The lexicon of Proto Oceanic: the culture and environment of ancestral Oceanic society

4: Animals
Pacific Linguistics 621

Pacific Linguistics is a publisher specialising in grammars and linguistic descriptions, dictionaries and other materials on languages of the Pacific, Taiwan, the Philippines, Indonesia, East Timor, southeast and south Asia, and Australia.

Pacific Linguistics, established in 1963 through an initial grant from the Hunter Douglas Fund, is associated with the Research School of Pacific and Asian Studies at The Australian National University. The authors and editors of Pacific Linguistics publications are drawn from a wide range of institutions around the world. Publications are refereed by scholars with relevant expertise, who are usually not members of the editorial board.

FOUNDING EDITOR: Stephen A. Wurm
EDITORIAL BOARD: I Wayan Arka and Malcolm Ross (Managing Editors), Nicholas Evans, Mark Donohue, David Nash, Andrew Pawley, Paul Sidwell, Jane Simpson, and Darrell Tryon

EDITORIAL ADVISORY BOARD:
Karen Adams, Arizona State University
Alexander Adelaar, University of Melbourne
Peter Austin, School of Oriental and African Studies
Byron Bender, University of Hawai‘i
Walter Bisang, Johannes Gutenberg-Universität Mainz
Robert Blust, University of Hawai‘i
David Bradley, La Trobe University
Lyle Campbell, University of Hawai‘i
James Collins, Northern Illinois University
Bernard Comrie, Max Planck Institute for Evolutionary Anthropology
Matthew Dryer, State University of New York at Buffalo
Jerold A. Edmondson, University of Texas at Arlington
Margaret Florey, Resource Network for Linguistic Diversity
William Foley, University of Sydney
Karl Franklin, SIL International
Charles Grimes, SIL International
Nikolaus Himmelmann, Universität zu Köln
Lillian Huang, Shih-chien University, Taiwan
Marian Klamer, Universiteit Leiden
Harold Koch, The Australian National University
Frantisek Lichtenberk, University of Auckland
John Lynch, University of the South Pacific
Patrick McConvell, Australian Institute of Aboriginal and Torres Strait Islander Studies
William McGregor, Aarhus Universitet
Ulrike Mosel, Christian-Albrechts-Universität zu Kiel
Claire Moyse-Faurie, Centre National de la Recherche Scientifique
Bernd Nothofer, Johann Wolfgang Goethe-Universität Frankfurt am Main
Bambang Kaswanti Purwo, Universitas Atma Jaya
Ger Reesink, Radboud University Nijmegen
Lawrence Reid, University of Hawai‘i
Jean-Claude Rivierre, Centre National de la Recherche Scientifique
Melenaita Taumoepeau, University of Auckland
Tasaku Tsunoda, University of Tokyo
John Wolff, Cornell University
Elizabeth Zeitoun, Academia Sinica, Taipei
The lexicon of Proto Oceanic:
the culture and environment of
ancestral Oceanic society
4: Animals

edited by
Malcolm Ross, Andrew Pawley and Meredith Osmond

Pacific Linguistics
School of Culture, History and Language
College of Asia and the Pacific
The Australian National University
Contents overview

Chapter contents in detail vii
List of Tables xvii
List of Figures xix
List of maps xxii
Abbreviations xxiii
Acknowledgments xxiv

Chapter 1 Introduction
 Malcolm Ross, Andrew Pawley and Meredith Osmond 1

Chapter 2 Fish
 Meredith Osmond 25

Chapter 3 Stability and change in Oceanic fish names
 Andrew Pawley 137

Chapter 4 Aquatic invertebrates
 Andrew Pawley 161

Chapter 5 Mammals, reptiles, amphibians
 Meredith Osmond and Andrew Pawley 217

Chapter 6 Birds
 Ross Clark 271

Chapter 7 Insects and other creepy-crawlies
 Meredith Osmond 371

Chapter 8 Were turtles fish in Proto Oceanic? Semantic reconstruction and change
 in some terms for animal categories in Oceanic languages
 Andrew Pawley 421
Appendix A Data sources and collation 453
Appendix B Languages 457
References 489
Index of reconstructions by protolanguage 511
Alphabetical index of reconstructions 533
Index of English and biological terms 557
Chapter contents in detail

Contents overview

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>xvii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xix</td>
</tr>
<tr>
<td>List of maps</td>
<td>xxii</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xxiii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xxiv</td>
</tr>
</tbody>
</table>

1 Introduction

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Aims</td>
<td>1</td>
</tr>
<tr>
<td>2 The relation of the current project to previous work</td>
<td>3</td>
</tr>
<tr>
<td>3 Reconstructing the lexicon</td>
<td>4</td>
</tr>
<tr>
<td>3.1 Terminological reconstruction</td>
<td>5</td>
</tr>
<tr>
<td>3.2 Subgrouping and reconstruction</td>
<td>6</td>
</tr>
<tr>
<td>3.2.1 Subgrouping</td>
<td>6</td>
</tr>
<tr>
<td>3.2.2 Kinds of subgroup</td>
<td>7</td>
</tr>
<tr>
<td>3.2.3 Further notes on subgroups</td>
<td>10</td>
</tr>
<tr>
<td>3.2.4 Criteria for reconstruction</td>
<td>12</td>
</tr>
<tr>
<td>3.3 Sound correspondences</td>
<td>14</td>
</tr>
<tr>
<td>3.4 POC phonology and orthography</td>
<td>16</td>
</tr>
</tbody>
</table>

2 Fish

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction</td>
<td>25</td>
</tr>
<tr>
<td>2 Organisation</td>
<td>27</td>
</tr>
<tr>
<td>3 Fish (generic)</td>
<td>28</td>
</tr>
<tr>
<td>4 Sharks: Carcharhinidae, Sphyridae etc</td>
<td>29</td>
</tr>
<tr>
<td>5 Rays: stingrays (Dasyatidae), eagle rays (Myliobatidae), manta rays (Mobulidae)</td>
<td>34</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>6</td>
<td>Bonefishes (Albulidae) and tarpons (Elopidae, formerly Megalopidae)</td>
</tr>
<tr>
<td>7</td>
<td>Sardines and herrings (Clupeidae) and anchovies (Engraulidae)</td>
</tr>
<tr>
<td>8</td>
<td>Milkfishes (Chanidae)</td>
</tr>
<tr>
<td>9</td>
<td>Lizardfishes (Synodontidae)</td>
</tr>
<tr>
<td>10</td>
<td>Catfish (Plotosidae)</td>
</tr>
<tr>
<td>11</td>
<td>Eels</td>
</tr>
<tr>
<td>11.1</td>
<td>Freshwater eels (Anguillidae)</td>
</tr>
<tr>
<td>11.2</td>
<td>Morays (Muraenidae)</td>
</tr>
<tr>
<td>11.3</td>
<td>Pike eels (Muraenoscidae) and congers (Congridae)</td>
</tr>
<tr>
<td>11.4</td>
<td>Snake eels (Ophichthidae)</td>
</tr>
<tr>
<td>11.5</td>
<td>Other terms for eels</td>
</tr>
<tr>
<td>12</td>
<td>Flying fishes (Exocoetidae)</td>
</tr>
<tr>
<td>13</td>
<td>Half beaks and garfishes (Hemiramphidae), needlefishes and long toms (Belonidae)</td>
</tr>
<tr>
<td>14</td>
<td>Squirrelfishes, soldierfishes (Holocentridae)</td>
</tr>
<tr>
<td>15</td>
<td>Trumpetfishes (Aulostomidae), cornetfishes and flutemouths (Fistulariidae)</td>
</tr>
<tr>
<td>16</td>
<td>Pipefishes, sea horses (Syngnathidae)</td>
</tr>
<tr>
<td>17</td>
<td>Razorfishes (Centriscidae)</td>
</tr>
<tr>
<td>18</td>
<td>Mullets (Mugilidae)</td>
</tr>
<tr>
<td>19</td>
<td>Silversides, hardyheads (Atherinidae)</td>
</tr>
<tr>
<td>20</td>
<td>Barracudas, sea-pikes (Sphyraenidae)</td>
</tr>
<tr>
<td>21</td>
<td>Sand basses, giant perches, barramundis (Centropomidae (Munro: Latidae))</td>
</tr>
<tr>
<td>22</td>
<td>Rock cods, reef cods, coral cods, groupers etc. (Serranidae)</td>
</tr>
<tr>
<td>23</td>
<td>Flagtails (Kuhliidae)</td>
</tr>
<tr>
<td>24</td>
<td>Bigeyes, bullseyes (Priacanthidae)</td>
</tr>
<tr>
<td>25</td>
<td>Cardinalfishes (Apogonidae)</td>
</tr>
<tr>
<td>26</td>
<td>Jacks, trevallies, scads, horse mackerels, kingfishes, darts, rainbow runners and leatherskins (Carangidae)</td>
</tr>
<tr>
<td>27</td>
<td>Dolphinfishes (Coryphaenidae)</td>
</tr>
<tr>
<td>28</td>
<td>Ponyfishes, slimys (Leiognathidae)</td>
</tr>
<tr>
<td>29</td>
<td>Fusiliers (Caesionidae)</td>
</tr>
<tr>
<td>30</td>
<td>Snappers or sea-perch, basses, jobfishes (Lutjanidae)</td>
</tr>
<tr>
<td>31</td>
<td>Monocle breams, threadfin breams, sea breams, butterfly breams (Nemipteridae)</td>
</tr>
<tr>
<td>32</td>
<td>Threadfins (Polynemidae)</td>
</tr>
<tr>
<td>33</td>
<td>Mojarras, silver biddies (Gerreidae)</td>
</tr>
<tr>
<td>34</td>
<td>Sweetlips, javelinfishes (Haemulidae, formerly Plectorhinchidae and Pomadasyidae)</td>
</tr>
<tr>
<td>35</td>
<td>Grunters, terapon perches (Teraponidae)</td>
</tr>
<tr>
<td>36</td>
<td>Emperors and large-eyed breams (Lethrinidae)</td>
</tr>
<tr>
<td>37</td>
<td>Goatfishes (Mullidae)</td>
</tr>
<tr>
<td>38</td>
<td>Sweepers (Pempheridae)</td>
</tr>
<tr>
<td>39</td>
<td>Drummers, rudderfishes (Kyphosidae)</td>
</tr>
<tr>
<td>40</td>
<td>Silver batfishes, diamondfishes (Monodactylidae)</td>
</tr>
<tr>
<td>41</td>
<td>Batfishes (Ephippidae (formerly Platacidae))</td>
</tr>
<tr>
<td>42</td>
<td>Butterflyfishes, coralfishes (Chaetodontidae)</td>
</tr>
<tr>
<td>43</td>
<td>Angelfishes (Pomacanthidae)</td>
</tr>
<tr>
<td>Chapter</td>
<td>Section</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>59</td>
<td>59</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>66</td>
<td>66</td>
</tr>
<tr>
<td>66.1</td>
<td>66.1</td>
</tr>
<tr>
<td>66.2</td>
<td>66.2</td>
</tr>
<tr>
<td>66.3</td>
<td>66.3</td>
</tr>
<tr>
<td>66.4</td>
<td>66.4</td>
</tr>
<tr>
<td>66.5</td>
<td>66.5</td>
</tr>
<tr>
<td>66.6</td>
<td>66.6</td>
</tr>
<tr>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>2.2.1</td>
<td>2.2.1</td>
</tr>
<tr>
<td>2.2.2</td>
<td>2.2.2</td>
</tr>
<tr>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>2.4</td>
<td>2.4</td>
</tr>
</tbody>
</table>
Chapter contents in detail

2.5 On formulating hypotheses about whether fish names show similar retention rates to basic vocabulary .. 141

3 Retention rates for POc fish names ... 143
3.1 Investigating retention rates for a sample of POc fish names 143
3.2 Some fish names are as persistent as some basic vocabulary items 149
3.3 Retention rates of names by families or higher-order groups 150
3.4 Variation in retention rate among languages in the sample 151

4 Estimating the size of the Proto Oceanic lexicon of fish names 152
4.1 Introduction .. 152
4.2 Estimating absolute numbers of names 153
4.3 Number and ratio of uninomials to binomials 153
4.4 Comparison of number of fish names family by family 154

5 Where have all the fish names gone? 159

4 Aquatic invertebrates ... 161
1 Introduction .. 161

2 Classification of marine invertebrates 163
2.1 Zoological classification .. 163
2.2 Oceanic folk taxonomies of aquatic invertebrates 164

3 Crustaceans ... 165
3.1 Order Decapoda: crabs, lobsters, prawns 165
3.2 Palinura: spiny lobsters .. 166
3.2.1 Palinuridae, spiny lobsters 167
3.2.2 Scyllaridae, slipper (or shovel-nosed) lobsters 167
3.3 Suborder Natantia: true prawns and shrimps 168
3.4 Suborder Anomura: hermit crabs, mud lobsters, half-crabs 168
3.4.1 Paguroidea: Coenobitidae (hermit and coconut crabs), and Dio- genidae and Paguridae (sea-dwelling hermit crabs) 168
3.4.2 Birgus latro, coconut crab .. 168
3.4.3 Hermit crabs .. 170
3.4.4 Other Anomura: Thalassina, mud lobsters, and Porcellanidae, porcelain crabs (half-crabs) ... 171
3.5 Brachyura: true crabs .. 171
3.5.1 Portunidae, mangrove and swimming crabs 172
3.5.2 Cardisoma spp. and other large land crabs 173
3.5.3 Grapsidae, (1) shore crabs, (2) burrowing crabs of mud flats .. 174
3.5.4 Sesarma spp., mangrove grapsids 174
3.5.5 Ocypodidae long-stalked crabs (ghost crabs fiddler crabs soldier crabs) ... 176
3.5.6 Crabs of uncertain family and families lacking reconstructed names 177
3.5.7 Xanthoidea ... 178

3.6 Generic terms for crabs .. 178
3.7 Other crustaceans .. 179
3.7.1 Mantis shrimps (order Stomatopoda) 179
3.7.2 Barnacles (class Cirripedia, order Thoracia) 179
3.8 Growth stages and sexes of crustaceans 179
3.9 Body parts of crustaceans ... 179
4 Molluscs ... 180
 4.1 Molluscs as a resource in Oceanic communities 180
 4.2 Class Gastropoda: univalves 181
 4.2.1 Strombidae, strombs, spiders, conches 181
 4.2.2 Turbinidae, turbans .. 182
 4.2.3 Turbo petholatus ... 182
 4.2.4 Other Turbo taxa .. 183
 4.2.5 Cymatiidae, tritons .. 183
 4.2.6 Neritidae, nerites, and allied families of Neritacea 184
 4.2.7 Cypraeidae (cowries) and Ovulidae (egg and spindle cowries) 185
 4.2.8 Trochidae, top shells .. 186
 4.2.9 Conidae, cone shells .. 187
 4.2.10 Muricidae, murexes ... 188
 4.2.11 Gastropod families lacking POc names 188
 4.2.12 Generic terms for gastropods 188
 4.3 class Bivalvia: clams, cockles, oysters, etc. 188
 4.3.1 Tridacninae, giant clams 189
 4.3.2 Asaphis spp. (Psammobidae) and cockles (Cardiidae) 190
 4.3.3 Mytilidae, mussels .. 192
 4.3.4 Ostreidae, rock oysters 192
 4.3.5 Pteridae, pearl and wing oysters, and Malleidae, hammer oysters 193
 4.3.6 Pinnidae, pen shells .. 195
 4.3.7 Lucinidae and allied families 195
 4.3.8 Reconstructions for bivalves of uncertain family 196
 4.3.9 Bivalve families lacking definite POc reconstructions 197
 4.3.10 Generic term for bivalves 197
 4.4 Polyplacophora: chitons ... 197
 4.5 A term for shellfish in general 198
 4.6 Cephalopoda: octopus, squid, nautilus 198
 4.6.1 Octopus ... 198
 4.6.2 Squid and cuttlefish .. 199
 4.7 Parts of molluscs .. 201
 4.8 Artefacts made from shell 202
 5 Echinodermata: sea urchins, sea cucumbers, starfish, etc. 202
 5.1 Echinoidea: sea urchins 202
 5.1.1 Echinometra spp., rock-boring urchins 202
 5.1.2 Long-spined sea urchins 203
 5.2 Holothuroidea: sea cucumbers (bêche de mer, trepang, holothurians) 204
 5.2.1 Terms for specific taxa 204
 5.2.2 General term for sea cucumbers 206
 5.3 Asteroidea: sea stars and Ophiuroidea: starfish 206
 6 Cnidaria and Ctenophora: anemones, corals, jellyfish and hydroids .207
 6.1 Anemones .. 207
 6.2 Corals .. 208
5 Mammals, reptiles, amphibians

1 **Introduction** 217
2 **Indigenous terrestrial mammals** ... 220
 2.1 **Introduction** ... 220
 2.2 Macropodidae ... 221
 2.2.1 Wallabies (Genera *Dorcopsis, Dorcopsulus, Macropus, Thylagale*) 221
 2.2.2 Tree kangaroos (Genus *Dendrolagus*) 223
 2.3 Cuscuses (Phalangeridae) 224
 2.4 Other possum families (Acrobatidae, Burramyidae, Petauridae, Pseudocheiridae) 226
 2.5 Bandicoots (Peroryctidae) 227
 2.6 Marsupial carnivores (Dasyuridae) 229
 2.7 Echidnas (Tachyglossidae) 229
 2.8 Rats (Muridae) ... 229
 2.9 Bats (Order: Chiroptera, Suborders Megachiroptera, Microchiroptera) 234
3 **Introduced terrestrial mammals** ... 237
 3.1 Pigs (genus *Sus*, family Suidae) 237
 3.2 Dogs (*Canis* sp.) ... 240
4 **Aquatic mammals** ... 243
 4.1 Cetaceans ... 243
 4.1.1 Whales ... 243
 4.1.2 Dolphins (Delphinidae) 245
 4.2 Dugong (*Dugong dugon*) 246
5 **Reptiles** ... 247
 5.1 Marine turtles (Chelonidae) 247
 5.2 Crocodiles (Crocodylidae) 251
 5.3 Lizards ... 253
 5.3.1 Introduction ... 253
 5.3.2 Monitors (Varanidae) 253
 5.3.3 Iguanas (Iguanidae) 255
 5.3.4 Geckos (Gekkonidae) 256
 5.3.5 Skinks (Scincidae) ... 257
 5.3.6 Indeterminate kinds of lizards 258
 5.4 Snakes (sub-order Serpentes) 259
 5.4.1 Land snakes .. 259
 5.4.2 Sea snakes (Elapidae) 261
6 **Amphibians** ... 262
Chapter contents in detail

7 Body parts

7.1 Mammal body parts

7.1.1 Canine tooth

7.1.2 Pig tusk

7.1.3 Tail

7.2 Reptile body parts

7.2.1 Turtle shell

7.2.2 Gaps in reconstruction

6 Birds

1 Introduction

2 The life and parts of birds

3 Bird names

4 The domestic bird: *Gallus gallus*

5 Non-passerine land and fresh water birds

5.1 Cassowaries (Casuariidae)

5.2 Herons (Ardeidae)

5.3 Ducks (Anatidae)

5.4 Diurnal raptors (Pandionidae, Accipitridae, Falconidae)

5.4.1 Fish-eating raptors (*Pandion, Haliaeetus, Haliastur*)

5.4.2 Other raptors

5.5 Megapodes (Megapodiidae)

5.6 Pheasants and quails (Phasianidae)

5.7 Rails (Rallidae)

5.8 Pigeons and doves (Columbidae)

5.8.1 Imperial Pigeons (*Ducula*)

5.8.2 Fruit Doves (*Ptilinopus*)

5.8.3 Ground-feeding pigeons

5.8.4 Other species

5.9 Parrots (Loriidae, Cacatuidae, Psittacidae)

5.9.1 Cockatoos

5.9.2 The Eclectus Parrot

5.9.3 Middle-sized parrots

5.9.4 Small parrots

5.9.5 Other parrot species

5.10 Cuckoos (Cuculidae)

5.11 Owls (Tytonidae, Strigidae)

5.12 Swifts and swallows (Apodidae, Hemiprocnidae, Hirundinidae)

5.13 Kingfishers (Alcedinidae)

5.14 Rollers (Coraciidae)

5.15 Hornbills (Bucerotidae)

6 Passerine birds

6.1 Trillers and cuckoo-shrikes (Campephagidae)

6.2 Thrushes (Turdidae)

6.3 Fantails (Rhipiduridae) and flycatchers (Monarchidae)

6.3.1 Fantails
6 Chapter contents in detail

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.2</td>
<td>Flycatchers</td>
<td>345</td>
</tr>
<tr>
<td>6.4</td>
<td>Whistlers (Pachycephalidae)</td>
<td>345</td>
</tr>
<tr>
<td>6.5</td>
<td>Whiteyes (Zosteropidae)</td>
<td>345</td>
</tr>
<tr>
<td>6.6</td>
<td>Honeyeaters (Meliphagidae)</td>
<td>346</td>
</tr>
<tr>
<td>6.7</td>
<td>Starlings (Sturnidae)</td>
<td>348</td>
</tr>
<tr>
<td>6.8</td>
<td>Wood swallows (Artamidae)</td>
<td>349</td>
</tr>
<tr>
<td>6.9</td>
<td>Crows (Corvidae)</td>
<td>350</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Sea and shore birds</td>
<td></td>
</tr>
<tr>
<td>7.1</td>
<td>Petrels (Procellariidae, Hydrobatidae)</td>
<td>352</td>
</tr>
<tr>
<td>7.2</td>
<td>Tropic-birds (Phaethontidae)</td>
<td>353</td>
</tr>
<tr>
<td>7.3</td>
<td>Boobies (Sulidae)</td>
<td>355</td>
</tr>
<tr>
<td>7.4</td>
<td>Frigate birds (Fregatidae)</td>
<td>357</td>
</tr>
<tr>
<td>7.5</td>
<td>Waders (Charadriidae, Scolopacidae, Burhinidae)</td>
<td>359</td>
</tr>
<tr>
<td>7.6</td>
<td>Terns (Laridae)</td>
<td>365</td>
</tr>
</tbody>
</table>

7 Insects and other creepy-crawlies

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>371</td>
</tr>
<tr>
<td>2</td>
<td>Lice (Order Anoplura: Family Pediculidae)</td>
<td>373</td>
</tr>
<tr>
<td>2.1</td>
<td>Head lice</td>
<td>374</td>
</tr>
<tr>
<td>2.2</td>
<td>Body lice</td>
<td>375</td>
</tr>
<tr>
<td>2.3</td>
<td>Nits</td>
<td>375</td>
</tr>
<tr>
<td>2.4</td>
<td>Search head for lice</td>
<td>377</td>
</tr>
<tr>
<td>3</td>
<td>Butterflies (Order Lepidoptera)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Mosquitoes (Order Diptera: Family Culicidae)</td>
<td>380</td>
</tr>
<tr>
<td>5</td>
<td>Sandflies, midges, gnats (Order Diptera: Families Chironomidae (non-biting), Ceratopogonidae, Psychodidae, Simulidae (biting); Families Drosophilidae, Tephritidae (fruit flies))</td>
<td>383</td>
</tr>
<tr>
<td>6</td>
<td>Flies (Order Diptera: Families Muscidae (houseflies, bluebottles), Tabanidae (horseflies), Bibionidae (March flies))</td>
<td>385</td>
</tr>
<tr>
<td>6.1</td>
<td>Flies (generic); houseflies</td>
<td>385</td>
</tr>
<tr>
<td>6.2</td>
<td>Horseflies and March flies</td>
<td>386</td>
</tr>
<tr>
<td>7</td>
<td>Dragonflies and damselflies (Order Odonata)</td>
<td>386</td>
</tr>
<tr>
<td>8</td>
<td>Bees (Order Hymenoptera: Super Family Apoidea)</td>
<td>387</td>
</tr>
<tr>
<td>9</td>
<td>Wasps (Order Hymenoptera): Families Ichneumonidae, Vespidae (paper wasp), Sphecididae (mud-dauber wasp, mason wasp)</td>
<td>388</td>
</tr>
<tr>
<td>10</td>
<td>Ants (Order Hymenoptera: Family Formicidae)</td>
<td>390</td>
</tr>
<tr>
<td>11</td>
<td>Termites (Order Isoptera)</td>
<td>394</td>
</tr>
<tr>
<td>12</td>
<td>Crickets, grasshoppers (Order Orthoptera); Cicadas (Order Hemiptera)</td>
<td>395</td>
</tr>
<tr>
<td>13</td>
<td>Mantises (Order Mantodea), stick insects (Order Phasmatodea)</td>
<td>397</td>
</tr>
<tr>
<td>14</td>
<td>Fireflies (Order Coleoptera: Family Lampyridae)</td>
<td>399</td>
</tr>
<tr>
<td>15</td>
<td>Beetles (Order Coleoptera)</td>
<td>400</td>
</tr>
<tr>
<td>16</td>
<td>Cockroaches (Order Blattodea)</td>
<td>402</td>
</tr>
<tr>
<td>17</td>
<td>Grubs, caterpillars</td>
<td>403</td>
</tr>
<tr>
<td>18</td>
<td>Centipedes (Class Chilopoda): Millipedes (Class Diplopoda)</td>
<td>406</td>
</tr>
<tr>
<td>19</td>
<td>Scorpions (Class Arachnida: Order Scorpionidae)</td>
<td>408</td>
</tr>
<tr>
<td>20</td>
<td>Spiders (Order Araneae)</td>
<td>408</td>
</tr>
</tbody>
</table>
Chapter contents in detail

21 Leeches (Class Hirudinea) 411

22 Worms 412
 22.1 Worm (generic) 412
 22.2 Other worm taxa 413

23 Maggots 414

24 Unspecified flying insect 416

25 Semantic extensions and generalisations 416

26 Stability and variability of terms 418

27 The supernatural element 419

8 Were turtles fish in Proto Oceanic? Semantic reconstruction and change in some terms for animal categories in Oceanic languages 421

1 Introduction 421
 1.1 Aims 421

1.2 Methodological preliminaries 422
 1.2.1 What are taxonomies? 422
 1.2.2 Defining natural kinds 423
 1.2.3 The taxonomic ranks and naming principles proposed by Berlin (1992) 423
 1.2.4 Taxonomic generics vs collectives 425
 1.2.5 Problems inherent in the semantics of generics 426
 1.2.6 A modest objective 427
 1.2.7 Shortcomings of dictionary definitions 427

2 POc *ikan 428
 2.1 Introduction 428

2.2 Reflexes of *ikan 429
 2.2.1 Central Pacific 429
 2.2.2 Micronesian 432
 2.2.3 Southeast Solomonic and Northwest Solomonic 433
 2.2.4 Vanuatu 433
 2.2.5 The Admiralties 434
 2.2.6 Western Oceanic 435

2.3 Proto Oceanic *ikan 1 and *ikan 2 436

3 POc *pinayoda 437

4 POc *sisiq 439

5 POc *manuk 443
 5.1 Introduction 443
 5.2 Variation in semantic scope of reflexes of *manuk 444
 5.2.1 Polynesian 444
 5.2.2 Rotumaian and Fijian 446
 5.2.3 Micronesian 446
 5.2.4 Other Oceanic groups 447

5.3 Flying creatures only or land creatures in general? 449

6 POc *manu-manuk 450
 6.1 Reflexes of POc *manu-manuk in Papuan Tip, SE Solomonic and Polynesian 450
Chapter contents in detail

6.2 What did POc *manu-manuk mean? 451
7 Conclusions .. 452

Appendix A Data sources and collation 453
1 Data sources .. 453
1.1 General sources ... 453
 1.1.1 Published sources 453
 1.1.2 Unpublished sources 455
2 Collation ... 456

Appendix B Languages 457
1 Introduction ... 457
2 Languages by subgroups 457
3 Language finderlist .. 470

References 489

Index of reconstructions by protolanguage 511

Alphabetical index of reconstructions 533

Index of English and biological terms 557
List of Tables

1.1 Reconstructed paradigm of POc phonemes ... 16
1.2 POc orthographies after Grace (1969) and Ross (1988) 17
1.3 Abbreviations for the genealogical or geographic groups 19
1.4 Bracketing and segmentation conventions in protoforms 22

3.1 Details of languages cited (all Oceanic except Palauan and Pendau) 140
3.2 Presence/absence of reflexes of POc fish names in twelve languages (1) 144
3.3 Presence/absence of reflexes of POc fish names in twelve languages (2) 145
3.4 Presence/absence of reflexes of POc fish names in twelve languages (3) 146
3.5 Presence/absence of reflexes of POc fish names in twelve languages (4) 147
3.6 Retention rates for 52 Proto Oceanic fish names 148
3.7 Retention rates in PCP and PPn for fish names by families/groups 150
3.8 Retention rates by language for 52 POc fish names 151
3.9 Total recorded fish names in 12 Oceanic languages 152
3.10 Uninomials and binomials in 11 contemporary Oceanic languages and in POc, PCP and PPn ... 153
3.11 Grouper, rock cod, coral cod (Serranidae); trevally and jacks (Carangidae) ... 154
3.12 Wrasses (Labridae); parrotfish (Scaridae) ... 154
3.13 Goatfish (Mullidae); mullet (Mugilidae) ... 155
3.14 Mackerels and tuna (Scombroidei); marlin and swordfish (Xiphiidae) 155
3.15 Surgeonfish/unicornfishes (Acanthuridae); rabbitfish (Siganidae) 156
3.16 Squirrelfish/soldierfish (Holocentridae); triggerfish (Balistidae) and leatherjackets (Aluteridae incl. Monacanthidae) 156
3.17 Snapper, sea-perch, bass (Lutjanidae); emperors (Lethrinidae); sweetlips and grunters (Plectorhynchidae) .. 156
3.18 Sharks and rays .. 157
3.19 Eels (Anguilliformes); barracuda (Sphyraenidae) 157
3.20 Sardines and herrings (Clupeidae); milkfish (Chanidae); silversides/hardyheads (Atherinidae) ... 158
3.21 Scorpionfish (Scorpaenidae) and stonefish (Synanceia) 158
3.22 Blennies (Blennidae), gobies (Gobidae) and mudskippers (Periopthalmidae) ... 158

4.1 Some high-order aquatic invertebrate taxa in Wayan 165
4.2 Terms for aquatic invertebrate groups known for Wayan and Proto Oceanic ... 214

8.1 Implicational scale of types that may be included in reflexes of *ikan 429
8.2 Semantic range of reflexes of *ikan in Central Pacific languages 431
8.3 Semantic range of *ikan in PPn and PCP .. 431
8.4 Semantic range of *ikan in Micronesian languages 432
8.5 Semantic range of *ikan in Solomon Islands languages 433
8.6 Semantic range of ‘fish’ terms in Vanuatu languages 434
8.7 Semantic range of *ikan in Admiralties languages 435
8.8 Semantic range of *ikan in Papuan Tip languages 435
8.9 Implicational scale of types that may be included in reflexes of *sisiq 442
8.10 Semantic range of reflexes of *sisiq in Oceanic languages 442
8.11 Implicational scale of types that may be included in reflexes of *manuk ... 443
8.12 Semantic range of reflexes of POc *manuk in some Polynesian languages .. 445
8.13 Semantic range of reflexes of PCP *manu-manu in Rotuman and Fijian languages 446
8.14 Semantic range of reflexes of POc *manuk in some Micronesian languages 447
8.15 Semantic range of reflexes of POc *manuk in some Oceanic languages other than Nuclear Micronesian and Central Pacific .. 449
8.16 Implicational scale of types that may be included in reflexes of *manu-manu 451
List of Figures

1.1 Higher-order subgroups of Austronesian languages 7
1.2 Subgrouping of Oceanic languages ... 8

2.1 *Carcharodon carcharias*, great white shark 30
2.2 *Aetobatis narinari*, spotted eagle ray ... 34
2.3 *Spratelloides delicatulus*, small round herring 37
2.4 *Plotosus lineatus*, striped eel catfish .. 42
2.5 *Gymnothorax* sp., barred moray eel .. 45
2.6 *Myrichthys colubrinus*, harlequin snake eel 47
2.7 *Exocoetus volitans*, blue flying fish ... 48
2.8 *Hemiramphus lutkei*, Lutke’s halfbeak .. 50
2.9 *Tylosurus crocodilus*, giant long tom ... 52
2.10 *Myripristis murdjan*, crimson squirrelfish, and *Sargocentron spiniferum*, armoured soldierfish ... 54
2.11 *Fistularia commersonii*, smooth flutemouth 56
2.12 *Mugil cephalus*, flathead grey mullet ... 57
2.13 *Sphyraena jello*, slender sea pike .. 62
2.14 *Epinephelus lanceolatus*, Queensland grouper 68
2.15 *Gnathanodon speciosus*, golden trevally, and *Alectis indica*, plumed trevally ... 69
2.16 *Coryphaenoides hippurus*, common dolphinfish 73
2.17 *Lutjanus fulviflamma*, Dory snapper .. 75
2.18 *Lethrinus variegatus*, variegated emperor 81
2.19 *Parupeneus signatus*, black-spotted goatfish 84
2.20 *Kyphosus cinerascens*, ashen drummer .. 87
2.21 *Chaetodon* sp., coralfish ... 89
2.22 *Adudefduf* sp., sergeant-major .. 90
2.23 *Cheilinus undulatus*, double-headed Maori wrasse 92
2.24 *Bolbometopon muricatum*, double-headed parrotfish 95
2.25 *Naso unicornis*, long-snouted unicornfish 101
2.26 *Zebrasoma veliferum*, sailfin tang, and *Acanthurus lineatus*, blue-lined surgeonfish ... 104
2.27 *Siganus punctatus*, gold-spotted spinefoot 108
2.28 *Katsuwonus pelamis*, skipjack tuna .. 111
2.29 *Scomberomorus commerson*, Spanish mackerel 113
2.30 *Istiophorus platypterus*, Pacific sailfish ... 116
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.31</td>
<td>Synanceia verrucosa, reef stonefish</td>
<td>119</td>
</tr>
<tr>
<td>2.32</td>
<td>Monacanthus sp., scribbled leatherjacket</td>
<td>121</td>
</tr>
<tr>
<td>2.33</td>
<td>Ostracion nasus, shortnosed boxfish</td>
<td>124</td>
</tr>
<tr>
<td>2.34</td>
<td>Arothron leopardus, leopard pufferfish</td>
<td>126</td>
</tr>
<tr>
<td>2.35</td>
<td>Remora remora</td>
<td>128</td>
</tr>
<tr>
<td>4.1</td>
<td>Palinurus sp., spiny lobster</td>
<td>166</td>
</tr>
<tr>
<td>4.2</td>
<td>Birgus latro, coconut crab</td>
<td>169</td>
</tr>
<tr>
<td>4.3</td>
<td>Scylla serrata, mangrove crab</td>
<td>172</td>
</tr>
<tr>
<td>4.4</td>
<td>Lambis spp., spider conches</td>
<td>182</td>
</tr>
<tr>
<td>4.5</td>
<td>Cowries</td>
<td>186</td>
</tr>
<tr>
<td>4.6</td>
<td>Univalve shells: turban, trochus, cone, murex</td>
<td>189</td>
</tr>
<tr>
<td>4.7</td>
<td>Tridacna gigas, giant clam</td>
<td>189</td>
</tr>
<tr>
<td>4.8</td>
<td>Octopus</td>
<td>199</td>
</tr>
<tr>
<td>4.9</td>
<td>Squid</td>
<td>202</td>
</tr>
<tr>
<td>4.10</td>
<td>Physalis sp., Portuguese man o’ war</td>
<td>209</td>
</tr>
<tr>
<td>5.1</td>
<td>Dendrolagus dorianus, Doria’s tree kangaroo</td>
<td>223</td>
</tr>
<tr>
<td>5.2</td>
<td>Spilocuscus maculatus, spotted cuscus</td>
<td>225</td>
</tr>
<tr>
<td>5.3</td>
<td>Petaurus breviceps, sugar glider</td>
<td>227</td>
</tr>
<tr>
<td>5.4</td>
<td>Microperoryctes longicauda, long-tailed bandicoot</td>
<td>228</td>
</tr>
<tr>
<td>5.5</td>
<td>Rattus exulans, rat</td>
<td>230</td>
</tr>
<tr>
<td>5.6</td>
<td>Dobsonia moluccensis, greater bare-backed bat</td>
<td>234</td>
</tr>
<tr>
<td>5.7</td>
<td>Stenella longirostris, spinner dolphin</td>
<td>244</td>
</tr>
<tr>
<td>5.8</td>
<td>Dugong dugon, dugong</td>
<td>246</td>
</tr>
<tr>
<td>5.9</td>
<td>Chelonia mydas, green turtle</td>
<td>248</td>
</tr>
<tr>
<td>5.10</td>
<td>Crocodylus porosus, saltwater crocodile</td>
<td>252</td>
</tr>
<tr>
<td>5.11</td>
<td>Varanus indicus, water monitor</td>
<td>253</td>
</tr>
<tr>
<td>5.12</td>
<td>Hemidactylus frenatus, common house gecko</td>
<td>256</td>
</tr>
<tr>
<td>5.13</td>
<td>Skink</td>
<td>258</td>
</tr>
<tr>
<td>6.1</td>
<td>Gallus gallus, Red Jungle Fowl</td>
<td>284</td>
</tr>
<tr>
<td>6.2</td>
<td>Casuarius bennetti, Dwarf Cassowary</td>
<td>288</td>
</tr>
<tr>
<td>6.3</td>
<td>Egretta sacra, Reef Heron</td>
<td>289</td>
</tr>
<tr>
<td>6.4</td>
<td>Anas superciliosa, Pacific Black Duck</td>
<td>294</td>
</tr>
<tr>
<td>6.5</td>
<td>Haliaeetus leucogaster, White-bellied Sea Eagle</td>
<td>297</td>
</tr>
<tr>
<td>6.6</td>
<td>Aviceda subcristata, Crested Baza</td>
<td>301</td>
</tr>
<tr>
<td>6.7</td>
<td>Circus approximans, Pacific Marsh Harrier</td>
<td>303</td>
</tr>
<tr>
<td>6.8</td>
<td>Megapodius eremita, Bismarck Scrub Fowl</td>
<td>305</td>
</tr>
<tr>
<td>6.9</td>
<td>Porphyrio porphyrio, Purple Swamphen</td>
<td>307</td>
</tr>
<tr>
<td>6.10</td>
<td>Rallus philippensis, Bismarck Scrub Fowl</td>
<td>308</td>
</tr>
<tr>
<td>6.11</td>
<td>Ducula pacifica, Pacific Pigeon</td>
<td>312</td>
</tr>
<tr>
<td>6.12</td>
<td>Phigys solitarius, Collared Pigeon</td>
<td>328</td>
</tr>
<tr>
<td>6.13</td>
<td>Tyto alba, Barn Owl</td>
<td>332</td>
</tr>
<tr>
<td>6.14</td>
<td>Hemiproene mystacea, Whiskered Tree-swift</td>
<td>335</td>
</tr>
<tr>
<td>6.15</td>
<td>Halcyon chloris, White-collared Kingfish</td>
<td>337</td>
</tr>
<tr>
<td>6.16</td>
<td>Aceros plicatus, Blyth’s Hornbill</td>
<td>340</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>6.17</td>
<td>Rhipidura leucophrys, Willie Wagtail</td>
<td>342</td>
</tr>
<tr>
<td>6.18</td>
<td>Philemon buceroides, Helmeted Friarbird</td>
<td>346</td>
</tr>
<tr>
<td>6.19</td>
<td>Phaethon lepturus, White-tailed Tropic Bird</td>
<td>354</td>
</tr>
<tr>
<td>6.20</td>
<td>Sula dactylatra, Blue-faced Booby</td>
<td>355</td>
</tr>
<tr>
<td>6.21</td>
<td>Fregata ariel, Lesser Frigate Bird</td>
<td>358</td>
</tr>
<tr>
<td>6.22</td>
<td>Pluvialis fulva, Pacific Golden Plover</td>
<td>361</td>
</tr>
<tr>
<td>6.23</td>
<td>Limosa lapponica, Bar-tailed Godwit</td>
<td>362</td>
</tr>
<tr>
<td>7.1</td>
<td>Pediculus humanus capitis, head louse (male)</td>
<td>373</td>
</tr>
<tr>
<td>7.2</td>
<td>Anopheles sp., mosquito</td>
<td>380</td>
</tr>
<tr>
<td>7.3</td>
<td>Dragonfly</td>
<td>386</td>
</tr>
<tr>
<td>7.4</td>
<td>Gryllus sp., cricket</td>
<td>395</td>
</tr>
<tr>
<td>7.5</td>
<td>Cicada</td>
<td>396</td>
</tr>
<tr>
<td>7.6</td>
<td>Praying mantis and stick insect</td>
<td>398</td>
</tr>
<tr>
<td>7.7</td>
<td>Longicorn beetle and Oryctes rhinoceros, rhinoceros-beetle</td>
<td>401</td>
</tr>
<tr>
<td>7.8</td>
<td>Hormurus sp., scorpion</td>
<td>408</td>
</tr>
</tbody>
</table>
List of maps

1 The Austronesian language family and major subgroups xxv
2 Geographic limits of historically known Oceanic speakers and of presently documented Lapita sites .. xxvi
3 Groups of Oceanic languages used in cordinate sets 11
4 Oceanic language groups in northwest Melanesia: the Admiralties and St Matthias groups and the subgroups of Western Oceanic 15
5 Major zoogeographical boundaries in Island Southeast Asia 218
6 Island Southeast Asia and Northwest Melanesia: island names 219
7 Locations of Eastern Admiralties (Adm) languages 477
8 Locations of languages of the Western Admiralties (Adm) family, the North New Guinea (NNG) cluster, and the Sarmi-Jayapura (SJ) family 478
9 Locations of languages of the Papuan Tip (PT) cluster 479
10 Locations of languages of the Meso-Melanesian (MM) cluster and the St Matthias group ... 480
11 Locations of Southeast Solomonic (SES) languages 481
12 Locations of Temotu (TM) languages and Pileni 482
13 Locations of North Vanuatu (NCV) languages 483
14 Locations of Central Vanuatu (NCV) languages 484
15 Locations of Southern Vanuatu (SV) and New Caledonia (NCal) languages .. 485
16 Locations of Yapese, Nauruan, Nuclear Micronesia (Mic) and some Polynesian (Pn) languages .. 486
17 Locations of Fijian (Fij) and Polynesian (Pn) languages 487
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>actor</td>
</tr>
<tr>
<td>ACD</td>
<td>Blust (1995)</td>
</tr>
<tr>
<td>Adm</td>
<td>Admiralties</td>
</tr>
<tr>
<td>ADJ</td>
<td>adjective</td>
</tr>
<tr>
<td>ADV</td>
<td>adverb</td>
</tr>
<tr>
<td>APPL</td>
<td>applicative</td>
</tr>
<tr>
<td>ART</td>
<td>article</td>
</tr>
<tr>
<td>CEMP</td>
<td>Central/Eastern Malayo-Polynesian</td>
</tr>
<tr>
<td>CMP</td>
<td>Central Malayo-Polynesian</td>
</tr>
<tr>
<td>cstr</td>
<td>construction marker</td>
</tr>
<tr>
<td>esp.</td>
<td>especially</td>
</tr>
<tr>
<td>exp</td>
<td>expected</td>
</tr>
<tr>
<td>Fij</td>
<td>Fijian</td>
</tr>
<tr>
<td>FishBase</td>
<td>see Froese & Pauly (2010) in references</td>
</tr>
<tr>
<td>k.o.</td>
<td>kind of</td>
</tr>
<tr>
<td>Mic</td>
<td>Nuclear Micronesian</td>
</tr>
<tr>
<td>MM</td>
<td>Meso-Melanesian</td>
</tr>
<tr>
<td>n</td>
<td>noun</td>
</tr>
<tr>
<td>NCal</td>
<td>New Caledonia</td>
</tr>
<tr>
<td>NCV</td>
<td>North/Central Vanuatu</td>
</tr>
<tr>
<td>NNG</td>
<td>North New Guinea</td>
</tr>
<tr>
<td>NOM</td>
<td>nominaliser</td>
</tr>
<tr>
<td>OBJ</td>
<td>object</td>
</tr>
<tr>
<td>OED</td>
<td>Oxford English Dictionary</td>
</tr>
<tr>
<td>PAdm</td>
<td>Proto Admiralty</td>
</tr>
<tr>
<td>PAn</td>
<td>Proto Austronesian</td>
</tr>
<tr>
<td>PASS</td>
<td>passive</td>
</tr>
<tr>
<td>PCEMP</td>
<td>Proto Central/Eastern Malayo-Polynesian</td>
</tr>
<tr>
<td>PCP</td>
<td>Proto Central Pacific</td>
</tr>
<tr>
<td>PEMP</td>
<td>Proto Eastern Malayo-Polynesian</td>
</tr>
<tr>
<td>PEOc</td>
<td>Proto Eastern Oceanic</td>
</tr>
<tr>
<td>PL</td>
<td>plural</td>
</tr>
<tr>
<td>PMM</td>
<td>Proto Meso-Melanesian</td>
</tr>
<tr>
<td>PMP</td>
<td>Proto Malayo-Polynesian</td>
</tr>
<tr>
<td>Pn</td>
<td>Polynesian</td>
</tr>
<tr>
<td>PNCV</td>
<td>Proto North–Central Vanuatu</td>
</tr>
<tr>
<td>PNG0c</td>
<td>Proto New Guinea Oceanic</td>
</tr>
<tr>
<td>PNp</td>
<td>Proto Nuclear Polynesian</td>
</tr>
<tr>
<td>POc</td>
<td>Proto Oceanic</td>
</tr>
<tr>
<td>pollex</td>
<td>Biggs & Clark (1993)</td>
</tr>
<tr>
<td>pollex2</td>
<td>Clark & Biggs (2006)</td>
</tr>
<tr>
<td>PPn</td>
<td>Proto Polynesian</td>
</tr>
<tr>
<td>PROc</td>
<td>Proto Remote Oceanic</td>
</tr>
<tr>
<td>PSOc</td>
<td>Proto Southern Oceanic</td>
</tr>
<tr>
<td>PT</td>
<td>Papuan Tip</td>
</tr>
<tr>
<td>PWMP</td>
<td>Proto Western Malayo-Polynesian</td>
</tr>
<tr>
<td>PWOc</td>
<td>Proto Western Oceanic</td>
</tr>
<tr>
<td>sg</td>
<td>singular</td>
</tr>
<tr>
<td>s.o.</td>
<td>someone</td>
</tr>
<tr>
<td>sp.</td>
<td>species (sg)</td>
</tr>
<tr>
<td>spp.</td>
<td>species (pl)</td>
</tr>
<tr>
<td>s.t.</td>
<td>something</td>
</tr>
<tr>
<td>SES</td>
<td>Southeast Solomonic</td>
</tr>
<tr>
<td>SJ</td>
<td>Sarmi/Jayapura</td>
</tr>
<tr>
<td>SV</td>
<td>South Vanuatu</td>
</tr>
<tr>
<td>TM</td>
<td>Temotu</td>
</tr>
<tr>
<td>U</td>
<td>undergoer</td>
</tr>
<tr>
<td>v</td>
<td>verb</td>
</tr>
<tr>
<td>vi</td>
<td>intransitive verb</td>
</tr>
<tr>
<td>vt</td>
<td>transitive verb</td>
</tr>
<tr>
<td>W.Guad.</td>
<td>West Guadalcanal</td>
</tr>
<tr>
<td>WMP</td>
<td>Western Malayo-Polynesian</td>
</tr>
</tbody>
</table>
Acknowledgments

Particular thanks are due to our co-editor, Malcolm Ross, for lending his technical skills, and a great deal of his time, to the production of this volume. As well as reading and commenting on successive drafts of each chapter, Malcolm did the final formatting of the volume, drew all the maps, created several of the figures, and compiled the indices.

John Lynch kindly provided comments on all the chapters and suggested a number of additions to the cognate sets and reconstructions. We are also grateful to Ann Chowning, Alexandre François, Paul Geraghty and the late Phil Quick for their comments on a number of chapters.

Each chapter has benefited from discussions with and comments by various colleagues; their particular contributions are acknowledged in a footnote in the relevant chapter.

Thanks to Julie Manley for designing the cover and to Sandie Waters for providing the cover photograph, featuring two Great Barrier Reef diagonal banded sweetlips (Plectorhinchus lineatus).

We are grateful to Chris Healey for permission to use several of his drawings of mammals in Majnep & Bulmer (2007), to Dick Watling and M.F. Charters for permission to copy drawings of birds from Watling (1982), to Jutta Koestner for drawing these copies and to Ian Faulkner for doing several of the drawings of fish.

Other published sources of figures are as follows:

Chapter 2: Pawley & Sayaba (2003): 2.1, 2.2, 2.4, 2.5, 2.6, 2.7, 2.9, 2.11, 2.13, 2.14, 2.15, 2.16, 2.18, 2.21, 2.22, 2.24, 2.29, 2.30, 2.32, 2.33, 2.34, 2.35; Carcasson (1977): 2.20, 2.26, 2.31; Tinker (1978): 2.3; FishBase website (Froese & Pauly 2010): 2.8, 2.10, 2.12, 2.17, 2.23, 2.25, 2.27, 2.28.

Chapter 4: King (1991): 4.1, 4.2, 4.3; Wagner & Abbott (1964): 4.4, 4.5, 4.6 (turban, cone and murex); De Luca & Deluca (1976): 4.7, 4.8, 4.9, 4.10.

Chapter 5: Beehler (1991): 5.1, 5.3; Majnep & Bulmer (2007): 5.2, 5.4, 5.5; Pawley & Bulmer (f.c.): 5.6, 5.13.

Meredith Osmond and Andrew Pawley
Canberra, January 2011
Map 2

Geographic limits of historically known Oceanic speakers and of presently undocumented Lapita sites (after Kirch 1997:17, 54)

Limit of Oceanic Languages

Known Limit of Lapita Sites

Australia

New Zealand

French Polynesia

Micronesia

Equator

0°
1 Introduction

MALCOLM ROSS, ANDREW PAWLEY AND MEREDITH OSMOND

1 Aims

This is the fourth in a series of volumes on the lexicon of the Proto Oceanic (POc) language.1 POc is the immediate ancestor of the Oceanic subgroup of the Austronesian language family. This subgroup consists of all the Austronesian languages of Melanesia east of 136° E, together with those of Polynesia and (with two exceptions) those of Micronesia—more than 450 languages in all (see Map 1).2 Extensive arguments for the existence of Oceanic as a clearly demarcated branch of Austronesian were first put forward by Otto Dempwolff in the 1920s, and the validity of the subgroup is now recognised by virtually all scholars working in Austronesian historical linguistics.

The development and break-up of the POc language and speech community were stages in a truly remarkable chapter in human prehistory—the colonisation by Austronesian speakers of the Indo-Pacific region in the period after about 2000 BC. The outcome was the largest of the world’s well-established language families and (until the expansion of Indo-European after Columbus) the most widespread. The Austronesian family comprises more than 1,000 distinct languages. Its eastern and western outliers, Madagascar and Easter Island, are two-thirds of a world apart, and its northernmost extensions, Hawai‘i and Taiwan, are separated by 70 degrees of latitude from its southernmost outpost, Stewart Island in New Zealand. It is likely that the divergence of Oceanic from its nearest relatives, which are the Austronesian languages spoken around Cenderawasih Bay and in South Halmahera (Blust 1978a), began when Austronesian speakers from the Cenderawasih Bay area moved eastwards along the north coast of New Guinea and into the Bismarck Archipelago. There is a strong school of opinion that associates the subsequent break-up of POc with the rapid colonisation of Island

1 The project has been jointly directed by Andrew Pawley and Malcolm Ross, with research assistance from Meredith Osmond, in the Department of Linguistics, Research School of Pacific and Asian Studies at the Australian National University. Originally, five volumes were planned, but the large amount of material has required this to be increased to seven (see p2).

2 The listing in Tryon (1995) contains 466 Oceanic languages, many of which are subdivisible into dialects.
Melanesia and the central Pacific by bearers of the Lapita culture between about 1200 and 900 BC (see Map 2 and volume 2, chapter 2).

The present project aims to bring together a large corpus of lexical reconstructions for POc, with supporting cognate sets, organised according to semantic fields and using a standard orthography for POc. We hope that this thesaurus will be a useful resource for culture historians, archaeologists and others interested in the prehistory of the Pacific region. The comparative lexical material should also be a rich source of data for various kinds of purely linguistic research, e.g. on semantic change and subgrouping in the more than 400 daughter languages.

Volume 1 of *The lexicon of Proto Oceanic* deals with material culture. Volumes 2, 3 and 4 examine relevant sets of cognate terms in order to gain insights into how POc speakers viewed and exploited their environment. Volume 2 deals with the geophysical or inanimate environment, volume 3 treats plants and the present volume animals. Volume 5, as it is planned at the time of writing, will investigate terminologies centring on people, including the body and human conditions and activities, and volume 6 will concern social organisation, belief systems, rituals, recreation and other elements of non-material culture. The seventh and final volume will perform a number of functions. It will treat certain lexical categories, e.g. closed classes of lexical roots, not dealt with in earlier volumes. It will review the main findings of the project concerning the culture and environment of Proto Oceanic speakers and will compare these findings with what archaeology tells us about the way of life and environment of the bearers of the Lapita culture. Volume 7 will also provide an index to the POc and other reconstructions presented in the whole work, as well as an English-to-POc finderlist and a list of all languages cited, together with their subgroups.³

The major headings under which animals are divided in this volume, e.g. Fish, Birds, Aquatic invertebrates, etc., largely follow English-language rather than Oceanic categories. There are several reasons for this choice. One is that descriptions of Oceanic taxonomies of animals are few and imperfect. Another is that although the best-described Oceanic taxonomies typically agree with one another in some respects, they vary in others. Yet another is that we assume that readers would be more likely to look, say, for ‘bats’ under Mammals than under Birds.

In keeping with the exceptionally rich diversity of marine fauna in Oceania and its economic and cultural importance to Oceanic societies, three (chapters 2–4) of the seven chapters that follow this introduction are largely devoted to creatures of the sea, as are portions of two others (chapters 5 and 8). Chapters 2 and 3 both concern fish terminologies. Chapter 2 presents supporting cognate sets for more than 140 POc fish names and for many additional names attributable to other major interstages below POc. A good many of the names are identifiable at the level of genus or species, others only to family or class. Chapter 3 investigates the retention rates of a sample of 52 POc fish names and asks why the total number of fish names reconstructed for POc is so much smaller than the number typically distinguished by contemporary Oceanic languages. Chapter 4 presents reconstructions of terms for aquatic invertebrates and their body parts. Chapter 5 examines terms for mammals, reptiles and amphibians. Again it is partly about creatures of the sea. Other than New Guinea, the islands

³ This Introduction incorporates much of the material in the Introductions to Volume 1, 2 and 3. We replicate this material here in order that each volume can be used independently. The introduction to volume 3, however, introduced a fresh presentation of the subgrouping of Oceanic languages, and this is retained here.
of Oceania have few native land mammals. Chapter 6 deals with names for bird taxa and other terms associated with birds. Chapter 7 is entitled ‘Insects and other creepy-crawlies’, the latter including non-insect terrestrial invertebrates: spiders, centipedes, worms, leeches and grubs. The final chapter of the volume, chapter 8, investigates the semantic histories of several terms that may have been high-level generics or life-forms in the POc taxonomy of animals. It looks for recurrent patterns in the way different languages have extended or reduced the referential range of each of these terms.

2 The relation of the current project to previous work

Reconstructions of POc phonology and lexicon began with Dempwolff’s pioneering work in the 1920s and 1930s. Dempwolff’s dictionary of reconstructions attributed to Proto Austro-nesian (PAn) (1938) — but equivalent in modern terms to Proto Malayo-Polynesian (PMP) — contains some 600 reconstructions with reflexes in Oceanic languages.

Since the 1950s, POc and other early Oceanic interstage languages have been the subject of a considerable body of research. However, relatively few new reconstructions safely attributable to POc were added to Dempwolff’s material until the 1970s. In 1969 George Grace made available as a working paper a compilation of reconstructions from various sources amounting to some 700 distinct items, attributed either to POc or to early Oceanic interstages. These materials were presented in a new orthography for POc, based largely on Biggs’ (1965) orthography for an interstage he called Proto Eastern Oceanic. Updated compilations of Oceanic cognate sets were produced at the University of Hawai‘i in the period 1977–1983 as part of a project directed by Grace and Pawley. These compilations and the supporting data are problematic in various respects and we have made only limited use of them.

Comparative lexical studies have been carried out for several lower-order subgroups of Oceanic: for Proto Polynesian by Biggs (resulting in Walsh & Biggs 1966, Biggs et al. 1970 and subsequent versions of the pollex file, including Biggs & Clark (1993) and Clark & Biggs (2006); for Proto Micronesian by scholars associated with the University of Hawai‘i (Bender et al. 1983, Bender et al. 2003); for the ancestor of the Banks and Torres languages by Alexandre François (several unpublished manuscripts); for Proto North and Central Vanuatu by Clark (1996, 2009); for Proto Southern Vanuatu by Lynch (1978, 1996, 2001); for New Caledonia by Ozanne-Rivierre (1992), Haudricourt & Ozanne-Rivierre (1982) and Geraghty (1989); for Proto SE Solomonic by Levy (1980) and Lichtenberk (1988); for Proto Central Pacific by Hockett (1976), Geraghty (1983, 1986, 1996 together with a number of unpublished papers); for Proto Eastern Oceanic by Biggs (1965), Cashmore (1969), Levy & Smith (1970), and Geraghty (1990); and for Proto Central Papuan by Pawley (1975), Lynch (1978, 1980), and Ross (1994).

Robert Blust of the University of Hawai‘i has, in a series of papers (1970, 1980, 1983–84, 1986, 1989) published extensive, alphabetically ordered, lexical reconstructions (with supporting cognate sets) for interstages earlier than POc, especially for Proto Austronesian, Proto Malayo-Polynesian and Proto Eastern Malayo-Polynesian. He has also written several papers investigating specific semantic fields (Blust 1980b, 1982, 1987, 1994). Blust has a major work in progress, the Austronesian Comparative Dictionary (acd), which will bring together all his reconstructions for Proto Austronesian and lower-order stages. This is stored in electronic form at the University of Hawai‘i. The version to which we refer dates from 1995.
Several papers predating our project systematically investigated particular semantic domains in the lexicon of POc, e.g. Milke (1958), French-Wright (1983), Pawley (1982, 1985), Pawley & Green (1985), Lichtenberk (1986), Walter (1989), and the various papers in Pawley & Ross (1994). Ross (1988) contains a substantial number of new POc lexical reconstructions, as well as proposed modifications to the reconstructed POc sound system and the orthography. However, previous Oceanic lexical studies were limited both by large gaps in the data, with a distinct bias in favour of ‘Eastern Oceanic’ languages, and by the technical problems of collating large quantities of data. Although most languages in Melanesia remain poorly described, there are now many more dictionaries and extended word lists, particularly for Papua New Guinea, than there were in the 1980s. And developments in computing hardware and software now permit much faster and more precise handling of data than was possible then. A list of sources and a summary of the Project’s collation procedures is found in Appendix 1.

Several compilations of reconstructions have provided valuable points of reference, both inside and outside the Oceanic group. We are indebted particularly to Bender et al. (2003), two editions of **Pollex** (Biggs & Clark 1993 and Clark & Biggs 2006), Blust (**ACD**), Clark (2009) and Lynch (2001b).

In the course of planning the several volumes for the present project, we came to realise that the form in which preliminary publications were presented—namely as essays, each discussing cognate sets for a particular semantic field at some length—would also be the best form for the presentation of our final synthesis. A discursive treatment of individual terminologies, as opposed, say, to a dictionary-type listing of reconstructions with supporting cognate sets, makes it easier to relate the linguistic comparisons to relevant issues of culture history, language change, and methodology. Hence each of the present volumes has as its core a collection of analytic essays. Some of these have been published or presented elsewhere, but are printed here in revised form. In some cases we have updated the earlier versions in the light of subsequent research, and, where appropriate, have inserted cross-references between contributions. Authorship is in some cases something of a problem, as a number of people have had a hand in collating the data, doing the reconstructions, and (re)writing for publication here. In most chapters, however, one person did the research which determined the structure of the terminology, and that person appears as the first or only author, and where another or others had a substantial part in putting together the paper itself, they appear as the second and further authors.

3 Reconstructing the lexicon

The lexical reconstructions presented in these volumes are arrived at using the standard methods of comparative linguistics, which require as preliminaries a subgrouping or internal classification of the languages in question (§3.2) and the working out of systematic sound correspondences among cognate vocabulary in contemporary languages (§3.3). As well as cognate sets clearly attributable to POc, we have included some cognate sets which at this stage are attributable to various interstage languages, particularly Proto Western and Proto Eastern Oceanic (but see §3.2 for definitions). We have set out to pay more careful attention to reconstructing the semantics of POc forms than has generally been done in earlier work, treating words not as isolates but as parts of terminologies.
3.1 Terminological reconstruction

Our method of doing ‘terminological reconstruction’ is as follows. First, the terminologies of present-day speakers of Oceanic languages are used as the basis for constructing a hypothesis about the semantic structure of a corresponding POc terminology, taking account of (i) ethnographic evidence, i.e. descriptions of the lifestyles of Oceanic communities and (ii) the geographical and physical resources of particular regions of Oceania. For example, by comparing terms in several languages for parts of an outrigger canoe, or for growth stages of a coconut, one can see which concepts recur and so are likely to have been present in POc. Secondly, a search is made for cognate sets from which forms can be reconstructed to match each meaning in this hypothesised terminology. The search is not restricted to members of the Oceanic subgroup; if a term found in an Oceanic language proves to have external (non-Oceanic) cognates, the POc antiquity of that term will be confirmed and additional evidence concerning its meaning will be provided. Thirdly, the hypothesised terminology is re-examined to see if it needs modification in the light of the reconstructions. There are cases, highlighted in the various contributions to these volumes, where we were able to reconstruct a term where we did not expect to do so and conversely, often more significantly, where we were unable to reconstruct a term where we had believed we should be able to. In each case, we have discussed the reasons why our expectations were not met and what this may mean for Oceanic culture history.

Blust (1987a: 81) distinguishes between conventional ‘semantic reconstruction’, which asks, “What was the probable meaning of protomorpheme X?”, and Dyen and Aberle’s (1974) ‘lexical reconstruction’, where one asks, “What was the protomorpheme which probably meant ‘X’?” At first sight, it might appear that terminological reconstruction is a version of lexical reconstruction. However, there are sharp differences. Lexical reconstruction applies a formal procedure: likely protomeanings are selected from among the glosses of words in available cognate sets, then an algorithm is applied to determine which meaning should be attributed to each set. This procedure may have unsatisfactory results, as Blust points out. Reconstructions may end up with crude and overly simple glosses; or no meaning may be reconstructed for a form because none of the glosses of its reflexes is its protomeaning.

Terminological reconstruction is instead similar to the semantic reconstruction approach. In terminological reconstruction the meanings of protomorphemes are not determined in advance. Instead, cognate sets are collected and their meanings are compared with regard to:

- their specific denotations, where these are known;
- the geographic and genetic distribution of these denotations (i.e. are the glosses from which the protogloss is reconstructed well distributed?)
- any derivational relationships to other reconstructions;
- their place within a working hypothesis of the relevant POc terminology (e.g., are terms complementary — ‘bow’ implies ‘arrow’; ‘seine net’ implies ‘floats’ and ‘weights’? Are there different levels of classification—generic, specific, and so on?).

For example, it proved possible to reconstruct the following POc terms for tying with cords (vol.1, ch.9, §10):

POc *buku ‘tie (a knot); fasten’
POc *pʷita ‘tie by encircling’
POc *paqu(s), *paqus-i- ‘bind, lash; construct (canoe +) by lashing together’
Malcolm Ross, Andrew Pawley and Meredith Osmond

POc *pisi ‘bind up, tie up, wind round, wrap’
POc *kiti ‘tie, bind’

In each of the supporting cognate sets from contemporary languages there are a number of items whose glosses in the dictionaries or word lists are too vague to tell the analyst anything about the specific denotation of the item, and in the case of *kiti this prevents the assignment of a more specific meaning. The verb *buku can be identified as the generic term for tying a knot because of its derivational relationship (by zero derivation) with a noun whose denotation is clearly generic, *buku ‘node (as in bamboo or sugarcane); joint; knuckle; knot in wood, string or rope’ (vol.1, ch.4, §3.2). Reconstruction of the meaning of *pʷita as ‘tie by encircling’ is supported by the meanings of the Lukep, Takia and Longgu reflexes, respectively ‘tie by encircling’, ‘tie on (as grass-skirt)’, and ‘trap an animal’s leg; tie s.t. around ankle or wrist’: Lukep and Takia are North New Guinea languages, whilst Longgu is SE Solomonic. Reconstruction of the meaning of *paqu(s), *paqus-i- as ‘bind, lash; construct (canoe +) by tying together’ is supported by the meanings of the Takia, Kiribati and Samoan reflexes, respectively ‘tie, bind; construct (a canoe)’, ‘construct (canoe, house)’, and ‘make, construct (wooden objects, canoes +)’: Takia is a North New Guinea language, Kiribati is Micronesian, and Samoan is Polynesian. The meaning of *pisi is similarly reconstructed by reference to the meanings of its Mono-Alu, Mota, Port Sandwich, Nguna and Fijian reflexes.

Often, however, the authors have been less fortunate in the information available to them. For example, Osmond (vol.1, ch.8, §9) reconstructs six POc terms broadly glossed as ‘spear’. Multiple terms for implements within one language imply that these items were used extensively and possibly in specialised ways. Can we throw light on these specialised ways? Unfortunately, some of the word lists and dictionaries available give minimal glosses, e.g. ‘spear’, for reflexes of the six reconstructions. What we need to know for each reflex is: what is the level of reference? Is it a term for all spears, or perhaps all pointed projectiles including arrows and darts? Or does it refer to a particular kind of spear? Is it noun or verb or both? If a noun, does it refer to both the instrument and the activity? Most word lists are frustratingly short on detail. For this kind of detail, ethnographies have proved a more fruitful source of information than many word lists.

Another problem is inherent in the dangers of sampling from over 450 languages. The greater the number of languages, the greater are the possible variations in meaning of any given term, and the greater the chances of two languages making the same semantic leaps quite independently. Does our (sometimes quite limited) cognate set provide us with a clear unambiguous gloss, or have we picked up an accidental bias, a secondary or distantly related meaning? Did etymon x refer to fishhook or the material from which the fishhook was made? Did etymon y refer to the slingshot or to the action of turning round and round?

3.2 Subgrouping and reconstruction

3.2.1 Subgrouping

Although the subgrouping of Austronesian languages, and hypotheses about which protolanguage was spoken where, remain in certain cases somewhat controversial, it is impossible to proceed without making some assumptions about these matters. Figures 1.1 and 1.2 are approximate renderings of our subgrouping assumptions. The upper part of the tree, shown in Figure 1.1, is due to Blust, originally presented in Blust (1977) and repeated with additional
supporting evidence in subsequent publications (1978, 1982, 1983–84, 1993, 2009). The diagram of the lower (Oceanic) part of the tree in Figure 1.2 shows nine primary subgroups of Oceanic. Its rake-like structure indicates that no convincing body of shared innovations has been found to allow any of the nine subgroups to be combined into higher-order groupings. Sections 3.2.2, 3.2.3 and 3.2.4 offer some commentary on our subgrouping, and in §3.2.4 we explain how we handle the rake-like structure in making reconstructions.

3.2.2 Kinds of subgroup

In Figures 1.1 and 1.2 each node is either a single language, usually a reconstructed protolanguage, or, in italics, a group of languages.

Where a node is a protolanguage, its descendants form a proper subgroup (in the technical sense in which historical linguists use the term ‘subgroup’). A proper subgroup is identified by innovations shared by its member languages, i.e. it is ‘innovation-defined’ in the terminology of Pawley & Ross (1995). These innovations are assumed to have occurred just once in

4 For critical overviews of the literature on Austronesian subgrouping, see Ross (1995), Adelaar (2005) and Blust (2009a). The CEMP and Central Malayo-Polynesian linkages, and also PEMP, have been called into question recently, but these issues lie beyond our present scope (Blust 2009b, Donohue & Grimes 2008, Ross 2008b).

5 The two very closely related languages Mussau and Tench form a minor exception.
Figure 1.2 Schematic diagram showing the subgrouping of Oceanic Austronesian languages.
the subgroup’s protolanguage, i.e. the exclusively shared ancestor of its members. Thus languages of the large Oceanic subgroup of Austronesian share a set of innovations relative to the earlier Austronesian stages shown in Figure 1.1 (Dempwolff 1934). By inference these innovations occurred in their common ancestor, POc, and the claim that they are innovations is based on a comparison of reconstructed POc with reconstructed PMP. The innovations may be phonological (e.g. PMP *e, pronounced [ə], and PMP *aw both became POc *o), morphological (e.g. POc acquired a morphological distinction between three kinds of possessive relationship: food, drink and default), or lexical (e.g. PMP *limaw ‘citrus fruit’ was replaced by POc *molis).

Italics are used in Figures 1.1 and 1.2 to indicate a group of languages which is not a proper subgroup, i.e. has no identifiable exclusively shared parent. Thus Formosan languages in Figure 1.1 indicates a collection of languages descended (along with PMP) from PAn. They are spoken in Taiwan, but do not form a subgroup. There was no ‘Proto Formosan’, as Formosan languages and language groups are all descended directly from PAn.

Some of the italicised labels in Figures 1.1 and 1.2 include the term linkage. A linkage (an ‘innovation-linked group’ in the terminology of Pawley & Ross 1995) is a collection of usually quite closely related languages or dialects, speakers of which were in sufficient contact at one time or another during their history for innovations to pass from one language to the next, often resulting in a pattern such that the domains of various innovations overlap but are not coterminous. A number of Oceanic linkages were recognised during the 1980s (Geraghty 1983, Pawley & Green 1984, Ross 1988). A linkage may arise in at least three ways, but distinguishing between them is often impossible.

First, what would otherwise be a proper subgroup may happen to lack exclusively shared innovations, perhaps because the parent did not exist as a unit for long enough to undergo any innovations of its own.

Second, a linkage may consist of some but not all of the languages descended from a single parent. The Western Oceanic linkage reflects the innovations of POc, but no innovation is common to the whole of Western Oceanic (although the merger of POc *r and *R comes close). However, the languages of its three component linkages—North New Guinea, Papuan Tip and Meso-Melanesian—display complex patterns of overlapping innovations. The Western Oceanic linkage appears to be descended from the dialects of POc that were left behind in the Bismarck Archipelago after speakers of the languages ancestral to the other eight primary subgroups in Figure 1.2 had moved away to the north or east. After these departures

6 Chapter 4 of Lynch et al. (2002) gives a recent account of these innovations.

7 In what follows, ‘language’ is used to mean ‘language or dialect’.

8 One or more innovations may spread right across the languages of the linkage. In this case it becomes virtually impossible to distinguish it from a proper subgroup.

9 Recent work in Indo-European appeals to the concept of linkage: Garrett (2006) suggests that the dialects ancestral to Greek were not dialects of ‘Proto Greek’ but a collection of Nuclear Indo-European dialects drawn together by relations between the communities ancestral to the Greek city states, across which spread the innovations which characterise Ancient Greek.

10 A situation in which a subgroup is both proper (i.e. defined by exclusive innovations) and a linkage (displaying overlapping patterns of innovations) is of course possible, the exclusively shared innovations having occurred in the parent, the others after the break-up of the parent. It so happens that we have no need of this construct here.
various innovations occurred. Each arose somewhere in the Western Oceanic dialect network and spread to neighbouring dialects without reaching every dialect in the network.

The third type of linkage is the result of contact among languages descended from more than one immediate parent, indicated in Figure 1.2 by a dashed line around the relevant groups of languages. An example is the Fijian linkage, which represents the partial resynthesis of the Fiji-based descendants of earlier Western Central Pacific and Eastern Central Pacific linkages after Rotuman and Polynesian had split off from them (Geraghty & Pawley 1981, Geraghty 1983, Pawley 1996b). Geraghty reconstructed the history of the Fijian linkage by painstaking analysis of innovations from at least two stages in its history. From the earlier period Western Fijian languages share innovations with Rotuman and Eastern Fijian with Polynesian. From a more recent period Western Fijian and Eastern Fijian languages share innovations with each other, reflecting their reintegration into a single linkage, within which the present Western/Eastern boundary has shifted relative to the (fuzzy) boundary of the earlier period.

For most of the linkages noted in Figures 1.1 and 1.2 this kind of analysis is not available. For example, Blust (1993) indicates that CEMP was a linkage. But its history is far from clear. Does CEMP perhaps include some languages that share history with languages to their west and others that share history with those to their north? The North/Central Vanuatu linkage, long assumed to be some sort of genealogical unit, appears to reflect the partial reintegration of at least two dialect networks, North Vanuatu and Central Vanuatu, that probably had not diverged greatly from each other, but the details of this history are difficult to elucidate (Lynch 2000a).

The languages of a linkage have no identifiable exclusively shared parent. Yet we have found many instances in which a cognate set is limited to one of the linkages in Figures 1.1 and 1.2: CEMP, Western Oceanic, New Guinea Oceanic, Southern Oceanic or the reintegrated North and Central Vanuatu linkage. As with PEOc and PROc (§3.2.4), we think it is preferable to attribute these reconstructions to a hypothetical protolanguage rather than to a higher node in the tree. Hence there are reconstructions labelled PCEMP, PWOC and so on. Again these apparent lexical innovations offer only the weakest evidence for the protolanguage to which they are attributed. In addition to the explanations of the kinds offered for PEOc and PROc etyma in §3.2.4 it is possible, for example, that an innovatory ‘PWOC’ etymon arose when the Western Oceanic dialect network was still close-knit, and spread from dialect to dialect before the network broke into the two networks ancestral to its present-day first-order subgroups.

3.2.3 Further notes on subgroups

This section brings together brief notes on the subgroups in Figure 1.2 beyond those mentioned in the discussion in §3.2.2.

Admiralty is a proper subgroup (Ross 1988: ch.9).

Western Oceanic consists of the North New Guinea (NNG), Papuan Tip (PT), Meso-Melanesian (MM) linkages and the Sarmi/Jayapura (SJ) group (see Map 4). The last-named may belong to the NNG linkage, but this is uncertain (Ross 1996b). It is not shown in Figure 1.2 and its languages do not play a crucial role in reconstruction. It is likely that the NNG linkage, which represents the partial resynthesis of the Fiji-based descendants of earlier Western Central Pacific and Eastern Central Pacific linkages after Rotuman and Polynesian had split off from them (Geraghty & Pawley 1981, Geraghty 1983, Pawley 1996b).

11 ‘Eastern Fijian languages’ in Figure 1.2 is our label for Geraghty’s (1983) ‘Tokalau Fijian’.

12 For a history of scholarly views of the subgrouping of North and Central Vanuatu languages see Clark (2009: §1.3). For arguments supporting a NCV grouping, see Clark (2009: ch.4).
Map 3 Groups of Oceanic languages used in cognate sets
and PT groups form a super-group, the New Guinea Oceanic linkage, and so etyma reflected only in NNG and PT languages are attributed to a putative Proto New Guinea Oceanic (Milke 1958, Pawley 1978), and etyma reflected in either NNG or PT (or both) and in MM are labelled PWOc.

Temotu comprises the languages of the Reef Islands, Santa Cruz, Utupua and Vanikoro, located 400 km east of the main Solomons archipelago and to the north of Vanuatu (Map 3). It was established as a proper subgroup by (Ross & Næss 2007).

The *Southern Oceanic* linkage as proposed by Lynch (1999, 2000, 2001, 2004) is characterised by complex overlapping innovations, but by none that are reflected in all its member languages and would qualify it as a proper subgroup (see discussion in Lynch et al. 2002: 112–114).13

Micronesian is a proper subgroup (Jackson 1983, 1986, Bender et al. 2003).

Central Pacific is a proper subgroup, but one defined by only a handful of shared innovations, indicating that the period of unity was short (Geraghty 1996). The high-order sub-grouping of Central Pacific is due to Geraghty (1983), except for the position of Rotuman, due to Pawley (1996b). Within Central Pacific is another long recognised proper subgroup, *Polynesian*, for which Pawley (1996a) lists diagnostic innovations.

3.2.4 Criteria for reconstruction

The strength of a lexical reconstruction rests crucially on the distribution of the supporting cognate set across subgroups. The *distribution* of cognate forms and agreements in their meanings is much more important than the *number* of cognates. It is enough to make a secure reconstruction if a cognate set occurs in just two languages in a family, with agreement in meaning, provided that the two languages belong to different primary subgroups and provided that there is no reason to suspect that the resemblances are due to borrowing or chance. The PMP term *apij* ‘twins’ is reflected in several western Malayo-Polynesian languages (e.g. Batak *apid* ‘twins, double (fused) banana’) but only a single Oceanic reflex is known, namely Roviana *avisi* ‘twins of the same sex’. Because Roviana belongs to a different first-order branch of Malayo-Polynesian from the western Malayo-Polynesian witnesses and because there is virtually no chance that the agreement is due to borrowing or chance similarity, this distribution is enough to justify the reconstruction of PMP *apij, POc *apic ‘twins’.

The rake-like form of Figure 1.2 almost certainly reflects the very rapid settlement of Oceania out of the Bismarcks,14 but it confronts us with a methodological question. If we follow the rubric that we make a reconstruction if a cognate set occurs in languages of just

13 Because they have only been recently proposed, Temotu and Southern Oceanic do not appear in Figure 1 of volumes 1 and 2.

14 Bearers of the Lapita culture had settled various parts of the Bismarck Archipelago by around 1400 BC (Specht 2007) and colonised the Reefs and Santa Cruz Is. in the Temotu Archipelago by 1200-1100 BC (Green 2003, Green et al. 2008). There were Lapita settlements in New Caledonia by 1100-1000 BC (Sand 2001), in Fiji by about 1000 BC (Clark & Anderson 2009, Nunn et al. 2004), in Tonga by 900 BC (Burley & Connaughton 2007), and in Samoa and the smaller islands between Tonga and Samoa by 800-700 BC (Clark & Anderson 2009).
two primary subgroups, then reflexes of an etymon in, say, a SE Solomonic language and a
Micronesian language would be sufficient evidence for a POc reconstruction and the absence
of reflexes in Admiralty and Western Oceanic would be irrelevant. Given what we know
about the location of the POc homeland (in the Bismarcks; vol.2, ch.2) and the early eastward
spread of Oceanic speakers, this is too loose a criterion. Instead, we assume two hypothetical
nodes not shown in the tree in Figure 1.2.\(^{15}\) These are

- Remote Oceanic, comprising Southern Oceanic, Micronesian and Central Pacific;
- Eastern Oceanic, comprising SE Solomonic and Remote Oceanic.\(^{16}\)

If a cognate set occurs in two or all three of the groups in Remote Oceanic, the reconstruction
is attributed to Proto Remote Oceanic (PROc). If a cognate set occurs in one or more of the
groups in Remote Oceanic and in SE Solomonic, it is attributed to Proto Eastern Oceanic
(PEOc). In this way we acknowledge that such reconstructions may represent an innovation
that postdates the spread of the early Oceanic speech community. There are enough PROc and
PEOc reconstructions to suggest that such lexical innovations indeed occurred. This in turn
provides weak evidence for Remote Oceanic and Eastern Oceanic subgroups, but evidence
that is too weak to be relied on, for at least two reasons. First, it is quite possible that some of
our PROc and PEOc reconstructions will be promoted to POc as more Admiralty and Western
Oceanic data become available. Second, it is reasonable to assume that some of our PROc
and PEOc etyma are of POc antiquity but happen to have been lost in Proto Admiralty and
Proto Western Oceanic. Without supporting phonological or morphological evidence we are
unwilling to treat PROc or PEOc as anything other than convenient hypotheses which allow
us to retain rigorous criteria for a POc reconstruction.

In volumes 1 and 2 a reconstruction here labelled ‘PROc’ would have been labelled
‘PEOc’, but the absence of SE Solomonic reflexes from among its reflexes indicates that
it has the same status as a PROc reconstruction in volume 3 and the present volume. Two
factors have led to the distinction between PEOc and PROc here. One was particularly rel-

\(^{15}\) We included these nodes in the corresponding tree in Figure 1 of volumes 1 and 2, but this was too easily interpreted as a statement of our views on subgrouping, so we abandon it here and in Appendix 2.

\(^{16}\) The term ‘Eastern Oceanic’ and the search for evidence of an Eastern Oceanic subgroup has a relatively long pedigree in Oceanic linguistics (Biggs 1965, Pawley 1972, Pawley 1977, Lynch & Tryon 1985, Geraghty 1990). However, by the time volume 1 of the present work was published in 1998 it was already evident that innovations supporting the existence of an Eastern Oceanic subgroup were not forthcoming, as Pawley & Ross (1995: 79) had mentioned in a footnote. Our use of the term here is more inclusive than most, resembling more closely the ‘Central/Eastern Oceanic’ of Lynch & Tryon (1983) (the published version of which, Lynch & Tryon 1985, presents a less inclusive version of Central/Eastern Oceanic) and of Lynch et al. (2002: 94–96), who also express reservations about its status.
from one of these groupings to another.17 We also reconstruct an etymon to POc if it is reflected in just one of the four criterial groupings and in a non-Oceanic Austronesian language (a member of one of the subgroups on the left branches in Figure 1.1), as illustrated above by the reconstruction of POc *apic ‘twins’.

These criteria are identical to those applied in volumes 1 and 2 except for the addition of Temotu (which figures in very few cognate sets). The establishment of Temotu as a primary subgroup (Ross & Næss 2007) postdates the publication of volumes 1 and 2.

There are indications that Yapese (a single-language subgroup) and Mussau and Tench (a subgroup with two closely related languages) may be more closely related to Admiralty than to any other Oceanic subgroup,18 and for this reason they are treated as Admiralty languages for the purposes of reconstruction. That is, the presence of a reflex in one or more of these languages and in Admiralty does not support a POc reconstruction, but the presence of of a reflex in one or more of these languages and one of Western Oceanic, Temotu and Eastern Oceanic does support one.

In chapter 2 (§4) of volume 2 Pawley discusses Blust’s (1998) proposal that the primary split in Oceanic divides Admiralty from a subgroup embracing all other Oceanic languages. Pawley dubs the latter ‘Nuclear Oceanic’. If Blust’s subgrouping were accepted, then an etymon which lacked cognates outside Oceanic would need to be reflected both in an Admiralties language and in a non-Admiralties language for a POc reconstruction to be made. Etyma with reflexes in both Western and Eastern Oceanic, but not in the Admiralties, would be reconstructed as Proto Nuclear Oceanic. Under the criteria outlined above, however, we attribute these reconstructions to POc. These criteria were used in volumes 1 and 2, and we have thought it wise to maintain them throughout the volumes of this work. The reader who wishes to single out reconstructions attributable to a putative Proto Nuclear Oceanic (rather than to POc) can easily recognise them, however. They are those POc reconstructions for which (i) there are no Admiralties reflexes, and (ii) there is no higher-order reconstruction (i.e. PEMP, PCEMP, PMP or PAN), since the latter would be based on cognates outside Oceanic.

3.3 Sound correspondences

As we noted above, reconstruction depends on working out the systematic sound correspondences among cognate vocabulary in contemporary languages and on having a working hypothesis about how the sounds of POc have changed and are reflected in modern Oceanic languages. Working out sound correspondences even for twenty languages is a large task, and so we have relied heavily on our own previous work and the work of others. The sound correspondences we have used are those given by Ross (1988) for Western Oceanic and Admiralties; by Levy (1979, 1980) and Lichtenberk (1988) for Cristobal-Malaitan, by Pawley (1972) and Tryon & Hackman (1983) for SE Solomonic; by Ross & Næss (2007) for Temotu;

17 Cases where such an inference can be made occur mostly at the boundary (in the Solomon Islands) between Western and Eastern Oceanic. Borrowing is likely (and is often reflected in unexpected sound correspondences) where an etymon occurs (i) in Western Oceanic and only in SE Solomonic languages or (ii) in SE Solomonic languages and only in the NW Solomonic languages (a subgroup within the Meso-Melanesian linkage of Western Oceanic).

18 On the positions of Yapese and Mussau, see respectively Ross (1996a) and Ross (1988: 315–316, 331).
Map 4 Oceanic language groups in northwest Melanesia: the Admiralties and St Matthias groups and the subgroups of Western Oceanic
Table 1.1 Reconstructed paradigm of POc phonemes

<table>
<thead>
<tr>
<th>*pʷ</th>
<th>*p</th>
<th>*t</th>
<th>*k</th>
<th>*kʷ</th>
<th>*q</th>
</tr>
</thead>
<tbody>
<tr>
<td>*bʷ</td>
<td>*b</td>
<td>*d</td>
<td>*j</td>
<td>*g</td>
<td></td>
</tr>
<tr>
<td>*s</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*mʷ</td>
<td>*m</td>
<td>*n</td>
<td>*ŋ</td>
<td>*ŋ</td>
<td></td>
</tr>
<tr>
<td>*r</td>
<td></td>
<td></td>
<td></td>
<td>*R</td>
<td></td>
</tr>
<tr>
<td>*dr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*w</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*y</td>
</tr>
<tr>
<td></td>
<td>*i</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>*u</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*e</td>
<td></td>
<td></td>
<td>*o</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*a</td>
</tr>
</tbody>
</table>

For non-Oceanic languages we have referred to sound correspondences given by Tsuchida (1976) for Formosan languages; by Zorc (1977, 1986) and Reid (1982) for the Philippines; by Adelaar (1992) and Nothofer (1975) for Malay and Javanese; by Sneddon (1984) for Sulawesi; by Collins (1983) for Central Maluku; and by Blust (1978a) for South Halmahera and Irian Jaya.

We are well aware that regular sound correspondences can be interfered with in various ways: by phonetic conditioning that the analyst has not identified (see, e.g., Blust 1996a), by borrowing (for an extreme Oceanic case, see Grace 1996), or, as recent research suggests, by the frequency of an item’s use (Bybee 1994). We have tried at least to note, and sometimes to account for, irregularities in cognate sets.

3.4 POc phonology and orthography

Work based on the sound correspondences of both Oceanic and non-Oceanic languages has resulted in the reconstructed paradigm of POc phonemes shown in Table 1.1. The orthography used here and in the POc reconstructions in this work is from Ross (1988), with the addition of *pʷ and *kʷ. POc phonology and its relationship to PMP are discussed in greater detail in Chapter 2 (§2) of volume 1. Since the publication of volume 1, articles by John Lynch have appeared on POc stress (2000) and POc labiovelar phonemes (2002). The putative protophoneme *kʷ is added in this volume for the first time as a result of taking stock of reconstructions in volumes 1–3 and the current volume. It must have had a very low functional load, as it occurs only word-initially before *a and then only rarely (Ross 2010).

Table 1.2 shows two POc orthographies. The first was established by Biggs (1965), for PEOc, and Grace (1969), who applied it to POc. It has been used with a number of variants,
separated by a slash in Table 1.2. The second, introduced by Ross (1988), is the one generally used in this work. The terms ‘oral grade’ and ‘nasal grade’ were used by Grace (1969) and have become conventional among Oceanic linguists to refer to the outcomes of certain sound changes that occurred between PMP and POc (vol.1, ch.2, §2.4).

4 Conventions common to the series

4.1 Presentation of reconstructions

Each of the contributions to these volumes concerns a particular POc ‘terminology’. Generally, each contribution begins with an introduction to the issues raised by the reconstruction of its particular terminology, and the bulk of each contribution consists of reconstructed etyma with supporting data and a commentary on matters of meaning and form.

The reconstruction of POc *taRaʔan ‘Holocentrus spp., squirrelfish’ below, adapted from Chapter 2, §14, shows how reconstructions and supporting cognate sets are presented. Above it is a superordinate (PMP) reconstruction drawn from Blust’s Austronesian Comparative Dictionary (ACD; see §2). Below it are supporting reflexes. Contributors vary in the degree to which they insert lower-order reconstructions like PMic *tarā and PPn *taʔa below. Lower-order reconstructions are sometimes given to clarify the relationship of reflexes to the higher-order reconstruction: Southern Vanuatu languages, for example, have undergone so much phonological change that a Proto Southern Vanuatu reconstruction helps explicate the relationship between Southern Vanuatu reflexes and the POc reconstruction. Sometimes a lower-order reconstruction displays an extension of meaning or some other semantic change.

PMP *taRaʔan ‘Holocentrus spp., squirrelfish’ (ACD)

POc *taRaʔan ‘Sargocentron spp., squirrelfish, including S. spiniferum’ (Geraghty 1990: PEOc *taRaʔa)

Adm: Loniu taʔay ‘squirrelfish or silver biddy’ (metathesis: expected form †taya(?))
NNG: Yabem talay ‘a red sea fish’
PT: Gumasi tayawana ‘squirrel fish’

Table 1.2 POc orthographies after Grace (1969) and Ross (1988)

<table>
<thead>
<tr>
<th>Grace oral grade</th>
<th>*p</th>
<th>—</th>
<th>*t</th>
<th>*d/*r</th>
<th>*s</th>
<th>*j</th>
<th>*k</th>
<th>—</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ross</td>
<td>*p</td>
<td>*pʷ</td>
<td>*t</td>
<td>*r</td>
<td>*s</td>
<td>*c</td>
<td>*k</td>
<td>*kʷ</td>
</tr>
<tr>
<td>Grace nasal grade</td>
<td>*mp</td>
<td>*mp/*mpw</td>
<td>*nt</td>
<td>*nd/*nr</td>
<td>*nj</td>
<td>*ŋk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ross</td>
<td>*b</td>
<td>*bʷ</td>
<td>*d</td>
<td>*dr</td>
<td>*j</td>
<td>*g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grace</td>
<td>*m</td>
<td>*nm/*mw</td>
<td>*n</td>
<td>*ñ</td>
<td>*ŋ</td>
<td>*w</td>
<td>*y</td>
<td>*l</td>
</tr>
<tr>
<td>Ross</td>
<td>*m</td>
<td>*mʷ</td>
<td>*n</td>
<td>*ñ</td>
<td>*ŋ</td>
<td>*w</td>
<td>*y</td>
<td>*l</td>
</tr>
<tr>
<td>Grace</td>
<td>*i</td>
<td>*o</td>
<td>*e</td>
<td>*a</td>
<td>*u</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ross</td>
<td>*i</td>
<td>*o</td>
<td>*e</td>
<td>*a</td>
<td>*u</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PT: Misima *talayan* ‘Sargocentron spp., spiny and blue-striped squirrelfish’

PT: Motu *tara* ‘S. violaceum, violet squirrelfish’

MM: Nakanai *talaha* ‘k.o. fish’

MM: Lihir *taran* ‘S. spiniferum, spinecheek squirrelfish’

MM: Roviana *ta-tara* ‘small reddish fish, easily hooked’

SES: Gela *talā* ‘S. spiniferum, spinecheek squirrelfish’

NCV: S Efate *tra(kap)* ‘squirrelfish’

NCV: Pije *jalā* ‘Holocentrus spinifer’ [S. spiniferum]

NCV: Jawe *jarak* ‘H. spinifer’ [S. spiniferum]

PMic *tarā* ‘squirrelfish’ (Bender et al. 2003)

Mic: Kiribati *tā* ‘Sargocentron spp.’

Mic: Marshallese *ceṛa* ‘Sargocentron, Myripristis spp., squirrelfish’

Mic: Ponapean *sara* ‘S. spiniferum, spinecheek squirrelfish’

Mic: Chuukese *sarā* ‘Sargocentron sp., yellow-lined squirrel fish’

Mic: Woleaian *sečā* ‘Adioryx spinifer, spiny squirrel fish’ [S. spiniferum]

Mic: Puluwatese *harā* ‘k.o. red fish’

PPn *taʔa* ‘Sargocentron spiniferum, armoured soldierfish’ (Hooper 1994)

Pn: Tongan *taʔa* ‘S. spiniferum, red, edible’

Pn: Niuean *tā* ‘Myripristis violacea, lattice soldierfish’

Pn: Pukapukan *tā* ‘S. spiniferum’

Pn: Samoan *tā (malau)* ‘name given to certain fishes of genus Sargocentron when about 30 cm in length’. (See also under *malau* below.)

Pn: K’marangi *tā* ‘S. ruber, red squirrelfish’ [S. rubrum]

Pn: Tokelauan *tā* ‘S. spiniferum’

Pn: Tuvaluan *tā (malau)* ‘Adioryx spp.’ [Sargocentron]

Pn: Tikopia *ta* ‘sea fish, app. related to large squirrelfish’

Because our supporting data are drawn from such a wide range of languages, the convention is adopted of prefixing each language name with the abbreviation for the genealogical or geographic group to which the language belongs, so that the distribution of a cognate set is more immediately obvious. Table 1.3 is a key to the labels. Figure 1.2 shows the positions of these groups in the Oceanic tree. We have sought to be consistent in always listing these groups in the same order, but contributors vary in the ordering of languages within groups.

Lynch’s recent research on Southern Oceanic (§3.2.3) renders the NCV group mildly anomalous, although there is no doubt that it reflects an integrated dialect network. There are a number of etyma whose reflexes are confined to North and Central Vanuatu, and so we continue to make ‘Proto North/Central Vanuatu’ reconstructions, even though these perhaps represent a Southern Oceanic term that has been lost in southern Vanuatu and New Caledonia. Where the distribution of reflexes requires it, the chapters in this volume include reconstructions for PROc and for PSOc. Etyma with these distributions were attributed to PEOc in volumes 1 and 2, but the distributions are transparent, thanks to the presence of the group labels in cognate sets.

In the interests of space we have not given the history of the reconstructions themselves, as this would often require commentary on the modifications made by others and by us, and
on why we have made them. Where a reconstruction is not new, we have tried to give its earliest source, e.g. ‘ACD’ above, but this is difficult when earlier reconstructions differ in form and meaning.

In general, the contributions to these volumes are concerned with items reconstructable in POC, PWOC, PEOC, PROC and occasionally Proto New Guinea Oceanic (PNGOC). Etyma for PWOC, PNGOC and PEOC are reconstructed because these may well also be POC etyma for which known reflexes are not well distributed (see discussion in §3.2.4). The contributors vary in the degree to which they reconstruct etyma for interstages further down the tree. Reconstructions for lower-order interstages are decreasingly likely to reflect POC etyma and may be the results of cultural change as Oceanic speakers moved further out into the Pacific.

Contributors have usually not sought to make fresh reconstructions at interstages superordinate to POC. What they have done, however, is to cite other scholars’ reconstructions for higher-order interstages, as these represent a summary of the non-Oceanic evidence in support of a given POC reconstruction. These interstages are shown in Figure 1.1, together with their abbreviations.

Sometimes non-Oceanic evidence has been found to support a POC reconstruction where no reconstruction at a higher-level interstage has previously been made. In this case a new higher-order reconstruction is made, and the non-Oceanic evidence is given in a footnote.

Whilst we have tried to use the internal organisation of the lexicons of Oceanic languages themselves as a guide in setting the boundaries of each terminology, we have inevitably taken decisions which differ from those that others might have made. There are, obviously, overlaps and connections between various semantic domains and therefore between the contributions here. We have done our best to provide cross-references, but we have sometimes duplicated information rather than ask the reader repeatedly to look elsewhere in the book. Indexes at the end of each volume and in the final volume are intended to make it easier to use the volumes collectively as a work of reference.

Table 1.3 Abbreviations for the genealogical or geographic groups

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yap</td>
<td>Yapese (one language)</td>
</tr>
<tr>
<td>Adm</td>
<td>Admiralty and Mussau/Tench</td>
</tr>
<tr>
<td>SJ</td>
<td>Sarmi/Jayapura</td>
</tr>
<tr>
<td>NNG</td>
<td>North New Guinea</td>
</tr>
<tr>
<td>PT</td>
<td>Papuan Tip</td>
</tr>
<tr>
<td>MM</td>
<td>Meso-Melanesian</td>
</tr>
<tr>
<td>SES</td>
<td>Southeast Solomonic</td>
</tr>
<tr>
<td>TM</td>
<td>Temotu</td>
</tr>
<tr>
<td>NCV</td>
<td>North/Central Vanuatu, i.e. the reintegrated network formed by the North and Central Vanuatu linkages</td>
</tr>
<tr>
<td>SV</td>
<td>Southern Vanuatu</td>
</tr>
<tr>
<td>NCal</td>
<td>Loyalty and New Caledonia</td>
</tr>
<tr>
<td>Mic</td>
<td>Micronesian</td>
</tr>
<tr>
<td>Fij</td>
<td>Fijian, i.e. the reintegrated network formed by Western and Eastern Fijian dialects</td>
</tr>
<tr>
<td>Pn</td>
<td>Polynesian</td>
</tr>
</tbody>
</table>
4.2 Data

Data sources are listed in Appendix 1.

For some reconstructed etyma only a representative sample of reflexes is given. We have endeavoured to ensure, however, that in each case this sample not only is geographically and genetically representative, but also provides evidence to justify the shape of the reconstruction. Where only a few reflexes are known to us, this is usually noted.

Although there are accepted or standard orthographies for a number of the languages from which data are cited here, all data are transcribed as far as possible into a standard phonemic orthography based on that used by Ross (1988: 3–4) in order to facilitate comparison. This means, for example, that the j of the German-based orthographies of Yabem and Gedaged becomes y, Yabem c becomes ?, Gedaged z becomes l and so on; the ng of English-based orthographies becomes η; and Fijian g, q and c become η, g and δ respectively.

The following symbols have more or less their usual IPA values: ɸ, f, y, h, k, l, t, s, m, n, η, ñ, p, q, ɣ, r, s, t, w, x, z, ʔ, a, æ, e, ɛ, i, i, o, œ, ɔ, u, u, w, x, z. As far as possible, however, our orthography is phonemic and does not show allophonic variation, so that there are instances where a symbol does not have its usual phonetic value. For example, Wayan Fijian k is a voiceless stop word-initially but [k] is in free or stylistic variation with [γ] word-medially. The voiced stops b, d, g and the voiced bilabial trill b are prenasalised in some languages, but prenasalisation is not written unless it is phonemically distinctive. Where a language has just one rhotic, we usually write r, despite the fact that that rhotic is sometimes a flap. Other orthographic symbols (with values in IPA) are:

- f [ɸ, f] voiceless bilabial or (less often) labio-dental fricative
- v [β, v] voiced bilabial or (less often) labio-dental fricative
- c [ts], [ʧ] voiceless alveolar or palatal affricate
- j [ʣ], [ʤ] voiced alveolar or palatal affricate
- y [j] palatal glide
- dr [ⁿr] prenasalised voiced alveolar trill (as in Fijian)
- ő [ø] rounded mid front vowel
- ü [y] rounded high front vowel

Other superscripts and diacritics are as follows:

- contrastive long vowels are represented by a macron, e.g. ā;
- contrastive vowel nasalisation in New Caledonian languages is represented by a circumflex, e.g. ā;
- labialisation is marked by a superscript w, e.g. pʷ;
- velarisation is marked by a superscript u, e.g. pʷ;
- contrastive aspiration is marked by a superscript h, e.g. pʰ;
- apicolabials are represented by the corresponding apical symbol and the linguolabial diacritic (the ‘seagull’), e.g. f;
- retroflexes are represented by the corresponding apical symbol with a dot beneath, e.g. r.

19 The main reason for retaining Ross’ orthography was that the electronic files initially used in this project were drawn in large part from those used in the research reported in Ross (1988).
Except for inflexional morphemes, non-cognate portions of reflexes, i.e. derivational morphemes and non-cognate parts of compounds, are shown in parentheses (...). Where an inflexional morpheme is an affix or clitic and can readily be omitted, its omission is indicated by a hyphen at the beginning or end of the base. This applies particularly to possessor suffixes on directly possessed nouns (vol.1, ch.2, §3.2). Where an inflexional morpheme cannot readily be omitted, then it is separated from its base by a hyphen. This may happen because of complicated morphophonemics or because the morpheme is always present, like the adjectival -n in some NNG and Admiralties languages and prefixed reflexes of the POc article *na in scattered languages. When a reflex is itself polymorphemic (i.e. the morphemes reflect morphemes present in the reconstructed etymon) or contains a reduplication, the morphemes or reduplicates are also separated by a hyphen.

Languages from which data are cited in this volume are listed in Appendix B in their subgroups, together with an index allowing the reader to find the subgroup to which a given language belongs. Appendix B also includes alternative language names. The difficulty of deciding where the borderline between dialect and language lies, combined with the fact that these volumes contain work by a number of contributors, has resulted in some inconsistency in the naming of dialects in the cognate sets. Some occur in the form ‘Kara (E)’, i.e. the East dialect of the Kara language, or ‘Lukep (Pono)’, i.e. the Pono dialect of the Lukep language, whilst others are represented simply by the dialect name, e.g. Iduna, noted in Appendix B as ‘Iduna (= dialect of Bwaidoga)’.

4.3 Conventions used in representing reconstructions

Reconstructions are marked with an asterisk, e.g. *taRaQan ‘squirreelfish’, in keeping with the standard convention in historical linguistics. POc reconstructions, and also PWOc and PNGOc reconstructions, are given in the orthography of §3.4. For reconstructions at higher-order interstages the orthographies are those used by Blust in his various publications and the ACD. Reconstructions at lower-order interstages are given in the standard orthography adopted for data (§4.2). Geraghty’s (1986) PCP orthography, for example, is based on Standard Fijian spelling, and is converted into our standard orthography in the same way as Fijian spelling is. In practice, this means that the orthographies for PEOc, PROc and PCP are the same as for POc, except that a distinction between *p and *v is recognised and *R is absent from PCP. Biggs and Clark’s PPh reconstructions are in any case written in an orthography identical to our standard. Bracketing and segmentation conventions in protoforms are shown in Table 1.4.

PMP final consonants are usually retained in POc in absolute word-final position. In many cases decisive evidence for retention or loss can be found in those Oceanic languages that usually retain final consonants. However, there are some cases where it is uncertain whether POc kept the PMP finals. This is so when a PMP etymon is not attested in an Oceanic language that consistently retains POc final consonants. An example is *-R in PMP *kaMalIR ‘men’s house’, a term reflected in Oceanic only in certain languages that regularly lose POc final consonants. In such cases the consonant is reconstructed in parentheses (e.g. POc *ka- mali(R)).

In presenting words that display anomalies of form, it is often necessary to posit an expected form. For example, in the cognate set supporting POc *taRaQan ‘squirreelfish’ in §4.1, the Loniu form taʔay is presented in support of PEOc *taRaQan. Given the reconstruction,
Table 1.4 Bracketing and segmentation conventions in protoforms

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>it cannot be determined whether x was present</td>
</tr>
<tr>
<td>(x,y)</td>
<td>either x or y was present</td>
</tr>
<tr>
<td>[x]</td>
<td>the item is reconstructable in two forms, one with and one without x</td>
</tr>
<tr>
<td>[x,y]</td>
<td>the item is reconstructable in two forms, one with x and one with y</td>
</tr>
<tr>
<td>x-y</td>
<td>x and y are separate morphemes</td>
</tr>
<tr>
<td>x-</td>
<td>x takes an enclitic or a suffix</td>
</tr>
<tr>
<td>oo</td>
<td>x is an infix</td>
</tr>
</tbody>
</table>

however, we would expect the Loniu form to be taya(ʔ). In this volume we use a less widely employed convention and mark expected forms with a dagger, e.g. †taya(?), to distinguish them both from reconstructions and real data.\(^{20}\)

Sometimes we need to refer to a reconstructed form that one would expect as the regular reflex of an established POc etymon, but which does not occur because an irregular sound change has occurred. In such cases the dagger and asterisk conventions are used together. For example, in ch.7, §4, we reconstruct POc *simuk ‘mosquito, small biting fly’. Its Proto SE Solomonic reflex is reconstructed as *simi (this is the form reflected by the SE Solomonic data), but the expected (regular) Proto SE Solomonic form, referred to in our discussion, is †*simu, the regular reflex of POc *simuk. The dagger marks it as expected but not attested to.

Sometimes a hypothetical POc form is marked in this way. In ch.7, §5, we cite PMP *nik-nik, *ñik-ñik ‘tiny biting insect: gnat, sandfly, fruitfly’. The expected POc form is †*ninik, marked with a dagger because it does not actually occur. Instead, the Oceanic data require us to reconstruct the irregular form POc *niku-niku ‘small biting fly’.

When historical linguists compile cognate sets they commonly retain word for word the glosses given in the sources from which the items are taken. However, again in the interests of standardisation, we have often reworded (and sometimes abbreviated) the glosses of our sources, while preserving the meaning. Where glosses were in a language other than English we have translated them. In the interests of space and legibility, and because data often have multiple sources, we have given the source of a reflex only when it is not included in the listings in Appendix A.

Sometimes we use the convention of providing no gloss beside the items in a cognate set whose gloss is identical to that of the POc (or other lower-order) reconstruction at the head of the set, i.e. the reconstruction which they reflect.

Where necessary, we use ‘(v)’, ‘(vi)’, or ‘(vt)’ to indicate that a gloss is a verb, intransitive verb or transitive verb, ‘(n)’ to indicate that it is a noun.

Within glosses we use the conventional abbreviations ‘k.o.’ (as in ‘k.o. yam’) for ‘kind of’, ‘s.o.’ for ‘someone’, ‘s.t.’ for ‘something’, ‘sp.’ for a species and ‘spp.’ for more than one species.

\(^{20}\) Another convention sometimes used for this purpose is a double asterisk, e.g. **taya(?): we prefer the dagger on aesthetic grounds.
In putting together cognate sets we have quite often found possible cognates which do not quite ‘fit’ the set: they display unexplained phonological irregularities or their meaning is just a little too different from the rest of the set for us to assume cognacy. Rather than eliminate them we often include them below the cognate set under the rubric ‘cf. also’.

5 Indexes

This volume has three indexes. The first, as in volumes 1 and 2, is an index of reconstructions arranged by their protolanguages. The second is an alphabetical list of reconstructions. The third is an index of animals by their English and Linnaean glosses.
1 Introduction

Proto Oceanic speaking communities subsisted on what they could grow and gather and what they could glean from the reef and sea. Through their dependence on fishing, the inhabitants would have amassed knowledge of the environments favoured by particular fish, and awareness of fish habits as they related to such things as season of the year, the lunar and diurnal cycle, tidal movements, winds and currents. The times of certain fish to be fat, to be abundant, and to aggregate in a certain spot for spawning or feeding would have been marked.

This chapter deals mainly with the names of fishes. Paul Geraghty (1994) and Robin Hooper (1994) have provided a substantial starting point with their work on reconstructing fish names for Proto Central Pacific and Proto Polynesian respectively. Their data and lower-level reconstructions are reproduced here when included in a higher level reconstruction. Otherwise I simply record the existence of a PCP or PPn reconstruction.

In most Oceanic languages the lexicon of fish names is the largest of all faunal fields. The lists of local fish names available to me include almost 300 items for Mbunai Titan in the Admiralties (Akimichi & Sakiyama 1991), over 400 for both Marovo in the NW Solomons (Hviding 1996), and Wayan Fijian (Pawley & Sayaba 2003), 250 for Kapingamarangi in Polynesia (Lieber 1994) and around 400 for Satawalese in Micronesia (Akimichi & Sauchomal 1982). The evidence is overwhelming that knowledge of fish is, or has been until the breakdown of traditional lifestyles, extremely detailed, and one not restricted to a small group of people, but widespread among the majority of Oceanic communities.

A preliminary question that arises is: Do varieties of fishes in the tropical Pacific diminish in number the further one moves east from the major land masses? From linguistic evidence

1 I am particularly grateful to Malcolm Ross who has spent many hours checking and suggesting solutions to problematic cognate sets, and to Paul Geraghty for a host of detailed comments. Andrew Pawley has also commented on earlier drafts and made many useful suggestions. Others who have contributed over the years that this work has been in progress include Simon Foale, Alexandre François, John Lynch, Alice Pomponio, the late Phil Quick, Kevin Salisbury, Ian Scales and David Walsh.

It appears that the major families continue to be represented throughout the region, but the number of genera and species diminishes. The greatest number of families noted in a wordlist available to me is from one of the more remote locations.2

Davis’s listing for Chuuk (1999) records 71 of the 78 families included in my survey.3 Leach & Davidson (2000) have considered the question from an archaeological perspective. From fish remains identified from 24 different island groups in the tropical Pacific they list 48 families that were taken in any quantity by prehistoric people (p.414). Although they note signs of regional specialisation, they write that this ‘cannot be explained by changes in natural abundance of fish types from one place to another’ but is due rather to aspects of human behaviour (p.416). Thus it should be possible to reconstruct terms to at least the taxonomic level of family from the full range of linguistic subgroups including Micronesia and Polynesia, notwithstanding that the range of environment declines. This is in contrast to the land-based flora and fauna.

Although I have used western taxonomy as the basis of my classification, it should not be assumed that all Oceanic peoples used a similar system of organization. As an example, Edvard Hviding describes the system used by the people of the Marovo Lagoon, on the island of New Georgia, western Solomons. He writes:

Marovo fish taxonomy has a structure that differs considerably from Linnaean or western scientific taxonomy. For instance, a number of Marovo fish taxa are highly general “lump” categories that cover a considerable number of Linnaean species under one name. The term kepe (etymology uncertain) covers, without further specification, all (in western terms) ‘butterflyfish’ and ‘coralfish’, as well as any number of similar small, colorful reef fish with high and flat bodies. On the other hand, one Linnaean species may be subdivided in Marovo into a great number of named subtypes. One example is the skipjack tuna or makasi, which in Marovo has more than a dozen specific names that refer to growth stages, colorings, and more. Important food species are often finely subdivided in such a manner, in three-to-four-level taxonomic structures, while insignificant fishes, such as the small reef species just mentioned, are more commonly “lumped”. This does not imply that Marovo fishers do not generally and readily distinguish between similar looking fish species. They have names for at least four hundred Marovo “species”, and experienced people can easily single out and identify by name closely related fishes that differ only very subtly in color or general appearance. For example, at least twelve types of medium-sized parrotfish (no generic term in Marovo) are classified and named, as well as more than seventeen ‘trevallies’ [Carangids: mara] and at least twenty ‘groupers’ [Serranids: pajara] (Hviding 1996:192–193).

2 Apart from general dictionaries and wordlists, the following lists of fish names were consulted: Andra, McEldowney (1995); Chuukese, Davis (1999); Dobu, Lithgow (1975); Gela, Foale (1998); Kadavu Fijian, Kikusawa (1995); Kapingamarangi, Lieber (1994); Kiribatese, Thaman & Tebano (n.d.); Lau (of Malaita), Akimichi (1978); Lau Fijian, Paul Geraghty (pers. comm.); Motu, Oram (n.d.); Marovo, Hviding (1990, 1996, 2005); Marquesan, Lavondès (1977); Mbunai Titan, Akimichi & Sakiyama (1991); Misima, Kinch (1999); Mutu, Pomponio (n.d.); Nadrogā Fijian, Paul Geraghty (pers. comm.); Nduke, Ian Scales (pers. comm.); Niuatoputapu, Dye 1983; Ponam, Carrier (1982); Pukapuka, Kevin Salisbury (pers. comm.); Raga, David Walsh (pers. comm.); Satawalese, Akimichi & Sauchomal (1982); Teop, Shoffner (1976); Uvean (Wallisian), Rensch (1983).

3 Other totals recorded are 67 for Gela (SES), 66 for Wayan Fijian, 64 for Titan (Adm) and 62 for Satawalese (Mic).
Primary lexemes can denote a fish at the species, the genus or the family level, and occasionally, as with sharks and rays, suborders or even orders. Particular species are more likely to be separately named if they are distinctive in appearance, like the bump-headed parrotfish, or valued food, like the great barracuda. At the species level or lower, names are more likely to be binomial. Some may be multimorphemic, reflecting attributes such as similarity of appearance, habit (schooling or not), environment (e.g. bottom-dwellers, pelagic, fresh-water, estuarine, reef or deep sea dwellers), whether diurnal or nocturnal, and nastiness (poisonous to eat, stingers). Distinctive appearance may be reflected, with terms for head, nose, eye, spikes, filaments, similarity to sail or palm leaf and so on being incorporated into the name. In Polynesian languages some colour terms, particularly reflexes of PPn *tea ‘white’, *quli ‘black’, *kfu ‘reddish-brown’, *kula ‘red’ and *mea ‘reddish’, are quite common. Wayan Fijian has kati ni tanive, lit. ‘biter of sardines’ for a medium sized trevally, after its feeding habits, while a scorpionfish whose poisonous spines can inflict severe pain is called taŋitaŋi ga ua, lit. ‘cry until high tide’. Niuean calls a species of parrotfish mohe-aho lit. ‘sleep by day’. Valued fish and fish whose appearance changes with age will often have names for particular growth stages. In Tonga, for instance, a species of mullet (Valamugil cunnesius) has six named stages, ranging from smallest to largest, teʔevela, teʔekona, teʔefō, ʔunomoa, kanahe, and kanahe fau.

A common difficulty in reconstructing the semantic range of a term is that although apparent cognate names may exist in, say, the Admiralties, the Solomons and Polynesia, the fishes bearing these names may belong to different species or genera. While some species are widespread, others are highly restricted in their geographic range, and the name of a fish in the Admiralties may well be given elsewhere to another species within the same family, or to an unrelated fish that resembles it in some aspect. As well, the western scientific taxonomy of fishes is subject to continuing revision and occasional name replacement. These are problems both for the wordlist compiler in identifying a fish by its Linnaean classification in addition to its common name, and for ourselves in tracing the somewhat fluid species association that a cognate set may produce.

2 Organisation

The cognate sets that follow are grouped in terms of Linnaean families and high order groupings. The ordering of groups substantially follows that of Ian Munro (1967) in his encyclopaedic volume The Fishes of New Guinea. However, since then there have been numerous revisions to fish taxonomy. In particular, I have been guided by the FishBase website (Froese & Pauly 2010) in tracing synonyms and revised scientific classification. Dictionary identifications have been retained, with any revision of terminology added in square brackets. For descriptions of fish appearance and behaviour I have also relied heavily on Munro (1967) and Allen & Swainston (1993).

As frequent references are made to Geraghty 1994, Hooper 1994 and Munro 1967, the year is omitted and I refer to them respectively as Geraghty, Hooper and Munro.

Terms for fish parts are included in this chapter. Marine mammals have been included in chapter 5.
3 Fish (generic)

It is likely that the POc term *ikan had both a narrow and a broad sense. The narrow sense applied to 'typical' fish, while the broad sense included some or all of the following: whales, dolphins, dugongs, eels, turtles, cephalopods and rays. Shellfish are generally excluded in daughter languages. See chapter 8 for a fuller discussion.

PAn *Sikan ‘fish’ (ACD)
PMP *hikan ‘fish’ (ACD)
POc *ikan ‘fish (generic)’

Adm: Nyindrou	ni	‘fish’
Adm: Lenkau	nik	‘fish, excl. turtle, dolphin etc.’
Adm: Penchal	nii	‘fish, including turtle, dolphin, whale, octopus’
NNG: Gitua	iga	‘fish’
NNG: Manam	iʔa	‘fish’
NNG: Takia	i	‘fish’
NNG: Yabem	i	‘fish’
PT: Ubir	ian	‘fish’
PT: Dobu	iana	‘fish’
PT: Tawala	iyana	‘fish’
PT: Kilivila	yena	‘fish’
MM: Ramoaaina	ian	‘fish’
MM: Nakanai	ia	‘fish (generic)’
MM: Mono-Alu	iana	‘fish’
MM: Roviana	iyana	‘fish (generic)’
MM: Marovo	iyana	‘generic for all free-swimming creatures (e.g. fish, eels, stingrays, dolphins, whales, squids, jellyfish)’
SES: Gela	iya	‘a creature of the sea: fish, mollusc, crayfish, whale, squid, sea anemone, etc.’
SES: ‘Are’are	iʔa	‘fish (generic)’
SES: Sa’a	iʔe	‘fish’
SES: Arosi	iʔa	‘fish, including sharks, rays, porpoises and possibly other main animals’
SES: Lau	iʔa	‘fish; any sea creature’ (Akimichi 1978:307 includes e.g. dugong, porpoise and whale)
SES: Kwaio	iʔa	‘fish, porpoises, whales’
NCV: Mota	iya	‘fish’
NCV: Raga	iye	‘fish, including whales and porpoises but not eels, seasnakes, octopus, squid, cuttlefish, jellyfish or balolo worms’
NCV: NE Ambae	ige	‘typical fishes, rays and dolphins but not sharks and whales (which are grouped together), eels or cephalopods’ (Hyslop, pers. comm.)
NCV: Nguna	na-ika	‘fish’
NCal: Nemi	nuk	‘fish’
NCal: Cèmuhi	ɪka	‘fish’
Mic: Kiribati *ika* ‘fish: all swimming marine creatures including turtles, dugong, whales and porpoises, but not squid or octopus’

Mic: Woleian *ix(a)* ‘fish’

Mic: Chuukese *i‘k* ‘general name for fish’

Mic: Puluwatese *yik*, *yikan* ‘fish, porpoises, whales, but not squid’

Fij: Rotuman *i‘a* ‘fish: including also turtles, whales, alligators, etc., but not crabs, shellfish, etc.’

Fij: Wayan *ika* (1) ‘fish, including eels, cetaceans, turtles and sometimes cephalopods’, (2) ‘true fish’

Fij: Bauan *ika* ‘fish, including also eels, turtles, cetaceans, cephalopods’

Pn: Tongan *ika* ‘fish, including also turtles (*fonu*) and whales (*tofua‘a*), but not eels, cuttle-fish or jelly-fish’

Pn: Niuatoputapu *ika* ‘fish, including eels, turtles, cetaceans, cephalopods’

Pn: Niuean *ika* ‘fish, whales and dolphins’

Pn: Rennellese *ika* ‘fish, turtle’

Pn: Samoan *i‘a* ‘fish (including turtles and whales)’

Pn: Tikopia *ika* ‘general category with reference to fish, but including allied creatures like turtle, cetaceans’

Pn: Ifira-Mele *ika* ‘fish, whale, porpoise but not turtles, eels or octopus’

Pn: Rarotongan *ika* ‘fish (generic)’

Pn: Tahitian *i‘a* ‘fish, including porpoise, whale, turtle, octopus’

Pn: Māori *ika* ‘fish’

Pn: Hawaiian *i‘a* ‘fish or any marine animal, as eel, oyster, crab, whale; meat or any flesh food’

4 Sharks: Carcharhinidae, Sphyrnidae etc

In this section and in §5 on rays, I am dealing with sub-orders rather than families. Kailola (1987) lists twelve shark families, the best-known probably being Carcharhinidae, the largest, with tiger sharks, black-tip and white-tip sharks among its species, and Sphyrnidae, hammerheads.

Most sharks inhabit shallow coastal waters around reefs. A number of species are regarded as dangerous, but in parts of the southeast Solomons sharks are thought to be the ghosts of men and are considered sacred. I have reconstructed one possible generic term, *bakewa*, its cognates widespread, but undergoing a change of meaning in Central Pacific. Reflexes of *maŋewa* have replaced *bakewa* as the generic term in Polynesia. In Motu and Fiji the reflex of a POc term for shark has come to be applied instead to the remora or sucker fish which attaches itself to sharks and other large sea creatures (§65). This is the case with Motu *maɣoa* and PCP *bakewa*. Tolai *gul* can be used to refer to either a ‘k.o. striped shark (tiger shark?)’ or ‘the pilotfish *Nucrates ductor*’, a fish which also stays in the close vicinity of sharks.
Proto Oceanic speakers undoubtedly distinguished many different species of sharks by name, as contemporary Oceanic speech communities do, but reconstructed terms have not been clearly identified with particular species at a level higher than Proto Central Pacific.

Cognates in the following set from the Admiralties, Papuan Tip, SE Solomons and Micronesia provide the strongest evidence for *bakewa as the generic term for ‘shark’ in POc.

POc *bakewa ‘shark (generic)’

- Adm: Mussau baio ‘shark’
- Adm: Loniu pew ‘shark, generic. Used as first element in compound terms for kinds of’
- Adm: Nyindrou beʔeu ‘shark’
- Adm: Titan peu ‘shark’
- Adm: Lenkau paheu ‘shark (generic)’
- NNG: Yabem yakʷa ‘shark’
- NNG: Kove vayewa ‘shark’
- NNG: Bariai bakewa ‘shark’
- NNG: Wogeo bagewa ‘shark’ (g for †k)
- PT: Wedau vayewa ‘shark’
- PT: Duau baewa ‘shark’
- PT: Misima baewa ‘shark (generic)’
- PT: Sinaugoro bayewa ‘shark’
- MM: Patpatar baιawa ‘shark’
- MM: Lungga bayea ‘shark’
- SES: Gela baiea ‘k.o. shark, basking shark’
 bake-bake ‘Carcharhinus melanopterus, blacktip reef shark’
- SES: Lau baekʷa (1) ‘general term for shark’, (2) ‘any dreaded animal, crocodile, swordfish, poisonous snake etc’
- SES: Arosi baʔewa ‘shark. The shark was sacred. Men had familiar sharks which killed their enemies. A man and a shark sometimes exchanged souls’
- SES: Sa’a paʔewa (1) ‘shark’, (2) ‘generic term for all sea-ghosts, incarnations where sharks or swordfish or gropers are in question’
In Polynesian languages, reflexes of PPn *pakewa usually refer to a trevally (belonging to the same family as Naucrates ductor, the pilot fish), while reflexes of PPn *maŋō are the generic term for shark.

The next reconstruction, POc *maŋewa ‘shark’, appears to be a variant of *bakewa in which the stops are replaced by nasals. It is impossible to know how such a variant might have arisen, but the probability of two formally parallel homonymous trisyllables arising by chance is extremely low (Nichols 1996:50–51).

The reconstruction *maŋewa assumes that segment coalescence has occurred in both Motu and the SES languages. Motu mayo reflects coalescence of *-ew- as -o-, SES maŋeo coalescence of *-wa as -o. Note that a similar change occurred in NCV and Micronesian reflexes of *bakewa.

POc *maŋewa ‘k.o. shark’

PT: Motu mayo ‘suckerfish: Phtheirichthys lineatus, Echeneis naucrastes, Remora remora’

MM: Tomoip maŋ(gel) ‘shark’

MM: Tolai mōŋ ‘common shark, Carcharinus sp.’

SES: To’aba’ita manjeo ‘sp. of small shark’

SES: Lau maŋeoa ‘k.o. sea snake’ (also baekw‘a ‘shark’, baekw‘a i asi ‘sea snake’)

PPn *maŋō ‘general term for shark spp.’ (Hooper)

Pn: Niuean maŋō ‘shark (generic)’
Reflexes of *kʷarawa serve as a generic term in parts of WOc, but in Polynesia refer to specific species.

POc *kʷarawa ‘k.o. shark’

NNG: Gitua arawa ‘shark’
NNG: Kove kaluya ‘shark’ (borrowed from Bali below?)
NNG: Mutu korau ‘generic for several shark spp.’
PT: Dobu kʷalawa ‘shark, general name’
PT: Muyuw kʷaw ‘shark’
PT: Kilivila kʷau ‘shark’
PT: Lala olava ‘shark (generic)’
PT: Motu karava ‘k.o. fish’
MM: Bali kaluya ‘shark’
MM: Vitu kaliya ‘shark’
NCal: Nixumwak ārau ‘k.o. shark’
Fij: Rakiraki karawa ‘Isurus, mako shark’ (Paul Geraghty pers. comm.)

PnP *qalawa ‘k.o. shark’

Pn: E Uvean ʔalava ‘Carcharhinus limbatus, black-tipped shark’
Pn: Tongan ʔalava ‘k.o. shark’ (marked with a wavy stripe)
Pn: Rennellese ʔagaba ‘large shark, probably black-tip or mullet shark, C. melanopterus’
Pn: Samoan alava ‘k.o. shark’
Pn: Tuvalu alava ‘C. longimanus, white-tipped shark’
Pn: K’marangi alawa ‘C. longimanus, Oceanic white-tipped shark’
Pn: Māori arawa ‘k.o. shark’

Geraghty (p.143) also lists PCP *qaso ‘k.o. large shark, Carcharhinus sp.’ If the Taiof and Halia terms below are cognate, then POc *kaso(r,R) is reconstructable.

PCP *qaso ‘k.o. large shark’

Fij: Bauan yaso ‘k.o. shark, male, savage, big belly, short body’

PPnP *qaso ‘shark sp.’ (Hooper)
Pn: Tongan ʔaho ‘k.o. shark’
Fish

Languages frequently use binomial terms to refer to particular shark species, although sometimes the generic first element is regarded as optional. Fijian (unspecified) uses gio + modifier, e.g. gio uvi ‘Carcharhinus plumbeus, sandbar shark’, gio daniva ‘Galeocerdo, tiger shark’, gio uluvai ‘hammerhead shark’ (Geraghty pers. comm.). Modifiers tend to develop independently in different languages, although elements recur. Two of the Fijian modifiers, uvi and daniva, are found also in Polynesian terms, PPn *nai-ufi ‘k.o. large shark, probably tiger or grey reef shark’ and PPn *tanifa ‘tiger shark’. The latter is remarkably a reflex of POc *tanipa ‘sardine’ (§7), presumably because of similar iridescent zigzag vertical lines on both tiger sharks and sardines (Geraghty p.143).

Probably because of similar wavy iridescent lines on the sides of spanish mackerel, also a large predatory fish, reflexes of POc *taŋiRi ‘Spanish mackerel’ (§57) have been incorporated into names for a kind of shark in Muyuw (PT) and Marovo (MM).

PT: Muyuw tagiligal ‘shark’
MM: Marovo kiso taniri ‘Galeocerdo cuvier, tiger shark, the most dangerous shark in Marovo’

An obviously descriptive name, PCP *mata qi taliŋa ‘eyes of ears’ is used in Central Pacific languages to refer to the hammerhead shark, although the term has been lost in Eastern Polynesian. In Molima (PT), this shark is referred to as mata balabala, literally ‘eyes crosswise’, while in Gela (SES) it is bayea papala vohe ‘paddle-handle shark’.

4 Geraghty (1994) has *giō.
5 Rays: stingrays (Dasyatidae), eagle rays (Myliobatidae), manta rays (Mobulidae)

Stingrays and eagle rays inhabit sandy bottoms in the vicinity of coral reefs, and are common in estuaries where there is abundant mud. Eagle rays are so named because of their wide flaps and ability to leap from the water. Manta rays rank among the largest known fishes. They are specialised in having largely abandoned the bottom-living habit and usually swim near the surface, often leaping from the water. Manta rays inhabit open ocean, and are seldom seen near shore.

Reflexes of POc *paRi are numerous and widespread. It seems that the POc term had both a generic and a specific sense. Although most of the reflexes listed below are glossed ‘stingray’, *paRi is used as the first element in compound terms for rays other than stingrays (see *paRi-manuk below). The same pattern occurs in Marovo (NW Solomonic) where tape is the term both for stingrays and other rays in general, giving rise to compounds like tape kurukuru ‘spotted eagle ray, Aetobatus narinari’.

Oceanic languages usually distinguish several taxa, typically binomials, *paRi + modifier.

PAn *paRiS ‘stingray’ (ACD)
POc *paRi (1) ‘stingray’, (2) ‘ray (generic)’

<table>
<thead>
<tr>
<th>Admin.</th>
<th>Mussau</th>
<th>pe</th>
<th>‘stingray’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm:</td>
<td>Titan</td>
<td>pei</td>
<td>‘ray’</td>
</tr>
<tr>
<td>Adm:</td>
<td>Nali</td>
<td>pei</td>
<td>‘stingray’</td>
</tr>
<tr>
<td>Adm:</td>
<td>Bipi</td>
<td>pay</td>
<td>‘stingray’</td>
</tr>
<tr>
<td>Adm:</td>
<td>Wuvulu</td>
<td>pai</td>
<td>‘stingray’</td>
</tr>
<tr>
<td>Adm:</td>
<td>Nyindrou</td>
<td>bei</td>
<td>‘stingray’</td>
</tr>
<tr>
<td>NNG:</td>
<td>Gitua</td>
<td>par</td>
<td>‘stingray’</td>
</tr>
<tr>
<td>NNG:</td>
<td>Manam</td>
<td>paru</td>
<td>‘stingray’</td>
</tr>
<tr>
<td>NNG:</td>
<td>Bariai</td>
<td>pali</td>
<td>‘stingray’</td>
</tr>
<tr>
<td>NNG:</td>
<td>Mangap</td>
<td>par</td>
<td>‘stingray’</td>
</tr>
<tr>
<td>PT:</td>
<td>Dobu</td>
<td>ali</td>
<td>‘stingray’</td>
</tr>
<tr>
<td>PT:</td>
<td>Molima</td>
<td>vali</td>
<td>‘stingray’</td>
</tr>
<tr>
<td>PT:</td>
<td>Tawala</td>
<td>wali</td>
<td>‘stingray’</td>
</tr>
<tr>
<td>PT:</td>
<td>Kilivila</td>
<td>vai</td>
<td>‘stingray’</td>
</tr>
<tr>
<td>MM:</td>
<td>Tolai</td>
<td>var</td>
<td>‘fish of the ray species’</td>
</tr>
<tr>
<td>MM:</td>
<td>Minigir</td>
<td>vari</td>
<td>‘stingray’</td>
</tr>
</tbody>
</table>

Figure 2.2 Aetobatis narinari, spotted eagle ray
Fish

MM: Tabar vari ‘stingray’
MM: Patpatar har ‘ray’
MM: Roviana vari ‘wood rasp’ (from skin of sandpaper ray?)
MM: Marovo vari(popolo) ‘bull ray, Mylobatus sp.’
SES: Gela vali ‘ray, skate’
SES: Arosi hari ‘a fish, ray’ (mara-hari ‘k.o. shark’)
SES: Lau fali ‘general term for rays’
SES: Kwaio fali ‘ray (fish) (generic)’
NCV: Mota var, vari ‘stingray’
NCV: NE Ambae vari ‘stingray’
NCV: Raga vari ‘blue-spotted stingray’
SV: Sye (u)var ‘stingray’
SV: Ura (u)var ‘stingray’
NCal: Nemi pe ‘stingray’
NCal: Ajië pe ‘stingray’
NCal: Xârâcùù pe ‘stingray’
NCal: Iaai ve ‘stingray’
Mic: Puluwatese feyi ‘ray fish’
Mic: Woleaian fai(ya) ‘file (a tool); rayfish (general term)’
Fij: Rotuman hai ‘stingray’
Fij: Bauan vai ‘a ray or skate’
Fij: Wayan vai ‘generic for stingrays, manta or devil rays and eagle rays’

PPl *fai ‘stingray, general term’
 Pn: Tongan fai ‘skate or stingray’
 Pn: E Uvean fai ‘stingray’
 Pn: Samoan fai ‘stingray’
 Pn: Pukapukan wai ‘stingray’
 Pn: Rennellese hai ‘generic for rays and skate-like fishes’
 Pn: Tikopia fai ‘various rays’
 Pn: Tahitian fai ‘stingray’
 Pn: Hawaiian hai(lep) ‘stingray’

PMP *paRih manuk ‘? ray’ (presumably ‘eagle ray’) (ACD)
POc *paRi-manuk ‘Aetobatus narinari, spotted eagle ray’ (*manuk ‘bird’)
 PT: Dobu ali manu(wa) ‘eagle ray’
 MM: Patpatar har man ‘spotted eagle ray’
PEOc *vaRi manu ‘Aetobatis narinari, eagle ray’ (Geraghty1990)
 SES: Kwaio fali manu ‘manta ray’
 SES: ’Are’are hari manu ‘spotted eagle ray’
 SES: Arosi hari manu ‘eagle ray’
 SES: Bauro hari manu ‘eagle ray’
 Fij: Bauan vai manu ‘skate or ray’
PPn *fai-manu ‘Aetobatis narinari, eagle ray’ (Hooper)

Pn: Tongan fai manu ‘eagle ray’
Pn: Samoan fai manu ‘ray sp.’
Pn: Tuvalu fai manu ‘spotted eagle ray’
Pn: K’marangi hai manu ‘Aetobatis sp., eagle ray’
Pn: Tahitian fai manu ‘eagle ray’
Pn: Māori whai manu ‘eagle ray’

Banks Islands languages (North Vanuatu) support Proto Banks *vaRimala ‘eagle ray’, where the term for ‘hawk’ rather than ‘bird’ is the modifier (Alexandre François, pers. comm.).

Reflexes of POc *Ropok ‘to fly’ are sometimes used in compounds to distinguish rays that leap from the water. Examples are Nakanai (MM) kova lovo-lovo ‘ray with two wings’ (kova ‘stingray’) and Gela (SES) vali-lovo ‘eagle ray, manta ray, devil ray’.

Lower level reconstructions include PCP *vai bekʷa, PPn *fai peka ‘Aetobatis narinari, spotted eagle ray’ (PCP *bekʷa ‘bat’) (Geraghty p.144); PPn *fai kili ‘sandpaper ray’ (probably Himantura granulata, Dasyatidae) (*kili ‘file’); and PNPn *fāfā-lua ‘Manta birostris, manta ray’ (lit. ‘full of holes’, presumably a description of the pitted appearance of the skin), the latter two from Hooper (p.197).

6 Bonefishes (Albulidae) and tarpons (Elopidae, formerly Megalopidae)

Bonefishes are coastal fishes, moderately sized and brilliantly silver, which often congregate in large schools. They are generally valued as food, but have many fine bones. Tarpons are also moderately large coastal game fishes which ascend rivers in search of food. The flesh is tough, with numerous fine bones. They are renowned as active strong fighters capable of swift movement, leaping ability and great endurance (Munro p.41).

The two families are treated together because the second reconstruction below, POc *pu-pulan, is based on cognates referring to both and seems a broader term than POc *kuRo; bonefishes and tarpons are similar in colour and habitat, and both are marked by the presence of many fine bones.

PMP *kuRaw ‘edible marine fish’ (ACD: PWMP *kuRaw)

POc *kuRo ‘bony fish, probably Albula’

MM: Tolai kura ‘k.o. fish’
SES: Gela gulo ‘k.o. fish’
NCal: Nyelāyu yhu ‘Albula vulpes’
Mic: Puluwatese kwɔ ‘k.o. small fish’
Fij: Rotuman ?uɔ ‘Albula’
Fij: Bauan (yawa)kio ‘Albula’ (yawa ‘Chanos chanos’)
Fij: Lau kikio ‘Albula’

PPn *kiokio ‘Albula vulpes, bonefish’ (Hooper)5

5 Geraghty comments that the vowel sequence -uo is rare in Central Pacific languages, and suggests that PPn *-io may be regularly derived (pers. comm.).
Fish

Pn: Tongan kio-kio ‘*Albula vulpes*, bonefish’
Pn: Tokelauan kio-kio ‘*Albula vulpes*, bonefish’
Pn: Tikopia kio-kio ‘*Chanos chanos*, milkfish’ (also a bony fish)
Pn: Mangarevan kio-kio ‘*Albula vulpes*, bonefish’

cf. also:
NNG: Kove koha ‘bonefish’

PMP *bulan-bulan* ‘a white fish, *Megalops cyprinoides*’ (ACD)
POc *pu-pulan* ‘bony fish, *Megalops, Albula* spp.’

NNG: Gitua vu-vula ‘spotted herring’
NNG: Mutu ublan ‘herring’ (metathesis)
PT: Motu hu-hula ‘fish sp.’
MM: Marovo vulu ‘*Albula vulpes*, bonefish, found in mangrove pools’
(-u unexplained)
NCal: Nemi pulôn ‘*Megalops cyprinoides*’
NCal: Iaai hu ‘*Albula vulpes*, large’

PCP *vula* ‘*Megalops*’ (Geraghty)

Fij: Wayan (a)vula ‘fish, possibly *Megalops cyprinoides*’
Fij: Bauan vū-vula ‘*Megalops cyprinoides*, white, bony to eat, easily chokes people’
Fij: Kadavu vū-vula ‘*Megalops*’
Fij: Nadroga (ya)vula ‘*Megalops*’

cf. also:
Mic: Mokilese pallau ‘tarpon’

7 Sardines and herrings (Clupeidae) and anchovies (Engraulidae)

Sardines and herrings are small migratory fishes which congregate in enormous shoals in shallow coastal waters. Flesh is oily but tasty (Munro p.50). They are taken in nets in Oceanic communities.

Anchovies also live in large schools in coastal waters and estuaries. They have a long slender maxillary (upper jaw) and protruding snout, and most are silvery or have a bright silvery lateral band. Some species migrate seasonally, and the schools come close inshore where they can be captured with seines (Munro p.43).

In the cognate sets which follow, terms show some crossover of meaning between sardines and anchovies. This is most likely due to looseness of definition of the English terms by the

6 An association with POc *pulan* ‘moon’ is suggested, possibly a reference to its silvery colour.
wordlist compilers, but it is possible that the two families are regarded as sufficiently similar in some languages for one term to cover both. The fact that we can reconstruct six POc terms indicates that speakers differentiated between the referents in some regard.

PMP *paya ‘k.o. small fish, sardine or anchovy’ *(ACD)*

POc *paya ‘k.o. small fish, sardine or anchovy’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm: Nyindrou</td>
<td>ba</td>
<td>‘k.o. small fish’</td>
</tr>
<tr>
<td>Adm: Ponam</td>
<td>pa</td>
<td>‘anchovy’</td>
</tr>
<tr>
<td>NNG: Gitua</td>
<td>paya</td>
<td>‘anchovy, pilchard’</td>
</tr>
<tr>
<td>NNG: Mutu</td>
<td>pai</td>
<td>‘anchovy spp.’</td>
</tr>
<tr>
<td>NNG: Manam</td>
<td>waya-waya</td>
<td>‘sardine’</td>
</tr>
<tr>
<td>PT: Bunama</td>
<td>haya</td>
<td>‘k.o. anchovy’ (Mueller)</td>
</tr>
<tr>
<td>PT: Saliba</td>
<td>haya</td>
<td>‘k.o. fish’</td>
</tr>
<tr>
<td>PT: Dobu</td>
<td>(ʔa)aya</td>
<td>‘k.o. anchovy’</td>
</tr>
<tr>
<td>PT: Kiliivila</td>
<td>vaya</td>
<td>‘k.o. fish’</td>
</tr>
<tr>
<td>MM: Patpatar</td>
<td>haia</td>
<td>‘k.o. fish, small, black’</td>
</tr>
<tr>
<td>MM: Nehan</td>
<td>wai</td>
<td>‘fish fry, anchovy?’</td>
</tr>
<tr>
<td>NCal: Nemi</td>
<td>bac</td>
<td>‘sardine’</td>
</tr>
<tr>
<td>NCal: Nêlêmwa</td>
<td>ba</td>
<td>‘sardine’</td>
</tr>
</tbody>
</table>

PCP *vaya ‘k.o. small school fish’ (Geraghty: ‘k.o. anchovy’)

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fij: Bauan</td>
<td>vaya</td>
<td>‘small fish like the daniva (similar to a sardine), but with a red tail’</td>
</tr>
<tr>
<td>Fij: Lau</td>
<td>vaya</td>
<td>‘Thrissina baelama’</td>
</tr>
<tr>
<td>Fij: Kadavu</td>
<td>vaya</td>
<td>‘k.o. school fish’</td>
</tr>
<tr>
<td>Pn: Samoan</td>
<td>fā</td>
<td>‘Megalops (tarpon), found in marshes and river mouths’</td>
</tr>
</tbody>
</table>

POc *jaja ‘small fish, herring or anchovy’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Bing</td>
<td>(yiy)zaz</td>
<td>‘k.o. fish, Clupeidae’ (yiy ‘fish’)</td>
</tr>
</tbody>
</table>

PCP *ðaað ‘Spratelloides sp.’ (Geraghty)

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fij: Verata</td>
<td>ðaað</td>
<td>‘Spratelloides’</td>
</tr>
</tbody>
</table>

PPn *sasā ‘anchovy’ (Hooper: ‘Spratelloides sp.’ [herring])

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn: Tongan</td>
<td>hahā</td>
<td>‘k.o. small fish, anchovy’</td>
</tr>
<tr>
<td>Pn: E Uvean</td>
<td>hahā</td>
<td>‘k.o. fish’</td>
</tr>
<tr>
<td>Pn: Tokelauan</td>
<td>hahā</td>
<td>‘k.o. sprat’</td>
</tr>
<tr>
<td>Pn: Tikopia</td>
<td>sā</td>
<td>‘small reef fish of anchovy type’</td>
</tr>
</tbody>
</table>

In the next cognate set, there is reasonable consistency of meaning as far east as Fiji, but Polynesian reflexes undergo a striking change of meaning, referring to a kind of shark with similar markings to sardines (see p.33). Polynesian terms for sardine, together with a number of Fijian terms, have the same form minus the first syllable.

POc *tanipa ‘Sardinella spp., sardine’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm: Loniu</td>
<td>tenih</td>
<td>‘sardine’</td>
</tr>
<tr>
<td>Adm: Nyindrou</td>
<td>drañip</td>
<td>‘sardine’</td>
</tr>
</tbody>
</table>
Fish

Adm: Ponam hañef ‘anchovy’
PT: Bunama taniha(na) ‘k.o. herring’ (Mueller 1985)
PT: Kilivila taninuva ‘sardine’ (for †taniva)
PT: Gumawana taninava ‘goldspot herring’ (for †taniva)
NCV: Raga tanive ‘Hyperlophus vittatus, sandy sprat’
NCV: Tamambo tanive ‘sardine’
NCV: Uripiv daniv ‘sardine’
Mic: Puluwatese hanif ‘anchovy’
Mic: Chuukese senif ‘Herklotsichthys quadrimaculatus, goldspot herring’
Mic: senifana ‘sardine’
Mic: Ponapean saip ‘sardine’

PCP *taniva ‘Sardinella’ (Geraghty)
Fij: Nadroga tanive ‘Herklotsichthys’
Fij: Wayan tanive ‘generic for a number of species of small sardine-like fish’
Fij: Kadavu daniva ‘schooling fish’

PPn *tanifa ‘fierce shark’
Pn: Tongan tanifa ‘k.o. large man-eating shark’
Pn: Niuean tenifa ‘general name for shark’
Pn: E Uvean tanifa ‘k.o. shark’
Pn: Pukapukan taniwa ‘fierce shark’
Pn: Samoan tanifa ‘large man-eating shark’
Pn: Tahitian tanifa ‘k.o. fish’
Pn: Māori tanifa ‘shark or any formidable marine creature’ (maŋō tanifa ‘white pointer shark’)

PCP *niva ‘Sardinella spp.’ (Geraghty)
Fij: Verata niva ‘S. melanura, S. fijiense’
Fij: Ovalau niva ‘S. melanura, S. fijiense’
Fij: Nadroga nive-nive ‘S. fijiense’

PPn *nifa ‘Sardinella sp.’ (Hooper)
Pn: E Uvean nifa ‘k.o. fish’
Pn: Tahitian nifa ‘k.o. spotted fish’
Pn: Tuamotuan nifa ‘juvenile Albula’
Pn: Marquesan nifa ‘Sardinella marquesensis’

POc *kʷaru ‘Sardinella, sardine’
Adm: Titan kʷal ‘sardine’
MM: Marovo karu(meh) ‘anchovy, found in river mouths’
Mic: Marshallese kʷarʷu-kʷarʷa ‘sardine’
POc *kepʷa ‘Clupeidae, probably sardine sp.’

<table>
<thead>
<tr>
<th>Code</th>
<th>Language</th>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm:</td>
<td>Titan</td>
<td>kepai</td>
<td>‘sardine-like fish’ (-i unexplained)</td>
</tr>
<tr>
<td>MM:</td>
<td>Halia</td>
<td>keho-keho</td>
<td>‘dark blue sardine’</td>
</tr>
<tr>
<td>MM:</td>
<td>Marovo</td>
<td>kevo</td>
<td>‘Stolephorus sp., anchovy’</td>
</tr>
<tr>
<td>MM:</td>
<td>Maringe</td>
<td>kefo</td>
<td>‘sardine’</td>
</tr>
<tr>
<td>SES:</td>
<td>Gela</td>
<td>kepo</td>
<td>‘Herklotsichthys quadrimaculatus, fourspot herring’</td>
</tr>
<tr>
<td>SES:</td>
<td>Lau</td>
<td>kefo</td>
<td>‘sardine’</td>
</tr>
<tr>
<td>NCal:</td>
<td>Nêlêmwa</td>
<td>heva</td>
<td>‘sardine’</td>
</tr>
</tbody>
</table>

POc *(a,i)waRa ‘Clupeidae, sardine or herring’

<table>
<thead>
<tr>
<th>Code</th>
<th>Language</th>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm:</td>
<td>Loniu</td>
<td>caway</td>
<td>‘k.o. sardine or anchovy’</td>
</tr>
<tr>
<td>PT:</td>
<td>Dobu</td>
<td>siwala</td>
<td>‘gold-spot herring’</td>
</tr>
<tr>
<td>PT:</td>
<td>Molima</td>
<td>siwala</td>
<td>‘sardine, fish which comes in bolimana (SW wind = May–June) time’</td>
</tr>
<tr>
<td>PT:</td>
<td>Kilivila</td>
<td>lawiya</td>
<td>‘k.o. fish’ (vowel metathesis)</td>
</tr>
</tbody>
</table>

PEOc *buma ‘k.o. fish, possibly sardine’

<table>
<thead>
<tr>
<th>Code</th>
<th>Language</th>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM:</td>
<td>Maringe</td>
<td>buma</td>
<td>‘edible fish, frequently travels in schools’ (probably borrowed from Bugotu)</td>
</tr>
<tr>
<td>SES:</td>
<td>Bugotu</td>
<td>buma</td>
<td>‘sardine’</td>
</tr>
<tr>
<td>SES:</td>
<td>Gela</td>
<td>buma</td>
<td>‘k.o. fish’</td>
</tr>
<tr>
<td>SES:</td>
<td>Lau</td>
<td>buma</td>
<td>‘sardine’</td>
</tr>
<tr>
<td>SES:</td>
<td>’Are’are</td>
<td>puma</td>
<td>‘k.o. fish’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Luangiu</td>
<td>puma</td>
<td>‘k.o. fish’ (probably loan from a Solomons language)</td>
</tr>
</tbody>
</table>

cf. also:?

<table>
<thead>
<tr>
<th>Code</th>
<th>Language</th>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCV:</td>
<td>Neve’ei</td>
<td>na-buŋ</td>
<td>‘fish intermediate between sardine and mackerel’</td>
</tr>
<tr>
<td>NCV:</td>
<td>Nāti</td>
<td>ni-“puŋ</td>
<td>‘mackerel’</td>
</tr>
<tr>
<td>NCV:</td>
<td>Nahavaq</td>
<td>ne-buŋ</td>
<td>‘mackerel’</td>
</tr>
<tr>
<td>NCV:</td>
<td>Nese</td>
<td>na-buŋo</td>
<td>‘mackerel’</td>
</tr>
<tr>
<td>NCV:</td>
<td>South Efate</td>
<td>na-pum</td>
<td>‘Scombridae’</td>
</tr>
<tr>
<td>SV:</td>
<td>Anejomo</td>
<td>(na-tic)pom</td>
<td>‘Scombridae’</td>
</tr>
<tr>
<td>NCal:</td>
<td>Nyelâyu</td>
<td>bume</td>
<td>‘k.o. mackerel’</td>
</tr>
<tr>
<td>Fij:</td>
<td>Bā</td>
<td>bima</td>
<td>‘k.o. middle-sized mullet’</td>
</tr>
</tbody>
</table>

8 Milkfishes (Chanidae)

This family consists of a single species, *Chanos chanos*. Fishes grow to around a metre in length, are finely scaled, silvery and toothless. They inhabit both open sea and brackish water
and can ascend into rivers. They feed on crustaceans, worms and detritus. Although very bony, the flesh has soft texture and excellent flavour (Munro p.54).

There is a well-supported POc reconstruction continuing PMP *qawa or *qawan. New Caledonian reflexes provide support for final *-q. At least two SES cognates show confusion with terms for mullet (cf. POc *(k,q)aRua(s), §18).

PMP *qawa, *qawan ‘Chanos chanos, milkfish’ (Blust 2002)
POc *qawaq ‘Chanos chanos, milkfish’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Gedaged</td>
<td>au</td>
<td>‘white marine fish about 50 cm long’</td>
</tr>
<tr>
<td>NNG: Mutu</td>
<td>au</td>
<td>‘Chanos chanos’</td>
</tr>
<tr>
<td>SES: Gela</td>
<td>oā</td>
<td>‘name given to bonefish and milkfish’</td>
</tr>
<tr>
<td>SES: Lau</td>
<td>hak*a</td>
<td>‘Chanos sp.’</td>
</tr>
<tr>
<td>SES: ’Are’are</td>
<td>rawa</td>
<td>‘k.o. fish’</td>
</tr>
<tr>
<td>SES: Sa’a</td>
<td>sawa</td>
<td>‘freshwater mullet’</td>
</tr>
<tr>
<td>SES: Arosi</td>
<td>sawa</td>
<td>‘mullet’</td>
</tr>
<tr>
<td>NCal: Nyeláyu</td>
<td>kuak</td>
<td>‘adult milkfish’</td>
</tr>
<tr>
<td>NCal: Nêlêmwa</td>
<td>kua</td>
<td>‘adult milkfish’</td>
</tr>
<tr>
<td>NCal: Nemi</td>
<td>nu-hyaok</td>
<td>‘juvenile milkfish’</td>
</tr>
<tr>
<td>Mic: Kiribati</td>
<td>(bane)awa</td>
<td>‘Chanos chanos’</td>
</tr>
<tr>
<td></td>
<td>awa(tai)</td>
<td>‘adult milkfish’</td>
</tr>
</tbody>
</table>

PCP *qawa ‘Chanos’ (Geraghty)

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fij: Bauan</td>
<td>yawa</td>
<td>‘milkfish, Chanos chanos’</td>
</tr>
<tr>
<td>Fij: Wayan</td>
<td>awa</td>
<td>‘k.o. fish, more than one metre long, bony, feeds in schools, good eating’</td>
</tr>
</tbody>
</table>

PPn *qawa ‘Chanos chanos, milkfish or salmon herring’ (Hooper)

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn: Samoan</td>
<td>ava</td>
<td>‘large fish, Chanos sp., caught by torchlight’</td>
</tr>
<tr>
<td>Pn: Tokelauan</td>
<td>ava</td>
<td>‘milkfish’</td>
</tr>
<tr>
<td>Pn: Tuvalu</td>
<td>ava</td>
<td>‘milkfish’</td>
</tr>
<tr>
<td>Pn: Tahitian</td>
<td>ava</td>
<td>‘milkfish’</td>
</tr>
<tr>
<td>Pn: Hawaiian</td>
<td>awa</td>
<td>‘Chanos chanos, milkfish’</td>
</tr>
</tbody>
</table>

cf. also:

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SES: Arosi</td>
<td>?awa</td>
<td>‘k.o. fish’</td>
</tr>
<tr>
<td>Mic: Kiribati</td>
<td>tāwa</td>
<td>‘fry of milkfish’</td>
</tr>
</tbody>
</table>

9 Lizardfishes (Synodontidae)

Lizardfish are small, slender and cylindrical, with a rather wide mouth. Most are bottom-living inhabitants of muddy or sandy areas of shallow coastal waters. They are barred and mottled to blend in with bottom surroundings, and their general appearance suggests that of a lizard. The flesh is not very bony but insipid (Munro p.70).

The only reconstruction made for this family is PCP *dolo, PPn *tolo ‘Saurida, lizardfish’ (Geraghty p.146). These may reflect POc *(t,d)oloq ‘eel’ (§11.3), with semantic shift.
10 Catfish (Plotosidae)

Catfish are recognizable by thick slimy naked skin and long head feelers which resemble a cat’s whiskers. They are edible, with excellent flesh despite their appearance. Munro (p.74) describes most New Guinea species as estuarine, although some frequent fresh water, while Geraghty (pers. comm.) notes that in Fiji and probably Polynesia catfish are found only in salt water. They are carnivorous bottom feeders, swallowing anything in their way. *Plotosus anguillaris* is a synonym for *P. lineatus*.

Reflexes undergo a change of meaning in some Polynesian languages. Hooper (p.221) suggests that an elongate shape may provide the semantic link with snake mackerels, and, although the two are found in very different environments, both are black and slimy (Geraghty pers. comm.).

POc *kaboRa* ‘*Plotosus* spp., catfish’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm: Loniu</td>
<td>kopow</td>
<td>‘catfish or catfish eel’</td>
</tr>
<tr>
<td>NNG: Gedaged</td>
<td>gabol</td>
<td>‘k.o. fish, to 7 cm, usually in swarms’ (g- for †k- or zero)</td>
</tr>
<tr>
<td>PT: Misima</td>
<td>kaboiya</td>
<td>‘Plotosus lineatus, striped catfish’</td>
</tr>
<tr>
<td>MM: Patpatar</td>
<td>uboro</td>
<td>‘catfish’</td>
</tr>
<tr>
<td>SES: Gela</td>
<td>(i) yabola</td>
<td>‘catfish spp.’ (ya- reanalysed as iya ‘fish’)</td>
</tr>
</tbody>
</table>

PEOc *kaboRa* ‘*Plotosus*, catfish’ (Geraghty)

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCV: Mota</td>
<td>yapora</td>
<td>‘a fish, Silurus [Plotosus]’</td>
</tr>
<tr>
<td>NCV: Lewo</td>
<td>kapwo</td>
<td>‘catfish’</td>
</tr>
<tr>
<td>NCV: Nguna</td>
<td>*(na-i)*kapwoa</td>
<td>‘catfish’ (ka- reanalysed as ika ‘fish’)</td>
</tr>
<tr>
<td>SV: Anejoñi</td>
<td>n-yope</td>
<td>‘Plotosus anguillaris’ [P. lineatus]</td>
</tr>
<tr>
<td>NCal: Pije</td>
<td>sago</td>
<td>‘P. anguillaris’</td>
</tr>
<tr>
<td>NCal: Nyelâyu</td>
<td>cago</td>
<td>‘P. anguillaris’</td>
</tr>
<tr>
<td>NCal: Iaai</td>
<td>*(wa)*aba</td>
<td>‘P. anguillaris’</td>
</tr>
<tr>
<td>Fij: Bauan</td>
<td>kaboa</td>
<td>‘small black shoal fish, catfish’</td>
</tr>
<tr>
<td>Fij: Wayan</td>
<td>kabô</td>
<td>‘Plotosus spp. Sharp spikes can inflict painful wound’</td>
</tr>
</tbody>
</table>

PPn *kapoa* ‘fish sp., probably *Plotosus* sp., catfish’ (Hooper)

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn: Tongan</td>
<td>kopoa</td>
<td>‘catfish’</td>
</tr>
</tbody>
</table>

Geraghty (pers. comm.) notes that juvenile catfish do move in very dense populous swarms.
11 Eels

Eels are classified in a number of families within the Order Anguilliformes. The best known within the region are the freshwater eels (Anguillidae), and several sea eel families including morays (Muraenidae), pike eels (Muraenesocidae), congers (Congridae) and snake eels (Ophichthidae).

11.1 Freshwater eels (Anguillidae)

Although they spend most of their lives in fresh water, freshwater eels migrate to sea to spawn. In inland areas they constitute an important food item. POc *tuna* is well supported as the generic term for all freshwater eels.

PAn *tuNa* ‘freshwater eel’ (Blust 2002)

POc *tuna* ‘Anguillidae, freshwater eel (generic)’

Adm: Mussau *tuna* ‘eel’
Adm: Lenkau *trun* ‘large freshwater eel’
Adm: Penchal *run* ‘large freshwater eel’
NNG: Bilibil *tuna* ‘eel’
NNG: Wogeo *tuna* ‘eel’
NNG: Kairiru *tun* ‘freshwater eel’
NNG: Bariai *tuna* ‘large eel’
NNG: Lukep (Pono) *tunu* ‘eel (generic)’
NNG: Mutu *tūn* ‘*Anguilla reinhardti*, freshwater eel’
PT: Tawala *tuna* ‘freshwater eel’
PT: Lala *kuna* ‘eel’
MM: Tolai *tuna* (maleo) ‘k.o. eel’ (maleo ‘generic for sea eels’)
MM: Tabar *tuna* ‘eel’
MM: Nduce *tuna(sa)* ‘eel’
Mic: Kosraean *ton* ‘freshwater eel’

PCP *tuna* ‘Anguillidae, freshwater eel’ (Geraghty)

Fij: Rotuman *funa* (1) ‘freshwater eel’, (2) ‘similar saltwater eel’
Fij: Wayan *tuna* (1) ‘freshwater eel’, (2) ‘generic for eels including morays and congers’
Fij: Bauan *duna* ‘freshwater eel’
Fij: Kadavu *tuna* ‘generic term for freshwater eels’

Pn: Tongan *tuna* ‘k.o. eel’ (including *tuna tahi*, *tuna vai*)
Pn: Niuean *tuna* ‘freshwater eel’
11.2 Morays (Muraenidae)

Morays are large, thick-skinned eels with sharp knife-like teeth but no pectoral fins. They can be pugnacious when confronted, although shy by nature. Many are nocturnal. They are often found in the crevices of coral banks. There are numerous species in New Guinea waters, many quite distinctive in colouring and markings.

POc *[^la]b^wa(s,j)i ‘moray eel’ is reconstructable both with and without initial *la-.

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn: E Uvean</td>
<td>tuna</td>
<td>‘freshwater eel’</td>
</tr>
<tr>
<td>Pn: Rennellese</td>
<td>tuna</td>
<td>‘k.o. lake eel’</td>
</tr>
<tr>
<td>Pn: Pukapukan</td>
<td>tuna</td>
<td>‘generic for several eels, both sea and fresh water’</td>
</tr>
<tr>
<td>Pn: Samoan</td>
<td>tuna</td>
<td>‘Anguilla, freshwater eel’</td>
</tr>
<tr>
<td>Pn: Tikopia</td>
<td>tuna</td>
<td>‘eel: generic term applied especially to lake eels’</td>
</tr>
<tr>
<td>Pn: Māori</td>
<td>tuna</td>
<td>‘generic for all freshwater eels’</td>
</tr>
<tr>
<td>Pn: Hawaiian</td>
<td>kuna</td>
<td>‘k.o. freshwater eel’</td>
</tr>
</tbody>
</table>

The reconstruction below is weakly supported and it is uncertain what kind of eel it referred to. It is listed in this section as its Titan reflex refers to a kind of moray.

POc *[^b]w^alu ‘k.o. eel, moray eel ?’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm: Titan</td>
<td>p^alu</td>
<td>‘Echidna nebulosa, starry or clouded moray’</td>
</tr>
<tr>
<td>NNG: Mangga</td>
<td>vayob</td>
<td>‘eel’</td>
</tr>
<tr>
<td>NNG: Mumeng (Kumaru)</td>
<td>vyob</td>
<td>‘eel’</td>
</tr>
<tr>
<td>NNG: Adzera</td>
<td>b^aru</td>
<td>‘freshwater eel’</td>
</tr>
</tbody>
</table>

The Micronesian evidence below points to a reconstruction with a single final vowel, while the PCP evidence reflects two.

PROc *dābea* ‘Gymnothorax, moray eel’
- Mic: Marshallese ṛāp ‘Gymnothorax, moray, large and black’
- Mic: Chuukese ṛāp ‘moray eel’
- Mic: Ponapean rap ‘saltwater eel, commonly found on barrier reef’

PCP *dābea* ‘k.o. sea eel or sea snake’ (Geraghty)
- Fij: Bauan dābea ‘conger eel, large and dangerous sea eel’
- Fij: Kadavu dabea ‘moray eel’

PPn *tāpea* ‘generic for morays’
- Pn: E Futunan tapea ‘Gymnothorax spp.’
- Pn: Rennellese tāpea ‘generic for morays, reef eels’
 (Bellona)

Lower-level reconstructions include PCP *boila* ‘moray eel’ and *dravua* ‘Gymnothorax sp.’ (Geraghty p.145).

11.3 Pike eels (Muraenesocidae) and congers (Congridae)

Pike eels are large, with prominent canine teeth and a long slender snout. Conger eels are also large, with well-developed vertical and pectoral fins. The two are sometimes classified together. The flesh of both is excellent. Both occur in shallow water, although congers also have deep-water forms.

PROc *bonu* ‘k.o. eel, probably conger’
- Mic: Kiribati (ra)p"ono ‘moray eel’ (ra- ‘defective’?)

PCP *bon(u,o)* ‘conger eel’ (Geraghty: *bonu* ‘Ophichthidae, snake eel’)
- Fij: Bauan bonu ‘Scolecechelys macropeterus, slender snake eel’
- Fij: Rewa bonu(ika) ‘Conger sp.’
- Fij: Wayan bonu ‘an eel of the mangrove swamp, probably conger’
- Pn: Tongan ponu(taliŋa) ‘k.o. eel, inedible’
- Pn: K’marangi ponu-ponu ‘k.o. sea worm’
- Pn: K’marangi pono ‘conger sp., white eel’

cf. also:
- PT: Ubir bonu-bonu ‘fish (freshwater)’
PROc *baku ‘conger eel’

SV: Sye poki ‘k.o. eel, possibly conger’
SV: Lenakel poku ‘k.o. eel’
Fij: Rotuman pəku ‘sea eel’
Fij: Wayan bākū ‘Conger cinerus’
Fij: Nadroga baku ‘Conger cinerus’

11.4 Snake eels (Ophichthidae)

Snake eels tend to lie on sandy or muddy bottoms in the vicinity of reefs, often spending daylight hours completely buried, although they can swim to the surface at night when attracted by lights. They are difficult to trap, seldom taking a hook, while their slender bodies pass through the mesh of nets and traps (Munro p.91). No reconstructions have been made.

11.5 Other terms for eels

In a number of reconstructions it has proved difficult to link terms to particular kinds of eel. The following may be a generic term for sea eels.

POc *malayo ‘sea eel, possibly generic’

NNG: Kove maleu ‘freshwater eel’
NNG: Mutu (az)mala ‘Gymnothorax cribroris, brown-flecked reef eel’
MM: Lamasong male ‘eel’
MM: Madak mele ‘eel’
MM: Tolai maleo ‘generic name for sea eel’
MM: Minigir malo ‘eel’
MM: Ramoaaina maleu ‘eel’
MM: Halia (Selau) melio ‘eel’
MM: Taiof mereou ‘eel’
MM: Nehan malio ‘moray eel’
NCV: Mota maleo ‘sea eel’

Mota has two similar terms, maleo and marea, and it is possible that the former is a borrowing from a Western Oceanic language. The next set is in complementary distribution to the one above, and it may be that we are dealing with a single cognate set, although we would expect PROc †*malaya if directly inherited. It is possible that PROc *maraya was borrowed from an unrecorded language’s reflex of POc *malayo. Arosi (SES) marea ‘k.o. eel’ also appears to reflect *maraya, but it is reasonably likely that this is a Mota borrowing introduced by missionaries, as Mota was a missionary lingua franca which was also used in parts of the Solomon Islands in the nineteenth century.

PROc *maraya ‘sea eel’ (Clark 2009:141)⁹

NCV: Mota marea ‘sea eel’

⁹ Clark also suggests POc * male(u,wa) ‘freshwater eel’ (see previous set).
Figure 2.6 *Myrichthys colubrinus*, harlequin snake eel

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCV: Tamambo</td>
<td>marai</td>
<td>‘k.o. eel, not for eating’</td>
</tr>
<tr>
<td>NCV: NE Ambae</td>
<td>marae</td>
<td>‘eel’</td>
</tr>
<tr>
<td>NCV: Raga</td>
<td>marae</td>
<td>‘eel (generic)’</td>
</tr>
<tr>
<td>NCV: S Efate</td>
<td>mra (ni nai)</td>
<td>‘eel (generic)’</td>
</tr>
<tr>
<td>Mic: Carolinian</td>
<td>(li)m“are-m”ar</td>
<td>‘white or yellow eel with black banded stripes’ (li- ‘attributive prefix’)</td>
</tr>
<tr>
<td>Mic: Puluwatese</td>
<td>(li)m“ara-m”ar</td>
<td>‘k.o. eel’ (li- prefix to names of birds, eels, fish, lizards etc.)</td>
</tr>
<tr>
<td>SES: Arosi</td>
<td>marea</td>
<td>‘k.o. eel’ (borrowed from Mota marea ?)</td>
</tr>
</tbody>
</table>

PMP *kasuli* ‘Anguillidae, freshwater eel’ (ACD: PWMP *kasuli*)

POc *(k,q)asuli* ‘k.o. sea eel’

PCP *qasuli* ‘k.o. sea eel’ (Geraghty)

Fij: Bauan | suli | ‘conger’ |

Pn: Samoan | asulu | ‘*Strophidon*, moray eel’ (Rensch 1999:20)

cf. also:

SES: Bugotu | kasa | ‘sea eel’ |

Mic: Kiribati | kuru-kuru | ‘moray eel’ |

POc *(t,d)oloq* ‘k.o. eel’

MM: Meramera | tulu | ‘k.o. eel’ |
MM: Torau | tolo(u) | ‘k.o. eel’ |
MM: Mono-Alu | toloʔo | ‘k.o. eel’ |
MM: Vaghua | toloko | ‘k.o. eel’ |
MM: Varisi | toloko | ‘k.o. eel’ |
MM: Hoava | toloko | ‘k.o. eel’ |
SES: Baegu | dolo | ‘k.o. eel’ |
SES: Kwara’ae | dōl | ‘k.o. eel’ |
SES: Kwai | dolo | ‘k.o. eel’ |
SES: Langalanga | dolo | ‘k.o. eel’ |
SES: Lau | dolo | ‘k.o. eel’ |

cf. also:

Pn: Tikopia | toro | ‘lizardfish’ |
Pn: Samoan | tolo | ‘small mudskipper’ |
The Polynesian terms may be linked through association with PPn *tolo ‘to crawl’. Some eels (particularly snake eels), lizardfish (§9) and mud skippers (§49) may all be described as mud dwellers.

The SES terms below show coalescence of *wa as -o as has been noted also in some shark terms.

PEOc *pulewa ‘k.o. eel’

SES: Gela *puleo* ‘k.o. eel’

SES: Birao *puleo* ‘eel’

SES: Lengo *puleo* ‘freshwater eel’

SES: Longgu *puleo* ‘eel’

PCP *bulewa ‘k.o. eel’

Pn: Tuvalu *puleva* ‘k.o. eel’

cf. also:

PT: Bunama *p*a-p*a*alewa ‘k.o. lizardfish’

Fij: Bauan *bulewa* ‘zoophyte that adheres to reefs’

PPn *toke ‘sea eel’ has also been reconstructed (Hooper p.198).

12 Flying fishes (Exocoetidae)

These fish are pelagic, swimming near the surface and gliding above the water for considerable distances. They inhabit open coastal and oceanic waters, are attracted to light at night and often leap aboard vessels. Their flesh is of good quality (Munro p.115). In Sa’a (Malaita), flying fish, like the bonito, require a certain supernatural power to be caught. Certain formalities must be followed and particular sacrifices made before a canoe can set out to catch flying fish (Codrington 1891:138).

Munro identifies more than a dozen species, but terms located have little elaboration of identity.

POc *m*agaRut ‘Exocoetidae, flying fish’

Adm: Titan *mokou* ‘generic for flying fish, Exocoetidae’

Adm: Lenkau *mokow* ‘flying fish’

Adm: Lou *mokou* ‘flying fish’

MM: Halia *magalut* ‘flying fish’

SES: Arosi *magaru* ‘flying fish’

NCV: Mwotlap *na-m*key ‘Exocoetidae spp., flying fish’

NCV: NE Ambae *m*akaru ‘flying fish’

NCV: Raga *mayaru* ‘generic for various flying fish’

PMic *mayar ‘flying fish’ (*-g- for †*-g-*)
Mic: Carolinian *māŋar* ‘flying fish’
Mic: Woleaian *mēŋaz* ‘flying fish’
Mic: Mokilese *mɔŋɔr* ‘flying fish’

Lower-level reconstructions include PPn *mālolo* ‘flying fish spp.’ and PPn *sasawe* ‘Exocoetidae spp., flying fish’ (Hooper p.201). PPn *sipa* ‘small or immature flying fish’ is considered to be a reflex of POc *sipa* ‘Hemiramphidae’, proposed in §13.

13 Half beaks and garfishes (Hemiramphidae), needlefishes and long toms (Belonidae)

Adult halfbeaks and garfishes have an elongated shaft-like lower jaw and very short upper jaw, although in juveniles the mouth is symmetrical. Like needlefish they live near the surface and are semipelagic. They inhabit shallow water and estuaries. The flesh is delicate but full of fine bones. They are important food fishes (Munro p.109). *Hemiramphus* is the most common genus.

Needlefish and long toms are very slender, elongated with forceps-like jaws, well-toothed with minute scales. They are both marine and estuarine, and a few live permanently in fresh water. They often congregate in schools. Generally voracious, they are potentially dangerous because of their great speed and habit of making sudden leaps, especially when attracted to lights at night. The flesh is excellent (Munro p.105). Genera include *Belone*, *Platybelone*, *Strongylura* and *Tylosurus*.

The two families are here treated together because in a number of languages (Halia, Kiri-bati, Mokilese, Rennellese, Samoan, Tikopia) there is one term covering both, presumably reflecting similarities in shape and habitat.

POc *Rije* ‘*Hemiramphus*, halfbeak’ (Geraghty1990)

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM:</td>
<td>Nakanai</td>
<td>lise ‘small fish which flies, has a sharp bill’</td>
</tr>
<tr>
<td>Fij:</td>
<td>Rotuman</td>
<td>jija ‘Hemiramphus, garfish’ (j- for †θ)</td>
</tr>
<tr>
<td>Fij:</td>
<td>Bauan</td>
<td>sise ‘Hemiramphus, garfish’ (s- for †θ)</td>
</tr>
<tr>
<td>Fij:</td>
<td>Lau</td>
<td>sise ‘Hemiramphus, garfish’ (s- for †θ)</td>
</tr>
</tbody>
</table>

PPn *ise* ‘halfbeak spp.’ (Hooper)

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn:</td>
<td>Tongan</td>
<td>ihe ‘Hemiramphus’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Niuatoputapu</td>
<td>ihe-ihe ‘growth stage of halfbeak’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Samoan</td>
<td>ise ‘Hemiramphus and Belone taxa’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Tokelauan</td>
<td>ihe ‘halfbeak spp.’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Tikopia</td>
<td>ise ‘garfish Belonidae or (??) small crocodile needlefish’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Māori</td>
<td>ihe ‘H. intermedius’ (??) small crocodile needlefish’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Hawaiian</td>
<td>ihe-ihe ‘any of several halfbeaks’ (ihe ‘spear, javelin, dart’)</td>
</tr>
</tbody>
</table>

The change in gloss in PPn below can be explained because of close resemblance between garfishes and some flying fish, with the latter, such as the beaked flying fish, *Oxyporhamphus micropterus micropterus*, classified as Exocoetidae by Munro (p.118) and more recently as Hemiramphidae (Kailola 1987:153, *FishBase*). Half beaks, garfish and flying fish all belong to the same suborder.
Figure 2.8 *Hemiramphus lutkei*, Lutke’s halfbeak

POc *sipa* ‘*Hemiramphus* spp.’

PT: Kilivila *sevatleya* ‘garfish’

MM: Tolai *ive* ‘k.o. fish’

PnP *sipa* young flying fish’ (Hooper)

Pn: Niuean *hipa* ‘young small flying fish’

Pn: Samoan *sipa* ‘young flying fish’

Pn: Tokelauan *hipa* ‘young flying fish’

Pn: Tikopia *sipa* ‘young flying fish’

POc *mwako* ‘*Hemiramphus*, garfish’

Adm: Titan *makoip* ‘*Hemiramphus* sp., garfish’

NNG: Kela *(i-)makʷa?* ‘k.o. long tom’ (shift of labialisation)

PT: Hula *muuy* ‘sea garfish’

PT: Motu *moa* ‘*Hemiramphus quoyi*, small white garfish’ [now *Hyporhamphus quoyi*] (vowel metathesis)

PT: Lala *moa* ‘small garfish’ (vowel metathesis)

NCal: Nixumwak *mʷak* ‘k.o. fish’

NCal: Xārācūū *mʷē* ‘k.o. fish’

Mic: Kiribati *mʷake* ‘*Strongylura* sp., garfish’

Mic: Marshallese *mʷak* ‘*Strongylura*, needlefish’

Mic: Woleaian *mʷaxi* ‘young needlefish’

PCP *ŋa(k,x)ə* ‘*Hemiramphus*’ (Geraghty)

Fij: Kadavu *ŋaxa* ‘*Hemiramphus*’

Pn: E Uvean *ŋaʔa* ‘*Rastrelliger* (Scombridae)’

cf. also:

Mic: Mokilese *mʷalak* ‘k.o. needlefish (flat-sided garfish?)’

The following reconstruction is echoed in the transparent compound, PMP/POc *saku-layaren* ‘sailfish, swordfish’, which contains as its second element *layaren* ‘sail’ (§58 and vol.1, pp.194–195).
Fish

PMP *saku 'needlefish’ (Blust 2002)

POc *saku ‘needlefishes, garfishes, long toms (Belonidae)’

NNG: Manam saʔu ‘garfish’
NNG: Lukep (Pono) sau ‘needle nose fish’
PT: Dobu sa-sau(li) ‘long tom when small’
MM: Vitu saku ‘needlefish’
MM: Patpatar sok ‘long tom’
MM: Nehan hau ‘long tom (generic)’
NCV: Namakir soka(raru) ‘garfish’
NCal: Iaai (wa)sao ‘Hemiramphus far’
Mic: Kiribati raku ‘swordfish’
Mic: Marshallese tak ‘Belone platyura’ [Platybelone argalus platyura]
Mic: Ponapean tāk ‘needlefish’
Mic: Mokilese tāk ‘needlefish, barred long tom?’
Mic: Puluwatese tāk ‘needlefish’
Mic: Woleaian taxu ‘needlefish (generic)’
Fij: Kadavu saxu ‘generic term for needlefishes’
Fij: Bauan saku ‘swordfish’
Fij: Wayan saku ‘generic for needlefish and longtoms’

PPn *haku ‘garfish and needlefish’ (Hooper)

Pn: Niuean aku ‘long tom, pipe fish, edible’
Pn: Tongan haku ‘k.o. fish: a young hakulā ‘swordfish’
Pn: Rennellese aku ‘general term for needlefish and garfish’
Pn: Pukapukan aku ‘general name for needlefishes’
aku-aku ‘Platybelone sp.’
Pn: Samoan aʔu ‘Strongylura, fish said to attack humans’
Pn: Tokelauan aku ‘needlefish, about 60 cm long’
Pn: Tikopia aku ‘general term for needlefish and garfish’
Pn: Tahitian aʔu-aʔu ‘Platybelone sp.’
Pn: Marquesan aku ‘general term for needlefish and garfish’

POc *panapa ‘garfish and needlefish taxon’ (ACD: ‘needlefish sp.’)

Adm: Loniu panah ‘Hemiramphus commersoni, barred garfish’ [H. far]
Adm: Lou panap ‘small blue fish with long needle-like mouth’
Adm: Likum panah ‘small blue and green marine fish with projecting lower jaw’
Adm: Nyindrou banap ‘small dotted fish with needle nose’
MM: Nehan pon(pou) ‘large barred garfish’ (smaller is kohkoh)
MM: Halia pon-pon ‘halbeak’
MM: Teop pon-pon ‘long-billed garfish, Quoy’s short-billed garfish, barred garfish’
Mic: Kiribati anā ‘a fish, small slender species, needlefish, garfish, halfbeak’ (loss of initial p- unexpected)
Mic: Chuukese fanā ‘small needlefish’
Reduplicated reflexes of POc *sao in PnP below, refer instead to *Sphyraena, the barracuda, and possibly its juvenile form. There is evidently some crossover of meaning between PnP *sao-sao ‘Sphyraena sp.’ and PnP *tao-tao ‘Fistularia spp., probably including trumpetfish’ (see §15). This may be because both barracuda and trumpetfish are, like the needlefish and garfish, long narrow fish, spear-like in shape.

POc *sao ‘k.o. long tom’

Adm: Titan co ‘generic for needlefish, long toms’
Adm: Nali so ‘needlefish, ae’
Adm: Loniu co ‘k.o. long tom’
NNG: Gedaged sao ‘Strongylura incisa, long tom’
NNG: Lukep (Pono) sau ‘needlefish, long tom’
NNG: Takia sao ‘k.o. long tom’ (Mueller)
NNG: Tami (i)-sa ‘k.o. long tom’ (Mueller)
MM: Halia soa-soa ‘garfish, needlefish’ (vowel metathesis)
MM: Marovo cho-cho ‘Hemiramphus spp., small garfish (generic)’

PnP *sao-sao ‘juvenile *Sphyraena sp.’ (Hooper: ‘Sphyraena sp.’)

Pn: Niuean hao-hao ‘trumpetfish’
Pn: E Uvean sao-sao ‘juvenile *Sphyraena sp.’ (s for †h-)
Pn: Samoan sao-sao ‘k.o. fish, said to be predatory and dangerous’
Pn: Tokelauan hao-hao ‘S. forsteri’
Pn: Tikopia sao-sao ‘juvenile *Sphyraena sp.’
14 Squirrelfishes, soldierfishes (Holocentridae)

This family is well-represented through the region by most of the approximately 70 species known worldwide. Most are brilliant red, armoured with large rough scales with jagged edges. The head is extremely rough and spiny. They have large eyes, and are often longitudinally banded. Many species are nocturnal, living in holes in the reef during the day (Munro p.138). Although most of the species are small, the flesh is considered good eating. In Niuatoputapu they are caught on moonlit nights either from a boat anchored near the reef or while standing on the reef edge (Dye 1983:250). Genera include Sargocentron [Holocentrus], Myripristis and Flammeo. Adioryx is now classified as a junior synonym of Sargocentron.

A number of taxa are typically distinguished in Oceanic languages. Three POc terms are reconstructable. Nuclear Micronesian reflexes in the following reconstruction confirm that this form was trisyllabic, as an original disyllable would be reflected without final vowel (acd).

PMP *taRaqan ‘Holocentrus spp., squirrelfish’ (acd)
POc *taRaqaun ‘Sargocentron spp., squirrelfish, including S. spiniferum’ (Geraghty 1990: PEOc *taRaʔa)
Adm: Loniu taʔay ‘squirrelfish or silver biddy’ (metathesis: for †taya(ʔ))
NNG: Yabem talay ‘a red sea fish’
PT: Gumawana tayawana ‘squirrel fish’
PT: Misima talayan ‘Sargocentron spp., spiny and blue-striped squirrelfish’
PT: Motu tara ‘S. violaceum, violet squirrelfish’
MM: Nakanai talaha ‘k.o. fish’
MM: Lihir tara ‘S. spiniferum, spinecheek squirrelfish’
MM: Roviana ta-tara ‘small reddish fish, easily hooked’
SES: Gela talā ‘S. spiniferum, spinecheek squirrelfish’
NCV: S Efate tra(kap) ‘squirrlefish’
NCal: Pije jalā ‘Holocentrus spinifer’ [S. spiniferum]
NCal: Jawe jarak ‘Holocentrus spinifer’ [S. spiniferum]
PMic *tarā ‘squirrelfish’ (Bender et al. 2003)
Mic: Kiribati tā ‘Sargocentron spp.’
Mic: Marshallese ceɾa ‘Sargocentron, Myripristis spp., squirrelfish’
Mic: Ponapean sara ‘S. spiniferum, spinecheek squirrelfish’
Mic: Chuukese sarā ‘Sargocentron sp., yellow-lined squirrel fish’
Mic: Woleiaian seẓā ‘Adioryx spinifer, spiny squirrel fish’ [S. spiniferum]
Mic: Puluwatese haɾa ‘k.o. red fish’
PnPn *taqa ‘Sargocentron spiniferum, armoured soldierfish’ (Hooper)
Pn: Tongan taʔa ‘S. spiniferum, red, edible’
Pn: Niuan tā ‘Myripristis violacea, lattice soldierfish’
Pn: Pukapukan tā ‘S. spiniferum’
Pn: Samoan tā(malau) ‘name given to certain fishes of genus Sargocentron when about 30 cm in length’. (See also under *malau below, p.55.)
Figure 2.10 Left *Myripristis murdjan*, crimson squirrelfish. Right *Sargocentron spiniferum*, armoured soldierfish.

Pn: K’marangi tā ‘S. ruber, red squirrelfish’ [S. rubrum]
Pn: Tokelaun tā ‘S. spiniferum’
Pn: Tuvalu tā (malau) ‘Adioryx spp.’ [Sargocentron]
Pn: Tikopia ta ‘sea fish, app. related to large squirrelfish’
cf. also:
Pn: Rennellese tagae ‘general name for some squirrelfish’ (borrowed from a non-Polynesian language)

POc *kuru[ru] ‘Myripristis spp., squirrelfish’
Adm: Penchal kululu ‘squirrelfish, Holocentridae’
Adm: Lou kurur ‘squirrelfish, Holocentridae’
NNG: Gedaged uulu ‘Myripristis murdjan, crimson squirrelfish’ (Mueller)
NNG: Manam ididi ‘squirrelfish’
NNG: Takia uru ‘k.o. squirrelfish’
PT: Gumawana gilulu ‘squirrelfish’ (g- for †k- or †θ-)
PT: Iduna kululu (bawe) ‘k.o. fish’ (bawe ‘pig’)
PT: Kilivila kuyu ‘k.o. fish’
PT: Motu kururu ‘squirrelfish’ (kururu ioio, kururu matabada)
MM: Vitu kururu ‘squirrelfish’
MM: Patpatar kurur ‘red-orange squirrelfish’
MM: Tolai kurur ‘k.o. fish’
MM: Lihir kurur ‘Holocentridae, esp. Myripris’
SES: Lau alulu ‘squirrelfish’ (a- for †ʔu-; -l- for †-r-: borrowed form?)
NCV: Lo-Toga wur-wur ‘Myripristis berndti’
Mic: Kiribati kū ‘Sargocentron spp., soldierfish’
Mic: Mokilese kīr ‘k.o. soldierfish’
Mic: Marshallese kur ‘Sargocentron binotatus’
PCP *kuru ‘Myripristis’ (Geraghty)
Fij: Rotuman ?uru ‘red blunt-nosed fish’
Fij: Bauan kuru ‘fish with a long snout’
Fish

PPn *kuru ‘Myripristis sp.’ (Hooper)

Pn: Niuean kū ‘small red fish’
Pn: Pukapukan (malau) kulu ‘Myripristis adusta’
Pn: Rapa kū ‘Myripristis sp.’ (loss of *-r- irregular)
Pn: Tahitian ʔā-ʔā ‘red-coloured fish’ (archaic) (loss of *-r- irregular)
Pn: Hawaiian ʔā-ʔā ‘Myripristis sp.’ (loss of *-r- irregular)

POc *jori ‘squirreelfish, possibly generic’

PT: Dobu doli ‘squirreelfish’
MM: Nduke hori ‘general name for red squirreelfish’
SES: Gela sori ‘Myripristis spp., soldierfish (generic)’
SES: Arosi dori(awa) ‘k.o. fish’

cf. also:

MM: Teop hori ‘squirreelfish (generic)’
MM: Maringe sori ‘squirreelfish (generic)’
MM: Marovo hori ‘Sargocentron spiniferum, spiny squirreelfish, bright red’

PROc *mʷalau ‘squirreelfish, possibly generic for a number of spp.’

Mic: Marshallese mʷən ‘Myripristis sp., squirreelfish’
Mic: Woleaian mʷēri ‘red snapper, general term’
Mic: Carolinian mʷēn ‘k.o. squirreelfish’
Mic: Satawalese mʷən ‘Myripristis spp., squirreelfish’

PPn *malau ‘general term for a number of fishes of the genera Holocentrus, Adioryx, Myripristis and Flammeo, soldier fishes and squirreelfishes’ (Hooper)

Pn: Tongan malau ‘k.o. fish’
Pn: E Uvean malau ‘Adioryx spp.’
Pn: Rennellese magau ‘Holocentrus sp.’ [Sargocentron sp.]
Pn: Tikopia marau ‘Holocentrus spinifer’ [Sargocentron spiniferum]
Pn: Samoan malau ‘name given to red squirreelfish, Holocentrus and Myripristis’
Pn: W Futunan marau ‘Adioryx caudimaculatus and others’ [Sargocentron caudimaculatum]
Pn: Marquesan maʔau ‘Myripristis spp.’

