The Coordination and Organometallic Chemistry of Bis(β-diketonato) Ruthenium(II/III)

A Thesis Submitted for the Degree of Doctor of Philosophy at the Australian National University

By
Matthew John Byrnes

Research School of Chemistry

Australian National University

Canberra

AUSTRALIA

July 2000

DECLARATION

The work presented in this thesis is the original work of the candidate, except where due reference is made in the text.

Matthew John Byrnes

Acknowledgements

During the course of this thesis there are a great number of people I wish to thank during my time in Canberra. First of all, I would like to thank Professor Martin Bennett for accepting me as a PhD scholar and for the numerous discussions and ideas with regard to this project. I would also especially like to thank him for his patience in reading several drafts of this thesis. I would also like to thank Dr. Graham Heath for his helpful discussions with the electrochemical aspects of this project.

People I have to thank for proof reading this thesis at various stages include Lee Welling and Professor Alan Williams (University of Geneva). During the course of the research work there are the people I have associated with in the laboratories of the Bennett and Heath Groups which include (and not in any particular order) Lee Welling, Dr Eric Wenger, Horst Neumann, Joanne Smith, Dr Mike Kopp, Dr Rhodri Thomas, Dr Maria Contel-Fernandez, Matt Richmond, Richard Baldwin, Dr Chris Cobley, Anja Heinemann, Stefan Lee, Nicholas Perkins, Dr Richard Webster, Dr Vincent Otieno-Alego and other past members of these groups. Other people within the RSC I would like to thank include Paul Gugger and other members of the Wild Group; Dr Nicola Brasch and her group; the staff of the UNMRC facility including Tin Culnane, Peta Simmonds and Chris Blake; the X-ray facility staff of Dr TonyWillis, Dr Alison Edwards and Dr David Hockless for solving all of the structures presented in this thesis; and the ANU mass spectrometry service.

During my study here in Canberra I have taken up playing Rugby Union with the University's Rugby Club (formerly $/$ knownas ANU Rugby) and wish to thank the many players and coaching staff there during the past several seasons. I have particularly enjoyed playing First Grade Monaro rugby and the associated "out of town" bus trips. In particular I would like to thank Peter "Branches" Bradley, Greg and Helen Corliss, Shayne Wilde,

Dom Bilby, Rob Krauss, Al Sands, Ben Stevens, Chris Jones, Scott Ellis, Dave "Mystery" Roberts, Rick Kimberely, John Lane, Tom McGorman, Steve White, Menasa Lesuma, Langi Eteuati, Dave Barratt, Gary Howell, Paul "Molly" Medwin and Des Amosa as well as many other players whose names escape me at this point.

I would also like to thank my godparents Phil and Donna Stuart, and their family for the hospitality over the years in particular in the last six months. Eric and Caroline Wenger also deserve thanks for letting me stay the last weeks of writing of this thesis. My former housemates Robert, Alison and Karen should also deserve thanks for putting up with me over the years, not always an easy thing at times. A special thanks is also due to my parents Tom and Judy Byrnes, my brother Nigel and my grandmother "Nan". There are also many aunts, uncles and cousins I also wish to thank collectively.

Last, but by| no means least, I would like to thank my fiancée, Julie McMullen, whom I have known for over four years and has enriched my life enormously. Thank you Julie.

Abstract

The ruthenium complex cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ has been isolated as an orange, slightly air-sensitive solid from the reduction of $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$ with freshly activated zinc dust in aqueous THF under an ethene atmosphere (ca. 3 bar) and has been characterized by elemental analysis, NMR spectroscopy and X-ray diffraction. In the solid state, the two $C=C$ vectors of the ethene ligands are mutually orthogonal to each other and eclipse the Ru-O(acac) bonds. The ethene carbon atoms only show one resonance in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum at all accessible temperatures. Exchange between free and coordinated ethene could only be detected in the ${ }^{1} \mathrm{H}$ NMR spectrum at temperatures greater than $\mathrm{ca} .80^{\circ} \mathrm{C}$, and probably occurs by a dissociative mechanism.

The complex cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ is a useful synthetic precursor. Reaction with ligands (L) to give cis - $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{NH}_{3}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right.$, $\mathrm{MeCN}, \mathrm{PPr}^{i}{ }_{3}, \mathrm{PCy}_{3}, \mathrm{SbPh}_{3}$) is also described; the complexes having $\mathrm{L}=\mathrm{NH}_{3}$, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{PPr}_{3}{ }_{3}$ and PCy_{3} have been structurally characterized. In the case of the N -donors NH_{3} and $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, intermediate trans-isomers can be isolated or detected, which suggests that a cis- to trans-geometric rearrangement about the ruthenium metal centre occurs during the replacement of the first alkene via the square pyramidal five-coordinate species $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$. There is ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopic evidence for a species which is either five-coordinate, $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{PCy})\right]$, or six-coordinate with weakly coordinated solvent, $\left[\mathrm{Ru}\left(\mathrm{acac}_{2}\right)_{2}\left(\mathrm{PCy}_{3}\right)(\mathrm{THF})\right]$. The remaining ethene ligand is readily displaced from cis $-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{PPr}^{i_{3}}, \mathrm{PCy3}\right)$ by CO to form trans-[Ru(acac) $\left.)_{2}(\mathrm{CO}) \mathrm{L}\right]$, by tertiary phosphines ($\mathrm{PPr}^{i}{ }_{3}, \mathrm{PCy}$) to form $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ and, in the case of the $\operatorname{PPr}^{\mathrm{i}} 3$ complex, N_{2} to form cis-$\left[\left\{\operatorname{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i_{3}}\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]$. The complex trans-[Ru(acac)$\left.)_{2}\left(\mathrm{PPr}^{i_{3}}\right)_{2}\right]$ can be isolated at low temperatures, but isomerizes at room temperature to the ciscomplex. Terminal alkynes, $\mathrm{HC} \equiv \mathrm{CR}\left(\mathrm{R}=\mathrm{Ph}, \mathrm{SiMe}_{3}, \mathrm{Bu}^{t}\right)$ also replace the
ethene ligand to form vinylidene complexes cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{R}) \mathrm{L}\right]$. Reactions of the complexes cis- and trans-[Ru(acac) $\left.)_{2}\left(\operatorname{PPr}_{3}\right)_{2}\right]$ and $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$ are also described, although there is some ambiguity of the about whether the latter complex has cis- or trans-geometry in solution.

Fully reversible $\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$ potentials for the ethene complexes cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{NH}_{3}, \mathrm{PPr}_{3}{ }_{3}, \mathrm{PCy}_{3}, \mathrm{MeCN}, \mathrm{SbPh}_{3}\right)$ and trans-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}^{\prime}\right]\left(\mathrm{L}^{\prime}=\mathrm{NH} 3, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ lie in the range $+0.37-+0.95 \mathrm{~V}$ (vs $\mathrm{Ag} / \mathrm{AgCl})$ at $\mathrm{ca} .-50{ }^{\circ} \mathrm{C}$. The oxidation potentials of the carbonyl complexes $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PR}_{3}\right)(\mathrm{CO})\right]\left(\mathrm{R}=\mathrm{Pr}^{i}, \mathrm{Cy}\right)$ lie between $+0.64-+0.92 \mathrm{~V}(v s \mathrm{Ag} / \mathrm{AgCl})$, whereas irreversible oxidation processes were found between +0.62 and +0.75 V (vs $\mathrm{Ag} / \mathrm{AgCl}$) for the vinylidene complexes cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PR}_{3}\right)(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{R})\right]\left(\mathrm{R}=\mathrm{Ph}, \mathrm{SiMe}_{3}\right)$ even at low temperatures. Two reversible redox processes were found at +0.30 and +0.90 V (vs $\mathrm{Ag} / \mathrm{AgCl}$) for cis- $\left[\left\{\operatorname{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}^{i}{ }_{3}\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]$, corresponding to the formation of $\mathrm{Ru}(\mathrm{II} / \mathrm{III})$ and $\mathrm{Ru}(\mathrm{III} / \mathrm{III})$ species.

Anodic oxidation of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{NH}_{3}, \mathrm{SbPh}_{3}\right.$, $\left.\mathrm{PCy}_{3}\right)$ and trans-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ at $c a .-50{ }^{\circ} \mathrm{C}$ gives the corresponding $\mathrm{Ru}(\mathrm{III})$ complexes cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]^{+}$, which have been characterized by UV-Vis and EPR spectroscopy. There is no evidence that either cis- or trans-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ undergo geometric isomerization during the oxidation and subsequent reduction under these conditions. Although these oxidized species are unstable at room temperature and cannot be isolated, chemical oxidation of trans-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ and $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)\left(\mathrm{SbPh}_{3}\right)\right]$ at $c a .-70{ }^{\circ} \mathrm{C}$ with AgPF_{6} affords blue solids which are believed to the corresponding $\mathrm{Ru}(\mathrm{III})$-alkene complexes. The mixed valence species cis-$\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}^{i_{3}}\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]^{+}$shows a band in the near-IR at ca. $8900 \mathrm{~cm}^{-1}$ which suggests some delocalization of the positive charge across both metal centres.

The reaction of neutral nucleophiles $\left(\mathrm{NC}_{5} \mathrm{H}_{5}, \mathrm{PPh}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{NHEt}_{2}\right.$, $\mathrm{MeOH})$ with the chelate alkyne ruthenium(III) complex cis-[Ru(acac) $)_{2}(o-$ $\left.\mathrm{PhC}_{\beta} \equiv \mathrm{C}_{\alpha} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\left[\mathrm{PF}_{6}\right]$ gives products derived by nucleophilic addition to the alkyne, which have been identified by X-ray crystallography and, in some cases, by EPR spectroscopy. However, triphenylphosphine reacts with the chelate alkene ruthenium(III) complex cis-[Ru(acac)2 $(o-$ $\left.\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ in a more complicated manner with oxidation of an intermediate to form cis-[Ru which has been identified by X-ray crystallography.

The reaction of two equivalents of the alkynyldiphenylphosphines, $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}(\mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{Ph})$, with $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2} \text {-alkene }\right)_{2}\right]$ (alkene $=\mathrm{C}_{2} \mathrm{H}_{4}$, $\mathrm{C}_{8} \mathrm{H}_{14}$) yields trans-[Ru(acac) $\left.)_{2}\left(\mathrm{Ph}_{2} \mathrm{PC}=\mathrm{CR}\right)_{2}\right]$ as orange, air stable solids, which isomerize on heating (except in the case of $\mathrm{R}=\mathrm{H}$) to the corresponding yellow cis-isomers. The electrochemical and chemical oxidation of these complexes has also been investigated. Addition of two equivalents of $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}$ to $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]$ forms an insoluble orange solid, which on heating in refluxing chlorobenzene, yields the yellow binuclear ruthenium(II) complex cis-[\{Ru(acac) $\left.\left.)_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right\}_{2}\right]$ in which the bridging alkynyl units are twisted in the solid state. There are two $\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$ potentials at +0.60 and $+0.90 \mathrm{~V}(v s \mathrm{Ag} / \mathrm{AgCl})$ and the mixedvalence species, generated in situ, has a localised structure.

Abbreviations

acac $^{-}=2,4$-pentadionate (acetylacetonate) anion
(S)-BINAP = (S)-2,2'-bis(diphenylphosphino)1-,1'-binaphthyl
$\mathrm{br}=$ broad
$\mathrm{Bu}^{\mathrm{n}}=$ normal butyl
$\mathrm{Bu}^{t}=$ tert-butyl
COD $=1,5$-cyclooctadiene
COT $=1,3,5,7$-cyclooctatetraene
$\mathrm{Cy}=$ cyclohexyl
$\mathrm{C}_{2} \mathrm{H}_{4}=$ ethene
$\mathrm{C}_{8} \mathrm{H}_{14}=$ cis-cyclooctene
d =doublet
dd = doublet of doublets
DEPT $=$ Dimensionless Enhanced Polarization Test
DIOP $=(+)-2,3-O$-isopropylidene-2,3-dihydroxy-1,4-
bis(diphenylphosphino)butane
DMAD = dimethyl acetylenedicarboxylate
dppe $=1,2$-bis(diphenylphosphino)ethane
dppm $=1,2$-bis(diphenylphosphino)methane
dppp $=1,3$-bis(diphenylphosphino)propane
dppz = dipyridophenazine
$\mathrm{E}_{1 / 2} \mathrm{M}^{(\mathrm{n}+1 / \mathrm{n})}=$ electrode potential of a $\mathrm{M}^{(n+1) / n}$ redox couple
$\mathrm{E}_{\text {applied }}=$ applied potential
$\mathrm{E}_{\mathrm{L}}(\mathrm{L})=$ ligand electrochemical parameter
$\mathrm{E}_{\mathrm{Pa}}=$ anodic potential
$\mathrm{EPC}_{\mathrm{Pc}}=$ cathodic potential
EPR = electron paramagnetic resonance
Et = ethyl
FAB $=$ Fast Atom Bombardment
HOMO = the highest occupied molecular orbital
$\mathrm{i}_{\mathrm{a}}=$ anodic current
$\mathrm{i}_{\mathrm{c}}=$ cathodic current
IR = infrared
$J=$ coupling constant in Hz
$\mathrm{k}=$ rate constant
$\mathrm{L}=$ litre
LMCT = Ligand to Metal Charge Transfer
NHE = Normal Hydrogen Electrode
$\mathrm{m}=$ multiplet, or medium
$\mathrm{M}=\mathrm{a}$ metal
$\mathrm{M}^{\mathrm{n}+1 / \mathrm{n}}=$ a redox couple
$\mathrm{Me}=$ methyl
MLCT = Metal to Ligand Charge Transfer
$\mathrm{M}_{\mathrm{s}}=\mathrm{a}$ binding site
$\mathrm{mol}=$ moles
NBD = norbornadiene (bicyclo-[2,2,1]-hepta-2,5-diene)
NMR = nuclear magnetic resonance
OTTLE = optically transparent thin-layer electrode
$o=$ ortho
$p=$ para
$\mathrm{Ph}=$ phenyl
phen $=1,10$-phenanthroline
ppm = parts per million
$\mathrm{Pr}^{\mathrm{i}}=$ isopropyl
py = pyridine
pyz = pyrazine
$\mathrm{q}=$ quartet
$\mathrm{R}=$ alkyl or aryl
$\mathrm{RF}=$ radio-frequency field
s = singlet, or strong
SCE = saturated calomel electrode
sh = shoulder
SKEW = (2S, 4S)-bis(diphenylphosphino)pentane
SP = 2-styryldiphenylphosphine
$\mathrm{t}=$ triplet

THF = tetrahydrofuran
TMPDA $=\mathrm{N}, \mathrm{N}, \mathrm{N}$ ', N '-tetramethylphenylenediamine
TMS = tetramethylsilane
Tos ${ }^{-}=p$-toluenesulfonate anion
TPP = dianion of 5,10,15,20-tetraphenylporphyrin
$\mathrm{UV}=$ ultraviolet
Vis $=$ visible
$\delta=$ chemical shift in ppm
$\varepsilon=$ molar absorptivity in $\mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}$
$\omega_{1 / 2}=$ dynamic signal linewidth (in Hz)
$\left(\omega_{1 / 2}\right)_{o}=$ signal linewidth (in Hz) in the absence of a dynamic process.

Table of Contents

Title i
Declaration ii
Acknowledgments iii
Abstract v
Abbreviations viii
Table of Contents x
Chapter 1 Chemistry of the $R u(I I)$ and $R u(I I I)$ oxidation states
1.1 General Introduction 1
1.2 Ammine and Aqua Complexes of Ruthenium(II/III) 5
1.3 Acetylacetonato Complexes of Ruthenium(II/III) 15
1.4 Characterisation of cis- and trans-[Ru(acac) $)_{2} \mathrm{~L}_{2}$] complexes by NMR spectroscopy 26
1.5 Aims of this Study 27
1.6 References 28
Chapter 2 Co-ordination and organometallic chemistry of bis-(β-diketonato)ruthenium(II) complexes
2.1 Synthesis, characterisation and properties of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ 32
2.2 Reactions of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ with $\mathrm{SbPh}_{3}, \mathrm{CH}_{3} \mathrm{CN}$ and other nitrogen donor ligands 38
2.3 Reactions of cis-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2} \text {-alkene }\right)_{2}\right]$ (alkene $=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{8} \mathrm{H}_{14}$) with one equivalent of a tertiary phosphine 43
2.4 Solid State Structures of trans-[Ru(acac) $2\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)$ and cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{NH}_{3}, \mathrm{PPr}^{i}{ }_{3}, \mathrm{PCy}_{3}\right)$ 50
2.5 Variable temperature NMR spectroscopy of the complexes cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{SbPh}_{3}, \mathrm{PPr}^{i_{3}}\right.$ and $\left.\mathrm{PCy}_{3}\right)$ 57
2.6 Reactions of $c i s-\left[\operatorname{Ru}(\mathrm{acac})_{2}\left(\eta^{2} \text {-alkene }\right)_{2}\right]$ with two equivalents of bulky tertiary phosphines 64
2.7 Reactions of $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ complexes with CO 74
2.8 Reactions of $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ complexes with alkynes 79
2.9 Reactions of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{NH}_{3}, \mathrm{SbPh}_{3}, \mathrm{PPr}^{i}{ }_{3}, \mathrm{PCy} 3\right)$ complexes with tertiary phosphines, CO, alkynes and dinitrogen 83
2.10 Discussion 90
2.11 References 101
Chapter 3 Co-ordination and organometallic chemistry of bis-(β-diketonato)ruthenium(III) complexes
3.1 Voltammetry 107
3.2 Electrolytic Oxidation 114
3.2.1 Spectrochemical Results 114
3.2.2 EPR Spectra 123
3.3 Chemical Oxidation of Monoethene Complexes trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ and $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}\right.\right.$-alkene $\left.) \mathrm{L}\right]$ (alkene $=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{~L}=\mathrm{PCy}$; alkene $=\mathrm{C}_{8} \mathrm{H}_{14}, \mathrm{~L}=\mathrm{SbPh}_{3}$) 127
3.4 Discussion 132
3.5 References 135
Chapter $4 \quad$ Reactivity of alkene and alkyne bis-(β-diketonato)ruthenium(III) complexes
4.1 Nucleophilic Addition Reactions 138
4.2 Reaction of $c i s-\left[\mathrm{Ru}^{\mathrm{III}}(\mathrm{acac})_{2}\left(o-\mathrm{PhC}_{\mathrm{Cl}}=\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ with pyridine and diethylamine 139
4.3 Reaction of cis-[RuIII $\left.(\mathrm{acac})_{2}\left(o-\mathrm{PhC}^{(} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ with $\mathrm{H}_{2} \mathrm{O}$ 146
4.4 Reactions of $c i s-\left[\mathrm{Ru}^{\mathrm{III}}(\mathrm{acac})_{2}\left(o-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ with PPh_{3} and MeOH 149
4.5 Reaction of cis-[Ru(acac) $\left.)_{2}\left(o-\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ with PPh_{3} 152
4.6 General Features of Crystal Structures 156
4.7 Discussion 156
4.8 References 164
Chapter 5 Co-ordination chemistry of alkynyldiphenylphosphine bis-(β-diketonato)ruthenium(II/III) complexes
5.1 Reaction of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2} \text {-alkene }\right)_{2}\right]$ with two equivalents of an alkynyl tertiary phosphine 168
5.2 Electrochemical Studies 186
5.3 Electronic Spectra 187
5.4 Chemical Oxidation 188
5.5 Discussion 194
5.6 References 196
Chapter 6 Conclusions 200
Chapter 7 Experimental
7.1 General Procedures 203
7.2.1 Preparation of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ 206
7.2.2 Preparation of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{SbPh}_{3}\right)\right]$ 208
7.2.3 Preparation of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{MeCN})\right]$ 209
7.2.4 Preparation of trans-[Ru(acac $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ 209
7.2.5 Preparation of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ 210
7.2.6 ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR Studies of the reaction of one equivalent of PR_{3} ($\mathrm{R}=\mathrm{Ph}, \mathrm{p}$-tolyl, $\mathrm{Pr} \mathrm{r}^{\mathrm{i}}, \mathrm{Cy}$ and $\mathrm{R}^{\prime}=\mathrm{Ph}, \mathrm{R}^{\prime \prime}=\mathrm{Me}$) with cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2} \text {-alkene }\right)_{2}\right]$ (alkene $\left.=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{8} \mathrm{H}_{14}\right)$ 211
7.2.7 Preparation of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}_{3}{ }_{3}\right)\right]$ 211
7.2.8 Preparation of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PCy}_{3}\right)\right]$ 212
7.2.9 Preparation of trans-[Ru(acac) $\left.)_{2}\left(\operatorname{PPr}^{i}{ }_{3}\right)_{2}\right]$ 214
7.2.10 Preparation of $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$ (assumed to be trans) 215
7.2.11 Attempted reaction of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]$ with 2 equivalents of PBu_{3} 215
7.2.12 Preparation of trans-[Ru(acac) $\left.)_{2}\left(\mathrm{PPr}^{i_{3}}\right)(\mathrm{CO})\right]$ 216
7.2.13 Preparation of trans-[Ru(acac)2 (PCy3 $\left.^{(\mathrm{PCO}}\right)$] 217
7.2.14 Preparation of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}_{3} i_{3}\right)(\mathrm{CO})\right]$ 218
7.2.15 Preparation of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{PCy})(\mathrm{CO})\right]$ 219
7.2.16 Preparation of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i}{ }_{3}\right)(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph})\right]$ 219
7.2.17 Preparation of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i_{3}}\right)\left(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{SiMe}_{3}\right)\right]$ 220
7.2.18 Preparation of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i}{ }_{3}\right)\left(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Bu}^{t}\right]\right.$ 221
7.2.19 Attempted reaction of $\mathrm{HC} \equiv \mathrm{CCO}_{2} \mathrm{Me}$ with $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i_{3}}\right)_{2}\right]$ 222
7.2.20 Attempted reaction of $\mathrm{PhC} \equiv \mathrm{CPh}$ with $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}_{3}{ }_{3}\right)_{2}\right]$ 222
7.2.21 Attempted reaction of 3-hexyne with cis-[Ru(acac) $\left.\left.)_{2}\left(\operatorname{PPr}^{i}\right)_{2}\right)_{2}\right]$ 222
7.2.22 Attempted reaction of 3-hexyne with cis-[Ru(acac)2 $\left.\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PCy}_{3}\right)\right]$ 222
7.2.23 Attempted reaction of 2-butyne with cis-[Ru(acac) $\left.\mathbf{2}_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}^{i_{3}}\right)\right]$ 223
7.2.24 Synthesis of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)\left(\mathrm{SbPh}_{3}\right)\right]$ 223
7.2.25 Attempted reaction of CO with $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{SbPh}_{3}\right)\right]$ 224
7.2.26 Attempted reaction of PCy_{3} with $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ 224
7.2.27 Reaction of dinitrogen with cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}_{3} \mathrm{i}_{3}\right)\right]$ to give cis-[\{Ru(acac) $\left.\left.)_{2}\left(\operatorname{PPr}^{\mathrm{i}_{3}}\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]$ 224
7.2.28 Attempted oxidation of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ with $\left[\mathrm{C}_{2} \mathrm{Fe}\right] \mathrm{PF}_{6}$ 226
7.2.29 Oxidation of trans-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ with AgPF_{6} 226
7.2.30 Oxidation of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)\left(\mathrm{SbPh}_{3}\right)\right]$ with AgPF_{6} 226
7.2.31 Reaction of $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ with $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(o-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ 227
7.2.32 Reaction of $\mathrm{NEt}_{2} \mathrm{H}$ with cis-[Ru(acac) $\left.)_{2}\left(o-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ 227
7.2.33 Reaction of $\mathrm{H}_{2} \mathrm{O}$ with cis-[Ru(acac) $\left.)_{2}\left(o-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ 228
7.2.34 Reaction of PPh_{3} with cis-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(o-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ 229
7.2.35 Reaction of dry MeOH with cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(o-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ 229
7.2.36 Reaction of PPh_{3} with cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(o-\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ 230
7.2.36 Preparation of trans-[Ru(acac $\left.)_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CH}\right)_{2}\right]$ 230
7.2.38 Preparation of trans-[Ru(acac) $\left.)_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]$ 231
7.2.39 Preparation of trans-[Ru(acac) $\left.)_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPh}\right)_{2}\right]$ 232
7.2.40 Preparation of trans-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right]_{n}$ 233
7.2.41 Preparation of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]$ 233
7.2.42 Preparation of cis-[Ru(acac) $\left.)_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPh}\right)_{2}\right]$ 234
7.2.43 Preparation of $c i s-\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right\}_{2}\right]$ 235
7.2.44 Preparation of trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CH}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ 236
7.2.45 Preparation of trans-[Ru(acac) $\left.)_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ 236
7.3 References 238
Appendices
A. 1 Structural parameters of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ 239
A. 2 Structural parameters of trans-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)\right]$ 242
A. 3 Structural parameters of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ 245
A. 4 Structural parameters of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}^{i}{ }_{3}\right)\right]$ 248
A. 5 Structural parameters of $c i s-\left[R u(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PCy}_{3}\right)\right]$ 253
A. 6 Structural parameters of trans-[Ru(acac) $\left.)_{2}(\mathrm{PCy})_{3}\right]$ 256
A. 7 Structural parameters of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}_{3}\right)_{2}\right)_{2}$ 259
A. 8 Structural parameters of $c i s-\left[\mathrm{Ru}\left(\mathrm{acac}_{2}\right)_{2}\left(\mathrm{PCy}_{3}\right)\left(\mathrm{SbPh}_{3}\right)\right]$ 262
A. 9 Structural parameters of cis-[Ru(acac)2($\left.\left.\mathrm{SbPh}_{3}\right)_{2}\right]$ 266
A. 10 Structural parameters of $c i s-\left[\left\{\operatorname{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}_{3}{ }_{3}\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]$ 270
A. 11 Structural parameters of
(E) $-c i s-\left[\mathrm{Ru}^{\text {III }}(\mathrm{acac})_{2}\left(o-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}=\mathrm{C}\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right) \mathrm{Ph}\right]\left[\mathrm{PF}_{6}\right]\right.$ 273
A. 12 Structural parameters of
cis-[$\mathrm{Ru}^{\mathrm{III}}(\mathrm{acac})_{2}\left(o-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H}) \mathrm{C}\left\{=\mathrm{NEt}_{2}\right\} \mathrm{Ph}\right]\left[\mathrm{PF}_{6}\right]$ 277
A. 13 Structural parameters of
cis-[$\mathrm{Ru}^{\text {III }}(\mathrm{acac})_{2}\left(o-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{Ph}\right]\left[\mathrm{PF}_{6}\right]$ 281
A. 14 Structural parameters of
cis-[Ru ${ }^{\mathrm{III}}(\mathrm{acac})_{2}\left(o-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{CHPPh}_{3}\right]\left[\mathrm{PF}_{6}\right]$ 285
A. 15 Structural parameters of trans-[Ru(acac) $\left.)_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)\right] .2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 289
A. 16 Structural parameters of cis-[Ru(acac) $\left.)_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)\right] \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 291
A. 17 Structural parameters of trans-[Ru(acac) $\left.)_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)\right]\left[\mathrm{PF}_{6}\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 297

Chemistry of the $R u(I I)$ and $R u(I I I)$ oxidation states

Chemistry of the $R u(I I)$ and $R u(I I I)$ oxidation states.

1.1 General Introduction

As a background to the work described in this thesis on acetylacetonato complexes of ruthenium, the relative affinity of $\mathrm{Ru}(I I)$ and Ru (III) for unsaturated ligands will be discussed where the co-ligands are saturated and as a consequence will not compete for π back-donation of electrons. Although particular emphasis will be placed on the properties of the complexes $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{~L}\right]^{2+/ 3+}$ and $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6-\mathrm{x}} \mathrm{L}_{\mathrm{x}}\right]^{2+/ 3+}$, where L is an unsaturated ligand, the synthesis of these complexes will not be discussed. The second half of this chapter will deal with the synthesis and properties of $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ complexes, where L may be a saturated or unsaturated ligand. The chapter will conclude with the presentation of the aims of this thesis.

Although ruthenium displays almost the full range of oxidation states from -2 to +8 , it is the oxidation states Ru (II) and Ru (III) that have received most attention. Both oxidation states display extensive chemistry with a range of ligands, including halide ions and oxygen, nitrogen, phosphorus and sulfur donors; ruthenium complexes containing N - donor ligands form perhaps the most numerous and important area for these two oxidation states. ${ }^{1-3}$ Many ruthenium(II) and (III) complexes exist as configurationally stable, octahedral mononuclear species which differ only by one unit of charge. They are often interconvertible by a fully reversible one-electron process and electrochemical studies have been undertaken to probe the relative|stabilities of the two oxidation states. The greater the positive potential, the more the Ru (II) oxidation state is stabilised relative to $\mathrm{Ru}($ III).

The $\mathrm{Ru}(\mathrm{II})$ ion, unlike the $\mathrm{Ru}(I I I)$ ion, displays an unusual affinity for unsaturated ligands including N -heterocycles, alkenes and alkynes. ${ }^{4}$ Perhaps the most striking example of the affinity for unsaturated ligands is
$\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{~N}_{2}\right)\right]^{2+}$, which was the first dinitrogen complex to be isolated. ${ }^{5}$ Since 1965, numerous synthetic routes have been devised for the formation of transition metal dinitrogen complexes and these have been extensively reviewed. ${ }^{6-9}$ The poor affinity of the $\mathrm{Ru}(\mathrm{III})$ ion for N_{2} is shown by the fact that dinitrogen is liberated quantitatively when $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{~N}_{2}\right)\right]^{2+}$ is oxidised with $\mathrm{Ce}(\mathrm{IV})$, presumably via the unstable $\mathrm{Ru}(\mathrm{III})$ species. ${ }^{10}$

The unusual affinity of Ru (II) among the familiar dipositive ions for unsaturated ligands has been attributed to two factors. The first is the large radial extension of the $\mathrm{d} \pi$ orbitals from the metal to ligands in the first coordination sphere. ${ }^{11}$ This allows for strong flow of electron density from the metal to the unoccupied π^{*} orbital of an unsaturated ligand. As the radial extension of the d electrons tends to decrease as the atomic number increases for a series of constant charge and it also tends to increase with period number, ${ }^{12}$ no first row transition metal divalent ion would be expected to have a greater radial extension of the d electrons than $\mathrm{Ru}(\mathrm{II})$. Second, the electronic structure of the low-spin $\mathrm{Ru}(I I)\left(\mathrm{t}_{2} \mathrm{~g}^{6}\right)$ ion has no do antibonding electrons, hence the metal to ligand separation will be smaller than for a high spin ion. The electrons of the $\mathrm{Ru}(\mathrm{II})$ will be more delocalised and available for back-donation. ${ }^{11}$ Compared to the first transition series, ruthenium(II) is the only dipositive ion that has the full complement of $d \pi$ electrons and no antibonding d σ electrons. ${ }^{11}$

On the basis of chemical behaviour, it has been concluded that the capacity of the $d \pi$ electrons to participate in back-bonding is reduced when the oxidation number is increased from Ru (II) to Ru (III). ${ }^{11}$ This loss of backbonding ability has been interpreted as a contraction of the radial extension of the d-orbitals. A further contributing factor may be the loss of stabilisation energy by the removal of one electron from the full $t_{2 g}$ subshell of the parent $\mathrm{Ru}(\mathrm{II})$ ion.

Lever has used the change in the $\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$ couple as a function of ligand to generate the ligand parameterization parameters E_{L} for over 200 ligands. ${ }^{13}$ The E_{L} parameter was defined as one-sixth of the $E_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$ value versus NHE for the homoleptic complexes RuL_{6} (or $\mathrm{Ru}(\mathrm{L}-\mathrm{L})_{3}$ in the case of bidentate ligands). Assuming that the ligand parameters are additive, the redox potential of an octahedral metal complex $\mathrm{MXX} \mathrm{Y}_{Y} \mathrm{Z}_{Z}$ may be calculated for any combination of the ligands using the equation:

$$
\mathrm{E}^{\circ}=\mathrm{S}_{\mathrm{M}}\left[\Sigma \mathrm{E}_{\mathrm{L}}(\mathrm{~L})\right]+\mathrm{I}_{\mathrm{M}}+\mathrm{C}_{\text {ref }} \quad\left(\Sigma \mathrm{E}_{\mathrm{L}}(\mathrm{~L})=\mathrm{xE} \mathrm{E}_{\mathrm{L}}(\mathrm{X})+\mathrm{y} \mathrm{E}_{\mathrm{L}}(\mathrm{Y})+\mathrm{zE}_{\mathrm{L}}(\mathrm{Z})\right)
$$

where the parameters S_{M} and I_{M} depend upon both the metal and redox couple, as well as the spin state and stereochemistry. The term $C_{\text {ref }}$ is a reference electrode correction factor (ie. difference between the reference electrode used and the NHE).

