro data obtained at 1000Hz was integrated to determine the approximate

rotational perturbation angles Rx, Ry (angles about reference frame coordinate

system axes as defined earlier). The gaze was shifted by −Rx,−Ry to approx-

imately correct for the detected perturbation. The displacement of the camera

centres from the gyro unit was small enough (∼3cm in horizontal direction only)

such that the kinematic effect on the correctional rotation angle for each eye was

considered insignificant. Gyros are prone to drift, but lower rate image acquisi-

tion frequency signals, such as a frame-rate target tracking signal, was used to

correct any drift and ensure gaze remained on target. Errors present in the frame

rate target tracking signal also render both the minor effect of the non-zero dis-

placement of the camera centres from the gyro and the slight image frame effects

of translational perturbations even more insignificant.

An experiment was conducted to demonstrate the task-specific performance

improvements associated with the use of synthetic VOR. It was shown that VOR

dramatically improved visual acuity and tracking quality during the performance

of a basic visual task:

• The visual task was to track a coloured object using a previously imple-

mented chrominance-based colour tracker.

• Randomly varying sinusoidal nodding and shaking motions (perturbations)

of the head were induced in the three neck axes. The perturbation control

loop was separated from the four-axis, frame rate, camera colour tracking

control loop.
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4.5 Motion Control

• The gyros were used to calculate the gaze corrections to counteract the

effect of nodding/shaking on gaze angles by simply applying a hand-tuned

gain to the gyro signals.

• Motion commands were given to counteract the image-frame effect of the

induced head shaking and nodding.

Tracking quality and the image-frame effect of perturbations applied to the

head were assessed with and without injection of the VOR into gaze control.

Recorded video logs were used to judge image stability and tracking quality for

both cases.

The same experiment was again conducted while randomly perturbing the ac-

tive head (bumping/shaking it by hand). Figure 4.7 shows a snapshot of footage

obtained during the experiment. The video logs are provided in Appendix C for

assessment.The evaluation confirmed that tracking quality was greatly improved

using gyro stabilisation. Image blur was also significantly reduced, producing

crisper images of the tracked target. The experiment demonstrates that VOR in-

jection stabilised gaze sufficiently fast (latency was sufficiently lower than camera

frame rate) such that tracking quality was significantly improved and track was

rarely lost.

4.5.3.2 Image-based Stabilisation

VOR is a reflexive, non-cognitive process. Without image-based verification (al-

beit at a lower control rate), the VOR may not fully stabilise the view. Cognitive

verification and VOR gain refinement both compliment the reflex. Here, we im-

plement image-based methods to further minimise image retinal shifts.

A grid of sample points is placed over the image In (left, Figure 4.8). Small

templates around these sample points are copied to memory (right, Figure 4.8).

The grid is placed over images during forward motion, such that the left and

right side magnitude of flow are approximately balanced. The templates are

then searched for in image In+1, using normalised cross-correlation. At each grid

location, a best estimate of the template’s horizontal and vertical translations is

recorded (in whole pixels). Then, the mode of vertical whole pixel translations
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Figure 4.7: Gyro-based gaze stabilisation demonstration (snapshot - see Ap-

pendix C for full video).
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4.5 Motion Control

Figure 4.8: Image-based gaze stabilisation (translational).

and the mode of horizontal whole pixel translations is calculated. An output

image is created that is equal to the original image shifted horizontally by −Mh

and −Mv pixels, removing the effect of angular changes in the direction of the

camera’s optical axis.

Torsional perturbations can also be removed by estimating the vertical mode

shift in each column of the grid. A best fit linear vertical shift gradient is then

estimated across the image (Figure 4.9). The original image can then be counter-

rotated to remove the perturbing torsion.

To eliminate drift and to allow auto recentreing of images after large shift

corrections, the cumulative shift corrections are steadily reduced to zero at a

controlled rate. This effectively high-pass filters the correction shifts and ensures

that, in the case that the camera becomes steady, the shift-corrected image over

time returns to being identical to the input image. For example, the correction

rate may be selected such that a low-speed rotation due to smooth pursuit does

not induce a correction shift in the images, whereas a fast jolt to the left would be

corrected. Figure 4.10 shows a snapshot of image-based gaze stabilisation footage

from the CeDAR head mounted behind a car windscreen.

This breaks down if, for example, a truck drives in front of the viewing ap-

paratus and induces a uniform translational flow that does not correspond to

apparatus motion. Image-based stabilisation does not remove motion blur due
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Figure 4.9: Image-based gaze stabilisation (torsional).
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4.6 I/O Dataflow

Figure 4.10: Online image-based gaze stabilisation demonstration (snapshot - see

Appendix C for full video).

to perturbations (unlike the VOR), but it does help to stabilise perception of the

ground plane, especially when objects moving relative to the ground plane are

being tracked. In this manner, it is useful in mobile robot applications.

4.6 I/O Dataflow

Synchronised images with a field of view of 45o are obtained from each analog

camera at 30Hz at a resolution of 640 by 480 pixels. A dedicated video server reads

the images from analog capture cards, resizes and converts images as required,

and makes them available to other processing computers, via either push or pull

requests, over a gigabit network interface. The video server uses CORBA to

distribute video data over the network according to remote client requests.

Similarly, the mechanical status of the viewing apparatus and acceptance of

motion control commands are handled by a separate and dedicated motion control

server. The server handles PID control of all axes simultaneously, sending motion

commands to encoder-controlled servo axes via the STG motion control card. The

motion server also uses CORBA to handle remote client requests for axis status
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4. ACTIVE VISION PLATFORM

and motion commands.

4.7 Summary

We have presented a biologically-inspired active vision mechanism. We have also

presented its control and I/O capabilities. The platform’s mechanism is capable

of performing the behavioural eye movements of primates. In subsequent chapters

we turn our attention to developing a more flexible primate-like system capable

of egocentric scene awareness.
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Chapter 5

Active Rectification

Figure 5.1: Online output of the active rectification process. Mosaics of rectified

frames from right CeDAR camera at time 10sec, (left) time 20sec (right).

In this chapter we present a method to cope with the perspective distortions

induced by active camera motion in real time. We transfer visual information

from camera reference frames into a continuous, egocentric reference frame.

5.1 Introduction

Primates combine retinotropic imagery from two eyes into a unified egocentric

representation that accounts for convergence. For example, we perceive long

straight lines as straight and continuous in our cyclopean perception, even when
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they cross the view of both eyes. For an active stereo head, online evaluation of

epipolar geometry and/or direct image rectification is required to account for the

image frame effect of gaze convergence (see Figure 5.7). Camera lenses can also

introduce barrel distortions that need to be accounted for. Any curvature in the

projection of straight lines can be removed so that the lines appear straight (and

continuous where they cross binocular views), as they exist in the real scene.

Few synthetic vision models deal with active vision convergence by projecting

visual stimulus into a static, egocentric (absolute) reference frame. They may

instead operate in a retinal (relative) reference frame. We combine the advantages

of active stereo vision and static stereo vision by rectifying and projecting active

camera images into a static egocentric reference frame. We begin by briefly

reviewing biological evidence for the transformation from retinal imagery to an

absolute perception in primates. We then outline our approach to synthesising

such a transformation. An algorithm is presented and implemented accordingly.

Finally, we provide results demonstrating the output of the approach.

5.1.1 Evidence in Biology

As discussed, recent experimental results [Neri et al. (2004)] indicate that dis-

parity processing in ventral areas involve retinal (relative) disparity, while dorsal

areas are more involved in processing absolute disparities. When perceiving scene

motion, estimates from many neurons are integrated into a global motion esti-

mate. First and second-order flow perception appear to be fully combined at the

level of area MT/V5 [Kandel et al. (2000)].

Monkeys retain a short term memory of attended locations across saccades

by transferring activity among spatially-tuned neurons within the intraparietal

sulcus [Merriam et al. (2003)], thus retaining accurate retinotropic representa-

tions of visual space across eye movements, a concept known as efference copy.

This transfer of activity across eye movements may be used to maintain some

form of static reference frame for egocentric perception. Similarly, the apparent

high ocular equivalent resolution humans experience is likely to be due to the

incorporation of visual information over time and viewing angles into a unified

egocentric representation.
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5.1.2 A Synthetic Approach

To achieve an absolute, egocentric perception, perspective changes due to conver-

gence distortions need to be accounted for. This process involves online character-

isation of epipolar geometry and/or image rectification. In estimating disparities

along epipolar lines (or along horizontal scanlines in the case of parallel epipolar

geometry rectified images) it is not necessary to account for perspective distor-

tions due to tilt if both left and right cameras tilt simultaneously (for example, if

they share a common tilt axis as exhibited by CeDAR). However, for a binocular

active head with independent left and right camera tilt axes, perspective changes

due to independent tilt motions need to be accounted for (although independent

tilt is not a primate-inspired ability, the algorithm we present can indeed project

images from independent tilt axes into a common, static, egocentric reference

frame). Similarly, to integrate images into a continuous absolute perception,

long straight lines should appear continuous and at the same orientation across

eye motions. Perspective distortions due to tilt, whether binocularly common or

independent, or even monocular, must then be accounted for.

We propose a simple method that enables active multi-camera image rectifi-

cation. As we shall see, our approach transforms images into mosaics that are

globally fronto-parallel. Projection of images into a reference frame exhibiting

parallel epipolar geometry enables existing static multiple-camera (stereo) algo-

rithms that benefit from pre-computed or parallel epipolar geometry (such as

depth mapping) to operate on active multi-camera platforms. The algorithm

therefore enables the operation of any static stereo algorithms on active stereo

platforms. We analyse the general case where any number of cameras in any

geometric configuration can be used, for example, any relative translations and

rotations between multiple cameras.

5.2 Background

The rectification algorithm is based upon the common pinhole camera model. We

review the pinhole camera model and associated multiple camera epipolar geom-

etry. In so doing we define the nomenclature adopted to formulate the algorithm.
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Figure 5.2: Pinhole camera model. Definition of parameters.

Unless specifically referenced otherwise, theory in this section (Section 5.2) is

referenced from texts such as [Hartley & Zisserman (2004)].

5.2.1 Camera Model

The pinhole camera model represents the camera by its optical centre C and

image plane I. The image plane is reflected about the optical centre to be located

in front of the camera. A line passing through a point w in the real world W

at coordinates w ∈ W and the camera optical centre at c ∈ W intersects the

image plane I at image coordinates i. The distance along the optical axis from

the optical centre c ∈ W to the image plane centre i0 ∈ W is equivalent to the

camera focal length f . Figure 5.2 shows the pinhole camera model.

The linear transformation from three-dimensional homogeneous world co-

ordinates w̃ = [x, y, z, 1]> to two-dimensional homogeneous image coordinates

ĩ = [u, v, 1]> is the perspective projection P̃ [Hartley & Zisserman (2004)]:

ĩ ∼= P̃ w̃ (5.1)

The perspective projection matrix can be decomposed by QR factorisation

into the product:

P̃ = A[R|t] (5.2)
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where rotation matrix R and translation vector t denote the extrinsic camera

parameters that align the camera reference frame with the world reference frame,

and A depends only on the intrinsic camera parameters.

Rotation matrix R is the standard 3 by 3 rotation matrix constructed from

rotations about the x, y and z axes:∣∣∣∣∣∣
c(θy)c(θz) s(θx)s(θy)c(θz)− c(θx)s(θz) c(θx)s(θy)c(θz) + s(θx)s(θz)
c(θy)s(θz) s(θx)s(θx)s(θz) + c(θx)c(θz) c(θx)s(θx)s(θz)− s(θx)c(θz)
−s(θy) s(θx)c(θy) c(θx)c(θy)

∣∣∣∣∣∣ (5.3)

where s() denotes sin() and c() denotes cos().

A is of the form:

A =

∣∣∣∣∣∣∣
αu γ u0

0 αv v0

0 0 1

∣∣∣∣∣∣∣ (5.4)

where αu and αv are the focal length, expressed in units of pixels, along the

horizontal and vertical image plane axes respectively; (u0, v0) is the image plane

coordinate of principal point i0; γ is the skew factor that models any deviation

from orthogonal u − v axes. Traditionally, the origin of the u − v axis is in the

top left corner of image plane I.

5.2.2 Epipolar Geometry

A point i in the image plane I corresponds to a ray in three-dimensional space

W . Given two stationary pinhole cameras, Ca and Cb, pointed towards the same

three-dimensional world point w, points in the image plane Ia of camera Ca will

map to lines in the image plane Ib of camera Cb, and vice versa. Such lines are

called epipolar lines. All epipolar lines in image plane Ib will be seen to radiate

from a single point called the epipole, which lies in the plane of Ib, but depending

on camera geometry, may or may not lie within the viewable bounds of Ib. The

epipole is the mapping of the world coordinates of the optical centre of camera

Ca to the extended image plane Ib of camera Cb. The baseline connects optical

centres of Ca and Cb, and intersects the image planes at the epipoles. Figure 5.3

shows the described epipolar geometry.

Stereo algorithms may require locating the same real-world point w in two

camera image planes Ia and Ib. This involves a two-dimensional search to match
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Figure 5.3: Epipolar geometry. Definition of parameters.

point iwa ∈ Ia with the corresponding point iwb
∈ Ib. Once the epipolar geometry

is known, this two-dimensional search is reduced to a one-dimensional search for

iwb
∈ Ib along the epipole in Ib that corresponds to iwa ∈ Ia. In the special case

that image planes are coplanar, both epioles are at infinity and epipolar lines will

appear horizontal in each image frame. In this case, the correspondence problem

is further simplified to a one-dimensional search along an image row (Figure 5.4).

Any set of images acquired from cameras with overlapping fields of view can

be transformed such that this special case is enforced - a process called parallel

epipolar rectification.

Figure 5.4: Rectified epipolar geometry enforced by fronto-parallel cameras. The

image planes exhibit horizontal epipolar lines lines.
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5.3 Active Rectification

We project images of the scene through the camera optical centres onto a vir-

tual plane parallel to the baseline, whose orthogonal vector points in the head’s

z-axis direction, as per Figure 5.5. The projection (described below mathemati-

cally) transforms the camera images into the large fronto-parallel aligned imaging

plane from a virtual camera pointing in a direction aligned with the z-axis of the

head (the starting/home direction of the cameras). Where the cameras deviate

from the home/start position (fronto-parallel alignment) via pan and/or tilt, the

transform distorts the images; an example is shown in Figure 5.7. Such cam-

era motion also alters the projected location of the camera image in the virtual

plane. The mosaic image is the accumulation of multiple such projections onto

the virtual plane from different camera geometries. The construction of two such

fronto-parallel mosaics (by projecting both left and right camera images onto the

same plane) ensures that parallel epipolar geometry is maintained throughout

the contents of the mosaics. The relative relations between the observed parts

of the scene are preserved across camera axis motions in this statically-imposed

reference frame. The mosaic, or regions of it, can then be fed into standard multi-

camera functions that rely on parallel epipolar geometry. As an example, this

mosaicing active rectification approach will be shown to function with a standard

depth mapping algorithm (Chapter 6), and thereby actively build an occupancy

grid representation of the scene. Before applying the rectifying transformation,

lens barrel distortion and camera geometry must be determined.

First, the intrinsic camera parameters must be determined for each camera.

Lens distortion has two forms, barrel and pincushion. Distortion tends to be most

significant in wide angle, telephoto and zoom lenses. It can be highly visible on

tangential lines near the boundaries of the image, but it is not visible on radial

lines. In a well-centred lens, distortion is symmetrical about the centre of the

image but lenses can be decentred due to poor manufacturing quality or shock

damage. We use the standard Matlab camera calibration toolbox1 to characterise

each camera individually. A lookup table is created from the parameters output

from the Matlab calibration toolbox that maps camera image pixels to distortion

1The Matlab camera calibration toolbox is available at
http : //www.vision.caltech.edu/bouguetj/calib doc/.
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Figure 5.5: Camera images projected into a static reference frame. Top: both

cameras at the home position; the left camera view of the scene is projected

through the left camera optical centre onto the mosaic plane that is oriented

parallel to baseline. Bottom: later, the left camera verges right about its optical

centre, projecting a new view of the scene onto a different coverage area of the

mosaic plane; the projection of the image left frame is no longer rectangular

in mosaic space; however, the projection of objects still in the camera view (for

example, the yellow cylinder) remains in the same mosaic location. The projection

of the right camera images onto the right mosaic is not shown but differs only by

a horizontal translation.
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Figure 5.6: Barrel distortion (simulation). Uncorrected view (left); and the cor-

rected view (right).

corrected image coordinates. The mapping is applied to every image. Figure 5.6

demonstrates the correction of barrel distortion.

Next, the real-world rigid transformations between camera positions must be

determined. This may be done by a number of methods. Visual techniques such

as the scale-invariant feature transform (SIFT) algorithm [Se et al. (2001)] or

Harris corner detection [Harris & Stephens (1988)] can be used to identify features

common to each camera view, and thereby infer the geometry. Alternatively,

encoders can be used to measure angular rotations. A combination of visual

and encoder techniques could also be adopted to obtain the camera relationships

to a more exacting degree. Once the extrinsic geometric relations between any

number of cameras is known, we can determine the epipolar geometry. We can

then calculate the transformation that projects the camera images onto the virtual

plane, for each camera.

5.3.1 The Rectifying Projection

CeDAR is a stereo head configuration so we consider here the case of two cam-

eras, although any number may be used as long as the transformations between

cameras are known. The process involves projecting camera images into a plane

parallel to the baseline whose orthogonal vector points in the z-direction. This

projection transforms the images such that they appear to come from parallel

aligned cameras pointing in a directional orthogonal to the baseline, as shown in

Figures 5.4 and 5.7. The sequential steps involved in the rectification process are
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Figure 5.7: Scene viewed through blinds demonstrating the output of the active

rectification process. The original right and left images respectively (top); and the

same images rectified such that parallel epipolar geometry is enforced (bottom).
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now presented.

5.3.1.1 Intrinsic Parameters

We assume that the focal length of each camera remains constant throughout use

so that the intrinsic parameters need not be recalculated. We obtain the intrinsic

camera parameters for left and right cameras, Al and Ar, from Matlab Camera

Calibration Toolbox single camera calibrations. Example parameters obtained

from our cameras were:

Al =

∣∣∣∣∣∣∣
373.45 0.00 145.81

0.00 374.30 128.26

0.00 0.00 1.00

∣∣∣∣∣∣∣
Ar =

∣∣∣∣∣∣∣
368.20 0.00 152.45

0.00 370.90 131.81

0.00 0.00 1.00

∣∣∣∣∣∣∣
These parameters are used to determine the rectifying transformation to cor-

rect camera barrel distortion, as per Matlab Camera Calibration Toolbox. Barrel

rectification is a static transformation that only needs to be determined once,

and applied identically to all camera images. The rectification is sped up by cre-

ating a lookup table of transformed pixel relocations, and is applied to all images

obtained from the camera.

5.3.1.2 Extrinsic Parameters

Extrinsic parameters are those that depend upon head geometry. For processor

economy, we are prepared to sacrifice a minimal reduction in accuracy in favour

of real-time performance. For CeDAR and many other binocular platforms, the

camera translations are kept constant. Encoders are used to measure camera

rotations about their optical axes. This eliminates the computational costs asso-

ciated with image-based methods of extracting more precise extrinsic parameters.

Experimentation has shown that the encoder resolution is sufficiently accurate for

us to assume that systematic errors, such as encoder drift, are for our purposes

insignificant.
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For two cameras, rectifying the images to a plane parallel to the baseline

ensures that parallel epipolar geometry is enforced. For more than two cameras

in a configuration where there is no single baseline, we need to declare a baseline

and rectify the camera views to this line. Since we are considering the case of a

stereo configuration, a common baseline exists and rotations around the optical

centres are sufficient to align retinal planes and enforce parallel geometry. For

multiple camera configurations where there are more than two cameras and no

common baseline, rotations around camera optical centres will enforce parallel

epipolar geometry but will not ensure that rows in each image align. In this case,

the scaling effect of translations perpendicular to the baseline would also have to

be accounted for. In the case of a stereo rig such as CeDAR, this problem does

not exist.

We proceed to build Rl and Rr from the extrinsic parameters θx, θy, θz read

from the encoder data at the time the images were obtained. Since our configu-

ration has a common baseline, translations tl, tr are not required for rectfication

and are set to zero vectors. We assume the focal lengths, components in matrix

A, to be constant, but where it is possible to read the focal lengths from the

cameras, they can be entered directly into matrix A. Beginning from the static

stereo rectification method outlined by Fusiello et al. (2000), we first create the

current left and right projection matrices P̃ol, P̃ol according to:

P̃ol = Al[Rl|tl]
P̃or = Ar[Rr|tr] (5.5)

5.3.1.3 Determine Desired Projection Matrices P̃nl, P̃nr

Parallel epipolar recitification involves rectifying images to a plane aligned with

the baseline whose normal vector points in the z-direction. In this case, angles

θx, θy, θz are zero in the desired rotation matrices Rl0, Rr0. Desired translations

tl0, tr0 are also zero. We can then create the desired new left and right projection

matrices P̃nl, P̃nl:

P̃nl = Al[Rl0|tl0]
P̃nr = Ar[Rr0|tr0] (5.6)
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5.3.1.4 Determine Rectification Transformations Tl, Tr

Now that the current and desired projection matrices are known for each camera,

the transformation T mapping P̃o onto the image plane of P̃n is sought.

Each projection matrix P̃ can be written in the form [Fusiello et al. (2000)]:

P̃ =

 q>1 q14

q>2 q24

q>3 q34

 = [Q|q] (5.7)

substituting this form of P̃ into Equation 5.1 gives u

v

1

 =

 q>1 q14

q>2 q24

q>3 q34

 w̃ (5.8)

This can be rearranged to its Cartesian form:

u =
q>1 w+q14

q>3 +q34

v =
q>2 w+q24

q>3 +q34
(5.9)

From Equation 5.8, the Cartesian coordinates c of the optical centre C is reduced

to:  uo

vo

1

 =

 q>1 q14

q>2 q24

q>3 q34

 c̃ (5.10)

where (uo, vo) is the image frame origin (0, 0) and c̃ is the homogeneous coordinate

of the optical centre. We rearrange the above to obtain the Cartesian form:

c = −Q−1q (5.11)

So P̃ can be written:

P̃ = [Q| −Qc]. (5.12)

In parametric form, the set of 3D points w, associated with image point ĩ ∼= P̃ w̃

becomes:

w = c + λQ−1ĩ (5.13)
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where λ is a scale factor. From Equation 5.7 we can write for P̃o and P̃n:

w = c + λoQ
−1
o ĩo

w = c + λnQ
−1
n ĩn (5.14)

hence:

ĩn = λQnQ
−1
o ĩo (5.15)

and so:

T = QnQ
−1
o (5.16)

T is determined for each camera.

5.3.1.5 Apply Rectification

Tl is then applied to the original left image, and Tr to the original right image. If

the camera is not in the home position, transform T transforms the camera image

to a location outside of the frame of the original image. To save memory, we first

apply T to the corner points of the original image to find the expected size and

location of the transformed image. We can then allocate memory for the extent of

the transformed image only (rather than using mosiac-sized memory allocations

for each frame), and apply an offset translation to T such that the transformed

image has the origin at [0,0]. In this manner, we contain the transformed image

in a minimal amount of memory. The transformed image can then be augmented

into a common mosaic memory space (or displayed on screen within a frame

that represents the mosaic) at the location according to the original transform as

follows.

5.3.1.6 Mosaic Images

The location of the projected image in the mosaic is determined by transforming

the principal (central) point (xp, yp) of the original image under T to obtain the

location(xT , yT ) = T [xp, yp]. While the head is in the initial home position, the

principal (central) point of the mosaic provides the coordinates at which images

coming from the head are to be augmented. This corresponds to T = I where I

is the identity matrix (no apparent rectifying transformation).
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Active Rectification Algorithm:
1. Determine intrinsic parameters to remove lens distortions.

2. Determine extrinsic parameters (head geometry).

3. Determine desired projection matrices P̃nl, P̃nr.

4. Determine rectification transformations Tl, Tr.

5. Apply rectification transformation to images.

6. Mosaic images.

Figure 5.8: Summary: active rectification algorithm.

We chose a mosaic frame size that is large enough to display the region of the

scene in which we are interested. Figure 5.8 summarises the active rectification

algorithm. Figure 5.1 is an example of output from the mosaicing process.

5.4 Results

Figure 5.7 shows input images and non-mosaiced rectified images with enforced

parallel epipolar geometry. Figure 5.9 shows further non-mosaiced output where

horizontal lines have been drawn to highlight the enforced parallel epipolar ge-

ometry.

It can be seen that horizontal scanlines in the images become aligned such

that the images are then suitable for depth analysis from pure horizontal dis-

parity. They are also rectified for insertion into mosaics. Figure 5.10 shows the

definition of rectification result parameters. Such parameters include the left

and right coordinates for the positioning of images in the mosaic that share a

common vertical coordinate due to the presence of a common tilt axis; and d,

the convergence disparity (horizontal distance in pixels) between left and right

mosaic positioning of rectified images. The convergence distance permits con-

version from relative image disparity to absolute disparities for egocentric depth

perception (Chapter 6).
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Figure 5.9: Online output of active rectification. The annotations show the

enforced alignment of the top of the chair, corner of the cabinet and base of the

stapler (top). Later, both cameras have moved but parallel epipolar geometry

remains enforced via online rectification (bottom); the alignment of the top of

the couch, the cabinet handle and the base of the chair are annotated.
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The movies in Figures 5.11 and 5.12 show output of the mosaicing process. In

these examples, operation incorporates network processing: images are obtained

from the cameras by the video server; the camera geometry is obtained from the

motion control server; a client node determines the rectification transformation,

acquires greyscale images, applies the rectifying transform and displays the results

in a mosaic at the coordinates determined during rectification. In this example,

output display was achieved at full 30Hz camera frame rate, including saving of

the display buffer for creation of the demonstration movie.

The movie in Figure 5.13 shows networked processing output: images are

obtained from cameras by the video server; the camera geometry is obtained from

the motion control server; a secondary server node determines the rectification

transformation, acquires greyscale images, applies the rectifying transform and

distributes the rectification results; a final node (the client) receives the rectified

images and parameters, does additional cue processing (in this instance the cue

is a form of saliency, but any cue processing could be substituted), and displays

the results in a mosaic. In this example, output display was achieved at 24Hz,

the additional cue processing requiring extra CPU cycles.

5.5 Discussion

We rely on encoder data to obtain the camera geometry. Therefore, accuracy in

rectification performance relies on initial homing accuracy and encoder calibration

accuracy. Homing involves setting the cameras to the position where they are

parallel and pointing perpendicularly away from the baseline.

Inaccuracies in determining camera geometry may also be introduced where

the cameras do not rotate around the camera centres. This may be invoked by

poor initial alignment of the cameras within the head, or by variations in focal

length during camera operation, which is often unavoidable while viewing scenes

with significant depth changes. Timing is also a potential source of error. If the

head angles are not recorded at the same time that the images are captured, the

image contents may not be rectified accurately. As we shall see, we use algorithms

that perform robustly despite such error.

When in the home position, the mosaic location of camera images corresponds

to the centre of the mosaic. If the contents of the cameras correspond to objects
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Figure 5.10: Rectification result parameter definitions. The shaded frame rep-

resents the mosaic. The red and blue frames contain the rectified right and left

camera images respectively.
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5.5 Discussion

Figure 5.11: Online image rectification and mosaicing, left camera. In this demon-

stration, the camera was moved by hand while the images were automatically

rectified (snapshot - see Appendix C for full video).

at large scene depths, it is possible to augment images from both the left and right

cameras into a single mosaic. If scene objects are closer, perspective disparities

are significant such that augmentation into a single mosaic would place near scene

objects at different locations in the mosaic, the disparity induced depending on

the scene depth of the object. We therefore maintain separate left and right

mosaics.

Integration of images over time and space into mosaics is similar to the man-

ner in which humans assemble images into a broad and resolute perception.

Humans combine variable resolution (foveal) imaging and broad binocular pe-

ripheries into a high equivalent resolution perception (hundreds of megapixels,

discussed in Chapter 2). The synthetic active rectification system incorporates

(non-zoomed) images of constant spatial resolution into an approximately one

megapixel resolution mosaic, significantly lower than the equivalent resolution

of humans. Variable resolution cameras (log polar cameras for example), or in-

creased foveal sampling and peripheral down-sampling could be used to increase

the system’s equivalent resolution and/or to provide a broader periphery, while
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5. ACTIVE RECTIFICATION

Figure 5.12: Online image rectification and mosaicing, left camera. The sinusoidal

motion in this demonstration is effected by computer control (snapshot - see

Appendix C for full video).

Figure 5.13: Online cue mosaic construction of saliency cue (snapshot - see Ap-

pendix C for full video).
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not incurring additional computational expense. Increasing the size of the mosaic

in the current constant resolution implementation does not increase processing

requirements (though it may increase memory use), so it is likely that such a

regime could achieve equivalent resolutions an order of magnitude closer to that

of human vision.

For creating absolute disparity maps, standard image frame disparity maps

are created, then parameter d is added to every disparity estimate. Alternatively,

the disparities can be estimated directly from the left and right mosaic contents.

If optical flow is calculated within the mosaic reference frame the result is pure

scene flow. Mosaicing accounts for the effect of deliberate camera motion on the

contents of the original camera image. In this manner, the rectification process

converts relative retinal camera images to an absolute, egocentric reference frame

ready for spatial awareness (Chapter 6).

We wrap the algorithm in a CORBA server that takes images from the video

server and head parameters from the motion control server. Rectified Y,U, or

V1 images and rectification parameters such as mosaic coordinates for left and

right rectified image positions are distributed to subsequent processing nodes in

the processing network. Rather than distributing the entire mosaics, we save

bandwidth by distributing only the rectified images and mosaicing parameters.

Subsequent processing nodes, such as those used to determine depth and flow

can obtain and preserve an egocentric representation from this data. Epipolar

alignment is preserved in any subsequent cue maps produced by servers operating

on the rectified images. In fact, we separate, rectify, then distribute rectified Y,U

and V images independently. We decouple channels because some subsequent

servers only require one of the channels, saving bandwidth by only distributing

channels or subsequent cues required by a dependent node.

5.6 Summary

We have provided biological evidence in support of an egocentric scene perception.

We have outlined a synthetic approach based on combining epipolar rectification

and mosaicing. We have detailed the steps involved in implementing such a

1YUV is a colour space where channel Y contains greyscale intensities and U and V are
intensity normalised chrominance channels.
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regime. We have used the method to rectify images for online mosaic construction

and display, and to transfer them, together with the mosaicing parameters, to a

client PC for remote processing and/or display.
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Chapter 6

Spatial Perception

Figure 6.1: Building spatial perception by scanning the fixation point over the

scene. For a given camera geometry, searching for pixel matches between the left

and right stereo images over a small disparity range defines a volume about the

horopter. By varying camera geometry, this measurable volume can be scanned

over the scene. Initially, only the circle lies within the measurable volume (left).

As the cameras diverge, the triangle (middle), then the cube (right), become

detectable.

In this chapter we describe spatial awareness. We develop a biologically-

inspired framework particularly suited for real-time synthetic active stereo vision.
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6.1 Introduction

Over recent years, calibrated stereo vision has proved an economical sensor for

obtaining 3Dd range information [Banks & Corke (1991)]. Traditionally, stereo

sensors have used fixed geometric configurations. This passive arrangement has

proven effective in obtaining range estimates for regions of relatively static scenes.

In reducing processor expense, most depth mapping algorithms match pixel loca-

tions in separate camera views within a small disparity range, for example, ±32

pixels. This means that depth maps obtained from static stereo configurations

are often dense and well populated over portions of the scene around the fixed

horopter, but they are not well suited to dynamic scenes or tasks that involve res-

olute depth estimation over larger scene volumes. As discussed, an active stereo

vision approach can offer many benefits over static stereo approaches.

Transferring images from active cameras into a static egocentric reference

frame, as described in the previous chapter, facilitates head-centred (egocentric)

perception. We now consider the development of egocentric spatial awareness

using active vision. Components of spatial perception include an awareness of

scene structure and scene motion.

As discussed, various cues contribute to the human perception of scene depth.

Many of these cues are complex and may only provide relative depth informa-

tion. We therefore concentrate on depth from disparity estimations. For a stereo

camera pair observing a 3D environment, disparity can be defined as the retinal

displacement between the matching projections of scene points in the left and

right images (Figure 6.2).

In undertaking task-oriented bahaviours it may be necessary to give attention

to a subject that is likely to be moving relative to us. By actively varying our

gaze geometry it is possible to place our resolute foveas over any of the locations

of interest in a scene, thereby obtaining maximal resolution in the vicinity of

those locations, including maximising the resolution of depth estimates. Where

a subject is moving, gaze can be made to follow the subject such that this in-

formation is continually maximised. Figure 6.1 shows how the horopter can be

scanned over the scene by varying camera geometry for a synthetic stereo con-

figuration. This approach is potentially more efficient than methods that use

static cameras because a small constant disparity range scanned over the scene is
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Figure 6.2: An example of binocular disparity. The insets show (from left) the

left and right camera views and an overlay of left and right views. Gaze is fixated

upon the mannequin’s forehead. Vector A-B represents disparity for the ball. The

images have not undergone parallel epipolar rectification, so there is a vertical

component to the disparity vector. A wide baseline introduces parallax disparity

at the manequine’s face.

computationally cheaper and obtains more dense results than a search over large

disparity range (or variable ranges) from a static camera configuration. Periph-

eral lens distortions mean that disparities determined in the periphery of such a

static system may be prone to inaccuracies if such distortions are not accounted

for. Active mechanisms can obtain disparity estimates from the camera optical

centres where such distortions are minimal. Placing the optical centres over an

object of interest also maximises contextual depth information about an object,

whereas the quantity of such information may be reduced when analysing the

disparity of objects situated near the periphery of a static camera configuration.

Additionally, multiple views of the scene from different depth mapping geometries

can be combined to reinforce the certainties associated with an estimate of scene

depths. Varying the camera geometry not only helps to improve the resolution

of range information about a particular location, but by scanning the horopter,

it also increases the volume of the scene that may be densely depth mapped.

We begin by seeking evidence for spatial computations in the primate brain.

We then discuss existing methods to synthesise the computation of retinal dis-

parity. The brain augments spatial estimates into an egocentric perception. We

propose a method to augment active vision disparity data into an egocentric, uni-

fied occupancy grid representation. Finally, we extend the presented occupancy

grid framework and present results that demonstrate how the occupancy grid can
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be used to extract information about the surroundings. In particular, we focus

upon 3D scene motion and 3D cue-surface correspondences.

6.1.1 Retinal Disparity in Biology

The two different perspectives from the eyes of the human vision system leads

to slight displacements of objects (disparities) in the two monocular views of

the scene (Figure 6.2). The human vision system is able to use these disparities

(amongst other cues) for depth estimation and to merge both views into a fused

cyclopean view, a 3D representation of the scene.

Disparity estimations occur across around 80% of the area of the human visual

field [Rodieck (1998)], corresponding to the majority of the area of the left and

right views that overlap. The point we are gazing upon will appear once, crisp,

and in focus in our perceived cyclopean image (overlapping visual fields). Points

further away from and closer to our gaze point, though not in focus, will appear

twice in our cyclopean view due to disparity. If the point is closer than the

gaze point, it will appear once displaced further to the right (contributed from

our left eye’s view) and again further to the left (from our right eye’s view).

This is how we perceive crossed, or negative disparity. Points beyond the gaze

point will appear once displaced further to the left (contributed from our left

eye’s view) and a second time further to the right (from our right eye’s view).

This is how we perceive uncrossed or positive disparity. Figure 6.3 describes

crossed and uncrossed disparity. Though we are not physically aware of “retinal

displacements”, whether an object’s retinal image on the two eyes has crossed

or uncrossed disparity immediately tells us whether the object is in front of or

beyond the fixation point.

Evolution has given most land-dwelling animals capable of disparity estima-

tion a fronto-parallel vision geometry, probably due to the fact that, we live

and interact in a predominantly horizontally planar world where objects of in-

terest tend lie to the left and right of each other rather than above or below.

The geometry of such biological vision systems simplifies the disparity problem.

Vertical disparities are largely eliminated by assuming a fronto-parallel camera

geometry. Though the visual cortex does not perform one-dimensional scanline

analysis, stereoscopic depth estimation can be reduced to a one-dimensional spa-
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Figure 6.3: The horopter and crossed disparity. A plan view showing the ap-

proximate location of the horopter for the given camera geometry (dashed line).

Objects in front of (hexagon) and beyond (cross) the fixation point exhibit un-

crossed and crossed disparity respectively.
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tial problem. For static synthetic systems with a strict fronto-parallel camera

configuration, parallel epipolar geometry is enforced and it is then sufficient to

analyse corresponding scanlines of both images to estimate disparity.

6.1.2 Evidence of Spatial Perception in the Brain

Not all animals are able to detect binocular disparity; an example is the rabbit.

When studying cats [Ohzawa et al. (1997)] and monkeys [Poggio et al. (1988)],

scientists presented evidence of neural mechanisms for binocular depth discrimi-

nation based on disparity sensitive cells in the visual cortex. All healthy primates

exhibit the ability to discriminate disparities. We briefly review spatial perception

in the primate brain. We look for evidence of the perception of scene structure

and motion.

6.1.2.1 Scene Structure

Although numerous cues provide spatial information, primates mainly interpret

scene depth from estimates of binocular disparity. Early visual areas (V1, V2,

V3) and ventral areas (hV4, V8, V4) are likely to be involved in processing both

absolute and retinal disparities [Lamme et al. (2000); Neri et al. (2004); Poggio

et al. (1988)]. Absolute scene depth is likely to be interpreted in dorsal areas

(V3A, MT/V5, V7). Gaze convergence, focal length and prior familiarity with

an object’s size can provide information for conversion from relative to absolute

depth distances. Gaze convergence stretches extraocular muscles. Signals origi-

nating from kinesthetic sensations in these extraocular muscles are known to be

passed to the visual cortex, where they play a role in absolute depth perception

[Zajac (1960)].

6.1.2.2 Scene Motion

While the eye is stationary, primates can estimate relative scene velocities with

high accuracy, however, during eye movements accuracy reduces. Additionally,

when an object moves directly towards or away from an observer there is minimal

eye movement occurring. In this instance, the ability to discern absolute and

relative speeds is still present via disparity. As described previously, individual

neurons in early visual areas (LGN, V1 and V3) respond to motion that occurs
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locally within their receptive field. A global perception of motion appears to

occur in area MT/V5 in human visual cortex [Kandel et al. (2000)].

6.1.3 Synthesising Disparity Estimation

The correct and fast estimation of disparity is non-trivial. Sensor noise and dif-

ferent transfer functions of the left and right imaging system introduce stochastic

signal variations. Left-right perspective differences lead to a variety of system-

atic image variations, including occlusion effects and foreshortening. In addition,

since most object surfaces in real-world scenes display specular reflection1, the

intensities observed by the imaging systems are not directly correlated with the

object surfaces, but nearly always have a viewpoint dependent component which

moves independently of the surface in question.

Disparity in stereo image pairs has been computed using area and feature

matching techniques that try to counteract the set of distorting signal variations.

Features are detected in one image and searched for in the other. Disparity has

also been recovered from frequency and phase-based calculations. Other methods

include image interleaving and coherence-based detection. All of these methods

have their intrinsic problems caused by the various assumptions inherent in their

approach. We now review common techniques to recover image disparity.

6.1.3.1 Feature-Based

In this scheme, features such as edges, corners, contours or patches are identified

in both images. Intensity information is converted to a set of features assumed

to be a more stable image property than raw intensity data. The matching

stage operates only on these extracted image features. Of course, only a discrete

number of specific feature-classes can be utilised. Therefore a significant area

of the image can be identified as containing no matchable features and is not

considered further in the matching process. This approach can be fast as features

1Specular reflection occurs on glossy or shiny objects where light is reflected from its source
without being affected by the surface of the object it is reflecting off. This contrasts with Lam-
bersian reflection where the reflected light is altered by the reflecting surface to give that surface
its textual appearance and colour. Most reflections contain both a specular and Lambersian
component.
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Figure 6.4: Example disparity map. One of the input camera views (left), and

a dense disparity map output (right). Distant scene regions are represented by

darker intensities.

usually appear in limited numbers, allowing significant data reduction. It is

insensitive to lighting conditions or small image deformations. Since distinctive

features only form a small part of an image, this method produces sparse disparity

estimates as it is impossible to determine the disparity for featureless regions.

