
Optimising Flexibility of Temporal
Problems with Uncertainty

Jing Cui

A thesis submitted for the degree of
DOCTOR OF PHILOSOPHY

The Australian National University

July 2018

c© Jing Cui 2017

Except where otherwise indicated, this thesis is my own original work.

Jing Cui
7 July 2018

To my mother, Lingling Han.

Acknowledgments

The work presented in the thesis would not have been possible without the support
of a number of individuals and organisations, and they are gratefully acknowledged
below.

First of all, I want to extend my sincerest gratitude to my supervisor, Dr. Patrik
Haslum. He is a knowledgeable and experienced expert in the field of artificial intel-
ligence. He patiently and wisely supervised my research and was a constant source
of ideas and encouragement. He is always willing to help me improve my knowl-
edge and broaden my view. He supported my attendances for ICAPS 2014, 2015 and
2017, the NICTA Optimisation Summer School 2014 and the Recognition Robotics
Summer School 2017. They were great opportunities to present and communicate
my research with top scientists and students, during different stages of my study.

I would like to thank my advisors Prof. Sylvie Thiébaux and Dr. Hassan Haji-
azi. They always provided valuable feedback and helpful suggestions that help me
summarise the high-level view of my research topic and solve the difficulties in the
thesis. I thank all staffs and students in NICTA, which is called DATA61 now, for
their generous assistance, inspiring discussions and wonderful playing time, i.e. the
board-game nights and the foosball matches. It was my great pleasure to study in
such a friendly and relaxing atmosphere.

During the study, I was fortunate to be able to work with Dr. Peng Yu and Cheng
(Simon) Fang from Prof. Brian C. Williams’s group. Thanks for their brilliant views
and generous assistance, we collaborated successfully and got our work recognised in
the research community. Special thanks to the people in MERS of MIT, who provided
friendly help and valuable discussion during my visits in 2014 and 2017.

I would like to extend my gratitude to Prof. Weiming Zhang and Prof. Cheng
Zhu. Thanks for their support I got the opportunity to study in Australia. I also want
to thank Dr. Jiangfeng Luo who introduced me to the field of temporal planning and
scheduling six years ago, so that I could enjoy an exciting and promising research
field during my PhD.

Thanks must go to the Chinese Scholarship Council, the Australian National Uni-
versity, DATA61 (NICTA) for providing the PhD scholarship and tuition fee, and a
2017 ANU Vice Chancellor’s Travel Grant and the ICAPS Doctoral Consortium for
supporting my conference attendances, respectively.

I would like to give my gratitude to my dear parents for their continuous support
in general. Special thanks to my boyfriend, Yan Zhao for his encouragement and un-
derstanding. Finally, I would like to thank all my friends in Australia, who provided
me with a homely environment overseas.

vii

Abstract

Temporal networks have been applied in many autonomous systems. In real situa-
tions, we cannot ignore the uncertain factors when using those autonomous systems.
Achieving robust schedules and temporal plans by optimising flexibility to tackle the
uncertainty is the motivation of the thesis.

This thesis focuses on the optimisation problems of temporal networks with un-
certainty and controllable options in the field of Artificial Intelligence Planning and
Scheduling. The goal of this thesis is to construct flexibility and robustness metrics
for temporal networks under the constraints of different levels of controllability. Fur-
thermore, optimising flexibility for temporal plans and schedules to achieve robust
solutions with flexible executions.

When solving temporal problems with uncertainty, postponing decisions accord-
ing to the observations of uncertain events enables flexible strategies as the solutions
instead of fixed schedules or plans. Among the three levels of controllability of the
Simple Temporal Problem with Uncertainty (STPU), a problem is dynamically con-
trollable if there is a successful dynamic strategy such that every decision in it is
made according to the observations of past events.

In the thesis, we make the following contributions. (1) We introduce an optimi-
sation model for STPU based on the existing dynamic controllability checking algo-
rithms. Some flexibility and robustness measures are introduced based on the model.
(2) We extend the definition and verification algorithm of dynamic controllability
to temporal problems with controllable discrete variables and uncertainty, which
is called Controllable Conditional Temporal Problems with Uncertainty (CCTPU).
An entirely dynamically controllable strategy of CCTPU consists of both temporal
scheduling and variable assignments being dynamically decided, which maximize
the flexibility of the execution. (3) We introduce optimisation models of CCTPU
under fully dynamic controllability. The optimisation models aim to answer the
questions how flexible, robust or controllable a schedule or temporal plan is. The
experiments show that making decisions dynamically can achieve better objective
values than doing statically.

The thesis also contributes to the field of AI planning and scheduling by intro-
ducing robustness metrics of temporal networks, proposing an envelope-based algo-
rithm that can check dynamic controllability of temporal networks with uncertainty
and controllable discrete decisions, evaluating improvements from making decisions
strongly controllable to temporally dynamically controllable and fully dynamically
controllable and comparing the runtime of different implementations to present the
scalability of dynamically controllable strategies.

ix

x

Contents

Acknowledgments vii

Abstract ix

1 Introduction 1
1.1 Problem Statement . 2

1.1.1 Optimising Temporal Problem with Uncertainty under Control-
lability Constraints . 3

1.1.2 Checking Dynamic Controllability for Temporal Problems with
Uncertainty and Choices . 3

1.1.3 Optimising Temporal Problems with Uncertainty and Choices
under Controllability Constraints 4

1.2 Contribution . 5
1.3 Thesis Outline . 5

2 Background 7
2.1 Temporal Reasoning Models . 7

2.1.1 Simple Temporal Network with Uncertainty (STNU/STPU) . . . 9
2.1.1.1 Probabilistic STN (pSTN) 11

2.1.2 Conditional Temporal Problem (CTP) 11
2.1.3 Controllable Conditional Temporal Problem 13
2.1.4 Controllable Conditional Temporal Problem with Uncertainty . . 14

2.2 Dynamic Controllability of The STPU . 14
2.2.1 The Three Levels of Controllability of the STPU 15
2.2.2 Checking Dynamic Controllability for the STPU 15

2.2.2.1 Classic Algorithm . 16
2.2.2.2 Advanced Verification Algorithms 17
2.2.2.3 The Strong Controllability Reduction Rules 19

2.3 Partial Order Schedules and Robustness Measures 20
2.3.1 Partial Order Schedules . 20
2.3.2 Flexibility . 21
2.3.3 Fluidity . 22
2.3.4 Disruptability . 23
2.3.5 Improved Fluidity . 23
2.3.6 Summary . 24

xi

xii Contents

3 Optimising STPU 25
3.1 Problem Formulation . 26
3.2 Constraint Model of Dynamic Controllability 27

3.2.1 Disjunctive Linear Model . 27
3.2.1.1 Correctness . 29

3.2.2 Reducing the Size of the Model 32
3.2.2.1 Reducing Redundant Shortest Path Constraints 34
3.2.2.2 Reducing Redundant Precedence Constraints 34
3.2.2.3 Reducing Redundant Wait Constraints 36
3.2.2.4 Summary . 40

3.2.3 Formulation as a Mixed Integer Programming (MIP) Model . . . 40
3.2.4 Formulation as a Non-linear Programming (NLP) Model 43
3.2.5 Conflict-Directed Relaxation with Uncertainty 44

3.3 Constraint Model of Strong Controllability 46
3.3.1 Strong Controllability Reduction Rules 47
3.3.2 Constraint Model of Strong Controllability 47
3.3.3 Reducing the Size of the Model 47

3.4 Applications . 47
3.4.1 Relaxing Over-Constrained Problems 48

3.4.1.1 Comparison of Solvers 48
3.4.2 Robustness with Non-Probabilistic Uncertainty 49

3.4.2.1 Comparison of Solvers 51
3.4.2.2 Strong vs. Dynamic Controllability 51

3.4.3 Minimising Flexibility . 51
3.4.3.1 Comparison of Solvers 52

3.4.4 Robustness with Probabilistic Uncertainty 52
3.4.4.1 Flexibility vs. Robustness 53

3.4.5 Dynamic Controllability with Chance Constraints 53
3.4.5.1 Dynamic vs. Strong Controllability 54

3.5 Conclusions . 54

4 Dynamic Controllability of CCTPU 57
4.1 An Illustrative Example . 58
4.2 Problem Definitions . 59

4.2.1 Preliminary Definitions . 59
4.2.2 Dynamic Assignments for Discrete Variables 60
4.2.3 Dynamic Controllability of CCTPU 64
4.2.4 Dynamically Controllable Envelopes 64

4.3 Extracting Dynamically Controllable Envelopes of STPU 67
4.3.1 Conflict Resolutions of STPU . 68
4.3.2 Extracting Conflicts of STPU . 70
4.3.3 Dynamically Controllable Envelopes of STPU 72

4.4 Dynamic Controllability Checking of CCTPU 74
4.4.1 Algorithm Structure . 74

Contents xiii

4.4.2 Branching Rule . 75
4.4.3 Combining DC Envelopes . 76

4.4.3.1 Decision Consistency in Prehistory 79
4.4.4 DC Checking for the Combined Envelope 80

4.5 Approach Validation . 82
4.5.1 Validation of Dynamically Controllable Envelopes of STPU . . . 83
4.5.2 Validation of Dynamic Controllability of CCTPU 85

4.6 Experimental Results . 85
4.6.1 Experimental Setup . 86
4.6.2 Results . 87
4.6.3 A Simple Optimisation Experiment 87

4.7 Conclusion and Future Work . 88

5 Optimising CCTPU 91
5.1 Problem Statement . 92

5.1.1 Relaxing Over-constrained Problems 92
5.1.2 Maximum Deviation of Partial Order Schedules 93
5.1.3 General Formulation . 94

5.2 Optimising CCTPU with Fixed Assignment 94
5.2.1 Activating Constraints with Fixed Assignment 95

5.3 Optimising CCTPU with Dynamic Assignments 96
5.3.1 Constraint Model Representing Dynamic Assignments 96
5.3.2 Expanding the CCTPU . 97
5.3.3 Constraints of Partial Uncertainty in DC Envelope 98

5.4 Experimental Results . 102
5.4.1 Objective Function . 102
5.4.2 Results . 102

5.5 Conclusion . 104

6 Conclusion 105
6.1 Summary of Contributions . 105
6.2 Related Work . 106

6.2.1 Related Temporal Reasoning Models 106
6.2.1.1 Conditional Simple Temporal Network with Uncertainty106
6.2.1.2 Conditional Disjunctive Temporal Networks with Un-

certainty . 107
6.2.1.3 Conditional Simple Temporal Networks with Uncer-

tainty and Decisions . 107
6.2.2 Verification Approaches for Temporal Problems with Uncertainty108

6.2.2.1 Representing Dynamic Controllability by Timed Game
Automata . 108

6.2.3 Other Approaches for Temporal Problem Verification 109
6.3 Future Work . 110

xiv Contents

List of Figures

2.1 An STN example . 8
2.2 Temporal Reasoning Models . 9
2.3 An STPU example . 10
2.4 A CTP example . 12
2.5 A CCTP example . 13
2.6 Triangular reduction: (1) precede case (lBC ≥ 0): lAB ← uAC − uBC,

uAB ← lAC − lBC ; (2) unorder case (lBC < 0 and uBC ≥ 0): wait
constraint wAB ←< C, uAC − uBC >; (3) follow case (uBC < 0). 17

2.7 Wait Reduction: (1) Reduction through the contingent link: wAD ≥
wAB − lDB; (2) Reduction through the requirement link: wAE ≥ wAD −
uED; (3) Wait Bounds: lAX ≥ min(lAC, wAX). 17

2.8 An example of the resource-constrained project scheduling problem
has 5 units of resource I. 21

2.9 The STN of the POS in Figure 2.8. 21
2.10 Examples showing flexibility . 22
2.11 Examples showing fluidity . 23

3.1 An STPU triangle. The A–C link is contingent. 27
3.2 The distance graph of a triangle. 28
3.3 An example of a dynamically controllable but not minimal STPU 31
3.4 Reduce redundant precede constraints . 35
3.5 Reduce redundant triangular wait constraints I 38
3.6 Reduce redundant triangular wait constraints II 38
3.7 (a) Example of an uncontrollable STPU (upper bounds on contingent

links are too large); (b–d) first, second and third relaxation candidate. . 46
3.8 Runtime distributions for three different solvers (conflict-directed re-

laxation (CDRU), the MIP model solved with Gurobi and the non-
linear model solved with SNOPT) on three problems. 50

3.9 Reduction in makespan achieved with dynamic as opposed to strong
controllability. Instances in the last column are infeasible under strong
controllability but have a valid dynamic execution strategy. 55

4.1 The CCTPU of Mr. P’s travel problem. 58
4.2 An Example Showing Precedences . 62
4.3 Example of a CCTPU with a variable with three options 63
4.4 Example of Remodelling . 63

xv

xvi LIST OF FIGURES

4.5 Alternatives for DT(c). Squares are uncontrollable time points, circles
controllable time points and the diamond is the latest decision time of c. 67

4.6 An STPU contains a conflict. Because the temporal constraints on BD
and CD infer that uBC ≤ −1, which means C has to be scheduled
before the observation of B. Thus, triangle ACB is in the precede case,
and the upper bound of AC uAC ≤ lAB − uCB = 0. However, if C is
scheduled no later than A and the uncertain duration of AB is greater
than 1, the requirement link on BC cannot be satisfied. 68

4.7 The labelled distance graph of Figure 4.6. 69
4.8 Alternative conflicts I . 70
4.9 Alternative Conflicts II . 71
4.10 Cyclic Dependencies among Variables II 77
4.11 Remodelling Cyclic Dependencies among Variables II 77
4.12 Combined Envelope . 80
4.13 An example of CCTPU with two discrete variables 81
4.14 A semi-reducible negative cycle without added edges 84
4.15 A semi-reducible negative cycle with added edges 85
4.16 Execution of the dynamic strategy of CCTPU 86
4.17 The distribution of results with fixed or dynamic options 87
4.18 The number of problems solved within the time limitation. 88
4.19 Improvement of Max Delay from Fixed Assignment to Dynamic As-

signment . 89

5.1 A modified example from Figure 4.1. 93
5.2 Using CCTPU to represent three POS of a problem 93
5.3 An example illustrating the expanding process 98
5.4 The difference between dynamic envelopes and fixed envelopes 100
5.5 Illustration of the fixed division of key observations 101
5.6 Improvements of Making Decisions Dynamically 103
5.7 Runtime Comparison . 104

List of Tables

2.1 The mapping of reduction rules . 18

3.1 Correlation between schedule flexibility, as measured by fluidity [Aloulou
and Portmann, 2003] and improved flex [Wilson et al., 2014], and robust-
ness. Each entry is the number of instances in which the schedule with
a higher fluidity/flex score has a higher (>), equal (=) or lower (<)
max delay and the probability of success, respectively, compared to
that of the schedule with lower fluidity/flex. 53

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

Autonomous artificial intelligence (AI) systems are becoming more and more pop-
ular these days. They have been applied not only in projects that cost a fortune
such as aerospace engineering, autonomous underwater vehicles or other robotics
systems but also in areas closer to daily life, for instance, self-driving cars, smart
home and other applications. How autonomous systems execute robustly and flex-
ibly in the real world is a core issue of artificial intelligence. The uncertainty of the
actual environment is one of the most common factors reducing the performance or
even breaking the systems. To tackle the uncertainty, a robust autonomous system
has to either react according to the observation of unforeseen circumstances or ex-
ecute flexibly enough to absorb the unexpected events. This goal can be achieved
by estimating the uncertainty, generating alternatives based on the estimations and
adjusting the execution according to the exact situations. Therefore, when building
an autonomous system, we want to make it robust and flexible to deal with the un-
certain environment. In this thesis, we focus on the field of robustness and flexibility
of autonomous systems.

Artificial intelligence planning and scheduling are one of the leading techniques
to build an autonomous system. They play a role of “thinking” in an autonomous
system and coordinate with other techniques that play roles of “sensing” and “act-
ing”. In AI planning and scheduling, the solutions are either a plan, which is a
sequence of actions that can transfer the environment from an initial state to the goal
state, or a schedule, which decides how to allocate resources and when to execute
each event to satisfy all constraints. The robustness of a temporal plan or schedule
is a critical issue when applying it to the real world. In the research of temporal
planning and scheduling, flexible solutions such as Partial Order Plans [Weld, 1994]
and Partial Order Schedules [Policella et al., 2007] instead of fixed schedules and
plans enable dynamic executions [Muise, 2014] to deal with the uncertain situations.
A flexible solution of a planning and scheduling system contains several alternative
solutions just in case the original one does not work. The choice among those alterna-
tives is made during the execution, when unexpected situations happen. Postponing
decisions enables adjusting the execution based on observations of the situations that
have occurred.

Using temporal reasoning models to represent temporal problems is a useful tech-
nique in AI planning and scheduling. Different temporal reasoning models made

1

2 Introduction

of timepoints, temporal constraints and other elements are widely used in popular
planning and scheduling systems. One advantage of using temporal models is that
it simplifies the problem to a satisfaction problem, which helps to analyse the ro-
bustness while the uncertain environment can be abstracted in the constraint model.
Adding uncertainty into temporal reasoning models, such as Simple Temporal Prob-
lems [Dechter et al., 1991] enables us to study uncertainty directly. Vidal and Fargier
[1999] introduced Simple Temporal Problems with Uncertainty (STPU) that assume
intervals can represent the durations of uncontrollable events. Before execution, the
uncontrollable durations are unknown. During execution, the exact durations may
be any value within their intervals. When the durations of the uncertain events
are not observable, it requires a universal solution that can deal with any uncertain
situations. If such a solution exists, the problem is strongly controllable (SC). Addi-
tionally, if the uncertain durations are observable after they have finished, it enables
a dynamic strategy to adjust to different past situations. If such a dynamic strategy
exists, the problem is dynamically controllable (DC). The dynamically controllable
strategy of STPU postpones decisions on time points to allow more flexibility to deal
with temporal uncertainty rather than a fixed schedule.

Additionally, different flexibility and robustness metrics have been introduced to
measure the quality of plans and schedules. Implementing robustness metrics in
planning and scheduling systems may help to produce robust solutions. Robustness
models built on temporal reasoning models reflect the quality of temporal plans and
schedules.

This thesis aims to improve flexibility and robustness of schedules and temporal
plans by considering the robustness of flexible solutions of planning and scheduling
systems.

1.1 Problem Statement

Temporal reasoning is a fundamental technique in scheduling and planning. Dechter
et al. [1991] introduced the Simple Temporal Networks (STN) that consists of time-
points and temporal constraints between pairs of timepoints. The timepoints can
be regarded as variables, and the temporal constraints are lower and upper bounds
from one timepoint to the other. An assignment to all timepoints that can satisfy ev-
ery constraint is a feasible solution. If a problem has a feasible solution, the network
representing the problem is consistent.

However, STN cannot represent the uncertainty in the real world. Different kinds
of uncertainty exist in real scheduling problems, e.g., the train scheduling with possi-
ble delays caused by natural or human factors, the personal travel planning with fluc-
tuating public transportation timetables and manufacture process scheduling with
possibly not working machines.

§1.1 Problem Statement 3

1.1.1 Optimising Temporal Problem with Uncertainty under Controllabil-
ity Constraints

STN with Uncertainty (STNU) or Simple Temporal Problem with Uncertainty (STPU)
was introduced by Vidal and Fargier [1999] as an extension of STN. STPU has un-
controllable timepoints and temporal constraints. The durations of uncontrollable
links are decided by the environment, not the scheduler or the agent executing the
problem, but they can be observed when completed. In other words, the durations
may be any value within their bounds. Because of the uncertainty, Vidal and Fargier
[1999] discussed the three levels of controllability: strong controllability, dynamic
controllability and weak controllability. Strong controllability is the most strict one.
An STPU is strongly controllable if there is a consistent solution that can deal with all
uncertain situations. An STPU is weakly controllable if, for every uncertain situation,
there is a consistent solution available. Between those two, an STPU is dynamically
controllable, if there will always be successive decisions based on the past observa-
tions, no matter what happens in the uncertain environment. Detailed definitions of
the controllability are given in the later chapters.

The weak controllability requires knowing all durations of the uncontrollable
events before execution, which makes it not very applicable. The strong control-
lability and dynamic controllability are both useful, but the strong controllability is
so strict that it may be too hard to achieve in many situations. In the thesis, we use
the dynamic controllability as a primary property and implement the strong control-
lability as a comparing factor.

Dynamically controllable simple temporal problems with uncertainty (STPU) are
widely used to represent temporal plans and schedules that can execute flexibly
based on the observability of the uncertain events. While the problem of testing
an STPU for dynamic controllability is well studied, many use cases – for exam-
ple, relaxing over-constrained temporal networks Beaumont et al. [2001, 2004] and
analysing robustness of temporal plans and schedules Jorge Leon et al. [1994]; Wu
et al. [1999]; Goren and Sabuncuoglu [2008] – require optimising a function over
STPU time bounds subject to the constraint that the network is dynamically control-
lable.

We present a disjunctive linear constraint model of dynamic controllability, show
how it can be used to formulate a range of applications and compare a mixed-integer,
a non-linear programming, and a conflict-directed search solver on the resulting op-
timisation problems. Our model also provides the first solution to the problem of
optimisation over a probabilistic STN subject to dynamic controllability and chance
constraints.

1.1.2 Checking Dynamic Controllability for Temporal Problems with Un-
certainty and Choices

Besides focusing on temporal problems with uncertainty, we extend the work by
adding discrete variables as choices. Although it is far simpler than scheduling and

4 Introduction

planning problems, the discrete variables may contribute to representing other con-
straints such as resource constraints or choices between events/actions. The discrete
variables whose assignments can be attached to activate or deactivate constraints are
called “controllable conditions” because they are chosen by the agent and they are
the conditions to invoke constraints.

From Conditional Temporal Problem (CTP) [Tsamardinos et al., 2003], which at-
taches a label of predicates to a node to represents the situations in which the node
will be executed, Conditional STNU [Hunsberger et al., 2012] and Controllable Con-
ditional Temporal Problem with Uncertainty (CCTPU) [Yu et al., 2014] are introduced
by adding uncertainty. Conditional STNU extends to uncertain conditions that are
not controllable but observable after a specific observation timepoint. After the ob-
servation, specific links attached to observed conditions are activated. However, in
this thesis, we do not discuss the uncertain conditions but focus on the controllable
conditions that can represent the choices.

By considering choices in temporal problems, the decisions of both choices and
temporal points can be made dynamically or strongly controllable. Making both de-
cisions strongly controllable means there has to be a strongly controllable STPU with
fixed options of the choices that activate this STPU. Making only temporal decisions
dynamically means the STPU activated by fixed options of the choices has to be dy-
namically controllable. Making both decisions dynamically means there is a fully
dynamic strategy that can make successive temporal decisions and options based on
past observations. The more decisions we postponed to make them dynamically, the
more flexible and robust the solution may be.

We extend the concept of dynamic controllability to the Controllable Conditional
Temporal Problem with Uncertainty (CCTPU), which extends the STPU by condi-
tioning temporal constraints on the assignment of controllable discrete variables. We
define dynamic controllability of a CCTPU as the existence of a strategy that decides
on both the values of discrete choice variables and the scheduling of controllable
time points dynamically. This contrasts with the previous work on CCTPU, which
considered a static assignment of choice variables and dynamic decisions over time
points only. We propose an algorithm to find such an entirely dynamic strategy. The
algorithm computes the “envelope” of outcomes of temporal uncertainty in which a
particular assignment of discrete variables is feasible, and aggregates these envelopes
over all choices. When an aggregated envelope covers all uncertain situations of the
CCTPU, the problem is dynamically controllable. The experiments on an existing
set of CCTPU benchmarks show that there are cases in which making both discrete
variable and temporal decisions dynamically it is feasible to satisfy the problem con-
straints while assigning the discrete variables statically it is not.

1.1.3 Optimising Temporal Problems with Uncertainty and Choices under
Controllability Constraints

In addition to answering if a CCTPU is dynamically controllable or not, we want to
answer how robust, flexible or controllable a CCTPU is. To answer this question, we

§1.2 Contribution 5

introduce optimisation models for the CCTPU. In optimisation models, the variables
represent the bounds of links and the options of the choices, the constraints represent
strong controllability, temporally dynamic controllability and entirely dynamic con-
trollability and the objective functions are features related to robustness, flexibility
or other preferences. By solving the models, we can answer what the best value the
problems can achieve when their solutions are in different levels of controllability.

1.2 Contribution

The main contributions of this thesis are the follows.

• We introduce a disjunctive linear constraint model for STPU under dynamic
controllability, in order to optimise the flexibility and robustness of temporal
problems with uncertainty. The disjunctive linear model can be encoded into
a Mixed Integer Programming (MIP) problem or a non-linear programming
problem that can be solved by existing solvers.

• We introduce several worst-case and average-case robustness metrics base on
the optimisation model and compare them with existing robustness and flexi-
bility measures to compare the differences and figure out the exact features the
metrics measure.

• We extend the dynamic controllability to temporal problems with uncertainty
and controllable options of choices, a CCTPU. The fully dynamically control-
lable strategy of a CCTPU makes temporal scheduling and controllable options
dynamically controllable. In order to represent such a strategy, we make as-
sumptions on the decision timepoints of the controllable choices and introduce
an envelope-based algorithm to verify the existence of such a strategy.

• We propose optimisation models of CCTPU under different levels of control-
lability with fixed and dynamic options of the choices so that the optimisation
model can answer how flexible or controllable a CCTPU is.

• Among constraint models of strong controllability, temporally dynamic con-
trollability with fixed options of choices and fully dynamic controllability, we
evaluate the reductions of relaxation cost to present how much improvement
can be achieved by making decisions more and more flexible. At the same time,
we also compare the runtime to solve these constraint models so that we can
briefly show the scalability of solving optimisation problems in different levels
of controllability.

1.3 Thesis Outline

In Chapter 2, we illustrate the background of the thesis. In Chapter 3, we describe
our work on the problem of optimising STPU, which has been published in a con-
ference paper [Cui et al., 2015] and involved in a journal article [Yu et al., 2017]. In

6 Introduction

Chapter 4, we present our contribution to dynamic controllability checking of STPU
with dynamic options, which is an extension of another conference paper [Cui and
Haslum, 2017]. In Chapter 5, we describe the optimisation model of CCTPU. Finally,
we conclude in Chapter 6, discuss other related works and discuss possible future
research directions.

d

Chapter 2

Background

This chapter presents the necessary background and notations required for the tech-
nical chapters of the thesis. We first describe temporal reasoning models represent-
ing temporal problems. Then we describe the three levels of controllability of Simple
Temporal Problems with Uncertainty, among which dynamic and strong controlla-
bility are used in the following chapters. We finish with an overview of existing
robustness and flexibility measures of temporal networks with which we use to com-
pare in the thesis.

2.1 Temporal Reasoning Models

In this section, we briefly review the developments of the temporal reasoning models
used in the thesis.

Temporal reasoning models are used to represent temporal logic and inspect im-
plicit temporal factors of real problems. A temporal problem usually consists of time
points, temporal constraints and other features such as conditions, uncertainties or
preferences. A solution to a temporal problem contains the assignments of the time
points that satisfy all temporal constraints and respect to the other features of the
problems. Schwalb and Vila [1998] claimed that the main tasks of temporal reason-
ing are (1) deciding consistency of the temporal networks and (2) finding solutions
to temporal problems.

Solving a temporal problem can be viewed as solving a Constraint Satisfaction
Problem (CSP), which consists of decision variables, domains of the variables and
constraints among the variables. In terms of the temporal problems, the variables of
the CSP are either time points or temporal intervals. Time points represent the start
and end of events. Time intervals represent time periods during which the events
happen. Temporal constraints can be regarded as constraints among variables. Qual-
itative temporal reasoning models such as interval algebra [Allen, 1983] and point
algebra [Vilain et al., 1986] have the ability to describe the qualitative relations be-
tween pairs of events, such as before, after or overall. Quantitative reasoning models
can model the durations of events. A quantitative temporal constraint between time-
points xi and xj such as lij ≤ xj − xi ≤ uij describes that the duration from xi to xj is
within [lij, uij].

7

8 Background

Evacuate A A arrives at G A passes G

Evacuate B B arrives at G B passes G

Start Blocked G

[50, 70] [30, 35]

[25, 30] [30, 35]
[−5, 5]

[130, 140]

[0,+∞]

[0,+∞]

[0,+∞]

[0,+∞]

Figure 2.1: An STN example

Dechter et al. [1991] introduced the Temporal Constraint Satisfaction Problem
(TCSP) made of a set of timepoints as variables {x1, x2, ..., xn}, the continuous do-
mains for variables and a set of constraints. Each constraint is a disjunction of inter-
vals for a pair of variables (l1 ≤ xj − xi ≤ u1) ∨ ...∨ (lk ≤ xj − xi ≤ uk).

Dechter et al. [1991] also introduced a special class of TCSP, the Simple Temporal
Networks (STP), in which the constraints are single intervals (without disjunctions).
The STN is a common model used for temporal reasoning.

Definition 2.1. A Simple Temporal Network (STN) is a tuple, < X, E >, where:

• X = x1, x2, ..., xn is the set of time points,

• E = e1, e2, ..., em is the set of temporal constraints, each constraint lij ≤ xj − xi ≤
uij describes the duration from xi to xj is within [lij, uij]. A Simple Temporal
Problem (STP) is the problem of solving a given STN.

For example in the evacuation planning problem [Even et al., 2014], before roads
are blocked by the flood, a successful plan should evacuate all people. The evacu-
ation plan consists of assignments of a path to each region and the time to execute
each evacuating action. After assigning a specific route to each region, the STN can
represent the temporal network of an evacuation plan. Timepoints represent when
evacuating from each region and when each region arrives key positions can be.
The durations to drive from one position to another position and the time until the
flood comes to each key positions can be modeled as temporal constraints. Figure
2.1 shows an STN example of the evacuation planning: it means that the traffic flows
evacuating from regions A and B have to pass G before the flood blocks G and those
from region B will follow those from region A to pass G.

An evacuation plan of the STN shown in the example can be: (1) Region A evac-
uates at time t = 0, it arrives G at t = 50 and it passes G at t = 80; (2) Region
B evacuates at t = 55, it arrives G at t = 80, which is immediately after Region A
passing G, and B passes G at t = 110; (3) Region A and B both pass G before the
flood blocks G (t = 130).

Based on the STN, different temporal reasoning models have been introduced ac-
cording to application requirements, as shown in Figure 2.2. The Simple Temporal

§2.1 Temporal Reasoning Models 9

STN/STP

CTP CCTPSTNU/STPU

CSTNU CCTPUp-STNU

Figure 2.2: Temporal Reasoning Models

Network with Uncertainty (STNU) or Simple Temporal Problem with Uncertainty
(STPU) [Vidal and Fargier, 1999] extends the STN by adding uncertain links. The
Conditional Temporal Problem (CTP) [Tsamardinos et al., 2003] extends the STN by
adding uncertain conditions that can activate/deactivate timepoints in the STN. Con-
trollable Conditional Temporal Problem (CCTP) [Yu and Williams, 2013] extends the
STP by adding conditions into controllable decisions among options and attaching
the conditions to the links. The Controllable Conditional Temporal Problem with Un-
certainty (CCTPU) [Yu et al., 2014] combines STPU and CCTP, which is a temporal
problem with uncertainties and decisions of controllable choices. CCTPU is different
from another temporal model – the Conditional Simple Temporal Network with Un-
certainty (CSTNU) [Hunsberger et al., 2012] – which also combines the STPU and the
CTP but considers uncontrollable conditions. In this thesis, we also use probability-
STNU (p-STNU) [Tsamardinos, 2002; Fang et al., 2014] that represents uncertainty by
probability distributions instead of lower and upper bounds.

Other temporal reasoning models and related research will be discussed in Chap-
ter 6.

2.1.1 Simple Temporal Network with Uncertainty (STNU/STPU)

An STNU/STPU is a constraint satisfaction problem over real-valued time point vari-
ables, with constraints that are (upper and lower) bounds on the differences between
pairs of variables. However, some time points are uncontrollable, meaning that in any
execution of the schedule or plan, their values will be chosen non-deterministically
(by the environment) within the given bounds, while the values of remaining time
point variables are selected by the executing agent, subject to the constraints. The
STPU is widely used to model temporal problems with duration uncertainty. It ex-
tends the STN by adding uncertain timepoints and constraints.

Both STNU and STPU are widely used by different authors [Vidal and Fargier,
1999; Morris et al., 2001; Hunsberger, 2009]. We use STPU, which was the first name
given by Vidal and Fargier [1999], in the thesis.

Definition 2.2. An STPU [Vidal and Fargier, 1999] is a tuple, < V, E >.

10 Background

Evacuate A A arrives at G A passes G

Evacuate B B arrives at G B passes G

Start Blocked G

[50, 70] [30, 35]

[25, 30] [30, 35]
[−5, 5]

[140, 150]

[0,+∞]

[0,+∞]

[0,+∞]

[0,+∞]

Figure 2.3: An STPU example

• V is a set of nodes V = VE ∪ VU , representing executable (VE) and uncontrol-
lable (VU) time points,

• E = EC ∪ EU is a set of links, called requirement and contingent links, represent-
ing controllable and uncontrollable links, respectively. Each link eij has a lower
bound Lij and upper bound Uij, representing the constraints Lij ≤ tj − ti ≤ Uij.

Each uncontrollable time point has exactly one incoming contingent link, whose
lower bound is non-negative. In other words, executable time points correspond to
choices of the agent, contingent links represent uncontrollable durations, and the un-
controllable time points are when the agent finds out what duration the environment
has chosen. Requirement links may connect any pair of time points.