The validity of this approach to ruthenium complexes has been clearly demonstrated from the graph of the observed potentials against the calculated potentials for 103 mixed-ligand ruthenium complexes that are not part of the basis set used to derive the E_{L} parameters. ${ }^{13}$ The observed potentials (measured in organic solvents vs NHE) of the redox couple $\mathrm{Ru}^{3+/ 2+}$ of various complexes were found to be related to the calculated values by the following expression ${ }^{13}$:

$$
\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right) \text { in Volts }=0.97\left[\Sigma \mathrm{E}_{\mathrm{L}}(\mathrm{~L})\right]+0.04 \quad \text { Eq. } 1.1
$$

A similar relationship in water between the observed potentials of the redox couple $\mathrm{Ru}^{3+/ 2+}$ and the calculated values was found with the following expression ${ }^{13}$:

$$
\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right) \text { in Volts }=1.14\left[\Sigma \mathrm{E}_{\mathrm{L}}(\mathrm{~L})\right]-0.35 \quad \text { Eq. } 1.2
$$

The predicted difference between potentials of the same complex in different media, $\Delta \mathrm{E}_{1 / 2}$ (solvent), versus a common reference electrode may be given by the following equation:

$$
\Delta \mathrm{E}_{1 / 2} \text { (solvent) in Volts }=-0.17\left[\Sigma \mathrm{E}_{\mathrm{L}}(\mathrm{~L})\right]+0.39
$$

As the term $\sum \mathrm{E}_{\mathrm{L}}(\mathrm{L})$ varies by as much as two volts for different complexes, there will be a small but measurable difference between solvent potentials, $\Delta \mathrm{E}_{1 / 2}$ (solvent), according to the character of the ligands coordinated to the ruthenium centre.

Applying Lever's theory of ligand additivity, within reasonable limits, it is possible to predict the formal electrode potentials of the redox couple $\mathrm{Ru}^{3+/ 2+}$ for a wide range of hexacoordinated complexes as a simple summation of the contributions of the individual ligands. The utility ${ }^{14-16}$ and limitations ${ }^{17}$ of Lever's additivity have been recently examined. The effect of neutral and anionic ligands on the $\mathrm{Ru}^{3+} / 2+$ couple for a series of homoleptic complexes is shown in Table 1.1.

Table 1.1: Comparison of measured and expected $E_{1 / 2}\left(R u^{3+/ 2+}\right)$ values (in volts) of some homoleptic complexes $R^{2} L_{6}$ (or $R u(L-L)_{3}$ in the case of bidentate ligands) in water and organic solvents.

Compound	$\Sigma \mathrm{E}_{\mathrm{L}}(\mathrm{L})$	$\begin{gathered} \mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right) \text { vs } \mathrm{NHE} \\ \text { in } \mathrm{H}_{2} \mathrm{O} \end{gathered}$		$\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right) \text { vs } \mathrm{Ag} / \mathrm{AgCl}$ in organic solvent b	
		calculated ${ }^{\text {a }}$	observed	calculated ${ }^{\text {c }}$	observed
$\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$	+0.42	+0.13	$+0.05{ }^{\text {d }}$	+0.25	-
$\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	+0.24	-0.08	$+0.20 \mathrm{e}$	+0.07	-
[$\mathrm{Ru}(\mathrm{acac})_{3}$]	-0.48	-0.90	-	-0.63	-0.65 f
$\left[\mathrm{RuCl}_{6}\right]^{3-}$	-1.36	-1.90	-	-1.55	-1.51 g

a) calculated by Eq. 1.1; b) calculated values are 0.2 V less positive than those $v \mathrm{~s}$ NHE; c) calculated by Eq. 1.2; d) ref. 18 e) ref. 19; f) ref. 20; g) ref. 16

Examination of Table 1.1 indicates that the anionic ligands acac- and Cl^{-}stabilise the $\mathrm{Ru}(\mathrm{III})$ oxidation state relative to $\mathrm{Ru}(\mathrm{II})$ more readily than the neutral ligands ammonia and water. The calculated effect of replacing two aqua or ammonia ligands around the Ru^{2+} ion by one bidentate acac anion is to reduce the oxidation potential by ca. 0.3 V . Therefore complexes
of the type $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{\mathrm{a}} \mathrm{L}_{\mathrm{b}}\right]$ would be expected to be more readily oxidised than the complexes $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{~L}_{\mathrm{a}} \mathrm{L}_{\mathrm{b}}\right]^{2+}$ or $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{~L}_{\mathrm{a}} \mathrm{L}_{b}\right]^{2+}$.

1.2 Ammine and Aqua Complexes of Ruthenium(II/III)

This section deals with the properties and stability of ammine and aqua complexes of ruthenium(II/III) with unsaturated ligands. The dinitrogen complex $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{~N}_{2}\right)\right]^{2+}$, obtained from $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ and dinitrogen, has been shown to react further with $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ to give the binuclear complex $\left[\left\{\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]^{2+}{ }^{21,22}$ The coordinated water molecule of $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ can also be replaced by aromatic nitrogen heterocycles, ${ }^{23}$ nitriles ${ }^{24}, \mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{R}_{2} \mathrm{~S},{ }^{25} \mathrm{R}_{2} \mathrm{Se}, \mathrm{R}_{2} \mathrm{Te}, \mathrm{SnCl}_{3}{ }^{-},{ }^{4} \mathrm{SO}_{2}{ }^{26}$ and $\left[\mathrm{S}\left(\mathrm{CH}_{3}\right)_{3}\right]^{+} .{ }^{27}$ In non-aqueous solvents, $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ will react with tertiary phosphines and phosphites to form the complexes trans$\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{PR}_{3}\right)_{2}\right]^{2+}$ and trans- $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{P}\{\mathrm{OR}\}_{3}\right)_{2}\right]^{2+} .{ }^{28,29}$

The coordinated water molecule of $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ has been shown to be several orders of magnitude more labile towards substitution than the coordinated ammonia (see Table 1.2) and the replacement of ammonia ligands by other donors requires considerable effort. For this reason, the $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ complex is not a general starting material for the synthesis of complexes with the stoichiometry $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{\mathrm{x}} \mathrm{L}_{6-\mathrm{x}}\right]^{2+}(\mathrm{x}<5)$.

Table 1.2: Substitution labilities of $\mathrm{Ru}-\mathrm{NH}_{3}$ and $\mathrm{Ru}-\mathrm{H}_{2} \mathrm{O}$ at $25{ }^{\circ} \mathrm{C}$ expressed as rate constants $\left(k, s^{-1}\right)$ for the pseudo-first-order substitution process (taken from ref. 30).

REACTION	$\mathrm{Ru}(\mathrm{II})(\mathrm{n}=2)$	$\mathrm{Ru}($ III $)(\mathrm{n}=3)$
$\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}\right]^{\mathrm{n}+}+\mathrm{H}_{2} \mathrm{O}$	1.5×10^{-6}	1.4×10^{-10}
$\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{\mathrm{n}+}+\mathrm{H}_{2} \mathrm{O}$	3	5×10^{-4}
$\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{\mathrm{n}+}+\mathrm{H}_{2} \mathrm{O}$	5×10^{-2}	4×10^{-6}

The reaction of $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ with various unsaturated ligands results in the formation of the aquaruthenium complexes $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{x} \mathrm{~L}_{6-x}\right]^{2+}$, where
$x=5\left(\mathrm{~N}_{2},{ }^{31} \mathrm{H}_{2},{ }^{32} \mathrm{CO}^{33}\right)$ and $\mathrm{x}=0,2,4$ (nitrogen heterocyclic ligands). ${ }^{34}$ The stoichometry of the isolated product depends upon the concentration of the incoming ligand. ${ }^{30}$

Semi-quantitative evidence for the strong back-bonding ability of $R u(I I)$ can be seen in the comparison of the affinity of the metal centres $\left\{\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right\}^{2+},\left\{\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right\}^{2+}$ and H^{+}for unsaturated N -donor ligands shown in Table 1.3.

Table 1.3: Equilibrium quotients governing the substitution of coordinated water in the $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ and $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ cations by unsaturated ligands (taken from ref. 4).

CENTRE	LIGAND			
	$\mathrm{H}_{2} \mathrm{O}$			
H^{+}	9.2	5.2	0.6	<0
$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{2+}$	2.8	1.8	1.0	-
$\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$	4.5	7.4	>8	$>10^{*}$

${ }^{*}$) from the change in the acidity of pyrazinium ion when $\left\{\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right\}^{2+}$ is coordinated to it (vide infra), the affinity of pyrazinium ion for Ru (II) is known to be approximately 10^{2} times that of pyrazine.

The trend in equilibrium quotients for $\mathrm{Ni}^{2+}(\mathrm{aq})$, considered to be a representative of a divalent ion of the first transition series, is similar to those of H^{+}. Due to the lower ionic potential of $\mathrm{Ni}^{2+}(\mathrm{aq})$, the magnitude of the equilibrium quotients changes much less markedly as the σ-basicity of the ligands decreases. In striking contrast, the affinity of $\mathrm{Ru}(\mathrm{II})$ for the ligands increases as the base strength decreases. In the series as selected, this is ascribed to the π-acidity increasing as the σ-base strength decreases. ${ }^{4}$

Further evidence for π-back-bonding in $\left[\mathrm{Ru}^{\mathrm{II}}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{~L}\right]^{2+}$ is the presence of absorption bands attributed to the charge transfer or excitation of electrons from the $d \pi$ metal orbitals to unoccupied π^{*} orbitals of the ligand
L. For N-heterocyclic ligands that are good π-acids, the bands occur in the visible region and have high extinction coefficients of the order $10^{4} \mathrm{M}^{-1}$ $\mathrm{cm}^{-1}{ }^{23}$ Absorption bands of similar intensity have also been observed for $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{x} \mathrm{~L}_{6-x}\right]^{2+}$ complexes with L being a π-acceptor ligand. ${ }^{30}$ The wavelengths of absorption maxima for a series of complexes $\left[\mathrm{RuI}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{~L}\right]^{\mathrm{n}+}$ ($\mathrm{n}=2,3$) are tabulated in Table 1.4.

Table 1.4: Band maxima of metal-ligand charge transfer absorption of $\left[\mathrm{Ru}^{I I}\left(\mathrm{NH}_{3}\right)_{5} L\right]^{n+}(n=2,3)$ complexes (taken from ref. 23).

LIGAND L	$\lambda(\mathrm{nm})$
	398
	407

As the electron-withdrawing power of the unsaturated ligand is increased, the $\mathrm{d} \pi-\pi^{*}$ absorption for the Ru (II) complexes moves to lower energies. This is to be expected if the ground state orbital is mainly metal centred, and the excited state is mainly ligand in character.

A further consequence of the coordination of bifunctional unsaturated N-heterocyclic ligands to $\mathrm{Ru}(\mathrm{II})$ or $\mathrm{Ru}(\mathrm{III})$ is the systematic change in their acid-base properties. This is illustrated in Table 1.5, which shows the affinity of bifunctional N -heterocycles for the hydrogen ion as free molecules and the same affinity after coordination of these molecules to $\mathrm{Ru}(\mathrm{II})$ and $\mathrm{Ru}($ III $) .{ }^{11}$

Table 1.5: Effect of $R u(I I)$ and $R u(I I I)$ on the basicity of coordinated N heterocycles in $\left[\mathrm{R} u^{I I}\left(\mathrm{NH}_{3}\right)_{5}\right]^{n+}$ and $\left[\mathrm{Ru}^{I I I}\left(\mathrm{NH}_{3}\right)_{5}\right]^{(n+1)+}$ complexes (taken from ref. 11).

ACID	pK a	ACID	pK_{a}
$\left[\mathrm{Na}^{(1)}\right]^{+}$	0.6	$[\mathrm{NCM}$	1.36
$\left[\mathrm{Ru}^{\prime \prime \prime}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{~N}^{(1)} \mathrm{NH}^{4+}\right.$	~-0.8	$\left[\mathrm{Ru}^{\prime \prime}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NCM}\right.$	1.75 ± 0.05
$\left[\mathrm{Ru}^{\prime \prime}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{~N}\right.$	2.5 ± 0.1	$\left[\mathrm{NCW}^{\text {N- }}\right.$	-0.26
$\left[\mathrm{Ru}^{\prime \prime}\left(\mathrm{NH}_{3}\right) 5 \mathrm{~N}\right.$	7.3*	$\left[\mathrm{Ru'}^{\prime \prime}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NC-}\right.$	0.80 ± 0.10
$\left[\mathrm{NH}^{+}\right.$	1.90		
$\left[\mathrm{Ru}^{\prime \prime}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NC}\right.$	2.72 ± 0.12		

* electronically excited by the $\mathrm{d} \pi \rightarrow \pi^{*}$ transition

The molecule pyrazine is much less basic than is pyridine (pK_{a} for pyH^{+}is 5.2). It seems reasonable that when the cationic species $\left\{\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right\}^{3+}$ is attached to the free nitrogen of pyrazinium cation, the basicity of the uncoordinated nitrogen decreases, as is observed (more positive pK_{a}), owing to the inductive effect of the "cationic metal site". By the same argument, $\left\{\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right\}^{2+}$ would also be expected to increase the acidity of the heterocyclic cation, though not as much as $\left\{\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right\}^{3+}$. The measurements reveal, however, that the basicity of pyrazine is actually increased upon coordination to the dipositive ion. ${ }^{23}$ The presumption is that electron density on the remote nitrogen atom is increased when $\left\{\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right\}^{2+}$ coordinates to one end of pyrazine. The proposed mechanism by which electron density can be increased on the ligand is the donation of $\mathrm{d} \pi$ electrons by the electron-rich $\mathrm{Ru}(\mathrm{II})$ centre. The extent of this donation
must be great enough to more than compensate for the inductive effect exerted by $\mathrm{Ru}(I \mathrm{I})$ on the nitrogen lone pair.

The chemical consequences of the diminished π-back-bonding of Ru (III) relative to Ru (II) have been mentioned previously (see p.1-2). The equilibrium quotients governing complex formation of Ru (III) compounds for a range of unsaturated ligands are lower than those of $\mathrm{Ru}(I I)$ complexes. The ligands NH_{3} or OH^{-}show a preference for the $\mathrm{Ru}(I I I)$ ion (see Table 1.6).

Table 1.6: Comparisons of the equilibrium quotients governing complex formation with $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ and $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+}$ in aqueous solution (taken from ref. 4).

Ligand	$\mathrm{Ru}(\mathrm{II})$	$\mathrm{Ru}(\mathrm{III})$	Ratio $\{\mathrm{Ru}(\mathrm{II}) / \mathrm{Ru}(\mathrm{III})\}$
N_{2}	3×10^{4}	$<4 \times 10^{-13}$	$>10^{17}$
$\mathrm{H}_{2} \mathrm{~S}$	~ 10	$\sim 3 \times 10^{-8}$	$\sim 3 \times 10^{8}$

The affinities of the ligands for Ru (III) follow the known or expected σ-base strengths of the ligands. With $\operatorname{Ru}(I I)$ having a rather weak affinity for simple σ-bases such as OH^{-}and NH_{3}, but a relatively high affinity (compared with $\mathrm{Ru}(\mathrm{III})$) for weak σ-bases such as N_{2} or thiophene if the π acid strength is great enough, the ratios of the quotients governing complex formation for the two oxidation states cover a very wide range - from 10^{-9} to 10^{17} for the ligands shown. ${ }^{4}$

The average bond lengths, shown in Table 1.7, of $\mathrm{Ru}(\mathrm{II})$ and Ru (III)
 $\left.\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4} \text { (isonicotinamide }\right)_{2}\right]^{\mathrm{n}+}(\mathrm{n}=2,3)^{36}$ provide direct structural evidence for the reduced π-back-bonding ability of Ru (III) species with respect to $\mathrm{Ru}(\mathrm{II})$. The shorter $\mathrm{Ru}-\mathrm{NH}_{3}$ distances of both Ru (III) species follow the expected trend of an increase in metal charge. Due to the high affinity of $\left\{\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{n}\right\}^{2+}$ for π-acceptor ligands, the $\mathrm{Ru}(\mathrm{II})-\mathrm{N}(\mathrm{L})$ distances $\{\mathrm{N}(\mathrm{L})$ is the nitrogen donor atom of the unsaturated ligand L\} are shorter than the $\mathrm{Ru}($ III $)-\mathrm{N}(\mathrm{L})$ distances as shown by the comparison bond lengths of $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{pyz})\right]^{3+/ 2+}$ and cis- $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4}(\text { isonicotinamide })\right]^{3+/ 2+}$.

Table 1.7: Average metal-ligand distances (\AA) of the species $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(p y z)\right]^{n+}(n=2,3$; taken from ref. 35) and cis$\left.R u\left(\mathrm{NH}_{3}\right)_{4}(\text { isonicotinamide })_{2}\right]^{n+}(n=2,3$; taken from ref. 36).

COMPLEX	$\begin{gathered} \mathrm{Ru}^{2} \mathrm{NH}_{3} \\ \text { (trans) } \end{gathered}$	$\mathrm{Ru}-\mathrm{NH}_{3}$ (cis)	$\mathrm{Ru}-\mathrm{N}(\mathrm{L})^{*}$
$\left[\mathrm{Ru}^{\prime \prime}\left(\mathrm{NH}_{3}\right)_{5}\right.$	2.166 (7)	2.153 (6)	2.006 (6)
$\left[\mathrm{Rull}^{\prime \prime}\left(\mathrm{NH}_{3}\right)_{5} \sim_{\sim}^{\sim} \mathrm{N}^{3+}\right.$	2.125 (8)	2.106 (6)	2.076 (8)
	2.167 (6)	2.143 (6)	2.058 (14)
cis- $\left[\mathrm{Ru}^{\prime \prime \prime}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{~N}^{\sim}\right.\right.$	2.133 (11)	2.118 (5)	2.099 (6)

* $\mathrm{N}(\mathrm{L})$ is the nitrogen donor atom of the π-acid ligand L .

Various alkenes react with $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ to form the π complexes $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{~L})\right]^{2+}\left(\mathrm{L}=\mathrm{C}_{2} \mathrm{H}_{4},{ }^{37}\right.$ isobutene, ${ }^{37}$ 1,4-cyclohexadiene, ${ }^{37}$
fumaric acid, ${ }^{37}$ isobutylene, ${ }^{38}$ propene, ${ }^{38} 1,3$-butadiene, ${ }^{38} 1,4$-pentadiene, ${ }^{38}$ 1,4-hexadiene ${ }^{38}$ and styrene ${ }^{39}$). Alkynes have also been shown to react with $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+}$ to form the π-complexes $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{~L})\right]^{2+}\left(\mathrm{L}=\mathrm{C}_{2} \mathrm{H}_{2},{ }^{37}\right.$ phenylacetylene, ${ }^{37}$ 3-hexyne ${ }^{37,40}$ and dimethyl acetylenedicarboxylate $\left\{\right.$ DMAD ${ }^{41}$). Linear dienes react with the complex cis$\left.\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4} \text { (acetone }\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$ to form the π-complexes cis- $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4}\left(\eta^{4}\right.\right.$ diene) $]\left(\mathrm{PF}_{6}\right)_{2}$ (diene $=1,3$-butadiene, 1,4 -pentadiene and 1,5 -hexadiene) complexes in which the coordinated diene displays an unusual transconformation. ${ }^{42}$

The reaction of ethene (60 bar) with $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right][\mathrm{OTs}]_{2}$ results in the sequential formation of $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{2+}$ and cis- $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{2+}$. Both cations were characterised by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{17} \mathrm{O}$ NMR spectroscopy and isolated as their tosylate salts. After prolonged reaction, an organic phase formed which was shown to be a mixture of the isomeric butenes. ${ }^{43}$ Various cyclic and acyclic functionalised alkenes also form complexes of the type $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \text { (alkene) }\right]^{2+}$ (alkene $=2,5$-dihydrofuran ${ }^{19}$ and 5,6-bis(methoxymethyl)-7-oxanorbornene ${ }^{44}$). Bidentate alkenes were also shown to form chelate complexes $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{LL})\right][\mathrm{OTs}]_{2}$ (LL' = diallyl ether, 3-buten-1-ol, 3-pentenoic acid). The 3-pentenoic acid mono-alkene complex, $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{COOH}\right)\right]^{2+}$ reacts slowly with excess alkene to form the bis(alkene) complex $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\right]^{2+} .{ }^{19}$

The diene complex $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{COD})\right][\mathrm{OTs}]_{2}$ (COD $=1,5$-cyclooctadiene) was prepared from the reaction of $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right][\mathrm{OTs}]_{2}$ in ethanol with excess COD. ${ }^{45}$ Exchange reactions of $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{COD})\right][\mathrm{OTs}]_{2}$ resulted in the exchange of one to four aqua ligands, depending upon the ligand. All the aqua ligands could be replaced by acetylacetonate anions to form the known complex $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{COD})\right],{ }^{46}$ whereas under a CO atmosphere (2 bar), only one aqua ligand is replaced to form the complex $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{COD})(\mathrm{CO})\right] .{ }^{45}$

Since the $\mathrm{d} \pi$-orbitals of Ru (II) that participate in π-back-bonding are directly involved in the redox change Ru (II) $\left\{t^{6}{ }_{2 g}\right\} \rightarrow \operatorname{Ru}($ III $)\left\{t^{5} 2 g\right\}$, the redox potentials of $\mathrm{Ru}(\mathrm{II})$ complexes may be used to probe the extent of π-backbonding present in the complex. Since π-back-bonding tends to stabilise the occupied π-orbitals (HOMO) and reduce interelectron repulsion in the metal ion, the stronger the back-bonding, the more the $\mathrm{Ru}(\mathrm{II})$ oxidation state is stabilised relative to $\mathrm{Ru}(\mathrm{III})$.

The data for the $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{~L}\right]^{2+}$ series (see Table 1.8) show that charged ligands occupy the ends of the range of potentials $\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$ (with the exception of fumaric acid). The most negative oxidation potentials are found for complexes containing anionic ligands, such as chloride ion, which are strong σ - and π-donors and weak π-acceptors. The most positive oxidation potentials are found for ligands which have weak π-donor and strong π acceptor ability, such as dinitrogen, $\left[\mathrm{SMe}_{3}\right]^{+}$and fumaric acid ($+1.12,+1.25$ and +1.40 V respectively). The neutral non- π-bonding ligands NH_{3} (+0.051 $\mathrm{V})$ and $\mathrm{H}_{2} \mathrm{O}(+0.066 \mathrm{~V})$ occupy positions close to chloride ion. The oxidation potential of $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ is less than that of $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{2+18}$ as NH_{3} has a greater ligand field strength than $\mathrm{H}_{2} \mathrm{O}$ and therefore stabilises Ru (III) better. ${ }^{47}$

Table 1.8: The oxidation potentials $\left\{E_{1 / 2} R u^{3+/ 2+}\right) / V$ vs $N H E$, in Volts $\}$ of the complexes $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{~L}\right]^{2+}$ and $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{x} L_{6-x}\right]^{2+}$ measured in aqueous solution.

$\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{~L}\right]^{2+}$			$\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{\mathrm{x}} \mathrm{L}_{6-\mathrm{x}}\right]^{2+}$			
Ligand	$\mathrm{E}_{1 / 2}$	Ref.	Ligand	x	$\mathrm{E}_{1 / 2}$	Ref.
Cl^{-}	-0.042	18	$\mathrm{H}_{2} \mathrm{O}$	5	$+0.20$	19
NH_{3}	$+0.051$	18	allyl ethyl ether	5	$+0.38$	19
$\mathrm{H}_{2} \mathrm{O}$	+0.066	18	pyridine (trans-)	4	+0.42	34
pyridine	+0.305	18	pyrazine (trans-)	4	$+0.44$	34
acetylene	+0.665	37	MeCN	5	$+0.46$	48
3-hexyne	+0.78	37	3-buten-1-ol a	4	+0.62	19
propylene	+0.83	38	$\mathrm{Me}_{2} \mathrm{SO}$	5	$+0.81$	48
ethylene	+0.93	37	2,5-dihydrofuran	5	$+0.83$	19
1,4-pentadiene	+0.93	38	ethylene	5	+0.84	48
phenylacetylene	+0.95	37	N_{2}	5	+0.92 b	48
styrene	+0.98	39	methyl acrylate	5	+0.94	19
DMAD $^{\text {c }}$	+1.00	41	CO	5	+1.10	48
N_{2}	+1.12 ${ }^{\text {b }}$	49	7-oxanorbornene	5	+1.33	19
${ }_{\left[\mathrm{SMe}_{3}\right]^{+}}$	+1.25	27	diallyl ether a	4	$>+1.5$	19
fumaric acid ${ }^{\text {d }}$	+1.40	37	1,5-hexadiene	4	$>+1.5$	19

a) bidentate ligand; b) chemically irreversible process; c) DMAD = dimethylacetylenedicarboxylate; d) measured in MeCN

Further examination of Table 1.8 reveals the following important trends for a particular class of $\mathrm{Ru}(\mathrm{II})$ compounds: 1) the increase in $\mathrm{E}_{1 / 2}$ values reflects the increase in π-acidity in the order N -heterocycles $<$ alkynes $<$ alkenes $<\mathrm{N}_{2}<\mathrm{CO} ; 2$) the replacement of an alkene by an alkyne on a
particular binding site should stabilise the $\mathrm{Ru}(\mathrm{III})$ oxidation state by $c a$. 200 300 mV ; 3) the introduction of electron-withdrawing groups on the alkene or alkyne carbon atoms stabilises the $\mathrm{Ru}(\mathrm{II})$ oxidation state by ca. 300-500 mV . This can be seen from the comparison of the oxidation potentials for $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{2+}(+0.93 \mathrm{~V})$ and $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\eta^{2}\right.\right.$-trans $\mathrm{HOOCCH}=\mathrm{CHCOOH})]^{2+}(+1.4 \mathrm{~V})$ as well as $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{2}\right)\right]^{2+}(+0.665 \mathrm{~V})$ and $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\eta^{2}-\mathrm{DMAD}\right)\right]^{2+}(+1.0 \mathrm{~V})$.

Complexes of $\mathrm{Ru}(\mathrm{II})$ which contain strong π-acceptor ligands having large positive potentials yield only transitory ruthenium(III) species on oxidation which either decompose or rearrange to more stable Ru (III) complexes by ligand substitution. For example, dinitrogen is quantitatively released upon the chemical oxidation of $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{~N}_{2}\right)\right] \mathrm{Cl}_{2}$ by $\mathrm{Ce}(\mathrm{IV}) .{ }^{10}$ This irreversible oxidation process of $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{~N}_{2}\right)\right]^{2+}$ was studied electrochemically and there was no evidence for the formation of $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{~N}_{2}\right)\right]^{3+}$ at scan rates of up to $100 \mathrm{Vs}^{-1}{ }^{49}$ The forward scan on a graphite electrode gave an anodic peak ($\mathrm{E}_{\mathrm{pa}}+0.81 \mathrm{~V}$ vs SCE) whilst the return scan revealed a well displaced cathodic peak $\left(\mathrm{E}_{\mathrm{pc}}=-0.33 \mathrm{~V}\right)$ due to the reduction of $\left[\mathrm{RuIII}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$ formed in the initial oxidation process. ${ }^{49}$

A similar observation was made for $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\mathrm{~N}_{2}\right)\right]^{2+}$ which showed a chemically irreversible process at $\mathrm{E}_{\mathrm{pa}}=+0.72 \mathrm{~V}(v s \mathrm{Ag} / \mathrm{AgCl}$ in $0.1 \mathrm{M} \mid \mathrm{HOTf}$ solution) and subsequent formation of $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} .{ }^{48}$ The carbonyl complexes $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{CO})\right]^{2+48}$ and cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{CO})_{2}\right]^{20}$ also display chemically irreversible behaviour in their cyclic voltammograms, as the strongly π-acidic CO ligands render the complex highly unstable at the $\mathrm{Ru}(\mathrm{III})$ level.

Similar substitution processes have been observed for the electrogenerated alkene complexes $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{~L}\right]^{3+}$. The cyclic voltammogram of $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\eta^{2}-1,3 \text {-butadiene }\right)\right]^{2+}\left(\mathrm{E}_{1 / 2}=0.94\right.$ vs NHE$)$ in aqueous solution exhibits quasi-reversible behaviour. As the scan rate
decreases, the relative ratio of the peak heights for the cathodic and anodic current, i_{c} / i_{a}, also decreases, presumably because the alkene of the initially formed cation $\left[\mathrm{Ru}^{\mathrm{III}}\left(\mathrm{NH}_{3}\right)_{5}(\text { alkene })\right]^{3+}$ is replaced by a water molecule. ${ }^{38}$ The complexes $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\eta^{2} \text {-styrene }\right)\right]^{2+39}$ and $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\eta^{2-1,3-}\right.\right.$ dimethyluracil) $]^{2+50}\left(\mathrm{E}_{\mathrm{pa}}=+0.98 \mathrm{~V}\right.$ vs NHE$)$ show either a quasi-reversible or no reduction peak in their cyclic voltammograms due to similar ligand substitution processes. The wave for the $\mathrm{Ru}(\Pi)$ oxidation implies an EC-type process in which electron-abstraction (process E) is followed by a rapid chemical reaction (aquation, process C) that prevents detection of the shortlived $\mathrm{Ru}(\mathrm{III})$ alkene complex. ${ }^{39,50}$

1.3 Acetylacetonato Complexes of Ruthenium(II/III)

Tris-[β-diketonato) complexes of ruthenium $\left[\mathrm{Ru}(\beta \text {-diketonato })_{3}\right]$ have been the subject of extensive synthetic and electrochemical studies. ${ }^{1,2}$ The complex $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$ has been prepared either by direct action of acetylacetone on $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in the presence of a base ${ }^{51-54}$ or by treatment of reduced ruthenium(III) chloride (ruthenium blue) with acetylacetone under basic conditions. ${ }^{5-59}$ The relationship between the $\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$ potentials and the relative electron donating nature of the substituents of the β-diketonato moiety has been investigated. ${ }^{60-62}$

A general route for the synthesis of mononuclear bis-(β diketonato)ruthenium(II) complexes was discovered by Kobayashi and coworkers, who reduced an ethanolic solution of $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$ by heating with zinc amalgam in the presence of acetonitrile to give the divalent ruthenium complex cis-[Ru(acac) $\left.)_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]$ in 63% yield. ${ }^{63}$ The only previously known bis(acetylacetonato)ruthenium(II) complexes cis-[Ru(acac) $\left.)_{2} \mathrm{~L}_{2}\right]$ were those with $2 \mathrm{~L}=2 \mathrm{CO}^{64}, 2 \mathrm{PPh}_{3}{ }^{65}, \mathrm{COD},{ }^{46}$ phen, $^{66} \mathrm{dppz}^{67}$ and $2 \mathrm{~N}(\mathrm{O})=\mathrm{C}\left(\mathrm{COCH}_{3}\right)_{2} .{ }^{68}$ The reported syntheses of these compounds required different precursors. A second synthetic route was also found which involved the direct action of
[$\left.\mathrm{Ru}(\mathrm{acac})_{3}\right]$ with acetonitrile in the presence of strong acids which forms cis$\left[\mathrm{Ru}^{\mathrm{III}}(\mathrm{acac})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]+{ }^{69}$

The first reported trans-[Ru(acac) $\left.2_{2} \mathrm{~L}_{2}\right]^{\mathrm{n}+}$ complex was trans[$\left.\mathrm{Ph}_{4} \mathrm{As}\right]\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{Cl}_{2}\right]$, prepared from $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, acetylacetone and aqueous $\mathrm{KCl} .^{70}$ After subsequent addition of aqueous $\mathrm{Ph}_{4} \mathrm{AsCl} \cdot \mathrm{xH}_{2} \mathrm{O}$ and work up, the desired product was isolated in 20% yield. Zinc amalgam reduction of trans-[$\left.\mathrm{Ph}_{4} \mathrm{As}\right]\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{Cl}_{2}\right]$ in the presence of $\mathrm{CH}_{3} \mathrm{CN}$ or pyrazine at room temperature results in the formation of $\operatorname{trans}-\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]\left(\mathrm{L}=\mathrm{CH}_{3} \mathrm{CN}\right.$, pyz) in yields $c a .80 \% .^{70}$

Scheme 1.2: Synthesis of trans-[Ru(acac) $\left.{ }_{2} L_{2}\right]$ from trans$\left[\mathrm{Ph}_{4} \mathrm{As}\right]\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{Cl}_{2}\right]$.

The complex cis-[Ru(acac) $\left.)_{2}\left(\operatorname{SbPr}^{i}{ }_{3}\right)_{2}\right]$ has been isolated from the reaction of the π-allyl compound $\left[\mathrm{Ru}\left(\eta^{3}-\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2}\left(\mathrm{SbPr}_{3}{ }_{3}\right)_{2}\right]$ with acetylacetone in hot benzene. ${ }^{71}$ One of the triisopropylstibine ligands is only weakly coordinated and readily displaced by a variety of ligands to form complexes of the type cis-[Ru(acac) $\left.)_{2}\left(\mathrm{SbPr}_{3}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{PPr}^{i_{3}}, \mathrm{PCy3}\right) .{ }^{71}$ The complex cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}^{i}{ }_{3}\right)_{2}\right]$ can be isolated when an excess of $\mathrm{PPr}^{i}{ }_{3}$ is added to cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{SbPr}^{i}{ }_{3}\right)_{2}\right] .{ }^{71}$

The chiral bidentate phosphine complexes cis-[Ru(acac) $\left.)_{2}(\mathrm{LL})\right](\mathrm{LL}=$ (S)-BINAP, SKEW and DIOP) were initially prepared by hydrogenation of methanolic solutions of $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$ in the presence of the appropriate phosphine. ${ }^{72}$ The $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}((\mathrm{~S})\right.$-BINAP)] complex is also prepared by the reduction of $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$ by activated zinc dust in the presence of (S)-BINAP in hot ethanol in an almost quantitative yield. ${ }^{73}$ The structures of cis-
$\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{LL})\right]$ complexes $(\mathrm{LL}=(\mathrm{S})$-BINAP, DIOP) were confirmed by single crystal X-ray diffraction studies. ${ }^{22,73}$ Addition of 2-(4isobutylphenyl)propenoic acid to these chiral bidentate phosphine complexes, followed by hydrogenation, affords (S)-(+)-ibuprofen in various enantiomeric excesses. ${ }^{72}$

Radiolysis has also been used as an alternative to zinc or dihydrogen as a reducing agent for the synthesis of mononuclear [$\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}$] complexes. ${ }^{74}$ Alcoholic solutions of $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$ saturated with ${ }^{*} \mathrm{CO}$ (1 bar) were exposed to γ radiation $\left({ }^{60} \mathrm{Co}\right.$ source) for two hours. The trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{CO}) \mathrm{L}\right]$ complexes $\left(\mathrm{L}=\mathrm{MeOH}, \mathrm{EtOH}\right.$ or $\left.\mathrm{Pr}^{i} \mathrm{OH}\right)$ were isolated as yellow solids in almost quantitative yield. Although a single crystal X-ray diffraction study of trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{CO})(\mathrm{MeOH})\right]$ confirmed the structure, the observation of numerous $v(C O)$ stretching bands in the IR spectrum ${ }^{74}$ suggests that more than one species is present in solution.