Other reconstructions at PPn level include *malau taqa or *taqa malau ‘Adioryx sp.’ (taʔa from POc *ta Raqan above) and *tala-kisi ‘soldier or squirreelfish spp.’ (Hooper pp.201–202).

15 Trumpetfishes (Aulostomidae), cornetfishes and flutemouths (Fistulariidae)

Trumpetfishes (Aulostomidae) have a long compressed body, long head and small mouth at the end of a long compressed snout. Colours change from green through orange to reddish-brown in harmony with surroundings. They are rather small, shallow-water fishes, frequently
observed resting motionless on the bottom (Munro p.149). The family is widely distributed
(Fowler 1928:6).

Cornetfishes somewhat resemble long toms, but are readily distinguished by long flute-
like snouts and whiplash-like filamentous prolongation of middle caudal (tail) fin rays (Munro
p.149).

A lower-level reconstruction is PCP *hābā ‘Fistularia, flutemouth’ (Geraghty p.148). Hooper
(p.200) offers PPn *tao-tao ‘Fistularia sp., flutefish’, which no doubt reflects the
fish’s spearlike form (PPn *tao ‘spear’).

16 Pipefishes, sea horses (Syngnathidae)

Most pipefishes (Syngnathidae) are long and thin, with a body covered in bony plates. Though
poor swimmers and very sluggish, many are widely distributed by currents. Jointed bony
armour of both species prevents active swimming. Fins are of little use and have degenerated
(Munro p.151).

The seahorse probably did not hold much interest for early Oceanic speakers, being nei-
ther economically useful nor dangerous. Collected terms for it are rare, as evidenced by re-
sponses to a request from Bruce Biggs on the AN-LANG e-mail list in 1999.10 However, a
common element is apparent from NNG, MM and SES terms, reinforced by a term from
Yamdena (CMP), bwa-watan ‘seahorse’ (bwayne ‘crocodile’) which permits reliable recon-
struction of the word for crocodile as the first element in an otherwise variable compound.

PMP *bugaya + modifier ‘Hippocampus sp., seahorse’ (Blust 2002)
POc *puqaya + modifier ‘seahorse’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Numbami</td>
<td>yuwaya tina</td>
<td>‘seahorse’ (lit. ‘crocodile mother’)</td>
</tr>
<tr>
<td>NNG: Bariai</td>
<td>puaea gerei-rei</td>
<td>‘seahorse’ (puaea ‘crocodile’, gereirei ‘newly-hatched’)</td>
</tr>
<tr>
<td>MM: Roviana</td>
<td>vu-vua</td>
<td>‘seahorse’ (vua ‘crocodile’)</td>
</tr>
<tr>
<td>SES: Lau</td>
<td>fuasa niʔafu</td>
<td>‘seahorse’ (lit. ‘crocodile of green seaweed’)</td>
</tr>
<tr>
<td>SES: Arosi</td>
<td>bote huasa</td>
<td>‘seahorse’ (lit. ‘crocodile louse’)</td>
</tr>
<tr>
<td>cf. also:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SES: Gela</td>
<td>hinapi ni vua</td>
<td>‘various pipefish spp.’ (lit. ‘crocodile limestick’)</td>
</tr>
</tbody>
</table>

10 Biggs’ request appeared in the AN-LANG list on 7 May 1999.
Kove (NNG) uses the same comparison, albeit with a non-cognate term for ‘crocodile’, bayele ele ato ‘seahorse, pipefish’ (bayele ‘crocodile’, ele ‘its’, ato ‘messenger’) (Ann Chowning, pers. comm.11). In Dobu (PT) the term for crocodile is warigoa, and that for seahorse or pipefish war-i-warigoa, reduplication of the first two syllables being a common way of indicating an inferior or diminutive form of the named item (Ross 2005:199).

17 Razorfishes (Centriscidae)

Razorfish are small, extraordinarily modified fishes which are extremely flattened and practically transparent. They swim in small schools, each in a vertical position with head downward among branching corals or sea urchins (Munro p.148). The name in Gela for Aeoliscus stri-gatus, razorfish is iɣatuɣuru, literally ‘standing fish’. They also ‘sleep’ under the sand and will disappear under the sand when threatened by predators (Allen & Swainston 1993:82). No reconstructions have been made.

18 Mullets (Mugilidae)

Some mullet species are extremely abundant, occurring in large schools in coastal waters and estuaries. At least one species resides permanently in fresh water. The fish usually swim near the surface and congregate among grass-like plants on tidal flats. They are readily taken in hauling seines, although many possess great leaping powers and escape. The flesh is tasty and rich, with few bones (Munro p.164).

Although there are two soundly based reconstructions going back to PMP level, and one or two other more questionable POc reconstructions, I have very few cognates from Western Oceanic. POc *kanase is widely supported, and evidently refers to the best-known species,

11 The word ato is not glossed by Chowning, but means ‘message, messenger’ in closely related Bariai.
Valamugil cunnesius, (formerly Liza cephalus or Mugil cephalus). POc *kaRapa is reconstructable, but as a term for L. vaigiensis is reliable only for Eastern Oceanic. Reflexes of POc *(k,q)arua(s) refer to a range of mullet species, with size/growth stage possibly relevant.

Named growth stages of Valamugil cunnesius are listed from Dobu (PT) and three Polynesian languages. They run from from smallest to largest.

Dobu: gwala, tonamua, iyakayo.
Niuatoputapu: teʔefō, ʔaua, ʔauapuna, ʔaualele, kanahae.
Tongan: teʔevela, teʔekona, teʔefō, ʔunomoa, kanahae, kanahae fau.
Hawaiian: pua [child] ʔama, puaʔamaʔama, pua po ʔolā, ʔoʔolā kahaha, ʔamaʔama, ʔanae

PMP *kanasay ‘mullet’ (acd)
POC *kanase ‘mullet spp. including Valamugil cunnesius’

Adm: Loniu kanas ‘sea mullet’
Adm: Lou kanas ‘k.o. fish’
Adm: Drehet kanah ‘k.o. fish, about 35 cm, silvery, black-edged’
MM: Patpatar anas ‘k.o. fish, small and white, salt and fresh water’
MM: Teop anahi ‘mullet generic’
SES: Sa’a ʔanate ‘mullet’
SES: Arosi ʔanate ‘mullet’
SES: Bauro yanate ‘Liza cephalus’ [Valamugil cunnesius]
SES: Kahua yanate ‘L. cephalus’
TM: Buma onole ‘bluespot mullet, Valamugil seheli’
TM: Vano anala ‘bluespot mullet, Valamugil seheli’

PNCV *kanase ‘mullet’ (Clark 2009:107)

NCV: Mota yanase ‘mullet’
NCV: Mwotlap na-ynah ‘L. macrolepis’ [Chelon macrolepis]
NCV: NE Ambae ganahe ‘mullet’
NCV: Paamese anase ‘mullet’
NCV: Namakir kanah ‘mullet’
SV: Sye (w)ane ‘mullet’
SV: Ura (w)ana ‘mullet’
NCal: Nêlêmwa hâlāt ‘adult mullet’
NCal: Iaai enei ‘adult mullet’

PCP *kanađe ‘Liza spp.’ (Geraghty)

Fij: Rotuman ʔanasi ‘jumping mullet’
Fij: Bauan kanađe ‘Mugilidae’
Fij: Wayan kanađe ‘certain grey and blue-tailed mullet species including Valamugil sp.’

PPn *kanahe ‘Liza cephalus, Crenimugil crenilabis and other mullet spp.’ (Hooper)

Pn: Tongan kanahe ‘mullet’
Pn: Niuean kanahe ‘several species of mullet. Usually refers to full-grown fish (cf. fua-fua)
Pn: E Uvean kanahe ‘Liza macrolepis’ [Chelon macrolepis]
<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>E Futunan</td>
<td>kanae</td>
<td>‘Crenimugil crenilabis’</td>
</tr>
<tr>
<td>Pukapukan</td>
<td>kanae</td>
<td>‘C. crenilabis’</td>
</tr>
<tr>
<td>Samoan</td>
<td>ʔanae</td>
<td>‘L. cephalus, grey mullet’ [Valamugil cunnesius]</td>
</tr>
<tr>
<td>Tokelauan</td>
<td>kanae</td>
<td>‘L. cephalus’</td>
</tr>
<tr>
<td>Tikopia</td>
<td>kanae</td>
<td>‘L. cephalus’</td>
</tr>
<tr>
<td>Māori</td>
<td>kanae</td>
<td>‘L. cephalus’</td>
</tr>
<tr>
<td>Hawaiian</td>
<td>ʔanae</td>
<td>‘full-sized mullet’</td>
</tr>
</tbody>
</table>

PMP *qaRuas ‘young growth stage of mullet, Neomyxus chaptalii’ (ACD)

POc *(k,q)RaRa(s) ‘mullet (generic)’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seimat</td>
<td>ʔaw</td>
<td>‘k.o. mullet, about one metre in length’</td>
</tr>
<tr>
<td>Titan</td>
<td>(nian) kau</td>
<td>‘mullet (generic), Mugilidae’</td>
</tr>
<tr>
<td>Ponam</td>
<td>au</td>
<td>‘mullet’</td>
</tr>
<tr>
<td>Kilivila</td>
<td>kauya</td>
<td>‘k.o. fish’</td>
</tr>
<tr>
<td>Bulu</td>
<td>karua</td>
<td>‘mullet’</td>
</tr>
<tr>
<td>Tolai</td>
<td>karua</td>
<td>‘k.o. fish, like pilchard’</td>
</tr>
<tr>
<td>Gela</td>
<td>yalua</td>
<td>‘Crenimugil crenilabis, warty-lipped mullet’</td>
</tr>
<tr>
<td>To’aba’ita</td>
<td>kalua</td>
<td>‘Mugil cephalus’ [Valamugil cunnesius]</td>
</tr>
<tr>
<td>Lau</td>
<td>kalua</td>
<td>‘Mugil spp’</td>
</tr>
<tr>
<td>Kiribati</td>
<td>au</td>
<td>‘mullet (generic)’</td>
</tr>
<tr>
<td>Woleaian</td>
<td>yaiuva</td>
<td>‘Neomyxus chaptalii, silvery mullet’</td>
</tr>
<tr>
<td>Satawalese</td>
<td>yayuw</td>
<td>‘mullet, Liza spp. (generic)’</td>
</tr>
</tbody>
</table>

PCP *qaua ‘juvenile mullet’ (Geraghty)

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fij</td>
<td>ʔaua</td>
<td>‘very young mullet’ (Polynesian loan?)</td>
</tr>
</tbody>
</table>

PnPn *qaua ‘mullet sp.’ (Hooper)

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tongan</td>
<td>ʔaua</td>
<td>‘mullet’</td>
</tr>
<tr>
<td>Niuatoputapu</td>
<td>ʔaua</td>
<td>‘second of five growth stages of kanahe’</td>
</tr>
<tr>
<td>E Uvean</td>
<td>ʔaua</td>
<td>‘growth term of kanahe’</td>
</tr>
<tr>
<td>Samoan</td>
<td>ʔaua</td>
<td>‘grey mullet, ʔanae when about 5–7 cm in length’</td>
</tr>
<tr>
<td>Tokelauan</td>
<td>auu</td>
<td>‘Neomyxus chaptalii, silvery mullet’</td>
</tr>
<tr>
<td>W Uvean</td>
<td>auu</td>
<td>‘small mullet’</td>
</tr>
<tr>
<td>Māori</td>
<td>auu</td>
<td>‘Aldrichetta forsteri, yellow-eye mullet’</td>
</tr>
</tbody>
</table>

cf. also:

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halia</td>
<td>karua</td>
<td>‘small mullet, silversides’ (for †kalua)</td>
</tr>
</tbody>
</table>

Blust (2002:128) reconstructs both PMP *qaRuas and PMP *qawas, but the reflexes of the latter are almost all from languages in which *R is lost, so it is reasonable to infer that they reflect PMP *qaRuas, and that *qawas is not reconstructable.

Although the following set of forms points to POc *kaRapa, the reference is consistent only for Remote Oceanic cognates. There is a single putative Western Oceanic reflex which refers to the mandarin fish (Synchiropus splendidus), a distinctive, brilliantly coloured but little-known fish, not more than 10 cm in length, and very dissimilar to mullets.

POc *kaRapa ‘k.o. fish’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balawaia</td>
<td>kalava</td>
<td>‘mandarin fish’</td>
</tr>
</tbody>
</table>
PROc *kaRapa ‘Liza vaigiensis, diamond-scaled mullet’
SV: Anejoñi kapa(n) ‘adult freshwater mullet’
NCal: Nêlêmwa k’olâp ‘Mugil macrolepis’ [Chelon macrolepis]
Mic: Carolinian araf ‘mullet’
Mic: Satawalese yaraf ‘L. vaigiensis’
Mic: Mokilese kap(ce) ‘L. vaigiensis, diamond-scaled mullet’

PCP *kava ‘Liza vaigiensis’ (Geraghty)

PCP *kava-kava ‘juvenile Liza vaigiensis’ (Geraghty)
Fij: Bauan kava ‘fish like the kanaðe’
Fij: Wayan kava ‘L. vaigiensis’

PPn *kafa ‘Liza vaigiensis’ (Hooper)
Fn: Tongan kafa-kafa ‘L. vaigiensis’
Fn: E Ulvean kafa-kafa ‘L. vaigiensis’
Fn: Samoan ʔafa ‘fish similar to grey mullet’
Fn: Tokelauan kafa ‘L. vaigiensis’
Fn: Mangarevan kaʔa ‘L. vaigiensis’
Fn: Pukapukan kawa ‘L. vaigiensis’

Geraghty (p.157) reconstructs PCP *jeqevo(o,u), PPn *teqefō ‘juvenile mullet’. John Lynch (pers. comm.) suggests that a number of New Caledonian reflexes, Fwâi, Nemi, Jawe thiāp ‘mangrove mullet’, may be related, thus indicating PROc *jeqevo(o,u).

Hooper (p.204) reconstructs PPn *fiua-fiua ‘juvenile mullet’. With the addition of Wayan Fijian vua-vua ‘small reef fish, 2–3 cm’ this reconstruction can be raised to PCP *vua-vua ‘k.o. small fish’.

19 Silversides, hardyheads (Atherinidae)

These are small silvery fishes occurring in large schools in shallow coastal waters and estuaries where they can be netted. Munro (p.171) lists a dozen or so species and describes them as useful for bait. They are similar to sardines in appearance and behaviour.

POc *sara(Ra) ‘sardine-like fish, possibly Atherinidae’
NNG: Yabem (i)sala ‘a small slippery fish’
MM: Halia sela ‘sardine’

PCP *sarā ‘k.o. small schooling fish’ (Geraghty)
Fij: Rotuman sarā ‘k.o. fish’
Fij: Bauan sarā ‘small fish like daniva, but with round white body’
Fij: Wayan sarā ‘Atherinidae sp., small silvery fish in coastal waters’

PPn *sarā ‘small schooling fish’ (Hooper)
Fn: Tongan hā ‘very small schooling fish, like whitebait’
Fn: Nukuoro salā ‘flying fish’
Fn: Luangiua salā ‘small blue fish’
Fn: Sikaiana salā ‘k.o. fish’
Fn: Takuu sarā ‘k.o. small fish’
Barracudas are fast-swimming, carnivorous, pike-like fish, elongated and slender, which slash their prey with sharp dog-like teeth. Larger ones are regarded as dangerous because they have been known to attack humans. Munro calls them good fighters. They have firm delicate flavoured flesh and are a valuable food fish. They are normally caught by trolling. Larger species occur in coastal waters over shoals and around reefs (Munro p.161).

Five POc terms are reconstructable, with *qonos possibly the generic. Final *-s is indicated by Nehan and the two Te Motu reflexes. Other reconstructions refer either to a particular species or to particular growth stages.

POc *qonos ‘mature Sphyraena spp., possibly generic for all barracuda’ (ACD: POc *qono)

NNG: Mangseng ono ‘k.o. fish’
PT: Motu ono ‘Sphyraenella chrysotaenia. When young, these fish are tubiara, when adult they are ono’ (Oram)
PT: Lala ono ‘k.o. fish’
MM: Nehan onoh ‘barracuda, wahoo’
SES: Gela ono ‘S. barracuda, great barracuda’
SES: To’aba’ita ono ‘S. jello, pickhandle sea pike’
SES: Ulawa ono (m”a) ‘S. jello’
ono (sau) ‘Agrioposphyraena barracuda’ [S. barracuda]
SES: Sa’a ono ‘a fish, the barracuda’
SES: Lau ono ‘S. picuda and S. forsteri at growth stage’
SES: Arosi ono ‘A. barracuda, S. jello’
SES: Bauro ono ‘A. barracuda’
TM: Buma onoro ‘barracuda, Sphyraena genie’
TM: Tanema onara ‘barracuda, Sphyraena genie’
NCV: Mwotlap n-on ‘Sphyraena spp., barracuda, sea pike’
NCV: Lakon on ‘barracuda’

PnPn *ono ‘Sphyraena spp., barracuda’ (Hooper)
Pn: Tongan ōono ‘k.o. fish, the barracuda’
Pn: Niutoputapu ōono ‘large growth stage of barracuda’
Pn: Tokelauan ono ‘a fish, the barracuda’
Pn: Tikopia ono ‘barracuda’
Pn: Hawaiian ono ‘Acanthocybium solandri, large mackerel type fish up to 3 metres in length’ (wahoo)

12 The great barracuda or giant sea pike, Sphyraena barracuda, is sometimes referred to as Sphyraena picuda or Agrioposphyraena barracuda.
Figure 2.13 *Sphyraena jello*, slender sea pike

PMP *qalu* ‘barracuda’ (ACD)

POc *qalu* ‘*Sphyraena* taxon, incl. *S. barracuda*, great barracuda’

<table>
<thead>
<tr>
<th>Adm</th>
<th>PT</th>
<th>SES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titan</td>
<td>al</td>
<td>‘Sphyraena picuda, giant sea-pike’ [S. barracuda]</td>
</tr>
<tr>
<td>Nauna</td>
<td>kul</td>
<td>‘thick-bodied barracuda sp.’</td>
</tr>
<tr>
<td>Penchal</td>
<td>kul</td>
<td>‘thick-bodied barracuda sp.’</td>
</tr>
<tr>
<td>Lou</td>
<td>kol</td>
<td>‘thick-bodied barracuda sp.’</td>
</tr>
<tr>
<td>Seimat</td>
<td>al</td>
<td>‘thick-bodied barracuda sp.’</td>
</tr>
<tr>
<td>Wuvulu</td>
<td>alu</td>
<td>‘thick-bodied barracuda sp.’</td>
</tr>
</tbody>
</table>

PT: Misima *anu(wal)* ‘*Sphyraena* spp., including giant sea-pike, chevron barracuda, striped seapike’

<table>
<thead>
<tr>
<th>SES</th>
<th>SES</th>
<th>SES</th>
<th>SES</th>
<th>SES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gela</td>
<td>alu</td>
<td>‘S. putnanae, chevron barracuda’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Langalanga</td>
<td>ralu</td>
<td>‘Agrioposporyraena barracuda, giant sea pike’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>’Are’are</td>
<td>raru</td>
<td>‘A. barracuda’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sa’a</td>
<td>salu</td>
<td>‘barracuda’</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

cf. also:

NNG: Bariai *kalu(bia)* ‘barracuda’

POc *malisa* ‘barracuda’ 13

<table>
<thead>
<tr>
<th>MM</th>
<th>SES</th>
<th>SES</th>
<th>SES</th>
<th>Fij</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patpatar</td>
<td>malisa</td>
<td>‘k.o. fish, big, long, black and white’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kara (East)</td>
<td>malesa</td>
<td>‘barracuda’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>To’aba’ita</td>
<td>ma-malita</td>
<td>‘Sphyraena barracuda’ (Barnett); ‘immature barracuda’ (Lichtenberk)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lau</td>
<td>ma-malito</td>
<td>‘S. picuda and S. forsteri at growth stage’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wayan</td>
<td>sila-sila</td>
<td>‘largest barracudas, S. barracuda and possibly other Sphyraena spp.’ (metathesis)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The cognate set below points to a four-syllable reconstruction *b ara-wa(r,d,dr,R)a(q)*

As the parentheses indicate, the reflexes do not agree as to the identity of the second liquid. Admiralties and Papuan Tp languages reflect *d* or *dr*, Southeast Solomonic languages and Pije (New Caledonia) reflect *r*, and Tikopia (Polynesian) reflects *R*. However, it is so

13 The term *malisa* ‘barracuda’ is quite widespread in Papua New Guinea, spread through Tok Pisin, which adopted it from Patpatar.
unlikely that this set of forms is the result of chance that we must infer that borrowing has taken place at some point. We also note that the Papuan Tip terms are glossed ‘moray eel’.

John Lynch (pers. comm.) points out that a four-syllable reconstruction is likely to be bimorphemic, i.e. *b^ara-wa(r,d,dr,R)a(q), and cites New Caledonian evidence in support of this. Nêlêmwa b^ara-gom ‘moray eel’ seems to reflect the first morpheme, and Fwâi walagan ‘barracuda’ perhaps contains the second.

POc *b^ara-wa(r,d,dr,R)a(q) ‘Sphyraena sp., possibly S. jello, the slender or pickhandle sea pike’

Adm: Titan palawar ‘sea pike’
Adm: Andra palawadi ‘k.o. fish’
PT: Kilivila buliwada ‘eel’
PT: Dobu b^aluada ‘moray eel’
PT: Molima boluwada ‘moray eel’
PT: Tubetube b^aluada ‘eel’
SES: Longgu paraura ‘S. barracuda’
SES: Langalanga barauro ‘S. jello’
NCal: Pije barewalak ‘barracuda’
Pn: Tikopia paravao ‘S. jello’

The next reconstruction, POc *qutur, shares the same form as a reconstruction for a very dissimilar fish, the jobfish, the latter reconstructable to PMP level (see §30). A competing gloss, ‘Sphyraena sp., barracuda’, is based on cognates from PT, NCV and Pn. These two etyma appear to be homonyms rather than cognates. Niuean retains a reflex of both etyma. PPT *qudur, rather than †*qutur, is reconstructable for both jobfish and barracuda.

POc *qutur ‘Sphyraena sp., barracuda’

PT: Muyuw kudu(wal) ‘barracuda’
NCV: Mota utu ‘large long fish with very sharp teeth and small scales: a sphyraenid, barracuda’
NCV: NE Ambae utu ‘Sphyraena genie, blackfin barracuda’
NCV: Raga utu ‘S. jello, pickhandle barracuda’
Pn: Niuean utu ‘Sphyraena spp., barracuda; Aprion virescens, grey jobfish’

Hooper (p.203) identifies PnPn *sao-sao as a growth stage for juvenile barracuda (see also §13, p.52). As both Wayan and Niuatoputapu distinguish three stages of growth, another growth stage can be identified as PCP *moto-moto.

PROc *moto ‘k.o. fish’

Mic: Kiribati moto ‘k.o. fish’
PCP *moto-moto ‘growth stage of Sphyraena sp.’
Fij: Wayan moto-moto ‘juvenile of barracuda spp.’
PnPn *moto-moto ‘Sphyraena sp., probably juvenile growth stage’
Pn: Tongan moto-moto ‘k.o. swordfish’
Pn: Niuatoputapu mo-moto ‘second growth stage of barracuda’
21 Sand basses, giant perches, barramundis (Centropomidae (Munro: Latidae))

These fish inhabit coastal waters, often penetrating into fresh water. They are noted for brilliant glassy eyes which glow at night. Although we have an apparent POc reconstruction, *mata-pula*, lit ‘eyes’ + ‘shine’ (§24), the most consistent references of its reflexes are to Priacanthus cruentatus [now Heteropriacanthus cruentatus], ‘red globe-eye’ in Polynesian languages. The single non-Polynesian reflex, Kove (NNG) matapula ‘large freshwater fish’, may refer to Centropomidae.

22 Rock cods, reef cods, coral cods, groupers etc. (Serranidae)

These fish inhabit shallow coastal waters and estuaries, and are especially abundant around coral reefs and shoals. Many are brilliantly coloured in shades of red to brown, some with distinctive patterns. Nearly all are excellent eating. They are carnivorous and voracious, and one species, *Epinephelus lanceolatus*, the Queensland grouper, which can grow to three metres in length and up to 400 kg in weight, can be dangerous to divers (Munro p.264). Most, however, are under a metre in length. Genera include *Epinephelus*, *Cephalopholis* and *Plectropomus*, each with dozens of species. Oceanic languages typically distinguish many taxa.

Six POc reconstructions are supported. *kuRapu* seems reliably to refer to the most distinctive member of the family, *E. lanceolatus*. Distinguishing the meanings of the other five reconstructions has proved difficult. The lack of conformity in glosses may be due to the possibility that the terms they represent are generic for particular groupings, with wordlists naming only the most familiar members of the set.

PMP *kuRapu ‘Epinephelus sp.’* (Blust 2002)
POc *kuRapu ‘rock-cod, Epiphenelus sp. or spp. including *E. lanceolatus*, Queensland grouper’
Adm: Mussau * ou(na) ‘giant black rock cod’
Fish

Adm: Titan ap eu ‘Epinephelinae, rock cod, large’ (metathesis)
NNG: Tami gula ‘Cephalopholis urodeta, flag-tailed rock cod’
NNG: Numbami kulawi ‘Epinephelus spp.’
MM: Lihir kuroh ‘Epinephelus polyptchadiyon, camouflage rock cod’
SES: Gela yulavu ‘sp. of large fish, young bana, a fish large enough to swallow a man’
SES: Longgu yulava ‘Cephalopholis argus, peacock rock cod’
SES: Lau ulafu ‘large fish, up to 2 metres long, brown or blue spots; grouper’
SES: Kwaio ulafu ‘Epinephelus sp., giant grouper’
SES: ’Are’are urahu ‘a fish, taboo for women and children’
SES: Sa’a ulehu ‘Oligorus gigas. Six kinds of ulehu are named’ [E. lanceolatus]
SES: Arosi urahu ‘Oligorus gigas, famous in tales’
NCV: Namakir kuav ‘grouper (generic)’
SV: Sye uwop ‘grouper’
NCal: Iai oí ‘E. hoedti, adult/large grouper’ [E. cyanopodus]
Mic: Kiribati kaua ‘generic for rock cods, groupers’
Mic: Mokilese kiro ‘large sea bass’
Mic: Marshallese kiro ‘E. fuscoguttatus, grouper, rock cod’
Fij: Wayan kəavu ‘E. hoedti, E. merra, rock cod’
cf. also:
NNG: Kove kabura ‘enormous freshwater fish’
MM: Teop rovu ‘rock cod generic’
MM: Marovo rava ‘E. lanceolatus, found in rivers and estuaries as well as reef, including outer dropoff’

PMP *keRteŋ ‘kind of striped or spotted marine fish, Epinephelus sp.’ (ACD)
POc *koto(ŋ) ‘large rock cod or grouper, Epinephelus sp.’

Adm: Loniu kot ‘medium-sized rock cod or grouper’
Adm: Likum ni–kok ‘large grouper, with marks like a snake’
Adm: Nauna kot ‘largest kind of grouper, spotted’
Fij: Wayan koto ‘largest kind of rock cod’
Fij: Kadavu xoto ‘k.o. large fish’

PMP *baŋbaŋ ‘fish sp.’ (ACD)
POc *baba(ŋ) ‘rock cod or grouper’ 15

14 Barnett (1978:57) names ten kinds of urahu in Arosi, named for patterning or habitat or behaviour.
15 Oceanic cognates justify a gloss of ‘rock cod’ only for PCP. However, Balinese baŋ-baŋ ‘k.o. large sea fish’ may be external evidence for the gloss at POc level.
Fij: Bauan
'baba' ‘large fish, like a snake, with a large mouth’

Pn: Pukapukan
papa ‘Variola louti, lunar-tailed rock cod’

Pn: Samoan
papa ‘Epinephelus sp., grouper’

Pn: E Uvean
papa ‘generic for some Cephalopholis spp.’

POc *don(o,u) ‘spotted rock cod, taxon including Cephalopholis and Plectropomus spp.’

PT: Motu
donu ‘brown spotted rock cod’

SES: Longgu
ono(i) ‘fish like a shark that can swallow a man’

PCP *donu ‘adult Plectropomus’ (Geraghty)

Fij: Rotuman
tonu ‘Cephalopholis argus, peacock rock cod’

Fij: Bauan
donu ‘Epinephelus maculatus, brown-spotted rock cod’

Fij: Wayan
donu ‘generic for several Plectropomus spp.’

Fij: Kadavu
donu ‘Erilepis zonifer’

PPn *tonu ‘rock cod, when large’ (Hooper: ‘Plectropomus leopardus, P. maculatus, coral trout’)

Pn: Tongan
tonu ‘k.o. fish, similar to ŋatala (rock cod)’ (tonu puku, tonu ʔuno, tonu ʔuli, tonu faŋamea)

Pn: Niuatoputapu
tonu ‘growth stage of rock cod, bit larger than ŋatala, not as big as mala’

Pn: E Uvean
tonu ‘Plectropomus spp.’

Pn: Samoan
tonu ‘Epinephelus sp., a metre or more long’

Pn: Tokelauan
tonu ‘P. leopardus, red-spotted rock cod’

Pn: Tikopia
tonu ‘P. leopardus, ŋatara when very large’

Pn: Tahitian
tonu ‘P. leopardus’

The gloss of ‘rock cod, grouper’ for the following reconstruction is based on reflexes from Dobu (PT) and Fiji. In Gitua, Arosi, Woleaian and Hawaiian, apparent reflexes refer to trevally, blenny, parrotfish or wrasse, while elsewhere in Polynesia they refer to the crescent perch, *Terapon jarbua* (§35). Such fish have little in common, and the similarity of name may be coincidental.

POc *kawa-kawa ‘rock cod, grouper’

PT: Dobu
kawa(tabuya) ‘rock cod, coral cod, reef cod, coral trout’

Fij: Bauan
kawa-kawa ‘Serranidae, yellow-finned grouper’ (syn. gawa-gawa)

Fij: Wayan
kawa-kawa ‘k.o. rock cod, poisonous’

cf. also:

NNG: Gitua
kawa-kawa ‘golden trevally’

SES: Arosi
ʔaʔawa ‘blenny’

Mic: Woleaian
xawe-xaw ‘Chlorurus spp.’ [parrotfish]

16 Ross (1994:418) discounted the Motu term as cognate on the basis that the initial consonants of Motu *dono* ‘brown spotted rock cod’, Lala *dono* ‘k.o. fish’ and Roro *tono* ‘k.o. fish’ all reflect POc *s-. However Motu *d-, unlike the other two, also reflects POc *d.*
Fish

Pn: Tongan kava-kava ‘k.o. fish with small scales and longitudinal stripes, the scavenger fish’ [Lethrinus sp.? See *oka, §36]
Pn: Niuatoputapu kava-kava ‘T. jarbua’
Pn: E Uvean kava-kava ‘T. jarbua’
Pn: Samoan ʔava-ʔava ‘Terapon sp.’
Pn: Hawaiian ʔaʔawa ‘Bodianus bilunulatus, wrasse’

POc *kalika ‘Epinephelidae, rock cod’
Adm: Wuvulu alia ‘grouper sp.’
Adm: Titan kaliy ‘Epinephelidae, rock cod’
Adm: Ere kaliy ‘grouper sp.’
Adm: Lindrou kalik ‘grouper sp.’
Mic: Satawalese yaniy ‘Epinephelidae, rock cod (generic)’

Distinctive markings are often reflected in compound terms such as the following:

MM: Patpatar mata girit ‘k.o. fish’ (mata ‘face’, girit ‘to sketch, draw’)
MM: Halia mata goumana ‘giant chanda perch, freshwater fish’ (goum ‘marking, scar’)
SES: Gela angora gere ‘Cephalopholis sexmaculata, six spotted rock cod’ (gere ‘to sketch, make lines’)
SES: Gela kusele gere-gerea ‘Epinephelus quoyanus, longfin rock cod (gere-gere ‘to sketch, make lines’)

Lower level reconstructions include Proto North Vanuatu *tab*ale ‘grouper fish’ (François 2005:499), PCP *ŋ*ajala ‘Epinephelus spp.’, PPn *ŋatala ‘Epinephelus, smaller stage’, PCP/PPn *mumua ‘large Epinephelus sp.’, PCP *drala ‘red Cephalopholis sp.’, PPn *lali ‘red rock cod spp.’, PPn *fāpuku ‘Epinephelus sp., possibly E. polyplekadion, marbled sea bass’, PPn *loi ‘Cephalopholis argus, peacock rock cod’, PPn *mataele ‘Serranidae’ (Geraghty p.149, Hooper pp.204–205)

23 Flagtails (Kuhliiidae)

Munro (p.254) describes Kuhliiidae as small to moderate-sized fishes, generally inhabiting shallow coastal waters, with some species preferring brackish or fresh water, often in the vicinity of mangroves. Salt-water species are a brilliant silver. Our only reconstructions are lower-level: PCP *sere, PPn *sesele ‘immature Kuhlia rupestris’, PCP *drava ‘k.o. small freshwater fish, possibly Kuhlia sp.’ (Geraghty p.150) and PPn *safole ‘Kuhlia spp., flagtail’ (Hooper p.206).

24 Bigeyes, bullseyes (Priacanthidae)

These are small to moderate-sized fishes of distinctive appearance. All are bright rosy with a rough sandpapery skin. The eye is large, about half head size. They are nocturnal, typically spending daylight in caves or under ledges (Munro p.284).
The PPN term, *mata-pula ‘Priacanthus cruentatus, red globe-eye’ is a descriptive compound (lit. mata ‘eye’ + pula ‘shine, glow’) (Hooper p.202). The same compound is found in Kove (NNG), where the referent is a large freshwater fish, probably Centropomidae (§21).

25 Cardinalfishes (Apogonidae)

Cardinalfish are small carnivorous fishes. Many are vividly coloured, with striking patterns of bands, stripes or spots. Most live in or around coral reefs and amongst weeds, and in shallow tidal pools, although some prefer brackish water and others inhabit deeper water. Like the Priacanthidae, they are nocturnal, hiding under ledges or in crevices during daylight. The male usually carries the eggs and newly hatched young in its mouth (Munro p.241). No reconstructions have been made.

26 Jacks, trevallies, scads, horse mackerels, kingfishes, darts, rainbow runners and leatherskins (Carangidae)

This is a large, widely distributed family of fast-swimming surface predators which generally inhabit the coastal edge of the deep water. Larger species frequent edges of reefs. Most congregate in schools, and can be caught along beaches with seines. Their flesh is of good texture and flavour (Munro p.221). Oceanic languages typically distinguish many taxa.

In Niuatoputapu, deep sea anglers take pride in withstanding the rigours of a dusk to dawn session of tauʔotule, fishing from an anchored boat in around 17 fathoms of water, and using a pressure gas lamp to attract the fish (big-eyed scad, Selar crumenophthalmus) (Dye 1983:250).

I have six POc reconstructions, but can be confident of matching terms with specific genera for only four, POc *qatule ‘Selar spp., scad’, POc *pilu ‘Caranx spp., trevally’, POc *lasi ‘Scomberoides spp., leatherskin’ and POc *kamaRi ‘Elagatis bipinnulata, rainbow runner’. Other genera include Carangoides, Trachinotus, Gnathanodon, and Decapterus. Where the
reflexes cover a range of genera, the reconstructions are simply labelled carangid. The popularity of these fish both as sporting fish and as food, and their role in places as appropriate tribute for chiefs, are reflected by the number of terms for their growth stages. Here I can reconstruct PPN terms for growth stages, *lupo-lupo* for the smallest and *qulua* for a large caranx, (not necessarily the largest).

PMP *qatulay* ‘Trachurops crumenophthalmus, the big-eyed scad’ (ACD)
POc *qatule* ‘Selar spp. including *S. crumenophthalmus*, big-eyed scad’

Adm: Titan	atul	‘scad (generic)’
PT: Molima	?atune	‘fish that looks like pilchard’
PT: Muyuw	geytula	‘trevally, scad’ (Damon)
PT: Misima	atuni	‘generic for trevally, scad’
Mic: Kosraean	etol	‘large mackerel’
Mic: Sonsorolese	adir	‘caranx’

PCP *qatule* ‘*Selar crumenophthalmus*’ (Geraghty)

Fij: Rotuman	afule	‘kind of fish (silver bream?)’
Fij: Wayan	atule	‘*S. crumenophthalmus*’
Fij: Kadavu	ātule	‘*Caesio, Rastrelliger* spp.’

PPN *qatule* ‘*Selar crumenophthalmus*, silver scad’ (Hooper)

Pn: Niuatoputapu	?otule	‘*S. crumenophthalmus*’
Pn: Niuean	atule	‘big-eyed scad’
Pn: E Uvean	?atule	‘*S. crumenophthalmus*’
Pn: Anutan	ature	‘type of small fish that comes into the shallow reef water in large schools. Ranges in size from about one to one and a half pounds’
Pn: Tahitian	ature	‘horse-mackerel’
Pn: Hawaiian	akule	‘big-eyed or goggle-eyed scad, *S. crumenophthalmus*’

PMP *bilu*[bilu] ‘*Caranx* spp., trevally’ (ACD; Blust 2002: *pilu* ‘Gnathanodon* sp.’)
POc *pilu* ‘*Caranx* sp. or spp., trevally’

Figure 2.15 **Left** *Gnathanodon* speciosus, golden trevally. **Right** *Alectis indica*, plumed trevally.
Reflexes of the next set have consistent reference to larger species only in the Central Pacific. *Caranx ignobilis* and *C. sexfasciatus* are among the largest of the trevallies.

POc *qulua* ‘carangid’ (ACD: ‘Caranx spp.’)

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Gedaged</td>
<td>ulua</td>
<td>‘white marine fish about 20 cm long’</td>
</tr>
<tr>
<td>PT: Dobu</td>
<td>?uliya</td>
<td>‘Decapterus macarellus, mackerel scad’</td>
</tr>
</tbody>
</table>

PPn *qulua* ‘Caranx sp., probably mature phase of *C. ignobilis*’ (Hooper)

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn: Tongan</td>
<td>?ula</td>
<td>‘very large fish: a full-sized lupo (trevally)’</td>
</tr>
<tr>
<td>Pn: Niuatoputapu</td>
<td>?ula</td>
<td>‘largest growth stage of trevally’</td>
</tr>
<tr>
<td>Pn: Niuean</td>
<td>ulua</td>
<td>‘C. ignobilis, C. sexfasciatus’</td>
</tr>
<tr>
<td>Pn: Samoan</td>
<td>ulua</td>
<td>‘name given to two species of fish of genus Caranx when about a metre long, and considered to be a present fit for a chief’</td>
</tr>
<tr>
<td>Pn: Rennellese</td>
<td>?ugua</td>
<td>‘generic name for some crevalles (or trevallies), e.g. plumed trevally, mirrorfish, long-finned trevally’</td>
</tr>
<tr>
<td>Pn: Tahitian</td>
<td>urua</td>
<td>‘cavalla’ (Henry 1971:390)</td>
</tr>
<tr>
<td>Pn: Marquesan</td>
<td>u?ua</td>
<td>‘C. ignobilis’</td>
</tr>
<tr>
<td>Pn: Hawaiian</td>
<td>ulua</td>
<td>general name for Caranx spp.</td>
</tr>
</tbody>
</table>

cf. also:

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mic: Kiribati</td>
<td>urua</td>
<td>‘adult trevally’ (for †unua)</td>
</tr>
</tbody>
</table>

POc *mamula* ‘carangid’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Tami</td>
<td>mamul</td>
<td>‘Gnathanodon speciosus, golden trevally’</td>
</tr>
<tr>
<td>PT: Kilivila</td>
<td>mamila</td>
<td>‘Chorinemus tolooperah, queenfish [Scomberoides lyan]’</td>
</tr>
<tr>
<td>MM: Lihir</td>
<td>mamul</td>
<td>‘Carangoides spp., small trevallies’ (mamul is generic for trevally in Solomons Pidgin)</td>
</tr>
</tbody>
</table>

17 Iaai normally does not retain final consonants, so this may have been a compound (John Lynch, pers. comm.).
Oceanic reflexes of the next set refer fairly consistently to *Scomberoides* spp. (=*Chorinemus*), fishes known variously as leatherskin, whitefish, queenfish, skinnyfish or giant dart. They can grow to over a metre in length. Blust (ACD) has reconstructed PMP *lajih ‘dolphinfish’* and PMP *daRi ‘leatherskin’, with Oceanic reflexes of the former apparently referring to the leatherskin. The two Mutu (NNG) terms below suggest that the dolphinfish may sometimes be referred to as the leatherskin’s mother. For dolphinfish sets, see §27 below.

**PMP *lajih ‘dolphinfish’ (ACD)*

POc *laci ‘Scomberoides* spp., leatherskin, including *S. l Yas’

Adm:	Ere	las	‘flat fish found in river mouths’
Adm:	Loniu	las	‘flatish fish similar to a mackerel’
Adm:	Leipon	las	‘k.o. flat, silvery fish’
Adm:	Titan	las	‘*Scomberoides l Yas*, skinnyfish or giant dart’
Adm:	Andra	las(ei)	‘*Ulua mandibularis*, jack’ [*U. mentalis*]
NNG:	Mutu	las	‘*Scomberoides commersonnianus*, leatherskin’
NNG:	Gedaged	las	‘whitish-grey marine fish about 2.5 metres long’
NNG:	Bing	läs	‘leatherskin’
PT:	Motu	ladi	‘*Chorinemus* spp., leatherskin’ [*Scomberoides*]
MM:	Patpatar	lasis	‘k.o. fish, big and white’
MM:	Lihir	las	‘*S. l Yas*, double-spotted queenfish’
MM:	Nehan	lah	‘leatherskin, giant dart’
MM:	Marovo	lasi-lasi	‘*S. commersonnianus*, leatherskin’
SES:	Gela	lai-lahi	‘*Scomberoides* generic’
SES:	Arosi	rasi	‘fish sp.’
Mic:	Kiribati	nari	‘*S. l Yas*’
Mic:	Ponapean	lāc	‘*Atule mate*, jack’
Mic:	Mokilese	lāt	‘fish sp., kind of skipjack’

PCP *laði ‘Scomberoides’ sp.* (Geraghty)

| Fij: | Wailevu | laði | ‘*Scomberoides tol*’ |

**PPn *lai ‘Scomberoides’ (Hooper)*

Pn:	Tongan	lai	‘k.o. fish’
Pn:	Niuean	lai(loa)	‘*S. l Yas*, leatherskin or leatherback’ (loa ‘long’)
Pn:	Samoan	lai	‘*Scomberoides* sp.’
Pn:	Hawaiian	lai	‘*Scomberoides* sp.’
POc *kamaRi ‘Elagatis bipinnulata, rainbow runner’

Adm: Titan kamei ‘E. bipinnulata’
Adm: Nali kemei ‘E. bipinnulata’
Mic: Kiribati kamā ‘E. bipinnulata’

Malcolm Ross (vol.2, pp.49-50) reconstructs POc *mala ‘resembling’ which occurs in plant names and occasionally, it seems, in fish names as well. Of the terms listed in the set below, those consisting of a compound mala + modifier could all be considered ‘resembling’ examples. If this is the common meaning of *mala we would expect it to be reflected in terms for fishes not necessarily related. The fact that the most frequent reference in this set is to carangids suggests that a similar form was a POc fish name. However, because the carangid examples are largely restricted to the Solomons (the only exception being Samoan), it may be that *mala came to be used in the Solomons as a generic for carangids, as Hviding has suggested for Marovo. For this reason no POc reconstruction is proposed.

MM: Patpatar mala(la) ‘k.o. fish’
MM: Nehan mala(yuh) ‘Trachinotus russelli, common dart’ (yuh ‘kiss’) [T. botla]
MM: Marovo mara ‘generic for all Carangids (trevallies etc.)’ (15 compound terms for kinds) (for †mala)
SES: Gela mala(boro) ‘Selaroides leptolepis, smooth-tailed trevally’ (mala ‘as, like’; boro ‘bottom, keel of canoe’)
SES: Gela mala(hau) ‘various kingfish and jack spp.’ (hau ‘old’)

PnP *mala ‘k.o. fish’
Pn: Tongan mala ‘large serranid’
Pn: Niuatoputapu mala ‘k.o. fish’
Pn: Samoan mala(uli) ‘certain fish of genus Caranx (considered fit for chiefs) when about 30 cm long’ (uli ‘black’)
Pn: Tokelauan mala(tea) ‘Cheilinus undulatus’ (tea ‘white’)

PEOc *taliku ‘Carangid’

SES: Gela taliyu(mane) ‘Caranx ignobilis, giant trevally’ (mane ‘male’)
SES: Arosi ariu ‘k.o. fish, kingfish’
SES: Kahua ariu ‘jack, Carangidae (generic)’
NCV: NE Ambae taliu ‘trevally, Carangidae’ (loss of k unexplained)

PROc *lubo ‘Caranx spp.’

SV: Anejom ne-rop ‘Caranx melampygus’
PnP *lupo ‘Caranx spp. (Hooper)
PnP *lupo-lupo ‘juvenile Caranx spp.’ (Hooper)

18 Blust (1986:73) lists a number of fish names with prefix mala from Cebuano (WMP) (mala-patí ‘k.o. fish’, mala-sugi ‘swordfish, sailfish’, mala-tindúk ‘mackerel scad’), and one from Samar (WMP) (mala-punti ‘blue-spotted sea perch’), but there is insufficient information to identify a common meaning.
Fish

Pn: Tongan lupo ‘mature Caranx’
 lupo-lupo ‘juvenile Caranx’
Pn: Niuean lupo-lupo ‘juvenile Caranx spp.’
Pn: Pukapukan lupo-lupo ‘juvenile Caranx’
Pn: Rennellese gupo ‘juvenile Caranx’
Pn: Tokelauan lupo-lupo ‘juveniles of all Caranx spp.’

27 Dolphinfishes (Coryphaenidae)

Dolphinfish are large swift-swimming powerful fish, pelagic and mostly oceanic, but sometimes found around reefs. They are spectacular fighters which leap from the water when hooked. They have brilliant colouration and excellent flesh. Munro (pp.218–219) records two species for the family, with *Coryphaena hippurus* being larger and better known than *C. equiselis*. They are not to be confused with dolphins, cetaceans of the family Delphinidae, although some Polynesian dictionaries gloss their term for *C. hippurus* as ‘dolphin’.

PMP *palata ‘fish sp.’ (ACD: PWMP *palata)
POc *palata ‘Coryphaena hippurus, dolphinfish’

MM: Marovo palata ‘Coryphaena hippurus’
SES: Arosi harata ‘a fish sp.’
Mic: Ponapean palač ‘fish, about 30 cm, longish nose, body light red, head salmon-pink, tail and fins dark red’ (Christian 1899)

cf. also:

NNG: Kove palana ‘dolphinfish’
MM: Tolai palatāga ‘k.o. fish’

Hooper (p.210) reconstructs PPn *masi-masi ‘Coryphaena hippurus, dolphinfish’, but we have found no non-Polynesian cognates.
28 Ponyfishes, slimys (Leiognathidae)

Ponyfishes are all very small, with a highly protractile mouth, the feature which is reflected in an alternative name, pouters. Slime is exuded in large quantities after capture. Large schools can be caught along sheltered beaches and estuaries (Munro, p.237). In Lau (Malaita) they are freshwater fish, moving between the rivers and the lagoon (Akimichi 1978:310). Few terms have been located and no reconstructions made.

29 Fusiliers (Caesionidae)

Most fusiliers are brilliantly coloured with iridescent blue and yellow. They can be taken in great abundance near coral reefs and rocky shores. Very large schools migrate for long distances. They swim with synchronised quick precision. Flesh is coarse but not unpalatable (Munro p.300). Hooper quotes Lewis et al. as describing them as important tuna baitfish in many areas (Hooper p.192). This may explain why the Tokelauan term for mackerel scad, a different fish but also a tuna baitfish, is cognate with terms for fusilier species in the following set.

PMP *sulig ‘Caesio sp., fusilier’ (Blust 2002)
POC *sulik ‘Caesionidae, fusilier’

Adm: Loniu	(ĩa)cun	‘fusilier’
MM: Lihir	sil	‘Caesionidae (generic)’
Mic: Satawalese	tin	‘Caesio spp., fusilier’

PPn *huli ‘fusilier sp.’ (Hooper: ‘fusilier or mackerel sp.’)

Pn: Tongan	huli	‘k.o. fish’
Pn: Samoan	uli(sega)	‘Caesio sp.’
Pn: Tokelauan	uli	‘Decapterus pinnulatus, mackerel scad’ [D. macarellus]
Pn: K’marangi	uli	‘Caesio coerulaureus, gold-banded fusilier’
Pn: Pukapukan	uli	‘large size of tikava, Pterocaesio tile, tricoloured fusilier’

PCP/PPn *tikawa ‘Caesio sp.’ is reconstructed by Geraghty (p.152), Hooper (p.210).

30 Snappers or sea-perch, basses, jobfishes (Lutjanidae)

Snappers are rather large fish with a sheathed maxillary, typically red or yellow in colouring. Although known largely as reef fishes inhabiting rocky bottoms, the family includes deep sea snappers. Their flesh is highly esteemed, although a few have been implicated in ciguatera poisoning (Munro p.288).

There are many species of Lutjanidae, some quite distinctive in markings, and Oceanic languages typically distinguish several taxa. I have seven possible POC reconstructions but, except for POC *qutur ‘Aprion virescens, green jobfish’, it is difficult to give precise glosses. Some are probably names of particular species, one or two are generic for two or more species, others may be names of particular species at a certain stage of growth.
The proposed gloss of POc *qutur is based on the agreement of non-Oceanic cognates with those of the Central Pacific.19 \textit{Aprion virescens}, the green jobfish, is found at depths that vary from 0–180 metres (FishBase). See §20 regarding the homophony of this etymon with POc *qutur ‘k.o. fish, possibly \textit{Sphyraena} sp., barracuda’.

PMP *qutur ‘green jobfish’ (Blust 2002: *qutun)
POc *qutur ‘\textit{Aprion virescens}, green jobfish’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT: Misima</td>
<td>utul</td>
<td>‘\textit{Aprion virescens}, green jobfish’</td>
</tr>
<tr>
<td>MM: Tolai</td>
<td>ut</td>
<td>‘k.o. fish’</td>
</tr>
<tr>
<td>SES: Arosi</td>
<td>uu</td>
<td>‘k.o. freshwater fish’</td>
</tr>
</tbody>
</table>

PCP *qutu ‘\textit{Aprion virescens}, grey jobfish’ (Geraghty: *quto)

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fij: Wayan</td>
<td>otu</td>
<td>‘grey snapper, \textit{Aprion virescens}’</td>
</tr>
</tbody>
</table>

PPn *qutu ‘\textit{Aprion virescens}, grey jobfish’ (Hooper)

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn: Tongan</td>
<td>utu</td>
<td>‘k.o. fish’</td>
</tr>
<tr>
<td>Pn: Niuean</td>
<td>utu</td>
<td>‘\textit{Sphyraena} spp., barracuda; \textit{Aprion virescens}, grey jobfish’</td>
</tr>
<tr>
<td>Pn: E Uvean</td>
<td>?utu</td>
<td>‘\textit{A. virescens}’</td>
</tr>
<tr>
<td>Pn: Rennellese</td>
<td>?utu</td>
<td>‘large fish with a long body, probably green jobfish, \textit{A. virescens}’</td>
</tr>
<tr>
<td>Pn: Pukapukan</td>
<td>(pulu) wutu</td>
<td>‘\textit{A. virescens}, green jobfish’</td>
</tr>
<tr>
<td>Pn: Samoan</td>
<td>utu</td>
<td>‘\textit{A. virescens}’</td>
</tr>
<tr>
<td>Pn: Tahitian</td>
<td>utu</td>
<td>‘\textit{A. virescens}’</td>
</tr>
<tr>
<td>Pn: Hawaiian</td>
<td>uku</td>
<td>‘a deep-sea snapper, \textit{Aprion} spp.’</td>
</tr>
</tbody>
</table>

19 Pendau (WMP) \textit{utur ‘jobfish’} (Phil Quick pers. comm.) and Sangir \textit{utude ‘kind of deep-sea fish caught by line’} (\textit{Acd}).
In the set below, the Andra, Kilivila and Temotu items reflect *bʷapa rather than *bʷawa. I have no explanation for this variation. The Fijian and Polynesian reflexes show coalescence of *-wa as -o.20

POc *bʷa[p,w]a ‘Lutjanus spp., snapper’

Adm: Andra pʷah ‘L. ehrenbergi, snapper’
Adm: Titan pʷa ‘L. fulviflamma, blackspot sea-perch’
NNG: Yabem (i)bɔa ‘Terapon perch’
PT: Kilivila bʷava ‘L. fulviflamma’
TM: Buma bavolo ‘L. fulvus’
NCV: Vera’a bawa ‘L. fulviflamma’
NCV: Mwotlap na-baw ‘L. fulvus, L. kasmira’
NCV: Orlat paw ‘L. monostigma’
Fij: Kadavu bō ‘Lutjanus adetii, yellow-banded snapper’
Fij: Wayan bō ‘L. gibbus, paddletail’
Pn: Niuean (palu) pō ‘Aphareus furca, blue smalltooth jobfish’

cf. also:

NNG: Bukawa (i)bɔʔ ‘Terapon perch’
NCV: Mota pawa ‘Serranus’

Lutjanidae and Lethrinidae are from the same sub-order of perch-like fishes. It is possible that the next reconstruction included members of both families.

POc *sabutu ‘snapper (Lutjanus) or emperor (Lethrinus) sp. or spp.’

Adm: Loniu saput ‘Lethrinus kallopterus, yellow-spotted emperor’ [L. erythracanthus]
PT: Sinaugoro rabutu ‘a reef fish’
PT: Motu dabutu ‘Acanthopagrus berda, black bream’

PCP *(ð,s)abutu ‘Lutjanus and Lethrinus spp.’ (Geraghty)

Fij: Rotuman saputu ‘k.o. fish’
Fij: Wayan ðābutu ‘generic for several species of Lutjanidae and Lethrinidae, including Lutjanus sebae, red emperor, and Lethrinus nebulosus, spangled emperor’

PPn *s(a,ā)putu ‘Lutjanus and Lethrinus spp.’ (Hooper: ‘Lutjanus sp.’)

Pn: Tongan hoputu ‘Lethrinus miniatus, possibly also Lutjanus gibbus’
Pn: Tikopia saputu ‘Lethrinus kallopterus’ [L. erythracanthus]
Pn: K’marangi hāpoto ‘Lutjanus rivulatus or Lethrinus’
Pn: Tahitian haputu ‘L. rivulatus’

cf. also:

MM: Teop kabusi ‘Lutjanus (generic)’

20 For a another example of *-wa becoming -o see POc *maŋewa (p.31).
POc *tə(Ra)qeə ‘Lutjanus spp., snapper, sea perch’

Adm: Titan *dra ‘Lutjanus rufolineatus, yellow-lined snapper, L. kasmira, yellow-and-blue seaperch’

Adm: Loniu *ta ‘k.o. fish’

Adm: Lenkau *dak ‘Lutjanus spp., seaperch’

NNG: Yabem *i-teʔ ‘k.o. snapper’

NNG: Bukawa *i-taʔ ‘k.o. snapper’

NCV: Lakon tā-tā ‘L. kasmira’

PPn *tāeqa ‘Lutjanus sp., probably L. gibbus’ (Hooper reconstructs *tāeqa)

Pn: E Uvean tāʔa ‘L. fulviflamma, blackspot seaperch’ (metathesis)

Pn: Pukapukan tāea ‘L. gibbus, paddle-tail snapper’

Pn: Tokelauan tāea ‘L. gibbus’

Pn: Tuvalu tāea ‘L. fulvus, yellow-margined seaperch, L. gibbus, paddletail’

Pn: Mangarevan tāea ‘L. gibbus’

Pn: Tahitian tāea ‘L. gibbus’

POc *tasiwa ‘Lutjanus spp.’

Adm: Loniu *tus ‘Lutjanus sebae, red emperor’

PT: Motu tādiva ‘Lutjanus gibbus, paddle-tail’

SES: Lau ak*asi (mai) ‘generic for four Lutjanus spp.’ (Akimichi) (reflects metathesised form *tawasi)

PCP *tasiwa ‘Lutjanus sp.’ (Geraghty)

Fij: Rotuman sasiva ‘L. fulviflamma, black spot seaperch’

PPn *tahīwa ‘L. monostigma, one spot seaperch’ (Hooper: *taqiwa)

Pn: Niuatoputapu tāiva ‘Lutjanus sp.’

Pn: Pukapukan tāiva ‘L. monostigma’

Pn: Samoan tāiva ‘Lutjanus sp. when about 60 cm long’

 taiva uli-uli ‘L. monostigma’

Pn: Tokelauan tāiva ‘L. monostigma, one spot seaperch’

Pn: Tahitian tāiva-iva ‘L. monostigma’

POc *p(a,e)ŋa ‘red Lutjanus spp.’

Adm: Titan *peŋa ‘Lutjanus sebae, red emperor, L. sanguineus, seaperch’

PPn *faŋa-mea ‘red Lutjanus spp., especially L. bohar, red bass or red snapper (-mea ‘reddish’) (Hooper)

Pn: Tongan faŋa-mea ‘L. bohar’

Pn: Niuean (palu) faŋa-mea ‘Etelis carbunculus, ruby snapper’

Pn: E Uvean faŋa-mea ‘growth term of L. bohar’

Pn: Tokelauan faŋa-mea ‘L. bohar’

Pn: Tuamotuan faŋa-mea ‘L. bohar’
POc *k(i,e)pV ‘Lutjanus spp., sea perch’

- Adm: Penchal kip ‘Lutjanus spp., sea-perch’
- Adm: Lou kip ‘Lutjanus spp., sea-perch’
- Adm: Lenkau kep ‘Lutjanus spp., sea-perch’
- Adm: Andra kih ‘L. bohar, red bass’
- Adm: Loniu keh ‘sea perch spp.’
- NNG: Takia kef-kef ‘black reef fish’

cf. also:
- Pn: E Uvean kivi ‘L. bohar’ (for †kifi)

PPN *palu is included here with supporting evidence as an unusual case. Hooper and Huntsman (1991:119–127) write that in Polynesia the two fishes which are associated most strongly with the name palu are unrelated: the oilfish Ruvettus pretiosus and the deep sea snappers (ruby snapper Eetlis carbunculus, flower snapper Pristipomoides zonatus, big-eyed snapper Pristipomoides argyrogrammicus, and the small-toothed jobfish Aphareus furca). These fishes share deep water habitats, being caught at depths of 200 metres or more by handline fishing, with the long line carrying a series of spaced hooks. The technique requires great strength and skill, and Hooper quotes Roger Green as believing that it was probably a late Samoic-Outlier innovation, depending as it does on suitable deepwater environments where the fish can be found, calm water, adequate tackle and appropriate ocean-going canoe skills. We have no evidence that POc speakers fished at this depth. See §56 for Gempylidae, snake mackerels, oilfish.

PPN *palu ‘oilfish; deep-sea snapper’ (Hooper: ‘Ruvettus pretiosus, oilfish’)

- Pn: Tongan palu ‘k.o. fish’
- Pn: Niuean palu ‘generic for a number of fish spp., mainly snapper and jobfish’ (many compounds with palu as first element)
 - palu tēh ‘Ruvettus pretiosus, castor oil fish’ (lit. younger sibling of palu’)
- Pn: Niuatoputapu palu ‘deep sea snapper’
- Pn: Pukapukan palu ‘Ruvettus pretiosus; also first element in terms for a number of mainly deep-sea fish spp. including snapper and jobfish’
- Pn: Samoan palu ‘k.o. fish, Aphareus, up to a metre long’ (jobfish)
- Pn: Tokelauan palu ‘Ruvettus pretiosus’ (oilfish)
- Pn: K’marangi palu ‘Aphareus’
- Pn: Tikopia paru ‘several kinds of large sea fish of reddish colour, including golden-lined sea perch and snapper’
31 Monocle breams, threadfin breams, sea breams, butterfly breams
(Nemipteridae)

Most are brilliantly coloured, inhabiting sand and rubble areas around reefs. The flesh is of
good flavour (Munro p.308). One weakly supported reconstruction is proposed.

POc *maroVT ‘Nemipterus spp.’
Adm: Titan maros ‘Nemipterus spp., butterfly bream’
MM: Nehan marot ‘two-lined monocle bream; silver biddy’

32 Threadfins (Polynemidae)

These are a small family frequenting sandy shores and muddy estuaries, and at times, coral
reefs. They are known chiefly for the free filaments in the pectoral fin, a feature which is
reflected in its name as a reduplicated term for ‘beard’. They also have a projecting snout and
large adipose eyelids, which reflect adaptation to muddy environments where sense of touch
compensates for loss of vision. The flesh has excellent flavour and texture (Munro p.189).

Our only reconstruction is at PPn level, PPn *kumi-kumia ‘Polydactylus sexfilis, P. ple-
beius: threadfin’ (from POc *kumi ‘beard’ (Hooper p.204). Hooper notes that the Tokelauan
word for P. sexfilis is ava-ava, also meaning ‘beard’.

Misima (PT) has a term kum-kum ‘generic for damselfish, Chromis spp. and others’, con-
sidered a chance resemblance.

33 Mojarras, silver biddies (Gerreidae)

The mojarras are small silvery fish with very protractile jaws, superficially resembling pouters
(Leiognathidae). They move in large schools, mostly along sandy shores (Munro p.331).

PROc *matu ‘Gerres spp., silver biddy’
NCal: Iaai (o)mök ‘Gerres sp.’
Mic: Marshallese mec-mec ‘Lethrinus microdon, snapper’
PCP *matu ‘Gerres’ (Geraghty)
Fij: Rotuman mafu ‘k.o. fish’
Fij: Wayan matu ‘Gerres spp.’
Fij: Bauan matu ‘Gerridae’
PPn *matu ‘Gerres spp., mojarras’ (Hooper)
Pn: Tongan matu ‘k.o. fish like a silver bream’
Pn: Samoan matu ‘Gerres sp., when about 15 cm long’
Pn: W Uvean matu ‘Gerres sp.’
34 Sweetlips, javelinfishes (Haemulidae, formerly Plectorhynchidae and Pomadasyidae)

These moderate-sized fish inhabit coastal waters around coral reefs. Some, particularly the juveniles, are strikingly marked and brightly coloured, but colour pattern varies greatly with age. The flesh flavour is good (Munro p.315).

Some of the following forms attributed to POc *(k,q)umutuR show loss of the first syllable. The only languages which disambiguate *k- from *q- are Nakanai, where *k is reflected and Wayan, where *q is reflected. The Gela term is apparently borrowed from a Northwest Solomonic language as it retains final consonant with echo vowel.

POc *(k,q)umutuR ‘Plectorhinchus spp., sweetlips’

Adm: Penchal kumut ‘Plectorhinchus spp.’
Adm: Lenkau kumut ‘Plectorhinchus spp.’
Adm: Lou kumut ‘Plectorhinchus spp.’
Adm: Titan kamot ‘Pomadasyidae, sweet lip (generic)’
Adm: Nali komwet ‘Plectorhinchus spp.’
NNG: Mutu umut ‘Plectorhinchus spp.’
NNG: Kove mutur(iŋo) ‘P. chaetodonoides, harlequin sweetlip’
MM: Patpatar a-umut ‘many kinds spotted sweetlips’ (a article)
MM: Nakanai kumu ‘demoiselle’
MM: Nehan mutur ‘sweetlip’
SES: Gela kometulu ‘Plectorhinchus spp.’
SES: Lau mumu ‘Plectorhinchus spp., sweetlip’ (for †ʔumu)
Fij: Wayan umotu ‘P. flavomaculatus’

POc *lau ‘Plectorhinchus spp., banded sweetlips’

Adm: Lenkau lou ‘Plectorhinchus spp.’
Adm: Lou lo ‘sweetlip’
Adm: Loniu low ‘sweetlip or sea bream’
NNG: Manam lau ‘banded sweetlip’
cf. also:
Adm: Titan loloi ‘Plectorhinchus spp.’
NCV: NE Ambae lulu(kala) ‘oriental sweetlip’

35 Grunters, terapon perches (Teraponidae)

Teraponidae are small Indo-Pacific fish occurring in shallow tidal, brackish or fresh water. Species differ greatly in proportions and colour, some plain and others conspicuously banded. Some species make grunting noises (Munro p.320).

There is a PPN reconstruction, *kawa-kawa ‘Terapon jarbua, crescent perch’, based on Niuatoputapu and E Uvean kava-kava, Samoan ʔava-ʔava, all ‘Terapon jarbua’, but none for a higher order interstage. POc *kawa-kawa ‘rock cod, grouper’ (§22) is considered unrelated.
36 Emperors and large-eyed breams (Lethrinidae)

Emperors inhabit shallow coastal waters around rocky outcrops and coral reefs, moving in schools. Most are fairly brightly coloured in shades of red and green. Their flesh is excellent (Munro p.324). Four genera are identified, *Lethrinus*, *Gnathodentex*, *Gymnocranius* and *Monotaxis*. We have seven POc reconstructions, but in a number of instances their reflexes have come to be applied to different referents in daughter languages. In such cases reconstructions are simply labelled Lethrinidae or *Lethrinus* spp.

In the following set there has been confusion with reflexes of POc *(k,q)ulapi* ‘parrot-fish’ (§47) in Tokelauan.

Figure 2.18 Lethrinus variegatus, variegated emperor

PMP *kulambar* ‘*Gnathodentex*, Scolopsis’ (Blust 2002: PWMP)

POc *kulabo* ‘Lethrinidae’

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm:</td>
<td>kulom</td>
<td>‘Lethrinidae, emperor’</td>
</tr>
<tr>
<td>Adm:</td>
<td>kolom</td>
<td>‘Monotaxis grandoculis, hump-nose sea bream’</td>
</tr>
<tr>
<td>Adm:</td>
<td>kulap</td>
<td>‘Lethrinidae, sea bream’</td>
</tr>
<tr>
<td>Fij:</td>
<td>kulabo</td>
<td>‘Lethrinidae sp.’</td>
</tr>
</tbody>
</table>

POc *kulapo* ‘fish sp.’ (Hooper)

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn:</td>
<td>kulapō</td>
<td>‘k.o. fish’</td>
</tr>
<tr>
<td>Pn:</td>
<td>kulapu</td>
<td>‘Paracaesio sp., k.o. snapper’</td>
</tr>
<tr>
<td>Pn:</td>
<td>kulapo</td>
<td>‘Lethrinus nematocanthus, threadfin emperor’ [L. genivittatus]</td>
</tr>
<tr>
<td>Pn:</td>
<td>kulapo</td>
<td>‘Scarus harid, juvenile’ [Hipposcarus harid]</td>
</tr>
</tbody>
</table>

cf. also:

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fij:</td>
<td>ulapu</td>
<td>‘k.o. fish’ (θ- for †ʔ-)</td>
</tr>
<tr>
<td>Pn:</td>
<td>ulapo</td>
<td>‘lighter coloured species of genus Scarus’ (parrotfish) when about 15 cm long’ (θ-for †ʔ-)</td>
</tr>
</tbody>
</table>

Western Oceanic reflexes in the next set show unexpected loss of final syllable.

POc *kasika* ‘large emperor, *Lethrinus* sp.’

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm:</td>
<td>kasi</td>
<td>‘L. miniatus’ 21</td>
</tr>
<tr>
<td>Adm:</td>
<td>kasi</td>
<td>‘emperor, five Lethrinus spp.’</td>
</tr>
<tr>
<td>PT:</td>
<td>ari</td>
<td>‘a reef fish’</td>
</tr>
<tr>
<td>PT:</td>
<td>adia</td>
<td>‘Aprion virescens, green jobfish, Lethrinus microdon, small-tooth emperor’ (Oram)</td>
</tr>
</tbody>
</table>

21 *Lethrinus miniatu*s is the trumpet emperor, a different fish from *L. olivaceus*, the long-nosed emperor, albeit one with which it is often confused. *L. elongatus* is a synonym for *L. olivaceus*, ‘long-nosed emperor’ [*Lethrinus miniatu*s or *L. olivaceus*?].
MM: Teop ahi-ahi ‘Lethrinella miniata, long-nosed emperor’
[Lethinus miniatus or L. olivaceus]

SES: Kahua yasiya ‘L. elongatus’ [L. olivaceus]

NCV: Mwotlap na-wavesi ‘L. harak’ [thumbprint emperor]

NCV: Dorig wawstyi ‘L. harak’

Mic: Mokilese katek ‘k.o. emperor’

Mic: Satawalese yaetik ‘Lethrinus sp.’

Fij: Rotuman ʔasiʔa ‘snapper’

Fij: Wayan kaðika ‘L. variegatus’

POc *surup ‘Lethrinus spp.’

MM: Tolai urup ‘k.o. large fish’

MM: Lihir curu(bian) ‘Lethrinus harak’

SES: Gela huru ‘k.o. fish with scarlet splashes on fins, head and
snout’ (Fox); ‘Lethrinus harak and L. obsoletus’
(Foale)

SES: Lau suru ‘small sp. of reef fish (Lethrinidae); generic for
Lethrinidae? (Akimichi)’

SES: Kwaio sulu ‘k.o. fish used in ritual’

SES: Longgu suru ‘L. elongatus, long-nosed emperor’ [L. olivaceus]

SES: To’aba’ita suru (k*atoa) ‘L. elongatus’ (sru generic; k*atoa ‘digging stick’).
The shape of L. elongatus is distinctive and the
specific names often refer to the pointed snout.)

SES: ’Are’are suru (horau) ‘L. elongatus’ [L. olivaceus]

SES: Ulawa suru (wotola) ‘L. elongatus’ [L. olivaceus]

Despite their similarity to items reflecting POc *surup, members of the set below appar-
tently reflect a separate etymon, since the sound correspondences of the two sets cannot be
reconciled.

POc *susul ‘Lethrinus spp.’

NNG: Lukep (Pono) susul ‘emperor’

NNG: Mutu sul(ŋab) ‘Lethrinus variegatus, variegated emperor’
sul(xil) ‘L. elongatus [L. olivaceus], L. ramak [L.
obsoletus], L. nematacanthus [L. genivittatus]’

NCV: Vera’a (wu)sulσ ‘L. harak’22

NCV: Dorig (w)sol ‘L. miniatus’

NCV: Lakon (wo)hol ‘L. miniatus’

NCV: Uripiv no-jil ‘emperor’

NCV: S Efate n-sul ‘emperor’

SV: Anejoñi ni-ʔiθθ ‘L. mahsena’

NCal: Nemi diruk ‘L. miniatus’

NCal: Nyelâyu diru ‘L. miniatus’

22 NCV items are due to John Lynch (pers. comm.)
Fish 83

Fij: Wayan ðuðu ‘L. variegatus’
cf. also:
Mic: Carolinian ulu-ul ‘L. elongatus, long-nosed emperor’ [L. olivaceus]

POc *oka]/oka ‘k.o. fish, possibly Lethrinus spp. (acd)

PT: Bwaidoga oka ‘fish sp.’
MM: Tolai ok ‘fish sp.’
Mic: Kiribati oka-oka ‘reef fish, scavenger fish, Lethrinus obsoletus’
Pn: K’marangi oko-oko ‘scavenger fish, Lethrinus miniatus’

POc *koraŋ ‘emperor, Lethrinidae’
Adm: Titan kolaj ‘emperor, Lethrinidae’
Adm: Nali kolaj ‘emperor, Lethrinidae’
Adm: Loniu walaj ‘emperor sp.’
Adm: Andra oley ‘Lethrinus semicinctus, reticulated emperor’
MM: Marovo kora-koraŋa ‘small emperor’

It is possible that the items in the set below are related to those above through a borrowing in early Oceanic.

POc *kawajə ‘k.o. fish, probably Lethrinus sp.’

MM: Nehan anj-uanj 23 ‘k.o. large fish’
SES: Lau ?ak*aŋ ‘k.o. fish eaten only by older men’ (Ø- for †-)
SES: Sa’a awaŋo ‘k.o. fish eaten only by older men’ (Ø- for †-)

PCP *kawajə ‘Lethrinus nebulosus’ (Geraghty)
Fij: Wayan kawajə ‘L. nebulosus, spangled emperor’
Pn: Tongan koajə ‘k.o. fish like snapper, but bluish in colour’
Pn: E Uvean kuajə ‘L. xanhocheilus, yellowlip emperor’

PEOc *n(u,o)sa ‘Lethrinus sp.’

SES: Kahua nuta ‘L. miniatus’
NCV: NE Ambae noha ‘Lethrinus spp.’

Also reconstructed are PCP *yujula ‘Lethrinus elongatus’, PCP *kabatiko ‘Lethrinus sp.’, and PCP *(m,b)ū, PPn *mū ‘Monotaxis grandoculis, large-eyed sea bream’ (Geraghty p.153, Hooper p.212). POc *sabutu ‘Lutjanus or Lethrinus sp.’ has also been reconstructed (see cognate set in §30)

23 Nehan anj-uanj is a reduplicated reflex. As POc *w is lost in NW Solomonic languages, I infer that -uanj reflects an earlier interstage *kuanj ‘emperor’.
37 Goatfishes (Mullidae)

The Mullidae have large scales and two barbels at the chin. Small to moderate in size and usually red or gold, they are bottom-dwellers, often occurring in large schools (Munro p.334). Genera include *Mullloidichthys*, *Parupeneus*, *Upeneus* and *Pseudupeneus*. Both in Andra (Adm) (McEldowney 1995) and Kapingamarangi (Pn) (Lieber 1994), goatfish are reported as particularly numerous in stone fishtrap catches. Most species are considered good eating. We have five POC reconstructions, one of which is traceable with consistent referent back to PAn, and one which probably refers to a growth stage.

PAn *Ciqaw ‘goatfish’* (Zorc 1994, Blust 2002)
PMP *tiqaw ‘goatfish’* (acd)
POc *tīgo ‘goatfish sp. or spp.’*

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm: Loniu</td>
<td>tiw</td>
<td>‘goatfish sp.’</td>
</tr>
<tr>
<td>Adm: Seimat</td>
<td>tio-ti</td>
<td>‘barbelled fish four to five feet in length’</td>
</tr>
<tr>
<td>NNG: Gedaged</td>
<td>tik</td>
<td>‘k.o. goatfish’ (Mueller 1985)</td>
</tr>
<tr>
<td>NNG: Bing</td>
<td>tiy</td>
<td>‘goatfish, commonly found in shallow waters and bays’</td>
</tr>
<tr>
<td>PT: Motu</td>
<td>sio</td>
<td>‘Parupeneus spp.’ (Oram n.d.)</td>
</tr>
<tr>
<td>PT: Roro</td>
<td>sio</td>
<td>‘k.o. fish’</td>
</tr>
<tr>
<td>PT: Gumawana</td>
<td>siwo-siwo</td>
<td>‘goatfish’</td>
</tr>
<tr>
<td>MM: Nehan</td>
<td>tio</td>
<td>‘k.o. goatfish’</td>
</tr>
<tr>
<td>MM: Teop</td>
<td>sio</td>
<td>‘Parupeneus spp.’</td>
</tr>
<tr>
<td>SES: Gela</td>
<td>tio</td>
<td>‘Parupeneus spp.’</td>
</tr>
<tr>
<td>SES: Arosi</td>
<td>siʔo</td>
<td>‘k.o. fish with barbels’ (for †sio)</td>
</tr>
<tr>
<td>NCV: Mota</td>
<td>tio</td>
<td>‘k.o. fish with barbels’</td>
</tr>
<tr>
<td>NCV: Mwotlap</td>
<td>tti</td>
<td>‘Mullloidichthys flavolineatus, yellowstripe goatfish’</td>
</tr>
<tr>
<td>NCV: Raga</td>
<td>sio</td>
<td>‘M. flavolineatus’</td>
</tr>
<tr>
<td>Mic: Kiribati</td>
<td>tewe</td>
<td>‘k.o. barbelled fish, goatfish’</td>
</tr>
<tr>
<td>Mic: Marshallese</td>
<td>co</td>
<td>‘Parupeneus barberinus, goatfish’</td>
</tr>
<tr>
<td>Mic: Mokilese</td>
<td>ce</td>
<td>‘k.o. goatfish’</td>
</tr>
<tr>
<td>Mic: Carolinian</td>
<td>sōw</td>
<td>‘lagoon fish, perhaps goatfish’</td>
</tr>
<tr>
<td>Mic: Woleian</td>
<td>sōwe</td>
<td>‘k.o. fish’</td>
</tr>
</tbody>
</table>

PCP *teu ‘k.o. goatfish’* (Geraghty 2010)

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fij: Nadroga</td>
<td>seu</td>
<td>‘goatfish’</td>
</tr>
<tr>
<td>Fij: Bauan</td>
<td>deu</td>
<td>‘goatfish’</td>
</tr>
</tbody>
</table>

24 Bender et al. reconstruct PCMic *tawu ‘a fish’, but add ‘the WOL and KIR forms are incompatible and probably both do not belong in this set’.
Fish

PPn *wete ‘k.o. goatfish, including Mulloidichthys’ (Geraghty 2010)

Pn: Tongan vete ‘goatfish, ‘Mulloidichthys’
Pn: Rennellese bete ‘goatfish’
Pn: Tikopia vete ‘goatfish’
Pn: Hawaiian weke ‘Mulloidichthys sp.’

POc *m‘acasi ‘goatfish’

Adm: Lou m‘arase ‘goatfish’
Adm: Nali m‘alasei ‘goatfish’
Adm: Loniu m‘asas ‘goatfish sp.’ (-s- for †-?-)
Adm: Penchal m‘aracei ‘goatfish’ (Akimichi) (-r- for †-l-)
Adm: Lenkau m‘asei ‘goatfish’ (-θ- for †-h-)
MM: Lihir mawis ‘Parapeneus bifasciatus, doublebar goatfish’ [P. trifasciatus] (-w- for †-s-)
MM: Nehan maeheh ‘goatfish’
SES: ‘Are’are matasi ‘mullet fish’ (goatfish are sometimes known as red mullet)
SES: Lau matasi ‘goatfish (generic)’
SES: Sa’a matasi ‘small shore fish’
NCV: Vera’a m‘asa ‘M. flavolineatus, yellow-stripe goatfish’
NCV: Lakon m‘ah ‘M. flavolineatus’
Mic: Kiribati māwa ‘goatfish’

PCP *ŋ‘aðadi ‘Parapeneus sp.’ (Geraghty)

Fij: Rotuman vasasi ‘fish with small eyes and two beard-like antennae under its mouth’

POc *sua-sua ‘goatfish’

NNG: Manam sua-sua ‘goatfish, catfish’
MM: Marovo sua(ra) ‘generic for goatfish’
NCV: S Efate sus ‘goatfish’
SV: Kwamera (ie)su ‘goatfish’
NCal: Iaai (wa)si ‘M. flavolineatus’
Fij: Wayan dū-dū ‘Parapeneus sp., goatfish’

The PPn reconstruction in the next set appears to be an old compound, but the meaning of *-ama is unknown.

Geraghty (2010) argues that PPn *wete may be a regular reflex of PCP *teu involving the following changes: (i) lowering of the final vowel to *a, (ii) breaking of the vowel o as we, and (iii) metathesis to *wete. He has tracked the same series of changes in PCP *deu ‘unravel’ > PPn *wete ‘untie’.

Admiralties terms apparently reflect Proto Admiralty *m‘acasei with some irregularities. Most other items reflect POc *m‘acasi.
POc *kalo ‘growth stage of goatfish’

Adm: Andra kale-el ‘Upeneus, goatfish’ (unexplained vowels)
MM: Nakanai kalo-kalo ‘little fish’
Pn: Tuvalu kalo ‘Mulloides auriflamma’ (golden-banded goatfish)

[Mulloidichthys vanicolensis]

PPn *kaloama ‘growth stage of goatfish’ (Hooper)

Pn: Tongan kaloama ‘young goatfish’
Pn: Niuean kaloama ‘yellowstripe goatfish’
Pn: Niutatupatapu kaloama ‘middle growth stage of goatfish’ (tūsia ?)
Pn: Pukapukan kalōma ‘young goatfish’
Pn: Samoan ʔaloama ‘k.o. fish’
Pn: Tikopia karoama ‘small stage of goatfish’

The zero reflex of initial *s- in the Ponapean, Mokilese and Lau Fijian reflexes below suggests that they are borrowings from a Polynesian language.

POc *sapulu ‘goatfish spp.’

PT: Motu dahuru ‘k.o. fish’ (-r- for †-l-)
Mic: Ponapean epil ‘M. vanicolensis, yellowfin goatfish’
Mic: Mokilese opil ‘goatfish’
Fij: Lau yavulu ‘Mulloidichthys vanicolensis’

PPn *hafulu ‘growth stage of goatfish’ (Hooper: ‘goatfish, most likely Parupeneus and Upeneus spp.’)

Pn: Niuean hafulu ‘goatfish’
Pn: Samoan afulu ‘M. vanicolensis, juvenile’
Pn: Tuvalu afulu ‘yellow-banded goatfish’
Pn: Tikopia afuru ‘goatfish, larger stage of vete’
Pn: Tahitian ahuru ‘goatfish spp.’
Pn: Hawaiian ʔāhulu-hulu ‘Upeneus porphyreus, juvenile’

cf. also:

MM: Marovo ululo ‘Parupeneus spp., small types’

PWOc *pʷi(r,R)itu(r,R,s) ‘k.o. goatfish’

NNG: Lukep (Pono) biritou ‘k.o. fish’
PT: Misima pilihul ‘generic for goatfishes, Mulloidichthys spp., Parupeneus spp., Upeneus spp.’
MM: Patpatar birite ‘Parupeneus jansenii, rosy goatfish’

Also reconstructed are Proto North Vanuatu *tanitaŋi ‘goatfish’ (François 2005:500), PCP *oje ‘Mullidae’ and PCP *matu-xurau ‘Parupeneus sp.’ (Geraghty p.154). Hooper (p.214) lists PPN *memea ‘Mulloides sp., goatfish’ (mea ‘reddish’), *malili ‘goatfish taxon’ and PNPN *moaŋa ‘Parupeneus spp.’.
38 Sweepers (Pempheridae)

Sweepers are a small family of nocturnal fishes that spend daylight hours in caves and crevices of the reef. They sometimes form large aggregations which disperse after dusk and feed on zooplankton during the night (Allen & Swainston 1993:58). They are dusky silver or bright red, most with very large eyes (Munro p.349).

No POc reconstruction has been made. A lower level reconstruction includes PCP *manivi ‘Pempheris sp.’ (Geraghty p.155), PPn *manifi ‘Pempheris oualensis’ (Hooper p.213) (cf. POc *manipis ‘thin’ – vol.2, p.202).

39 Drummers, rudderfishes (Kyphosidae)

Drummers or rudderfishes are a small family. Fishes are typically small, finely and closely scaled, and dull in colour. Most species are pelagic, often found under floating medusae. They are herbivorous fish, feeding chiefly on algae and seaweed. The flesh is regarded as edible but of poor quality (Munro p.352).

![Figure 2.20 Kyphosus cinerascens, ashen drummer]

POc *maka(o,u)r ‘Kyphosidae, drummer’

Adm: Titan makao ‘Kyphosidae’
Adm: Penchal makau ‘drummer’
Adm: Nali makao ‘drummer’
NNG: Kove makau ‘k.o. fish’
MM: Nakanai makau ‘bream-like fish’
NCV: S Efate (wak)makur ‘Kyphosidae’ (wak ‘pig’)

In the next set, PPn *ranue is proposed rather than *nanue. This would have become anue in Pre-Tongic (where r > 0), with later loss of initial a-. In PNPN *ranue > *lanue by regular sound change, then *nanue by assimilation.

PROc *(r,a,e)nu(a,e) ‘Kyphosus, rudderfish’

Mic: Marshallese rənna ‘Kyphosus vaigiensis, Waigeu drummer’
Mic: Carolinian rēl ‘rudderfish’
Mic: Satawalese rōn ‘Kyphosus spp., drummer’

PCP *(r,a,e)nu(a,e) ‘Kyphosus’ (Geraghty)

Fij: Lau rēnu ‘Kyphosus’

PPn *ranue ‘Kyphosidae’

Pn: Tongan nue ‘k.o. fish’
Pn: Niuean nue ‘rudderfish or drummer, Kyphosus sp.’
Pn: E Uvean nue ‘Kyphosus vaigiensis’ (possibly loan from Tongan)
Pn: Pukapukan nanue ‘Kyphosus sp.’
Pn: Samoan nanue ‘Kyphosus sp.’
Pn: Tokelauan nanue ‘K. cinerascens, ashen drummer’
Pn: Tikopia nanue ‘K. cinerascens’
Pn: Tahitian nanue ‘Kyphosus sp.’
Pn: Hawaiian nanue, nenue ‘rudder or pilotfish’

40 Silver batfishes, diamondfishes (Monodactylidae)

These are small, deep-bodied, compressed fishes, distinguished by their diamond shape and silvery colour and superficially resembling the juveniles of batfishes. They inhabit shallow coastal waters, preferring brackish water and sometimes penetrating into fresh water (Munro p.348). No widespread cognate sets have been found.

41 Batfishes (Ephippidae (formerly Platacidae))

Allen & Swainston (1993:58) describe the batfishes of the genus Platax as among the most graceful of coral reef fishes. They are characterised by long, flowing fins, particularly in their juvenile and sub-adult stages. Adults have almost round bodies. Young ones resemble a leaf in colour and can sink inertly through the water, becoming difficult to see. Batfish are often extremely tame and curious. They are found both on sheltered inshore reefs and on outer slopes.

PMP *buna ‘batfish’ (Blust 2002)
POc *bunaR ‘batfish, Platax sp. or spp., possibly Naso sp. or spp.’ 27
Adm: Seimat pun ‘large flat white pelagic fish’
Adm: Aua puna ‘large flat fish sp.’
Adm: Andra (ku)pun-pun ‘Platax’ (irregular vowel)
NNG: Mutu bunar ‘Platax spp.’
NNG: Kove buna-buna ‘batfish’
PT: Gumawana bunali ‘batfish’
PT: Motu buna ‘Psenes arafuresensis, eyebrowfish’ (Oram)
MM: Nehan bunar ‘Platax teira, round-faced batfish’
MM: Teop burara ‘batfish (generic)’ (-r- for †-n-: consonant assimilation)
TM: Buma bunero ‘batfish, Platax sp.’
Mic: Mokilese p"u\text{"}n ‘batfish’
Pn: Rennellese puna ‘general name for Moorish idols, batfish and some high, flat coral fish with extended fins’
Fij: Wayan vuna-vuna ‘juvenile phase of seabat or angelfish, Platax pinnatus’ (for †buna)

27 Disambiguated from POc *buna(r,R) by evidence from Palauan bils and Pendau bunag (R. Blust pers. comm.)
42 Butterflyfishes, coralfishes (Chaetodontidae)

Butterflyfish are among the most readily recognised of coral reef fishes due to their graceful shapes and wide range of brilliant colour patterns. Colours are usually combinations of black, red, orange, yellow and white. The fishes are diurnal and some species are extremely territorial, inhabiting one or more heads of plate coral. At dusk they retreat to reef crevices where they remain motionless until dawn (Allen & Swainston 1993:60).

Both Hooper (p.188) and Hviding (1996:192) have commented on the fact that in Oceanic languages butterflyfish, coralfish and angelfish are sometimes lumped together under one generic term, although angelfish belong in a separate family, Pomacanthidae. Chaetodontidae are of little value for food, and there is apparently little point in distinguishing species or growth stages.

I have two POc reconstructions, which presumably contrasted in meaning, but reflexes of both *bebek and *tipi-tipi have in some languages been used as the generic form for butterflyfish, coralfish, and perhaps others, and I have been unable to differentiate between their meanings. Although the final *-k of *bebek is not supported by the evidence given here, there can be no doubt that the same word in POc referred to both ‘butterfly’ and ‘butterflyfish’.

POc *bebek ‘generic for Chaetodontidae, coralfish and butterflyfish’ (also ‘butterfly’);

\[
\begin{array}{ll}
\text{Adm:} & \text{Penchal}\quad p^*ep \quad \text{‘Chaetodontidae, coralfish’} \\
\text{Adm:} & \text{Nali}\quad pep \quad \text{‘Chaetodontidae, coralfish’} \\
\text{PT:} & \text{Motu}\quad bebe \quad \text{‘Chaetodon spp.’ (Oram n.d.) (kau-bebe ‘butterfly’)} \\
\text{MM:} & \text{Bola}\quad bebe \quad \text{‘butterflyfish’} \\
\text{MM:} & \text{Nakanai}\quad bebe(o) \quad \text{‘k.o. fish’ (bebe ‘butterfly’)} \\
\text{SES:} & \text{Kwaio}\quad bebe \quad \text{‘tropical reef fish, including several species such as Moorish idol’} \\
\text{SES:} & \text{Lau}\quad bebe \quad \text{‘generic for coralfish, Chaetodon; butterfly’} \\
\text{NCV:} & \text{Mwotlap}\quad bem \quad \text{‘Chaetodon lineolatus, lined butterflyfish’} \\
\text{NCV:} & \text{Lakon}\quad pep \quad \text{‘Chaetodon (generic)’} \\
\text{Mic:} & \text{Kiribati}\quad (i)p^*a-p^*a \quad \text{‘generic for coralfish, butterflyfish and some batfish’} \\
\end{array}
\]

POc *tipi-tipi ‘Chaetodontidae’

\[
\begin{array}{ll}
\text{MM:} & \text{Teop}\quad (ke)tepe-tepe \quad \text{‘coralfish (generic)’} \\
\text{NCV:} & \text{Mota}\quad tivi-tivi \quad \text{‘Chaetodon’} \\
\text{NCV:} & \text{Dorig}\quad tiv-tiv \quad \text{‘Chaetodon spp.’} \\
\text{PCP} & \text{tivi-tivi ‘Chaetodon spp.’ (Geraghty)} \\
\text{Fij:} & \text{Wayan}\quad tivi-tivi \quad \text{‘butterflyfish (generic)’} \\
\end{array}
\]
PPn *tifi-tifi ‘butterflyfish (generic)’ (Hooper)

Pn: Niuean tifi-tifi ‘*Chaetodon* sp., butterflyfish, edible’
Pn: Samoan tifi-tifi ‘general name for Chaetodontidae’
Pn: Tikopia tifi-tifi ‘angelfish or butterflyfish’
Pn: K’marangi tihi-tihi ‘*Chaetodon* spp., *Heniochus* spp., butterflyfishes’

43 Angelfishes (Pomacanthidae)

Angelfish are small to moderate-sized marine fish, frequenting coral reefs. They are close relatives of butterflyfish and the two families are sometimes included within the same term in local nomenclature. Like butterflyfish, they have extremely brilliant colours and complicated patterns. However, they can be distinguished by possession of a prominent cheek spine which can inflict a painful wound if handled carelessly. Some undergo astonishing changes in colour and markings with age. Larger ones are valued as food (Munro p.371).

POc *buRi-buRi ‘k.o. fish, possibly angelfish’

NNG: Gedaged bul-bul ‘bluish-grey marine fish about 10 cm long’
PT: Molima buli-buli ‘emperor angel fish’
SES: Gela buli-buli ‘fish sp.’
NCV: Uripiv ni-bi ‘angelfish, *Pomacanthus sexstriatus*’

44 Damselfishes or demoiselles, anemonefishes, sergeant-majors, pullers (Pomacentridae)

These are very active brilliant little fishes of the coral reefs, seeking shelter among branches of coral and in crevices. They are often left in tide pools. They are trim and shapely, greatly suggesting butterflyfish in mode of life. Coloration is highly variable, ranging from grey to yellow to blue. Genera include *Pomacentrus* (damselfish), *Amphiprion* (anemonefish, clownfish), *Abudedefduf* (sergeant-majors) and *Chromis* (pullers), and there are dozens of species. Two POc terms are reconstructed, the second one, *taku-takuŋ*, possibly the term for juveniles, those of many species being distinctively marked by a yellow body with bright blue stripes (Allen & Swainston 1993:74).

PMP *mutu ‘damselfish’ (ACD)
POc *mutu ‘*Pomacentridae, particularly Abudedefduf’*

![Figure 2.22 Adudefduf sp., sergeant-major](image-url)
Fish

MM: Nakanai mutu ‘k.o. fish’
MM: Bola mutu ‘k.o. fish’
SV: Anejom n-m*ot(anyat) ‘Abudefduf sp.’
Mic: Satawalese mmæs ‘Abudefduf and Amblyglphidodon spp., sergeant-majors’

PnP *mutu[mutu] ‘Pomacentridae’ (Hooper)
Pn: Tongan mutu-mutu ‘k.o. fish’
Pn: Niuean mutu-mutu ‘small grey fish with dark vertical bands, also known as kāmuta’
Pn: E Uvean mutu-mutu ‘Abudefduf sordidus’
Pn: Rennellese mutu ‘general name for sergeant majors and pullers (damselfish)’
Pn: Samoan mutu ‘Abudefduf sp.’
Pn: Tikopia mutu ‘Pomacentridae, coralfish, small, striped, edible’
Pn: Anutan mutu ‘Pomacentridae (generic)’
Pn: Māori mutu-mutu ‘fish prized for its delicacy’

45 Hawkfishes (Cirrhitidae)

Many Cirrhitidae are richly coloured and abundant about coral reefs and rocks. They are solitary and sedentary, frequently seen sitting on top of coral heads, from which they make quick short darts for food (Munro p.442). Two reconstructions are possible at PnP level,
patuki (Geraghty p.157) and *qulu-tuki* (Hooper p.206). Their association with *tuki* ‘to beat, pound’, is not understood.

46 Wrasses, tuskfishes (Labridae)

There are over 400 species of Labridae, falling into some 60 genera which include *Anampses*, *Bodianus*, *Cheilinus* (Maori wrasse), *Choerodon* (tuskfish), *Coris*, *Epibulus*, *Gomphosus*, *Halichoeres* and *Thalassoma*. Wrasses are brilliantly coloured, living around coral reefs and amongst weeds. Juvenile wrasses often differ from adults, and in some the sexes differ in colour and pattern. Some change colour and pattern with great rapidity (Munro pp.402, 405). They are active during daylight hours, retiring to the shelter of the reef at night. Some species, such as members of the genus *Coris*, bury themselves in the sand. Most are medium sized fishes (about 20–40 cm), but the double-headed Maori wrasse, *Cheilinus undulatus*, is notable for its size, growing to over two metres in length. Oceanic languages typically distinguish many wrasse taxa. Although I have a number of POc reconstructions, there is little consistency of reference within cognate sets, other than within Polynesia. So, although in each case the POc meaning may have been restricted to one or more species, or even to growth stages, I am obliged to reconstruct in very general terms. In the following set, the Rotuman reflex of *mamin* refers not to the Maori wrasse, but to the largest parrotfish, the hump-headed parrotfish, *Bolbometopon muricatum*, which resembles it. Although Geraghty (p.159) reconstructs PCP *mami ‘Bolbometopon, hump-headed parrotfish’, he does so presumably on Rotuman evidence alone.

PMP *mamin ‘wrasses, Cheilinus spp.’ (*ACD*)

POc *mamin ‘Cheilinus undulatus, double-headed Maori wrasse and possibly other wrasse spp.’

Adm: Nali mam ‘C. undulatus’
Both POc *mamin and POc *taŋapa(R,r) have reflexes which refer specifically to *Cheilinus undulatus*. It is possible that both POc terms referred to growth stages.

POc *taŋapa(R,r) ‘large wrasse, including *Cheilinus* sp.’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm:</td>
<td>Andra</td>
<td>dranah ‘wrasse’</td>
</tr>
<tr>
<td>Adm:</td>
<td>Titan</td>
<td>dray ‘wrasse, Bodianus spp.’</td>
</tr>
<tr>
<td>NNG:</td>
<td>Gitua</td>
<td>taŋavaru ‘k.o. fish’ (-u unexpected)</td>
</tr>
<tr>
<td>MM:</td>
<td>Ramoaaina</td>
<td>taŋara ‘k.o. fish’</td>
</tr>
<tr>
<td>NCV:</td>
<td>Vera’a</td>
<td>ʔaŋava ‘Cheilinus undulatus’</td>
</tr>
</tbody>
</table>

PCP *taŋava ‘*Cheilinus undulatus*’ (Geraghty)

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fij:</td>
<td>Wayan</td>
<td>tāŋava ‘C. undulatus’</td>
</tr>
<tr>
<td>Fij:</td>
<td>Rotuman</td>
<td>fahaga ‘k.o. fish’ (metathesis)</td>
</tr>
</tbody>
</table>

Pn *taŋafā ‘*Cheilinus* sp.’ (Hooper)

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn: Tongan</td>
<td>taŋafā</td>
<td>‘k.o. fish’</td>
</tr>
<tr>
<td>Pn: Niuatoputapu</td>
<td>(meai)taŋafā</td>
<td>‘wrasse’</td>
</tr>
<tr>
<td>Pn: Samoan</td>
<td>taŋafā</td>
<td>‘name given to fishes of genus Cheilinus when three feet long or more’</td>
</tr>
<tr>
<td>Pn: Tuvalu</td>
<td>taŋafu</td>
<td>‘C. undulatus’</td>
</tr>
<tr>
<td>Pn: Tikopia</td>
<td>taŋafā</td>
<td>‘sea fish, apparently a wrasse’</td>
</tr>
</tbody>
</table>

POc *babu ‘*Cheilinus* spp., Maori wrasse’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm:</td>
<td>Titan</td>
<td>papu(niu) ‘C. trilobatus, tripletail Maori wrasse, medium’</td>
</tr>
</tbody>
</table>

Pn *papu ‘*Cheilinus* sp.’ (Hooper: PNPn *pap(o,u))

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn: Rennellese</td>
<td>papu</td>
<td>‘several kinds of dark brown wrasse’</td>
</tr>
</tbody>
</table>
Pn: Pukapukan papo 'C. fasciatus'
 papo-papo 'C. fasciatus, juvenile'
Pn: Tuvalu papo 'C. trilobatus'
Pn: Tokelauan papo 'C. fasciatus'
Pn: Luangiua papu 'Maori wrasse'
cf. also:
 NCV: S Efate (a)fam 'C. undulatus'

POc *merari 'wrasse or parrotfish'
 NNG: Kove lali 'parrotfish, bright blue-green fins and tail' (irregular loss of first syllable)
 NCV: Ambae m"era (mavute) 'checkerboard wrasse?' [Halichoeres hortulanus] (mavute 'white') (loss of final *-ri unexpected)
 NCV: Mota mera 'k.o. fish' (loss of final *-ri unexpected)
 Mic: Marshallese mere 'parrotfish; wrasse'
 Mic: Ponapean merer 'wrasse'
PCP *m[e,a]rari 'Novaculichthys, wrasse' (Geraghty)
 Fij: Rotuman marari 'smooth-bodied fish with thin soft scales, grey-brown with whitish spots'

PPn *m[e,a]rari 'wrasse or parrotfish' (Hooper: *m(a,o)lali)
 Pn: Tongan mea 'k.o. fish like parrotfish'
 Pn: Pukapukan malali 'Cheilinus trilobatus, trilobed Maori wrasse'
 Pn: Luangiua mālali 'rainbow fish, k.o. Labridae'
 Pn: Tokelauan molali 'C. trilobatus'
 Pn: K’marangi malali 'ornated wrasse'

POc *tapu 'Labridae sp.'
 PT: Iduna tafu-tafu 'small coloured fish on the reef'
 Mic: Satawalese (ye)sāp 'Gomphosus varius, clubnosed wrasse'
PCP *tuvu 'Labridae sp.' (Geraghty)28
 Fij: Wayan tuvu(masi) 'scribbled wrasse' [Novaculichthys taeniourus] tuvu(keli) 'wrasse taxon'

PPn *tufu 'Thalassoma sp.'
 Pn: Tongan tufu 'Thalassoma'
 Pn: Niuean tufu 'k.o. parrotfish, edible'
 Pn: Samoan tufu 'k.o. fish'
 Pn: K’marangi tuhu 'Thalassoma sp., fire wrasse'

PEOc *lapi 'wrasse'
 SES: Lau (mae)lafu 'wrasse'

28 PCP *tuvu reflects the same assimilation of *-a- to *-u- as PCP *tukuku (< POc *takuy) (§44).

47 Parrotfishes (Scaridae)

Parrotfish are closely related to the wrasses, although the latter are carnivorous. Parrotfish are herbivorous, typically large, the jaws with a bony beak. They are reef dwellers, feeding chiefly on vegetable matter, but their strong beaks easily crush molluscs and coral. Most pass through one to three colour phases. Juveniles are usually plain, with mottling; immatures usually patterned with red, brown or purple, adults with blue, green, yellow, orange or red patterns (Munro p.431). Like the wrasses they retreat into holes in the coral at night to sleep. Genera include Scarus, Hipposcarus and Bolbometopon.

PMP *[(k,q)]ulapi ‘parrotfish’ 30
POc *[(k,q)]ulapi ‘parrotfish spp., incl. Hipposcarus longiceps, long-nosed parrotfish’

<table>
<thead>
<tr>
<th>Adm:</th>
<th>Lou</th>
<th>k*el</th>
<th>‘blue-speckled parrotfish’ [Leptoscarus vaigiensis]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm:</td>
<td>Nali</td>
<td>kuwei</td>
<td>‘blue-speckled parrotfish’ (Akimichi)</td>
</tr>
<tr>
<td>Adm:</td>
<td>Penchal</td>
<td>k*il</td>
<td>‘blue-speckled parrotfish’</td>
</tr>
<tr>
<td>Adm:</td>
<td>Andra</td>
<td>ulah</td>
<td>‘H. harid’31</td>
</tr>
<tr>
<td>Adm:</td>
<td>Loniu</td>
<td>uleh</td>
<td>‘long-nosed parrotfish’</td>
</tr>
<tr>
<td>Adm:</td>
<td>Lenkau</td>
<td>ulep</td>
<td>‘Scaridae, parrotfish’</td>
</tr>
<tr>
<td>Adm:</td>
<td>Titan</td>
<td>ula</td>
<td>‘Scaridae’</td>
</tr>
</tbody>
</table>

29 The formal similarity to PEOc *lapi is probably coincidental.
30 Reconstructed on the basis of Pendau (WMP) lapeʔ ‘parrotfish’ (Phil Quick pers. comm.), together with the Oceanic evidence.
31 H. harid is an Indian Ocean species closely related to H. longiceps (Kailola:377, FishBASE)
The double-headed or hump-headed parrotfish, *Bolbometopon muricatum*, is distinguished by its size and the hump on its forehead. While most species of parrotfish are under 50 cm in length, the hump-headed parrotfish can reach 120 cm or more. The Admiralties forms below indicate that there was a final POc consonant, probably */-q/.

POc */kam(a,i,u)tuq/ ‘*Bolbometopon*, double-headed parrotfish’

Adm: Anda kamidu ‘*Bolbometopon*
Adm: Titan kamatu ‘*Bolbometopon*, double-headed parrotfish’
Adm: Drehet komusu ‘parrotfish’
NNG: Lukep (Pono) kamatu ‘large bottom-feeding reef fish that swims in groups and has a large protrusion on its head’
NNG: Kove amatu ‘double-headed parrotfish’
NNG: Bing kamtuw ‘like double-headed parrotfish, up to 1.8m long, larger than *maham* variety’
MM: Patpatar amatu ‘k.o. fish, big and green’
MM: Ramoaaina kamit ‘k.o. shiny fish’
Mic: Woleaian xemasu(xur) ‘k.o. parrotfish’

PCP */kām(o,u)tu/ ‘female *Scarus sordidus*’ (Geraghty)

Fij: Kadavu kāmotu ‘female *Scarus sordidus*’

PPn */kamutu/ ‘*Scarus* sp.’ (Hooper)

Pn: Tongan kamutu ‘*Scarus* sp.’ (Geraghty. Not in Churchward)
Pn: Tokelauan kāmotu ‘*S. jonesi*, female, green parrotfish’

cf. also:
PT: Gumawana *motu-motu(ya)* ‘k.o. fish’
SV: Anejoũ *n-aumat* ‘k.o. small parrotfish’

POc *kosa* ‘k.o. parrotfish’

PT: Bunama *osa (ala alwa)* ‘k.o. parrotfish’
PT: Misima *kosa* ‘generic for certain coloured parrotfish spp.’
PT: Kiliivila *kola-la* ‘k.o. fish’
SES: Langalanga *kosa* ‘parrotfish (generic): *Cetoscarus* (*kosa bulu* (black), *kosa abu* (red); *kosa marak*’*a* (green); *kosa mara* (multicoloured)’
SES: To’aba’ita *kosa* ‘parrotfish (generic). Five kinds are named according to colour’ (Barnett 1978)
Mic: Carolinian *oša* ‘large sp. of parrotfish’

The exact form of the next reconstruction is unclear, as (i) the vowels have switched places in some reflexes, and (ii) Gapapaiwa -*n-* reflects both POc *-l-* and *-n-*; *-l-* is reflected in the Bauro and Rapa reflexes, *-n-* in the remaining Polynesian reflexes.

POc *me[l,n]aŋa* ‘k.o. parrotfish’

PT: Gapapaiwa *mena-menaya* ‘parrotfish’
SES: Bauro (West) *mareŋa* ‘parrotfish’ (Barnett 1978)
PN: Niuatoputapu *menęŋa* ‘*Scarus jonesi*’
PN: Tongan *menęŋa* ‘parrotfish, greenish-blue’
PN: Niuean *moneŋa* ‘bluish parrotfish, *Scarus* sp.’
PN: Pukapukan *māneŋa* ‘*Chlororus microrhinos*, blunt-headed parrotfish’
PN: Rapa *ma-mariŋa* ‘*S. ghobban*, blue-barred parrotfish’
PN: Tuamotuan *manęŋa* ‘*S. gibbus* [*C. microrhinos*]’

The colour term green/blue has been reconstructed as POc *[ma]karawa*, PEOc *marawa* (see vol.2, p.207). This is no doubt the source of the following term for the green parrotfish.

POc *[m,k]arawa* ‘green parrotfish spp.’

PT: Motu *karava (gira-gira)* ‘parrotfish: *Chlorurus strongylocephalus*, (purple-headed parrotfish); *Callyodon formosus*, (Kellogg’s parrotfish); *Scarus microrhinos* (blunt-headed parrotfish). *Gira gira* refers to colour. Face is bent with large forehead’ (Oram n.d.)
PT: Hula *rawa* ‘k.o. blue fish’

32 The species complex comprises *Chlorurus gibbus* in the Red Sea, *Chlorurus strongylocephalus* in the Indian Ocean and *Chlorurus microrhinos* in the west-central Pacific (FishBase).
PT: Misima alâwa ‘‘Scarus flavipectoralis, yellowfin parrotfish’’
PT: Molima ?ala-?alawa ‘parrotfish’
MM: Lihir mar ‘‘Scarus spp. esp. S. microrhinos’’ [Chlorurus microrhinos]
SES: Gela mara ‘parrotfish generic’ (loss of *-wa unexplained)
SES: Lau mara ‘parrotfish’ (loss of *-wa unexplained)
SES: Arosi marawa marawa-rawa ‘small green fish with crimson markings like a skeleton’
Mic: Kiribati māwa ‘‘Scarus frontalis, green parrotfish’’ [Chlorurus frontalis] (māwawa ‘green, blue’)
Mic: Ponapean māw ‘any blue parrotfish’
cf. also:
NCV: Mota mera ‘k.o. fish’
NCV: Dorig mer ‘‘Scarus frenatus’’

POc *(ma)manu ‘Scarus spp.’
 NNG: Kove manu(kaikai) ‘k.o. parrotfish’
PPn *mamanu ‘Scarus spp.’ (Hooper)
 Pn: Tongan mamanu ‘parrot fish’
 Pn: E Uvean mamanu ‘Choerodon transversalis’ [C. graphicus]
 Pn: Samoan mamanu ‘reddish-brown species of genus Scarus when about 30–60 cm long’
 Pn: Tokelauan mamanu ‘S. chlorodon, ocean parrot fish’ [S. prasiognathos]
 Pn: Tuvalu mamanu ‘Scarus spp.’
cf. also:
 Adm: Loniu manaw ‘purple-headed parrotfish’

The Patpatar and Buma reflexes in the following cognate set indicate a monosyllable. The PCP form is probably the outcome of *b’os + an unknown morpheme.

POc *b’os ‘Scarus sp., k.o. parrotfish’
 MM: Patpatar pos ‘long-nosed parrotfish’
 TM: Buma boro ‘Scarus blochi’
PCP *bōsē ‘Scarus sp.’ (Geraghty)
 Fij: Lau bōsē ‘Scarus sp.’
 Pn: Niuatoputapu pōsē ‘parrotfish’
cf. also:
 Pn: Pukapukan mōyē ‘k.o. wrasse, Stethojulis bandanensis’

Lower-level reconstructions include Proto North Vanuatu *saum’a ‘parrotfish, Scarus sp.’ (François 2005:499), PCP *bobo ‘Scarus sp.’ (Geraghty p.160) and PPn *qufu ‘wrasse or parrotfish’ (Hooper p.217).
48 Sandperches, Grubfishes (Pinguipedidae, and also Mugiloididae, Parapercidae)

Fijian iko-toko-nivōsai and PNPN *takoto (E Uvean and Samoan), although evidently similar, are both independently derived from the verb PCP *(ta)koto ‘lie down’, which is typical sandperch behaviour (Geraghty p.160). Samoan taʔoto is glossed ‘saury’, a fish from a different family, but one which also tends to lie on the bottom, sometimes burying itself in sand. No widespread cognate sets have been located.

49 Gobies, including mudskippers (Gobiidae), blennies (Blenniidae)

Gobies are very small sluggish fishes abundant about reefs and coral. They are usually found sheltering among weeds, under stones or in crevices, in rock pools and quiet water (Munro p.493). They constitute the largest family of marine fishes worldwide with several hundred species in New Guinea alone, but the paucity of terms in dictionaries for gobies suggests they are of little importance. There are some freshwater species. Mudskippers or land gobies can leave the water and hop or crawl over rocks or mud in search of food. They were formerly classified as Periopthalmidae, but are now considered a sub-family of Gobiidae. Blennies are small carnivorous fishes, living mainly in rock pools in the intertidal zone. They rarely swim free and spend most of their time concealed. Oceanic languages often group them with gobies which inhabit similar environments.

POc *kakawa ‘goby, blenny’

PT:	Muyuw	k“ak	‘gobies’ (Damon 1990)
SES:	Gela	kakau (pilo)	‘blennies generic, particularly incl. rockskippers’ (pilo ‘to wave about’)
SES:	Lau	ak“a-ak“a	‘sp. of walking fish in the mangroves’ (for †ak“a-ak“a)
SES:	Arosi	?aʔawa	‘blenny’
SV:	Anejom	ne-koa	‘Ecsenius sp., blenny’
Mic:	Woleanian	xawe-xaw	‘Chlorurus spp., wrasse’
Pn:	Hawaiian	?aʔawa	‘Bodianus bilunulatus, wrasse’
cf. also:	Pn:	Rennellese kagapa	‘small inedible rock-climbing black fish, prob. blennies’ (reflects a hypothetical *kalawa)

Lower level reconstructions include PCP *l(o,a)kuya ‘blenny’, PNCV *lavo ‘skipper, blenny’, PPn *(m,p)anoko ‘generic for gobies, mudskippers, blennies’, and PPn *talae ‘mudskipper’ (Geraghty p.160, Clark 2009:125, Hooper p.218).
50 Sleepers, gudgeons (Eleotridae)

These fish are similar to gobies in their habit of lying on the bottom and rarely moving. Some species hover in cloud-like swarms over coral heads. Most are small and insignificant but there are some fresh water species which grow larger and are valued food fish in inland areas (Munro p.512).

PEOc *bakopu ‘k.o. fish, possibly Eleotris sp.’

<table>
<thead>
<tr>
<th>SES</th>
<th>Gela</th>
<th>bayovu</th>
<th>‘sp. of freshwater fish, flat head, remains alive in mud’</th>
</tr>
</thead>
<tbody>
<tr>
<td>SES</td>
<td>Kwaio</td>
<td>bakofu</td>
<td>‘needlefish’</td>
</tr>
<tr>
<td>SES</td>
<td>Arosi</td>
<td>ba?qohu</td>
<td>‘k.o. fish found in swamps, taboo to children’</td>
</tr>
<tr>
<td>Fij</td>
<td>Wayan</td>
<td>bukovu</td>
<td>‘freshwater fish, gudgeon’</td>
</tr>
<tr>
<td>Pn: Samoan</td>
<td>pa?qofu</td>
<td>‘Eleotris fusca’</td>
<td></td>
</tr>
<tr>
<td>Pn: Rennellese</td>
<td>paghabu</td>
<td>‘Eleotris fusca; highly prized goby fish at the Lake and in waterholes elsewhere’</td>
<td></td>
</tr>
</tbody>
</table>

Two lower-level reconstructions are PCP *uvi ‘k.o. fish, poss. Eleotridae’ and PCP *vo(q)o ‘k.o. small fish’, PFij *vō ‘Eleotridae’ (Geraghty p.168).

51 Whitebait

English folk taxonomies evidently use the term ‘whitebait’ for a range of very small silver schooling fishes from various families including Eleotridae, Atherinidae, Engraulidae, Clupeidae and Galaxiidae (smelts).

POc *jiŋana ‘whitebait’

MM: Roviana	ziŋana	‘whitebait’
NCV: Uripiv	jiŋaj	‘whitebait’
Fij: Bauan	ɔiŋana	‘whitebait’

PPn *(h)iŋaŋa ‘whitebait’

| Pn: Samoan | inaŋa or iŋaŋa | ‘whitebait of the pa?qofu, Eleotris fusca’ |
| Pn: Māori | inaŋa | ‘whitebait, Galaxias’ |

52 Flatheads (Platycephalidae)

These moderate-sized fish are adapted for life on the bottom where they bury themselves in sand with only the eyes exposed. Most are excellent eating (Munro p.526). Thus it is surprising that few terms have been recorded from contemporary languages and no reconstructions made.

53 Moorish idols (Zanclidae)

Moorish idols superficially resemble butterflyfish, with strongly marked bands of black, white and yellow, but have a distinctive protruding snout. They are found around coral reefs
in shallow water. Formerly two species were recognised, *Zanclus canescens* and *Z. cornutus*, but the former is now considered the juvenile form of the latter (Kailola p.459, FishBase). Hooper (p.215) has reconstructed PNpN *laulau-fau* ‘*Zanclus canescens*, Moorish idol’.

54 Unicornfishes, surgeonfishes, bristletooths, tangs (Acanthuridae)

All Acanthuridae are herbivorous coral reef fish, scraping algae with their fine teeth. Genera include *Naso, Acanthurus, Zebrasoma* and *Ctenochaetus*. They have thick leathery skin and a spine with one or more knife-like barbs on the tail which are capable of severe wounding. Surgeonfish are so named because of these lancet-like spines, unicorn fish because of the horn-like projection on the forehead. Juveniles differ greatly and are usually separately named in vernacular nomenclatures (Munro p.482). More POc reconstructions have been made for Acanthuridae than for any other family. Three refer to the genus *Naso* ‘unicornfish’, but only one, *qume*, clearly refers to a single species, *Naso unicorns*.

PMP *qumay* ‘unicorn fish, *Naso* spp.’ (ACD)

POc *qume* ‘*Naso unicorns*, long-snouted unicornfish’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT</td>
<td>Hula</td>
<td>γume ‘Naso unicorns’</td>
</tr>
<tr>
<td>SES</td>
<td>Kwaio</td>
<td>ume ‘Alutera sp. (prob. A. monoceros, the unicorn leatherjacket)’</td>
</tr>
<tr>
<td>SES</td>
<td>To’aba’ita</td>
<td>umea ‘N. unicorns’</td>
</tr>
<tr>
<td>SES</td>
<td>Langalanga</td>
<td>ume ‘N. unicorns’</td>
</tr>
<tr>
<td>SES</td>
<td>Lau</td>
<td>ʔume ‘k.o. black flattish fish, good eating’</td>
</tr>
<tr>
<td>SES</td>
<td>Ulawa</td>
<td>ume (totoro) ‘N. unicorns’ (totoro ‘crest’)</td>
</tr>
<tr>
<td>SES</td>
<td>Arosi</td>
<td>ume ‘N. unicorns’</td>
</tr>
<tr>
<td>NCV</td>
<td>Mota</td>
<td>ume ‘large fish with a lump on the forehead’</td>
</tr>
<tr>
<td>NCV</td>
<td>Vera’a</td>
<td>om ‘N. tuberosus’ [hump-nosed unicornfish]</td>
</tr>
<tr>
<td>NCV</td>
<td>Lewo</td>
<td>me ‘unicorn fish’</td>
</tr>
<tr>
<td>Mic</td>
<td>Woleaian</td>
<td>xium ‘k.o. fish with long snout’</td>
</tr>
<tr>
<td>Mic</td>
<td>Sonsorolese</td>
<td>gume ‘N. unicorns’</td>
</tr>
<tr>
<td>Mic</td>
<td>Satawalese</td>
<td>kim ‘N. unicorns’</td>
</tr>
<tr>
<td>PNP</td>
<td>qume</td>
<td>Naso sp., unicornfish’ (Hooper)</td>
</tr>
<tr>
<td>Pn</td>
<td>Tongan</td>
<td>ʔume ‘N. unicorns’</td>
</tr>
<tr>
<td>Pn</td>
<td>Niuatoputapu</td>
<td>ʔume ‘Naso spp.’</td>
</tr>
</tbody>
</table>
| Pn | Samoan | ume ‘name given to mature fishes of the genus *Naso* when about 30 cm long and over’ (ume-lei ‘*Naso* when about 15 cm long’)

Figure 2.25 *Naso unicorns*, long-snouted unicornfish
In the next set, PNPn languages have added reflexes of PPn *tifi ‘tip, point, extremity’ to the reflex of POc *taRat.

PMP *taRat ‘Naso spp., unicornfish’

POc *taRat ‘Naso spp., incl. N. brevirostris, short snouted unicornfish’

NNG: Lukep (Pono) tare ‘tang’
PT: Gumawana (ia) tala ‘N. brevirostris, short snouted unicorn fish’
PT: Lala (iʔa) laka ‘k.o. fish’ (metathesis)
PT: Motu tara ‘k.o. fish’
MM: Marovo tarasi ‘generic for several species of large surgeonfish’ (for †tarata)

PCP *tā ‘Naso sp.’ (Geraghty)

Fij: Bauan tā ‘leatherjacket or unicorn fish’
Fij: Wayan tā(tovu) ‘N. tuberosus, humpnose unicorn fish’
Pt: Tokelauan tā(ʔiﬁ) ‘unicorn fish’
Pt: Tikopia tā(tivi) ‘N. unicornis’
Pt: Tahitian ta(tihi) ‘N. brevirostris, short-nosed unicorn fish’

POc *m(a,o)nuRV ‘Naso sp., unicornfish’

Adm: Titan m*anoi ‘N. unicornis, long-snouted unicornfish’
Adm: Lenkau manoi ‘unicornfish’
Adm: Loniu monoy ‘N. unicornis’
Adm: Mussau manoi ‘unicornfish’
NNG: Bing manur ‘N. lituratus, poll unicornfish’ (Also known as stripe-face or orange-spine unicornfish)
Mic: Satawalese mono ‘k.o. surgeonfish, Naso sp.’
Pt: Pukapukan maono ‘Acanthurus guttatus, white-spotted surgeonfish’ (o unexpected)

A number of terms for surgeonfish have been reconstructed. The following reconstruction, POc *piRa(q), is identical in form with the term for Alocasia, swamp taro, which, like Zebrasoma veliferum, is unpalatably acid unless the skin is carefully removed (Geraghty 1990:78). A parallel development is found in Rotuman, where ?apea means both ‘swamp taro’ and ‘sailfin tang’.
Fish

PMP *biRaq ‘Zebrasoma veliferum’ (also ‘Alocasia, wild taro’) (Blust 2002)

POc *piRa(q) ‘Zebrasoma veliferum, sailfin tang’
 Adm: Titan pa-pai ‘Acanthurus spp.’ (metathesis)
 MM: Maringe (babashra) ‘k.o. surgeonfish’
 SES: Gela (iga) vila ‘Zebrasoma veliferum, sailfin tang’
 NCV: Lewo piya(awa) ‘fish with tough skin, sharp tail’

PFij *via ‘Zebrasoma veliferum’ (Geraghty)
 Fij: Bauan via ‘k.o. fish, broad with large breast fins’

POc *bi[researching, R]apa ‘Acanthurus lineatus, blue-lined surgeonfish’
 PT: Kilivila bilawa-wa ‘k.o. fish’
 MM: Nehan berau ‘A. triostegus, convict surgeonfish’
 MM: Nduke be-bera ‘A. lineatus, blue-lined surgeonfish’
 SES: To’aba’ita belafa ‘A. lineatus’
 SES: Longgu belava ‘A. lineatus’
 SES: Arosi biraha ‘A. lineatus’
 NCV: Dorig brav ‘A. lineatus’
 NCV: Lakon pirav ‘A. lineatus’
 Mic: Satawalese parar ‘A. guttatus’ [white-spotted surgeonfish]
 Fij: Rotuman poraha ‘k.o. fish with sting in its tail, longitudinal yellow
 and blue stripes, A. lineatus’

POc *maRa ‘Acanthus sp., possibly A. xanthopterus, yellowfin surgeonfish’
 Adm: Andra ma ‘A. xanthopterus’
 Adm: Loniu may ‘surgeonfish or similar poison-spined fish’
 NNG: Mutu mara ‘A. xanthopterus’
 Pn: Pukapukan mā ‘Ctenochaetus striatus, bristle-toothed surgeon-fish’
 Pn: Tikopia ma ‘A. bleekeri, dark colour, about 30 cm.’ [A. mata]

 cf. also:
 PT: Kilivila mawa ‘A. xanthopterus’

PMP *katawan ‘fish sp.’ (ACD)

POc *katawan ‘Acanthus taxon, surgeonfish’
 PT: Misima tayán ‘A. dussumieri, ornate surgeonfish’
 SES: Arosi ʔāwa ‘fish sp.’
 Mic: Kiribati katāwa ‘A. lineatus, bluebanned surgeonfish’

PMP *paliR ‘surgeonfish’ (Blust 2002: PWMP)

POc *[qa] paliR ‘Acanthus, surgeonfish’
 PT: Misima havani ‘A. nigricauda, blackstreak surgeonfish’ (initial h-
 for †θ)
 MM: Marovo valiri ‘generic for several medium sized dark surgeonfish’
Figure 2.26 **Left** *Zebrasoma veliferum*, sailfin tang. **Right** *Acanthurus lineatus*, blue-lined surgeonfish.

<table>
<thead>
<tr>
<th>Language</th>
<th>Term 1</th>
<th>Term 2</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM</td>
<td>Buma</td>
<td>wavíri</td>
<td>‘A. lineatus, lined surgeonfish’</td>
</tr>
<tr>
<td>PCP</td>
<td>qavali</td>
<td>‘Acanthurus sp.’ (Geraghty)</td>
<td></td>
</tr>
<tr>
<td>Fij</td>
<td>Rotuman</td>
<td>aláhi</td>
<td>‘Acanthurus sp.’ (metathesis)</td>
</tr>
<tr>
<td>Pn</td>
<td>Niuatoputapu</td>
<td>ʔafáli</td>
<td>‘A. blochii’</td>
</tr>
<tr>
<td>Pn</td>
<td>Rennellese</td>
<td>ʔaŋagi</td>
<td>‘Acanthurus sp.’</td>
</tr>
<tr>
<td>Fij</td>
<td>Wayan</td>
<td>bali-bali</td>
<td>‘possibly A. lineatus’</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Term 1</th>
<th>Term 2</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>POc</td>
<td>[s,f]abig</td>
<td>‘Acanthurus spp., incl. A. guttatus, white-spotted surgeonfish’</td>
<td></td>
</tr>
<tr>
<td>Adm</td>
<td>Loniu</td>
<td>capay</td>
<td>‘possible tang or surgeonfish’</td>
</tr>
<tr>
<td>Mic</td>
<td>Kiribati</td>
<td>riba</td>
<td>‘Acanthurus, surgeonfish generic’ (vowel metathesis)</td>
</tr>
<tr>
<td>PCP</td>
<td>(s,ð)abig</td>
<td>‘Acanthurus guttatus, spotted surgeonfish’ (Geraghty)</td>
<td></td>
</tr>
<tr>
<td>Fij</td>
<td>Lau</td>
<td>sabi</td>
<td>‘A. guttatus’</td>
</tr>
<tr>
<td>PPN</td>
<td>hapi</td>
<td>‘Acanthurus guttatus’ (Hooper)</td>
<td></td>
</tr>
<tr>
<td>Pn</td>
<td>Tongan</td>
<td>hapi</td>
<td>‘k.o. fish’</td>
</tr>
<tr>
<td>Pn</td>
<td>Niuean</td>
<td>hapi</td>
<td>‘A. guttatus, surf surgeonfish’</td>
</tr>
<tr>
<td>Pn</td>
<td>Niuatoputapu</td>
<td>hapi</td>
<td>‘A. guttatus’</td>
</tr>
<tr>
<td>Pn</td>
<td>Rennellese</td>
<td>api</td>
<td>‘some species of surgeonfishes’</td>
</tr>
<tr>
<td>Pn</td>
<td>Tokelaunau</td>
<td>api</td>
<td>‘surgeonfish’</td>
</tr>
<tr>
<td>Pn</td>
<td>Tikopia</td>
<td>api</td>
<td>‘surgeonfish’</td>
</tr>
</tbody>
</table>

The transfer of meaning in Micronesian languages in the next set is unexplained.

PMP *qaroŋo* ‘*Acanthurus* spp.’

POc *qaroŋo* ‘surgeonfish, *Acanthurus* sp.’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term 1</th>
<th>Term 2</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm</td>
<td>Titan</td>
<td>kaloŋ</td>
<td>‘Ctenochaetus striatus, orange-dotted hair-tooth surgeonfish’</td>
</tr>
</tbody>
</table>

33 Based on Pendau (WMP) *aroŋo* ‘*Acanthurus leucosternon*, surgeonfish’ (Phil Quick pers. comm.) together with the Oceanic cognates.
Fish 105

NNG: Takia *aroŋ* ‘*A. bleekeri*, yellowmask surgeon-fish’ [*A. mata*]
SV: Anejoũ *n-aroŋ* ‘*A. gahhm*’[black surgeonfish]

PMic *aroŋ* ‘Carangid fish, pompano, skipjack’ (Bender et al. 2003)

Mic: Kiribati *(te)aŋo* ‘a jackfish’
Mic: Chuukese *aroŋ* ‘k.o. fish’
Mic: Carolinian *aroŋ* ‘fourth of five growth stages of the skipjack’
Mic: Ponapean *oroŋ* ‘bluejack crevally’

PPn *qaloŋo* ‘Acanthurus sp., probably *A. lineatus*, blue-lined surgeonfish’ (Hooper)

Pn: Tongan *ʔaloŋo* ‘*A. lineatus*’
Pn: E Uvean *ʔaloŋo* ‘*A. lineatus*’
Pn: Rennellese *ʔagono* ‘surgeonfish, probably *A. lineatus*’
Pn: Niuatoputapu *aloŋo* ‘surgeonfish’
Pn: Samoan *aloŋo* ‘*Acanthurus*, when full grown’
Pn: Tikopia *aroŋo* ‘*A. lineatus*’

POc *kir*[i,au] ‘Acanthuridae’

Adm: Andra *kirau* ‘surgeonfish’
NNG: Tami *gilau* ‘*A. bleekeri*, k.o. surgeonfish: [*A. mata*] (g- for exp k-)
NNG: Bing *kir* ‘surgeonfish’
NNG: Kove *kiri* ‘fish, unicornfish?’
MM: Patpatar *kilo* ‘surgeonfish’ (-l- for †-r-)
Pn: Samoan *ʔili(ū)* ‘name of certain fishes of genera *Zebrasoma* and *Acanthurus*, the skin of which is said to be poisonous’

ʔili-ʔilia ‘name of fishes of genus *Naso* when about 5 cm long’
Pn: K’marangi *kili(ū)* ‘*Zebrasoma* sp., tang’

The Loniu (Adm) reflex (*ña)pon below could reflect either POc *bolo* or *bone*. Both reconstructions refer to small, dark Acanthuridae.

POc *bolo* ‘small dark surgeonfish, possibly *Ctenochaetus*’

Adm: Loniu *(*ña)*pon ‘surgeonfish’
MM: Nehan *bo-bol* ‘*Acanthurus* sp., tang’
SES: Gela *bolo-bolo* ‘*Ctenochaetus binotatus*, twospot bristletooth’ (a small dark fish)
SES: Lau *bolo* ‘k.o. small black surgeonfish’
SES: Arosi *boro (i asi)* ‘k.o. fish’
NCV: Mwotlap *no-p*ol ‘*Acanthurus olivaceus*, surgeonfish with white band on tail’

*p*ol-*p*ol ‘*A. leucopareius*, smaller than p*ol*’
NCV: Vera’a *p*ol ‘*Ctenochaetus striatus*, lined bristletooth’
Fij: Rotuman *polo* ‘young blackfish’
Pn: Rennellese *pogo* ‘some kinds of surgeonfish and tangs’
PEOc *bon(e,a) ‘generic for various small Acanthuridae’

SES: Gela bo-bona ‘generic for various spp. incl. A. nigrofuscus (dusky surgeonfish), Ctenochaetus striatus (lined bristletooth) and Zebrasoma scopas (blue-lined tang)’

Fij: Lau pone ‘A. nigrofuscus’

PPn *pone ‘Acanthurus sp. or Ctenochaetus striatus’ (Hooper)

Pn: Tongan pone ‘k.o. fish, small, black, nearly circular; C. striatus and Acanthurus sp.’

Pn: E Uvean pone ‘generic for some Acanthurus spp.’

Pn: Samoan pone ‘Acanthurus sp. when about 15 cm long’

Pn: Tikopia pone ‘Acanthurus spp., dark-coloured, said by Tikopia to be younger growth stage of ma (A. mata)’.

Pn: Tokelauan pone ‘name given to C. striatus (alojo) when it forms schools at spawning season’

cf. also:

Pn: Rennellese ponoji ‘general name for unicornfish’

POc *ma(k,q)eto ‘a dark fish, possibly Ctenochaetus striatus’ (POc *maqeto(m) ‘black’; cf. vol.2, p.206)

MM: Lihir (mats)maket ‘C. striatus’

MM: Bola meto ‘k.o. fish’ (for †mayeto)

SES: Lau mae(iʔa) ‘k.o. fish’

SES: ’Are’are make ‘black’

SES: Arosi maeo ‘black’

NCV: Uripiv (ni)méto ‘Acanthurus blochii’

NCV: Paamese na-méto ‘k.o. black fish’

Fij: Rotuman vaefa ‘Acanthurus triostegus’ (v- < POc *m”)34

PPn *maqito ‘Acanthuridae, possibly Ctenochaetus striatus, lined bristletooth’ (Hooper)

Pn: Niuean meito ‘A. xanthopterus, yellowfin surgeonfish, edible’

Pn: E Uvean ma?ito ‘C. striatus’

Pn: Pukapukan maito ‘C. hawaiensis’

Pn: Rennellese ma?ito ‘Acanthurus sp.’

Pn: Tahitian maito ‘C. striatus’

Pn: Rapa maito ‘C. striatus, A. nigrofuscus’

cf. also:

Mic: Kiribati mako ‘A. xanthopterus’

The distribution of the reflexes below strongly supports POc *balaki and a seemingly innovative PROc *balanji.

34 The Rotuman is in some doubt because of the irregular initial and the specific definition, though the final vowel is regular (Geraghty 1994:161).
POc *bala(ŋ,k)i ‘Acanthurus and Naso spp.’

Adm: Mussau balai ‘k.o. fish’
NNG: Gedaged balai ‘fish about 60 cm long, red color’
PT: Motu bai ‘fish sp.’
SES: Lau balaʔi ‘Epinephelus areolatus, yellow-spotted rock cod’
NCV: Namakir paraŋ ‘k.o. surgeonfish’
Mic: Mokilese pʰuilaŋ ‘unicorn fish’
Mic: Marshallese puilaŋ ‘Naso lituratus (poll unicornfish)’
Mic: Ponaean pʰulak ‘N. unicornis’
Mic: Kiribati pʰāpʰā ‘A. guttatus, spotted surgeonfish’

PCP *balai ‘Acanthurus spp.’ (Geraghty)

Fij: Bauan balai ‘Teuthis sp.’ (spinefoot sp.)
Fij: Wayan balai ‘generic for Acanthurus spp., surgeonfish, tangs and unicorns’
Fij: Kadavu balai ‘Acanthurus and Naso spp.’

PNN *palaŋi ‘Acanthurus sp. of large size and elongate shape’ (Hooper)

Pn: Tongan palaŋi ‘k.o. fish’
Pn: Samoan palaŋi ‘name given to certain fishes of the genus Acanthurus (surgeon fishes) when about 30 cm long’
Pn: Rennellese pagaŋi ‘k.o. surgeonfish, perhaps ring-tail surgeonfish: A. xanthurus’
Pn: K’marangi palaŋi ‘A. xanthurus, black-barred surgeonfish’
Pn: Tikopia paraŋi ‘surgeonfish’
Pn: Tahitian paraʔi ‘A. xanthurus’
Pn: Hawaiian palaŋi ‘A. dussumieri, a surgeonfish famous for a strong odor’

cf. also:
NNG: Kove balanu-ŋu ‘large fish’ (b- for †v-)
NNG: Manam bela-bela ‘N. lituratus, poll unicorn fish’
MM: Nehan lake-lak ‘Naso lituratus’ (no /k/ in Nehan?)

PROc *manini ‘Acanthurus triostegus, convict tang’

NCV: Raga manini ‘Acanthurus spp. incl. A. triostegus’
NCV: Namakir manin ‘k.o. surgeonfish’
Fij: Lau manini ‘Acanthurus triostegus’
Pn: Tongan manini ‘A. triostegus’
Pn: E Futunan manini ‘A. triostegus’
Pn: Samoan manini ‘A. triostegus’
Pn: Tikopia manini ‘A. triostegus’
Pn: Tahitian manini ‘A. triostegus’

Geraghty (pp.161–162) adds further PCP reconstructions: PCP*tusi ‘Acanthurus sp.’ (PNN *tusi ‘mark, stripe’); *musa ‘a small dark Acanthuridae, possibly Zebrasoma scopas, blue-lined tang or A. pyroferus, mimic surgeonfish’ and *ma(c,s)i-ma(c,s)i ‘Naso sp.’.
Rabbitfishes, spinefeet (Siganidae)

Rabbitfish or spinefoot are herbivorous fish, inhabiting grassy shallow waters. Their fin spines are very sharp and can inflict painful stings. They have characteristic rabbit-shaped heads. Their flesh is edible. Oceanic languages usually distinguish several taxa. Two Polynesian terms in the next set refer instead to Epinephelidae which resemble the Siganidae in having dangerous spines.

PMP *kiteŋ ‘rabbitfish’ (Blust 2002)
POc *kiton ‘Siganus sp., possibly ‘Siganus punctatus, gold-spotted spinefoot’

PT: Kilivila kitega ‘S. chrysospilos’ [S. punctatus]
PT: Misima kiton ‘S. punctatus, S. lineatus’
MM: Teop sitono ‘S. fuscus, mottled spinefoot’ (< *titon)
MM: Marovo itono ‘rabbitfish, possibly S. corallinus’ [ocellated orange spinefoot]

NCV: Mwotlap yit ‘S. doliatus’
Fij: Rotuman kifo ‘S. rostratus’ (rabbit-faced spinefoot) [S. argenteus]
Fij: Wayan kito ‘prob. S. chrysospilos [S. punctatus], black fish with orange spots’

PPn *kito ‘Epinephelus spp.
Pn: Samoan tito ‘S. punctatus’ (< *titon?)
Pn: Tuamotuan kito ‘Epinephelus microdon’ [camouflage grouper] [E. polyphkadion]
Pn: Rapa kito ‘E. tuamotuensis’ [reticulate grouper]
cf. also:
NCV: Nahavaq n-ataŋ ‘rabbitfish’ (John Lynch, pers. comm.)
Fish

PMP *muquŋ ‘k.o. fish’ (ACD)

POc *muqu(ŋ) ‘Siganus taxon, poss. S. spinus’

Adm: Loniu mu ‘Siganus spinus, pearl-spotted spinefoot’
NNG: Gedaged mu ‘marine fish about 30 cm long, front part yellowish brown, shading off to yellowish toward the rear’
NNG: Bukawa (i)-mbuʔ ‘k.o. spinefoot’
NNG: Yabem (i)-muʔ ‘k.o. spinefoot’
PT: Bunama mu-mu(ya) ‘k.o. spinefoot’
PT: Misima mu-mu(ya) ‘S. canaliculatus, smudgepot spinefoot’
PT: Motu mi-mi ‘S. spinus’
MM: Vitu muyu ‘rabbitfish’
SES: Lau mū ‘k.o. white reef fish, good eating; spinefoot’
SES: Langalanga mu ‘black spinefoot’

POc *roRo ‘growth stage of Siganus spp.’

Adm: Andra dro(ŋ) ‘S. rostratus, S. argenteus’ [S. rostratus is a junior synonym of S. argenteus]

PCP *rō ‘juvenile Siganus’ (Geraghty)

Fij: Rotuman rō ‘small silvery fish’ (poss. loan from Samoan)

PPn *rō ‘Siganus sp.’ (Hooper has *ō ‘tuna baitfish, such as fry of Siganus or Caesio spp.; pp.192, 227)

Pn: Tongan ō ‘S. vermiculatus’
Pn: Niuatoputapu ō ‘growth stage of Siganus’
Pn: Samoan lō ‘Siganus sp.’
Pn: Tokelauan lō(tala) ‘fry of Siganus’

cf. also:

Pn: E Uvean ō ‘Siganus sp. (expect lō)
Pn: Tikopia ō ‘S. rostratus [S. argenteus], S. punctatus, spotted rabbitfish’ (expect rō)
Pn: Tokelauan ō ‘tiny fish which form dense, spherical schools outside the reef during dark phases of the moon’ (Hooper p.192)

The Admiralties languages below reflect *pajal(a), and it is possible that the POc form was *pajala, not *palaja.

POc *pala ‘Siganus spp., rabbitfish’ (ACD: POc *(p,b)ala-(p,b)ala ‘fish sp.’)

Adm: Penchal pacal ‘rabbitfish’ (metathesis)
Adm: Titan pacal ‘spinefoot (generic), Siganidae’ (metathesis)
Adm: Lou posowe ‘rabbitfish’ (-w- for †-l-)
MM: Lihir plats ‘S. lineatus, S. guttatus, S. corallinus’
MM: Tolai pala-pala ‘fish sp.’
SES: Lau falata ‘Siganus sp.’ (Akimichi)
SES: Arosi harata ‘k.o. fish’
56 Snake mackerels, oilfishes (Gempylidae)

Snake mackerels (Gempylus serpens, Promethichthys prometheus, Ruvettus pretiosus) inhabit deeper coastal and oceanic waters, and are sometimes found at depths as great as 600 metres. The flesh is edible but oily. Davis (1999:164) writes that Ruvettus pretiosus is so oily that eating even a small amount of its flesh has a strongly laxative effect. In some parts of Polynesia R. pretiosus is known by reflexes of PPn *palu, whose range of reference may also include jobfish and other deep-sea snappers. Both oilfish and deep-sea snappers are found at great depths (§30). As mentioned earlier (p.78), the ability to fish water at these depths was probably a late Samoic-Outlier innovation. Some local terminologies group snake mackerels with barracudas, also elongated and slender with powerful dentition. In places they may also be identified with catfish (Pukapukan and Tokelauan kapoa ‘Promethichthys prometheus’ > POc *kaboRa ‘catfish’). P. prometheus has also been known as Bermuda catfish. Hooper has
reconstructed PPN *manā ‘k.o. fish’ with meaning in Eastern Polynesian languages ‘Prometheichthys prometheus, snake mackerel’.

57 Skipjacks, Spanish mackerels, mackerels, tunas, tunnies, albacores, wahoos (Scombridae)

Munro recognised distinct families: Katsuwonidae (skipjack and dogtooth tuna), Scomberomoridae (Spanish mackerel), Scombridae (mackerel), Thunnidae (albacore, tunnies, big eye, bluefin and yellowfin tuna), and Acanthocybidae (wahoo), but these have now been combined as one family, Scombridae (Kailola (1987:467, FishBase). These fish are mostly large, fast surface predators, highly regarded both for food and sport. There is considerable variation in English glosses within cognate sets, due possibly to variable popular usage of terms like tuna, bonito, tunny and mackerel by wordlist compilers. In particular, although the English vernacular term bonito typically refers to Katsuwonus pelamis (skipjack), it is sometimes extended to include any pelagic fish caught by trolling from fast canoes, including Katsuwonus, Gymnosarda and Thunnus. Reflexes of POc *gatun may be similarly applied in both narrow and extended senses. Katsuwonus (skipjacks) and Gymnosarda (dogtooth tunas) are generally distinguished from Thunnus (true tunas) by the former’s apparently scaleless body. Most skipjacks (bonito) are school fishes, found around the outer edges of reefs where they can be taken by trolling. They travel in large schools offshore along the coast at certain seasons, the schools often boiling at the surface. These fish have a special role in many parts of the Oceanic world. Simbo speakers in the NW Solomons divide fin fishes into three categories: bayea ‘sharks’, iso ‘bonito’ and iyana ‘generic for all fish other than sharks and bonito’ (Bill Palmer pers. comm.). Ivens (1927:130) writes that “to the Melanesian of the Southeast Solomons the catching of the bonito is one of the things for which he exists. To him it is the king of fish”. Solomon Islanders incorporate them in initiating ceremonies and associate them with various taboos (1927:130–131, 314, 329–330). Many different names are used for bonito in particular roles, a reflection of their importance in these communities. In similar vein, bonito fishing in Kapingamarangi is described by local fishermen as “their
sport of kings” (Lieber 1994:77). In Tonga also, the bonito is considered the king of fish (Dye 1983:251–2).

POc *qatun ‘*Katsuwonus pelamis*, skipjack tuna’ (ACD)

- **Adm:** Wuvulu *aʔu* ‘skipjack tuna, or bonito’
- **Adm:** Seimat *at* ‘skipjack tuna, or bonito’
- **NNG:** Manam *atug* ‘skipjack tuna, or bonito’
- **NNG:** Kove *atunu* ‘tunny’
- **PT:** Molima *ʔatune* ‘bonito’
- **MM:** Tangga *atun* ‘large fish, too large to catch with ordinary fishing gear’
- **MM:** Tolai *atun* ‘fish sp. of the order Scombridae, a bonito’
- **MM:** Lihir *atun* ‘*K. pelamis* and *Thunnus albacares*, skipjack and yellowfin tuna’
- **MM:** Nehan *atun* ‘bonito (tuna)’
- **MM:** Halla *atun* ‘tuna, albacore or bonito’
- **MM:** Teop *asun* ‘generic for all Scombridae other than wahoo and Spanish mackerel’
- **SES:** Bugotu *atu* ‘bonito’
- **SES:** Gela *atu* ‘i) *Katsuwonus pelamis*, ii) generic for Scombridae’
- **SES:** Tolo *atu* ‘bonito’
- **SES:** Lau *sau, hau* ‘tuna, skipjack, marlin, wahoo’ (includes more than 10 sub-categories, most correspond to Linnaean spp.) (Akimichi)
- **SES:** Kwaio *lau* ‘bonito’
- **SES:** ’Are’are *rau* ‘tuna fish’
- **SES:** Sa’a *sau* ‘bonito’
- **SES:** Arosi *sau* ‘bonito’

PMic *atu ‘bonito’

- **Mic:** Kiribati *ati* ‘*Katsuwonus pelamis*, bonito’
- **Mic:** *atu-ati* ‘a big bonito fish’
- **Mic:** Carolinian *asil(ə)* ‘small sp. of tuna’

PCP *qatu ‘possibly generic for *Thunnus* and *Katsuwonus* spp.’ (Geraghty: *Katsuwonus pelamis*, skipjack tuna’)

- **Fij:** Bauan *yatu* ‘the yellow-finned tunny, locally called bonito: *Neothunnus, Macrasterus*’
- **Fij:** Wayan *atu* ‘*Thunnus albacares*, yellow-finned tunny; generic for *Thunnidae*’

PPn *qatu ‘*Katsuwonus pelamis*, skipjack tuna’ (Hooper)

- **Pn:** Tongan *ʔatu* ‘k.o. fish, the bonito’
- **Pn:** Samoan *atu* ‘a fish, the bonito: *Katsuwonus* sp.’
- **Pn:** Rennelense *ʔatu* ‘probably bonito, but usually called *sau*’
- **Pn:** Nanumean *atu* ‘skipjack or bonito tuna’
- **Pn:** Tikopia *atu* ‘tunny and other large scombroids incl. bonito, of *Thunnus* and *Neothunnus* type, esp. skipjack tuna, *Katsuwonus pelamis*’
Figure 2.29 *Scomberomorus commerson*, Spanish mackerel

Blust (2002:130) notes that Tagalog is the only non-Oceanic language known to have a presumptive cognate, *atun* ‘tunny fish’, albeit with an unexpected high vowel, and concludes that *‘qatun* probably was a lexical innovation in POc and that the early Spanish explorers in the Pacific borrowed the term from an Oceanic language (most likely in the western Solomon Islands) that preserved final consonants, and then introduced it into the Philippines’.

PROc *tawa-tawa* ‘growth stage of skipjack or dogtooth tuna’

- **Mic:** Kiribati *tawa-tawa* ‘*Euthynnus affinis*, mackerel tuna’
- **Mic:** Puluwatese *yawo*rɔwɔ* ‘large growth stage of skipjack’

PPn *tawa-tawa* ‘*Euthynnus yaito* [E. *affinis*], black tuna, or *Gymnosarda unicolor*, juvenile, dogtooth tuna’ (Hooper: PNPn)

- **Pn:** Pukapukan *tava-tava* ‘*G. unicolor*’
- **Pn:** Samoan *tava-tava* ‘name given to bonito when about 30 cm long’
- **Pn:** Tokelauan *tava-tava* ‘*G. unicolor* when 40–60 cm’
- **Pn:** Māori *tawa-tawa* ‘*Scomber australasicus*’
- **Pn:** Hawaiian *kawa-kawa* ‘*Euthynnus yaito*’ [E. *affinis*]

cf. also:

- **Pn:** Tongan *kava-kava* ‘*Euthynnus yaito*’ (wrong initial)

* *Scomberomorus* (Spanish mackerels) are moderate to large predatory fishes occurring in schools in coastal waters. Larger ones are caught by trolling near the surface in the vicinity of coral reefs, rocky headlands and sunken shoals. Flesh is white, sweet, rather boneless and highly esteemed. There are perhaps four species of *Scomberomorus*. The largest, *S. commerson*, the narrow-barred Spanish mackerel, has been known to grow to over two metres, although average size is considerably smaller (Munro p.200). Although the following PMP reconstruction is glossed ‘*S. commerson*, Spanish mackerel’, Oceanic cognates do not support a species-specific gloss for POc.
PMP *taŋiRi 'Scomberomorus commerson, Spanish mackerel' (ACD)
P Oc *taŋiRi 'Scombridae spp., prob. incl. Scomberomorus commerson, narrow-barred Spanish mackerel, and Acanthocybium solandri, wahoo'

Adm: Mussau taŋini ‘Spanish mackerel’ (-n- by assimilation)
Adm: Titan taŋini ‘Scomberomorus niphonius, Spanish mackerel’ (-n- by assimilation)

NNG: Gedaged taŋil ‘white marine fish about 75 cm long, like a mackerel’
NNG: Bing taŋir ‘tuna sp., albacore’
NNG: Gitua taŋir ‘mackerel, wahoo’
NNG: Mutu taŋir ‘wahoo, mackerel’
NNG: Bukawa (i)daŋi ‘k.o. Spanish mackerel’ (i ‘fish’)
MM: Patpatar taŋir ‘k.o. fish that leaps from the water’
MM: Lihir taŋir ‘Scomberomorus commerson, Acanthocybium solandri, Grammatorycnus bicarinatus, Spanish mackerel, wahoo and double-lined mackerel’
MM: Teop tanini ‘wahoo, barred Spanish mackerel’
MM: Roviana taŋiri ‘fish generally got by trolling, k.o. kingfish’
MM: Maringe taŋiri ‘kingfish’
MM: Marovo taŋiri ‘kingfish’
SES: Arosi aŋiri ‘shoal of porpoises’
Mic: Kiribati tani ‘yellowfin tuna’
Mic: Chuukese seŋir ‘large Thunnus albacares, yellowfin tuna’
Mic: Puluwatense hæŋir ‘yellowfin tuna’
Mic: Woleaian taŋizi ‘king-size tuna’
Mic: Satawalese saŋir ‘the largest tuna, Thunnus sp.’
Pn: Samoan taŋī ‘k.o. fish’

cf. also:
MM: Nehan taŋili ‘striped tuna, skipjack’ (-l- for exp. -r-)
MM: Marovo ta-talangi ‘small yellowfin tuna’ (metath.) (-l- for exp. -r-)
SES: Gela ili ‘wahoo’
Pn: Pukapukan tani ‘Thunnus alalunga, Albacore’
Pn: Rennellese taŋili ‘the large wahoo or jack mackerel’ (probably borrowed from a Solomons language)

P Oc *walu ‘Scombridae sp. or spp.’
PT: Motu vai(na)-vai(na) ‘Australian Spanish mackerel’
SES: Gela alu ‘barracuda’
Mic: Ponapean weli-wel ‘tuna’

PCP *walu ‘k.o. pelagic fish’ (Geraghty)
Fij: Wayan walu ‘generic for spanish mackerel and wahoo’
Pn * Scombridae (Hooper)
Pn: Tongan valu ‘general name for tuna spp.’ (valu louniu ‘wahoo’)
Pn: Niuean valu ‘Gymnosarda uniclor, dogtooth tuna’
Fish

Scomber and Rastrelliger (mackerels) are small to moderate pelagic fishes, typically under a metre in length, which migrate in schools and comprise some of the more important food fishes of the world. Munro (p.197) reports that they inhabit shallow coastal New Guinea waters where they are caught by seines or fixed traps.

Poc *jalala* ‘Rastrelliger, k.o. small mackerel’
NNG: Bing dalāl ‘tuna-mackerel family, small’
PT: Roro rae ‘k.o. fish’
PT: Motu dae ‘Scomber or Rastrelliger spp.’
Ses: ‘Are’are tarara ‘k.o. fish’
NCV: Uripiv jelel ‘Rastrelliger kanagurta’
NCV: Neve’ei (ni)silal ‘Rastrelliger’

PCP *salala* ‘Rastrelliger’ (Geraghty)
Fij: Bauan salala ‘mackerel’
Fij: Wayan salala ‘small grey schooling fish, prob. Rastrelliger sp.’
Pn: Tuvalu salala ‘Decapterus pinnulatus, mackerel scad’ [D. macarellus]

cf. also:
PT: Misima dayaya ‘Rastrelliger kanagurta, long-jawed mackerel’

Scomber and _Rastrelliger_ (mackerels) are small to moderate pelagic fishes, typically under a metre in length, which migrate in schools and comprise some of the more important food fishes of the world. Munro (p.197) reports that they inhabit shallow coastal New Guinea waters where they are caught by seines or fixed traps.

POc *taku(a,o) ‘Thunnus albacares, yellowfin tuna’
Adm: Titan drou ‘Thunnus sp., tuna’
Adm: Nali drou ‘T. albacares, yellowfin tuna’
Mic: Chuukese toku ‘T. albacares, yellowfin tuna’
Mic: Woleaian taxuw ‘yellowfin tuna’

PPn *taku(a,o) ‘large tuna or skipjack’ (Hooper)
Pn: Niuean takua ‘skipjack tuna, bonito’
Pn: Tongan takuō ‘k.o. fish’
Pn: Pukapukan takuo ‘pelagic fish caught by noosing (obsolete term known from chants)’
Pn: Samoan taʔuo ‘large bonito’
Pn: Rennellese takua ‘k.o. very rare porpoise or fish, no longer seen’
Pn: Tokelauan takuo ‘yellowfin tuna when very large’
Pn: K’marangi takua ‘T. albacares, yellowfin tuna’
Pn: Tikopia takua ‘Xiphias gladius, swordfish; Makaira indica, black marlin’

Thunnus (bluefin and northern bluefin tuna, yellowfin tuna, albacore, bigeye tuna) are heavy-bodied pelagic school fish. Most belong to deeper waters, but some inhabit the sea over the continental shelf and may be taken by trolling around reefs. Flesh, usually dark, is excellent, one species dubbed ‘chicken of the sea’ (Munro p.200).
François (2005:499) reconstructs Proto North Vanuatu *rowou ‘bonito, Thunnus sp.’. Hooper has PNPn *kakasi ‘Thunnus albacares, yellowfin tuna’, possibly related to the Marovo and Roviana terms for bonito, *makasi. The wahoo, Acanthocybium solandri, is the sole member of its genus. It is solitary, pelagic, has fine sweet flesh and is rated a splendid sporting fish. The only reconstruction, PPN *paqala ‘Acanthocybium solandri, wahoo’ is from Hooper (p.222). In Wayan and Tongan the term for a wahoo is a taxon of PCP *walu.

58 Marlins and sailfishes (Istiophoridae); swordfishes (Xiphiidae)

The Istiophoridae are identified by an upper jaw in the form of a long sword. They are big-game fish, large, fast and powerful, and pelagic in open waters. Three marlins are recognised, *Makaira indica (black marlin), *M. mazara (blue marlin) and *Tetrapturus audax (striped marlin). The sailfish (Istiohorus platypterus) has an extremely elevated dorsal fin forming a sail-like structure which folds into a groove. The swordfish (Xiphias gladius) is readily known by its particularly long blade-like rostrum. The adult swordfish differs from the marlin and sailfish in having no scales. The name for the sailfish in PMP and POc, *saku-layaR, is a compound, derived from *saku ‘needlefish, garfish, long toms’ (§13) plus *layaR ‘sail’ (see vol.1, p.194). Referential range in reflexes often includes swordfishes and marlin as well as sailfishes, although the first two lack the sail-like dorsal fin.

PMP *saku-layaR ‘sailfish, swordfish’ (ACD)

POc *saku-layaR ‘sailfish’

Adm: Loniu colay ‘sailfish, marlin, possibly also swordfish’

Adm: Titan colay ‘generic for swordfish, marlin’

Mic: Chuukese tekulär ‘Makaira sp., marlins; Istiohorus sp., sailfish’

Mic: Mokilese tak-lär ‘swordfish’

Mic: Puluwatense ta̱ṯi-lär ‘sailfish, swordfish’

Mic: Ponepean teki-lär ‘swordfish, sailfish, blue marlin’

PCP *saku-laya ‘swordfish, sailfish’ (Geraghty)

Fij: Bauan saku-laya ‘the saw-fish proper’ (saku ‘swordfish, Makaira spp.)

PPN *sakulā ‘swordfish, sailfish’ (Hooper)

Pn: Tongan hakulā ‘swordfish’ (haku ‘young hakulā)

Pn: Niuean hakulā ‘true swordfish (compare haku piu ‘sailfish’, haku tayata ‘marlin’)

Pn: E Uvean hakulā ‘Makaira mazara, blue marlin’

Pn: Samoan saʔulā ‘name given to sword-fish and saw-fish’

Pn: Tokelauan hakulā ‘Xyphias gladius and other swordfish spp.’

Pn: Tikopia sakura ‘sailfish’
Fish

Pn: K’marangi *hakulā (tuakua)* ‘Makaira sp., marlin’
 hakulā-hakulā ‘*Istiophorus* sp., sailfish’

The following reflect only the first element, *saku*:

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Wogo</td>
<td>sak barema</td>
<td>‘sailfish’</td>
</tr>
<tr>
<td>NNG: Lukep</td>
<td>sau-rere</td>
<td>‘sailfish’</td>
</tr>
<tr>
<td>NCV: Paamese</td>
<td>me-sau koa sesali</td>
<td>‘Tetrapturus audax, marlin’ (lit. ‘fish which spears’)</td>
</tr>
<tr>
<td>SV: Ura</td>
<td>yayo</td>
<td>‘marlin’</td>
</tr>
<tr>
<td>Fij: Wayan</td>
<td>saku vorowaga</td>
<td>‘generic incl. most Istiophoridae, marlins and sailfishes’ (vorowaga ‘boat-eating’)</td>
</tr>
<tr>
<td>Fij: Wayan</td>
<td>saku vorowaga tāywane</td>
<td>‘blue marlin’ (lit. male boat-eating marlin)</td>
</tr>
<tr>
<td>Pn: Hawaiian</td>
<td>aʔu</td>
<td>‘swordfish’ (aʔu-lepe ‘sailfish’, aʔu-kii ‘marlin’) (for †haʔu)</td>
</tr>
</tbody>
</table>

There is a second term which probably refered to a particular species or subgroup of *Istiophoridae* in POc. In some languages of the Solomons it has replaced *sakulayaR* as the name for the sailfish. This may be a reduplicated form of POc *piRu(q)* ‘fan palm’ (vol.3, p.222), whose fronds resemble the large dorsal fin of the sailfish.

POc *piRu-piRu* ‘*Istiophoridae*’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM: Nakanai</td>
<td>vilu-vilu</td>
<td>‘sawfish’</td>
</tr>
<tr>
<td>MM: Marovo</td>
<td>viru-viru</td>
<td>‘Istiophorus platypterus, sailfish’</td>
</tr>
<tr>
<td>MM: Roviana</td>
<td>viru-viru</td>
<td>‘k.o. swordfish, smaller than ikutaina’</td>
</tr>
<tr>
<td>SES: Gela</td>
<td>vilu-vilu</td>
<td>‘swordfish’</td>
</tr>
<tr>
<td>SES: Lau</td>
<td>filu-filu</td>
<td>‘Istiophorus orientalis, Indo-Pacific sailfish’</td>
</tr>
<tr>
<td>SES: ‘Are’are</td>
<td>(ia)hiru</td>
<td>‘marlin’</td>
</tr>
<tr>
<td>SES: Kwaio</td>
<td>fi-filu</td>
<td>‘blue marlin’</td>
</tr>
<tr>
<td>SES: Arosi</td>
<td>hiru-hiru</td>
<td>‘large fish which swims in circles and is the sign of a shark being near’</td>
</tr>
<tr>
<td>SES: Longgu</td>
<td>(koi) vilu-vilu</td>
<td>‘sailfish’</td>
</tr>
<tr>
<td>SES: Langalanga</td>
<td>filu-filu</td>
<td>‘sailfish’</td>
</tr>
<tr>
<td>SES: Owa</td>
<td>(aiga)firu</td>
<td>‘long-bill swordfish, sailfish’</td>
</tr>
<tr>
<td>Mic: Kiribati</td>
<td>ir-iri</td>
<td>‘sailfish’</td>
</tr>
</tbody>
</table>

59 Flounders and soles: left-eye flounders (*Bothidae*), toothed flounders (*Paralichthyidae*), right-eye flounders (*Pleuronectinae*), soles (*Soleidae*)

Flatfishes are poorly represented in tropical waters in comparison with their abundance in cooler regions. Flounders, toothed flounders and soles are bilaterally asymmetrical, adapted for life on the bottom where they bury themselves in sand or mud. Most inhabit shallow coastal waters and estuaries. Larger ones are good eating (Munro p.124). Flatheads have a similar habit of burying themselves in sand, but lack the distinctive oval shape of flounders.
and soles. Many contemporary languages have a generic term for flatfishes. We have two reconstructions, both with generalised gloss. In the next set both POc *alali and *lalali are reflected.

PCEMP *alali ‘halibut, flounder’ 35

POc *[l]alali ‘flatfish incl. flounders, soles’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm: Seimat</td>
<td>alal</td>
<td>‘flounder, Platichthys spp.’</td>
</tr>
<tr>
<td>Adm: Wuvulu</td>
<td>alali</td>
<td>‘flounder, Platichthys spp.’</td>
</tr>
<tr>
<td>PT: Dobu</td>
<td>nenai</td>
<td>‘flounder, sole’</td>
</tr>
<tr>
<td>PT: Kilivila</td>
<td>(bu)lali</td>
<td>‘fish the shape and size of a dinner plate’ (Lawton)</td>
</tr>
<tr>
<td>MM: Patpatar</td>
<td>lel</td>
<td>‘sole’</td>
</tr>
<tr>
<td>MM: Lihir</td>
<td>lel</td>
<td>‘Bothidae, Pleuronectidae and Soleidae, flounders and soles’</td>
</tr>
<tr>
<td>MM: Sursurunga</td>
<td>lal</td>
<td>‘left-eye flounder’</td>
</tr>
<tr>
<td>MM: Nehan</td>
<td>lalen</td>
<td>‘halibut, flounder, sole’</td>
</tr>
<tr>
<td>MM: Halia</td>
<td>lal</td>
<td>‘flounder, halibut’</td>
</tr>
<tr>
<td>MM: Marovo</td>
<td>lali</td>
<td>‘generic for flounders’</td>
</tr>
<tr>
<td>SES: Owa</td>
<td>rarari</td>
<td>‘a flat fish’</td>
</tr>
<tr>
<td>NCV: Mwotlap</td>
<td>lel</td>
<td>‘flat fish’</td>
</tr>
<tr>
<td>SV: Anejoəm</td>
<td>n-acac</td>
<td>‘flatfish, adapted for life on sand’</td>
</tr>
<tr>
<td>NCal: Iaai</td>
<td>n’en</td>
<td>‘Bothus sp.’</td>
</tr>
</tbody>
</table>

PCP *lalali, *ali ‘flatfish’ (Geraghty: *(y)ali)

Fij: Bauan | lālali | ‘large flounder’ |

PPn *ali ‘Bothus spp., flounder’ (Hooper)

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn: Niuean</td>
<td>ali</td>
<td>‘Bothus sp., flatfish, flounder’</td>
</tr>
<tr>
<td>Pn: Tongan</td>
<td>ali</td>
<td>‘flounder’</td>
</tr>
<tr>
<td>Pn: Rennellese</td>
<td>agi</td>
<td>‘general name for flatfishes, flounders, soles etc.’</td>
</tr>
<tr>
<td>Pn: Samoan</td>
<td>ali</td>
<td>‘name given to flatfish, esp. some flounders’</td>
</tr>
<tr>
<td>Pn: Tokelauan</td>
<td>ali</td>
<td>‘Bothus sp., flounder’</td>
</tr>
<tr>
<td>Pn: W Futunan</td>
<td>ari</td>
<td>‘Bothus sp., flounder’</td>
</tr>
</tbody>
</table>

POc *lapaq ‘various flat fishes incl. sole and flounder’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm: Titan</td>
<td>lapa</td>
<td>‘flathead, Platyccephalidae’</td>
</tr>
<tr>
<td>Adm: Loniu</td>
<td>lapak</td>
<td>‘sole spp.’</td>
</tr>
<tr>
<td>NNG: Mutu</td>
<td>lab-lab</td>
<td>‘various sole and flounder spp.’</td>
</tr>
<tr>
<td>PT: Iduna</td>
<td>nafaya</td>
<td>‘flatfish’</td>
</tr>
<tr>
<td>PT: Gumawana</td>
<td>napai</td>
<td>‘flounder’</td>
</tr>
<tr>
<td>PT: Kilivila</td>
<td>napai</td>
<td>‘Bothus pantherinus’</td>
</tr>
<tr>
<td>MM: Maringe</td>
<td>glapi</td>
<td>‘flounder’ (final vowel unexplained)</td>
</tr>
<tr>
<td>Mic: Chuukese</td>
<td>lippə(r)</td>
<td>‘all flatfishes’</td>
</tr>
<tr>
<td>Mic: Satawalese</td>
<td>nippəe(r)</td>
<td>‘left eye flounder’</td>
</tr>
</tbody>
</table>

cf. also:

Pn: K’marangi | pai-pai | ‘Arnoglossus, flounder’

35 Reflected by Ambon (al)ali ‘halibut, flounder’ and the Oceanic data.
60 Stonefishes (Synanceiidae)

Scorpionfishes and lionfishes were formerly included with stonefishes as Scorpaenidae, but stonefishes have now been classified as a separate family, Synanceiidae. The latter are shallow-water fishes, very sluggish, spending most of their life concealed in mud or among rocks and coral. Most have grotesquely misshapen heads and bodies covered with rough warty skin. If trodden on, they can inject an extremely painful neurotoxin which, in some cases, has proved fatal to man (Munro p.538). Reflexes of POC *(n)n/opus(q) are numerous and widespread. Most Oceanic languages have merged /n/ and /ñ/, so provide no evidence for choosing between competing reconstructions, but Sudest reflects *ñ only, while Titan, Loniu and Wayan reflect n only. Lynch (pers. comm.) suggests the i of the Naman term (ni)niv might be evidence supporting initial *ñ-. Although the referent is consistent throughout almost all Western Oceanic languages, it has apparently become a generic for fishes with poisonous spines, including at least some scorpionfishes in Micronesia, Wayan Fijian and parts of Polynesia.

PMP *ñepuq ‘stonefish’ (AcD)
POC *(n)n/opus(q) ‘Synanceia spp., stonefishes’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm: Mussau</td>
<td>nou</td>
<td>‘stonefish’</td>
</tr>
<tr>
<td>Adm: Titan</td>
<td>no</td>
<td>‘stonefish, Synanceiidae’</td>
</tr>
<tr>
<td>Adm: Loniu</td>
<td>noh</td>
<td>‘k.o. poisonous fish’</td>
</tr>
<tr>
<td>NNG: Kove</td>
<td>nou</td>
<td>‘stonefish’</td>
</tr>
<tr>
<td>NNG: Tuam</td>
<td>nov</td>
<td>‘stonefish’</td>
</tr>
<tr>
<td>NNG: Malai</td>
<td>nob</td>
<td>‘stonefish’</td>
</tr>
<tr>
<td>NNG: Tami</td>
<td>no?</td>
<td>‘stonefish’</td>
</tr>
<tr>
<td>NNG: Takia</td>
<td>nou</td>
<td>‘stonefish’</td>
</tr>
<tr>
<td>NNG: Kaiep</td>
<td>nou</td>
<td>‘stonefish’</td>
</tr>
<tr>
<td>NNG: Manam</td>
<td>nou</td>
<td>‘stonefish’</td>
</tr>
<tr>
<td>PT: Duau</td>
<td>nohu</td>
<td>‘stonefish’</td>
</tr>
<tr>
<td>PT: Misima</td>
<td>nou</td>
<td>‘generic for lionfishes, firefishes and stonefishes’</td>
</tr>
<tr>
<td>PT: Molima</td>
<td>novu</td>
<td>‘stonefish’</td>
</tr>
<tr>
<td>PT: Sudest</td>
<td>ño</td>
<td>‘stonefish’</td>
</tr>
<tr>
<td>PT: Motu</td>
<td>nohu</td>
<td>‘stonefish, Synanceia trachynis’</td>
</tr>
<tr>
<td>PT: Kilivila</td>
<td>lou, nou</td>
<td>‘stonefish’</td>
</tr>
<tr>
<td>MM: Vitu</td>
<td>novu</td>
<td>‘stonefish’</td>
</tr>
<tr>
<td>MM: Bulu</td>
<td>novu</td>
<td>‘stonefish’</td>
</tr>
<tr>
<td>MM: Patpatar</td>
<td>nuh</td>
<td>‘stonefish’</td>
</tr>
<tr>
<td>MM: Halia</td>
<td>nohu</td>
<td>‘poisonous stonefish’</td>
</tr>
</tbody>
</table>
61 Triggerfishes (Balistidae); filefishes and leatherjackets (Monacanthidae)

Triggerfishes (Balistidae) are characterised by a football shape, leathery skin, and small mouth with powerful jaws. They are feeble swimmers, herbivorous, generally solitary in habit, seeking shelter among coral heads and weeds. The flesh of many is poisonous, although others are used for food (Munro p.557). Closely related to Balistidae are the Monacanthidae

MM: Marovo novu ‘Synanceia verrucosa, reef stonefish’
SES: Gela novu ‘most species of the family Scorpaenidae’
SES: Kwaio nofu ‘stonefish’
SES: ’Are’are nohu ‘small black fish with poisonous spikes on head and back. a prick causing severe pain for several days’
SES: Arosi nohu ‘k.o. fish with spiny ridge’
PNCV *novu ‘scorpion, venomous fish’ (Clark 2009:158)
NCV: Tamambo novu ‘stonefish, up to 20 cm, changes colour and has poisonous fins’
NCV: Raga (b*ati)novu ‘Synanceia spp., prob. S. verrucosa, stonefish’
NCV: Naman (ni)niv ‘stonefish’
NCV: Kiai novu ‘scorpion’
SV: Anejoĩ ne-no ‘S. verrucosa’
NCal: Voh-Koné neuk ‘stonefish’
NCal: Pije neuk ‘S. verrucosa’
Mic: Kiribati nou ‘Scorpaenidae’
Mic: Chuukese nou ‘S. verrucosa, stonefish’
Mic: Puluwatese nōw ‘scorpionfish’
PCP *novu ‘Synanceja verrucosa, stonefish’ (Geraghty: PCP *ñovu)
Fij: Rotuman nohu ‘fish that buries itself in the sand and can inflict a poisonous sting with its fin’
Fij: Bauan novu ‘fish of an ashen colour, resembling a stone, very rough horny skin’
Fij: Wayan novu ‘generic for all stonefish and certain scorpionfish which resemble stonefish in appearance and deadly sting’
PPn *nofu ‘Synanceja verrucosa, Scorpaenidae spp.’ [now Synanceiidae] (Hooper)
Pn: Tongan nofu ‘k.o. fish with poisonous spikes’
Pn: Niuean nofu ‘scorpionfish; stonefish’
Pn: E Uvean nofu ‘S. verrucosa’
Pn: Rennellese nohu ‘k.o. poisonous fish’
Pn: Pukapukan nou (watu) ‘S. verrucosa’ (watu ‘stone’)
Pn: Samoan nofu ‘k.o. fish with poisonous spines, Scorpaenopsis and Synanceia’
Pn: Tikopia nofu ‘stonefish’
Pn: Hawaiian nohu ‘scorpionfish’

61 Triggerfishes (Balistidae); filefishes and leatherjackets (Monacanthidae)
Fish

(Formerly Aluteridae), leatherjackets and filefishes. They differ from triggerfish in skin texture, leatherjackets having a leathery skin while that of filefish is rough and velvety (Munro p.564). Four POc terms are reconstructable, with *jumu the most likely candidate for a generic term. *bubub and *[bʷ'ar]bʷ'aru may, like *lio-lio, have had more specific reference. Variability of gloss frequently indicates only variability of common names for the same species. For instance, common names for Pseudobalistes fuscus include the yellow-spotted triggerfish (Allen & Swainston) or brown triggerfish (Kailola). Although juveniles have yellow lines and spots, adults have overall dark coloration.

POc *jumu ‘Balistidae, triggerfish and possibly Monacanthidae, leatherjackets’

NNG: Tami	sum	‘Pseudobalistes flavimarginatus’ [yellow-margin triggerfish]
NNG: Lukep (Pono)	dum	‘triggerfish, leatherjacket’
PT: Motu	dumu	‘k.o. triggerfish’
NCV: Tamambo	jumu	‘k.o. big fish with strong skin’
NCV: Namakir	him	‘triggerfish’
SV: Anejoĩ	ne-θom	‘Rhinecanthus sp., triggerfish’
NCal: Iaai	(wa)jimũ	‘Balistes sp.’

PCP *cumu ‘Balistoidei, triggerfish’ (Geraghty)

Fij: Rotuman	sumi	‘leather jacket’
Fij: Bauan	sumu-sumu	‘fish like the porcupine fish, but with no prickles. Tetrodon spp.’
Fij: Wayan	δum	‘generic for Balistidae and some or all Monacanthidae’
Fij: Kadavu	δumu	‘Balistes and Cantherhines spp., smaller than gau’

PnP *sumu ‘Balistidae’ (Hooper)

| Pn: Tongan | humu | ‘k.o. fish’ |
| Pn: Niuatoputapu | humu | ‘Balistidae, Rhinecanthus aculeatus’ [black-barred triggerfish] |

36 Also listed are a number of terms supporting PNCV *(s,t)umu(s,t)V ‘rabbitfish, Siganus spp.’ (Vera’a 𝛼-umus, Dorig smut, Lakon tumuh, all Siganus doliatus, the last two also S. canaliculatus, Mota sumut ‘k.o. fish’, Uripiv sumus, S Efate sm*os, both ‘rabbitfish’. If these are related to POc *jumu, the PNCV reconstruction is *sumut-i and a final POc consonant *-i is indicated (Alex François, John Lynch, pers. comm.).
<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niuean</td>
<td>humu</td>
<td>‘triggerfish’</td>
</tr>
<tr>
<td>E Uvean</td>
<td>humu</td>
<td>‘Balistes spp. (humu-humu ‘generic for Balistidae’</td>
</tr>
<tr>
<td>Samoan</td>
<td>sumu</td>
<td>‘triggerfish of genera Balistes and Balistapus’</td>
</tr>
<tr>
<td>Tokelauan</td>
<td>humu</td>
<td>‘triggerfish’</td>
</tr>
<tr>
<td>Tikopia</td>
<td>sumu</td>
<td>‘triggerfish and related types, Balistidae and Monocanthidae’</td>
</tr>
<tr>
<td>Hawaiian</td>
<td>humu-humu</td>
<td>‘triggerfish (generic)’</td>
</tr>
</tbody>
</table>

POc *bubu ‘Balistes taxon, triggerfish’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titan</td>
<td>bup</td>
<td>‘triggerfish, Balistidae’</td>
</tr>
<tr>
<td>Seimat</td>
<td>pup</td>
<td>‘k.o. reef fish with one large thorn on the back and several by the tail, good to eat’</td>
</tr>
<tr>
<td>Mangap</td>
<td>bubu</td>
<td>‘k.o. fish’</td>
</tr>
<tr>
<td>Manam</td>
<td>bubu</td>
<td>‘triggerfish’</td>
</tr>
<tr>
<td>Gedaged</td>
<td>bub</td>
<td>‘Pseudobalistes flavimarginatus’ [green triggerfish] (Mueller)</td>
</tr>
<tr>
<td>Takia</td>
<td>bub</td>
<td>‘P. flavimarginatus’ (Mueller 1985)</td>
</tr>
<tr>
<td>Ubir</td>
<td>fofo</td>
<td>‘k.o. fish’</td>
</tr>
<tr>
<td>Sursurunga</td>
<td>bobo</td>
<td>‘triggerfish’</td>
</tr>
<tr>
<td>Lihir</td>
<td>bombo</td>
<td>‘B. viridescens, P. flavimarginatus, larger triggerfishes’</td>
</tr>
<tr>
<td>Lihir</td>
<td>bum</td>
<td>‘Balistopus undulatus, orange-lined triggerfish, a notorious bait-stealer’</td>
</tr>
<tr>
<td>Ramoaaina</td>
<td>bubu</td>
<td>‘k.o. fish’</td>
</tr>
<tr>
<td>Teop</td>
<td>bobo</td>
<td>‘some triggerfish spp.’</td>
</tr>
<tr>
<td>Kwaio</td>
<td>bubu</td>
<td>‘reef triggerfish’</td>
</tr>
<tr>
<td>’Are’are</td>
<td>pupu</td>
<td>‘small fish’</td>
</tr>
<tr>
<td>Arosina</td>
<td>bubu</td>
<td>‘k.o. fish, Balistes’ (also bubu baru-baru)</td>
</tr>
<tr>
<td>Bauro</td>
<td>pupu</td>
<td>‘Balistoides viridescens’</td>
</tr>
<tr>
<td>Vera’a</td>
<td>bum</td>
<td>‘Balistidae’</td>
</tr>
<tr>
<td>Satawalese</td>
<td>p“ūp“u</td>
<td>‘triggerfish (generic)’</td>
</tr>
<tr>
<td>Kiribati</td>
<td>p“up“u</td>
<td>‘generic for triggerfish’</td>
</tr>
<tr>
<td>Chuukese</td>
<td>p“ūp“u</td>
<td>‘family name for triggerfishes’</td>
</tr>
<tr>
<td>Carolinian</td>
<td>b“ūh“u</td>
<td>‘triggerfish, Balistidae’</td>
</tr>
<tr>
<td>Mokilese</td>
<td>p“up“u</td>
<td>‘triggerfish’</td>
</tr>
<tr>
<td>Ponapean</td>
<td>p“ūp“u</td>
<td>‘leatherjacket’ (Christian 1899)</td>
</tr>
</tbody>
</table>

POc */b“aRuʃ“aRu ‘Balistes taxon, triggerfish’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinaugoro</td>
<td>balu</td>
<td>‘Balistoides conspicillum, big-spotted triggerfish’</td>
</tr>
<tr>
<td>Motu</td>
<td>baru-baru</td>
<td>‘triggerfish, general term’</td>
</tr>
<tr>
<td>Lala</td>
<td>balu-baru</td>
<td>‘k.o. reef fish’</td>
</tr>
<tr>
<td>Roro</td>
<td>paru-paru</td>
<td>‘k.o. fish’</td>
</tr>
<tr>
<td>Lihir</td>
<td>pial-pial</td>
<td>‘Odontus niger, redtooth triggerfish’</td>
</tr>
</tbody>
</table>
Fish 123

MM: Marovo _baru-baru_ ‘small triggerfish, prob. _Rhinocanthus aculeatus_’

SES: Longgu _balu-balu_ ‘ _Balistoides viridescens_’

SES: Langalanga _balu-balu_ ‘ _B. viridescens_’

SES: Arosi (_bubu)_baru-baru ‘a large sp. of _Balistes_’

SES: Kahua _paru-paru_ ‘ _B. viridescens_’

NCV: Dorig _pʰar-pʰar_ ‘ _B. viridescens, B. conspicillum_’

NCV: Namakir _buru-bar_ ‘triggerfish’

NCV: S Efate _pʰar-pʰor_ ‘triggerfish’

SV: Anemoŋ _na-pʰou_ ‘k.o. triggerfish’

NCal: Nêlêmwa _fʰa_ ‘ _Balistes_ sp.’

Fij: Nadrogā _gʰau_ ‘large Balistidae’

Fij: Lau _gau_ ‘large Balistidae’

Fij: Kadavu _gau_ ‘ _Balistes_ spp., larger than _cumu_.’

cf. also:

Adm: Titan _pʰalus_ ‘triggerfish’

Adm: Penchal _pulot_ ‘triggerfish, Balistidae’

Adm: Drehet _pʰalap_ ‘archerfish, 30–40 cm with alternating black and white triangle pattern’

Mic: Chuukese _pʰini-ini_ ‘ _B. viridescens, moustache triggerfish, Titan triggerfish_’

Mic: Satawalese _pʰen_ ‘ _Pseudobalistes fuscus, brown triggerfish_’

The Titan and Penchal forms above reflect *bʰalusV*, which may resemble POc *bʰaRu* either through chance or by borrowing.

POc *lio-liо ‘ _Pseudobalistes fuscus, brown triggerfish_’

MM: Marovo _makoto_ _li-o_ ‘k.o. large triggerfish’

MM: Nehan _lio_ ‘triggerfish (generic)’

Mic: Ponapean _lio-lio_ ‘large dark blue species of leatherjacket’ (Christian 1899)

Mic: Mokilese _lio-li_ ‘yellow-spotted triggerfish’

Mic: Kiribati _nuo-nuo_ ‘fish with poisonous darts on tail, _Balistes fuscus_’

Fij: Rotuman _lio-lio_ ‘large leatherjacket, called when young _sum fea_’ (*feə ‘pale’*)

62 Boxfishes, trunkfishes, cowfishes (Ostraciidae)

Members of this family are bottom dwellers in shallow water often around coral reefs. Normal scales have been replaced by bony plates fused into a hard box-like carapace. Mouth, eyes and fins are the only movable parts. All are extremely shy, feeble swimmers, but some are beautifully coloured. Some are reputed to have toxic flesh (Munro p.571). The next reconstruction is suspiciously similar to POc *bʰaRu* *bʰaRu ‘ _Balistes_ taxon, triggerfish_’, on page 122, but this seems due to chance, as the glosses clearly allow a separate reconstruction.
Figure 2.33 *Ostracion nasus*, shortnosed boxfish

POc *bʷ* aReu ‘*Ostracion*, boxfish’
PT: Misima bʷale(śa) ‘*Choerodon anchorago*, anchor trunkfish’
SES: Lau kʷale ‘k.o. fish’
PROc *bʷ* ar(o)-*bʷ* ar(o) ‘*Ostracion*, boxfish’ (Lynch: PSO *bʷ* ar(o)-*bʷ* ar(o))
NCV: Mwotlap na-pʷay-pʷay ‘*O. meleagris*, white-spotted boxfish’
NCV: Uripiv (da)pur-pur ‘*Ostracion*, boxfish’
PCP *gʷ* ao-gʷ*ao* ‘*Ostracion*’ (Geraghty)
Fij: Rotuman kao-kao ‘k.o. fish. When young, called moa’
Fij: Wayan gʷā-gʷā ‘generic for boxfish’

The next two reconstructions, *toqa* and *moa*, are problematic. Lynch (pers. comm.) has suggested Proto Central Vanuatu *mʷ* atoqu ‘boxfish, *Ostracion*’ (Paaemese (u)matou, Namakir mʷa-mʷ*atoq*, Nguna mʷ*atou*) which has echoes of both. There is also the possibility of parallel development, an outstanding characteristic of this fish being its resemblance in taste and texture to chicken, PCP *moa* or *toa* (Geraghty p.166).

POc *toqa* ‘k.o. fish with toxic flesh, probably *Ostracion*’
PT: Iduna (sis)toʔa ‘pufferfish’
PFij *toa* ‘*Ostracion*’ (Geraghty)
Fij: Bauan toa ‘a round fish like the *sumu-sumu*, trunkfish or *Ostraciidae*’

POc *moa* ‘boxfish’
MM: Marovo moa (idere) ‘*Ostracion* spp., boxfish’
PNCV *mʷ* a(toqu) ‘boxfish’ (Lynch pers. comm.)
NCV: Paaemese (u)ma(tou) ‘boxfish’
NCV: Namakir mʷa-mʷ*atoq* ‘boxfish’
NCV: Nguna mʷ*atou* ‘boxfish’
PCP *moa(toa)* ‘*Ostracion*’ (Geraghty)
Fij: Rotuman moa ‘young kao-kao’ (see above)
Fish 125

PPn *moa-moa ‘Ostraciidae, boxfish’ (Hooper)
Pn: Tongan mō-moa ‘cowfish’
Pn: Pukapukan moa-moa ‘Ostracion or Lactoria (cowfish) spp.’
Pn: Tokelauan moa-moa ‘Ostracion or Lactoria spp.’
Pn: Rennellese moa-moa ‘generic for boxfish, coffinfish, trunkfish, cowfish’
Pn: Samoan moa-moa ‘trunkfish, genera Ostracion’
Pn: Hawaiian moa ‘k.o. trunkfish, pahu’

63 Puffers, toadfishes and blowfishes (Tetraodontidae); porcupinefishes and balloonfishes (Diodontidae)

Puffers are sluggish fish which fill the belly with air when disturbed, and then float to the surface. They are feeble swimmers. Closely related are porcupine fish which are also self-inflating, but distinguished by having moveable spines on head and body. Both are bottom dwellers, and the flesh of both is toxic (Munro pp.545, 548). Although ACD glosses PMP *ta Rutum as ‘porcupinefish, puffer fish, Diodon sp.’, the WMP and CMP reflexes listed refer only to porcupinefish, and the reference to pufferfish is no doubt to the spiny puffer, an alternative name for porcupinefish. In Ambon (CEMP) a reflex is the term for a durian and in Ponape (Mic) a term for both the fish and a soursop (also a fruit with prickles), while in languages of Borneo (Kelabit, Katingan) and the Lesser Sundas (Manggarai, Lamaholot) reflexes mean ‘porcupine’. Both emphasise the semantic connection with porcupinefish rather than the smooth pufferfish. Blust (2002:130) considers that because porcupines (the mammals) are not found in the Philippines where PMP was presumably spoken, the term’s original reference was to ‘porcupinefish’.