Since contingent links in an STPU are not controllable, their actual durations do
not belong to the solution decided by the scheduler. The following definitions are
given to define a solution to an STPU [Vidal and Fargier, 1999]. For example in Figure
2.3, the red nodes are uncontrollable and the dashed lines are contingent links. The
duration of how long it takes for the flood to block G is decided by the environment,
which is not controllable by the scheduler, but it will be seen when the flood blocks
G. The STPU uses an estimated lower and upper bounds to represent the contingent
links such that the uncertain durations will be an arbitrary value within its bounds.

A projection of an STPU replaces each contingent link eij ∈ [Lij, Uij] with a re-
quirement link eij ∈ [d, d] for some Lij ≤ d ≤ Uij. The resulting network represents
a possible outcome of the uncontrollable choices and has no remaining uncertainty.
A schedule of an STPU is an assignment of values to all time points. The schedule is
consistent iff this assignment satisfies the bounds of all requirement links.

The solution to an STPU is an execution strategy. An execution strategy, S, maps
projections of the STPU to schedules. S is valid iff S(π) is consistent for every pro-
jection π. Because the durations of contingent links are unknown before execution,
an execution strategy may be unsuccessful although it is valid. The definitions of
“successful” execution strategies, called controllability, will be discussed in section
2.2.

In the real situation of evacuation planning, when the flood will block each road
and how long each traffic flow drives through its routes are not controllable by the

§2.1 Temporal Reasoning Models 11

decision maker. These uncertainties are ignored by the solution to the STN in Figure
2.1, but can be represented by the STPU example shown in Figure 2.3. The red nodes
represent uncertain timepoints and the red and dashed links represent contingent
links. We give a solution to the problem, which is a strategy, without providing how
to generate such a solution because the approaches to solve STPU will be discussed
in Section 2.2; The solution is: Region A will evacuate at t = 0 and Region B will
evacuate 5 time units after the observation of Region A arriving at G (which is at
To ∈ [50, 70]), so that the temporal difference from Region A passing G (To + [30, 35])
to Region B arriving at G (To + 5 + [25, 30]) is within [−5, 5]; The latest time of when
Region B passing G is To + [60, 70] ≤ 140.

2.1.1.1 Probabilistic STN (pSTN)

It is a natural extension to the STPU model to associate probabilities with the outcome
(timing) of uncontrollable events [Tsamardinos, 2002; Fang et al., 2014]. The pSTN
redefines the representations of the contingent links. Instead of the lower and upper
bounds of the links, pSTN uses probability distributions to represent the temporal
uncertainty. The uncertain duration Dij = tj − ti : Ω → R is a random variable
describing the duration of the contingent link. For instance, the contingent link
representing the traffic flow of region A drives from A to G in Figure 2.3 can be
replaced by a normal distribution N (µ, σ2), where µ = 60 and σ = 10.

From the probabilistic STN, we can measure the robustness of schedules and
temporal plans by calculating the probability of success. Furthermore, the probability
of failure can be treated as a constraint, and other more important preferences can
be the objective [Fang et al., 2014; Wang and Williams, 2015].

2.1.2 Conditional Temporal Problem (CTP)

In temporal problems, not all timepoints and temporal constraints are always re-
quired, some of them are invoked under certain circumstances. Thus, temporal rea-
soning models describing conditions that activate or deactivate those objects are in-
troduced. The Conditional Temporal Problem is one of those models that contain
uncontrollable conditions.

Definition 2.3. A Conditional Temporal Problem (CTP) [Tsamardinos et al., 2003] is
a tuple < V, E, P, L, OV, O >, where:

• V is a set of nodes,

• E is a set of constraints between nodes in V,

• P is a finite set of propositions,

• L is a function attaching a label which is a subset of P, to each node,

• OV ⊆ V is the set of observation nodes,

12 Background

Start Observation of p

Blocked G
(p = True)

Blocked G’
(p = False)

[130, 140]

[150, 170]

[0,+∞]

[0,+∞]

[50, 60]

Figure 2.4: A CTP example

• O : P→ OV is a projection associating a proposition with an observation node.

In a CTP, the values of propositions are not controllable but observable. Their
truth value can be observed at their observation nodes. After the observations, nodes
and links connected to the nodes will be activated or deactivated according to their
labels. All constraints of a CTP can be disjunctive as the constraints in the TCSP. The
authors also define the Conditional Simple Temporal Problem (CSTP), in which the
constraints are binary (l ≤ y− x ≤ u) without disjunctions.

A CTP example of the evacuation planning is shown in Figure 2.4, the flood will
either block G or G′, which is an unknown condition depends on the environment.
If the observation node of proposition p shows True, the node representing that G
will be blocked and related links are activated, otherwise the node representing that
G′ will be blocked and related links are activated.

To discuss the solution to a CTP, the following definitions are given. Because the
focus of this thesis is on the STPU and CCTPU, which has controllable conditions,
we do not give formal definitions of the solutions to the CTP.

An execution scenario sc of CTP is a set of observed results of P. A scenario projection
of the CTP in execution scenario sc, denoted as Pr(sc), is a temporal problem <
V1, E1 >, where V1 and E1 are the activated nodes and links according to sc. A
schedule S of a CTP is a mapping V → <, i.e. a time assignment to the nodes in V,
denoted with T(v). An execution strategy ES for a CTP is a function from the set of
scenarios for a CTP to a schedule ES: SC → S. A viable execution strategy is one
such that ES(sc) is a solution to the projection Pr(sc) for each scenario sc ∈ SC. The
execution strategy ES for a CTP is the solution to the problem.

We discuss the CTP to illustrate the intention that conditions represented by
propositions can activate or deactivate subnetworks of the problem. In the techni-
cal parts of the thesis, we only consider controllable conditions, related works about
uncontrollable conditions can be found in Section 6.3.

§2.1 Temporal Reasoning Models 13

Evacuate B

B arrives at G B passes G

B arrives at G′ B passes G′

[50, 70]

c1 =
G

[30, 35]
c1 = G

[25, 30]c1 = G ′ [30, 35]
c1 = G′

Figure 2.5: A CCTP example

2.1.3 Controllable Conditional Temporal Problem

The Controllable Conditional Temporal Problem (CCTP) was introduced to model
temporal problems with controllable options [Yu and Williams, 2013]. The CCTP also
has conditions that can activate or deactivate subnetworks, however, the conditions
are decisions among options that can be decided by the scheduler. Furthermore, the
conditions are modelled by assignments to discrete variables.

The CCTP model without objective functions (such as minimising the relaxation
cost) is shown in the following definition.

Definition 2.4. A CCTP is a tuple < V, E, C, D, ` > where:

• < V, E > is a temporal problem including time points and constraints,

• C is a set of discrete variables with finite domains,

• D is the collection of domains of C,

• ` is a mapping that attaches to each link a label including assignments to vari-
ables in C.

We also give a CCTP example of the evacuation planning problem which is shown
in Figure 2.5. The example describes that the region B can evacuate through G or G′,
which is a controllable option represented by the assignment of discrete variable c1.
The domain of c1 is {G, G′}. The links representing constraints in each option are
attached with labels of the assignments c1 = G or c1 = G′.

The application in [Yu and Williams, 2013] is to resolve over-constrained traffic
plans since the requirements from the users are usually too tight to be satisfied.
Relaxing the over-constrained CCTP problem, also adds the following terms to the
CCTP: RE ∈ E is a set of relaxable temporal constraints, fp : D(c)→ <+ is a function
calculating rewards of each assignment and fe : (e, er) → <+ is another function
calculating relaxation costs for each relaxable links, where er is the relaxed bound of
e. Therefore, the solutions for over-constrained CCTP problems can be represented
by a pair < A, R >, where A is a set of complete assignments to C and R is a set of
relaxations to RE that make the CCTP consistent.

The authors presented a Best-first Conflict-Directed Relaxation algorithm that
enumerates the relaxations to an over-constraint CCTP in best-first order. By learning

14 Background

conflicts through negative cycles and relaxing conflicts through extending temporal
constraints in RE, the BCDR can find consistent candidates. And the core process is
the Conflict-directed A∗ algorithm.

Moreover, a general way to represent the solution to a CCTP is a pair < A, S >,
where A is a complete assignment to C and S is a consistent schedule of the STN
from the CCTP by activating or deactivating links by A.

2.1.4 Controllable Conditional Temporal Problem with Uncertainty

In order to provide solutions that can be executed more robustly, CCTP with uncer-
tainty was introduced to solve over-constrained temporal problems with uncertainty
and choices [Yu et al., 2014].

Definition 2.5. A Controllable Conditional Temporal Problem with Uncertainty
(CCTPU) is a 5-tuple < V, E, C, D, `E >, where

• < V, E > is an STPU,

• C is a set of controllable discrete variables,

• D(c) is the domain of variable c ∈ C,

• `E is a mapping that attaches to each link in E a (possibly empty) conjunction
of assignments to variables in C.

The CCTP is a special case of CCTPU where VU = ∅. Note that when C = ∅ the
CCTPU reduces to an STPU.

For the over-constrained CCTPU, Yu et al. [2014] defined a relaxation solution as a
pair < A, R >, where A is a complete assignment of C and R is the set of relaxations
that can make the problem satisfy a certain set of constraints, for instance, dynamic
controllability which we will discuss in the next section.

The CCTPU is the problem we will solve in Chapter 4, an illustrative example
and detailed definitions will be addressed in that chapter.

2.2 Dynamic Controllability of The STPU

Because of the uncertainty, a consistent STPU may fail during execution. Vidal and
Fargier [1999] introduced the weak, dynamic and strong controllability to describe
different levels of successful abilities when executing an STPU. Among the three
levels of controllability, the dynamic controllability is the most useful, flexible and
challenging one. In this section, we present the concepts of the different levels of
controllability and the dynamic controllability checking algorithms that help to un-
derstand the following chapters.

§2.2 Dynamic Controllability of The STPU 15

2.2.1 The Three Levels of Controllability of the STPU

Based on the definition of execution strategy we mentioned in section 2.1.1, which is
a projection from uncertain situations to schedules, we review the following defini-
tions.

Definition 2.6. An STPU is weakly controllable, iff for all uncertain situations π of
the STPU there exists a schedule S, such that S(π) is consistent.

In other words, different schedules can be found if we know which uncertain
situation the contingent links may be. However, in most real applications, the un-
certain situations cannot be predicted precisely before executions, which makes the
weak controllability not very useful.

Definition 2.7. An STPU is strongly controllable, iff there exists a schedule S such
that for all uncertain situations π of the STPU S(π) is consistent.

A strongly controllable STPU has a universal schedule that can deal with any
uncertain situations represented by the problem. The strong controllability is useful
for many problems. For example, given a fixed schedule or plan generated from a
solver that does not consider the uncertainty, the fixed solution can be treated as a
strongly controllable solution with zero uncertainty. Furthermore, the question how
much uncertainty the solution can absorb may be answered by adding uncertainty
incrementally until the solution cannot satisfy the strong controllability condition.
Although the strong controllability is useful, sometimes it is too strict to be satisfied.
Therefore, the dynamic controllability was introduced.

Definition 2.8. Given a schedule, T, and a specific time t, T<t is the restriction
of T to all time points scheduled before t. An STPU is dynamically controllable
iff there exists a valid execution strategy S such that S(π1)<t = S(π2)<t implies
S(π1)(x) = S(π2)(x), where t = S(π1)(x) Hunsberger [2009], for all projections
π1, π2 and executable time point x.

This means that the time the strategy assigns to the executable point x can only
depend on uncontrollable durations observed earlier. An execution strategy like that
in definition 2.8 is called a “dynamic execution strategy”.

The dynamic controllability is applicable as long as the uncertain situations can
be observed when finished. It is also more flexible so that the problems that have no
universal solutions may have dynamically controllable strategies to guide a success-
ful execution under uncertain situations.

2.2.2 Checking Dynamic Controllability for the STPU

Different algorithms that can verify if a given STPU is dynamically controllable have
been well studied. The approaches in this thesis are mainly based on Morris’s algo-
rithms which will be discussed in this subsection. Besides Morris’s cubic algorithm,

16 Background

Hunsberger [2013] introduced another O(n3) method, and Nilsson et al. [2014] in-
troduced an O(n3) incremental algorithm based on Shah et al. [2007]’s incremental
algorithm, which are the most efficient approaches.

In this section, we briefly review the developments of dynamic controllability
checking algorithms and discuss the first polynomial algorithm, which we call the
classic algorithm, in section 2.2.2.1, and Morris’s cubic algorithm in section 2.2.2.2 in
detail. We select these two because the constraint model in Chapter 3 is built based
on the classic algorithm and Chapter 4 is based on the cubic algorithm.

The first dynamic controllability checking algorithm was introduced by Vidal and
Fargier [1999] with the original definition of dynamic controllability of STPU. The
approach is a two-player game – one decision agent plays against the other nature
agent. An STPU is dynamically controllable if and only if the decision agent can
always make successive decisions based the past no matter what the nature agent
has done.

2.2.2.1 Classic Algorithm

The first polynomial algorithm for checking dynamic controllability of the STPU
was introduced by Morris et al. [2001], based on boundary projection and safe net-
works [Morris and Muscettola, 2000]. This algorithm repeatedly tightens require-
ment links and introduces wait constraints according to the triangular reduction and
wait reduction (which are discussed later) and checks if the tightened network is
pseudo-controllable until no link can be tightened or the network is not pseudo-
controllable. If the tightened requirements on a pair of variables connected by a
contingent link are tighter than the contingent links’ bounds, the contingent link is
said to be “squeezed”. In this case, the network is not pseudo-controllable.

The triangular reduction repeatedly examines each triangle of time points in the
STPU, considering at most one contingent link each time. Figure 2.6 shows a triangle,
with time points A, B and C. The link between A and C is contingent, the other
two are requirement links. (If eAB is also contingent, it is considered in a separate
triangle.) First, the algorithm applies the implied (shortest path) bounds (e.g., LBC ←
max(LBC, LAC −UAB) and UBC ← min(UBC, UAC − LAB)). The next step depends on
the relation between B and C:

• If UBC < 0, B must be scheduled after C (hence, after C has been observed), so
no further adjustments are needed. This is called the “follow” case.

• If LBC ≥ 0, B must be scheduled before or simultaneously with C (i.e., before C
has been observed). This is called the “precede” case, and the bounds on the eAB
link are updated to LAB ← max(LAB, UAC −UBC) and UAB ← min(UAB, LAC −
LBC).

• If LBC < 0 and UBC ≥ 0, B may be scheduled before or after C. This case,
called the “unordered” case, introduces a conditional bound, called a “wait”,
〈C, UAC − UBC〉 on eAB, with the meaning that execution of B must wait for

§2.2 Dynamic Controllability of The STPU 17

either C to occur or at least UAC −UBC after A. If UAC −UBC ≤ LAC, C can-
not occur before the wait expires, so the wait is replaced by the unconditional
bound LAB ← max(LAB, UAC −UBC). Otherwise, LAB ← max(LAB, LAC), since
the wait for C will delay B to at least LAC after A.

Tighter bounds on a requirement link propagate to any other triangle that the link is
part of.

In addition, the algorithm performs “wait regression”, in which conditional bounds
are propagated to other links (Figure 2.7). If 〈C, w〉 is a wait on eAB, where w ≤ UAC,
then (i) if there is any link eDB with upper bound UDB, a wait 〈C, w−UDB〉 is added
to eAD; and (ii) if w ≥ 0 and there is a contingent link eDB, where B 6= C, with lower
bound LDB, a wait 〈C, w− LDB〉 is added to eAD.

A C

B

[lAC, uAC]

[lAB, uAB] [lBC, uBC]

Figure 2.6: Triangular reduction: (1) precede case (lBC ≥ 0): lAB ← uAC − uBC,
uAB ← lAC − lBC ; (2) unorder case (lBC < 0 and uBC ≥ 0): wait constraint wAB ←<

C, uAC − uBC >; (3) follow case (uBC < 0).

A C

BDE

[lAC, uAC]

[lBC, uBC]< C, wAB >

[lDB, uDB]

< C, wAE > < C, wAD >

[lED, uED]

Figure 2.7: Wait Reduction: (1) Reduction through the contingent link: wAD ≥ wAB−
lDB; (2) Reduction through the requirement link: wAE ≥ wAD− uED; (3) Wait Bounds:

lAX ≥ min(lAC, wAX).

2.2.2.2 Advanced Verification Algorithms

Morris and Muscettola [2005] provided an O(n5) algorithm by representing the STPU
by a labelled distance graph and obtaining cutoff bounds analogous to the Bellman-
Ford structure instead of exhausting the tightening. In the labelled distance graph, the
requirement links are formulated in the same way as in the distance graph introduced

by Dechter et al. [1991]. Each link A
[l,u]−−→ B is represented by two directed links

A u−→ B and B −l−→ A. The contingent links are represented with labelled edges.

18 Background

Each link A
[l,u]−−→ B is presented by A b:l−→ B and B B:−u−−→ A, which are called the

lower-case and upper-case edges respectively. The lower-case edges represent the
case that the environment decides the constraint should take on the minimum length
and the upper-case edges represent the case where it takes the maximum length.
Thus, the reduction rules of dynamic controllability can be more uniform and the
reduction rules in Morris and Muscettola [2005] are still used in the following and
more efficient algorithms.

The list of advanced reduction rules and a table showing what the precede/fol-
low/unorder case reductions in section 2.2.2.1 look like in the advanced reduction
rules will be illustrated after introducing the next improvement of the reductions.

In 2006, Morris introduced an O(n4) algorithm. The author first rephrased the

reduction rules by transforming the labelled edges for contingent link A
[l,u]−−→ B to

A
−l−⇀↽−

l
A′

B:l−u−−−⇀↽−−−
b:0

B. Thus, the label removal condition x ≥ lc can be changed to x ≥ 0.

The reduction rules are shown in Equation 2.1.

(Upper-case Reduction)

A B:x←− C
y←− D adds A

B:(x+y)←−−−− D.

(Lower-case Reduction) If x < 0,

A x←− C
c:y←− D adds A

x+y←−− D.

(Cross-case Reduction) If x < 0, B 6= C,

A B:x←− C
c:y←− D adds A

B:(x+y)←−−−− D.
(No-case Reduction)

A x←− C
y←− D adds A

x+y←−− D.

(Label Removal) If x ≥ 0

A B:x←− C adds A x←− C.

(2.1)

A mapping from the reduction rules of the classic algorithm to the reduction rules
of the advanced algorithm is given in Table 2.1.

Classic Algorithm Advanced Algorithms
Precede uAB ← lAC − lBC Lower-Case Reduction
Case lAB ← uAC − uBC Upper-case Reduction, Label Removal
Unorder wAB ←< C, uAC − uBC > Upper-case Reduction
Case lAX ≥ min(lAC, wAX) Label Removal

wAD ≥ wAB − lDB Cross-Case Reduction
wAE ≥ wAD − uED Upper-case Reduction

Follow Case Shortest Path Reductions No-case Reduction

Table 2.1: The mapping of reduction rules

§2.2 Dynamic Controllability of The STPU 19

The conditions in the reduction rules (Equation 2.1) are about checking if the
weights are negative or not, which is the only difference from the rules in Morris
and Muscettola [2005] whose condition in the Label Removal (see Equation 2.2) de-
pends on two numbers. This little difference helps to introduce a faster propagation
algorithm.

(Label Removal [Morris and Muscettola, 2005]) If x ≥ −z

B b:z←− A B:x←− C adds A x←− C.
(2.2)

Using these reduction rules, a sequence of labelled edges can be transformed into
a new edge. Furthermore, if a reduced path does not have lower-case edges by a
sequence of reductions, it is semi-reducible.

Theorem 2.1. [Morris, 2006] An STPU is Dynamically Controllable if and only if it does
not have a semi-reducible negative cycle.

In this thesis, we call these semi-reducible negative cycles dynamic controllability
conflicts or conflicts. With Theorem 2.1, a faster dynamic controllability checking
algorithm was introduced, which propagates lower-case edges with Dijkstra’s algo-
rithm and checks for semi-reducible negative cycles with the Bellman-Ford algorithm
iteratively. The number of iterations is no more than the number of contingent links,
so the algorithm is O(n4).

The current fastest algorithms are O(n3) [Morris, 2014; Hunsberger, 2013; Nilsson
et al., 2014]. Morris’s new method propagates negative links backwards in order to
find potential moat edge, which is the first edge e′ following a lower-case edge e in path
P and its reduced distance DP(end(e), end(e′)) is negative. The key process in this
algorithm is called DCbackprop that propagates the end of a negative link backwards
in Dijkstra’s algorithm while applying the reduction rules of dynamic controllability.
When meeting the end of another negative link, it calls DCbackprop again. Otherwise,
it sums up the weights of paths until they are not negative. The non-negative paths
are reduced as new edges without a lower-case label.

Theorem 2.2. [Morris, 2014] The DCbackprop procedure encounters a recursive repetition
if and only if the STPU is not Dynamically Controllable.

Theorem 2.2 is proved by Morris [2014]. The proof proves that the DCbackprop
procedure encounters a recursive repetition if and only if the STPU has a semi-
reducible negative cycle. Therefore, a dynamically controllable STPU can pass the
checking algorithm without early terminations caused by a conflict.

2.2.2.3 The Strong Controllability Reduction Rules

The strong controllability checking algorithm [Vidal and Ghallab, 1996] is polynomial
because the verification of strong controllability is a local process. In other words,
verifying strong controllability do not have the regression process. To compare the
reduction rules of strong controllability and dynamic controllability, the following
equations illustrate in the form of labelled distance graph.

20 Background

(SC-Upper-case Reduction)

A B:x←− C
y←− D adds A

x+y←−− D.

(SC-Lower-case Reduction)

A x←− C
c:y←− D adds A

x+y←−− D.

(No-case Reduction)

A x←− C
y←− D adds A

x+y←−− D.

2.3 Partial Order Schedules and Robustness Measures

In this section, we review four existing robustness measures of temporal problems
with which we are going to compare in the thesis. These robustness measures can be
used to evaluate Partial Order Schedules.

2.3.1 Partial Order Schedules

The Partial Order Schedules (POS) are partial solutions to scheduling problems. A
scheduling problem consists of a set of activities that will be scheduled, a set of
temporal constraints among those activities that have to be satisfied, a set of different
resources with limited capacities and a set of resource constraints that describe how
much each kind of resource each activity occupies during execution. The solution to
the scheduling problem is to find a feasible schedule that can assign a proper start
time for each activity such that all constraints are satisfied.

Instead of giving start times for activities, a POS partially solve scheduling prob-
lems by adding temporal constraints to resolve resource constraints.

Definition 2.9. [Policella et al., 2004] A Partial Order Schedule for a problem is a
graph, where nodes are the activities of the problem and the edges represent tempo-
ral constraints between pairs of activities, such that any possible temporal solution is
also a consistent assignment.

For instance, an example of the Resource-Constrained Project Scheduling Prob-
lems with minimum and maximum time lags (RCPSP/max) [Bartusch et al., 1988],
is shown in Figure 2.8. The RCPSP/max example has two activities to be scheduled
and each of them will occupy 3 units of resource I, which will make a conflict to
schedule them overlapped with each other, since the total capacity of the resource I
is 5. The durations of the two activities are 5 minutes.

The solid line is a temporal constraint of the problem, which means the difference
between the end times of the activities is no larger than 10 minutes. The dashed line
is the added constraint that resolves the resource conflict, which means if activity
II is scheduled after the completion of activity I, the resource constraint is always
satisfied.

§2.3 Partial Order Schedules and Robustness Measures 21

Activity I (r1 = 3, d = 5) Activity II (r1 = 3, d = 5)
[−10, 10]

[0,+∞]

Figure 2.8: An example of the resource-constrained project scheduling problem has
5 units of resource I.

Activity I start Activity I end

Activity II start Activity II end

[5, 5]

[5, 5]
[−10, 10][0,+∞]

Figure 2.9: The STN of the POS in Figure 2.8.

The POS can be represented by an STN by using two nodes and one link to
represent an activity. Figure 2.9 shows the STN of the example.

By adding additional temporal constraints, the POS resolves all the resource con-
straints and maintains the original temporal constraints from the problem. A POS
represents a set of consistent schedules of the scheduling problem. The decisions
among these consistent schedules can be made during execution, which enables the
system to be flexible to deal with unexpected disruptions. Therefore, measuring and
optimising the flexibility of POS are interesting research topics. In the rest of this
section, we will list several robustness measures.

2.3.2 Flexibility

The metric flexibility was introduced by Aloulou and Portmann [2003]. This measure
counts the number of pairs that do not have any explicit or implicit precedence
relations so that the decisions of the orders of such pairs are flexible. Policella et al.
[2004] used this metric to measure the flexibility of the POS. The definition of f lex is

f lex =
|{(ai, aj)|ai ⊀ aj ∧ aj ⊀ ai}|

n(n− 1)
, (2.3)

where the precedence constraints between activities include both explicit and implicit
relations. Thus, the higher f lex the POS gets, the lower degree of interaction among
activities it achieves.

The measure flexibility tries to calculate how many real schedules may be con-
tained in a POS. However, in the examples shown in Figure 2.10, the graph with
higher f lex has fewer solutions. Both graphs in the figure have 6 nodes representing
6 activities, graph (a) has 6 pairs of activities that do not have any precedence and

22 Background

(a) (b)

Figure 2.10: Examples showing flexibility

graph (b) has 18 pairs. Thus, according to the measure of flexibility, graph (b) is
more flexible than graph (a). However, the nodes in graph (a) can be ordered in 36
different ways that do not violate any precedences, but the nodes in the graph (b)
have only 20 ways.

Therefore, the f lex implies robustness-related features, such as the independence,
however, it does not consider different kinds of flexibility in a POS, it even cannot
present how many different solutions contained in the POS. Additionally, if a POS
has low f lex but every time constraint is loose enough to allow a certain range of
deviation, the f lex is not able to show its advantages.

2.3.3 Fluidity

Some metrics take temporal slacks into account when measuring robustness [Cesta
et al., 1998; Hunsberger, 2002; Boerkoel and Durfee, 2013]. To show the difference
from flexibility f lex, we use the name fluidity f ldt which was introduced in [Cesta
et al., 1998]. It represents the ability to absorb temporal deviations. It is defined as

f ldt =
n

∑
i=1

n

∑
j=1∧j 6=i

slack(ai, aj)

H × n× (n− 1)
× 100 (2.4)

where H is a fair bound which is large enough to allow all activities to be executed,
and slack(ai, aj) is the width of the allowed distance interval between two activities ai
and aj. The higher the f ldt is, the lower the risk of cascading change, the higher tol-
erance to temporal deviations, and the higher the probability of changes in response
to disruption remaining local.

However, the metric fluidity does not always illustrate the ability to absorb tem-
poral deviations correctly. As the examples are shown in Figure 2.11, both examples
have three activities and two precedences among them. The temporal slacks of the
precedence constraints are the same, which means that they have the same fluidity.
If the duration of activity A is longer than expected, i.e. if there is a delay, it requires
the same amount of flexibility from link AB as the delay in the example (a) but the
same amount of flexibility from link AB and AC as the delay in the example (b). In
other words, the delay of activity A will cost twice the temporal slacks in example (b)
than in (a). Therefore, the two examples have different abilities to absorb temporal

§2.3 Partial Order Schedules and Robustness Measures 23

A B C
[0, 10] [0, 10]

A

B

C

[0, 10]

[0, 10]

(a) (b)

Figure 2.11: Examples showing fluidity

deviations, but the f ldt is not able to tell the difference.

2.3.4 Disruptability

This measure called disruptability was introduced by Policella et al. [2004]. It con-
siders stability against changes. The definition of dsrp is

dsrp =
1
n

n

∑
i=1

slack(ai)

numchanges(ai, ∆ai)
(2.5)

The slack here is different from the one used in f ldt. It represents the temporal
variability of a single activity and equals the difference between the upper bound and
the lower bound of the end time of activity ai. The function numchanges(ai, ∆ai) counts
the number of activities that are changed in the process of right-shifting activity ai
by an amount of time ∆ai which is a constant number no larger than slack(ai)). This
measure takes disruption into account and calculates the influence of time delay of
activities. The essence of this measure estimates the trade-off between flexibility and
the implied changes.

2.3.5 Improved Fluidity

Wilson et al. [2014] proposed an improved measure of the total temporal tolerance
of an STN. The authors thought the previous f ldt overestimated the robustness by
calculating dependent slacks repeatedly. For instance, suppose that a sequence of
activities need to be done one by one and the total time should be within an absolute
upper bound. Then the temporal slack of the whole sequence will be calculated as
many times as the number of activities using the original fluidity measure.

The improved fluidity measure treats every activity as two separated nodes which
are the start and the end nodes, and every initial constraint as an end-to-start con-
straint. The fluidity is optimising the sum of the slack between the start and end
nodes of each activity, which satisfies all the temporal constraints.

24 Background

By solving the following LP model, we can get the improved fluidity.

max ∑
t∈T

(end(t)− start(t))

s.t. start(t) ≤ end(t) t ∈ T (2.6)

start(ti)− end(tj) ≤ c ∀(ti − tj ≤ c) ∈ C

In the formula, T and C are the sets of activities and constraints in the original STN
separately and end(t)− start(t) is the slack of the time for scheduling activity t.

This measure improves on the original definition of the fluidity by considering
dependency between the activities. And it can be extended to the STPU as well.
Wilson et al. [2014] introduced a model to calculate the fluidity of an STPU subject
to strong controllability constraints. The difference in calculating this fluidity mea-
sure between the STN and STPU is that only the slacks of controllable nodes are
considered in the objective function.

The improved fluidity shows a way to broaden the flexibility rather than sum up
the real factors of the temporal network. It calculates the implicit temporal tolerance
by solving an LP model. Mountakis et al. [2015] showed that the improved fluidity
could be computed in O(n3) instead of solving the LP model.

2.3.6 Summary

Different robustness measures evaluate the quality of a schedule from different views.
However, whether the “good” solution appraised by each measure is perfect and
whether a better solution according to one measure will still be the better one ac-
cording to other measures, are not guaranteed. For instance, a POS with too much
flexibility will not achieve a high value of disruptability and a POS with high fluidity
may get low flexibility as well.

Furthermore, regardless of what specific features those measures exactly take
into account, they calculate the average level across the schedule, which means they
ignore the deviation in detail. Specifically, if there is a weak point in the POS such as a
link with a tight time constraint or a small group of activities with strong precedence
constraints, then it is still possible to achieve an excellent average value when the
rest of the schedule is strong enough. Therefore, we need an in-depth view of the
relationships and differences among the measures. And a better model to calculate
robustness of schedules and temporal plans is worth exploring.

Chapter 3

Optimising STPU

The Simple Temporal Problem with Uncertainty (STPU) [Vidal and Fargier, 1999], is
a widely used model for representing schedules or temporal plans that have both
uncertainty about the timing of some events (for example, the time needed to com-
plete an activity) and flexibility for the executing agent to choose the timing of other
events (for example, the time to start an activity).

An STPU, requires controllability, meaning, informally, that the executing agent
has a valid (constraint-satisfying) response to any choice by the environment. In
this chapter, we will formulate dynamic and strong controllability (Section 2.2.2)
constraint models. If the agent can make the choices before having any observation,
the network is strongly controllable. The more practically useful, but also more
complex, the property of dynamic controllability means the agent can choose a value
for each controllable time point variable using only observations of uncontrollable
events that have taken place earlier, such that all constraints will be respected under
any outcome of future uncertainties.

It is known that deciding if a given STPU is dynamically controllable [Morris
et al., 2001] or strongly controllable [Vidal and Ghallab, 1996] can be done in poly-
nomial time. The problem that we consider in this chapter is optimising an objective
function over the bounds on time point differences, subject to the constraint that
the network is dynamically controllable or strongly controllable. This has a broad
range of applications. As illustrative examples, we consider minimally relaxing an
over-constrained (non-controllable) STPU to make it dynamically controllable [Yu
et al., 2014]; finding the minimum schedule flexibility needed to maintain dynamic
controllability [Wah and Xin, 2004]; maximising different measures of schedule ro-
bustness; and optimising a preference function over a probabilistic STN with chance
constraints [Fang et al., 2014].

The problem of optimising time bounds under dynamic controllability was pre-
viously considered by [Wah and Xin, 2004], who formulated a non-linear constraint
optimisation model. In fact, dynamic controllability is a disjunctive linear constraint,
and using this insight we consider several alternative ways of dealing with it, includ-
ing a conflict-driven search [Yu et al., 2014], a formulation as a mixed-integer linear
program with 0/1 variables, and the non-linear encoding proposed by Wah and Xin.

Besides the constraint model of dynamic controllability, this chapter also intro-

25

26 Optimising STPU

duces a constraint model of strong controllability of STPU. The optimisation problem
of STPU under strong controllable constraints can measure the quality of fixed tem-
poral plans and schedules because fixed solutions are strongly controllable. Thus,
the robustness metrics can be applied to current planning and scheduling systems
that generate fixed solutions. Furthermore, checking strong controllability for STPU
is polynomial [Vidal and Fargier, 1999; Vidal and Ghallab, 1996]. Strong controlla-
bility requires a solution that can deal with all uncertain situations, so worst cases
among those uncertain situations are the only necessities to be tested. In STPU, all
worst cases can be enumerated by a combination of lower or upper bounds of con-
tingent links. The constraint model of strong controllability can also be generated by
its reduction rules, which is a linear programming model. Therefore, the constraint
model of strong controllability can (1) be used to formulate robustness measures of
temporal plans and schedules based on optimisation problems and (2) be compared
with the constraint model of dynamic controllability.