The coordinated acetonitrile ligands of cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]$ can be replaced by various ligands in hot benzene to form complexes of the type cis$\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]\left(\mathrm{L}=\mathrm{PPh}_{3}, \mathrm{P}(\mathrm{OMe})_{3} ; \mathrm{L}_{2}=\right.$ dppm, dppe, dppp, $\left.\mathrm{SP}, 1,5-\mathrm{COD}\right) .{ }^{20}$

Scheme 1.3: Synthesis of cis-[Ru(acac) $\left.)_{2} L_{2}\right]$ from $\underline{\text { cis- }}\left[\mathrm{Ru}(a \operatorname{acac})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]$ (from ref. 20).

$$
\left.\begin{array}{rc}
\text { cis- }\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{MeCN})_{2}\right] & \mathrm{C}_{6} \mathrm{H}_{6} / 2 \mathrm{~L} \\
\Delta & \text { cis-[Ru(acac)} \left.)_{2} \mathrm{~L}_{2}\right] \\
\begin{array}{c}
\left(\mathrm{L}=\mathrm{PPh}_{3}, \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3} \dot{ }\right. \\
\mathrm{L}_{2}=\mathrm{dppm}, \mathrm{dppe}, \mathrm{dppp} \\
\mathrm{SP}, \mathrm{COD})
\end{array}
\end{array}\right] .
$$

The coordinated acetonitrile ligands may also replaced by the ligand 3,3'-dithiobis(2,4-pentanedione) ($\mathrm{H}_{2} \mathrm{dtba}$) to give either the mononuclear complex cis-[Ru(acac) $)_{2}$ (topd- O, S)] (topd $=3$-thioxo-2,4-pentadione) or the binuclear complex cis-[\{Ru(acac)2 $\}_{2}$ (topd- $\left.\left.O, S, O^{\prime}\right)\right]$ depending upon the
reaction conditions. ${ }^{75}$ The complexes were characterised by a variety of techniques; in both cases there is some ambiguity as to the formal oxidation state of the ruthenium metal centre.

Kobayashi's methodology has been extended to the synthesis of the complexes $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}: \eta^{2}\right.\right.$-diene)] (diene $=$ norbornadiene, ${ }^{76}$ 1,5cyclooctadiene, ${ }^{77}$ 1,3,5,7-cyclooctatetraene, ${ }^{78}$ 2,4-hexadiene, ${ }^{79}$ 2,3-dimethyl-1,3-butadiene, ${ }^{79}$ 1,3-cyclohexadiene, ${ }^{79}$ 2,4-dimethyl-1,3-pentadiene, ${ }^{79}$ 2,5-dimethyl-2,4-hexadiene, ${ }^{80}$ isoprene, ${ }^{80}$ 1,2,4,5-tetramethyl-1,4cyclohexadiene ${ }^{80}$). The acyclic 1,3-dienes are coordinated to the ruthenium metal centre in a η^{4}-trans-diene conformation with two diastereomers present in various ratios. 79 The formation of these diastereomers is the result of the binding through the two enantiofaces of the dienes as shown by X-ray crystallographic studies on the complexes $\left[\mathrm{Ru}(\mathrm{acac})_{2}(2,4-\right.$ dimethyl-1,3-pentadiene)] and [Ru(acac) $)_{2}\left(2,5\right.$-dimethyl-1,3-hexadiene)]. ${ }^{79,80}$

Reduction of an aqueous THF solution of [Ru(acac)3] by heating with zinc amalgam or freshly activated zinc dust in the presence of excess cyclooctene gives the bis(alkene) complex cis-[Ru(acac) $\left.{ }_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right] .{ }^{76}$ This bis(alkene) complex is stable in aqueous THF but decomposes in the presence of ethanol to form ruthenium(III)-ethoxide complexes. ${ }^{77}$ Although the cyclooctene complex cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]$ was not isolated as a pure compound, the stereochemical arrangement of the acetylacetonate ligands about the ruthenium centre and the coordination of cyclooctene were confirmed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{76}$

The coordinated diene ligands of $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}: \eta^{2}\right.\right.$-diene) $]$ (diene $=2,4-$ hexadiene, 2,3-dimethyl-1,3-butadiene) were reported to be readily displaced by either PEt_{3} or $\mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$ at room temperature to form a mixture of the complexes trans- and cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]\left(\mathrm{L}=\mathrm{PEt}_{3}\right.$ or $\left.\mathrm{P}(\mathrm{OMe})_{3}\right) .{ }^{79}$ However, the coordinated cyclooctene ligands of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]$ are readily displaced by a wide variety of ligands at room temperature to give red-
brown complexes of the general type trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]\left(\mathrm{L}=\mathrm{NMe}_{3}\right.$, pyridine, t-butyl isocyanide, various tertiary phosphines and $\left.\mathrm{AsPh}_{3}\right) .{ }^{76}$ The cis$\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ (except $\mathrm{L}=\mathrm{NMe}_{3}$) complexes were isolated only after heating the corresponding trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ isomers. The molecular structures of the trans- and cis-isomers of the complexes $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]\left(\mathrm{L}=\mathrm{PMe}_{2} \mathrm{Ph}\right.$, CNBut ${ }^{t}$) have been confirmed by X-ray crystallography. ${ }^{76}$

Scheme 1.4: Replacement of both coordinated alkene ligands of cis[Ru(acac) $\left.{ }_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]$ by ligands.

The reaction of cis-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]$ with acetonitrile or triphenylstibine affords the isolable yellow-brown complexes cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right) \mathrm{L}^{\prime}\right]\left(\mathrm{L}^{\prime}=\mathrm{CH}_{3} \mathrm{CN}, \mathrm{SbPh}_{3}\right) .{ }^{76}$ The formation of the cis[$\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}^{2}$] can be achieved by refluxing the mono-substituted complex with excess L^{\prime}. There is no evidence for the formation of the trans-isomers in either substitution step. ${ }^{76}$

The mechanism for the formation of trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ from cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]$ is not known but a suggested pathway involves the stepwise replacement of cyclooctene, probably via a dissociative process; the replacement of the second cyclooctene must occur more rapidly than the first for Group 15 donor ligands. ${ }^{76}$ It is assumed that a square pyramidal five coordinate intermediate $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}\right]$ is initially generated with preferential attack of the entering ligand L at the vacant site giving the kinetic product trans-[Ru(acac) $\left.)_{2} \mathrm{~L}_{2}\right]$ (see Scheme 1.5). At higher temperatures, the trigonal
bipyramidal geometry for $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}\right]$ may become accessible and with reversible dissociation of L from trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ results in the formation of the cis isomer. ${ }^{76}$ The formation of cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right) \mathrm{L}\right]$ in the first alkene substitution step is also thought to occur via a similar sequence via an undetected intermediate trans-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right) \mathrm{L}\right]$.

Scheme 1.5: Suggested pathway for formation of trans- and cis-[Ru(acac) $2_{2} L_{2}$] from cis-[Ru(acac) $\left.2_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2} L\right]$ (taken from ref. 76).

The reaction of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]$ with bidentate ditertiary phosphines has also been investigated. ${ }^{76}$ The addition of two equivalents of dppm (diphenylphosphinomethane) initially forms trans-[Ru(acac) $)_{2}\left(\eta^{1}\right.$ $\mathrm{dppm})_{2}$]. Facile loss of a coordinated dppm ligand results in the formation of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{dppm}\right)\right]$. The chelate dppm complex may also be prepared by the addition of one equivalent of dppm to cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]$. Reaction of the bidentate phosphines 1,2-bis(diphenylphosphino)ethane (dppe) or 1,3-bis(diphenylphosphino)propane (dppp) with cis-[Ru(acac) $)_{2}\left(\eta^{2}-\right.$ $\left.\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}$] in a $1: 1$ molar ratio results in the formation of orange solids believed to be oligomeric $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{LL})\right]_{n}(\mathrm{LL}=$ dppe, dppp $) .{ }^{76}$ Heating of
these orange oligomeric solids affords the more soluble chelate complexes cis-[Ru(acac)2 (LL $)]{ }^{76}$

Carbon monoxide (1 bar) readily reacts with trans-[Ru(acac) $\left.)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ to form the complex trans-[Ru(acac) $\left.)_{2}\left(\mathrm{PPh}_{3}\right)(\mathrm{CO})\right]{ }^{76}$ There is no observable reaction with cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ under similar conditions. The trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{3}\right)(\mathrm{CO})\right]$ complex isomerises in refluxing toluene to form the corresponding cis-isomer. ${ }^{76}$ The triphenylarsine complex trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{AsPh}_{3}\right)_{2}\right]$ will also react with $\mathrm{CO}(4 \mathrm{bar})$ to give cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{AsPh}_{3}\right)(\mathrm{CO})\right]$, but there is no evidence for the formation of the trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{AsPh}_{3}\right)(\mathrm{CO})\right]$ as an intermediate. ${ }^{76}$ The complex trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{NMe}_{3}\right)_{2}\right.$] also readily reacts with CO to give trans $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{CO})\left(\mathrm{NMe}_{3}\right)\right] .{ }^{76}$ The addition of $\mathrm{PhC} \equiv \mathrm{CH}$ to $\mathrm{cis}-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i}{ }_{3}\right)_{2}\right]$ or cis-[Ru(acac) $\left.)_{2}\left(\mathrm{SbPr}_{3} i_{3}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{SbPr}_{3}{ }_{3}\right)$ in refluxing benzene gives the vinylidene complexes cis-[Ru(acac)2 $\left.\left(\mathrm{PPr}_{3}\right)(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph})\right]$ and $\operatorname{cis}\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{SbPr}_{3}\right)(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph})\right]$ respectively. ${ }^{71}$ The supposed intermediate, $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}_{3}\right)\left(\eta^{2}-\mathrm{PhC} \equiv \mathrm{CH}\right)\right]$, could not be detected by NMR spectroscopy.

Hydrogenation of 2-(6'-methoxy-naphth-2'-yl)acrylic acid using an 'aged' sample of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}((\mathrm{~S})-\mathrm{BINAP})\right]$ in methanol reportedly proceeds much faster than that catalysed by $\left.\left[\mathrm{Ru}(\mathrm{OAc})_{2}(\mathrm{~S})-\mathrm{BINAP}\right)\right] .{ }^{81}$ A single crystal X-ray diffraction study of the 'aged' cis-[Ru(acac) $\left.)_{2}((\mathrm{~S})-\mathrm{BINAP})\right]$ reveals that one of the acac ligands has been replaced by the cis-coordination of a solvent molecule and monodentate carboxyl coordination of the deprotonated acid. ${ }^{81}$

The oxidation potentials of the cis- and trans-complexes $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{pyz})_{2}\right]$ and $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]$ show that the trans-isomer is easier to oxidise than the cis-isomer by up to $100 \mathrm{mV} .^{70}$ Later electrochemical studies ${ }^{20,82}$ of cis- and trans-[Ru(acac) $\left.)_{2} \mathrm{~L}_{2}\right]$ complexes reveal
that the difference between oxidation potentials may be as little as 50 mV and as high as 490 mV (see Table 1.9).

Table 1.9: Observed $E_{1 / 2}\left(R u^{3+/ 2+}\right)$ potentials of $\left[R u(a c a c)_{2}\left(L L^{\prime}\right)\right]$ for which both cis and trans isomers have been isolated (measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).

L	L'	Geometric isomer	$\begin{gathered} \mathrm{E}_{1 / 2}{ }^{\circ}(v s \\ \mathrm{Ag} / \mathrm{AgCl}) \end{gathered}$	$\Delta \mathrm{E}_{1 / 2}{ }^{\circ}(\mathrm{V})$
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	$\begin{gathered} \text { cis } \\ \text { trans } \end{gathered}$	$\begin{aligned} & \hline+0.01 \mathrm{a}^{\mathrm{a}} \\ & -0.04 \mathrm{a}^{\mathrm{a}} \end{aligned}$	0.05
MeCN	MeCN	$\begin{gathered} \text { cis } \\ \text { trans } \end{gathered}$	$\begin{aligned} & +0.24^{\mathrm{b}} \\ & +0.12 \mathrm{a} \end{aligned}$	0.12
PMe_{3}	PMe_{3}	$\begin{gathered} \text { cis } \\ \text { trans } \end{gathered}$	$\begin{gathered} \hline+0.26^{\mathrm{a}} \\ 0.00^{\mathrm{a}} \end{gathered}$	0.26
AsPh_{3}	AsPh_{3}	$\begin{gathered} \text { cis } \\ \text { trans } \end{gathered}$	$\begin{aligned} & +0.34^{\mathrm{a}} \\ & +0.15^{\mathrm{a}} \end{aligned}$	0.19
PPh_{3}	PPh_{3}	$\begin{gathered} \text { cis } \\ \text { trans } \end{gathered}$	$\begin{aligned} & +0.37 \mathrm{~b} \\ & +0.07 \mathrm{~b} \end{aligned}$	0.30
PMePh_{2}	PMePh_{2}	$\begin{gathered} \text { cis } \\ \text { trans } \end{gathered}$	$\begin{aligned} & +0.37 \mathrm{a} \\ & +0.04 \mathrm{a} \end{aligned}$	0.33
$\mathrm{P}(\mathrm{OMe})_{3}$	$\mathrm{P}(\mathrm{OMe})_{3}$	$\begin{gathered} \text { cis } \\ \text { trans } \end{gathered}$	$\begin{aligned} & +0.70^{\mathrm{a}} \\ & +0.22 \mathrm{a} \end{aligned}$	0.48
${ }^{\text {t BuNC }}$	${ }^{t} \mathrm{BuNC}$	$\begin{gathered} \text { cis } \\ \text { trans } \end{gathered}$	$\begin{aligned} & +0.74^{b} \\ & +0.25^{b} \end{aligned}$	0.49
CO	PCy3	$\begin{gathered} \text { cis } \\ \text { trans } \end{gathered}$	$\begin{aligned} & +0.92 \mathrm{a} \\ & +0.64 \mathrm{a} \end{aligned}$	0.28
CO	PPh_{3}	$\begin{gathered} \text { cis } \\ \text { trans } \end{gathered}$	$\begin{aligned} & +1.10^{\mathrm{a}} \\ & +0.76^{\mathrm{b}} \end{aligned}$	0.34
cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right) \mathrm{L}\right]$				
NH_{3}			+0.23 ${ }^{\text {a }}$	
SbPh_{3}			+0.44 b	
MeCN			$+0.44{ }^{\text {b }}$	
$\mathrm{C}_{8} \mathrm{H}_{14}$			+0.77 b	

a) ref. 82 ; b) ref. 20

Whereas the $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\eta^{2} \text {-alkene }\right)\right]^{2+}$ complexes mentioned previously (see p.19) display either quasi-reversible or irreversible behaviour upon electrooxidation, the complexes cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right) \mathrm{L}\right]$ ($\mathrm{L}=\mathrm{NH}_{3},{ }^{20} \mathrm{SbPh}_{3},{ }^{20} \mathrm{CH}_{3} \mathrm{CN},{ }^{82} \mathrm{C}_{8} \mathrm{H}_{14}{ }^{20}$) display fully reversible behaviour in their cyclic voltammograms, even at room temperature. Under these conditions, where the $\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$ potentials have been lowered by 0.5 V
or more and a poorly coordinating solvent is present, the alkene in the products $\left[\mathrm{RuIII}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right) \mathrm{L}\right]+$ is not easily replaced on the electrochemical timescale. However, attempted chemical and electrochemical oxidation of the parent $\mathrm{Ru}(\mathrm{II})$ compounds has not led to isolable solid alkene complexes $\left[\mathrm{RuIII}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right) \mathrm{L}\right]^{+} \chi^{-}$, probably due to the weakened binding of the alkene to the Ru (III) centre. ${ }^{77}$

Zinc amalgam reduction of $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$ in the presence of the chelating alkene N - and O-donor ligands (LL' = 2-vinyl-N,N-dimethylaniline, 2-isopropenyl-N,N-dimethylaniline, 3-butenyldimethylamine, 2allylpyridine, isomesityl oxide, 2-methoxystyrene, 3-butenylmethylether) ${ }^{83}$ or the chelating acetylenic N -donor ligands $o-\mathrm{RC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}(\mathrm{R}=\mathrm{Ph}$, $\left.\mathrm{SiMe}_{3}\right)^{84}$ gives the corresponding $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{LL}^{\prime}\right)\right]$ complexes as either orange or brown solids. Coordination of the prochiral alkene of the LL' ligand to the chiral cis-\{Ru(acac) $\left.)_{2}\right\}$ fragment can give rise to a pair of diastereomers labelled A for the $R \Delta / S \Lambda$ pair and B for the $S \Delta / R \Lambda$ pair. ${ }^{83}$ The molecular structures of both diastereoisomers of [$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(o-\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]$ have been determined by X-ray crystallography and the alkene has been shown to be coordinated by opposite enantiotropic faces. ${ }^{83}$ The stabilisation gained from the chelate effect for the alkene N -donors was sufficient to prevent displacement of the coordinated alkene by $\mathrm{CO}, \mathrm{PMe}_{3}$ or pyridine. ${ }^{83}$

Scheme 1.5: Synthesis of the chelated alkene complex [Ru(acac) ${ }_{2}(2-v i n y l-$ N, N-dimethylaniline)].

Most of the chelated olefinic N - and O -donor complexes cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{LL}^{\prime}\right)\right]$ display a fully reversible oxidation potential in the range
+0.28 to $0.60 \mathrm{~V}($ vs $\mathrm{Ag} / \mathrm{AgCl})$ (see Table 1.10). The voltammograms appear as a superposition of two peaks of different intensities arising from the diastereoisomers, the potentials of which differ by as much as $140 \mathrm{mV} .{ }^{83} \mathrm{In}$ agreement with the observation from Table 1.8 that the replacement of an alkene with an alkyne should lower the $\mathrm{Ru}(\mathrm{II})$ oxidation potential, the chelated acetylenic complexes have oxidation potentials $150-250 \mathrm{mV}$ less than those of the couples measured for the diastereomeric alkene complexes $(\mathrm{R} \Delta, \mathrm{S} \Lambda)-$ and $(\mathrm{S} \Delta, \mathrm{R} \Lambda)-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(o-\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right] .{ }^{84}$

Table 1.10: The oxidation potentials $\left\{E_{1 / 2} R u^{3+/ 2+}\right) / V$ vs $\mathrm{Ag} / \mathrm{AgCl}$, in Volts $\}$ of the complexes cis-[Ru(acac) $\left.{ }_{2} L L^{\prime}\right]$ measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

cis-[Ru(acac)2 ${ }_{2}$]		
Ligand	$\mathrm{E}_{1 / 2}$ (in Volts)	
acac ${ }^{-}$		-0.65 ${ }^{\text {a }}$
TMEDA*		$-0.35{ }^{\text {b }}$
2,2'-bipyridine		$-0.05^{\text {a }}$
$\begin{aligned} & \text { 2-(trimethylsilyl)ethynyl- } \\ & \text {-N,N-dimethylaniline } \\ & \hline \end{aligned}$		+0.19 b
2-phenylethynyl--N,N-dimethylaniline		$+0.26{ }^{\text {b }}$
3-butenyldimethylamine	isomer A isomer B	$\begin{aligned} & +0.28 \mathrm{c} \\ & +0.42 \mathrm{c} \end{aligned}$
2-vinyl-N,N-dimethylaniline	isomer A isomer B	$\begin{aligned} & +0.42 \mathrm{c} \\ & +0.52 \mathrm{c} \end{aligned}$
3-butenyl methyl ether	isomer A isomer B	$\begin{aligned} & +0.43 \mathrm{c} \\ & +0.53 \mathrm{c} \end{aligned}$
3-butenyldiphenylphosphine	isomer A isomer B	$\begin{aligned} & +0.54 \mathrm{c} \\ & +0.54 \mathrm{c} \end{aligned}$
SP*		+0.67 a

a) ref. 20 ; b) ref. 83 ; c) ref. $84 ;{ }^{*}$) TMEDA $=$ tetramethylethylenediamine; $\mathrm{SP}=2$ styryldiphenylphosphine

The chelating olefinic and acetylenic N - and O -donor ruthenium cations, $\left[\mathrm{Ru}^{\mathrm{III}}(\mathrm{acac})_{2}\left(\mathrm{LL}^{\prime}\right)\right]^{+}$(LL' = 2-vinyl-N,N-dimethylaniline, 2-isopropenyl-N,N-dimethylaniline, 3-butenyldimethylamine, 2allylpyridine, isomesityl oxide, 2-methoxystyrene, 3-butenylmethylether, o$\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}, o-\left(\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)$ were isolated as deep blue,
paramagnetic PF_{6} or SbF_{6} salts by the oxidation of the ruthenium(II) precursors with Ag^{+}or $\left[\mathrm{FeCp}_{2}\right]^{+}$salts. They are the first stable alkene and alkyne complexes of ruthenium(III). ${ }^{83,84}$ The complexes were fully characterised and shown to be mononuclear by X-ray crystallography with the alkene or alkyne being coordinated to the metal centre.

1.4 Characterisation of cis and trans-[Ru(acac) $\left.)_{2} L_{2}\right]$ complexes by $N M R$ spectroscopy

For future reference, certain spectroscopic features of the cis- and trans-[Ru(acac) $\left.)_{2} \mathrm{~L}_{2}\right]$ complexes are noted here. The geometric isomers are readily identified by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy. The complexes trans-[Ru(acac)2 $\left.\mathrm{LL}^{\prime}\right]$ (where $\mathrm{L}=\mathrm{L}^{\prime}$ and $\mathrm{L} \neq \mathrm{L}$ ') display one methyl acac singlet and one methine acac singlet for both nuclei as well as one carbonyl acac resonance in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum. For the complex cis-[Ru(acac) ${ }_{2} \mathrm{LL}$ '] $(\mathrm{L}=\mathrm{L}$), there are two methyl singlets and one methine acac singlet for both the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra in addition to two carbonyl acac carbon singlets. The least symmetrical geometric complex, cis-[Ru(acac) $\left.{ }_{2} L L^{\prime}\right]\left(\mathrm{L} \neq \mathrm{L}^{\prime}\right)$, shows four methyl acac singlets and two methine acac singlets for both nuclei as well as four carbonyl acac resonance in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data may also be used to determine the geometric arrangement of two tertiary phosphines as the chemical shift of the complexes trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ are about $c a .20 \mathrm{ppm}$ more shielded than those of the corresponding cis-isomer. ${ }^{76}$ For fututre reference, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data of the isolated phosphorus containing complexes are tabulated in Table 1.11.

Table 1.11: ${ }^{31} P\left\{{ }^{1} H\right\}$ NMR spectral data for the phosphorus containing complexes of the type $\left[R u(a c a c)_{2} L_{2}\right]$ reported in ref. 76.

Complex	$31 \mathrm{P}\{1 \mathrm{H}\} \mathrm{NMR}$				
	free	Complex		$\Delta \delta^{\mathrm{a}}$	
		trans	cis	trans	cis
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right]$	-62.0	+9.40	+31.7	+71.4	+93.7
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPhMe}_{2}\right)_{2}\right]$	-45.9	+17.7	+36.8	+63.6	+82.7
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]$	-28.1	+24.7	+41.3	+52.8	+69.4
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]$	-19.2	+27.6	+46.3	+46.8	+65.5
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{P}\left(p-\text { tolyl }_{3}\right)_{2}\right]\right.$	-8.6	+33.6	+52.6	+42.2	+58.8
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$	-6.2	+33.9	+54.0	+40.1	+60.2
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{2} \mathrm{Bu}^{t}\right)_{2}\right]^{\mathrm{b}}$	+18.3	+40.3	+58.2	21.8	+39.9

a) $\Delta \delta=\delta($ complex $)-\delta($ free $) ;$ b) complex not published, ref. 77

1.5 Aims of this Study

The main aims of this study include i) the isolation of the ethene analogue of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]$. Although the bis(ethene) complex had been detected in earlier unpublished work of C . Chung and H . Neumann by ${ }^{1} \mathrm{H}$ NMR spectroscopy, attempts to isolate it were unsuccessful; 85 ii) an examination of the lability of the coordinated alkene ligands to gain some understanding of the mechanism of the replacement of the first alkene and of the stereochemical re-arrangements of the complexes in the presumably stepwise formation of trans-[Ru(acac) $\left.)_{2} L_{2}\right]$ from cis$\left[R u(a c a c)_{2}\left(\eta^{2} \text {-alkene }\right)_{2}\right] 7^{76}$ iii) an investigation of the electrochemical and chemical oxidation properties of these new complexes to see if stable, unchelated paramagnetic $R u(I I I)$-alkene complexes of the type [RuIII(acac) $)_{2}\left(\eta^{2}\right.$-alkene)L]X can be detected or isolated; and iv) an examination of the reactivity of the complexes $\left[\mathrm{Ru}^{\mathrm{III}}(\mathrm{acac})_{2}\left(\eta^{2}\right.\right.$-alkene $\left.) \mathrm{L}\right] X$.

1.6 References

(1) Seddon, K. R.; Seddon, E. A. The Chemistry of Ruthenium; Elsevier Science: 1984, p 341.
(2) Schröder, M.; Stephenson, T. A. In Comprehensive Coordination Chemistry; Gillard, R. D.; McCleverty, J. A., Eds.; Pergamon: Oxford, 1987; Vol. 4; p 277.
(3) Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic Chemistry; 6th ed.; John Wiley and Sons, Inc.: 1999, p 1001.
(4) Taube, H. Pure and Appl. Chem. 1979, 51, 901.
(5) Allen, A. D.; Senoff, C. V. Chem. Commun. 1965, 621.
(6) Sellman, D. Angew. Chem. Int. Ed. Engl. 1974, 13, 639.
(7) Allen, A. D.; Harris, R. O.; Loescher, B. R.; Stevens, J. R.; Whiteley, R. N. Chem. Rev. 1973, 73, 11.
(8) Chatt, J.; Dilworth, J. R.; Richards, R. L. Chem. Rev. 1978, 78, 589.
(9) Hidai, M.; Mizobe, Y. Chem. Rev. 1995, 95, 1115.
(10) Harrison, D. E.; Taube, H. J. Am. Chem. Soc. 1967, 89, 5706.
(11) Taube, H. In Survey of Progress in Chemistry; Scott, A. F., Ed.; Academic Press: 1973; Vol. 6; p 45.
(12) Jørgensen, C. K. Absorption Spectra and Chemical/Bonding in Complexes; Pergamon Press: Oxford: 1962.
(13) Lever, A. B. P. Inorg. Chem. 1990, 29, 1271.
(14) Lyons, L. J.; Pitz, S. L.; Boyd, D. C. Inorg. Chem. 1995, 34, 316.
(15) Morris, R. H. Inorg. Chem. 1992, 31, 1471.
(16) Duff, C. M.; Heath, G. A. Inorg. Chem. 1991, 30, 2528.
(17) Heath, G. A.; Humphrey, D. G. Chem. Commun. 1991, 1668.
(18) Lim, H. S.; Barclay, D. J.; Anson, F. C. Inorg. Chem. 1972, 11, 1460.
(19) McGrath, D. V.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1991, 113,3611.
(20) Wallace, L. PhD Thesis, ANU, 1991.
(21) Armor, J. N.; Taube, H. J. Am. Chem. Soc. 1970, 92, 6170.
(22) Harrison, D. E.; Weissberger, E.; Taube, H. Science 1968, 159, 320.
(23) Ford, P.; Rudd, D. F. P.; Gaunder, R.; Taube, H. J. Am. Chem. Soc. 1968, 90, 11871194.
(24) Clarke, R. E.; Ford, P. C. Inorg. Chem. 1970, 1970, 9.
(25) Kuehn, C. G.; Taube, H. J. Am. Chem. Soc. 1976, 98, 689.
(26) Allen, A. D.; Eliades, T.; Harris, R. O.; Reinsalu, P. Can. J. Chem. 1969, 47, 1605 .
(27) Stein, C. A.; Taube, H. J. Am. Chem. Soc. 1978, 100, 336.
(28) Franco, D. W.; Taube, H. Inorg. Chem. 1978, 17, 571.
(29) Franco, D. W. Inorg. Chim. Acta 1979, 32, 273.
(30) Bernhard, P.; Lehmann, H.; Ludi, A. Comments Inorg. Chem. 1983, 2, 145.
(31) Laurenczy, G.; Helm, L.; Merbach, A. E. Inorg. Chim. Acta 1991, 189, 131.
(32) Aebischer, N.; Frey, U.; Merbach, A. E. Chem. Commun. 1998, 2303.
(33) Laurenczy, G.; Helm, L.; Ludi, A.; Merbach, A. E. Helv. Chim. Acta 1991, 74, 1236.
(34) Bernhard, P.; Lehmann, H.; Ludi, A. Chem. Commun. 1981, 1216.
(35) Gress, M. E.; Creutz, C.; Quicksall, C. O. Inorg. Chem. 1981, 20, 1522.
(36) Richardson, D. E.; Walker, D. D.; Sutton, J. E.; Hodgson, K. O.; Taube, H. Inorg. Chem. 1979, 18, 2216.
(37) Lehmann, H.; Schenk, K. J.; Chapuis, G.; Ludi, A. J. Am. Chem. Soc. 1979, 101, 6197.
(38) Elliott, M. G.; Shepherd, R. E. Inorg. Chem. 1988, 27, 3332.
(39) Elliot, M. G.; Zhang, S.; Shepherd, R. E. Inorg. Chem. 1989, 28, 3036.
(40) Hunziker, M.; Ludi, A. J. Am. Chem. Soc. 1977, 99, 7368.
(41) Henderson, W. W.; Bancroft, B. T.; Shepherd, R. E.; Fackler, J. P., Jr. Organometallics 1986, 5, 506.
(42) Sugaya, T.; Tomita, A.; Sago, H.; Sano, M. Inorg. Chem. 1996, 35, 2692.
(43) Laurenczy, G.; Merbach, A. E. Chem. Commun. 1993, 187.
(44) Novak, B. M.; Grubbs, R. H. J. Am. Chem. Soc. 1988, 110, 7542.
(45) Kölle, U.; Flunkert, G.; Görissen, R.; Schmidt, M. U.; Englert, U. Angew. Chem. Int. Ed. Engl. 1992, 31, 440.
(46) Powell, P. J. Organomet. Chem. 1974, 65, 89.
(47) Lever, A. B. P. Inorganic Electronic Spectroscopy; Elsevier: Amsterdam, 1968, p. 204.
(48) Aebischer, N.; Sidorenkova, E.; Ravera, M.; Laurenczy, G.; Osella, D.; Weber, J.; Merbach, A. E. Inorg. Chem. 1997, 36, 6009.
(49) Elson, C. M.; Gulens, J.; Itzkovitch, I. J.; Page, J. A. Chem. Commun. 1970, 875.
(50) Zhang, S.; Shepherd, R. E. Inorg. Chim. Acta 1989, 163, 237.
(51) Barbieri, G. A. Atti. accad. Lincei 1914, 23, 334.
(52) Wilkinson, G. J. Am. Chem. Soc. 1952, 74, 6146.
(53) Grobelny, R.; Jezowska-Trzebiatowska, B.; Wojchiechowski, W. J. Inorg. Nucl. Chem. 1966, 28, 2715.
(54) Gordon, J. G.; O'Connor, M. J.; Holm, R. H. Inorg. Chim. Acta 1971, 5, 381.
(55) Endo, A.; Shimizu, K.; Satô, G. P.; Mukaida, M. Chem. Lett. 1984, 437.
(56) Endo, A.; Kajitani, M.; Mukaida, M.; Shimizu, K.; Satô, G. P. Inorg. Chim. Acta 1988, 150, 25.
(57) Hoshino, Y.; Yukawa, Y.; Maruyama, T.; Endo, A.; Shimizu, K.; Satô, G. P. Inorg. Chim. Acta 1990, 174, 41.
(58) Togano, T.; Nagao, N.; Tsuchida, M.; Kumakura, H.; Hisamatsu, K.; Howell, F. S.; Mukaida, M. Inorg. Chim. Acta 1992, 195, 221.
(59) Knowles, T. S.; Howells, M. E.; Howlin, B. J.; Smith, G. W.; Amodio, C. A. Polyhedron 1994, 13, 2197.
(60) Patterson, G. S.; Holm, R. H. Inorg. Chem. 1972, 11, 2285.
(61) Takeuchi, Y.; Endo, A.; Shimizu, K.; Satô, G. P. J. Electroanal. Chem. 1985, 185, 185.
(62) Endo, A.; Shimizu, K.; Satô, G. P. Chem. Lett. 1985, 581.
(63) Kobayashi, T.; Nishina, Y.; Shimizu, K.; Satô, G. P. Chem. Lett. 1988, 1137.
(64) Gilbert, J. D.; Wilkinson, G. J. Chem. Soc. (A) 1969, 1749.
(65) Queirós, M. A. M.; Robinson, S. D. Inorg. Chem. 1978, 17, 310.
(66) Dwyer, F. P.; Goodwin, H. A.; Gyarfas, E. C. Aust. J. Chem. 1962, 16, 42.
(67) Nair, R. B.; Yeung, L. K.; Murphy, C. J. Inorg. Chem. 1999, 38, 2536.
(68) Mukaida, M.; Nomura, T.; Ishimori, T. Bull. Chem. Soc. Jpn. 1975, 48, 1443.
(69) Kasahara, Y.; Hoshino, Y.; Shimizu, K.; Satô, G. P. Chem. Lett. 1990, 381.
(70) Hasegawa, T.; Lau, T. C.; Taube, H.; Schaefer, W. P. Inorg. Chem. 1991, 30, 2921.
(71) Grünwald, G.; Laubender, M.; Wolf, J.; Werner, H. J. Chem. Soc., Dalton Trans. 1998, 833.
(72) Manimaran, T.; Wu, T.-C.; Klobucar, W. D.; Kolich, C. H.; Stahly, G. P. Organometallics 1993, 12, 1467.
(73) Chan, A. S.; Laneman, S. A.; Day, C. X. Inorg. Chim. Acta 1995, 228, 159.
(74) Remita, H.; Brik, M. E.; Daran, J. C.; Delcourt, M. O. J. Organomet. Chem. 1995, 486, 283.
(75) Hashimoto, T.; Endo, A.; Nagao, N.; Satô, G. P. Inorg. Chem. 1998, 37, 5211.
(76) Bennett, M. A.; Chung, G.; Hockless, D. C. R.; Neumann, H.; Willis, A. C. J. Chem. Soc., Dalton Trans. 1999, 3451.
(77) Bennett, M. A.; Neumann, H. unpublished results
(78) Bennett, M. A.; Neumann, H.; Thomas, M.; Wang, X.; Pertici, P.; Salvadori, P.; Vitulli, G. Organometallics 1991, 10, 3237.
(79) Ernst, R. D.; Melendez, E.; Stahl, L.; Ziegler, M. L. Organometallics 1991, 10, 3635.
(80) Melendez, E.; Ilarraza, R.; Yap, G. P. A.; Rheingold, A. L. J. Organomet. Chem. 1996, 522, 1.
(81) Chen, C.-C.; Huang, T.-T.; Lin, C.-W.; Cao, R.; Chan, A. S. C.; Wong, W. T. Inorg. Chim. Acta 1998, 270, 247.
(82) Menglet, D. PhD Thesis, ANU, 1996.
(83) Bennett, M. A.; Heath, G. A.; Hockless, D. C. R.; Kovacik, I.; Willis, A. C. J. Am. Chem. Soc. 1998, 120, 932.
(84) Bennett, M. A.; Heath, G. A.; Hockless, D. C. R.; Kovacik, I.; Willis, A. C. Organometallics 1998, 17, 5867.
(85) Bennett, M. A.; Chung, G.; Neumann, H. unpublished results,