PMP *ta Rutu[m,ŋ] ‘porcupinefish, Diodon sp.’ (ACD includes puffers)
POc *ta Rutu(m,ŋ) ‘Diodon spp., porcupinefish’

MM: Nakanai talitu ‘pufferfish, blowfish’
MM: Lihir tarut ‘Diodon spp., porcupinefishes (generic)’
MM: Patpatar tarut ‘French porcupinefish’
SES: Lau au ‘porcupinefish’ (shows loss of R before high vowels)
NCV: Mota terit ‘Diodon spp.’
NCV: Dorig trit ‘Diodon holocanthis, D. liturosus’
NCV: Uripiv daut ‘porcupinefish’
NCV: Nêlêmwa dot ‘porcupinefish’
NCV: Iaai kāt ‘porcupinefish’

PMic *tau tu ‘porcupine fish’ (Bender et al. 2003)
Mic: Kiribati tau ti ‘puffer fish, Diodon’
Mic: Puluwatase hō wi ‘large growth stage of edible long-spined puffer fish’
Mic: Carolinian sów ‘species of lagoon fish, poss. goatfish?’
Mic: Ponapean sey ‘porcupine fish; soursop, Annona muricata’
Mic: Mokilese joy ‘porcupine fish’
Figure 2.34 *Arothron leopardus*, leopard pufferfish

PCP *tautu* ‘*Diodon* sp.’ (Geraghty 1990)

<table>
<thead>
<tr>
<th>Language</th>
<th>Translation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fij: Rotuman</td>
<td>faufu</td>
<td>‘fish which inflates itself when caught: covered with spikes like a porcupine’</td>
</tr>
</tbody>
</table>

PPn *tautu* ‘*Diodon* spp., porcupine fish’ (Hooper)

<table>
<thead>
<tr>
<th>Language</th>
<th>Translation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn: Niuatoputapu</td>
<td>toutu</td>
<td>‘adult growth stage of porcupinefish’</td>
</tr>
<tr>
<td>Pn: E Uvean</td>
<td>toutu</td>
<td>‘Diodontidae (no distinction of genera or species)’</td>
</tr>
<tr>
<td>Pn: Rennellese</td>
<td>toutu</td>
<td>‘general name for balloon fish (porcupine fish)’</td>
</tr>
<tr>
<td>Pn: Samoan</td>
<td>toutu</td>
<td>‘fish, Diodon sp., with very sharp spines’</td>
</tr>
<tr>
<td>Pn: Tokelauan</td>
<td>toutu</td>
<td>‘Diodon sp.’</td>
</tr>
<tr>
<td>Pn: Tikopia</td>
<td>toutu</td>
<td>‘Diodon sp.’</td>
</tr>
</tbody>
</table>

The next reconstruction is a semantic extension of POc *poto(k)* ‘thorn’ (vol.3, p.125).

POC *[poto]poto* ‘pufferfish, porcupinefish’

<table>
<thead>
<tr>
<th>Language</th>
<th>Translation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm: Titan</td>
<td>(buli)poto-poto</td>
<td>‘porcupinefish’</td>
</tr>
<tr>
<td>MM: Marovo</td>
<td>poto</td>
<td>‘generic for all boxfish and pufferfish’ (poto mariu ‘porcupinefish, Diodon spp.’)</td>
</tr>
<tr>
<td>MM: Maringe</td>
<td>pʰ-o-poto</td>
<td>‘k.o. pufferfish or blowfish, such as Arothron’</td>
</tr>
<tr>
<td>NCV: Mwotlap</td>
<td>west-west</td>
<td>‘Arothron hispidus, porcupinefish’ [white-spotted puffer]37</td>
</tr>
<tr>
<td>NCV: Dorig</td>
<td>vot-vot</td>
<td>‘A. nigropunctatus’ [black-spotted puffer]</td>
</tr>
<tr>
<td>NCV: NE Ambae</td>
<td>(totoro) woto</td>
<td>‘porcupinefish’</td>
</tr>
<tr>
<td>Fij: Wayan</td>
<td>voto</td>
<td>‘spike or spines of a fish; prickle, thorn’</td>
</tr>
</tbody>
</table>

PPn *foto* ‘barb of stingray’ (POLLEX) (see §66.6)

37 Alex François (pers. comm.) points out that these North Vanuatu languages (+ other reflexes) unambiguously point to a sequence of vowels *u-o*, indicating Proto North Vanuatu *vutovato.*
POc *b"oe-b"oe ‘pufferfish’

MM: Tabar pu-pui ‘pufferfish’
SES: Gela boe-bote ‘generic pufferfish, Tetradontidae’ (-t- unexpected)
SES: Longgu boe (sina) ‘Diodon hystrix, porcupinefish’ (sina ‘his/her younger sibling’)
SES: To’aba’ita boe (ni asi) ‘Arothron hispidus, pufferfish’ (lit. ‘inflated thing? of the sea’)
SES: Langalanga boe ‘A. hispidus’ [white-spotted puffer]
SES: Lau boe ‘toadfish’
SES: ’Are’are poe ‘puffer fish’ (poe ha?u ‘porcupine fish’)
SES: Sa’a poe ‘porcupine fish’
SES: Arosi boe ‘k.o. fish, very poisonous’

PNCV *bue-bue ‘puffer fish’ (Clark 2009:87)
NCV: Lewo pue-pue ‘k.o. fish, sometimes poison, can puff itself up’
NCV: Namakir bue-bu ‘spineless puffer’
NCV: S Efate p°u(nopun) ‘Tetradontidae, pufferfish’
SV: Anejom (nu)pupou ‘pufferfish’
NCal: Fwâi fiu(rehâ) ‘Arothron meleagris’ [guineafowl puffer]
NCal: Nemi p°u(reyâ) ‘A. meleagris’
cf. also:
Fij: Wayan bû(tê) ‘generic for some Tetraodontidae, small to moderate-sized puffers’

POc *buli ‘pufferfish’

Adm: Titan buli ‘puffer, leatherjacket’
Adm: Loniu p°ili ‘toadfish or puffer’
Mic: Kiribati bui ‘Tetradontidae’
cf. also:
NNG: Manam bulai ‘pufferfish’
NNG: Takia bului ‘pufferfish’
NNG: Bing bulu(luy) ‘toadfish’

There is a term from Roro (PT) with form apparently cognate with PCP *jexejexe ‘Arothron’, but its gloss rules out an upgrading to a POc reconstruction.

PCP *jexejexe ‘Arothron’ (Geraghty)
Fij: Wayan seke-seke ‘Canthigaster margaritata, ocellated puffer’

PPn *tege-tege ‘Arothron and Canthigaster spp., pufferfish’ (Hooper)
Pn: Tongan teđe-teđe ‘k.o. fish that inflates itself when caught’
Pn: Rennellese teđe-teđe ‘toadfish, balloonfish, puffers’
Pn: Samoan têtē ‘immature globe fish’
Pn: K’marangi têtē ‘Arothron stellatus, starry toadfish’
Pn: Tokelauan têtē ‘A. meleagris, guineafowl puffer’
Pn: Hawaiian kēkē ‘A. hispidus’ [white-spotted puffer]
Flying gurnards (Dactylopteridae)

Flying gurnards are semipelagic, with lesser powers of flight than the true flying fish. They are heavily armoured, with enormous wing-like pectorals. Essentially bottom dwellers, they are capable of short clumsy glide-like flights (Munro p.541). Geraghty (p.149) proposes PFij *lulu, but no higher-level reconstruction has been made.

Remoras (Echeneididae)

Remoras (Echeneis naucrates and Remora remora), also known as suckerfish, have a modified adhesive disk on the upper surface of the head with which they attach themselves to large floating objects, frequently sharks. The Gela (SES) term for remoras is rao-rago bagea, literally ‘joined to sharks’. I have no POc reconstruction for remora. I noted in §4 that the Motu
reflex of POc *maŋewa ‘k.o. shark’ and the PCP reflex of *bakewa ‘shark (generic)’ denote the remora, not the shark. Hooper (p.216) proposes PPn *tali-tali-quli ‘Echeneis sp., remora, and Naucrates ductor, pilot fish’ with suggested etymology *tali-tali ‘wait upon’ and *quli ‘to steer’.

66 Fish parts

66.1 Roe

PAn *biRaS ‘roe, fish eggs’ (ACD) (dbl. *piRa)

POc *biRa ‘roe, fish eggs’ (ACD: *piRa)

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Lukep (Pono)</td>
<td>bira</td>
<td>‘crayfish eggs’</td>
</tr>
<tr>
<td>PT: Dobu</td>
<td>bila</td>
<td>‘fish roe’</td>
</tr>
<tr>
<td>PT: Tawala</td>
<td>bile</td>
<td>‘roe’</td>
</tr>
<tr>
<td>PT: Tubetube</td>
<td>bile(na)</td>
<td>‘fish internals’</td>
</tr>
<tr>
<td>PT: Gapapaiwa</td>
<td>bire</td>
<td>‘roe’</td>
</tr>
<tr>
<td>PT: Hula</td>
<td>pila</td>
<td>‘roe’</td>
</tr>
<tr>
<td>MM: Tolai</td>
<td>bira</td>
<td>‘fat’</td>
</tr>
<tr>
<td>MM: Marovo</td>
<td>bira</td>
<td>‘fish eggs’</td>
</tr>
<tr>
<td>MM: Roviana</td>
<td>bira(na)</td>
<td>‘the hard roe of fish’</td>
</tr>
<tr>
<td>SES: Gela</td>
<td>bila</td>
<td>‘organ of a fish’</td>
</tr>
<tr>
<td>SES: Longgu</td>
<td>bila(na)</td>
<td>‘fish eggs’</td>
</tr>
<tr>
<td>SES: Lau</td>
<td>bila</td>
<td>‘roe of fish, yolk of egg’</td>
</tr>
<tr>
<td>SES: Kwaio</td>
<td>bila(na)</td>
<td>‘roe’</td>
</tr>
<tr>
<td>SES: Sa’a</td>
<td>pile(na)</td>
<td>‘roe of fish, yolk of egg; to spawn’</td>
</tr>
<tr>
<td>SES: ’Are’are</td>
<td>pira(na)</td>
<td>‘roe of fish’</td>
</tr>
<tr>
<td>SES: Arosi</td>
<td>bira(na)</td>
<td>‘roe of a fish, yolk of an egg’</td>
</tr>
<tr>
<td>Mic: Kiribati</td>
<td>bia</td>
<td>‘growth, tumor, gland, knob, excrescence, fish ovaries’ (pia ‘fish roe’)</td>
</tr>
<tr>
<td>Mic: Marshallese</td>
<td>pia</td>
<td>‘fish roe’</td>
</tr>
</tbody>
</table>

cf. also:

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Mangap</td>
<td>barā(na)</td>
<td>‘fish roe’</td>
</tr>
<tr>
<td>Fij: Wayan</td>
<td>via</td>
<td>‘fish eggs, roe’</td>
</tr>
</tbody>
</table>

In Bauan Fijian and some Polynesian languages fish roe are called by the literal compound ‘fish eggs’ (Bauan yaloka ni ika, Tongan fua ?i ika etc.).

66.2 Gills

PMP *hasaŋ ‘gills’ (Zorc 1994)

POc *qasan ‘gills’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm: Mussau</td>
<td>asanə</td>
<td>‘internal gills’</td>
</tr>
<tr>
<td>Adm: Andra</td>
<td>aseja</td>
<td></td>
</tr>
<tr>
<td>NNG: Gitua</td>
<td>asana</td>
<td></td>
</tr>
</tbody>
</table>
NNG: Lukep (Pono) kaŋana
NNG: Yabem (ŋ)asaŋ
NNG: Ali (s)aseŋ
NNG: Kaiep (l)asaŋ
PT: Motu lada
MM: Nalik isaŋ
MM: Tabar aca
MM: Madak (m)aseŋ
MM: Halia (w)esanja
MM: Taiof n-esanŋ
MM: Babatana (j)ajanja
MM: Marovo asanja
MM: Roviana asanja
SES: Gela (s)asanja (retention of final consonant + echo vowel indicates probable borrowing from a NW Solomonic language)

SES: Lengo seye
cf. also:
Adm: Lou lisa-n ‘red inner gills of a fish’
SES: Sa’a laŋasi
SES: Arosi raŋasi

POc *koro ‘gills’
 MM: Vitu koro-koro
 MM: Bulu kolo-kolo
 Mic: Kiribati ō
 Mic: Marshallese or
 Mic: Chuukese wōr
 Mic: Woleaian wozo

POc *gara ‘gills’
 NNG: Mindiri gar-gara(ŋ)
 NNG: Megiar (gi)gare(n)
 NNG: Takia (gi)gare(n)
 PT: Lala ala-ala
 NCV: NE Ambae gala(vana)
 NCal: Nyelāyu yāra(r)
cf. also:
 PT: Kilivila gate(na) ‘gill’

PPn *lau-me ‘fish gills’ (*lau- ‘external part, surface’ me ‘red, reddish’) has also been reconstructed (pollex).
66.3 Scales

A POc verb, *qunapi* ‘scale a fish’ can be reconstructed, and it appears that a noun *qunapi* ‘fish scales’ was derived by back-formation in POc, existing as a doublet alongside *qunap*. Polynesian reflexes of the following reconstruction refer to turtle shell as well as fish scale.

PAn *qunapi* ‘scale of fish’ (ACD)

POc *qunap[i] ‘fishscale’ ((Dempwolff 1938))

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm: Mussau</td>
<td>unei</td>
<td>‘turtle shell’</td>
</tr>
<tr>
<td>Adm: Seimat</td>
<td>uli</td>
<td>‘turtle shell’</td>
</tr>
<tr>
<td>NNG: Tuam</td>
<td>anavu</td>
<td></td>
</tr>
<tr>
<td>NNG: Malai</td>
<td>anuvu</td>
<td></td>
</tr>
<tr>
<td>NNG: Gitua</td>
<td>unap</td>
<td></td>
</tr>
<tr>
<td>NNG: Mindiri</td>
<td>kunapi(n)</td>
<td></td>
</tr>
<tr>
<td>NNG: Wogeo</td>
<td>una</td>
<td></td>
</tr>
<tr>
<td>PT: Duau</td>
<td>kunaha</td>
<td></td>
</tr>
<tr>
<td>PT: Diodio</td>
<td>k*anava</td>
<td></td>
</tr>
<tr>
<td>PT: Iduna</td>
<td>k*anava</td>
<td></td>
</tr>
<tr>
<td>PT: Tawala</td>
<td>(we)nawa</td>
<td></td>
</tr>
<tr>
<td>PT: Misima</td>
<td>(un)una</td>
<td></td>
</tr>
<tr>
<td>PT: Maopa</td>
<td>unavi</td>
<td></td>
</tr>
<tr>
<td>PT: Hula</td>
<td>yuna</td>
<td>(yunavea (vt) ‘scale fish’)</td>
</tr>
<tr>
<td>PT: Motu</td>
<td>una</td>
<td>(unahi (vt) ‘scale fish’)</td>
</tr>
<tr>
<td>PT: Roro</td>
<td>una</td>
<td></td>
</tr>
<tr>
<td>MM: Lavongai</td>
<td>kunep</td>
<td>*(All the MM terms reflect k-)</td>
</tr>
<tr>
<td>MM: Tigak</td>
<td>kunap</td>
<td></td>
</tr>
<tr>
<td>MM: Kara (West)</td>
<td>kunaf</td>
<td></td>
</tr>
<tr>
<td>MM: Tiang</td>
<td>kuna</td>
<td></td>
</tr>
<tr>
<td>MM: Bola</td>
<td>yona</td>
<td></td>
</tr>
<tr>
<td>SES: Lau</td>
<td>unafa(na)</td>
<td></td>
</tr>
<tr>
<td>SES: Kwaio</td>
<td>una-una</td>
<td>(unafia ‘scale fish’)</td>
</tr>
<tr>
<td>SES: Sa’a</td>
<td>uneha(ʔa)</td>
<td>‘fish or snake scales’</td>
</tr>
<tr>
<td>SES: Arosi</td>
<td>una</td>
<td>(unahi ‘scale fish’)</td>
</tr>
<tr>
<td>SV: Sye</td>
<td>nigevi-</td>
<td></td>
</tr>
<tr>
<td>SV: Anejo‘ni</td>
<td>ninehe-</td>
<td></td>
</tr>
<tr>
<td>Fij: Rotuman</td>
<td>una</td>
<td></td>
</tr>
<tr>
<td>Fij: Wayan</td>
<td>una</td>
<td></td>
</tr>
</tbody>
</table>

**PPol *quna* ‘fish scale, turtle shell’ (POLLEX)

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn: Niuean</td>
<td>una</td>
<td>‘turtle shell’</td>
</tr>
<tr>
<td>Pn: Tongan</td>
<td>?uno-ʔuno</td>
<td>‘fish scales, turtle shell’</td>
</tr>
<tr>
<td>Pn: Samoan</td>
<td>una</td>
<td>(una laumei ‘scale of hawk’s bill turtle, i.e. tortoise-shell’)</td>
</tr>
<tr>
<td>Pn: Pukapukan</td>
<td>unawi</td>
<td>‘fish scales’ (una ‘scale of turtle shell’)</td>
</tr>
<tr>
<td>Pn: Tikopia</td>
<td>unafi</td>
<td>‘fish scales’ (una ‘carapace of marine turtle’)</td>
</tr>
<tr>
<td>Pn: Hawaiian</td>
<td>unahi</td>
<td>‘fish scales’ (una ‘shell of turtle or tortoise’)</td>
</tr>
</tbody>
</table>
cf. also:

PT: Sinaugoro *cunave* ‘fish scales’
Pn: Niuean *hinafi* ‘fish scales, to scale a fish’

66.4 Fins

Many languages distinguish between pectoral (breast), dorsal (back), caudal (tail) and ventral (abdominal) fins. Reconstructions have been made for the first two. The reconstruction of the next etymon, POc *banic* ‘arm, hand, wing, fin (probably pectoral)’, entails some minor formal problems. All cognates reflect initial *b-* except those in the Central Papuan languages Balawaia, Motu and Mekeo, which reflect *p-*. Blust (ACD) reconstructs PMP *pani(d,j)* with either *-d* or *-j* as final consonant. The only Oceanic reflex with an etymological final consonant is Vitu *baniti-*, pointing to POc *-t* or *-c*. The most straightforward analysis is that PMP *panij* became POc *banic* by regular sound change. The final consonants of Wampur *bani-t* and Mapos Buang *bani-s* can be ignored, as they reflect a probable construct suffix found on inalienably possessed nouns in Huon Gulf languages. The POc meaning of this term had clearly been extended beyond ‘wing’ to include the pectoral fins of fish, the wings of birds and the arms of human beings.

PMP *panij* ‘wing’ (Dempwolff 1938, ACD)

POc *banic* ‘arm, hand, wing, fin (probably pectoral)’

Adm: Seimat	*pau*n	‘pectoral fin’
Adm: Wuvulu	*pani-*	‘hand’
Adm: Aua	*pani-*	‘hand, fin’
Adm: Kaniet	*pani*	‘wing, hand, fin’
Adm: Nyindrou	*bani-n*	‘wing’
Adm: Pak	*beni-n*	‘fin’
Adm: Nauna	*pin*	‘wing’
Adm: Mondropolon	*pani-n*	‘wing’
Adm: Drehet	*peni-ŋ*	‘wing’
NNG: Gedaged	*bani-n*	‘fin, wing’
NNG: Takia	*bani-*	‘forelegs, hand, arm’
NNG: Kairiru	*panin*	‘fin’
NNG: Tumleo	*pain*	‘fin’
NNG: Wampur	*bani-t*	‘wing’
NNG: Mapos Buang	*bani-s*	‘fin, wing’
PT: Gumawana	pane-pane(na)	‘fish fins, bird’s wing’
PT: Balawaia	*vane*	‘wing, fin’ (for †bani)
PT: Motu	*hani*	‘fin, wing’ (for †bani)
PT: Mekeo	pa-pani	‘wing-like object, incl. fins’ (for †bani)
MM: Vitu	*baniti-*	‘wing, upper arm’
NCV: Mota	panei, paniu	‘hand and arm, wing, pectoral fin, pig’s shoulder’
NCV: Merlav	*bani*	‘wing’
NCV: Atchin	na-mben	‘wing, sail, armlet’
NCaI: Iaai	beñi-n	‘hand, arm, fin’
Fish 133

la-beñi-n ‘wing’

Mic: Marshallese pā ‘arm, hand, wing, fin’
Mic: Carolinian ppwán ‘pectoral fin and attached bone of fish’
Mic: Ulithian pal ‘ventral fin; hand’

POc *kaba (N) ‘wing’, (V) ‘flap wings’ (this volume, p.275) may be reduplicated to refer to the action of flapping back and forth, and in Polynesian languages this meaning is extended to include the action of fins, flippers and wings together with the name of the bodypart. Similarly, a number of Papuan Tip languages, Gumawana pane-panena, Molima pape, Wedau papena and Mekeo pa-pani use terms unrelated to *kaba-kaba to refer to both a bird’s wing or its flapping action and for a fish fin/turtle flipper.

PEOc *kaba-kaba ‘to flap the wings’

SES: Lau ʔaba-ʔaba ‘to flap the wings’
PnP *kapa-kapa (1) ‘lateral fins’, (2) ‘flap wings’ (POLLEX)
Pn: Tongan kapa-kapa ‘flap the wings, side fin’
Pn: Rennellese kapa-kapa ‘flippers, as of turtle, stingray, whale; base of fish fins’
Pn: Samoan ʔapa-ʔapa ‘fin’ (ʔapa ‘to beat, of bird’s wing, turtle flipper etc.’)
Pn: Pukapukan kapa-kapa ‘fin of fish, wing of bird, claw of turtle, arm of baby’
Pn: Tikopia kapa-kapa ‘pectoral fins; to flap, of wings’
Pn: Tokelauan kapa-kapa ‘of sharks, stingray, turtle etc., lateral fin, flippers’

cf. also:
MM: Tinputz kevā ‘fish fins’
Pn: Tongan kapo(ŋa) ‘back fin’

The following is a variant of the same word.

PMP *kapi-kapi ‘fin’ 38
POc *kapi-kapi ‘pectoral fins’

NNG: Labu hi ‘fish fin’
MM: Marovo kapi-kapi ‘pectoral fins’

Alternatively, a reflex of POc *taliya ‘ear’ is sometimes used to refer to a pectoral fin.

POc *taliya ‘pectoral fins’ (semantic extension of *taliya ‘ear’)

Adm: Mussau (ū-)taliya ‘external gills’ (lit. ‘feather + ear’)
PT: Motu taia ‘gill fins of fish’
SES: Kwaio aliya(na-iʔa) ‘fish fin’ (lit. ‘ear of fish’)
NCV: Mwotlap deliye ‘pectoral fins’
Fij: Rotuman faliya ‘pectoral fins’

38 WMP Kagayanen kapi-kapi ‘fin’ (dorsal), Murut ka-kapi ‘ventral fin’, Javanese kepèt ‘fin’ and Balinese kepes ‘fin (generic)’ (CAD) support reconstruction of PMP *kapi-kapi ‘fin’.
PMP *siRik ‘dorsal fin’

POc *siRiko ‘fish fin’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>siliko-liko</td>
<td>‘fins’</td>
</tr>
<tr>
<td>NCV</td>
<td>siki</td>
<td>‘fin’</td>
</tr>
<tr>
<td>Fij</td>
<td>siko-silo</td>
<td>‘fin’</td>
</tr>
</tbody>
</table>

cf. also:

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mic</td>
<td>sike</td>
<td>‘top and bottom fins of a fish’ (s for †t)</td>
</tr>
</tbody>
</table>

PMic *iŋi ‘dorsal fin’ (Bender et al. 2003)

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mic</td>
<td>iŋi</td>
<td>‘generic fin’</td>
</tr>
<tr>
<td></td>
<td>iŋi ri varo</td>
<td>‘ventral fin’</td>
</tr>
<tr>
<td></td>
<td>iŋi ri waor</td>
<td>‘dorsal fin’</td>
</tr>
<tr>
<td>Mic</td>
<td>īŋi</td>
<td>‘fin of fish’</td>
</tr>
<tr>
<td>Mic</td>
<td>yīŋ</td>
<td>‘dorsal fin’</td>
</tr>
<tr>
<td>Mic</td>
<td>iŋi(l)</td>
<td>‘dorsal fin’</td>
</tr>
<tr>
<td>Mic</td>
<td>yīŋ</td>
<td>‘dorsal fin’</td>
</tr>
</tbody>
</table>

PWOc *sio(R,r)a ‘fish fin’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT</td>
<td>siola</td>
<td>‘fin’</td>
</tr>
<tr>
<td>MM</td>
<td>si-sioro</td>
<td>‘fins of fish’</td>
</tr>
</tbody>
</table>

66.5 Fish gullet

The next POc reconstruction has general reference to ‘middle’, its meaning narrowing to fish gullet only at PPn level.

PMP *kempuŋ ‘abdomen, belly’ (Dempwolff 1938)

POc *kobu(ŋ) ‘middle, waist, belly’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SES</td>
<td>obu</td>
<td>i) ‘the middle’; ii) ‘waist of a man’</td>
</tr>
<tr>
<td>SES</td>
<td>upu-upu</td>
<td>‘middle, waist, a swelling’</td>
</tr>
<tr>
<td>SES</td>
<td>ubu(na)</td>
<td>‘middle’</td>
</tr>
</tbody>
</table>

PPn *kōpū ‘fish gullet’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn</td>
<td>kōpū</td>
<td>‘fish gullet’</td>
</tr>
<tr>
<td>Pn</td>
<td>kōpū</td>
<td>‘fish gut’</td>
</tr>
<tr>
<td>Pn</td>
<td>kōpū</td>
<td>i) ‘throat’; ii) ‘(fish) gut, stomach’</td>
</tr>
<tr>
<td>Pn</td>
<td>kōpū</td>
<td>‘belly, womb’</td>
</tr>
<tr>
<td>Pn</td>
<td>ōpū</td>
<td>‘gizzard, maw of animal, crop of bird’</td>
</tr>
</tbody>
</table>

39 WMP cognates: Palauan and Molbog sirik, Minangkabau and Bugis siriʔ, all ‘(dorsal) fin’ (Tryon 1995) support reconstruction of PMP *siRik ‘dorsal fin’.
66.6 Barb of stingray

Reflexes of POc *poto(k) ‘thorn’ (vol.3, p.125) have come to refer to the spike or spines of a fish in Wayan Fijian and the barb of a stingray in Polynesian languages.

PCP *voto ‘thorn, prickle; spike or spines of a fish’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word 1</th>
<th>Word 2</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fij: Rotuman</td>
<td>hofu</td>
<td>voto</td>
<td>‘sting or piercer of stingray’</td>
</tr>
<tr>
<td>Fij: Wayan</td>
<td>voto</td>
<td>voto</td>
<td>‘spike or spines of a fish’</td>
</tr>
</tbody>
</table>

PPn *foto ‘barb of stingray’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word 1</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn: Tongan</td>
<td>foto</td>
<td>‘barb of stingray’</td>
</tr>
<tr>
<td>Pn: Niuean</td>
<td>foto</td>
<td>‘thorn, barb, spike, bristle’</td>
</tr>
<tr>
<td>Pn: E Futunan</td>
<td>foto</td>
<td>‘barb of stingray’</td>
</tr>
<tr>
<td>Pn: Rennellese</td>
<td>hoto</td>
<td>‘barb, as on a stingray’s tail’</td>
</tr>
<tr>
<td>Pn: Samoan</td>
<td>foto</td>
<td>‘barb of stingray’</td>
</tr>
<tr>
<td>Pn: Māori</td>
<td>hoto</td>
<td>‘barb of stingray’</td>
</tr>
</tbody>
</table>

67 Conclusion

In this chapter I have reconstructed around 145 Proto Oceanic names for fish spread across approximately eighty families. All reconstructions bar one are uninomials, the only binomial reconstructable to POc level being *paRi-manuk ‘Aetobatis narinari, spotted eagle ray’. Uninomials can refer to fish at the family, genus or species level, and in the case of sharks (*bakewa) and rays (*paRi), at the level of suborder. In a number of cases I have been able to identify a reconstruction as a generic. Examples include *bakewa ‘sharks’, *paRi ‘ray’, *saku ‘needlefish’, *taRaqan ‘squirrelfish’, *kanase ‘mullet spp.’, *tuna ‘fresh water eels’, *gonos ‘Sphyraena, barracudas’. Generics may form the headword in a binomial subsuming two or more species, or may simply be used to include two or more subtaxa. Another kind of generic is that illustrated by *bebek ‘generic for butterflyfish, coralfish’, which is simply a lumped category with no sub-taxa. In some instances it has been possible to link a reconstruction to a particular species. However, for the majority of reconstructions it has only been possible to allocate an identity at the level of genus or family. Undoubtedly, POc fish nomenclature would have included scores of binomials, commonly at the level of species. My inability to reconstruct them is due partly to lack of detail in wordlists, but also to the likelihood of species variability across the region together with the apparent tendency of binomials to be local innovations. Most languages also have terms, usually binomial, for categories that cut across Linnaean categories, grouping fishes by functional criteria rather than by morphology or behaviour. Satawal, for instance, has taxa which identify such categories as flying fish, jumping fish, unpalatable fish, fish prohibited for women and children to eat, fish prohibited for pregnant and menstruating women, fish given preferentially to the chief, and fish that follow driftwood (Akimichi & Sauchomal 1982:25–6). Such terms also tend to be local innovations. Andrew Pawley has argued that Proto Oceanic probably had around 400 terms for fish (this volume, ch.3). The substantial number of reconstructions that exist for Proto Central Pacific and Proto Polynesian is largely due to the work of Paul Geraghty and Robin Hooper, building on Biggs & Clark (1993). Although Western Oceanic has far more languages than PCP, we have few wordlists from there which provide good descriptions of fish nomenclature. With the addition of more detailed wordlists from Western Oceanic languages, it should
be possible for researchers not only to reconstruct more terms, but to further refine the glosses for those we have.
3 Patterns of stability and change in Oceanic fish names

ANDREW PAWLEY

1 Introduction

Some years ago, in a paper reconstructing Proto Polynesian (PPn) fish names, Robin Hooper suggested that ‘fishing terms and fish names are good candidates for inclusion in core vocabulary lists for Polynesian languages’ (Hooper 1994:187-8). She meant that names for kinds of fish and fishing methods may prove to be as stable as words in standard basic vocabulary lists, such as the Swadesh 100 and 200 word lists. Stability in the lexicon can be defined, operationally, in terms of retention rates of particular etyma in daughter languages. Her suggestion rested on the observations that Polynesian fish names ‘reveal a high degree of uniformity and semantic correspondence …, which is attributable to a comparative uniformity in the ichthyological fauna of the tropical South Pacific’ (Hooper 1994:186) and that in Polynesian communities fishing has great economic and cultural importance. Hooper did not undertake a close statistical analysis of retention rates for fish names or other fishing terms but her remarks invite such a study.

In this chapter I will investigate the stability of 52 of the 140 or so fish names that have been reconstructed to the level of Proto Oceanic (POc), a language spoken more than 3000 years ago. Examination of a sample of contemporary Oceanic languages shows that POc names for some fish taxa have been extremely persistent, others have been much less so, and yet others occupy the middle ground. This leads to the question: Why have some names been much more (or less) stable than others?

I will also draw on evidence from contemporary languages to estimate the total number of fish names likely to have been used by speakers of POc. Osmond (this volume, ch. 2)

1 I dedicate this paper to the memory of Phil Quick, whose research on the Pendau language of Sulawesi included detailed study of Pendau fish names and fishing knowledge (Quick 2005, 2010). I am indebted to Meredith Osmond for carefully checking the details of all the tables and for thorough-going critical commentary on an earlier draft, and to Malcolm Ross for helpful comments.
reconstructs some 145 POc names for fish taxa, of which 140 look to be well attested in terms of having reflexes distributed across more than one primary subgroup. Hooper (1994) reconstructed 115 fish names for PPn, and for Proto Nuclear Polynesian, a stage ancestral to all Polynesian languages except Tongan and Niuean, she reconstructed 147. Geraghty (1994) was able to recover some 150 secure terms for Proto Central Pacific, the immediate ancestor of Polynesian, Fijian and Rotuman.

Comparative analysis of contemporary lexicons for fishing communities speaking Oceanic languages and exploiting environments comparable to those of the Bismarck Archipelago, the probable location of POc, indicates that speakers of POc probably distinguished on the order of 400 names for kinds of fish. In that case the total of about 140 fish names so far reconstructed for POc represents about a third of the total. The question arises why so many names are missing from the reconstructed inventory.

1.1 On the distribution of fish families, genera and species in the Pacific

R.H. Carcasson writes as follows of the fish fauna of the tropical Indo-Pacific region:

A surprisingly high proportion of Indo-Pacific species occur throughout the area; the Central Indo-Pacific, consisting roughly of the Malay Archipelago, the Philippines and New Guinea, has a richer fauna than any other part of the Region and has probably been the principal evolutionary centre from which the entire Indo-Pacific has been populated.

As one moves away from this area, the fauna becomes progressively impoverished...

(Carcasson 1977:13).

More than 150 families of fish occur in the Indo-Pacific region. Although the number of genera and species declines as one moves eastwards from New Guinea and the Bismarck Archipelago, the dominant families (those with most species, e.g. the wrasses, groupers, trevallies and jacks, damselfishes, cardinalfishes, surgeonfishes, gobies and moray eels) are present throughout the region.

The Bismarck Archipelago, the probable location of the POc speech community, is richer in marine life than any other region in the South Pacific apart from New Guinea. The coral reef systems of this region support several thousand species and several hundred genera.

1.2 The location and dating of Proto Oceanic

As we are concerned with retention rates of POc lexical items it is relevant to ask what time span is involved. The breakup of POc can be dated with considerable confidence to between 3400 and 3100 BP. POc was almost certainly spoken in the Bismarck Archipelago, where the greatest concentration of primary subgroups of Oceanic is found today. Dating of its breakup to within a span of two or three centuries is possible because of the strong association between the appearance in the Bismarck Archipelago and subsequent spread across the SW Pacific of the highly distinctive archaeological culture known as Lapita and the initial diversification of Proto Oceanic within the Bismarcks and the subsequent spread of Oceanic languages across the SW Pacific (Green 2003, Kirch 1997, 2000, Pawley 2003, 2007, 2008, Spriggs 1997, Summerhayes 2001).

The latest critical reviews of C14 dates indicate that Lapita appeared in the Bismarcks around 3400–3450 BP (Specht 2007). By 3200–3100 BP bearers of this culture had settled the Reefs-Santa Cruz group, east of the main Solomons group (Green 2003, Green et al.
and by about 3000 BP or earlier they had occupied Vanuatu (Bedford 2003, 2006), New Caledonia (Sand 2003) and Fiji (Nunn et al. 2004, Clark and Anderson 2009). By 2900 Lapita populations were present in the southern part of the Tongan group (Burley and Connaughton 2007) and by 2800–2700 they were in Samoa and the small islands between Tonga and Samoa: Futuna, Uvea (Wallis) and Niuatoputapu (Clark and Anderson 2009).

The carriers of Lapita material culture were, almost certainly, the first people to settle the Reefs-Santa Cruz group, Vanuatu, New Caledonia, Fiji and western Polynesia. Given that all these regions were occupied within 300–600 years of the first appearance of Lapita in the Bismarcks, we would expect that their first colonists spoke forms of Oceanic that were not greatly differentiated from their common ancestor, Proto Oceanic.

2 Methodological preliminaries

Before proceeding to an analysis of the data on fish names we should consider some methodological issues.

2.1 Data sources

The descriptions available on fish names and taxonomies in Oceanic languages are very uneven in quality and quantity. Although there are reasonably good general dictionaries for about 50 of the 450 or so languages in the Oceanic group only a handful provide something close to a comprehensive list of fish names together with scientific identifications and information about the indigenous taxonomy. In addition there are a few published papers and unpublished works that provide fairly extensive data. The statistical data cited in this paper are based on materials from a sample of 15 Oceanic languages plus a non-Oceanic language of Micronesia, Palauan, and a Malayo-Polynesian language of Sulawesi, Pendau (see Table 3.1).

2.2 On taxonomies and nomenclatures

2.2.1 Folk taxonomies

The core of a folk taxonomy is a set of named categories (taxa) that form a semantic hierarchy in which all taxa are related by virtue of being included in a higher order category or by virtue of including lower order taxa. A term that includes two or more named subtaxa is a generic taxon. There may also be covert taxa, conceptual categories whose unity is indicated by other means than sharing a class name. For example, for many English speakers horses, zebras and donkeys form a covert category (horse-like animals), as do dogs and wolves. A distinction needs to be made between the core categories in the taxonomic hierarchy and other kinds of categories that crosscut these, e.g. ecological categories, like ‘fish of the reef’ vs ‘fish of the deep sea’, and functional categories, like ‘poisonous fish’.

2 For example, the Proto Central Pacific (PCP) dialect complex, immediately ancestral to the Fijian and Polynesian languages and Rotuman, can be equated with the first couple of centuries of Lapita settlement in Fiji. PCP retained about 91 percent of POc basic vocabulary on a 200 item list (Pawley 2010).
Table 3.1 Details of languages cited (all Oceanic except Palauan and Pendau)

<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
<th>Subgroup</th>
<th>Main source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arosi</td>
<td>Makira, eastern Solomons</td>
<td>SE Solomonic</td>
<td>Fox 1978</td>
</tr>
<tr>
<td>Gela</td>
<td>Florida, central Solomons</td>
<td>SE Solomonic</td>
<td>Foale 1998</td>
</tr>
<tr>
<td>K’marangi</td>
<td>atoll south of the Carolines</td>
<td>Polynesian</td>
<td>Lieber and Dikepa 1974</td>
</tr>
<tr>
<td>Kiribati</td>
<td>atoll chain, Kiribati</td>
<td>Micronesian</td>
<td>Thaman & Tabano n.d.</td>
</tr>
<tr>
<td>Marquesan</td>
<td>Eastern Polynesia</td>
<td>Polynesian</td>
<td>Lavondès 1977</td>
</tr>
<tr>
<td>M’bunai Titan</td>
<td>Admiralty Islands, PNG</td>
<td>Admiralties</td>
<td>Akimichi & Sakiyama 1991</td>
</tr>
<tr>
<td>Motu</td>
<td>Central Province, PNG</td>
<td>Papuan Tip</td>
<td>Oram n.d.</td>
</tr>
<tr>
<td>Mutu (Mandok)</td>
<td>Viti Strats, PNG</td>
<td>North New Guinea</td>
<td>Pomponio n.d.</td>
</tr>
<tr>
<td>Niuatoputapu</td>
<td>small high island, W Polynesia</td>
<td>dialect of Tongan</td>
<td>Dye 1983</td>
</tr>
<tr>
<td>Palauan</td>
<td>Western Carolines</td>
<td>Malayo-Polynesian</td>
<td>Helfmann & Randall 1973</td>
</tr>
<tr>
<td>Pendau</td>
<td>Central Sulawesi</td>
<td>Malayo-Polynesian</td>
<td>Quick 2005, 2010</td>
</tr>
<tr>
<td>Satawalase</td>
<td>Central Carolines</td>
<td>Micronesian</td>
<td>Akimichi & Sauchomal 1982</td>
</tr>
<tr>
<td>Teop</td>
<td>NE Bougainville, PNG</td>
<td>NW Solomonic</td>
<td>Shoffner 1976</td>
</tr>
<tr>
<td>Uvean (Wallisian)</td>
<td>high island, W Polynesia</td>
<td>Polynesian</td>
<td>Rensch 1983</td>
</tr>
<tr>
<td>Wayan</td>
<td>small high island, W Fiji</td>
<td>Polynesian</td>
<td>Pawley & Sayaba 2003</td>
</tr>
</tbody>
</table>

2.2.2 Uninomials vs binomials

An important distinction is between **uninomial** and **binomial** names, sometimes called primary and secondary terms. Uninomials are names that are either a single morpheme (*oak, pine, apple*) or are multimorphemic but with meanings that are idiomatic (*she-oak, screw pine*). A *screw pine* (*pandanus*) is not a kind of pine, and a *she-oak* (*casuarina*) is not a kind of oak. Binomials consist of a uninomial term plus a modifier, where the uninomial names the class and the modifier distinguishes members of the class (i.e. a *white pine* and *redwood* pine are kinds of pine, and *white pointer shark* and *hammerhead shark* are kinds of shark). Uninomials typically name taxa at the level of what Berlin (1992) calls ‘folk generics’. These are taxa that belong to a particular major generic or ‘life form’ such as ‘fish’, ‘bird’ and ‘tree’ and which themselves may contain subtaxa that are designated by binomials.

Binomials provided by native speakers need to be viewed with some caution. When informants are asked to name or discriminate between specimens they sometimes offer *ad hoc* descriptions, such as ‘spotted X’, or ‘red X’, which the investigator may mistake for genuine conventional names. Independent checks with a range of informants are desirable but not always possible.

2.3 On counting the units in a taxonomy

Counting the number of lexical units in a folk taxonomy is not completely straightforward. There are several ways of counting members, which give different results. First, one can count the **total number of terms** that represent taxa. Each formally distinct term is counted separately even if it has synonyms, e.g. Australian English *chook, fowl, and chicken* ‘domestic
fowl, *Gallus gallus*’ count as three terms. Second, one can count just the number of *contrasting taxa*, in the sense of distinct conceptual categories, treating as a single taxon any set of referential synonyms (i.e. two or more terms that have the same referential meaning). In this case, for some English speakers the three terms *chicken*, *fowl* and *chook* would represent one taxon. In this study totals generally refer to the number of distinct terms for fish taxa provided by each source, because it is not always possible to identify synonyms in a list of names.

Another variable is names for growth stages. For certain species in several groups (e.g. barracuda, eels, groupers, wrasses, mullet, trevally, sharks) Oceanic languages commonly distinguish two or more growth stages. In this study I follow the standard practice of treating each name for a growth stage as representing a distinct taxon.

Yet another variable is polysemy. Some terms have two senses, one referring to a more specific category, another to a more general one (e.g. *cat* can refer to the domestic cat, *Felis felis*, or more broadly to any member of the cat family (*lion*, *tiger*, *cheetah*, etc.) In this study generic and specific senses of fish names are not counted separately, chiefly because we lack reliable data on such sense differences for most languages.

2.4 Semantic reconstruction

Hooper (1994:189) points to the kinds of difficulties met in attributing meanings to reconstructed fish names. The comparative linguist is dependent on the quality of the definitions available in accounts of contemporary languages and on the measure of agreement between them. Usually it is possible to pin down the meaning of a reconstructed form to a family or a group of closely related families, e.g. ‘kind of rock-cod (Serranidae)’ or ‘kind of snapper (Lutjanidae) or emperor (Lethrinidae)’. In a minority of cases it can be said with considerable confidence that a name referred to a particular species or group of closely related species, or to a growth stage of a species or genus.

2.5 On formulating hypotheses about whether fish names show similar retention rates to basic vocabulary

Hooper (1994) presents a brief statistical argument that Polynesian uninomial fish names, overall, show retention rates similar to those exhibited by etyma whose meanings belong to standard lists of basic vocabulary. She reconstructs 115 PPn fish names for generic and specific taxa, of which only three are binomials. She notes that if we compare the 112 PPn uninomials with lists for Uvean (Rensch 1988), Niuatoputapu (Dye 1983) and her own list for Tokelauan we get impressively high retention rates. The rates are about 66% for Uvean (74 retentions), 61% for Niuatoputapu (68 retentions) and 84% for Tokelauan (94 retentions). Hooper adds that ‘[if] we hypothesize that the Proto Polynesians, like their present-day descendants, used a vocabulary of about 130 monomial [uninominal] fish names, the retention rates are more plausible: 60% for Uvean, 52.2% for Niuatoputapu, and 72.3% for Tokelauan – close to the expected average retention rate of 70% for core vocabulary’ (Hooper 1994:187).

There are certain problems with this proposal. First, Hooper does not say how the ‘expected’ average retention rate of 70% for contemporary Polynesian languages was arrived at. It was presumably based on work in glottochronology indicating that, on average, languages will replace about 20 percent of words on the 200 item Swadesh list per 1000 years. An estimate of 30 percent replacement would make sense on the assumption that PPn broke up around 1400 years ago. This estimate is reasonable as a latest possible date of PPn breakup.
Second, Hooper’s assessment of average retention rates for fish names is based on just those 112 uninominals that have been reconstructed for PPn. These etyma will be a subset of the total number of fish names used in PPn (less stable names will not have been recovered). How small a subset is 112? For reasons indicated in §4, I estimate the number of uninominals in PPn to be more than 200. To take the case of Uvean, 74 retentions out of 200 would equate to a retention rate of 37 percent, still substantial but much less than 66 percent. Third, in some cases semantic matches between PPn fish names and their reflexes are not exact, e.g. the POC generic term for ‘shark’ is continued in some daughter languages by a term that refers to the Remora or sucking fish, which attaches itself to sharks. In standard glottochronological procedure, a form that continues a proto-language etymon but changes the meaning is not counted as a retention. In the case of PPn fish names that refer to particular families, genera or species, a reasonable compromise would be to count a reflex as retained in a daughter language provided that it refers to the same biological family as the etymon in the proto-language.

There is, however, a more fundamental concern. Even a comparison of the average retention rates of PPn fish names with that of basic vocabulary will not leave us much the wiser. This is because the individual meanings in the basic vocabulary list do not share a constant retention rate. On the contrary, there is enormous variation in the rates at which forms representing different meanings are replaced. A comparative study of Austronesian languages (Dyen et al. 1967) indicates that, over a span of several millennia, the least persistent item on the Swadesh 200 item basic vocabulary list is many times more likely to be replaced than the most persistent item.

Using a 196 item meaning list Dyen et al. compared 89 Austronesian languages and calculated cognition rates over the total set of language pairs. The languages were drawn from diverse subgroups, most of them belonging to the Malayo-Polynesian subgroup, to which 98 percent of Austronesian languages belong. It was found that 10 meanings on the list show cognition rates of between 50 and 80 percent. Forty-two meanings have rates exceeding 20 percent. Only 70 meanings have rates of more than 10 percent. As many as 105 meanings show cognition rates of less than seven percent and 43 of these score below three percent. 3

Admittedly, cognition rate and retention rate in basic vocabulary are not the same thing. The former is a measure of how often pairs of languages have cognate words for a given meaning on the list. The latter is a measure of how often a given reconstructed etymon is retained with the same meaning. But cognition rate in Dyen et al’s study will generally be a fairly accurate indicator of retention rate. For example, if a meaning, say ‘louse’, shows a

3 Why do basic vocabulary items vary so markedly in cognition rates? Differences in frequency of use in discourse may be an important part of the answer but it cannot be the whole answer. Indeed, forms for the ‘verb’ meaning that is most frequent in spoken discourse in most languages of the world, ‘say’, have a cognition rate of less than one percent in the study by Dyen et al., while forms for the less frequent ‘die’ and ‘eat’ score about 60 percent. The meaning ‘vomit’ (22%) scores higher than ‘come’ (15%) and ‘live’ (9%), although the latter cross-linguistically are much more frequent. Why do terms for ‘louse’, with a cognition rate of 71 percent, rank in the top five, while ‘man’ (10.5%) and ‘woman’ (13.8%) both fail to make the top 50? Why is ‘blood’ among the most stable items (27th in rank, cognition rate 27.8%) while ‘water’ is a good deal less stable (59th, with 12.3%)? Malcolm Ross (pers. comm.) suggests that where the denotatum of a basic vocabulary term is conceptually sharply distinct from other denotata, in a way that is common cross-linguistically, as is the case with ‘die’, ‘vomit’ ‘louse’ and ‘blood’, the term will have a high retention rate. But where the denotatum belongs to a set of denotata encoded by a set of conceptually overlapping terms, as is the case with ‘say’ (cf ‘speak’, ‘talk’, ‘tell’, ‘inform’ etc.), the retention rate will be low.
high cognition rate it is almost certainly represented by an etymon (in this case, *\textit{kutu}) that was present in a proto-language ancestral to most or all 89 languages in Dyen et al.’s sample and that has been continued by a high proportion of daughter languages.

Retention rates for what are approximately the most stable 60 items of POc basic vocabulary in a modified Swadesh list were presented in Pawley (2009). Retentions and replacements were recorded in a sample of 40 present-day Oceanic languages. Retention rates for individual items ranged between 97 and 23 percent. Each of the 24 most persistent POc etyma were retained by 70 percent or more languages, 44 etyma were retained by 50 percent or more languages, 54 by 40 percent or more, and 60 by 23 percent or more.

Given that individual basic vocabulary items vary so much in their retention rates, there is little point in asking whether POc fish names in general show retention rates similar to basic vocabulary in general. We need to ask questions sensitive to the variable retention rates of individual lexical items. First, retention rates needed to be determined for a sample of POc fish names Then it will become possible to make comparisons with the rates established for the 60 most POc etyma in the modified Swadesh basic vocabulary list. We can ask, for instance, how many fish names have a higher retention rate than the 20th, or 40th, or 60th most stable etymon in the basic vocabulary list.

3 Retention rates for POc fish names

3.1 Investigating retention rates for a sample of POc fish names

Retention rates for 52 POc fish names, drawn from Osmond’s list of reconstructions, were investigated in 12 languages belonging to diverse subgroups: Titan (Admiralties group), Mutu (North New Guinea), Motu (Papuan Tip), Marovo and Teop (Meso-Melanesian), Gela (Guadalcanal-Gelic), Arosi and Lau (Makira-Malaitan), Kiribati and Satawalese (Micronesian), Wayan (Fijian) and Niuatoputapu (a dialect of Tongan, Polynesian).

Between them, the 52 POc names represent a wide range of fish families. In Osmond’s data each of the 140 secure reconstructions is well attested by cognate sets drawn from diverse subgroups. In my sample not all reconstructions are well attested: whereas Osmond was in some cases able to draw on cognates from scores of languages, my sample consists of just 12.

For convenience of presentation the 52 POc names are divided into four groups. Tables 3.2-3.5 show the presence (y) or absence (–) of reflexes of each etymon in the 12 contemporary languages. A question mark, accompanied by an explanatory footnote, indicates doubt as to whether the form should be counted as a reflex of the etymon. The columns showing the number of retentions (‘no. retentions’) and the percentage of languages that reflect the etymon then show alternate figures, one not counting, the other counting the doubtful reflex.
Table 3.2 Presence/absence of reflexes of POc fish names in twelve languages (1)

<table>
<thead>
<tr>
<th>*ikan</th>
<th>‘generic for fish (and certain other free-swimming aquatic creatures)’</th>
</tr>
</thead>
<tbody>
<tr>
<td>*bakewa</td>
<td>‘generic for sharks’</td>
</tr>
<tr>
<td>*paRi</td>
<td>‘generic for rays’</td>
</tr>
<tr>
<td>*tuna</td>
<td>‘generic for freshwater eels (Anguillidae)’</td>
</tr>
<tr>
<td>*gawaq</td>
<td>‘milkfish, Chanos changos (Chaenidae)’</td>
</tr>
<tr>
<td>*saku</td>
<td>‘needlefish and long toms (Belonidae)’</td>
</tr>
<tr>
<td>*gawos</td>
<td>‘mature Sphyraena spp., possibly generic for all barracuda’</td>
</tr>
<tr>
<td>*gatu</td>
<td>‘taxon of barracuda (Sphyraenidae)’</td>
</tr>
<tr>
<td>*tagiRi</td>
<td>‘Scombridae spp., probably incl. Spanish mackerel and wahoo’</td>
</tr>
<tr>
<td>*qatu</td>
<td>‘skipjack tuna, Katsuwonus pelamis, (Scombridae)’</td>
</tr>
<tr>
<td>*walu</td>
<td>‘Scombridae sp. or spp.’</td>
</tr>
<tr>
<td>*saku-layaR</td>
<td>‘sailfish (Istiophoridae)’</td>
</tr>
<tr>
<td>*sabutu</td>
<td>‘snapper (Lutjanus) or emperor (Lethrinus) sp. or spp.’</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Titan</th>
<th>Motu</th>
<th>Maruo</th>
<th>Teop</th>
<th>Niuatoputapu</th>
<th>Marovo</th>
<th>Lau</th>
<th>Satawalese</th>
<th>Arosi</th>
<th>Kiribati</th>
<th>Wayan</th>
<th>Niutoputapu</th>
<th>percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>*ikan</td>
<td>y</td>
<td>–</td>
<td>y</td>
<td>10</td>
</tr>
<tr>
<td>*bakewa</td>
<td>y</td>
<td>y⁴</td>
<td>y</td>
<td>8</td>
</tr>
<tr>
<td>*paRi</td>
<td>y</td>
<td>–</td>
<td>–</td>
<td>y⁵</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>?⁶</td>
<td>y</td>
<td>8–9</td>
</tr>
<tr>
<td>*tuna</td>
<td>–</td>
<td>–</td>
<td>y</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>y</td>
<td>–</td>
<td>y</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3</td>
</tr>
<tr>
<td>*gawaq</td>
<td>–</td>
<td>–</td>
<td>y</td>
<td>–</td>
<td>–</td>
<td>y</td>
<td>–</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>6</td>
</tr>
<tr>
<td>*saku</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>y</td>
<td>–</td>
<td>y</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3</td>
</tr>
<tr>
<td>*gawos</td>
<td>–</td>
<td>y</td>
<td>–</td>
<td>–</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>–</td>
<td>–</td>
<td>5</td>
<td>42</td>
</tr>
<tr>
<td>*gatu</td>
<td>y</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>y</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>*tagiRi</td>
<td>y¹⁰</td>
<td>–</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>–¹¹</td>
<td>–</td>
<td>–¹²</td>
<td>–</td>
<td>y</td>
<td>y</td>
<td>6</td>
<td>50</td>
</tr>
<tr>
<td>*qatu</td>
<td>–</td>
<td>–</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>8</td>
<td>67</td>
</tr>
<tr>
<td>*walu</td>
<td>–</td>
<td>y</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>y</td>
<td>–</td>
<td>y</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td>25</td>
</tr>
<tr>
<td>*saku-layaR</td>
<td>y</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td>?¹⁴</td>
<td>y</td>
<td>4–5</td>
<td>33/42</td>
</tr>
<tr>
<td>*sabutu</td>
<td>–</td>
<td>y</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>y</td>
<td>–</td>
<td>y</td>
<td>–</td>
<td>–</td>
<td>3</td>
<td>25</td>
</tr>
</tbody>
</table>

Footnotes:
4 mayoa for †bayewa.
5 Only example is vari-popolo ‘bull ray, Mylobatus’.
6 *baifamau ‘devil-headed manta ray’ for *†baifamau. Borrowed?
7 Arosi has sawa ‘mullet’ (confusion with reflex of *(k,g)atua?).
8 raku ‘swordfish’ for †‘needlefish’.
9 Wayan has ono ‘Lienardella fasciata, harlequin tuskfish (Labridae)’.
10 *tagi for †*tagi.
11 Loss of first syllable. ili for †*tagi.
12 Wrong meaning: ‘shoal of porpoises’.
13 Changed meaning: alu ‘barracuda’ not ‘*Scombridae, possibly Spanish mackerel’.
14 Only first part cognate in compound raku-riri ‘Pacific sailfish’. raku generic for Istiophoridae and Xiphiidae.
Table 3.3 Presence/absence of reflexes of POc fish names in twelve languages (2)

<table>
<thead>
<tr>
<th>Name</th>
<th>English Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>*kulabo</td>
<td>‘snapper sp. or spp. (Lethrinidae)’</td>
</tr>
<tr>
<td>*(n,ñ)opuq</td>
<td>‘stonefish, Synanceia spp., incl. S. verrucosa (Synanceiidae’</td>
</tr>
<tr>
<td>*taRaigan</td>
<td>‘squirrelfish, Sargocentron sp. or spp. (*Holocentridae’</td>
</tr>
<tr>
<td>*jumu</td>
<td>‘triggerfish (Balistidae) and possibly leatherjackets (Monacanthidae’</td>
</tr>
<tr>
<td>*bebek</td>
<td>‘generic for butterflyfish and coralfish (Chaetodontidae’</td>
</tr>
<tr>
<td>*kuRapu</td>
<td>‘rock-cod, Epinephelus sp. or spp. including E. lanceolatus, Queensland grouper (Serranidae’</td>
</tr>
<tr>
<td>*palaja</td>
<td>‘rabbitfish, Siganus spp. (Siganidae’</td>
</tr>
<tr>
<td>*laci</td>
<td>‘Scomberoides spp., incl. S. lycan (Carangidae’</td>
</tr>
<tr>
<td>*qulu</td>
<td>‘Caranx sp., possibly C. ignobilis, big-headed jack (Carangidae’</td>
</tr>
<tr>
<td>*pilu</td>
<td>‘Caranx sp. or spp. (Carangidae’</td>
</tr>
<tr>
<td>*qatule</td>
<td>‘scad spp. (Carangidae), incl. Trachurus crumenophthalmus, big-eyed scad’</td>
</tr>
<tr>
<td>*taRutu(m,ŋ)</td>
<td>‘porcupinefish, Diodon spp. (Diodontidae’</td>
</tr>
<tr>
<td>*kanase</td>
<td>‘generic for certain mullet (Mugilidae’</td>
</tr>
<tr>
<td>*bunaR</td>
<td>‘batfish, Platax sp. (Platacidae’</td>
</tr>
<tr>
<td>*tiqo</td>
<td>‘goatfish sp. (Mullidae’</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Language</th>
<th>Retentions</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>*kulabo</td>
<td>y</td>
<td>2</td>
</tr>
<tr>
<td>*(n,ñ)opuq</td>
<td>y</td>
<td>11</td>
</tr>
<tr>
<td>*taRaigan</td>
<td>y</td>
<td>5</td>
</tr>
<tr>
<td>*jumu</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>*bebek</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>*kuRapu</td>
<td>y</td>
<td>7</td>
</tr>
<tr>
<td>*palaja</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>*laci</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>*qulu</td>
<td>y</td>
<td>1</td>
</tr>
<tr>
<td>*pilu</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>*qatule</td>
<td>y</td>
<td>4</td>
</tr>
<tr>
<td>*taRutu(m,ŋ)</td>
<td>y</td>
<td>3</td>
</tr>
<tr>
<td>*kanase</td>
<td>y</td>
<td>4</td>
</tr>
<tr>
<td>*bunaR</td>
<td>y</td>
<td>2</td>
</tr>
<tr>
<td>*tiqo</td>
<td>y</td>
<td>5</td>
</tr>
</tbody>
</table>

15 kula for †kulabo.
16 Vague gloss: ‘k.o. fish’/’fish with spiny ridge’.
17 ravu: first syllable missing.
18 Vague gloss: ‘k.o. fish’.
19 urua for †unu. Borrowed?
20 vuna for †buna.
Table 3.4 Presence/absence of reflexes of POc fish names in twelve languages (3)

*k,q)ulapi	‘parrotfish spp. (Carangidae) incl. *Hipposcarus longiceps, longnosed parrotfish’
*bala(y,k)i	‘*Acanthurus and Naso spp. (Acanthuridae)’
*qume	‘*unicornfish, Naso unicornis (Acanthuridae)’
*koto(ŋ)	‘large rock cod, *Epiphenilus spp. (Serranidae)’
*don(o,u)	‘rock cod, possibly *Cephalopholis (= *Plectropomus) spp. (Serranidae)’
*(k,q)umutuR	‘sweetlips, *Plectorhynchus spp. (Haemulidae)’
*b[a,p,w]a	‘*snapper, *Lutjanus sp. (Lutjanidae)’
*tasiwa	‘*snapper, *Lutjanus sp. (Lutjanidae)’
*kasika	‘*large emperor, *Lethrinus sp. (Lethrinidae)’
*palata	‘*dolphinfish (Coryphaenidae)’
*b[a,s,j]i	‘*moray eel (Muraenidae)’
*muqu(ŋ)	‘*rabbitfish, *Siganus sp., possibly *S. spinus (Siganidae)’
*tanipa	‘*sardine, *Sardinella sp. (Clupeidae)’

*k,q)ulapi	– – – – – – y – y y y y y 4 33
*bala(y,k)i	y – – – – – – – – y y y 3 27
*qume	– – – – – – – – y y y – y 4 33
*koto(ŋ)	y – – – – – – – – y – – y 2 17
*don(o,u)	– y – – – – – – – y y – 3 25
*(k,q)umutuR	y – y – – y y – y y – 5 42
*b[a,p,w]a	y – – – – – – – – y – – y – 2 17
*tasiwa	– y – – – – y – – y 3 25
*kasika	y y – y – – – y – – y 5 42
*palata	– – – – y – – – – – – y 1 8
*b[a,s,j]i	y – – – – – – – – y – – y 1 8
*muqu(ŋ)	– y – – y – y – – – – 3 25
*tanipa	– – – – – – – – y 21 – – 1 8

21 Niuatoputapu tenifa ‘whale shark’ shows semantic shift.
Table 3.5 Presence/absence of reflexes of POc fish names in twelve languages (4)

<table>
<thead>
<tr>
<th>Name</th>
<th>*paya</th>
<th>*(k,q)aRua(s)</th>
<th>*bubu</th>
<th>*taRat</th>
<th>*qaroŋo</th>
<th>*mamin</th>
<th>*tagapa(R,r)</th>
<th>*magaRut</th>
<th>*panapa</th>
<th>*paRi-manuk</th>
<th>*kaboRa</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>‘anchovy (Engraulidae)’</td>
<td>‘generic for mullet (Mugilidae)’</td>
<td>‘triggerfish, Balistes sp. (Balistidae)’</td>
<td>‘unicornfish, Naso spp., probably incl. N. brevinostris (Acanthuridae)’</td>
<td>‘surgeonfish, Acanthurus sp. (Acanthuridae)’</td>
<td>‘Cheilinus spp. (Labridae), incl. double-headed Māori wrasse, C. undulatus’</td>
<td>‘large wrasse, probably Cheilinus sp. (Labridae)’</td>
<td>‘flying fish (Exocoetidae)’</td>
<td>‘garfish, Hemiramphus sp. (Hemiramphidae)’</td>
<td>‘eagle ray, Aetobatus narinari’</td>
<td>‘catfish-eel, Plotosus sp. (Plotosidae)’</td>
</tr>
<tr>
<td>Points</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td></td>
<td>3</td>
<td>25</td>
<td>26</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Retentions</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td></td>
<td>3</td>
<td>25</td>
<td>26</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

22 Titan par ‘gizzard shad’.
23 Motu tara ‘k.o. fish’.
24 Satawalese napanap ‘wrasse’.
25 Titan cinap ‘barred garfish’ has wrong initial syllable.
26 Teop ponpon ‘various garfish spp.’
Table 3.6 shows the full range of retention rates for the 52 POc etyma. It can be seen that there is wide variation, with the most durable names being ten times more likely to be retained than the least durable.

Table 3.6 Retention rates for 52 Proto Oceanic fish names

<table>
<thead>
<tr>
<th>% retentions</th>
<th>Proto Oceanic fish name</th>
</tr>
</thead>
<tbody>
<tr>
<td>83/91</td>
<td>*(n,n)opuq</td>
</tr>
<tr>
<td>83</td>
<td>*ikan</td>
</tr>
<tr>
<td>67</td>
<td>*bakewa</td>
</tr>
<tr>
<td>67</td>
<td>*paRe</td>
</tr>
<tr>
<td>67</td>
<td>*qatun</td>
</tr>
<tr>
<td>58/67</td>
<td>*kuRaPu</td>
</tr>
<tr>
<td>58</td>
<td>*bubu</td>
</tr>
<tr>
<td>58</td>
<td>*laci</td>
</tr>
<tr>
<td>50</td>
<td>*(k,q)arua(s)</td>
</tr>
<tr>
<td>50</td>
<td>*gawaq</td>
</tr>
<tr>
<td>50</td>
<td>*taRiR</td>
</tr>
<tr>
<td>42</td>
<td>*kasika</td>
</tr>
<tr>
<td>42</td>
<td>*qonas</td>
</tr>
<tr>
<td>42</td>
<td>*(k,q)umutaR</td>
</tr>
<tr>
<td>42</td>
<td>*mamin</td>
</tr>
<tr>
<td>42</td>
<td>*taRaqan</td>
</tr>
<tr>
<td>42</td>
<td>*tiqo</td>
</tr>
<tr>
<td>33/42</td>
<td>*saku-layaR</td>
</tr>
<tr>
<td>33</td>
<td>*kanase</td>
</tr>
<tr>
<td>33</td>
<td>*(k,q)ulapi</td>
</tr>
<tr>
<td>33</td>
<td>*paRi-manuk</td>
</tr>
<tr>
<td>33</td>
<td>*qume</td>
</tr>
<tr>
<td>33</td>
<td>*taRat</td>
</tr>
<tr>
<td>25/33</td>
<td>*palaja</td>
</tr>
<tr>
<td>25/33</td>
<td>*tanapa(Rr)</td>
</tr>
<tr>
<td>25</td>
<td>*bala(y,k)i</td>
</tr>
<tr>
<td>25</td>
<td>*bebek</td>
</tr>
<tr>
<td>25</td>
<td>*don(o,u)</td>
</tr>
<tr>
<td>25</td>
<td>*jumu</td>
</tr>
<tr>
<td>25</td>
<td>*magaRut</td>
</tr>
<tr>
<td>25</td>
<td>*muqu(y)</td>
</tr>
</tbody>
</table>

(continued on next page)
Some fish names are as persistent as some basic vocabulary items

We are now in a position to evaluate the hypothesis that some Proto Oceanic fish names have been as persistent as some basic vocabulary items.

It was noted in §2.5 that, in a sample of 40 daughter languages, the 60 most conservative POc basic vocabulary items in a modified 200 item Swadesh list show retention rates ranging between 97 and 23 percent. The 24 most persistent etyma were retained by 70 percent or more languages, 44 etyma were retained by 50 percent or more languages, 54 by 40 percent or more, and 60 by 23 percent or more.

No fewer than 38 of the 52 POc fish names examined show retention rates within the range exhibited by the 60 most stable basic vocabulary etyma. Eleven fish names fall within the range of the 44 most stable basic vocabulary etyma. The hypothesis is strongly supported.

Some small caveats must be attached to this conclusion. Methodological difficulties in comparing fish name retentions with basic vocabulary retentions were discussed in §2. In this study the fish name retention rates are based on just 12 languages, whereas the basic vocabulary retention rates are based on 40. (The same 40 languages could not be used in the fish names study for reasons stated in §2.1.) If the composition of the two samples, in terms of distribution across major subgroups, were markedly different this might bias the results, because some Oceanic subgroups are known to contain more languages that are lexically conservative than other subgroups. However, the composition is roughly similar so the effects of different sample sizes are probably small.
Table 3.7 Retention rates in PCP and PPn for fish names by families/groups

<table>
<thead>
<tr>
<th>family/group</th>
<th>POc no.</th>
<th>PCP % retained</th>
<th>PPn % retained</th>
</tr>
</thead>
<tbody>
<tr>
<td>rays</td>
<td>2</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>damsels, sergeant-majors (Pomacentridae)</td>
<td>2</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>sweetlips (Plectorynchidae)</td>
<td>2</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>boxfish (Ostraciidae)</td>
<td>3</td>
<td>100</td>
<td>33</td>
</tr>
<tr>
<td>eels</td>
<td>7</td>
<td>86</td>
<td>14</td>
</tr>
<tr>
<td>trevally, jacks etc (Carangidae)</td>
<td>6</td>
<td>84</td>
<td>66</td>
</tr>
<tr>
<td>scombrids</td>
<td>6</td>
<td>84</td>
<td>84</td>
</tr>
<tr>
<td>garfish (Heramphidae)</td>
<td>5</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>surgeons and unicorns (Acanthuridae)</td>
<td>12</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>snapper (Lutjanidae)</td>
<td>4</td>
<td>75</td>
<td>50</td>
</tr>
<tr>
<td>rock cod (Serranidae)</td>
<td>4</td>
<td>75</td>
<td>50</td>
</tr>
<tr>
<td>mullet (Mugilidae)</td>
<td>3</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>squirrelfish (Holocentridae)</td>
<td>3</td>
<td>66</td>
<td>66</td>
</tr>
<tr>
<td>goatfish (Mullidae)</td>
<td>3</td>
<td>66</td>
<td>0</td>
</tr>
<tr>
<td>parrotfish (Scaridae)</td>
<td>7</td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>rabbitfish (Siganidae)</td>
<td>7</td>
<td>57</td>
<td>43</td>
</tr>
<tr>
<td>wrasses (Labridae)</td>
<td>6</td>
<td>50</td>
<td>33</td>
</tr>
<tr>
<td>emperors (Lethrinidae)</td>
<td>5</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>triggerfish (Balistidae)</td>
<td>4</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>marlin (Xiphiidae)</td>
<td>2</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>sharks</td>
<td>7</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>porcupinefish (Diodontidae)</td>
<td>5</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

Only two fish names have retention rates of more than 70 percent, ranking with the most stable 24 basic vocabulary items. One of these is the life form taxon *ikan ‘fish’. The other is the generic *(m,n)opuq ‘stonefish’. These repulsive-looking fish are not economically useful but are extremely dangerous denizens of the shallow sandy bottoms. The next three most stable forms consist of the respective generics for sharks and rays, *bakewa and *paRi, together with *qatun, which denotes one or more species of much-prized game fish in the bonito and tuna family. Sharks and rays are extremely salient fish for several reasons: they are highly distinctive in appearance and behaviour, very large, some kinds are dangerous, and they have economic importance. The next five names in the top ten all denote large or fairly large fish that are highly regarded as food.

3.3 Retention rates of names by families or higher-order groups

Have names for taxa belonging to certain families of fish been more persistent than names for taxa belonging to other families? An answer to this question requires comparison of all secure POc reconstructions with a later language or languages. One set of comparisons that can
readily be made is between POc, PCP and PPn. Table 3.7 specifies the number of retentions in PCP and PPn of reconstructed POc names for fish belonging to particular families or, in the case of sharks, rays and eels, high-order groups.

Unfortunately, numbers in most groups are too low to make tests of statistical significance useful. Among those groups with four or more POc names it is noteworthy that carangids, scombrids, rock cod and mullet, all important food fish, show high retention rates in both PCP and PPn. But it is unclear why, of the four names in the sample representing carangids, one, *laci ‘Scomberoides’ spp. incl. *S. lycan’, has been very durable (scoring 58%) while the other three have not (*qatule, probably denoting the big-eyed scad, *gulua and *pilu, both denoting Caranx sp. or spp., all score 25% or less). It is also striking that although most POc names for kinds of eels and for Acanthuridae (surgeonfish and unicornfish) are retained in PCP, very few are kept in PPn.

3.4 Variation in retention rate among languages in the sample

The 12 languages vary greatly in their retention rates for fish names (Table 3.8). This finding is consistent with what is known about retention rates for basic vocabulary among Austronesian languages in general (Blust 1981, 1999).

The percentages for certain languages are likely to have been deflated by the incompleteness of the fish name lists for these languages, particularly Kiribati and Mutu and to a lesser extent Arosi, Lau, Niuatoputapu and Teop.

Table 3.8 Retention rates by language for 52 POc fish names

<table>
<thead>
<tr>
<th>Language</th>
<th>no. retentions</th>
<th>percentage retained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wayan</td>
<td>29-30</td>
<td>56-58</td>
</tr>
<tr>
<td>Niuatoputapu</td>
<td>28</td>
<td>54</td>
</tr>
<tr>
<td>Titan</td>
<td>24</td>
<td>46</td>
</tr>
<tr>
<td>Satawalese</td>
<td>20</td>
<td>38</td>
</tr>
<tr>
<td>Motu</td>
<td>17</td>
<td>33</td>
</tr>
<tr>
<td>Kiribati</td>
<td>16-19</td>
<td>31-36</td>
</tr>
<tr>
<td>Gela</td>
<td>16</td>
<td>31</td>
</tr>
<tr>
<td>Lau</td>
<td>15</td>
<td>29</td>
</tr>
<tr>
<td>Arosi</td>
<td>12-13</td>
<td>23-25</td>
</tr>
<tr>
<td>Marovo</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>Teop</td>
<td>8-9</td>
<td>16-18</td>
</tr>
<tr>
<td>Mutu</td>
<td>8</td>
<td>16</td>
</tr>
</tbody>
</table>
Table 3.9 Total recorded fish names in 12 Oceanic languages

<table>
<thead>
<tr>
<th>Language</th>
<th>Wayan</th>
<th>Satawalese</th>
<th>Gela</th>
<th>Marovo</th>
<th>Titan</th>
<th>Uvean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>484</td>
<td>400</td>
<td>368</td>
<td>316</td>
<td>287</td>
<td>284</td>
</tr>
<tr>
<td>K’marangi</td>
<td>262</td>
<td>260</td>
<td>209</td>
<td>197</td>
<td>151</td>
<td>145</td>
</tr>
</tbody>
</table>

4 Estimating the size of the Proto Oceanic lexicon of fish names

4.1 Introduction

Let us turn now to another set of questions. How many fish taxa were distinguished in POc? What proportion of the fish names were uninomials and binomials, respectively?

A fair idea can be gained by looking carefully at descriptions of a sample of present day languages. Investigators making fairly comprehensive studies of particular fishing communities living in rich marine environments in western Melanesia have consistently recorded more than 300 names for kinds of fish. Hviding (1996:193) says that speakers of Marovo distinguish by name over 400 kinds of fish; Hviding (1990) lists 316 Marovo fish names. For Gela, Foale (1998) lists 368 names (including 14 synonyms). During only 12-16 weeks fieldwork on M’bunai Titan, a language of the Admiralty Islands, Akimichi & Sakiyama (1991) recorded 287 fish taxa.

Figures for some communities in Remote Oceania are of a similar order. Helfman and Randall (1973) give 336 fish names for Palauan, a non-Oceanic Austronesian language. For Satawalese, spoken on an atoll in the Central Carolines, 400 names were recorded by Akimichi & Sauchomal (1982), based on seven months fieldwork. This number is high considering that Satawalese is a part of a chain of atolls, and the range of species and genera is likely to be fewer than in the vicinity of large high islands and especially, continental Melanesia. For the Western Fijian language of Wayan, 484 fish names were recorded of which 352 are uninomials and 132 are binomials (Pawley and Sayaba 2003). (This count excludes about 60 binomials that are probably descriptions rather than conventional names.)

Total counts for some isolated atolls and small high islands in the central Pacific are a bit lower. Lieber (1994) gives 262 names for Kapingamarangi, an isolated atoll south of the main Carolines group. Rensch (1983) gives 284 names for Uvean (aka Wallisian), in western Polynesia, and Lavondès (1977) gives 260 fish names for Marquesan. There are a number of other published lists which, although very useful, are plainly incomplete. For example, the list (Dye 1983) for Niuatoputapu, a language of western Polynesia, consists of 209 names (37 of these mark developmental stages of 12 species).

For Tobelo, a non-Austronesian language of the Bird’s Head family in North Halmahera, Taylor (1990) recorded 358 fish taxa. For Pendau, a Malayo-Polynesian language of central Sulawesi, Quick (2010) recorded 300 names, of which 73% were uninomials.

For reasons to be discussed below, it is likely that none of the inventories of fish names referred to above is exhaustive, not even those numbering over 400. There are various means of spotting the gaps and estimating their extent. We turn now to this matter.
Table 3.10 Uninomials and binomials in 11 contemporary Oceanic languages and in POc, PCP and PPn

<table>
<thead>
<tr>
<th></th>
<th>Mutu</th>
<th>Gela</th>
<th>Wayan</th>
<th>Marovo</th>
<th>Satawalese</th>
<th>Titan</th>
<th>Uvean</th>
</tr>
</thead>
<tbody>
<tr>
<td>uninomials</td>
<td>104</td>
<td>252</td>
<td>352</td>
<td>194</td>
<td>278</td>
<td>279</td>
<td>180</td>
</tr>
<tr>
<td>binomials</td>
<td>41</td>
<td>100</td>
<td>132</td>
<td>122</td>
<td>122</td>
<td>8</td>
<td>104</td>
</tr>
<tr>
<td>% binomials</td>
<td>28</td>
<td>27</td>
<td>28</td>
<td>38</td>
<td>30</td>
<td>3</td>
<td>36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Niua</th>
<th>K’marangi</th>
<th>Kiribati</th>
<th>Teop</th>
<th>POc</th>
<th>PCP</th>
<th>PPn</th>
</tr>
</thead>
<tbody>
<tr>
<td>uninomials</td>
<td>138</td>
<td>148</td>
<td>132</td>
<td>168</td>
<td>140</td>
<td>150</td>
<td>112</td>
</tr>
<tr>
<td>binomials</td>
<td>71</td>
<td>114</td>
<td>19</td>
<td>29</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>% binomials</td>
<td>34</td>
<td>43</td>
<td>14</td>
<td>15</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

4.2 Estimating absolute numbers of names

One method of detecting gaps is simply to compare the total number of fish names recorded for each language in a representative sample. It can be seen that, among the 12 languages cited in Table 3.9, the total number of names varies greatly.27

Insofar as all these languages are spoken by fishing communities who use similar fishing techniques and have access to a pretty similar range of fish families and genera, and indeed species, we would expect the size of their lexicons to be more similar than they are. On these grounds alone it can be inferred that the lists numbering below 300 are probably incomplete, especially for the languages of Melanesia, and lists below 200 are seriously incomplete. However, it must be allowed that in some Pacific Island communities there has in recent times been a reduction in the range of fishing methods employed and a decline in knowledge of fish names and fish ecology.

4.3 Number and ratio of uninomials to binomials

Another method is to compare the ratio of uninomials and binomials that have been recorded, as well as the absolute numbers of each (Table 3.10).

Taking the five languages with the highest number of uninomials in Table 3.10 as representing the best described languages, we find an average of 271 uninomials. It is noteworthy that the three Polynesian languages in the sample range between 138 and 180 uninomials, well short of this figure.

In the best documented Oceanic fish taxonomies, binomials normally amount to between 27 and 38 percent of the total names (median 30 percent). If the proportion of binomials recorded for a language deviates markedly from this range it stands out as suspiciously anomalous. In three languages, Titan, Kiribati and Teop, the percentage of binomials is 15 percent or less. It is likely that in each case the list of binomials is seriously incomplete. Most striking is Titan, where binomials make up only three percent of the 287 fish names. We can infer that roughly 100 Titan binomials were not recorded. At the other extreme, Kapingamarangi (43%) is considerably above the median; it may be that in this case the list of binomials includes some ad hoc descriptive forms and/or that the list of uninomials is far from complete.

27 In this and later tables ‘K’marangi’ refers to Kapingamarangi and ‘Niua’ to Niuatoputapu.
Table 3.11 Grouper, rock cod, coral cod (Serranidae); trevally and jacks (Carangidae)

<table>
<thead>
<tr>
<th>Family</th>
<th>Niua</th>
<th>Uvean</th>
<th>Kiribati</th>
<th>Satawalese</th>
<th>Gela</th>
<th>Wayan</th>
<th>Titan</th>
<th>Teop</th>
<th>PPn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serranidae</td>
<td>12</td>
<td>28</td>
<td>14</td>
<td>26</td>
<td>26</td>
<td>21</td>
<td>19</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Carangidae</td>
<td>6</td>
<td>12</td>
<td>16</td>
<td>21</td>
<td>43</td>
<td>10</td>
<td>18</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

4.4 Comparison of number of fish names family by family

Yet another indicator of how complete the record of fish names for a particular language is, comes from cross-linguistic comparison of the number of taxa or names for each particular biological family (or sometimes a group of related families). Fairly consistent patterns emerge as to how many taxa are typically distinguished in each family or larger group. If the number of recorded taxa in a language is much lower than the average or median this is a sign that the list is incomplete.

Tables 3.11–3.22 give the number of names recorded for certain groups of fishes in eight contemporary languages plus PPn. The groups are usually a single family or a pair of closely related families, though in the case of sharks, rays and eels, each group consists of several families. In the case of PPn, it is to be expected that the totals for each family will generally be below the average for contemporary languages because the PPn reconstructions consist almost exclusively of uninomials and because the PPn list is probably more seriously incomplete than that of any of the contemporary languages.

The Serranidae and Carangidae (Table 3.11) both contain many species and many important food fish. Morphologically distinct species in each family are consistently classified into many taxa. (There seem to be no cases where a language has a generic for the diverse Serranidae family and the same is true for the Carangidae. Generics exist with much more restricted ranges.) For the Serranidae, the Teop list is anomalous in having only seven names. Of the 26 Gela terms for Serranidae, as many as eight are synonyms, so the number of distinct taxa is only 18. For the Carangidae, Niuatoputapu and Wayan are anomalous in having as few as six and 10 names, respectively, and Gela in having as many as 43. The Gela list includes four terms for growth stages (other than the unmarked, mature stage term) and five synonyms.

With hundreds of species each, the Labridae and Scaridae (Table 3.12) are two of the largest and morphologically most diverse families. Both families contain many important food fish. Kiribati and Niuatoputapu are anomalous in distinguishing only three and four

Table 3.12 Wrasses (Labridae); parrotfish (Scaridae)

<table>
<thead>
<tr>
<th>Family</th>
<th>Niua</th>
<th>Uvean</th>
<th>Kiribati</th>
<th>Satawalese</th>
<th>Gela</th>
<th>Wayan</th>
<th>Titan</th>
<th>Teop</th>
<th>PPn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labridae</td>
<td>4</td>
<td>9</td>
<td>3</td>
<td>14</td>
<td>17</td>
<td>48</td>
<td>10</td>
<td>14</td>
<td>4/5</td>
</tr>
<tr>
<td>Scaridae</td>
<td>9</td>
<td>14</td>
<td>5</td>
<td>28</td>
<td>11</td>
<td>16</td>
<td>18</td>
<td>13</td>
<td>5/6</td>
</tr>
</tbody>
</table>
Table 3.13 Goatfish (Mullidae); mullet (Mugilidae)

<table>
<thead>
<tr>
<th></th>
<th>Niua</th>
<th>Uvean</th>
<th>Kiribati</th>
<th>Satawalese</th>
<th>Gela</th>
<th>Wayan</th>
<th>Titan</th>
<th>Teop</th>
<th>PPn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mullidae</td>
<td>8</td>
<td>10</td>
<td>3</td>
<td>15</td>
<td>8</td>
<td>10</td>
<td>9</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Mugilidae</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

terms for Labridae. Wayan stands out in distinguishing as many as 48. Twenty-seven of the Wayan terms are uninomials, so even if we discount some binomials as being merely descriptive the number of valid taxa remains high.

Mullidae, goatfish (aka grey mullet, Table 3.13) are a fairly numerous family of shallow water feeders, usually caught in nets or traps, and which are easily identified by the pair of barbels on the chin. There is usually a generic term for the family as well as a number of named kinds. Mugilidae, mullet (aka red mullet), are a small family of shallow water feeders, with just a few species present in any one locality, but are economically important and each species is often distinctly named. The Gela, Wayan and Teop lists are anomalous in distinguishing only two or three Mugilidae taxa.

The scombrids (Table 3.14) include several species much valued as game fish and usually finely discriminated in indigenous Oceanic taxonomies. However, the family is morphologically fairly diverse and it is not usual to find a generic for the whole family. Wayan is on the low side in number of scombrid taxa. Xiphiidae are a very small family of morphologically distinctive deep sea fish. The lists for Niuatoputapu and Gela lack names for two prominent kinds of Xiphiidae: swordfish and marlins, and Teop, unusually, subsumes all kinds in one taxon.

The Acanthuridae (Table 3.15) are a moderately numerous family of reef grazers which occur in schools. The larger species, especially, are valued as food and morphologically distinctive species are usually named separately. Satawalese has an exceptionally high number of Acanthuridae names, as many as 28 being uninomials. The Siganidae are a fairly small family of reef grazers with very sharp fin spines. They are good eating and are usually finely discriminated in the taxonomy. The Satawalese, Niuatoputapu, Uvean and Kiribati lists appear to be missing some terms.

The Holocentridae (Table 3.16) are small, brilliant shallow water coral fishes. There is often a generic for the family and invariably several taxa are named. The Balistidae, grazing fish of the coral reef and weedy shallows, number many species. Most are distinctively

Table 3.14 Mackerels and tuna (Scombroidei); marlin and swordfish (Xiphiidae)

<table>
<thead>
<tr>
<th></th>
<th>Niua</th>
<th>Uvean</th>
<th>Kiribati</th>
<th>Satawalese</th>
<th>Gela</th>
<th>Wayan</th>
<th>Titan</th>
<th>Teop</th>
<th>PPn</th>
</tr>
</thead>
<tbody>
<tr>
<td>scombrids</td>
<td>8</td>
<td>12</td>
<td>7</td>
<td>10</td>
<td>9</td>
<td>6</td>
<td>13</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Xiphiidae</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 3.15 Surgeonfish/unicornfishes (Acanthuridae); rabbitfish (Siganidae)

<table>
<thead>
<tr>
<th></th>
<th>Niua</th>
<th>Uvean</th>
<th>Kiribati</th>
<th>Satawalese</th>
<th>Gela</th>
<th>Wayan</th>
<th>Titan</th>
<th>Teop</th>
<th>PPn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthuridae</td>
<td>13</td>
<td>23</td>
<td>10</td>
<td>32</td>
<td>19</td>
<td>20</td>
<td>10</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>Siganidae</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>19</td>
<td>10</td>
<td>13</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 3.16 Squirrelfish/soldierfish (Holocentridae); triggerfish (Balistidae) and leatherjackets (Aluteridae incl. Monacanthidae)

<table>
<thead>
<tr>
<th></th>
<th>Niua</th>
<th>Uvean</th>
<th>Kiribati</th>
<th>Satawalese</th>
<th>Gela</th>
<th>Wayan</th>
<th>Titan</th>
<th>Teop</th>
<th>PPn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holocentridae</td>
<td>4</td>
<td>11</td>
<td>5</td>
<td>14</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Balistidae</td>
<td>5</td>
<td>11</td>
<td>3</td>
<td>22</td>
<td>11</td>
<td>25</td>
<td>9</td>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>

marked with bright colours and many are separately named. Some are poisonous. The Aluteridae comprise many species of small or medium sized grazing fish, similar in habits to the Balistidae. Some species are considered poisonous. Aluteridae and Balistidae are sometimes subsumed under a single generic in Oceanic languages. There is a marked gap between Satawalese and Wayan and the rest in number of names for Holocentridae and for Balistidae and Aluteridae.

The Lutjanidae (snappers, Table 3.17) are a large family of carnivorous fish, mostly bottom dwellers moving in schools in outer coral reefs and lagoons. The Lethrinidae (emperors) comprise about 20 species living mainly in shallow, coastal waters. Noteworthy here is the high number of terms for kinds of snapper in Gela, and the low numbers for Wayan, and also the high number of Titan terms for emperors. The fact that authors providing lists of fish names and identifications for Oceanic languages often follow conflicting scientific taxonomies creates difficulties in comparing group totals across languages. Taxonomists disagree, for example, over whether Lethrinidae and Plectorhynchidae (grunters, sweetlips) should be assigned to the family Lutjanidae or to separate families. Members of these closely

Table 3.17 Snapper, sea-perch, bass (Lutjanidae); emperors (Lethrinidae); sweetlips and grunters (Plectorhynchidae)

<table>
<thead>
<tr>
<th></th>
<th>Niua</th>
<th>Uvean</th>
<th>Kiribati</th>
<th>Satawalese</th>
<th>Gela</th>
<th>Wayan</th>
<th>Titan</th>
<th>Teop</th>
<th>PPn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lutjanidae</td>
<td>13</td>
<td>16</td>
<td>13</td>
<td>8</td>
<td>23</td>
<td>7</td>
<td>17</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>Lethrinidae</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>13</td>
<td>15</td>
<td>10</td>
<td>23</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Plectorhynchidae</td>
<td>0</td>
<td>?</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>12</td>
<td>7</td>
<td>1</td>
<td>?</td>
</tr>
</tbody>
</table>
related groups are carnivorous, usually have large heads, equal jaws and a forked tail-fin. They are an important food source and many taxa are distinguished but as a rule, Oceanic languages have no generic terms for any of the families (or sub-families) in question.

Sharks and **rays** (Table 3.18) each fall into several families, some with several species. Individual species tend to be salient because of their size and distinctive morphology and behaviour and, in some cases, because they are eaten. In Oceanic languages there is almost always a generic term for sharks and another for rays, and the generics generally have several subtaxa. The Kiribati, Niuatoputapu, Titan and Teop totals for sharks are on the low side, as is the Gela total for rays.

Eels (Table 3.19) fall into several families, chiefly the Anguillidae (freshwater eels) and several families of sea or brackish water eels: Muraenidae (morays), Ophichthydae (snake eels), Congridae (conger eels) and Muraenesocidae (pike eels or pike congers). This highly salient group of fish is usually finely classified in Oceanic languages. There is often a generic term for eels as well as terms (often with subtaxa) for each of the families.

Sphyraenidae (barracuda, Table 3.19) are a small family of predatory fish, large fast and elongated, with very large sharp teeth that make them dangerous to humans. They are good eating. Generally, several growth stages and sometimes two or three mature kinds of barracuda are distinguished. It can be seen that several languages are on the low side in number of recorded eel and barracuda taxa.

Clupeidae (Table 3.20) are small migratory shoaling fish of shallow coastal waters. They are good eating and are taken in nets. The lists for Gela, Niuatoputapu, Satawalese and Teop score notably lower than Titan and Wayan in number of Clupeidae, and it is likely that the lists are incomplete. The only member of the **Chanidae** is the milkfish, *Chanos chanos*, which is everywhere distinguished. The **Atherinidae** are a small family of silvery, sardine-like schooling fishes which are mainly used as bait.

The genus *Synanceia* (stonefish) is sometimes included by ichthyologists in the family **Scorpaenidae** (scorpionfish) and the two groups are lumped together here (Table 3.21). Species of this morphologically diverse family all have long poisonous pectoral and dorsal

<table>
<thead>
<tr>
<th>Table 3.18</th>
<th>Sharks and rays</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Niua</td>
</tr>
<tr>
<td>sharks</td>
<td>7</td>
</tr>
<tr>
<td>rays</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3.19</th>
<th>Eels (Anguilliformes); barracuda (Sphyraenidae)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Niua</td>
</tr>
<tr>
<td>eels</td>
<td>10</td>
</tr>
<tr>
<td>barracuda</td>
<td>2</td>
</tr>
</tbody>
</table>
Table 3.20 Sardines and herrings (Clupeidae); milkfish (Chanidae); silversides/hardyheads (Atherinidae)

<table>
<thead>
<tr>
<th>Family</th>
<th>Niua</th>
<th>Uvean</th>
<th>Kiribati</th>
<th>Satawalese</th>
<th>Gela</th>
<th>Wayan</th>
<th>Titan</th>
<th>Teop</th>
<th>PPn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clupeidae</td>
<td>1</td>
<td>?</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Chanidae</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Atherinidae</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3.21 Scorpionfish (Scorpaenidae) and stonefish (Synanceia)

<table>
<thead>
<tr>
<th>Family</th>
<th>Niua</th>
<th>Uvean</th>
<th>Kiribati</th>
<th>Satawalese</th>
<th>Gela</th>
<th>Wayan</th>
<th>Titan</th>
<th>Teop</th>
<th>PPn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scorpaenidae and Synanceiaidae</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>4</td>
<td>16</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

spines. The Synanceia have the most potent of all the fish venoms, secreted from glands at the base of their needle-like dorsal fin spines. They have large grotesquely shaped heads and mouths and conceal themselves by lying in mud, sand, coral or weeds, and are extremely dangerous. Wayan distinguishes many more scorpionfish and stonefish taxa than the other languages. The fact that most Wayan names are uninomials suggests that lists for some of the other languages are incomplete.

The Blennidae (blennies, Table 3.22) are a large family of agile, small elongated fish of shallow reef waters and tidal pools. The Gobiidae (gobies) are usually very small fish of tidal pools, reefs and estuaries. The Periopthalmidae (mudskippers) comprise a few small amphibious species of mangrove swamps and muddy shores. Figures for these three families are lumped together here both because lexicographical identifications are often vague, and because ichthyologists have trouble deciding how many families should be distinguished. The totals for Satawalese and Gela are spectacularly higher than the rest. Most Gela terms are binomials and it is possible that some represent ad hoc descriptive epithets rather than conventional names.

Table 3.22 Blennies (Blennidae), gobies (Gobiidae) and mudskippers (Periopthalmidae)

<table>
<thead>
<tr>
<th>Family, Gobiidae and Periopthalmidae</th>
<th>Niua</th>
<th>Uvean</th>
<th>Kiribati</th>
<th>Satawalese</th>
<th>Gela</th>
<th>Wayan</th>
<th>Titan</th>
<th>Teop</th>
<th>PPn</th>
</tr>
</thead>
</table>
| | 1 | ? | 0 | 23 | 28 | 5 | 2 | 1 | 1 |(?)}
This survey of family name totals suggests that even the larger inventories of fish names for Oceanic languages, those in the 350–480 range, are not complete. The Wayan list, for example, shows significantly below average numbers of names for Carangidae, Lutjanidae, Mugilidae and Scombridae.

POc speakers lived in the Bismarck Archipelago, a region with a very rich fish fauna. Lexical evidence (Osmond 1998) and archaeological evidence (Walter 1989, Kirch 1997) indicate that they exploited a wide range of fishing techniques. Given these considerations, we can infer that the number of fish taxa distinguished by POc speakers was on the same order as the largest numbers recorded for contemporary Oceanic languages, in the 400+ range, and that about 70 percent of fish names were uninomials.

5 Where have all the fish names gone?

The total number of fish names so far reconstructed for POc (145) falls far short of the number that we estimate were used by speakers of the language. Why are so many names missing from the reconstructed inventory? A similar question can be asked about PCP (150-160 reconstructions) and PPn (115).

One category of missing names can easily be identified: binomials. The only secure binomial reconstructed for POc is *paRi manuk ‘eagle ray, Aetobatis narinari’ (lit. ‘bird ray’). (*saku-layaR ‘swordfish’ is historically analysable into *saku ‘needlefish and long toms’ plus *layaR ‘sail’, but it was not a binomial: it is clear from contemporary evidence that *saku-layaR were not a kind of *saku.) Of the 160 reconstructions in Geraghty’s (1994) list of PCP fish names, just two are binomials. Of the 115 fish names that Hooper (1994) reconstructs for PPn, just three are binomials. The lack of widespread fully cognate binomial terms confirms what many commentators (e.g. Rensch 1983) have said: binomials, or to be more exact, the secondary or modifying terms in binomials, are notoriously unstable. Binomials generally make up around 30 percent of the total taxa in Oceanic fish taxonomies (see §3). The chances are that most of this 30 percent of missing POc terms will never be recoverable.

The dramatic difference between uninomial and binomial retention rates, presumably, has something to do with the geographic distribution of species as opposed to genera. Folk generics, represented by uninomials, are typically applied to two or more species of a biological genus and are sometimes applied to whole families. The same genera and families of fish tend to occur throughout the tropical Indo-Pacific. By contrast, folk specifics, often represented by binomials, typically apply to a single biological species or a group of closely related species and the geographic distribution of species tends to be more localised. Thus, modifying terms for folk specifics do not ‘travel’ as well as generic terms. But perhaps the main reason is that while generic names are usually arbitrary, modifiers almost always describe a feature of the morphology, the behaviour or the ecological niche of particular species. Accordingly, a number of competing modifiers may suggest themselves as equally convenient ways of distinguishing a particular member of a folk genus, so that even when a species is ubiquitous the original modifier in a binomial will often be subject to competition.

So much for the binomials. This still leaves many missing uninomials unaccounted for. One might seek to explain variations in durability among uninomials in terms of (a) where names rank in the taxonomic hierarchy, (b) the relation of particular taxa to humans, e.g. their usefulness, importance in cosmology and ritual, or danger, (c) inherent properties of
the referents, e.g. how striking or unusual they are in appearance or behaviour, and (d) the geographic distribution of particular species and genera.

While factor (d) very likely has had a considerable influence on the durability of binomials I do not think it has played much of a part with respect to uninomials. The latter generally refer to genera, families or high-order groups, and in those cases where they refer just to a single species it usually is one that is highly distinctive and widespread in the tropical Pacific. This is the case for the few POc reconstructions that can be identified as referring, or probably referring to a single species, e.g. *qawaq ‘milkfish, Chanos chanos’, *qume ‘unicornfish, Naso unicorns’, *mamin ‘double-headed Māori wrasse, C. undulatus’ and possibly *qatun ‘skipjack tuna, Katsuwonus pelamis’.

A reasonable hypothesis is that, other things being equal, the persistence of a name will correlate with its rank in the taxonomy: names of life-form taxa will be the most persistent, followed by major generics, minor generics, and specifics, in that order. There is some evidence in support of this hypothesis although what we can say is limited by the lack of precise semantic reconstructions for many POc names. The life form *ikan ‘fish’ and the major generics *bakewa ‘shark’, *paRi ‘ray’ and *kanase ‘mullet’ show high retention rates. However, the generics *bebek ‘butterflyfish and coralfish’, *jumu ‘triggerfish and leatherjackets’, *saku ‘needlefish and long toms’ and *tuna ‘freshwater eel’ all score quite low. In general minor generics have relatively low retention rates but the single most durable fish name, *(n, n)opuq ‘stonefish’, was probably a minor generic, memorable because the stone fish is so dangerous.

I have not carefully scrutinised evidence bearing on the hypothesis that, at the level of folk generics and folk specifics, names for economically valuable fish will be more stable than other names (all other things being equal). There is some evidence that this is the case. For example, names for various members of the highly valued scombrid, carangid, rock-cod, snapper and mullet families tend to show high retention rates.

Further research should shed more light on these matters.
Aquatic invertebrates

1 Introduction

This chapter deals with invertebrates that are aquatic or semi-aquatic, such as crustaceans, molluscs, echinoderms, sea-worms, jellyfish and corals. It addresses the following questions: (1) What terms for aquatic invertebrates can be attributed to Proto Oceanic (POc) and other high-order interstages of Oceanic? (2) What uses were made of these animals? (3) How does the number of taxa reconstructable for POc compare with the number attested in well-described contemporary languages?

The marine invertebrate fauna of the tropical southwest and central Pacific is fairly uniform, so that when Oceanic speakers first dispersed across this region some 3000 years ago they generally encountered familiar creatures. It must be added that not every island or island group has the full range of habitats: fringing coral reefs, mangrove forests, estuarine mudflats, seagrass flats, etc.

Molluscs, crustaceans and echinoderms gathered in and around the intertidal zone form one of the most reliable protein food sources of coastal Oceanic communities. The bulk of foraging for invertebrates in this zone is done by women while in most societies diving for lobsters and deep water molluscs is mainly men’s work. Mollusc shells were traditionally made into a variety of tools and ornaments. Archaeological discoveries underline the long-standing importance of water invertebrates to speakers of Oceanic languages. Living sites and middens left by bearers of the Lapita culture contain extensive remains of molluscs and crustaceans and artefacts made from mollusc shells (see §4.1).

This is a much revised and expanded version of Pawley (1996). I am grateful to Meredith Osmond for help in compiling and checking the list of cognate sets, and to Ann Chowning, John Lynch and Malcolm Ross for valuable comments on a draft of the paper. I am also indebted to Ann Chowning for data on some New Britain languages, to Paul Geraghty for providing terms from the Viwa dialect of Wayan Fijian and for helpful discussion of the Wayan material and to John Lynch for comparative material on Southern Vanuatu languages.

Linguistic evidence that foraging on the reef for invertebrates was important to Proto Oceanic speakers is found in two widespread cognate sets noted by Clark (1991). Clark’s POC reconstructions are given below, with a few additional cognates. The first is a verb.

POC *paŋoda ‘gather seafood on the reef’ (Clark 1991)

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT</td>
<td>Gapapaiwa</td>
<td>vanota ‘net prawns’</td>
</tr>
<tr>
<td>PT</td>
<td>Motu</td>
<td>haoda ‘to fish’</td>
</tr>
<tr>
<td>MM</td>
<td>Teop</td>
<td>vagana (1) ‘gather marine organisms on the reef’, (2) ‘to fish, go fishing’</td>
</tr>
<tr>
<td>SES</td>
<td>Bugotu</td>
<td>vanoda ‘hunt for shellfish on the reef’</td>
</tr>
<tr>
<td>SES</td>
<td>Gela</td>
<td>vanoda (v) ‘collect food on the reef.’ (N) ‘shellfish, crustaceans and echinoderms) gathered on the reef’</td>
</tr>
<tr>
<td>SES</td>
<td>Sa’a</td>
<td>hayoda ‘Haliotis, abalone’</td>
</tr>
<tr>
<td>NCV</td>
<td>Mota</td>
<td>vaŋona ‘catch fish with a line, get shell-fish, etc. for a relish’</td>
</tr>
<tr>
<td>NCV</td>
<td>Nguna</td>
<td>(pa)vaŋoda ‘look for shellfish, gather shells, fish for seafood’</td>
</tr>
<tr>
<td>NCV</td>
<td>SE Ambrym</td>
<td>peŋor ‘to fish’</td>
</tr>
<tr>
<td>NCV</td>
<td>Namakir</td>
<td>(ba)vaŋot ‘forage on reef’</td>
</tr>
<tr>
<td>NCV</td>
<td>Lonwolwol</td>
<td>fonjor ‘look for fish’</td>
</tr>
<tr>
<td>NCV</td>
<td>Uripiv</td>
<td>(e)vaŋor ‘forage on the reef’</td>
</tr>
<tr>
<td>SV</td>
<td>Anejoũn</td>
<td>(a)haŋec ‘forage on reef’</td>
</tr>
<tr>
<td>Mic</td>
<td>Marshallese</td>
<td>yan*ea ‘go fishing’</td>
</tr>
<tr>
<td>Fij</td>
<td>Rotuman</td>
<td>haŋota (v) ‘to fish.’ (N) ‘fishing excursion, shoal of fish’</td>
</tr>
<tr>
<td>Pn</td>
<td>Tongan</td>
<td>fāŋota ‘to fish, or to search for shell-fish or any kind of fiŋota’</td>
</tr>
<tr>
<td>Pn</td>
<td>Niuean</td>
<td>faŋota ‘gather shellfish on the reef’</td>
</tr>
<tr>
<td>Pn</td>
<td>Rennell</td>
<td>hāŋota ‘to fish or gather shells, especially by women on the reef’</td>
</tr>
<tr>
<td>Pn</td>
<td>Ifira-Mele</td>
<td>faŋota ‘gather shellfish etc. on the reef’</td>
</tr>
</tbody>
</table>

The second reconstruction, *piŋoda, is a nominalisation of the verb using the infix *<in>, which in POC typically derived a noun denoting the thing acted on or produced by the action of the verb. It is likely that *piŋoda was present in POC as a fast speech variant: reflexes of *piŋoda show loss of the second syllable in all Polynesian languages and in some North and Central Vanuatu and Papuan Tip languages.

POC *piŋoda, *piŋoda ‘seafood gathered on the reef, edible sea invertebrates’ (Clark 1991)

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT</td>
<td>Molima</td>
<td>igoda ‘collect shellfish’</td>
</tr>
<tr>
<td>PT</td>
<td>Kilivila</td>
<td>vigoda ‘shell (clams, snails)’</td>
</tr>
</tbody>
</table>

2 In these two reconstructions I have substituted *d for the POC phoneme that Clark writes as *nt.

3 With respect to ‘shellfish’, much used in dictionary and wordlist glosses cited for this and certain other cognate sets, it should be noted that this term means different things to different people. Nearly all New Zealanders and many Australians and English people use ‘shellfish’ to mean ‘(edible) molluscs with external shells’, excluding crustaceans, whereas others, including most people from the USA, use it to mean ‘(edible) crustaceans and molluscs with external shells’. It is apparent that most of our sources for Oceanic languages use this term in the narrower sense.
2 Classification of marine invertebrates

2.1 Zoological classification

In the discussion that follows cognate sets presented will be grouped under standard zoological categories. Zoology offers a complex phylogenetic taxonomy of invertebrates based on current views of their evolutionary relationships and morphological characters. The invertebrate family tree distinguishes more than 20 levels of grouping from kingdom down to species. Here we need only note those distinctions which will be useful in organising the material from Oceanic languages.

phylum ARTHROPODA
class CRUSTACEA
order Decapoda
tribes Palinura and Astacura: crayfish, lobsters, slipper lobsters
tribe Anomura: hermit crabs, coconut crabs, mangrove lobster, etc.
tribe Brachyura: true crabs
suborder Natantia: true prawns and shrimps
order Stomatopoda: Mantis shrimps, etc.
order Thoracia: barnacles
other shrimp-like animals

phylum MOLLUSCA
order Gastropoda: univalves or snail-like shellfish
order Bivalvia (Pelecypoda): bivalves or clam-like shellfish
order Cephalopoda: octopus, squid, nautilus
order Amphineura: chitons

phylum ECHINODERMATA
class ECHINOIDEA: sea eggs (sea urchins)
class ASTEROIDEA: starfish
class OPHIUROIDEA: brittle starfish
class **Holothuroidea**: sea cucumbers (beche de mer, trepang, holothurians)
class **Crinoidea**: sea lilies and feather stars

Phylum Cnidaria (Coelenterata)
class **Anthozoa**: corals, anemones
class **Scyphozoa**: true jellyfish
class **Hydrozoa**: fire corals, hydroids, siphonophores
class **Ctenophora**: comb jellyfish

Worm-like phyla: annelids, nemerteans, acanthocephalans

Phylum Porifera: sponges

2.2 Oceanic folk taxonomies of aquatic invertebrates

In order to get an idea of the likely size and taxonomic structure of the POc lexicon for aquatic invertebrates one must look at contemporary languages whose speakers exploit a marine and shore environment fairly similar to that inhabited by POc speakers. Unfortunately there are very few systematic studies in this domain. There is a fairly detailed account of aquatic invertebrate taxonomy in Wayan, a dialect of the Western Fijian language (Pawley 1994, Pawley and Sayaba 2003) spoken on two small islands on the western margin of Fiji. Wayan speakers distinguish by name more than 240 marine invertebrate taxa. Almost 150 of these names apply to molluscs, about 48 to crustaceans, about 31 to echinoderms, about 12 to coelenterates and about five to marine worms.

Folk classifications of animals have many fewer levels than those recognised by zoologists. Berlin (1992) has discussed at length the organising principles underlying folk taxonomies of animals and plants (see chapter 8 for more detail). As folk taxonomies go, the Wayan classification of aquatic animals is among the more complex. Some domains have a depth of six contrasting levels – two levels more than Berlin’s model recognises as the known maximum for folk taxonomies of wild animals.

Table 4.1 shows the contrasts between some first-order categories of invertebrates that occur in the Wayan Fijian taxonomy. These fall under no higher category other than *manumanu*, which refers to all creatures.

In many respects Wayan higher-order taxa differ markedly from those found in zoological classifications. For instance, there is no echinoderm category: sea cucumbers, sea urchins, starfish and brittle starfish are each assigned to separate primary taxa. There is no category corresponding to crustaceans. There is a general name for sea cucumbers but no overt taxon uniting the various sea urchin taxa (these animals represent a covert category, which Wayans readily identify by a descriptive phrase such as *manumanu laulau ni ḍakau* ‘spiky animals of the reef’). Unsurprisingly, octopus and squid form a primary taxon apart from other molluscs. There is a generic for gastropods (*ðidi*) but no generic for all bivalves. Instead there are generics for burrowing bivalves (*tavē*) and all kinds of oysters (*ðiva*). Wayan also has a category, *manumanu gwāgwā*, that refers to edible decapods, subsuming *ura*, *seka*, *tubā*, *uŋa*.

4 These numbers refer to terminal taxa, i.e. excluding higher-order taxa (generic terms with two or more subtaxa), and counting only one item for each set of synonyms or variant forms. Numbers are necessarily approximate because of disagreements among informants, the uncertain status of some descriptive binomials, and other factors.
Aquatic invertebrates

Table 4.1 Some high-order aquatic invertebrate taxa in Wayan

<table>
<thead>
<tr>
<th>1.</th>
<th>manumanu ‘animals, creatures’</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>ura prawns & lobsters</td>
</tr>
<tr>
<td>2.</td>
<td>ðiva oysters</td>
</tr>
<tr>
<td>2.</td>
<td>baya ni waitaði sea worms</td>
</tr>
</tbody>
</table>

and *tolā*. However, this is a ‘collective’ category rather than a true superordinate taxon: one does not point to an animal and identify it as a *manumanu gwāgwā*.

Systematic descriptions of other Oceanic taxonomies are admittedly few but the available evidence suggests that the size and taxonomic structure of the Wayan terminology are fairly typical of Oceanic-speaking maritime communities. It is reasonable to assume that the POc taxonomy was roughly of the same order.

3 Crustaceans

From the limited evidence available it seems that Oceanic languages spoken by coastal communities typically distinguish some 40–50 crustacean taxa, of which between 20 and 40 taxa are crabs.

3.1 Order Decapoda: crabs, lobsters, prawns

The crustaceans named and taken for food and bait in Oceanic societies are almost exclusively decapods. There is a well established PMP generic for prawns and crayfish, which is continued in POc.

PAn *qudan* ‘shrimp, lobster’ (Blust 2002)
POc *quran* ‘generic for prawns and shrimps, crayfish and lobsters’

NNG: Manam	*uro*	‘crayfish’
PT: Dobu	*ʔula(boʔa)*	‘lobster, medium sized’
PT: Motu	*ura*	‘crayfish’
MM: Nalik	*uraŋ*	‘crayfish’
SES: Gela	*ura*	‘generic for crayfish, Panulirus spp.’
SES: ’Are’are	*ura*	‘shrimp, crayfish, prawn’

3.2 Palinura: spiny lobsters

The Palinura are represented in Oceania by two major families: (1) Palinuridae, spiny or rock lobsters and (2) Scyllaridae, slipper or shovel-nosed lobsters. (The terms ‘lobster’ and ‘crayfish’ are used interchangeably by many English speakers and the gloss ‘crayfish’ is commonly found in the dictionaries and wordlists.)
3.2.1 Palinuridae, spiny lobsters

Lobsters are prized food in the Oceanic world. Among the spiny lobsters the commonest species is *Palinurus pellucidus*, the common spiny lobster. *P. versicolor* is a larger, more colourful relative. These are distinguished as specifics in Wayan.

In contemporary languages reflexes of the POc generic *quraŋ* (see §3.1) are typically applied to spiny lobsters (*Palinurus* spp.) as opposed to the very distinctive slipper lobsters (Scyllaridae). It is likely that this was also the case in POc.

3.2.2 Scyllaridae, slipper (or shovel-nosed) lobsters

Slipper lobsters are a family of clawless decapods with a very distinctive appearance, having a broad flat carapace and enlarged antennae projecting forward from the head as wide plates. Species of this family are found in warm waters throughout Oceania. A term for slipper lobster can be tentatively reconstructed for POc but the comparisons are phonologically problematic.

POc *[pa]paba ‘*Parribacus* sp. (Scyllaridae), slipper lobster’

<table>
<thead>
<tr>
<th>PT</th>
<th>Misima</th>
<th>sapapa</th>
<th>‘k.o. saltwater lobster, lacking long feelers’ (*p > s irregular)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Tolima</td>
<td>papaba</td>
<td>‘crayfish sp.’</td>
</tr>
<tr>
<td>SES</td>
<td>Gela</td>
<td>mapa</td>
<td>‘slipper lobster’ (perhaps dissimilation: *p > m, for †*v)</td>
</tr>
<tr>
<td>NCV</td>
<td>Mwotlap</td>
<td>na-vam</td>
<td>‘slipper lobster, Parribacus caledonicus’</td>
</tr>
<tr>
<td>NCV</td>
<td>Mota</td>
<td>vavapa</td>
<td>‘kind of crawfish’</td>
</tr>
<tr>
<td>NCV</td>
<td>Uripiv</td>
<td>ne-vep</td>
<td>‘slipper lobster, Parribacus caledonicus’</td>
</tr>
<tr>
<td>NCV</td>
<td>Naman</td>
<td>ne-vev</td>
<td>‘slipper lobster, Parribacus caledonicus’</td>
</tr>
<tr>
<td>NCV</td>
<td>Unua</td>
<td>nepep</td>
<td>‘slipper lobster, Parribacus caledonicus’</td>
</tr>
<tr>
<td>NCV</td>
<td>S Efate</td>
<td>pepep</td>
<td>‘slipper lobster, Parribacus caledonicus’</td>
</tr>
<tr>
<td>NCal</td>
<td>Iaai</td>
<td>(wa)hep</td>
<td>‘slipper lobster’ (*p > h, for †*v)</td>
</tr>
</tbody>
</table>

There is a well attested term in PCP which shows some resemblance to the above. However, the correspondence of PPN *t* to Fijian *ð* indicates a PCP palatal (which Blust (1978b) writes *c and Geraghty 1986 as *j*).

PCP *jabajaba ‘*Parribacus* sp. (Scyllaridae), slipper lobster’

| Fij | Wayan | ðabaðaba | ‘*Parribacus* sp., similar to Moreton Bay Bug’ |

PPn *tapatapa ‘Moreton Bay Bug’ (pollex)

<table>
<thead>
<tr>
<th>Pn</th>
<th>E Futunan</th>
<th>tapatapa</th>
<th>‘Moreton Bay Bug’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn</td>
<td>K’marangi</td>
<td>tapatapa</td>
<td>‘Parribacus antartica, sand lobster’</td>
</tr>
<tr>
<td>Pn</td>
<td>Nukuoro</td>
<td>tapatapa</td>
<td>‘slipper lobster’</td>
</tr>
<tr>
<td>Pn</td>
<td>Tikopia</td>
<td>tapatapa</td>
<td>‘large edible prawn (unidentified), up to 20 cm’</td>
</tr>
</tbody>
</table>

cf. also:

| NNG | Gedaged | sabai | ‘shrimp, prawn, freshwater crayfish (sabai dumadum ‘small marine crayfish, up to 12 inches long’)

| SV | Kwamera | təpatəpa | ‘slipper lobster, *Parribacus caledonicus*’ (probably a loan from Polynesian) |
Another set of resemblant forms, represented in certain MM languages of New Georgia and Santa Isabel and in one SES language, shows a superficial resemblance to the Central Pacific forms but the sound correspondences do not match and point instead to an earlier form such as *pepete or *tepe-tepe).

<table>
<thead>
<tr>
<th>Language</th>
<th>MM</th>
<th>MM: Roviana pepete</th>
<th>MM: Marovo pepete</th>
<th>MM: Nduke epete</th>
<th>MM: Maringe pʰapate</th>
<th>SES: Ghari tepe-tepe</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>‘a crustacean resembling Ibacus ciliatus’</td>
<td>‘shovel-nosed lobster’</td>
<td>‘shovel-nosed lobster, Thenus or Ibacus sp.’</td>
<td>‘edible saltwater crustacean, crayfish-like’</td>
<td>‘small crayfish of reef’ (metathesis?)</td>
<td></td>
</tr>
</tbody>
</table>

3.3 Suborder Natantia: true prawns and shrimps

In many Oceanic languages reflexes of *quraŋ serve as the general name for prawns and shrimps and this was evidently the case in POc. However, a second term, *luRa, has reflexes in certain Micronesian and Fijian languages.

PROc *luRa ‘small shrimp’ (Geraghty 1990: PEOc)

<table>
<thead>
<tr>
<th>Language</th>
<th>Mic: Ponapean lūr</th>
<th>Mic: Mokilese lūr</th>
<th>Fij: (unspecified) lua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>‘a small shrimp’</td>
<td>‘a small shrimp’</td>
<td>‘a small shrimp’</td>
</tr>
</tbody>
</table>

cf. also:

<table>
<thead>
<tr>
<th>Language</th>
<th>MM: Sengseng e-lus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>‘freshwater shrimp’</td>
</tr>
</tbody>
</table>

3.4 Suborder Anomura: hermit crabs, mud lobsters, half-crabs

The Anomura, which include hermit and coconut crabs, are not true crabs but form a sub-order that is sister to true crabs (Brachyura). They have a long abdomen and appear to have only three pairs of walking legs, the last pair usually being hidden inside the gill chamber under the carapace. The Anomura are an extremely varied group and no Oceanic language has a name for the group as a whole.

3.4.1 Paguroidea: Coenobitidae (hermit and coconut crabs), and Diogenidae and Paguridae (sea-dwelling hermit crabs)

This group includes the familiar hermit crabs which carry a gastropod shell to protect their long soft abdomen. The coenobitids are terrestrial hermit crabs which have the left claw larger than or equal to the right. The coenobitids include the large coconut crab (or robber crab). The pagurids have a larger right claw. The sea-dwelling hermit crabs of the families Diogenidae and Paguridae are considerably larger than land-dwelling hermit crabs, growing up to 7 to 10 cm in length.

3.4.2 Birgus latro, coconut crab

There is a strongly supported reconstruction for the coconut crab, *Birgus latro*, which climbs coconut trees to sever coconuts and is widely believed by Oceanic communities to be able to...
open coconuts. This very large crab is considered a delicacy and has been hunted to extinction on some smaller islands.

PMP *

POT *qayuyu ‘coconut crab, *Birgus latro’ (Blust 2002)

Yap: Yapese ʔayū
Adm: Mussau aiu
Adm: Titan kasusu
Adm: Wuvulu aruru (Blust 1996b:20)
PT: Dobu ʔayuyu
SES: Tolo ui
SES: Lau kasukasu (*k > q irregular)
SES: Sa’a esusu
SES: Arosi asusu
SES: Bauro aiū
NCV: Lonwolwol au ‘small sand crab that runs into the sea at one’s approach’
NCV: S Efate as (*y > s/*u is regular) (John Lynch, pers. comm.)
NCal: Iaai eu
Fij: Rotuman aruru

POT *qūqū ‘coconut crab, Birgus latro’ [(POLLEX)

Pn: Tongan ʔūʔū
Pn: E Futunan ʔūʔū
Pn: Tikopia ʔū
Pn: K’marangi ʔū

POC *qayuyu was replaced in PMic by *afafī (Bender et al. 2003:12).
3.4.3 Hermit crabs

A number of Oceanic languages distinguish several kinds of hermit crabs by name. The distinguishing criteria include size, habitat (sea vs land) and growth stage. For example, for Niuean Sperlich (1997) records four taxa of hermit crab: āo ‘hermit crab, Dardanus sp.’, pulou ‘a hermit crab’, uŋa-mea ‘a land dwelling hermit crab’ and uŋa-uŋa ‘a sea dwelling hermit crab’. Hermit crabs are widely used as bait.

Three uninominal terms for hermit crabs are attributable to POc: *qumʷaŋ, *koba and *kato(q)u. It is unlikely that these terms were full synonyms. Unfortunately, the glosses provided for the reflexes in our sources are typically general and do not allow a semantic distinction to be made between the three POc terms.

*qumʷaŋ continues a PAn etymon. In Oceanic languages a reflex of this form commonly stands as a generic for typical hermit crabs, in contrast to coconut crabs. However, in several Oceanic languages reflexes have an extended sense that includes coconut crabs.

PAn *qumən ‘hermit crab’ (Blust 1980a)

POc *qumʷaŋ (1) ‘generic for hermit crabs’, ? (2) ‘generic for hermit and coconut crabs’

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Gedaged</td>
<td>(wa)gum</td>
<td>‘hermit crab’</td>
</tr>
<tr>
<td>NNG: Manam</td>
<td>guma</td>
<td>‘hermit crab’</td>
</tr>
<tr>
<td>NNG: Numbami</td>
<td>gubanja</td>
<td>‘hermit crab’</td>
</tr>
<tr>
<td>NNG: Takia</td>
<td>gum</td>
<td>‘hermit crab’</td>
</tr>
<tr>
<td>PT: Dobu</td>
<td>gumana</td>
<td>‘hermit crab’</td>
</tr>
<tr>
<td>PT: Molima</td>
<td>gumana</td>
<td>‘hermit crab’</td>
</tr>
<tr>
<td>PT: Gapapaiwa</td>
<td>gumaya</td>
<td>‘hermit crab’</td>
</tr>
<tr>
<td>PT: Misima</td>
<td>go-gaman</td>
<td>‘hermit crab’</td>
</tr>
<tr>
<td>MM: Tolai</td>
<td>quman</td>
<td>‘hermit crab, Paguridae sp.’</td>
</tr>
<tr>
<td>MM: Tabar</td>
<td>guma</td>
<td>‘hermit crab’</td>
</tr>
<tr>
<td>NCV: Paamese</td>
<td>o-umo</td>
<td>‘crab (generic)’</td>
</tr>
<tr>
<td>SV: Anejoũ</td>
<td>n-unwan</td>
<td>‘k.o. small hermit-crab’ (-n unexplained)</td>
</tr>
<tr>
<td>NCal: Pije</td>
<td>kum* a</td>
<td>‘Coenobita sp.’</td>
</tr>
<tr>
<td>Fij: Bauan</td>
<td>uŋa</td>
<td>‘hermit crab’</td>
</tr>
<tr>
<td>Fij: Wayan</td>
<td>uŋa</td>
<td>(1) ‘hermit crab’, (2) ‘generic for hermit and coconut crabs’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uŋa tolo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>uŋa vule</td>
</tr>
</tbody>
</table>

PPn *quna ‘generic for hermit crab’ (POLLEX gives ‘hermit crab sp.’)

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn: Tongan</td>
<td>ʔuŋa</td>
<td>‘large hermit crab’</td>
</tr>
<tr>
<td>Pn: Niuean</td>
<td>uŋa</td>
<td>‘coconut crab, Birgus latro’</td>
</tr>
<tr>
<td></td>
<td>uŋa-mea</td>
<td>‘land-dwelling hermit crab’</td>
</tr>
<tr>
<td></td>
<td>uŋa-uŋa</td>
<td>‘sea-dwelling hermit crab’</td>
</tr>
<tr>
<td>Pn: Samoan</td>
<td>uŋa</td>
<td>‘name given to hermit crabs in general’</td>
</tr>
<tr>
<td>Pn: Tikopia</td>
<td>uŋa</td>
<td>‘hermit crab’</td>
</tr>
<tr>
<td>Pn: Rennellese</td>
<td>ʔuŋa</td>
<td>‘hermit crab, Coenobita sp.’</td>
</tr>
<tr>
<td></td>
<td>ʔuŋa mouku</td>
<td>‘forest-dwelling hermit crabs’</td>
</tr>
<tr>
<td></td>
<td>ʔuŋa pūŋou</td>
<td>‘sea-dwelling hermit crab carrying the pūŋou parasite’</td>
</tr>
</tbody>
</table>
A second term, *koba, is less widely attested but reflexes are found in the Admiralties, Meso-Melanesian (in Northwest Solomonic) and Southeast Solomonic.

POc *koba ‘hermit crab’

Adm: Penchal (kai)kop ‘hermit crab’
MM: Marovo koba ‘generic for hermit crabs’
MM: Nduke koba ‘generic for hermit crabs’
SES: Gela koba ‘generic for hermit crabs’
SES: Ghari koba, ko-koba ‘hermit crab’
SES: Tolo ko-koba ‘hermit crab’

A third term has reflexes in Mussau, Southeast Solomonic and North-Central Vanuatu.

POc *kato(q)u ‘hermit crab’

Adm: Mussau kitou ‘hermit crab, Coenobita spp.’
SES: Arosi kawou, kou ‘hermit crab, Coenobita spp.’
SES: Bauro gou

PNCV *kato(q)u ‘hermit crab’ (Clark 2009 gives *katou)

NCV: Mota gatou
NCV: Raga gatou
NCV: Tamambo hatou
NCV: Nguna katou
NCV: Namakir katoʔ

3.4.4 Other Anomura: Thalassina, mud lobsters, and Porcellanidae, porcelain crabs (half-crabs)

There are only two species of Thalassina, the distinctive ‘mud lobster’ of the Indo-Pacific region, a nocturnal animal that digs a deep and intricate network of burrows in mangrove mudflats. It typically grows up to 16–20 cm long. Thalassina are found as far east as Fiji and Samoa. The meat is bland and this animal is not a prized source of food but it is trapped for its edible claws in parts of Fiji. In the few dictionaries that provide names for the mud lobster each language has its own generic, e.g. Gedaged gumei, Nduke zoua, Roviana zoa, Bauan Fijian manā, Western Fijian tolā, No POc reconstruction is possible.

Porcelain crabs (or half-crabs) are small, usually 1–2 cm wide. They are common on rocky beaches and shorelines. Names for porcelain crabs are seldom given in Oceanic dictionaries and no widespread cognate set has been found.

3.5 Brachyura: true crabs

True crabs are the dominant decapods on marine coasts. In true crabs (tribe Brachyura) the front pair of legs are clawed and the abdomen is reduced, flattened and folded underneath the carapace. Eggs are attached to the pleopods of the female’s abdomen. Of the many crab species only a minority are of economic value to Oceanic communities.

Oceanic speaking communities exploiting reefs and mangrove swamps typically distinguish between 20 and 30 crab taxa, excluding crabs of the tribe Anomura. For example, dictionaries of Arosi, Wayan Fijian and Niuean, list about 30, 33 and 22 taxa, respectively, excluding the Anomura. There is little doubt that POc would have had a similar array. However,
only seven secure POc terms for Brachyura crabs have been reconstructed: *kape, *kaRaka, *kaRu(i)ki, *kuka, *galimaŋo, *rakum(u), *tubaRa.

3.5.1 Portunidae, mangrove and swimming crabs

Oceania has many species of portunids, belonging to the genera *Portunus, Thalamita* and *Charybdis*. Most are large crabs, much valued as food. The English folk names ‘mud crab’, ‘mangrove crab’ or ‘black crab’ are often applied to *Scylla serrata*, a large round crab which may exceed 20 cm in width and which burrows in muddy shallow tidal waters of estuaries and mangrove swamps. POc continues a PMP term, *qalimaŋaw*, that probably denoted several portunids of the genus *Scylla*. Wolff’s dictionary of Cebuano describes *alimaŋu* as ‘edible crab of tidal swamps, round in shape, up to 10 inches in diameter, black on back, white front, large meaty claws’, unmistakeably a large *Scylla* sp.

PMP *qalimaŋaw* ‘mangrove crab’ (Blust 1980a)

POc *galimaŋo* ‘large mangrove crab, *Scylla serrata* (Portunidae) and probably other portunids’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG:</td>
<td>Kove</td>
<td>alimaŋo</td>
</tr>
<tr>
<td>PT:</td>
<td>Molima</td>
<td>kalimana</td>
</tr>
<tr>
<td>PT:</td>
<td>Dobu</td>
<td>kalimana</td>
</tr>
<tr>
<td></td>
<td></td>
<td>?alimana</td>
</tr>
<tr>
<td>PT:</td>
<td>Kilivila</td>
<td>keimagu</td>
</tr>
<tr>
<td>MM:</td>
<td>Teop</td>
<td>animano</td>
</tr>
<tr>
<td>SES:</td>
<td>Lau</td>
<td>alimaŋo</td>
</tr>
<tr>
<td>SES:</td>
<td>’Are’are</td>
<td>alimano</td>
</tr>
<tr>
<td>SES:</td>
<td>Arosi</td>
<td>arimaŋo</td>
</tr>
<tr>
<td>SES:</td>
<td>To’aba’ita</td>
<td>alimaŋo</td>
</tr>
<tr>
<td>Mic:</td>
<td>Ponapean</td>
<td>elimoŋ</td>
</tr>
<tr>
<td>Mic:</td>
<td>Carolinian</td>
<td>alimoŋ</td>
</tr>
<tr>
<td>Mic:</td>
<td>Puluwatense</td>
<td>yelimoŋ</td>
</tr>
<tr>
<td>Mic:</td>
<td>Chuukese</td>
<td>ʔnimoŋ</td>
</tr>
<tr>
<td>Fij:</td>
<td>Rotuman</td>
<td>ʔoimono</td>
</tr>
</tbody>
</table>
Pn: Samoan *(paʔa)limaŋo* ‘large edible mud crab, *Scylla* sp.’ *(paʔa* ‘generic for crabs’)

3.5.2 *Cardisoma* spp. and other large land crabs

The large land crabs, *Cardisoma* spp., are an important food source in many Oceanic communities and there are often several terms referring to their growth stages and spawning behaviour. For example, Foale (1998) reports that in West Gela (central Solomons) females of the abundant land crab *Cardisoma hirtipes* migrate to the beach at certain phases in the lunar cycle in the wet season, from October to December, releasing zoea larvae from their egg mass (*lami*). This is known as the *saulami* (wash eggs). Three weeks before doing this they migrate to the sea to immerse themselves, an event known as the *sapatoga* (thousands go seawards). This is the preferred time to take them because they are fatter. In Fiji, Wayans refer to the mass migration of *C. hirtipes* as *vui*.

POc *tubara* ‘probably generic for large land crabs, *Cardisoma* spp.’ (cf. Geraghty 1990)

PT: Motu	dubara	‘small land-crab’
MM: Tolai	tubara	‘land-crab’
SES: Gela	tumbala	‘*Cardisoma* carnifex, white land crab’
SES: ’Are’are	opara	‘k.o. crab’
NCV: Mota	tipara	‘k.o. land crab’
SV: Sye	tupo	‘a large land crab’
SV: Kwamera	tup*a	‘k.o. landcrab’
Fij: Rotuma	fupa	‘land crab’
Fij: Wayan	tubā	‘generic for large land crabs, esp. *Cardisoma* spp.’

PPn *tupa* ‘landcrab’ (Pollex)

Pn: Samoan	tupa	‘land crab sp. with large claws’
Pn: Tongan	tupa	‘k.o. land crab’
Pn: Tikopia	tupa	‘large land crab, keenly sought for food’
Pn: Rarotongan	tupa	‘*Cardisoma cardifax*, edible land crab’

Pn: Samoan | *tupa* | ‘land crab sp. with large claws’ |

POc *rakum(u)* is a well attested form which probably referred to a crab of some importance. Some witnesses (e.g. Kove, Bugotu, Namakir, Woleaian) support attributing final *u* to this etymon; others are equivocal. Most sources give uninformative glosses for reflexes of *rakum(u)* but in Mangap (North New Guinea), Roviana (Meso-Melanesian), Puluwatese and Ponapean (Micronesian), and SE Ambrym (North and Central Vanuatu) these refer to a land crab. In several languages the reflex has become a term for crabs in general.

POc *rakum(u)* ‘k.o. large crab, probably a land crab’

Adm: Lou	roum	‘k.o. crab’
NNG: Manam	rakum	‘k.o. big, red crab’
NNG: Mangap	rukum	‘general name for crabs’
PT: Dobu	lakua	‘generic for crabs’ (loss of *m* irregular)
PT: Kilivila lakum ‘small mud crab’
PT: Muyuw lakum ‘crab’
PT: Gapapaïwa rakum ‘k.o. crab’
MM: Tabar raku ‘crab’
MM: Roviana garumui ‘*Cardisoma carnifex*, white land crab’ (metath.)
SES: Bugotu ragomu ‘a crab’
NCV: SE Ambrym oum ‘land crab’
NCV: Namakir rakumw ‘land crab’
NCV: Neve’ei nu-rukʰum ‘a crab’
SV: Sye a-royum ‘k.o. crab’
SV: Anejoñ n-ray ‘k.o. crab’
Mic: Puluwatese rökum ‘large land crab’
Mic: Woleiaian zaxumw ‘crab (generic)’
Mic: Ponapean rökumw ‘sp. of small land crab’

3.5.3 Grapsidae, (1) shore crabs, (2) burrowing crabs of mud flats

The most commonly seen shore crabs are the grapsids, which forage among rocks and coral rubble in the intertidal zone. The carapace is squarish, with very convex edges. The last pair of legs are not flattened but are adapted for climbing over rocks. There are several genera, including *Grapsus*, *Sesarma*, *Metopograpsus*, and *Leptograpsus*. Oceanic languages typically distinguish several grapsid taxa. For example, Wayan distinguishes two main taxa within the Grapsidae: mangrove crabs (*Sesarma* spp., *Metopograpsus* spp.), which are *kuka*, and shore (or rock) crabs (*Grapsus* spp.), which are *galau*, as well as dividing the generics *kuka* and *galau* into further subtaxa.

3.5.4 *Sesarma* spp., mangrove grapsids

Judging by its reflexes in EOc languages POc *kuka* referred chiefly to grapsids of the genus *Sesarma*, which live in mangrove forest mudflats. In Tolai (MM), Arosi and To’aba’ita (SES) and Lonwolwol (NCV) the reflex has become a generic term for crabs.

POc *kuka* ‘mudcrab, including *Sesarma* sp. or spp., living in mangrove forest and mudflats’

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM: Tolai</td>
<td>kuka</td>
<td>‘generic for crabs’</td>
</tr>
<tr>
<td>MM: Marine</td>
<td>kokʰa</td>
<td>‘hermit crab’</td>
</tr>
<tr>
<td>MM: Sursurunga</td>
<td>kuk</td>
<td>‘crab’</td>
</tr>
<tr>
<td>SES: Arosi</td>
<td>kuka</td>
<td>‘generic term for crabs, excluding the Anomura and possibly portunids’</td>
</tr>
<tr>
<td>SES: To’aba’ita</td>
<td>quʔa</td>
<td>‘general term for a variety of crabs, excluding hermit crabs and cocout crabs’ (syn. ʔuda)</td>
</tr>
<tr>
<td>SES: Lau</td>
<td>ʔa</td>
<td>‘a crab’</td>
</tr>
</tbody>
</table>
Aquatic invertebrates

uāfou ‘large sea crab’

uāsū ‘very large reef crab’

SES: ’Are’are ʔuʔa ‘k.o. mud crab’

ʔuʔa(puru) ‘a land crab’

NCV: Port Sandwich na-xux ‘crab’

NCV: Lonwolwol (lo)kuk ‘crab (generic)’

Fij: Bauan kuka ‘small red and black crab, found in mangrove swamp’

Fij: Wayan kuka ‘crabs of mangrove swamps, red claws, black carapace, Sesarma and Metopograpsus spp.’

Pn *kuka ‘mangrove crab, Sesarma sp. or spp.’ (POLLEX)

Pn: Tongan ʔuʔa ‘k.o. crab’

Pn: Samoan ʔuʔa ‘common mangrove crab, Sesarma sp.’

Reflexes of POc *kape typically refer to a kind of reef crab (Roviana, Gela, Rotuman). In Raga the reflex has become a generic term for crabs and in Arosi and Mota it appears to serve as a generic for a subclass.

POc *kape ‘crab taxon, probably a rock crab (Grapsidae)’

Adm: Lou kah ‘shell of crab or bivalve mollusc’

NNG: Sengseng kahe ‘crab’

NNG: Mengen (Poeng) kape ‘crab’

NNG: Adzera wafi ‘crab’

NNG: Middle Watut k*afi ‘crab’ (Holzknecht 1989)

MM: Roviana gave ‘Metasesarma rousseauxii’

SES: Gela gave ‘reef crab’

SES: Ghari gave raqasi ‘shore crab, Grapsus sp.’

SES: To’aba’ita ʔafe ‘flat crab, ? Percnon planissimum’

SES: ’Are’are ʔahe ‘a sea crab’

SES: Arosi ʔahe ‘first element, serving as generic classifier in names of several different species’

ʔahe-haruta ‘a large sea crab’

ʔahe-roma ‘a red crab’

ʔahe-toʔo ‘a small land crab’

SES: Sa’a ʔahe ‘a crab’

NCV: Mota gave ‘several spp. of crab’

NCV: Raga gave ‘generic for marine and land crabs’

NCV: Paamese aeh ‘kind of crab found on rocks’

NCV: Nguna kāve ‘sp. of rock crab, black’

NCV: Uripiv na-aw ‘various kinds of shore crabs’

SV: Sye n-ev(lah) ‘a crab’

Fij: Rotuman ʔahe ‘k.o. reef crab, reddish with very flat back’
3.5.5 Ocypodidae long-stalked crabs (ghost crabs fiddler crabs soldier crabs)

The Ocypodidae are a very distinctive group of small crabs, with eyes on stalks, common on sandy beaches, mudflats and mangrove forests. There are several genera: *Ocypoda* spp., ghost crabs, *Uca* spp., fiddler crabs, and *Macropthalama* spp., sentinel or soldier crabs. Oceanic languages typically distinguish more than one kind by name. Wayan has a generic for ghost crabs, *koke*, and two specifics for subtaxa. It has a separate generic, *tōtō*, for fiddler and sentinel crabs.

There is a well-supported POc term for ghost crabs, which continues a PMP etymon, *kaRuki*. WOc and Micronesian witnesses point to POc *kaRuki*. However, Geraghty (1990: 62) reconstructs *kaRuki* to account for the agreement between Chamorro *haguiki* (doublet *haguhi*) and the Central Pacific forms. For both POc and PCP it seems preferable to posit doublets, which perhaps were careful and fast speech variants. Polynesian and Rotuman reflexes of PCP *kauiki* show reanalysis of unstressed intervocalic *u* as *w*, with subsequent change of *w > v* in some languages.

PMP *kaRuki* ‘sand crab, *Ocypoda* sp.’ (cf. Blust 1983-84a)

POc *kaRuki*, *(dbl. *kaRuiki)* ‘ghost crab, *Ocypoda* sp., small white crab found on sandy beaches’ (cf. Geraghty 1990)

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Hote</td>
<td>kaluk</td>
<td>‘crab’</td>
</tr>
<tr>
<td>NNG: Manam</td>
<td>garuku</td>
<td>‘k.o. little crab’</td>
</tr>
<tr>
<td>NNG: Kove</td>
<td>karoki</td>
<td>‘middle-sized crab found in holes on beaches’</td>
</tr>
<tr>
<td>NNG: Bukawa</td>
<td>galuʔ</td>
<td>‘crab’</td>
</tr>
<tr>
<td>NNG: Mangap</td>
<td>kerek</td>
<td>‘crab type, small, used as bait’</td>
</tr>
<tr>
<td>MM: Vitu</td>
<td>karoki</td>
<td>‘crab’</td>
</tr>
<tr>
<td>Mic: Kiribati</td>
<td>kauki</td>
<td>‘ghost crab’</td>
</tr>
<tr>
<td>Mic: Marshallene</td>
<td>karuk</td>
<td>‘white sand crab’</td>
</tr>
<tr>
<td>Mic: Kosraean</td>
<td>kuluk</td>
<td>‘sand crab’</td>
</tr>
</tbody>
</table>

PCP *kauki*, *kawiki* ‘ghost crab, *Ocypoda* sp.’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fij: Rotuman</td>
<td>ʔaviʔi</td>
<td>‘sand crab’</td>
</tr>
<tr>
<td>Fij: Bauan</td>
<td>kauke</td>
<td>‘ghost crab, Ocypoda sp.’</td>
</tr>
<tr>
<td>Fij: Wayan</td>
<td>koke</td>
<td>‘ghost crab, Ocypoda spp.’</td>
</tr>
</tbody>
</table>

PPn *kawiki* ‘ghost crab, *Ocypoda* sp.’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn: Tongan</td>
<td>keviki</td>
<td>‘small light-coloured sand crab’</td>
</tr>
<tr>
<td>Pn: Samoan</td>
<td>ʔaviʔi</td>
<td>‘ghost crab, Ocypoda sp.’</td>
</tr>
<tr>
<td>Pn: Tikopia</td>
<td>kaviki</td>
<td>‘ghost crab, Ocypoda sp.’</td>
</tr>
<tr>
<td>Pn: Hawaiian</td>
<td>ʔohiki</td>
<td>‘sand crab, probably Ocypoda sp.’</td>
</tr>
<tr>
<td></td>
<td>ʔohiki-ʔau-moana</td>
<td>‘ocean crab, possibly Planes or Pachygrapsus sp.’</td>
</tr>
</tbody>
</table>

There is another form partially resembling *kaRu(i)ki* that is attributable at least to PEOc, showing *-pe* instead of *-ki* in the final syllable. This has reflexes in Southeast Solomonic and North and Central Vanuatu languages and in at least one Micronesian language.

PEOc *kaRuve* ‘k.o. beach crab, probably *Ocypoda* sp., ghost crab’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SES: Ghari</td>
<td>galuve</td>
<td>‘small land crab’</td>
</tr>
<tr>
<td>SES: Arosi</td>
<td>karuhe</td>
<td>‘burrowing sand crab’</td>
</tr>
<tr>
<td>NCV: Mota</td>
<td>yarwe</td>
<td>‘a ghost crab’</td>
</tr>
</tbody>
</table>
Aquatic invertebrates

NCV: Mwotlap *na-yjow* ‘ghost crab’
NCV: Nguna *kāp* ‘ghost crab’
NCV: Port Sandwich *xauv* ‘beach crab’
NCV: Lonwolwol *kawiu* ‘ghost crab’
Mic: Woleaian *xazipe* ‘beach crab’

cf. also:

No language is known to have reflexes of both *kaRu(i)ki* and *kaRuve*.

The following PEOc reconstruction is not very secure, resting on agreements between two Central Pacific languages and one Southeast Solomons language.

PEOc (?) *kaRaka* ‘k.o. crab’. Extra-Oceanic cognates occur in Palauan *kesako* ‘k.o. land crab’ and Chamorro *hagahat* ‘rock crab’ and these comparisons point to POC *kaRaka*.

PMP *kaRakap* ‘probably rock crab’ (ACD)

POC *kaRaka* ‘k.o. crab, possibly rock crab.’ (cf. Geraghty 1990)

PEOc (?) *(g,k)alau* ‘k.o. shore crab, possibly a grapsid sp.’

Fij: Bauan *gaka* ‘mangrove crab’
NNG: Gedaged *kalau* ‘k.o. crab’
Pn: Niuenean *keka* ‘small sea crab sp.’
Pn: Tongan *kaka(fatu)* ‘k.o. crab’ (fatu ‘rock’)

cf. also:
Mic: Kiribati *kakawa* ‘k.o. small crustacean’

The following reconstruction is tentative.

POC *(g,k)alau* ‘k.o. shore crab, possibly a grapsid sp.’

NNG: Gedaged *kalau* ‘small crab found under rocks’
Fij: Wayan *galau ‘grapsid crabs of the shore’
cf. also:
NNG: Zivo *kulau ‘k.o. crab’

3.5.7 Xanthoidea

The Xanthoidea comprises several families, including Xanthidae, Menippidae and Trapeziidae. Xanthidae are the typical crabs of coral reefs, emerging at night. There are many species, quite variable in form but the carapace is usually broad in front, narrow at the rear. Some species are poisonous. The menippids and trapezids are similar in appearance to the xanthids. Wayan distinguishes at least three different xanthoids: *motodi (some Xanthidae and Menippidae), *vulau (some Xanthidae and Trapeziidae) and *galauniwaita (probably *Libia tesselata). No POc terms are reconstructable for this group.

3.6 Generic terms for crabs

Many Oceanic languages have a uninomial that refers to crabs in general or at least to a large subclass of crabs, e.g. Molima *kakaʔu, Mareinge *k’akau ‘crabs in general’, To’aba’ita *yuʔa (syn. *yuʔa) ‘general term for crabs except hermit crabs and coconut crabs’. Dictionaries of many Polynesian languages (including Samoan, East Uvean, East Futunan, Pukapuan and Tikopia) describe a reflex of PPn *paka as ‘a general term for crabs’ or similar. However, one must view such glosses with some caution, unless it is clear that the authors have carefully investigated whether all groups of crabs fall under this rubric.

Often the generic for crabs also serves as the name of a particular crab taxon that is an important food source – a kind of polysemy that is common in folk taxonomies worldwide. For example, in Bauan Fijian the name *gari, specifically applied to large mud crabs of the genus *Sylla, is extended to embrace all typical crabs (tribe Brachyura) other than large land crabs (*Cardisoma spp.). The same is true of the Wayan term, *seka. However, Wayans do not regard hermit crabs, coconut crabs and *Thalassina (all of which are members of the tribe Anomura) as *seka.

While it is likely that POc had a general term covering some or all crabs we can do little more than point to three candidates. The strongest of the candidates is probably *kuka.

As noted in §3.5.4, reflexes of POc *kuka, which probably referred chiefly to grapsid crabs that live in mangrove swamps, esp. those of the genus *Sesarma, serve as a general term for crabs, or at least typical crabs (i.e. other than Anomura) in certain languages belonging to three different subgroups: Tolai (MM), Arosi and To’aba’ita (SES), and Lonwolwol (NCV). Reflexes of *kuka may occur more widely as a generic – relatively few dictionaries and wordlists provide precise statements about which crab names serve as generics.

Reflexes of POc *rakum(u) (§3.5.2) occur as a general name for crabs in at least one North New Guinea language, Mangap, one Papuan Tip language, Dobuan, and one Micronesian language, Woleaian.

A term for another grapsid group, POc *kape (§3.5.4), has become a generic covering both true crabs and hermit crabs in most or all NCV languages (François, pers. comm.). In Mota and Uripiv (both NCV) the reflex of *kape appears to serve as a generic for a variety of rock or shore crabs. There are signs that the Arosi reflex of *kape was once a generic for a range of sea and land crabs because this form now appears only as the first element in several Arosi compounds.
Aquatic invertebrates

3.7 Other crustaceans

3.7.1 Mantis shrimps (order Stomatopoda)

The mantis shrimps, Stomatopoda, are a distinctive group represented by Squilla spp. and other genera. The fierce, predatory mantis shrimps are prominent denizens of the intertidal zone. They burrow in sand or hide in crevices and ambush prey. Few sources give names for these creatures. Among the handful of terms that have been noted, e.g. Gedaged kalompit, Nduke hahaka, Wayan vidividi, no widespread cognate set has been found.

3.7.2 Barnacles (class Cirripedia, order Thoracia)

Barnacles are shrimp-like crustaceans that superficially resemble externally shelled molluscs. They attach themselves by the head to a surface and grow a shelly wall of protective plates. There is a ‘Proto Cristobal-Malaitan form that may have referred to barnacles. This form has possible cognates in two Meso-Melanesian languages of the western Solomons.

Proto Malaita-Makira *sisira ‘a barnacle or kind of small mollusc’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SES: Are’are</td>
<td>sire</td>
<td>'k.o. small shellfish that clings to mangrove roots’</td>
</tr>
<tr>
<td>SES: Arosi</td>
<td>sire, sire-sire</td>
<td>'barnacle’</td>
</tr>
<tr>
<td>SES: Lau</td>
<td>sire</td>
<td>(1) ‘barnacles’, (2) ‘very small molluscs (generic)’</td>
</tr>
<tr>
<td>SES: Sa’a</td>
<td>sire</td>
<td>‘k.o. shellfish’</td>
</tr>
</tbody>
</table>

Cf. also:

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM: Roviana</td>
<td>zere</td>
<td>‘barnacle’</td>
</tr>
<tr>
<td>MM: Maringe</td>
<td>sire</td>
<td>‘seashell, a cowry, Cypraea tigris’</td>
</tr>
</tbody>
</table>

PCP *jove ‘k.o. shellfish or barnacle’ (cf. Geraghty 1986)

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fij: Bauan</td>
<td>sove</td>
<td>‘barnacle’</td>
</tr>
</tbody>
</table>

Pn *tofe ‘k.o. bivalve’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn: Tongan</td>
<td>tofe</td>
<td>‘pearl oyster’</td>
</tr>
<tr>
<td>Pn: Niuean</td>
<td>tofe</td>
<td>‘k.o. edible cockle, white’</td>
</tr>
<tr>
<td>Pn: E Futunan</td>
<td>tofe</td>
<td>‘k.o. shellfish’</td>
</tr>
<tr>
<td>Pn: Samoan</td>
<td>tofe</td>
<td>‘Perna sp.’</td>
</tr>
<tr>
<td>Pn: Rennellese</td>
<td>tohe</td>
<td>‘small white bivalve or barnacle, as on floating logs; edible’ (tohe tohe a ‘thickly crusted with tohe’)</td>
</tr>
</tbody>
</table>

3.8 Growth stages and sexes of crustaceans

Oceanic communities often have distinct names for various growth stages and sexes of important crabs, particularly the larger land crabs and coconut crabs. However, no widespread cognate sets of this sort have been found.

3.9 Body parts of crustaceans

Oceanic languages have names for various parts of crustaceans, e.g. Niuean tuke ‘thorax of a crab’, ami ‘crab roe’, afo uya ‘breeding cord of a female coconut crab’, nifo ‘nippers of land crab, etc.’ One secure reconstruction can be made.
4 Molluscs

4.1 Molluscs as a resource in Oceanic communities

Molluscs are very important sources of protein food in Oceanic-speaking coastal communities. A survey of the Milne Bay coral reef systems recorded 945 species of molluscs living in reef habitats (Kinch 1999, Wells and Kinch, 2003). That figure excludes the many species that occupy mangrove and mudflat habitats, which were not surveyed. While the Milne Bay region has one of the richest marine faunas in the Pacific, it exemplifies the abundance of mollusc resources available to communities living close to coral reef systems.

Unfortunately, few good ethnographic descriptions exist of shellfishing in Oceanic communities. Languages for which there are near exhaustive lists of mollusc terms distinguish upwards of 100 taxa. Cèmuhî of New Caledonia has around 133 terms for molluscs (Rivierre 1994) and Paicî, another New Caledonian language, has around 100 (Rivierre 1983), Wayan (Western Fijian) distinguishes more than 140 mollusc taxa, including 105 gastropod, 35 bivalve and four chiton taxa (Pawley and Sayaba 2003). Fox’s (1978) dictionary of Arosi gives 104 names for kinds of molluscs. Sources for a number of other languages give impressive totals that are unlikely to be exhaustive. Fox (1974:93) reports that the Lau of NE Malaita name some 75 kinds of shells. Churchward’s Tongan dictionary lists 63 names for kinds of shellfish. Waterhouse lists some 60 names for shelled mollusc taxa for Roviana and White (1988) gives 53 such names for Maringe (Cheke Holo).

One of the few good ethnographic accounts is a description of shellfishing at Nukakau Island, West New Britain, by Swadling and Chowning (1981). For the people of Nukakau, who speak Kove, shellfish are “especially important when fishing is poor and the weather too rough for fishing parties to go out” (p.159). The three species that are most collected are three bivalves: Geloina coaxans (Kove tue), which are gathered in mangrove forests, Andaragranosa (Kove masilau), gathered from estuarine mudflats, and Andaraantiquata (Kove uleule), taken from weed-covered coral reef flats. The shells of the first of these are also used as cutting and scraping tools.

The importance of shellfish to speakers of Proto Oceanic and its immediate descendants is shown by the large quantities of gastropod and bivalve shells, and artefacts made from shell, that are found in Lapita sites (Gifford & Shutler Jr 1956, Kirch 1997, Spriggs 1997, Swadling
1977, 1996) and other archaeological sites associated with Oceanic languages. Gifford and Shutler (1956) identified at least 74 species of molluscs occurring in Lapita sites in New Caledonia. Swadling (1977) reports 54 mollusc species from the Taurama sequence in Central Province, Papua New Guinea, beginning around 2000 BP. Tools made from shells included one-piece fishhooks, adzes made from Tridacna valves and food scrapers from various shell families. Kirch writes that shell valuables in Lapita sites included “rings, disks, beads and worked rectangular sections made from various species of marine shell, especially large cone shells (*Conus leopardus, C. litteratus*), *Spondylus* oysters, *Tridacna* clam shells and *Trochus* shells” (Kirch 1997:236).

4.2 Class Gastropoda: univalves

The larger Pacific islands and island groups have extensive and varied communities of gastropods. On the reefs the following families are prominent: Arciidae, Conidae, Strombidae, Trochidae, Turbinidae. On rocky shores and in mangrove swamps the Neritidae and Cerithiidae predominate.

POc reconstructions have been made for only a minority of families. A total of seven POc terms for gastropods are reconstructed here: *buli(q), buRua, lala(k), qaliliŋ, Raŋa, sisig, tapuRi*. This is probably less than ten percent of the number of gastropod taxa named in POc.

4.2.1 Strombidae, strombs, spiders, conches

Strombids are the well-known conch and spider shells, which live in sandy and rocky reef areas. The strombids are an important food source in Oceanic coastal communities. There is a widely-reflected reconstruction for the spider conch, *Lambis lambis*. It is likely that this term served as a generic for a range of spider shell taxa, as its reflex does in some daughter languages.

POc *Raŋa ‘Lambis spp., esp. spider conch, Lambis lambis’

NNG:	Mangap	ra	‘spider shell’
PT:	Iduna	laga	‘Lambis scorpius, Strombus sinuatus’
MM:	Tabar	raŋ	‘Lambis truncata sebae’
SES:	Arosi	raŋa	‘spider shell, with long spines’
NCV:	Uripiv	ni-raŋ	‘Lambis sp.’
Mic:	Kiribati	ne-ŋa	‘spider shell, Lambis sp.’
Mic:	Puluwatense	(le)yan	‘spider shell’
Mic:	Woleaian	(re)yaŋa	‘k.o. sea shell’
Mic:	Ponapean	ləŋ	‘spider shell’
Fij:	Bauan	yaŋa	‘generic name for some varieties of shellfish: *Pterocera* and *Lambis* sp.’
Fij:	Wayan	eŋa	(1) ‘Lambis truncata’ (2) ‘generic for Strombidae’

cf. also:

| MM: | Maringe | cega | ‘spider conch incl. *Lambis* sp.’ |
4.2.2 Turbinidae, turbans

The turbans are herbivorous grazers common on intertidal and subtidal reefs, well-known for the operculum or ‘cat’s eye’ which the animal uses to close off the entrance to its shell. Turbans are an important food resource. Wayan has a generic for turbans, kerekere, as well as names for several subtaxa, and this pattern appears to be typical of Oceanic languages.

4.2.3 Turbo petholatus

For the tapestry turban, *Turbo petholatus*, there is a well-attested POc reconstruction, *qaliliŋ*, which continues a PMP etymon. This term may have served as a generic for the genus.

PMP *qaliliŋ ‘cat’s eye shell’ (some reflexes indicate initial *w)*

POc *qaliliŋ ‘Turbo petholatus, tapestry turban; possibly generic for several or all Turbo spp.’

<table>
<thead>
<tr>
<th>Source</th>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Tolai</td>
<td>kaliliŋ</td>
<td>‘k.o. shell fish’</td>
</tr>
<tr>
<td>SES</td>
<td>Gela</td>
<td>lili</td>
<td>‘Turbo spp. (generic)’</td>
</tr>
<tr>
<td>SES</td>
<td>Lau</td>
<td>salili</td>
<td>‘Turbo petholatus’</td>
</tr>
<tr>
<td>SES</td>
<td>To’aba’ita</td>
<td>thalili</td>
<td>‘sp. of turban shell, possibly tapestry turban, *Turbo petholatus’</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SES</td>
<td>‘Are’are</td>
<td>rariri</td>
<td>‘k.o. small shellfish, with cat’s eye’</td>
</tr>
<tr>
<td>NCV</td>
<td>Tamambo</td>
<td>(h)alili</td>
<td>‘cat’s eye shell’</td>
</tr>
<tr>
<td>NCV</td>
<td>SE Ambrym</td>
<td>lili</td>
<td>‘operculum of green snail’</td>
</tr>
<tr>
<td>NCV</td>
<td>Namakir</td>
<td>?alil</td>
<td>‘cat’s eye shell’</td>
</tr>
<tr>
<td>PPn</td>
<td></td>
<td>*galili</td>
<td>‘cat’s eye shell, Turbo sp.’ (POLLEX)</td>
</tr>
<tr>
<td>Pn:</td>
<td>Tongan</td>
<td>?elili</td>
<td>‘a shellfish with cat’s eye’</td>
</tr>
</tbody>
</table>

Blust (1980a) gives this form as PWMP but Oceanic cognates allow it to be attributed to PMP.

Figure 4.4 Lambis spp., spider conches
Aquatic invertebrates

4.2.4 Other Turbo taxa

Usually a number of turban shell taxa are named, sometimes by a compound using a reflex of *mata ‘eye’, with reference to the operculum. The second element of PEOc *mata-buku is probably *buku ‘knot, lump, protruberance’.

PEOc *mata-buku ‘Turbo spp.’

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Sense</th>
</tr>
</thead>
<tbody>
<tr>
<td>SES</td>
<td>mata-puku</td>
<td>‘Turbinidae’</td>
</tr>
<tr>
<td>Fij</td>
<td>mata-buku</td>
<td>‘Turbo spp., possibly including T. chrysostoma, T. argyrostaoma, T. neenivosus’</td>
</tr>
</tbody>
</table>

cf. also:

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Sense</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>pʰupuku</td>
<td>‘Trochus incrassatus’</td>
</tr>
<tr>
<td>SV</td>
<td>na-pek</td>
<td>‘Turbo marmoratus’</td>
</tr>
</tbody>
</table>

4.2.5 Cymatiidae, tritons

The tritons are a family of many species, which eat echinoderms and molluscs. The large shell of Charonia tritonis, Triton’s trumpet, is widely used as a trumpet for ceremonial purposes or to summon people to meetings. There is a widely-reflected POc reconstruction for triton shells, which continues a PMP etymon.

PMP *tabuRiq ‘conch shell trumpet’ (dbl. *tabuRi) (Blust 1989)

PEOc *tapuRiq (1) ‘generic for conch shells, esp. triton’s trumpet, Charonia tritonis and allied spp.; possibly extended to some Cassis (helmet) shells’, (2) ‘trumpet of Charonia shell’

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Sense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm</td>
<td>tau</td>
<td>‘triton shell’</td>
</tr>
<tr>
<td>NNG</td>
<td>taule</td>
<td>‘triton’s trumpet, used for sending messages’</td>
</tr>
<tr>
<td>NNG</td>
<td>tau</td>
<td>‘triton shell’</td>
</tr>
<tr>
<td>NNG</td>
<td>tauru</td>
<td>‘conch; used as a wind instrument’</td>
</tr>
<tr>
<td>NNG</td>
<td>twiiri</td>
<td>‘trumpet shell, Triton’</td>
</tr>
<tr>
<td>PT</td>
<td>taula</td>
<td>‘triton shell; trumpet of this’</td>
</tr>
<tr>
<td>MM</td>
<td>tafuru</td>
<td>‘triton shell’</td>
</tr>
<tr>
<td>MM</td>
<td>taur</td>
<td>‘triton shell, blown to send messages’</td>
</tr>
<tr>
<td>MM</td>
<td>tahur</td>
<td>‘triton shell’</td>
</tr>
<tr>
<td>MM</td>
<td>tavure</td>
<td>‘triton shell’</td>
</tr>
<tr>
<td>SES</td>
<td>tavuli</td>
<td>‘triton shell; helmet shell, Cassis cornutus; a trumpet’</td>
</tr>
<tr>
<td>SES</td>
<td>ahuri</td>
<td>‘conch shell, triton; trumpet of this, blown only on solemn occasions, e.g. at a death’</td>
</tr>
</tbody>
</table>
ahuri (poru) ‘k.o. Cassis shell’

SES: Sa’a ehuri ‘conch shell, blown as a summons’
TM: Buma teveliko ‘triton shell’ (François In press)
NCV: Mota tawe ‘conch shell’
NCV: Mwotlap na-tɔ ‘conch shell’
NCV: Lonwo wol taviu ‘conch shell (and sound)’
NCV: Nguna tavui ‘triton shell’
SV: Sye n-tovu ‘triton shell’
SV: Anejoi n-tohou ‘triton shell’
Mic: Kiribati tau ‘triton conch’
Mic: Woleaian tawii ‘conch shell; trumpet’
Fij: Bauan davui ‘Triton’s trumpet; used as a trumpet, chiefly on canoes’
Fij: Wayan tavui ‘Triton’s trumpet and allied spp.; trumpet of this’

4.2.6 Neritidae, nerites, and allied families of Neritacea

Typical nerites have globular shells with flattened base. They are vegetarians, living under rocks or in crevices close to the high tide mark. The nerite family contains marine, freshwater and terrestrial species. The wide range and abundance of nerites, and their importance as food, may explain why the generic for this family has come to be used as a generic for a wider range of gastropods in a number of Oceanic languages, including Takia, Roviana, Bauan, Wayan and Samoan.

PMP *sisi[q] ‘edible snail’ (doublets *sisuq, *susuq) (Blust 1980a)
POc *sisiq (1) ‘various small, snail-like gastropods of nerite family’, (2) ‘probably generic for a wider class of edible gastropods’
NNG: Takia sise(i) ‘generic term for all varieties of sea shells’
PT: Molima sisi(?alo) ‘a brown bivalve, small and edible, found in tidal flats’
MM: Nakanai e-sisi ‘k.o. shellfish’
MM: Teop hihi ‘Nerita albicilla’
MM: Roviana sise ‘general name for a number of small shells’
MM: Marovo sise ‘small marine gastropod’
 sise (kavo) ‘freshwater gastropod’
SES: To’aba’ita sisi- ‘first element in several compounds for kinds of shellfish’
SES: ’Are’are sisi ‘a big sea shell’
 sisi- ‘first element in compounds for kinds of gastropods’
SES: Arosi sisi(apiro) ‘limpet’
SES: Lau sisi(afufu) ‘mollusc sp.’
SES: Gela hihi(vuhi) ‘freshwater snail sp., Neritina brevispina’
NCV: Mwotlap ne-ses ‘Nerita plicata; generic for molluscs’
NCV: NE Ambae hihe ‘Nerita sp.’
NCV: SE Ambrym ses ‘shellfish of family Neritidae’
NCV: Tamambo sise ‘shellfish sp.’
Aquatic invertebrates

NCV: Nguna \textit{sisa} \textquoteleft snail including nerites\textquoteright{}
NCV: Raga \textit{hiha} \textquoteleft seasnail, winkle\textquoteright{}
NCV: S Efate \textit{ses} \textquoteleft nerite\textquoteright{}
NCal: Cêmuhi \textit{ti} \textquoteleft generic term for gastropods\textquoteright{}
NCal: Fwâi \textit{tʰik} \textquoteleft trochus, but used generically for gastropods\textquoteright{}
NCal: Nemi \textit{tʰik} \textquoteleft trochus, but used generically for gastropods\textquoteright{}
Fij: Rotuman \textit{sisi} \textquoteleft edible shell-fish, the periwinkle\textquoteright{}
Fij: Bauan \textit{sõi} (1) \textquoteleft Trochus spp.\textquoteright{}, (2) \textquoteleft first element in various compounds naming kinds of gastropods and a few bivalves\textquoteright{}
Fij: Wayan \textit{õiõi} \textquoteleft generic for gastropods\textquoteright{}

PPn \textit{*sisi} ‘a univalve mollusc’ \textsc{(pollex)}

Pn: Niuatoputapu \textit{hihi} ‘\textit{Nerita} spp.’
Pn: Niuean \textit{hihi-} ‘first element in compound names for some gastropods’
Pn: Samoan \textit{sisi} ‘name given to small snails in general’ (Milner); ‘freshwater molluscs’ (Pratt)
Pn: E Futunan \textit{sisi} ‘small shellfish spp., \textit{Neritidae} and \textit{Naeticidae}’
Pn: Tikopia \textit{sisi} ‘a range of marine and land snails incl. \textit{Melampus} and \textit{Nerita} spp.’
Pn: Rennellese \textit{sisi} ‘edible \textit{Nerita} shells’

cf. also:
NNG: Yabem \textit{usu} ‘sea snails (general term)’
PT: Motu: \textit{dudu} ‘name of a shellfish’ \textquoteleft u for \textit{ti}\textquoteright{}

Some WOc and NCV languages reflect \textit{*siseq or *sisaq} rather than \textit{*sisiq}. These departures can be explained in terms of dissimilatory change in which the final, unstressed vowel is lowered. Dissimilation of the final vowel, \textit{*sisiq > susu,} also explains Motu \textit{dudu} for expected \textit{*didi}.

4.2.7 Cypraeidae (cowries) and Ovulidae (egg and spindle cowries)

Many species of cowries are present. The white or egg cowrie (\textit{Ovula ovum}) is used in some societies as a decoration associated with chiefs and chiefly property. In Fiji, for example, these shells are hung from the ridge-pole of a chief’s house and in the western Solomons they are used as prow ornaments on war canoes. Oceanic languages generally classify cowries and ovulids together under a single generic with subtaxa distinguished by binomials. There is a well-attested POc reconstruction which continues a PMP etymon.

PMP \textit{*buliq} ‘cowrie shell’ \textsc{(Blust 1980a)}

POc \textit{*buli(q)} ‘generic for cowries’

NNG: Takia \textit{bul} ‘k.o. shellfish: \textit{Ovula ovum}, white egg cowrie’
PT: Kilivila \textit{bune-buna} ‘cowrie’
PT: Molima \textit{buli} ‘cat’s eye (operculum of shell)’
MM: Tabar \textit{buri-buri} ‘big cowrie shell’
MM: Maringe \textit{buli} ‘cowrie shell’
Figure 4.5 Cowries

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SES: Gela</td>
<td>buli</td>
<td>‘generic for cowries’</td>
</tr>
<tr>
<td>SES: To’aba’ita</td>
<td>buli</td>
<td>‘egg cowrie, Ovula ovum’</td>
</tr>
<tr>
<td>SES: Lau</td>
<td>buli</td>
<td>‘white cowrie, Ovula ovum’</td>
</tr>
<tr>
<td>SES: Sa’a</td>
<td>puli</td>
<td>‘cowrie shell, used as sinkers for nets’</td>
</tr>
<tr>
<td>NCV: Mwotlap</td>
<td>(nɔ-wɔ)pʷʊl</td>
<td>‘cowrie shell, not edible; Cypraeidae spp.’</td>
</tr>
<tr>
<td>NCV: Nguna</td>
<td>pule</td>
<td>‘cowries’</td>
</tr>
<tr>
<td>Mic: Ponapean</td>
<td>pʰili</td>
<td>‘cowrie shell’</td>
</tr>
<tr>
<td>Mic: Puluwatese</td>
<td>pʰiliy</td>
<td>‘cowry shell; to scrape, as breadfruit’</td>
</tr>
<tr>
<td>Fij: Bauan</td>
<td>buli</td>
<td>‘cowrie shell’</td>
</tr>
<tr>
<td>Fij: Wayan</td>
<td>buli-buli</td>
<td>‘cowrie shell: generic term for Cypraeidae and Ovulidae’</td>
</tr>
<tr>
<td>PnP: *pule</td>
<td>‘cowrie’</td>
<td></td>
</tr>
<tr>
<td>Pn: Samoan</td>
<td>pule</td>
<td>‘cowrie’</td>
</tr>
<tr>
<td>Pn: Niuean</td>
<td>pule</td>
<td>‘cowrie, Cyprea sp.’ (pule tea ‘white cowry, Ovula ovum’)</td>
</tr>
</tbody>
</table>

4.2.8 Trochidae, top shells

The Trochidae are a family of shallow water dwellers, represented by many species, with conical shells and flat or convex circular base. Some are a valued food resource. Oceanic peoples traditionally made ornaments, such as arm and wrist bracelets, from trochus shell. Oceanic languages usually have a generic term for the family and several binomials naming subtaxa. There is a good chance that the term *lalai*, which entered Tok Pisin from Tolai, has spread from Tok Pisin into many vernacular languages of Papua New Guinea and the Solomons.

PMP *lalak ‘trochus shell’ (Blust 2002)

POc *lala(k) (1) ‘*Trochus* spp., including *T. niloticus* and possibly *T. stellatus*’, (2) ‘rings or armlets made of this’

NNG: Wogeo lala ‘pearl shell’

MM: Tolai lalai ‘*Trochus* spp., armlet made from trochus shells’
Aquatic invertebrates

4.2.9 Conidae, cone shells

The Conidae are all conical in shape, usually with long narrow aperture and smooth outer lip. Species vary greatly in length, ranging from 6 mm to 230 mm. The Conidae are carnivores and inflict a venom with a radular dart on the proboscis. The larger shells are much used for making bracelets and rings. There is a term attributable to PEOc whose SES reflexes generally refer both to the shell itself and to bracelets and other ornaments made of cone or trochus shell.

PEOc *lako (1) ‘cone or trochus shell’, (2) ‘various ornaments made from this’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SES: Gela</td>
<td>lago</td>
<td>‘cone shells made into ornaments’</td>
</tr>
<tr>
<td>SES: Arosi</td>
<td>raʔo</td>
<td>‘trochus shell; various ornaments made from this; canoe decorated with inlaid shell pieces’</td>
</tr>
<tr>
<td>SES: ’Are’are</td>
<td>raʔo</td>
<td>‘cone shell used as ornament on belt or arm; tied on canoes as protection’</td>
</tr>
<tr>
<td>SES: Lau</td>
<td>lao</td>
<td>‘generic for Conus spp.; ornaments of Conus; canoe decorated with Conus’</td>
</tr>
<tr>
<td>SES: Sa’a</td>
<td>laʔo</td>
<td>‘cone shell, trochus; forehead ornament of this or tridacna; armlets; shell inlaid on sides of canoes’</td>
</tr>
<tr>
<td>Mic: Puluwatese</td>
<td>la-</td>
<td>‘possessive classifier for bracelets’</td>
</tr>
<tr>
<td>Mic: Woleiaian</td>
<td>raxa</td>
<td>‘bracelet, wrist ornament’</td>
</tr>
</tbody>
</table>

Proto SE Solomonic *kome evidently referred to a particular kind of armlet, made from *lako shell. A partially or fully reduplicated form, *ko-kome or *komekome, may have been a general name for cone shells in Proto SE Solomonic. However, given that *kome referred to a valuable trade good, this term may well have spread by borrowing among languages of the central and eastern Solomons.

Proto SE Solomonic *kome ‘armlets made from cone or trochus shell’, *ko-kome or *kome-kome ‘? generic for cone shells’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM: Maringe</td>
<td>kome-kome</td>
<td>‘Conidae family (generic)’</td>
</tr>
<tr>
<td></td>
<td>kʰome</td>
<td>‘cone shell, Conus leopardus, used to make armlets’</td>
</tr>
<tr>
<td>SES: Arosi</td>
<td>kome</td>
<td>‘white shell armlet of raʔo trochus’</td>
</tr>
<tr>
<td>SES:</td>
<td>Lau kome</td>
<td>‘Conus’</td>
</tr>
<tr>
<td>SES:</td>
<td>Sa’a ko-kome</td>
<td>‘round white armlet of trochus (laʔo)’</td>
</tr>
<tr>
<td>SES:</td>
<td>To’aba’ita kome</td>
<td>‘armlet, shell of Conus sp.’</td>
</tr>
<tr>
<td>SES:</td>
<td>Kwaio kome kō-kome</td>
<td>‘cone shells (generic)’</td>
</tr>
</tbody>
</table>

4.2.10 Muricidae, murexes

Murexes have large shells, sculptured with knobs and ridges, spines and spinal cords. They are carnivores which live in the subtidal zone especially on sandy mudflats. Numerous species occur in the tropical Pacific.

POc *buRua ‘Murex sp.’ (Geraghty 1990)

PT:	Bwaidoga (hewahewa)bulu	‘M. ramosus’
MM:	Tolai burua, bura-bura	‘M. palma rosa’
Fij:	Wayan bua	‘Murex spp.’

cf. also:

| NNG: | Kove vuru | ‘cone shells and ornaments made from these’ |
| MM: | Nakanai e-buru | ‘cone-shaped shellfish’ |

4.2.11 Gastropod families lacking POc names

For many groups of gastropods present in the tropical Pacific region no reconstructions have been made to POc level, even though names for these groups are present in contemporary languages. For example, POc names are missing for limpets (Patellidae), key-hole limpets (Fissurellidae), ceriths (Cerithidae), cones (Conidae), dog-whelks (Nassaridae), mud-whelks (Potomididae), helmet shells (Cassidae), tun shells (Tonnidae), miters (Mitridae), augers (Terebridae), turrids (Turridae) and drupes (Thaidinae).

4.2.12 Generic terms for gastropods

For a small minority of Oceanic languages the sources give a term that applies to gastropods in general or to a wide range of gastropods. The fact that reflexes of POc *sisiq have this semantic range in a North New Guinea language (Takia sisei), and in the Fijian languages (Wayan diidi, Bauan siidi) might suggest that *sisiq also had a similar range in POc. However, comparison of the larger sample of cognates listed in §4.2.8 suggests that it is at least as likely that POc *sisiq was a more restricted generic, referring to various small gastropod families and that more than once it independently became a term for edible gastropods in general. See ch. 8 for further discussion. Marovo (Meso-Melanesian) has a generic, chuko, that embraces most small to medium-sized gastropods but excludes nerites and turbans (Hviding 2005:67).

4.3 class Bivalvia: clams, cockles, oysters, etc.

There are ten pretty secure POc reconstructions for kinds of bivalves: *japi, *kaRi, *kasi, *kuku, *kima, *sapulu(q), *tiRom, *tu(qu)asi, *tu(q)e-tu(q)e and *(w,y)aro.
4.3.1 Tridacninae, giant clams

Giant clams are a small but economically important group that includes the largest externally shelled molluscs. The largest species (*Tridacna gigas*) grows up to a metre long. Traditionally regarded as a separate family, this group has recently been reclassified as a subfamily (Tridacninae) of Cardiidae. Giant clams are prized food, consumed at ceremonial feasts. In some societies edge-ground adze blades and shell rings were made from the heavy shells. Typically Oceanic languages have a generic referring to all *Tridacna*, with several binomials distinguishing subtaxa. Thus Arosi ʔima is the generic and there are eight binomials (including one pair of synonyms) denoting subtaxa. Wayan has vāsua as the generic and has three subtaxa: (vasua) cavucavu, *T. gigas*, the largest kind, which is easily removed, and is symbolic of women because they marry away from home; kativatu, *T. maxima*, is hard to remove and is symbolic of men, who stay with their father’s clan; and vosavosa, the fluted clam, *T. squamosa*.

There is a well-attested POc generic for giant clams, *kima*, with a PMP antecedent.

PMP *kima* ‘giant clam, *Tridacna* spp.’ (Blust 2002)

POc *kima* ‘giant clam, *Tridacna* spp., include. *T. gigas*’

<table>
<thead>
<tr>
<th>Code</th>
<th>Language</th>
<th>Word(s)</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT: Molima</td>
<td>ʔimaʔima</td>
<td>‘a shell which is used as a scraper’</td>
<td></td>
</tr>
<tr>
<td>PT: Wedau</td>
<td>kimei</td>
<td>‘clam shell’</td>
<td></td>
</tr>
<tr>
<td>PT: Tawala</td>
<td>kima</td>
<td>‘clam shell’</td>
<td></td>
</tr>
<tr>
<td>MM: Tabar</td>
<td>kima</td>
<td>‘clam’</td>
<td></td>
</tr>
<tr>
<td>SES: Gela</td>
<td>gima</td>
<td>‘Tridacna gigas’</td>
<td></td>
</tr>
</tbody>
</table>
Reflexes of *kima are absent from Central Pacific, where it was evidently replaced by *(b,v)āsua. This was the PCP reflex of a PEOc term for a large but unidentified shellfish species. Reflexes show unexplained variation in the initial consonant.

PEOc *(b,v)asua ‘large shellfish, perhaps a bivalve’

SES: Gela (pau)pasua ‘Murex spp.’
SES: Arosi (hau)wasua ‘oyster’ (initial w- unexpected)
NCV: Uripiv na-basow ‘scallop, Pallium sp., and Spondylus rubicundus’

PCP *(b,v)āsua ‘giant clam, Tridacna spp.’

Fij: Wayan vāsua ‘generic for Tridacna spp.’
Fij: Bauan vāsua ‘giant clam, Tridacna spp.’

PPn *(p,f)āsua ‘Tridacna clam sp.’

Pn: Samoan fāisua ‘Tridacna sp., giant clam’ (-i- irregular)
Pn: Rennellese hāsua ‘general term for Tridacna spp.’
Pn: Emae fāsua ‘Tridacna sp., giant clam’
Pn: Ifira-Mele vasu-vāsua ‘k.o. edible bivalve’

Proto Eastern Polynesian–Northern Outlier *pāsua ‘Tridacna sp. or spp.’

Pn: Sikaiana pāsua ‘clam’
Pn: Tokelauan pāua ‘poisonous shellfish attached under shelving coral’
Pn: Nukuoro pāsua ‘Tridacna maxima’
Pn: Tahitian pāhua ‘Tridacna elonga’
Pn: Rarotongan paʔua ‘clam, oyster’
Pn: Marquesan pahua ‘oyster sp.’

cf. also:
Pn: Tongan vāsua ‘clam’ (borrowed from Fijian)

The Gela and Arosi comparisons are problematic but they provide evidence, consistent with some Eastern Polynesian witnesses, that PCP *(b,v)asua derived from a pre Central Pacific form that referred to a group of bivalves other than the Tridacninae.

4.3.2 Asaphis spp. (Psammobidae) and cockles (Cardiidae)

There is a well-supported POc form, *kasi, which referred to to the action of grating or scraping, to scrapers made from the valves of circular bivalves, such as Asaphis (Psammobidae) and cockles (Cardiidae spp.) and to the shellfish themselves, which are good eating. The vernacular term ‘cockle’ is used loosely in many sources, referring not just to shells of the Cardiidae family but also to other small to medium-sized rounded bivalves with radial or concentric striae, including Psammobidae and Tellinidae.
POc *kasi (v) ‘to scrape; scraper or grater made from robust circular bivalve shell, such as Asaphis and cockles’, (n) ‘shellfish taxon, esp. Asaphis spp.’ (cf. vol.1, pp.162, 238–240)

PT: Tawala kahi ‘pearl shell’
MM: Nakanai kasi ‘mussel or clam; mussel shell used as knife’
Fij: Rotuman ʔɔsi ‘cockle, shell much used for scraping’

PPn *kasi ‘shellfish, Asaphis spp.’ (POLLEX)

Pn: Tongan kahi ‘name of a mussel’
Pn: Niuatoputapu kahi ‘Asaphis violascens’
Pn: Samoan ʔasi ‘a mussel, Arca sp.’
Pn: Nukuoro kasi ‘Asaphis dichotoma’
Pn: Tikopia kasi ‘bivalve mollusc, Asaphis violascens, and possibly other related bivalves; shell used as cutting or scraping implement’
Pn: Rarotongan kaʔi ‘Asaphis violascens’
Pn: Māori kahi ‘Amphidesma australae and certain other bivalves’
cf. also:

Mic: Carolinian xātil ‘very small clams (thumb sized) used in soups’

The next term, POc *kaRi, may have referred to cockles or may have been a more general term for a wider range of small to medium-sized bivalves.

POc *kaRi ‘bivalve sp. or spp, possibly cockle, used as a scraper’ (Geraghty 1990; cf. vol.1, p.162)

NNG: Manam ʔoriʔori ‘pearl shell, traditionally used to scrape coconuts; coconut grater, scraper’

SES: Gela gali ‘species of mollusc, Asaphis sp. (eaten)’
SES: To’aba’ita ʔali ‘bivalve sp., used as scraper and spoon’
SES: Sa’a ali ‘cockle’
NCV: Mota ɣar (1) ‘cockle’, (2) ‘to scrape’
NCV: Raga gari ‘cockle shell; used as a scraper’
Fij: Bauan kai ‘generic name of bivalve shellfish’
kai-koso ‘generic for several bivalves’

PPn *pipi appears to have applied to various circular bivalves including Asaphis sp. or spp. Its reflexes are of interest because in several cases (Kapingamarangi, Pukapukan, Rennellese and Tikopia) they have become a generic for bivalves.

PPn *pipi ‘probably general name for small or medium-sized circular bivalves, including cockles, Asaphis spp.’

Pn: Tongan pipi ‘shellfish sp.’
Pn: Samoan pipi (1) ‘kind of cockle, Asaphis sp.’, (2) ‘shell scraper for barkcloth’
Pn: Tokelauan pipi (1) ‘Asaphis sp.’, (2) ‘scraper of this’
Pn: Tuvalu pipi ‘Asaphis sp., Nerita spp.’
Pn: Rennellese pipi ‘circular bivalves’
Pn: Kapinga pipi (1) ‘Asaphis sp.’, (2) ‘general term for small clams’
Mussels occur in dense colonies on rocky shores, attaching themselves to surfaces by byssus threads. They fall into several subfamilies. *Mytilus* spp. predominate in cold waters but in tropical waters they are replaced by species of the subfamilies Modiolinae and Lithophaginae. Commonly Oceanic languages distinguish two or more mussel taxa by name, e.g. Wayan has a generic term *boro*, with two subtaxa: *boroboro*, probably *Modiolus plumescens*, and *drivi* ‘small mussels with black shell, possibly *Lithophaga* sp.

Blust (1972:10) relates POc *kuku(r)* ‘? mussel sp.’ to PAn *kuDkuD* ‘rasp, file’, noting reflexes such as Tagalog *kudkod*, Toba Batak *hurhur* ‘grated’, Ngadju Dayak *kukur* ‘rasp, grater’. It is likely that POc *kuku(r)* was polysemous, referring both to food scrapers of various kinds of shells and to mussels, which were used as scrapers.

POc *kuku(r)* ‘mussel sp. or spp., used as food grater or scraper’ (see vol.1, p.161)

Adm: Lou *kuki* ‘shell used to scrape coconut’
NNG: Takia *kuk* ‘shellfish: *Anadara* sp., cockle shell’
NNG: Kove *kuku* ‘little black horse mussel’
SES: Gela *yuyu* ‘mollusc sp.’
SES: Arosi *kuku* ‘a small bivalve, *Arca* sp.’
NCV: Lonwolewol *huhu* ‘a sharpened shell, for scraping’
Fij: Bauan *kuku* ‘generic for mussels, incl. *Modiola* spp.’

PPn *kuku* ‘mussel sp. (Mytilidae)’ (pollex)

Pn: Tongan *kuku* ‘pink-fleshed mussel’
Pn: Niuean *kuku* ‘a small black mussel’
Pn: Samoan *ʔuʔu* ‘mussel, *Modiola* sp.’
Pn: E Futunan *kuku* ‘mussel sp. (Mytilidae)’
Pn: Rarotongan *kuku* ‘mussel sp., *Mytilus edulis*’
Pn: Rennellese *kuku* ‘*Tellinadiscus*’

The English folk category ‘oyster’ refers to several families of bivalves, including Ostreidae (typical oysters), Isognomonidae (mangrove oysters), Malleidae (hammer oysters), Pteridae (pearl and wing oysters) and Spondylidae (thorny oysters), the latter being more closely related to scallops than to the other ‘oyster’ families. Wayan Fijian has a generic term, *ðiva*, with a similarly broad range of reference.

POc *tiRom* continues a PAn term for oyster. The range of the POc term probably included both typical oysters (Ostreidae), which attach themselves by cementing one valve to rocks or wood, and tree oysters (Isognominidae), found mainly among mangrove roots or under rocks in the intertidal zone. Only a few species of Isognomonidae occur in the Pacific Islands.
Aquatic invertebrates

PMP *tiRem ‘oyster (Ostreidae)’ (Dempwolff 1938, Blust 2002)

POc *tiRom ‘oyster (Ostreidae, Isognomonidae)’

Adm: Lenkau tireg ‘k.o. shell’
NNG: Kove tiro ‘Crassostrea commercialis, oyster found on stones and mangroves’
tiromu ‘oyster (edible)’ (borrowed from Bali?)
NNG: Mangap tir ‘freshwater shellfish type’
PT: Motu siro ‘oyster’
MM: Nakanai tiro ‘mangrove oyster’
SES: Gela tilo ‘k.o. bivalve, in mangroves and borer in ships’
SES: ’Are’are iro ‘k.o. oyster living on roots of mangroves’
SES: Arosi iro ‘small gastropod’
SES: Kwaio ilo ‘oyster’
NCal: Pije diam ‘oyster’
NCal: Nemi jiem ‘oyster’
Fij: Bauan dio ‘rock oyster’
Fij: Wayan tio ‘generic for rock oysters (Ostreidae)’

PPn *tio ‘oyster sp.’ (pollex)

Pn: Tongan sio ‘rock oyster’
Pn: E Futunan tio ‘rock oyster’
Pn: Samoan tio ‘mollusc, Vermetus sp.; iridescent fish lure made from its shell’
Pn: Tokelauan tio ‘gastropod, Vermetus sp. (Vermitidae)’

4.3.5 Pteridae, pearl and wing oysters, and Malleidae, hammer oysters

The family Pteridae includes pearl and wing oysters, which live on rocky ocean floors. They have moderate to large shells with one valve more inflated, with pearly interior. The Malleidae, hammer oysters, have ears drawn out into elongate wings. The common hammer oyster, *Malleus malleus*, anchors to the bottom in shallow reef waters.

The gold-lip pearl shell, *Pinctada maxima*, and the black-lip pearl, *P. margaritifera*, were traditionally important as a trade item and source of ornaments, especially the breastplate crescent made from the lip of this shell and worn by men. Although they are widely distributed species Swadling (1994) reports that the environmental conditions for dense concentrations of gold- and black-lip pearl shells occur only in a few parts of Papua New Guinea (Manus Province, Ramoaaina Islands, Arawe Islands, Brooker and Moturina in the Calvados chain, eastern Milne Bay Province, and the Torres Strait Islands). Pearl oysters are absent from the more southerly subtropical parts of Polynesia, and in some other parts of Polynesia, including Tonga and Samoa, occur in locations that were not easily accessible to divers. The importance of pearl shell ornaments as trade valuables no doubt led to borrowing of the names for these in some regions. However, the fact that reflexes of *japi*, showing regular sound shifts, are found from New Guinea to Polynesia is strong evidence of the POc antiquity of this term.

