
Streaming Geospatial Imagery into
Virtual Environments

Samuel Roger Aldiss Taylor

A thesis submitted for the degree of
Doctor of Philosophy at

The Australian National University

August 2001

Except where otherwise indicated, this thesis is my own original work.

Samuel Roger Aldiss Taylor
6 August 2001

For Mum, Dad and Lucy.

Acknowledgements

A PhD is a long road to tread, and I owe a great debt of thanks to all those who have
helped me over the last four years. I have been privileged to study at the Australian
National University, an institution which continues to inspire generations of young
Australians. Within the Department of Computer Science I must thank my super
visory panel and in particular Dr Chris Johnson, who always made time for me and
always challenged me to think in new directions.

Special mention has to go to the Cooperative Research Centre for Advanced Com
putational Systems (ACSys). ACSys was a remarkable organisation: it gave me the
opportunity to work with great people on fascinating problems using state-of-the-
art technology, and ultimately to develop this dissertation. Beyond that I made some
wonderful friends through ACSys: John Zigman, Matthew Wilson, Markus Buch
horn, Linda Wallace, Raj Nagappan, Nick Craswell, Dave Walsh, Hugh Fisher, Zhen
He, Luke Kirby, Alonso Marquez, Steve Blackburn and Jan Bitmead.

Away from work there are just as many kind people who helped and encouraged
me. I have been lucky enough to be part of two wonderful caring families, the Taylors
and the Jensens, both of whom offered their unconditional love and support. My
mates helped me maintain my sense of perspective, each in their own unique way.
Angus O’Shea introduced me to the world of Belgian beers, John Zigman got me
riding and forced me in to the gym, Tim Edwards showed me just how much you
can achieve when you really want to, and Gavin Longhurst fed me a steady diet of
mad ideas and exquisite language. Then there were the lunchtime coffee drinkers -
Gavin Mercer, Andrew Slater and Matt Taylor - who prove that nothing beats a good
conversation and a strong espresso sat outside in the Canberra sunshine.

Finally Richard Walker’s refined aesthetic sense, remarkable knowledge of BTgX
and very great patience made it possible for me to typeset this thesis.

vii

Abstract

The goal of this thesis is to enable geospatial images from earth observation satel
lites to be visualised in a Collaborative Virtual Environment (CVE). Geospatial im
ages are a valuable commodity and are used in fields as diverse as meteorology, de
fence, environmental impact analysis and urban planning. They are also very large,
and collections of images are typically kept on slow tertiary storage devices. Collab
orative Virtual Environments are sophisticated visualisation systems with the added
attraction of human interaction. They are also computationally demanding applica
tions which must respond to user input in real time. So, while there is great value in
combining CVEs and geospatial imagery, a range of performance and management
problems must first be considered.

The general challenge is to retrieve imagery from storage archives, transform it
through various image processing operations, and disseminate it to visualisation
clients with a minimum of latency. This challenge implies four fundamental require
ments: for responsive client access to imagery, for high rates of throughput when dis
seminating imagery, for sharing collaborative data between clients, and for a struc
tured approach to application management.

The major contribution of this thesis is to report a software architecture that
addresses each of these requirements. Known as the Responsive Architecture for
Pipelined Imagery Dissemination (Rapid), it consists of three main components:

1. A general-purpose dissemination pipeline is used to access and process im
agery at high rates of throughput.

2. Large, parallel caches are deployed close to visualisation clients to decouple
them from the pipeline and provide responsive access to processed imagery.
These caches are also organised to route collaborative data between sites.

3. An application management framework is defined to allow dissemination pipe
lines to be created within a computational grid.

The Rapid architecture has been validated through the development of numerous
working systems. Three case studies are presented, which allow general architec
tural principles to be distilled from practical work.

The sheer size of geospatial imagery will continue to present a number of difficult
problems for developers of visualisations systems: the underlying tension between
client responsiveness and archive latency is not easily resolved. However, the results
of this thesis demonstrate that the problems are not insurmountable, and that real
time collaborative visualisation of geospatial imagery is an achievable goal.

Contents

Acknowledgements vii

Abstract ix

1 Introduction 1
1.1 Data Domain: Geospatial Im a g e ry .. 1
1.2 Visualisation Domain: Collaborative V E .. 2
1.3 The Problem Framed as Four Functional Requirem ents....................... 5

1.3.1 Responsiveness.. 5
1.3.2 T hroughput... 5
1.3.3 Collaborative Data Sharing ... 6
1.3.4 Application M anagem ent... 6

1.4 Scope and Suitability of the P rob lem ... 7
1.5 A Solution ... 8
1.6 Approach and M ethodology... 8
1.7 Organisation... 9

2 Formative Concepts 11
2.1 Managing and Using Geospatial Imagery.. 11

2.1.1 Earth Observation Systems and D a ta ... 11
2.1.2 Storage and Repositories... 12
2.1.3 Image Processing and Dissemination Pipelines......................... 13
2.1.4 Tiling and Resolution...15
2.1.5 Map Projections and Coordinate System s.................................. 17

2.2 Challenges with Collaborative Virtual Environments............................ 18
2.2.1 Data Distribution Tradeoffs..18

2.2.1.1 Model/View Distinction.. 19
2.2.1.2 Data Size... 20
2.2.1.3 Access and Communications Patterns.............................. 20
2.2.1.4 Computational C o s t ... 21
2.2.1.5 Time Sensitivity and B uffering...21
2.2.1.6 Scalability.. 22

2.2.2 Object Position Estimation.. 22
2.2.3 Perceptual Consistency and Collaborative Data Sharing........... 23
2.2.4 Terrain Rendering.. 24

2.3 Distributed Computing... 27
2.3.1 Data S tream ing.. 27

xii Contents

2.3.2 Caching .. 28
2.3.3 Application Management, Metacomputing and G rid s 29

2.4 Summary..31

3 Techniques and Approach 33
3.1 Runtime T echniques..33

3.1.1 Pipelined Imagery Dissemination...33
3.1.2 Pipeline Scheduling... 38
3.1.3 Parallel Caches at Visualisation S ite s ... 40
3.1.4 Group Communications for Collaborative Data Sharing........... 42
3.1.5 Inter-site Tile Sharing.. 43
3.1.6 Parallel Streaming in the Dissemination Pipeline..........................43
3.1.7 Approximating Tiles .. 47

3.2 Grid-based Application Management.. 48
3.3 Bringing the Pieces Together.. 52

3.3.1 Illustrative Example... 53
3.3.2 Negotiating a Service.. 53
3.3.3 Initialisation of S erv ices...56
3.3.4 Provision of Serv ices.. 57
3.3.5 Disposal of Services... 59

3.4 C aveats.. 59
3.5 Summary... 60

4 Rapid: Responsive Architecture for Pipelined Imagery Dissemination 63
4.1 Documenting An Architecture..63

4.1.1 UML and Perspectives..65
4.1.2 Implementation Profiles...65
4.1.3 The UML Object Model and New Stereotypes............................... 66

4.2 Service Negotiation and Application M anagem ent.................................. 67
4.2.1 Actors and the Pipeline Life-cycle...68
4.2.2 Negotiating Access to a R esource...70
4.2.3 Managing Access to Special Purpose Networks.............................73
4.2.4 A Schema for Resource Discovery...73

4.3 Creating the Pipeline During Service Initialisation.................................. 76
4.3.1 The Structure of a New O p e ra to r ...77
4.3.2 Connecting Ports and Creating Links... 79

4.4 Provision of Service with a Dissemination Pipeline.................................. 81
4.4.1 Basic Network Com m unications...81
4.4.2 Rapport: The Rapid Operator P ro toco l..84
4.4.3 Port Buffers and Approximating R esu lts..87
4.4.4 Handling and Processing Tile Requests.. 88
4.4.5 Supporting Parallelism in the P ipeline.. 91

4.4.5.1 Intra-operator parallelism..92
4.4.5.2 Parallel Streaming Through Downstream Gathering . . 92

Contents xiii

4.4.5.3 Parallel Streaming Through Upstream Scattering . . . 94
4.5 Race: The Rapid Cache... 95

4.5.1 Structure of the Ra c e ... 95
4.5.2 Nodes and Ports in a Ra c e ... 98
4.5.3 Handling R equests.. 99
4.5.4 Scheduling Speculative R equests..100
4.5.5 Inter-site Bus and Collaborative Data Sharing............................ 101

4.6 Minor Details and Points of Clarification..102
4.6.1 How Clients Connect to a P ip e lin e ...102
4.6.2 Termination of Service...102
4.6.3 Tiling and Level of Detail Mechanisms... 103
4.6.4 Observability ...103

4.7 Summary.. 103

5 Comet: a Study in Client Responsiveness 105
5.1 Overview of C o m e t... 106
5.2 Requirements of Comet..106
5.3 Architecture of Comet...108

5.3.1 Data Distribution and the Server Cluster.......................................108
5.3.2 The Rendering Process.. 110
5.3.3 Client Caching Strategies..I l l
5.3.4 Multithreading and Quasi-asynchronous Data Delivery............. I l l

5.4 Analysis of C om et.. 112
5.4.1 Test Environment and Metrics... 112
5.4.2 Caching ... 113
5.4.3 Tile Sizes for Rendering and Distribution115
5.4.4 Multithreading and Asynchronous Com munication...................117
5.4.5 Level of Detail and Cache Utilisation.. 119
5.4.6 Network Bandwidth Usage...119

5.5 Summary.. 121

6 Short Studies in Dissemination and Throughput 123
6.1 OATS: Study of an Imagery Archive Brow ser.. 124

6.1.1 Overview and Requirements.. 124
6.1.2 Architecture and Implementation..126
6.1.3 Analysis ... 128
6.1.4 Summary of OATS... 128

6.2 IMAD: Pipelined Imagery Dissemination..128
6.2.1 Overview and Requirements.. 129
6.2.2 Experimental A nalysis...130

6.2.2.1 Communications T hroughput.......................................131
6.2.2.2 Efficiency of Loop-back Communications133

6.2.3 Architecture and Relationship to Rapid133
6.2.4 Analysis of the A rchitecture.. 136

xiv Contents

6.2.5 Subsequent W ork .. 138
6.2.6 Summary of IM A D ..139

6.3 CROP: Optimising T hroughpu t... 139
6.3.1 Overview and Requirements..140
6.3.2 Architecture...141
6.3.3 Analysis ...142
6.3.4 Summary of CROP ..143

6.4 Summary..143

7 vGrid: a Study in Application Management 145
7.1 Overview of the vG rid.. 145

7.1.1 M otivation..145
7.1.2 Requirements of Collaborative Virtual Environments147
7.1.3 G o a ls .. 147

7.2 Relationship to Ra p i d .. 148
7.3 A rchitecture.. 148

7.3.1 Resource S chem a.. 149
7.3.2 Factories and Traders...151
7.3.3 Implementation... 153

7.4 Analysis of vGrid...155
7.4.1 Success of vG rid... 155
7.4.2 Virtual World M anagem ent..155
7.4.3 Static and dynamic configuration... 156
7.4.4 Schema Encoding...157
7.4.5 Interoperability... 157

7.5 Summary..158

8 Conclusions and Future Work 161
8.1 Summary..161
8.2 Future Directions for Research.. 162

8.2.1 A Full Implementation of Rapid .. 162
8.2.2 Evaluating Scheduling and Prefetch Policies................................ 163
8.2.3 High Level User Interaction and Collaboration...........................163
8.2.4 Other I s su e s ... 163

8.3 Conclusions.. 164

Appendices 165

A Rapid Class Reference 167
A.l Service Negotiation Classes .. 167
A.2 Operator and Pipeline Classes... 171
A.3 Rapport Classes..178
A.4 Race C lasses..183

Contents xv

B UML Notation and Conventions 189
B.l Class Diagrams .. 189
B.2 State Diagrams... 190
B.3 Sequence Diagrams...190

Bibliography 191

Index 205

Contents

Chapter 1

Introduction

This thesis is about using Collaborative Virtual Environments (CVEs) to explore im
agery from earth observation satellites. CVEs are extremely sophisticated visualisa
tion systems. They completely immerse the user in a virtual space where the periph
eral vision is saturated and the perception of depth is accurate. Not only are they
compelling display devices, they have the added dimension of human interaction
and so are a powerful forum for teams of experts to visualise and solve problems.
Geospatial imagery is among the richest and most valuable visual data, and often
requires careful analysis by experts in multiple domains. So there is great potential
to use Virtual Environments for collaborative visualisation of geospatial imagery.

In a perfect world we would be able to access and interact with geospatial im
agery as easily as we access a remote website or interact with a printer on a local
area network. Before this potential can be realised, however, there are significant
performance and resource management problems which must be solved. Geospa
tial images are large and difficult to manage and distribute. They also require consid
erable processing before they can be visualised. CVEs are demanding applications:
real-time interaction and high performance terrain rendering are both very sensi
tive to latency. The challenge for this thesis is to efficiently stream data out of image
archives and allow visualisation clients to access it with minimal latency.

1.1 Data Domain: Geospatial Imagery

Geospatial images are an extremely valuable commodity. Around the world there is
great interest in earth observation data [45]. All major space organisations include
an earth observation group, as do most defence forces and an increasing number of
commercial enterprises. Geospatial imagery is valuable because it can be applied to
many different fields, including:

• meteorology and weather prediction;
• military command, control, communications and intelligence (C3I) services;
• scientific assessment of environmental impact and climate change;
• town planning and monitoring the effects of urbanisation;
• insurance assessments for underwriting major construction projects.

1

2 Introduction

Estimates vary widely but by 2005 the commercial market for geospatial imagery
may be worth as much as $US2.5 billion1. The value to the scientific and defence
sectors is immeasurable.

Just as there are many applications of geospatial imagery, so too there are many
sources of images. The first civilian remote-sensing satellite, Landsat-1, was launched
in 1972. Today there are a great number of different earth observation satellites in
orbit around the planet, each providing unique and valuable data. Satellites vary in
terms of the number of sensors they carry, the spatial resolution and spectral cover
age of each sensor and their orbital characteristics. For example, the French SPOT
satellites sit in a low altitude polar orbit and provide results from four spectral chan
nels at a resolution of 10-15 metres over an area 60 kilometres wide. By contrast
the Japanese GMS weather satellites sit in a high altitude geo-stationary orbit and
provide images which cover a significant portion of the southern hemisphere, but
at a resolution of no better than one kilometre. Obviously these differences have a
profound affect on the images produced by each satellite. Figures 1.1 and 1.2 show
examples of imagery from several different systems.

The diversity of data presents many challenges to those who use geospatial im
agery. Perhaps the greatest challenge is due to the sheer volume of data. Individual
geospatial images are very large; time series of images can be massive. This means
that geospatial imagery is usually held in a mass-storage facility, such as a tape silo.
Such devices are optimised to stream out data at high bandwidth, but incur signif
icant initial latency. Other challenges relate to the processing and dissemination of
images. Most geospatial data is archived in raw form or with minimal loss-less filter
ing. Consequently it requires considerable processing before it is fit for direct visu
alisation. Efficiently processing and streaming large images to visualisation clients
is a challenging problem.

1.2 Visualisation Domain: Collaborative VE

A Collaborative Virtual Environment (CVE) is an artificial space in which geograph
ically separated people can meet and interact. CVEs have the potential to revolu
tionise the way we communicate and work because it is possible to see and do things
in a computer-generated space that are not practical or possible in the real world.
Constraints such as distance, scale, visibility, occlusion, mobility and cost need not
apply in a virtual environment. This freedom of interaction has been essential to the
success of CVEs in many different domains, including:

Scientific Visualisation - where multiple participants cooperatively explore scien
tific data sets, or interactively steer a simulation running on a remote High Per
formance Computing (HPC) resource [108].

1 This estimate by Tom Watts of Merrill Lynch is based on the assumption that satellite imagery will
replace much of the existing market for aerial photography, currently valued at $US2.4 billion. Ron
Stearn, an analyst with Frost and Sullivan, offers a more conservative figure of $US420 million if the
two markets remain separate.

§1.2 Visualisation Domain: Collaborative VE 3

Figure 1.1: A composite, false colour image of our planet, produced by NASA.

(i) Landsat MSS (ii) SPOT (iii) IRS-1C

Figure 1.2: The city of Canberra, as seen by three different earth observation satellites: (i)
Landsat MSS, (ii) IRS-1, and (iii) SPOT.

4 Introduction

Military Training and Simulation - the armed forces have a long history of using
computer simulations to train personnel. They have well defined protocols
and architectures for building scalable simulations and virtual battlefields, in
cluding the Distributed Interactive Simulation (DIS) protocol [68] and the Higher
Level Architecture (HLA) [25]

Cooperative Design - designers and engineers can work in a shared space to build
virtual prototypes rather than physical models. VE-based CAD tools have been
developed by a number of large vehicle manufacturers, including General Mo
tors and Caterpillar [83]

Education - a Virtual Environment can be an exciting and compelling setting for
many education and learning applications [74]. For example, the Narrative
Immersive Collaborative Environment (NICE) is a virtual garden, where young
children can interact and play with a range of objects and plants, and explore
a number of learning themes [119]

Medical Training - a particularly specialised and successful use of VEs for educa
tional purposes is in the area of medicine. Collaborative VEs can be used to
provide general practitioners with access to specialists [114]. Rich hapto-visual
environments are also being developed to allow trainee surgeons to develop
their skills.

Entertainment - in financial terms video games have now surpassed mainstream
cinema and recorded music as the most valuable global media [69]. Multi
player and on-line video games are a particularly high growth genre. They are
a unique category of Collaborative Virtual Environment, requiring both a com
plex set of interactions and a high degree of scalability. Massively multi-player
games such as “Ultima Online” and “Everquest” commonly support thousands
of players interacting in a shared virtual world [29]. Future games have even
more ambitious scalability goals [22].

Socialisation - a Virtual Environment can also be an appropriate neutral venue for
people to meet and socialise. Multi-user VRML [153,154] worlds are popular
as virtual chat forums and for other types of casual, non-competitive interac
tion. Users of such worlds often go to a considerable effort to customise their
appearance and environment and generally build a rich virtual persona.

The major challenge in developing a Collaborative VE is always responsiveness.
Real-time interaction demands a high degree of responsiveness and also requires a
constant rate of response [109]. Neither of these characteristics are easily achieved
given the latency and jitter inherent in contemporary networks. As a result it is al
ways a major challenge to integrate a new type of data, such as geospatial imagery,
into a Collaborative Virtual Environment.

§1.3 The Problem Framed as Four Functional Requirements 5

1.3 The Problem Framed as Four Functional Requirements
The ultimate goal of this thesis is to enable collaborative visualisation of geospatial
imagery within Virtual Environments. This is a general goal which encompasses a
number of more specific, research issues. Consequently we will frame the problem
in terms of four basic, functional requirements:

1. To provide visualisation clients (CVEs) with low latency access to very large
geospatial datasets. This we will characterise as a requirement for responsive
ness.

2. To process and disseminate imagery in a way that makes efficient use of high-
bandwidth networks and high performance computing resources. This is a
requirement to optimise the rate of throughput.

3. To share data required for user interaction and a shared sense of presence. This
implies a requirement for collaborative data sharing.

4. To support management of resources and configuration of applications in a
heterogeneous distributed environment. This is a requirement for application
management.

These four requirements define the scope of this thesis and the solutions it develops.

1.3.1 Responsiveness

Response rate is all important to a Collaborative Virtual Environment. To achieve
a sense of real-time interaction visual, auditory and haptic2 rendering must be per
formed within stringent time constraints [109]. Visual rendering typically occurs 30
- 60 times per second and, although it can be pipelined to some extent, a lag of even
a few frames becomes noticeable and distracting. Bi-directional audio channels are
more tolerant, but typically cannot work with latencies greater than 100 - 200 mil
liseconds. Haptic rendering is most demanding: updates are performed 500 - 1000
times per second affording a latency of one or two milliseconds at most. It is crucial
to visualisation to have timely, low latency access to data. In other words, respon
siveness is a fundamental requirement.

1.3.2 Throughput

Low latency data access is not the only performance requirement. The size and pro
cessing requirements of geospatial images mean they must be streamed efficiently.
Tertiary storage facilities can migrate data off store at very high rates: often faster
than a commodity network can handle. This means that high bandwidth networks
are required to disseminate images efficiently. Many image processing operations
are highly parallel and perform very well on high-performance computing facilities.
Consequently it is important to be able to access, transfer and process images at very
high rates of throughput.

2Haptics provide force-feedback and a sense of touch within a virtual space.

6 Introduction

1.3.3 Collaborative Data Sharing

Why is the collaborative aspect important? There are a many reasons why group ex
ploration enhances the way we use geospatial imagery Earth observation images
provide a complex picture of our world. Interpreting them can be difficult and time
consuming, and usually requires specialist knowledge. In this context there is con
siderable value in having multiple analysts develop a collective interpretation of an
image. Furthermore, when images are being used as part of a decision making pro
cess, it is clearly preferable if all stake-holders can view the images at the same time,
sharing observations and forming a consensus. For example, in a military context
it may be valuable for officers in the field and trained image analysts to participate
when command staff use reconnaissance data to make tactical decisions. There is
also an economic argument in favour of collaboration. Access and processing large
datasets incurs considerable costs in terms of network and computational resource
consumption. These costs can be shared when more than one user views a dataset.
Finally there are technical arguments for considering collaboration in this disserta
tion. Firstly, the information shared for collaboration can also be used to improve
application performance. Secondly, collaboration is not easily retro-fitted to exist
ing solutions and should to be built in from the start. So collaborative data sharing
is a fundamental requirement.

1.3.4 Application Management

Large-scale and widely distributed computing systems present a number of unique
problems, relating to application management. The central issue is how resources
are used in a decentralised, heterogeneous computing environment. There are two
sides to application management: the need of an individual application to use re
sources; and the need of a resource owner to moderate use of the resource. On the
one hand each distributed application needs answers to the following questions:

• what resources are available?
• when are they available?
• how do I access them?3

These questions are all about discovering resources and configuring applications
to deal with heterogeneity. The answer is to provide clients with generic means of
describing, looking for and accessing resources. On the other hand, resource owners
need answers to a different set of questions:

• how do I make clients aware of my resource?
• how do I guarantee availability of the resource to a client? (to avoid over

committing a resource)

3Use of the word access is deliberate. We must assume that an application knows how to use a
resource once it is made available. The challenge is getting the application to the point where it can
use a resource - a configuration problem.

§1.4 Scope and Suitability of the Problem 7

• how do I limit availability of the resource? (to prevent use by inappropriate
clients, to stop a single client monopolising the resource, to make the resource
available only at certain times)

These are questions of resource management, and are about ensuring that a re
source is used appropriately, efficiently and fairly. Answering these questions also
requires that clients use standard ways of finding and accessing resources. View
ing geospatial images in a CVE involves a variety of network, data and computing
resources. Hence a systematic approach to application management is required.

1.4 Scope and Suitability of the Problem

In setting the scope of this work the aim has been to consider a problem which is
broad enough to be interesting, yet focused enough to be achievable. All work has
limits and imagery dissemination and collaborative analysis present challenges be
yond the four basic functional requirements described above. Perhaps the most sig
nificant is the process of searching for images. This is a rich and complex problem
in its own right, and is not considered in this work: rather it is assumed that the
user already knows about the images that he or she is interested in. Image search
ing is an area of active research and, in this respect, a CVE client is no different to
any other. Security is another important issue not considered here. For military
applications security is paramount and the value of geospatial imagery means that
security is also relevant for other applications. Finally, collaboration brings with it
a unique set of issues. Although this work is firmly rooted in area of Collaborative
Virtual Environments it does not concentrate on the human factors associated with
collaboration, but on the underlying problem of data distribution4. Important as
each of these problems may be, they are beyond the scope of this work.

With any problem where data volume or processing rates are the limit it is rea
sonable to ask if Moore's Law will ultimately provide a solution. Will the massive in
creases in storage and processing capacity of future systems fundamentally change
the way we address the four functional requirements? The answer is no. We can ex
pect that the percentage of data held in online tape silos will increase. However, just
as storage and processing capacity is increasing, so too are the spatial and spectral
resolution capabilities of earth observation systems. New hyper-spectral, high reso
lution satellites are coming online all the time and the volume of data produced by
these new systems will be considerably greater than currently available. If anything,
the volume of data will increase faster than our ability to deal with it. It is reasonable,
therefore, to suppose that visualising geospatial imagery in Collaborative Virtual En
vironments will remain an interesting research problem for many years to come.

4Essentially this is a thesis about data sharing in a CVE, rather than the higher level question of how
users achieve meaningful interactions with that data. This work is a necessary precursor to that later
question.

8 Introduction

1.5 A Solution

The solution proposed here is a software architecture for imagery dissemination that
optimises responsiveness and supports collaborative data sharing. This addresses
the runtime performance requirements of a single application. The architecture also
addresses the broader application management requirement for a production sys
tem. Known as the Responsive Architecture for Pipelined Imagery Dissemination
(Rapid), it consists of three main elements:

1. A dissemination pipeline used to access data from imagery archives, process
and transform it in arbitrary ways, and deliver it to visualisation clients. The
pipeline uses parallel streaming techniques to optimise bulk data movement
between processing operations. Parallel streams are formed using a flexible
connection object. Data movement is further optimised by flow control and
scheduling mechanisms. These all work to meet the basic requirement for high
rates of throughput.

2. A parallel data cache, deployed at client sites to optimise responsiveness. The
Rapid Cache (Race) isolates visualisation clients from the latency of the dis
semination pipeline. It uses speculative fetching policies and approximates
results to further improve responsiveness. In addition it provides a inter-site
communications topology to support collaborative data sharing.

3. An application management framework to allow dissemination pipelines to be
formed within the context of a computational grid [35]. This includes a well-
defined life-cycle for pipelines, a collection of brokers and traders to manage
resources and a schema for publishing resource descriptions in a public direc
tory service.

The centrepiece of the architecture is the Rapid Cache, a middle-tier component
which performs a unique set of functions. It integrates latency sensitive visuali
sation clients with a high-bandwidth, high-latency dissemination pipeline without
coupling their executions.

1.6 Approach and Methodology

This thesis adopts the methodology of a software architect: a practitioner’s approach
grounded in the development and review of working systems. Independent solu
tions exist within the data and visualisation domains for each of the four basic func
tional requirements. The challenge is to integrate these disparate elements into a
coherent whole. In this context an architectural approach can bear much fruit.

Rapid is based on the experience of several experimental and real-world systems
developed by the author. This experience is presented in three case studies. Highly
distributed systems do not always lend themselves to quantified examination. Often
the most valuable lessons are learnt from reviewing the architecture of a successful

§1.7 Organisation 9

system. Consequently the evaluation of experimental systems is a blend of experi
mental results and systems analysis. The goal of the experimental work is to distill
general architectural principles from practical system.

Where possible, standard notations are used to report results. I deliberately avoid
defining my own language, calculus or notation. System diagrams are presented in
the Unified Modeling Language (UML) [39]. Use-Cases [71] and Design Patterns [40]
are used to characterise system behaviour. This style of reporting reflects a belief
that exploratory research should not preclude good software engineering practice.

1.7 Organisation
In keeping with the architectural approach, this thesis is organised along the lines of
the classic waterfall model of software engineering. It moves from the general to the
specific through chapters which consider requirements, specification, design and
implementation. Real software engineering projects rarely follow the linear progres
sion implied by the waterfall model, and this thesis is no exception. The transition
from abstract to concrete is a useful descriptive device, but does not present the
work in chronological order. In fact the experimental systems were all built before
the Rapid architecture was specified. So the case studies validate some portions of
the architecture, and motivate others.

Chapter 2 reviews formative concepts from relevant literature. The emphasis
here is not on an exhaustive taxonomy of research into geospatial imagery or collab
orative virtual environments. Rather, the aim is to identify key requirements from
the data and visualisation domains and so provide the context for Rapid.

Chapter 3 sketches a general outline of a complete solution. It specifies the key
techniques and ideas that need to be encapsulated in the architecture. A concrete
design is presented in Chapter 4. This describes the three main elements of Rapid
in considerable detail, and is the major result of the thesis.

The remaining chapters present three case studies into working systems. Each
system demonstrates different elements of Rapid. Chapter 5 presents the first case
study, which considers the responsiveness requirements of a visualisation client. It
is based on the Comet terrain exploration tool, which was presented at the tenth ple
nary meeting of the Committee of Earth Observation Scientists (CEOS). The second
case study, presented in chapter 6, describes three different imagery dissemination
systems, with an emphasis on achieving high rates of throughput in a distributed
pipeline. The final case study, in chapter 7, considers how a computational grid
can provide the required application management services. It describes the vGrid, a
framework for executing and managing Collaborative Virtual Environments and the
resources they consume.

Chapter 8 summarises the major results and describes various directions for fu
ture research. One of the many exciting things about this area is that so many ques
tions remain. By developing an general architecture, rather than a specific software
toolkit, this thesis aims to provide a foundation for future work.

10 Introduction

Chapter 2

Formative Concepts

This thesis sits at the convergence of two existing areas of research: geospatial im
agery and Collaborative Virtual Environments. It is informed by results from both
the data and visualisation domains. Before diving into a detailed consideration of
how to integrate the two domains, it is useful to review the state of the art in each.
There are also several important areas of distributed computing research which are
relevant. This chapter considers the major concepts and significant literature that
provide the context for Ra p id .

2.1 Managing and Using Geospatial Imagery

The term geospatial imagery is applied to a highly diverse collection of earth ob
servation data. Mature techniques already exist for collecting, managing and pro
cessing this data. In this section we will review some of the essential characteristics
of earth observation data and the methods currently used for storing and process
ing it. We will also look at approaches to tiling and degrading imagery, and the in
evitable issues of coordinate systems and map projections which arise from using
tiling mechanisms.

2.1.1 Earth Observation Systems and Data

There are many kinds of geospatial imagery produced by the various satellites and
sensors in orbit around the planet. Some of these were mentioned in Section 1.1
of the previous chapter. Although there are many differences in earth observation
system it is possible to define a number of characteristics common to all geospatial
imagery. Each image may contain more than one viewable channel, representing
different portions of the spectrum or different sensors. The major component of
each channel is a two-dimensional contiguous block of pixel data1. All pixels in a
channel will be recorded with the same precision (bits per pixel), which usually im-

1 This pixel data is usually supported by a variety of ephemeral data to describe the conditions, time
and orientation of the vehicle when the image was recorded.

11

12 Formative Concepts

plies an optimal packed encoding of a channel2. The contiguous nature of the pixel
data also implies that tiling strategies can be used to decompose the images into
smaller blocks, or to form different levels of detail. Finally, images are recorded on a
regular basis and so each individual data set is part of a larger temporal series. Often
the frequency of recording is a function of the orbital characteristics of the satellite,
and can be quite complex (for polar orbits in particular).

From these characteristics it is apparent that each individual pixel of a geospatial
image has extent in the following dimensions:

• two or possibly three spatial dimensions3;
• the channel set or spectral domain;
• the temporal dimension.

In addition there will be a collection of ephemeral metadata associated with each
image.

Perhaps the defining characteristic of geospatial imagery is simply its size. Indi
vidual images from current generation satellites may be tens of megabytes in size.
As a result, even short time series of images consume very large amounts storage
space. For example the GMS-5 satellite produces 210MB of compressed data per
day: approximately 75GB each year. Yet GMS-5 is not a new satellite and by current
standards its output is quite modest. Next generation satellites are expected to pro
duce terabytes of data every day. Furthermore the number of new earth observation
systems is increasing, as commercial companies enter the market. By the end of
2001 companies such as Space Imaging [66] and Orbimage [107] will have launched
a series of civilian satellites with resolutions less than one metre4. The trend is clear:
in coming years we will have access to more geospatial imagery, and at a higher res
olution than ever before.

2.1.2 Storage and Repositories

Geospatial data consumes great amounts of storage space. Although the size of sec
ondary storage (disks) continues to increase according to Moore’s Law, the volume
of geospatial imagery is increasing at least as fast. The result: any non-trivial col
lection of imagery must be maintained on a tertiary storage system, such as a tape
silo. These devices can often stream data out at high rates, but incur a heavy start up
delay. The number of tape drives within the device also limits the number of images

2It is important to note that since earth observation systems are rarely restricted to the visible spec
trum they do not return pixel data in familiar (red, green, blue) triplets. Mapping results into the visible
spectrum is a non-trivial operation and there are many different algorithms used to produce colour
and false-colour images.

3Three dimensional imagery is produced from stereoscopic pairs of images. Generally speaking
such imagery is rare and the overwhelming majority of geospatial imagery has extent in only two spa
tial dimensions [45]. However, digital elevation models are common. Use of elevation data is consid
ered in more detail in section 2.2.4.

4Space Imaging already operate a commercial satellite known as Ikonos. Orbimage have launched
their first and second OrbView satellites, with OrbView-3 and Orb View-4 due for launch later in 2001.

§2.1 Managing and Using Geospatial Imagery 13

that can be accessed concurrently. If a silo only has two drives then only two images
can be streamed out of the silo concurrendy. So access to tape silos, and the archives
of data they contain, m ust be m anaged carefully.

Digital warehouses and libraries have been used for some time to provide a high-
level service interface to large tertiary storage facilities [87, 101]. There has also
been considerable work providing remote access to archives of geospatial data. No
table projects include NASA's Earth Observing System Data and Information Service
(EOSDIS) [110] and the Australian Centre for Remote Sensing (ACRES) Digital Cata
logue [32]. These projects were developed in a piecemeal fashion with little thought
of standardisation or inter-operability. However, standard archive interfaces are now
being developed, with separate initiatives from the defence and commercial sectors.
One set of draft standards is being developed by the OpenGIS Consortium [141,142].
The U.S. National Imagery and Mapping Association (NIMA) has a more mature
family of standards targeted at the defence sector, known as the U.S. Imagery and
Geospatial Information System (USIGS) [64,65]. The core of USIGS is an archive in
terface standard, known as the Geospatial Imagery Access Services (GIAS) [149]. The
GIAS is an elaborate specification and developing a full implementation involves
considerable work [20,56].

A significant aspect of all archive interfaces is the way they decouple searching
and browsing functions from data access. The GIAS, for example, uses one set of
components for query operations and a completely separate set of components for
data access [149]. This decoupling stems from an obvious engineering constraint:
searching and browsing functions use a catalogue of m etadata which is small enough
to be m aintained on secondary storage, whereas image access involves migrating
large volumes of data off tape. The separation is particularly significant to Rapid: it
does not consider query issues, and is focused purely on data access.

2.1.3 Image Processing and Dissemination Pipelines

Geospatial images require considerable processing before they can be visualised.
Most earth observation data is archived in raw form, just as it was received from
the satellite. Such data often contains errors and at a minim um requires filtering
and cleaning. Rectifying images to correct for curvature of the earth is also a com
mon operation and is computationally expensive to perform. Figure 2.1 provides
and example of image rectification. Images may need to be composed and fused if
no single image covers an area of interest; which is particularly likely for low-orbit
satellites with a narrow field of view. However, building a composite mosaic image
from multiple sources is again a complex and computationally demanding process.
Finally, since most earth observation systems sample visible and invisible portions
of the spectrum there is a need to map imagery into the 24-bit RGB colour values
used by display hardware. These operations may be considered the minimum pro
cessing required for visualisation. Most users will require additional processing for
their particular application. Therefore, a systematic approach must be taken to pro
cessing data and delivering it from a storage archive to a visualisation client.

14 Formative Concepts

Figure 2.1: Rectifying an image to correct for the curvature of the earth. On the left is a
raw NOAA image of the eastern half of the Australian continent. On the right is same image
rectified to the more familiar Mercator projection. This image processing was performed
in close to real-time using a parallel rectification operator running on a high-performance
computing cluster.

Many image processing systems adopt a pipeline architecture [93]. Pipelines are
formed from a collection of processing operators, linked together so that the output
of one operator flows into the input of the next. Each operator transforms the data
as it flows along the pipeline, with the cumulative results as the output of the last op
erator. The term pipeline is somewhat misleading since it implies a single sequence
of operations. However, many processing operations require more than one input
or produce more than one output. For example to map the effects of urban growth
involves examining the differences in images taken over a long period of time [45].
When an operator requires more than one input the result is a joint in the pipeline:
when it produces more than one output the result is a fork. So rather than being
a linear sequence, a pipeline is actually a directed acyclic graph (DAG) of process
ing operators; otherwise known as a data flow network. This architecture has been
widely employed in a great many image processing systems including, AVS [136], the
Java Advanced Imaging (JAI) library [134] and PISTON [76,146].

An alternative approach to image processing comes in the form of active archives
[18,56]. An active archive not only stores data, but also processes it before it is de
livered. This allows the archive to produce new products on demand: a form of just-
in-time processing. An active archive can also cache the results of computations for
use by more than one client. It can even optimise the scheduling and processing
of products based on the known behaviour of the tertiary store and the processing
tasks [72]. Active archives complement rather than replace pipelined processing ar-

§2.1 Managing and Using Geospatial Imagery 15

chitectures.
Whether processing is performed within the archive or not, there is still a need to

distribute data to visualisation clients. A dissemination pipeline is a distributed data
flow network which moves data from source archives through a set of processing
operations and ultimately delivers it to visualisation clients. An important issue for
any data flow network is how and when flows are initiated: this becomes crucial for a
dissemination pipeline. A major theme of Ra pid is optimising the flow of data along
a dissemination pipeline.

2.1.4 Tiling and Resolution

There are two useful techniques for managing the size of geospatial data: decom
position of an image into tiles and degradation of an image to lower levels of detail
(LoD). Tiling techniques operate by treating a large image as an array of regularly
sized smaller images. Data size is reduced without compromising resolution, but by
limiting the spatial extent of each tile. LoD techniques take the opposite approach
by degrading the resolution of an image. Hence size is reduced without limiting the
spatial extent of an image. Both techniques are valuable for storage management
and for interactive visualisation of earth observation data5.

Every image can be decomposed into a hierarchy of levels of detail and a three
dimensional matrix of tiles of different sizes6. These two independent decomposi
tions are demonstrated in Figure 2.2. Using both level of detail and tiling techniques
results in quite a complex hierarchy of tiles. This hierarchy is partially depicted in
Figure 2.3 as a two dimensional matrix7. The visualisation problem is essentially
about ensuring that a client has a subset of the tile hierarchy sufficient to satisfy its
rendering requirements.

It is often convenient to limit tile size and resolution to be powers of two. In
this scheme the largest tile is twice as wide and twice as broad as the next largest
tile: the highest level of detail has twice as much resolution, in each dimension, as
the next highest level of detail. Note that since we are considering two-dimensional
imagery, in both cases the largest tile or highest LoD will be four times the size of
the next largest or highest. This organisation is convenient for paging and cache
management since it promotes the use of fixed sized buffers of memory.

The two dimensions of the hierarchy shown in Figure 2.3 help illustrate four po
tentially useful tile operations. Tile composition is the act of combining four neigh
bouring tiles to form a larger tile. Tile decomposition is the reverse operation and
involves dividing a large tile into four smaller tiles. In the matrix presented in Fig
ure 2.3 composition equates to moving up one level, while decomposition equates
to moving down a level. Tile degradation is the act of reducing the resolution of a

5The requirements of real-time terrain rendering are considered in detail in section 2.2.4.
6The three dimensions stem from the two dimensions of the image plus one dimension of tile size.

Multi-channel images form a four dimensional matrix, with a fourth dimension for channel selection.
7Note that for illustrative purposes Figure 2.3 does not depict the full hierarchy of tiles. Instead it

presents the matrix of sizes and resolutions for a single tile

16 Formative Concepts

(i) Level of detail hierarchy (ii) Matrix of tiles and sizes

Figure 2.2: Techniques for decomposing images: (i) by level of detail, and (ii) as a matrix of
tiles at different sizes

Si
■ 5

decreasing level of detail
-- ►

Figure 2.3: A partial view of the combined level of detail and tiling hierarchy. This view
depicts the level of detail and tile size options available for a single tile in a dataset.

§2.1 Managing and Using Geospatial Imagery 17

tile, and it corresponds to moving to the right in the matrix. The forth operation is
tile refinement, which involves increasing the resolution of a tile and corresponds to
moving left in the matrix. For most types of data composing and decomposing tiles
is cheap and involves simple concatenation and subset of memory buffers. Degra
dation is a sub-sampling problem, which may also be cheap for some types of data.

Although tiling and resolution mechanisms are useful for both storage and ren
dering purposes, it is unlikely that both will use a single common hierarchy Dif
ferent image processing operations within a pipeline may also place restrictions
on how tiling and LoD are used and on the types and representation of data. One
novel solution to this problem comes in the form of the A:-Tile [30] algebra. This pro
vides a way of characterising the arrangement of regular data structures and mech
anisms for mapping between different arrangements. It has been successfully used
in image processing pipelines to describe and re-map data as it flows through the
pipeline [146].

2.1.5 Map Projections and Coordinate Systems

An essential part of any tiling strategy is being able to describe what portion of an
image any one tile represents. This requires a way to characterise the spatial extent
and orientation of both the image and its tiles. Geodesy is the science of measuring
and mapping the location of objects on the Earths surface [27]. It remains an active
area of research, due to the irregular shape of the Earth. These irregularities, and
our inability to precisely describe the shape of the planet, mean geospatial data is
produced using a variety of map projections and coordinate systems. Mapping be
tween coordinate systems, and rectifying images to a different projection, are com
putationally expensive operations.

Coordinate systems are defined one of two ways: in terms of a two-dimensional
map projection overlayed with a reference grid; or in terms of the shape of the earth.
The Universal Transverse Mercator8 (UTM) projections [100] are widely used, but
UTM is by no means the only standard for map projection. For example, the State
Plane Coordinate System (SPCS) [130] is also common in the United States. Earth-
based coordinate systems are characterised as either geocentric or geodetic. Geo
centric systems use polar coordinates (angles of latitude and longitude and a dis
tance) from the centre of the planet9. Geodetic systems are based on latitude and

8These are a derivative of the well-known Mercator projection, named after sixteenth century Dutch
map maker Gerardus Mercator (1512-1594). The Mercator projection is produced by encompassing
the volume of the Earth in a cylinder, where the axis of the cylinder is aligned with the poles and the
sides of the cylinder touch the equator. An elegant property of the Mercator projection is that lines of
latitude and longitude intersect at an angle of 90°: the disadvantage is that it greatly distorts the po
lar regions. The Transverse Mercator projection, developed by Johann Lambert (1728-1777), shifts the
area of distortion by setting the axis of the cylinder perpendicular to the axis of the earth. UTM is a
collection of Transverse Mercator projections formed by dividing the Earth into 60 zones between lati
tudes 84°N and 80°S, each 6° wide in longitude. There is an extensive body of literature on projections.
Useful starting points may be found in [27,100].

9 Note that due to the irregular shape of the Earth geocentric latitude is not the same as traditional

18 Formative Concepts

longitude and elevation above sea level, but must account for the irregular shape of
the world. The World Geodetic System 1984 (WGS-84) [63] defines a standard model
of the planet, and is a popular basis for geodetic coordinate systems.

Although the profusion of coordinate systems is inconvenient, it will always be
the case that images and coordinates will require mapping. The roughly spherical
shape of the planet obviously affects and distorts images as they are acquired, but
for visualisation it is usually preferable to treat the surface of the planet as a flat
plane. So there is an inevitable mismatch between raw acquisition data, and that
required for visualisation. Consequently, the costs of mapping between coordinate
systems and of rectifying images are in many ways inherent. This problem is already
considered in some standards, such as the OpenGIS Coordinate Transformation Ser
vices [143]. Although not considered in detail in this dissertation, Rapid is sensitive
to the need for rectification and coordinate mapping.

2.2 Challenges with Collaborative Virtual Environments

Having formed an understanding of the data domain it is time to consider how Col
laborative Virtual Environments (CVEs) can be used to visualise this data. Collabo
ration is what distinguishes a CVE from other forms of visualisation, and the impor
tance of shared experience and real-time interaction are hard to overstate. Smith
and Weingarten go so far as to describe a CVE as “the ultimate synthesis of network
ing and media technologies” [128].

CVEs are real-time, distributed applications. With current, best-effort networks
there are a number of difficult tradeoffs and limitations which affect how data is
distributed; these are reviewed in section 2.2.1. Perhaps the defining problem of CVE
research is estimating the position of moving objects in a virtual space; this problem
is considered in section 2.2.2. Addressing the basic requirement for collaborative
data sharing involves developing loose models of consistency and causality; these
are considered in section 2.2.3. Finally, real-time terrain rendering is an interesting
and demanding problem in its own right and the major techniques are reviewed in
section 2.2.4.

2.2.1 Data Distribution Tradeoffs

CVEs make use of a broad range of data types and media, which must be distributed
and shared quickly enough to preserve a sense of real-time interaction [138]. Data
types commonly used in CVEs include: 3D geometry and models, streams of au
dio and video media, 2D images and textures, haptic (force feedback) information,
results from database queries and output from high-performance computing simu
lations [24]. These data types each have unique sharing and responsiveness require
ments, which translate into a raft of quality of service (QoS) issues. With current

latitude marked on most maps.

§2.2 Challenges with Collaborative Virtual Environments 19

best-effort networks any form of QoS is hard to guarantee, and the solutions that
work for one data type may not work for any other. Consequently, despite consider
able research into CVEs [15,25,68,84,97,145,153,159], there is no generic solution
to the data distribution problem.

Rather than reveal a single solution, CVE research has identified a range of en
gineering trade-offs that affect how collaborative data is shared in real-time. In the
words of Michael Capps and Chris Greenhalgh:

The field of shared virtual environments has matured. We now have a reason
able understanding of the range of issues that must be considered, and of the
key technologies and approaches that can be successfully deployed within par
ticular domains of use. We do not believe that any single technological solution
can address every potential application. However, we now have access to a num
ber of enabling technologies that allow us to construct flexible and extensible
technology building-blocks, that can be drawn together in different combina
tions for different applications and requirements.

Michael Capps and Chris Greenhalgh, CVE 2000

The Consistency-Throughput Tradeoff [126, pages 102-107] is one important engi
neering compromise that must be made for any CVE. Singhal and Zyda explain the
tradeoff succinctly:

It is impossible to allow dynamic shared state to change frequently and guaran
tee that all hosts simultaneously access identical versions of that state.

Sandeep Singhal and Michael Zyda [126, page 103]

Many other tradeoffs exist. In attempting to introduce a new type of data, such as
geospatial imagery, into a CVE it is important to understand the factors that will
affect how that data is shared.

2.2.1.1 Model/View Distinction

In keeping with the Model-View-Controller [77, pages 26-49] design pattern there
are two fundamentally separate sets of data used in a CVE. First there is an underly
ing model of a virtual world. This is the state of the application that must be shared
between all participants. Second there is representational data, which is used to
render the virtual world to visual displays, auditory systems and haptic devices. For
example, a flight simulator must represent the aerodynamic properties, damage and
ordinance levels of every aircraft in the simulation as well as having geometry, tex
tures and audio samples to render the aircraft. The former are model data structures,
the later are views.

The model/view distinction is significant because the QoS requirements of model
data are typically very different to those of view data. In general view data must be
updated at very high rates: at least 60 times a second for visual media, roughly 1000
times a second for haptic force-feedback [109, 157]. This makes view data highly
sensitive to network latency and jitter. However, the rapid update of view data also
makes it tolerant to some unreliability and packet loss: the occasional click or pop in

20 Formative Concepts

an audio stream or the occasional dropped frame in a video are acceptable. Model
data structures, by comparison, are less affected by latency but do require reliable
delivery and high degrees of consistency.

It is not always possible to cleanly separate model and view data, and the dis
tinction is ignored by m any CVE toolkits. For example the Avango [145] toolkit com
pletely merges all model and view data into a shared scene graph. While this blurring
of the lines simplifies the construction of very simple applications, it does not work
for large or complex data such as geospatial imagery. Although, on first impressions,
geospatial images my seem to be view structures they cannot be rendered directly10.
Consequently, Ra p id concerns itself with the distribution of model data.

2.2.1.2 Data Size

Leigh, Johnson and DeFanti [85] argue that it is useful to categorise CVF data into
three sizes: small, medium and large. Small data, in the order of a few kilobytes,
can be distributed in real time and broadcast to all participants without too much
concern for relevance. A good example of a small data structure is the Entity-State
packets* 11, used by the Distributed Interactive Simulation (DIS) [68] protocol to up
date the position of objects moving in a virtual environment. Medium data is too
large for indiscriminate distribution, but still small enough to fit within the memory
of an end-user’s visualisation machine. Large data exceeds the memory capacity of a
typical display machine and so must be maintained on a remote server, partitioned
and accessed piece by piece.

Although considerable work has been done on single-user visualisation oflarge
scientific data sets [150], only recently has the problem been considered for a CVF [86]
The goal of Ra p id is to integrate one family oflarge data structures into Collaborative
Virtual Environments.

2.2.1.3 Access and Communications Patterns

Patterns of access to a data structure have a significant impact on how it must be dis
tributed. In particular the ratio of readers to writers is a crucial consideration [138].
Low-latency read access can be achieved by replicating state to all readers. Write
access is much more expensive, since it entails all the problems of locking and seri
alisation associated with strict equivalence to sequential write consistency [1,3,16,
111]. Hence, the num ber of writers and patterns of access affect how a data structure
is distributed.

An intimately related issue is the pattern of communications between hosts in a
CVF, and the connections used to access data. When a CVE has well-defined com
munications patterns it is possible to optimise the movement and routing of data.
Such optimisations require the developer to define an application-level topology of

10Section 2.2.4 considers terrain rendering in detail.
11 Better known as Entity-State Protocol Data Units (ESPDU).

§2.2 Challenges with Collaborative Virtual Environments 21

connections, tailored to the particular flows of data between hosts. The first CAV-
ERNsoft [84,85] toolkit was based on this concept, and affords great flexibility in the
way topologies are formed and data shared. CAVERNsoft applications first create a
network of connections between hosts, then specify what data should be shared over
each connection and how it should be kept consistent. This approach is especially
relevant to dissemination pipelines, which have static communication patterns and
require optimal throughput.