In this chapter, we first introduce the optimisation model of STPU under control-
lability constraints. After the general formulation, the constraint model of dynamic
controllability is introduced, which is a disjunctive linear constraint model that can
be encoded by a Mixed Integer Programming (MIP) model or a Non-linear Pro-
gramming model. This model can also be solved by a Conflict-directed Relaxation
with Uncertainty (CDRU). The constraint model of strong controllability follows the
constraint model of dynamic controllability, which is used in the experiments to com-
pare the improvement from strong controllability to dynamic controllability. Then,
we provide five application problems to illustrate the differences among those ap-
proaches and evaluate the improvements from strong controllability to dynamic con-
trollability. The main work in this chapter has been published in a conference paper
[Cui et al., 2015].

3.1 Problem Formulation

The general form of the optimisation problem can be stated as follows: We are given
the structure of an STPU, that is, the set of time points V = VE ∪ VU and links
E = EC ∪ EU, but not the upper and lower bounds on (all) links, and an objective
function. The problem is then to set those bounds so as to optimise the objective
function value:

opt fobj(lij, uij | eij ∈ E)
s.t. Lij ≤ lij ≤ uij ≤ Uij

N(lij, uij | eij ∈ E) is dynamically controllable or strongly controllable
application-specific side constraints

The decision variables, lij and uij, represent the lower and upper bounds on link eij.
Thus, a satisfying assignment defines an STPU, N(lij, uij | eij ∈ E), and this STPU
must be dynamically controllable or strongly controllable. The main contribution of
this chapter is the formulation of dynamic controllability as a set of disjunctive linear

§3.2 Constraint Model of Dynamic Controllability 27

A C

B

[lAC, uAC]

[lAB , uAB] [lBC, uBC]

Figure 3.1: An STPU triangle. The A–C link is contingent.

constraints DC∗. We then show how these constraints can be reformulated into a
mixed-integer linear program (MIP) or a non-linear program (NLP), which can be
given to different optimisation solvers.

Lij and Uij are constants, which constrain the range of the bounds variables. In
principle, these constants are not needed. They can be set to −∞ and ∞, respectively,
leaving the bounds variables unrestricted. Many of the application problems we con-
sider (cf. Section 3.4), however, specify narrower ranges, and we use this to simplify
the constraint formulation.

This is a general formulation, which can allow for the bounds of any link to
change. If in a particular application only some links are modifiable, this is modelled
by fixing the bounds of the non-modifiable links with equality constraints.

3.2 Constraint Model of Dynamic Controllability

Checking dynamic controllability of an STPU was first shown to be tractable by
Morris et al. [2001]. Their algorithm repeatedly applies a set of reductions, tightening
the bounds on requirement links, until no more reductions apply (in which case
the network is controllable) or the network becomes inconsistent (implying it is not
controllable). The reduction rules can be found in Section 2.2. Our constraint model
uses mainly the same reduction rules but in the form of constraints between the
decision variables that represent link bounds.

3.2.1 Disjunctive Linear Model

Constraints are formulated over each triangle of nodes in the STPU, considering at
most one contingent link each time.

Shortest path constraints Every triangle in the STPU has to satisfy the shortest path
constraints to maintain the consistency of the network. Regardless of the uncertainty
of contingent links, every triangle can be transformed into the distance graph as
shown in Figure 3.2. By using the consistency checking method of STN, in a triangle,
an edge has to be no larger than the two-edge path with the same pair of start and

28 Optimising STPU

A C

B

uAC

−lAC
uAB

−lAB

uBC

−lBC

Figure 3.2: The distance graph of a triangle.

end nodes. Otherwise the edge must be shrunk to make the network consistent.

−lAC ≤ −lAB +−lBC
−lAB ≤ −lAC + uBC
−lBC ≤ −lAC + uAB
uAC ≤ uAB + uBC
uAB ≤ uAC − lBC
uBC ≤ −lAB + uAC

Therefore, we can rewrite these shrotest path constraints by removing the negative
signs as follows:

lAC ≤ uAB + lBC ≤ uAC
lAC ≤ lAB + uBC ≤ uAC
uAC ≤ uAB + uBC

lAB + lBC ≤ lAC

(3.1)

The shortest path constraints can propagate in any direction (i.e., from the contin-
gent link eAC to the requirement links and vice versa.) This may seem contradictory,
since a contingent link may not be squeezed by requirements. However, lAC and uAC
here are variables, whose values will be the bounds on the contingent link. In some
applications (e.g., the problem of minimising flexibility which motivated Wah and
Xin) these variables are fixed to given constant values but other applications (e.g.,
problem relaxation) allow the bounds of contingent links to vary.

If no link in the triangle is contingent, these are the only constraints. Assuming,
w.l.o.g., that the eAC link is contingent, what constraints are needed is determined by
the outer bounds on the eBC link, following the cases explained in Section 2.2.2.2. If
UBC < 0, then uBC < 0 and the triangle must always be in the follow case. Thus, no
additional constraints are needed.

Precede constraints If LBC ≥ 0, then lBC ≥ 0 and the triangle will be in the precede
case. The following constraints must hold:

uAB ≤ lAC − lBC
lAB ≥ uAC − uBC

(3.2)

§3.2 Constraint Model of Dynamic Controllability 29

This together with (3.1) is equivalent to

uAB = lAC − lBC
lAB = uAC − uBC

(3.2’)

since lAB ≤ uAB is always required. If LBC < 0 and UBC ≥ 0, the triangle can be in
any case, depending on the values given to lBC and uBC. The precede constraint then
becomes disjunctive:

(lBC < 0) ∨
(

uAB ≤ lAC − lBC
lAB ≥ uAC − uBC

)
(3.3)

Triangular wait constraints If it is possible that the triangle may be in the unordered
case (LBC < 0 and UBC ≥ 0), a variable representing the conditional wait bound is
added:

wABC ≥ uAC − uBC (3.4)

Regression of waits (described below) may introduce wait variables wABX, where
X is any uncontrollable time point (not necessarily in the same triangle as A and
B). For each requirement link eAB and wait variable wABX, the following disjunctive
constraint must hold:

lAB ≥ min(lAX, wABX) (3.5)

If UAB ≤ LAX, this simplifies to wABX = lAB. The constraint wABX ≤ uAB must also
hold.
Wait regression Each wait bound 〈X, t〉 on a link eAB is represented by a variable
wABX. If there is a wait wABX and a contingent link eDB, then wait regression implies
the constraint

(wABX < 0) ∨
(

wADX ≥ wABX − lDB
)

(3.6)

It is disjunctive because the regression only applies when wABX ≥ 0. The weaker
constraint

wADX ≥ wABX − uDB (3.7)

holds in all cases (i.e., also when eDB is a requirement link, or the wait is negative).
The wait decision variable wABX in this chapter is different from the wait reduc-

tion < B, x > in Section 2.2.2.1. In the solution of the constraint model, the value
of wABX is the maximum wait among triangular and regression waits < B, x > in
triangle ABX.

3.2.1.1 Correctness

The correctness of our constraint formulation can be shown to follow from that of
the DC checking algorithm in Morris et al. [2001]. Their algorithm applies a set of
reduction rules, which tighten the bounds on links, until quiescence; if the network
at that point is consistent, the original network is dynamically controllable.

Let N(lij, uij | eij ∈ E) be an STPU that is defined by a solution to our model,

30 Optimising STPU

i.e., constraints (3.1)–(3.7). In the detailed proofs, we will show that applying all the
reduction rules from the DC checking algorithm to this STPU will not result in a
tightening of any bound. That is, the STPU is already at quiescence. Since it must
satisfy the shortest path constraints (3.1), it is also consistent. Thus, the DC checking
algorithm applied to N will report that it is dynamically controllable.

Theorem 3.1. If N is a solution of the constraint model of dynamic controllability DC∗,
then applying the DC checking algorithm will not tighten any bound of N.

Proof. First of all, N is consistent otherwise it does not satisfy the shortest path con-
straints.

For every triangle with one contingent link as shown in Figure 3.1, it must be in
one of the three cases (Section 2.2.2.2).

• Follow case where uBC < 0: the reduction rule will not tighten any bounds if
the triangle is consistent.

• Precede case where lBC ≥ 0: the reduction rule will tighten link AB to [uAC −
uBC, lAC − lBC]. According to the constraint model DC∗, this triangle is re-
stricted by either the linear precede constraints (3.2) or the disjunctive precede
constraints (3.3). Both kinds of precede constraints can guarantee that link AB
has already satisfied the tightening which means no exact tightening will hap-
pen in the precede case.

• Unordered case where lAB < 0 and uAB ≥ 0: either unconditional or con-
ditional reduction is applied. A wait < C, uAC − uBC > is introduced in the
unorder case, in the DC checking process. If uAC − uBC ≤ lAC, the uncondi-
tional reduction tightens the lower bound of AB to uAC − uBC. Otherwise the
general (conditional) unordered reduction will raise the lower bound of AB to
lAC. But N satisfies constraints (3.4) and (3.5), thus, neither unconditional nor
conditional reduction provides tighter bounds. Therefore, applying reduction
rules of local dynamic controllability (regardless of the wait regressions) does
not tighten any bound of N.

For the global dynamic controllability (considering wait regressions), the reduc-
tion rules of wait regressions are applied to N. The general wait regression reduc-
tion is applied for any link DB with upper bound uDB, then a regressed wait on
AD is < C, WaitACB − uDB >. The conditional wait regression reduction is ap-
plied when WaitACB ≥ 0 and DB is a contingent link, a regressed wait on AD is
< C, WaitACB − lDB >. Because N satisfies constraints (3.6) and (3.7), the wait regres-
sion reduction rules cannot tighten any link.

The solutions of the constraint model DC∗ are minimal, which means every link in
the solutions cannot be tightened by other links any more. However, a dynamically
controllable STPU need not to be minimal. For example, in Figure 3.3, the STPU is
dynamically controllable, but it violates the precede constraints that link AC has to
be within [0, 4]. Thus, only dynamically controllable and minimal STPU satisfies the

§3.2 Constraint Model of Dynamic Controllability 31

constraint model DC∗. To prove the completeness of the constraint model, we show
that all dynamically controllable and minimal STPU satisfy the constraint model.

A B C
[5, 10] [1, 10]

[−∞, ∞]

Figure 3.3: An example of a dynamically controllable but not minimal STPU

Theorem 3.2. Every dynamically controllable and minimal STPU satisfies the dynamic con-
trollability constraints DC∗. (There is no dynamically controllable and minimal STPU which
does not satisfy DC∗.)

Proof. Proof by contradiction, suppose there exists a dynamically controllable and
minimal STPU N′ which does not satisfy the dynamic controllability constraints.
Thus, N′ violates shortest path, precedence or wait constraints.

• N′ does not satisfy a shortest path constraint. N′ has one triangle as in Figure
3.2 and the triangle violates a shortest path constraint. This assumption makes
the triangle not minimal, which breaks the condition that N′ is minimal. Thus,
N′ satisfies all shortest path constraints.

• N′ does not satisfy a precede constraint. N′ contains a triangle ABC as shown
in Figure 3.1 and the triangle breaks a precede constraint, which means lAB <
uAC− uBC (or uAB > lAC− lBC). In the precede case, the duration of the contin-
gent link is unknown before executing timepoint B, so no matter how long the
duration of contingent link AC is, there exists a schedule TB − TA ∈ [lAB, uAC −
uBC) (or TB − TA ∈ (lAC − lBC, uAB]) such that all temporal constraints in N′ are
satisfied. If the duration of contingent link AC TC − TA = uAC and the sched-
uled duration of AB is TB− TA = lAB < uAC − uBC, then the difference between
B and C is TC − TB = (TC − TA)− (TB − TA) > uAC − (uAC − uBC) = uBC, the
duration of BC Tc − TB > uBC, which means it is out of its upper bound. Thus,
lAB ≥ uAC − uBC. It can be proved in the same way that when the duration
of contingent link AC is its lower bound the upper bound of AB has to satisfy
uAB ≤ lAC − lBC. Thus, N′ does not violate any precede constraints.

• N′ does not satisfy a wait constraint, which means that N′ has a link AB and
lAB < min(lAC, WaitABC). N′ is dynamically controllable so that there exists a
schedule TB − TA ∈ [lAB, min(lAC, WaitABC)) such that whatever the duration
of link AC is, all temporal constraints of N′ are satisfied. Then if the duration
of contingent link AC is its upper bound, the temporal difference from C to B
is TC − TB = (TC − TA)− (TB − TA) > uAC −min(lAC, WaitABC), which means
uBC > uAC −min(lAC, WaitABC).

32 Optimising STPU

– If WaitABC is a triangular wait that WaitABC = uAC − uBC and the du-
ration of link AC is its upper bound uAC, the duration TC − TB > uAC −
min(lAC, uAC− uBC) has to be within [lBC, uBC]. If lAC ≤ uAC− uBC, the du-
ration TC − TB > uAC − lAC and TC − TB ≤ uBC, whose linear combination
is lAC > uAC− uBC that breaks the condition. Otherwise, lAC > uAC− uBC,
the duration of BC satisfies uBC > uAC − (uAC − uBC) which is an unsat-
isfiable constraint. Therefore, all links of N′ satisfy the triangular wait
constraints.

– If WaitABC is a regressed wait and it is regressed from a triangular wait
WaitAD0C = uAC − uD0C through a sequence of connected links E∆ =
{D1D0, D2D1, ..., BDn}, then WaitABC = WaitAD0C − ∑

e∈E∆

xe, where xe is

le if link e is contingent, ue otherwise. N′ is dynamically controllable so
all nodes in X∆ = {Dn, ..., D0} are executed after B. Thus, the execution
time TB has to deal with all uncertain situations of contingent links in E∆.
When all contingent links in E∆ have durations as their lower bounds, the
upper bound of the sequence of links from B to C is

TC − TB = (TC − TD0) + (TD0 − TD1) + ... + (TDn − B)

TC − TB ≤ uD0C + ∑
e∈E∆∩EU

le + ∑
e∈E∆∩EC

ue. (3.8)

If lAC ≤ WaitABC, the duration of link BC TC − TB = (TC − TA) + (TA −
TB) > uAC − lAC, so that

lAC > uAC − (TC − TB) ≥ uAC − (uD0C + ∑
e∈E∆

xe) = WaitABC,

which violates the condition. Otherwise, lAC > WaitABC, then TC − TB >
uAC −WaitABC, which infers that

TC − TB > uAC − (uAC − uD0C − ∑
e∈E∆∩EU

le − ∑
e∈E∆∩EC

ue)

TC − TB > uD0C + ∑
e∈E∆∩EU

le + ∑
e∈E∆∩EC

ue.
(3.9)

Equation (3.8) contradicts (3.9). Therefore, all regressed waits satisfy the
wait bound constraints.

Thus, the links in N′ satisfy triangular and regression wait constraints.

In conclusion, every dynamically controllable and minimal STPU satisfies the con-
straints of dynamic controllability.

3.2.2 Reducing the Size of the Model

The model formulated above has up to O(n3) constraints and O(|VU |n2) variables,
where n = |V| is the number of time points. Wah and Xin [2004, 2007] proposed

§3.2 Constraint Model of Dynamic Controllability 33

several rules for eliminating redundant constraints and variables from the model.
Although there is, in principle, a requirement link for every pair of time points, not
all of these must be represented with decision variables. For example, if, in Figure
3.1, UBC < 0 so that B must follow C, only the shortest path constraints apply to
lAB and uAB, in this triangle. If there are no other constraints on eAB these can
always be satisfied, in which case it is not necessary to include them. Any link
with bounds constrained in the input STPU must be represented (unless fixed to a
constant), as must any link whose bounds can potentially be tightened by precede
or wait constraints. Among the remaining implicit links, which are subject only to
shortest path constraints, a sufficient set is found by a triangulation of the network.

The rules to remove redundant constraints and variables by Wah and Xin [2004]
are based on two assumptions: (1) before formulating the constraint model, the loose
bounds satisfy dynamic controllability constraints and (2) the constraints Lr ≤ lr ≤
ur ≤ Ur and Lc = lc = uc = Uc always hold for all requirement and contingent links,
respectively. However, these assumptions do not always hold for every application.
For example, in the relaxation of over-constrained problem [Yu et al., 2014], the orig-
inal loose bounds are not dynamically controllable and in the max delay measure,
the upper bounds of contingent links are not equal to the loose bounds. Although
giving infinite relaxations to the relaxable links can generate the dynamically con-
trollable loose bounds, the infinite bounds on requirement links [−∞, ∞] can hardly
help to reduce constraints. So the following rules may not improve much in some
applications.

Furthermore, the reduced model introduced in this subsection is slightly different
regarding wait constraints from Wah and Xin’s model. Our model considers fewer
wait constraints based on the following intuitions.

• If wait bound constraints influence the lower bound of a link, it is the same
as the precede constraint on the lower bound. Because the wait is wABC ≥
uAC − uBC, if it influence the lower bound lAB ≥ wABC ≥ uAC − uBC and the
precede constraint on the lower bound is lAB ≥ uAC− uBC. So we can treat some
wait constraints as precede constraints on lower bounds only, which means
precede constraints are more strict than wait bounds constraints because they
also restrict upper bounds. If the bounds of a triangle, as shown in Figure 3.1,
satisfy the precede constraints, no wait constraints are needed, and the triangle
is strongly controllable, since no matter the duration of AC is, all schedules of
B cannot break any constraint.

• No wait regression is needed, if a wait is positive and smaller than the lower
bound of the contingent link. Because the wait may tighten the lower bound of
the link where the wait exists, its wait regressions can be replaced by precede
constraints if it regresses through a contingent link or shortest path constraints
if it regresses through a requirement link. Thus, no wait regresses from this
kind of waits.

• Wait bounds constraints are not necessary for all wait variables. This means

34 Optimising STPU

that if the wait between two nodes will always satisfy its wait bounds con-
straints, no new link will be added if there is no link between the two nodes.
This may help to build fewer triangles when formulating shortest path con-
straints.

Therefore, for each triangle, if we cannot guarantee it will be in the precede
case (based on loose bounds), wait constraints are considered; Wait regressions are
added only if the wait is greater than the lower bound of the contingent link it
waits for; Shortest path constraints are always added except when the linear precede
constraints are used.

3.2.2.1 Reducing Redundant Shortest Path Constraints

For a triangle, although shortest path constraints are weeker than precede and wait
constraints, they are the fundamental bound propagations to keep the network con-
sistent. Before introducing the ways to reduce redundant precedence and wait con-
straints, we have to ensure that the whole network satisfies the shortest path con-
straints.

The naive formulation contains O(N3) shortest path constraints, since it adds
a new link to every pair of nodes that are not connected in the original problem.
Wah and Xin [2004] introduced a method that adds new links for pairs of nodes
that are neighbors by connecting to the same node. It works by selecting one node
at a time and formulating shortest path constraints for all current neighbors. After
formulating shortest path constraints for all triangles with the common node, the
algorithm deletes the node. The iteration repeats until all nodes are deleted. A
heuristic function

hA =
2‖{eij|xi, xj ∈ NA, eij ∈ N}‖

‖NA‖(‖NA‖ − 1)
(3.10)

decides the order to pick up nodes, where NA is the set nodes connected to node
A and ‖S‖ means the size of set S. Every iteration, the node with largest hA will
be selected, triangles containing the nodes will be formulated and the node will be
deleted from the graph then. We adopt this method in our implementation.

3.2.2.2 Reducing Redundant Precedence Constraints

The precede constraints that can be removed are implied by other constraints that
cannot be removed. Precede constraints are the most strict constraints for a triangle,
so it cannot be implied by a wait constraint or a shortest path constraint only. Thus,
it may be implied only by other precede constraints caused by altering loose bounds.

Linear precede constraints (Equation 3.2) aim to restrict triangles that are in pre-
cede case and disjunctive linear precede constraints (Equation 3.3) aim to restrict
triangles that may be in precede case. For each contingent link AC, we can classify
the rest of the nodes into three subsets as in the following formula according to [Wah

§3.2 Constraint Model of Dynamic Controllability 35

and Xin, 2004].
{B‖LBC ≥ 0} (precede set)
{B‖UBC < 0} (post set)
otherwise (unordered set)

(3.11)

In the naive formulation, we add linear precede constraints for all nodes in pre-
cede set and disjunctive linear precede constraints for all nodes in the unordered set.
The variables involved in those constraints that have not been added will be added.

A C

BD

[lAC, uAC]

[lAB , uAB] [lBC, uBC]

[lDB, uDB]

[l AD, u AD]

Figure 3.4: Reduce redundant precede constraints

However, the constraints for nodes in precede set can be reduced. For instance,
as shown in Figure 3.4, if both B and D are in the precede set, precede constraints for
triangle ADC and variables for the new link DC are added in the naive formulation
following equation (3.12), but they are redundant.

lAD ≥ uAC − uDC
uAD ≤ lAC − lDC

(3.12)

Since link DC is an added link, its bounds are constrained by shortest path con-
straints lDC ≥ lDB + lBC and uDC ≤ uDB + uBC. The equations above can be trans-
formed into the following equations without variables of link DC,

lAD ≥ uAC − uDC ≥ uAC − (uDB + uBC)
uAD ≤ lAC − lDC ≤ lAC − (lDB + lBC)

which are implied by the precede constraints in triangle ABC and shortest path
constraints in ADB, if the link DC is not added by other constraints formulation.

lAD ≥ lAB − uDB ≥ (uAC − uBC)− uDB
uAD ≤ uAB − lDB ≤ (lAB − lAC)− lBC

The node B is called a guard node since it guards the precede constraints for the
other nodes in the precede set that connected to AC through it. We can use Depth
First Search (DFS) or Breadth First Search (BFS) starting from node C to collect guard
nodes. The nodes are in precede set but not guard nodes can be ignored when
formulating precede constraints. The detailed GuardDFS is illustrated in Algorithm
1, which returns if the current node has been visited or is a guard node (Line 1), or
marks the current node as a guard node and returns if the current node is in the

36 Optimising STPU

precede set (Line 5), otherwise calls recursively (Line 9) on nodes connected to the
current node.

Unfortunately, nodes in the unordered set do not have guard nodes because the
loose bounds cannot help decide which ones are in precede case. Therefore, all
precede constraints are necessary for nodes in the unordered set.

The process of adding precede constraints for contingent link AC is shown in
Algorithm 2. Algorithm 2 is the general process. Line 3 – 11 describe the initial
classifications of all nodes, −2 for the precede set, 1 for the post set and 0 for the
unorder set. Line 12 – 16 describe the method to mark guard nodes, which calls
GuardDFS from node C. After marking guard nodes, Line 17 to the end of Algorithm
2 add new links and linear or disjunctive linear precede constraints for nodes in the
precede and unorder set respectively.

Algorithm 1: The algorithm finding guard nodes
Algorithm: GuardDFS (x, v, class, E)
Input: The current node x, a vector of visited mark v, the classification of nodes class

and the edges E
Output: The updated v and class

1 if v[x] == True or class[x] == guard then
2 return ; // x has been visited, return

3 endif
4 v[x] = True;
5 if class[x] == prec then
6 class[x] = guard; // mark x as a guard node

7 return;
8 endif
9 for xy ∈ E do

10 GuardDFS(y, v, class, E); // search connected nodes

11 end

3.2.2.3 Reducing Redundant Wait Constraints

Similar to the method to reduce redundant precede constraints, the way to reduce
wait constraints classifies nodes into pre-wait, post-wait and unordered-wait subsets,
and then removes redundant constraints. But wait constraints are more complex
because regressed waits may also influence the bounds, so we will discuss triangular
waits in different subsets first, and regressed waits will be discussed after that.

We adopt the classification from Wah and Xin [2004] but slightly modify the
reduction rules they use. For each contingent link AC, we classify the nodes in the
following way:

{B‖UAB ≤ LAC} (pre-wait set)
{B‖LAB ≥ LAC} (post-wait set)
otherwise (unordered-wait set).

(3.13)

In the pre-wait set, it is redundant to formulate triangular wait constraints and
wait regression constraints starting from the nodes. If we use shortest path constraint

§3.2 Constraint Model of Dynamic Controllability 37

Algorithm 2: The algorithm formulating precede constraints of dynamic
controllability

Algorithm: addPrecedeConstrs(N, A, C, M)
Input: An STPU N = 〈X, E = R ∪ C〉, a contingent link AC and the constraint model M.
Output: The updated STPU N, the updated constraint model M. Return True if new

links are added, otherwise return False.
1 update = False;
2 class = [] ; // the classification of nodes

3 for x ∈ V do
4 if LxC ≥ 0 then
5 class[x] = prec ; // precede set

6 else if UxC < 0 then
7 class[x] = post ; // post set

8 else
9 class[x] = unorder ; // unorder set

10 endif
11 end
12 for x ∈ V do
13 v[x] = False;
14 end
15 v[A] = True;
16 GuardDFS(C, v, class, E);
17 for x ∈ V do

/* add new links */

18 if class[x] == guard||class[x] == unorder then
19 if Ax /∈ E then
20 update = True;
21 N.add(Ax);
22 endif
23 if xC /∈ E then
24 update = True;
25 N.add(xC);
26 endif
27 endif

/* add new constraints */

28 if class[x] == guard then
29 M.addLPrecede(AC, x); // Equation (3.2)

30 else if class[x] == unorder then
31 M.addDlPrecede(AC, x); // Equation (3.3)

32 endif
33 end
34 return update;

uAB + lBC ≥ lAC, it can be deducted that lBC ≥ 0, which makes B in precede case for
contingent link AC. Thus, precede constraints will be considered that are more strict
than wait constraints. Therefore, triangular waits are redundant for nodes in the
pre-wait set. Furthermore, the regressed waits for contingent link AC will be no
larger than the lower bound of AC, which means if the wait is positive, constraint

38 Optimising STPU

A C

B1B2B3

[5, 10]

w t
AB1C = 9

[−100, 1]

[−100, 1]

w r
AB2 C = 8

[−100, 1]

[6, 100]w
r

AB3C
=

7

Figure 3.5: Reduce redundant triangular wait constraints I

A C

B1B2B3

[5, 10]

w t
AB1C = 9

[−100, 1]

[−100, 1]

w r
AB2 C = 8

[1, 5]

[6, 100]w
r

AB3C
=

7

Figure 3.6: Reduce redundant triangular wait constraints II

lAB ≥ wAB holds. Therefore, the wait regressions from a wait in the pre-wait set
can be replaced by precede constraints if it regresses through a contingent link, or
shortest path constraints if it regresses through a requirement link.

The unordered-wait set is where the waits may tighten the bounds. Triangular
waits and wait bounds are necessary.

In the post-wait set, wait bound constraints are redundant. Because among re-
gression waits and triangular wait, only the largest one matters. The largest wait on
AB is no less than its triangular wait wABC ≥ uAC− uBC, plus shortest path constraint
uAC − uBC ≥ lAB infers that wABC ≥ lAB ≥ lAC. In conclusion, waits in the post-wait
set cannot tighten the bounds. Therefore, we only need to consider their regression
waits.

Some nodes in the post-wait set do not have triangular waits that can regress. If
UBC < 0, which means the time to schedule B will always be after the observation
of C, this triangle is in the follow-case that does not have a wait. For the nodes
in the post-wait set that are not in the follow case, redundant triangular waits still
exist. For instance, in Figure 3.5, B1, B2 and B3 are all in the post-wait set, the
regression waits of wAB1C through requirement links will never tighten their bounds.
Additionally, the regressions can be replaced by triangular wait in triangle AB3C
and shortest path constraints of triangle B3B2C and B2B1C. However, if B3 → B2 is a
contingent link in Figure 3.6, the regression from wAB2C to wAB3C is necessary because
it cannot be replaced by other constraints (although B3B2A is in precede case, wAB2C
has not influenced lAB2 , which cannot pass to AB3). Therefore, in the post-wait set,
we formulate triangular waits for nodes D and B that UBC ≥ 0 and DB a contingent
link.

§3.2 Constraint Model of Dynamic Controllability 39

Regression waits describe the constraints of global dynamic controllability. A
wait regression consists of a source wait, a regressed wait and the link between the
end nodes of the links where the two waits constrain. The source waits of regression
waits are from the nodes in the unordered-wait and post-wait sets because regres-
sion waits from the nodes the pre-wait set can be replaced by precede and shortest
path constraints. Furthermore, the waits regressing through two requirement links
continuously can be replaced by one regression and a shortest path constraint, so the
source waits are from the start nodes of contingent links. The regressed waits fall in
any sets. The regressed waits in the post-wait set cannot tighten their lower bounds,
thus only regressed waits that may regress again will be considered in the post-wait
set, which are the regressed waits to the end of contingent links in the post-wait
set. The regressed waits in the pre-wait and unordered-wait sets cannot be reduced
because they can influence their lower bounds. Based on the reduction rules, waits
regress through contingent links or requirement links with positive upper bounds, if
the waits are greater than the lower bounds of the contingent links they wait. Wait
regressions through contingent links are formulated if the end nodes of the contin-
gent links have triangular or regressed waits. Wait regression through requirement
links are formulated in the following cases.

• Wait regressions from nodes in the post-wait or unordered-wait set have to
come from start nodes of contingent links, if they regress through requirement
links. Otherwise, the wait is regressed via two connected requirement links,
which can be replaced by a wait regression and a shortest path constraint.

• Wait regressions to nodes in the post-wait set regress to the end nodes of con-
tingent links because the regressed waits will be regressed again through a
contingent link. Otherwise, the regressions can be implied, too.

• Wait regressions to the nodes in the unordered-wait and pre-wait sets can
regress to any nodes, since the regressed waits may tighten the lower bounds if
they are smaller than the lower bound of the contingent link they wait for. But
only waits of the start nodes of contingent links in the unordered-wait set can
be regressed again.

• Only guard nodes in the pre-wait set will be considered to formulate wait
regressions.

Wait bounds will be added to waits of nodes in both pre-wait and unordered-wait
sets.

The summary of how to add wait constraints are shown in Algorithms 3 and
4. First, the initial classification of all nodes are given from Line 3 to 13. Then
the algorithm finds the guard nodes in the pre-wait set with Line 15–19. The method
GuardDFS used here is the same as the one for finding the guard nodes when adding
precede constraints. After dividing all the nodes, Line 20 to 32 of Algorithm 3 add
triangular waits and new links for (1) the guard nodes in the pre-wait set, (2) all
the nodes in the unordered-wait set and (3) the end nodes of contingent links in the

40 Optimising STPU

post-wait set. The last line of algorithm 3 will raise a function call of algorithm 4
which adds regression waits and wait bounds.

In Algorithm 4, regression waits via contingent links are introduced for contin-
gent links first (Line 3). Since regression waits cannot be through two consecutive
requirement links, regressed waits via requirement links are added from the waits
just regressed from contingent links (Line 6). Line 11 to the end of the algorithm add
wait bounds constraints.

3.2.2.4 Summary

We have to claim that the overall process to formulate the reduced model is not inde-
pendent for precede, wait and shortest path constraints, since adding new links will
result in different guard nodes sets. Therefore, we add precede and wait constraints
and associated variables first and add shortest path constraints and associated vari-
ables then. The new links added for formulating shortest path constraints may intro-
duce more strict constraints to precede and wait constraints. Therefore, the overall
process is iterative, we need to iterate all steps until no new link is added. The pro-
cess is shown in Algorithm 5. Function addSPC adds the shortest path constraints.
These are formulated using the method explained in section 3.2.2.1.

3.2.3 Formulation as a Mixed Integer Programming (MIP) Model

The disjunctions in constraints (3.3) and (3.5) mean the model is not a linear pro-
gram. Wah and Xin [2004] used non-linear constraints to encode the disjunctions (as
explained in the next section) and tackled it with the non-linear programming solver
SNOPT. As an alternative, we formulate a mixed-integer linear programming (MIP)
formulation, where disjunctions are encoded using binary (0/1) variables. Although
MIP is an NP-hard problem, MIP solvers such as CPLEX or Gurobi are often very ef-
ficient in practice, and, in particular, typically more efficient than non-linear solvers.
Experiment results across all application problems confirm this.

The wait bound constraint (3.5) can be formulated as

if α > 0 then β ≥ 0 else γ ≥ 0

where α = wABX − lAX, β = lAB − lAX and γ = lAB −wABX are all linear expressions.
The disjunction can be replaced by the following linear constraints

α− xUα ≤ 0 (3.14a)

α− (1− x)(Lα − 1) > 0 (3.14b)

β− (1− x)Lβ ≥ 0 (3.14c)

γ− xLγ ≥ 0 (3.14d)

where x ∈ {0, 1} is a binary variable, Lα, Lβ and Lγ are constant lower bounds on α,
β and γ, respectively, and Uα is a constant upper bound on α. This forces α > 0 and
β ≥ 0 when x = 1, and α ≤ 0 and γ ≥ 0 when x = 0. In the wait bound constraint,

§3.2 Constraint Model of Dynamic Controllability 41

Algorithm 3: The algorithm formulating wait constraints of dynamic con-
trollability

Algorithm: addWaitConstrs(N, A, C, M)
Input: An STPU N = 〈V = VE ∪VU , E = EC ∪ EU〉, a contingent link AC and the

constraint model M.
Output: The updated STPU N, the updated constraint model M. Return True if new

links are added, otherwise return False.
1 update = False;
2 class = [] ; // the classification of nodes

3 for x ∈ V do
4 if UAx ≤ LAC then
5 class[x] = prec ; // pre-wait set

6 else if LAx ≥ LAC then
7 class[x] = post− I I ; // post-wait set

8 if UxC ≥ 0 and x ∈ VU then
9 class[x] = post− I;

10 endif
11 else
12 class[x] = unorder ; // unordered-wait set

13 endif
14 end
15 for x ∈ V do
16 v[x] = False;
17 end
18 v[A] = True;
19 GuardDFS(C, v, class, E);
20 for x ∈ V do
21 if class[x] == unorder or (class[x] == post− I and x ∈ VU) then

/* add new links */

22 if Ax /∈ E then
23 update = True;
24 N.add(Ax);
25 endif
26 if xC /∈ E then
27 update = True;
28 N.add(xC);
29 endif

/* add triangular wait constraints */

30 M.addTriWait(AC, x); // Equation (3.4)

31 endif
32 end
33 addRWait(N, AC, class, M); // add wait regressions

34 return update;

where α = wABX − lAX, we can choose Uα = UAB − LAX, because UAB is an upper
bound on wABX (wABX ≤ uAB ≤ UAB) and LAX is a lower bound on lAX. The wait
wABX is lower-bounded by the maximum of all wait constraints – triangular and
regressed – on eAB. The triangular wait lower bound is wt

ABX = uAX − uBX, and from

42 Optimising STPU

Algorithm 4: The algorithm formulating regression wait constraints of dy-
namic controllability

Input: An STPU N = 〈V = VE ∪VU , E = EC ∪ EU〉, a contingent link AC the
classification of all nodes class and the constraint model M.