Interpolation is necessary to populate the missing regions. Also the choice and

localisation of features can be difficult since they are strongly related to the image

content. Potentially, every feature detected in one image can be matched with

every feature of the same class in the second image. This false matching problem

can be reduced by the addition of constraints to the solution, such as restricting

the search to be only along epipolar lines.

6.1.3.2 Area-Based

This technique uses raw image data and epipolar geometry in binocular image

pairs to compute disparity. Image intensity values within small discrete patches

of one view are compared to identically sized patches in the same vicinity in

the second view. The task is to match patches of maximum correlation and

note their displacement. This method can produce dense disparity maps but

reliance on image intensities means it is often sensitive to lighting conditions and

geometrical deformations.

This scheme can be implemented in many different ways, depending upon

132



6.1 Introduction

the chosen similarity measure, the algorithmic solution, and on the complexity

of the modeled disparity field. Similarity measures used can include: sum of

products, covariances, sum of squared differences, sum of absolute differences and

cross-correlation. Algorithmic solutions range from complete search to iterative

least squares, simplex algorithms and dynamic programming, and can be highly

dependent on the a priori knowledge of the scene and the similarity measure.

This method is also susceptible to the false matching problem of feature-based

techniques. To ensure stable performance, area-based algorithms need suitably

chosen correlation measures and a sufficiently large patch size. They are hence

often computationally expensive.

6.1.3.3 Phase-Based

This approach uses the fact that the disparity from bandpass signals is equiva-

lent to the local phase difference between the signals. From a theoretical point

of view, it can be seen as a direct application of the Fourier shift theorem. Using

this theorem, the phase shift (a measure of local disparity) between horizontal

scanlines in pairs of images can be derived from local frequency and phase. In

this manner, Fourier phase images are extracted from the raw intensity data.

The Fourier phase may exhibit phase wrap-around, making it necessary to em-

ploy hierarchical methods. The Fourier shift theorem cannot be directly applied

to images because it is used to determine the overall shift between two signals,

whereas pixel displacements in a stereo image pair are fundamentally local. Thus,

as mentioned, a coarse-to-fine heirachical method is essential, and increases com-

putation significantly. Although similar to area-based techniques, this method is

search-free. Phase is amplitude invariant, so the method is robust to intensity

and small image distortions and produces dense disparity maps. It is important

that the two images come from calibrated cameras that have had an epipolar

constraint applied, so that horizontal lines of pixels coincide.

6.1.3.4 Coherence-Based

In this method, disparity calculations and fusion of a pair of images into a cyclo-

pean view is performed simultaneously. Henkel (1999) utilised a network calcu-

lation structure as shown in Figure 6.5. Simple disparity estimators are arranged
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Figure 6.5: Coherence-based disparity stack network [Henkel (1999)].

in horizontal layers which have slightly overlapping working ranges. Image data

is fed into the network along the diagonally running data lines. Within each of

the vertical disparity stacks, coherently coding sub-populations of disparity units

are employed, and the average disparity value of these pools can be read out of

the network. This method is an attempt to reproduce the operation of complex

cells in the human visual cortex. Though quite successful, it is complex and

computationally expensive.

6.1.4 Depth From Disparity

Once image disparity has been calculated, camera calibration data and geometry

information can relate image disparity directly to absolute scene depths. For

cameras whose axes are strictly fronto-parallel, scene depths Z can be computed

from disparity D according to Z = fB/D.

Few existing methods are tailored to cope with the arbitrary motion of ac-

tive cameras. To our knowledge, none convert relative disparities to absolute

disparities during cameras motion, in real time (motion may originate from de-

liberate camera movement or perturbations such as moving cameras by hand).
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In primates, kinesthetic sensations are known to be involved in converting retinal

disparities from varying viewing geometries into an egocentric perception of scene

depth. For our active vision framework, encoders provide the equivalent of the

kinesthetic feedback signal at the active rectification stage. As described in the

previous chapter, active rectification projects images from active cameras into

a static fronto-parallel reference frame (the mosaics), where the above equation

holds.

6.2 Spatial Representation

Initial efforts in computer vision attempted to identify scene structure and objects

from features such as lines and vertices in images. Stereo disparity maps are still

created from stereo images by identifying patches of object surfaces in multiple

views of scenes. Traditionally, somewhat sparse and noisy stereo depth data has

been used to judge the existence of surfaces at a location in the scene. Decisions

based directly on such unfiltered data could adversely affect the sequence of future

events reliant upon such a decision. In previous use of stereo range data, only a

few attempts were made to strengthen or attenuate a belief in the location of mass

in the scene [Moravec (1996)]. Occupancy grids can be used to accumulate diffuse

evidence about the occupancy of a grid of small volumes of space from individual

sensor readings and thereby develop increasingly confident and detailed maps of

a scene [Elfes (1989)].

As well as addressing the above issues, an occupancy grid allows the inte-

gration of data according to a sensor model. As we shall see, each pixel in the

disparity map is considered as a single measurement for which a sensor model is

used to fuse data into the occupancy grid. Not only is uncertainty in the mea-

surements considered in the sensor model, but it is also partially absorbed by the

granularity of the occupancy grid. Bayesian updating of cell occupancy status

can be used to integrate sensor data.

6.2.1 Occupancy Grids

Occupancy grids were first used in robotics to generate accurate maps from sim-

ple, low resolution sonar sensors [Elfes (1989)]. Occupancy grids were used to
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accumulate diffuse evidence about the occupancy of a grid of small volumes of

nearby space from individual sensor readings and thereby develop increasingly

confident and detailed maps of a robot’s surroundings. The use of occupancy

grids has been applied to range measurements from other sensing modalities static

stereo vision on mobile platforms [Murray & Little (2000)], laser and millimeter

wave range scanners [L Matthies (1988)].

Representing the scene by a grid of small cells enables us to represent and

accumulate the diffuse information from depth data into increasingly confident

maps. Belief in any data point can then be related to that point’s surroundings.

This approach reduces the brittleness of the traditional methods.

The occupancy grid approach represents the robot’s environment by a 2D

or 3D regular grid. An occupancy grid cell contains a number representing the

probability that the corresponding cell of real-world space is occupied, based on

sensor measurements. Sensors usually report the distance to the nearest object in

a given direction, so range information is used to increase the probabilities in the

cells near the indicated object and decrease the probabilities between the sensed

object and the sensor. The exact amount of increase or decrease to cells in the

vicinity of a ray associated with a disparity map point forms the sensor model.

Combining information about a scene from other sensors with stereo depth

data is usually a difficult task. Another strength of the occupancy grid approach is

that it facilitates such integration. A Bayesian approach to sensor fusion enables

the combination of data, independent of the particular sensor used [Moravec

(1989)]. A single occupancy grid can be updated by measurements from sonar,

laser or stereoscopic vision range measurements. In this approach, the sensors

are able to complement and correct each other, when inferences made by one

sensor are combined with others. For example, sonar provides good information

about the emptiness of regions, but weaker statements about occupied areas. It

can also recover information about featureless areas. Conversly, stereo vision

provides good information about textured surfaces in the image.

6.2.2 Bayesian Occupancy Grids

We use a Bayesian methods [Moravec (1989)] to integrate sensor data into the

occupancy grid. Sensor models are used to incorporate the characteristics of error
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for the particular sensor being used.

Let s[x, y] denote occupancy state of cell [x, y]. s[x, y] = occ denotes an occu-

pied cell and s[x, y] = emp denotes an empty cell. P (s[x, y] = occ) denotes the

probability that cell [x, y] is occupied. P (s[x, y] = emp) denotes the probability

that cell [x, y] is empty.

Given some measurement M , we use the incremental form of Bayes Law to

update the occupancy grid probabilities [Elfes (1989)]:

P (occ)k+1 =
P (M | occ)

P (M)
P (occ)k

P (emp)k+1 =
P (M | emp)

P (M)
P (emp)k (6.1)

where emp denotes s[x, y] = emp, occ denotes s[x, y] = occ, and

P (M) = P (M | occ)P (occ)

+ P (M | emp)P (emp) (6.2)

6.2.2.1 Sensor Models

Let r denote the range returned by the sensor and d[x, y] denote the distance

between the sensor and the cell at [x, y]. For a real sensor, we must consider

Kolmogoroff’s theorem [Moravec (1989)] where localisation due to a measure-

ment produces a continuous PDF (left, Figure 6.6). For an ideal sensor (right,

Figure 6.6), we have:

P (r | occ) =


0 if r < d[x, y]

1 if r = d[x, y]

0.5 if r > d[x, y]

P (r | emp) = 0 (6.3)

We adopt the 1D ideal sensor model for integrating data into the occupancy

grid. In this case, the occupancy of the cell that a measurement corresponds to

is incremented. The occupancy of cells in front of this cell are decremented, and

the cells behind it are tended towards ambient levels using Bayesian updating as

follows.
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Figure 6.6: Example sensor profiles. The 1D profile of a real sensor (left), and an

ideal sensor model (right) [Moravec (1989)].

6.2.2.2 Updating the Occupancy Grid

We can re-write Equation 6.1:

P (occ)

P (emp)
← P (M | occ)

P (M | emp)

P (occ)

P (emp)
(6.4)

In terms of likelihoods this becomes:

L(occ)← L(M | occ)L(occ) (6.5)

Taking the log of both sides:

log L(occ)← log L(M | occ) + log L(occ) (6.6)

Log-likelihoods thus provide a more efficient implementation for incorporating

new data into the occupancy grid by reducing the update to an addition [Elfes

(1989)].

6.3 An Occupancy Grid for Active Vision

We now develop a 3D occupancy grid specifically designed for the integration of

active vision data into an egocentric 3D representation of scene structure and

motion.
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6.3.1 A Space Variant Occupancy Grid Representation of

the Scene

The occupancy grid is constructed such that the size of a cell at any depth

corresponds to a constant amount of pixels of disparity at that depth. It is also

constructed such that rays emanating from the origin pass through each layer of

the occupancy grid in the depth direction at the same X, Y coordinates.

The width and height of the occupancy grid correspond to the size of the

full mosaic, as defined in the rectification process. At farther scene depths, pixel

disparities correspond to larger changes in scene depth. For example, 10 pixels of

disparity for an object at 1m scene depth corresponds to a much smaller depth

variation than does 10 pixels of disparity for an object at 50m scene depth. Ac-

cordingly, the occupancy grid configuration exhibits cell cube sizes that increase

with depth. Cell cube sizes are defined by their x, y and z edge lengths. The

z-length of a cell cube in the occupancy grid corresponds to the effect of a specific

amount of pixels of disparity (n) at the depth the cell exists.

The camera images are projected into the mosaic reference frame where par-

allel epipolar geometry has been enforced (synthesising a fronto-parallel arrange-

ment). A hypothetical absolute disparity D at mosaic coordinates (u, v) can

therefore be mapped to 3D world coordinates according to:

Z = fB
D

X = uZ
f

Y = vZ
f

, (6.7)

where B is the length of the baseline and f is the focal length of the cameras

(assumed constant and equal).

The space-variant active vision occupancy grid (Figure 6.8) is constructed and

subdivided into cells according to the algorithmic summary in Figure 6.7. The

space-variant approach significantly reduces the number of cells at larger depths

where high depth resolution is not usually available anyway, improving processor

performance. It also increases resolution in the grid at nearer depths where we

are more interested in an accurate estimation of the location of objects.

The space variant occupancy grid formulation reduces ray tracing computa-

tions associated with sensor model integration of range measurements. At 1m
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Active Vision Space-Variant Occupancy Grid Construction
For each pair of camera images:

1. Select the minimum and maximum distances from the active head
origin that the occupancy grid will represent, Zmin and Zmax.

2. Set the width and height of the occupancy grid (W,H) to the
mosaic width and height used in the rectification process, so that
the same visual space is represented.

3. Select the cell cube edge length n in terms of pixels; it should be
a factor of the width and height.

4. The first slice (Z=0) of the occupancy grid is drawn as follows:
a) transfer the corners of the mosaic to 3D coordinates. That
is, find X and Y from Equation 6.7 using Z = Zmin for corners
(0, 0), (0,H), (W, 0), (W,H).
b) subdivide the face into a grid of W/n squares in the x-direction
and H/n squares in the y-direction.
c) set the z-length zZ=0 of the cubes in this slice to the same as
its x and y lengths.

5. The next slice is drawn as follows:
a) increment slice reference Z.
b) transfer the corners of the mosaic to 3D coordinates. That is,
find X and Y from Equation 6.7 using Z = Zmin+zZ−1 for corners
(0, 0), (0,H), (W, 0), (W,H).
c) subdivide the face into a grid of W/n squares in the x-direction
and H/n squares in the y-direction.
d) set the z-length zZ of the cubes in this slice to the same as its
x and y lengths.

6. Repeat step 5 until occupancy grid z-size exceeds Zmax.

Figure 6.7: Summary: Active vision occupancy grid construction procedure.

140



6.3 An Occupancy Grid for Active Vision

Figure 6.8: Occupancy grid configuration. The active head is shown at the

origin. The X, Y and Z cell directions are defined. A ray projected back onto the

occupancy grid (white highlighted cells) passes through all slices of the occupancy

grid in the Z direction at identical X, Y cell coordinates.
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Figure 6.9: Occupancy grid showing the re-projection of the left (blue) and right

(green) camera frames back onto the front face of the occupancy grid. The size of

all slices through the occupancy grid in the z direction corresponds to the mosaic

size set in the rectification stage.

depth, a slice through the occupancy grid contains a fixed number of cells in the

horizontal direction and another fixed number of cells in the vertical direction.

At any other depth, the number of vertical and horizontal cells in the slice are

the same respectively, with the central cells aligned with the origin at the loca-

tion of the sensor. This means that a ray emanating from the origin and passing

through a cell at 1m with slice coordinates (x, y) also passes through all other

slices at coordinates (x, y). This configuration means that ray-tracing through

the occupancy grid for sensor integration becomes trivial. Figure 6.8 shows the

construction of the occupancy grid and rays of cells emanating from the origin.
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6.3 An Occupancy Grid for Active Vision

6.3.2 Populating the Occupancy Grid

Active rectification provides epipolar rectified images and the convergence dis-

parity parameter d. The overlapping regions of the rectified left and right images

can then be used as input for estimation of horizontal disparities. In this man-

ner, a relative horizontal disparity map is obtained using the rectified images as

input. The relative disparities can then be converted to absolute (mosaic refer-

ence frame) disparities by simply adding convergence disparity parameter d to

all disparities. Each pixel in the resulting map can be converted to an absolute

3D scene location using Equation 6.7. The cell that each estimate from each

disparity entry corresponds to in the occupancy grid is thus determined.

A sensor model is used to fuse disparity data from the active cameras into the

3D occupancy grid. Each pixel in the absolute disparity map can be thought of

as a single measurement along a ray emanating from the origin located midway

between the baseline connecting the camera centres. For processor economy we

use the ideal sensor model in Figure 6.6. Applying this simple sensor model

involves increasing the occupancy of the cell that the pixel corresponds to, and

decreasing the likelihood of all cells along the occupancy grid ray in front of

that cell. Occupancy of all cells behind the occupied cell are tended towards the

ambient level (or the value that corresponds to “don’t know”). Thus ray tracing

in the occupancy grid is trivial, because rays pass through all cells with identical

X, Y coordinates. For example, a ray passing through layer Z=10 at cell X=5,

Y=5 also passes through all other Z layers at X=5, Y=5.

We combine all disparity matches in the disparity image into the occupancy

grid by applying the sensor model. Figure 6.12 shows an example of an occupancy

grid pupulated by this process. For a given camera geometry, the locations of

the left and right rectified images within the mosaic defines the area that may be

disparity-mapped. Figure 6.10 shows the calculation of the disparity-measurable

area.

The limits of the measurable volume (defined by eight vertices) for a given

camera geometry and disparity search range can be found by using Equation 6.7

to project a disparity of ±16 at each of the corners of the output area of the

disparity map onto the occupancy grid. That is, set D = d + 16, d − 16 (where

d is the rectification convergence parameter and the disparity search is over ±16
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Figure 6.10: Disparity estimation coverage in mosaic space. At any instant in

time, the locations of the left and right rectified images within the mosaic defines

the area that may be disparity-mapped. In this example, disparities are searched

for over a range of ±16 pixels, which means we may find matches up to 16 pixels

outside the overlapping region. Therefore the input images for disparity search

are defined by the areas surrounded by the blue and red dotted lines. The size of

the output disparity map is the size of the shaded area of left-right overlap. The

position of the output area in the mosaic, the camera geometry, and the disparity

search range define the measurable volume in the occupancy grid (Figure 6.12).
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6.3 An Occupancy Grid for Active Vision

Figure 6.11: Online snapshot of raw occupancy grid contents. The rectified

left camera image (left), and occupancy grid (right) are shown. The two semi-

transparent vertical planes in the occupancy grid show the near and far bounds

of the region in which depth measurement is possible, given the current camera

geometry and disparity search range (±16 pixels).

pixels) and set (u, v) as each of the four corners of the left-right overlap area in

mosaic coordinates. Figure 6.12 shows the online result of this process - near

and far planes showing the limits of the measured volume defined by the eight

resulting vertices.

The simplicity in incorporating data into the structure enables us to con-

struct an occupancy grid model of the relevant volume of the scene by scanning

the horopter over it. We do not just obtain an instantaneous impression of the

region of the scene for which we presently have a depth map, instead we accumu-

late evidence about each cell in the occupancy grid. We are able to accumulate

information about occupied cells and retain a memory of where mass was previ-

ously observed in the scene, even if we are not viewing that region of the scene

anymore.

We may define a task-oriented occupancy grid volume and resolution. For

example, in the laboratory or for object manipulation, the selected occupancy

grid volume is small, and so are cell sizes. For high-speed outdoor navigation,
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Figure 6.12: Online snapshot showing extent of depth-measurable volume. The

rectified left camera image (left), and the measurable volume for the current

camera geometry and a disparity search range of ±16 (right) are shown . The

left-right overlap (see Figure 6.10) of the currently viewed regions in the left and

right mosaics sets the width of the disparity image and measurable volume. The

disparity search range sets the depth. The vertical purple and green planes show

the front and rear limits of the measurable volume. The wireframe shows the

limits of the entire occupancy grid. We have enabled online re-projection of the

scene onto the occupancy grid for ease of interpretation.
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the desirable sensing volume is large, and at distance so too are cell sizes. We

only update the cells in the occupancy grid that represent the region of the scene

relevant to our task-oriented behaviors. Information about the scene that falls

outside this bound is suppressed, including data from depth map images that

falls beyond the defined occupancy grid volume.

We may choose a threshold above which cells are considered occupied at any

point in time. Figures 6.11 and 6.13 show example occupancy grid output. A

demonstration movie showing online occupancy grid population is shown in Fig-

ure 6.13. The method to update the contents of the space-variant occupancy grid

is summarised in Figure 6.14.

6.3.3 Dealing with Dynamics

Updates to the occupancy grid occur at a frequency high enough for us to effec-

tively analyze dynamic scenes. So that previously occupied cells do not remain

flagged as occupied once a moving object has moved away, we incorporate the use

of a decay rate applied to all cells. We decay the occupancy of all cells towards

ambient levels over time. This of course means that cell occupancies may “linger”

once an object has moved away until the occupancy decays to ambient levels. It

also instantiates a trade off between accumulated confidences and the ability to

accumulate occupancy in cells through which a moving object passes.

A high decay rate should be used where linger is undesirable. A lower decay

rate should be used where more confidence about static scene regions is desir-

able. The decay rate may vary between these extremes automatically, according

to preference associated with the desired task. The alternative is to separately

consider evidence from each disparity map over time, resetting the entire occu-

pancy grid every time a disparity map is obtained. For coarse occupancy grids

this is a reasonable solution because occupancy evidence can be accumulated over

the correspondingly larger n by n image areas, rather than time. For finer oc-

cupancy grids where the cells correspond to small n by n image regions, there is

more of a reliance on accumulating evidence over time rather than image area.

In this case, such a solution is not ideal because evidence may be too scarce on

a frame by frame basis to render enough cells as occupied for an accurate scene

representation. Resetting the grid is equivalent to a very high decay rate.
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Figure 6.13: Online population of occupancy grid demonstration (snapshot - see

Appendix C for full video).

148



6.3 An Occupancy Grid for Active Vision

Active Vision Space-Variant Occupancy Grid Update
For each pair of camera images:

1. Active rectification provides epipolar rectified images and conver-
gence disparity parameter d.

2. Obtain relative disparity map from rectified images.

3. Convert to absolute disparities by simply adding d to all dispari-
ties.

4. Convert each pixel to an absolute scene location using Equation
6.7.

5. Find corresponding occupancy grid cell for each pixel.

6. For each pixel, apply ideal sensor model along ray passing through
the occupancy grid cell using Bayesian update. The ray passes
through all occupancy grid cells at same x, y coordinates.

7. Tend occupancy of all cells in occupancy grid towards ambient
level.

Repeat from 1.

Figure 6.14: Summary: active vision occupancy grid update procedure.
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6.3.4 Dealing with Error

Errors associated with extrinsic parameter estimation during rectification will

affect the accurate construction of an occupancy grid from each pair of stereo

images. Bayesian integration of many such occupancy grids over time and from

many different viewing geometries will reduce the effect of inaccurate extrinsic

parameter measurement. The Bayesian approach means we assume the error

in the estimates approximates zero mean Guassian error. Active rectification

calibration inaccuracies may mean that noise is not zero mean but systematic,

which may affect conversion from relative to absolute occupancy grid depths. The

granularity of the occupancy grid can help to absorb such error, and despite such

systematic calibration errors, or other sources such as the error due to variations

in focal lengths, the occupancy grid preserves relative locations of surfaces in the

egocentric representation.

The occupancy of a cell is effectively accumulated over disparity pixels in a

n by n sized square in the absolute disparity image. Depending on the threshold

selected above which cells are considered occupied, a cell will require numerous

“hits” before it can be considered occupied. Using the described sensor model to

integrate data, this condition would require multiple disparity pixels of the same

value in the same n by n square, and few hits in other cells in the same occupancy

grid ray. In this manner, Bayesian updating helps to identify the cell in each ray

that is most likely to be occupied, if any.

If numerous hits come from a small object it may render a cell occupied.

We cannot identify where within the cell the object is likely to be by looking

at the occupied cell alone - reconsideration of the original disparity maps would

be required. For the purpose of rapid spatial perception, it suffices to say that

there is likely to be a surface within the cell, and that there is free space in

front of that cell - which is nonetheless useful information for obstacle avoidance

and navigation, and may be the basis of further exploration. It may be the case

that a small object renders a cell occupied yet it is small enough that objects

behind it in the real scene render a second more distant cell in the occupancy

grid ray occupied. Alternatively, using the ideal sensor model, a strong response

at a distant cell along a ray could reduce the response of such a small but closer

object below the occupancy threshold. If it is a priority to detect all cells that
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may be occupied, rather than the most likely cell in a ray that is occupied, it may

be more beneficial to use cell accumulation rather than Bayesian sensor models

in incorporating disparity data into the occupancy grid. Unlike the sensor model,

this would not tend occupancy towards a single dominant cell in each ray. In our

laboratory experiments, we are usually surrounded by walls and we are interested

in scanning the broad structure of such surroundings rather than detecting and

avoiding tiny objects, so we choose the ideal sensor model for data integration.

Aside from fronto-parallel calibration in the rectification step, good perfor-

mance depends mainly upon the accuracy and density of disparity maps. We use

an area-based SAD disparity estimation algorithm, but any disparity estimation

algorithm may be used instead.

6.3.5 Performance

The regime is biased towards a coarse real-time perception, rather than accuracy.

It operates continually, over the entire field of view. In this sense it may be likened

to a peripheral response. Depth maps are produced using a processor econom-

ical area-based technique via a SAD correlation metric. Difference-of-Gaussian

pre-filtering is incorporated to reduce the effect of intensity variation [Banks &

Corke (1991)]. Rectification, pre-filtering, disparity mapping, occupancy grid

management, display and logging were achieved at 18Hz on a single processor

hyper-threaded 3.0GHz PC using only 48% average CPU load1. Hardware sup-

port for rendering display is achieved using OpenGL function calls. Memory

usage involves storage of M = W/n ·H/n · Z integers representing the log likeli-

hood occupancies of all grid cells, plus minor overheads. The use of an occupancy

grid representation of spatial information as a component of a larger system does

not usually involve rectification, display or data logging at the same processing

node. Information distributed to the wider system would usually only include

the M bytes of occupancy data, or where the ideal sensor model is used, only

W/n · H/n bytes of data containing only the Z-coordinate of the first occupied

cell along each occupancy grid ray.

1Significant idle time due to network latency in image acquisition causing a largely idle image
acquisition thread. Stand-alone implementation for demonstration purposes only. Processing
network version incorporates optimised image acquisition.
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6.4 Use of Occupancy Grid in Synthetic Percep-

tion

We now extend upon the presented occupancy grid framework. Once an oc-

cupancy grid is constructed and populated, it can be used for coarse spatial

awareness in navigation, mapping, obstacle detection and obstacle avoidance. By

re-projecting stimulus from which the spatial perception originated back onto the

occupancy grid itself, approximate 3D cue-surface correspondences are cheaply

computed. By projecting 2D cues such as optic flow back onto the occupancy

grid, a visualisation of 3D scene flow may be obtained. We now look at cue-

surface correspondences, and the extraction of coarse 3D information using the

occupancy grid, such as scene motion and object segmentation.

6.4.1 Cue-Surface Correspondence

Projecting the rectified image back onto the occupancy grid is straightforward

because the corners of the image can be projected onto the front face of the

occupancy grid according to Equation 6.7. A cell at coordinates (x, y) in the

front slice corresponds to the same sized image area (W/n · H/n) as the cells

at coordinates (x, y) in any other slice in the z-direction. It is merely a matter

of scaling the projection that would exist on the front cell at (x, y, zmin) to the

face size of the first occupied cell along the ray of cells corresponding to that

region of the image (z, y, zocc). Simple re-projection by scaling is made possible

by the space-variant configuration of the occupancy grid. Figure 6.12 shows re-

projection of the image back onto the occupancy grid.

In this manner, a perception of where surfaces are, and how they appear can

be obtained. Re-projecting the original image back onto the occupancy grid is not

the only way to use the occupancy grid in scene perception. We may also project

any cue map back onto the occupancy grid. For example, if edge detection is

computed on the rectified camera images, we may re-project the edge map (it has

the same frame as the rectified image) onto the occupancy grid to obtain a coarse

perception of 3D edge structure. A 3D perception of cue-surface correspondences

for any number of cues can be maintained with a low bandwidth representation by

keeping only the 2D cue maps and the contents of the occupancy grid in memory.
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6.4.2 3D Scene Motion

An important case of cue-surface correspondence using the occupancy grid is the

perception of scene motion. Few methods calculate absolute 3D scene flow in a

head-centred coordinate frame. Even fewer (perhaps none) account for the effect

of deliberate camera motions on the perception of flow. Most methods deal with

retinal flow, rather than absolute scene flow. The method of Kagami, though

not tailored for active vision or an egocentric perception [Kagami et al. (2000)],

seems most promising for real-time 3D scene motion estimation.

As with disparity estimation, there are various ways to calculate image frame

optic flow from multiple camera views of a scene. The main criterion for the

selection of a suitable synthetic method is real-time performance. For real-time

performance, we choose an area-based SAD method that searches up to 4 pixels

of optic flow between frames, outputting an estimate of the x and y components

of optic flow at each pixel location in the image. Again, we operate on intensity

normalised DOG images. Confidence in calculations therefore depends a lot on

texture. As described, we work in mosaic space so that the effect of camera

rotations is accounted for.

From consecutive left and right rectified DOG images in mosaic space we

obtain X and Y component optic flow maps fxl, fxr, fyl, fyr. As the location

of the current and previous frame in the mosaic from a single camera is known,

we calculate optical flow on the overlapping region of consecutive frames in the

mosaic. In the same manner, the overlapping regions of consecutive depth maps

are subtracted and a depthflow map fd is obtained. Equation 6.7 is used to

convert all five maps from pixel flows to absolute scene flows. The cues can then

be projected onto the occupancy grid. In this manner, multiple estimates of the

X, Y and depth flow components of each occupancy grid cell can be obtained.

The flow maps provide the x, y and depth components of flow and the occupancy

grid cell location grounds the vector to an approximate spatial location. For

display purposes, we have averaged each of the flow components at each occupied

occupancy grid cell (the x-component at an occupancy grid cell is obtained by

averaging all fxl and fxr pixels that project to that occupancy grid cell, the

y-component at a cell is obtained by averaging all fyl and fyr pixels that project

to that occupancy grid cell, and the depth component is obtained by averaging
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Figure 6.15: Occupancy grid vectors representing 3D motion of visual surfaces in

the scene.

all fd pixels that project to that occupancy grid cell). In this manner we are able

to assign sub-cell sized 3D motion vectors to the occupied cells in the occupancy

grid. We only consider an occupancy grid over a finite region of the scene. Some

flow may be detected along a ray which does not have a correspondingly occupied

grid cell. Occupied cells that are not assigned a velocity from the flow calculations

are assigned a zero velocity.

Figure 6.15 shows online output. In the depicted example, a single computer

was used for all processing including rectification, occupancy grid operations, and

display. The process operates at approximately 17Hz on a single computer with

40% CPU idle time1.

Using this technique, a (coarse) perception of where surfaces are, how they

are moving, and how they appear visually can be obtained. A demonstration

movie showing online cell flow estimation is available as shown in Figure 6.16.

1Idle time due to un-optimised network latency upon request of images from cameras -
example was for demonstration purposes only.
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Figure 6.16: Online estimation of 3D flow of occupancy grid cells (snapshot - see

Appendix C for full video).
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6.4.3 Ground Plane Extraction from the Occupancy Grid

Ground plane extraction directly from the occupancy grid is similar to that of a

v-disparity analysis [Labayrade et al. (2002)]. A 2D histogram plotting the num-

ber of occupied cells in each row X at its Y and Z cell coordinates is constructed

(essentially a side-on density projection of the occupancy grid). A Hough trans-

form [Tian & Shah (1997)] is then applied to find the most dominant line in this

density side view of the occupancy grid. We search for the line within reasonable

bounds of where the road is likely to be to reduce the computational expense of

the Hough transform. In this manner, we are able to extract a planar approxi-

mation to the location of the ground plane in terms of altitude and attitude. We

assume the sensor is situated at a roll angle that is parallel to the road, and that

the road is planar. We do not consider any non-zero roll angle of the road relative

to the sensor. The granularity of the occupancy grid is such that small violations

of this assumption are absorbed. Any systematic misalignment can be removed

by calibration. Figure 6.17 shows an image from the online output of the occu-

pancy grid, including the location of the ground plane. A demonstration movie

showing online ground plane estimation is available as shown in Figure 6.18.

6.4.3.1 Ego-motion from Ground Plane Motion

We wish to infer the motion of the vehicle relative to the road from an analysis of

the flow grid. Preferrably, the analysis would not consider regions of the scene that

are likely to be moving in a manner dissimilar to that of the road. Hence, we only

consider regions in the vicinity of the ground plane to extract the vehicle velocity.

Histograms of the velocity components of all the cells adjacent to the previously

detected ground plane are constructed. At present, we use the histogram mean

and associated 95% confidence interval as a measurement of the vehicle velocity.

Once the velocity of the vehicle relative to the road has been calculated, we can

remove the velocity of the vehicle from calculations of the velocity of objects in

the scene.

Figure 6.19 shows a plot of the vehicle velocity as determined by unfiltered

3D flow data. Only the flow in the z-direction (directly towards the cameras) is

considered. Although the velocity of the vehicle was not logged, the fluctuation

of the velocity about a value of approximately 30km/h fits well with the fact that
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Figure 6.17: Ground plane extraction using occupancy grid. The inset shows the

view from the left camera. Detection of the cyclist, light pole, and trees in the

background are also evident on the occupancy grid.

Figure 6.18: Online ground plane detection from occupancy grid demonstration

(snapshot - see Appendix C for full video).
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Figure 6.19: Vehicle velocity according to unfiltered 3D flow data.

the vehicle was decelerating in a designated 40km/h zone on the ANU campus.

The data velocity from flow was determined for the same sequence of footage as

that shown in Figure 6.17.

6.4.4 Object Segmentation from the Occupancy Grid

An object in the occupancy grid is considered to be a group of 26-connected

(neighbouring) cells located above the ground plane. After an occupancy grid,

and cell flows have been calculated, we can segment objects in the flow grid in a

manner similar to that of the occupancy grid. A 3D raster scan labels adjacent 26-

connected cells whose velocities are similar. Where available, we use information

about the location of the ground plane from the previous step to limit the search

for objects to the region above the ground plane. Essentially, if a cell has a flow

estimate assigned to it, and its velocity is not significantly different to that of

an adjacent cell with an estimated velocity, it is assigned the same unique object

identity as that cell. The use of velocity information enables us to distinguish,

for example, a hand from a chair, despite them being labelled as the same object

in the occupancy grid segmentation (Figure 6.20).
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Figure 6.20: Object segmentation using occupancy grid. The hand (blue) is

touching the chair (burgundy), but is segmented as a separate object because it

is moving.

6.4.5 Tracking Objects in the Occupancy Grid

Tracking an object in occupancy grid space involves finding object correspon-

dences in consecutive frames. Data associated with each object in the occupancy

grid includes its volume and centre of gravity. Cell flow information also pro-

vides velocity information for adjacent occupied cells that form an object. By

considering each object in the current frame and comparing the location of the

centre of gravity and average velocity of all adjacent object cells with objects in

the previous frame, it is possible to estimate likely object correspondences over

time. Objects are considered to correspond if the Malhonobis distance between

their volume, centre of gravity and velocity (the combined average velocity of all

joined cells that constitute the object) is below a threshold.

A demonstration movie showing online object segmentation in the occupancy

grid using volume, centre of gravity Malhonobis distance only is shown in Fig-

ure 6.21. Different colours represent different objects. If an object has a small

Malhonobis distance across consecutive frames, it is considered a correspondence

and its colour is preserved. If this correlation is lost between consecutive frames,

the object will be assigned a different colour. A demonstration movie showing
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Figure 6.21: Online object segmentation using occupancy grid demonstration

(snapshot - see Appendix C for full video).

online object segmentation and correspondence across consecutive frames in the

occupancy grid using volume, centre of gravity and velocity in the Malhonobis

distance measurement is shown in Figure 6.22.

6.5 Summary

We have shown that animals perceive scene depths using, amongst other cues,

retinal disparity. We have discussed various existing methods to synthesise the

computation of retinal disparity. We have provided evidence for the existence of

spatial perception in the primate brain. Many brain areas are involved in spatial

perception, but it appears that egocentric spatial perception occurs mainly in

later areas such as MT/V5. The brain augments spatial estimates into an ego-

centric perception and we have accordingly presented a method to augment active

vision disparity data into an egocentric, unified, space-variant occupancy grid rep-

resentation. The occupancy grid has been explicitly designed for integrating data

from active vision, and for providing low-bandwidth and useful representations

useful for perception in real time. We have shown how the occupancy grid can

be used to extract information about the surroundings such as 3D scene motion

and 3D cue-surface correspondences. For these reasons, we find that the space

160



6.5 Summary

Figure 6.22: Online object segmentation using occupancy grid and cell flow

demonstration (snapshot - see Appendix C for full video).

variant occupancy grid is particularly suited for spatial perception in synthetic

primate vision. The regime provides coarse but real-time perception. It operates

continually, over the entire field of view. In this sense it may be likened to a

peripheral response.
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Chapter 7

Coordinated Fixation

Figure 7.1: Foveal object segmentation and coordinated fixation. The left and

right input (respectively), and the output from the Markov random field zero

disparity filter (MRF ZDF).

In this chapter we synthesise coordinated stereo fixation. The approach en-

ables real-time tracking of fast-moving objects and simultaneous segmentation of

the tracked object or surface from image background.

7.1 Introduction

In the previous chapter, we developed a coarse spatial awareness based on contin-

ual processing over the entire visual field. In this sense, the spatial perception can
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be considered a peripheral response. As such it operates regardless of gaze geom-

etry. There is no concept of fixation upon surfaces in the scene. Introspection of

human vision provides motivation for coordinated foveal fixation. Although pe-

ripheral processing occurs continually in the visual cortex irrespective of fixation,

humans find it difficult to fixate on unoccupied space. Empty space contains little

information; we are more concerned with resolute and focussed fixation upon ob-

jects or surfaces. The human visual system exhibits its highest resolution at the

fovea. The extent of the fovea covers a retinal area of approximately the size of a

fist at arms length [Wandell (1995)], conceptually in line with the task-oriented

interactions of humans with the real world.

We limit foveal processing resources to the region of the images immediately

surrounding the image centres. The region beyond the fovea is considered only

for an estimate of where the foveas are to fixate next (for tracking purposes). For

the resolution of our cameras, the fovea corresponds to a region of about 60x60

pixels and an approximate area of 0.5m2 at 2m distance. Actively moving this

region over the scene facilitates coverage of a large visual workspace.

For humans, the boundaries of an object upon which we have fixated emerge

effortlessly because the object is centred and appears with similar retinal cov-

erage in our left and right eyes, whereas the rest of the scene usually does not.

For synthetic vision, the approach is the same. The object upon which fixation

has occurred will appear with identical pixel coordinates in the left and right

images, that is, it will have zero disparity. For a pair of cameras with suitably

similar intrinsic parameters, this condition does not require epipolar or barrel

distortion rectification of the images. Camera calibration, intrinsic or extrinsic,

is not required.

We aim to develop the propensity for the system to fixate upon objects in a

manner that allows the segmentation of a spatially coherent target object from

its surroundings, despite its colour or form. Further, such segmentation should

permit tracking of arbitrary targets. We begin by introducing existing methods

suitable for target fixation and tracking. Having considered such methods, we

outline our approach. We develop a maximum a posterior probability (MAP)

approach. We provide segmentation and tracking results using the regime and

compare its performance to that of existing tracking methods.
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7.1.1 Existing Fixation Methods

When tracking objects under real-world conditions, three main problems are en-

countered: ambiguity, occlusion and motion discontinuity. Ambiguities arise due

to distracting noise, mismatching of the tracked objects and the potential for

multiple targets or target-like distractors, to overlap the tracked target. Occlu-

sions are inevitable in realistic scenarios where the subject interacts with the

environment. Certainly, in dynamic scenes, the line of site between the cameras

and target is not always guaranteed. At usual frame rates (∼ 30fps), the motion

of agile subjects can seem erratic or discontinuous and motion models designed

for tracking such subjects may be inadequate.

Existing methods for markerless visual tracking can be categorised according

to the measurements and models they incorporate [Gavrila (1999)].

7.1.1.1 Cue-Based Methods

In terms of cue measurement methods, tracking usually relies on either intensity

information such as edges [Blake & Isard (1998); Cham & Rehg (1999); Gavrila

& Davis (1996); Metaxas (1999)], skin colour, and/or motion segmentation [Ima-

gawa et al. (1998); Jojic et al. (1999); Martin et al. (1998); Wren et al. (2000)], or

a combination of these with other monocular cues [Loy et al. (2002); Toyama &

Horvitz (2000); Triesch & von der Malsburg (2000)] or depth information [Azoz

et al. (1998); Jennings (1999); Ong & Gong (1999); Wren et al. (2000)]. Fusion of

cues at low levels of processing can be premature and may cause loss of informa-

tion if image context is not taken into account. For example, motion information

may occur only at the edges of a moving object, making the fused information

sparse. Further, for non-spatial cue-based methods, occlusions by other target-

like distractors may become indistinguishable from the tracked target.

MeanShift and CamShift methods are enhanced manifestations of cue mea-

surement techniques that rely on colour chrominance-based tracking. For real-

time performance, a single channel (chrominance) is usually considered in the

colour model. This heuristic is based on the assumption that skin has a uniform

chrominance. Such trackers compute the probability that any given pixel value

corresponds to the target colour. Difficulty arises where the assumption of a sin-

gle chrominance cannot be made. In particular, the algorithms may fail to track
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multi-hued objects or objects where chrominance alone cannot allow the object

to be distinguished from the background, or other objects.