2.2.1.4 Computational Cost

Computational cost affects how, and more importantly where, data should be dis
tributed. Rendering a three dimensional virtual environment can easily consume all
the cycles of a visualisation workstation. If the environment contains an expensive
feature, such as a numerically intensive simulation, then there is a case for centralis
ing the feature on a single server and broadcasting the results to visualisation clients.
This approach has been used successfully with many different high-performance
computing simulations [13,24,108].

Conversely, if there is a low cost associated with a feature it may be better to have
replicas on all client machines. Local replicas avoid the latency associated with ac
cessing results from a remote server. They can also be a useful way to overcome com
munication bottlenecks. If the results of a computation are larger than the inputs,
then it is more efficient to share inputs and replicate the computation. Multi-player
video games commonly use this technique to overcome the bandwidth limitations
of modems 17].

2.2.1.5 Time Sensitivity and Buffering

Certain types of data are highly dependent on time and/or have a constant rate of
change. Such types lend themselves to data streaming. Obvious examples are au
dio and video media, both of which have constant rates of change and rely on data
streaming models for distribution. The significance of time dependent and constant
change data is twofold: it is typically very sensitive to variation in network latency
(jitter); and it implies a minimum constant bit-rate required of a network. These two
issues correspond to quantifiable network quality-of-service requirements. How
ever, time dependent data may be quite tolerant of latency. For example if two users
on opposite sides of the world are listening to the same network radio stream it does
not matter if one user hears the stream two seconds before the other, what matters
is that they both hear the stream at a constant rate.

Buffering is a common technique for data types with stringent timing dependen
cies [85]. Buffering is used to mask burstiness in the underlying network: it dampens
jitter, at the expense of added latency. It is also used to ensure reliable delivery and
message ordering over best-effort networks. But buffering is not a panacea: every
layer of buffering adds latency. For latency-sensitive applications, such as CVEs, it
is important to minimise buffering to avoid unnecessary delays. Considered and

22 Formative Concepts

strategic use of buffering is a major element of Rapid.

2.2.1.6 Scalability

Large-scale military simulations involve tens of thousands of participants: current
and future multi-player games feature hundreds of thousands of players [22]. Build
ing virtual worlds that can scale to support a very large number of participants is a
challenging problem [46]. The solution is to minimise the amount of information
sent to each user, known more formally as area-of-interest management.

Area-of-interest management is essentially a load-balancing problem. The sim
plest solution is to statically partition the virtual space into a number of areas. This
approach was used in NPSNET [95, 96] and is effective as long as participants are
evenly distributed through the space. Dynamic area of interest management in
volves creating and managing a collection of interest groups, or locales. Systems
such as Mitsubishi Electric Research Labs (MERL) Spline VE [158] and Sony's Com
munity Place [80,81], as well as numerous multi-player games, have used dynamic
interest management with some success. Perhaps the most sophisticated example
of interest management was the MASSIVE-2 [47] environment, which was based on
a comprehensive spatial model of interaction [5,46]. These systems reveal a familiar
result for dynamic load balancing: there is an important tradeoff between the degree
of load balance and the cost of computing the partitioning.

2.2.2 Object Position Estimation

So far the discussion has focused on how arbitrary data types are shared in a CVE.
Perhaps the single most important shared data type is object positions, since the
movement of objects is a very common cause of change in a virtual space. In fact
sharing in real time the position of many moving objects is one of the defining re
search problem for Collaborative Virtual Environments. Early CVEs, such as SIM-
NET [75], identified the challenge: it is not practical to simply broadcast the posi
tion of an object as it moves. There are numerous problems with a naive broadcast
strategy: network latency means that object positions would be spatially correct but
temporally incorrect; smooth animation of moving objects would require that ren
dering and broadcasting be synchronised for all hosts; and the bandwidth use for
even moderate numbers of objects would overwhelm a contemporary LAN.

The solution is to use motion prediction to estimate the positions of objects as
they move through the space; a technique commonly known as dead reckoning. The
first dead reckoning algorithms were introduced in SIMNET in 1983, and were so
successful they were subsequently used in the U.S. military Distributed Interactive
Simulation (DIS) [67] protocol. DIS-style dead reckoning works by broadcasting not
only the position of an object, but also the time it was at that position and the char
acteristics of its movement: velocity, acceleration, rotation and such. This allows a
receiver to estimate the future positions of the object. Updates are broadcast only
when the difference between the real and predicted positions exceeds a predefined

§2.2 Challenges with Collaborative Virtual Environments 23

error threshold. This greatly reduces the volume of data that must be shared, and
also allows different hosts to render at different frame rates. Dead reckoning is such
an effective technique that it has been used as the basis of many commercial video
games, the defence simulation High Level Architecture (HLA) [25], and has been
codified as an IEEE standard [68].

Dead reckoning is a useful, general-purpose algorithm for object position esti
mation but it doesn’t guarantee smooth continuous motion. Consequently the ba
sic technique has been improved in various ways to remove discontinuities. The
Paradise project [125] was able to refine the technique by using a log of past posi
tions to improve the accuracy of estimates, and converge smoothly when estimated
position varied significantly from the real position. It had the added advantage of
transmitting less data than classical dead reckoning. Ryan and Sharkey [121] took
a different approach by skewing the temporal perception of a virtual space. Rather
than attempt to mask the latency of the network, they explicitly modelled it as part
of the environment. Data from remote hosts is rendered in different “time zones”
depending on the latency between hosts12. This approach works very well, but only
as long as time zones do not overlap. Finally it is possible to introduce application-
specific information to further improve the accuracy of position estimates and at the
same time reduce the amount of data shared [78]. For constrained problems special
purpose estimators can be built that share the minimum of non-deterministic infor
mation about object position [79].

Object position estimation is fundamental to all collaborative virtual environ
ments. Using the criteria defined in section 2.2.1 it is obvious that object positions
are a very different type of data structure to geospatial imagery. Dead reckoning
packets are small, view-level data structures with minimal computational cost and
only limited sensitivity to time. The access and communication patterns are also
very different to those of a large geospatial data set. Consequently the data sharing
mechanisms for object positions will be different to those used for imagery dissem
ination.

2.2.3 Perceptual Consistency and Collaborative Data Sharing

Interaction between users of a virtual environment requires a common perception
of the passage of time, and a shared sense of action and consequence. This is known

12The idea is best explained in terms of a simple example: two people playing a game of ping-pong,
on machines separated by a latency of 200 milliseconds. Both players see the other’s position as it was
200 milliseconds ago. The two players are in separate time zones, and as the ball moves back and forth
between the players it must move between the two time zones. Consider player 1. When the ball is
immediately in front of player 1 it should be rendered in real time: when the ball is immediately in
front of player 2 it should be rendered with a delay of 200 milliseconds. Half way between the two
players it should be rendered with a delay of 100 milliseconds. By delaying the ball it is possible to
achieve perfect spatial accuracy. However, the movement through time also has the affect of distorting
the velocity of the ball. As it moves away from player 1 the ball also moves backward in time: the result
is that the ball appears to move more slowly than it should. On the way back from player 2 the opposite
is true and the ball appears to move faster than it should as it catches up with real time. This distortion
is often less disconcerting than errors in position.

24 Formative Concepts

as perceptual consistency: a m uch weaker notion of consistency than that applied
to classical distributed systems [1, 111]. Perceptual consistency works on the basis
that replicas of a data structure are allowed to become inconsistent across multiple
machines, so long as these inconsistencies are not perceptible to the end user. Dead
reckoning exploits perceptual consistency: the shared sense of an object’s position is
allowed to become inconsistent but the spatial error is barely perceptible. This form
of bounded inconsistency is similar to the notion of Epsilon serializability [112,165]
developed within the database community. However, for an arbitrary data structure
it is not possible to define whether an inconsistency is perceptible or not, so it falls
to application developers to define the consistency semantics of shared data struc
tures.

Perceptual consistency is a hard concept to support in a general-purpose com
munications toolkit. The basis of most sequential consistency models is the ability
to impose a total ordering on events within a distributed system. The ISIS [8,9] group
communication toolkit was used by several early CVEs because it provides total or
dering of messages. However, total ordering is expensive to implement and does not
scale well. What is needed to implement perceptual consistency is a group com m u
nication mechanism that allows the application developer to define what message
ordering is sufficient. This is known as sufficient casual order among messages.

In practical terms, sufficient causality requires a group communications service
with reliable and unreliable delivery m odes13, and very flexible message ordering
semantics. Roberts and Sharkey [117] describe how sufficient causality can be spec
ified by sequencing messages in terms of casual and non-casual order and optionally
against a global wall- clock. This approach was used as the basis of the PaRADE [116]
and MASSIVT-3/HIVEK [129] toolkits. The im portance of sufficient causality is that
it provides a very simple programming abstraction, which allows the application de
veloper to minimise the costs of ordering and reliability. It also provides a basis for
exploiting imperceptible inconsistency among replicas of a shared data structure.

Provision of a group communication service with sufficient causal order is an
important element of Rapid.

2.2.4 Terrain Rendering

Visualising geospatial data in a CVE involves rendering a three-dimensional terrain
surface in real-time. Naive rendering algorithms do not work at interactive rates for
even modestly sized pieces of terrain, and so a num ber of sophisticated techniques
have been developed for real-time terrain rendering. A terrain surface is formed
from elevation geometry decorated with one or more texture images. This presents
two related rendering problems: limiting the num ber of triangles used to tessellate a
terrain surface and managing caches of texture imagery used to decorate the surface.

At the heart of all real-time terrain rendering systems is an algorithm to m an
age level of detail (LoD) in the surface geometry. Such algorithms refine the coarse

13where unreliable delivery is implicitly assumed to have a lower latency than reliable delivery

§2.2 Challenges with Collaborative Virtual Environments 25

— f — }---------------..................;

: ' ' j l ± L | J ' J L r: " . r r - x , v - \

(i) uniform surface tessellation

(ii) adaptive surface tessellation with maximum resolution in the camera foreground

Figure 2.4: Motivation for adaptive surface tessellation and real-time level of detail algo
rithms. These four images depict a flat surface which has been tessellate with a constant
number of vertices (approximately 15000). Images on the left side show the surface from
above and tessellated to the limits of a camera view frustum. Images on the right show the
camera’s perspective. In the first row (i) a uniform tessellation has been used across the sur
face. When viewed from above the density of vertices is constant across the surface, but
when viewed from the camera’s perspective the vertices are concentrated at the horizon. In
the second row (ii) an irregular tessellation has been used to concentrate vertices in the fore
ground of the camera. Viewed from above the surface appears unevenly tessellated, with
coarse triangles used furthest from the camera. However, when viewed from the camera’s
perspective the result is a uniform density of vertices. Adaptive, non-uniform tessellation al
lows for a more detailed representation of the foreground and avoids aliasing of the horizon.
This is the goal of any real-time level of detail algorithm.

26 Formative Concepts

LoD techniques described in section 2.1.414. To render natural looking terrain it is
necessary to tessellate (decompose) the terrain surface into a mesh of triangles. The
mesh need not be uniform in density: some terrain features require many small tri
angles to represent accurately; others can be approximated by a few large triangles.
The location and orientation of the camera is crucial, since it defines the frustum
of observable space and so limits the area of the surface which must be rendered.
It also defines what resolution different portions of the surface should be rendered
at: typically objects in the camera foreground should be rendered at a much higher
resolution than those on the horizon. Figure 2.4 demonstrates the inefficiency of a
uniform tessellation because most triangles are concentrated on the horizon, where
they are of least value. Consequently, the goal of any LoD algorithm is to minimise
the number of triangles used to approximate a surface within a frustum of observ
able space and some bound of spatial error.

Non-uniform surface tessellation can be achieved by subdividing triangles to dif
ferent degrees. The result is a hierarchy of triangles stored in a quad-tree or equiva
lent data structure. Early LoD algorithms, such as Lindstrom’s [90], used a bottom-
up approach to building this hierarchy. Bottom-up algorithms have the disadvan
tage that they require the elevation data at full resolution in order to build the hier
archy, thus precluding paging of elevation data and so limiting terrain extent. Most
current algorithms are derived from ROAM [26], a top-down algorithm which achieves
excellent performance using a pre-computed multi-resolution elevation data struc
ture. Perhaps the major driver of current work on LoD algorithms is the computer
games industry. Modern games place a premium on photo-realistic graphics and
high quality, high performance terrain renders are used in many flight simulators,
sports and driving games. Many of these are based on the ROAM algorithm [147]
but with considerable modifications to support features such as paging elevation
data [148].

Surface tessellation is one major problem for a real-time terrain Tenderer; the
other is texture management. Texture memory in graphics hardware is a very lim
ited resource. MIPmaps [104] are the basic mechanism used by almost all contem
porary hardware to manage texture size and optimise use of available texture mem
ory. MIPmapped textures are a hierarchy of two-dimensional images at progres
sively lower levels of detail. Low levels in the MIPmap are very small and represent
the texture at very low resolution; high levels are larger and feature much greater res
olution. MIPmapping works well, but only when a texture is small enough to fit in
system memory at full resolution. Larger textures, such as geospatial images, require

14A detailed explanation of the interaction between tiling and rendering LoD algorithms is beyond
the scope of this chapter. Essentially, the techniques describe in section 2.1.4 operate at a coarse gran
ularity suitable for paging and streaming data across a network. However, terrain rendering operates
at a finer granularity, and to avoid visual artefacts such as tile boundaries and terrain “pop-up" a con
tinuous LoD algorithm is required. The two techniques are quite complementary: a page grain LoD
mechanism is used for client-side cache management from which the rendering LoD algorithm de
rives appropriate visualisation structures. This is an instance of the model-view distinction discussed
in section 2.2.1.1: section 2.1.4 describes model LoD mechanisms, this section describes view LoD
mechanisms. For more details the interested reader is referred to sources such as [26,148,155].

§2.3 Distributed Computing 27

a texture paging and caching system. High-end visualisation systems use a hardware
based technique known as Clipmapping [124] to page textures in from disk. Software
based techniques have also proved effective in many situations, especially when tex
ture data is stored remotely [11,12,82].

2.3 Distributed Computing

While the data and visualisation domains provide the motivation for this thesis and
impose certain constraints, the solution comes in the form of a distributed applica
tion. Distributed computing is a broad and mature field, and a detailed review of the
literature would be a major work in its own right. This section reviews three funda
mental concepts that are essential to subsequent chapters: data streaming, caching
and meta-computing. These three concepts are essential to meeting the require
ments for throughput, responsiveness and application management.

2.3.1 Data Streaming

The stream is one of the most fundamental communication abstractions used to
day. Streams are an obvious layer to build on top of connection-oriented trans
port mechanisms such as TCP sockets or ATM virtual circuits [131]. They can be
used equally well for structured and unstructured flows of data, and unidirectional
and bi-directional flows. Streaming is generally more efficient for bulk data move
ment than mechanisms such as remote procedure call or remote method invoca
tion [42,43,140], because of the straightforward association with the network trans
port layer. It is also easier to implement network quality of service (QoS) guarantees
for streams since they are typically long-lived connections along a single path [28].

Streaming is a particularly effective way of distributing video and audio media.
There are numerous proprietary systems for streaming media to web clients15 and
open standards, such as MPEG-4 [102,113], are also maturing. The limitations of dis
tributed object middleware led the Object Management Group (OMG) to standard
ise a media streaming system to complement CORBA [52]. There are also a raft of
more general network protocols that can be used for streaming, such as RTP16 [122]
and the associated RTSP17 [123].

One of the reasons streaming works so well for video and audio is because, al
though the total volume of data is large, the amount required at the client at any
moment is relatively small. There is also considerable continuity from one moment
to the next. For example, almost all video compression schemes take advantage of
the small differences between consecutive frames. The same is true for visualisation
problems. Although the dataset may be extremely large, the size and resolution of

15Examples include the QuickTime from Apple and the Microsoft WindowsMedia tools.
16RTP - The Real Time Protocol, developed by the Internet Engineering Taskforce and published in

RFC.1889.
17RTSP - The Real Time Signalling Protocol, also developed by the IETF and published in RFC.2326.

28 Formative Concepts

the screen and orientation of the camera limit the amount that can be displayed in
one frame. Furthermore since the camera typically moves along a continuous path,
the difference between frames is small.

The other reason streaming works so well for video and audio is because future
client requirements are completely predictable. Time-based media has a constant
and deterministic rate of change. This is not true for visualisation problems. Since
the viewing camera is under direct user control, client requirements are not deter
ministic.

Streaming provides a basis for solving the throughput problems associated with
disseminating geospatial imagery. However, to effectively stream imagery it is neces
sary to develop client prediction and speculative fetching policies. This requirement
is considered in detail in the next chapter.

2.3.2 Caching

If streaming is the key to achieving good throughput, then caching is the key to re
sponsiveness. Caching serves two purposes in a distributed system: it replicates data
structures and hides network latency [10, page 9]. Replication reduces the amount
of data that must be sent across a network backbone18. Web caches are a good ex
ample of this: most Internet Service Providers (ISPs) ask their clients to access the
web through a proxy cache so as to reduce bandwidth consumption [17]. Caching
also reduces or masks latency by moving data closer to those who use it. Continuing
the web example, clients of an ISP generally accept the use of a proxy cache since
the latency of cached pages is much lower than that of other pages. Both properties
of caches are invaluable for providing responsive access to large datasets.

The success of any caching strategy depends on two important factors: the cache
hit rate, and the cost of a miss. Hit rate is a function of cache size19 whereas the cost
of a miss is a function of the application. Caching is least useful when the hit rate is
low since the added latency of using the cache may outweigh the savings on hits. The
simplest way to improve hit rate is to increase cache size. The Distributed Parallel
Storage System (DPSS) [144] is a good example of this approach. DPSS is a parallel
data cache designed to improve the performance of data intensive applications. It is
formed from a cluster of machines operating in parallel and so can cache terabytes
of data. Parallel caching techniques are described in more detail in the next chapter.

Using large caches is valuable, but even with an infinite cache there will still be a
miss the first time an object is accessed. If the cost of a miss is significant then it may
be important to predict client requests and pre-fetch objects, thus increasing the hit
rate. Significantly, the prediction strategies required to optimise cache performance
are the same as those required for good streaming throughput.

18Obviously this also has a positive affect on throughput, by avoiding sending duplicate requests.
19Cache management and replacement policies also affect hit rate. Since these determine how well

the cache memory is utilised they can be thought of as essentially affecting the usable size of the cache.

§2.3 Distributed Computing 29

2.3.3 Application Management, Metacomputing and Grids

Traditionally, systems which support application m anagem ent have been known as
metacomputing environments [127]. At the most basic level a metacom puting en
vironment addresses the twin problems of resource discovery and resource m an
agement. A m etacom puting environment may also provide support services such
as a standard communication mechanism, user authentication and security, clock
synchronisation and hie sharing.

Resource discovery is a well understood problem, and many mature solutions ex
ist. There are essentially two approaches to resource discovery: broadcast advertise
ments or centralised registration. The advertisement approach involves each server
periodically broadcasting messages to describe the resources it offers. Protocols
such as Novell Netware, Java Jini [99] and the Session Description Protocol (SDP) [53]
use the advertisement broadcast approach to resource discovery. The alternative ap
proach is to enum erate resources and register them in a public database or nam es
pace. LDAP20 [60,156], DNS, the Java RMI Registry [133] and the CORBA Naming Ser
vice [105] are all designed to support resource registration. There are obvious trade
offs with both approaches. Resource advertisement does not require a dedicated
naming service and is very effective in zero configuration/strict-peer environments.
However, it does not scale well: as the num ber of servers increases so does the num
ber of advertisements and at some point the volume of advertisements will become
overwhelming. Resource registration can scale more efhciently if the nam espace is
structured into a hierarchy and portions of the nam espace are replicated. In gen
eral the advertisement approach works well in LAN environments, but registration
is more effective in the wide-area.

Resource m anagem ent is a more complex problem, since each m anagem ent pol
icy depends greatly on the resource being managed. In other words the solutions
which work for com pute resources do not work for network resources or for data re
sources. Compute resources, such as massively parallel supercomputers, are usually
managed on a very coarse grain; the entire machine is allocated one job at a time.
Job scheduling systems such as DQS [135] and Condor [92] organise the execution
of jobs through elaborate priority queues and provide accounting mechanisms to
record who uses a machine and for how long. Network resource m anagem ent re
quires a more fine-grain approach and involves allocating resources to support qual
ity of service (QoS) guarantees [28]. In most cases this is achieved by conservative
over-provisioning of bandwidth and other resources in order to m eet an applications
peak demands. Managing data resources requires a different approach again, with
the emphasis on user authentication and access control policies. Consequently, a
suitably general-purpose resource m anagem ent system for metacomputing remains
an area of active research [72].

M etacomputing has evolved and m atured over time. One of the earliest m eta
computing systems was the Open Software Foundations Distributed Computing En-

20LDAP - The Lightweight Directory Access Protocol

30 Formative Concepts

vironment (DCE) [118]. DCE provided a comprehensive set of standard services in
cluding a structured hierarchical name space/directory, Kerberos security, a time
service and a standard remote procedure call (RPC) mechanism. It performed user
authentication, allowed federations to be formed, and even provided a replicated,
distributed file system. However, DCE was not perfect. It lacked features such as
a scheduling system, had some performance problems, was costly to deploy and
was widely perceived as proprietary technology. While DCE ultimately failed to gain
widespread acceptance, most of the ideas and even some of the implementation
have since reappeared in other products.

Most recent developments in metacomputing centre on the concept of a compu
tational grid [35]. The term grid was coined by Ian Foster and Carl Kesselman:

The word "grid” is chosen by analogy with the electric power grid, which pro
vides pervasive access to power and [...] has had a dramatic impact on hu
man capabilities and society. We believe that by providing pervasive, depend
able, consistent, and inexpensive access to advanced computational capabil
ities, databases, sensors, and people, computational grids will have a similar
transforming affect, allowing new classes of applications to emerge.

Ian Foster and Carl Kesselman, [35, page xix]
Grids provide a framework for solving application management problems, based
largely on the use of a standard, global namespace or directory. Grid toolkits such as
Globus [34,36] and Legion [49,50] provide general purpose services similar to those
offered by DCE. Data-centric grids, such as DISCworld [54,55], are more tightly fo
cused on the application management problems of a specific domain.

Two of the key drivers for grids are Coiiaborative Virtual Environments [24] and
data intensive applications [101]. Members of the grid community are already work
ing on techniques to support real time visualisation of massive datasets. The DPSS [6,
144] cache, described above, is a good example: it is designed to improve the perfor
mance of data intensive applications running within a grid. This makes grids an
excellent framework in which to solve the application management problems that
arise from geospatial imagery dissemination.

Yet by itself a grid is not a turnkey solution: different classes of application must
be integrated into the grid infrastructure. What the grid provides is a layered set of
services that can be used to support applications. In a late-published paper Fos
ter, Kesselman and Tuecke [38] identify four layers of abstraction in a grid: the basic
fabric of the grid consists of machines, processes, data and networks; connectivity
protocols are provided to support remote access to the fabric; above this sit proto
cols for treating the different types of fabric as generic resources; and finally there is
a high level model for managing collections of resources. They go on to highlight the
need for application and domain-specific services and protocols:

Our goal in describing our Grid architecture is not to provide a complete enu
meration of all required protocols (and services, APIs, and SDKs) but rather to
identify requirements for general classes of component. The result is an exten
sible, open architectural structure within which can be placed solutions to key
... [user domain] ... requirements.

§2.4 Summary 31

In this context, one of the goals of this thesis is to demonstrate how imagery dissem
ination systems can be integrated into a grid.

2.4 Summary
This chapter has reviewed the characteristics of geospatial imagery and considered
the possibility of using Collaborative Virtual Environments for visualisation. Geospa
tial datasets are very large and the volume of earth observation data is increasing
dramatically. Images are archived in raw form to tertiary storage and access, pro
cessing and distribution tasks must be organised carefully to optimise throughput.
Dissemination pipelines provide a structured way to perform each of these tasks.
Tiling and level of detail management techniques can also be applied to manage the
volume and flows of data within a pipeline.

A Collaborative Virtual Environment is a powerful visualisation tool. It is also
a demanding real-time application which requires a high degree of responsiveness.
CVEs present a range of data sharing problems, identified in section 2.2.1. While
general solutions to collaborative data sharing remain illusive, the basic require
ment is for a group communication mechanism which supports sufficient causal
ordering among messages.

The challenge is to integrate these two separate domains. There are three impor
tant approaches to distributed computing that can help to this end: data streaming,
caching, and metacomputing. The chapters that follow develop these ideas into a
complete architecture for responsive, pipelined imagery dissemination.

32 Formative Concepts

Chapter 3

Techniques and Approach

This chapter presents a set of runtime and support techniques which enable effi
cient imagery dissemination and collaborative visualisation. These are the raw in
gredients of the Rapid architecture. Each individual technique addresses only one or
two of the basic functional requirements described in Chapter 1. A number of use-
cases later in this chapter illustrate how they can be integrated to provide a holistic
solution.

Given a waterfall model of software engineering, the last chapter was essentially
a requirements analysis of the problem. The results of that analysis are summarised
in Table 3.1. Following that analysis, this chapter specifies the major ideas and tech
niques used in Rapid. Section 3.1 presents seven different techniques which meet
the performance requirements for high throughput, responsiveness and collabora
tive data sharing. Section 3.2 considers how the final requirement, for application
management, can be met by a computational grid. These various techniques are
brought together in Section 3.3 through a set of use-cases. These present, at the ab
stract level, a complete solution for responsive imagery dissemination. No solution
is perfect, however, and section 3.4 reviews limitations of the approach. Notwith
standing these comments, the techniques presented in this chapter represent the
state of the art in imagery dissemination and provide a comprehensive basis for
Rapid.

3.1 Runtime Techniques

The last chapter identified the value of data streaming and caching for improving
rates of throughput and responsiveness. We will now consider seven specific tech
niques for improving the runtime performance of pipelines, and enabling collabo
rative data sharing.

3.1.1 Pipelined Imagery Dissemination

Rapid solves the basic imagery dissemination problem through the use of data tiling
and processing pipelines. Tiling is important because it allows us to decouple image

33

34 Techniques and Approach

Geospatial Imagery

• As the volume of earth observation data increases we need increasingly more
sophisticated approaches to managing data.

• Imagery archives provide the tools to manage data and use separate interfaces
to search for images and to access images once found.

• Image processing and data distribution tasks can be organised into a dissemi
nation pipeline.

• Tiling and LoD provide a means of limiting data size, but raise issues of coor
dinate system and map projections.

Collaborative Virtual Environments

• Geospatial images are very large Model data structures.
• The regular structure of dissemination pipelines allows for optimised commu

nications mechanisms and topologies.
• The computational cost of image processing means it should not be performed

on visualisation clients.
• Buffer placement can have a critical impact on responsiveness.
• Scalability in terms of users is not a high priority.
• Object positions are shared over a different topology to imagery.
• Perceptual consistency requires group communications which preserves

causal order among messages.
• High-performance terrain rendering algorithms can be adapted to work with

page streaming.

Distributed Computing

• Data streams provide a way to optimise throughput.
• Caching maximises responsiveness and also helps with efficient use of band

width.
• Both streaming and caching require scheduling and speculative fetch policies

to be really effective.
• Computational grids are a metacomputing environment for solving applica

tion management problems.

Table 3.1: Formative concepts and major results from the literature: the requirements for
responsive imagery dissemination

§3.1 Runtime Techniques 35

processing and data transfer tasks. The essence of pipelining is to overlay the pro
cessing and data transfer of one tile from that of another. A dissemination pipeline is
formed from a collection of image processing operators, linked together so that data
flows from a source image archive to an end-user visualisation clients. This idea is
not new. The defining characteristics of the Ra pid pipeline are:

Tiling with Level-of-Detail - The pipeline has explicit support for tile oriented dis
semination at varying levels of detail. Each operator defines what tile sizes and
levels of detail it supports for its outputs.

Request driven - Tiles do not automatically flow down the pipeline from archives
to clients, but must be explicitly requested. In other words the pipeline uses a
client-pull model rather than server-push.

Request prioritisation - Each tile request has a priority associated with it, where
high priority requests are serviced before low priority requests.

Flow control - In addition to basic request and response signalling the pipeline
supports flow control messages to prevent operators from becoming either
overwhelmed with work or starved of work.

Asynchronous - Requesting a tile does not cause the requesting process to block.
This helps decouple execution in the pipeline; an aid to responsiveness.

Flexible Streaming and Abstract Connections - The pipeline must be independent
of any one single communications mechanism. An abstract connection object
is used to join operators. This can be implemented many different ways to
support various protocols and forms of parallel streaming.

Multiple images per connection - More than one single image can be shared over
each connection between operators. Connections are typed, and all instances
shared over a connection must be of the same type.

Metadata delivered during connection - Runtime metadata1 is shared as part of
the process of connecting to an operator. This describes the datasets, the tiling
models and levels of detail supported by each output of the operator.

Multi-user - Collaboration means multiple users can access the pipeline simulta
neously. Each operator allows more than one connection to its output ports.
Operators also ensure that multiple, simultaneous requests for the same tile
are satisfied by a single response.

Buffered - Results are buffered at each operator to improve multi-user performance
when two requests for the same tile occur one immediately after another. This
aids responsiveness and throughput by caching data along the pipeline and
minimising duplicate requests.

1 Runtime metadata is information which describes the runtime characteristics of the pipeline. This
is separate to the application and infrastructure forms of metadata described in section 3.2.

36 Techniques and Approach

Operator control and service provision interfaces - Each operator has separate con
trol and service provision interfaces. The control interface is used to connect
clients and for basic service control, and is accessed through a high-level com
munications mechanism such as Java RMI [133] or CORBA [105]. The provi
sion interface consists of the input and output ports of the operator, joined by
abstract connection objects.

A pipeline is a set of connected processing operators. Each operator has a num
ber of input and output ports. Connections are formed between two operators by
joining the outputs of one to the inputs of the other. Collectively the inputs and out
puts of an operator form the service provision interface to that operator. Movement
of data between these ports is performance-critical, so optimised communications
mechanisms are used. No one single mechanism is mandated: rather an abstract
connection object is defined which may be implemented many different ways. In
addition each operator supports a control interface used to connect clients and to
manage the execution and life-cycle of the operator. The control interface is not
performance-critical and so it may be provided using a single common communi
cations mechanism, such as CORBA.

FilterOperator

inputPort I FusionOperatortransformation outputPort

inputPort outputPort

'' ImageAccessOperator inputPort

outputPort TCPSocketLink

Figure 3.1: Example operators in a dissemination pipeline

To connect two operators a connection object must be retrieved from the output
port of the upstream operator and sent to the input port of the downstream oper
ator. This object contains the logic necessary to send requests up the pipeline and
results back down the pipeline. Different implementations of this object allow dif
ferent network transports to be used as appropriate2. For example a simple TCP
socket may suffice to connect two operators running on different machines in the
same local area network. However, if the two operators are located on the same ma
chine a more efficient mechanism is to use shared memory buffers. Alternatively, if
the operators are separated by a long-haul network it may be more efficient to use a
specialised transport mechanism. The abstraction provided by the connection ob
ject allows for very efficient communications mechanisms to be exploited. It is used
later to introduce forms of parallel streaming into the pipeline.

When connecting two operators a range of configuration details are also passed
in the connection object. All ports have a type identifier, possibly in the form of a

2Such techniques are often used in implementations of the OMG CORBA to optimise communica
tion performance between objects located on the same machine [44,151]

§3.1 Runtime Techniques 37

MIME-style enumeration. Input and Output ports can only be connected if their
types match. Configuration information also includes descriptions of the tiling and
level-of-detail hierarchy in place, a list of all images exported by the upstream op
erator, and the metadata associated with each image. To avoid having duplicate
connections to a single data source, multiple images may be shared over each con
nection. Typically each image will have associated with it a range of metadata. At a
minimum this will describe the size of the image and the pixel representation used
within it, and a pair of texture coordinates which represent the location and size of
the image when mapped into a common coordinate system3. The metadata may
also include details such as the number of channels within the image, the data and
time it was taken and the position and orientation of the satellite. Processing opera
tions may choose to add to this metadata, or to filter out irrelevant details.

The request-driven nature of the pipeline is important. There are several reasons
why this is not practical to automatically stream tiles down the pipeline in a tradi
tional server-push model. First, a client’s requirement for tiles is non-deterministic
so operators at the source of the pipeline cannot reliably determine what tiles will
be required downstream4. Second, since it is assumed that a client does not have
enough storage capacity to hold the complete dataset, the client might discard un
requested tiles, wasting bandwidth and throughput. Also, sequencing the execution
of operators becomes a problem in a server-push model, especially when an oper
ator has multiple inputs. Many data flow networks require a centralised agent to
sequence the execution of operators [146]. Although this approach is acceptable in
the intimate environment of a high performance parallel machine, it does not work
well in a widely distributed context. Distributed pipelines naturally lend themselves
to a pull-driven model as described by the Streams [21, pages 417-426] design pat
tern.

The Ra pid pipeline is request-driven. Clients at the end of the pipeline make
explicit requests for tiles to the operator immediately upstream from them. The op
erator determines what data it needs to satisfy this request and, if necessary, makes
a request of its own to the next upstream operator. In this way a chain of requests
flows up the pipeline in the reverse direction to the flow of tiles. This provides a nat
ural mechanism for sequencing the execution of operators, and deciding what data
should flow down the pipeline and when. Although each operator provides a differ
ent set of outputs, all tile requests must contain a common set of attributes. These
attributes identify the dataset, channel, level of detail and specific tile required, and
are summarised in Table 3.2.

In a collaborative system different users may request the same tile at the same
time. This is especially likely when users view features of interest or “hotspots”
within a dataset. Each operator is responsible for identifying simultaneous requests
for a tile. Rather than have a request propagate up the pipeline more than once,
an operator maintains a list of interested clients for each outstanding tile request.

3 Producing this mapping is a whole other problem domain, and beyond the scope of this work.
4Partial solutions to this problem are possible, and are considered in section 3.1.2.

38 Techniques and Approach

Dataset - ID of one dataset available from the operator. Since several different datasets may
be shared over each connection a request must identify which dataset a tile request is
for.

Channel - ID of one channel within the dataset. Many geospatial images will consist of
multiple bands or channels, so a request must identify a single channel.

Level of Detail - Each operator defines a hierarchy of detail from which tiles must be se
lected.

Tile - UV texture coordinates and size of a tile which must be valid within the detail hierar
chy defined for the operator.

Table 3.2: Attributes required for a tile request

When an operator receives duplicate requests for a tile the operator adds the re
quester to the list. When a response is available it is sent to all clients on the list. To
aid in situations of close, but not simultaneous, requests each operator also buffers
a small number of tiles after output. This allows it to respond immediately when
client requests are not simultaneous, but do occur in close temporal proximity.

3.1.2 Pipeline Scheduling

A request-driven pipeline requires a regular stream of requests to achieve and main
tain maximum throughput. Unfortunately, visualisation clients do not usually pro
duce request at a regular rate. Users tend to dwell on and move between features of
particular interest within a dataset, resulting in very bursty request patterns. Exper
imental work in Chapter 5 reveals that even the peaks of these request bursts rarely
generate enough traffic to saturate a contemporary network. So a pipeline sched
uler is required to ensure that high rates of throughput are achieved in data access,
transfer and processing.

The scheduler has a second, equally important, role to play in disseminating im
agery: it attempts to mask the latency of the pipeline in the interests of responsive
ness. Client request patterns are actually quite predictable. Clients always request
a contiguous set of tiles. Client motion through a dataset is usually along a contin
uous path. Finally, clients tend to focus on particular features of interest within a
dataset. Given this predictability, a scheduler can make speculative requests for tiles
in anticipation of future client requests. If it makes requests with sufficient lead time
it can completely isolate a client from the latency of the pipeline.

The scheduler uses one or more scheduling policies to generate a stream of spec
ulative requests. The aim of scheduling policies is twofold: to maximise throughput
of the pipeline, and to mask the latency of the pipeline by anticipating future client
requirements. Because scheduler requests are speculative in nature, they are made

§3.1 Runtime Techniques 39

with a lower priority than that of user demand driven requests, and are satisfied only
when there is spare capacity in the pipeline.

Pipeline scheduling policies are either static or dynamic in nature. Static policies
are based purely on the known characteristics of a dataset; dynamic policies oper
ate in response to user actions. Although dynamic policies offer potentially greater
performance by adapting to changing client request patterns, they also introduce
greater complexity and require knowledge of how visualisation clients operate. Four
scheduling policies are applicable to real-time imagery dissemination.

Schedule by Level-of-Detail - The simplest, static scheduling policy is to fetch an
entire image starting at the lowest level of detail and ending at the highest.
This is conceptually similar to progressive image downloading used by web
browsers. This policy is effective because clients typically start by viewing an
entire dataset at low resolution, then request additional resolution for inter
esting features. It also guarantees that any part of a dataset can be represented
temporarily at a low resolution while higher resolution results are fetched. Im
plementing this policy is very simple: every tile in a dataset is first retrieved
at the lowest level of detail before any tile is retrieved at the second lowest of
detail.

Schedule by Request Proximity - Perhaps the simplest dynamic scheduling policy
is to speculatively request tiles adjacent to those already requested by a client.
Experimental work in Chapter 5 demonstrates that proximity is a very good
heuristic for speculatively fetching data because the client always renders a
contiguous area of the dataset. So when a client requests one tile there is a high
probability that it will also require the adjoining tiles. Further away from the
original request there is still a reasonable chance that the client will ultimately
want to view tiles.

Schedule by Areas of Interest - Many geospatial datasets contain areas or features
of particular significance. The resolution of the entire dataset is tailored to
reveal these interesting features in appropriate detail. However, this results in
very large amounts of data representing areas of little or no interest. Where
areas of interest are known or can be identified it makes sense to arrange those
areas for processing before the rest. This results in a static scheduling policy
known as Schedule by Areas of Interest.

There are many ways of determining areas of interest within a dataset. One
technique is to profile access to each dataset and record what areas are re
quested at high levels of detail. The hope is that by recording those areas that
are viewed in detail by one user it will be possible to optimise the viewing ex
perience of future users. This technique assumes that each dataset will be ac
cessed many times and that users have similar notions of interest. Other tech
niques avoid these assumptions but require more user involvement in the im
age management process. For example a user may explicitly identify specific

40 Techniques and Approach

spatial areas of interest, such as a farmer concerned with the area of her prop
erty. Alternatively, feature detection algorithms may be run over an image to
automatically detect regions of interest. Military users, for example, may use a
feature detection algorithm to detect the wake of a ship or from the periscope
of a submarine.
A combination of any of these techniques will produce an interest map for a
dataset. Where such maps exist they can be used to prioritise the requesting of
tiles through the pipeline.

Schedule by Motion Prediction - The location and orientation of a user controlled
camera determine what portions of a dataset he or she can view. By predict
ing the user’s motion it is possible to anticipate what portions of the dataset
the user will require in the future. Sophisticated movement prediction and po
sition estimation algorithms have been developed for CVEs5 These algorithms
could also be used to make speculative request for tiles in anticipation of future
client requirements.

There is obvious potential for combining these policies. Schedule by Level of De
tail is really a degenerate case of Schedule by Area of Interest, where the interest map
shows all areas of equal interest. Schedule by Proximity is an excellent technique for
moderating errors in the accuracy of motion prediction. Finally, when a dataset has
multiple areas of interest motion prediction provides a means of choosing between
areas. In general the static techniques provide a constant background schedule for
tiles while the dynamic techniques provide a means of smoothing between bursts of
user driven activity.

Although these policies are all conceptually quite simple, in practice they are not
trivial to implement. Subtleties can arise when the spatial extent of tiles and level of
detail hierarchies are not independent. Also, in situations where tiles do not support
composition, decomposition or degradation the extent and level of detail of tiles
must be chosen carefully. There is also the question of where within the pipeline
the scheduler is implemented. Motion prediction is perhaps best implemented in
the visualisation client since it is best able to anticipate future positions of the user
viewpoint. If an Area of Interest map is defined for a dataset it makes sense to store
that map in the same imagery archive as the dataset. In multi-user systems schedul
ing is best performed with global knowledge of system behaviour: i.e. in the actual
processing pipeline. Rapid uses a specialised component to perform scheduling on
a site-by-site basis.

3.1.3 Parallel Caches at Visualisation Sites

Client performance is highly sensitive to latency, and caching is an obvious mecha
nism to mask latency. It is impractical for a client to cache large portions of a dataset,

5As described in Section 2.2.2.

§3.1 Runtime Techniques 41

but experimental results show that good performance can still be achieved if results
are cached on the client’s local area network. The use of scheduling policies also
has implications for the buffering and caching requirements of the pipeline. A small
amount of buffering at each operator is already part of the pipeline model. However,
the speculative scheduling policies require a large cache at the end of the processing
pipeline to hold results until clients request them. Otherwise the scheduling policies
are simply burning valuable network and compute resources.

The solution in Rapid is to provide large caches of tiles located at each site where
a visualisation client will run. The definition of a site is deliberately informal. A site
might be an organisation unit such as a department or section, or it may be a net
work centric unit such as a LAN. However they are defined two things are assumed
about sites. First, that latency between machines within a site is negligible - on the
order of a few tens of milliseconds. Second, that there may be more than one user at
each site. Each site is connected to the dissemination pipeline through a site cache.
The cache is attached to the end of the pipeline and acts as a proxy to the pipeline for
all clients at the site, forwarding on user requests and caching the results for use by
all. The cache also sends speculative requests to the pipeline based on the schedul
ing policies, described above. This decouples performance-sensitive clients from
the latency of the pipeline.

The success of this technique depends on having a low latency connection be
tween client and cache, and on the ability of the cache to hold very large amounts
of data. In other words on minimising the cost of cache access and on maximising
the number of cache hits. Low latency is achieved by using separate caches at each
site. Large capacity is achieved, at low cost, through use of a distributed, in-memory
cache design based on the concept of parallel caching.

Large site caches can be formed without requiring expensive new hardware by
harnessing the unused capacity of machines at the visualisation site. The collective
compute, memory and disk storage capacity of a contemporary office environment
is considerable, but in normal operation much of this capacity goes unused. Work
station farms use a central scheduling system to coordinate and allocate parallel
processes to consume the spare compute capacity of under-used machines. Par
allel caches are based on the same idea, exploiting spare virtual memory and disk
capacity. Parallel caching has been used in other projects, including the success
ful Distribute Parallel Storage System (DPSS) [6,144]. Several things distinguish the
Rapid cache (Race) from earlier systems. Race is focused specifically on real-time
interactive applications and has the same interface as any other operator in a dis
semination pipeline. DPSS is a general purpose cache, with a file-oriented interface.
Race also serves to schedule dissemination pipelines and, as described below, is in
tegral to the collaborative data sharing service. While not directly applicable to this
thesis, the success of DPSS highlights the value of parallel caching.

42 Techniques and Approach

Each site has a cache which clients
use to get data from the pipeline
and for sharing collaborative data

Canberra Cache

Adelaide Cache

An inter-site sharing bus:
is a full mesh o f connections
between peer site caches

their local site cache. Data sharing between
clients takes place through the cache

Melbourne Cache

/ *•.......1 s

Figure 3.2: Topology of connections for the inter-site sharing bus.

3.1.4 Group Communications for Collaborative Data Sharing

Site caches can be used to implement a group messaging service for collaborative
data sharing. Collaborative data sharing affects the operation of the site cache in
two ways. First, pipeline request scheduling can be improved by taking advantage
of the user movement vectors shared for collaboration (Schedule by Motion Pre
diction). Second, collaboration requires an efficient topology of connections [84],
which complements that of the dissemination the pipeline6.

The site caches are an obvious switching point for messages to clients within a
site, and for messages between sites. Hence it makes sense to build a group com
munication mechanism on top of these caches. Establishing connections between
caches produces a variation on the Distributed Peer with Client-Server sub-groupings
topology already used in many Collaborative Virtual Environments [85]. Figure 3.2
illustrates how this topology is formed. Each site cache has connections to all clients
at its site, and to all other site caches. In this topology the path between clients at the
same site is always two hops, while the path between clients at different sites is three
hops7. This set of connections is known as the inter-site sharing bus and is useful for
site cache optimisation as well as collaborative data sharing.

6See the discussion at the end of section 2.2.2.
7This highlights the principal limitation of this topology: namely that it does not scale well as the

number of client sites increases. However, scaling by client sites is not likely to be a priority for any
application envisaged in this dissertation. See section 2.2.1.6.

§3.1 Runtime Techniques 43

3.1.5 Inter-site Tile Sharing

Site caches are used to mask the latency of the dissemination pipeline. In the event
of a site cache miss, a request will be made to the pipeline that may propagate all the
way back to the source data archives. This exposes the latency of the entire pipeline,
possibly even including the mass storage device, to the visualisation client. An ob
vious optimisation, when a tile is not found in a site’s cache, is to check the caches
at all other sites to see if the tile has already been requested by another user. This
allows the collective memory of all caches to be used to mask the pipeline latency.
Since the access latencies to remote caches may not be insignificant, the request to
other caches can be made in parallel with a request to the pipeline.

This simple optimisation requires two additions to the pipeline model. First
it requires that tile request messages can be made over the inter-site sharing bus,
used for collaborative data sharing. Second it may require that requests made of the
pipeline by a cache be cancellable. In other words, if a site cache makes a request,
then receives a reply from another site, it should be able to cancel the pipeline re
quest so as to save resources.

The importance of the second requirement will vary depending on the relative
costs of starting a request and of inter-site communication. Because the latencies
between site caches may be non-trivial it makes sense to send a request to the pipeline
in parallel with requests to all other site caches. Without this request overlap, a site
must wait for a response from all other sites before sending the request on to the
pipeline. The danger with this “eager pipeline request” policy is that it may unnec
essarily consume pipeline resources for tiles cached at remote sites. If the cost of
cancelling requests is very great, and the latency between sites is low, then it may be
practical to wait for all sites to respond before making pipeline requests. Hybrid poli
cies are also possible: wait for the first A: sites to respond before forwarding requests
to the pipeline; wait t milliseconds before forwarding requests to the pipeline. In
general, a pipeline that supports request cancellation affords the greatest flexibility
in site cache design.

3.1.6 Parallel Streaming in the Dissemination Pipeline

Many image processing operations naturally exhibit a high degree of parallelism, be
cause pixel filtering is often highly localised. Even complex pixel permutations can
be parallelised successfully [146], and there is a wealth of techniques for parallel im
age processing. Parallelism can also be introduced into the communication mech
anisms of the pipeline. Both forms of parallelism can optimise the dissemination of
imagery, and help with throughput and responsiveness. This section reviews differ
ent forms of parallelism in a processing pipeline and the implications they have on
the topology of network connections.

Of itself, pipelining is one simple approach to parallelism. Each stage in a pipeline
executes independently and in parallel, with the processing and communication
costs of one tile overlapping that of other tiles. However, pipelining has obvious

44 Techniques and Approach

computational nodes within
the operator perform the work

operator 1

operator 2

output port

tiles are scattered from the input queue
to the computational nodes

tiles are gathered back into the output queue
from the computational nodes

requests flow from right to left (sink to source)

responses flow from left to right (source to sink)

Figure 3.3: Intra-operator parallelism. Two processing operators are shown, each of which
consists of several internal computational nodes. Tiles arrive at the operator input queue
and are scattered to individual nodes for processing, before being gathered back in the op
erator output queue.

limitations since the length of the pipeline determines the degree of parallelism.
Higher degrees of computational parallelism can be achieved by executing each

operator on multiple computational nodes. This makes an operator a parallel pro
cess which receives work on a serialised input queue and sends results to a serialised
output queue. Since all parallelism is hidden behind the input and output queues
of the operator, we will characterise this as intra-operator parallelism. Figure 3.3
demonstrates intra-operator parallelism for a simple pipeline. Within an operator
each tile is handled in three distinct phases: a scatter phase, a transformation phase
and a gather phase. Scattering involves assigning a tile from the input queue to a
node within the operator. Transformation is the task of actually computing the re
sult and may involve some degree of communication between nodes. Gathering
involves collecting results in the output queue.

Image processing operations lend themselves to several forms of intra-operator
parallelism. The implementation of any single operation will depend on factors such
as tile size, computational complexity, locality and communication requirements.
One common approach is to use the Master-Slave [21, pages 133-142] design pat
tern8. In this pattern a single master node manages both input and output queues
and is responsible for the scatter and gather phases. Tiles are assigned from the in
put queue by the master to individual slave nodes for transformation, before being

8A1so known as Master-Worker [51, page 29] and Worker-Farmer.

§3.1 Runtime Techniques 45

gathered back at the master in the output queue. This pattern works well for opera
tions with high degrees of locality and limited inter-tile dependencies. It lends itself
to implementation on dedicated high performance computing systems where pro
cessing nodes do not have direct wide area connectivity, but are instead controlled
by a host processor. It also inspires the design of the Ra pid Cache (Race) : where
nodes do no actual computation, but simply cache as many tiles as they can.

Parallelism can also be introduced into the communication between operators
by removing the operator output or input queues or both, and building additional
complexity into the connection object. This is known as parallel streaming, or inter
operator parallelism, and is valuable for several reasons. First it removes the serial
isation overhead that results from the input and output queues. Second it reduces
the number of times a tile must be sent over a network: from three hops to one if
both queues are removed. Third it allows multiple data transfers to take place be
tween operators in parallel. Traditional socket based communications are known to
perform poorly over high bandwidth, high latency networks9. Parallel sockets are
often used to improve throughput on such networks. Parallel streaming is also valu
able when the bandwidth of the wide area network is greater than that of the local
area connection to each computational node. Although no single node can saturate
the wide area network, the aggregate bandwidth of several nodes can.

The benefits of parallel streaming come at the cost of greater complexity. Fig
ure 3.4 reviews several forms of parallel streaming. The first form, known as up
stream scattering, is pictured in Figure 3.4(i) and works by removing the input queue
from an operator. Each individual processing node has a direct connection to the
output queue of the next operator upstream in the pipeline, and can make indepen
dent requests to the upstream operator. Result scattering is performed at the output
port of the upstream operator simply by sending a reply along the same connection
the request was received from.