Output: The updated constraint model M.
Algorithm: addRWait(N, AC, class, M)

1 for yx ∈ EU do
2 if class[x] == unorder or class[x] == post− I then
3 M.addRegWaitC(AC, x, y) ; // add wAyC ≥ wAxC − lc

yx

4 for z ∈ V do
5 if (class[z] == guard or class[z] == unorder or (class[z] == post− I and

z ∈ VU)) and Uzy ≥ 0 then
6 M.addRegWaitR(AC, y, z) ; // add wAzC ≥ wAyC − ur

zy

7 endif
8 end
9 endif

10 end
11 for x ∈ V do
12 if class[x] == unorder or class[x] == guard then
13 M.addWaitBounds(Ax); // Equation (3.5)

14 endif
15 end

Algorithm 5: The general algorithm formulating dynamic controllability
constraints

Input: An STPU N = 〈V, E = EC ∪ EU〉.
Output: A dynamic control constraint model M
Initialization:

1 M.variables = ∅; // initialize an empty model

2 M.constraints = ∅;
3 update = True;

Algorithm: addDCConstrs(N)
4 while update == True do
5 update = False;
6 for e ∈ EU do
7 update| = addPrecedeConstrs(N, e.start, e.end, M);
8 update| = addWaitConstrs(N, e.start, e.end, M);
9 end

10 while x = selectNext(N) do
11 update| = addSPC(x, N, M);
12 N.delete(x);
13 end
14 end
15 return M

the shortest path constraint lAB + uBX ≤ uAX we have wt
ABX ≥ lAB. Thus, we can

choose Lα = LAB−UAX. For the lower bounds on β = lAB− lAX and γ = lAB−wABX

§3.2 Constraint Model of Dynamic Controllability 43

we have Lβ = LAB −UAX and Lγ = LAB −UAB, respectively.
The precede constraint (3.3) and regressed wait bound (3.6) are similar, except

they have conditions only in one of the two cases (either “then” or “else”). Where
one side of a disjunction consists of (a conjunction of) several linear constraints, as in
(3.3), it is only necessary to add a constraint like (3.14c) for each conjunct, all using
the same binary variable.

The wait regression constraint (3.6) can be strengthened to

(wABX ≤ lAX) ∨ (wADX ≥ wABX − lDB) (3.15)

The advantage of this is that one disjunct, wABX ≤ lAX, is the same as the branching
condition in (3.5), so both constraints can be captured with one binary variable.

Constraint (3.15) is valid because regressing a wait wABX through a contingent
link eDB, via (3.6), is redundant if wABX is not greater than the lower bound of the
contingent link eAX that causes the wait. If wABX ≤ lAX, the wait bound constraint
(3.5) implies lAB ≥ wABX ≥ 0. Hence, the triangle DAB is in the precede case
and lAD = −uDA = −(lDB − lAB) = wABX − lDB, which implies the wait regression
constraint (3.6).

3.2.4 Formulation as a Non-linear Programming (NLP) Model

The non-linear model formulated by Wah and Xin [2004] uses quadratic constraints
and terms in the objective function to encode disjunctions. The precede constraint
(3.3) is formulated as follows:

lBC(lAB − uAC + uBC) ≥ 0 (3.15a)

lBC(uAB − lAC + lBC) ≤ 0 (3.15b)

For each wait bound constraint (3.5), they introduce an auxiliary variable β and the
following constraints:

(lAX − wABX)(lAB − wABX) ≥ 0 (3.16a)

β ≥ 0 (3.16b)

β ≥ wABX − lAX (3.16c)

β(lAB − lAX) ≥ 0 (3.16d)

Furthermore, a quadratic term β(β− (wABX − lAX)) is added to the objective func-
tion. (This term must be minimised; if the problem is one of maximisation, its neg-
ative is used.) Its purpose is to ensure that β is 0 when wABX ≤ lAX and otherwise
equal to the difference wABX − lAX. For this to work, the penalty incurred by a
non-zero value of this must term outweigh the actual objective function. Note also
that there is a situation in which this formulation fails to impose the lower bound
on lAB, since if lAX = wABX, constraint (3.16a) is satisfied even if lAB 6≥ wABX, and
(3.16b)–(3.16d) are satisfied by setting β = 0. A similar encoding is used for the wait

44 Optimising STPU

regression constraint (3.15).

3.2.5 Conflict-Directed Relaxation with Uncertainty

Finally, we consider the Conflict-Directed Relaxation with Uncertainty (CDRU) algo-
rithm Yu et al. [2014]. CDRU takes an STPU that is not dynamically controllable and
finds a least-cost relaxation of the temporal constraints that makes it controllable.
Relaxing an STPU means tightening contingent links (reducing uncertainty) and/or
loosening requirement links. The cost of a relaxation is a function of the change to
each link, and some links may be excluded from change.

Relaxing over-constrained STPUs is one application of optimising bounds subject
to dynamic controllability (cf. Section 3.4.1). In other applications, the initial STPU
may already be dynamically controllable and the aim is to improve the value of an
objective function by increasing uncertainty or tightening requirements while main-
taining controllability. CDRU can be adapted to such problems by taking a dual
approach: initial link bounds are chosen to maximise the objective, disregarding
controllability, and the resulting (typically uncontrollable) STPU is then gradually
relaxed to a feasible solution. An application is able to solve by CDRU iff it can be
tightened into a not controllable STPU to start with. For example, in the application
of minimising flexibility (cf. Section 3.4), the original problem is a dynamically con-
trollable STPU, which is tricky to be solved by CDRU. Last but not least, the solutions
returned by CDRU are not minimal.

CDRU draws on conflict-directed A* [Williams and Ragno, 2002], extending con-
flict learning and resolution to continuous variables [Yu and Williams, 2013] and
contingent constraints. The algorithm explores candidate relaxations in best-first or-
der by interleaving two steps:

• First, it runs a dynamic controllability checking algorithm on the current best
candidate STPU. If it is not dynamically controllable, the check returns an un-
satisfied disjunction of linear constraints over subsets of link bounds. This is
called a conflict: at least one constraint in the set must be satisfied to make
the STPU controllable. The conflict is recorded as a new constraint that any
solution must satisfy.

• Given a set of conflicts, the algorithm computes least-cost relaxations that elimi-
nate them. A relaxation may loosen the bounds of requirement links, or tighten
the bounds of contingent links. Since conflicts can be disjunctive, a conflict may
generate several new candidates.

To apply CDRU to optimisation problems other than linear-cost relaxations, we
have to replace the objective function and redefine the initial candidate accordingly.
For example, in the maximum delay problem (see Section 3.4), the objective is to
maximise the minimum width of contingent link intervals. Thus, we need a max-
min function: max(min

eij∈EU
(uij − lij)). Finding the least-cost resolver of a single conflict

disjunct (linear constraint) under this cost function can still be formulated as a linear

§3.2 Constraint Model of Dynamic Controllability 45

program, and solved by a fast linear optimiser. The revised version of CDRU is
shown as Algorithm 6. The input is an STPU in which the upper bounds of all
contingent links are set to a very large number1. A candidate is a pair 〈UB, Cr〉,
where UB is a set of tightenings to the upper bounds of contingent links and Cr

the set of conflicts resolved by this candidate. For the initial candidate both sets are
empty.

Algorithm 6: The CDRU algorithm adapted for the maximum delay prob-
lem.

Algorithm: CDRU(N)
Input: An STPU N = 〈V, E = EC ∪ EU〉.
Output: A set of tightened contingent link upper bounds {uij|eij ∈ EU} making N

dynamically controllable.
1 Cand← 〈UB, Cr〉; the first candidate;
2 Q← {Cand}; a priority queue of candidates;
3 C f t← ∅; the set of known conflicts;
4 while Q 6= ∅ do
5 Cand←Dequeue(Q);
6 currC f t←UnresolvedConflicts(Cand, C f t);
7 if currC f t == null then
8 newC f t← DynamicControllable?(Cand)
9 if newC f t == null then

10 return Cand;
11 else
12 C f t← C f t ∪ {newC f t};
13 Q← Q ∪ {Cand};
14 endif
15 else
16 Q← Q∪ExpandOnConflict{Cand, currC f t}
17 endif
18 end
19 return null;

In Figure 3.7(a), the STPU three contingent and three requirement links. The
upper bounds of the contingent links are initialised to 107. This STPU is not dy-
namically controllable since the upper bound of link BF is less than the sum of
the upper bounds of CD and EF. This generates a conflict involving five links:
uBF − lDE − uCD − uEF − lBC ≥ 0. The least-cost resolver of this conflict tightens uCD
and uEF, and generates the new best candidate shown in Figure 3.7(b). However,
this candidate is still not controllable. Checking returns the conflict uBF − uEF −
uCD − lBC − uAB + lAB − lDE ≥ 0 ∨ uBF − uEF − uCD − lDE ≥ 0. This conflict is a
disjunction of two linear inequalities, meaning it can be resolved in two ways. This
is the property of dynamic controllability: we can either apply relaxations to make
the “negative cycles” in the graph positive, or apply relaxations to shift the order
of some constraints such that the cycle itself is eliminated. Only one of the linear
inequalities needs to be satisfied to resolve this conflict. CDRU finds two alternative

1Due to numerical issues, we do not use +∞

46 Optimising STPU

sets of relaxations, leading to the two new candidates shown in Figure 3.7(c) and
(d). It first considers candidate (c), since it allows a width of 4 for all contingent
links, while candidate (d) allows only 3. Since candidate (c) is also controllable, it is
returned as the preferred solution to the input STPU.

A B C D E F
[3, 107] [−1, 107] [1, 107] [0, 107] [10, 107]

[5, 19]

(a)

A B C D E F
[3, 107] [−1, 107] [1, 107]→ [1, 5.5] [0, 107] [10, 107]→ [10, 14.5]

[5, 19]

(b)

A B C D E F
[3, 107] [−1, 107] [1, 107]→ [1, 5] [0, 107] [10, 107]→ [10, 14]

[5, 19]

(c)

A B C D E F
[3, 107]→ [3, 6] [−1, 107] [1, 107]→ [1, 4] [0, 107] [10, 107]→ [10, 13]

[5, 19]

(d)

Figure 3.7: (a) Example of an uncontrollable STPU (upper bounds on contingent links
are too large); (b–d) first, second and third relaxation candidate.

3.3 Constraint Model of Strong Controllability

In this section, we describe the constraint model of strong controllability. The strong
controllability checking algorithm Vidal and Ghallab [1996] is polynomial. The re-
duction rules in the algorithm consider worst cases of the uncertain situations and ap-
ply propagation algorithms (e.g. Floyd-Warshall or PC-2) to the resulting STN. Based
on the reduction rules, Fang et al. [2014] describe an optimisation model for chance-
constrained probabilistic STP under constraints of strong controllability. However,
the propagations in the algorithm are based on time points which are different from
our general optimisation model that treats bounds of links as variables. Therefore,
we introduce the reduction rules of strong controllability on links and introduce a
new constraint model of strong controllability based on them.

§3.4 Applications 47

3.3.1 Strong Controllability Reduction Rules

Strong controllability can be regarded as a special class of dynamic controllability
because a strongly controllable STPU implies its dynamic controllability.

The reduction rules of strong controllability can be shown in the same way as
those of dynamic controllability (see Section 2.2) but more strict. To be more specific,
strong controllability reduction rules are the same as dynamic controllability in pre-
cede case because the “universal” solution has to be made without observations of
contingent links. For instance, in the triangular example in Figure 3.1, if the duration
of the contingent link AC is its lower bound LAC (or upper bound UAC), whatever
LBC and UBC are, LAB ← max(LAB, UAC −UBC) and UAB ← min(UAB, LAC − LBC).

3.3.2 Constraint Model of Strong Controllability

The constraint model of strong controllability is a Linear Program. Constraints are
formulated over each triangle the same as the constraint model of dynamic control-
lability.

For all triangles with one contingent link, linear precedence constraints (Equation
3.2’) are introduced. For other triangles, only the shortest-path constraints (Equation
3.1) are used.

The correctness of the constraint model can be proved by illustrating that all
solutions satisfy the strong controllability reduction rules.

3.3.3 Reducing the Size of the Model

Checking strong controllability can be done by a conjunction of local satisfiability
checks [Vidal and Fargier, 1999]. The constraint model of strong controllability only
needs to formulate constraints for local satisfiability as well.

For precede constraints, the strong controllability model only formulates con-
straints for requirement links that connect to the end nodes of contingent links. New
links will be added if they do not exist when formulating triangles. This process
guarantees the local satisfiability of strong controllability.

After formulating precedence constraints, we can formulate shortest path con-
straints following the same process we use in formulating the constraint model of
dynamic controllability.

The process to add constraints of strong controllability is straightforward, so we
skip its pseudo code.

3.4 Applications

Next, we review different problems from the literature that can be formulated as the
optimisation over an STPU with dynamic controllability constraints, and compare
the effectiveness of different methods of solving them.

All experiments were run on 3.1GHz AMD cores with 64Gb memory.

48 Optimising STPU

3.4.1 Relaxing Over-Constrained Problems

An STPU that is not dynamically controllable often arises in planning and schedul-
ing because users’ goals (requirements) are too ambitious or the desired robustness
to uncertainty (width of contingent links) is too great. In this situation, dynamic
controllability can be restored by relaxing the problem: widening requirement links
and/or tightening contingent links [Yu et al., 2014].

Let l̂ij and ûij denote the original (desired) bounds on link eij. The relaxation
problem can be formulated as

min ∑
eij∈E

fij(δ
l
ij, δu

ij)

s.t. lij = l̂ij − δl
ij + τl

ij ≤ uij = ûij + δu
ij − τu

ij eij ∈ EC
lij = l̂ij + δl

ij ≤ uij = ûij − δu
ij eij ∈ EU

δl
ij, δu

ij, τl
ij, τu

ij ≥ 0
dynamic controllability (3.1)–(3.7)

where fij(δ
l , δu) encodes the relative cost relaxing the lower and upper bounds on

link eij by δl and δu, respectively. The dynamic controllability constraints enforce not
only that the network is dynamically controllable, but also that bounds are minimal
(i.e., the tightest implied) on each requirement link. Because of this, we must allow
also for requirement links to be tightened, without affecting the objective function.
This is why deviations from the target value are split into two non-negative variables,
e.g., δl

ij and τl
ij for the lower bound, and only the relaxation part appears in the

objective. (Note that minimal bounds are computed also as part of the reductions
made by the DC checking algorithm, but a network does not have to be minimal to
be dynamically controllable.)

For contingent links, we can set the constants Lij = l̂ij and Uij = ûij, since their
bounds can only shrink. For requirement links there are no given limits in this
problem.

3.4.1.1 Comparison of Solvers

We compare the conflict-directed relaxation procedure (CDRU), the MIP model solved
with Gurobi2 and the non-linear model solved with SNOPT3 on 2400 relaxation test
cases used by Yu et al. [2014]. The STPUs have between 14 and 2000 nodes, and a
number of contingent and requirement links approximately linear in the number of
nodes. The objective function is a linear function of the amount of relaxation; it is
symmetric w.r.t. relaxation of lower and upper bounds (i.e., fij(δ

l
ij, δu

ij) = cij(δ
l
ij + δu

ij)).
Not surprisingly, the CDRU is the fastest on this problem and scales much better

than both the MIP and non-linear solver, as shown in Figure 3.8(a). The non-linear
solver does not guarantee solution optimality: of the solutions it finds on the relax-

2http://www.gurobi.com/
3http://ccom.ucsd.edu/~optimizers/; cf. also Gill et al. [2002]

http://www.gurobi.com/
http://ccom.ucsd.edu/~optimizers/

§3.4 Applications 49

ation problem set, 84.2% are within 1% of the optimal objective value (provided by
the other solvers).

3.4.2 Robustness with Non-Probabilistic Uncertainty

Providing flexibility in schedules and temporal plans is viewed as a means to increase
their robustness against unforeseen disturbances, such as delays. Several metrics for
the flexibility of a schedule have been proposed (see Section 2.3) as well as algorithms
for finding high-flexibility schedules [Aloulou and Portmann, 2003; Policella et al.,
2009; Banerjee and Haslum, 2011].

However, flexibility does not necessarily imply robustness: this depends on how
“robustness” itself is defined. In abstract terms we may define robustness as the
greatest level of disturbance (deviation from expected outcomes) at which the sched-
ule is still successfully executed. (If we assume a probability distribution over devi-
ations is given, the level of disturbance at which the schedule breaks equates to the
probability of it breaking during execution. We consider this case in a later section.)
To operationalise this definition, we have to specify what kind of disturbances are
considered, and how the schedule executive can use flexibility to cope with them.
Here, we exemplify by assuming (1) that the possible disturbances are deviations in
the time taken to execute an activity from its normal duration, and (2) a partial-order
schedule with a dynamic execution strategy.

A partial-order schedule (POS) consists of a set of time constraints between ac-
tivities such that any realisation that meets these constraints is also resource feasible.
In the deterministic case, where the duration of each activity i is a constant di, the
POS can be represented as an STN with time points tsi and tei for the start and end,
respectively, of each activity. Assuming the duration of each activity can vary within
some bounds, [lsi ,ei , usi ,ei], the schedule can be modelled as an STPU where the link
esiei from each activity’s start to its end is contingent, while remaining time con-
straints are requirement links. Thus, given a POS we can ask, what is the maximum
deviation (i.e., the width of the contingent bound) on any activity in which the STPU
is dynamically controllable? This defines our measure of robustness. To compute it,
we solve the following problem:

max ∆
s.t. lsi ,ei = di − δi ≥ 0 ∀i

usi ,ei = di + δi ∀i
0 ≤ ∆ ≤ δi ∀i
POS constraints (requirement links)
dynamic controllability (3.1)–(3.7)

As explained above, requirement link bounds must be allowed to shrink, but their
outer limits can be set to the given POS constraints. Since contingent links represent
durations, a hard lower bound Lsiei = 0 applies.

We can also define a one-sided variant of this robustness metric, accounting for
delays only, by fixing lsi ,ei = di (i.e., adding deviations only to the upper bound).

50 Optimising STPU

0 10 20 30 40 50

0
1
0

2
0

3
0

4
0

5
0

Run Time(s)

%
 S

o
lv

e
d
 P

ro
b
le

m
s

Run Time(s)

%
 S

o
lv

e
d
 P

ro
b
le

m
s

Run Time(s)

%
 S

o
lv

e
d
 P

ro
b
le

m
s Confict−directed

MIP

NLP_S

(a) minimum relaxation problems

0 50 100 150 200 250

0
2
0

4
0

6
0

8
0

1
0
0

Run Time(s)

%
 S

o
lv

e
d
 P

ro
b
le

m
s

Run Time(s)

%
 S

o
lv

e
d
 P

ro
b
le

m
s

Run Time(s)

%
 S

o
lv

e
d
 P

ro
b
le

m
s

Run Time(s)

%
 S

o
lv

e
d
 P

ro
b
le

m
s

Confict−directed

MIP

NLP_S

NLP_M

(b) schedule robustness (maximum delay) problems

0 100 200 300 400 500 600

0
2
0

4
0

6
0

8
0

1
0
0

Run Time(s)

%
 S

o
lv

e
d
 P

ro
b
le

m
s

Run Time(s)

%
 S

o
lv

e
d
 P

ro
b
le

m
s

MIP

NLP_S

(c) minimum flexibility problems

Figure 3.8: Runtime distributions for three different solvers (conflict-directed relax-
ation (CDRU), the MIP model solved with Gurobi and the non-linear model solved

with SNOPT) on three problems.

§3.4 Applications 51

3.4.2.1 Comparison of Solvers

We compared solvers on the one-sided (maximum delay) variant of the problem. As
test cases, we use 3400 partial-order schedules for RCPSP/max problems [Kolisch
and Padman, 2001] with 10–18 jobs4. The schedules are generated by a scheduler
that optimises a measure of POS flexibility [Banerjee and Haslum, 2011]. The STPU
representation of a schedule has a time point for the start and end of each activity,
as described above. Hence, the number of nodes and contingent links is determined
by the number of jobs, but the number of (given) requirement links varies from 50 to
300.

The adapted CDRU algorithm is very effective for this problem, and the relative
runtimes of the MIP and non-linear solvers, as shown in Figure 3.8(b), are similar
to the previous case study. The non-linear solver frequently fails to find optimal
solutions. To remedy this issue we run SNOPT repeatedly, using the last solution
as the starting point for the next iteration and using its objective value as a lower
bound. This configuration (labelled “NLP_M” in Figure 3.8) is more time-consuming,
but improves final solution quality: 93% of solutions found by NLP_M are optimal,
compared to only around 70% for a single run of the solver.

3.4.2.2 Strong vs. Dynamic Controllability

We can evaluate the robustness of a schedule under strong controllability as well.
This requires only solving a linear program. For 84.3% of the test cases, the value of
the maximum delay metric is the same. However, 6.38% of cases allow zero delays
(i.e., have no robustness) under strong controllability but admit a non-zero value
with dynamic execution.

3.4.3 Minimising Flexibility

Although flexibility may improve robustness, there can also be a cost associated with
it. For example, to permit a job to start at any point in an interval it may be necessary
to reserve resources for the entire time from its earliest starting time to its latest
ending time, an interval that may be much larger than the duration of the job. Thus,
for a given, fixed level of temporal uncertainty, we may seek the smallest flexibility
– meaning the tightest requirement bounds – that is sufficient to maintain dynamic
controllability. This is the application that motivated by Wah and Xin [2004]. Their
formulation is:

min ∑
eij∈EC

(uij − lij)

s.t. Lij = lij ≤ uij = Uij eij ∈ EU
Lij ≤ lij ≤ uij ≤ Uij eij ∈ EC
dynamic controllability (3.1)–(3.7)

4Set J10 from PSPLIB (http://www.om-db.wi.tum.de/psplib/), plus additional problems generated to
have more max time lag constraints and allow more variation in resolving resource conflicts.

http://www.om-db.wi.tum.de/psplib/

52 Optimising STPU

where Lij and Uij are the bounds of the input STPU. That is, contingent link bounds
are fixed, and requirement link bounds may only be tightened.

3.4.3.1 Comparison of Solvers

We use a set of 600 random STPUs of the “GRID” family, generated by the same
method used by Wah and Xin [2004]. The number of nodes ranges from 41 to 201,
contingent links from 6 to 63, and requirement links from 60 to 360. The runtime
distribution is shown in Figure 3.8(c). Since there is no CDRU implementation for
this problem, we compare only the MIP and non-linear solvers.

3.4.4 Robustness with Probabilistic Uncertainty

It is a natural extension of the STPU model to associate probabilities with the out-
come (timing) of uncontrollable events [Tsamardinos, 2002; Fang et al., 2014]. As
mentioned earlier, this allows us to define robustness as the probability of successful
plan or schedule execution.

In the probabilistic STN (pSTN) model proposed by Fang et al. [2014] the dura-
tion of each contingent link eij (i.e., the difference tj − ti) is a random variable Dij.
The model makes no assumption about independence or the distribution of these
variables.

It is straightforward to transfer the STPU representation of a partial-order sched-
ule, described above, to a pSTN. Since the random variable Dsiei represents the du-
ration of an activity we assume it is non-negative. The probability of a successful
dynamic schedule execution is then at least

max P

(∧
i

lsiei ≤ Dsiei ≤ usiei

)
s.t. 0 ≤ lsi ,ei ≤ usi ,ei ∀i

POS constraints (requirement links)
dynamic controllability (3.1)–(3.7)

The objective value is a conservative (lower) bound on the success probability because
it is the probability that all uncontrollable events fall within the chosen bounds.
The schedule may still execute successfully even if some durations fall outside these
bounds, as the outcomes of other events may fortuitously compensate so that no
constraints are violated.

The objective function form depends on the probability distributions over activity
durations. For example, if each Dsiei is uniform over an interval, we can conserva-
tively approximate the success probability with a linear function. Other distributions
give rise to non-linear objectives.

§3.4 Applications 53

Maximum Delay Prob. of Success
> = < > = <

fluidity 291 332 125 185 441 77
improved
flex 476 513 192 334 698 141

Table 3.1: Correlation between schedule flexibility, as measured by fluidity [Aloulou
and Portmann, 2003] and improved flex [Wilson et al., 2014], and robustness. Each
entry is the number of instances in which the schedule with a higher fluidity/flex
score has a higher (>), equal (=) or lower (<) max delay and the probability of

success, respectively, compared to that of the schedule with lower fluidity/flex.

3.4.4.1 Flexibility vs. Robustness

As we are now able to compute different measures of schedule robustness, we can
put to test the hypothesis that different measures of schedule flexibility correlate
with robustness. We consider two flexibility metrics: fluidity, defined by Aloulou
and Portmann [2003], and improved flex, defined by Wilson et al. [2014]. Both metrics
are averages of some form of temporal slack in the schedule.

We use the same set of RCPSP/max problems as before. For each of the two
metrics, we take the schedules with the least and greatest fluidity/flex score for each
instance. (Of course, we can only use instances for which the scheduler found at
least two schedules with different fluidity/flex values.) For both schedules in each
such pair, we compute the non-probabilistic (maximum delay) and probabilistic mea-
sures of robustness (where this is possible within reasonable time). For probabilistic
robustness, we use uniformly distributed durations over an interval between ±30%
of the nominal activity duration. We then count how often the schedule that has
the higher score according to each flexibility metric has a higher, lower or equal ro-
bustness score, according to each of the two robustness measures. The results are
summarised in Table 3.1. If there was no correlation between flexibility and robust-
ness, we should find roughly equal proportions of schedules with higher and lower
robustness scores. A simple binomial test shows that the observed result is extremely
unlikely under this hypothesis. Thus, we conclude that there is a (positive) correla-
tion between fluidity/flex and robustness, although it is quite weak.

3.4.5 Dynamic Controllability with Chance Constraints

Fang et al. [2014] argue that in many situations, minimising risk (probability of fail-
ure) is too conservative, and may compromise other objectives (such as cost) too
much. Instead, users may prefer to give an absolute bound on risk and optimise
other metrics subject to this constraint. They propose a pSTN optimisation algorithm

54 Optimising STPU

subject to strong controllability and the chance constraint

∑
eij∈EU

(1− P(lij ≤ Dij ≤ uij)) ≤ ρ. (3.17)

This makes use of the union bound (Boole’s inequality), so it is a conservative es-
timate of risk: That is, it ensures the probability of violating a requirement is ρ or
less.

Combining the dynamic controllability model (3.1)–(3.7) with (3.17) enables us to
find dynamic execution strategies under chance constraints. Whether the constraint
is linear or non-linear, and hence which solvers can be applied, depends on the
probability distributions, as noted above.

3.4.5.1 Dynamic vs. Strong Controllability

Since a strongly controllable network is also dynamically controllable, the optimal
value of any objective functions can only improve as we consider dynamic instead
of strong execution strategies. We can now evaluate how much it improves, by com-
paring the quality of solutions obtained under dynamic and strong controllability
constraints on the test cases used by Fang et al. [2014]. The objective is to minimise
makespan under chance constraints. Since the problems feature normally distributed
uncertain durations, only the non-linear solver is able to tackle them.

Figure 3.9 shows the distribution of the improvement, measured by the reduc-
tion in makespan achieved under dynamic controllability from that of the optimal
strongly controllable solution, expressed as a fraction of the latter. (Strongly con-
trollable solutions to chance-constrained problems are generated with Fang, Yu and
Williams’ solver.)

This clearly shows the value of using a dynamic execution strategy. (In fact, the
possible improvement may be even greater since solutions returned by the non-linear
solver are often not optimal.) 8.5% of problems are infeasible under strong control-
lability constraints – that is, no strong (unconditional) execution strategy exists – but
are feasible under dynamic controllability constraints. On the other hand, optimisa-
tion with dynamic controllability is harder: the NLP solver failed to find a solution
for 33% of the instances.

3.5 Conclusions

In many cases where an STPU is used to represent a plan or schedule, the ability to
optimise a function of STPU time bounds subject to the constraint that the network
is dynamically controllable make it far more useful than being able only to test if
dynamic controllability holds. For example, we showed how it enables optimisa-
tion of a chance-constrained pSTN under dynamic controllability, leading to better
solutions than possible if strong controllability is imposed. It also enabled us to mea-
sure schedule robustness in new ways, and thereby test the hypothesis that greater

§3.5 Conclusions 55

<=0.2 <=0.4 <=0.6 <=0.8 <=1 Feasible

Improvement from SC to DC

%
 P

ro
b
le

m
s

0
1
0

2
0

3
0

4
0

Figure 3.9: Reduction in makespan achieved with dynamic as opposed to strong
controllability. Instances in the last column are infeasible under strong controllability

but have a valid dynamic execution strategy.

flexibility leads to more robust schedules.
Dynamic controllability is a disjunctive linear constraint. Comparing solution

approaches, we found that dealing with disjunctions explicitly, as in the CDRU algo-
rithm [Yu et al., 2014], is the most efficient. However, the MIP and NLP formulations
are very flexible, allowing controllability to be combined with other constraints. Our
constraint model follows closely the reduction rules of the algorithm by Morris et al.
[2001].

56 Optimising STPU

Chapter 4

Dynamic Controllability of CCTPU

Yu et al. [2014] extended the STPU to the Controllable Conditional Temporal Problem
with Uncertainty (CCTPU) by considering controllable choices as discrete variables.
In CCTPU, the links with a label, which is a conjunction of assignments of discrete
variables, are activated by those assignments. Yu et al. [2014] introduced a relaxation
method to solve over-constrained CCTPU, by making a static assignment of choice
variables and relaxing time constraints to produce a dynamically controllable STPU.

In this chapter, to implement the original intent of dynamic control, we introduce
the definition of dynamic controllability of a CCTPU that considers making assign-
ments of both time points and discrete choices dynamically by extending it to the
discrete variables of the CCTPU. From Yu et al. [2014], we borrow the idea of using
dynamic controllability checking algorithms of STPU (See Section 2.2) to find con-
flicts, which represent the reason why an STPU is not dynamically controllable but
extend it to extract a complete set of conflicts.

When implementing the dynamic controllability checking process, some assump-
tions are needed: (1) each discrete choice is made at one time point, which is no later
than any other time points related to the choice; (2) only the uncontrollable events
definitely completed before the time point to make a choice can be treated as an ob-
servable condition; and (3) each discrete choice is made following the observation
of one, or a sequence of, uncertain events. These assumptions are more conserva-
tive than the original concept of dynamic controllability. Our dynamic controllability
checking algorithm for a CCTPU is sound but only complete with assumptions. It
guarantees to find dynamic strategies under these assumptions.

Last but not least, a similar problem – the dynamic controllability of Conditional
Simple Temporal Networks with Uncertainty (CSTNU) – has been studied by Huns-
berger et al. [2012]; Combi et al. [2014], which consider conditions as uncontrollable
and observable propositions. But we only discuss controllable discrete variables that
do not depend on observations.

The work in this chapter extends the conference publication [Cui and Haslum,
2017] by completing the theoretical definitions and validation of the algorithms.

We start by illustrating an example in Section 4.1. In Section 4.2, we introduce
the problem statement that includes the definitions CCTPU, dynamic assignment
of discrete variables with assumptions and dynamic controllability of CCTPU. We

57

58 Dynamic Controllability of CCTPU

briefly review conflict resolutions of STPU in Section 4.3.1, which is the basis of our
algorithm that extracts a complete set of conflicts (Section 4.3.2) in order to get the
DC envelope of an STPU (Section 4.3.3). In Section 4.4, we illustrate how to check
dynamic controllability of a CCTPU by aggregating and checking its dynamically
controllable envelopes. Section 4.5 shows the correctness and completeness of the
algorithms. Section 4.6 and 4.7 are experiments and conclusions, respectively.

4.1 An Illustrative Example

To illustrate the motivation for dynamic controllability of a CCTPU, we take the
example of Mr. P’s travel plan after work. After leaving work at 5pm, Mr. P is going
grocery shopping before having dinner, then catching a bus home. Shopping may
take 30 to 50 minutes, depending on how crowded it is. For dinner, Mr. P has two
options: He can have a quick dinner at KFC, which only takes 20-30 minutes, or go
for his favourite steak. This takes longer, 40-60 minutes, but the restaurant is closer
to the bus stop. The bus leaves at 6.50pm. Mr. P neither wants to miss this bus, which
will make him wait an hour for the next bus nor arrive at the bus stop before than
6.40pm, to avoid staying out in the cold weather. Mr. P needs to decide his schedule
for these two hours.

The CCTPU in Figure 4.1 models Mr. P’s problem. The discrete variable c1 models
the choice of dinner (c1 = K for KFC and c1 = S for steak). Contingent links (dashed
lines: E1 → E1′, E2 → E2′ and E3 → E3′) represent uncertainty, such as the time it
takes to shop and have dinner. Those durations are not decided by Mr. P but depend
on factors outside his control. The other links express constraints on the solution,
in the form of bounds on the difference between two time points. Some links have
labels, which are the assignments of the discrete choice variable that active those
links. For example, constraints E1′ → E3, E3 → E3′ and E3′ → E only need to be
met if c1 = K.