The MeanShift algorithm is a non-parametric technique that ascends the gra-

dient of a probability distribution to find the mode of the distribution [Cheng

(1995); Fukunaga (1990)]. Particle filtering based on colour distributions and

Mean Shift was pioneered by Isard and Blake [Isard & Blake (1998)] and ex-

tended by Nummiaro et al [Nummiaro et al. (2002)]. CamShift was initially

devised to perform efficient head and face tracking Bradski (1998). It is based on

an adaptation of MeanShift where the mode of the probability distribution is de-

termined by iterating in the direction of maximum increase in probability density.

The primary difference between the Cam Shift and the Mean Shift algorithms is

that Cam Shift uses continuously adaptive probability distributions (recomputed

each frame) while MeanShift is based on static distributions. More recently, Shen

developed Annealed MeanShift to counter the tendency for MeanShift trackers to

settle at local rather than global maxima [Shen et al. (2005)].

Although very successful in tracking the vicinity of a known chrominance,

MeanShift methods are not designed for direct target segmentation and back-

ground removal (for classification enhancement). In terms of output, they provide

an estimation of a tracked target bounding box, in the form of an estimate of the

0th and 1st moments of the target probability distribution function. They are

also not typically capable of dealing with instantaneous or unexpected changes

in the target colour model (such as, for example, when a hand grasps another

object such as a mug or pen). They do not incorporate spatial constraints when

considering a target in a 3D scene, and are not inherently intended to deal with

occlusions and other ambiguous tracking cases (for example, a tracked target

passing in front of a visually similar distractor). In such circumstances, these

trackers may shift between alternate subjects, select the centre of gravity of the

two subjects, or track the distracting object rather than the intended target. To

preclude such ambiguities, motion models and classifiers can be incorporated, but

they may rely upon weak and restrictive assumptions regarding target motion and

appearance.
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7.1.1.2 Spatiotemporal Methods

Spatial techniques use depth information and/or temporal dynamic models to

overcome the occlusion problem [Jojic et al. (1999); Wren et al. (2000)]. The use

of spatial (depth) information can introduce problems associated with multiple

camera calibration, and depth data is notoriously sparse, computationally expen-

sive to recover, and can be inaccurate. Spatiotemporal continuity is not always a

strong assumption. At frame rates, agile target motion may appear discontinu-

ous or undergo occlusion. Methods such as Kalman filtered tracking [J.Joseph &

LaViola (2003)] that are strongly reliant upon well-defined dynamics and tempo-

ral continuity may prove inadequate. Traditional segment-then-track (exhaustive

search methods, for example, dynamic template matching) approaches are subject

to cumulative errors where inaccuracies in segmentation affect tracking quality,

which in turn affect subsequent segmentations.

Model-based methods incorporating domain knowledge such as tracking a

hand which is part of an articulated entity (the human body), can be used to

resolve some of the ambiguities. Joint tracking of articulated parts can be per-

formed with an exclusion principle on observations [MacCormick & Blake (1999);

Rasmussen & Hager (1998)] to alleviate such problems. A priori knowledge such

as 2D target models may be used [Imagawa et al. (1998); Martin et al. (1998)].

Alternatively, a 3D model of the target and any associated articulated entity may

be used such that kinematic constraints can be exploited [Cham & Rehg (1999);

Ong & Gong (1999); Wren et al. (2000)]. 2D projections of deformable 3D mod-

els can be matched to observed camera images [Gavrila & Davis (1996); Metaxas

(1999)]. Unfortunately, these methods can be computationally expensive, do not

always resolve projection ambiguities, and performance depends heavily upon

the accuracy of complex, subject dependent, articulated models and permitted

motions.

7.1.1.3 Zero Disparity Methods

Methods exist that do not require a priori models or target knowledge. Instead,

the target is segmented using an uncalibrated semi-spatial response by detecting

regions in images or cue maps that appear at the same pixel coordinates in the

left and right stereo pairs. That is, regions that are at zero disparity. To overcome
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pixel matching errors associated with gain differences between left and right views,

these methods traditionally attempt to align vertical edges and/or feature points.

The work of Coombs and Brown involved the implementation of a simple zero

disparity filter (ZDF) for the Rochester robot head [Coombs & Brown (1992)].

This basic method used the extraction of edge detail from image pairs to form

binary images. These images were simply and-ed to extract potential zero dis-

parity regions. The robot head then fixated its gaze upon the centre of gravity

of the output.

Rougeaux, Kita, Kuniyoshi and Sakane [Rougeaux & Kuniyoshi (1997a);

Rougeaux et al. (1994)] also investigated the use of virtual horopters to test

whether the tracked subject was moving away from or towards the cameras. One

of the stereo pair images (for example, the left image) was virtually shifted (in

memory only) horizontally by a single pixel to the left (by purging the leftmost

column of pixels) and then to the right (by adding an extra column at the left of

the image), and the zero disparity response determined between each new image

and the unaltered (right) image, for both cases. The virtual shift that yields the

largest zero disparity response area was deemed the correct tracking direction,

and the cameras were then verged or diverged accordingly such that the horopter

best aligned with the tracked subject.

Oshiro applied a similar edge extraction method to foveal log-polar cameras

[Oshiro et al. (1996)]. Yu used a wavelet representation to match broader image

regions [Yu & Baozong (1996)]. Rougeaux later revisited the approach, combining

the edge-based ZDF with optical flow for broader segmentation [Rougeaux &

Kuniyoshi (1997b)]. Rae combined edge-based techniques with additional aligned

point features such as corners, symmetry points and cue centroids [Rae & Ritter

(1998)].

Rougeaux also implemented a method to compute disparity from phase dif-

ference using the output of complex band-pass filters as suggested by Sanger.

Regions at zero disparity were extracted from the disparity maps. After sev-

eral convolutions with a Symmetric Nearest Neighbour filter to enhance region

boundaries and smooth areas of homogeneous grey level, a fast morphological al-

gorithm created a binary mask for the target which was then fixated upon. The

algorithm ran at approximately 30Hz frame-rate on two Intel i860 DSPs. How-

ever, the overall resolution was low - the disparity maps were sized only 32x32
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pixels.

A multiple cue object tracking algorithm has been implemented on CeDAR

that incorporates four simple cues: colour, edge detection, texture detection and

motion [Dankers (2002)]. A cue voting scheme was adopted to identify pixel

locations in the view frame that appeared target-like with respect to each cue.

A simple zero disparity filter using virtual horopters then visually extracted the

object from its surroundings, as well as mapping its position in three-dimensional

space. The processing of all visual information took, on average, only 8ms per

frame on a dual Pentium III computer. Unfiltered operation was susceptible to

distractions due to target-like regions in the camera’s views. Kalman Filtering

reduced the effect of these distractions significantly. The algorithm allows suc-

cessful real-time tracking of arbitrary objects through a cluttered environment

(Figure 7.2).

Unfortunately, existing zero disparity methods do not cope well with bland

subjects or backgrounds, and perform best when matching textured sites and

features on textured backgrounds. Nevertheless, the zero disparity class of seg-

mentation forms the base upon which we develop our approach.

7.1.2 Our Approach

We aim to ensure coordinated active stereo fixation upon a target, and to fa-

cilitate its robust pixel-wise segmentation. We propose a biologically inspired,

conceptually simple method that segments and tracks the subject in parallel,

eliminating problems associated with the separation of segmentation and track-

ing. The method inherently incorporates spatial considerations to disambiguate

between, for example, multiple overlapping targets in the scene such that occlu-

sions or distractions induced by non-tracked target-like distractors do not affect

tracking of the selected target. As we shall see, the method does not rely on

imposing motion models on the target trajectory, and can cope with gross partial

occlusions. In this regard, the three common problems of ambiguity, occlusion

and motion discontinuity are addressed. Despite using stereo vision, the approach

does not require stereo camera calibrations, intrinsic or extrinsic. The method

utilises dynamic stereo foveal scene analysis, and we choose an active implemen-

tation that has the benefit of increasing the volume of the visual workspace
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Figure 7.2: Multiple cue horopter tracking. 1) Scenario; 2) online screenshot

showing left and right camera views and trajectory; 3) absolute target trajectory

at a t=0s, b10s, c 20s and d 30s (units in cm).

170



7.1 Introduction

Figure 7.3: Multiple cue horopter tracking demonstration (snapshot - see Ap-

pendix C for full video).
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Figure 7.4: Correlation-based ZDF output. NCC of 3 · 3 pixel regions at same

coordinates in left and right images. Higher correlation values are shown more

white.

7.2 Coordinated Fixation With Simultaneous Seg-

mentation

We begin by assuming short baseline stereo fixation upon a target object. A prob-

abilistic ZDF is formulated to identify the projection of the target object as it

maps to identical image frame pixel coordinates in the left and right foveas. Sim-

ply comparing the intensities of pixels in the left and right images at the same

coordinates is not adequate due to inconsistencies in, for example, saturation,

contrast and intensity gains between the two cameras, as well as focus inconsis-

tencies and noise. Figure 7.9 shows example correlation-based ZDF output where

regions, rather than pixels, are compared providing somewhat improved results.

A human can easily distinguish the boundaries of the object upon which

fixation has occurred even if one eye looks through a tinted lens. Accordingly, the

regime should be robust enough to cope with these types of inconsistencies. One

approach is to normalised cross-correlate (NCC) small templates in one image

with pixels in the same template locations in the other image. The NCC function

is shown in Equation 7.1:

NCC(I1, I2) =

∑
(u,v)∈W I1(u, v) � I2(x + u, y + v)√∑

(u,v)∈W I2
1 (u, v) �

∑
(u,v)∈W I2

2 (x + u, y + v)
, (7.1)

where I1, I2 are the compared left and right image templates of size W and u, v

are coordinates within the template. Figure 7.4 shows the output of this ap-

proach. Bland areas in the images have been suppressed (set to 0.5) using dif-

ference of Gaussians1 (DOG) pre-processing. The 2D DOG kernel is constructed

1The difference of Gaussians function approximates the Laplacian of Gaussians function.
Convolving a 2D DOG kernel with an image suppresses bland regions.
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using symmetric separable 1D convolutions. The 1D DOG function is shown in

Equation 7.2:

DOG(I) = G1(I)−G2(I), (7.2)

where G1(), G2() are Gaussians with different standard deviations σ1, σ2 according

to:

G(x) =
e−x2

2σ2
, (7.3)

DOG pre-processing is used to suppress untextured regions that always return

a high NCC response whether they are at zero disparity or not. As Figure 7.4

shows, the output is sparse and noisy. The palm is positioned at zero disparity

but is not categorised as such.

To improve results, image context needs to be taken into account. Contextual

information can assist by assigning similar labels to visually similar neighbour-

hoods. Most importantly, contextual refinement allows slight relaxation of the

zero disparity assumption such that non-planar surfaces, or surfaces that are not

perpendicular to the camera optical axes – but appear visually similar to the

dominantly zero disparity region – can be segmented as the same object. For

these reasons, we adopt a Markov random field [Geman & Geman (1984)] (MRF)

approach.

7.2.1 MRF ZDF Formulation

The MRF formulation defines that the value of a random variable at the set of

sites (pixel locations) S depends on the random variable configuration field f

(labels at all sites) only through its neighbours N ∈ S. For a ZDF, the set of

possible labels at any pixel in the configuration field is binary, that is, sites can

take either the label zero disparity (f(S) = lz) or non-zero disparity (f(S) = lnz).

For an observation O (in this case an image pair), Bayes’ law states that the

a posterior probability P (f | O) of field configuration f is proportional to the

product of the likelihood P (O | f) of that field configuration given the observation

and the prior probability P (f) of realisation of that configuration:

P (f | O) ∝ P (O | f) · P (f). (7.4)

The problem is thus posed as a MAP optimisation where we want to find the

configuration field f(lz, lnz) that maximises the a posterior probability P (f | O).
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In the following two sections, we adapt the approach of Boykov et al. (1997) to

construct the terms in Equation 7.4 suitable for ZDF tracking.

7.2.1.1 Prior term P (f)

The prior term encodes the properties of the MAP configuration we seek. It is

intuitive that the borders of zero disparity regions coincide with edges (or intensity

transitions) in the image. The Hammersly-Clifford theorem, a key result of MRF

theory, is used to represent this property:

P (f) ∝ e−
P

C VC(f). (7.5)

Clique potential VC describes the prior probability of a particular realisation of

the elements of the clique C. For our neighbourhood system, MRF theory defines

cliques as pairs of horizontally or vertically adjacent pixels. Equation 7.5 reduces

to:

P (f) ∝ e−
P

p

P
q∈Np

Vp,q(fp,fq ). (7.6)

In accordance with Boykov et al. (1997), we assign clique potentials using the

Generalised Potts Model where clique potentials resemble a well with depth u:

Vp,q(fp, fq) = up,q · (1− δ(fp − fq)), (7.7)

where δ is the unit impulse function. Clique potentials are isotropic (Vp,q = Vq,p),

so P (f) reduces to:

P (f) ∝ e−
P
{p,q}∈εN

{2u ∀fp 6=fq ,0otherwise. (7.8)

VC can be interpreted as a cost of discontinuity between neighbouring pixels p, q.

In practice, we assign the clique potentials according to how continuous the image

is over the clique using the Gaussian function:

Vc =
e−∆I2

C

2σ2
, (7.9)

where ∆IC is the change in intensity across the clique, and σ is selected such that

3σ approximates the minimum intensity variation that is considered smooth.

Note that at this stage we have looked at one image independently of the

other. Stereo properties have not been considered in constructing the prior term.
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7.2.1.2 Likelihood term P (O | f)

The likelihood term describes how likely it is that an observation O matches a

hypothesised configuration f and involves incorporating stereo information for

assessing how well the observed images fit the configuration field. It can be

equivalently represented as:

P (O | f) = P (IA | f, IB), (7.10)

where IA is the primary image and IB the secondary (chosen arbitrarily) and

f is the hypothesised configuration field. In terms of image sites S (pixels),

Equation 7.10 becomes:

P (O | f) ∝
∏
S

g(iA, iB, lS), (7.11)

where g() is some symmetric function [Boykov et al. (1997)] that describes how

well label lS fits the image evidence iA ∈ IA and iB ∈ IB corresponding to site

S. It could for instance be a Gaussian function of the difference in observed left

and right image intensities at S; we evaluate this instance (Equation 7.15) and

propose alternatives later.

To bias the likelihood term towards a specific type of object, we can include an

a priori target appearance term HS, Equation 7.12. This term is not required for

the system to operate, it merely provides a greater propensity for the MRF ZDF

detector to track specific properties of objects based upon a priori knowledge as

required by the task. The term enumerates how target-like a pixel site is in terms

of its colour and texture (by assigning a probability to site S in each image). It

may be formulated to best suit the task, or it may be modulated autonomously.

For now, we ignore the term.

P (O | f) ∝
∏
S

g(iA, iB, lS, HS) (7.12)

7.2.1.3 Energy Minimisation

We have assembled the terms in Equation 7.4 necessary to define the MAP opti-

misation problem:

P (f | O) ∝ e−
P

p

P
q∈Np

Vp,q(fp,fq ) ·
∏
S

g(iA, iB, lS). (7.13)
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Maximising P (f | O) is equivalent to minimising the energy function:

E =
∑

p

∑
q∈Np

Vp,q(fp,fq)−
∑

S

ln(g(iA, iB, lS)). (7.14)

7.2.2 Optimisation

A variety of methods can be used to optimise the above energy function including

simulated annealing and graph cuts. For active vision, high-speed performance

is a priority. At present, a graph cut technique is the preferred optimisation

technique, and is validated for this class of optimisation as per Kolmogorov &

Zabih (2002b). We adopt the method used in Kolmogorov & Zabih (2002a)

for MAP stereo disparity optimisation (we omit their use of α–expansion as we

consider a purely binary field). In this formulation, the problem is that of finding

the minimum cut on a weighted graph.

A weighted graph G comprising of vertices V and edges E is constructed with

two distinct terminals lzd, lnzd (the source and sink). A cut C = V s, V t is defined

as a partition of the vertices into two sets s ∈ V s and t ∈ V t. Edges t, s are

added such that the cost of any cut is equal to the energy of the corresponding

configuration. The cost of a cut |C| equals the sum of the weights of the edges

between a vertex in V s and a vertex in V t.

The goal is to find the cut with the smallest cost, or equivalently, compute the

maximum flow between terminals according to the Ford Fulkerson algorithm [Ford

& Fulkerson (1962)]. The minimum cut yields the configuration that minimises

the energy function. Details of the method can be found in Kolmogorov & Zabih

(2002a). It has been shown to perform (at worst) in low order polynomial time,

but in practice performs in near linear time for graphs with many short paths

between the source and sink, such as this [Kolmogorov & Zabih (2002b)].

7.2.3 Robustness

In the following sections we use a hand as the target object to evaluate MRF

ZDF segmentation and tracking performance. A hand was selected because it

is agile, rapidly deformable and often non-planar. Hands are skin-coloured, so

tracking is often complicated by the presence of additional regions of skin in

the image frames. We deliberately complicate matters further by introducing a
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second distracting hand. The direct and continuous attachment of the hand to

the arm may also complicate segmentations based on appearance. Hands can

be made to easily come in contact with, or grasp, objects. All of these factors

mean that a hand often constitutes a difficult target for real-time tracking and

segmentation algorithms.

Using a hand as a target, we now look at the situations where the MRF ZDF

formulation performs poorly and provide methods to combat these weaknesses.

Figure 7.9a shows ZDF output for typical input images where the likelihood term

has been defined using intensity comparison. Output was obtained at approxi-

mately 27fps for the 60x60 pixel fovea on a standard 3GHz single processor PC.

For this case, g() in Equation 7.11 has been defined as:

g(iA, iB, f) = { e−(∆IC)2 /2σ2∀f = lz, 1− (e−(∆IC)2/2σ2)∀f = lnz. (7.15)

The variation in intensity at corresponding pixel locations in the left and

right images is significant enough that the ZDF has not labelled all pixels on the

hand as being at zero disparity. To combat such variations, NCC is instead used

(Figure 7.9b). Whilst the ZDF output improved slightly, processing time per

frame was significantly increased (∼ 12fps). As well as being slow, this approach

requires much parameter tuning. Bland regions return a high correlation whether

they are at zero disparity or not, and so the correlations that return the highest

results cannot be trusted. A threshold must be chosen above which correlations

are disregarded. This also has the consequence of disregarding the strongest

valid correlations. Additionally, a histogram of correlation output results is not

symmetric (left, Figure 7.6). There is difficulty in converting such output to

a probability distribution about a mean of 0.5, or converting it to an energy

function penalty.

To combat the thresholding problem with the NCC approach, the images

can be pre-processed with a DOG kernel. The output using this technique (Fig-

ure 7.9c) is good, but is much slower than all previous methods (∼ 8fps) and

requires yet more tuning at the DOG stage. It is still susceptible to the problem

of non-symmetric output.

We prefer a comparator whose output histogram resembles a symmetric dis-

tribution, so that these problems could be alleviated. For this reason we chose

a simple neighbourhood descriptor transform (NDT) that preserves the relative

177



7. COORDINATED FIXATION

intensity relations between neighbouring pixels (in a fashion similar to but less

rigidly than that of the Rank transform), and is unaffected by brightness or con-

trast variations between image pairs. Figure 7.5 depicts the definition of the NDT

transform.

In this approach, we assign a boolean descriptor string to each site and then

compare the descriptors. The descriptor is assembled by comparing pixel inten-

sity relations in the 3x3 neighbourhood around each site (Figure 7.5). In its

simplest form, for example, we first compare the central pixel at a site in the

primary image to one of its four-connected neighbours, assigning a ’1’ to the

descriptor string if the pixel intensity at the centre is greater than that of its

northern neighbour and a ’0’ otherwise. This is done for its southern, eastern

and western neighbours also. This is repeated at the same pixel site in the sec-

ondary image. The order of construction of all descriptors is necessarily the same.

A more complicated descriptor would be constructed using more than merely four

relations1. Comparison of the descriptors for a particular site is trivial, the result

being equal to the sum of entries in the primary image site descriptor that match

the descriptor entries at the same positions in the string for the secondary image

site descriptor, divided by the length of the descriptor string.

Figure 7.6 shows histograms of the output of individual neighbourhood com-

parisons using the NCC DOG approach (left) and NDT approach (right) over a

series of sequential image pairs. The histogram of NDT results is a symmetric

distribution about a mean of 0.5, and hence is easily converted to a penalty for

the energy function.

Figure 7.9d shows NDT output for typical images. Assignment and compari-

son of descriptors is faster than NCC DOG (∼ 27fps), yet requires no parameter

tuning. In Figure 7.9e, the left camera gain was maximised, and the right camera

contrast was maximised. In Figure 7.9f, the left camera was defocussed and satu-

rated. Segmentation performance remained good under these artificial extremes.

1Experiment has shown that a four neighbour comparator gives results that compare fa-
vorably (in terms of trade-offs between performance and processing time) to more complicated
descriptors.
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Figure 7.5: NDT descriptor construction. An example four-entry descriptor string

is shown for the adjacent 9 · 9 pixel neighbourhood.

Figure 7.6: Histograms of individual NCC DOG (left) and NDT (right) neigh-

bourhood comparisons for each entire frame over a series of frames.
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7.2.4 Incorporating Colour

So far we have considered the intensity (Y) channel only in our formulation.

Colour is a cue whose regional consistency tends to correspond well with the

edges of objects. For example, in an image, the borders of a yellow tennis ball

lying on a court correspond to the area of yellow pixels. This obvious relationship

can be exploited to zero disparity on a target object and to distinguish it from

the background.

We obtain YUV colour space images from the cameras, where Y encodes the

intensity channel, and U and V encode the intensity-normalised colour chromi-

nance channel values. To incorporate colour into the formulation, we modulate

the likelihood term (the output of each NDT left-right intensity configuration

comparison that operates on the Y channels) by a measure of left-right colour

chrominance similarity at the same image locations. The similarity measure is

obtained by calculating the Mahlonobis distance between colour chrominances

(∆C) at the compared neighbourhood locations in the left and right images ac-

cording to:

∆C =
√

(Lu −Ru)2 + (Lv −Rv)2, (7.16)

where Lu,Lv and Lu,Lv are the U,V colour chrominance components at the com-

pared neighbourhood in the left and right images respectively.

We convert the measured colour chrominance distances to a colour chromi-

nance similarity modulation factor mc using a Gaussian lookup function:

mc = mc,min(1 +
e−∆C2

2σ2
), (7.17)

where mc,min is the minimum desired modulation factor, and σ is selected such

that 3σ approximates the maximum passable chrominance variation. For exam-

ple, if the colour chrominance distance is 0.0 the corresponding colour modulation

mc would be 1.0. As the colour distance increases, the modulation factor tends

towards mmin according to the above Gaussian function.

In this manner, neighbourhood regions whose intensity configuration looks

the same across the left and right images, but whose colour chrominance varies

significantly, would have their zero disparity likelihood suppressed accordingly.
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7.2.5 Computational Pipelining

Rather than computing the likelihood and prior terms as they are indexed, we

can pre-compute lookup maps for the prior (mono) term and likelihood (stereo)

terms at all foveal locations upon image acquisition. We then index to these maps

at runtime. In this manner, performance gains are possible due to MMX vector

pre-computation of these lookup maps.

7.3 Incorporating Tracking

Target tracking is implemented using a combination of virtual and physical retinal

shifts. Figure 7.7 describes the four steps of the tracking algorithm. Initialisation

of the system is simple. The operator merely passes their hand through the area

surrounding the arbitrary initial stereo fixation point. At a fixation point 2m from

the cameras, the initial search window defines a receptive volume of about 0.5m3.

Once tracking begins, segmentation of the zero disparity region induced by the

hand is followed by continual NCC alignment of the horopter such that the zero

disparity segmentation area is maximised. The NCC search window is sufficient

to cope with the upper limits of typical hand motions between successive frames.

The MRF ZDF process reduces the segmented area to that associated with a

2D projection of the object on the horopter, such that occlusions or secondary

hands do not distract track unless they are essentially touching the tracked hand

(see Section 7.5.2.1). If track is lost, it will resume on the zero disparity region

induced by the subject closest to the fixation point. In this manner, if track

is lost, the subject need only return their hand to the volume surrounding the

current fixation point (where track was lost).

The method of virtual verification followed by physical motion copes with

rapid movement of the hand, providing an awareness of whether the hand has

moved towards or away from the cameras, so that the physical horopter can be

shifted to the location that maximises the zero disparity area associated with the

hand. It is emphasised that template matching is not used to track the hand; it is

only used to estimate the pixel shift required to align the virtual horopter over the

hand. Tracking is performed by extracting the zero disparity region at the virtual

horopter, and physically moving the cameras to point at the centre of gravity of
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MRF ZDF Tracking Algorithm:

1. Determine virtual shift required to approximately align virtual
horopter over subject: the pixel distance d between a small tem-
plate (approximately 30x30 pixels) at the centre of the left image
and its location of best match in the right image is determined us-
ing NCC. We conduct the search in a window a few pixels above
and below the template location in the left image and up to 10
pixels to the left and right in the right image. In this manner, the
NCC will only return a high correlation result if the subject in the
template is located near the 3D scene fixation point.

2. Perform a virtual shift of the left fovea by d/2 and the right fovea
by −d/2 to approximately align the location of best correlation in
the virtual centre of the left and right foveas. If the NCC result is
not sufficiently high, no physical shift is conducted and the process
returns to the first step.

3. MRF ZDF segmentation extracts the zero disparity pixels associ-
ated with a 2D projection of the hand from the virtually aligned
foveas. If there is indeed a hand at the virtual fixation point, the
area of the segmented region will be significantly beyond zero.

4. If the area is greater than a minimum threshold, the virtual shift
has aligned the centre of the images over the hand. In this case,
a physical movement of the cameras is executed that reduces the
virtual shift to zero pixels, and aligns the centres of the cameras
with the centre of gravity of the segmented area. If the area is
below the threshold, there is little likelihood that a hand or object
is at the virtual fixation point, and no physical shifting is justified.

The process then cycles, continuing from step 1.

Figure 7.7: MRF ZDF tracking algorithm.
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Figure 7.8: Online coordinated foveal fixation, tracking and object segmenta-

tion. An agile, rapidly deformable object - a hand - provides a formidable target

(snapshot - see Appendix C for full video).

the segmented zero disparity region, if it is significantly non-zero. Thus, virtual

horopter alignment is generally successful if any part of the hand is selected as

the template, and does not depend on the centre of the hand being aligned in

the template. Figure 7.8 shows a demonstration of real-time coordinated foveal

fixation, tracking and segmentation of an agile, deformable target - a hand.

7.4 Results

Target tracking and segmentation for the purpose of real-time HCI gesture recog-

nition and classification must exhibit robustness to arbitrary lighting variations

over time and between the cameras, poorly focussed cameras, hand orientation,

hand velocity, varying backgrounds, foreground and background distractors in-

cluding non-tracked hands and skin regions, and hand appearance such as skin

or hand covering colour. System performance must also be adequate to allow

natural hand motion in HCI observations. The quality of the segmentation must

be sufficient that it does not depart from the hand over time. Ideally, the method

should find the hand in its entirety in every frame, and segment adequately for

gesture recognition. For recognition, segmentation need not necessarily be perfect

for every frame because if track is maintained, real-time classification is still pos-

sible based on classification results that are validated over several frames. Frames

that are segmented with some error still usually provide useful segmentation in-
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Figure 7.9: MRF ZDF hand segmentation. The left and right images and their

respective foveas are shown with ZDF output (bottom right) for each case a-f.

Result a involves intensity comparison, b involves NCC, and c DOG NCC for

typical image pairs. Results d-f show superior NDT output for typical images d,

and extreme adverse conditions e,f.

formation to the classifier.

Figure 7.9 shows snapshots from online MRF ZDF hand segmentation se-

quences. Segmentations on the right (d-f) show robust performance of the NDT

comparator under extreme lighting, contrast and focus conditions. Figure 7.10

shows the robust performance of the system in difficult situations including fore-

ground and background distractors. As desired, segmentation of the tracked

hand continues. Figure 7.11 shows a variety of hand segmentations under typical

circumstances including reconfiguring, rotating and moving hands in real time.

Figure 7.11 shows various segmentations for conceivable symbolic gestures.

Segmentation quality is such that the target is extracted from its surroundings

which has significant benefits in classification processes because the operation

is not tainted by background features. The last two examples in Figure 7.11

show the segmentation of a hand holding a set of keys, and a hand holding a

stapler. In these two cases, the conjoined hand and object form a volume that

is segmented as the same object. Such volumetric segmentations may be useful

for examining the contextual interaction of objects. Foveal segmentation of such

interaction events from the background may be of great benefit to tasks such as

object manipulation, or the inspection of connected objects.
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Figure 7.10: Robust performance in difficult situations. Segmentation of a tracked

hand from a face in the near background (top left); from a second distracting hand

in the background (bottom left); and from a distracting occluding hand in the

immediate foreground, a distance of 3cm from the tracked hand at a distance of

2m from the cameras (top right). Once the hands are closer together than 3cm,

they are segmented as the same object (bottom right).

Figure 7.11: Segmentation of objects with intricate borders. The last two frames

show composite objects - a hand grasping a stapler, and a hand grasping a bunch

of keys.
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7.5 Performance

7.5.1 Speed

On average, the system is able to fixate upon and track subjects at 27fps, includ-

ing display. Acquiring the initial segmentation takes a little longer (∼ 23−25fps

for the first few frames) after which successive MRF ZDF optimisation results

do not vary significantly so using the previous segmentation as an initialisation

for the current frame accelerates MRF labeling. Similarly, the change in seg-

mentation area between consecutive frames at 30fps is typically small, allowing

sustained high frame rates after initial segmentation. The frame rate remains

above 20fps and is normally up to the full 30fps camera frame rate.

7.5.2 Quality

In typical tracking of a reconfiguring moving hand over 100 consecutive frames,

inaccurate segmentation of the hand typically occurs in around 15 frames. We

describe a frame as inaccurate if the segmentation result has incorrectly labelled

more than 10% of the pixels associated with the hand segmentation (either miss-

labeling pixels on the hand as not being on the hand, or vice versa). These figures

have been determined by recording segmentation output for typical gesturing

sequences and having a human arbitrator review and estimate the percentage of

inaccurate pixels in each frame.

Segmentation success also depends on the complexity of hand posture. For

example, if the hand is posed in a highly non-planar fashion or a pose whose

dominant plane is severely non-perpendicular to the camera optical axes, non-

successful segmentation can degrade to up to around 50 frames in 100. In these

situations, the zero disparity assumption is violated over some parts of the hand.

The induced relaxation of the zero disparity assumption due to MRF contextual

refinement is not always sufficient to segment the hand. Under such circum-

stances, methods reliant on prior knowledge could conceivably assist segmenta-

tion - for example, if the colour or appearance of the hand was known prior to

segmentation and incorporated using the HS term from Equation 7.12. Neverthe-

less, despite some inaccurately segmented frames, track is rarely lost for natural

motions and gestures.
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The approach compares favorably to other ZDF approaches that have not

incorporated MRF contextual refinement, allowing relaxation and refinement of

the zero disparity assumption such that surfaces that are not perpendicular to

the camera axis can be segmented.

7.5.2.1 Foreground and Background Robustness

Figure 7.10 shows examples of segmentations where subject-like distractors such

as skin areas, nearby objects, or other hands are present. For the case where the

tracked hand passes closely in front of a face (that has the same skin colour and

texture as the tracked hand), the system successfully distinguishes the tracked

hand from the nearby face distractor (Figure 7.10, top left). Similarly, when the

tracked hand passes in front of a nearby hand, segmentation is not affected (Fig-

ure 7.10, bottom left). Cue or model-based methods are likely to have difficulty

distinguishing between the tracked hand and the background hand.

The right side images in Figure 7.10 show the case where a tracked hand is

occluded by an incoming distractor hand. The hands are located approximately

2m from the cameras in this example. Reliable segmentation of the tracked hand

(behind) from the occluding distractor hand (in front) remains until the distractor

hand is a distance of approximately 3cm from the tracked hand. Closer than this

the hands are segmented as a connected object, which is conceptually valid.

7.5.3 Tracking Constraints

An object can be tracked as long as it does not move entirely out of the fovea

between consecutive frames. This is because no predictive tracking is incorpo-

rated (such as Kalman filtering). In practice, we find that objects must move

fast enough that they leave the fovea completely between consecutive frames.

Tracking a target as it moves in the depth direction (towards or away from the

cameras) is sufficiently rapid that loss of track does not occur. In interacting with

the system, we find that track was not lost for natural hand motions (Figure 7.8).

The visual workspace for the system remains within a conic whose arc angle is

around 100o. Performance remains effective up to a workspace depth (along the

camera axis) of 5m, for the resolution, baseline and zoom settings of our stereo
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apparatus. Higher resolution or more camera zoom would increase disparity sen-

sitivity, permitting zero disparity filtering at larger scene depths.

7.5.3.1 Segmentation for Recognition

Primates bind the different visual attributes of an object, such as colour or form,

into a unitary precept [Trieisman & Gelade (1980); Reynolds et al. (2000)]. The

MRF ZDF segmentation may facilitate the identification of a segmented object

by removing background information. A recognition step could be applied to the

segmented output. The detailed contours of the segmentation may contribute to

object identification.

A hypothetical example is now considered: a black cross located some dis-

tance directly behind a black circle, for example, would elicit a camera image

in which the circle partially occludes the cross. If such an image was passed to

a two-class classifier designed to identify crosses or circles, the image may be

classified as containing either. Based on spatial constraints, however, a MRF

ZDF segmentation would return either only pixels on the cross or those only on

the circle, depending upon which object was tracked at the stereo fixation point.

The segmentation identifies pixels not on the object at fixation. In this manner,

spatial information (and the image frame disparities elicited in binocular images)

largely eliminates classification ambiguity.

7.5.4 Comparison to State-of-Art

Our method is based on active vision hardware, and as such, it is difficult to find

a performance metrics that compare the MRF ZDF method with methods that

do not use active vision mechanisms. Additionally, implementation details for

other ZDF methods are difficult to obtain, and are usually hardware and calibra-

tion dependent, such that reproduction is not viable. Methods that do not use

contextual refinement for direct segmentation cannot be party to a segmentation

performance comparison. Having said that, we provide samples of output from

other implementations to allow the reader to assess performance visually.
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Figure 7.12: Comparison to other methods. Example output, images repro-

duced with permission from a Shen (MeanShift [Shen et al. (2005)]), b Shen

(Annealed MeanShift [Shen et al. (2005)]), c Comaniciu (CamShift [Comaniciu

et al. (2003)]), d Allen (CamShift [Allen et al. (2003)]).

7.5.4.1 Comparision to Colour-Based Methods

We provide tracking output from recent methods for empirical evaluation (Fig-

ure 7.12). These methods provide bounding box output only, and as such do not

deal with segmenting, for example, two overlapping hands (Figure 7.12c).

7.5.4.2 Comparision to ZDF-Based Methods

Figure 7.13 shows sample ZDF output from existing methods for comparison.

These methods provide probability distribution and bounding box outputs. The

underlying probability maps may be suitable for MRF refinement such as ours,

but they do not inherently provide segmentation.

7.5.4.3 Comparison to Non-MRF Methods

Figure 7.4 shows sample ZDF output from our system without the incorpora-

tion of MRF contextual refinement. Figure 7.9c shows output using the same

algorithm as in Figure 7.4, but incorporates MRF contextual refinement from

the original images. Any attempt to use the output in Figure 7.4 alone for

segmentation (via any, perhaps complex, method of thresholding), or for track-

ing, would not yield results comparable to those achievable by using the output

in Figure 7.9c. The underlying non-MRF processes may or may not produce

ZDF probability maps comparable to those produced by others (Section 7.5.4.2).

However, the tracking quality achievable by incorporating MRF contextual image
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Figure 7.13: ZDF performance comparison. Images reproduced with permission

from: a Oshiro [Oshiro et al. (1996)], b Rae [Rae & Ritter (1998)], c Rougeaux

[Rougeaux et al. (1994)], d Yu [Yu & Baozong (1996)], e Rougeaux [Rougeaux &

Kuniyoshi (1997b)], f the presented MRF ZDF algorithm.
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information refinement is better than is possible by the underlying ZDF process.

7.6 Discussion

It is critical that the MRF ZDF refinement operates consistently at, or near, frame

rate. This is because we consider only the 60x60 pixel fovea when extracting the

zero disparity region. At slower frame rates, a subject could more easily escape

the fovea, resulting in loss of track. Increasing the fovea size could help prevent

this occurring, but would have the consequence of increasing processing time per

frame.

Our method uses all image information, it does not match only edges, fea-

tures or blobs extracted from single or multiple cues. The strongest labeling

evidence does indeed come from textured and feature rich regions of the image,

but the Markov assumption propagates strongly labelled pixels through pixel

neighbourhoods that are visually similar, until edges or transitions in the images

are reached. The framework deals with the trade-off between edge strengths and

neighbourhood similarity in the MRF formulation.

In contrast to many motion-based methods, where motion models are used

to estimate target location based on previous trajectories and motion models

(for example, Kalman filtering), the implementation does not rely upon complex

spatiotemporal models to track objects. It merely conducts a continual search

for the maximal area of ZDF output, in the vicinity of the previous successful

segmentation. The segmentations can subsequently be used for spatial localisa-

tion of the tracked object, but spatiotemporal dynamics do not form part of the

tracking mechanism.

7.6.1 Incorporation with Synthetic Perception

The ability to fixate upon, segment, and track scene surfaces in the fovea can

operate in parallel with the coarse peripheral spatial perception described in the

previous chapter. Primates combine foveal and peripheral perception into a uni-

fied scene representation. Accordingly, when operating in parallel with peripheral

spatial perception, target foveal fixation and segmentation facilitates investiga-

tions into primate-like perception.
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Figure 7.14: Bimodal system operation. Left: left (top) and right (bottom)

input images. Right: Foveal perception (top) and peripheral perception (bottom).

Foveal segmentation enhances the coarse perception of mass in the scene.

Once the peripheral mode has provided a rough perception of where mass is in

the scene, the foveal mode allows coordinated stereo fixation upon mass/objects

in the scene, and enables extraction of the object or region of mass upon which

fixation occurs. By adjusting the camera geometry, the system is able to keep the

object at zero disparity and centred within the foveas. Moreover, while the target

is tracked in the foveal mode, the peripheral mode continually provides spatial

information about the object’s surroundings. This combined ability is potentially

useful for examining how a tracked target interacts with its surroundings.

Figure 7.14 shows a snapshot of output of the foveated and peripheral percep-

tion modes operating in parallel. Bimodal perception operates at approximately

15Hz on the 3GHz single processor PC. Figure 7.15 shows a demonstration movie

of bimodal perception.

Obtaining a peripheral awareness of the scene and extracting objects within

the fovea permits experimentation in fixation and gaze arbitration. Prioritised

monitoring of objects in the scene is the next step in our work towards artificial

scene awareness. In the next chapter, we investigate attention and autonomous

target selection.
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Figure 7.15: Online bimodal perception demonstration (snapshot - see Appendix

C for full video).

7.6.1.1 Processing Network Integration

When implemented as a processing node in the processing network, the coordi-

nated fixation and segmentation algorithm requires image input. We take rectified

image input from the rectification server. The MRF ZDF node requests Y, U,

and V rectified channels from the left and right cameras. Mosaic parameters are

not required. The node outputs the segmentation mask or the multiplication of

the mask with the original image, as selected by client processes.

The node calculates axis shift distances for maintaining zero disparity track-

ing. It can be set to communicate directly with the motion control server for

direct, automatic gaze control, or it can pass the parameters to client nodes for

their arbitration. In the instance that the MRF ZDF node controls motion di-

rectly, other nodes may still send control commands which override MRF ZDF

control. MRF ZDF gaze control can be reinstated after any such interruptions.

7.7 Summary

A Markov random field zero disparity filter (MRF ZDF) has been formulated

and used to fixate upon, segment and track arbitrarily moving, rotating and

re-configuring objects, performing accurate marker-less pixel-wise segmentation.
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Target extraction is robust to lighting changes, defocus, target appearance, fore-

ground and background clutter including non-tracked distracting (visually simi-

lar) targets, and partial or gross occlusions including those by distracting targets.