The second form of parallel streaming, known as downstream gathering, is pic
tured in Figure 3.4(ii). As the name implies this is the opposite approach to up
stream scattering and works by removing the output queue from an operator. The
task of gathering is performed at the downstream operator. Each individual node
within an operator has a direct connection to the input port of the next operator in
the pipeline. Downstream gathering is more complex to implement, because of the
need to send requests upstream. Which node does the downstream operator send
requests to? The simplest answer is to make a single node in the upstream opera
tor responsible to receiving requests. This node farms the request out to one of the
other nodes, Master-Slave style. The more complex answer is to allow requests to be
sent to any node, and include a map function in the connection object to select the
correct node on a request-by-request basis. A map function could be implemented
statically as an HPF distribution policy [59] or a Ac-Tiling [30] permutation. Dynamic

^Principally due to the size of the TCP transmission widow. If the network latency is high then the
entire window may be sent before acknowledgements are received at the sender. This has the effect of
throttling throughput on high latency links.

46 Techniques and Approach

(i) upstream scattering

(ii) downstream gathering

(iii) full connection mesh

(iv) parallel independent connections

responses flow from left to right (source to sink)

Figure 3.4: Four models of parallel streaming in a dissemination pipeline. In upstream scat
tering (i) the results of operator-1 flow directly to the individual nodes in operator-2. Down
stream gathering (ii) is the reverse of this, but requires a map function to mulitplex requests
between upstream connections. A full connection mesh (iii) is a combination of the two ap
proaches but is difficult to construct and maintain. Parallel independent connections (iv)
are an interesting special case and may result in a very high throughput pipeline.

§3.1 Runtime Techniques 47

map functions could be implemented using a portable executable format such as a
Java class file or fragment of a scripting language. It is also worth noting that where
the mapping function is not entirely deterministic, maintenance of the map will re
quire additional communication in the pipeline.

Downstream gathering is a particularly desirable form of connection between a
visualisation client and a site cache. It minimises the network hops required to de
liver a tile from the cache to the client. Since this is the most latency critical section
of the pipeline downstream gathering minimises response time for cache hits.

The ultimate form of parallel streaming is a combination of the two preceding
forms, with both input and output queues removed. This results in a full mesh of
connections between operators, as represented in Figure 3.4(iii). Although useful to
consider as an extreme case, full connection meshes are expensive and difficult to
produce and rapidly become impractical as the number of computational nodes in
creases. For many applications constraints can be used to limit the number of con
nections required between operators. A useful special case is that where the number
of nodes in all operators is identical, and where each node is connected to only one
upstream node. This case is pictured in Figure 3.4(iv) and is effectively parallel, in
dependent pipelines. The result is an extremely high throughput network.

3.1.7 Approximating Tiles

Another refinement to the pipeline model is to temporarily approximate the results.
If an operator receives a request that it cannot satisfy immediately, an approxima
tion is returned while the precise result is calculated. Approximations could poten
tially be made through the use of tile composition, decomposition and degradation,
as described in section 2.1.4. This allows operators near the end of the pipeline to
isolate a client from the full pipeline latency, aiding in client responsiveness.

Imagine a visualisation client connected to the end of a long, slow processing
pipeline. When the client requires a tile that has not been processed there will be a
long delay while the tile is delivered down the pipe. If an operator near the end of the
pipeline can deliver a low resolution approximation of the tile, the client can render
the approximation immediately and then substitute the full resolution tile when it is
available. Without an approximation the client has nothing to render and the user
will see gaps in the dataset.

The use of approximations has numerous implications for the efficiency of the
pipeline, the site caches and visualisation clients. In general, approximations are
only helpful when both of the following are true:

• when a fast, inaccurate response is better than no response
• when an approximation can be replaced by the correct result without signifi

cant side effects.

Both of these conditions are true for a visualisation client at the end of a pipeline, but
may not be true for operators near the start of a pipeline. Computing and distribut
ing an approximation is not without cost. The further upstream that approximations

48 Techniques and Approach

are used the greater the resources of a pipeline they will consume in reaching the
client. What is more, the further from the client the less the benefit of approxima
tion. So it may not make sense to approximate results at the start of the pipeline, but
may be very helpful in the last few stages before delivery to clients.

Three extensions are required to the pipeline to support approximations:

1. the capability for operators to compute an approximate solution
2. signalling within the pipeline to deliver approximated results when first re

quested and to replace them with complete results as they become available
3. policies concerning when and how approximations should be used

When approximations are supported there are two classes of result delivered through
the pipeline: partial results (PTiles) are temporary, approximated responses to a
client request; final results (FTiles) are precise and complete responses to a request.
When an operator receives a tile request, the operator must produce a response
(FTile) to the request. In most cases the operator will not be able to respond immedi
ately, and will instead propagate a set of dependant requests further up the pipeline.
In this situation the original request is said to be unsupported by the operator. The
request becomes/n//y supported only when complete results are available for all in
puts to the operator10. At the point the request is fully supported the operator can
calculate a compete response (FTile).

Because it may take considerable time for an unsupported request to become
fully supported, the notion of partial support is introduced to expedite operator re
sponses. This allows an operator to return an approximate or partial response (PTile)
to a request as a temporary measure while the correct response moves down the
pipeline. A request is said to be partially supported when either a response can be
approximated, or when a PTile is available for all dependant requests. The PTiles
which form the basis for this partial support are either from upstream operators or
are approximated at the local operator. Each time a PTile arrives at an operator the
basis for partial support of a request changes. This begs the question, what do we
do when multiple approximations are supported? One obvious policy is to produce
all possible approximations: another is to produce only the first supported approxi
mation. If the error in an approximation can be estimated then other policies might
include: all within error bound; first within error bound; and, ever decreasing error
bound. Ultimately, the decision about how best to use approximations is application
and operation dependant, but the range of possibilities is clear.

3.2 Grid-based Application Management

So far we have only considered how to meet the runtime performance requirements
of a single dissemination pipeline. In this section we will focus on the broader ques
tions of resource and application management. Computational grids [35] provide

10In other words when all upstream operators have responded to the dependant requests

§3.2 Grid-based Application Management 49

Operator factory - A generic service provider, which creates instances of image processing
operations.

Operator - An instance of an image processing operation produced by a factory following
successful service negotiation.

Imagery archive - A special type of Operator factory, which provides access to geospatial
imagery stored in a repository. This interface complements the main querying inter
face of an archive used to search for images.

Image accessor -An Operator that provides access to one or more images within an archive.
On or more image accessors will be at source of all dissemination pipelines.

Network broker - A network weather service which reports on the availability and condi
tion of specialist networks.

Site management agent - Interface used at client sites to export details of machines, net
work connections and users into the grid.

Pipeline trader - A general service that constructs dissemination pipelines on behalf of
clients. This encapsulates the process of service negotiation.

Pipeline manager - Produced by a Pipeline trader to manage a single pipeline. The man
ager is responsible for coordinating provision of service and for allowing visualisation
clients to connect to the pipeline.

Table 3.3: General classes of actors involved in imagery dissemination

a framework for answering these questions, but by itself a grid is not a turnkey so
lution. To integrate dissemination pipelines and site caches into a grid we need to
define four things:

• the set of basic services, actors and management roles from which pipelines
can be formed;

• a resource reservation mechanism;
• a standard schema used to publish descriptions of resources in the grid direc

tory; and
• a standard life-cycle for a dissemination pipeline to bound resource use.

In any pipeline a range of services are required. Table 3.3 summarises the main
actors who provide services to a dissemination pipeline. First there are imagery
archives, which are the sources of raw geospatial imagery and terrain elevation mod
els. These archives produce access operators in response to specific requests for im
agery. Second there are operator factories, which produce processing operators to fil
ter the raw imagery in line with the Abstract Factory [40, pages 87-95] pattern. Third
there are trader services, which construct dissemination pipelines for a client. In ef
fect the trader performs service negotiation on behalf of a client. Different types of
trader produce different types of dissemination pipeline. A pipeline trader produces

50 Techniques and Approach

a pipeline manager, to manage the state of one individual pipeline. Fourth there may
be network brokers, which provide descriptions of high performance networks and
optimised communication routes. Such brokers are common in grid environments
and can be very valuable during pipeline construction. Finally there are site manage
ment agents, which are used by system administrators to publish information about
their site, machines, network connectivity and users.

Given this set of actors, a resource schema for responsive imagery dissemina
tion must contain enough information to allow pipelines to be formed and clients
to connect to these pipelines. The main purpose of a grid directory is to provide a
namespace in which services are advertised. At a minimum this involves associating
a service access pointer, such as a Java RMI URL or a stringified CORBA object refer
ence, with a distinguished name. This allows applications to connect to live services
that advertise themselves with a well-known name. However, it does not provide
any additional metadata to help perform service selection when a client does not
know the name of the service it will use. Support for richer means of advertising and
finding services is what distinguishes a directory service such as LDAP from a basic
name service such as the Java RMI registry or the CORBA Name Service.

The preceding discussion begs the following question: how much metadata should
be published about pipeline services? One school of thought within the grid com
munity argues that all metadata should be kept in the directory service. To under
stand the implications of this argument it is useful to draw a distinction between
application metadata and infrastructure metadata. In the words of Chervenak and
Foster [18]:

Various types of metadata can be distinguished. It has become common prac
tice to associate with scientific datasets metadata that describes the contents
and structure of that data... We refer to this as application metadata... A second
type of metadata is used to describe the fabric of the data grid itself; for example,
details about storage systems, such as their capacity and usage policy...

Chervenak, Foster, Kesselman et al. 2000

Grids require a directory service to publish infrastructure metadata. The direc
tory often contains the only complete record of the physical and logical components
of a grid. However, application metadata is a different issue, and the extent to which
it should also be published in the grid directory is not clear. For example, it is in
appropriate to publish all the metadata for every image in a large archive: it may be
impractical even to list every image. The following principles were applied to the
design of the Rapid schema:

1. descriptions of the physical and logical fabric should be published
2. all actors who provide a service should advertise a service brokering interface
3. access to application data should be brokered and the minimum metadata

published to let a client decide whether or not to negotiate with the appro
priate actor

§3.2 Grid-based Application Management 51

In practice this means where application metadata consists of a few attributes or
a short enumeration of options then it may be publishable. Where it consists of an
extensive catalogue or is significantly parameterised then access should be brokered
through a separate interface. The full schema appears in the next chapter, but in
essence it records:

• imagery archive, operator factory, and pipeline trader actors;
• instances of pipelines accessed through a pipeline manager;
• details of the machines and users who may access geospatial imagery; and
• the topologies of high-speed networks which may be used to optimise imagery

dissemination.

This brings us to the question of a standard life-cycle for dissemination pipelines.
Pipelines consume valuable resources and a standard life-cycle provides a bound on
the consumption of resources. The basis of the life-cycle is to separate the negotia
tion of services from the actual provision of those services. Negotiating for a service
is neither performance sensitive nor resource heavy: provision may be both. There
are several reasons for drawing this distinction clearly. It provides an opportunity to
coordinate and schedule access to resources and so guarantee service characteris
tics. It provides time between negotiation and provision to prepare a service by stag
ing data off tertiary storage, pre-computing results, or moving bulk data. Finally it
allows us to use convenient, high-level communication abstractions (such as ORBs)
during service negotiation and efficient, low-level mechanisms during service pro
vision.

The life-cycle of a pipeline really consists of four distinct stages: service negoti
ation, service initialisation, service provision and termination of service. Figure 3.5
depicts these four stages and the transitions between each. The process starts with
a period of service negotiation during which time resources are discovered (through
the schema in the directory), and future access is arranged. It may take some time
to prepare a service if data has to be staged off tape or if a high-performance com
puting facility employed. One of the most important aspects of negotiation is to
agree on a time at which the service will be available. The initialisation stage can
only begin when all required services and resources are available. The dissemina
tion pipeline is formed during the initialisation stage. When all operators are ready,
and connections between them have been made, the pipeline is ready to provide
data to visualisation clients. This is the stage of service provision. Once clients have
finished, or the time limit on resources has expired, the pipeline enters a final stage
of termination and clean up. This is the life-cycle all pipelines must follow.

The life-cycle is implemented by two different actors: pipeline traders and man
agers. Traders are used to perform the initial negotiation stage on behalf of a client.
In effect they encapsulate and solve the resource discovery problem through use
of the resource schema. At the end of a successful negotiation the trader creates a
new manager, an independent actor in its own right which is registered in the global
directory. The manager coordinates the three remaining phases of the pipeline life-

52 Techniques and Approach

Service initialisa -^Termination of servicej-----------

" " t'A
Performed by the pipeline trader Performed by the pipeline manager

Figure 3.5: The life-cycle of a dissemination pipeline

cycle, and also provides a first point of contact for clients when they connect to the
pipeline.

The passing of responsibility from trader to manager is made possible through
the use of service tickets. Resource management is the responsibility of each opera
tor factory. Creating an operator is equivalent to consuming a resource, so factories
do not produce an operator while negotiating with the trader. Instead, they provide
the trader with a service ticket which contains details of the operator and the time
when it will be available. This ticket represents a reservation of resources by the fac
tory, and is a form of Promise [91] to produce the operator at the agreed time. When
the trader has finished negotiating with factories it creates a new manager and gives
it all the tickets collected during negotiation, along with details of how they should
be used to form a pipeline. The manager waits until the time agreed for initialisation,
and then evaluates the tickets to produce usable operators.

The final stage in the pipeline life-cycle occurs when clients have finished and
the manager must recover all used resources. After the negotiated service period
has elapsed, or all clients have disconnected from the pipeline, the manager in
structs each operator to delete itself. Any operator may also delete itself if there
are no connections to its output ports. This allows for automatic resource recov
ery of portions of the pipeline in the event of operator failure. The remainder of
the pipeline is cleared up by the manager, but only when it has been flushed of all
valuable data. This behaviour also allows operator factories to force reclamation of
operators if necessary. Such forced reclamations are simply treated as operator fail
ure.

3.3 Bringing the Pieces Together

The two preceding sections have described runtime and management techniques
relevant to the problem of real-time visualisation of geospatial imagery. Now it is
time to bring these pieces together and show how, at an abstract level, they can be
combined. To illustrate this process we will use a simple, hypothetical example1 11.

1 ̂ though hypothetical, the example is representative of the kind of application possible when
geospatial imagery and Collaborative Virtual Environments are brought together. A real application
might require a more comprehensive set of processing operations, but would otherwise behave the

§3.3 Bringing th e Pieces Toge th er 53

The example provides context for a series of illustrative use-cases, which follow the
life-cycle of a pipeline. This provides a comprehensive review of the dissemination
process from start to finish.

3.3.1 Illustrative Example

Imagine three environmental scientists who use IRS-1 imagery to study the effect of
climate change on vegetation levels at several sites within Australia. Joel is an envi
ronmental officer with the Department of Agriculture, based in Perth. Markus and
Matthew are researchers at the CRC for Biodiversity Measurement, based in Can
berra. An important part of their work is monthly reviews of the imagery for each
sample site.

During these reviews the three scientists use a common visualisation tool to ren
der a three dimensional view of terrain. The visualisation tool uses a very simple,
page-based rendering algorithm, which requires that surface geometry and texture
imagery be distributed as one. This requires that the IRS-1 imagery be combined
with a tessellated digital terrain model to produce a renderable surface.

The source data for the scientists comes from Southern Cross Imagery, a com
mercial supplier of earth observation imagery, based in Melbourne. The raw data
from the supplier is unsuitable for direct visualisation and must first be run through
several processing stages. This consists of fixing errors in the data, rectification of the
data and fusing of multiple source images together to achieve complete coverage of
the sample sites. The demanding nature of this data processing requires the use of
dedicated high performance computing facilities provided by the South Australian
Centre for Parallel Computing, in Adelaide.

Each monthly review is organised by Joel. He uses an browser client to select ap
propriate data sets from the archives of Southern Cross Imagery. Having identified
the data sets for a review, Joel tells his browser what day and time to schedule the re
view, provides details of his collaborators (Markus and Matthew) and describes what
imaging operations should be applied to the data in order to visualise it12. This is the
starting point we assume before a real-time collaborative session can be organised.

3.3.2 Negotiating a Service

The first task is to negotiate use of services for accessing, processing and distributing
the data. A pipeline trader performs this task on Joel’s behalf. The trader advertises
itself within the grid directory service. Once Joel has adequately described the re
quirements of the monthly review, his browser searches the directory service to find
a trader that can meet these requirements. The exact process by which a browser se
lects a trader is not important: it could be an automatic selection based on some set

same way.
12This last item is a directed, acyclic graph that describes both the set of operations and the con

nectivity between operators. Encoding of such a graph could be done variously, but XML [164] is an
obvious solution

54 Techniques and Approach

of constraints or heuristics, or it could be a choice displayed in the user interface of
the browser. Having selected a trader, the browser passes on Joel’s requirements and
waits for a response. Obviously the trader may not be able to satisfy all requirements:
it may not know how to satisfy some requirements, and there may not be appropri
ate resources to satisfy others. In either case the trader will inform the browser about
those requirements that it cannot satisfy. It is a matter for the browser to decide how
best to respond to this situation, but in general this will probably require further user
interaction to decide on alternative data sets, or processing operations to apply.

The objective for the trader is to construct a pipeline manager which contains
service tickets for all resources required in the pipeline. Joel’s requirements include
a list of source IRS-1 images that must be accessed, a graph of processing opera
tions to be performed and a digital terrain model over which the results should be
draped. Figure 3.6 illustrates a pipeline that would meet Joel’s requirements. It con
tains various operators to access the source data from Southern Cross Imagery, fix
errors, perform rectification, tessellate the digital terrain model and fuse all results.
The outputs of the fusion operator are fed to tile caches at the end-user sites in both
Canberra and Perth, from where Joel, Matthew and Markus’ visualisation clients ac
cess them. Each operator in this pipeline, including the site caches, is the product
of an operator factory. So to construct this pipeline the trader uses Joel’s require
ments to search for operator factories advertised in the grid directory service and
then negotiate with each factory to produce an appropriate operator.

The selection of operator factories is based on various concerns. The type of op
eration to be performed is the most obvious, but the choice of operator factory could
also be based on hints provided by the user. For example, Joel might stipulate that
operator factories provided by the South Australian Centre for Parallel Computing
are to be favoured above all others. Network connectivity, published in the directory
by network brokers, may also be used to inform the choice of factory. Having made
the decision to use rectification and tessellation factories in Adelaide, it would be
very foolish if the trader decided to use an American factory for the fusion opera
tor13. Other concerns might arise in commercial or military contexts. In a commer
cial system, cost minimisation might be a priority during service negotiation: in a
military context security would be a key concern.

However a factory is selected by the trader its role is the same: to produce an im
agery operator at the time specified by Joel. The trader and factory must negotiate
details of the operator to be produced, and some of this negotiation may even be re
flected back to Joel. For example, the factory for tessellation operators may negotiate
about the number of computational nodes used within an operator. If the negotia
tion concludes successfully, the factory provides the trader with a service ticket for
the tessellation operator. This service ticket acts as a promise for the operator and
guarantees that the factory will reserve an appropriate number of compute nodes

13This description implies a general routing problem which is again beyond the scope of this work.
It suffices to observe that the pipeline routing problem is solvable with existing techniques, and that
there already exists a body of work on application-level routing within a computational grid [35, pages
165,275],

§3.3 Bringing the Pieces Together 55

Figure 3.6: A dissemination pipeline for the example application

56 Techniques and Approach

for use during the initialisation and provision phases of the pipeline life-cycle. Simi
lar negotiations are performed with the Southern Cross Imagery archive to produce
data access operators, and with the factories for error correction, rectification and
fusion operators. Each negotiation will result in a service ticket for an operator.

When the trader has successfully negotiated production of all the required oper
ators, it creates a pipeline manager. The pipeline manager is responsible for initialis
ing the pipeline at the time agreed for service provision, and for cleaning up after the
pipeline is finished. To do this it holds all the service tickets negotiated by the trader,
along with the connectivity graph describing the relationships between operators.
The site caches are operators within the pipeline, but have particular significance
as the connection points for client applications - at the time of service provision it
is these operators that clients will need to know about. The pipeline manager also
records the user details of Joel, Matthew and Markus. In a secure environment these
could be used to limit access to the pipeline: in a highly collaborative environment
they may be advertised to attract others interested in the project. Once the pipeline
manager is created it becomes an independent actor in its own right, and is adver
tised in the grid directory service. At this point the trader has completed its task, and
returns details of the pipeline manager to Joel’s browser. This concludes the service
negotiation phase of execution.

3.3.3 Initialisation of Services

The next significant event occurs at the time agreed for provision of service, when
the pipeline manager initialises all operators. This will take place before the time
Joel, Matthew and Markus intend to view their data. The pipeline manager prepares
each operator, starting with the two Southern Cross Imagery access operators and
moving through the operator connectivity graph in breadth-first order to the site
caches. For each operator the manager first evaluates the service ticket of the op
erator. This causes the relevant operator factory to make good on its promise of
a resource, and instantiate the operator. Second, the manager connects the input
ports of the operator to the output ports of upstream operators, as required by the
connectivity graph. It then instructs the operator to initialise itself, after which the
operator should be ready to produce output.

To create the Image Rectification operator in our example, the pipeline manager
starts with a service ticket containing a reference to the Rectify operator factory, and
an encoded service ID. When the manager evaluates this ticket a request is sent to
the factory, which passes in the service ID and returns with a reference to a newly
produced Rectify operator. In the example this operator consists of three computa
tional nodes, and runs on the same parallel machine as the Fix Errors operator.

Next the manager attempts to connect the input port of the Rectify operator to
the output port of the Fix Errors operator. It does this by retrieving a connection
object from the Fix operator’s output port and passing that connection to the input
port of the Rectify operator. The Rectify operator essentially runs as three separate
processes in parallel. It uses upstream scattering to avoid having a centralised in-

§3.3 Bringing the Pieces Together 57

put queue, by copying the connection object to all three computational nodes. An
added subtlety to the example arises because the Fix operator supports downstream
gathering. The connection object passed to the Rectify operator contains a request
mapping function that shares work between the three nodes of the Fix operator. The
connection is also smart enough to detect that the source and destination are lo
cated on the same machine, and optimise data transfer by using shared memory
buffers. Consequently, the communication between Fix and Rectify operators uses
highly optimised, point-to-point, in-memory messaging.

Having established the connectivity between Fix and Rectify operations the man
ager initialises the Rectify operator. To initialise itself the operator examines the
metadata for each dataset exported from the Fix operator, and performs any other
set-up computations. At this point the rectify operator is initialised and ready to
service requests for rectified, error-corrected tiles of IRS-1 imagery.

This process is repeated down the length of the pipeline, staring with data sources
and concluding with the site caches. There is one subtlety to the initialisation of the
site caches due to the creation of the inter-site sharing bus. This bus is used for cache
snooping and also to share collaboration data between sites. The bus is formed from
point-to-point links between sites. When the manager initialises a site cache it sends
details of all caches that will attach to the pipeline. Part of the site initialisation is to
establish connections with all other sites. However, this requires that the manager
has evaluated the service tickets of all site caches before it attempts to initialise any
of the caches. In our example the manager initialises the Perth cache first. As part of
its initialisation process the Perth cache opens a socket connection to the inter-site
sharing port of the Canberra cache. When, in turn, the Canberra cache is initialised
it will already have a connection to the Perth cache in place.

3.3.4 Provision of Services

When the pipeline is fully initialised, services may be provided to visualisation clients.
Clients access the pipeline through their local site cache, but the initial connection
is made through the pipeline manager. Before the review commences Joel sends the
name of the pipeline manager in an email message to Matthew and Markus. The
name of the pipeline is a human readable string, and is really a distinguished name
within the grid directory service. When Matthew's client connects to the pipeline,
it uses this string to look up a reference to the pipeline manager in the grid direc
tory service. It then contacts the pipeline manager and presents it with Matthew’s
credentials. The manager returns a reference to the Canberra site cache. The client
contacts the cache for a connection object with which to make tile requests and re
ceive results.

Having retrieved a connection object to the site cache, Matthew’s client connects
to the cache in the same way any new operator joins the pipeline. One significant
characteristic of the connection is that the site caches use downstream gathering to
minimise the cost of delivering a tile to the client. Consequently Matthew’s client
will have a direct link to every node in the Canberra site cache, with the connection

58 Techniques and Approach

object providing a mapping function to multiplex tile requests between links. This
minimises the number of messages required to service a site cache hit, and keeps
cache access latency to a minimum. If the Canberra site cache implements a dy
namic load-balancing mechanism, then it will have to send updates to the mapping
function to Matthew and Markus.

Once Matthew’s client is connected to the pipeline, it makes requests for tiles of
data. The terrain rendering algorithm uses the position and orientation of the view
frustum, controlled by Matthew, to determine what portion of the terrain is visible.
This leads to a series of requests for tiles to represent different portions of the terrain
surface at different levels of detail. Each tile request is handled in the same way:
we will now examine the sequence of events for one tile T. Matthew's client first
checks its local cache to see if Thas already been received. If Tis missing from the
client cache it sends a high priority request to the Canberra site cache. Insuring that
the request is sent to the appropriate node within the site cache is the job of the
connection object’s map function. If Tis available in the Canberra site cache then
it is returned to Matthew’s client. However, if Tis not in the cache a request for Tis
sent to the Fuse Data operator, running in Adelaide. While the Canberra site cache
waits for a response to this request it can do two things to expedite the rendering
of T on Matthew’s machine. First, if a lower resolution version of T is available in
the cache it can return this as a partial response to the client’s request. This allows
the client to render an approximation of T while the full tile is calculated. Second,
if Joel has already viewed T it may be in the Perth cache. So, in parallel with the
request to the Fuse Data operator, the Canberra cache can ask the Perth cache if it
has a copy of T through the inter-site sharing bus. If T is in the Perth cache it can
be returned to Matthew by way of the Canberra cache, and the request to the Fuse
operator cancelled. If Tis not present in the Perth cache then there is no alternative
but to wait for the Fuse operator to respond. The Fuse operator in turn will quite
likely make requests to the Rectify and Tessellate operators. So the original request
for Tmay trigger a sequence of requests back up the pipeline all the way to the source
data archives.

When a client request propagates all the way back to the source archive there
may be a noticeable delay before a renderable tile is delivered to the client. In a bid
to avoid these delays the site caches attempt to predict the future requirements of
clients at each site. Prediction generates a set of low-priority, speculative requests
for tiles. These requests will vary from site to site. Initially the caches will request
a base resolution copy of all tiles in the data set. The Canberra cache may request
a higher base resolution than those of the Perth cache, since it has more nodes on
which to store results. Following Matthew’s request for tile T the Canberra site may
decide to speculatively request the neighbouring tiles p ^ r th south je a s t ancj jwest^ jt
may also use the prior positions and orientations p of Matthew’s camera to extrap
olate the position and orientation in five seconds time p\ then make speculative
requests based on p\ Finally, Matthew and Markus may have defined the location of
their sample sites as areas of particular interest, allowing the Canberra site cache to
prioritise fetching of those areas.

§3.4 Caveats 59

The position and orientation of each users camera is one of the key data struc
tures that must be shared for collaborative purposes. This allows users to see one an
other and understand what portions of the terrain surface each is viewing. Since the
site cache requires this information for speculative fetching, it makes sense that col
laborative information is routed through the cache. As Matthew moves his camera
over the terrain surface, his client sends camera movement vectors to the Canberra
site cache. The cache uses these vectors for speculative fetching, but also forwards
them to Markus’ client and to the Perth cache (over the inter-site sharing bus) from
where they are forwarded to Joel’s client. Other collaborative messages follow a sim
ilar path. When Joel sends a text-chat message to his collaborators it is sent from
his client to the Perth cache, then to the Canberra cache and finally to Markus and
Matthew’s clients.

3.3.5 Disposal of Services

Cleaning up after the application finishes is relatively simple, since all resource de
pendencies are acyclic14. Clean up occurs either when there are no clients con
nected to the pipeline, or when the service time limit runs out. Assuming no node
or network failures have occurred, the pipeline manager shuts down operators one
by one, in the reverse order to that in which they were created. The behaviour of an
operator when the manager instructs it to shut down is deliberately not specified.
Most operators will inform the factory that created them, free any resources they
have used and close all connections to upstream operators. When all operators have
been cleaned up, the pipeline manager removes itself from the directory service and
exits. Failure semantics are discussed in the next chapter, but it is worth noting that
resources will all eventually be released in the event that any of the operators, clients
or even the pipeline manager fails.

3.4 Caveats

The preceding example illustrates the basic approach to meeting requirements for
responsiveness, throughput, collaborative data sharing and application manage
ment. While complete at the conceptual level, in practice there are limits to any
solution. Some limitations, such as the mapping of datasets to a common coordi
nate system, have already been identified as beyond the scope of this work. There is
nothing in the preceding discussion that would limit how these tasks are performed,
and in most cases solutions already exist.

Other limitations are less easily dismissed. Some operations have fixed latencies
associated with them, which may be too great to be masked by caching, specula
tive fetching and approximation. An implicit assumption of the pipeline life-cycle is
that negotiation is performed well in advance of service provision. In particular, it is

14Ignoring the inter-site sharing bus which does not consume managed resources.

60 Techniques and Approach

assumed that the time between negotiation and provision is greater than any fixed,
start-up latencies associated with providing the service. In general a user cannot
simply request access to a geospatial image and expect it to be available immedi
ately. For example, the task of staging raw datasets off a mass tertiary store is often
very slow. Tape silos have certain hard delays associated with moving robot arms,
loading tapes into drives, seeking through tapes and streaming data onto fast sec
ondary disk storage. There is no way to short-circuit these delays. A sensible image
repository would stage data off tertiary storage well before the time agreed to access
an image. However, if an image has not been staged off tertiary storage at the time
a user wants to access it, there is very little that can be done to isolate the user from
staging delays. The same limitation applies to some processing operations where
on-demand processing may not be practical and pre-processing is the only realistic
solution. In both cases the only way to provide real-time access to such data is if
users identify their intent to view well in advance.

A hnal and obvious limitation is the assumption that the owners and administra
tors of image archives and developers of image processing operations are prepared
to support new access mechanisms. Without this assumption it is virtually impossi
ble to make meaningful progress on the problem, yet in reality most administrators
and developers need strong incentives to adopt any new technology. This is ulti
mately a social, economic and political problem15. It is fair to observe, however, that
such non-technical problems remain one of the main reasons that access to geospa
tial imagery is not more ubiquitous.

3.5 Summary

This chapter has identihed a range of techniques which meet the performance re
quirements for throughput and responsiveness. These centre on a dissemination
pipeline which supports parallel streaming and a novel, parallel cache which runs at
each site, scheduling the pipeline and speculatively fetches tiles. The site caches are
also the basis of a group communication mechanism for collaborative data sharing
and cache snooping.

The chapter has also considered how to integrate dissemination pipelines into a
computational grid for the purposes of application management. A resource schema
published in the grid directory is used to advertise services and for resource discov
ery. The schema is maintained by a small set of actors, including pipeline traders and
managers. A standard life-cycle was defined for pipelines, with a strong separation
between service negotiation and service provision. This separation is made possible
through the use of portable service tickets which act as resource reservations.

A set of use-cases were used to illustrate how these techniques can be integrated
at an abstract level. It is the work of subsequent chapters to make this abstract solu-

15This could easily be the subject of a separate dissertation - though perhaps not in Computer
Science!

§3.5 Summary 61

tion concrete. The next chapter codifies the techniques into a single design: Rapid.
Subsequent chapters demonstrate implementations of the design.

62 Techniques and Approach

Chapter 4

Rapid: Responsive Architecture for
Pipelined Imagery Dissemination

Having considered the problem at an abstract level, this chapter describes in detail
an architecture for responsive pipelined imagery dissemination, known as Rapid. It
uses the techniques outlined in the last chapter to address the fundamental perfor
mance and management requirements. Rapid is a general design, an architecture,
not a toolkit or a library. As such it is a design-time solution to the problem: imple
mentations of this design are presented in the case studies that follow.

Rapid decomposes into three major elements: a processing pipeline which dis
seminates imagery at high rates of throughput; a site cache which improves respon
siveness and also supports collaborative data sharing; and an application manage
ment framework for use in a computational grid.

The structure of the chapter is based on the life-cycle of a pipeline. First, con
ventions used to report the architecture are described in section 4.1. Section 4.2
outlines the application management infrastructure, used during the negotiation
of services. Section 4.3 describes how pipelines are constructed during service ini
tialisation. Section 4.4 describes in detail the operators that form a dissemination
pipeline, and the interaction between operators during the provision phase. Opera
tors are built from several sophisticated components, and support parallel process
ing and parallel streaming. Finally, section 4.5 describes the Rapid Cache (Race). A
Race is deployed at each visualisation site and decouples clients from the dissemi
nation pipeline. It brings together all the different techniques described in the last
chapter, and is the centrepiece of the architecture.

4.1 Documenting An Architecture

Rapid is a blueprint, from which a family of systems can be built. A specification of
the architecture was presented in the last chapter, and is summarised in Table 4.1.
This chapter provides a descriptive review of Rapid, the components from which
it is formed and the interactions between these components. To complement it, a
comprehensive class reference is included in Appendix A. While reading this chap-

63

64 Rapid; Responsive Architecture for Pipelined Imagery Dissemination

Throughput

• Parallel streaming optimises the flow of large tile messages down the pipeline,
and the flow of request messages from clients to site caches.

• Intelligent connection objects are used to join operators.
• Scheduling policies speculatively fetch tiles and consume unused capacity in

the pipeline.
• Flow control manages the rate of requests made to the pipeline and ensures no

operator is starved of, or saturated with, requests.

Responsiveness

• Large tile caches at each site provide low latency access to data.
• Parallel streaming minimises the response time for cached tiles.
• Asynchronous interactions in the pipeline, ensure that client rendering is not

affected by delays in the pipeline.
• Approximations provide a temporary result for non-cached tiles.
• Speculative requests are made to pre-empt future client requests.

Collaborative Data Sharing

• Low-latency, one-to-many message delivery between clients is supported with
sufficient causal ordering of messages.

• Efficient, concurrent access to the dissemination pipeline is possible for mul
tiple clients at multiple sites.

Application Management

• A set of standard actors are used in pipeline construction and management.
• All service negotiation uses a single, common interface.
• A well-defined schema is used to describe and advertise resources in a compu

tational grid.
« The standard pipeline life-cycle decouples service negotiation from provision,

and bounds resource use.

Table 4.1: Important ideas and techniques: a short specification of Rapid

§4.1 Documenting An Architecture 65

ter it may be valuable to refer to the appendix from time to time, to clarify the roles
and interactions of classes. The Rapid blueprint is not totally prescriptive. Like all
good architectures it leaves unspecified that which is not central to the problem. Be
fore diving into a detailed description of Rapid we will briefly consider the notations
used to report and to identify implementation specific details.

4.1.1 UML and Perspectives

This chapter makes extensive use of the Unified Modelling Language (UML) [106].
Although it is assumed the reader is familiar with UML, a brief review of the nota
tion is provided in Appendix B. UML diagrams can be used to convey varying levels
of detail in a design: from the very general to the very specific. The idea of design
perspectives, developed by Martin Fowler [39], captures the different uses of UML.
Fowler identifies three different perspectives from which a design diagram can be
viewed: as a conceptual map; as a specification; or as an implementation. The con
ceptual perspective is most abstract and is independent of implementation details
and language semantics. The implementation perspective is concrete, and can often
be translated straight into code. Between the two sits the specification perspective,
where components and interactions are specified but without the exhaustive de
tail required for implementation. Specification describes interfaces rather than final
classes. Not unnaturally then, the choice of perspective has greatest impact on UML
Structure and Class diagrams:

Understanding perspective is crucial to both drawing and reading class dia
grams. Unfortunately, the lines between the perspectives are not sharp, and
most modelers do not take care to get their perspective sorted out when they
are drawing.

Martin Fowler, [39, pages 51-52]

The diagrams in this chapter describe Rapid from the specification perspective. Some
implementation detail is provided for particularly important objects, and in a very
few cases peripheral ideas are left at the conceptual level. Important details that
must be provided for an implementation of Rapid are flagged for inclusion in an im
plementation profile. The rest of the design is a language-neutral, object-oriented
description of a highly responsive imagery dissemination pipeline, with appropriate
support mechanisms.

4.1.2 Implementation Profiles

Rapid is a design for a family of dissemination systems. There are many implemen
tation details unique to a particular type of geospatial imagery, or image processing
operation. Such implementation-specific details are not specified here, but in a sep
arate implementation profile. The use of a separate implementation profile is com
mon in many software architectures. In this case it is modelled after the Geospatial
Imagery Access Specification (GIAS) [149]. GIAS defines a common interface to im
age archives, but leaves many imagery specific details to the system implementer.

66 Rapid: Responsive Architecture for Pipelined Imagery Dissemination

Rapid defines an architecture for imagery dissemination, but again leaves some de
tails to the system implementer. For example, it assumes all imagery can be reg
istered in a common coordinate system but does not specify what that system is.
Although it is specifically designed to support tiling and level of detail mechanisms,
it does not mandate any particular mechanism. These details are not essential to
the architecture, or the requirements it addresses. They are, however, essential to
any implementation. So, like the GIAS, Rapid requires an implementation profile to
specify those details that are application dependent.

4.1.3 The UML Object Model and New Stereotypes

UML does not provide rich mechanisms for describing the distribution of compo
nents in Rapid. Nor does it adequately capture the semantics of objects that move
between hosts, or the threads of control in a system. This chapter uses three class
stereotypes to overcome these limitations: «remote», «mobile» and «active».

The «remote» stereotype is used to indicate a class of object that acts as indepen
dent, distributed components. These are typically used during service negotiation
and initialisation and are not performance sensitive. They should be implemented
using a distributed object middleware, such as CORBA [105] or lava RMI [133]. In
deed the name of the stereotype is deliberately intended to evoke association with
the Remote interface used by Java RMI objects. The essential capabilities of «remote»
objects are that they are remotely accessible, that they do not move between hosts
but that references to them are portable between hosts.

The «mobile» stereotype is used to indicate a class of object that can be moved
transparently between hosts. Mobile objects are an important element of Rapid.
The various messages used in the pipeline protocol are a trivial example of mobile
objects. A more important example is the connection object used to join operators.
Mobile objects have two major capabilities. First, the state of an object (its fields) can
be serialised to a neutral format and shared between machines in a heterogeneous
environment. Second, the executable code for the object (its methods) can also be
shared between machines. The first capability can be provided by technologies such
as XML, Java serialisation or use of the Serializer [98, pages 292-312] design pattern.
The second capability can be realised through the use of portable executable formats
such as scripting languages or Java class files, mobile agents [19,94,120], or a dial-a-
protocol system such as Bamboo [159,160].

The «active» stereotype is used to describe how and where threads are used in
the design. It takes its name from the Active Object [152, pages 483-500] design pat
tern, and identifies objects which execute in a separate thread. Active objects are a
relatively high level abstraction for concurrent programming. Method invocation on
an active object takes place asynchronously: usually through a message queue. This
abstraction may not be appropriate for all implementations. The «active» stereotype
serves as a design-time descriptive aid, but is not a prescriptive implementation re
quirement. Objects marked with the «active» stereotype identify opportunities for
concurrency, which may or may not be exploited in any implementation.

§4.2 Service Negotiation and Application Management 67

Objects that are not marked with any of these stereotypes are assumed to behave
as simple run-time objects, and are neither remotely accessible nor mobile and may
be called by any thread of control.

4.2 Service Negotiation and Application Management

A premise of the Rapid architecture is that dissemination pipelines run within a
computational grid [35]. The grid is used to address the application management re
quirement, and is central to the negotiation of services and the creation of pipelines.
As such, it is an obvious starting point for a review of the architecture.

Application management is about controlling the way resources are used in a
widely distributed system. The important resources for Rapid are geospatial im
ages, computing facilities to perform image processing, high bandwidth networks
and site caches (Race). So Rapid supports construction of dissemination pipelines
from these resources, within a computational grid. It does this by providing answers
to the following questions:

• What is a resource? - All resources used in a pipeline are modelled as operators,
even high speed networks. An Operator represents a single use of a resource:
the OperatorFactory manages all access to the resource.

• What resources are available? - All resources are described by a common schema
published in the grid’s directory service.

• Where are resources located? - An efficient dissemination pipeline is one that
minimise the movement of data over wide area networks. To help construc
tion of efficient pipelines the resource schema also describes the location of
operators and the connectivity available between them.

• How do I access a resource? - A common S e r v ic e N e g o t ia t io n interface is used
by all the different types of OperatorFactory.

• When is a resource used? - The pipeline life-cycle, described in the previous
chapter, bounds resource use and allows service guarantees to be made. The
life-cycle of each pipeline is governed by a PipelineManager.

Answers to these questions come from a well-defined model of service and resource
use based on the pipeline life-cycle. Rapid defines a collection of standard actors
and objects through which services are provided and resources managed. It also de
fines a resource schema for advertising services, and a standard interface to resource
managers.

68 R a p i d ; Responsive Architecture for Pipelined Imagery Dissemination

4.2.1 Actors and the Pipeline Life-cycle

PipelineTrader Reserves resources for a pipeline during negotiation p. 169
PipelineManager Constructs the pipeline during service initialisation p. 168
OperatorFactory Manages access to a resource and produces operators p. 168
Operator A single use of a resource and one stage in a pipeline p. 173

Dissemination pipelines all follow a standard life-cycle consisting of discrete phases
of service negotiation, initialisation, use and termination1. The R a p i d management
framework is designed around this life-cycle, with a strong separation drawn be
tween service negotiation and service provision. All performance sensitive tasks
are confined to the provision phase. The life-cycle is implemented through four
main actors: PipelineTrader, PipelineManager, OperatorFactory and Operator.
Figure 4.1 depicts relationships between these actors, with several specialisations of
the factory and operator.

-^^Negotiating services^---------^Service initialisation^--------- ^Provision of service^---------^Term ination of service^

Perform«! by the pipeline trader Performed by the pipeline manager

Visualisation clients do not interact directly with operator factories or the grid
support infrastructure. Instead, they use a PipelineTrader to negotiate on their be
half. Each trader can build one or more forms of dissemination pipeline2. It uses
the schema, described below, to discover resources (and their associated Operator-
Factory) advertised in the grid directory. It negotiates with each factory to make ap
propriate resource reservations and, once all required resources have been found,
creates a PipelineManager. The manager is responsible for actually constructing
the pipeline during the initialisation phase, connecting clients to the pipeline dur
ing service provision, and for cleaning up after the pipeline has terminated.

Individual operations within a pipeline are constructed by an OperatorFactory.
There are four major subclasses of factory, with associated types of operator. RACE-
Factory is a producer of RACE caches at sites where visualisation clients run. Imagery-
Archive is an abstract class representing an archive of geospatial imagery, and pro
duces ImageAccessor operators to retrieve specific datasets from the archive. A Filter
is a general class for any kind of image processing operation, and is produced by a
FilterFactory. All real image processing operations are descendants of filter. Fi
nally, Transporter and TransportFactory are specialist network components and
are described in more detail in section 4.2.3.

!For more details refer to section 3.2.
2No general interface is specified for the trader since the form of the interface and complexity of

interaction between client and trader will vary greatly depending on the type of pipeline it constructs.
Defining a trader interface is an important part of an implementation profile.

§4.2 Service Negotiation and Application Management 69

tili«

Figure 4.1: Actors involved in application management

70 Ra p id : Responsive Architecture for Pipelined Imagery Dissemination

4.2.2 Negotiating Access to a Resource
ServiceNegotiation The standard interface for traders to negotiate with p. 170

factories
ServiceTicket The result of a successful negotiation: a resource p. 170

reservation and a promise to build an operator

A PipelineTrader undertakes service negotiation for a client. It interacts with fac
tories through a standard ServiceNegotiation interface to make resource reserva
tions. The result of a successful negotiation is a ServiceTicket, which is both a
resource reservation and a Promise [911 by a factory to produce an operator. These
tickets are later used by the PipelineManager to construct the pipeline during ser
vice initialisation.

The ServiceNegotiation interface used by traders is accessed through the fac
tory newServiceNegotiationQ method. Each negotiation object encapsulates the
parameters of service for a single operator (i.e. for a single use of a resource). Ta
ble 4.2 lists the methods in the negotiation interface, while Figure 4.2 depicts the
sequence of interactions involved in a simple service negotiation. The set of service
parameters that must be negotiated, will vary greatly from factory to factory. For
example, negotiations with a high performance computing facility involve parame
ters such as the number of computational nodes and amount of scratch disk space,
whereas the quality of service parameters for a broadband network might concern
minimum, average and peak guaranteed bit rates.

The negotiation object is modelled as a collection of service properties, rather
like a JavaBean [1151. There are only three standard service properties: the type of
operator required and starting and ending times for use of the operator. Operator
types are specified using a MIME-style enumeration, which should be defined in the
implementation profile. The range of types supported by a factory can be deter
mined by the supportedOperationsO method. All other negotiable service prop
erties will vary from factory to factory. The negotiation interface provides methods
to list the names of service properties, and to distinguish between required and op
tional properties. Each property has a type, and the list of all types is another im
portant detail that is specified in the implementation profile. There are methods for
getting and setting the value of different service properties, and a range of excep
tions associated with service properties. A negotiation may only be completed once
a value has been provided for all required properties.

When a negotiation is completed successfully, the result is a ServiceTicket. A
ticket is a promise for a resource: an operator is the fulfilment of a promise. So the
result of service negotiation is a lazy-evaluation primitive, which can be evaluated
at the time of service initialisation. For a high performance computing facility the
ticket is an agreement to run a particular image processing filter at a particular time3;

3An implementation of ServiceTicket would obviously have to interact with the site batch queue
ing system. It may well be an abstraction for an entry in the queue. Computational grids can provide
added support for this problem. For some grids it may be possible to implement a single Service-
Ticket that can be used for all resources across the grid.

§4.2 Service Negotiation and Application Management 71

setOperation(in: MIMEType) throws ServiceTypeException
setStartTime(in: timestamp) throws AvailabilityException
setEndTime(in: timestamp) throws AvailabilityException

listProperties() : list<PropertyName>
listRequiredProperties() : list<PropertyName>
listOptionalProperties() : list<PropertyName>

propertyDescription(in: PropertyName) : String,
throws UnknownPropertyException

propertyType(in: PropertyName) : PropertyType,
throws UnknownPropertyException

propertyRange(in: PropertyName, out: min, out: max),
throws UnknownPropertyException

propertyValues(in: PropertyName) enumeration<PropertyValue>,
throws UnknownPropertyException

getProperty(in: PropertyName) : PropertyValue,
throws UnknownPropertyException

setProperty(in: PropertyName, in: PropertyValue),
throws UnknownPropertyException PropertyValueException

isAcceptableQ : boolean
complete() : ServiceTicket, throws ServiceException
abort()

Table 4.2: The ServiceNegotiat ion interface

the operator is a public interface to the filter as it runs. For an image repository
(ImageryArchive) the ticket is an agreement to make a dataset available at a certain
time, while the operator (ImageAccessor) represents the runtime access mechanism
into the repository.

ServiceNegotiation provides a minimal interface for accessing a resource or
service once a client knows what resource it requires. However, if the client does not
know the exact details of the resource required, a separate search interface will be
required. For example, a client may know the general details of an image required
from an archive, but not the specific ID of an individual image. Defining appropriate
search and browsing interfaces for the myriad different operator factories is totally
beyond the scope of this work. However, many of these interfaces already exist. The
GIAS provides a standard interface to imagery archives; many batch queueing sys
tems, and most computational grids, already provide interfaces to their compute
facilities. Consequently, OperatorFactory provides methods to listInterf aces ()
and access individual interfaces (get Interf ace ()). Once again, the names and de-

72 Rapid: Responsive Architecture for Pipelined Imagery Dissemination

Figure 4.2: Example interactions in service negotiation

§4.2 Service Negotiation and Application Management 73

tails of external interfaces are not specified here, and should be included in an im
plementation profile.

4.2.3 Managing Access to Special Purpose Networks
T ransportF actory Manages access to special purpose networks p. 171
T ransporter An operator which transports data over a network p. 171

Special purpose, experimental and high performance networks, such as Internet-2 /
Abilene [70] and Canarie [14], are valuable resources requiring careful management.
They may also have constraints as to what traffic they can carry. Some connections
over specialist networks are modelled as an operator in the dissemination pipeline.
This allows the same resource management scheme to be used for computational
and communication resources. It also provides an elegant way to overcome the rout
ing problems that can be encountered using a specialist network.

Specialist networks may have constraints about the types of traffic they can carry;
constraints that are enforced at the packet routing level. Even when a site is part of a
specialist network, there may be only a small number of privileged hosts at the site
which have direct access to the network. Other machines can only uses the network
if one of the privileged hosts is prepared to route traffic for it. Some applications
that run over a specialist network have to implement application-level routers that
run on a privileged host and pass appropriate data from the local network to the
specialist one.

The TransportFactory and Transporter, depicted in Figure 4.1, are used to man
age access to specialist networks. During service negotiation the factory decides
whether an application is allowed to use the network, and makes reservations to
ensure that any quality of service (QoS) guarantees can be met during service provi
sion. The factory produces Transporter operators, which sit in the pipeline like any
other operator and simply transport request and response messages over the spe
cialist network. If necessary, these operators also perform the application routing
required to bridge between a commodity network and the specialist network.

4.2.4 A Schema for Resource Discovery

To integrate the four principal actors into a computational grid requires appropri
ate descriptive metadata: also known as a resource schema. Table 4.3 presents the
Ra p id resource schema in full. There are many different formats for presenting
directory schemas [60, pages 201-214], but all tend to be verbose. For clarity Ta
ble 4.3 summarises the schema in a simple declarative notation4. The schema has
three major elements: factories, traders and managers relate to the construction of
pipelines; sites and networks describe the topology of a distributed application; and,
people and machines describe the individuals involved in a dissemination pipeline.

4Although non-standard, this notation maps easily to any standard format such as ASN.l, LDAPv3
or slapd.conf.