POc *japi* (1) ‘bivalve taxon, probably *P. maxima*, gold-lipped pearl shell’, (2) ‘ornament made from this’ (see vol.1, p.104)

NNG: Manam javi ‘pearl shell spoon’
MM: Roviana \textit{davi} ‘pearlshell’

MM: Marovo \textit{davi} ‘goldlip pearl, \textit{Pinctada maxima}’

SES: Bugotu \textit{davi} ‘gold-lip pearl shell’

SES: Gela \textit{davi} ‘gold-lip pearl; crescent ornament made from this’

SES: ’Are’are \textit{tahi} ‘pearl shell; ornament made of same worn by chiefs’

SES: Arosi \textit{dahi} ‘gold-lipped pearl shell’

SES: Sa’a \textit{dahi} ‘gold-lipped pearl; crescent breast ornament worn by men, cut from this shell’

PCP \textit{*jiva} ‘pearl oyster, including \textit{Pinctada} spp.’ (metathesis)

Fij: Bauan \textit{ðiva} (1) ‘pearl and wing oysters (\textit{Pinctada} and \textit{Avicula} spp.), hammer oyster (\textit{Malleus} sp.)’, (2) ‘breastplate of pearl shell in frame of whale’s tooth ivory’

\textit{ðiva-ðiva} ‘small oyster, \textit{Pinctada matensis}’

Fij: Wayan \textit{ðiva} (1) ‘pearl and winged oysters, including blacklip pearl, \textit{Pinctada margaritifera}, and giant wing oyster, (2) ‘generic for all kinds of oysters’

Pn: Tongan \textit{sifa} ‘pearl shell breastplate’

Pn: Niuean \textit{tifa} ‘mother of pearl shell and ornament’

Pn: Tikopia \textit{tifa} ‘large pearl shell, formerly worn by men of rank as a breast ornament. Types include \textit{Pinctada margaritifera}, \textit{P. maxima}, \textit{Isognomon isognomum}, \textit{I. perna} and \textit{Pinna} sp.’

Pn: Rarotongan \textit{tiʔa} ‘pearl shell breastplate’

cf. also:

PT: Hula \textit{ravivi} ‘clamshell’

The next two sets probably belong to the same etymon. \textit{w/y} crossover occurs in certain other forms. The Gela reflex is compatible with either set because word-initial \textit{*w} is lost in Gela.

POc \textit{(y)aro(q)} ‘black-lipped pearl, \textit{Pinctada maxima}, possibly generic for \textit{Pinctada} spp.’

NNG: Bing \textit{yar-yar} ‘blacklip pearl oyster shell, \textit{P. maxima}’

NNG: Gedaged \textit{jal} ‘goldlip pearl’

NNG: Mangap \textit{yar-yar} ‘saltwater shellfish, very colourful’

PT: Motu \textit{laro} ‘small pearl shellfish; shell used for cutting and paring’ (l- a sporadic accretion in Motu)

MM: Roviana \textit{aro(moi)} ‘k.o. large oyster’

MM: Nduke \textit{aro(moi)} ‘large oyster found on reef, \textit{Pycnodonata hyotis} (= \textit{Ostreahyotis})’

SES: Lengo \textit{aro} ‘oyster’

PEOc \textit{waro(q)} ‘probably black-lipped pearl, \textit{Pinctada maxima}, possibly generic for \textit{Pinctada} spp.’

SES: Gela \textit{aro} ‘black-lip pearl, \textit{P. margaritifera}’

SES: Arosi \textit{waro} ‘black-lip pearl’ (\textit{waro-anakaoea}, scallop, \textit{Pecten} sp.’)
4.3.6 Pinnidae, pen shells

The Pinnidae or pen shells have large fragile shells. They live buried in soft sand anchored by a silk byssus. The following reconstruction is tentatively associated with the genus *Pinna* because of the Gela and Fijian reflexes. In Cristobal-Malaita languages the reflex refers to black mussels, from which bonito hooks are made.

POc *sapulu(q) ‘bivalve mollusc, possibly *Pinna* sp.’*

<table>
<thead>
<tr>
<th>NNG:</th>
<th>Kove</th>
<th>ravulu</th>
<th>‘k.o. razor shell’</th>
</tr>
</thead>
<tbody>
<tr>
<td>SES:</td>
<td>Gela</td>
<td>havulu</td>
<td>‘k.o. mollusc, Pinna sp.’</td>
</tr>
<tr>
<td>SES:</td>
<td>Bugotu</td>
<td>havulu</td>
<td>‘scallop’ (Ivens: gloss dubious)</td>
</tr>
<tr>
<td>SES:</td>
<td>’Are’are</td>
<td>tahuri</td>
<td>‘a black mussel’</td>
</tr>
<tr>
<td>SES:</td>
<td>Arosi</td>
<td>tahuru</td>
<td>‘black mussel sp., used to make bonito hooks’</td>
</tr>
<tr>
<td>SES:</td>
<td>Sa’a</td>
<td>tehulu</td>
<td>‘black mussel, used to make bonito hooks’</td>
</tr>
<tr>
<td>SES:</td>
<td>To’aba’ita</td>
<td>fulu</td>
<td>‘shellfish with black shell’</td>
</tr>
<tr>
<td>Fij:</td>
<td>Bauan</td>
<td>savulu</td>
<td>‘a shellfish, Pinna squamosa’</td>
</tr>
</tbody>
</table>

4.3.7 Lucinidae and allied families

Lucinoidea (Lucinidae and three other families) are often the dominant bivalves in shallow sea grass bed habitats, esp. species of *Codakia, Ctena, Lucina, Lucinisca, Loriges* and *Anodontia*, and are an important food source. The Lucinidae have certain unusual anatomical features including a foot, used for burrowing, that can be extended 4 to 6 times the length of the animal. There is no secure POc reconstruction for this family but the following is a candidate.

POc *tu(q)e, *tu(q)e-tu(q)e ‘k.o. bivalve, possibly Lucinidae and allied families’*

<table>
<thead>
<tr>
<th>NNG:</th>
<th>Kove</th>
<th>tue</th>
<th>‘Geloina coaxans, a cockle-like clam of mangrove forest (Corbiculidae)’</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>tue-tue</td>
<td>‘Codakia tigerina (Lucinidae), Quidnipagus palatum (Tellinidae)’</td>
</tr>
<tr>
<td>SES:</td>
<td>Gela</td>
<td>tue</td>
<td>‘Batissa sp., possibly B. unioniformis, a commonly harvested small bivalve used as a scraper’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tue-lovo</td>
<td>‘Pecten sp.’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tue-koraga</td>
<td>‘freshwater bivalve’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tue-kunukunu</td>
<td>‘very long Batissa sp.’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tue-tue</td>
<td>(1) ‘Tellina spp.’; (1) ‘young tue’</td>
</tr>
<tr>
<td>SES:</td>
<td>Ghari</td>
<td>tue</td>
<td>‘black freshwater oyster’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tue-tue</td>
<td>‘small white edible shellfish’</td>
</tr>
<tr>
<td>SES:</td>
<td>Lengo</td>
<td>tue</td>
<td>‘mangrove shell’</td>
</tr>
</tbody>
</table>
4.3.8 Reconstructions for bivalves of uncertain family

Some etyma have reflexes that are so semantically diverse or so vaguely glossed in the sources that the reconstructed name cannot be associated with a particular family. For POc *sisira ‘a barnacle or k.o. small mollusc’ see §3.6. The following reconstruction is very tentative, because the putative cognates are few and because the semantic agreement is weak.

POc *tape ‘k.o. bivalve’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilibil</td>
<td>tave</td>
<td>‘giant clam, Tridacna gigas’</td>
</tr>
<tr>
<td>Teop</td>
<td>dave</td>
<td>‘Polinices tumida (in white sand)’</td>
</tr>
<tr>
<td>Wayan</td>
<td>tavē</td>
<td>(1) ‘tellins, sanguins’, (2) ‘generic for a large class of bivalves, excluding oysters and giant clams’</td>
</tr>
</tbody>
</table>

The following term may have applied to a kind of pearl shell, with a shift of referent in Bugotu and Maringe arising from the use of pieces of nautilus shell for inlaying in woodwork.

PWOc *bio ‘k.o. mollusc or pearl shell’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yabem</td>
<td>bi</td>
<td>‘pearl shell’</td>
</tr>
<tr>
<td>Gitua</td>
<td>bio-bio</td>
<td>‘pearl shell’</td>
</tr>
<tr>
<td>Tami</td>
<td>biu</td>
<td>‘pearl shell’</td>
</tr>
<tr>
<td>Nakanai</td>
<td>beo</td>
<td>‘pearl shell’</td>
</tr>
<tr>
<td>Tabar</td>
<td>bio</td>
<td>‘k.o. shellfish, Strombidae’</td>
</tr>
<tr>
<td>Bola</td>
<td>bio</td>
<td>‘pearl shell’</td>
</tr>
<tr>
<td>Maringe</td>
<td>bio</td>
<td>‘nautilus shell, used for inlaying in woodwork’</td>
</tr>
<tr>
<td>Bugotu</td>
<td>bio</td>
<td>‘nautilus’ (possibly borrowed from Maringe)</td>
</tr>
</tbody>
</table>

The following cognate set appears to be restricted to Meso-Melanesians.

PMM *game ‘k.o. mollusc’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitu</td>
<td>game</td>
<td>‘k.o. shellfish: Trochus niloticus’</td>
</tr>
<tr>
<td>Tabar</td>
<td>gam</td>
<td>‘a shellfish’ (possibly from Tok Pisin gam ‘baler shell, large cowry shells’)</td>
</tr>
<tr>
<td>Tangga</td>
<td>gem</td>
<td>‘a bivalve, possibly a small Toigans’</td>
</tr>
</tbody>
</table>

cf. also:

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mussau</td>
<td>kame-kame</td>
<td>‘bait’</td>
</tr>
<tr>
<td>Manam</td>
<td>gam</td>
<td>‘squid’</td>
</tr>
</tbody>
</table>
The following term may have referred both to a bivalve shellfish and to spoons or graters made from its shell. Only a single WOc reflex has been noted. The Niuatoputapu reflex points to PPn *tuʔuai, with glottal stop, whereas the Tongan reflex points to *tuai. Those Polynesian forms that refer only to coconut grater may have spread by borrowing.

POc *tu(qu)asi ‘bivalve taxon, probably ark or cockle shell; possibly also grater or spoon made from this’

NNG: Mangap tuai ‘shellfish type, shell used for scraping root vegetables’

PCP *tu(qu)aði ‘bivalve taxon, probably ark or cockle shell; possibly also grater or spoon made from this’

Fij: Bauan tuasa ‘a bivalve, probably Arca sp.’ (final -a irregular)
Fij: Wayan tuai ‘ark shell, Anadara sp. (Arcidae)’
Pn: Tongan tuai ‘k.o. shellfish’
Pn: Niuatoputapu tuʔusi ‘a cockle, Laevicardium biradiata (Cardiidae)’
Pn: Samoan tuai ‘coconut grater’
Pn: Rennellese tuai ‘spoon or grater, formerly made of shell’ (for †tuʔuai)
Pn: Rarotongan tuai ‘coconut grater’

4.3.9 Bivalve families lacking definite POc reconstructions

There are several prominent families of bivalves for which no definite POc names can be reconstructed. These include scallops (Pectinidae), thorny oysters (Spondylidae), jewelboxes (Chamidae), tellins (Tellinidae), sanguins (Garidae), wedge shells (Donacidae), venus shells (Veneridae), and olives (Olividae).

4.3.10 Generic term for bivalves

Some contemporary languages have a generic covering all or most bivalves. This is often a polysemous term, which also refers to an important specific taxon. For example, the Bauan generic kai is also the term for cockles, Wayan tavē is also the term for tellins and sanguins. In several Polynesian languages reflexes of PPn *pipi, probably originally referring chiefly to cockles, has become a generic for a wide range of bivalves (§4.3.2).

4.4 Polyplacophora: chitons

Chitons are flattened, slug-like molluscs, most species covered with eight shingle-like plates. They feed on algae. Chitons are usually represented in Oceanic languages by a uninomial generic (e.g. Gedaged dabag) and some languages also have several binomials naming specific kinds. There is a well-supported PEOc reconstruction but there are no certain cognates in WOc.

PEOc *tadruku ‘generic for chitons’

SES: Gela tadugu ‘generic for chitons’ (Foale)
Fij: Bauan tadruku ‘chiton’
Fij: Wayan tadruku ‘chiton’
cf. also:

MM: Marovo *tatadu ‘generic for chitons’

In PPn *mama replaced *tadruku as the generic for chitons. PPn *mama is probably cognate with Southeast Solomonic *mama, referring to a kind of anemone or jellyfish (see §6.3).

PPn *mama ‘chiton’

Pn: Tongan *mama ‘seaslug’
Pn: Niuean *mama ‘various slug-like molluscs on reef, probably chiton family’
Pn: Tikopia *mama ‘chiton’
Pn: Marquesan *mama ‘Chiton magnificus’

4.5 A term for shellfish in general

Did POc speakers have a name for shellfish (shelled molluscs) in general? As noted in section 1, POc had a broad collective term, *pinayoda, denoting ‘marine invertebrates, sea animals other than fish gathered on the reef’. In a few languages the reflex has become a general term for bivalves and gastropods, sometimes also including sea urchins, e.g. Samoan *fijota ‘generic for shelled molluscs and other invertebrates’, Tokelauan *fijota ‘bivalves, gastropods and sea urchins’.

A term specifically denoting all and only shellfish is present in some Oceanic languages. For example, Foale (1998) reports that Gela (SES) vănuda is normally used as generic for molluscs but can be extended to include crustaceans and echinoderms. Lau (SES) has a non-cognate form with similar function: karoyo (1) ‘shelled mollusc, marine or land’, (2) ‘any invertebrate collected on reef at low tide: shellfish, crabs, squids’, as does Niuean fua ‘shellfish and echinoderms’. Motu (PT) has bisisi ‘general name for all shellfish’ and Takia (NNG) has sisei ‘generic for all varieties of shells’. Akimichi and Sakiyama (1991) report that Pen-chal (Adm) *mweil has two senses: (1) ‘shellfish’, (2) ‘shellfish, sea urchins and sea cucumbers’ and that in nearby Lenkau the cognate term *mweil also has two senses: (1) ‘shellfish’ and (2) ‘shellfish, cephalopods and sea urchins and sea cucumbers’. We can conclude that POc may well have had a general term for shellfish. However, in the absence of a widespread cognate set no reconstruction can be made.

4.6 Cephalopoda: octopus, squid, nautilus

The cephalopods include (1) the octopus and argonaut group, with eight tentacles, (2) the squid and spirula group, with ten, and (3) the chambered nautilus, which inhabits the deep sea and is rarely encountered alive. Groups (1) and (2) are valued food sources.

4.6.1 Octopus

Several species of octopus occur in the Pacific, two common ones being Octopus cyanea, the day octopus or common reef octopus, and the smaller O. oinatus, the night octopus. Some Oceanic languages name several different taxa by size, shape and habits. There is a widely- reflected generic going back to PAn.
Aquatic invertebrates

4.6.2 Squid and cuttlefish

Squids have 10 arms and a thin, plastic-like internal shell, which in the cuttlefish (*Sepia* spp.) takes the form of a flat rigid bone. Several squid and cuttlefish species occur in Pacific shallow waters, ranging in size from just a few cm to quite large.

POc had at least two terms for squid/cuttlefish taxa: *nusa* (with doublet *nus*) and *m"anagi* (with doublet *m"am"agi*).

nusa and *nus* seem to have referred to small squid and small cuttlefish. Blust (1986) reconstructs PMP *nus* ‘squid, cuttlefish’, based on forms such as Malay *nus* ‘generic for cephalopods’ and Roti *nus* ‘octopus, squid’, with a doublet *kanuqus*. *nusa* is reflected by the following:
POc *nusa (doublet *nus) ‘small reef squid (Loligo spp.) and smaller cuttlefish (Sepia spp.)’

Adm: Mussau nusa ‘small squid’
NNG: Bariai gusa ‘squid’
NNG: Gedaged nui ‘squid’
NNG: Manam nuri ‘squid’
PT: Motu nuse ‘small octopus’ (-s- irregular)
MM: Nankanai luso ‘cuttlefish’
MM: Bulu guta ‘squid’
MM: Maringe nuho ‘cuttlefish’
SES: Gela nuho ‘generic for reef squids, Sepioteuthis spp.’
SES: To’aba’ita nuta ‘cuttlefish sp., relatively small’
SES: Arosi nuto, nito ‘octopus, squid, smaller than monagi’
SES: Lau nuto ‘squid’
SV: Anejoñi nith ‘generic for squids’
NCaL: Fwâi niti ‘squid’
Mic: Puluwatese įit ‘cuttlefish’ (ŋ for *n irregular)

cf. also:
MM: Tolai (mara)nua ‘octopus sp.’

POc *nus has reflexes in Admiralties, North New Guinea and Central Pacific.

POc *nus ‘squid’

Adm: Titan ſu ‘squid’
NNG: Mangap nus ‘smaller squid type’
Fij: Rotuman nu ‘squid’
Fij: Bauan (kuita) nũ ‘squid’
Fij: Wayan (sulua) nũ ‘squid’ (sulua ‘octopus’)

PPn *ŋū ‘squid’ (POLLEX; ſ for †*n)

Pn: Tongan ſu(feke) ‘squid, cuttlefish’ (feke ‘octopus’)
Pn: Nukuoro ſu ‘squid’
Pn: Māori ſu ‘squid, Sepia apama’

*ŋu anagi (dbl. *ŋu am*agli) possibly referred to larger cuttlefish. This term has reflexes in WOc and in SES.

POc *ŋu anagi, *ŋu am*agli ‘larger cuttlefish, Sepia sp. or spp.’

Adm: Lenkau moman ‘cuttlefish’
Adm: Penchal m*am*ak ‘large red squid’
Adm: Titan m*uam*ak ‘cuttlefish’
NNG: Lamogai-Rauto wonek ‘squid’
NNG: Akolet e-vuñek ‘squid’
PT: Kilivila m*anagia ‘cuttlefish shell’
PT: Motu managi ‘large octopus with shell’
MM: Tolai managa ‘squid’ (*i > a by assimilation)
MM: Tolai munaga ‘cuttlefish’
SES: Gela managi ‘Sepia spp., cuttlefish’
Aquatic invertebrates

4.7 Parts of molluscs

Oceanic languages usually have names for various parts of molluscs including beak, tentacles, suckers of octopus, mantle, foot, proboscis, gonads, inners of shellfish, shell, valve and hinge of bivalves, etc. Only a few part names are reconstructable to the level of POc.

PEOc *buRu ‘octopus ink, sepia’ (Geraghty 1990)

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SES: Arosi</td>
<td>buru</td>
<td>‘cuttlefish ink’</td>
</tr>
<tr>
<td>SES: Sa’a</td>
<td>bulu</td>
<td>‘octopus ink’</td>
</tr>
<tr>
<td>Fij: Bauan</td>
<td>bū(loa)</td>
<td>‘octopus ink’ (loa ‘black’)</td>
</tr>
<tr>
<td>Fij: Wayan</td>
<td>bū(lō)</td>
<td>‘octopus ink; ink sac of octopus; poisonous fluid ejected by certain fish’ (lō ‘black’)</td>
</tr>
</tbody>
</table>

PMP *gaway ‘octopus tentacles’ (Zorc 1994)

POc *kawe ‘tentacle of a cephalopod’

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT: Motu</td>
<td>gave</td>
<td>‘tentacles of octopus’</td>
</tr>
<tr>
<td>SES: Ghari</td>
<td>gae</td>
<td>‘tentacles’ (loss of *v irregular)</td>
</tr>
<tr>
<td>SES: Sa’a</td>
<td>ka-kave(na)</td>
<td>‘tentacle’</td>
</tr>
<tr>
<td>SV: Ancejoǐn</td>
<td>n-yewe</td>
<td>‘tentacles of a cephalopod’</td>
</tr>
<tr>
<td>Fij: Bauan</td>
<td>kawe</td>
<td>‘leg of a crab’</td>
</tr>
<tr>
<td>Pn: Tongan</td>
<td>kave</td>
<td>‘tentacle of cuttlefish’</td>
</tr>
<tr>
<td>Pn: E Futunan</td>
<td>kave(ʔi)</td>
<td>‘tentacle’</td>
</tr>
<tr>
<td>Pn: Samoan</td>
<td>ʔave</td>
<td>‘tentacle of an octopus’</td>
</tr>
<tr>
<td>Pn: Hawaiian</td>
<td>ʔawe</td>
<td>‘tentacle of squid, etc.’</td>
</tr>
</tbody>
</table>

POc *mata ‘the operculum or trapdoor of certain gastropod spp.’ (cf. POc *mata ‘eye, opening, most important part or focal point of a thing’)

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Gedaged</td>
<td>mala(n)</td>
<td>‘operculum’</td>
</tr>
<tr>
<td>MM: Tolai</td>
<td>mata</td>
<td>‘operculum’</td>
</tr>
<tr>
<td>MM: Poe</td>
<td>(mangasi) mata(na)</td>
<td>‘operculum of turban shell’</td>
</tr>
<tr>
<td>SES: Lau</td>
<td>mā</td>
<td>‘operculum of a univalve’</td>
</tr>
<tr>
<td>NCV: Port Sandwich</td>
<td>mara(n)</td>
<td>‘operculum’</td>
</tr>
<tr>
<td>Fij: Wayan</td>
<td>mata</td>
<td>‘operculum’</td>
</tr>
</tbody>
</table>
As indicated in §4.1, POc speakers made a variety of artefacts from shell. Reconstructed terms include a number which refer both to the shell and animal and to the artefact made from the shell: *japi 'crescent breast ornament made from pearl shell, probably worn by high status men' (§4.3.5), *lala(k) 'rings or armlets of trochus shell' (§4.2.8), *tapuRiq 'trumpet, of triton shell' (§4.2.5), *buli(q) 'cowry shell sinkers’ (§4.2.7), *kaRi, *kasi and *kuku(r) ‘cutting and scraping instruments of bivalve shells’ (§4.3.2, §4.3.5). A few terms for artefacts sometimes or usually made from shell can be reconstructed, e.g. *kiRam ‘adze or axe (generic but applied to edge-ground axes made of tridacna shell), *kawil ‘fish-hook’, and *sabi-sabi ‘shell disk used as ear-ring (in Massim made of Chama pacifica) (see vol.1, p.104).

5 Echinodermata: sea urchins, sea cucumbers, starfish, etc.

The echinoderms include sea urchins (sea-eggs), sea cucumbers, starfish, brittle stars, feather stars and sand dollars. All possess tube feet and have a body pattern structured in fives. However, the various groups are very diverse in form.

5.1 Echinoidea: sea urchins

Sea urchins are represented in Oceania by numerous genera and species. These include long-spined echinoderms (esp. *ECHINOIDEA* and *DIADEMA* spp.), short-spined rock-boring urchins (*ECHINOMETRA* spp.) and slate pencil urchins, *HETEROCENTRUS MAMMILATUS*. Some sea urchins are eaten. It is seems that few Oceanic languages have a folk generic covering all sea urchins. In Wayan echinoderms are recognised as a covert taxon, sometimes referred to by a phrase meaning ‘spiky animals of the reef’.

5.1.1 *ECHINOMETRA* spp., rock-boring urchins

There is a POc reconstruction for short-spined rock-boring urchins, *ECHINOMETRA* spp., and possibly also *TRIPNEUSTES* spp.
5.1.2 Long-spined sea urchins

The following POc term probably referred to certain long-spined urchins, including *Diadema* spp., and possibly *Astropyga* and *Echinothrix* spp.

**POc *sala(n,ŋ)* ‘k.o. sea urchin with long black spines, probably *Diadema* sp. or spp.’

- **Adm:** Mussau *raraŋ(a)* ‘sea urchin’
- **NNG:** Manam *sala* ‘*Diadema setosum*, black long spined sea urchin’
- **NNG:** Kove *rarala* ‘sea urchin with long black spines’
- **PT:** Motu *dala* ‘sea urchin’
- **PT:** Kilivila *sanana* ‘sea urchin’
- **MM:** Halia *salana* ‘spiny sea shell’
- **SES:** Gela *hala* ‘an echinus, sea egg’
- **NCV:** Paamese *sal(eimas)* ‘*Diadema* sp., sea urchin with long black spines’

cf. also:

- **NNG:** Mangap *sailen* ‘sea urchin’

A second term, *gina*, is attributable to PEOc, having reflexes in S.E. Solomonic, North-Central Vanuatu and Central Pacific.

**PEOc *gina* ‘k.o. sea urchin with long spines’

- **SES:** Ghari *gine* ‘k.o. sea urchin with sharp spines’
- **NCV:** Raga *gine(hi)* ‘sea urchin sp.’
- **NCV:** Namakir *gin* ‘sea urchin sp.’
- **NCV:** Nguna *gida* ‘sea urchin sp.’ (*-d- for †*-n-* irregular)
- **Fij:** Bauan *gina* ‘k.o. sea urchin, *Echinus* sp.’
- **Fij:** Wayan *gina* ‘k.o. sea urchin with long yellow spines, probably *Echinometrix* spp’

**PPn *kina* ‘sea urchin’ (pollex)

- **Pn:** Niuean *kina* ‘sea urchin’
Pn: Samoan ʔina ‘k.o. sea urchin’
Pn: Māori kina ‘k.o. sea urchin with long sharp spines, Evechinus chloroticus’
Pn: Hawaiian ina ‘small rock-boring urchins, Echinometra spp.’

The term *wana, for a long-spined urchin, is tentatively attributable to PCP.

PCP *wana ‘sea urchin, probably Diadema sp. and/or Echinothrix spp.’

Fij: Rotuman vənə ‘k.o. sea urchin’ (possibly a Polynesian loan)

PPn *wana ‘sea urchin sp.’ (POLLEX)
Pn: Niuean vana ‘sea urchin, Echinothrix sp.’
Pn: E Futunan vana ‘sea urchin with long black spines’
Pn: Samoan vana ‘Diadema sp., needle-spined sea urchin’
Pn: Tokelauan vana ‘Diadema sp., black sea urchin with long brittle poisonous spikes’
Pn: Hawaiian wana ‘Echinothrix spp., long-spined urchins’

cf. also:
SV: Anejom ̃na-hen ‘k.o. sea urchin with small spikes’

5.2 Holothuroidea: sea cucumbers (bêche de mer, trepang, holothurians)

5.2.1 Terms for specific taxa

Firm-bodied sea cucumbers are relatively short and fat, with tube feet on the ventral surface. The thin-bodied, worm-like sea cucumbers lack tube feet. Some sea cucumbers are eaten by Oceanic communities. Tongan distinguishes some 18 sea cucumber taxa (Churchward 1959) and Wayan about 19 (Pawley and Sayaba 2003).

Blust (2002) reconstructs PWMP *(p,b)ula ‘sea cucumber’ but no Oceanic cognates have been noted. Only one POc term for a sea cucumber taxon has been reconstructed, *(b,p)ula.

POc *(p,b)ula ‘k.o. sea cucumber’

MM: Tabar pura ‘sea cucumber’
MM: Vitu bula ‘sea cucumber’
MM: Nehan pul ‘sea cucumber’
MM: Tangga pul ‘first element in compound terms for sea cucumbers’

NCV: Mwotlap na-vo-lvol ‘k.o. bêche-de-mer’
NCV: NE Ambae burie ‘k.o. bêche-de-mer’
NCV: Pt Sandwich buelo ‘k.o. bêche-de-mer’
NCV: Paamese vile(ŋā tomorū) ‘k.o. bêche-de-mer (?)’
NCV: S Efate na-p’lai (pako) ‘k.o. bêche-de-mer, Synapta maculata’
Fij: Rotuman hula ‘k.o. sea cucumber’
Fij: Bauan (drī) vula ‘k.o. sea-cucumber, chalk-fish’
Aquatic invertebrates

Fij: Wayan \textit{vula} ‘whitish sea cucumber, with nipple-like projections on upper body, possibly \textit{Bohadschia marmorata} or \textit{Holothuria fuscopunctata}’

cf. also:
SES: Gela \textit{vula} ‘generic for cushion starfishes’

The following three terms are attributable to PCP.

PCP \textit{*loli} ‘sea cucumber taxon’

\begin{itemize}
 \item Fij: Bauan \textit{loli} ‘a small sea cucumber, whose skin is scraped and used as a fish-poison’
 \item Fij: Wayan \textit{loli-loli} ‘\textit{Holothuria} sp. or spp., probably \textit{H. atra} and/or \textit{edulis}’
 \item Pn: Tongan \textit{loli} ‘k.o. sea cucumber, comparatively long and hard’
 \item Pn: Niuean \textit{loli} ‘generic for several kinds of sea cucumbers including \textit{Holothuria atra}’
 \item Pn: Samoan \textit{loli} ‘k.o. edible sea cucumber, \textit{Holothuria} sp.’
 \item Pn: Hawaiian \textit{loli} ‘generic for sea cucumbers’
\end{itemize}

PCP \textit{*tarasea} ‘sea cucumber taxon’

\begin{itemize}
 \item Fij: Bauan \textit{tarasea} ‘k.o. sea cucumber’
 \item Fij: Wayan \textit{tarasea} ‘sea cucumber with white speckles, possibly \textit{Actinopyga} sp. or \textit{Holothuria impatiens}, edible’
 \item Pn: Tongan \textit{telehea} ‘k.o. sea cucumber’
 \item Pn: Rennellese \textit{taŋasea} ‘k.o. reddish sea cucumber, edible’
\end{itemize}

cf. also:

\begin{itemize}
 \item Pn: Samoan \textit{sea} ‘k.o. sea cucumber’
\end{itemize}

The following term literally means ‘eight breasts’, in reference to the nipple-like lumps on the upper body of this animal.

PCP \textit{*ðuðu-walu} ‘k.o. sea cucumber, probably \textit{Holothuria} sp.’

\begin{itemize}
 \item Fij: Bauan \textit{suðu-walu} ‘sea cucumber with nipple-like spikes, possibly \textit{Holothuria pervicax}’
 \item Fij: Wayan \textit{ðuðu-walu} ‘sea cucumber with nipple-like spikes, possibly \textit{Holothuria pervicax}’
 \item Pn: Tongan \textit{huhu-valu} ‘k.o. sea slug [sea cucumber], similar to \textit{mokohunu}’
\end{itemize}

There is a POc reconstruction, \textit{*qampe}, whose meaning is indeterminate between ‘caterpillar’ and ‘k.o. sea cucumber’. All known WOc reflexes refer to sea cucumbers while all Eastern Oceanic reflexes refer to caterpillars (see ch.7, §17). When glossing the POc etymon one cannot, without external cognates, determine which of these two competing glosses was original, or indeed whether the POc form has two senses. In Wayan Fijian the English loan \textit{katavila} refers both to caterpillars and to a kind of sea cucumber with caterpillar-like spiky protrusions.
POc *qanupe ‘caterpillar or k.o. sea cucumber (indeterminate)’

PWOc *qanupe ‘sea cucumber, holothurian’

<table>
<thead>
<tr>
<th>NNG:</th>
<th>Kove</th>
<th>anuw(e)</th>
<th>‘trepang’</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT:</td>
<td>Dobu</td>
<td>kanue</td>
<td>‘beche de mer’</td>
</tr>
<tr>
<td>PT:</td>
<td>Kilivila</td>
<td>kariva</td>
<td>‘a white beche de mer’</td>
</tr>
<tr>
<td>PT:</td>
<td>Galea</td>
<td>anue</td>
<td>‘general term for all sea cucumbers’ (Lawrence Rutter pers.comm.)</td>
</tr>
<tr>
<td>MM:</td>
<td>Nakanai</td>
<td>haluve</td>
<td>‘trepang’</td>
</tr>
</tbody>
</table>

PEOc *qanupe ‘caterpillar’

<table>
<thead>
<tr>
<th>SES:</th>
<th>Ghari</th>
<th>nive</th>
<th>‘caterpillar’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fij:</td>
<td>Rotuman</td>
<td>anihä</td>
<td>‘caterpillar, maggot’</td>
</tr>
<tr>
<td>Fij:</td>
<td>Bauan</td>
<td>(b)anuve</td>
<td>‘caterpillar’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Tongan</td>
<td>?unufe</td>
<td>‘caterpillar (generic)’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Samoan</td>
<td>?anufe</td>
<td>‘worm, caterpillar’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Nanumea</td>
<td>anufe</td>
<td>‘caterpillar, worm, slug, etc.’</td>
</tr>
</tbody>
</table>

5.2.2 General term for sea cucumbers

Oceanic languages commonly have a general term for sea cucumbers, or more specifically for firm-bodied holothurids with tubular feet. (Long thin, soft-bodied holothurids lacking tubular feet are often classified as ‘worms’.) In the Fijian languages the generic term for firm-bodied holothurids is *drī*, in Marovo it is *puhaka*, in Nêlêmwa it is *imale* and in Hawaiian and Niuean it is *loli*. But in the absence of agreement across high-order subgroups no generic can be attributed to POc.

5.3 Asteroidea: sea stars and Ophiuroidea: starfish

Oceanic languages usually distinguish by name a number of starfish. The sole POc term for starfish reconstructed so far continues a PMP etymon.

PMP *saŋa-saŋa ‘starfish’ (Blust 1986)

POc *saŋa-saŋa ‘a starfish’ (lit. ‘branching’; cf. POc *saja ‘bifurcation, crotch’)

<table>
<thead>
<tr>
<th>Adm:</th>
<th>Lou</th>
<th>sagesay</th>
<th>‘starfish’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm:</td>
<td>Titan</td>
<td>caŋa-caŋ</td>
<td>‘generic for starfish’</td>
</tr>
<tr>
<td>Adm:</td>
<td>Nauna</td>
<td>caŋa-caŋ</td>
<td>‘starfish’</td>
</tr>
<tr>
<td>Adm:</td>
<td>Nyindrou</td>
<td>saka-sak</td>
<td>‘starfish’</td>
</tr>
<tr>
<td>Adm:</td>
<td>Lenkau</td>
<td>saŋu-saŋ</td>
<td>‘starfish’</td>
</tr>
<tr>
<td>PT:</td>
<td>Mengen (Poeng)</td>
<td>(kamva) saŋ-saŋ</td>
<td>‘starfish, forked’</td>
</tr>
</tbody>
</table>

cf. also:

Fij: Bauan | (ba)saga | (1) ‘branchy’, (2) ‘starfish’ |

Cushion stars, *Culcita* spp., are plump, round starfish with short arms. No POc lexical form is recoverable but it is noteworthy that Marovo and the Fijian languages agree in naming
cushion stars by expressions that mean ‘(possession) of a shark’; thus: Marovo beibeiani te kiso (‘lit. ‘shark’s drinking water’), Bauan kali ni qio, Wayan kali ni ikō (both lit. ‘shark’s pillow’). This suggests that the naming pattern is of POc antiquity, even though the forms are not cognate.

6 Cnidaria and Ctenophora: anemones, corals, jellyfish and hydroids

The phylum Cnidaria (formerly Coelenterata) consists of four classes of animals: Anthozoa (anemones and corals), Scyphozoa (jellyfish), Ctenosphora (comb jellyfish) and Hydrozoa (hydroids) which have nettle-like stinging hairs or tentacles used to capture prey.

There are two main classes of Anthozoa, (1) soft corals, colonial polyps having flexible skeletons that produce spicules of calcium carbonate, with feathery tentacles, and (2) stony corals and sea anemones, with tentacles in multiples of six. Stony corals have a hard skeleton. True anemones have no skeleton and a fleshy body, with circlets of tentacles, often brightly coloured, in contrast to colonial anemones which form a green mat on rocks and rubble.

6.1 Anemones

No POc term denoting anemones is reconstructable on present evidence. A problem is that few dictionaries of WOc languages provide a term for this group of animals. PROc *druman(e,i) ‘anemone’ has reflexes in North and Central Vanuatu, Fijian, Rotuman and Polynesian.

PROc *druman(e,i) ‘anemone’

NCV: Mota rumane ‘a sea anemone’
NCV: S Efate n-rimen ‘a sea anemone’
Fij: Rotuman nunami ‘anemone’ (metathesis)
Fij: Wayan dromani ‘generic for anemones’

PPh *rumane ‘sea anemone’ (Pollex)

Pn: Tongan āmana ‘anemone’
Pn: Samoan lumane ‘anemone’
Pn: W Futunan rumane ‘sea anemone’
Pn: Ifira-Mele (a)ruman ‘anemone’

*druman(e,i) has no certain antecedent in POc but may derive from POc *droman ‘leech’, with semantic change and addition of a final vowel. Note that the NCV reflexes of *droman show an initial high vowel and, in some cases, a labiovelar second consonant, pointing to PNCV *ruma ‘leech’.

POc *droman ‘leech’ (cf. ch.7, §21)

NNG: Manga doman
NNG: Adzera uaman
PT: Dobu domana
PT: Molima domana ‘mountain leech’
PT: Motu doma
PT: Nimoa doma
6.2 Corals

Corals are colonies of small polyps which secrete a hard skeleton, forming a base on which the colony grows. Soft corals include sea fans, sea whips, sea feathers and sea blades. Hard corals include brain coral, staghorn coral and branching corals. Stony corals form a boulder, with the polyps emerging only at night. The distinctive brain corals are formed by coralettes clustering so close that they form sinuous valleys. Shallow underwater corals secrete limestone skeletons. The limestone is useful for a variety of purposes, including rubble for building house foundations and floors, and for making plaster. A rough, porous white coral is used as an abrasive in woodwork.

Oceanic languages generally have a generic name for living corals of the branching type and often distinguish several kinds. The Arosi dictionary lists eight different coral taxa, including six kinds of branching coral. However, dictionaries and wordlists seldom provide clear zoological identifications.

PMP *lajay ‘coral’ (see vol. 2:102)
POc *laje ‘generic for branching corals’

<table>
<thead>
<tr>
<th>Language</th>
<th>Morpheme</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Gedaged</td>
<td>lad</td>
<td>‘k.o. coral, short and flat’</td>
</tr>
<tr>
<td>PT: Motu</td>
<td>lade</td>
<td>‘k.o. coral’</td>
</tr>
<tr>
<td>MM: Maringe</td>
<td>(glae)laje</td>
<td>‘coral’</td>
</tr>
<tr>
<td>SES: Gela</td>
<td>lade</td>
<td>‘generic for branching corals’</td>
</tr>
<tr>
<td>SES: Lau</td>
<td>lade</td>
<td>‘branching coral’</td>
</tr>
<tr>
<td>SES: Arosi</td>
<td>lade-lade</td>
<td>‘coral’</td>
</tr>
<tr>
<td></td>
<td>rade</td>
<td>‘coral’</td>
</tr>
<tr>
<td>NCV: Mota</td>
<td>las</td>
<td>live coral of branching kinds’</td>
</tr>
<tr>
<td>SV: Anejom</td>
<td>n-las</td>
<td>‘live coral on a reef’ (John Lynch, pers. comm.)</td>
</tr>
<tr>
<td>Fij: Rotuman</td>
<td>las</td>
<td>‘coral, lime’</td>
</tr>
<tr>
<td>Fij: Wayan</td>
<td>lase</td>
<td>‘generic for branching corals’</td>
</tr>
<tr>
<td>Fij: Bauan</td>
<td>lase</td>
<td>‘common branchy coral’</td>
</tr>
<tr>
<td>Pn: E Futunan</td>
<td>lase</td>
<td>‘lime’</td>
</tr>
</tbody>
</table>

PMP *buŋa ‘flower, blossom’, *buŋa ni batu ‘coral sponge’ (see vol. 2, p.103)
POc *buŋa ‘smooth round coral’

<table>
<thead>
<tr>
<th>Language</th>
<th>Morpheme</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Takia</td>
<td>buŋ</td>
<td>‘large white coral’</td>
</tr>
<tr>
<td>NNG: Gedaged</td>
<td>buŋ</td>
<td>‘a round coral growth’</td>
</tr>
<tr>
<td>MM: Nakai</td>
<td>buŋa</td>
<td>‘plate-shaped coral’</td>
</tr>
<tr>
<td>MM: Bola</td>
<td>buŋa</td>
<td>‘k.o. coral’</td>
</tr>
<tr>
<td>MM: Babatana</td>
<td>buŋa-na</td>
<td>‘large whitish stones found on the reef, calcified coral’</td>
</tr>
</tbody>
</table>
Aquatic invertebrates

NCV: Mota puŋa ‘k.o. coral (madrepore)’
Fij: Bauan vuŋa ‘a porous coral rock in the sea’

PnP *puŋa ‘coral rock’

Pn: Niuean puŋa ‘limestone, coral rock’ (puŋa-puŋa ‘limestone platform on the reef’)
Pn: Tongan (mata)puŋa ‘k.o. rather soft rock or stone, apparently a compact form of coral’
Pn: Samoan puŋa ‘k.o. coral, used for polishing and as weights in breadfruit storage pits’
Pn: Rennellese puŋa ‘general name for flat or round sharp coral’
Pn: Tikopia puŋa ‘marine rock, probably coral’
Pn: Māori puŋa ‘pumice’
Pn: Hawaiian puna ‘coral’

6.3 Scyphozoa, Ctenophora and Hydrozoa: true jellyfish, comb jellyfish and hydroids

True jellyfish (Scyphozoa) are members of the Cnidaria, whose tentacles face down. They represent the medusa or free-swimming phase of Scyphozoa, preceding their polyp phase. Ctenosphora, comb jellyfish, are colourless, oval blobs of jelly that float slowly. Hydrozoa are polyps which form fuzz-like colonies on rocks, after a brief phase as a free-swimming organism. This group includes fire corals, hydroids and siphonophores. Hydroids are feathery colonial organisms growing on the surface of coral.

Oceanic languages often distinguish several different kinds of jellyfish, including the spectacular Portuguese man o’ war or bluebottle (Physalia physalia) but no POc terms for any jellyfish taxa are recoverable. Two PnP terms for jellyfish are reconstructable. One, referring to the Portuguese man o’ war, is well supported and has a cognate in Bauan Fijian, where it refers to a hydroid.

PCP *bak(u)i ‘k.o. jellyfish or hydroid’
Fij: Bauan bakui ‘Hydra (colonial polyp)’
PnP *paki(paki) ‘Portuguese man o’ war (bluebottle), Physalia sp.’ (POLLEX gives *paki)
Pn: Tongan peki-peki ‘bluebottle, stinging jellyfish’
Pn: Niuean paki ‘Portuguese man o’ war, Physalia sp.’
Pn: East Uvean paki(a) ‘Portuguese man o’ war, Physalia sp.’
Pn: Hawaiian paki(malau) ‘Portuguese man o’ war, Physalia sp.’
Pn: Ifira-Mele paki-paki ‘jellyfish’
Pn: Tikopia pakipaki ‘Portuguese man o’ war, Physalia sp.’

Figure 4.10 Physalis sp., Portuguese man o’ war
PPn *kalukalu ‘k.o. jellyfish’

Pn: Tongan kolukalu ‘generic for certain kinds of jellyfish’
Pn: Samoan ʔaluʔalu ‘k.o. edible jellyfish’
Pn: Nanumea kalikali ‘jellyfish sp.’

cf. also:
Pn: Rennellese kaŋukaŋu ‘an insect’
Pn: Māori karukaru ‘spongy matter in a gourd, clotted blood, blood’

A Proto SE Solomonic term for anemone, or possibly jellyfish, is reconstructable which may be cognate with PPn *mama ‘chiton’ (see §4.4).

Proto SE Solomonic *mama ‘k.o. anemone or jellyfish’

SES: Gela mama(ndao) ‘sea creature, soft, no shell’
SES: Arosi mama(nongi) ‘a sea anemone; eaten’
SES: Lau mama-e-lade ‘small blue jellyfish on dead coral’ (Fox 1974)
mama-i-lade ‘sea anemone’ (Akimichi 1978)

The following PCP term may have denoted a kind of hydrozoa but the diversity of vague glosses given to its reflexes makes this uncertain.

PCP *bulewa ‘an organism growing on rocks, possibly encrusting brown rock coral’

Fij: Bauan bulewa ‘k.o. coral, clinging to rocks, eaten by fish’
Fij: Wayan bulewa ‘slimy brownish organism, growing on rocks and floating on sea, eaten by fish’

PPn *pulewa ‘marine substance/creature with stone-like or rough exterior’ (Pollex)

Pn: K’marangi purewe (1) ‘sandpaper-like growth on coral’, (2) ‘coral variety’
Pn: Uvean puleva ‘k.o. sea cucumber’
Pn: Mangarevan pureva (1) ‘roe of fish’, (2) ‘yellow scum floating on the sea from about 17-21 Feb. Eaten by fish’
Pn: Hawaiian pūlewa ‘k.o. stone, used as sinker’

7 Annelida: worms

Many annelid (segmented) worms live in tropical marine habitats. The two main groups are Oligochaeta (with few bristles) and Polychaeta (with many bristles). Marine worms are mainly Polychaeta and include fireworms, feather duster worms, sphyagetti worms, Christmas tree worms and bobbit or palolo worms. Reconstructions are available for just two marine worm taxa.

7.1 Sipunculus sp., sandworm

POc *ibo ‘k.o. sandworm, probably Sipunculus sp.’

MM: Roviana ibo ‘small seaworm, much used for bait’
Aquatic invertebrates

Mic: Kiribati
i**bo ‘a sandworm, Sipunculus indicus’
Fij: Bauan
i**bo ‘large edible seaworm’
Fij: Wayan
i**bo ‘k.o. sandworm, Sipunculus sp.’
Pn: Samoan
ipo ‘edible sandworm, Sipunculus sp.’
Pn: Nanumea
ipo ‘sp. of worm found on the beach’
cf. also:
MM: Teop
io**bo ‘seaworms’ (-o- unexpected)

Although this cognate set formally matches PMP *imba**w ‘marine mollusc sp.’ (Blust 1980a: 77) the latter reconstruction rests on cognates in two WMP languages which both refer to bivalves.

7.2 Fireworms (Polychaeta)

Fireworms, 5–18 cm long, bear many white bristles along their sides which can cause itching when touched. They bear a superficial resemblance to centipedes and millipedes. A well-supported PMP and POc reconstruction for ‘centipede’ exists, namely *qalipa**n, continued in PCP as *qaliva ‘millipede’. A separate term for ‘fireworm’, sometimes called ‘sea centipede’, is attributable to POc based on agreements between Saliba, a Papuan Tip language, and Polynesian witnesses. It appears that in PPn a single term, *we**l, was applied both to fireworms and to centipedes and furry millipedes. Glosses given to cognates in North-Central Vanuatu and Southeast Solomonic suggest that this range of reference may well have existed in POc.

POc *we**l (1) ‘fireworm, sea centipede’, (2) ‘? k.o. millipede or centipede’

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT: Saliba</td>
<td>yeli-yeli</td>
<td>‘fireworm, Pherecardia striata’</td>
</tr>
<tr>
<td>SES: Arosi</td>
<td>weli</td>
<td>‘black thickbodied millipede, Iulus sp, found on or near the coast’</td>
</tr>
<tr>
<td>NCV: Raga</td>
<td>weli, ueli</td>
<td>‘small iridescent centipede’</td>
</tr>
<tr>
<td>NCV: Uripiv</td>
<td>na-wel</td>
<td>‘palolo worm’</td>
</tr>
</tbody>
</table>

PPn *we**l (1) ‘centipede’, (2) ‘marine annelid like a centipede’ (cf. POLLEX)

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn: E Futunan</td>
<td>veli</td>
<td>‘a venomous creature found on the reef’</td>
</tr>
<tr>
<td>Pn: Tongan</td>
<td>veli</td>
<td>‘a hairy worm that lives mostly in water’</td>
</tr>
<tr>
<td>Pn: Samoan</td>
<td>veli</td>
<td>‘a fish that stings when touched’</td>
</tr>
<tr>
<td>Pn: Pukapukan</td>
<td>veli</td>
<td>‘a variety of sea centipede’</td>
</tr>
<tr>
<td>Pn: Tikopia</td>
<td>veri</td>
<td>‘marine animal on reef: long, segmented; stings painfully if trodden on’</td>
</tr>
<tr>
<td>Pn: Mangarevan</td>
<td>veli</td>
<td>‘marine annelid like a centipede’</td>
</tr>
<tr>
<td>Pn: Hawaiian</td>
<td>weli</td>
<td>‘a holothurian’</td>
</tr>
<tr>
<td>Pn: Māori</td>
<td>weri</td>
<td>‘centipede’</td>
</tr>
<tr>
<td>Pn: Tahitian</td>
<td>veri</td>
<td>‘centipede’</td>
</tr>
</tbody>
</table>
cf. also:

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT: Dobuan</td>
<td>pali-keke</td>
<td>‘millipede’</td>
</tr>
<tr>
<td>PT: Molima</td>
<td>pali-keke</td>
<td>‘poisonous millipede’</td>
</tr>
<tr>
<td>SES: Lau</td>
<td>fari-fari</td>
<td>‘scorpion’</td>
</tr>
</tbody>
</table>
7.3 Palolo worm (*Eunice viridis, aka *Palola viridis, *Leodis viridis*)

The palolo worm is distributed from Indonesia to the central Pacific. It burrows into coral. When spawning, the posterior end, filled with sperm and eggs, breaks off and swims to the surface. The annual spawning or ‘rise’, governed by the phase of the moon, occurs at regular times in the months October to December and at these times people scoop up the worms which are cooked and eaten.

A name for the palolo worm is attributable to PEOc, based on cognates shared by SES and NCV languages. The former reflect *odu, the latter *udu. The only known WOc cognate occurs in a Santa Isabel language, Maringe: *na-udu, where *na- reflects the POC common noun marker *na. The Maringe form may be a borrowing from a neighbouring SES language but it is noteworthy that its first vowel agrees with NCV rather than SES witnesses.

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>na-udu</td>
<td>‘Leodis viridis, palolo worm’</td>
</tr>
<tr>
<td>PEOc</td>
<td>*(o,u)du</td>
<td>‘Leodis viridis, palolo worm’</td>
</tr>
<tr>
<td>Proto SE</td>
<td>*odu</td>
<td>‘Leodis viridis, palolo worm’</td>
</tr>
<tr>
<td>SES</td>
<td>Gela</td>
<td>odu</td>
</tr>
<tr>
<td>SES</td>
<td>Ghari</td>
<td>odu</td>
</tr>
<tr>
<td>SES</td>
<td>Arosi</td>
<td>ogu, oku</td>
</tr>
<tr>
<td>SES</td>
<td>Lau</td>
<td>ʔodu, ʔogu</td>
</tr>
<tr>
<td>SES</td>
<td>Sa’a</td>
<td>oku</td>
</tr>
<tr>
<td>SES</td>
<td>’Are’are</td>
<td>ʔodu, ʔoku</td>
</tr>
<tr>
<td>PNCV</td>
<td>*udu</td>
<td>‘Eunice, palolo worm’ (Clark 2009)</td>
</tr>
<tr>
<td>NCV</td>
<td>Mota</td>
<td>un</td>
</tr>
<tr>
<td>NCV</td>
<td>Mwotlap</td>
<td>n-in</td>
</tr>
<tr>
<td>NCV</td>
<td>Raga</td>
<td>udu</td>
</tr>
<tr>
<td>NCV</td>
<td>Big Nambas</td>
<td>n-ud</td>
</tr>
<tr>
<td>NCV</td>
<td>Neve’ei</td>
<td>nu-wud</td>
</tr>
</tbody>
</table>

A separate term is reconstructable for PCP, with reflexes in Fijian and Polynesian languages.

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCP</td>
<td>*balolo</td>
<td>(1) ‘Leodis viridis, palolo worm’, (2) ‘name of the months when this worm rises’</td>
</tr>
<tr>
<td>Fij</td>
<td>Bauan</td>
<td>balolo</td>
</tr>
<tr>
<td>Fij</td>
<td>Wayan</td>
<td>balolo</td>
</tr>
<tr>
<td>PPn</td>
<td>*palolo</td>
<td>(1) ‘palolo worm’, (2) ‘name of the months when this rises’</td>
</tr>
<tr>
<td>Pn</td>
<td>Tongan</td>
<td>palolo</td>
</tr>
<tr>
<td>Pn</td>
<td>Samoan</td>
<td>palolo</td>
</tr>
<tr>
<td>Pn</td>
<td>East Uvean</td>
<td>palolo</td>
</tr>
<tr>
<td>Pn</td>
<td>Ifira-Mele</td>
<td>paroro</td>
</tr>
</tbody>
</table>
8 Poriphera: sponges

Sponges are conspicuous inhabitants of coral reefs. They come in a variety of shapes and sizes, attaching themselves wherever they can find a space. Some Oceanic languages have a general term for sponges, e.g. Lau _losi_, lo-losi, Gela _loi-losi_, Roviana _puha_, Dobuan _balu_, Motu _puta_, Sa’a _hulo_, but no widespread cognate sets have been noted, other than the following from Polynesian languages.

PPn *oma ‘sponge’
- Pn: Tongan _oma_
- Pn: Niuean _omo(mi)_
- Pn: Samoan _omo(mi)_
- Pn: Tokelauan _oma_
- Pn: Marquesan _oma-oma_ ‘k.o. jellyfish’

9 What proportion of POc taxa have been reconstructed?

Leaving aside the collective term *pinayoda*, the number of fairly secure POc reconstructions for aquatic (including semi-aquatic) invertebrate taxa is 42, with a few additional tentative reconstructions at POc level and a number of other reconstructions attributable to PEOc or PWOc. Taking the Wayan figure of about 240 taxa as fairly typical of those Austronesian maritime communities which exploit fringing reefs and mangrove swamps, it follows that 42 is probably less than a fifth of the total number of aquatic taxa distinguished by POc speakers. The breakdown in Table 4.2, comparing Wayan with POc, indicates the distribution of the shortfalls across the main groups of aquatic invertebrates.

The relative paucity of POc reconstructions can be attributed in large part to gaps in the coverage provided by dictionaries of contemporary languages. Few dictionaries give anything like an exhaustive listing of terms for invertebrates. However, a pattern is discernable in the kinds of terms that can/cannot be reconstructed. One important category of terms almost completely missing from our reconstructions is binomials. A run through the list of reconstructions shows that all the POc terms are uninomials (unitary lexemes). By contrast, about a third of the Wayan names are binomials, including 40 of the 105 gastropod taxa, but only seven of the 35 bivalve taxa.

Why are uninomials more stable than binomials? Berlin (1992) argues that in folk taxonomies of wild animals and plants the most salient and well-marked categories for purposes of identification are folk generics (see ch.8, §1.2.3). Names of taxa at the level of folk generic are usually uninominals (e.g. English _owl, whale, oak, willow_) or idioms, e.g. _blackbird, she-oak, pussy willow_). A folk generic may have a number of folk specifics, which are perceived as closely related but distinct types. These are typically known by binomials, made up of a folk generic plus a descriptive modifier which refers to one or another distinguishing feature of the taxon – its characteristic habitat, colour, size, shape, etc., e.g. _barn owl, grass owl, sooty owl, hump-backed whale, blue whale_. Folk generics commonly fall under high-order taxa, particularly the type that Berlin calls a life-form, such as English _fish, bird, snake_, and _tree_. Sometimes levels between life-form and folk generic are distinguished and Berlin calls these intermediates.
Table 4.2 Terms for aquatic invertebrate groups known for Wayan and Proto Oceanic

<table>
<thead>
<tr>
<th>Group</th>
<th>Wayan</th>
<th>POc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crustaceans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lobsters</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>prawns/shrimps</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>crabs (Brachyura)</td>
<td>33</td>
<td>7</td>
</tr>
<tr>
<td>crabs (Anomura)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Cirripedia</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>subtotal</td>
<td>48</td>
<td>13</td>
</tr>
<tr>
<td>Molluscs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gastropods</td>
<td>105</td>
<td>7</td>
</tr>
<tr>
<td>bivalves</td>
<td>35</td>
<td>10</td>
</tr>
<tr>
<td>chitons</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>cephalopods</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>subtotal</td>
<td>148</td>
<td>20</td>
</tr>
<tr>
<td>Echinoderms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sea cucumbers</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>sea urchins</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>starfish, brittle starfish</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>subtotal</td>
<td>31</td>
<td>4</td>
</tr>
<tr>
<td>Cnidaria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>corals and anemones</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>jellyfish</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>subtotal</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>Worms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>245</td>
<td>42</td>
</tr>
</tbody>
</table>
The POc terms for aquatic invertebrates that have survived are exclusively generics of some sort, either folk generics or high-order generics. The modifiers that distinguish folk specifics have not been stable. There are, perhaps, several reasons why modifiers are unstable. One is the variability of local species. Although the same orders, families and genera of common reef and shoreline animals are usually common to different regions of the tropical Pacific, the species are more variable from region to region. Migrants might be expected to apply new modifiers to newly encountered species if these were clearly distinct from those known in their former homeland. Another factor is the wide range of distinctive characteristics exhibited by certain species and genera of the same family, such as colour, shape, size and behaviour. Speakers can be expected from time to time to change the choice of the characteristic used to distinguish one taxon terminologically from its sister taxa. Finally, particular modifying terms may themselves be replaced by synonyms which come into favour, sometimes leading to loss or change of meaning in the original modifier.

Some groups of invertebrates show a much higher ratio of taxa reconstructed to POc level than others, when compared with Wayan totals. Among the crustaceans, the Anomura (hermit crabs) have a high ratio with 4/4, whereas the Brachyura (true crabs) score only 7/33. Prawns and shrimps score much lower (1/7), the sole POc term reconstructed being the generic for prawns and lobsters. Sea cucumbers and sea urchins also show a very low ratio: three POc reconstructions compared with 27 taxa distinguished in Wayan. The cephalopods (3/4) have by far the highest ratios among the molluscs. The bivalves (10/35) score much higher than the gastropods (7/105), a difference not solely attributable to the fact that binomials make up 40 of the 105 Wayan gastropod names but only 7 of the 35 bivalve names.

These ratios can be taken as a very rough measure of how persistent POc names have been for particular invertebrate groups: a high score for POc indicates a high retention rate of terms in daughter languages, a low score the converse. Very likely there is a correlation between how persistent a term is, and how salient or important the referent is to members of the speech community. Of course, a creature can be salient for any of a number of reasons: economic importance, large size, unusual appearance, being dangerous, and so on. Closer study of such matters must be left for another occasion.
5 Mammals, reptiles, amphibians

MEREDITH OSMOND AND ANDREW PAWLEY

1 Introduction

This chapter is concerned with the Proto Oceanic lexicon for three groups of vertebrates: mammals, reptiles and amphibians. Birds and fish each have a chapter to themselves. Attempts to reconstruct POc names for land vertebrates face a number of difficulties. The most fundamental of these relate to discontinuities in the fauna that reflect long-established ocean gaps. Most mammal and reptile species, of course, live on land and cannot cross large ocean gaps. As a consequence cognate sets for certain animal taxa have highly restricted distributions. This is especially true of mammals.

A major zoogeographical boundary divides the mammals native to the Austronesian-speaking world. The Wallace Line, which runs north–south through the Indo-Malaysian Archipelago, separating Sumatra, Borneo, Java and Bali from islands to the east, marks (among other things) the westernmost limits of marsupial mammals. West of this boundary only placentals occur. The native land mammals that would have been familiar to speakers of Proto Oceanic, living in the Bismarck Archipelago, were almost entirely different from those known to their ancestors in the Proto Malayo-Polynesian homeland, and from those found in Remote Oceania, where most of the best-described Oceanic languages are now spoken.

East of the Wallace Line there is a region of the Indo-Malaysian Archipelago, Wallacea, where relatively few land mammals occur but there is some overlap between placentals and marsupials. Lydekker’s Line forms the eastern boundary of Wallacea. It separates the Australia-New Guinea faunal zone, home to a rich marsupial fauna, from the islands of eastern Indonesia: Sulawesi, Lombok, Flores, Timor, and the Moluccas. Only bats and rodents are common to both the Asian and the Australia-New Guinea regions.

These faunal regions reflect geomorphological boundaries. The islands west of Wallace’s Line lie on the Sunda Shelf, a shallow continental shelf that was dry land at various times during the ice ages. As a consequence, the western islands of the Indo-Malaysian Archipelago

\[1\] Particular thanks are due to Malcolm Ross, Alexandre François and John Lynch for comments and additions to the data.

share a similar mammal fauna with the Southeast Asian mainland and, to a lesser extent, with the Philippines and Taiwan. However, a deep trench separates Bali from Lombok, and few Asian mammal species were able to cross this. Similarly, during parts of the ice ages Australia and New Guinea formed a single land mass, Sahul (also known as Greater Australia or Meganesia), but were always separated from the Moluccas and Timor by deep water. Also part of Sahul were the Aru Islands southwest of New Guinea, but not the Kei Islands. Off the Bird’s Head, the West Papuan islands of Batanta, Gebe, Waigeo, Salawati and Misool (Mysol) were included, as were the islands of Cenderawasih Bay (Biak, Yapen, Numfoor) and the islands of the north coast shelf (Kairiru, Manam, Karkar, Bagabag). At the south end of New Guinea the D’Entrecasteaux Group, Louisiade Archipelago, Woodlark Island and the Trobriands were all part of the mainland. However, New Britain, New Ireland, the Solomons and the Admiralties were still separated from the New Guinea mainland and each other.

Robert Blust (1982, 2002, 2009) has demonstrated the relevance of the Wallace Line to the subgrouping of Austronesian languages. In the most generally accepted subgrouping of
Map 6 Island Southeast Asia and Northwest Melanesia: island names
Austronesian languages, all the Austronesian languages of New Guinea fall into a lower order group, namely Eastern Malayo-Polynesian. Blust writes

Since placental mammals are not native to areas east of the Wallace Line, PAN and PMP must have been spoken west of that boundary. In crossing the Wallace Line [Austronesian] speakers would have encountered marsupials for the first time. If this happened through separate migrations into eastern Indonesia and the western Pacific there would be no basis for expecting that the terms for marsupial mammals would be cognate, since they would have been independently invented (or borrowed) at different times and in different places. As it happens, however, many languages of eastern Indonesia and the Pacific reflect *kandoRa ‘cuscus’ and *mansar/manser ‘bandicoot/marsupial rat’ which could not have been present in PAN or PMP.

… it is simplest to attribute these innovations to a single speech community that was ancestral to the [Central Malayo-Polynesian, South Halmahera-West New Guinea and Oceanic] languages (2009:715–716).

Further significant zoogeographical boundaries occur within Oceania. As one travels from the New Guinea mainland to the Bismarck Archipelago, then east down the main Solomons chain and on into Remote Oceania, the land masses become smaller and the island groups further apart, and the faunal range declines markedly. Relatively few species of terrestrial mammals are widely distributed across Oceania. A good many taxa are restricted to New Guinea or to New Guinea, New Britain and New Ireland.

Reptiles and amphibians are not subject to the same geographical division. Terms for both crocodile and turtle occur on both sides of the Wallace Line and are reconstructable to PAn. Crocodiles were formerly present in Taiwan (see footnote on p.251), and their present breeding range extends from south-west India and the Philippines to the Santa Cruz group. Lizards and snakes are capable of swimming short distances, and are readily transportable on floating logs or rafts of vegetation, but the number of species shrinks as land masses decline in size and island groups become more widely scattered.

In the most generally accepted subgrouping of Austronesian languages, all the Austronesian languages of New Guinea fall into a lower order group, namely Eastern Malayo-Polynesian. It follows that for kinds of mammals found only in New Guinea we will not find a Proto Austronesian (PAn) or Proto Malayo-Polynesian (PMP) reconstruction.

The mammals known to POC speakers may be divided into those indigenous to the Bismarck Archipelago and perhaps the north coast of New Guinea and those that humans brought to this region from island southeast Asia, namely the pig and dog and certain rat species.

2 Indigenous terrestrial mammals

2.1 Introduction

The indigenous mammal groups of Melanesia recorded in historic times are listed by Flannery (1995a:13–15). The main island of New Guinea has one tree kangaroo genus and four genera of wallabies. It has several species of bandicoot and a large variety of possums, including cuscuses, pygmy possums, ringtail possums and gliders. It has two genera of spiny ant-eaters

\[2\] For the location of the presumed POC homeland see vol.2, pp.17–34.
(monotremes). A less well known family is the Dasyuridae (formerly known as Phascogale), a family to which Tasmanian devils belong. The New Guinea dasyurids consist of quolls and antechinuses. The Bismarcks have only one bandicoot, one wallaby, and two species of phalanger. The Solomons have one phalanger. Murids and bats are represented by many different genera throughout New Guinea, the Bismarcks and the Solomons. In Vanuatu, New Caledonia, Fiji, Polynesia and Micronesia, the only native terrestrial mammals are bats. The range of a few indigenous mammals has been extended by human introductions.

2.2 Macropodidae

2.2.1 Wallabies (Genera Dorcopsis, Dorcopsulus, Macropus, Thylogale)

Four genera of wallabies occur in the New Guinea area. Dorcopsis is a genus of small rainforest wallabies with an extensive range round the perimeter of New Guinea. One species, the black dorcopsis, is common on mountainous Goodenough Island in the D’Entrecasteaux group. A second genus, Dorcopsulus, the smallest of all the Macropodids, lives in mountain forests. A third genus, Macropus, the large sandy or agile wallaby, is primarily a savanna woodland animal of the south-eastern New Guinea mainland, but is also found on many of the Trobriand and D’Entrecasteaux islands and around Merauke in West Papua. It is hunted by many coastal people, an activity no doubt contributing to its somewhat erratic distribution. Flannery mentions several reports of a large wallaby, possibly Macropus agilis, from southern New Ireland, which he has so far been unable to verify (1995a:82). The fourth genus, Thylogale, is the small scrub wallaby or pademelon. Its range includes the lowlands of northern New Guinea as far west as Jayapura, the hills round Port Moresby, the Huon Peninsula, New Britain and New Ireland. Bali-Vitu, spoken off the north-west coast of New Britain, has a term for wallaby. Lapita sites in the Arawe Islands, off the south-west coast of New Britain, have yielded bones of Thylogale browni as well as the cuscus Phalanger orientalis and the flightless cassowary, all introduced species.

One wallaby species is found on the islands west of the Bird’s Head, and others on Aru and on Kei. No wallabies are present in the Solomons or the Admiralties group. Although wallabies are now absent from the St Matthias group, bones of wallabies and a cuscus (Spilocuscus maculatus) have been recovered from Lapita middens excavated from the low flat coral island of Eloaue south-east of the high island of Mussau (Green 1979:37). Flannery and White state that the northern pademelon, Thylogale browni, was introduced into New Ireland some 7000 years ago, and that animals were possibly carried from there to the St Matthias group, although the species never became established there (Flannery 1995a:83).

The general pattern seems to be that different species adapt to particular areas, and are restricted to those areas. Although it may happen that two or three species are found within the territory familiar to a single language community, sources for each language usually give only one term for wallaby and it is likely that this is the generic.

A PWOC term for wallaby, *wakin, is well supported, with reflexes in North New Guinea, Papuan Tip and Meso-Melanesian languages. If terms in two non-Oceanic languages spoken on the West Papuan coast are cognate, then *wakin is reconstructable to PEMP and POc. The non-Oceanic terms, from Smits and Voorhoeve (1992:241), are glossed ‘kangaroo’, but the reference must be to small macropod species, popularly known as wallabies, as the larger species known as kangaroos are absent from New Guinea.
PEMP *wakin ‘wallaby’

SHWNG: Dusnew $waen$ ‘kangaroo’ [wallaby]
SHWNG: Mor $uʔana$ ‘kangaroo’ [wallaby]

POc *wakin ‘wallaby’

NNG: Lukep (Pono) ok ‘wallaby’
NNG: Mangap wok ‘wallaby’
NNG: Bing woy ‘wallaby’
NNG: Bilibil wei ‘wallaby’
NNG: Gedaged woi ‘kangaroo (generic), incl. Macropus, Dorcopsis’
PT: Kilivila $waila$ ‘wallaby’
PT: Iduna $wayi(tuli)$ ‘large grey wallaby’
PT: Gabadi $vai(aru)$ ‘wallaby, Macropus agilis’
PT: Hula $wayi$ ‘wallaby, Macropus agilis’
MM: Sursurunga wak ‘wallaby, includes Agile Wallaby, Forest Wallaby’
MM: Konomala $uakin$ ‘wallaby’
MM: Minigir $okin$ ‘wallaby’
MM: Tolai $okin$ ‘wallaby’
MM: Tolai (Nodup) $okini$ ‘wallaby’
MM: Label $uakin$ ‘wallaby’
MM: Siar $uakin$ ‘wallaby’

Several additional Papuan Tip terms support a PPT reconstruction *wagita ‘wallaby’

These appear to be compounds derived from *wakin + *ta(u), the second element possibly from POc/PPT *tau ‘person, body’.

PPT *wagita ‘wallaby’

PT: Diodio $vayita$ ‘wallaby’
PT: Bwaidoga $vayita$ ‘wallaby, Agile wallaby’
PT: Molima $wagilita$ ‘bandicoot-like animal that eats coconuts’
PT: Iamalele $vagitau$ ‘opossum’

Agreements between NNG and PT languages point to a PNGOc term, *makan. Reflexes in PT languages predictably add a final -i. Retention of final *n plus the added vowel is unexpected in Motu and Magori, and suggests borrowing from a SE Papuan source, perhaps a dialect of Suau. At least two Central Papuan languages use reflexes of *makan ‘wallaby’ as a generic for ‘fish’. Ross (1994:422) uses the example of the two Sinaugoro dialects, one inland (Taboro), the other coastal (Balawaia), to suggest that the term was in some places generalised to cover protein food, and then restricted in some coastal languages to the main protein food available, namely fish.

PNGOc *makan ‘wallaby, Macropus agilis’

NNG: Dami $maga$ ‘wallaby’
NNG: Tumlelo $mago$ ‘wallaby’
PT: Magori $magani$ ‘wallaby, M. agilis’
PT: Hula $mani$ ‘wallaby’
PT: Tawala $makan$ ‘wallaby type’
Figure 5.1 Dendrolagus dorianus, Doria’s tree kangaroo

PT: Taboro mayani ‘wallaby’
PT: Balawaia mayani ‘fish’
PT: Motu mayani ‘wallaby, M. agilis’
PT: W Mekeo maka ‘fish’
PT: Mekeo maʔi ‘wallaby, M. agilis’

cf. also:
NNG: Matukar maku(sik) ‘wallaby’ (-sik perhaps from POc *siki ‘small’)
NNG: Kairiru meik ‘wallaby’
NNG: Ali meik ‘wallaby’
PT: Kuni mau ‘wallaby, M. agilis’

2.2.2 Tree kangaroos (Genus Dendrolagus)

Within the Oceanic region, tree kangaroos (genus Dendrolagus) are restricted to mainland New Guinea and some close offshore islands. There are about eight species in the region. D. inustus, the grizzled tree kangaroo, is found in a wide band across northern New Guinea from the Bird’s Head Peninsula to the Torricelli Mountains. Dendrolagus scottae, Scott’s tree kangaroo, occurs in lowlands forests in Sandaun Province, Papua New Guinea. The other
species have distributions that make them less likely to be known to speakers of Oceanic languages. *D. matschiei*, the Huon tree kangaroo, with chestnut-red pelage and long yellow tail, is restricted to the heavily forested mountains of the Huon Peninsula. *D. dorianus*, Doria’s tree kangaroo, is a large brownish-black animal that lives in the cloud and moss forests of montane New Guinea. *D. goodfellowi* and the closely related *D. pulcherrimus*, the smallest species, are found in mid montane zones, *D. stellarum* in the highlands of west-central New Guinea, *Dendrolagus spadix*, in the south-western lowlands of Papua New Guinea and *D. mbaiso* in the highlands of west-central New Guinea.

To date, tree kangaroos are known outside the New Guinea mainland only on Umboi (presumably carried by humans from the nearby Huon Gulf area), Yapen and Salawati and Cape York, Australia (Van Deusen 1972:713, Flannery 1995a:126–143). There is no record of their existence in the Admiralties or the Solomons, although we have a term for tree kangaroo from Sursurunga, New Ireland, and another from Kaulong, New Britain, presumably because people there are aware that they exist elsewhere.

Fewer than twenty terms for *Dendrolagus* have been collected in total, all bar one from North New Guinea, the odd one out being Meso-Melanesian: Sursurunga *atal* ‘wallaby, includes Matschie’s tree kangaroo’. Of the NNG terms, one is from New Britain (Kaulong *elan* ‘possum, also tree wallaby’), two are from a Schouten Chain language on the north coast (*Sissano nep* and *dapar*, both apparently meaning ‘tree kangaroo’) and one is from Bing, a Vitiaz Strait language north of the Huon Peninsula (*dagviebiy* ‘tree kangaroo’). The remainder are from Huon Peninsula languages. No reconstructions are possible from these data other than a single low level term, Proto Buang *kekuŋ*.

2.3 Cuscuses (Phalangeridae)

The phalangerids include the cuscuses of the New Guinea region and the brushtail possums of Australia. They are large arboreal herbivores. Several species of cuscus are present in mainland New Guinea and in the D’Entrecasteaux, Louisiade and Trobriand Islands. Phalangers are common in the islands immediately to the west and southwest of New Guinea, including Sulawesi, Timor, Ambon, Seram, Buru and Kei. Groves (1984) notes that Ambon and Seram have a distinct variety of *Phalanger orientalis*, and concludes that it got there without human intervention.

In prehistoric times certain species were translocated by humans to Island Melanesia and the Moluccas. New Britain, New Ireland and the Solomons each have an introduced species. *Phalanger orientalis*, the northern common cuscus (aka grey cuscus) is an abundant lowland species native to New Guinea that about 20,000 years ago was taken to New Ireland, where it became an important prey species (Leavesley 2005). It was introduced to the Solomon Islands and also to Timor at some time in the last 7,000 years (Flannery and Wickler 1990, Glover 1986). A single species, *Spilocuscus maculatus*, is found in the Admiralties, including Manus, Wuvulu and Ninigo. It is commonly hunted on Manus.

There is a well supported POc reconstruction for ‘cuscus’, *k(ʷ)adroRa*. For a number of languages, sources give the gloss ‘possum’ to its reflexes (‘possum’ is often used loosely in Australian English to refer to any member of the superfamily Phalangeroidea), but this can only refer to a phalanger.
Figure 5.2 *Spilocuscus maculatus*, spotted cuscus

PCEMP *kandoRa ‘cuscus’ (Blust 2002)

CMP: Watubela *kadola* ‘cuscus’

POc *k(w)adroRa ‘phalanger, cuscus’ (Ross 1988: *kadroRa)

Adm: Mussau *aroa* ‘phalanger; cuscus’ (Smythe)

Adm: Bipi *koxa* ‘cuscus’ (metathesis)

Adm: Sori-Haregan *ohay* ‘cuscus’ (metathesis)

Adm: Penchal *kotay* ‘cuscus’ (metathesis)

Adm: Nauna *kocay* ‘cuscus’ (metathesis)

NNG: Mangap *kendēre* ‘opossum’

NNG: Gedaged *kodol* ‘k.o. phalanger with tan or greyish fur’

NNG: Manam *ʔodora* ‘cuscus’

PT: Dobu *kʷadoiya* ‘possum’

PT: Kilivila *kʷadoya* ‘cuscus’

PT: Muyuw *kʷadoy* ‘cuscus, possum’

MM: Tabar *adora* ‘cuscus’

MM: Lungga *yadora* ‘possum’

MM: Simbo *yadora* ‘possum’

MM: Maringe *kadara* ‘possum’
The following Southeast Solomonic terms reflect *kadora, with -r- for expected -l-. This is consistent with borrowing from Meso-Melanesian neighbours in the western Solomons.

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SES: Gela</td>
<td>kadora</td>
<td>‘cuscus’</td>
</tr>
<tr>
<td>SES: W G’canal</td>
<td>kadora</td>
<td>‘cuscus’</td>
</tr>
<tr>
<td>SES: Talise</td>
<td>kadora</td>
<td>‘cuscus’</td>
</tr>
<tr>
<td>SES: Malango</td>
<td>kadora</td>
<td>‘cuscus’</td>
</tr>
</tbody>
</table>

A second reconstruction is more weakly supported. It is well represented in the Cristobal-Malaitan branch of SE Solomonic but otherwise is reflected only in Gela, where the reflex refers to a juvenile cuscus, and in one Papuan Tip language.

POc *pu(dr,d,j)(o,u) ‘species of possum or cuscus’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT: Suau</td>
<td>hudu</td>
<td>‘striped possum’ (Flannery 1995b:203)</td>
</tr>
<tr>
<td>SES: Gela</td>
<td>vuto</td>
<td>‘a young cuscus’</td>
</tr>
<tr>
<td>SES: Owa</td>
<td>futu</td>
<td>‘possum’</td>
</tr>
<tr>
<td>SES: ’Are’are</td>
<td>huto</td>
<td>‘possum’</td>
</tr>
<tr>
<td>SES: Kahua</td>
<td>huto</td>
<td>‘cuscus’</td>
</tr>
<tr>
<td>SES: Longgu</td>
<td>vuto</td>
<td>‘cuscus’</td>
</tr>
<tr>
<td>SES: Lau</td>
<td>futo</td>
<td>‘cuscus’</td>
</tr>
<tr>
<td>SES: To’aba’ita</td>
<td>futa</td>
<td>‘cuscus’</td>
</tr>
<tr>
<td>SES: Sa’a</td>
<td>huto</td>
<td>‘cuscus, phalanger’</td>
</tr>
<tr>
<td>SES: Arosi</td>
<td>huto</td>
<td>‘cuscus’</td>
</tr>
</tbody>
</table>

2.4 Other possum families (Acrobatidae, Burramyidae, Petauridae, Pseudocheiridae)

Besides the cuscuses, four other families within the super-family Phalangeroidea are represented in New Guinea. They include little feather-tailed possums (Acrobatidae), pygmy possums (Burramyidae), sugar gliders, striped possums and long-fingered striped trioks (all Petauridae) and ringtail possums (Pseudocheiridae). The Acrobatidae and Burramyidae are restricted to the Australian-New Guinea land mass. Sugar gliders are also found in the D’Entrecasteaux, Louisiade and Trobriand Islands and New Britain, and outside the Oceanic region on Halmahera, Kei and Aru. They are absent from New Ireland, the Solomons and the Admiralties. The Pseudocheiridae are poor dispersers who prefer montane forests, and are confined to New Guinea and a few of the larger islands off the coast of western New Guinea. A PNGOc term for ‘sugar glider’ is supported by probable cognates shared by several Papuan Tip languages and at least one North New Guinea language. However, reflexes show a number of irregularities, and it is necessary to reconstruct doublets.

PNGOc *si(r,R)(a,e)si(r,R)(a,e), *di(r,R)(a,e)di(r,R)(a,e) ‘Petaurus breviceps, sugar glider’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Gedaged</td>
<td>salesale</td>
<td>‘sugar glider, P. breviceps’ (vowel metathesis)</td>
</tr>
<tr>
<td>NNG: Riwo</td>
<td>silesile</td>
<td>‘k.o. marsupial’</td>
</tr>
<tr>
<td>PT: Molima</td>
<td>selasela</td>
<td>‘sugar glider’</td>
</tr>
<tr>
<td>PT: Tawala</td>
<td>selasela</td>
<td>‘sugar glider’</td>
</tr>
<tr>
<td>PT: Wedau</td>
<td>sira-sira</td>
<td>‘squirrel’ [sugar glider]</td>
</tr>
</tbody>
</table>
2.5 Bandicoots (Peroryctidae)

New Guinea is home to several genera of the family Peroryctidae, the bandicoots. They include *Echymipera* (common or spiny bandicoot, long-nosed bandicoot), *Peroryctes* (giant bandicoot, Raffray’s bandicoot), and *Microperoryctes* (mouse bandicoot, striped bandicoot). The mouse bandicoot is found only in the west of West Papua but the other genera are distributed widely on mainland New Guinea. Bandicoots are not present in the Solomons. Spriggs (1997:54) writes that at Pamwak, in Manus, bandicoots appear suddenly in the archaeological record at about 13,000 BP and quickly become dominant in the faunal record. This suggests human introduction. To the west of New Guinea, outside the region occupied by speakers of Oceanic languages, bandicoot species are present on Seram, Yapen, Waigeo, Kei and Aru. Compilers of wordlists are often unfamiliar with bandicoots, describing them as ‘large bush rats’, ‘marsupial rats’ or similar.

A POc term for ‘bandicoot’, *mʷajar*, is well supported. There are reflexes in the Admiralties, North New Guinea, Papuan Tip and Meso-Melanesian subgroups referring to the bandicoot, and a probable reflexes in Ponapean and certain Fijian dialects with change of referent. External cognates are found in several CEMP languages of the Moluccas and islands to the south of the Bird’s Head of New Guinea, where the reference is often to cuscus rather than bandicoot.
Figure 5.4 *Microperoryctes longicauda*, long-tailed bandicoot

PCEMP *mansar* ‘bandicoot, marsupial rat’ (Blust 1982, 2002)

- CMP: Ujir (Aru) *meday* ‘cuscus’ (Antoinette Schapper, pers. comm.)
- CMP: Ambelau *mate* ‘bandicoot, marsupial rat’
- CMP: Kei *medar* ‘cuscus’
- CMP: Yamdena *mande* ‘cuscus’

POc *mʷajar* ‘bandicoot’

- Adm: Lou *mʷas* ‘bandicoot, marsupial rat’
- Adm: Nauna *mʷac* ‘bandicoot, marsupial rat’
- NNG: Mangap *mőzo* ‘bandicoot’
- NNG: Wogeo *mʷaja* ‘cuscus’
- NNG: Ali *maic* ‘bandicoot’
- PT: Sudest *mʷaja-mʷaja* ‘bandicoot’
- PT: Taboro *moda* ‘bandicoot’
- PT: Motu *mada* ‘k.o. bandicoot’
- MM: Meramera *maso* ‘bandicoot’
- MM: Tolai *mā(y)* ‘bandicoot’
- MM: Ramoaaina *mə(n)* ‘bandicoot’
- Mic: Ponapean *(keli)mʷet* ‘k.o. small bat’ (*keli-* ‘prefix signifying danger, connection with spirit world’; Blust 2001)
- Fij: Namosi *ŋʷəda* ‘k.o. large rat’ (Blust 1993)

The following are probably borrowed from a pre-Oceanic or early Oceanic language (Ross 1988:21):

- NNG: Megiar *madar* ‘bandicoot’
- NNG: Takia *madar* ‘bandicoot’
2.6 Marsupial carnivores (Dasyuridae)

The Dasyuridae are a family of carnivorous and insectivorous marsupial rodents, including various antechinus species and quolls and, most famously, the Tasmanian devil. Five genera of dasyurids are unique to New Guinea and three genera are common to New Guinea and Australia. Most dasyurids are small, weighing between 100–500 grams, although quolls of the New Guinea rainforest may exceed half a kilogram in weight (Flannery 1995b:83). Dasyurids may be either diurnal or nocturnal, and some antechinus species are partly arboreal. Many species are found in rainforest, often at middle to high altitudes. Few members of the family have been recorded from coastal Austronesian-speaking areas, although one antechinus is found on Normanby in the D’Entrecasteaux Group, and other dasyurids have been recorded from the Aru Islands. Flannery (1995b:84) comments that quolls will enter villages to catch rats, and are respected as fierce predators by most New Guineans familiar with them, who show great caution when handling them.

No Oceanic terms for dasyurids have been recorded. It is likely that compilers of wordlists have generally not been familiar with dasyurids as such, and in some cases have referred to them by a term such as ‘small marsupial rodent’.

2.7 Echidnas (Tachyglossidae)

Monotremes are represented in New Guinea by two genera of echidna: *Tachyglossus* (short-beaked echidna) and *Zaglossus* (long-beaked echidna). Both are regarded as rare. Flannery (1995b:67) suggests that hunting pressure has severely reduced their numbers. Very little is known about the distribution and natural history of *Tachyglossus*, but it has been recorded in the Markham valley and around Port Moresby, and from the island of Salawati off the Bird’s Head. *Zaglossus* has also been reported from both the western and eastern extremities of New Guinea, but is found only where population densities are low. A term for the echidna is present in only two languages in our sample (Sinaugoro *modagini* ‘anteater’ (cf. *moda* ‘bandicoot’) and Motu *miɣu* ‘short-beaked echidna’) and no reconstructions are possible.

2.8 Rats (Muridae)

Rats were a significant source of protein for many Oceanic communities in prehistoric times. The diversity of rat species diminishes sharply as one moves from New Guinea to the Bismarcks and Solomons. In New Guinea the murid fauna is ‘abundant and diverse, and for the size of the land mass, one of the most species-rich found anywhere on earth’ (Flannery 1995b:231). There are some 27 genera there, including *Hydromys*, *Leptomys*, *Mallomys*, *Melomys*, *Pogonomys*, *Uromys*, *Rattus* and *Stenomys*, although only a subset of these are present in any one region. Most New Guinea area species are endemic.

Nine murid species are endemic to the Solomons, including two that are extinct. Three species of *Solomys* and one of *Uromys* have evolved into large or very large arboreal rats, which are probably the evolutionary counterparts of the possums of Sahul. However, single
islands in the Solomons seldom have more than two or three species. No rat species were present in Remote Oceania before the advent of humans.

Five commensal rat species have been introduced to Oceania: Rattus rattus, R. exulans, R. tanezumi, R. norvegicus and Mus musculus. Rattus rattus, the black rat, and Mus musculus, the mouse were introduced into the Pacific within the past few centuries by European voyagers. The other three species were carried to Oceania in prehistoric times. R. exulans, the Pacific rat, is a commensal animal whose original range was in Asia, probably from Bangladesh to Vietnam (Groves 1984). It was carried to Oceania by humans several millenia ago and today is found widely in Melanesia, Polynesia and Micronesia. R. exulans has in recent years come to play an important role in tracing the directions of early human settlement of Oceania, especially Remote Oceania. Because it is an introduced animal and because it is common in archaeological sites, it provides sufficient prehistoric and contemporary populations for reliable genetic analysis (Matisoo-Smith and Robins 2004, Matisoo-Smith 2007). R. rattus occurs in Lapita sites from the Bismarcks to western Polynesia and was clearly associated with the initial Lapita dispersal into Remote Oceania. It was the only one of the commensal rats to reach Polynesia in ancient times.

Rattus praetor, the spiny rat, considerably larger than exulans, is native to New Guinea, where it is widespread north and south of the central ranges as far east as the Sepik-Ramu basin. It also occurs on offshore islands in the Bismarck Archipelago where it appears in archaeological assemblages dated to at least 13,000 years ago (White, Clark and Bedford, 2000) and in the Solomon Islands, where its introduction is probably of similar antiquity. R. praetor is now extinct in Remote Oceania but occurs in archaeological sites in Vanuatu and Fiji, though not in Polynesia or Micronesia.
A third commensal species, *Rattus tanezumi*, the Asian house rat, has a narrow distribution in Oceania, being securely attested only in archaeological sites in the Caroline Islands and the northern Marianas, dated to within the last 1,000 years. *R. tanezumi* is native to South Asia and Southeast Asia and its Oceanic distribution is consistent with transport direct from Island Southeast Asia to the Carolines, rather than via Melanesia.

Sources for Oceanic language seldom give precise identifications for rat terms. Glosses tend to be of the order of ‘bush rat’ or simply ‘kind of rat’, glosses which fail to capture genuine taxa in the language. One investigator (Futscher 1959) recorded at least 10 terms for kinds of rat in Tolai but the glosses simply say ‘mouse’.

POc *kasupe*, continuing PEMP *kanzupay*, has reflexes applied to one or more species of the genus *Rattus*, rats living in and around human settlements. Reflexes in Cristobal-Malaitan and Vanuatu languages preserve initial syllable *-a-. Those in Western Oceanic and Guadalcanal languages and in Western Fijian show initial *u-. These may represent several independent cases where the first vowel assimilated to the following *u*. However, the assimilation is so widespread it is reasonable to reconstruct a POc doublet, *kusupe*.

PCEMP *kanzupay ‘rat’ (Blust 1993)

POc *kasupe,* *kusupe* ‘rat taxon, probably *Rattus exulans* and possibly other small commensal sp. or spp.’.

Adm: Drehet	(n)osop	‘marmot’ (sic) (cf. p*ek ‘rat’)
Adm: Seimat	usuh	‘k.o. rat’
NNG: Malai	uzuv	‘rat’
NNG: Mangap	kuzi	‘rat/ mouse’
NNG: Malasanga	kui	‘rat’
NNG: Mindiri	kusue	‘rat’
NNG: Wogeo	kusive	‘rat’
NNG: Ulau-Suain	isup	‘bandicoot’
PT: Lala	uduve	‘rat’
PT: Ouma	ureve	‘rat’
MM: Tolai	kaupa	‘rat, mouse, Mus browni’
MM: Vitu	kuduve, kuvudo	‘rat’ (metathesis)
MM: Bali	kuzuveke	‘rat’ (final -ke unexpected)
MM: Bola	kuruve	‘rat’
MM: Madak	kisap	‘rat’
MM: Siar	kusup	‘rat’
MM: Kandas	kusupu	‘rat’
MM: Teop	kuho	‘rat’
MM: Varisi	kuzu	‘rat’
MM: Ririo	kuj	‘rat’
SES: W G’canal	yusuve	‘rat’
SES: Talise	yusuve	‘rat’
SES: Malango	husuve	‘rat’
SES: Lau	?asufe	‘rat’

3 The Bali term reflects POc †*kusupeq*. On non-Oceanic evidence *-q* was not present in the POc form, and the Bali reflex is a mystery.
Reflexes of the root PAn *-labaw ‘rat’ occur alone or in combination with a preposed CV-formative in various daughter languages, yielding a number of related terms including PAn *kulabaw and PMP *balabaw (Blust 2002:107).

As an independent form *labaw is traceable back to PMP, with Oceanic reflexes from the Te Motu group and, less certainly, the Malakula languages of Vanuatu.

PMP *labaw ‘rat, mouse’

WMP: Kagayanen ambaw ‘mouse, rat’
CMP: Manggarai lavo ‘rat’
CMP: Rotinese lafo ‘mouse, rat’

POc *la(b,p)(o,u) ‘rat taxon’
TM: Natūgu lopu ‘rat’ (Wurm 1969:69)
TM: Tanibili no-uvo (Tryon & Hackman)
PN: Pileni lepū (probable borrowing from TM)

cf. also the following terms for ‘rat’ from Malakula languages:

NCV: Neve’ei ne-labut
NCV: Nāti ne-lemput
NCV: Naman labēt
NCV: Nahavaq lambut

The latter forms exhibit a final -t which is unexpected in comparison with PMP *labaw. Tagbanawa (Kalamian), a Philippines language, has a similar word laput ‘rat’ but this is likely to be an accidental resemblance.

PMP *bualabaw has probable Oceanic reflexes in Admiralty and NNG languages. The expected POc form is *bala or *palap, and Bing palaf supports the latter. However, the final vowels of the Admiralties forms are unexplained. The Titan and Aua forms also show irregular loss of *-p-.

PMP *bualabaw ‘rat, mouse’ (ACD: *balabaw)

WMP: Malagasy vualavu ‘rat’ (Blust 1972a)
WMP: Ngaju Dayak belawaw ‘rat’ (Blust 1972a)
WMP: Uma flulehuʔ ‘mouse, rat’ (Tryon 1995, 03.630)
WMP: Buginese balawo ‘mouse, rat’
Mammals, reptiles, amphibians

CMP: Konjo *balaho* ‘mouse, rat’ (Tryon 1995, 03.630)
CMP: Buru *blafe(n)* ‘marsupial rat’ (Grimes, pers. comm.)

POc *p*alapo ‘rat taxon’

Adm: Titan *buléy* ‘rat’ (Blust 1996:43)
Adm: Wuvulu *balafa(i)* ‘rat’ (Blust 1993, 1996:43)
Adm: Aua *balā* ‘rat’ (Blust 1993)

NNG: Bing *palāf* ‘bush rat with very strong teeth’

PAn *kulabaw* ‘rat, mouse’, with reflexes in Taiwan (Paiwan *kulavaw* ‘mouse, rat’, Rukai *kolabaw* ‘rat in the fields’) as well as in MP languages is reconstructed by Blust (2002). A probable Oceanic reflex has been recorded in Bauan Fijian: *kalavo* ‘rat’. Amber (SHWNG) agrees with Bauan in having initial *ka* rather than *ku*, pointing to PEMP *kalabaw, POc *kalapo.

PAn *kulabaw* ‘rat, mouse’ (Blust 2002)

PEMP *kalabaw* ‘rat, mouse’

SHWNG: Amber *kalubu* ‘mouse’ (Smits)

POc *kalapo* ‘rat taxon’

Fij: Bauan *kalavo* ‘rat (*Rattus* spp.)’

Two distinct cognate sets are widespread in Polynesia. The terms are simply glossed ‘rat’ in the sources, unless otherwise noted, but the proto-forms must all have referred to *Rattus exulans*.

PPn *kumā* ‘rat (pollex)

Pn: Tongan *kumā*
Pn: Niuean *kumā*
Pn: E Uvean *kumā*
Pn: Anutan *kumā*
Pn: Tikopia *kuma(ri)* (final -ri unexpected)
Pn: Marquesan *kuma-kuma*

The second set is confined to Nuclear Polynesian languages.

PNPn *kimoa* ‘rat, *R. exulans*’

Pn: Samoan *ʔimoa*
Pn: Tuvalu *kimoa*
Pn: Nukuoro *kimoo*
Pn: Ifira-Mele *kimoa*
Pn: Rennellese *kimoa*
Pn: W Uvean *kimoa*

Lincoln (2007) points to terms for ‘rat’ in various PT languages from Milne Bay Province that do not correspond regularly to *kimoa* but show more than a passing resemblance. The Milne Bay terms are from unpublished wordlists recorded by Pawley (1969).
2.9 Bats (Order: Chiroptera, Suborders Megachiroptera, Microchiroptera)

Bats form a very large order consisting of two suborders and at least six families (Flannery 1995b). The Megachiroptera include the fruit-sucking bats (flying foxes and fruit bats) and
bats which feed on nectar and pollen. Figure 5.6 shows the greater bare-backed fruit bat, *Dobsonia moluccensis* (aka *D. magna*). This species and others of the genus *Dobsonia* are widespread in New Guinea and Island Melanesia, as far east as the Solomons, as are other members of the family Pteropodidae (fruit-bats). The Microchiroptera include tube-nosed bats, sheathtail bats, horseshoe bats and leaf-nosed bats, typically insectivorous, although at least one genus preys on small fish (Flannery 1995b:455). Several species of Microchiroptera are recently described, and revision of the genera is ongoing.

Reflexes of PMP *paniki* ‘fruit bat, flying fox, *Pteropus* spp.’ occur in the Philippines and Indonesia, but have not been located in Oceanic languages. POc *bʷeka* is a well supported reconstruction. It has reflexes denoting ‘fruit bat’ in most major subgroups of Oceanic, an exception being Papuan Tip. In NCV languages *bʷeka* is generally lost but in a few languages the form is continued as the name for the barn owl, *Tyto alba*. For North New Guinea reflexes see under *mali-bʷeka* below.

POc *bʷeka* ‘flying fox, large fruit bat’

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm: Drehet</td>
<td>pʷek</td>
<td>‘rat’</td>
</tr>
<tr>
<td>Adm: Titan</td>
<td>pʷe</td>
<td>‘bat, flying fox’</td>
</tr>
<tr>
<td>MM: Bali</td>
<td>beya</td>
<td>‘flying fox’</td>
</tr>
<tr>
<td>MM: Vitu</td>
<td>beya</td>
<td>‘flying fox’</td>
</tr>
<tr>
<td>MM: Nakanai</td>
<td>beka</td>
<td>‘flying fox’</td>
</tr>
<tr>
<td>MM: Meramera</td>
<td>bea</td>
<td>‘flying fox’</td>
</tr>
<tr>
<td>MM: Sursurunga</td>
<td>bek</td>
<td>‘generic, fruit bat, flying fox’</td>
</tr>
<tr>
<td>MM: Patpatar</td>
<td>beka</td>
<td>‘flying fox’</td>
</tr>
<tr>
<td>NCV: Araki</td>
<td>peka</td>
<td>‘Tyto alba, barn owl’</td>
</tr>
<tr>
<td>NCV: Tangoa</td>
<td>beka</td>
<td>‘Tyto alba, barn owl’</td>
</tr>
<tr>
<td>NCal: Nemi</td>
<td>bʷek</td>
<td>‘flying fox’</td>
</tr>
<tr>
<td>NCal: Jawe</td>
<td>bʷek</td>
<td>‘bat, flying fox’</td>
</tr>
<tr>
<td>Mic: Kosraean</td>
<td>fak</td>
<td>‘bat’</td>
</tr>
<tr>
<td>Mic: Mokilese</td>
<td>pʷēk</td>
<td>‘bat’</td>
</tr>
<tr>
<td>Mic: Ponapean</td>
<td>pʷēk</td>
<td>‘bat’</td>
</tr>
<tr>
<td>Fij: Wayan</td>
<td>bekʷa</td>
<td>‘bat (generic)’</td>
</tr>
<tr>
<td>Fij: Bauan</td>
<td>beka</td>
<td>‘fruit bat’</td>
</tr>
<tr>
<td>Pn: Niuean</td>
<td>peka</td>
<td>‘flying fox, fruit bat’</td>
</tr>
<tr>
<td>Pn: Tongan</td>
<td>peka</td>
<td>‘bat, flying fox’</td>
</tr>
<tr>
<td>Pn: Rennellese</td>
<td>peka</td>
<td>‘flying fox: formerly important for teeth and food, and for the sport of snaring’</td>
</tr>
<tr>
<td>Pn: Samoan</td>
<td>peʔa</td>
<td>‘flying fox’</td>
</tr>
<tr>
<td>Pn: Tikopia</td>
<td>peka</td>
<td>‘fruit bat, both large and small’</td>
</tr>
<tr>
<td>Pn: Hawaiian</td>
<td>peʔa</td>
<td>‘bat’</td>
</tr>
</tbody>
</table>

A few Admiralties and North New Guinea languages reflect a complex form *mali-bʷeka*. The etymology of *mali-* is uncertain but it is most likely a modification of POc *manuk* ‘bird, bat’.
POc *mali-\-b\-eka ‘flying fox, large fruit bat’

Adm: Nyindrou balimek ‘large fruit bat’ (metathesis of two foot-initial consonants)
Adm: Drehet pelemik ‘bat/flying fox’
NNG: Vehes mebek ‘fruit bat’
NNG: Mapos Buang mali\-b\-ok ‘large fruit bat, flying fox’
cf. also:
Adm: Titan palimek ‘flying fox, fruit-eating bat’

The next reconstruction is also plainly a compound of *mali- and *bo\-ni ‘night’, reflecting the fact that bats are nocturnal. In one of the Motu forms and in Mwotlap a different qualifier has been substituted for the first morpheme, and in the Tarpia reflex that morpheme is missing.

POc *mali-bo\-ni ‘flying fox’

SJ: Tarpia boni ‘bat’ (Smits and Voorhoeve 1992:244)
NNG: Tami malimo\-ny
NNG: Wab malbo\-ny
NNG: Bing malbay-bo\-ny ‘flying fox (mid size)’
malbo\-ny ‘flying fox, fruit bat’
NNG: Manam malabo\-ny
PT: Suau (Duai) malibon
PT: Molima niboi (unexpected loss of first syllable)
PT: Motu maribo\-i ‘large fruit bat, flying fox’ (Oram n.d.) (for †maibo\-i)
(sisi)boi ‘small bat’ (sisi ‘small’)
PT: Gabadi (manu)bo\-i ‘flying fox’ (for †maiboni, possibly a folk etymology: manu < *manuk ‘bird’)
MM: Tiang malabo\-y
MM: Nalik malbu\-y
NCV: Mwotlap ilb'\-o\-ny (1) ‘a small dark bat’, (2) ‘Vanikoro swift’ (unexpected loss of initial nasal)
cf. the following, which are glossed ‘flying fox’ and appear to reflect *mali + *eba or *oba:
Adm: Mussau marieba ‘flying fox’ (-r- for †–l-)
PT: Ouma maiba
PT: Balawaia maioba
PT: Maopa maopa
PT: Hula maopa

In many Oceanic languages small insectivorous bats (Microchiroptera) have a separate name from fruit bats. It is uncertain whether this was also the case in POc. In parts of Polynesia reflexes of *peka-peka are given both to a small bat and to a swift whose behaviour, form and habitat resemble superficially that of insectivorous, cave-dwelling bats. The Fijian languages have cognate reduplicated forms referring only to small cave bats. Reduplication is commonly used to show diminutives in some Oceanic languages (see also vol.3, pp.50–51).
Mammals, reptiles, amphibians

PCP *beka-beka* ‘small insectivorous, cave-dwelling bat’

Fij: Wayan *beke*a-*beka*a ‘a small insectivorous cave-dwelling bat’
Fij: Bauan *beke*-beka ‘insect-eating bat’

PPn *peka-peka* (1) ‘small bat’, (2) ‘white-rumped swiftlet’

Pn: Niuean peka-peka ‘bird, white-rumped swiftlet, nests in caves’
Pn: Tongan peke-peka ‘swallow’
Pn: E Futunan peka-peka ‘small bat’
Pn: E Uvean peka-peka ‘k.o. small swallow’
Pn: Rennellese peka-peka ‘glossy swiftlet’
Pn: Samoan peʔa-peʔa ‘white-rumped swiftlet’
Pn: Māori peka-peka ‘bat’
Pn: Hawaiian (ʔo)peʔa-peʔa ‘bat’

An unrelated Mwotlap term, *ilikwōŋ* (b’wōŋ from POc *bougi* ‘night’) refers to the same two creatures, a small dark bat and a Vanikoro swift, a bird with wholly dark plumage (A. François, pers. comm.), while Kwamera (SV) has *kiri* ‘flying fox’ and *kiri-kapou* ‘glossy swiftlet’.

3 Introduced terrestrial mammals

3.1 Pigs (genus *Sus*, family Suidae)

Island Southeast Asia is the centre of genetic diversity of the genus *Sus*, containing six of the 10 generally recognised species: *S. verrucosus* (the Javan warty pig), *S. barbatus* (the bearded pig of Malaysia, Sumatra and Borneo with a subspecies in Palawan), *S. celebensis* (the Sulawesi warty pig), *S. cebifrons* (the Visayan warty pig), *S. philippensis* (the Philippines warty pig) and *S. scrofa* (the common wild pig, endemic to Europe, North Africa, parts of Asia and parts of the Indo-Malaysian archipelago). No pig species is native to New Guinea or any part of Oceania.

Most pig species have never been domesticated. The most important exception is *Sus scrofa*, which was domesticated in the Middle East and in China around 10,000 years ago and subsequently introduced to many regions. A wild variety of this species, *Sus scrofa vittatus*, the banded pig, inhabits Sundaland from the Malay Peninsula to Sumatra, Java and Bali. It is also present east of Wallace’s Line on Sumbawa and Lombok, possibly due to human transportation.

Sus celebensis occurs domesticated only in Timor and Roti. Groves (1984) argues that its natural range is Sulawesi and offshore islands, and that its presence on Timor, Roti, Flores, Halmahera (and even more surprisingly, on Simalue, west of Sumatra) is the result of human agency. A similar conclusion, based on genetic evidence, is drawn by Larson et al. (2007). Groves (1984:3) suggests that the wild and domestic pigs of New Guinea are a cross between the banded pig and the Sulawesi warty pig.

Pigs, domesticated and wild, appear to have been part of the Austronesian world since PAn times. A number of terms associated with pigs and pig husbandry can be reconstructed for PAn and PMP. In his *Austronesian Comparative Dictionary* (1995), Blust writes that
Although PAn *beRek evidently meant ‘domesticated pig’ PAn *babuy referred to pigs in general, with qualifications where needed.\(^4\) In other words, the glosses of *babuy and *beRek were not perfectly complementary, but partially overlapping. ... Reflexes of both *babuy and *beRek are found in Formosan and WMP, but only *babuy is reflected in CMP and only *beRek in Oceanic.

The history of the introduction of pigs into Oceania has been a matter of debate. Pig bones occur in early Lapita sites from the Bismarck Archipelago to the Reef Is. in the period 3300–3100 BP. A recent genetic study supports the view that although Lapita pigs reached Melanesia via Indonesia they ultimately stem from Vietnam or nearby parts of mainland Southeast Asia, rather than from Taiwan (Larson et al. 2007), but domestic pig bones dated to 4000 BP have been found in cultural deposits in the Philippines (Piper et al. 2009). Some archaeologists argue that the wild pigs of New Guinea are feral descendants of Lapita pigs. Others hold that pig teeth are present in New Guinea highland assemblages predating Lapita, although it has proved difficult to securely date these finds.

POc *boRok is continued in all the major subgroups of Near Oceania and in parts of Remote Oceania as far east as western Fiji. However, no reflexes are found in New Caledonia and the Loyalty Is., where pigs have been absent since initial settlement by Lapita peoples, or in eastern Fiji and Polynesia.

PAn *beRek ‘domesticated pig’ (ACD)

POc *boRok ‘pig, *Sus scrofa*’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm:</td>
<td>Seimat pou</td>
</tr>
<tr>
<td>Adm:</td>
<td>Lou puo</td>
</tr>
<tr>
<td>Adm:</td>
<td>Nyindrou bou</td>
</tr>
<tr>
<td>NNG:</td>
<td>Takia bor</td>
</tr>
<tr>
<td>NNG:</td>
<td>Manam boro</td>
</tr>
<tr>
<td>NNG:</td>
<td>Yabem boʔ</td>
</tr>
<tr>
<td>NNG:</td>
<td>Mumeng b"ok</td>
</tr>
<tr>
<td>PT:</td>
<td>Tubetube buluka</td>
</tr>
<tr>
<td>PT:</td>
<td>Kilivila buluk"a</td>
</tr>
<tr>
<td>PT:</td>
<td>Bwaidoga buluk"a</td>
</tr>
<tr>
<td>PT:</td>
<td>Gapapaiwa poro</td>
</tr>
<tr>
<td>PT:</td>
<td>Wedau poro</td>
</tr>
<tr>
<td>MM:</td>
<td>Bali boroko</td>
</tr>
<tr>
<td>MM:</td>
<td>Tabar boro</td>
</tr>
<tr>
<td>MM:</td>
<td>Nakanai bolo</td>
</tr>
<tr>
<td>MM:</td>
<td>Tolai boro(i)</td>
</tr>
<tr>
<td>MM:</td>
<td>Simbo boroyo</td>
</tr>
<tr>
<td>SES:</td>
<td>Gela bolo</td>
</tr>
<tr>
<td>SES:</td>
<td>Tolo bolo</td>
</tr>
</tbody>
</table>

PNCV *boe ‘pig, male pig’ (final -e unexpected)

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCV:</td>
<td>Mota p"oe ‘pig, male pig, barrow pig’</td>
</tr>
<tr>
<td>NCV:</td>
<td>Kiai poe</td>
</tr>
</tbody>
</table>

Reflexes of *boRok in many Solomons languages are irregular. Irregular loss of *R is exhibited in this term in most Cristobal-Malaitan languages, e.g. Longgu bo, Sa’a pō, Santa Ana bʷo, some Guadalcanal languages, e.g. Ghari bo, and many NW Solomonic languages, e.g. Roviana boko. North Malaitan languages show unexpected s as the medial consonant, as in Fataleka boso, suggesting borrowing from Santa Isabel languages, which typically show the same replacement.

POc *boRok is not retained in Polynesian languages, being replaced by PnPn *puaka. This appears to continue POc *b(o,u)kas(i), which has reflexes in PT, NCV and SV. Reflexes of both *boRok and *b(o,u)kas(i) persist in PT and NCV. It is not clear whether there was a meaning difference between the two terms.

POc *b(o,u)kas(i) ‘pig’

PT: Sudest voyaði ‘wild pig that dogs can’t kill’
PT: Dobu boʔas(a) ‘village pig’

POc *b(o,u)kas(i) ‘pig’

PT: Sudest voyaði ‘wild pig that dogs can’t kill’
PT: Dobu boʔas(a) ‘village pig’

PPOc *bukasi ‘pig (generic), and probably by default male pig, boar’ (John Lynch, pers. comm.)

NCV: Mota puɣas ‘to rear with food, tame by feeding’
NCV: Paamese vuasi ‘pig (generic)’
NCV: Nguna (n-)pʷokasi ‘meat, flesh’
SV: Lenakel pukas ‘pig’
SV: Kwamera pukah ‘pig’
SV: Anejom pikaθ ‘pig’

PnPn *puaka ‘pig’

Pn: Tongan puaka ‘pig’
Pn: Samoan puʔa ‘pig’
Pn: Tikopia puaka ‘pig’ (archaic)
Pn: Hawaiian puʔa ‘pig’

The following are all Polynesian loans.

PPOc *bʷasa ‘pig, possibly sow’

PPOc *bʷasa ‘pig, possibly sow’

NNG: Bilibil bas ‘pig’
PT: Ouma bura ‘pig’
MM: Patpatar pes ‘female pig’
3.2 Dogs (*Canis* sp.)

Dogs were brought by humans to Island Southeast Asia, Oceania and Australia from mainland SE Asia within the last few millennia. The pre-European dogs of Oceania and Australia did not bark, but rather howled.

PAn and PMP *asu* ‘dog’ is reflected in many languages of Taiwan, the Philippines, western Indonesia, the Lesser Sundas and much of the southern and central Moluccas, but to date is unattested in any Eastern Malayo-Polynesian language. As others (Hudson 1989, Lynch 1991, Donohue 1995) have discovered, names for ‘dog’ are notoriously variable in Oceanic languages. This variability is consonant with a hypothesis, first suggested by Andrew Sharp (1956), that on small remote islands in Oceania the dog lost much of the economic value it had in insular Southeast Asia, became a competitor for food, and was itself eaten to extinction in many locations and then reacquired from areas where it had managed to survive. Lynch (1991:427) suggests that the Polynesians reintroduced the dog to various parts of Island Melanesia in their back-migrations from the Polynesian Triangle, with variants of Polynesian terms for ‘dog’ appearing in Vanuatu, the Reefs and parts of the Solomons. Various Micronesian languages also appear to have borrowed from Polynesia.

It is unclear whether or not POC speakers had dogs. No dog remains have been found in early Western Lapita sites in the Bismarck archipelago. The earliest dog remains associated with the Oceanic dispersal are those found in late or post-Lapita assemblages in the Reef Is., dated to around 2600 BP (R. Green pers. comm.). No POC term for dog can be reconstructed with any confidence. A number of languages of Bougainville reflect a term reconstructable as *kasi*, but we hesitate to associate this term with PAn *asu* because the initial *k- is unexplained.

5 Blust (*ACD*) does note Ilocano *kahú* ‘dog’ from the northern Philippines, and Tontemboan *ka-asu* ‘canine com-
Proto North Bougainville *kasi ‘dog’

MM: Halia (Selau) kas
MM: Taiof kas
MM: Hahon kas
MM: Tinputz keh
MM: Teop kahi

cf. also:
MM: Solos kus
MM: Petats kus
SES: Longgu ?usu
SES: Sa’a ?usu

Donohue (1995:226) has identified forms resembling *kapuna that are present in Western Oceanic languages and in various languages of eastern Indonesia, both Austronesian and non-Austronesian. The Austronesian languages include Sangir kapuna (Sangiric, WMP), Geser kafuna (Seram, CMP) and Mor auna (WNG). He argues that ‘this (the presence of this term in eastern Indonesia), and the patterned distribution of the reflexes of *kapuna in Oceania point to an origin of the form in eastern Indonesia with spread to Oceania, and not the other way round.’

PWOc *kapuna ‘dog’

NNG: Sissano (Arop) aun
NNG: Uvol kaune
NNG: Kaiwa uvun
MM: Notsi kapuna
MM: Tabar kapune

Compare also the following which point to a very similar form in PNNG *gavun:6

PNNG *gavun ‘dog’

NNG: Tuam gavun
NNG: Malai gavun
NNG: Kilenge (na)yaune
NNG: Lukep (Pono) gaunu
NNG: Gedaged gaun

The following series offers some support for reconstructing PWOc *ka(u,w)ak, but there is probably onomatopoeic influence.

6 Blust (2002:92) considers that the only serious candidate for a POc term for ‘dog’ is *gaun, which ‘is evidently onomatopoeic, and possibly a convergent innovation’. As reflexes of *gaun we assume he had in mind some of the forms assigned here to *kapuna, *gavun and possibly *kawak(a).
PWOc *ka(u,w)ak ‘dog’

NNG: Kove kawa, kauwa
NNG: Bariai kaua
PT: Kilivila kauk’a
PT: Muyuw awuk’u
MM: Bali kauaka
MM: Bola (Harua) kaua
MM: Lavongai kauek

cf. also:
MM: Torau kau-kau
MM: Mono-Alu ?au-?au
MM: Roviana ka-kau(la) ‘indigenous dog, gen. reddish brown. Always howls, never barks’

SES: Gela kau
SES: Birao kau
SES: Tolo kau
SES: Lengo kau

The two reflexes in the following set are too close geographically to exclude borrowing, possibly at post-POc dates.

PWOc (?) *paia ‘dog’

NNG: Mengen (Poeng) paia
MM: Nakanai paia
cf. also:
Adm: Mussau paua
Adm: Seimat paua
SES: W G’canal pai
SES: Ghari pai
SES: Malango pai

PPn *kuli ‘dog’ is well-attested but has no secure non-Polynesian cognates. All apparent cognates in languages of Melanesia and Micronesia are almost certainly borrowings from Polynesian sources. A sample of such borrowed forms, all glossed ‘dog’, is listed below. Although a term from Mota is included, Codrington and Palmer note in their 1896 dictionary that there were no dogs on Banks Islands at first contact.

NCV: Mota kurut
NCV: Paamese hul
NCV: Lewo kuli
NCV: Raga v$iriu
SV: Anejofn kuri
SV: Lenakel kuri
Mic: Kiribati kiri
 Mic: Marshallese kiriw
Mic: Ponapean kiti
4 Aquatic mammals

The aquatic mammals of tropical Oceania consist of various cetaceans (whales and dolphins) and the dugong. In Oceanic languages these animals are often classified as kinds of fish (POc *ikan; cf ch.8, §2).

4.1 Cetaceans

4.1.1 Whales

POc speakers probably occasionally sighted certain species of whales. Few surveys appear to have been done of whale populations in Melanesia but sperm whales, Physeter macrocephalus, and a number of smaller whales, in particular pilot whales, Globicephala melaena, and orcas or killer whales, Orcinus Orca, have been reported in New Guinea waters. Pilot whales are more visible, being highly gregarious and occurring in large schools. Large numbers of pilot whales have been reported in Astrolabe Bay, while orcas have been sighted in Kimbe Bay off the north coast of New Britain (website reporting, 2003). Whales were not hunted by Oceanic communities in pre-contact times but when strandings occurred communities made use of the meat and teeth.

Reflexes of *rato ‘whale’ are well represented in Micronesian languages. Elsewhere probable reflexes are known only in Nyindrou and Wuvulu in the Admiralties. Borrowing cannot be ruled out.

POc (?) *rato ‘whale’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm: Nyindrou</td>
<td>rak</td>
</tr>
<tr>
<td>Adm: Wuvulu</td>
<td>xaʔo</td>
</tr>
<tr>
<td>Mic: Kiribati</td>
<td>ato</td>
</tr>
<tr>
<td>Mic: Marshallese</td>
<td>rac</td>
</tr>
<tr>
<td>Mic: Woleaian</td>
<td>zaso</td>
</tr>
<tr>
<td>Mic: Mokilese</td>
<td>ṛac</td>
</tr>
<tr>
<td>Mic: Ponapean</td>
<td>raç</td>
</tr>
</tbody>
</table>

‘whale, porpoise, any sea mammal’

There is a widespread tendency in Oceanic languages to refer to whales by terms that otherwise describe the action of blowing something out or spraying or spurting, e.g. Teop kavuhu ‘to spray’, kavu-kavuhu ‘whale’. POc *puRa-puRas ‘whale’, which is attested in NNG, PT and SES, is evidently an extension of *puRas ‘spray water from the mouth’. It has as antecedents PAN *buReS, PMP *buRah ‘spray water from the mouth’ (ACD).

POc *puRa-puRas ‘whale’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Lukep (Pono)</td>
<td>puru</td>
</tr>
<tr>
<td>NNG: Bing</td>
<td>fur-für</td>
</tr>
<tr>
<td>PT: Molima</td>
<td>wula-wula</td>
</tr>
<tr>
<td>PT: Tawala</td>
<td>ula-ulasi</td>
</tr>
<tr>
<td>PT: Diodio</td>
<td>ula-ula</td>
</tr>
<tr>
<td>PT: Sudest</td>
<td>ura-usasi</td>
</tr>
<tr>
<td>PT: Misima</td>
<td>ula-ulas</td>
</tr>
<tr>
<td>SES: Bugotu</td>
<td>vua-vula</td>
</tr>
</tbody>
</table>

‘whale (generic)’
cf. also:
NCV: NE Ambae vure(gi)

PPn *taff(o,u)raqa ‘whale’ is well attested. Possible cognates occur in several non-Polynesian languages of central and southern Vanuatu, but these forms are probably borrowings from the Polynesian Outlier speech communities in these regions.

PPn *taff(o,u)raqa ‘whale’ (POLLEX)

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn: Tongan</td>
<td>tofuaʔa</td>
</tr>
<tr>
<td>Pn: Niuean</td>
<td>tafuā</td>
</tr>
<tr>
<td>Pn: E Uvean</td>
<td>tafolāʔa</td>
</tr>
<tr>
<td>Pn: Pukapukan</td>
<td>tawolā</td>
</tr>
<tr>
<td>Pn: Rennelise</td>
<td>tahogaʔa</td>
</tr>
<tr>
<td>Pn: Samoan</td>
<td>tafolā</td>
</tr>
<tr>
<td>Pn: Tuvalu</td>
<td>tafolā</td>
</tr>
<tr>
<td>Pn: K’marangi</td>
<td>toholā</td>
</tr>
<tr>
<td>Pn: Tikopia</td>
<td>taforā</td>
</tr>
<tr>
<td>Pn: W Futunan</td>
<td>tafora</td>
</tr>
<tr>
<td>Pn: Hawaiian</td>
<td>koholā</td>
</tr>
</tbody>
</table>

‘cetacean, including whale, porpoise, dolphin’

cf. also:
NCV: Namakir taviraʔ?
NCV: S Efate tafra
SV: Sye tovura
SV: Kwamera tafra
Fij: Wayan tavuto ‘generic for all large whales’
Fij: Bauan tavuto ‘sperm whale, whose teeth furnish the tabua’
4.1.2 Dolphins (Delphinidae)

Several species of dolphins, including *Tursiops truncatus*, the bottlenose dolphin, *Stenella longirostris*, the spinner dolphin and *Grampus griseus*, Risso’s dolphin, are found in Oceania (Dawbin 1972:270–276). Wordlists and dictionaries of Oceanic languages give only generic terms for ‘dolphin’. The synonym ‘porpoise’ is commonly used in glosses.

POc *ku(r,R)iap*, with final *-ap*, is indicated by reflexes in North New Guinea, Papuan Tip and Meso-Melanesian languages and by *kulef* ‘dolphin’ in an external witness, Sawei, an Eastern Malayo-Polynesian language of South Halmahera. Southeast Solomonic and Vanuatu reflexes point to PEOc *giRio(p)*. Admiralties and SES languages reflect medial *-r-, while reflexes from NCV indicate *-R-. Other reflexes are compatible with either.

PEMP *kuriap* ‘dolphin’

POc *ku(r,R)iap* ‘dolphin’

<table>
<thead>
<tr>
<th>Admin: Nyindrou</th>
<th>wiri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admin: Lou</td>
<td>wiri</td>
</tr>
<tr>
<td>Admin: Lenkau</td>
<td>uhi</td>
</tr>
<tr>
<td>Admin: Loniu</td>
<td>wiʔɛ</td>
</tr>
<tr>
<td>NNG: Mangap</td>
<td>kuri</td>
</tr>
<tr>
<td>NNG: Lukep (Pono)</td>
<td>kuri</td>
</tr>
<tr>
<td>NNG: Mengen (Maenge)</td>
<td>kule</td>
</tr>
<tr>
<td>NNG: Mengen (Poeng)</td>
<td>kulia</td>
</tr>
<tr>
<td>PT: Dobu</td>
<td>kuli-kuliya</td>
</tr>
<tr>
<td>PT: Tawala</td>
<td>uli-uliyawa</td>
</tr>
<tr>
<td>PT: Kilivila</td>
<td>k’alivia</td>
</tr>
<tr>
<td>MM: Tolai</td>
<td>kuriap</td>
</tr>
<tr>
<td>MM: Ramoaaina</td>
<td>kuriap</td>
</tr>
<tr>
<td>MM: Siar</td>
<td>ku-kuriap</td>
</tr>
<tr>
<td>SES: Bugotu</td>
<td>kirio</td>
</tr>
<tr>
<td>SES: Sa’a</td>
<td>kiri</td>
</tr>
<tr>
<td>SES: Kwaio</td>
<td>kilio</td>
</tr>
<tr>
<td>SES: Lau</td>
<td>kirio</td>
</tr>
<tr>
<td>SES: Bauro</td>
<td>kirio</td>
</tr>
<tr>
<td>SES: Arosi</td>
<td>girio</td>
</tr>
</tbody>
</table>

NCV *guRio* ‘dolphin (generic)’

NCV: Hiw	k”li
NCV: Lo-Toga	k”uriə
NCV: Mota	kio
NCV: NE Ambae	kio
NCV: Raga	gio
NCV: Lewo	(le)kio-kio

Clark (2009) reconstructs PNCV *gu(R)io*, but two Torres languages, Hiw and Lo-Toga, support inclusion of *-R-(François In press).
Figure 5.8 *Dugong dugon*, dugong

NCV: Shark Bay	kuo	‘dolphin’
NCV: Namakir	qio-qi	‘dolphin’
NCV: Nguna	giio	‘dolphin’
PMic *kua* ‘dolphin’		
Mic: Kiribati	te-kua	‘dolphin, whale’
Mic: Marshallese	ke	‘dolphin’
Mic: Woleaian	xüw	‘dolphin’
Mic: Puluwatese	kūw	‘porpoises, believed to be whales when fully grown’
cf. also:		

SV: Sye	(so)furwav(oh)	‘dolphin’
SV: Ura	(so)furwav(os)	‘dolphin’
Fij: Bauan	giō	‘shark (generic)’
Fij: Kadavu	giō	‘shark (generic)’

4.2 Dugong (*Dugong dugon*)

Dugongs are large aquatic mammals, with paddle-like forelimbs, no hindlimbs and a fluked, dolphin-like tail. They graze on beds of seagrass and are found in shallow coastal waters throughout the Indo-Malaysian archipelago, New Guinea and nearby islands including the Admiralties and Bismarcks, and in the Solomons, Vanuatu and New Caledonia, but not in Fiji or places further east (Chambers et al. 1989:1). Dugongs are prized by Pacific Islanders for their flesh, oil and small ivory tusks. Spears and nets are the main methods of capture. In the Trobriands and Manus very strong nets made from pandanus leaves are used while in the Siassi islands nets are made from the bark of a tree (Pyne 1972:276).

There is a well attested PMP etymon, *duuyuy* ‘dugong’. While most Oceanic reflexes point to *ruai*, evidence that POc continued PMP *duuyuy* as *ruuyuy* survives in the Tiang

8 PMic *kua* is likely to be a continuation of POc *kuRiap. *R is usually lost in Micronesian languages. Loss of *R would have yielded *kuia, and the reduction to *kuia and then *kua would follow a natural path.

9 John Lynch (pers. comm.) notes that both the SV forms appear to continue *kuriap, albeit with an additional initial and final syllable.
(New Ireland) reflex, which preserves the final velar nasal, and in Marovo (New Georgia), which retains a nasal, though this is m for expected *-η.

PMP *$duyuŋ$ ‘dugong’ (Blust 2002)
POc *$ruyuŋ$ ‘dugong’

Adm: Pak	$hū$
Adm: Bipi	$xū$
Adm: Nauna	tuy
Adm: Drehet	kxu
NNG: Kove	lui
NNG: Bariai	rui
NNG: Gitua	rui
NNG: Bing	rui
NNG: Malasanga	rui-rui
NNG: Sio	(gu)rui
NNG: Lamogai	$dū$
NNG: Takia	rui
PT: Iduna	lui
PT: Motu	rui
PT: Magori	rui
MM: Bulu	rui
MM: Tiang	$iŋ$
MM: Marovo	$rumu$ ($-m$- for †-η-)

cf. also:

NNG: Kaiep	$kuoi$
NNG: Kairiru	qui
MM: Babatana	jui

No reflexes of POc *$ruyuŋ$ have been found in Eastern Oceanic languages. For Proto Southeast Solomonic, *$paipu$ ‘dugong’ can be reconstructed. For Proto North Central Vanuatu *boe-mi-tasi ‘dolphin’ (literally ‘pig of the sea’) has been reconstructed by Clark (2009).

5 Reptiles

5.1 Marine turtles (Cheloniidae)

At least four large species of marine turtles are common to the Oceanic region: the hawksbill (*Eretmochelys imbricata*), with its beak-like mouth, the green turtle (*Chelonia mydas*), with brown or black carapace, the loggerhead (*Caretta caretta*), with its very large head, and the leatherback (*Dermochelys coriacea*), distinguished from other turtles by its lack of a bony shell, its carapace being covered by thick leathery skin. The much smaller olive ridley (*Lepidochelys olivacea*) spends almost all of its time in the open ocean and is less familiar to Pacific Islanders. Turtles are prized by Oceanic communities for their flesh and fat and (in the case of the hawksbill) for their shells.

As well as having a generic for ‘turtle’, a number of languages have distinct names for all four species and some distinguish male and female turtles, as the following examples show.
Figure 5.9 *Chelonia mydas*, green turtle

<table>
<thead>
<tr>
<th>NNG: Lukep (Pono)</th>
<th>pon</th>
<th>‘turtle’</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>olol</td>
<td>‘hawksbill turtle’</td>
</tr>
<tr>
<td></td>
<td>padodo</td>
<td>‘green turtle’</td>
</tr>
<tr>
<td></td>
<td>kawadui</td>
<td>‘leatherback turtle’</td>
</tr>
</tbody>
</table>

MM: Kia	tege	‘turtle generic’
	tege ηάπο	‘hawksbill turtle’
	tege mogaha	‘green turtle’
	tege babaru	‘leatherback turtle’
	tege kakapodoko	‘loggerhead turtle’

MM: Marovo	vonu	‘turtle (generic)’
	vonu pede	‘hawksbill turtle’
	vonu ihana	‘green turtle’
	kariatolu	‘leatherback turtle’
	kakapodoko	‘loggerhead turtle’

SES: Sa’a	honu	‘turtle (generic)’
	honu hapa	‘hawksbill turtle’ *(hapa ‘turtleshell’)*
	honu iʔe	‘green turtle’ *(iʔe ‘fish’)*
	kule oŋo	‘leatherback turtle’ *(kule ‘shore’, oŋo ‘mangrove’)*

SES: Arosi	honu	‘turtle (generic)’
	honu hapa	‘hawksbill turtle’
	honu hau	‘soft-shelled turtle’?
	honu marabona	‘large sp. of turtle’
	honu orobiu	‘leatherback turtle’
Three terms for turtle taxa are attributable to POc. POc *poñu, continuing a PAn etymon, was clearly the generic term, and is very well supported.

POc *poñu ‘turtle’ (acd)

PAn *peñu ‘turtle’ (acd)

Three terms for turtle taxa are attributable to POc. POc *poñu, continuing a PAn etymon, was clearly the generic term, and is very well supported.
MM: Babatana \textit{vunu} ‘turtle’
MM: Lungga \textit{vo nú} ‘turtle’
SES: Bugotu \textit{vo nú} ‘turtle’
SES: Gela \textit{vonu} ‘turtle (generic) for hawksbill and green turtle’
SES: Lau \textit{fonu} ‘turtle’
SES: Kwaio \textit{fonu} ‘turtle’
SES: Sa’a \textit{honu} ‘turtle’
SES: Arosi \textit{honu} ‘turtle’
NCal: Jawe \textit{p”en} ‘turtle’
NCal: Nemi \textit{p”en} ‘turtle’
NCal: Xârâcûû \textit{p”ê} ‘turtle’
Mic: Kiribati \textit{on} ‘turtle’
Mic: Chuukese \textit{woj} ‘leatherback turtle’
Mic: Carolinian \textit{wōj} ‘turtle’
Mic: Woleaian \textit{woj} ‘turtle’
Mic: Ulithian \textit{wōl} ‘turtle’
Fij: Bauan \textit{vonu} ‘turtle (generic)’
Fij: Wayan \textit{(tu)vonu} ‘loggerhead turtle’
Pn: Tongan \textit{fonu} ‘turtle (generic)’
Pn: Niuean \textit{fonu} ‘turtle’
Pn: Rennellese \textit{honu} ‘green turtle’
Pn: E Futunan \textit{fonu} ‘turtle’
Pn: Tikopia \textit{fonu} ‘turtle (generic)’
Pn: Hawaiian \textit{honu} ‘turtle’

The shell of the hawksbill turtle is prized, being used to make ornaments like earrings and bracelets as well as bonito hook tips and cutting tools. In Tonga and E. Futuna this turtle is called \textit{fonu koloa}, in Tikopia \textit{fonu koroa}, the term for ‘property, treasure’ being used to identify the turtle with valuable shell.

A term for the hawksbill turtle, *keRaŋ, is well supported. In Oceanic languages, the beaked profile of the hawksbill turtle is identified with that of a parrot rather than a hawk. In Lou (Admiralties), the same term refers to both the turtle and a red parrot. In Māori the term survives only for the parrot. (For discussion of the atypical /e/ vowel, see Blust 1983-84:8–10). All the Admiralties terms have problematic reflexes of *R and all show vowel metathesis.

PCEMP *keRaŋ ‘hawksbill turtle’ (Blust 2002)
POc *keRay ‘hawksbill turtle, \textit{Eretmochelys imbricata}’

\begin{tabular}{ll}
Adm: & Lou \textit{kareŋ} ‘hawksbill turtle; red parrot’
\hline
Adm: & Lenkau \textit{kareŋ} ‘hawksbill turtle’
Adm: & Pak \textit{kareŋ} ‘hawksbill turtle’
Adm: & Titan \textit{karēŋ} ‘parrot turtle’
Adm: & Anda \textit{kareŋ} ‘hawksbill turtle’
PT: & Motu \textit{era} ‘turtle, shell turtle’
Mic: & Kiribati \textit{(tab”a)kea} ‘parrotbill turtle, brilliant shell’
\end{tabular}
Mammals, reptiles, amphibians

The green turtle is the most abundant and widespread turtle of tropical Oceania and the one most valued for food. It may weigh up to 200 kg, with carapace length around 150 cm. A POc term is reconstructable but reflexes have been found only in a few North New Guinea and Micronesian languages.

POc *manak(V) ‘green turtle, Chelonia mydas’

NNG: Takia manak ‘green turtle’
NNG: Gedaged manak ‘green turtle’
Mic: Carolinian mʷēl ‘turtle with thin shell, good for eating’
Mic: Chuukese (win)mʷən ‘green turtle, eaten’
Mic: Puluwatese mʷol ‘green turtle, commonly caught and distributed to entire island’

The leatherback turtle, Dermochelys coriacea, is the largest turtle in the world with an average carapace length of two metres and average weight of around 360 kg. It nests widely along the north coast of New Guinea, Manus, New Britain and Bougainville, but always in very low densities. It is generally not favoured for eating because of its very oily and smelly meat (Mueller 1985:195). No widespread cognate set has been found.

5.2 Crocodiles (Crocodylidae)

The archaeologist Simon Best has published a comprehensive review of the distribution of crocodiles in the Pacific (Best 1988). Two species occur in Melanesia: Crocodylus porosus, the estuarine or saltwater crocodile and C. novaeguineae. The latter is found in freshwater swamps and lakes in lowland New Guinea. The normal (breeding) range of C. porosus extends from south-west India to the Solomons, and from the Tropic of Capricorn in Australia to the Philippines. The easternmost limit for breeding populations is the Santa Cruz group. Individual animals are capable of very long journeys, over 1000 km, and have been reliably recorded in northern Vanuatu, Fiji and Kiribati, but these occasional occurrences do not represent an extension of their breeding range.

POc *puqaya ‘crocodile’ continues PMP *buqaya and, probably, PAn *buqaya. Reflexes of *puqaya are found widely in languages of the Bismarck Archipelago, New Guinea

10 The only reflex in a Formosan language is Puyuma buaya ‘shark’. Blust (SCD) writes that there are at least three pieces of evidence that *buqaya meant ‘crocodile’ not only in PMP, but also in PAn, in spite of the fact that the Formosan Puyuma reflex is glossed ‘shark’. These are (1) that a general term for shark, PAn *qiSu, is already available, (2) outside Taiwan reflexes of *buqaya invariably carry the primary sense ‘crocodile’, (3) crocodiles were earlier present in at least the southern portion of Taiwan, but disappeared before the historical period. Under these circumstances the application of the name of a dangerous reptilian aquatic predator to its functional equivalent in the world of fishes is not surprising.
and the main Solomons group, i.e. where crocodiles are common, and are also present in a few languages of Vanuatu. No reflexes have been recorded in Micronesian or Central Pacific languages.

PAn *buqaya ‘crocodile’ (ACD)
POc *puqaya ‘crocodile’

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Language</th>
<th>Form</th>
<th>Language</th>
<th>Form</th>
<th>Language</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm: Mussau</td>
<td>ua</td>
<td>Adm: Nyindrou</td>
<td>buwa</td>
<td>Adm: Lou</td>
<td>pua</td>
<td>Adm: Aua</td>
<td>fuara</td>
</tr>
<tr>
<td>NNG: Kilenge</td>
<td>na-pua</td>
<td>NNG: Malasanga</td>
<td>pua</td>
<td>NNG: Roinji</td>
<td>puyaia</td>
<td>NNG: Adzera</td>
<td>fugai</td>
</tr>
<tr>
<td>PT: Arifama</td>
<td>uaya</td>
<td>PT: Dobu</td>
<td>uaya</td>
<td>PT: Hula</td>
<td>vuya</td>
<td>PT: Motu</td>
<td>huala</td>
</tr>
<tr>
<td>MM: Vitu</td>
<td>vuya</td>
<td>MM: Lavongai</td>
<td>uai</td>
<td>MM: Patpatar</td>
<td>huaia</td>
<td>MM: Petats</td>
<td>hua</td>
</tr>
<tr>
<td>MM: Marovo</td>
<td>vua</td>
<td>SES: Gela</td>
<td>vua</td>
<td>SES: Lau</td>
<td>fuasa</td>
<td>SES: 'Are’are</td>
<td>huara</td>
</tr>
<tr>
<td>SES: Sa’a</td>
<td>huasa</td>
<td>NCV: Mota</td>
<td>via</td>
<td>NCV: Mwotlap</td>
<td>ne-ve</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.3 Lizards

5.3.1 Introduction

Lizards are discussed here under the following headings: monitors (§5.3.2), iguanas (§5.3.3), geckos (§5.3.4), skinks (§5.3.5) and indeterminate (§5.3.6), but there is frequent transfer of name within cognate sets from one family to another. Monitor lizards and iguanas belong to different families, although these names are used interchangeably in some wordlists. The Australian goanna belongs with the monitor lizards of Indonesia, New Guinea and the western Pacific. The iguana is of South American origin, and is found in the Pacific today only in the Galapagos Islands, Fiji, Tonga, Wallis and Futuna. In many sources the gloss ‘iguana’ is incorrectly applied to monitor lizards.

5.3.2 Monitors (Varanidae)

Nearly a score of different species of monitors are to be found in the Indo-Pacific region. The best known, because of its great size, is the komodo monitor, a species confined to the Lesser Sundas. The most widespread species in Oceania is Varanus indicus, a water monitor, valued as an important food source. Its range extends from Sulawesi through to the Aru and Kei Islands, the New Guinea land mass including the Schouten Islands, the D’Entrecasteaux and Trobriand Islands, New Britain, New Ireland, the Admiralties, the Solomons and northwards to the Carolines, Marianas and Marshalls (Loveridge 1946:60–64, de Rooij 1970:149). Water monitors can grow to over two metres in length, with the tail about one and a half times as long as the head and body. They are excellent swimmers, and have been seen swimming far out to sea.

De Rooij lists five other Varanus species in New Guinea (V. salvadorii, V. kalabeck, V. gouldi, V. prasinus, V. kordensis), but none are found outside the main island except for the
last-named which is found also on Aru. The fact that Arosi has two terms for monitor lizard (incorrectly glossed ‘iguana’ by Fox), \(\text{haha}\), ‘the larger’, ?araʔa, ‘the smaller’, may indicate sub-species or a distinction based on sex or age. The skin of the larger monitors is used in New Guinea to cover the end of hourglass drums. The POc term *\(\text{ka}(r,l)(i,u)\text{pa}(s)\) probably referred to large monitor lizards.

POc *\(\text{ka}(r,l)(i,u)\text{pa}(s)\) ‘large monitor lizard, \textit{Varanus indicus} and possibly other species’

PT: Muyuw \textit{kalevas} ‘tree goanna, big lizard’
PT: Motu \textit{ariha} ‘large lizard, iguana’ (= monitor) (\textit{r} for *\(\text{l}\) unexpected)
SES: Tolo \textit{kolahe} ‘k.o. lizard’ (vowel metathesis)
SES: Lau \textit{kurafe} ‘k.o. large lizard with smooth shining body’ (vowel metathesis)

PMic *\textit{kalufa} ‘monitor lizard’

Mic: Chuukese \textit{konuf} ‘\textit{Varanus indicus}, monitor lizard’
Mic: Mortlockese \textit{kaluf} ‘lizard’
Mic: Puluwatese \textit{kölůf} ‘giant lizard’
Mic: Satawalese \textit{kaluf} ‘lizard’
Mic: Carolinian \textit{xalůf} ‘black and green forest lizard: gecko’
Mic: Wolealian \textit{xarůfa} ‘k.o. big lizard’

cf. also:
SES: To’aba’ita \(g^*\text{alu(aʔa)}\) ‘green-blooded skink, \textit{Prasinohaemavirens}’

There is a second, more weakly supported POc reconstruction, *\(\text{wak}(i,e)\) ‘k.o. lizard, possibly monitor lizard’. It may be a contraction of PMP *\textit{bayawak} ‘monitor lizard’ (Blust 2002).

POc *\(\text{wak}(i,e)\) ‘k.o. lizard, possibly a monitor’

Adm: Lou \textit{wak} ‘monitor lizard, \textit{Varanus} sp.’
PT: Minaveha \textit{wake(neta)} ‘lizard, rough-skinned’
PT: Dobu \textit{waki-waki} ‘small gecko’
\textit{waki(balu)} ‘large gecko’
SES: ‘Are’are \textit{weʔe} ‘k.o. big lizard that eats the inside of the \textit{nari} nut’

Reflexes of the next reconstruction, POc *\textit{(k,g)uma}, form a compound in many PT languages with reflexes of POc *\textit{ka}(r,R)\textit{ak} ‘creep, crawl’.

POc *\textit{(k,g)uma} ‘monitor lizard’

PPT *\textit{(k,g)uma-kara} ‘monitor lizard’

PT: Ubir \textit{umar} ‘lizard, general term’
PT: Gapapaiwa \textit{kuma-kara} ‘lizard (monitor type?); the skin of this lizard is used for drum heads’
PT: Saliba \textit{kuma-kala} ‘k.o. lizard’
PT: Minaveha \textit{kuma-kana} \textit{um-ana} ‘lizard which lives near ocean’
\textit{um-ana} ‘larger lizards, speckled or striped, with smooth skin’
There is a well supported Proto Admiralties reconstruction for monitor lizard.

5.3.3 Iguanas (Iguanidae)

True iguanas, in contrast to monitor lizards, would not have been known to speakers of POc. Iguanas (*Brachylophus* spp.) are present in the Oceanic region only in Fiji, Tonga, Wallis and Futuna. They are of South American origin and probably arrived in the central Pacific on floating vegetation. They are diurnal and strongly arboreal in behaviour. A Proto Central Pacific name for ‘iguana’, *vokai*, is reconstructable from cognates in Fijian and Polynesian languages. No non-CP cognates have been recorded. In Rennellese the reflex of *vokai* is applied to monitor lizards. The Tongan term identified in the dictionary as ‘chameleon’ probably refers to a lizard with chameleon-like ability to change colour; true chameleons are natives of Africa. Paddy Ryan reports that *Brachylophus vitiensis*, the crested iguana, has the
Figure 5.12 *Hemidactylus frenatus*, common house gecko

ability to change colour when frightened or angry and will turn a very dark green, almost black, within five minutes (Ryan 1988:106).

PCP *vokai* ‘k.o. lizard’

Fij:	Bauan	vokai	‘banded iguana (*Brachylophus fasciatus*) and crested iguana (*B. vitiensis*)
Fij:	Wayan	vokai	‘crested iguana’
Pn:	Tongan	fokai	‘chameleon’
Pn:	Rennellese	hokai	‘general name for monitor lizards, *Varanus indicus*’

cf. also:

NCV: Tamambo *vohare* ‘k.o. lizard’

5.3.4 Geckos (Gekkonidae)

Geckos are widely distributed across mainland Southeast Asia, Indonesia and the tropical Pacific. They are one of the few reptiles with voices; they make small chirruping noises. They are mostly nocturnal, and many species frequent buildings, although others are forest dwellers. Most are less than 15cm long, and, in common with skinks, have the ability to discard their tails when threatened. They are generally welcomed by households, both for their efforts in keeping down moths, mosquitos, cockroaches and other household pests, and because they are widely regarded as good omens (Loveridge 1946:73).

A number of Western Malayo-Polynesian terms for gecko are onomatopoeic, typically reflexes of PMP *tektek*. Although there are numerous gecko species throughout the Oceanic region, only one term which might be considered a reflex of PMP *tektek* has been noted.

PMP *tektek* ‘gecko, house lizard (onom.)’ (doublet *cekcek*) (ACD)

POc *tok* ‘gecko’

NNG: Hote *(kamu)tok* ‘small gecko, found on the wall’
We have reconstructed POc *bili ‘k.o. lizard’, which may be an irregular reflex of a PAn term, *bulilik ‘lizard sp.’ (Blust 2002), but on present evidence the connection is uncertain. Its reflexes in Polynesian languages carry two meanings, ‘gecko’ (or sometimes ‘lizard (generic)’) and ‘adhere to’, pointing to a lizard name that reflects its character.

Some of the Polynesian reflexes may be compounded with the generic term for lizard, PPe *moko, from POc *mo(g,k)o ‘k.o. snake’ (see §5.4.1).

POc *bili ‘k.o. lizard’

MM: Tolai	bil-bil	‘k.o. lizard’
PPe *pili	‘gecko; adhere to’ (pollex)	
Pn: Tongan	pili	‘k.o. bluish lizard’
Pn: E Futunan	pili(moko)	‘gecko’
Pn: Pukapukan	(ŋō)pili	‘gecko’
Pn: Samoan	pili	‘lizard’
Pn: Takuu	(moko)pili	‘small house lizard’
cf. also:		
Pn: Tikopia	(moko)pili	‘gecko’ (for †piri)

5.3.5 Skinks (Scincidae)

Most skinks are slim lizards capable of moving at high speed, although the family includes the more heavily built blue-tongue lizards. Skinks usually emerge during the day to feed and bask in the sun. The New Guinea blue-tongue skink, Tiliquagigas, is widely distributed across eastern Indonesia, the New Guinea mainland, the Admiralty islands and Bismarck Archipelago (http://www.anapsid.org/bluetong.html). Various Emoia species are widely distributed through New Guinea and the Pacific. Contemporary languages often distinguish a number of skink taxa but no POc reconstructions that refer specifically to skinks are supported. However, John Lynch (pers. comm.) has proposed a reconstruction for Proto Southern Oceanic, based on cognates in NCV and New Caledonia, and there is evidence for a second term attributable to Proto Eastern Oceanic.

PSOc *gala ‘green lizard, Emoia sp.’ (John Lynch, pers. comm.)

NCV: Mota	kala	‘small blue lizard’
NCV: Dorig	kal	‘green lizard’
NCV: Raga	yala	‘lizard, probably green skink, Emoia sanfordi’
NCV: Tamambo	kala	‘small green lizard, about 30 cm long, generally reviled.’
NCV: NE Ambae	kala	‘shiny green lizard w. long tail, grows to about 20 cm, lives on coconut palms’
NCV: Lonwolwol	gal	‘green lizard’
NCV: Paamese (South)	a-kal	‘green lizard, Emoia sanfordi’
NCal: Nemi	gēna	‘lizard (generic)’

The presence of *kali in the following reconstruction raises the question as to whether this is an echo of the old qali-/kali- prefix that in pre-Oceanic times evidently meant something like ‘Warning. Take care!’ (See ch. 7 for detailed discussion.) Although the evidence is that
the morpheme was no longer productive in Oceanic languages, an association of danger with a kind of iridescent lizard persists, at least in Tamambo (NCV) and Tikopia (Pn). Jauncey (pers. comm.) notes that in Tamambo they are generally reviled, people shuddering at the sight of them. Firth (1967:233) observes that Tikopia atua, which applies primarily to a supernatural entity, is extended as a category name to any natural species which should not be eaten. Among the latter he includes iridescent lizards.

PEOc *kalis(i,u) ‘k.o. skink’

SES:	Owa	ga-garisu	‘a brown skink’
PPn:	*kalisi	‘skink, k.o. lizard’ (POLLEX)	
Pn:	Tongan	kalihe-lihe	‘k.o. lizard’
Pn:	Rennellese	kagisi	‘skink (Emoia cyanura)’
Pn:	Nanumea	kalihi	‘skink’
Pn:	K’marangi	galiha	‘skink’
Pn:	Tikopia	kali-lisi	‘green lizard, small, iridescent’

5.3.6 Indeterminate kinds of lizards

There is a weakly supported reconstruction based on an imperfect agreement between Southeast Solomonic languages and Tolai.

POc *kuk(o,u) ‘k.o. lizard’

MM:	Tolai	kuku	‘lizard (generic) name’ (kuku alira ‘small lizard w bronze tail’ (also ‘green’)
SES:	’Are’are	?u?o	‘small lizard, green and gold’
SES:	S’a’a	u?o	‘house lizard, green and gold; first element in several lizard names’

A second weakly supported reconstruction rests on putative cognates in Mussau, Kokota and N Tanna.
Mammals, reptiles, amphibians

POc *kapoRu ‘k.o. lizard’

Adm: Mussau kapou ‘monitor lizard, Varanus sp.’
MM: Kokota kopro ‘gecko’
SV: N Tanna kap*er ‘lizard’ (-r for †θ) (Tryon 1995)

cf. also:

SHWNG: Serui-Laut kafei ‘house lizard’ (Smits 1992:239)
PT: Molima kekepa ‘green tree skink’
MM: Nakanai kavega ‘lizard’
MM: Tolai keveu ‘k.o. iguana’ (monitor)

5.4 Snakes (sub-order Serpentes)

5.4.1 Land snakes

Around 100 species of land snakes occur in New Guinea, the Bismarck Archipelago and the Solomon Islands. They include pythons and boas (family Boidae), both of which constrict their prey, and a range of tree snakes and ground-dwelling snakes, some of which are highly venomous. The best known include the Papuan taipan, *Oxyuranus scutellatus*, the Papuan black snake, *Pseudechis papuanus*, and the death adder, *Acanthopis antarcticus*.

Only two species of snake have been reported for Vanuatu: the Flowerpot Snake, *Typhlops braminus* of Efate and the Pacific Boa, *Candoia bibroni*, also with restricted distribution (Medway and Marshall, quoted in Walsh et al. 2000:248). Fiji has two terrestrial snakes, the Pacific boa and the rare *Ogmodon vitianus*, the latter found only in Fiji (Ryan 1988:111–114, Morrison 2003:90). In Polynesia land snakes are found only in Samoa, while the only land snake reported for Micronesia is the miniature blind snake found on Chuuk (Davis 1999:188). For PMP *nipay’snake* only a single Oceanic reflex has been located.

PMP *nipay ‘snake’ (ACD)

POc *nipe ‘snake’

MM: Mono-Alu nihe ‘snake’

POc *mʷata is the most widely reflected generic for ‘snake’ in Oceanic languages. It has no known non-Oceanic cognates, raising the possibility that this term entered Proto Oceanic from a non-Austronesian source.

POc *mʷata ‘snake (generic)’ (Ross 1988)

Adm: Wuvulu waʔa
Adm: Aua waʔa
Adm: Loniu mʷat
Adm: Nauna mʷat
Adm: Bipi mʷak
SJ: Ormu mata-mata
SJ: Sobei matu
NNG: Yabem moaʔ
NNG: Manam moata
NNG: Gedaged mot ‘collective term for snakes and certain kinds of worms’
NNG: Kove mota
NNG: Malasanga mota
NNG: S Watut m³ar
PT: Are mota
PT: Tawala mota
PT: Molima m³ata
PT: Tubetube m³ata
PT: Sudest m³ata
MM: Bola mata
MM: Bali (gu)mata
MM: Tigak m³ata
SES: Bugotu umata
SES: Gela umata
SES: Longgu m³a
SES: Lau wa
SES: Kwaio wā ‘snake; various kinds of worms; other snake-like creatures’
SES: Sa’a m³ā
SES: Arosi m³ā
NCV: Mota m³ata
NCV: Mwotlap na-m³ at
NCV: S Efate m³at
SV: Lenakel m³ati(kalo) ‘worm’
Mic: Kiribati m³ata ‘worm’
Mic: Woleaian m³ata ‘worm’
Fij: Wayan n³ata ‘snake (generic)’
Pn: Tongan n³ata ‘snake’ (There are no snakes in Tonga, but Tongans know snakes exist in Fiji and Samoa.)
Pn: Niuean n³ata ‘snake’ (Refers only to land snakes, even though there are none on Niue.)
Pn: Samoan n³ata
Pn: Tokelauan n³ata

The gloss for a third POc reconstruction, *mo(g,k)o ‘k.o. snake’, is supported by reflexes in three Meso-Melanesian languages and one Southeast Solomonic language. In Central Pacific languages the cognate form is applied to lizards in general.

POc *mo(g,k)o ‘k.o. snake’
MM: Laghu mogo ‘snake’
MM: Blablanga mogo ‘snake’
MM: Maringe mogo ‘snake (generic)’
SES: Gela mogo ‘k.o. inert black snake’
Fij: Wayan moko ‘lizard (generic)’
Fij: Bauan moko ‘lizard’ (Capell); ‘gecko’ (Ryan)

PPn *moko ‘lizard’ (POLLEX)

Pn: Tongan moko ‘k.o. lizard, light brown’
Pn: Niuean moko ‘generic for most creeping and crawling creatures’
Pn: Samoan moʔo ‘gecko’
Pn: Rennellese moko ‘geckos’
Pn: Tikopia moko ‘lizard (generic); incl. black lizard (moko-uri), small gecko (moko-pili), large dark coloured gecko (moko-fata), crocodile (moko-toro)
Pn: Hawaiian moʔo ‘lizard; reptile of any kind’

cf. also:
PT: Saliba (kenokeno)mugu ‘lazy snake’ (keno ‘lie down’)

The Ubir gloss of ‘cobra’ in the next set is wrong, as Asian cobras are not present in the New Guinea region (Cogger 1972a:1013).

PWOc *sibi ‘k.o. snake’

PT: Ubir sib ‘cobra’
MM: Nakanai sibi ‘small snake’
 si-sibi ‘red snake which turns black after death’

5.4.2 Sea snakes (Elapidae)

Sea snakes are venomous elapid snakes that have adapted to living in the sea. Many are found in shallow coastal waters and estuaries. They have an eel-like appearance, with laterally compressed bodies and (in many species) paddle-like tails that aid swimming. Sea snakes are widespread in the Pacific, with one species, Pelamis platurus, the yellow-bellied sea snake, found across the entire Pacific region. Four species are known in Fiji, two of which, Laticauda colubrina and L. laticaudata, are semi-terrestrial (Ryan 1988:111–114).

Agreement between Central Pacific and Vanuatu languages allows reconstruction of Proto Remote Oceanic *takulasi or *takusali ‘sea snake’. Metathesis of consonants has occurred more than once in the final two syllables, making the original form uncertain.

PROc *takulasi ‘sea snake’ (PSOc *ta(k,g)ulasi or *ta(k,g)usali ‘sea snake’; John Lynch, pers. comm.)

NCV: Lo-Toga təyleh ‘sea snake’
NCV: Lonwolwol telsil ‘snake’
NCV: Paamese tousali ‘sea snake’
SV: Sye tuŋklaḥ ‘sea snake’
SV: Ura dunглас ‘sea snake’
Fij: Wayan da-dakulaði ‘Laticauda colubrina, black and white banded sea snake’
Fij: Bauan dakulaði, da-dakulaði ‘black and white banded sea snake’
Pn: Tongan tukuhalo ‘sea snake with black and white bands’

PPn *takuhalī ‘black and white banded sea snake’ (POLLEX)
In the Banks languages of northern Vanuatu the sea snake, *Laticauda semifasciata*, is referred to by reflexes of *mʷai*.

<table>
<thead>
<tr>
<th>NCV:</th>
<th>mʷai</th>
<th>‘sea snake’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mota</td>
<td>mʷai</td>
<td>‘sea snake’</td>
</tr>
<tr>
<td>Mwotlap</td>
<td>mʷe</td>
<td>‘sea snake characterised by black and white stripes; succubus, female demon, harmful’</td>
</tr>
</tbody>
</table>

6 Amphibians

The only amphibians present in Oceania are frogs. Menzies (2006:3) writes that ‘at the latest count, New Guinea [including the Admiralties and Bismarck Archipelago] and the Solomon Islands have a total of 35 genera and 322 recognised species … and, despite lacking several frog families present in southeast Asia, the region remains one of the most species-rich in the world’. East of the Solomons the native frog population is almost negligible. Codrington (1891:17) notes that frogs are absent in Santa Cruz. An account by Medway and Marshall (quoted by Walsh et al. 2000:235) contains the following observation: ‘There are no amphibians native to the New Hebrides [Vanuatu], and none was taken by Dr Felix Speiser who collected herpetological material in these islands in 1910–12.’ Morrison (2003:11) reports that there are two endemic species of frogs in Fiji, the Fiji tree frog, *Platymantis vitiensis*, and the Fiji ground frog, *P. vitianus*. There are no endemic frogs in Micronesia, nor, with the exception of New Zealand, in Polynesia. New Zealand has four native species, all belonging to the genus *Leiopelma*, an ancient and primitive group of frogs.

Four families occur without human intervention in New Guinea, Australia and islands of the western Pacific (Menzies 2006:6): the Hylidae (mostly climbing frogs, found throughout New Guinea and the Solomons, and on Timor, Seram and Halmahera), Myobatrachidae (mainly ground-dwelling frogs, with distribution confined to Australia and New Guinea), Ranidae (pond frogs and some others, a vast family of almost world-wide occurrence), and Microhylidae, a wide variety of morphologically distinct types. Menzies (2006:172) writes that Microhylidae ‘is almost worldwide in distribution but reaches its greatest diversity in the tropics, and the origin of the New Guinean genera almost certainly lies with some currently unknown southeast Asian ancestor’. The families are unevenly distributed, with 89 percent of the New Guinea mainland population from just two families, Hylidae and Microhylidae, while in the Solomon Islands 92 percent are Ranidae. The occurrence of Bufonidae (toads) in Oceania is due to deliberate or accidental introduction in recent times. The native species occupy a wide range of habitats, many found well away from water provided humidity is adequate. A substantial number lack a tadpole stage, the young hatching on land. Complex topography and close juxtaposition of different habitats have facilitated species differentiation so that few species are widespread over the whole region. Most species for which adequate data exists have relatively restricted distribution.
Certain species of frog are eaten in parts of Melanesia, but we have very limited information as to which Oceanic communities eat frogs.

Although onomatopoeia plays a large part in naming kinds of frogs, the picture is complicated by the fact that different species may have very distinctive calls. Mussau *ropa-ropa*, Lou *rek-rek*, Dobu *kʷe-kʷe*, Yabem *kʷey-kʷey*, Takia *way-way*; Molima *bʷe-bʷe*, Tolai *rok-rok* are all frog names presumably reflecting particular calls. Only the males utter the characteristic species-specific calls.

None of the glosses for the several reconstructions proposed here are at all specific. It seems that wordlist compilers are generally content to collect one or two terms, probably generic or perhaps identifying a well-known frog of the area, but few sources give more than minimal details. However, Kalam speakers of the Central Highlands (a non-Austronesian language of the Trans New Guinea family) distinguish 35 different taxa (Bulmer & Tyler 1968), and it is probable that many Oceanic communities name more than have been recorded. In any event, as most species have limited distribution, species names are likely to be local innovations.

PMP *palakaq* ‘frog’ (*acd: PWMP*) has possible cognates in a few Oceanic languages, although correspondences are irregular.

POc *pa(R,r)a(C)* ‘frog’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Bing</td>
<td>far</td>
<td>‘frog (generic)’</td>
</tr>
<tr>
<td>PT: Ouma</td>
<td>(a)para-para</td>
<td>‘frog’</td>
</tr>
<tr>
<td>PT: Hula</td>
<td>pala(keo)</td>
<td>‘frog’</td>
</tr>
<tr>
<td>PT: Balawaia</td>
<td>fara(keo)</td>
<td>‘big frog’</td>
</tr>
<tr>
<td>PT: Motu</td>
<td>para-para</td>
<td>‘frog’</td>
</tr>
<tr>
<td>MM: Vangunu</td>
<td>para(goa)</td>
<td>‘large frog’</td>
</tr>
<tr>
<td>MM: Marovo</td>
<td>para(goa)</td>
<td>‘frogs (generic)’</td>
</tr>
</tbody>
</table>

cf. also:

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM: Nakanai</td>
<td>pere</td>
<td>‘small frog’</td>
</tr>
<tr>
<td>MM: Tolai</td>
<td>per</td>
<td>‘frog’</td>
</tr>
<tr>
<td>SES: Arosi</td>
<td>haro</td>
<td>‘tadpole’</td>
</tr>
<tr>
<td></td>
<td>pʷaroʔamaʔama</td>
<td>‘k.o. large frog’</td>
</tr>
</tbody>
</table>

The term *kuRau*, for a kind of frog, is attested by reflexes in a single Sarmi Coast language and in Southeast Solomonic, with possible cognates in a number of other groups.

POc *kuRau* ‘frog taxon’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJ: Ormu</td>
<td>kurau</td>
<td>(Smits 1992:896)</td>
</tr>
<tr>
<td>SES: Bugotu</td>
<td>kulau</td>
<td>‘tree frog’</td>
</tr>
<tr>
<td>SES: Gela</td>
<td>kulau</td>
<td>‘a small frog’</td>
</tr>
<tr>
<td>SES: Lau</td>
<td>ʔulao, ʔulou</td>
<td>‘k.o. very large frog, Rana guppyi’</td>
</tr>
<tr>
<td>SES: Bauro</td>
<td>urau</td>
<td>‘frog’ (initial k- or ʔ- expected)</td>
</tr>
</tbody>
</table>

cf. also:

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Manam</td>
<td>kuru(basi)</td>
<td>‘k.o. green tree frog’</td>
</tr>
<tr>
<td>PT: Mekeo</td>
<td>kulua</td>
<td>‘k.o. tree frog’</td>
</tr>
<tr>
<td>PT: Sudest</td>
<td>kula</td>
<td>‘small frog’</td>
</tr>
<tr>
<td>PT: Balawaia</td>
<td>kura(fege)</td>
<td>(fege ‘small frog’)</td>
</tr>
</tbody>
</table>
MM: Halia kura ‘frog, lives in dry places’
MM: Thinputz kura ‘frog, Ranid’
MM: Kia kule ‘frog’
MM: Nduke (pa)karau ‘frog’
MM: Lungga (ba)karau ‘frog’
MM: Roviana (ba)karao ‘frog’
SES: Bugotu kui-kuli ‘frog’
SES: Arosi wairau ‘frog’

The following set is almost certainly onomatopoeic.

PNNG *karok ‘frog’
NNG: Gedaged gazok ‘various kinds of frog’
NNG: Kaulong kahok
NNG: Sengseng kahok
NNG: Kove kalo
NNG: Lusi kalo
cf. also:
PT: Saliba kwalu-kwalu
PT: Wedau geru
MM: Nakana karu-karu ‘frog, not eaten’
MM: Halia karou ‘frog, stays in fresh water’

An additional POc reconstruction, *kwekwe, is indicated by agreements between Adultaries, North New Guinea, Papuan Tip and Southeast Solomonic witnesses. However, the nature of the form suggests onomatopoeia, and the possibility of parallel development cannot be ruled out.

POc *[kwe]kwe ‘k.o. frog’
Adm: Seimat keke(u) ‘k.o. frog’
NNG: Mangseng keki ‘frog’
NNG: Hote kokwe ‘frog’
PT: Saliba kwekwe ‘tree frog’
PT: Tawala kwekwe ‘k.o. frog’
PT: Tubetube kwekwe ‘frog’
PT: Dobu kwekwe (sikesi) kwekwe ‘small frog, undeveloped’
PT: Gumawana kwekwe ‘frog’
SES: Gela kekeke ‘k.o. frog’
SES: Lau ?iki-?iki ‘k.o. frog’
cf. also:
PT: Gapapaiwa kwere ‘frog’
SES: ’Are’re koqe ‘frog’
SES: Gela kere(rao) ‘k.o. frog’
SES: Lau kwere ‘k.o. frog’
The following cognate set is confined to Vitu, the New Ireland group, Nehan and Buka. The fact that *rokrok is also Tok Pisin for ‘frog’, from Tolai, makes this set problematic. However, a portion of Tok Pisin vocabulary has its origins in southern New Ireland languages.

PMM ? *rokrok ‘bullfrog’

MM: Vitu *rok-rok ‘frog’
MM: Sursurunga *rok-rok ‘frog, incl. marine toad’
MM: Patpatar *rok-rok ‘k.o. frog that stays on ground’
MM: Tolai *rok-rok ‘k.o. frog’
MM: Ramoaaina *rok-rok ‘frog’
MM: Nehan *rok-rok ‘frog’
MM: Tinputz *rok-rok ‘bullfrog’

cf. also:
Adm: Lou *rek-rek ‘large green frog, bullfrog’

Proto SE Solomonic *b’wari ‘large frog’

SES: Gela *b’ari ‘k.o. large frog’
SES: Tolo *b’ari ‘large water frog’
SES: ’Are’are *pari ‘small frog’
SES: Longgu *b’wari ‘big frog, lives near river; bush frog’

A POc term for ‘tadpole’ has proved elusive. The etymon *k’iasi ‘tadpole’ is found in two closely related Papuan Tip languages, Molima and Bwaidoga. Elsewhere we find *k’iasi ‘k.o. frog’ in Lau, a SE Solomonic language. However, Lau *k’i reflects POc *w, so the term is evidently a borrowing. No other cognates have been located.

From the following cognate set, it appears that *kuni may be reconstructed as a PWOC term for ‘frog’, and with variable modifier as a term for ‘tadpole’ in PT languages.

PWOC *kuni ‘? frog, tadpole’

PT: Gapapaiwa *kuni(goagoa), *kunu(goagoa) ‘tadpole’
PT: Molima *b’alikunu-kunu ‘tadpoles’
PT: Dobu *(wari)kunu-kunu ‘tadpoles’

MM: Simbo *kuni ‘frog (generic)’
MM: Roviana *kuni ‘small noisy frog’

7 Body parts

7.1 Mammal body parts

Most mammal body-part terms are also terms for human body-parts. For instance, ‘fur’ equates with ‘body hair’ (typically from POc *pulu), both ‘hind leg’ and ‘fore leg’ with ‘leg’

11 In Dobu the term for crocodile is **warigoa** and that for seahorse or pipefish **wariwarigoa**, reduplication of the first two syllables being a common way of indicating an inferior or diminutive form of the named item. It seems that here the prefix is being used by analogy.
(POc *qage ‘leg, foot’ or POc *paqal ‘thigh’), ‘paw’ with ‘hand’ (POc *lima), and ‘claw’ with ‘nail’ (POc *kuku). The generic term for teeth, animal or human, was POc */l,n]ipon, a term which could also include ‘tusk’ (see §7.1.2 below).

7.1 Canine tooth

POc *bati evidently referred specifically to canine teeth. These teeth may have been singled out for special naming in POc times because of their distinctive shape, which made them suitable for decoration, but cognates occur in Vanuatu with particular reference to pigs. There, boars sometimes had their upper canine teeth removed to enable the lower tusks to grow in a circle and re-enter the jawbone. These pigs played a significant role in status rituals, and languages had numerous terms for boars at various stages of tusk growth.

POc *bati ‘tusk, canine tooth’

NNG: Gedaged bali ‘canine tooth of dog; ornamental band for forehead made of dog’s teeth’

PSOc *bati ‘tusk, upper canine tooth’ (John Lynch, pers. comm.)

NCV: Mota pati(u) ‘upper tusk in a boar, knocked out to let the lower tusk grow long; the corresponding teeth in man’
NCV: Uripiv bati-n ‘upper canine tooth, of pig, porpoise or person’
NCV: Avava bas-n ‘upper tusk of a pig, incisor’
SV: Sye ne-pati ‘pig tusk’
SV: Kwamera nɔ-pati- ‘tusk, horn’
SV: Anejom̃ ni-pat ‘tusk, horn, tusked pig’
Fij: Bauan bati-na ‘tooth (generic); tusk’

cf. also:

MM: Nduke patu ‘tooth’ (polite) (reflects *p)

7.1.2 Pig tusk

POc */l,n]ipon ‘tooth’ has reflexes across subgroups which indicate that pig tusks were included within its meaning.

POc */l,n]ipon ‘tooth, tusk’

Adm: Lou lia-n puo ‘tusk of pig’
NNG: Tuam livo ‘tooth’
SES: Lau lifo ‘tusk, tooth, porpoise teeth used as money’
SES: Sa’a niho ‘tusk, tooth’
SES: Arosi riho-na ‘tusk, tooth’
NCV: Mwotlap nɔ-lw ‘pig tusk’
NCV: Sa lio bʷè ‘pig tusk’
Pn: Tongan nifo ‘tooth, tusk, nippers’
Pn: Samoan nifo ‘tooth, tusk, horn’

A NGOc term, *joña, which apparently referred to ‘pig’s tusk’, is also reconstructable.
7.1.3 Tail

POc *iku(R) ‘tail’ continues a PAn etymon. Although many Oceanic wordlists simply give ‘tail’ as the gloss, a substantial number indicate that reflexes of this term relate primarily to tails of quadrupeds. It is likely that more spectacular tail feathers of birds would have been separately named (Clark reconstructs POc *lawe, tail feathers, plume’ in ch. 6) but more commonplace bird tails were probably referred to by *ikuR. Tails of fish are possibly also included.

PAn *iku R ‘tail’ (ACT)

POc *iku(R) ‘tail, of quadruped, some birds and possibly fish’ (cf ch. 6, p.277)

Adm: Nyindrou kiwi-n ‘tail’
NNG: Wogojo iku ‘tail’
NNG: Gitua igu ‘tail’
PT: Motu iu ‘tail (of animals)’
PT: Tawala giu-na ‘tail’
MM: Nakana iku ‘tail of dog’ (metathesis)
MM: Bulu iku ‘tail of dog’
MM: Tolai uku-na ‘tail’
SES: Gela iyu ‘tail’
SES: Bugotu iu-iyu ‘tail, of dog, bird, fish’
SES: Longgu iku-iiku ‘tail of dog, pig, etc.’
SES: Lau iki-kiu ‘tail of animal, fish (not bird)’
SV: Anejom n-iye ‘tail of fish’
NCal: Xârâcùù k’u ‘tail, general term, can include fish’
Mic: Woleaian iux ‘tail of bird’
Mic: Puluwatense wik ‘tail, as of birds, chickens, fish, hindquarters as of dog’
Pn: Tongan iku ‘tail (esp. of a quadruped)’ (hiku ‘tail of fish or reptile’)
Pn: Samoan iʔu ‘tail (as of a fish); tail of a shark (as a portion) when it is divided according to custom’
A number of Polynesian languages use reflexes of PPn *siku to refer to fish and animal tails. These may show contamination from POc *siku(n) ‘elbow, corner’, PPn *siku ‘extremity; end; tail (esp. of fish’)

7.2 Reptile body parts
7.2.1 Turtle shell

A POc term for the shell or carapace of turtles rests on agreement between Proto Micronesian *pʰōca and a cognate in an Admiralties language, Wuvulu. The Wuvulu word may be a borrowing from Micronesian.

POc *bo(dr,d)a ‘turtle shell’
Adm: Wuvulu poxa ‘turtle shell’
PMic *pʰōca ‘turtle shell’ (Bender et al. 2003)
Mic: Chuukese pʰōc ‘armour-plating of turtle’s or crocodile’s back’
Mic: Mortlockese pʰōs ‘outer layer of turtle shell, used for fishhooks, earrings etc.’
Mic: Puluwatese pʰōr ‘k.o. shell from turtle or coconut, used to make jewellery, bowls etc.’
Mic: Carolinian bʰōs ‘turtle shell’
Mic: Woleaian φʰōse ‘turtle shell’
Mic: Kiribati te-bʰora ‘turtle shell’

In many Polynesian languages and at least one Southeast Solomonic language, reflexes of POc *qunap ‘fish scales’ also refer to the shell of a turtle. (See also chapter 2, §66.3)

PEOc *qunap ‘turtle shell, fish scales’
SES: Arosi una-na ‘turtle shell, tortoiseshell’ (unahi ‘to remove shell from turtle, scale a fish’)
Pn: Niuean una ‘turtle shell’ (hinafi ‘fish scales’)
Pn: Tongan ʔuno ‘scale of fish, shell of turtle’
Pn: Rennellese ʔuna ‘outer shell, as of turtle’ (ʔunahi ‘fish scales’)
Pn: Samoan una ‘shell of hawksbill turtle, fish scale’ (unafi ‘to scale’)
Pn: Tikopia una ‘carapace of marine turtle’ (unafi ‘fish scale’)
Pn: Hawaiian una ‘turtle shell’ (unahi ‘fish scales’)
cf. also:
MM: Kia ŋapo ‘turtle shell’

7.2.2 Gaps in reconstruction
POc speakers almost certainly had names for several different parts of a turtle in addition to the shell. Arosi, for instance, has terms for ‘flat back plates of shell’, ‘curved side plates of shell’ and ‘turtle fat’. However, most dictionaries fail to record such details and we are unable to make secure reconstructions for other turtle parts.
From the few items located, it seems that in Polynesia flippers of turtle, stingray and whale may have been denoted by a derivative of the verb POc *kaba ‘wing’, PEOc *kaba-kaba ‘to flap wings’, reflexes of which can also refer to pectoral fins of fish (see ch.2, §66.4 and ch.6, §2). Terms for ‘turtle egg’ are commonly reflexes of the generic term for egg, POc *qatoluR. However, at least one language, To’aba’ita (SES) has a term, k*alaruru applying specifically to ‘a collection of turtle or spider eggs’. Sa’a (SES) has apota ‘eggs of turtle or crocodile’.
6 Birds

ROSS CLARK

1 Introduction

There may not have been a domain of the Proto Oceanic lexicon corresponding precisely
to the Class Aves. The creatures referred to by reflexes of POc *manuk (below) almost al-
ways include bats and sometimes other flying animals. For example, Kwaio layasi (a taboo
replacement for manu) ‘in the broadest categorical sense, includes birds, butterflies, moths,
bats, dragonflies and one species of frogs (Pseudophryne sp.)’ (Keesing 1975:119). At its
widest *manuk may have encompassed the entire non-aquatic animal kingdom (for discus-
sion see chapter 8, §§5 and 6). More restrictive expressions are often coined by adding a
modifier to *manuk, typically the verb ‘to fly’, for example Chuukese mār ‘living creature of
land or air (other than human)’, maççay ‘bird’ (cf. çay ‘fly’). The organisation of this book,
however, follows the Linnaean classification, and bats will be found in chapter 5, with only
a couple of cross-references below to connect the two.

POc *manuk (1) ‘flying creature’, (2) ‘animal’

Adm: Lou	man-mon	‘bird’
NNG: Mangap	man	‘bird, also includes bats and other flying creatures with bones’
NNG: Luqep (Pono)	man	‘bird (generic)’
NNG: Luqep (Pono)	manu-manu	‘bird sp., flycatcher’
NNG: Barai	man	‘bird’
NNG: Manam	may	‘bird, chicken’
NNG: Hote	menak	‘bird’
NNG: Mapos Buang	mank	‘bird’
MM: Bali	manuku	‘bird’
MM: Bola	manu	‘fish’
MM: Bulu	manu	‘bird’
MM: Kara (East)	manu	‘bird’
MM: Nalik *mani* ‘bird’
MM: Lihir *mon* ‘bird’
MM: Sursurunga *man* ‘bird, flying thing (not insects)’
MM: Banoni *manuyu* ‘bird’
MM: Simbo *manuyu* ‘all creatures, including animals, human beings, birds, marine mammals and possibly fish; thing; thingummybob’

PT: Iduna *manuga* ‘bird’
PT: Tawala *manuwa* ‘bird’
PT: Balawaia *manu* ‘bird’
PT: Motu *manu* ‘all creatures that fly, including flying foxes’
SES: Bugotu *manu* ‘bird’
SES: Gela *manu* ‘bird, flying creature’
SES: Kwaio *manu* ‘bird’
SES: Lau *manu* ‘bird’
SES: Sa’a *menu* ‘bird, insect’
SES: Longgu *manu* ‘bird’
SES: Arosi *manu* ‘bird, winged creature’
TM: Buma *menuko* ‘bird’
NCV: Mota *manu* ‘bird, flying creature, beetle, bat’
NCV: Raga *manu* ‘bird’
NCV: Big Nambas *ñanay* ‘bird’
NCV: Malua Bay *na-menox* ‘bird’
NCV: Paamese *a-manu* ‘bird’
NCV: Uripiv *nu-mön* ‘bird’
NCV: Port Sandwich *na-man* ‘bird’
NCV: Nguna *mānu* ‘bird’

PSV *manuy* ‘bird’ (Lynch 2001)

SV: Sye *menuy* ‘bird’
SV: Lenakel *menuk* ‘bird’
SV: Kwamera *menu* ‘bird’
SV: Anejom *in-man* ‘bird’

PMic *manu* ‘living creature of land or air’ (Bender et al. 1983)

Mic: Kiribati *te-man* ‘animal, bird’
Mic: Kosraean *men* ‘animal, insect’
Mic: Chuukese *mān* ‘living creature’
Mic: Puluwat *mān* ‘living creature’
Mic: Carolinian *māl* ‘living creature’
Mic: Ponapean *mān* ‘animal, insect’
Fij: Boumā *manu-manu* ‘animal, bird’
Fij: Wayan *manu-manu* ‘animal, living thing, creature, being, normally excluding human beings’
Fij: Rotuman *man-manu* ‘bird, animal, insect’
Pn: Tongan *manu* ‘animal, bird’
Pn: Niuean *manu* ‘animal’
Birds played varied roles in the life of Oceanic speakers. Besides the domesticated fowl (*Gallus gallus*), some types of birds (including frigate birds and parrots) were caught and kept as pets. Others were prized as food (pigeons and doves, some seabirds). The large eggs of the megapode were gathered for food. The feathers of many species had decorative uses, and their bones were used for a range of artefacts from needles to flutes. Birds could be caught with snares, nets or traps of various kinds, or shot with bow and arrow. (Special blunt-tipped arrows avoided damage to valued feathers.) Apart from direct exploitation, some birds could be sources of useful information, such as flocks of terns indicating the location of schools of fish, or landbirds far out at sea, indicating the presence of land nearby. Some, on the other hand, were harmful, such as the raptors that preyed on domestic fowl, or the swamp-hen with its destructive effects on taro gardens.

A widespread belief was that the voices of certain species could foretell such events as a death or the arrival of visitors. In eastern Polynesia, the visitors themselves were referred to as ‘birds’ (Proto Central Eastern Polynesian *manu-firi ‘chosen (?) birds’). And in myth, folk tale and religious belief, birds play almost as varied a range of roles as do humans. Among the Dobuans, ‘the native term for totem is the term for bird ... [and] one stranger may ask another, “what is your bird?”’ (Fortune 1963:32).

2 The life and parts of birds

A few aspects of avian anatomy and behaviour are different enough from their human (or mammalian) analogues that they might be expected to be separately lexicalised. In most cases, however, POc appears to have found commonalities with more general anatomical features of the animal kingdom.

Perhaps the most emblematic features of birds are feathers and wings. But the most general term for feathers is the same as that for human body hair and animal fur:

PMP *bulu ‘body hair, fur, feather, down, floss’ (Dempwolff 1938)
POC *pulu ‘body hair, fur, feathers’
Yap: Yapese *wul ‘feather’
NNG: Hote *vulu-k* ‘hair, feathers’
PT: Motu *hui-na* ‘hair, feather’
PT: Mekeo *pui* ‘feather’
MM: Nakanai *vulu* ‘feathers, feather headdress’
MM: Nehan *ulu-* ‘feather’
SES: Bugotu *vulu-ña* ‘feather, hair’
SES: Gela *vu-vulu* ‘hair, feather’
NCV: Mota *ulu-i* ‘hair, feathers’
NCV: Paamese *hilin* ‘hair (of head), feathers’
NCV: Lewo *vilu-na* ‘feather, hair’
NCal: Pije *pun-* ‘hair, feather’
NCal: Ajë *pūrū* ‘feather’
Fij: Wayan *vulu* ‘hair, fur, feathers’
Pn: Tongan *fulu-fulu* ‘hair (esp. on the body), fur, feathers’
Pn: Rennellese *hugu* ‘body hair, feathers, fur’
Pn: Māori *huru* ‘hair, feather’

A second set with this meaning is connected with PMP *ibut* ‘pull, uproot’ (Blust 1995):

POc *ipu* ‘hair, feather’

MM: Bola *ivu* ‘hair, feather’
MM: Nakanai *ivu-la* ‘head hair, plumage of bird’
MM: Tolai *ivu* ‘body hair, fur, feathers’
SES: Tolo *ivu-na* ‘hair, fur, feathers’
SES: Kwaio *ifīfu-na* ‘feather, hair’
SES: Sa’a *ihu* ‘hair, feather’

Both of the above refer to the overall covering of birds that is analogous to the hair covering of mammals. Feathers particularly conspicuous by length or colour have probably always been of special interest and valued as decoration. A term for such feathers is reconstructed for PMP, but its unambiguous Oceanic reflexes are restricted in scope:

PMP *lawi* ‘tail feather’ (Dempwolff 1938)

POc *lawe* ‘tail feather, plume’

Fij: Rotuman *labvi* ‘feather’
Fij: Bauan *lawe* ‘the larger feathers of a bird’
Pn: Tongan *lave* ‘long tail-feather’
Pn: Samoan *lave* ‘a part of a head-dress, a crest’

A number of forms suggested a variant reconstruction *la-lau.*

NNG: Manam *la-lau* ‘feather’
NNG: Bing *la-lahaw* ‘tail feathers of poultry’

1 This is distinct from POc *raun* ‘leaves, head hair’, reflected in Titan (Adm) *laun* ‘leaf, hair, feathers’, Bariai (NNG) *i-laun* ‘his/her hair, its feathers’.
A distinct lexical item POc *banic ‘wing, arm, hand, fin (probably pectoral)’ is widely attested. Its PMP ancestor *panij denoted only wings, but its meaning had clearly been extended in POc (see chapter 2 for a fuller cognate set and discussion).

PMP *panij ‘wing’ (Dempwolff 1938, acd)
POc *banic ‘arm, hand, wing, fin (probably pectoral)’

Adm: Kaniet	pani	‘wing, hand, fin’
Adm: Nyindrou	bani-n	‘wing’
Adm: Nauna	pin	‘wing’
Adm: Mondropolon	pani-n	‘wing’
Adm: Drehet	peni-ŋ	‘wing’
NNG: Gedaged	bani-n	‘fin, wing’
NNG: Wampur	bani-t	‘wing’
NNG: Mapos Buang	bani-s	‘fin, wing’
PT: Gumawana	pane-pane-na	‘fish fins, bird’s wing’
PT: Balawaia	vane	‘wing, fin’ (expected †bani)
PT: Motu	hani	‘wing, fin (expected †bani)’
PT: Mekeo	pa-pani	‘wing-like object, incl. fins’ (expected †fani)
MM: Vitu	baniti-	‘wing, upper arm’
NCV: Mota	panei, paniu	‘hand and arm, wing, pectoral fin, pig’s shoulder’
NCV: Merlav	bani	‘wing’
NCV: Atchin	na-“ben	‘wing, sail, armlet’
NCal: Iaai	beñi-n	‘hand, arm, fin’
	la-beñi-n	‘wing’
Mic: Marshallese	pā	‘arm, hand, wing, fin’
Mic: Carolinian	pp“an	‘pectoral fin and attached bone of fish’
Mic: Ulithian	pal	‘ventral fin; hand’

Dempwolff (1938) reconstructs PMP *kapak ‘wings; flutter’ on the basis of Oceanic data and Malay kepak, Ngaju Dayak kapak. This etymon appears to be reflected by the widespread etymon POc *kaba (n) ‘wing’, (v) ‘flap wings’.