Tracking is performed at approximately 27fps on a 3GHz single processor PC. We

have provided segmentation and tracking results and compared its performance

to that of existing tracking methods.
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Chapter 8

Active Attention

Figure 8.1: Attention.

In this chapter we develop an architecture for real-time saliency analysis of

realistic, dynamic scenes using active vision. Using biological inspiration, we

propose and implement an active attention framework that incorporates saliency,

inhibition of return, task biasing, and moderation of covertly considered locations.
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8.1 Introduction

We have considered biology and existing models of primate vision when selecting

components of visual attention. We now incorporate active visual attention into

the processing framework. We begin by implementing bottom-up centre-surround

saliency cues in a manner similar to that of Itti & Koch (1998). We extend the

model for use with an active vision platform by integrating the rectification and

mosaicing process described in Chapter 5. We are able to use the occupancy grid

to establish 3D cue-surface correspondences.

In monkeys, salient locations are retained across saccades by transferring ac-

tivity among spatially-tuned neurons within the intraparietal sulcus [Merriam

et al. (2003)]. A short-term inhibitory effect then prevents previously attended

stimuli from being immediately re-attended. One reason for such a short term

memory may be to help optimise search performance by inhibiting previously

attended scene locations. Accordingly, our attentional system incorporates IOR

to maintain an egocentric short term memory of previously attended scene lo-

cations. Further, we introduce methods to covertly propagate IOR in dynamic

scenes according to the motion of scene objects.

As we shall see, image frame saliency is significantly affected by active camera

motion. We do not select fixation locations based solely upon the saliency map.

We modulate saliency by dynamic IOR bias, and a task-dependent spatial bias

to obtain a fixation map. Finally, we covertly moderate fixation arbitration by

accumulating evidence about the spatial coherence and strength of candidate

peaks in the fixation map.

Attention is susceptible to online top-down modulation for assisting visual

tasks. We incorporate attentional processing into the processing network. It

is integrated with the coordinated fixation and segmentation component, and

spatial awareness component, such that primate-like gaze behaviours emerge.

8.2 Synthesising Saliency

We begin by implementing cues known to contribute to the perception of atten-

tional saliency in primates. As we shall see, cues are processed in real time on a

network of computers.
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8.2.1 Saliency Cues

The usefulness of cue synthesis is subject to real-time performance constraints,

so cues are implemented with processor economy in mind. Pre-attentive feature

computation occurs continually in primates across the entire visual field and takes

around 25-50ms [Itti & Koch (2001)]. We process images in YUV colour space.

Cues are processed in parallel; however, some serialisation in cue processing is

required to meet cue dependencies (Figure 8.22a). Cue contrast is important

in saliency, not local absolute cue levels [Nothdurf (1990)]. Accordingly, centre-

surround spatial uniqueness in each synthetic cue is determined for incorporation

into saliency perception.

Neurons at the earliest stages in the visual brain are known to be tuned

to simple features like intensity contrast, colour opponency, orientation, motion

and stereo disparity. These features contribute to the perception of attentional

saliency. For synthetic saliency, we choose conceptually relevant and biologically

plausible early visual cues including intensity and colour uniqueness, optical flow,

depth and depth flow, orientation uniqueness, and collision path criticality.

8.2.1.1 Intensity Uniqueness

Neurons tuned to intensity centre-surround produce a response that can be syn-

thesised using a DOG approximation [Itti & Koch (2000)]. In a manner similar

to Ude et al. (2005), we create a Gaussian pyramid from the intensity image.

Successive images in the pyramid are down-sampled by a factor of two (n times),

and each is convolved with the same Gaussian kernel. To obtain DOG images,

the Gaussian pyramid images are up-sampled (with bilinear interpolation) to the

original image size and then combined. Combination involves subtracting pyra-

mids at coarser scales Cn from those at finer scale Cn−c. We consider two levels of

interaction, immediate neighbours Cn−Cn−1, and second neighbours Cn−Cn−2,

to obtain a DOG pyramid with n − 3 entries. Finally, the n − 3 entries are

added to obtain a map where the most spatially unique region emerges with the

strongest response. The borders of the image equate to an edge that would other-

wise produce a significant step response in uniqueness computations, due to edge

effects of convolution. Prior to conducting convolutions, images are padded with

zeros beyond the image frame, and a smooth transition to zero response within
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Figure 8.2: Example windowing function applied to images before centre-

surround processing. This prevents step responses elicited by the image edges.

Figure 8.3: Intensity centre-surround uniqueness.

the image frame is enforced using a windowing function (Figure 8.2).

8.2.1.2 Colour Uniqueness

Colour channels are sent to a separate server for processing in parallel with in-

tensity information. Colour centre-surround uniqueness is computed as per in-

tensity. In the retina, some ganglion cells produce a red-green centre-surround

response, others exhibit the orthogonal blue-yellow centre-surround response. We

process orthogonal U and V chrominance opponents (U is approximately a yellow-

magenta response and V approximates an orthogonal cyan-pink response), and

combine the centre-surround responses by addition. In this manner, the region
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Figure 8.4: Colour centre-surround uniqueness.

with the most unique colour chrominance emerges with the strongest response.

Colour uniqueness is calculated for both left and right image feeds at full frame

rate. Figure 8.4 shows output for the colour uniqueness response.

8.2.1.3 Chrominance Distance

Specific target chrominance(s) T = (u, v) can be selected for detection in the

left and right image views. At every pixel location in each image, the normalised

Mahlonobis distance |∆C| from the image pixel chrominance to the target chromi-

nance is computed according to:

∆C| =
√

(Iu − Tu)2 + (Iv − Tv)2

∆Cmax

, (8.1)

where Iu,Iv and Tu,Tv are the U,V colour chrominance components at the pixel

location, and the sought target chrominance respectively. ∆Cmax is the maximal

possible distance from the sought chrominance in the 255 level U,V colour space:

∆Cmax =
√

(Mu)2 + (Mv)2, (8.2)

where Mu = max(255− Tu, Tu), Mv = max(255− Tv, Tv)).

So that only chrominance distance responses in the vicinity of the sought

chrominance are retained, we convert the measured chrominance distances to a

chrominance similarity measure Sc using a Gaussian lookup function:

Sc =
e−|∆C|2

2σ2
, (8.3)
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where σ is selected such that 3σ approximates the maximum passable chromi-

nance distance.

For example, if the chrominance at an image location is a Mahlonobis dis-

tance of 0.0 from the sought chrominance, the chrominance similarity measure

Sc would be 1.0. As the chrominance distance increases, the modulation factor

tends towards 3σ, and Sc correspondingly tends towards 0.0, according to the

above Gaussian function. The method therefore passes pixels in the vicinity of

the sought chrominance only.

8.2.1.4 Optical Flow

The translation from the current to previous frame for each camera is known in

mosaic coordinates. The rectification and mosaicing process removes the view-

frame effect of any encoded camera geometry changes (pan, tilt). Once the loca-

tion of the current and previous frame in the mosaic for each camera is known, we

calculate optical flow only on the overlapping region of consecutive view frames

in the mosaic. This process allows estimation of horizontal and vertical scene flow

independent of the motion of the cameras (rather than flow relative to the cam-

era image frame). A sum of absolute differences (SAD) flow operation [Banks &

Corke (1991)] is used. We obtain four maps from the two cameras: horizontal and

vertical flows in each camera. The responses are normalised and centre-surround

uniqueness is determined for all four maps. In this manner, regions in view that

are moving in a unique manner are extracted. We down-sample images before

computing flow for processor economy. Figure 8.5 shows sample horizontal flow

estimation.

8.2.1.5 Disparity

The epipolar rectified mosaics allow us to search for pixel disparities along hori-

zontal scan-lines only. We search the neighboring ±16 pixels in the second image

for a correspondence to the candidate pixel location in the first image. We con-

duct a SAD disparity search in the overlapping region of current left and right

frames only. Figure 8.6 shows sample disparity map output.

We consider that closer objects are more salient because they are more likely

to interact with the apparatus. Therefore depth without any centre-surround
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Figure 8.5: Optical flow, horizontal direction. The hand (light) moves left, the

body (dark) moves right. Black areas represent those where no flow estimate is

obtained.

Figure 8.6: Disparity cue. Left and right input images, and resulting disparity

map (respectively).
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Figure 8.7: Depth flow cue. The hand moves towards cameras. SAD performance

is best in textured regions, hence the response is sparse on the bland palm.

modulation is itself a saliency cue. In addition, centre-surround modulation is

determined because a region that exhibits a different depth to its surroundings

is also considered salient – it is likely to be an object or obstacle. The two maps

are combined into one by weighted addition.

8.2.1.6 Depth Flow

The velocities of visual surfaces in the depth direction are calculated using an

approach similar to that of Kagami et al. (2000), by considering the overlapping

regions of consecutive disparity maps. The centre-surround uniqueness algorithm

is applied to the depth flow output. Figure 8.7 shows sample depth flow output.

8.2.1.7 Orientation Uniqueness

Eye trackers have been used to observe that humans preferentially fixate upon

regions with multiple orientations [Zetzsche (1998)]. A winner-take-all compe-

tition is activated amongst neurons tuned to different orientations and spatial

frequencies within one cortical hypercolumn Carrasco et al. (2000). These ob-

servations suggest that responses to different orientations may be computed in

parallel, somewhat separately, with integration and spatial competition occurring

at the later stages.

We achieve a synthetic response using complex log-Gabor convolutions over

multiple scales within each of the multiple orientations. The log-Gabor response
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Figure 8.8: Orientation cue response, horizontal direction only.

models the impulse response observed in the orientation sensitive neurons in cats

Sun & Bonds (1994). The log-Gabor kernel provides a broader spatial frequency

response than the Gabor kernel, so fewer scale convolutions are necessary for

the same spatial sensitivity. We compute the convolutions in Fourier space and

obtain orientation response maps for each orientation and scale. Within each ori-

entation, we sum all scale responses (Strong local interactions between separate

orientation filters have been characterised via neuronal correlates [Itti & Koch

(2000)]). Processing each orientation is a heavy operation, and because we have

four virtual CPUs per processing node, we limit the operation to four orienta-

tions per camera. The associativity of convolution means that the subsequent

orientation uniqueness operation (involving a series of convolutions) need not be

done for each orientation separately. We can simply sum the orientation maps,

and apply the centre-surround uniqueness operation to the result. We obtain

orientation response maps for each orientation, a single map of the regions that

respond to the most orientations (such as corners and edges, Figure 8.8), and an

orientation uniqueness map (Figure 8.9) where the strongest response occurs at

regions that contain orientations atypical to the rest of the image, regardless of

scale.

8.2.1.8 Critical Collision Cue

The critical collision cue responds to pixels on visual surfaces in the scene that

are on an instantaneous trajectory leading towards the visual aparatus. A similar

neural response has been observed in pigeons [Wylie et al. (1998)]. At each pixel
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Figure 8.9: Orientation centre-surround uniqueness. The multiple orientation

responses of the two bright dots stand out from the predominantly horizontal

orientation of the blinds.

where the required measurements exist and are valid, we obtain a position vector

p = (x, y, depth) and a velocity vector v = (flowx, f lowy, f lowdepth). We obtain

the collision criticality cue according to:

||p||
||v||

(1− (−nv · np)), (8.4)

where the dot represents the dot product, and nv = v/|v|, and np = p/|p| are

unit vectors. That is, the component of the velocity vector associated with a

scene point in the direction of the negative distance vector to that scene point

is calculated and modulated by the time (||p||/||v||) the scene point would take

to get to the origin (the midpoint between the cameras) if it were to maintain

the current trajectory. The calculation therefore highlights the scene areas whose

trajectories are presently likely to collide with the vision system, and weights

them according to which will collide first.

8.2.2 Cue Processing

Interdependencies exist in the extraction of cues. So that calculations are not

conducted unnecessarily multiple times, cues that can incorporate intermediary

maps calculated during other feature computations are serialised within a single

processing node.

Figure 8.12 shows cue interdependencies. Serialisation of cue computation can
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Figure 8.10: Critical collision cue. The head is moving towards CeDAR. Disparity

and flow estimates on the sides of the head (response is better in textured regions)

elicit a critical collision cue response.

be read off the graph. For example, the collision criticality cue depends on rec-

tification, depth, flow, and depth flow ordered serial pathway. Such serialisation

must be preserved in the processing network implementation. We therefore incor-

porate parallel and serial node processing as per Figure 8.11. One node (that we

have named the DFCS – depth flow centre surround – server) receives Y chan-

nel rectified images from both cameras, and processes intensity centre-surround,

disparity, optical flow, depthflow, and the critical collision cue. This is because

it is a very serialised pathway that operates on the same Y channel input. The

node is a virtual quad processor computer, so it is able to parallelise much of the

processing of these cues. For example, four optical flow maps can be computed

simultaneously, corresponding to the left and right x and y flow.

Another two nodes (the OCSl and OCSr – left and right orientation centre

surround – servers) also receive Y channel rectified images exclusively for orien-

tation processing, a heavy process. The last cue processing node (the CCS –

colour centre surround – server) receives U and V colour chrominance channels

from both cameras (4 channels) and processes centre-surround chrominance maps

on these channels in parallel on its four virtual CPUs.

We combine centre-surround cues in a fashion similar to the winner-take-all

method [Itti & Koch (2000)]. On each cue processing node, the outputs are

weighted and combined into a single map (except the DFCS server, where three
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Figure 8.11: Processing node outputs are combined to contribute to saliency.

Figure 8.12: Synthetic cue dependencies.
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Figure 8.13: Online perception of saliency demonstration (snapshot - see Ap-

pendix C for full video).

maps are distributed: left, right and stereo output) for distribution to a client

node. A client node receives all outputs from the four cue processing nodes,

applies weighting, and adds them into a single saliency map for each camera,

and a stereo saliency map (Figure 8.11 shows combination into a single camera

saliency map).

8.3 Active-Dynamic Attention

In monkeys, salient locations are retained across saccades by transferring ac-

tivity among spatially-tuned neurons within the intraparietal sulcus [Merriam

et al. (2003)]. Mechanisms of spatial updating maintain accurate representations

of visual space across eye movements. Navalpakkham et al. hypothesise that

because neurons involved in attention are found in different parts of the brain
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that specialise in different functions, they may encode different types of salience:

they propose that the posterior parietal cortex encodes a visual salience map;

the pre-frontal cortex encodes a top-down task relevance map; and the final eye

movements are subsequently generated by integrating information from both re-

gions to form an attention guidance map possibly stored in the superior colliculus

[Navalpakkam et al. (2005)].

Our implementation introduces three intermediary maps such that IOR can

be dynamically and covertly propagated in dynamic scenes. The three maps

include a Bayesian saliency mosaic, an IOR mosaic, and a TSB mosaic. The

three maps are maintained in an egocentric mosaic reference frame so that they

are not affected by deliberate pan and tilt camera motion, and such that the

saliency/inhibition/bias of the current view can be related to previous views.

8.3.1 Bayesian Saliency Updates

We incorporate saliency maps into a saliency mosaic using the Bayesian update

equation. For each camera, the response level of each pixel in each centre-

surround cue for each image is used to increment the probability that the cor-

responding pixel in the mosaic is salient. Let s[x, y] denote the cue response at

pixel location [x, y]. Given a cue response measurement M at a pixel [x, y], we

use the incremental log-likelihood form of Bayes’ Law [Elfes (1989)] to update

the saliency map at each pixel. We introduce cue weight Wc corresponding to an

empirical weighting of the cue compared to all other cues:

log L(salient)← log L(M | salient) + Wc log L(s) (8.5)

Log-likelihoods provide an efficient implementation for incorporating new data

into the saliency map by reducing the update to an addition. Gain Wc may be

autonomously updated by higher-level operations, representing top-down modu-

lation. In this experiment, the cue weights are declared empirically and remain

static.

All entries in the Bayesian saliency map are decayed over time, so that a

permanent perception of salience is not anchored to previously attended regions.

This decay rate (Sd) affects how easily the system’s attention can be distracted.

As with other control parameters, rate Sd can be modulated by higher-level pro-
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cesses, depending on the level of concentration required for a particular task. The

decay rate also prevents the saliency grid implementation from saturating.

8.3.2 Dynamic Inhibition of Return

IOR represents the notion that once we have assessed a particular point or object

in a scene, we are less inclined to look there again. For example, a green apple

amongst red apples is considered visually salient. If the apple is then moved

to a pile of other green apples, it becomes less visually salient. In dealing with

dynamics we therefore do not propagate saliency. Instead, we deal with dynamics

within the IOR map. We initially find the green apple salient when it is amongst

red apples, so it is likely to get attended. When the apple moves to its new

location, it is still the same object that we previously attended. However, if

other interesting events are now occurring in the scene, we might not justify

directing foveal attention towards the same green apple again. We might prefer

to direct our attention to other as yet unevaluated scene locations. We therefore

covertly propagate suppression of the saliency of the green apple as it moves, and

it remains suppressed when it moves to the pile of green apples. Conversely, a

green apple amongst green apples is not visually salient. When the green apple is

moved to a pile of red apples, it is still the same green apple that was previously

not salient, and was previously not attended or suppressed. When it moves to the

pile of red apples, it is considered salient, is not suppressed, and therefore may

well win attention. This example helps to express why we covertly remember (at

least in the short term) and propagate the location of previously attended scene

regions in the IOR map only.

The system evaluates IOR every frame. A Gaussian kernel is added to the

region around the current fixation point in an IOR accumulation mosaic, every

frame (Figure 8.14). The radius of the Gaussian kernel can be modulated accord-

ing to preference. Expanding upon this for dynamic scenes, accumulated IOR is

propagated according to the estimated current optical flow. In this manner, IOR

accumulates at attended scene locations, but it remains attached to objects as

they move. In propagating IOR, it is spread and reduced according to Gaussian

uncertainty in the region’s new location.

We decrement the entire IOR mosaic over time according to decay rate Id,
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Figure 8.14: Gaussian IOR increment pattern. This kernel is applied at the

coordinates of the centre of each view frame in the IOR accumulation mosaic

(centre, Figure 8.20).

so that previously inhibited locations eventually become uninhibited. As with

saliency decay rate Sd, faster Id decay means more frequent saccades to distractors

around the scene. Again, this rate can be modulated by higher-level operations,

though we declare it empirically. IOR may suppress an attended object’s saliency,

but if the object then moves it is not immediately salient (other than by the

additional saliency elicited by its motion, but existing IOR usually suppresses this

beyond causing a fixation map peak) because it carries its inhibition of salience

with it. Its effective saliency continues to be suppressed until the IOR decay rate,

or the uncertainty associated with its location, reduces the IOR suppression of

its saliency. In this manner, IOR is a retrospective response as it depends upon

previous observations. For a given head pose, the mosaic reference frame remains

static with respect to the world, and as such, regions of the mosaic not in the

current view frame may remain suppressed until inhibition is completely decayed

or until that location is next attended and inhibition increases.

Before gaze arbitration, saliency is first modulated by IOR (and then TSB).

Figure 8.17 demonstrates the interaction between dynamic IOR and saliency. It

shows how inhibition becomes “attached” to the surfaces in the scene, propagating

with those surfaces if they move, according to optical flow. Figure 8.18 shows a

demonstration movie of this process.

8.3.2.1 Task Dependent Spatial Bias

The prefrontal cortex implements attentional control by amplifying task-relevant

information relative to distracting stimuli [Nieuwenhuis & Yeung (2005)]. We

introduce a TSB mosaic (Figure 8.19) that can be dynamically tailored according
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Figure 8.15: Online distribution and accumulation of IOR demonstration (snap-

shot - see Appendix C for full video).

Figure 8.16: Online dynamic accumulation and propagation of IOR according to

optical flow demonstration (snapshot - see Appendix C for full video).
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Figure 8.17: Dynamic IOR. From left: 1 the head on trolly moves into fovea,

initially uninhibited; 2 after time it becomes inhibited; 3 a salient hand enters

fovea; 4 IOR on forehead is reset by occlusion; 5 trolley and head move out of

fovea, taking associated IOR pattern.

Figure 8.18: Online demonstration of the effect of dynamic IOR on saliency

(snapshot - see Appendix C for full video).
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Figure 8.19: Sample TSB mosaic showing current view frame position. This

radial TSB could represent a forwards search task – the gradient across the view

frame induced by the radial TSB enhances saliency of scene surfaces towards the

centre of the mosaic. Like all mosaics, the egocentric TSB mosaic remains static

with respect to the scene despite camera motions.

to tasks. For example, if we are driving a car, we know that we should tend to

keep our gaze upon the road, and as such we bias the lower half of the mosaic

where we would expect to find the road. For a forwards search task, we might like

to use a radial TSB, such that the system does not tend to divert its gaze too far

away from forwards. The TSB may be dynamically updated as appropriate for

the current task. The TSB can be preempted for regions not in the current view

frame. Covert attention involves consideration of factors not directly associated

with the current target at fixation. It involves consideration of regions towards or

beyond the periphery, whether real, expected, or hypothetical. In this manner,

TSB is potentially a form of covert attention.

213



8. ACTIVE ATTENTION

Figure 8.20: The fixation map is the product of Bayesian saliency, dynamic IOR

(inverse shown), and TSB.

8.3.3 Fixation Map

It is now known that the prefrontal cortex implements attentional control by

amplifying task-relevant information rather than inhibiting distracting stimuli

[Nieuwenhuis & Yeung (2005)]. To achieve fixation upon salient regions in dy-

namic scenes with moving cameras, we modulate (multiply) the saliency map by

the IOR and TSB maps. This process amplifies relevant visual stimulus. Fig-

ure 8.20 shows the components of the fixation map.

8.3.4 Gaze Selection and Target Pursuit

In its simplest form, gaze can be directed towards the scene location correspond-

ing to the single maximal peak of both left and right fixation maps. However, as

gaze changes so too does cue spatial uniqueness. Ignoring the effect of IOR, at-

tending a new location may immediately render a previously non-salient location

salient. This can result in an overly saccadic system. We therefore moderate the

winning locations before the winner of fixation is selected. Again, this involves

consideration of regions other than that currently receiving overt attention. In

this manner, moderation of fixation maxima is potentially a form of covert at-

tention.

We define three modes of moderation:

• Supersaliency: a view frame coordinate immediately wins attention if it

is ns times as salient as the next highest peak.

• Clustered Saliency: attention is won by the view frame location about
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which nc global peaks occur within p consecutive frames.

• Timeout: if neither of the above winners emerge in t seconds, attention is

given to the highest peak in the fixation map since the last winner.

Both the left and right fixation maps are scanned to determine the maximal

peak. The first peak location that passes moderation is selected as the next

gaze fixation point. We call the fixation map and image in which the maximal

peak was found, the primary fixation map and primary image respectively. Using

the output of the disparity cue it is possible to find the corresponding image

locations of the winning scene location in the secondary image. It is noted that

the disparity map is simply an estimate of the shift in the pixel location of the

projection of the same scene points from one view to the other – it can therefore

be used to cross-reference the location of pixels from the left and right views.

This process largely eliminates the need to search for the corresponding location

in the secondary image. The peripheries of the left and right cameras may contain

different visual stimulus (the entire visual fields do not usually overlap entirely).

In this instance, or if no disparity data is available at the primary image location,

a template search is initiated. The template search is conducted over a minimal

region in the vicinity of the peak location in the primary image (camera vergence

does not usually deviate more than several degrees from parallel). The camera

images are parallel epipolar geometry rectified which means that the template

search need only be conducted along horizontal scanlines. A small template

around the selected fixation point is sought in the secondary image, the starting

(and most likely) location for the search is determined by cross referencing the

disparity cue. Once the coordinates of the winning location are found in the

secondary view, saccade is initiated. If coordinates are not found in the opposing

view using the template search, then the disparity map is used to cross reference

the location from the winning view, and saccade is nonetheless initiated. In both

instances, immediately after saccade, the MRF ZDF node fine-tunes gaze such

that the surface that initiated saccade is fixated upon in a coordinated manner

(or the nearest surface). It is noted that is is also possible to use the disparity

map correspondences to integrate the left and right saliency maps into the stereo

saliency map, creating a single saliency map (not only saliency – any left and right

cue maps may be unified in this manner). However, such a unified map would
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require more rich and accurate disparity estimations, so we maintain separate

maps.

8.3.4.1 Before and After Attentional Saccades

During an attentional saccade, much motion blur is induced in the contents of

the camera images. This blur temporarily reduces image quality and affects cue

processing. In particular, the optical flow and disparity cues become excessively

noisy. This noise can be misinterpreted in centre-surround processing as saliency.

Excessive noise in optical flow calculations can also affect the propagation of

dynamic IOR. To overcome this problem, the gaze moderation process broadcasts

to the relevant processing nodes that a saccade is about to occur. Then, during

the saccade, processing nodes can take appropriate action. For example, the

propagation of IOR according to flow does not occur, and Bayesian saliency

does not accumulate. Further, the MRF ZDF thread suspends sending tracking

commands to the motion axes. Interestingly, there exists a similar mechanism

in biology that may serve a similar function: in neural recording studies with

monkeys, scientists found that they could predict the occurrence of saccades by

monitoring the activity of certain neurons [Sugrue et al. (2005), Dorris et al.

(1997)].

Immediately after attentional saccade completion, tracking control is returned

to the MRF ZDF process. This centres gaze upon the target that initiated an

attentional saccade, ensuring coordinated fixation upon, and smooth pursuit of,

the target.

8.3.4.2 Permitting Top-down Bias

Control of various attentional components can occur on-line. Cue weightings

can be sent to any one of the cue processing nodes to increase the contribution of

that cue to the saliency map. This may be particularly useful in feature-gate style

search. Similarly, the weighting and layout of the TSB may be updated as desired.

IOR modulation may also occur in the form of modifying the accumulation and

decay rates, as well as the radius of the IOR Gaussian kernel. The fixation

moderation parameters may also be changed online.

We can bias the system for specific tasks. For example, by weighting the
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colour chrominance distance cue heavily, and selecting a skin-coloured target

chrominance, the system could be made to preferentially attend to hands and

faces, but is still attentive to other distracting stimuli. Similarly, we experimented

with biasing the system to attend to the road, road signs and road lines in the

road scene. While preferentially “keeping its eyes on the road”, the system briefly

evaluates other salient events in the road scene.

Similarly, we can affect the system’s visual behaviours. For example, we can

make the system more saccadic by increasing the IOR decay rate, decreasing the

Gaussian kernel accumulation rate and radius, and relaxing moderation strictness

of fixation selection.

8.4 Integration into Processing Network

We have not required any particular model or structure when distributing pro-

cessing tasks over nodes in the network. The only requirement is real-time perfor-

mance. For this reason, we serialise processing such that cues are only determined

once in the processing network, despite being used multiple times throughout the

processing structure. For example, spatial representation in the occupancy grid

node requires depth information from the disparity cue. Disparity is also a cue

used for the perception of saliency. Rather than being calculated multiple times,

disparity is calculated once only in the DFCS node, and the output is distributed

to subsequent nodes that require this map. The structure of the distributed pro-

cessing system has emerged only from bandwidth minimisation and optimisation

of system performance.

8.4.1 Functional Structure

We adopt a client-server architecture to allow concurrent serial and parallel pro-

cessing. At the lowest level, a rectification server distributes rectified images

and rectification parameters to dependent nodes. Biological evidence suggests

that colour opponents are treated in separate channels in the brain to intensity

[Dacey (1996)]. U and V colour chrominance images for both the left and right

images are sent to the colour centre-surround (CCS) server for processing. Y

channels are sent to the orientation (OCSL, OCSR) servers and the depth and

217



8. ACTIVE ATTENTION

flow (DFCS) server. To minimise network bandwidth, to cope with the process-

ing load of each frame, and to prevent repetition of computations, nodes in the

structure are configured simultaneously as clients of processes preceding them in

cue serialisation (Figure 8.12), and as servers to nodes following them. Each node

is a dual CPU hyper-threaded 3GHz PC with four virtual processors. Trade-offs

exist between splitting tasks into sub tasks, passing sub tasks to additional nodes,

and minimising network traffic. The best performing solution involves grouping

serialised tasks on each server, and performing as many operations on the same

image data on the same server as possible, so there is minimal CPU idle time and

minimal network traffic. The serial nature of cue computations means there is

often no gain possible in distributing the task – in fact further network transfer

of data between servers would slow performance. Figure 8.21 is a block diagram

summarising data flow occurring between each node in the processing network.

Figure 8.22 shows a broad summary of the major feed-forward interactions

in the primate visual brain. Figure 8.23 summarises feed-forward interactions

in the synthetic vision system. It is noted that the synthetic structure bears a

good resemblance to the broad interactions between visual centres in the primate

brain. Loose analogies can be drawn between the image acquisition and transfer

functions of the video server, and that of the retina and the pathways through the

lateral geniculate nucleus (loose in the sense that centre-surround is calculated

within the human retina whereas synthetic DOG maps are currently calculated

shortly after rectification). Similarly, the motion control server controls motion in

a manner somewhat analogous to the function of superior colliculus. The global

representation of space across saccades that occurs in V3, V5 and the inferior

parietal lobe performs functions similar to that of the rectification server and

occupancy grid representation; the saliency server processes cues in a manner

analogous to the inferior parietal lobe (dorsal stream functions). The MRF ZDF

server extracts attended objects, potentially for identification, in a fashion anal-

ogous to the recognition and identification functions of the infero temporal lobe

(ventral stream functions). Both streams rely upon early visual cues in both

the synthetic and primate models. The orientation, depth and flow, intensity

and colour cue processing functions are loosely analogous to early cue process-

ing occurring in early brain areas V1, V2 and V3. At the highest level, a client

process modulates relative cue weightings and updates spatial biasing according
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Figure 8.21: Synthetic system block diagram - servers and I/O. The dotted lines

surround physical PCs. The boxes show processing threads. The arrows show

the major data flows: motion status (Ms), motion commands (Mc), saliency

maps (Sd, Sc, Sol, Sor), fixation maps (Fixl, Fixr), target segmentation (Seg.),

occupancy grid data (3D), motion cues (D, DF, Fl, Fr), and original camera

image channels (Y, U, V).

to the desired task, which are functions generally considered to occur within the

prefrontal cortex. Modulation feedback pathways, such as the ability of the pre-

frontal cortex to modulate neuronal responses in V1 (or the ability for the client

process to modulate cue weightings) have been omitted from the diagrams.

8.5 Results

The synthetic vision system preferentially directs its attention towards non-suppressed

salient objects/regions. Upon saccading to a new target, the MRF ZDF process

extracts the object that has won attention, maintaining stereo fixation on that
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Figure 8.22: Broad interactions in primate visual brain.

Figure 8.23: Interactions in synthetic vision system.

object (smooth pursuit), regardless of its shape, colour or motion. Attention is

maintained until a more salient scene region is encountered, or until IOR allows

alternate locations to win fixation (Figure 8.24). If something is comparatively

very salient, it is tracked by the MRF ZDF process until its saliency has been

reduced by IOR. If several locations have similar saliency (such as when nothing

in the scene is being actively moved), attention shifts more frequently amongst

those locations. The demonstration movies corresponding to Figures 8.25 and

8.26 show sample functionality of the complete system.
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Figure 8.24: Sample system behavior. Each column shows camera image, fixation

map and MRF ZDF segmentation. From left: 1 attention shifts to head from in-

hibited base of cone, forehead is segmented from background in fovea; 2 attention

returns from inhibited head to top of cone, cone is segmented; 3 attention shifts

from inhibited cone to mug, mug is segmented.
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Figure 8.25: Online dynamically updated fixation map demonstration (snapshot

- see Appendix C for full video). The insets show the rectified camera image (left)

and selected target extraction (right).

Figure 8.26: Online system demonstration showing image mosaicing (snapshot -

see Appendix C for full video). The insets show the fixation map (left); target

extraction (centre); and the active head (right).
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8.5.1 Processing Performance

As the results demonstrate, the system enables gaze arbitration in cluttered

scenes. The overall frame rate achieved depends only upon the frame rate of

the bottleneck (slowest) system component. System latency depends on network

transfer speed, and is usually kept to a few frames.

The frame rate performance of the bottleneck component can be altered by

selecting processing settings that increases throughput at the expense of quality.

For example, a reduction in processing orientations reduces the resolution of

orientation responses, but increases the processing frame rate.

Similarly, other performance parameters (such as the maximum detectable

optical flow, maximum MRF ZDF smooth pursuit tracking velocity, maximum

discernable depth resolution, etc) have been set according to the trade-off be-

tween processing performance and quality. These parameters are non-rigid as it

is usually possible to improve the performance of one component of the system.

However, this may come at the expense of quality or at the expense of other

system components. This is due to the limitation of processing resources. Never-

theless, the processing performance of all system nodes is typically such that the

system is able to react to real visual stimulus and novel events in a timeframe

commensurate to the rate of change of the environment – that is, in real time.

Implementation of the system provides insight into what capabilities may be

achieves on a synthetic processing network. The low-latency real-time perfor-

mance of the system indicates the feasibility of such a system. This performance,

and the flexible nature of the processing network, permits extensive system ex-

pansion for future additional processing tasks.

8.5.2 Discussion

By specifying system properties similar to those observed in nature, we have

developed a synthetic active visual system capable of detecting and reacting to

unique and dynamic visual stimuli, and of being tailored to perform basic visual

tasks. By implementing biologically plausible early visual cues, system able to

actively divert its attention to salient regions of real scenes in real time. The spe-

cific processing algorithms may not (and probably do not) reflect what actually

happens in the primate brain. Active rectification provides egocentric spatiotem-
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poral visual perception. A foveal MRF ZDF algorithm permits attended object

tracking and extraction and ensures coordinated stereo fixation upon visual sur-

faces. Attention and active-dynamic IOR means that a short term memory of

previously attended locations can be retained to influence attention retrospec-

tively. Spatial and cue biasing based on observations and prior knowledge allow

preemptive top-down modulation of attention towards regions and cues relevant

to tasks. Covert consideration of potential saccade destinations before overt at-

tention is deployed provides attentional moderation.These features result in a

reactive vision system and the emergence of primate-like attentional behaviors.

In designing the components of the system, we have engineered methods to

approximate functions occurring in the primate brain. It is undoubtedly possible

to incorporate further biological inspiration in the design of components. The log-

Gabor frequency analysis of orientation, for example, synthesises the response of

orientation sensitive neurons in the primary visual cortex. The SAD method to

determine image disparities does not synthesise neural activity so closely1.

Although the system presented is perceptive to novel visual events, the addi-

tion of further biologically plausible cue competencies (with little extra compu-

tational requirements) could benefit the synthetic system in terms of attention,

search, and the ability to perform more complex cognitive tasks. For instance,

instead of using a Gaussian IOR accumulation kernel, the system may also benefit

from using the output of the MRF ZDF target segmentation mask as a target-

specific IOR accumulation mask. The target segmentations may well provide the

starting stimulus for higher-level target processing. The segmented target may

well be considered after extraction from the background. The background may

therefore receive little consideration, and perhaps should not be suppressed. This

approach would yield a more object-based propagation of dynamic IOR at little

computational expense. Indeed, there exists evidence to suggest that feedback in

the primate brain is used to bind different visual attributes of an object, such as

1It is noted that the log-Gabor frequency/phase analysis of images can however yield other
cues useful for visual perception. For instance, Kovesi has shown that image phase congruency
can be used to extract image symmetry, corners and edges [Kovesi (2003)]. This process requires
little more processing resources beyond the numerous convolutions already taking place in the
OCS servers. Similarly, Rougeaux also implemented a method to compute disparity from phase
difference [Rougeaux & Kuniyoshi (1997b)] using the output of the same type of complex band-
pass filters.
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colour or form, into a unitary precept [Trieisman & Gelade (1980); Reynolds et al.

(2000)]. As well as providing object-based dynamic IOR, the MRF ZDF target

extraction may facilitate such object-based binding of cues into a unitary precept

for object representation. Using the cue-surface correspondence provided by the

occupancy grid spatial representation it is also possible to project mosaic frame

cues, such as saliency, into a 3D representation of perception, allowing further

investigation into 3D perception.

It is difficult to prove that such modifications of the system would further bias

the system towards more primate-like visual behaviours. However, because the

components of the system have been largely inspired by observations of primate

visual perception, we would like to compare the behavioural performance of the

system to that of primates. The next two chapters concentrate on comparing

the behavioural similarity of the synthetic vision system with that of the human

vision system.

8.6 Summary

We have presented our approach to synthesising primate active visual attention.

We have specified biologically plausible cues and implemented them on a process-

ing network. Cues are combined to create a saliency map. We create a fixation

map by modulating a saliency map by an IOR bias and a task-dependent spatial

bias. Cues contributing to saliency, the accumulation of IOR, and the layout of

the task dependent spatial bias can be modulated online. We deal with dynamic

scenes by covertly propagating IOR according to the motion of scene objects.

peaks in the fixation maps are extracted and covertly moderated before a next

target of fixation is selected. Moderation involves covertly accumulating evidence

about the strength and spatial consistency of the locations of peaks in the fixation

maps. Peaks that pass moderation are selected for overt attention and saccade

is initialised. Pre and post-attentional saccade routines exist to ensure stable

system performance and attentional target pursuit.

The perception of attention has been integrated with the MRF ZDF coor-

dinated fixation, active rectification and spatial awareness components into a

flexible real-time synthetic vision system based on primate vision. The emergent

visual behaviours have been shown in demonstration footage. The system is now
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ready for further behavioural comparisons with the human vision system.
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Chapter 9

Human Trials

Figure 9.1: The Punch and Judy show.

In this chapter we conduct psycho-physical trials to benchmark human visual

behaviours. Participants are free to gaze as they please while their scanpaths are

non-intrusively recorded.
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9.1 Introduction

Components of a primate-inspired synthetic vision system have been integrated

on a processing network. The mechanism, its control, and visual processing

components are based on biological inspiration. Ideally, the system would exhibit

behaviours that reflect this biological inspiration. It is hoped that similarities in

the underlying system models elicit similarities in basic gaze behaviours. We

therefore examine human gaze behaviours elicited by 3D visual stimuli moving

in a reproducable manner in a controlled scene volume. Participants are given a

basic visual task and are free to look wherever they please. A non-intrusive gaze

tracker records participant’s scanpaths and permits participants to move their

heads as they please. Although no two participants’ gaze is expected to follow

the same scanpath, we do expect to find some statistical similarities in terms of

inter-individual gaze behaviours.

9.1.1 Aim

We aim to characterise unconstrained human gaze behaviours in a controlled

dynamic scene. Such characterisation is to be used as a benchmark for the evalu-

ation of behaviours produced by a primate-inspired synthetic vision system. We

aim to identify parameters suitable for numerical characterisation of human gaze

behaviours, and to investigate statistical conformity in such parameters across

participants. We expect to find that some parameters are largely dependent on

the observed scene, some more dependent on the participant observing the scene,

and some on the physical capabilities of the eye.

9.1.2 Considerations

We first consider previous work in observing human gaze paths produced by pre-

senting visual stimulus to human observers. We then prescribe the experimental

method, including apparatus design, trial procedure, participant briefing, and

data logging and processing.

We initially conduct and qualitatively analyse two pilot trials such that an

empirical examination of gaze characteristics can be obtained. The empirical

analysis facilitates the investigation of quantitative parameters that may be ex-
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tracted from subsequent trials. We propose suitable behavioural metrics. Trials

are then conducted and analysed such that inter-participant behavioural metric

statistics are obtained.

In terms of assessing the synthetic vision system, once we have characterised

these types of human gaze behaviours, we hope to find that similarities in the

underlying synthetic and human system models elicit observable and measurable

similarities in basic gaze behaviours.

9.2 Background

The first non-intrusive eye trackers were built by George Buswell in 1922. He used

beams of light that were reflected off the eye and recorded onto film. Buswell

made systematic studies into human scanpaths during reading [Buswell (1922),

Buswell (1937)], and picture viewing [Buswell (1935)]. In the 1950s, Alfred L.

Yarbus conducted further eye tracking research on the cyclical gaze patterns in

the examination of pictures [Yarbus (1967)]. More recently, studies into the dis-

tribution of gaze over web pages for advertisement impact assessment have been

conducted [Chandon et al. (2001)]]. Preferential ordering and distribution of overt

attention may be extracted from such studies. Although useful in investigating

perceptual saliency of static 2D stimulus, such studies do not examine the tem-

poral or behavioural characteristics of human gaze. Fixation occurs only upon

static stimulus, spatiotemporal dynamics are not considered.