74 Rapid; Responsive Architecture for Pipelined Imagery Dissemination

Factory
descrip tion : String
site : name of Site
category: RACE | ARCHIVE | NETWORK | FILTER
o u tp u ts : set<MIMEType>
reference : reference to OperatorFactory

Trader
descrip tion : String
p roduces: set<MIMEType>
reference : reference to PipelineTrader

Pipeline
descrip tion : String
reference : reference to PipelineManager

Machine
site : name of Site
add ress: set<INetAddr>
architecture: String
operating-system : String

Person
site : name of Site
firstname, surname, username : String
em ail: String
credentials

Site
organisation: String
location : String
networks : set<nam e of NetworkGateway>
race-factory : reference to RACEFactory
manager : nam e of Person
users : se tcnam e of Person>
hosts : se tcnam e of M achine>

Network
descrip tion : String
use-policy: xml
links: graph<NetworkLink>
factories : setcreference to TransportFactory >

NetworkLink
n a m e : String
within : name of Network
s ta r t : name of NetworkGateway
end : name of NetworkGateway
bandwidth
latency

NetworkGateway
site : se tcnam e of Site>
link : se tcnam e of NetworkLink>

Table 4.3: The Rapid Resource Schema

Factory, Trader, Pipeline Three of the principal actors in the service model are rep
resented in the resource schema. Each of these actors publishes an entry in
the directory, including a «remote» reference through which it can be accessed.
This allows traders (and clients) to search the directory service and retrieve a
reference to a runtime object. The relationship is bi-directional. Any actor can
report the path to its schema entry, with the getDistinguishedName () method.
This returns the full, distinguished name of the actor’s entry in the directory
service.

Factory entries in the schema are categorised as one of four major types:
Race caches, imagery archives, computational operations (filters) or special
ist networks. Each factory also lists the different types of operator it can pro
duce, using the MIME-style enumeration of types defined in the implementa
tion profile. Trader entries list the different types of pipeline they can produce,
again relying on definitions in the implementation profile.

Site and Network To allow efficient routing of data within the pipeline, the schema
provides a means of describing wide-area network topologies formed at the
level of organisational sites. All sites (as defined in section 3.1.3) are fully con
nected through the commodity Internet. In addition there may be point to

§4.2 Service Negotiation and Application Management 75

Brisbane

Perth
^University of W. A. ^

(CSIRO Floreat Park Adelaide

CanberraNetwork Link Melbourne

CSIRO Acton

. f DSTO Fern Hill

Network 1
Network Gateway Hobart

Network 2

Figure 4.3: An example illustrating the various elements of the Rapid Schema used to de
scribe networks.

point links between sites provided by specialist, high-performance networks.
The topology of a specialist network is described through three entries in

the schema: Network, NetworkGateway and NetworkLink. Examples of these
entities are depicted in Figure 4.3. Network entries represent a complete spe
cialist network, with a standard usage policy5. Access to a network occurs
through a NetworkGateway, which represents a logical node in the network,
such as a point of presence (POP). Site entries include a collection of machines
and people located at the site, and the distinguished names of NetworkGate-
ways to which the site has access. Multiple sites may join the network at the
same gateway, with the assumption that the latency between sites at the same
end of a network is negligible and routing is automatic. Connections in the
network are formed from NetworkLinks, where each NetworkLink joins two
gateways.

Network entries also serve to advertise a T r a n s p o r tF a c to ry which can be
used to move data over the network (through a T r a n s p o r te r) . Theses trans-

5The encoding of network usage policies should be defined in the implementation profile.

76 Ra p id : Responsive Architecture for Pipelined Imagery Dissemination

port factories ultimately make the routing decisions. The topology information
published in the directory service is designed to let traders determine whether
or not to use a transport factory: the final decision of how the network is used
remains with the factory.

Machine and Person The schema also publishes descriptions of individual machines
and people. While not strictly essential, in practice it proves to be very useful
to include them in the schema. Publishing machines can aid in making rout
ing decisions and selecting computational facilities. Publishing user details is
invaluable for collaboration and could also be used as the basis for authenti
cation in a secure environment.

This simple collection of m etadata is more than adequate for pipeline resource dis
covery. It is also in keeping with the schema design principles identified in the last
chapter (see section 3.2)

It is im portant to draw a distinction between a resource schema and its encoding
within a directory service. Although Ra pid defines a resource schema, it doesn’t de
fine an encoding of the schema. In other words, it defines what information should
be kept in a directory service, but not how it is kept there. The encoding is certainly a
critical detail, since it affects the structure of the distinguished names of all entities.
However, encoding format is highly dependent on the directory service in which the
schema is maintained. It is also very sensitive to scalability requirements. For ex
ample, a schem a to cover ten sites would be structured very differently to one for
the entire planet. For these reasons, the encoding of the schema is left as one of the
more im portant details in an implementation profile. Schema encoding is consid
ered again in the vGrid case study in Chapter 7.

4.3 Creating the Pipeline During Service Initialisation
Negotiation is not performance sensitive and takes place over a high-level object
bus, such as a CORBA ORB [105] or an equivalent grid mechanism such as Nexus [37].
Performance is critical during the provision phase, so all data is streamed along the
pipeline using very efficient communication mechanisms with techniques such as
parallel streaming. Constructing the pipeline and connecting operators is the task
of the PipelineManager during the interm ediate initialisation phase of the pipeline
life-cycle.

A trader creates a manager with a collection of tickets, one for each operator in
the pipeline, and a graph which describes how the operators should be connected
to form a pipeline6. The manager starts initialising services at startServiceTime.
To produce concrete operator objects it evaluates each of its service tickets with the

6A s discussed in section 2.1.3, the term “pipeline” is somewhat misleading since it implies a linear
sequence of processing operations. Dissemination pipelines are non-linear: forks and joins in the
pipeline are supported. Hence the manager has an operatorConnectivityGraph where operators are
the vertices of the graph, and the edges are links between the operators along which data flows.

§4.3 Creating the Pipeline During Service Initialisation 77

produceOperatorO method of ServiceTicket. This causes the factory that issued
the ticket to construct an Operator object. The operator it creates is an empty shell,
disconnected from any other operator. The pipeline manager connects operators
in accordance with the connectivity graph, using the techniques described in sec
tion 4.3.2 below. Once an operator is connected to an appropriate set of inputs,
it can be initialised by calling its initialise() method. Initialising the operator
causes the shell to be filled out. When all operators are initialised the pipeline is
ready for service provision.

4.3.1 The Structure of a New Operator

OperatorPort Part of the service provision interface to an operator,
optimised for bulk data flows

p. 174

Link A reliable, duplex network connection used to send
and receive data between two operator ports

p. 176

Connection Used to join ports on different operators p. 172

Each operator is a collection of communication and image processing objects. Not
all of theses objects exist when the operator is created by a factory: many are added
during service initialisation. Figure 4.4 depicts the structure of an operator during
service initialisation. The Operator class is essentially a Facade [40] 7. Operator
contains little state other than a name attribute, which is assigned by the creating
factory and is a globally unique identifier. All other state is delegated to other classes.
Operators take part in three of the four stages of the pipeline life-cycle: from service
initialisation through to destruction. Consequently Operator is a «remote» object
that may be accessed over the object bus.

To avoid using the object bus for service provision, performance sensitive com
munication between operators takes place through links between input and out
put ports. A port is a single-purpose interface to the operator, through which only
one type of image data flows. Ports are used during service initialisation and must
be visible to remote clients, so the base OperatorPort class is «remote». Each port
is named, and the tuple (Operator .name, OperatorPort .name) is unique within the
pipeline. Ports also have a type associated with them to describe the format of data
they can handle. This is represented by a MIME-style enumeration and is provided
as an aid to connecting ports of the correct type during pipeline creation. An opera
tor receives data from an Input Port and sends results out through an OutputPort 8.
Each output port can send data to many different downstream operators, but each

7Note that the term “Operator” has two meanings here. At the abstract level, an operator is a com
ponent in a dissemination. This component is formed from a large number of interacting subsystems.
The Operator class is a simple interface to the component, and acts as a Facade [40, pages 185-194]
around the subsystems. To help the reader separate these two meanings, the fixed-font Operator is
used to refer to the class. Other uses of the term refer to the general component.

8There is no requirement that all operators have at least one input and one output port. Obviously
image access operators, being the sources of data, need not have any inputs. Similarly visualisation
clients, as the sinks of all data, need not have any outputs.

78 Rapid; Responsive Architecture for Pipelined Imagery Dissemination

Figure 4.4: Structure of a Ra pid Operator during service initialisation. The O p e ra to r class
and the C o nnec tion class both have particular significance during the initialisation phase.

§4.3 Creating the Pipeline During Service Initialisation 79

input port can only receive data from a single upstream operator 9.
Although ports define the service provision interface to an operator, data actually

flows between operators along a network Link. The base Link class is an abstraction
for any reliable, duplex communication mechanism. Concrete implementations of
Link can be built from network primitives such as TCP sockets. The movement of
data between operators, over links, is described in sections 4.4.1 and 4.4.2. Two op
erators are joined during the service initialisation phase by passing a Connection
object from an output port of one to an input of the other. Many communication
mechanisms require a passive, receiver at one end to accept new network links.
Within the operator this role is performed by one or more Acceptor objects. The
next section describes in detail how connections are formed.

4.3.2 Connecting Ports and Creating Links

Connection Used to join ports on different operators p. 172
Link A reliable, duplex netw ork connection used to send p. 176

and receive data betw een two operator ports
LinkFactory An Abstract Factory [40] for links p. 176
Acceptor Receiver, used to create the upstream end of a link p. 171

Ports are connected and links created by the PipelineManager, as part of the initial
isation phase, with the help of Connection objects. To join two operators the man
ager retrieves a Connection object from a port on the upstream operator (with the
getConnectionO method of OutputPort) and passes it to a port of the downstream
operator (with the setConnectionO method of InputPort). The Connection class is
«mobile» so instances can be moved over the object bus. Each connection contains
all the necessary logic to open links to an operator, metadata for all the datasets
output by an operator and descriptions of the tiling and level of detail mechanisms
employed. It may also contain optional approximation functions and request map
functions, both of which are described later. Connection and its related classes are
depicted in Figure 4.4, and are summarised again in Table 4.4.

When an input port is assigned a connection, it calls the open() method on the
Connection to create links upstream. This method iterates through the list of link
descriptions, creating each link and registering the port as a listener to messages
received on the link10.

For data to flow between two operators a Link object must be created on both.
At the downstream operator the link is created by a LinkFactory object, passed in
the Connection. A LinkFactory is a «mobile» object, which follows the Abstract Fac
tory pattern, and produces instances of the Link class. The use of mobile link fac-

9Not all the input ports of an operator have to be connected: the isRequiredO method of Input-
Port indicates whether an input is required or optional. However, when an optional input is omitted it
may not be possible to produce all outputs. Consequently the isSupportedO method of OutputPort
indicates whether a particular output can be produced, based on the inputs to an operator.

10It also instructs the link about the TileBuffer attached to the port, as described later in sec
tion 4.4.3.

80 R a p i d ; Responsive Architecture for Pipelined Imagery Dissemination

1. XML descriptions of all instances shared by output (metadata)
2. XML descriptions of tile and LoD hierarchies
3. Factory objects to create different kinds of links (LinkFactory)
4. Link descriptions (name, factory, creation param)
5. An optional map function (RequestMap)
6. An optional approximator (Approximator)

Table 4.4: The contents of a Connection object

tories allows an operator to tailor the use of network primitives on a connection-
by-connection basis. The port getConnectionQ method takes the destination as a
parameter. This information may be used to select the most efficient type of link on
which to build the connection. Simple operators may choose to ignore the param e
ter and return a connection based on TCP socket links. However, since connecting
operators is not a performance critical step, an efficient operator could use a routing
service or network broker to make decisions about what kind of links to use. This al
lows for great optimisation of the communications primitives used in the pipeline.
The use of Connection objects is explored further in the practical work in Chapter 6.

At the upstream operator a Link object is created by an Acceptor. Many com m u
nication mechanism s require a passive listener to accept new connections. Acceptor
objects perform this role, following the Acceptor and Connector [98, pages 191-239]
pattern. An Acceptor is required for every different protocol or communications
mechanism an operator uses to send data downstream. For example, if an operator
can sends data by TCP socket and through a shared memory buffer, then there will
be one acceptor for TCP connections and a second acceptor for in-memory com m u
nications. When a request to connect is received from the underlying com m unica
tions layer, the Acceptor creates a Link object and listens for appropriate signalling
to determine what port the link is attached to 11.

When Link objects have been created at both operators they can be used to send
messages up and down the pipeline. When all the required inputs to an operator
have been connected, and the operator has been initialised, it is ready to provide a
service.

11 This signalling comes in the form of an OpenLink message, described in section 4.4.2 and in Ap
pendix A.3, page 180. The precise means by which a OpenLink message is sent to Acceptor will be
protocol dependent. For TCP sockets the message should be sent along the new socket. This detail is
encapsulated within the LinkFactory sent to the client, and so is not significant.

§4.4 Provision of Service with a Dissemination Pipeline 81

4.4 Provision of Service with a Dissemination Pipeline
TileBuf f er Stores the input and output of an operator p. 177
Approximator Approximates som e tiles not in the buffer p. 172
Request Handler Handles all messages sent along the pipeline p. 176
Transformation Performs image processing of tiles p. 178

The service provision phase of the pipeline life-cycle begins only when all opera
tors are initialised. The structure of the operator changes during service provision,
and is depicted in Figure 4.5. Gone are the acceptor and connection objects used to
join operators together, and the factories used to create new links12. All communi
cations now takes place over the service provision interface of ports and links. The
movement of data up and down the pipeline is described in section 4.4.1. A very
limited set of signalling is required between operators. This signalling is known as
the Ra pid operator protocol (or Ra ppo rt), and is described in section 4.4.2.

To assist in the movement of bulk data (tiles) through the operator, every in
put and output port uses a T ile B u f f er . An A pproxim ator function may be asso
ciated with each buffer, to produce a temporary approximation of a tile when it is
not cached. This is in keeping with the use of approximations described in sec
tion 3.1.7 of the last chapter. The use of buffers and approximation are described
in section 4.4.3.

Processing requests and results from other operators is the job of a R eq u est-
H andler. Handlers do not perform the actual image processing tasks, but simply re
spond to messages received from ports. Image processing is performed by a T ran s
fo rm a tio n function. Request handling and transformation are described in detail
in section 4.4.4. The structure of an operator is designed to make it easy to sup
port various forms of parallelism, including parallel processing within an operator
and parallel streaming between operators. These techniques are considered in sec
tion 4.4.5.

4.4.1 Basic Network Communications
Link A reliable, duplex network connection p. 176
OperatorPort Logical interface to the operator: a collection of links p. 174

to multiple operators or nodes
RequestHandler Handles all messages sent along the pipeline p. 176
RequestMap Used in downstream gathering to select between links p. 177

The movement of messages between operators is managed by three classes: Link,
OperatorPort and R equestH andler. Link is an abstract class which encapsulates
a duplex network connection that can send and receive Rappo rt messages. This
closely matches the behaviour of a socket, but could easily be built on top of many

12There is no strict requirement that operators can only accept connections during service initial
isation. An operator may choose to preserve its Acceptor and Connection objects and so allow new
operators to join at any time. This is, in fact, essential to the operation of the Race cached since clients
do not join the pipeline until after it is fully initialised. See section 4.6 for more details.

82 Rapid; Responsive Architecture for Pipelined Imagery Dissemination

■ s p ,s p

03 03 Q* >-
(J CJ 03 Q .

Figure 4.5: The Rapid Operator class and related classes used during service provision. Not
all associations between classes are depicted in this diagram.

§4.4 Provision of Service with a Dissemination Pipeline 83

[Utilities:: Observer]|Utilities::5ufcjecf|

listeners

listens tolistens to

OperatorPort listens to messages from -Link is an abstraction for a reliable- Listens for messages relayed by an L\

«active»
RequestHandler

sendMessage(in : Message)

«active»
Link

mapRequestbn :TileRequest): Link
updateMaplin : MapFunction)

«mobile»
RequestMap

addMessageListener(in : MessageListener)
removeMessageListenerfin : MessageListener)

RAPPORT:: MessageSource

sendMessage(in : Message)
sendMessage(in : TileResponse, in : Link)

«remote»
OperatorPort

receivedTileRequest(in : TileRequest)
receivedCancelRequest(in : CancelRequest)
receivedTileResponse(in : TileResponse)
receivedMapUpdate(in : MapUpdate)
receivedIncreaseFlow(in : IncreaseFlow)
receivedLimitFlow(in : LimitFlow)

RAPPORT:: MessageListener

delivery, full-duplex communications link. low level Links. It filters out map related operator port. Handles tile requests
It could be implemented over many messages and satisfies cached requests. from downstream operators and

different network primitives All other messages it forwards on to the responses and flow-control messages
RequestHandler from upstream operators

Figure 4.6: Use of the Observer Pattern in basic communications objects

other communication mechanisms. Each operator can have a number of input and
output ports: each port will have one or more links to ports on other operators. Ports
listen for messages from links and can respond in limited ways, but the major logic
for request processing resides in the RequestHandler class. Figure 4.6 demonstrates
the static relationships between these classes, based on the Observer [40, pages 293-
303] and Reactor [21, pages 529-545] patterns.

The handling of newly received Rapport messages follows the Observer pattern.
Link provides a listenable Subject interface for objects interested in incoming mes
sages. Every time a message is received the link invokes a callback method in each
listener passing it the new message. OperatorPort listens to the messages received
from the link. It can handle some messages directly13, but forwards most on to the
operator’s RequestHandler. Handlers do not listen directly to the network links, but
instead listen to the ports. So, a short chain of message handlers is formed with mes
sages starting at a Link and being relayed through an OperatorPort to a Request-
Handler.

The interaction between threads in these three objects is notable. Link is an
«active» object because many network primitives are synchronous in nature and a

13The MapUpdate and some TileRequest messages, described in section 4.4.2.

84 Ra p id : Responsive Architecture for Pipelined Imagery Dissemination

separate thread may be required for asynchronous messaging. When a new mes
sage is received from the network, the thread associated with the link calls the ap
propriate receiver method in each MessageListener registered with it; typically just
the port. Listeners should not perform major computation within this callback. The
filtering undertaken by OperatorPort is cheap and can be performed within the call
back. However, handling a client request is potentially expensive so Request Handler
is an «active» object that runs with its own thread of control. The receiver callbacks
within RequestHandler simply move each new message in a prioritised queue, and
process them in priority order. Consequently the lifetime of Message objects created
by a Link must be managed with care14.

Sending a message involves a similar chain of calls to that to receive a message.
Link has a sendMessageO method for outgoing messages, but most messages stem
from a RequestHandler which operates at the level of ports rather than links. When
the handler sends a message it calls the sendMessageO method of OutputPort. In
most cases the handler will leave it to the port to decide which links the message
should be sent on. The choice of link is usually simple, except for downstream gath
ering forms of parallel streaming. This style of streaming allows a port to have a
direct link to each node within a parallel operator upstream. The problem arises
when sending a message upstream, since the port must choose which link to send
the message on. The port uses a Request Map function, provided during service ini
tialisation in the Connection object, to map tile requests to physical links. Upstream
scattering can also affect the choice of link. Both forms of parallel streaming are
discussed in more detail in section 4.4.5.

4.4.2 Rapport: The Rapid Operator Protocol

Message The base of the Rapport message hierarchy p. 181

A limited set of signalling is required between operators in a pipeline. Request mes
sages flow up the pipeline: responses flow down the pipeline. Some additional sig
nalling is required to support flow control within the pipeline. Downstream gath
ering forms of parallel streaming use a request mapping function, which may also
require signalling to stay up-to-date. These few requirements lead to a simple pro
tocol for sharing data between operators, known as Ra ppo r t .

^Asynchronous processing of callbacks raises the question of how and when message objects are
deleted. For runtime environments that support automatic garbage collection this problem is trivial.
For those that do not, there are two obvious approaches. First, a simple reference counting system
could be added to the basic Message object. Listeners that wish to refer to a message outside the receive
callback should increment the message’s reference count within the callback, and decrement it when
they have finally finished with the message. Reference counting works well since there are never cyclic
dependencies between messages. An alternative approach is to require that listeners make a copy of
any message they wish to use outside the callback. All Rapport messages, with the exception of T i l e -
Response, are very small and cheap to copy. T ileResponse messages deliver imagery along the pipeline
and account for the greatest volume of traffic. Copying these messages would be a major performance
problem, and we will see shortly how this is avoided. No single message deletion policy is mandated
in Ra p id : the above approaches are equally valid when automatic garbage collection is not available.

§4.4 Provision of Service with a Dissemination Pipeline 85

«mobile»
RAPPORT:: CloseLink

«mobile»
RAPPORT:: IncreaseFlow

«mobile»
RAPPORT:: CancelRequest

«mobile»
RAPPORT:: TileMessgge
requestID

delayUntil: timeStamp

«mobile»
RAPPORT:: LimitFlow

occurredAt: timeStamp

«mobile»
RAPPORT:: FlowControl

newMap: MapFunction

«mobile»
RAPPORT:: MapUpdate

«mobile»
RAPPORT:: TileResponse
isPartial: boolean
result :Tile

linkName
attachToPort
protocolDetails

«mobile»
RAPPORT:: OpenLink

destinationPort
priority

«mobile»
RAPPORT:: PipelineMessagesourceOperator

destinationOperator
packf)
unpack!)

«mobile»
RAPPORT:: Message

dataSet
channel
LoD
tileCoordinates
tileSize
numPartialResponses: int
returnLink: String
doNotPropagate: boolean

«mobile»
RAPPORT:: TileRequest

Figure 4.7: The Rapport Message hierarchy

86 Ra p id ; Responsive Architecture for Pipelined Imagery Dissemination

Figure 4.7 shows the various message objects in the R a p p o r t protocol15. All
messages are descendants of an abstract class Message, which is a mobile object.
Messages sent along the pipeline (as distinct from collaborative messages) are fur
ther descended from PipelineMessage. Between them these classes have four at
tributes: the string name of the operator that sent the message16, the destination
operator and port, and a priority value to expedite delivery of critical messages17. If
no destination is specified the message is intended for all operators. In Figure 4.7
Message is also shown as having explicit pack and unpack methods but these are
only required for runtime systems without automatic object serialisation. No precise
packet-level structure is defined for R a p p o r t messages, since it will vary from one
transport mechanism to another. Serialisation mechanisms and associated packet
structure are details that should be provided in an implementation profile. Profile is
sues aside, R a p p o r t should be trivial to implement over any reliable, in-order com
munication mechanism18.

There are three tile-related messages defined within Ra p p o r t: to make requests,
cancel requests and respond to requests. All three message types are descended
from a common abstract ancestor, TileMessage, which contains a requestID at
tribute. Every tile request is assigned an ID at its source operator. This ID is unique at
the source operator and consequently the tuple (sourceOperator, requestID) uniquely
identifies a tile request within the pipeline. TileRequest messages are sent up
stream when an operator requires a tile: TileResponse messages flow down the
pipeline and contain the data to satisfy a request. Most of the attributes of Tile-
Request come straight from Table 3.2 in the previous chapter. It also includes a
numPartialResponse attribute, to support the use of approximations described in
section 3.1.7. This specifies the maximum number of partial responses (approxima
tions) that can be sent in lieu of the correct result. The upstream operator does not
have to send any partial responses, but if it does choose to send approximations this
attribute limits the number sent. TileResponse has a corresponding isPartial at
tribute to identify whether a response is final or is a temporary approximation. Tile-
Request also has an attribute to describe the link on which return messages should
be sent (returnLink). This is used to support upstream scattering forms of parallel
streaming, as described in section 4.4.5.3. Finally the CancelRequest message is pro
vided to support eager pipeline requests, as described in section 3.1.5. This message
requires no additional attributes beyond the (sourceOperator, requestID) tuple de
fined in its ancestors which unambiguously identifies the request to be cancelled.

Ra p p o r t includes two simple messages used during creation and destruction
of network links. An OpenLink message is sent from a downstream operator to an
Acceptor of an upstream operator when a new link is opened. The major attribute
of OpenLink is a unique name or identifier for the new link. Additional, protocol spe-

15These are also summarised in Appendix A.3 on page 178.
16Each operator has a name attribute that is unique within the pipeline.
17The range of priority values is not specified here: it is an implementation detail and should be part

of an implementation profile.
18the need for in-order delivery could also be relaxed quite trivially, but is not an unreasonable.

§4.4 Provision of Service with a Dissemination Pipeline 87

cific data may also be provided. The CloseLink message class is the obvious partner
to OpenLink, and is used to perform graceful service shutdown. Protocol-specific
contents are also allowed, and should be specified in an implementation profile.

A very simple model of flow control is defined for the dissemination pipeline
to help throughput. Two flow control related messages are defined as descendants
from an abstract FlowControl class. If an operator is not running at peak capacity
it may choose to send an IncreaseFlow message to one or more downstream oper
ators connected to its output ports. This message is a general indicator only, and
downstream operators can respond to it in whatever way they see fit. If an oper
ator is running at peak capacity it may simply ignore this message. If not, it may
send the message on down the pipeline. In this way the IncreaseFlow messages
will eventually reach the pipeline schedulers running at each site cache, who may
choose to respond to them by increasing the number of speculative requests made
of the pipeline. The LimitFlow message is the natural opposite of IncreaseFlow and
provides a mechanism for constraining the transmission of requests up the pipeline.
Limit messages are usually sent downstream with a very high priority so they reach
the pipeline scheduling mechanisms as fast as possible.

Finally, Ra ppo r t defines a MapUpdate class of message to support downstream
gathering in the dissemination pipeline. This style of parallel streaming uses a map
ping function to choose the correct link when sending requests upstream. The map
ping function is provided during service initialisation, but since this map function
may change over time the MapUpdate message provides a way to update functions
in downstream operators. The contents of the message are deliberately not speci
fied. Mapping functions may be implemented many different ways, and should be
specified in any implementation profile.

This small set of messages is all that is needed to operate the dissemination
pipeline. Ra ppo r t includes an additional set of messages to support collaborative
data sharing, which are described in section 4.5.5.

4.4.3 Port Buffers and Approximating Results
TileBuf f er Stores the input and output of an operator p. 177
Approximator Approximates some tiles not in the buffer p. 172

The asynchronous behaviour of the pipeline requires that each operator be able to
buffer a number of tiles. Buffering output is useful when multiple downstream oper
ators are connected to an output port, as described in section 3.1.1. Input buffering
is also required when receiving TileResponse messages to avoid copying overheads.
So a TileBuf f er is associated with each OperatorPort 19. The size of buffers is ob
viously operator and port dependent: the larger the buffers the better20. Each link
has a reference to a buffer on an input port, and receives response messages directly
into the buffer. Input buffering can also be very important when the tiling and level

19Note that this association is not clearly depicted in Figure 4.5, due to constraints of layout.
20This may be a point of negotiation between Trader and Factory during service negotiation.

88 Rapid; Responsive Architecture for Pipelined Imagery Dissemination

of detail mechanisms used by one operator do not match those of another. For ex
ample, if an operator outputs tiles that are smaller than it receives as input, each
input tile may be used to produce multiple output tiles. Hence, it makes sense to
cache each input tile as long as possible.

Buffers can also use an Approximator function to provide a temporary result
when a tile is not in the buffer. Approximations should be very cheap to produce,
since they are usually needed within a link message callback. For output ports the
approximation functions are set when the port is created. A useful approximation
on an output port is to return a low-resolution version of a tile. To support approx
imations on input ports, the base Approximator class is «mobile» and instances can
be included in the connection object. This allows an operator to control how ap
proximations are used downstream: a powerful capability since the Approximator
can be used to filter requests before they are sent up to an operator.

4.4.4 Handling and Processing Tile Requests

Request Handler Handles all messages sent along the pipeline p. 176
Transformation Performs image processing of tiles p. 178
OutstandingSet Contains requests received from downstream p. 175
DependentSet Contains requests sent upstream p. 173
Support edQueue Requests which are ready for transformation p. 177
OutputQueue Requests after transformation, waiting to be sent p. 175

Handling and scheduling requests is performed within an operator by one or more
Request Handler objects. These listen to output ports for requests for new tiles to be
sent downstream, and to input ports for responses to requests sent upstream. There
are four main stages in handling a tile request: fetching the inputs to the request;
waiting for a transformation to perform the processing; processing the request; and
waiting for the response to be sent downstream. Supporting approximations adds
some subtleties to request handling, as demonstrated in Figure 4.8. The Request-
Handler uses four collections to manage requests, and at any moment the state of a
request is reflected by the collections in which it is present.

OutstandingSet (p. 175) Requests from downstream operators that have not had a
final response sent to them are held in an OutstandingSet. Each entry in this
set contains the parameters of the requested tile, along with tuples (request ID,
sourceOperator, returnLink) for each downstream operator that has made
a request. These tuples are used to select the links on which to send a re
sponse, along with the ID to send with each response. Entries also contain
the request ID of dependent requests made to upstream operators. The Out
standingSet needs to support three different lookup methods. To check for
simultaneous requests by downstream operators it must support fast access
based on the parameters of a tile request. To aid processing data received from
upstream it should also support fast access based on the request ID of depen
dent requests. Finally, it should support reasonably fast access based on the
tuple (sourceOperator, requestID) for the purposes of request cancellation.

§4.4 Provision of Service with a Dissemination Pipeline 89

calculate output
(approximations allowed]

calculate output tal result)all inputs all inputs
Outstanding Request Partially Supported Fully Supported Response Created

request cancelled

Figure 4.8: The different states in handling a tile request

DependentSet (p. 173) The set of requests that have been made to upstream oper
ators is kept in a DependentSet. Each entry contains the parameters of the tile
request, and a request ID which is unique within this operator. The Dependent-
Set should support fast access to entries based on the requestID. When a re
sponse is received the entry in the dependent set is updated to include the
buffer in which the tile is kept. An entry is kept in the dependent set until the
original request is removed from the OutstandingSet.

SupportedQueue (p. 177) Contains all the downstream requests that are partially
or fully supported, and so are ready for transformation. This is the work queue
for Transformation threads. They remove entries from the front of this queue,
perform the associated processing, place the results in the buffers of all ap
propriate output ports, and register the completed request in a queue of com
pleted results. The SupportedQueue is prioritised based on the original request
priorities, so that demand-driven requests are processed before speculative re
quests.

OutputQueue (p. 175) Contains requests that have been processed and are ready
to be sent back downstream. Again this queue is ordered by request priority.

A Transformation object performs the actual processing of tiles, and encapsulates
the logic of an image processing operation. Image processing can be computation
ally expensive so Transformation is an «active» object running in a separate thread.
The SupportedQueue contains work items for the transformation thread. This queue
contains requests from downstream operators for which all the required inputs are
available. To identify what inputs are required for a tile, the RequestHandler uses
the requiredlnputsO method of Transformation to make dependent requests to
upstream operators. The actual transformation is performed by the transform-
TileO method. It removes a single request from the SupportedQueue, performs the
transformation, places outputs in the tile buffers of all relevant output ports and the
moves the completed request to the OutputQueue.

Transformations also serve as factories for the Approximator functions used on

90 Ra p id ; Responsive Architecture for Pipelined Imagery Dissemination

tile buffers. Local output ports may use a different approximator to downstream
input ports, so there are separate methods for retrieving Approximator objects for
local use, and for inclusion in a Connection 21. A transformation function does not
have to support either type of approximation function, but can choose to support
one or both as appropriate.

The procedure for handling tile requests starts at the Output Port. When a re
quest is first received by an OutputPort it checks the TileBuffer to see if the re
sult has already been computed. If so, an appropriate TileResponse is sent back
downstream. If not, the port may send an approximation if one can be produced
and is acceptable to the downstream client22. At this point the request is passed on
to the Request Handler which is responsible for producing the correct result. From
here on the handler follows the four stages of request processing described above.
The handler starts by using the transformation function to determine what depen
dent requests must be made to upstream operators23. The original request is placed
in the OutstandingSet and the dependent requests are placed in the Dependent Set
and sent upstream with the sendMessageO method of the Input Port. Before send
ing each request the input port checks its TileBuffer to see if the request has been
cached locally. If so, it creates an appropriate TileResponse message and calls the
receivedTileResponse () callback in the RequestHandler. If not, the InputPort may
produce an approximation, which is passed back through the same callback24. Next
the port sends the message upstream along the appropriate Link, using a Request-
Map to select the link if more than one link has been opened upstream. At this point
processing of the original request halts until responses are received for each depen
dent request.

Tile response messages are also processed by the RequestHandler. When a Link
receives a response message it places the payload of the message directly into the
port TileBuffer25, and then notifies all listeners26. Normally the InputPort will lis
ten to the link, and pass the message along to the RequestHandler27. When a handler
receives a response message it uses the request ID to find the entry in the Dependent-
Set corresponding to the dependent request. It updates this entry to include details
of the response that was received, then finds the original entry in the Outstanding-
Set. If a response has been received for all dependent requests, the original request
is copied into the SupportedQueue in priority order.

"'■getLocalApproximator () and getRemoteApproximator () respectively. Both methods take as a pa
rameter the type of output to be approximated.

22Being careful to decrement the numPartialResults counter in the request message.
23Through the requiredlnputs () method of Transformation.
24As before, the port must decrement the numPartialResults counter within the request message to

account for the fact that an approximation has been produced.
25This is done with the emptyTile () method.
2bListeners are notified through the receivedTileResponse () callback.
27The reason for decoupling handlers from links is to allow the local port to return approximations

without a handler requiring any additional logic. This applies to both input and output ports. An
additional reason for decoupling inputs is to allow the port to filter MapUpdate messages. Note the
implication of using approximations to provide partial support for a request, identified in section 3.1.7.

§4.4 Provision of Service with a Dissemination Pipeline 91

Work items are fed to the T ra n sfo rm a tio n threads through the SupportedQ ueue.
When a thread is ready for more work it removes the front item from the S u p p orted
Queue, and processes it. When processing is complete the request is copied into the
OutputQueue and the transformation moves on to a new work item. The results of
the transformation are placed the T ile B u f f e r of all appropriate output ports.

The final stage of request processing involves sending a response to all down
stream operators that made a request for the tile. The R equestH andler reads com
pleted requests from the OutputQueue and sends response messages through the rel
evant output ports. When the handler removes a complete request from the queue
it finds the corresponding entry in the O u tsta n d in g S et to determine what down
stream connections to send responses to. It sends out T ile R esp o n se messages and
then removes all relevant entries from the O u tsta n d in g S e t and the D ependentSet.

Some subtleties to request processing may not have been obvious from the pre
ceding description. Concurrent access introduces considerable complexity into the
pipeline, and simultaneous requests for the same tile must be handled with care. In
some circumstances it is not obvious when two requests correspond to the same
tile28. It is worth noting that these issues only occur when there is a fork in the
pipeline: i.e. when two or more downstream operators are connected to the same
upstream operator. This is most likely to occur at the very end of the pipeline. Cer
tainly it will occur when multiple clients connect to a shared site cache (Race). It
will also occur when multiple site caches connect to a shared final processing stage
of a pipeline. In both cases the behaviour of the R equestH andler serialises the re
quest stream and coalesces duplicate requests. Much of the complexity in request
handling can be removed for some operators. In section 4.5.3 we will see how a sim
plified handling procedure can be used in a Race cache.

4.4.5 Supporting Parallelism in the Pipeline

Much of the complexity in the operator model is due to the need to support paral
lelism in the pipeline. The model automatically supports intra-operator parallelism
(parallelism of computation) through use of the Master-Slave [21, pages 133-142]
pattern. Parallel streaming is also supported to optimise the path of bulk data trans
fers (TileResponse messages). Connection objects also make it possible to support
upstream-scattering and downstream-gathering forms of streaming quite transpar
ently.

28For example, imagine an operator with one input port I and two output ports (P and Q) and a
different downstream operator connected to each port. A request p is received on P which requires
that a dependent request i be sent upstream. Before a response arrives for i, a second request q is
received on Q. If q requires the same inputs as p, it will produce the same dependent request i. So
before a dependent request is made for q the DependentSet must be checked to see an equivalent
request i is already pending. Furthermore, if requests p and q require the same processing, they can
be satisfied in a single transformation. Consequently they should appear in the same entry in the Out
standingSet. This highlights the care that must be taken in maintaining the various request sets, to
avoid making duplicate requests.

92 R a p i d : Responsive Architecture for Pipelined Imagery Dissemination

4.4.5.1 Intra-operator parallelism

Intra-operator parallelism allows operators to run on a high performance comput
ing platform, such as a shared memory symmetric multiprocessor (SMP) or a multi
computer. The basic approach is task-parallelism following the Master-Slave [21]
design pattern, where a single RequestHandler acts as master and apportions work
to multiple slave Transformation threads through the SupportedQueue. The crucial
shared data structures in this model are the SupportedQueue, the OutputQueue and
the TileBuf f er objects. Implementations of these structures will vary depending on
whether a shared memory space is available.

On shared memory machines the challenge is to minimise the synchronisation
required between threads which access the shared structures. In particular the Tile-
Buffer objects could become a bottleneck since they must also be shared with Link
threads. The granularity of thread synchronisation depends on the cost of trans
forming tiles and the number of concurrent threads. Fine grain synchronisation,
with the greatest overheads, will be required for cheap transformations and large
numbers of threads. A solution to this problem is to increase the size of tiles pro
cessed and so make each transformation more expensive. If the average request size
is smaller than that required to minimise synchronisation, an Approximator could
be attached to each output TileBuf f er to subset tiles when requested29.

On multi-computers and clusters, with many independent compute nodes and
no shared memory, the challenge is to minimise communication between nodes.
One node acts as master, running the RequestHandler, maintaining the shared struc
tures and running other operator elements such as the ports and links. The re
maining nodes simply run Transformation tasks and communicate purely with the
master. Communication between nodes takes place over the multicomputer’s in
ternal communications network, using an implementation dependent protocol30.
Operator-internal communications are fairly obvious, and have to allow transfor
mation threads to: remove elements from the SupportedQueue; add elements to the
OutputQueue; read tiles from the input buffers and; place their results in the output
buffers.

4.4.5.2 Parallel Streaming Through Downstream Gathering

Downstream gathering optimises the movement of bulk data (TileResponse mes
sages) out of a parallel operator. Operators downstream of the parallel operator open
a link to each transformation node and the output of a transformation is sent di
rectly to the requestor. This minimises the response time for a request once it has
been processed. Figure 4.9 depicts a simple example of downstream gathering.

29This amounts to a form of Request by Proximity: a valuable heuristic which is explored further in
Chapter 5.

30For multi-computers with very low-latency internal communications, an interesting alternative is
to store the shared structures in a software Distributed Shared Memory [111] such as Munin [16] or
Treadmarks [3]. This potentially increases the latency when accessing a T ileB u f f e r , and so may not

§4.4 Provision of Service with a Dissemination Pipeline 93

results are sent straight from the
transforming node in operator-1
to optimise the flow of large
messages —

operator-1

the Connection objects retrieved from
the output port of operator-1 create
links to each node in the operator —

operator-3

operator-2

F ig u re 4.9: Downstream gathering

The use of downstream gathering is transparent at the input to an operator. The
Connection object used to connect two operators contains all the logic required to
perform downstream gathering. In the example depicted in Figure 4.9 the Connection
objects passed to operator-2 and operator-3 describes the three Link objects that
must be created to communicate with the nodes in operator-1. They also contain
a RequestMap function used to choose between links when sending requests up
stream. The configuration of a connection is performed at run-time, so developers
of operators do not have to be concerned with whether the inputs are serialised or
use downstream gathering.

Operators that want to output results through downstream gathering do, how
ever, require some changes. One major change is to discard the OutputQueue, and
make Transformation tasks responsible for sending TileResponse messages to all
downstream operators that have made a request. There are numerous implications
of this change:

• the send list, maintained in the OutstandingSet must be sent to the transfor
mation node

• entries must be cleaned up from the OutstandingSet and the DependentSet
• elements of the output port have to be replicated on every transformation

node

Request handling and tile buffering are also harder to implement when downstream
gathering is used. The very simplest approach is to keep the handler and tile buffers

be appropriate for loosely-coupled cluster computers.

94 Ra p id : Responsive Architecture for Pipelined Imagery Dissemination

on the master node. If the R equest Map sent to downstream clients ensures that every
T ile R eq u est is sent to the master node (running the handler) transformation nodes
will never receive request messages. Interactions between the T ran sform ation task
and the R equest H andler are similar to those of Master-Slave parallelism, and take
place via the SupportedQ ueue. An additional interaction is required after a transfor
mation has completed, so that the transformation can determine the links on which
to send results, and can instruct the handler to clean up the request sets. One limita
tion: as before the transformation node needs to be able to access and add to every
shared T ile B u f f e r on the master node.

A more sophisticated approach, is to replicate portions of the output port on
each transformation node. Having a T ile B u f f er on all nodes provides the potential
to buffer significantly more output from an operator31. Running an Approxim ator
on every transformation may also be valuable since a more expensive approxima
tion function could be used without affecting the throughput of the operator. These
advantages come at the cost of more complex request handling. Since clients can
send a request to any transformation node, each node uses a Proxy [40] request han
dler to listen to requests and forward them on to a master handler. The use of proxy
handlers is considered in detail in section 4.5.

4.4.5.3 Parallel Streaming Through Upstream Scattering

Support for upstream scattering of inputs is quite simple when compared to down
stream gathering of outputs. Upstream scattering optimises the movement of bulk
data (T ileR esp o n se messages) into a parallel operator, as each response is sent di
rectly to the node that requires it. The most efficient way to move data through a
parallel operator is to use upstream scattering of its inputs, and downstream gather
ing of its inputs. The Ra pid site cache (Race) is an example of such an operator.

Upstream scattering affects the inputs to an operator, but does not affect the out
put of upstream operators. In essence the In p u tP ort, T ile B u f f er and Link objects
are replicated at every node in the operator. Requests are still sent from the master
node, but with some refinements to the standard approach. The Re q u est H andler
specifies the name of the return link on which results should be sent32: upstream op
erators use this name to select the return link to send responses on33. This ensures
that the T ile R esp o n se message is sent to, and buffered on, the node that requires it.
It does, however, require that the handler know which node will process the request
at the time it makes dependent requests. It may also require that buffers on input
ports are able to snoop on another.

31This is the basis for parallel caching described in section 3.1.3 and the Race component presented
in section 4.5.

32This is specified via the TileRequest. returnLink attribute
33Link selection uses a specialised form of the sendMessageO method of OutputPort, alluded to

earlier in section 4.4.1.

§4.5 Race: The Rapid Cache 95

4.5 Race: The Rapid Cache

The centrepiece of Rapid is a site cache, known as the Race. The purpose of the
Race is to sit between visualisation clients and the dissemination pipeline, to de
couple the execution of one from the other. A Race runs at every end-user site and
provides visualisation clients with very low latency access to the tiles of data, to meet
the fundamental requirement for responsiveness. It also schedules and optimises the
flow of requests to the pipeline to meet the fundamental requirement for through
put. Finally, it acts as a router for data sharing between clients, to meet the funda
mental requirement for collaborative data sharing.

4.5.1 Structure of the Race

RACE A parallel site cache operator p. 184
Slave A node within a Race which caches tiles p. 186

The Race acts as an operator in the dissemination pipeline, just like any other, but
its behaviour is highly specialised. As an operator the Race has these defining char
acteristics:

• RACE is a parallel caching operator, which runs on all free machines at a site and
buffers very large amounts of data. It loosely follows the Master-Slave pattern
with many Slave nodes to cache tiles, and a single Master node to coordinate
pipeline requests.

• No Transformation function is run on the Slave nodes: they simply cache data
in a port TileBuf f er. An Approximator may be used to provide partial results
when a cache miss occurs. The most common approximation is simply to re
turn a low-resolution copy of the missing tile.

• The input and output ports on each slave use a shared TileBuffer. Tiles are
received directly into the buffers and sent directly from them.

• There is one input port and one output port for every data type presented to
client applications. This allows for many different types of data to be produced
along independent pipelines, then stored in a single cache.

• RACE supports downstream gathering (parallel streaming) at visualisation clients
to minimise response time for cached tiles. Each client has direct link to every
node in the cache and a RequestMap which sends a request directly to the node
caching a tile.

• RACE supports upstream scattering so that bulk data is transferred from the last
processing operator in the pipeline directly to the caching node in the RACE.
This makes most efficient use of the bandwidth of the local area network at
each site.

The Race performs two additional functions outside the scope of the operator model:

96 Ra p id : Responsive Architecture for Pipelined Imagery Dissemination

the inter-site bus connects all clients through the
master node of the RACE, which also has links to

(upstream scattering) are received along the same links
(downstream gathering)

Figure 4.10: General structure of the Race

1. it runs a speculative request service which uses one or more of the pipeline
scheduling policies defined in section 3.1.2; and

2. it maintains an inter-site sharing bus to support cache snooping and routing
collaborative messages between sites, as described in sections 3.1.4 and 3.1.5.

The general structure of the RACE is illustrated in Figure 4.10, while the design
details are presented in Figure 4.11. A RACE operator acts as the master node for
the cache. It runs a special request handler known as a RACEHandler, a speculative
request Scheduler and handles collaborative data sharing via the inter-site sharing
bus. The master does not have a Transformation function, since the Race does no
image processing. The master coordinates one or more Slave nodes. Slaves are used
to buffer large numbers of tiles, and have connections upstream to the pipeline and
downstream to visualisation clients.

§4.5 Race: The Rapid Cache 97

Figure 4.11: Architecture of the Race as an extension of the standard operator model

98 Ra pid ; Responsive Architecture for Pipelined Imagery Dissemination

4.5.2 Nodes and Ports in a Race

RACEPort An operator port on the Ra c e master node p. 185
RACESlavePort A port on a slave node p. 185
RACEHandler The request handler on the master node p. 184
SlaveHandler The handler on slave nodes p. 186

Each Race has a single master node and multiple slave nodes. The design of the RACE
master node is a variation of the general Operator which uses a highly specialised
form of operator port and a greatly simplified request handler. The master also has a
BroadcastPort used for collaborative data sharing, which is considered separately in
section 4.5.5. The master does not actually cache any data. Clients interact with the
master node only when first connecting to the operator, and to share collaborative
data. All tile requests are directed to Slave nodes, who do cache data.

The master node has a RACEPort for each of the type of data produced by the
pipeline. A RACEPort is both an InputPort and an OutputPort, but it does not buffer
tiles. The purpose of the ports on the master is to allow the cache to join the pipeline
during the service initialisation phase. When a RACE is connected to the pipeline
the Connection objects sent to the master’s input ports are replicated to the ports
of all slave nodes. This allows every slave to build a complete set of links upstream
and so exploit upstream scattering. The master’s ports are also used to provide a
Connection object to clients as they join the pipeline. The Connection object a client
retrieves from the master’s RACEPort describes how to build links to all Slave nodes.
In addition to the links upstream, the master node has a Link to each Slave node
in the cache, used for internal communications. Communication on the master’s
ports is coordinated by a specialised form of request handler, known as a RACEHand
le r . This handler is discussed in detail in the next section.

The design of the Slave nodes also a simplified form of Operator, lacking a Trans
form ation object and with a greatly simplified handling mechanism. Communica
tion to slave nodes is through one or more RACESlavePort objects. These serve as
both input and output ports, with a single T ileB uf f er and links both upstream and
down. The T ileB uf f er knows about, and can snoop, buffers on other Slave nodes
and may also have an Approximator function. Slaves have a ProxyHandler to listen
to messages from their ports, and relay them on to the RACEHandler running on the
master node. Each slave has a single specialist Link to the master node, not associ
ated with any port, used simply to relay Rapport messages.

Before describing the request handling behaviour of the RACE, it is important to
understand how and where tiles are cached. Large datasets are decomposed into a
series of tiles, and tiles are partitioned across the slave nodes in the RACE. The parti
tioning policy that maps tiles to slaves can operate many different ways, and should
be specified in the implementation profile. For example an HPF-style [59] cyclic dis
tribution policy could be used to statically assign tiles to slave nodes. Alternatively,
tiles of different types could be stored on different slaves: all imagery on one slave, all
elevation data on another. Replication of tiles adds further possibilities for interest
ing tile partitions. Whatever partition policy is used, it is encoded in the Request Map

§4.5 Race: The Rapid Cache 99

on each visualisation client. This allows clients to send TileRequest messages di
rectly to the appropriate Slave node, and so minimise response time for a cache hit.
If the partitioning is not static, clients will need to be informed of changes to the
partition through MapUpdate messages.

4.5.3 Handling Requests

RACEHandler Request handler run on the master node p. 184
SlaveHandler A proxy handler run on slave nodes p. 186

The request handling behaviour of Race is rather different to that of other operators.
Request handling is simplified by not having to support a Transformation function
in the RACE, but complicated by the need to support inter-site cache snooping. It
is further complicated by the need to support speculative request scheduling. The
logic to handle a request is split between the RACEHandler on the master node, and
the ProxyHandler running on each slave.

Handling Tile Request Messages TileR equest messages are sent from clients di
rectly to the slave nodes of a Race. No transformation of data is performed by
Race, it simply buffers responses from upstream operators, so requests do not need
the same complex support model described for operators in section 4.4.4. Conse
quently, the handlers running on slave and master nodes need to maintain only the
OutstandingSet of requests. This is necessary so that a port can send responses to
all requesting clients. However, there is no need for a DependentSet since there is a
many-to-one mapping from downstream requests to upstream requests34. There is
also no need to maintain supported and output queues since there is no transfor
mation function for the handler to interact with.

When a slave receives a TileR equest, the slave’s RACESlavePort processes the
request much as any other OutputPort would. If the tile is in the local T ileB uff er
the slave sends a TileResponse immediately and the client request is satisfied. If
not, the port may produce an approximation before passing the request on to the
local ProxyHandler. The ProxyHandler maintains a local OutstandingSet to record
all unanswered requests received by the slave. It does not, however, have the ap
propriate logic to make requests upstream. Instead it passes the request on to the
master RACEHandler via the master Link35.

The master node’s RACEHandler sends TileR equest messages up the pipeline.
When the master handler receives a TileR equest it is placed in a global Outstand
ingSet. The request is then sent to the appropriate upstream operator through one

34Unlike transforming operators, where there may be a many-to-many mapping of downstream re
quests to upstream requests.