S E1 E1′

E2

E3

E2′

E3′

E
[0, 5] [15, 20]

c1 =
K

[5, 15]c1 = S

[15, 20]c1 = K

[5, 15]

c1 =
S

[30, 50]

[20, 30]
c1 = K

[40, 60]
c1 = S

[100, 110]

Figure 4.1: The CCTPU of Mr. P’s travel problem.

Unfortunately, because of the uncertainty, neither of the two dinner options, if
chosen in advance, lead to a schedule that is guaranteed to satisfy Mr. P’s require-
ments. If he goes to KFC and the uncontrollable links E1 and E2 take their lower

§4.2 Problem Definitions 59

bounds, the total duration from S to E is a maximum of 95 minutes, breaking the
lower bound of the S–E requirement link. If he goes for steak and links E1 and E3
take their upper bounds, the minimum time from S to E is 2 hours, breaking the
upper bound instead. But Mr. P does not have to decide on dinner when he leaves
work. He only needs to make it after buying groceries. If he spent more than 40
minutes shopping, he could choose KFC; otherwise, he can enjoy the steak and catch
the bus on time.

Although artificial, the example shows the benefit of postponing decisions, in-
cluding decisions about discrete choices, when faced with uncertainty. (Indeed, that
is the motivation for the concept of dynamic controllability initially proposed for the
STPU.) There may be no fixed assignment of discrete variables that is feasible, while
making those assignments during execution based on observations of uncontrollable
events may provide a feasible strategy.

4.2 Problem Definitions

In this section, we introduce theoretical definitions on the dynamic controllabil-
ity of Controllable Conditional Temporal Problems with Uncertainty (CCTPU). The
CCTPU extends the STPU with controllable discrete choices Yu et al. [2014]. We
adopt their definition, which is Definition 2.5 in Section 2.1.4, but omit the reward
and cost functions since, in this chapter, we consider its controllability only.

The following content of this section defines the solution of a CCTPU and differ-
ent levels of controllability of the CCTPU.

4.2.1 Preliminary Definitions

Before defining the dynamic controllability of a CCTPU, we introduce the definitions
of schedules, execution strategies and strong controllability of a CCTPU.

The following definitions extend concepts from the STPU [Vidal and Fargier,
1999; Morris et al., 2001; Hunsberger, 2009] to the CCTPU.

Definition 4.1. A schedule S for a CCTPU is a tuple 〈A, T〉.

• A is an assignment of each discrete variable c to a value in its domain, i.e.,
A(c) ∈ D(c), ∀c ∈ C. A link e ∈ E is activated if A |= `E(e); A link e ∈ E is
deactivated if A 6|= `E(e).

• T is a mapping T : V → <+ ∪ {0}, where T(v) is the scheduled time of time
point v ∈ V.

A schedule S is consistent if it satisfies all the constraints of links activated by its
assignments of discrete variables.

Definition 4.2. A projection p of a CCTPU is constructed by replacing every uncon-
trollable link eui = [li, ui] in EU by the singleton eui = [pi, pi], where pi ∈ [li, ui].

60 Dynamic Controllability of CCTPU

Each projection of a CCTPU is a possible outcome of uncertainties that may occur,
and it is a CCTP.

Definition 4.3. An execution strategy for a CCTPU is a tuple 〈DT, ES〉, where

• DT : C → V ∪ {0} maps each discrete variable c to the time point DT(c) at
which the choice for c will be made, the domain of DT(c) is the union of all
nodes and the beginning time of the network and

• ES : P → S is a mapping from the set P of all projections of the CCTPU to the
set S of schedules.

An STPU is a special CCTPU without discrete variables, and its execution strategy
ES is viable iff ES(p) is consistent for every projection p ∈ P. Based on the above,
Vidal and Fargier [1999] introduced three levels of controllability for the STPU: weak,
strong and dynamic. Extending strong controllability to the CCTPU is straightfor-
ward:

Definition 4.4. A CCTPU is strongly controllable when there is execution strategy
〈DT, ES〉 such that DT(c) = 0 for all c ∈ C, ES is viable, and satisfying ES(p1)(x) =
ES(p2)(x) and ES(p1)(c) = ES(p2)(c) for each controllable time point x, discrete
variable c and any two projections p1 and p2.

Strong controllability means there is a universal schedule which satisfies all con-
straints in every projection of the problem. This means the schedule can be made
before execution.

Yu et al. [2014] define a dynamically controllable solution of a relaxed CCTPU as a
fixed assignment of the discrete variables such that the resulting STPU is dynamically
controllable. Specifically, there is a viable execution strategy 〈DT, ES〉 such that

• DT(c) = 0 for all c ∈ C, and

• for any two projections p1 and p2,

– ES(p1){≺ t} = ES(p2){≺ t} ⇒ ES(p1)(x) = ES(p2)(x) for each control-
lable time point x, t = ES(p1)(x) and

– ES(p1)(c) = ES(p2)(c) for each discrete variable c ∈ C.

That is, the decisions on discrete variables are strongly controllable.
To fully extend dynamic controllability to CCTPU, in the following content of

this section, we define the dynamic assignment for discrete variables and dynamic
controllability of CCTPU.

4.2.2 Dynamic Assignments for Discrete Variables

In this subsection, we define the dynamic assignment and prehistory for discrete
variables of CCTPU. The basic idea of dynamic assignments is to assign values to
discrete variables based on past observations as dynamic decisions on timepoints.

As the first thing, we can define the dynamic assignment based on previous defi-
nitions.

§4.2 Problem Definitions 61

Definition 4.5. A dynamic assignment A(c) = dci is made at DT(c) and it deacti-
vates links with labels c = dcj, ∀dcj 6= dci.

In order to make the definition valid in a dynamically controllable strategy, we
have to define the prehistory of the assignment and restrict DT(c) with the links
having labels related to c.

However, several obstacles prevent us from giving a direct definition of the pre-
history: (1) the assignment is not explicitly associated to timepoints; and (2) the
contingent links included in the past observations may be completely different for
different choices have been made. Due to these difficulties, we have to introduce ba-
sic definitions, such as partial assignments, precedences and conditional precedences with
some assumptions.

Making dynamic choices for controllable discrete variables in a temporal prob-
lem is not a new topic. Conrad and Williams [2011] define the dynamic execution
for an STN with controllable discrete variables. This dynamic execution decides to
activate an event or not in real-time and maintains a consistent labelled value set. We
adopt their definition of environment for the STN with discrete variables as a partial
assignment of discrete variables.

Definition 4.6. (Partial Assignment) The environment is a partial assignment PA of
the discrete variables. Before execution, the environment is empty PA = ∅; after a
feasible execution, the environment consists of assignments of all discrete variables
PA = A.

In execution, the dynamic decisions on discrete variables in a strategy are made
at specific timepoints that obey the chronological orders implied by constraints. The
observations of contingent links on which these decisions can depend on have to
complete before the decision timepoints. As a necessary condition, we introduce
the definition of precedence between timepoints in order to represent the set of con-
tingent links that each decision of discrete variable can observe. Furthermore, the
precedence definition can also help to describe and find the chronological order to
assign discrete variables.

Definition 4.7. (Precede) For any pair of time points vi, vj ∈ V, vi precedes vj, denoted
as vi � vj, iff S(vi) ≤ S(vj), for every consistent schedule S. For any link ei ∈ E and
vj ∈ V, ei precedes vj, ei � vj, iff start(ei) � vj and end(ei) � vj; vj precedes ei, vj � ei,
iff vj � start(ei) and vj � end(ei).

This definition excludes some labelled precedences. For instance, in the example
in Figure 4.2, precedences A � B and C � D hold in every consistent schedule, but
precedence B � C and D � A do not exist because they only hold in the environ-
ments of {c3 = 1} and {c3 = 2}, respectively. With the given precedences, the order
of contingent links AB and CD is not decidable, so neither of them is guaranteed
to be an observation of deciding discrete variables c1, c2 or c3. Thus, the dynami-
cally controllable decisions of timepoints and discrete variables cannot be assumed
to happen after the observation of any of the contingent links, and therefore have to
work for any value in their range.

62 Dynamic Controllability of CCTPU

Additionally, we define the conditional precedence under a certain partial assign-
ment PA.

Definition 4.8. In the environment of partial assignment PA, any pair of time points
vi, vj ∈ V, vi precedes vj under PA, denoted as vi �PA vj, iff S(vi) ≤ S(vj), for every
consistent schedule S such that its assignment A |= PA. For any link ei ∈ E and
vj ∈ V, ei precedes vj under PA, ei �PA vj, iff start(ei) �PA vj and end(ei) �PA vj; vj
precedes ei under PA, vj �PA ei, iff vj �PA start(ei) and vj �PA end(ei).

With definition 4.8, the example in Figure 4.2 has conditional precedences B �c3=1

C and D �c3=2 A that enable different dynamic assignments after choosing c3. Link
AB can be the observation to decide c2, when c3 = 1; Link CD can be the observation
to decide c1, otherwise.

A B C D

[0, x1]
c1 = 1
[0, x2]
c1 = 2

[0, y1]
c2 = 1
[0, y2]
c2 = 2

[0, 1]
c3 = 1

[0, 1]
c3 = 2

Figure 4.2: An Example Showing Precedences

We introduce an assumption of the decision timepoint of a discrete variable to
associate the discrete variable to timepoints and restrict the decision time according
to the links with labels including assignments of the variable.

Assumption 4.1. The assignment A(c) is made once, at the time point DT(c), which
must occur no later than any link e ∈ E such that `E(e) mentions c. That is, DT(c) �
e, ∀e s.t. `(e) ∩ D(c) 6= ∅.

With assumption 4.1, Definition 4.5 means during execution, before DT(c), the
strategy is the same for different options of c, after DT(c), the strategy only respects
to the sub-network without links deactivated by A(c).

One part of the assumption is implied by the definition of execution strategy,
which is the decision time point DT(c) is associated with a single timepoint in V.
The other part is the associated decision timepoint should choose among nodes that
precede every link activated by c. However, separate decisions that c 6= dci can be
made at different time points in real execution. For example, if we have the choice of
performing a task today, tomorrow, or the day after, we could decide now to not do
it today without committing to which of the other two days it will be done. To some
extent, this limitation can be recovered by remodelling the problem. For example
in Figure 4.3, the variable with three options can be remodelled to the CCTPU in
Figure 4.4 which adds a dummy node of A as A′ and contains two variables with
two options each.

§4.2 Problem Definitions 63

A B2

B1

B3

C1

C2

C3

D

[0, 1]

c1 =
1

[23, 24]
c1 = 2
[47, 48]c1 = 3

[5, 10]
c1 = 1

[5, 10]
c1 = 2

[5, 10]
c1 = 3

[47, 48]c1 = 1
[23, 24]
c1 = 2

[0, 1]

c1 =
3

Figure 4.3: Example of a CCTPU with a variable with three options

A B2

B1

B3

C1

C2

C3

D

A′

[0, 1]

c1 =
1

[0, 1]

c1 =
2, c2 =

1

[24, 25]c1 = 2, c2 = 2

[23, 23]c1 = 2

[5, 10]
c1 = 1

[5, 10]
c1 = 2, c2 = 1

[5, 10]
c1 = 2, c2 = 2

[47, 48]c1 = 1
[23, 24]

c1 = 2, c2 = 1
[0, 1]

c1 =
2, c2 =

2

Figure 4.4: Example of Remodelling

For dynamic controllability of an STPU, the observed situation [Vidal and Fargier,
1999], or prehistory [Morris et al., 2001; Hunsberger, 2009], at any time consists of the
observed durations of contingent links that have finished before that time. Given a
schedule S of STPU, the prehistory of a time point x is

S{≺ x} = {pij|S(vi) + pij ≤ S(x)},

where pij is the observed duration of contingent link eij. However, we restrict the
prehistory of discrete variables to only those contingent links that must finish before
the variable’s decision timepoint, so that the set of contingent links in the prehistory
is stable with a given partial assignment.

Assumption 4.2. Given a projection p under a certain partial assignment PA, the
prehistory of a discrete variable c is the observed durations of contingent links which
must be activated by PA and finish before or at DT(c) in every execution, denoted
PPA(p){� c} = {pij|eij �PA DT(c) and PA |= `(eij), pij ∈ p}.

Furthermore, under a certain partial assignment, the prehistory of a set of un-
assigned discrete variables is the union of the prehistories of the variables in the
set,

PPA{≺ Cs} =
⋃

c∈Cs

PPA{≺ c}.

Different from the observation of timepoint scheduling, contingent links that may
end, but must not yet end, before the decision time point of a discrete variable is not

64 Dynamic Controllability of CCTPU

observations making the decision. In the DC reduction for an STPU, in a triangle
ABC with contingent link AC, if the contingent link AC that may end but must
not end before a timepoint B, it indicates that B is in the unorder case in triangle
reduction. Thus, B has a wait constraint with AC. It means that B can be used as an
observation in the execution of STPU. The extended work to relax this assumption
which considers those contingent links as observations is one of our future work.

Therefore, based on the prehistory which is the projections of contingent links
that must finish before the decision timepoint, the dynamic assignment of a discrete
variable is the choice made at its decision timepoint which must precede every link
with labels related to its assignment, and the decision activates and deactivates sub-
networks accordingly.

4.2.3 Dynamic Controllability of CCTPU

The dynamic controllability means there is a viable execution strategy in which each
decision only depends on observations before the decision. Based on the definition of
dynamic assignment of discrete variables with assumptions, we provide a definition
of dynamic controllability of CCTPU. The definition is sound but not complete re-
garding the intent of dynamic controllability, but it is complete with the assumptions.
Additionally, ways to relax assumptions are discussed at the end of this subsection.

Definition 4.9. A CCTPU execution strategy 〈DT, ES〉 is viable iff

• DT(c) precedes the start of every link e ∈ E such that c appears in `E(e)

• and ES(p) is consistent for every projection p.

We now define dynamic controllability of a CCTPU as follows.

Definition 4.10. A CCTPU is dynamically controllable if there is a viable execution
strategy 〈DT, ES〉 such that for any two projections p1 and p2,

• ES(p1){≺ t} = ES(p2){≺ t} ⇒ ES(p1)(x) = ES(p2)(x), where t = ES(p1)(x),
for each controllable time point x,

• PPA(p1){≺ c} = PPA(p2){≺ c} ⇒ ES(p1)(c) = ES(p2)(c), for each discrete
variable c and partial assignment PA.

In this definition, the decisions on timepoints are the same as dynamic control-
lability of STPU, the decisions on discrete variables only depend on the prehistories
before the scheduling time of their decision timepoints, which also obey the origin
of dynamic controllability.

4.2.4 Dynamically Controllable Envelopes

Definition 4.10 only helps to check dynamic controllability of a given CCTPU. We
present the following definitions of dynamically controllable envelopes to explain
our dynamic controllability checking algorithm in this chapter.

§4.2 Problem Definitions 65

Dynamically controllable envelopes intend to define the preconditions under
which, the following CCTPU has a dynamically controllable execution strategy. In
other words, the subset of uncertain prehistory with which the following CCTPU
is dynamically controllable is the dynamically controllable envelope, which can be
regarded as a relaxation of contingent links in the prehistory. For example, in the
illustrative example shown as Figure 4.1, the subset [30, 40] of event E1 → E′1 is
the dynamically controllable envelope of making decision c1 = S and [40, 50] is the
envelope of making decision c1 = K.

The dynamically controllable envelope of a CCTPU can be aggregated from fully
assigned branches which are STPU. In the illustrative example, if we combine the two

envelopes [30, 40] and [40, 50], it covers the whole uncertain prehistory E1
[30,50]−−−→ E′1.

Thus, a dynamic choice based on the observation of E1 → E′1 can make the whole
strategy feasible and dynamic.

The dynamically controllable envelope of a fully assigned CCTPU is the set of
relaxations that can make the STPU dynamically controllable. A relaxation reduces
the uncertainty by increasing lower bounds and/or decreasing upper bounds of con-
tingent links. In the dynamically controllable envelope of a fully assigned CCTPU,
the relaxable links are all contingent links not deactivated by its assignment. One
relaxation EU′ of a given set of contingent links EU can be formulated as for all
eu ∈ EU, there exists eu′ ∈ EU′, such that eu′ ⊆ eu and eu′ and eu start from and end
at a same pair of nodes.

EU′ = relaxed(EU) = {eu′ij = [l′ij, u′ij]|∀eu ∈ EU, eu = [lij, uij], lij ≤ l′ij ≤ u′ij ≤ uij}.
(4.1)

Given a relaxation EU′ and the CCTPU N, an updated network

N′ = updated(N, EU′) = N \ EU ∪ EU′

which replaces the set of contingent links by the relaxation.

Definition 4.11. The dynamically controllable envelope of a CCTPU with a full
assignment A is Env(A) = {EU′|EU′ = relaxed(EU), N′ = updated(N, EU′), N′ is a
dynamically controllable STPU under assignment A.}, where EU′ is a relaxation of
EU.

Envelopes with a common prehistory can be aggregated. For instance, two en-
velopes with full assignments Env(A1) and Env(A2), where A1 = PA ∪ {c = d1}
and A2 = PA ∪ {c = d2} have the common partial assignment PA, aggregate to
Env(PA, c) on prehistory PPA{≺ c}. The combined envelope Env(PA, c) describes
the previous condition, in which one of the options of c can make a dynamically
controllable strategy.

Definition 4.12. The dynamically controllable envelope of assigning a discrete vari-
able c in a CCTPU after a certain partial assignment PA is Env(PA, c) = {EU′|EU′ =
relaxed(EU, PA, c), N′ = updated(N, EU′) is dynamically controllable.}, where EU′ =

66 Dynamic Controllability of CCTPU

relaxed(EU, PA, c) is the set of relaxed bounds of contingent links belong to PPA{≺
(PA ∪ c)} and make the updated CCTPU dynamically controllable.

After aggregating envelopes from all branches Env(PA ∪ {c = di}) to Env(PA, c),
we want to aggregate Env(PA \ {c′ = d′}), where {c′ = d′} ⊂ PA. The combined
envelope Env(PA, c) cannot be used directly in the next level aggregation that com-
bining branches for discrete variable c′ ∈ PA because it may contain links belong to
PPA{≺ c} not PPA\c′{≺ c′}. Thus, we present Definition 4.13.

Definition 4.13. The dynamically controllable envelope of a CCTPU under a cer-
tain partial assignment PA is Env(PA) = {EU′|EU′ = relaxed(EU, PA) ∧ N′ =
updated(N, EU′) is dynamically controllable}, where relaxed(EU, PA) is the set of re-
laxed bounds of contingent links where relaxable links belong to PPA{≺ PA} and
make the updated CCTPU dynamically controllable.

Therefore, the aggregating process to achieve the envelope of CCTPU with partial
assignment PA before assigning the next discrete variable c is the set of unions of
selected subsets of envelopes of branches PA′d = PA ∪ {c = d}, which is

Env(PA, c) = {
⋃

d∈D(c)

EU′d|EU′d ∈ Env(PA′d)}. (4.2)

Next, envelope Env(PA) selects a subset of Env(PA, c) in the selection rule eu′x =
eux|∀eux 6∈ PPA{≺ PA} that selects relaxations whose relaxed links are in the prehis-
tory of PA.

Env(PA) = selecteu′x=eux |∀eux 6∈PPA{≺PA}Env(PA, c) (4.3)

The envelope of a CCTPU can be collected by implementing the aggregation in
Equation 4.2 repeatedly until PA = ∅,

A CCTPU is dynamically controllable if and only if its dynamically controllable
envelope with an empty partial assignment is the set of the original bounds,

Env(∅) = EU.

Additionally, the dynamically controllable envelopes of CCTPU satisfy the following
equation,

Env(A) = EU ⇒ Env(PA) = EU ⇒ Env(∅) = EU. (4.4)

This equation means a CCTPU is dynamically controllable if it has a dynamically
controllable envelope with a partial assignment, which covers the uncertainty in the
prehistory of the partial assignment, and if a CCTPU has a dynamically controllable
STPU branch, it is dynamically controllable.

Last but not least, we introduce the last assumption.

Assumption 4.3. For each discrete variable c, the end point of a contingent link or
timepoint 0 can be DT(c).

The rest of the nodes cannot be decision timepoints based on current definitions
because different decisions are made according to different observations. However,

§4.3 Extracting Dynamically Controllable Envelopes of STPU 67

the observations of making assignments at those nodes are the same as at some
other nodes. For instance in Figure 4.5, dashed lines are contingent links, and the
diamond node is the latest decision timepoint. If the decision timepoint is at r2,
the observation set only contains the prehistory before t1. Thus, potential decision
timepoints are S, t1, t2 and the diamond node.

This assumption guarantees that the observation differs when making choice c.
We call this different observation the key observation to assign c. Before deciding on
c, the dynamically controllable execution strategy makes consistent decisions regard-
less of the following options, which means decisions before the key observation are
the same for different options of c. However, after observing the key contingent link,
different following decisions are made depending on the options of c.

s c1 t1 r1 r2 c2 t2 c

Figure 4.5: Alternatives for DT(c). Squares are uncontrollable time points, circles
controllable time points and the diamond is the latest decision time of c.

However, Assumption 4.3 does rule out strategies that wait for parallel contingent
links to finish before making a decision.

4.3 Extracting Dynamically Controllable Envelopes of STPU

Given an STPU, the approach in this section returns its dynamically controllable
envelope. The dynamically controllable envelope of an STPU is the observable con-
dition under which the STPU is dynamically controllable. Finding the dynamically
controllable envelope of an STPU is to find the subset of situations in which no con-
flict of dynamic controllability occurs.

Both Morris’s O(n4) and O(n3) algorithms terminate after finding a conflict which
is a semi-reducible negative cycle. Yu et al. [2014] solve over-constrained STPUs with
a conflict-directed search method. It learns conflicts for dynamic controllability by
recording support links, which are the original edges, in propagations and consis-
tency checks of Morris’s O(n4) dynamic controllability checking algorithm. It can
learn one conflict each time. By iteratively finding and resolving conflicts, a relaxed
and dynamically controllable STPU instance can be found. However, the solution
of the iteratively determining method is a dynamically controllable instance under
a particular objective function (e.g. minimising relaxation cost), its conflict reso-
lutions may lead to an un-dynamically controllable instance under other objective
functions. Therefore, we need to get all necessary conflict resolutions whose solution
space equals to the set of dynamically controllable solutions to get the dynamically
controllable envelopes.

68 Dynamic Controllability of CCTPU

A B C D
[1, 10] [−1,] [10,]

[, 9]

Figure 4.6: An STPU contains a conflict. Because the temporal constraints on BD and
CD infer that uBC ≤ −1, which means C has to be scheduled before the observation
of B. Thus, triangle ACB is in the precede case, and the upper bound of AC uAC ≤
lAB− uCB = 0. However, if C is scheduled no later than A and the uncertain duration

of AB is greater than 1, the requirement link on BC cannot be satisfied.

In this section, we start with illustrating the current conflicts learning algorithm.
Then we introduce a new method modified from Morris’s O(n3) dynamic control-
lable algorithm that can extract all conflicts and provide the formulation of the dy-
namically controllable envelopes for the STPU.

4.3.1 Conflict Resolutions of STPU

Finding the dynamically controllable envelope of an STPU is to find the subset of
prehistories in which all conflicts do not exist. This problem is similar to relaxing an
over-constrained (non-DC) problem. Yu et al. [2014] formulate the relaxation problem
as a linear programming model with a set of constraints derived from conflicts. The
conflicts represent the reasons why the STPU is not dynamically controllable. A
conflict is a semi-reducible negative cycle in the network after applying dynamic
controllability reduction rules (see Section 2.2.2.2).

A conflict can be represented as follows:

∑
i∈con f j

xi < 0, (4.5)

where xi are the original bounds (li or ui) of links ei in the conflict. A conflict resolu-
tion is a linear constraint

∑
i′∈con f j∩ER

x′i′ + ∑
i∈con f j\ER

xi ≥ 0 (4.6)

where ER is the set of relaxable links and x′i′ are variables for the relaxed bounds.
Another way to resolve conflicts with connected lower- and upper-case labels of

the same node is to break the reduction, since the cross-case reduction rule (Equation
2.1) has a label condition:

(CROSS-CASE REDUCTION) If x ≤ 0, B 6= C,

A B:x←− C
c:y←− D adds A

B:(x+y)←−−−− D.

For example, the STPU in Figure 4.6 has a conflict that can be found by any dy-

§4.3 Extracting Dynamically Controllable Envelopes of STPU 69

A A’ B C D

1

−1

b : 0

B : −9
1 −10

9

Figure 4.7: The labelled distance graph of Figure 4.6.

namic controllability checking algorithms. The reduction process of Morris’s O(n3)
algorithm represented by the labelled distance graph is shown in Figure 4.7. Equa-
tion 4.7 illustrates the reduction process. The pair of parentheses shows an added

link C 0←− A reduced from the labelled distance graph.

A −1←− A′ B:−9←−− B 1←− (C −10←−− D 9←− B b:0←− A′ 1←− A) (4.7)

A conflict resolution of the found conflict is

−u′AB − l′BC − l′CD + u′BD + l′AB ≥ 0.

In order to resolve the conflict, the total amount of relaxation is 9.
However, this conflict can also be resolved by only relaxing C ← D by 1. It will

make the back propagation of C −9←− D stop at B and add a new link C 0←− B. Then

the back propagation of A −10←−− B is

A −1←− A′(B:−9←−− B 1←− C 0←− B b:0←− A′ 1←− A)

which has to stop before B b:1←− A because the propagated path A B:−9+1←−−−− B has a
label of B which does not satisfy the condition of cross-case reduction. The complete
conflict resolution of the conflict in Equation (4.7) is

−u′AB − l′BC − l′CD + u′BD + l′AB ≥ 0∨ l′CD + u′BD ≥ 0.

Therefore, the resolution of a single conflict is a disjunction with one linear con-
straint of the form 4.6 and other linear constraints over the links whose relaxations
can break the reductions: ∨

k∈resj

∑
i′∈resjk∩ER

x′i′ + ∑
i∈resjk\ER

xi ≥ 0 (4.8)

where resj is the set of conflict resolutions of con f j.
Yu et al. solved an LP over constraints of form (4.6) to find a single relaxation.

However, provided we find all conflicts in the STPU, the solution of conflict resolution
constraints of Equation 4.8 represents the space of all relaxations, which is the same
as the dynamically controllable envelope. Extracting all conflicts can be done by

70 Dynamic Controllability of CCTPU

adapting current DC checking methods [Morris, 2006; Shah et al., 2007; Hunsberger,
2013; Nilsson et al., 2013; Morris, 2014] and keeping a record of the conflicts.

4.3.2 Extracting Conflicts of STPU

In this subsection, we describe the method to extract a complete conflict set of a
given STPU. Since the conflicts are negative cycles, the number of conflicts is infinite
when there is one negative cycle, and the edges can reduce along the negative cycle
infinitely. However, our algorithm only finds conflicts that cannot be divided into
other found conflicts, which makes the found conflicts a complete conflict set.

Our algorithm is a variation of the dynamic controllable checking algorithm in
Morris [2014]. Morris’s cubic algorithm identifies a non-dynamically controllable
STPU by finding a semi-reducible negative cycle, we will call it negative cycle in
this paper, during propagation according to dynamic controllability reduction rules.
It propagates every negative link backwards along positive links only, adds a posi-
tive link when the propagated path is positive and raises another propagation when
meeting a negative link. A conflict is found when the raised propagation is a nega-
tive link that has an unfinished ancestor propagation, and the algorithm terminates.
It guarantees that every negative link is propagated once at most.

Our approach expands Morris’s O(n3) algorithm by propagating through non-
shortest paths and recording a complete set of conflicts. The conflict resulting in the
termination can be learned by memorising the path when tracing back.

However, iteratively extracting and resolving one conflict learned from the dy-
namic controllability checking algorithm cannot get such a complete conflict set,
since resolving one conflict may prevent us from finding other conflicts. For ex-
ample in Figure 4.8, where solid lines are edges and dotted lines are paths consisting
of positive links to be propagated. Both paths p1 and p2 formulate negative cycles
A ← B ← A, but only the shorter one will be found when calling backpropagation

from A
L1 :−x←−−− B. Furthermore, if the conflict resolution relaxes A← B, it may resolve

the other conflict in the instance, but the conflict resolution of the other conflict can
never be extracted.

Another example in Figure 4.9 shows a case with cyclic calls of backpropagations.

If it first calls backpropagation from A
L1:−x←−−− B, the algorithm will terminate when

finding negative cycle I. Furthermore, if the conflict resolution relaxes the overlapped
part of the two negative cycles, it may prevent from finding negative cycle II.

A B A
L1 : −x

0 ≤ p1 < x

0 ≤ p2 < x

Figure 4.8: Alternative conflicts I

§4.3 Extracting Dynamically Controllable Envelopes of STPU 71

A B C D A B C
L1 : −x p1 < x L2 : −y p2 < y L1 : −x p3 < x

Negative Cycle I

Negative Cycle II

Figure 4.9: Alternative Conflicts II

Based on these observations, to find all necessary conflict resolutions, we have
to modify Morris’s algorithm in the following ways: (1) replacing the shortest path
process by a method that can propagate through all possible paths and (2) propagat-
ing some negative links more than once. If the backpropagation of a negative link is
involved in a conflict, but the conflict is learned at cyclic propagations ending at an-
other negative link, this propagation may be incomplete. For instance in Figure 4.9, if

negative cycle I is found by the back propagation starting from A
L1 :−x←−−− B, the raised

propagation of C
L2 :−y←−−− D is not complete which needs to be propagated again. If we

start a new round of propagation of C
L2:−y←−−− D, negative cycle II will be found and

the propagation is complete. The propagations without ancestor propagations and
involving in no conflict are complete.

The approach to extract a complete set of conflicts is summarised in Algorithms
7, 8 and 9. Algorithm 9 and Lines 7 – 11 of Algorithm 8 are the DFS process, while
the rest is the same as Morris’s method.

Algorithm 7 calls BackPropagation once on every negative edge of the labelled
distance graph of a given STPU. NegPathEnds records negative paths when tracing
back to formulate NegCycles.

BackPropagation (Algorithm 8) terminates if the current node recursively reached
itself through a negative path (lines 1 – 3) or if propagation from the current node has
already been successfully completed (lines 4 – 6). disEdge[i] is the reduced distance
edge from i to the end of srcLink in the current round of propagation.

In DFS (Algorithm 9), we enumerate edges ending at the current node crtNode
(Line 2 – 29). Lines 3 – 5 prevent cross-case reductions that do not satisfy the label
condition. As proven by Morris’s algorithm, the algorithm only propagates through
non-negative links ending in crtNode (Line 6 – 15). The function Reduction(X, Y)
(Line 7) adds two links X and Y based on the dynamic controllability reduction rules
(Equation 2.1) and keeps a record of the reduction history. If the propagated path is
positive, a new edge is added (Line 9), else, propagation continues to call DFS (Line
13). When encountering a negative link, the algorithm will call BackPropagation
again (Line 17). bReturn marks the existence of a recursively called negative link. If
there exists a recursive call, the current path from crtNode to srcNode can be part
of the found conflict, so we add the path disEdge[crtNode] to NegPathEnds[srcNode]
in line 19. Furthermore, NegPathEnds[crtNode] keeps a record of negative paths

72 Dynamic Controllability of CCTPU

(as NodeX e1−→ crtNode) ending at the current node, which can propagate through

crtNode
disEdge[crtNode]−−−−−−−−−→ srcNode and formulate a new negative path as NodeX NewPath−−−−→

srcNode ending at the source node, where NewPath propagates e1 through path
disEdge[crtNode]. Line 23 adds the negative cycle if it can be found in the propagation
of NewPath; Line 25 adds the negative path, otherwise.

Algorithm 7: Extracting the DC envelope of an STPU.
Algorithm: DCEnvelopeSTPU(N)
Input: An STPU N.
Output: A set of conflicts NegCycles

1 global LabelN = labelledDistanceGraph(N)
2 NegCycles = ∅
3 for e in negative edges of LabelN do
4 NegPathEnds = {∅}
5 BackPropagation(e, NegPathEnds, NegCycles)
6 end
7 return NegCycles

Algorithm 8: Modified backpropagation process that can extract all conflicts.
Algorithm: BackPropagation(srcLink, NegPathEnds, NegCycles)
Input: A negative link srcLink, the vector of sets of negative paths end at same nodes

NegPathEnds, the set of negative cycles NegCycles.
Output: Return the propagation result and an updated NegCycles

1 if ancestor call with same srcLink then
2 return False
3 endif
4 if prior successfully terminated call with srcLink then
5 return True
6 endif
7 disEdge = {}
8 disEdge[srcLink.start] = srcLink
9 if DFS(srcLink.start, srcLink.end, NegPathEnds, NegCycles) then

10 return True
11 endif
12 return False

The complexity of our conflict extraction method is O(E3) in the worst case, when
all links are negative and the network is fully connected. It is slower than the state-of-
art DC checking methods and CDRU. However, it returns the complete set of conflict
resolution constraints, not only whether conflicts exist, or one relaxation. Addition-
ally, it can be improved by cutting unnecessary exploration in the DFS process.

4.3.3 Dynamically Controllable Envelopes of STPU

After finding the complete set of conflicts, the dynamically controllable envelope of
an STPU is the solution space of the conflict resolutions. The constraint model is a

§4.3 Extracting Dynamically Controllable Envelopes of STPU 73

Algorithm 9: The DFS process that do reductions through positive links.
Input: Current node crtNode, the source node of back-propagation srcNode, the vector

of sets of negative paths end at same nodes NegPathEnds and the set of conflicts
NegCycles.