Eye gaze tracking on video is reportedly “relatively new and unexplored in

the literature” [Djeraba (2006)]. Video investigations are able to include motion,

which is known to play a role in visual saliency. Tracking of a participant’s gaze

is usually conducted to determine which visual stimuli are salient, or which are

considered relevant to the participant in the course of executing a task. For exam-

ple, gaze trackers were used to track a participants gaze during 2D simulations of

driving to investigate what types of stimuli attract driver attention, and to assess

driver vigilance and alertness [Lappe (2006)].

Such 2D video investigations restrict the visual search space. As we have

seen, saliency depends on the entirety of one’s view. When humans view a real

scene (rather than a photograph or a movie) their deliberate shifts in attention

affect the viewable region of a scene, introducing new stimuli, and excluding other
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stimuli. In this manner, gaze shifts may affect the perception of visual saliency

at all points in the updated view. Additionally, a movie records a subset of the

entire scene, as captured by a cameraman. As such, the observer of a movie does

not fully arbitrate gaze direction, which may introduce differences between the

gaze behaviours of humans during the observation of video, and the observation

of a real scene. Other factors, such as pan-induced optical flow, pixel saturation,

and camera-operator selected focus may also bias a participant’s perception of

saliency and their attentional priorities.

Gaze trackers have indeed been used to monitor human gaze in 3D scenes. A

driver’s gaze was tracked to monitor driver vigilance while driving a real vehicle

[Fletcher et al. (2005)]. Assessing vigilance involved monitoring the frequency

at which a driver’s gaze was directed towards scene locations where the road is

expected to be located. Such existing studies are often designed to investigate

where humans allocate overt attention during a particular task like driving. They

generally ask “what types of things/regions are gazed at?” and “how often?”.

A task such as driving may be complicated, and significantly dependent upon a

participant’s previous experience. Experience-dependent and task-specific gaze

characteristics may influence gaze in the execution of such complex tasks, for

example, the propensity for a driver to overtly attend the focus of expansion of

optical flow. Such existing studies seem to focus on assessing task-specific saliency

rather than assessing gaze behavioural characteristics.

We are most interested in investigating low-level gaze behaviours involved

in the deployment of overt attention during scene perception and novel events.

We wish to establish consistent behavioural characteristics in general gaze de-

ployment. We are interested in the spatiotemporal properties of saccade and

smooth pursuit during general scene perception, rather than during the execu-

tion of a complex task. We therefore conduct trials designed to characterise gaze

behaviours during the deployment of overt attention. The trials use real, dy-

namic, 3D scenes and stimuli, such that the effect of 3D scene structure and

motion can be included in the assessment. We aim to leave gaze arbitration en-

tirely up to the participant observing the controlled scene. We are interested in

characterising natural gaze behaviours associated with attentional saccade and

the smooth pursuit of stimuli.

We create a small scene, similar to a puppet show, in which we can control
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3D visual stimulus. We use FaceLAB1, a proprietary gaze tracking package, to

record a participant’s gaze as they observe the scene. Participants are free to

move their heads as they please.

9.2.1 FaceLAB v3

FaceLAB by Seeingmachines is commercial software that enables real-time eye

and head pose tracking. It is marketed as a high accuracy, high speed, completely

vision-based gaze tracking solution. It is reported to operate robustly under

various lighting conditions and is not affected by participants wearing glasses. It is

non-invasive in that no equipment needs to come in contact with the participant.

Calibration for a participant (using FaceLAB v3) takes only a matter of minutes.

The FaceLAB stereo camera rig (Figure 9.5) is placed between the participant

and the scene window. We calibrate FaceLAB by taking a snapshot of the par-

ticipant and selecting face tracking features. A basic world model is configured

in FaceLAB where a rectangular screen represents the scene window. FaceLAB

returns the coordinates of a participant’s gaze within the scene window in Carte-

sian coordinates. Gaze data is accurate to within a few degrees. The blue circle

projected onto the screen in Figure 9.2 (left) shows the gaze FaceLAB gaze es-

timate and approximate error radius. Figure 9.2 (right) shows the concurrent

re-projection of head pose and eye gaze used by FaceLAB to determine the in-

tersection of gaze within the screen window.

9.3 Method

We first discuss preparations required before commencement of the trials. We

then describe the apparatus and experimental procedure.

9.3.1 Ethics

The Australian National University has measures in place to ensure that research

involving the participation of humans is conducted in a manner that is ethical and

responsible. As such, permission and disclosure was required before human trials

1A SeeingMachines product - http://www.seeingmachines.com.
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Figure 9.2: FaceLAB output. World model (left), and head pose and eye gaze

re-projected onto right FaceLAB camera image (right).

could begin. Official application was registered with the ANU ethics committee,

and subsequently granted (see Appendix A).

9.3.2 Participants

A cross-section of age, sex and ethnicity was sought. The time-consuming nature

of trials and post-processing meant that 20 trials were prescribed. We were

interested in participants with reasonable visual acuity, no visual disorders, and

who were relaxed and alert.

Participants were sought on a voluntary basis. Every effort was made to

protect the interests of participants, and to ensure the comfort of participants.

In general, participants indicated the experience was enjoyable. No participants

expressed concern or discomfort.

9.3.3 Apparatus

Participants were seated in a viewing booth (right, Figure 9.4) and were shown

controlled 3D stimulus in a scene booth (left, Figure 9.4) through a scene window.

The scene booth measured 1.0m in depth by 2.0m wide and 2.5m high; the viewing
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Figure 9.3: Apparatus: scene booth and viewing booth dimensions.

booth measured 1.8m in depth by 2.0m wide and 2.5m high (Figure 9.3). The

rectangular scene window measuring 1.0m wide by 0.7m high (left, Figure 9.7)

was cut in the centre of the partition separating the scene booth from the viewing

booth.

The scene window size was kept small so the potentially different sizes of the

participant’s visual peripheries would not be a significant factor in gaze selec-

tion. Moreover, the synthetic vision system (to be tested later using the same

apparatus) has a comparatively small periphery; if a broad window were used,

stimulus that may affect a human’s gaze selection might not be seen by the syn-

thetic system. The window size was selected such that all manipulated stimuli

could usually be seen by both humans and the synthetic system.

Participants were seated 1.5m from the scene window in the viewing booth,

such that their eyes were aligned approximately with the centre of the scene

window. The booths were constructed from light-blocking fabric supported by

a wooden frame. The interior of the scene booth was illuminated from above.

The viewing booth and window were designed such that the contents of the scene

could be bounded and controlled. Participants were seated in the viewing booth

so their surroundings could also be bounded and controlled.

The surfaces surrounding the viewing window and the surfaces within the
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Figure 9.4: Apparatus. The scene booth and rig (left); and exterior of viewing

booth (right).

booth that the participant was able to see, were draped with fabric exhibiting a

specifically selected pattern (left, Figure 9.7). The fabric was chosen such that

it did not incorporate any iconic or geometric patterns; such that it exhibited

texture; such that it was considered equally conceptually salient over its entire

surface; and such that its visual saliency was considered low in comparison with

the objects that were to be introduced into the scene.

Visual stimuli, comprising of various 3D objects, were introduced into the

scene booth such that they were visible to the participant through the scene

window. The mechanism used to control the motion of the visual stimulus was

hidden from the participant’s view.

A mechanism was constructed within the scene booth that allowed the ma-

nipulation of up to six objects in the scene simultaneously. For simplicity in

apparatus construction, the rig allowed objects to be moved in horizontal and

vertical directions (left, Figure 9.4), which meant that objects were kept at var-

ious constant scene depths relative to the participant. Moveable rods controlled

object horizontal positions and fine semi-transparent nylon thread suspended the

objects in the scene and controlled their vertical positioning. Discrete positions

were marked on the rods and string holders such that repeatability in moving
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Figure 9.5: Non-intrusive acquisition of participant’s 3D gaze path using Face-

LAB. An extra video camera is used to record the participant, placed between

FaceLAB cameras.

objects about the scene was improved.

The FaceLAB camera rig was placed between the participant and front cur-

tain, at a distance of 0.75m from the participant’s head (Figure 9.5), and suf-

ficiently low such that it did not obstruct the participant’s view of the scene

window (left, Figure 9.7). The participant was free to move their head in any

manner they wish. They were also free to gaze upon any part of their surround-

ings, including the contents of the viewing booth or scene booth, so long as they

did not leave their seat. Two additional video cameras were used to record the

contents of each booth. One recorded the participant (centre camera, Figure 9.7),

and one recorded the scene they were viewing through the scene window.

A storyboard (Figure 9.6) was created to direct object positions over time

such that a puppeteer could recreate the motion paths of objects in the scene

for each participant by positioning the rods and strings in a predefined sequence.

The scene could not be reproduced exactly for each observing participant, but

variables such as the rotation of the objects around string axes, and swinging,

were similar in character across all trials.
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Figure 9.6: Storyboard used for repeatability of timing and object paths across

separate trials. Objects in columns 2 and 3 were not used. “R” represents the

motion of a rod (horizontal movements), “S” represents strings (vertical move-

ments); numbers represent rod/string positions.

9.3.3.1 Stimulus

Stimuli that may elicit emotional or significant cognitive responses (the apparent

mood on the face of a doll, for example, may affect each participants attention

differently) were avoided. Different scene objects were chosen such that they had

approximately equal conceptual saliency. Common fruit were selected because it

is likely they are perceived as similarly salient, yet come in a variety of different

colours, shapes and sizes (right, Figure 9.7). They were deemed to be compar-

atively salient in front of the selected backdrop fabric. Rather than using real

fruit, synthetic replicas were used such that the same objects could be reused in

numerous trials.

9.3.4 Trial Procedure

Upon presenting themselves for participation, participants were asked to com-

plete a permission slip and a questionnaire (blank copies included in Appendix

A). The questionnaire was designed to verify that each of the trials constituted

a valid data set, and to register each participant’s voluntary participation. The
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Figure 9.7: Visual stimulus: participant’s view (left), and stimuli (right).
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questionnaires were designed to help establish that all participants were similarly

alert and, in the case of an anomalous trial, to help identify whether the discrep-

ancies corresponded to the participant’s registered level of alertness. As well as

completing the questionnaire, participants were asked to participate in a basic

visual acuity test. They were allowed to wear spectacles during both the acuity

test and trial, if they so chose.

Once seated in the booth, and remaining seated, participants were given time

to visually explore their surroundings and become comfortable with their sur-

roundings. This time was used to calibrate FaceLAB for each participant. Cali-

bration quality was confirmed online by asking participants to look at the corners

of the scene window and confirming that FaceLAB projected their gaze onto the

model of the scene window (left, Figure 9.2) accordingly.

When initially seated, no objects were visible in the scene booth. The nylon

strings were nearly invisible to the participant, and no participants mentioned

noticing strings, nor were recorded as gazing directly at strings that were present

before trials commenced. At this time participants were also advised they would

shortly be given a visual task to perform while visual stimulus was presented to

them. Participants were advised they should voice any queries before commence-

ment of the trial.

Immediately before the trial began, the participants were told the task, which

was to count apples they saw in the subsequent trial. They were told there was

no need to count aloud, they would be asked after the trial how many were seen,

that it was not an assessment of any form, and that there were no right or wrong

answers to the question. The question was designed to give the participants a

forwards search task, and to predispose participants to consider apples as more

salient, based upon their prior knowledge of apples.

The trial began with a blank scene. Various fruit were then moved into and

around the scene, one at a time, according to the storyboard. All objects swung

naturally to some extent, but deliberate translations were considered likely to in-

crease the visual saliency of the perturbed object. Some differences in the path of

stimuli in different trials were considered acceptable. In fact, exact repeatability

would involve more rigid connections to the manipulated objects. Mechanisms

to ensure more exact repeatability would be more difficult to conceal, and rigid

motions could be considered visually salient in their own right, or make the partic-

238



9.3 Method

ipant ponder the mechanical setup, which could distract some participants more

than others. It was expected that all participants were likely to be affected in

the same manner, and minimally, using the selected apparatus design.

After each trial, participants were asked informally how they thought the

scene was manipulated; all responded that it involved dangling fruit on strings,

though most admitted they could not see the strings until after the trials began.

Some did not see the strings at all, though they were aware they existed. No

participants were recorded to have directed their attention to locations occupied

by strings for significant periods of time - they were far more inclined to track the

fruit, as predicted. Also, during the trials, no participants looked at the FaceLAB

cameras. They were not told not to look at the cameras, or anything else in the

booth; they were merely asked to concentrate on the task. Participants were

sufficiently comfortable with the cameras to supress/ignore them. They were

evidently far more interested in the novelty of the task.

Each participant participated in only one short trial because familiarity with

the trial setup might affect a participant’s gaze behaviour in subsequent trials.

9.3.5 Trial Logging

The following sequence of events was required in order to capture trial data:

• prepare start positions for all objects

• invite participant into viewing booth

• calibrate FaceLAB for participant (5-10 mins during which they could be-

come comfortable in the booth)

• start video cameras recording and FaceLAB logging

• give participant the task

• perform trial according to storyboard

• ask participant question related to task

• stop recording
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Figure 9.8: Video log summary, Pilot 1 (snapshot - see Appendix C for full video).

9.3.6 Data Processing

The data obtained from the trials is time-stamped eye gaze x,y-coordinates within

a 2D projection of the scenario window. A video of the gaze path was created

and synchronised with video recordings of the scene and participant. An example

video log is shown in Figure 9.8. This movie was used to hand mark the data

according to periods when objects were being actively moved, and when they

were not (residual swinging may exist). Once fully labelled, the data was ready

for analysis so that human fixation behaviours in each trial could be analysed.
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9.4 Pilot Trials

Two pilot trials with two different participants were initially conducted. These

pilot trials were used to observe the types of visual behaviours that emerged

during the trials, and how such behaviours could be characterised statistically.

The two pilot trials were conducted according to the procedure prescribed

above. Gaze data was successfully logged and marked according to perturbation

periods. After markup, plots showing various aspects of the pilot trial data were

constructed. This empirical analysis of the trial data was first conducted to es-

tablish an approach to developing metrics for characterising the data statistically.

We now present an empirical assessment of the pilot trials. We present plots

that help to establish metrics of gaze behaviours. We define parameters useful

for a statistical characterisation of the gaze behaviours that we may extract from

subsequent trial data.

9.4.1 Empirical Examination of Pilot Trials

Figure B.2.1.4 shows plots of recorded FaceLAB gaze points over the entire dura-

tion of the pilot trials. Points are projected into a 2D representation of the scene

window. Gaze velocities between points can be extracted because position data

is time-stamped at 60Hz.

Figure 9.9: Complete trial scanpaths (not to scale). Pilot 1 (left), and Pilot 2

(right).
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We may then construct a histogram of gaze velocities over the entire trial.

Figure B.2.1.4 shows velocity histograms over the duration of the trials for both

pilot participants. High velocities tend to get saturated in this representation by

the quantity of low velocity frames. Consequently, the velocity histogram can be

represented over the gaze path (distance), rather than per image frame (time) by

multiplying the velocity histograms by the distance traversed between frames, to

obtain a distance-weighted velocity histogram (Figure 9.11).

Figure 9.10: Histogram of Velocity Magnitudes. Pilot 1(left), and Pilot 2 (right).

Figure 9.11: Histogram of distance weighted velocities. Pilot 1(left), and Pilot 2

(right).
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It is then evident that much of the gaze path is attended at either low

(near-zero) velocities, or high velocities, with few frames exhibiting velocities in-

between. The velocities near zero are likely to correspond to frames during which

a target is fixated upon and/or smoothly pursued. The high velocities correspond

to saccades. For each trial, a threshold is selected that separates the group of

high velocities from low velocities in the distance-weighted velocity histograms.

Frames exhibiting velocities above the threshold are labelled as saccades; those

below the threshold are labelled as smooth pursuits (Figure 9.12).

Figure 9.12: Choosing the saccade velocity threshold, Pilot 1.

We can then label frames in the 60Hz gaze data as saccade or smooth pursuit.

Figure 9.13 shows the velocity magnitudes of eye gaze at all frames. The blue

lines mark frames where the threshold velocity has been exceeded (saccades)

and verifies the selection of the saccade velocity threshold. Figure 9.14 shows a

zoomed view of the velocity magnitude profile. The green steps mark periods of

time where an object was being actively perturbed. The data has been marked

according to periods when on object is being actively perturbed or not. We

can therefore plot histograms of velocities during these classes for comparision.

Figure 9.15 shows velocity histograms separated into these two classes.

The histograms show a reduction in the number of frames above the sac-

cade threshold velocity (saccades) when objects are being perturbed. Conversely,
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Figure 9.13: Velocity profile. Velocity magnitudes per frame. Pilot 1 (top), and

Pilot 2 (bottom).

Figure 9.14: Zoomed velocity profile.
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Figure 9.15: Histogram of velocities during non-perturbation (left), and during

perturbation (right). Pilot 1 (top) and Pilot 2 (bottom).

when objects were not being actively perturbed, gaze was more saccadic. This

suggests that the participant preferentially diverted their attention to the moving

object and tracked it, resulting in a reduction in the saccade rate. During the

non-perturbed periods, the scene does not change, so the increase in saccades is

likely to be caused by other factors. Nevertheless, the discrepancy in velocity his-

tograms indicates that different behaviours are present during the non-perturbed

and perturbed periods. This distinction suggests an examination of the data:

• as a whole

• during the non-perturbed periods

• during the actively perturbed periods.
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We first examine the spatial distribution of gaze locations according to these

categories. We plot the recorded saccade and smooth pursuit locations according

to non-perturbed, perturbed and both periods. Figure 9.16 shows such plots for

smooth pursuit points, Figure 9.18 shows saccade points.

Figure 9.16: Smooth pursuit gaze locations. Pilot 1 (top), and Pilot 2 (bot-

tom). Entire trial (left), during periods of non-perturbation (middle), and during

perturbation (right).

As should be expected, the distribution of all saccade points is sparse and cov-

ers the entire scene somewhat evenly. We would expect the smooth pursuit gaze

location points to correspond with the real motion paths of objects in the scene.

During perturbed periods, this should mostly correspond to moving objects; dur-

ing non-perturbed periods it should correspond to the storyboard locations of

static objects. We therefore draw approximate motion paths of perturbed ob-

jects and superimpose these on the distribution of smooth pursuit points during

perturbed periods (Figure 9.21). The coloured lines show the approximate story-

board motion paths we aim to replicate consistently over all trials. The crosses

show where objects were stationary. Crosses are more likely to correspond to

smooth pursuit gaze locations for non-perturbed periods and saccades.

Figure 9.21 shows a likeness between the density of smooth pursuit locations

during perturbation, and the storyboard motion paths of objects. The objects
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Figure 9.17: Saccade durations. Pilot 1 (top), and Pilot 2 (bottom). Entire

trial (left), during periods of non-perturbation (middle), and during perturbation

(right).

may swing, so high correlation is not expected, but the density of points is low

where storyboard paths are not present, and the density of points increases near

the object storyboard paths. This is a good indicator that the participants tended

to track perturbed objects. As expected, the plot of smooth pursuit locations

during non-perturbation periods, and non-perturbation saccade locations show a

likeness to the storyboard location of stationary stimulus.

We may also consider smooth pursuit velocities in these three instances. Fig-

ure B.2.1.4 shows histograms of smooth pursuit velocities according to perturbed,

non-perturbed and both periods. It was expected that smooth pursuit veloci-

ties would be slightly higher during perturbation periods, corresponding to the

tracking of moving objects. However, no significant variation in smooth pursuit

velocities is evident, probably due to error in the gaze estimation. Although gaze

may have been stable, error in gaze estimation means that recorded gaze oscil-

lates around a location where fixation was actually stable, inducing measured

velocities similar to smooth pursuit velocities, where no smooth pursuit existed.

Filtering may be necessary for more accurate comparison.

Next, we look at saccade speed histograms for these three instances (Fig-
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Figure 9.18: Saccade gaze locations. Pilot 1 (left), and Pilot 2 (right). Entire

trial (top), during periods of non-perturbation (middle), and during perturbation

(bottom).
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Figure 9.19: Histogram of saccade durations. Pilot 1 (top), and Pilot 2 (bot-

tom). Entire trial (left), during periods of non-perturbation (middle), and during

perturbation (right).

Figure 9.20: Saccade distances. Pilot 1 (top), and Pilot 2 (bottom). Entire

trial (left), during periods of non-perturbation (middle), and during perturbation

(right).
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Figure 9.21: Approximate storyboard motion paths superimposed over gaze lo-

cations during smooth pursuit (red dots), Pilot 1(orange – orange, red – apple,

green – pear, pink – peach).

ure B.2.1.4). It is evident that the number of saccades during perturbation pe-

riods is significantly less than during non-perturbation, but that velocities are

centred around the same value.

We can also compare how smooth pursuit durations and histograms vary

across different participants. Smooth pursuit durations are periods of low velocity

separated by saccades. Figure 9.24 shows smooth pursuit durations, Figure 9.25

shows corresponding histograms. Figure 9.25 shows that a lower proportion of

short durations exist during periods of perturbation than non-perturbation. As

with a lowering in the saccade rate, this corresponds to preferential tracking of

the perturbed object.

Smooth pursuit tracking distances were extracted (Figure B.2.1.4 and asso-

ciated histograms were created (Figure B.2.1.4). Distance was measured as the

vector subtraction of the smooth pursuit trajectory start and end points. Figure

B.2.1.4 shows a significant shift towards a larger proportion of longer tracking

distances occurs during periods where objects are perturbed.
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Figure 9.22: Histogram of smooth pursuit velocities. Pilot 1 (top), and Pilot 2

(bottom). Entire trial (left), during periods of non-perturbation (middle), and

during perturbation (right).

Figure 9.23: Histogram of saccade velocities. Pilot 1 (top), and Pilot 2 (bot-

tom). Entire trial (left), during periods of non-perturbation (middle), and during

perturbation (right).
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Figure 9.24: Smooth pursuit durations. Pilot 1 (top), and Pilot 2 (bottom).

Entire trial (left), during periods of non-perturbation (middle), and during per-

turbation (right).

We next extracted saccade durations (Figure 9.28 and Figure 9.29), and

distances (Figure B.2.1.4 and Figure B.2.1.4). No significant difference was

noted between the saccade durations or distances during perturbation and non-

perturbation periods. Nearly all saccades took place within the duration of two

frames, and all within four, for both pilot trials. This is likely to be dependent

on the similar speed capability of the eye across participants. The 60Hz frame

rate of FaceLAB limits the resolution of estimates of the saccade duration.

Finally, we can consider the frequency at which each individual object in the

scenario is attended. As discussed, during periods of perturbation attention was

nearly exclusively given to the perturbed object. It therefore remains to con-

sider the object re-attention frequency/period during periods of no perturbation.

It was noted during the pilot trials that all objects were attended with an ap-

proximately similar frequency during periods of no perturbation. We therefore

examine re-attention periods during periods of no perturbation for comparison

across trials. The re-attention period is simply defined as the total time the object

is present during periods of no perturbation divided by the number of occasions

an object is attended during periods of no perturbation. The standard deviation
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Figure 9.25: Histogram of smooth pursuit durations. Pilot 1 (top), and Pilot 2

(bottom). Entire trial (left), during periods of non-perturbation (middle), and

during perturbation (right).

Figure 9.26: Smooth pursuit distances. Pilot 1 (top), and Pilot 2 (bottom).

Entire trial (left), during periods of non-perturbation (middle), and during per-

turbation (right).
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Figure 9.27: Histogram of smooth pursuit distances. Pilot 1 (top), and Pilot 2

(bottom). Entire trial (left), during periods of non-perturbation (middle), and

during perturbation (right).

Figure 9.28: Saccade durations. Pilot 1 (top), and Pilot 2 (bottom). Entire

trial (left), during periods of non-perturbation (middle), and during perturbation

(right).
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Figure 9.29: Histogram of saccade durations. Pilot 1 (top), and Pilot 2 (bot-

tom). Entire trial (left), during periods of non-perturbation (middle), and during

perturbation (right).

Figure 9.30: Saccade distances. Pilot 1 (top), and Pilot 2 (bottom). Entire

trial (left), during periods of non-perturbation (middle), and during perturbation

(right).
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Figure 9.31: Histograms of saccade distances. Pilot 1 (top), and Pilot 2 (bot-

tom). Entire trial (left), during periods of non-perturbation (middle), and during

perturbation (right).

of the re-attention period across all four objects in a trial was used as a measure of

re-attention period consistency for that trial. Figure 9.32 shows return-to-object

incidences during non-perturbed periods over the course of a trial, and the use of

this data to determine the re-attention period and the enumeration of consistency

in the re-attention period across objects in that trial.
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9.4 Pilot Trials

Figure 9.32: Object re-attention during non-perturbed periods, Pilot 1.
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9.4.2 Extracting Behavioural Parameters

Having considered the pilot trials empirically, we now stipulate parameters suit-

able in characterising human gaze behaviours as observed during the trials. It is

likely that large inter-trial differences in absolute parameters may be present. For

example, if object speeds are generally higher in one particular trial, it may in-

fluence the average smooth pursuit duration and average smooth pursuit velocity

for that trial. Such absolute parameters may also vary across trials according to

a participant’s mood and alertness, and the precision of trial calibration. How-

ever, the trend of how these rates change between periods of perturbation and

non-perturbation are more likely to show consistency. We therefore rely on pa-

rameter ratios, rather than absolute levels. We extract absolute parameters and

compare the ratio change in parameters between periods of perturbation and

non-perturbation. Absolute parameters extracted in each trial are now listed.

Duration parameters:

• Sptp, Sptnp: av. smooth pursuit duration during times when things are

being perturbed and not being perturbed respectively.

• Sctp, Sctnp: av. saccade duration during times when things are being per-

turbed and not being perturbed respectively.

Distance parameters:

• Splp, Splnp: av. smooth pursuit distance during times when things are

being perturbed and not being perturbed respectively.

• Sclp, Sclnp: av. saccade distance during times when things are being per-

turbed and not being perturbed respectively.

Velocity parameters:

• Spvp, Spvnp: av. smooth pursuit velocity during times when things are

being perturbed and not being perturbed respectively.

• Scvp, Scvnp: av. saccade velocity during times when things are being per-

turbed and not being perturbed respectively.

Saccade proportion parameters:
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• Scpp, Scpnp: proportion of frames that are above the saccade velocity

threshold during a trial when things are being perturbed and not being

perturbed respectively.

Re-attention period parameter:

• Pr = av. re-attention period for all objects during non-perturbation peri-

ods.

Once these absolute parameters have been extracted from a trial data log, we

obtain the ratios for comparison across trials:

• Sptr = Sptnp/Sptp: rate change in average smooth pursuit duration time

from when things are perturbed (P) to when they are not perturbed (NP).

• Sctr = Sctnp/Sctp: rate change in average saccade execution time from P

to NP.

• Splr = Splnp/Splp: rate change in average smooth pursuit distance from P

to NP.

• Sclr = Sclnp/Sclp: rate change in average saccade distance from P to NP.

• Spvr = Spvnp/Spvp: rate change in average smooth pursuit velocity from

P to NP.

• Scvr = Scvnp/Scvp: rate change in average saccade velocity from P to NP.

• Scpr = Scpnp/Scpp: rate change in average saccade proportion from P to

NP.

For the re-attention period, we are more interested in measuring coherence/

consistency to this parameter during a trial. We use the standard deviation of

object re-attention periods within each trial as a metric to estimate coherence to

a constant re-attention period:

• Prsd = STD DEV(Prn), (where n = 0...4 corresponding to each of the four

different objects in a trial): re-attention consistency measure.
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These eight rate parameters form the basis of subsequent numeric behavioural

comparisons. A script has been written to automatically extract these parameters

from the data for each trial. The script also automates plotting of all plots

described in the empirical analysis. Sample output produced by the automatic

script is shown in Table B.4. All output and plots are included in Appendix B.

If we have selected meaningful parameters, we would expect to see consistency

in trends in the ratio values in the last column of Table B.4 across trials in the

broader study.

Table 9.1: Sample parameter extraction output, Pilot 1 (units omitted).

P Param Val NP Param Val Ratio Param Val

Sptp 86.038462 Sptnp 46.269841 Sptr 0.537781

Sctp 2.187500 Sctnp 2.228070 Sctr 1.018546

Splp 0.115915 Splnp 0.092618 Splr 0.799019

Sclp 0.247815 Sclnp 0.266183 Sclr 1.074120

Spvp 0.476394 Spvnp 0.484677 Spvr 1.017385

Scvp 6.797215 Scvnp 7.168081 Scvr 1.054561

Scpp 1.564595 Scpnp 4.356028 Scpr 2.784124

Prsd 0.483045892

9.5 Results

In addition to the two pilots, 20 trials were conducted. All participants reported

seeing one apple during the trial. Questionnaire responses and trial data logs

were obtained for each trial.

9.5.1 Questionnaire Responses

The responses indicate that all participants were considered to constitute valid

data sets. According to the questionnaires, the mean age of participants was 31

years. Ages ranged from 23 to 53 years with a standard deviation of 7.7 years.
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Figure 9.33: Trial execution durations. Columns 1 and 2 correspond to pilot

trials.

Ethical confidentiality means we cannot reproduce questionnaire responses in this

thesis.

9.5.2 Trial Logs

All trials ran according to the storyboard. Figure 9.33 shows storyboard execution

duration for each trial. Trial duration was measured from the time the first object

entered the scene to the time the last object reaches its final resting place. Average

trial duration was 114.18s; the standard deviation in trial durations was 10.95s.

Trial duration consistency suggests that timing and velocities of storyborad object

motions is likely to have been consistent over all trials.

Figure 9.8 shows a sample screenshot of a trial’s video log. Appendix C shows

video logs of each trial synchronised with the 2D projection display of FaceLAB

gaze data. No significant changes in participant behaviour was observed over the

course of each trial. Appendix B shows the output of the automatic processing

script for each trial, including plots and parameter extraction.
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9.6 Analysis

We now consider the data obtained in the course of all trials. We first consider

the results empirically, then numerically.

9.6.1 Empirical Observations

As was expected, the data histograms show consistency across trials. The main

empirical observations include:

• Movie logs show that gaze consistently saccades to the perturbed object.

• Histograms of gaze velocities in the human trials are strongly bimodal. That

is, there is consistently a group of low velocities corresponding to smooth

pursuit of the slower moving targets or stationary locations; and a grouping

of high velocities corresponding to saccades.

• Velocity histograms show the proportion of frames exhibiting above sac-

cade threshold velocities consistently increases during periods of no object

perturbation.

• Average saccade velocities, distances and durations are similar for periods

of perturbation and non-perturbation.

• Histograms of smooth pursuit distances show that a lower proportion of

short distances exist during periods of perturbation than non-purturbation.

• The distribution of smooth pursuit gaze points during perturbation periods

correspond well to the paths of perturbed objects.

• Re-attention periods were largely constant for all objects within an individ-

ual trial.

In general, a significant increase in the rate of saccades during periods of non-

perturbation was observed. Other saccade characteristics were not observed to

vary significantly between periods of non-perturbation and perturbation. Smooth

pursuit characteristics were observed to vary significantly between periods of non-

perturbation and perturbation.
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9.6.2 Numerical Characterisation

We now qualify the empirical observations made in the previous section. We

characterise general gaze behaviours during trials via inter-participant statistics.

Data extracted from each individual trial is provided in Appendix B.

We can compile histograms for each of the extracted parameters from all trials.

For example, Figure 9.34 (left) shows a histogram of the rate of increase in the

proportion of saccade frames from periods of perturbation to non-perturbation

(parameter Scpr). The ratio parameters were selected because they are less sus-

ceptible to being influenced by inter-participant inconsistencies (such as mood)

and so extracted parameters may be treated as independent samples from the

same underlying PDFs (PDFs that are more likely to be similar). The small

sample size (20 trials) makes it difficult to confirm that the underlying PDFs as-

sociated with extracted rate parameters adhere to normal distributions. For ex-

ample, the histogram of extracted Scpr parameters across trials (left, Figure 9.34)

is inconclusive. We therefore conduct standard JB-tests and KS-tests [Mitchell

(1997)] for PDF normality. Both JB-test and a KS-test failed unless less restric-

tive thresholds are chosen than standard (both fail for most rate parameters with

usual significance level = 0.05). Again, this is probably due to the small sample

size of 20 participants. A normality plot for each rate parameter across all trials

(for example, for Scpr – right, Figure 9.34) is non-linear, also suggesting that

the underlying PDFs are non-normal (normality plots for all rate parameters are

presented in Appendix B). For all of these reasons, it is not safe to assume the

underlying rate parameter PDFs conform to normal distributions, and normal

theory is not suitable for characterising numerical observations.

Therefore, we “bootstrap” [Efron & Tibshirani (1993)] the mean and vari-

ance on each parameter. Bootstrapping does not rely upon normally distributed

PDFs. The expected distribution of the mean and associated variances for all

rate parameters were subsequently calculated using the bootstrapping technique.

95% Confidence intervals (CIs) in the mean and standard deviation statistics were

calculated using Matlab bootstrap functions.

Table 9.2 summarises the bootstrapped 95% CI on the mean for each rate

parameter, and the bootstrapped 95% CI on the standard deviation for each pa-

rameter; calculated over all data from all human trials. The last column is based
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Figure 9.34: Scr parameter. Histogram (left); and normality plot (right).

on the previous columns and indicates whether the parameter rate characteristi-

cally is expected to increase (+) or decrease (-) when transitioning from perturbed

(P) to non-perturbed (NP) scene. For example, if one sees a ’+’ at Scpr, one

would expect to see that parameter rise (on average) when things are not being

perturbed, compared to when they are. The last parameter, the re-attention pe-

riod coherence parameter Prsd is an absolute measure across the entire trial; it

is not a ratio of P to NP but has nonetheless been added to the summary table

as a relevant statistic.

A plot of the distribution of the density of expected means for parameter Scpr

is shown in blue in Figure 9.35. The bootstrapped 95% CI for the bootstrapped

mean density of Scpr ranges between a lower bound of CIlb = 1.3709 and an

upper bound of CIub = 1.6841, as highlighted in blue. The lower and upper

bounds of the 95% CI on two standard deviations is highlighted in red around

this interval. For comparison, we may also calculate the mean and standard

deviations according to normal theory. These parameters should not be trusted

for statistical analysis. For example, for Scr parameter, the normal theory mean

and standard deviation are 1.5169 and 0.4040 respectively. We have plotted

this normal distribution on the same plot (green curve, Figure 9.35), and we

have highlighted the interval associated with the two normal theory standard

deviations (green in Figure 9.35). The bootstrapped standard deviation statistics

suggest a broader distribution than normal theory.
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Table 9.2: Parameter changes when going from P to NP.

Parameter Mean CIl Mean CIu SD CIl SD CIu +/−
Sptr 0.8273 1.4045 0.1024 0.4297 =

Sctr 1.0360 1.1559 0.0907 0.1881 =

Splr 0.7691 0.9077 0.1187 0.2034 –

Sclr 1.1477 1.6520 0.1903 0.8471 +

Spvr 0.9621 1.0125 0.0414 0.0783 –

Scvr 1.0906 1.3583 0.1113 0.4904 =

Scpr 1.3738 1.6944 0.2027 0.5708 +

Prsd 0.3502 0.5189 0.1162 0.2922 n/a
Tendencies - ‘+’: increase, ‘=’: unchanged, ‘–’: decrease.

The bootstrapped distribution of the density of expected means for parameter

Scpr appears somewhat Gaussian (blue curve, Figure 9.35). However, we can plot

a Gaussian with standard deviation sdm = sd/
√

nt (nt = number of trials) for

comparision. The red dashed plot in Figure 9.35 shows this Gaussian. It can

then be seen that the bootstrapped density of means exhibits skew towards lower

values.

The same bootstrapping procedure was executed for each rate parameter.

Associated plots can be found in Appendix B. Table 9.2 summarises bootstrapped

statistics as indicated earlier.

9.7 Discussion

The numerical characterisation conducted over all trials confirmed the general

empirical observations. We briefly discuss behavioural characteristics based on

both empirical and numerical observations. Bootstrapped mean ratios can be

used to numerically establish expected behaviours. Where possible, we relate

behavioural expectations to the system model described in Chapter 3. The trials

are not designed to test what the components of the underlying model are; we

may merely relate observed behaviours to the predictions the model may provide.

The bootstrapped standard deviations may indicate which rate parameters are

265



9. HUMAN TRIALS

Figure 9.35: Interpreting bootstrap results, Sr parameter. The green lines and

shading represent normal theory approximations. The blue and red components

show bootstrap results. The blue dots are the superposition of rate parameter

histograms. Appendix B shows all additional trial parameters.

266



9.7 Discussion

more consistent across participants (hardware or scene-dependent), and which

are more variable (dependent on the participant). We first discuss the observed

saccade proportion ratio, then saccade characteristics, smooth pursuit character-

istics, and the re-attention period. No significant age-related trends or variations

were observed.

9.7.1 Saccade Rate Characteristics

When an object in the scene is being actively perturbed, the saccade proportion

rate has been observed to decrease in general. When no perturbations are present,

the saccade proportion rate tend to increase. This is evident in the histograms,

and has been shown numerically (Scpr > 1.0). Some variance across participants

is evident in the comparatively medial bootstrapped standard deviation in this

rate parameter. The tendency is for the parameter to increase, the amount of

increase is dependent on the participant.

The trials conducted cannot determine the underlying cause for this obser-

vation. Nevertheless, we described a model of saliency in the previous chapter

where fixation is selected by modulating IOR with view-frame saliency, and we

may relate the observations to this model. According to this model, a likely ex-

planation for the increase in saccade proportion rate is that participants inhibit

previously attended salient regions of the scene such that the product of inhibi-

tion and saliency equalises over the entire scene. When scene saliency is relatively

static (periods of no perturbation), the model may predict more saccades between

similarly salient regions. This is an effect of dynamic IOR: after a short while

all objects in the scene are attended and largely suppressed, so the product of

saliency and IOR evens out over the entire scene and there is no distinct salient

peak for the system to track; instead, the participant’s saccade rate increases be-

cause most locations exhibit a similar response. When an object is being actively

moved, its saliency is initially increased due to that motion, beyond suppression,

and it wins attention for the period that it begins to move. Then, although it is

moving, it begins to be suppressed - but it continues to be tracked in the fovea

(despite its motion) until it is fully suppressed, or another more salient object is

detected, which may not be until after the moving object is no longer being per-

turbed (perhaps some swinging remains). Also, the default action is to continue
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to fixate upon the current target, so even after it is no longer a fixation peak, it

can continue to be tracked until an alternate peak passes fixation moderation.

9.7.2 Saccade Characteristics

We would expect that saccade characteristics (such as average saccade velocity,

distance and duration) should remain similar throughout the duration of a trial,

because saccades involve fixation shifts in a minimal amount of time, at a maximal

velocity (hardware dependent). Histograms of these parameters support this

expectation.

We have observed a relatively even distribution of saccade destinations over

the entire scene window (Figure 9.18). As expected, the location of smooth pur-

suit locations (static fixations - middle, Figure 9.16) also correlates well with the

location of saccade destinations. According to the system model, we may expect

to see a slight increase in parameters Sctr and Sclr because when a perturbed

object enters the scene or moves, it will not always be a large distance from the

current fixation point (beyond the inhibited region surrounding the current fixa-

tion point), and it may even be fixated upon before it moves; whereas saccades

are likely be to regions where inhibition is not accumulating. We may there-

fore expect parameter Sclr to be approximately 1.0, or perhaps slightly larger.

This expectation was confirmed by the trials. Saccade durations were consistent

across periods of perturbation and non-perturbation (parameter Sctr approxi-

mately 1.0), indicating it is not significantly dependent on variations in the scene.

The low bootstrapped standard deviation in parameter Sctr across participants

may indicate that this parameter is somewhat hardware dependent (more depen-

dent on ocular muscle performance). Parameter Sclr was in general observed to

increase during periods of no perturbation, suggesting some scene dependancy.

The comparatively large bootstrapped standard deviation in parameter Sclr also

suggests the amount of increase is largely dependent on the participant.