35Before passing requests to the master, the slave updates the TileRequest.returnLink attribute
to reflect the name of the link from the upstream operator to the slave. This is required to support
upstream scattering, and allows the upstream operator to send the TileResponse message directly to
the slave.

100 R a p i d ; Responsive Architecture for Pipelined Imagery Dissemination

of the master’s input ports. The master will not receive a response to this request di
rectly, since the return link specified in the request is to a slave node. In parallel with
the request to the pipeline, the master broadcasts the same request to the RACE run
ning at all other sites via the inter-site (described below). The message is modified
in two significant ways before being sent to other caches. First, no approximations
are requested, whatever the original request may have allowed. Second, the doNot-
Propagate flag in the request message is set to true to stop other caches sending the
same request to the pipeline.

Response Handling The semantics of response handling also differ from those of
a normal operator, since they depend on where the response came from. If another
RACE responds before the pipeline, the response will be sent to the master node. The
master RACEHandler sends a CancelRequest message to the pipeline, removes the re
quest from the global OutstandingSet and sends it to the appropriate slave through
its master link. If, however, the pipeline responds before another RACE then the re
sponse will be sent to the slave node. The slave sends the response on to all clients
that requested the tile, removes the request from its local OutstandingSet and then
sends the response header - but not the full tile - to the master. This allows the
master to remove the request from the global OutstandingSet without the cost of
sending the full response payload.

Cache Snooping One final subtlety to request handling is required to support inter
site cache snooping. When a master RequestHandler receives a tile request from the
inter-site bus it sends the request on to the appropriate slave via the master link. If
the slave has the tile in its TileBuf f er it sends a response back to the master, which
in turn sends it to the requesting site. If the slave does not have the tile, the request
is simply ignored. Inter-site requests are not put in either OutstandingSet since no
response is guaranteed; a site only responds if it can.

4.5.4 Scheduling Speculative Requests

S c h e d u le r Runs on the master node and makes speculative p. 186
requests to improve responsiveness and throughput

The master node uses a request Scheduler to make speculative requests for tiles
and keep the pipeline running at peak throughput. The role of the Race Scheduler
differs somewhat from that of schedulers in other distributed systems. The Race
scheduler is so called because it schedules the flow of tiles through the pipeline in
the absence of user requests. User demand-driven requests have a higher priority
than speculative requests, and are satisfied before requests made by the scheduler.

The RACEHandler on the master node determines a rate at which requests should
be made. This rate evolves over time, in response to FlowControl messages received
from the pipeline. The handler uses the request Scheduler to produce speculative
requests to reach the required rate after all client-initiated requests have been sent.

§4.5 Race; The Rapid Cache 101

Speculative requests can be based on any or all of the scheduling policies described
in section 3.1.2. Implementing these policies is a complex problem in its own right
and a rich source of future research ideas, but is not specified here. It should, how
ever, be a fundamental element of any implementation profile.

4.5.5 Inter-site Bus and Collaborative Data Sharing
BroadcastPort Inter-site sharing port on the master node p. 183
BroadcastLink Link used to form the inter-site sharing bus p. 184
CollaborativeMessage Collaborative data sent over the bus p. 179

When users from more than one site access the same dissemination pipeline it is
useful for all the site caches to communicate, to perform cache snooping and to
share collaborative data. An inter-site sharing bus is established by providing each
RACE with a link to the BroadcastPort of every other RACE. The master node of a
RACE has a BroadcastLink to every other master node, which it uses to send Collab
orativeMessage and cache snooping TileRequest messages. It also has a link to
every client running at the local site, which is used to send and receive collaborative
messages for clients. The links and ports used to form the inter-site bus are subtly
different from those used in the dissemination pipeline and deserve some consider
ation.

The set of connections used by the inter-site bus is a variation on the Distributed
Peer with Client-Server sub-groupings [85] topology36. Naive implementations of
this topology, based on point-to-point network connections, scale poorly with re
spect to the number of sites and the number of users per site. The problem is made
worse by the need to support two different classes of traffic over the bus, for reli
able and unreliable delivery, imply that two links are required between each node.
Scalability is not a high priority for many implementations; unreliable [23] and reli
able [31,89] forms of multicast may offer a solution when scalability is important37.
However it is implemented, the essential requirement of the inter-site bus is that
it support one-to-many communications, with messages being sent from a single
source to multiple destinations.

Several new classes are used in the Race and in visualisation clients to provide
the inter-site bus. Some of these are presented in Figure 4.11. The cache master
node and clients all have a BroadcastPort used to send and receive collaborative
messages and tile requests. These ports are connected through BroadcastLink ob
jects which provide one-to-many message delivery with reliable and unreliable ser
vices. The Rapport message hierarchy is extended to include new classes of Collab
orativeMessage, as shown in Figure 4.12. Two concrete classes of message are sup
ported: CausalMessage and NonCausalMessage. A CausalMessage has a causal order
ing and requires reliable delivery. A NonCausalMessage has causal and non-causal

36Please refer to sections 3.1.4 and 3.1.5 and Figure 3.2 for more details of this topology
37Multicast is no panacea. Reliable multicast protocols are still largely unproven, and remain an

open research problem. Unreliable multicast is a commodity technology, but though very effective it
is poorly supported over wide area networks.

102 Rapid: Responsive Architecture for Pipelined Imagery Dissemination

sourceOperator
destinationOperator

«mobile»
RAPPORT:: Message

causalOrder
payload

«mobile»
RAPPORT:: CausalMessage

occurredAt: timeStamp

«mobile»
RAPPORT:: CollaborativeMessage

causalOrder
nonCausalOrder
payload

«mobile»
RAPPORT:: NonCausalMessage

Figure 4.12: Additional Rapport messages to support collaborative data sharing in the Race

ordering, and can be delivered over an unreliable connection. This provides the
minimum support for collaborative data sharing with sufficient causal ordering, as
described in section 2.2.3.

4.6 Minor Details and Points of Clarification

Having considered the Rapid architecture in detail from service negotiation through
to the provision of service, only a few minor details remain.

4.6.1 How Clients Connect to a Pipeline

Visualisation clients connect to the pipeline during the service provision phase. They
start by looking for the pipeline advertisement in the grid directory service. This
returns a global reference to the PipelineManager in charge of the pipeline. The
client uses the manager's getClientConnectionO method to join the pipeline. This
method returns a reference to the Race the client should use to interact with the
pipeline, make requests and share collaborative data. The client then connects to
the Race just as any other operator connection is formed. Security is not considered
in this thesis, but in a secure environment the interaction between client and man
ager could be used to perform some authentication. This is not a complete solution
but it provides a useful starting point.

4.6.2 Termination of Service

The PipelineManager is responsible for terminating a pipeline after the agreed pe
riod of service has elapsed. Termination automatically takes place when the man
ager notes that the endServiceTime has passed, and can also be triggered by external
actors by calling the manager’s abortPipeline () method. The manager is responsi
ble for graceful termination of a pipeline, but resources can still be reclaimed even
if a manager does not terminate the pipeline. Operator factories are only bound
to provide an operator for the period agreed during service negotiation. Once that

§4.7 Summary 103

period has elapsed, the factory is perfectly entitled to terminate the operator and re
claim the resources associated with it. The operator failure semantics of the pipeline
are described in section 3.2 on page 52.

4.6.3 Tiling and Level of Detail Mechanisms

No particular Tiling or Level-of-Detail (LoD) mechanism is defined as part of the
Rapid pipeline. Neither is a co-ordinate system for registering data sets. These are
application specific details and so should be specified in an implementation pro
file. All the Rapid pipeline offers is a common approach to tiling and LoD mecha
nisms. The getTileHierarchy () method of OutputPort returns a description of the
tiling and LoD mechanisms used in the pipeline. This description provides enough
information to infer the range of acceptable values for the LoD, tileCoordinates
and t i l e S iz e attributes of the TileRequest message. The format of this description
should be specified as a key detail of the implementation profile.

4.6.4 Observability

Observability is an important property of any large distributed system. The manager
supports service observation through a listening interface. This allows an interested
third party to observe pipeline events such as clients joining or services starting, and
also exceptions such as network or node failure.

4.7 Summary

This chapter has described the Responsive Architecture for Pipelined Imagery Dis
semination (Rapid) - the major result of this thesis. To satisfy the requirement for
throughput, Rapid uses a sophisticated approach to parallel streaming in a dissem
ination pipeline. To satisfy the requirement for responsiveness, Rapid develops a
distributed data cache known as the Race. The Race also meets the requirement
for collaborative data sharing by providing the backbone of an inter-site sharing bus
and is the centrepiece of the architecture. Finally, Rapid satisfies the requirement
for application management by defining actors, a schema and standard life-cycle
for dissemination pipelines formed within a computational grid.

Rapid is a design-time solution, and as yet there is no single, complete imple
mentation of it. The chapters that follow are case studies into partial implemen
tations. Each study focuses on one of the fundamental requirements outlined in
Chapter 1. The next chapter considers the responsiveness requirement. Chapter 6
considers ways to achieve high throughput in a dissemination pipeline and Chap
ter 7 considers application management. Taken together these studies provide a
substantial proof of concept for Rapid.

104 Rapid; Responsive Architecture for Pipelined Imagery Dissemination

Chapter 5

Comet: a Study in Client
Responsiveness

In this chapter we move from design to implementation and consider the responsive
ness requirements of a Virtual Environment as it accesses and uses geospatial im
agery. The chapter is a case study into a digital terrain visualisation system, known
as Comet [137]. Comet was developed for the tenth plenary meeting of the Com
mittee of Earth Observation Scientists, and subsequently presented to a range of
other users of geospatial imagery. As with the other case studies, Comet pre-dates
the Rapid architecture, and is not an exact subset. Consequently it serves to both
validate and motivate elements of Rapid. In this study it serves as a vehicle for con
sidering client responsiveness and the role of a site cache. In particular it addresses:

• the interaction between visualisation clients and a site cache;

• the use of downstream gathering to optimise site cache request processing;

• the patterns in which clients access data and the implications for tiling and
level-of-detail mechanisms; and

• the importance of asynchronous communications.

The purpose of this study is to review the design of Comet, compare it to Rapid
and evaluate its performance. Section 5.1 provides an overview of Comet, and sec
tion 5.2 discusses some of the unusual requirements that affected its design. Sec
tion 5.3 presents the architecture of the application in detail, with particular atten
tion to the threading and caching techniques used on the client, and the approach to
managing data on a server cluster. Section 5.4 provides experimental and analytical
evaluation of the performance and responsiveness of Comet. A key goal of this eval
uation is to determine how clients interact with a dissemination pipeline and a site
cache. Finally, section 5.5 presents a summary of the results and experience gained
from the Comet project. This organisation is repeated in the other case studies in
subsequent chapters.

105

106 Comet: a Study in Client Responsiveness

5.1 Overview of Comet

Comet is an interactive visualisation tool, which allows users to explore very large
Digital Terrain Models (DTMs) in real time using commodity hardware. It was de
signed specifically to showcase geospatial imagery from the IRS-1 family of satellites,
operated by the Indian Space Research Organisation.

In November 1996 Comet was demonstrated at the tenth plenary meeting of the
Committee of Earth Observation Scientists (CEOS) held in Canberra, Australia. The
demonstration involved a real-time visualisation of a 446-Megabyte digital terrain
model of Canberra and the surrounding Namadgi National Park. This DTM was a fu
sion of two different sets of IRS-1 imagery with an elevation model. It was produced
using mass-storage and high performance computing resources at the Australian
National University in Canberra and the University of Adelaide [57, 58]. These re
sources, which are physically separated by 1100km, were connected via the Telstra
Experimental Broadband Network1 (EBN) [162]. Figure 5.1 shows the raw datasets
that were fused to produce the final DTM. For visualisation purposes the DTM was
maintained on a cluster of Digital Alpha workstations at the Cooperative Research
Centre for Advanced Computational Systems (ACSys), and distributed across the city
to the visualisation client by a metropolitan area ATM network. Figure 5.2 presents
images of various interesting landmarks in the Canberra region, taken during the
demonstration.

The CEOS demonstration was a complete working example of how to dissemi
nate and visualise large geospatial datasets in real time. It involved large imagery
archives, high performance computations and broadband networks. However, much
of the processing and dissemination of the source datasets, and all application man- '
agement, was performed by hand. These issues were the motivation for the vGrid
and CROP systems presented in later case studies. Comet is not a complete imple
mentation of Ra p id , but is a useful vehicle for considering responsiveness.

5.2 Requirements of Comet

In general the requirements for Comet are representative of most visualisation sys
tems. However, there are three notable aspects to Comet’s design: it is intended
specifically for a single type of geospatial imagery: it compromises some responsive
ness in the interests of higher fidelity rendering: and it is required to inter-operate
with legacy software. These requirements do not undermine the value of Comet as
an experimental platform, but add interest to this case study.

Comet is intended solely to render imagery from the IRS-1 family of satellites.
These are equipped with a low-resolution (24 metre) multispectral sensor that pro
duces false colour images, and a higher resolution (6 metre) panchromatic2 sensor.

Australia’s first broadband network which provided 155mbps links between the two sites with av
erage round trip times on the order of 50 milliseconds

2Which produces grey scale/monochrome imagery.

§5.2 Requirements o f Comet 107

(i) texture imagery (ii) elevation data

Figure 5.1: Datasets used to produce the Digital Terrain Model for the CEOS demonstration:
texture imagery (i) was a fusion of IRS-1C LISS (colour) and PAN (greyscale) images; eleva
tion data (ii) was provided by the ACT government. The squares in (i) indicate the locations
of pictures in Figure 5.2

(i) North Canberra (ii) face of the Corin Dam

(iii) Orroral Valley (iv) boundary of texture imagery

Figure 5.2: Images produced by Comet during the CEOS demonstration: (i) looking south
toward the city of Canberra with the race course in the foreground; (ii) the face of the Corin
Dam; (iii) the Orroral Valley; and (iv) the boundary between the two sets of IRS-1 texture
imagery

108 Comet: a Study in Client Responsiveness

An unusual feature of the satellites is the ability to produce stereoscopic pairs of im
ages, which can be used to produce high-resolution elevation models at the same
resolution as the monocular texture images. To properly demonstrate this feature
the Comet Tenderer assumes that the elevation data in a terrain model is available
at the same spatial resolution as the texture imagery. This is a relatively unusual sit
uation and means that in some respects Comet is more like a voxel-based Tenderer
than the polygon-surface Tenderers described in section 2.2.4. It also means that tex
ture and elevation data are distributed together in Comet, where other applications
might choose to distribute them independendy.

Another notable aspect of Comet is the way it compromises some user respon
siveness to produce a high quality visual output. As described Chapter 2, most Vir
tual Environments attempt to redraw the display at a rate of 60 frames per second.
Comet renders at a lower rate (5-15 frames per second depending on the visuali
sation hardware) in return for higher quality visual results. For this reason frame-
rate is not a good measure of performance for Comet. Many of the experimental
results, presented later, are measured in terms of total render times rather than av
erage frame rates.

A final notable aspect of Comet is that it must interact with a set of legacy soft
ware, which requires communication through the Sun RPC [103] mechanism. Net
work links used in Comet are implemented over RPC and so are inherendy syn
chronous in nature. This is an important difference to the links used in Rapid.
Threads are used extensively to overcome this limitation and make communications
more asynchronous.

5.3 Architecture of Comet

Although Comet pre-dates Rapid it contains many of the important ideas and vali
dates much of the architecture. Figure 5.3 depicts the major components of Comet.
This includes a visualisation client and a RACE-style parallel site cache. The site
cache runs on a cluster of server machines, and is used as an in-memory store for
large datasets. Tiles are streamed from the cache to clients using downstream gath
ering. Clients also use a form of speculative fetching by Request Proximity, described
in section 3.1.2, to mask latency.

Despite these similarities there are important differences between the two de
signs, and limitations of Comet serve to motivate parts of Rapid. We will now briefly
review four important aspects of Comet: the use of a parallel site cache; the opera
tion of the client Tenderer; client-side caching; and asynchronous communications
techniques.

5.3.1 Data Distribution and the Server Cluster

Since it is not practical for clients to hold a complete copy of a large dataset, Comet
stores datasets in a large parallel site cache, on a server cluster. This cluster is equiv-

§5.3 Architecture o f Comet 109

Access Operator

3 Beni

Archive

< >

Site Cache Cluster

3 '

H k J —

Visualisation Client

L '
tenderer

view cache

UIH
model cache

Dataset is loaded from the archive, decomposed into
tiles, and partitioned across the cluster nodes using a
one dimensional cyclic distribution

Downstream gathering is used to connect the client’s
model cache (TileBuffer) to every node in the cluster.
View structures are m aintained in a higher level cache.

Figure 5.3: The architecture of Comet. The site cache is built on a server cluster and is ac
cessed by one or more visualisation clients. The cluster maintains an in-memory cache of
tiles of geospatial data. Clients request only those tiles of data visible from the user con
trolled camera.

alent to the Ra pid Cache (Race)3. Communication between clients and the cluster
do not exactly match those described for Ra p id , because the underlying network
links (equivalent to the Ra pid Link object) are based on RPC. This force interactions
between clients and the cluster to be completely synchronous. In other respects the
interactions between client and cluster are very similar to those of Ra p id .

The data cached in the cluster is a fusion of texture and elevation data. Conse
quently only a single dataset is exported from the cluster, shared through a single
port. The dataset is tiled, but only one tile size is supported and no level of detail
mechanism is used. The tiles of data stored in the cluster are known as model tiles,
since they correspond to a model-level structure rather than a directly renderable
view structure4. The implications of using a single fixed model tile are considered
later in this chapter.

Since the cluster is a parallel cache, downstream gathering is used to stream tiles
directly from each node in the cluster to clients. Downstream gathering requires
that clients have a request map function (a RequestMap object) to send requests to
the correct node in the cluster. This mapping is easy to perform because datasets
are partitioned across the cluster using a static, one dimensional cyclic distribution.
Consequently, clients are able to directly translate the coordinates of a model tile to

3In this chapter the term “cluster” is used to refer to the site cache or Race component. Comet uses
two caches on the client side in addition to the cluster cache. Rather than overload the term cache, the
term cluster is used to refer to the site-wide cache.

4See sections 2.2.1.1 and 2.2.4 for more details.

110 Comet: a Study in Client Responsiveness

view frustum ---------

lowest level of detail

highest level of detail

camera location

view tile

model tile

Figure 5.4: Determining visible tiles and level of detail. The Tenderer uses the camera view
frustum to determine what view tiles need to be drawn and the distance from the camera to
determine level of detail required.

a link to the appropriate cluster node.

5.3.2 The Rendering Process

Terrain rendering drives the execution of the Comet client. The actual Tenderer is rel
atively simple, and highly specialised to the imagery from the IRS-1 family of satel
lites. For example, the Tenderer does not use a continuous level of detail algorithm,
such as those described in section 2.2.4, but a discrete LoD mechanism. However,
its interaction with other elements of Comet is representative of more sophisticated
terrain Tenderers and relevant to the general problem.

Like the cluster, the Tenderer treats the terrain surface as a uniform grid of tiles,
known as view tiles. For each frame it determines the set of view tiles that are visible
given the location and orientation of the user controlled camera. This process is
shown graphically in Figure 5.4. It is im portant to note that the size of the tiles used
by the Tenderer need not be the same size as the model tiles used for distribution.
Indeed to avoid unnecessary overdraw, and visual artefacts such as “pop-up”, the
Tenderer typically uses much smaller tiles than those held in the cluster. So there
is an im portant distinction between the model tiles described in 5.3.1 and the view
tiles used by the Tenderer. No view tile ever overlaps the boundary of two model tiles,
so there is always a direct mapping from a view tile to a single underlying model tile.

Once the visible set of view tiles is known, each tile is rendered at an appropri
ate level of detail. The Tenderer uses six discrete levels of detail to represent view
tiles at different distances from the camera. The rendering of each individual tile is
performed using OpenGL display lists, where each list contains the geometric and
texture description of a single view tile at a single level of detail. The preparation and
m anagem ent of these lists is a non-trivial task and is performed by the view cache,
as described below.

§5.3 Architecture of Comet 111

5.3.3 Client Caching Strategies

The tiles required to render two consecutive frames are overwhelmingly the same.
Client-side caching is therefore a very useful way to improve rendering performance.
Comet uses two levels of client caching: a low-level cache that contains raw terrain
data (model tiles) from the cluster; and a higher-level cache that contains directly
renderable data structures (view tiles).

Each client maintains a low-level cache of model tiles in a tile buffer. This is
exactly like the TileBuffer on any input port of a R apid operator. The buffer, or
model cache, is arranged as a direct-mapped two-dimensional array of model tiles
retrieved from the cluster. Approximations are not supported by the buffer (i.e. it
does not include an Approximator). Tile requests that cannot be satisfied from the
buffer automatically trigger a synchronous network request (RPC) to the appropriate
node in the cluster.

A second level of caching is used on clients to manage renderable tiles. This is
known as the view cache, and it manages an associated set of OpenGL display lists,
accessed through a direct map. Each list represents a single renderable view tile at a
single level of detail. Because of the possible discrepancy in size between model and
view tiles, one model tile may map to several tiles in the view cache. The Tenderer
requests an appropriate display list from the view cache, for each view tile required
for a frame. When a Tenderer request causes a view cache miss, the view cache auto
matically requests appropriate data from the underlying model cache. This may in
turn lead to a model cache miss with an associated request sent to the server clus
ter. When both caches miss the rendering thread blocks while an RPC is made to the
cluster. Once the raw model data is available, it is sub-sampled, tessellated to form
polygons, textured and turned into an OpenGL display list ready for immediate ren
dering. The cost of these operations is not insignificant: one reason for having a
separate view cache.

Additionally, the view cache holds elevation information for the corners of all
tiles in the digital terrain model. This allows the Tenderer to perform tile visibility
tests to determine what view tiles should be rendered without requiring all candi
date tiles to be in either cache.

5.3.4 Multithreading and Quasi-asynchronous Data Delivery

In the worst case a simultaneous view and model cache miss can cause the render
ing thread to block while waiting for a tile from the cluster. To try to mask the cost of
model cache misses the Comet client uses an aggressively multithreaded approach
to fetching data from the cluster, independently of the rendering thread. This ap
proach attempts to ensure that when requests from the render thread cause a view
cache miss the request can be satisfied by the model cache, and so avoid exposing
the render thread to the network latency.

At the start of each frame the render thread determines the set of tiles within
the view frustum of the camera. This set is ordered so that tiles present in either

112 Comet: a Study in Client Responsiveness

client cache are rendered before those that must be retrieved from the cluster. While
the rendering thread is occupied with local tiles, a pool of fetch threads is used to
request the missing model tiles from the cluster. The aim is to overlap requests for
remote tiles with the rendering of tiles already in the local cache. This decouples the
rendering thread from data fetch duties and has the effect of making the otherwise
synchronous requests quasi-asynchronous. The more fetch threads used the greater
the number of cache misses that can be handled asynchronously.

The limitations of this technique are twofold. First, aggressive multithreading in
evitably introduces synchronisation overheads. However, since model tile requests
are independent the fetch threads require minimal synchronisation. Second, this
technique can only isolate the render thread from network latency when the client-
cluster request-response time is less than the time to render the cached tiles. This
is true for a useful range of client-cluster latencies: local and metropolitan area net
works (LANs and MANs) are typically quite fast enough.

5.4 Analysis of Comet

Comet provides an opportunity to explore the interactions between visualisation
clients and a RACE-style site cache. In particular it allows us to consider the effects
of cache size and latency (from either the network or a dissemination pipeline) on
client responsiveness. It highlights the importance of asynchronous communica
tions, tiling and level of detail mechanisms and provides a way of quantifying band
width usage. Finally, Comet uses a basic implementation of the Request Proximity
prefetch heuristic, described in section 3.1.2, which is also evaluated.

5.4.1 Test Environment and Metrics

The hardware infrastructure used to test Comet was the same as that used for the
CEOS demonstrations5. Several different networks were used in testing. The pri
mary network was a 155mbps ATM LAN that coupled the Alphastations. Latency
within the LAN was negligible - a fraction of a millisecond - and applications were
able to sustain a bandwidth of over 16 Megabytes per second. The ATM LAN was
augmented with a basic lOmbps switched Ethernet network. Although numerous
national and international broadband connections were also available they were not
used in the testing process. Higher network latencies were simulated and the wide
area networks used to validate the results of simulation.

The simulation of network latency affects the performance results that are re
ported in this section. Frame-rate is perhaps the best measure of performance for

5It consisted of a cluster of eight Digital Alphastation 600 machines with 266MHz EV5 CPUs, 128MB
RAM running Digital Unix 4.0. Since Comet is portable across a range of architectures and operat
ing systems, alternative PC-based clients were also used in some tests. These machines included a
dual processor Celeron-400 based system with a Matrox G400 graphics board and a single processor
Celeron-300 with an nVidia TNT graphics card, both running Windows NT 4.0 SP5.

§5.4 Analysis of Comet 113

visualisation systems, but it is not reported here for two reasons. First, as already
described in section 5.2, the average frame-rate of Comet was deliberately compro
mised in the interests of visual fidelity. Second, frame-rate is highly sensitive to jitter
in the network, and since network behaviour was simulated variations in rate would
essentially be artefacts of the network simulation.

To avoid these problems, application performance is reported in terms of total
render time for a well known exploration of a dataset. Several different datasets were
used during testing, with a range of different exploration paths through each set.
Each exploration requires the client to render an exact sequence of frames along
a predefined path. Application performance was measured as the total amount of
time required to render all frames of a given exploration.

5.4.2 Caching

Client-side caching is used to isolate the Tenderer from network latency and improve
responsiveness. Independent tests were performed to consider the effectiveness of
both the view cache and the model cache used by the client. These results demon
strate how client caches partially decouple the rendering processes on the client
from the dissemination pipeline. The model cache results have additional signifi
cance since they also apply to the design of a site cache (Race) and its interactions
with a dissemination pipeline.

The importance of client-side caching is evident from the hit rates of the two
caches. On average the view cache is able to satisfy 99.06% of tile requests from the
Tenderer6. Performance of the model cache is less remarkable: on average 58.5% of
requests from the view cache are satisfied by the model cache. In large part the rela
tively poor performance of the model cache is a result of the overwhelming success
of the view cache. But the view cache has limits. Other results, not presented here,
indicate that increasing view cache size is only valuable to a point. Having very large
view caches does not help performance. The optimal size of the cache should be
derived empirically since it is a complex function of tile size, dataset size and client
display resolution. What is important is that the client needs to cache only a small
fraction of a dataset in renderable data structures.

The effect of model cache size on performance was measured experimentally.
These results are relevant to both the client’s interactions with a site cache, and also
to the cache and its interactions with a dissemination pipeline. The critical issue is
how latency affects client performance. To measure this, the model cache size was
varied as a percentage of the total dataset and total render time was recorded for a
range of latencies. Separate measurements were made for both hot and cold caches.
A hot cache is one which is pre-loaded with model tiles, while a cold cache is initially
empty. The results of this test are presented in Figure 5.5.

The cold cache results in Figure 5.5(i) indicate that very large client model caches

6The standard deviation from this average is 2.6%, and this results almost entirely from the first few
frames where the view cache is empty.

114 Comet: a Study in Client Responsiveness

Terrain Cache Size effect on Render Time

latency 0 msec — i—
25 msec — x—
50 msec
75 msec ... a ...

100 msec — * —
200 msec - -©■—
300 msec - - ♦ -

: *----------------

percent cached (%)

(i) cold cache performance

Terrain Cache Size effect on Render Time

1500 (r

latency 0 msec — >—
25 msec —x
50 msec
75 msec ...<3

100 msec -
200 msec -
300 msec -
400 msec —
500 msec —

$vy

i 1000

1

''<ax • ‘'•A.

'a 'A
I

1
" Q. „

* * x .

500 3r-... ‘ G- ---
""■•0............. "“*13... -----

:i-------
-x--------

.....
— ------

3K —
----X --- ---------X -------------

...
- *---X---------

*A.

50 60
percent cached (%)

(ii) hot cache performance

Figure 5.5: Effectiveness of (i) cold and (ii) hot model caches. Performance as a function of
model cache size for a range of network latencies. Performance is measured in terms of total
render time, cache size as a percentage of the total DTM.

§5.4 Analysis of Comet 115

do not solve all client performance problems. In all cases there is a marked perfor
mance improvement up to a 30% cache size, but beyond this point the return on
larger cache size becomes marginal. This result supports the conclusion that a min
imum client cache is required for high rendering performance but larger caches are
not beneficial. The reason large caches add so little is due to the cost of cache misses.
With a cold (empty) cache there will always be a miss the first time a tile is requested.
Even a 100% cache must be loaded with data, and that defines a lower bound on per
formance for a purely request-driven system. As latency increases the first-miss cost
kills performance even with very large caches. This motivates the use of the specu
lative fetching and pipeline scheduling techniques described in section 3.1.2.

The hot cache results demonstrate the scope for improvement when speculative
fetching is used. A hot cache does not incur the initial miss cost of a cold cache,
though it can still thrash. The results in Figure 5.5(ii) show again that there is a dis
cernible performance improvement up to a 30% cache. However, unlike the cold
cache there continues to be a near-linear improvement up to a 100% cache, where
all curves obviously converge. This result is highly relevant to the design of the site
caches, such as the Race. Clearly site caches should he as large as possible and
should be pre-loaded or should speculatively fetch data. When this is done, a large
site cache can effectively isolate clients even with very high pipeline latencies.

Finally what is obvious from both the cold and hot cache results is the direct
relationship between performance and network latency. Clearly network latency is
the major limit to application performance. This motivates the use of techniques for
request aggregation and asynchronous data fetch.

5.4.3 Tile Sizes for Rendering and Distribution

Request aggregation is a common technique for improving performance of distrib
uted systems. The number of requests made by the Comet client is dependent on the
size of the view and model tiles it uses. Using larger model tiles than view tiles is a
form of request aggregation, since multiple Tenderer requests are satisfied in a single
network request. However, it is also speculative in the sense that a model cache miss
may only satisfy a single view cache miss. So this is one simple way to implement
the Schedule by Request Proximity prefetch policy.

Experiments were run to determine how effectively model tile size can be used
for request aggregation. View tile size must be chosen to optimise rendering perfor
mance and minimise visual artefacts. For Comet the optimal view tile corresponds
to 16k of model data. Model tiles can be significantly larger than view tiles. To de
termine optimal model tile size, client performance was measured for five different
sizes over a range of client-cluster latencies. Since network latencies had to be sim
ulated the application performance was measured in terms of total render time, to
avoid artefacts of simulated network jitter. Model tiles must be at least as large as
view tiles, so model tile size was varied from 16K up to 4 Megabytes7. With large

7Since the tiles are two dimensional and the size is doubled in each dimension, this corresponds to

116 Comet: a Study in Client Responsiveness

Tile size (kilobytes) Transfer time (milliseconds)

16 0.97
64 3.88
256 15.53
1024 62.14
4096 248.55

Table 5.1: Approximate transfer times for different sizes of model tile on a 155mbps ATM
LAN

tiles the bandwidth of the network affects the time required to transfer from clus
ter to client. Approximate transfer times over a 155 mbps ATM network for each tile
size are summarised in Table 5.1. The results of the experiment are presented in
Figure 5.6.

These results reveal some interesting trade-offs. With negligible latency the small
tiles perform best, but as latency increases the larger tiles become more efficient. At
low latencies the round trip time for a pair of request-response messages is minimal,
and so the tile transfer time becomes the limit to performance. Hence small tiles
with an insignificant transfer time out-perform large tiles with significant transfer
times. However, at high latencies the request-response overhead equals or exceeds
the tile transfer time even for large tiles. In this situation the request aggregation
achieved with large tiles comes into play. The reduced number of requests required
for a given spatial extent offsets the greater cost of transferring a large tile. This result
can be restated more simply. Small tiles work best at low latencies because they
minimise the cost of a model cache miss. Large tiles work best at high latencies
(where a cache miss is expensive) because they reduce the number of model cache
misses.

There is a limit to the use of larger tiles. The results in Figure 5.6 show that for
latencies greater than 40 milliseconds the 1-Megabyte tiles outperform all other tile
sizes, including the 4-Megabyte tiles. Even with a 200-millisecond latency the 1-
Megabyte tiles continue to perform best. Several factors contrive against the very
large tile size: cache utilisation and view extent being the principal culprits. Along
the edge of the view frustum only part of the model tiles will be used for view tiles.
With 4-Megabyte tiles the entire camera view frustum can fit within a very small
number of tiles, and so there is considerable amount of unused data in the edge
tiles. This data has a negative impact on model cache utilisation as well as requiring
that unnecessary data be fetched. This reveals the limit of using model tile size to
aggregate view tile requests. Cache utilisation is considered in more detail in sec-

increases in the tile size in powers of four.

§5.4 Analysis of Comet 117

tile size 64K — x—
tile size 256K

tile size 1MQ....
tile size 4M — * —

.x-----*
__________ l i

{§'-■■■■§........-Q------- e -

latency (msec)

Figure 5.6: Effect of model tile size on performance. Performance in total render time is
reported for five different model tile sizes against a range of client-cache round trip times

tion 5.4.5.
This limit notwithstanding, request proximity is a very useful heuristic for spec

ulative fetching data. It works well when clients access a site cache, and is equally
applicable to site cache interactions with a dissemination pipeline.

5.4.4 Multithreading and Asynchronous Communication

The significance of asynchronous interactions in a dissemination pipeline was also
measured experimentally. Comet makes aggressive use of multi-threading to try and
decouple the Tenderer from the cache cluster. Model cache misses are the significant
event: tests were run to determine how well the fetch threads are able to isolate the
Tenderer from network and pipeline latency when a cache miss occurs. Figure 5.7
demonstrates the impact of model cache misses on average frame rate. To accentu
ate the trend these results were produced with a 100-millisecond request-response
latency. The results show a clear step function where increasing the number of fetch
threads also increases the step size. Linear regressions show the general trend: in
creasing the number of fetch threads greatly reduces the average frame rate where
there are significant numbers of model cache misses. In other words, as latency
increases the more asynchronous requests the better. Figure 5.8 shows this trend
in terms of total render time, across a range of round trip time latencies. Again,
increasing the number of fetch threads can dramatically improve performance in
higher latency network environments.

These results highlight the need to decouple execution of visualisation clients

118 Comet: a Study in Client Responsiveness

Figure 5.7: Effect of multithreaded data fetch. Average frame rate was measured as function
of model cache misses with different numbers of fetch threads: eight threads (top left), 16
threads (top right), 32 threads (bottom left) and 128 threads (bottom right)

Latency effect on Render Time with Multithreading

fetch threads

8Q
16 — *
32 — o —
64

latency (msec)

Figure 5.8: Summary of effectiveness of asynchronous data delivery. Total render time as a
function of client-cluster round trip latency for various numbers of fetch threads

§5.4 Analysis of Comet 119

from the rest of the pipeline. The asynchronous behaviour of the Rapid pipeline
does this more effectively than aggressive multithreading of remote procedure calls.

5.4.5 Level of Detail and Cache Utilisation

Although the client view cache and Tenderer use a level of detail mechanism, the
model cache and the cluster do not. Consequently a Tenderer request for a single
view tile at low resolution can cause the delivery of a much larger model tile at full
resolution. When this happens unnecessary data is transferred and cached, resulting
in poor utilisation of the model cache. This in turn has implications for how much
of the dataset can be viewed at once.

Profiling the levels of detail used by the Tenderer reveals an important result: the
great majority of a dataset is only ever viewed at the lowest levels of detail. Figure 5.9
shows the average level of detail requested by the Tenderer from the view cache per
frame. For an average frame only a tiny fraction of all tiles will be drawn at the high
est resolution. The overwhelming majority of requests are at the lowest possible level
of detail. Figure 5.10 demonstrates how this impacts on the overall requirements of
resolution within the DTM. After an extensive exploration of a DTM, just 2% of the
model was viewed at full resolution and 10% was viewed at half resolution, while
71% was viewed at the second lowest resolution and over 99% at the lowest. Clearly,
caching all model tiles at full resolution is unnecessary and inefficient.

Model cache utilisation was measured to determine just how inefficient the use
of full resolution model tiles is. On average, model cache utilisation was roughly four
percent. The navigation path through a dataset obviously has a marked impact on
cache utilisation. However, in low-level explorations intended to maximise model
cache utilisation, on average only 4.24% of data in the cache was actually required
by the Tenderer. For a 13.2MB cache only 572KB of data was actually required to
render an average frame: the rest of the cache was consumed by data at a higher
resolution than required.

Unfortunately this problem also means that the size of the model cache effec
tively limits the extent of the dataset that can be viewed at once. When the view
frustum of the camera covers an area larger than can be held in the model cache, the
cache starts to thrash. At this point performance and responsiveness are unaccept
ably degraded. This situation occurs when the camera is greatly elevated above the
terrain surface, so as a practical matter the size of the model cache limits the maxi
mum height from which the image can be viewed. Since the camera requires only a
low level of detail when greatly elevated, model cache thrashing occurs when cache
utilisation is at its lowest. The cache thrashes as it attempts to fetch data, the over
whelming majority of which will not be used. This clearly demonstrates the need for
a level of detail mechanism to be used between visualisation clients and a site cache.

5.4.6 Network Bandwidth Usage

It may seem reasonable to imagine that visualising massive images would be a band-

120 Comet: a Study in Client Responsiveness

Level of Detail Required by the Renderer

Figure 5.9: Average level of detail of view tile requests by the renderer. Note the logarithmic
scale of the vertical axis. Only a minute fraction of renderer requests are for the highest
resolution. The overwhelming majority of tiles are drawn at the very lowest levels of detail

Overall Level of Detail Use

Figure 5.10: Overall access to data at different levels of detail. At the end of an extensive
exploration on a very small percent of the data was every required at full resolution

§5.5 Summary 121

width limited problem. In fact this turns out not to be the case, and the bandwidth
requirements for Comet clients are easily satisfied by an ordinary local area network
(LAN). Analysis of bandwidth use shows that on average Comet requires only 1.187
mbps throughput, with peak use an order of magnitude higher at 11.055 mbps8. This
leads to the simple conclusion that network latency, and not bandwidth, bound the
performance of Comet. It also explains why large client caches aren't especially help
ful; there simply isn’t that much data to cache. Finally, it highlights the need for
scheduling and speculative fetch policies to maintain high throughput in a dissem
ination pipeline. By itself, demand from a single client is not sufficient to saturate a
high-capacity pipeline: even with multiple clients accessing a pipeline the average
demand is not great.

5.5 Summary
Comet is a system for visualising imagery from the IRS-1 family of satellites. In this
chapter it was used as the basis of a case study into client responsiveness. Comet
validates many important ideas from the Rapid architecture, and motivates others.
The most important results for the case study were:

• Latency, not bandwidth, is the major limit to client performance.
• Use of large, site caches and parallel streaming with downstream gathering was

extremely effective.
• Site caches should be as large as possible. Visualisation clients should also

cache view and model data structures, but do not need large caches.
• Site caches should use speculative fetch policies to load data and preempt fu

ture client requests. Schedule by Request Proximity is a valuable heuristic.
• A level of detail mechanism must be used between clients and a site cache,

otherwise client cache utilisation is poor and cache size restricts the visible
area of a dataset.

• Asynchronous communications are essential for responsive visualisation. Mul
tithreading offers a partial solution when links are based on a synchronous net
work protocol, such as RPC.

The experience of the CEOS demonstration also motivated the development of
integrated dissemination pipelines and application management frameworks. High
throughput dissemination systems are considered in the next chapter. Application
management is the subject of the Chapter 7: a case study into the vGrid system.

8This usage level is partly related to the relatively low frame rates of the Tenderer, and is also de
pendent on the speed of exploration of the data. Obviously a high-speed zoom across the surface of
the image exposes more data than a slow pan. Balancing this, it is also important to note that the very
poor cache utilisation described in section 5.4.5 means much more data is transferred to the client
than is strictly required. If even a simple LoD mechanism were used by the model cache and cluster it
would dramatically cut the peak bandwidth requirements. So the peak requirement is well within the
performance range of a LAN.

122 Comet: a Study in Client Responsiveness

Chapter 6

Short Studies in Dissemination and
Throughput

This chapter considers how high rates of throughput can be achieved when process
ing and distributing geospatial imagery. It takes the form of three short case stud
ies into systems developed by the author and other members of the Online Data
Archives (OLDA) Program at the CRC for Advanced Computational Systems (ACSys),
following the experience of the CEOS dem onstration1.

A common theme in each of the studies is overcoming the perform ance limita
tions of distributed-object middleware. Object Request Broker (ORB) systems, such
as CORBA [105], Java RMI [133] or COM+ [62], provide a high level abstraction for
network communications by making remote services appear to be part of a local
computation. This abstraction allows for simple client developm ent and encour
ages reuse of services. Many geospatial imagery archives provide search interfaces
through an ORB. Implementations of Ra p id are likely to use an ORB for the appli
cation management com ponents and service negotiation interface. However, ORBs
have well-known problems with bulk data transfers [42,43,140]. The systems pre
sented here overcome this problem by using specialist bulk data transfer m echa
nisms connected to form dissemination pipelines.

The three systems are presented in chronological order. Section 6.1 describes
the OATS system, which provided a browsing interface for a repository of GMS-5
data. OATS was one of the first-generation of dissemination systems developed by
the OLDA team and consequently had some significant limitations. The successor to
OATS was a pipeline architecture developed at the Australian Defence Science Tech
nology Organisation (DSTO). It is described in section 6.2 along with experimental
results which quantify the perform ance problems associated with using ORBs. This
work had a significant impact on the design of CROP, the third and final system con
sidered in section 6.3. CROP was a comprehensive imagery processing and dissem-

H he author made a significant contribution to each of these projects. I was responsible for all the
design and 75% of the implementation of OATS [58]. I undertook all the performance experiments and
analysis presented in section 6.2.2 and 100% of the design of the IMAD-1 architecture [140], Design of
the throughput-related elements of CROP drew extensively on my work with IMAD-1, and I provided
input and critical review throughout the project.

123

124 Short Studies in Dissemination and Throughput

ination system, which achieved very high levels of performance.
Collectively these three systems feature many of the major elements of the Ra p id

pipeline, and demonstrate how to achieve high rates of throughput. They also high
light the need to perform application management for large dissemination pipelines;
a problem considered in the next chapter.

6.1 OATS: Study of an Imagery Archive Browser

OATS 2 is a generic search and browse interface for large collections of geospatial
imagery. It was built as a successor to the ERIC [73] system which managed an
archive of GMS-5 imagery held by ACSys. OATS was widely demonstrated, including
a high-profile presence at ATUG’973, and attracted interest from research and mil
itary users. It is relevant to this thesis for two reasons: because it was designed to
be independent of any particular type of geospatial data; and because it uses some
similar performance techniques to Ra p id . In particular it demonstrates the use and
viability of the level of detail, scheduling and caching techniques described in Chap
ter 3. It was one of the first systems developed by the ACSys CRC to explore dissem
ination of geospatial imagery. As such the limitations of OATS are as informative as
its strengths.

6.1.1 Overview and Requirements

OATS was an imagery dissemination system, pure and simple, with no thought of
image processing. It provided a client-side searching, browsing and access interface
to large archives of geospatial imagery. Figure 6.1 depicts the OATS client in use
with the ACSys GMS-5 archive. The client provided a two-dimensional view of each
dataset, with additional controls to navigate between channels and view ephemeral
data and metadata.

The major requirement of OATS was that it should be able to support a very broad
range of imagery types and archives. As discussed in Chapter 2, geospatial imagery
from different sources can have very different characteristics, visible channels and
associated metadata. OATS was not tailored to any one single type of data or archive:
instead it provided a simple, generic framework for browsing and viewing many dif
ferent types of imagery. Without compromising this generality, two assumptions
were m ade about the imagery accessible to OATS:

1. that images would form time sequences with navigation in temporal order a
common event; and

2. that images would be available at up to three levels of detail.

2OATS is an acronym for Online Archive Traversal System.
3The Australian Telecommunications Users Group Conference, the premier gathering of the

telecommunications industry in Australia

§6.1 OATS: Study o f an Imagery Archive Browser 125

OATS Explorer
> **7* 9
O ATS

Browse search

1
OLDA ANU development GMS-5 archive

r Visible Spectrum Image Channel

• : Intra-red Channel 1

C Infra-red Channel 2

C Intra-red Channel 3

Number of Results

14-Nov-96 3 33 00 PM

16-Nov-96 8:42 00 PM

Download Details

15-NOV-96 12:32:00 AM

Image Channels Navigation I Manam

4 '

•) Visible Spectrum Image Channel

C Infra-red Channel 1

C Infra-red Channel 2

C Infra-red Channel 3

Figure 6.1: The OATS client exploring an archive of GMS-5 Images

126 Short Studies in Dissemination and Throughput

The OATS interface was designed to allow efficient navigation in the temporal di
mension. The GMS-5 satellite produces 28 sets of imagery every day, and the ACSys
archive spanned several years. Other archives also contained data with significant
variation over time. So the emphasis for OATS was on browsing time variant data,
with temporal locality providing a useful heuristic for cache optimisation and spec
ulative fetching.

OATS managed imagery at three different levels of detail. The lowest level con
sisted of small thumbnail images with a resolution in each dimension of a hundred
pixels or so. Thumbnails allow a user to quickly scan and review the gross features
of a dataset, without having to download large amounts of data. The second level
of detail was designed to match the screen size of a typical user’s workstation, with
a resolution of 500 - 1000 pixels in each dimension. These medium resolution im
ages were large enough to saturate the user’s display device, without requiring the
full dataset. Finally, the full imagery4 was available when required. Although crude,
this approach to level of detail was very sensible for a two-dimensional client inter
face. No tiling mechanism was associated with OATS imagery, but users could select
subsets of an image.

6.1.2 Architecture and Implementation

The architecture of OATS, depicted in Figure 6.2, bears some obvious relations to
Rapid. It used a simple interface to an imagery archive that was easily implemented
as a wrapper through the Adaptor pattern. It was independent of any specific type
of data: an abstract model of type was used to describe the structure and compo
nents of an image, and the system adapted itself based on that description. This is
very similar to the descriptive data passed between Rapid operators in a Connection
object. A simple level of detail mechanism was employed to manage data size. OATS
was not designed to perform any image processing so the approach to disseminating
data was very simple: data was distributed directly from archives to clients across an
object bus. Finally, caching strategies were used along with speculative data fetching
to improve responsiveness, and to optimise temporal navigation.

OATS and the GMS-5 archive were implemented in three parts: a browser client,
a metadata archive manager and a large data repository kept on a tertiary storage
system. The browser client was implemented in 3500 lines of Java code with a clear
separation of data handling, archive interaction and user interface code. The full
GMS-5 archive was stored on a migrating tape file system using HDF [33] files5. To
guarantee good interactive performance a separate metadata catalogue was main
tained on a disk array to support fast searching and browsing of thumbnail images.

4Which for the GMS-5 archive was 4 channels of 2291x2291 pixels, with 3 IR channels stored at 8
bits per pixels and one visible channel at 6 bits per pixel.

°HDF is the Hierarchical Data Format developed by the NCSA and widely used as a general purpose
file format for large scientific datasets and imagery.

§6.1 OATS: Study o f an Imagery Archive Browser 127

(secondary storage)
Full Data Archive

(tertiary storage)

Figure 6.2: The architecture of OATS. The client application cached images at two different
levels of detail with speculative fetch policies used to improve cache hit rates. Interactions
with remote archives took place through an object bus. The GMS-5 archive kept a database
of imagery metadata on high-speed disk array, and the full data archive on a massive tertiary
storage facility.

128 Short Studies in Dissemination and Throughput

6.1.3 Analysis

There are three interesting lessons to draw from the OATS project. First, the ap
proach to data-type independence directly informed the design of the Connection
object in Rapid. Although its primary use was to serve an archive of GMS-5 imagery
it was trivial to modify OATS to support other types of imagery (including an archive
of the “Dilbert Zone” comic strip!). Despite radical differences in image formats,
channel structure and archive interfaces, no code changes were required to support
the basic data handling or movement associated with the new type. The ease with
which OATS supported new types demonstrates the generality of the Connection
object included in Rapid.

The second lesson to draw from OATS relates to its use of caching and speculative
fetching to improve responsiveness. Even though it was a two-dimensional browse
client, with limited responsiveness requirements, it used caching and speculative
fetching to improve performance of temporal navigation. Even when the client and
archive were situated on the same local area network, performance of the client was
poor unless caching was used. A speculative fetch policy was also used to retrieve
thumbnails and channels from medium-resolution images. These policies were de
signed to optimise the hit rate of the client image cache when a user iterated through
a set of images in temporal order. That such mechanisms were required for a near
time browser emphasise their importance for real-time visualisation.

The third useful lesson from OATS relates to throughput problems when access
ing remote archives. The core Archive interface, used both to search for images and
to access them, was implemented in Java RMI. Transfer of bulk image data occurred
over the RMI object bus. Unfortunately, like many distributed object technologies,
RMI is not optimised for bulk data transfer. Consequently throughput became a
major limit to the performance of OATS archives when viewing medium and full res
olution images. This highlights the need to construct pipelines from efficient bulk
data transfer mechanisms.

6.1.4 Summary of OATS

• Provided searching and browsing access to geospatial image repositories.
• Supported many different types of imagery.
• Used caching and speculative fetching to improve the performance of tempo

ral navigation.
• Supported a crude level-of-detail mechanism.
• Poor throughput due to use of ORB-style communication mechanisms.

6.2 IMAD: Pipelined Imagery Dissemination
The Imagery Management and Dissemination (IMAD) Project [48] is run by the Aus
tralian Defence Science and Technology Organisation (DSTO). Its brief is to develop
a national system to manage and access the many different types of imagery used

§6.2 /MAD: Pipelined Imagery Dissemination 129

by Australia's armed forces. In early 1997 m em bers of the IMAD team reviewed the
work of the ACSys OLDA program, particularly the Comet and OATS projects. The re
view revealed a high degree of commonality between the two research groups, and
was the catalyst for a fruitful collaboration. This case study is one of the results of
that collaboration. It is also documents the second in the family of dissemination
systems designed by ACSys. IMAD is an ongoing project. This study covers that pe
riod of the IMAD project when the author was closely involved with it, and briefly
reviews subsequent developments.