Co-ordination and organometallic chemistry of
bis(β-diketonato)ruthenium(II) complexes

2.1 Synthesis, characterisation and properties of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$

Treatment of $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$ in aqueous THF with freshly activated zinc dust under an ethene atomsphere (3 bar) results in an orange solution after heating to ca. $80^{\circ} \mathrm{C}$ for one hour or less. Removal of THF in vacuo gives an orange sticky residue from which the required complex can be readily extracted with benzene or toluene. An orange crystalline solid is obtained after chromatographing a benzene solution and recrystallisation of the crude material from cold n-pentane. The solid may be handled for several hours in air with no visible signs of decomposition, but it changes to an uncharacterised violet solid after several weeks exposure to air. Using sodium amalgam (ca. 1.5\%) under anhydrous conditions as the reducing agent instead of zinc dust leads to the formation of an unidentified brown insoluble material. The orange solid is formulated as cis-[Ru(acac) $)_{2}\left(\eta^{2}\right.$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$] on the basis of analytical and spectroscopic data, and this formulation has been confirmed by X-ray structural analysis. The yield of the isolated solid is $c a .60 \%$. The bis(ethene) complex forms stable, airsensitive solutions in benzene, toluene and THF but decomposes in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the orange solid are shown in Figures 2.1 and 2.2, respectively. The NMR spectra show two methyl acac singlets $\left[\delta\left({ }^{1} \mathrm{H}\right) 1.82\right.$ and $1.86, \delta\left({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right) 27.5$ and 26.9], one methine acac singlet $\left[\delta\left({ }^{1} \mathrm{H}\right) 5.24, \delta\left({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right)\right.$ 98.0] and two carbonyl acac resonances [$\delta\left({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right) 185.1$ and 186.6], consistent with the presence of the $\operatorname{cis}-\left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\}$ moiety attached to two identical ligands (see p. 25). The ${ }^{1} \mathrm{H}$ NMR spectrum also displays a symmetrical eight proton multiplet between $\delta 3.70-3.85$ which is assigned to the coordinated ethene. The $c a .2 \mathrm{ppm}$ shift of the ethene protons to low frequency compared to free ethene ($\delta 5.24$) is similar to that found for $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{2+}(\delta 3.57)^{1}$ and $\operatorname{cis}-\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\eta^{2-}\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{2+}(\delta 3.81) .{ }^{2}$ The singlet at $\delta 78.2$ in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum (Figure
2.2), which splits into a triplet in the gated ${ }^{13} \mathrm{C}$ NMR spectrum with a C-H coupling constant of 160 Hz , is assigned to the coordinated ethene carbon atoms. The chemical shift for the ethene carbon atoms is similar to that found for cis- $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{2+}(\delta 76.6) .{ }^{2}$ The slight increase observed in the C-H coupling constant from 156.4 Hz for free ethene ${ }^{3}$ is also found for the complexes $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{2+}(\mathrm{JCH}=161.6 \mathrm{~Hz}){ }^{2}\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Rh}\left(\eta^{2-}\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right](\mathrm{JCH}=160 \mathrm{~Hz}),{ }^{4}\left[\mathrm{Rh}(\mathrm{acac})\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right](\mathrm{JCH}=158 \mathrm{~Hz}),{ }^{4}$ and trans-$\left[\mathrm{W}(\mathrm{CO})_{4}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right](\mathrm{JCH}=161 \mathrm{~Hz}) .{ }^{5}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ recorded in the presence of free ethene shows no detectable broadening of the coordinated ethene signals, hence rapid exchange on the NMR timescale at room temperature does not occur. This contrasts with the rapid ethene exchange found for $\left[\mathrm{Rh}(\mathrm{acac})\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ at 25 ${ }^{\circ} \mathrm{C} .{ }^{6}$ The rotation of the ethene ligands will be discussed later.

Figure 2.1: The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{cis}-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ in d_{6}-benzene at $25^{\circ} \mathrm{C}$.

 benzene at $25{ }^{\circ} \mathrm{C}$.

TMS = tetramethylsilane

Thestrongestpeakinthe isotopicpattern of the orange solid was found at m / z 356.0 in the FAB mass spectrum. Sequential loss of ethene results in the appearance of the ions $\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right\}^{+}$and $\left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\}^{+}$, the latter being the most abundant ion detected. The mass to charge ratio and relative abundance of these ions are shown in Table 2.1. The matrix used, in this case (3-nitrophenyl)octyl ether $\left(\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3}\right)$, also reacts with $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$, either in solution or in the gas phase, to form the species $\left\{\operatorname{Ru}(\operatorname{acac})_{2}\left(\eta^{2}-\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3}\right)\right\}^{+}$and $\left\{\mathrm{Ru}(\text { acac })_{2}\left(\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3}\right)\right\}^{+}$.

Table 2.1: FAB mass spectral data of the isolated orange solid cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$.

m / z	Assignment	Relative Intensity (\%)
579.1	$\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3}\right)\right\}^{+}$	2
551.1	$\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{3}\right)\right\}^{+}$	20
356.0	$\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right\}^{+}$	10
328.0	$\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)\right\}^{+}$	23
299.9	$\left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\}^{+}$	100

The IR spectrum shows two strong bands at 1576 and $1515 \mathrm{~cm}^{-1}$ characteristic of bidentate, O-bonded acac. ${ }^{7}$ Since the coordination of an alkene to a metal centre typically lowers the $v(C=C)$ frequency by $70-170$ cm^{-1} compared to the free alkene, ${ }^{8}$ the band due to coordinated ethene is likely to be hidden by the acac bands and cannot be observed. This situation is analogous to that found for the chelating alkene N - and O -donor ligand complexes $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{LL}^{\prime}\right)\right] .{ }^{9}$

The structure of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ has been confirmed by an X ray crystallographic study. The molecular structure and selected metrical parameters are shown in Figure 2.3 and Table 2.2, respectively. Crystal and refinement data, together with the full set of interatomic distances and angles, are given in Appendix A.1. The hydrogen atoms of the ethene groups were located in the difference maps and their coordinates were refined and are also given in Appendix A.1.

The solid state structure of cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ is that of a distorted octahedron with the metal atom at the centre and the two ethene ligands occupying mutually cis coordination sites. The Ru-O distances characterising the coordination of the acetylacetonato anion are in the range $2.055(1)-2.080(1) \AA$. The Ru-C bond distances are 2.183(2) - 2.212(2) \AA. The
$C=C$ distances of the ethene ligands in each molecule were found to be 1.370(3) and 1.353(4) \AA, c.a. $0.02 \AA$ longer than the $C=C$ bond length of free ethene $[1.337(2) \AA$ Å]. All of the ethene hydrogen atoms are symmetrically bent away from the ruthenium centre to form an angle, α, of between 26 to 36°, where α is defined as the angle between the normals to the H-C-H planes. ${ }^{10}$

The ethene ligands of cis-[Ru(acac) $)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)$ 2] are mutually orthogonal in the solid state; the dihedral angle between the planes defined by the atoms $R u(1), C(11)$ and $C(12)$, and $R u(1), C(13)$ and $C(14)$ is 90°. The plane defined by the atoms $\mathrm{Ru}(1), \mathrm{C}(11)$ and $\mathrm{C}(12)$ eclipses that defined by the atoms $\mathrm{Ru}(1), \mathrm{O}(1)$ and $\mathrm{O}(4)$.

Figure 2.3: ORTEP diagram of the molecular structure of $\underline{\text { cis- }\left[R u(a c a c)_{2}\left(\eta^{2-}-2\right.\right.}$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$].

Table 2.2: Selected metrical parameters of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$

Bond Distances (\AA)			
$\mathrm{Ru}(1)-\mathrm{O}(1)$		2.080(1)	
$\mathrm{Ru}(1)-\mathrm{O}(2)$		2.068(1)	
$\mathrm{Ru}(1)-\mathrm{O}(3)$		2.061(1)	
$\mathrm{Ru}(1)-\mathrm{O}(4)$		2.055(1)	
$\mathrm{Ru}(1)-\mathrm{C}(11)$		2.205(2)	
$\mathrm{Ru}(1)-\mathrm{C}(12)$		2.209(2)	
$\mathrm{Ru}(1)-\mathrm{C}(13)$		2.212(2)	
$\mathrm{Ru}(1)-\mathrm{C}(14)$		2.183(2)	
C(11)-C(12)		1.370(3)	
C(13)-C(14)		1.353(4)	
$\mathrm{C}(11)-\mathrm{H}(15)$		0.90(3)	
$\mathrm{C}(11)-\mathrm{H}(16)$		0.89(3)	
$\mathrm{C}(12)-\mathrm{H}(17)$		0.98(2)	
$\mathrm{C}(12)-\mathrm{H}(18)$		0.90(3)	
$\mathrm{C}(13)-\mathrm{H}(19)$		0.88(3)	
$\mathrm{C}(13)-\mathrm{H}(20)$		1.04(3)	
$\mathrm{C}(14)-\mathrm{H}(21)$		0.98(3)	
$\mathrm{C}(14)-\mathrm{H}(22)$		0.95(3)	
Bond Angles (${ }^{\circ}$)			
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	90.32(6)	$\mathrm{C}(11)-\mathrm{Ru}(1)-\mathrm{C}(12)$	36.17(8)
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	85.87(6)	$\mathrm{C}(13)-\mathrm{Ru}(1)-\mathrm{C}(14)$	35.85(9)
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	170.05(5)	$\mathrm{Ru}(1)-\mathrm{C}(11)-\mathrm{H}(15)$	103(2)
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{C}(11)$	111.64(7)	$\mathrm{Ru}(1)-\mathrm{C}(11)-\mathrm{H}(16)$	108(2)
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{C}(12)$	75.63(7)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(15)$	121(2)
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{C}(13)$	98.47(8)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(16)$	123(2)
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{C}(14)$	85.18(8)	$\mathrm{H}(15)-\mathrm{C}(11)-\mathrm{H}(16)$	115(2)
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	81.56(6)	$\mathrm{Ru}(1)-\mathrm{C}(12)-\mathrm{H}(17)$	103(1)
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	79.86(6)	$\mathrm{Ru}(1)-\mathrm{C}(12)-\mathrm{H}(18)$	110(2)
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{C}(11)$	152.77(8)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(17)$	121(2)
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{C}(12)$	160.95(8)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(18)$	120(2)
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{C}(13)$	112.26(8)	$\mathrm{H}(17)-\mathrm{C}(12)-\mathrm{H}(18)$	117(2)
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{C}(14)$	79.25(8)	$\mathrm{Ru}(1)-\mathrm{C}(13)-\mathrm{H}(19)$	105(2)
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(4)$	94.21(6)	$\mathrm{Ru}(1)-\mathrm{C}(13)-\mathrm{H}(20)$	116(1)
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{C}(11)$	84.11(7)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(19)$	117(2)
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{C}(12)$	84.60(8)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(20)$	126(2)
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{C}(13)$	165.35(8)	$\mathrm{H}(19)-\mathrm{C}(13)-\mathrm{H}(20)$	112(2)
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{C}(14)$	158.74(9)	$\mathrm{Ru}(1)-\mathrm{C}(14)-\mathrm{H}(21)$	101(2)
$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{C}(11)$	78.24(7)	$\mathrm{Ru}(1)-\mathrm{C}(14)-\mathrm{H}(22)$	109(2)
$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{C}(12)$	114.29(7)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(21)$	123(2)
$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{C}(13)$	83.92(8)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(22)$	118(2)
$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{C}(14)$	91.35(8)	$\mathrm{H}(21)-\mathrm{C}(14)-\mathrm{H}(22)$	117(2)

2.2 Reactions of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ with SbPh_{3}, and $\mathrm{CH}_{3} \mathrm{CN}$ and with other nitrogen donor ligands.

The coordinated ethene ligands of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ are readily replaced upon addition of one equivalent of SbPh_{3} or $\mathrm{CH}_{3} \mathrm{CN}$ to form yellow or brown, air-stable solid complexes cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right](\mathrm{L}=$ $\mathrm{SbPh}_{3}, \mathrm{CH}_{3} \mathrm{CN}$) in yields of $60-80 \%$. The replacement of one ethene ligand in cis-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ by NH_{3} in THF results in the isolation of the air stable orange solid trans-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ in yields of $c a .60 \%$. The reaction of equimolar amounts of pyridine and cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ in benzene affords a mixture of cis- and trans-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)\right]$ in the ratio of $c a .3: 2$ with a 70% yield. The complex trans-[Ru(acac) $)_{2}\left(\eta^{2}-\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ is insoluble in aromatic hydrocarbons, acetone and ether but is readily soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The pyridine complex trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)\right]$ and the complexes cis-[Ru(acac)$\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{SbPh}_{3}\right.$, $\mathrm{CH}_{3} \mathrm{CN}$) are soluble in aromatic solvents and THF.

The benzene-soluble complex cis-[Ru(acac) $\left.2\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ may be isolated after several weeks from a $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution of trans $-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2-}\right.\right.$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)$] at room temperature or by passing a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of trans-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ through a neutral alumina (Activity III) column. The isomerization of the pyridine analogue trans-[Ru(acac)$)_{2}\left(\eta^{2}-\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)\right]$ to the cis-isomer was found spectroscopically to be quantitative after heating overnight in d_{6}-benzene. Attempts to obtain the pure cis-isomer by heating the mixture in toluene overnight caused partial decomposition with formation of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)_{2}\right]$.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the complexes trans[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{NH}_{3}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ show the expected acac pattern (see p. 25) and are presented in Tables 2.3 and 2.4, respectively. A broad signal in the ${ }^{1} \mathrm{H}$ NMR spectrum for trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ at $\delta 3.05$ is
assigned to the ammine protons. The pyridine protons and carbon atoms are found in the expected regions of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra (see Table 2.3 and 2.4). The protons and carbon atoms of ethene for both complexes appear as a singlet in the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra, respectively (see Table 2.3 and 2.4). The ${ }^{13} \mathrm{C}$ NMR spectrum of trans-[Ru(acac) $)_{2}\left(\eta^{2}\right.$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)$] shows a triplet at $\delta 72.2$ due to the ethene carbon atoms with a C-H coupling constant of 160 Hz , similar to that found for $c i s-\left[R u(a c a c)_{2}\left(\eta^{2-}\right.\right.$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$] (see p.34). The two outside peaks of the triplet appear as doublets with a separation of 3 Hz , but the central peak is not split. The origin of this phenomenon is not known.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data for the complexes cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{SbPh}_{3}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{NH}_{3}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ are shown in Tables 2.3 and 2.4, respectively and are similar to those reported for $c i s-\left[\operatorname{Ru}(a c a c)\left(\eta^{2-}\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{SbPr}^{i_{3}}\right)\right] .{ }^{11}$ The acac protons and carbon atoms show the expected pattern for the coordination of two different ligands to the cis-\{Ru(acac) $\left.)_{2}\right\}$ moiety (see p. 25). The resonance due to the nitrile carbon atom of $\mathrm{CH}_{3} \mathrm{CN}$ could not be detected. The ethene protons of cis-[Ru(acac) $\left.2\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right](\mathrm{L}=$ $\mathrm{SbPh}_{3}, \mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{CN}$) appear as symmetrical multiplets between δ 4.54-3.99. The ${ }^{1} \mathrm{H}$ NMR ethene resonances of the complexes cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]$ ($\mathrm{L}=\mathrm{NH}_{3}, \mathrm{MeCN}, \mathrm{SbPh}_{3}$) at room temperature are very similar to the low temperature spectra found for $\left[\mathrm{Rh}(\mathrm{acac})\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{6}$ and $\left[\mathrm{RhCp}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right](\mathrm{L}$ $\left.=\mathrm{C}_{2} \mathrm{H}_{4},{ }^{6} \mathrm{C}_{2} \mathrm{~F}_{4},{ }^{12} \mathrm{SO}_{2}{ }^{12}\right)$. The ethene protons of cis-[Ru(acac)$)_{2}\left(\eta^{2}\right.$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)$] appear as a singlet at $\delta 4.29$ in d_{6}-benzene and in d_{6}-acetone. The ethene carbon atoms also appear as singlets in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum for all of the complexes. The gated ${ }^{13} \mathrm{C}$ NMR spectra of cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{CH}_{3} \mathrm{CN}, \mathrm{NH}_{3}\right)$ each display a triplet at $\delta 65.9$ and 72.5, respectively, due to the ethene carbon atoms with a $\mathrm{C}-\mathrm{H}$ coupling constant of $c a .161 \mathrm{~Hz}$, which is similar to that found for $c i s-\left[\operatorname{Ru}(\mathrm{acac})_{2}\left(\eta^{2-}\right.\right.$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$] (see p. 33).
Table 2.3: ${ }^{1} H \quad N M R$ spectral data of the mono-ethene complexes $\left[R u(a c a c)_{2}\left(\eta^{2}-C_{2} H_{4}\right)(L)\right]$.

Compound	${ }^{1} \mathrm{H}$ NMR ${ }^{\text {a }}$			Solvent
	CH_{3} (acac)	CH (acac)	Other	
cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]$	$\begin{gathered} 1.81,2.00,2.01 \\ 2.17 \\ \hline \end{gathered}$	5.29, 5.50	$\begin{gathered} 0.59\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CN}\right) \\ 4.44-4.37\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; \end{gathered}$	$\mathrm{C}_{6} \mathrm{D}_{6}$
$c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{SbPh}_{3}\right)\right]$	$\begin{gathered} \hline 1.62, .169,1.74 \\ 2.02 \end{gathered}$	5.15, 5.30	$\begin{gathered} 3.99-4.26\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; \\ 7.67-7.70\left(\mathrm{~m}, 3 \mathrm{H}, o-\mathrm{SbC}_{6} \mathrm{H}_{5}\right) ; \\ 7.00-7.13\left(\mathrm{~m}, 12 \mathrm{H}, m \text { - and } p-\mathrm{SbC}_{6} \underline{\mathrm{H}}_{5}\right) \end{gathered}$	$\mathrm{C}_{6} \mathrm{D}_{6}$
	1.91	5.38	3.05 (b, 3H, NH3 ${ }^{\text {) }}$; 3.70 ($4 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{4}$)	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$
$\frac{\text { trans }-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]}{\left.\text { cis-[Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]}$	$\begin{gathered} \hline 1.97,2.02,2.18 \\ 2.35 \\ \hline \end{gathered}$	$\frac{5.38}{}$	$\begin{gathered} 1.52\left(\mathrm{br}, 3 \mathrm{H}, \mathrm{NH}_{3}\right) \\ 4.1-4.3\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; \end{gathered}$	$\mathrm{C}_{6} \mathrm{D}_{6}$
trans-[Ru(acac) $\left.2\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]$	- 1.80	5.05	$4.29\left(4 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ;$ $8.85\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{HH}} 5 \mathrm{~Hz}, 0-\mathrm{C}_{5} \underline{\mathrm{H}}_{5} \mathrm{~N}\right) ;$ $6.82\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{JHH}_{\mathrm{H}} 7 \mathrm{~Hz}, p-\mathrm{C}_{5} \underline{\mathrm{H}}_{5} \mathrm{~N}\right) ;$ $6.66\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{JHH}_{\mathrm{H}} 7 \mathrm{~Hz}, m-\mathrm{C}_{5} \underline{\mathrm{H}}_{5} \mathrm{~N}\right)$;	$\mathrm{C}_{6} \mathrm{D}_{6}$
cis-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]$	$\begin{gathered} 1.88,1.90,1.94 \\ 1.96 \end{gathered}$	5.32, 5.33	$\begin{gathered} 4.29\left(4 \mathrm{H}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; \\ 6.38\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{HH}} 7 \mathrm{~Hz}, m-\mathrm{C}_{5} \underline{\mathrm{H}}_{5} \mathrm{~N}\right) ; \\ 6.64\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{HH}} 7 \mathrm{~Hz}, p-\mathrm{C}_{5} \underline{\mathrm{H}}_{5} \mathrm{~N}\right) ; \\ 8.53\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{JHH}_{\mathrm{H}} 5 \mathrm{~Hz}, o-\mathrm{C}_{5} \underline{\mathrm{H}}_{5} \mathrm{~N}\right) \end{gathered}$	$\mathrm{C}_{6} \mathrm{D}_{6}$

a) singlets unless otherwise indicated.
Table 2.4: ${ }^{13} C\left\{{ }^{1} H\right\} N M R$ spectral data of the mono-ethene complexes [Ru(acac) $\left.)_{2}\left(\eta^{2}-C_{2} H_{4}\right)(L)\right]$.

Compound	${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ${ }^{\text {a }}$				Solvent
	CH_{3} (acac)	$\mathrm{CH}(\mathrm{acac})$	CO (acac)	Other	
cis-[Ru(acac)2 $\left.\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]$	$\begin{gathered} 27.3,27.7 \\ 27.9,28.2 \end{gathered}$	99.0, 99.1	$\begin{aligned} & 185.5,186.1 \\ & 186.2,187.8 \end{aligned}$	$\begin{gathered} 2.2\left(\mathrm{CH}_{3} \mathrm{CN}\right) ; \\ 72.5\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \end{gathered}$	$\mathrm{C}_{6} \mathrm{D}_{6}$
$c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{SbPh}_{3}\right)\right]$	$\begin{array}{r} \hline 27.4,27.7, \\ 27.9,28.0 \\ \hline \end{array}$	98.6, 100.2	$\begin{aligned} & 185.3,185.8, \\ & 186.8,188.7 \end{aligned}$	$\begin{gathered} 57.9\left(\underline{\mathrm{C}}_{2} \mathrm{H}_{4}\right) ; \\ 128.9,129.6,132.0,136.6\left(\mathrm{Sb}_{6} \mathrm{H}_{5}\right) \end{gathered}$	$\mathrm{C}_{6} \mathrm{D}_{6}$
trans-[Ru(acac) $2\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)$]	27.8	99.6	186.9	$72.2\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$	$\mathrm{CD}_{2} \mathrm{Cl}_{2}$
$c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$	$\begin{array}{r} 27.4,27.7 \\ 28.0,28.1 \end{array}$	98.9, 99.1	$\begin{gathered} 184.0,185.5 \\ 185.6,189.1 \end{gathered}$	$65.9\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$	$\mathrm{C}_{6} \mathrm{D}_{6}$
trans-[Ru(acac) $\left.\left.2^{(} \eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]$	27.7	99.5	186.0	$\begin{gathered} 75.4\left(\underline{\mathrm{C}}_{2} \mathrm{H}_{4}\right) ; \\ 123.6,136.7,151.9\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right) ; \end{gathered}$	$\mathrm{C}_{6} \mathrm{D}_{6}$
$c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]$	$\begin{aligned} & \hline 27.6,27.9 \\ & 28.1,28.4 \\ & \hline \end{aligned}$	99.2, 99.3	$\begin{aligned} & 185.0,185.8 \\ & 186.4,187.6 \end{aligned}$	$\begin{gathered} 73.1\left(\underline{\mathrm{C}}_{2} \mathrm{H}_{4}\right) ; \\ 123.3,134.3,153.6\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right) \end{gathered}$	$\mathrm{C}_{6} \mathrm{D}_{6}$

a) all singlets
Table 2.5: $I R$ and $M S$ data of the isolated mono-ethene complexes [Ru(acac) $\left.2_{2}\left(\eta^{2}-C_{2} H_{4}\right) L\right]$.

Compound	Infrared Data (KBr) $\left(\mathrm{cm}^{-1}\right)$		FAB MS		
	v (acac)	Other	m / z	Relative Abundance	Assigment
cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]$	1571, 15.18	$2262 v(C \equiv N)$	$\begin{aligned} & 369.0 \\ & 340.9 \\ & 299.9 \end{aligned}$	$\begin{gathered} 23 \\ 54 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} \left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right\}^{+} \\ \left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right\}^{+} \\ \left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\}^{+} \\ \hline \end{gathered}$
cis-[Ru(acac) $\left.\left.)^{(} \eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{SbPh}_{3}\right)\right]$	1568, 1514		$\begin{gathered} 1005.9 \\ 679.9 \\ 653.9 \\ 552.9 \\ 299.9 \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ 19 \\ 100 \\ 25 \\ 97 \\ \hline \end{gathered}$	$\begin{gathered} \left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{SbPh}_{3}\right)_{2}\right\}^{+} \\ \left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{SbPh}_{3}\right)\right\}^{+} \\ \left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{SbPh}_{3}\right)\right\}^{+} \\ \left\{\mathrm{Ru}(\mathrm{acac})\left(\mathrm{SbPh}_{3}\right)\right\}^{+} \\ \left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\}^{+} \\ \hline \end{gathered}$
trans-[Ru(acac) $\left.2^{(} \eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)$]	1567, 1510	3335 v (NH)	$\begin{aligned} & 345.0 \\ & 317.0 \\ & 299.9 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 45 \\ 77 \\ 100 \\ \hline \end{gathered}$	$\begin{gathered} \left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right\}^{+} \\ \left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{NH}_{3}\right)\right\}^{+} \\ \left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\}^{+} \\ \hline \end{gathered}$
$c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right.$]	1566, 1510	3334 v(NH)	$\begin{aligned} & \hline 345.0 \\ & 317.0 \\ & 300.0 \\ & \hline \end{aligned}$	$\begin{gathered} 92 \\ 100 \\ 87 \\ \hline \end{gathered}$	$\begin{gathered} \left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right\}^{+} \\ \left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{NH}_{3}\right)\right\}^{+} \\ \left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\}^{+} \end{gathered}$
trans-[Ru(acac) $\left.2\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]$	1565, 1515	$\begin{gathered} 1547 \\ v\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right) \end{gathered}$	$\begin{aligned} & 407.1 \\ & 379.1 \\ & 300.1 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 9 \\ 100 \\ 85 \\ \hline \end{gathered}$	$\begin{gathered} \left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)\right\}^{+} \\ \left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)\right\}^{+} \\ \left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\}^{+} \\ \hline \end{gathered}$

All the isolated complexes $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{SbPh}_{3}, \mathrm{CH}_{3} \mathrm{CN}\right.$, $\mathrm{NH}_{3}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$) display parent ion molecular peaks in the FAB mass spectra. Ion peaks corresponding to the species $\left\{\mathrm{Ru}\left(\mathrm{acac}_{2}\right)_{2}\right\}^{+}$and $\left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\}^{+}$were also found, in higher relative abundance (see Table 2.5). The IR spectra of the complexes display strong bands in the region $1571-1510 \mathrm{~cm}^{-1}$, characteristic of bidentate, O-bonded acac (see Table 2.5). ${ }^{7}$ The acetonitrile complex displays a medium intensity band at $2262 \mathrm{~cm}^{-1}$ assigned to the $v(\mathrm{C} \equiv \mathrm{N})$ stretch of an aliphatic nitrile coordinated to a metal via the nitrogen atom. ${ }^{7}$ Both $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ complexes display a medium band at ca. $3335 \mathrm{~cm}^{-1}$ due to the antisymmetric $v(\mathrm{NH})$ mode and in the case of the cis-isomer, a band of medium intensity was found at $1626 \mathrm{~cm}^{-1}$ due to the degenerate NH_{3} deformation $\delta_{\mathrm{a}}(\mathrm{HNH}) .{ }^{7}$ The isolated pyridine complex shows a band at $1547 \mathrm{~cm}^{-1}$ which is presumably due to a "breathing" vibration of the coordinated pyridine since free pyridines have four such vibrations in the region $1610-1400 \mathrm{~cm}^{-1} .{ }^{13}$

equivalent of a tertiary phosphine

The reactions of one equivalent of various tertiary phosphines with cis-[Ru(acac) $\left.)_{2}\left(\eta^{2} \text {-alkene }\right)_{2}\right]$ (alkene $\left.=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{8} \mathrm{H}_{14}\right)$ in THF, containing a small amount of d_{8}-toluene, were investigated by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectroscopy at $c a$. $-35{ }^{\circ} \mathrm{C}$. The first detectable signals in the case of the tertiary phosphines $\mathrm{PPhMe}_{2}, \mathrm{PPh}_{3}$ and $\mathrm{P}(p \text {-tolyl })_{3}$ were singlets at $\delta 17.3,34.8$ and 32.8 , respectively, which correspond to trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]\left(\mathrm{L}=\mathrm{PPhMe}_{2}, \mathrm{PPh}_{3}\right.$ and $\left.\mathrm{P}(p \text {-tolyl })_{3}\right){ }^{14}$ Warming the PPhMe_{2} reaction solution to room temperature results in the isomerization of trans-[Ru(acac) $\left.)_{2}\left(\mathrm{PPhMe}_{2}\right)_{2}\right]$ to cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPhMe}_{2}\right)_{2}\right]$. No other product was detected by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy apart from free PPhMe_{2} still present in solution. On warming the PPh_{3} or $\mathrm{P}(p \text {-tolyl })_{3}$ mixtures to room temperature a singlet at $c a . \delta+54.7$, probably due to either cis-[Ru(acac) $\left.)_{2} \mathrm{~L}_{2}\right]^{14}$ or $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right][\mathrm{L}=$
$\mathrm{PPh}_{3}, \mathrm{P}(p \text {-tolyl })_{3}$] (see below), and a weak singlet at $c a . \delta+83.9$ are observed. The latter peak was the only signal observed when a large excess (ten equivalents) of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]$ was added to a solution of PPh_{3} in THF at room temperature. It may be due to a square-pyramidal fivecoordinate species $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}\right]$ in which the phosphorus atom occupies the apical position or, perhaps more likely, a six-coordinate solvento-complex trans-[Ru(acac) $\left.{ }_{2} \mathrm{~L}(\mathrm{THF})\right]$. Similarly deshielded ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ chemical shifts were found for the apical phosphine of the five-coordinate complexes $\left[\mathrm{RuX}\left(\mathrm{NN}^{\prime} \mathrm{N}\right)\left(\mathrm{PPh}_{3}\right)\right][\mathrm{OTf}]\left(\mathrm{X}=\mathrm{Cl}, \mathrm{OTf} ; \mathrm{NN}^{\prime} \mathrm{N}=2,6\right.$-bis[(dimethylamino)methyl]pyridine), ${ }^{15}\left[\mathrm{Ru}\left(\mathrm{N}\left(\mathrm{S}\left(\mathrm{PR}_{2}\right)_{2}\right)\left(\mathrm{PPh}_{3}\right)\right]\left(\mathrm{R}=\mathrm{Ph}, \mathrm{Pr}^{\mathrm{i}}\right)\right.$, ${ }^{16}$ the square pyramidal complexes $\left[\mathrm{RuCl}_{2}\left(\mathrm{PR}_{3}\right)_{3}\right]\left(\mathrm{R}=\mathrm{Ph}^{17} p\right.$-tolyl $\left.{ }^{18}\right)$ and for the PPh_{3} of $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{dppm}\right.$, dppe and dppp). ${ }^{19}$

The behaviour of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ with one equivalent of the sterically more demanding tertiary phosphines $\operatorname{PPr}^{i}{ }_{3}$ and PCy_{3} was also followed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy under the conditions outlined above i.e. in THF. The first detectable product from the reaction of cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right.$] with one equivalent of $\mathrm{PPr}^{i_{3}}$ corresponds to trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i}\right)_{2}\right]\left(\delta=29.6\right.$, see p. 64). Warming the solution to $\mathrm{ca} .10^{\circ} \mathrm{C}$ results in the loss of the peak due to trans- $\left[\operatorname{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}_{3}\right)_{2}\right]$ and the generation a singlet at $\delta+87.3$ possibly due to $\left[R u(a c a c) 2\left(\operatorname{PPr}_{3}{ }_{3}\right)(T H F)\right]$ (see above and p. 66), $\delta+50.5$ presumably due to $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\operatorname{PPr}^{i}{ }_{3}\right)\right]$ (see below), a peak at $\delta+47.7$ due to small amount of $\left.c i s-\left[R u(a c a c)_{2}\left(\operatorname{PPr}^{i}\right)_{3}\right)_{2}\right]$, and a peak at $\delta+19.2$ due to free $\operatorname{PPr}^{i_{3}}$.