If the saccade velocity is hardware-related (dependent on the performance of

eye muscles), we would expect saccade velocity parameter Scvr to be approxi-

mately 1.0, and saccade duration parameter Sctr to be correlated with saccade

distance parameter Sclr (also approximately 1.0). Indeed, the numerical analy-

sis confirms these expectations. Parameter Scvr was reasonably constant across
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periods of perturbation and no perturbation, its density of means centred about

1.0. This indicates the parameter is not significantly scene-dependent.

9.7.3 Smooth Pursuit Characteristics

We would of course expect smooth pursuit distances to reduce during non-perturbation

periods because no objects are translating. Figure B.2.1.4 shows that a lower

proportion of short smooth pursuit distances exist during periods of perturbation

than non-purturbation. Inspection of the 2D distribution of gaze points over the

scene window (Figure 9.16) indicates the storyboard motion paths correlates best

with smooth pursuit locations during perturbation. These observations indicate

that participants have a strong tendency to smoothly pursue actively perturbed

objects. Indeed, after reviewing the video logs, actively perturbed objects were

consistently and rapidly attended, then tracked.

Calibration differences mean we cannot compare absolute smooth pursuit dis-

tances directly across trials, but similar smooth pursuit distance histograms dur-

ing perturbation periods may indicate the stimulus were equally as compelling

for all participants to track. Indeed, all such histograms exhibit similar appear-

ance. We would expect them to be somewhat similar because all candidates were

briefed and prepared for the trials in the same manner. If some participants had

shown consistently short smooth pursuit distances during perturbation periods,

and others had shown long ones, it may have suggested that the participants

were not responding to the stimulus similarly. This was not the case. Numeri-

cally, the low bootstrapped standard deviation on parameter Splr (relative to the

bootstrapped standard deviation of other parameters) also indicates that smooth

pursuit characteristics were similar across participants.

It was expected that the smooth pursuit durations would differ in periods

of perturbation and periods of non-perturbation. Participants preferentially at-

tended moving objects so that smooth pursuit durations during perturbation are

more dependent on the time objects are translating. During non-perturbation

periods they are correlated more with the saccade rate, vis a vis, the time a

participant tended to linger gaze at the same location. Participants whose gaze

behaviours were more saccadic may therefore be expected to show an increase

in smooth pursuit duration from periods of non-perturbation to perturbation
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(Sptr > 1.0). Conversely, less saccadic participants may be expected to show a

reduction because the translation of a perturbed object may last less than their

typical non-perturbation linger period (Sptr < 1.0). Therefore, rate parame-

ter Sptr was expected to vary across participants. The ratio of smooth pursuit

durations from periods of perturbation to periods of non-perturbation (Sptr) var-

ied significantly across participants, as characterised by the comparatively large

bootstrapped standard deviation. There was generally no distinct tendency for

the parameter to increase or decrease, but the bootstrapped mean was centred

about 1.0. This parameter is therefore largely dependent on the participant.

Smooth pursuit velocities were expected to go down during periods of no per-

turbation because no translating objects were present to track. Error in gaze lo-

cations provided by FaceaLAB may mean that zero velocity frames were recorded

as non-zero (when gaze was stationary FaceLAB tended to return a gaze path

that oscillated around the stationary point; see trial videos). Nevertheless, a

slight tendency for the smooth pursuit velocities to decrease was indicated by the

numerical analysis.

As expected, smooth pursuit characteristics are largely dependent on the mo-

tion of objects in the scene. The smooth pursuit distance and velocity ratios

from periods of perturbation to periods of non-perturbation (Splr and Spvr)

both consistently decreased (< 1.0), commensurate with the tendency for partic-

ipants to track translating stimuli. This statistic, and the comparatively small

bootstrapped standard deviations on these parameters characterise a generally

similar amount of decrease across all participants, and demonstrate that these

parameters are largely scene-dependent.

9.7.4 Re-attention Period Characteristics

The average re-attention period loosely correlated with the saccade rate for a

given trial. It enumerates the number of occasions an object is attended divided

by the total time the object is present during non-perturbation periods. This

parameter has been demonstrated to be remarkably constant for all objects in

a single trial, and consistently coherent over all trials. One participant may re-

attend objects approximately once every three seconds, for example, and another

participant may be less saccadic and only attend each object approximately once
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every six seconds, but for each participant the number was observed to be con-

sistent across all objects in a trial. This may suggest that all participants found

all the stimuli objects (fruit) similarly salient when no active perturbation was

present.

Re-attention period consistency may be predicted by the system model, largely

as an effect of dynamic IOR, according to our model, as an object becomes inhib-

ited, gaze is transferred to the next peak of IOR modulated saliency that passes

moderation. Because IOR decays, previously attended objects may again be fix-

ated upon. Thus, the model may cause cycling through the dominantly salient

scene locations. If the objects are similarly salient, and the scene is suitably

static, each object should then pass fixation moderation periodically .

The low mean of coherence parameter Prsd shows the general tendency for

participants to attend all four objects within their trial with similar frequency. In

particular, the low bootstrapped standard deviation for the coherence parameter

across all trials shows this behaviour is consistent across participants. This further

demonstrates that, regardless of the average re-attention period for each trial, all

objects were attended with similar frequency within each trial.

The average standard deviation of all the re-attention periods is 0.43s. The

standard deviation of the re-attention period for all objects in all trials is 1.92s,

much higher than the average standard deviation of individual trials. This is also

evidence that re-attention period varies greatly over all objects in all trials, but

is relatively constant within each trial.

The trials exhibiting the two largest standard deviations in re-attention period

are the two trials with longest re-attention periods. This may suggest that par-

ticipants exhibiting longer re-attention periods also had slightly more variation in

re-attention period rate. Hence there may be a relationship between re-attention

period and re-attention coherence. This is intuitively plausible: a longer average

attention period is likely to yield more variance in the re-attention period across

objects. If this is the case, we could then normalise the re-attention period stan-

dard deviations for each trial according to the trial’s average re-attention period,

which would likely show further conformity in all re-attention period consistency

metrics. However, a graph plotting the re-attention standard deviation versus

average re-attention period for each trial is not conclusive (no clear relationship,

Figure 9.36). More trials would be needed to confirm such a relationship.
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Figure 9.36: Av. re-attention period vs re-attention period standard deviation

for each trial.

9.8 Summary

Psycho-physical trials were conducted to establish and extract metrics that char-

acterise unconstrained human gaze behaviours when viewing a simple, repeatable,

controlled 3D scene. The scene incorporated stationary and translating stimuli

that were considered approximately equally salient and non-iconic. All humans

were observed to react to the stimulus in a quantifiably similar manner. All partic-

ipants’ distance-weighted velocity magnitude histograms were distinctly bimodal,

exhibiting a group of low velocities (corresponding to smooth pursuit motions af-

ter inspecting the video logs) and a group of high velocities (corresponding to

saccades) separated by a range of sparsely occupied medial velocities.

During periods of perturbation, participants preferentially smoothly pursued

translating stimulus. Accordingly, saccade frequency was observed to decline dur-

ing periods of object perturbation, and increase during non-perturbed periods.

During non-perturbation periods, gaze also frequented the locations correspond-

ing to objects more than the background. Smooth pursuit locations and saccade

destination locations during non-perturbation corresponded well with the location

of objects.
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Due to inter-participant differences (mood, alertness, etc), absolute parameter

values (such as extracting average smooth pursuit velocities in a single trial to de-

termine an average smooth pursuit velocity over all trials) were not considered to

yield good metrics for characterising gaze behaviours. We therefore examined the

ratio of such parameters across extractable modes of stimuli presentation. We

compared parameter ratios from periods of perturbation (translating stimulus

present) to periods of non-perturbation (no translating stimulus present). Analy-

sis of extracted inter-participant behavioural rate parameters shows the following

characteristic trends:

• The ratio of saccades from periods of perturbation to periods of non-perturbation

(Scpr) constantly increased (> 1.0), characterising the consistent tendency

for the saccade rate to increase during periods of non-perturbation across

all participants. Reasonable variance in this parameter across participants

is shown statistically by the comparatively medial range in the parame-

ter’s bootstrapped standard deviation. Therefore, the amount of increase

in saccade rate was somewhat dependent on the participant.

• The smooth pursuit distance and velocity ratios from periods of pertur-

bation to periods of non-perturbation (Splr and Spvr) both consistently

decreased (< 1.0), commensurate with the tendency for participants to

track translating stimuli. This statistic, and the comparatively small boot-

strapped standard deviations on these parameters characterise a generally

similar amount of decrease across all participants, and demonstrate that

these parameters are largely scene-dependent.

• The ratio of smooth pursuit durations from periods of perturbation to pe-

riods of non-perturbation (Sptr) varied significantly across participants, as

characterised by the comparatively large bootstrapped standard deviation.

There was generally no distinct tendency for the parameter to increase or

decrease, but the bootstrapped mean was centred about 1.0. This parame-

ter is therefore largely dependent on the participant.

• No significant change in saccade durations was detected across periods of

perturbation and non-perturbation (bootstrapped distribution of means on
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parameter Scvr was centred approximately at 1.0), suggesting that this pa-

rameter is not significantly dependent on the scene. The low bootstrapped

standard deviation in the parameter across participants suggests that it is

largely dependent on hardware (ocular muscle agility).

• No significant change in saccade velocities was detected across periods of

perturbation and non-perturbation (bootstrapped distribution of means on

parameter Sctr was centred approximately at 1.0), suggesting that this

parameter is not significantly dependent on the scene. The comparatively

large bootstrapped standard deviation in this parameter across participants

suggests that it is largely dependent on the participant.

• The saccade length tended to increase from periods of perturbation to peri-

ods of non-perturbation (Sclr > 1.0). The bootstrapped standard deviation

in the parameter was also comparatively large. The tendency to increase

suggests some general scene dependency, but the amount of increase de-

pends largely on the participant.

• The average re-attention period for each participant varied significantly.

Object re-attention periods were approximately constant during periods

where no object was being actively perturbed for each participant.

The observed parameter trends and associated statistics serve to benchmark

the inter-individual consistencies in the human gaze behaviours elicited during

the pshyco-physical trials.
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Chapter 10

Synthetic Trials

Figure 10.1: CeDAR participating in synthetic trials.

In this chapter we conduct trials with the synthetic vision system. We compare

behavioural characteristics of the synthetic trials to the benchmarks obtained

from the human trials.

10.1 Introduction

We conduct the same analysis of gaze behaviour using the synthetic system in

place of human participants. Rather than conducting trials with different indi-
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viduals, we conduct trials using the synthetic system with different configuration

settings. Metrics extracted from the synthetic trials are used to compare system

behaviours with those established from the human trials. We also use the syn-

thetic trials to determine if predictions based upon the adopted model conform

to experimental observations.

We analyse the synthetic trials in the same manner as the human trials. The

same absolute and ratio parameters are extracted for comparison. Similarities

in the underlying human and synthetic system models should elicit similar basic

gaze behaviours. Similarities can be confirmed if rate parameters extracted from

the individual synthetic trials fall within the variance of the benchmark human

parameters (system tuning may also yield rate parameters that better conform

to the human benchmarks). In this manner, we may select system configurations

that produce the trial whose behaviours best match the human benchmarks.

We may also expect that system behaviours depend largely on the system

itself, and its biological inspiration, not just on the specific configuration settings

selected for a particular trial. We therefore consider inter-trial consistency of the

synthetic trials for comparison to the human benchmarks.

10.2 Synthetic Trials

Synthetic trials were conducted using the same apparatus and stimuli as the

human trials in the previous chapter. The same storyboard was used to reproduce

the translation of stimuli. CeDAR was placed in the viewing booth such that its

cameras were positioned in the location where participants’ eyes had been during

the human trials. Figure 10.1 shows CeDAR positioned accordingly. CeDAR (and

the participants in the human trials) was situated in a stationary manner, such

that involuntary vestibulo-ocular reflexes were not elicited, and the vestibulo-

ocular reflex was not incorporated into synthetic system operation.

Delivering the visual task to the synthetic system is not as brief as asking a hu-

man to “count apples” because as yet the system has no means to accumulate and

incorporate a priori knowledge autonomously. Instead, we take colour chromi-

nance samples from pixels on the apple in the camera images. These chrominance

levels were used to set the desired search colours in the colour processing server

node. We may then bias the contribution of this cue more heavily than others
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in the construction of the saliency map. We may also bias the response of mul-

tiple orientations on the orientation processing server node. In this manner we

manually predispose the system to look for small, round objects coloured like the

target apple.

10.2.1 Configuration Settings

Four synthetic trials were conducted, each with different configuration settings.

Before the first trial was conducted, the configuration settings were set by hand

to mid-range values. The first trial was then conducted, during which system

performance was assessed empirically. The settings were then adjusted such that

the system was likely to perform in a more human-like manner. The second trial

was then conducted with adjusted settings. This process was iterated until four

trials had been conducted. Figure 10.2 summarises configuration settings for each

trial. Configuration settings that were left static in the course of all trials (those

that did not affect gaze behaviour) are not shown.

The first trial was noticeably more saccadic than the human trials. Predictions

based on the system model were used to adjust the configuration settings to reduce

the saccade rate. For example, increasing the rate of accumulation of IOR over

the fixation point, reducing the IOR decay rate of the entire dynamic IOR mosaic,

and adopting more strict fixation map peak moderation settings were likely to

lower the saccade rate.

Figure 10.2: System configuration variations across trials (units omitted).
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10.2.2 Data Logging and Processing

Time-stamped angles were obtained from the CeDAR axis encoders and converted

to scene-window Cartesian coordinates. As with the human trials, both CeDAR

and the scene were filmed. Logged data was then processed as per the human

trials.

10.3 Results

Four trials were conducted. Trial durations were 155, 218, 227 and 203 seconds

respectively. Figure 10.3 shows online cue maps synchronised with video footage

of CeDAR. The video shows (clockwise from top left) CeDAR, the view-frame

saliency map, the MRF ZDF extracted object upon which fixation occurs, the

dynamic IOR mosaic, and the rectified scene mosaic. Footage for each of the

four synthetic trials is available in Appendix C. The synchronised footage was

used to hand-mark logged data according to periods of perturbation and non-

perturbation. The data was subsequently analysed as per the human data.

10.4 Analysis

As for the analysis of the human trials, we consider the output both empirically

and numerically. We first compare the generated plots to the human trial plots.

We then extract parameters from the synthetic trials to determine how coherently

they compare to those extracted in the human trials.

10.4.1 Empirical Observations

We walk through plots generated from synthetic trial four. Plots corresponding

to all trials can be found in Appendix 2.

Figure 10.4 shows the complete gaze path during synthetic trial four. The

effect of the swinging motion of the stimuli can be clearly seen because of the

more accurate gaze data obtained from encoders. Figure 10.5 shows histograms

of the velocity magnitudes. As per the human trials, we have provided a distance

weighted velocity histogram (right, Figure 10.5) so that any bimodal separation
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Figure 10.3: Online operation of the synthetic vision system demonstration, syn-

thetic Trial 4 (snapshot - see Appendix C for full video).

of velocities can be seen more clearly. Indeed, a significant number of low and

high velocities exist, separated by a region of sparse velocities, as was present

in the human version (Figure 9.11). As with the human analysis, this region of

sparse population allows us to select a threshold velocity above which a frame’s

velocity is considered saccade, and below which it is considered smooth pursuit.

It is noted that fewer “low” velocities are present in the synthetic velocity

histogram than the human histogram. FaceLAB samples gaze data at 60Hz. The

synthetic gaze data was recorded at below 20Hz. Velocity is calculated as the

distance covered between samples divided by the time between samples. It may

therefore not accurately reflect the actual gaze velocity. The lower sampling rate
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Figure 10.4: Complete synthetic scan paths with approximate object storyboard

translations superimposed, synthetic Trial 4 (not to scale).

of the synthetic trials means fewer low velocity samples are accumulated but

all saccades were still detected in large position shifts as the sample period was

always higher than the duration between saccades. The appearance of the human

histogram showing numerous low velocities may have been amplified by FaceLAB

filtering. Velocity filtering may smooth (broaden) the group of saccade velocities,

reducing the altitude of the high velocity peak, making the low velocity peak

appear relatively higher. The more “peaky” appearance of saccade velocities

in the synthetic histogram than in the human histogram may also have been

due to a more repeatable maximum saccade velocity induced by the mechanical

actuators. The “flatter” human saccade velocities may be elicited via reduced

repeatability in the maximal velocity of muscular actuators. This would again

increase the height of the low velocity peak in the human velocity histogram

compared to that of the synthetic histogram. Nonetheless, the histograms were

both characteristically bimodal.

Figure 10.6 shows the velocity magnitudes over the course of synthetic trial

four. Saccades (blue) and periods of active perturbation (green) have been anno-
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Figure 10.5: Histogram of velocity magnitudes (left). Histogram of distance

weighted velocities (right).

Figure 10.6: Velocity profile. Velocity magnitudes per frame, synthetic Trial 4.

tated on the profile. We may look at velocity histograms during non-perturbed

(left, Figure 10.7) and perturbed (right, Figure 10.7) periods. As with the human

trials, it is evident that a greater portion of velocities are below the sparse region

around the saccade threshold (smooth pursuit) during periods of perturbation,

and vice versa.

We can plot the coordinates of gaze locations during smooth pursuit (Fig-

ure 10.8) and saccade (Figure 10.9). As with the human trials, we see that

the plot of smooth pursuit locations during perturbation shows best likeness to

the prescribed storyboard motions (lines, Figure 10.4). As expected, the plot of

smooth pursuit locations during non-perturbation periods, and non-perturbation

saccade locations show a likeness to the stationary storyboard locations (crosses,

Figure 10.4) of stimulus.

We now consider smooth pursuit velocities histograms. Figure 10.10 shows

histograms of smooth pursuit velocities according to perturbed, non-perturbed
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Figure 10.7: Histogram of velocities during non-perturbation (left), and during

perturbation (right).

Figure 10.8: Smooth pursuit gaze locations, synthetic Trial 4. Entire trial (left),

during periods of non-perturbation (middle), and during perturbation (right).

and both periods. It was expected that smooth pursuit velocities would be slightly

higher during perturbation periods, corresponding to the tracking of moving ob-

jects. However, no significant variation in smooth pursuit velocities was evident

during the human trials, due to error in the gaze estimation (although gaze may

have been stable, error in gaze estimation means that recorded gaze oscillates

around a location where fixation was actually stable, inducing smooth pursuit

velocity where none existed). However, the data provided by the synthetic trials

is more accurate, and a “thickening” of low velocities in the perturbation period

histogram (bins 5-10) can be seen, in comparison to the non-perturbation plot.

This corresponds to a small shift towards a higher average velocity of smooth

pursuits during perturbation periods, as would be expected.
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Figure 10.9: Saccade gaze locations, synthetic Trial 4. Entire trial (top left),

during periods of non-perturbation (top right), and during perturbation (bottom).
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Figure 10.10: Histogram of smooth pursuit velocities, synthetic Trial 4. Entire

trial (left), during periods of non-perturbation (middle), and during perturbation

(right).

Figure 10.11 shows histograms of saccade velocities according to perturbed,

non-perturbed and both periods. As for the human trials, it is evident the number

of saccades during perturbation periods is significantly less than during non-

perturbation periods, but that velocities are spread over the same values. The

spread is quite narrow, induced by the axis motors reaching the same saccade

ceiling velocity in the trapezoidal profile motion axis control.

Figure 10.11: Histogram of saccade velocities, synthetic Trial 4. Entire trial (left),

during periods of non-perturbation (middle), and during perturbation (right).

Figure 10.12 shows smooth pursuit durations; Figure 10.13 shows correspond-

ing histograms. The histograms show a significant shift in smooth pursuit dura-

tions was present during periods of non-perturbation. This was seen in the human

trials, and corresponds to preferential sustained tracking of perturbed object and

shorter fixations upon objects during non-perturbation periods.

Next, smooth pursuit tracking distances were extracted (Figure 10.14) and as-

sociated histograms were created (Figure 10.15). Figure 10.15 shows a significant
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Figure 10.12: Smooth pursuit durations, synthetic Trial 4. Entire trial (left),

during periods of non-perturbation (middle), and during perturbation (right).

Figure 10.13: Histogram of smooth pursuit durations, synthetic Trial 4. Entire

trial (left), during periods of non-perturbation (middle), and during perturbation

(right).

shift towards shorter tracking distances occurs during periods of no perturbation.

Again, this reflects what was observed in the human trials.

Figure 10.14: Smooth pursuit distances, synthetic Trial 4. Entire trial (left),

during periods of non-perturbation (middle), and during perturbation (right).

As with the human trials, saccade durations are calculated as the number of
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Figure 10.15: Histogram of smooth pursuit distances, synthetic Trial 4. Entire

trial (left), during periods of non-perturbation (middle), and during perturbation

(right).

consecutive samples above the saccade velocity, where velocity is calculated as

the distance covered between samples divided by the time between samples. The

sampling rate varied somewhat throughout the trial. Saccade durations are of the

order of the arbitrarily varying sampling rate. The recorded saccade durations

may therefore be coupled to the sample rate, and may not reflect the actual

saccade durations. Saccade durations were therefore not used as behavioural

metrics.

Saccade distances were extracted (Figure 10.16), and saccade distance his-

tograms constructed (Figure 10.17). The appearance was as per the human trials,

except for a second cluster of short saccade distances. After inspecting the video

logs, it is evident the group of short distance saccades is induced during the MRF

ZDF tracking of objects. The MRF ZDF server node segments the object upon

which fixation exists, and centres gaze upon its centre of gravity. If the segmen-

tation is not exact, or no segmentation is returned for a frame and the object is

moving, the new location of the centre of gravity may be more than a few pixels

from the previous location. If the distance is more than a few pixels, a rapid

“catch-up” motion is initiated, and may reach velocities considered saccade.

This group of short distance saccades was not observed in the human trials.

However, based on the human trials, we cannot conclude that humans do not

make similar corrective motions during the tracking of objects. This is because

the FaceLAB data is not resolute enough to detect such small motions and ve-

locity fluctuations. It is likely that humans actually make less of these catch-up

corrections than the synthetic system. Moreover, FaceLAB output data appears
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Figure 10.16: Saccade distances, synthetic Trial 4. Entire trial (left), during

periods of non-perturbation (middle), and during perturbation (right).

to be filtered to remove such small fluctuations.

The reduced peripheral vision of the synthetic system in comparison to human

vision means saccades in the synthetic trials were likely to be shorter distances

than that of humans. It is noted that when the synthetic system gazed towards the

top of the scene, the very bottom was sometimes out of view. Smaller distances

for the synthetic system might also mean lower saccade durations in the synthetic

system in comparison to humans.

Figure 10.17: Histogram of saccade distances, synthetic Trial 4. Entire trial (left),

during periods of non-perturbation (middle), and during perturbation (right).

Re-attention periods during non-perturbation were determined as per the hu-

man trials. Re-attention period data for synthetic trial 4 is shown in Figure 10.18.

Please refer to Appendix B for all synthetic trial re-attention data.

287



10. SYNTHETIC TRIALS

Figure 10.18: Object re-attention during non-perturbation periods, synthetic

Trial 4.

288



10.4 Analysis

10.4.2 Numerical Characterisation

It is often possible to compare the performance of a system to a theoretical model

by monitoring output and performing model-based residual analyses. However,

human gaze behaviours are the product of an intricately complex biological sys-

tem. As such, it is notoriously difficult to consider all the likely input influences

and internal factors involved in determining human scanpaths. There is no general

theory of human gaze behaviour that would permit such a systematic comparison.

Higher order relations are exceedingly difficult to capture. Hidden Markov

models (HMMs), and various other Markov models have been attempted, but

they have always been unsatisfactory. In attempts to show that a particular

random number generator is “sufficiently” random, Don Knuth developed a large

set of tests, and shows that “good” generators pass all the tests, regardless of their

underlying generation method [Knuth (1997)]. Similarly, it is possible to compare

the gaze behaviours of humans and machines by comparing the statistics and

PDFs associated with specific parameters derived from gaze behaviour. In this

regard, cluster overlap and KL divergence methods [Mitchell (1997)] to compare

gaze parameters may not be appropriate due to small sample sizes in the human

(20 samples) and synthetic (four non-independent samples) trials. We therefore

select parameters that we may extract from both human and synthetic trials

for comparison. The bootstrapped human statistics are used as a benchmark to

which average parameters extracted from each synthetic trial are compared.

We examine the compliance of each of the average parameters extracted from

each of the four synthetic trials to the statistics associated with the parameters

obtained from the human trials. In so doing, we may establish which synthetic

trial configuration elicited gaze behaviours that best resembled human behaviour

in terms of extracted parameters. In this comparison we treat the trials individ-

ually, rather than as independent samples from the same underlying behavioural

PDFs.

10.4.2.1 Individual Trials

Ratio parameters, and the re-attention consistency parameter, were extracted

from each of the synthetic trials individually. All absolute parameters extracted

from all trials are provided in Appendix B. Table 10.1 summarises extracted
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ratio parameters for each trial. For direct comparison, the four sample points

associated with each of the synthetic trials have been plotted on the respective

histograms of human parameter data (Figure 10.19 shows this for saccade rate

parameter Sr, see Appendix B for all other parameters).

Figure 10.19: Histogram of saccade rate parameter Sr from human benchmarks

with synthetic trial samples superimposed (red crosses).

Table 10.1 shows that the trials exhibited parameter values that conformed

to the expected trends set by the human trials (+/=/- column, Table 9.2). More

specifically, we checked each value to determine if they fell within one boot-

strapped standard deviation of the bootstrapped human means. First, we check

if each parameter fell withing one bootstrapped standard deviation of the 95%

mean confidence interval using the lower bound of the bootstrapped standard

deviation 95% confidence interval (left, Table 10.2). We subsequently compared

each parameter to see if it fell within one bootstrapped standard deviation of

the 95% mean confidence interval using the upper bound of the bootstrapped

standard deviation 95% confidence interval (right, Table 10.2).

The majority of extracted synthetic parameters fell within one maximal stan-
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Table 10.1: Extracted average rate parameters for each trial.

Parameter T1 T2 T3 T4

Sptr 1.069097 1.624368 1.541978 0.790567

Splr 0.587497 0.743268 0.647662 0.613530

Sclr 0.988786 1.787190 1.877772 1.399369

Spvr 0.474087 0.492012 0.558833 0.756725

Scvr 0.903545 1.132790 1.030711 1.081753

Scpr 1.123602 1.076486 1.305637 1.809144

Pr 0.505799697 0.602079729 0.469041576 0.660807587

Table 10.2: Comparing individual trial parameters with human benchmarks.

Within one minimal bootstrapped standard deviation of 95% mean CI (left).

Within one maximal bootstrapped standard deviation of 95% mean CI (right).

Parameter (lb) T1 T2 T3 T4 Parameter (ub) T1 T2 T3 T4

Sptr y n y y Sptr y y y y

Splr n y n n Splr y y y y

Sclr y y n y Sclr y y y y

Spvr n n n n Spvr n n n n

Scvr n y y y Scvr y y y y

Scpr n n y y Scr y n y y

Pr y y y y Pr y y y y

Total votes: 3 4 4 5 Total votes: 6 5 6 6
lb – lower bound, ub – upper bound.

dard deviation. One standard deviation is a rather tight range to test conformity;

we should not expect all values to conform to this range. Therefore, the same

comparison was conducted using a broader range of two standard deviations (Ta-

ble 10.3).

The majority of parameters, and certainly those compared to two upper bound

standard deviations, conform to benchmarks set from the human trials. The main

discrepancy exists for parameter Spvr, the ratio of smooth pursuit velocities in
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Table 10.3: Comparing individual trial parameters with human benchmarks (2

SD). Within two minimal bootstrapped standard deviations of 95% mean CI

(left). Within two maximal bootstrapped standard deviations of 95% mean CI

(right).

Parameter (lb) T1 T2 T3 T4 Parameter (ub) T1 T2 T3 T4

Sptr y y y y Sptr y y y y

Splr n y n n Splr y y y y

Sclr y y n y Sclr y y y y

Spvr n n n n Spvr n n n n

Scvr n y y y Scvr y y y y

Scpr y y y y Scr y y y y

Pr y y y y Pr y y y y

Total votes: 4 6 4 5 Total votes: 6 6 6 6
lb – lower bound, ub – upper bound.

perturbed to non-perturbed periods. This value decreased (< 1.0) as per the

human trends, but decreased even more than measured in human trials. This

discrepancy is likely due to the low accuracy (low signal to noise ratio) involved

in detecting low velocity motions with FaceLAB.

Conformity to human benchmarks was tallied for each trial. Trial 4 performed

the best in terms of extracted averages conforming to human parameters in most

instances.

10.4.2.2 Group Parameters

The trials were iteratively configured to produce gaze behaviours that appeared

more similar to human behaviours. Analysis of parameter conformity demon-

strates that all trials exhibited reasonable resemblance to human trends. More-

over, the system was observed to produce human-like behaviours in all trials,

regardless of a wide variance in configuration settings. This suggests the be-

haviours elicited are highly dependent on the implemented system model, and

not just on the configuration settings selected for a particular trial. As a case

in point, if considered as a set of four independent synthetic samples, we can
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bootstrap group statistics for comparison to bootstrapped human group statis-

tics. We find that the bootstrapped synthetic mean rates consistently change in

the same direction as the bootstrapped human rates: where human rates tended

to increase in going from periods of perturbation to periods of non-perturbation,

so did the synthetic rates. Of course, the trials were not conducted completely

independently with completely random configuration settings.

Despite the fact that the selection of configuration settings was not entirely

random, for the purpose of comparison we assume the variance in configuration

settings is significant enough to test the hypothesis that the synthetic behaviours

are largely a product of the model, and not just configuration settings. It has

been shown that the human parameters do not necessarily conform to normal

distributions, motivating a bootstrap analysis to capture parameter statistics.

As was done for the human rate parameters, we bootstrapped the same statistics

for the synthetic trials, treating the four synthetic trials as four independent

sample points (Table 10.4).

Table 10.4: Group statistics. Parameter changes when going from perturbation

to non-perturbation periods.

Parameter MeanCIl MeanCIu STDCIl STDCIu < +/− >

Sptr 0.9298 1.5832 0.0412 0.4588 =

Splr 0.5293 0.6518 0.0042 0.0917 –

Sclr 1.1941 1.8325 0.0453 0.4885 +

Spvr 0.4830 0.6905 0.0090 0.1582 –

Scvr 0.9609 1.1073 0.0255 0.1324 =

Scpr 1.0883 1.6378 0.0236 0.4099 +

Prsd 0.4874 0.6461 0.0184 0.1107 n/a

Table 10.4 shows that when considering all trials as separate individuals con-

tributing to group statistics, all parameters exhibited the same trends as observed

in the benchmark human trials. Figure 10.20 shows the bootstrapped statistics

for parameter Scpr, the rate of increase in the proportion of saccade frames from

periods of perturbation compared to periods of perturbation (left, synthetic; right,

human). The synthetic sample parameter values are marked with blue crosses;
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two 95% CI bootstrapped standard deviations (upper and lower bounds) are

marked with red crosses, as per the explanation provided in Section 9.6.2, Fig-

ure 9.35. Normal theory statistics are shown in green, including markers of two

standard deviation (green crosses). As per the human trials, the blue curve shows

the density of synthetic means, the dashed red curve is provided for comparison

to a Gaussian. The synthetic and human plots are shown side-by-side for compar-

ison. Bootstrapped group statistic plots for all synthetic parameters are provided

in Appendix B.

Figure 10.20: Bootstrapped parameter Sr. Synthetic system (left), and human

benchmarks (right).

It is noted that there is considerable overlap between the bootstrapped human

and synthetic group parameters. With input from only four synthetic trials and

the poor assumption of trial independence, this is only a weak claim. Nonetheless,

it suggests the synthetic gaze behaviours are largely a product of the system

model, not just the configuration settings, and that the synthetic behaviour trends

are similar to the benchmark trends compiled from the human trials.

10.4.3 Sensitivity

In the human trials the largest variation in extracted rate parameter ranges oc-

curred in the saccade distance rate Sclr (upper bound on standard deviation

0.85), saccade proportion rate Scpr (0.57), saccade velocity rate Scvr (0.49), and

smooth pursuit time Sptr (0.42). Other rate parameters exhibited low variance.
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In the synthetic trials, the largest variation in extracted rate parameter ranges

occurred in the saccade distance rate Sclr (0.49), the smooth pursuit time Sptr

(0.46), saccade proportion rate Scpr (0.41). Scvr did not exhibit a variance as

large as the human trials, but this is likely to be due to higher accuracy in

velocity measurements using the synthetic system’s encoders. Other than this

instance, parameter sensitivity was similar for both the synthetic and human

trials. Parameters that exhibited greatest variance (Sclr, Sptr, Scpr) suggest that

these are more sensitive to configuration setting changes. More synthetic trials

with stronger independence (more randomly selected settings) would be required

to confirm this hypothesis. The ability to infer which configuration settings cause

most variation in extracted rate parameters would require numerous additional

trial sets where only one configuration setting is varied over a wide range in each

set of trials.

The re-attention coherence parameter was not significantly sensitive to pa-

rameter variations. Re-attention was consistently coherent in all trials. The

variation in average re-attention period for each trial, however, was very sensitive

to configuration variations, as expected. The average re-attention period varied

from 3.75s to 6.43s across trials.

10.5 Discussion

As would be expected in selecting configuration settings to iterate towards more

human-like behaviours, Trial 4 exhibited behavioural rate parameters that best

conformed to the majority of human parameter distributions. Trial 4 involved

configuration settings with a slower rate of accumulation of IOR, a larger radius of

inhibition, and a slower IOR decay rate than other trials. It also involved slower

decay of the fixation map (the product of IOR and saliency), longer inactivity

timed shift period, and medium restrictiveness on selecting fixation map peak

locations for attentional saccades, in comparison to the other synthetic trials.

The plots and initial processing of absolute parameters show that Trial 1

exhibited little discrimination between smooth pursuit and saccade velocities.

Trial 2 exhibited good bimodal discrimination, but was rather saccadic. Trial 3

was less saccadic than Trial 2, but exhibited less smooth pursuit velocities than

did the human benchmarks. Trial 4 exhibited a better balance of saccade to
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smooth pursuit velocities and a good discrimination between the two modes, as

well as more smooth pursuit velocities, and was slightly less saccadic than the

previous trials.

When the weak assumptions made earlier are assumed valid and the trials are

considered as independent, the group trends and range variances cohered to the

human trial statistical benchmarks. This suggests the system elicits human-like

gaze behaviours (somewhat) regardless of selected configuration settings. Indeed,

footage of synthetic behaviour produced human-like reactions to visual stimulus

regardless of settings. The model also shows flexibility in that it can be tuned to

better replicate specific human behaviours.

Consideration of parameter sensitivity shows that changing synthetic configu-

ration settings elicited variances in output parameter ranges similar to the ranges

observed across human participants. Parameters predominantly dependent on

hardware (muscles/actuators) showed low variance across trials, and parameters

more dependent on the underlying system model showed greater variance, for

both human and synthetic trials.

The trials were not tailored to determine the correct object re-attention pe-

riod, IOR radius, or decay rates, or tracking periods (for example). These pa-

rameters are likely to differ greatly across individuals, and even over time for a

particular individual. The trials serve to determine what particular combinations

of synthetic configuration settings result in human-like behaviours. Even though

the system components take biological inspiration, the trials do not provide in-

formation about the structural similarity of the system to the primate visual

brain. The synthetic system incorporates various engineering components, but

the trials were not tailored to test the functionality of individual components for

conformity to components of the primate visual system. They may only be used

to comment on emergent attentional gaze behaviours observed in the synthetic

trials for comparison with benchmarks obtained from the human trials.

The trials allow comparison of the characteristics of saccade and smooth pur-

suit between the synthetic system and human vision system. Aspects of other

human gaze motions, such as the vestibulo-occular reflex, microsaccades, and the

optokinetic reflex, despite being observable gaze-affecting phenomenon, were not

considered in the trials, largely due to the inability to detect such small, rapid

motions using unobtrusive methods such as FaceLAB.
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Re-attention periods were slightly less coherent in the synthetic trials (average

standard deviation was 0.56 for synthetic trials, 0.43 for humans), but standard

deviations remained consistently low nonetheless. The standard deviation of the

re-attention period within a trial was far less than standard deviation of all ob-

jects over all trials. The standard deviation across all objects in all trials was

1.19 for the synthetic trials, 1.92 for humans. This figure, and the magnitude

of the increase over the average coherence for individual trials shows good cor-

respondence. The small numerical discrepancies are likely to be due in part to

the low number of synthetic trials. Overall the same trends were observed as

for the human trials, demonstrating that the re-attention period varied across all

synthetic trials, but that there was coherence in the re-attention period for each

individual trial.

Horowitz and Wolfe proposed that visual search is memoryless [Horowitz &

Wolfe (1998)] - when elements of a search array randomly re-organised while sub-

jects searched for a specific target, search efficiency was not degraded. Perfor-

mance gains for searches on a stable array would indicate memory use. However,

this may just preclude perfect memorisation and does not necessarily preclude the

possibility that the last few attended locations are remembered, in accordance

with the limited lifespan of IOR. Other psycho-physical experimentation with

static stimulus [Irwin & Zelinsky (2002)] suggested that a short-term attentional

memory maintains information about salient visual features and their locations

(“object files”) across saccades, and that up to three or four object files may be

retained.

When four objects were present and pseudo-static in our scene, they were

cyclically attended by the system at an approximately even rate, and in the same

cyclical order. The re-attention behaviour elicited by our synthetic system is

therefore consistent with both of the above psycho-physical observations.

10.6 Summary

Trials identical in character to the human trials of the previous chapter were

conducted to record the gaze behaviours elicited by a primate-inspired synthetic

vision system. Behavioural metrics were extracted for comparison with those

established during the human trials.
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With the exception of the smooth pursuit velocity rate parameter, all rate pa-

rameters extracted from individual synthetic trials fell within two bootstrapped

standard deviations of the bootstrapped density of means of the benchmark hu-

man trials (upper bound 95% confidence intervals). The smooth pursuit velocity

parameter discrepancy is likely due to the low accuracy (low signal-to-noise ratio)

involved in detecting low velocity gaze motions with FaceLAB. This demonstrates

that all trials, in terms of the extracted rate parameters, fitted the norms of pri-

mate gaze behavior. In particular, the configuration settings associated with

Trial 4 elicited behaviours that best matched human performance, in terms of

the extracted rate parameters.

The fact that all trials, all with different configuration settings, exhibited a

majority of rate parameters that fell within the bootstrapped standard deviations

of human benchmark parameters suggests similar performance does not rely upon

the selection of configuration settings. Rather, gaze behaviours of the synthetic

system are largely a product of the underlying model. Though the assumption

that all trials may be treated as individual sample points is weak, when treated

as such, the group statistics thus formed also conform well to the human bench-

marks. The density of bootstrapped synthetic means matched human benchmark

means, for all parameters. That is, where human parameters produced mean den-

sities above, below, or centred at 1.0, so too were the densities of synthetic means,

for all parameters. The fact that only four synthetic trial samples were used for

this trend comparison further weakens this finding. Furthermore, the ranges of

bootstrapped standard deviations for rate parameters were similar for the human

trials and the synthetic trials, though this is also a weak claim as standard de-

viation estimations are based upon only four samples. In any case, the grouped

bootstrap analysis is supportive, but not necessary because the strong conformity

of individual synthetic trials to the benchmark human data is sufficient to prove

good consistency between human and synthetic gaze behaviours.

The strong conformity of individual synthetic trials to the human benchmarks

indicates that, in terms of these trials, the primate-inspired synthetic system

elicits primate-like gaze behaviours.
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Chapter 11

Conclusion

11.1 Summary

An investigation of machine vision for seeing in the real world has been conducted.

Based upon the real-world success of biological vision, we have considered com-

ponents of the primate vision system. We have reviewed components of primate

vision useful for making a synthetic primate vision system. Primates benefit from

active vision in several ways. It enables continual foveal alignment of objects in

the scene. It permits correction of retinal shifts induced by head perturbations

within reflexive, rather than cognitive, timespans. It permits coordinated fixation

and smooth pursuit of targets such that target motion blur is reduced. Active

foveal perception and attention allows data reduction and high equivalent reso-

lutions in observing a scene. An egocentric spatial perception provides primates

with an awareness of the location of visual surfaces in a scene, and their motion.