PMP *kapak ‘wings; flutter’ (Dempwolff 1938)
POc *kaba (n) ‘wing’, (v) ‘flap wings’

SES: Lau	?aba	‘wing, hand, arm, foreleg’
SES: Kwaio	?aba-aba	‘to flap the wings’
SES: ’Are’are	apa	‘wing’
SES:	?apa-a	‘flap wings’
SES: Sa’a ʔapa-ʔapa ‘wing’
TM: Buma ava ‘wing’
-ava ‘to fly’
TM: Tanema -apa ‘to fly’
NCV: Mota yava ‘flap wings, fly’
NCV: Nokuku kave-n ‘wing’
NCV: Tolomako kava-kava ‘wing’
kava ‘fly’
NCV: Raga yaba ‘wing’
NCV: Malua Bay go-gep ‘fly’
SV: Lenakel no-kav-kav- ‘wing’
Fij: Wayan kā-kava ‘wing’
Fij: Rotuman kap-kapo ‘to flutter downwards as if about to alight (of
birds flying)’

PPn *kapa (v) ‘beat, of wings, fins, flippers’ (POLLEX)
PPn *kapa-kapa (s) ‘fish fins’; (v) ‘flap wings’ (POLLEX)
Pn: Tongan kapa-kapa ‘side fin; flap wings’
Pn: Samoan ʔapa-ʔapa ‘fin; flap wings’
ʔapa ‘to beat, of bird’s wing, turtle flipper etc.’
Pn: Pukapukan kapa-kapa ‘fish fin, turtle flipper, bird wing, arm of baby’
Pn: Tikopia kapa-kapa ‘pectoral fins; flap wings’
Pn: E Futunan kapa(tā) ‘beat wings’
Pn: Tuvalu kopa ‘flap wing’
Pn: Māori kapa-kapa ‘flap wings, flutter’

Derived from PPn *kapa is PPn *kapa-kau ‘wing, fin’:

PPn *kapa-kau ‘wing, fin’ (POLLEX)
Pn: Tongan kapakau ‘wing, winged’
Pn: Niuean tapakau ‘wing of a bird, fin of a fish’
Pn: E Futunan kapakau ‘wing’
Pn: E Uvean kapakau ‘wing’
Pn: Rennellese kapakau ‘wing’
Pn: Tikopia kapakau ‘shoulder, upper arm, wing, fin’
Pn: Luangiua apaʔau ‘wing’
Pn: Samoan ʔapaʔau ‘wing’
Pn: Tuvalu kapakau ‘wing, arm, lateral fin’

Blust (ACD) also reconstructs PWMP *kepek ‘flap wings’ (expected POC form †*kopo(k))
and PWMP *kepay-kepay ‘flap (wings, fins of fish, etc.)’ (expected POC form †*kope) with
supporting data, and crossreferences the doublets *kapay and *kipay (without supporting
data) (expected POC forms †*kape and †*kipe). PMP *kapay is perhaps reflected by Tawala
apape ‘wing’. I find no straightforward reflexes of Blust’s other reconstructions, but Iduna
(PT) ofa-na ‘(its) wing’ and Gela (SES) gapo-gapo ‘spread wings, flap, flutter’ suggest that
there were perhaps several phonologically similar forms in POC cognate with the forms found
in Western Malayo-Polynesian languages.
A bird’s beak was most probably referred to as POc *ŋuju, denoting the external or protruding aspect of the mouth. There is also some evidence for POc *muju, in the form of non-Oceanic terms from which Blust (aCD) reconstructs PWMP *mu(n)cuŋ ‘mouth (of an animal), snout’,2 together with the Iduna, Gapapaiwa and Balawaia terms listed below, reflecting PPT *mu(dj)u. However, it may be that this is a chance similarity and that PPT *muju was an irregular reflex of POc *ŋuju.3

POc *ŋuju ‘mouth, lips, snout, beak’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT: Motu</td>
<td>udu</td>
<td>‘mouth, nose, beak’</td>
</tr>
<tr>
<td>MM: Nehan</td>
<td>ŋohŋoh-</td>
<td>‘beak’</td>
</tr>
<tr>
<td>MM: Roviana</td>
<td>ŋuzu</td>
<td>‘beak’</td>
</tr>
<tr>
<td></td>
<td>ŋuzu-ŋuzu</td>
<td>‘carved prow of war canoe’</td>
</tr>
<tr>
<td>SES: Kwaio</td>
<td>ŋidu-na</td>
<td>‘beak’</td>
</tr>
<tr>
<td>Fij: Wayan</td>
<td>ŋusu</td>
<td>‘mouth of an animal; external mouth or lips of a person, fish, etc.; beak (of bird or turtle); snout or muzzle of a dog, pig, etc.’</td>
</tr>
<tr>
<td>Pn: Tongan</td>
<td>ɲutu</td>
<td>‘mouth, beak, orifice’</td>
</tr>
<tr>
<td>Pn: Rennellese</td>
<td>ɲutu</td>
<td>‘mouth, beak, breath’</td>
</tr>
<tr>
<td>Pn: Māori</td>
<td>ɲutu</td>
<td>‘lip, beak, rim, mouth, entrance’</td>
</tr>
</tbody>
</table>

cf. also:

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT: Iduna</td>
<td>mudu</td>
<td>‘carved prow’</td>
</tr>
<tr>
<td>PT: Gapapaiwa</td>
<td>mutu</td>
<td>‘lips, beak’</td>
</tr>
<tr>
<td>PT: Balawaia</td>
<td>muru</td>
<td>‘beak’</td>
</tr>
</tbody>
</table>

Many, perhaps most Oceanic languages make some lexical distinctions among the tails of birds, fish, reptiles and mammals. The following very common term for tail appears applicable to birds in many languages:

PAn *ikuR ‘tail’ (Blust 1995)

POc *iku(R) ‘tail, of quadruped, some birds and possibly fish’ (cf ch. 5, §7.1.3)

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm: Nyindrou</td>
<td>kiwi-n</td>
<td>(metathesis)</td>
</tr>
<tr>
<td>NNG: Manam</td>
<td>eku</td>
<td></td>
</tr>
<tr>
<td>NNG: Gitua</td>
<td>igu</td>
<td></td>
</tr>
<tr>
<td>NNG: Gedaged</td>
<td>wi-n</td>
<td>(metathesis)</td>
</tr>
<tr>
<td>NNG: Takia</td>
<td>uyu-n</td>
<td></td>
</tr>
<tr>
<td>PT: Kilivila</td>
<td>yeyu-na</td>
<td></td>
</tr>
<tr>
<td>PT: Tawala</td>
<td>giu-na</td>
<td>(metathesis)</td>
</tr>
<tr>
<td>PT: Balawaia</td>
<td>yi-yu</td>
<td>‘tail (of dog, bird, fish)’</td>
</tr>
<tr>
<td>MM: Nakanai</td>
<td>kiu</td>
<td>(metathesis)</td>
</tr>
<tr>
<td>SES: Bugotu</td>
<td>iu-i-yu</td>
<td>‘tail (of dog, bird, fish)’</td>
</tr>
<tr>
<td>SES: Kwaio</td>
<td>?iʔi-na</td>
<td></td>
</tr>
</tbody>
</table>

2 Isneg motoŋ ‘mouth’, Iban muncoŋ ‘protruding, sticking out, esp. of jaw or lips’, Toba Batak munsuŋ ‘beak, snout’, Malay moncoŋ ‘snout’, Wolio munca ‘(outside of the) mouth, beak, snout’.

3 Both *ŋuju and *muju were also apparently used for the carved prow of a canoe, i.e. its ‘beak’: see vol.1, p.189.
Finally, the feet of most bird species are likened to animal claws and fingernails:

PMP *kuSkuS* ‘claw, finger, toenail’

POc *kuku* ‘nail (of hand or foot), claw’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Mangap</td>
<td>kukūnu</td>
<td>‘claw’</td>
</tr>
<tr>
<td>PT: Tawala</td>
<td>gigi-na</td>
<td>‘claw’</td>
</tr>
<tr>
<td>SES: Bugotu</td>
<td>yuyu</td>
<td>‘hoof, claw’</td>
</tr>
<tr>
<td>SES: Gela</td>
<td>kuku</td>
<td>‘swoop on prey, as a bird’</td>
</tr>
<tr>
<td>SES: Tolo</td>
<td>hahu-na</td>
<td></td>
</tr>
<tr>
<td>Mic: Kiribati</td>
<td>ūki</td>
<td></td>
</tr>
<tr>
<td>Mic: Chuukese</td>
<td>kki-ɾ, wík</td>
<td></td>
</tr>
<tr>
<td>Mic: Kiribati</td>
<td>ūki</td>
<td></td>
</tr>
<tr>
<td>Pn: Tongan</td>
<td>kuku</td>
<td>‘grasp, grip, clutch, hold on to’</td>
</tr>
<tr>
<td>Pn: E Futunan</td>
<td>(moti)kuku</td>
<td>‘claws’</td>
</tr>
<tr>
<td>Pn: Māori</td>
<td>(mai)kuku</td>
<td>‘nail, claw, hoof’</td>
</tr>
</tbody>
</table>

Other anatomical features such as the cock’s comb and spurs are lexicalised diversely and there is no clear POc reconstruction.

The laying of relatively large (and often edible) eggs is distinctive of birds (along with turtles and other reptiles). A well established reconstruction is:

PMP *qateleR* ‘egg, testicle’ (Blust 1995)

POc *qateluR* ‘egg’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm: Aua</td>
<td>aʔulul</td>
<td></td>
</tr>
<tr>
<td>Adm: Seimat</td>
<td>atōli</td>
<td></td>
</tr>
<tr>
<td>Adm: Loniu</td>
<td>elutu</td>
<td>(metathesis)</td>
</tr>
<tr>
<td>Adm: Mussau</td>
<td>otōlu</td>
<td></td>
</tr>
<tr>
<td>NNG: Kairiru</td>
<td>katol</td>
<td></td>
</tr>
<tr>
<td>NNG: Tumleo</td>
<td>tali-n</td>
<td></td>
</tr>
<tr>
<td>NNG: Yabem</td>
<td>ɲa-keʔsulu</td>
<td></td>
</tr>
<tr>
<td>NNG: Mangap</td>
<td>(man) kutulūnu</td>
<td></td>
</tr>
<tr>
<td>NNG: Arawe</td>
<td>gasuslu</td>
<td></td>
</tr>
<tr>
<td>PT: Motu</td>
<td>gatoi</td>
<td></td>
</tr>
<tr>
<td>PT: Mekeo</td>
<td>aoi</td>
<td></td>
</tr>
<tr>
<td>MM: Nakanai</td>
<td>hatotolu</td>
<td></td>
</tr>
<tr>
<td>MM: Tangga</td>
<td>katalu</td>
<td></td>
</tr>
<tr>
<td>MM: Patpatar</td>
<td>tulur</td>
<td></td>
</tr>
</tbody>
</table>
A word of more general reference, POc *puaq, originally ‘fruit’, but generalised as a classifier for a wide range of more or less spherical objects, is sometimes used for eggs, but this may well be the result of repeated local extensions.

Despite the great variety in the form and construction of birds’ nests (note PMic *fata ‘platform, nest’ from POc *patar ‘platform’, vol.1, p.57 and p.190), a common term can be reconstructed (sometimes stated as also applying to nests or dens of animals).

PEMP *niku(i) ‘nest’
POc *(n,ñ)iiku~*nuki ‘nest’

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Amara</td>
<td>o-nuk</td>
<td>‘nest’</td>
</tr>
<tr>
<td>NNG: Aria</td>
<td>o-nuk</td>
<td>‘nest’</td>
</tr>
<tr>
<td>NNG: Mapos Buang</td>
<td>nwi-s</td>
<td>‘nest, den’</td>
</tr>
<tr>
<td>PT: Are</td>
<td>nigu-na</td>
<td>‘nest, den, hole’</td>
</tr>
<tr>
<td>PT: Tawala</td>
<td>nmu</td>
<td>‘nest’</td>
</tr>
<tr>
<td>PT: Balawaia</td>
<td>nuyi</td>
<td>‘nest, den’</td>
</tr>
<tr>
<td>MM: Kara (East)</td>
<td>niu</td>
<td>‘nest’</td>
</tr>
<tr>
<td>MM: Nehan</td>
<td>niu</td>
<td>‘nest’</td>
</tr>
</tbody>
</table>

Cognates in SHWNG languages include Mor nibi, niwi, Waropen ni, Biak niv (Anceaux 1961).
MM: Maringe Ⱡoku
SES: Bugotu Ⱡiku
SES: Gela niku
SES: Kwaio nūʔi
SES: Tolo niku-na
NCV: Mota niyi
NCV: Paamese a-nu, nūnu

A PCP form is also reconstructable:

PCP *ova ‘nest’

 Fij: Wayan ova ‘nest of a bird’
 Pn: E Futunan ōfa(ŋa) ‘nest’
 Pn: Samoan ōfa(ŋa) ‘nest’
 Pn: Emae ofa(ŋa) ‘nest of bird or animal’
 Pn: Māori ōfa(ŋa) ‘nest’

The actions surrounding eggs and nests are less distinctively lexicalised. The verb corresponding to ‘lay’ is etymologically various (e.g. Lau kʷala ‘give birth, beget, lay an egg’, Bauan vaka-lutu ‘drop, lay (egg)’, Paamese mūmoni ‘make’ mūmon orelīte ‘lay an egg’), but note the following:

POc *tau(p) ‘lay egg’

 POc *taup-i- ‘sit on eggs’

 NNG: Bing tāw ‘lay egg’
 MM: Nakanai tau ‘put, place, lay egg’
 SES: Gela taov-i ‘sit on eggs’
 SES: Longgu taov-i(a) ‘sit on and hatch’
 NCal: Iaai hau ‘lay egg’

The action of incubating eggs by sitting on them is compared with that of covering and protecting the young in the following verb attributable to PEOc:

PEOc *ovi(s), *ovis-i- (1) ‘brood, sit on eggs’; (2) ‘cover chicks with wings’

 SES: Bugotu ovi ‘to sit on eggs, hatch’
 SES: Tolo ovi(a) ‘to sit on and hatch’
 Mic: Kosraean apis ‘cover, hug, hold, protect under wings, brood’
 Fij: Wayan oviði ‘brood, sit on eggs; cover chicks with wings’
 Fij: Bauan ovið(a) ‘to brood, of hens; to cover up the chickens under her wings’

When the egg hatches, the words used are generally those for the breaking open of rigid containers (the coconut probably being the most familiar comparison), but no consistent etymon emerges.

The action of flying is as emblematic of birds as their possession of feathers and wings, and several verbs are associated with it (see also POc *kaba ‘(n) wing, (v) flap wings’ above):
PMP *Rebek ‘to fly’

POc *Ropok ‘fly, jump’

Adm: Loniu ōh
NNG: Kairiru -rho
NNG: Manam ro
NNG: Yabem -lob
NNG: Takia -rou
NNG: Mengen (Poeng) lo ‘fly, go’

PT: Gapapaiwa rovo ‘leap, skip, fly’
MM: Bali rovoko
MM: Nakanai lovo
MM: Tolai rowo
MM: Siar rofо
Ses: Bugotu ḅovo
Ses: Sa’a loho
Ncv: Mota rowo ‘spring, leap, fly’
Ncv: Uripiv o-row ‘fly, jump’

Fij: Wayan rо ‘fly up, rise up through the air’ (expected †rovo; cf. nо ‘sit, stay’ < *nopo)

POc *tapwa may perhaps have referred to gliding or soaring; the apparently contradictory meaning of ‘flap wings’ in some languages may represent contamination from POc *kaba ‘flap wings’ (above).

POc *tapwa ‘glide, soar’

PT: Gapapaiwa tapi ‘flap’
MM: Nakanai tapa-pa ‘flap’
MM: Madak rava ‘fly’
MM: Tolai ta-tap ‘flap’
MM: Halia (Haku) tapa ‘fly’
MM: Simbo ta-t ava ‘fly’
MM: Maringe tava ‘glide, soar with wings spread, hover’
Ses: Tolo ava ‘to hover or glide’
Ncal: Nengone capa-capa ‘flutter’
Fij: Bauan taba-na ‘wing’
Pn: Hawaiian kaha ‘to swoop, as a kite; to be poised, soar (as a bird)’
Pn: Rarotongan taʔa ‘glide, plane, skim, sail through the air’

POc *toki ‘peck’ (also perhaps of fish nibbling at bait) (cf. *toki ‘chop’, vol.1, p.250)

MM: Patpatar tōk ‘peck (food)’
Ses: Tolo tokiа

PMic *toki ‘bite, peck’ (Bender et al. 2003)

Mic: Sonsorolese teyeа ‘to peck, as birds’
Polynesian reflexes show *ŋ* for expected *k*:

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn: Samoan</td>
<td>toni</td>
<td>‘peck at’</td>
</tr>
<tr>
<td>Pn: Nukuoro</td>
<td>toni</td>
<td>‘peck, nibble’</td>
</tr>
<tr>
<td>Pn: Māori</td>
<td>toni</td>
<td>‘peck, nibble’</td>
</tr>
</tbody>
</table>

3 Bird names

There is a strong consensus among recent researchers locating the Proto Oceanic homeland in Northwest Melanesia, with the island of New Britain a focus of probabilities. I will follow this view insofar as it helps give a perspective on the dimensions of the problem of reconstructing this particular lexical field. In what follows I will use the term ‘homeland’ to refer to New Britain and its neighbouring islands. The birds among which referents for POc reconstructions will be sought in this study are those which are residents of or regular visitors to the Bismarck Archipelago, as described in recent handbooks (Coates 1985, 1990; Coates & Peckover 2001). This gives a total of slightly more than 200 species belonging to 126 genera, 77 of them monotypic.

The reconstructions presented below do not comprise all or even most of a plausible avian terminology of Proto Oceanic. Entire families of birds which were almost certainly known to the POc speakers are unrepresented here, because the small number of terms so far recorded for living Oceanic languages do not yield up any useful cognate sets. Examples are the grebes (Podicipedidae), pelicans (Pelecanidae), cormorants (Phalacrocoracidae), ibises (Threskiornithidae), nightjars (Caprimulgidae), flowerpeckers (Dicaeidae), waxbills (Estrildidae) and drongos (Dicruridae). This lack, in turn, is primarily a result of the insufficiency of the data, particularly for languages of Northwest Melanesia, where the avifauna is the richest. The situation has improved, but only slightly, since my previous study (Clark 1994). There is still an almost complete lack of really comprehensive studies.

It may be useful, nevertheless, to have some idea of what such a taxonomy would have looked like. In my earlier paper I reasoned by analogy from two detailed studies from societies close to the Oceanic region, though both non-Austronesian in language: Majnep & Bulmer (1977) on Kalam of the New Guinea highlands, and Taylor (1990) on Tobelo of north Halmahera. Both studies found a total of about 200 lexemes for avian taxa. The typical taxon corresponds to a Linnaean genus, though as a substantial proportion of genera were monotypic (represented by a single species) within the area studied, there is a certain ambiguity between genus and species. Genus-level taxon labels in Kalam, for instance, would include *ccp* covering the Australian Goshawk (*Accipiter fasciatus*) and Black-mantled Goshawk (*A. melanochlamys*), *kwvt* for both the Amboina Cuckoo dove (*Macropygia amboinensis*) and the Black-billed Cuckoo dove (*M. nigrirostris*), *mmañp* labelling both the Glossy Swiftlet (*Collocalia esculenta*) and the Mountain Swiftlet (*C. hirundinacea*), *plolom* both the Mountain Yellow-billed Kingfisher (*Halcyon megarhyncha*) and the Sacred Kingfisher (*H. sancta*), and *walkobney* both the Black-fronted White-eye (*Zosterops minor*) and the Mountain White-eye (*Z. novaeguineae*). In some cases, conventional distinguishing expressions exist to discriminate between the two species, for example. *ccp msey-ket* ‘Australian Goshawk’ (*msey-ket* ‘open country’) versus *ccp kamay-ket* ‘Black-mantled Goshawk’ (*kamay-ket* ‘beech tree sp.’).
On the other hand, some Kalam taxa correspond to Linnaean groups larger than the genus, and some cut across the terminology altogether, recognizing convergent similarities: *spsep* refers both to the Mountain Pygmy Parrot (*Micropsitta bruijni*) and the Pink-faced Nuthatch (*Daphoenositta miranda*), *sskl* refers to both Whitehead’s Swiftlet (*Collocalia whiteheadi*) and the Pacific Swallow (*Hirundo tahitica*). (Cf. POc *kabakabal* in §5.12.)

Most birds produce some sound audible to humans, whether territorial song, flocking calls or alarm cries, and often this is distinctive enough to be recognised as emblematic of the bird itself. The transcoding of bird vocalizations into human speech sounds is a universal phenomenon, and birds are probably onomatopoetically named more than any other class of living things. In theory this can pose an obstacle to the comparative method, if the independent application of an onomatopoetic name to the same bird in different languages produces pseudo-cognates. However, the more remotely related the two languages, the less likely such pairs of names are to follow regular sound correspondences. The approach taken here will be to accept exact cognate sets as genuine, but cases where there are repeated irregularities despite similarity of phonetic form will be taken as, at least, suspect for reconstruction purposes.

In theory we would like to be able to say how POc speakers would have named each species of bird they were familiar with. Some reasons why this is not possible at the present state of knowledge have already been reviewed. There is also the fact that, even if we take the location and date of the POc-speaking community as fairly precisely known, the composition of the avifauna at that place and time is by no means so certain. The distribution of bird species is a changing set of circumstances, affected both by expansion of successful species and by extinction of others. In practice all we have to go on (except for some scattered archaeological evidence) is the present situation. But even in a situation where several reasonably good cognate sets are available, which could in theory be assigned to several species present in the Oceanic homeland, the assignment may be difficult since our data is weakest precisely in the area where the fauna is richest.

Below I present nearly 200 cognate sets, of which about 80 are attributed to Proto Oceanic and the remainder to various interstages. Following a discussion of the domestic fowl, the families are arranged into three large groups: the non-passerine land and fresh-water birds; the passerines; and the sea and shore birds. A typical local inventory contains roughly equal numbers of species in these three groups. (Bregulla 1992 on Vanuatu, for example, has 36 passerine species, 45 sea birds and 40 others.) All scientific and ‘common’ English names have been normalised to follow the checklist of Howard & Moore (1991).

4 The domestic bird: *Gallus gallus*

The Red Jungle Fowl, *Gallus gallus*) spread as a domesticate along with Oceanic speakers throughout almost all the Pacific islands. There does not seem to be any clear lexical distinction between domestic and feral birds, though descriptors may be added, as in Samoan *moa ‘āivao* ‘wild fowl’ (cf *vao* ‘bush, jungle’). The glosses ‘chicken’ and ‘fowl’ have been taken as equivalent.

A number of Oceanic languages use a word for fowl which is most commonly the generic term for ‘bird’.
Figure 6.1 *Gallus gallus*, Red Jungle Fowl

PMP *manuk* ‘bird, fowl’
POc *manuk* ‘Red Jungle-fowl, *Gallus gallus*’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yap</td>
<td>ni-mēn</td>
<td>bird, chicken</td>
</tr>
<tr>
<td>NNG: Manam</td>
<td>mag</td>
<td>bird, chicken</td>
</tr>
<tr>
<td>NNG: Mangap</td>
<td>man</td>
<td></td>
</tr>
<tr>
<td>SV: Kwamera</td>
<td>menu</td>
<td>‘bird, prototypically fowl’</td>
</tr>
<tr>
<td>SV: Lenakel</td>
<td>menuk</td>
<td></td>
</tr>
<tr>
<td>Mic: Carolinian</td>
<td>malix</td>
<td>(loan from Palauan)</td>
</tr>
<tr>
<td>Mic: Namoluk</td>
<td>malok</td>
<td>(loan from Palauan)</td>
</tr>
<tr>
<td>Mic: Ponapean</td>
<td>malek(enwel)</td>
<td>(loan from Palauan)</td>
</tr>
</tbody>
</table>

Note that Bender et al. (2003:327) consider the Micronesian forms to be loans from Chamorro *mannok* ‘chicken’.

A more widely distributed set of terms for the fowl is clearly an imitative term for the distinctive call of the male bird. A pattern of consonants occurs which could represent POc *k-k-r-k*, though the vowels are not consistent and one or other of the consonants may not appear. Such distant semblances as Japanese *kokekokkō* and French *cocorico* ‘cock-a-doodle-doo’ suggest that this sequence may have, contrary to appearances, something natural about it. And yet, the shift of these words from sound-imitative to referential (including the female) cannot have taken place many times independently. I therefore hesitantly offer a reconstruction. However, it is noteworthy that *k* in this term is never lenited (to ɣ, ʔ etc) in the many languages where this is a regular change. This presumably reflects its onomatopoeic origin.

POc *kokorako* ‘fowl, *Gallus gallus*, esp. male’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm: Loniu</td>
<td>koha</td>
<td></td>
</tr>
<tr>
<td>Adm: Nyindrou</td>
<td>kakaro (mʷan)</td>
<td>‘rooster’</td>
</tr>
<tr>
<td>NNG: Labu</td>
<td>kakaru</td>
<td></td>
</tr>
<tr>
<td>NNG: North Watut</td>
<td>kokora</td>
<td></td>
</tr>
<tr>
<td>NNG: Bariai</td>
<td>kokako</td>
<td></td>
</tr>
<tr>
<td>NNG: Kove</td>
<td>kok(o)ako, kahako</td>
<td></td>
</tr>
</tbody>
</table>

The possible Polynesian reflex of the third term has undergone a significant semantic shift.

POc *toqa ‘fowl’

NNG: Kairiru (m’an) tok (m’an ‘bird’)
MM: Teop toa ‘small water fowl’
NCV: Mota toa
NCV: Lakon toa
NCV: Raga toa
NCV: Matantas na-toa
The common Polynesian word for the fowl has no certain external cognates, though it has apparently been borrowed rather far afield. However, it is possible that Wayan and Bauan *moa* are cognate with PPn *moa*, as PCP *oa* often becomes ə, at least in Western Fijian. If they are, then PCP *moa* is reconstructable, but with uncertain denotation.

PPn *moa* ‘fowl’

<table>
<thead>
<tr>
<th>PPn</th>
<th>Tongan</th>
<th>moa</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPn</td>
<td>Niuean</td>
<td>moa</td>
</tr>
<tr>
<td>PPn</td>
<td>E Futunan</td>
<td>(moa)toʔa</td>
</tr>
<tr>
<td>PPn</td>
<td>Tikopia</td>
<td>toa</td>
</tr>
<tr>
<td>PPn</td>
<td>Marquesan</td>
<td>toa</td>
</tr>
<tr>
<td>PPn</td>
<td>Nukuoro</td>
<td>moa</td>
</tr>
<tr>
<td>PPn</td>
<td>Tahitian</td>
<td>moa</td>
</tr>
<tr>
<td>PPn</td>
<td>Rarotongan</td>
<td>moa</td>
</tr>
<tr>
<td>PPn</td>
<td>Māori</td>
<td>moa</td>
</tr>
</tbody>
</table>
Possible borrowings from Polynesian include:

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yap</td>
<td>moe?</td>
<td></td>
</tr>
<tr>
<td>NCal</td>
<td>meye</td>
<td></td>
</tr>
<tr>
<td>NCal</td>
<td>meo</td>
<td></td>
</tr>
<tr>
<td>Mic</td>
<td>moa</td>
<td></td>
</tr>
<tr>
<td>Fij</td>
<td>mō</td>
<td>‘rail sp., probably Porzana tabuensis’</td>
</tr>
<tr>
<td>Fij</td>
<td>mō</td>
<td>‘Sooty Crake, Porzana tabuensis’</td>
</tr>
<tr>
<td>Fij</td>
<td>moa</td>
<td></td>
</tr>
</tbody>
</table>

A common observation about animal taxonomy is that terminology for domesticated species will be more detailed than for most wild species—specific names for sexes, ages and varieties are to be expected. This does not seem to be the case for the fowl in Proto Oceanic.

One term, reconstructed as PMP *qupa ‘hen, egg-laying chicken’, appears to have Oceanic reflexes only in Polynesian and Rotuman (the latter a borrowing):

PMP *qupa ‘hen, egg-laying chicken’ (**ACD**)

POc *qupa ‘hen’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn</td>
<td>ʔufa</td>
<td>‘young hen, pullet’</td>
</tr>
<tr>
<td>Pn</td>
<td>uha</td>
<td>‘hen; female of animals’</td>
</tr>
</tbody>
</table>

cf. also:

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fij</td>
<td>ʔufa</td>
<td>(borrowed from Polynesian source)</td>
</tr>
</tbody>
</table>

The male of the species is most commonly simply denoted by ‘male fowl’ (Manam *maŋ moane*, Motu *kokoruku maruanena,*’Are’are *kuamāne*), and chicks as ‘child of fowl’ (Motu *kokoroku natuna*, Cēmuhī *nahi-ja*, Bauan *luve ni toa*).

5 Non-passerine land and fresh water birds

Though in species numbers they are roughly a third of the total, this group of families accounts for well over half the cognate sets and reconstructions presented here. Land birds are likely to be seen by everyone in the community, and not just those who go to sea. The non-passerines are on the whole larger and more conspicuous than the passerines. They are therefore likely to have names known by everyone. They are also objectively more diverse as a group, and hence more likely to be recognised and lexicalised (Boster, Berlin & O’Neill 1986: 577-578).

5.1 Cassowaries (Casuariidae)

A single species of this family of huge flightless birds, the Dwarf Cassowary (*Casuarius bennetti*), lives in the Oceanic homeland. Although cassowaries do not extend even into the Solomons, enough reflexes exist in languages of the NNG, PT and MM groups to support the reconstruction below. Attribution of such a form to POc is further supported by numerous cognates in languages to the west, e.g. Biak (SHWNG) *(man)*swar, Kaiwai (CMP) *asawar* (Anceaux 1961).
Figure 6.2 *Casuarius bennetti*, Dwarf Cassowary

PCEMP *kasawari* ‘cassowary’

POc *kasuari* ‘Dwarf Cassowary, *Casuarius bennetti*’ (Milke 1965)

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Kairiru</td>
<td>qaiwar</td>
</tr>
<tr>
<td>NNG: Manam</td>
<td>kaluari</td>
</tr>
<tr>
<td>NNG: Tumleo</td>
<td>sauwil</td>
</tr>
<tr>
<td>NNG: Kela</td>
<td>kusua</td>
</tr>
<tr>
<td>NNG: Yabem</td>
<td>ke?sewa</td>
</tr>
<tr>
<td>NNG: Musom</td>
<td>suwe</td>
</tr>
<tr>
<td>NNG: Aribwatsa</td>
<td>subeʔ</td>
</tr>
<tr>
<td>NNG: Amara</td>
<td>akaiuor</td>
</tr>
<tr>
<td>NNG: Mangap</td>
<td>kaiwor</td>
</tr>
<tr>
<td>NNG: Tami</td>
<td>kisiwa</td>
</tr>
<tr>
<td>PT: Suau</td>
<td>?asuari</td>
</tr>
<tr>
<td>PT: Are</td>
<td>kasuare</td>
</tr>
<tr>
<td>PT: Nimoa</td>
<td>hasuari</td>
</tr>
<tr>
<td>MM: Nakanai</td>
<td>textitkehu</td>
</tr>
<tr>
<td>MM: Lihir</td>
<td>kosol</td>
</tr>
</tbody>
</table>

5.2 Herons (Ardeidae)

The herons of the homeland include three species of large herons or egrets of the genus *Egretta* as well as the Green-backed Heron (*Butorides striatus*), the Nankeen Night Heron (*Nycticorax caledonicus*) and two bitterns (*Ixobrychus* spp.). Most cognate sets refer to the large and conspicuous *Egretta* herons, which may have been the basis for a generic term.
It appears that *kao may have been a generic term for herons in PCP. Both Fijian and Polynesian introduce new terms (see below) for *Egretta*, and *kao* mainly survives in reference to less conspicuous species. Among Central Pacific reflexes only the Takuu and Māori reflexes may be considered unproblematic. The Nukuoro word is probably borrowed from a Micronesian language.

POc *kaopa* ‘heron, probably *Egretta* sp.’

Adm: Drehet kɔp ‘heron sp.’
<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SES: Gela</td>
<td>kaova</td>
<td>‘egret’</td>
</tr>
<tr>
<td>SES: Tolo</td>
<td>haova</td>
<td>‘a long-legged, long-necked coastal bird’</td>
</tr>
<tr>
<td>SES: Arosi</td>
<td>kaop’a</td>
<td>‘egret’</td>
</tr>
<tr>
<td>SES: Bauro</td>
<td>yaoha</td>
<td>‘Reef Heron, Egretta sacra’</td>
</tr>
<tr>
<td>NCV: Mota</td>
<td>kaova</td>
<td>‘an egret, herodias’</td>
</tr>
<tr>
<td>NCV: SE Ambrym</td>
<td>koh</td>
<td>‘Egretta sacra’</td>
</tr>
<tr>
<td>NCal: Nélémwa</td>
<td>kōk, kōova</td>
<td>‘Egretta sacra’</td>
</tr>
<tr>
<td>NCal: Fwáí</td>
<td>kōova</td>
<td>‘Egretta sacra’</td>
</tr>
<tr>
<td>NCal: Paicí</td>
<td>kɔɔ</td>
<td>‘Egretta sacra’</td>
</tr>
<tr>
<td>NCal: Xârâcûû</td>
<td>kaik’a</td>
<td>‘white heron sp.’</td>
</tr>
<tr>
<td>NCal: Xârâcûû</td>
<td>gɔkɔɔ</td>
<td>‘Egretta sacra’</td>
</tr>
<tr>
<td>Pn: Rennellese</td>
<td>you</td>
<td>‘Black Bittern, Ixobrychus flavicollis’</td>
</tr>
<tr>
<td>Pn: Pileni</td>
<td>kova</td>
<td>‘heron, egret’</td>
</tr>
</tbody>
</table>

Both Polynesian Outlier names are presumably borrowed from SE Solomonic languages.

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM: Buma</td>
<td>ove(ne)</td>
<td>‘Reef Heron, Egretta sacra’</td>
</tr>
<tr>
<td>PNCV</td>
<td>*qova</td>
<td>‘heron, probably Egretta sp.’</td>
</tr>
<tr>
<td>NCV: Raga</td>
<td>ova</td>
<td>‘Egretta sacra (dark phase)’</td>
</tr>
<tr>
<td>NCV: Kiá</td>
<td>ova</td>
<td>‘heron’</td>
</tr>
<tr>
<td>NCV: Lewo</td>
<td>yeva</td>
<td>‘heron’</td>
</tr>
<tr>
<td>NCV: Namakir</td>
<td>ʔov</td>
<td>‘reef heron’</td>
</tr>
<tr>
<td>NCV: Nakanamanga</td>
<td>ʔova</td>
<td>‘reef heron (dark phase)’</td>
</tr>
</tbody>
</table>

The relation among the three cognate sets above is not entirely clear. The ordering is based on their successively narrower distribution, from which one might conjecture that *kao was the original POc term, *kaopa an extension of this, and *qopa a truncation of *kaopa restricted to North–Central Vanuatu and its immediate neighbour Temotu area. The above cognate complex is almost unrepresented in the Papuan Tip group, which seems to replace it with the following:

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPT</td>
<td>*boqe</td>
<td>‘heron, Egretta sp.’</td>
</tr>
<tr>
<td>PT: Tubetube</td>
<td>boi</td>
<td>‘reef heron’</td>
</tr>
<tr>
<td>PT: Wagawaga</td>
<td>boi</td>
<td>‘Reef Heron, Egretta sacra’</td>
</tr>
<tr>
<td>PT: Iduna</td>
<td>foi</td>
<td>‘Intermediate Egret, Egretta intermedia’</td>
</tr>
<tr>
<td>PT: Kilivila</td>
<td>boi</td>
<td>‘heron’</td>
</tr>
<tr>
<td>PT: Muyuw</td>
<td>bouy</td>
<td>‘white crane’</td>
</tr>
<tr>
<td>PT: Balawaia</td>
<td>boge</td>
<td>‘white heron’</td>
</tr>
<tr>
<td>PT: Hula</td>
<td>poge</td>
<td>‘heron’</td>
</tr>
<tr>
<td>PT: Lala</td>
<td>boe</td>
<td>‘heron’</td>
</tr>
<tr>
<td>PT: Mekeo</td>
<td>foe</td>
<td>‘heron, egret’</td>
</tr>
</tbody>
</table>

Two of the identifications below are problematic: the Pied Heron, *Egretta picata*, is a mainland species not known to occur in the Bismarcks, and the Grey Heron, *Ardea cinerea*, does not occur in the New Guinea area at all.
POc *bʷaro ‘heron, probably *Egretta sp.’

NNG: Yabem bʷalo ‘heron’
NNG: Bing buar-buar ‘Pied Heron, *Egretta picata’
NNG: Dami bar ‘heron’
NNG: Gedaged (ma)b̪ol ‘Grey Heron, *Ardea cinerea’
PT: Motu baira ‘pure white heron’
MM: Patpata bol ‘great egret’
MM: Ramoaina bar ‘Reef Heron, *Egretta sacra’
SES: Longgu (koivo) baro ‘white heron sp.’
NCV: Neve*e no-bol (yevyev) ‘reef heron’

cf. also:
Fij: Rotuman pelõ ‘*Egretta sacra’
Fij: Bauan belõ ‘*Egretta sacra’

A more localised group of cognates in Vanuatu show some resemblance to the above:

PSV *bʷan(ie) ‘heron’ (Lynch)

SV: Ura (yay)pon ‘egret’
SV: Sye (yay)pon ‘egret’
SV: Kwamera pan ‘Reef Heron, *Egretta sacra’
SV: Lenakel pʷan ‘crane’
SV: Anejom n-pʷañ ‘*Ardea spp.’ [sc. *Egretta]

cf. also:
NCV: Letemboi na-li=banua ‘heron’
NCV: Labo na=bumuoj ‘heron’
NCV: SW Bay (li)=banui ‘heron’

Additional clear but highly localised names in the Solomons, Micronesia and Polynesia also centre around *Egretta. POc *sou below is suspect as a POc reconstruction as it only occurs in the Solomons. However, Numbami (NNG) saole ‘egret’ may be cognate. If it is, then the POc form was perhaps *saol or *saul, but this in turn leaves Numbami final -e for expected †-a unaccounted for, as well as the lack of the final consonant and echo vowel from expected Marovo †coulu, Nduke †houlu.

POc *sou (?) ‘heron’

MM: Torau sou ‘Reef Heron, *Egretta sacra’
MM: Marovo cou ‘*Egretta sacra’
MM: Nduke hou ‘*Egretta sacra’
SES: Gela sou ‘heron’
SES: Tolo cou ‘bird sp.’
SES: Malango cou ‘Nankeen Night Heron, *Nycticorax caledonicus’
SES: Longgu sou ‘heron’
SES: Lau tou ‘crane’
SES: Kwaio tou ‘egret’
SES: ’Are’are tou ‘night heron’
SES: Sa’a tou ‘night heron’
Proto Central Micronesian *karau ‘Egretta sacra’ (Bender et al. 2003)

- Mic: Kiribati kāi ‘Egretta sacra’
- Mic: Marshallese keke ‘reef heron (white phase)’
- Mic: Mokilese kor ‘reef heron’
- Mic: Sonsorolese yayai ‘black heron’
- Mic: Namoluk ōrō ‘Reef Heron, Egretta sacra’

Proto Chuukic *karai ‘heron’

- Mic: Puluwatese yae(n) ‘heron’
- Mic: Woleaian gere ‘bird sp. with long neck’
- Mic: Chuukese ara ‘heron’

cf. also:

- Pn: Rennellese kagau ‘Egretta sacra’

The Rennellese term seems to agree with the Central Micronesian reconstruction, but borrowing from this direction would be unexpected. No heron terms like this appear to exist in the Southeast Solomons.

PPn *matuku ‘Reef Heron, Egretta sacra’

- Pn: Tongan motuku
- Pn: Niuean motuku
- Pn: E Futunan amatuku
- Pn: Samoan matuʔu
- Pn: Tuvalu matuku
- Pn: K’marangi matuku
- Pn: Takuu matuku
- Pn: Sikaiana motuku
- Pn: Ifira-Mele matuku(tea) ‘white heron’, tea ‘white’)
- Pn: Pukapukan matiku
- Pn: Marquesan matuku
- Pn: Rarotongan mātuku ‘a small dark-grey heron which frequents the seashore’ (Savage)
- Pn: Māori matuku ‘Egretta sacra and other heron spp.’

Compare, with unexpected referents:

- Pn: Niuean motuku ‘Bristle-thighed Curlew, Numenius tahitiensis’
- Pn: Rennellese matuku ‘a kind of gupe pigeon, perhaps the female’

Proto Central Eastern Polynesian *kautuku~*kootuku ‘heron sp.’

- Pn: Hawaiian ʔaukuʔu ‘Black-crowned Night Heron, Nycticorax nycticorax’
- Pn: Mangarevan kotuku ‘Reef Heron, Egretta sacra’
- Pn: Tahitian ʔōtuʔu ‘Egretta sacra’
- Pn: Rarotongan kōtuku ‘Egretta sacra’
- Pn: Māori kōtuku ‘Great Egret, Egretta alba’
- Pn: Māori kautuku ‘Australian Bittern, Botaurus poiciloptilus’
The East Polynesian forms prefixed with *kō- fall into a large class of nouns so reshaped in this subgroup. However, the Hawaiian and Māori terms with *kau- suggest the possibility of influence of the *kao term reconstructed above.

Compared with extensive cognate sets for the Egretta herons, only two small sets appear to denote the Night Herons:

POe *ŋako ‘Night Heron, Nycticorax sp.’
 Adm: Loniu ŋako ‘bird sp., sings at night, heralds death, possibly night heron or curlew’
 NNG: Musom yoku(ʻbuy) ‘gray or black heron’
 NNG: North Watut ŋako(tof) ‘crane’
 PT: Motu noko ‘heron’

PNCal *tila ‘night heron, Nycticorax sp.’
 NCal: Nêlêmwa rēlā ‘Nankeen Night Heron, Nycticorax caledonicus’
 NCal: Ajïc sira ‘mangrove heron’
 NCal: Tinrin ʻiřā ‘grey night heron’
 NCal: Xârâcuũ ʻiřā ‘Nycticorax caledonicus’

5.3 Ducks (Anatidae)

The Pacific Black Duck (*Anas superciliosa*) is the most common duck of the Oceanic region, but the Grey Teal (*Anas gibberifrons*) is also present in the homeland, as are two species of Whistling Ducks (*Dendrocygna* spp.), and various other species of this family are known as migrants. There is no evidence of domestication of any duck species in pre-European Oceania. Many languages use a separate lexical item for the introduced domesticates, as Samoan *pato* ‘domestic duck’ (from Spanish), *toloa* ‘wild duck’. Very few descriptions offer glosses more precise than ‘duck’ or ‘wild duck’. However, Iduna *geluluva* is explicitly stated to cover both species of *Anas* mentioned above, and Nêlêmwa *kerorōp* includes both these as well as the Mallard, *A. platyrhynchos*). There may be a terminological agreement between Caaàc and Fijian (Lomaivitilevu) in which the Whistling Duck is described as ‘red duck’ (Caaàc *niāŋ mīa*, Fijian *gā-damu*).

PMP *ŋaRaq ‘wild duck’ (Blust 2002)

POe *ŋaRa ‘duck’
 Adm: Loniu ŋa ‘bird sp., floats on surface of water, possibly duck or booby’
 Adm: Nyindrou ŋa ‘duck; shag’
 PT: Wedau ŋara ‘duck; shag’
 MM: Banoni nāraka ‘Pacific Black Duck, *Anas superciliosa*’
 MM: Torau nara ‘*Anas superciliosa*’
 MM: Roviana ŋara ‘wild duck’
 SES: Uki ni Masi (*ʔa)ŋara ŋara(isuʔu) (suʔu ‘lake, swamp’)
Figure 6.4 *Anas superciliosa*, Pacific Black Duck

SV: Anejoṃ *n-ŋa*, ‘possibly *Porphyrio* sp.’ (John Lynch, pers. comm.)

PMic *ŋāŋā* ‘sea bird, duck’

Mic: Carolinian *ŋāŋa*
Mic: Satawal *ŋāŋa*
Mic: Woleai *ŋāŋā*
Fij: Bauan *ŋā*

The following possible Māori reflex refers to a different waterfowl, but the formal development would be regular. (The grebe is presently found only in the South Island, where Māori *ŋ > k.*).

Pn: Māori (South Island) *kā(mana)* Great Crested Grebe, *Podiceps cristatus*

The following reconstruction is a metathetic variant of the above, apparently a local development in SE Solomonic and Micronesian.

PEOc *Rana* ‘duck’

SES: Gela *(yaya)raŋa* ‘a duck’
SES: Tolo *(ha)raŋa* ‘wild duck’
SES: To’aba’ita *(lālā)raŋa* ‘wild duck’
SES: Kwaio *(ʔaʔa)laŋa* ‘Pacific Black Duck, *Anas superciliosa*’
SES: ’Are’are *(araʔa)rana* ‘wild duck’
SES: Sa’a *arana* ‘wild duck’
Mic: Namoluk *raŋ* ‘Spotbill Duck, *Anas poecilorhyncha*’
Mic: Marshallese *raŋ* ‘wild duck’

Probably borrowed from a SE Solomonic language:

MM: Marovo *arana* ‘*Anas superciliosa*’

5 Note that Jackson & Marck (1991) consider Carolinian *ŋāŋa* a loan from Chamorro *ŋaŋa*? ‘duck’.
A final local development of this same group, again with metathesis:

Proto South Melanesian *l(i)aŋ ‘duck’ (Lynch)\(^6\)

<table>
<thead>
<tr>
<th>SV:</th>
<th>Kwamera</th>
<th>ia-rēŋ</th>
<th>‘duck (indigenous)’</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCal:</td>
<td>Caaàc</td>
<td>nīŋ</td>
<td>‘duck’</td>
</tr>
<tr>
<td>NCal:</td>
<td>Tínrin</td>
<td>nīā</td>
<td>‘duck’</td>
</tr>
<tr>
<td>NCal:</td>
<td>Xārācūũ</td>
<td>nīā</td>
<td>‘Anas spp.’</td>
</tr>
<tr>
<td>NCal:</td>
<td>Iaai</td>
<td>eŋ</td>
<td>‘duck’</td>
</tr>
</tbody>
</table>

PPn *toloa replaces *ŋaRa as the generic term for ‘duck’.

PPn *toloa ‘duck’

<table>
<thead>
<tr>
<th>Pn:</th>
<th>Tongan</th>
<th>toloa</th>
<th>‘Pacific Black Duck, Anas superciliosa’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn:</td>
<td>E Futunan</td>
<td>toloa</td>
<td>‘Spotbill Duck, Anas poecilorhyncha’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Samoan</td>
<td>toloa</td>
<td>‘Anas superciliosa’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Tokelauan</td>
<td>toloa</td>
<td>‘Anas superciliosa’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Tuvalu</td>
<td>toloa</td>
<td>‘Mallard, Anas platyrhynchos, and Northern Shoveller, A. clypeata’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Pukapukan</td>
<td>toloa</td>
<td>‘Anas superciliosa’</td>
</tr>
<tr>
<td>Pn:</td>
<td>K’marangi</td>
<td>tolō</td>
<td>‘duck sp.’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Tikopia</td>
<td>torō</td>
<td>‘Anas superciliosa’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Anutan</td>
<td>toroa</td>
<td>‘duck’</td>
</tr>
<tr>
<td>Pn:</td>
<td>W Uvean</td>
<td>toloa</td>
<td>‘Anas superciliosa’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Hawaiian</td>
<td>koloa</td>
<td>‘Anas spp.’</td>
</tr>
</tbody>
</table>

A probable Polynesian borrowing:

<table>
<thead>
<tr>
<th>TM:</th>
<th>Buma</th>
<th>teloloa</th>
<th>‘Anas superciliosa’</th>
</tr>
</thead>
</table>

A number of other Polynesian and Fijian languages have bird names formally cognate with the above, but referring to shore and sea birds. (A number of these innovations are in the languages of atolls, where ducks are rare or non-occurrent owing to the absence of surface fresh water.):

<table>
<thead>
<tr>
<th>Fij:</th>
<th>Kadavu</th>
<th>torō, tarō</th>
<th>‘Sula spp.’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fij:</td>
<td>Wayan</td>
<td>torō</td>
<td>‘probably Frigatebird, Fregata spp.’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Nukuria</td>
<td>koroa</td>
<td>‘Whimbrel, Numenius phaeopus’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Takuu</td>
<td>taroa</td>
<td>‘Numenius phaeopus’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Sikaiana</td>
<td>toloa</td>
<td>‘Numenius phaeopus, Limosa lapponica’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Rennellese</td>
<td>togoa</td>
<td>‘Great Egret, Egretta alba’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Tuamotuan</td>
<td>toroa</td>
<td>‘booby, Sula sp.’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Rarotongan</td>
<td>toroa</td>
<td>‘booby, Sula spp.’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Māori</td>
<td>toroa</td>
<td>‘albatross, Diomedea spp.’</td>
</tr>
</tbody>
</table>

\(^6\) Southern Melanesian is a subgroup proposed by John Lynch comprising the Southern Vanuatu and New Caledonian languages. See for example Lynch (2004:317).
Proto Tahitic *mokolā ‘duck’

Pn: Tahitian moʔorā ‘Pacific Black Duck, Anas superciliosa’
Pn: Manihiki rāmoko ‘wild duck sp.’
Pn: Rarotongan mokorā ‘duck’

Māori applies formally cognate terms to two quite different species:
Pn: Māori mokorā ‘New Zealand Robin, Petroica australis (female)’
 makorā ‘Silver Gull, Larus novaehollandiae’

A strikingly resemblant form occurs in Motu. The only known source of Polynesian loanwords here would be 19th century missionaries from the Cook Islands, but it seems odd to have a wild species named in this way.

PT: Motu mokoraha ‘Wandering Whistling Duck, Dendrocygna arcuata’

5.4 Diurnal raptors (Pandionidae, Accipitridae, Falconidae)

These three families are treated together because of obvious similarities in appearance and habits, as well as overlap in naming practices. They are well represented in the homeland, with at least ten species. Roughly from largest to smallest, they include the White-bellied Sea Eagle (Haliaeetus leucogaster), the Osprey (Pandion haliaetus), several goshawks of genus Accipiter; the Brahminy Kite (Haliastur indus), the Black Honey Buzzard (Henicopernis infuscata), the Crested Baza (Aviceda subcristata), and probably both the Peregrine Falcon (Falco peregrinus) and the Oriental Hobby (Falco severus).

A very large number of terms for birds of prey are recorded, from which a number of cognate sets emerge; however, associating particular names with particular species is much more difficult, owing in large part to vague descriptions which use ‘hawk’ or ‘eagle’ to refer to any bird of prey.

5.4.1 Fish-eating raptors (Pandion, Haliaeetus, Haliastur)

Perhaps because of their size alone, these species provide some of the best POc reconstructions. The following set may represent a generic term:

POc *taragau ‘fish-eating eagle or hawk’

NNG: Kairiru tarak'au, tirak'au ‘hawk/eagle’
NNG: Manam taragau ‘fish-eagle’
MM: Patpatar taragau ‘Whistling Kite, Haliastur sphenurus’
MM: Tolai taragau ‘Osprey, Pandion haliaetus’
SES: Malango taragau ‘Pandion haliaetus’
SES: Kwara’aæ alafau ‘hawk not very big, steals chickens and other birds’ food’
SES: Kwaio alagau ‘White Goshawk, Accipiter novaehollandiae’
SES: Sa’a arakau ‘Brahminy Kite, Haliastur indus’
SES: Arosi aragau ‘Haliastur indus’
cf. also:
MM: Nehan targau ‘Red-footed Booby, Sula sula’
The fish-eagle (*Haliaetus*) was probably the largest flying creature known to the Proto Oceanic speakers. (*H. leucogaster* of the homeland is replaced in the Solomons by the very similar *H. sanfordi.*) So it is not surprising to find terms for this species literally meaning ‘big bird’ in a number of languages. In all but one of the following, the first element reflects POc *manuk* ‘bird’, and the second is the local word for ‘big’. These second elements are etymologically diverse, but Patpatar, Nehan and Puluwatese probably retain the POc form *lapuat* ‘large’ (vol.2:190–191).

POc *manuk-lapuat* ['big bird'] ‘White-bellied Sea Eagle, *Haliaeetus leucogaster*’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT:</td>
<td>manu-bada</td>
<td>‘sea hawk’</td>
</tr>
<tr>
<td>PT:</td>
<td>manu-bada</td>
<td>‘fish hawk’</td>
</tr>
<tr>
<td>PT:</td>
<td>manu-bada</td>
<td>‘fish hawk’</td>
</tr>
<tr>
<td>MM:</td>
<td>malaba</td>
<td>‘eagle (black and white)’</td>
</tr>
<tr>
<td>MM:</td>
<td>manu-lab</td>
<td>‘Haliaeetus leucogaster or Osprey, Pandion haliaetus’</td>
</tr>
<tr>
<td>SES:</td>
<td>manu hutu</td>
<td>‘eagle’</td>
</tr>
<tr>
<td>SES:</td>
<td>manu-kama</td>
<td>‘a hawk, eagle’</td>
</tr>
<tr>
<td>SES:</td>
<td>manu-loki</td>
<td>‘eagle’</td>
</tr>
<tr>
<td>SES:</td>
<td>noʔo baʔita</td>
<td>‘eagle sp.’</td>
</tr>
<tr>
<td>TM:</td>
<td>manu-levu</td>
<td>‘Pacific Marsh Harrier, Circus approximans’</td>
</tr>
<tr>
<td>Mic:</td>
<td>mallap</td>
<td>‘frigate bird’</td>
</tr>
</tbody>
</table>

The following is formally connected, but from an area with no eagles—perhaps still referring to the largest bird in the area:

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mic:</td>
<td>manuw</td>
<td>‘eagle’</td>
</tr>
<tr>
<td>MM:</td>
<td>manu</td>
<td>‘Sanford’s Sea Eagle, Haliaeetus sanfordi’</td>
</tr>
</tbody>
</table>
MM: Petats manu ‘the very large fish-eagle’
MM: Banoni manuka ‘Haliaeetus sanfordi’
MM: Mono-Alu mānuʔa ‘eagle’
MM: Roviana manuʔu, manuɣu ‘a large grey fish-hawk’
MM: Ughele manuɣu ‘eagle’
Mic: Puluwatense mānuwa ‘legendary man-eating bird’
Mic: Carolinian mʷuluwa, manuwɔ ‘eagle, hawk’
(Tanapag)
Mic: Chuukese mɔriwo ‘a kind of sea eagle; a mythical bird, the flapping of whose wings makes a wind that topples trees’

PAdm *manu(w)ai ‘sea eagle’ (Blust 2002)
Adm: Loniu menuway ‘eagle’
Adm: Nyindrou mañuwe ‘eagle’
Adm: Titan manuai ‘Osprey, Pandion haliaetus’
Adm: Baluan manuay ‘sea eagle’
Adm: Lou menua ‘hawk, eagle’
Adm: Wuvulu manua ‘sea eagle’

Though perhaps not so strongly identified with a particular species, the following also appears to refer to the largest raptors:

POc *bogi ‘large bird of prey sp., possibly sea eagle’
Adm: Titan poe(dilei) ‘large eagle’
NNG: Gitua (man)bok ‘large eagle’
NNG: Bariai bogi ‘sea eagle’
NNG: Lusi voyi ‘sea eagle’
NNG: Malalamai bogi ‘small eagle’
NNG: Gedaged bog ‘large predatory bird, fish eagle’
NNG: Takia bog ‘eagle’
NNG: Wab buog ‘large eagle’
NNG: Roinji bok ‘small eagle’
NNG: Aria bogi ‘sea eagle’
PT: Lala boʔi(bata) ‘beach eagle’
PT: Mekeo foi ‘large birds of prey more common near mountains’
PT: Motu bogi(bada) ‘Black Kite, Milvus migrans’ (bada ‘big’)

Further possible POc reconstructions for ‘eagles’ are:

POc *bʷaŋ ‘sea eagle’
Adm: Baluan (ŋa)puan ‘brown bird, eats fish, similar to sea eagle but smaller’
NNG: Yabem (mɔʔ)bʷaŋ ‘sea eagle’ (mɔʔ ‘bird’)
NNG: Mangap man-boŋ ‘eagle’
POc *roqa ‘eagle’

MM: Bola loya ‘eagle’
MM: Nakanai loha(uru) ‘sea eagle’ (uru ‘big’)
SES: Malango roha ‘White Goshawk, Accipiter novaehollandiae’
SES: Longgu aroha ‘eagle’

POc *maya ‘Osprey, Pandion haliaetus’

Adm: Titan maya ‘type of raptor’
PT: Wedau mai(dunari) ‘large hawk’
MM: Nakanai māe ‘large hawk’

There are several further local reconstructions in the Solomons for these fish-eaters:

Proto NW Solomonic *katata~*kakata ‘sea eagle, Haliaeetus’

MM: Nehan katkata(kbul)~ ‘White-bellied Sea Eagle, H. leucogaster’
tatate(kbul) (juvenile)’
MM: Marovo kakaka ‘eagle’
MM: Nduke tata ‘Sanford’s Sea Eagle, Haliaeetus sanfordi’
MM: Roviana atāta ‘eagle’
MM: Simbo kakaka ‘eagle’
MM: Vangunu akaka ‘eagle’
MM: Kokota kakade ‘eagle’
MM: Maringe gayata ‘Haliaeetus sanfordi’

Proto SE Solomonic *tava ‘hawk or eagle’ (cf POc *tap(o) a ‘glide, soar’ above)

SES: Gela tava ‘small hawk’
SES: Malango tavo(kea) ‘Brahminy Kite, Haliastur indus’
SES: To’aba’ita afa ‘eagle sp.’
SES: Kwara’ae afa ‘eagle (largest of all birds)’
SES: Kwaio afa ‘Sanford’s Sea Eagle, Haliaeetus sanfordi’
SES: ‘Are’are aha ‘sparrow-hawk, eagle’
SES: Fataleka āfe ‘eagle’
SES: Uki ni Masi hata(roŋa) ‘eagle’
SES: Bauro aheta(roŋa) ‘eagle’

cf. also:

Pn: Rennellese tava ‘Australian Goshawk, Accipiter fasciatus’
(borrowed from a SE Solomonic source)

Proto Malaita-Makira *fada ‘sea eagle, Haliaeetus’

SES: Kwaio fada ‘eagle’
SES: Dori’o fada ‘eagle’
SES: ‘Are’are hata ‘big brown eagle’
SES: Sa’a hada ‘White-bellied Sea Eagle, Haliaeetus leucogaster’
SES: Arosi hada ‘Haliaeetus leucogaster’
Proto Malaita-Makira *wakio ‘Osprey, Pandion haliaetus’

SES: To’aba’ita kʷakiʔo ‘fish eating raptor, probably osprey’
SES: Lau kʷakio
SES: Langalanga kʷagio ‘eagle’
SES: ’Are’are wakio ‘fish hawk’
SES: Sa’a wakio
SES: Arosi wagoio
SES: Bauro wakio

The following may be cognate with PSOc *mala (§5.4.2 on p.303):

PNCal *bʷamara ‘fishing bird of prey’

NCal: Nêlêmwa bʷaivada ‘Osprey, Pandion haliaetus’
NCal: Jawe bʷaemada ‘Whistling Kite, Haliastur sphenurus’
NCal: Piße bʷaepeʔada ‘Haliastur sphenurus’
NCal: Paicî bʷämâja ‘Pacific Marsh Harrier, Circus approximans’
NCal: Ajiê boamara ‘oiseau de proie, genre épervier’
NCal: Tinrin bʷamera ‘Pandion haliaetus’
NCal: Xârâcûù mʷâmara ‘Pandion haliaetus’
NCal: Xârâcûù bʷamata ‘harrier sp.’

5.4.2 Other raptors

The highly distinctive Crested Baza had an apparent POc name:

POc *ki(t,s)o ‘Crested Baza, Aviceda subcristata’

PT: Iduna kito
MM: Patpatar kistou
MM: Halía kitou ‘large bird (similar to the cockatoo and blue pigeon)’
MM: Banoni kîtou
MM: Nduke pito ‘crested hawk, Baza guineyi’
MM: Roviana pito ‘crested hawk, Baza guineyi’
MM: Maringe kʰutu(reo) ‘Imitator Sparrow Hawk, Accipiter imitator’ (cf. reʔo ‘having hoarse, raspy voice’)

SES: Gela kito ‘very large bird sp.’
SES: Malango kico
SES: Longgu kito ‘crested hawk’
SES: To’aba’ita ʔito ‘bush bird sp.’
SES: Kwaio kito ‘bird sp.’
SES: ’Are’are kiʔito ‘a hawk’
SES: Sa’a kîto

cf. also:

Fij: Wayan kîtû ‘swamphen, Porphyrio porphyrio’
POc (?) *luar ‘eagle’

MM: Tolai luɔr ‘large hawk sp.’
MM: Petats loa ‘a hawk which is a little bigger and more tawny than the hatatug’
TM: Nebao nũae ‘eagle’
TM: Asuboa lio ‘eagle’
TM: Tanibili (noñolo)luo ‘eagle’
POc (?) *pʷa(r,R)a ‘hawk’

Adm: Mussau palē ‘hawk’
NNG: Pasismanua7 pola ‘Brahminy Kite, Haliastur indus’
PT: Gapapaiwa bora ‘eagle (generic)’
MM: Patpatar peres ‘Haliastur indus’
MM: Roviana vari (ivu) ‘eagle sp.’
TM: Vano na-vala ‘Pied Goshawk, Accipiter alboholaris’
NCV: Mota var-vara(mʷatika) ‘a kite that preys on the mʷatika [swamphen]’
NCV: Kiai pa-para ‘Australian Goshawk, Accipiter fasciatus, or Peregrine Falcon, Falco peregrinus’
NCV: Atchin (mato)war ‘a large species of hawk that sometimes kills fowls and rats’
NCV: SE Ambrym ve-ve(hum) ‘Pacific Marsh Harrier, Circus approximans’
NCV: Paamese vei-va(kume) ‘Circus approximans’
NCV: Lewo pe-pa(uma) ‘hawk; eagle’
PN: Takuu pallā ‘large mythical bird of prey’

POc (?) *ta(ou)k ‘hawk, bird of prey’

Adm: Mussau tao-taoko ‘sea eagle’
NNG: Kaulong (ekiŋ) tau ‘hawk’ (ekiŋ ‘bird’)
MM: Tolai tauk(il) ‘Crested Baza, Aviceda subcristata’

Regionalisms for the smaller predators include:

PWOc *kipa ‘hawk’
PT: Balawaia kipa ‘carnivorous bird’
PT: Motu kipa ‘hawk’
MM: Maringe ki-kʰipa ‘White Goshawk, Accipiter novaehollandiae’

PWOc *kamʷaga ‘eagle, hawk’ (cf. perhaps PMic *kemoa ‘booby’, §7.3)
PT: Balawaia yamoga ‘eagle’
PT: Hula amoa ‘eagle hawk’
MM: Babatana kamaga ‘hawk’

PPT *kitave ‘hawk’
PT: Wedau kita ‘kestrel’
PT: Bartle Bay kitave ‘hawk’
PT: Mekeo afi ‘hawk’

7 ‘Pasismanua’ is the name provisionally used here for ‘native names’ given by Gilliard & Lecroy (1967) for birds identified during the 1958-59 Gilliard New Britain Expedition. The spellings are impressionistic and the language or languages are not clearly identified, but the area of the expedition’s work lies within the territory of the Pasismanua group of languages, part of the Southwest New Britain Linkage.
In Southern Oceania, the sea eagles are no longer present, and the familiar raptors are the goshawks (Accipiter spp.) and the Pacific Marsh Harrier (Circus approximans)

PSOc *mala ‘hawk’ (John Lynch, pers. comm.)

NCV: Mota malala ‘hawk, kite, osprey’
NCV: Lakon mal ‘Pacific Marsh Harrier, Circus approximans’
NCV: Raga mal ‘Circus approximans’
mal-kal-b’iru ‘Australian Goshawk, Accipiter fasciatus’ (b’iru ‘Purple Swamphen, Porphyrio porphyrio’)
NCV: Matantas na-nala ‘Circus approximans’
NCV: Sara ne-anal ‘Circus approximans’ (Flux 1993)
NCV: Kial mal ‘Circus approximans’
NCV: Atchin ni-anal ‘hawk’
NCV: Namakir màl ‘red hawk’
NCV: Nguna màla ‘hawk (brown back, white underneath)’
SV: N Tanna maləkam ‘eagle’
SV: Lenakel melkəm ‘eagle’
SV: Anejom in-mecyap* ‘Accipiter fasciatus, Circus approximans’

Borrowed from a North–Central Vanuatu language:

Pn: Ifira-Mele malala ‘Circus approximans’
mala-p’eriki ‘Peregrine Falcon, Falco peregrinus’

The following could be an irregular development of *mala; the languages shown are all from Malakula, Vanuatu; however some of the Vanuatu reflexes of POc *p’α(r,R)a ‘hawk’ above may belong here, being from languages in which *l and *R would both give zero in this environment.

Proto Central Vanuatu *bala ‘Pacific Marsh Harrier, Circus approximans’
NCV: Atchin ni-*bel ‘hawk’
NCV: Naman ne-bel
NCV: Neve’ei ne-bal
NCV: Nese na-ŋal
NCV: Big Nambas ni-ŋal ‘hawk’
NCV: Letemboi na-ŋbala ‘hawk’
NCV: Labo ne-ŋbale ‘hawk’
NCV: SW Bay na-ŋbal ‘hawk’
NCV: Aulua ne-ŋbel ‘hawk’

Proto South Melanesian *marup ‘falcon’
SV: Ura umrom ‘peregrine falcon’
SV: Sye umrom ‘peregrine falcon’
SV: Kwamera murup ‘Peregrine Falcon, Falco peregrinus’
NCal: Nengone marup ‘Australian Goshawk, Accipiter fasciatus, possibly also falcon’

PNCal *deŋ ‘Pacific Marsh Harrier, Circus approximans’
NCal: Nêlêmwa daŋ
NCal: Caac deŋ
NCal: Jawe deŋ
NCal: Pije diŋ
NCal: Cêmuhî diŋ ‘New Caledonia Sparrow Hawk, Accipiter haplochrous’
NCal: Paiĉi (màrû)dû ‘Accipiter haplochrous’
NCal: Tinrin di ‘hawk’
NCal: Xârâcûû dê
NCal: Drubea nrû
NCal: Iaai diŋ
NCal: Nengone (wa)dûŋ

PNCal *b’akole ‘hawk or kite’ (cf. *b’amara above)
NCal: Nêlêmwa b’âyole, b’âole ‘Pacific Marsh Harrier, Circus approximans’
NCal: Caac b’âole ‘Australian Goshawk, Accipiter fasciatus’
NCal: Pije b’âholê ‘Whistling Kite, Haliastur sphenurus’
NCal: Cêmuhî b’âolê ‘Haliastur sphenurus’
NCal: Paiĉi b’âwârê ‘Haliastur sphenurus’
NCal: Iaai bâholê ‘Accipiter fasciatus, Haliastur sphenurus’

5.5 Megapodes (Megapodiidae)
Megapodes or scrub fowl (Megapodus spp.) are found from the homeland south to Vanuatu and as far east as the island of Niuafou’ou in Tonga. The representative in the homeland is the Bismarck Scrub Fowl (M. eremita). All three of the name-sets below may be of imitative origin, given the bird’s two-syllable calls ending in [au]-like sounds. (Hadden (2004a:78)
Figure 6.8 Megapodius eremita, Bismarck Scrub Fowl

gives ‘paa-au’, ‘kkeawau kkeawuh’, ‘keereow keerow’ and ‘kiau kiau’ as representations of its calls.)

POc *mʷalau is reflected from Sulawesi (Sangirese maleo) to the easternmost bird of this family in Tonga (Wallace 1869: 202-4, Christian 1926, but see also comments in Blust 2002).

POc *mʷalau ‘Bismarck Scrub Fowl, Megapodius eremita’

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG:</td>
<td>Kairiru</td>
<td>molau ‘wild fowl inhabiting the bush, produces fairly large eggs’</td>
</tr>
<tr>
<td>NNG:</td>
<td>Manam</td>
<td>molau ‘bird sp.’</td>
</tr>
<tr>
<td>NNG:</td>
<td>Gedaged</td>
<td>malau ‘megapode’</td>
</tr>
<tr>
<td>NNG:</td>
<td>Sengseng</td>
<td>muluy ‘bush hen, megapode’</td>
</tr>
<tr>
<td>NCV:</td>
<td>Mota</td>
<td>mʷalau ‘Banks Island Scrub Fowl, Megapodius layardi’</td>
</tr>
<tr>
<td>NCV:</td>
<td>Lakon</td>
<td>mʷala ‘Megapodius layardi’</td>
</tr>
<tr>
<td>NCV:</td>
<td>Raga</td>
<td>mʷalau ‘Megapodius layardi’</td>
</tr>
<tr>
<td>NCV:</td>
<td>Matantas</td>
<td>na-malau ‘Megapodius layardi’</td>
</tr>
<tr>
<td>NCV:</td>
<td>Sara</td>
<td>na-mlau ‘Megapodius layardi’ (Flux 1993)</td>
</tr>
<tr>
<td>NCV:</td>
<td>Kkai</td>
<td>malau ‘megapode (?)’</td>
</tr>
<tr>
<td>NCV:</td>
<td>Atchin</td>
<td>(to)mala ‘bush turkey’ (to ‘fowl’)</td>
</tr>
<tr>
<td>NCV:</td>
<td>Neve’ei</td>
<td>(noto)molo ‘Megapodius layardi’</td>
</tr>
<tr>
<td>NCV:</td>
<td>Tape</td>
<td>(ti)molo ‘Megapodius layardi’</td>
</tr>
<tr>
<td>NCV:</td>
<td>Nese</td>
<td>(to)mola ‘Megapodius layardi’</td>
</tr>
<tr>
<td>NCV:</td>
<td>SE Ambrym</td>
<td>meu ‘Megapodius layardi’</td>
</tr>
<tr>
<td>NCV:</td>
<td>Paamese</td>
<td>meau ‘Megapodius layardi’</td>
</tr>
<tr>
<td>NCV:</td>
<td>Lewo</td>
<td>miāu ‘bird sp., green with white belly and tail’</td>
</tr>
<tr>
<td>NCV:</td>
<td>Namakir</td>
<td>molo ‘Megapodius layardi’</td>
</tr>
<tr>
<td>NCV:</td>
<td>Nguna</td>
<td>malau ‘Megapodius layardi’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Tongan</td>
<td>malau ‘Polynesian Scrub Fowl, Megapodius pritchardii’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Takuu</td>
<td>marau</td>
</tr>
<tr>
<td>Pn:</td>
<td>Luangiua</td>
<td>malau</td>
</tr>
</tbody>
</table>

An apparent doublet with *kʷ- appears in a number of New Guinea and Solomons languages:
POc *kʷal(i)au ‘Bismarck Scrub Fowl, *Megapodius eremita*

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: North Watut</td>
<td>keron</td>
<td>‘bush-hen sp.’</td>
</tr>
<tr>
<td>NNG: Mengen (Poeng)</td>
<td>keroa</td>
<td>‘wildfowl’</td>
</tr>
<tr>
<td>PT: Hula</td>
<td>kʷalio</td>
<td>‘scrubhen’</td>
</tr>
<tr>
<td>PT: Muyuw</td>
<td>korau(ta)</td>
<td>‘megapod’</td>
</tr>
<tr>
<td>PT: Bwaidoga</td>
<td>kʷalau(ta)</td>
<td>‘megapod or bush hen’</td>
</tr>
<tr>
<td>MM: Nakanai</td>
<td>kileo</td>
<td>‘bush fowl (megapode)’</td>
</tr>
<tr>
<td>MM: Petats</td>
<td>koloŋ</td>
<td>‘the mound-bird or megapodidae’</td>
</tr>
<tr>
<td>MM: Kia</td>
<td>kolo(peho)</td>
<td>‘megapode’</td>
</tr>
<tr>
<td>SES: Gela</td>
<td>koleo</td>
<td>‘a brush turkey, megapod’</td>
</tr>
</tbody>
</table>

The following set shows many irregularities suggestive of independent onomatopoetic origin, but there may be some basis for a reconstruction *k(a)iau*:

POc *k(a)iau ‘Bismarck Scrub Fowl, *Megapodius eremita*’

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm: Mussau</td>
<td>kikiau</td>
<td>‘large mound building bird, Megapodius’</td>
</tr>
<tr>
<td>NNG: Kove</td>
<td>kio</td>
<td>‘bush hen, megapode’</td>
</tr>
<tr>
<td>NNG: Lusi</td>
<td>kiau</td>
<td>‘bush hen’</td>
</tr>
<tr>
<td>NNG: Amara</td>
<td>o-koiou</td>
<td>‘bush hen, wailpaul (i.e. megapode)’</td>
</tr>
<tr>
<td>NNG: Bariai</td>
<td>kiau</td>
<td>‘bush hen’</td>
</tr>
<tr>
<td>NNG: Kilenge</td>
<td>kiau</td>
<td>‘bush hen’</td>
</tr>
<tr>
<td>NNG: Mangap</td>
<td>kiau</td>
<td>‘a wild bird, bush chicken’</td>
</tr>
<tr>
<td>MM: Patpatar</td>
<td>kiou</td>
<td>‘fowl that has been domesticated’</td>
</tr>
<tr>
<td>MM: Halia</td>
<td>kihau</td>
<td>‘ground bushfowl’</td>
</tr>
<tr>
<td>MM: Nehan</td>
<td>kio</td>
<td>‘Dusky Scrub Fowl, Megapodius freycinet’</td>
</tr>
<tr>
<td>MM: Torau</td>
<td>kiau</td>
<td>‘Megapodius freycinet’</td>
</tr>
<tr>
<td>MM: Marovo</td>
<td>io</td>
<td></td>
</tr>
<tr>
<td>MM: Nduke</td>
<td>eo</td>
<td></td>
</tr>
<tr>
<td>MM: Roviana</td>
<td>eo</td>
<td>‘brush hen’</td>
</tr>
<tr>
<td>MM: Maringe</td>
<td>kʰoŋio</td>
<td></td>
</tr>
<tr>
<td>SES: Malango</td>
<td>kihau</td>
<td></td>
</tr>
<tr>
<td>SES: To’aba’ita</td>
<td>geo</td>
<td></td>
</tr>
<tr>
<td>SES: Kwara’ae</td>
<td>geo</td>
<td></td>
</tr>
<tr>
<td>SES: Kwaio</td>
<td>geo</td>
<td></td>
</tr>
</tbody>
</table>

5.6 Pheasants and quails (Phasianidae)

Apart from the domestic fowl, the only representative of this family in the homeland is the Indian Blue Quail (*Coturnix chinensis*). In the following comparison, a POc reconstruction is justified if the Mangap and Tolai forms are regarded as continuing the PAn etymon.
Figure 6.9 *Porphyrio porphyrio*, Purple Swamphen

PAn *puRuq* ‘quail, partridge’ (Blust 2002)

POc *puRu(q)* ‘quail’

NNG: Mangap *puRu(pāla)* ‘quail’

MM: Tolai *voro, woro* ‘Indian Blue Quail, *Coturnix chinensis*’

5.7 Rails (Rallidae)

The numerous rails of Oceania include the very widespread Purple Swamphen (*Porphyrio porphyrio*), easily recognised by its large size and red forehead. Among the smaller species are the Buff-banded Rail (*Rallus philippensis*) and White-browed Rail (*Porzana cinerea*), which occur throughout much of the Oceanic region, and in the homeland three others of the genus *Rallus*, as well as the Bare-eyed Rail (*Eulabeornis plumbeiventris*), Red-necked Crake (*Rallina tricolor*), and Rufous-tailed Moorhen (*Amaurornis olivaceus*).

POc *bʷalaRe* ‘Purple Swamphen, *Porphyrio porphyrio*’

<table>
<thead>
<tr>
<th>Language</th>
<th>Transliteration</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM:</td>
<td></td>
<td>bulārə ‘purple swamp hen’</td>
</tr>
<tr>
<td>SES:</td>
<td></td>
<td>polale</td>
</tr>
<tr>
<td>SES:</td>
<td></td>
<td>pəarəre ‘large blue swamp bird sp.’</td>
</tr>
<tr>
<td>SES:</td>
<td></td>
<td>balare ‘large blue swamp bird sp.’</td>
</tr>
<tr>
<td>Fij:</td>
<td></td>
<td>galā</td>
</tr>
<tr>
<td>Fij:</td>
<td></td>
<td>kalē</td>
</tr>
<tr>
<td>Pn:</td>
<td></td>
<td>kalae</td>
</tr>
<tr>
<td>Pn:</td>
<td></td>
<td>kalē, kulē</td>
</tr>
<tr>
<td>Pn:</td>
<td></td>
<td>kalae</td>
</tr>
<tr>
<td>Pn:</td>
<td></td>
<td>kalae</td>
</tr>
<tr>
<td>Pn:</td>
<td></td>
<td>kagae</td>
</tr>
<tr>
<td>Pn:</td>
<td></td>
<td>karae</td>
</tr>
<tr>
<td>Pn:</td>
<td></td>
<td>karae</td>
</tr>
<tr>
<td>Pn:</td>
<td></td>
<td>kalae</td>
</tr>
<tr>
<td>Pn:</td>
<td></td>
<td>kalæ</td>
</tr>
</tbody>
</table>
Another possible POc reconstruction for the same bird is the following:

POc *bʷiru ‘Purple Swamphen, Porphyrio porphyrio’

MM: Maringe na-phiro
NCV: Mota weru ‘Eulabeornis, a rail’
NCV: Raga bʷiru
NCV: Nese ne-vere
SV: Sye (um)pulau
SV: Ura bulau

The only other rail for which widespread cognate sets exist is the Buff-banded Rail (Rallus philippensis). The following possible POc reconstruction has only slender support:

POc *b(a,e,i)risu ‘Buff-banded Rail, Rallus philippensis’

MM: Tolai piriu
SES: Uki ni Masi perisu
SES: Bauro parisu

In Vanuatu, a solid set of cognates referring to this bird shows a distinct resemblance to the term for the Swamphen, POc *bʷalaRe.

PNCV *b(ʷ)ilake ‘Buff-banded Rail, Rallus philippensis’

NCV: Mota pilaye ‘rail’
NCV: Lamon pilay ‘Rallus philippensis’
NCV: Matantas na-pilagi ‘White-browed Rail, Porzana cinerea’
NCV: Nire pilagi ruhupoi ‘Rallus philippensis’
NCV: Kiai pilae ‘Rallus philippensis’
NCV: Achat pila ‘rail’
NCV: Neve’ei ni-bila? ‘Rallus philippensis’
NCV: Big Nambas beley ‘rail’
NCV: Namakir bʷilak ‘Rallus philippensis’
NCV: Nguna na-pʷilake ‘Rallus philippensis’
SV: Sye ne-mpli ‘Rallus philippensis’
SV: Kwamera pore ‘Rallus philippensis’

The similarity is enhanced by two SE Solomonic languages in which the word, while still denoting the Purple Swamphen, show unexpected k for *R in the final syllable:
A group of New Caledonian names for the smaller rail echo the canonical form of \(*b^\omega \text{ala}Re \) and \(*b^\omega \text{olake} \):

PNCal \(*\text{pit}(a,i)\text{ri} \) ‘rail’
- NCal: Tinrin \(\text{pi}^\text{ti}^\text{ri} \) ‘rail’
- NCal: Xârâcéû \(\text{pi}^\text{car}^\text{i} \) ‘New Caledonian Wood Rail, Rallus lafresnayanus’
- NCal: Drubea \(\text{pi}^\text{car}^\text{i} \) ‘Buff-banded Rail, Rallus philippensis’

PNCal \(*\text{bi}^\text{i} \) ‘Buff-banded Rail, Rallus philippensis’
- NCal: Nêlêmwa \(\text{bi}^\text{n} \)
- NCal: Caaàc \(\text{pi}^\text{k} \)
- NCal: Pije \(\text{pi}^\text{k} \)
- NCal: Cêmuhî \(\text{b}^\text{e}^\text{n} \)
- NCal: Iaai \(\text{b}^\text{ae}^\text{ŋ} \)

Proto Central Pacific had a distinct name for the Buff-banded Rail.

PCP \(*\text{weka} \) ‘Buff-banded Rail, Rallus philippensis’
- Fij: Rotuman \(\text{ve}^\text{ʔa} \)
- Pn: Tongan \(\text{ve}^\text{ka} \)
- Pn: Niuean \(\text{ve}^\text{ka} \)
- Pn: E Uvean \(\text{ve}^\text{ka} \)
- Pn: E Futunan \(\text{ve}^\text{ka} \)
- Pn: Samoan \(\text{ve}^\text{ʔa} \)
- Pn: Rennellese \(\text{ve}^\text{ka} \) ‘Purple Swamphen, Porphyrio porphyrio) (juvenile)’
- Pn: Emae \(\text{ve}^\text{ka} \)
- Pn: W Futunan \(\text{ve}^\text{ka} \) ‘woodhen’
- Pn: W Uvean \(\text{ve}^\text{ka} \)
- Pn: Tahitian \(\text{te}^\text{ve}^\text{ʔa} \) \(\text{Rallus pacificus} \) (Forster, 1775)
- Pn: Māori \(\text{we}^\text{ka} \) ‘Weka Rail, Gallirallus australis’

The hypothetical Tahiti Rail (\(\text{Rallus pacificus} \)) is known only from a painting made on Cook’s second voyage (duPont 1976:41), but the name recorded agrees with the evidence of its appearance that it was a species of \(\text{Rallus} \).

The only reconstruction for the Sooty Crake (\(\text{Porzana tabuensis} \)) is restricted to Polynesian.

PPn \(*\text{mo(s)}\text{o} \) ‘Sooty Crake, Porzana tabuensis’
- Pn: Tongan \(\text{mo}^\text{ho} \)
- Pn: Niuean \(\text{mo}^\text{ho} \)
- Pn: E Futunan \(\text{moso} \)
- Pn: Rennellese \(\text{moso} \)
Pn: Mangarevan *moho* ‘rail sp.’
Pn: Tahitian *meho*
Pn: Rarotongan *moʔo-moʔo*
Pn: Māori *moho* ‘Buff-banded Rail, *Rallus philippensis*’

Two Outlier languages apply a possible reflex of this word to a different small black bird:

Pn: Nukuoro *moso* ‘Micronesian Starling, *Aplonis opaca*’
Pn: K’marangi *moeho* ‘*Aplonis opaca*’

The Nukuoro name looks like a regular development of PPn *moso*, but the Kapingamarangi suggests possible borrowing from Micronesia (cf. Mokilese *mʷiɔk*).

5.8 Pigeons and doves (Columbidae)

This family is among the most richly elaborated in the Oceanic realm. Almost every island has at least one or two representatives, and the Proto Oceanic speakers may have been acquainted with twenty or more species. The most widely distributed Columbidae belong to two genera: the Imperial Pigeons (*Ducula* spp.), and the much smaller Fruit Doves (*Ptilinopus* spp.). Other genera represented include *Gymnophaps, Columba, Macropygia, Reinwardtoena, Chalcophaps, Gallicolumba, Henicophaps*, and the shaggy-plumaged Nicobar Pigeon, *Caloenas nicobarica*.

The most likely candidate for a generic is the following, which is identified as generic in some languages (Gedaged, Tawala, Muyuw), and elsewhere refers to a wide range of columbid genera. In some local areas, however, it appears to have become specialised.

PAn *punay* ‘dove, *Treron* sp.’ (Blust 2002)
POc *bune* ‘pigeon, dove’

<table>
<thead>
<tr>
<th>NNG: Kairiru</th>
<th>(mʸan) pun</th>
<th>‘pigeon’ (mʸan ‘bird’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Manam</td>
<td>bun</td>
<td>‘dove’</td>
</tr>
<tr>
<td>NNG: Gedaged</td>
<td>bun</td>
<td>‘general name for pigeons and doves’</td>
</tr>
<tr>
<td>PT: Iduna</td>
<td>bune-bune</td>
<td>‘Australian Pied Imperial Pigeon, Ducula spilorrhoa’</td>
</tr>
<tr>
<td>PT: Tawala</td>
<td>bune-bune</td>
<td>‘pigeon (generic)’</td>
</tr>
<tr>
<td>PT: Kilivila</td>
<td>bu-buna</td>
<td>‘dove’</td>
</tr>
<tr>
<td>PT: Muyuw</td>
<td>bʷá-bun</td>
<td>‘general term for pigeons’</td>
</tr>
<tr>
<td></td>
<td>bu-buna</td>
<td>‘pigeon’</td>
</tr>
<tr>
<td></td>
<td>bunú(vad)</td>
<td>‘white pigeon’</td>
</tr>
<tr>
<td></td>
<td>buna(kuku)</td>
<td>‘blue pigeon’</td>
</tr>
<tr>
<td>PT: Hula</td>
<td>pune</td>
<td>‘dove’</td>
</tr>
<tr>
<td>PT: Motu</td>
<td>pune</td>
<td>‘Ducula spilorrhoa’</td>
</tr>
<tr>
<td>PT: Bartle Bay</td>
<td>bune-bune</td>
<td>‘a dove, blue pigeon’</td>
</tr>
<tr>
<td>PT: Wedau</td>
<td>bune-bune</td>
<td>‘green dove’</td>
</tr>
<tr>
<td>MM: Patpatar</td>
<td>bun</td>
<td>‘dove, pigeon’</td>
</tr>
<tr>
<td>MM: Tolai</td>
<td>(tə)bunə</td>
<td>‘Knob-billed Fruit Dove, Ptilinopus insolitus’</td>
</tr>
<tr>
<td>MM: Nehan</td>
<td>bun</td>
<td>‘Yellow-bibbed Fruit Dove, Ptilinopus solomonensis’</td>
</tr>
<tr>
<td>MM: Petats</td>
<td>bun</td>
<td>‘a small bird about the size of a dove’</td>
</tr>
</tbody>
</table>
Another very widespread set is also wide-ranging in its reference, though with a clear focus on genus *Ducula*, at least in Remote Oceanic languages.

POc *ku(i)ba* ‘pigeon, probably *Ducula* sp.’

PT: Tawala gubaliya ‘blue pigeon’
PT: Magori gubai ‘pigeon’
PT: Mekeo kopi ‘pigeon’
MM: Marovo (ba)kupa ‘Nicobar Pigeon, *Caloenas nicobarica*’
MM: Nduke (ba)kupa ‘*Caloenas nicobarica*’
MM: Roviana (ba)kupa ‘a pigeon’
SES: Bauro (wa)ubo ‘Mackinlay’s Cuckoo Dove, *Macropygia mackinlayi*’

NCV: Matantas na-whete ‘Pacific Pigeon, *Ducula pacifica*’
NCV: Kiai wepe ‘*Ducula pacifica*’
NCV: Neve’ei no-yoim ‘*Ducula pacifica*’
NCV: Naman nu-yub ‘*Ducula pacifica*’
NCV: Tape no-γ’ip ‘*Ducula pacifica*’
NCV: Avava wîm ‘*Ducula pacifica*’
NCV: Big Nambas kuγ, wibi

POc *ku(i)ba* ‘pigeon, probably *Ducula* sp.’

PT: Tawala gubaliya ‘blue pigeon’
PT: Magori gubai ‘pigeon’
PT: Mekeo kopi ‘pigeon’
MM: Marovo (ba)kupa ‘Nicobar Pigeon, *Caloenas nicobarica*’
MM: Nduke (ba)kupa ‘*Caloenas nicobarica*’
MM: Roviana (ba)kupa ‘a pigeon’
SES: Bauro (wa)ubo ‘Mackinlay’s Cuckoo Dove, *Macropygia mackinlayi*’

NCV: Matantas na-whete ‘Pacific Pigeon, *Ducula pacifica*’
NCV: Kiai wepe ‘*Ducula pacifica*’
NCV: Neve’ei no-yoim ‘*Ducula pacifica*’
NCV: Naman nu-yub ‘*Ducula pacifica*’
NCV: Tape no-γ’ip ‘*Ducula pacifica*’
NCV: Avava wîm ‘*Ducula pacifica*’
NCV: Big Nambas kuγ, wibi
NCV: Nese no-ɣdo ‘Ducula pacifica’
NCV: Nasarian na-xai°ba ‘Ducula pacifica’
NCV: SW Bay no-ʔoi°b ‘Ducula pacifica’
NCV: Port Sandwich na-xu°b ‘Ducula pacifica’
NCV: SE AmbrYM uip ‘Ducula pacifica’
NCV: Paamese uive ‘Ducula pacifica’
NCV: Lewo kupa ‘pigeon’
NCV: Namakir kîm ‘Ducula pacifica’
NCV: Nguna wîpa ‘Ducula pacifica’
SV: Ura wim ‘Pacific pigeon’
SV: Sye no-ɣ°em ‘Ducula pacifica’
Mic: Sonsorolese kyope ‘Micronesian Pigeon, Ducula oceanica’
Fij: Rotuman ʔipɔ ‘Ducula pacifica’
Ph: Rennellese kuipa ‘male Pacific Pigeon with black swelling at bill’
Ph: Pileni u°be ‘pigeon, dove’
Ph: Marquesan kâkupa ‘Ptilinopus dupetithouarsi’
Ph: Tahitian ʔaʔupa ‘Grey-green Fruit Dove, Ptilinopus purpuratus’
Ph: Manihiki kǔkupa ‘wood dove’
Ph: Rarotongan kâkupa ‘Rarotongan Fruit Dove, Ptilinopus rarotongensis’
Ph: Māori kâkupa ‘New Zealand Pigeon, Hemiphaga novaeseelandiae’

5.8.1 Imperial Pigeons (Ducula)

The best supported cognate set for this type of pigeon has a PAn antecedent, though the development of PAn *R to POc *l is not regular.

PAn *baRuj ‘dove, Ducula sp.’ (Blust 2002)
POc *baluc ‘pigeon, Ducula sp.’

Adm: Mussau balus ‘dove sp.’ (from Tok Pisin?)
Adm: Loniu pan ‘bird sp.’
Birds

Adm: Nyindrou *ban* ‘dove’
Adm: Titan *(pim)pal* ‘pigeon’
Adm: Lou *pol* ‘pigeon, dove: Ducula spp.’
NNG: Manam *bal(i)bor* ‘grey pigeon’
NNG: Yabem *balosi* ‘dove, big slate-coloured pigeon’
NNG: Kove *vazuhi* ‘dove’
NNG: Kilenge *a-vol* ‘dove’
NNG: Mangap *
=bal=bal* ‘dove’
NNG: Tami *
=balut* ‘blue dove’
NNG: Aria *belis* ‘dove’
NNG: Kaulong *(ekiŋ) vulus* ‘dove’ *(ekiŋ ‘bird’)*
NNG: Lamogai *belis* ‘dove’
MM: Bali *balu* ‘dove’
MM: Tigak *valus* ‘dove’
MM: Patpatar *balus* ‘big black and white pigeon’
MM: Tolai *bolu* ‘generic for pigeons, esp. Island Imperial Pigeon, Ducula pistrinaria’
MM: Nehan *baluh* ‘Ducula pistrinaria’
MM: Tinputz *banus* ‘Ducula spp.’

cf. also:

MM: Roviana *baruku* ‘fruit pigeon’
MM: Simbo *ba(r)yu* ‘pigeon sp.’
MM: Maringe *bal*hu ‘pigeon (generic)’
MM: Kia *babaluhu* ‘pigeon’

Note that the New Georgia and Santa Isabel words listed under ‘cf. also’ reflect the wrong final consonant.

POc *bona* ‘pigeon, Ducula sp.’

MM: Tolai *bonbon* ‘pigeon sp.’
MM: Ramoaaina *(kūru) bonbon* ‘Island Imperial Pigeon, Ducula pistrinaria’
NCV: Mota *p*ona ‘a pigeon’
NCV: Lakon *p*ɔn ‘Pacific Pigeon, Ducula pacifica’
NCV: Raga *man-bona* ‘Ducula pacifica’
NCV: Apma *bihil-bon* ‘Ducula spp.’

Probable borrowing from a North Vanuatu language:

Pn: Pileni *nu- mbona* ‘pigeon’

Probably a local development of the above are the following Solomons forms reflecting *boRa*:

MM: Nehan *bor* ‘Grey-breasted Quail Dove, Gallicolumba beccarii) and ground doves generally’
MM: Maringe *bora* ‘variety of balu [pigeon] found in forest’
MM: Kia *bora* ‘Knob-billed Fruit Dove, Ptilinopus insolitus’
Like PPn *tū below, an undoubtedly imitative name, but locally focused on a single species:

Proto North Vanuatu *tutu ‘Baker’s Pigeon, Ducula bakeri’

NCV: Mota (man)tut ‘kind of Vanua Lava pigeon that cries tut’
NCV: Mwotlap nu-tut
NCV: Lakon tut
NCV: Raga tutu
NCV: Wusi (Nokovula) (manu)tu
NCV: Matantas (na-nohu)tu
NCV: Kiai (mu)tu-(nu)tu (second name)

Although the following is in near-complementary distribution with POc *bune, and could almost be a metathetic development of it, Bauan at least contrasts the two terms.

PCP *ru(b,v)e ‘Pacific Pigeon, Ducula pacifica’

Fij: Bauan ruve ‘Pacific Pigeon, Ducula pacifica, or White-throated Pigeon, Columba vitiensis’
Pn: Tongan lupe
Pn: Niuean lupe
Pn: Samoan lupe
Pn: E Futunan lupe
Pn: Tuvalu lupe
Pn: Luangiua lupe
Pn: Sikaiana lupe
Pn: Rennellese gupe
Pn: Tikopia rupe
Pn: Marquesan rupe ‘Marquesas Pigeon, Ducula galeata’
Pn: Tahitian rupe ‘Society Islands Pigeon, Ducula aurorae’
Pn: Rarotongan rupe
Pn: Māori rupe ‘New Zealand Pigeon, Hemiphaga novaeseelandiae’

Probable Polynesian loans:
TM: Buma (te)lupe ‘pigeon spp.’
Mic: Kiribati rupe ‘Micronesian Pigeon, Ducula oceanica’
Fij: Rotuman rupe(vao) ‘bird sp.’ (vao ‘forest’)

8 cf. PAn *tuRtuR ‘resonant sound’ (Blust 1995)
5.8.2 Fruit Doves (*Ptilinopus*)

POc *(g(a)umu* ‘Fruit Dove, *Ptilinopus* sp.’)
- **NNG**: Yabem *(mɔʔ)gum* ‘dove’ *(mɔʔ* ‘bird’)
- **NNG**: Bing *gāmgum*
- **PT**: Ubir *kum(ag)* ‘blue pigeon’
- **SES**: ‘Are’are *(ku)kumu* ‘pigeon’
- **SES**: Arosi *(kumu)kumu* ‘pigeon sp.’
- **NCV**: Matantas *na-kauma*
- **NCV**: Rerep *ŋaum*
- **NCV**: Neve’ei *(nav)goum* ‘large Tanna fruit dove’
- **SV**: Lenakel *(tomə)kum* ‘k. bird, like *punhūa* but larger’
- **SV**: Kwamera *(tomə)kum* ‘k.o. *pinharov*, red-bellied fruit dove’

Proto SE Solomonic *(va(o,u)* ‘Fruit Dove, *Ptilinopus* sp.’)
- **SES**: Malango *(bela)vau* ‘Yellow-bibbed Fruit Dove, *Ptilinopus solomonensis* (female)’
- **SES**: To’a ba’ita *fao* ‘dove sp., green with yellow breast’
- **SES**: Kwara’ae *fao* ‘bird sp., not very big, powdery-white like pigeon *(bola)*
 - *fau* ‘Red-bibbed Fruit Dove, *Ptilinopus viridis*’

PNCV *(vʷeru* ‘Fruit Dove, *Ptilinopus* sp.’)
- **NCV**: Mota *wir* ‘a bird’
- **NCV**: Vurēs *wiria* ‘Grey’s Fruit Dove, *Ptilinopus greyii*’
- **NCV**: NE Ambae *(me.me)a* ‘*Ptilinopus greyii*’ *(me.me* ‘red’)
- **NCV**: Raga *vʷeru* ‘*Ptilinopus greyii*’
- **NCV**: Naman *nu-vire* ‘bird sp.’
- **NCV**: Tape *vʷiri* ‘*Ptilinopus greyii*’
- **NCV**: Larēvat *na-ver* ‘Silver-shouldered Fruit Dove, *Ptilinopus tannensis*’

PNCV *(tobaka* ‘Fruit Dove, *Ptilinopus* sp.’)
- **NCV**: NE Ambae *tobaka* ‘Silver-shouldered Fruit Dove, *Ptilinopus tannensis*’
- **NCV**: Kiai *tipa* ‘*Ptilinopus tannensis*’
- **NCV**: Araki *tipa* ‘*Ptilinopus tannensis*’
- **NCV**: Nese *(nov)tođak* ‘*Ptilinopus tannensis*’
- **NCV**: Nguna *tokopea* ‘dove’
- **NCV**: S Efate *tokape* ‘ground dove, *Chalcophaps*’

POc *(k,g)upuR* ‘pigeon or dove’
- **MM**: Patpatar *kuhur* ‘ground dove’
- **MM**: Tolai *kuvur* ‘pigeon sp.’
- **MM**: Nduke *kukuvu* ‘Island Imperial Pigeon, *Ducula pistrinaria*’
5.8.3 Ground-feeding pigeons

The following appears to be a local survival of a term reconstructible for PMP, but the glosses, even within the SE Solomonic subgroup, are confusingly diverse.

PMP *-muken ‘omen dove’ (Blust 2002)

POc *((l,R)(a,u))muk(w)o ‘dove sp.’

NNG: Adzera busir ‘pigeon’
NNG: North Watut boser ‘dove’
PT: Wedau butura ‘blue pigeon’
MM: Patpatar buten ‘imperial pigeon’
MM: Nduke buti ‘Brown-backed Emerald Dove, Chalcophaps stephani’
MM: Roviana buti ‘bird like a small pigeon, brown breast, green back, eats canarium nuts’
NCV: N Ambrym (min)buis ‘large Tanna fruit dove’

An isolated Micronesian form appears as a possible cognate of this set, Kiribati pitin ‘ground dove, Gallicolumba sp.’. The exact species reference of the Kiribati term is unclear. However, Pratt et al. (1987:194-5) indicate that this bird was introduced to Kiribati (Abe-mama) about 1940 from some other Pacific island. Since none of the possible source islands have words resembling bitin, it would seem much more likely that this name (phonetically [pisin]) is a borrowing from English pigeon.

PSOc *m’araRaki ‘Emerald Dove, Chalcophaps indica’ (John Lynch, pers. comm.)

NCV: Mota m’ara ‘a dove’
NCV: Lakon m’areey
NCV: Raga m’arayi
NCV: Matantas na-mahi
NCV: Kiai (wo)mae
NCV: Atchin (wo)mere ‘bird sp.’
NCV: Naman (vo)mar
NCV: Neve’ei (na-v)mar
NCV: Tape (na-v*i)mar
NCV: Avava (ap)mar
NCV: Larēvat (ave)mar
NCV: Nese (no-vo)may
NCV: Labo (na-v)maxa
NCV: Axamb (na-vjm*er)
NCV: SE Ambrym mai
NCV: Paamese amē
NCV: Namakir mar ‘ground dove’
SV: N Tanna m*ak ‘dove’
SV: Kwamera mak ‘pigeon or dove (generic)’

PPn *tū ‘ground dove’

Pn: Tongan tū ‘Friendly Quail Dove, Gallicolumba stauri’

PnPn *tū, *tū-kele ‘ground dove’

Pn: E Futunan tū ‘Purple-capped Fruit Dove, Ptilinopus porphyraceus’

Pn: Samoan tū-taumeo ‘Gallicolumba stauri (female and young)’

Pn: Emae tū-kere ‘Emerald Dove, Chalcophaps indica’

Pn: Imere tū-kere ‘Chalcophaps indica’

Pn: Māori tu-kere ‘bird sp. remembered in proverbs’

The absence of glottal stop in the Tongan and E Futunan forms shows that this name is likely imitative of the species’ voice, rather than derived from tuʔu ‘stand’ (referring to the species’ ground-feeding habits). However, in languages where the glottal stop has been lost the two would be homophonous, and tū-kere may be understood by present day speakers as ‘stands on the ground’.

5.8.4 Other species

POc *woku ‘Cuckoo Dove, Macropygia sp.’

MM: Nakanai (ka)voku ‘bird sp.’
MM: Tolai (to)vok ‘bird sp.’
MM: Banoni boku ‘Mackinlay’s Cuckoo Dove, Macropygia mackinlayi’
MM: Nduke oku ‘prob. Macropygia mackinlayi’
MM: Simbo voku ‘bird sp.’
SES: Bugotu (ka)vuku ‘pigeon’
SES: Gela (ka)vuku ‘a dove’
SES: Malango (ka)vuku ‘Ptilinopus sp.’
SV: Ura (uvor)wok ‘White-throated Pigeon, Columba vitiensis’
SV: Sye (no-yol)woy ‘Columba vitiensis’
Imitative naming is a high probability here; cf. PAn *qekuy ‘owl’, PWMP *bekur ‘coo, turtle dove’, PMP *bukaw ‘owl sp.’ (Blust 2002). The voice of *M. mackinlayi* is represented as ‘kor-wu’ or ‘vo-ku’ (Hadden 2004a:114). A metathetic variant is represented by Teop (MM) *uvo ‘Macropygia mackinlayi’, cf. Koiai (Papuan) *kuvo ‘Lesser Bar-tailed Cuckoo Dove, Macropygia nigrirostris’.

PSOc *taroap(v) ‘White-throated Pigeon, *Columba vitiensis*’ (John Lynch, pers. comm.)

PNCV *taroa ‘White-throated Pigeon, *Columba vitiensis*’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCV</td>
<td>Mota</td>
<td>taroa</td>
</tr>
<tr>
<td>NCV</td>
<td>Lakon</td>
<td>taro</td>
</tr>
<tr>
<td>NCV</td>
<td>Matantas</td>
<td>na-taroa</td>
</tr>
<tr>
<td>NCV</td>
<td>Kiai</td>
<td>taroa</td>
</tr>
<tr>
<td>NCV</td>
<td>Naman</td>
<td>doro</td>
</tr>
<tr>
<td>NCV</td>
<td>Neve’ei</td>
<td>no-toro</td>
</tr>
<tr>
<td>NCV</td>
<td>Big Nambas</td>
<td>toro</td>
</tr>
<tr>
<td>NCV</td>
<td>SE Ambrym</td>
<td>teau</td>
</tr>
<tr>
<td>NCV</td>
<td>Paamese</td>
<td>talo</td>
</tr>
<tr>
<td>NCV</td>
<td>Lewo</td>
<td>tewa</td>
</tr>
<tr>
<td>NCV</td>
<td>Namakir</td>
<td>taro</td>
</tr>
<tr>
<td>NCV</td>
<td>Nguna</td>
<td>taroa</td>
</tr>
<tr>
<td>NCV</td>
<td>S Efate</td>
<td>taro</td>
</tr>
<tr>
<td>NCal</td>
<td>Fwåi</td>
<td>dāp</td>
</tr>
<tr>
<td>NCal</td>
<td>Cëmuhî</td>
<td>(iīiā)-jāap</td>
</tr>
<tr>
<td>NCal</td>
<td>Païcî</td>
<td>(dēa)jēē</td>
</tr>
</tbody>
</table>

Proto North Vanuatu *toava ‘Mackinlay’s Cuckoo Dove, *Macropygia mackinlayi*’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCV</td>
<td>Mwotlap</td>
<td>no-toap</td>
</tr>
<tr>
<td>NCV</td>
<td>Vera’a</td>
<td>?aava</td>
</tr>
<tr>
<td>NCV</td>
<td>Vurēs</td>
<td>teav</td>
</tr>
</tbody>
</table>

Proto Central Vanuatu *bʷaueve ‘Mackinlay’s Cuckoo Dove, *Macropygia mackinlayi*’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCV</td>
<td>Raga</td>
<td>bʷaueve</td>
</tr>
<tr>
<td>NCV</td>
<td>SE Ambrym</td>
<td>vūeh</td>
</tr>
<tr>
<td>NCV</td>
<td>Paamese</td>
<td>vouehe</td>
</tr>
<tr>
<td>NCV</td>
<td>Namakir</td>
<td>tov</td>
</tr>
</tbody>
</table>

The following set undoubtedly owes something to imitation of typical pigeon ‘coo’ vocalizations—low pitched but with strong formant structure. Compare the Wayan Fijian name for a species introduced from Asia in modern times: *kukurū ‘Spotted-necked Dove, *Streptopelia chinensis*’.

POc *(ku(r,l)u)ku(r,l)u ‘pigeon sp.’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG</td>
<td>Takia</td>
<td>kula-kulu</td>
</tr>
<tr>
<td>PT</td>
<td>Gapapaiwa</td>
<td>kuyu-kuyu</td>
</tr>
<tr>
<td>PT</td>
<td>Mekeo</td>
<td>kūr</td>
</tr>
<tr>
<td>MM</td>
<td>Nakanai</td>
<td>kuru</td>
</tr>
</tbody>
</table>

‘pigeon sp.’

‘fruit dove, *Ptilinopus sp.?*

‘pigeon/dove’ (Schellong & Carolsfeld 1890)

‘dove, pigeon’
MM: Ramoaaina kūru ‘a pigeon’ *Ducula, Macropygia*
MM: Tolai kur ‘Brown’s Long-tailed Pigeon, Reinwardtoena browni’
MM: Nehan kū(i)lū ‘pigeon/dove’ *Schellong & Carolsfeld 1890*
MM: Petats kulu ‘the blue wild pigeon’
MM: Halia kulu ‘Island Imperial-Pigeon, Ducula pistrinaria, or Red-knobbed Pigeon, Ducula rubricera’
MM: Torau ku-kuru ‘Ducula pistrinaria’
MM: Marovo kuru-kuru ‘Ducula pistrinaria and similar spp.’
MM: Nduke ku-kuru (peka) ‘k. fruit dove, similar to Ducula rubricera, but lives in mountains’

kuru ‘Ducula spp.’

SES: Gela kuru-kuru ‘white pigeon sp.’
SES: Malango kulu-kulu ‘Chestnut-bellied Pigeon, Ducula brenchleyi’
SES: Kwar’a kuru-kuru ‘Ducula rubricera’
SES: Kwaio kulu-kulu ‘bird sp.’
SES: Sa’a kuru-kuru (ni Malau) ‘pigeon sp. without wattles on the beak’

kolu-kolu ‘Crested Long-tailed Pigeon, Reinwardtoena crassirostris’

SES: Ulawa kuru-kuru ‘wood pigeon (generic)’
SES: Uki ni Masi kuru-kuru (ni wapu) ‘Ducula brenchleyi’ (wapu ‘forest’) ‘Ducula rubricera’
SES: Kwar’a kuru-kuru ‘pigeon like bola but lives on the sea’
SES: Kwaio kulu-kulu ‘bird sp.’
SES: Sa’a kuru-kuru (ni Malau) ‘pigeon sp. without wattles on the beak’

kolu-kolu ‘Crested Long-tailed Pigeon, Reinwardtoena crassirostris’

SES: Gela kuru-kuru ‘white pigeon sp.’
SES: Malango kulu-kulu ‘Chestnut-bellied Pigeon, Ducula brenchleyi’
SES: Kwara’ae kuru-kuru ‘Ducula rubricera’
SES: Kwaio kulu-kulu ‘bird sp.’
SES: Sa’a kuru-kuru (ni Malau) ‘pigeon sp. without wattles on the beak’

kolu-kolu ‘Crested Long-tailed Pigeon, Reinwardtoena crassirostris’

SES: Ulawa kuru-kuru ‘wood pigeon (generic)’
SES: Uki ni Masi kuru-kuru (ni wapu) ‘Ducula brenchleyi’ (wapu ‘forest’) ‘Ducula rubricera’
SES: Kwar’a kuru-kuru ‘pigeon like bola but lives on the sea’
SES: Kwaio kulu-kulu ‘bird sp.’
SES: Sa’a kuru-kuru (ni Malau) ‘pigeon sp. without wattles on the beak’

kolu-kolu ‘Crested Long-tailed Pigeon, Reinwardtoena crassirostris’

Pc: kura ‘pigeon sp.’

NNG: Gedaged kududuk ‘bird like small dove, bluish green’

NNG: Poeng kula ‘great cuckoo-dove’
MM: Nduke kuratu ‘Pale Mountain Pigeon, Gymnophaps solomonsis’

(-t- unexplained)

MM: Vangunu koro ‘red-knobbed pigeon’
SES: Gela kura-kura ‘green and white pigeon sp. with red crest’
SES: Tolo kuu ‘bird sp. which feeds on nuts’
SES: Malango kura ‘Nicobar Pigeon, Caloenas nicobarica’
SES: ’Are’re urau ‘pigeon’
SES: Sa’a urau ‘wood pigeon with large wattles’

cf. also:

SES: Bauro kuvauau ‘Red-knobbed Pigeon, Ducula rubricera’
White-throated Pigeon, *Columba vitiensis*

Pn: Rennellese
kiou ‘small *Ducula* sp. (borrowed from a SES language)

PEOc *belìk(e, i)o* ‘pigeon sp.’

SES: Gela	belìkokeo	‘pigeon sp., black with red beak’
SES: Naman	belìgio	
SES: Neve’ei	ni-†îligio	
SES: Larèvat	balgio	
SES: Nese	na-ble	

PROc *sògeh* ‘pigeon sp.’

NCV: Nasarian	nɔ-sɔg	‘black pigeon of the mountains’
Fij: Bauan	sòge	‘Peale’s Pigeon, *Ducula latrans*’
Fij: Bauan	sòge(loa)	‘White-throated Pigeon, *Columba vitiensis*’ (loa ‘black’)
Fij: Wayan	sòge	‘Peale’s Pigeon, *Ducula latrans*’

POc *bverbsuruk* ‘pigeon or dove sp.’

NNG: Takia	pururuk	‘pigeon sp.’
SES: Malango	(manu) pururu	‘Brown-backed Emerald Dove, *Chalcophaps stephani*’
SES: Sa’a	(t)a-pverbsururu	‘bronze-wing dove’
SES: Bauro	bverbsoroau	‘Crested Long-tailed Pigeon, *Reinwardtia crassirostris*’
NCV: Nguna	pverbsoruru	‘to coo’
cf. also:		
MM: Tolai	bilul	‘Nicobar Pigeon, *Caloenas nicobarica*’

Possibly cognate are forms in SHWNG languages (*Ansus* mambaru, Biak mambruk) referring to the Crowned Pigeons (*Goura* spp.) (Anceaux 1961).

5.9 Parrots (Loriidae, Cacatuidae, Psittacidae)

The three families united here are represented by nine diverse genera in the homeland. By far the largest bird, not confusible with any other, is the Blue-eyed Cockatoo (*Cacatua ophthalmica*). The large Eclectus Parrot (*Eclectus roratus*) shows striking sexual dimorphism, with males (green) and females (red) often lexically distinguished. The Rainbow Lory (*Trichoglossus haematodus*) is probably the most conspicuous and widespread parrot in western Oceania. Among other middle-sized parrots are the Cardinal Lory (*Chalcopsitta cardinalis*), the Purple-bellied Lory (*Lorius hypoinochrous*) and the Singing Parrot (*Geoffroyus heteroelitus*). Smaller parrots include two Lorikeets of the genus *Charmosyna*, which, along with the closely related genus *Vini*, are found as far as eastern Polynesia. Smallest of all are the
Pygmy Parrots of genus *Micropsitta* and the Orange-fronted Hanging Parrot (*Loriculus aurantiifrons*). For the last (which is found no further east than New Guinea) not a single name was found in any of the sources.

5.9.1 Cockatoos

Only Papuan Tip languages supply sufficient cognates to support reconstructions for these birds. That the first term may be traceable to POc, however, is suggested by possible cognates in SHWNG languages such as Ansus *kara*, Serui-Laut *karai*, Ambai *kara* ‘cockatoo’ (Anceaux 1961).

PPT *karai* ‘white cockatoo’
- PT: Wagawaga *kehoi*
- PT: Dobu *keyoi*
- PT: Wedau *keloi*
- PT: Sinaugoro *karai*
- PT: Hula *kalai*
- PT: Motu *karai* ‘cockatoo’

PPT *wakeke~*kakawe ‘Sulphur-crested Cockatoo, *Cacatua galerita*’
- PT: Tubetube *wakeke* ‘cockatoo’
- PT: Suau *wakeke* ‘cockatoo’
- PT: Iduna *kakawe*
- PT: Bwaidoga *kakawe* ‘white cockatoo’
- PT: Bwaidoga *wakeke* (northern dialect)
- PT: Roro *iaveiave* ‘white cockatoo’
- PT: Mekeo *aveave* ‘bird sp.’

Compare perhaps:
- MM: Nduke *vak’voa* ‘Ducorps Cockatoo, *Cacatua ducorps*’
- MM: Maringe *veya* ‘*Cacatua ducorps*’

5.9.2 The Eclectus Parrot

This large parrot (*Eclectus roratus*) is most notable for its sexual dimorphism, with the predominantly red-plumaged female and green-plumaged male sometimes being separately lexicalised. The first two reconstructions are similar in form, and appear to refer to the male. Unfortunately, sources for the few languages that reflect both the shorter and longer term are unhelpful as to the distinction of meaning. Apparent reflexes of the first reconstruction extend well beyond the range of the Eclectus, and are applied to various other species, eventually reaching as far as New Zealand.

POc *kaRa* ‘male Eclectus Parrot, *Eclectus roratus*’
- NNG: Yabem *kala?* ‘the green male parrot’
- NNG: Bariai *kala* ‘parrot’
- NNG: Kove *kaha* ‘parrot’
NNG: Lusi kara ‘parrot’
NNG: Kilenge (ai)kala ‘parrot’
MM: Halia (Haku) kala-kala ‘Eclectus Parrot’
MM: Marovo kara ‘Eclectus roratus’
MM: Nduke (ma)kara ‘Eclectus roratus’
MM: Roviana kara ‘general name for parrots’
MM: Simbo (ma)kara ‘Eclectus roratus’
MM: Kia (ma)kara ‘green parrot’
MM: Maringe (ma)k(h)ara ‘Eclectus roratus’ (Webb 1992), ‘green parrot’
(Syen 1995)
SES: Gela kalao ‘green parrot sp.’
SES: To‘aba’ita a-ʔala ‘Eclectus roratus’
SES: Kwaio a-ʔala ‘Eclectus roratus’
SES: ’Are’are ara ‘large green parrot, red under wings’
SES: Sa’a a-ʔa ‘Eclectus roratus’
SES: Uki ni Masi ʔala ‘Eclectus roratus’
SES: Bauro yara ‘Eclectus roratus’
Fij: Bauan ka-kā ‘Shining Parrot, Prospeoma spp.’
Fij: Wayan ka-kā ‘possibly Collared Lory, Phigys solitarius’
Pn: Tongan ka-kā ‘Red Shining Parrot, Prosopoeia tabuensis’
Pn: Tahitian (e)ʔa-ʔa ‘green parrot sp. with red forehead’ (Forster 1775)
[probably Cyanoramphus sp.]
Pn: Māori kā-kā ‘parrot spp.’

PWOc *ka(l,R)anja(t;R) ‘male Eclectus Parrot, Eclectus roratus’
NNG: Bariai kalanga-n ‘parrot’
NNG: Kove kahanga-ni ‘parrot’
NNG: Lusi karanga-ni ‘parrot’
NNG: Gedaged ilañ ‘k. parrot, male green and red, blue and red’
NNG: Amara a-kalaŋar ‘parrot’
NNG: Kilenge ai-kalaŋa ‘parrot’
NNG: Mouk kalaŋa ‘parrot’
NNG: Kaulong (ekin) kalaŋ ‘parrot’
NNG: Lamogai kalaŋa ‘parrot’
NNG: Sengseng kahalaŋ ‘parrot’
NNG: Mengen (Poeng) kerana ‘Eclectus Parrot; parakeet (?) likes corn, banana, papaya’
PT: Bwaidoga anegala ‘parrot sp.’
PT: Tawala kanagala ‘parrot’
PT: Wedau kanagra ‘parrot’
PT: Kilivili kařaga ‘green parrot’
PT: Nimoa heleŋe ‘parrot sp.’
PT: Balawaia yalaŋa ‘parrot’
PT: Hula alaka ‘green lorikeet’
PT: Mekeo alanya ‘common green parrot, female red’
The following term may also be associated with *Eclectus*. Cf. POc *keRaŋ* ‘hawksbill turtle’ (ch. 5, 250), a name which is eventually re-applied to a parrot in New Zealand (Māori *kea* ‘*Nestor notabilis*’).
5.9.3 Middle-sized parrots

The following four reconstructions appear to be cut from the same basic form: the first with a three-consonant sequence, and each of the others missing one of the three. It would be natural to treat the others as simply variously reduced forms of the longest form, but there are apparent contrasts in several languages. The references are to medium-sized parrots (Chalcopsitta, Lorius, Trichoglossus), but it is difficult to see any consistent association between a particular species and any of these forms. Beyond the Solomons, the first two species disappear, and these terms are applied to Trichoglossus, or in New Caledonia to the parakeets of genus Cyanoramphus.

POc *sipi(r)i ‘Rainbow Lory, Trichoglossus haematodus, or Cardinal Lory, Chalcopsitta cardinalis’

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm:</td>
<td>Lou</td>
<td>sipir</td>
</tr>
<tr>
<td>NNG:</td>
<td>Takia</td>
<td>siwir</td>
</tr>
<tr>
<td>PT:</td>
<td>Balawaia</td>
<td>rivili</td>
</tr>
<tr>
<td>PT:</td>
<td>Lala</td>
<td>sivili</td>
</tr>
<tr>
<td>PT:</td>
<td>Mekeo</td>
<td>cipili, kipili</td>
</tr>
<tr>
<td>MM:</td>
<td>Teop</td>
<td>subiri</td>
</tr>
<tr>
<td>SES:</td>
<td>Bugotu</td>
<td>siviri</td>
</tr>
<tr>
<td>TM:</td>
<td>Buma</td>
<td>vili</td>
</tr>
<tr>
<td>NCV:</td>
<td>Mota</td>
<td>sivure</td>
</tr>
<tr>
<td>NCV:</td>
<td>Nume</td>
<td>(we)surv</td>
</tr>
<tr>
<td>NCV:</td>
<td>Raga</td>
<td>sivuru</td>
</tr>
<tr>
<td>NCV:</td>
<td>Neve’ei</td>
<td>ni-n-sivir</td>
</tr>
<tr>
<td>NCV:</td>
<td>Nese</td>
<td>ni-civir</td>
</tr>
<tr>
<td>NCV:</td>
<td>Nasarian</td>
<td>na-sivora</td>
</tr>
<tr>
<td>NCV:</td>
<td>Labo</td>
<td>ni-sivaxa</td>
</tr>
<tr>
<td>NCV:</td>
<td>Port Sandwich</td>
<td>sivir</td>
</tr>
<tr>
<td>NCV:</td>
<td>Lewo</td>
<td>leviri</td>
</tr>
<tr>
<td>NCV:</td>
<td>Nguna</td>
<td>siviri</td>
</tr>
<tr>
<td>SV:</td>
<td>Kwamera</td>
<td>sivur</td>
</tr>
<tr>
<td>NCal:</td>
<td>Pije</td>
<td>diwali</td>
</tr>
<tr>
<td>NCal:</td>
<td>Nengone</td>
<td>sipih</td>
</tr>
<tr>
<td>Pn:</td>
<td>Rennellese</td>
<td>sivigi</td>
</tr>
</tbody>
</table>

cf. also:

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM:</td>
<td>Nduke</td>
<td>sivoro</td>
</tr>
<tr>
<td>MM:</td>
<td>Roviana</td>
<td>sivoro</td>
</tr>
<tr>
<td>MM:</td>
<td>Marine</td>
<td>sivoro</td>
</tr>
</tbody>
</table>

POc *sipi ‘parrot, perhaps Cardinal Lory, Chalcopsitta cardinalis’

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm:</td>
<td>Loniu</td>
<td>cihi</td>
</tr>
<tr>
<td>NNG:</td>
<td>Sengseng</td>
<td>susu</td>
</tr>
<tr>
<td>PT:</td>
<td>Mekeo</td>
<td>ufi</td>
</tr>
</tbody>
</table>
Birds

MM: Nehan sipih ‘Chalcopsitta cardinalis’

SES: Bugotu sivi ‘parrot sp.’

SES: Gela susui ‘a red parakeet in coconuts’

SES: Malango cui ‘Yellow-bibbed Lory, Lorius chlorocercus’

SES: Arosi sivi, divi ‘scarlet parrot sp.’

SES: Bauro sivi ‘scarlet parrot sp.’

NCV: Dorig siv ‘Trichoglossus haematodus’

NCV: Raga sivi ‘Lorius, Trichoglossus haematodus’

NCV: Matantas na-civi ‘Trichoglossus haematodus and Palm Lorikeet, Charmosyna palmarum’

NCV: Atchin na-si ‘parrot sp.’

NCV: Naman ni-ncəv ‘Trichoglossus haematodus’

NCV: Paamese sīho ‘parrot’

Pn: Takuu sivi ‘Chalcopsitta cardinalis’

Pn: Luangiua sivo ‘red parrot’

Pn: Tikopia sivi ‘Trichoglossus haematodus’

POc *siri ‘parrot, perhaps Cardinal Lory, Chalcopsitta cardinalis’

PT: Wedau tiri(rama),
siri(rama) ‘long-tailed parrot sp.’

MM: Mono-Alu (ulu)sili ‘red parrot’

MM: Marovo ciri ‘Charmosyna sp. (?) and small parrots generally’
(also modified = Trichoglossus)

MM: Nduke siri nabo ‘Chalcopsitta cardinalis’

MM: Roviana siri ‘red parakeet sp.’

MM: Simbo siri ‘red bird sp. that eats coconut’

SES: Gela siri ‘small red parrot sp.’

SES: Malango ciciri ‘Chalcopsitta cardinalis’

(ka)kiri ‘Charmosyna spp.’

SES: Longgu suri ‘noisy parrot, lives in coconut trees’

SES: To’aba’ita suri(aoa) ‘parrot sp.’

sū-suri ‘parrot sp.’

SES: Lau siri ‘small bird sp.’

siru ‘long tailed bird sp.’

SES: Kwaio sul(kē) ‘Rainbow Lory, Trichoglossus haematodus’

SES: ‘Are’are siri ‘red hen parrot’

SES: Sa’a siri ‘a parrot’

siri (ala)ha ‘Yellow-bibbed Lory, Lorius chlorocercus’ (ala)ha

chēf’)

siri (uʔu) ‘a lory that hangs head downward’ (uʔu ‘hang

down’)

SES: Uki ni Masi siri ‘Chalcopsitta cardinalis’

SES: Arosi siri ‘Chalcopsitta cardinalis’

sire ‘small parrot sp.’
NCV: Sara ne-ssere (Flux 1993)
NCal: Tinrin ḏiria ‘parrot’
NCal: Xârâcùù jiria ‘Trichoglossus haematodus’
NCal: Drubea jirìá ‘Red-fronted Parakeet, Cyanoramphus novaezelandiae’

cf. also:
Mic: Ponapean serēt ‘Ponape Lory, Trichoglossus rubiginosus’
Mic: Mokilese cerēt ‘Trichoglossus rubiginosus’
Pn: Nukuoro serete ‘parakeet’

POc *pʷiri(p) ‘parrot sp.’
MM: Nduke vili(sulu) ‘Rainbow Lory, Trichoglossus haematodus’
MM: Roviana vili(suru) ‘small noisy greenish bird often found at coconut and Barringtonia blossoms’
TM: Buma vili ‘Trichoglossus haematodus and Palm Lorikeet, Charmosyna palmarum’
NCV: N Efate vini ‘coconut lory’
SV: Ura ule ‘coconut lory’
SV: Sye ure ‘Trichoglossus haematodus’
NCal: Nêlêmwa pʰriip ‘Horned Parakeet, Cyanoramphus cornutus’
NCal: Caaâc pʰriip ‘Trichoglossus haematodus’
NCal: Fwâi pʰriip ‘perruche écossaïse’ (Trichoglossus haematodus)
Pn: Samoan vilu ‘a large parroquet’
Pn: Pileni vili ‘parrot’
Pn: Tahitian vini ‘Tahitian Lory, Vini peruviana’

Proto Malaita-Makira *kirori ‘parrot sp.’
SES: Lau kirori ‘parrot sp.’
SES: ’Are’are irori kirori ‘a parrot, finding its food specially on the blossoms of coconut trees; tamed as pets’
SES: Sa’a kirori, ʔirori ‘Cardinal Lory, Chalcopsitta cardinalis’
SES: Arosi kirori ‘Chalcopsitta cardinalis’

5.9.4 Small parrots

The small parrots of closely related genera Charmosyna and Vini are referred to by two possibly not independent etyma.

POc *(ka)reŋas ‘small parrot sp.’
Adm: Loniu keʔɛŋ ‘parrot sp.’
Adm: Nyindrou karen ‘parrot’
Adm: Titan karen ‘red parrot, Agapornis roseicollis’
Adm: Lou karen ‘red parrot’
Birds

NNG: Yabem (mɔ)ndeŋ ‘female red parrot’
NNG: Bing (iri)reŋ ‘Emerald Lorikeet, Neopsittacus pullicauda’
MM: Petats reŋis ‘the small red honey-eating parrot’
MM: Tinputz renges ‘Rainbow Lory, Trichoglossus haematodus’
NCV: Mota reŋa ‘a parrot’
NCV: Mwotlap na-ŋes ‘Charmosyna palmarum’
NCV: Raga denjas ‘Charmosyna palmarum’
NCV: Wusi (Nokovula) (de)deŋa ‘Charmosyna palmarum’
NCV: SE Ambrym reŋ ‘Charmosyna palmarum’
Probable loanword from a North–Central Vanuatu language:
Pn: Tikopia leŋa ‘Duchess Lorikeet, Charmosyna margaretha’,
also Cardinal Honeyeater, Myzomela cardinalis’

The Titan gloss is subject to question, as the lovebirds (Agapornis spp.) are native to Africa.

POc *seŋa ‘parrot sp.’

NNG: Manam seŋ ‘parrot’
MM: Nehan seŋ ‘Rainbow Lory, Trichoglossus haematodus’
MM: Halia (Haku) seŋe ‘Trichoglossus haematodus’
Fij: Bauan seŋa ‘Blue-crowned Lory, Vini australis’
Pn: Tongan heŋa ‘Vini australis’
Pn: Niuean heŋa ‘Vini australis’
Pn: E Uvean heŋa ‘Vini australis’
Pn: E Futunan seŋa ‘Vini australis’
Pn: Nukuria seŋa(vao) ‘Vini australis’
Pn: Pileni eŋa ‘land bird sp.’

5.9.5 Other parrot species

POc *(k(v),g)i(l,n)e ‘Singing Parrot, Geoffroyus heteroclitus’

MM: Tolai njini-njil ‘Geoffroyus heteroclitus’
gili-gil ‘small green parrot sp.’
gini-gil ‘sea bird allied to parrots’
MM: Tinputz ki-kire
MM: Nduke ki-kine ‘Red-breasted Pygmy Parrot, Micropsitta bruijnii’
MM: Roviana kine-kine ‘a parakeet, sometimes tamed and trained to speak’
SES: Bugotu kie-kîne ‘a parakeet’
SES: Gela kine-kine ‘green parrot’
SES: Malango kina
SES: To’aba’ita kila-kila
SES: Bauro yînai
A loan from a Southeast Solomonic language:
Pn: Rennellese yînei ‘Finsch’s Pygmy Parrot, Micropsitta finschii’
POc *marewe ‘parrot’

MM: Nakanai \textit{marea} ‘parrot’
MM: Tolai \textit{malip} ‘Purple-bellied Lory, \textit{Lorius hypoinochrous}’
MM: Ramoaaina \textit{marewe} ‘\textit{Lorius hypoinochrous}’
MM: Petats \textit{malei} ‘bird (generic)’
MM: Taiof \textit{marei} ‘bird (generic)’
MM: Torau \textit{marii} ‘bird (generic)’
NCV: Wusi (Nokovula) \textit{maramarei} ‘Palm Lorikeet, \textit{Charmosyna palmarum}’
NCV: Atchin \textit{m"er} ‘parrot sp.’

PCP *\textit{kula} ‘Collared Lory, \textit{Phigys solitarius}’

Pn: Marquesan \textit{ku?a} ‘bird sp.’
Pn: Tuamotuan \textit{kura} ‘bird sp. highly prized for its plumage’
Pn: Rarotongan \textit{kurā(moʔo)} ‘Tahitian Lory, \textit{Vini peruviana}’

Polynesian borrowing (the species is a recent introduction from the Austral Islands):

Mic: Kiribati \textit{kura} ‘Kuhl’s Lory, \textit{Vini kuhlii}’

The renown of this parrot’s feathers has produced a range of extended meanings, beyond bird names, as in PnP *\textit{kula} ‘(bright) red’ and the following:

Pn: Tikopia \textit{kura} ‘honored; of ritual value’
Pn: W Uvean \textit{kula} ‘flying fox fur’
Pn: Pukapukan (\textit{wulu}) \textit{kula} ‘red feathers from western islands’ (\textit{wulu} ‘feathers’)
Pn: Rapanui \textit{kura} ‘short, multi-coloured feathers of certain birds’
Pn: Marquesan \textit{kuwa} ‘red, applied to feathers, cloth etc. imported to the islands, also to the scarlet berries or peas used in their ornaments’ (Crook et al. 1799)
5.10 Cuckoos (Cuculidae)

Eight species of this family are recorded from the homeland, two as seasonal visitors. They include parasitic cuckoos of the genera *Cuculus*, *Cacomantis*, *Chalcites*, *Urodynamis*, *Urody- namis* and *Scythrops*, and two Coucals of the genus *Centropus*. Names recorded, however, are far fewer than for the parrots with a comparable number of species. Only one small cognate set of Proto Oceanic scope has been found.

POc *seke* ‘cuckoo, possibly *Centropus* sp.’

MM:	Patpatar	sēk	‘cuckoo’
MM:	Nduke	heye-heye	‘*Centropus* sp.’
SES:	Malango	sege	‘Buff-headed Coucal, *Centropus milo* (imm)’

PSOc *lvusi* ‘cuckoo’ (John Lynch, pers. comm.)

NCV:	Raga	livusi-yala	‘Long-tailed Koel, *Urodynamis taitensis*’
NCV:	Matantas	ri-risive(re)	‘Golden-Bronze Cuckoo, *Chalcites lucidus*’ (metathesis)
SV:	Kwamera	ia-rovəs	‘*Urodynamis taitensis*’ (metathesis)

PCP *kalewa* ‘Long-tailed Koel, *Urodynamis taitensis*’

Fij:	Rotuman	(si)aʔleva	‘*Urodynamis taitensis*’
Pn:	Tongan	kaleva	
Pn:	Niuean	kalue	
Pn:	E Futunan	kaleva	
Pn:	Samoan	ʔāleva	
Pn:	Pukapukan	kāleva	
Pn:	Tuvalu	kaleva	
Pn:	Takuu	kāreva	
Pn:	Sikaiana	kaleva	
Pn:	Rennellese	kāgeva	‘a large dove or pheasant’
Pn:	Tikopia	kāreva	
Pn:	Marquesan	kāʔeva-ʔeva	
Pn:	Tahitian	ʔāreva-reva	
Pn:	Māori	kārea-re,	‘New Zealand Falcon, *Falco novaeseelandiae*’
		kārewa-rewa	

The Māori reflex above refers to a bird which, though not closely related, has an overall similarity in appearance to the Koel.
Although Micronesian borrowing would not be expected, the similarity of the following is intriguing:

Pn: Mangarevan pakanei ‘name of a bird mentioned by Laval, possibly the cuckoo’ (Hiroa 1938)

5.11 Owls (Tytonidae, Strigidae)

The Barn Owls (Tytonidae) and Typical Owls (Strigidae) are each represented in Oceania by a single genus. The Barn Owl (*Tyto alba*) is probably the most widespread owl of the Oceanic region. In the homeland it coexists with the endemic New Britain Barn Owl (*Tyto aurantia*). There are also two Hawk Owls of the genus *Ninox*. While the voice of the Barn Owl is described as a screech, Typical Owls (like pigeons) have calls whose acoustic profile suggests the low second formant of [u]-type vowels. The Solomon Islands Hawk Owl (*Ninox jacquinoti*), for example, has a call described as ‘‘Kuurrroo’ with rolled ‘r’” (Hadden 2004a:155). The prevalence of such vowels in the first three cognate sets places them under a certain degree of uncertainty. Note, however, that reflexes of *lulu* are found mostly in areas where the Barn Owl is the only owl present, and are therefore unlikely to be imitative.
Birds

MM: Tinputz kuro ‘Ninox jacquinoti’
MM: Banoni kāru ‘Ninox jacquinoti’
MM: Torau kuru ‘Ninox jacquinoti’
MM: Babatana kuru ‘owl’
MM: Marovo orodo ‘Ninox jacquinoti or Nesasio solomonensis’
MM: Maringe na-krudu ‘Ninox jacquinoti’
SES: Tolo kuru ‘owl’
SES: Longgu kuru ‘owl’
SES: To’aba’ita (noʔo) kurudu ‘owl (as pet)’
cf. also:
NNG: Mangap uloto ‘owl’
MM: Kia kikituru ‘owl’

POc *dru-dr(r) ‘owl’
MM: Madak dudu ‘owl’
MM: Sursurunga durdur ‘owl taxon, includes Sooty Owl, Grass Owl’
MM: Nduke dudu ‘owl (generic)’
MM: Roviana dudu ‘owl sp.’
SES: Bugotu duru ‘owl’
SES: Gela duru ‘an owl’
cf. also:
MM: Halia tutul ‘Fearful Owl, Nesasio solomonensis’
MM: Tinputz toruruen ‘owl’

PROc *lulu ‘Barn Owl, Tyto alba’
NCV: Kiai lulu
NCV: Araki lulu
NCV: Atchin lul ‘the night hawk’
NCV: Maskelynes na-rūr ‘owl’
NCV: Lewo (kia)lulu ‘owl’
Fij: Bauan lulu
Pn: Tongan lulu
Pn: E Futunan lulu
Pn: Samoan lulu
Pn: Pileni lulu ‘owl’
Pn: Rennellese gugu
Pn: Tikopia ruru
Pn: W Uvean lulu
Pn: Māori ruru ‘Boobook Owl, Ninox novaeseelandiae’
A Polynesian borrowing:
Fij: Rotuman ruru ‘owl spp.’
cf. also:
TM: Buma e-luro
An unusually large number of Polynesian bird names reflect *lulu but are applied to various seabirds (compare *toloa, §5.3):

<table>
<thead>
<tr>
<th>Language</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuvalu</td>
<td>lulu</td>
<td>‘Phoenix Petrel, *Pterodroma alba’</td>
</tr>
<tr>
<td>Rapanui</td>
<td>ruru</td>
<td>‘Giant Petrel, *Macronectes giganteus’</td>
</tr>
<tr>
<td>Tahitian</td>
<td>ruru</td>
<td>‘Tahiti Kingfisher, *Halcyon venerata’</td>
</tr>
<tr>
<td>Manihiki</td>
<td>ruru</td>
<td>‘large sea bird sp. with hooked bill’</td>
</tr>
<tr>
<td>Māori</td>
<td>ruru-tāiko</td>
<td>‘Black Petrel, *Procellaria parkinsoni’</td>
</tr>
</tbody>
</table>

And borrowed from Polynesian:

<table>
<thead>
<tr>
<th>Language</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mic: Kiribati</td>
<td>ruru</td>
<td>‘*Pterodroma alba’</td>
</tr>
</tbody>
</table>

There is at present an owl-free area in Eastern Polynesia, which may account for the maritime application of some of these words. However, owls and petrels have in common that they are seldom seen, and mainly known by their calls at night. Spenneman (2004:149) notes that *licemwao, the present Marshallese term for the female of the Short-eared Owl (*Asio flammeus*) was given by an earlier source for a type of petrel. (The name is probably analysable as li- ‘feminine prefix’ + ? + múa ‘cry’ + o ‘oh!’.)

POc *pora ‘owl’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Kaulong</td>
<td>(ekin) voh</td>
<td>‘owl’</td>
</tr>
<tr>
<td>MM: Nduke</td>
<td>po-poro</td>
<td>‘nocturnal bird, said to call just before daylight’</td>
</tr>
<tr>
<td>NCV: Mota</td>
<td>*(man)*war</td>
<td>‘owl’</td>
</tr>
<tr>
<td>NCV: Rerep</td>
<td>nu-*bur</td>
<td>‘owl’</td>
</tr>
<tr>
<td>NCV: Port Sandwich</td>
<td>na-vandr</td>
<td>‘owl’</td>
</tr>
</tbody>
</table>
5.12 Swifts and swallows (Apodidae, Hemiprocnidae, Hirundinidae)

These three groups are closely allied in general appearance and habits and rarely distinguished terminologically. The swiftlets are familiar birds of garden areas throughout much of Oceania. The most common species noted are the White-rumped Swiftlet (*Aerodramus spodiopygius*), Uniform Swiftlet (*A. vanikorensis*) and White-bellied Swiftlet (*Collocalia esculenta*). These are not in general lexically distinguished. The few terms recorded for the Pacific Swallow (*Hirundo tahitica*) and the even fewer for the Whiskered Tree-swift (*Hemiprocnemystacea*) are often lexically associated with those for the Swiftlets, and where they are not, they do not support any independently reconstructible term. These birds are also terminologically linked with small insectivorous bats: SE Ambrym (NCV) *avæp* ‘any small bat; swiftlet’; E Futunan *pekapeka* ‘White-rumped Swiftlet’, *pekapeka saʔi* ‘small bat sp.’ (see ch.5, §2.9).
POc *kabakabal ‘swiftlet, Aerodramus or Collocalia spp.’ (cf. *kaba etc. ‘wing, flap’)

NNG: North Watut ko*bayko*b ‘bird sp.’
MM: Tolai kabakabal ‘Collocalia esculenta’
kubəkubəl ‘swallow or swift sp.’ (expected †kabəkabal)
MM: Roviana kapakapa(gema) ‘a small greenish bird, frequents gema [Nephelium] trees’
MM: Marinega gāyable ‘Collocalia spp.’
SES: Malango habahaba (viso) ‘Whiskered Tree-swift, Hemiprocnemystacea’
SES: Kwaio kaba(ʔi) ‘Hemiprocnemystacea’
SES: Arosi ?apaʔapa ‘swallow’
kapakapa ‘swallow (swift)’
SES: Bauro yapayapa ‘Collocalia spp.’
yapayapa (usu) ‘Hemiprocnemystacea’
NCV: Mota yapayapa ‘Collocalia esculenta’
NCV: Mwotlap na-baybay(lo) ‘White-rumped Swiftlet, Aerodramus spodiopygius’ (metathesis)
NCV: Raga yabayaba ‘Collocalia spp.’
NCV: Port Sandwich (xu)*baxa*b ‘Hirundo tahitica’ (metathesis)
NCV: SE Ambrym avæp ‘swiftlets and bats, esp. Aerodramus vanikorensis’
NCV: Nisvai (navi)xabxabel ‘swiftlet’ (John Lynch, pers. comm.)
NCV: S Efate kapkāp ‘swiftlet’
Fij: Bauan kākaba(ðē) ‘Aerodramus spodiopygius’

A probable borrowing from a North Vanuatu language, with metathesis (cf. Mwotlap):

Pn: Tikopia paka(lili) ‘Uniform Swiftlet, Aerodramus vanikorensis’
cf. also:

PT: Iduna (manu) yayabama ‘White-bellied Swiftlet, Collocalia esculenta’
SV: Ura n-ibem ‘white-rumped swiftlet’
SV: Sye ni-mpem ‘Aerodramus spodiopygius’

PCP *bekabeka ‘swiftlet’ (cf. POc *bréka ‘fruit bat, flying fox’, ch. 5, §2.9)

Fij: Lau bekabeka(niðaŋi) ‘White-rumped Swiftlet, Aerodramus spodiopygius’

Pn: Tongan pekepeka(tea) ‘Aerodramus spodiopygius’
pekepeka ‘Pacific Swallow, Hirundo tahitica’

Pn: Niuean pekapeka ‘Aerodramus spodiopygius’

Pn: E Futunan pekapeka ‘Aerodramus spodiopygius’
Pn: Pileni pekapeka ‘swiftlet’
Pn: Rennellese pekapeka ‘White-bellied Swiftlet, Collocalia esculenta’
Pn: Emae pekapeka ‘Collocalia spp.’
Pn: Marquesan (kō)pekapeka ‘Marquesan Swiftlet, Aerodramus ocista’
Pn: Tahitian (ʔi)peʔa ‘Hirundo tahitica or Tahitian Swiftlet, Aerodramus leucophaeus’
Pn: Rarotongan (kō)peka ‘Cook Islands Swiftlet, Aerodramus sawtelli’
Proto Malaita-Makira *sisiri* ‘swiftlet’

- SES: To’aba’ita sīsiri ‘Collocalia sp.’
- SES: Lau sisiru ‘swallow’
- SES: Kwaio sīsili ‘Collocalia sp.’
- SES: ’Are’are sisiri(hapa) ‘a small swallow’
- SES: Sa’a sisiri (hapa) ‘swallow’
- SES: Uki ni Masi sisiri(hapa) ‘Collocalia sp.’
- SES: Arosi sisiri(hioha) ‘swallow, blue with red head, comes in houses’
- SES: Bauro sisiri (oha) ‘Pacific Swallow, Hirundo tahitica’

PNCal *bivilo(k)* ‘swiftlet’

- NCal: Nyelāyu pivilo ‘White-rumped Swiftlet, Aerodramus spodiopygius’
- NCal: Nēlēmwa pivilo ‘White-bellied Swiftlet, Collocalia esculenta’
- NCal: Caaàc biviloc ‘swallow, white-rumped swiftlet’
- NCal: Jawe bivilōc ‘Aerodramus spodiopygius’
- NCal: Cēmuhī hīlō ‘Aerodramus spodiopygius’

PROc *ka(r,l)aka(r,l)a* ‘swiftlet’

- NCV: Mwotlap ne-keykey(beye) ‘Uniform Swiftlet, Aerodramus vanikorensis’
- NCV: Matantas na-textitkarakara ‘White-bellied Swiftlet, Collocalia esculenta’
 - na-karakara(poi) ‘Aerodramus vanikorensis’
 - na-karakara(ruhumele) ‘Pacific Swallow, Hirundo tahitica’
- NCV: Sara harahara ‘Aerodramus vanikorensis’ (Flux 1993)
- NCV: Kiai karakara
NCV: Atchin kirkiri(el) ‘small bird resembling swallow, inhabiting the mainland’
Fij: Lomaiviti kalakala(mādrau) ‘White-rumped Swiftlet, Aerodramus spodiopygius’
Pn: Takuu karakara(tavori) ‘Collocalia esculenta’
Pn: Rennellese kaga(mu?a) ‘Aerodramus spp.’

5.13 Kingfishers (Alcedinidae)
Ten species of Kingfisher are recorded for the homeland, half of them in the genus Halcyon, which extends widely through Oceania. Particularly widespread are the White-collared Kingfisher (H. chloris), the Sacred Kingfisher (H. sancta) and the White-headed Kingfisher (H. saurophaga). Other kingfishers of the homeland include the very large White-tailed Kingfisher (Tanysiptera sylvia), and the small birds of genera Ceyx and Alcedo. A number of good cognate sets exist, but assignment to species is very problematic. The relatively few terms for non-Halcyon species do not form any useful cognate sets. Blust (2002:113) compares POc *(s,j)iko with PMP *cikep ‘catch with hands’.

POc *(s,j)iko ‘kingfisher’

NNG: Manam siko ‘bird sp. (short body, red beak and head, black wings, long white tail)’
NNG: Lukep (Pono) siki ‘kingfisher’
PT: Tawala diko ‘kingfisher’
MM: Banoni (si)sikā ‘Dwarf Kingfisher, Ceyx lepidus’
MM: Marovo cige ‘River Kingfisher, Alcedo atthis’
MM: Nduke hige ‘River Kingfisher (Alcedo atthis) and possibly other spp.’
MM: Roviana sige ‘kingfisher sp. (small, swift-flying)’
MM: Kia suke(neo) ‘White-collared Kingfisher, Halcyon chloris’
SES: Bauro (a)sigo ‘Halcyon spp.’
NCV: Mota siyo ‘kingfisher’
NCV: Dorig sry ‘Halcyon spp.’
NCV: Lakon tji: ‘Halcyon spp.’
NCV: Raga (b”at)hiyo ‘Halcyon chloris’
NCV: Matantas na-siho ‘Halcyon chloris’
NCV: Kiai siko ‘kingfisher’
NCV: Avava a-sik ‘Halcyon chloris’
NCV: Port Sandwich na-six ‘Halcyon chloris’
NCV: SE Ambrym si ‘Halcyon chloris’
NCV: Paamese a-sio ‘Halcyon chloris’
NCV: S Efate sîk ‘kingfisher’
SV: Ura uye ‘kingfisher’
SV: Sye uki ‘Halcyon chloris’
SV: Anejoũ ne-θeɣ ‘Halcyon sp.’
NCal: Nêlêmwa fi xe(men) ‘Sacred Kingfisher, Halcyon sancta’
Figure 6.15 *Halcyon chloris*, White-collared Kingfisher

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCal: Paićî</td>
<td>jōō(cā)</td>
<td>‘Halcyon sancta’</td>
</tr>
<tr>
<td>Mic: Sonsorolese</td>
<td>(taga)dik</td>
<td>‘kingfisher’</td>
</tr>
<tr>
<td>Pn: Tongan</td>
<td>siko(tā)</td>
<td>‘Halcyon chloris’</td>
</tr>
<tr>
<td>Pn: E Futunan</td>
<td>tiko(tala)</td>
<td>‘Halcyon chloris’</td>
</tr>
<tr>
<td>Pn: Takuu</td>
<td>tiko(tala)</td>
<td>‘mythical bird sp.’</td>
</tr>
<tr>
<td>Pn: Tikopia</td>
<td>siko(tara)</td>
<td>‘Halcyon chloris’</td>
</tr>
<tr>
<td>Pn: Imere</td>
<td>siko(tara)</td>
<td>‘Halcyon chloris’</td>
</tr>
<tr>
<td>Pn: Rarotongan</td>
<td>kō(tare)</td>
<td>‘Halcyon tuta’</td>
</tr>
<tr>
<td>Pn: Māori</td>
<td>ko(tare)</td>
<td>‘Halcyon sancta’</td>
</tr>
</tbody>
</table>

A probable borrowing from a Southeast Solomonic language:

| Pn: Rennellese | liyo | ‘Halcyon chloris’ |

This word appears to have been reshaped in Polynesian to PPn *tiko-tara*, a compound analysable as ‘defecate’ + ‘end of house’. Some outliers have returned to a historically earlier form through non-Pn influence. The Bauan Fijian word for kingfisher has a general resemblance to the Polynesian *tikotara* forms, but cannot be formally reconciled with them; more exact agreement is found in the first part of the word *sikorere*, though with slightly deviant reference:

| Fij: Bauan | sēdala | ‘Halcyon spp.’ |
| Fij: | sikorere | ‘White-breasted Wood Swallow, *Artamus leucorhynchus*’ |

The following two sets are likely to be at least influenced by imitation of the voice of *Halcyon* kingfishers, represented as *ki-ki-ki-ki-i-i-ee* (Watling 2004:137).
POc *ki(o)kio ‘kingfisher’ cf. PAn *kiaw ‘puling sound of a bird’ (Blust 1995)

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm: Nauna</td>
<td>kikiw</td>
<td>‘kingfisher’</td>
</tr>
<tr>
<td>Adm: Seimat</td>
<td>kioki</td>
<td>‘kingfisher’</td>
</tr>
<tr>
<td>Adm: Wuvulu</td>
<td>ioio</td>
<td>‘kingfisher’</td>
</tr>
<tr>
<td>NNG: Mangap</td>
<td>kiakia(gāda)</td>
<td>‘kingfisher’ (cf. gadgāda ‘foolish, crazy’)</td>
</tr>
<tr>
<td>PT: Misima</td>
<td>kiokio</td>
<td>‘kingfisher’</td>
</tr>
<tr>
<td>PT: Nimoa</td>
<td>kiokio</td>
<td>‘kingfisher’</td>
</tr>
<tr>
<td>PT: Roro</td>
<td>heoheo</td>
<td>‘kingfisher’</td>
</tr>
<tr>
<td>MM: Tolai</td>
<td>kioki̱o̱(tabu)</td>
<td>‘White-collared Kingfisher, Halcyon chloris’</td>
</tr>
<tr>
<td>MM: Ramoaaina</td>
<td>giagia(utam)</td>
<td>‘Halcyon chloris or White-tailed Kingfisher, Tanyisiptera sylvia’</td>
</tr>
<tr>
<td>MM: Nehan</td>
<td>kekio</td>
<td>‘White-headed Kingfisher, Halcyon saurophaga’</td>
</tr>
<tr>
<td>MM: Halia</td>
<td>kikio</td>
<td>‘Halcyon saurophaga’</td>
</tr>
<tr>
<td>MM: Petats</td>
<td>keukeuo</td>
<td>‘kingfisher’</td>
</tr>
<tr>
<td>MM: Banoni</td>
<td>kiokio</td>
<td>‘Halcyon saurophaga’</td>
</tr>
<tr>
<td>MM: Marovo</td>
<td>kiokio</td>
<td>‘Halcyon saurophaga’</td>
</tr>
<tr>
<td>MM: Nduke</td>
<td>kiokio</td>
<td>‘Halcyon saurophaga, Beach Kingfisher’</td>
</tr>
<tr>
<td>MM: Roviana</td>
<td>kikio</td>
<td>‘the largest of the three kingfishers’ [i.e. Halcyon sp.]</td>
</tr>
<tr>
<td>MM: Simbo</td>
<td>kikio</td>
<td>‘bird sp. found on reef’</td>
</tr>
<tr>
<td>MM: Kia</td>
<td>kiokio</td>
<td>‘Ultramarine Kingfisher, Halcyon leucopygia’</td>
</tr>
<tr>
<td>MM: Maringe</td>
<td>kioko̱io̱ko̱io̱</td>
<td>‘Halcyon saurophaga’</td>
</tr>
<tr>
<td>MM:</td>
<td>ciocio</td>
<td>‘kingfisher sp. with white belly, blue wings and back’</td>
</tr>
<tr>
<td>MM:</td>
<td>kio̱akio̱</td>
<td>‘Halcyon chloris’</td>
</tr>
<tr>
<td>SES: Gela</td>
<td>giogio</td>
<td>‘a kingfisher’</td>
</tr>
<tr>
<td>SES: Longgu</td>
<td>kiokio</td>
<td>‘kingfisher’</td>
</tr>
<tr>
<td>SES: Kwaio</td>
<td>kiokio</td>
<td>‘Halcyon saurophaga’</td>
</tr>
<tr>
<td>SES: Bauro</td>
<td>kiokio</td>
<td>‘Halcyon saurophaga’</td>
</tr>
<tr>
<td>Pn: Sikaiana</td>
<td>kiokio</td>
<td>‘Halcyon chloris; also Island Grey-headed Monarch, Monarcha cinerascens’</td>
</tr>
</tbody>
</table>

POc *kiki ‘kingfisher’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm: Mussau</td>
<td>sokiki</td>
<td>‘Halcyon spp.’</td>
</tr>
<tr>
<td>MM: Vitu</td>
<td>kiki</td>
<td>‘Halcyon saurophaga’</td>
</tr>
<tr>
<td>MM: Tolai</td>
<td>kik</td>
<td>‘Halcyon spp.’</td>
</tr>
<tr>
<td>MM: Nakanaï</td>
<td>kiki</td>
<td>‘Halcyon saurophaga’</td>
</tr>
<tr>
<td>SES: Kwaio</td>
<td>ʔirir</td>
<td>‘White-collared Kingfisher, Halcyon chloris’</td>
</tr>
<tr>
<td>NCal: Xărâcùù</td>
<td>ciçode</td>
<td>‘Sacred Kingfisher, Halcyon sancta’</td>
</tr>
<tr>
<td>NCal: Drubea</td>
<td>cécá</td>
<td>‘Halcyon sancta’</td>
</tr>
<tr>
<td>NCal: Iaai</td>
<td>jiji</td>
<td>‘Halcyon sancta’</td>
</tr>
<tr>
<td>NCal: Dehu</td>
<td>ciciat</td>
<td>‘Halcyon sancta’</td>
</tr>
<tr>
<td>NCal: Nengone</td>
<td>wa-zeze</td>
<td>‘Halcyon sancta’</td>
</tr>
</tbody>
</table>
5.14 Rollers (Coraciidae)

The single species in this family in the Oceanic homeland, the Dollar Bird (*Eurystomus orientalis*) can be associated with two small cognate sets, though there are problems of identification.

**PWOc *ule(o)* ‘Dollar Bird, *Eurystomus orientalis*’

<table>
<thead>
<tr>
<th>Code</th>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT</td>
<td>Nduke</td>
<td>ule</td>
<td>bird (kakamota)</td>
</tr>
<tr>
<td>MM</td>
<td>Roviana</td>
<td>ule</td>
<td>‘bird sp., Graucalus sublineatus’ with a rather shrill note’</td>
</tr>
</tbody>
</table>

The obsolete generic in Roviana most probably refers to the Lineated Cuckoo Shrike (*Coracina lineata*). Since the terms below are distributed only around the Western Oceanic/SE Solomonic boundary, it is possible that terms have been borrowed across the boundary. If so, there is no support for a POC reconstruction.

**POC (?) *kikiroa~* kikiora ‘Dollar Bird, *Eurystomus orientalis*’

<table>
<thead>
<tr>
<th>Code</th>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Roviana</td>
<td>kiki</td>
<td>‘Eurystomus orientalis’</td>
</tr>
<tr>
<td>MM</td>
<td>Maringe</td>
<td>kikiloa</td>
<td>‘dark colored bird with yellow markings around eyes and beak, possibly the dollar bird’ (White 1988); Yellow-faced Mynah, Mino dumontii’ (Webb 1992)</td>
</tr>
<tr>
<td>SES</td>
<td>Malango</td>
<td>kikirau</td>
<td>‘Eurystomus orientalis’</td>
</tr>
<tr>
<td>SES</td>
<td>To’aba’ita</td>
<td>kekeora</td>
<td>‘Eurystomus orientalis’</td>
</tr>
</tbody>
</table>

There are very similar names for this bird in some Papuan languages of Bougainville, such as Buin *kikitou*, Koromira *mekikiro*, which may be borrowings from Oceanic languages.

5.15 Hornbills (Bucerotidae)

Two good cognate sets are available for the single species, Blyth’s Hornbill (*Aceros plicatus*), which occurs throughout New Guinea and the Solomons.

**POC *binam* ‘hornbill’ (ACD)

<table>
<thead>
<tr>
<th>Code</th>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT</td>
<td>Tubetube</td>
<td>binam</td>
<td>‘hornbill’</td>
</tr>
<tr>
<td>PT</td>
<td>Dobu</td>
<td>binama</td>
<td></td>
</tr>
<tr>
<td>PT</td>
<td>Iduna</td>
<td>binama</td>
<td></td>
</tr>
<tr>
<td>PT</td>
<td>Wedau</td>
<td>binama</td>
<td></td>
</tr>
<tr>
<td>PT</td>
<td>Balawaia</td>
<td>bina</td>
<td>‘a large-beaked bird’</td>
</tr>
<tr>
<td>PT</td>
<td>Motu</td>
<td>bina</td>
<td>‘toucan’</td>
</tr>
<tr>
<td>SES</td>
<td>Bugotu</td>
<td>bina</td>
<td>‘toucan’</td>
</tr>
<tr>
<td>SES</td>
<td>Gela</td>
<td>bina</td>
<td>‘toucan’</td>
</tr>
<tr>
<td>SES</td>
<td>Malango</td>
<td>bina</td>
<td></td>
</tr>
<tr>
<td>SES</td>
<td>To’aba’ita</td>
<td>bina</td>
<td></td>
</tr>
<tr>
<td>SES</td>
<td>Kwaio</td>
<td>bina</td>
<td></td>
</tr>
<tr>
<td>SES</td>
<td>Arosi</td>
<td>bina (awa)</td>
<td></td>
</tr>
</tbody>
</table>
The following indicate a considerable broadening of the reference of this term in some SE Solomonic languages:

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SES: 'Are'are</td>
<td>pina (ni āno)</td>
<td>'big grey pigeon' (āno 'garden')</td>
</tr>
<tr>
<td>SES: Sa’a</td>
<td>pine (ni ou)</td>
<td>'Nicobar Pigeon, Caloenas nicobarica'</td>
</tr>
<tr>
<td>SES: Arosi</td>
<td>bina</td>
<td>‘hawk’</td>
</tr>
<tr>
<td></td>
<td>bina (ni asi)</td>
<td>‘booby’ (asi ‘sea’)</td>
</tr>
<tr>
<td></td>
<td>bina (ahuri)</td>
<td>‘Caloenas nicobarica’</td>
</tr>
<tr>
<td></td>
<td>bina (ni mou)</td>
<td>‘Caloenas nicobarica’ (mou ‘garden’)</td>
</tr>
<tr>
<td></td>
<td>bina (suʔu)</td>
<td>‘Caloenas nicobarica’ (suʔu ‘lake, swamp’)</td>
</tr>
</tbody>
</table>

The hornbill’s voice is described as ‘various deep grunts and honking notes’ (Coates & Peckover 2001:113). Given the lack of exact agreement among the following names, it is likely that at least some represent repeated imitative coinages.

POc *koŋo(k) ‘hornbill’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Amara</td>
<td>a-koŋok</td>
<td></td>
</tr>
<tr>
<td>NNG: Kilenge</td>
<td>a-koŋok</td>
<td></td>
</tr>
<tr>
<td>NNG: Sengseng</td>
<td>kaj-kaŋ</td>
<td></td>
</tr>
<tr>
<td>NNG: Mengen (Poeng)</td>
<td>gogo</td>
<td></td>
</tr>
<tr>
<td>MM: Nehan</td>
<td>yŋyo</td>
<td></td>
</tr>
<tr>
<td>MM: Halia</td>
<td>ŋuŋu</td>
<td></td>
</tr>
<tr>
<td>MM: Petats</td>
<td>ŋyo</td>
<td></td>
</tr>
<tr>
<td>MM: Kia</td>
<td>koŋo</td>
<td></td>
</tr>
<tr>
<td>MM: Maringe</td>
<td>na-kɔŋyo</td>
<td></td>
</tr>
<tr>
<td>SES: Bugotu</td>
<td>koŋo</td>
<td>‘toucan’</td>
</tr>
</tbody>
</table>

PWOc *komo ‘hornbill’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Kairiru</td>
<td>wom</td>
<td></td>
</tr>
<tr>
<td>MM: Nakanai</td>
<td>ko-komo</td>
<td>‘head of hornbill (as decoration)’</td>
</tr>
<tr>
<td>MM: Tolai</td>
<td>ko-komo</td>
<td></td>
</tr>
<tr>
<td>MM: Banoni</td>
<td>komo</td>
<td></td>
</tr>
<tr>
<td>MM: Nduke</td>
<td>ko-gomo</td>
<td></td>
</tr>
</tbody>
</table>
The very large bill of the hornbill would account for the mis-identification as ‘toucan’ in the Bugotu and Gela sources. The toucan is a tropical American bird also celebrated for its extremely large bill.

6 Passerine birds

Although the Passerines belong to a single order (Passeriformes) among more than 20 within the class Aves, they account for more than half of all bird species. Yet in the present study there are far fewer cognate sets for passerines than for the rest. On the basis of the Kalam and Tobelo studies, there seems no reason to think that the Proto Oceanic speakers did not name the passerines in as much detail as other types of bird. Two factors may have contributed to the relative paucity of passerine cognate sets. First, many species are highly localised, which may have produced a high rate of turnover (abandonment and recreation of terms) as the Oceanic speakers migrated away from their homeland. Second, since these birds are, on average, smaller and less conspicuous (and of less economic importance) than the non-passerines, an accurate identification would require both a researcher with the means and inclination to go where the birds are, and a speaker as thoroughly informed about the avifauna as were the Oceanic ancestors. It is just this type of information that is lacking for most Oceanic languages; passerines are undoubtedly over-represented among the ‘unidentified bird species’ entries in the dictionaries.

6.1 Trillers and cuckoo-shrikes (Campephagidae)

The cuckoo-shrikes (*Coracina* spp.) and trillers (*Lalage* spp.) extend from the homeland into southern Melanesia. Some local cognate sets exist.

PNCaL *tiā(k,ŋ) ‘Melanesian Graybird, *Coracina caledonica*’

<table>
<thead>
<tr>
<th>NCal:</th>
<th>Nyelâyu</th>
<th>jiāŋ</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCal:</td>
<td>Nêlêmwa</td>
<td>jiāc</td>
</tr>
<tr>
<td>NCal:</td>
<td>Caaàc</td>
<td>jiāk</td>
</tr>
<tr>
<td>NCal:</td>
<td>Jawe</td>
<td>jiāk</td>
</tr>
<tr>
<td>NCal:</td>
<td>Fwāi</td>
<td>jiwāk</td>
</tr>
<tr>
<td>NCal:</td>
<td>Pije</td>
<td>jiyaŋ</td>
</tr>
<tr>
<td>NCal:</td>
<td>Cēmuhi</td>
<td>jiā</td>
</tr>
<tr>
<td>NCal:</td>
<td>Paicī</td>
<td>cīō</td>
</tr>
<tr>
<td>NCal:</td>
<td>Tinrin</td>
<td>ūo</td>
</tr>
<tr>
<td>NCal:</td>
<td>Xārâcùù</td>
<td>cīō</td>
</tr>
<tr>
<td>NCal:</td>
<td>Drubea</td>
<td>cikō</td>
</tr>
</tbody>
</table>

PCP *(jea)jea ‘Spotted Triller, *Lalage maculosa*’

Fij:	Rotuman	jea
Fij:	Lomaiviti	sea-sea
Fij:	Lau	sea-sea
Fij:	Wayan	sē-sē
Pn:	Niuean	hea-hea
At least some of the following are likely to be independent imitations of vocalizations variously represented as *whee-see, twill you twill you, keweeo, and squeeii*, produced by birds of this genus (Hadden 2004a: 185-7).

POc *pʰisu* ‘Cuckoo-shrike, *Coracina* sp.’

- MM: *Maringe* fisa ‘Common Cicadabird, *Coracina tenuirostris*’
- SES: *Bauro* hisu ‘*Coracina tenuirostris* (f)’
- NCV: *Dorig* (wa)vsu-vsar ‘Spotted Triller, *Lalage maculosa*’
- NCV: *Raga* vʷeu ‘Melanesian Greybird, *Coracina caledonica*’
- Pn: *Tongan* (siki)viu ‘*Lalage maculosa*’

cf. also:

- MM: *Teop* kuisau ‘Papuan Cuckoo Shrike, *Coracina papuensis*’
- MM: *Banoni* kuisa ‘*Coracina papuensis*’
- SES: *Malango* koiso ‘*Coracina spp.*’

6.2 Thrushes (Turdidae)

The only species for which any significant base of terms exists is the Island Thrush (*Turdus poliocephalus*).

PSOc *wαs(i,e)* ‘Island Thrush, *Turdus poliocephalus*’ (John Lynch, pers. comm.)

- NCV: *Mota* wasia ‘a bird, merula’
- NCV: *Lakon* swsw ‘Cuckoo-shrike, *Coracina* sp.’ (metathesis)
- NCV: *Raga* esi-esi
- NCV: *Atchin* ni-was ‘sp. of bird that feeds in the creeks’
- SV: *Sye* wasep
- NCal: *Nengone* wasase
6.3 Fantails (Rhipiduridae) and flycatchers (Monarchidae)

The flycatchers (Myiagra, Monarcha) and fantails (Rhipidura) extend widely into the Oceanic region. but evince only a few local cognate sets.

6.3.1 Fantails

The highly distinctive appearance and behaviour of fantails, and their tolerance of human proximity, make them familiar birds, much better represented by widespread cognate sets than the other flycatchers.

POc *takere ‘Fantail, Rhipidura sp.’

<table>
<thead>
<tr>
<th>Language</th>
<th>Gloss</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Bing</td>
<td>teykil-kil(ahang)</td>
<td>‘willie wag tail’</td>
</tr>
<tr>
<td>PT: Wedau</td>
<td>tagiri-girim</td>
<td>‘wagtail’</td>
</tr>
<tr>
<td>PT: Balawaia</td>
<td>sikere(koio)</td>
<td>‘a small grass bird with long tail’</td>
</tr>
<tr>
<td>PT: Hula</td>
<td>tikere</td>
<td>‘willie wagtail’</td>
</tr>
<tr>
<td>MM: Tolai</td>
<td>tanene</td>
<td>‘Sunbird, Nectarinia sp.’</td>
</tr>
<tr>
<td>NCV: Mota</td>
<td>tayere</td>
<td>‘a bird, flycatcher’</td>
</tr>
<tr>
<td>NCV: Lakon</td>
<td>takëkë</td>
<td>‘Collared Grey Fantail, Rhipidura fuliginosa’</td>
</tr>
<tr>
<td>NCV: Raga</td>
<td>tayere</td>
<td>‘Rhipidura fuliginosa’</td>
</tr>
<tr>
<td>NCV: SE Ambrym</td>
<td>tailel</td>
<td>‘Spotted Fantail, Rhipidura spilodera’</td>
</tr>
<tr>
<td>NCV: Paamese</td>
<td>tâlêle</td>
<td>‘Rhipidura spilodera’</td>
</tr>
<tr>
<td>NCV: Nguna</td>
<td>takere-kere</td>
<td></td>
</tr>
<tr>
<td>NCal: Nëlêmwa</td>
<td>dagîn</td>
<td>‘Rhipidura spilodera’</td>
</tr>
<tr>
<td>NCal: Caaàc</td>
<td>dagîn</td>
<td>‘Rhipidura spilodera’</td>
</tr>
<tr>
<td>NCal: Jawe</td>
<td>dagîn</td>
<td>‘Rhipidura spilodera’</td>
</tr>
<tr>
<td>NCal: Grand Couli</td>
<td>dari</td>
<td></td>
</tr>
<tr>
<td>Fij: Rotuman</td>
<td>fæʔere</td>
<td>‘Fiji Shrikebill, Clytorhynchus vitiensis’</td>
</tr>
</tbody>
</table>

A probable borrowing from some North–Central Vanuatu language:

Pn: Emae takerokero

POc *laki ‘fantail’

<table>
<thead>
<tr>
<th>Language</th>
<th>Gloss</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM: Nduke</td>
<td>(nji)reyi</td>
<td>‘fantail, possibly Cockerell’s Fantail, Rhipidura cockerelli’</td>
</tr>
<tr>
<td>SES: Lau</td>
<td>lai</td>
<td>‘fantail’</td>
</tr>
<tr>
<td>SES: Kwara’ae</td>
<td>laʔe</td>
<td>‘willy wagtail’</td>
</tr>
<tr>
<td>SES: Kwaio</td>
<td>laʔe</td>
<td>‘Willie Wagtail, Rhipidura leucophrys’</td>
</tr>
<tr>
<td>NCV: Matantas</td>
<td>liyiliyi</td>
<td>‘Spotted Fantail, Rhipidura spilodera’</td>
</tr>
<tr>
<td>NCal: Paicî</td>
<td>ʔñti, ʔñti</td>
<td>‘Rhipidura spp.’</td>
</tr>
<tr>
<td>NCal: Xârâcùù</td>
<td>ʔñdi</td>
<td>‘Rhipidura spp.’</td>
</tr>
<tr>
<td>NCal: Drubea</td>
<td>ʔñti</td>
<td>‘Rhipidura spilodera’</td>
</tr>
</tbody>
</table>

Proto NW Solomonic *pitikole ‘fantail’

<table>
<thead>
<tr>
<th>Language</th>
<th>Gloss</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM: Marovo</td>
<td>pitikole</td>
<td>‘Willie Wagtail, Rhipidura leucophrys’</td>
</tr>
<tr>
<td>MM: Nduke</td>
<td>pitikole</td>
<td>‘Rhipidura leucophrys’</td>
</tr>
</tbody>
</table>
MM: Roviana pitikole ‘Rhipidura sp.’
MM: Simbo pitikole ‘bird sp. like a wagtail’
MM: Maringe pʰipituale ‘Rhipidura leucophrys’
cf. also:
MM: Halia (Haku) pipikula ‘Willy Wagtail’

PNCV *vete-vete ‘fantail’
NCV: Raga vʷet-vete(rerea) ‘Spotted Fantail, Rhipidura spilodera’
NCV: Naman (no-vi)vete-vet ‘fantail’
NCV: Neve’ei (na-vi)vete-vet ‘fantail’

PSOc *sora ‘fantail’ (John Lynch, pers. comm.)
NCV: Sara nu-sora ‘Spotted Fantail, Rhipidura spilodera’ (Flux 1993)
NCV: Kiai sar(kele) ‘Collared Grey Fantail, Rhipidura fuliginosa’
NCV: Nguna soro(pito) ‘fantail sp.’
SV: Kwamera (ka)sora-sǝr ‘Rhipidura fuliginosa’
The following potential cognate may be a local formation, cf. tata ‘sweep’:
SES: Arosi tata(pa)ra ‘wagtail’

Proto SE Solomonic *riuɾi[ka] ‘Willie Wagtail, Rhipidura leucophrys’
SES: Bugotu riuriyabi
SES: Gela riuriupege ‘fantail’
SES: Malango riuriuhabe
SES: Longgu (ririʔu)kabi ‘fantail’
SES: ’Are’are riuriu ?api
SES: Sa’a hiʔuhiʔu pote
SES: Ulawa hiʔuhiʔu kape
SES: Uki ni Masi kiukiurape
SES: Arosi rurukape
SES: Bauro riuriugape

Apparently at least in part a borrowing from some SE Solomonic language:
Pn: Rennellese mayiyape ‘Rennell Fantail, Rhipidura rennelliana’
 maniyape
 mayuyape

The first part of this compound clearly relates to riu ‘turn’, referring to the bird’s characteristic
turns with spread tail feathers, both in flight and perching. In two languages the following
element is a body part: Sa’a pote ‘buttocks’, Gela pege ‘forepart of thigh’. But the more
widespread second element seems more likely to be related to POc *kapak, compare Arosi
kape ‘flutter’.

6.3.2 Flycatchers

PEOc *paRapaRa ‘flycatcher’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SES</td>
<td>Uki ni Masi harahara(ŋata)</td>
<td>‘Chestnut-bellied Monarch (Monarcha castaneiventris)’</td>
</tr>
<tr>
<td>SES</td>
<td>Arosi harahara(ŋada)</td>
<td>‘bird sp.’</td>
</tr>
<tr>
<td>SES</td>
<td>Bauro yayara(sia)</td>
<td>‘Monarcha castaneiventris’</td>
</tr>
<tr>
<td>NCV</td>
<td>SE Ambrym holhol(vetei)</td>
<td>‘Myiagra caledonica’</td>
</tr>
<tr>
<td>NCV</td>
<td>Paamese holiholi(vetā)</td>
<td>‘Myiagra caledonica’</td>
</tr>
<tr>
<td>NCal</td>
<td>Paicī (mē)wārā(ābi)</td>
<td>‘Myiagra caledonica’</td>
</tr>
</tbody>
</table>

PEOc *(k(o,u))vi ‘Flycatcher, Myiagra sp.’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SES</td>
<td>Malango (du)hui</td>
<td>‘Steel-blue Flycatcher, Myiagra ferrocyanea’</td>
</tr>
<tr>
<td>NCV</td>
<td>Raga (buru)kuvi</td>
<td>‘Myiagra ferrocyanea’</td>
</tr>
<tr>
<td>NCal</td>
<td>Nengone (wanere)kowe</td>
<td>‘Myiagra caledonica’</td>
</tr>
<tr>
<td>Mic</td>
<td>Chuukese koi-koi</td>
<td>‘a bird (pipes at dawn and dusk)’</td>
</tr>
<tr>
<td>Mic</td>
<td>Mokilese koi-koi</td>
<td>‘bird sp.’</td>
</tr>
<tr>
<td>Mic</td>
<td>Ponapean koi-koi</td>
<td>‘Micronesian Myiagra Flycatcher, Myiagra oceanica’</td>
</tr>
<tr>
<td>Pn</td>
<td>Rennellese yo-yovi(u)</td>
<td>‘Rennell Shrikebill, Clytorhynchus hamlini’</td>
</tr>
</tbody>
</table>

6.4 Whistlers (Pachycephalidae)

The Golden Whistler, *Pachycephala pectoralis*, is the only widespread species in this family.

POc *sau ‘Golden Whistler, Pachycephala pectoralis’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Maringe (k(h)ua)co</td>
<td></td>
</tr>
<tr>
<td>SES</td>
<td>Malango (koe)cau</td>
<td>‘Pachycephala spp.’</td>
</tr>
<tr>
<td>SES</td>
<td>Bauro tou-tou</td>
<td></td>
</tr>
<tr>
<td>NCV</td>
<td>Raga so-so(belak)</td>
<td></td>
</tr>
<tr>
<td>Fij</td>
<td>Lomaiviti (dītībē)sau</td>
<td></td>
</tr>
</tbody>
</table>

6.5 Whiteyes (Zosteropidae)

A single species of this family, the White-throated White-eye, *Zosterops meeki*, occurs in the Oceanic homeland, but others of the same genus are very widely found throughout Oceania, with at least one local cognate set.

PNCV *laka ‘White-eye, Zosterops sp.’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCV</td>
<td>Vera’a leley(e)</td>
<td></td>
</tr>
<tr>
<td>NCV</td>
<td>Raga layalaya</td>
<td></td>
</tr>
<tr>
<td>NCV</td>
<td>Kiai lala</td>
<td></td>
</tr>
<tr>
<td>NCV</td>
<td>Atchin (we)lela</td>
<td>‘small bird sp.’</td>
</tr>
<tr>
<td>NCV</td>
<td>Naman (nə-vi)layalay</td>
<td>‘Yellow-fronted White-eye, Zosterops flavifrons’</td>
</tr>
<tr>
<td>NCV</td>
<td>SE Ambrym (tohu)laia</td>
<td>‘Zosterops flavifrons’</td>
</tr>
</tbody>
</table>
Figure 6.18 *Philemon buceroïdes*, Helmeted Friarbird

NCV: Lewo (nin)laia ‘green bird’
NCV: Namkir likalak ‘small yellow bird (feeds on pawpaw)’
NCV: Nguna lāka
cf. also:
NCV: Mota (mʷa)ley
NCV: Mwotlap (na-mʷ)lɪgleg
Pn: Emae lako (probable borrowing from a North–Central Vanuatu language)

These SV words are possible cognates:
SV: Ura (u)lcap ‘Zosterops flavifrons’
SV: Sye (u)lcap, ne-lcap, (we)lcap ‘Zosterops flavifrons’

The following two items are the only possible Southeast Solomonic cognate found, and a possible Rennellese borrowing from a SE Solomonic language:

SES: Gela (lau-lau)laka ‘very small bird sp.’
Pn: Rennellese yaya ‘Woodford’s White-eye, *Woodfordia superciliosa*’

6.6 Honeyeaters (Meliphagidae)
The honeyeaters of the homeland region include several belonging to the genus *Myzomela*, as well as the New Britain Friarbird (*Philemon cockerelli*) and Gilliard’s Honeyeater (*Melidectes whitemanensis*). Other birds of this family can be found as far as Fiji and western Polynesia.

POc *midi* ‘honeyeater’ (see also PPn *miti*, §6.7, p.349)
MM: Nehan (re)mít ‘Olive-backed Sunbird, *Nectarinia jugularis*’
MM: Banoni mede-mede ‘Solomons Flowerpecker, *Dicaeum aeneum*’
MM: Nduke (sik)midi ‘small honeyeater-like bird’
SES: Gela mudu-mudu ‘blackbird sp.’
SES: Lau (si)-midi ‘honey eater’
SES: Arosi mudi-mudi ‘yellow honeysucker’
NCal: Tinrin (ma)mûrû ‘bird sp. which sucks flowers’
The friarbirds (*Philemon* spp.) are a large and distinctive type of honeyeater represented by three species in the homeland region. The following terms present various formal problems, but could be derived from some form such as POc *(sa)quka*, with metathesis to *(sa)-kuqa.*

Adm: Loniu *coʔuka* ‘White-naped Friarbird, *Philemon albitorques*’
Adm: Titan *cauka* ‘FRIARbird, probably New Belgium Friarbird, *Philemon cockerelli*’
NNG: Musom *kuaj* ‘leatherhead’ (*Philemon*)
NNG: Aribwatsa *uwan* ‘leatherhead’
PT: Iduna *takowa* ‘Little Friarbird, *Philemon citreogularis*’
PT: Gapapaiwa *sakoa* ‘Helmeted Friarbird, *Philemon buceroides*’
MM: Nakanai *ku* ‘*Philemon cockerelli*’
MM: Tolai *kəo, kau* ‘*Philemon cockerelli*’

PROc *(b,v)asilo* ‘honeyeater’

NCV: Raga *(busu)bihil* ‘Cardinal Honeyeater, *Myzomela cardinalis*’
NCV: SE Ambrym *vasil* ‘*Myzomela cardinalis*’
NCV: Paamese *vasiro* ‘*Myzomela cardinalis*’
NCal: Iaai *bahelo* ‘New Caledonian Friarbird, *Philemon diemensis*’
Fij: W Viti Levu *visilou* ‘Carunculated Honeyeater, *Foulehaio carunculata*’
Pn: Tongan†* fuleheu* ‘*Foulehaio carunculata*, also Fiji Shrikebill, *Clytorhynchus vitiensis*’

This set may be related to an innovative generic for ‘bird’ in a number of Central Vanuatu languages: Apma bʰihil, N Ambrym pᵉhel, Burmbar mbasir, etc.

POc *ioli* ‘honeyeater’

TM: Buma *wau iele* ‘Cardinal Honeyeater, *Myzomela cardinalis*’
NCV: Kiai *ioli* ‘White-bellied Honeyeater, *Phylidonyris notabilis*’

9 Cf. Nage (CMP) *koka* ‘*Philemon buceroides*’.
10 Niuatoputapu and Tafahi.
PNCV *bʷatu-(i)-manu ‘Cardinal Honeyeater, Myzomela cardinalis’ (lit. ‘head of bird’)
NCV: Mota \ pʷatman ‘a red-headed honey eater, male; cock bird of tasis’
NCV: Mwotlap \ ne-pʷetmen
NCV: Raga \ bʷat-i-manu

6.7 Starlings (Sturnidae)

Starlings of the genus Aplonis, and the Yellow-faced Mynah, Mino dumontii, extend throughout much of Oceania. The first two cognate sets may be related.

POc *pusiRa ‘Starling, Aplonis sp.’

MM: Tolai \ vuirə ‘Aplonis spp.’
NCV: Wusi (Nokovula) \ wōhia ‘New Hebrides Starling, Aplonis zelandica’
Mic: Ponapean \ sie
Fij: Rotuman \ husila ‘Striped Starling, Aplonis tabuensis’ (*-R- > -l-, rare in Rotuman)
Fij: Bauan \ voðia ‘Fiji Shrikebill, Clytorhynchus vitiensis’
Fij: W Viti Levu \ voðea ‘Aplonis tabuensis’
Fij: Lomaiviti \ voðea ‘Aplonis tabuensis’
Pn: Tongan \ fuiva ‘Clytorhynchus vitiensis’
Pn: Samoan \ fuia ‘Samoan Starling, Aplonis atrifusca’
Pn: Takuu \ fuia ‘Fead Island Starling, Aplonis feadensis’
Pn: Luangiua \ huia ‘Aplonis feadensis’
Pn: Māori \ huia ‘Huia, Heteralocha acutirostris’

The Shrikebill has in common with the starlings only a similar size and rather drab colouring. The Huia of New Zealand, a much larger bird, presents even less obvious similarity, and may have been named in imitation of its whistling call.

POc *bʷisu ‘Shining Starling, Aplonis metallica’

Adm: Lou \ pʷisi ‘black bird sp.’
Adm: Drehet \ pʷisi ‘small black bird sp, with red eyes
SES: Lau \ bi-bisu
SES: Kwara’ae \ bi-bisu
SES: Kwaio \ bi-bisu ‘small black bird sp.’
SES: Uki ni Masi \ pi-pisu
SES: Arosi \ pi-pisu ‘bird sp.’
SES: Bauro \ (a)pisu

Probably borrowed from a SES language is
Pn: Rennellese \ (yā)pilu ‘Aplonis sp.’

cf. also:
MM: Teop \ buiŋbuiŋ ‘Aplonis metallica’
MM: Tinputz \ bosîŋ ‘starling (general term)’
NCV: Mota \ wotepispis ‘Island Thrush, Turdus poliocephalus’
The definition of Drehet *pʷisi* is a good description of *Aplonis metallica*. Yapese *gæʔpluw* ‘small black bird sp.’ bears a striking resemblance to the Rennellese word, but given the lack of precise identification and the absence of known borrowing in this direction, this is probably coincidental.

The following appears to be a continuation of POc *midi*, reconstructed above (§6.6) as originally applying to honeyeaters, but extended in Polynesia to the starlings and trillers, on the basis of similarities which remain unclear.

PPn *miti* ‘Striped Starling, *Aplonis tabuensis*’

<table>
<thead>
<tr>
<th>Language</th>
<th>Tongan</th>
<th>Niuean</th>
<th>E Uvean</th>
<th>E Futunan</th>
<th>Samoan</th>
<th>Tikopia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn:</td>
<td>misi</td>
<td>miti</td>
<td>misi</td>
<td>miti (ʔuli)</td>
<td>miti</td>
<td>miti</td>
</tr>
<tr>
<td>Pn:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>miti tai</td>
<td></td>
</tr>
<tr>
<td>Pn:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>‘Spotted Triller, Lalage maculosa’</td>
<td></td>
</tr>
<tr>
<td>Pn:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>miti vao</td>
<td>‘Aplonis tabuensis’ (vao ‘forest’)</td>
</tr>
<tr>
<td>Pn:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Probable Polynesian borrowing:

<table>
<thead>
<tr>
<th>Language</th>
<th>Lau</th>
<th>miti</th>
</tr>
</thead>
</table>

Proto SE Solomonic *ciŋi(l)o* ‘Yellow-faced Mynah, *Mino dumontii*’

<table>
<thead>
<tr>
<th>Language</th>
<th>Malango</th>
<th>To’aba’ita</th>
<th>Lau</th>
<th>Kwara’ae</th>
<th>MM: Halia (Haku)</th>
<th>MM: Banoni</th>
<th>MM: Torau</th>
</tr>
</thead>
<tbody>
<tr>
<td>SES:</td>
<td>ciŋiro</td>
<td>siᵑgio</td>
<td>siŋeo</td>
<td>siᵑgiolo</td>
<td>‘Mino dumontii’ or Fead Island Starling, *Aplonis feadensis’</td>
<td>ciyino</td>
<td>sigineu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>‘starling’</td>
<td></td>
<td>cf. also:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>‘bird sp., black except for red around eye’</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.8 Wood swallows (Artamidae)

The Bismarck Wood Swallow (*Artamus insignis*) has congenerics elsewhere in Melanesia, but only two very local cognate sets have been found.

Proto Central Vanuatu *bai* ‘White-breasted Wood Swallow, *Artamus leucorhynchus*’

<table>
<thead>
<tr>
<th>Language</th>
<th>SE Ambrym</th>
<th>Nguna</th>
<th>S Efate</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCV:</td>
<td>vei-væi</td>
<td>pæe</td>
<td>pāi</td>
</tr>
</tbody>
</table>

PNCal *kʰiñ* ‘White-breasted Wood Swallow, *Artamus leucorhynchus*’

<table>
<thead>
<tr>
<th>Language</th>
<th>Nêlêmwa</th>
<th>Caaàc</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCal:</td>
<td>xiñ</td>
<td>kʰiñ</td>
</tr>
</tbody>
</table>
NCal: Fwâi $k^e\nu$
NCal: Cèmuhi $k^e'n$

6.9 Crows (Corvidae)

Again a single species, the Australian Crow (*Corvus orru*) is present in the homeland, with congenerics elsewhere in Melanesia. Both *(kao)kao* and *kaka* are likely to show some influence of widespread representations of crow vocalizations such as English *caw*.