6.2.1 Overview and Requirements

Geospatial imagery is particularly significant for military command, control, com
munications and intelligence (C3I) applications. It is acquired from a range of dif
ferent sources and held in facilities around the country. The challenge for the IMAD
project is to make all this disparate and decentralised imagery available to C3I appli
cations running wherever members of the Australian defence forces are deployed.

This task is complicated by three main requirements: to maximise the use of
civilian technology (often referred to as COTS6 technology); to support a range of
different client applications and networks with greatly varied perform ance charac
teristics; and to support on-dem and image processing as part of the dissemination
process. The use of COTS technology focused on two standards: imagery should be
held in a GIAS-compliant repository [149]; and the whole dissemination system be
implem ented as a set of reusable CORBA [105] services.

Clients of IMAD may vary greatly in term s of both visualisation capabilities and
network bandwidth. The imagery used by photographic analysts with high perfor
mance workstations and broadband networks, may also be used by com m anders
in the field working with portable hardware and very low bandwidth network con
nections. Support for this later class of user is a very high priority and implies use
of image compression and other techniques to optimise throughput. Managing the
diversity of clients also presents an application m anagem ent problem.

Military users have a variety of image processing needs. Automatic feature de
tection algorithms are an area of active research, and have the potential to revolu
tionise the use of geospatial imagery. Such algorithms are very demanding and re
quire high-performance computing facilities. While these techniques evolve, feature
detection is still performed manually by highly skilled analysts. Over time analysts
build up a collection of valuable annotations for each image. Fusing annotations
and other data sets with imagery is, in itself, an im portant requirement.

The work of the IMAD project has great relevance to the Rapid architecture. In
most respects the IMAD applications are ideal candidates for use of Rapid. While
collaborative data sharing is not a high priority, throughput and, to a lesser extent,
responsiveness are crucial. The problems of application m anagem ent are also the
subject of ongoing research at DSTO.

Commercial Off The Shelf

130 Short Studies in Dissemination and Throughput

Machines
Dell OptiPlex GL+ 5100 desktop PC - 100MHz Pentium processor, 32MB RAM, Windows 95

Sun SparcStation 10 - dual 40MHz SuperSparc processors, 164MB RAM, Solaris 2.5

Silicon Graphics 02 - 180MHz MIPS R5000 processor, 64MB RAM, Irix 6.3

Sun Enterprise E3000 - dual 250MHz UltraSparc processors, 512MB RAM, Solaris 2.5.1

Digital AlphaStation 600 - 266MHz Alpha EV5 processor, 128MB RAM, Digital Unix 4.0c

Networks
10 mbps switched Ethernet

100 mbps switched Fast Ethernet

155 mbps ATM (Digital Gigaswitch)

Software
Java Development Kit (JDK) 1.1

JVMs with support for interpreted execution, JIT compilation and native code translation

Visigentic VisiBroker 3.0

Table 6.1: The test environment used for IMAD experimental work

6.2.2 Experimental Analysis

Because of the throughput problems experienced with OATS, a number of perfor
mance experiments were conducted for IMAD. These sought to evaluate tiling is
sues and measure the performance of COTS object middleware for bulk data trans
fer [140]. The results of these experiments also motivated the design of Rapid . Com
plete details of the experimental work undertaken by the author have already been
published [140]. Briefly, the experiments sought to quantify two issues:

1. the impact of tile size on communication throughput, and
2. the performance of a commercial CORBA implementation (COTS technology)

compared to that of low-level TCP sockets

The first issue is very significant to Rapid since it does not force a common tiling
policy be used between operators, or mandate a minimum tile size. The second is
sue is equally significant since it motivates the use of separate service negotiation
and service provision interfaces. A third issue that came to light during the experi
mental work was the need to short circuit network-oriented communications when
two operators are located on the same host.

Experiments were run on a range of machine architectures and networks ranging
from commodity PCs and a lOmbps Ethernet to large symmetric multi-processors
and 155mbps ATM networks. Table 6.1 summarises the significant details of the test
environment.

The experiments consisted of joining two null operators and measuring the length
of time required to transfer a large image from one to the other. Various test im
ages were used, typically several hundred megabytes in size. The test images were

§6.2 IMAD: Pipelined Imagery Dissemination 131

transferred as a collection of tiles, with only one tile request outstanding at any time.
Three different transfer mechanisms were available to the operators: a bulk data
transfer bus using native TCP sockets; and two high-level object buses using the Visi-
genic VisiBroker ORB [151] and lava RMI7.

6.2.2.1 Communications Throughput

Figure 6.3 presents the throughput results measured on each of the three networks
for socket and ORB transfer mechanisms. Several things are notable about these re
sults. First, performance of the ORB is very sensitive to the size of tiles used: peak
performance requires tiles of at least 256K. Note, however, that in many environ
ments the ORB was unable to deal with very large tile sizes and simply crashed the
application. Fine-tuning an ORB for peak throughput is a manually intensive pro
cess. It is also places considerable restrictions on the higher level imagery applica
tions, by requiring that they adapt the size of their tile requests to optimise through
put. By contrast the performance of the socket was far less sensitive to tile size.

A second notable feature of the experimental results is that, while the ORB per
forms relatively well over slow networks, it falls away dramatically over high-speed
networks. Figure 6.3(i) shows that the peak ORB throughput over a lOmbps Ether
net is 82% of the peak socket performance. However, over a lOOmbps Ethernet -
6.3(ii) - the ORB can only manage 39% of the socket throughput. For a 155mbps
ATM network - 6.3(iii) - the ORB manages only 32% of the socket rate. These re
sults reinforce a widely reported phenomenon: that ORB performance is not opti
mised to high-speed bulk data transfers [42, 43]. An interesting aside was that the
socket implementation was able to completely saturate the ATM network, even with
interpreted versions of the Java virtual machine8, dispelling the myth that Java is a
performance bottleneck for network applications.

Finally the results in Figure 6.3(iii) demonstrate how greatly the use of the Nagle
algorithm [131, pages 202-204] can affect ORB performance9. The Nagle algorithm
is used to aggregate messages within a TCP stack to prevent flooding a wide area net
work with small packets. It does this by imposing a small delay on the transmission
of individual packets. This is known to cause problems for certain patterns of traffic,
and greatly affects the performance of the ORB. For the ATM test network the use of
the Nagle algorithm causes highly erratic behaviour for the ORB with respect to tile
size: in some cases throughput is less than a hundred bytes per second.

These results clearly illustrate the need for a specialised bulk data transfer mech
anism to complement the use of a high level object bus. This separation is cleanly
made in Rapid though the use of the Operator interface for performance insensitive

7Results for the RMI implementation are not presented here since the VisiBroker implementation
consistently outperformed it.

8The interpreted socket implementation consistently achieved throughput rates equivalent to 96%
of the theoretical peak rate for IP over ATM.

9Disabling the Nagle algorithm is often referred to as use of the “no delay” option for a TCP socket.
Not all TCP implementations allow the Nagle algorithm to be turned on or off for individual sockets.

132 Short Studies in Dissemination and Throughput

Peak for 10mbps Ethernet

Object bus

1 2 4 8 16 32 64 128 256 512 1024 2048

tile size (k)

(i) lOmbps Ethernet

11000

10000

ji> 5000

4000

Peak for 10Ombps Ethernet

Object bus

tile size (k)

(ii) lOOmbps Ethernet

18000

16000

14000

12000

1
— 10000 (A
a>
2
a> 8000

I
6000

4000

2000

0
1 2 4 8 16 32 64 128 256 512 1024 2048

tile size (k)

(ii) 155mbpsATM

Figure 6.3: IMAD throughput measurements for three different networks. The performance
of an ORB (Object bus) is compared with that of a raw TCP socket (bulk transfer bus). Note
the difference in scales on the vertical axes of each graph Use of the Nagle algorithm can
cause ORB performance to be highly erratic over high-bandwidth connections.

Peak for 155mbps ATM
— Bulk transfer bus

Object bus (Nagle algorithm off)
Object bus (Nagle algorithm on)

"//A*'
. . a - ; "

§6.2 IMAD: Pipelined Imagery Dissemination 133

functionality, and the lightweight Rapport protocol over low-level optimised Links.
Within the GIAS standard there is no provision for bulk data transfer mechanisms:
yet such are clearly required to achieve high rates of throughput.

6.2.2.2 Efficiency of Loop-back Communications

An unexpected result came from testing loop-back communication performance. To
measure the peak throughput of various TCP stacks the tests were performed with
both operators running on the same machine. This provides a measure of the loop-
back performance of each machine and gives an indication of performance in an
idealised network. More usefully, it measures the effectiveness of the socket and
the ORB as inter-process communication (IPC) mechanisms. This is particularly
relevant to Rapid in situations when two operators are located on the same physical
machine, such as a high performance server.

The results of loop-back tests for the two highest performing machines are pre
sented in Figure 6.4. In both cases the socket implementation comprehensively out
performs the ORB. More importantly, Figure 6.4 reveals how completely inappro
priate network-oriented primitives are for inter-process communications. Both ma
chines have processor memory-bandwidth of several gigabytes per second, yet can
only transfer data between processes at a rate of tens of megabytes per second. Ob
viously a more efficient IPC primitive, such as shared memory, should be used for
bulk data transfer between operators running on the same machine.

The Rapid Connection and Link objects allow such mechanisms to be used trans
parently.

6.2.3 Architecture and Relationship to Rapid

The results of experimental work led to the development of a a streaming, pipelined
architecture for imagery dissemination, known as IMAD-1. This was a subset of
Rapid without the focus on responsiveness or collaborative data sharing and limited
support for application management. The main aim of the design was to optimise
throughput of two COTS technologies: CORBA and GLAS. As with Rapid, the solu
tion was predicated around a two-phase model of service, with non-critical negotia
tion performed through a CORBA object bus and time-critical data delivery provided
through an optimised operator network.

Four general categories of actor formed the basis of IMAD-1: service traders; ser
vice managers; operator factories and operators. These four actors are also present
in Rapid. Figure 6.5 describes the four base actors and depicts their interactions.
From these generic actors a collection of specific services was proposed for IMAD-1,
including:

134 Short Studies in Dissemination and Throughput

70000

65000

60000

55000

50000

45000

40000

35000

30000

25000

20000

15000

10000

block size (k)

(i) Digital Alphastation 600

70000

65000

55000

50000

45000

40000

35000

30000

25000

20000

15000

10000

block size (k)

(ii) Sun Enterprise E3000

Figure 6.4: Throughput measured over the loopback interface for two high performance
machines.

§6.2 IMAD: Pipelined Imagery Dissemination 135

CORBA bus

service trader operator factory

client

operator

operator factory

service manager operator

creation relationship -------- >

smart pipe communication (CORBA bus) -------- ►

fa t pipe communication (bulk transfer)

service trader - the first point of contact for client applications, used by the client to find or construct a service
manager which it uses for operational requests. A trader represents a class of service available to clients.
The trader negotiates with the client to determine its requirements, and then directs the client to a service
manager which can satisfy the operational requests. The manager may be created by the trader specifically
for the client, or may be drawn from a pool of idle managers.

service manager - built by a trader for use by a client when it is in the operational stage. A manager represents an
instance of a service. Each manager is unique to a single client for the lifetime of that client’s operational
requirements. In general service managers use a network of operators to satisfy client requests.

operator factory - produces the operators used by a service trader to build a service manager. Clients interact
indirectly with operator factories, through a service trader.

operator - a basic operation of a computation. Well-defined input and output interfaces allow operators to be tied
together to form networks. Clients interact indirectly with operators, through a service manager.

Figure 6.5: Base actors in the IMAD-1 architecture: their roles, interactions and communi
cation patterns.

136 Short Studies in Dissemination and Throughput

Tiles Trader - A service trader that allows clients to search image archives and ac
cess images as a collection of compressed tiles. Essentially a PipelineTrader.

Tiles Manager - The service manager created by the tile trader, and used by clients
to access tiles. Equivalent to the PipelineManager.

Catalogue Service - Used during service negotiation to search archives for appro
priate imagery. No equivalent exists in Rapid since searching is considered to
be a separate problem.

Retrieval Factory - A factory for operators used to retrieve data from an imagery
archive. Identical to the Rapid ImageryArchive.

Retrieval Operator - An ImageAccessor operator for retrieving particular images
from an archive.

Compression Operator - A F ilte r F a c to r y for operators that compress image tiles.
Compression Factory - A F i l t e r operator that compresses imagery tiles.

Figure 6.6 demonstrates how these actors are used for service negotiation, creation
and provision. Once again the interactions between components are very similar to
those in Ra pid .

Despite these similarities, the IMAD-1 architecture was more limited in scope
than Ra pid . It provided only limited capabilities for application management, based
on Traders and Factories. No global directory service was used, so all service adver
tisement and resource discovery was by way of Traders. Dissemination pipelines
were strictly single-user entities: no consideration was given to collaborative issues
and the associated requirement for concurrent access to the pipeline. Indeed the
entire pipeline was more loosely defined: there were no standard interactions be
tween operators and no standard protocol, such as Rapport. The single-user focus
also affected the role of service managers. These were responsible not just for man
aging operator life-cycles and connecting client applications, but also for scheduling
pipeline processing and interacting with clients directly. As such they performed the
duties of both the PipelineManager and the Race.

6.2.4 Analysis of the Architecture

The IMAD-1 architecture successfully meets its primary requirement of optimising
throughput for dissemination pipelines based on COTS technology. However, sub
sequent analysis of the architecture reveals limitations in terms of application man
agement, difficulties in the interactions between operators, and poor support for
collaborative applications or end site caching.

IMAD-1 did not consider the problems of distributed application management
in great detail. The use of a two-phase service model allows resource reservation
and management policies to be implemented by service factories. However, the lack
of a standard namespace for service advertisements adds complexity to factories,
traders and clients alike. Factories must track and register themselves with all traders
who might use their services. Traders must record which factories are available and
how operators can be combined. To support system-wide searches Traders must be

§6.2 IMAD: Pipelined Imagery Dissemination 137

tiles trader

catalogue service

— I catalogue service 2 1

retrieval factory

host a O client contacts trader with a set of general
requirements for images

© trader contacts a catalogue service to search for
specific images

host B
© the catalogue service is federated, and relays

the request to another federate

O search results are sent from the catalogues to
host c (hg trader

0 results are relayed on to the client to refine the
search criteria

(i) Service negotiation

O trader contacts the archive retrieval factory

© factory produces a retrieval operator for images

© trader contacts compression factory associated
with the archive, but it doesn’t support the
client’s desired compression algorithm

O trader finds a second compression service
which does support the required algorithm

0 factory produces a compression operator

© trader produces a manager for the pipeline
and connects the operators

O manager initialises the pipeline and all operators

© trader returns the manager to the client

host A

host E
tiles m anager

host C
catalogue service Iclient

retrieval factory j---------retrieval opera to r |

com pression factory

com pression factory |-------- >T com press operato r

(ii) Service initialisation

host A

tiles trad e r

-W tiles m an a g er Wjclient

re trieval o p era to rre trieval factory

host D

com pression factory com press o p era to r

(iii) Service provision

O client makes a tile request to the manager through
the object bus (ORB)

© manager makes a request to the retrieval operator

© retrieved data automatically flows to the compressor

O output of the compressor automatically flows to
the manager

© manager satisfies the client request as soon as the
results are received from the compressor. Responses
may flow over the object bus or through a bulk
transfer mechanism if supported by the client

Figure 6.6: Interactions between IMAD-1 actors during (i) negotiation, (ii) initialisation, and
(iii) provision of services. These interactions are very similar to those in Rapid , with the one
notable difference in request propagation due to the informality in request and response
flow semantics.

138 Short Studies in Dissemination and Throughput

federated. Clients have no standard location in which to find services and conse
quently must solve the familiar distributed system boot-strap problem: how to get
the first pointer to the first trader? Finally, there is no location information from
which to make pipeline routing and construction decisions. All of these problems
can be solved by computational grids with an appropriate resource schema.

No standard set of interactions was defined for operators in an IMAD dissemi
nation pipeline. Data flows can be initiated from either end of a connection: there
are no standard request, response or flow control semantics. This ambiguity is de
liberate: an operator can be implemented with a very thin wrapper (Facade) around
an existing image processing system. Flowever, it also adds to the complexity of the
Trader services, and in some cases limits the performance of the pipeline. Since no
standard protocol or set of interactions are specified for the pipeline, great care is
required when connecting operators. Traders are responsible for choosing opera
tors that are known to work together. So in addition to recording what services are
available, a Trader has to determine what services can be used together. The non
standard interactions in the pipeline also make it difficult for a Manager to schedule
or optimise the flow of data. Finally, operators have to buffer an unknown amount of
data. With no flow control mechanism in the pipeline it falls to the Trader to ensure
that operators were not connected in such a way that one could overwhelm another.
These limitations are all addressed by the Rapport protocol.

The IMAD-1 architecture was not really designed for collaborative or multi-user
applications, so concurrent access to the pipeline was simply not considered. All
client interactions take place through a single service Manager. It would certainly
be possible to build a manager that supported multiple simultaneous clients and
serialised concurrent requests. However, for large numbers of clients the manager
would become an obvious bottleneck. More significantly use of a single, centralised
manager doesn’t allow for any local caching of results at client sites. It also requires
that all clients access the same data, with no obvious way of supporting clients with
different visualisation requirements. This is because the IMAD-1 manager has to
fulfil the roles of both PipelineManager who controls and moderates access to a ser
vice, and Race which acts as client application interface and cache. To aid collabo
rative systems, Rapid decouples these two roles, and also allows concurrent access
to the pipeline.

6.2.5 Subsequent Work

Considerable development has taken place in the three years since the IMAD-1 ar
chitecture was proposed. In collaboration with the ACSys OLDA team, a GLAS com
pliant image repository has been developed [20]. This repository was used by OLDA
to explore the potential for active archives, which fuse data processing and data
warehousing functions [56]. It was used by IMAD as the foundation for a range of
imagery dissemination services [48]. A file-oriented dissemination service was built
for non-interactive applications. Progressive download and near-time interactive
dissemination services were developed to support two dimensional visualisation

§6.3 CROP: Optimising Throughput 139

clients without real-time requirements. Finally an intelligent dissemination service
was developed which speculatively distributes imagery using some of the schedul
ing policies presented in section 3.1.2. However, this service was not designed for
real-time clients.

More recently, the IMAD group have developed a generalised pipeline architec
ture, known as iFlow [93], which supports many different types of streamed data.
This architecture is designed for general use in C3I applications, and attests to the
success the group have had with pipelined imagery dissemination.

6.2.6 Sum m ary o f IMAD

• Experimental work revealed throughput problems inherent with ORB-style com
munications.

• A subset of Rapid, known as IMAD-1, was proposed to support dissemination
pipelines with efficient bulk data transfer.

• Application Management was only considered in a limited way. A large-scale
deployment of IMAD-1 would present considerable resource discovery and
management problems.

• Operator interactions, request handling semantics and flow control were not
specified in detail.

• No support was provided for collaborative applications or concurrent access
to the pipeline.

• The roles of PipelineManager and Race were combined in IMAD, which pre
cludes use of site tile caches described in Section 3.1.3 and limits responsive
ness.

• Searching functions were integrated into IMAD-1 but are difficult to standard
ise across different applications. Consequently Rapid focuses solely on the
dissemination problem.

• The ongoing work of the IMAD project demonstrates how a pipelined model
of imagery dissemination can be very effective and can achieve high rates of
throughput.

6.3 CROP: Optimising Throughput

The third and final dissemination system presented in this chapter was the result
of the ACSys CROP [61] project. Developed in early 1998, the CROP project refined
the dissemination pipeline model and introduced an elegant way of abstracting the
underlying communications mechanisms used in a pipeline. The design of CROP
was greatly influenced by the experimental work presented in section 6.2.2 and the
IMAD-1 architecture. In practice CROP achieved excellent rates of throughput and
is indicative of the performance possible with Rapid. It is presented here as a final
example of how processing pipelines can be used for imagery dissemination, and to

140 Short Studies in Dissemination and Throughput

1. Select region of Interest (rubberband) 2. Select time series

Day:

— JL I JJ JJ...!! .1) JJ JJ JU
3 j Hi 11] 12] 13] 14] 15] 1E]

—
NOftTHCRNTEKRUOAV 17] 11] 13 21] 21j 22] 23] 24]

- OUCtM9tAM> 25] 23] 27j 21 23 3lj 31]
s£

Month: Year: j

_ dan] Feb i Mar] -* m 1313] 1333]
_ _ Apr j My] dm] 1331] 1332] 1333]

«... - • JsLliSl J?L 1334] 1335] 1333]
- . It-— Oct Nov Dec 1337; 1331; M

...
Add date] Remove date] Reset series]

AREA SELECTED TIME SERIES CHOSEN
From: 5.5 S iat 110.5 E long (NW corner)

To: 4E.5 S lat 1SE.5 E long (SE comer)

Set region to area selected j

3. Process data

Compute dataset statistics) Interrupt computation; Show results]

Status:

Figure 6.7: A sample CROP client application which provides a user interface to one partic
ular form of processing pipeline

underline the techniques needed to optimise throughput. It also highlights the need
for effective application management techniques.

6.3.1 Overview and Requirements

The CROP project [61] was a joint undertaking between the ACSys CRC and Agrecon
Pty Ltd, a private company which specialises in the use of GIS data and remote sens
ing systems [2]. The aim of the project was to provide simple and efficient access to
earth observation data in a way that allowed domain specialists, such as Agrecon,
to produce value-added imagery products. A prototype was developed to enable
monitoring of crop growth and yield estimation across the country, for the benefit of
clients such as the Australian Wheat Board. Figure 6.7 shows a CROP client applica
tion through which users interacted with the prototype.

Like IMAD, the CROP project was constrained in its use of technology. The main
requirement for CROP was that it should integrate a collection of legacy image pro
cessing applications developed by Agrecon to perform tasks such as crop yield anal
ysis. In some cases this legacy code was impossible to modify. In all cases it was
designed for single machine processing, with no concept of distributed computa
tion. The CROP system was essentially a runtime harness for running legacy code
and providing transparent distribution of data.

The other significant requirement of CROP was that it should operate efficiently
and at high rates of throughput. It was designed for use in cluster computing envi-

§6.3 CROP: Optimising Throughput 141

ronments, but also had significant support for wide area distribution. Unlike OATS
and IMAD there was no requirement for interactivity in the CROP system, so issues
of responsiveness and collaborative data sharing were not considered. However, ap
plication management was identified as a problem, and resource use and scheduling
issues were considered.

6.3.2 Architecture

Like IMAD-1 and Ra pid , the architecture of CROP centres on a dissemination pipeline.
CROP performs two main tasks: scheduling and running processes; and automati
cally transferring data between hosts. Pipelines are formed between CROP services
(operators), where each service encapsulates a single legacy processing element. Ef
ficient movement of data between services takes place automatically and is com
pletely transparent to the legacy code, thanks to an optimised DataTransfer facility.
CROP also manages the cleanup and disposal of the pipeline after it has been used.
The elements of CROP’S architecture include:

Registry - CROP uses a two-level name service for registering resources. All ma
chines which participate in a CROP system run a local registry which records
services running on the machine. In addition there is a global registry at a well-
known address, which records all machines in the system. The namespace is
implemented in very simple terms: it is non-hierarchical and not replicated, it
supports only limited searching and has no authentication or security mech
anisms. No schema is maintained, but services can associate some metadata
along with a global pointer.

BasicService - All CROP services are derived from an abstract BasicService, which
introduces a high degree of observability into the system. It automatically han
dles registration in the CROP namespace. More usefully it provides an asyn
chronous event delivery system that allows clients to observe the state of any
running service. An event filtering model allows clients to upload a simple fil
ter to the remote service to limit the transmission of events.

DataTransfer - Data must be transferred between CROP machines transparently.
The DataTransfer service is used to move DataObjects from one machine to
another. A DataObject represents the output of a process/operation and en
capsulates not just the data, but also the mechanism used to transfer the data.
Its role is identical to that of the Connection object in Ra pid . When a down
stream operator wants to retrieve data from an upstream operator it retrieves
a DataObject. This object automatically initiates the transfer through an ap
propriate mechanism: TCP sockets, ATM circuits or an IPC construct. It is re
sponsible for buffering the data and cleaning up after the transfer has been
completed.

ProcessService - Machines that have spare computational capacity run a ProcessSer-
vice to execute processes on behalf of a client application. This is equivalent
to F i lt e r F a c to r y used in Ra pid .

142 Short Studies in Dissemination and Throughput

ScheduleService -To coordinate the ProcessServices running on multiple machines
CROP uses a simple ScheduleService. This manages a collection of machines
and creates new processes on the most under-utilised machine. It uses a very
simple scheduling heuristic, but still provides a useful degree of load-balance
across a cluster.

DataStore - The access interface of an imagery archive is known as a DataStore,
which is equivalent to the ImageAccessor class in Ra pid . Clients use the Cat-
alogService to identify appropriate images, then retrieve them as DataObjects
from a DataStore.

CROPServer - The prototype CROP application involved an extensive sequence of
processing operations, arranged in a long pipeline. A CROPServer was devel
oped to automate the construction of these pipelines. This is equivalent to the
function of a P ipelineT rader in Rapid .

Aside from naming issues, the significant architectural differences between CROP
and IMAD-1 are in the roles of the DataTransfer service and the Registry. Where
IMAD-1 does not include a well-defined set of interactions between operators CROP
does. A DataObject describes not only the application data that will flow down the
pipeline, but also the communication mechanism that should be used to form one
stage of the pipeline. DataObjects allow the behaviour of an operator to be extended
dynamically to accommodate new protocols or communications mechanisms. The
CROP Registry also provides a partial solution to the service advertisement and dis
covery problems encountered in IMAD-1. CROP avoids the extensive use of Traders
by providing a global namespace. Trader-style services still exist, but are much sim
pler to implement and are focused on supporting a specific class of application.

6.3.3 Analysis

There are three interesting conclusions to draw from CROP: the high rates of through
put performance it achieves; the use of an abstract mechanism for connecting op
erators; and the use of a flat namespace for application management. Each of these
conclusions has direct relevance to Rapid.

Perhaps the most important characteristic of CROP is the very high rates of data
throughput it achieved. The DataTransfer service consistently performed at a rate of
more than 16 megabytes per second over a 155mbps ATM network - effectively satu
rating the network10. In practice, none of the processing operations could match this
rate of throughput. Hence CROP achieved the goal of any dissemination pipeline,
which is to ensure that dissemination rates are bound by computation not commu
nication.

One of the more elegant ideas in CROP was the use of an abstract connection
mechanism. The flexibility and transparency of data movement was due to the use

10Extensive performance measurements are not presented for CROP, since there was little variation
in performance within the operational environment. Further details are available in the previously
published material [61].

§6.4 Summary 143

of DataObjects to connect operators in the pipeline. By encapsulating the choice
of link mechanism within these objects, CROP services could vary communication
primitives on a connection-by-connection basis. This also allowed for dynamic ex
tensibility of operators to support new communications mechanisms. Although the
same flexibility was possible in IMAD-1, it had to be implemented on an ad-hoc ba
sis and required additional intelligence in the Trader and Manager actors. The sim
plicity of the CROP approach is compelling and contributed to the use of Connection
objects in Rapid .

The final conclusion to draw from CROP relates to its use of a simple registry
for service advertisement and other application management. Although adequate
for a cluster-area system, the CROP registry service would not suite large scale de
ployment in a wide-area network. The flat namespace and minimal schema are very
limiting. Use of a home-grown, application-specific directory service makes it hard
to integrate new components and precludes the use of standard management tools.
Finally, the approach used to scheduling was extremely simplistic. Considerably
more effective scheduling systems have been developed for metacomputing envi
ronments and computational girds. Consequently, although CROP was an improve
ment over IMAD-1 in terms of application management, it was still difficult to build
and run large pipelines.

6.3.4 Summary of CROP

• Refined the pipeline model developed for IMAD-1.
• Successfully provided a harness for running legacy image processing opera

tions with transparent distribution of data between processes.
• Achieved excellent rates of throughput and consistently saturated a cluster-

area network.
• Used an abstract connection mechanism that allowed great flexibility in the

delivery of data downstream.
• Application management was considered but no comprehensive answers were

developed. The limitations of application management motivated subsequent
work with computational grids.

6.4 Summary

This chapter has reviewed three imagery dissemination systems, with a particular
emphasis on the use of pipelining to achieve high rates of throughput. Most geospa
tial imagery archives provide searching interfaces through distributed object mid
dleware, such as an ORB. The poor performance of ORBs can make them a major
bottleneck when disseminating large datasets. The systems presented in this chap
ter have demonstrated how to overcome this bottleneck through the use of bulk
transfer mechanisms, connected together to form dissemination pipelines. Such

144 Short Studies in Dissemination and Throughput

pipelines can achieve very high rates of throughput, and also provide a framework
for integrating legacy image processing applications.

Yet dissemination pipelines are not without limitations. Caching and speculative
fetch policies are required to protect highly responsive clients from pipeline latency.
More significantly, creating and using long pipelines brings with it a range of appli
cation management problems. Although both IMAD-1 and CROP projects consid
ered this problem in part, both suffered for lack of a comprehensive management
framework such as that defined for Rapid.

The systems presented in this chapter demonstrate many of the concepts in the
Rapid architecture. They demonstrate how pipelines can be formed and used ef
fectively, and the value in an abstract connection mechanism. They also provide
the motivation for considering application management in more detail. This is the
subject of the next chapter, which provides a final case study into an management
system known as the vGrid.

vGrid: a Study in Application
Management

Chapter 7

The previous chapters focused on runtime performance issues in detail, with a par
ticular emphasis on responsiveness and throughput. We will now consider appli
cation management through a case study of the vGrid, a metacomputing system
designed to support virtual environments. The vGrid was developed in early 1999
following experiences with Comet and the CEOS demonstration, and with the i-Grid
demonstrations at Supercomputing ’98. It is a data-centric grid with particular sup
port for the unique properties of VEs. It is also a superset of the application manage
ment framework included in Rapid, and so is a valuable proof of concept.

The structure of the chapter follows that of the Comet case study. Section 7.1
provides an overview of the vGrid and describes the motivation for its development.
Section 7.2 clarifies the relationship between the vGrid and the Rapid application
management framework. The architecture of the vGrid is very similar to that of
Rapid, but with some minor differences to accommodate a broader class of appli
cation. These differences are reviewed in section 7.3. Evaluating a grid system is not
simple, but section 7.4 provides an analysis of the vGrid and identifies strengths and
weaknesses. Finally, section 7.5 provides a summary.

7.1 Overview of the vGrid

Before considering the design of the vGrid in detail, it is valuable to review the moti
vation for and goals of its development.

7.1.1 Motivation

The first motivation for the vGrid came from the CEOS demonstrations of imagery
dissemination and processing. Although Comet required access to a range of stor
age, processing and network resources, all application management was performed
by hand. Datasets were accessed, processing performed and results transferred through
an ad-hoc collection of scripts and configuration files. Although the IMAD-1 and

145

146 vGrid: a Study in Application Management

Figure 7.1: The ACSys presence in the i-Grid demonstrations at Supercomputing ’98 (left)
consisted of a virtual world containing a model of plasma flows through the Heliac reactor
(right).

CROP systems (discussed in the previous chapter) autom ated dissemination, they
too suffered from application m anagem ent problems.

A final motivation came from Supercomputing '98, where a large num ber of dem on
strations were made under the auspices of the i-Grid [13) project. The i-Grid aimed
to show how a computational grid could harness and exploit a collection of glob
ally distributed resources. A central element of the i-Grid was a Collaborative Vir
tual Environment, based on Limbo/CAVERNsoft [85], which allowed participants
around the globe to interact and visualise various results. The author was involved
with this demonstration as a m em ber of an Australian team based at the CRC for
Advanced Computational Systems (ACSys). Figure 7.1 depicts the virtual world AC
Sys contributed to the i-Grid VE, demonstrating the plasma flows within the Heliac
reactor.

While preparing for the i-Grid demonstration it became clear that the application
management requirements of a CVE are quite different to those of other applications
running in a computational grid. In particular, the i-Grid was a poor support vehicle
for the Limbo VE because:

1. All configuration had to be performed manually. Whenever any change oc
curred in the application configuration, it had to be reflected to every partici
pant and often involved m anual intervention

2. The topology of connections between participants was far from optimal. A m a
jor feature of CAVERNsoft is the flexibility it affords applications in construct
ing efficient topologies for sharing data. Unfortunately the grid and applica
tion were not integrated closely enough to take advantage of this capability.

3. All users had to have the same set of executables to participate in the world.
This restriction is quite reasonable for a concept demonstration, but in a pro
duction environment users are unlikely to have identical facilities or runtime
systems.

§7.1 Overview of th e vGrid 147

4. The virtual worlds shown in the demonstration had been constructed specifi
cally for the purposes of show. The contents of the world were carefully crafted
months in advance to maximise the effect of the demonstration, rather than in
response to any real user requirements. In a production environment worlds
should be created dynamically as users determine a need.

5. A virtual lobby space was provided as a meeting place for collaborators and to
provide portals between the major virtual worlds. This lobby was also statically
created and designed only for the worlds run on i-Grid. A production environ
ment should include a dynamic lobby service for matching collaborators with
data sets and computational resources1.

The goal of the vGrid was to provide a data-centric grid to do a better job of manag
ing visualisation systems and CVEs such as Comet and Limbo.

7.1.2 Requirements of Collaborative Virtual Environments

Virtual Environments are data-centric applications, which are very performance sen
sitive and have a number of soft-realtime requirements. Foremost among these
is the need for low latency and high responsiveness. A grid can provide only lim
ited support for the performance requirements of a VE, but can address other data-
centric issues. Virtual Environments require support from a grid to perform the fol
lowing tasks:

• getting at interesting data sets;
• transforming data to a visualisable form;
• sharing data through numerous different network protocols;
• constructing a topology of application-level connections;
• support for heterogeneity and diversity in: machine architecture, network band

width, rendering power, client software.

7.1.3 Goals

The general aim of the vGrid is to demonstrate how a data-centric grid can solve the
application management problems of broadly distributed Virtual Environments. As
such it provides answers to the standard resource management questions outlined
in previous chapters. Beyond this, however, the vGrid seeks to overcome the specific
limitations of the CEOS and i-Grid demonstrations by:

lrThis is one area where multiplayer video games, when considered as a form of Collaborative VE,
offer considerable insight. Almost all multiplayer games now feature some form of lobby service to
match players with game servers. Lobby services vary in complexity from simple chat spaces to so
phisticated interest matching systems. However complex the service, it invariably becomes an essen
tial part of the community that builds around a successful game. The i-Grid demonstration shows
that, to be successful, Virtual Environments have no less a need for a lobby service or the sense of
community it engenders.

148 vGrid: a Study in Application Management

• allowing users to advertise and find virtual worlds, and supporting dynamic
lobby services;

• automatically configuring a client to join a virtual world;
• supporting interoperability between different clients;
• creating worlds dynamically for a user;
• allowing applications to optimise the topology of connections between peers;
• requiring minimal or no changes to client executables; and
• mandating no common network interface of protocol.

The last two points are particularly noteworthy Though the vGrid provides many
resources an advanced client could use, the basic intention is that the grid services
should be provided transparently. Little or no code changes are required to integrate
an existing VE into the vGrid. As a result, the vGrid does not require a standard ap
proach to networking or a common application protocol. This was initially seen as
a great strength of the approach, but also imposed some constraints which will be
discussed shortly.

7.2 Relationship to Rapid

The vGrid is a prototype for all the application management components of Rapid.
It is actually a superset of the Rapid model, since it deals with a more general class of
application and with arbitrary data structures. While Rapid is concerned exclusively
with geospatial imagery, the vGrid is designed to support many different types of
visualisation client and types of visual data.

The generality of the vGrid presents a broader set of application management
issues than Rapid must consider. Since the vGrid is application-neutral it cannot
define a standard network protocol, such as Rapport. Lacking a common protocol,
the vGrid schema must model protocols as first class objects. It cannot rely on a
common application topology, such as a dissemination pipeline: instead it must
support a range of different topologies. It is not possible to define a single standard
life-cycle for resource use.

By considering a more general set of issues, the vGrid demonstrates that the
Rapid application management facilities are both practicable and effective.

7.3 Architecture

The vGrid approach to application management is the same as that of Rapid. A re
source schema published in a global directory service is used to describe the network
environment and physical resources available for VEs. Virtual worlds - conceptually
equivalent to pipelines - are a collection of different shared datasets. Each dataset
is produced by a factory, which uses a negotiation interface to regulate use of re
sources. Traders are used to automate the construction of virtual worlds and isolate
VE clients from the vGrid infrastructure.

§7.3 Architecture 149

But the added generality of the vGrid requires some extensions to the Rapid
model. Foremost among these is the need to model data types and network proto
cols as first class objects. The vGrid also supports a much richer variety of Trader ser
vices than required for Ra pid . Finally there are subtle differences in the use of fac
tories. vGrid supports two quite distinct types of factory: a dataset factory provides
access to a collection of datasets and is conceptually similar to Ra pid ’s Imagery-
Archive; an adaptor factory produces Adaptor [40, pages 139-150] objects to bridge
between protocols and help promote interoperability.

We will now review the architecture of the vGrid, as it differs from that of Ra pid .
Though the discussion that follows focuses on the differences between vGrid and
Ra pid , it should be noted that they are overwhelmingly similar. For an indepen
dent discussion of the vGrid the interested reader is referred to previously published
work [139].

7.3.1 Resource Schema

Like Ra pid , the vGrid defines a collection of standard metadata in a resource schema.
This schema is published in a directory service and used by traders and clients to
access resources and connect to virtual worlds. It is the glue that holds the vari
ous pieces of the grid together. Table 7.1 presents the vGrid resource schema in
full. Much of the schema will look familiar after the discussion of Chapter 4. For
example the attributes describing sites, machines and people are basically identical.
The network model is simplified, and corresponds to the links described in Ra pid ’s
schema. The vGrid makes explicit the distinction between two different types of fac
tory - Dataset factories and Adaptor factories - but these are otherwise similar to
their Rapid equivalents.

Perhaps the most significant difference between the vGrid and Rapid schemas
is in the treatment of virtual worlds. The concept of a World in the vGrid is equiv
alent to that of a dissemination pipeline in Ra pid . Indeed a dissemination pipeline
is simply one form of virtual world, with a regular application topology. Both rep
resent a collection of services and resources harnessed by one or more users for a
common purpose. The important difference between the two is in terms of how
they are managed. In Rapid the state of a dissemination pipeline is encapsulated
in a PipelineM anager: in the vGrid the state of a virtual world is published in the
directory service. The Rapid approach was born of the vGrid experience, and the ra
tionale behind this difference is reviewed in section 7.4.2. The most important point
to note about a World is that it is formed as a collection of Datasets.

Another significant difference between the two schema is due to the way clients
access these datasets. vGrid has no well-defined notion of a pipeline operator that
can be used to encapsulate resources, such as computational processes or data ac
cess mechanisms. Instead it simply has datasets: a weakly defined concept with no
standard runtime interface2. Clients access and share datasets through one or more

2The weak definition of datasets is a strength, and is what allows the vGrid to integrate so many

150 vGrid: a Study in Application Management

Site
organisation: String
location: String
networks : set<name of Network>
m anager: name of Person
users : setcnam e of Person>
hosts : setcnam e of Machine>

Machine
site : name of Site
address: set<INetAddr>
architecture: String
operating-system: String

Person
site : name of Site
firstname, surname, username : String
em ail: String
credentials
icon : URL (download bitmap)
avatar : URL {download geometry)

Network
name : String
organisation : String
start-sites : setcnam e of Site>
end-sites : setcnam e of Site>
bandwidth : tuplecmin bps, mean bps, max bps>
latency: tuplecmin msec, mean msec, max msec>
packet-loss : tuplecmin %, mean %, max %>

AdaptorFactory machine : name of Machine
rmi-reference : Java RMI URL
corba-reference : stringfied CORBA reference
instances : setcnam e of Dataset>

Adaptor nam e: String
type : name of Type
source : name of DatasetFactory
from : paircprotocol-id, type-id>
to : setcpaircprotocol-id, type-id>>

World
nam e: String
description: String
creator: name of Person
icon : URL (download bitmap)
m odel: URL (download geometry)
machines : setcname of Machine>
members : setcnam e of Person>
dataset: setcname of Dataset>

Dataset
nam e: String
type : name of Type
source : name of DatasetFactory
source-id : String
protocols: setcpaircprotocol-id, parameters>>
adaptors : setcnam e of Adaptor>

Type
description : String
type-id : String
java-class : URL (download class file)
python-class : URL (download .py file)
bamboo-module: URL

Protocol
description : String
protocol-id : String
java-class : URL (download .class file)
python-class : URL (download .py file)
bamboo-module: URL

DatasetFactory description: String
produces: setcpaircprotocol-id, type-id>>
machine : name of Machine
rmi-reference : Java RMI URL
corba-reference : stringfied CORBA reference
instances : setcnam e of Dataset>

Table 7.1: The vGrid Resource Schema

§7.3 Architecture 151

Protocols. In addition each Dataset is typed according to a set of known Types pub
lished in the directory. Rapid offers only a simple enumeration of data types through
the implementation profile and assumes use of a common protocol (Rapport). vGrid
requires that data types and protocols be described in the schema and published
in the directory. This affords a degree of introspection and allows applications and
traders to dynamically determine the set of all possible data types and sharing proto
cols. It also allows extensible applications to dynamically download code and com
ponents to handle unknown data types or support new protocols. Furthermore, the
clean separation of data type from network protocol is a powerful and useful con
cept.

The virtual world entries in the directory include all the details required to con
nect a client to a world. Each World consists of one or more Datasets, where a dataset
might be anything from a multicast set of avatar (object) positions, to streamed voice
messages or results of a simulation process. Each Dataset is an instance of a data
Type, produced by a Factory, and accessible by one or more Protocols. The dataset is
advertised within the directory, along with the connection parameters for every pro
tocol by which it is shared. There may also be Adaptors associated with a dataset to
act as a bridge between protocol boundaries. To connect a client to a virtual world it
is necessary to retrieve the connection parameters of one protocol for every dataset
in the world.

The vGrid supports refinement and transformation of datasets through use of
adaptors. An adaptor is an object that converts between one or more data types or
network protocols. One important use of adaptors is to support interoperability be
tween client applications: acting as abridge between data sharing protocols or map
ping between equivalent data types. The other important use of adaptors is to refine
data types to support visual representations. In this second role an adaptor can be
used to convert an abstract dataset into one that can be rendered: a role similar to
a visualisation server acting for an HPC simulation. In one sense a dissemination
pipeline is simply a collection of adaptors applied to a raw dataset.

Unlike Rapid, the vGrid also defines a standard encoding of its schema within
a directory service or namespace. This encoding is demonstrated in Table 7.2. The
top level of the namespace is organised into sites, networks, data types, protocols,
dataset factories, adaptor factories and virtual worlds. Each site contains sub-direct
ories for people and machines. Each factory has subdirectories to contain all current
instances. Other elements of the schema are encoded as attributes of these basic sets
of entries. This is a very simple encoding and namespace design, the implications of
which are considered in section 7.4.4.

7.3.2 Factories and Traders

The vGrid uses a factory mechanism to produce instances of a data type, and per
form resource management. Access to datasets follows a period of service negoti-

existing applications with such ease.

152 vGrid: a Study in Application Management

/ site / ami.edu.au / person

/ machine

/ sam
brian

/ upside
palm
bondi

/ network

/ type

/ protocol

/ ebn-syd-canb
/ ebn-canb-melb
/ apan-canb-tokyo

/ nbody-simulation
/ object-position

/ cavern-nbody
cavern-avatars
http

/ data

/ adaptors

/ worlds

/ nbody-factory / instances

/ position-factory / instances

/ nbody-adaptor / instances

/ sams-nbody-world

/ bondi-8954
bondi-8863

/ palm-2378

/ palm-2397

/ site
/ anu.edu.au,

organisation= Australian National University
location= Acton, Canberra, Australia, 0200
networks= ebn-syd-canb, ebn-canb-melb,

apan-canb-sing
manager^ brian

/ person
/ sam,

firstname=Samuel
surname=Taylor
username=sam
email=sam.taylor@anu.edu.au
icon=http://acsys.anu.edu.au/~sam/icon.gif
avatar=http://acsys.anu.edu.au/~sam/sam.vrml

/ brian, ...

Table 7.2: Encoding the vGrid resource schema. The namespace hierarchy is depicted above
the line, with token entries for a N-Body simulation world. Below the line are the complete
entries for an organisation and a person.

mailto:sam.taylor@anu.edu.au
http://acsys.anu.edu.au/~sam/icon.gif
http://acsys.anu.edu.au/~sam/sam.vrml

§7.3 Architecture 153

ation, and is usually bound by time constraints. However, the role of factories is
quite free form within the vGrid, since there is no well-defined service life-cycle, and
a more restricted form of service tickets. The negotiation interface to factories is
also simpler. Because there is no manager associated with a virtual world, facto
ries assume a greater responsibility for managing datasets and their entries in the
directory. Finally, the distinction between dataset factories and adaptor factories is
pronounced.

The vGrid supports a much richer variety of Trader services than Rapid. It in
cludes basic "world builder” traders - equivalent to the PipelineTrader- to con
struct new virtual worlds on behalf of a user. It also supports traders to offer lobby
services, or visualise portions of the resource schema. A lobby service essentially
just allows a client to visualise the set of worlds currently published in the directory.
Other schema entries may also be of interest. Examples include an avatar trader to
visualise the collection of users (people) recorded in the schema, or a network trader
to provide a visual network weather service [163]. Finally traders are used as a vehi
cle for isolating legacy clients from the underlying grid services. Connection traders
are used to interact with the directory on behalf of VE clients, retrieve configuration
details and connect a client to a virtual world.

7.3.3 Implementation

A prototype implementation and test-bed environment were developed in the Vir
tual Environments Laboratory at the CRC for Advanced Computational Systems.
The test-bed was established in June 1999 and a broad range of applications have
been integrated into the grid since then. The success of the prototype speaks strongly
for the generality and flexibility of the vGrid.

The prototype implementation was developed as a framework for running exist
ing VE applications. It comprises: a simple directory service used to store the vGrid
resource schema; an extensive client-side interface to the directory for use by ad
vanced clients; a highly generic factory for datasets; an adaptor factory; and three
trader services. These components form a basic framework into which VE applica
tions and resources are integrated. Their implementation consists of approximately
9000 lines of Java code with an additional 1200 lines of shell scripts. Integrating a
new data type into the grid requires minimal if any changes to the factories. Inte
grating a new client into the grid usually requires nothing more than a simple wrap
per script. The prototype is highly portable, and runs on most flavours of Unix as
well as Win32 platforms.

A test-bed environment was established to evaluate how well the prototype could
support the existing applications and data resources used in the VE Laboratory. The
test-bed has access to a variety of high-end local visualisation hardware including
Haptic Workbenches [132] and immersive Wedge environments [41,161]. It also has
connections to other national and international laboratories through networks such
as the Asia Pacific Advanced Network (APAN) [4]. The test-bed was populated with a
range of existing applications developed within the laboratory, and by international

154 vGrid: a Study in Application Management

C ategories o f V irtual W orld D ata typ es

D ig ita l t e r r a in v is u a l i s a t io n O b je c t p o s i t io n s

N - b o d y s im u la t io n D ig ita l T e rra in M o d e ls

V ir tu a l c h a t r o o m N - b o d y s im u la t io n r e s u l t s

S C ’98 d e m o n s t r a t i o n w o r ld s T ex t c h a t m e s s a g e s

P in g - p o n g g a m e A u d io / s p e e c h s t r e a m s

VE C lien ts D a ta set F actories

C o m e t t e r r a in v ie w e r D ig ita l t e r r a in r e p o s i to r y

A v an g o te r r a in v ie w e r P a ra lle l N - b o d y s im u la t io n s c h e d u le r

V e lo c ity v C h a t c l ie n t N - b o d y lo g g in g s e rv ic e

L im b o c l ie n t A v a ta r p o s i t io n s h a r in g m a n a g e r

AVS m o d u le

V RM L b r o w s e r A daptor F actories

P in g - p o n g g a m e N - b o d y a d a p to r

D ig ita l t e r r a in a d a p to r

O b je c tP o s i t io n a d a p to r

Table 7.3: Elements of the vGrid test-bed

collaborators. Table 7.3 summarises elements of the test-bed. These include the
Comet terrain visualisation tool, a collaborative terrain visualisation client, a paral
lel N-body simulation process, the Supercomputing '98 i-Grid demonstrator [13], a
virtual ping-pong game [79] and others. Some support is also offered for a range of
general-purpose clients, including VRML browsers and an AVS [136] module. In all
cases these applications and visualisation tools have been integrated into the vGrid
without requiring any significant changes to code.

One of the more interesting applications, with particular relevance to Rapid , is
an N-body simulation world. This allows participants to view and interact with an
N-body simulator running on a high-performance parallel computing facility. The
simulation shares its results in real time, through the CAVERNsoft protocol. Users
view the simulation and can control some parameters through a modified version
of the Limbo client. An N-Body factory is used to create an instance of the simula
tion. A logging service is also available to record the results of each iteration of the
simulator, and allow users to replay previously recorded simulations.

Because most applications have not been modified to support the vGrid, the test
bed supports only limited application interoperability. In general, each category of
virtual world uses a unique communications protocol and VE client. Three adaptors
have been implemented for the test-bed to bridge these protocol boundaries. The
N-body simulation is normally viewed with the Limbo client, but an N-body adaptor
can be used to share the simulation with VRML browsers. A second adaptor is avail
able to convert Comet terrain models into VRML for use by a range of clients. Work

§7.4 An alysis of vGrid 155

has also started on an object position adaptor to reflect and share the positions of
objects within a virtual world across protocol boundaries. Since object movement is
the basis of most CVEs [78] the development of this adaptor could be a major step
toward greater interoperability.