Output: Return DFS result and the updated NegCycles and NegPathEnds
Initialization:

1 bReturn = True
Algorithm: DFS(crtNode, srcNode, NegPathEnds, NegCycles)

2 for e ends with crtNode do
3 if e is unusable then
4 continue
5 endif
6 if e.weight ≥ 0 then
7 NewE = Reduction(disEdge[crtNode], e); // Equation (2.1)

8 if NewE.weight ≥ 0 then
9 LabelN.addEdge(NewE)

10 else
11 TmpDis = disEdge[e.start]
12 disEdge[e.start] = NewE
13 bReturn& = DFS(e.start, srcNode, NegPathEnds, NegCycles)
14 disEdge[e.start] = TmpDis
15 endif
16 else
17 if !BackPropagation(e, NegPathEnds, NegCycles) then
18 bReturn = False
19 NegPathEnds[srcNode].add(disEdge[crtNode])
20 for e1 in NegPathEnds[crtNode] do
21 NewPath = Reduction(disEdge[crtNode], e1)
22 if NewPath contains conflicts then
23 NegCycle.add(NewPath)
24 else
25 NegPathEnds[srcNode].add(NewPath)
26 endif
27 end
28 endif
29 endif
30 end
31 return bReturn

conjunction of conflict resolutions.

Given the set of relaxable edges ER that represents the uncertain situations which
can be partially considered in the STPU, the dynamically controllable envelope of the
STPU is x′i′ satisfying the following constraints∧

j∈Con f

∨
k∈resj

∑
i′∈resjk∩ER

x′i′ + ∑
i∈resjk\ER

xi ≥ 0. (4.9)

The dynamically controllable envelope of an STPU can be used to aggregate the

74 Dynamic Controllability of CCTPU

dynamically controllable envelopes of the CCTPU.

4.4 Dynamic Controllability Checking of CCTPU

Central to our algorithm for finding a dynamic execution strategy is the notion of the
“envelope” of a partial assignment of the discrete variables.

Definitions of envelopes in Section 4.2.4 can also be rephrased as the following
definition.

Definition 4.14. Given a partial assignment to a subset of discrete variables, CAss ⊆
C, the dynamically controllable envelope of an unassigned variable, c ∈ (C− CAss),
is the set of prehistories of c for which there exists a viable dynamic execution strat-
egy.

In other words, the envelope of a decision, given a partial assignment, is the
subset of possible outcomes of earlier contingent links for which a viable strategy
exists. It is similar to the notion of a relaxation of an over-constrained CCTPU,
which also allows tightening contingent links, but captures all ways of making the
subproblem dynamically controllable. A detailed example of a DC envelope, for the
problem in Figure 4.13, is given by Equation (4.14) at the end of Section 4.4.4, after
introducing the key processes of the approach.

The DC envelope of a set of discrete variables is a combination of the variables’
envelopes. For a contingent link in the prehistory of two or more variables, all condi-
tions on the link apply, so that the envelope is the intersection. Where two variables
have different links in their prehistory, the envelope is defined over the union of their
prehistories.

A CCTPU is dynamically controllable if the DC envelope of a partial assignment
covers all possible outcomes of uncertainties in the problem. It means the partial
assignment can be made statically, and there exists a dynamic strategy for the future
(discrete and scheduling) choices. Hence, our approach (1) builds a search tree by ex-
panding on variables, (2) extracts the dynamically controllable envelopes of STPUs at
leaves and (3) aggregates those envelopes as the dynamically controllable envelopes
of non-leaf nodes. If the DC envelope of any node covers all uncertainty, a dynamic
execution strategy can be extracted from this node.

Next, we describe the general idea of the approach; the details are introduced in
the following four subsections.

4.4.1 Algorithm Structure

Our dynamic controllability checking algorithm for a CCTPU (Algorithm 10) is a
recursive tree search. Each leaf node is the STPU obtained from a full assignment to
discrete variables, while interior nodes are CCTPUs with partial assignments. The
root is the original CCTPU. Every other node has one parent that eliminates the
assignment to the “latest” variable. The chronological order of variables is defined
in the next subsection.

§4.4 Dynamic Controllability Checking of CCTPU 75

The algorithm traverses the tree depth-first, assigning variables in chronological
order. NextUnassignedVariable (line 1) returns the next variable to be assigned. If
every variable has been assigned, the current node is a leaf (lines 2 – 8); in this case,
we extract the conflict resolution constraints that must be satisfied to make the leaf
dynamically controllable and record those in Node.S as its DC envelope (line 3). The
detailed description of DCEnvelopeSTPU is in section 4.3. A non-leaf node (lines 9
–18) is expanded by assigning values to the next variable and exploring those nodes
recursively. After the child branches of a node have been investigated, their DC
envelopes are combined and recorded as the DC envelope of the current node (line
14). If the envelope of a node is dynamically controllable, then so is the CCTPU and
the algorithm returns successfully.

The following subsections explain the three subroutines besides DCEnvelopeSTPU:
NextUnassignedVariables, which determines the order to assign discrete variables,
Union (line 14), which combines envelopes from branches of the same node, and
isDC (line 15), which checks if the current solution includes a dynamic strategy for
the original problem. We explain these procedures in the following subsections.

Algorithm 10: Checking dynamic controllability of a CCTPU.
Input: A Node =< N, A, S > includes a CCTPU N, a vector of assignments A and the

solution of the current node S.
Output: TRUE/FALSE
Algorithm: TreeSearch(Node)

1 c← NextUnassignedVariable(Node)
2 if isNull(c) then
3 Node.S←DCEnvelopeSTPU(Node)
4 if isDC(Node.S) then
5 return TRUE
6 endif
7 return FALSE
8 endif
9 for dci in D(c) do

10 NewNode← Assign(Node, c, dci)
11 if TreeSearch(NewNode) then
12 return TRUE
13 endif
14 Node.S← Union(Node.S, NewNode.S)
15 if isDC(Node.S) then
16 return TRUE
17 endif
18 end
19 return FALSE

4.4.2 Branching Rule

The order in which the algorithm assigns variables obeys the execution process. Dur-
ing execution, a decision can observe and depend on previous assignments. Even

76 Dynamic Controllability of CCTPU

when some variables are decided in parallel, the branching rule assigns them in a
sequence that respects to this order.

If a variable’s decision time point is after any links that may be activated by
another discrete variable, there is a dependency from the earlier to the later variable.
For example, in Figure 4.13 the choice between c2 = 1 and c2 = 2 depends on the
choice for c1. Dependencies among discrete variables form a directed graph.

To find the chronological order, we build dependencies among variables. Recall
our definition of precedences (Definitions 4.7 and 4.8), we give the following defini-
tion.

Definition 4.15. If a link e � DT(ci) and e can be activated or deactivated by cj, then
ci depends on cj, denoted as ci ≺ cj. If a link e �PA DT(ci) and e can be deactivated
(the same as activated) by A(cj), then ci depends on cj under partial assignment PA,
denoted as ci ≺PA cj.

If the dependencies among variables do not cause a cycle, we can use topological
sort to get all possible chronological orders. Otherwise, the dependency cycles can
be treated as conflicts. If the network is dynamically controllable, at least one of the
links within a cycle need to be deactivated by assignments. Therefore, we can just
try different possible orders, if a feasible dynamic strategy is available under one of
such orders, the network is still dynamically controllable.

With these definitions, we can formulate a dependency graph that enables to get
chronological orders to assign variables. However, it may have cyclic dependencies,
as shown in Figures 4.2 and 4.10 (the diamond nodes are decision timepoints), which
will cause a failure to select the next unassigned variable. The cyclic dependencies
containing links with different assignments from the same variable, like Figure 4.2,
are ruled out by our assumption 4.1 because the decision time DT(c3) has to be
placed before node A, B, C and D which breaks the dependencies c1 ≺ c3 and c2 ≺ c3.
Therefore, assigning c3 before entering the cycle will break the cyclic dependency.
However, cyclic dependencies that contain links with labels of different variables as
in Figure 4.10 cannot be solved in the same way. To deal with this case, we can
remodel the problem by adding a discrete variable c0, attaching assignments to each
link included in the cyclic dependency in Figure 4.11, so that the cyclic dependency
will be broken by any assignment of c0 which is made before assigning c1, c2 and c3.

Because all cyclic dependencies either contain links with labels of repeated vari-
ables or different variables, which can be broken by either assumption 4.1 or remod-
elling, we can always find the next unassigned variable that does not depend on any
other unassigned variables. The order to assign variables is the chronological order
we use to branch the search tree.

4.4.3 Combining DC Envelopes

The combining process aims to answer under which condition an assignment of the
current discrete variable, c, can be made at its decision time point DT(c) such that

§4.4 Dynamic Controllability Checking of CCTPU 77

DT(c1) DT(c2)

DT(c3)

A

B

C

[0, x1]
c1 = 1

[0,x
2]

c1
=

2

[0,x
3]

c2
=

1

[0, x4]
c2 = 2

[0, x5]c3 =
1

[0, x6]
c3 = 2

Figure 4.10: Cyclic Dependencies among Variables II

DT(c1) DT(c2)

DT(c3)

A B

CDT(c0)

[0, x1]
c1 = 1, c0 6= 1

[0, x2]
c1 = 2

[0,x
3]

c2
=

1,c0 6=
2

[0, x4]
c2 = 2

[0, x5]
c3 =

1, c0 6=
3

[0, x6]
c3 = 2

[0, x7] [0, x 8]

[0, x9]

Figure 4.11: Remodelling Cyclic Dependencies among Variables II

the future part of the problem is dynamically controllable. This condition is the DC
envelope of the current node.

Ideally, dynamic choices should be based on the whole prehistory before DT(c).
Conflicts with different paths have different prehistories before DT(c). Recall our
Assumption 4.3, that DT(c) is the end point of a contingent link. Since no more than
one contingent link can finish at a node, this means we only consider one contingent
link (or the sum of a sequence of contingent inks) as the latest observation in each
combining process.

In combining envelopes, we may split observable uncertainty, which is before
DT(c), so that each child branch only tackles part of it. It may resolve conflicts, or
at least relax them, meaning less strict constraints on the prehistory may replace the

78 Dynamic Controllability of CCTPU

original conflict resolution. Therefore, a conflict can be resolved through several com-
bining processes, and each combining process aggregates child envelopes according
to Equation (4.2). The dynamically controllable envelope as defined in Formula 4.2
helps us understand the combining process, but the elements of the dynamically
controllable envelope are uncountable since the domain of bounds is continuous.
Therefore, we use the constraints of conflict resolutions to represent dynamically
controllable envelopes, whose solution space is the set of relaxations according to
Definition 4.13.

The envelope of the node to assign discrete variable c under partial assignment
PA is a disjunction of child nodes’ envelopes:

Φ =
∨

dcl∈D(c)

∧
j∈Con f

∨
k∈resj

∑
i′∈resjk∩ER

x′i′ ≥ ajkl , (4.10)

where ER = {ei|ei ∈ EU such that ei ≺PA DT(c)} and ajkl = − ∑
i∈resjk\ER

xi is the

sum of bounds of links after DT(c). As the selection operator in equation (4.3)
may fail because of no suitable element can be found, the child envelopes may be
infeasible when reducing relaxable links. Those envelopes will be removed before
being combined. Furthermore, if no child envelope is available to be combined, the
current envelope does not contain dynamically controllable execution strategy, which
does not need to be combined in upper levels.

The envelope can be expanded into a conjunction of disjunctions, as shown in the
following equation.

Φ =
∧∨

∑
i′∈resjk∩ER

x′i′ ≥ ajkl (4.11)

Each conjunct takes one conflict resolution (which is a disjunction of linear con-
straints) from every child node branch in equation (4.10), so the number of conjuncts
can be the product of the number of constraints in each in-failed child node’s enve-
lope. Transforming the envelope into this form, same as that of equation (4.9), makes
the combining process uniform at all levels of the tree. Φ can cover the whole un-
certainty if and only its negation is infeasible within the original bounds of relaxable
contingent links.

¬Φ = ¬
∧∨

∑
i′∈resjk∩ER

x′i′ ≥ ajkl

=
∨
(¬
∨

∑
i′∈resjk∩ER

x′i′ ≥ ajkl)

=
∨∧

∑
i′∈resjk∩ER

x′i′ < ajkl (4.12)

As each disjunct in equation (4.12) contains a conjunction of linear constraints,
we can use an LP solver to perform its test. A disjunct can be removed, when it
is infeasible, which means its negation covers the whole uncertainty. We only keep

§4.4 Dynamic Controllability Checking of CCTPU 79

the rest disjunction for the following combining processes. Additionally, if every
disjunct is infeasible, Φ covers every uncertain situation in prehistory, which means
the current node is dynamically controllable and an execution strategy can be found
within the combined envelope.

4.4.3.1 Decision Consistency in Prehistory

The decision consistency aims to explain why and how we consider one contingent
link in each combining process.

During execution, the strategy splits at a decision timepoint DT(c) by assigning
variable c. For example in the illustrative Figure 4.1, after timepoint E1′, Mr. P only
needs to consider one branch after choosing his dinner option. However, even though
we keep all contingent links prior to the decision timepoint as relaxable links in the
dynamically controllable envelopes, only one of them can be combined each time.
As Figure 4.5 shows, there may exist more than one contingent links before the latest
decision timepoint c. If one child branch tackles both s → t1 and r2 → t2 partially,
the temporal scheduling of r1 and r2 separate the two observations. The strategy is
related to dynamic controllability reduction rules. The temporal scheduling of r1 and
r2 only deal with the relaxed s→ t1.

When combining envelopes from branching decisions of a discrete variable, the
envelopes must contain relaxable variables on no more than one contingent link.
If the envelope contains linear constraints on variables of both contingent links in
Figure 4.5, deciding requirement links between two partial observations means the
decision has to be made before the observation of the second contingent link, which is
not dynamically controllable. Otherwise, the envelope contains separate constraints
on both contingent links. Although several such envelopes can combine and cover
the whole prehistory, the decision on the discrete variable has been partially made in
the decision of the requirement link in this case, which breaks our assumption 4.1.

In each combining process, we consider one contingent link as the critical ob-
servation that can be partially tackled in child branches by making a choice for one
discrete variable. We try the end node of every contingent link that precedes the
latest decision time of c as DT(c), replacing the variables representing its lower and
upper bounds by a single variable xij. Then, the envelope answers under which con-
dition for all xij ∈ [lc

ij, uc
ij] there exists a choice dci such that xij satisfies constraints

in the envelope of the child node with c = dci. After selecting the key observation,
we check the feasibility of each disjunct in equation (4.12) with the following linear
programming problem.

s.t.
∧

∑
i′∈resjk∩ER\{xij}

pi′ + xij < ajkl (4.13)

lc
ij ≤ xij ≤ uc

ij

Besides the change of xij, we also temporally use pi′ to represent the other edges in
the conflict resolutions. It is because both lower and upper bounds of contingent links

80 Dynamic Controllability of CCTPU

in the envelope represent the uncertain projection in prehistory, which is observed at
the time the choice will be made.

Figure 4.12 illustrates situations of the reduction of a disjunction of constraints
with a common contingent link. Figure 4.12(a) shows an easy situation, where EI

c =
{[−In f , a]}, EI I

c = {[b, In f]} and a ≥ b, so the union of envelopes I and II covers
the whole space. It means that for all situations in the prehistory, no matter what
is observed, there will always be a feasible option that leads to a dynamic strategy.
Figure 4.12(b) illustrates a general and feasible situation. Envelopes I and II cover the
area from the lower bound of EI

c to the upper bound of EI I
c . The intersections of the

observation bounds [lc, uc] with the edges of Envelopes I and II are p1 and p2. The
combined envelope indicates that if the prehistory is within [lp, up], there will be a
feasible choice for c. Figure 4.12(c) illustrates an infeasible situation. The uncertainty
is so significant that the combined envelope cannot provide a viable range for the
prehistory before the observation.

prehistory

observation

Env I

Env II

(a) An feasible example

prehistory

observation

Env I
Env II

lc uc

p1
p2

lp

up

(b) A possibly
feasible example

prehistory

observation

Env I
Env II

l′c uc

p′1
p2

l′p

up

(c) An infeasible example

Figure 4.12: Combined Envelope

Following our assumptions, the DC envelope (1) is represented by constraints on
bounds of links prior to the decision time point of the variable, (2) enables different
assignments to the variable, which also implies different following schedules, and
(3) contains a dynamic strategy over the prehistory that is consistent for different
assignments.

4.4.4 DC Checking for the Combined Envelope

This subsection aims to answer what kind of combined envelopes means the problem
is solved or unsolvable.

A node is dynamically controllable if its DC envelope covers all uncertain situ-
ations implied by the problem. If the negation of an envelope is infeasible within
the original bounds of the problem, which means every uncertain situation can be
solved within one disjunctive branch, the problem is dynamically controllable. The
envelope is disjunctive, and a separate check is done for each disjunct.

§4.4 Dynamic Controllability Checking of CCTPU 81

If the problem is not solved during the combining process at any interior nodes of
the search tree and the DC envelope of the root is still not dynamically controllable,
then a dynamic strategy satisfying our assumptions does not exist.

A B C

D2

D1

E

F2

F1

G
[1, 10] [0, 1]

[1,
10
]

c 1
=

1

[10, 16]
c1 =

2 [0,
1]

c 1
=

2

[0, 1]c1 =
1 [1,

30
]

c 2
=

1

[2, 40]
c2 =

2

[0, 1]c2 =
1

[0,
1]

c 2
=

2

[10, 50]

Figure 4.13: An example of CCTPU with two discrete variables

We explain the combining process and node checking with an example with two
discrete variables, shown in Figure 4.13. The circles are controllable nodes, the
squares are uncontrollable nodes and the diamond nodes are latest decision time-
points. The dashed lines are contingent links and the solid lines are requirement
links. There two decision variables c1 and c2 and each of them has two options.

This problem cannot be solved with a fixed assignment because the STPU in each
leaf node contains conflicts.

The algorithm first arrives at the leaf {c1 = 1, c2 = 1} and extracts the conflict

A b:1−→ B 1−→ C
d1:1−−→ D1

1−→ E
f1:1−−→ F1

1−→ G −10−−→ A

Then in leaf {c1 = 1, c2 = 2}, the conflicts are

(1) A B:−10←−−− B 0←− C
D1 :−10←−−−− D1

0←− E F2:−40←−−− F2
0←− G 50←− A

(2) A b:1−→ B 1−→ C
d1 :1−−→ D1

1−→ E
f2 :2−−→ F2

1−→ G −10−−→ A

Potential DT(c2) is B or D1 (due to Assumption 4.3). Because making decision
of c2 at B will never satisfy the branch {c1 = 1, c2 = 2}, we illustrate the solution of
making decision at D1. The envelope at node {c1 = 1} is the solution space of the
following constraints:

l′AB + u′BC + l′CD1
+ uD1E + lEF1 + uF1G − lAG ≥ 0

∨
{
−u′AB − l′BC − u′CD1

− lD1E − uEF2 − lF2G + uAG ≥ 0
l′AB + u′BC + l′CD1

+ uD1E + lEF2 + uF2G − lAG ≥ 0
(4.14)

where the variables x′ are links before the decision timepoint. With variables x repre-
senting observations and p representing preconditions, the constraints are expanded

82 Dynamic Controllability of CCTPU

as

{
p′AB + p′BC + x′CD1

≥ 7 (c2 = 1)
∨ p′AB + p′BC + x′CD1

≤ 10 (c2 = 2)

∧
{

p′AB + p′BC + x′CD1
≥ 7 (c2 = 1)

∨ p′AB + p′BC + x′CD1
≥ 6 (c2 = 2)

(4.15)

The first branch in equation 4.15 can be cut because its negation causes infeasi-
bility. The other branch’s negation is still feasible, which means it does not cover
all uncertainty in its prehistory. Recovering variables to their original bounds, the
left constraint l′AB + u′BC + lCD1 ≥ 6 must be kept to the next combining process. In
the next step, our algorithm explores node {c1 = 2}. Using the same process, the
envelope of node {c1 = 2} is {u′AB + l′BC + uCD2 ≤ 20}. The decision time point is

DT(c1) = B, the observation is A
[1,10]−−→ B and the prehistory before the observation

is empty. The combining process results

p∅ + xAB ≥ 4 (c1 = 1)
∨ p∅ + xAB ≤ 4 (c1 = 2)

whose negation is infeasible. The problem is dynamically controllable.

The dynamic strategy is: (1) if pAB ≥ 4 at B, then make assignment c1 = 1,
otherwise c1 = 2; (2) after choosing c1 = 1, C is scheduled based on pAB, so that AD1

will always be longer than 6. At D1 if pAD1 ≥ 7, then choose c2 = 1, if pAD1 ∈ [6, 10],
choose c2 = 2, (3) after choosing c1 = 2, C is scheduled immediately after B, and
c2 = 1 at D2, (4) the scheduling of other controllable time points are inferred by the
reduction rules of dynamic control.

4.5 Approach Validation

If the algorithm finds a node whose envelope passes the DC check, then the CCTPU
is dynamically controllable. The strategy is to make choices according to the partial
assignment statically and following the observation of one of the contingent links
for the remaining variables. It is valid within the bounds of the prehistory, which
are verified by the final DC check to contain all potential outcomes uncertain links.
However, the algorithm is not complete, in the sense that it will find only strategies
that meet Assumptions 4.2 and 4.3.

In this section, we prove that (1) given an STPU, the conflicts extracted by algo-
rithm 7 is a complete set of conflicts; (2) given a CCTPU, the solution of our method
has a dynamically controllable execution strategy with the dynamic assignment on
discrete variables satisfying assumptions we have made. By proving (1), we show the
correctness and completeness of extracting DC envelopes of STPU.

§4.5 Approach Validation 83

4.5.1 Validation of Dynamically Controllable Envelopes of STPU

In section 4.3, the modified dynamic controllability checking algorithm extracts a
complete set of conflicts of a given STPU. Using disjunctive linear constraints as con-
flict resolutions, we represent the dynamically controllable envelopes of STPU by the
solution space of the constraint model. To validate the correctness and complete-
ness of our method, we prove that (1) all solutions satisfying constraints of their
dynamically controllable envelope are dynamically controllable; (2) a dynamically
controllable STPU satisfies its dynamically controllable envelope constraints.

In order to prove correctness, we introduce the following theorem.

Theorem 4.1. If in a conflict, one negative link has more than one occurrences and one
occurrence can propagate to another occurrence via a negative path, this conflict resolution
can be the sum of other conflict resolutions.

Proof. We use {e−1 , e−2 , ..., e−n , } to represent the existence of negative link e− in conflict
C. e−i can propagate to e−j via a negative path in C. The distance of the nega-
tive path on C is DC(start(e−i), start(e−j)) which is negative. Because start(e−i) and
start(e−j) are the same node, the negative path is a negative cycle which can be
resolved by a conflict resolution. If the rest part of C is negative, it is another
conflict DC(start(e−j), start(e−i)) < 0. Otherwise, C can be resolved by resolving
DC(start(e−i), start(e−j)).

Thus, multiple existences of a negative link in a conflict must be part of added
links not the start of any negative sequences. In other words, those multiple exis-
tences are not in the piled-up backpropagation processes (of Morris’s cubic algorithm
and our algorithm). Their backpropagation has been completed before finding the neg-
ative cycle. With Theorem 4.1, our algorithm only has to propagate one negative link
once in a recursive process.

To prove the correctness, we only need to prove we found all conflicts that don’t
have multiple repetitions of a single negative link or the distances among parts of
repetitions are non-negative. We also use Theorems 2.2 and 2.1 proved by [Morris,
2006, 2014] to prove the following theorem.

Theorem 4.2. Correctness: The solutions satisfying constraints of conflict resolutions ex-
tracted by the modified dynamic controllability checking method (Algorithm 7) are dynami-
cally controllable.

Proof. To prove the correctness, we suppose conversely there is a solution N satisfy-
ing constraints of conflict resolutions extracted by the modified DC checking method
but not dynamically controllable. According to Theorem 2.1 N has a semi-reducible
negative cycle C. By Theorem 2.2, C can be found by DCbackprop procedure in the
Morris’s DC checking algorithm.

Based on the process of DCbackprop procedure, C results from a series of call-
ing DCbackprop on negative edges {e−1 , e−2 , ..., e−k } and each propagating backwards

84 Dynamic Controllability of CCTPU

through positive edges. These positive edges are either original or added edges (the
added edges are positive paths in DCbackprop procedure, see line 9 in Algorithm 9).

First, we prove the case that all edges in C are original edges. The structure of C is
shown in figure 4.14, where {p+1 , p+2 , ..., p+k } are the paths of positive links propagated
through, ∑

i
(e−i + p+i) < 0 and e−i + p+i < 0 for all i. Calling backpropagation from

one negative edge e−i in C, all negative paths starting from e−i including p+i in C
will be enumerated by the DFS process until meeting other negative edges (line 17
in Algorithm 9) including the next negative edge e−i+1. Another backpropagation
process will be called when meeting e−i+1. The recursive calls result in a termination
of calling an ancestor negative link e−i . Therefore, C will be found. It contradicts that
N satisfying the constraint of all conflict resolutions.

Then we consider the situation where C consists of original and added edges. In
this situation shown in Figure 4.15, where e′+add is the added edge, which split p+i into
two parts, from the propagation of e−x through p+x and e−x + p+x > 0, the rest edges are
kept as before. In this case, we have to prove that e′+add is added while propagating e−i
(line 8 in algorithm 9)to the end point of e−x . There are four situations when calling
backpropagation on e−x in the backpropagation of e−i : (1) it is an ancestor call, (2) the
backpropagation of e−x is successfully terminated before, (3) the backpropagation has
not been called or (4) it has been unsuccessfully called. In situation (1), C is a conflict
that contains a negative path between two occurrences of e−x , so it can be resolved by
other found conflict resolutions as shown in Theorem 4.1. In situation (2), e′+add has
been added. In situation (3) and (4), e′+add is going to be added unless, in p+x , there is
a negative link that has been called in an open ancestor call, which makes C contain
a negative path between two existences of that negative link.

Therefore, C will be found. It contradicts that N satisfying the constraint of
conflict resolution of C.

e−1 p+1 e−2 p+2 e−3 , p+3 , ... , e−k−1, p+k−1 e−k

p+k

Figure 4.14: A semi-reducible negative cycle without added edges

Theorem 4.3. Completeness: Every dynamically controllable STPU that is a relaxed in-
stance (tightening contingent links) of the given STPU satisfies the constraints of conflict
resolutions extracted by the modified dynamic controllability checking method (Algorithm 7).

Proof. We assume there is a dynamically controllable STPU N that is a relaxed in-
stance of the given STPU and N does not satisfy the constraints of conflict resolutions
extracted by the modified DC checking method.

Thus, N violates a constraint CR0 in the form of Equation 4.6, which means it
violates every branch of the disjunctive linear constraint. However, the variables in

§4.6 Experimental Results 85

e−1 , p+1 , ... , e−i−1, p+i−1 e−i p+(1)
i

e−x p+x
e−i+1, p+i+1, ... , e−k−1, p+k−1 e−k

p+k

e′+add = e−x + p+x

p+(2)
i

Figure 4.15: A semi-reducible negative cycle with added edges

CR0 represent the bounds of links in conflict C0. The dissatisfaction of N means the
bounds of links of N formulate a conflict the same as C0, which contradicts that N is
dynamically controllable.

4.5.2 Validation of Dynamic Controllability of CCTPU

In this subsection, we show that if a CCTPU is found to be dynamically controllable
by our approach, there is a dynamic strategy that makes both temporal decisions and
discrete variable assignments dynamically.

To validate our approach, we add the dynamic decisions of discrete variables to
the validation of dynamic controllability of STPU by Morris and Muscettola [2000].
The dynamic decisions of discrete variables contain its decision timepoint DT(c),
which is the end of a contingent link or the start timepoint, and A(c) based on
the situation of the prehistory. If a CCTPU is dynamically controllable, it has a
dynamically controllable envelope Env(PA) that covers all uncertain situations in its
prehistory. Env(PA) is either in a leaf node when PA is A, or combined from child
nodes that have one more assignment of a discrete variable c. If the algorithm finds
a dynamically controllable STPU with a full assignment, its execution assigns all
discrete variables at the beginning and executes the CCTPU as an STPU. Otherwise,
a sequence of DT(c) and A(c) can be extracted from tracing back the combining
process. Therefore, the execution is represented in Figure 4.16. The executions of
discrete variables are added in the lines with star marks, the rest lines are the same
as executing an STPU.

Hunsberger [2009] has introduced Real-time Execution Decision (RTED) to show
actions that an agent may take while executing an STPU that is dynamically control-
lable. It can also be used to represent the execution strategy.

4.6 Experimental Results

We illustrate DC checking for CCTPU by comparing implementations of DC checking
methods for the CCTPU with and without dynamic discrete choices. The DC check-
ing method for the CCTPU which does not make assignments to discrete variables
dynamically only considers scheduling time points dynamically. Our implementa-

86 Dynamic Controllability of CCTPU

Execute (CCTPU N)

0 Perform initial propagation from the start timepoint.

1* Assign discrete variables whose decision time has been reached, according
to the prehistory and the envelope calculated. Immediately execute any ex-
ecutable timepoints that have reached their upper bounds.

2 Arbitrarily pick an executable timepoint TP that is live and enabled and not yet
executed, and whose waits, if any, have all been satisfied.

3 Execute TP. Halt if network execution is complete. Otherwise, propagate the
effect of the execution.

4* Advance current time, propagating the effect of any contingent timepoints that
occur, until if the contingent timepoint is the decision timepoint of discrete
variable c, go to 1*, or an executable timepoint becomes eligible for execution
under 1* or 2.

5 Go to 1*.

Figure 4.16: Execution of the dynamic strategy of CCTPU

tion of this method checks every leaf node (full set of assignments) and considers
the CCTPU dynamically controllable if there is one leaf that induces a dynamically
controllable STPU.

4.6.1 Experimental Setup

We use the benchmark generator by Yu [2016] based on Zipcar problems [Yu and
Williams, 2013; Yu et al., 2014]. Its application background is a car-sharing network.
Each test case consists of missions with temporal requirements, each mission has a
sequence of activities, and each activity can be done by choosing one option. An
option contains controllable and uncontrollable links. All links are represented by
their lower and upper bounds.

We use discrete variables to represent the choices for activities and attach assign-
ments as labels to the links of each option. All temporal links are randomly generated
except for the requirement on the overall duration of the missions, which randomly
deviates by ±20% from the estimated bounds of the sequence of activities.

16000 test cases are ranging from 1–8 discrete variables with 1–10 options for each
variable. Regarding the size of networks, the numbers of nodes, links and contingent
links are varying from 11–170, 11–330 and 4–162, respectively.

§4.6 Experimental Results 87

4.6.2 Results

The result is shown in Figure 4.17. The tests are grouped by DC checking results
in the chart. The white bars represent the result of implementation of a fixed as-
signment. 77.1% of the test cases are infeasible when using only fixed assignment.
But just 22.4% are still infeasible while assigning discrete variables dynamically. The
number of feasible results with fixed assignment is slightly fewer with the imple-
mentation of dynamic assignment because a combined solution can be found earlier
in some test cases which contains a dynamically controllable STPU with a fixed as-
signment.

Figure 4.18 shows the runtime comparison between the implementations of dy-
namic controllability with fixed options and dynamic options. The y-axis describes
the number of problems solved, where solved means the implementation terminates
with a checking result of dynamically controllable or not. The runtime difference
between two implementations is not obvious. It shows that making assignment dy-
namically does not cost much extra runtime. Furthermore, the implementation with
dynamic assignment solves slightly more problems in time limitation above 1 second,
which can be inferred that test cases that have a dynamic strategy with dynamic as-
signment terminate before exploring the whole search tree.

infeasible feasible with
 fixed option

feasible with
 dynamic option

0

2000

4000

6000

8000

10000

12000

14000

#
p
ro
b
le
m
s

Fixed Assignment

Dynamic Assignment

Figure 4.17: The distribution of results with fixed or dynamic options

4.6.3 A Simple Optimisation Experiment

To further demonstrate the advantage of making assignments dynamically, we make
a simple optimisation experiment is based on the checking algorithm. The optimi-

88 Dynamic Controllability of CCTPU

10-2 10-1 100 101 102 103

log10 runtime(s)

0

2000

4000

6000

8000

10000

12000

14000

16000
n
u
m
b
e
r
o
f
p
ro
b
le
m
s
so
lv
e
d

Fixed Assignment

Dynamic Assignment

Figure 4.18: The number of problems solved within the time limitation.

sation experiment based on a robustness measure called maximum deviation intro-
duced in Chapter 3. It maximises the minimum deviations (delays) of the uncertain
durations, under which the problem is still dynamically controllable. It is a worst-
case measure, so after setting the maximum deviation, a CCTPU is settled. Thus, we
can use the algorithm introduced in this chapter to test its dynamic controllability.

In this experiment, we set the lower bounds of the contingent links as their orig-
inal lower bounds and upper bounds are the sum of their lower bounds and the
maximum deviation. The maximum deviation is set by a binary search above the
checking algorithm.

In the data set with one discrete variable, which contain 2000 test cases, the result
is shown in Figure 4.19. Less than half of the test cases remain in the same worst case
if we use dynamic assignments instead of fixed assignments. 171, 302, 336 and 285
test cases have improvements of 10%, 20%, 30% and more than 30%, respectively.

4.7 Conclusion and Future Work

In this chapter, we extend dynamic controllability to CCTPU with making the assign-
ment to discrete variables dynamically. Comparing to the previous work of making
assignment statically, some test cases in the current CCTPU benchmarks are dynam-
ically controllable with dynamic decisions on discrete variables but not dynamically
controllable with a fixed assignment.