On addition of one equivalent of PCy_{3} to $\mathrm{cis}-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ in THF at ca. $-35^{\circ} \mathrm{C}$ singlets at $\delta+21.0$ due to an unknown species and at +8.9 due to free $\mathrm{PCy3}$ still present are observed. Warming the solution to $\mathrm{ca} .0^{\circ} \mathrm{C}$ causes the almost quantitative formation after 30 minutes of a P-containing species giving rise to a singlet at $c a . \delta+74.7$. This species may be the corresponding square pyramidal five-coordinate species $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{PCy})\right]$ or
the six-coordinate trans-[Ru(acac) $\left.)_{2}\left(\mathrm{PCy}_{3}\right)(\mathrm{THF})\right]$ (see p. 67). Further warming of the sample to ca. $+25^{\circ} \mathrm{C}$ forms a new species which gives a singlet at ca. δ +39.7 which is probably to $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{PCy})\right]$ (see below).

To study the effect of solvent, the reaction of one equivalent of a tertiary phosphine $\left(\mathrm{PPh}_{3}, \mathrm{PPr}_{3}{ }_{3}\right.$ and $\left.\mathrm{PCy}_{3}\right)$ with cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ in d_{6}-benzene was also followed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR spectroscopy at room temperature. Replacement of the coordinated ethene ligands appears to be slower in aromatic solvents than in THF. Under these conditions, the only resonances observed in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra are singlets at $\delta+54.7,+50.5$ and +40.0 for $\mathrm{PPh}_{3}, \mathrm{PPr}_{3}{ }_{3}$ and PCy_{3}, respectively. The ${ }^{1} \mathrm{H}$ NMR spectrum of the product isolated from the reaction of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ and $\operatorname{PPr}^{i}{ }_{3}$ is shown in Figure 2.4. The ${ }^{1} \mathrm{H}$ NMR spectral data for these mixtures are almost the same as for the isolated solids (see p. 46) shown in Table 2.6. All these mixtures exhibit the expected acac pattern in the ${ }^{1} \mathrm{H}$ NMR spectrum for two different ligands coordinated to the $\operatorname{cis}-\left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\}$ moiety. A four proton symmetrical multiplet was observed between $\delta\left({ }^{1} \mathrm{H}\right) 3.7-4.8$ which in each case is assigned to the ethene protons, the splitting pattern being similar to that previously observed for the isolated complexes cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{NH}_{3}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{SbPh}_{3}\right)$. Thus, the products from the reaction of one equivalent of the tertiary phosphines ($\mathrm{PPh}_{3}, \mathrm{PPr}^{i_{3}}$ and PCy$)$ with cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ in d_{6}-benzene are the mono-alkene complexes cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PR}_{3}\right)\right]\left(\mathrm{R}=\mathrm{Ph}, \mathrm{Pr}^{i}, \mathrm{Cy}\right)$.

The formation of trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ from the reaction of one equivalent of a tertiary phosphine L with $\left.c i s-[\operatorname{Ru}(a c a c))_{2}\left(\eta^{2} \text {-alkene }\right)_{2}\right]$ (alkene $\left.=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{8} \mathrm{H}_{14}\right)$ in THF at low temperatures indicates that the second alkene is replaced more rapidly than the first. Stabilisation of the square planar five-coordinate intermediate [$\left.\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}\right]$ by THF allows a second equivalent of L to react to form trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$, which generally precipitates from solution. This five coordinate intermediate is not stabilised in non-
Table 2.6: ${ }^{1} H$ NMR spectral data of the mono-ethene phosphine complexes $\underline{c i s}-\left[R u(a c a c)_{2}\left(\eta^{2}-C_{2} H_{4}\right) L\right]$.

Compound	${ }^{1} \mathrm{H}$ NMR ${ }^{\text {a }}$		
	CH_{3} (acac)	CH (acac)	Other
cis-[Ru(acac)2 $\left.\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)\right]$	$\begin{gathered} 1.62,1.64,1.88, \\ 1.96 \end{gathered}$	5.07, 6.45	$\begin{gathered} 3.63-4.33\left(4 \mathrm{H}, \mathrm{~m}, \mathrm{C}_{2} \mathrm{H}_{4}\right) ; \\ 7.62-7.68\left(\mathrm{~m}, 3 \mathrm{H}, o-\mathrm{C}_{6} \mathrm{H}_{5}\right) ; \\ 7.04-7.06\left(\mathrm{~m}, 12 \mathrm{H}, m, p-\mathrm{C}_{6} \underline{H}_{5}\right) \end{gathered}$
cis-[Ru(acac) $\left.2\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}^{i} 3\right)\right]$	$\begin{gathered} 1.84,1.86,1.88 \\ 1.94 \end{gathered}$	5.30, 5.35	$\begin{gathered} \text { 1.08, } \left.1.23 \text { (both dd, } 18 \mathrm{H}, J_{\mathrm{PH}} 12 \mathrm{~Hz}, J_{\mathrm{HH}} 7.2 \mathrm{~Hz}, \mathrm{CHCH}_{3}\right) ; \\ 2.45\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right) ; \\ 4.00-4.60\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{2} \underline{\mathrm{H}}_{4}\right) \end{gathered}$
cis-[Ru(acac) $\left.2\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PCy}_{3}\right)\right]$	$\begin{gathered} 1.83,1.86,1.87 \\ 1.98 \end{gathered}$	5.30, 5.40	$\begin{gathered} \hline 2.25-1.10\left(\mathrm{~b}, 33 \mathrm{H}, \mathrm{C}_{6} \underline{\mathrm{H}}_{11}\right) ; \\ 3.78-4.38,\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{2} \underline{\mathrm{H}}_{4}\right) \end{gathered}$

a) measured in d_{6}-benzene; singlets unless otherwise indicated.
Table 2.7: IR and MS data of the isolated mono-ethene complexes [Ru(acac) $\left.)_{2}\left(\eta 2-C_{2} H_{4}\right) L\right]$.

Compound	Infrared Data (KBr) $\left(\mathrm{cm}^{-1}\right)$	FAB MS		
	v (acac)	m / z	Relative Abundance	Assigment
$c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}^{i} 3\right)\right]$	1583, 1514	$\begin{aligned} & 460.1 \\ & 359.1 \\ & 300.0 \end{aligned}$	$\begin{gathered} 100 \\ 10 \\ 17 \\ \hline \end{gathered}$	$\begin{gathered} \left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}_{3}{ }_{3}\right)\right\}^{+} \\ - \\ \left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\}^{+} \\ \hline \end{gathered}$
cis-[Ru(acac) $2\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{PCy})$]	1585, 1512	$\begin{aligned} & 860.5 \\ & 580.3 \\ & 479.2 \\ & 375.1 \end{aligned}$	$\begin{gathered} \hline 2 \\ 100 \\ 19 \\ 18 \end{gathered}$	$\begin{aligned} & \left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right\}^{+} \\ & \left\{\mathrm{Ru}(\text { acac })_{2}\left(\mathrm{PCy}_{3}\right)\right\}^{+} \end{aligned}$

Table 2.8: ${ }^{13} C\left\{{ }^{1} H\right\}$ and ${ }^{31} P\left\{{ }^{1} H\right\} N M R$ spectral data of the mono-ethene phosphine complexes cis- $\left[R u(a c a c)_{2}\left(\eta^{2}-C_{2} H_{4}\right) L\right]$.

Compound	${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ${ }^{\text {a }}$				${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ${ }^{a}$
	CH_{3} (acac)	CH (acac)	CO (acac)	Other	
$c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)\right]$	$\begin{gathered} \hline 27.3,28.0,28.2, \\ 28.3\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}} 6.0 \mathrm{~Hz}\right) \end{gathered}$	98.9,99.2	$\begin{gathered} 184.2,185.8,186.0 \\ 186.8 \end{gathered}$	$69.3\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$	+54.7
cis-[Ru(acac) $\left.2\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}^{i} 3\right)\right]$	27.2, 27.5, 28.1 (d, $\left.J_{\mathrm{PC}} 5.6 \mathrm{~Hz}\right), 28.3$	98.1,99.8	$\begin{gathered} 184.7,185.0,185.5 \\ \text { (d, JPC } 2.2 \mathrm{~Hz} \text {), } \\ 187.7 \\ \hline \end{gathered}$	$\begin{gathered} 19.4,19.0\left(\mathrm{PCHCH}_{3}\right) ; \\ 24.8\left(\mathrm{~d}, \mathrm{JPC}_{\mathrm{PC}} 19 \mathrm{~Hz}, \mathrm{PCHCH} 3\right) ; \\ 69.6\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \end{gathered}$	+50.5
$c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PCy}_{3}\right)\right]$	27.6, 27.7, 28.1 (d, $\left.J_{\mathrm{PC}} 5.6 \mathrm{~Hz}\right), 28.4$	98.2,99.8	$\begin{gathered} 184.5,184.9,185.6 \\ \left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}} 2.2 \mathrm{~Hz}\right) \\ 187.7 \end{gathered}$	$\begin{gathered} \hline 27.2,28.5,28.6,28.7,28.9,29.2 \\ \left.\operatorname{PCH}\left(\mathrm{CH}_{2}\right)_{5}\right) ; \\ 35.4\left(\mathrm{~d}, \mathrm{JPC} 19 \mathrm{~Hz}, \mathrm{P} \underline{C}\left(\mathrm{CH}_{2}\right)_{5}\right) ; \\ 69.5\left(\underline{\mathrm{C}}_{2} \mathrm{H}_{4}\right) \end{gathered}$	+40.0

a) measured in d_{6}-benzene; singlets unless otherwise indicated.
coordinating solvents, such as benzene or toluene, and presumably recoordinates ethene to form $\operatorname{cis}-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]$.

Figure 2.4: ${ }^{1} H$ NMR spectrum of the isolated complex cis-[Ru(acac) $)_{2}\left(\eta^{2-}\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}_{3}{ }_{3}\right)\right]\left(d_{8}\right.$-toluene $)$.

On a preparative scale, the addition of one equivalent of the tertiary phosphines $\mathrm{PPh}_{3}, \mathrm{PPr}_{3}{ }_{3}$ and PCy_{3} to a solution of cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ in benzene (or toluene) resulted in a colour change from yellow to orange after several hours. In the case of the reaction of PPh_{3}, the orange solid trans[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ precipitated from solution, presumably having been formed as a result of disproportionation of initially formed cis-[Ru(acac) $)_{2}\left(\eta^{2}-\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPh}_{3}\right)\right]$. The reaction with the phosphines $\mathrm{PPr}^{i_{3}}$ and PCy 3 affords the mono-ethene complexes as red crystalline and yellow microcrystalline solids, respectively, in yields of ca. 65-70\%.

The most abundant ion peak detected in FAB mass spectra of the isolated complexes cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PR}_{3}\right)\right]\left(\mathrm{R}=\mathrm{Pr}^{i}, \mathrm{Cy}\right)$ corresponds to the molecular fragment $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PR}_{3}\right)\right]^{+}(\mathrm{m} / \mathrm{z} 580.3$ for $\mathrm{R}=\mathrm{Cy}$ and 460.1 for $\left.R=\operatorname{Pr}^{i}\right)$. The peaks associated with the parent compound $\left[\operatorname{Ru}(\operatorname{acac})_{2}\left(\eta^{2}\right.\right.$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PR}_{3}\right)$] were not detected and peaks associated with the complexes $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]$ were either not detected or were in very low abundance (see Table 2.7). For these complexes, it appears that the ethene ligand is only weakly coordinated to the metal centre. The IR spectra (KBr disc) of the solids display two strong broad bands in the region ca. 1583 and $c a .1514 \mathrm{~cm}^{-1}$, characteristic of bidentate, O-bonded acac. ${ }^{7}$ The band due to the $v(C=C)$ frequency could not be detected, presumably being hidden by the intense bands of the acac ligands (see p. 35).

The ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the isolated solids were identical with those of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PR}_{3}\right)\right]\left(\mathrm{R}=\mathrm{Pr}^{i}, \mathrm{Cy}\right)$ measured in situ (see p. 46 and 48). The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data for the complexes cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PR}_{3}\right)\right]\left(\mathrm{R}=\mathrm{Pr}^{i}, \mathrm{Cy}\right)$ are shown in Table 2.8. A triplet at δ 69.6 in the gated ${ }^{13} \mathrm{C}$ NMR spectrum for cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}^{i}{ }_{3}\right)\right]$ has a C-H coupling constant of 160 Hz in the proton coupled spectrum and is assigned to the ethene carbon atoms. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PCy}_{3}\right)\right]$ in THF shows two singlets of equal intensity at δ 39.8 and 75.1 after ca. 48 hours (see p. 44 and 67).

> 2.4 Solid State Structures of trans- $\left[\mathrm{Ru}(a \mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)\right]$ and cis$$
\left[\mathrm{Ru}(a c a c)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) L\right]\left(L=\mathrm{NH}_{3}, \mathrm{PPr}^{i}{ }_{3}, P C y_{3}\right)
$$

The molecular structures of the complexes trans-[Ru(acac) $)_{2}\left(\eta^{2}\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)\right]$ and $\operatorname{cis}-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{NH}_{3}, \mathrm{PPr}^{i}{ }_{3}, \mathrm{PCy}\right)$ were confirmed by single crystal X-ray cystallography and are shown in Figures 2.5 - 2.8. In each case, the metal atom occupies the centre of a distorted octahedron. Selected metrical parameters for these complexes are shown in

Tables 2.9-2.12. Crystal and refinement data of trans-[Ru(acac)2 $\left(\eta^{2-}\right.$
$\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)\right]$ and $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{NH}_{3}, \mathrm{PPr}_{3}{ }_{3}, \mathrm{PCy} 3\right)$, together with the full set of interatomic distances and angles, are given in Appendices A. 2 - A.5. Two crystallographically different molecules were found in the unit cell of cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\operatorname{PPr}_{3}{ }_{3}\right)\right.$.

The complexes trans-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)\right]$ and cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PCy}_{3}\right)\right]$ show disorder arising from two different orientations of the coordinated ethene in the crystal.

The Ru-O distances characterising the coordination of the acetylacetonato anion were usually found in the expected range of 2.05-2.08 \AA, although a slight lengthening of up to $c a .0 .03 \AA$ was found for the $\mathrm{Ru}-\mathrm{O}$ distances trans to the ethene ligand of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ and the phosphorus atoms of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PR}_{3}\right)\right]\left(\mathrm{R}=\operatorname{Pr}^{i}, \mathrm{Cy}\right)$. The $\mathrm{Ru}-\mathrm{N}$ distances of trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)\right]$ and cis-[Ru(acac)$)_{2}\left(\eta^{2-}\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ were $c a .2 .10 \AA$; the Ru-P distances of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PR}_{3}\right)\right]\left(\mathrm{R}=\mathrm{Pr}^{i}, \mathrm{Cy}\right)$ were ca. $2.33 \AA$ and differed by ca. $0.03 \AA$ between the two complexes.

For all four structures, the carbon-carbon bond length of the coordinated ethene is only $c a .0 .02 \AA$ longer than the $C=C$ bond length of free ethene (1.337(2) \AA). The $C=C$ vector for the ethene group of cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2-}\right.\right.$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)$] eclipses the plane defined by the atoms $\mathrm{Ru}(1), \mathrm{O}(2)$ and $\mathrm{N}(1)$, whereas for cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}_{3}{ }^{i}\right)\right]$, the $\mathrm{C}=\mathrm{C}$ vector eclipses the plane defined by the atoms $\mathrm{Ru}(1), \mathrm{O}(1)$ and $\mathrm{O}(3)$. In the structures trans-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)\right]$ and $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{PCy})\right]$, the $\mathrm{C}=\mathrm{C}$ vectors for the mutually orthogonal orientations of the ethene groups eclipse the Ru-O bonds and, in the case of the tricyclohexylphosphine complex, the minor ethene conformation eclipses the plane defined by atoms $\mathrm{Ru}(1), \mathrm{P}(1)$ and $\mathrm{O}(2)$. The $\mathrm{Ru}-\mathrm{C}$ distances for these mono-ethene complexes range from ca. $2.15 \AA$ for the ammine complex to ca. $2.19 \AA$ for the minor conformer of the tricyclohexylphosphine complex.

Figure 2.5: ORTEP diagram of the molecular structure of trans-[Ru(acac) $)_{2}\left(\eta^{2-}\right.$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$] showing only the major conformation of the disordered ethene group.

Figure 2.6: ORTEP diagram of the molecular structure of $\underline{\text { cis- }-\left[R u(a c a c)_{2}\left(\eta^{2}-~\right.\right.}$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$.

Table 2.9: Selected metrical parameters of trans- $\left[\mathrm{Ru}(a \mathrm{cac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]$.

Bond Distances $(\AA \AA)$			
$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.054(2)$	$\mathrm{Ru}(1)-\mathrm{C}(111)$	$2.164(8)^{*}$
$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.046(2)$	$\mathrm{Ru}(1)-\mathrm{C}(120)$	$2.179(5)$
$\mathrm{Ru}(1)-\mathrm{O}(3)$	$2.063(2)$	$\mathrm{Ru}(1)-\mathrm{C}(121)$	$2.179(8)^{*}$
$\mathrm{Ru}(1)-\mathrm{O}(4)$	$2.051(2)$	$\mathrm{C}(110)-\mathrm{C}(111)$	$0.73(2)$
$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.095(3)$	$\mathrm{C}(110)-\mathrm{C}(120)$	$1.35(1)$
$\mathrm{Ru}(1)-\mathrm{C}(110)$	$2.171(5)$	$\mathrm{C}(111)-\mathrm{C}(121)$	$1.39(3)$
B			
Angles $\left(^{\circ}\right)$			
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$93.58(9)$	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$85.78(9)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$169.72(9)$	$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$88.2(1)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$85.65(9)$	$\mathrm{C}(110)-\mathrm{Ru}(1)-\mathrm{C}(120)$	$36.1(3)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$83.96(9)$	$\mathrm{C}(111)-\mathrm{Ru}(1)-\mathrm{C}(121)$	$37.3(7)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$86.76(8)$	$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{C}(110)$	$163.2(2)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$176.22(9)$	$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{C}(111)$	$165.8(5)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$88.0(1)$	$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{C}(120)$	$160.6(2)$
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$93.34(8)$	$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{C}(121)$	$156.7(5)$

${ }^{*}$) restrained during refinement.

Table 2.10: Selected metrical parameters of $\underline{\text { cis-}}\left[\mathrm{Ru}(a \mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$.

Bond Distances (Å)			
$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.052(2)$	$\mathrm{Ru}(1)-\mathrm{C}(12)$	$2.151(3)$
$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.066(2)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.356(4)$
$\mathrm{Ru}(1)-\mathrm{O}(3)$	$2.048(2)$	$\mathrm{C}(11)-\mathrm{H}(18)$	$0.94(3)$
$\mathrm{Ru}(1)-\mathrm{O}(4)$	$2.092(2)$	$\mathrm{C}(11)-\mathrm{H}(19)$	$1.06(3)$
$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.108(2)$	$\mathrm{C}(12)-\mathrm{H}(20)$	$0.96(3)$
$\mathrm{Ru}(1)-\mathrm{C}(11)$	$2.147(3)$	$\mathrm{C}(12)-\mathrm{H}(21)$	$0.97(3)$
B Bond Angles $\left({ }^{\circ}\right)$			
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$93.07(6)$	$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{C}(12)$	$79.2(1)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$176.67(6)$	$\mathrm{Ru}(1)-\mathrm{C}(11)-\mathrm{H}(18)$	$110(2)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$88.28(6)$	$\mathrm{Ru}(1)-\mathrm{C}(11)-\mathrm{H}(19)$	$110(2)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$89.74(8)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(18)$	$121(2)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$90.18(6)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(19)$	$119(1)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$83.68(6)$	$\mathrm{H}(18)-\mathrm{C}(11)-\mathrm{H}(19)$	$115(2)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$165.43(8)$	$\mathrm{Ru}(1)-\mathrm{C}(12)-\mathrm{H}(20)$	$113(2)$
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$92.79(6)$	$\mathrm{Ru}(1)-\mathrm{C}(12)-\mathrm{H}(21)$	$109(2)$
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$87.29(7)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(20)$	$125(2)$
$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$82.12(8)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(21)$	$118(2)$
$\mathrm{C}(11)-\mathrm{Ru}(1)-\mathrm{C}(12)$	$36.8(1)$	$\mathrm{H}(20)-\mathrm{C}(12) \mathrm{H}(21)$	$111(3)$
$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{C}(11)$	$116.0(1)$		

Figure 2.7: ORTEP diagram of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-C_{2} H_{4}\right)\left(P P^{i}{ }_{3}\right)\right]$.

Figure 2.8: ORTEP diagram of the molecular structure of cis-[Ru(acac) $\mathbf{2}_{2}\left(\eta^{2-}\right.$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PC}_{3}\right)$] showing only the major conformation of the disordered ethene group.

Table 2.11: Selected metrical parameters of $\underline{\text { cis-}}\left[\mathrm{Ru}(a c a c)_{2}\left(\eta^{2}-C_{2} H_{4}\right)\left(P \operatorname{Pr}^{i}{ }_{3}\right)\right]$

Bond Distances (\AA)			
$\mathrm{Ru}(1)-\mathrm{O}(1)$	2.079(3)	$\mathrm{Ru}(2)-\mathrm{O}(5)$	2.082(3)
$\mathrm{Ru}(1)-\mathrm{O}(2)$	2.077(3)	$\mathrm{Ru}(2)-\mathrm{O}(6)$	2.079(3)
$\mathrm{Ru}(1)-\mathrm{O}(3)$	2.071(3)	$\mathrm{Ru}(2)-\mathrm{O}(7)$	2.064(3)
$\mathrm{Ru}(1)-\mathrm{O}(4)$	2.094(3)	$\mathrm{Ru}(2)-\mathrm{O}(8)$	2.089(3)
$\mathrm{Ru}(1)-\mathrm{P}(1)$	2.321 (1)	$\mathrm{Ru}(2)-\mathrm{P}(2)$	2.322(1)
$\mathrm{Ru}(1)-\mathrm{C}(11)$	2.172 (5)	$\mathrm{Ru}(2)-\mathrm{C}(32)$	$2.180(6)$
$\mathrm{Ru}(1)-\mathrm{C}(12)$	$2.181(5)$	$\mathrm{Ru}(2)-\mathrm{C}(33)$	$2.185(5)$
$\mathrm{C}(11)$-C(12)	1.350(9)	C(32)-C(33)	1.350(9)
Bond Angles (${ }^{\circ}$)			
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	89.1(1)	$\mathrm{O}(5)-\mathrm{Ru}(2)-\mathrm{O}(6)$	89.5(1)
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	167.4(1)	$\mathrm{O}(5)-\mathrm{Ru}(2)-\mathrm{O}(7)$	168.1(1)
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	81.4(1)	$\mathrm{O}(5)-\mathrm{Ru}(2)-\mathrm{O}(8)$	81.4(1)
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)$	95.68(9)	$\mathrm{O}(5)-\mathrm{Ru}(2)-\mathrm{P}(2)$	95.93(9)
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	79.9(1)	$\mathrm{O}(6)-\mathrm{Ru}(2)-\mathrm{O}(7)$	80.3(1)
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	85.4(1)	$\mathrm{O}(6)-\mathrm{Ru}(2)-\mathrm{O}(8)$	84.7(1)
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{P}(1)$	91.63(9)	$\mathrm{O}(6)-\mathrm{Ru}(2)-\mathrm{P}(2)$	91.14(9)
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(4)$	91.6(1)	$\mathrm{O}(7)-\mathrm{Ru}(2)-\mathrm{O}(8)$	91.5(1)
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{P}(1)$	90.70(9)	$\mathrm{O}(7)-\mathrm{Ru}(2)-\mathrm{P}(2)$	90.48(9)
$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{P}(1)$	175.9(1)	$\mathrm{O}(8)-\mathrm{Ru}(2)-\mathrm{P}(2)$	175.01(9)
$\mathrm{C}(11)-\mathrm{Ru}(1)-\mathrm{C}(12)$	36.1(2)	$\mathrm{C}(32)-\mathrm{Ru}(2)-\mathrm{C}(33)$	36.0(2)
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{C}(11)$	99.7(2)	$\mathrm{P}(2)-\mathrm{Ru}(2)-\mathrm{C}(32)$	100.5(2)
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{C}(12)$	91.3(2)	$\mathrm{P}(2)-\mathrm{Ru}(2)-\mathrm{C}(33)$	91.0(2)

Bond Distances (\AA)							
$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.06(2)$	$\mathrm{Ru}(1)-\mathrm{C}(121)$	$2.148(2)$				
$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.10(2)$	$\mathrm{C}(110)-\mathrm{C}(111)^{*}$	1.005				
$\mathrm{Ru}(1)-\mathrm{O}(3)$	$2.07(2)$	$\mathrm{C}(110)-\mathrm{C}(120)^{*}$	1.344				
$\mathrm{Ru}(1)-\mathrm{O}(4)$	$2.074(18)$	$\mathrm{C}(110)-\mathrm{C}(121)^{*}$	0.987				
$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.356(7)$	$\mathrm{C}(111)-(\mathrm{C} 120)^{*}$	1.097				
$\mathrm{Ru}(1)-\mathrm{C}(110)$	$2.167(2)$	$\mathrm{C}(111)-\mathrm{C}(121)^{*}$	1.356				
$\mathrm{Ru}(1)-\mathrm{C}(120)$	$2.151(2)$	$\mathrm{C}(120)-\mathrm{C}(121)^{*}$	0.738				
$\mathrm{Ru}(1)-\mathrm{C}(111)$	$2.190(2)$						
Bond Angles $\left({ }^{\circ}\right)$							
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$90.9(7)$	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$89.2(5)$				
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$89.2(5)$	$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$94.4(5)$				
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$173.1(7)$	$\mathrm{C}(110)-\mathrm{Ru}(1)-\mathrm{C}(120)$	$35.93(3)$				
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$90.2(5)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{C}(110)$	$116.33(15)$				
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$82.9(7)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{C}(120)$	$80.40(15)$				
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$83.9(7)$	$\mathrm{C}(111)-\mathrm{Ru}(1)-\mathrm{C}(121)$	$36.78(3)$				
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$172.0(6)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{C}(111)$	$99.29(15)$				
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$90.2(7)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{C}(121)$	$93.92(15)$				

${ }^{*}$) the atoms $C(110), C(111), C(120)$ and $C(121)$ were restrained during refinement.

Figure 2.9: ORTEP diagram of $\underline{\text { cis- }\left[R u(a c a c)_{2}\left(\eta^{2}-C_{2} H_{4}\right)\left(P C y_{3}\right)\right] \text { showing both }}$ conformations of the ethene ligand.

The hydrogen atoms of the ethene groups for the complexes cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ and $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}^{i}{ }_{3}\right)\right]$ were located in the difference maps and are included in the full crystallographic data in Appendices A. 3 and A.4. As the ethene ligands of trans-[Ru(acac) $2_{2}\left(\eta^{2}-\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)\right]$ and cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PCy}_{3}\right)\right]$ are disordered the ethene hydrogen atoms have been restrained during the refinement and have not been included.

The ethene ligands of the complexes trans-[Ru(acac)2 $\left(\eta^{2}-\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)\right]$ and cis-[Ru(acac)$\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PCy}_{3}\right)\right]$ occupy two mutually orthogonal orientations which eclipse the remaining bonds about the metal. The relative occupancies for the two ethene conformations defined by the atoms $C(110)-C(120)$ and $C(111)-C(121)$ are ca. $0.735(6)$ and $0.265(6)$ for trans-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)\right]$ and $c a .0 .44(4)$ and $0.55(4)$ for $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\right.\right.$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{PCy})$], respectively.

X-ray diffraction is not a suitable technique to determine whether the disorder of the ethene ligand in $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{PCy})\right]$ is static or
dynamic in nature. Possible dynamic processes include a full rotation (180° jumps) of the ethene ligand or a half rotation (90° jumps) followed by another half rotation in either direction to give the original conformation or the equivalent of a full rotation. Ethene rotation has been observed for the complex $\left[\mathrm{Rh}(\mathrm{acac})\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ and $\left[\mathrm{Rh}(\mathrm{acac})\left(\eta^{2}-\mathrm{C}_{2} \mathrm{D}_{4}\right)_{2}\right]$ in the solid state by ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{2} \mathrm{H}$ NMR spectroscopic techniques. ${ }^{20}$

2.5 Variable temperature NMR spectroscopy of the complexes cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{SbPh}_{3}, \mathrm{PPr}_{3}\right.$ and $\left.\mathrm{PCy}_{3}\right)$

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of coordinated ethene in solutions of the complexes cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{SbPh}_{3}, \mathrm{PPr}^{\mathrm{i}}{ }_{3}, \mathrm{PCy}_{3}\right.$ at room temperature are less complicated than would be expected on the basis of the static structures shown in Figures 2.3 and 2.6-2.8. For the mono-ethene complexes, if rotation about the $\mathrm{Ru}-\mathrm{C}_{2} \mathrm{H}_{4}$ axis were slow, one would expect four ${ }^{1} \mathrm{H}$ and two ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR resonances, and these numbers could be doubled for the bis(ethene) complex.

The ${ }^{1} \mathrm{H}$ NMR spectrum of cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ at room temperature shows an 8 H -resonance for the ethene protons in the form of a symmetrical $A^{\prime} A^{\prime} B^{\prime}$ multiplet. The non-equivalence is presumably induced by the chiral cis-[Ru(acac) $\left.)_{2}\right]$ moiety, since a similar pattern has been reported for the ethene protons of the chiral platinum(II) complexes $\left[\mathrm{Pt}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left\{\right.\right.$ cis-1- $\left(\mathrm{N}=\mathrm{CHC}_{6} \mathrm{H}_{4}\right)-2$ $\left.\left.(\mathrm{N}=\mathrm{CHPh}) \mathrm{C}_{6} \mathrm{H}_{10}\right\}\right]\left[\mathrm{BF}_{4}\right]$ and $\left[\mathrm{Pt}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left\{\operatorname{trans}-1-\left(\mathrm{N}=\mathrm{CHC}_{6} \mathrm{H}_{4}\right)-2-\right.\right.$ $\left.\left.(\mathrm{N}=\mathrm{CHPh}) \mathrm{C}_{6} \mathrm{H}_{10}\right\}\right]\left[\mathrm{BF}_{4}\right] .^{21}$ The two halves of the multiplet move apart and broaden slightly on cooling to $-60^{\circ} \mathrm{C}$, as illustrated in Figure 2.10. The variation in the chemical shift (in Hz) between the inner lines of the ethene multiplet between $-90^{\circ} \mathrm{C}$ and $+50^{\circ} \mathrm{C}$ is shown in Table 2.13 and represented graphically in Figure 2.11. The appearance of the spectrum is unaffected by the presence of free ethene (ca. 1 bar) at room temperature. In the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR
there is a single, sharp resonance due to coordinated ethene between $-95{ }^{\circ} \mathrm{C}$ and $21.5^{\circ} \mathrm{C}$. The observations are consistent with rapid rotation of the ethene ligands about the $\mathrm{Ru}-\mathrm{C}_{2} \mathrm{H}_{4}$ axis, which equilibrates, separately, the mutually trans-protons and the two carbon atoms in each ethene unit. Thus, the two ethene multiplets are assigned to the inner and outer protons, as in the cases of $\left[\mathrm{Rh}(\mathrm{acac})\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{6,22}\left[\mathrm{CpRh}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right],{ }^{12}$ and the platinum(II) complexes mentioned above. ${ }^{21}$

Figure 2.10: The temperature dependence of the ethene multiplet in the ${ }^{1} \mathrm{H}$ NMR spectrum of cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ in d_{8}-toluene.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right](\mathrm{L}=$ $\mathrm{SbPh}_{3}, \mathrm{PPr}^{\mathrm{i}} 3, \mathrm{PCy} 3$) are generally similar to those of the bis(ethene) complex except that at low temperature the ${ }^{1} \mathrm{H}$ multiplets broaden into two featureless peaks. The isopropyl methyl and methine carbon resonances of the $\operatorname{PPr}^{\mathrm{i}}{ }_{3}$ complex also broaden considerably at low temperature, possibly owing to slowed rotation of the isopropyl groups.