We have also considered existing models of primate vision and justified compo-

nents using biological inspiration. We have developed a real-time synthetic active

vision system that incorporates such components. The system has been imple-

mented on a real-time processing network based around a biologically-inspired

active vision mechanism able to perform the behavioural eye movements of pri-

mates.

By specifying system properties similar to those of primate vision, we have

developed a synthetic active visual system capable of detecting and reacting to

unique and dynamic visual stimuli, and of being tailored to perform basic vi-
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sual tasks. The specific processing algorithms may not (and probably do not)

reflect what actually happens in the primate brain. Active rectification provides

egocentric spatiotemporal visual perception. We have presented a method to

augment active vision disparity data into an egocentric, unified, space-variant oc-

cupancy grid representation. The occupancy grid has been explicitly designed for

integrating data from active vision, and for providing low-bandwidth and useful

representations useful for perception in real-time. We have shown how the occu-

pancy grid can be used to extract information about the scene such as 3D motion

and 3D cue-surface correspondences. A foveal MRF ZDF algorithm permits at-

tended object tracking and extraction, and ensures coordinated stereo fixation

upon visual surfaces. Attention with active-dynamic IOR means that a short

term memory of previously attended locations can be retained. Spatial and cue

biassing facilitates top-down modulation of attention towards regions and cues

relevant to tasks. Covert consideration of potential saccade destinations (before

overt attention is deployed) provides attentional moderation. These features re-

sult in a reactive vision system and the emergence of primate-like attentional

behaviours.

The synthetic vision system preferentially directs its attention towards non-

suppressed salient objects/regions. Upon saccading to a new target, the MRF

ZDF algorithm extracts the object that has won attention, maintaining stereo

fixation on that object (smooth pursuit), regardless of its appearance or motion.

Attention is maintained until a more salient scene region is detected, or until IOR

allows alternate locations to win fixation.

We adopt a client-server architecture to allow concurrent serial and parallel

processing. At the lowest level, a rectification server distributes rectified im-

ages and rectification parameters to dependent nodes. U and V colour chromi-

nance images for both the left and right images are sent to the colour centre-

surround (CCS) server for processing. Y channels are sent to the orientation

(OCSL, OCSR) servers and the depth and flow (DFCS) server. To minimise net-

work bandwidth, to cope with the processing load of each frame, and to prevent

repetition of computations, nodes in the structure are configured simultaneously

as clients of processes preceding them in cue serialisation, and as servers to nodes

following them. Each node is a dual CPU hyper-threaded 3GHz PC with four

virtual processors. Trade-offs exist between splitting tasks into sub-tasks, passing
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sub-tasks to additional nodes, and minimising network traffic. The best perform-

ing solution involves grouping serialised tasks on each server, and that as many

operations are done on the image data on the same server as possible, so that

there is minimal CPU idle time and minimal network traffic. The serial nature of

cue computations means that there is often no gain possible in distributing the

task – in fact further network transfer of data between servers would slow per-

formance. Implementation of the system provides insight into what capabilities

may be achieved on a synthetic processing network. The low-latency real-time

performance of the system indicates the feasibility of such a system. This per-

formance, and the flexible nature of the processing network permits extensive

system expansion for future additional processing tasks.

Psycho-physical experiments were conducted with humans to benchmark inter-

individual trends in human gaze behaviours for evaluation of the primate-like per-

formance of the synthetic vision system. While viewing a dynamic, repeatable,

controlled 3D scene, participants’ unconstrained gaze scanpaths were recorded.

Parameters useful in characterising human gaze behaviours were selected based

upon two pilot trials. Group statistics associated with each selected parameter

were then extracted from 20 subsequent human trials. All participants were ob-

served to react to the stimulus in a quantifiably similar manner. All participant’s

distance-weighted velocity magnitude histograms were distinctly bimodal, ex-

hibiting a group of low velocities (corresponding to smooth pursuit) and a group

of high velocities (corresponding to saccades) separated by a range of sparsely

occupied medial velocities.

Analysis of extracted inter-individual behavioural rate parameters showed

characteristic trends. In general, the ratio of saccades from periods of per-

turbation to periods of non-perturbation consistantly increased. The smooth

pursuit distance and velocity ratios from periods of perturbation to periods of

non-perturbation both consistently decreased, commensurate with the tendency

for individuals to track translating stimuli. No significant change in saccade

durations and velocities were detected across periods of perturbation and non-

perturbation, suggesting that this parameter is not significantly dependent on

the scene. The saccade length tended to increase from periods of perturbation

to periods of non-perturbation. The average re-attention period for each individ-

ual varied significantly. However, object re-attention periods were approximately
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constant during periods where no object was being actively perturbed, for each

individual.

With the exception of the smooth pursuit velocity rate parameter, all rate pa-

rameters extracted from individual synthetic trials fell within two bootstrapped

standard deviations of the bootstrapped density of means of the benchmark hu-

man trials (upper bound 95% confidence intervals). This demonstrates that all

trials, in terms of the extracted rate parameters, fitted the norms of primate gaze

behaviour. In particular, the configuration settings associated with Trial 4 elicited

behaviours that best matched human performance, in terms of the extracted rate

parameters.

The fact that all trials, all with different configuration settings, exhibited a

majority of rate parameters that fell within the bootstrapped standard deviations

of human benchmark parameters suggests similar performance does not rely upon

the selection of configuration settings. Rather, gaze behaviours of the synthetic

system are largely a product of the underlying model. Though the assumption

that all trials may be treated as individual sample points is weak, and though it is

not necessary to conduct a bootstrapping analysis of the four synthetic trials as a

group, when treated as such, the group statistics thus formed also conform well to

the human benchmarks. The density of bootstrapped synthetic means matched

human benchmark means, for all parameters. The group bootstrap analysis sup-

ports the strong conformity of individual synthetic trials to the benchmark human

data.

Moreover, the strong conformity of individual synthetic trials to the boot-

strapped human behavioural benchmarks indicates that, in terms of the trial sce-

nario, the primate-inspired synthetic system elicits primate-like gaze behaviours.

11.2 Outlook

The performance of the real-time synthetic primate vision system has been demon-

strated. Further human and synthetic trials may however reveal additional inter-

esting similarities and observations.

Complex systems can usually benefit from refinement, and this system is no

exception. Some specific improvements have been suggested in the course of
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presenting the system that may improve performance, or permit it to conform

further with the primate vision system. For example, the active rectification

step may achieve better accuracy in rectification and mosaicing if image-based

techniques (such as SIFT) are incorporated to improve the estimated geometry

for each pair of images. Active rectification may also benefit from projecting

camera images into an alternate static reference frame, such as a sphere, instead

of the planar mosaics used in the current implementation.

Improved occupancy grid resolution may be obtained by incorporating higher

resolution disparity estimation. An expansion of the phase-based orientation

analysis in the orientation processing server ought to provide additional cues

such as symmetry and corner and edge detection, as well as an alternate method

to estimate stereo disparity. This approach may in fact reduce required process-

ing resources. The present system, and any additional processing requirements

from the incorporation of additional features, could also benefit from hardware

(DSP/FPGA) algorithmic implementations.

An obvious next step related to the output of the MRF ZDF algorithm is

the classification and autonomous cataloging of attended objects. In determining

IOR, it is likely that using the output mask from the MRF ZDF algorithm, instead

of a Gaussian kernel, would yield more primate-like object-based suppression

of attended objects. The attention system, and top-down search, would also

benefit from knowledge of scene gist. Further, the system is presently ready for

experimentation with top-down modulation of attention for target search and

other tasks including object manipulation and HCI.

The application domain for the synthetic vision system is broad and excit-

ing. Applications include autonomous robots, security and novelty detection,

prosthetic vision, and human assistance systems. Primate-like machine vision

will undoubtedly play an increasingly important role in the technologies of the

future.
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A. HUMAN TRIALS: ETHICS

ALL APPLICATIONS TO BE TYPED Version current from 1 February 2004

THE AUSTRALIAN NATIONAL UNIVERSITY

HUMAN RESEARCH ETHICS COMMITTEE

APPLICATION FORM

Surname of Researcher:  Dankers
First name/s:  Andrew Alexander
Title (e.g. Ms., Mr., Dr. etc,): Mr

Position Held (staff, postgraduate, undergraduate, etc.): Postgraduate, PhD Candidate

Student or Staff ID no. (if applicable): U3063322

Dept/School/Centre:  Research School of Information Sciences and Engineering,
Dept. Information Engineering.

Mailing address:  B345, lvl 3,  RSISE (Bldg 115), ANU

Telephone: x58685
Fax: x58660
Email: andrew.dankers@anu.edu.au

     PROJECT TITLE:  Comparision of Synthetic Stereo Active Vision Attention System
                                  with Human Attention

Date of this application: Nov 27, 2006
Anticipated start date for project: Jan 8, 2007 Anticipated end date: Feb 28, 2007

1. The researcher/s
Who are the investigators (including assistants) who will conduct the research and what
are their qualification and experience? Please include their Department/School/Centre
(or external institution for external researchers). Students should not include
supervisors at this point unless they are actually participating in the research project as
partner researchers.

Andrew Dankers BSc(phys) BE, ANU: Mr Dankers is an ANU/NICTA postgraduate scholar at the
RSISE, Department of Information Engineering. Mr Dankers’ research focus involves the
development of a biologically inspired synthetic visual attention system, based upon the characteristics
of primate attention.

2. Understanding the national guidelines, the “National Statement on Ethical Conduct in
Research Involving Humans” (1999)
Can the proposer certify that the persons listed in the answer to Question 1 above have
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been fully briefed on appropriate procedures and in particular that they have read and
are familiar with the national guidelines issued by the National Health and Medical
Research Council (the National Statement on Ethical Conduct in Research Involving
Humans) (cited below as the “National Statement”)?  If there are guidelines from any
relevant professional body with which the researcher/s are familiar they should also be
listed below.

Andrew Dankers has read, and is familiar with, the practical implications of the NHMRC National
Statement on Ethical Conduct in Research Involving Humans. Although it is not anticipated that
assistance from additional persons will be required, any additional persons will be required to read the
NHMRC National Statement on Ethical Conduct in Research Involving Humans.

3. Purpose and design of the proposed research

Purpose
(a) Briefly describe the basic purposes of the research proposed (in plain language
intelligible to a non-specialist).

Background
A synthetic  active vision system has been proposed and implemented as the focus of PhD research.
The vision system is able to detect and direct its gaze towards salient visual events occurring in real
scenes in real time. The system has been designed in light of observations of the primate vision
system. It retains a short term memory of attended regions, such that they are not immediately re-
attended, and can be biased for basic visual tasks.

The final contribution  of the work will be to qualitatively  compare the performance of the synthetic
system to that of the primate vision system. We aim to compare timing statistics associated with the
synthetic system observing a scene to that of human subjects observing the same scene.

Desired Human Trial Outcomes
We aim to observe humans observing a controlled dynamic 3D scene such that attentional statistics
may be obtained. Such statistics include:

a) Saccade frequency  - statistics associated with the time between  eye gaze shifts.
b) Non-return inhibition period – once a human has attended an object, they will not attend that

region again for some time.  Statistics associated with this behavior  are desired.
c) Time spent attending scene locations – we hope that the synthetic system spends similar

periods of time fixated upon the visual regions that humans do.  The order of attending
locations is not important. The total time spent at each location is more relevant.

Observing these human parameters should help us tune the synthetic system to best replicate timing
characteristics of human attention.  This will help researchers set parameters in the synthetic system
such as inhibition of return rates, inhibition response field radii, and assess whether synthetic systems
behave similarly to primates upon which they are modelled. We are not interested in determining what
cues were likely to have invited fixation, because we have only defined a reduced  set of basic cues
whereas humans have many cues that contribute to the perception of saliency. We are only interested
in statistical timing parameters such as a), b) and c) above.

Design
(b) Outline the design of the project (in plain language intelligible to a non-specialist).  (If
interviewing people or administering a survey/questionnaire, please attach either a list
of the broad questions you propose to ask, or a copy of the questionnaire.)

The trials will be conducted as follows:
1) Participants will be asked to sign a consent form (Attachment B) and consider completing a brief
questionnaire (Attachment D) and visual acuity test (Attachment E) designed to establish the reliability
of the trial to be conducted.
2) FaceLab, a commercial product from SeeingMachines, will be calibrated for each candidate  and
used to log the participant’s  eye gaze direction. In this manner, we can record the candidates’ gaze
scanpaths. Facelab is a passive system that uses static cameras to record eye gaze.
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3) Participants will be asked to sit in front of a curtain with a 100x100cm window  cut into it, such that
they may observe  the controlled, bounded 3D scene beyond.
4)We will ask the participant to undertake a simple search task  to reduce the effect of
emotional/expectational noise on visual attention. An example visual task would be“find a cherry”.
This may, for example, make the participant more responsive to small, red objects.  We choose simple
tasks that we can also bias the synthetic system towards. We will then introduce random non-iconic
dynamic stimulus into the visual workspace. We may or may not enable the candidate to successfully
perform the task (for example, we may not actually  show a cherry) during a trial.
5) 5 different but similar trials will be logged by FaceLab and simultaneously recorded by video
camera, per participant.
6) Statistics of attentional timing parameters will be determined offline.

Considerations:
1) Repeatability  of trials is highly desirable, but it is not crucial that they are all identical. We will
endeavor to ensure a high degree of similarity (in stimulus locations and appearance timings) across
participants.
2) Stimulus will be non-iconic and may include simple objects like moving coloured balls and Leggo
pieces.  We avoid stimulus that may elicit emotional responses such as a doll – the apparent mood on the
face of a doll, for example, may affect the participant’s attention.

4. Sources of data involving humans
To ensure compliance with privacy legislation the committee needs
to know your sources of information, i.e. where you are obtaining
data involving humans. If you are using individual participants,
tick at (a). If you are accessing personal records held by
government departments or agencies, or by other bodies, e.g.
private sector organisations, please tick and complete the
relevant sections (b), (c) and/or (d) below.

(a) Individual subjects ( ! )

(b) Commonwealth Department/s or agency (specify)* (  )……………………….

(c) State/Territory Department/s or agency (specify* (  )……………………….

(d) Other sources (specify) (  )….…………………….

*Please include an estimate of how many records you expect to access:……………………….

5. Personal identifiable data for medical/health research
Are you obtaining personal identifiable data specifically for
medical/health research that is held by a government or private
sector agency? (The committee needs this information to determine
whether it needs to comply with relevant National Health and
Medical Research Council guidelines relating to privacy
legislation.)

 NO

6. Recruitment
Describe how participants will be recruited for this project.  Indicate how many
participants are likely to be involved, how initial contact will be made, and how
participants will be invited to take part in this project.  A copy of any relevant
correspondence should be attached to this application. Does the recruitment process raise
any privacy issues, e.g. does the researcher plan to access personal information to
identify potential participants without their knowledge or consent?  Describe the steps to
be taken to ensure that participation or refusal to participate will not impair any
existing relationship between participants and researcher or institution involved.
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We aim to conduct human trials using 20-30 subjects. Subjects will be between ages 18 to 50 years. An
email  advertisement (Attachment A) will be sent out to research peers and other personnel at the ANU,
for consideration. Interested persons who respond to the advertisement will be sent a further
information sheet (Attachment C) describing in more detail what to expect and how to get involved. Upon
scheduling a trial, participants will be sent a consent form (Attachment B) that they should read,
complete, and bring to the trial. The consent form will ask participants not to disclose the exact nature of
the trials to other prospective participants who have not yet participated, such that expectational biases
are not induced in prospective participants. Upon attending a trial, participants will first be asked to
answer a brief questionnaire  about their vision (Attachment D), and conduct a brief visual acuity test
(Attachment E) – both of which they may choose to decline and still be permitted to participate.
Participants are not required to have their name associated  with the trial data. Participants may
withdraw from the trials at any stage during the trial, and may request all data associated with the trial
be destroyed.

7. Arrangements for access to identifiable data held by another party
In cases where participants are identified from information held by another party (e.g.
government department, non-governmental organisation, private company, community
association, doctor, hospital) describe the arrangement whereby you will gain access to
this information.  Attach any relevant correspondence.

N/A

8. Vulnerable participants
Will participants include students, children, the mentally ill or others in a dependent
relationship? If so, provide details.

The study will not include students, children, the mentally ill or others in a dependent relationship.

9. Payment
Will payment be made to any participants?  If so, give details of arrangements.

Payment will not be provided to participants.

10. Consent
Describe the consent issues involved in this proposal (see the National Statement, in
particular Section 1.7-12, and other sections relevant to your research). Describe the
procedures to be followed in obtaining the informed consent of participants and/or of
others responsible. Attach any relevant documents such as a consent form, information
sheet, letter of invitation etc.  If you do not propose to obtain written consent (e.g. if
working with non-literate people) give a detailed explanation of the reasons for seeking
oral consent, describe the procedure you intend to adopt, and specify the information to
be provided to participants.  If you have answered YES to Question 8 above please
address any issues of consent and the possibility of coercion.

Consent will be sought from participants prior to the trials to a) ensure that the participant fully
understands what they will be required to do in the assessment, b) to ensure that the participant
understands  what the information they may provide will be used for, and c) to ensure that their
agreement to participate is based on an accurate interpretation of participant requirements.

An email advertisement (Attachment A) will be sent to prospective participants.

Prior to participation, an information sheet (Attachment C) and a consent form (Attachment B) will
be provided to potential participants. The consent form will be returned to the researchers prior to
trial commensement. Immediately prior to the commencement of trials, the purpose of the study
will be again outlined, and the participants will be reminded that they may withdraw from the study
at any time without prejudice, and that all data relating to their participation can be destroyed, at
their request.  Participants are reassured that there are no correct or incorrect reactions to each trial.

At the beginning of the trial, participants will be given ample opportunity to ask any questions they
may have about the study. The researchers will again explain the purpose and nature of the study,
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and check that the participant understands the consent  form and has completed it correctly.
Participants will then be guided through a brief visual health questionnaire  (Attachment D), and a
brief visual acuity eye chart test (Attachment E). This is designed to obtain suitability of data
associated with each participant. Participants are to liberty to decline participation, or further
participation, in the guided questionnaire and/or visual acuity test.

11. Protection of privacy (confidentiality)
Describe the confidentiality issues involving in this proposal. Give details of the
measures that will be adopted to protect confidential information about participants,
both in handling and storing raw research data and in any publications. Blanket
guarantees of confidentiality are not helpful. If the term “confidential” is used in
information provided to participants, a full description of what precisely confidentiality
means in the context of this research should be given. You should be aware that, under
Australian law, any data you collect can potentially be subpoenaed. Depending on the
nature of your research, it may be helpful to qualify promises of confidentiality with
terms such as “as far as possible” or “as far as the law allows”.  [See the National
Statement, in particular Sections 1.19, 18 and Appendix II]

On presenting to the testing session, participants will be assigned a participant number, and all data
associated with a participant will subsequently be identified by that number alone. Participants may
choose to associate their name and contact details with a data number such that they may view their
raw results after participation, or such that they may be contacted to participate in extra trials, if
they so choose.  Such names and/or contact details will be removed from the data set and destroyed
within one month of the completion date of the trials, or beforehand at the request of the
participant.

The investigators will ensure that data obtained during the trials:
• will not be released to anyone outside the study;
• will not be used for purposes other than those given in the consent form; and,
• will be published in statistical summary form such that individuals are not be identifiable.

Raw data, including questionnaire responses, will be kept confidential as far as the law allows. Raw
data will be stored on a password protected computer only as long as is required for statistical
analysis. Thereafter, only statistical summaries will be kept, and the raw data will be destroyed.
Raw data will not be kept for a period longer than one year. Raw data will not be published.

12. Cultural or social considerations
Comment on any cultural or social considerations that may affect the design of the
research. [See the National Statement, in particular Sections 1.2 and 1.19].

This research does not address issues of cultural difference. However, should such issues arise, they
will be considered in an ethical and sensitive way.

13. How the research might impact on participants
Describe and discuss any possible impact of the proposed research on the participants or
their communities that you can foresee. This might include psychological, health, social,
economic or political changes or ramifications. Discuss how you will try to miminise any
impact.  [See the National Statement, in particular Sections 1.3 to 1.6 and Section 1.14]

It is expected that most participants will enjoy the experience of participating.  However, it is
possible that some individuals may find the laboratory based testing unpleasant or tedious. The
researchers will minimise this by providing refreshment breaks as appropriate. Participants will be
reminded during the assessment that they are free to leave at any time. Participants are free to ask
any questions at any stage during the trials, and to seek satisfactory answers.

14. Other ethical and any legal considerations
Comment on any other ethical considerations that are involved in this proposal,
including any potential for legal difficulties to arise for participants.
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N/A

15. Benefits versus risks
Describe the possible benefit/s to be gained from the proposed research. Explain why
these benefits outweigh or justify any possible discomforts and risks to participants. In
framing your explanation make explicit reference to the ethical considerations
mentioned in your answers to previous questions on this form. [See the National Statement,
in particular Sections 1.3-6 and 1.13-14]

 
The knowledge gained from this study will be used to assess the validity of the synthetic visual
attention architecture as a model of primate visual attention.  It will help to assess the performance
of other synthetic visual systems, in terms of statistical similarity to primate attention.

A conceivable risk to participants is that they may become anxious during the trial. We will
endeavour to keep participants as relaxed as possible. The researches will adhere to the applicable
OH&S guidelines associated with the care of persons present on ANU campus. It is not foreseen
that precautions additional to those considered by the applicable ANU OH&S guidelines are
necessary.

We see few risks associated with the trials and are confident that the associated benefits far
outweighs any risk.

16. Handling possible problems arising from the research
Describe the arrangements you have made to handle concerns and complaints by
participants, or emergencies involving participants or researchers.

The information sheet will include the names and phone numbers of researchers to contact about
any research issues and of the Secretary of the Human Research Ethics Committee to contact
concerning ethical complaints.

17. RESEARCH PROTOCOL CHECKLIST

There are some key ethical principles that need to be addressed in your protocol (as an ethics
application is known). In particular the committee needs to see how you have addressed the issue of
informed consent and the issue of confidentiality, i.e. how the identities of participants will be protected
in the raw research data and in published material. The usual way to obtain informed consent is in
writing, by use of a consent form that is signed by the participant and retained by you. Because you
retain the consent form the same information needs to be included in an information sheet that
participants retain. Both the consent form and the information sheet should include your name, contact
details, title and brief description of the project, details on how the identities of participants will be
protected (both when storing the raw research data and in its published form), a statement that
participation is voluntary and participants can withdraw at any time, and contact details for the Human
Research Ethics Committee in case of any ethical concerns. If you do not propose to seek written
consent, you need to explain why oral consent will be sufficient and how you propose to obtain it.

Please tick the relevant boxes below to indicate what has been included in your protocol:

Outline of proposal and purpose Yes  � No  �

Measures to be taken to protect confidentiality Yes  � No  �

Explanation of how written informed consent will be obtained Yes  � No  �

If written consent is not being sought, justification of a verbal consent

procedure is included        Yes  �

Full details on investigators (name, institution, etc.) Yes  � No  �

All researchers on this project are familiar with the national guidelines (National Statement)
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Yes  � No  �

Details re how participants will be recruited Yes  � No  �

Is personal data from a Commonwealth department/agency or private sector organisation being used? 

Yes  � No  �

Details on how cultural and social sensitivities will be addressed Yes  � No  �

Consideration of likely risk to participants (e.g. psychological stress; cultural, social, political or economic

ramifications) Yes  � No  �

Do your research participants include:

Aboriginal or Torres Strait Islander peoples Yes  � No  �

Children and young people (i.e. minors under the age of 18) Yes  � No  �

People with an intellectual or mental impairment Yes  � No  �

People highly dependent on medical case Yes  � No  �

People in dependent or unequal relationships Yes  � No  �

Do you intend to pay participants? Yes  � No  �

Description of method and amount is included Yes  �

Description of clinical facilities (for medical research) Yes  � No  �

Period of research Yes  � No  �

SUPPORTING DOCUMENTATION: The committee requires copies of all relevant

documents

Consent form to be signed by participants Yes  � No  �

Information sheet for participants to retain Yes  � No  �

Dot point list of the points that will be made when seeking verbal consent Yes  �

List of interview questions Yes  � No  �

Copy of questionnaire/s Yes  � No  �

Invitation or introductory letter/s Yes  � No  �

Publicity material (posters etc.) Yes  � No  �

Other (specify) Yes  � No  �

18. SIGNATURES AND UNDERTAKINGS

PROPOSER OF THE RESEARCH

I certify that the above is as accurate a description of my research proposal as possible and
that the research will be conducted in accordance with the National Statement on Ethical
Conduct in Research Involving Humans (version current at time of application). I also agree
to adhere to the conditions of approval stipulated by the ANU Human Research Ethics
Committee (HREC) and will cooperate with HREC monitoring requirements. I agree to
notify the Committee in writing immediately of any significant departures from this
protocol and will not continue the research if ethical approval is withdrawn and will comply
with any special conditions required by the HREC.

Name and title (please print):       Mr Andrew Alexander Dankers
(Proposer of research)

Signed:                                                       Date: 27/11/2006
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ANU SUPERVISOR

Where the proposal is from a student, the ANU Supervisor is asked to
certify the accuracy of the above account.

I certify that I shall provide appropriate supervision to the
student to ensure that the project is undertaken in accordance with
the undertakings above:

Name and title (please print):               Dr. Nick Barnes

(ANU Supervisor)

ANU Department/School/Centre:  ANU Dept. Info Eng / RSISE

Signed:………………………………….. Date: 27/11/2006
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COMMENT ON PROJECT FROM HEAD OF ANU DEPARTMENT/GROUP/CENTRE:

The Head of ANU Department/School/Centre is asked to certify that
this proposal has his/her support:

I certify that:

• I am familiar with this project and endorse its undertakings;

• the resources required to undertake this project are available;
and

• the investigators have the skill and expertise to undertake this
project appropriately.

Any additional comments (optional):

Name and title (please print):……………………………………………….

(Head of ANU Department/Group/Centre)

ANU Department/School/Centre:   ……………………………………………….

Signed:……………………………………. Date:………………..

Applications should be submitted as follows:
(a) 15 hard copies (one master copy with original signatures + 14 photocopies) and all
supporting documentation
PLUS
(b) an identical email version emailed to Human.Ethics.Officer@anu.edu.au.

Hard copies of the completed protocol form, together with all supporting documents, should
be sent to:

The Secretary
Human Research Ethics Committee
Research Services Office
Chancelry 10B

The Australian National University ACT 0200

Tel: 6125-7945
Fax: 6125-4807
Email: Human.Ethics.Officer@anu.edu.au

�  Please ensure that the application includes (a) your signature (b)
signature of Head of ANU School, Department or Centre; and (c)
signature of ANU supervisor (for students).
�  All copies of your application must be secured. Do not send loose
pages.
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List of Attachments:

Attachment A – Advertisement
Attachment B – Consent  form
Attachment C – Information sheet
Attachment D – Brief Questionnaire
Attachment E – Sample Snellen Chart
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Attachment A
Advertisement

Comparing the Performance of a Synthetic Vision System
to Human Performance

Researchers at the Research School of Information Sciences and Engineering
(RSISE) at the Australian National University are seeking volunteers to participate in
experiments designed to observe human attentive reactions to certain dynamic visual
stimulus.

We are looking for participants able to come to the RSISE to participate in the brief
trials. Participation should not require more than 20-30 minutes  per person. Data from
the trials will be used for a statistical comparison between the attentive behaviours of
the synthetic and human  vision systems.

Trials will be conducted in January and February 2007. Volunteers are asked to
express interest in participating by contacting Andrew Dankers by phone at: x58685,
or by email at: andrew.dankers@anu.edu.au. You will be sent an information sheet
that may  answer some of your questions. Any other questions or enquiries welcome!
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Attachment B
Consent Form

CONSENT FORM

I, ____________________________________________ agree to participate in the
research trials aimed to observe statistics associated with the human visual attention.

• I understand that I am free to withdraw from the study at any time without
needing to give any reason.

• I understand that if I withdraw from the study I can choose to have the
information that I have provided destroyed, or I can contribute it to the study.

• I understand that trial data will be stored on a password protected computer at
the Research School of Information Sciences and Engineering at  the
Australian National University.

• I understand that this study has been approved by the Australian National
University Ethics Committee, and that if I have an questions regarding this
study I may contact the researchers:

Andrew Dankers
Research School of Information Sciences and Engineering
The Australian National University ACT 0200

• I understand that if I have any queries about the ethics of this research I can
contact the Australian National University Human Ethics Officer at the ANU
Research Office on (02) 6125 2900.

• I will endeavour not to tell prospective participants the exact nature of the
trials, until they have completed their trial.

Signature:  …………………………………………….     Date:  ………………..

Please return this consent form to [Research Assistant]
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Attachment C
Information Sheet

INFORMATION SHEET

Comparing the Performance of a Synthetic Vision System
to Human Performance

Thankyou for your expression of interest to participate in experiments designed to
observe human attentive reactions to dynamic visual stimulus.  Below is additional
information that may help you to participate.  We hope you are able to attend!

Location
Trials will be conducted in the Vision Lab, level 3 RSISE (Bldg 115), ANU.

What to Expect
We have prepared a small  dynamic 3D scene that we want you to observe.  We may
ask you to perform a basic visual task (like “count any yellow balls that enter the
scene”).  However, we are not interested in the correctness of your answers, or
performance of each task. We are more interested in observing where you
instinctively direct your gaze as novel visual events occur while performing the task

During the trial, you will be seated in front of the scene (it’s a bit like watching a
puppet show!), and your gaze directions will be recorded by an automated eye-
tracking system.

Confidentiality
Participants may withdraw from the trials at any time, and request that data
associated with their trial be destroyed. Before the trials you will be asked to read
and sign a participation consent form.  You will be asked some non-specific yes/no
questions about your vision condition that you may choose not to answer.  You will
also be asked to conduct a brief visual acuity test that you may choose to decline.
The questions and acuity test should take less than a minute. Results will be
associated with a trial number, not your identity.  You may, however, choose to
associate your identity with your trial data if you are interested in viewing your results
at a later date. You may also provide contact details if you wish to be contacted in the
event that we require additional trials. In these events, your name will be kept on file
no longer than one month. All trial data will be kept no longer than one year.
Thereafter, only statistical summaries will be retained.
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Questions
If you have any questions relating to the trials, please don’t  hesitate to ask the
Research Contact listed below.  If you have ethical questions or concerns, you may
contact:

Human Research Ethics Committee
Research Services Office
Chancelry 10B
The Australian National University ACT 0200
Tel: 6125-7945
Fax: 6125-4807
Email: Human.Ethics.Officer@anu.edu.au

Time
Trials should take no longer than 2 minutes each.  We hope participants  can complete
up to 5 such 2-minute trials. Trials will be conducted during January and February
2007.

Confirming Participation
If you would like to participate, please contact the Research Contact and specify a
time that’s best for you!

Research Contact
Andrew Dankers, x58685, andrew.dankers@anu.edu.au

Thankyou!
Andrew
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Attachment  D

Brief Questionnaire

                           TRIAL ID NUMBER  _______

Questionnaire

Thank you for agreeing to participate in our study. This questionnaire provides us with

information that may be used to consider the reliability of trial data.

Section A

1. What is your date of birth? ________________

2. Are you currently taking medication that may cause drowsyness, or that may affect your

vision?

Y / N

3. To your knowledge, do you experience any vision conditions, such as colour blindness,

tunnel vision, short sightedness, or other, that may affect your vision?

Y / N

4. Do you normally wear prescription glasses?

Y / N

5. Please rate your current level of alertness:

(Drowsy)         1        2        3        4        5       (Alert)

Section B

Please read the five Snellen visual acuity chart letters as requested by technician

(Attachment E).

1) Correct / Incorrect

2) Correct / Incorrect

3) Correct / Incorrect

4) Correct / Incorrect

5) Correct / Incorrect
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Attachment  E

Sample Visual Acuity Test Chart  (not  to scale)
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Appendix B

Trial Results

B.1 Human Trials

B.1.1 Individual trial results

B.1.1.1 Pilot 1
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B. TRIAL RESULTS

Figure B.1: Complete scan path, Pilot 1.

Figure B.2: Histogram of velocity magnitudes, Pilot 1 (left). Histogram of dis-

tance weighted velocities, Pilot 1 (right).

326



B.1 Human Trials

Figure B.3: Velocity profile. Velocity magnitude of each frame, Pilot 1.

Figure B.4: Histogram of velocities during periods of no perturbation (left), and

perturbation (right), Pilot 1.

Figure B.5: Smooth pursuit gaze locations, Pilot 1. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

327



B. TRIAL RESULTS

Figure B.6: Saccade gaze locations, Pilot 1. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.7: Histogram of smooth pursuit velocities, Pilot 1. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.8: Histogram of Saccade velocities, Pilot 1. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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Figure B.9: Smooth pursuit durations, Pilot 1. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.10: Histogram of Smooth pursuit durations, Pilot 1. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.11: Smooth pursuit distances, Pilot 1. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).
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Figure B.12: Histogram of smooth pursuit distances, Pilot 1. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.13: Saccade durations, Pilot 1. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.14: Histogram of saccade durations, Pilot 1. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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Figure B.15: Saccade distances, Pilot 1. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.16: Histogram of saccade distances, Pilot 1. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).

Figure B.17: Re-attention period statistics, Pilot 1.
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B.1.1.2 Pilot 2

Figure B.18: Complete scan path, Pilot 2.

Figure B.19: Histogram of velocity magnitudes, Pilot 2 (left). Histogram of

distance weighted velocities, Pilot 2 (right).
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B.1 Human Trials

Figure B.20: Velocity profile. Velocity magnitude of each frame, Pilot 2.

Figure B.21: Histogram of velocities during periods of no perturbation (left), and

perturbation (right), Pilot 2.

Figure B.22: Smooth pursuit gaze locations, Pilot 2. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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Figure B.23: Saccade gaze locations, Pilot 2. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.24: Histogram of smooth pursuit velocities, Pilot 2. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.25: Histogram of Saccade velocities, Pilot 2. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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B.1 Human Trials

Figure B.26: Smooth pursuit durations, Pilot 2. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.27: Histogram of Smooth pursuit durations, Pilot 2. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.28: Smooth pursuit distances, Pilot 2. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).
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Figure B.29: Histogram of smooth pursuit distances, Pilot 2. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.30: Saccade durations, Pilot 2. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.31: Histogram of saccade durations, Pilot 2. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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Figure B.32: Saccade distances, Pilot 2. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.33: Histogram of saccade distances, Pilot 2. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).

Figure B.34: Re-attention period statistics, Pilot 2.
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B.1.1.3 Trial 1

Figure B.35: Complete scan path, Trial 1.

Figure B.36: Histogram of velocity magnitudes, Trial 1 (left). Histogram of

distance weighted velocities, Trial 1 (right).
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B.1 Human Trials

Figure B.37: Velocity profile. Velocity magnitude of each frame, Trial 1.

Figure B.38: Histogram of velocities during periods of no perturbation (left), and

perturbation (right), Trial 1.

Figure B.39: Smooth pursuit gaze locations, Trial 1. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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Figure B.40: Saccade gaze locations, Trial 1. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.41: Histogram of smooth pursuit velocities, Trial 1. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.42: Histogram of Saccade velocities, Trial 1. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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Figure B.43: Smooth pursuit durations, Trial 1. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.44: Histogram of Smooth pursuit durations, Trial 1. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.45: Smooth pursuit distances, Trial 1. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

341



B. TRIAL RESULTS

Figure B.46: Histogram of smooth pursuit distances, Trial 1. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.47: Saccade durations, Trial 1. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.48: Histogram of saccade durations, Trial 1. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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B.1 Human Trials

Figure B.49: Saccade distances, Trial 1. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.50: Histogram of saccade distances, Trial 1. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).

Figure B.51: Re-attention period statistics, Trial 1.
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B.1.1.4 Trial 2

Figure B.52: Complete scan path, Trial 2.

Figure B.53: Histogram of velocity magnitudes, Trial 2 (left). Histogram of

distance weighted velocities, Trial 1 (right).
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B.1 Human Trials

Figure B.54: Velocity profile. Velocity magnitude of each frame, Trial 2.

Figure B.55: Histogram of velocities during periods of no perturbation (left), and

perturbation (right), Trial 2.

Figure B.56: Smooth pursuit gaze locations, Trial 2. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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Figure B.57: Saccade gaze locations, Trial 2. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.58: Histogram of smooth pursuit velocities, Trial 2. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.59: Histogram of Saccade velocities, Trial 2. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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Figure B.60: Smooth pursuit durations, Trial 2. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.61: Histogram of Smooth pursuit durations, Trial 2. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.62: Smooth pursuit distances, Trial 2. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).
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Figure B.63: Histogram of smooth pursuit distances, Trial 2. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.64: Saccade durations, Trial 2. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.65: Histogram of saccade durations, Trial 2. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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Figure B.66: Saccade distances, Trial 2. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.67: Histogram of saccade distances, Trial 2. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).

Figure B.68: Re-attention period statistics, Trial 2.

349



B. TRIAL RESULTS

B.1.1.5 Trial 3

Figure B.69: Complete scan path, Trial 3.

Figure B.70: Histogram of velocity magnitudes, Trial 3 (left). Histogram of

distance weighted velocities, Trial 3 (right).
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B.1 Human Trials

Figure B.71: Velocity profile. Velocity magnitude of each frame, Trial 3.

Figure B.72: Histogram of velocities during periods of no perturbation (left), and

perturbation (right), Trial 3.

Figure B.73: Smooth pursuit gaze locations, Trial 3. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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Figure B.74: Saccade gaze locations, Trial 3. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.75: Histogram of smooth pursuit velocities, Trial 3. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.76: Histogram of Saccade velocities, Trial 3. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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Figure B.77: Smooth pursuit durations, Trial 3. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.78: Histogram of Smooth pursuit durations, Trial 3. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.79: Smooth pursuit distances, Trial 3. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).
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Figure B.80: Histogram of smooth pursuit distances, Trial 3. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.81: Saccade durations, Trial 3. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.82: Histogram of saccade durations, Trial 3. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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Figure B.83: Saccade distances, Trial 3. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.84: Histogram of saccade distances, Trial 3. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).

Figure B.85: Re-attention period statistics, Trial 3.
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B.1.1.6 Trial 4

Figure B.86: Complete scan path, Trial 4.

Figure B.87: Histogram of velocity magnitudes, Trial 4 (left). Histogram of

distance weighted velocities, Trial 1 (right).
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Figure B.88: Velocity profile. Velocity magnitude of each frame, Trial 4.

Figure B.89: Histogram of velocities during periods of no perturbation (left), and

perturbation (right), Trial 4.

Figure B.90: Smooth pursuit gaze locations, Trial 4. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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Figure B.91: Saccade gaze locations, Trial 4. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.92: Histogram of smooth pursuit velocities, Trial 4. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.93: Histogram of Saccade velocities, Trial 4. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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Figure B.94: Smooth pursuit durations, Trial 4. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.95: Histogram of Smooth pursuit durations, Trial 4. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.96: Smooth pursuit distances, Trial 4. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).
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Figure B.97: Histogram of smooth pursuit distances, Trial 4. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.98: Saccade durations, Trial 4. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.99: Histogram of saccade durations, Trial 4. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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Figure B.100: Saccade distances, Trial 4. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.101: Histogram of saccade distances, Trial 4. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).

Figure B.102: Re-attention period statistics, Trial 4.
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B.1.1.7 Trial 5

Figure B.103: Complete scan path, Trial 5.

Figure B.104: Histogram of velocity magnitudes, Trial 5 (left). Histogram of

distance weighted velocities, Trial 5 (right).
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B.1 Human Trials

Figure B.105: Velocity profile. Velocity magnitude of each frame, Trial 5.

Figure B.106: Histogram of velocities during periods of no perturbation (left),

and perturbation (right), Trial 5.