The test-bed also includes two simple Traders. The World Manager trader pro
vides a means of creating and destroying worlds on behalf of a user. It negotiates
with factories to gain access to datasets, and advertises newly created worlds in the
directory so that other users may join. The Connection trader connects non-vGrid
aware clients to worlds registered in the directory. It completely hides the vGrid in
frastructure from the client, but relies on the user knowing the name of a world he
or she wishes to join. This is analogous to a web user knowing the URL of the page
they want to start browsing from. It also underscores the value of advertising virtual
worlds in a common name space. A partial implementation of a Lobby trader has
also been made.

7.4 Analysis of vGrid

The vGrid is a generalised form of the application management framework in Rapid.
Analysis of the vGrid test-bed provides a means of validating Rapid in use with real
applications. This analysis starts by reviewing how well the vGrid meets its stated
goals. It then considers issues of virtual world management, configuration, schema
encoding and interoperability all of which inform Rapid.

7.4.1 Success of vGrid

The success or failure of a metacomputing environment is difficult to quantify. How
ever, the vGrid project has been very successful in meeting its stated objectives. A
large number of disparate applications run within the grid, demonstrating that a
common management framework is practical. The vGrid is a useful tool for users
wanting to create, advertise, find and join virtual worlds. Supporting this function
ality requires very little change to existing applications and does not require a com
mon network protocol or interface. Instead, the grid provides a standard approach
to application configuration and resource discovery and management. The vGrid
also offers a starting point for problems of interoperability and topology construc
tion, though these remain hard problems in their own right.

7.4.2 Virtual World Management

One weakness of the vGrid is its lack of a manager entity with each virtual world.
An underlying assumption of the vGrid is that virtual worlds may be very long-lived
entities. Although some virtual worlds use valuable computational and network re
sources, many do not. Persistent virtual worlds - available 24 hours a day, seven days
a week - are increasingly common because the cost of preserving world state is low.

156 vGrid: a Study in Application Management

With peer-based CVEs the clients that connect to a world provide the resources re
quired to maintain it. With many client-server based CVEs the amount of state that
must persist in the absence of clients is small. Consequently, the lifetime of a vir
tual world tends to be much longer than that of a dissemination pipeline built from
precious computational and network resources.

Given this long world lifetime, world management appears to be an occasional
activity rather than a regular event. The underlying philosophy of the vGrid is that
the presence or absence of a single dataset should not necessarily affect an entire
world. Each factory manages the life-cycle of the resources it produces. So if a fac
tory decides to reclaim a dataset then that should not automatically entail destruc
tion of the world. Consequently, it seemed unnecessary to force worlds to include a
manager component; even wasteful for persistent worlds. Instead, external traders
are provided for times when management is required.

This approach works well for most of the virtual worlds in the test-bed, but not
all. The N-body simulation world uses valuable high-performance computing re
sources, which cannot be committed on a permanent basis. Although a world can
persist after the simulation process ends, it ceases to be meaningful; with users left
to navigate and interact in a void space. If simulation results have been logged then
there may be value in the users reviewing the log to observe interesting interactions.
However, this requires non-trivial management of the world to replace the simula
tion process with a log playback service.

Another limitation due to lack of a manager is that all world state must be ad
vertised and preserved in the directory. This requirement works better for some
data types than others. Advertising the IP address of a multicast group is trivial,
but describing a topology of connections is not. It also has significant security im
plications: even with careful assignment of permissions, the vGrid approach is not
designed to be secure. Finally, the world entries in the directory must be accessed
and written to by many different actors: clients, factories and traders. A holistic ap
proach is preferable.

Given the experience of the vGrid, the much greater need to manage resources,
the short life and the well-defined life-cycle of a dissemination pipeline, Ra pid em
ploys a dedicated pipeline manager.

7.4.3 Static and dynamic configuration

The vGrid stores all the infrastructure metadata associated with Collaborative Vir
tual Environments3. This metadata is used to configure and run what are complex
and widely distributed applications. So the vGrid can be thought of as an application
configuration service.

3Chapter 3 emphasises a distinction between infrastructure metadata and application metadata.
The vGrid stores infrastructure metadata: data about applications and the environment in which they
run. Application metadata - descriptive data specific to a single application or domain - is beyond the
scope of the vGrid.

§7.4 An alysis of vGrid 157

It is useful to draw a distinction between static and dynamic configuration. Ap
plications with a static structure need be configured only when they begin. A dis
semination pipeline is a good example of an application with static structure: the
connections between operators are established once, and remain thereafter for the
life of the pipeline. Applications with dynamic structure change over time, and so
require reconfiguration. The lifetime of an application, and requirements for fault
tolerance, often determine whether it has a static structure. Short lived applications
can be static: long lived and fault-tolerant applications need to be dynamic to re
spond to changes in their runtime environment.

The vGrid does an excellent job of configuring static applications, but is less suc
cessful with applications requiring reconfiguration. This is due not to a limitation
of the grid, but rather to the way applications have been integrated with it. Few ap
plications have been modified to interact directly with the grid. In most cases the
Connection trader is used to isolate an application from the grid, retrieve config
uration details and present them in an appropriate format. This approach works
very well for static configuration but fails for dynamic configuration. Consequently,
problems such as the topology of the Supercomputing ’98 VE remain, since they re
quire major changes to the basic application. Dynamic configuration of real-time
and multimedia applications remains a difficult and open research problem [88].

Dynamic configuration is not required by Rapid. As already noted, dissemina
tion pipelines are static in structure. Their topology and configuration can be estab
lished and optimised once, and will remain efficient thereafter. Consequently the
vGrid and Rapid approach to application management is highly appropriate.

7.4.4 Schema Encoding

The vGrid schema encoding has scalability limits. In the test-bed environment this
was not a problem, but for a larger grid it may be. The scalability problems arise
because sites, data types, protocols, factories and worlds are all advertised in a flat
name space. As the number of sites, for example, increases so does the cost to a
directory server of accessing and maintaining the namespace.

The obvious answer is to arrange the namespaces into hierarchies. A hierarchy
of sites could be produced simply from the DNS namespace. Type and protocol en
tries are less likely to cause scalability problems, and modest hierarchies could be
produced from the MIME-style encoding format. Factories and worlds fit less obvi
ously into a hierarchy.

This is hardly an insurmountable problem: but one that needs to be considered
in any large-scale deployment of the vGrid. For Rapid it is reasonable to treat en
coding as an implementation detail, specified in an implementation profile.

7.4.5 Interoperability

One of the more ambitious goals of the vGrid is to promote interoperability between
virtual environments. This is achieved through the use of adaptors to bridge be-

158 vGrid: a Study in Application Management

tween protocol boundaries. Only three adaptors have been tried in the test-bed
environment: one to export N-body simulation results into a VRML client; one to
export Comet terrain models to an Avango-based visualisation client [145]; and one
to share the position of moving objects within a virtual space.

Development of these adaptors underscores the difficulty in making disparate
virtual environments interoperable. The N-body simulation has to greatly compro
mise temporal resolution: changes in the simulation being visible less frequently to
VRML clients than to Limbo clients. The terrain adaptor has to compromise spatial
resolution, since VRML based clients have no ability to make tile-oriented requests.
The object position adaptor is able to map positional changes with passable accu
racy but only for a small number of applications. It does not scale well either: adding
considerable latency as the number of moving objects increases.

Even allowing for the limited number of adaptors in the test-bed, interoperabil
ity remains a major problem. Generally speaking clients on one side of the protocol
boundary will suffer a diminished experience. This may be acceptable to allow pas
sive observers some sense of what is happening in a virtual space. Interoperability
between arbitrary client applications would require a considerable number of dif
ferent adaptors be developed. However, where a small number of applications are
used - as with the terrain visualisations - the number of adaptors can remain man
ageable.

Differences in protocol are not a major problem: differences in the semantics of
data types are. For example, if two applications both use dead-reckoning for object
positions, it is no great difficulty to bridge between protocols (say DIS [68] and CAV
ERN soft [84]) to support position sharing. A counter example comes in the form of
the terrain visualisation adaptor. Here the semantics of the data structures are quite
different: one client decomposes a dataset into a tile hierarchy; the other treats the
dataset in entirety. In the first example an adaptor must simply match the syntax of
data sharing, in the second it must match the semantics.

Though the vGrid doesn’t solve the interoperability problem, it does at least offer
a systematic approach to promoting cross-application data sharing. Rapid takes a
higher level approach to interoperability by defining a standard set of interactions
between operators through Rapport, and a protocol-independent abstraction for
communications.

7.5 Summary

The vGrid performs application management for Collaborative Virtual Environments,
It is essentially a superset of the Rapid management framework and demonstrates
that the mechanisms developed in section 4.2 are feasible and effective. An exper
imental vGrid test-bed has been used to successfully integrate and manage a di
verse set of virtual environments, and demonstrates how a data-centric grid can be
formed.

The vGrid is not without limitations. A scalable schema encoding needs to be

§7.5 Summary 159

developed and dynamic reconfiguration of applications is only possible if client ex
ecutables are modified extensively. These issues all informed the design of Rapid .
Most significant is the issue of virtual world management. The limited world man
agement offered by the vGrid motivates the use of a PipelineM anager in Rapid .

These minor caveats aside, the vGrid provides a powerful demonstration of how
large, distributed applications can be managed and used effectively.

160 vGrid: a Study in Application Management

Chapter 8

Conclusions and Future Work

8.1 Summary

This thesis develops a software architecture, known as Rapid, to enable collabora
tive visualisation of geospatial imagery in Virtual Environments. Earth observation
data is very valuable, and is used in many different fields including meteorology, de
fence, scientific analysis, urban planning and insurance. Collaborative Virtual Envi
ronments are rich display devices with the added attraction of human interaction.
The value of combining the two is very great. However, before this potential can be
realised a range of performance and management problems must be addressed.

The thesis addresses four fundamental requirements: for client responsiveness,
for high rates of processing and dissemination throughput, for collaborative data
sharing and for application management. Responsive data access is, perhaps, the
most essential of all requirements. The size and processing requirements of geospa
tial imagery can impose many delays, yet real-time interaction in a CVE requires a
high rate of response. Large size also brings a need for efficient dissemination, from
archive to client, at high rates of throughput. User interactions and collaborations
add a further requirement to share data with appropriate causal ordering. Finally,
since imagery dissemination pipelines are complex distributed systems, there is a
need to manage their construction and operation.

Given this basic separation of concerns, a solution has been proposed in the form
of a software architecture. The Rapid architecture consists of three main elements:

1. A general-purpose dissemination pipeline is used to access and process im
agery. The pipeline uses parallel processing and parallel streaming techniques
to achieve high rates of throughput. Interactions between operators in the
pipeline are fully asynchronous, so as to decouple clients from the pipeline
and aid client responsiveness. Support for approximations within the pipeline
further aids responsiveness.

2. Large, parallel caches are deployed close to visualisation clients, to decouple
them from the pipeline and improve responsiveness. These caches provide
low-latency access to data tiles, and use parallel streaming to move bulk data
efficiently. Site caches schedule access to the pipeline and employ speculative
request policies to predict future client requests and ensure the pipeline is al-

161

162 Conclusions and Future Work

ways busy. These policies aid both throughput and responsiveness. Finally,
caches provide an inter-site group communication service, which is the basis
of collaborative data sharing. These ideas are all encapsulated in a single com
ponent, the Race, which is the centrepiece of the Rapid architecture.

3. The final requirement, for application management, is performed in the con
text of a computational grid. The basic resource discovery problem is solved
by publishing resources in the grid directory using a standard schema. Re
source management is defined in terms of a standard life-cycle for dissemina
tion pipelines, with discrete phases of service negotiation, initialisation, provi
sion and termination. A standard negotiation interface is defined for resource
access, and reservations are made using service tickets. A collection of actors
and traders round out the management infrastructure. These include: opera
tor factories to build individual operators and manage a single resource, trader
services to construct pipelines, and manager services to provide client access
to pipelines.

A range of experimental and production systems have been developed to evaluate
different aspects of Rapid. The Comet visualisation system, reviewed in Chapter 5,
was used to evaluate responsiveness issues. It demonstrates the viability of paral
lel caching and downstream gathering, and also highlights the importance of asyn
chronous communications and speculative requests. Three different imagery dis
semination systems (OATS, IMAD-1 and CROP) were reviewed in Chapter 6, which
explore ways to overcome throughput constraints. They also underscore the need
for application management with widely distributed systems. The vGrid project
demonstrated how this could be performed in a computational grid, with exten
sions for data-centric applications such as Virtual Environments. Collectively, the
experimental work motivates and validates the Rapid architecture.

8.2 Future Directions for Research

There are always unsolved problems, and Rapid is not the last word in imagery dis
semination. Indeed, one of the exciting things about this area of research is the num
ber of interesting problems that remain. One contribution of this thesis is to provide
a foundation for future research projects.

8.2.1 A Full Implementation of Rapid

Taken as a whole, the five systems in the case studies explore all the major elements
of Rapid. However, each system is essentially a subset of the architecture, and as yet
a full implementation has not been completed. An implementation in Java is cur
rently being developed, and although progress is promising, it is not mature enough
to warrant reporting in this thesis. The value of a full implementation is not in veri
fying the architecture (since the experimental work has substantially done that), but
rather in exploring the boundary between architecture and implementation profile.

§8.2 Future Directions for Research 163

The importance of separating general concepts from application specific detail was
stressed in section 4.1.2. Unfortunately this separation is not always perfect, espe
cially when high levels of performance and optimisation are required. Developing a
full implementation of Rapid would, therefore, be a useful and interesting exercise.

8.2.2 Evaluating Scheduling and Prefetch Policies

One of the keys to meeting client responsiveness is to anticipate future client re
quests. Four different scheduling and prefetch policies were identified in section 3.1.2,
to be implemented in Race caches. Experimental work in Chapter 5 emphasised the
need for these techniques, and also demonstrated the value of the Request by Prox
imity policy. Work with OATS, and systems not reported here [78,79], demonstrates
that the other policies are also valuable. However, a detailed evaluation of prefetch
ing has not yet been performed. Any such evaluation would be highly dependent on
a particular implementation of Rapid: the policies that work well for one type of im
agery or client, may not work well for others. So this is quite a general problem, and
one which would make an interesting thesis in its own right. As such, it is beyond
the scope of this thesis, but is a priority for future work by the author.

8.2.3 High Level User Interaction and Collaboration

Of the four fundamental requirements identified in Chapter 1, collaborative data
sharing has received perhaps the least attention. This is due, in part, to the fact that
it is now a well understood problem [126]. Numerous design trade-offs were iden
tified in Chapter 2, and the solution that was included in Rapid is a minimal data
sharing service. This provides a basic foundation for building collaborative systems,
but many higher-level usability questions remain. What types of communication
and interaction take place between users as they explore a large dataset? What do
different types of user look for in a dataset? How can we exploit this to improve
both application performance, and user experiences? Once again, the answers to
these questions will depend greatly on implementation and on dataset. For exam
ple, the interactions between military personnel, with a clear chain of authority, may
be quite different to those in an ad-hoc group of scientists. These higher level issues
are obviously beyond the scope of this thesis, but are an interesting direction for
future research.

8.2.4 Other Issues

Security is important in any distributed system, and is especially significant when
sensitive or valuable data is shared. Even though section 1.4 defined security as be
yond the scope of this work, it remains a relevant problem.

Another interesting issue is to consider how other types of spatial data can be
integrated into the visualisation process. Rapid is specialised to the needs of terrain
rendering, based on texture imagery and elevation models (2.2.4). Both imagery and

164 Conclusions and Future Work

elevation models are typically represented as uniform arrays of colour or height val
ues. Other forms of spatial data, such as geometric representations of buildings and
roads, are represented in quite different ways. Integrating such data structures into
a terrain visualisation is an interesting problem, with implications for both the Race
cache and the application management infrastructure.

8.3 Conclusions
Rapid is a general architecture which enables very large geospatial images to be vi
sualised in Collaborative Virtual Environments. It address four fundamental perfor
mance and management requirements through a range of streaming, caching and
metacomputing techniques. It is a blueprint for a family of responsive imagery dis
semination systems, and a foundation for much future work.

Appendices

Appendix A

Rapid Class Reference

A. 1 Service Negotiation Classes
Class: F i l te r
Stereotypes: «remote»
Extends: Servicelnstance <— Operator <— Filter
Life-cycle: initialisation, provision, termination
Description: A Filter is a particular class of Operator in a dissemination pipeline

which performs image processing or transformation. It is produced by a
FilterFactory when a PipelineManager redeems a ServiceTicket that
was promised during an earlier service negotiation.

See also: Section 4.2.1, page 68
Interactions: FilterFactory, PipelineManager

Class:
Stereotypes:
Extends:
Life-cycle:
Description:

See also:
Interactions:

F ilte rF a c to ry
«remote»
ServiceProvider 4— OperatorFactory <— FilterFactory
negotiation, initialisation
A FilterFactory is a particular class of OperatorFactory which produces
Filter operators for use in a dissemination pipeline. They participate in
service negotiation and service initialisation just like any other factory.
Section 4.2.1, page 68
Filter,PipelineTrader,PipelineManager,ServiceTicket

Class:
Stereotypes:
Extends:
Life-cycle:
Description:

ImageAccessor
«remote»
Servicelnstance <— Operator •<— ImageAccessor
initialisation, provision, termination
An ImageAccessor is a particular class of Operator which retrieves data
from an ImageryArchive. As such it is a source of data for a dissemination
pipeline. It is produced by the ImageryArchive when a PipelineManager
redeems a ServiceTicket that was promised during an earlier service ne
gotiation.

167

168 Rapid Class Reference

See also:
Interactions:

Class:
Stereotypes:
Extends:
Life-cycle:
Description:

See also:
Interactions:

Class:
Stereotypes:
Extends:
Subtypes:
Life-cycle:
Pattern:
Description:

See also:
Interactions:

Class:
Stereotypes:
Extends:
Life-cycle:
Description:

Section 4.2.1, page 68
ImageryArchive,PipelineManager

ImageryArchive
«remote»
ServiceProvider <— OperatorFactory <— ImageryArchive
negotiation, initialisation
An ImageryArchive is a particular class of OperatorFactory which provides
an interface to a large repository of geospatial images. It will almost always
be a wrapper around an existing interface, such as the GIAS [149]. Archives
produce ImageAccessor operators for use in a dissemination pipeline and
participate in service negotiation and service initialisation just like any
other factory.
Section 4.2.1, page 68
ImageAccessor,PipelineTrader,PipelineManager,ServiceTicket

OperatorFactory
«remote»
ServiceProvider <— OperatorFactory
RACEFactory,
negotiation, initialisation
Abstract Factory role in the Abstract Factory pattern
An OperatorFactory is used to manage a single resource. They advertise
themselves in the resource schema, and are contacted by Traders during
the negotiation phase. Traders and factories interact through a Service-
Negotiation brokering interface. If they can agree to a set of service char
acteristics, the factory provides the trader with a ServiceTicket and makes
an appropriate resource reservation. During service initialisation the ticket
is used by a PipelineManager to require the factory to make good on it’s
promise of a service, and produce an appropriate Operator.
Section 4.2.1, page 68
PipelineTrader,ServiceNegotiation,ServiceTicket, Operator

PipelineManager
«remote»
Servicelnstance <— PipelineManager
negotiation, initialisation, provision, termination
A PipelineManager coordinates the life-cycle of every dissemination
pipeline. It is produced by a PipelineTrader following a successful service
negotiation. The trader provides the manager with a collection of Service-
Ticket objects which can be used to build the pipeline during service ini
tialisation. It also provides the manager with instructions about how the

§A.l Service Negotiation Classes 169

See also:
Interactions:

Class:
Stereotypes:
Extends:
Life-cycle:
Description:

See also:
Interactions:

Class:
Stereotypes:
Extends:
Life-cycle:
Description:

See also:
Interactions:

Class:
Stereotypes:
Subtypes:
Life-cycle:
Pattern:

operators should be connected. The manager waits until the agreed time
for service initialisation then constructs the pipeline, joining and initialis
ing operators as described in sections 3.3 and 4.3. During the service pro
vision phase, the manager is used to provide a point of first contact for vi
sualisation clients. Clients contact the manager which forwards them on to
their nearest R a c e cache. Finally, once service has terminated the manager
is responsible for cleaning up the pipeline.
Section 4.2.1, page 68
PipelineTrader,ServiceTicket,OperatorFactory, Operator, Connection

PipelineTrader
«remote»
ServiceProviderPipelineTrader
negotiation
PipelineTrader objects are used to simplify and automate service negoti
ation for client applications. Each trader produces one or more forms of
dissemination pipeline for a client. It uses the resource schema in the grid
directory to find required resources. It interacts with OperatorFactory ob
jects, through their ServiceNegotiation interface, to make resource reser
vations. The results of these negotiations are ServiceTicket objects. Once
access to all required resources has been arranged, the trader produces a
PipelineManager object to handle the initialisation, provision and termi
nation phase of the pipeline life-cycle.
Section 4.2.1, page 68
OperatorFactory,ServiceTicket,PipelineManager

RACEFactory
«remote»
OperatorFactory <— RACEFactory
negotiation, initialisation
An RACEFactory is a particular class of OperatorFactory which creates
R a c e caches at sites where visualisation clients run. They participate in
service negotiation and service initialisation just like any other factory.
Section 4.2.1, page 68
RACE,PipelineTrader,PipelineManager,ServiceTicket

S erv iceInstance
«remote»
Operator, PipelineManager,RACE, ImageAccessor, Filter, Transporter
negotiation, initialisation, provision, termination
Abstract Product role in the Abstract Factory pattern

170 Rapid Class Reference

Description:

See also:
Interactions:

Class:
Stereotypes:
Subtypes:

Life-cycle:
Pattern:
Description:

See also:
Interactions:

Class:
Stereotypes:
Life-cycle:
Description:

See also:
Interactions:

Class:
Stereotypes:

Service Inst since is a highly abstract class, at the root of the application
management hierarchy, which represents a single provision of a service.
Concrete examples of include Filter operators and PipelineManager ob
jects. Every Servicelnstance is produced by a ServiceProvider. It pro
vides methods to return the distinguished name of the Site and Host on
which it runs, as published in the grid directory through the resource
schema.
Section 4.2.1, page 68
ServiceProvider

ServiceProvider
«remote»
OperatorFactory, PipelineTrader, RACEFactory, ImageryArchive,
FilterFactory, TransportFactory
negotiation, initialisation, provision, termination
Abstract Factory role in the Abstract Factory pattern
ServiceProvider is an highly abstract class, at the root of the applica
tion management hierarchy, which represents a general class of service.
Providers are factories for instances of services. Concrete examples include
PipelineTrader and FilterFactory, which produce PipelineManager and
Filter objects respectively. Providers are registered in the grid directory,
and include methods to return the distinguished name by which they are
known.
Section 4.2.1, page 68
Servicelnstance

S erviceN egotiation
«remote»
negotiation
ServiceNegotiation is the standard interface which clients and traders
use to negotiate with an OperatorFactory so that it will produce an
Operator. The result of a successful negotiation is not an Operator, but
rather a ServiceTicket which can be redeemed at a later date. Service-
Negotiation could also be used as the interface clients use to contact a
PipelineTrader, but this is not mandated: more specialised interfaces may
be more appropriate for different types of client and trader.
Section 4.2.2, page 70
OperatorFactory, PipelineTrader,ServiceTicket

ServiceT icket
«mobile»

§A.2 Operator and Pipeline Classes 171

Life-cycle:
Description:

negotiation, initialisation
The result of a successful negotiation with an operator factory is a Service-
Ticket. This is a form of Promise [91] made by the factory, to produce an
appropriate operator at a later date. Tickets are collected by a Pipeline-
Trader during the service negotiation phase, and redeemed by the Pipe
lineManager during the initialisation phase.

See also:
Interactions:

Section 4.2.2, page 70
OperatorFactory, ServiceNegotiation, Operator, PipelineManager

Class:
Stereotypes:
Extends:
Life-cycle:
Description:

T ran sp o rte r
«remote»
Servicelnstance «— Operator <— Transporter
initialisation, provision, termination
A Transporter is a highly specialised form of Operator which provides bulk
transfer over an experimental or special purpose network. It is used when
access to such networks is not transparent or when there are restrictions
on the types of traffic that can be sent over the network. Each Transporter
is produced by a TransportFactory when a PipelineManager redeems a
ServiceTicket that was promised during an earlier service negotiation.

See also:
Interactions:

Section 4.2.3, page 73
TransportFactory,PipelineManager

Class:
Stereotypes:
Extends:
Life-cycle:
Description:

T ran sp o rtF ac to ry
«remote»
ServiceProvider <— OperatorFactory 4— TransportFactory
negotiation, initialisation
An TransportFactory is a particular class of OperatorFactory which allows
access to experimental and special purpose networks. It may be imple
mented as a wrapper around any existing resource reservation mechanism
used by the network. It produces a Transporter operator for use in the
dissemination pipeline, and participates in service negotiation and service
initialisation just like any other factory.

See also: Section 4.2.3, page 73
Interactions: Transporter, PipelineTrader, PipelineManager, ServiceTicket

A.2 Operator and Pipeline Classes

Class: A cceptor
Life-cycle: initialisation
Pattern: Acceptor role in the Acceptor and Connector pattern

172 R a p i d Class Reference

Description:

See also:
Interactions:

Class:
Stereotypes:
Life-cycle:
Description:

See also:
Interactions:

Class:
Stereotypes:
Life-cycle:
Description:

Acceptor objects are used during service initialisation to create the up
stream ends of links to ports downstream. Many communication mech
anisms require a passive listener to accept new connections. Acceptor per
forms this role during the initialisation phase of an operators life, when
downstream operators try to create a Link to an OutputPort of the oper
ator. Part of this process involves handling OpenLink messages sent from
the downstream operator.
Section 4.3.2, page 79
OutputPort,Connection, Link, OpenLink

Approximator
«mobile»
initialisation, provision
Approximator functions may be associated with the TileBuf f er objects of
any input or output port. Buffers can use these functions to return an ap
proximation of a tile if the requested tile is not currently in the buffer. Typ
ical approximations might be to return a low-resolution copy of a tile, or
through composition or decomposition of other cached tiles which over
lap the requested area. Approximator functions are created by Transform
ation objects and may be passed downstream as part of a Connection ob
ject, hence the requirement that they be «mobile».
Section 4.4.3, page 87
Transformation,TileBuffer, Connection

Connection
«mobile»
initialisation
Connection objects are used to join two operators during service initialisa
tion. A Connection is retrieved from an OutputPort of the upstream oper
ator and passed into an InputPort of the downstream operator. It encap
sulates all the logic required to share data between the two operators. This
includes:

1. XML descriptions of all instances shared by output (metadata)
2. XML descriptions of tile and LoD hierarchies
3. Factory objects to create different kinds of links (LinkFactory)
4. Link descriptions (name, factory, creation param)
5. An optional map function (RequestMap)
6. An optional approximator (Approximator)

The metadata and tiling information are used to ensure that the two op
erators are semantically compatible. Link descriptions and link factories
are used to create the Link objects used to send data to the upstream op
erator. A RequestMap may be included if the upstream operator supports

§A.2 Operator and Pipeline Classes 173

See also:
Interactions:

Class:
Life-cycle:
Description:

See also:
Interactions:

Class:
Stereotypes:
Extends:
Subtypes:
Life-cycle:
Description:

See also:
Interactions:

downstream gathering. An Approximator may also be included for use on
the InputPort of the downstream operator.

Connection objects are exchanged during service initialisation by the
PipelineManager. They are not passed through the pipeline, since it does
not exist during initialisation. Instead they are passed across the same ob
ject bus used for service negotiation.
Section 4.3.2, page 79
OperatorPort,PipelineManager,Link, LinkFactory,RequestMap,
Acceptor,Approximator

DependentSet
provision
The DependentSet is maintained by the RequestHandler within an opera
tor, to record all requests made to upstream operators. When a request is
received from a downstream operator it may not be possible to calculate
a response without first making a request of upstream operators. The Out-
standingSet records requests from downstream: the DependentSet records
the associated requests which have been sent upstream.
Section 4.4.4, page 88
RequestHandler,QutstandingSet

InputPort
«remote»
OperatorPortInputPort
RACEPort, SlavelnputPort,RACESlavePort
initialisation, provision, termination
Data flows along the pipeline enter an operator through one or more
InputPort objects. Each port is connected to a single upstream operator,
and handles flows for a single type of data. During service initialisation
the PipelineManager provides the port with a Connection object to join
to the upstream operator. During service provision the port uses one or
more Link objects send data to and receive data from the upstream op
erator. There may be more than one Link if the other operator supports
downstream gathering. If this is the case then the port uses a RequestMap
function to choose between links when sending TileRequest messages. All
operator ports have a TileBuf f er associated with them, and may also use
an Approximator function to provide temporary results.
Section 4.4, page 81
PipelineManager, Operator, Connection, Link, RequestMap, TileBuf f er,
Approximator

OperatorClass:

174 Rapid Class Reference

Stereotypes:
Extends:
Subtypes:
Life-cycle:
Pattern:

Description:

See also:
Interactions:

«remote»
Servicelnstance <— Operator
RACE, ImageAccessor,Filter, Transporter
initialisation, provision, termination
Facade role in the Facade pattern
Abstract Product role in the Abstract Factory pattern
The Operator class provides a standard Facade to the various processing
and data moving objects at each stage in the pipeline. An operator is a com
plex entity, with separate subsystems to receive data (OperatorPort), han
dle signalling (RequestHandler), process requests (Transformation) and
buffer results (TileBuf f er). The Operator class is a container for all of these
different subsystems, and provides a single interface for use during service
initialisation.
Section 4.2.1, page 68
OperatorFactory, PipelineManager, OperatorPort, RequestHandler,
Transformation,Acceptor

Class:
Stereotypes:
Subtypes:

Life-cycle:
Pattern:

Description:

See also:

OperatorPort
«remote»
InputPort, OutputPort, BroadcastPort, SlavelnputPort, SlaveOutput-
Port,RACEPort,RACESlavePort
initialisation, provision, termination
Subject role in the Observer pattern
Observer role in the Observer pattern
Data flows into and out of an operator through OperatorPort objects.
Ports dehne the service provision interface to the operator: the high-
performance interface which compliments the object bus interface used
for service negotiation and initialisation. OperatorPort is the base of a hier
archy of different ports, with important differences between the input and
output ports of an operator. There are a number of characteristics com
mon to all ports. They all use one or more Link objects to send and re
ceive R a p p o r t messages. They also have a TileBuf f er where bulk data
is stored upon receipt from upstream, and prior to delivery downstream.
All ports have a name attribute which is unique within the operator, so the
tuple (Operator .name, OperatorPort .name) is unique within the pipeline.
Finally, ports are typed with a MIME-style encoding, to ensure that con
nections between operators are meaningful.

Although the RequestHandler contains most of the logic to deal writh
Ra p p o r t messages, ports can respond automatically to some messages.
For this reason there is a short chain of request handlers formed form Link
through OperatorPort to RequestHandler. This chain is based on the Ob
server design pattern. Since the port sits in the middle of the chain it both
observes the link, and is the subject of observation by the handler. For fur
ther details please refer to section 4.4.1.
Section 4.4, page 81

§A.2 Operator and Pipeline Classes 175

Interactions:

Class:
Stereotypes:
Extends:
Subtypes:
Life-cycle:
Description:

See also:
Interactions:

Class:
Life-cycle:
Description:

See also:
Interactions:

Class:
Life-cycle:
Description:

Operator,PipelineManager, TileBuffer,Link

OutputPort
«remote»
OperatorPort <— OutputPort
RACEPort,SlaveOutputPort,RACESlavePort
initialisation, provision, termination
Data flows out of an operator through one or more OutputPort objects, in
much the same way as it flows in through an Input Port. During service
initialisation the PipelineManager retrieves a Connection object from the
OutputPort to extend the pipeline downstream. An Acceptor object listens
for attempts to open new Link objects from downstream before handing
them to the OutputPort. During service provision the port uses these links
to listen for requests (TileRequest) and to return results.

There is one important difference between the input and output ports.
Although inputs may only be connected to a single upstream operator, out
puts may be connected to several downstream operators. This allows forks
in the pipelines, and is essential so that more than one client can connect
to a Ra c e cache, and also so that more than one cache can connect to the
rest of the pipeline.
Section 4.4, page 81
PipelineManager, Operator, Connection, Link, Acceptor, TileBuf f er,
Approximator

OutputQueue
provision
Each operator maintains an OutputQueue to hold results which have been
processed but not yet sent downstream. In a responsive system result
queueing should be kept to an absolute minimum, and so the OutputQueue
is typically very short. In many forms of parallel operator it may be omitted
entirely.
Section 4.4.4, page 88
RequestHandler,Transformation

OutstandingSet
provision
All requests received by an operator are kept in an OutstandingSet until
such time as a final response has been calculated. The OutstandingSet is
maintained by the RequestHandler and contains all the attributes of the
original TileRequest. It records any dependent requests that where made
upstream, with the related entries in the DependentSet. The Outstanding-
Set is also used to detect duplicate and simultaneous requests, and ensure
that a response is sent to all requesting downstream operators.

176 R apid Class Reference

See also:
Interactions:

Class:
Stereotypes:
Subtypes:
Life-cycle:
Pattern:

Description:

See also:
Interactions:

Class:
Stereotypes:
Life-cycle:
Pattern:
Description:

See also:
Interactions:

Class:
Stereotypes:
Subtypes:
Life-cycle:
Description:

Section 4.4.4, page 88
RequestHandler

Link
«active»
BroadcastLink
initialisation, provision
Abstract Product role in the Abstract Factory pattern
Subject role in the Observer pattern
Link is an abstract class which represents a reliable, duplex communica
tion mechanism. It is used to send and receive R a p p o r t messages between
operators in the pipeline. Link objects are created during service initiali
sation, after a Connection object has been sent from an OutputPort of one
operator to an InputPort of another. At the input of the downstream oper
ator the Link is created by a LinkFactory passed in the Connection. At the
output port of the upstream operator, the Link is created by an Acceptor
when an OpenLink message is received.
Section 4.4, page 81
LinkFactory,OperatorPort, TileBuffer

LinkFactory
«mobile»
initialisation
Abstract Factory role in the Abstract Factory pattern
LinkFactory objects are included as part of the Connection sent to a down
stream operator when it is joined in to the pipeline during service initiali
sation. They are used at the operator to construct Link objects as described
by the Connection.
Section 4.3.2, page 79
Connection,Link, OperatorPort

RequestHandler
«active»
RACEHandler,ProxyHandler
provision
A RequestHandler is responsible for handling most of the messages re
ceived by an operator, and making dependent requests and for coordinat
ing the processing of requests. The asynchronous and multi-user charac
teristics of the pipeline make the operation of the RequestHandler quite
complex. It uses four major data structures to support it’s operation:
an OutstandingSet which is the master list of unanswered requests; a

§A.2 Operator and Pipeline Classes 177

See also:
Interactions:

Class:
Stereotypes:
Life-cycle:
Description:

See also:
Interactions:

Class:
Life-cycle:
Description:

See also:
Interactions:

Class:
Life-cycle:
Description:

See also:
Interactions:

DependentSet which lists all requests sent upstream for which a response
has not been received; a SupportedQueue which is used to feed work to
the Transformation function; and an OutputQueue which feeds results back
from the transformation ready for delivery downstream.
Section 4.4.4, page 88
Operator,OperatorPort, TileMessage,FlowControl,OutstandingSet,
DependentSet,SupportedQueue,OutputQueue, Transformation

RequestMap
«mobile»
initialisation, provision
A RequestMap may be attached to an InputPort in order to support down
stream gathering. When downstream gathering is used to stream data be
tween two operators, the downstream operator’s InputPort will have more
than one Link to the upstream operator. To send a TileRequest message
upstream the port needs a mechanism to select between these links. A
RequestMap function provides the port with a mapping of request to link.
Not all mapping functions are static in nature, and so MapUpdate messages
may be sent along the pipeline to update map functions as required.
Section 4.4.1, page 81
Connection,Link, InputPort, TileRequest,MapUpdate

SupportedQueue
provision
The SupportedQueue is one of the four data structures used by a Request-
Handler to coordinate the processing of tiles. The SupportedQueue is the
work queue for the Transformation function within the operator. Entries
in the queue represent partially or fully supported requests: i.e. requests for
which all required inputs are available or can be approximated. The queue
is arranged in priority order, based on the priorities of the original requests.
Section 4.4.4, page 88
RequestHandler,Transformation

T ileB uffer
provision
A TileBuf f er is associated with every port to hold the raw data (tiles) used
by the operator. Buffers on input ports hold the responses received from
upstream operators, which form the inputs to the local Transformation
task. Buffers on output ports hold the results after transformation, for de
livery downstream.
Section 4.4, page 81
Link,OperatorPort,Approximator

178 R a p i d Class Reference

Class: Transform ation
Life-cycle: provision
Description: The Transformation function in an operator performs the actual im

age processing. It runs as an independent thread, receiving work
from the SupportedQueue and storing results in the OutputQueue. The
Transformation function has the additional responsibility for producing
Approximator objects for use on local output and remote input ports. Fi
nally, it is also used by the RequestHandler to determine what dependent
requests should be made to satisfy a request. In other words, the han
dler asks the transformation “to produce this output what inputs do you
require?”

See also: Section 4.4.4, page 88
Interactions: Approximator, RequestHandler, SupportedQueue, OutputQueue

A.3 Ra p p o r t Classes

OpenLink

PipelineMessage <3

Message <3

Collaborat i ve Message

Tile Message <3

TileRequest

TileResponse

CancelRequest

FlowControl

LimitFlow

MapUpdate

CausalMessage

NonCausalMessage

Figure A.1: The complete Rapport class hierarchy

Class:
Stereotypes:
Extends:
Life-cycle:

CancelRequest
«mobile»
Message PipelineMessage TileMessage CancelRequest
provision

§A.3 Rapport Classes 179

Description:

See also:
Interactions:

Class:
Stereotypes:
Extends:
Life-cycle:
Description:

See also:
Interactions:

Class:
Stereotypes:
Extends:
Life-cycle:
Description:

See also:
Interactions:

Class:
Stereotypes:
Extends:
Subtypes:
Life-cycle:
Description:

CancelRequest messages are sent upstream when an operator wants to
cancel a tile that was previously requested with a TileRequest message.
This is primarily used by Race caches that make a request to the pipeline
in parallel with a request to other caches. If another cache responds before
the pipeline, the requesting Race must cancel the pipeline request using a
CancelRequest message.
Section 4.4.2, page 84
RequestHandler,Link, OperatorPort

CausalMessage
«mobile»
Message <— CollaborativeMessage «— CausalMessage
provision
CausalMessage is one of two classes of collaborative data which is shared
over the inter-site bus. It contains data which must be delivered reliably,
and in causal order. Such messages are sent through a BroadcastPort to
one or more sites or visualisation clients.
Section 4.5.5, page 101
RequestHandler,BroadcastLink,BroadcastPort

CloseLink
«mobile»
Message «— PipelineMessage <— CloseLink
provision, termination
To support graceful closure of a network link between two operators, either
may send a CloseLink message. This results in the termination of the asso
ciated Link, and so is typically used during the pipeline termination phase.
Section 4.4.2, page 84
Link, OperatorPort

CollaborativeM essage
«mobile»
Message <— CollaborativeMessage
CausalMessage,NonCausalMessage
provision
There are two separate hierarchies of messages in the Ra p p o r t protocol:
pipeline messages and collaborative messages. The former flow up and
down the pipeline between operators. The later are descended from the
abstract CollaborativeMessage, and flow across the inter-site formed be
tween Ra c e caches at each visualisation site. Collaborative messages are
all time-stamped to provide a temporal ordering. Subclass of this message
may also define causal and non-causal ordering.

180 Rapid Class Reference

See also:
Interactions:

Class:
Stereotypes:
Extends:
Subtypes:
Life-cycle:
Description:

See also:
Interactions:

Class:
Stereotypes:
Extends:
Life-cycle:
Description:

See also:
Interactions:

Class:
Stereotypes:
Extends:
Life-cycle:
Description:

See also:
Interactions:

Section 4.5.5, page 101
BroadcastLink,BroadcastPort

FlowControl
«mobile»
Message f- PipelineMessage <— FlowControl
LimitFlow, IncreaseFlow
provision
FlowControl messages can be sent along the dissemination pipeline to in
crease or decrease the rate of requests. Precisely how a RequestHandler
adapts its behaviour to these messages is undefined. However, a Race
cache can use flow control messages to moderate the rate at which it makes
speculative requests. This class is abstract, and contains only one attribute:
a time stamp at which the flow control event occurred.
Section 4.4.2, page 84
RequestHandler,Link, OperatorPort

IncreaseFlow
«mobile»
Message •*— PipelineMessage <— FlowControl <— IncreaseFlow
provision
IncreaseFlow messages are sent along the pipeline to indicate that an op
erator is not running at full capacity. They can be used by the Request-
Handler on a Race cache to increase the rate at which speculative requests
are made.
Section 4.4.2, page 84
RequestHandler,Link, OperatorPort

OpenLink
«mobile»
Message PipelineMessage 4— OpenLink
initialisation
An OpenLink message is sent from a downstream operator when it attempts
to open a connection to an upstream operator. A message is sent for each
link that must be opened. The contents of the message are largely depen
dent on the network primitive on which the link is based. OpenLink is the
only Ra p p o r t message used during service initialisation, and is handled by
an Acceptor object. Sending this message causes the Acceptor to create an
appropriate Link object on the upstream side of the connection.
Section 4.3.2, page 79
Connection,Link, Acceptor

§A.3 Rapport Classes 181

Class:
Stereotypes:
Extends:
Life-cycle:
Description:

See also:
Interactions:

Class:
Stereotypes:
Extends:
Life-cycle:
Description:

See also:
Interactions:

Class:
Stereotypes:
Subtypes:

Life-cycle:
Pattern:
Description:

See also:

LimitFlow
«mobile»
Message 4- PipelineMessage 4- FlowControl 4— LimitFlow
provision
LimitFlow messages are sent along the pipeline to indicate that an oper
ator is being overwhelmed with requests and so performing below peak
efficiency. They can be used by the RequestHandler on a R a c e cache to
decrease the rate at which speculative requests are made. They can also be
passed on to visualisation clients to provide users with a warning during
times of low responsiveness.
Section 4.4.2, page 84
RequestHandler,Link, OperatorPort

MapUpdate
«mobile»
Message PipelineMessage 4— MapUpdate
provision
When downstream gathering is used, a RequestMap function is required to
route request messages upstream. If the mapping function is dynamic, it
must be updated from time to time. MapUpdate messages are sent down the
pipeline to update mapping functions as and when they change.
Section 4.4.2, page 84
RequestMap,Link, OperatorPort

Message
«mobile»
PipelineMessage,OpenLink, CloseLink, TileMessage, TileRequest,Tile-
Response, CancelRequest, FlowControl, IncreaseFlow, LimitFlow, Map
Update, CollaborativeMessage,CausalMessage, NonCausalMessage
provision
Serializable role in the Serializer pattern
During service provision, all interactions between operators take place
through operator ports using a standard set of messages known as the R a p
p o r t protocol. Message is an abstract class at the root of the R a p p o r t sig
nalling hierarchy, with all other messages descended from it. It contains
only two attributes: a source and destination address. If no destination is
specified then the message is assumed to be for all operators. Messages are
«mobile» objects, as described in section 4.1.3. Object mobility can be im
plemented in various different ways, and if necessary this class can be used
to contain packing and unpacking code as described by the Serializer [98]
design pattern.
Section 4.4.2, page 84

182 Rapid Class Reference

Interactions:

Class:
Stereotypes:
Extends:
Life-cycle:
Description:

See also:
Interactions:

Class:
Stereotypes:
Extends:
Subtypes:

Life-cycle:
Description:

See also:
Interactions:

Class:
Stereotypes:
Extends:
Subtypes:
Life-cycle:
Description:

See also:

Link,OperatorPort

NonCausalMessage
«mobile»
Message «— CollaborativeMessage <— NonCausalMessage
provision
NonCausalMessage is one of two classes of collaborative data shared over
the inter-site bus. It contains data which can be delivered unreliably, and
with relaxed ordering. Such messages are sent through a BroadcastPort to
one or more sites or visualisation clients.
Section 4.5.5, page 101
RequestHandler, BroadcastLink,BroadcastPort

PipelineM essage
«mobile»
Message PipelineMessage
OpenLink, CloseLink, TileMessage, TileRequest, TileResponse, Cancel-
Request, FlowControl,IncreaseFlow,LimitFlow, MapUpdate
provision
There are two separate hierarchies of messages in the R a p p o r t protocol:
pipeline messages and collaborative messages. The former flow up and
down the pipeline between operators during the provision phase of op
eration. PipelineMessage is an abstract class that contains only two at
tributes beyond those of the base Message: a destination port and a priority
value. Prioritisation is required so that demand driven requests can pre
empt speculative requests in the pipeline.
Section 4.4.2, page 84
Link,OperatorPort

TileMessage
«mobile»
Message «— PipelineMessage TileMessage
TileRequest,TileResponse,CancelRequest
provision
TileMessage is an abstract class from which three specific tile related mes
sages are derived. Request and response messages, the overwhelming ma
jority of traffic in the pipeline, are both descended from this class. The only
attribute of TileMessage is a requestID, which is guaranteed to be unique
at the requesting (downstream) operator. The tuple (sourceOperator, re
questID) uniquely identify every request in the pipeline.
Section 4.4.2, page 84

§A.4 Race Classes 183

Interactions: RequestHandler,Link, OperatorPort

Class:
Stereotypes:
Extends:
Life-cycle:
Description:

T ileR equest
«mobile»
Message <— PipelineMessage <— TileMessage «— TileRequest
provision
TileRequest messages flow up the pipeline, originating at visualisation
clients and Race caches. Each request can only travel between two op
erators, but to satisfy a request an operator may have to make dependent
requests of its own. So a chain of requests cascade up the pipeline toward
the ultimate sources of data: ImageAccessor operators. Each request de
scribes the spatial coordinates of a single tile, the size and level of detail
required, the dataset and the visual channel (for multi-channel sources).
Requests also specify whether or not approximations should be returned.
To support upstream scattering, a request can also specify the return link
along which response messages should be sent.

See also:
Interactions:

Section 4.4.2, page 84
RequestHandler,Link, RequestMap, OperatorPort

Class:
Stereotypes:
Extends:
Life-cycle:
Description:

TileR esponse
«mobile»
Message <— PipelineMessage <— TileMessage <— TileResponse
provision
TileResponse messages contain the bulk data that flows down the pipeline
from imagery archives to visualisation clients. Each TileResponse corre
sponds to a previous TileRequest. The payload of each response message
is a large tile of imagery. Link objects typically attempt to optimise the re
ceipt of these messages, and store the payload directly into a TileBuf f er to
avoid copying overheads. Aside from the payload, response messages also
include a flag to indicate whether the response is an approximation or a
final result.

See also: Section 4.4.2, page 84
Interactions: RequestHandler, Link, TileBuf f er, OperatorPort

A.4 Race Classes

Class:
Stereotypes:
Extends:
Life-cycle:

B roadcastP o rt
«remote»
OperatorPort 4- BroadcastPort
initialisation, provision, termination

184 Rapid Class Reference

Description:

See also:
Interactions:

Class:
Stereotypes:
Extends:
Life-cycle:
Description:

See also:
Interactions:

Class:
Stereotypes:
Extends:
Life-cycle:
Pattern:

Description:

See also:
Interactions:

Class:
Stereotypes:
Extends:
Life-cycle:

Each R a c e contains a BroadcastPort through which it is connected to ev
ery other R a c e in the pipeline. These ports are the basis of the inter
site sharing bus used for cache snooping and collaborative data sharing.
BroadcastPort objects only exist on the master R a c e node. It is a a spe
cialised form of OperatorPort which includes only a small TileBuff er to
hold tiles snooped from other caches, when in transit on their way to a
Slave node.
Section 4.5.5, page 101
BroadcastLink,RACE

BroadcastLink
«active»
Link BroadcastLink
initialisation, provision
BroadcastLink objects are used to send data between BroadcastPort ob
jects on the R a c e caches at each site. They actually implement the inter-site
bus, and so are different to the point-to-point links between ports in the
pipeline. They support reliable and unreliable delivery of Collaborative-
Message objects between sites. They may be implemented with regular uni
cast mechanisms (such as a UDP and TCP socket pair), or with a group
communication mechanism such as IP multicast.
Section 4.5.5, page 101
BroadcastPort,CollaborativeMessage

RACE
«remote»
Operator <— RACE
initialisation, provision, termination
Proxy role in the Proxy pattern
Master role in the Master-Slave pattern
A RACE is the master node in a parallel R a c e cache. It is a subtype of
Operator and behaves in most respects like any other parallel operator.
Section 4.5, page 95
RACEFactory, PipelineManager, RACEPort, Slave RACEHandler, Scheduler,
Acceptor,BroadcastPort,BroadcastLink

RACEHandler
«active»
RequestHandler RACEHandler
provision

§A.4 Race Classes 185

Description:

See also:
Interactions:

Class:
Stereotypes:
Extends:

Life-cycle:
Description:

See also:
Interactions:

Class:
Extends:

Life-cycle:
Description:

RACEHandler is a simplified form of RequestHandler which runs on the
master node of a RACE cache. Most requests are handled automatically
by the ProxyHandler objects running Slave nodes. However, slaves can
not make requests up the pipeline. Instead the RACEHandler makes all
upstream requests. This includes both demand driven requests from vi
sualisation clients, and also speculative requests generated by the cache
Scheduler.