Gradual heating of a d_{8}-toluene solution of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ to ca. $+95^{\circ} \mathrm{C}$, under an argon atmosphere, results in the convergence of both ethene multiplets to a broad singlet at $\delta\left({ }^{1} \mathrm{H}\right) 3.64$. Some decomposition occurs at temperatures higher than ca. $+60^{\circ} \mathrm{C}$ as shown by the appearance of several new peaks of low intensity in the ${ }^{1} \mathrm{H}$ NMR spectrum at $\delta 5.40,5.24,4.99,2.32$, 1.73 and 1.55. These resonances remain when the sample is allowed to cool to room temperature. The nature of the species giving rise to these new signals has not been investigated.

In the presence of free ethene, however, no decomposition of cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ was observed. Both ethene multiplets again slowly converge to a broad singlet with a coalescence temperature of $80 \pm 5^{\circ} \mathrm{C}$; the signal due to free ethene remains sharp at $\delta 5.24$ at this temperature, which suggests that exchange with coordinated ethene is not occurring rapidly on the NMR timescale. A full line-shape analysis would be required to obtain rate data for the process that equilibrates the ethene resonances. The complexity of the spin system does not allow use of the standard equation $\mathrm{k}_{\mathrm{r}}=\pi(\Delta v) /(2)^{1 / 2}{ }^{23}$ at coalescence, where Δv is the chemical shift difference (in Hz) between the resonances in the absence of a dynamic process. Also, this approximate equation assumes that the line-width of the exchanging resonances is negligible compared to the chemical shift separation, which is not the case here.

At ca. $90^{\circ} \mathrm{C}$ broadening of the ${ }^{1} \mathrm{H}$ NMR resonances of the ethene and methyl acac resonances becomes evident and this effect continues to the highest accessible temperature of $c a .105^{\circ} \mathrm{C}$ (probe). The broadening of the methyl acac proton resonances is shown in Figure 2.12. The signal due to free
ethene also broadens and shifts upfield, which suggests that exchange between free and coordinated ethene is now occurring rapidly on the NMR timescale.

Table 2.13: Variation in the chemical shift (in Hertz) between the inner lines of the ethene multiplet for cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-C_{2} H_{4}\right)_{2}\right]$ with temperature (K).

Temperature (K)	Δv (Hertz)
183.0	26.4
213.0	16.5
240.5	11.1
268.0	7.8
294.5	4.5
304.5	3.6
324.0	2.7

Figure 2.11: Plot of Temperature (K) ws the difference in the chemical shift of the inner most lines for cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ (in Hertz).

Figure 2.12: Variable temperature ${ }^{1} H N M R$ spectra for the ethene and methyl acac resonances of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ in d_{8}-toluene.*

$31.5^{\circ} \mathrm{C}$
$80^{\circ} \mathrm{C}$

$41{ }^{\circ} \mathrm{C}$
$89{ }^{\circ} \mathrm{C}$

${ }^{*}$) the multiplet at $\delta 2.09$ is due to the residual methyl proton resonances of d_{8}-toluene

The exchange between free and coordinated ethene is probably dissociative and takes place via the five-coordinate species $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\right.\right.$ $\mathrm{C}_{2} \mathrm{H}_{4}$)] (see discussion). The rate of exchange for this process may be estimated from the linewidths of the acac methyl resonances by the use of the equation ${ }^{21}$:

$$
\mathrm{k}_{\mathrm{r}}=\pi\left[\omega_{1 / 2}-\left(\omega_{1 / 2}\right)_{\mathrm{o}}\right] \text { (in Hertz) } \quad \text { Eq. } 2.4
$$

where $\omega_{1 / 2}$ is the linewidth of the resonance at the onset of the dynamic process and $\left(\omega_{1 / 2}\right)_{0}$ is the linewidth of the same resonance in the absence of the dynamic process. For the methyl acac resonances in cis-[Ru(acac) $)_{2}\left(\eta^{2-}\right.$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$], $\left(\omega_{1 / 2}\right)_{\mathrm{o}}$ was estimated to be 1.18 Hz whereas $\omega_{1 / 2}$ has a value of 2.52 Hz at ca. $80^{\circ} \mathrm{C}$. From Eq. 2.1, the rate for this process was calculated to be 4.2 Hz with an activation energy of $c a .83 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $80^{\circ} \mathrm{C}$. One condition for the use of Eq. 2.4 is that the observed broadening of the signals is in the slow exchange range. ${ }^{21}$ Thus, this equation is valid only for the early stages of broadening of the resonance and cannot be used at or near the coalescence temperature where exchange is fast. Large errors are to be expected in the measurement of two rather small linewidths and in addition to the previously mentioned errors associated with temperature (see p. 58). ${ }^{21}$

It seems likely that the process causing the broadening of the acac proton signals is also responsible for the coalescence of the ethene multiplets. It must be emphasised here that the calculated value for the free energy of activation is only a crude estimate and is associated with probable errors of $c a$. en $2-3 \mathrm{~kJ} \mathrm{~mol}^{-1}$; more precise measurements have not be undertaken. The most likely explanation for the dynamic behaviour observed is that one of the coordinated ethene ligands dissociates reversibly at higher temperatures. The ethene signals coalesce because their chemical shift difference is less than that of the methyl acac resonances. Evidence for ethene dissociation was found for $\left[\operatorname{Rh}\left(2^{\prime} \text {-acetylphenoxy- } O, O^{\prime}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{24}$, and the same process may also
account for the observed broadening of the acac resonances at high temperatures for $\left[\mathrm{Rh}(\mathrm{acac})\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\eta^{2}-\mathrm{C}_{2}(\mathrm{OMe})_{4}\right)\right]$ and $\left[\mathrm{Rh}(\mathrm{acac})\left(\eta^{2}\right.\right.$-cis$\left.\left.\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{OMe})_{2}\right)\right] .{ }^{22}$ The $\Delta \mathrm{G}^{\neq}$value for ethene dissociation varies between 41 and $58 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for a series of $\left[\mathrm{Rh}(\beta\right.$-diketonato $)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\eta^{2}\right.$-alkene $\left.)\right]$ (alkene $=$ $\mathrm{C}_{2} \mathrm{H}_{4}$, 2,4-dimethoxy-2-butene)..22,24

tertiary phosphines

The addition of two equivalents of triisopropylphosphine, $\mathrm{PPr}^{i_{3}}$, to a THF solution of cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2} \text {-alkene }\right)_{2}\right]$ (alkene $\left.=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{8} \mathrm{H}_{14}\right)$ at room temperature leads to the formation of the complex cis-[Ru(acac) $\left.\left.)_{2}\left(\operatorname{PPr}^{i}\right)_{3}\right)_{2}\right]$, which has been prepared previously from the reaction of two equivalents of $\operatorname{PPr}^{i_{3}}$ with cis-[Ru(acac) $\left.)_{2}\left(\mathrm{SbPr}^{i_{3}}\right)_{2}\right]$ or by the reduction of $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$ with $\mathrm{Zn} / \mathrm{Hg}$ in the presence of $\mathrm{PPr}^{i_{3}}{ }^{11}$ The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data obtained here agree with the reported spectral data (see Table 2.14 and 2.15). There was no reaction between PBu_{3} and $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2} \text {-alkene }\right)_{2}\right]$ (alkene $=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{8} \mathrm{H}_{14}$) in hot THF detected by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy. However, the reaction of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]$ in cold THF (ca. -40 to -25 ${ }^{\circ} \mathrm{C}$) with $\mathrm{PPr}^{i}{ }_{3}$ results in the formation of the moderately air-stable, rust-red complex trans-[Ru(acac) $\left.)_{2}\left(\operatorname{PPr}^{i_{3}}\right)_{2}\right]$ in a yield of $c a .40-60 \%$. Under the same conditions, the bis(ethene) complex cis-[Ru(acac) $\left.2\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ does not afford a solid on treatment with $\mathrm{PPr}^{i_{3}}$ in cold THF after one hour, indicating that ethene is less easily displaced than cyclooctene. Warming a solution of
Table 2.14: ${ }^{1} H$ and ${ }^{13} C\left\{{ }^{1} H\right\}$ NMR spectral parameters for the $\left\{R u(a c a c)_{2}\right\}$ moiety in the bulky bis(phosphine) complexes [Ru(acac) $\left.{ }_{2}(L)_{2}\right]$.

Complex	${ }^{1} \mathrm{H} \mathrm{NMR}^{\mathrm{a}}$		${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}^{\mathrm{a}}$			Solvent
	$\delta \mathrm{CH}_{3}$	$\delta \mathrm{CH}$	$\delta \mathrm{CH}_{3}$	$\delta \mathrm{H}$	$\delta \mathrm{CO}$	
trans-[Ru(acac) $\left.)_{2}\left(\mathrm{PPr}_{3}\right)_{2}\right]$	1.75	5.10	27.4	100.5	184.1	$\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3} \mathrm{~b}$
cis-[Ru(acac) $\left.\left(\mathrm{PPr}_{3}\right)_{2}\right]$	$1.78,1.91$	5.30	$27.8,27.9$	99.8	$183.6,186.8$	$\mathrm{C}_{6} \mathrm{D}_{6}$
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$	$1.82,1.94$	5.28	$27.7(\mathrm{~d}, \mathrm{JPC}=2.2$ $\mathrm{Hz}), 28.0$	100.3	$183.5,186.7$	$\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$

a) singlets unless otherwise indicated.
Table 2.15: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right]$ and ${ }^{31}$
$\left[\right.$ Ru(acac) $\left.{ }_{2} L_{2}\right]$.

Complex	${ }^{1} \mathrm{H}$ NMR ${ }^{\text {a }}$		${ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right\} \mathrm{NMR}^{\text {a }}$		$\begin{aligned} & \text { 31 } \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \\ & \mathrm{NMR}^{\mathrm{a}} \end{aligned}$	Solvent
	δ	Assignment	δ	Assignment		
trans-[Ru(acac) $\mathbf{2}^{\left.\left(\mathrm{PPr}_{3}{ }_{3}\right)_{2}\right]}$	$\begin{aligned} & 1.32 \text { (br) } \\ & 2.30 \text { (br) } \end{aligned}$	$\begin{aligned} & \mathrm{CHCH}_{3} \\ & \mathrm{CHCH}_{3} \end{aligned}$	$\begin{aligned} & 20.0 \text { (br) } \\ & 24.8 \text { (br) } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{CHCH}_{3} \\ & \mathrm{CHCH}_{3} \\ & \hline \end{aligned}$	+29.6	$\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}{ }^{\mathrm{b}}$
cis-[Ru(acac) $\mathbf{2}^{\left.\left(\mathrm{PPr}^{i}{ }_{3}\right)_{2}\right]}$	$1.24,1.37(36 \mathrm{H}$, both dd, JPH 11 Hz, $\left.J_{\mathrm{HH}} 7.2 \mathrm{~Hz}\right)$ $2.46(6 \mathrm{H}, \mathrm{m})$	$\begin{aligned} & \mathrm{CHCH}_{3} \\ & \mathrm{CHCH}_{3} \end{aligned}$	$\begin{gathered} 27.6\left(\mathrm{~d}, \mathrm{JPC}_{\mathrm{PC}}=9 \mathrm{~Hz}\right) \\ 38.0(\mathrm{br}) \end{gathered}$	$\begin{aligned} & \mathrm{CHCH}_{3} \\ & \mathrm{CHCH}_{3} \end{aligned}$	+47.7	$\mathrm{C}_{6} \mathrm{D}_{6}$
[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$	$\begin{aligned} & 1.15-1.45,1.60- \\ & 2.10,2.20-2.40 \end{aligned}$	$\mathrm{CH}_{2}, \mathrm{CH}$	$\begin{gathered} \hline 27.5,29.1(\mathrm{~m}), \\ 30.2(\mathrm{br}) \\ 38.0(\mathrm{br}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CH}_{2} \\ \mathrm{CH} \end{gathered}$	+38.5 (vb)	$\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$

a) singlets unless otherwise indicated; b) recorded at $-40^{\circ} \mathrm{C}$ to prevent trans to cis isomerisation.
trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i}{ }_{3}\right)_{2}\right]$ in d_{8}-toluene from ca. $-35{ }^{\circ} \mathrm{C}$ to ca. $-5{ }^{\circ} \mathrm{C}$ forms cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i_{3}}\right)_{2}\right]$ as shown by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR spectroscopy. A similar facile trans- to cis-isomerization has been recently observed for the complex $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{2}{ }^{t} \mathrm{Bu}\right)_{2}\right] .{ }^{28}$

The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data of trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}_{3}\right)_{2}\right]$, recorded at ca. $-35{ }^{\circ} \mathrm{C}$, are shown in Tables $2.14-15$. The resonances assigned to the methyl and methine protons of the isopropyl groups are broad at this temperature.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i_{3}}\right)_{2}\right]$ in THF shows three singlets at $\delta+87.2,+47.6$ and +19.9 , the latter two peaks are clearly due to cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}_{3}{ }_{3}\right)_{2}\right]$ and free $\operatorname{PPr}^{i}{ }_{3}$. The peak at $\delta+87.2$, which is almost equal in intensity to that found for free $\operatorname{PPr}^{i}{ }_{3}$, has been previously detected in the reaction of one equivalent of $\operatorname{PPr}^{i}{ }_{3}$ with $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ in THF at ca. $10^{\circ} \mathrm{C}$ (see p. 44). This peak is not observed in d_{6}-benzene or d_{8} toluene. It is therefore concluded that the P -species giving rise to the highly deshielded peak at $\delta+87.2$ is a six-coordinate solvento-species $\left[R u(a c a c)_{2}\left(\operatorname{PPr}^{i}{ }_{3}\right)(\mathrm{THF})\right]$. A similar situation exists for $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$ in THF (see p. 67).

The reaction of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2} \text {-alkene }\right)_{2}\right]$ (alkene $\left.=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{8} \mathrm{H}_{14}\right)$ with two equivalents of PCy_{3} has provided contradictory results that at present cannot be fully interpreted. Addition of two equivalents of $\mathrm{PCy3}$ to a THF solution of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2} \text {-alkene }\right)_{2}\right]$ (alkene $\left.=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{8} \mathrm{H}_{14}\right)$ at room temperature gives a rust red solid in 80% yield whose elemental analysis corresponds to the formula $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$.

The IR spectra of trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}_{3} i_{3}\right)_{2}\right]$ and $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{PCy3})_{2}\right]$ have two strong bands between 1564 and $1507 \mathrm{~cm}^{-1}$ characteristic of bidentate, O bonded acac. ${ }^{7}$ The FAB mass spectra of trans- $\left[\operatorname{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr} i_{3}\right)_{2}\right]$ and $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$ do not show the parent molecular ion peak, the highest
mass peak corresponding to $\left.\left\{\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}\right)\right\}^{+}$; in contrast, cis-[Ru(acac)$\left.)_{2}\left(\mathrm{PPr}^{i}{ }_{3}\right)_{2}\right]$ shows the parent molecular ion (see Table 2.16).

Table 2.16: IR and MS spectra of the isolated bulky phosphine complexes $\left[\mathrm{Ru}(a c a c)_{2} L_{2}\right]$.

Complex	$\begin{aligned} & v(\mathrm{acac}) \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	FAB MS		
		m/z	Relative Abundance	Assignment
cis-[Ru(acac) $\mathbf{2}^{\left.\left(\mathrm{PPr}^{i}{ }_{3}\right)_{2}\right]}$	$\begin{aligned} & 1576, \\ & 1511 \end{aligned}$	$\begin{aligned} & 620.0 \\ & 519.0 \\ & 459.9 \end{aligned}$	$\begin{gathered} 12 \\ 7 \\ 100 \\ \hline \end{gathered}$	$\begin{aligned} & \left\{\operatorname{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}^{i_{3}}\right)_{2}\right\}^{+} \\ & \left\{\operatorname{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}_{3}{ }_{3}\right)_{2}\right\}^{+} \\ & \left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}_{3}{ }_{3}\right)\right\}^{+} \end{aligned}$
trans-[Ru(acac) $\left.{ }_{2}\left(\mathrm{PPr}^{i_{3}}\right)_{2}\right]$	$\begin{aligned} & 1564, \\ & 1507 \end{aligned}$	460.2	100	$\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i_{3}}\right)\right\}^{+}$
[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$	$\begin{aligned} & 1563, \\ & 1506 \end{aligned}$	$\begin{aligned} & 860.5 \\ & 580.2 \end{aligned}$	$\begin{gathered} 6 \\ 100 \\ \hline \end{gathered}$	$\begin{aligned} & \left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right\}^{+} \\ & \left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)\right\}^{+} \\ & \hline \end{aligned}$

The rust red solid $\left[\mathrm{Ru}\left(\mathrm{acac}_{2}\right)_{2}\left(\mathrm{PCy}_{3}\right) 2\right]$ is almost insoluble in aromatic solvents and partially soluble in THF at room temperature; on warming it dissolves completely in both solvents forming orange brown solutions. On cooling a red-brown solid crystallises from the toluene solution; the spectral properties of these two solids in solution are identical and the slight difference in colour may be due to crystal size effects or the presence of different crystal forms.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum in THF at room temperature shows sharp signals at $\delta+75.6$ and +10.5 of equal intensity. The latter is clearly due to free PCy_{3} and the former is presumably due to the same species that was observed in the reaction of PCy_{3} (one equivalent) with cis-[Ru(acac) $)_{2}\left(\eta^{2-}\right.$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$] in THF and assigned to either a five-coordinate species $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{PCy})\right]$ or a six-coordinate solvento-species $\left[\mathrm{Ru}\left(\mathrm{acac}_{2}\right)_{2}(\mathrm{PCy3})(\mathrm{THF})\right]$ (see p. 44). A solution obtained by warming a suspension of the solid in THF shows an additional broad peak at $\delta+38.5\left(\omega_{1 / 2} 145 \mathrm{~Hz}\right)$, which is more intense than the other two peaks (intensity ratio of the peaks at $\delta+38.5$ and
$\delta+75.6$ is ca. $1.5: 1$). This spectrum remains unchanged when the solution is cooled to room temperature. The ${ }^{1} \mathrm{H}$ NMR spectrum of the solution in THF at room temperature shows two singlets at $\delta 1.75$ and 5.20 , consistent with the presence of a species having mutually trans acac groups. There is also a broad signal at $\delta+2.49$, whose assigment is uncertain; it could be due to the residual protons of coordinated THF. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum in THF at room temperature shows singlets at $\delta 27.4$ (methyl acac), 100.2 (methine acac) and 183.8 (carbonyl acac) which supports the trans assignment. The cyclohexyl proton resonances appear as broad resonances between $\delta 2.00$ 1.00. In THF, therefore, it appears that there is an equililbrium:

$$
\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right] \stackrel{\text { THF }}{\rightleftharpoons}\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)\right]+\mathrm{PCy}_{3}
$$

A solution of $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$ in d_{8}-toluene shows in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum a broad resonance at $\delta+38.5$, similar to that observed in hot THF. This peak sharpens when the solution is heated to ca. $100{ }^{\circ} \mathrm{C}$ in the NMR spectrometer. A similar observation was made by Werner and coworkers ${ }^{11}$ for the bis(acetato) complex $\left[\mathrm{Ru}\left(\mathrm{O}_{2} \mathrm{CCH}_{3}\right)_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$ but no interpretation was given. The ${ }^{1} \mathrm{H}$ NMR spectrum of this solution, at room temperature, shows two singlets of equal intensity at $\delta 1.94$ and 1.82, and a singlet at $\delta 5.28$, assigned to the methyl acac and methine acac protons, respectively. There are broad resonances between $\delta 2.40$ and 1.15 due to the cyclohexyl protons. This pattern is consistent with the presence of a species having cis acac groups, for example cis-[Ru(acac) $\left.)_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$. The ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data (see Table 2.14) also seemingly support this conclusion.

However, a crystal selected from solid obtained by cooling a hot toluene solution shows that this contains trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$ (see later). Moreover, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ chemical shift of $\delta+38.5$ seems more consistent with the trans-formulation, on the basis of the following argument. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ chemical shifts for cis- and trans-[Ru(acac) $\left.)_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$ can be predicted by the same methodology that Shaw and coworkers used for the prediction of
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ chemical shifts for trans $-\left[\mathrm{PdCl}_{2} \mathrm{~L}_{2}\right]\left(\mathrm{L}=\right.$ tertiary phosphine). ${ }^{29}$ A plot of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ chemical shift of the free tertiary phosphine versus the change in ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ chemical shift on coordination for the complexes trans$\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ and $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ based on the data in Table 1.11 (see p. 26) is shown in Figure 2.14. A reasonable linear relationship was found for both isomers of $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right](\mathrm{L}=$ tertiary phosphine $)$:

$$
\begin{array}{lll}
y=50.3-0.73 x & \text { (cis) } & \text { Eq. 2.5 } \\
y=31.4-0.71 x & \text { (trans) } & \text { Eq. 2.6 }
\end{array}
$$

(where $y=$ change in ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ chemical shift and $\mathrm{x}={ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ chemical shift of free tertiary phosphine)

On this basis, the predicted ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ chemical shifts of trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{PCy3})_{2}\right]$ and $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{PCy3})_{2}\right]$ are $c a . \delta+34.4$ and +53.2 . Thus, the broad peak at $\delta+38.5$ observed in toluene at room temperature and in hot THF seems more likely to be due to the trans-isomer, in apparent contradiction with the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data. Further support for this argument is that the δ_{P} values for cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{PCy})(\mathrm{CO})\right]$ and cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)\left(\mathrm{SbPh}_{3}\right)\right]$ (see p. 67 and 77) are 52.3 and 53.2, respectively, close to the value predicted for cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$. The $\delta \mathrm{P}$ values for cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right](54.0)^{14}$ and cis-[Ru(acac)$\left.)_{2}\left(\mathrm{PPh}_{3}\right)(\mathrm{CO})\right](53.4)^{14}$ are also very similar. However, the values for $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i}\right)_{2}\right]$ (47.7) (see p. 65) and cis-[Ru(acac) $\left.)_{2}\left(\mathrm{PPr}^{i}{ }_{3}\right)(\mathrm{CO})\right](61.5)$ (see p. 76) differ significantly.

A further complication is that on cooling a d_{8}-toluene solution to $c a$. $-65^{\circ} \mathrm{C}$ the broad peak at $\delta+38.5$ resolves into two peaks of unequal intensity at $\delta+37.7$ and +36.9 . Identification of the species present could not be achieved by either ${ }^{1} \mathrm{H}$ or ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy due to the broadness of the cyclohexyl proton and carbon resonances at these low temperatures. The reversibility of the dynamic process was confirmed when the sample was warmed back to ca. $+25^{\circ} \mathrm{C}$ and the broad resonance at $\delta+38.5$ was obtained. Clearly in the toluene solution there are equilibria between at least two species.

Figure 2.13: Plot of the ${ }^{31} P\left({ }^{1} H\right\} N M R$ chemical shift of the free tertiary phosphine (δ) vs the change in ${ }^{31} P\left({ }^{1} H\right\}$ chemical shift on coordination ($\Delta \boldsymbol{\delta}$) for the complexes trans-[Ru(acac) $\left.)_{2} L_{2}\right]$ (black) and cis-[Ru(acac) $\left.2_{2} L_{2}\right]$ (blue).

In the remainder of this thesis, the complex will be referred to as trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$ on the basis of the crystallographic and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral evidence as well as the poor solubility, which is typical of the trans isomers in the $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ series. ${ }^{14}$

Heating a sample of trans-[Ru(acac) $\left.)_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$ at $c a .120{ }^{\circ} \mathrm{C}$ in d_{8}-toluene for two days results in the gradual loss of the species associated with the peak at $\delta+38.7$ and the formation of singlets at $\delta+70.7$ and +70.2 as well as a peak at $\delta+8.6$ due to free $\mathrm{PCy3}$ in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum. The corresponding ${ }^{1} \mathrm{H}$ NMR spectrum has two interesting features. First, the residual aromatic proton signals at $\delta+7.10$ and 7.02 of d_{8}-toluene have increased considerably in intensity compared to the methyl signal, suggesting that H/D exchange has occurred. ${ }^{30}$ Second, there are no methine acac signals above $\delta 5.00$; however, four multiplets between $\delta+4.8-3.5$ are
now present, possibly due to π-coordination of toluene. This behaviour has not been studied further.

The molecular structures of trans-[Ru(acac) $\left.)_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$ and cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i}{ }_{3}\right)_{2}\right]$ are shown in Figures 2.14-2.15; selected metrical parameters are in Tables 2.17 -18, respectively. Crystal and refinement data, together with the full set of interatomic distances and angles, are given in Appendices A. 6 and A.7.

The Ru-O distances trans to the oxygen acac atoms are as expected, but the Ru-O distances trans to the phosphorus atoms were found to be significantly longer (see Table 2.17). The Ru-P bond length for trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$ was found to be $2.4268(3) \AA$ which is significantly longer than in trans-[Ru(acac) $\left.)_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right](2.343(1)$ and $2.346(1) \AA)$; for cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i}\right)_{2}\right)_{2}$, the Ru-P distances are also significantly longer than those found for cis-[Ru(acac) $\left.)_{2}\left(\mathrm{PMePh}_{2}\right)_{2}\right]\left(2.2765(9) \AA \AA^{14}{ }^{14}\right.$ The P-Ru-P angle of cis[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}^{i}\right)_{2}\right]$ is 105°, which is the same, within experimental error, as the P-Rh-P angles of the complexes $\left[\mathrm{Rh}(\mathrm{acac})(\mathrm{PCy})_{2}\right]\left(105^{\circ}\right)^{31}$ and $\left[\mathrm{Rh}\left(\eta^{2}{ }^{2}\right.\right.$ $\left.\left.\mathrm{O}_{2} \mathrm{CCH}_{3}\right)\left(\mathrm{PPr}_{3}\right)_{2}\right]\left(106^{\circ}\right),{ }^{32}$ and the P-Mo-P angles of the complexes cis$\left[\mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(105^{\circ}\right)^{33}$ and cis-[Mo(CO) $\left.4\left(\mathrm{PCy}_{3}\right)_{2}\right]\left(105^{\circ}\right) .^{34}$

Figure 2.14: ORTEP diagram of the molecular structure of trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$.

*) atom generated by the symmetry operation (1-x, 1-y, 1-z)

Figure 2.15: ORTEP diagram of the molecular structure of cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i}\right)_{2}\right]$.

Table 2.17: Selected metrical parameters of trans-[Ru(acac) $\left.{ }_{2}\left(P C y_{3}\right)_{2}\right]$.

Bond Distances (\AA)				
$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.0707(10)$			
$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.0646(10)$			
$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.4268(3)$			
Bond Angles $\left(^{\circ}\right)$				
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)^{*}$	180.0	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)^{*}$	$88.90(1)$	
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$91.00(10)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)^{*}$	180.0	
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)^{*}$	$89.00(10)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$91.90(10)$	
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$91.10(10$	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(2)^{*}$	180.0	

*) atom generated by the symmetry operation (1-x, 1-y, 1-z)

Table 2.18: Selected metrical parameters of $\left.\left.\underline{\text { cis-[Ru(acac) }} \mathbf{2}^{(P P r i}\right)_{2}\right]$

Bond Distances $(\AA \AA)$			
$\mathrm{Ru}(1)-\mathrm{O}(1)$		$2.068(2)$	
$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.088(2)$		
$\mathrm{Ru}(1)-\mathrm{O}(3)$		$2.059(2)$	
$\mathrm{Ru}(1)-\mathrm{O}(4)$		$2.104(2)$	
$\mathrm{Ru}(1)-\mathrm{P}(1)$			$2.3525(9)$
$\mathrm{Ru}(1)-\mathrm{P}(2)$	$2.3467(8)$		
Bond Angles (${ }^{\circ}$)			
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$90.46(8)$	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$87.25(6)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$174.02(7)$	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$90.50(8)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$79.77(8)$	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$93.86(6)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$90.20(6)$	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$88.73(6)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$94.43(6)$	$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$87.57(6)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$84.62(8)$	$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$167.01(6)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$79.77(8)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$105.42(3)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$167.23(6)$		

The red complexes trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]\left(\mathrm{R}=\mathrm{Pr}^{i}, \mathrm{Cy}\right)$ readily react with CO (1 bar) in aromatic solvents to form the yellow complexes trans$\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}(\mathrm{CO})\right]\left(\mathrm{L}=\mathrm{PPr}^{i}{ }_{3}, \mathrm{PCy}_{3}\right)$ in yields of between $50-70 \%$. The carbonylation reaction of trans- $\left.\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i}\right)_{2}\right)_{2}\right]$ was carried out at ca. -20 ${ }^{\circ} \mathrm{C}$ to prevent competing formation of cis-[Ru(acac) $\left.)_{2}\left(\operatorname{PPr}^{i}{ }_{3}\right)_{2}\right]$. The cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i_{3}}\right)_{2}\right]$ complex also reacts with $\mathrm{CO}(3 \mathrm{bar})$ at room temperature over several days to form trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}_{3}{ }_{3}\right)(\mathrm{CO})\right]$. There is no evidence for the replacement of PPh_{3} by $\mathrm{CO}(1-3 \mathrm{bar})$ from cis-[Ru(acac) $\left.)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ under similar conditions. The complexes trans-[Ru(acac) $2 \mathrm{~L}(\mathrm{CO})]\left(\mathrm{L}=\operatorname{PPr}^{i}{ }_{3}, \mathrm{PCy}_{3}\right)$ isomerise on heating in benzene to form the corresponding cis-isomers in yields of 50-60\%.

The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data for the complexes cisand trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}(\mathrm{CO})\right]\left(\mathrm{L}=\mathrm{PPr}^{i_{3}}, \mathrm{PCy3}\right)$ are shown in Tables 2.19-2.20. The coordination of CO was confirmed by the synthesis of trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left({ }^{13} \mathrm{CO}\right)\left(\mathrm{PCy}_{3}\right)\right]$ using ${ }^{13} \mathrm{CO}$; this complex showed a very intense doublet in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum at $\delta 206.9(\mathrm{JPC}=120 \mathrm{~Hz})$ and a doublet in ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum at $\delta 8.4(\mathrm{JPC}=121 \mathrm{~Hz})$.

The highest identifiable peak in the isotopic pattern in the FAB mass spectra of the complexes trans-[Ru(acac) $\left.{ }_{2} \mathrm{~L}(\mathrm{CO})\right]$ ($\mathrm{L}=\operatorname{PPr}^{i}{ }_{3}, \mathrm{PC} \mathrm{y}_{3}$) corresponds to the loss of the carbonyl ligand, i.e. $\left.\left\{\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}\right\}^{+}\left(\mathrm{L}=\mathrm{PPr}^{i_{3}}, \mathrm{PCy}\right)_{3}\right)$, whereas the highest observed ion peak for cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}(\mathrm{CO})\right]\left(\mathrm{L}=\mathrm{PPr}^{i_{3}}, \mathrm{PCy}_{3}\right)$ corresponds to the parent ion (see Table 2.21. The IR spectra of the complexes cis and trans-[Ru(acac) $\left.{ }_{2} \mathrm{~L}(\mathrm{CO})\right](\mathrm{L}=$ $\mathrm{PPr}^{i}{ }_{3}, \mathrm{PCy}_{3}$) show one strong absorption in the region $1950-1928 \mathrm{~cm}^{-1}$ due to $v(C \equiv O)$; the frequency is almost the same for the isomeric pairs. The transcomplexes show two strong acac bands between $1572-1510 \mathrm{~cm}^{-1}$ whereas the
Table 2.19: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral parameters of the $\left\{\mathrm{Ru}(a c a c)_{2}\right\}$ moiety of the complexes [Ru(acac) $\left.{ }_{2} L L^{\prime}\right]$.

L	L'	Geometry	${ }^{1} \mathrm{H}$ NMR ${ }^{\text {a }}$		${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ${ }^{\text {a }}$		
			SCH_{3}	8CH	SCH_{3}	8CH	8CO
$\mathrm{PPr}^{i}{ }_{3}$	CO	trans	1.70	5.08	27.0	100.8	189.1
$\mathrm{PPr}^{i}{ }_{3}$	CO	cis	$\begin{aligned} & 1.91,1.85 \\ & 1.79,1.71 \end{aligned}$	5.34, 5.16	28.0, 27.8, 27.7, 27.2	100.2, 99.1	$\begin{gathered} 189.1,187.8,186.5 \\ 186.0 \\ \hline \end{gathered}$
PCy_{3}	CO	trans	1.73	5.09	27.0	100.6	188.9
РСу3	CO	cis	$\begin{aligned} & 1.98,1.86 \\ & 1.86,1.73 \end{aligned}$	5.40, 5.17	$\begin{gathered} 28.1,27.9,27.8\left(\mathrm{~d}, J_{\mathrm{PC}}\right. \\ =5.4 \mathrm{~Hz}), 27.3 \\ \hline \end{gathered}$	100.3, 99.2	$\begin{gathered} 189.0,187.9,186.4 \\ 186.0 \\ \hline \end{gathered}$
РСуз	SbPh_{3}	cis	$\begin{aligned} & 2.00,1.93 \\ & 1.80,1.68 \\ & \hline \end{aligned}$	5.46, 5.02	$28.04,28.00,27.9$	100.4, 99.6	$\begin{gathered} 186.8,186.2,184.7 \\ 184.0 \end{gathered}$

a) measured in d_{6}-benzene; singlets unless otherwise indicated.
Table 2.20: ${ }^{1} H,{ }^{13} C\left\{{ }^{1} H\right\}$ and ${ }^{31} P\left\{{ }^{1} H\right\} N M R$ spectral parameters of the ligands of the complexes [$\left.R u(a c a c)_{2} L L^{\prime}\right]$.