Assumptions 4.2 and 4.3 are essentially restrictions on the dynamic execution
strategies that can be found by the algorithm we have presented in the next section.
Removing or relaxing these assumptions is one of the future works. Removing them

§4.7 Conclusion and Future Work 89

0 10% 20% 30% more than 30%
Max Delay Improvement

0

200

400

600

800

1000

#
p
ro
b
le
m
s

Figure 4.19: Improvement of Max Delay from Fixed Assignment to Dynamic Assign-
ment

from the definition of dynamic controllability is straightforward (making the prehis-
tory of a discrete variable S{≺ DT(c)}). Assumption 4.1 is not as easy. A dynamic
strategy has to ensure that discrete choices are made so that there is no ambiguity
about the activation of a link when the starting time point of the link is scheduled.

In future work, we will try to remove Assumptions 4.2 and 4.3, which limit the
dynamic strategies that our algorithm can find. Another extension is to see how
much improvement can be made in solving optimisation problems over a CCTPU
when considering making choices dynamically.

90 Dynamic Controllability of CCTPU

Chapter 5

Optimising CCTPU

Adding controllable discrete variables makes dealing with the CCTPU more repre-
sentative but more difficult than the STPU. Many real-world problems that can be
represented by CCTPU are not controllable even with dynamic options because the
temporal constraints are too tight or the uncertainty is too much. Instead of checking
dynamic controllability, the work in this chapter aims to answer how controllable
the problem is. On the other hand, solutions found without considering uncertainty
may fail when executing in uncertain circumstances. The optimisation model in this
section can also answer how robust or flexible these solutions can be when running
with uncontrollable factors.

This chapter is an extension and combination of Chapters 3 and 4. The controlla-
bility constraint models constructed with variables for bounds of links inherits from
Chapter 3. However, that constraint model can only deal with STPU that have no
options. We extend the constraint model to the CCTPU to formulate constraints rep-
resenting controllable options. The envelope-based dynamic controllability checking
algorithm for the CCTPU, which has been discussed in Chapter 4, can only answer,
given a CCTPU, whether it is dynamically controllable or not with dynamic options.
In this chapter, we formulate a constraint model for the dynamic options, and a
constraint model for the strategy with fixed options is provided as a comparison.

The strategy of a CCTPU consists of temporal decisions and variable assignments.
In a feasible strategy of a CCTPU, both these arrangements can be made strongly
controllable or dynamically controllable. A decision is strongly controllable if it can
work without any observations. A decision is dynamically controllable if it varies
by different observations of the past. Among the combinations of varying levels of
controllability of these decisions, we formulate constraint models in the following
settings: (1) the fully strong controllability that makes all decisions strongly con-
trollable, (2) the mixed strong and dynamic controllability that makes temporal de-
cisions dynamically controllable with fixed options on discrete variables and (3) the
fully dynamic controllability that makes temporal decisions dynamically controllable
with dynamic choices on discrete variables.

One of the challenges when formulating the optimisation model of dynamic con-
trollability is the scalability. In the controllability constraint models of the CCTPU,
the scalability problems exist in both formulating the constraints and solving the op-

91

92 Optimising CCTPU

timisation model. In this chapter, we propose a constraint model but leave how to
solve the model efficiently as a future work.

In this chapter, we begin with examples to explain the motivation for the work
(Section 5.1). In section 5.2 and 5.3, we introduce the optimisation model for the
CCTPU with strong and dynamic controllability constraints and fixed and dynamic
options. Section 5.4 presents the experimental results and section 5.5 is the conclusion
and future work.

5.1 Problem Statement

In this section, we begin with illustrating the problem with motivating examples,
then introduce the general model of the optimisation problem.

The first example is a modified CCTPU from Figure 4.1 that aims to show check-
ing dynamic controllability is not enough to solve a CCTPU with preferences. The
second example tries to answer how robust a given solution is by applying the ro-
bustness metric, introduced in Chapter 3, that measures the maximum deviation
of a partial order schedule such that the schedule is still dynamically or strongly
controllable.

5.1.1 Relaxing Over-constrained Problems

Checking dynamic controllability of temporal problems with uncertainty and con-
trollable options cannot meet the demand for some applications, such as relaxing
over-constrained problems. To illustrate this motivation, we modify the example in
Figure 4.1 by adding reward values to each option and allowing an overlap of en-
velopes for two options (shown in Figure 5.1). If c1 = K, the reward is 50; If c1 = S,
the reward is 100; The relaxation cost for each link is 10 per unit of relaxation. Two
dynamic strategies with fixed assignment are (1) choosing c1 = K and relaxing UE′1X
by 5 to resolve the conflict raised by LE1E, the final preference is 50− 5 · 10 = 0; (2)
choosing c1 = S and relaxing LXE3 and LE′3E by 10 in total, the final preference is
100− 10 · 10 = 0.

A dynamically controllable strategy with dynamic options to the example is that

• when the duration of the contingent event E1→ E1′ is within [35, 50], c1 can be
assigned with K and

• when it is within [30, 40], c1 can be assigned with S.

Thus, there is an overlapping interval [35, 40] that can be dealt with both options.
The user’s preference that Mr. P likes the steak more than KFC cannot be considered
in the dynamic controllability checking process.

To represent the favourite, we formulate an optimisation model, so that a new
dynamic strategy with dynamic options under a specified objective function can be
achieved. For example, in the problem of Figure 5.1, option c1 = S will be chosen for
the overlapping interval [35, 40].

§5.1 Problem Statement 93

E1 E1′ X

E2

E3

E2′

E3′

E
[0, 5] [15, 20]

c1 =
K

[5, 15]c1 = S

[15, 20]c1 = K

[5, 15]

c1 =
S

[30, 50]

[20, 30]
c1 = K

[40, 60]
c1 = S

[100, 110]

Figure 5.1: A modified example from Figure 4.1.

This example shows that the optimisation model helps to provide a superior
solution rather than only a feasible solution.

5.1.2 Maximum Deviation of Partial Order Schedules

Different from the relaxation problems that require optimal strategies as solutions,
many applications want to answer how good a solution is, like the robustness metrics
we introduced in Chapter 3. The robustness metric Maximum Deviation, which
calculates the maximum worst-case deviation that a partial order schedule can absorb
yet keep its controllability, may help answer the question how robust the schedule is.

S E2S

E1S

E1S

E1E

E2E

E3E

E

[0, 10]

[0, 10]

[0, 10]

[30, 30 + d]
r1 = 2

[30, 30 + d]
r1 = 2

[30, 30 + d]
r1 = 2

[0, 10]

[0, 10]

[0, 10]

[0, 10] c = 2

[0, 10] c =
3

[0, 10] c = 1

[0, 10] c = 4

[0, 10] c = 5
[0, 10] c = 6

[0, 80]

Figure 5.2: Using CCTPU to represent three POS of a problem

A schedule or temporal plan solved by a scheduler or planner can be represented
by a consistent STN that does not have uncertainty. In Chapter 3, it is shown that
modelling the links depicting the events that may contain disturbances during exe-
cution by contingent link enables an estimation of the robustness of a fixed schedule
or temporal plan. In addition to that, in Partial Order Schedules, different ways to

94 Optimising CCTPU

add temporal constraints that resolve resource constraints can be switched by con-
trollable discrete variables. For example in Figure 5.2, an RCPSP problem with three
activities is shown. Each activity takes 2 units of resource I, and the total amount of
the resource I is 5, which means the three activities cannot execute at the same time.
Thus, 6 precedence links (blue lines) are added as partial order schedules resolving
the resource conflicts. Formulating the constraint model of CCTPU under dynamic
controllability with dynamic options enables solving the problem of optimising ro-
bustness and flexibility.

Therefore, the optimisation model of CCTPU can measure the robustness of par-
tial order schedules and even give a more flexible solution than POS for scheduling
problem.

5.1.3 General Formulation

The general form of the optimisation problem can be stated as: given a CCTPU, that
is, the set of timepoints V = VE ∪ VU , links E = EC ∪ EU and discrete variables C,
their domain D and the labels of assignments attached to links, the problem is to set
the bounds of the links and the assignments of the variables so as to optimise the
objective function value (Equation 5.1).

opt fobj(lij, uij, x|eij ∈ E)
s.t. N(lij, uij, x|eij ∈ E) is dynamically controllable or strongly controllable

application-specific side constraints.
(5.1)

The decision variables are the lower and upper bounds of links and the auxil-
iary variables x representing the dynamic or fixed assignment. The solutions are
constrained by the controllability constraints so that every solution satisfying the
constraints has a feasible strategy. Other application-specific constraints are added
depending on the problems.

5.2 Optimising CCTPU with Fixed Assignment

With the general optimisation model as Equation 5.1, we start with introducing the
optimisation model of CCTPU with a fixed assignment. The optimisation model of
CCTPU with dynamic assignment is introduced in the next section.

In the execution strategy of CCTPU with a fixed assignment, each discrete vari-
able is assigned with one value from its domain. The links activated by the fixed
assignment formulate an STPU. If the STPU is strongly or dynamically controllable,
the CCTPU has strongly or dynamically controllable temporal strategy with the fixed
assignment. Therefore, the optimisation model for the CCTPU with fixed assignment

§5.2 Optimising CCTPU with Fixed Assignment 95

can be formulated as shown in Equation (5.2).

opt fobj(lij, uij, b|eij ∈ E, b ∈ A(C))

s.t.
|D(ck)|

∑
l

bkl = 1 ∀ck ∈ C

N′(lij, uij|eij ∈ E ∧ A(C) |= eij) is dynamically controllable
application-specific side constraints

(5.2)

The decision variables lij and uij, represent the lower and upper bounds of link
eij, and bkl is a binary variable that when bkl = 1 it represents the assignment ck = dcl .

Constraint
|D(ck)|

∑
l

bkl = 1, ∀ck ∈ C ensures that every variable is assigned by one value,

which will be explained in subsection 5.2.1. The STPU N′ activated by assignment
A(C), which is represented by binary variables {bkl |ck = dcl , ∀ck ∈ C}, is dynamically
controllable.

Despite encoding the model into a MIP, this problem can also be solved by the
Conflict-directed algorithm [Yu et al., 2014].

5.2.1 Activating Constraints with Fixed Assignment

In this subsection, we show how to formulate the constraints that activate links by
the fixed assignment.

In a CCTPU, a link is activated if and only if its label does not have a conflict with
the fixed assignment. For example, if the fixed assignment for a CCTPU contains
ci = d, the link that is activated should not have label ci = d′ that d′ 6= d. Thus,
for each assignment c = dl in the label of link eij, we have that if c 6= dl , eij is not
activated, which is the same as eij not existing. We can express the deactivated link
by setting their bounds unconstrained lij ∈ [−∞, ∞] and uij ∈ [−∞, ∞]. On the other
hand, when all labels attached to eij have been assigned by the fixed assignment A,
the link is activated. If it is a requirement link with application- specific constraints
Lij ≤ lij ≤ uij ≤ Uij, then the constraints are activated by A. The same process can
be applied to contingent links based on their application- specific constraints.

We use one binary variable bkl = 1 to represent an assignment ck = dl , thus when
a link e has a label with multiple assignments as `E(e) = {ci1 = di1 j1 , ci2 = di2 j2 ...cik =
dik jk}, it is activated if and only if bi1 j1 , bi2 j2 ...bik jk all equal to the size of the label
‖`E(e)‖. Therefore, the link e is activated iff

∑
ck=dl∈`E(e)

bkl = ‖`E(e)‖. (5.3)

The disjunctive linear expression of activating link eij can be represented as fol-

96 Optimising CCTPU

lows:
∑

ck=dl∈`E(eij)

bkl ≤ N` − 1 ∨ Lij ≤ lij ≤ uij ≤ Uij, ∀eij ∈ EC

∑
ck=dl∈`E(eij)

bkl ≤ N` − 1 ∨ Lij = lij ≤ uij = Uij, ∀eij ∈ EU
(5.4)

where N` is the size of the label of eij, lower-case lij and uij are the decision variables
and upper-case Lij and Uij are the loose bounds.

If we let b represent the left-hand-side (LHS) of Equation (5.6), which is the switch
of activating the link, equation (5.4) can be encoded in to a MIP (Equation 5.4’).

lij + (N` − b)(M + Lij) ≥ Lij
uij + (N` − b)(−M + Uij) ≤ Uij
lij − uij + (N` − b)(−M) ≤ 0

∀eij ∈ EC

lij + (N` − b)(M + Lij) ≥ Lij
lij + (N` − b)(−M + Lij) ≤ Lij
uij + (N` − b)(−M + Uij) ≤ Uij
uij + (N` − b)(M + Uij) ≥ Uij

∀eij ∈ EU

(5.4’)

where M is a big constant number that can be treated as infinity in the problem.

5.3 Optimising CCTPU with Dynamic Assignments

Based on the content in Chapter 3 and 4, the question how much flexibility, ro-
bustness or other objective values can be improved by making decisions of discrete
variables dynamically may be answered. In this section, we try to formulate a con-
straint model to answer this question, using the dynamic controllability constraints
introduced in Chapter 3 and the fully dynamic strategy defined in Chapter 4.

Based on the definition of fully dynamic controllability in Chapter 4, we propose
an optimisation model of the CCTPU with dynamic assignments. The optimisation
model is more complicated than the optimisation model with fixed options because
of the following reasons: (1) the dynamic assignment formulates a dynamic strategy
instead of a fixed assignment, which needs to be represented by decision variables,
(2) a link activated by different options of a discrete variable may have different
bounds in the branches serving various options, which must create separate decision
variables to represent those bounds and (3) the way to model the partial uncertainty
in the dynamically controllable envelopes that can be dealt in child branches is not
clear.

5.3.1 Constraint Model Representing Dynamic Assignments

In order to model the dynamic assignment, decision variables representing the deci-
sion tree of the dynamic assignment and the decision timepoint for each assignment
have to be introduced.

Different from the binary variables used in the constraint model in section 5.2,

§5.3 Optimising CCTPU with Dynamic Assignments 97

which represent each option for each discrete variable, binary variables representing
full assignments are added in the constraint model of dynamic assignment. For
instance, binary variable b0 = 1 stands for the full assignment {ci = di0|∀ci ∈ C} will
be activated in the dynamic strategy. Therefore, the total number of binary variables
representing full assignments is the product of the size of the variable domains.

Since a dynamic strategy aggregates different full assignments at decision time-
points of discrete variables, and we give a binary variable for each full assignment, if
the decision time points are fixed, the constraint representing that a feasible dynamic
strategy exist can be written as Equation (5.6)

∑
a∈A(C)

ba ≥ 1 (5.6)

which means the strategy has at least one full assignment.
Although we can enumerate all possible choices of the decision timepoints and

solve one constructed model for each setting, the constraint model in this chapter
only considers fixed decision timepoints for the following reasons: (1) modelling
flexible decision timepoints requires one integer variable to decide each combining
point which is a repetition of a decision timepoint under a specific prehistory, and the
domain of these integer variables are interdependent; (2) modelling flexible decision
timepoints does not seem to be more flexible than setting fixed decision timepoints
as the latest time. Therefore, in the constraint model, we give a fixed decision time
point for each discrete variable, which is the end point of the last contingent link that
is before every link that has a label that mentions the discrete variable.

5.3.2 Expanding the CCTPU

In this subsection, we aim to solve the second challenge mentioned at the beginning
of the section, which is that different variables should be added to each link. We first
illustrate the necessity of this process, then introduce how to expand the network by
adding repetitions.

Expanding the CCTPU is necessary because a link in different branches may have
different bounds under the controllability constraints. For example in Figure 5.3 (a),
the dashed lines are contingent links. If the decision timepoint of discrete variable
c is node A, the link AC and BC are not before the decision timepoint, so after
making the assignment for c, we may have differently feasible bounds of these links
according to the option of c. If c = 1, the duration of AB is within [10, 20], based
on triangular reduction uAC + lBC ≤ uAB, a feasible solution is to tighten uAC by 5.
In the same process, tightening lAC by 5 is a feasible solution when c = 2. Thus,
different bounds of link AC in branches c = 1 and c = 2 have to be attached to the
branch label, although link AC does not have any label on the original problem. In
this case, we add repetitions of link AC to the problem, which is shown in Figure 5.3
(b).

Algorithm 11 illustrates the expanding process. For every discrete variable, any
links that are not before the decision timepoint of the discrete variable and do not

98 Optimising CCTPU

A B C
[−10, 5]

c = 1
[10, 20]
c = 2
[20, 25]

[10, 35]

(a) a CCTPU problem

A B C

c = 1
[−10, 5]

c = 2
[−10, 5]

c = 1
[10, 20]
c = 2
[20, 25]

c = 1
[10, 30]

c = 2
[15, 35]

(b) the expanded CCTPU of the problem

Figure 5.3: An example illustrating the expanding process

have a related label of the variable are expanded into a few repetitions. The number
of repetitions equals to the size of the domain of the discrete variable. Thus, if a link
is expanded under several discrete variables, the number of repetitions will be the
product of the size of the domains of the discrete variables, which means each partial
assignment of those discrete variables has a repetition of the link.

Therefore, the activating constraints for each link are

∑
x∈X

bx ≥ NX ∨ Lij ≤ lij ≤ uij ≤ Uij, ∀eij ∈ EC

∑
x∈X

bx ≥ NX ∨ Lij = lij ≤ uij = Uij, ∀eij ∈ EU
(5.7)

where X ⊆ A is the subset of all full assignments A and every element x in X agrees
with the label `E(e) of link e and NX is the size of X. Equation (5.7) can be encoded
into MIP in the same way as encoding Equation (5.4).

5.3.3 Constraints of Partial Uncertainty in DC Envelope

The third challenge of formulating the constraint model of CCTPU with dynamic
options mentioned at the beginning of the section is the most important one since
it can explain why the dynamic assignment enables the flexibility to deal with more
uncertainty than the fixed assignment. In this subsection, we present a constraint
model of the partial uncertainty in the prehistory that can be dealt by each branch.

The envelope-based dynamic controllability checking method for CCTPU in sec-

§5.3 Optimising CCTPU with Dynamic Assignments 99

Algorithm 11: Expanding a given CCTPU before formulating constraint
model with dynamic options.

Input: A CCTPU N =< V, E, C, D, `E > and the decision timepoints DT(C)
Output: An updated CCTPU N.
Algorithm: ExpandCCTPU(N)

1 for c ∈ C do
2 for e inE do
3 if e � DT(c) and `E(e) ∩ A(c) == ∅ then
4 for dc ∈ D(c) do
5 e′ = e; // create a new repetition of e
6 `E(e′).add(c = dc)
7 E.add(e′)
8 end
9 E.delete(e); // delete the expanded link e

10 endif
11 end
12 end

tion 4.4 uses the solution space of constraints to represent the dynamically con-
trollable envelopes. Verifying the negation of the solution space is empty means
a dynamically controllable envelope covers all uncertain situations in its prehistory.
However, a dynamically controllable envelope contains a fully dynamic strategy that
no matter what happened in the prehistory before the critical observation, there will
always be a feasible allocation for the uncertainty of the critical observation such that
each child branch can absorb the allocated uncertainty in the dynamically control-
lable envelope of the child branch. The feasible allocation may be a dynamic division
of the key observation, which means the lower and upper bounds of the partial un-
certainty dealt in each child branch are not fixed. Therefore, the dynamic allocation
cannot be fitted into the optimisation model in Equation (5.1) that use lower and
upper bounds as decision variables.

In this thesis, we introduce a constraint model that is more strict than the fully
dynamic controllability but more flexible than the dynamic controllability with fixed
assignments. In the model, we use a fixed allocation for each key observation, so that
the partial uncertainties in the dynamically controllable envelope can be represented
by contingent segments with fixed bounds. This model is “over-constrained” in that
it does not allow for the full space of solutions which makes the objective value sub-
optimal, because the solutions having fixed allocations of partial uncertainty have a
fully dynamic strategy but the CCTPU may have a fully dynamic strategy that does
not have fixed allocations of partial uncertainty.

The difference between the dynamic controllability checking algorithm that con-
siders dynamic envelopes and the constraint model that considers fixed envelopes is
illustrated in Figure 5.4. The figure shows a combining process of Envelope I and II
that have overlaps, but example (b) has a prehistory with more uncertainty than ex-
ample (a). Both examples are dynamically controllable by the dynamic controllability

100 Optimising CCTPU

prehistory

observation

Env I

Env II

lc uc

lp

up

p1

p2

x

(a)

prehistory

observation

Env I

Env II

lc uc

lp

up

p1

p2

(b)

Figure 5.4: The difference between dynamic envelopes and fixed envelopes

checking algorithm in Chapter 4 because no matter what happened in the prehistory,
there will always be a feasible way to allocate the key observable contingent link into
the two envelopes of the child branches. We select p1 which is the intersection of lp

and the bound of Envelope II and p2 which is the intersection of up and the bound
of Envelope I. These two points stand for the boundaries of the observation where
each envelope can be selected. However, only example (a) has a fixed allocation that
is shown by drawing a vertical line between p1 and p2 at x, [lc, x] is allocated to En-
velope I and [x, uc] is allocated to Envelope II. On the other hand, example (b) does
not have such a fixed allocation since p2 is left to p1 which means the uncertainty
of the key observation between p1 and p2 (in the red shadow) has to be allocated
dynamically based on the observation of the prehistory. Therefore, the constraint
model in this chapter can represent the dynamic controllability of example (a) but
cannot represent that for example (b). If modelling a relaxation problem with the
dynamic strategy constrains the situation of example (a), the constraint model has to
do relaxation to achieve a dynamically controllable solution with fixed allocations.

Next, we propose the constraint model that divide critical observations into fixed
intervals that can be tackled in different successive branches. For each discrete vari-
able c with domain D(c), the key observation is the contingent link finishing at
DT(c). To the constraint model, ND + 1 continuous variables {x0, ..., xND} are added
to represent ND segments of the contingent link, where ND is the size of the domain
D(c). If the key observable contingent link is activated, the activating constraints
(Equation 5.7) can be used on x0 and xND as lower and upper bounds. Each child
branch has to deal with one segment [xi, xi+1] among them. We use a set of allocation
constraints to restrict which segment will be selected by which child branch. A N2

D

§5.3 Optimising CCTPU with Dynamic Assignments 101

DT(c)

branch1

branch2

branchn

...

prehistory’ Key observation [L, U]

c =
d1

c = d2

c = dn
L = x0 ≤ x1 ≤ x2 ... ≤ xn = U

n segments

Figure 5.5: Illustration of the fixed division of key observations

matrix P of binary variables pij is introduced, where binary variables pij = 1 repre-
sents the ith segment is taken by the jth branch. The allocation constraints is shown
in Equation (5.8).

xi ≤ xi+1 ∀i ∈ {0, ..., ND − 1}
∑

j
pij ≤ 1 ∀i ∈ {0, ..., ND − 1}

∑
i

pij ≤ 1 ∀j ∈ {0, ..., ND − 1}

∑
j

pij ≤ 0 ∨ xi < xi+1 ∀i ∈ {0, ..., ND − 1}

pij ≤ 0 ∨ (lj ≤ xi ≤ xi+1 ≤ uj) ∀i, j ∈ {0, ..., ND − 1}

(5.8)

The five equations mean: (1) {x0, ..., xND} is in an increasing order; (2) Each segment
is taken by no more than one child branch; (3) Each branch takes no more than one
segment; (4) A non-empty segment will be taken by one child branch; (5) Binary
variable pij = 1 represents the ith segment is taken by the jth branch. Last but not
least, associating the allocation constraints to variables ba of the dynamic strategy,
Equation (5.9) means each branch taking a segment is activated branch,

∑
i

pij ≤ 0∨ ∑
x∈X

bx ≤ NX − 1, ∀j ∈ {0, ..., ND − 1}, (5.9)

where X = {a|a ∈ A, a |= {c = dj}} and NX is the size of X. Therefore, every
non-empty segment of the key observable contingent link is taken by at least one
activated branch.

The solution of constraint model (Equation (5.6– Equation (5.9)) contains the dy-
namic strategy with fixed envelopes. For every ba = 0, the branch activated by as-
signment a belongs to the strategy. Different activated branches are divided at DT(c)
according to the observation. Options depend on the duration of the observation and
the fixed allocation of the envelopes.

102 Optimising CCTPU

5.4 Experimental Results

In this section, we encode the constraints models with fixed options and dynamic
options into Mixed Integer Programs and solve them by GuRoBi to compare how
much improvement can be made by making assignment dynamically. Additionally,
the scalability of these two constraint models is tested.

The experimental setup uses the same application as Section 4.6.1. The test cases
range from 1-4 discrete variables with 1-10 options for each variable.

5.4.1 Objective Function

In the experiment, we need to formulate a comparable objective function among dif-
ferent levels of controllability for CCTPU. For the application relaxing over-constrained
CCTPU, we use

min cost = ∑
eij∈E

(δl
ij + δu

ij) (5.10)

where δl
ij and δu

ij are the relaxations of the lower and upper bounds of relaxable
links. We drop the reward function from the relaxation problem of CCTPU with
fixed options since the solution of the constraint model with dynamic options will
have a strategy instead of a fixed assignment, which makes the reward function not
comparable. An alternative way to fix this problem is that we can make a reward
function by using the minimal reward among fixed assignments of the strategy to
illustrate the worst case.

max obj = R− cost (5.11)

The reward R satisfies the constraints

R ≤ (1− ba)ra + ba M, ∀a ∈ A (5.12)

where ra = ∑
{c=d}∈a

rewardc=d is the reward of the full assignment a and M is a big

number that can be set as the best reward among all assignments.

5.4.2 Results

We compare the relaxation cost given by Equation 5.10 among strong controllabil-
ity, dynamic controllability with fixed options (Equation 5.2) and dynamic options
(Equation 5.6 – Equation 5.9). The result is shown in Figure 5.6.

We classify the result of improvement from strong controllability to dynamic con-
trollability with fixed options and dynamic controllability with fixed options to dy-
namic options into four sets: no increase, 10% improvement, 50% improvement and
more than 50%, and count the number of test cases in each class. The total number
of solved problems within a runtime limitation of 8000 seconds is 1271. The result

§5.4 Experimental Results 103

<=0 <=10% <=50% >50%
Improvements of Relaxation Cost

0

200

400

600

800

1000

1200

Nu
m
be

r o
f t

es
t c

as
es

Temporally DC to Fully DC
SC to Temporally DC

Figure 5.6: Improvements of Making Decisions Dynamically

shows that the number of test cases having more than 50% improvement from strong
controllability to dynamic controllability with fixed options is 1177, which is 92.6%
of the solved problems and the rest 7.4% test cases have improvements between 10%
and 50%. The improvement of relaxation cost from dynamic controllability with
fixed options to dynamic options is smaller but still apparent. 567 test cases have a
dynamically controllable strategy with fixed options, which means their relaxation
cost are zeros and cannot be improved any more. 29, 103 and 572 test cases have
10%, 50% and more than 50% improvements from dynamic controllability with fixed
options to dynamic options, respectively.

Since the constraint model used in this chapter is sub-optimal, we use the imple-
mentation checking dynamic controllability in Chapter 4 to test the same data set.
591 test cases have no relaxation cost under the constraint representing dynamic con-
trollability with fixed options but 741 test cases are dynamically controllable in the
checking algorithm, which means 150 test cases are dynamically controllable with
dynamic options and dynamic allocation of uncertain situations but have to be re-
laxed to satisfy the dynamic controllability constraints in this chapter.

We also test the scalability of the constraint models in different levels of control-
lability in runtime (Figure 5.7). Since the constraint model is a baseline method to
solve the optimisation method, the performance is not unexpected.

104 Optimising CCTPU

−3 −2 −1 0 1 2 3 4

Log10(runtime)

0

200

400

600

800

1000

1200

1400

N
u
m
b
e
r
o
f
p
ro
b
le
m
s
so
lv
e
d

Fully DC

Temporally DC

SC

Figure 5.7: Runtime Comparison

5.5 Conclusion

With the constraint model of dynamic controllability for CCTPU with dynamic op-
tions, we can answer the question of how much improvement can be achieved by
making controllable choices dynamically. The constraint model can also explain how
flexible, robust or controllable a temporal problem with uncertainty and controllable
options is.

Furthermore, if modelling other features besides the temporal constraints as con-
trollable discrete variables, for instance, resource constraints or partial order alterna-
tions, the constraint model can help to solve scheduling or planning problems with
flexible solutions that can make the execution robust.

The constraint model can only formulate the dynamic options with fixed alloca-
tions of uncertainty, which makes the solutions not optimal. Additionally, the current
model is a baseline method. The run-time performance and memory use limit the
scalability and usage of the method. In the future work, it can be enhanced by im-
plementing other approaches, for instance, a conflict-directed search that starts with
an infeasible solution performing best in terms of the objective function, finding and
resolving conflicts and combining the found conflict resolutions until finding the
optimal and feasible solution. A local method may also be able to formulate the
dynamic allocation of uncertainty with dynamic options.

Chapter 6

Conclusion

In this thesis, we introduced the optimisation models of temporal problems with un-
certainty and controllable options under constraints of varying levels of controllabil-
ity. In the field of temporal problems with uncertainty, we focus on the optimisation
models to answer how flexible, robust and controllable a problem is. Additionally,
the optimisation model can show how much improvements can be achieved by mak-
ing decision dynamically controllable, so that the dynamically controllable solutions
can provide more flexibility to tackle the uncertain situations than fixed solutions
which are strongly controllable.

We summarise the contributions of the thesis in Section 6.1. Section 6.2 presents
the related work. Section 6.3 discusses the future work.

6.1 Summary of Contributions

We summarise the contribution of the thesis as follows.

• We introduce a disjunctive linear constraint model for STNU under dynamic
controllability, to optimise the flexibility and robustness of temporal prob-
lems with uncertainty. The disjunctive linear constraint model can be encoded
into MIP and non-linear programming, so that using existing solvers, such as
GUROBI, CPLEX, IPOPT et al., can solve the models.

• We extend the definition and verification of dynamic controllability to temporal
problems with uncertainty and controllable options, a CCTPU, which can solve
the problem with an entirely dynamically controllable strategy in which both
temporal scheduling and controllable options are decided dynamically. The
dynamic decisions on the discrete options enable a fully flexible strategy in
which every decision based on past observations.

• We try to introduce optimisation models of CCTPU under dynamic controlla-
bility with fixed or dynamic options, so that the optimisation model can answer
how flexible or controllable a temporal problem with uncertainty and control-
lable options is in a dynamic strategy. Although the model introduced cannot
describe the fully dynamic strategy as the checking algorithm introduced, re-
garding the assignment to discrete variables, the model can represent the dy-

105

106 Conclusion

namic decision based on a fixed division of the uncertainty in the past, which
is still more flexible than the a fixed assignment.

• Robustness metrics are introduced based on the optimisation models. They can
measure partial order schedules, partial order temporal plans and any temporal
networks with uncertainty and discrete options. The metrics can answer how
well the executions of those temporal networks can achieve in the environment
with uncertainty.

• The optimisation models also allow us to evaluate the improvements from mak-
ing the temporal networks strongly controllable to dynamically controllable
with fixed assignment, and from dynamically controllable with fixed assign-
ments to dynamic assignments.

6.2 Related Work

In addition to the techniques and methods that we used as the basis of the thesis,
which have been discussed in the Background chapter, we present the related work
in this section.

6.2.1 Related Temporal Reasoning Models

Among the variety of temporal reasoning models, the Conditional Simple Temporal
Network with Uncertainty (CSTNU) is close to CCTPU. Both CSTNU and CCTPU
consider temporal problems with uncertainty and conditions, but the CSTNU con-
siders uncontrollable and observable conditions. Addition to that, we discuss two
extensions of CSTNU in this section.

6.2.1.1 Conditional Simple Temporal Network with Uncertainty

Conditional Simple Temporal Network with Uncertainty (CSTNU) [Hunsberger et al.,
2012] combines the Conditional Simple Temporal Network (CSTN) and Simple Tem-
poral Network with Uncertainty (STNU). CSTN is a Conditional Temporal Problem
(Definition 2.3) without disjunctive constraints.

Definition 6.1. A CSTNU is a tuple, < V, E, L, OV, O, P, ` >, where:

• < V, E, L, OV, O, P > is a CSTN which is a specified CTP with only binary
constraints and without disjuncti ons,

• (V, bEc, `) is an STNU, in which bEc is the set of unlabelled constraints and `
is the set of contingent links,

• for each (A, x, y, C) ∈ `, L(A) = L(C), and its labelled constraint is (x ≤
C− A ≤ y, L(A)).

§6.2 Related Work 107

The uncertain situations in the CSTNU is a combination of the uncertain con-
ditions and the uncertain duration of the contingent links, which is called drama
(SC ×Ω), where SC is the same as the execution scenario of a CTP and ω ∈ Ω de-
noted fixing duration of each contingent link which is the same as the projection of
an STNU. The projection of CSTNU onto a drama (sc, ω) denoted by drPrj(sc, ω) is
an STN. An execution strategy for CSTNU is a mapping from a drama to a complete
set of assignments to controllable time points.

The controllability of CSTNU considers how well the execution strategy can deal
with the drama. If an execution strategy is able to solve every drama of the CSTNU,
it is dynamically controllable.

An algorithm for checking the dynamic controllability of a CSTNU is introduced
by Combi et al. [2014]. It is based on the algorithm for checking dynamic controlla-
bility of STNU [Morris et al., 2001] which has a complexity of O(N5). The authors
revised the reduction rules by considering the consistency of labels and adding label
modification rules to the process to tackle the conditions of the CSTNU.

6.2.1.2 Conditional Disjunctive Temporal Networks with Uncertainty

Another temporal reasoning model that considers uncertainty and options is the
Disjunctive Temporal Networks with Uncertainty (DTNU) [Venable and Yorke-Smith,
2005]. The DTNU extends STNU by considering disjunctive temporal constraints.
Each requirement constraint is a disjunction of temporal constraints between any
pairs of nodes. Each contingent link has a set of contingent intervals that do not have
overlaps.