Figure B.107: Smooth pursuit gaze locations, Trial 5. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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Figure B.108: Saccade gaze locations, Trial 5. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.109: Histogram of smooth pursuit velocities, Trial 5. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.110: Histogram of Saccade velocities, Trial 5. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.111: Smooth pursuit durations, Trial 5. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.112: Histogram of Smooth pursuit durations, Trial 5. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.113: Smooth pursuit distances, Trial 5. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).
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Figure B.114: Histogram of smooth pursuit distances, Trial 5. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.115: Saccade durations, Trial 5. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.116: Histogram of saccade durations, Trial 5. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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Figure B.117: Saccade distances, Trial 5. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.118: Histogram of saccade distances, Trial 5. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).

Figure B.119: Re-attention period statistics, Trial 5.
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B.1.1.8 Trial 6

Figure B.120: Complete scan path, Trial 6.

Figure B.121: Histogram of velocity magnitudes, Trial 6 (left). Histogram of

distance weighted velocities, Trial 5 (right).
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B.1 Human Trials

Figure B.122: Velocity profile. Velocity magnitude of each frame, Trial 6.

Figure B.123: Histogram of velocities during periods of no perturbation (left),

and perturbation (right), Trial 6.

Figure B.124: Smooth pursuit gaze locations, Trial 6. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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Figure B.125: Saccade gaze locations, Trial 6. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.126: Histogram of smooth pursuit velocities, Trial 6. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.127: Histogram of Saccade velocities, Trial 6. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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Figure B.128: Smooth pursuit durations, Trial 6. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.129: Histogram of Smooth pursuit durations, Trial 6. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.130: Smooth pursuit distances, Trial 6. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).
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B. TRIAL RESULTS

Figure B.131: Histogram of smooth pursuit distances, Trial 6. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.132: Saccade durations, Trial 6. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.133: Histogram of saccade durations, Trial 6. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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Figure B.134: Saccade distances, Trial 6. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.135: Histogram of saccade distances, Trial 6. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).

Figure B.136: Re-attention period statistics, Trial 6.
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B.1.1.9 Trial 7

Figure B.137: Complete scan path, Trial 7.

Figure B.138: Histogram of velocity magnitudes, Trial 7 (left). Histogram of

distance weighted velocities, Trial 7 (right).
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B.1 Human Trials

Figure B.139: Velocity profile. Velocity magnitude of each frame, Trial 7.

Figure B.140: Histogram of velocities during periods of no perturbation (left),

and perturbation (right), Trial 7.

Figure B.141: Smooth pursuit gaze locations, Trial 7. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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Figure B.142: Saccade gaze locations, Trial 7. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.143: Histogram of smooth pursuit velocities, Trial 7. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.144: Histogram of Saccade velocities, Trial 7. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.145: Smooth pursuit durations, Trial 7. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.146: Histogram of Smooth pursuit durations, Trial 7. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.147: Smooth pursuit distances, Trial 7. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).
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B. TRIAL RESULTS

Figure B.148: Histogram of smooth pursuit distances, Trial 7. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.149: Saccade durations, Trial 7. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.150: Histogram of saccade durations, Trial 7. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.151: Saccade distances, Trial 7. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.152: Histogram of saccade distances, Trial 7. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).

Figure B.153: Re-attention period statistics, Trial 7.
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B. TRIAL RESULTS

B.1.1.10 Trial 8

Figure B.154: Complete scan path, Trial 8.

Figure B.155: Histogram of velocity magnitudes, Trial 8 (left). Histogram of

distance weighted velocities, Trial 5 (right).
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B.1 Human Trials

Figure B.156: Velocity profile. Velocity magnitude of each frame, Trial 8.

Figure B.157: Histogram of velocities during periods of no perturbation (left),

and perturbation (right), Trial 8.

Figure B.158: Smooth pursuit gaze locations, Trial 8. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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B. TRIAL RESULTS

Figure B.159: Saccade gaze locations, Trial 8. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.160: Histogram of smooth pursuit velocities, Trial 8. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.161: Histogram of Saccade velocities, Trial 8. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.162: Smooth pursuit durations, Trial 8. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.163: Histogram of Smooth pursuit durations, Trial 8. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.164: Smooth pursuit distances, Trial 8. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).
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B. TRIAL RESULTS

Figure B.165: Histogram of smooth pursuit distances, Trial 8. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.166: Saccade durations, Trial 8. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.167: Histogram of saccade durations, Trial 8. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.168: Saccade distances, Trial 8. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.169: Histogram of saccade distances, Trial 8. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).

Figure B.170: Re-attention period statistics, Trial 8.
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B. TRIAL RESULTS

B.1.1.11 Trial 9

Figure B.171: Complete scan path, Trial 9.

Figure B.172: Histogram of velocity magnitudes, Trial 9 (left). Histogram of

distance weighted velocities, Trial 9 (right).
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B.1 Human Trials

Figure B.173: Velocity profile. Velocity magnitude of each frame, Trial 9.

Figure B.174: Histogram of velocities during periods of no perturbation (left),

and perturbation (right), Trial 9.

Figure B.175: Smooth pursuit gaze locations, Trial 9. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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B. TRIAL RESULTS

Figure B.176: Saccade gaze locations, Trial 9. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.177: Histogram of smooth pursuit velocities, Trial 9. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.178: Histogram of Saccade velocities, Trial 9. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.179: Smooth pursuit durations, Trial 9. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.180: Histogram of Smooth pursuit durations, Trial 9. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.181: Smooth pursuit distances, Trial 9. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).
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B. TRIAL RESULTS

Figure B.182: Histogram of smooth pursuit distances, Trial 9. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.183: Saccade durations, Trial 9. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.184: Histogram of saccade durations, Trial 9. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.185: Saccade distances, Trial 9. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.186: Histogram of saccade distances, Trial 9. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).

Figure B.187: Re-attention period statistics, Trial 9.
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B.1.1.12 Trial 10

Figure B.188: Complete scan path, Trial 10.

Figure B.189: Histogram of velocity magnitudes, Trial 10 (left). Histogram of

distance weighted velocities, Trial 10 (right).
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B.1 Human Trials

Figure B.190: Velocity profile. Velocity magnitude of each frame, Trial 10.

Figure B.191: Histogram of velocities during periods of no perturbation (left),

and perturbation (right), Trial 10.

Figure B.192: Smooth pursuit gaze locations, Trial 10. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B. TRIAL RESULTS

Figure B.193: Saccade gaze locations, Trial 10. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.194: Histogram of smooth pursuit velocities, Trial 10. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.195: Histogram of Saccade velocities, Trial 10. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.196: Smooth pursuit durations, Trial 10. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.197: Histogram of Smooth pursuit durations, Trial 10. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.198: Smooth pursuit distances, Trial 10. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).
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B. TRIAL RESULTS

Figure B.199: Histogram of smooth pursuit distances, Trial 10. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.200: Saccade durations, Trial 10. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.201: Histogram of saccade durations, Trial 10. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.202: Saccade distances, Trial 10. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.203: Histogram of saccade distances, Trial 10. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).

Figure B.204: Re-attention period statistics, Trial 10.
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B. TRIAL RESULTS

B.1.1.13 Trial 11

Figure B.205: Complete scan path, Trial 11.

Figure B.206: Histogram of velocity magnitudes, Trial 11 (left). Histogram of

distance weighted velocities, Trial 11 (right).
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B.1 Human Trials

Figure B.207: Velocity profile. Velocity magnitude of each frame, Trial 11.

Figure B.208: Histogram of velocities during periods of no perturbation (left),

and perturbation (right), Trial 11.

Figure B.209: Smooth pursuit gaze locations, Trial 11. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B. TRIAL RESULTS

Figure B.210: Saccade gaze locations, Trial 11. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.211: Histogram of smooth pursuit velocities, Trial 11. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.212: Histogram of Saccade velocities, Trial 11. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.213: Smooth pursuit durations, Trial 11. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.214: Histogram of Smooth pursuit durations, Trial 11. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.215: Smooth pursuit distances, Trial 11. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).
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B. TRIAL RESULTS

Figure B.216: Histogram of smooth pursuit distances, Trial 11. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.217: Saccade durations, Trial 11. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.218: Histogram of saccade durations, Trial 11. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.219: Saccade distances, Trial 11. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.220: Histogram of saccade distances, Trial 11. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).

Figure B.221: Re-attention period statistics, Trial 11.
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B. TRIAL RESULTS

B.1.1.14 Trial 12

Figure B.222: Complete scan path, Trial 12.

Figure B.223: Histogram of velocity magnitudes, Trial 12 (left). Histogram of

distance weighted velocities, Trial 12 (right).
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B.1 Human Trials

Figure B.224: Velocity profile. Velocity magnitude of each frame, Trial 12.

Figure B.225: Histogram of velocities during periods of no perturbation (left),

and perturbation (right), Trial 12.

Figure B.226: Smooth pursuit gaze locations, Trial 12. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B. TRIAL RESULTS

Figure B.227: Saccade gaze locations, Trial 12. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.228: Histogram of smooth pursuit velocities, Trial 12. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.229: Histogram of Saccade velocities, Trial 12. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.230: Smooth pursuit durations, Trial 12. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.231: Histogram of Smooth pursuit durations, Trial 12. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.232: Smooth pursuit distances, Trial 12. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).
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B. TRIAL RESULTS

Figure B.233: Histogram of smooth pursuit distances, Trial 12. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.234: Saccade durations, Trial 12. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.235: Histogram of saccade durations, Trial 12. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.236: Saccade distances, Trial 12. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.237: Histogram of saccade distances, Trial 12. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).

Figure B.238: Re-attention period statistics, Trial 12.
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B. TRIAL RESULTS

B.1.1.15 Trial 13

Figure B.239: Complete scan path, Trial 13.

Figure B.240: Histogram of velocity magnitudes, Trial 13 (left). Histogram of

distance weighted velocities, Trial 13 (right).
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B.1 Human Trials

Figure B.241: Velocity profile. Velocity magnitude of each frame, Trial 13.

Figure B.242: Histogram of velocities during periods of no perturbation (left),

and perturbation (right), Trial 13.

Figure B.243: Smooth pursuit gaze locations, Trial 13. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B. TRIAL RESULTS

Figure B.244: Saccade gaze locations, Trial 13. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.245: Histogram of smooth pursuit velocities, Trial 13. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.246: Histogram of Saccade velocities, Trial 13. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.247: Smooth pursuit durations, Trial 13. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.248: Histogram of Smooth pursuit durations, Trial 13. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.249: Smooth pursuit distances, Trial 13. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).
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B. TRIAL RESULTS

Figure B.250: Histogram of smooth pursuit distances, Trial 13. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.251: Saccade durations, Trial 13. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.252: Histogram of saccade durations, Trial 13. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.253: Saccade distances, Trial 13. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.254: Histogram of saccade distances, Trial 13. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).

Figure B.255: Re-attention period statistics, Trial 13.
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B. TRIAL RESULTS

B.1.1.16 Trial 14

Figure B.256: Complete scan path, Trial 14.

Figure B.257: Histogram of velocity magnitudes, Trial 14 (left). Histogram of

distance weighted velocities, Trial 14 (right).
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B.1 Human Trials

Figure B.258: Velocity profile. Velocity magnitude of each frame, Trial 14.

Figure B.259: Histogram of velocities during periods of no perturbation (left),

and perturbation (right), Trial 14.

Figure B.260: Smooth pursuit gaze locations, Trial 14. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B. TRIAL RESULTS

Figure B.261: Saccade gaze locations, Trial 14. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.262: Histogram of smooth pursuit velocities, Trial 14. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.263: Histogram of Saccade velocities, Trial 14. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.264: Smooth pursuit durations, Trial 14. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.265: Histogram of Smooth pursuit durations, Trial 14. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.266: Smooth pursuit distances, Trial 14. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).
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B. TRIAL RESULTS

Figure B.267: Histogram of smooth pursuit distances, Trial 14. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.268: Saccade durations, Trial 14. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.269: Histogram of saccade durations, Trial 14. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.270: Saccade distances, Trial 14. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.271: Histogram of saccade distances, Trial 14. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).

Figure B.272: Re-attention period statistics, Trial 14.
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B. TRIAL RESULTS

B.1.1.17 Trial 15

Figure B.273: Complete scan path, Trial 15.

Figure B.274: Histogram of velocity magnitudes, Trial 15 (left). Histogram of

distance weighted velocities, Trial 15 (right).
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B.1 Human Trials

Figure B.275: Velocity profile. Velocity magnitude of each frame, Trial 15.

Figure B.276: Histogram of velocities during periods of no perturbation (left),

and perturbation (right), Trial 15.

Figure B.277: Smooth pursuit gaze locations, Trial 15. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B. TRIAL RESULTS

Figure B.278: Saccade gaze locations, Trial 15. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.279: Histogram of smooth pursuit velocities, Trial 15. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.280: Histogram of Saccade velocities, Trial 15. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.281: Smooth pursuit durations, Trial 15. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.282: Histogram of Smooth pursuit durations, Trial 15. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.283: Smooth pursuit distances, Trial 15. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).
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B. TRIAL RESULTS

Figure B.284: Histogram of smooth pursuit distances, Trial 15. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.285: Saccade durations, Trial 15. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.286: Histogram of saccade durations, Trial 15. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.287: Saccade distances, Trial 15. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.288: Histogram of saccade distances, Trial 15. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).

Figure B.289: Re-attention period statistics, Trial 15.
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B. TRIAL RESULTS

B.1.1.18 Trial 16

Figure B.290: Complete scan path, Trial 16.

Figure B.291: Histogram of velocity magnitudes, Trial 16 (left). Histogram of

distance weighted velocities, Trial 16 (right).

428



B.1 Human Trials

Figure B.292: Velocity profile. Velocity magnitude of each frame, Trial 16.

Figure B.293: Histogram of velocities during periods of no perturbation (left),

and perturbation (right), Trial 16.

Figure B.294: Smooth pursuit gaze locations, Trial 16. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B. TRIAL RESULTS

Figure B.295: Saccade gaze locations, Trial 16. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.296: Histogram of smooth pursuit velocities, Trial 16. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.297: Histogram of Saccade velocities, Trial 16. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.298: Smooth pursuit durations, Trial 16. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.299: Histogram of Smooth pursuit durations, Trial 16. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.300: Smooth pursuit distances, Trial 16. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).
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B. TRIAL RESULTS

Figure B.301: Histogram of smooth pursuit distances, Trial 16. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.302: Saccade durations, Trial 16. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.303: Histogram of saccade durations, Trial 16. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.304: Saccade distances, Trial 16. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.305: Histogram of saccade distances, Trial 16. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).

Figure B.306: Re-attention period statistics, Trial 16.
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B. TRIAL RESULTS

B.1.1.19 Trial 17

Figure B.307: Complete scan path, Trial 17.

Figure B.308: Histogram of velocity magnitudes, Trial 17 (left). Histogram of

distance weighted velocities, Trial 17 (right).
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B.1 Human Trials

Figure B.309: Velocity profile. Velocity magnitude of each frame, Trial 17.

Figure B.310: Histogram of velocities during periods of no perturbation (left),

and perturbation (right), Trial 17.

Figure B.311: Smooth pursuit gaze locations, Trial 17. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).

435



B. TRIAL RESULTS

Figure B.312: Saccade gaze locations, Trial 17. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.313: Histogram of smooth pursuit velocities, Trial 17. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.314: Histogram of Saccade velocities, Trial 17. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.315: Smooth pursuit durations, Trial 17. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.316: Histogram of Smooth pursuit durations, Trial 17. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.317: Smooth pursuit distances, Trial 17. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).
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B. TRIAL RESULTS

Figure B.318: Histogram of smooth pursuit distances, Trial 17. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.319: Saccade durations, Trial 17. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.320: Histogram of saccade durations, Trial 17. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.321: Saccade distances, Trial 17. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.322: Histogram of saccade distances, Trial 17. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).

Figure B.323: Re-attention period statistics, Trial 17.
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B. TRIAL RESULTS

B.1.1.20 Trial 18

Figure B.324: Complete scan path, Trial 18.

Figure B.325: Histogram of velocity magnitudes, Trial 18 (left). Histogram of

distance weighted velocities, Trial 18 (right).
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B.1 Human Trials

Figure B.326: Velocity profile. Velocity magnitude of each frame, Trial 18.

Figure B.327: Histogram of velocities during periods of no perturbation (left),

and perturbation (right), Trial 18.

Figure B.328: Smooth pursuit gaze locations, Trial 18. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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Figure B.329: Saccade gaze locations, Trial 18. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.330: Histogram of smooth pursuit velocities, Trial 18. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.331: Histogram of Saccade velocities, Trial 18. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.332: Smooth pursuit durations, Trial 18. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.333: Histogram of Smooth pursuit durations, Trial 18. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.334: Smooth pursuit distances, Trial 18. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).
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Figure B.335: Histogram of smooth pursuit distances, Trial 18. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.336: Saccade durations, Trial 18. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.337: Histogram of saccade durations, Trial 18. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.338: Saccade distances, Trial 18. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.339: Histogram of saccade distances, Trial 18. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).

Figure B.340: Re-attention period statistics, Trial 18.

445



B. TRIAL RESULTS

B.1.1.21 Trial 19

Figure B.341: Complete scan path, Trial 19.

Figure B.342: Histogram of velocity magnitudes, Trial 19 (left). Histogram of

distance weighted velocities, Trial 19 (right).
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B.1 Human Trials

Figure B.343: Velocity profile. Velocity magnitude of each frame, Trial 19.

Figure B.344: Histogram of velocities during periods of no perturbation (left),

and perturbation (right), Trial 19.

Figure B.345: Smooth pursuit gaze locations, Trial 19. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B. TRIAL RESULTS

Figure B.346: Saccade gaze locations, Trial 19. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.347: Histogram of smooth pursuit velocities, Trial 19. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.348: Histogram of Saccade velocities, Trial 19. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.349: Smooth pursuit durations, Trial 19. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.350: Histogram of Smooth pursuit durations, Trial 19. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.351: Smooth pursuit distances, Trial 19. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).
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B. TRIAL RESULTS

Figure B.352: Histogram of smooth pursuit distances, Trial 19. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.353: Saccade durations, Trial 19. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.354: Histogram of saccade durations, Trial 19. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.355: Saccade distances, Trial 19. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.356: Histogram of saccade distances, Trial 19. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).

Figure B.357: Re-attention period statistics, Trial 19.
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B. TRIAL RESULTS

B.1.1.22 Trial 20

Figure B.358: Complete scan path, Trial 20.

Figure B.359: Histogram of velocity magnitudes, Trial 20 (left). Histogram of

distance weighted velocities, Trial 20 (right).
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B.1 Human Trials

Figure B.360: Velocity profile. Velocity magnitude of each frame, Trial 20.

Figure B.361: Histogram of velocities during periods of no perturbation (left),

and perturbation (right), Trial 20.

Figure B.362: Smooth pursuit gaze locations, Trial 20. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B. TRIAL RESULTS

Figure B.363: Saccade gaze locations, Trial 20. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.364: Histogram of smooth pursuit velocities, Trial 20. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.365: Histogram of Saccade velocities, Trial 20. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.366: Smooth pursuit durations, Trial 20. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.367: Histogram of Smooth pursuit durations, Trial 20. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.368: Smooth pursuit distances, Trial 20. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).
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B. TRIAL RESULTS

Figure B.369: Histogram of smooth pursuit distances, Trial 20. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.370: Saccade durations, Trial 20. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.371: Histogram of saccade durations, Trial 20. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.1 Human Trials

Figure B.372: Saccade distances, Trial 20. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.373: Histogram of saccade distances, Trial 20. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).

Figure B.374: Re-attention period statistics, Trial 20.
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B. TRIAL RESULTS

B.1.2 Group Statistics

B.1.2.1 Processing Script Output

Table B.1: Extracted parameters, human trials (1 of 3).

Param P1 P2 T1 T2 T3 T4 T5

Spvp 0.476394 0.537571 0.483943 0.512705 0.635670 0.448225 0.476246

Spvnp 0.484677 0.543956 0.470061 0.475582 0.606783 0.434325 0.490644

Scvp 6.797215 7.028750 5.380098 5.936850 6.614626 5.086491 6.778406

Scvnp 7.168081 7.343113 6.212796 6.365770 6.740767 5.015597 7.360287

Scl 0.265968 0.263172 0.196104 0.170443 0.228847 0.142702 0.278075

Spl 0.102800 0.130395 0.054773 0.067970 0.106074 0.073668 0.090951

Scf 289 182 282 358 194 109 163

Spf 8068 9166 7411 7421 6461 7552 6216

Sc% 3.582053 1.985599 3.805155 4.824148 3.002631 1.443326 2.622265

Sptp 86.038462 88.407407 45.702703 42.742857 48.541667 64.318182 57.958333

Sctp 2.187500 2.000000 1.640000 1.833333 1.857143 1.636364 2.166667

Sclp 0.247815 0.234292 0.147056 0.181404 0.204738 0.138722 0.244776

Splp 0.115915 0.161802 0.077886 0.112763 0.102770 0.072543 0.099557

Scfp 35 32 41 44 26 18 26

Spfp 2237 2387 1691 1496 1165 1415 1391

Scp% 1.564595 1.340595 2.424601 2.941176 2.231760 1.272085 1.869159

Sptnp 46.269841 83.679012 43.325758 28.209524 56.935484 94.400000 67.000000

Sctnp 2.228070 2.173913 1.991736 1.593909 2.024096 1.716981 2.322034

Sclnp 0.266183 0.266055 0.206237 0.169108 0.227399 0.143528 0.284847

Splnp 0.092618 0.118117 0.051856 0.056486 0.098408 0.058626 0.074130

Scfnp 254 150 241 314 168 91 137

Spfnp 5831 6779 5720 5925 5296 6137 4825

Scnp% 4.356028 2.212716 4.213287 5.299578 3.172205 1.482809 2.839378

Scpr 2.784124 1.650548 1.737724 1.801857 1.421392 1.165653 1.519067

Sclr 1.074120 1.135571 1.402441 0.932217 1.110682 1.034642 1.163707

Splr 0.799019 0.730010 0.665801 0.500928 0.957561 0.808156 0.744593

Sctr 1.018546 1.086957 1.214473 0.869405 1.089898 1.049266 1.071708

Sptr 0.537781 0.946516 0.947991 0.659982 1.172920 1.467703 1.156003

Scvr 1.054561 1.044725 1.154774 1.072247 1.019070 0.986062 1.085843

Spvr 1.017385 1.011877 0.971315 0.927594 0.954557 0.968989 1.030232

Prav 4.725 4.35 4.6 4.825 3.775 6.0 5.85

Prsd 0.34 0.35 0.52 0.40 0.48 0.18 0.38

T 132 119 118 122 103 112 96

Age 28 29 32 26 25 26 30
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B.1 Human Trials

Table B.2: Extracted parameters, human trials (2 of 3).

Param T6 T7 T8 T9 T10 T11 T12

Spvp 0.295954 0.377642 0.513933 0.714394 0.626854 0.351033 0.343403

Spvnp 0.308856 0.360486 0.532035 0.654225 0.633180 0.339045 0.357335

Scvp 6.282551 6.171099 6.108873 7.661773 8.826044 13.398437 6.283213

Scvnp 6.570229 9.148609 6.752817 10.165976 15.732483 32.566405 7.224471

Scl 0.221303 0.323260 0.230835 0.313068 0.580876 1.681185 0.282256

Spl 0.060289 0.085546 0.103825 0.058297 0.121427 0.129064 0.092076

Scf 126 136 203 288 281 151 112

Spf 7079 8006 6565 8786 7384 7371 7053

Sc% 1.779912 1.698726 3.092155 3.277942 3.805525 2.048569 1.587977

Sptp 61.150000 59.850000 52.906977 41.593750 57.902439 72.809524 90.684211

Sctp 2.000000 1.750000 2.064516 1.450000 2.931034 2.500000 2.000000

Sclp 0.209418 0.179990 0.210198 0.185160 0.431157 0.558268 0.209440

Splp 0.072526 0.085483 0.098626 0.083659 0.116613 0.093650 0.086653

Scfp 16 14 64 29 85 25 14

Spfp 1223 1197 2275 1331 2374 1529 1723

Scp% 1.308258 1.169591 2.813187 2.178813 3.580455 1.635056 0.812536

Sptnp 87.388060 101.611940 54.987179 51.406897 54.445652 126.978261 100.547170

Sctnp 2.037037 2.259259 2.138462 1.962121 2.419753 3.600000 2.450000

Sclnp 0.223063 0.344485 0.240677 0.332448 0.634479 1.953984 0.294999

Splnp 0.052493 0.093731 0.092262 0.057455 0.112225 0.105982 0.081818

Scfnp 110 122 139 259 196 126 98

Spfnp 5856 6809 4290 7455 5010 5842 5330

Scnp% 1.878415 1.791746 3.240093 3.474178 3.912176 2.156796 1.838649

Scpr 1.435814 1.531943 1.151752 1.594528 1.092648 1.319096 2.262852

Sclr 1.065156 1.913906 1.145004 1.795468 1.471571 3.500082 1.408511

Splr 0.723783 1.096498 0.935471 0.686773 0.962371 1.131682 0.944198

Sctr 1.018519 1.291005 1.035817 1.353187 0.825563 1.440000 1.225000

Sptr 1.429077 1.697777 1.039318 1.235928 0.940300 1.743979 1.108762

Scvr 1.045790 1.482493 1.105411 1.326844 1.782507 2.430612 1.149805

Spvr 1.043595 0.954570 1.035222 0.915776 1.010091 0.965848 1.040573

Prav 5.875 5.925 9.775 3.85 10.375 4.1 4.125

Prsd 0.26 0.56 1.13 0.17 0.76 0.39 0.17

T 112 118 100 143 106 110 110

Age 53 31 26 47 26 33 31
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B. TRIAL RESULTS

Table B.3: Extracted parameters, human trials (3 of 3).

Param T13 T14 T15 T16 T17 T18 T19 T20

Spvp 0.369853 0.340640 0.956269 0.571606 0.291247 0.368432 0.656070 0.560402

Spvnp 0.397492 0.316563 0.923015 0.653905 0.293808 0.327663 0.636751 0.497662

Scvp 6.401014 4.797172 8.963861 5.256359 6.477056 4.810778 6.360418 6.935337

Scvnp 7.000278 6.789544 8.722185 6.382642 6.921927 4.716970 6.557405 7.095826

Scl 0.237515 0.239663 0.299018 0.144104 0.227507 0.169224 0.222205 0.235565

Spl 0.095461 0.073853 0.152817 0.051045 0.108080 0.076366 0.110198 0.107614

Scf 207 74 437 625 46 214 135 100

Spf 7285 7181 7467 6608 7203 7862 7298 7600

Sc% 2.841455 1.030497 5.852417 9.458232 0.638623 2.721954 1.849822 1.315789

Sptp 49.677419 109.222222 31.724638 16.623529 133.882353 55.833333 68.153846 95.300000

Sctp 2.105263 2.000000 2.017544 1.266667 2.000000 2.100000 1.928571 2.000000

Sclp 0.224597 0.159906 0.301416 0.110968 0.215902 0.168377 0.204442 0.231178

Splp 0.076836 0.092113 0.168399 0.051147 0.109561 0.076056 0.108809 0.116596

Scfp 40 14 115 95 10 63 27 18

Spfp 1540 1966 2189 1413 2276 2345 1772 1906

Scp% 2.597403 0.712106 5.253540 6.723284 0.439367 2.686567 1.523702 0.944386

Sptnp 61.106383 137.210526 31.041176 13.455959 164.200000 67.268293 85.000000 105.425926

Sctnp 2.061728 2.307692 2.050955 1.417112 2.000000 2.157143 2.076923 2.000000

Sclnp 0.240545 0.261136 0.298147 0.150749 0.230731 0.169586 0.226987 0.236528

Splnp 0.084115 0.053749 0.140224 0.050604 0.087533 0.067844 0.100205 0.083747

Scfnp 167 60 322 530 36 151 108 82

Spfnp 5745 5215 5278 5195 4927 5517 5526 5694

Scnp% 2.906876 1.150527 6.100796 10.202117 0.730668 2.736995 1.954397 1.440112

Scpr 1.119147 1.615669 1.161273 1.517431 1.663000 1.018770 1.282664 1.524919

Sclr 1.071005 1.633064 0.989153 1.358493 1.068684 1.007181 1.110276 1.023141

Splr 1.094733 0.583515 0.832685 0.989380 0.798938 0.892031 0.920927 0.718261

Sctr 0.979321 1.153846 1.016561 1.118773 1.000000 1.027211 1.076923 1.000000

Sptr 1.230064 1.256251 0.978456 0.809453 1.226450 1.204805 1.247178 1.106253

Scvr 1.093620 1.415322 0.973039 1.214271 1.068684 0.980501 1.030971 1.023141

Spvr 1.074729 0.929321 0.965226 1.143978 1.008793 0.889345 0.970554 0.888043

Prav 3.1 6.35 3.075 7.4 4.9625 3.425 5.65 4.475

Prsd 0.48 0.45 0.57 0.4 0.39 0.29 0.54 0.17

T 108 110 120 108 110 109 114 132

Age 28 36 26 41 23 31 25 28
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B.1 Human Trials

B.1.2.2 Normality Checks

Figure B.375: Scr parameter. Histogram (left), and normality plot (right).

Figure B.376: Sclr parameter. Histogram (left), and normality plot (right).
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B. TRIAL RESULTS

Figure B.377: Sctr parameter. Histogram (left), and normality plot (right).

Figure B.378: Scvr parameter. Histogram (left), and normality plot (right).
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B.1 Human Trials

Figure B.379: Splr parameter. Histogram (left), and normality plot (right).

Figure B.380: Sptr parameter. Histogram (left), and normality plot (right).
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B. TRIAL RESULTS

Figure B.381: Spvr parameter. Histogram (left), and normality plot (right).

Figure B.382: Pr parameter. Histogram (left), and normality plot (right).
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B.1 Human Trials

B.1.2.3 Bootstrapping

Figure B.383: Scr parameter.

Figure B.384: Sclr parameter.
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B. TRIAL RESULTS

Figure B.385: Sctr parameter.

Figure B.386: Scvr parameter.
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B.1 Human Trials

Figure B.387: Splr parameter.

Figure B.388: Sptr parameter.
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B. TRIAL RESULTS

Figure B.389: Spvr parameter.

Figure B.390: Pr parameter.
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B.2 Synthetic Trials

B.2 Synthetic Trials

B.2.1 Individual Trials
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B. TRIAL RESULTS

B.2.1.1 Trial 1

Figure B.391: Complete scan path, Trial 1.

Figure B.392: Histogram of velocity magnitudes, Trial 1 (left). Histogram of

distance weighted velocities, Trial 1 (right).
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B.2 Synthetic Trials

Figure B.393: Velocity profile. Velocity magnitude of each frame, Trial 1.

Figure B.394: Histogram of velocities during periods of no perturbation (left),

and perturbation (right), Trial 1.

Figure B.395: Smooth pursuit gaze locations, Trial 1. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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B. TRIAL RESULTS

Figure B.396: Saccade gaze locations, Trial 1. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.397: Histogram of smooth pursuit velocities, Trial 1. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.398: Histogram of Saccade velocities, Trial 1. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.2 Synthetic Trials

Figure B.399: Smooth pursuit durations, Trial 1. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.400: Histogram of Smooth pursuit durations, Trial 1. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.401: Smooth pursuit distances, Trial 1. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).
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B. TRIAL RESULTS

Figure B.402: Histogram of smooth pursuit distances, Trial 1. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.403: Saccade distances, Trial 1. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.404: Histogram of saccade distances, Trial 1. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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B.2 Synthetic Trials

Figure B.405: Re-attention period statistics, Trial 1.
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B. TRIAL RESULTS

B.2.1.2 Trial 2

Figure B.406: Complete scan path, Trial 2.

Figure B.407: Histogram of velocity magnitudes, Trial 2 (left). Histogram of

distance weighted velocities, Trial 1 (right).
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B.2 Synthetic Trials

Figure B.408: Velocity profile. Velocity magnitude of each frame, Trial 2.

Figure B.409: Histogram of velocities during periods of no perturbation (left),

and perturbation (right), Trial 2.

Figure B.410: Smooth pursuit gaze locations, Trial 2. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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B. TRIAL RESULTS

Figure B.411: Saccade gaze locations, Trial 2. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.412: Histogram of smooth pursuit velocities, Trial 2. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.413: Histogram of Saccade velocities, Trial 2. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.2 Synthetic Trials

Figure B.414: Smooth pursuit durations, Trial 2. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.415: Histogram of Smooth pursuit durations, Trial 2. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.416: Smooth pursuit distances, Trial 2. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).
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B. TRIAL RESULTS

Figure B.417: Histogram of smooth pursuit distances, Trial 2. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.418: Saccade distances, Trial 2. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.419: Histogram of saccade distances, Trial 2. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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B.2 Synthetic Trials

Figure B.420: Re-attention period statistics, Trial 2.
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B. TRIAL RESULTS

B.2.1.3 Trial 3

Figure B.421: Complete scan path, Trial 3.

Figure B.422: Histogram of velocity magnitudes, Trial 3 (left). Histogram of

distance weighted velocities, Trial 3 (right).
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B.2 Synthetic Trials

Figure B.423: Velocity profile. Velocity magnitude of each frame, Trial 3.

Figure B.424: Histogram of velocities during periods of no perturbation (left),

and perturbation (right), Trial 3.

Figure B.425: Smooth pursuit gaze locations, Trial 3. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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B. TRIAL RESULTS

Figure B.426: Saccade gaze locations, Trial 3. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.427: Histogram of smooth pursuit velocities, Trial 3. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.428: Histogram of Saccade velocities, Trial 3. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.2 Synthetic Trials

Figure B.429: Smooth pursuit durations, Trial 3. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.430: Histogram of Smooth pursuit durations, Trial 3. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.431: Smooth pursuit distances, Trial 3. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).
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B. TRIAL RESULTS

Figure B.432: Histogram of smooth pursuit distances, Trial 3. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.433: Saccade distances, Trial 3. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.434: Histogram of saccade distances, Trial 3. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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B.2 Synthetic Trials

Figure B.435: Re-attention period statistics, Trial 3.
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B. TRIAL RESULTS

B.2.1.4 Trial 4

Figure B.436: Complete scan path, Trial 4.

Figure B.437: Histogram of velocity magnitudes, Trial 4 (left). Histogram of

distance weighted velocities, Trial 1 (right).
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B.2 Synthetic Trials

Figure B.438: Velocity profile. Velocity magnitude of each frame, Trial 4.

Figure B.439: Histogram of velocities during periods of no perturbation (left),

and perturbation (right), Trial 4.

Figure B.440: Smooth pursuit gaze locations, Trial 4. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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B. TRIAL RESULTS

Figure B.441: Saccade gaze locations, Trial 4. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.442: Histogram of smooth pursuit velocities, Trial 4. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.443: Histogram of Saccade velocities, Trial 4. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation pe-

riods (right).
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B.2 Synthetic Trials

Figure B.444: Smooth pursuit durations, Trial 4. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

Figure B.445: Histogram of Smooth pursuit durations, Trial 4. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.446: Smooth pursuit distances, Trial 4. Over entire trial (left), during

non-perturbation periods (middle), and during perturbation periods (right).

491



B. TRIAL RESULTS

Figure B.447: Histogram of smooth pursuit distances, Trial 4. Over entire trial

(left), during non-perturbation periods (middle), and during perturbation periods

(right).

Figure B.448: Saccade distances, Trial 4. Over entire trial (left), during non-

perturbation periods (middle), and during perturbation periods (right).

Figure B.449: Histogram of saccade distances, Trial 4. Over entire trial (left), dur-

ing non-perturbation periods (middle), and during perturbation periods (right).
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B.2 Synthetic Trials

Figure B.450: Re-attention period statistics, Trial 4.
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B. TRIAL RESULTS

B.2.2 Group Statistics

B.2.2.1 Processing Script Output

Table B.4: Extracted parameters, synthetic trials.

Param S1 S2 S3 S4

Spvp 1.298856 2.013923 1.741268 3.665578

Spvnp 0.615771 0.990874 0.973078 2.773834

Scvp 31.553287 22.700747 25.823510 26.807705

Scvnp 28.509815 25.715175 26.616577 28.999305

Scl 10.056636 8.028029 8.329611 9.263824

Spl 2.030133 1.961543 1.947704 3.150480

Scf 33.582401 40.772499 39.065098 46.388102

Spf 145.568399 230.463301 239.910502 180.944398

Sc% 18.745325 15.032123 14.003052 20.405398

Sptp 1.089046 1.003941 1.107530 1.197154

Sctp 0.300003 0.204587 0.194662 0.232634

Sclp 10.132018 5.284343 5.048391 7.072878

Splp 2.263494 2.032493 2.157840 3.876390

Scfp 10.500100 9.820199 6.618500 8.142201

Spfp 50.096099 59.232501 52.053900 55.069099

Scp% 17.327985 14.221311 11.280432 12.880926

Sptnp 1.164296 1.630770 1.707787 0.946431

Sctnp 0.334526 0.332820 0.334501 0.316082

Sclnp 10.018398 9.444125 1.9.479729 9.897569

Splnp 1.329795 1.510686 1.397552 2.378282

Scfnp 23.082300 30.952300 32.446598 38.245901

Spfnp 95.472300 171.230800 187.856602 125.875299

Scnp% 19.469763 15.309044 14.728155 23.303450

Sptr 1.069097 1.624368 1.541978 0.790567

Splr 0.587497 0.743268 0.647662 0.613530

Sclr 0.988786 1.787190 1.877772 1.399369

Spvr 0.474087 0.492012 0.558833 0.756725

Scvr 0.903545 1.132790 1.030711 1.081753

Scpr 1.123602 1.076486 1.305637 1.809144

Prav 4.825 6.425 6 3.75

Prsd 0.5057997 0.60207973 0.46904158 0.66080759

T 155 218 227 203
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B.2 Synthetic Trials

B.2.2.2 Bootstrapping

Figure B.451: Scr parameter.

Figure B.452: Sclr parameter.
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B. TRIAL RESULTS

Figure B.453: Scvr parameter.

Figure B.454: Splr parameter.

Figure B.455: Sptr parameter.
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B.2 Synthetic Trials

Figure B.456: Spvr parameter.

Figure B.457: Spvr parameter.
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Appendix C

Demonstration Footage

C.1 DVD Index

The following directory structure exists in Appendix C on the accompanying

DVD:

Chapter 1 - Introduction (no movies)

Chapter 2 - Primate Vision System (no movies)

Chapter 3 - Synthetic Primate Vision System (no movies)

Chapter 4 - Active Vision Platform

Chapter 5 - Active Rectification

Chapter 6 - Spatial Perception

Chapter 7 - Coordinated Fixation

Chapter 8 - Active Attention

Chapter 9 - Human Trials

Chapter 10 - Synthetic Trials

The above directories are populated as follows:
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C. DEMONSTRATION FOOTAGE

C.1.1 Chapter 4 - Active Vision Platform

CeDAR - 3dof head.avi

Image-based stabilisation.mpg

ATR 7dof head.mp4

Gyro-based stabilisation.mp4

C.1.2 Chapter 5 - Active Rectification

Mosaic construction - manual movement.mpg

Mosaic construction - sinusoidal movement.avi

Mosaicing of saliency map.avi

C.1.3 Chapter 6 - Spatial Perception

Occupancy grid.mpg

Flow.mpg

Object segmentation.mpg

Ground plane.mpg

C.1.4 Chapter 7 - Coordinated Fixation

Early ZDF.avi

MRF ZDF theory.mp4

MRF ZDF demo.avi

Bimodal.mp4
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C.1 DVD Index

C.1.5 Chapter 8 - Active Attention

Static IOR.avi

Dynamic IOR.avi

Active saliency.avi

Fixation map.avi

Active attention fixation.avi

Active attention scene.avi

C.1.6 Chapter 9 - Human Trials

P1.mp4

P2.mp4

T1.mp4

T2.mp4

T3.mp4

T4.mp4

T5.mp4

T6.mp4

T7.mp4

T8.mp4

T9.mp4

T10.mp4

T11.mp4

T12.mp4

T13.mp4

T14.mp4

T15.mp4

T16.mp4

T17.mp4

T18.mp4

T19.mp4

T20.mp4
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C. DEMONSTRATION FOOTAGE

C.1.7 Chapter 10 - Synthetic Trials

S1.mp4

S2.mp4

S3.mp4

S4.mp4

S1proc.mp4

S2proc.mp4

S3proc.mp4

S4proc.mp4
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