L	L'	Geometry	${ }^{1} \mathrm{H}$ NMR ${ }^{\text {a }}$		${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \times \mathrm{NMR}^{\text {a }}$		${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$
			δ	Assignment	δ	Assignment	
$\mathrm{PPr}^{i}{ }_{3}$	CO	trans	$\begin{gathered} 2.25(3 \mathrm{H}, \mathrm{~m}) \\ 1.23\left(18 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}}=12 \mathrm{~Hz}\right. \\ \left.\mathrm{JHH}^{2}=7.1 \mathrm{~Hz}\right) \end{gathered}$	$\begin{aligned} & \mathrm{PCHCH}_{3} \\ & \mathrm{PCHCH} \end{aligned}$	$\begin{gathered} 206.5\left(\mathrm{~d}, J_{\mathrm{PC}}=120 \mathrm{~Hz}\right) \\ 23.1\left(\mathrm{~d}, J_{\mathrm{PC}}=20 \mathrm{~Hz}\right) \\ 19.1 \end{gathered}$	$\begin{gathered} \mathrm{C} \equiv \mathrm{O} \\ \mathrm{PCHCH} \\ \mathrm{PCHCH}_{3} \\ \hline \end{gathered}$	+18.9
$\mathrm{PPr}^{i}{ }_{3}$	CO	cis	$\begin{gathered} 2.25(3 \mathrm{H}, \mathrm{~m}) \\ 1.25,1.13(18 \mathrm{H}, \text { both dd, } \\ \left.J_{\mathrm{PH}}=13 \mathrm{~Hz}, J_{\mathrm{HH}}=7.0 \mathrm{~Hz}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{PCHCH}_{3} \\ & \mathrm{PCHCH} \end{aligned}$	$\begin{gathered} 209.4\left(\mathrm{~d}, \mathrm{JPC}_{\mathrm{P}}=18 \mathrm{~Hz}\right) \\ 24.7\left(\mathrm{~d}, J_{\mathrm{PC}}=22 \mathrm{~Hz}\right) \\ 19.4,18.8 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{C} \equiv \mathrm{O} \\ \mathrm{PCHCH}_{3} \\ \mathrm{PCHCH}_{3} \\ \hline \end{gathered}$	+61.5
РСу3	CO	trans	$\begin{gathered} 2.30-1.50,1.40-1.05(33 \mathrm{H} \\ \text { broad m) } \end{gathered}$	PCHCH_{2} and PCHCH_{2}	$\begin{gathered} 206.8\left(\mathrm{~d}, J_{\mathrm{PC}}=120 \mathrm{~Hz}\right) \\ 33.3\left(\mathrm{~d}, J_{\mathrm{PC}}=10 \mathrm{~Hz}\right) \\ 29.1,28.6\left(\mathrm{~d}, J_{\mathrm{PC}}=8.8 \mathrm{~Hz}\right), 27.1 \end{gathered}$	$\begin{gathered} \mathrm{C} \equiv \mathrm{O} \\ \mathrm{PCHCH} \\ \mathrm{PCHCH} \\ \hline \end{gathered}$	+8.4
РСу3	CO	cis	$\begin{gathered} 2.30-2.10,2.00-1.50,1.30- \\ 1.10(33 \mathrm{H}, \text { broad m}) \end{gathered}$	PCHCH_{2} and PCHCH_{2}	$\begin{gathered} 209.6\left(\mathrm{~d}, J_{\mathrm{PC}}=18 \mathrm{~Hz}\right) \\ 35.1\left(\mathrm{~d}, J_{\mathrm{PC}}=21 \mathrm{~Hz}\right) \\ 29.5,29.0\left(\mathrm{~d}, J_{\mathrm{PC}}=2 \mathrm{~Hz}\right), 28.4(\mathrm{~d} \\ \left.J_{\mathrm{PC}}=3 \mathrm{~Hz}\right), 28.2\left(\mathrm{~d}, J_{\mathrm{PC}}=2 \mathrm{~Hz}\right) \\ 27.0 \end{gathered}$	$\begin{gathered} \mathrm{C} \equiv \mathrm{O} \\ \mathrm{PCHCH} \\ 2 \\ \mathrm{PCHCH} \end{gathered}$	+52.1

a) measured in d_{6}-benzene; singlets unless otherwise indicated.
Table 2.20 (cont.): ${ }^{1} H,{ }^{13} C\left\{{ }^{1} H\right\}$ and ${ }^{31} P\left\{{ }^{1} H\right\}$ NMR spectral parameters of the ligands of the complexes [Ru(acac) ${ }_{2} L L^{\prime}$].

L	L'	Geometry	${ }^{1} \mathrm{H}$ NMR ${ }^{\text {a }}$		${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ${ }^{\text {a }}$		$3^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR
			δ	Assignment	δ	Assignment	
РСу3	SbPh_{3}	cis	$\begin{gathered} 7.80-7.77(6 \mathrm{H}, \mathrm{~m}) \\ 7.13-7.06(9 \mathrm{H}, \mathrm{~m}) \\ 2.30-1.00(33 \mathrm{H}, \text { broad } \mathrm{m}) \end{gathered}$	$o-\mathrm{C}_{6} \underline{\mathrm{H}}_{5}$ $m-$ and p - $\mathrm{C}_{6} \underline{\mathbf{H}}_{5}$ $\mathrm{PCH}_{\mathbf{H}} \mathrm{HCH}_{2}$ and $\mathrm{PCHC} \underline{H}_{2}$	$\begin{gathered} 137.1 \\ 136.5 \\ 129.0 \\ 128.4 \\ 38.8(\mathrm{~d}, J \mathrm{JC}=19 \mathrm{~Hz}) \\ 29.8,29.1, \\ 28.6(\mathrm{~d}, J \mathrm{JC}=4 \mathrm{~Hz}), 28.5(\mathrm{~d}, \mathrm{JPC}= \\ 4 \mathrm{~Hz}), 27.4 \\ \hline \end{gathered}$	$\begin{gathered} o-\mathrm{C}_{6} \mathrm{H}_{5} \\ i p s o-\mathrm{C}_{6} \mathrm{H}_{5} \\ p-\mathrm{C}_{6} \mathrm{H}_{5} \\ m-\mathrm{C}_{6} \mathrm{H}_{5} \\ \mathrm{PCHCH}_{2} \\ \mathrm{PCHCH} \end{gathered}$	+53.5

a) measured in d_{6}-benzene; singlets unless otherwise indicated.
Table 2.21: IR and MS data of the isolated mixed ligand complexes [Ru(acac) ${ }_{2} L L$ '].

Compound	Infrared Data (KBr) (cm^{-1})		FAB MS		
	v (acac)	Other	m/z	Relative Abundance	Assigment
trans-[Ru(acac)2 ${\text { (} \mathrm{PPr}^{\text {i }} \text {) }}^{\text {(CO) }}$) $]$	1566, 1517	$1931[v(\mathrm{C}=0)]$	460.1	100	$\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPri}_{3}\right)\right\}^{+}$
cis-[Ru(acac) 2 ($\left.\left.\mathrm{PPr}^{\mathbf{i}}{ }_{3}\right)(\mathrm{CO})\right]$	1588, 1573, 1516	1928 [l ($\mathrm{C}=\mathrm{O}$)]	$\begin{aligned} & 488.2 \\ & 460.2 \\ & 389.1 \end{aligned}$	$\begin{gathered} 45 \\ 100 \\ 24 \\ \hline \end{gathered}$	$\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{\mathrm{i}}{ }_{3}\right)(\mathrm{CO})\right\}^{+}$ $\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i}{ }^{i}\right)\right\}^{+}$ $\left\{\mathrm{Ru}(\mathrm{acac})\left(\mathrm{PPr}^{i}{ }^{i}\right)(\mathrm{CO})\right\}^{+}$
trans-[Ru(acac)2($\mathrm{PCy}^{\text {a }}$)(CO)]	1572, 1510	1950 [v (C=O)]	$\begin{aligned} & \hline 580.1 \\ & 297.1 \end{aligned}$	$\begin{aligned} & 53 \\ & 50 \end{aligned}$	$\begin{gathered} \left\{\mathrm{Ru}\left(\mathrm{acac}_{2}\right)_{2}(\mathrm{PCy})\right)^{+} \\ \left\{\mathrm{Ru}\left(\mathrm{acac}_{2}\right)^{+}\right\}^{+} \\ \hline \end{gathered}$
cis-[Ru(acac) 2 ($\mathrm{PCy3} 3$ (CO)]	1589, 1575, 1520	1944 [l ($\mathrm{C}=\mathrm{O}$)]	$\begin{aligned} & 608.3 \\ & 580.2 \\ & 509.2 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 62 \\ 100 \\ 31 \\ \hline \end{gathered}$	$\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)(\mathrm{CO})\right\}^{+}$ $\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)\right\}^{+}$ $\{\mathrm{Ru}(\mathrm{acac})(\mathrm{PCyz})(\mathrm{CO})\}^{+}$
$c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)\left(\mathrm{SbPh}_{3}\right)\right]$	1568,1510		$\begin{array}{r} 932.4 \\ 580.3 \\ \hline \end{array}$	$\begin{gathered} 4 \\ 100 \end{gathered}$	$\begin{gathered} \left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCyy}_{3}\right)\left(\mathrm{SbPh}_{3}\right\}^{+}\right. \\ \left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCyy}_{3}\right)\right\}^{+} \\ \hline \end{gathered}$

cis analogues show three strong bands between $1589-1516 \mathrm{~cm}^{-1}$ (see Table 2.21), characteristic of bidentate O-bonded acac ligands bands. ${ }^{7}$

2.8 Reactions of $\left[R u(a c a c)_{2} L_{2}\right]$ complexes with alkynes.

Addition of the terminal alkynes $\mathrm{PhC} \equiv \mathrm{CH}, \mathrm{Bu}^{t} \mathrm{C} \equiv \mathrm{CH}$ and $\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CH}$ to cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i}{ }_{3}\right)_{2}\right]$ in hot benzene results in the isolation of the red vinylidene complexes cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i}{ }_{3}\right)\{=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{R}\}\right]\left(\mathrm{R}=\mathrm{Ph}, \mathrm{Bu}^{t}, \mathrm{SiMe}_{3}\right)$ in yields of $55-65 \%$. The Ph and SiMe_{3} derivatives have been made independently of this work. ${ }^{11}$

The reaction of cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}_{3}\right)_{2}\right]$ with terminal alkynes was also found to proceed at $c a .+25^{\circ} \mathrm{C}$, albeit slowly, to form the vinylidene complexes. The expected intermediate, $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}_{3}{ }_{3}\right)\left(\eta^{2}-\mathrm{HC} \equiv \mathrm{CR}\right)\right]$, was not detected by NMR spectroscopy at ambient conditions. There was no detectable reaction after two days between cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}_{3}{ }_{3}\right)_{2}\right]$ and $\mathrm{PhC} \equiv \mathrm{CPh}$, 3-hexyne or the electron-deficient alkyne $\mathrm{HC} \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3}$ in hot benzene. As expected from the lack of reactivity with CO, ${ }^{14}$ no reaction was observed between cis-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ or cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{SbPh}_{3}\right)_{2}\right]$ and $\mathrm{PhC} \equiv \mathrm{CH}$ in hot benzene.

The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data of the complexes cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i}{ }_{3}\right)\{=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{R}\}\right]\left(\mathrm{R}=\mathrm{Ph}, \mathrm{Bu}^{t}, \mathrm{SiMe}_{3}\right)$ are shown in Tables 2.22 and 2.23. The presence of the vinylidene group $\mathrm{Ru}=\mathrm{C}_{\alpha} \mathrm{C}_{\beta}(\mathrm{H}) \mathrm{R}$ was confirmed by the low field signals in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum between 338.5 and $356.4\left(\mathrm{~d}, J_{\mathrm{PC}}=20 \mathrm{~Hz}\right)$ and $93.4-121.2$ which are assigned to the $\alpha-$ and β carbon atoms, respectively. ${ }^{11}$ The vinylidene protons were found as a doublet in the range $\delta\left({ }^{1} \mathrm{H}\right) 3.67-5.24\left(\mathrm{~d}, J_{\mathrm{PH}}=4 \mathrm{~Hz}\right)$ (see Table 2.23).

The complex trans- $\left[\mathrm{Ru}\left(\mathrm{acac}_{2}\right)_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$ also reacts with $\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CH}$ in hot benzene to give exclusively a species believed to be the vinylidene complex cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)\left\{=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{SiMe}_{3}\right\}\right]$ on the basis of its NMR spectra. However, all attempts to purify the compound by chromatography
Table 2.22: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral parameters of the $\left\{\mathrm{Ru}(a \mathrm{cac})_{2}\right\}$ moiety of the isolated mononuclear vinylidene complexes
cis-[Ru(acac) $\left.)_{2}\left(P R_{3}\right)\left\{=C=C(H) R^{\prime}\right\}\right]\left(R=P r^{i}, C y\right)$.

Complex	${ }^{1} \mathrm{H} \mathrm{NMR}^{\text {a }}$		${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMRa			Solvent
	SCH_{3}	8CH	SCH_{3}	8CH	8CO	
cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{1} 3\right)\{=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph}\}\right]$						$\mathrm{C}_{6} \mathrm{D}_{6}$
cis-[Ru(acac) $2\left(\mathrm{PPr}^{i}{ }_{3}\right) \overline{\left.\left\{=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Bu}^{t}\right\}\right]}$	$\begin{aligned} & 1.77,1.80, \\ & 1.93,1.97 \end{aligned}$	5.18, 5.35	$\begin{gathered} \hline 24.3,24.6,27.1 \\ 28.0 \\ \hline \end{gathered}$	98.8, 99.7	$\begin{aligned} & 184.7,186.8 \\ & 187.6,188.3 \end{aligned}$	$\mathrm{C}_{6} \mathrm{D}_{6}$
cis-[Ru(acac) $2^{\left.\left(\mathrm{PPr}^{i}{ }_{3}\right)\left\{=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{SiMe}_{3}\right\}\right]}$	$\begin{gathered} 1.79,1.84 \\ 1.94 \end{gathered}$	5.20, 5.35	$\begin{gathered} 27.7,28.4,28.5, \\ 28.6 \end{gathered}$	99.5, 100.2	$\begin{aligned} & 185.0,186.8 \\ & 187.4,188.2 \end{aligned}$	$\mathrm{C}_{6} \mathrm{D}_{6}$
	$\begin{aligned} & 1.80,1.85 \\ & 1.93,1.96 \end{aligned}$	5.16, 5.34				$\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$

a) singlets unless otherwise indicated.
Table 2.23: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral parameters of the vinylidene and phosphine groups of the isolated mononuclear
vinylidene complexes cis-[Ru(acac) $\left.)_{2}\left(P R_{3}\right)\left\{=C=C(H) R^{\prime}\right\}\right]\left(R=P r^{i}, C y\right)$.

L	R	${ }^{1} \mathrm{H}$ NMR ${ }^{\text {a }}$		${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ${ }^{\text {a }}$		$\begin{gathered} { }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \\ \mathrm{NMR} \end{gathered}$	Solvent
		δ	Assignment	δ	Assignment		
$\mathrm{PPr}^{i_{3}}$	$B u^{t}$	$\begin{gathered} 4.10\left(\mathrm{~d}, J_{\mathrm{PH}}=4 \mathrm{~Hz}\right) ; \\ 2.47(\mathrm{~m}) ; \\ 1.21,1.29(\text { both dd, } J \mathrm{PH}= \\ \left.12.8 \mathrm{~Hz} J_{\mathrm{HH}}=7.2 \mathrm{~Hz}\right) ; \\ 1.26 \end{gathered}$	$\begin{gathered} =\mathrm{C}=\mathrm{C}(\underline{\mathrm{H}}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \\ \mathrm{PCHCH} \\ \mathrm{PCHCH}_{3} \\ = \\ \\ =\mathrm{C}(\mathrm{H}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \end{gathered}$	$\begin{array}{\|c\|} \hline 356.4(\mathrm{~d}, \mathrm{JPC}=20 \\ \mathrm{Hz}) ; \\ 121.2 ; \\ 33.1 ; \\ 30.1 ; \\ 24.5(\mathrm{~d}, \mathrm{JPC}=22 \mathrm{~Hz}) ; \\ 18.9,19.3 \\ \hline \end{array}$	$\begin{gathered} =\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \\ =\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \\ =\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \\ =\mathrm{C}=\mathrm{C}(\mathrm{H}) \underline{\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}} \\ \mathrm{PCHCH} \\ \\ \mathrm{PCHCH} \end{gathered} 3$	+55.5	$\mathrm{C}_{6} \mathrm{D}_{6}$
$\mathrm{PPr}_{3}{ }_{3}$	SiMe_{3}	$\begin{gathered} 3.67\left(\mathrm{~d}, J_{\mathrm{PH}}=4.2 \mathrm{~Hz}\right) ; \\ 2.47(\mathrm{~m}) ; \\ 1.21,1.29\left(\text { both dd, } J_{\mathrm{PH}}=\right. \\ \left.12.9 \mathrm{~Hz} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}\right) ; \\ 0.29 \end{gathered}$	$\begin{gathered} =\mathrm{C}=\mathrm{C}(\underline{\mathrm{H}}) \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3} \\ \mathrm{PCHCH}_{3} \\ \mathrm{PCHCH} \\ \\ =\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3} \end{gathered}$	$\begin{array}{\|c} 338.5(\mathrm{~d}, \mathrm{JPC}=19 \\ \mathrm{Hz}) ; \\ 93.4 ; \\ 24.9\left(\mathrm{~d}, \mathrm{JPC}_{\mathrm{PC}}=22 \mathrm{~Hz}\right) ; \\ 19.4,19.7 ; \\ 2.3 \\ \hline \end{array}$	$\begin{gathered} =\underline{\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}} \\ =\mathrm{C}=\underline{\mathrm{C}}(\mathrm{H}) \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3} \\ \mathrm{PC} H C H_{3} \\ \mathrm{PCHCH} \\ =\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3} \end{gathered}$	+56.9	$\mathrm{C}_{6} \mathrm{D}_{6}$
PCy_{3}	SiMe_{3}					+47.7	$\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$

[^0]Table 2.24: IR and MS data of the isolated mixed ligand complexes [Ru(acac) ${ }_{2} L L^{\prime}$].

Compound	Infrared Spectra		FAB MS		
	$\begin{gathered} v(\mathrm{acac}) \\ (\mathrm{KBr})\left(\mathrm{cm}^{-1}\right) \end{gathered}$	Other $(\mathrm{KBr})\left(\mathrm{cm}^{-1}\right)$	m / z	Relative Abundance	Assigment
cis-[Ru(acac) $\mathbf{2}^{\left.\left(\mathrm{PPr}^{i}{ }_{3}\right)\left(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Bu}^{t}\right)\right]}$	1580, 1514 ${ }^{\dagger}$	$1638(\mathrm{C}=\mathrm{C})^{\dagger}$	$\begin{aligned} & \hline 542.1 \\ & 460.1 \\ & 300.0 \end{aligned}$	$\begin{gathered} \hline 5 \\ 100 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \left.\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}_{3}{ }_{3}\right)\left(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Bu}^{\mathrm{t}}\right)\right)\right\}^{+} \\ \left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}_{3}{ }_{3}\right)\right\}^{+} \\ \left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\}^{+} \end{gathered}$
cis $-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i}{ }_{3}\right)\left(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{SiMe}_{3}\right)\right]$	$\begin{gathered} 1589,1538 \\ 1519 \end{gathered}$	1610 (C=C)	$\begin{gathered} 1058.4 \\ 972.3 \\ 546.1 \\ 488.1 \\ 460.1 \\ 300.0 \\ \hline \end{gathered}$	$\begin{gathered} 16 \\ 29 \\ 9 \\ 19 \\ 100 \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}_{3}{ }_{3}\right)\left(=\mathrm{C}(\mathrm{H}) \mathrm{SiMe}_{3}\right\}^{+}\right. \\ \left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}_{3}{ }_{3}\right) \mathrm{Si}^{+}\right\}^{+} \\ \left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}_{3} i_{3}\right)\right\}^{+} \\ \left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\}^{+} \\ \hline \end{gathered}$

[^1]led to decomposition. The ${ }^{1} \mathrm{H}$ NMR spectral data of this complex are as expected for a cis-[Ru(acac) $\left.)_{2} L L^{\prime}\right]$ complex with two different ligands (see Table 2.22 and p. 25). A doublet found at $\delta 3.60(\mathrm{JPH}=5 \mathrm{~Hz})$ is assigned to the vinylidene proton. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows a sharp singlet at δ +47.7 .

The parent molecular ion was found in the FAB mass spectra for cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}^{i} 3\right)\left(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Bu}^{t}\right)\right]$ at $\mathrm{m} / \mathrm{z} 542.1$ with the most abundant ion due to $\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}^{i}{ }_{3}\right)\right\}^{+}$at $\mathrm{m} / \mathrm{z} 460.1$ (see Table 2.24). The parent molecular ion was not detected for cis $-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}_{3}{ }_{3}\right)\left(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{SiMe}_{3}\right)\right]$, though $\left\{\operatorname{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}^{i_{3}}\right)\right\}^{+}$was detected as the most abundant ion present. Ion peaks corresponding to unknown species were detected at $m / z>546.1$ and are probably related to the reaction of 3-nitrobenzylalcohol with the vinylidene unit (see Table 2.24). The IR spectrum shows strong absorptions between 1589 and $1519 \mathrm{~cm}^{-1}$, characteristic of bidentate, O-bonded acac (see Table 2.24). ${ }^{7}$ A strong band at $1610 \mathrm{~cm}^{-1}$ and $1638 \mathrm{~cm}^{-1}$ was also observed for cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}^{i_{3}}\right)\left(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{SiMe}_{3}\right)\right]$ and cis $-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i_{3}}\right)\left(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Bu}^{t}\right)\right]$, respectively, and is assigned to the $C=C$ stretching vibration as it lies within the range of $1650-1600 \mathrm{~cm}^{-1}$ typically found for ruthenium vinylidene complexes. ${ }^{35,36}$

2.9 Reactions of $\left.\underline{\text { cis }-[R u(a c a c})_{2}\left(\eta^{2}-C_{2} H_{4}\right) L\right]\left(L=N H_{3}, S b P h_{3}, P P r{ }_{3}, P C y_{3}\right)$ complexes with tertiary phosphines, CO, alkynes and dinitrogen.

The complex cis-[Ru(acac)2 $\left.\left(\mathrm{PCy}_{3}\right)\left(\mathrm{SbPh}_{3}\right)\right]$ is formed in yields of $c a .80 \%$ by the reaction of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{SbPh}_{3}\right)\right]$ with one equivalent of PCy_{3} or of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{PCy})\right]$ with one equivalent of SbPh_{3} in aromatic solvents. In contrast, there was no detectable reaction between cis[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ and PCy_{3} in d_{6}-benzene even after two weeks at room temperature. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)\left(\mathrm{SbPh}_{3}\right)\right]$ show the expected acac patterns (see p. 25). The aromatic protons and carbon atoms were found in the expected region, as
were the cyclohexyl protons and carbon atoms (see Table 2.19 and 2.20). The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum reveals one sharp singlet at $\delta 53.5$.

The highest ion peak detected in FAB mass spectrum corresponds to $\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)\left(\mathrm{SbPh}_{3}\right)\right\}^{+}$. Ions were also detected which correspond to $\left\{\mathrm{Ru}(\mathrm{acac})_{2} \text { (PCy3) }^{+}\right\}^{+}$(see Table 2.20). The IR spectrum shows two strong absorptions at 1568 and $1510 \mathrm{~cm}^{-1}$, characteristic of bidentate, O-bonded acac. ${ }^{7}$

The structures of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{SbPh}_{3}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{SbPh}_{3}, \mathrm{PCy}_{3}\right)$ have been confirmed by X-ray crystallographic studies (see Appendices A. 8 and A.9). The Ru-O distances characterising the coordination of the acetylacetonato anion for both complexes were found to lie between 2.05-2.12 \AA. The Ru-O bond trans to PCy_{3} in $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)\left(\mathrm{SbPh}_{3}\right)\right]$ is only $c a .0 .06 \AA$ longer than the Ru-O bonds opposite to antimony or oxygen acac atoms. The Ru-P bond was found to be $2.309(1) \AA$ in length, which is ca. $0.04 \AA$ shorter than the Ru-P bond length found for the complexes cis-[Ru(acac) $\left.)_{2}\left(\operatorname{PPr}_{3}{ }_{3}\right)_{2}\right]$ (see Table 2.19), cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}_{3}{ }_{3}\right)\right]$ (see Table 2.11) and cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{PCy3})\right]$ (see Table 2.12). The Ru-Sb distances are between $2.54-2.58 \AA$. The $\mathrm{P}-\mathrm{Ru}-\mathrm{Sb}$ angle was found to be 100°, whereas the $\mathrm{Sb}-\mathrm{Ru}-\mathrm{Sb}$ angle was found to be 97°, similar to that found for the P-Ru-P angle for the complex cis-[Ru(acac) $\left.)_{2}\left(\mathrm{PPh}_{2} \mathrm{Me}\right)_{2}\right]\left(96^{\circ}\right) .{ }^{14}$

The complex cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\operatorname{PPr}^{i}{ }_{3}\right)\right]$ readily reacts with one equivalent of $\operatorname{PPr}_{3}{ }_{3}$ to form cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}_{3}\right)_{2}\right]$ in d_{6}-benzene at room temperature. The reaction is believed to take place via the complex trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i}\right)_{2}\right]$, which readily isomerises to the more stable cis-isomer (see p. 59). The mono-ethene complexes cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\operatorname{PPr}_{3} i_{3}\right)\right]$ and cis-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PCy}_{3}\right)\right]$ readily react with $\mathrm{CO}(1 \mathrm{bar})$ at room temperature in d_{6}-benzene to form exclusively the corresponding complexes trans-[Ru(acac) $2(\mathrm{CO}) \mathrm{L}]\left(\mathrm{L}=\mathrm{PPr}^{i_{3}}, \mathrm{PCy} 3\right)$, as shown by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy. In contrast, there is no detectable reaction between cis-
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}\right.\right.$-alkene $\left.)\left(\mathrm{SbPh}_{3}\right)\right]$ (alkene $\left.=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{8} \mathrm{H}_{14}\right)$ and $\mathrm{CO}(1-3$ bar) in benzene after several days at room temperature.

The complex cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\operatorname{PPr}_{3}{ }_{3}\right)\right]$ readily reacts with $\mathrm{PhC} \equiv \mathrm{CH}$ in d_{6}-benzene at room temperature to form quantitatively cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i} 3\right)(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph})\right]$, as shown by NMR spectroscopy. The presumed intermediate $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i_{3}}\right)\left(\eta^{2}-\mathrm{HC} \equiv \mathrm{CPh}\right)\right]$ was not detected. No detectable reaction occurs between the complexes cis-[Ru(acac) $)_{2}\left(\eta^{2-}\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{PPr}^{i}{ }_{3}, \mathrm{PCy}_{3}\right)$ and excess 2-butyne or 3-hexyne, even on heating.

The yellow, crystalline binuclear complex cis-[\{Ru(acac) $\left.)_{2}\left(\operatorname{PPr}^{i_{3}}\right)\right\}_{2}(\mu-$ N_{2})] was isolated in ca. 90% yield after heating a benzene solution of cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}_{3}{ }_{3}\right)\right]$ to $50-60{ }^{\circ} \mathrm{C}$ for 3 days under an atmosphere of industrial grade hydrogen (3 bar). The product presumably arises from the (ca. 100 ppm , see experimental) presence of a small amount of dinitrogen/in the hydrogen gas. There was no detectable loss of ethene when a benzene solution of cis-[Ru(acac) $2\left(\eta^{2}\right.$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}_{3}{ }_{3}\right)$] was heated either in vacuo or under high purity argon (3 bar). The dinitrogen complex was also isolated after attempting to recrystallise a n-pentane solution of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\operatorname{PPr}_{3}{ }_{3}\right)\right]$ in a nitrogen-filled dry box over a period of several weeks. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR experiments indicate that the product formed under a dinitrogen atmosphere (3 bar) is identical with that isolated from the reaction of impure dihydrogen.

The presence of nitrogen in the isolated yellow solid was confirmed by elemental analysis and an X-ray structural study (see below). The Raman spectrum also shows a strong band due to a N-N stretching vibration at 2089 cm^{-1}, very close to the values of 2100 and $2080 \mathrm{~cm}^{-1}$ found for the binuclear complexes $\left[\left\{\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]^{4+37}$ and $\left[\left\{\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]^{4+}, 38$ respectively. No band in this region is observed in the IR spectrum either in benzene or in the solid state, which is consistent with the presence of $\mu-\mathrm{N}_{2}$ coordination in both phases. The IR spectrum shows two strong bands at 1582 and $1512 \mathrm{~cm}^{-1}$ characteristic of bidentate, O-bonded acac. ${ }^{7}$ The most abundant ion detected at $m / z 460.2$ in the FAB mass spectrum corresponds to
the species $\left.\left\{\operatorname{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i}\right)^{\prime}\right)\right\}^{+}$. The molecular parent ion $\left[\left\{\operatorname{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}^{i_{3}}\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]^{+}$was found at $\mathrm{m} / \mathrm{z} 948.2$, though there is also an unidentified peak at m / z 950.2.

The solid state structure of $c i s-\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}^{i}{ }_{3}\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]$ is shown in Figure 2.16 and selected metrical parameters are given in Table 2.25. The complex is binuclear with each ruthenium atom at the centre of a distorted octahedron with the phosphorus and nitrogen atoms cis to each other. Only the homochiral $(\Delta \Delta / \Lambda \Lambda)$ isomer was found in the crystal. Crystal and refinement data of the isomers, together with the full set of interatomic distances and angles, are given in Appendix A.10. The Ru-O distances characterising the coordination of the acetylacetonato anion were in the expected range, though the $\mathrm{Ru}-\mathrm{O}$ distances trans to $\mathrm{PPr}^{i}{ }_{3}$ were $\mathrm{ca} .0 .06 \AA$ longer than the Ru-O distances opposite to the dinitrogen and oxygen acac atoms.

The Ru-P bond lengths (2.312(2) \AA) are ca. $0.04 \AA$ shorter than those in cis-[Ru(acac)2 $\left.\left(\mathrm{PPr}^{i}{ }_{3}\right)_{2}\right]$ (see Table 2.19) but almost equal to that found for cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}^{i_{3}}\right)\right]$ (see Table 2.11). The Ru-N distance for cis-$\left[\left\{\operatorname{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}^{i_{3}}\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]$ is $(1.919(4) \AA)$ is similar to that found for the binuclear structure $\left.\left[\left\{\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]^{4+}\left(1.928(6) \AA{ }^{\circ}\right){ }^{39}$ The $\mathrm{Ru}-\mathrm{N} \equiv \mathrm{N}-\mathrm{Ru}$ unit shows a slight deviation from linearity, the Ru-N-N angle being 174°. The N-N distance is $1.135(8) \AA\left(c f \mathrm{~N}-\mathrm{N}=1.0977 \AA\right.$ for free $\left.\mathrm{N}_{2}\right),{ }^{40}$ consistent with backdonation of electron density from $\mathrm{Ru}(\mathrm{II})$ to $\mathrm{N}_{2} .{ }^{41}$ Similar lengthening of the $\mathrm{N} \equiv \mathrm{N}$ distance is found for $\left.\left[\left\{\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]^{4+}$ $(1.124(15) \AA)^{39}$ and $\left[\left\{\text { mer,trans }-\mathrm{RuCl}_{2}\left(\mathrm{NN}^{\prime} \mathrm{N}\right)_{2}\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]\left(\mathrm{NN}^{\prime} \mathrm{N}=2,6-\right.$ bis[(dimethylamino)methyl]pyridine) (1.110(3) $\AA) .{ }^{15}$

Figure 2.16: ORTEP diagram of the molecular structure of the homochiral cis-[\{Ru(acac) $\left.\left.)_{2}\left(\operatorname{PPr}_{3}{ }_{3}\right)\right\}_{2}\left(\mu-N_{2}\right)\right]$.