Because no transformation runs on the cache it does not need the same
elaborate request sets as other RequestHandler objects. It maintains an
OutstandingSet but does not require the DependentSet (since there is a
one-to-one mapping between outstanding and dependent requests) nor
the Support edQueue or Output Queue (since no Transformation runs).
Section 4.5, page 95
RACEPort, Slave, Link, Scheduler,Scheduler, Acceptor, BroadcastPort,
BroadcastLink

RACEPort
«remote»
OperatorPort <— InputPort 4— RACEPort
OperatorPort <— OutputPortRACEPort
initialisation, provision, termination
RACEPort is a specialised form of OperatorPort which runs on the mas
ter node in a RACE operator. It is used during service initialisation to con
nect the R a c e to the end of the pipeline using upstream scattering. It is
used by clients during service provision to connect to the Slave nodes us
ing downstream gathering. However, no data passes through a RACEPort. It
has a link upstream to make requests, but does not have links downstream.
Downstream clients open links to the RACESlavePort on every Slave but
not to the RACEPort. The slave ports relay any request they cannot satisfy
through an internal communications link. This simplified role for the RACE
Port means that it has no TileBuf f er or Approximator as other ports do.
Section 4.5.1, page 95
RACE, PipelineManager,RACEHandler,Connection,Link, Acceptor,
TileBuffer,Approximator,RequestMap

RACESlavePort
OperatorPort InputPort<— SlavelnputPort <— RACESlavePort
OperatorPort <— OutputPort <— SlaveOutputPort RACESlavePort
initialisation, provision
RACESlavePort is a specialised form of OperatorPort which runs on Slave
nodes in a RACE operator. It acts as both an InputPort and an OutputPort,
with a single TileBuf f er used to hold tiles as they flow through the oper
ator. This buffer may have an Approximator associated with it, so that the
Slave can return approximations where appropriate.

186 Rapid Class Reference

See also:
Interactions:

Class:
Life-cycle:
Description:

See also:

Interactions:

Class:
Life-cycle:
Pattern:
Description:

See also:
Interactions:

Class:
Extends:
Subtypes:
Life-cycle:
Description:

See also:

Class:
Stereotypes:
Extends:

Section 4.5.1, page 95
Slave, ProxyHandler, Connection, Link, Acceptor, TileBuff er,
Approximator,RequestMap

Scheduler
provision
A Scheduler is an implementation of one or more pipeline scheduling poli
cies which make speculative requests for tiles. These are design to both
improve responsiveness by anticipating future requests, and to use spare
capacity in the pipeline and so increase throughput.
Section 4.5.4, page 100
Section 3.1.2, page 38
RACEHandler,FlowControl,IncreaseFlow, LimitFlow

Slave
initialisation, provision
Slave role in the Master-Slave pattern
A Slave node is one single host in a large parallel Race cache. It communi
cates to other elements of the pipeline through one or more RACESlavePort
objects. Only minimal request handling takes place on a slave node, using
a ProxyHandler. Most serious logic is concentrated in the RACEHandler on
the Master node.
Section 4.5.1, page 95
RACEFactory,RACE, RACESlavePort,ProxyHandler,Acceptor

SlaveInputPort
OperatorPort 4— InputPort 4— SlavelnputPort
RACESlavePort
initialisation, provision
Parallel operators may need to replicate some parts of their InputPort onto
multiple Slave nodes. A SlavelnputPort is a replica for use on a Slave
node. It may contain a TileBuff er, Approximator, RequestMap and Link
objects to send data upstream. The precise structure of a SlavelnputPort
will depend on the model of parallelism adopted within an operator. The
RACESlavePort is the only concrete form of this port described here.
Section 4.4.5, page 91

SlaveHandler
«active»
RequestHandler SlaveHandler

§A.4 Race Classes 187

Life-cycle:
Description:

See also:
Interactions:

Class:
Extends:
Subtypes:
Life-cycle:
Description:

See also:

provision
ProxyHandler is a simplified form of RequestHandler which runs on Slave
nodes. The proxy does not have the ability to make requests upstream.
Any TileRequest that cannot be satisfied from the slaves TileBuf f er is for
warded on to the RACEHandler running on the master node. The proxy
maintains an OutstandingSet but does not require the DependentSet or
other queues used by a normal handler.
Section 4.5.3, page 99
Slave, RACESlavePort, Link, PipelineMessage

SlaveOutputPort
OperatorPort OutputPort f- SlaveOutputPort
RACESlavePort
initialisation, provision
Parallel operators may also need to replicate some parts of their Output-
Port onto multiple Slave nodes. A SlaveOutputPort is a replica for use on
a Slave node. It may contain a TileBuf f er, Approximator and Link objects
to send results back downstream.
Section 4.4.5, page 91

188 Rapid Class Reference

Appendix B

UML Notation and Conventions

B. 1 Class Diagrams

Declarations

Class Name
attribute: Type
methodfin parameters): Type

iAbstractClass

ConcreteClass

«stereotype»
StereotypedClass

Associations

A general association between two classes

Class One
role of One role ofTwo

Class Two

Navigability Creation

Source Target

Multiplicities are implied by aggregation and composition

One
composition

Many

189

190 UML Notation and Conventions

B.2 State Diagrams
Transition from A to B
[conditions for transition)

State A State B

Final StateInitial State

Transition from B to A
[conditions]

B.3 Sequence Diagrams

aSecondObject

object lifeline

methodCalU)
------------------------------ ft

method call
and return

object activation

<e-

asynchronousCalK)

new()
-ft aNewObject

object creation

Bibliography

[1] Sarita V Adve and Kourosh Gharachorloo. Shared memory consistency mod
els: A tutorial. IEEE Computer, 29(12):66-76, December 1996. (pp. 20, 24)

[2] Agrecon Pty Ltd. http://www.agrecon.canberra.edu.au. (p. 140)

[3] Cristiana Amza, Alan L. Cox, Sandhya Dwarkadas, Pete Keleher, Honghui Lu,
Ramakrishnan Rajamony, Weimin Yu, and Willy Zwaenepoel. TreadMarks:
Shared Memory Computing on Networks of Workstations. IEEE Computer,
29(2):18-28, February 1996. (pp. 20, 92)

[4] APAN. The Asia Pacific Advanced Network, http://www.apan.net. (p. 153)

[5] S. Benford and L. Fahlen. A spatial model of interaction in large-scale vir
tual environments. 3rd European Conference on CSCW, pages 109-124, 1993.
(p. 22)

[6] Wes Bethel, Brian Tierney, Jason Lee, Dan Gunter, and Stephen Lau. Using
high-speed WANs and network data caches to enable remote and distributed
visualization. In SC2000: High Performance Networking and Computing. Dal
las Convention Center, Dallas, TX, USA, November 4-10, 2000, pages 59-59.
ACM Press and IEEE Computer Society Press, 2000. (pp. 30, 41)

[7] Paul Bettner and Mark Terrano. 1500 Archers on a 28.8: Network Program
ming in Age of Empires and Beyond. In Proceedings of Game Developer Con
ference (GDC) 2001, March 2001. (p. 21)

[8] K. P. Birman, R. Cooper, T. A. Jospeh, K. P. Kane, F. Schmuck, and M. Wood.
ISIS-a distributed programming environment. Cornell University, Ithaca, NY,
June 1990. in User’s Guide and Reference Manual, (p. 24)

[9] Kenneth Birman. ISIS: A system for fault-tolerance in distributed systems.
Technical Report TR 86-744, Cornell University Computer Science Depart
ment, Ithaca, NY, April 1986. (p. 24)

[10] Stephen Michael Blackburn. Persistent Store Interface: A foundation for scal
able persistent system design. PhD thesis, Department of Computer Science,
Australian National University, August 1998. (p. 28)

[11] Jonathan Blow. Implementing a Texture Caching System. Game Developer,
pages 46-56, April 1998. (p. 27)

191

http://www.agrecon.canberra.edu.au
http://www.apan.net

192 Bibliography

[12] Jonathan Blow. Terrain Rendering at High Levels of Detail. In Proceedings of
the Game Developers Conference 2000, March 2000. (p. 27)

[13] M. D. Brown, T. A. DeFanti, and M. A. McRobbie et al. The International Grid
(iGrid): Empowering Global Research Community Networking Using High
Performance International Internet Services. In Proceedings of INET’99, San
Jose, 1999. (pp. 21, 146, 154)

[14] Canarie. Canarie. http://www.canarie.ca. (p. 73)

[15] Christer Carlsson and Olof Hagsand. DIVE — A platform for multi-user
virtual environments. Computers and Graphics, 17(6):663-669, November-
December 1993. (p. 19)

[16] John B. Carter. Design of the munin distributed shared memory system. Jour
nal of Parallel and Distributed Computing, 29 (2) :219-227, September 1995.
(pp. 20, 92)

[17] Anawat Chankhunthod, Peter B. Danzig, Chuck Neerdaels, Michael F.
Schwartz, and Kurt J. Worrell. A Hierarchical Internet Object Cache. In
USENIX Association, editor, Proceedings of the USENIX 1996 annual techni
cal conference: January 22-26, 1996, San Diego, California, USA, USENIX Con
ference Proceedings 1996, pages 153-163 (or 153-164??), Berkeley, CA, USA,
January 1996. USENIX. (p. 28)

[18] Ann Chervenak, lan Foster, Carl Kesselman, Charles Salisbury, and Steven
Tuecke. The Data Grid: Towards an Architecture for the Distributed Man
agement and Analysis of Large Scientific Datasets. Journal of Network and
Computer Applications, 2000. (pp. 14, 50)

[19] D. Chess, C. Harrison, and A. Kershenbaum. Mobile Agents: Are They a Good
Idea? Lecture Notes in Computer Science, 1222, 1997. (p. 66)

[20] P. D. Coddington, K. A. Hawick, K. E. Kerry, J. A. Mathew, A. J. Silis, D. L.
Webb, P. J. Whitbread, C. G. Irving, M. W. Grigg, R. Jana, and K. Tang. A GIAS-
Compliant Server for Geospatial Image Archives. Technical Report DHPC-053,
University of Adelaide, Department of Computer Science, University of Ade
laide, South Australia, Australia, September 1998. (pp. 13, 138)

[21] James O. Coplien and Douglas C. Schmidt, editors. Pattern Languages of Pro
gramming Design, volume 1. Addison Wesley, 1995. (pp. 37, 44, 83, 91, 92)

[22] John De Margheriti and Steve Wang. Micro Forte’s Sei Fi Persistent World. In
Proceedings of the Australian Game Developers Conference, Sydney, Australia,
November 1999. (pp. 4, 22)

[23] Stephen E. Deering. Multicast Routing in Internetworks and Extended LANs.
Computer Communication Review, 18(4):55-64, August 1988. (p. 101)

http://www.canarie.ca

Bibliography 193

[24] Tom DeFanti and Rick Stevens. The GRID: Blueprint for a New Computing
Infrastructure, chapter Teleimmersion, pages 131-150. Morgan Kaufmann,
1999. (pp. 18,21,30)

[25] Defence Modelling and Simulation Office (DMSO). HLA Run-Time Infrastruc
ture: RTI 1.3-Next Generation Programmers Guide. Departm ent of Defence.
(pp.4, 19,23)

[26] Mark A. Duchaineau, Murray Wolinsky, David E. Sigeti, Mark C. Miller, Charles
Aldrich, and Mark B. Mineev-Weinstein. ROAMing terrain: Real-time opti
mally adapting meshes. In IEEE Visualization ’97, October 1997. (p. 26)

[27] Richard K. Burkard et al. Geodesy for the Layman. U.S. National Imagery and
Mapping Agency (NIMA), fourth edition edition, March 1984. (p. 17)

[28] Paul Ferguson and Geoff Huston. Quality o f Service: Delivery QoS on the Inter
net and in Corporate Networks. John Wiley and Sons, 1998. (pp. 27, 29)

[29] Scott S. Fisher and Glen Fraser. Real-time Interactive Graphics in Computer
Gaming. ACMSIGGRAPH- Computer Graphics, 32(2):15-19, May 1998. (p. 4)

[30] Peter Fletcher. Regular Mapping o f Multi-Dimensional Data on Parallel Pro
cessors. PhD thesis, Australian National University, Canberra, Australia, May
1993. (pp. 17,45)

[31] Sally Floyd, Van Jacobson, Ching-Gung Liu, Steven McCanne, and Lixia Zhang.
A reliable multicast framework for light-weight sessions and application level
framing. IEEE/ACM Transactions on Networking, 5(6):784-803, December
1997. (p. 101)

[32] Australian Centre for Remote Sensing (ACRES). ACRES Digital Catalogue.
http://acs.auslig.gov.au. (p. 13)

[33] National Centre for Supercomputing Applications. Getting Started with HDF
- User Manual. University of Illinois at Urbana-Champaign, 1993. (p. 126)

[34] I. Foster and C. Kesselman. Globus: A m etacom puting infrastructure toolkit.
The International Journal o f Supercomputer Applications and High Perfor
mance Computing, 11 (2): 115-128, Summer 1997. (p. 30)

[35] Ian Foster and Carl Kesselman, editors. The GRID: Blueprint for a New Com
puting Infrastructure. Morgan Kaufmann, 1999. (pp. 8, 30, 48, 54, 67)

[36] Ian Foster and Carl Kesselman. The GRID: Blueprint for a New Computing In
frastructure, chapter The Globus Toolkit, pages 259-278. Morgan Kaufmann,
1999. (p. 30)

[37] Ian Foster, Carl Kesselman, and Steve Tuecke. The Nexus Approach to In
tegrating Multithreading and Communication. Journal o f Parallel and Dis
tributed Computing, 37(l):70-82, 1996. (p. 76)

http://acs.auslig.gov.au

194 Bibliography

[38] Ian Foster, Carl Kesselman, and Steven Tuecke. The Anatomy of the Grid: En
abling Scalable Virtual Organisations. International Journal of Supercomputer
Applications, 2001. (p. 30)

[39] Martin Fowler and Kendall Scott. UML Distilled Second Edition - A Brief
Guide to the Standard Object Modelling Language. Object Technology Series.
Addison-Wesley, 2000. (pp. 9, 65)

[40] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.
(pp. 9, 49,77, 79,83, 94, 149)

[41] H.J. Gardner and R.W. Boswell. Effective Virtual Environments - Experiences
with a Low Cost Immersive System. In Proceedings ofHPCAsia’98 Conference,
pages 658 - 663, Singapore, 22-25 September 1998. Institute of High Perfor
mance Computing. (p. 153)

[42] Aniruddha S. Gokhale and Douglas. C. Schmidt. Measuring the Performance
of Communication Middleware on High-Speed Networks. In Proceedings of
the ACM SIGCOMM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, volume 26,4 of ACM SIGCOMM
Computer Communication Review, pages 306-317, New York, August 26-30
1996. ACM Press, (pp. 27, 123, 131)

[43] Aniruddha S. Gokhale and Douglas C. Schmidt. Evaluating CORBA Latency
and Scalability Over High-Speed ATM Networks. In 17th International Confer
ence on Distributed Computing Systems (17th IDCS’97), pages 401-410, Balti
more, MD, May 1997. IEEE. (pp. 27, 123, 131)

[44] Aniruddha S. Gokhale and Douglas C. Schmidt. Techniques for Optimizing
CORBA Middleware for Distributed Embedded Systems. In Proceedings oflN-
FOCOM ’99, New York, March 1999. (p. 36)

[45] Dean Graetz, Rohan Fisher, Murray Wilson, and Susan Campbell. Looking
Back: The changing face of the Australian continent, 1972 -1992. Number 042
in COSSA Publications. CSIRO, 1998. (pp. 1, 12, 14)

[46] Chris Greenhalgh. Large Scale Collaborative Virtual Environments. PhD the
sis, Communication Research Group, Department of Computer Science, Uni
versity of Nottingham, 1999. (p. 22)

[47] Chris M. Greenhalgh. Awareness Management in the MASSIVE Systems. Dis
tributed Systems Engineering Journal, 5(3): 129-137, September 1998. (p. 22)

[48] Mark W. Grigg, A. K. Lui, S. P. James, M. J. Owen, and Edward H. S. Lo. Dis
tributed Imagery Library System Using Java and CORBA. In Proceedings of
Evolve2000, Sydney, Australia, 2000. DSTC. (pp. 128, 138)

Bibliography 195

[49] Andrew S. Grimshaw and William A. Wulf. Legion - A View from 50,000 Feet.
In Proceedings o f the Fifth IEEE International Symposium on High Performance
Distributed Computing, August 1996. (p. 30)

[50] Andrew S. Grimshaw, William A. Wulf, and the Legion team. The legion vision
of a worldwide virtual computer. Communications o f the ACM, 40(l):39-45,
January 1997. (p. 30)

[51] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Par
allel Programming with the Message-Passing Interface. MIT Press, 1995. (p. 44)

[52] Object Management Group. Audio/Video Stream Specification. Object M an
agement Group, 2000. (p. 27)

[53] M. Handley and V. Jacobson. SDP: Session Description Protocol, April 1998.
Internet Request for Comments 2327. (p. 29)

[54] K. A. Hawick, H. A. James, C. J. Patten, and F. A. Vaughan. DISCWorld: A Dis
tributed High Performance Computing Environment. In Proc. o f High Perfor
mance Computing and Networks (HPCN) Europe ’98, Amsterdam, April 1998.
Also available as DHPC Technical Report DHPC-020. (p. 30)

[55] K. A. Hawick, H. A. James, A. J. Silis, D. A. Grove, K. E. Kerry, J. A. Mathew, P. D.
Coddington, C. J. Patten, J. F. Hercus, and F. A. Vaughan. DISCWorld: An En
vironm ent for Service-Based Metacomputing. Technical Report DHPC-042,
Distributed High Performance Computing Group, Adelaide University, April
1998. (p. 30)

[56] Ken A. Hawick and Paul D. Coddington. Interfacing to distributed active data
archives. Future Generation Computer Systems, 16(73), 1999. (pp. 13, 14, 138)

[57] Ken A. Hawick, Heath A. James, Kevin J. Maciunas, Francis A. Vaughan, An
drew L. Wendelborn, Markus Buchhorn, Michael Rezny, Samuel R. A. Taylor,
and Matthew D.Wilson. An ATM-based Distributed High Performance Com
puting system. In Proceedings o f High Performance Computing and Networks
(HPCN) Europe ’97, Vienna, April 1997. (p. 106)

[58] Ken A. Hawick, Heath A. James, Kevin J. Maciunas, Francis A. Vaughan, An
drew L. Wendelborn, Markus Buchhorn, Michael Rezny, Samuel R. A. Taylor,
and Matthew D.Wilson. Geostationary-satellite imagery applications on Dis
tributed, High-Performance Computing. In Proceedings o f High Performance
Computing (HPC) Asia ’97, Seoul, Korea, April 1997. (pp. 106, 123)

[59] High Performance Fortran Forum. HPF Language Specification, Version 2.0.
January 1997. (pp. 45, 98)

[60] T. A. Howes, M. C. Smith, and G. S. Good. Understanding and Deploying LDAP
Directory Services. MacMillian Technical Publishing, 1999. (pp. 29, 73)

196 Bibliography

[61] Stuart Hungerford, Dione Smith, and Matthew Wilson. CROP Project Report.
Technical Report DHPC-051, University of Adelaide, Department of Computer
Science, University of Adelaide, South Australia, Australia, September 1998.
(pp. 139, 140, 142)

[62] Frank E. Redmond III. DCOM: Microsoft Distributed Component Object Model.
IDG Books, 1997. (p. 123)

[63] U.S. National Imagery and Mapping Association (NIMA). Department of De
fense World Geodetic System 1984, Its Definition and Relationships With Local
Geodetic Systems. Third edition edition, July 1997. (p. 18)

[64] U.S. National Imagery and Mapping Association (NIMA). U.S. Imagery and
Geospatial Information System (USIGS) Architecture Framework. June 1998.
(p. 13)

[65] U.S. National Imagery and Mapping Association (NIMA). U.S. Imagery and
Geospatial Information System (USIGS) Technical Architecture Documenta
tion. January 1999. (p. 13)

[66] Space Imaging, http://www.spaceimaging.com. (p. 12)

[67] Institute for Simulation and Training. Dead Reckoning Dehnitions and Al
gorithms. In Enumeration and Bit Encoded Values for Use with Protocols for
Distributed Interactive Simulation Applications. University of Central Florida,
1993. (p. 22)

[68] Institute of Electrical and Electronics Engineers. IEEE Standard for Distributed
Interactive Simulation-Application Protocols (IEEE-1278). IEEE Press, 1995.
(pp. 4, 19,20, 23, 158)

[69] Interactive Digital Software Association (IDSA). State of the Industry: Report
2000-2001,2001. http://www.idsa.com. (p. 4)

[70] Internet2. Abilene advanced backbone, http://www.internet2.edu. (p. 73)

[71] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Overgaard.
Object-Oriented Software Engineering: A Use Case Drive Approach. Addison-
Wesley, 1992. (p.9)

[72] Heath A. James. Scheduling in Metacomputing Systems. PhD thesis, Depart
ment of Computer Science, University of Adelaide, 2000. (pp. 14, 29)

[73] Heath A. James and Ken A. Hawick. A Web-based Interface for On-Demand
Processing of Satellite Imagery Archives. In Proceedings of the 21st Aus
tralasian Computer Science Conference (ACSC98). Springer-Verlag, February
1998. (p. 124)

http://www.spaceimaging.com
http://www.idsa.com
http://www.internet2.edu

Bibliography 197

[74] Andrew E. Johnson, T. Moher, Jason Leigh, and Y. Lin. QuickWorlds: Teacher
driven VR worlds in an Elementary School Curriculum. In SIGGRAPH 2000
Educators Program, New Orleans LA, July 2000. (p. 4)

[75] C. Kanarick. A Technical Overview and Histroy of the SIMNET Project. In [?]
Proceedings of the SCS Multiconference on Advances in Parallel and Distributed
Simulation, pages 104-111, 1991. (p.22)

[76] David Keightley, Ken Tsui, John M. Lilleyman, and Kevin Moore. A Software
Framework for an Applications-driven Parallel Image Processing and Display
System (PIPADS). In Proceedings of SPIE Conference on Recent Advances in
Sensors, Radiometric Callibration and Processing of Remotely Sensed Data, Or
lando, Florida, April 1993. (p. 14)

[77] Glenn E. Krasner and Stephen T. Pope. A Cookbook for using the Model-
View-Controller User Interface Paradigm in Smalltalk-80. Journal of Object-
Oriented Programming, 1 (3):26-49, August/September 1988. (p. 19)

[78] Alex Krumm-Heller. Determinism for Object Position Estimation in Collabo
rative Virtual Environments. Honours thesis, Department of Computer Sci
ence, Australian National University, 1999. (pp. 23, 155, 163)

[79] Alex Krumm-Heller and Samuel R. A. Taylor. Using determinism to improve
the accuracy of dead-reckoning algorithms. In Proceedings of SimTecT2000,
pages 243 - 248, Darling Harbour, Sydney, Australia, 2000. (pp. 23, 154, 163)

[80] Rodger Lea, Kouichi Matsuda, and Ken Miyashita. Java for 3D and VRML
Worlds. New Riders Publishing, Carmel, IN, USA, December 1996. (p. 22)

[81] Rodger Lea, Kouichi Matsuda, and J. Rekimoto. Technical Issues in the Design
of a Scalable Shared Virtual World. Technical Report SCSL-TR-95-039, Sony
Computer Science Laboratories, 1995. (p. 22)

[82] Yvan G. Leclerc, Martin Reddy, Lee Iverson, and Nat Bletter. TerraVision II: An
Overview, 2000. (p. 27)

[83] V. D. Lehner and T. DeFanti. Distributed Virtual Reality: Supporting Remote
Collaboration in Vehicle Design. IEEE Computer Graphics and Applications,
1997. (p. 4)

[84] Jason Leigh. CAVERN and a Unified Approach to Support Realtime Networking
and Persistence in Teleimmersion. PhD thesis, Electronic Visualization Labo
ratory, University of Illinois at Chicago, 1998. (pp. 19, 21, 42, 158)

[85] Jason Leigh, Andrew E. Johnson, and T. A. DeFanti. CAVERN: A Distributed
Architecture for Supporting Scalable Persistence and Interoperability in Col
laborative Virtual Environments. Virtual Reality: Research , Development and
Applications, 2(2):217-237, December 1997. (pp. 20, 21, 42, 101, 146)

198 Bibliography

[86] Jason Leigh, Andrew E. Johnson, Thomas A. DeFanti, Stuart Bailey, and Robert
Grossman. A Methodology for Supporting Collaborative Exploratory Analy
sis of Massive Data Sets in Tele-Immersive Environments. In Proceedings o f
the 8th IEEE International Symposium on High Performance and Distributed
Computing (HPDC’8), pages 62-69, Redundo Beach, California, August 1999.
(p. 20)

[87] M. Lesk. Practical Digital Libraries. Morgan Kaufmann, 1999. (p. 13)

[88] B. Li and K. Nahrstedt. Dynamic Reconfiguration for Complex Multimedia Ap
plications. In Proceedings o f the IEEE International Conference on Multimedia
Computing and Systems, June 1999. (p. 157)

[89] John C. Lin and Sanjoy Paul. RMTP: A reliable multicast transport protocol.
Proceedings oflEEEInfocom, pages 1414-1424, March 1996. (p. 101)

[90] P. Lindstrom, D. Koller, W. Ribarsky, L. Hodges, N. Faust, and G. Turner. Real
time continuous level of detail rendering of height fields. Proceedings ofSIG-
GRAPH’96, pages 109-118, 1996. (p.26)

[91] Barbara Liskov and S. Liuba. Promises: Linguistic Support for Efficient Asyn
chronous Procedure Calls in Dis-tributed Systems. In Proceedings o f the SIG-
PLAN ’88 Conference on Programming Language Design and Implementation.
ACM Press, 1988. (pp. 52, 70, 171)

[92] Michael]. Litzkow, Miron Livny, and Matt W. Mutka. Condor - a Hunter of
Idle Workstations. In Proceedings o f the IEEE 8th International Conference on
Distributed Computing Systems, pages 104-111, 1988. (p. 29)

[93] Andrew K. Lui, Mark W. Grigg, T. Andrew Au, and Michael J. Owen. Compo
nent Based Application Framework for Systems Utilising the Streaming Data
Passing Semantic. In Proceedings o f TOOLS Pacific 2000, 2000. (pp. 14, 139)

[94] H. Detmold M. Hollfelder and M.J. Oudshoorn. A Structured Communication
Mechanism for Mobile Java Objects as Ambassadors. Australian Computer
Science Communications, 21 (1):265 - 276, February 1999. (p. 66)

[95] M. R. Macedonia, D. P. Brutzman, M. J. Zyda, D. R. Pratt, P. T. Barham, J. Falby,
and J. Locke. NPSNET: A multi-player 3D virtual environment over the Inter
net. In Proceedings o f the 1995 Symposium on Interactive 3D Graphics. ACM
SIGGRAPH, April 1995. (p.22)

[96] Michael Macedonia. A Network Software Architecture for Large Scale Virtual
Environments. PhD thesis, Naval Postgraduate School, Monterey, California,
June 1995. (p.22)

[97] Michael R. Macedonia and Michael J. Zyda. A taxonomy for networked virtual
environments. IEEEMultiMedia, 4(l):48-56, January-March 1997. (p. 19)

Bibliography 199

[98] Robert Martin, Dirk Riehle, and Frank Buschmann, editors. Pattern Languages
of Programming Design, volume 3. Addison Wesley, 1998. (pp. 66, 80, 181)

[99] Sun Microsystems. Jini Architecture Specification, Version 1.1, October 2000.
(p. 29)

[100] Larry Moore. Transverse Mercator Projections and the U.S. Geological Survey
Digital Products. Technical report, U.S. Geological Survey, July 1997. (p. 17)

[101] Reagan W. Moore, Chaitanya Baru, Richard Marciano, Arcot Rajasekar, and
Michael Wan. The GRID: Blueprint for a New Computing Infrastructure, chap
ter Data-Intensive Computing, pages 105-130. Morgan Kaufmann, 1999.
(pp. 13, 30)

[102] Motion Picture Expert Group (MPEG). MPEG-4: ISO Standard 14496. Interna
tional Standards Organisation, 1999. (p. 27)

[103] Martin A. Musicante. The Sun RPC Language Semantics. In Proceedings of
PANEL’92, XVIII Latin-American Conference on Informatics. Universidad de
Las Palmas de Gran Canaria, 1992. (p. 108)

[104] Jackie Neider, Tom Davis, and Mason Woo. OpenGL Programming Guide.
Addison-Wesley, Reading MA, 1993. (p. 26)

[105] Object Management Group. CORBA, The Common Object Request Broker: Ar
chitecture and Specification Revision 2.0. Object Management Group, 1995.
(pp. 29, 36, 66,76, 123, 129)

[106] Object Management Group. Unified Modelling Language (UML), version 1.3.
Object Management Group, 2000. (p. 65)

[107] Orbimage. http://www.orbimage.com. (p. 12)

[108] M. E. Papka and R. Stevens. UbiWorld: An environment integrating virtual
reality, supercomputing and design, (pp. 2, 21)

[109] K. Park and R. Kenyon. Effects of Network Characteristics on Human Perfor
mance in a Collaborative Virtual Environment. In Proceedings of IEEE VR’99,
Houston, Texas, March 1999. (pp. 4, 5, 19)

[110] R. D. Price, M. D. King, J. T. Dalton, K. S. Pedelty, P. E. Ardanuy, and M. K.
Hobish. Earth Science Data for all: EOS and the EOS Data and Information
System. Photogrammetric Engineering and Remote Sensing, 60:277-285, 1994.
(p. 13)

[111] J. Protic, M. Tomasevic, and V. Milutinovic. Distributed Shared Memory: Con
cepts and Systems. IEEE Press, August 1997. (pp. 20, 24, 92)

[112] Calton Pu and Avraham Leff. Epsilon-serializability. Technical Report CUCS-
054-90, University of Columbia, 1990. (p. 24)

http://www.orbimage.com

200 Bibliography

[113] Atul Puri and Tsuhan Chen. Multimedia Systems, Standards and Networks.
Marcel Dekker, Inc., 2000. (p. 27)

[114] Mary Rasmussen, Theodore P. Mason MD, Alan Millman, Ray Evenhouse, and
Daniel Sandin. The Virtual Temporal Bone, a Tele-immersive Educational En
vironment. 2000. (p. 4)

[115] Robert Englander. Developing Java Beans. O’Reilly, 1997. (p. 70)

[116] D. J. Roberts. A Predictive Real Time Architecture for Multi-User, Distributed,
Virtual Reality. PhD thesis, Reading University, April 1996. (p. 24)

[117] David J. Roberts and Paul M. Sharkey. Maximising Concurrency and Scala
bility in a Consistent, Causal, Distributed Virtual Reality System, Whilst Min
imising the Effect of Network Delays. In Proceedings of IEEE WETICE’97. IEEE
Press, 1997. (p. 24)

[118] Ward Rosenberry, David Kenney, and Gerry Fisher. Understanding DCE.
O’Reilly and Associates, 1992. (p. 30)

[119] M. Roussos, A. Johnson, J. Leigh, C. Barnes, C. Vasilakis, and T. Moher. The
NICE Project: Learning Together in a Virtual World. In Proceedings of Virtual
Reality Annual International Symposium (VRAIS'98), pages 176-183. IEEE,
March 1998. (p. 4)

[120] D. Rus, R. Gray, and D. Kotz. Transportable Information Agents. In Interna
tional Conference on Autonomous Agents, pages 228-236. ACM Press, February
1997. (p. 66)

[121] Matthew D. Ryan and Paul M. Sharkey. Causal Volumes in Distributed Virtual
Reality. In Proceedings of the 1997 IEEE International Conference on Systems,
Man and Cybernetics, pages 1067-1072, 1997. (p. 23)

[122] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport
Protocol for Real-Time Applications, January 1996. Internet Request for Com
ments 1889. (p. 27)

[123] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time Streaming Protocol, April
1998. Internet Request for Comments 2326. (p. 27)

[124] Silicon Graphics (SGI). IRIS Performer Programmers Guide, Chapter 10 Clip-
Textures, 1997. (p. 27)

[125] Sandeep K. Singhal and David R. Cheriton. Exploiting position history for ef
ficient remote rendering in Networked Virtual Environments. Presence: Tele
operators and Virtual Environments, 4(2): 169-193, 1995. (p. 23)

[126] Sandeep K. Singhal and Michael Zyda. Networked Virtual Environments: De
sign and Implementation. ACM Press - SIGGRAPH Series. Addison Wesley,
New York, 1999. (pp. 19, 163)

Bibliography 201

[127] L. Smarr and C. E. Catlett. Metacomputing. Communications o f the ACM
(CACM), 35(6):44-52, June 1992. (p. 29)

[128] S. E. Smith and F. W. Weingarten. Research Challenges for the Next Genera
tion Internet. Technical report, Computing Research Association, Washing
ton, 1997. (p. 18)

[129] Dave Snowdon, Chris Greenhalgh, and Steve Benford. Large Scale Real Time
Multi-User Virtual Reality Research (HIVE), 1997. (p. 24)

[130] John P. Snyder. Map Projections-A Working Manual. Professional Paper 1395,
U.S. Geological Survey, 1987. (p. 17)

[131] W. Richard Stevens. Unix Network Programming, Second Edition, volume 1.
Prentice Hall, 1998. (pp.27, 131)

[132] Duncan R. Stevenson, Kevin A. Smith, John P. McLaughlin, Chris J. Gunn,
J. Paul Veldkamp, and Mark J. Dixon. Haptic Workbench: A multi-sensory
virtual environment. In Stereoscopic Displays and Virtual Reality Systems VI,
volume 3639 of Proceedings ofSPIE, pages 356 - 366, 1999. (p. 153)

[133] Sun Microsystems. Java Remote Method Invocation Specification, Revision 1.5.
October 1998. (pp. 29, 36, 66, 123)

[134] Sun Microsystems. Java Advanced Imaging API WhitePaper. 1999. (p. 14)

[135] Supercomputer Computations Research Institute. Distributed Queueing Sys
tem 3.1.3 Reference Manual. Florida State University, Tallahassee, Florida,
March 1996. (p. 29)

[136] Advanced Visualisation Systems. AVS5. http://www.avs.com. (pp. 14, 154)

[137] Samuel R. A. Taylor. A Distributed Visualisation tool for Digital Terrain Models.
Technical Report TR-CS-99-02, Departm ent of Computer Science, Australian
National University, Canberra, Australia, July 1999. (p. 105)

[138] Samuel R. A. Taylor. Distributing data for Teleimmersive applications. In Pro
ceedings o f the Sixth IDEA International Workshop, pages 5 1 -5 8 , Rutherglen,
Victoria, Australia, 1999. (pp. 18, 20)

[139] Samuel R. A. Taylor and Brian Corrie. vGrid: An infrastructure for collabora
tive virtual environments. In Proceedings o f SimTecT 2000, pages 253 - 260,
Darling Harbour, Sydney, Australia, 2000. (p. 149)

[140] Samuel R. A. Taylor and David J. Miron. Performance characteristics of a Java
object request broker. Technical Report DSTO-TR-0696, Defence Science and
Technology Organisation, Department of Defence, Salisbury, South Australia,
Australia, July 1998. (pp. 27, 123, 130)

http://www.avs.com

202 Bibliography

[141] OpenGIS Consortium (The). OpenGIS Implementation Specifications.
http://www.opengis.org. (p. 13)

[142] OpenGIS Consortium (The). OpenGIS Abstract Specification (Draft). 2001.
http://www.opengis.org. (p. 13)

[143] OpenGIS Consortium (The). OpenGIS Coordinate Transformation Services
Implementation Specification. 2001. http://www.opengis.org. (p. 18)

[144] Brian L. Tierney, Jason Lee, Brian Crowley, Mason Holding, Jeremy Hylton,
and Fred L. Drake, Jr. A network-aware distributed storage cache for data-
intensive environments. In Proceedings of the Eighth IEEE International
Symposium on High Performance Distributed Computing, pages 185-193, Re
dondo Beach, CA, August 1999. IEEE Computer Society Press, (pp. 28, 30, 41)

[145] Henrik Tramberend. A Distributed Virtual Reality Framework. Virtual Reality,
1999. (pp. 19, 20, 158)

[146] Ken Tsui, Peter A. Fletcher, and Matthew A. Hutchins. PISTON - A Scaleable
Software Platform for Implementing Parallel Visualisation Algorithms. In Pro
ceedings of Computer Graphics International ’94, Melbourne, Australia, June
1994. (pp. 14, 17,37,43)

[147] Bryan Turner. Real-Time Dynamic Level of Detail Terrain Rendering with
ROAM. Gamasutra, April 2000. http://www.gamasutra.com. (p. 26)

[148] Thatcher Ulrich. Continuous LOD Terrain Meshing Using Adaptive
Quadtrees. Gamasutra, February 2000. http://www.gamasutra.com. (p. 26)

[149] U.S. National Imagery and Mapping Association. USIGS Geospatial and Im
agery Access Services (GIAS) Specification, version 3.1. February 1998. (pp. 13,
65, 129, 168)

[150] Andries van Dam, Andrew S. Forsberg, David H. Laidlaw, Joseph J. LaViola,
Jr., and Rosemary M. Simpson. Immersive VR for scientific visualization:
A progress report. IEEE Computer Graphics and Applications, 20(6):26-52,
November/December 2000. (p. 20)

[151] Visigenic Software. VisBroker for Java: Reference Manual Version 3.0. 1997.
(pp. 36, 131)

[152] John M. Vlissides, James O. Coplien, and Norman L. Kerth, editors. Pattern
Languages of Programming Design, volume 2. Addison Wesley, 1996. (p. 66)

[153] VRML Consortium Incorporated. Living Worlds”, Making VRML 2.0 Applica
tions Interpersonal and Interoperable - Draft 2. International Standards Or
ganisation (ISO),April 1997. (pp. 4, 19)

http://www.opengis.org
http://www.opengis.org
http://www.opengis.org
http://www.gamasutra.com
http://www.gamasutra.com

Bibliography 203

[154] VRML Consortium Incorporated. The Virtual Reality Modeling Language
(VRML) - Part 1: Functional specification and UTF-8 encoding. International
Standards Organisation (ISO), 1997. (p. 4)

[155] VTP: The Virtual Terrain Project, http://www.vterrain.org. (p. 26)

[156] M. Wahl, T. Howes, and S. Kille. Lightweight Directory Access Protocol (v3),
December 1997. Internet Request for Comments 2251. (p. 29)

[157] C. Ware and R. Balakrishnan. Reaching for Objects in VR Displays: Lag and
Frame Rate. In ACM Transactions on Computer-Human Interaction, volume 1,
pages 331 - 356, December 1994. (p. 19)

[158] R. Waters, D. Anderson, J. Barrus, D. Brogan, M. Casey, S. McKeown, T. Nitta,
I. Sterns, and W. Yerazunis. Diamond park and spline: Social virtual reality
with 3D animation, spoken interaction and runtime extendability. Presence,
6(4):461-481, 1997. (p.22)

[159] Kent Watsen and Mike Zyda. Bamboo - A Portable System for Dynamically
Extensible, Real-time, Networked Virtual Environments. In Proceedings of Vir
tual Reality Annual International Symposium (VRAIS’98). IEEE, March 1998.
(pp. 19, 66)

[160] Kent Watsen and Mike Zyda. Bamboo - Supporting Dynamic Protocols for
Virtual Environments. In Proceedings of IMAGE’98, Scottsdale, Arizona, Au
gust 1998. (p.66)

[161] Drew Whitehouse. Building Screen Based Immersive Virtual Environments
on a Budget - the Wedge. ACM SIGGRAPH Computer Graphics, 33(4), 1999.
(p. 153)

[162] Matthew D. Wilson, Samuel R. A. Taylor, Michael Rezny, Markus Buchhorn,
and Andrew L. Wendelborn. ACSys/RDN experiences with Telstra’s Experi
mental Broadband Network. Technical Report TR-CS-98-03, Department of
Computer Science, Australian National University, Canberra, Australia, April
1998. (p. 106)

[163] Rich Wolski, Neil T. Spring, and Jim Hayes. The Network Weather Service:
A Distributed Resource Performance Forecasting Service for Metacomputing.
Journal of Future Generation Computing Systems, 1999. (p. 153)

[164] World Wide Web Consortium (W3C). Extensible Markup Language (XML) 1.0,
Second Edition. October 2000. (p. 53)

[165] K.-L. Wu, P. S. Yu, and C. Pu. Divergence control for epsilon-serializability. In
International Conference on Data Engineering, pages 506-517, Los Alamitos,
Ca., USA, February 1992. IEEE Computer Society Press, (p. 24)

http://www.vterrain.org

204 Bibliography

Index

Comet, see Experimental systems, Comet
CROP, see Experimental systems, CROP

Design Patterns
Abstract Factory, 49, 77, 166-168,

172,174
Acceptor and Connector, 78, 169
Active Object, 64
Adaptor, 124, 147
Facade, 75, 136, 172
Master-Slave, 44,89,90,92,93,182,

184
Master-Worker, 44
Model-View-Controller, 19
Observer, 81, 172, 174
Proxy, 92, 182
Reactor, 81
Serializer, 64,179
Streams, 37

Design Patterns, 9

Experimental systems
Comet, 9, 103-111, 113, 115, 119,

127, 143, 145, 152, 156, 160
CROP, 104, 121, 137-142, 144, 160
IMAD, 121, 126-128, 131, 133-143,

160
OATS, 121, 122, 124, 126-128, 139,

160, 161
vGrid, 9, 74,104,119,142,143,145-

157,160

Geospatial imagery, see Satellites

IMAD, see Experimental systems, IMAD
Implementation profile, 63,64,101,149,

160
Encoding the resource schema in

a directory hierarchy, 74, 155

Enumeration of Operator types, 68,
72

Enumeration of Pipeline types, 72
Factory service properties, 68
Names of external interfaces to fac

tories, 71
Pipeline trader interface, 66
Priority values for tile requests, 84
Protocol-specific connection details,

85
Request mapping functions, 85
Scheduling policies used in the RACE,

99
Serialisation mechanisms for mo

bile objects, 84
Tiling and Level of Detail mecha

nisms, 96, 101
Usage policies for Specialist Net

works, 73

OATS, see Experimental systems, OATS

Rapid classes: dissemination pipeline
Acceptor,77-79, 84, 170-174, 178,

182-184
Approximator,78, 79, 86-88, 90, 92,

93, 96, 109, 170, 171, 173, 175,
176, 183-185

Connection, 76-79, 82, 88, 91, 96,
124,126, 131, 139,141,167,170,
171, 173-175, 178, 183, 184

DependentSet,87-89, 91, 171, 173,
175, 183, 185

InputPort, 75, 77, 88, 92, 96, 170-
175, 183, 184

Link, 77-79, 81, 82, 88, 90-92, 96,
97,107, 131, 170-175, 177-185

LinkFactory,77, 78, 170, 171, 174

205

206 Index

MessageListener,82
Operator, 65, 66, 75, 76, 80, 96, 129,

165-169, 171-173, 175, 182
OperatorPort, 75, 79, 81, 82, 85,

171-175, 177-185
OutputPort, 75, 77, 82, 88, 92, 96,

97, 101, 170, 172-174, 183, 185
OutputQueue, 87, 89-91, 173, 175,

176, 183
OutstandingSet,86-89, 91, 97, 98,

171, 173-175, 183, 185
RequestHandler,79, 81, 82, 86-90,

92,98,171-185
RequestMap, 78, 82, 88, 91-93, 96,

107, 170,171, 175, 179, 181, 183,
184

SupportedQueue, 87-90, 92, 175, 176,
183

TileBuffer, 77, 79, 85, 88-90, 92,
93, 96-98, 109, 170-175, 181-
185

Transformation, 79, 87-94, 96, 97,
170, 172, 173, 175, 176, 183

Rapid classes: application management
Filter, 66, 134, 165, 167, 168, 172
FilterFactory, 66, 134, 139, 165,

168
ImageAccessor,66, 69, 134, 140, 165-

167, 172, 181
ImageryArchive, 66, 69, 134, 147,

165, 166, 168
OperatorFactory, 65, 66, 69, 72, 165-

169,172
PipelineManager, 65, 66, 68, 72, 74,

77,100,134,136,137,147,157,
165-169, 171-173, 182, 183

PipelineTrader, 66, 68, 72,134, 140,
151,165-169

Servicelnstance,165, 166, 168, 169,
172

ServiceNegotiation, 65, 68, 69, 166-
169

ServiceProvider,165-169
ServiceTicket,68, 75, 165-169

Transporter, 66, 71, 73, 167, 169,
172

TransportFactory,66, 71-73, 168,
169

Rapid classes: Race
BroadcastLink, 99, 174, 177, 178,

180, 182, 183
BroadcastPort,96,99, 172, 177, 178,

180, 182, 183
RACEFactory,66, 72, 166-168, 182,

184
RACEHandler, 94, 96-98, 174, 182-

185
RACEPort,96, 171-173, 182, 183
RACESlavePort,96, 97,171-173, 183-

185
Scheduler,94, 98, 182-184
Slave, 93, 94, 96, 97, 182-185
SlaveHandler,96,97, 174,183-185
SlavelnputPort,171,172, 183, 184
SlaveOutputPort,172,173, 183, 185

Rapid classes: Rapport
CancelRequest,84, 98, 177, 179, 180
CausalMessage,99,177,179
CloseLink,85, 177, 179,180
CollaborativeMessage,99, 177, 179,

180, 182
FlowControl,85, 98, 175,178-180,

184
IncreaseFlow, 85, 178-180, 184
LimitFlow, 85, 178-180, 184
MapUpdate, 81, 85, 88, 97, 175, 179,

180
Message,82, 84, 176-181
NonCausalMessage,99,177, 179,180
OpenLink, 78, 84, 85, 170, 174, 178-

180
PipelineMessage,84, 176-181, 185
TileMessage,84, 175, 176,179-181
TileRequest, 81, 84, 92, 97, 99,101,

171,173,175,177,179-181, 185
TileResponse, 82, 84, 85, 88-92, 97,

179-181
Requirements

Index 207

Access throughput, 5, 8, 9, 27, 28,
31, 33-35, 38, 43, 59-62, 85, 93,
98, 101,119,121,122,127,131,
134,137,138,140-143, 159,160,
184

Application management, 5-9, 27,
29,30,33,34,48, 59-62, 65,101,
119, 122, 127, 131, 134, 137-
146, 155, 156, 159, 160, 168

Client responsiveness, 5, 8, 18, 27,
28, 31, 33-35, 38, 43, 47, 59-62,
93, 98, 101, 103, 104, 110, 111,
119,124,126, 127, 131,137,139,
143,145, 159-161, 184

Collaborative data sharing, 5, 6, 8,
18, 23, 31, 33, 41, 59-62, 85, 93,
94, 96, 100, 101, 127, 131, 139,
159-161, 182

Satellites
GMS-5,2, 121, 122, 124, 125
Ikonos, 12
IRS-1,3, 53, 104, 108, 119
Landsat, 2, 3
NOAA, 14
OrbView, 12
SPOT, 2, 3

Techniques
Approximating tiles, 8, 47, 79, 86,

88, 159
Asynchronous communication, 159,

160
Connection object, 8,35,36,45,56,

64, 77, 78, 89, 96, 140,142,156,
170

Data sharing with causal order, 24,
100, 177, 180

Inter-site sharing bus, 8,41,42, 58-
60,94,97-99, 101,160,177,180,
182

Level of detail, 24, 122
Life-cycle of pipelines, 8,49,51,52,

60, 61, 65, 66, 74, 79, 160, 166,
167

Parallel processing, 61,79,159,184
Parallel streaming, 8,35,43,45,60,

61, 74, 79, 82, 84, 89, 96, 107,
159, 160, 171, 175, 179, 181

Pipeline scheduling, 8, 38, 41, 60,
94,113,119,122,126,159,160,
178, 179, 184

by Area of Interest, 39, 58
by Level-of-Detail, 39, 58
by Motion Prediction, 40, 42, 58
by Request Proximity, 39, 58, 90,

106, 110, 113, 119, 161
Request map, 82, 107
Resource schema, 8, 49, 50, 60, 66,

160,168
Service tickets, 52, 60, 160
Site cache, 8, 40, 44, 58, 60, 92, 93,

106, 122, 126, 159, 160,182,184
Tiling, 77, 85

vGrid, see Experimental systems, vGrid

208 Index

Producing a Thesis in 2001

We live in a time of great change, and work in an industry which drives much of this
change. As a technologist it’s a constant source of am usem ent to reflect on the hard
ware and software I used only a few years earlier. So here, for the sake of posterity,
are the tools used to produce this thesis.

My office desktop machine was a generic PC running Windows NT4 on a 366MHz
Intel Celeron CPU, 256MB RAM, a 4GB hard disk, and a 16MB nVidia TNT graphics
card driving a 21” CRT Monitor at 1152x864 @ 100Hz. Away from the office I also
used a Digital HiNote 2000 notebook, which ran Windows 98 on a 166MHz Intel Pen
tium (P5) with 64MB RAM, a 3GB hard disk and a 14.1” TFT LCD with a resolution of
1024x768 - slim and very gentle on the eyes but it weighed a ton and boy did it give
off some heat.

The thesis was typeset in ErgKwith the bibliography kept in BibTeX. Almost the
entire text was written out by hand first, transcribed into Microsoft Word 2000 then
converted to text files, and marked up in BTpXusing one of two text editors: Emacs
20.5.1 or TextPad 4.3. This convoluted process and eclectic choice of tools drove my
fellow students into fits of confusion and righteous indignation - which I secretly
reveled in. Diagrams and support material were included as Encapsulate Postscript
files produced by Microsoft Visio 2000, Corel Draw 9 and Jasc Paint Shop Pro 6.
This worked well for the structured drawings, but was very inefficient for the large
bitmaps.

Two things kept me sane through the long years of struggle. First there was the
music: an 18GB archive of MP3 tracks kept on a local Linux server, and streamed by
HTTP over a lOOmbps Ethernet network. I doubt I would have made it without the
help of Gomez, Radiohead, Powderfinger, Muse, Travis, Fat Boy Slim, Moby and all
the fantastic Triple-J Hottest 100 compilations. Second there was one game above all
others: Age of Empires developed by Ensemble Studios and published by Microsoft.
Every version, every update, John, Zhen and I played them all. It was simply the
perfect multiplayer LAN game for us. Nothing m atched the satisfaction of beating
three or four computers on the hardest settings: John’s unassailable squads of En
glish archers, Zhen’s great flocks of Paladins (often sitting idle), my plucky Teutons
or Mayans plugging the gaps. Great game, great fun, great mates.