POc *(kao)kao* ‘crow, *Corvus sp.*’ ¹¹

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG:</td>
<td>Yabem</td>
<td>aɔʔɔ</td>
</tr>
<tr>
<td>NNG:</td>
<td>North Watut</td>
<td>ŋauŋkauk</td>
</tr>
<tr>
<td>NNG:</td>
<td>Mengen (Poeng)</td>
<td>kaokato</td>
</tr>
<tr>
<td>PT:</td>
<td>Dobu</td>
<td>kaokao</td>
</tr>
<tr>
<td>PT:</td>
<td>Are</td>
<td>ogaoga</td>
</tr>
<tr>
<td>PT:</td>
<td>Muyuw</td>
<td>auwu</td>
</tr>
<tr>
<td>PT:</td>
<td>Hula</td>
<td>kao</td>
</tr>
<tr>
<td>PT:</td>
<td>Mekeo</td>
<td>oayou</td>
</tr>
<tr>
<td>MM:</td>
<td>Nakainai</td>
<td>kaokuo</td>
</tr>
<tr>
<td>MM:</td>
<td>Patpatar</td>
<td>kok</td>
</tr>
<tr>
<td>MM:</td>
<td>Halia</td>
<td>koko(u)</td>
</tr>
<tr>
<td>MM:</td>
<td>Tinputz</td>
<td>au</td>
</tr>
<tr>
<td>MM:</td>
<td>Banoni</td>
<td>yeyau</td>
</tr>
<tr>
<td>MM:</td>
<td>Torau</td>
<td>aoao</td>
</tr>
<tr>
<td>MM:</td>
<td>Alu</td>
<td>kõ</td>
</tr>
<tr>
<td>SES:</td>
<td>Bugotu</td>
<td>aoao</td>
</tr>
<tr>
<td>SES:</td>
<td>Malango</td>
<td>kao</td>
</tr>
</tbody>
</table>

PNGOc *ka(r,R)o(kV) ‘crow’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG:</td>
<td>Manam</td>
<td>kalo</td>
</tr>
<tr>
<td>NNG:</td>
<td>Kairiru</td>
<td>qal</td>
</tr>
<tr>
<td>NNG:</td>
<td>Bariai</td>
<td>karo</td>
</tr>
<tr>
<td>NNG:</td>
<td>Kove</td>
<td>karo</td>
</tr>
<tr>
<td>NNG:</td>
<td>Lusi</td>
<td>karo</td>
</tr>
<tr>
<td>NNG:</td>
<td>Dami</td>
<td>kalog</td>
</tr>
<tr>
<td>NNG:</td>
<td>Takia</td>
<td>alal</td>
</tr>
<tr>
<td>NNG:</td>
<td>Amara</td>
<td>a-krok</td>
</tr>
<tr>
<td>NNG:</td>
<td>Kilenge</td>
<td>a-kor</td>
</tr>
<tr>
<td>NNG:</td>
<td>Mangap</td>
<td>ankor</td>
</tr>
<tr>
<td>NNG:</td>
<td>Kaulong</td>
<td>(ekinj) kʰoŋ</td>
</tr>
</tbody>
</table>

¹¹ Cf. (WMP) Muna kaoki.
NNG: Mouk \(\text{k}o\text{-krak} \) ‘crow’
NNG: Lamogai \(\text{k}a\text{-kr}o\text{ŋ} \) ‘crow’
NNG: Sengseng \(\text{k}o\text{ho}\text{ŋ} \) ‘crow’
PT: Lala \(\text{alo} \) ‘crow’
PT: Motu \(\text{galo} \) ‘crow’

PNCal *\text{kaka} ‘New Caledonian Crow, \textit{Corvus moneduloides}’
NCal: Païcî \(\text{k}ê\text{kê} \)
NCal: Ajië \(\text{kê\text{xê} } \)
NCal: Tinrin \(\text{k}a\text{ya} \)
NCal: Xârâcûù \(\text{gaka} \)
NCal: Drubea \(k^*\text{ák}^*\text{á} \)

PNCal *\text{h\text{‘}eek} ‘New Caledonian Crow, \textit{Corvus moneduloides}’
NCal: Nyelâyu \(\text{wê\text{êek} } \)
NCal: Nêlêmwa \(h^*\text{êek} \)
NCal: Caaâc \(h^*\text{âak} \)
NCal: Fwâi \(h^*\text{âw}^\text{\text{\(\text{w}\}\text{â}} \)

PPT *\text{b\text{‘}ayob\text{‘}ayo} ‘crow’
PT: Tubetube \(\text{boioboio} \) ‘crow’
PT: Wagawaga \(\text{waiwai} \) ‘Australian Crow, \textit{Corvus orru}’
PT: Iduna \(\text{b\text{‘}ayob\text{‘}ayo} \) ‘\textit{Corvus orru}’
PT: Tawala \(\text{waewae} \) ‘crow’
PT: Muyuw \(\text{buaiobuaio} \) ‘crow’

The following reconstruction seems very likely to have denoted some (probably black) passerine species, but the diversity of actual referents makes it hard to be more precise.

PNPn *\text{mako} ‘small bird sp.’
Pn: Samoan \(\text{ma\text{\‘}o-ma\text{\‘}o} \) ‘Black-breasted Honeyeater, \textit{Gymnomyza samoensis}’
Pn: Hawaiian \((\text{ʔo})\text{ma\text{\‘}o} \) ‘Hawaiian Thrush, \textit{Myadestes obscurus}’
Pn: Marquesan \((\text{k}o)\text{mako} \) ‘Long-billed Reed Warbler, \textit{Acrocephalus caffer}’
\((\text{ʔo})\text{ma\text{\‘}o \text{ke\text{\‘}eke\text{\‘}e}} \) ‘Large Flycatcher, \textit{Pomarea whitneyi}’ (ke\text{\‘}eke\text{\‘}e ‘black’)
Pn: Mangarevan \((\text{k}o)\text{mako} \) ‘Tuamotu Warbler, \textit{Acrocephalus atyphus}’
Pn: Tahitian \((\text{ʔo})\text{ma-ma\text{\‘}o} \) ‘Society Islands Flycatcher, \textit{Pomarea nigra}’
Pn: Māori \(\text{ma\text{\‘}o(mako), (k}o)\text{mako, (kori)mako} \) ‘New Zealand Bellbird, \textit{Anthornis melanura}’
7 Sea and shore birds

The sea and shore birds have in common that the species tend to be wide ranging rather than localised, many of them migrants or wanderers. The larger families contain numerous species whose field discrimination can be difficult. Observation of these birds becomes more common as sea orientation becomes more dominant, so that the most precise and detailed taxonomies are found in Micronesian and Polynesian languages.

7.1 Petrels (Procellariidae, Hydrobatidae)

Petrels come to land only to breed, and may be known primarily from the strange noises they make at their burrows at night. Of several species recorded for the homeland, only the Wedge-tailed Shearwater (*Puffinus pacificus*) breeds in the vicinity and is present year round.

There is a certain degree of crossover apparent between the families of petrels, albatrosses and boobies.

PROc *tinebu* ‘petrel’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC:</td>
<td>Nyelâyu</td>
<td>cînek ‘night bird’</td>
</tr>
<tr>
<td>NC:</td>
<td>Caaàc</td>
<td>ñîhînek ‘Puffinus spp.’</td>
</tr>
<tr>
<td>NC:</td>
<td>Fwâi</td>
<td>ñînep ‘petrel’</td>
</tr>
<tr>
<td>NC:</td>
<td>Cêmuhî</td>
<td>înîp ‘Pterodroma leucoptera’</td>
</tr>
<tr>
<td>Mic:</td>
<td>Kiribati</td>
<td>tînepu ‘Christmas Island Shearwater, Puffinus nativitatis’</td>
</tr>
</tbody>
</table>

POc *saba(l)* ‘petrel or albatross’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM:</td>
<td>Buma</td>
<td>saba ‘Wandering Albatross, Diomedea exulans’</td>
</tr>
<tr>
<td>Mic:</td>
<td>Puluwatese</td>
<td>hapal ‘petrel’</td>
</tr>
<tr>
<td>Mic:</td>
<td>Namoluk</td>
<td>sapal ‘sea bird, dark coloured, blunt winged, size of noddy, never comes on land’</td>
</tr>
</tbody>
</table>

PROc *koro + modifier* ‘petrel’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCV:</td>
<td>Namakir</td>
<td>koro(lik) ‘black sea bird sp.’</td>
</tr>
<tr>
<td>NCV:</td>
<td>N Efâte</td>
<td>koro(liko) ‘Wedge-tailed Shearwater, Puffinus pacificus’</td>
</tr>
<tr>
<td>Mic:</td>
<td>Kiribati</td>
<td>koro(paro) ‘Puffinus pacificus’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Tahitian</td>
<td>oro(matto) ‘Pelecanus fiber, Little Grey Booby’ (Forster 1775)</td>
</tr>
</tbody>
</table>

PROc *ta(i)ko(k)* ‘petrel’

PSV *n-tako-tako(k)* ‘petrel’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>SV:</td>
<td>Kwamera</td>
<td>tâkurâkâk ‘mutton bird (petrel spp.)’</td>
</tr>
<tr>
<td>SV:</td>
<td>Lenakel</td>
<td>tôkôrka ‘mutton bird’</td>
</tr>
</tbody>
</table>

12 Tongoa.
7.2 Tropic-birds (Phaethontidae)

The two species of tropic-bird (Phaethon) are rare in Papua New Guinea waters but more frequently encountered in Remote Oceania. The Red-tailed Tropic Bird (P. rubricauda) and the White-tailed Tropic Bird (P. lepturus) differ, as their names suggest, in the colour of the two extremely elongated tail feathers by which this type of bird is readily recognised. They are generally covered by a single lexical item, though there may be a conventional specifier for one or the other, as in Tongan tavake toto ‘P. rubricauda’ (toto ‘blood’).

PMic *tiku, tuki ‘tropic-bird’ (Bender et al. 2003)

Mic: Sonsorolese sêk ‘the phaeton’
Mic: Woleaian sîx ‘white tropic bird’
Mic: Puluwatese wîk ‘white shore bird with a long tail’
Mic: Carolinian sîx ‘white tropic bird with a long tail’
Mic: Namoluk ūk ‘White-tailed Tropic-bird, Phaethon lepturus’
Mic: Chuukese wîk ‘Phaethon lepturus’
Mic: Ponapean sîk ‘white sea bird sp.’
Figure 6.19 *Phaethon lepturus*, White-tailed Tropic Bird

Mic: Mokilese *cik* ‘bird sp.’
Mic: Kosraean *sik* ‘Red-tailed Tropic-bird, *Phaethon rubricauda*’
Mic: Marshallese *(l*ok*ē)*äcek ‘Red-tailed Tropic-bird, *Phaethon rubricauda*’

Probable borrowing from a Micronesian language:
Yap: Yapese *yūg* ‘type of white dove-like bird with a long tail’

PPn *tawake* ‘White-tailed Tropic-bird, *Phaethon lepturus*’
Pn: Tongan *tavake*
Pn: E Futunan *tavake*
Pn: Samoan *tavaʔe*
Pn: Tuvalu *tavake*
Pn: Nukuoro *tavake*
Pn: Sikaiana *tavake* ‘tropic bird’
Pn: Rennellese *tavake* ‘Pacific Golden Plover, *Pluvialis fulva*’
Pn: Tikopia *tavake*
Pn: Emae *manu tavake* ‘tropic bird’
Pn: Pukapukan *tavake* ‘tropic bird’
Pn: Hawaiian *koaʔe* ‘tropic bird’
Pn: Marquesan *taveʔe* ‘tropic bird’
Pn: Tahitian *tavaʔe* ‘tropic bird’
Pn: Rarotongan *tavake* ‘Red-tailed Tropic-bird, *Phaethon rubricauda*’
Pn: Māori *tawake* ‘bird sp. mentioned in songs’

Probable Polynesian borrowings:
TM: Buma *tavake* ‘tropic bird’
SV: Anejom *n-tauoɣ* ‘*Phaethon* spp.’
Mic: Kiribati *tāke* ‘*Phaethon rubricauda*’
Fij: Rotuman *tæveke* ‘*Phaethon lepturus*’ (expected †fæveʔe)

Probable Fijian cognate or borrowing:
Fij: Bauan *tawake* ‘banner’
7.3 Boobies (Sulidae)

Of the three Boobies (genus *Sula*) found in Oceania, the Brown Booby (*S. leucogaster*) is present year round in New Guinea waters. The Red-footed Booby (*S. sula*), however, is also widely reported, while the Blue-faced Booby (*S. dactylatra*) appears to be the least common. Only in Polynesia and Micronesia are the three species lexically distinguished.

PROc *pue* ‘Booby, *Sula* sp.’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCal: Caaàc</td>
<td>ūa</td>
<td>‘Sula leucogaster’</td>
</tr>
<tr>
<td>NCal: Fwāi</td>
<td>(te)f*anawe</td>
<td>‘Sula leucogaster’</td>
</tr>
<tr>
<td>NCal: Iaai</td>
<td>*(sībo)*uē</td>
<td>‘Sula leucogaster’</td>
</tr>
<tr>
<td>Mic: Kiribati</td>
<td>(k)ipui</td>
<td>‘Sula leucogaster’</td>
</tr>
</tbody>
</table>

PPn *fua(kō)* ‘Booby, *Sula* sp.’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn: Samoan</td>
<td>fua(ʔo)</td>
<td>‘Sula leucogaster’</td>
</tr>
<tr>
<td>Pn: Tokelauan</td>
<td>fua(kō)</td>
<td>‘Sula leucogaster’</td>
</tr>
<tr>
<td>Pn: Tahitian</td>
<td>ua(ʔao)</td>
<td>‘Red-footed Booby, Sula sula’</td>
</tr>
<tr>
<td></td>
<td>aʔo</td>
<td>‘Sula leucogaster’</td>
</tr>
</tbody>
</table>

The following terms for petrels appear to be cognate:

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn: Tongan</td>
<td>fuakō</td>
<td>‘Wedge-tailed Shearwater, Puffinus pacificus’</td>
</tr>
<tr>
<td>Pn: Hawaiian</td>
<td>uaʔu</td>
<td>‘Hawaiian Petrel, Pterodroma phaeopygia’</td>
</tr>
<tr>
<td></td>
<td>ʔaʔo</td>
<td>‘Manx Shearwater, Puffinus puffinus’</td>
</tr>
</tbody>
</table>

13 Niuatoputapu.
PNPn *(maua)kena ‘booby, Sula sp.’

Pn: Tuvalu kena ‘Blue-faced Booby, Sula dactylatra’
Pn: Pukapukan kena ‘booby (?)’
Pn: K’marangi moua(kai) ‘Brown Booby, Sula leucogaster’
Pn: Takuu mauakena ‘Red-footed Booby, Sula sula’
Pn: Sikaiana mouakena ‘Sula leucogaster’
Pn: Rennellese mauakena ‘Sula sula’
Pn: Tikopia mauakena ‘Sula dactylatra’
Pn: Rapanui kena ‘Sula dactylatra’
Pn: Marquesan kena ‘Sula leucogaster’
Pn: Mangarevan kena ‘Sula sula’
Pn: Manihiki kena ‘Sula leucogaster’
Pn: Tongarevan kena ‘Sula sula’

A probable Polynesian borrowing:
Mic: Kiribati mouakena ‘Sula dactylatra’

The following also appears to be basically a term for a booby sp., though there is some spread to other sea birds. (The Māori word refers to a gannet, the temperate-zone counterpart of the booby, very similar in appearance and habits.)

PNPn *takupu ‘Red-footed Booby, Sula sula’

Pn: Tuvalu tapuku takupu ‘Dusky Shearwater, Puffinus lherminieri’
Pn: Tokelauan takupu ‘Sula sula (adult)’
Pn: Pukapukan takupu ‘Sula sula (dark morph)’
Pn: Hawaiian kaʔupu ‘bird sp., perhaps albatross’
Pn: Marquesan (kō)putu ‘Trindade Petrel, Pterodroma arminjoniana’
Pn: Tuamotuan takupu ‘gannet’
Pn: Tongarevan tapuku
Pn: Māori tākāpu, tākupu ‘Australian Gannet, Morus serrator’

PNPn *kanapu ‘Brown Booby, Sula leucogaster’

Pn: Tuvalu kanapu
Pn: Nukuria kanapu ‘Red-footed Booby, Sula sula’
Pn: Takuu kanapu ‘Sula sula’
Pn: Luangiua ?aŋapu, ?aŋapaʔu ‘black and white seagull with red legs’
 aŋapu ‘Sula sula’
Pn: Sikaiana kanapu ‘bird sp.’
Pn: Rennellese kanapu
Pn: Tongarevan kāpu

A Polynesian borrowing:
Fij: Rotuman kanɔpu (expected †anɔʔu)

The following three forms suggest POc *kalau ‘booby’, but may be scattered cognates of the previous set. The Nukuoro word is probably borrowed from Micronesia.
7.4 Frigate birds (Fregatidae)

Two species of frigate bird are common in New Guinea waters, the Great Frigate Bird (*Fregata minor*) and the Lesser Frigate Bird (*F. ariel*). (The identifications of other species for Puluwat and Roviana below are likely to be erroneous.) Two clear POc reconstructions can be justified, though there seems to be no consistent lexical differentiation between the two species in the sources for contemporary languages.

POc *(dr,d)aula ‘frigate bird’

- **Adm:** Mussau *raura*
- **NNG:** Bariai *raila*
- **NNG:** Gitua *daula* ‘seabird sp.’
- **NNG:** Gedaged *daur*
- **NNG:** Aria *daila* ‘bird sp.’
- **PT:** Muyuw *dauta*
- **PT:** Budibud *dauka*
- **MM:** Tigak *raula*
- **MM:** Label *daulai*
- **MM:** Tolai *daulo* ‘Lesser Frigate Bird, *Fregata ariel*’
- **MM:** Nehan *daul* ‘*Fregata ariel*’
- **SES:** Gela *daula*
- **SES:** Tolo *daula*
- **SES:** To’aba’ita *kaule*
A borrowing from a SE Solomonic language:

Pn: Pileni \textit{kaula, koula}

POc *\textit{katapa} ‘frigate bird’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm: Loniu</td>
<td>\textit{katah}</td>
<td>‘large black seabird sp., white markings, dives to feed’</td>
</tr>
<tr>
<td>Adm: Lou</td>
<td>\textit{karap}</td>
<td>‘large black seabird sp., white markings, dives to feed’</td>
</tr>
<tr>
<td>NCal: Nêlêmwa</td>
<td>\textit{cāve}</td>
<td>‘Lesser Frigate Bird, \textit{Fregata ariel}’</td>
</tr>
<tr>
<td>NCal: Iaai</td>
<td>\textit{atai}</td>
<td>‘Fregata ariel’</td>
</tr>
<tr>
<td>NCal: Dehu</td>
<td>\textit{wete}</td>
<td>‘Fregata ariel’</td>
</tr>
<tr>
<td>NCal: Nengone</td>
<td>\textit{waxej}</td>
<td>‘Fregata ariel’</td>
</tr>
<tr>
<td>Mic: Sonsorolese</td>
<td>\textit{xadāfe}</td>
<td>‘Lesser Frigate Bird, \textit{Fregata ariel}’</td>
</tr>
<tr>
<td>Mic: Carolinian</td>
<td>\textit{ahaf}</td>
<td>‘Magnificent Frigate Bird, \textit{Fregata magnificens}’</td>
</tr>
<tr>
<td>Mic: (Tanapag)</td>
<td>\textit{yahaf}</td>
<td>‘Magnificent Frigate Bird, \textit{Fregata magnificens}’</td>
</tr>
<tr>
<td>Mic: Namoluk</td>
<td>\textit{asaf}</td>
<td>‘Great Frigate Bird, \textit{Fregata minor}’</td>
</tr>
<tr>
<td>Mic: Ponapean</td>
<td>\textit{kasap}</td>
<td>‘Great Frigate Bird, \textit{Fregata minor}’</td>
</tr>
<tr>
<td>Mic: Mokilese</td>
<td>\textit{kacap}</td>
<td>‘Great Frigate Bird, \textit{Fregata minor}’</td>
</tr>
<tr>
<td>Mic: Kiribati</td>
<td>\textit{eitei}</td>
<td>‘Great Frigate Bird, \textit{Fregata minor}’</td>
</tr>
<tr>
<td>Mic: Nauruan</td>
<td>\textit{itti}</td>
<td>‘Great Frigate Bird, \textit{Fregata minor}’</td>
</tr>
<tr>
<td>Fij: Rotuman</td>
<td>\textit{ʔafaha}</td>
<td>‘Great Frigate Bird, \textit{Fregata minor}’</td>
</tr>
<tr>
<td>Fij: Bauan</td>
<td>\textit{kasaga}</td>
<td>‘Great Frigate Bird, \textit{Fregata minor}’</td>
</tr>
<tr>
<td>Pn: E Futunan</td>
<td>\textit{katafa}</td>
<td>‘Great Frigate Bird, \textit{Fregata ariel}’</td>
</tr>
<tr>
<td>Pn: Tongan</td>
<td>\textit{kātafa}</td>
<td>‘Great Frigate Bird, \textit{Fregata ariel}’</td>
</tr>
</tbody>
</table>
Birds

Proto NW Solomonic *belama ‘frigate bird’

MM: Marovo belama
MM: Nduke belama
MM: Roviana belama ‘Ascension Frigate Bird, Fregata aquila’
MM: Simbo belama ‘Lesser Frigate Bird, Fregata ariel’
MM: Kia belama
SES: Bugotu belama
SES: Gela belama

(The glosses for Puluwat yahaf and Roviana belama are probably errors at the species level, as these frigate birds are not known in the Oceanic region.)

PNCaI *kaidaa(n) ‘frigate bird’

NCal: Caaàc yhāi dān ‘Fregata spp.’
NCal: Fwāi yāidān ‘Fregata ariel’
NCal: Cèmuhi aidā ‘Fregata spp.’
NCal: Paicī aidā ‘Fregata spp.’
NCal: Ajiē seidā

The Ajiē name is explained as ‘the one who tells about the day’.

7.5 Waders (Charadriidae, Scolopacidae, Burhinidae)

More than twenty species of these shore birds frequent the coasts of the Oceanic homeland, but most are migrants seen only seasonally. Among the most commonly identified are the Bristle-thighed Curlew (Numenius tahitiensis), Whimbrel (Numenius phaeopus), Bar-tailed Godwit (Limosa lapponica), Wandering Tattler (Heteroscelus incanus), Pacific Golden Plover (Pluvialis fulva), and Ruddy Turnstone (Arenaria interpres). Field identification of these birds can be difficult, and even in Polynesia and Micronesia there are few cognate sets with completely consistent reference.

POc *jipiu ‘wader’

MM: Banoni civiu ‘small migratory waders’
These Polynesian Outlier names are probably borrowings from Southeast Solomonic and Central Vanuatu languages, respectively:

Pn: Rennellese **siviu** ‘Great Sand Plover, *Charadrius leschimaultii*’
Pn: Emae **siviu** ‘large shore bird sp.’

PWOc

POc *pʰiyipi* ‘small wader taxon’

PT: *kiwiki* ‘sandpiper sp.’

PT: *kiwiki* ‘sandpiper: white bird with black on its back, inhabits creeks’

PT: *kiwiki* ‘sandpiper sp.’

PT: *kiwiki* ‘sea bird’

PT: *kiwiki* ‘plover; any kind of sand bird’

PT: *kiwiki* ‘Common Sandpiper, *Actitits hypoleucos*’

MM: *kiwiki* ‘sea bird’

MM: *kiwiki* ‘sea bird sp.’

cf. also:

TM: *vivi* ‘*Charadrius* sp.’

NCV: *hehe* ‘sandpiper sp.’

Pn: *vivi(tai)* ‘Wandering Tattler, *Heteroscelus incanus*’

Pn: *vivi(tai)* ‘Pacific Golden Plover, *Pluvialis fulva*’
Figure 6.22 *Pluvialis fulva*, Pacific Golden Plover

PROc *kViili* ‘Wandering Tattler, *Heteroscelus incanus*’

NCal: Nêlêmwa *hilili* ‘*Heteroscelus incanus* and Pacific Golden Plover, *Pluvialis fulva*’

PMic *k(i,u)lili* ‘Wandering Tattler, *Heteroscelus incanus*’

Mic: Woleaiian *ilil(i)* ‘plover’
Mic: Chuukese *irir* ‘small plover’
Mic: Namoluk *ilil* ‘sandpiper’
Mic: Kosraean *kulul* ‘sandpiper’
Mic: Marshallese *kirir* ‘sandpiper’
Mic: Kiribati *kiriri* ‘sandpiper’

PPn *kolili* ‘Wandering Tattler, *Heteroscelus incanus*’

Pn: Tongan *kolili* ‘bird sp.’
Pn: E Uvean *polili* ‘bird sp.’
Pn: Tokelauan *kolili* ‘bird sp.’
Pn: Tuvalu *kolili* ‘Ruddy Turnstone, *Arenaria interpres*’
Pn: Pukapukan *kolili* ‘bird sp.’
Pn: Nukuria *koriri* ‘*Areanaria interpres*’
Pn: Sikaiana *kolili* ‘bird sp.’
Pn: Tikopia *kolili* ‘Common Sandpiper, *Actitis hypoleucos*’
Pn: Hawaiian *ʔūlili* ‘bird sp.’
Pn: Tahitian *ʔuriri* ‘bird sp.’
Pn: Tongarevan *kuriri* ‘bird sp.’
Pn: Rarotongan *kuriri* ‘bird sp.’

PCP *tuli(i)* ‘Pacific Golden Plover, *Pluvialis fulva*’

Fij: Rotuman *culi* ‘*Pluvialis fulva* and Wandering Tattler, *Heteroscelus incanus*’
Fij: Bauan *doli* ‘*Pluvialis fulva*’
Figure 6.23 *Limosa lapponica*, Bar-tailed Godwit

<table>
<thead>
<tr>
<th>Language</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fij: Wayan</td>
<td>doli-doli, dilio</td>
<td>‘Heteroscelus incanus’</td>
</tr>
<tr>
<td>Pn: E Futunan</td>
<td>tuli</td>
<td>‘various small shore-bird spp., Pluvialis, Limosa, Heteroscelus’</td>
</tr>
<tr>
<td>Pn: Samoan</td>
<td>tulī</td>
<td>‘various shore bird spp., Pluvialis, Arenaria, Numenius, Limosa, Heteroscelus, Calidris’</td>
</tr>
<tr>
<td>Pn: Pukapukan</td>
<td>tuli</td>
<td>‘Heteroscelus incanus’</td>
</tr>
<tr>
<td>Pn: Tuvalu</td>
<td>tuli</td>
<td>‘Grey-rumped Sandpiper, Heteroscelus brevipes’</td>
</tr>
<tr>
<td>Pn: Nukuoro</td>
<td>tuli</td>
<td>‘small black shore bird with white breast and large protruding eyes’</td>
</tr>
<tr>
<td>Pn: K’marangi</td>
<td>tuli</td>
<td>‘Grey-rumped Sandpiper, Heteroscelus brevipes’</td>
</tr>
<tr>
<td>Pn: Nukuria</td>
<td>(te)tulia</td>
<td>‘Common Sandpiper, Actitis hypoleucus’</td>
</tr>
<tr>
<td>Pn: Takuu</td>
<td>turi</td>
<td>‘Pluvialis fulva’</td>
</tr>
<tr>
<td>Pn: Tikopia</td>
<td>turi</td>
<td>‘Heteroscelus incanus’</td>
</tr>
<tr>
<td>Pn: Tikopia</td>
<td>turi vare</td>
<td>‘Ruddy Turnstone, Arenaria interpres’</td>
</tr>
<tr>
<td>Pn: Tikopia</td>
<td>turi fakataumako</td>
<td>‘Ruddy Turnstone, Arenaria interpres’</td>
</tr>
<tr>
<td>Pn: Pileni</td>
<td>tuli</td>
<td>‘a small wading bird’</td>
</tr>
<tr>
<td>Pn: Marquesan</td>
<td>turi</td>
<td>‘Arenaria interpres’</td>
</tr>
<tr>
<td>Pn: Māori</td>
<td>tu-turi(fatu)</td>
<td>‘dotterel, Charadrius spp.’</td>
</tr>
</tbody>
</table>

A probable Polynesian borrowing is Nehan *tulia* in the following three forms:

<table>
<thead>
<tr>
<th>Language</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM: Nehan</td>
<td>tulia</td>
<td>‘Actitis hypoleucus’</td>
</tr>
<tr>
<td></td>
<td>tui-tui-tulia</td>
<td>‘Pluvialis fulva’</td>
</tr>
<tr>
<td></td>
<td>tuliang</td>
<td>‘Arenaria interpres’</td>
</tr>
</tbody>
</table>

PPn *kiu~*kiwi ‘shore bird taxon including Pluvialis and Numenius’

<table>
<thead>
<tr>
<th>Language</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn: Tongan</td>
<td>kiu</td>
<td>‘any migratory wader’</td>
</tr>
<tr>
<td>Pn: Niuean</td>
<td>kiu</td>
<td></td>
</tr>
</tbody>
</table>
Birds

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>E Uvean</td>
<td>kiu</td>
<td>‘Pluvialis fulva and Bar-tailed Godwit, Limosa lapponica’</td>
</tr>
<tr>
<td>Pukapukan</td>
<td>kiu</td>
<td>‘plover sp.’</td>
</tr>
<tr>
<td>Nukuoro</td>
<td>kivi-kivi</td>
<td>‘Ruddy Turnstone, Arenaria interpres’</td>
</tr>
<tr>
<td>Takuu</td>
<td>kivi</td>
<td>‘general name for shore and wading birds’</td>
</tr>
<tr>
<td>Luangiu</td>
<td>ivi</td>
<td></td>
</tr>
<tr>
<td>Sikaiana</td>
<td>kivi</td>
<td>‘bird sp.’</td>
</tr>
<tr>
<td></td>
<td>kivi(aitu)</td>
<td>‘Grey-rumped Sandpiper, Heteroscelus brevipes’</td>
</tr>
<tr>
<td></td>
<td>kivi(talei)</td>
<td>‘Arenaria interpres’</td>
</tr>
<tr>
<td>Tikopia</td>
<td>kiu</td>
<td>‘Bristle-thighed Curlew, Numenius tahitiensis’</td>
</tr>
<tr>
<td>Anutan</td>
<td>kiu</td>
<td>‘a small bird which comes only during monsoon season’</td>
</tr>
<tr>
<td>Emae</td>
<td>kiu</td>
<td>‘small shore bird sp.’</td>
</tr>
<tr>
<td>Marquesan</td>
<td>kivi</td>
<td>‘Wandering Tattler, Heteroscelus incanus’</td>
</tr>
<tr>
<td>Mangarevan</td>
<td>kivi</td>
<td>‘Bristle-thighed Curlew, Numenius tahitiensis’</td>
</tr>
<tr>
<td>Tongarevan</td>
<td>kivi</td>
<td>‘Numenius tahitiensis’</td>
</tr>
<tr>
<td>Manihiki</td>
<td>kivi, kihi</td>
<td>‘Numenius tahitiensis’</td>
</tr>
<tr>
<td>Māori</td>
<td>kivi</td>
<td>‘Kiwi, Apteryx spp.’</td>
</tr>
</tbody>
</table>

Probably borrowed from Polynesian:

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM: Halia</td>
<td>kivi</td>
<td>‘generic term for waders, esp. Pluvialis fulva’</td>
</tr>
</tbody>
</table>

The set above is perhaps cognate with the set from which PWOc *kiwiwi ‘sandpiper sp.’ (p.360) is reconstructed. There are also probable Western Oceanic cognates, namely Tawala (PT), Gapapaiwa (PT) kiu ‘bird (generic)’ and Nakanai (MM) e-kivu ‘bird sp.’. Together with the set above these imply the reconstruction of POc *kiu, but its gloss cannot be reconstructed, as the Tawala and Gapapaiwa generic presumably reflects the promotion of a bird taxon term to generic status, and the Nakanai gloss is not specific.

Proto Central Eastern Polynesian *tōrea ‘Pacific Golden Plover, Pluvialis fulva’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hawai’ian</td>
<td>kōlea</td>
<td></td>
</tr>
<tr>
<td>Tahitian</td>
<td>tōrea</td>
<td></td>
</tr>
<tr>
<td>Tongarevan</td>
<td>tōrea</td>
<td></td>
</tr>
<tr>
<td>Manihiki</td>
<td>tōrea</td>
<td></td>
</tr>
<tr>
<td>Rarotongan</td>
<td>tōrea</td>
<td></td>
</tr>
<tr>
<td>Māori</td>
<td>tōrea</td>
<td>‘Oystercatcher, Haematopus spp.’</td>
</tr>
</tbody>
</table>

PMic *kulu ‘wader’ (Bender et al. 2003: ‘bird sp.’)

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mokilese</td>
<td>kūl</td>
<td>‘bird sp.’</td>
</tr>
<tr>
<td>Ponapean</td>
<td>kulu</td>
<td>‘Pacific Golden Plover, Pluvialis fulva’</td>
</tr>
<tr>
<td>Marshallese</td>
<td>kʷōl</td>
<td>‘Calidris spp.’</td>
</tr>
<tr>
<td></td>
<td>kʷel</td>
<td>‘semipalmated sandpiper’</td>
</tr>
<tr>
<td></td>
<td>kʷel-(yəc)</td>
<td>‘golden plover’</td>
</tr>
<tr>
<td>Kiribati</td>
<td>kun</td>
<td>‘Pluvialis fulva’</td>
</tr>
</tbody>
</table>
Proto Chuukic-Ponapeic *kul(i,u)ŋa ‘plover’
Mic: Sonsorolese yirinya, kiriŋ ‘sandpiper, dotterel’
Mic: Woleaian xurun(o) ‘golden plover’
Mic: Carolinian (Tanapag) guľŋ ‘sp. of coastal bird, plover or sandpiper’
Mic: Puluwatese kilig ‘Pacific Golden Plover, Pluvialis fulva’
Mic: Namoluk kilig ‘Pluvialis fulva’
Mic: Chuukese kurin ‘plover’
Probable borrowing from a Micronesian language:
Yap: Yapese ḳuleŋ ‘type of sea bird’

PROc *keke~*kaka ‘wader’
SV: Anejom na-yay ‘Wandering Tattler, Heteroscelus incanus’
NCal: Nyelâyu cēk ‘shore bird’
Mic: Woleaian (riy)ak(a) ‘bristle-thighed curlew’
Mic: Puluwatese (liyej)ak ‘long-necked migratory shore bird’
Mic: Namoluk (lia)kak ‘Whimbrel, Numenius phaeopus’
Mic: Chuukese (riye)kak ‘bird sp.’
Mic: Marshallselese (l=a)keke ‘Pluvialis fulva, black variety in breeding plumage’
Mic: Kiribati kaka ‘Bar-tailed Godwit, Limosa lapponica’
Probable borrowings from some Micronesian language are:
Pn: Nukuoro kaka ‘bird sp.’
Pn: K’marangi kaka ‘Bristle-thighed Curlew, Numenius tahitiensis’

Hote (NNG) kakap’yak, glossed as a ‘small black bird like a swallow; doesn’t sit in a tree but on rock; morning and afternoon it catches insects in sky’ is a possible Western Oceanic cognate, but its similarity to the items above may be due to chance.

PPn *(lafu)lafulafu ‘wader sp.’
Pn: Nukuoro lahulahu ‘Wandering Tattler, Heteroscelus incanus’
Pn: Tokelauan lefulefu ‘Sanderling, Calidris alba’
Pn: Pukapukan lewulevu ‘Calidris alba’
Pn: Tongarevan (kā)rahuru ‘Blue-gray Noddy, Procelsterna cerulea’
Pn: Rarotongan (ngōio-ʔā)reʔureʔu ‘Procelsterna cerulea’
The following may be cognate, though the semantic connection is hardly close:
Pn: Tongan lafu ‘petrel’

Finally, one very distinctive shore bird, much larger than the rest, with heavy build and thick bill, is well known in the western Solomons:

Proto NW Solomonic *(b,v)ili[ki(k,t)i] ‘Beach Stone-Curlew, Burhinus neglectus’
MM: Marovo biliki
MM: Nduke vivili
MM: Roviana biliki ‘large whitish bird, frequents beach, flat bill, fond of hermit crabs, etc.’
MM: Simbo biliki ‘bird sp.’
7.6 Terns (Laridae)

The family Laridae includes both gulls and terns. Gulls are mainly birds of the temperate zones, and are only rare visitors to tropical Oceania. The common gloss ‘seagull’ in dictionaries and vocabularies of languages in this area almost certainly indicates a tern. Several species of tern (*Sterna, Thalasseus*) are common in the waters of the homeland, along with noddies (*Anous*) and the very distinctive White Tern (*Gygis alba*).

MM: Maringe bi(li)bili
MM: Kia bilikitî ‘bird sp., eats crabs’

POc *kanaway ‘white bird’ (Blust 2002)

PMP *kanaway ‘bird sp., *Sterna* spp.’

NNG: Yabem kano ‘seagull’

NNG: Labu kanôla ‘small sp. of seagull’

NNG: Mapos Buang kaj ‘seagull’

NNG: Bariai kanae-nae ‘sea tern’

NNG: Kove anae ‘sea tern’

NNG: Lusi anae ‘sea tern’

NNG: Bing kanay ‘seagull’

NNG: Gedaged kanai ‘a sea gull’

NNG: Dami kanai ‘seagull’

NNG: Takia kanai ‘seagull’

NNG: Mangap kanai ‘seagull’

NNG: Kilenge kanai ‘sea tern’

PT: Tawala kanawe ‘seagull’

PT: Ubir kanau ‘seagull’

PT: Nimoa kan-kanau ‘seagull’

PT: Motu kanaye ‘seagull’

MM: Patpatar kanaia ‘roseate tern’

MM: Tolai konai ‘*Sterna* sp.’

MM: Halia nai ‘Black-naped Tern, *Sterna sumatrana*’

MM: Taiof kanai ‘tern’

SES: Gela ganae ‘a seagull, larger than *sele*’

SES: Longgu anawa ‘tern’

SES: To’aba’ita ?anak’e ‘*Sterna* sp.’

SES: Kwaio ?anak’e ‘gull sp.’

Mic: Sonsorolese xainiau ‘birds of seagull type’

Although terns and tropic birds could be confused at a distance, the species identified for Arosi would be a rare stray in this part of the Pacific.
POc *selekai* ‘tern’

- **Adm:** Loniu *celehe\(y* ‘small white bird sp., possibly a tern’
- **MM:** Marovo *celeke\(a* ‘*Sterna* spp., esp. *albifrons*’
- **MM:** Nduke *heleka\(i* ‘*Sterna* spp.’
- **MM:** Roviana *heleka\(e* ‘white sea bird, often seen in flocks over a shoal of fish’
- **MM:** Simbo *elekai* ‘white sea bird sp.’
- **MM:** Kia *helekai* ‘seagull’
- **SES:** Gela *sele* ‘seagull’

cf. also:

- **Mic:** Sonsorolese *kirigay, xirixax* ‘Common Noddy, *Anous stolidus*’

POc *ker(a,e)(ker(a,e))* ‘tern’

- **PT:** Tubetube *(man)kelakela* ‘seagull’
- **PT:** Dobu *(me)kela* ‘seagull’
- **PT:** Iduna *(mai)\(Æ\)ela* ‘tern (generic)’
- **PT:** Ubir *(manu)kerer* ‘seagull’
- **PT:** Kilivila *(me)kela* ‘seagull’
- **PT:** Misima *(man)kelakela* ‘seagull’
- **MM:** Teop *ker* ‘tern (generic)’
- **MM:** Roviana *(de)kere* ‘noddy’
- **MM:** Simbo *(de)keive* ‘black sea bird sp.’
- **MM:** Nduke *(de)kere* ‘seagull’
- **MM:** Marovo *(de)kere* ‘seagull’
- **Mic:** Kiribati *kerēkere* ‘Sooty Tern, *Sterna fuscata*’

PMic *karakara* ‘tern’

- **Mic:** Carolinian *ar\(år* ‘small black bird sp.’
- **Mic:** Woleaiian *xarexar* ‘grey-backed tern’
- **Mic:** Puluwatese *yar\(år* ‘sooty tern sp. *kare(fas)* ‘tern sp.’
- **Mic:** Namoluk *arar* ‘Black-naped Tern, *Sterna sumatrana*’
 ara(fao) ‘Greater Crested Tern, *Thalasseus bergii*’
- **Mic:** Chuukese *ar\(år* ‘white tern’
- **Mic:** Marshallese *ke\(är* ‘*Sterna* spp.’
- **Mic:** Kiribati *karakara* ‘*Thalasseus bergii*’

cf. also:

- **MM:** Nehan *kara* ‘tern (generic)’

POc *kiRa* ‘White Tern, *Gygis alba*’

- **Yap:** Yapese *gēgiy* ‘bird sp.’
- **MM:** Halia *kira* ‘Little Tern, *Sterna albifrons*’
- **MM:** Petats *kira* ‘small white seabird which dives for small fish’
PMic *kiakia ‘White Tern, Gygis alba’
Mic: Sorsorolese giieg ‘white or fairy tern’
Mic: Woleaian xiyexiy ‘white or fairy tern’
Mic: Carolinian (Tanapag) giyeg ‘white bird sp.’
Mic: Puluwatese kiyekiy ‘fairy tern’
Mic: Namoluk ekiek
Mic: Chuukese ekiyek
Mic: Ponapean kaḵe ‘fairy tern’
Mic: Kiribati kiakia ‘Black-naped Tern, Sterna sumatrana’
Mic: Nauruan (da)gigia ‘white tern’

PPn *aki-aki ‘White Tern, Gygis alba’ (metathesis)
Pn: Tongan ʔekiaki
Pn: E Futunan akiaki
Pn: Tokelauan akiaki
Pn: Tuvalu akiaki ‘Sterna sumatrana’
Pn: Pukapukan akiaki ‘Sterna sumatrana’
Pn: Nukuoro akiaki
Pn: Nukuria te-akiaki
Pn: Luangiu iaʔi ‘white sea bird’
Pn: Tikopia akiaki
Pn: Rapanui kiakia

The following two terms from Polynesian Outliers show a closer resemblance to the Halia form above than to the rest of Polynesian, and are probably borrowed from some North Solomons language:

Pn: Takuu kinakina
Pn: Sikaiana kinakina

POc *bʷauro ‘tern’
TM: Buma bauro, bauri ‘noddy, Anous sp.’
NCV: Labo nuʷbuaxa (ne-tes) ‘gull’ (tes ‘sea water’)
NCV: SW Bay niʷbuar (ajʷbata⁸bat) ‘gull’
NCV: Maskelynes (na-li)⁸buer ‘gull’
NCV: Port Sandwich (li)⁸buer ‘seagull’
NCal: Nyelāyu bor(ivic) ‘sea bird’
NCal: Nêlêmwa bor(éric) ‘tern, Sterna spp.’
Mic: Marshallese p⁸or(ôc) ‘a white sea bird’

POc *golo ‘tern’
MM: Banoni (va)yora ‘noddy sp.’
MM: Marovo (va)golo ‘Greater Crested Tern, Thalasseus bergii’
MM: Nduke (va)golo ‘Sterna sp., bergii?’
MM: Roviana (va) golo ‘sea bird, often seen with helekae following shoals of bonito etc.’
MM: Simbo (va)golo ‘sea bird sp.
MM: Kia (va)yolo ‘Common Tern, Sterna hirundo’
NCV: Mwotlap na-tkol ‘Black-naped Tern, Sterna sumatrana’) (??)
NCal: Fwái kõõle ‘Sterna sumatrana’
NCal: Cêmuhî hõõle ‘Fairy Tern, Sterna nereis’
Mic: Mokilese (sa)kol ‘tern sp. with white crest’

PAdm *baraŋ~*rabaŋ ‘tern’
 Adm: Mussau rabaŋana ‘seagull’
 Adm: Loniu paʔaŋ ‘white seabird sp., flies over sea and feeds on small fish; possibly tern or heron’
 Adm: Nyindrou barak ‘black seagull’

PAdm *baraŋ is reconstructed on the basis of the Loniu and Nyindrou terms. Mussau rabaŋana points to earlier *rabaŋan (or *baraŋan), but the relationship of Mussau to the Admiralties languages is not well enough understood to know what protolanguage this earlier term occurred in.

PPn *tala ‘tern’
 Pn: Tongan tala ‘Greater Crested Tern, Thalasseus bergii and other terns with mainly white plumage’
 Pn: E Uvean tala ‘White Tern, Gygis alba’
 Pn: Tokelauan tala(ŋoŋo) ‘Black-naped Tern, Sterna sumatrana’
 Pn: Tuvalu tala(ŋoŋo) ‘Sooty Tern, Sterna fuscata’
 Pn: Tuvalu tala(liki) ‘Sterna fuscata or Blue-grey Noddy, Procelsterna cerulea’
 Pn: Tuvalu tala(aloﬁ) ‘Spectacled Tern, Sterna lunata’
 Pn: Nukuoro tala ‘tern (?) vagrant species, hardly ever seen’
 Pn: K’marangi tala ‘Sterna lunata’
 Pn: Takuu tara ‘Thalasseus bergii, Sterna fuscata, and other terns with black heads’
 Pn: Sikaiana tala ‘seagull sp.’
 Pn: Sikaiana tala ‘Thalasseus bergii’
 Pn: Sikaiana tala(µ) ‘Sterna fuscata’
 Pn: Sikaiana tala(µa) ‘Sterna fuscata’
 Pn: Pileni tala ‘diving sea bird sp.’
 Pn: Rennellese taka ‘Thalasseus bergii’
 Pn: Tikopia tara moana ‘small kingfisher-like sea bird’
 Pn: Emae tara ‘largest sp. of tern’
 Pn: Marquesan taʔa ‘Sterna fuscata’
 Pn: Mangarevan tarara ‘Thalasseus bergii’
 Pn: Tahitian tarã(papa) ‘Thalasseus bergii’
 Pn: Manihiki tara ‘Sterna fuscata’
 Pn: Māori tara ‘various tern and gull spp.’

and probable Polynesian borrowings:
 Fi: Rotuman tala ‘Thalasseus bergii’ (expected †fala)
 Mi: Kiribati tara(ŋoŋo) ‘Sterna lunata’
Watling (2004:208) gives Fijian *tala* (dialect unspecified) for ‘Gygis alba’, but this is unconfirmed by other sources.

The following term for a particular tern species may originate from a compound with *tala*, though the identity of the second element is unclear.

PNPn *[t[a]lapiti* ‘Black-naped Tern, *Sternula sumatrana*’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn: Nukuoro</td>
<td>lepiti</td>
<td>‘white tern?’</td>
</tr>
<tr>
<td>Pn: K’marangi</td>
<td>tolo</td>
<td></td>
</tr>
<tr>
<td>Pn: Nukuria</td>
<td>tropiti</td>
<td></td>
</tr>
<tr>
<td>Pn: Takuu</td>
<td>lropiti</td>
<td></td>
</tr>
<tr>
<td>Pn: Luangiu</td>
<td>*(k[a]*lapiki</td>
<td></td>
</tr>
<tr>
<td>Pn: Sikaiana</td>
<td>tapiti</td>
<td></td>
</tr>
<tr>
<td>Pn: Rennellese</td>
<td>gopiti</td>
<td></td>
</tr>
</tbody>
</table>

The noddies are smaller, generally dark-coloured relatives of the terns. Reconstructible terms for them are restricted to Central Pacific languages.

PCP *ŋoŋo* ‘Common Noddy, *Anous stolidus*’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fij: Rotuman</td>
<td>ŋoŋo</td>
<td>‘Anous spp.’</td>
</tr>
<tr>
<td>Fij: Lau, Taveuni</td>
<td>ŋoŋo</td>
<td>‘Anous spp.’</td>
</tr>
<tr>
<td>Fij: Wayan (Viwa)</td>
<td>ŋoŋo(sawa)</td>
<td>‘Anous spp.’</td>
</tr>
<tr>
<td>Pn: Tongan</td>
<td>ŋoŋo</td>
<td>‘Anous spp.’</td>
</tr>
<tr>
<td>Pn: Niuean</td>
<td>ŋoŋo</td>
<td>‘Anous spp.’</td>
</tr>
<tr>
<td>Pn: Samoan</td>
<td>ŋoŋo</td>
<td>‘Anous spp.’</td>
</tr>
<tr>
<td>Pn: Pukapukan</td>
<td>ŋoŋo</td>
<td></td>
</tr>
<tr>
<td>Pn: Nukuoro</td>
<td>ŋoŋo</td>
<td></td>
</tr>
<tr>
<td>Pn: Nukuria</td>
<td>*(te)*nono</td>
<td></td>
</tr>
<tr>
<td>Pn: Takuu</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>Pn: Sikaiana</td>
<td>nono</td>
<td></td>
</tr>
<tr>
<td>Pn: Rennellese</td>
<td>ŋoŋo</td>
<td></td>
</tr>
<tr>
<td>Pn: Tikopia</td>
<td>ŋoŋo</td>
<td></td>
</tr>
</tbody>
</table>

An irregular change leads to forms reflecting Proto Central Eastern Polynesian *ŋoio*:

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn: Mangarevan</td>
<td>ŋoio</td>
<td></td>
</tr>
<tr>
<td>Pn: Tahitian</td>
<td>ōio</td>
<td></td>
</tr>
<tr>
<td>Pn: Rarotongan</td>
<td>ŋōio</td>
<td></td>
</tr>
</tbody>
</table>

The following term, like *[t[a]lapiti* above, may originally have been a compound of *tala* with an unidentified second element:

PNPn *[t[a]lakia* ‘White-capped Noddy, *Anous minutus*’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn: Samoan</td>
<td>laia</td>
<td>‘Blue-grey Noddy, Procelsterna cerulea’</td>
</tr>
<tr>
<td>Pn: Tokelauan</td>
<td>lakia</td>
<td></td>
</tr>
<tr>
<td>Pn: Tuvalu</td>
<td>lakia</td>
<td></td>
</tr>
<tr>
<td>Pn: Pukapukan</td>
<td>lakia</td>
<td></td>
</tr>
<tr>
<td>Pn: Nukuoro</td>
<td>lekia</td>
<td></td>
</tr>
</tbody>
</table>
K’marangi: \textit{manu-telekia}
Nukuria: \textit{terakia}
Takuu: \textit{lakia}
Luangiuia: \textit{leia, leʔiʔa}
Sikaiana: \textit{leka, leia}
Tikopia: \textit{rakia}
Tongarevan: \textit{rakia}
Manihiki: \textit{rakie}
Insects and other creepy-crawlies

MEREDITH OSMOND

1 Introduction

The Oceanic Lexicon Project is concerned both with reconstruction of POc terms and their meanings and with compiling a picture of the kind of culture that can be associated with these reconstructed concepts. My intention here is not just to identify the insects that existed in the world of Proto Oceanic speakers but also to consider their role in it. Were they dangerous or merely pesky, harmless, insignificant or perhaps useful? Were they associated with the supernatural? The perceived role of an insect depends on the way in which it impinges on human lives, whether by biting or stinging, by being highly visible or noisy, by attacking woodwork or food plants, by being a valued food, and so on. Occasionally we find linguistic clues that throw additional light.

It should be noted that the term ‘insects’ is used here in its popular extended sense to include spiders, centipedes, and other creepy-crawlies such as grubs, worms and leeches.

The difficulty of the task is increased by the sheer size of the Oceanic world, involving as it does many different environments. Compared with other animals, insects are highly adaptable (capable of living in a wide range of environments), easily transportable (by man, animal or wind), and numerous in both kind and number. Consequently, it is difficult to plot the distribution of even a major order, such as scorpions or leeches. Ideally it would be useful to know whether a given creature exists in a region (in one or more readily identifiable species), and if so, whether it has been there at least as long as the first settlers. Even this information is of little use, however, unless we also have local names. Specialised entomological tomes, dealing with, say, the Hymenoptera of Vanuatu, rarely have this information.

For the time being, then, we make do with the most readily available information, culled from general wordlists fleshed out by ethnographic descriptions. Many apparent cognates show unexpected variation in gloss, so that the term for a mosquito in language A becomes that for sandfly in language B, wasp terms move to bee, centipede to millipede, grasshopper

1 Particular thanks are due to Andrew Pawley and Malcolm Ross for unfailing help and advice. I am also grateful to Ann Chowning, John Lynch, Ross Clark and the late Phil Quick for a host of useful data and comments.

to cricket to cicada, and so on. I have to decide if this is due to change in distribution of the creature, or perhaps reflects the insect’s lack of importance to a community, or may be a deficiency in the wordlist.

Another factor to be considered is a seemingly high degree of phonological irregularity in some insect names. This manifests itself at times in collections of terms which share strong resemblance but for which no reconstruction is possible. At other times it results in doublets, where two or more very similar reconstructions can be made for the same insect. Terms for noisy insects are likely to be influenced by onomatopoeia, while terms for insects that jump or sting or tickle may be derived from relevant verbs. This may help explain why I can have several reconstructions for an insect that are based on quite limited cognate sets, but no one dominant form. In contrast, terms such as POc *kutu ‘louse’ and POc *lano ‘fly’ are particularly stable, their reflexes occurring in a very high proportion of languages throughout the Oceanic region.

One further concern of this chapter is the role of a particular prefix in insect names as a possible supernatural marker. In 1983 Robert Blust presented a paper at the Third Eastern Conference on Austronesian Linguistics entitled A linguistic key to the early Austronesian spirit world.² It dealt with the frequent occurrence of an affix, often fossilised, in Austronesian languages, traceable back to Pan. Its typical form was qali- or kali-, although there were a number of variants. Blust listed 62 lexical sets containing over 570 examples from about 50 languages distributed geographically from Taiwan to Polynesia, with the vast majority occurring in Western Malayo-Polynesian languages. When these 62 lexical sets were sorted into semantic categories, 20 were for creepy-crawly life forms, the largest single category. Other categories were bats/birds (six sets including doves, owls), striking natural phenomena (six sets, including rainbows, echoes, whirlpools), body parts (five sets, including pupil of eye, hair whorl), and muddled psychological states (four sets, including being dizzy, talking/walking in one’s sleep). The puzzle for Blust was to assign a single conceptual principle that linked these apparently disparate meanings. If qali-/kali- was a morpheme, what did it mean?

He realised that in a substantial number of cases the referents had a connection— most commonly a dangerous connection— with the world of spirits. Insects in particular were associated with spirits of the dead. The qali-/kali- terms listed by Blust (updated in 2001:37) refer to the following creepy-crawlies: ant/termite, honey bee, bumble bee, beetle, butterfly, caterpillar, centipede, cockroach, crab, cricket, dragonfly, earthworm, firefly, flea, gecko, grasshopper, jungle leech, paddy leech, luminous millipede, scorpion, snake, spider, wasp. Other phenomena he lists (rainbows, whirlpools, sleep-walking etc.) are thought of as supernatural events/conditions. In other words, the qali-/kali- terms indicated a taboo, a warning that certain kinds of behaviour were to be avoided in the presence of these creatures or events. It would be an advantage for such taboos to be linguistically clearly marked, to be learned early by children.

Blust strengthens his argument by considering the kinds of insects which are not marked by qali-/kali-. He sorts them into creatures that (i) tend to invade human space (maggot, horsefly, housefly, both types of lice, mosquito, nit), or (ii) are economically important either because they are edible (sago grub), or because they cause damage to human crops or

² Now published as Blust (2001).
373

constructions (termite). In contrast, the marked creatures have little or no economic importance. In addition, some of these, particularly fireflies and luminous millipedes, have unusual properties which might be regarded as supernatural (pp 37–38).

Blust concludes his argument: ‘In short, then, the function of the qali-/kali- prefix evidently was to mark facets of experience that were regarded as spiritually dangerous, hence requiring special precautions of a sort likely to be violated by incompletely acculturated children. It did this purely by lengthening the affixed word to an atypical quadrisyllabic shape, hence marking the associated semantic categories as those requiring particular behavioural sensitivity’ (p.59).

One of my purposes in this study, then, is to see to what extent qali-denoted insects are regarded as creatures with supernatural associations in Oceanic languages. At first glance, it would seem that the Oceanic lexical forms no longer hold the same WARNING TAKE CARE message. Nonetheless, the affix, or traces of it, occurs in a large number of Oceanic languages in a range of insect terms, and I have been able to reconstruct it to POc level in a small number of items.

2 Lice (Order Anoplura: Family Pediculidae)

One of the largest cognate sets in the entire lexicon of POc reconstructions is that reflecting *kutu ‘louse’. Its reflexes serve in places as a generic term for lice and fleas, often in compound form, when they refer to other creatures parasitic on plants or animals such as ‘pig louse’ or ‘dog flea’. The very size of the set (I have over 100 reflexes) and their consistency of referent, must reflect its relative salience for witnesses in contemporary languages. The set below is simply a representative sample. Also reconstructed is POc *tuma ‘body louse’. In Nakanai, Roviana and Gela, languages where reflexes of both *kutu and *tuma survive, reflexes of *tuma now refer to ‘flea, house louse, bed bug’, ‘house bug’ or ‘(mat-eating) moth’ respectively. As well, I have a widely reflected term for the louse egg or nit and a number of terms for the action of searching for headlice. This grooming activity was no doubt a regular feature of social life.

3 Where a creature is listed as both marked and unmarked, the unmarked tends to be generic while the marked singles out individual species (Blust 2001:37).
2.1 Head lice

PAn *kuCu ‘louse’ (Blust 2002)
PMP *kutu ‘louse’
POc *kutu (1) ‘louse (generic)’, (2) ‘head louse’

Adm: Kaniet uто ‘louse’
Adm: Lou kut ‘louse’
NG: Sio kutu ‘louse’
NG: Roinji yutu ‘louse’
NG: Wampur gur ‘louse’
NG: Gedaged ut ‘louse, flea, plant louse, tick’
PT: Are kutu ‘louse’
PT: Bwaidoga utu ‘louse’
PT: Molima ?utu ‘louse’
PT: Motu utu ‘louse’
MM: Vitu yutu ‘louse’
MM: Nakanai utu ‘louse, dog flea’
MM: Roviana yutu ‘louse’ (yutu siki ‘dog flea’)
SES: Bugotu yutu ‘louse’
SES: Gela yutu ‘louse’
SES: Lau ?ū ‘louse, flea’
SES: ’Are’are ũ ‘louse, flea’
NCV: Mota wutu ‘louse’
NCV: Raga gutu ‘generic for biting lice and sucking lice’ (gutu-boe ‘pig louse’, gutu-n-manu ‘bird louse’)
NCV: Tamambo butu ‘louse’
NCV: Nguna kūtu ‘louse’
SV: Lenakel kur ‘louse’
SV: Kwamera ur ‘louse’
NCal: Nemi cīk ‘louse’
NCal: Nixumwak ciyc ‘louse’
NCal: Iaai uto ‘louse’
MC: Kiribati uti ‘louse’
MC: Kosraean kūt ‘louse’
Fij: Rotuman ?ufu ‘louse’
Fij: Wayan kutu (1) ‘head louse’, (2) ‘generic for lice and fleas’
Fij: Bauan kutu ‘crab louse, flea’
Pn: Tongan kutu ‘louse’ (kutu-fisi ‘flea’, kutu-lotuma ‘bedbug’)
Pn: Rennellese kutu ‘louse, bird louse, mite, leech, tiny insects of various kinds’
Pn: Samoan ?utu ‘louse’
Pn: E Futunan kutu ‘head louse’
Pn: Tikopia kutu ‘head louse’
Pn: Hawaiian ?uku ‘any small insects: louse, flea, mite’
2.2 Body lice

Because clothes did not feature strongly in the lives of Proto Oceanic speakers, who did not make use of woven cloth, I have preferred to gloss the POc reflex of PAn *tumeS ‘clothes louse’ as ‘body louse’. These creatures would no doubt have continued to exist in Proto Oceanic household items such as the woven pandanus matting generally used as sleeping mats (vol.1, p.80). Although the term has survived in Proto Oceanic, its PAn/PMP meaning has been restored in Niuean and East Futunan reflexes, perhaps fortuitously, through the modern advent of clothing. It seems that in societies where woven clothes were not worn, the distinction between the different kinds of lice was not significant, and either term was used in places as a generic for functionally similar creatures.

PAn *tumeS ‘clothes louse’ (Blust 2002)
PMP *tumah ‘clothes louse’
POc *tuma ‘body louse’

NNG: Kove	tuma	‘louse, flea’
NNG: Numbami	tuma	‘louse’
PT: Gapapaiwa	tuma	‘louse’
PT: Ouma	tuma	‘louse’
PT: Suau	tuma	‘louse’
MM: Nakanaï	tuma	‘house louse, bed bug, flea’
MM: Bola	tuma	‘bug’
MM: Nehan	tuma(su)	‘bedbug’
MM: Roviana	tuma(o)	‘house bug’ (cf also tuma-rere ‘stinking black cockroach’, tuma-rititi ‘k.o. dragonfly’)
SES: Gela	tuma	‘(mat-eating) moth’
SES: Fagani	(a)um*a	‘louse’
Pn: Niuean	tuma	‘clothes louse’
Pn: Tongan	tuma	‘k.o. louse’
Pn: E Futunan	tuma	‘body or clothes louse’

2.3 Nits

In addition to POc *lisaq ‘nit’ I have reconstructed PWOc *lejaŋ ‘nit’. Both forms are securely based. No language has reflexes of both. Their formal similarity may be due to chance or may reflect an early borrowing.

PAn *liseqeS ‘nit, louse egg’ (Blust 2002)
POc *lisaq ‘nit’

Adm: Mussau	lisa	‘louse’
Adm: Lou	lisa	
NNG: Wogeo	lisa	
NNG: Kove	lares	(vowel metathesis)

4 Retention of final vowel in Lenakel ki-lha, Kwamera k"a-resa suggests that *-q was present (John Lynch, pers. comm.)
<table>
<thead>
<tr>
<th>Language</th>
<th>Transcription</th>
<th>Mean</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM:</td>
<td>Patpatar</td>
<td>lise</td>
<td></td>
</tr>
<tr>
<td>MM:</td>
<td>Ramoaaina</td>
<td>lia</td>
<td></td>
</tr>
<tr>
<td>MM:</td>
<td>Nehan</td>
<td>lēh</td>
<td></td>
</tr>
<tr>
<td>MM:</td>
<td>Halia</td>
<td>līsa</td>
<td></td>
</tr>
<tr>
<td>MM:</td>
<td>Teop</td>
<td>niha</td>
<td></td>
</tr>
<tr>
<td>SES:</td>
<td>Gela</td>
<td>liha</td>
<td></td>
</tr>
<tr>
<td>SES:</td>
<td>Talise</td>
<td>līsa</td>
<td></td>
</tr>
<tr>
<td>SES:</td>
<td>Kwaio</td>
<td>līta</td>
<td></td>
</tr>
<tr>
<td>NCV:</td>
<td>Mota</td>
<td>līsa</td>
<td></td>
</tr>
<tr>
<td>NCV:</td>
<td>Tamambo</td>
<td>līsa</td>
<td></td>
</tr>
<tr>
<td>NCV:</td>
<td>Ngunu</td>
<td>līsa</td>
<td></td>
</tr>
<tr>
<td>SV:</td>
<td>Anejoĩ</td>
<td>na-laθ</td>
<td></td>
</tr>
<tr>
<td>SV:</td>
<td>Lenakel</td>
<td>(k)iłha</td>
<td></td>
</tr>
<tr>
<td>SV:</td>
<td>Kwamera</td>
<td>(kʷa)resa</td>
<td></td>
</tr>
<tr>
<td>SV:</td>
<td>Sye</td>
<td>ne-lis</td>
<td></td>
</tr>
<tr>
<td>NCal:</td>
<td>Nemi</td>
<td>ňida</td>
<td></td>
</tr>
<tr>
<td>Mic:</td>
<td>Kiribati</td>
<td>rina</td>
<td>(metathesis)</td>
</tr>
<tr>
<td>Mic:</td>
<td>Ponapean</td>
<td>cīl</td>
<td>(metathesis)</td>
</tr>
<tr>
<td>Fij:</td>
<td>Bauan</td>
<td>līse</td>
<td></td>
</tr>
<tr>
<td>Pn:</td>
<td>Tongan</td>
<td>liha</td>
<td></td>
</tr>
<tr>
<td>Pn:</td>
<td>Samoan</td>
<td>līa</td>
<td></td>
</tr>
<tr>
<td>Pn:</td>
<td>Tikopia</td>
<td>rie</td>
<td>‘nits of head lice’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Māori</td>
<td>riha</td>
<td></td>
</tr>
<tr>
<td>Pn:</td>
<td>Hawaiian</td>
<td>līa, līha</td>
<td></td>
</tr>
</tbody>
</table>

PWOc *lejaŋ ‘nit’

<table>
<thead>
<tr>
<th>Language</th>
<th>Transcription</th>
<th>Mean</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG:</td>
<td>Tuam</td>
<td>les</td>
<td></td>
</tr>
<tr>
<td>NNG:</td>
<td>Mangap</td>
<td>leze</td>
<td></td>
</tr>
<tr>
<td>NNG:</td>
<td>Yabem</td>
<td>lesoŋ</td>
<td></td>
</tr>
<tr>
<td>PT:</td>
<td>Dobu</td>
<td>neda</td>
<td></td>
</tr>
<tr>
<td>PT:</td>
<td>Molima</td>
<td>neda</td>
<td></td>
</tr>
<tr>
<td>PT:</td>
<td>Tawala</td>
<td>neda</td>
<td></td>
</tr>
<tr>
<td>PT:</td>
<td>Kilivila</td>
<td>lēsa</td>
<td></td>
</tr>
<tr>
<td>PT:</td>
<td>Sudest</td>
<td>leleji</td>
<td></td>
</tr>
<tr>
<td>MM:</td>
<td>Vitu</td>
<td>leda</td>
<td></td>
</tr>
<tr>
<td>MM:</td>
<td>Bali</td>
<td>ledaŋa</td>
<td></td>
</tr>
<tr>
<td>MM:</td>
<td>Meramera</td>
<td>lesa</td>
<td>‘nit; louse’</td>
</tr>
</tbody>
</table>

PWOc *ka(R,r)oma ‘nit’

<table>
<thead>
<tr>
<th>Language</th>
<th>Transcription</th>
<th>Mean</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG:</td>
<td>Labu</td>
<td>aloma(la)</td>
<td></td>
</tr>
<tr>
<td>MM:</td>
<td>Hoava</td>
<td>karoma</td>
<td></td>
</tr>
</tbody>
</table>
2.4 Search head for lice

One POc term and one PROc term have been reconstructed with specific reference to searching for lice. Other terms with more general meaning, particularly POc *tirop, *tirop-i ‘look intently’, are sometimes used. In Kove (NNG) the expression is ravu tuma ‘feel for lice’ (Ann Chowning, pers. comm.). These terms indicate the likelihood of reciprocal grooming, an activity undertaken in many societies as part of social interaction.

PMP *tin[dl]ap ‘look intently’ (Dempwolff 1938)

POc *tirop(p), *tirop-i- ‘look intently, look for (lice etc.)’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td>Roviana ti-tiro</td>
<td>‘search for’</td>
</tr>
<tr>
<td>SES: Lau</td>
<td>irofi</td>
<td>‘look at fixedly, look for’</td>
</tr>
<tr>
<td>SES: Kwaio</td>
<td>iloi (falaina)</td>
<td>‘search hair (i.e. for lice)’ (falaina ‘hair’)</td>
</tr>
<tr>
<td>SES: ’Are’are</td>
<td>iro</td>
<td>‘look for, collect’</td>
</tr>
<tr>
<td>SES: Sa’a</td>
<td>irohi</td>
<td>‘clear the head of lice’</td>
</tr>
<tr>
<td>SES: Arosi</td>
<td>(ha)irōhi</td>
<td>‘look for lice in the hair’ (ha- ‘verbal prefix’)</td>
</tr>
<tr>
<td>Pn: W Futunan</td>
<td>jiro(a)</td>
<td>‘look carefully, search for’</td>
</tr>
<tr>
<td>Pn: Māori</td>
<td>tiro</td>
<td>‘look into, examine’</td>
</tr>
</tbody>
</table>

PPOc *tapu(s), *tapus-i- ‘seek lice’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT: Motu</td>
<td>tahu(a)</td>
<td>‘seek, examine’</td>
</tr>
<tr>
<td>PT: Gumawana</td>
<td>tao</td>
<td>‘look for lice’</td>
</tr>
<tr>
<td>SES: Gela</td>
<td>tavuhi</td>
<td>‘seek, esp. lice in the hair’</td>
</tr>
<tr>
<td>SES: Ghari</td>
<td>tavu(a)</td>
<td>‘scratch, look for lice’</td>
</tr>
<tr>
<td>SES: Lau</td>
<td>afui</td>
<td>‘search a head for lice’</td>
</tr>
<tr>
<td>NCV: Avava</td>
<td>tap</td>
<td>‘pick fruit’ (John Lynch, pers. comm.)</td>
</tr>
<tr>
<td>NCV: Naman</td>
<td>tov</td>
<td>‘pick fruit’ (John Lynch, pers. comm.)</td>
</tr>
</tbody>
</table>

PROc *pakit, *pakit-i- ‘search hair for lice’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCV: Tamambo</td>
<td>vahi</td>
<td>‘groom hair, search head for lice’</td>
</tr>
<tr>
<td>NCV: Nguna</td>
<td>vāke</td>
<td>‘search hair for lice’</td>
</tr>
<tr>
<td>Mic: Woleaian</td>
<td>faxiti</td>
<td>‘search hair for lice’</td>
</tr>
<tr>
<td>Mic: Mokilese</td>
<td>pakit</td>
<td>‘delouse’</td>
</tr>
</tbody>
</table>

3 Butterflies (Order Lepidoptera = ‘scaly wings’)

A number of formally similar reconstructions for butterfly have been made above the level of POc: Pan *(qali)-beňbeň, PMP *kali-mbembeň and PSHWGNG *kalə-mbombəŋ. From the first-mentioned one would expect the regularly derived POc *kali-boboŋ. It does appear, but its reflexes are with one exception limited to the North New Guinea subgroup. The most widespread Oceanic cognate set, yielding POc *(kau)bebek, cannot be derived directly from PMP.
PAn *qali-beŋbeŋ ‘butterfly’ (ACD)

P Oc *[kali]bobo(ŋ) ‘butterfly’

Adm: Loniu popʷ(ilow) ‘butterflies, a collective term’
NNG: Gedaged kilibob ‘butterflies, a collective term’
NNG: Numbami kaiʷbo*bo
NNG: Bariai vovo
NNG: Kove vovo
NNG: Maleu na-lvovo
NNG: Tuam bobo(ım)
NNG: Gitua bobo(koro)
NNG: Malalamai vovo
NNG: ıo bobo
NNG: Bing kalbob
NNG: Bilibil kilibob
NNG: Megiar kabob
NNG: Manam bo-bobe
NNG: ıam ba-bob
NNG: Woge bobo

P Oc *[kau]bebek has reflexes throughout almost the entire Oceanic region apart from NNG. The added -a in Molima, Dobu, Sewa Bay, Duau, Bwaidoga and ’Auhelawa reflects a regular process, but the labialisation of *k is unexpected.

P Oc *[kau]bebek ‘butterfly, moth’

Adm: Lou pepe ‘centipede’
Adm: Mussau kau-bebe ‘butterfly’
PT: Molima pepeʔʷa ‘butterfly’
PT: Dobu pepekʷa ‘butterfly’
PT: Sewa Bay pepekʷa ‘butterfly’
PT: Duau pepekʷa ‘butterfly’
PT: Bwaidoga bebewa ‘butterfly’
PT: Gapapaiwa beba-beba ‘butterfly’
PT: Ubir fefek ‘butterfly’
PT: Hula pepe ‘butterfly’
PT: Sinaugoro kau-bebe ‘butterfly’
PT: Mekeo fefe ‘butterfly’
PT: Motu kau-bebe ‘butterfly, moth’
MM: ıali ka-bebeke ‘butterfly’
MM: Nakanai bebe ‘butterfly’
MM: Tolai bebe ‘butterfly’
MM: Mono-Alu bebe ‘butterfly’
SES: Lau bebe ‘butterfly, moth’
SES: Sa’a pepe ‘butterfly, moth’
SES: Arosi bebe ‘butterfly (generic)’ (used as first element in compound terms for partic. varieties)
NCV: Mota pepe ‘a yellow butterfly’
Insects and other creepy-crawlies

NCV: Raga bebe ‘generic for butterflies and moths’
NCV: Lewo (le)pepe ‘butterfly’
NCV: S Efate (li)pep ‘butterfly’
Mic: Kiribati p“ep“e ‘butterfly’
Mic: Marshallese p“ap“ip* ‘butterfly, moth’
Fij: Rotuman pepe ‘moth or butterfly of any kind’
Fij: Wayan bébé ‘butterflies and moths’
Fij: Bauan bébé ‘butterfly’
Pn: Tongan pepe ‘butterfly’
Pn: Pukapukan pepe ‘dragonfly’
Pn: Tikopia pepe ‘butterfly, moth; gen. term for Lepidoptera’
Pn: Māori pepe ‘flutter, moth’ pepepe ‘butterfly’
cf. also:
Mic: Puluwatese (li)p“ekip“ek ‘butterfly’ (li- ‘nominal prefix’)
Mic: Woleaian (ri)ɸexiɸex ‘butterfly, caterpillar’ (ri- ‘nominal prefix’)

One other reconstruction is restricted to Papuan Tip.

PPT *qara-bembem ‘butterfly’
PT: Ubir kara-bimbim
PT: Doga ara-bembem
PT: Anuki kara-bemem
PT: Are ara-bembemta

In Western Oceanic, but with just two reflexes, I find—

PWOc *bebelo ‘butterfly’
PT: Lala ebebelo
MM: Torau bebelo

—and in that part of MM which lies within the Northwest Solomons:

Proto NW Solomonic *pepele ‘butterfly’
MM: Ririo pepel
MM: Sisiqa pe-pepele
MM: Babatana pe-pepele
MM: Nduke pepele ‘general term for butterflies and moths’
MM: Roviana pepele
MM: Hoava pepele
MM: Vangunu pepele
cf. also:
TM: Teanu mebeli

What are we to make of these variations? Butterflies, like lice and flies, are commonplace, but whereas I have extremely stable cognate sets for the latter two, butterfly terms in
Western Oceanic have many slightly different forms. It is as if there is wordplay, with small changes being deliberately made to a word. Was there something culturally significant about butterflies, perhaps some trace of the supernatural that the kali- prefix reflects, that gave rise to some taboo about the use of the normal term? Although I have examples of an association between butterflies and the supernatural in Sa’a (Ivens 1927:187), Maori (Andrew Crowe pers. comm.) and Easter Island (Steven Roger Fischer pers. comm.) I have no comparable examples from Western Oceanic. Malcolm Ross (pers. comm.) suggests an explanation involving a different kind of cultural taboo.

There is a widespread origin legend along the New Guinea north coast based on the activities of two brothers, Manub (blue dove) and Kilibob (butterfly), who, between them, ‘made their dwelling places, sun, moon and stars etc. and also the people, and gave them all their customs and usages’ (Pech 1991:81). It happens that such legends may be seen to belong to particular clans in their traditional form. Others may continue the legends but lack the right to use traditional names (Pech 1991:116). If this were the case, it would be the names, rather than the creature, which were subject to some kind of taboo. It may have been some such reason that is the explanation for the numerous variations in the WOc butterfly term. The EOc terms, however, are quite consistent, all derived from one of the WOc variations, *bebek, so evidently no longer subject to the same taboo pressures.

Although POc speakers evidently included moths and butterflies within one generic term, I have a lower-level reconstruction which is limited to moths, possibly a particular kind of moth. Samoan and Tikopia reflect *lele-fua while the Central Eastern Polynesian languages appear to have added a prefix of unclear function.

PNPn *[pu]lele-fua ‘k.o. moth’ (pollex: *lele ‘fly swiftly’)

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn:</td>
<td>lele-fua</td>
<td>‘moth’</td>
</tr>
<tr>
<td>Pn:</td>
<td>rere-fue</td>
<td>‘large moth’</td>
</tr>
<tr>
<td>Pn:</td>
<td>purere-ʔua</td>
<td>‘large moth sp.’</td>
</tr>
<tr>
<td>Pn:</td>
<td>pūre-hua</td>
<td>‘moth’</td>
</tr>
<tr>
<td>Pn:</td>
<td>pulele-hua</td>
<td>‘butterfly, moth’</td>
</tr>
</tbody>
</table>

4 Mosquitoes (Order Diptera = ‘two wings’: Family Culicidae)

A POc reconstruction for ‘mosquito’, *ñamuk, is based on numerous cognates from all major subgroups, with little variation in meaning, together with a PMP antecedent. In some Papuan Tip languages reflexes form compounds to refer to a range of small flying biting insects. The PT reflexes have undergone a common sporadic vowel change, lowering of unstressed -u to -o.

A number of terms that refer to the mosquito have been reconstructed in addition to *ñamuk.

Figure 7.2 Anopheles sp., mosquito
PMP *ʔamuk ‘mosquito’ (Blust 2002)

POc *ʔamuk ‘mosquito’

<table>
<thead>
<tr>
<th>Language</th>
<th>Noun Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm: Aua</td>
<td>namu</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>Adm: Seimat</td>
<td>namu</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>Adm: Kaniet</td>
<td>ñamu</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>Adm: Loniu</td>
<td>ñamɔn</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>NNG: Lukep (Pono)</td>
<td>nam</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>NNG: Kaiwa</td>
<td>namuk</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>NNG: Manam</td>
<td>nam</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>PT: Molima</td>
<td>namo-namo</td>
<td>‘fly’ (namo-kili ‘mosquito’, namo-kodu-kodu ‘k.o. sandfly’)</td>
</tr>
<tr>
<td>PT: Bwaidoga</td>
<td>nimoya</td>
<td>‘mosquito’ (namo-kili-kili ‘fruit-fly’)</td>
</tr>
<tr>
<td>PT: Maisin</td>
<td>namo-yi</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>PT: Minaveha</td>
<td>namo-namo</td>
<td>‘fly (generic)’ (namo-kina ‘mosquito’, vivia namo-namo ‘wasp, small red variety’)</td>
</tr>
<tr>
<td>PT: Gapapaiwa</td>
<td>namo-namo</td>
<td>‘fly’ (namo-kīri ‘mosquito’)</td>
</tr>
<tr>
<td>PT: Are</td>
<td>namo-namo</td>
<td>‘housefly’</td>
</tr>
<tr>
<td>PT: Motu</td>
<td>namo</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>PT: Sudest</td>
<td>ñamo-ñamo</td>
<td>‘fruitfly’</td>
</tr>
<tr>
<td>MM: Nalik</td>
<td>namu</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>MM: Nakai</td>
<td>lamu</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>MM: Tolai</td>
<td>namu</td>
<td>‘sandfly’</td>
</tr>
<tr>
<td>SES: Bugotu</td>
<td>ñamu</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>SES: Gela</td>
<td>namu</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>SES: Kwaio</td>
<td>namu-namu</td>
<td>‘small flying insect (generic); sandfly, gnat’</td>
</tr>
<tr>
<td>SES: Arosi</td>
<td>[naj]namu</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>TM: Buma</td>
<td>muko</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>NCV: Mota</td>
<td>namu</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>NCV: Raga</td>
<td>namu</td>
<td>‘generic for mosquitoes’</td>
</tr>
<tr>
<td>NCV: Paamese</td>
<td>a-namu</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>NCV: Nese</td>
<td>namyo</td>
<td>(regular metathesis of final *-Vk)</td>
</tr>
<tr>
<td>SV: Sye</td>
<td>yomoy</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>SV: Anejoñí</td>
<td>n-yam”w</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>NCal: Nixumwak</td>
<td>nabuc</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>NCal: Nemi</td>
<td>naguk</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>Mic: Marshallese</td>
<td>nam”w</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>Mic: Woleaian</td>
<td>ram”u</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>Mic: Ulithian</td>
<td>lam”o</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>Fij: Bauan</td>
<td>namu</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>Fij: Wayan</td>
<td>am</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>Pn: Tongan</td>
<td>namu</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>Pn: Tahitian</td>
<td>namu</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>Pn: Māori</td>
<td>namu</td>
<td>‘sandfly’</td>
</tr>
</tbody>
</table>

The following reconstruction shares the same second syllable as *ʔamuk ‘mosquito’. Both *ʔamuk and *simuk evidently referred to ‘mosquito’ in WOc, although *simuk may
have had a broader semantic range than *ñamuk, its reflexes at times referring to other small biting flies. Southeast Solomonic terms reflect Proto SE Solomonic *simi rather than †*simu. (Maringe si-simi is evidently borrowed from a neighbouring SES language). Reflexes of *simuk are not found in subgroups east of the Solomons.

POc *simuk ‘mosquito, small biting fly’

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Tuam</td>
<td>sum</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>NNG: Mato</td>
<td>simak</td>
<td>‘sandfly’</td>
</tr>
<tr>
<td>NNG: Labu</td>
<td>sumu(si)</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>PT: Wedau</td>
<td>imo(kini)</td>
<td>‘mosquito’ (kini ‘to sting’)</td>
</tr>
<tr>
<td>PT: Tawala</td>
<td>himo(kini)</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>PT: Tawala</td>
<td>himo-himo(kini)</td>
<td>‘sandfly’</td>
</tr>
<tr>
<td>MM: Mono-Alu</td>
<td>simuʔu</td>
<td>‘midge’</td>
</tr>
<tr>
<td>MM: Varisi</td>
<td>simu-simu</td>
<td>‘midge’</td>
</tr>
<tr>
<td>MM: Avasō</td>
<td>simuku</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>MM: Maringe</td>
<td>si-simi</td>
<td>‘housefly’</td>
</tr>
<tr>
<td>SES: Lau</td>
<td>simi</td>
<td>‘sandfly’</td>
</tr>
<tr>
<td>SES: Baegu</td>
<td>si-simi</td>
<td>‘midge’</td>
</tr>
<tr>
<td>SES: Longgu</td>
<td>simi</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>SES: Kwai</td>
<td>simi(sak*alo)</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>SES: Kwaio</td>
<td>simi</td>
<td>‘fly, sandfly’</td>
</tr>
<tr>
<td>SES: Dori’o</td>
<td>simi(lak*alo)</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>SES: ’Are’are</td>
<td>sime</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>SES: Sa’a</td>
<td>sime</td>
<td>‘mosquito’</td>
</tr>
</tbody>
</table>

Another term, POc *ma-kini(t), is also reconstructable, with reflexes that refer to ‘mosquito’ in Western Oceanic, but in Remote Oceanic rather to the state of being stung. As a literal translation of a form of the verb *kini-t, ‘to pinch’, *ma-kini(t) means ‘to get pinched’, i.e. ‘get stung’. The languages in which reflexes of *ma-kini(t) are listed have all lost POc final consonants, and putative final *-t is reconstructed on the basis of etymology. In languages such as (PT) Gumawana, the meaning of the verb gini includes ‘to puncture, spear, inject, sting’. Reflexes of *kini-t appear frequently in PT languages as the second element in compound terms referring to biting insects. (See also POc *simuk above.)

POc *ma-kini(t) ‘mosquito’

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Bariai</td>
<td>makin-kin</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>NNG: Kove</td>
<td>makini-ki</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>MM: Nakanai</td>
<td>makili-kili</td>
<td>‘black gnats, sandflies’</td>
</tr>
<tr>
<td>MM: Bali</td>
<td>makini-ki</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>MM: Bulu</td>
<td>makini-ki</td>
<td>‘mosquito’</td>
</tr>
</tbody>
</table>

POC *makini ‘to be stung’

<table>
<thead>
<tr>
<th>Language</th>
<th>Form</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCV: Nguna</td>
<td>makini-ki</td>
<td>‘itchy’</td>
</tr>
<tr>
<td>Pn: Samoan</td>
<td>maʔini</td>
<td>‘to sting, to smart’</td>
</tr>
</tbody>
</table>
Insects and other creepy-crawlies

Pn: Tongan *makini* ‘to have a pricking or tingling sensation like pins and needles’ (also *makini-kini* implying duration)

cf. also:

Pn: Tikopia *kini-kini* ‘insect, small brown, predatory on man, in houses (? flea)’

A tendency to identify small buzzing and biting insects with nasal-initial terms and frequent reduplication is noted with *ꞌamuk* as well as POc *ŋiŋi(ŋ)* and PWOc *ŋati-ŋati* below, and is apparent also in the terms for sandfly/midge/gnat in the following section (POc *niku-niku*, *nonok*, *ŋi(s,j)i*). Most are onomatopoeic, using *n, ŋ* and *ŋ* almost interchangeably, making it difficult to trace cognate forms.

PMP *ŋiŋ* ‘buzz, hum’ (ACD)

POc *ŋiŋi(ŋ)*

(1) ‘buzz as a mosquito’, (2) ‘mosquito’ (onomatopoeic)

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Bing</td>
<td>ŋiŋ</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>SES: Gela</td>
<td>ŋiŋi</td>
<td>‘buzz as a mosquito’</td>
</tr>
<tr>
<td>SES: Talise</td>
<td>ŋi</td>
<td>‘midge’</td>
</tr>
<tr>
<td>SES: Birao</td>
<td>ŋi</td>
<td>‘midge’</td>
</tr>
<tr>
<td>SES: Tolo</td>
<td>ŋi</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>Fij: Bauan</td>
<td>ñiŋi</td>
<td>‘buzz as a mosquito’</td>
</tr>
</tbody>
</table>

PWOc *ŋati-ŋati* ‘mosquito’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Mapos Buang</td>
<td>ŋat-ŋat</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>PT: Gapapaiwa</td>
<td>nasi-nasi</td>
<td>‘small brown fly’</td>
</tr>
<tr>
<td>MM: Tabar</td>
<td>ŋati-ŋati</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>MM: Lihir</td>
<td>ŋet-ŋet</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>MM: Madak</td>
<td>ŋit</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>MM: Ramoaaina</td>
<td>ŋat-ŋat</td>
<td>‘sandfly’</td>
</tr>
<tr>
<td>MM: Patpatar</td>
<td>ŋati-ŋat</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>MM: Minigir</td>
<td>ŋati-ŋati</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>MM: Tolai</td>
<td>ŋati-ŋat</td>
<td>‘mosquito’</td>
</tr>
<tr>
<td>MM: Nehan</td>
<td>nat-nat</td>
<td>‘mosquito’</td>
</tr>
</tbody>
</table>

5 Sandflies, midges, gnats (Order Diptera: Families Chironomidae (non-biting), Ceratopogonidae, Psychodidae, Simuliidae (biting); Families Drosophilidae, Tephritidae (fruit flies))

Cognates in the following sets refer to a range of very small flying biting insects. Vagueness of identity may be due to the fact that speakers have no real need to distinguish these insects more precisely.

POc *niku-niku* from PMP *nik-nik* rather than the expected †*ninik* may simply be another example of the playful variation prevalent in some insect terms.
PMP *nik-nik, *ñik-ñik ‘tiny biting insect: gnat, sandfly, fruitfly’ (ACD)

POc *niku-niku ‘small biting fly’

PT: Bwaidoga niku-niku ‘small fly that bites (like sandfly)’
MM: Vitu niki ‘mosquito’
MM: Konomala nuk-nuk ‘mosquito’
MM: Tolai nuku-nuku ‘very small fly’
MM: Roviana niku-niku ‘k.o. sandfly whose bite is painful’
MM: Hoava niku-niku ‘midge’
MM: Vangunu niku-niku ‘midge’

Polynesian reflexes of *nonok ‘sandfly, midge’ appear to refer to fruitflies and perhaps other small non-biting flies. The Cristobal-Malaitan terms reflect PCM *nono(i)tas, literally ‘fly of salt water’.

PMP *nek-nek ‘gnat, sandfly, fruit fly’ (ACD)

POc *nonok ‘sandfly, midge’

Adm: Lou (tip)non ‘sandfly, mosquito’
Adm: Baluan (liplip)non ‘sandfly’
MM: Mono-Alu nono ‘mosquito’
MM: Ndike nonoyo ‘mosquito’
SES: Gela nonoke ‘ko. sandfly on the shore’
SES: Baegu nono(asi) ‘sandfly’
SES: ’Are’are nono(asi) ‘small stinging midge; gnat; sandfly’
SES: Sa’a nono(asi) ‘midge, gnat’
SES: Arosi nono ‘fly’
SES: Arosi nono(iasi) ‘sandfly’
SES: Arosi (ʔarai)nono ‘mosquito’ (ʔaraʔi ‘to bite, sting’)
SES: Fagani nana(asi) ‘sandfly’ (vowel metathesis)
NCV: Mota nono ‘a small beetle that comes on decaying fruit’
NCV: Lewo ne-nonono ‘sandfly, midge, fruitfly’
NCV: Uripiv nunu ‘midge’
Pn: Niuean nono ‘small beetle’
Pn: Tongan nono ‘fruitfly’
Pn: Rennellese nono ‘k.o. small fly found on rotten bananas’
Pn: Samoan nono ‘white ant when winged’
Pn: Tikopia nono ‘fruitfly’
Pn: Tuvalu nono ‘small flying insect’
Pn: E Uvean nono ‘small flying insect’

The next reconstruction is reflected mainly in compound terms which include a range of unidentified elements.

POc *ŋi(s,j)i ‘sandfly’

Adm: Mussau (kala)ŋisi ‘sandfly’
NNG: Malai (maran)ŋis-ŋis ‘sandfly’
NNG: Lukep (Pono) (bara)ŋis-ŋis ‘sandfly’
Insects and other creepy-crawlies

NNG: Singorakai *(mala)ŋis* ‘sandfly’
NNG: Tami *siŋi-siŋ* ‘firefly’ (metathesis)
NNG: Wab *ŋis* ‘sandfly’
NNG: Bing *(ramaŋas)ŋis* ‘sandfly’
NNG: Mindiri *(bɔrɔ)ŋis* ‘sandfly’
NNG: Manam *(mara)ŋizi-ŋizi* ‘k.o. gnat, small’
SES: W G’canal *ŋiju* ‘sandfly’

PWOc *ki(r,R)i-ki(r,R)i* ‘sandfly’

PT: Gapapaiwa *kiri-kiri*
PT: Ubir *ire*
PT: Dobu *(dag*a)kili-kili*
MM: Maringe *gri-gri*

6 Flies (Order Diptera: Families Muscidae (houseflies, bluebottles), Tabanidae (horseflies), Bibionidae (March flies))

6.1 Flies (generic); houseflies

Blust (2002) has reconstructed both PMP *lalej* ‘housefly’ and PMP *layaw* ‘botfly, bluebottle’. The latter became in POc the generic term for flies, with reflexes often referring specifically to the common housefly.

Reflexes of POc *laŋo* ‘fly’ are both numerous and widespread, occurring in all major subgroups. In a number of languages including Lou (Adm), Gela (SES) and Hawaiian (Pn), the term is used in compounds as first element, referring to a range of flies (housefly, blowfly, horsefly, March fly, bluebottle fly etc.).

PMP *layaw* ‘botfly, bluebottle’ (Blust 2002)

POc *laŋo* ‘fly’

Adm: Mussau *laŋo* ‘housefly’
Adm: Lou *laŋ-laŋ(a)* ‘fly, flying insect’
laŋ(et) ‘housefly’
laŋ-laŋa-n palawa ‘honey bee’
laŋ-laŋ ŋara ‘bluebottle, horsefly, March fly’
NNG: Tami *laŋo-laŋ* ‘fly’
NNG: Kove *laŋo-laŋo* ‘fly’
laŋo-vihi ‘blowfly, big, blue, noisy, bites and stinks’
NNG: Sengseng *laŋ* ‘fly’
laŋ-i-yuyu ‘hornet with papery nest’
laŋ-onŋ ‘insect that makes holes in wood’
PT: Motu *lao* ‘fly’
PT: Lala *nalo* ‘k.o. fly’ (metathesis)
MM: Tabar *raŋo* ‘fly’
6.2 Horseflies and March flies

Members of the horsefly and March fly families suck the blood of mammals, inflicting a painful bite. Few terms have been collected, and no reconstructions have been possible.

7 Dragonflies and damselflies (Order Odonata = ‘flies with teeth’)

Dragonflies and damselflies are arguably the most accomplished aerialists in the animal kingdom. Swift and agile, they can reverse direction in midair within one body length, hover with ease and fly backwards. They copulate in the air, typically over a body of fresh water, where the female lays her eggs. Although cognate sets have been elusive, a remarkable consistency of meaning has emerged in descriptive compounds meaning literally ‘copulate’ + ‘water’, from terms in SE New Britain to the Solomons to Fiji. Terms referring to copulation have evidently been replaced by euphemisms in many languages. Lack of cognacy in the

Figure 7.3 Dragonfly
terms for water is due to the tendency in some languages to generalise terms originally referring specifically to fresh water, rain, river, pond and so on. For instance, the second element in the Pendau (central Sulawesi) term for a dragonfly, *tuntu*rano, translates literally as ‘lake’ (Phil Quick pers. comm.). POc *waiR ‘water’ is attested in the two following (non-cognate) sets by terms from SES, NCV and Fiji.

NNG: Poeng roro-me (roro ‘copulate’, me ‘water’)
SES: Gela hita-hita-beti (hito ‘to cohabit’, beti ‘water, stream’)
SES: Arosi ʔani-wai (ʔani ‘fornicate’, wai ‘water’)
Mic: Chuukese nifēēcon (‘the one that copulates with water’; Davis 1999)
Fij: Wayan dulu-dulu-wai (dulu ‘copulate’, wai ‘water’)
Fij: Bauan ðai-ðai-wai (ðai ‘copulate’, wai ‘water’)

Other compounds retain the water connection, but vary the verbal concept.

PT: Sudest wawa-emba (wawa ‘?’, ^b^a ‘water’)
SES: Gela gito-beti (‘steal water’)
SES: Tolo ici-kolo (ici ‘?’, kolo ‘water’)
SES: Lau nalu-kafo (‘scoop up water’)
 tatara kafo (‘skim water’)
SES: Longgu tatara-wai ‘large dragonfly with tail like a helicopter’ (lit. ‘skim water’)
SES: Sa’a tātara-wai (‘skim water’)
SES: Arosi tāā-wai (‘skim water’)
SES: ’Are’are tata-wa (‘skim water’)
NCV: Mota roro-pei (roro ‘sink’, pei ‘water’)
NCV: Paamese menmen-oai (men-men cf. munnun ‘drink’, oai ‘water’)
NCV: SE Ambrym munnun-oï (‘drink water’)

Samoan retains the skimming element in seʔe-mū ‘dragonfly’ (seʔe ‘glide’, mū ‘flying insect’).

The Rennellese describe it as a sailing insect: manu-manu hogau (hogau ‘sailor, ocean voyager’).

There are isolated instances of dragonflies being used in sorcery, as a means of causing death in Kiribati (Rosemary Grimble 1972:26–27) and to facilitate theft in Tahiti (Henry 1971:391), but rather than reflecting something specific about the role of dragonflies in POc times, this is probably no more than an indication that certain insects were commonly regarded as agents of the gods and spirits.

8 Bees (Order Hymenoptera = ‘membrane wings’: Super Family Apoidea)

The following reconstruction rests on a pair of cognates from different primary subgroups.

POc *kororo ‘bee’
 Adm: Lou koror ‘bee (generic)’
 MM: Teop kororo ‘honey-bee/honey/(ear wax)’
cf. also:

PT: Sinaugoro kororo ‘cricket’

Although the following reconstruction bears some resemblance to PMP *(n,ñ)ik-(n,ñ)ik, ‘tiny biting insect: gnat, sandfly, fruitfly’ (§5), it is lacking a final consonant and may simply have been generated independently on onomatopoeic grounds. The initial ñ- of the Lau and Sa’a cognates is a common variation on n- and ň- that occurs in terms for buzzing insects.

POc *(n,ñ)i(n,ñ)i ‘bee, buzzing insect’

Adm: Seimat nini ‘bee’
NNG: Kela nini ‘mosquito’
NNG: Sio ni ‘mosquito’
NNG: Labu nene(ŋwa) ‘fly (insect)’
NNG: Takia nini ‘bee, wasp (generic)’
SES: ’Are’are nini(sua) ‘a bee which makes its nest in the ground and in trees’ (sua ‘to burrow’)
SES: Lau njini(dua) ‘bee’
SES: Sa’a njini(duel) ‘native bee’

9 Wasps (Order Hymenoptera): Families Ichneumonidae, Vespidae (paper wasp), Sphecidae (mud-dauber wasp, mason wasp)

I have been unable to identify a particular species that can be identified by POc *pupuk. It may be a name given to any wasp-like insect that infests wood.

PMP *bukbuk ‘weevil that infests wood, bamboo, and rice; dust produced by the boring of this insect; tooth decay, dental caries’ (ACD)5

POc *pupuk ‘k.o. borer wasp or bee that infests wood and bamboo’

NNG: Gedaged fuf ‘wood-borer’
PT: Sudest vuvu ‘sugarcane borer’
PT: Gapapaiwa vuvua ‘bee type; carpenter bee’
PT: Molima wuwuwuva ‘borer wasp’
MM: Patpatar huh ‘borer insect; wood that has been bored by wood-borers’
MM: Nakanai vuvu ‘wasp and wasp-like insects’
MM: Tolai pupuka ‘weevil; dust from weevil-eaten bamboos in house roof’
MM: Nduke vuvu ‘black insect that eats wood’
MM: Maringe fufu ‘bamboo borer’
SES: Gela vuvu ‘a worm that bores into wood’
SES: Bugotu vuvu ‘mason wasp’
SES: Tolo vuvu ‘k.o. wasp which bores through wood’

5 For discussion of tooth decay perceived to be caused by a burrowing worm see §22.1.
Insects and other creepy-crawlies

SES: Longgu	vuvu(i)	‘a type of black wasp, digs in the ground, painful if it stings you’
SES: Lau	fufu	‘mason wasp’
Pn: Niuean	(laŋo) fufu	‘mason wasp’
Pn: Tahitian	huhu	‘xylocope or carpenter bee, large Hymenopterous insect, black, attacks wood’
Pn: Māori	huhu	‘larva of beetle sp., edible grub’
Pn: Hawaiian	huhu	‘wood-boring insect, worm-eaten’
Pn: Marquesan	huhu	‘white wood-eating worm’

| cf. also: |
PT: Minaveha	vuvu(ha)	‘bee, small black variety that bores holes in wood’
MM: Nakana'i	vuvu(li)	‘k.o. stinging worm which is painful’ (reflects †*pupuni)
MM: Roviana	vuvu(mu)	‘wood-eating worm’ (reflects *pupun rather than *pupuk)
NCV: Raga	huhu (gai)	‘generic for wood-boring beetle larvae’ (expect vuvu)
huhu (lua)	‘bee or wasp, hairy body, large head, painful sting’	

The next reconstruction, POc *bubu ‘k.o. wasp’, may simply be a variant of POc *pupuk.

POc *bubu ‘k.o. wasp’

NNG: Adzera	(wa)=pup	‘hornet’
NNG: Kove	vuvu	‘wasp, kills spiders’
PT: Motu	bubu	‘an insect like a wild bee that destroys timber’
PT: Lala	bubu	‘hole-borer wasp’
MM: Roviana	bubu	‘Buzzer wasp (Odynerus superbum)’
MM: Nduke	bubu	‘black wasp, lives in the ground’
MM: Mono-Alu	(si)bubū	‘wasp’
SES: Sa’a	pū	‘mason bee, wasp’
SES: ’Are’are	pū	‘wasp’

| cf. also: |
NNG: Gitua	bubu(la)	‘housefly, mosquito’
SES: Sa’a	pupu(oro)	‘an insect which digs up the ground and leaves a track’ (oro ‘stoop down’)
SES: Arosi	buburu(m‘ago)	‘mason bee, v large variety’ (m‘ago ‘earth, soil, brown?’). Also toto‘a m‘ago ‘mason bee’)
buburu(ato‘a)	‘k.o. cricket’ (ato‘a ‘noon’)	
Pn: Tikopia	pupu(matau)	‘dragonfly’ (trad. embodiment of spirit) (matau ‘fishhook’?)

I am unable to account for the existence of two very similar POc reconstructions for ‘wasp’, *(n,ñ)i(n,ñ)ipo, although presumably they are contrasted with *pupuk/ *bubu. Nor can they be divided according to their subgroups; reflexes of both appear in the Admiralties and in the Southeast Solomons. Wandamen (SHWNG) anibar ‘wasp/bee’ may be a non-Oceanic cognate. A third group reflects Proto Central Papuan *naniyo. It seems that
here we have yet another example of wordplay. It is difficult to know whether the resemblance between *(n,ni)ipo ‘wasp’ below and *(n,ni)i ‘bee, buzzing insect’ (§8) arose by chance or reflects common ancestry in some way.

POc *mañipo ‘k.o. wasp’

Adm: Loniu menih ‘large black bee; k.o. deep water seaweed which stings’ (exp meñipo)
PT: Iduna manibo ‘blue insect, perhaps k.o. mud wasp’
SES: Bugotu mañivo ‘wasp’
SES: Tolo manivo ‘wasp’
SES: Lengo manivo ‘wasp’
SES: Arosi ma-maniko ‘hornet’
cf. also:
NNG: Yabem baniʔ ‘generic for wasps, hornets’

POc *(n,ni)(n,ni)ipo ‘k.o. wasp’

Adm: Drehet ninih
SES: Longgu ninivoi
SES: Sa’a ninih ‘hornet’
cf. also:
NNG: Manam niniko ‘wasp’

Proto Central Papuan *naniɣo ‘wasp’

PT: Sinaugoro naniɣo ‘small black and red wasp’
PT: Motu naniɣo ‘k.o. manumanu: hornet’
PT: Lala naniʔo ‘wasp’

In the next set we find the same lowering of an unstressed vowel from /-u/ to /-o/ in Papuan Tip languages that was noted in reflexes of POc *ñamuk (§4).

PWOc *gumu ‘k.o. wasp’

PT: Dobu gumo ‘paper wasp’
PT: Saliba gumo ‘wasp, bee’
PT: Muyuw gum ‘wasp, hornet’
PT: Molima gumo ‘wasp’
PT: Tawala gumo ‘wasp’
PT: Nimoa gumo ‘black wasp’
MM: Maringe gu-yumhu ‘mud wasp’

10 Ants (Order Hymenoptera: Family Formicidae)

Although sources for a number of languages give a term for ants in general, I cannot reconstruct a POc generic. It is likely that the dominant ant species varies from place to place, and that the term for that species has become the generic term in that area. In Yabem (NNG), for
Insects and other creepy-crawlies

instance, the generic term is *lésé?*, in Sudest (PT) it is *vwara-vwara*, in Vitu (MM) *duri-duri*, and in Kwaio (SES), *ta-galo*. In Wayan Fijian *kadi* (from POc *kadik* ‘stinging black ant’) has become the generic. In Niue and Tonga, *lō* (from POc *loRo* ‘large red stinging ant’) is the generic form. However, a number of POc reconstructions can be made for ant taxa.

POc *kadik* ‘stinging black ant’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm: Nyindrou</td>
<td>karak</td>
<td>‘ant’ (Tryon 1995)</td>
</tr>
<tr>
<td>NNG: Kaulong</td>
<td>keh-keh</td>
<td>‘(?) (red) ant’</td>
</tr>
<tr>
<td>MM: Bulu</td>
<td>kadi</td>
<td>‘stinging black ant’</td>
</tr>
<tr>
<td>MM: Tolai</td>
<td>kadik</td>
<td>‘black ant’ (k̩r̩k̩um ‘large red ant’)</td>
</tr>
<tr>
<td>MM: Nehan</td>
<td>kadik</td>
<td>‘tree ant’</td>
</tr>
<tr>
<td>MM: Simbo</td>
<td>kadiki</td>
<td>‘black ant’</td>
</tr>
<tr>
<td>SES: Gela</td>
<td>yadi</td>
<td>‘k.o. black ant, bulldog ant’</td>
</tr>
<tr>
<td>SES: Lengo</td>
<td>yadi</td>
<td>‘black ant’</td>
</tr>
<tr>
<td>SES: Longgu</td>
<td>hadi</td>
<td>‘black ant that bites’ (possibly a borrowing from Malango)</td>
</tr>
<tr>
<td>SES: Lau</td>
<td>kadi</td>
<td>‘bulldog ant’</td>
</tr>
<tr>
<td>SES: Kwaio</td>
<td>(k̩)kadi</td>
<td>‘stinging black ant’</td>
</tr>
<tr>
<td>NCV: Mwotlap</td>
<td>yen</td>
<td>‘big stinging black ant’</td>
</tr>
<tr>
<td>NCV: Nguna</td>
<td>k̩di</td>
<td>‘black biting ant’</td>
</tr>
<tr>
<td>NCV: NE Ambae</td>
<td>gadi</td>
<td>‘fire ant’</td>
</tr>
<tr>
<td>NCV: Nese</td>
<td>na-yajye</td>
<td>‘fire ant’ (regular final *-Vk metathesis)</td>
</tr>
<tr>
<td>SV: Ura</td>
<td>(w)asek</td>
<td>‘small stinging black ant’</td>
</tr>
<tr>
<td>SV: Lenakel</td>
<td>kas̩k</td>
<td>‘soldier ant’</td>
</tr>
<tr>
<td>SV: Anejo̱m</td>
<td>n-̱as</td>
<td>‘fire ant’</td>
</tr>
<tr>
<td>Mic: Woleaian</td>
<td>(u)xesi</td>
<td>‘k.o. black ant’</td>
</tr>
<tr>
<td>Mic: Carolinian</td>
<td>(wu)xes</td>
<td>‘large black ant with a painful stinging bite, makes its nest near rotting trees’</td>
</tr>
<tr>
<td>Mic: Kosraean</td>
<td>kas̩(kin)</td>
<td>‘k.o. ant’</td>
</tr>
<tr>
<td>Mic: Ponapean</td>
<td>kāc</td>
<td>‘ant’</td>
</tr>
<tr>
<td>Fij: Wayan</td>
<td>kadi</td>
<td>‘generic for ants; large ants’</td>
</tr>
<tr>
<td>Fij: Bauan</td>
<td>kadi</td>
<td>‘large black ant, stings’</td>
</tr>
</tbody>
</table>

Rufus Pech refers to the stinging red ant of the north New Guinea coast (*lol* in Tami) in the following way: ‘This is perhaps the most enterprising and obviously ubiquitous species of ant in the Melanesian lowlands. They build huge nests in trees by drawing and sticking together bunches of leaves, are carnivorous, and defend their territory ferociously.’ (Pech 1991:91). POc *loRo* probably referred to this group of ants although witnesses in Eastern Oceanic have a wider range of reference.

PMP *loRo* ‘red tree ant’

POc *loRo* ‘large stinging red ant’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm: Mussau</td>
<td>loa</td>
<td>‘red tree ant’</td>
</tr>
</tbody>
</table>

6 The reconstruction of PMP *loRo* is based on comparison of the Oceanic reflexes with a WMP term, Pendau *lō* ‘big red tree ant’ (Phil Quick, pers. comm.).
NNG: Tami *lol* ‘stinging red ant’
MM: Vitu *loro* ‘large red stinging ant’
MM: Nakanai *lolo* ‘large red ant’
MM: Tabar *ror* ‘red ants’
MM: Tangga *lo* ‘large sugar ants’
SES: Gela *lolo* ‘small black ant’
SES: Longgu *lolo* ‘a small ant’
SES: Lau *lolo* ‘k.o. ant’
SES: Kwaio *lolo* ‘ant’
SES: Sa’a *lolo* ‘red sugar ant’
Fij: Rotuman *roro* ‘fruit fly’
Fij: Bauan *lō* ‘small black ant’
 lolo ‘small ant’
Pn: niuean *lō* ‘ant (generic)’
Pn: Tongan *lō* ‘ant (generic)’; kinds: *lō hina* (white ant), *lō kula* (red ant?), *lō ʔuli* (black), *lōʔata* (see below)
Pn: Tikopia *ro* ‘ant, of various kinds’
Pn: Tahitian *rō* ‘ant’
Pn: Māori *rō* ‘ant, stick insect, mantis’
Pn: Hawaiian *lō* ‘black insect, earwig’

cf. also:
Adm: Lou *lōlc* ‘small black sugar ant’

The next set is possibly a compound form of the above.

PPn *lō-qata* ‘large ant’ (PPn *qata* ‘image, likeness’)

Pn: Tongan *lōʔata* ‘k.o. black ant w painful bite’
Pn: Samoan *lōata* ‘k.o. large black ant’
Pn: Nanumea *loata* ‘large ant’

The three reconstructions which follow, POc *drui* ‘ant’, POc *[driu]driu* ‘small red or brown ants’ and PWOc *didi* ‘small ant’ may all be variants of the same etymon.

POc *drui* ‘ant’

MM: Kandas *dui-dui* ‘centipede’
MM: Siar *dui* ‘centipede’
MM: Simbo *dui* ‘ant’ (any ant?)
MM: Nduke *dui* ‘small black ant, found in gardens’
MM: Roviana *dui* ‘small ant’
SES: Tolo *(koko)dui* ‘reddish-brown ant’
SES: Ghari *dui-dui* ‘grey middle-sized ant’
SES: Lau *dudui* ‘k.o. large yellow ant in trees’
SES: Kwaio *dui-dui* ‘vinegar ant’
SES: To’a‘a’ita *dūdui* ‘fairly big reddish ant, stings’
NCV: Nokuku *ʔuʔui* ‘ant’
NCV: Nduindui *dui-dui* ‘ant’
Insects and other creepy-crawlies

cf. also:

MM: Vitu *duri-duri* ‘generic for ants’

POc *[driu]driu* ‘small red or brown ants’

MM: Sursurunga *dui* ‘centipede’
SES: Arosi *dii-di, di-di* ‘k.o. small brown ant’
NCV: Mota *ni-niu* ‘small red ant’
NCV: NE Ambae *di-di* ‘ant’
NCV: Tangoa *ri-ri* ‘red ant’
NCV: Tamambo *dui-di* ‘small sugar ants; general term for red and brown ants, just a nuisance with food’

Fij: Wayan *(kā)driu-driu* ‘very small ants’

Given that all terms in the following set except Nduke are binomials, *didi* may have been a generic for ‘ant’.

PWOc *didi* ‘small ant’

NNG: Labu *tiiti(nalo)* ‘ant’ (*nalo* ‘small’)
PT: Dobu *didiyauyau* ‘ant’ (*yau* ‘number, to increase in number’)
PT: Sinaugoro *didi(rima)* ‘small black ants’
MM: Tolo *(kara)didi* ‘larvae of the red ant, used as food’
MM: Nduke *didi* ‘wood-borer’

The next set consists of possibly related items, but there are too many irregularities to permit a POc reconstruction.

NNG: Vehes *kakak* ‘ant’
NNG: Mapos Buang *kakok* ‘ant’
NNG: Mumeng (Kumaru) *kakok* ‘ant’
NNG: Mumeng (Patep) *kekeak* ‘ant’
NNG: Mumeng (Zenag) *kkewa* ‘ant’
MM: Tolo *kakakau* ‘small black ant’
SES: Arosi *ʔaʔaki* ‘large black ant, bulldog ant, w painful bite’

Although the following terms for ‘ant’ appear to be related (reflecting POc *kal(a,o)*), all except Marshallese carry additional unrelated morphemes which cannot be accounted for.

Adm: Loniu *kalɔ(n)* ‘ant’
PT: Saliba *kalakala-p*’*asi*’asi ‘black ants’
MM: Teop *ano(hi)* ‘ant’
SES: ‘Are’are *(ta)kar* ‘small black ant’
NCV: Nguna *makāla* ‘red ant’
Mic: Marshallese *kal*’*lep* ‘big black ant’ (*lep* ‘big’)

cf. also:

NNG: Manam *kala(poaki)* ‘k.o. red ant’
11 Termites (Order Isoptera = ‘equal wings’)

POc *ane is well-supported as a term for ‘termite/white ant’. There are occasional mentions of an association of white ants with the supernatural in SES languages. In Arosi ane-hau refers to ‘k.o. white ant that lives in the ground; these ants were thought to be incarnations of the dead’, while in Sa’a they are ‘the food of ghosts on Malapa’. However, they would have been regarded as pests, and it is not surprising that we have no record of their ever being referred to by a *kali-term.

PAn *SayaN ‘white ant, termite’ (Blust 2002)

PMP *anay ‘termite’ (metathesis) (Blust 2002)

POc *ane ‘termite’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm: Mussau</td>
<td>āne</td>
<td>‘termite’</td>
</tr>
<tr>
<td>Adm: Pak</td>
<td>ān</td>
<td>‘termite’</td>
</tr>
<tr>
<td>Adm: Lou</td>
<td>(ŋ)an</td>
<td>‘termite’</td>
</tr>
<tr>
<td>Adm: Loniu</td>
<td>an</td>
<td>‘termite’</td>
</tr>
<tr>
<td>PT: Saliba</td>
<td>yane</td>
<td>‘termite’</td>
</tr>
<tr>
<td>SES: Bugotu</td>
<td>ane</td>
<td>‘termite’</td>
</tr>
<tr>
<td>SES: Gela</td>
<td>ane</td>
<td>‘termite’</td>
</tr>
<tr>
<td>SES: Lau</td>
<td>sane</td>
<td>‘termite’</td>
</tr>
<tr>
<td>SES: ’Are’are</td>
<td>sane</td>
<td>‘termite’</td>
</tr>
<tr>
<td>SES: Sa’a</td>
<td>sane</td>
<td>‘termite’</td>
</tr>
<tr>
<td>SES: Arosi</td>
<td>ane</td>
<td>‘white ant which bores and destroys’</td>
</tr>
<tr>
<td></td>
<td>ane(?ara)</td>
<td>‘k.o. white ant found in coconuts’</td>
</tr>
<tr>
<td></td>
<td>ane(hau)</td>
<td>‘k.o. white ant that lives in the ground; name for its nest’</td>
</tr>
<tr>
<td></td>
<td>ane(niragui)</td>
<td>‘white ant, common wood-boring’</td>
</tr>
<tr>
<td></td>
<td>ane(wado)</td>
<td>‘white ant, large’</td>
</tr>
<tr>
<td>Mic: Carolinian</td>
<td>anay</td>
<td>‘termite; to be infested with termites’</td>
</tr>
<tr>
<td>Fij: Bauan</td>
<td>yane</td>
<td>‘k.o. moth’</td>
</tr>
<tr>
<td>Pn: Tongan</td>
<td>ane</td>
<td>‘moth, or more strictly, its larva, that eats holes in clothes etc. Also applied to silverfish’</td>
</tr>
<tr>
<td>Pn: Samoan</td>
<td>ane</td>
<td>‘termite, k.o. white ant’</td>
</tr>
<tr>
<td>Pn: Tikopia</td>
<td>ane</td>
<td>‘termite’</td>
</tr>
<tr>
<td>Pn: Rarotongan</td>
<td>ane</td>
<td>‘termite’</td>
</tr>
</tbody>
</table>
12 Crickets, grasshoppers (Order Orthoptera = ‘straight wings’); Cicadas (Order Hemiptera = ‘half wings’)

If a generic term existed in POc, either for grasshoppers, or for grasshoppers + crickets + cicadas (+ mantises), I have not been able to reconstruct it. Although I have a number of reconstructions, their reflexes show considerable variation in gloss. Some terms refer to ‘singing insect’, which may indicate either cricket or cicada. Lack of agreement in glosses may reflect indifference among speakers, although I would expect a generic term if particular varieties were not seen as important. Some languages have simply adopted verb forms for ‘grasshopper’— etymons from Kove (piti-piti ‘jumping insect found in beach rubbish’ and Raga (visi[ri]bi ‘taro plant hopper’) are from POc *pitik ‘spring up suddenly’/ POc *pitik-pitik ‘jump repeatedly’. In Dobu crickets are named kelei ʔana toeʔita, literally ‘wallaby’s teacher’ (Ralph Lawton. pers. comm.). A grasshopper named kokoru-bote in Arosi is remarkable for the use found for it. It is described as ‘a large grasshopper, put on one’s head to eat lice’ (from koru ‘eat’, bote ‘lice’). Together with mantises and stick insects, grasshoppers and crickets are valued as food. Kwaio has a term, faʔafulu glossed as ‘generic term for edible insects, incl. grasshoppers, stick insects etc.’ Their appeal would no doubt be as a kind of snack food, a chance variation on their regular diet.

POc *sisi(rR) ‘orthopterous insect’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Mengen (Poeng)</td>
<td>sisi</td>
<td>‘grasshopper’</td>
</tr>
<tr>
<td>NNG: Lukep (Pono)</td>
<td>sis</td>
<td>‘grasshopper’</td>
</tr>
<tr>
<td>NNG: Kaulong</td>
<td>u-sis</td>
<td>‘grasshopper’</td>
</tr>
<tr>
<td>NNG: Sengseng</td>
<td>e-sis</td>
<td>‘grasshopper’</td>
</tr>
<tr>
<td>NNG: Gedaged</td>
<td>sis</td>
<td>‘grasshopper, locust’</td>
</tr>
<tr>
<td>PT: Iduna</td>
<td>sili(fa)</td>
<td>‘k.o. small grasshopper’</td>
</tr>
<tr>
<td>MM: Tangga</td>
<td>sisi</td>
<td>‘cicada’</td>
</tr>
<tr>
<td>MM: Nehan</td>
<td>sir-siri(alum)</td>
<td>‘cricket’</td>
</tr>
<tr>
<td>MM: Nduke</td>
<td>hiri-ri</td>
<td>‘k.o. cicada’</td>
</tr>
<tr>
<td>MM: Roviana</td>
<td>sisiri</td>
<td>‘k.o. cicada (Diceropyga obtecta)’</td>
</tr>
<tr>
<td>SES: Kwara’ae</td>
<td>sīsī</td>
<td>‘generic for beetles and insects’</td>
</tr>
<tr>
<td>SES: To’aba’ita</td>
<td>sīsī</td>
<td>‘generic for beetles and fireflies’</td>
</tr>
<tr>
<td>NCV: Nese</td>
<td>sis</td>
<td>‘chirp, of cicada’</td>
</tr>
</tbody>
</table>

cf. also:

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Gloss</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM: Tolai</td>
<td>tītī(tiŋ)</td>
<td>‘k.o. small locust’</td>
</tr>
<tr>
<td>NCV: Mwotlap</td>
<td>tītī(key)</td>
<td>‘grasshopper’</td>
</tr>
</tbody>
</table>

Any resemblance between POc *riŋa and PROc *liŋo-liŋo is probably fortuituous.

POc *riŋa ‘orthopterous insect’

Adm: Drehet riŋ ‘cricket’
Figure 7.5 Cicada

PT: Molima lia ‘cicada’
MM: Nehan (kaka)riŋ ‘grasshopper’

PROc *liŋo-liŋo ‘night insect, probably a cricket’
Mic: Kiribati niŋo-niŋo ‘an insect which chirps at night’
Fij: Bauan liŋo-liŋo ‘night insect, esp. k.o. moth’
Pn: Tongan liŋo-liŋo ‘k.o. cricket’
Pn: Samoan liŋo-liŋo ‘cicada, sings in daytime. ʔālisi sings at night’ (Stair 1983:207)
Pn: Tikopia riŋo-riŋo ‘cricket (Gryllidae). Rarely seen’

POc *siko ‘grasshopper’
MM: Tabar ciko ‘grasshopper’
SES: Lau siko ‘grasshopper’
SES: Kwara’ae siko ‘grasshopper’ (Whitmore 1966)
SES: To’aba’ita siko ‘generic for a class of insects that includes locusts, grasshoppers, stick insects, mantises, cicadas’
NCV: Nese (narra)sɣo ‘grasshopper’ (narra ‘?’)

POc *sakʷa ‘grasshopper or stick insect’
NNG: Gedaged sok(sok) ‘stick insect’
NNG: Takia sok ‘large insect, prickly, with six legs, eaten’
PT: Molima saga-saga ‘green mantis (eaten)’
MM: Kara (East) saywa ‘grasshopper’ (reflects *saga)
Mic: Carolinian tāxa ‘grasshopper’

The next term, POc *lale ‘cicada’, is based on external evidence plus reflexes from two closely related languages. It remains an uncertain reconstruction.
Insects and other creepy-crawlies

PAn *lalay ‘cicada’ (Blust 2002)

POc *(l(a,e))le ‘cicada’

PT: Molima lele ‘a mountain insect with very attractive cry’
PT: Dobu lele ‘cicada’

The next reconstruction is reliable in form only at PEOc level, and there is little consistency of gloss even within Polynesian languages.

PEOc *(s,j)eqe ‘grasshopper ?’

SES: Bugotu se-se ‘grasshopper’
Fij: Rotuman jei ‘cricket’

PPn *seqe ‘insect spp. including mantis, stick insect, locust’

Pn: Tongan heʔe ‘locust, grasshopper’
Pn: Niuean hē ‘grasshopper, locust’
Pn: Rennellese seʔe ‘k.o. small cricket’
Pn: Samoan sē ‘stick insect’
Pn: Tikopia sē ‘stick insect; mantis’
Pn: Tokelauan hē ‘locust, grasshopper’

John Lynch (pers. comm.) notes a number of NCV forms for ‘cicada’ (Mota puŋa, Naman bəgale, Neve’ei na/bugali, Tape bəŋale, Paamese ha/vuŋalii), and Namakir biŋaleh ‘cricket’ which support PNCV *bu(g,ŋ)alis(V). This in turn suggests a possible relationship with the following PPn reconstruction, *kālisi.

PPn *kālisi ‘cicada, cricket’

Pn: Tongan kālihi ‘k.o. cricket’
Pn: Samoan ʔālisi ‘cicada, cricket (night insects)’
Pn: Ifira-Mele karisi ‘cicada’

PPn *wāwā ‘orthopterous insect’

Pn: Niuean vā ‘insect sp.’
Pn: Rarotongan vāvā ‘cricket’
Pn: Tongarevan vāvā ‘grasshopper, cricket’
Pn: Mangarevan vāvā ‘insect sp.’
Pn: Tahitian vāvā ‘praying mantis, stick insect’
Pn: Tuamotuan vāvā ‘grasshopper, stick insect’

13 Mantises (Order Mantodea = ‘like a prophet’), stick insects (Order Phasmatodea = ‘like a ghost’)

Although there is some confusion of gloss within cognate sets, it seems clear that POc speakers distinguished praying mantises (*papa) from stick insects (*mimis-mata). The ability to
project a milky chemical painful to the skin which is reflected in POc *mimis-mata is a defensive mechanism of at least some stick insects (Serkan Alasya, CSIRO Entomology, pers. comm.).

PMP *(kali)papa ‘praying mantis, grasshopper’

POc *papa ‘praying mantis’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM: Tolai</td>
<td>*pap</td>
<td>‘praying mantis’</td>
</tr>
<tr>
<td>MM: Roviana</td>
<td>*papa(maho)</td>
<td>‘praying mantis’ also *ma/maho ‘green mantis’</td>
</tr>
<tr>
<td>MM: Nehan</td>
<td>popo(hɔsoi)</td>
<td>‘walking stick insect’</td>
</tr>
</tbody>
</table>

POc *mimis-mata, literally ‘urinate’ + ‘eye’, reflects awareness that the stick insect can eject a fluid which causes pain if it touches the eye. One of the better-known Phasmatodea of the Oceanic region is *Megacraniabatesii*, the pandanus stick insect.

POc *mimis-mata ‘stick insect’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM: Roviana</td>
<td>*mimi-mata</td>
<td>‘walking-stick insect which ejects a fluid said to cause intense pain should it touch the eye’</td>
</tr>
<tr>
<td>NCV: Raga</td>
<td>me-merehi-mata</td>
<td>‘praying mantis’ (lit. ‘urinate on eye’)</td>
</tr>
<tr>
<td>Fij: Wayan</td>
<td>*mimi-mata</td>
<td>(1) ‘praying mantis’, (2) ‘stick insect (generic)’ (lit. ‘urinate in eye’)</td>
</tr>
</tbody>
</table>

cf. also:

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT: Molima</td>
<td>mata-seʔa-seʔa</td>
<td>‘large poisonous beetle’ (seʔai or seiʔa ‘to squirt poison, as a millipede’) (lit. squirt in eye??)’</td>
</tr>
</tbody>
</table>

Closely related to stick insects are leaf insects. The only terms I have located are descriptive compounds: Tawala (PT) *hiaga luguna* (*hiaga* ‘?’, *lugu* ‘leaf’), Tongan *moko-moko*.

7 The reconstruction of PMP *(kali)papa is based on comparison of the Oceanic reflexes with a WMP term, Pendau *ali papā* ‘grasshopper, praying mantis’ (Phil Quick, pers. comm.).
tuʔaniu (moko-moko ‘crawling insect, tuʔaniu ‘midrib of coconut leaflet’), and Rennellese manu gaukei (‘insect’ + ‘leaf’).

Some varieties of mantis and stick insect are listed as edible in a number of languages.

14 Fireflies (Order Coleoptera = ‘sheath wings’: Family Lampyridae)

Judging from ethnographic references and brief elaborations in wordlists, it is fireflies, among all the insects of the Oceanic world, which are most associated with supernatural qualities. For Takia (NNG) speakers, a firefly, lutot, is thought to be a messenger of someone’s death (Bugenhagen wordlist). The term for a firefly in Sissano (NNG), mas eyiaw, is a compound term, mas being defined as ‘devil; spirit of dead relative’ and eyiaw as ‘evil spirit; thief’ (Whitacre wordlist). Seligmann quotes a report from Bartle Bay (Wedau, PT) that ‘if a firefly enters a house at night, it is a sign that someone in the house will die.’ (1910:653). Molima (PT) speakers regard fireflies as emissaries of witches who enter the house at night in order to report back on who is there, and for that reason they are killed as soon as they are seen (Ann Chowning, pers. comm.). In Nakanai (MM), although its speakers consider that fireflies embody spirits of the dead, they are delighted if a firefly enters the house at night, because it is a sign that someone recently dead is paying a visit (Ann Chowning, pers. comm.). Ivens writes that fireflies are popularly classified as ghosts in Sa’a and Ulawa (1927:189), and in his Sa’a dictionary he defines fireflies (pulu-pulu) as ‘souls of dead persons’. The Tolo people of Guadalcanal regard cicadas and fireflies as the ghosts of unknown people, or ghosts of the forest (Ivens 1930:229). Tamambo (NCV) speakers are frightened of them, and try to avoid them as ‘little devils’ (Dorothy Jauncey pers. comm.). In Wayan Fijian, fireflies (tōtōvuata) are believed to be a sign of the gods inspecting fruit crops. The Rennellese see a firefly as the embodiment of a goddess.

The belief that fireflies are messengers of doom is an ancient one among Austronesian speakers. Blust (pers. comm.) provides additional evidence from Isneg (northern Philippines) that fireflies are precursors of death, and Karo Batak (northern Sumatra) where their presence in a house signals that thieves will come. Of all POc reconstructions, then, I should expect that for ‘firefly’ to be most likely to retain the kali/qali- indicator of supernatural status. I have limited evidence supporting two reconstructions derived from PMP *qali-petpet, POc *qali-popot ‘firefly’ and POc *(k,q)ali-totop ‘firefly’, the latter with metathesis. POc *(k,q)ali-totop depends on one reflex, from Rennellese, for reconstruction of its first element and on another, Nduke, for reconstruction of its second element.

PMP *qali-petpet ‘firefly’ (ACD: WMP)
POc *qali-popot ‘firefly’

NCV: Lewo le-popo ‘firefly’
NCV: Tamambo vovo(mbo) ‘firefly; regarded as little devils and avoided’

PMP *qali-petpet ‘firefly’ (ACD)
POc *(k,q)ali-totop ‘firefly’ (metathesis)

NNG: Takia lu-tot ‘firefly’
MM: Tangga kel-tot ‘firefly’
A putative reconstruction, POc *bulu-bulu ‘firefly’, must be regarded as dubious because witnesses are from adjoining subgroups where borrowing cannot be ruled out. Etymons may be derived from POc *bulut ‘gum’ whose reflexes can include ‘a torch (of gum)’, and thus extend to ‘light, firefly’.

Other terms use reflexes of POc *mata ‘eye’, sometimes extended to ‘star’ and ‘firefly’.

Other languages may make similar associations between fireflies, stars and sometimes phosphorescence.
introduced from southeast Asia only in the 20th century (Gressitt & Hornabrook 1985:34). A beetle similar in appearance and behaviour is *Xylotrupes gideon*, found in almost all parts of New Guinea. Presumably, speakers used an existing beetle term to refer to the introduced beetle. The second reconstruction, POc *kamak*, probably refers to longicorn beetles, those with extremely long antenna (Family Cerambycidae), the larvae of which attack timber.

POc *tabuRuRu* ‘k.o. beetle’

NNG: Sengseng	taput	‘an enormous black beetle’
MM: Nakanai	tabuburu	‘coconut beetle’ (expect †tabururu)
MM: Tabar	taburuy	‘beetle’
MM: Tolai	taburur	‘horned beetle’
MM: Kara (East)	tevu(yun)	‘rhinoceros beetle’
SES: Gela	tabelulu	‘rhinoceros beetle’
SES: Bugotu	tabilolo	‘rhinoceros beetle’
NCV: Uripiv	barur	‘yam weevil, *Papuana* beetle’ (loss of first syllable unexplained)
SV: Sye	n-tompi	‘k.o. beetle’

cf. also:

| NNG: Mapos Buang | abu | ‘rhinoceros beetle’ |
| MM: Nduke | vure | ‘rhinoceros beetle’ |

POc *kamak* ‘beetle, possibly longicorn’

NNG: Kaulong	kamak	‘k.o. insect; large, edible, found inside the hollows of trees’
NNG: Yabem	kaj	‘beetle; capricorn beetle, stag beetle, horned beetle, weevil’
NNG: Sengseng	makah	‘longicorn beetle’ (metathesis)
PT: Iduna \textit{kama} ‘large insect with long fat body’

Pn: Tikopia \textit{kama} ‘insect, possibly of various types, attacks cultivated plants’

cf. also:

MM: Nakanai \textit{komaga} ‘long thin black beetle, edible, longicorn beetle’

A surprising omission from most wordlists are terms for the taro beetle (\textit{Papuana uninodis}). Although these beetles may be as long-established in the region as the tubers which we know were cultivated in Proto Oceanic times, I have not been able to reconstruct a term for them other than Proto SE Solomonic \textit{*ko[l,R]o-ko[l,R]o} ‘beetle that attacks plants’. Damage to the tuber is caused by the adult beetles, and not by their larval stage which feeds on soil and roots (Robin Hide, pers. comm.). I can locate very few terms for the pest in Western Oceanic languages, none cognate. Although damaged tubers cause significant economic loss in today’s marketing terms, it may be that the damage was of little significance when tubers were primarily for home consumption.

Proto SE Solomonic \textit{*ko[l,R]o-kol,R}o ‘beetle that attacks plants’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SES</td>
<td>Bugotu kololo</td>
<td>‘coconut beetle’</td>
</tr>
<tr>
<td>SES</td>
<td>Gela kololo</td>
<td>‘taro-eating beetle’</td>
</tr>
<tr>
<td>SES</td>
<td>’Are’are \textit{ʔoro-ʔoro}</td>
<td>‘taro-boring beetle’</td>
</tr>
<tr>
<td>SES</td>
<td>To’aba’ita \textit{ʔoro(kwao)}</td>
<td>‘k.o. white worm, attacks sugar-cane stems’ (\textit{kwao} ‘white’)</td>
</tr>
</tbody>
</table>

cf. also:

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SES</td>
<td>Sa’a \textit{ʔoroʔoro}</td>
<td>‘beetle that bores into yams’ (for \textit{ʔoloʔolo})</td>
</tr>
</tbody>
</table>

Wordlists contain a few references to edible beetles. Sudest (PT) has a term \textit{gilai} ‘a large black sago beetle; people eat both the adults and the larvae’; Nakanai (MM) has \textit{komaga} ‘an edible insect like a long thin black beetle’ and \textit{bureka} ‘large (6 ins) edible insect found in trees’; Wayan (Fij) has \textit{gou} ‘large beetle, \textit{Coleopterus} sp., 2 inches long with hard shell. Eaten by some people’.

16 Cockroaches (Order Blattodea = ‘light avoiders’)

Three POc reconstructions and one lower-level reconstruction can be made for ‘cockroach’.

PAn \textit{*Sipes} ‘cockroach’ (\textit{ACD})

POc \textit{*ipos} ‘cockroach’ (\textit{ACD})

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm:</td>
<td>Nali</td>
<td>\textit{yih}</td>
</tr>
<tr>
<td>Adm:</td>
<td>Nauna</td>
<td>\textit{ih}</td>
</tr>
<tr>
<td>Adm:</td>
<td>Drehet</td>
<td>\textit{ih}</td>
</tr>
<tr>
<td>NNG:</td>
<td>Mutu</td>
<td>\textit{up}</td>
</tr>
<tr>
<td>NNG:</td>
<td>Kaulong</td>
<td>\textit{e-yus}</td>
</tr>
<tr>
<td>NNG:</td>
<td>Sengseng</td>
<td>\textit{e-yus}</td>
</tr>
<tr>
<td>MM:</td>
<td>Tolai</td>
<td>\textit{ipi(na)}</td>
</tr>
<tr>
<td>NCal:</td>
<td>Cêmuhî</td>
<td>\textit{iwet}</td>
</tr>
</tbody>
</table>
Insects and other creepy-crawlies

NCal: Nemi *nyet ‘cockroach’
cf. also:
NCV: Raga *ihi ‘cockroach’ (for expected *ivi)

POc *musi ‘cockroach’
PT: Roro *muhi ‘cockroach’ (for expected musi)
MM: Maringe *mhi-mhigi ‘stink beetle’
SES: Bugotu *mhu ‘cockroach, beetle’
SES: Gela *mhu ‘cockroach’
SES: Tolo *musu ‘cockroach’
SES: Ghari *mosu ‘small cockroach’

Final -u for †-i in the SES items appears to reflect vowel assimilation.
The next set shows a variety of reduplication patterns. Some Polynesian terms show possible contamination from English cockroach or Spanish cucaracha.

POc *kʷaru-kʷaru ‘cockroach’
PT: Bwaidoga kʷalu-kʷalu ‘cockroach’
MM: Nehan kur-kuru ‘cockroach’
MM: Banoni karō ‘small white cockroach’
Pn: Tongan kakalu ‘large cricket/cicada sp.’
Pn: E Futunan kakalu ‘that which smells bad’
Pn: Samoan alalū ‘cockroach’
Pn: Tahitian aʔararū ‘small beetle’
Pn: Māori kekererū ‘stinkroach’
Pn: Hawaiian ʔelelū ‘cockroaches’

PPn *moŋa-moŋa ‘cockroach’ (pollex)
Pn: Tongan moŋo-moŋa ‘any kind of beetle or cockroach’
Pn: Niuean moŋa-moŋa ‘cockroach’
Pn: Samoan moŋa-moŋa ‘cockroach’
Pn: Nanumea moŋa-moŋa ‘beetle sp.’
Pn: Tokelauan moŋa-moŋa ‘cockroach’

17 Grubs, caterpillars

Grubs and caterpillars are the larval stages of beetles (Coleoptera) and butterflies (Lepidoptera). Particular kinds are more likely to be named if they are a useful food source, or if they attack crops.

One which is widely recognised is the edible sago grub (Order Coleoptera, family Curculionidae), a valuable source of protein. Sago grows in low-lying, swampy areas of Melanesia where other food plants do not thrive. Lack of the means of a varied diet may contribute
to the specialised sago grub cultivation employed by the Labu (NNG) people. In Sissano
the sago grubs, *yiat*, are used in food offerings to the spirits in some healing ceremonies
(Whiteacare wordlist).

The Admiralties languages in the next set all have *-e- for †-a-.*

PMP *qabated ‘sago grub’ (Blust 2002)

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm: Loniu</td>
<td>het</td>
<td>‘sago grub’</td>
</tr>
<tr>
<td>Adm: Ere</td>
<td>ehet</td>
<td>‘sago grub’</td>
</tr>
<tr>
<td>Adm: Titan</td>
<td>aet</td>
<td>‘sago grub’ (for †aht)</td>
</tr>
<tr>
<td>Adm: Pak</td>
<td>keher</td>
<td>‘sago grub’</td>
</tr>
<tr>
<td>Adm: Penchal</td>
<td>kahet</td>
<td>‘sago grub’</td>
</tr>
<tr>
<td>Adm: Lenkau</td>
<td>kehetr</td>
<td>‘sago grub’</td>
</tr>
<tr>
<td>NNG: Sissano (Arop)</td>
<td>yiat</td>
<td>‘sago grub’</td>
</tr>
<tr>
<td>NNG: Gedaged</td>
<td>gafat</td>
<td>‘big grub found in rotten sago logs. Eaten raw or roasted. A great delicacy’ (initial *g- unexpected)</td>
</tr>
<tr>
<td>PT: Lala</td>
<td>avako</td>
<td>‘grub, found in sago palms’</td>
</tr>
<tr>
<td>SES: Gela</td>
<td>vato</td>
<td>‘k.o. grub, eaten as food on Mala’</td>
</tr>
<tr>
<td>SES: Ghari</td>
<td>vato</td>
<td>‘white worm in decayed tree’</td>
</tr>
<tr>
<td>SES: Arosi</td>
<td>hao</td>
<td>‘white grub in rotten wood, eaten’ (first syllable lost)</td>
</tr>
<tr>
<td>SES: Lau</td>
<td>safao</td>
<td>‘grub that eats sago palms’</td>
</tr>
<tr>
<td>SES: Kwaio</td>
<td>lafaο</td>
<td>‘large edible grub, larva of stag beetle’</td>
</tr>
<tr>
<td>SES: Sa’a</td>
<td>sahao</td>
<td>‘the grub found in fallen logs of breadfruit tree, supposed to turn into the cockchafer beetle’</td>
</tr>
<tr>
<td>SES: ‘Are’are</td>
<td>raham</td>
<td>‘big, white worm, lives in dead trees’</td>
</tr>
<tr>
<td>NCV: Mota</td>
<td>vato</td>
<td>‘white grub found in dead trees, eaten’</td>
</tr>
<tr>
<td>NCV: Lewo</td>
<td>varo</td>
<td>‘grub found in dead wood, edible’</td>
</tr>
<tr>
<td>NCV: Raga</td>
<td>avato</td>
<td>‘large white insect found in trees, edible, larva of longhorn beetle’</td>
</tr>
<tr>
<td>SV: Sye</td>
<td>n-avato</td>
<td>‘edible wood grub’</td>
</tr>
<tr>
<td>SV: Anejoũ</td>
<td>n-ahat</td>
<td>‘edible wood grub’</td>
</tr>
<tr>
<td>Fij: Wayan</td>
<td>avato</td>
<td>‘wood-boring grubs of various species’</td>
</tr>
<tr>
<td>Fij: Bauan</td>
<td>yavato</td>
<td>‘grub in a tree, develops into the coleopterous called qou’</td>
</tr>
<tr>
<td>Pn: Tongan</td>
<td>ʔafato</td>
<td>‘k.o. white grub found in timber, sometimes eaten’</td>
</tr>
<tr>
<td>Pn: Samoan</td>
<td>ʔafato</td>
<td>‘large edible grub, found in dry trees’ (ʔ- unexpected)</td>
</tr>
<tr>
<td>Pn: E Futunan</td>
<td>ʔafato</td>
<td>‘larvae which are eaten; large edible grub, found in dry trees’</td>
</tr>
</tbody>
</table>

9 C. W. L. Mercer (1994) describes a study conducted on the inland margin of the Labu swamp (near Lae), where the thorny stemmed sago palm species *Metroxylon rumphii* is used almost exclusively by the Labu people for raising the grub of the palm weevil *Rhynchophorus ferrugineus papuanus*, which is an important source of protein (and also a pest of the living palms).
Insects and other creepy-crawlies

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rennellese</td>
<td>ahato</td>
<td>‘larva of longicorn beetle Olethrus tyrranus’ (for ʔahato)</td>
</tr>
<tr>
<td>PT:</td>
<td>Sinaugoro</td>
<td>kavata</td>
</tr>
</tbody>
</table>
| MM: Nakanai | (k,g)avato | ‘black lizard, found in rotten trees’ (*kopa* ‘larva of a beetle, found in trees and eaten’)

POc *muno* may have been a generic term for caterpillars. Reflexes are not found in Central Pacific where a reflex of POc *ganupe* is the most widespread term for ‘caterpillar’.

POc *muno [-muno]* ‘caterpillar, grub’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm: Lou</td>
<td>mon-muon</td>
<td>‘caterpillar’</td>
</tr>
<tr>
<td>MM: Simbo</td>
<td>mu-muno</td>
<td>‘worm’</td>
</tr>
<tr>
<td>MM: Nduke</td>
<td>mu-muno</td>
<td>‘looper caterpillar’</td>
</tr>
<tr>
<td>MM: Roviana</td>
<td>muno-muno</td>
<td>‘general name for caterpillars and grubs’</td>
</tr>
<tr>
<td>SES: Bugotu</td>
<td>muno</td>
<td>‘caterpillar’</td>
</tr>
<tr>
<td>SES: Lau</td>
<td>muno</td>
<td>‘caterpillar’</td>
</tr>
<tr>
<td>SES: Sa’a</td>
<td>muno</td>
<td>‘larva, chrysalis’</td>
</tr>
<tr>
<td>SES: ’Are’are</td>
<td>muno</td>
<td>‘caterpillar’</td>
</tr>
<tr>
<td>SES: To’aba’ita</td>
<td>muna</td>
<td>‘k.o. caterpillar that turns into a butterfly’</td>
</tr>
<tr>
<td>Mic: Puluwatese</td>
<td>mūn</td>
<td>‘caterpillar’</td>
</tr>
<tr>
<td>Mic: Carolinian</td>
<td>mūl</td>
<td>‘generic term for maggots, larvae or small worms’</td>
</tr>
<tr>
<td>Mic: Woleai</td>
<td>mura</td>
<td>‘caterpillar, silkworm’</td>
</tr>
</tbody>
</table>

cf. also: MM: Nduke | meno | ‘taro beetle’

WOc cognates of POc *ganupe* refer to trepangs, also known as beche-de-mer or sea slugs (ch.4, §5.2.1), while Eastern Oceanic cognates refer to caterpillars. Without external cognates, the meaning of POc *ganupe* is indeterminate.

POc *ganupe* ‘caterpillar or k.o. sea cucumber (indeterminate)’

PWOc *ganupe* ‘sea cucumber, holothurian’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG: Kove</td>
<td>anuwe</td>
<td>‘trepang’</td>
</tr>
<tr>
<td>PT: Dobu</td>
<td>kanue</td>
<td>‘beche de mer’</td>
</tr>
<tr>
<td>PT: Galea</td>
<td>anue</td>
<td>‘general term for all sea cucumbers’ (Lawrence Rutter pers.comm.)</td>
</tr>
<tr>
<td>MM: Nakanai</td>
<td>haluve</td>
<td>‘trepang’</td>
</tr>
</tbody>
</table>

PEOc *ganupe* ‘caterpillar’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SES: Ghari</td>
<td>nive</td>
<td>‘caterpillar’</td>
</tr>
<tr>
<td>Fij: Rotuman</td>
<td>aniha</td>
<td>‘caterpillar, maggot’</td>
</tr>
<tr>
<td>Fij: Bauan</td>
<td>(b)anuve</td>
<td>‘caterpillar’</td>
</tr>
<tr>
<td>Pn: Tongan</td>
<td>ʔanufe</td>
<td>‘caterpillar (generic)’</td>
</tr>
<tr>
<td>Pn: Samoan</td>
<td>ʔanufe</td>
<td>‘worm, caterpillar’</td>
</tr>
</tbody>
</table>

10 Thanks to Ann Chowning for bringing this to my notice.
18 Centipedes (Class Chilopoda): Millipedes (Class Diplopoda)

Another *qali- term, POc *qalipan ‘centipede’, is reconstructable, probably embracing millipedes as well. Evidence of an association between centipedes and the supernatural comes from ethnographic descriptions as well as linguistic clues. For instance, Sengseng (NNG) speakers consider centipedes to be supernatural beings, and carefully remove them from their houses (Ann Chowning, pers. comm.). Elbert’s Renellese dictionary defines ?agi-paipai as ‘centipede, considered the embodiment of non-worshipped deities and a loathsome creature’. In his Tikopia dictionary Firth defines morokau as ‘centipede. Trad. held to be frequent embodiment of spirit’. There is also a Samoan term attua-loa ‘k.o. centipede with poisonous bite’, whose prefix attua- has supernatural significance (discussed in §27). In addition to the *qalipan cognate set I list non-cognate terms for centipede from a range of languages across several subgroups which all exhibit a reflex of the qali-/kali- prefix.

Reflexes of *qalipan are numerous and widespread. As well, I have a number of lower-level reconstructions, possibly for particular kinds of centipede. Two kinds of centipede/millipede are described in wordlists, categorised by behaviour or luminosity rather than number of legs. One, when threatened, squirts a kind of acid from between its scales which can cause blisters or even permanent eye damage, while a second is described as phosphorescent or luminous. A millipede in Arosi (SES), doŋa, is also singled out as having a vile smell. I have one lower-level reconstruction for the luminous variety, PPn *taqe-tuli ‘phosphorescent centipede or millipede’, whose first element is derived from POc *taqe ‘excrement’, implying strongly that the creature is considered unpleasant in Central Pacific languages. In Tahiti, however, where there are two kinds, not venomous, one short and thick and light brown, the other long, threadlike and phosphorescent, they were well regarded. Teuira Henry (1971:391) writes that ‘when a centipede fell upon a wound or bruise of any kind, it soon healed. If it crawled upon a sick person, a speedy recovery followed.’

PAn *qalu-Sipan ‘centipede’ (ACD)
PMP *qalu-hipan ‘centipede’ (ACD)
POc *qalipan ‘centipede’

Adm: Mussau aliena
Adm: Wuvulu ali-aša
NNG: Manam alia
NNG: Mangga garivaŋ
NNG: Yalu kanif
NNG: Wampur ganef
PT: Maopa yaiva
PT: Gumawana ganiva
PT: Saliba kahai
PT: Duau ganihana
Insects and other creepy-crawlies

<table>
<thead>
<tr>
<th>Code</th>
<th>Language</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT:</td>
<td>Motu</td>
<td>aiha</td>
</tr>
<tr>
<td>MM:</td>
<td>Bola</td>
<td>yaliua</td>
</tr>
<tr>
<td>MM:</td>
<td>Halia</td>
<td>lihaŋ(a)</td>
</tr>
<tr>
<td>MM:</td>
<td>Nehan</td>
<td>hilŋ (metathesis)</td>
</tr>
<tr>
<td>MM:</td>
<td>Nduke</td>
<td>livŋ(a)</td>
</tr>
<tr>
<td>SES:</td>
<td>Gela</td>
<td>liva</td>
</tr>
<tr>
<td>SES:</td>
<td>Bugotu</td>
<td>liva</td>
</tr>
<tr>
<td>SES:</td>
<td>Lengo</td>
<td>aliva</td>
</tr>
<tr>
<td>SES:</td>
<td>Lau</td>
<td>safila (metathesis)</td>
</tr>
<tr>
<td>SES:</td>
<td>Kwaio</td>
<td>lařiŋa</td>
</tr>
<tr>
<td>SES:</td>
<td>Arosi</td>
<td>(karikari)?ariha</td>
</tr>
<tr>
<td>Fij:</td>
<td>Rotuman</td>
<td>aniha ‘maggot; also applied to many kinds of caterpillars and millipedes’</td>
</tr>
<tr>
<td>Fij:</td>
<td>Bauan</td>
<td>yaliva ‘a red millipede, possibly generic for millipedes’</td>
</tr>
<tr>
<td>cf. also:</td>
<td></td>
<td>Pn: Rennellese ?agipaipai</td>
</tr>
</tbody>
</table>

Other terms for centipede which apparently exhibit a reflex of the qali-kali- prefix include:

<table>
<thead>
<tr>
<th>Code</th>
<th>Language</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm:</td>
<td>Drehet</td>
<td>kxane-pup</td>
</tr>
<tr>
<td>PT:</td>
<td>Molima</td>
<td>gani-geva</td>
</tr>
<tr>
<td>MM:</td>
<td>Riri</td>
<td>kali-gava</td>
</tr>
<tr>
<td>MM:</td>
<td>Sisiqa</td>
<td>kala-gava</td>
</tr>
<tr>
<td>MM:</td>
<td>Babatana</td>
<td>kali-gava</td>
</tr>
</tbody>
</table>

The compound terms below yield a reconstructed first element, PWOc *mʷal-X ‘millipede’.

PWOc *mʷal-X ‘millipede’

<table>
<thead>
<tr>
<th>Code</th>
<th>Language</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>PT:</td>
<td>Bwaidoga</td>
<td>mʷali(keke) ‘millipede (yellow, causing irritation or burn to skin when it squirts acid from between scales)’</td>
</tr>
<tr>
<td>PT:</td>
<td>Kiliwila</td>
<td>mʷani(ta) ‘centipede’</td>
</tr>
<tr>
<td>MM:</td>
<td>Maringe</td>
<td>mali(so) ‘millipede’</td>
</tr>
<tr>
<td>cf. also:</td>
<td></td>
<td>Pn: Molima</td>
</tr>
</tbody>
</table>

Pn: Rennellese *taqe-tuli ‘phosphorescent centipede/millipede’ (Pollex)

<table>
<thead>
<tr>
<th>Code</th>
<th>Language</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn:</td>
<td>Tongan</td>
<td>teʔe-tuli ‘phosphorescent centipede’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Rennellese</td>
<td>taʔ-tugi ‘long and slender centipede variety’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Samoan</td>
<td>tae-tuli ‘phosphorescent millipede’</td>
</tr>
<tr>
<td>Pn:</td>
<td>Tikopia</td>
<td>tae-turi ‘millipede’</td>
</tr>
<tr>
<td>cf. also:</td>
<td></td>
<td>Fij: Rotuman</td>
</tr>
</tbody>
</table>
In Bugotu (SES) the term for a phosphorescent centipede, *liva tora*, is a literal description: (*liva* ‘centipede’, *tora* ‘phosphorescent’).

Reflexes of a reconstruction from a different semantic field, POc *taqe* ‘excrement’ (see ch.2, p.60), have extended their meaning to refer to a centipede in Kahua (SES) and Bauan Fijian and a scorpion in Tamambo (NCV) and Anjo Matthie (SV), no doubt reflecting their common characterisation as painful stinger.

19 Scorpions (Class Arachnida: Order Scorpiones)

A substantial number of terms for scorpions have been collected, but only a single reconstruction, Proto SE Solomonic *vari* ‘scorpion’ (not listed here) has been possible. In the Solomons, many terms are compounds or phrases which include the word for centipede (*Gela* *liva-nimala*, *Birao* *kaukau-liva*, *Lengo* *aliva-ni-yoro*). Although centipedes and scorpions belong to different zoological classes, the linking of the two creatures in this way may be due to the similar appearance of grasping pincers, and to the facts that both are capable of delivering a severe bite or sting, and both frequent the same habitat, under rocks or leaf litter. The scorpion is named as crab-like in Gapapaia (*g*waɣa-gwaɣa ‘scorpion; idiom for one who moves slowly and fearfully on heights’) (*g*waɣa ‘crab (generic)’) and possibly also in Molima (*dowa* ‘scorpion, land crab’), although Chowning adds a question mark to her gloss.

20 Spiders (Order Araneae)

Although POc speakers would undoubtedly have named a range of spiders, I have not been able to link reconstructions with specific kinds of spider. I have only one lower-level example in which a name is assigned to a particular spider — PCP *tuku-tuku* ‘k.o. spider that lets itself down by a single thread’. POc *lawaq*, traceable back to PAn, with cognates right across the Oceanic region, may have referred primarily to ‘spider’ but by POc times had come to refer as well to ‘spider web’ and ‘k.o. fish net’ (see vol.1, p.212). I also find a number of reconstructions with formal similarities, including POc *koko*, POc *gagao~*(g,k)a(g,k)a-, PWOc *kuku*, and PEOc *[ko]*ko-miji. Some kind of word play has evidently taken place, although I have no ethnographic evidence that particular spiders are associated with any kind of supernatural belief or taboo. On the contrary, they are freely eaten in many communities. Wordlists of a number of languages including Molima and Sinaugoro (PT), Takia (NNG) and Hawaiian (Pn), record particular kinds of edible spider.

Reconstructions other than *lawaq* have an unusually large number of reflexes which are compounds with a non-reflected element. These reconstructions may refer to particular kinds of spider. As Pawley (2000:8) has noted, names for folk specifics in plants and animals, or, to be more exact, the secondary or modifying terms in binomials, are notoriously unstable and will, in most cases, not be reconstructable for a language as remote in time as POc.
PAn *lawaq ‘spider’ (Blust 2002)

POc *lawaq ‘spider, spider web’ (Also ‘fish net’)

Admin: Loniu	(wi)law	‘spider’
NNG: Tuam	lawag	‘spider’
NNG: Gitua	lawak	‘spider’
NNG: Malai	lawak	‘web’
NNG: Wogo	lawa	‘spider’
PT: Bwaidoga	nawaya	‘spider’
PT: Gapapaiwa	nawa-nawa	‘spider web’
PT: Sudest	lawa	‘spider’
PT: Motu	vala-vala	‘cobweb’ (metathesis)
MM: Vitu	lava	‘spider’s web’
SES: Lau	lak”a	‘k.o. large yellow spider and large web’
SES: Kwaio	lak”a-lak”a	‘spider web’
SES: ’Are’are	rawa	‘spider, cobweb’
SES: Sa’a	lawa	‘spider’s web, spider’
SES: Arosi	rawa	‘spider, cobweb, small net’
NCV: Mota	(ta)lau	‘cobweb, either single line or web’
NCV: Nguna	(ka)lau	‘spider (web)’
SV: Aneojmi	ni-lva	‘spider web’
Fij: Bauan	lawa	‘fishing net’
	viritā lawa-lawa	‘cobweb’
	tina-ni-viritā lawa-lawa	‘spider’ (lit. ‘mother of cobweb’)

PPn *lewe is probably cognate, with reduplication and addition of the prefix *ka-, which may reflect *k’akwa, discussed below the next item.

PPn *ka-lewe-lewe ‘cobweb, spider’ (Pollex)

Pn: Niuean	ka-leve	‘cobweb’
Pn: Tongan	ka-leve-leve	‘k.o. spider’
Pn: E Futunan	ka-leve-leve	‘spider, spiderweb’
Pn: Samoan	ʔa(ponjā)-leve-leve	‘spider; spider’s web’
Pn: Tikopia	ka-reve-reve	‘spider’s web, all types’
Pn: Emae	ka-reve-reve	‘spider web’
Pn: Rarotongan	(pūnā)vere-verere	‘spider web’ (pūnā ‘fortress, retreat’) (metathesis)
Pn: Hawaiian	(pūnā)wele-wele	‘spinning spider’ (metathesis)
Pn: Tuamotuan	(puŋā)vere-verere	‘a cobweb’ (metathesis)

In the cognate set below the Malai (NNG) term and those from the Malakula languages Nahai’i, Axamb and Nisvai (NCV) speak in favour of a freestanding POc *gagao, whilst the Molima (PT), Teop, Simbo, Torau, Kia, Kokota (all MM) and Gela (SES) terms point to *gaga- and *kaka- as forms occurring in compounds.

POc *gagao ~ *(g,k)a(g,k)a- ‘k.o. spider’

| NNG: Malai | (a)gagau | ‘spider’ |
| PT: Molima | gaga(boʔa) | ‘house spider’ |
POc *koko and PWOc *kuku may be variants of the same term as *kaka. Two alternate hypotheses about their origins are (a) that *ko reflects the second syllable of *gagao, and (b) that the reflexes supporting *kaka-, *koko and *kuku reflect POc *kwakwa, Evidence for (b) is that (i) SE Solomonic languages retain k-, and this is diagnostic of POc *kw-, and (ii) Western Oceanic (PT, MM) reflexes other than Simbo retain k- rather than leniting it to y- or zero, the usual reflexes of *k-.

POc *koko becomes *[ko]ko-miji ‘k.o. spider’ in PSES with the addition of -miji, an element which occurs also in other compounds meaning ‘spider’ (Dori’o [SES] kala-midi) although not found separately. It also may occur in Nakanai kamimisi ‘spider’, if interpreted as kami-misi with kami- < kali by assimilation. I am unable to suggest a meaning for POc *-miji, other than to note that I have found it only in spider terms.

POC *koko ‘spider’

NNG: Mumeng (Patep) kɔɔ ‘spider’s web’
PT: Dobu (wa)koko ‘brown house spider’
MM: Tolai koko ‘spider: all kinds of house spider’
MM: Kandas ko ‘spider’
MM: Halia koko(ratski) ‘spider; starfish’

Proto SE Solomonic *[ko]ko-miji ‘k.o. spider’

SES: Lengo ka-midi ‘spider’
SES: Longgu ko-midi ‘spider’
SES: Tolo koko-mici ‘large house spider’
SES: Talise ko-mici ‘spider’
SES: Ghari ko-mici ‘common spider’
SES: Malango ko-miji ‘spider’
cf. also:

PT: Wedau (wa)gogo ‘k.o. spider’
PT: Gapapaiwa (wa)koko ‘spider type; A specific large species of spider which occupies our outhouse’

Pn: Rennellese ko-miti ‘various spiders that bite’ (possible borrowing from SES)
Insects and other creepy-crawlies

PWOC *kuku* ‘spider’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG:</td>
<td>Barai</td>
<td>kuku</td>
</tr>
<tr>
<td>NNG:</td>
<td>Gedaged</td>
<td>kuk</td>
</tr>
<tr>
<td>NNG:</td>
<td>Kilenge</td>
<td>na-kuku(n)</td>
</tr>
<tr>
<td>NNG:</td>
<td>Malalamai</td>
<td>kuku(lamlambe)</td>
</tr>
<tr>
<td>MM:</td>
<td>Vitu</td>
<td>*(pa)*kuku</td>
</tr>
<tr>
<td>MM:</td>
<td>Bali</td>
<td>*(ma)*kuku</td>
</tr>
<tr>
<td>MM:</td>
<td>Nakanai</td>
<td>kuku(re)</td>
</tr>
<tr>
<td>MM:</td>
<td>Marovo</td>
<td>kuku</td>
</tr>
</tbody>
</table>

PWOC *ka(p,b)ilik*’a ‘k.o. spider’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG:</td>
<td>Mapos Buang</td>
<td>kapik</td>
</tr>
<tr>
<td>PT:</td>
<td>Molima</td>
<td>kapinoko</td>
</tr>
<tr>
<td>MM:</td>
<td>Nakani</td>
<td>kalalaau</td>
</tr>
<tr>
<td>MM:</td>
<td>Kara (West)</td>
<td>kabelaua</td>
</tr>
<tr>
<td>MM:</td>
<td>Tigak</td>
<td>kavelo</td>
</tr>
<tr>
<td>MM:</td>
<td>Lamasong</td>
<td>kabilon</td>
</tr>
<tr>
<td>MM:</td>
<td>Minigir</td>
<td>*(ka)*kobiloko</td>
</tr>
<tr>
<td>MM:</td>
<td>Tolai</td>
<td>kabiloko</td>
</tr>
<tr>
<td>MM:</td>
<td>Ramoaaina</td>
<td>kabulak</td>
</tr>
<tr>
<td>MM:</td>
<td>Bilur</td>
<td>kabilak</td>
</tr>
</tbody>
</table>

The only reconstruction which can safely be attributed to a particular kind of spider is PCP *tuku-tuku* ‘k.o. spider which lowers itself on a single thread’, from PCP *tuku* ‘let down’.

PCP *tuku-tuku* ‘k.o. spider which lowers itself on a single thread’

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fij:</td>
<td>Rotuman</td>
<td>fu?-fu?u</td>
</tr>
<tr>
<td>Fij:</td>
<td>Bauan</td>
<td>tuku-tuku</td>
</tr>
<tr>
<td>Pn:</td>
<td>Tikopia</td>
<td>tuku-tuku</td>
</tr>
<tr>
<td>Pn:</td>
<td>Māori</td>
<td>tuku-tuku</td>
</tr>
<tr>
<td>Pn:</td>
<td>Tuamotuan</td>
<td>tuku-tuku</td>
</tr>
<tr>
<td>Pn:</td>
<td>Hawaiian</td>
<td>kuʔu-kuʔu</td>
</tr>
</tbody>
</table>

21 Leeches (Class Hirudinea)

There is a well-supported POc reconstruction for ‘leech’ based on reflexes in NNG, PT and NCV languages. I have not so far located any term for leech, cognate or otherwise, east of Fiji, and assume that the creatures are not found in Micronesia or Polynesia (with the exception of New Zealand, where the Māori term is *ŋata* i.e. ‘snake’) (Ross Clark, pers. comm.). Pawley has reconstructed a similar term, PROc *drumane* ‘anemone’ (ch.4, §6.1) which is almost in complementary distribution, and the terms may be related.
There is a widespread belief among Austronesian speakers that dental caries is caused by a small worm. Both the creature and the associated condition are named in different languages by reflexes of various reconstructed terms for ‘worm’. Blust comments on two WMP languages, Cebuano and Malagasy, whose reflexes of PAn *qulej ‘maggot’ refer also to ‘tooth decay’ or ‘toothache, supposed to be occasioned by a small worm in the tooth’ (ACD) (§23).

Dobu (PT) has a term *kimwata ‘the supposed insect which causes caries in children’ (*m̄wata ‘snake’). The To’aba’ita term is *wā- lifo ‘tooth decay, believed to be caused by worms’ (*wā ‘worm, grub, maggot, caterpillar, larva’, *lifo ‘tooth’). Other WMP languages refer to tooth decay by reflexes of PMP *bukbuk ‘weevil that infests wood, bamboo, and rice; dust produced by the boring of this insect; tooth decay’ (ACD) (§9). Codrington also reports the belief as existing in the Banks Islands (NCV) (1891:193).

It seems likely that POc *m̄wata-m̄wata, the reduplicated form of *m̄wata ‘snake’, was a generic for worms and worm-like creatures, including caterpillars and millipedes. In places it has reverted to its unreduplicated form, either as a generic for snakes and other snake-like creatures, or, as in Micronesia and Seimat, to refer to worms alone. In Micronesia there are no snakes except on Guam, where they have been introduced in comparatively recent times (Jeff Marck, pers. comm.), and hence there is no need to maintain the distinction. I have not been able to ascertain if snakes are found in the Ninigo Islands, where Seimat is spoken.

POc *m̄wata-m̄wata ‘generic for worms and worm-like creatures’
Adm: Seimat wat ‘land worm’
Insects and other creepy-crawlies

NNG: Kove *mota* ‘snake, eel, caterpillar’
NNG: Bing *mut-muat* ‘caterpillar’
NNG: Yabem *moaʔ* ‘snake, and as first element in compounds (worm, caterpillar, slug, snail and millipede)’
PT: Gapapaiwa *sulata* (ramoa) ‘caterpillar, worm (not earthworm)’
PT: Bwaidoga *mota-mota* ‘grub, caterpillar which eats leaves of yams, taro etc.’
PT: Sudest *m"ata* (wadi) ‘a small black millipede’
PT: Minaveha *m"ata-m"ata* ‘caterpillar, worm, maggot or small snake’
PT: Dobu *m"ata-m"ata* ‘earthworms, intestinal worms’
PT: Molima *m"ata-m"ata* ‘intestinal worms’
PT: Kilivila *m"ata* ‘worm’
PT: Gumawana *moteta* ‘snake, worm’
SES: Sa’a *m"ā-m"ā* ‘maggot, worm’
PEOc *m"ata* ‘snake, worm’
SES: ‘Are’ are *mā* ‘generic term for snake, worm’
SES: Kwaio *wā* ‘snake; various worms, various snake-like creatures’
SES: To’aba’ita *wā* ‘worm, grub, maggot, caterpillar, larva’
SES: Lau *wā* ‘(1) snake, (2) worm, maggot’
Mic: Kiribati *m"ata* ‘grub, caterpillar, worm’
Mic: Mokilese *m"ac* ‘worm’
Mic: Carolinian *m"ata* ‘worm, earthworm’
Mic: Woleaian *m"at* ‘underground worm’
Mic: Puluwatese *moho* ‘worm, general name (incl. intestinal worms)’
Pn: Māori *ŋata* ‘snail, slug, leech’

22.2 Other worm taxa
Blust has reconstructed PMP *bulati* ‘roundworm, ascaris, intestinal worm; also earthworm?’ (acd) without Oceanic reflexes. I have reconstructed POc *sulati* ‘worm’ which evidently carries a common root, -*lati*. The Oceanic evidence does not permit further differentiation of meaning.

POc *sulati* ‘worm’

PT: Sudest *ula-ulari* ‘worm’
NCV: Tamambo *sulati* ‘earthworm’
NCV: Mota *sulate* ‘worm’
NCV: Mwotlap *ni-slat* ‘worm’
NCV: Raga *silosi* ‘general term for worms incl. earthworms and intestinal worms’
NCV: Paamese *a-silati* ‘worm’
NCV: Nguna *a-sulati* ‘hookworm, tapeworm’

The next reconstruction, PNGOc *dim"an* ‘k.o. worm’, bears some similarity to POc *droman* ‘leech’ but a contrast is preserved in some languages, e.g. Molima *domana* ‘mountain leech’, *dim"a-m"ana* ‘worm’; Dobu *domana* ‘leech’, *di-dim"ana* ‘common earthworms,
small lizards’; Gapapaiwa domani ‘leech’, dimo(moga) ‘earthworm’; Sinaugoro doma ‘leech’, dimo ‘worm’). The resemblance appears to be accidental.

PNGOc *dimw’an ‘k.o. worm’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NNG</td>
<td>tim’a</td>
<td>‘worm, maggot’</td>
</tr>
<tr>
<td>NNG</td>
<td>(mota)dijana</td>
<td>‘worm’ (mota ‘snake’)</td>
</tr>
<tr>
<td>PT</td>
<td>dim’a-dim’a-na</td>
<td>‘earthworms’</td>
</tr>
<tr>
<td>PT</td>
<td>di-dim’a-na</td>
<td>‘common earthworms, small lizards’</td>
</tr>
<tr>
<td>PT</td>
<td>dima-na-na</td>
<td>‘worm’</td>
</tr>
<tr>
<td>PT</td>
<td>dimo(moga)</td>
<td>‘earthworm’</td>
</tr>
<tr>
<td>PT</td>
<td>dimona-na</td>
<td>‘an earthworm’</td>
</tr>
<tr>
<td>PT</td>
<td>sima</td>
<td>‘worm’</td>
</tr>
<tr>
<td>PT</td>
<td>jimo-jimo</td>
<td>‘earthworm’</td>
</tr>
<tr>
<td>PT</td>
<td>dimo</td>
<td>‘worm’</td>
</tr>
<tr>
<td>PT</td>
<td>rimo</td>
<td>‘worm’</td>
</tr>
<tr>
<td>PT</td>
<td>sima</td>
<td>‘worm’</td>
</tr>
</tbody>
</table>

PPn *kele-mutu ‘earthworm, grub’ (Pollex: PPn *kele ‘earth, dirt, soil’)

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn</td>
<td>kele-mutu</td>
<td>‘worm’</td>
</tr>
<tr>
<td>Pn</td>
<td>kele-mutu</td>
<td>‘earthworm, grub’</td>
</tr>
<tr>
<td>Pn</td>
<td>lele-mutu</td>
<td>‘grub in rotten wood’</td>
</tr>
<tr>
<td>Pn</td>
<td>kele-mutu</td>
<td>‘earthworm, grub’</td>
</tr>
<tr>
<td>Pn</td>
<td>kele-mutu</td>
<td>‘earthworm, grub’</td>
</tr>
<tr>
<td>Pn</td>
<td>(te)keli-m*et</td>
<td>‘earthworm, grub’</td>
</tr>
</tbody>
</table>

cf. also:

Adm: Loniu (te)keli-m et ‘earthworm, grub’

See also chapter 4, §7.1 and §7.2, for POc *ibo ‘sandworm’ and POc *weli ‘fireworm’ respectively.

23 Maggots

POc *quloc continues the PAN term for ‘maggot’, *qulej. Some reflexes show /i/ instead of /u/ in the first vowel, a common sporadic change in many forms.

POC *quloc ‘maggot’ (ACD)

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm</td>
<td>kul</td>
<td>‘maggot’</td>
</tr>
<tr>
<td>Adm</td>
<td>un</td>
<td>‘maggot’</td>
</tr>
<tr>
<td>Adm</td>
<td>ul</td>
<td>‘maggot’</td>
</tr>
<tr>
<td>PT</td>
<td>ulo-ulilo</td>
<td>‘maggot’</td>
</tr>
<tr>
<td>PT</td>
<td>ulo(li)</td>
<td>‘worm’</td>
</tr>
<tr>
<td>PT</td>
<td>uro-uro</td>
<td>‘fly’</td>
</tr>
<tr>
<td>MM</td>
<td>uloso</td>
<td>‘maggot’</td>
</tr>
</tbody>
</table>
Insects and other creepy-crawlies

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM: Maringe</td>
<td>n-ulho</td>
<td>maggot’</td>
</tr>
<tr>
<td>SES: Bugotu</td>
<td>ulo</td>
<td>‘maggot’</td>
</tr>
<tr>
<td>SES: Arosi</td>
<td>uro</td>
<td>‘worm, maggot’</td>
</tr>
<tr>
<td>NCV: Mota</td>
<td>ulo</td>
<td>‘maggot’</td>
</tr>
<tr>
<td>NCV: Raga</td>
<td>ulehi</td>
<td>‘small worm’</td>
</tr>
<tr>
<td>NCV: Tape</td>
<td>wilas</td>
<td>‘maggot’</td>
</tr>
<tr>
<td>NCV: Namakir</td>
<td>?il</td>
<td>‘maggot’</td>
</tr>
<tr>
<td>SV: Sye</td>
<td>n-ilah</td>
<td>‘maggot’</td>
</tr>
<tr>
<td>SV: Anejo</td>
<td>m</td>
<td>n-ija</td>
</tr>
<tr>
<td>NCal: Cèmuhî</td>
<td>ùnet</td>
<td>‘maggot’</td>
</tr>
<tr>
<td>NCal: Caaàc</td>
<td>kōlet</td>
<td>‘maggot’</td>
</tr>
<tr>
<td>Mic: Kiribati</td>
<td>ino</td>
<td>‘a worm, larva’</td>
</tr>
<tr>
<td>Mic: Puluwatese</td>
<td>wi, yīl</td>
<td>‘maggot’</td>
</tr>
<tr>
<td>Mic: Kosraean</td>
<td>ule</td>
<td>‘maggot’</td>
</tr>
<tr>
<td>Mic: Woleai'an</td>
<td>iř</td>
<td>‘maggot, larva’</td>
</tr>
<tr>
<td>Fij: Wayan</td>
<td>ilo</td>
<td>‘maggot’</td>
</tr>
<tr>
<td>Fij: Bauan</td>
<td>ulo</td>
<td>‘maggot’</td>
</tr>
<tr>
<td>Pn: Samoan</td>
<td>ilo</td>
<td>‘maggot’</td>
</tr>
<tr>
<td>Pn: Tahitian</td>
<td>iro</td>
<td>‘generic for maggots, worms’</td>
</tr>
<tr>
<td>Pn: Marquesan</td>
<td>i'o</td>
<td>‘worm, maggot’</td>
</tr>
<tr>
<td>Pn: Māori</td>
<td>iro</td>
<td>‘maggot, threadworm, vermin’</td>
</tr>
<tr>
<td>Pn: Hawaiian</td>
<td>ilo</td>
<td>‘maggot, grub; to creep, as worms’</td>
</tr>
</tbody>
</table>

The next reconstruction illustrates what was evidently a productive process in POc, the addition of -a(n) to a term X, where X could be water, sennit, people, pigs etc., to indicate a state of being ‘full of X’ or in the case of insects, infested with the insect. Besides POc *qulos-a(n) ‘be maggoty’ I can reconstruct PEOc *kutu-a(n) ‘(be) lousy’ (To’aba’ita ḥu-la, Samoan ḥutu-a, Pukapukan wutu-a). Further examples from SES languages show the process applied to other insect names: Sa’a pote ‘head louse’, pote-la ‘lousy’; To’aba’ita, Lau wā ‘maggot, worm’, wā-la ‘maggoty, wormy’, and I add a Polynesian example, Tongan monomona-ʔia ‘infested with beetles or cockroaches’, from monomona ‘any kind of beetle or cockroach’.

PMP *qulej-an ‘have worms’ (ACD)

POc *quloc-a(n) ‘be maggoty’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>SES: Bugotu</td>
<td>ulo-a</td>
<td>‘maggoty’</td>
</tr>
<tr>
<td>NCV: Mota</td>
<td>ulos-a</td>
<td>‘maggoty, full of maggots’</td>
</tr>
<tr>
<td>Mic: Kiribati</td>
<td>(ka) ino-a</td>
<td>‘bring on putrefaction’</td>
</tr>
<tr>
<td>Fij: Bauan</td>
<td>ulo-ulo-a</td>
<td>‘wormy, maggoty’</td>
</tr>
<tr>
<td>Pn: Samoan</td>
<td>ilo-a</td>
<td>‘be maggoty’</td>
</tr>
</tbody>
</table>

Reduplication on verbs serves to indicate frequentative aspect, while its nominal counterpart means ‘full of, lots of N’.
PMP *qulej-qulej ‘lots of worms; crawling with worms, extremely wormy’ (ACD)
POc *qulo-quloc ‘full of maggots’

PT: Motu ula-ulo ‘maggot’
MM: Roviana ul-uloso ‘maggots, when in numbers’
Mic: Kiribati ino-ino ‘full of worms, worm-eaten’
Fij: Bauan ula-ulo ‘maggot (diminutive)’

24 Unspecified flying insect

The following set consists of cognates with a range of glosses which can only be subsumed under one generalised reconstruction.

PPn *mū ‘flying insect’ (POLLEX)

Pn: Tongan mū ‘moth’
Pn: E Futunan mū-mū ‘dragonfly’
Pn: Samoan (seʔe)mū ‘dragonfly’ (seʔe ‘glide’)
Pn: Rarotongan mū ‘big reddish moth that flies round lamps at night’
Pn: Māori mū ‘insects’
Pn: Hawaiian mū ‘general term for insects that eat cloth, wood, plants’

25 Semantic extensions and generalisations

Chapter 8 contains a detailed examination of *manuk and *manu-manuk. POc *manuk evidently had two senses, one restricted, the other extended. The restricted sense was ‘bird’ or more precisely ‘bird + bat’, hence ‘flying vertebrate’. The extended sense was ‘creature’, probably excluding people and things that swim in the sea. In POc, diminutives were regularly formed by reduplication. So *manu-manuk meant either ‘small flying creature’, or simply ‘small creature’. Beyond that I have only fragments of information to go on as clues to how POc speakers classified their world of insects and other creepy-crawlies. It is likely that most languages had generic terms for butterflies, flies, spiders, hoppers, ants, grubs and so on, although I have been able to reconstruct reliable generic terms for only the first two.

There is some evidence that there were two broader categories in PPn, the flying creatures, *manu-lele and the crawlers, *manu-totolo. Rennellese has manu-manu-gege ‘flying/jumping creatures’, and manu-manu-totogo ‘creeping creatures’, the latter including reptiles other than turtles. Nanumea, a dialect of Tuvalu (Pn), has forms cognate with the Rennellese, manu lele ‘bird, flying insect’ and manu totolo ‘ground animal e.g. spider, lizard, land mammal’. Niue also has cognate terms but insects are excluded in both: manu lele ‘bird, can include flying fox but not flying insects’ and manu totolo ‘any walking or crawling creature but not insects’. Speakers of the Hula dialect of Keapara (Papuan Tip) distinguish manu-manu ‘flying insect’ and mani-mani ‘creeping insect’. According to Fox (1974), Lau (SES) divides the entire animal kingdom three ways, with wāwā ‘generic for all creatures in or on the ground’, manu ‘generic for all creatures that fly’ and iʔa ‘generic for all creatures in water’.
The following example illustrates how one particular term may serve as the name of a class, in this case ‘fly’, and also be used as the first element in binomials defining members of that class. Examples include:

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adm: Lou</td>
<td>lan-lan(a)</td>
<td>‘fly, flying insect’</td>
</tr>
<tr>
<td></td>
<td>lan-etu</td>
<td>‘housefly’</td>
</tr>
<tr>
<td></td>
<td>lan-lan-n palawa</td>
<td>‘honey bee’</td>
</tr>
<tr>
<td></td>
<td>lan-lan nara</td>
<td>‘bluebottle, horsefly, March fly’</td>
</tr>
<tr>
<td>NNG: Sengseng</td>
<td>lan</td>
<td>‘fly’</td>
</tr>
<tr>
<td></td>
<td>lanjuyu</td>
<td>‘hornet with papery nest’</td>
</tr>
<tr>
<td></td>
<td>lanoyoy</td>
<td>‘insect that makes holes in wood’</td>
</tr>
<tr>
<td>MM: Tolai</td>
<td>lanya</td>
<td>‘fly’</td>
</tr>
</tbody>
</table>
| | lanya bulit | ‘bee’ (bulit ‘gum’)
| SES: Gela | layo | ‘fly’ |
| | layo mbeli | ‘k.o. hover fly’ |
| | layo ni bolo | ‘k.o. large fly’ (bolo ‘pig’) |
| | layo ni uvu | ‘k.o. red fly’ |
| | layo pasa-pasa | ‘k.o. large fly’ (pasa-pasa ‘to scold’) |
| | layo vuru | ‘large k.o. fly with yellow wings’ |
| Pn: Niuean | lano | ‘common fly’ |
| | lano fufu | ‘mason wasp’ |
| | lano meli | ‘bee’ |
| Pn: Hawaiian | nalo | ‘the common housefly and other similar flies’ |
| | nalo ʔaki | ‘small stinging fly’ |
| | nalo hope ʔeha | ‘hornet’ (lit. ‘fly with stinging posterior’)
| | nalo keleawe | ‘hover fly’? (lit. ‘brass/copper fly’) |
| | nalo lawe-lepo | ‘mud wasp’ (lit. ‘dirt-toting fly’)
| | nalo meli | ‘honey bee’ |
| | nalo nahu | ‘stinging fly’ (lit. ‘biting fly’) |
| | nalo paka | ‘tick; ensign fly’ (lit. ‘lean fly’) |
| | nalo pilau | ‘bluebottle fly’ (lit. ‘stink fly’) |

In some Polynesian languages the reflex of POc *moko ‘k.o. snake’ (p.260) has become a class marker for a whole range of creepy-crawlies:

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pn: Niuean</td>
<td>moko</td>
<td>‘insect, grub, caterpillar; lizard, any creeping creature’</td>
</tr>
</tbody>
</table>
| | moko elo | ‘stink beetle’ (elo ‘to stink’)
| | moko manini | ‘common brown beetle’ (manini ‘a plant, Physalis angulata’)
| | moko maŋa | ‘earwig’ (maŋa ‘forked, divided’)
| | moko moja-moja | ‘cockroach’
| | moko niu | ‘rhinoceros beetle’ (niu ‘coconut palm’)
| | moko tafa | ‘black beetle’ (tafa ‘be itchy’)
| | moko taliŋa | ‘gecko’ (taliŋa ‘ear’)
| | moko vā | ‘large green mantis’ (vā ‘to mock’?)

Pn: Tongan | moko | ‘k.o. lizard, light-brown in colour’
In some Polynesian languages, small lizards and certain other creepy crawlies are lumped together in a higher order taxon. POc *mʷata-mʷata ‘worm’ is the diminutive of *mʷata ‘snake’.

Similarities in behaviour form the basis of other groupings. In Tamambo (NCV), the reflex of POc *(ŋ,n)opuq ‘stonefish’ refers to ‘centipede or scorpion’ as well as ‘venomous fish’. The semantic link is clearly ‘painful stinger’. The Polynesian language of Rennell has extended the meaning of kutu (from POc *kutu ‘head louse’) to refer to ‘louse, bird louse, mite, leech and tiny insects of various kinds’. The term has presumably come to mean ‘small blood-sucker’, when no more specific reference is necessary. In Marquesan the reflex of POc *quloc ‘maggot’, iʔo, now refers to bugs and worms.

Some languages have developed and named unusual groupings. For instance, the Motu have a term, kikirikikiri, which refers to ‘all creatures which live on the ground but jump or fly short distances. Cicadas and hawk moths are kikirikikiri. So are beetles that make noise’ (Nigel Oram n.d.). In Kwaio, there is a collective term, faʔa/fulu, for edible insects.

26 Stability and variability of terms

A small number of POc insect names show far greater stability than others. In a survey of 25 dictionaries chosen on comprehensiveness and whose languages together covered all major subgroups, reflexes of *kutu ‘louse’ were listed in 23, *lanjo ‘fly’ in 22, *nāmak ‘mosquito’ in 21, *bebek ‘butterfly’ in 16, and *qapator ‘sago grub, edible’ in 13. In an email comment on seahorse terms Robert Blust wrote that ‘The general principle for flora and fauna seems to be that if it was economically useful or dangerous it was named, and the more useful or dangerous the more stable the name historically.’

With insects, it seems that the more intrusive in everyday life, the more commonplace and either pesky or valued they are, the more likely they are to be known by highly stable terms.

In contrast, it seems that unstable terms may be unstable for a variety of reasons. We have a number of instances where it has proved very difficult to make any well-supported reconstructions, and others where two or more reconstructions that differ only very slightly in form have been made for an insect. Examples are:

11 For an account of reduplication in Oceanic languages, see vol.3, ch.2, §7.2.
12 The languages were Loniu, Lou (Adm), Gedaged, Manam (NNG), Motu (PT), Nakani, Tolai, Roviana (MM), Bugotu, Gela, Lau, Sa’a, Arosi (SES), Mota, Tamambo, Raga (NCV), Lenakel, Anejom̃ (SV), Woleaian, Puluwatese (Mic), Wayan, Bauan (Fij), Tongan, Samoan, Tikopia (Pn).
13 Blust’s comment appeared in the AN-LANG list on 8 May 1999.
Insects and other creepy-crawlies

- **butterfly**: POc *[kau]bebek, *kali-bobo(ŋ), PPT *qara-bembem, Proto NW Solomonic *pepele
- **mosquito**: POc *ñamuk, *simuk
- **sandfly**: POc *niku-niku, *nonok, *ŋisi
- **mason wasp**: POc *pupuk, *bubu
- **wasp**: POc *mañipo, *(n,ñ)i(n,ñ)i(n,ñ)i, Proto Central Papuan *naniyo
- **grasshopper**: POc *sakwa, *siko; POc *rija, PROc *lijo
- **ant**: POc *drui, *[driu]driu, PWOc *didi
- **spider**: POc *ka(k,g)a, *koko, PWOc *kuku, PEOc *koko-mici

The existence of taboo to limit use of a particular form to a particular area, has already been suggested for ‘butterfly’ in §3, and may explain why this creature can have a name that is very stable in most of the Oceanic region, yet be unstable in parts of Western Oceanic. Clearly, onomatopoeia plays a role in the naming of the humming and buzzing insects, where there is frequent interchange of *n*, *ñ* and *ŋ*. Examples include POc *ñamuk, PWOc *ŋati-ŋati both ‘mosquito’, POc *ŋiŋi(ŋ) (1) ‘buzz as a mosquito’, (2) ‘mosquito’, *(n,ñ)i(n,ñ)i ‘bee, buzzing insect’.

Irregular patterning of terms for insects has been attributed to the fact that many insects are ‘expressive’ creatures. That is, they are associated with particular characteristics that impinge strongly on the human sensory system and become a significant identifying feature for that insect. Characteristics include sound (crickets, cicadas, the buzzing insects), movement (grasshoppers, butterflies, spiders), ability to sting or bite (mosquitoes, sandflies and other stinging flies, centipedes, scorpions, ants) and possibly other aspects of appearance or behaviour. It has been claimed that it is their ‘expressive’ condition that underlies a tendency for speakers to play phonological games with their names, resulting in irregularities that may then defy reconstruction. This tendency has been observed cross-linguistically by Erik Fudge (1970) in words of certain semantic type including onomatopoeia or movement, and in the names of plants and animals in Balinese and the closely related Javanese by Adrian Clynes (1995:44).

27 The supernatural element

Among my POc reconstructions, those carrying the *kali-/*qali- prefix are limited to *kali-bobo(ŋ) ‘butterfly’, *qalipan ‘centipede’ and *qali-popot/*(k,q)ali-totop ‘firefly’. Ethnographic evidence from a number of communities indicates that all three creatures retain some supernatural association requiring them to be treated with caution. I also have a number of reconstructions at POc level or lower which may carry the prefix or some trace of it. They include PPn *kālisi ‘cicada, cricket’, a number of ant terms possibly reflecting POc *kal(a,o), two lizard terms, PSoC *qala ‘green lizard, *Emoia* sp.’, PEOc *kalis(i,u) ‘skink, k.o. lizard’ (see ch.5, §5.3.5), and a number of terms for ‘spider’ which carry the prefix ka-. However, if my reconstructions do in fact carry a trace of the danger prefix, they have lost what was evidently an essential element of *kali-/*qali- words at a stage earlier than POc, that is, conversion from the typical disyllabic base form to a quadrisyllabic one. The prefix had ceased to be productive in POc.

14 Cf. Blust’s list of creatures marked with the prefix which include, inter alia, grasshopper, gecko, some ant spp. and some spider spp. (2001:37).
Nonetheless, it seems that in Polynesian languages there is a different term which can be used to mark a creature as supernatural. PPN *qatua (from PMP *qatuan), often glossed ‘god, deity’, is used primarily to signify that an object, whether human or non-human, has supernatural qualities. In Williams’ Māori dictionary, the definition of atua runs ‘god, demon, supernatural being, ghost; object of superstitious regard; anything malign, disagreeable; strange, extraordinary’. Like gali-/-kali-, its range in Polynesian languages extends to inexplicable phenomena such as rainbows and waterspouts.

Examples of its use in Polynesia include Māori atua-piko ‘rainbow’ (cf PT: Kilivila kali-pedoga ‘rainbow’), Tongan ṭotua-kui ‘whirlwind, waterspout’ (cf MM: Nakanai kali-vuru ‘tornado, waterspout’ and MM: Tolai kali-vuvur ‘whirlwind’), and a small number of insect terms, Samoan atua-loa ‘k.o. centipede with poisonous bite’ (cf POc *gali-pan ‘centipede’) Māori pepeatua ‘northern wattle moth’ (literally ‘supernatural butterfly’) (cf. POc *[kali]bobo(ŋ) ‘butterfly’) and two Rennellese terms, ṭatua segegebaʔe ‘a large grasshopper’ (lit. ‘leg-cutting supernatural’) and ṭatua-seu ‘large stinging stick insect’ (lit. ‘lame supernatural’).