The uncertain situations and schedules of the DTNU are not very different from
those of the STNU. A strongly controllable DTNU has a time assignment to every
controllable node that ensures all constraints will be satisfied [Peintner et al., 2007].
The strong controllability of disjunctive temporal problems can be solved by SMT
[Cimatti et al., 2015]. A dynamically controllable DTNU has a strategy that, given
any uncertain situations, at least one disjunct on each constraint is satisfied [Venable
et al., 2010; Cimatti et al., 2016b].

We can transfer every DTNU to a CCTPU by introducing a discrete variable for
each temporal constraint that has disjunctions and adding labels accordingly. How-
ever, there is no apparent way to transform every CCTPU to DTNU since the con-
straints in the CCTPU can be transformed into a disjunction of conjunctions of tem-
poral constraints but the DTNU is not able to represent the “conjunctions”.

The Conditional Disjunctive Temporal Network with Uncertainty (CDTNU) is
a combination of CSTNU and DTNU, which models uncontrollable conditions and
disjunctive constraints at the same time [Cimatti et al., 2016a].

6.2.1.3 Conditional Simple Temporal Networks with Uncertainty and Decisions

Zavatteri [2017] introduced a temporal reasoning model called Conditional Simple
Temporal Networks with Uncertainty and Decisions (CSTNUD) that consider uncon-

108 Conclusion

trollable and controllable conditions at the same time. The controllable conditions are
named decisions in the CSTNUD.

Definition 6.2. A CSTNUD is a tuple, < V, E, L, OV, DV, O, P, `, O >, where:

• < V, E, L, OV, O, P, ` > is a CSTNU,

• DV is a set of decision time points such that DV ∩OV = ∅,

• O : P → OV ∪ DV is a bijection associating a unique observation or decision
time point to each proposition. If O(p) ∈ OV, p is observable, whereas if
O(p) ∈ DV, p is decidable.

The proposition set P = OP ∪ DP, where OP are the uncontrollable conditions
that are observable, and DP are the controllable conditions.

The temporal reasoning model CCTPU, we discussed in the thesis, also considers
decisions and uncertainty of temporal problems. However, the models of CCTPU
and CSTNUD have some differences. The CCTPU model does not consider the un-
controllable conditions. Additionally, instead of giving a fixed decision time point
to each controllable decisions, in CCTPU, we define a flexible mapping from the dis-
crete variables to their decision time points in the strategy. When developing the
dynamic controllability checking algorithm, we introduce some assumptions on the
decision time points to achieve flexible and reasonable solutions.

6.2.2 Verification Approaches for Temporal Problems with Uncertainty

The checking algorithms and optimisation models in this thesis are based on the
constraint programming technique – bound propagation. However, alternative rep-
resentation like the timed game automata is also able to represent controllability of
temporal problems.

Besides the temporal reasoning models and dynamic controllability representa-
tions, the frameworks verifying temporal models, such as CIRCA, UPPAAL et al.,
are discussed at the end of this section.

6.2.2.1 Representing Dynamic Controllability by Timed Game Automata

Cimatti et al. [2016a] used the Timed Game Automata (TGA) to represent the dy-
namic controllability of STNU, CSTNU, DTNU and CDTNU. Using TGA to repre-
sent the dynamic controllability is the first sound and complete approach for DTNU
and CDTNU. Hunsberger and Posenato [2016] used TGA to represent the dynamic
controllability of the CSTN. Zavatteri [2017] also used TGA to represent the dy-
namic controllability of the CSTNUD and implemented the model in UPPAAL-TIGA
[Behrmann et al., 2007] which is an extension of the toolbox for modeling, simulation
and verification of real-time systems – UPPAAL [Behrmann et al., 2006].

A Timed Automaton (TA) [Alur and Dill, 1990] is a tuple < ∑, S, S0, C, E >,
which adds a finite set of real-valued clocks C to a finite automaton < ∑, S, S0, E >,
where ∑ is an alphabet, S is the finite set of states, S0 is the initial state and E are

§6.2 Related Work 109

the transitions. A transition represents the change from one state to another state on
input. Each transition of a TA has a guard that describes the requirement to make the
transition, and a set of clocks that will be reset when executes the transition.

A Timed Game Automaton (TGA) [Maler et al., 1995] divides the set of transitions
into controllable and uncontrollable sets. Formulating the dynamic controllability of
STNU by using TGA, Cimatti et al. [2016a] used two locations (same as the states in
TA) to represent the states in which the agent or environment respectively execute its
transitions, a goal location to model the agent achieves the goal, the uncontrollable
transitions of the TA to model the executions of controllable nodes in the temporal
networks and the controllable transitions to model the executions of contingent links.
The clocks in the TGA of an STNU consist of a global one, a temporal one and one
separate clock representing when each node is executed. Thus, the agent aims to
find a counter-strategy to reach the goal location against the prevention from the
environment.

Considering the uncontrollable conditions of the CSTNU, the TGA adds a clock
for each proposition and a controllable transition for the location representing the
environment that resets the clock, which represents that the observation shows true
of the proposition. The same transitions for the location representing the agent model
the decisions in CSTNUD.

The TGA is able to represent the sound and complete verification of dynamic
controllability for temporal reasoning models since it models in a two-player game
way, which simulates a real-time execution. Additionally, the verification tools for
real-time systems (e.g. UPPAAL [Behrmann et al., 2006], Kronos [Yovine, 1997]) is
able to implement the TGA formulation. Cassez et al. [2005] is the algorithm well
used in TGA.

However, verifying dynamic controllability by using bound propagations may be
more efficient. Zavatteri [2017] solved an example in a setting of two decisions, 4
contingent links and 11 nodes by implementing the TGA in UPPAAL-TIGA, which
took about 1 minute in a virtual machine with Intel i7 2.8GHz CPU and 5G RAM. We
test the same setting in a desktop with Intel i5 3.2GHz CPU and 4G RAM. Solving
the same problem by using the application in Chapter 4 needs less than 1 second.
Furthermore, solving the optimisation problem (we use the relaxing over-constrained
problem) in the same setting takes 5 seconds. We cannot provide sufficient experi-
ments to compare the two implementations since we do not have the implementation
of the TGA and the details about the benchmark used in Zavatteri [2017].

6.2.3 Other Approaches for Temporal Problem Verification

Many real-time computing systems provide a reactive strategy or proactive-reactive
approach to deal with the problems that have unexpected changes in the environ-
ment [Herroelen and Leus, 2005]. The proactive-reactive process is widely used since
it enables the flexible adjustments under a proactive guidance.

Musliner et al. [1993] used a two-level architecture to build a real-time control
system focusing on meeting hard deadlines – CIRCA. CIRCA has an AI subsystem

110 Conclusion

that can meet the task level goal and a real-time subsystem that can achieve the
controllability. It sacrifices the completeness of the task-level calculation to guar-
antee the precision in the real-time system. Muscettola et al. [1998] developed a
real-time system that focuses on tight deadlines, resource constraints and concur-
rent activities for the spacecraft domain that works over long periods of time. Shin
and Ramanathan [1994] summarised a set of the real-time systems that use differ-
ent techniques trading-off among efficiency, performance, completeness or precision.
However, the dynamically controllable solutions for a temporal problem achieves the
task-level completeness with the assumption that the uncertain durations are within
certain bounds. It means that the techniques in dynamic controllability can be treated
as the proactive process with assumptions of the reactive process. At the same time,
it guarantees that there is a feasible solution when the execution satisfies the assump-
tion. Using flexibility metrics related to dynamic controllability in a real-time system
is an intelligent way to consider robustness. For example, for a scheduling problem,
adding temporal slacks based on the dynamic controllability constraints is smarter
than adding the slacks uniformly.

However, the assumptions that using intervals to describe the durations of the
uncertain events sacrifice the accuracy. Thus the precise real-time systems like CIRCA
is more useful in the applications that rely on a high precision than the methods
describing durations in intervals, such as giving dynamically controllable solutions
for STPU.

6.3 Future Work

In this thesis, we begin with an optimisation model of STPU which aims to answer
how robust a temporal network with uncertainty is under the constraints of different
levels of controllability. After that, we extend the dynamic controllability defini-
tion to temporal problems with uncertainty and controllable discrete variables and
provide a checking algorithm. In the verification algorithm, we use assumptions to
constrain the dynamic decision timepoints on when to assign the values to the dis-
crete variables, so that the assignments can be assigned dynamically based on the
observation of the past uncertainty. In the last technical chapter, we try to formulate
the optimisation model for temporal problems with uncertainty and controllable dis-
crete variables, in which constraints can represent different levels of controllability.
However, the current constraints can only describe the fully strong controllability
which makes both temporal schedules and variable assignments strongly control-
lable, the dynamic controllability in temporal schedules with fixed variable assign-
ments. Representing a fully dynamic strategy in disjunctive linear constraint model
is still an open question. We have tried to introduce a sub-optimal constraint model
that can describe a dynamic strategy in which the temporal decisions and variable
assignments are dynamically made, but the envelope for each option under a certain
prehistory is fixed. Although the current constraint model cannot describe the fully
dynamic strategy like the checking algorithm can do, the solutions of the sub-optimal

§6.3 Future Work 111

constraint model can provide the detail of some fully dynamic solutions that have
better performance than constraint model of temporal dynamic controllability with
fixed options.

In the future, we can try to improve the current work in the following directions.
Since the dynamic controllability verification algorithm is under a set of assump-

tions, relaxing those assumptions is one of the future works. Despite the assump-
tions that can be relaxed by remodelling the problem, providing more intelligent
approaches that can describe the dynamic decision timepoints are useful extensions.

The constraint model in Chapter 5 is a baseline approach to solve the optimisa-
tion problem. Its efficiency and optimality limit the usage in real-world problems.
Introducing a new optimisation method base on a local-search algorithm may be
more efficient so that it can solve larger scale problems to enhance the usefulness
of the model. One possible way is to build an algorithm based on the dynamic
controllability verification algorithm in Chapter 4 since the dynamically controllable
envelopes for each option after a certain prehistory is a disjunction of conjunctions
of constraints. Optimising variables of bounds on the set of constraints can be solved
by an SMT solver. Another possible method is to use the conflict-directed search (like
CDRU), at the same time of iteratively finding and resolving conflicts, try to build
an entirely dynamic strategy that can avoid the found conflicts by making options
dynamically.

Extending the verification and optimisation of dynamic controllability to more
general decision-making problems such as scheduling and planning is a critical fu-
ture work. The controllable discrete variables can resolve the resource allocation
conflicts that some activities cannot be executed at the same time because the sum
of their resource demands exceeds the resource limitation. Different ways to add the
precedence constraints that can resolve the conflict is the options for a controllable
discrete variable. Using the CCTPU to represent a set of Partial Order Schedules to
a scheduling problem enhances the flexibility contained in a solution. More robust
or flexible schedules may be achieved by modeling the resource conflicts into a tem-
poral network using CCTPU. The method in this thesis can verify if such a problem
dynamically controllable or not and optimise the problem in different levels of con-
trollability. However, encoding all resource constraints in a dynamically controllable
strategy is a future work. Furthermore, planning problems are more complicated
than the scheduling problems. Currently, one possible extension is to use control-
lable discrete variables to describe the alternations of plans solved by planners, then
analysing robustness, controllability and other performances.

Last but not least, applying the dynamically controllable techniques to real au-
tonomous systems is a goal of the topic. Before implementing the techniques to
the real world, testing the strategies in simulation systems and robotic systems and
improving its scalability and robustness are future work.

112 Conclusion

Bibliography

Allen, J. F., 1983. Maintaining knowledge about temporal intervals. Commun. ACM,
26, 11 (Nov. 1983), 832–843. (cited on page 7)

Aloulou, M. A. and Portmann, M.-C., 2003. An efficient proactive reactive schedul-
ing approach to hedge against shop floor disturbances. In Proc. 1st Multidisciplinary
International Conference on Scheduling: Theory and Applications (MISTA), 337–362.
(cited on pages xvii, 21, 49, and 53)

Alur, R. and Dill, D., 1990. Automata for modeling real-time systems. In Automata,
Languages and Programming: 17th International Colloquium Warwick University, Eng-
land, July 16–20, 1990 Proceedings, 322–335. Springer Berlin Heidelberg, Berlin, Hei-
delberg. (cited on page 108)

Banerjee, D. and Haslum, P., 2011. Partial-order support-link scheduling. In Proc.
21st International Conference on Automated Planning and Scheduling (ICAPS), 307–310.
(cited on pages 49 and 51)

Bartusch, M.; Mohring, R. H.; and Radermacher, F. J., 1988. Scheduling project
networks with resource constraints and time windows. Ann. Oper. Res., 16, 1-4 (Jan.
1988), 201–240. (cited on page 20)

Beaumont, M.; Sattar, A.; Maher, M.; and Thornton, J., 2001. Solving Over-
constrained Temporal Reasoning Problems. In AI 2001: Advances in Artificial In-
telligence, 37–49. Springer Berlin Heidelberg, Berlin, Heidelberg. (cited on page
3)

Beaumont, M.; Thornton, J.; Sattar, A.; and Maher, M., 2004. Solving over-
constrained temporal reasoning problems using local search. In PRICAI 2004:
Trends in Artificial Intelligence. 8th Pacific Rim International Conference on Artificial
Intelligence. Proceedings, 9-13 Aug. 2004, 134. Springer Berlin Heidelberg, Berlin,
Heidelberg. (cited on page 3)

Behrmann, G.; Cougnard, A.; David, A.; Fleury, E.; Larsen, K. G.; and Lime,
D., 2007. Uppaal-tiga: Time for playing games! In Computer Aided Verification:
19th International Conference, CAV 2007, Berlin, Germany, July 3-7, 2007. Proceedings,
121–125. Springer Berlin Heidelberg, Berlin, Heidelberg. (cited on page 108)

Behrmann, G.; David, A.; Larsen, K. G.; Hakansson, J.; Petterson, P.; Yi, W.; and

Hendriks, M., 2006. Uppaal 4.0. In Quantitative Evaluation of Systems, 2006. QEST
2006. Third International Conference on, 125–126. IEEE. (cited on pages 108 and 109)

113

114 BIBLIOGRAPHY

Boerkoel, J. C. and Durfee, E. H., 2013. Decoupling the multiagent disjunctive
temporal problem. In In Proceedings of the Twenty-Seventh Conference on Artificial
Intelligence (AAAI-13). (cited on page 22)

Cassez, F.; David, A.; Fleury, E.; Larsen, K. G.; and Lime, D., 2005. Efficient On-the-
Fly Algorithms for the Analysis of Timed Games. In CONCUR 2005 – Concurrency
Theory, 66–80. Springer Berlin Heidelberg, Berlin, Heidelberg. (cited on page 109)

Cesta, A.; Oddi, A.; and Smith, S. F., 1998. Profile-based algorithms to solve multi-
ple capacitated metric scheduling problems. In Proc. 4th International Conference on
Artificial Intelligence Planning and Scheduling (AIPS), 214–223. (cited on page 22)

Cimatti, A.; Hunsberger, L.; Micheli, A.; Posenato, R.; and Roveri, M., 2016a.
Dynamic controllability via timed game automata. Acta Informatica, 53, 6 (Oct
2016), 681–722. (cited on pages 107, 108, and 109)

Cimatti, A.; Micheli, A.; and Roveri, M., 2015. Solving strong controllability of
temporal problems with uncertainty using smt. Constraints, 20, 1 (2015), 1–29.
(cited on page 107)

Cimatti, A.; Micheli, A.; and Roveri, M., 2016b. Dynamic controllability of disjunc-
tive temporal networks: Validation and synthesis of executable strategies. In Pro-
ceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16 (Phoenix,
Arizona, 2016), 3116–3122. AAAI Press. (cited on page 107)

Combi, C.; Hunsberger, L.; and Posenato, R., 2014. An algorithm for checking the
dynamic controllability of a conditional simple temporal network with uncertainty
- revisited. In Proc. 5th International Conference on Agents and Artificial Intelligence
(ICAART), 314–331. (cited on pages 57 and 107)

Conrad, P. R. and Williams, B. C., 2011. Drake: An efficient executive for temporal
plans with choice. J. Artif. Int. Res., 42, 1 (Sep. 2011), 607–659. (cited on page 61)

Cui, J. and Haslum, P., 2017. Dynamic controllability of controllable conditional
temporal problems with uncertainty. In Proceedings of the 27th International Con-
ference on Automated Planning and Scheduling (ICAPS), 61–69. (cited on pages 6
and 57)

Cui, J.; Yu, P.; Fang, C.; Haslum, P.; and Williams, B., 2015. Optimising bounds
in simple temporal networks with uncertainty under dynamic controllability con-
straints. In Proceedings of the 25th International Conference on Automated Planning and
Scheduling (ICAPS), 52–60. (cited on pages 5 and 26)

Dechter, R.; Meiri, I.; and Pearl, J., 1991. Temporal constraint networks. Artificial
Intelligence, 49 (1991), 61–95. (cited on pages 2, 7, 8, and 17)

Even, C.; Pillac, V.; and Hentenryck, P. V., 2014. Nicta evacuation planner: Action-
able evacuation plans with contraflows. In Proceedings of the Twenty-first European

BIBLIOGRAPHY 115

Conference on Artificial Intelligence (ECAI), ECAI’14 (Prague, Czech Republic, 2014),
1143–1148. IOS Press, Amsterdam, The Netherlands, The Netherlands. (cited on
page 8)

Fang, C.; Yu, P.; and Williams, B. C., 2014. Chance-constrained probabilistic simple
temporal problems. In Proc. 28th AAAI Conference on Artificial Intelligence, 2264–
2270. (cited on pages 9, 11, 25, 46, 52, 53, and 54)

Gill, P. E.; Murray, W.; and Saunders, M. A., 2002. SNOPT: an SQP algorithm for
large-scale constrained optimization. SIAM Journal on Optimization, 12, 4 (2002),
979–1006. (cited on page 48)

Goren, S. and Sabuncuoglu, I., 2008. Robustness and stability measures for
scheduling: single-machine environment. IIE Transactions, 40, 1 (2008), 66–83.
(cited on page 3)

Herroelen, W. and Leus, R., 2005. Project scheduling under uncertainty: Survey
and research potentials. European Journal of Operational Research, 165, 2 (2005), 289
– 306. Project Management and Scheduling. (cited on page 109)

Hunsberger, L., 2002. Algorithms for a temporal decoupling problem in multi-
agent planning. In In Proceedings of the Eighteenth National Conference on Artificial
Intelligence (AAAI), 468–475. (cited on page 22)

Hunsberger, L., 2009. Fixing the semantics for dynamic controllability and provid-
ing a more practical characterization of dynamic execution strategies. In Proc. 16th
International Symposium on Temporal Representation and Reasoning (TIME), 155–162.
(cited on pages 9, 15, 59, 63, and 85)

Hunsberger, L., 2013. Magic loops in simple temporal networks with uncertainty.
In Proceedings of the Fifth International Conference on Agents and Artificial Intelligence
(ICAART), 332–350. (cited on pages 16, 19, and 70)

Hunsberger, L. and Posenato, R., 2016. A New Approach to Checking the Dynamic
Consistency of Conditional Simple Temporal Networks. In Principles and Practice
of Constraint Programming, 268–286. Springer International Publishing. (cited on
page 108)

Hunsberger, L.; Posenato, R.; and Combi, C., 2012. The dynamic controllability
of conditional STNs with uncertainty. In Proc. Planning and Plan Execution for Real-
World Systems: Principles and Practices (PlanEx) Workshop, 2–4. (cited on pages 4, 9,
57, and 106)

Jorge Leon, V.; David Wu, S.; and Storer, R. H., 1994. Robustness measures and
robust scheduling for job shops. IIE Transactions, 26, 5 (1994), 32–43. (cited on
page 3)

116 BIBLIOGRAPHY

Kolisch, R. and Padman, R., 2001. An integrated survey of project scheduling.
OMEGA International Journal of Management Science, 29, 3 (2001), 249–272. (cited
on page 51)

Maler, O.; Pnueli, A.; and Sifakis, J., 1995. On the synthesis of discrete controllers
for timed systems. In STACS 95: 12th Annual Symposium on Theoretical Aspects of
Computer Science Munich, Germany, March 2–4, 1995 Proceedings, 229–242. Springer
Berlin Heidelberg, Berlin, Heidelberg. (cited on page 109)

Morris, P., 2006. A structural characterization of temporal dynamic controllability. In
Proc. 12th International Conference on Principles and Practice of Constraint Programming
(CP), 375–389. (cited on pages 19, 70, and 83)

Morris, P., 2014. Dynamic controllability and dispatchability relationships. In Proc.
11th Integration of AI and OR Techniques in Constraint Programming (CPAIOR), 464–
479. (cited on pages 19, 70, and 83)

Morris, P. and Muscettola, N., 2000. Execution of temporal plans with uncertainty.
In In Proceedings of the 17th National Conference on Artificial Intelligence (AAAI), 491–
496. (cited on pages 16 and 85)

Morris, P. and Muscettola, N., 2005. Temporal dynamic controllability revisited.
In In Proceedings of the 20th National Conference on Artificial Intelligence (AAAI-2005,
1193–1198. AAAI Press / The MIT Press. (cited on pages 17, 18, and 19)

Morris, P.; Muscettola, N.; and Vidal, T., 2001. Dynamic control of plans with
temporal uncertainty. In Proc. 17th International Conference on Artificial Intelligence
(IJCAI), 494–499. (cited on pages 9, 16, 25, 27, 29, 55, 59, 63, and 107)

Mountakis, S.; Klos, T.; and Witteveen, C., 2015. Temporal flexibility revisited:
Maximizing flexibility by computing bipartite matchings. In International Conference
on Automated Planning and Scheduling. (cited on page 24)

Muise, C., 2014. Exploiting Relevance to Improve Robustness and Flexibility in Plan Gen-
eration and Execution. Ph.D. thesis, University of Toronto. (cited on page 1)

Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams, B. C., 1998. Remote agent:
To boldly go where no ai system has gone before. Artif. Intell., 103, 1-2 (Aug. 1998),
5–47. (cited on page 110)

Musliner, D. J.; Durfee, E. H.; and Shin, K. G., 1993. Circa: a cooperative intelligent
real-time control architecture. IEEE Transactions on Systems, Man, and Cybernetics,
23, 6 (Nov 1993), 1561–1574. (cited on page 109)

Nilsson, M.; Kvarnström, J.; and Doherty, P., 2013. Incremental dynamic control-
lability revisited. In Proceedings of the 13th International Conference on International
Conference on Automated Planning and Scheduling (ICAPS), 337–341. (cited on page
70)

BIBLIOGRAPHY 117

Nilsson, M.; KvarnstrÃűm, J.; and Doherty, P., 2014. Incremental dynamic control-
lability in cubic worst-case time. In Proc. 21st International Symposium on Temporal
Representation and Reasoning (TIME), 17–26. (cited on pages 16 and 19)

Peintner, B.; Venable, K. B.; and Yorke-Smith, N., 2007. Strong controllability of
disjunctive temporal problems with uncertainty. In Principles and Practice of Con-
straint Programming (CP) 2007, 856–863. Springer Berlin Heidelberg, Berlin, Heidel-
berg. (cited on page 107)

Policella, N.; Cesta, A.; Oddi, A.; and Smith, S., 2009. Solve-and-robustify. Journal
of Scheduling, 12 (2009), 299–314. (cited on page 49)

Policella, N.; Cesta, A.; Oddi, A.; and Smith, S. F., 2007. From precedence con-
straint posting to partial order schedules: A csp approach to robust scheduling. AI
Communications, Special Issue on Constraint Programming for Planning and Scheduling,
(May 2007), 163–180. (cited on page 1)

Policella, N.; Smith, S.; Cesta, A.; and Oddi, A., 2004. Generating robust schedules
through temporal flexibility. In Proc. 14th International Conference on Automated
Planning & Scheduling (ICAPS), 209–218. (cited on pages 20, 21, and 23)

Schwalb, E. and Vila, L., 1998. Temporal constraints: A survey. Constraints, 3, 2-3
(1998), 129–149. (cited on page 7)

Shah, J. A.; Stedl, J.; Williams, B. C.; and Robertson, P., 2007. A fast incremen-
tal algorithm for maintaining dispatchability of partially controllable plans. In
Proceedings of the Seventeenth International Conference on International Conference on
Automated Planning and Scheduling (ICAPS), 296–303. (cited on pages 16 and 70)

Shin, K. G. and Ramanathan, P., 1994. Real-time computing: a new discipline of
computer science and engineering. Proceedings of the IEEE, 82, 1 (Jan 1994), 6–24.
(cited on page 110)

Tsamardinos, I., 2002. A probabilistic approach to robust execution of temporal
plans with uncertainty. Methods and Applications of Artificial Intelligence, (April
2002), 97–108. (cited on pages 9, 11, and 52)

Tsamardinos, I.; Vidal, T.; and Pollack, M. E., 2003. CTP: A new constraint-based
formalism for conditional, temporal planning. Constraints, 8, 4 (2003), 365–388.
(cited on pages 4, 9, and 11)

Venable, K. B.; Volpato, M.; Peintner, B.; and Yorke-Smith, N., 2010. Weak and
dynamic controllability of temporal problems with disjunctions and uncertainty. In
Proc. of the Workshop on Constraint Satisfaction Techniques for Planning and Scheduling
Problems (COPLAS-20910) in ICAPS-2010, 50–59. (cited on page 107)

118 BIBLIOGRAPHY

Venable, K. B. and Yorke-Smith, N., 2005. Disjunctive temporal problems with
uncertainty. In Proceedings of the 19th International Joint Conference on Artificial Intel-
ligence, IJCAI’05 (Edinburgh, Scotland, 2005), 1721–1722. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA. (cited on page 107)

Vidal, T. and Fargier, H., 1999. Handling contingency in temporal constraint net-
works: From consistency to controllabilities. Journal of Experimental and Theoretical
AI, 11, 1 (1999), 23–45. (cited on pages 2, 3, 9, 10, 14, 16, 25, 26, 47, 59, 60, and 63)

Vidal, T. and Ghallab, M., 1996. Dealing with uncertain durations in temporal
constraint networks dedicated to planning. In Proc. 12th European Conference on
Artificial Intelligence (ECAI), 48–52. (cited on pages 19, 25, 26, and 46)

Vilain, M.; Kautz, H.; and Beek, P., 1986. Constraint propagation algorithms for
temporal reasoning. In Readings in Qualitative Reasoning about Physical Systems,
377–382. Morgan Kaufmann. (cited on page 7)

Wah, B. W. and Xin, D., 2004. Optimization of bounds in temporal flexible planning
with dynamic controllability. In Proc. 16th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI), 40–48. (cited on pages 25, 32, 33, 34, 36, 40, 43, 51,
and 52)

Wah, B. W. and Xin, D., 2007. Optimization of bounds in temporal flexible planning
with dynamic controllability. International Journal on Artificial Intelligence Tools, 16,
1 (2007), 17–44. (cited on page 32)

Wang, A. J. and Williams, B. C., 2015. Chance-constrained scheduling via conflict-
directed risk allocation. In Proc. 29th AAAI Conference on Artificial Intelligence
(AAAI), 3620–3627. (cited on page 11)

Weld, D., 1994. Introduction to least commitment planning. AI Magazine, 15, 4 (1
1994), 27–61. (cited on page 1)

Williams, B. C. and Ragno, R. J., 2002. Conflict-directed A* adn its role in model-
based embedded systems. Journal of Discrete Applied Mathematics, 155, 12 (2002),
1562–1595. (cited on page 44)

Wilson, M.; Klos, T.; Witteveen, C.; and Huisman, B., 2014. Flexibility and decou-
pling in simple temporal networks. Artificial Intelligence, 214 (2014), 26–44. (cited
on pages xvii, 23, 24, and 53)

Wu, S. D.; Byeon, E.-S.; and Storer, R. H., 1999. A graph-theoretic decomposition
of the job shop scheduling problem to achieve scheduling robustness. Operations
Research, 47, 1 (1999), 113–124. (cited on page 3)

Yovine, S., 1997. Kronos: A verification tool for real-time systems. (kronos user’s
manual release 2.2). International Journal on Software Tools for Technology Transfer, 1
(1997), 123–133. (cited on page 109)

BIBLIOGRAPHY 119

Yu, P., 2016. BCDR Test Generator. https://github.com/yu-peng/BCDRTestGenerator.
(cited on page 86)

Yu, P.; Fang, C.; and Williams, B. C., 2014. Resolving uncontrollable conditional
temporal problems using continuous relaxations. In Proc. 24th International Confer-
ence on Automated Planning and Scheduling (ICAPS), 341–349. (cited on pages 4, 9,
14, 25, 33, 44, 48, 55, 57, 59, 60, 67, 68, 69, 86, and 95)

Yu, P. and Williams, B., 2013. Continuously relaxing over-constrained conditional
temporal problems through generalized conflict learning and resolution. In Proc.
23rd International Joint Conference on Artificial Intelligence (IJCAI), 2429–2436. (cited
on pages 9, 13, 44, and 86)

Yu, P.; Williams, B.; Fang, C.; Cui, J.; and Haslum, P., 2017. Resolving over-
constrained temporal problems with uncertainty through conflict-directed relax-
ation. Journal of Artificial Intelligence Research, 60 (2017), 425–490. (cited on page
5)

Zavatteri, M., 2017. Conditional Simple Temporal Networks with Uncertainty and
Decisions. In 24th International Symposium on Temporal Representation and Reasoning
(TIME 2017), vol. 90 of Leibniz International Proceedings in Informatics (LIPIcs), 23:1–
23:17. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany.
(cited on pages 107, 108, and 109)

https://github.com/yu-peng/BCDRTestGenerator

	Acknowledgments
	Abstract
	Contents
	Introduction
	Problem Statement
	Optimising Temporal Problem with Uncertainty under Controllability Constraints
	Checking Dynamic Controllability for Temporal Problems with Uncertainty and Choices
	Optimising Temporal Problems with Uncertainty and Choices under Controllability Constraints

	Contribution
	Thesis Outline

	Background
	Temporal Reasoning Models
	Simple Temporal Network with Uncertainty (STNU/STPU)
	Probabilistic STN (pSTN)

	Conditional Temporal Problem (CTP)
	Controllable Conditional Temporal Problem
	Controllable Conditional Temporal Problem with Uncertainty

	Dynamic Controllability of The STPU
	The Three Levels of Controllability of the STPU
	Checking Dynamic Controllability for the STPU
	Classic Algorithm
	Advanced Verification Algorithms
	The Strong Controllability Reduction Rules

	Partial Order Schedules and Robustness Measures
	Partial Order Schedules
	Flexibility
	Fluidity
	Disruptability
	Improved Fluidity
	Summary

	Optimising STPU
	Problem Formulation
	Constraint Model of Dynamic Controllability
	Disjunctive Linear Model
	Correctness

	Reducing the Size of the Model
	Reducing Redundant Shortest Path Constraints
	Reducing Redundant Precedence Constraints
	Reducing Redundant Wait Constraints
	Summary

	Formulation as a Mixed Integer Programming (MIP) Model
	Formulation as a Non-linear Programming (NLP) Model
	Conflict-Directed Relaxation with Uncertainty

	Constraint Model of Strong Controllability
	Strong Controllability Reduction Rules
	Constraint Model of Strong Controllability
	Reducing the Size of the Model

	Applications
	Relaxing Over-Constrained Problems
	Comparison of Solvers

	Robustness with Non-Probabilistic Uncertainty
	Comparison of Solvers
	Strong vs. Dynamic Controllability

	Minimising Flexibility
	Comparison of Solvers

	Robustness with Probabilistic Uncertainty
	Flexibility vs. Robustness

	Dynamic Controllability with Chance Constraints
	Dynamic vs. Strong Controllability

	Conclusions

	Dynamic Controllability of CCTPU
	An Illustrative Example
	Problem Definitions
	Preliminary Definitions
	Dynamic Assignments for Discrete Variables
	Dynamic Controllability of CCTPU
	Dynamically Controllable Envelopes

	Extracting Dynamically Controllable Envelopes of STPU
	Conflict Resolutions of STPU
	Extracting Conflicts of STPU
	Dynamically Controllable Envelopes of STPU

	Dynamic Controllability Checking of CCTPU
	Algorithm Structure
	Branching Rule
	Combining DC Envelopes
	Decision Consistency in Prehistory

	DC Checking for the Combined Envelope

	Approach Validation
	Validation of Dynamically Controllable Envelopes of STPU
	Validation of Dynamic Controllability of CCTPU

	Experimental Results
	Experimental Setup
	Results
	A Simple Optimisation Experiment

	Conclusion and Future Work

	Optimising CCTPU
	Problem Statement
	Relaxing Over-constrained Problems
	Maximum Deviation of Partial Order Schedules
	General Formulation

	Optimising CCTPU with Fixed Assignment
	Activating Constraints with Fixed Assignment

	Optimising CCTPU with Dynamic Assignments
	Constraint Model Representing Dynamic Assignments
	Expanding the CCTPU
	Constraints of Partial Uncertainty in DC Envelope

	Experimental Results
	Objective Function
	Results

	Conclusion

	Conclusion
	Summary of Contributions
	Related Work
	Related Temporal Reasoning Models
	Conditional Simple Temporal Network with Uncertainty
	Conditional Disjunctive Temporal Networks with Uncertainty
	Conditional Simple Temporal Networks with Uncertainty and Decisions

	Verification Approaches for Temporal Problems with Uncertainty
	Representing Dynamic Controllability by Timed Game Automata

	Other Approaches for Temporal Problem Verification

	Future Work