A detailed account of the way in which atua is linked to natural species in one community is given by Firth (1967:233). In Tikopia, as in other Polynesian communities, atua applies primarily to a supernatural object, whether human or non-human in form. However, it is applied also to any natural species which should not be eaten. ‘The terms atua and kai (food) in this connection are in fact mutually exclusive. The [former] applies to small crabs, sea anemones, beche-de-mer and other marine creatures on the reef, as well as to iridescent lizards, spiders and some insects.’ (p.233). He suggests ‘that the connotation of atua as inedible may be derivative from its significance of supernatural’ (p.234), (italics mine, MO). He concludes that ‘one point, however, may be stressed with certainty, that any object which is regarded as an atua may not be eaten, and anything which is fit for human consumption cannot be in itself an atua— though it may...become temporarily associated with atua’ (p.234).

Among the creatures he lists as atua are two inedible crabs, kaviki ‘small pale land crab’ and karamisi ‘reddish-brown or yellowish crab, [which] lives in crotch of tree’ (cf PMP *qali-maŋaw ‘mangrove crab’). Also atua are moko, the black lizard, and morokau, the centipede.

In Tikopia, then, atua is not affixed to the names of natural species as it is in other Polynesian communities and in the manner of gali-/-kali-, but is rather the name of a category.

The association of certain insects with the supernatural has survived from PAn society right through to certain contemporary Polynesian societies. Although the gali-/-kali- label has evidently lost its force in Oceanic languages, the existence of reflexes of *qatuan in a similar capacity is a revealing linguistic clue to certain beliefs of POc speakers.

15 As the breadth of the Māori definition illustrates, the result of the long association of supernatural qualities with certain creatures has led to its interpretation in a number of different ways, not all of them compatible with Blust’s ‘danger: avoid’ message for PMP *gali-. In Rennellese (Pn), mogi ṭatua refers to a ‘useless orange’, perhaps an extension of meaning from ‘dangerous’ > ‘poisonous’ > merely ‘inedible’.

16 Jeff Marck (1994) reconstructs PMic *auniari ‘whirlwind, waterspout’, based on, among others, Ponapean einiar ‘whirlwind’, Mortlockese awiinyiar ‘whirlwind, tornado, rainbow’, Carolinian (l)iyidiyáy ‘tornado’, Woleaian (r)auriyaza ‘rainbow’, Ulithian (l)olyor ‘rainbow’. He comments: ‘This may be analysable as *au-ni-ari ‘atmosphere-of-?’ where *-ari had some as yet unreconstructed meaning along the lines of ‘troublesome, fearful’ or whatever’ (p.310).
Were turtles fish in Proto Oceanic?
Semantic reconstruction and change in some terms for animal categories in Oceanic languages

ANDREW PAWLEY

fish. An animal that inhabits the water. (Samuel Johnson, English dictionary, 1755)

The whale, the limpet, the tortoise, and the oyster...as men have been willing to give them all the name of fishes, it is wisest to conform. (Oliver Goldsmith, ca 1760)

1 Introduction

1.1 Aims

This chapter investigates the semantic histories of five Proto Oceanic terms, *ikan, *pinayoda, *sisiq, *manuk and *manu-manuk, each of which is a candidate for the status of a high-level generic or ‘life form’ in the POc taxonomy of animals.1 In certain contemporary Oceanic languages reflexes of *ikan have a range of reference that encompasses fish and other large water-dwelling animals (cetaceans, dugongs, turtles and crocodiles), reflexes of *pinayoda encompass reef invertebrates, or sea animals other than fish and large water-dwelling animals, reflexes of *sisiq refer to gastropod (snail-like) shellfish, reflexes of *manuk refer to birds and bats, and reflexes of *manu-manuk to insects and other creepy-crawlies (spiders, centipedes, worms, etc.). However, in other Oceanic languages these etyma have reflexes with quite different ranges of reference. For example, in some cases the *manuk reflex includes not just birds and bats but all flying creatures, in others it includes all land-dwelling creatures or all creatures other than humans, in still others it includes humans, and there are

1 I am indebted to Frank Lichtenberk, John Lynch, Meredith Osmond, Malcolm Ross and Anna Wierzbicka for valuable comments on a draft of this paper, to John Lynch for pointing to additional Vanuatu and New Caledonian comparisons, and to Paul Geraghty, Frank Lichtenberk and the late Nigel Oram, for providing information about the generic terms for ‘fish’ in Standard Fijian, To’aba’ita and Motu, respectively.

some where it includes all objects. In many languages the _sisiq_ reflex refers just to a small
class of small gastropods (nerites and similar) while in others it includes all gastropods or all
shellfish.

The aim here is to determine, as far as possible, the range of reference of these five terms
in POc, their place in the taxonomy, and the nature of the changes that have occurred in
daughter languages. The task of reconstructing their semantic histories raises some questions
of more general interest: Are the variations in the meanings of major generics across daughter
languages random or do they follow an implicational scale, a natural sequence of semantic
extension or contraction? Why have such marked differences arisen in the semantic scope of
these terms? Can some of the changes be attributed, for example, to differences in the range
of animal life encountered by different communities?

1.2 Methodological preliminaries

Before we examine the Oceanic terms in question it is necessary to discuss some issues of
method and conceptual framework. The semantics of folk taxonomies is a notoriously tricky
domain, not one that one should enter without a map.

A first consideration is the nature of the analytic apparatus needed to make sense of folk
taxonomies and the task of choosing between competing frameworks. This leads into ques-
tions about how different kinds of classificatory terms differ in their semantic structure and
their role in the taxonomy. Another concern, of a more practical kind, relates to which kinds
of semantic information, which components of lexical meaning it is feasible to deal with when
trying to reconstruct the semantic history of classificatory terms. Finally, there is the problem
that most definitions of classificatory terms in Oceanic dictionaries, our main sources of data,
suffer from serious shortcomings.

1.2.1 What are taxonomies?

A well-formed taxonomy is a system of semantic relations between lexical units that has the
following properties:\(^2\) (i) Certain taxa stand in a class-inclusion or superordinate-hyponym
relation. Thus, the statement _X is a fox terrier_ unilaterally entails that _X is a dog_, which in turn
entails _X is an animal_. That is, _fox terrier_ is a hyponym of _dog_, which in turn is a hyponym
of _animal_. (ii) Certain lexical units stand in a relation of incompatibility or contrast. Thus the
statement _X is a fox terrier_ entails _X is not a labrador, alsatian or poodle_, and the statement
X is a dog entails _X is not a cat, seal or bear_. (iii) the hyponyms of a term _X_ are _natural
kinds_ of _X_. Thus, it can be said that _a fox terrier is a kind of dog_ and _a dog is a kind of
animal_. A natural kind typically has many defining features (see §1.2.2) but all other features
are subordinate to the one that defines its place in the taxonomy, the fact that it is a kind of
something (a sparrow is a kind of bird, a dog is a kind of animal, a trout is a kind of fish).

The relation implied by ‘natural kind’ is not identical to ‘class-inclusion’ or ‘hyponymy’.
Not all hyponyms are natural kinds. Some are ‘nominal kinds’, e.g. _spinstor, bachelor, mare,
eve, ram_. Unlike natural kinds, contrasts between nominal kinds can be readily defined,
approximately, in an analytic way in terms of just a few features, e.g. _bachelor = man who
has never married, spinster = woman who has never married, eve = adult female sheep,
ram = adult male sheep_. It follows that the semantic difference between nominal hyponyms

\(^2\)_The discussion that follows draws heavily on Cruse (1986) and Wierzbicka (1984, 1996).
of the same set can be expressed analytically, as e.g. the difference between bachelor and spinster or ram and ewe. It is not a dominant feature of nominal terms that they are kinds of something. Although one can say a spinster is a woman, a mare is a horse, a ram is a sheep it is questionable whether it makes sense to say a spinster is a kind of woman, a mare is a kind of horse, or a ram is a kind of sheep.

1.2.2 Defining natural kinds

Natural kinds cannot readily be defined analytically. For example, the difference between dog and bird cannot be reduced to one or two distinguishing features: the two differ in indefinitely many ways. It is not clear how one should answer a question like: What is the meaning of dog? Apart from mentioning that dogs are a kind of animal, should a definition say that they have four legs and a tail, are furry, are carnivorous, bark and howl, have a very keen sense of smell, are pack animals, that people have selectively bred them to create many breeds, and keep them as pets, and for hunting game, rounding up sheep and cattle, and guarding property, that they are not eaten (at least in English-speaking societies), and so on? What about the meaning of ‘bird’? Should a definition mention all and only the universally valid morphological attributes, that birds have feathers and two legs, wings (some only vestigial) and a beak, and that they lay eggs? Which if any behavioural characteristics should it mention: that birds typically fly (not all do), that they make nests (not all do), that they have diverse calls, that many male and female pairs mate for life, that they are typically wild creatures but some species are domesticated, and so on?

Dictionary-makers typically baulk at the task of defining all the things that may distinguish natural kinds and are content to pick out just a few salient characteristics. For example, The Macquarie Dictionary defines dog, in its primary sense, as ‘a domesticated carnivore, Canis familiaris, bred in a great many varieties’. The definition of cat is almost identical, save for the Latin name: ‘a domesticated carnivore, Felis domestica (or F. catus), widely distributed in a number of breeds’. And dictionary definitions of terms of folk generic and life-form rank largely reflect scientific knowledge, not folk knowledge. Macquarie defines bird as ‘any of the Aves, a class of warm-blooded vertebrates, having a body more or less completely covered with feathers, and the forelimbs modified so as to form wings by which means most species fly’. As Anna Wierzbicka has repeatedly pointed out, such definitions are quite unsatisfactory as an account of folk knowledge about what these kinds of animals are.

1.2.3 The taxonomic ranks and naming principles proposed by Berlin (1992)

Folk taxonomies must have at least two levels but can have many levels, as indicated by the sequence: berkshire > pig > animal > creature, or pinnacle floribunda > floribunda rose > rose > flower > plant. One way of distinguishing the levels is to refer to them as primary, secondary, tertiary, etc. or as first-order, second-order, third-order, etc.

Instead of speaking of levels in a folk taxonomy in this way, Brent Berlin and his associates propose that taxa at each level be given rank status in a way that broadly parallels the taxonomic ranks of Western biology (Berlin 1992, Berlin et al. 1973). Building on earlier work, Berlin (1992) also specifies some general principles of nomenclature. While the system of naming practices is distinct from the taxonomy, the two are systematically related so that we can often infer the taxonomic relations between particular taxa from the way they
are named. A key nomenclatural distinction is between *uninomials* (or *primary lexemes*) and *binomials* or (*secondary lexemes*). Binomials are multiword names in which one element modifies the head noun, and where the head noun can stand alone as a generic name, e.g. *rock crab, mud crab, hammerhead shark, white-pointer shark*. A uninomial consists of a single morpheme, such as *herring* or *perch*, or a compound or phrase that is idiomatic, such as the type of *hammerhead* or *leatherjacket*, where no element can stand alone as a generic term (there is no category of fish called *head* or *jacket*), or the type of *sea hare, sea cow* and *seahorse* (the creatures so named are not a kind of hare, cow or horse).

The following is a summary of the system of rank distinctions in folk taxonomies, and generalisations about nomenclature given in Berlin (1992).

Most taxa belong to one of three ranks: *life form, folk generic or folk specific*.

Life-form. A life-form is a taxon that (i) distinguishes a distinctive morphotype which (ii) includes many (sometimes hundreds) of lower order taxa which share the characteristic morphology and ecological adaptation of the type, (iii) is not included in any other taxon other than kingdom, and (iv) is named by a uninomial. Examples of English life-form taxa are *fish, bird, snake, tree* and *flower*. The nature of categories that rank as life-forms may vary across speech communities, usually in ways connected with regional differences in flora and fauna and in the ways of life of communities. For example, for people in the central Pacific, shellfish are a much more numerous and more important category than snakes, or even birds, but the reverse is the case in many regions of the world.

Folk generic. A folk generic (or folk genus) is a ‘natural’ category in several senses, one perceptual, the others linguistic. First, the members of this category are usually marked off from non-members by multiple characters of morphology and behaviour or ecological adaptation that will be evident to any close observer. Second, unlike folk species, the category is named by a uninomial rather than a binomial. Examples of English folk generics are *rose, oak, beech, blackbird, pig, dog, frog, toad, mullet, trout, whale, crocodile*. Third, the folk generic is the usual way of referring to a particular plant or animal if its identity is known. Depending on various factors, a folk genus may correspond to a single species in biological taxonomies, to a number of species or a genus, or to a number of genera or families. Many folk generics are subtaxa of life forms but Berlin recognises a category of unaffiliated generics, first-order taxa that do not belong to any life-form but are not themselves life-forms.

Folk species. A folk genus sometimes further divides into folk species (or folk specifics), usually just a few taxa which contrast in a limited number of features with other members of the generic. Such specifics are usually the lowest-level taxa. Berlin (1992) holds that folk species names usually consist of the generic name plus a modifier, e.g. *red mullet vs grey mullet, or mako shark vs hammerhead shark*. Bulmer (1970, 1974), however, finds that a fair number of animal folk species, among the Kalam people of the New Guinea highlands, are named by primary lexemes (uninomials).

Three other ranks are sometimes distinguished in folk taxonomies.

Kingdom. A single primary (first-order) taxon – one that subsumes all life-form taxa and other taxa in the relevant semantic domain or class. Names for taxa of kingdom rank will be uninomials. For some English speakers, whose perceptions have been influenced by scientific taxonomies, *plant* and *animal* qualify as kingdom rank taxa, subsuming various life forms. In vernacular speech, traditionally, these two terms have narrower meanings. However, in most societies, folk classifications of living things lack overt taxa of kingdom rank.
Intermediate. A taxon which (i) is a member of a life-form (and so is never a first-order taxon) and (ii) comprises a small number of folk generics that show marked similarities to each other and often correspond to botanical or zoological families. If an intermediate taxon has a name, it will be a uninomial. However, Berlin says that intermediate taxa are generally not named, i.e. they are usually ‘covert taxa’, whose unity is indicated by other means than sharing a class name. For some English speakers, horses, zebras and donkeys form such a covert category, as do hawks, falcons and eagles.

Varietal. Under certain conditions, folk species can divide into lower order taxa, contrasting in subtle ways with other varieties. Distinctions between varietal taxa mainly apply to domesticated plants and animals – and so may be motivated mainly by cultural considerations. The names are usually compounds.

For larger animals and some kinds of plants, at the level of the genus and often at the level of the species, the distinctions made by communities living close to nature tend to be similar to those made by Western biologists. The similarities at the genus/species levels are usually explained as follows. These categories are marked by many distinctive features and are as obvious to any close observer of nature as they are to highly trained biologists.

At higher levels the methods and motives underpinning folk and scientific classifications tend to diverge and therefore so do the categories. The higher you go, either in a folk taxonomy or a scientific taxonomy, the less the taxa are likely to conform to ‘natural kinds’. Western biologists aim to capture the evolutionary relationships of organisms, a concern peculiar to science. Ordinary people, on the other hand, impose higher order categories on cultural grounds, be they pragmatic or cosmological. Sometimes the grounds for grouping different kinds of organisms are broad likenesses in form and behaviour. For example, it is fairly common to find a taxon that subsumes both birds and bats, or both fish and whales. In other cases, social factors (e.g. ritual restrictions and taboos) and technological or economic factors (e.g. techniques used to obtain or process foods) peculiar to a society influence the grouping.

1.2.4 Taxonomic generics vs collectives

Wierzbicka (1984, 1996) has advanced methodological objections to certain claims made by anthropologists, linguists and psychologists about the nature and membership of categories in folk taxonomies. She points out that people’s intuitions about category membership can’t reliably be established by asking them simple questions like ‘Is X a kind of Y?’ or by asking them to sort cards with pictures. Instead you need to find out how people talk spontaneously about such matters and to apply a variety of linguistic tests designed to bring out people’s tacit knowledge.3

Wierzbicka has argued persuasively for a distinction between true generic taxonomic terms and collectives, a distinction that will prove to be relevant to our discussion of Oceanic generics. For her, collectives are not taxonomic terms, at least not in the same sense as true generics. She discusses the properties of English terms like animal, bird, fish and flower, in popular speech, that clearly mark them as being ‘super taxonomic categories’, or ‘life forms’. Each of these terms stands for kinds of things that are alike, a category based on perceptual similarities, something you can draw a picture of schematically, something you can count

3 Berlin (1992) and Wierzbicka (1994, 1996) argue strongly against the position taken by some commentators that a hierarchy of kinds is absent from or marginal to folk biological classifications.
individually. She contrasts taxonomic generics with collectives like *livestock*, *game (animals)*, *fruit*, *grass*, *vegetables*, *cutlery* and *furniture*. Unlike true generics, these don’t stand for kinds of things that are alike. A collective is a heterogeneous collection of kinds that share a common function or some other feature(s). Wierzbicka says that you can draw a generalised picture of a fish or bird but not a generalised picture of fruit or cutlery. One can have an exchange such as *Look at that colourful fish there? – Which one? – The one with yellow stripes*, but *Look at that big livestock there? – Which one? – The brown and white one*, is bizarre. You can’t count individual objects using a collective:

*I saw one fruit/livestock/furniture/cutlery.
I saw one fruit* is only acceptable in a more abstract sense: *I saw one kind of fruit*, not in the sense *I saw one individual fruit (e.g. one apple)*

This distinction between natural kinds and collectives will prove to be relevant in our discussion of Oceanic generics.

1.2.5 Problems inherent in the semantics of generics

For any generic term, the assumption that there is a single correct definition of its semantic range that can be uncovered by careful research is itself questionable. The fact is that members of a speech community often do not agree completely as to the scope of generics. The kind of variation is of the kind predicted by prototype theory (Rosch 1973, 1975a,b). Generally people agree on the membership of typical members of a class but disagree when it comes to marginal members. The definitions given in dictionaries tend to understate the amount of variation within the speech community.

Consider, for example, English speakers’ use of the term *fish*. The *Shorter Oxford English Dictionary (SOED)* makes a sharp distinction between popular and scientific definitions of this term.

Fish 1. In [popular] language, any animal living exclusively in water, including cetaceans, crustaceans, molluscs, etc. In scientific language any vertebrate animal provided with gills throughout life, and cold-blooded: the limbs, if present being modified into fins.

Johnson’s definition and Goldsmith’s observations, quoted at the head of this chapter, show the prevalence of this popular usage in 18th century England. However, a mere two-way contrast between popular and scientific usage is surely an over-simplification. A survey of several hundred Australian informants shows that while everyone agrees on including prototypical fish there is much variation in regard to what other creatures count as fish. Some English speakers exclude eels, sharks, rays, seahorses and certain other ‘atypical’ fish from this category while others include whales and dolphins and even crayfish and jellyfish.

A similar problem arises with ‘shellfish’. Most English dictionaries give definitions similar to the following, taken from the *SOED*:

Shellfish any animal living in water whose outer covering is a shell, whether testaceous, as an oyster, or crustaceous, as a crab.

The problem here is that for many native speakers of English, especially those who are not from the USA, *shellfish* refers only to edible molluscs with shells and does not include crabs, lobsters and prawns.

A further difficulty is that directly questioning informants about classification – ‘Are butterflies a kind of insect?’ ‘Are eels a kind of fish?’ – is likely to yield unreliable answers. While these are legitimate questions there are other, more reliable ways of getting at class membership. One such consists of spontaneous utterances that contain information
about class membership: ‘What a beautiful insect! Is it a beetle?’, ‘Kiwis are strange-looking birds’. Lexical evidence is another valuable source, e.g. is it possible, or usual for a referent to be named by a true binomial expression, consisting of a generic with an identifying modifier: *sulphur-crested cockatoo, rock cod, oak tree, white pine, grey wolf*? Unacceptability or unacceptability of particular logical relations is yet another useful test. Thus, *I saw cats and dogs* is an acceptable conjunction in English but *I saw animals and dogs* is not. All English speakers would probably accept *They netted ten fish and a turtle*, while rejecting *They netted ten fish, including two turtles*. But *They netted ten fish and two eels* or *They netted ten fish and two sharks* might yield diverse judgments.

It is important to recognize that speakers often distinguish two or more senses of generic terms, some with narrower reference, others with wider reference. English *animal* is an example. There are some contexts, in popular speech, where *animal* denotes a category that includes, roughly, mammals, four-legged reptiles and frogs but not birds, fish or invertebrates. There are other contexts where it includes all creatures other than humans. And there are still other contexts where it includes humans (*‘Humans are different from the rest of the animal kingdom’*).

1.2.6 A modest objective

Although I see the merit of Wierzbicka’s argument that definitions of a folk category should try to capture as fully as possible folk perceptions and knowledge about that category, the data to hand for Oceanic languages do not allow us to pursue such an objective (see §1.2.7). My concern with definitions in this chapter is more modest: to find the referential range of a category, the kinds of animals that speakers of a language include in it, where ‘kinds’ can be defined in biological terms (whether this be simply the species, genus, family, etc. recognised by biologists, or features of morphology or behaviour that allow us to identify biological categories, such as a folk taxon that consists of birds and bats).

This objective might seem straightforward enough. But it is not, for reasons outlined in the following section.

1.2.7 Shortcomings of dictionary definitions

For anyone wishing to compare taxonomies of flora and fauna in Oceanic languages a serious problem is the poor quality of definitions provided in dictionaries and other sources. Ideally, the taxonomies of a language should be inferable from information given in the dictionary.⁴

⁴ Almost fifty years ago Conklin (1962: 144) laid down a set of desiderata for dictionaries, especially for the provision of systematic information about folk taxonomies. (Conklin had bilingual dictionaries in mind but the same standards should apply to monolingual dictionaries.) Ideally, a dictionary should provide:

1. consistent marking of each entry as to its status as a lexical unit and taxon, its immediately subordinate taxa and superordinate taxon, and all coordinate taxa included with it in this next higher taxon…;
2. differential marking of translation labels and of definitions;
3. concise indication of distinctive attributes which define categories belonging to analysed lexical sets;
4. systematic cross-referencing to maximal taxa in all major subhierarchies, to referential synonyms, and to all units involved in categoric overlap; and
5. frequent use of structural charts and diagrams.
The definitions we find often betray the fact that the definer has not carefully investigated the range of reference of a term or variations in the way different speakers use that term. For example, many Oceanic dictionaries give a bare gloss, ‘general term for fish’, or simply ‘fish’, without mentioning which kinds of creatures are included. Such a simple gloss is unhelpful for two reasons. First, the meaning of the English term ‘fish’ is itself imprecise: as noted above, it does not have the same range for all native speakers of English. Second, if a dictionary simply defines term X as ‘fish’ we have no assurance that the dictionary-maker has systematically investigated the semantic range of X.

A slightly different sort of gap is exemplified by an entry in Dixon’s (1970) dictionary of Dobuan, a Papuan Tip language, which glosses $iyana$ as ‘fish, including alligators’. Leaving aside the detail that alligators but not crocodiles are found in New Guinea waters, we are left wondering what else besides fish and crocodiles counts as $iyana$. Lithgow’s dictionary of Muyuw, another Papuan Tip language, is a bit more informative, offering yin ‘fish, turtles, crocodiles, but not shellfish’. But again, we are not told whether, say, eels, cetaceans, dugongs, and octopus count as fish.

In the case of major generics, different sources for the same language often offer conflicting definitions. The standard dictionary of Motu (Lister-Turner and Clark 1954) glosses gwarume simply as ‘fish’. However, Nigel Oram, who looked into the matter in some detail, obtained a different and narrower definition of this term from his informants, namely ‘fish, excluding sharks, rays, eels, and also excluding cephalopods’ (Oram, field notes). Capell’s (1941) dictionary of Standard Fijian (based on the Bauan dialect of Eastern Fijian) glosses ika as ‘fish’, overlooking the fact that the Fijian term has a broader sense that includes turtles, dolphins and whales (P. Geraghty, pers. comm.).

Fox’s (1955) dictionary of Gela (Gela) defines iga as a class name for any kind of sea creature: ‘sea creature: fish, mollusc, crayfish, whale, squid, sea anemone, etc.’. However, in his study of Gela fishing the zoologist Simon Foale (1998) distinguishes two uses of iga: ‘bony and cartiligenous fish’ vs ‘all fish, whales, dolphins, dugongs, turtles, crocodiles’. Neither definition exactly matches Fox’s. (Foale’s definition of the second, extended sense does not include squid, (shelled) molluscs, crayfish or anemones.) Do such differences reflect variation among informants or less than exhaustive enquiry on the part of the authors, or a bit of both?

A further problem is that dictionaries, quite understandably, seldom provide a corpus of examples showing how a term is used in everyday discourse. Such a corpus would, among other things, help us decide whether a particular term is a true taxonomic generic rather than a collective.

With all these sobering considerations in mind, let us turn to the several POc terms and their reflexes.

2 POc *ikan

2.1 Introduction

POc *ikan, roughly glossable as ‘fish’, is an extremely well-supported reconstruction, which continues PAn *Sikan ‘fish’ and PMP *ikan ‘fish’ (Blust 1995). What is less clear is what kinds of creatures counted as *ikan for POc speakers, and/or whether *ikan had two distinct senses, one with narrower and the other with broader ranges of reference.
Table 8.1 Implicational scale of types that may be included in reflexes of *ikan

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>typical fish</td>
</tr>
<tr>
<td>(2)</td>
<td>1 + sharks and rays</td>
</tr>
<tr>
<td>(3)</td>
<td>2 + cetaceans (whales, dolphins) and dugongs</td>
</tr>
<tr>
<td>(4)</td>
<td>3 + eels</td>
</tr>
<tr>
<td>(5)</td>
<td>4+ turtles</td>
</tr>
<tr>
<td>(6)</td>
<td>5 + crocodiles</td>
</tr>
<tr>
<td>(7)</td>
<td>6 + cephalopods (octopus, squid, etc.)</td>
</tr>
<tr>
<td>(8)</td>
<td>7 + decapod crustaceans (crabs, crayfish, prawns and their relatives)</td>
</tr>
<tr>
<td>(9)</td>
<td>8 + other aquatic invertebrates (molluscs with shells, sea hares, nudibranchs, echinoderms, sea urchins, sea cucumbers, jellyfish, etc.)</td>
</tr>
</tbody>
</table>

All Oceanic languages have a generic term that can be translated roughly by English ‘fish’ and typically this term is a reflex of POC *ikan. However, the scope of this generic varies considerably from language to language. A first comparison of definitions across the group indicates that if ‘typical fish’ are taken as the core members of the class, extensions to include other kinds of creatures can be ordered along an implicational scale roughly as in Table 8.1, bearing in mind that while most creatures of types (1-9) occur throughout much of the Pacific, certain animals, such as dugongs and crocodiles, have more restricted ranges.

Thus, the hypothesis is that if a language includes only one other group of animals in the generic for ‘fish’ it will generally be sharks and rays and the next group to be included will usually be cetaceans together with dugongs (if present) and after that will come eels, then turtles, and so on. Let us refer to those generics whose semantic scope is restricted to (1) as ‘grade 1’, those restricted to (2) as ‘grade 2’, and so on.

If this hypothesis were correct it would mean that the definition of Dobuan iyana as ‘fish, including alligators’ entails that sharks, rays, eels, cetaceans, turtles and cephalopods are also subsumed under iyana. In the same vein, the definition of Muyuw yin as ‘fish, turtles, crocodiles, but not shellfish’ implies that eels, cetaceans, dugongs, and octopus count as yin.

The following discussion compares dictionary definitions of reflexes of POC *ikan for various groups of Oceanic languages. These comparisons are generally followed by tables that make the dictionary definitions directly comparable by reformulating them in terms of the presence or absence of particular classes of referents.

2.2 Reflexes of *ikan

2.2.1 Central Pacific

Relatively detailed definitions of reflexes of *ikan are available for many Central Pacific languages.

Fijian and Rotuman

Rotuman *iʔa* ‘fish, turtles, whales, alligators, etc but not crabs or shellfish, etc’
Wayan
(W. Fijian)
ika
(1) ‘typical fish, true fish. This category includes sharks, rays and eels. syn. *ika dū* “true fish”’,
(2) ‘fish, including cetaceans, turtles and, for many speakers, octopus and squid’

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ika-bula</td>
<td>‘turtle (generic)’</td>
<td></td>
</tr>
<tr>
<td>ika dū</td>
<td>‘the green turtle, Chelonia mydas’ (lit. ‘true fish’)</td>
<td></td>
</tr>
</tbody>
</table>

Bauan
‘fish, including eels, plus turtles, cetaceans, cephalopods’ (P. Geraghty pers. comm.)

Polynesian

Tongan
ika
‘fish, turtles, whales but not eels, cuttlefish or jellyfish’

ika mui
‘male turtle’

ika matu
‘tender part of turtle near front paddles’

Niuean
ika
‘fish, whales and dolphins’

Niutoputapu
ika
‘fish (including eels), turtles, cetaceans, and cephalopods’

Tahitian
iʔa
‘fish, porpoise, whale, turtle, octopus’

Hawaiian
iʔa
‘fish or any marine animal, e.g. eel, oyster, crab, whale’

Ifira-Mele
ika
‘fish, whale, porpoise but not turtles, eels or octopus’

Tikopia
ika
‘general category with primary reference to fish but including allied creatures, e.g. turtle, cetaceans’. [turtles are classified both as *ika* and as *paka* ‘crabs and other shelled creatures’]

Rennellese
ika
‘fish, turtle’

Samoan
iʔa
‘fish plus turtles and whales (and perhaps others)’ (Milner)
‘the general name for fishes (except the bonito), molluscs and crustaceans’ (Pratt)

iʔa-mānu
‘whale’ (lit. ‘floating fish’) (Milner)

iʔa-sā
‘turtle’ (lit. ‘sacred fish’) (Milner, Pratt)

iʔa-vai
(1) ‘eel’, (2) ‘fresh-water fish’ (Pratt)

Tokelauan
ika
‘fish, turtle’

ika-fafine,
‘female turtle’

ika-fua

ika-tagā
‘male turtle’

The only Central Pacific dictionary that distinguishes between a narrow sense of the *ikan* reflex, including only ‘true fish’ and a broader sense, including other large marine creatures, is Wayan Fijian. The Wayan dictionary contains these example sentences: *Na sulua na ika ni qwara; ei tam tia ika dū.* ‘The octopus is a fish living in holes; it is not a true fish. *Na ika dū ei vakalaulau.* True fish have tails.’

The semantic range exhibited by these definitions is summarised in Table 8.2. Here and in later tables the following conventions are used to indicate whether or not the class of referents listed at the head of each column is included in the meaning: ‘+’ = included, ‘–’ = excluded, ‘(+)’ = there is disagreement among speakers, and/or certain members of the class are included, others excluded, and ‘?’ indicates that sources do not say whether or not the referent is included.
Table 8.2 Semantic range of reflexes of *ikan in Central Pacific languages

<table>
<thead>
<tr>
<th></th>
<th>typical fish</th>
<th>shark, ray</th>
<th>whale, dolphin</th>
<th>eel</th>
<th>turtle</th>
<th>octopus, squid</th>
<th>crustacean</th>
<th>shelled mollusc</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotuman</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>–</td>
<td>–</td>
<td>5 or 6</td>
</tr>
<tr>
<td>Fijian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bauan</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>6</td>
</tr>
<tr>
<td>Wayan 1.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td>–</td>
<td>–</td>
<td>5 or 6</td>
</tr>
<tr>
<td>Wayan 2.</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>2, 4</td>
</tr>
<tr>
<td>Polynesian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tongan</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>4</td>
</tr>
<tr>
<td>Niuean</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3 or 4</td>
</tr>
<tr>
<td>Niuatopu.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>6</td>
</tr>
<tr>
<td>Tahitian</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>6</td>
</tr>
<tr>
<td>Hawaiian</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>8</td>
</tr>
<tr>
<td>Samoan</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>?</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3-5</td>
</tr>
<tr>
<td>Tokelauan</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>?</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>5</td>
</tr>
<tr>
<td>Tikopia</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>?</td>
<td>–</td>
<td>–</td>
<td>3</td>
</tr>
<tr>
<td>Rennellese</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>?</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>5</td>
</tr>
<tr>
<td>Ifira-Mele</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3</td>
</tr>
</tbody>
</table>

Note: Crocodiles or dugongs are not present in Triangle Polynesian or Fijian waters, although they are known to some Polynesian Outlier communities in Melanesia.

Table 8.3 Semantic range of *ikan in PPn and PCP

<table>
<thead>
<tr>
<th></th>
<th>typical fish</th>
<th>shark, ray</th>
<th>whale, dolphin</th>
<th>eel</th>
<th>turtle</th>
<th>octopus, squid</th>
<th>crustacean</th>
<th>shelled mollusc</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPn</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>+</td>
<td>(+)</td>
<td>–</td>
<td>–</td>
<td>5 or 6</td>
</tr>
<tr>
<td>PCP</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td>–</td>
<td>–</td>
<td>5 or 6</td>
</tr>
</tbody>
</table>
The Polynesian languages cited here agree fairly well in their range of referents. Leaving aside cases where the definition is uninformative on this point, reflexes of *ikan always include not only typical fish but also sharks, rays and cetaceans. Most (six out of eight) also include turtles. Most (all but one) exclude crustaceans and molluscs with shells. The main area of disagreement concerns eels (three languages include them, three exclude them) and cephalopods (three include them, six exclude them). The most reasonable historical inference is that Proto Polynesian (PPn) *ika embraced sharks and rays, cetaceans and turtles. The status of eels and cephalopods in the PPn taxonomy is less certain.

Rotuman and the Fijian languages agree in including eels and cephalopods, as well as sharks and rays, cetaceans and turtles, and in excluding crustaceans and molluscs with shells. Table 8.3 proposes likely semantic profiles for PPn and Proto Central Pacific.

2.2.2 Micronesian

Details follow of reflexes of *ikan in five Micronesian languages for which quite informative definitions are available. The semantic range exhibited by these definitions is summarised in Table 8.4.

<table>
<thead>
<tr>
<th>Language</th>
<th>Word</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiribati</td>
<td>ika</td>
<td>‘fish: all swimming marine creatures including turtles, dugong, whales and porpoises, but not squid or octopus’</td>
</tr>
<tr>
<td>Marshallese</td>
<td>ek</td>
<td>‘fish’ (Abo et al. 1976) However, in the English-Marshallese finder list, under ‘fish’, the authors list terms for ‘dolphin’, ‘giant octopus’, and ‘jellyfish’ as well as ‘shark’, ‘eel’, but not ‘whale’ or ‘turtle’</td>
</tr>
<tr>
<td>Woleaian</td>
<td>ixar</td>
<td>‘fish’ (Sohn and Tawerilmang 1976). However, in the English–Woleaian finder list, under ‘fish’, the authors list terms for ‘dolphin’, ‘whale’ as well as ‘eel’, ‘shark’ and ‘ray’, though not ‘turtle’, ‘octopus’ or ‘squid’.</td>
</tr>
<tr>
<td>Puluwatese</td>
<td>yīk, yikan</td>
<td>‘fish, porpoises and whales but not squid’</td>
</tr>
</tbody>
</table>

Table 8.4 Semantic range of *ikan in Micronesian languages

<table>
<thead>
<tr>
<th>Language</th>
<th>Typical fish</th>
<th>Shark, ray</th>
<th>Whale, dolphin</th>
<th>Eel</th>
<th>Turtle</th>
<th>Octopus, squid</th>
<th>Crustacean</th>
<th>Shelled mollusc</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kiribati</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>5</td>
</tr>
<tr>
<td>Marshallese</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>4, 6</td>
</tr>
<tr>
<td>Carolinian</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>4+</td>
</tr>
<tr>
<td>Woleaian</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>?</td>
<td>–</td>
<td>–</td>
<td>4+</td>
</tr>
<tr>
<td>Puluwatese</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>?</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3+</td>
</tr>
</tbody>
</table>
All the languages sampled typically exclude turtles, molluscs and crustaceans. Some definitions include eels and cetaceans but others are indeterminate.

2.2.3 Southeast Solomonic and Northwest Solomonic

Informative definitions are available for a few Oceanic languages of the Solomon Islands. Among the following, all belong to the SE Solomonic group except Marovo, which is NW Solomonic. For each of Lau and Gela, two definitions are given, from different sources.

Arosi \(iʔa \) ‘fish, including sharks, rays; also porpoises, and possibly other marine animals’

Lau \(iʔa \) ‘fish, any sea creature’ (Fox 1955)

Lau \(iʔa \) (1) ‘typical fish, sharks and rays’, (2) ‘extended to include large marine animals such as porpoises, whales, dugongs’ (Akimichi)

To’aba’ita \(iʔa \) ‘fish, sharks, rays, dolphins, whales, dugongs, turtles’ (F. Lichtenberk pers. comm.)

Gela \(iyə \) ‘sea creature: fish, mollusc, crayfish, whale, squid, sea anemone, etc.’ (Fox)

Gela \(iyə \) (1) ‘bony and cartiligenous fish’, (2) ‘all fish, whales, dolphins, dugongs, turtles, crocodiles’ (Foale)

Marovo \(iyana \) ‘generic for all free-swimming creatures, e.g. fish, eels, stingrays, dolphins, whales, squid, jellyfish’

It can be seen that the witnesses largely agree in including sharks, rays, eels, turtles, cephalopods and crocodiles, virtually all free swimming aquatic creatures. Fox’s definitions for Lau and Gela are extreme in including all marine organisms.

2.2.4 Vanuatu

There are few informative definitions for reflexes of *ikan in Vanuatu languages.

Mota \(iyə \) ‘fish’

<table>
<thead>
<tr>
<th>Table 8.5</th>
<th>Semantic range of *ikan in Solomon Islands languages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>typical</td>
</tr>
<tr>
<td>Lau (Fox)</td>
<td>+</td>
</tr>
<tr>
<td>To’aba’ita</td>
<td>+</td>
</tr>
<tr>
<td>Gela (Fox)</td>
<td>+</td>
</tr>
<tr>
<td>Marovo</td>
<td>+</td>
</tr>
</tbody>
</table>
Table 8.6 Semantic range of ‘fish’ terms in Vanuatu languages

<table>
<thead>
<tr>
<th>Language</th>
<th>typical fish</th>
<th>shark, ray</th>
<th>whale, dolphin</th>
<th>eel</th>
<th>turtle</th>
<th>octopus, squid</th>
<th>crustacean</th>
<th>shelled mollusc</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE Ambae</td>
<td>+</td>
<td>(+)</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>3</td>
</tr>
<tr>
<td>Raga</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>?</td>
<td>–</td>
<td>–</td>
<td>3</td>
</tr>
<tr>
<td>Anejoññ</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>7</td>
</tr>
<tr>
<td>Paamese</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>8</td>
</tr>
</tbody>
</table>

NE Ambae *iya* ‘typical fishes, rays and dolphins, but not sharks and whales (which are grouped together), eels or cephalopods’ (C. Hyslop, pers. comm.)

Raga *ixe* ‘fish, including whales and porpoises but not eels, sea snakes, octopus, squid, cuttlefish, jellyfish or balolo worms’

cf. also:

Anejoññ *namu* ‘fish, including sharks, eels, cetaceans, turtle, octopus and squid, and crustaceans but not molluscs with shells’ (J. Lynch pers. comm.)

Paamese *mesau* (1) ‘fish (syn. *ai*)’, (2) ‘any sea dweller incl. turtles, dolphins, shellfish’

Tamambo *manji tarusa* ‘fish and shellfish’ (*manji* ‘animal, including fish and birds’, *tarusa* ‘sea’)

Leaving aside the under-informative Mota and Tamambo definitions, we get Table 8.6.

2.2.5 The Admiralties

Definitions are given for *ikan* reflexes in four Admiralties languages. The initial *n*- they show is a reduced form of the POc article *na*, which has fused with the following noun.

Titan *nii* (1) ‘fish’
 (2) ‘fish, porpoise, dugong, turtle, crocodile’

Lenkau *nik* ‘fish, porpoise, whale, turtle, crocodile’

Penchal *nii* (1) ‘fish’
 (2) ‘fish, turtle, porpoise, whale, octopus’

Loniu *ni* ‘general term for fish’

Discarding the Loniu definition as under-informative, we get the comparative breakdown in Table 8.7. It can be seen that the definitions for Titan and Penchal agree in including sharks, rays, cetaceans and turtles, but disagree over cephalopods.
Table 8.7 Semantic range of *ikan in Admiralties languages

<table>
<thead>
<tr>
<th></th>
<th>typical fish</th>
<th>shark, ray</th>
<th>whale, dolphin</th>
<th>eel</th>
<th>turtle</th>
<th>crocodile</th>
<th>octopus, squid</th>
<th>crustacean</th>
<th>mollusc</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Titan</td>
<td>+</td>
<td>+</td>
<td>+ (+)</td>
<td></td>
<td>+</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Lenkau</td>
<td>+</td>
<td>+</td>
<td>- (+)</td>
<td></td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-</td>
<td>2, 4</td>
</tr>
<tr>
<td>Penchal</td>
<td>+</td>
<td>+</td>
<td>+ (+)</td>
<td></td>
<td>+</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>-</td>
<td>5, 7</td>
</tr>
</tbody>
</table>

2.2.6 Western Oceanic

Of the Western Oceanic reflexes that follow, only the definitions for Kilivila, Muyuw and Motu are reasonably informative. The latter are all Papuan Tip languages. It can be seen from Table 8.8 that two of the three Papuan Tip witnesses agree in including sharks, rays, eels and crocodiles but disagree over cetaceans and turtles.

North New Guinea
- Manam *ika* ‘fish’
- Yabem *i* ‘fish’

Papuan Tip
- Dobuan *iyana* ‘fish, including alligators’
- Kilivila *yena* ‘fish, including sharks, rays and eels, but excluding aquatic mammals, turtles or cephalopods’
- Molima *iyana* ‘fish’
- Muyuw *yin* ‘fish, turtles, crocodiles, but not shellfish’
- Motu *gwarume* ‘fish, excluding sharks, rays, eels and also cephalopods’
 (N. Oram field notes)

Meso-Melanesian
- Tolai *en* ‘fish’
- Nakanai *ia* ‘fish’
- Roviana *iyana* ‘generic name for fish’

Table 8.8 Semantic range of *ikan in Papuan Tip languages

<table>
<thead>
<tr>
<th></th>
<th>typical fish</th>
<th>shark, ray</th>
<th>whale, dolphin</th>
<th>eel</th>
<th>turtle</th>
<th>crocodile</th>
<th>octopus, squid</th>
<th>crustacean</th>
<th>mollusc</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kilivila</td>
<td>+</td>
<td>+</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>?</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>2, 4</td>
</tr>
<tr>
<td>Muyuw</td>
<td>+</td>
<td>+</td>
<td>--</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>?</td>
<td>--</td>
<td>–</td>
<td>6</td>
</tr>
<tr>
<td>Motu</td>
<td>+</td>
<td>–</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>1</td>
</tr>
</tbody>
</table>
2.3 Proto Oceanic *ikan 1 and *ikan 2

There is reason to think that POc *ikan was polysemous, having a narrower sense, roughly ‘typical fish’ and a broader sense, which included various other aquatic animals. Among our sources, such a distinction is made in just a few contemporary languages (chiefly Wayan Fijian, Gela and Lau of SE Solomonic, and Titan and Penchal of the Admiralties) but it is also tacitly present in the descriptions of certain Micronesian languages.

As to a broader sense, if only the more detailed dictionary definitions are considered, we find that in a high proportion of languages across different major subgroups the reflex of *ikan refers to sharks and rays, eels, cetaceans and turtles, and also to dugongs and crocodiles in places where these animals are present. I conclude that this was also the case in POc; that is, *ikan had at least grade 5 scope. Turtles were ‘fish’ in POc. The status of octopus and squid is less clear. Other kinds of water-dwelling invertebrates, such as molluscs in shells and crustaceans, have much weaker claims for inclusion. The balance of the evidence suggests that while free swimming creatures with bones were *ikan, invertebrates that crawl, burrow or stick to rocks probably weren’t. However, in a few languages (Lau, Gela, Marovo) the scope of *ikan has been widened to include all free swimming sea creatures. In Lau and Gela it may been extended to all marine (and presumably freshwater) creatures (grade 7), although different sources are in conflict on this point. We must allow that in some Oceanic languages the semantic range of *ikan has reduced to grade 4, 3 or 2.

The data loosely support the implicational scale given in Table 1. Some simplifications may be in order. For example, among languages spoken where both crocodiles and turtles are common, no language is known to include turtles but to exclude crocodiles or vice versa. Thus, categories 6 and 7 can perhaps be merged. Only one language in the sample, Anejohn, includes crustaceans but excludes shelled molluscs, so an argument can be made for merging categories 8 and 9. However, we have little information about the status of other marine invertebrates included in category 9, such as jellyfish and sea hares.

Why do speakers of various Oceanic languages (like people in many other places) place certain other kinds of animals in the same class as typical fish? Most likely the reasons were diverse. Some non-fish creatures look and behave rather like fish, e.g. whales, dolphins and dugongs to some extent resemble fish in the way they swim and in being completely aquatic. But what about turtles? Apart from being free-swimming bony animals that spend a lot of time at sea, turtles do not look or behave like fish. What they have in common with certain fish, perhaps, is that everywhere in the Pacific turtles are prized game, caught at sea. That leaves crocodiles, which resemble sharks in being fearsome creatures but otherwise share little in common with fish or turtles other than being free-swimming bony creatures.

At any rate, the two senses of *ikan reflexes pose a problem for Berlin’s system of taxonomic ranks. If the ‘typical fish’ category counts as a life form, what is the status of extended categories such as ‘all water creatures’ or ‘all creatures that are free-swimming’ or ‘typical fish, eels, cetaceans, turtles and crocodiles’? Clearly, categories that contain creatures of such diverse appearance do not fit well with Berlin’s requirement (§1.2.3) that members of the same life form taxon share a distinctive morphotype or with Wierzbicka’s analogous requirement (§1.2.4) that one should be able to draw a generalized picture of the type. In order
to convince Wierzbicka that in a language L, the extended sense of \(*ikan \) reflexes, encompassing turtles, crocodiles, dolphins, etc., is a true major generic in the same way that the narrower, sense applying to ‘typical fish’ is, we would have to show that speakers of L use the extended generic not just as a collective but also to refer to individual turtles, crocodiles and dolphins, e.g. ‘See that ikan there. It’s a turtle.’ and ‘We caught ten ikan and two of them were turtles.’ Unfortunately, this kind of data is almost completely lacking for the languages in our sample.

3 POc \(*pinayoda \)

More light might be shed on the scope of POc \(*ikan \) if it could be shown to contrast with another generic having a complementary meaning. There is a candidate. Clark (1991) provides an insightful reconstruction of the history of a POc term, \(*pinayoda \), that referred to a class of sea creatures that evidently stood in contrast to \(*ikan \). The following discussion is based largely on his account.

Dictionaries of some Polynesian languages explicitly mention a two-way contrast between a reflex of PPn \(*ika \), denoting fish and other large aquatic vertebrates such as dolphins and turtles and a term, reflecting PPn \(*fiŋota \), that denotes forms of sea life other than \(*ika \), but especially molluscs and other invertebrates found on the reef. Compare, for example, the Tongan and Samoan entries in the following comparison:

Polynesian

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tongan</td>
<td>fiŋota</td>
<td>‘sea creature other than ika (fish, turtles, etc.) especially shellfish, but also crustaceans, cephalopods, jellyfish, eels, sea-snakes, sea cucumbers, starfish, seaweed’</td>
</tr>
<tr>
<td>Samoan</td>
<td>fiŋota</td>
<td>‘general term for sea animals except fish, cetaceans and turtles, especially molluscs, crustaceans, echinoderms and sea cucumbers’</td>
</tr>
<tr>
<td>Niuatoputapu</td>
<td>fiŋota</td>
<td>‘shelled marine animals that creep or crawl: crustacea, molluscs and echinoderms’</td>
</tr>
<tr>
<td>East Futuna</td>
<td>fiŋota</td>
<td>‘coquillage’ [molluscs with external shells]</td>
</tr>
<tr>
<td>Tokelauan</td>
<td>fiŋota</td>
<td>‘general term for shellfish’</td>
</tr>
<tr>
<td>Ifira-Mele</td>
<td>fiŋota</td>
<td>‘shellfish’ [molluscs with external shells]</td>
</tr>
<tr>
<td>Takuu</td>
<td>fiŋota</td>
<td>‘various types of shellfish and seafoods gathered by women’</td>
</tr>
</tbody>
</table>

Cognates outside Polynesian are scarce, except in Papuan Tip languages. In the following, \(g \) for POc \(*ŋ \) in Dobuan and Molima is unexpected (but regular in Kilivila).

Papuan Tip

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dobuan</td>
<td>igoda</td>
<td>‘shellfish’</td>
</tr>
<tr>
<td></td>
<td>igo-igoda</td>
<td>‘any inedible shellfish’</td>
</tr>
<tr>
<td></td>
<td>lo-igoda</td>
<td>‘to gather shellfish’</td>
</tr>
<tr>
<td>Molima</td>
<td>igoda</td>
<td>‘to collect shellfish’</td>
</tr>
<tr>
<td>Kilivila</td>
<td>vigoda</td>
<td>‘shellfish (live, or shell only)’</td>
</tr>
</tbody>
</table>
A problem with many of these definitions is that for some English speakers the term ‘shellfish’ refers only to molluscs with shells while for others it also includes crustaceans. There is reason to think that the authors of the dictionary definitions cited here generally had in the mind the former, narrower definition.\(^5\)

Clark argues convincingly that PPn *fiŋota and Papuan Tip vigoda, igoda are reductions of POc *p-in-ayoda, the nominalization of a verb, *payoda, by means of a well-attested nominalising infix *-in-.\(^6\) The primary sense of *payoda was ‘to gather seafood (other than fish) on the reef’ with the additional sense ‘to fish, catch fish’. This verb is widely attested in Oceanic. Selected examples are given below. In some witnesses, especially in Western Oceanic, POc *ŋ is unexpectedly reflected as a stop, g.

\begin{itemize}
\item **Meso-Melanesian**
\begin{itemize}
\item Teop *yagana* ‘to fish, (s) fishing’
\end{itemize}

\item **SE Solomonics**
\begin{itemize}
\item Bugotu *vayoda* ‘hunt for shellfish on the reef’
\end{itemize}

\item **Micronesian**
\begin{itemize}
\item Marshallese *yaged* ‘go fishing’
\end{itemize}

\item **North and Central Vanuatu**
\begin{itemize}
\item Mota *vajona* (v) ‘catch fish with a line, get shellfish’, (v) ‘things got to eat on the reef or by fishing, things for a relish to go with vegetable food’
\item Namakir *ba-vayot* ‘to fish’
\item Nguna *pa-vayoda* ‘to fish, to gather shells’
\item Paamese *vajor* ‘gather shellfish on reef’
\item Anejom̃ *(a)hanej* ‘forage on the reef’
\end{itemize}

\item **Central Pacific**
\begin{itemize}
\item Rotuman *hanota* ‘to fish, fishing excursion, shoal of certain fish’
\end{itemize}

\item **Polynesian**
\begin{itemize}
\item Tongan *faaŋota* ‘to fish or search for any kind of fiŋota’
\item Niuean *fanota* ‘gather shellfish on the reef’
\item Samoan *faaŋota* ‘to fish; fishing’
\item Rennellese *hanota* ‘to fish or gather shells, especially by women on the reef’
\end{itemize}

\end{itemize}

\(^5\) One reason is that the authors of the dictionaries concerned are from Australia and NZ, where most people understand shellfish to refer just to molluscs with shells (Pawley 2004).

\(^6\) *payoda, in turn, was probably diachronically a morphologically complex verb, reflecting the PMP prefix *paN*- ‘actor focus verb derivative’ plus a root, where *N* represents a nasal consonant whose point of articulation was homorganic with and replaced the initial consonant of the root. Compare POc *kan-i ‘to eat sth.’ and *pay-an ‘to eat (INTR)’ and other examples in Ross (1998:29-30). This suggests that *payoda was an intransitive verb, one that referred to the general act of gathering seafood on the reef but could not be used to single out particular things gathered. The root in this verb was most likely POc *koda or *goda *(v) eat raw seafood (flesh of fish or molluscs)’, *(s) raw seafood* (Geraghty 1983, Lichtenberk 1994), with PMP antecedent *ge(n)itaq (Blust 1972).
A few languages retain a reflex of *pinagoda in which the infix is transparently preserved.

Meso-Melanesian

Tolai _winagonoi_ ‘generic name for sea-shells’

North and Central Vanuatu

Nguna _vinagoda_ ‘shell, shellfish’

Can we conclude that POc *pinagoda was a major generic, a life-form of the same rank as *ikan? Almost certainly not. Clark concludes that *pinagoda was probably not a biological taxon in the strict sense but a collective, a term for a diverse category of things, namely ‘seafood gathered on the reef’ in which shellfish, i.e. molluscs, were the focal members. Unfortunately, sources for contemporary Oceanic languages seldom provide discourse examples to show how speakers talk about reflexes of *pinagoda. Whenever examples are given they show the noun being used to refer to a non-specific entity, an undifferentiated collectivity. Given the heterogeneity of the types of edibles subsumed under this term it would be surprising if it behaves, grammatically, as anything other than a collective.

Clark remarks that in some contemporary Oceanic languages *pinagoda reflexes appear to have become a biotaxon, specifically a generic for shellfish. This has happened in at least two Polynesian languages (East Futunan and Tokelauan), one Vanuatu language (Nguna), and two Papuan Tip languages (Dobuan and Kilivila). However, as sources do not give examples showing how speakers of these languages use the shellfish generic we cannot be sure whether is a genuine life-form taxon or a collective.

4 POc *sisiq*

Oceanic speech communities that have access to reefs and beaches typically distinguish many kinds of molluscs. Speakers of Wayan Fijian, for example, have approximately 140 names for kinds of bivalve and gastropod shellfish, of which about 100 are gastropods. This is a domain, then, where one might expect to find one or more high-order taxonomic categories in Oceanic languages, a point made by Clark (1981).

We have already seen that a reflex of *pinagoda ‘seafood gathered on the reef’ has developed into a generic for shellfish in Dobuan, Kilivila, Tolai and Nguna, as well as in certain Polynesian languages. Clark (1981:268, 1991:79) also cites, as Polynesian examples of a generic that encompassed both bivalves and gastropods, Marquesan (Ua Pou dialect) _puukava_, Tahitian _puu_ and _puupuu_, Rennellese _hat ?atua_, and East Futuna and Tokelauan _figota_.

However, no widespread cognate set has been found that consistently serves as a general name for shellfish. In fact, most Oceanic languages do not have such a taxon. It is more common to find a generic that refers to edible gastropods, or at least to a large class of edible gastropods, and a generic that refers to a large class of bivalves. But, once again, hardly any such terms have widespread cognates.
Perhaps the strongest candidate for a POc generic in this domain is *sisiq, which may have had variants *siseq and/or sisuq.\(^7\) Reflexes of *sisiq vary greatly in range of reference across Oceanic languages.

North New Guinea

- **Takia**
 - sisei
 - ‘generic term for all varieties of sea shells’

Papuan Tip

- **Dobuan**
 - sisi-yara
 - ‘a bivalve, *Asaphis dichotoma*’
 - sisi-we
 - ‘common whelk’

- **Molima**
 - sisi-qa
 - ‘a brown bivalve, small and edible, found in tidal flats’

- **Motu**
 - dudu
 - ‘name of a shellfish’ (*i > u unexpected)

- **Sinaugoro**
 - dudu
 - ‘cone shell’ (*i > u unexpected)

Meso-Melanesian

- **Nakanai**
 - e-sisi
 - ‘a shellfish’

- **Roviana**
 - sise
 - ‘general name for a number of small shells’

Southeast Solomonic

- **’Are’are**
 - sisi
 - ‘a shellfish’
 - sisi- ‘first element in compound names for certain molluscs, e.g. sisi-nanara, sisi-nikau’

- **Arosi**
 - sisi- ‘first element in compound names for certain molluscs, e.g. sisi-apir ‘limpet’, sisi-nahu ‘small gastropod sp. in streams’

- **To’aba’ita**
 - sisi- ‘first element in compound names for a few mollusk species, e.g. sisi-afufu, sisi-ʔeiria

- **Lau**
 - sisi-afufu
 - ‘mollusc sp.’

- **Gela**
 - hihi-vuhi
 - ‘freshwater snail sp., *Nerita brevispina*’

North and Central Vanuatu

- **Tolomako**
 - sise, sisi
 - ‘shellfish’ (scope uncertain)

- **Mota**
 - sese
 - ‘a smooth shell, turris; in which the gatou ‘hermit crab’ lives

- **NE Ambae**
 - hihe
 - ‘*Nerita sp.*’

- **Raga**
 - hiha
 - ‘sea snail, winkle’

- **Uripiv (na)ses**
 - ‘periwinkle (?)’

- **SE Ambrym**
 - ses
 - ‘shellfish of family Neritidae’

- **Nakanamanga**
 - siisa
 - ‘snail, incl. nerites (*sisakaro*)’
 - sususa
 - ‘maculated moon snail, periwinkles, mitres’

- **S Efate**
 - ses
 - ‘nerite’

New Caledonia

- **Cèmuhî**
 - ti
 - ‘generic term for gastropods’

- **Fwâi**
 - tʰik
 - ‘trochus, but used generically for gastropods’

- **Nemi**
 - tʰik
 - ‘trochus, but used generically for gastropods’

\(^7\) The sole internal Oceanic evidence for reconstructing final *q resides in New Caledonian reflexes. North and Central Vanuatu languages often reflect *siseq and a few point to *sisaq.
Wereturtles fish in Proto Oceanic?

Fijian and Rotuman

Bauan siði (1) ‘Trochus spp.,’
 (2) ‘first element in various compounds naming kinds of gastropods and a few bivalves’

Wayan ðiði (1) ‘Generic for (i) gastropod molluscs (Gastropoda) with external shells, i.e. univalve or snail-like shellfish and (ii) chitons (Amphineura) and rock oysters, which resemble typical gastropods in that they stick to rocks and/or that the shell is not hinged.’
 (2) ‘In a limited range of contexts, a generic for all molluscs with external shells’

Rotuman sisi ‘edible shell-fish, the periwinkle’

Polynesian

Niuean hihi ‘snail (generic), usu. first element in compound names for certain gastropods’, e.g. hihi Afelika, ‘African snail’, hihi tea ‘a seasnail’

Hawaiian hihi/wai ‘grainy snail, Neritina, in both fresh and brackish water, eaten’

Samoan sisi ‘name given to small snails in general’ (Milner); ‘freshwater molluscs’ (Pratt)
 sisi-tai ‘saltwater winkles’ (Pratt)
 sisi-vai ‘freshwater molluscs’ (Pratt)
 sisi-vao ‘landsnails’

Futunan sisi ‘small shellfish spp., Neritidae and Naticidae’

Uvean hihi ‘kind of shellfish, Janthinidae and Neritidae’

Tikopia sisi ‘marine and land snails incl. Melampus and Nerita spp.’

Mere-Ifira sisi ‘small snail (nerites and others of similar shape)’

Rennellese sisi ‘edible nerite shells’

Nukuoro sisi ‘mollusc, Neritidae spp.’

The semantic range of these terms may be arranged in a scale as shown in Table 8.9. The semantic ranges of reflexes of *sisiq in better documented Oceanic languages are shown in Table 8.10.

Has *sisiq expanded its range of reference from domains (1) or (2), or did it already have wider scope in POc? Was it already polysemous in POc, with both a broad and a narrow application?9

About 50 families of gastropods or snail-like molluscs, comprising hundreds of genera, are found in the Indo-Pacific region. In almost all languages where the dictionary definitions

8 Pratt lists several compounds that refer to subtaxa of sisi: sisi-loaloa, sisi-mataivai, sisi-tānoa, sisi-tui.

9 For Proto Malayo-Polynesian Blust (1995) has reconstructed the doublets *sisi and *sisiq ‘edible snail’, citing reflexes in two Philippines languages (Bikol sisi ‘barnacles’, Cebuano sisi ‘small oysters’), one Borneo language (Murik isi ‘snail’) and five Oceanic languages, all from Central Pacific. He reconstructs a further doublet *sisuq ‘edible snail’, citing reflexes in Sasak siso ‘snail’ and Makassarese siso ‘small mollusk found in fish ponds’.
Table 8.9 Implicational scale of types that may be included in reflexes of *sisiq

(1)	one or two species of edible molluscs, sometimes a gastropod, sometimes a bivalve, sometimes unidentified
(2)	Nerites (Neritidae), small snail-like shells, with large body whorls
(3)	two or more of several several groups of edible small globular gastropods (Neritidae and also Naticidae or moon shells (small, globular and smooth), Littorinidae or periwinkles (small, heavy shells, with only a few whorls, globular, spiral or turbinate in shape)
(4)	all edible gastropods
(5)	all molluscs with shells

Table 8.10 Semantic range of reflexes of *sisiq in Oceanic languages

<table>
<thead>
<tr>
<th>Language</th>
<th>a few spp. of molluscs</th>
<th>small globular gastropods: nerites, moon shells, periwinkles, etc.</th>
<th>all edible gastropods</th>
<th>all edible molluscs</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Takia</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>5</td>
</tr>
<tr>
<td>Wayan</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td>4-5</td>
</tr>
<tr>
<td>Cèmuhî</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>4</td>
</tr>
<tr>
<td>Samoan</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>4</td>
</tr>
<tr>
<td>’Are’are</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>4</td>
</tr>
<tr>
<td>Fwâi</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>4</td>
</tr>
<tr>
<td>Futuna</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>3</td>
</tr>
<tr>
<td>E Uvean</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>3</td>
</tr>
<tr>
<td>Tikopia</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>3</td>
</tr>
<tr>
<td>Niuan</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>3 ?</td>
</tr>
<tr>
<td>Rennellese</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>2</td>
</tr>
<tr>
<td>Nukuoro</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>2</td>
</tr>
<tr>
<td>NE Ambae</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>2</td>
</tr>
<tr>
<td>S Efate</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>2</td>
</tr>
<tr>
<td>SE Ambrym</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td>Gela</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td>Hawaiian</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>1</td>
</tr>
</tbody>
</table>
specify particular families or genera, these refer to nerites (members of the family Neritidae) and to other fairly similar groups of small edible marine gastropods (grade 3). In many Oceanic-speaking communities such small shellfish are regularly collected in large quantities and often they supply a more significant part of the protein consumption than any other gastropods. This, then, may have been its primary sense in POc.

POc *sisiq certainly referred to a class of snail-like (gastropod) molluscs but, given the very spotty data, it is difficult to determine the range of reference of this term. However, the fact that *sisiq reflexes are widely preserved as the first element in binominals, even in languages where a reflex of *sisiq no longer occurs by itself, indicates that it was a generic of some sort in Oceanic, participating in a number of binominals.

There is some evidence that *sisiq also served as a high-order generic, perhaps denoting all gastropods, or all edible gastropods. It was noted above that reflexes of *sisiq denoting edible marine gastropods in general occur in at least one language in each of the following subgroups: North New Guinea, SE Solomonic, New Caledonian, Fijian and Polynesian. It is likely that there are other cases – our sample is very limited. However, in only two languages in the sample do *sisiq reflexes also serve as a generic for shelled molluscs in general, including bivalves. Thus, there is no good evidence at present for attributing this last, much wider range of reference to POc *sisiq.

5 POc *manuk

5.1 Introduction

POc *manuk is a well attested form whose semantic range certainly included birds in general, but whose reflexes often have a broader scope. The implicational scale in Table 8.11, going from the most restricted domain to the most inclusive, predicts fairly well the kinds of variations in range seen among *manuk reflexes.

Table 8.11 Implicational scale of types that may be included in reflexes of *manuk

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>birds and bats</td>
</tr>
<tr>
<td>(2)</td>
<td>birds, bats and flying insects</td>
</tr>
<tr>
<td>(3)</td>
<td>all land animals</td>
</tr>
<tr>
<td>(4)</td>
<td>all animals except humans</td>
</tr>
<tr>
<td>(5)</td>
<td>all beings</td>
</tr>
<tr>
<td>(6)</td>
<td>all objects</td>
</tr>
</tbody>
</table>
5.2 Variation in semantic scope of reflexes of *manuk

5.2.1 Polynesian

Tongan manu ‘animal, esp. bird but applied also to quadrupeds, reptiles, insects, and other land creatures but not to fish, shell-fish, and other sea creatures’. (Also manu-puna ‘bird or bat’; lit. ‘flying manu’)

Niuean manu ‘any living creature except humans and fish’ (Also manu-lele ‘bird and bat but not insects; lit. ‘flying manu’)

Māori manu ‘bird’

Tahitian manu (1) ‘bird + flying insects’
(2) ‘land animal as opposed to iʔa’

manu-manu ‘insects’ [probably in vernacular sense, including arthropods]

Hawaiian manu ‘bird, any winged creature’

Rarotongan manu ‘creature, living thing, usually but not always bird; often used figuratively for a human being’ (also manu-rere, manu-reva ‘bird’, manu vaevaeʔā, lit. ‘four legged animal’) and manumanu ‘insects, small flies’)

Samoan manu (1) ‘bird’ (also manu-lele ‘bird’) (Milner)
(2) ‘animal, beast’ (Milner)
(3) ‘any living thing’ (Utugagana)

Tokelauan manu (1) ‘animal, beast’
(2) ‘bird’

Futunan manu ‘animal in general’; manu-lele ‘bird’ (lit. ‘flying animal’)

Uvea manu ‘animals in general’; manu-lele ‘bird’

Ifira-Mele manu ‘bird, bat (and possibly butterflies)’

Tikopia manu ‘terrestrial creatures: mammals, birds, arthropods, but excluding marine creatures’

Rennellese manu ‘land fauna except human beings, turtles and fish (incl. birds and flying insects)’ (also manu-gege ‘birds and flying insects’)

Nukuoro manu ‘living things in general’

The semantic range of these terms may be arranged in a scale as shown in Table 8.12.

This distribution of meanings suggests that PPn *manu had a narrow sense ‘birds and bats’ (with synonym *manu-lele), and an extended sense, roughly ‘all land animals other than humans’. Among the languages cited above, Niuean and Tongan (Tongic), Rarotongan and Tahitian (Eastern Polynesian), Rennellese, Samoan, Tokelauan and Tikopian (non-Eastern Nuclear Polynesian) have an extended sense.

In Futunan, Uvean, (and occasionally) Rarotongan, manu can be extended to all creatures other than humans and in Nukuoro that seems to be the standard meaning. This more extended use has a restricted distribution in contemporary Polynesian languages and was probably not present, or was rare, in PPn.

Cecil Brown, in a paper on the development of life form taxa in Polynesian languages, expresses doubts about the two-sense reconstruction. He concludes (Brown 1981:94) that ‘bird’
Table 8.12 Semantic range of reflexes of POc *manuk in some Polynesian languages

<table>
<thead>
<tr>
<th>Grade</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>birds and bats</td>
<td>birds, flying insects</td>
<td>all land animals</td>
<td>all animals except humans</td>
<td>all beings including humans</td>
<td>all things</td>
</tr>
<tr>
<td>Nukuoro</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Rarotongan</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Tikopia</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Tongan</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Niuean</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Samoan</td>
<td>1.</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>2.</td>
<td>+</td>
<td>?</td>
<td>+</td>
<td>?</td>
<td>–</td>
</tr>
<tr>
<td>Tokelauan</td>
<td>1.</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>2.</td>
<td>+</td>
<td>?</td>
<td>+</td>
<td>?</td>
<td>–</td>
</tr>
<tr>
<td>Tahitian</td>
<td>1.</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>2.</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Rennellese</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ifira-Mele</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Tahitian</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Māori</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

probably ‘constituted the primary, if not the only zoological reference’ of PPn *manu. If I understand him correctly, Brown prefers to interpret the fact that Tongan, Niuean, Samoan, Tikopia, Rennellese, Rarotongan, etc. agree in having a second, wider sense of *manu, as the result of semantic extensions made independently several times in the history of the Polynesian languages. He points out the importance of ecological factors. While birds must have been very prominent creatures in all the islands of the Pacific, most of the islands settled by Polynesians would have had very few land animals other than birds and small invertebrates. All had lizards, a very few had snakes, otherwise there were only those animals brought by humans: rats, dogs and (sometimes) pigs. When, in the post-European contact era, new quadrupeds (such as cattle, horses and goats) arrived it would have been natural to extend the reflex of *manu to these.

However, it seems to me more likely that *manu was already polysemous in PPn. The evidence indicating that PPn had a synonym for *manu in its narrower sense, namely the compound *manu-lele ‘birds, bats, flying insects’ (lit. ‘flying manu’) is consistent with the view that *manu had two senses in PPn. The evidence from Fijian and Rotuman (see below) also supports a polysemous reconstruction. Be that as it may, there can be little doubt that in the Polynesian languages ecological factors have motivated both extensions and contractions in the semantic range of reflexes of POc *manuk.
Table 8.13 Semantic range of reflexes of PCP *\textit{manu-manu} in Rotuman and Fijian languages

<table>
<thead>
<tr>
<th>Grade</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>birds and bats</td>
<td>birds, flying insects</td>
<td>all land animals</td>
<td>all animals except humans</td>
<td>all beings including humans</td>
<td>all things</td>
</tr>
<tr>
<td>Rotuman</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Bauan</td>
<td>1.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>?</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>2.</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Wayan</td>
<td>1.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>2.</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

5.2.2 Rotuman and Fijian

Rotuman and the Fijian languages reflect only a reduplicated form *\textit{manu-manu}. In Rotuman this term denotes land animals other than humans. In Bauan its narrower sense refers to birds and its wider sense includes all creatures. In all three languages a compound consisting of a reflex of *\textit{manu-manu} plus a verb/adjective meaning ‘to fly, flying’ is used to distinguish birds and other flying animals from terrestrial animals.

- **Rotuman** \textit{mɔn-mɔnu} ‘bird, insect, animal, including all land and air creatures but no sea creature’ (also \textit{mɔnmɔnuferfere} ‘bird, flying insect’)
- **Bauan** \textit{manu-manu} (1) ‘bird’
 (2) ‘sometimes also animal, insect’ (also \textit{manumanu vuka} ‘bird’ (lit. ‘flying animal’))
- **Wayan** \textit{manu-manu} (1) ‘animal, creature, being, normally excluding human beings’ (also \textit{manumanu ñavu} ‘bird’, lit. ‘flying animal’)
 (2) ‘sometimes used to denote land animals in contrast to marine animals, such as \textit{ika}, fish and fish-like creatures’

5.2.3 Micronesian

- **Kiribati** \textit{man} ‘animal (including fish), beast, insect, etc.’; ‘numeral classifier for people and animals’
- **Puluwatese** \textit{maan} ‘creature, being, animal, insect’
- **Carolinian** \textit{maal, maan} ‘generic term for any living creature except humans’, \textit{-mal} ‘counting classifier for people and animals’
- **Chuukese** \textit{maan} ‘living creature of land or air, other than human’
- **Woleaian** \textit{mal} (1) ‘animal, bird, animate object’, (2) ‘thing, inanimate object’
Wereturtlesfish in Proto Oceanic?

Table 8.14 Semantic range of reflexes of POc *manuk in some Micronesian languages

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>all animals except humans</td>
<td>all beings including humans</td>
<td>all things</td>
</tr>
<tr>
<td>Grade</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

These are listed as homonyms by Sohn and Tawerilmang 1976; note also mal ‘numeral classifier for animate beings including humans’

Mokilese mahn ‘mammal, fruit bat, lizard, monitor, worm, bug, bird’

Marshallese men ‘thing’

It can be seen that in this sample of Nuclear Micronesian languages most reflect POc *manuk with range of reference much broader than ‘bird’. In Kiribati and Mokilese the meaning is approximately ‘land animals other than humans’. In Carolinian and Woleaian the reflex refers to all animals other than humans (domains 1-4 on the implicational scale) but in Woleaian it can also denote any object (domains 1-6). In Puluwatese the nominal reflex of *manuk refers to living things in general, as is also the case for the numeral classifier reflex in most Nuclear Micronesian languages. In Marshallese and Woleaian the reflex of *manuk has become the term for ‘thing’.

It is likely that the primary sense of the PMic noun *man was at least as broad as ‘land creatures other than humans’ and that this form had already become a classifier for humans and animals.

5.2.4 Other Oceanic groups

Outside of the Nuclear Micronesian and Central Pacific groups, reflexes of *manuk generally have the narrower meaning ‘creature with wings: bird, bat, flying insect’. However, the paucity of good dictionaries for Oceanic languages in most regions of Melanesia limits our confidence in some of the glosses. The semantic range of reflexes of POc *manuk in some Oceanic languages other than Nuclear Micronesian and Central Pacific is shown in Table 8.15.
Vanuatu

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE Ambae</td>
<td>manu</td>
<td>‘birds and flying foxes’</td>
</tr>
<tr>
<td>Mota</td>
<td>manu</td>
<td>‘flying creature: bird, bat, beetle’</td>
</tr>
<tr>
<td>Paamese</td>
<td>a-man</td>
<td>‘bird’</td>
</tr>
<tr>
<td>Sye</td>
<td>menoy</td>
<td>‘bird’</td>
</tr>
<tr>
<td>Lenakel</td>
<td>menuk</td>
<td>‘bird’</td>
</tr>
<tr>
<td>Anejoð</td>
<td>in-man</td>
<td>‘bird (includes flying-foxes but not insects)’</td>
</tr>
</tbody>
</table>

New Caledonia

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cèmuhi</td>
<td>meni</td>
<td>‘birds (generic) and bats’</td>
</tr>
<tr>
<td>Fwái</td>
<td>manik</td>
<td>‘bird’</td>
</tr>
<tr>
<td>Nêlêmwa</td>
<td>mâlic</td>
<td>‘bird (generic)’</td>
</tr>
</tbody>
</table>

Southeast Solomonic

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arosi</td>
<td>manu</td>
<td>‘bird’</td>
</tr>
<tr>
<td>‘Are’are</td>
<td>mânū</td>
<td>‘bird, insect, anything that flies’</td>
</tr>
<tr>
<td>Kwaio</td>
<td>manu</td>
<td>‘bird’</td>
</tr>
<tr>
<td>Lau</td>
<td>manu</td>
<td>‘any creature that flies’</td>
</tr>
<tr>
<td>Sa’á</td>
<td>menu</td>
<td>‘bird, insect’</td>
</tr>
<tr>
<td>Gela</td>
<td>manu</td>
<td>‘flying creature, bird, insect’</td>
</tr>
</tbody>
</table>

Meso-Melanesian

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nakanai</td>
<td>malu</td>
<td>‘bird, insect (general term)’</td>
</tr>
<tr>
<td>Tangga</td>
<td>man</td>
<td>‘generic term for all species of bird’</td>
</tr>
<tr>
<td>Simbo</td>
<td>maunuyu</td>
<td>(1) ‘creature, being, including humans, birds, marine mammals, and possibly fish’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) ‘thing’</td>
</tr>
</tbody>
</table>

cf. also

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marovo</td>
<td>oloko</td>
<td>(1) ‘all flying creatures including large and small bats’</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2) ‘animal, including all mobile land animals’ (Hviding 2005:175)</td>
</tr>
</tbody>
</table>

North New Guinea

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kairiru</td>
<td>m vão</td>
<td>‘bird’</td>
</tr>
<tr>
<td>Manam</td>
<td>muly</td>
<td>‘bird, fowl’</td>
</tr>
<tr>
<td>Mumeng (Patep)</td>
<td>menʔay</td>
<td>‘bird, including cassowary’</td>
</tr>
<tr>
<td>Yabem</td>
<td>moʔ</td>
<td>‘birds (generic) and flying insects’</td>
</tr>
</tbody>
</table>

Papuan Tip

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motu</td>
<td>manu</td>
<td>‘birds and all things that fly including flying foxes’ (also manu-manu ‘flying insects’ (N. Oram field notes))</td>
</tr>
<tr>
<td>Molima</td>
<td>manu</td>
<td>‘bird’ (also manu-manuwa ‘insects’)</td>
</tr>
<tr>
<td>Dobuan</td>
<td>manua</td>
<td>‘birds (generic)’ (also manu-manua ‘insects and small creatures’)</td>
</tr>
<tr>
<td>Kilivila</td>
<td>mauna</td>
<td>‘animal, bird, insect’</td>
</tr>
<tr>
<td>Muyuw</td>
<td>man</td>
<td>‘land creature, bird, animal, insect’</td>
</tr>
</tbody>
</table>

Admiralties

<table>
<thead>
<tr>
<th>Language</th>
<th>Term</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lou</td>
<td>mən-mən</td>
<td>‘bird’</td>
</tr>
<tr>
<td>Mussau</td>
<td>menua</td>
<td>‘hawk, eagle’</td>
</tr>
</tbody>
</table>
Table 8.15 Semantic range of reflexes of POc *manuk in some Oceanic languages other than Nuclear Micronesian and Central Pacific

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>birds and bats</td>
<td>birds, flying insects</td>
<td>all land animals</td>
<td>all animals except humans</td>
<td>all beings including humans</td>
<td>all things</td>
<td></td>
</tr>
<tr>
<td>Simbo</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>6</td>
</tr>
<tr>
<td>Muyuw</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Cèmuhî</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Gela</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Lau</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Mota</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Motu</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Nakanai</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Manam</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Yabem</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Dobuan</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>NE Ambae</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Arosi</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Nêlêmwa</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Lou</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
</tbody>
</table>

5.3 Flying creatures only or land creatures in general?
What does the total range of comparisons tell us about the semantic range of POc *manuk? The variation among reflexes is striking. *manuk is most widely attested in the meaning ‘winged or flying creatures: birds, bats and flying insects’, i.e. grade 2 on the scale. However, the grade 3 meaning, encompassing all land animals, is common in Central Pacific and Nuclear Micronesian, and is attested in one Papuan Tip witness, Muyuw. Grade 4, 5 and 6 meanings occur but with more restricted distributions.

In terms of accounting for the distribution of meanings across subgroups, the most economical interpretation of the full range of comparative evidence in POc is to assume that *manuk referred only to winged or flying creatures: birds, bats and flying insects. This meaning dominates in subgroups other than Micronesian and Central Pacific. The wider meanings displayed by some daughter languages are best regarded as post-POc innovations.

This conclusion is consistent with the fact that outside of Oceanic, cognates of *manuk generally refer to chickens or to birds in general but not to quadrupeds or marine animals. Blust (2002) attributes to PMP *manuk the meaning ‘chicken (domestic fowl)’ on the basis of widespread reflexes in Western and Central MP languages. He also reconstructs a reduplicated form PMP *manu-manuk meaning ‘bird’, widely reflected with this sense in WMP
languages. Blust argues that PAn had an unrelated term for ‘bird’ namely *ayam, which was replaced in this function by *manu-manuk in PMP. In PMP *ayam came to mean ‘domestic animal (of any sort)’.

Given that birds are the dominant indigenous land fauna in the island groups of Remote Oceania, and that there were no mammals native to this region, other than bats, it is not surprising that the generic term for birds and bats should be extended to other land animals (see discussion in §5.2.1). Here it seems is a case where a change in the meaning of a POc biotaxon can be attributed to changes in the range of animal life encountered by speakers of Oceanic daughter languages as they moved into new environments.

6 POc *manu-manuk

6.1 Reflexes of POc *manu-manuk in Papuan Tip, SE Solomonic and Polynesian

Osmond (this volume, ch.7) observes that reflexes of a form *manu-manuk, meaning approximately ‘insects and other small invertebrates’ (corresponding to the English vernacular category ‘insects’) are found in three widely separated subgroups of Oceanic: Papuan Tip, Southeast Solomonic and Polynesian. In certain languages in each of these groups the reflex of *manu-manuk stands beside and contrasts with a reflex of *manuk, meaning approximately ‘birds and other flying creatures’. Reduplications of *manuk, but with rather different meanings, are also found in Lou (Admiralties), Fijian and Rotuman (see §5.2).

In the definitions cited below from dictionary sources it is likely that the English gloss ‘insect’ is generally used in its vernacular sense (see footnote 10).

Papuan Tip

- Dobuan manu-manua ‘insects and small creatures’
- Motu manu-manu ‘beetles, insects’
- Sinaugoro manu-manu ‘insects’

SE Solomonic

- Bugotu mau-manu ‘insect’
- Gela mau-manu 1. ‘insect’
 2. ‘all living creatures: pigs, fish, birds, etc.’

Polynesian

- Tahitian manu-manu ‘insects’
- Rarotongan manu-manu ‘insects, small flies’
- Marquesan manu-manu ‘an insect’ (pollex)
- Mangarevan manu-manu ‘insect seen clinging to branches and fermenting substances’ (pollex)
- Pukapukan manu-manu ‘little insects’

10 The *Shorter Oxford English Dictionary* gives the following definition of the popular use of ‘insect’: “…in pop. use comprising, besides the animals scientifically so called (… [animals of class Insecta]), many other arthropods, as spiders, mites, centipedes, wood-lice, etc. and other invertebrates, as the ‘coral insect’; still applied by the uneducated to earth-worms, snails, etc. and even some small invertebrates, as frogs and tortoises.” The authors of the SOED seem to have forgotten that the folk taxonomies of the ‘uneducated’ are as worthy as those of the ‘educated’!
Table 8.16 Implicational scale of types that may be included in reflexes of *manu-manuk

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>one or a few insect taxa</td>
</tr>
<tr>
<td>(2)</td>
<td>insects in general</td>
</tr>
<tr>
<td>(3)</td>
<td>all living creatures</td>
</tr>
</tbody>
</table>

Tuamotuan manu-manu ‘bug, insect’ (pollex)
Nukuoro manu-manu ‘insect sp.’
Rennellese manu-manuhogau ‘dragonfly’

These data yield the rather simple implicational scale in Table 8.16. It can be seen that definitions of type (2) dominate. Just one language in the sample (Gela) has a greatly extended sense: ‘all living creatures’. Unfortunately, the sources give no evidence that would tell us whether forms with meanings of types (2) and (3) behave like true taxonomic generics or whether they are used only as collectives.

6.2 What did POc *manu-manuk mean?

It might seem a straightforward matter to conclude that *manu-manuk was a generic or collective term for insects in general. However, two complicating factors must be addressed.

In many Oceanic languages a semi-productive use of nominal reduplication is to name a taxon which resembles that named by the simple form but is smaller or otherwise atypical—not quite the real thing (for discussion of this function of reduplication in Oceanic see Ross 2008a:50-51). Given such a mechanism, we must consider the possibility that a reduplicated form of *manuk developed independently in Papuan Tip, Southeast Solomonic and Polynesian. On the formal level, such parallel development would not be surprising. However, it seems unlikely that the meaning of the reduplicated derivative would in both cases have been ‘insects, creepy crawlies’.

The other complicating factor is that a case can be made for attributing another sense to POc *manu-manuk, roughly ‘all creatures’ or ‘all creatures other than those that live in water’. It was noted above (§5.2.2) that reflexes of *manu-manuk have this broader range of reference in Lou, Rotuman and the Fijian languages. However, I prefer to regard the Lou, Rotuman and Fijian uses as post-POc innovations, in which the reflex of *manu-manuk replaced the *manuk reflex as the general term for creatures or land creatures. Thus the conclusion that *manu-manuk existed in POc as a general term for insects and other small land invertebrates still stands. If some languages, chiefly in Polynesia, have narrowed its application use to just one or a few insects but in one language its scope has been extended to encompass all living things.

11 Blust (2002) reconstructs a reduplicated form PMP *manu-manuk meaning ‘bird’, widely reflected with this sense in WMP languages, alongside PMP *manuk ‘chicken’.
7 Conclusions

We have looked into the semantic histories of five POc terms, *ikan, *pinaŋoda, *sisiq, *manuk and *manu-manuk, each a candidate for the status of a high-level generic or life form in the POc taxonomy of animals but each having reflexes with highly variable meanings. Approximate semantic reconstructions can be given for each POc term, as follows:

*ikan ‘high-level generic (life form) with two senses: 1. typical fish’, (2) ‘typical fish, sharks, rays, eels, cetaceans and dugongs, turtles and crocodiles, and possibly octopus and squid’

*pinaŋoda ‘collective term (not a life-form): seafood (other than fish) gathered on the reef’

*sisiq ‘folk generic: small globular gastropods (nerites, moon shells, periwinkles, etc.) which are an important part of the diet. Possibly also used as a collective or high-level generic for edible gastropods in general’

*manuk ‘high-level generic (life form): birds, bats and flying insects’

*manu-manuk ‘high-level collective or generic (life form): insects and other small land invertebrates’

Let us now return briefly to two questions asked at the outset. First, are the variations in the meanings of major generics across daughter languages random or do they follow an implicational scale, a natural sequence of semantic extension or contraction? Variations in definitions given to reflexes of *ikan, *sisiq, *manuk and *manu-manuk do appear to conform to implication scales, roughly those sketched in Tables 8.1, 8.9, 8.11 and 8.16, respectively. (We leave aside *pinaŋoda, which was a collective rather than a true generic.) However, the nature of the data are such that we can only give approximate analyses. Undoubtedly, finer-grained data and analysis would show that this picture is too simple. While my main focus has been on the meanings of these five etyma, the foregoing question might also be asked of non-cognate terms that refer to ‘the same’ kinds of semantic categories. A wider comparative study that included non-cognate generic terms for kinds of animals would provide a broader base for testing hypotheses about implicational scales. However, such a study must be left for another occasion.

Finally, why have such marked differences arisen in the semantic scope of these five POc terms? Can some of the changes be attributed to differences in the range of animal life encountered by different communities? All I will say here is that Oceanic islands differ considerably in the richness of their land fauna, with atolls, and small, geographically remote high islands having extremely impoverished fauna and that this variation may have played a part in the semantic histories of two of the five terms considered here, *manuk and *manu-manuk. Brown (1981) has already pointed to the dominance of birds over other large land animals as a possible driver of semantic change in *manuk reflexes (see §5.2.1). But the other three terms all refer to aquatic (chiefly marine) animals and, leaving aside crocodiles and dugongs, the main types of marine fauna are fairly well represented throughout tropical Oceania. It follows that shifts in the referential range of reflexes of POc *ikan, *pinaŋoda and *sisiq must be explained in terms of other factors.
Appendix A: Data sources and collation

1 Data sources

The subject matter of this volume is quite narrowly constrained. As a result we collated data not only from the sources used for the project generally but also from compilations of animal names in a number of languages. Both general and animal name data sources are listed below. The source of an item is generally listed against it in the text only where it is not one of those listed below or where it is an exceptional source for that particular language.

1.1 General sources

Sources are conveniently divided into published and unpublished.

1.1.1 Published sources

In alphabetical sequence of language, published sources are:

- Amara Thurston (1984)
- Anejoñ (= Aneityum) Lynch (2001b)
- Araki François (2002)
- ’Are’are Geerts (1970)
- Arosi Fox (1978)
- Asuboa Tryon & Hackman (1983)
- Bareke Tryon & Hackman (1983)
- Bugotu Ivens (1940)
- Carolinian Jackson & Marck (1991)
- Cèmuhi Rivierre (1994)
- Chuukese (= Trukese) Goodenough & Sugita (1990)
- Bauam Fijian (= Standard Fijian) Capell (1941)
- Dobu J. W. Dixon (n. d.), Grant (1953)
- Fwáï Haudricourt & Ozanne-Rivierre (1982)
- Gedaged Mager (1952)
- Gela (= Nggela) Fox (1955)
- Ghanongga Tryon & Hackman (1983)
- Hawaiiaian Pukui & Elbert (1971)
<table>
<thead>
<tr>
<th>Language</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jawe</td>
<td>Haudricourt & Ozanne-Rivierre (1982)</td>
</tr>
<tr>
<td>Kairiru</td>
<td>Wivell (1981)</td>
</tr>
<tr>
<td>Katazi</td>
<td>Tryon & Hackman (1983)</td>
</tr>
<tr>
<td>Kilivila</td>
<td>Senft (1986)</td>
</tr>
<tr>
<td>Kiribati (= Gilbertese)</td>
<td>Sabatier (1971), Thaman (1987)</td>
</tr>
<tr>
<td>Kosraean (= Kusaiean)</td>
<td>Lee (1976)</td>
</tr>
<tr>
<td>Kove</td>
<td>Chowning (1996)</td>
</tr>
<tr>
<td>Kwaio</td>
<td>Keesing (1975)</td>
</tr>
<tr>
<td>Kwamera</td>
<td>Lynch (2001b)</td>
</tr>
<tr>
<td>Lau</td>
<td>Fox (1974)</td>
</tr>
<tr>
<td>Lenakel</td>
<td>Lynch (1977)</td>
</tr>
<tr>
<td>Lewo</td>
<td>Early (n. d.)</td>
</tr>
<tr>
<td>Loniu</td>
<td>Hamel (1994)</td>
</tr>
<tr>
<td>Lou</td>
<td>Blust (1998a)</td>
</tr>
<tr>
<td>Makura</td>
<td>Tryon & Hackman (1983)</td>
</tr>
<tr>
<td>Malagheti</td>
<td>Tryon & Hackman (1983)</td>
</tr>
<tr>
<td>Maori</td>
<td>Williams (1971)</td>
</tr>
<tr>
<td>Maringe (= Cheke Holo = Hograno)</td>
<td>White et al. (1988)</td>
</tr>
<tr>
<td>Marovo</td>
<td>Hviding (1995)</td>
</tr>
<tr>
<td>Marshallese</td>
<td>Abo et al. (1976)</td>
</tr>
<tr>
<td>Minaveha</td>
<td>Nenegeomo & Lovell (1995)</td>
</tr>
<tr>
<td>Mokilese</td>
<td>Harrison & Albert (1977)</td>
</tr>
<tr>
<td>Mota</td>
<td>Codripton & Palmer (1896)</td>
</tr>
<tr>
<td>Motu</td>
<td>Lister-Turner & Clark (1954)</td>
</tr>
<tr>
<td>Mussau</td>
<td>Blust (1984)</td>
</tr>
<tr>
<td>Muyuw</td>
<td>Lithgow & Lithgow (1974)</td>
</tr>
<tr>
<td>Nagu</td>
<td>Tryon & Hackman (1983)</td>
</tr>
<tr>
<td>Nakanai</td>
<td>Chowning (1996)</td>
</tr>
<tr>
<td>Nebao</td>
<td>Tryon & Hackman (1983)</td>
</tr>
<tr>
<td>Nehan</td>
<td>Glennon & Glennon (2005)</td>
</tr>
<tr>
<td>Nemi</td>
<td>Haudricourt & Ozanne-Rivierre (1982)</td>
</tr>
<tr>
<td>Niuean</td>
<td>Sperlich (1997)</td>
</tr>
<tr>
<td>Nokuku</td>
<td>Tryon (1976)</td>
</tr>
<tr>
<td>North Tanna</td>
<td>Lynch (2001b)</td>
</tr>
<tr>
<td>Nyelâyu</td>
<td>Ozanne-Rivierre (1998)</td>
</tr>
<tr>
<td>Paamese</td>
<td>T. Crowley (1992)</td>
</tr>
<tr>
<td>Pîje</td>
<td>Haudricourt & Ozanne-Rivierre (1982)</td>
</tr>
<tr>
<td>Ponapean</td>
<td>Rehg & Sohl (1979)</td>
</tr>
<tr>
<td>Puluwatese</td>
<td>Elbert (1972)</td>
</tr>
<tr>
<td>Rennell and Bellona</td>
<td>Elbert (1975)</td>
</tr>
<tr>
<td>Roviana</td>
<td>Waterhouse (1949)</td>
</tr>
<tr>
<td>Sa’a and Ulawa</td>
<td>Ivens (1918, 1929)</td>
</tr>
<tr>
<td>Samoan</td>
<td>Milner (1966)</td>
</tr>
<tr>
<td>Sengseng</td>
<td>Chowning (1996)</td>
</tr>
<tr>
<td>Sesake</td>
<td>Tryon (1976)</td>
</tr>
<tr>
<td>Datasources</td>
<td>Authors/Year</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------</td>
</tr>
<tr>
<td>South Efate</td>
<td>Thieberger (2006b)</td>
</tr>
<tr>
<td>South-west Tanna</td>
<td>Lynch (2001b)</td>
</tr>
<tr>
<td>Sudest</td>
<td>Anderson (1990)</td>
</tr>
<tr>
<td>Sye (= Sie, Eromango)</td>
<td>T. Crowley (2000), Lynch (2001b)</td>
</tr>
<tr>
<td>Tanabili</td>
<td>Tryon & Hackman (1983)</td>
</tr>
<tr>
<td>Tanema</td>
<td>Tryon & Hackman (1983)</td>
</tr>
<tr>
<td>Teanu (= Buma)</td>
<td>Tryon & Hackman (1983)</td>
</tr>
<tr>
<td>Tikopia</td>
<td>Firth (1985)</td>
</tr>
<tr>
<td>To’aba’ita</td>
<td>Lichtenberk (2008)</td>
</tr>
<tr>
<td>Tolai (= Kuanua, Raluana)</td>
<td>Rickard (1964), Lanyon-Orgill (1962)</td>
</tr>
<tr>
<td>Tolo</td>
<td>S. S. Crowley (1986)</td>
</tr>
<tr>
<td>Tolomako</td>
<td>Tryon (1976)</td>
</tr>
<tr>
<td>Tongan</td>
<td>Churchward (1959)</td>
</tr>
<tr>
<td>Ughele</td>
<td>Tryon & Hackman (1983)</td>
</tr>
<tr>
<td>Ura</td>
<td>Lynch (2001b)</td>
</tr>
<tr>
<td>Vano</td>
<td>Tryon & Hackman (1983)</td>
</tr>
<tr>
<td>Wedau</td>
<td>Jennings (1956)</td>
</tr>
<tr>
<td>Whitesands</td>
<td>Lynch (2001b)</td>
</tr>
<tr>
<td>Woleaian</td>
<td>Sohn & Tawerilmang (1976)</td>
</tr>
<tr>
<td>Yabem (= Jabêm)</td>
<td>Zahn (1982)</td>
</tr>
</tbody>
</table>

1.1.2 Unpublished sources

1. Manuscript word lists for NE Ambae by Catriona Hyslop, Babatana by Lucy Money, Kiriwina (= Kilivila) by Ralph Lawton, Mekeo by Alan Jones, Kove, Molima and Nakanai by Ann Chowning, Mutu by Alice Pomponio, Teanu (= Buma) and Mwotlap by Alexandre François, Nduke by Ian Scales, Ninigo (= Seimat) by W. Smythe, Tamambo (= Malo) by Dorothy Jauncey, Titan by Claire Bowern and Zabana (= Kia) by D. Ama and M. Fitzsimons.

2. Electronic files provided by a number of scholars, some of which are themselves based on a variety of primary sources. The files include:
 a) The electronic files of lexical data collated during the research leading to the publication of Ross (1988), whose sources are listed in Appendices A and B of that work.
 b) The electronic files from the *Comparative Austronesian Dictionary* project which resulted in Tryon (1995), which lists its own sources.
 c) The electronic files of Robert Blust’s *Austronesian Comparative Dictionary*, stored at the University of Hawai‘i. The version to which we refer dates from 1995, and is abbreviated in this volume as ACD.
 d) The electronic files of Biggs and Clark’s *POLLEX: Proto Polynesian lexicon* on disk at the University of Auckland. We refer to a June 2006 version, abbreviated POLLEX, which became available in the later stages of this volume’s preparation. In October 2010, when this volume was nearing completion, POLLEX went on line at http://pollex.org.nz.
e) Electronic files of dictionaries in progress provided by Joel Bradshaw (for Num-
bami), Deborah Hill (for Longgu) and Malcolm Ross (for Takia).

f) Electronic files of dictionaries in progress kindly made available by members of
the Summer Institute of Linguistics. Languages and those who compiled/supplied
the dictionary are as follows: Arop-Lokep (Jeffrey and Lucille D’Jernes), Bariai
(Steve Gallagher), Bing (Doug Bennett), Bola (Brent Wiebe), Mapos Buang (Bruce
Hooley), Iduna (Joyce Hucket), Dami (George Elliott), Dawawa (Martin and
Beate Knauber), Gapapaiwa (Ed and Catherine McGuckin), Gumawana (Clif
Olson), Hote (Marguerite Muzzey), East Kara (Perry and Virginia Schlie), Kau-
long (Craig Throop), Drehet [= Khehek] (Stephan Beard), Lewo (Robert Early),
Lou (Robert and Verna Stutzman), Lukep [= Pono] (Jeff and Sissie D’Jernes),
Manam (Stephen and Kim Blewett), Mangseng (Lloyd Milligan), Mangap-Mbula
(Robert and Salme Bugenhagen), Mengen (Fred Madden), Misima (Bill Callis-
ter), Mumeng [Patep] (Linda Vissering and Karen Wilson), Mussau (John Brown-
ie), Nakanai (Ray Johnston), Nehan (John and Ariana Glennon), Nochi (Leland
and Laurinda Erickson), Patpatar (Ed Condra), Ramoaaina [= Duke of York]
(Lisbeth Fitzell and Robyn Davies), Siar (Larry Erdman), Sinaugoro (Gerhard
Tauberschmidt), Sio (Stephen and Dawn Clark), Sissano [Arop] (Stephen Whit-
acre), Sudest (Mike Anderson), Sursurunga (Don Hutchisson), Takia (Salme Bu-
genhagen, Judy Rehberg, Curtis Thomas, Bruce Waters), Tawala (Bryan Ezard),
Teop (David Snyder), Tinputz (Roman Hostetler), Titan (Keith Lusk), Tuam
(Robert and Salme Bugenhagen).

2 Collation

The collation stage of the project, which took place in the early and mid 1990s, entailed in
the first instance the creation a data base of vocabulary materials in a defined set of semantic
domains from Oceanic languages for which data were already available (see §1.1). This data
base was kept in text files. Files were organised in accordance with a modified version of
the Summer Institute of Linguistics’ ‘standard format’ in which fields within each record are
labelled with an initial backslash followed by a single letter. In our version of the format,
each record was terminated with a carriage return, i.e. each record occupied a single line.
Each record contained a single word in a single language with associated information (a code
relating to the language’s subgroup, a gloss and any other semantic information, the source,
and any other notes the researcher chose to add). Records were organised on screen into
putative cognate sets. The use of text files rather than files in a proprietary database format
meant (i) that it was easy to view them on screen; (ii) that it was easy to manipulate them
with a variety of text editors and word processors; (iii) that more complex repetitive processes
could be performed by writing small programs in Icon (Griswold & Griswold 1990) and more
recently in Python; and (iv) that it was relatively easy to import and reformat other people’s
data sets and to export collated material into publications in preparation.

Although there are accepted or standard orthographies for a number of the languages
from which data are cited here, data were transcribed at the collation stage into a standard
orthography (this volume, ch.1, §4.2) to enable us to recognise cognates and to spot regular
changes more quickly. This orthography is retained in the citation of data in these volumes.
Appendix B: Languages

1 Introduction

In §2 we list in putative subgroups all the Oceanic languages and dialects (and occasionally larger isogloss-defined regions, e.g. Western Viti Levu) that are referred to in this volume. The higher-order subgroups are those described in chapter 1, §3.2. Lower-order groups are mainly drawn from the classification in Lynch et al. (2002), and in addition for Western Oceanic from Ross (1988), for Temotu from Ross & Næss (2007), for Southern Oceanic from Lynch (1999, 2000, 2006, 2007) for Micronesian from Bender et al. (2003) and for Central Pacific and Fijian Geraghty (1983). In §3 we provide an index to §2, followed by maps showing approximate locations of the languages.

Square brackets enclose the subgroup abbreviations used in the data. Parentheses include dialect names or, where an equals sign is used, an alternative name or names for the language. The difficulty of deciding where the borderline between dialect and language lies, combined with the fact that these volumes contain work by a number of contributors, has resulted in some inconsistency in the naming of dialects in the cognate sets. Some occur in the form ‘Kara (East)’, i.e. the East dialect of the Kara language, or ‘Halia (Haku)’, i.e. the Haku dialect of the Halia language, whilst others are represented simply by the dialect name, e.g. Iduna, noted in the list below as ‘Iduna (= dialect of Bwaidoga)’. Where a language has several dialects, these are shown below in the form ‘Mumeng (Patep, Zenag, Kumaru)’, where Patep, Zenag and Kumaru are dialects of Mumeng.

2 Languages by subgroups

1. Yapese (perhaps more closely related to Admiralties than elsewhere)
2. St Matthias [Adm] (perhaps more closely related to Admiralties than elsewhere)
 Mussau
3. Admiralties [Adm]
 3.1. Western Admiralties
 Aua
 Kaniet
 Seimat (= Ninigo)
 Wuvulu
 3.2. Eastern Admiralties
3.2.1. *Manus*
Andra
Bipi
Drehet (= Ndrehet, Khehek, Levei-Tulu)
Ere
Hus
Kurti
Leipon (= Pitilu)
Lele
Likum
Loniu
Mondropolon
Nali
Nyindrou
Papitalai
Ponam
Sori-Hareengan
Titan

3.2.2. *Southeast Admiralties*
Baluan
Lenkau
Lou
Nauna
Pak
Penchal

4. *Western Oceanic*

4.1. *New Guinea Oceanic*

4.1.1. *North New Guinea [NNG]*

4.1.1.1. *Schouten*
Ali
Bam
Kaiep
Kairiru
Kis
Manam
Medebur
Sissano (Arop)
Tumleo
Ulau-Suain
Wogeo

4.1.1.2. *Huon Gulf*
Numbami

4.1.1.2.1. *North Huon Gulf*
Bukawa
Kela
Yabem (= Jabêm)

4.1.1.2.2. *Markham*
Adzera
Aribwatsa
Labu
Mari
Middle Watut (= Bubwaf)
Musom
North Watut (= Unank, Onank)
Sirasira
South Watut (= Maralango)
Sukurum
Wampur
Yalu

4.1.1.2.3. *South Huon Gulf*
Buang
Hote
Kaiwa
Kapin
Mangga (= dialect of Buang)
Mapos Buang (= dialect of Buang)
Misim (= dialect of Hote)
Mumeng (Patep, Zenang, Kumaru)
Vehes

4.1.1.3. *Ngero/Vitiaz*
Amara
Mangap (= Mangap-Mbula, Kaimanga)
Sio
Tami

4.1.1.3.1. *Korap*
Barim
Lukep (Pono) (= Arop-Lokep)
Malasanga
Singorakai (= dialect of Malasanga)

4.1.1.3.2. *Kilenge-Maleu*
Kilenge
Maleu

4.1.1.3.3. *Mato-Rondi*
Mato (= Nenaya, Nengaya)
Roinji (= Ronji, Rondi)

4.1.1.3.4. *Ngero*
Bariai (= Kabana)
Gitua
Kove
Lusi
Malai (= dialect of Mutu)
Malalamai
Mutu
Tuam (= dialect of Mutu)

4.1.1.3.5. **Bel**
Bilibil (= Bilbil)
Bing (= Biliau)
Dami (= Ham)
Gedaged (= Graged)
Matukar (= Matugar)
Megiar (= dialect of Takia)
Mindiri
Takia
Riwo (= Ziwo, dialect of Gedaged)
Wab

4.1.1.3.6. **Southwest New Britain**
4.1.1.3.6.1. **Bibling (= Lamogai)**
Aria
Lamogai
Mouk (= Mok)

4.1.1.3.6.2. **Arawe**
Akolet
Arawe
Atui
Mangseng

4.1.1.3.6.3. **Pasismanua**
Kaulong
Psohoh (= Bao)
Sengseng

4.1.1.3.7. **Mangen**
Kakuna (= dialect of Mamusi)
Longeimga (= Bush Mengen)
Mangen (Poeng, Maenge = Orford)
Mamusi
Uvol

4.1.2. **Sarmi/Jayapura** [SJ] (perhaps part of North New Guinea)
4.1.2.1. **Sarmi**
Sobei
Tarpia (= Tarfia)

4.1.2.2. **Jayapura**
Ormu

4.1.3. **Papuan Tip** [PT]
4.1.3.1. **Suauic**
’Auhelawa (= Kurada)
Logea
Oya’oya
Saliba (= Sariba)
Suau (Daui, Kwato Suau)
Tubetube
Wagawaga

4.1.3.2. North Mainland/D’Entrecasteaux
Anuki
Gumawana (= Gumasi)

4.1.3.2.1. Dobu/Duau
Bunama
Dobu
Duau
Galea (= Galeya)
Gilagila (= dialect of Sewa Bay)
Sewa Bay

4.1.3.2.2. Bwaidoga
Bwaidoga
Diodio
Iamalele (= Yamalele)
Iduna (= dialect of Bwaidoga)
Kalokalo
Molima

4.1.3.2.3. Kakabai/Dawawa
Dawawa
Kakabai (Igora)

4.1.3.2.4. Are/Taupota
Are
Arifama
Bartle Bay (= dialect of Wedau)
Boanaki (= Boianaki)
Doga
Gapapaiwa (= Paiwa)
Maisin
Minaveha (= Kukuya)
Taupota
Tawala
Ubir
Wedau

4.1.3.3. Kilivila/Misima
Budibud
Kilivila (= Kiriwina)
Misima
Muyuw
4.1.3.4. Nimoa/Sudest
Nimoa
Sudest (= Pamela), Sudest (Varavarae)

4.1.3.5. Central Papuan
Balawaia (= dialect of Sinaugoro)
Doura
Gabadi
Hula (= dialect of Keapara)
Keapara
Kuni
Lala (= Nara, ’Ala’ala, Pokau)
Magori
Maopa (= dialect of Keapara)
Mekeo (= East Mekeo)
Motu
Ouma
Roro
Sinaugoro
Taboro (= dialect of Sinaugoro)
West Mekeo
Yoba

4.2. Meso-Melanesian [MM]
4.2.1. Bali-Vitu
Bali
Vitu

4.2.2. Willaumez
Bola, Bola (Harua)
Bulu
Meramera
Nakanai (= Lakalai)

4.2.3. New Ireland/Northwest Solomonic
4.2.3.1. Tungag/Nalik family
Kara (East, West)
Lavongai (= Tungak, Tungag)
Nalik
Tiang
Tigak

4.2.3.2. Tabar linkage
Lihir
Notsi (= Nochi)
Tabar

4.2.3.3. Madak linkage
Barok
Lamasong
Madak
4.2.3.4. Tomoip

4.2.3.5. *St George linkage*

Bilur
Kandas
Konomala
Label
Minigir (= Vinitiri)
Patpatar
Ramoaaina (= Duke of York)
Siar
Sursurunga
Tangga (= Tanga)
Tolai (= Kuanua, Raluana, Tuna), Tolai (Nodup)

4.2.3.5.1. *Northwest Solomonic linkage*

4.2.3.5.1.1. *Nehan/North Bougainville*

Hahon
Halialia (Haku, Selau)
Nehan
Petats
Solos
Taiof
Teop
Tinputz

4.2.3.5.1.2. *Piva/Banoni*

Banoni

4.2.3.5.1.3. *Mono-Alu/Torau*

Mono-Alu
Torau
Uruava

4.2.3.5.1.4. *Choiseul*

Avasö
Babatana
Ririo
Sisiqa (= Sisingga, Sengga)
Vaghua
Varisi

4.2.3.5.1.5. *New Georgia*

Hoava
Kubukota
Kusaghe
Lungga
Marovo
Nduke
Roviana
Simbo
Appendix B

4.2.3.5.1.6. *Ysabel*
- Blablanga
- Gao
- Kia (= Zabana)
- Kokota
- Laghu
- Maringe (= Cheke Holo, Hograno)

5. *Southeast Solomonic* [SES]

5.1. *Guadalcanal-Gelic*
- Birao
- Bugotu
- Gae (= dialect of West Guadalcanal)
- Gela
- Lengo
- Ghari (= dialect of West Guadalcanal)
- Malango
- Talise
- Tolo (= dialect of Talise)
- West Guadalcanal

5.2. *Makira-Malaita*
- 'Are’are
- Arosi
- Baelelea (= dialect of Lau)
- Bauro
- Baegu
- Dori’o
- Fagani
- Fataleka
- Kahua
- Kwai
- Kwaio
- Kwara’ae
- Langalanga (= Wala)
- Lau
- Longgu
- Owa
- Sa’a
- Santa Ana (= dialect of Owa)
- To’aba’ita (= Toqabaqita)
- Uki ni Masi (= dialect of Sa’a)
- Ulawa (= dialect of Sa’a)

6. *Temotu* [TM]
6.1. *Reefs and Santa Cruz*

Äiwoo (= Reefs)
Nagu
Natügu (= Malo, Lōdāi, Nedō)

6.2. *Utupua/Vanikoro*

Asuboa
Buma (= Teanu)
Nebao (= Aba)
Tanema (= Tanima, Tetau)
Tanibili
Vano (= Vana)

7. *Southern Oceanic*

7.1. *North Vanuatu linkage* [part of NCV; see Chapter 1, p.10]

7.1.1. *Banks and Torres*

Dorig
Hiw
Lakon (= Lakona)
Lemerig (= Sasar)
Lehali
Lo-Toga
Merlav (= Mwerlap)
Mota
Mwesen (= Mosina)
Mwotlap (= Motlav)
Nume
Olrat
Vera’a (= Vatrata)
Volow (= dialect of Mwotlap)
Vurēs

7.1.2. *Northwest Santo*

Matantas
Nokuku
Tasmate
Tolomako

7.1.3. *Southeast Santo*

Araki
Aore
Ki'ai (= Fortsenal)
Morouas
Shark Bay
Tamambo (= Tamabo, Malo)
Tambotalo
Tangoa
Wusi

7.1.4. *Sakao (= Nekep), Sakao (Sara)*
7.1.5. *Ambae/Maewo/North Pentecost*

Maewo
Nduindui (= Ngwatua, Duidui)
Northeast Ambae (= NE Aoba)
Raga

7.2. *Nuclear Southern Oceanic*

7.2.1. *Central Vanuatu linkage* [part of NCV; see Chapter 1, p.10]

7.2.1.1. *Malakula*

7.2.1.1.1. *East Malakula linkage*

Atchin (= Northeast Malakula)
Aulua
Avava
Axamb
Larēvat
Lendamboi (= Letemboi)
Malua Bay
Maskelynes
Nese
Nisvai
Port Sandwich
Rerep (dialect of Unua)
Unua
Uripiv

7.2.1.1.2. *West Malakula linkage*

Big Nambas (= V’ënen Taut)
Labo (= Ninde)
Naha’ai, Naha’ai (Malfaxal)
Naman
Nasarian
Nāti
Neve’ei
Southwest Bay (= Nahavaq, Sinesip)
Tape

7.2.1.2. *Central and South Pentecost*

Apma (= Abma)
Sa

7.2.1.3. *Ambrym/Paama*

Lonwolwol
N Ambrym
Paamese
SE Ambrym

7.2.1.4. *Epi/Efate*

Baki
Lewo
Nakanamanga (= North Efate)
Namakir (= Namakura, Makura)
Nguna (= dialect of Nakanamanga)
Sesake (= dialect of Nakanamanga)
South Efate

7.2.2. Southern Melanesian

7.2.2.1. South Vanuatu [SV]
Anejo̞m (= Aneityum)
Kwamera
Lenakel
North Tanna
South-west Tanna
Sye (= Sie, Eromangan)
Ura
Whitesands

7.2.2.2. New Caledonia [NCal]

7.2.2.2.1. North New Caledonia
Caaâc
Cêmuhî
Fwâi
Jawe
Pije
Pwapwâ
Nemi
Nêlêmwa
Nixumwak (= Koumak, Koumac)
Nyelâyu
Paicî
Voh-Koné
Yuanga

7.2.2.2.2. South New Caledonia
Ajië
Drubea (= Païta)
Tîrî (= Tinrin, Grand Couli)
Xârâcùù (= Canala)

7.2.2.2.3. Loyalties
Dehu (= Drehu)
Iaai
Nengone

8. Micronesian [Mic]

8.1. Nauruan

8.2. Nuclear Micronesian

8.2.1. Kosraean (= Kusaeian)

8.2.2. Central Micronesian

8.2.2.1. Kiribati (= Kiribatese, Gilbertese)
8.2.2.2. Western Micronesian

8.2.2.2.1. Marshallese

8.2.2.2.2. Chuukic-Ponapeic
Carolinian
Chuukese (= Trukese)
Mokilese
Mortlockese
Namoluk (= dialect of Mortlockese)
Ponapean (= Pohnpeian)
Pulo-Annan (dialect of Sonsorolese)
Puluwatese
Satawalese
Sonsorolese
Ulithian
Woleaian

9. Central Pacific [Fij and Pn]

9.1. Rotuman

9.2. Fijian

9.2.1. Western Fijian dialects
Bā
Nadrogā
Wayan
West Viti Levu
Yasawa

9.2.2. Eastern Fijian dialects
Bauan (= Standard Fijian)
Boumā
Bua
Buca Bay
Kadavu
Lau
Lomaiviti
Namosi
Ovalau
Rakiraki
Rewa
Taveuni
Verata
Vanua Levu
Wailevu

9.3. Polynesian

1 We opt here for a division of Central Pacific into Rotuman, Fijian and Polynesian here in view of the complexities of its history described in chapter 1, §3.2.2 (p.10).
9.3.1. *Tongic*
 - Niuean
 - Niuatoputapu (= dialect of Tongan)
 - Tongan

9.3.2. *Nuclear Polynesian*
 - Anutan
 - East Uvean
 - East Futunan
 - Emae
 - Ifira-Mele (= Mele-Fila, Imere-Ifira)
 - Kapingamarangi
 - Luangiua (= Ontong Java)
 - Nukuoro
 - Nanumea (= dialect of Tuvalu)
 - Nukumanu
 - Nukuria
 - Pileni
 - Pukapukan
 - Rennellese, Rennellese (Bellona)
 - Samoan
 - Sikaiana
 - Takuu
 - Tikopia
 - Tokelauan
 - Tuvalu (= Ellicean)
 - West Futunan (= Futuna-aniwa)
 - West Uvean

9.3.2.1. *Eastern Polynesian*
 - Hawaiian
 - Mangaia (= dialect of Rarotongan)
 - Mangarevan
 - Manihiki
 - Māori
 - Marquesan
 - Rapa
 - Rapanui (= Easter Island)
 - Rarotongan
 - Rurutu (= Inner Australs)
 - Tahitian
 - Tongarevan (= Penrhyn)
 - Tuamotuan
3 Language finderlist

Numbers refer to §2 above.

Aba (= Nebao) 6.2.
Abma (= Apma) 7.2.1.2.
Andra 3.2.1.
Adzera 4.1.1.2.2.
Äiwoo 6.1.
Ajie 7.2.2.2.2.
Akolet 4.1.1.3.6.2.
’Ala’ala 4.1.3.5.
Ali 4.1.1.1.
Amara 4.1.1.3.
Ambrym, SE and N 7.2.1.3.
Aneityum (= Anejomi) 7.2.2.1.
Anejom̃ 7.2.2.1.
Anuki 4.1.3.2.
Anutan 9.3.2.
Aore 7.1.3.
Apma 7.2.1.2.
Araki 7.1.3.
Arawe 4.1.1.3.6.2.
Are 4.1.3.2.4.
’Are’are 5.2.
Aria 4.1.1.3.6.1.
Aribwatsa 4.1.1.2.2.
Arifama 4.1.3.2.4.
Arop (dialect of Sissano) 4.1.1.1.
Arop-Lokep (Lukep) 4.1.1.3.1.
Arosi 5.2.
Asuboa 6.2.
Atchin 7.2.1.1.1.
Atui 4.1.1.3.6.2.
Aua 3.1.
’Auhelawa 4.1.3.1.
Aula 7.2.1.1.1.
Australs, Inner (= Rurutu) 9.3.2.1.
Avasō 4.2.3.5.1.4.
Avava 7.2.1.1.1.
Axamb 7.2.1.1.1.
Bā 9.2.1.
Babatana 4.2.3.5.1.4.
Baegu 5.1.
Baelelea 5.2.
Baki 7.2.1.4.
Balawaia 4.1.3.5.
Bali 4.2.1.
Baluan 3.2.2.
Bam 4.1.1.1.
Banoni 4.2.3.5.1.2.
Bao (= Psohoh) 4.1.1.3.6.3.
Bari 4.1.1.3.4.
Barim 4.1.1.3.1.
Bartle Bay (dialect of Wedau) 4.1.3.2.4.
Barok 4.2.3.3.
Bauan (= Standard Fijian) 9.2.2.
Bauro 5.2.
Bellona (dialect of Rennellese) 9.3.2.
Big Nambas 7.2.1.1.2.
Biliaw (= Bing) 4.1.1.3.5.
Bilibil (= Bilbil) 4.1.1.3.5.
Bilur 4.2.3.5.
Bing 4.1.1.3.5.
Bipi 3.2.1.
Birao 5.1.
Blablange 4.2.3.5.1.6.
Boanaki 4.1.3.2.4.
Bola 4.2.2.
Boumā 9.2.2.
Bua 9.2.2.
Buang 4.1.1.2.3.
Bubwaf (= Middle Watut) 4.1.1.2.2.
Buca Bay 9.2.2.
Budibud 4.1.3.3.
Bugotu 5.1.
Bukawa 4.1.1.2.1.
Bulu 4.2.2.
Buma 6.2.
Bunama 4.1.3.2.1.
Bwaidoga 4.1.3.2.2.
Caaâc 7.2.2.2.1.
Canala (= Xàrâcùù) 7.2.2.2.2.
Carolinian 8.2.2.2.2.
Cèmuhî 7.2.2.2.1.
Chuukese 8.2.2.2.2.
Dami (= Ham) 4.1.1.3.5.
Daui (dialect of Suau) 4.1.3.1.
Dawawa 4.1.3.2.3.
Dehu 7.2.2.2.3.
Diodio 4.1.3.2.2.
Dobu 4.1.3.2.1.
Doga 4.1.3.2.4.
Dorí’o 5.2.
Dorig 7.1.1.
Doura 4.1.3.5.
Drehet 3.2.1.
Drehu (= Dehu) 7.2.2.2.3.
Drubea 7.2.2.2.2.
Duau 4.1.3.2.1.
Duidui (= Nduindui) 7.1.5.
East Futunan 9.3.2.
East Uvean 9.3.2.
Easter Island (= Rapanui) 9.3.2.1.
Ellicean (= Tuvalu) 9.3.2.
Emae 9.3.2.
Ere 3.2.1.
Eromangan (= Sye) 7.2.2.1.
Fagani 5.2.
Fataleka 5.2.
Fijian (Eastern) 9.2.2.
Fijian (Western) 9.2.1.
Fortsenal (= Kiai) 7.1.3.
Futuna-Aniwa (= West Futunan) 9.3.2.
Fwái 7.2.2.2.1.
Gabadi 4.1.3.5.
Galea 4.1.3.2.1.
Galeyà (= Galea) 4.1.3.2.1.
Gae 5.1.
Gao 4.2.3.5.1.6.
Gapapaiwa 4.1.3.2.4.
Gedaged 4.1.1.3.5.
Gela 5.1.
Ghari (dialect of W Guadalcanal) 5.1.
Gilagila (= dialect of Sewa Bay) 4.1.3.2.1.
Gilbertese (= Kiribati) 8.2.2.1.
Gitua 4.1.1.3.4.
Graged (= Gedaged) 4.1.1.3.5.
Grand Couli (= Tiri) 7.2.2.2.2.
Gumasi (= Gumawana) 4.1.3.2.
Gumawana 4.1.3.2.
Hahon 4.2.3.5.1.1.
Haku (dialect of Halia) 4.2.3.5.1.1.
Halia 4.2.3.5.1.1.
Ham 4.1.1.3.5.
Hawaiian 9.3.2.1.
Harua (dialect of Bola) 4.2.2.
Hiw 7.1.1.
Hoava 4.2.3.5.1.5.
Hote 4.1.1.2.3.
Hote 4.1.1.2.3.
Hula 4.1.3.5.
Hus 3.2.1.
Iaai 7.2.2.2.3.
Iamalele 4.1.3.2.2.
Iduna 4.1.3.2.2.
Iffera-Mele 9.3.2.
Imere-Iffera (= Iffera-Mele) 9.3.2.
Inner Australs (= Rurutu) 9.3.2.1.
Jabém (= Yabem) 4.1.1.2.1.
Jawe 7.2.2.2.1.
Kabana (= Bariai) 4.1.1.3.4.
Kadavu 9.2.2.
Kahua 5.2.
Kai ep 4.1.1.1.
Kaimanga 4.1.1.3.
Kairuru 4.1.1.1.
Kaiwa 4.1.1.2.3.
Kakabai 4.1.3.2.3.
Kakuna 4.1.1.3.7.
Kalokalo 4.1.3.2.2.
Kandas 4.2.3.5.
Kaniet 3.1.
Kapin 4.1.1.2.3.
Kapingamarangi 9.3.2.
Kara (East, West) 4.2.3.1.
Kaulong 4.1.1.3.6.3.
Keapara (Hula) 4.1.3.5.
Kela 4.1.1.2.1.
Khehek (= Drehet) 3.2.1.
Kia 4.2.3.5.1.6.
Kiai 7.1.3.
Kilenge 4.1.1.3.2.
Kilivila 4.1.3.3.
Kiribati 8.2.2.1.
Kiribatese (= Kiribati) 8.2.2.1.
Kiriwina (= Kilivila) 4.1.3.3.
Kis 4.1.1.1.
Kokota 4.2.3.5.1.6.
Konomala 4.2.3.5.
Appendix B

Kosraean 8.2.1.
Koumac (= Nixumwak) 7.2.2.2.1.
Koumak (= Nixumwak) 7.2.2.2.1.
Kove 4.1.1.3.4.
Kuanua (= Tolai) 4.2.3.5.
Kubukota 4.2.3.5.1.5.
Kukuya (= Minaveha) 4.1.3.2.4.
Kumaru (dialect of Mumeng) 4.1.1.2.3.
Kuni 4.1.3.5.
Kurada ('Auhelawa) 4.1.3.1.
Kurti 3.2.1.
Kusaeian (= Kosraean) 8.2.1.
Kusaghe 4.2.3.5.1.5.
Kwai 5.2.
Kwai 5.2.
Kwamera 7.2.2.1.
Kwara‘ae 5.2.
Kwato Suau 4.1.3.1.
Label 4.2.3.5.
Labo 7.2.1.1.2.
Labu 4.1.1.2.2.
Laghu 4.2.3.5.1.6.
Lakalai (= Nakanai) 4.2.2.
Lakon 7.1.1.
Lakona (=Lakon) 7.1.1.
Lala 4.1.3.5.
Lamasong 4.2.3.3.
Lamogai 4.1.1.3.6.1.
Langalanga 5.2.
Larëvat 7.2.1.1.1.
Lau 9.2.2.
Lau 5.2.
Lavongai 4.2.3.1.
Lehali 7.1.1.
Leipon 3.2.1.
Lele 3.2.1.
Lemeres (= Sasar) 7.1.1.
Lenakel 7.2.2.1.
Lendamboi 7.2.1.1.1.
Lengo 5.1.
Lenkau 3.2.2.
Letemboi (= Lendamboi) 7.2.1.1.1.
Levei-Tulu (= Drehet) 3.2.1.
Lewo 7.2.1.4.
Lihir 4.2.3.2.
Likum 3.2.1.
Lödäi (= Natügu) 6.1.
Logea 4.1.3.1.
Lomaiviti 9.2.2.
Longea (= Bush Mengen) 4.1.1.3.7.
Lonco 5.2.
Loniu 3.2.1.
Lonwolwol 7.2.1.3.
Lo-Toga 7.1.1.
Lou 3.2.2.
Luangiua 9.3.2.
Lupep (Pono) 4.1.1.3.1.
Madar 4.2.3.3.
Maenje (dialect of Mengen, = Orford) 4.1.1.3.7.
Maewo 7.1.5.
Magorii 4.1.3.5.
Maisin 4.1.3.2.4.
Makura (= Namakir) 7.2.1.4.
Malai (= dialect of Mutu) 4.1.1.3.4.
Malamaim 4.1.1.3.4.
Malango 5.1.
Malasanga 4.1.1.3.1.
Maleu 4.1.1.3.2.
Malfaxal (dialect of Naha‘ai) 7.2.1.1.2.
Malo (= Natügu) 6.1.
Malo (= Tamambo) 7.1.3.
Malua Bay 7.2.1.1.1.
Mamushi 4.1.1.3.7.
Manam 4.1.1.1.
Mangaia 9.3.2.1.
Mangap 4.1.1.3.
Mangarevan 9.3.2.1.
Mangga (dialect of Buang) 4.1.1.2.3.
Mangsgung 4.1.1.3.6.2.
Manihiki 9.3.2.1.
Māori 9.3.2.1.
Mapos Buang 4.1.1.2.3.
Maralango (= South Watut) 4.1.1.2.2.
Mari 4.1.1.2.2.
Maringa (= Cheke Holo, Hograno) 4.2.3.5.1.6.
Marovo 4.2.3.5.1.5.
Marquesan 9.3.2.1.
Marshallese 8.2.2.2.1.
Maskelynes 7.2.1.1.1.
Matantas 7.1.2.
Mato 4.1.1.3.3.
Matugar (= Matukar) 4.1.1.3.5.
Matukar 4.1.1.3.5.
Medebur 4.1.1.1.
Megiar 4.1.1.3.5.
Mekeo 4.1.3.5.
Mele-Fila (= Ifira-Mele) 9.3.2.
Mengen, Bush (= Longeinga) 4.1.1.3.7.
Mengen 4.1.1.3.7.
Meramera 4.2.2.
Merlav 7.1.1.
Middle Watut 4.1.1.2.2.
Minaveha 4.1.3.2.4.
Mindiri 4.1.1.3.5.
Minigir 4.2.3.5.
Misim (dialect of Hote) 4.1.1.2.3.
Misima 4.1.3.3.
Mok (= Mouk) 4.1.3.5.
Mokilese 8.2.2.2.2.
Molima 4.1.3.2.2.
Mondropolon 3.2.1.
Mono-Alu 4.2.3.5.1.3.
Morouas 7.1.3.
Mortlockese 8.2.2.2.2.
Mosina (= Mwesen) 7.1.1.
Mota 7.1.1.
Motlav (= Mwotlap) 7.1.1.
Mouk 4.1.3.5.
Mumeng 4.1.1.2.3.
Musom 4.1.1.2.2.
Mussau 2. Mutu 4.1.1.3.4.
Muyuw 4.1.3.3.
Mwerlap (= Merlav) 7.1.1.
Mwesen 7.1.1.
Mwotlap 7.1.1.
Nadrogā 9.2.1.
Nagu 6.1.
Naha'ai 7.2.1.1.2.
Nahavaq (= Southwest Bay) 7.2.1.1.2.
Nakanai 4.2.2.
Nakanamanga 7.2.1.4.
Nali 3.2.1.
Nalik 4.2.3.1.
Namakir (= Namakura, Makura) 7.2.1.4.
Namakura (= Namakir) 7.2.1.4.
Naman 7.2.1.1.2.
Namoluk (dialect of Mortlockese) 8.2.2.2.2.
Namosi 9.2.2.
Nanumea 9.3.2.
Nara 4.1.3.5.
Nasarian 7.2.1.1.2.
Näti 7.2.1.1.2.
Natügu 6.1.
Nauna 3.2.2.
Nauruan 8.1.
Ndrehet (= Drehet) 3.2.1.
Nduindui 7.1.5.
Nduke 4.2.3.5.1.5.
Nebao 6.2.
Nedō (= Natügu) 6.1.
Nehan 4.2.3.5.1.1.
Nekep (= Sakao) 7.1.4.
Nēlēmwa 7.2.2.2.1.
Nemba (= Nebao) 6.2.
Nemi 7.2.2.2.1.
Nenaya (= Mato) 4.1.1.3.3.
Nengaya (= Mato) 4.1.1.3.3.
Nengone 7.2.2.2.3.
Nese 7.2.1.1.1.
Neve’ei 7.2.1.1.2.
Nggæ (= Gæ) 5.1.
Nggela (= Gela) 5.1.
Nginia (= Ghari, dialect of W Guadalcanal) 5.1.
Nguna 7.2.1.4.
Ngwatua (= Nduindui) 7.1.5.
Nimoa 4.1.3.4.
Ninde (= Labo) 7.2.1.1.2.
Ninigo (= Seimat) 3.1.
Nisvai 7.2.1.1.1.
Niuatoputapu (dialect of Tongan) 9.3.1.
Niuean 9.3.1.
Nixumwak 7.2.2.2.1.
Nochi (= Notsi) 4.2.3.2.
Nodup (dialect of Tolai) 4.2.3.5.
Nokuku 7.1.2.
North Ambrym 7.2.1.3.
North Efate (= Nakanamanga) 7.2.1.4.
North Tanna 7.2.2.1.
North Watut 4.1.1.2.2.
Northeast Ambae 7.1.5.
Northeast Aoba (= NE Ambae) 7.1.5.
Northeast Malakula (= Atchin) 7.2.1.1.1.
Notsi 4.2.3.2.
Nukumanu 9.3.2.
Nukuoro 9.3.2.
Nukuria 9.3.2.
Numbami 4.1.1.2.
Nume 7.1.1.
Nyelâyu 7.2.2.2.1.
Nyindrou 3.2.1.
Olrat 7.1.1.
Onank (= North Watut) 4.1.1.2.2.
Ontong Java (= Luangiua) 9.3.2.
Orford (dialect of Mengen, = Maenge) 4.1.1.3.7.
Ormu 4.1.2.2.
Ouma 4.1.3.5.
Ovalau 9.2.2.
Owa 5.2.
Oya’oya 4.1.3.1.
Paamese 7.2.1.3.
Paicî 7.2.2.2.1.
Païta (= Drubea) 7.2.2.2.2.
Paiwa (= Gapapaiwa) 4.1.3.2.4.
Pak 3.2.2.
Pamela (= Sudest) 4.1.3.4.
Papitalai 3.2.1.
Patep (dialect of Mumeng) 4.1.1.2.3.
Patpatar 4.2.3.5.
Penchal 3.2.2.
Penrhyn (= Tongarevan) 9.3.2.1.
Petats 4.2.3.5.1.1.
Pije 7.2.2.2.1.
Pileni 9.3.2.
Pitilu (= Leipon) 3.2.1.
Poeng (dialect of Mengen) 4.1.1.3.7.
Pohnpeian (= Ponapean) 8.2.2.2.2.
Pokau 4.1.3.5.
Ponam 3.2.1.
Ponapean 8.2.2.2.2.
Pono (= Lukep) 4.1.1.3.
Port Sandwich 7.2.1.1.1.
Psohoh 4.1.1.3.6.3.
Pukapukan 9.3.2.
Pulo-Annan 8.2.2.2.2.
Puluwatese 8.2.2.2.2.
Pwapwâ 7.2.2.2.1.
Raga 7.1.5.
Rakiraki 9.2.2.
Raluana (= Tolai) 4.2.3.5.
Ramoaaina (= Duke of York) 4.2.3.5.
Rapa 9.3.2.1.
Rapanui 9.3.2.1.
Rarotongan 9.3.2.1.
Reefs (= Äiwoo) 6.1.
Rennellese 9.3.2.
Rerep 7.2.1.1.1.
Rewa 9.2.2.
Ririo 4.2.3.5.1.4.
Riwo (dialect of Gedaged) 4.1.1.3.5.
Roinji 4.1.1.3.3.
Rondi (= Ronji) 4.1.1.3.3.
Ronji (= Roinji) 4.1.1.3.3.
Roro 4.1.3.5.
Rotuman 9.1.
Roviana 4.2.3.5.1.5.
Rurutu 9.3.2.1.
Sa 7.2.1.2.
Sa’a 5.2.
Sakao 7.1.4.
Saliba 4.1.3.1.
Samoa 9.3.2.
Santa Ana (dialect of Kahua) 5.2.
Sara (dialect of Sakao) 7.1.4.
Sariba (= Saliba) 4.1.3.1.
Sasar (= Lemerig) 7.1.1.
Satawalese 8.2.2.2.2.
Seimat 3.1.
Selau (dialect of Halia) 4.2.3.5.1.1.
Sengga (= Sisiga) 4.2.3.5.1.4.
Sengseng 4.1.1.3.6.3.
Sesake (dialect of Nakanamanga) 7.2.1.4.
Sewa Bay 4.1.3.2.1.
Shark Bay 7.1.3.
Siar 4.2.3.5.
Sie (= Sye) 7.2.2.1.
Sikaiana 9.3.2.
Simbo 4.2.3.5.1.5.
Sinaugoro (Balawaia, Taboro) 4.1.3.5.
Sinesip 7.2.1.1.2.
Singorakai (dialect of Malasanga) 4.1.1.3.1.
Sio 4.1.1.3.
Sirasira 4.1.1.2.2.
Sisingga (= Sisiqa) 4.2.3.5.1.4.
Sisiqa (= Sisingga, Sengga) 4.2.3.5.1.4.
Sissano (Arop) 4.1.1.1.
Sobei 4.1.2.1.
Solos 4.2.3.5.1.1.
Sonsorolese 8.2.2.2.2.
Sori-Hareengan 3.2.1.
South Efate 7.2.1.4.
Southeast Ambrym 7.2.1.3.
South Watut 4.1.1.2.2.
Southwest Tanna 7.2.2.1.
Southwest Bay (= Nahavaq) 7.2.1.1.2.
Suau 4.1.3.1.
Sudest 4.1.3.4.
Sukurum 4.1.1.2.2.
Sursurunga 4.2.3.5.
Sye 7.2.2.1.
Tabar 4.2.3.2.
Taboro 4.1.3.5.
Tahitian 9.3.2.1.
Taiof 4.2.3.5.1.1.
Takia 4.1.1.3.5.
Takuu 9.3.2.
Talise 5.1.
Tamabo (= Tamambo) 7.1.3.
Tamambo (= Tamabo, Malo) 7.1.3.
Tamotalo 7.1.3.
Tami 4.1.1.3.
Tanema 6.2.
Tanga (= Tangga) 4.2.3.5.
Tangga 4.2.3.5.
Tangoa 7.1.3.
Tanibili 6.2.
Tanima (= Tanema) 6.2.
Tanimbili (= Tanibili) 6.2.
Tape 7.2.1.1.2.
Tarafia (= Tarphia) 4.1.2.1.
Tarphia 4.1.2.1.
Tasmate 7.1.2.
Taupota 4.1.3.2.4.
Taveuni 9.2.2.
Tawala 4.1.3.2.4.
Teani (= Buma) 6.2.
Teop 4.2.3.5.1.1.
Varisi 4.2.3.5.1.4.
Vatrata (= Vera’a) 7.1.1.
Vehes 4.1.1.2.3.
Vera’a 7.1.1.
Vinitiri (= Minigir) 4.2.3.5.
Vitu 4.2.1.
Voh-Koné 7.2.2.2.1.
Volow 7.1.1.
Vurës 7.1.1.
Wab 4.1.1.3.5.
Wagawaga 4.1.3.1.
Wailevu 9.2.2.
Wampur 4.1.1.2.2.
Watut, North 4.1.1.2.2.
Wayan 9.2.1.
Wedau 4.1.3.2.4.
West Futunan 9.3.2.
West Guadalcanal 5.1.
West Mekeo 4.1.3.5.

West Uvean 9.3.2.
West Viti Levu 9.2.1.
Whitesands 7.2.2.1.
Wogeo 4.1.1.1.
Woleaian 8.2.2.2.2.
Wusi 7.1.3.
Wuvulu 3.1.
Xârâcùù 7.2.2.2.2.
Yabem 4.1.1.2.1.
Yalu 4.1.1.2.2.
Yamalele (= Iamalele) 4.1.3.2.2.
Yap 1.
Yasawa 9.2.1.
Yoba 4.1.3.5.
Yuanga 7.2.2.2.1.
Zabana (= Kia) 4.2.3.5.1.6.
Zenag (dialect of Mumeng) 4.1.1.2.3.
Ziwo (= Riwo, dialect of Gedaged) 4.1.1.3.5.
Map 7 Locations of Eastern Admiralties (Adm) languages
(for Wuvulu, Aua and Seimat, see Map 6; for Mussau, Emira and Tench, see Map 7)
Map 8
Locations of languages of the Western Admiralties (Adm) family, the North New Guinea (NNG) cluster, and the Sarm-Jayapura (SJ) family.
Map 9 Locations of languages of the Papuan Tip (PT) cluster
Map 10

Locations of languages of the Meso-Melanesian (MM) cluster and the St Matthias Group.

Appendix B
Map 11 Locations of Southeast Solomonic (SES) languages
Map 12 Locations of Temotu (TM) languages and Pileni
Map 13 Locations of North Vanuatu (NCV) languages
Map 14: Locations of Central Vanuatu (NCV) Languages
Map 15 Locations of Southern Vanuatu (SV) and New Caledonia (NCal) languages
Map 16
Locations of Yapese, Nauruan, Nuclear Micronesian (Mi) and some Polynesian (Pn) languages
Map 17 Locations of Fijian (Fij) and Polynesian (Pn) languages

References

—, n. d.b. West Nakanai (Lakalai) dictionary. Typescript.

References

495

Gadow, H., 1898. A list of the birds of the island of Rotumah. Ibis 4: 42–45.

—, 2003. The Lapita horizon and traditions: Signature for one set of Oceanic migrations. In Sand, 2003:

—, 1995. *Of reef and rainforest: A dictionary of environment and resources in Marovo Lagoon*. Bergen: Centre for Development Studies, University of Bergen & Western Province Division of Culture, Gizo, Solomon Islands.

References

Marck, Jeff, 1994. Proto Micronesian terms for the physical environment. In Pawley & Ross, 1994:

References

Swadling, Pamela, 1977. Central Province shellfish resources and their utilisation in the prehistoric past of Papua New Guinea. The Veliger 19.3: 293–302,
—, 1994. Changing shellfish resources and their exploitation for food and artifact production in Papua New Guinea. Man and culture in Oceania 10: 127–150,
References

Index of reconstructions by protolanguage

Protolanguages are ordered from the top of the Austronesian tree downward, but with all branches of Western Oceanic before Eastern Oceanic: see figures 1.1 and 1.2 (pp.7–8). In alphabetising reconstructions, an upper-case character follows the corresponding lower-case character (thus R follows r), y follows g, ŋ follows n, ŋ follows ŋ, d follows S, the digraph dr follows d, a superscripted character is treated like the corresponding unsuperscripted character, and macrons, parentheses and brackets are ignored. Where alternants are shown in parentheses or brackets, e.g. (r,R) or [q,k], the second alternant is ignored, but is often shown in a crossreferenced entry at the appropriate alphabetic point. PSV reconstructions which consist of *n(V)- ‘article’ + root are alphabetised by the root.

Proto Austronesian (PA)

*baRuj ‘dove, Ducula sp.’, 313
*beRek ‘domesticated pig’, 238
*biRaS ‘roe, fish eggs’, 129
*bugaya ‘crocodile’, 252
*Ciqaw ‘goatfish’, 84
*ikuR ‘tail’, 267, 277
*kuCu ‘louse’, 374
*kulabaw ‘rat, mouse’, 233
*kuRita ‘octopus’, 199
*luay ‘cicada’, 397
*lawaq ‘spider’, 409
*liseqeS ‘nit, louse egg’, 375
*paRiS ‘stingray’, 34
*peñu ‘turtle’, 249
*punay ‘dove, Treron sp.’, 310
*puRuq ‘quail, partridge’, 307
*gali-benbeŋ ‘butterfly’, 378
*galu-Sipan ‘centipede’, 406
*gudaŋ ‘shrimp, lobster’, 165
*guleŋ ‘maggot’, 414
*gumaŋ ‘hermit crab’, 170
*guSaNap ‘scale of fish’, 131

Proto Malayo-Polynesian (PMP)

*anay ‘termite’, 394
*banbay ‘fish sp.’, 65
*bilu ‘Caranx spp., trevally’, 69
*biRaq ‘Zebrasomaveliferum’, 103
*bualabaw ‘rat, mouse’, 232
*bukaw ‘owl sp.’, 318
*bukbuk ‘weevil that infests wood, bamboo, and rice; dust produced by the boring of this insect; tooth decay, dental caries’, 388
*bolan-bolan ‘a white fish, Megalops cyprinoides’, 37
*bulati ‘roundworm, ascaris, intestinal worm; also earthworm?’, 413
*buliq ‘cowrie shell’, 185
*bulu ‘body hair, fur, feather, down, floss’, 273

*SayaN ‘white ant, termite’, 394
*Sikan ‘fish’, 28
*Sipes ‘cockroach’, 402
*tuNa ‘freshwater eel’, 43
*tumeS ‘clothes louse’, 375
Index of reconstructions by protolanguage

<table>
<thead>
<tr>
<th>Protolanguage</th>
<th>Meaning</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>buna</td>
<td>'batfish'</td>
<td>88</td>
</tr>
<tr>
<td>buŋa</td>
<td>'flower, blossom'</td>
<td>88</td>
</tr>
<tr>
<td>buŋani</td>
<td>batu 'coral sponge'</td>
<td>208</td>
</tr>
<tr>
<td>buqaya</td>
<td>+ modifier 'Hippocampus'</td>
<td>sp., seahorse</td>
</tr>
<tr>
<td>duyuŋ</td>
<td>'dugong'</td>
<td>247</td>
</tr>
<tr>
<td>gaway</td>
<td>'octopus tentacles'</td>
<td>201</td>
</tr>
<tr>
<td>hasay</td>
<td>'gills'</td>
<td>129</td>
</tr>
<tr>
<td>hikan</td>
<td>'fish'</td>
<td>28</td>
</tr>
<tr>
<td>(kali)papa</td>
<td>'praying mantis, grasshopper'</td>
<td></td>
</tr>
<tr>
<td>kanasay</td>
<td>'mullet'</td>
<td>58</td>
</tr>
<tr>
<td>kanaway</td>
<td>'white bird'</td>
<td>365</td>
</tr>
<tr>
<td>kapak</td>
<td>'wings; flutter'</td>
<td>275</td>
</tr>
<tr>
<td>kapay</td>
<td>'flap wings'</td>
<td>276</td>
</tr>
<tr>
<td>keRteŋ</td>
<td>'kind of striped or spotted marine fish, Epinephelus sp.'</td>
<td>65</td>
</tr>
<tr>
<td>kasuli</td>
<td>'Anguillidae, freshwater eel'</td>
<td>47</td>
</tr>
<tr>
<td>katawan</td>
<td>'fish sp.'</td>
<td>103</td>
</tr>
<tr>
<td>kempuy</td>
<td>'abdomen, belly'</td>
<td>134</td>
</tr>
<tr>
<td>keRteŋ</td>
<td>'kind of striped or spotted marine fish, Epinephelus sp.'</td>
<td>65</td>
</tr>
<tr>
<td>kima</td>
<td>'giant clam, Tridacna spp.'</td>
<td>189</td>
</tr>
<tr>
<td>kiten</td>
<td>'rabbitfish'</td>
<td>108</td>
</tr>
<tr>
<td>kulambar</td>
<td>'Gnathodentex, Scolopsis'</td>
<td>81</td>
</tr>
<tr>
<td>[k,q]ulapi</td>
<td>'parrotfish'</td>
<td>95</td>
</tr>
<tr>
<td>kularu</td>
<td>'Epinephelus sp.'</td>
<td>64</td>
</tr>
<tr>
<td>kuRaw</td>
<td>'edible marine fish'</td>
<td>36</td>
</tr>
<tr>
<td>kuSkuS</td>
<td>'claw, finger, toenail'</td>
<td>278</td>
</tr>
<tr>
<td>kutu</td>
<td>'louse'</td>
<td>374</td>
</tr>
<tr>
<td>labaw</td>
<td>'rat, mouse'</td>
<td>232</td>
</tr>
<tr>
<td>laŋaw</td>
<td>'coral'</td>
<td>208</td>
</tr>
<tr>
<td>laiŋh</td>
<td>'dolphinfish'</td>
<td>71</td>
</tr>
<tr>
<td>lalak</td>
<td>'trochus shell'</td>
<td>186</td>
</tr>
<tr>
<td>lanaw</td>
<td>'botfly, bluebottle'</td>
<td>385</td>
</tr>
<tr>
<td>lawi</td>
<td>'tail feather'</td>
<td>274</td>
</tr>
<tr>
<td>loRo</td>
<td>'red tree ant'</td>
<td>391</td>
</tr>
<tr>
<td>mamin</td>
<td>'wrasse, Cheilinus spp.'</td>
<td>92</td>
</tr>
<tr>
<td>manuk</td>
<td>'bird, fowl'</td>
<td>284</td>
</tr>
<tr>
<td>-miken</td>
<td>'omen dove'</td>
<td>316</td>
</tr>
<tr>
<td>muŋuŋ</td>
<td>'k.o. fish'</td>
<td>109</td>
</tr>
<tr>
<td>mutu</td>
<td>'damselfish'</td>
<td>90</td>
</tr>
<tr>
<td>nek-nek</td>
<td>'gnat, sandfly, fruit fly'</td>
<td>384</td>
</tr>
<tr>
<td>nik-nik</td>
<td>nik-ŋik *'tiny biting insect: gnat, sandfly, fruitfly'</td>
<td>383</td>
</tr>
<tr>
<td>nipay</td>
<td>'snake'</td>
<td>259</td>
</tr>
<tr>
<td>ŋamuk</td>
<td>'mosquito'</td>
<td>380</td>
</tr>
<tr>
<td>ŋepuŋ</td>
<td>'stonefish'</td>
<td>119</td>
</tr>
<tr>
<td>yaRaq</td>
<td>'wild duck'</td>
<td>293</td>
</tr>
<tr>
<td>ŋiŋ</td>
<td>'buzz, hum'</td>
<td>383</td>
</tr>
<tr>
<td>palata</td>
<td>'fish sp.'</td>
<td>73</td>
</tr>
<tr>
<td>paliR</td>
<td>'surgeonfish'</td>
<td>103</td>
</tr>
<tr>
<td>panij</td>
<td>'wing'</td>
<td>132, 275</td>
</tr>
<tr>
<td>paŋa</td>
<td>'praying mantis, grasshopper'</td>
<td>see *(kali)papa</td>
</tr>
<tr>
<td>paRih manuk</td>
<td>'? ray'</td>
<td>35</td>
</tr>
<tr>
<td>paya</td>
<td>'k.o. small fish, sardine or anchovy'</td>
<td>38</td>
</tr>
<tr>
<td>qabated</td>
<td>'sago grub'</td>
<td>404</td>
</tr>
<tr>
<td>qalilinj</td>
<td>'cat’s eye shell'</td>
<td>182</td>
</tr>
<tr>
<td>qalimayaw</td>
<td>'mangrove crab'</td>
<td>172</td>
</tr>
<tr>
<td>qali-petpet</td>
<td>'firefly'</td>
<td>399</td>
</tr>
<tr>
<td>qalu</td>
<td>'barracuda'</td>
<td>62</td>
</tr>
<tr>
<td>qalu-hipan</td>
<td>'centipede'</td>
<td>406</td>
</tr>
<tr>
<td>qaronyo</td>
<td>'Acanthurus spp.'</td>
<td>104</td>
</tr>
<tr>
<td>qaRuas</td>
<td>'young growth stage of mullet, Neomyxus chaptalii'</td>
<td>59</td>
</tr>
<tr>
<td>qateluR</td>
<td>'egg, testicle'</td>
<td>278</td>
</tr>
<tr>
<td>qatulay</td>
<td>'Trachurus crumenophthalmus, the big-eyed scad'</td>
<td>69</td>
</tr>
<tr>
<td>qawa</td>
<td>*qawan 'Chanos chanos, milkfish'</td>
<td>41</td>
</tr>
<tr>
<td>qayuyu</td>
<td>'coconut crab, Birgus latro'</td>
<td>169</td>
</tr>
<tr>
<td>qulapi</td>
<td>'parrotfish', see *[k,q]ulapi</td>
<td></td>
</tr>
<tr>
<td>qulej-an</td>
<td>'have worms'</td>
<td>415</td>
</tr>
<tr>
<td>qulej-qulej</td>
<td>'lots of worms; crawling with worms, extremely wormy'</td>
<td>416</td>
</tr>
<tr>
<td>qumay</td>
<td>'unicorn fish, Naso spp.'</td>
<td>101</td>
</tr>
<tr>
<td>qupa</td>
<td>'hen, egg-laying chicken'</td>
<td>287</td>
</tr>
<tr>
<td>qutur</td>
<td>'green jobfish'</td>
<td>75</td>
</tr>
<tr>
<td>Raŋa</td>
<td>Raŋakor Raŋar 'the spider conch, Lambis lambis'</td>
<td>181</td>
</tr>
<tr>
<td>Rebek</td>
<td>'to fly'</td>
<td>281</td>
</tr>
<tr>
<td>saku</td>
<td>'needlefish'</td>
<td>51</td>
</tr>
</tbody>
</table>
*saku-layaR ‘sailfish, swordfish’, 116
*saka-saka ‘starfish’, 206
*siRik ‘dorsal fin’, 134
*sisi[q] ‘edible snail’ (doubles *sisuq, *susuq), 184
*sulig ‘Caesio sp., fusilier’, 74
*tabuRi ‘conch shell trumpet’ (dbl. *tabuRi), 183
*taŋiRi ‘Scomberomorus commerson, Spanish mackerel’, 114
*taRiq ‘Holocentrus spp., squirrelfish’, 17, 53
*taRat ‘Naso spp., unicornfish’, 102
*taRutu[m,ŋ] ‘porcupinefish, Diodon sp.’, 125
*tepek ‘gecko, house lizard (onom.)’ (doublet *cekcek), 256
*tiqaw ‘goatfish’, 84
*tiRem ‘oyster (Ostreidae)’, 193
*tumah ‘clothes louse’, 375

Proto Western Malayo-Polynesian (PWMP)
*bekur ‘coo, turtle dove’, 318
*kepay-kepay ‘flap (wings, fins of fish, etc.)’, 276
*kepek ‘flap wings’, 276

Proto Central–Eastern Malayo-Polynesian (PCEMP)
*alali ‘halibut, flounder’, 118
*kandoRa ‘cuscus’, 220, 225
*kanzupay ‘rat’, 231
*kasawari ‘cassowary’, 288
*keRaŋ ‘hawksbill turtle’, 250
* mansar ‘bandicoot, marsupial rat’, 220, 228
*manser ‘bandicoot, marsupial rat’, 220

Proto Eastern Malayo-Polynesian (PEMP)
*kalabaw ‘rat, mouse’, 233
*kuriap ‘dolphin’, 245
*niku(i) ‘nest’, 279
*wakin ‘wallaby’, 222

Proto Oceanic (POc)
*alali ‘flatfish incl. flounders, soles’, see *[l]alali
*ane ‘termite’, 394
*baba(ŋ) ‘rock cod or grouper’, 65
*babu ‘Cheilinus spp., Maori wrasse’, 93
*bakewa ‘shark (generic)’, 29, 30, 129, 144, 148, 150
*balaki ‘Acanthurus and Naso spp.’, see *bala(y,k)i
*bal(a,y,k)i ‘Acanthurus and Naso spp.’, 107, 146, 148
*baluc ‘pigeon, Ducula sp.’, 313
*banic ‘arm, hand, wing, fin (probably pectoral)’, 132, 275
*b(a,e,i)risu ‘Buff-banded Rail, Rallus philippensis’, 308
*bati ‘tusk, canine tooth’, 266
*bek ‘butterfly, moth’, see *[kau]bebek
*bek ‘generic for Chaetodontidae, coralfish and butterflyfish’, 89, 145, 148
*b(a,e,i)risu ‘Buff-banded Rail, Rallus philippensis’, see *b(a,e,i)risu
*bili ‘k.o. lizard’, 257
*bina m ‘hornbill’, 339
*biRa ‘roe, fish eggs’, 129
*bo(y) ‘butterfly’, see *[kali]bo(y)
*bo(dr,d)a ‘turtle shell’, 268
*bog ‘large bird of prey sp., possibly sea eagle’, 298
*b(o,u)kas(i) ‘pig’, 239
*bol ‘small dark surgeonfish, possibly Ctenochaetus’, 105
*bona ‘pigeon, Ducula sp.’, 313
*boRok ‘pig, Sus scrofa’, 238
*bubu ‘Balistes taxon, triggerfish’, 122, 147
*bubu ‘k.o. wasp’, 389
*bukas(i) ‘pig’, see *b(o,u)kas(i)
*bula ‘k.o. sea cucumber’, see *(p,b)ula
*buli ‘pufferfish’, 127
*buli(q) ‘generic for cowries’, 185
*bunα ‘batfish, Platax sp. or spp., possibly Naso sp. or spp.’, 88, 145, 148
*bune ‘pigeon, dove’, 310
*buγa ‘smooth round coral’, 208
*buΧ-buΧ ‘k.o. fish, possibly angelfish’, 90
*buα ‘pigeon sp.’, 316
*buwalaRe ‘Purple Swamphen, Porphyrioporphyrio’, 307, 308
*bα ‘sea eagle’, 298
*bαγ ‘flying fox, large fruit bat’, 235
*bαε ‘pufferfish’, 127
*bαο ‘Scarus sp., k.o. parrotfish’, 98
*bαRe ‘Purple Swamphen, Porphyrio porphyrio’, 307, 308
*bαν ‘snapper, Lutjanus spp.’, see *(a)umu
*bασ ‘heron, probably Egretta sp.’, 291
*bαουρυκ ‘pigeon or dove sp.’, 320
*bαουρ ‘tern’, 367
*bαηυ ‘Purple Swamphen, Porphyrio porphyrio’, 308
*bαεσ ‘Shining Starling, Aplonis metallica’, 348
*daula ‘frigate bird’, see *(dr,d)aula
*dolq ‘k.o. eel’, see *(t,d)olq
*don(o,u) ‘spotted rock cod, taxon including Cephalopholis and Plectropomus spp.’, 66, 146, 148
*donu ‘spotted rock cod, taxon including Cephalopholis and Plectropomus spp.’, see *don(o,u)
*(dr,d)aula ‘frigate bird’, 357
*[driu]driu ‘small red or brown ants’, 392
*droman ‘leech’, 207, 412
*drudru(r,R) ‘owl’, 331
*drui ‘ant’, 392
*gaga ‘k.o. spider’, see *gagao ‘*(g,k)α(g,k)α-’
gagao ‘(g,k)α(g,k)α- ‘k.o. spider’, 409
*(g,k)αlau ‘k.o. shore crab, possibly a grapsid sp.’, 177
*gara ‘gills’, 130
*(g,a)umu ‘Fruit Dove, Ptilinopus sp.’, 315
*g ‘tern’, 367
*g ‘monitor lizard’, see *(k,g)uma
*γ ‘pigeon or dove’, see *(k,g)upuR
*ibo ‘k.o. sandworm, probably Sipunculus sp.’, 210
*ikan ‘fish (generic)’, 28, 144, 148, 150
*ikan ‘generic for fish (and certain other free-swimming aquatic creatures)’, 421, 428, 452
*iku(R) ‘tail, of quadruped, some birds and possibly fish’, 267, 277
*ioli ‘honeyeater’, 347
*ipos ‘cockroach’, 402
*ipu ‘hair, feather’, 274
*jabiŋ ‘Acanthurus spp., incl. A. guttatus, white-spotted surgeonfish’, see *[s,j]abiŋ
*jaja ‘small fish, herring or anchovy’, 38
*jalala ‘Rastrelliger, k.o. small mackerel’, 115
*japi (1) ‘bivalve taxon, probably *P. maxima, gold-lipped pearl shell’, (2) ‘ornament made from this’, 193
*jiko ‘kingfisher’, see *(s,j)iko
*jinana ‘whitebait’, 100
*jiπi ‘wader’, 359
*jori ‘squirrelfish, possibly generic’, 55
*jumu ‘Balistidae, triggerfish and possibly Monacanthidae, leatherjackets’, 121, 145, 148
*kaba (n) ‘wing’, (v) ‘flap wings’, 275
*kabakabal ‘swiftlet, *Aerodramus or *Collocalia spp.’, 334
*kaboRa ‘*Plotosus spp., catfish’, 42
*kaboRa ‘catfish-eel, *Plotosus sp.’, 147, 148
*kadik ‘stinging black ant’, 390
*k(a)iau ‘Bismarck Scrub Fowl, *Megapodius eremita’, 306
*kaka ‘k.o. spider’, see *gagao ~ *(g,k)a(g,k)a-
*kakawa ‘goby, blenny’, 99
*kalapo ‘rat taxon’, 233
*[kali]bobo⟨ŋ⟩ ‘butterfly’, 378
*kalika ‘Epinephelidae, rock cod’, 67
*kalipa⟨s⟩ ‘large monitor lizard, *Varanus indicus and possibly other species’, see *(k,l)(i,u)pa⟨s⟩
*(k,q)alu ‘firefly’, 399
*kalo ‘growth stage of goatfish’, 86
*kalupa⟨s⟩ ‘large monitor lizard, *Varanus indicus and possibly other species’, see *(k,l)(i,u)pa⟨s⟩
*kamak ‘beetle, possibly longicorn’, 401
*kamaRi ‘*Elagatis bipinnulata, rainbow runner’, 72
*kam(a,i,u)tuq ‘*Bolbometopon, double-headed parrotfish’, 96
*kamituq ‘*Bolbometopon, double-headed parrotfish’, see *kam(a,i,u)tuq
*kamutuq ‘*Bolbometopon, double-headed parrotfish’, see *kam(a,i,u)tuq
*kanase ‘mullet spp. including *Valamugil cunnnesius’, 58, 145, 148
*kanawe ‘tern, *Sterna spp.’, 365
*kafo(i) ‘heron, probably *Egretta sp.’, 289
*(kao)ka ‘crow, *Corvus sp.’, 350
*kaopa ‘heron, probably *Egretta sp.’, 289
*kape ‘crab taxon, probably a rock crab (*Grapsidae)*, 175
*kapi-kapi ‘pectoral fins’, 133
*kapoRu ‘k.o. lizard’, 259
*karawa ‘green parrotfish spp.’, see *[m,k]ara
*(ka)reṇas ‘small parrot sp.’, 326
*kar(l,i,u)pa⟨s⟩ ‘large monitor lizard, *Varanus indicus and possibly other species’, 254
*karipa⟨s⟩ ‘large monitor lizard, *Varanus indicus and possibly other species’, see *(k,l)(i,u)pa⟨s⟩
*karupa⟨s⟩ ‘large monitor lizard, *Varanus indicus and possibly other species’, see *(k,l)(i,u)pa⟨s⟩
*kaRa ‘male *Eclectus Parrot, *Eclectus roratus’, 322
*kaRaka ‘k.o. crab, possibly rock crab.’, 177
*kaRapa ‘k.o. fish’, 59
*kaRi ‘bivalve sp. or spp, possibly cockle, used as a scraper’, 191
*(k,q)aRua⟨s⟩ ‘mullet (generic)’, 59, 147, 148
*kaRu‘(dbl. *kaRu‘) ‘ghost crab, *Ocytopoda sp., small white crab found on sandy beaches’, 176
*kasi (v) ‘to scrape; scraper or grater made from robust circular bivalve
shell, such as *Asaphis* and cockles’, *(n)* ‘shellfish taxon, esp. *Asaphis* spp.’, 191

kasika ‘large emperor, *Lethrinus* sp.’, 81, 146, 148

kasuari ‘Dwarf Cassowary, *Casuarius bennetti*’, 288

(k,q)asuli ‘k.o. sea eel’, 47

*kasupe, *kusupe* ‘rat taxon, probably *Rattus* exulans and possibly other small commensal sp. or spp.’, 231

katapa ‘frigate bird’, 358

katawan ‘*Acanthurus*, surgeonfish’, 103

kato(q)u ‘hermit crab’, 171

[kau]bebek ‘butterfly, moth’, 378

kawa-kawa ‘rock cod, grouper’, 66, 80

kawano ‘k.o. fish, probably *Lethrinus* sp.’, 83

kawe ‘tentacle of a cephalopod’, 201

kepV ‘*Lutjanus* spp., sea perch’, see *ki(e)Pv*

kepa ‘Clupeidae, probably sardine sp.’, 40

ker(a,e)(ker(a,e)) ‘tern’, 366

kere(kere) ‘tern’, see *ker(a,e)(ker(a,e))*

keRay ‘hawksbill turtle, *Eretmochelys imbricata*’, 250, 323

kiau ‘Bismarck Scrub Fowl, *Megapodius eremita*’, see *k(a)iau*

kiki ‘kingfisher’, 338

kikio ‘kingfisher’, see *ki(o)kio

kima ‘giant clam, *Tridacna* spp., include. *T. gigas*’, 189

ki(n)- ‘to pinch’, 382

ki(o)kio ‘kingfisher’, 338

ki(e)Pv ‘*Lutjanus* spp., sea perch’, 78

kirau ‘*Scarus* spp., see *kir[i,au]*

kir[i,au] ‘*Acanthuridae*’, 105

kiRa ‘White Tern, *Gygis alba*’, 366

kiRak ‘*Plectrohinchus* spp., sweetlips’, 80, 146, 148

kiso ‘Crested Baza, *Aviceda subcristata*’, see *ki(t,s)o

ki(t,s)o ‘Crested Baza, *Aviceda subcristata*’, 300

kiton ‘*Siganus* sp., possibly *Siganus punctatus*, gold-spotted spinefoot’, 108

koba ‘hermit crab’, 171

kobu(qj) ‘middle, waist, belly’, 134

koko ‘*Casuarius bennetti*’, 288

kokerako ‘fowl, *Gallus gallus*, esp. male’, 284

koyo(k) ‘hornbill’, 340

koray ‘emperor, *Lethrinidae*’, 83

koro ‘gills’, 130

kororo ‘bee’, 387

kosa ‘k.o. parrotfish’, 97

koto(qj) ‘large rock cod or grouper, *Epinephelus* sp.’, 65, 146, 148

kuba ‘pigeon, probably *Ducula* sp.’, see *ku(i)ba

ku(i)ba ‘pigeon, probably *Ducula* sp.’, 311

kuka ‘mudcrab, including *Sesarma* sp. or spp., living in mangrove forest and mudflats’, 174

kuk(o,u) ‘k.o. lizard’, 258

kuku(r) ‘mussel sp. or spp., used as food grater or scraper’, 192

kulabo ‘*Lethrinidae*’, 81

kulabo ‘snapper sp. or spp.’, 145, 148

(k,q)ulapi ‘parrotfish spp., incl. *Hipposcarus longiceps*, long-nosed parrotfish’, 81, 95

(k,q)ulapi ‘parrotfish spp., incl. *Hipposcarus longiceps*, longnosed parrotfish’, 146, 148

(kulu)kulu ‘pigeon sp.’, see *(ku(r,l)u)ku(r,l)u

(k,g)uma ‘monitor lizard’, 254

(k,g)umutuR ‘*Plectrohinchus* spp., sweetlips’, 80, 146, 148
*\(k,g\)apuR ‘pigeon or dove’, 316
*kurau ‘pigeon sp.’, 319
*ku\(r,R\)iap ‘dolphin’, 245
*kuru\(du\) ‘owl’, see *kuru\(dr,d\)u
*kuru\(dr,d\)u ‘owl’, 330
*(ku\(r,R\)u)ku\(r,R\)u ‘pigeon sp.’, 319
*kuru\(ru\) [ru] ‘Myripristis spp., squirrelfish’, 54
*kuRapu ‘rock-cod, Epinephelus sp. or spp. including E. lanceolatus, Queensland grouper’, 64
*ku\(R\)ita ‘generic for octopus’, 199
*kuRo ‘bony fish, probably Albula’, 36
*kutu (1) ‘louse (generic)’, (2) ‘head louse’, 374
*\(k(w)g\)i(l,n)e ‘Singing Parrot, Geoffroyus heteroclitus’, 327
*\(k(w)\)adroRa ‘phalanger, cuscus’, 225
*\(k\)aru ‘Sardinella, sardine’, 39
*\(k\)aru-k\aru ‘cockroach’, 403
*[k\(e\)]k\ek\e ‘k.o. frog’, 264
*\(k(w)\)ilo(\(k\)) ‘female Eclectus Parrot’, 323
*\(k\)alau ‘Bismarck Scrub Fowl, Megapodius eremita’, see *\(k\)al(\(i\))au
*\(k\)al(\(i\))au ‘Bismarck Scrub Fowl, Megapodius eremita’, 306
*la\(b,p\)(o,u) ‘rat taxon’, 232
*labu ‘rat taxon’, see *la\(b,p\)(o,u)
*[la]\b\(a\)(s,\(j\))i ‘moray eel’, 44
*\(l\)aci ‘Scomberoides spp., leatherskin, including S. lyan’, 71, 145, 148, 151
*la\(j\)e ‘generic for branching corals’, 208
*\(l\)aki ‘\(f\)antail’, 343
*\(l\)ala(\(k\)) (1) ‘Trochus spp., including T. niloticus and possibly T. stellatus’, (2) ‘rings or armlets made of this’, 186
*[l]alali ‘flatfish incl. flounders, soles’, 118
*[l](a,e)le ‘ Cicada’, 397
*\((l,R)(a,u)\)muk\(w\)o ‘dove sp.’, 316
*lapo ‘fly’, 385
*lapaq ‘various flat fishes incl. sole and flounder’, 118
*lapo ‘rat taxon’, see *la\(b,p\)(o,u)
*lapu ‘rat taxon’, see *la\(b,p\)(o,u)
*la\(u\) ‘Plectorhinus spp., banded sweetlips’, 80
*la\(w\)aq ‘spider, spider web’, 409
*la\(w\)e ‘tail feather, plume’, 274
*\(l\)e ‘cicada’, see *[l](a,e)le
*\(l\)io-\(l\)io ‘Pseudobalistes fuscus, brown triggerfish’, 123
*\(l\)\(n\)ipon ‘tooth, tusk’, 266
*\(l\)isaq ‘n\i t’, 375
*lo\(R\)o ‘large sting\ing red ant’, 391
*\(l\)umuk\(w\)o ‘dove sp.’, see *\((l,R)(a,u)\)muk\(w\)o
*\(m\)aga\(R\)ut ‘flying fish’, 147, 148
*\(m\)aka(o,u) ‘Kyphosidae, drummer’, 87
*\(m\)akaur ‘Kyphosidae, drummer’, see *\(m\)aka(o,u)
*\(m\)a(k,q)eto ‘a dark fish, possibly \(C\)tenochaetus striatus’, 106
*\(m\)a-\(k\(i\)ni\(t\) ‘mosquito’, 382
*\(m\)ala ‘resembling’, 72
*malayo ‘sea eel, possibly generic’, 46
*\(m\)ale\(n\a\) ‘k.o. parrotfish’, see *\(m\)e\(l,n\)a\(n\)a~*\(m\)al\(l,n\)e\(n\)
*\(m\)ali-\(b\)o\(n\)i ‘flying fox’, 236
*\(m\)ali-\b\(e\)ka ‘flying fox, large fruit bat’, 236
*\(m\)alisa ‘barracuda’, 62
*(\(m\)a)\(m\)a\(n\)u ‘\(S\)carus spp.’, 98
*\(m\)am\(i\) ‘Chelilinus undulatus, double-headed Maori wrasse and possibly other wrasse spp.’, 92, 147, 148, 160
*\(m\)amula ‘carangid’, 70
*manak(V) ‘green turtle, *Chelonia mydas’, 251
*maneya ‘k.o. parrotfish’, see *meI[n]yana~*maI[n]yena
*manu ‘*Scarus spp.’, see *(ma)manu
*manuk (1) ‘flying creature’, (2) ‘animal’, 271, 416, 421, 443, 444, 446, 447, 449, 452
*manuk ‘Red Jungle-fowl, *Gallus gallus’, 284
*manuka ‘sea eagle’, 297
*manuk-lapuat [‘big bird’]
*manuk ‘*Red Jungle-fowl, *Gallus gallus’, 284
*m(a,o)nuRV ‘*Naso sp., unicornfish’, 102
*mañipo ‘k.o. wasp’, 389
*mañewa ‘k.o. shark’, 29, 31, 129
*maqeto ‘a dark fish, possibly *Ctenochaetus striatus’, see *ma(k,q)eto
*[m,k]arawa ‘green parrotfish spp.’, 97
*marawa ‘spinefoot sp.’, 110
*marewe ‘parrot’, 328
*marotV ‘*Nemipterus spp.’, 79
*maRa ‘*Acanthurus sp., possibly *A. xanthopterus, yellowfin surgeonfish’, 103
*mata ‘the operculum or trapdoor of certain gastropod spp.’, 201
*maya ‘Osprey, *Pandion haliaetus’, 299
*meI[n]yana~*maI[n]yena ‘k.o. parrotfish’, 97
*menoya ‘k.o. parrotfish’, see *meI[n]yana~*maI[n]yena
*merari ‘wrass or parrotfish’, 94
*midi ‘honeyeater’, 346
*mimis-mata ‘stick insect’, 398
*moa ‘boxfish’, 124
*mo(g,k)o ‘k.o. snake’, 260
*moko ‘k.o. snake’, see *mo(g,k)o
*monuRV ‘*Naso sp., unicornfish’, see *m(a,o)nuRV
*muk[w]o ‘dove sp.’, see *(I,R)(a,u)mu[k]w[o
*muno[-muno] ‘caterpillar, grub’, 405
*muqu(n) ‘*Siganus taxon, poss. *S. spinus’, 109, 146, 148
*muroR ‘*Siganus argenteus, silver or rabbit-faced spinefoot’, 110
*musi ‘cockroach’, 403
*mutu ‘Pomacentridae, particularly *Abudejuf’, 90
*m’acasi ‘goatfish’, 85
*m’agaRut ‘*Exocoetidae, flying fish’, 48
*m’ajar ‘bandicoot’, 228
*m’akoR ‘*Hemiramphus, garfish’, 50
*m’anagi, *m’amagi ‘larger cuttlefish, *Sepia sp. or spp.’, 200
*m’ata ‘snake (generic)’, 259
*m’ata-m’ata ‘generic for worms and worm-like creatures’, 412
*m’alau ‘Bismarck Scrub Fowl, *Megapodius eremita’, 305
*(n,ñ)iku~*nuki ‘nest’, 279
*(n,ñ)i(n,ñ)i ‘bee, buzzing insect’, 388, 389
*(n,ñ)i(n,ñ)ipo ‘k.o. wasp’, 390
*niku-niku ‘small biting fly’, 383
*nipe ‘snake’, 259
*nipon ‘tooth, tusk’, see *[l,n]ipon
*nonok ‘sandfly, midge’, 384
*nopuq ‘*Synanceia, stonefish’, see *(ñ,n)opuq
*nuki ‘nest’, see *(n,ñ)i~*nuki
*nus ‘squid’, 200
*nusa (doublet *nus) ‘small reef squid (Loligo spp.) and smaller cuttlefish (Sepia spp.)’, 200
*(ñ,n)opuq ‘*Synanceia spp., stonefishes’, 119
*(ñ,n)opuq ‘*Synanceia spp., stonefish’, 145, 148, 150, 418
*ñamuk ‘mosquito’, 380
*ñiku ‘nest’, see *(n,ñ)i~*nuki
*ñiñi ‘bee, buzzing insect’, see *(n,ñ)i(n,ñ)i
*ñiñipo ‘k.o. wasp’, see *(n,ñ)i(n,ñ)iño
*ŋako ‘Night Heron, Nycticorax sp.’, 293
*ŋaRa ‘duck’, 293
*ŋiji ‘sandfly’, see *ŋi(s,j)i
*ŋiŋi(ŋ) (1) ‘buzz as a mosquito’, (2) ‘mosquito’ (onomatopoeic), 383
*paba ‘Parribacus sp. (Scyllaridae), slipper lobster’, see *[pa]paba
*palaga ‘rabbitfish, Siganus spp.’, 145, 148
*palaga ‘Siganus spp., rabbitfish’, 109
*palata ‘Coryphaena hippurus, dolphinfish’, 73, 146, 148
*palR ‘Acanthurus, surgeonfish’, see *[qa]paliR
*panapa ‘garfish and needlefish taxon’, 51, 147, 148
*p(a,e)ŋa ‘red Lutjanus spp.’, 77
*payoda ‘gather seafood on the reef’, 162
*papa ‘praying mantis’, 398
*[pa]paba ‘Parribacus sp. (Scyllaridae), slipper lobster’, 167
*p(R,r)a(C) ‘frog’, 263
*pRi (1) ‘stingray’, (2) ‘ray (generic)’, 34, 144, 148, 150
*pRi-manuk ‘Aetobatus narinari, spotted eagle ray’, 35
*pRi-manuk ‘spotted eagle ray, Aetobatus narinari’, 147, 148, 159
*paya ‘k.o. small fish, sardine or anchovy’, 38, 147, 148
*peña ‘red Lutjanus spp.’, see *p(a,e)ŋa
*pilu ‘Caranx sp. or spp., trevally’, 69, 145, 148, 151
*p(ina)yoda ‘seafood gathered on the reef, edible sea invertebrates’, 421, 437–439, 452
*p(ina)yoda, *pinoda ‘seafood gathered on the reef, edible sea invertebrates’, 162
*piRa(q) ‘Zebrasoma veliferum, sailfin tang’, 103
*piRu-piRu ‘Istiophoridae’, 117
*piRu(q) ‘fan palm’, 117
*poñu ‘turtle (generic)’, 249
*pora ‘owl’, 332
*[poto]poto ‘pufferfish, porcupinefish’, 126
*pud(o,u) ‘species of possum or cuscus’, see *pu(dr,d,j)(o,u)
pud(o,u) ‘species of possum or cuscus’, see *pu(dr,d,j)(o,u)
*(p,b)ula ‘k.o. sea cucumber’, 204
*pul ‘k.o. borer wasp or bee that infests wood and bamboo’, 388
*pu-pulan ‘bony fish, Megalops, Albula spp.’, see *pu-pulan
*pulu ‘body hair, fur, feathers’, 273
*pupuk ‘k.o. borer wasp or bee that infests wood and bamboo’, 388
*pul ‘k.o. borer wasp or bee that infests wood and bamboo’, 388
*puqaya + modifier ‘seahorse’, 56
*quaya ‘crocodile’, 252
*puRa-puRas ‘whale’, 243
*puRu(q) ‘quail’, 307
*pustiRa ‘Starling, Aplonis sp.’, 348
*p”alapo ‘rat taxon’, 233
*p’ipipi ‘small wader taxon’, 360
*p’iri(p) ‘parrot sp.’, 326
*p’isu ‘Cuckoo-shrike, Coracina sp.’, 342
*qaliliŋ ‘Turbo petholatus, tapestry turban; possibly generic for several or all Turbo spp.’, 182
*qalimaŋo ‘large mangrove crab, Scylla serrata (Portunidae) and probably other portunids’, 172
*qalipan ‘centipede’, 406
*qali-popot ‘firefly’, 399
*qali-totop ‘firefly’, see *(k,q)ali-totop
*galu ‘Sphyraena taxon, incl. S. barracuda, great barracuda’, 62, 144, 148
*ganupe ‘caterpillar or k.o. sea cucumber (indeterminate)’, 206, 405
*[qa]paliR ‘Acanthurus, surgeonfish’, 103
*qapato ‘sago grub, edible’, 404
*qarao ‘surgeonfish, Acanthurus sp.’, 104, 147, 148
*qapato(2) ‘mullet (generic), see *(k,q)apato
*qapan ‘gills’, 129
*qasuli ‘k.o. sea eel’, see *(k,q)asuli
*qatoluR ‘egg’, 278
*qatule ‘Selar spp. including S. crumenophthalmus, big-eyed scad’, 69, 145, 148, 151
*qatun ‘Katsuwonus pelamis, skipjack tuna’, 112, 148, 150, 160
*qawaq ‘Chanos chanos, milkfish’, 41, 144, 148, 160
*qayuyu ‘coconut crab, Birgus latro’, 169
*qonos ‘mature Sphyraena spp., possibly generic for all barracuda’, 61, 144, 148
*qulapi ‘parrotfish spp., incl. Hipposcarus longiceps, long-nosed parrotfish’, see *(k,q)ulapi
*qulub ‘maggot’, 414
*qulub-a(n) ‘be maggoty’, 415
*qulo-quluc ‘full of maggots’, 416
*qulua ‘carangid’, 70
*qulua ‘Caranx sp., possibly C. ignobilis, big-headed jack (Carangidae)’, 151
*qulua ‘Caranx sp., possibly C. ignobilis, big-headed jack’, 145, 148
*qume ‘Naso unicornis, long-snouted unicornfish’, 101, 146, 148, 160
*qumutuR ‘Plectorhinchus spp., sweetlips’, see *(k,q)umutuR
*qunap[i] ‘fishscale’, 131
*qupa ‘hen’, 287
*quray ‘generic for prawns and shrimps, crayfish and lobsters’, 165, 167, 168
*qutur ‘Aprion virescens, green jobfish’, 75
*qutur ‘Sphyraena sp., barracuda’, 63
*rakum(2) ‘k.o. large crab, probably a land crab’, 173
*rejas ‘small parrot sp., see *(ka)rejas
*rija ‘orthopterous insect’, 395
*roRo ‘growth stage of Siganus spp.’, 109
*ruyut ‘dugong’, 247
*Ramuk(2) ‘dove sp., see *((l,R)(a,u))muk(2)R
*Ranja ‘Lambis spp., esp. spider conch, Lambis lambis’, 181
*Rije ‘Hemiramphus, halfbeak’, 49
*Ropok ‘fly, jump’, 281
*Rumuk(2) ‘dove sp., see *((l,R)(a,u))muk(2)R
*saba(l) ‘petrel or albatross’, 352
*[s,j]abin ‘Acanthurus spp., incl. A. guttatus, white-spotted surgeonfish’, 104
*sabutu ‘snapper (Lutjanus) or emperor (Lethrinus) sp. or spp.’, 76, 83, 144, 148
*saku ‘needlefishes, garfishes, long toms (Belonidae)’, 51
*saku ‘needlefish, garfish, long toms (Belonidae)’, 116, 144, 148
*saku-layaR ‘sailfish’, 116, 144, 148, 159
*sak*a ‘grasshopper or stick insect’, 396
*sala(n,ŋ) ‘k.o. sea urchin with long black spines, probably Diadema sp. or spp.’, 203
*salaŋ ‘k.o. sea urchin with long black spines, probably Diadema sp. or spp.’, see *sala(n,ŋ)
*sapa-sapa ‘a starfish’, 206
*sao ‘k.o. long tom’, 52
*sapulu ‘goatfish spp.’, 86
*sapulu(q) ‘bivalve mollusc, possibly Pinna sp.’, 195
*sara(Ra) ‘sardine-like fish, possibly Atherinidae’, 60
*saRawaki ‘k.o. sea urchin, probably Echinometra sp. or spp.’, 203
*sau ‘Golden Whistler, Pachycephala pectoralis’, 345
*saRawaki ‘k.o. sea urchin, probably Echinometra sp. or spp.’, 203
*sapeRa ‘Clupeidae, sardine or herring’, 40
*seke ‘cuckoo, possibly Centropus sp.’, 329
*sele(kai) ‘tern’, 366
*seya ‘parrot sp.’, 327
*siko ‘grasshopper’, 396
*(s,j)iko ‘kingfisher’, 336
*simuk ‘mosquito, small biting fly’, 382
*sipa ‘Hemiramphus spp.’, 50
*sipi ‘parrot, perhaps Cardinal Lory, Chalcopsitta cardinalis’, 324
*sipi(r;R)i ‘Rainbow Lory, Trichoglossus haematodus, or Cardinal Lory, Chalcopsitta cardinalis’, 324
*siri ‘parrot, perhaps Cardinal Lory, Chalcopsitta cardinalis’, 325
*siRiko ‘fish fin’, 134
*sisiq (1) ‘various small, snail-like gastropods of nerite family’, (2) ‘probably generic for a wider class of edible gastropods’, 184, 421, 439–441, 443, 452
*sisi(rR) ‘orthopterous insect’, 395
*siwaRa ‘Clupeidae, sardine or herring’, see *s(a,i)waRa
*sou (?) ‘heron’, 291
*sua-sua ‘goatfish’, 85
*sulati ‘worm’, 413
*sulati(k) ‘Caesionidae, fusilier’, 74
*surup ‘Lethrinus spp.’, 82
*susul ‘Lethrinus spp.’, 82
*tabuRuRu ‘k.o. beetle’, 401
*takere ‘Fantail, Rhipidura sp.’, 343
*taku(a,o) ‘Thunnus albacares, yellowfin tuna’, 115
*taku-takuy ‘small coral fish, damselfish or similar’, 91
*talia ‘ear’, 133
*taliya ‘pectoral fins’, 133
*tanipa ‘Sardinella spp., sardine’, 38, 146, 148
*tanapa(R,r) ‘large wrasse, including Cheilinus sp.’, 93, 147, 148
*taniri ‘Scombridae spp., prob. incl. Scomberomorus commerson, narrow-barred Spanish mackerel, and Acanthocybium solandri, wahoo’, 114
*taniri ‘Scombridae spp., prob. incl. Scomberomorus commerson, the narrow-barred Spanish mackerel, and Acanthocybium solandri, wahoo’, 144, 148
*tape ‘k.o. bivalve’, 196
*tapu ‘Labridae sp.’, 94
*tapuRiq (1) ‘generic for conch shells, esp. triton’s trumpet, Charonia tritonis and allied spp.; possibly extended to some Cassis (helmet) shells’, (2) ‘trumpet of Charonia shell’, 183
*tapu(s), *tapus-i- ‘seek lice’, 377
*tapaw ‘a glide, soar’, 281
*taqe ‘excrement’, 406, 408
*taqea ‘Lutjanus spp., snapper, sea perch’, see *ta(Ra)qea
*taragau ‘fish-eating eagle or hawk’, 296
*taRaqan ‘Sargocentron spp., squirrelfish, including S. spiniferum’, 17, 53, 145, 148
*ta(Ra)qea ‘Lutjanus spp., snapper, sea perch’, 77
*taRat ‘Naso spp., incl. N. brevirostris, short snouted unicornfish’, 102, 147, 148
*taRutu(m,n) ‘Diodon spp., porcupinefish’, 125, 145, 148
*tasiwa ‘Lutjanus spp.’, 77, 146, 148
*ta(p) ‘lay egg’, 280
*taup- ‘sit on eggs’, 280
*tipi-tipi ‘Chaetodontidae’, 89
*tasiwa ‘Lutjanus spp.’, 77, 146, 148
*tau(p) ‘lay egg’, 280
*taup-i- ‘sit on eggs’, 280
*tiqo ‘goatfish sp. or spp.’, 84, 145, 148
*tirop-i- ‘look intently, look for (lice etc.)’, 377
*tok,*tue,*tue-tue ‘k.o. bivalve, possibly Lucinidae and allied families’, 195
*tuasi ‘bivalve taxon, probably ark or cockle shell; possibly also grater or spoon made from this’, see *tu(q)asi
*tubaRa ‘probably generic for large land crabs, Cardisoma spp.’, 173
*tue, *tue-tue ‘k.o. bivalve, possibly Lucinidae and allied families’, see *tu(q)e, *tu(q)e-tu(q)e
*tuna ‘body louse’, 375
*tuna ‘Anguillidae, freshwater eel (generic)’, 43, 144, 148
*tu(q)e, *tu(q)e-tu(q)e ‘k.o. bivalve, possibly Lucinidae and allied families’, 195
*tu(q)asi ‘bivalve taxon, probably ark or cockle shell; possibly also grater or spoon made from this’, 197
*wake ‘k.o. lizard, possibly a monitor’, see *wak(i,e)
*wak(i,e) ‘k.o. lizard, possibly a monitor’, 254
*wakin ‘wallaby’, 222
*watu ‘Scombridae sp. or spp.’, 114, 144, 148
*weli (1) ‘fireworm, sea centipede’, (2) ‘k.o. millipede or centipede’, 211
*woku ‘Cuckoo Dove, Macropygia sp.’, 317
*(y)aro(q) ‘black-lipped pearl, Pinctada maxima’, possibly generic for Pinctada spp., 194

Proto Oceanic (?)
*kikiora ‘Dollar Bird, Eurystomus orientalis’, see *kikiroa~*kikiora
*kikiroa~*kikiora ‘Dollar Bird, Eurystomus orientalis’, 339
*luar ‘eagle’, 301
*p”a(r,R)a ‘hawk’, 302
*rato ‘whale’, 243
*taou(k) ‘hawk, bird of prey’, 302

Proto Admiralty (PAdm)
*baraŋ~*rabaŋ ‘tern’, 368
*manuai ‘sea eagle’, see *manu(w)ai
*manu(w)ai ‘sea eagle’, 298
*rabaŋ ‘tern’, see *baraŋ~*rabaŋ
*watiRi ‘monitor lizard, Varanus spp.’, 255

Proto Western Oceanic (PWOc)
*bebelo ‘butterfly’, 379
*bio ‘k.o. mollusc or pearl shell’, 196
*didi ‘small ant’, 393
*gumu ‘k.o. wasp’, 390
*kabilak‘a ‘k.o. spider’, see *ka(p,b)ilak‘a
*ka(l,R)anja(r,R) ‘male Eclectus Parrot, Eclectus roratus’, 322
*ka(l,R)anja(r,R) ‘male Eclectus Parrot, Eclectus roratus’, see *ka(l,R)anja(r,R)
*ka(R)oma ‘nit’, 376
*ka(u,w)ak ‘dog’, 242
*kipa ‘hawk’, 302
*ki(r,R)i-ki(r,R)i ‘sandfly’, 385
*kiwiwi ‘sandpiper sp.’, 360, 363
*komo ‘hornbill’, 340
*kotu ‘rat’, 234
*kuku ‘spider’, 411
*kuni ‘? frog, tadpole’, 265
*lejaŋ ‘nit’, 376
*m”ali-X ‘millipede’, 407
*ɡaŋ ‘mosquito’, 383
*pɑRia ‘k.o. big lizard’, 255
*p”i(r,R)itu(r,R,s) ‘k.o. goatfish’, 86
*ɡanupe ‘sea cucumber, holothurian’, 206, 405
*sibi ‘k.o. snake’, 261
*sio(R,r)a ‘fish fin’, 134

Proto Western Oceanic (?)
*paia ‘dog’, 242

Proto New Guinea Oceanic (PNGOc)
*dim”an ‘k.o. worm’, 414
*joja ‘(boar’s) tusk’, 267
*ka(r,R)o(kV) ‘crow’, 350
*ɡisakisa ‘hawk or eagle’, 301
*makan ‘wallaby, Macropus agilis’, 222
*si(r,R)(a,e)si(r,R)(a,e), *di(r,R)(a,e)di(r,R)(a,e) ‘Petaurus breviceps, sugar glider’, 226

Proto North New Guinea (PNNG)
*gavun ‘dog’, 241
*karok ‘frog’, 264

Proto Papuan Tip
*bog ‘heron, Egretta sp.’, 290
*b”ayob”ayo ‘crow’, 351
*guma-kara ‘monitor lizard’, see *(k,g)uma-kara
*kakawe ‘Sulphur-crested Cockatoo, Cacatua galerita’, see *wakeke~*kakawe
*karai ‘white cockatoo’, 321
*kitave ‘hawk’, 302
*(k,g)uma-kara ‘monitor lizard’, 254
*gara-bembem ‘butterfly’, 379
*wagita ‘wallaby’, 222

Proto Central Papuan
*naniyo ‘wasp’, 390

Proto Meso-Melanesian
*game ‘k.o. mollusc’, 196

Proto NW Solomonic
*belama ‘frigate bird’, 359
*(b,v)ili[ki(k,t)i] ‘Beach Stone-Curlew, Burhinus neglectus’, 364
*bili[ki] ‘Beach Stone-Curlew, Burhinus neglectus’, see *(b,v)ili[ki(k,t)i]
*kakata ‘sea eagle, Haliaeetus’, see *katata~*kakata

Proto North Bougainville
*kasi ‘dog’, 241

Proto Eastern Oceanic (PEOc)
*bakopu ‘k.o. fish, possibly Eleotris sp.’, 100
*(b,v)asua ‘large shellfish, perhaps a bivalve’, 190
*belik(e,i)o ‘pigeon sp.’, 320
*belikio ‘pigeon sp.’, see *belik(e,i)o
*bona ‘generic for various small Acanthuridae’, see *bon(e,a)
*bon(e,a) ‘generic for various small Acanthuridae’, 106
*buma ‘k.o. fish, possibly sardine’, 40
*buRu ‘octopus ink, sepia’, 201
*gina ‘k.o. sea urchin with long spines’, 203
*giRio(p) ‘dolphin’, 245
Proto Eastern Oceanic (?)

*jeqe ‘grasshopper?’, see *(s,j)jeqe
*kabaka ‘to flap the wings’, 133
*kabokaRa ‘Plotosus, catfish’, 42
*kalis(i,u) ‘k.o. skink’, 258
*kalisu ‘k.o. skink’, see *kalis(i,u)
*kaRuve ‘k.o. beach crab, probably Ocypoda sp., ghost crab’, 176
*k(o,u)vi ‘Flycatcher, Myiagra sp.’, 345
*kuvi ‘Flycatcher, Myiagra sp.’, see *k(o,u)vi
*ladu (1) ‘cone or trochus shell’, (2) ‘various ornaments made from this’, 187
*lapi ‘wrasses’, 95
*mata-buku ‘Turbo spp.’, 183
*mata ‘snake, worm’, 413
*nosa ‘Lethrinus sp.’, see *n(u,o)sa
*n(u,o)sa ‘Lethrinus sp.’, 83
*(o,u)du ‘Leodis viridis, palolo worm’, 212
*ovi(s), *ovis-i- (1) ‘brood, sit on eggs’; (2) ‘cover chicks with wings’, 280
*paRaRaRa ‘flycatcher’, 345
*pulewana ‘k.o. eel’, 48
*qanupe ‘caterpillar’, 206, 405
*qunap ‘turtle shell, fish scales’, 268
*Rami ‘crustacean roe’, 180
*Raja ‘duck’, 294
*(s,j)jeqe ‘grasshopper?’, 397
*taRaku ‘generic for chitons’, 197
*taliku ‘Carcagid’, 72
*udu ‘Leodis viridis, palolo worm’, see *(o,u)du
*vaRu manu ‘Aetobatis narinari, eagle ray’, 35
*vasua ‘large shellfish, perhaps a bivalve’, see *(b,v)asua
*waro(q) ‘probably black-lipped pearl, Pinctada maxima, possibly generic for Pinctada spp.’, 194
*wisi ‘owl’, 333

Proto SE Solomonic

*b”ari ‘large frog’, 265
*cini(lo) ‘Yellow-faced Mynah, Mino dumontii’, 349
*cino ‘Yellow-faced Mynah, Mino dumontii’, see *cini(lo)
*[ko]ko-miji ‘k.o. spider’, 410
*[ko][R]o-kol,R]o ‘beetle that attacks plants’, 402
*kome ‘armlets made from cone or trochus shell’, *ko-kome or *kome-kome ‘? generic for cone shells’, 187
*koRo-koRo ‘beetle that attacks plants’, see *ko[R]o-kol,R]o
*mama ‘k.o. anemone or jellyfish’, 210
*odu ‘Leodis viridis, palolo worm’, 212
*riuriu[kabe] ‘Willie Wagtail, Rhipidura leucophrys’, 344
*tava ‘hawk or eagle’, 299
*va(o,u) ‘Fruit Dove, Ptilinopus sp.’, 315
*va(o,u) ‘Fruit Dove, Ptilinopus sp.’, see *va(o,u)

Proto Malaita-Makira

*fada ‘sea eagle, Haliaeetus’, 299
*kiRori ‘parrot sp.’, 326
*sisira ‘a barnacle or kind of small mollusc’, 179
*sisiri ‘swiftlet’, 335
*wakio ‘Osprey, Pandion haliaetus’, 300

Proto Remote Oceanic (PROc)

*baku ‘conger eel’, 46
*(b,v)asiolo ‘honeyeater’, 347
*bonu ‘k.o. eel, probably conger’, 45
*b”akaRe ‘porcupine fish’, 128
*b”ar(o)-*b”ar(o) ‘Ostracion, boxfish’, 124
*dabea ‘Gymnothorax, moray eel’, 45
*druman(e,i) ‘anemone’, 207
*jeqevo(o,u) ‘juvenile mullet’, 60
*kVlili ‘Wandering Tattler, Heteroscelus incanus’, 361
*kaka ‘wader’, see *keke~*kaka
*kalakala ‘swiftlet’, see
 *ka(r),laka(r),la ‘swiftlet’, 335
*kaRapa ‘Liza vaigiensis, diamond-scaled mullet’, 60
*keke~*kaka ‘wader’, 364
*kemoa ‘booby’, 357
*kero + modifier ‘petrel’, 352
*pijo-piyo ‘night insect, probably a cricket’, 396
*liŋo-liŋo ‘night insect, probably a cricket’, 396
*luRa ‘small shrimp’, 168
*makini ‘to be stung’, 382
*manini ‘Acanthurus triostegus, convict tang’, 107
*maraya ‘sea eel’, 46
*matu ‘Gerres spp., silver biddy’, 79
*moto ‘k.o. fish’, 63
*mw‘alau ‘squirrelish, possibly generic for a number of spp.’, 55
*pakit, *pakit-i- ‘search hair for lice’, 377
*pue ‘Booby, Sula sp.’, 355
*r(a,e)nu(a,e) ‘Kyphosus, rudderfish’, 87
*renu(a,e) ‘Kyphosus, rudderfish’, see *(r,a,e)nu(a,e)
*soge ‘pigeon sp.’, 320
*ta(k)ok(k) ‘petrel’, 352
*tako(k) ‘petrel’, see *(r,a,i)ok(k)
*takulasi or *taka(w) ‘sea snake’, 261
*tawa-tawa ‘growth stage of skipjack or dogtooth tuna’, 113
*tinebu ‘petrel’, 352
*vasilo ‘honeyeater’, see *(b,v)asilo

Proto Southern Oceanic (PSOc)
*bati ‘tusk, upper canine tooth’, 266
*bukasi ‘pig (generic), and probably by default male pig, boar’, 239
*gala ‘green lizard, Emoia sp.’, 257
*Vvusi ‘cuckoo’, 329
*mala ‘hawk’, 303
*mw‘araki ‘Emerald Dove, Chalcophaps indica’, 316
*sora ‘fantail’, 344
*taroap(v) ‘White-throated Pigeon, Columba vitiensis’, 318
*wase ‘Island Thrush, Turdus poliocephalus’, see *was(i,e)
*was(i,e) ‘Island Thrush, Turdus poliocephalus’, 342

Proto North–Central Vanuatu (PNCV)
*boe ‘pig, male pig’, 238
*bue-bue ‘puffer fish’, 127
*b‘arab‘ara ‘female pig’, 240
*b‘ilake ‘Buff-banded Rail, Rallus philippensis’, 308
*b‘atu-(i)-manu ‘Cardinal Honeyeater, Myzomela cardinalis’ (lit. ‘head of bird’), 348
*guRio ‘dolphin (generic)’, 245
*kanase ‘mullet’, 58
*kato(q)u ‘hermit crab’, 171
*laka ‘White-eye, Zosterops sp.’, 345
*lavo ‘skipper, blenny’, 99
*m‘a(toqu) ‘boxfish’, 124
*novu ‘scorpion, venomous fish’, 120
*qova ‘heron, probably Egretta sp.’, 290
*taroa ‘White-throated Pigeon, Columba vitiensis’, 318
*tobaka ‘Fruit Dove, Ptilinopus sp.’, 315
*udu ‘Eunice, palolo worm’, 212
*vete-vete ‘fantail’, 344
*v‘eru ‘Fruit Dove, Ptilinopus sp.’, 315

Proto North Vanuatu
*dilit(i,u) ‘Caranx spp.’, 73
*rowou ‘bonito, Thunnus sp.’, 116
*saum‘a ‘Scarus sp., parrotfish’, 98
*tab‘ale ‘grouper’, 67
*tanjiangi ‘goatfish’, 86
*toava ‘Mackinlay’s Cuckoo Dove, Macropygia macquinlayi’, 318
*tutu ‘Baker’s Pigeon, Ducula bakeri’, 314

Proto Central Vanuatu
*bai ‘White-breasted Wood Swallow, *Artamus leucorhynchus’, 349
*bala ‘Pacific Marsh Harrier, *Circus approximans’, 303
*bʷaueve ‘Mackinlay’s Cuckoo Dove, *Macropygia mackinlayi’, 318

Proto South Melanesian
*marup ‘falcon’, 304
*l(i)ay ‘duck’, 295

Proto South Vanuatu (PSV)
*bʷan(ie) ‘heron’, 291
*manu ‘bird’, 272
*sumʷit ‘Barn Owl, *Tyto alba’, 333
*n-tako-tako(k) ‘petrel’, 352

Proto New Caledonia (PNCal)
*biy ‘Buff-banded Rail, *Rallus philippensis’, 309
*bivilok(k) ‘swiftlet’, 335
*bʷakole ‘hawk or kite’, 304
*bʷamara ‘fishing bird of prey’, 300
*dey ‘Pacific Marsh Harrier, *Circus approximans’, 304
*hʷeek ‘New Caledonian Crow, *Corvus moneduloides’, 351
*kaidaa(n) ‘frigate bird’, 359
*kaka ‘New Caledonian Crow, *Corvus moneduloides’, 351
*mʷen ‘Barn Owl, *Tyto alba’, 333
*pit(a,i)ri ‘rail’, 309
*pitiri ‘rail’, see *pit(a,i)ri
*tiā(k,ŋ) ‘Melanesian Graybird, *Coracina caledonica’, 341
*tiān ‘Melanesian Graybird, *Coracina caledonica’, see *tiā(k,ŋ)
*tīla ‘night heron, *Nycticorax sp.’, 293

Proto Micronesian (PMic)
*arojo ‘Carangid fish, pompano, skipjack’, 105
*atu ‘bonito’, 112
*fata ‘platform, nest’, 279
*inj ‘dorsal fin’, 134
*kalufa ‘monitor lizard’, 254

Proto Central Micronesian
*kara ‘Egretta sacra’, 292

Proto Chuukic-Ponapeic
*kul(i,u)ŋa ‘plover’, 364

Proto Chuukic
*kara ‘heron’, 292
*likāpi ‘a bird’, 330

Proto Central Pacific
*bābā ‘Fistularia, flutefish’, 56
*bakewa ‘k.o. fish that accompanies sharks’, 31
*baki ‘k.o. jellyfish or hydroid’, see *(b,u)k
*bak(u) ‘k.o. jellyfish or hydroid’, 209
*balan ‘Acanthurus spp.’, 107
*balolo (1) ‘*Leodis viridis, palolo worm’, (2) ‘name of the months when this worm rises’, 212
*balōsa ‘giant clam, *Tridacna spp.’, 190
*batisai ‘*Lutjanus monostigma’, 78
*beka-beka ‘small insectivorous, cave-dwelling bat’, 237
*beke ‘swiftlet’, 334
*bobo ‘*Scarus sp.’, 98
*bon(u,o) ‘conger eel’, 45
*bōsē ‘*Scarus sp.’, 98

*kaplei ‘cuckoo’, see *(li)kaplei
*karakara ‘tern’, 366
*kiakia ‘White Tern, *Gygis alba’, 367
*k(i,u)lili ‘Wandering Tattler, *Heteroscelus incanus’, 361
*kua ‘dolphin’, 246
*kulu ‘wader’, 363
*(li)kaplei ‘cuckoo’, 330
*manu ‘living creature of land or air’, 272
*manar ‘flying fish’, 48
*ŋāŋ ‘sea bird, duck’, 294
*p’oca ‘turtle shell’, 268
*tarā ‘squirrelish’, 18, 53
*tarawa ‘barracuda’, 64
*tautu ‘porcupine fish’, 125
*tiku, tuki ‘tropic-bird’, 353
*toki ‘bite, peck’, 281

Proto Central Micronesian
*kara ‘Egretta sacra’, 292

Proto Chuukic-Ponapeic
*kul(i,u)ŋa ‘plover’, 364

Proto Chuukic
*kara ‘heron’, 292
*likāpi ‘a bird’, 330

Proto Central Pacific
*bābā ‘Fistularia, flutefish’, 56
*bakewa ‘k.o. fish that accompanies sharks’, 31
*baki ‘k.o. jellyfish or hydroid’, see *(b,u)k
*bak(u) ‘k.o. jellyfish or hydroid’, 209
*balan ‘Acanthurus spp.’, 107
*balolo (1) ‘*Leodis viridis, palolo worm’, (2) ‘name of the months when this worm rises’, 212
*balōsa ‘giant clam, *Tridacna spp.’, 190
*batisai ‘*Lutjanus monostigma’, 78
*beka-beka ‘small insectivorous, cave-dwelling bat’, 237
*beke ‘swiftlet’, 334
*bobo ‘*Scarus sp.’, 98
*bon(u,o) ‘conger eel’, 45
*bōsē ‘*Scarus sp.’, 98
*bū ‘Monotaxis grandoculis, large-eyed sea bream’, see *(m,b)ū
*bulewa ‘an organism growing on rocks, possibly encrusting brown rock coral’, 210
*bulewa ‘k.o. eel’, 48
*cumu ‘Balistoidei, triggerfish’, 121
*dābea ‘k.o. sea eel or sea snake’, 45
*donu ‘adult Plectropomus’, 66
*dukuku ‘Pomacentridae’, 91
*g‘ao-g‘ao ‘Ostracion’, 124
*i-kata ‘growth term for Caranx sp’, 73
*jabajaba ‘Parribacu sp. (Seyllaridae), slipper lobster’, 167
*(jea)jea ‘Spotted Triller, Lalage maculosa’, 341
*jeu ‘carangid’, 73
*jexejexe ‘Arothron’, 127
*jiva ‘pearl oyster, including Pinctada spp.’, 194
*jove ‘k.o. shellfish or barnacle’, 179
*kabatiko ‘Lethrinus sp.’, 83
*kalewa ‘Long-tailed Koel, Urodynamis taitensis’, 329
*kām(o,u)tu ‘female Scarus sordidus’, 96
*kāmutu ‘female Scarus sordidus’, see *kām(o,u)tu
*kanae ‘Liza spp.’, 58
*kauki, *kawiki ‘ghost crab, Ocypoda sp.’, 176
*kava ‘Liza vaigiens’, 60
*kava-kava ‘juvenile Liza vaigiens’, 60
*kawano ‘Lethrinus nebulosus’, 83
*kavekavesā ‘Long-tailed Koel, Urodynamis taitensis’, 330
*kula ‘Collared Lory, Phigys solitarius’, 328
*kuru ‘Myripristis’, 54
*k‘ak(a,e) ‘Lutjanus monostigma’, 78
*labe ‘Labridae, wrasse’, 95
*lakuya ‘blenny’, see *l(o,a)kuya
*lalali, *ali ‘flatfish’, 118
*la‘i ‘Scomberoides sp.’, 71
*laulau-fau ‘Zanclus canescens, Moorish idol’, 101
*laweja ‘Alectis indicus, plumed trevally or mirrorfish’, 73
*l(o,a)kuya ‘blenny’, 99
*loli ‘sea cucumber taxon’, 205
*ma(c,s)i-ma(c,s)i ‘Naso sp.’, 107
*manivi ‘Pempheris’, 87
*marari ‘Novaculichthys, wrasse’, see *m[e,a]rari
*masa ‘a small dark Acanthuridae, possibly Zebrasoma scopas, blue-lined tang or A. pyroferus, mimic surgeonfish’, 107
*masi-masi ‘Naso sp.’, see *m[e,a]rari
*mata gi talinj ‘hammerhead shark’, 33
*matu ‘Gerres’, 79
*matu-xuru ‘Parupeneus sp.’, 86
*m[e,a]rari ‘Novaculichthys, wrasse’, 94
*moa ‘Ostracion’, 124
*moto-moto ‘growth stage of Sphyraena sp.’, 63
*(m,b)ū ‘Monotaxis grandoculis, large-eyed sea bream’, 83
*munua ‘large Epinephelus sp.’, 67
*niva ‘Sardinella spp.’, 39
*novu ‘Synanceja verrucosa, stonefish’, 120
*njoo ‘Common Noddy, Anous stolidus’, 369
*pajula ‘Lethrinus elongatus’, 83
*p‘ajala ‘Epinephelus spp.’, 67
*p‘a(k,x)a ‘Hemiramphus’, 50
*p‘ada‘i ‘Parupeneus sp.’, 85
*oji ‘Mullidae’, 86
*ova ‘nest’, 280
*qasuli ‘k.o. sea eel’, 47
*qatu ‘possibly generic for Thunnus and Katsuwonus spp.’, 112
Proto Fijian (PFij)

*toa ‘Ostracion’, 124
*via ‘Zebrasoma veliferum’, 103

Proto Polynesian (PPn)

*aki-aki ‘White Tern, Gygis alba’, 367
*ali ‘Bothus spp., flounder’, 118
*ami ‘crustacean roe’, 180
*aseu ‘Caranx sp.’, 73
*fai ‘stingray, general term’, 35
*fai-manu ‘Aetobatis narinari, eagle ray’, 36
*fānana-mea ‘red Lutjanus spp., especially L. bohar, red bass or red snapper’, 77
*fāpuku ‘Epinephelus sp., possibly E. polyphekadion, marbled sea bass’, 67
*fāsua ‘large shellfish, perhaps a bivalve’, see *(p,f)āsua
*filu ‘Carangidae’, 70

*tuna ‘Anguillidae, freshwater eel’, 43
*tu quê)aòi ‘bivalve taxon, probably ark or cockle shell; possibly also grater or spoon made from this’, 197
*tusi ‘Acanthurus sp.’, 107
*tuvu ‘Labridae sp.’, 94
*uvi ‘k.o. fish, poss. Eleotridae’, 100
*vāsua ‘large shellfish, perhaps a bivalve’, see *(b,v)āsua
*vaya ‘k.o. small school fish’, 38
*vilu ‘Gnathanodon, Trachinotus’, 70
*vā ‘k.o. small fish’, see *vo(q)o
*vakai ‘k.o. lizard’, 256
*vo(q)o ‘k.o. small fish’, 100
*voto ‘thorn, prickle; spike or spines of a fish’, 135
*vua-vua ‘k.o. small fish’, 60
*vula ‘Megalops’, 37
*walu ‘k.o. pelagic fish’, 114
*wana ‘sea urchin, probably Diadema sp. and/or Echinoderm spp.’, 204
*weka ‘Buff-banded Rail, Rallus philippensis’, 309

Proto Fijian (PFij)

*qatule ‘Selar crumenophthalmus’, 69
*qawa ‘juvenile mullet’, 59
*qavali ‘Acanthurus sp.’, 104
*qawa ‘Chanos’, 41
*qulavi ‘Hippocampus longiceps’, 96
*quku ‘Aprion virens, grey jobfish’, 75
*r(a,e)nu(a,e) ‘Kyphosus’, 87
*renu(a,e) ‘Kyphosus, rudderfish’, 31
*rō ‘juvenile Siganus’, 109
*r(b,v)e ‘Pacific Pigeon, Ducula pacifica’, 314
*rve ‘Pacific Pigeon, Ducula pacifica’, see *r(b,v)e
*(s,ð)abi ‘Acanthurus guttatus, spotted surgeonfish’, 104
*sabitu ‘Lutjanus and Lethinus spp.’, see *(s,ð)sabitu
*saku-laya ‘swordfish, sailfish’, 116
*sarā ‘k.o. small schooling fish’, 60
*(ð,s)abutu ‘Lutjanus and Lethinus spp.’, 76
*ðabi ‘Acanthurus guttatus, spotted surgeonfish’, see *(s,ð)abi
*ðaðā ‘Spratelloides sp.’, 38
*ðuðu-walu ‘k.o. sea cucumber, probably Holothuria sp.’, 205
*tā ‘Naso sp.’, 102
*taniva ‘Sardinella’, 39
*tanava ‘Cheilinus undulatus’, 93
*tarasea ‘sea cucumber taxon’, 205
*tașiwa ‘Lutjanus sp.’, 77
*tautu ‘Diodon sp.’, 126
*teu ‘k.o. goatfish’, 84
*tivi-tivi ‘Chaetodon spp.’, 89
*tuaði ‘bivalve taxon, probably ark or cockle shell; possibly also grater or spoon made from this’, see *tu quê)aði
*tuku-tuku ‘k.o. spider which lowers itself on a single thread’, 411
*tuli(i) ‘Pacific Golden Plover, Pluvialis fulva’, 361

*tu ‘Anguillidae, freshwater eel’, 43
*tu quê)aòi ‘bivalve taxon, probably ark or cockle shell; possibly also grater or spoon made from this’, 197
*fot̪o ‘barb of stingray’, 126, 135
*fua(ko) ‘Booby, Sula sp.’, 355
*haf̪ulu ‘growth stage of goatfish’, 86
*haku ‘garfish and needlefish’, 51
*hapi ‘Acanthurus guttatus’, 104
*(h)i냐 ‘whitebait’, 100
*hul̪i ‘fusilier sp.’, 74
*inaŋa ‘whitebait’, see *hinaŋa
*ise ‘halfbeak spp.’, 49
*hul̪i ‘fusilier sp.’, 74
*inaŋa ‘whitebait’, see *inaŋa
*inaŋa ‘whitebait’, 100
*ise ‘halfbeak spp.’, 49
*kafa ‘Liza vaigiensis’, 60
*ka-lewe-lewe ‘cobweb, spider’, 409
*kalisi ‘cicada, cricket’, 397
*kalisi ‘skink, k.o. lizard’, 258
*kalisi ‘skink, k.o. lizard’, 258
*kaloama ‘growth stage of goatfish’, 86
*kalukalu ‘k.o. jellyfish’, 210
*kamutu ‘Scarus sp.’, 96
*kanahe ‘Lizacephalus, Crenimugil crenilabis and other mullet spp.’, 58
*kapa (v) ‘beat, of wings, fins, flippers’, 276
*kapa-kapa (1) ‘lateral fins’, (2) ‘flap wings’, 133
*kapa-kapa (w) ‘fish fins’; (v) ‘flap wings’, 276
*kapa-kau ‘wing, fin’, 276
*kapoa ‘fish sp., probably Plotosus sp., catfish’, 42
*kasi ‘shellfish, Asaphis spp.’, 191
*kata ‘growth term for Caranx sp’, 73
*kawa-kawa ‘Terapon jarbua, crescent perch’, 80
*kawe ‘tentacle of a cephalopod’, 201
*kawiki ‘ghost crab, Ocypoda sp.’, 176
*kea ‘hawksbill turtle’, 251
*kele-mutu ‘earthworm, grub’, 414
*ka ‘sea urchin’, 203
*kioko ‘Albula vulpes, bonefish’, 36
*kito ‘Epinephelus spp.’, 108
*kīu~*kiwi ‘shore bird taxon including Pluvialis and Numenius’, 362
*kīu ‘shore bird taxon including Pluvialis and Numenius’, see *kīu~*kiwi
*kolili ‘Wandering Tattler, Heteroscelus incanus’, 361
*kōpū ‘fish gullet’, 134
*kuka ‘mussel sp. (Mytilidae)’, 192
*kula ‘(bright) red’, 328
*kulapo ‘fish sp.’, 81
*kumā ‘rat’, 233
*kuru ‘Myripristis sp.’, 55
*la ‘wrasse or parrotfish spp., see *la-la
*la-la ‘wader sp.’, 364
*la ‘Scomberoides’, 71
*la-la ‘wrasse or parrotfish spp.’, 95
*lalī ‘red rock cod spp.’, 67
*loa ‘petrel or other large sea bird’, 353
*loi ‘Cephalopholis argus, peacock rock cod’, 67
*lō-qata ‘large ant’, 392
*lupo ‘Caranx sp.’, 72
*lupo-lupo ‘juvenile Caranx sp.’, 72
*mala ‘k.o. fish’, 72
*malau ‘general term for a number of fishes of the genera Holocentrus, Adioryx, Myripristis and Flammeo, soldier fishes and squirrelfishes’, 55
*malau-taqa ‘Adioryx sp.’, 55
*mama ‘chiton’, 198
*mamau ‘Scarus spp.’, 98
*(m,p)anoko ‘generic for gobies, mudskippers, blennies’, 99
*manō ‘general term for shark spp.’, 32
*maqito ‘Acanthuridae, possibly Ctenochaetus striatus, lined bristletooth’, 106
*mara ‘wrasse or parrotfish’, see *m[e,a]rari
*mara ‘rabbitfish, S. rostratus’ [S. argenteus], 110
*masi-masi ‘Coryphaena hippurus, dolphinfish’, 73
*mataele ‘Serranidae’, 67
*matu ‘Gerres spp., mojarras’, 79
*matuku ‘Reef Heron, *Egretta sacra*’, 292
*memea ‘Mulloididae sp., goatfish’, 86
*m[e,a],rari ‘wrasse or parrotfish’, 94
*miti ‘Striped Starling, *Aplonis tabuensis*’, 349
*mō ‘Sooty Crake, *Porzana tabuensis*, see *mo*(s)o
*moa ‘fowl’, 286
*moa-moa ‘Ostraciidae, boxfish’, 125
*moko ‘lizard’, 261
*moŋa-moŋa ‘cockroach’, 403
*mo(s)o ‘Sooty Crake, *Porzana tabuensis*’, 309
*moto-moto ‘*Sphyraena* sp.’, 63
*mū ‘flying insect’, 416
*mutu[mutu] ‘Pomacentridae’, 91
*nai-ufi ‘k.o. large shark, probably tiger or grey reef shark’, 33
*nifa ‘*Sardinella* sp.’, 39
*nofu ‘*Synanceja verrucosa*, *Scorpaenidae* spp.’ [now *Synanceiidae*], 120
*nū ‘squid’, 200
*nutuloa ‘*Epibulis insidiator*, slingjaw wrasse, or other long-nosed wrasse’, 95
*oma ‘sponge’, 213
*pakewa ‘*Carangoides ferdau jordan*’, 31
*paki(paki) ‘Portuguese man o’ war (bluebottle), *Physalia* sp.’, 209
*palaŋi ‘*Acanthurus* sp. of large size and elongate shape’, 107
*palolo (1) ‘palolo worm’, (2) ‘name of the months when this rises’, 212
*palu ‘oilfish; deep-sea snapper’, 78
*panoko ‘generic for gobies, mudskippers, blennies’, see *m(p)anoko
*papu ‘*Cheilinus* sp.’, 94
*paqala ‘*Acanthocybium solandri*, wahoo’, 116
*(p)fásua ‘*Tridacna* clam sp.’, 190
*patuki ‘hawkfish’, 91
*peka-peka (1) ‘small bat’, (2) ‘white-rumped swiftlet’, 237
*pili ‘gecko; adhere to’, 257
*pipi ‘probably general name for small or medium-sized circular bivalves, including cockles, *Asaphis* spp.’, 191
*pone ‘*Acanthurus* sp. or *Ctenochaetus striatus*’, 106
*puaka ‘pig’, 239
*pule ‘cowrie’, 186
*pulewa ‘marine substance/creature with stone-like or rough exterior’, 210
*puya ‘coral rock’, 209
*pusi ‘sea eel generic, *Gymnothorax* spp.’, 44
*qalawa ‘k.o. shark’, 32
*qalili ‘cat’s eye shell, *Turbo* sp.’, 182
*qaloyo ‘*Acanthurus* sp., probably *A. lineatus*, blue-lined surgeonfish’, 105
*qaso ‘shark sp.’, 33
*qatu ‘*Katsuwonus pelamis*, skipjack tuna’, 112
*qatule ‘*Selar crumenopthalmus*, silver scad’, 69
*qaua ‘mullet sp.’, 59
*qawa ‘*Chanos chanos*, milkfish or salmon herring’, 41
*qono ‘*Sphyraena* spp., barracuda’, 61
*qufi ‘wrasse or parrotfish’, 98
*qulafi ‘*Scardidae* spp.’, 96
*qulua ‘*Caranx* sp., probably mature phase of *C. ignobilis*’, 70
*qulu-tuki ‘hawkfish’, 92
*qume ‘*Naso* sp., unicornfish’, 101
*quna ‘fish scale, turtle shell’, 131
*quya ‘generic for hermit crab’, 170
*qūqū ‘coconut crab, *Birgus latro*’, 169
*qura ‘crayfish’, 166
*qutu ‘Aprion virescens, grey jobfish’, 75
*ranue ‘Kyohosidae’, 87
*rō ‘*Siganus* sp.’, 109
*rumane ‘sea anenome’, 207
*s(a,ā)putu ‘*Lutjanus* and *Lethrinus* spp.’, 76
*sakulā ‘swordfish, sailfish’, 116
*sao-sao ‘juvenile *Sphyraena* sp.’, 52
*sasā ‘anchovy’, 38
*sāwaki ‘sea urchin with short spines’, 203
*sawane ‘*Lutjanus kasmira*’, 78
*seqe ‘insect spp. including mantis, stick insect, locust’, 397
*sita ‘young flying fish’, 50
*sisi ‘small schooling fish’, 60
*sasā ‘anchovy’, 38
*sāwaki ‘sea urchin with short spines’, 203
*soke ‘*Carangid*, see *soke(lau)*’
*soke(lau) ‘*Carangid*’, 78
*sumu ‘Balistidae’, 121
*suple ‘*Labridae*’, 95
*tafaquli ‘*Caranx* sp., possibly *C. lugubris*’, 73
*tar‘o uraga ‘whale’, 244
*tahiwa ‘*L. monostigma*, one spot seaperch’, 77
*taiko ‘petrel’, 353
*tahuku hali ‘large tuna or skipjack’, 115
*tahu ‘black and white banded sea snake’, 261
*tala ‘tern’, 368
*tala ‘mudskipper’, 99
*tala-kisi ‘soldier or squirrelfish spp.’, 55
*tali-tali quli ‘*Echeneis* sp., remora, and *Nausrates dactor*, pilot fish’, 129
*tanfē ‘fierce shark’, 39
*tanfē ‘tiger shark’, 33
*tanaffa ‘*Cheilinus* sp.’, 93
*tanaqua ‘*Lutjanus* spp. including *L. vaigiensis* [*L. fulvus*] and probably other yellow or yellow-red species’, 78
*tao-tao ‘*Fistularia* spp., probably including trumpetfish’, 52
*tao-tao ‘*Fistularia*, flutefish’, 56
*tapata ‘Moreton Bay Bug’, 167
*tāpea ‘generic for morays’, 45
*taqa ‘*Sargocentron spiniferum*, armoured soldierfish’, 18, 53
*taqa-malau ‘*Adioryx* sp.’, 55
*tāqea ‘*Lutjanus* sp., probably *L. gibbus*’, 77
*taqe-tuli ‘phosphorescent centipede/millipede’, 407
*tautu ‘*Diodon* spp., porcupine fish’, 126
*tawake ‘White-tailed Tropic-bird, *Phaenopterus*’, 354
*tawa-tawa ‘*Euthynnus* yaito [*E. affinis*], black tuna, or *Gymnosarda unicolor*, juvenile, dogtooth tuna’, 113
*teqe-teqe ‘*Arothron* and *Canthigaster* spp., pufferfish’, 127
*teu ‘*Carangid*’, 73
*tifi-tifi ‘*butterfly fish* (generic)’, 90
*tio ‘*oyster sp.*’, 193
*tote ‘*k.o. bivalve*, 179
*toloe ‘*duck*, 295
*tone ‘*rock cod, when large*, 66
*tū ‘*ground dove*, 317
*tufu ‘*Thalassoma* sp.’, 94
*tukuku ‘*Pomacentridae*’, 91
*tuna ‘*Anguilla* spp., freshwater eel’, 43
*tupa ‘*landcrab*, 173
*wau ‘*Scombridae*, 114
*wana ‘*sea urchin sp.*’, 204
*wāwā ‘orthopterous insect’, 397
*weli (1) ‘*centipede*, (2) ‘marine annelid like a centipede’, 211
*wete ‘*k.o. goatfish, including *Mulloidichthys*, 85

Proto Nuclear Polynesian (PnPn)

*kakasi ‘*Thunnus albacares*, yellowfin tuna’, 116
*katoko ‘booby’, 357
*kimoa ‘rat, *R. exulans’, 233
*lakia ‘White-capped Noddy, *Anous minutus’, see *[ta]lapiti
*lapiti ‘Black-naped Tern, *Sterna sumatrana’, see *[ta]lapiti
*lele-fua ‘k.o. moth’, see *[pu]lele-fua
*mako ‘small bird sp.’, 351
*(maua)kena ‘booby, *Sula sp.’, 356
*moaŋa ‘Parupeneus spp.’, 86
*[pu]lele-fua ‘k.o. moth’, 380
*tū, *tū-kele ‘ground dove’, 317

Proto Eastern Polynesian–Northern Outlier
*pāsua ‘*Tridacna sp. or spp.’, 190

Proto Central Eastern Polynesian
*kautuku~*kootuku ‘heron sp.’, 292

Proto Tahitian
*mokolā ‘duck’, 296
Alphabetical index of reconstructions

In alphabetising reconstructions, an upper-case character follows the corresponding lower-case character (thus R follows r), y follows g, ŋ follows n, ŋ follows ŋ, δ follows S, the digraph dr follows d, a superscripted character is treated like the corresponding unsuperscripted character, and macrons, parentheses and brackets are ignored. Where alternants are shown in parentheses or brackets, e.g. (r,R) or [q,k], the second alternant is ignored, but is often shown in a crossreferenced entry at the appropriate alphabetic point. PSV reconstructions which consist of *n(V)- ‘article’ + root are alphabetised by the root.

*aki-aki, PPn, ‘White Tern, Gygis alba’, 367
*alali, POc, ‘flatfish incl. flounders, soles’, see *[l]alali
*alali, PCEMP, ‘halibut, flounder’, 118
*ali, PPn, ‘Bothus spp., flounder’, 118
*ani, PPn, ‘crustacean roe’, 180
*anay, PMP, ‘termite’, 394
*ane, POc, ‘termite’, 394
*arongo, PMic, ‘Carangid fish, pompano, skipjack’, 105
*aseu, PPn, ‘Caranx sp.’, 73
*atu, PMic, ‘bonito’, 112
*babā, PCP, ‘Fistularia, flutefish’, 56
*baba(ŋ), POc, ‘rock cod or grouper’, 65
*babu, POc, ‘Cheilinus spp., Maori wrasse’, 93
*bai, Proto Central Vanuatu, ‘White-breasted Wood Swallow, Artamus leucorrhynchos’, 349
*bakewa, POc, ‘shark (generic)’, 29, 30, 129, 144, 148, 150
*bakewa, PCP, ‘k.o. fish that accompanies sharks’, 31
*baki, PCP, ‘k.o. jellyfish or hydroid’, see *bak(µ)i
*bakopu, PEOc, ‘k.o. fish, possibly Eleotris sp.’, 100
*baku, PROc, ‘conger eel’, 46
*bak(µ)i, PCP, ‘k.o. jellyfish or hydroid’, 209
*bala, Proto Central Vanuatu, ‘Pacific Marsh Harrier, Circus approximans’, 303
*balaki, POc, ‘Acanthurus and Naso spp.’, see *bala(ŋ,k)i
*bala(ŋ,k)i, POc, ‘Acanthurus and Naso spp.’, 107, 146, 148
*balanj, PCP, ‘Acanthurus spp.’, 107
*balolo, PCP, (1) ‘Leodis viridis, palolo worm’, (2) ‘name of the months when this worm rises’, 212
*baluc, POc, ‘pigeon, Ducula sp.’, 313
*banic, POc, ‘arm, hand, wing, fin (probably pectoral)’, 132, 275
*banbay, PMP, ‘fish sp.’, 65
*baray~*rabay, PAdm, ‘tern’, 368
*b(a,e,i)risu, POc, ‘Buff-banded Rail, Rallus philippensis’, 308
*barVj, PAn, ‘dove, Ducula sp.’, 313
*(b,v)asilo, PROc, ‘honeyeater’, 347
*(b,v)asua, PEOc, ‘large shellfish, perhaps a bivalve’, 190
*(b,v)āsua, PCP, ‘giant clam, Tridacna spp.’, 190
*bati, POc, ‘tusk, canine tooth’, 266
*bati, PSOc, ‘tusk, upper canine tooth’, 266
*batisai, PCP, ‘Lutjanus monostigma’, 78
*bebek, POc, ‘butterfly, moth’, see *kau*bebek
*bebek, POc, ‘generic for Chaetodontidae, coralfish and butterflyfish’, 89, 145, 148
*bebelo, PWOc, ‘butterfly’, 379
*bebek, POc, ‘butterfly, moth’, see *[kau]bebek
*bebek, POc, ‘generic for Chaetodontidae, coralfish and butterflyfish’, 89, 145, 148
*bili, POc, ‘k.o. lizard’, 257
*(b,v)ili[ki(k,t)i], Proto NW Solomonics, ‘Beach Stone-Curlew, Burhinus neglectus’, 364
*bili[kiti], Proto NW Solomonics, ‘Beach Stone-Curlew, Burhinus neglectus’, see *(b,v)ili[ki(k,t)i]
*bilu[bilu], PMP, ‘Caranx spp., trevally’, 69
*binam, POc, ‘hornbill’, 339
*binj, PNCAL, ‘Buff-banded Rail, Rallus philippensis’, 309
*bio, PWOc, ‘k.o. mollusc or pearl shell’, 196
*bf[r,R]apa, POc, ‘Acanthurus lineatus, blue-lined surgeonfish’, 103
*birisu, POc, ‘Buff-banded Rail, Rallus philippensis’, see *b(a,e,i)risu
*biRa, POc, ‘roe, fish eggs’, 129
*biRaq, PMP, ‘Zebrasoma veliferum’, 103
*biRaS, PAN, ‘roe, fish eggs’, 129
*bivilo(k), PNCAL, ‘swiftlet’, 335
*boho, PCP, ‘Scarus sp.’, 98
*bobo(ŋ), POc, ‘butterfly’, see *[kali]bobo(ŋ)
*bo(dr,d)a, POc, ‘turtle shell’, 268
*boe, PNCV, ‘pig, male pig’, 238
*bogi, POc, ‘large bird of prey sp., possibly sea eagle’, 298
*b(o,u)kas(i), POc, ‘pig’, 239
*bolo, POc, ‘small dark surgeonfish, possibly Ctenochaetus’, 105
*bona, PEOc, ‘generic for various small Acanthuridae’, see *bon(e,a)
*bona, POc, ‘pigeon, Ducula sp.’, 313
*bon(e,a), PEOc, ‘generic for various small Acanthuridae’, 106
*bon(u,o), PCP, ‘conger eel’, 45
*bonu, PROc, ‘k.o. eel, probably conger’, 45
*boqe, PPT, ‘heron, Egretta sp.’, 290
*boRok, POc, ‘pig, Sus scrofa’, 238
*bōsē, PCP, ‘Scarus sp.’, 98
*bū, PCP, ‘Monotaxis grandoculis, large-eyed sea bream’, see *(m,b)ū
*bualabaw, PMP, ‘rat, mouse’, 232
*bubu, POc, ‘Balistes taxon, triggerfish’, 122, 147
*bubu, POc, ‘k.o. wasp’, 389
*bue-bue, PNCV, ‘puffer fish’, 127
*bukas(i), POc, ‘pig’, see *b(o,u)kas(i)
*bukasi, PSOc, ‘pig (generic), and probably by default male pig, boar’, 239
*bukaw, PMP, ‘owl sp.’, 318
*bubkuk, PMP, ‘weevil that infests wood, bamboo, and rice; dust produced by the boring of this insect; tooth decay, dental caries’, 388
*bula, POc, ‘k.o. sea cucumber’, see *(p,b)ula
*bulan-bulan, PMP, ‘a white fish, Megalops cyprinoides’, 37
*bulati, PMP, ‘roundworm, ascaris, intestinal worm; also earthworm?’, 413
*bulewa, PCP, ‘an organism growing on rocks, possibly encrusting brown rock coral’, 210
*bulewa, PCP, ‘k.o. eel’, 48
*buli, POc, ‘pufferfish’, 127
*buliq, PMP, ‘cowrie shell’, 185
*buli(q), POc, ‘generic for cowries’, 185
*bulu, PMP, ‘body hair, fur, feather, down, floss’, 273
*buma, PEOc, ‘k.o. fish, possibly sardine’, 40
*buna, PMP, ‘batfish’, 88
*bunaR, POc, ‘batfish, Platax sp. or spp., possibly Naso sp. or spp.’, 88, 145, 148
*bune, POc, ‘pigeon, dove’, 310
*buya, PMP, ‘flower, blossom’, *buŋa, PMP, ‘coral sponge’, 208
*buya, POc, ‘smooth round coral’, 208
*buqaya + modifier, PMP, ‘Hippocampus sp., seahorse’, 56
*buqaya, POc, ‘flower, blossom’, *buŋani batu
*bwakaRe, PROc, ‘porcupine fish’, 128
*bwalup, POc, ‘k.o. eel, moray eel?’, 44
*bwawa, POc, ‘snapper, Lutjanus spp.’, 146, 148
*bwabara, PNCal, ‘hawk or kite’, 348
*bwara, POc, ‘heron, probably Egretta sp.’, 291
*bwaruruk, POc, ‘pigeon or dove sp.’, 320
*bwatu-(i)-manu, PNCV, ‘Cardinal Honeyeater, Myzomela cardinalis’ (lit. ‘head of bird’), 348
*bwauve, Proto Central Vanuatu, ‘Mackinlay’s Cuckoo Dove, Macropygia mackinlayi’, 318
*bwaurol, POc, ‘tern’, 367
*bwiyor, PPT, ‘crow’, 351
*bviru, POc, ‘Purple Swamphen, Porphyrio porphyrio’, 308
*bwisu, POc, ‘Shining Starling, Aplonis metallica’, 348
*ciŋi(l)o, Proto SE Solomonic, ‘Yellow-faced Mynah, Mino dumontii’, 349
*ciŋio, Proto SE Solomonic, ‘Yellow-faced Mynah, Mino dumontii’, see *ciŋi(l)o
*cumu, PCP, ‘Balistoidei, triggerfish’, 121
*Cigaw, PAn, ‘goatfish’, 84
*dābea, PCP, ‘k.o. sea eel or sea snake’, 45
*dābea, PROc, ‘Gymnothorax, moray eel’, 45
*daua, POc, ‘frigate bird’, see *(dr.d)aula
*deŋ, PNCal, ‘Pacific Marsh Harrier, Circus approximans’, 304
*didi, PWOc, ‘small ant’, 393
*dil*t(i,u), Proto North Vanuatu, ‘Caranx spp.’, 73
*dimw’an, PNGOc, ‘k.o. worm’, 414
*doloq, POC, ‘k.o. eel’, see *(t,d)oloq
*don(o,u), POC, ‘spotted rock cod, taxon including Cephalopholis and Plectropomus spp.’, 66, 146, 148
*donu, POC, ‘spotted rock cod, taxon including Cephalopholis and Plectropomus spp.’, see *don(o,u)
*donu, PCP, ‘adult Plectropomus’, 66
*dukuku, PCP, ‘Pomacentridae’, 91
*duyuy, PMP, ‘dugong’, 247
*dralā, PCP, ‘red Cephalopholis’, 67
*(d)aula, POc, ‘frigate bird’, 357
*[driu]driu, POc, ‘small red or brown ants’, 392
*droman, POC, ‘leech’, 207, 412
*dru†u(‡;R), POC, ‘owl’, 331
*dru†, POC, ‘ant’, 392
*druman(e,i), PROc, ‘anemone’, 207
*fada, Proto Malaita-Makira, ‘sea eagle, Haliaeetus’, 299
*fai, PPn, ‘stingray, general term’, 35
*fai-manu, PPn, ‘Aetobatis narinari, eagle ray’, 36
*faŋa-mea, PPn, ‘red Lutjanus spp., especially L. bohar, red bass or red snapper, 77
*fāpuku, PPn, ‘Epinephelus sp., possibly E. polypehkadion, marbled sea bass’, 67
*fāsua, PPn, ‘large shellfish, perhaps a bivalve’, see *(p,f) ăśua
*fata, PMic, ‘platform, nest’, 279
*fīhu, PPn, ‘Carangidae’, 70
*foto, PPn, ‘barb of stingray’, 126, 135
*fua(kō), PPn, ‘Booby, Sula sp.’, 355
*gaga, POC, ‘k.o. spider’, see *gagao ~ *(g,k)a*(g,k)a-
*gagao ~ *(g,k)a*(g,k)a-, POC, ‘k.o. spider’, 409
*gala, PSOc, ‘green lizard, Emoia sp.’, 257
*(g,k)alau, POC, ‘k.o. shore crab, possibly a grapsid sp.’, 177
*game, PMM, ‘k.o. mollusc’, 196
*gara, POC, ‘gills’, 130
*g(a)umu, POC, ‘Fruit Dove, Ptilinopus sp.’, 315
*gavun, PNNG, ‘dog’, 241
*gaway, PMP, ‘octopus tentacles’, 201
*gina, PEOc, ‘k.o. sea urchin with long spines’, 203
*giRiu(p), PEOc, ‘dolphin’, 245
*golo, POC, ‘tern’, 367
*guma, POC, ‘monitor lizard’, see *(k,g)uma
*guma-kara, PPT, ‘monitor lizard’, see *(k,g)uma-kara
*gumu, POC, ‘Fruit Dove, Ptilinopus sp.’, see *(g)umu
*gumu, PWOc, ‘k.o. wasp’, 390
*gupuR, POC, ‘pigeon or dove’, see *(k,g)upuR
*guRi, PNCV, ‘dolphin (generic)’, 245
*gawao-gawao, PCP, ‘Ostracion’, 124
*hafulu, PPn, ‘growth stage of goatfish’, 86
*haku, PPn, ‘garfish and needlefish’, 51
*hapi, PPn, ‘Acanthurus guttatus’, 104
*hasay, PMP, ‘gills’, 129
*hikan, PMP, ‘fish’, 28
*(h)inaŋa, PPn, ‘whitebait’, 100
*huli, PPn, ‘fusilier sp.’, 74
*h‘eek, PNCal, ‘New Caledonian Crow, Corvus moneduloides’, 351
*ibo, POC, ‘k.o. sandworm, probably Sipunculus sp.’, 210
*ikan, POC, ‘fish (generic)’, 28, 144, 148, 150
*ikan, POC, ‘generic for fish (and certain other free-swimming aquatic creatures)’, 421, 428, 452
*i-kata, PCP, ‘growth term for Caranx sp’, 73
*ikuR, PAn, ‘tail’, 267, 277
*iku(R), POc, ‘tail, of quadruped, some birds and possibly fish’, 267, 277
*inaŋa, PPn, ‘whitebait’, see *(h)inaŋa
*ini, PMic, ‘dorsal fin’, 134
*ioli, POc, ‘honeyeater’, 347
*ipos, POc, ‘cockroach’, 402
*ipu, POc, ‘hair, feather’, 274
*ise, PPn, ‘halfbeak spp.’, 49
*jabajaba, PCP, ‘Parribacus sp. (Scyllaridae), slipper lobster’, 167
*jabinj, POc, ‘Acanthurus spp., incl. A. guttatus, white-spotted surgeonfish’, see *s,jabinj
*jaja, POc, ‘small fish, herring or anchovy’, 38
*jalala, POc, ‘Rastrelliger, k.o. small mackerel’, 115
*japi, POc, (1) ‘bivalve taxon, probably P. maxima, gold-lipped pearl shell’, (2) ‘ornament made from this’, 193
*(jea)jea, PCP, ‘Spotted Triller, Lalage maculosa’, 341
*jeqe, PEOc, ‘grasshopper ?’, see *(s,j)jeqe
*jeqevo(o,u), PROc, ‘juvenile mullet’, 60
*jeu, PCP, ‘carangid’, 73
*jexejexe, PCP, ‘Arothron’, 127
*jiko, POc, ‘kingfisher’, see *(s,j)iko
*jijana, POc, ‘whitebait’, 100
*jipiu, POc, ‘wader’, 359
*jiva, PCP, ‘pearl oyster, including Pinctada spp.’, 194
*joga, PNGOc, ‘(boar’s) tusk’, 267
*jori, POc, ‘squirrelfish, possibly generic’, 55
*jove, PCP, ‘k.o. shellfish or barnacle’, 179
*jumu, POc, ‘Balistidae, triggerfish and possibly Monacanthidae, leatherjackets’, 121, 145, 148
*kVlili, PROc, ‘Wandering Tattler, Heteroscelus incanus’, 361
*kaba, POc, (n) ‘wing’, (v) ‘flap wings’, 275
*kaba-kaba, PEOc, ‘to flap the wings’, 133
*kabakabal, POc, ‘swiftlet, Aerodramus or Collocalia spp.’, 334
*kabatiko, PCP, ‘Lethrinus sp.’, 83
*kabilak”a, PWOC, ‘k.o. spider’, see *ka(p,b)ilak”a
*kaboRa, PEOc, ‘Plotosus, catfish’, 42
*kaboRa, POc, ‘Plotosus spp., catfish’, 42
*kaboRa, POc, ‘catfish-eel, Plotosus sp.’, 147, 148
*kadik, POc, ‘stinging black ant’, 390
*kafa, PPn, ‘Liza vaigiensis’, 60
*k(a)iau, POc, ‘Bismarck Scrub Fowl, Megapodius eremita’, 306
*kaidaa(n), PCal, ‘frigate bird’, 359
*kaka, PCal, ‘New Caledonian Crow, Corvus moneduloides’, 351
*kaka, POc, ‘k.o. spider’, see *gagao ~ *(g,k)a(g,k)a-
kaka, PROc, ‘wader’, see *keke~*kaka
*kakaka, PEOc (?), ‘small shore crab, possibly Ocypoda sp’, 177
*kakasi, PNPn, ‘Thunnus albacares, yellowfin tuna’, 116
*kakata, Proto NW Solomonic, ‘sea eagle, Haliaeetus’, see *katata~*kakata
*kakawa, POc, ‘goby, blenny’, 99
*kakawe, PPT, ‘Sulphur-crested Cockatoo, Cacatua galerita’, see *wakeke~*kakawe
*kalabaw, PEMP, ‘rat, mouse’, 233
*kalakala, PROc, ‘swiftlet’, see *ka(r,l)aka(r,l)a
*kalapo, POc, ‘rat taxon’, 233
*kalewa, PCP, ‘Long-tailed Koel, Urodynamis taitensis’, 322
*kalapo, POc, ‘rat taxon’, 233
*kalewa, PCP, ‘Long-tailed Koel, Urodynamis taitensis’, 329
*ka-lewe-lewe, PPn, ‘cobweb, spider’, 409
*[kali]bobo(ŋ), POc, ‘butterfly’, 378
*kalika, POc, ‘Epinephelidae, rock cod’, 67
*(kali)papa, PMP, ‘praying mantis, grasshopper’, 398
*kalipa(s), POc, ‘large monitor lizard, *Varanus indicus* and possibly other species’, see
*ka(r,l)(i,u)pa(s)

*kalis(i,u), PEOc, ‘k.o. skink’, 258

*kālisi, PPn, ‘cicada, cricket’, 397

*kālisi, PPn, ‘skink, k.o. lizard’, 258

*kalisu, PEOc, ‘k.o. skink’, see *kalis(i,u)

*(k,q)ali-totop, POc, ‘firefly’, 399

*kalo, POc, ‘growth stage of goatfish’, 86

*kaloama, PPn, ‘growth stage of goatfish’, 86

*kalo, POc, ‘growth stage of goatfish’, 86

*kalufa, PMic, ‘monitor lizard’, 254

*kalukalu, PPn, ‘k.o. jellyfish’, 210

*kalupa(s), POc, ‘large monitor lizard, *Varanus indicus* and possibly other species’, see
*ka(r,l)(i,u)pa(s)

*(k,q)ali-totop, POc, ‘firefly’, 399

*kalo, POc, ‘growth stage of goatfish’, 86

*kaloama, PPn, ‘growth stage of goatfish’, 86

*kalam, POc, ‘beetle, possibly longicorn’, 401

*kamaRi, POc, ‘*Elagatis bipinnulata*, rainbow runner’, 72

*kam(a,i,u)tuq, POc, ‘*Bolbometopon*, double-headed parrotfish’, 96

*kamituq, POc, ‘*Bolbometopon*, double-headed parrotfish’, see
*kam(a,i,u)tuq

*kām(o,u)tu, PCP, ‘female *Scarus sordidus*’, 96

*kapoRu, POc, ‘k.o. lizard’, 259

*karaɨ, Proto Chuukic, , 292

*(ka)reŋas, POc, ‘small parrot sp.’, 326

*karan, Proto Central Micronesian, ‘*Egrettas acra*’, 292

*karaɨ, PNT, ‘white cockatoo’, 321

*karakara, PMic, ‘tern’, 366

*ka(r,l)aka(r,l)a, PROc, ‘swiftlet’, 335

*karipa(s), POc, ‘large monitor lizard, *Varanus indicus* and possibly other species’, 254

*karipa(s), POc, ‘large monitor lizard, *Varanus indicus* and possibly other species’, see
*ka(r;l)(i,u)pa(s)

*karok, PNNG, ‘frog’, 264

*ka(r,R)o(kV), PNGOc, ‘crow’, 350

*kanade, PCP, ‘Liza spp.’, 58

*kanaway, PMP, ‘white bird’, 365

*kanawe, POc, ‘tern, *Stern spp.*’, 365

*kandoRa, PCEMP, ‘cuscus’, 220, 225

*kanzupay, PCEMP, ‘rat’, 231

*kao(i), POc, ‘heron, probably *Egretta* sp.’, 289

*(kao)kao, POc, ‘crow, *Corvus* sp.’, 350

*kaopa, POc, ‘heron, probably *Egretta* sp.’, 289

*kapa, PPn, (v) ‘beat, of wings, fins, flippers’, 276

*kapak, PMP, ‘wings; flutter’, 275

*kapa-kapa, PPn, (s) ‘fish fins’; (v) ‘flap wings’, 133, 276

*kapa-kau, PPn, ‘wing, fin’, 276

*kapay, PMP, ‘flap wings’, 276

*kape, POc, ‘crab taxon, probably a rock crab (Grapsidae)’, 175

*kapi-kapi, PMP, ‘fin’, 133

*kapi-kapi, POc, ‘pectoral fins’, 133

*kapilei, PMic, ‘cuckoo’, see *(li)kapilei

*kapoa, PPn, ‘fish sp., probably *Plotosus* sp., catfish’, 42

*kapoRu, POc, ‘k.o. lizard’, 259

*karawa, POc, ‘green parrotfish spp.’, see
*fm.karawa

*karai, Proto Chuukic, , 292

*(ka)reŋas, POc, ‘small parrot sp.’, 326

*ka(r;l)(i,u)pa(s), POc, ‘large monitor lizard, *Varanus indicus* and possibly other species’, 254

*kapoRu, POc, ‘k.o. lizard’, 241

*kapuna, PWOC, ‘dog’, 225

*karai, PPT, ‘white cockatoo’, 321

*karakara, PMic, ‘tern’, 366

*ka(r,l)aka(r,l)a, PROc, ‘swiftlet’, 335

*karau, Proto Central Micronesian, ‘*Egretta sacra*’, 292

*karawa, POc, ‘green parrotfish spp.’, see
*fm.karawa

*karai, Proto Chuukic, , 292

*(ka)reŋas, POc, ‘small parrot sp.’, 326

*ka(r;l)(i,u)pa(s), POc, ‘large monitor lizard, *Varanus indicus* and possibly other species’, 254

*karipa(s), POc, ‘large monitor lizard, *Varanus indicus* and possibly other species’, see
*ka(r;l)(i,u)pa(s)

*karok, PNNG, ‘frog’, 264

*ka(r,R)o(kV), PNGOc, ‘crow’, 350
*karupa(s), POc, ‘large monitor lizard, Varanus indicus and possibly other species’, see *ka(i,l)(i,u)pa(s)

*kaRa, POc, ‘male Eclectus Parrot, Eclectus roratus’, 322

*kaRaka, POc, ‘k.o. crab, possibly rock crab.’, 177

*kaRaRap, PMP, ‘probably rock crab’, 177

*kaRaNa(r,R), PWOc, ‘male Eclectus Parrot, Eclectus roratus’, see *ka(l,R)ana(r,R)

*kaRap, POc, ‘k.o. fish’, 59

*kaRapa, PROc, ‘Lizavaigiensis, diamond-scaled mullet’, 60

*kaRi, POc, ‘bivalve sp. or spp, possibly cockle, used as a scraper’, 191

*ka(R,r)oma, PWOc, ‘nit’, 376

*(k,q)aru(s), POc, ‘mullet (generic)’, 59, 147, 148

*kaRuK, PMP, ‘sand crab, Ocypoda sp.’, 176

*kaRuki, (dbl. *kaRuki), POc, ‘ghost crab, Ocypoda sp., small white crab found on sandy beaches’, 176

*kaRuve, PEOc, ‘k.o. beach crab, probably Ocypoda sp., ghost crab’, 176

*kasawari, PCEMP, ‘cassowary’, 288

*kasi, POC, (v) ‘to scrape; scraper or grater made from robust circular bivalve shell, such as Asaphis and cockles’, (n) ‘shellfish taxon, esp. Asaphis spp.’, 191

*kasi, PPn, ‘shellfish, Asaphis spp.’, 191

*kasi, Proto North Bougainville, ‘dog’, 241

*kasika, POc, ‘large emperor, Lethrinus sp.’, 81, 146, 148

*kasuari, POc, ‘Dwarf Cassowary, Casuarius bennetti’, 288

*kasuli, PMP, ‘Anguillidae, freshwater eel’, 47

*(k,q)asuli, POc, ‘k.o. sea eel’, 47

*kasupe, *kusupe, POc, ‘rat taxon, probably Rattus exulans and possibly other small commensal sp. or spp.’, 231

*kata, PPn, ‘growth term for Caranx sp’, 73

*katapa, POc, ‘frigate bird’, 358

*katata~*kakata, Proto NW Solomonics, ‘sea eagle, Haliaeetus’, 299

*katawan, PMP, ‘fish sp.’, 103

*katawan, POc, ‘Acanthurus, surgeonfish’, 103

*katoko, Pn, ‘booby’, 357

*kato(q)u, PNCV, ‘hermit crab’, 171

*kato(q)u, POc, ‘hermit crab’, 171

*ka(u,w)ak, PWOc, ‘dog’, 242

*[kau]bebek, POc, ‘butterfly, moth’, 378

*kauki,*kawiki, PCP, ‘ghost crab, Ocypoda sp.’, 176

*kautuku~*koottuku, Proto Central Eastern Polynesian, ‘heron sp.’, 292

*kava, PCP, ‘Lizavaigiensis’, 60

*kava-kava, PCP, ‘juvenile Lizavaigiensis’, 60

*kawa-kawa, PPn, ‘rock cod, grouper’, 66, 80

*kawa-kawa, PPn, ‘Terapon jarbua, crescent perch’, 80

*kawo, POc, ‘k.o. fish, probably Lethrinus sp.’, 83

*kawo, PCP, ‘Lethrinus nebulosus’, 83

*kawe, POc, ‘tentacle of a cephalopod’, 201

*kawe, Pn, ‘tentacle of a cephalopod’, 201

*kawaiwesä, Pn, ‘Long-tailed Koel, Urodynamis taitensis’’, 330

*kawiki, PPn, ‘ghost crab, Ocypoda sp.’, 176

*kea, PPn, ‘hawksbill turtle’, 251

*keke~*kaka, PROc, ‘wader’, 364

*kele-mutu, Pn, ‘earthworm, grub’, 414

*kemoa, PROc, ‘booby’, 357

*kempuy, PMP, ‘abdomen, belly’, 134
*kepV, POc, ‘Lutjanus spp., sea perch’, see *k(i,e)pV
*kepay-kepay, PWMP, ‘flap (wings, fins of fish, etc.)’, 276
*kepek, PWMP, ‘flap wings’, 276
*kep’a, POc, ‘Clupeidae, probably sardine sp.’, 40
*ker(a,e)(ker(a,e)), POc, ‘tern’, 366
*kep, PWMP, ‘flap wings’, 276
*kepek, PWMP, ‘flap wings’, 276
*keRaŋ, POc, ‘Clupeidae, probably sardine sp.’, 40
*ker(a,e)(ker(a,e)), POc, ‘tern’, 366
*keRaŋ, PCEMP, ‘hawksbill turtle’, 250
*keRteŋ, PMP, ‘kind of striped or spotted marine fish, Epinephelus sp.’, 65
*kʰiñ, PNCal, ‘White-breasted Wood Swallow, Artamus leucorhynchus’, 349
*kiakia, PMic, ‘White Tern, Gygis alba’, 367
*kiau, POc, ‘Bismarck Scrub Fowl, Megapodius eremita’, see *k(a)iau
*kiki, POc, ‘kingfisher’, 338
*kikio, POc, ‘kingfisher’, see *ki(o)kio
*kikiora, POc (?), ‘Dollar Bird, Eurytostomus orientalis’, see *kikiora~*kikiora
*kikiora~*kikiora, POc (?), ‘Dollar Bird, Eurytostomus orientalis’, 339
*k(i,u)lii, PMic, ‘Wandering Tattler, Heteroscelus incanus’, 361
*kima, PMP, ‘giant clam, Tridacna spp.’, 189
*kima, POc, ‘giant clam, Tridacna spp., include. T. gigas’, 189
*kimoa, PNPn, ‘rat, R. exulans’, 233
*kina, PNPn, ‘sea urchin’, 203
*kini-t, POc, ‘to pinch’, 382
*k(i,o)kio, POc, ‘kingfisher’, 338
*kiokio, PNPn, ‘Albulavulpes, bonefish’, 36
*k(i,e)pV, POc, ‘Lutjanus spp., sea perch’, 78
*kipa, PWOc, ‘hawk’, 302
*kirau, POc, ‘Scarus spp.’, see *kirfi.au
*ki(r;R)i-ki(r;R)i, PWOc, ‘sandfly’, 385
*kirfi.au, POc, ‘Acanthuridae’, 105
*kirori, Proto Malaita-Makira, ‘parrot sp.’, 326
*kiRa, POc, ‘White Tern, Gygis alba’, 366
*kiRak, POc, ‘parrot sp.’, 323
*kisakira, PNGOc, ‘hawk or eagle’, 301
*kiso, POc, ‘Crested Baza, Aviceda subcristata’, see *ki(t,s)o
*kitave, PPT, ‘hawk’, 302
*kite, PMP, ‘rabbitfish’, 108
*ki(t,s)o, POc, ‘Crested Baza, Aviceda subcristata’, 300
*kito, PNPn, ‘Epinephelus spp., 108
*kitoŋ, POc, ‘Siganus sp., possibly ‘Siganus punctatus, gold-spotted spinefoot’, 108
*kiu~*kiwi, PNPn, ‘shore bird taxon including Pluvialis and Numenius’, 362
*kiwi, PNPn, ‘shore bird taxon including Pluvialis and Numenius’, see *kiu~*kiwi
*kiwivi, PWOc, ‘sandpiper sp.’, 360, 363
*koba, POc, ‘hermit crab’, 171
*kobu(ŋ), POc, ‘middle, waist, belly’, 134
*koko, POc, ‘spider’, 410
*kokorako, POc, ‘fowl, Gallus gallus, esp. male’, 284
*kolili, PNPn, ‘Wandering Tattler, Heteroscelus incanus’, 361
*[ko][R]o-kol,R[o], Proto SE Solomonic, ‘beetle that attacks plants’, 402
*kome, Proto SE Solomonic, ‘armlets made from cone or trochus shell’, *ko-kome or *kome-kome ‘?’
generic for cone shells’, 187
*komo, PWOc, ‘hornbill’, 340
*koyo(k), POc, ‘hornbill’, 340
*kōpū, PNPn, ‘fish gullet’, 134
*koran, POc, ‘emperor, Lethrinidae’, 83
*koro + modifier, PROc, ‘petrel’, 352
*koro, POc, ‘gills’, 130
*kororo, POc, ‘bee’, 387
*koRokoRo, Proto SE Solomonic, ‘beetle that attacks plants’, see *ko[R-o-kol.R-o
*kosa, POc, ‘k.o. parrotfish’, 97
*koto(y), POc, ‘large rock cod or grouper, Epinephelus sp.’, 65, 146, 148
*kotu, PWOC, ‘rat’, 234
*(k,o,u)vi, PEOc, ‘Flycatcher, Myiagra sp.’, 345
*kua, PMic, ‘dolphin’, 246
*kuba, POc, ‘pigeon, probably Ducula sp.’, see *ku(i)ba
*kuCu, PAn, ‘louse’, 374
*ku(i)ba, POc, ‘pigeon, probably Ducula sp.’, 311
*kuka, POc, ‘mudcrab, including Sesarma sp. or spp., living in mangrove forest and mudflats’, 174
*kuka, PPn, ‘mangrove crab, Sesarma sp. or spp.’, 175
*kuk(o,u), POc, ‘pigeon, probably Ducula sp.’, 258
*kuku, PPn, ‘mussel sp. (Mytilidae)’, 192
*kuku, PWOC, ‘spider’, 411
*kuku(r), POc, ‘mussel sp. or spp., used as food grater or scraper’, 192
*kula, PPn, ‘(bright) red’, 328
*kula, PCP, ‘Collared Lory, Phigys solitarius’, 328
*kulabaw, PAN, ‘rat, mouse’, 233
*kulabo, POc, ‘Lethrinidae’, 81
*kulabo, POc, ‘snapper sp. or spp.’, 145, 148
*kulambar, PMP, ‘Gnathodentex, Scelopis’, 81
*[(k,q)]ulapi, PMP, ‘parrotfish’, 95
*(k,q)ulapi, POc, ‘parrotfish spp., incl. Hipposcarus longiceps, long-nosed parrotfish’, 81, 95
*(k,q)ulapi, POc, ‘parrotfish spp., incl. Hipposcarus longiceps, longnosed parrotfish’, 146, 148
*kulapo, PPn, ‘fish sp.’, 81
kw ak(a,e), PCP, ‘Lutjanus monostigma’, 78
kw arawa, POc, ‘k.o. shark’, 32
kw aru, POc, ‘Sardinella, sardine’, 39
kw aru-k* kw* aru, POc, ‘cockroach’, 403
[kw] ek* kw* e, POc, ‘k.o. frog’, 264
kw io(ki), POc, ‘female Eclectus Parrot’, 323
*kw*lau, POc, ‘Bismarck Scrub Fowl, Megapodus eremita’, see
*kw*al(i)au
*kw*al(i)au, POc, ‘Bismarck Scrub Fowl, Megapodus eremita’, 306
*Vvusi, PSOc, ‘cuckoo’, 329
*labaw, PMP, ‘rat, mouse’, 232
*labo, PNCV, ‘Plectorhinchus spp., banded sweetlips’, 80
*labo, POc, ‘rat taxon’, see*la(b,p)(o,u)
*labu, POc, ‘rat taxon’, see *la(b,p)(o,u)
lab a(s,j)i, POc, ‘moray eel’, 44
*laci, POc, ‘Scomberoides spp., leather skin, including S. lysan’, 71, 145, 151
*lafi, PPn, ‘wrasse or parrotfish spp.’, see
*la-lafi
*(lafu)afula, PPn, ‘wader sp.’, 364
*lai, PPn, ‘Scomberoides’, 71
*lajay, PMP, ‘coral’, 208
la, POc, ‘generic for branching corals’, 208
*lajih, PMP, ‘dolphinfish’, 71
*laka, PNCV, ‘White-eye, Zosterops sp.’, 345
*laki, POc, ‘fiantail’, 343
*lakia, PNPN, ‘White-capped Noddy, Anous minutus’, see *ta]lapiti
*lako, PEOc, (1) ‘cone or trochus shell’, (2) ‘various ornaments made from this’, 187
*lakuya, PCP, ‘blenny’, see *l(o,a)kuya
*la-lafi, PPn, ‘wrasse or parrotfish spp.’, 95
*lalak, PMP, ‘trochus shell’, 186
*lala(k), POc, (1) ‘Trochus spp., including T. niloticus and possibly T. stellatus’, (2) ‘rings or armlets made of this’, 186
*lalali, *ali, PCP, ‘flatfish’, 118
*[l]alali, POc, ‘flatfish incl. flounders, soles’, 118
*lalay, PAn, ‘cicada’, 397
*[l](a,e)le, POc, ‘cicada’, 397
*lai, PPn, ‘red rock cod spp.’, 67
(l,R)(a,u)mu k* w* o, POc, ‘dove sp.’, 316
la aw, PMP, ‘botfly, bluebottle’, 385
la yo, POc, ‘fly’, 385
*lapaq, POc, ‘various flat fishes incl. sole and flounder’, 118
*lapi, PEOc, ‘wrasse’, 95
*lapii, PNPN, ‘Black-naped Tern, Sterna sumatrana’, see *ta]lapiti
*lapo, POc, ‘rat taxon’, see *la(b,p)(o,u)
*lapu, POc, ‘rat taxon’, see *la(b,p)(o,u)
*ladi, PCP, ‘Scomberoides sp.’, 71
*la, POc, ‘Plectorhinchus spp., banded sweetlips’, 80
*lau-lau-fau, PCP, ‘Zanclus canescens, Moorish idol’, 101
*lavo, PNCV, ‘skipper, blenny’, 99
*lawaq, PAn, ‘spider’, 409
*lawaq, POc, ‘spider, spider web’, 409
*lawe, POc, ‘tail feather, plume’, 274
*laweja, PCP, ‘Alectis indicus, plumed trevally or mirrorfish’, 73
*law, PMP, ‘tail feather’, 274
*leja, PWOc, ‘nit’, 376
*lele, POc, ‘cicada’, see *l(a,e)le
*lele-fua, PNPN, ‘k.o. moth’, see
*[pu]lele-fua
*(l,i)aj, Proto Southern Melanesian, ‘duck’, 295
lik pai, Proto Chuukic, ‘a bird’, 330
*(l)kapilei, PMic, ‘cuckoo’, 330
*liy-liy, PROc, ‘night insect, probably a cricket’, 396
*liao-liao, POc, ‘Pseudobalistes fuscus, brown triggerfish’, 123
*[l,n]ipon, POc, ‘tooth, tusk’, 266
*isab, POc, ‘nit’, 375
*isegeS, PAn, ‘nit, louse egg’, 375
*lofu, PPn, ‘petrel or other large sea bird’, 353
*loi, PPn, ‘Cephalopholis argus, peacock rock cod’, 67
*l(o,a)kuya, PCP, ‘blenny’, 99
*loli, PCP, ‘sea cucumber taxon’, 205
*lō-qata, PPn, ‘large ant’, 392
*loRo, PMP, ‘red tree ant’, 391
*loRo, POc, ‘large stinging red ant’, 391
*luar, POc (?), ‘eagle’, 301
*lubo, PROc, ‘Caranx spp.’, 72
*lulu, PROc, ‘Barn Owl, Tyto alba’, 331
*luRa, PROc, ‘small shrimp’, 168
*ma(c,s)i-ma(c,s)i, PCP, ‘Naso sp.’, 107
*ma(k,q)eto, POc, ‘a dark fish, possibly Ctenochaetus striatus’, 106
*ma(k,q)eto, POc, ‘Kypnosidae, drummer’, 87
*makaur, POc, ‘Kyphosidae, drummer’, see *maka(o,ur)
*ma(ng)eito, POc, ‘a dark fish, possibly Ctenochaetus striatus’, 106
*makini, PROc, ‘to be stung’, 382
*ma-kini(t), POc, ‘mosquito’, 382
*mako, PNPn, ‘small bird sp.’, 351
*mala, POc, ‘resembling’, 72
*mala, PPn, ‘k.o. fish’, 72
*mala, PSOc, ‘hawk’, 303
*malau, PPn, ‘general term for a number of fishes of the genera Holocentrus, Adioryx, Myripristis and Flammeo, soldier fishes and squirrelfishes’, 55
*malau-taqa, PPn, ‘Adioryx sp.’, 55
*malayo, POc, ‘sea eel, possibly generic’, 46
*maleŋa, POc, ‘k.o. parrotfish’, see *me[l,n]aŋa~*ma[l,n]eŋa
*mali-boni, POc, ‘flying fox’, 236
*mali- b*e ka, POc, ‘flying fox, large fruit bat’, 236
*malisa, POc, ‘barracuda’, 62
*mama, PPn, ‘chiton’, 198
*mama, Proto SE Solomonric, ‘k.o. anemone or jellyfish’, 210
*(m)a-manu, POc, ‘Scarus spp.’, 98
*mamanu, PPn, ‘Scarus spp.’, 98
*mamin, PMP, ‘wrasse, Cheilinus spp.’, 92
*mamin, POc, ‘Cheilinus undulatus, double-headed Maori wrasse and possibly other wrasse spp.’, 92, 147, 148, 160
*mamula, POc, ‘carangid’, 70
*manak(V), POc, ‘green turtle, Chelonia mydas’, 251
*maneya, POc, ‘k.o. parrotfish’, see *me[l,n]aŋa~*ma[l,n]eŋa
*manini, PROc, ‘Acanthurus triostegus, convict tang’, 107
*manivi, PCP, ‘Pempheris sp.’, 87
*(m,p)anoko, PNPn, ‘generic for gobies, mudskippers, blennies’, 99
*mansar, PCEMP, ‘bandicoot, marsupial rat’, 220, 228
*manser, PCEMP, ‘bandicoot, marsupial rat’, 220
*manu, PMic, ‘living creature of land or air’, 272
*manu, POc, ‘Scarus spp.’, see *(m)a-manu
*manuai, PAAd, ‘sea eagle’, see *manu(w)ai
*manuy, PSV, ‘bird’, 272
*manuk, PMP, ‘bird, fowl’, 284
*manuk, POC, (1) ‘flying creature’, (2) ‘animal’, 271, 416, 421, 443, 444, 446, 447, 449, 452
*manuk, POc, ‘Red Jungle-fowl, Gallus gallus’, 284
*manuka, POc, ‘sea eagle’, 297
*manuk-lapuat [‘big bird’], POc, ‘White-bellied Sea Eagle, Haliaeetus leucogaster’, 297
*manu-manuk, POc, ‘general term for insects and other small land invertebrates’, 416, 421, 450–452
*m(a,o)nuRV, POc, ‘Naso sp., unicornfish’, 102
*manu(w)ai, PAdm, ‘sea eagle’, 298
*mañipo, POc, ‘k.o. wasp’, 389
*mañar, PMic, ‘flying fish’, 48
*mañewa, POc, ‘k.o. shark’, 29, 31, 129
*mañjo, PPN, ‘general term for shark spp.’, 32
*maqeto, POc, ‘a dark fish, possibly Ctenochaetus striatus’, see *ma(k,q)eto
*maquito, PPN, ‘Acanthuridae, possibly Ctenochaetus striatus’, lined bristletooth’, 106
*marari, PPN, ‘wrasse or parrotfish’, see *m[e,a]rari
*marari, PCP, ‘Novaculichthys’, wrasse’, see *m[e,a]rari
*[m,k]arawa, POc, ‘green parrotfish spp.’, 97
*marawa, POc, ‘spinefoot sp.’, 110
*marawa, PPN, ‘rabbitfish, S. rostratus [S. argenteus]’, 110
*maraya, PROc, ‘sea eel’, 46
*marewe, POc, ‘parrot’, 328
*maroRV, POc, ‘Nemipterus spp.’, 79
*marup, Proto South Melanesian, ‘falcon’, 304
*maRa, POc, ‘Acanthurus sp., possibly A. xanthurus, yellowfin surgeonfish’, 103
*masa, PCP, ‘a small dark Acanthuridae, possibly Zebrasoma scopas, blue-lined tang or A. pyroferus, mimic surgeonfish’, 107
*masi-masi, PPN, ‘Coryphaenoides hippurus, dolphinfish’, 73
*masi-masi, PCP, ‘Naso sp.’, see *ma(c,s)i-ma(c,s)i
*mata qi talinya, PCP, ‘hammerhead shark’, 33
*mata, POc, ‘the operculum or trapdoor of certain gastropod spp.’, 201
*mata-buku, PEOc, ‘Turbo spp.’, 183
*mataele, PPN, ‘Serranidae’, 67
*matu, PPN, ‘Gerres spp., mojarras’, 79
*matu, PCP, ‘Gerres’, 79
*matu, PROc, ‘Gerres spp., silver biddy’, 79
*matuku, PPN, ‘Reef Heron, Egreeta sacra’, 292
*matu-xurai, PCP, ‘Parapeneus sp.’, 86
*mauakena, PNPn, ‘booby, Sula sp.’, 356
*maya, POc, ‘Osprey, Pandion haliaetus’, 299
*me[l,n]aŋa~*ma[l,n]eŋa, POc, ‘k.o. parrotfish’, 97
*menea, PPN, ‘Mulloloides sp., goatfish’, 86
*menaŋa, POc, ‘k.o. parrotfish’, see *me[l,n]aŋa~*ma[l,n]eŋa
*merari, POc, ‘wrasse or parrotfish’, 94
*m[e,a]rari, PPN, ‘wrasse or parrotfish’, 94
*m[e,a]rari, PCP, ‘Novaculichthys, wrasse’, 94
*midi, POc, ‘honeyeater’, 346
*mimis-mata, POc, ‘stick insect’, 398
*miti, PPN, ‘Striped Starling, Aplonis tabuensis’, 349
*mō, PPN, ‘Sooty Crane, Porzana tabuensis’, see *mo(s)o
*moa, POc, ‘boxfish’, 124
*moa, PPN, ‘fowl’, 286
*moa-moa, PPN, ‘Ostraciidae, boxfish’, 125
*moa(moa), PCP, ‘Ostracion’, 124
*moaŋa, PNPn, ‘Parapeneus spp.’, 86
*mo(g,k)o, POc, ‘k.o. snake’, 260
*moko, POc, ‘k.o. snake’, see *mo(g,k)o
*moko, PPN, ‘lizard’, 261
*mokolā, Proto Tahitic, ‘duck’, 296
*monuRV, POc, ‘Naso sp., unicornfish’, see *m(a,o)nuRV
*moŋa-moŋa, PPN, ‘cockroach’, 403
*mo(s)o, PPN, ‘Sooty Crane, Porzana tabuensis’, 309
*moto, PROc, ‘k.o. fish’, 63
*moto-moto, PPN, ‘Sphyraena sp.’, 63
*moto-moto, PCP, ‘growth stage of Sphyraena sp.’, 63
*mū, PPN, ‘flying insect’, 416
*(m,b)ū, PCP, ‘Monotaxis grandoculis, large-eyed sea bream’, 83
*-mken, PMP, ‘omen dove’, 316
*muk, POc, ‘dove sp.’, see *
*(l,R)(a,u)mu, POC, ‘Grub, grub’, 405
*munu, PCP, ‘large-eyed sea bream’, 83
*muk, POc, ‘dove sp.’, see *
*((l,R)(a,u)mu, POC, ‘Grub, grub’, 405
*muno, POc, ‘caterpillar, grub’, 405
*munua, PCP, ‘large Epinephelus sp.’, 67
*muquŋ, PMP, ‘k.o. fish’, 109
*muqu(ŋ), POc, ‘Siganus taxon, poss. S. spinus’, 109, 146, 148
*muro, POc, ‘Siganus argenteus, silver or rabbit-faced spinefoot’, 110
*musi, POc, ‘cockroach’, 403
*mutu, PMP, ‘damselfish’, 90
*mutu, POc, ‘Pomacentridae, particularly Abudefduf’, 90
*mutu, PPN, ‘Pomacentridae’, 91
*mₐcaasi, POc, ‘goatfish’, 85
*mₐgraRut, POc, ‘Exocoetidae, flying fish’, 48
*mₐajar, POc, ‘bandicoot’, 228
*mₐkoR, POc, ‘Hemirampus, garfish’, 50
*mₐlau, PROc, ‘squirrelfish, possibly generic for a number of spp.’, 55
*mₐli-X, PWOC, ‘millipede’, 407
*mₐanagi, mₐamₐagi, POc, ‘larger cuttlefish, Sepia sp. or spp.’, 200
*mₐta, PEOc, ‘snake, worm’, 413
*mₐta, POc, ‘snake (generic)’, 259
*mₐta-mₐta, POc, ‘generic for worms and worm-like creatures’, 412
*mₐ(toqu), PNCV, ‘boxfish’, 124
*mₐlau, POc, ‘Bismarck Scrub Fowl, Megapodius eremita’, 305
*mₐRaki, PSOC, ‘Emerald Dove, Chalcospiza indica’, 316
*mₐen, PNCAL, ‘Barn Owl, Tyto alba’, 333
*(n,ž)iku~*nuki, POc, ‘nest’, 279
*(n,ž)i(n,ž)i, POc, ‘bee, buzzing insect’, 388, 389
*(n,ž)i(n,ž)iṇo, POc, ‘k.o. wasp’, 390
*nai-ufi, PPN, ‘k.o. large shark, probably tiger or grey reef shark’, 33
*naniyo, Proto Central Papuan, ‘wasp’, 390
*nek-nek, PMP, ‘gnat, sandfly, fruit fly’, 384
*nifa, PPN, ‘Sardinella sp.’, 39
*niku(i), PEMP, ‘nest’, 279
*niku-niku, POc, ‘small biting fly’, 383
*nipay, PMP, ‘snake’, 259
*nipe, POc, ‘snake’, 259
*niton, POc, ‘tooth, tusk’, see *[n,ž]iton
*niva, PCP, ‘Sardinella spp.’, 39
*nofu, PPN, ‘Synanceja verrucosa, Scorpaenidae spp.’, now Synanceiidae, 120
*nonok, POc, ‘sandfly, midge’, 384
*nopuq, POc, ‘Synanceia, stonefish’, see *
*(n,ž)opuq
*noSa, PEOc, ‘Lethrinus sp.’, see *
*n(u,o)sa
*novu, PNCV, ‘scorpion, venomous fish’, 120
*novu, PCP, ‘Synanceja verrucosa, stonefish’, 120
*nuki, POc, ‘nest’, see *(n,ž)iku~*nuki
*nus, POc, ‘squid’, 200
*nusa (doublet *nus), POc, ‘small reef squid (Loligo spp.) and smaller cuttlefish (Sepia spp.)’, 200
*(n,u,o)sa, PEOc, ‘Lethrinus sp.’, 83
*(n,ž)opuq, POc, ‘Synanceia spp., stonefishes’, 119
*(n,ž)opuq, POc, ‘Synanceia spp., stonefish’, 145, 148, 150, 418
*TAmuk, PMP, ‘mosquito’, 380
*Tamuk, POc, ‘mosquito’, 380
*ṇepuq, PMP, ‘stonefish’, 119
*ṇiku, POc, ‘nest’, see *(n,ž)iku~*nuki
*ṇiṇi, POc, ‘bee, buzzing insect’, see *
*(n,ž)i(n,ž)i
*ṇiṇiṇo, POc, ‘k.o. wasp’, see *
*(n,ž)i(n,ž)iṇo
*ṇako, POc, ‘Night Heron, Nycticorax sp.’, 293
*ṇāṇā, PMIC, ‘sea bird, duck’, 294
*ŋaRa, POc, ‘duck’, 293
*ŋaRaq, PMP, ‘wild duck’, 293
*ŋati-ŋati, PWOC, ‘mosquito’, 383
*ŋiij, POc, ‘sandfly’, see *ŋi(s,j)i
*ŋiij, PMP, ‘buzz, hum’, 383
*ŋiij(ŋ), POc, (1) ‘buzz as a mosquito’, (2) ‘mosquito’ (onomatopoeic), 383
*ŋi(s,j)i, POc, ‘sandfly’, see *ŋi(s,j)i
*ŋiŋ, PMP, ‘buzz, hum’, 383
*ŋiŋi(ŋ), POc, (1) ‘buzz as a mosquito’, (2) ‘mosquito’ (onomatopoeic), 383
*ŋi(s,j)i, POc, ‘sandfly’, 384
*ŋoŋo, PCP, ‘Common Noddy, Anous stolidus’, 369
*ŋū, PPn, ‘squid’, 200
*ŋuju, POc, ‘mouth, lips, snout, beak’, 277
*ŋujula, PCP, ‘Lethrinus elongatus’, 83
*ŋutula, PPn, ‘Epibulis insidiator, slinging wrasse, or other long-nosed wrasse’, 95
*ŋ”ajala, PCP, ‘Epinephelus spp.’, 67
*ŋ”a(k,x)a, PCP, ‘Hemiramphus’, 50
*ŋ”aŋaŋ, PCP, ‘Parupeneus sp.’, 85
*(o,u)du, PEOc, ‘Leodis viridis, palolo worm’, 212
*odu, Proto SE Solomonic, ‘Leodis viridis, palolo worm’, 212
*oke, PCP, ‘Mullidae’, 86
*[oka]oka, POc, ‘k.o. fish, possibly Lethrinus spp.’, 83
*ome, PPn, ‘sponge’, 213
*ova, PCP, ‘nest’, 280
*ovi(s), *ovis-i-, PEOc, (1) ‘brood, sit on eggs’; (2) ‘cover chicks with wings’, 280
*paba, POc, ‘Parribacus sp. (Scyllaridae), slipper lobster’, see *[pa]paba
*pai(a), PWOc (?), ‘dog’, 242
*pakewa, PPn, ‘Caranxoides ferdau jordan’, 31
*paki(paki), PPn, ‘Portuguese man o’ war (bluebottle), Physalia sp.’, 209
*pakit, *pakiti-, PROc, ‘search hair for lice’, 377
*palaja, POc, ‘rabbitfish, Siganus spp.’, 145, 148
*palaja, POc, ‘Siganus spp., rabbitfish’, 109
*palaji, PPn, ‘Acanthurus sp. of large size and elongate shape’, 107
*palata, PMP, ‘fish sp.’, 73
*palata, POc, ‘Coryphaena hippurus, dolphinfish’, 73, 146, 148
*paliR, PMP, ‘surgeonfish’, 103
*paliR, POc, ‘Acanthurus, surgeonfish’, see *[qa]paliR
*palolo, PPn, (1) ‘palolo worm’, (2) ‘name of the months when this rises’, 212
*palu, PPn, ‘oilfish; deep-sea snapper’, 78
*panapa, POc, ‘garfish and needlefish taxon’, 51, 147, 148
*poni, PMP, ‘wing’, 132, 275
*panoko, PPn, ‘generic for gobies, mudskippers, blennies’, see *(m,p)anoko
*p(a,e)ga, POc, ‘red Lutjanus spp.’, 77
*panjoda, POc, ‘gather seafood on the reef’, 162
*papa, PMP, ‘praying mantis, grasshopper’, see *(kali)papa
*papa, POc, ‘praying mantis’, 398
*[pa]paba, POc, ‘Parribacus sp. (Scyllaridae), slipper lobster’, 167
*papu, PPn, ‘Cheilinus sp.’, 94
*paqala, PPn, ‘Acanthocybium solandri, wahoo’, 116
*pa(R,r)a(C), POc, ‘frog’, 263
*paRapaRa, PEOc, ‘flycatcher’, 345
*paRi, POc, (1) ‘stingray’, (2) ‘ray (generic)’, 34, 144, 148, 150
*paRia, PWOc, ‘k.o. big lizard’, 255
*paRih manuk, PMP, ‘? ray’, 35
*paRi-manuk, POc, ‘Aetobatus narinari, spotted eagle ray’, 35
*paRi-manuk, POc, ‘Aetobatus narinari’, 147, 148, 159
*paRiS, PAn, ‘stingray’, 34
*(p,f)äsua, PPn, ‘Tridacna clam sp.’, 190
*pāsua, Proto Eastern
 Polynesian–Northern Outlier,
 ‘Tridacna sp. or spp.’, 190
*patuki, PPn, ‘hawkfish’, 91
*paya, PMP, ‘k.o. small fish, sardine or anchovy’, 38
*paya, POc, ‘k.o. small fish, sardine or anchovy’, 38, 147, 148
*peka-peka, PPn, (1) ‘small bat’, (2) ‘white-rumped swiftlet’, 237
*peñu, PAn, ‘turtle’, 249
*paya, POc, ‘k.o. small fish, sardine or anchovy’, 38, 147, 148
*p<in'>aŋoda,*piŋoda, POc, ‘seafood gathered on the reef, edible sea invertebrates’, 162
*p<in'>aŋoda, POc, ‘seafood gathered on the reef, edible sea invertebrates’, 421, 437–439, 452
*pili, PPn, ‘gecko; adhere to’, 257
*pilu, POc, ‘Caranx sp. or spp., trevally’, 69, 145, 148, 151
*p<in'>anja<da>, *piyoda, POc, ‘seafood gathered on the reef, edible sea invertebrates’, 162
*p<in'>anja<da>, POc, ‘seafood gathered on the reef, edible sea invertebrates’, 421, 437–439, 452
*pili, PPn, ‘probably general name for small or medium-sized circular bivalves, including cockles, Asaphis spp.’, 191
*piRa(q), POc, ‘Zebrasoma veliferum, sailfin tang’, 103
*piRu-piRu, POc, ‘Istiophoridae’, 117
*p<in'>iri, PNCaL, ‘rail’, 309
*piikole, Proto NW Solomonic, ‘fantail’, 343
*pitiri, PNCaL, ‘rail’, see *pita<ri,i>
pone, PPn, ‘Acanthurus sp. or Ctenochaetus striatus’, 106
*poñu, POc, ‘turtle (generic)’, 249
*p<in'>a, POc, ‘owl’, 332
*[pota]poto, POc, ‘pufferfish, porcupinefish’, 126
*puaka, PPn, ‘pig’, 239
*pud(o,u), POc, ‘species of possum or cuscus’, see *pu(dr,dj)(o,u)
pu<dr,dj>(o,u), POc, ‘species of possum or cuscus’, 226
*pue, PROC, ‘Booby, Sula sp.’, 355
*puj(o,u), POc, ‘species of possum or cuscus’, see *pu(dr,dj)(o,u)
*(p,b)ula, POc, ‘k.o. sea cucumber’, 204
*pulan, POc, ‘bony fish, Megalops, Albula spp.’, see *pu-pulan
*pule, PPn, ‘cowrie’, 186
*[pu]lele-fua, PPNp, ‘k.o. moth’, 380
*pulewa, POc, ‘k.o. eel’, 48
*pulewa, PPn, ‘marine substance/creature with stone-like or rough exterior’, 210
*pulu, POc, ‘body hair, fur, feathers’, 273
*puñay, PAn, ‘dove, Treron sp.’, 310
*puya, PPn, ‘coral rock’, 209
*pupuk, POc, ‘k.o. borer wasp or bee that infests wood and bamboo’, 388
*pu-pulan, POc, ‘bony fish, Megalops, Albula spp.’, 37
*pugaya + modifier, POc, ‘seahorse’, 56
*pugaya, POc, ‘crocodile’, 252
*puRa-puRas, POc, ‘whale’, 243
*puRuq, PAn, ‘quail, partridge’, 307
*puRu(q), POc, ‘quail’, 307
*pusi, PPn, ‘sea eel generic, Gymnothorax spp.’, 44
*pusiRa, POc, ‘Starling, Aplonis sp.’, 348
*p”alapo, POc, ‘rat taxon’, 233
*p”itu(r,R), PWOc, ‘k.o. goatfish’, 86
*p”oca, PMic, ‘turtle shell’, 268
*p”a(r,R)a, POc (?), ‘hawk’, 302
*p”ipipi, POc, ‘small wader taxon’, 360
*p”iri(p), POc, ‘parrot sp.’, 326
*p”isu, POc, ‘Cuckoo-shrike, Coracina sp.’, 342
*gabated, PMP, ‘sago grub’, 404
*gala<wa, PPn, ‘k.o. shark’, 32
*gali-begbey, PAn, ‘butterfly’, 378
*gali<ly, PPn, ‘cat’s eye shell, Turbo sp.’, 182
*gali<ly, PMP, ‘cat’s eye shell’, 182
*gali<ly, POc, ‘Turbo petholatus, tapestry turban; possibly generic for several or all Turbo spp.’, 182
qalimayaw, PMP, ‘mangrove crab’, 172
qalimango, POc, ‘large mangrove crab, Scylla serrata (Portunidae) and probably other portunids’, 172
qalipan, POc, ‘centipede’, 406
qali-petpet, PMP, ‘firefly’, 399
qali-popot, POc, ‘firefly’, 399
qali-totop, POc, ‘firefly’, see *(k,q)ali-totop
qalimo, PPN, ‘Acanthurus sp., probably *A. lineatus*, blue-lined surgeonfish’, 105
qalu, PMP, ‘barracuda’, 62
qalu, POc, ‘*Sphyraena* taxon, incl. *S. barracuda*, great barracuda’, 62, 144, 148
qalu-hipan, PMP, ‘centipede’, 406
qalu-Sipan, PAn, ‘centipede’, 406
qanupe, PEOc, ‘caterpillar’, 206, 405
qanupe, POc, ‘caterpillar or k.o. sea cucumber (indeterminate)’, 206, 405
qanupe, PWOc, ‘sea cucumber, holothurian’, 206, 405
[qa]paliR, POc, ‘*Acanthurus*, surgeonfish’, 103
qapator, POc, ‘sago grub, edible’, 404
qara-bembem, PPT, ‘butterfly’, 379
qaroŋo, PMP, ‘*Acanthurus* spp.’, 104
qaroŋo, POc, ‘*Acanthurus* sp.’, 104, 147, 148
qaRuas, PMP, ‘young growth stage of mullet, *Neomyxuschaptalii*’, 59
[qa]Rua(s), POc, ‘mullet (generic)’, see *(k,q)Rua(s)
qasay, POc, ‘gills’, 129
qaso, PPN, ‘shark sp.’, 33
qaso, PCP, ‘k.o. large shark’, 33
qasuli, POc, ‘k.o. sea eel’, see *(k,q)asuli
qasuli, PCP, ‘k.o. sea eel’, 47
gatełuR, PMP, ‘egg, testicle’, 278
gatoluR, POc, ‘egg’, 278
qatu, PPN, ‘*Katsuwonus pelamis*, skipjack tuna’, 112
gatu, PCP, ‘possibly generic for *Thunnus* and *Katsuwonus* spp.’, 112
gatulay, PMP, ‘*Trachurus crumenophthalmus*, the big-eyed scad’, 69
gatule, POc, ‘*Selar* spp. including *S. crumenophthalmus*, big-eyed scad’, 69, 145, 148, 151
gatule, PPN, ‘*Selar crumenophthalmus*, silver scad’, 69
gatule, PCP, ‘*Selar crumenophthalmus*’, 69
qatun, POc, ‘*Katsuwonus pelamis*, skipjack tuna’, 112, 148, 150, 160
gaua, PPN, ‘mullet sp.’, 59
gaua, PCP, ‘juvenile mullet’, 59
qavali, PCP, ‘*Acanthurus* sp.’, 104
gawa, *gawan*, PMP, ‘*Chanos chanos*, milkfish’, 41
gawa, PPN, ‘*Chanos chanos*, milkfish or salmon herring’, 41
gawa, PCP, ‘*Chanos*’, 41
qawaq, POc, ‘*Chanos chanos*, milkfish’, 41, 144, 148, 160
qayuyu, PMP, ‘coconut crab, *Birgus latro*’, 169
qayuyu, POc, ‘coconut crab, *Birgus latro*’, 169
gonos, POC, ‘*Sphyraena* spp., barracuda’, 61
gonos, POc, ‘*Sphyraena* spp., possibly generic for all barracuda’, 61, 144, 148
gova, PNCV, ‘heron, probably *Egretta* sp.’, 290
guday, PAn, ‘shrimp, lobster’, 165
qufu, PPN, ‘wrasse or parrotfish’, 98
qulafi, PPN, ‘*Scaridae* spp.’, 96
qulapi, PMP, ‘parrotfish’, see *(k,q)ulapi
qulapi, POc, ‘*Hipposcarus longiceps*, long-nosed parrotfish’, see *(k,q)ulapi
qulavi, PCP, ‘*Hipposcarus longiceps*’, 96
qulej, PAn, ‘maggot’, 414
*qulej-an, PMP, ‘have worms’, 415
*qulej-quelej, PMP, ‘lots of worms; crawling with worms, extremely wormy’, 416
*quloc, POc, ‘maggot’, 414
*quloc-a(n), POc, ‘be maggoty’, 415
*qulo-quelej, POC, ‘full of maggots’, 416
*qulua, POc, ‘carangid’, 70
*qulua, POc, ‘Caranx sp., possibly C. ignobilis, big-headed jack’ (Carangidae), 151
*qulua, POc, ‘Caranx sp., possibly C. ignobilis, big-headed jack’, 145, 148
?qulua, PPn, ‘Caranx sp., probably mature phase of C. ignobilis’, 70
*qulu-tuki, PPn, ‘hawkfish’, 92
*qumaŋ, PAn, ‘hermit crab’, 170
*qumay, PMP, ‘unicorn fish, Naso spp.’, 101
*qume, POc, ‘Naso unicornis, long-snouted unicornfish’, 101, 146, 148, 160
*qume, PPn, ‘Naso sp., unicornfish’, 101
*qumatuR, POc, ‘Plectorhinchus spp., sweetlips’, see *(k,q)umatuR
*qumun, PPn, ‘hermit crab’, 170
*qumay, PMP, ‘unicorn fish, Naso spp.’, 101
*ru(b,v)e, PCP, ‘Pacific Pigeon, Ducula pacifica’, 314
*rō, PPn, ‘Siganus sp.’, 109
*rō, PCP, ‘juvenile Siganus’, 109
*rokrok, PMM ?, ‘bullfrog’, 265
*roqa, POc, ‘eagle’, 299
*roRo, POc, ‘growth stage of Siganus spp.’, 109
*ruvve, PCP, ‘Pacific Pigeon, Ducula pacifica’, see *ru(b,v)e
*rumane, PPn, ‘sea anenome’, 207
*ruve, PCP, ‘Pacific Pigeon, Ducula pacifica’, see *ru(b,v)e
*ruyen, POc, ‘dugong’, 247
*Rami, PEOc, ‘crustacean roe’, 180
*Ramuk(w), POc, ‘dove sp.’, see *(l,R)(a,u)muk
*Raja, *Rañak or *Raŋar, PMP, ‘the spider conch, Lambis lambis’, 181
*quSaNap, PAn, ‘scale of fish’, 131
*qutu, PCP, ‘Aprion virescens, grey jobfish’, 75
*qutur, POC, ‘Aprion virescens, green jobfish’, 75
*qutur, POc, ‘Aprion virescens, green jobfish’, 75
*qutur, POc, ‘Sphyraena sp., barracuda’, 63
*rabanj, PAdm, ‘tern’, see *baraŋ~*rabanj
*rakum(u), POc, ‘k.o. large crab, probably a land crab’, 173
*r(a,e)mu(a,e), PCP, ‘Kyphosus’, 87
*r(a,e)mu(a,e), PROc, ‘Kyphosus, rudderfish’, 87
*ranue, PPn, ‘Kyhosidiae’, 87
*rato, POc (?), ‘whale’, 243
*renu(a,e), PCP, ‘Kyphosus, rudderfish’, see *r(a,e)mu(a,e)
*renu(a,e), PROc, ‘Kyphosus, rudderfish’, see *r(a,e)mu(a,e)
*rejas, POc, ‘small parrot sp.’, see *(k,ka)rejas
*riŋa, POc, ‘orthopterous insect’, 395
*riuriu[kabe], Proto SE Solomonic, ‘Willie Wagtail, Rhipidura leucophrys’, 344
*rō, PPn, ‘Siganus sp.’, 109
*rō, PCP, ‘juvenile Siganus’, 109
*roku, POc, ‘dove sp.’, see *Ramuk
*Rana, *Rañak or *Raŋar, PMP, ‘the spider conch, Lambis lambis’, 181
*roka, POc, ‘eagle’, 299
*roko, POc, ‘growth stage of Siganus spp.’, 109
*rowou, Proto North Vanuatu, ‘bonito, Thunnus sp.’, 116
*ru(b,v)e, PCP, ‘Pacific Pigeon, Ducula pacifica’, 314
*rō, PPn, ‘Siganus sp.’, 109
*rō, PCP, ‘juvenile Siganus’, 109
*roku, POc, ‘dove sp.’, see *Ramuk
*rō, PPn, ‘Siganus sp.’, 109
*rō, PCP, ‘juvenile Siganus’, 109
*roku, POc, ‘dove sp.’, see *Ramuk
*rō, PPn, ‘Siganus sp.’, 109
*rō, PCP, ‘juvenile Siganus’, 109
*roku, POc, ‘dove sp.’, see *Ramuk
*rō, PPn, ‘Siganus sp.’, 109
*rō, PCP, ‘juvenile Siganus’, 109
*roku, POc, ‘dove sp.’, see *Ramuk
*rō, PPn, ‘Siganus sp.’, 109
*rō, PCP, ‘juvenile Siganus’, 109
*roku, POc, ‘dove sp.’, see *Ramuk
*rō, PPn, ‘Siganus sp.’, 109
*rō, PCP, ‘juvenile Siganus’, 109
*roku, POc, ‘dove sp.’, see *Ramuk
*Raŋa, PEOc, ‘duck’, 294
*Raŋa, POc, ‘Lambis spp., esp. spider conch, Lambis lambis’, 181
*Rebek, PMP, ‘to fly’, 281
*Rije, POc, ‘Hemiramphus, halfbeak’, 49
*Ropok, POc, ‘fly, jump’, 281
*Rumuk(w), POc, ‘dove sp.’, see *((l,R)(a,u))muk(w)
*(s,ð)abi, PCP, ‘Acanthurus guttatus, spotted surgeonfish’, 104
*(s,a,ā)putu, PPN, ‘Lutjanus and Lethrinus spp.’, 76
*saba(l), POc, ‘petrel or albatross’, 352
*[s,f]abīn, POc, ‘Acanthurus spp., incl. A. guttatus, white-spotted surgeonfish’, 104
*sabutu, PCP, ‘Lutjanus and Lethrinus spp.’; see *(s,j)abutu
*saku, PMP, ‘needlefish’, 51
*saku, POc, ‘needlefishes, garfishes, long toms (Belonidae)’, 51
*saku, POc, ‘needlefish, garfish, long toms (Belonidae)’, 116, 144, 148
*sakulā, PPN, ‘swordfish, sailfish’, 116
*saku-layaR, PCP, ‘swordfish, sailfish’, 116
*saku-layaR, POC, ‘sailfish, swordfish’, 116
*saku-layaR, POC, ‘sailfish’, 116, 144, 148, 159
*sak*a, POc, ‘grasshopper or stick insect’, 396
*salala, PCP, ‘Rastrelliger’, 115
*sala(n,ŋ), POc, ‘k.o. sea urchin with long black spines, probably Diadema sp. or spp.’, 203
*salay, POc, ‘k.o. sea urchin with long black spines, probably Diadema sp. or spp.’, see *sala(n,ŋ)
*saya-saya, PMP, ‘starfish’, 206
*saya-saya, POc, ‘a starfish’, 206
*sao, POc, ‘k.o. long tom’, 52
*sao-sao, PPN, ‘juvenile Sphyraena sp.’, 52
*sapulu, POc, ‘goatfish spp.’, 86
*sapulu(q), POc, ‘bivalve mollusc, possibly Pinna sp.’, 195
*sarā, PPN, ‘small schooling fish’, 60
*sarā, PCP, ‘k.o. small schooling fish’, 60
*sara(Ra), POc, ‘sardine-like fish, possibly Atherinidae’, 60
*saRawaki, POc, ‘k.o. sea urchin, probably Echinometra sp. or spp.’, 203
*sasā, PPN, ‘anchovy’, 38
*sau, POc, ‘Golden Whistler, Pachycephala pectoralis’, 345
*saun*a, Proto North Vanuatu, ‘Scarus sp., parrotfish’, 98
*sāwaki, PPN, ‘sea urchin with short spines’, 203
*sawane, PPN, ‘Lutjanus kasmira’, 78
*(s,a,waRa, POc, ‘Clupeidae, sardine or herring’, 40
*seke, POc, ‘cuckoo, possibly Centropus sp.’, 329
*sele(kai), POc, ‘tern’, 366
*seya, POc, ‘parrot sp.’, 327
*(s,j)eqe, PEOc, ‘grasshopper ?', 397
*seqe, PPN, ‘insect spp. including mantis, stick insect, locust’, 397
*sibi, PWOc, ‘k.o. snake’, 261
*siko, POc, ‘grasshopper’, 396
*(s,j)iko, POc, ‘kingfisher’, 336
*simuk, POc, ‘mosquito, small biting fly’, 382
*sio(R,r)a, PWOc, ‘fish fin’, 134
*sipa, POc, ‘Hemiramphus spp.’, 50
*sipā, PPN, young flying fish’, 50
*sipi, POc, ‘parrot, perhaps Cardinal Lory, Chalcopsitta cardinalis’, 324
*sipi(r,R)i, POc, ‘Rainbow Lory, Trichoglossus haematodus, or Cardinal Lory, Chalcopsitta cardinalis’, 324
*si(r,R)(a,e)si(r,R)(a,e), *di(r,R)(a,e)di(r,R)(a,e), PNGOC, ‘Petaurus breviceps, sugar glider’, 226
siri, POC, ‘parrot, perhaps Cardinal Lory, *Chalcopsitta cardinalis*’, 325

siRik, PMP, ‘dorsal fin’, 134

siRiko, POC, ‘fish fin’, 134

sisi, PPn, ‘a univalve mollusc’, 185

sisi[q], PMP, ‘edible snail’ (doubles *sisuq*, *susuq*), 184

sisiq, POC, (1) ‘various small, snail-like gastropods of nerite family’, (2) ‘probably generic for a wider class of edible gastropods’, 184, 421, 439–441, 443, 452

sisira, Proto Malaita-Makira, ‘a barnacle or kind of small mollusc’, 179

sisiri, Proto Malaita-Makira, ‘swiftlet’, 335

sisi(rR), POC, ‘orthopterous insect’, 395

siwaRa, POC, ‘Clupeidae, sardine or herring’, see *s(a,i)waRa*

soge, POC, ‘pigeon sp.’, 320

soke, PPn, ‘Carangid’, see *soke(lau)*

soke(lau), PPn, ‘Carangid’, 73

sora, POC, ‘fantail’, 344

sou (?), POC, ‘heron’, 291

sua-sua, POC, ‘goatfish’, 85

sulati, POC, ‘worm’, 413

sulig, PMP, ‘*Caesio* sp., fusilier’, 74

suli(k), POC, ‘*Caesionidae*, fusilier’, 74

sumu, PPn, ‘Balistidae’, 121

sumvit, PSV, ‘Barn Owl, *Tyto alba*’, 333

sugale, PPn, ‘Labridae’, 95

surup, POC, ‘*Lethrinus* spp.’, 82

susu, POC, ‘*Lethrinus* spp.’, 82

SayaN, PAn, ‘white ant, termite’, 394

Sikan, PAn, ‘fish’, 28

Sipes, PAn, ‘cockroach’, 402

(ð,s)abutu, PCP, ‘*Lutjanus* and *Lethrinus* spp.’, 76

ðabi, PCP, ‘*Acanthurus guttatus*, spotted surgeonfish’, see *s(ð)abi*

ðaðā, PCP, ‘*Spratelloides* sp.’, 38

ðuðu-walu, PCP, ‘k.o. sea cucumber, probably *Holothuria* sp.’, 205

tā, POC, ‘*Naso* sp.’, 102

tabuRiq, PMP, ‘conch shell trumpet’ (dbl. *tabuRi*), 183

tabuRuRu, POC, ‘k.o. beetle’, 401

tabale, Proto North Vanuatu, ‘grupper’, 67

tadruku, PEOc, ‘generic for chitons’, 197

tafaquli, PPn, ‘*Caranx* sp., possibly *C. lugubris*’, 73

ta(ð,u)raqa, PPn, ‘whale’, 244

tahiwa, PPn, ‘*L. monostigma*, one spot seaperch’, 77

taiko, PPn, ‘petrel’, 353

ta(i)ko(k), POC, ‘petrel’, 352

takere, POC, ‘Fantail, *Rhipidura* sp.’, 343

tako(k), POC, ‘petrel’, see *ta(i)ko(k)*

tako-tako(k), PSV, ‘petrel’, 352

taku(a,o), PPn, ‘*Thunnus albacares*, yellowfin tuna’, 115

taku(a,o), PPn, ‘large tuna or skipjack’, 115

takuhalu, PPn, ‘black and white banded sea snake’, 261

takulas or *takusali*, POC, ‘sea snake’, 261

takupu, PNPn, ‘Red-footed Booby, *Sula sula*’, 356

taku-takuju, POC, ‘small coral fish, damselfish or similar’, 91

tala, PPn, ‘tern’, 368

talaes, PPn, ‘mudskipper’, 99

tala-kisi, PPn, ‘soldier or squirrelfish spp.’, 55

taliku, PEOc, ‘Carangid’, 72

taliya, POC, ‘ear’, 133

talinya, POC, ‘pectoral fins’, 133

tali-tali-quli, PPn, ‘*Echeneis* sp., remora, and *Naucrates ductor*, pilot fish’, 129

tanifa, PPn, ‘fierce shark’, 39

tanifa, PPn, ‘tiger shark’, 33

tanipa, POC, ‘*Sardinella* spp., sardine’, 38, 146, 148
<table>
<thead>
<tr>
<th>Term</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>*taniva, PCP</td>
<td>‘Sardinella’, 39</td>
</tr>
<tr>
<td>*tanafa, PPN</td>
<td>‘Cheilinus sp.’, 93</td>
</tr>
<tr>
<td>*tanapa(R,R), POc</td>
<td>‘large wrasse, including Cheilinus sp.’, 93, 147, 148</td>
</tr>
<tr>
<td>*tanaqu, PPN</td>
<td>‘Lutjanus spp. including L. vaigensis (L. fulvus) and probably other yellow or yellow-red species’, 78</td>
</tr>
<tr>
<td>*tanaqa, PCP</td>
<td>‘Cheilinus undulatus’, 93</td>
</tr>
<tr>
<td>*taŋafa, PPn</td>
<td>‘Cheilinus sp.’, 93, 147, 148</td>
</tr>
<tr>
<td>*taŋapa(R,r), POc</td>
<td>‘large wrasse, including Cheilinus sp.’, 93, 147, 148</td>
</tr>
<tr>
<td>*taŋaqu, PPn</td>
<td>‘Lutjanus spp. including L. vaigensis (L. fulvus) and probably other yellow or yellow-red species’, 78</td>
</tr>
<tr>
<td>*taŋava, PCP</td>
<td>‘Cheilinus undulatus’, 93</td>
</tr>
<tr>
<td>*taŋiRi, PMP</td>
<td>‘Scomberomorus commerson, Spanish mackerel’, 114</td>
</tr>
<tr>
<td>*taŋiRi, POc</td>
<td>‘Scombridae spp., prob. incl. Scomberomorus commerson, narrow-barred Spanish mackerel, and Acanthocybium solandri, wahoo’, 114</td>
</tr>
<tr>
<td>*taŋiRi, POc</td>
<td>‘Scombridae spp., prob. incl. Scomberomorus commerson, the narrow-barred Spanish mackerel, and Acanthocybium solandri, wahoo’, 144, 148</td>
</tr>
<tr>
<td>*taŋitaŋi, Proto North Vanuatu</td>
<td>‘goatfish’, 86</td>
</tr>
<tr>
<td>*tao-tao, PPN</td>
<td>‘Fistularia spp., probably including trumpetfish’, 52</td>
</tr>
<tr>
<td>*tao-tao, PPN</td>
<td>‘Fistularia, flutefish’, 56</td>
</tr>
<tr>
<td>*ta(ou)k, POc (?)</td>
<td>‘hawk, bird of prey’, 302</td>
</tr>
<tr>
<td>*tapatapa, PPN</td>
<td>‘Moreton Bay Bug’, 167</td>
</tr>
<tr>
<td>*tape, POc</td>
<td>‘k.o. bivalve’, 196</td>
</tr>
<tr>
<td>*tāpea, PPN</td>
<td>‘generic for morays’, 45</td>
</tr>
<tr>
<td>*tapu, POC</td>
<td>‘Labridae sp.’, 94</td>
</tr>
<tr>
<td>*tapuRiq, POc</td>
<td>(1) ‘generic for conch shells, esp. triton’s trumpet, Charonia tritonis and allied spp.; possibly extended to some Cassis (helmet) shells’, (2) ‘trumpet of Charonia shell’, 183</td>
</tr>
<tr>
<td>*tāpua, POC</td>
<td>‘seek lice’, 377</td>
</tr>
<tr>
<td>*tāpea, POc</td>
<td>‘k.o. bivalve’, 281</td>
</tr>
<tr>
<td>*taqa, PPN</td>
<td>‘Sargocentron spiniferum, armoured soldierfish’, 18, 53</td>
</tr>
<tr>
<td>*taqa-malau, PPN</td>
<td>‘Adioryx sp.’, 55</td>
</tr>
<tr>
<td>*taqe, POc</td>
<td>‘excrement’, 406, 408</td>
</tr>
<tr>
<td>*taqe, POc</td>
<td>‘Lutjanus spp., snapper, sea perch’, see ta(Ra)qea</td>
</tr>
<tr>
<td>*tāqe-tuli, PPN</td>
<td>‘phosphorescent centipede/millipede’, 407</td>
</tr>
<tr>
<td>*tarā, PMic</td>
<td>‘squirrelefish’, 18, 53</td>
</tr>
<tr>
<td>*taragau, POc</td>
<td>‘fish-eating eagle or hawk’, 296</td>
</tr>
<tr>
<td>*tarasea, PCP</td>
<td>‘sea cucumber taxon’, 205</td>
</tr>
<tr>
<td>*tara, PMic</td>
<td>‘barracuda’, 64</td>
</tr>
<tr>
<td>*tara, PNCV</td>
<td>‘White-throated Pigeon, Columbia vitiensis’, 318</td>
</tr>
<tr>
<td>*taroap(v), PSOC</td>
<td>‘White-throated Pigeon, Columbia vitiensis’, 318</td>
</tr>
<tr>
<td>*taRaqan, PMP</td>
<td>‘Holocentrus spp., squirrelefish’, 17, 53</td>
</tr>
<tr>
<td>*taRaqan, POc</td>
<td>‘Sargocentron spp., squirrelefish, including S. spiniferum’, 17, 53, 145, 148</td>
</tr>
<tr>
<td>*ta(Ra)qea, POc</td>
<td>‘Lutjanus spp., snapper, sea perch’, 77</td>
</tr>
<tr>
<td>*taRat, PMP</td>
<td>‘Naso spp., unicornfish’, 102</td>
</tr>
<tr>
<td>*taRat, POc</td>
<td>‘Naso spp., incl. N. brevirostris, short snouted unicornfish’, 102, 147, 148</td>
</tr>
<tr>
<td>*taRutu[m,ŋ], PMP</td>
<td>‘porcupinefish, Diodon sp.’, 125</td>
</tr>
<tr>
<td>*taRutu(m,ŋ), POc</td>
<td>‘Diodon spp., porcupinefish’, 125, 145, 148</td>
</tr>
<tr>
<td>*tasīwa, POc</td>
<td>‘Lutjanus spp.’, 77, 146, 148</td>
</tr>
<tr>
<td>*tasīwa, PCP</td>
<td>‘Lutjanus sp.’, 77</td>
</tr>
<tr>
<td>*tawake, PCP</td>
<td>‘Lutjanus sp.’, 77</td>
</tr>
<tr>
<td>*taup(i), POc</td>
<td>‘lay egg’, 280</td>
</tr>
<tr>
<td>*taup(i), POc</td>
<td>‘sit on eggs’, 280</td>
</tr>
<tr>
<td>*tautu, PMic</td>
<td>‘porcupine fish’, 125</td>
</tr>
<tr>
<td>*tautu, PPN</td>
<td>‘Diodon spp., porcupine fish’, 126</td>
</tr>
<tr>
<td>*tautu, PCP</td>
<td>‘Diodon sp.’, 126</td>
</tr>
<tr>
<td>*tawa, Proto SE Solomonic</td>
<td>‘hawk or eagle’, 299</td>
</tr>
<tr>
<td>*tawake, PPN</td>
<td>‘White-tailed Tropic-bird, Phaethon lepturus’, 354</td>
</tr>
<tr>
<td>*tawa-tawa, PPN</td>
<td>‘Euthynnus yaito [E. affinis], black tuna, or black fish’, 296</td>
</tr>
</tbody>
</table>

Alphabetical index of reconstructions
Gymnosarda unicolor, juvenile, dogtooth tuna’, 113
*tawa-tawa, PROC, ‘growth stage of skipjack or dogtooth tuna’, 113
*tektek, PMP, ‘gecko, house lizard (onom.)’ (doublet *cekcek), 256
*teqe-teqe, PPN, ‘Arothron and Canthigaster spp., pufferfish’, 127
*teu, PPN, ‘Carangid’, 73
*teu, PCP, ‘k.o. goatfish’, 84
*tiā(k,ŋ), PNCal, ‘Melanesian Graybird, Coracina caledonica’, 341
*tiāŋ, PNCal, ‘Melanesian Graybird, Coracina caledonica’, see *tiā(k,ŋ)
*tifi-tifi, PPn, ‘butterfly fish (generic)’, 90
*tiku, tuki, PMic, ‘tropic-bird’, 353
*tina, PNCal, ‘night heron, Nycticorax sp.’, 293
*tiŋ, PNCal, ‘Ostracion spp., freshwater eel, probably Ostracion’, 124
*tōrea, Proto Central Eastern Polynesian, ‘Pacific Golden Plover, Pluvialis fulva’, 363
*totok, POc, ‘goose’, see *tok, *totos
*tū, *tū-kele, PNPn, ‘ground dove’, 317
*tū, PPN, ‘ground dove’, 317
*tuNa, PAN, ‘freshwater eel’, 43
*tuasi, POc, ‘bivalve taxon, probably ark or cockle shell; possibly also larger or spoon made from this’, see *tu(գ)asi
*tuaði, PCP, ‘bivalve taxon, probably ark or cockle shell; possibly also larger or spoon made from this’, see *tu(գ)asi
*tubaRa, POc, ‘probably generic for large land crabs, Cardisoma spp.’, 173
*tue, *tie-tie, POc, ‘k.o. bivalve, possibly Lucinidae and allied families’, see *tu(q)e, *tu(q)e-tu(q)e
*tufu, PPN, ‘Thalassoma sp.’, 94
*tukuku, PPN, ‘Pomacentridae’, 91
*tuku-tuku, PCP, ‘k.o. spider which lowers itself on a single thread’, 411
*tuli(i), PCP, ‘Pacific Golden Plover, Pluvialis fulva’, 361
*tuna, POc, ‘body louse’, 375
*tumah, PMP, ‘clothes louse’, 375
*tuneS, PAN, ‘clothes louse’, 375
*tuna, POc, ‘Anguillidae, freshwater eel (generic)’, 43, 144, 148
*tuna, PPN, ‘Anguilla spp., freshwater eel’, 43
*tuna, PCP, ‘Anguillidae, freshwater eel’, 43
*tupa, PPN, ‘landcrab’, 173
*tu(q)e, *tu(q)e-tu(q)e, POc, ‘k.o. bivalve, possibly Lucinidae and allied families’, 195
*tu(qu)asi, POc, ‘bivalve taxon, probably ark or cockle shell; possibly also grater or spoon made from this’, 197
*tu(qu)aði, PCP, ‘bivalve taxon, probably ark or cockle shell; possibly also grater or spoon made from this’, 197
*tusi, PCP, ‘Acanthurus sp.’, 107
*tutu, Proto North Vanuatu, ‘Baker’s Pigeon, Ducula bakeri’, 314
*tu(qu)aði, PCP, ‘bivalve taxon, probably ark or cockle shell; possibly also grater or spoon made from this’, 197
*tu, PCP, ‘Acanthurus sp.’, 107
*tutu, Proto North Vanuatu, ‘Baker’s Pigeon, Ducula bakeri’, 314
*tu, PCP, ‘Labridae sp.’, 94
*udu, POEoc, ‘Leodis viridis, palolo worm’, see *(o,u)du
*udu, PNCV, ‘Eunice, palolo worm’, 212
*ule(o), PWOC, ‘Dollar Bird, Eurytomus orientalis’, 339
*uvi, PCP, ‘k.o. fish, poss. Electridae’, 100
*va(o,u), Proto SE Solomonic, ‘Fruit Dove, Ptilinopus sp.’, 315
*vaRi manu, POEoc, ‘Aetobatis narinari’, eagle ray’, 35
*vasilo, PROc, ‘honeyeater’, see *(b,v)asilo
*vasua, POEoc, ‘large shellfish, perhaps a bivalve’, see *(b,v)asua
*vāsua, PCP, ‘large shellfish, perhaps a bivalve’, see *(b,v)āsua
*vau, Proto SE Solomonic, ‘Fruit Dove, Ptilinopus sp.’, see *va(o,u)
*vaya, PCP, ‘k.o. small school fish’, 38
*vete-vete, PNCV, ‘fantail’, 344
*via, PFij, ‘Zebrasomaveliferum’, 103
*vili[kiki], Proto NW Solomonic, ‘Beach Stone-Curlew, Burhinus neglectus’, see *(b,v)ili[kik(t)i]
*vili[kiti], Proto NW Solomonic, ‘Beach Stone-Curlew, Burhinus neglectus’, see *(b,v)ili[kik(t)i]
*vilu, PCP, ‘Gnathanodon, Trachinotus’, 70
*vā, PCP, ‘k.o. small fish’, see *vā(o)u
*vokai, PCP, ‘k.o. lizard’, 256
*vo(q)o, PCP, ‘k.o. small fish’, 100
*voto, PCP, ‘thorn, prickle; spike or spines of a fish’, 135
*vua-vua, PCP, ‘k.o. small fish’, 60
*vula, PCP, ‘Megalops’, 37
*vēru, PNCV, ‘Fruit Dove, Ptilinopus sp.’, 315
*wagita, PPT, ‘wallaby’, 222
*wake, POc, ‘k.o. lizard, possibly a monitor’, see *wak(i,e)
*wakeke~*kakawe, PPT, ‘Sulphur-crested Cockatoo, Cacatua galerita’, 321
*wak(i,e), POc, ‘k.o. lizard, possibly a monitor’, 254
*wakin, PEMP, ‘wallaby’, 222
*wakin, POc, ‘wallaby’, 222
*wakio, Proto Malaita-Makira, ‘Osprey, Pandion haliaetus’, 300
*wala, PCP, ‘Scombridae sp. or spp.’, 114, 144, 148
*wala, PPn, ‘Scombridae’, 114
*wala, PCP, ‘k.o. pelagic fish’, 114
*wana, PPn, ‘sea urchin sp.’, 204
*wana, PCP, ‘sea urchin, probably Diadema sp. and/or Echinothrix spp.’, 204
*waro(q), POEoc, ‘probably black-lipped pearl, Pinctada maxima, possibly generic for Pinctada spp.’, 194
*wase, PSOc, ‘Island Thrush, Turdus poliocephalus’, see *was(i,e)
*was(i,e), PSOc, ‘Island Thrush, Turdus poliocephalus’, 342
*watiRi, PAdm, ‘monitor lizard, Varanus spp.’, 255
*wāwā, PPn, ‘orthopterous insect’, 397
*weka, PCP, ‘Buff-banded Rail, Rallus philippensis’, 309
*weli, POc, (1) ‘fireworm, sea centipede’, (2) ‘? k.o. millipede or centipede’, 211
*weli, PPn, (1) ‘centipede’, (2) ‘marine annelid like a centipede’, 211
*wete, PPn, ‘k.o. goatfish, including Mulloidichthys’, 85
*wisi, POEoc, ‘owl’, 333
*woku, POc, ‘Cuckoo Dove, *Macropygia* sp.’, 317
*(y)aro(q), POc, ‘black-lipped pearl, *Pinctada maxima*’, possibly
generic for *Pinctada* spp., 194
Index of English and biological terms

This index is organised by the domains covered by chapters 2–3, 4, 5, 6 and 7 in this volume, but arranged here in alphabetical order: Aquatic invertebrates, Birds, Fish, Insects and other creepy-crawlies, Mammals, reptiles and amphibians. Within each domain are listed English and biological terms in alphabetical order. Index entries to chapter 8 are included as appropriate within these five domains.

Aquatic invertebrates

- anemones, 207, 209
- Annelida, worms, 210
- Anomura, hermit crabs, mud lobsters, half-crabs, 168
- *Anondontia*, bivalve, 195
- Anthozoa, anemones and corals, 207
- armlet, shell, 187
- *Asaphis* spp., circular bivalves, 190
- Asteroidea, sea stars, 206
- *Astropyga* spp., long-spined sea urchins, 203
- barnacles, 179
- *Birgus latro*, coconut crab, 168
- bivalves, 188
 - circular, 190
- Bivalvia, clams, cockles, oysters, 188
- black-lip pearl shell, 193
- Brachyura, true crabs, 171
- burrowing crabs, 174
- bêche de mer, 204
- Cardiidae, cockles, 190
- *Cardisoma* spp., land crabs, 173
- *Cassis* spp., helmet shells, 183
- Cephalopoda, octopus, squid, nautilus, 198
- Cephalopoda, squid and cuttlefish, 199
- *Charonia tritonis*, triton’s trumpet, 183
- conches, 181
- cone shells, 187
- Conidae, cone shells, 187
- corals, 207–209
- Cowries, cone shells, 187
- egg, 185
- spindle, 185
- crabs, 171
- burrowing, 174
- coconut, 168
- fiddler, 176
- ghost, 176
- hermit, 168, 170, 171
- large land, 173
- long-stalked, 176
- mangrove, 172
- mud, 174
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>porcelain</td>
<td>171</td>
</tr>
<tr>
<td>sand</td>
<td>176</td>
</tr>
<tr>
<td>sea-dwelling hermit</td>
<td>168</td>
</tr>
<tr>
<td>shore</td>
<td>174</td>
</tr>
<tr>
<td>soldier</td>
<td>176</td>
</tr>
<tr>
<td>swimming</td>
<td>172</td>
</tr>
<tr>
<td>true</td>
<td>171</td>
</tr>
<tr>
<td>crabs (generic)</td>
<td>178</td>
</tr>
<tr>
<td>crayfish</td>
<td>165</td>
</tr>
<tr>
<td>crustacean roe</td>
<td>180</td>
</tr>
<tr>
<td>Ctena</td>
<td>195</td>
</tr>
<tr>
<td>Ctenosphora, comb jellyfish</td>
<td>207, 209</td>
</tr>
<tr>
<td>Culcita spp., cushion stars</td>
<td>206</td>
</tr>
<tr>
<td>cushion stars</td>
<td>206</td>
</tr>
<tr>
<td>cuttlefish</td>
<td>199</td>
</tr>
<tr>
<td>Cymatiidae</td>
<td>183</td>
</tr>
<tr>
<td>Cypraeidae</td>
<td>185</td>
</tr>
<tr>
<td>Diadema spp., long-spined sea urchins</td>
<td>203</td>
</tr>
<tr>
<td>Diogenidae</td>
<td>168</td>
</tr>
<tr>
<td>Echinodermata, sea urchins</td>
<td>202</td>
</tr>
<tr>
<td>sea cucumbers, starfish, etc.</td>
<td>202</td>
</tr>
<tr>
<td>Echinoidea</td>
<td>202</td>
</tr>
<tr>
<td>Echinometra spp., rock-boring sea urchins</td>
<td>202</td>
</tr>
<tr>
<td>Echinothrix spp., long-spined sea urchins</td>
<td>203</td>
</tr>
<tr>
<td>edible sea invertebrates (generic), 162, 421, 437–439, 452</td>
<td></td>
</tr>
<tr>
<td>egg cowries</td>
<td>185</td>
</tr>
<tr>
<td>Eunice viridis, palolo worm</td>
<td>212</td>
</tr>
<tr>
<td>fiddler crabs</td>
<td>176</td>
</tr>
<tr>
<td>fireworms</td>
<td>211</td>
</tr>
<tr>
<td>Gastropoda</td>
<td>181</td>
</tr>
<tr>
<td>gastropods, univalves</td>
<td>188</td>
</tr>
<tr>
<td>gastropods, edible (generic)</td>
<td>184, 421, 439–441, 443, 452</td>
</tr>
<tr>
<td>gather seafood on the reef</td>
<td>162</td>
</tr>
<tr>
<td>ghost crabs</td>
<td>176</td>
</tr>
<tr>
<td>giant clams</td>
<td>189</td>
</tr>
<tr>
<td>gold-lip pearl shell</td>
<td>193</td>
</tr>
<tr>
<td>Grapsidae, shore crabs, burrowing crabs of mud flats, 174</td>
<td></td>
</tr>
<tr>
<td>graspsids</td>
<td>174</td>
</tr>
<tr>
<td>half-crabs</td>
<td>168, 171</td>
</tr>
<tr>
<td>hammer oysters</td>
<td>193</td>
</tr>
<tr>
<td>helmet shells</td>
<td>183</td>
</tr>
<tr>
<td>hermit crabs</td>
<td>168, 170, 171</td>
</tr>
<tr>
<td>sea-dwelling</td>
<td>168</td>
</tr>
<tr>
<td>holothurians</td>
<td>204</td>
</tr>
<tr>
<td>Holothuroidea, sea cucumbers</td>
<td>204</td>
</tr>
<tr>
<td>Hydrozoa, hydroids, polyps</td>
<td>207, 209</td>
</tr>
<tr>
<td>ink of octopus</td>
<td>201</td>
</tr>
<tr>
<td>Isognomonidae, mangrove oysters, 192</td>
<td></td>
</tr>
<tr>
<td>jellyfish</td>
<td>207, 209</td>
</tr>
<tr>
<td>Portuguese man o’ war</td>
<td>209</td>
</tr>
<tr>
<td>Lambis spp., spider conches</td>
<td>181</td>
</tr>
<tr>
<td>land crabs</td>
<td>173</td>
</tr>
<tr>
<td>lobsters</td>
<td>165</td>
</tr>
<tr>
<td>mud</td>
<td>168, 171</td>
</tr>
<tr>
<td>shovel-nosed</td>
<td>167</td>
</tr>
<tr>
<td>slipper</td>
<td>167</td>
</tr>
<tr>
<td>spiny</td>
<td>166</td>
</tr>
<tr>
<td>Loligo spp., squid</td>
<td>199</td>
</tr>
<tr>
<td>long-spined sea urchins</td>
<td>203</td>
</tr>
<tr>
<td>long-stalked crab</td>
<td>176</td>
</tr>
<tr>
<td>Loriges</td>
<td>195</td>
</tr>
<tr>
<td>Lucina</td>
<td>195</td>
</tr>
<tr>
<td>Lucinidae</td>
<td>195</td>
</tr>
<tr>
<td>Lucinoida, bivalves</td>
<td>195</td>
</tr>
<tr>
<td>Malleidae, hammer oysters</td>
<td>192, 193</td>
</tr>
<tr>
<td>mangrove crabs</td>
<td>172</td>
</tr>
<tr>
<td>mangrove graspsids</td>
<td>174</td>
</tr>
<tr>
<td>mantis shrimps</td>
<td>179</td>
</tr>
<tr>
<td>molluscs</td>
<td>180</td>
</tr>
<tr>
<td>mud lobsters</td>
<td>168, 171</td>
</tr>
<tr>
<td>mudcrab</td>
<td>174</td>
</tr>
<tr>
<td>murexes</td>
<td>188</td>
</tr>
<tr>
<td>Muricidae, murexes</td>
<td>188</td>
</tr>
<tr>
<td>mussels</td>
<td>192</td>
</tr>
<tr>
<td>Mytilidae, mussels</td>
<td>192</td>
</tr>
<tr>
<td>Natantia, true prawns and shrimps, 168</td>
<td></td>
</tr>
<tr>
<td>nerites</td>
<td>184</td>
</tr>
<tr>
<td>Neritidae, nerites, snail-like</td>
<td>184</td>
</tr>
<tr>
<td>gastropods</td>
<td>188</td>
</tr>
<tr>
<td>octopus</td>
<td>198</td>
</tr>
<tr>
<td>common reef</td>
<td>198</td>
</tr>
</tbody>
</table>
day, 198
night, 198
Octopus cyanea, day octopus,
 common reef octopus, 198
octopus ink, 201
Octopus oiniatus, night octopus, 198
octopus tentacles, 201
Ocypoda sp., ghost crabs, 176
Ocypodidae long-stalked crabs (ghost crabs fiddler crabs soldier crabs), 176
Ophiuroidea, starfish, 206
Ostreidae, rock oysters, 192
Ovulidae, egg and spindle cowries, 185
oysters, 188, 192
hammer, 193
pearl, 193
wing, 193
Paguridae, hermit and coconut crabs, 168
Palinura, spiny lobsters, 166
Palinuridae, spiny lobsters, 167
Palinurus, spiny lobster, 166
palolo worm, 212
Parribacus sp., slipper lobster, 167
pearl oysters, 193
pearl shell
 black-lip, 193
gold-lip, 193
pen shells, 195
Physalis sp., Portuguese man o’ war, 209
Pinctada margaritifera, black-lip pearl shell, 193
Pinctada maxima, gold-lip pearl shell, 193
Pinnidae, pen shells, 195
Polychaeta, fireworms, 211
Polypeplophora, chitons, 197
porcelain crabs (half-crabs), 171
Porcellanidae, porcelain crabs (half-crabs), 171
Porifera, sponges, 212
Portunidae, mangrove crabs, 172
p rawns, 165
p rawns and shrimps, 168
p rawns and shrimps, crayfish and lobsters (generic), 165
Psammobidae, 190
Pteridae, pearl and wing oysters, 192, 193
rock oysters, 192
rock-boring sea urchins, 202
roe of crustacean, 179
sand crabs, 176
sandworm, 210
scraper made from circular bivalve shell, 190, 192
Scylla serrata, mangrove crab, 172
Scyllaridae, slipper lobsters, 167
Scyphozoa, jellyfish, 207, 209
sea cucumbers, 204
sea stars, 206
sea urchins, 202
long-spined, 203
rock-boring, 202
sea-dwelling hermit crabs, 168
seafood gathered on the reef
 (generic), 162, 421, 437–439, 452
Sepia spp., cuttlefish, 199
Sesarma spp., mangrove grapsids, 174
shell armlet, 187
shellfish (generic), 198
shells
 bivalves, 188
cockles, 190
conch, 181
cone, 187
cowrie, 185
murex, 188
nerite, 184
pen, 195
spider, 181
stromb, 181
triton, 183
trochus, 186
turban, 182
shore crabs, 174
shovel-nosed lobsters, 167
Index of English and biological terms

shrimps, 165, 168
Sipunculus sp., sandworm, 210
slipper lobsters, 167
soldier crabs, 176
spider conches, 181
spindle cowries, 185
spiny lobsters, 166, 167
Spondylidae, thorny oysters, 192
sponges, 212
squids, 199
starfish, 206
Stomatopoda, mantis shrimps, 179
Strombidae, strombs, spiders, conches, 181
strombs, 181
swimming crabs, 172
tapestry turban shell, 182
tentacles of octopus, 201
Thalassina, mud lobsters, 171
Thoracia, barnacles, 179
top shells, 186
trepan, 204
Tridacna gigas, giant clam, 189
Tridacninae, giant clams, 189
tritons, 183
triton’s trumpet, 183
Trochidae, top shells, 186
trochus shells, 186
Trochus spp., trochus shells, 186
ture crabs, 171
turban shells, 182
Turbinidae, turban shells, 182
Turbo petholatus, tapestry turban, 182
univalves, 181
wing oysters, 193
worms, 210
Xanthoidea, crabs of coral reefs, 178

Birds

Accipiter, goshawks, 296, 302
Accipitridae, diurnal raptors, 296
Aceros plicatus, Blyth’s Hornbill, 339
Aerodramus spodiopygius,
White-rumped Swiftlet, 333
Aerodramus vanikorensis, Uniform Swiftlet, Vanikoro Swift, 237, 333
albatrosses, 352
Alcedinidae, kingfishers, 336
Alcedo, kingfishers, 336
Amaurornis olivacea, Rufous-tailed Moorhen, 307
Anas gibberifrons, Grey Teal, 293
Anas platyrhynchos, Mallard, 293
Anas superciliosa, Pacific Black Duck, 293
Anatidae, ducks, 293
animal (generic), 271, 416, 421, 443, 444, 446, 447, 449, 452
Anous, nodbies, 365
Anous minutus, White-capped Noddy, 369
Anous stolidus, Common Noddy, 369
Aplonis, starlings, 348
Aplonis metallica, Shining Starling, 348
Aplonis tabuensis, Striped Starling, 349
Apodidae, swifts, 333
Ardeidae, herons, 288
Arenaria interpres, Ruddy Turnstone, 359
Artamidae, wood swallows, 349
Artamus insignis, Bismarck Wood Swallow, 349
Artamus leucorhynchus,
White-breasted Wood Swallow, 349
Australian Crow, 350
Aviceda subcristata, Crested Baza, 296, 300
Baker’s Pigeon, 314
Bare-eyed Rail, 307
Barn Owls, 235, 330, 331, 333
New Britain, 330
Bar-tailed Godwit, 359
Baza, Crested, 296, 300
Beach Stone-Curlew, 364
beak, 277
bird, parts of
beak, 277
claw, 278
egg, 278, 279
Index of English and biological terms 561

feathers, 273, 274
nest, 279, 280
tail, 267, 277
tail feathers, 274
wings, 275, 276
bird (generic), 271, 416, 421, 443, 444, 446, 447, 449, 452
Bismarck Scrub Fowl, 304–306
Bismarck Wood Swallow, 349
bitterns, 288
Black Duck, Pacific, 293
Black Honey Buzzard, 296
Black-naped Tern, 369
Blue Quail, Indian, 306
Blue-eyed Cockatoo, 320
Blue-faced Booby, 355
Blyth’s Hornbill, 339
Boobies, 355–357
 Blue-faced, 355
 Brown, 355, 356
 Red-footed, 355, 356
Brahminy Kite, 296
Bristle-thighed Curlew, 359
Brown Booby, 355, 356
Bucerotidae, hornbills, 339
Buff-banded Rail, 307–309
Burhinidae, waders, 359
Burhinus neglectus, Beach Stone-Curlew, 364
Butorides striatus, Green-backed Heron, 288
Buzzard, Black Honey, 296
Cacatua galerita, Sulphur-crested Cockatoo, 321
Cacatua sp. nov., Blue-eyed Cockatoo, 320
Cacomantis, cuckoos, 329
Caloenas nicobarica, Nicobar Pigeon, 310
Campephagidae, trillers, 341
Cardinal Lory, 320, 324, 325
cassowaries, 287
Casuariidae, cassowaries, 287
Casuarius bennetti, Dwarf Cassowary, 287

Centropus, Coucals, 329
Ceyx, kingfishers, 336
Chalcites, cuckoos, 329
Chalcophaps, pigeons, 310
Chalcophaps indica, Emerald Dove,
 316
Chalcopsitta cardinalis, Cardinal Lory, 320, 324, 325
Charadriidae, waders, 359
Charmosyna, Lorikeets, 320
Circus approximans, Pacific Marsh Harrier, 302–304
claw, 278
cockatoos, 321
 Blue-eyed, 320
 Sulphur-crested, 321
 white, 321
Collared Lory, 328
Collocalia esculenta, White-bellied Swiftlet, 333
Columba, pigeons, 310
Columba vitiensis, White-throated Pigeon, 318
Columbidae, pigeons, 310
Common Noddy, 369
Coraciidae, rollers, 339
Coracina, cuckoo-shrikes, 341, 342
Coracina caledonica, Melanesian Graybird, 341
Coracina lineata, Lineated Cuckoo Shrike, 339
Corvidae, crows, 350
Corvus moneduloides, New Caledonian Crow, 351
Corvus orru, Australian Crow, 350
Coturnix chinensis, Indian Blue Quail, 306
Coucals, 329
Crakes
 Red-necked, 307
 Sooty, 309
Crested Baza, 296, 300
crows, 350, 351
 Australian, 350
 New Caledonian, 351
Cuckoo Dove
Mackinlay’s, 318
Cuckoo Shrike
 Lineated, 339
cuckoos, 329, 330
cuckoo-shrikes, 341, 342
Cuculidae, cuckoos, 329
Cuculus, cuckoos, 329
Curlews
 Bristle-thighed, 359
 stone-, 364
Dendrocygna, Whistling Ducks, 293
diurnal raptors, 296
Dollar Bird, 339
domestic bird, the, 283
doves, 310, 316
 Emerald, 316
 Fruit, 310, 315
 Mackinlay’s Cuckoo, 318
ducks, 293–295
 Pacific Black, 293
 Whistling, 293
Ducula, Imperial Pigeons, 310, 312
Ducula, pigeons, doves, 311–313
Ducula bakeri, Baker’s Pigeon, 314
Ducula pacifica, Pacific Pigeon, 314
Dwarf Cassowary, 287
eagles, 296–302
 sea, 297, 298
 White-bellied Sea, 297, 299
Eclectus Parrot, 320, 321
 female, 323
 male, 322
Eclectus roratus, Eclectus Parrot, 320, 321
 female, 323
 male, 322
Egret*, herons, egrets, 288–292
Emerald Dove, 316
Eulabeornis plumbeiventris,
 Bare-eyed Rail, 307
Eurystomus orientalis, Dollar Bird, 339
Falco peregrinus, Peregrine Falcon, 296
Falco severus, Oriental Hobby, 296
Falconidae, diurnal raptors, 296
falcons, 304
 Peregrine, 296
Fantails, 343, 344
feathers, 273, 274
tail, 274
Fish-eating raptors, 296
flap wings, 275
fly (v), 280
flycatchers, 343, 345
flying creature (generic), 416, 421, 443, 444, 446, 447, 449, 452
fowl, 283, 284, 286
 Bismarck Scrub, 304–306
 Red Jungle, 283
 scrub, 304
Fregata ariel, Lesser Frigate Bird, 357
Fregata minor, Great Frigate Bird, 357
Fregatidae, frigate birds, 357
Friarbirds
 New Britain, 346
frigate birds, 357–359
 Great, 357
 Lesser, 357
Fruit Doves, 310, 315
Gallicolumba, pigeons, 310
Gallus gallus, Red Jungle Fowl, 283, 284
Geoffroyus heteroclitus, Singing
 Parrot, 320, 327
Gilliard’s Honeyeater, 346
glide, 281
Godwit, Bar-tailed, 359
Golden Plover
 Pacific, 361, 363
Golden Plover, Pacific, 359
Golden Whistler, 345
Graybird, Melanesian, 341
Great Frigate Bird, 357
Green-backed Heron, 288
Grey Teal, 293
Gygis alba, White Tern, 365, 366
Gymnophaps, pigeons, 310
Halscyon, kingfishers, 336
Halscyon chloris, White-collared
 Kingfisher, 336
Halscyon sancta, Sacred Kingfisher,
 336
Halscyon saurophaga, White-headed
 Kingfisher, 336
Haliaeetus, fish-eating raptors, 296
Haliaeetus leucogaster, White-bellied
 Sea Eagle, 296, 297, 299
Haliastur, fish-eating raptors, 296
Haliastur indus, Brahminy Kite, 296
Hanging Parrot, Orange-fronted, 320
Harrier, Pacific Marsh, 302–304
Hawk Owl, Islands Solomon, 330
hawks, 296, 300–302, 304
Hemiprocnemystacea, Whiskered
 Tree-swift, 333
Hemiprocnidae, treeswifts, 333
Henicopernis infuscata, Black Honey
 Buzzard, 296
Henicophaps, pigeons, 310
herons, 288–292
 Green-backed, 288
 Nankeen Night, 293
 Night, 293
Heteroscelus incanus, Wandering
 Tattler, 359, 361
Hirundinidae, swallows, 333
Hirundo tahitica, Pacific Swallow,
 333
Hobby, Oriental, 296
Honey Buzzard, Black, 296
honeyeaters, 346, 347
 Gilliard’s, 346
Hornbill, Blyth’s, 339
hornbills, 339, 340
Hydrobatidae, petrels, 352
Imperial Pigeons, 310, 312
Indian Blue Quail, 306
Island Thrush, 342
Ixobrychus, bitterns, 288
kingfishers, 336, 338
Sacred, 336
 White-collared, 336
 White-headed, 336
 White-tailed, 336
kites, 304
 Brahminy, 296
Koel, Long-tailed, 329
Lalage, trillers, 341
Lalage maculosa, Spotted Triller, 341
Laridae, terns, 365
lay eggs, 280
Lesser Frigate Bird, 357
Limosa lapponica, Bar-tailed Godwit,
 359
Lineated Cuckoo Shrike, 339
Long-tailed Koel, 329
Loriculus aurantifrons,
 Orange-fronted Hanging Parrot,
 320
Lories
 Cardinal, 320, 324, 325
 Collared, 328
 Purple-bellied, 320
 Rainbow, 320, 324
Loriidae, parrots, 320
Lorius hypoinochrous, Purple-bellied
 Lory, 320
Mackinlay’s Cuckoo Dove, 318
Macroypgia, pigeons, 310
Macropygia mackinlayi, Mackinlay’s
 Cuckoo Dove, 318
Mallard, 293
Marsh Harrier
 Pacific, 302–304
Megapodes, 304, 306
Megapodiidae, megapodes, 304
Megapodius, megapodes, scrub fowl,
 304
Megapodius eremita, Bismarck Scrub
 Fowl, 304–306
Melanesian Graybird, 341
Melidectes whitemanensis, Gilliard’s
 Honeyeater, 346
Meliphagidae, honeyeaters, 346
Micropsitta, Pygmy Parrots, 320
Index of English and biological terms

Mino dumontii, Yellow-faced Mynah, 348, 349

Monarcha, flycatchers, 343
Monarchidae, flycatchers, 343, 345

Moerhun, Rufous-tailed, 307

Myiagra, flycatchers, 343

Mynah, Yellow-faced, 348, 349

Myzomela, honeyeaters, 346, 347

Nankeen Night Heron, 288, 293

New Britain Barn Owl, 330
New Britain Friarbird, 346
New Caledonian Crow, 351

Nicobar Pigeon, 310

Night Heron, 293
Night Heron, Nankeen, 288, 293

Ninox, Hawk Owls, 330
Ninox jacquini, Solomon Islands

Hawk Owl, 330

Noddies, 365, 369
Common, 369
White-capped, 369

Numenius, curlews, 362
Numenius phaeopus, Whimbrel, 359

Numenius tahitiensis, Bristle-thighed Curlew, 359

Nycticorax, Night Heron, 293

Nycticorax caledonicus, Nankeen
Night Heron, 288, 293

Orange-fronted Hanging Parrot, 320

Oriental Hobby, 296
Osprey, 296, 299, 300

Owls, 330–333
Barn, 235, 330, 331, 333
Hawk, 330
New Britain Barn, 330
Typical, 330

Pachycephala pectoralis, Golden Whistler, 345

Pachycephalidae, whistlers, 345

Pacific Black Duck, 293

Pacific Golden Plover, 359, 363

Pacific Marsh Harrier, 302–304

Pacific Pigeon, 314

Pacific Swallow, 333

Pandion, fish-eating raptors, 296

Pandion haliaetus, Osprey, 296, 299, 300

Pandionidae, diurnal raptors, 296

Parrots, 320–328
Eclectus, 320, 321, 323
Orange-fronted Hanging, 320
Pygmy, 320
Singing, 320, 327

Peck, 281

Peregrine Falcon, 296

Petrels, 352, 353

Phaethon, tropic-birds, 353

Phaethon lepturus, White-tailed Tropic Bird, 353, 354

Phaethon rubricauda, Red-tailed Tropic Bird, 353

Phaethontidae, tropic-birds, 353

Phasianidae, pheasants, 306

Pigeons, 310–313, 316, 319, 320

Baker’s, 314
ground-feeding, 316

Imperial, 310, 312

Nicobar, 310

Pacific, 314

White-throated, 318

Plovers, 363
Pacific Golden, 359, 361, 363

Pluvialis, plovers, 359, 361, 362

Pluvialis fulva, Pacific Golden Plover, 359, 361, 363

Porphyrio porphyrio, Purple Swamphen, 307, 308

Porzana cinerea, White-browed Rail, 307

Porzana tabuensis, Sooty Crane, 309

Procellariidae, petrels, 352

Psittacidae, parrots, 320

Ptinopus, Fruit Doves, 310, 315

Puffinus pacificus, Wedge-tailed Shearwater, 352

Purple Swamphen, 307, 308

Purple-bellied Lory, 320
Pygmy Parrots, 320
Quail, Indian Blue, 306
rails, 307, 309
 Bare-eyed, 307
 Buff-banded, 307–309
 White-browed, 307
Rainbow Lory, 320, 324
Rallidae, rails, 307
Rallus tricolor, Red-necked Crane, 307
Rallus philippensis, Buff-banded Rail, 307–309
raptors
 diurnal, 296
 fish-eating, 296–299
Red Jungle Fowl, 283
Red-footed Booby, 355, 356
Red-necked Crane, 307
Red-tailed Tropic Bird, 353
Reinwardtoena, pigeons, 310
Rhipidura, fantails, 343, 344
Rhipidura leucophrys, Willie Wagtail, 344
Rhipiduridae, fantails, 343
rollers, 339
Ruddy Turnstone, 359
Rufous-tailed Moorhen, 307
Sacred Kingfisher, 336
sandpipers, 360, 361, 363
Scolopacidae, sandpipers, 359
scrub fowl, 304
 Bismarck, 304–306
Scyphrops, cuckoos, 329
Sea Eagle
 White-bellied, 296, 297, 299
sea eagles, 297, 298
seagulls, see terns
Shearwaters
 Wedge-tailed, 352
Shining Starling, 348
Shrikes, Lineated Cuckoo, 339
Singing Parrot, 320, 327
sit on eggs, 280
soar, 281
Solomon Islands Hawk Owl, 330
Sooty Crane, 309
Spotted Triller, 341
starlings, 348
 Shining, 348
 Striped, 349
Sterna, terns, 365
Sterna sumatrana, Black-naped Tern, 369
Stone-Curlew, Beach, 364
Strigidae, Typical Owls, 330
Striped Starling, 349
Sturnidae, starlings, 348
Sula, Boobies, 355, 356
Sula dactylatra, Blue-faced Booby, 355
Sula leucogaster, Brown Booby, 355, 356
Sula sula, Red-footed Booby, 355, 356
Sulidae, Boobies, 355
Sulphur-crested Cockatoo, 321
swallows, 333
 Bismarck Wood, 349
 Pacific, 333
 Wood, 349
Swamphen, Purple, 307, 308
Swamphens
 Purple, 307
swiftlets, 333, 335
 Uniform, 237, 333
 White-bellied, 333
 White-rumped, 333
swifts, 333
tail, 267, 277
tail feathers, 274
Tanysiptera sylvia, White-tailed Kingfisher, 336
Tattler, Wandering, 359, 361
Teals, Grey, 293
terns, 365–369
 Black-naped, 369
 White, 365, 366
Thalasseus, terns, 365
Thrush, Island, 342
thrushes, 342
Tree-swift, Whiskered, 333
Trichoglossus haematodus, Rainbow Lory, 320, 324
trillers, 341
Spotted, 341
Tropic Birds
Red-tailed, 353
White-tailed, 353, 354
tropic-birds, 353, 354
Turdidae, thrushes, 342
Turdus poliocephalus, Island Thrush, 342
Turnstone, Ruddy, 359
Typical Owls, 330
Tyto alba, Barn Owl, 235, 330, 331, 333
Tyto aurantia, New Britain Barn Owl, 330
Tytonidae, Barn Owls, 330
Tytonidae owls, 330
Uniform Swiftlet, 237, 333
Urodynamis, cuckoos, 329
Urodynamis taitensis, Long-tailed Koel, 329
Vanikoro Swift, 237, 333
Vini, Lorikeets, 320
waders, 359–364
Wagtail, Willie, 344
Wandering Tattler, 359
Wedge-tailed Shearwater, 352
Whimbrel, 359
Whiskered Tree-swift, 333
whistlers, 345
Golden, 345
Whistling Ducks, 293
White Tern, 365, 366
White-bellied Sea Eagle, 296, 297, 299
White-bellied Swiftlet, 333
White-browed Rail, 307
White-capped Noddy, 369
White-collared Kingfisher, 336
White-eye, White-throated
White-eye, 345
White-headed Kingfisher, 336
White-rumped Swiftlet, 333
White-tailed Kingfisher, 336
White-tailed Tropic Bird, 353, 354
White-throated Pigeon, 318
White-throated White-eye, 345
whiteyes, 345
Willie Wagtail, 344
wings, 275, 276
flap (v), 275
Wood Swallow
Bismarck, 349
wood swallows, 349
White-breasted, 349
Yellow-faced Mynah, 348, 349
Zosteropidae, whiteyes, 345
Zosterops meeki, White-throated White-eye, 345
Fish
Abudeful, sergeant-majors, 90
Acanthocybium solandri, wahoo, 113, 116, 144
Acanthuridae, Unicornfishes, surgeonfishes, bristletooths, tangs, 101
Acanthurus, surgeonfishes, 104, 106, 146, 147
Acanthurus guttatus, white-spotted surgeonfish, 104
Acanthurus lineatus, blue-lined surgeonfish, 103
Acanthurus triostegus, convict tang, 107
Acanthus xanthsperatus, yellowfin surgeonfish, 103
Adioryx, 55
Aetobatus narinari, spotted eagle ray, 35, 147
albacores, 111
Albula, bonefish, 36
Albulidae, bonefishes, 36
Alectis indicus, plumed trevally or mirrorfish, 73
anchovies, 37, 38, 147
anemonefishes, 90
angelfishes, 90
Anguillidae, freshwater eels, 43
Anguillidae, freshwater eels (generic), 43, 144
Anguilliformes, eels, 43
Apo gonidae, cardinalfishes, 68
Aprion virens, green jobfish, 75
Arothron, pufferfish and porcupinefish, 127
Atherinidae, silversides, hardyheads, 60
Aulostomidae, trumpetfishes, 55
Balistes, triggerfishes, 122, 123, 147
Balistidae, triggerfishes, 120, 121, 145
balloonfishes, 125
barb of stingray, 135
barracuda
great, 144
barracudas, 61–63, 144
great, 61
barramundis, 64
basses, 74
sand, 64
batfishes, 88, 145
silver, 88
Belonidae, needlefishes and long toms, 49, 144
big-eyed scad, 69, 145
bigeyes, 67
blennies, 99
Blenniidae, 99
blowfishes, 125
blue-lined surgeonfish, 103
Bolbometopon, double-headed parrotfish, 96
bonefishes, 36
bonito, 112, 148
Bothidae, left-eye flounders, 117
boxfishes, 123
breams, 79
butterfly, 79
large-eyed, 81
monocle, 79
sea, 79
threadfin, 79
bristletooths, 101
bullseyes, 67
butterfly breams, 79
butterflyfishes, 89, 145
Caesionidae, fusiliers, 74
Carangidae, jacks, trevallies, scads, horse mackerels, kingfishes, darts, rainbow runners, leatherskins, 68
carangids, 68, 73
Caranx, trevallies, 69, 73, 145
Caranx ignobilis, big-headed jack, 145
Carcharhinidae, sharks, 29
Carcharhinus sp., large shark, 32
cardinalfishes, 68
catfish, 42
catfishes, 42, 147
striped eel, 42
Centriscidae, razorfishes, 57
Centropomidae, sand basses, giant perch es, barramundis, 64
Cephalopholis, rock cod, 64, 66, 146
Cephalopholis argus, peacock rock cod, 67
Chaetodontidae, butterflyfishes, coralfishes, 89
Chaetodontidae, coralfishes and butterflyfishes, 89, 145
Chanidae, milkfishes, 40
Chanos chanos, milkfish, 41, 144, 160
Cheilinus, Maori wrasses, 92, 93, 147
Cheilinus spp., Maori wrasse, 93
Cheilinus undulatus, double-headed Maori wrasse, 92, 147
Cheilinus undulatus, double-headed Maori wrasse and possibly other wrasse spp., 160
Cirrhitidae, hawkfishes, 91
Clupeidae, sardines and herrings, 37
cod
coral, 64
reef, 64
rock, 64, 65, 145, 146
congers, 45
Congridae, congers, 45
convict tang, 107
coral cods, 64
coralfishes, 89, 145
cornetfishes, 55
Coryphaena hippurus, dolphinfish, 73, 146
Coryphaenidae, dolphinfishes, 73
cowfishes, 123
Ctenochaetus, k.o. surgeonfish, 105
Dactylopteridae, flying gurnards, 128
damselves, 90
darts, 68
Dasyatidae, stingrays, 34
demoiselles, 90
diamondfishes, 88
Diodon, porcupinefish, 125, 145
Diodontidae, porcupinefishes and balloonfishes, 125
dolphinfishes, 73, 146
dolphins, 245
dorsal fin, 134
double-headed Maori wrasse, 92, 147
drummers, 87
dugong, 246
eagle rays, 34, 35, 147
spotted, 35, 147
Echeneididae, remoras, 128
Echeneis naucrates, suckerfish, 128
eels, 43
conger, 45
freshwater, 43, 144
moray, 44, 146
pike, 45
sea (generic), 46
snake, 46
eggs of fish, 129
Eleotridae, sleepers, gudgeons, 100
Elopidae, tarpons, 36
emperors, 76, 81, 144
Engraulidae, anchovies, 37
Ephippidae, batfishes, 88
Epinephelus, groupers, rock cod, 64, 65, 67, 145, 146
Epinephelus lanceolatus, Queensland grouper, 64, 145
Exocoetidae, flying fishes, 48, 147
filefishes, 120
fins
dorsal, 134
pecoral, 132, 133
fins of fish, 132
fish, parts of fins, 132
gills, 129
gullet, 134
roe, 129
scales, 131, 268
stingray barb, 135
fish eggs, 129
fish (generic), 28, 144, 148, 150, 421, 428–430, 432–434, 436, 437, 452
fishscale, 131
Fistularia, flutefish, flutmouth, 52, 56
Fistulariidae, cornetfishes and flutmouths, 55
flagtails, 67
Flammeo, soldierfish, 53
flatfish, 118
flatheads, 100
flounders
left-eye, 117
right-eye, 117
toothed, 117
flutmouths, 55
flying fishes, 48, 147
flying gurnards, 128
freshwater eels, 43
fusiliers, 74
garfish and needlefish taxon, 147
garfishes, 49–51, 144, 147
Gempylidae, snake mackerels, oilfishes, 110
Gerreididae, mojarras, silver biddies, 79
Gerres, silver biddy, 79
giant perches, 64
gills, 129, 130
gills of fish, 129
goatfishes, 84, 86, 145
Gobiidae, 99
gold-spotted spinefoot, 108
great barracuda, 61, 144
green jobfish, 75
grey mullet, 58, 145
groupers, 64, 65, 67, 145, 146
Queensland, 64, 145
grubfishes, 99
grunters, 80
gudgeons, 100
Gymnothorax, moray eel, 45
Haemulidae, sweetlips, javelinfishes, 80
half beaks, 49
hammerhead shark, 33
hardyheads, 60
hawkfishes, 91
Hemiramphidae, half beaks and garfishes, 49
Hemiramphus, garfishes, halfbeaks, 49, 50
Hippocampus sp., seahorse, 56
Hipposcarus longiceps, long-nosed parrotfish, 95, 146
Holocentridae, squirrelfishes, soldierfishes, 53
Holocentrus, see *Sargocentron*
horse mackerels, 68
Istiophoridae, 116, 117
Istiophorus platypterus, sailfish, 116, 144
jacks, 68
javelinfishes, 80
jobfish, green, 75
jobfishes, 74
juvenile mullet, 60
Katsuwonus pelamis, skipjack tuna, 112, 148, 150, 160
kingfishes, 68
KuhlIIDae, flagtails, 67
Kyphosidae, drummers, rudderfishes, 87
Kyphosus, rudderfish, 87
Labridae, wrasse, 95
Labridae, wrasses, tusksfishes, 92, 94
large emperor, *Lethrinus* sp., 146
large wrasse, including *Cheilinus* sp., 147
large-eyed breams, 81
Latidae, see Centropomidae
leatherjackets, 120, 121, 145
leatherskins, 68
left-eye flounders, 117
Leiognathidae, ponyfishes, slimys, 74
Lethrinidae, emperors and large-eyed breams, 81
Lethrinus, emperors, 76, 83, 144
Lethrinus elongatus, 83
lizardfishes, 41
long toms, 49, 50, 144
long-nosed parrotfish, 95, 146
long-snouted unicornfish, 101, 146
Lutjanidae, snappers or sea-perch, basses, jobfishes, 74
Lutjanus, snappers, 76–78, 144, 146
Lutjanus kasmira, 78
Lutjanus monostigma, 78
mackerels, 111
horse, 68
snake, 110
Spanish, 111
manta rays, 34
Maori wrasses, 92, 93, 147
Maori wrasses, double-headed, 92, 147
marlins, 116
Megalopidae, see *Elopidae*
milkfishes, 40
Mobulidae, manta rays, 34
mojarras, 79
Monacanthidae, filefishes and leatherjackets, 120
Monacanthidae, leatherjackets, 121, 145
monocle breams, 79
Monodactylidae, silver batfishes, diamondfishes, 88
Monotaxis grandoculis, large-eyed sea bream, 83
moorish idols, 100
morays, moray eels, 44, 146
mudskippers, 99
Mugilidae, mullets, 57
Mugiloididae, 99
mullet (generic), 147
mullets, 57, 58, 145
grey, 58, 145
juvenile, 60
Index of English and biological terms

Mullidae, goatfishes, 84, 86
Mulloidies sp., goatfish, 86
Muraenidae, moray eels, 44
Myliobatidae, eagle rays, 34, 35, 147
Myripristis, squirelfish, 53, 54
narrow-barred Spanish mackerel, 113, 144
Naso, unicornfishes, 88, 106, 145, 146
Naso brevirostris, short-snouted unicornfish, 102, 147
Naso unicornis, long-snouted unicornfish, 101, 146, 160
Nemipteridae, monocle breams, threadfin breams, sea breams, butterfly breams, 79
Nemipterus, breams, 79
Novaculichthys, wrasse, 94
oilfishes, 110
Ophichthidae, snake eels, 46
Ostraciidae, boxfishes, trunkfishes, cowfishes, 123
Ostracion, boxfish, 123
Paralichthyidae, toothed flounders, 117
Parapercidae, 99
parrotfishes, 95, 146
long-nosed, 95, 146
Parupeneus, goatfishes, 84, 86, 145
pearl-spotted spinefoot, 109, 146
pectoral fin, 132, 133
pelamis (Scombridae), 150
Pempheridae, sweepers, 87
Pempheris, sweepers, 87
perches
crescent, 66
sea, 74, 76
terapon, 80
perches, giant, 64
pike eels, 45
Pinguipedidae, sandperches, grubfishes, 99
pipefishes, 56
Platacidae, see Ephippidae

Platax, batfishes, 88, 145
Platycephalidae, flatheads, 100
Plectorhinchus, sweetlips, 80, 146
Plectorhynchidae, *see* Haemulidae
Plectropomus, spotted rock cod, 64, 66, 146
Pleuronectinae, right-eye flounders, 117
Plotosusidae, catfish, 42
Plotosus, catfishes, 42, 147
Plotosus anguillaris, see *Plotosus lineatus*
Plotosus lineatus, striped eel catfish, 42, 147
Polynemidae, threadfins, 79
Pomacanthidae, angelfishes, 90
Pomacentridae, damselfishes or demoiselles, anemonefishes, sergeant-majors, pullers, 90
Pomadasysidae, *see* Haemulidae
ponyfishes, 74
porcupinefish, 125, 145
porcupinefishes, 125
Priacanthidae, bigeyes, bullseyes, 67
Pseudobalistes fuscus, brown triggerfish, 123
puffers, 125
pullers, 90
Queensland grouper, 64, 145
rabbitfishes, 108, 109, 145
rainbow runners, 68
Rastrelliger, k.o. small mackerel, 115
ray (generic), 34, 144, 148
rays, 34, 36
eagle, 34, 35, 147
manta, 34
stingray, 34, 148
razorfishes, 57
red rock cod, 67
reef cod, 64
Remora remora, suckerfish, 128
remoras, 29, 128
right-eye flounders, 117
rock cod, 64–67, 145, 146
red, 67
spotted, 66, 146
Index of English and biological terms

roe, 129
roe, fish eggs, 129
rudderfishes, 87
sailfin tang, 102
sailfishes, 116, 144, 159
sand basses, 64
sandperches, 99
Sardinella, sardines, 38, 146
sardines, 38, 146, 147
sardines and herrings, 37
Sargocentron, squirrelfish, 53, 145
Sargocentron spiniferum, spinecheek squirrelfish, 53, 145
Saurida, lizardfish, 41
scads, 68
big-eyed, 69, 145
scale of fish, 131
scales of fish, 131
Scaridae, parrotfishes, 95
Scarus, parrotfishes, 98
Scomberoides, leatherskins, 71, 145
Scomberoides lysan, giant dart, 71, 145
Scomberomorus, Spanish mackerel, 113
Scomberomorus commerson, narrow-barred Spanish mackerel, 113, 144
Scombridae, skipjacks, Spanish mackerels, mackerels, tunas, tunnies, albacores, wahoos, 111, 144
sea breams, 79
sea horses, 56
sea perch, 74, 76
sea snakes, 261
sea-pikes, 61
Selar, scads, 69, 145
Selar crumenophthalmus, big-eyed scad, 69, 145
sergeant-majors, 90
Serranidae, rock cod, reef cod, coral cod, groupers etc., 64, 67
shark (generic), 29, 30, 129, 144, 148, 150
sharks, 30–33
hammerhead, 33
tiger, 30, 33
short-snouted unicornfish, 102, 147
Siganidae, rabbitfishes, spinefeet, 108
Siganus, rabbitfishes, 109, 145
Siganus argenteus, silver or rabbit-faced spinefoot, 110
Siganus punctatus, gold-spotted spinefoot, 108
Siganus spinus, pearl-spotted spinefoot, 109, 146
silver batfishes, 88
silver biddies, 79
silversides, 60
skipjack tuna, 111, 112, 148
sleepers, 100
slimys, 74
snake eels, 46
snake mackerels, 110
snapper sp. or spp., 148
snappers, 74, 76–78, 144–146
soldierfishes, 53
Soleidae, soles, 117
soles, 117
Spanish mackerels, 111
narrow-barred, 113, 144
Sphyraena
mature, 61, 144
Sphyraena, barracuda, 52, 61–63, 144
Sphyraena taxon, incl. S. barracuda, great barracuda, 61, 144
Sphyraenidae, barracudas, sea-pikes, 61
Sphyridae, sharks, 29
spinecheek squirrelfish, 53, 145
spinefoot, 108
gold-spotted, 108
pearl-spotted, 109, 146
spotted eagle ray, Aetobatus narinari, 159
spotted rock cod, 66, 146
squirrelfish
spinecheek, 53, 145
squirrelfishes, 53
stingray barb, 135
stingrays, 34, 148
spotted rock cod, 66, 146
squirrelfish
spinecheek, 53, 145
squirrelfishes, 53
stingray barb, 135
stingrays, 34, 148
 stonefishes, 119
 striped eel catfish, 42
 sucker fish, 29
 surgeonfishes, 101, 104, 106, 146, 147
 blue-lined, 103
 white-spotted, 104
 yellowfin, 103
 sweepers, 87
 sweetlips, 80, 146
 swordfishes, 116
 Synanceia, stonefish, 119, 145, 148, 150
 Synanceiidae, stonefishes, 119
 Syngnathidae, pipefishes, sea horses, 56
 Synodontidae, lizardfishes, 41
 tang
 convict, 107
 sailfin, 102
 tangs, 101
 tarpons, 36
 Terapon jarbua, crescent perch, 66
 Terapon perches, 80
 Teraponidae, grunters, terapon perches, 80
 Tetraodontidae, puffers, toadfishes and blowfishes, 125
 threadfin breams, 79
 threadfins, 79
 Thunnus albacares, yellowfin tuna, 115, 116
 tiger shark, 30, 33
 toadfishes, 125
 toothed flounders, 117
 trevallies, 31, 68, 69
 triggerfishes, 120–122, 145, 147
 trumpetfishes, 55
 trunkfishes, 123
 tunas, 111
 skipjack, 112, 148
 yellowfin, 115
 tunnies, 111
 tuskfishes, 92
 unicornfish
 long-snouted, 101, 146
 short-snouted, 102, 147
 unicornfishes, 101, 106, 146
 Valamugil cunnesius, grey mullet, 58, 145
 wahoos, 111, 113, 144
 whales, 243
 whitebait, 100
 white-spotted surgeonfish, 104
 wrasses, 92, 94
 double-headed Maori, 92, 147
 Maori, 92, 93, 147
 Xiphiiidae, 116
 yellowfin surgeonfish, 103
 yellowfin tuna, 115
 Zanclidae, Moorish idols, 100
 Zanclus canescens, Moorish idol, 101
 Zebrasoma veliferum, sailfin tang, 102

Insects and other creepy-crawlies

Anoplura, lice, 373
ants, 390–392, 418
 black stinging, 390
 brown, 392
 large, 392
 red, 392, 393
 red tree, 391
 small, 393
 stinging black, 390
 white, 393

Apoidea, bees, 387
Araneae, spiders, 408
 bees, 387
 beetles, 400–402
 longicorn, 401
 Bibionidae, March flies, 385, 386
 Blattodea, cockroaches, 402
 bluebottles, 385
 body lice, 375
 borer wasp, 388
 butterflies, 377–379, 418, 419
 caterpillar, 405
 caterpillars, 205, 403, 405
 centipedes, 406, 419
 Ceratopogonidae, biting midges, 383
 Chilopoda, centipedes, 406
Index of English and biological terms 573

Chironomidae, non-biting midges, 383
cicadas, 395–397
cockroaches, 402, 403
Coleoptera, beetles, 400
Coleoptera larvae, grubs, 403
Crickets, 395–397
Culicidae, mosquitoes, 380
damselflies, 386
Diplopoda, millipedes, 406
Diptera, sandflies, midges, gnats, 383
dragonflies, 386
Drosophilidae, fruit flies, 383
earthworms, 414
egg of louse, nit, 375
flies, 385, 417
flying creature (generic), 416
Formicidae, ants, 390
fruit flies, 383
gnats, 383
grasshoppers, 395–397, 418
grub
 sago, 404
grubs, 403
head lice, 374
 search for, 377
Hemiptera, cicadas, 395
Hirudinea, leeches, 411
horseflies, 385, 386
houseflies, 385
Ichneumonidae, wasps, 388
insects (generic), 416, 421, 450–452
Isoptera, termites, 393
Lampyridae, fireflies, 399
larvae
 Coleoptera, 403
 Lepidoptera, 403
leeches, 411
Lepidoptera, butterflies, 377
Lepidoptera larvae, caterpillars, 403
tree ants, 391
Vespidae, paper wasps, 388
wasp
 borer, 388

louse
 egg of, nit, 375
 maggoty, 415
 mantises, 397
 praying, 398
Mantodea, mantises, 397
March flies, 385, 386
mason wasps, 418
midges, 383, 384
 biting, 383
 non-biting, 383
millipedes, 406, 407
 phosphorescent, 407
mosquitoes, 380–383, 418
 buzz, 383
moths, 380
Muscidae, houseflies, bluebottles, 385
nit, louse egg, 375
Odonata, dragonflies, damselflies, 386
Orthoptera, grasshoppers, crickets, 395
orthopterous insect, 395, 397
Pediculidae, lice, 373
Phasmatodea, stick insects, 397
praying mantis, 398
Psychodidae, sandflies, 383
red tree ant, 391
sago grub, 404
sandflies, 383–385, 418
Scorpiones, scorpions, 408
search for head lice, 377
Simuliidae, gnats, 383
Sphecidae, mud-dauber wasp, mason wasp, 388
spiders, 408–411, 418
stick insects, 396–398
stinging black ant, 390
Tabanidae, horseflies, 385, 386
Tephritidae, fruit flies, 383
termites, 393

longicorn beetle, 401
wasps, 388–390, 418
mason, 418
white ants, 393
worms, 413, 414
worms generic, 412

Mammals, reptiles, amphibians
Acrobatidae, little feather-tailed possums, 226
tagile wallaby, 222
amphibians, 262
animals, parts of, 265
tail, 267
teeth, 266
turtle shell, 268
tusks, 266
ant-eaters, spiny, 220
bandicoots, 220, 227, 228
bat, greater bare-backed, 234
bats, 234–236
fruit, 234–236
insectivorous, 234, 236
black rat, 230
brown rat, 230
bullfrogs, 265
Burramyidae, pygmy possums, 226
Canidae, including dogs, 240
canine tooth, 266
Canis, dogs, 240
Carettacaretta, loggerhead turtle, 247
Chelonia mydas, green turtle, 247, 251
Chelonidae, marine turtles, 247
common rat, 230
common wild pig, 237, 238
crocodiles, 251, 252
Crocodylidae, crocodiles, 251
Crocodylus novaeguineae, New Guinea crocodile, 251
Crocodylus porosus, estuarine or saltwater crocodile, 251
cuscuses, 220, 224–226
grey, 221
northern common, 221
spotted, 224
Dasyuridae, marsupial carnivores, 229
Dasyuridae, marsupial carnivores:
mice, quolls etc, 221
Delphinidae, dolphins, 245
Dendrolagus, tree kangaroos, 223
Dendrolagus dorianus, Doria’s tree kangaroo, 223
Dendrolagus goodfellowi, Goodfellow’s tree kangaroo, 223
Dendrolagus inustus, grizzled tree kangaroo, 223
Dendrolagus matschiei, Huon tree kangaroo, 223
Dendrolagus pulcherrimus, Golden-mantled tree kangaroo, 223
Dendrolagus scottae, Scott’s tree kangaroo, 223
Dermochelys coriacea, leatherback turtle, 247, 251
Dobsonia moluccensis, greater bare-backed bat, 234
dogs, 240–242
dolphins, 245
Dorcopsis, small rainforest wallabies, 221
Dorcopsulus, small montane rainforest wallabies, 221
Doria’s tree kangaroo, 223
dugong, 246
Dugong dugon, dugong, 246
Dugongidae, including dugongs, 246
echidnas, 229
long-beaked, 229
short-beaked, 229
Echymipera, common or spiny bandicoot, long-nosed bandicoot, 227
Elapidae, sea snakes, 261
Eretmochelys imbricata, hawksbill turtle, 247, 250
flying foxes, 234–236
frogs, 263–265
fruit bats, 234–236
geckos, 256
Gekkonidae, geckos, 256
gliders, 220
sugar, 226
Golden-mantled tree kangaroo, 223
Goodfellow’s tree kangaroo, 223
greater bare-backed bat, 234
grey cuscus, 221
grizzled tree kangaroo, 223
Huon tree kangaroo, 223
iguanas, 255
Iguanidae, iguanas, 255
insectivorous bats, 234, 236
kangaroos, tree, 220, 223
large monitor lizard, 254
Line
 Lydekker’s, 217
 Wallace, 217
little feather-tailed possums, 226
lizards, 253–259
 geckos, 256
 iguanas, 255
 monitor, 253–255
 skinks, 257, 258
long-beaked echidna, 229
Lydekker’s Line, 217
Macropodidae, wallabies, 221
Macropus agilis, agile wallaby, 221,
 222
mammals
 aquatic, 243
 indigenous terrestrial, 220
 introduced terrestrial, 237
marine turtles, 247
marsupial carnivores, 229
marsupial rat, 220
Megachiroptera, megabats, fruit bats,
 flying foxes, 234
mice, 230, 232, 233
Microchiroptera, microbats,
 insectivorous bats, 234
Microperoryctes, mouse bandicoot,
 striped bandicoot, 227
monitor lizards, 253–255
monitors, 253
monotremes, 229
Muridae, rats, 229
Mus musculus, mouse, 230
northern common cuscus, 221
northern pademelon, 221
Norwegian rat, 230
Pacific rat, 230, 231, 233
pademelons, scrub wallabies, 221
 northern, 221
Peroryctes, giant bandicoot, Raffray’s
 bandicoot, 227
Peroryctidae, bandicoots, 227
Petauridae, sugar gliders, striped
 possums and long-fingered
 striped trioks, 226
Petaurus breviceps, sugar glider, 226
Phalanger orientalis, northern
 common cuscus or grey cuscus,
 221
Phalangeridae, cuscuses, 224
Phascogale, see Dasyuridae
pigs, 237–239
 common wild, 237, 238
pig’s tusk, 266
possums, 220, 226
 pygmy, 220, 226
 ringtail, 220, 226
Pseudocheiridae, ringtail possums,
 226
Pteropodidae, fruit bats, flying foxes,
 234
Pteropus, fruit bats, flying foxes, 235,
 236
pygmy possums, 220, 226
rats, 229, 232–234
 Asian house, 230, 231
 brown, 230
 common, 230
 marsupial, 220
 Norwegian, 230
 Pacific, 230, 231, 233
 spiny, 230
Rattus exulans, Pacific rat, 230, 231,
 233
Rattus norvegicus, Norwegian rat,
 brown rat, common rat, 230
Rattus praetor, spiny rat, 230
Rattus rattus, black rat, 230
Rattus tanezumi, 231
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rattus tanezumi, Asian house rat</td>
<td>230</td>
</tr>
<tr>
<td>reptiles</td>
<td>247</td>
</tr>
<tr>
<td>ringtail possums</td>
<td>220, 226</td>
</tr>
<tr>
<td>Scincidae, skinks</td>
<td>257</td>
</tr>
<tr>
<td>Scott’s tree kangaroo</td>
<td>223</td>
</tr>
<tr>
<td>sea snakes</td>
<td>261</td>
</tr>
<tr>
<td>Serpentes, snakes</td>
<td>259</td>
</tr>
<tr>
<td>shell of turtle</td>
<td>268</td>
</tr>
<tr>
<td>short-beaked echidna</td>
<td>229</td>
</tr>
<tr>
<td>skinks</td>
<td>257</td>
</tr>
<tr>
<td>snakes</td>
<td>259, 260</td>
</tr>
<tr>
<td>sea</td>
<td>261</td>
</tr>
<tr>
<td>sow (female pig)</td>
<td>239</td>
</tr>
<tr>
<td>Spilocuscus maculatus, spotted cuscus</td>
<td>221, 224</td>
</tr>
<tr>
<td>spiny ant-eaters</td>
<td>220</td>
</tr>
<tr>
<td>spiny rat</td>
<td>230</td>
</tr>
<tr>
<td>spotted cuscus</td>
<td>224</td>
</tr>
<tr>
<td>sugar gliders</td>
<td>226</td>
</tr>
<tr>
<td>Suidae, pigs and hogs</td>
<td>237</td>
</tr>
<tr>
<td>Sus, pigs</td>
<td>237</td>
</tr>
<tr>
<td>Sus scrofa, common wild pig</td>
<td>237, 238</td>
</tr>
<tr>
<td>Tachyglossidae, echidnas</td>
<td>229</td>
</tr>
<tr>
<td>Tachyglossus, short-beaked echidna</td>
<td>229</td>
</tr>
<tr>
<td>tadpoles</td>
<td>265</td>
</tr>
<tr>
<td>tail</td>
<td>267</td>
</tr>
<tr>
<td>Thylagale, scrub wallabies or pademelons</td>
<td>221</td>
</tr>
<tr>
<td>Thylagale brownii, northern pademelon</td>
<td>221</td>
</tr>
<tr>
<td>tooth, canine</td>
<td>266</td>
</tr>
<tr>
<td>tree kangaroos</td>
<td>223</td>
</tr>
<tr>
<td>Doria’s</td>
<td>223</td>
</tr>
<tr>
<td>Golden-mantled</td>
<td>223</td>
</tr>
<tr>
<td>Goodfellow’s</td>
<td>223</td>
</tr>
<tr>
<td>grizzled</td>
<td>223</td>
</tr>
<tr>
<td>Huon</td>
<td>223</td>
</tr>
<tr>
<td>Scott’s</td>
<td>223</td>
</tr>
<tr>
<td>turtle (generic)</td>
<td>249</td>
</tr>
<tr>
<td>turtle shell</td>
<td>268</td>
</tr>
<tr>
<td>turtles</td>
<td>247, 249</td>
</tr>
<tr>
<td>green</td>
<td>247, 251</td>
</tr>
<tr>
<td>hawksbill</td>
<td>247, 250</td>
</tr>
<tr>
<td>leatherback</td>
<td>247, 251</td>
</tr>
<tr>
<td>loggerhead</td>
<td>247</td>
</tr>
<tr>
<td>tusk</td>
<td>266</td>
</tr>
<tr>
<td>pig’s</td>
<td>266</td>
</tr>
<tr>
<td>Varanidae, monitors</td>
<td>253</td>
</tr>
<tr>
<td>Varanus indicus, large monitor lizard</td>
<td>254</td>
</tr>
<tr>
<td>wallabies</td>
<td>220, 221</td>
</tr>
<tr>
<td>agile</td>
<td>221, 222</td>
</tr>
<tr>
<td>sandy</td>
<td>221</td>
</tr>
<tr>
<td>scrub</td>
<td>221</td>
</tr>
<tr>
<td>small montane rainforest</td>
<td>221</td>
</tr>
<tr>
<td>small rainforest</td>
<td>221</td>
</tr>
<tr>
<td>Wallace Line</td>
<td>217</td>
</tr>
<tr>
<td>whales</td>
<td>243, 244</td>
</tr>
<tr>
<td>Zaglossus, long-beaked echidna</td>
<td>229</td>
</tr>
</tbody>
</table>