Bond Distances $(\AA \AA)$				
$\mathrm{Ru}(1)-\mathrm{O}(1)$		$2.046(4)$		
$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.035(4)$			
$\mathrm{Ru}(1)-\mathrm{O}(3)$		$2.050(4)$		
$\mathrm{Ru}(1)-\mathrm{O}(4)$		$2.107(4)$		
$\mathrm{Ru}(1)-\mathrm{P}(1)$		$2.312(2)$		
$\mathrm{Ru}(1)-\mathrm{N}(1)$			$1.919(4)$	
$\mathrm{N}(1)-\mathrm{N}(1)^{\mathrm{a}}$	$1.135(8)$			
Bond Angles (${ }^{\circ}$)				
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$92.4(2)$	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$174.2(2)$	
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$173.8(2)$	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$91.3(2)$	
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$82.5(2)$	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$90.2(1)$	
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$96.0(1)$	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$90.0(2)$	
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$92.6(1)$	$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$177.9(1)$	
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$86.8(1)$	$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$88.9(2)$	
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$86.4(1)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$92.6(1)$	
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$92.3(1)$	$\mathrm{Ru}(1)-\mathrm{N}(1)-\mathrm{N}(1)^{\mathrm{a}}$	$174.2(4)$	

a) indicates atom generated by the symmetry operation ($2-x, y, 3 / 2-z$).

Viewing the binuclear structure cis-[\{Ru(acac) $\left.\left.)_{2}\left(\operatorname{PPr}^{i_{3}}\right)\right\}_{2}\left(\mu-N_{2}\right)\right]$ along the $R u(1)-N(1)-N(2)-R u(2)$ axis reveals that the two $R u-\operatorname{PPr}^{i}{ }_{3}$ vectors are almost perpendicular to each other. A similar orientation of the two NN'N ligand systems found for $\left[\left\{\text { mer,trans }-\mathrm{RuCl}_{2}\left(\mathrm{NN}^{\prime} \mathrm{N}\right)_{2}\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right](\mathrm{NN}$ 'N $=2,6-$ bis[(dimethylamino)methyl]pyridine) ${ }^{15}$ and the trans $-\operatorname{PPr}^{i_{3}}$ groups of cis,trans, cis- $\left[\left\{\mathrm{RuH}_{2}\left(\operatorname{PPr}^{i_{3}}\right)_{2}\left(\mathrm{~N}_{2}\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]^{42}$ may be accounted for by the following simple orbital argument. Since $R u(I I)$ is a low spin d^{6}-electron ion in an octahedral environment, the $t_{2 g}$ set of orbitals is filled. Therefore, π -back-donation of electron density from ruthenium $t_{2 g}$ orbitals will occur into two orthogonal sets of empty π^{*} antibonding orbitals of the nitrogen. By perpendicular twisting of the $[\mathrm{Ru}]$ moieties, this back-donation will be maximised. ${ }^{15}$

The ${ }^{1} \mathrm{H}$ NMR spectrum of $c i s-\left[\left\{\operatorname{Ru}(a c a c) 2\left(\operatorname{PPr}^{i_{3}}\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]$ reveals the presence of two isomers in solution, which are likely the homochiral complex $(\Delta \Delta / \Lambda \Lambda)$ and the heterochiral complex $(\Delta \Lambda / \Lambda \Delta)$ arising from the chirality of the cis- $\left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\}$ groups. The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data for $c i s-\left[\left\{\operatorname{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}^{i_{3}}\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]$ are shown in Table 2.26. When the complex was first isolated, the major isomer displayed four methyl acac singlets and two methyl acac singlets, whereas the minor isomer showed three methyl acac singlets (presumably due to accidental overlap) and two methine singlets. In the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, there are seven detectable methyl acac resonances, four methine acac singlets and seven $C \equiv O$ acac resonances; the odd number of resonances is presumably due to accidental overlap. The ratio of the major and minor isomers ca. 10 minutes after dissolution in $\mathrm{C}_{6} \mathrm{D}_{6}$ at room temperature is ca. 4:1, after 14 hours $c a .2: 1$ and after 62 hours $c a .3: 2$. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum reveals two peaks at $\delta 60.6$ and 60.5 also in a ratio of $c a .3: 2$ in d_{6}-benzene after 62 hours. The ${ }^{1} \mathrm{H}$ NMR spectrum of $c i s-\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}^{i_{3}}\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]$ measured in situ from the reaction solution indicates that the isomers are in a ratio of $c a$. 1:1. This isomerization of $\left.c i s-\left[\operatorname{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}^{i_{3}}\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]$ probably occurs via
a) singlets unless otherwise indicated.
the undetected mononuclear complex cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}^{i} 3\right)\left(\mathrm{N}_{2}\right)\right]$ and the coordinatively unsaturated species $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}_{3}{ }_{3}\right)\right]$. Similar dissociation of bridging dinitrogen was observed for $\left[\left\{\mathrm{Ni}\left(\mathrm{PCy}_{3}\right)_{2}\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right] .{ }^{43}$ Diastereoisomers were also detected by ${ }^{1} \mathrm{H}$ NMR spectroscopy for the binuclear osmium(II) complex cis-[\{Os(bpy) $\left.{ }_{2} \mathrm{Cl}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]_{2} \cdot{ }^{44}$

The binuclear complex cis- $\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}_{3} i_{3}\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]$ readily reacts with $\mathrm{C}_{2} \mathrm{H}_{4}(1 \mathrm{bar})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $25^{\circ} \mathrm{C}$ to re-form cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\operatorname{PPr}^{i_{3}}\right)\right]$. The reaction is quantitative acording to ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{1} \mathrm{H}$ NMR spectroscopy. The dinitrogen complex also readily reacts with $\mathrm{PhC} \equiv \mathrm{CH}$ or $\mathrm{CO}(1$ bar) at 25 ${ }^{\circ} \mathrm{C}$ to form the complexes cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}^{i}{ }_{3}\right)(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph})\right]$ and trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i_{3}}\right)(\mathrm{CO})\right]$, respectively. For both reactions, the yields were quantitative as shown by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy.

2.10 Discussion

The affinity of the $\mathrm{Ru}(\mathrm{II})$ ion for unsaturated ligands such as alkenes, CO and N_{2} as previously discussed in Chapter 1 , is also shown by the number of $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{LL}\right.$ '] complexes isolated in which either L or L ' is an unsaturated ligand. The reduction of $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$ by activated zinc dust in the presence of cyclooctene to form cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]^{14}$ has been extended to ethene and probably could include other alkenes. Unlike the complex cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]$, which is only stable in solution in the presence of free alkene, ${ }^{14}$ the ethene analogue can be isolated as a crystalline solid which is indefinitely stable under an argon atomsphere. Although numerous ruthenium(II) ethene complexes have been isolated, most of these complexes contain only one ethene group together with Cp, CO and tertiary phosphines. Examples of isolated ethene complexes include $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]\left[\mathrm{S}_{2} \mathrm{O}_{6}\right],{ }^{1}\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6-x}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{x}\right][\mathrm{OTf}]_{2}(\mathrm{x}=1,2),{ }^{2}$ $\left[\mathrm{RuCl}_{2}(\mathrm{CO})\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPhMe}_{2}\right)\right],{ }^{45}\left[\mathrm{CpRu}\left(\mathrm{PMe}_{3}\right)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]\left[\mathrm{PF}_{6}\right], 46$ $\left.\left[\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]\left[\mathrm{BF}_{4}\right]_{1}^{47}\left[\mathrm{CpRu}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{3}\right]\left[\mathrm{BF}_{4}\right]\right]^{48}\left[\mathrm{CpRu}(\mathrm{CO})_{2}\left(\eta^{2-}\right.\right.$
$\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]\left[\mathrm{BF}_{4}\right],^{49}\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{RuCl}\left(\mathrm{PMe}_{3}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]\left[\mathrm{PF}_{6}\right], 50 \quad\left[\left(\eta^{6}-\right.\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathrm{Ru}\left(\mathrm{PMe}_{3}\right)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]\left[\mathrm{PF}_{6}\right]_{2},{ }^{51} \quad\left[\mathrm{Ru}(\right.$ porphyrinato $\left.)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ (porphyrinato $=5,10,15,20$-tetra- p-tolylporphyrinato dianion or $2,3,7,8,12,13,17,18$-octaethyl-porphyrinato dianion), ${ }^{52}$ mer, trans- $\left[\mathrm{RuCl}_{2}\left(\eta^{3}\right.\right.$ $\left.\mathrm{NN}^{\prime} \mathrm{N}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)$] ($\mathrm{NN}{ }^{\prime} \mathrm{N}=2,6$-bis[dimethylamino)methyl]pyridine), ${ }^{53}$ $\left[\mathrm{Ru}(\mathrm{tm} \operatorname{taa})\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{THF})\right]($ tmtaa $=$ dibenzotetramethyltetraza[14]annulene dianion $), 54 \quad\left[\mathrm{Cp} * \mathrm{Ru}(\mathrm{CO})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]\left[\mathrm{PF}_{6}\right], 55$ and $\left[\mathrm{RuH}\left\{\left(\eta^{3}\right.\right.\right.$. $\left.\left.\left.\mathrm{C}_{6} \mathrm{H}_{8}\right) \mathrm{PCy}_{2}\right\}(\mathrm{PCy})\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right] .{ }^{56}$ Ruthenium(II) ethene complexes which have been detected in solution but not isolated owing to easy loss of ethene include $\left[\mathrm{Cp}{ }^{*} \mathrm{Ru}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\eta^{1}-\mathrm{O}_{2} \mathrm{CCH}_{3}\right)\left(\mathrm{PPh}_{3}\right)\right]$, ${ }^{57}$ trans- $\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}(\mathrm{NO})\left(\eta^{2-}\right.\right.$
 $\left[\mathrm{Cp}^{*} \mathrm{Ru}\left(\mathrm{PPr}^{i}{ }_{2} \mathrm{Ph}\right)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{OCH}_{2} \mathrm{CF}_{3}\right)\right]^{60}$ and $\left[\mathrm{CpRu}(\right.$ tmeda $\left.)\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]\left[\mathrm{BAr}^{\prime}{ }_{4}\right]$ $\left[\right.$ tmeda $=\mathrm{N}, \mathrm{N}, \mathrm{N}$ ', N'-tetramethyethylenediamine; $\left.\mathrm{Ar}^{\prime}=3,5-\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CF}_{3}\right)_{2}\right] .{ }^{61}$

The relative stabilities of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ and cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]$ reflect the observed trend in the metal-alkene stability constants, K , for rhodium(I), ${ }^{62}$ nickel(0) ${ }^{63}$ and $\operatorname{Ag}(\mathrm{I}) .{ }^{64,65}$ In all three cases the values of K decrease as the number of alkyl substituents on the $C=C$ bond increases; the stereochemistry about the $C=C$ bond also has an effect on K. For example, the stability constants of ethene and cis-cyclooctene with silver(I) at $40{ }^{\circ} \mathrm{C}$ are 22.3 and 14.4 , respectively. ${ }^{64}$ Since the replacement of hydrogen atoms at the $C=C$ bond by electron donating groups increases the energy of the π and π^{*} orbitals, ${ }^{66} \pi$-back-donation from the metal to the alkene will be reduced and the metal-alkene bond will be destabilised.

The two ethene ligands of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ are mutually orthogonal and eclipse the trans $\mathrm{O}-\mathrm{Ru}-\mathrm{O}$ and $\mathrm{O}-\mathrm{Ru}-\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)$ vectors. This conformation is probably the result of electronic and steric effects. Similar bis(ethene) conformations have been observed for the octahedral complexes trans- $\left[\mathrm{Mo}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left(\mathrm{PMe}_{3}\right)_{4}\right],{ }^{67}$ trans $-\left[\mathrm{W}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left(\mathrm{PMe}_{3}\right)_{4}\right],{ }^{68}$ trans-$\left[\mathrm{W}(\mathrm{CO})_{4}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right],{ }^{5}$ cis,mer- $\left.-\mathrm{OsH}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]^{+23}$ and cis-
$\left[\mathrm{ReHCl}_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right] .{ }^{69}$ The bonding and conformational preferences for the molybdenum and tungsten complexes have been subject of a number theoretical studies. ${ }^{66,70,71}$ In particular, Veillard and coworkers' ${ }^{70}$ have discussed the relative energies of the different conformations for the model complex trans- $\left[\mathrm{Mo}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left(\mathrm{PH}_{3}\right)_{4}\right]$ and found that the staggered-eclipsed (the first term applies to the relative orientation of the ethene ligands while the second defines the position of the axial ethene groups relative to the trans P-Mo-P vectors) was the most stable on the basis of electronic and steric effects. This result agrees well with the observed conformation for trans-[Mo($\left.\left.\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left(\mathrm{PMe}_{3}\right)_{4}\right]$, which allows π back donation of electron density from two mutually orthogonal metal $t_{2 g}$ orbitals to the ethene π^{*} orbitals instead of one and thus reduces the competition for π-back donation. ${ }^{67}$

In the closely related d^{8} complexes $\left[\mathrm{Rh}(\mathrm{acac})\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{72}$ and $\left.\left[\mathrm{CpRh}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]\right]^{73}$ however, both ethene ligands are parallel. A similar situation was found for the seven-coordinate complex $\left[\mathrm{ReH}_{3}\left(\eta^{2}\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left(\mathrm{PPhPr}^{i}\right)_{2}\right]^{74}$ The ethene conformations for the d^{8} complexes in which the ethene ligands are cis are readily rationalised by consideration of the electronic interactions. Since there are no ligands on the z -axis for a d^{8} square planar complex, the energy of the $\mathrm{d}_{\mathrm{z}^{2}}$ orbital decreases whereas the energy of the $d_{x}{ }^{2}-y^{2}$ orbital increases, relative to the triply degenerate $t_{2 g}$ orbitals of a regular octahedron. The $t_{2 g}$ orbitals are also affected with the $d_{x y}$ orbital increasing in energy and the $d_{x z, y z}$ orbitals decreasing in energy. It is this decrease in energy which affords a greater ovelap with the ethene π^{*} orbitals than for the d_{xy} orbital and results in greater π-backdonation.

The reason for the adoption of the orthogonal ethene conformation in the octahedral complexes cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$, cis,mer-[OsH $\left(\eta^{2}-\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]^{+74 \mathrm{a}}$ and $c i s-\left[\operatorname{Re}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}(\mathrm{H})\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{Cl}_{2}\right]^{69}$ is less clear. For a regular octahedron, the metal $\mathrm{t}_{2 \mathrm{~g}}$ orbitals available for π-back donation
are triply degenerate for d^{4} and d^{6} ions. Therefore, neither conformation will be significantly preferred and steric effects may well come into play. Calculations performed on cis,mer- $\left[\mathrm{OsH}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]^{+}$indicate that the energy difference between the parallel and orthogonal ethene conformations is less than $10 \mathrm{~kJ} \mathrm{~mol}{ }^{-1} .^{23}$ Since the complexes cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ and cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}_{3}{ }_{3}\right)\right]$ show different orientations of the ethene ligand, and cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{PCy})\right]$ shows both orientations of the ethene vectors (see p. 51), the energy difference between conformations must be small. A third ethene conformation exists in which the $C=C$ vectors are linear but this was calculated to be $c a .84 \mathrm{~kJ}$ mol^{-1} higher in energy than the ground state for cis,mer-[OsH(η^{2} $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{3}\right]^{+} .{ }^{23}$ This destabilisation was attributed to the fact that only one metal d orbital has the proper symmetry to overlap with two ethene π^{*} orbitals and also to strong ethene/ethene steric repulsion.

The metrical data for the coordinated ethene ligands of cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ are very similar to those found for $\left[\mathrm{Rh}(\mathrm{acac})\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ and Zeise's salt, $\mathrm{K}\left[\mathrm{PtCl}_{3}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ i.e. the $\mathrm{C}=\mathrm{C}$ bond lengths are almost equal and only slightly greater than those in free ethene, ${ }^{40}$ and the bend-back angles for the ethene protons are also similar (see p. 35-36). On the basis of this crystallographic evidence, the Dewar-Chatt-Duncanson model ${ }^{75,76}$ is probably more appropriate than the metallacycle description ${ }^{36}$ of the metalalkene bond for all trans- and cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]$ complexes. A metallacyclic description of the metal-alkene bond would require the $\mathrm{C}-\mathrm{C}$ distance to be closer to that of a single bond ($1.54 \AA$) and a bend-back angle α approaching $60^{\circ} .{ }^{73}$ Further evidence for the Dewar-Chatt-Duncanson model of bonding for ethene in these complexes are the coordinated ethene $\mathrm{C}-\mathrm{H}$ coupling constants (ca. $155-160 \mathrm{~Hz}$), which are very close to that of free ethene $(156.4 \mathrm{~Hz}){ }^{3}$

Unfortunately, the observed equivalence of the carbon atoms of the coordinated $\mathrm{C}_{2} \mathrm{H}_{4}$ ligands in solution, even at the lowest accessible temperature, precludes an estimate of the alkene rotation barrier. This observation implies either that the rotation is very rapid on the NMR timescale, even at ca. $-95{ }^{\circ} \mathrm{C}$, or that the inequivalence induced by cis$\left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\}$ is unobservably small. The ΔG^{\neq}value for ethene rotation in cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ would not be expected to be substantially different from those measured for comparable Pt (II) and Rh (I) complexes (ca. $50-55 \mathrm{~kJ}$ mol^{-1}), 22,25-27 given the similarity of $C=C$ and M-C bond lengths, and in the fact for $\left[\operatorname{Rh}(\operatorname{acac})\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ there are two mutually cis-alkenes. In fact, the for other ruthenium(II)-ethene complexes which includes $\left[\mathrm{CpRu}\left(\eta^{2}\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{LL}^{\prime}\right]^{\mathrm{n}+}\left(\mathrm{n}=0, \mathrm{~L}=\mathrm{Me}, \mathrm{L}^{\prime}=\mathrm{CO} ;^{77} \mathrm{n}=1, \mathrm{~L}=\mathrm{L}^{\prime}=\mathrm{CO}^{78}\right)$ and $\left[\mathrm{CpRu}\left(\eta^{2-}\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}_{2}\right][\mathrm{OTf}]\left(\mathrm{L}_{2}=\right.$ diisopropyl-1,4-diaza-1,3-butadiene, bis-p-tolyl-1,4-diaza-1,3-butadiene), ${ }^{79}$ the ΔG^{\neq}value for rotation lies between $c a .30-40 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The close similarity between the crude estimates of ΔG^{\neq}for cis-[Ru(acac)$)_{2}\left(\eta^{2-}\right.$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$] suggests that the same process, viz reversible ethene dissociation, is responsible for the coalescence of the ethene proton multiplets and the broadening of the acac methyl resonances. If rotation is very rapid, the most likely mechanism for the observed equivalence is rotation about the $R u-\eta^{2-}$ $\mathrm{C}_{2} \mathrm{H}_{4}$ axis rather than about the $\mathrm{C}=\mathrm{C}$ bond, since the latter process requires the ethene protons to point directly at the metal centre during the rotation. ${ }^{6,26}$ Direct experimental evidence exists for the former process exists in the chiral complexes $\left[\mathrm{CpCr}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{CO})(\mathrm{NO})\right]^{80}$ and $\left[\mathrm{Os}\left(\eta^{2}-\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{CO})(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right] .{ }^{81}$ The variation of the proton chemical shift of the ethene protons with temperature is probably due to the relative populations of ethene rotamers since various halogen substituted ethanes also show a chemical shift temperature dependence with different nuclei. ${ }^{82}$

The occurrence of reversible ethene dissociation for cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2-}\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ is not surprising since $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]$ is only stable in the presence of free $\mathrm{C}_{8} \mathrm{H}_{14}{ }^{14}$ and since ethene is also readily replaced by various
monodentate ligands at room temperature. Ethene exchange is slow on the NMR timescale at room temperature, whereas fast ethene exchange is found for $\left[\mathrm{Rh}(\mathrm{acac})\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ under similar conditions. ${ }^{6}$ An associative mechanism is proposed for the rhodium(I) complex, which has 16 valence electrons and two free coordination sites, to form a five-coordinated species $\left[\mathrm{Rh}(\mathrm{acac})\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{3}\right]{ }^{6}$ However, coordination of a third ethene ligand to cis[$\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$] is unfavourable as the $\mathrm{Ru}(\mathrm{II})$ ion is co-ordinatively saturated and the complex has 18 valence electrons. There is also no detectable ethene exchange for the rhodium (I) complex $\left[\mathrm{CpRh}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ at room temperature or above $100{ }^{\circ} \mathrm{C}$, presumably due to the fact that this complex also has 18 valence electrons. ${ }^{6}$

Initial loss of the alkene from cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ is believed to occur with the formation of a five-coordinate square-pyramidal intermediate $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]$ in which ethene ocupies the apical position. Preferential attack of the incoming ligand L at the vacant site will give trans-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]$. Subsequent loss of ethene from this complex may give the square pyramidal five-coordinate intermediate [$\left.\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}\right]$ (see p. 21) which then isomerises to a trigonal bi-pyramidal fivecoordinate intermediate. Coordination with ethene forms cis-[Ru(acac) $)_{2}\left(\eta^{2-}\right.$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}$], the thermodynamic product. This sequence is shown in Scheme 2.1. Evidence supporting this pathway is the isolation of the complexes trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{NH}_{3}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$, both of which slowly isomerise to their cis analogues. The isolation (or detection) of the monosubstituted complexes cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{PPh}_{3}, \mathrm{PPr}_{3}{ }_{3}, \mathrm{PCy}_{3}\right)$ in an aromatic solvent provides the first evidence for the stepwise replacement of alkenes by a tertiary phosphine in this series of complexes. Weakly coordinating solvents, such as THF, appear to stabilise the squarepyramidal five coordinate species $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}\right]$ by occupying the vacant coordination site and thus allow a second equivalent of L to react with this intermediate to form trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$, which usually precipitates from
solution. In non-coordinating solvents such as benzene however, this fivecoordinate intermediate is not stabilised and thus re-coordinates ethene.

Scheme 2.1: Suggested pathway for formation of trans- and cis-[Ru(acac) $)_{2}\left(\eta^{2-}\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]$ from cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$.

kinetic product

thermodynamic product

Square-pyramidal geometry for a five-coordinate d^{6}-metal complex is to be expected on the basis of theoretical calculations. ${ }^{83,84}$ Spectroscopic evidence also exists for dilute solutions of trans-[Ru(acac) $\left.)_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$ and solutions of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{PCy})\right]$ in THF to dissociate to give either the square-pyramidal five-coordinate $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)\right]$ species or, more likely, a six-coordinate trans-[Ru(acac)2(PCy3)(THF)] complex in which the solvent is weakly coordinated. Moreover, spectroscopic evidence exists for the formation of $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PR}_{3}\right)(\mathrm{THF})\right]\left(\mathrm{R}=\mathrm{Ph}, \mathrm{Pr}^{i}\right)$, although the stereochemistry about the ruthenium atom is not known for either example. A similar dissociation reaction has been reported for $\left[\mathrm{Ru}(\mathrm{OEP})\left(\mathrm{PPh}_{3}\right)_{2}\right]\left(\mathrm{OEP}=\right.$ octaethylporphyrinato dianion), ${ }^{85}$ although no ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data were reported. Other square-pyramidal ruthenium(II) complexes which have been either characterised structurally or spectroscopically include $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right],{ }^{17}$
$\left[\mathrm{RuCl}\left(\mathrm{NN}^{\prime} \mathrm{N}\right)\left(\mathrm{PPh}_{3}\right)\right] \mathrm{OTf}$ and $\left[\mathrm{Ru}(\mathrm{OTf})\left(\mathrm{NN}^{\prime} \mathrm{N}\right)\left(\mathrm{PPh}_{3}\right)\right] O T f\left(\mathrm{NN}^{\prime} \mathrm{N}=2,6-\right.$ bis[(dimethylamino)-methyl]pyridine), ${ }^{15} \mid\left[\mathrm{Ru}\left\{\mathrm{N}\left(\mathrm{SPPh}_{2}\right)_{2}\right\}\left(\mathrm{PPh}_{3}\right)\right]$ and $\left[\operatorname{Ru}\left\{\mathrm{N}\left(\mathrm{SPPr}^{i}{ }_{2}\right)_{2}\right\}\left(\mathrm{PPh}_{3}\right)\right]\left(\mathrm{N}\left(\mathrm{SPR}_{2}\right)_{2}=\operatorname{bis}(\right.$ dialkylthiophosphoryl)amides $){ }^{16}$

The formation of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{PPh}_{3}, \mathrm{PPr}^{i}{ }_{3}, \mathrm{PCy}\right)$ is believed to occur via the undetected intermediate trans $-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\right.\right.$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}$]. As tertiary phosphines have a stronger trans-influence than either NH_{3} or pyridine, the metal $-\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}$ bond in trans-[Ru(acac) $\left.2\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]$ is expected to be weaker for $\mathrm{L}=$ tertiary phosphine than for $\mathrm{L}=\mathrm{NH}_{3}$ or pyridine. ${ }^{86}$ The thermodynamic instability of the complexes trans$\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ presumably arises from the electronic effects of two π-acceptor ligands, even if relatively weak, competing for electron density from the same d-orbital on ruthenium(II). ${ }^{14}$ By rearranging to the corresponding ciscomplexes, the π-acceptor ligands are now trans to an π-donor oxygen acac atom and no longer compete with each other for electron density.

The carbonyl complexes trans-[Ru(acac) $\left.2(\mathrm{CO})\left(\mathrm{PR}_{3}\right)\right]\left(\mathrm{R}=\operatorname{Pr}^{i}, C y\right)$ readily form from trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]$ in the presence of CO ; the complex cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}^{i}{ }_{3}\right)_{2}\right]$ also reacts with CO , albeit more slowly, to form trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{CO})\left(\mathrm{PPr}_{3}{ }_{3}\right)\right]$. The cis- to trans-stereochemical rearrangment about the ruthenium atom is similar to that found during the replacement of the coordinated alkenes from cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2} \text {-alkene }\right)_{2}\right]$ and presumably also occurs via the square pyramidal five-coordinate species $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PR}_{3}\right)\right](\mathrm{R}=$ $\left.\operatorname{Pr}^{i}, \mathrm{Cy}\right)$. Heating these trans-[Ru(acac) $\left.)_{2}(\mathrm{CO})\left(\mathrm{PR}_{3}\right)\right]\left(\mathrm{R}=\mathrm{Pr}^{i}, \mathrm{Cy}\right)$ complexes results in the isolation of the corresponding cis-isomers. This trans- to cisisomerization probably occurs via phosphine dissociation to form a carbonyl five-coordinate species $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{CO})\right]$.

Terminal alkynes, $\mathrm{HC} \equiv \mathrm{CR}\left(\mathrm{R}=\mathrm{Ph}, \mathrm{SiMe}_{3}, \mathrm{Bu}^{t}\right)$, also react with cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}^{i_{3}}\right)_{2}\right]$ and $\operatorname{cis}-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\operatorname{PPr}^{i_{3}}\right)\right]$ to form the vinylidene complexes cis $-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}^{i} 3\right)\{=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{R}\}\right]$. There are several possible mechanisms for the formation of a vinylidene ligand within the
coordination sphere of a metal atom. The first mechanism involves a 1,2the hydrogen shift in a metal $-\eta^{2}-H C \equiv C R$ intermediate and/second the involves oxidative addition of the alkyne to form an alkynyl(hydrido) complex which subsequently re-arranges to form the vinylidene complex. ${ }^{35,87-89}$ The former mechanism is preferred for the $\mathrm{d}^{6} \mathrm{Ru}(\mathrm{II})$ ion on the basis of experimental and calculated results. ${ }^{36,87-90}$ The second mechanism appears to be favoured in the case of the $\mathrm{d}^{8} \mathrm{Rh}(\mathrm{I})$ ion; several alkynyl(hydrido) complexes of rhodium(III) which subsequently re-arrange to form the vinylidenerhodium(I) complexes have been isolated. ${ }^{91-93}$ Calculations also show that this mechanism is favoured for rhodium complexes. ${ }^{94}$ A third possible mechanism involves the insertion of the alkyne into a metal-hydride bond to form a σ-vinyl, which undergoes an α-hydrogen migration to give a hydrido/vinylidene complex. ${ }^{94 a}$ This mechanism can be excluded as there is no evidence for ruthenium-hydride complexes in this work. Disubstituted alkynes do not displace ethene from cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{PPr}^{i}{ }_{3}, \mathrm{PCy}_{3}\right)$, an observation that may correlate with the reduced stability constants found for disubstituted alkynes with $\mathrm{Ag}(\mathrm{I})$ (e.g. the stability constant K for 3-hexyne is 2.6 which is less than for ethene, $\mathrm{K}=22.2) .{ }^{64}$

The strong affinity of the $\mathrm{Ru}(\mathrm{II})$ ion for dinitrogen (see p. 1-2) is also shown by the formation of the binuclear complex cis-[\{Ru(acac) $\left.)_{2}\left(\operatorname{PPr}^{i_{3}}\right)\right\}_{2}(\mu-$ $\left.\left.N_{2}\right)\right]$ by heating a solution of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}^{i}{ }_{3}\right)\right]$ under industrial grade dihydrogen (3 bar) containing ca. $100 \mathrm{ppm} \mathrm{N}_{2}$. The reaction of cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\operatorname{PPr}^{i_{3}}\right)\right]$, with N_{2} (3 bar) also gives the dinuclear complex, as judged by the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shift, not a mononuclar complex $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}^{i_{3}}\right)\left(\mathrm{N}_{2}\right)\right]$. Since there is a slight but significant difference in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shifts of comparable mono- and binuclear N_{2} complexes e.g.mer,trans- $\left[\operatorname{IrH}_{3}\left(\operatorname{PPr}_{3}\right)_{2}\left(\mathrm{~N}_{2}\right)\right](\delta+44.8)$ and mer,trans-$\left[\left\{\operatorname{IrH}_{3}\left(\operatorname{PPr}_{3}\right)_{2}\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right](\delta+47.7)^{95}$ as well as cis,cis,trans-[$\left.\operatorname{RuH}_{2}\left(\mathrm{~N}_{2}\right)_{2}\left(\operatorname{PPr}{ }_{3}\right)_{2}\right](\delta$ +73.6) and cis,trans,cis-[\{RuH2 $\left.\left.\left(\operatorname{PPr}_{3}\right)_{2}\left(\mathrm{~N}_{2}\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right](\delta+76.3),{ }^{42}$ a similar difference would also be expected between cis- $\left[\operatorname{Ru}(a c a c)_{2}\left(\operatorname{PPr}_{3}{ }_{3}\right)\left(\mathrm{N}_{2}\right)\right]$ and cis-$\left[\left\{\operatorname{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}^{i_{3}}\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]$. However, there is no evidence for the formation of cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}_{3}\right)\left(\mathrm{N}_{2}\right)\right]$, which is presumed to be an intermediate in the formation of the binuclear complex and the interconversion of the diastereoisomers.

The mild conditions required for the isomerization of trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i}{ }_{3}\right)_{2}\right]$ contrast with those for trans-[Ru(acac)$\left.)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right]$, which isomerise in refluxing benzene and mesitylene, respectively. ${ }^{14}$ As the phosphine cone angle increases, ${ }^{96}$ the reactivity of the isolated complexes increases. Nolan and coworkers have measured the RuPR_{3} bond energy for the complexes [$\left(p \text {-cymene) } \mathrm{RuCl}_{2} \mathrm{~L}\right]^{97}$ and [Cp'RuClL] (L $=$ tertiary phosphine; $C p^{\prime}=C p^{98}$ or $C p^{* 99}$) and found that trimethylphosphine forms relatively stronger Ru-P bonds by ca. $45 \mathrm{~kJ} \mathrm{~mol}^{-1}$ than either triisopropyl phosphine or tricyclohexylphosphine. The Ru-PR3 bond energy appears to increase as the Tolman cone angle ${ }^{96}$ decreases although electronic factors are also involved in determining the magnitude. ${ }^{97,99}$

The Ru-O (acac) bond lengths in the complexes cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2-}\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{NH}_{3}, \mathrm{PPr}_{3}{ }_{3}\right.$ and PCy$)$, trans-[Ru(acac)$\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)\right]$, cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}_{3} \mathrm{i}_{3}\right)_{2}\right]$ and trans-[Ru(acac)2 $\left.\left(\mathrm{PCy}_{3}\right)_{2}\right]$ are generally in the range 2.05-2.07 \AA, similar to those in the complexes $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]\left(\mathrm{L}=\mathrm{PPh}_{2} \mathrm{Me}\right.$, CNBu $\left.{ }^{t}, \mathrm{dppm}\right)^{14}$ and in the $\left\{\mathrm{Ru}^{\mathrm{II}}(\mathrm{acac})_{2}\right\}$ chelate complexes of o $\mathrm{CH}_{2}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}{ }^{9}$ and $o-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2} \cdot{ }^{100}$ In complexes containing a tertiary phosphine, however, the Ru-O distances opposite to the phosphorus atom are significantly longer (ca. 0.02-0.06 \AA) than those trans to the acac oxygen atoms, consistent with the higher trans influence of the tertiary phosphine. The Ru-P bond distances range from 2.312(2) to 2.4268 (3) \AA with the longest distance belonging to trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$. This distance is similar to that found for $\left[\mathrm{Ru}(\mathrm{OEP})\left(\mathrm{PPh}_{3}\right)_{2}\right](\mathrm{OEP}=$ octaethylporphyrinato dianion) ($2.438(<1) \AA$) which dissociates in dilute solution to a fivecoordinate complex with the phosphine in the apical position. ${ }^{85}$

The steric repulsion between the cis-PPri3 groups in cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i}{ }_{3}\right)_{2}\right]$ is presumably responsible for the large $\mathrm{P}-\mathrm{Ru}-\mathrm{P}$ bond angle of 105° and for the Ru-P bond lengths of ca. $2.35 \AA$, which are ca. $0.07 \AA$
longer than those found in cis-[Ru(acac) $\left.)_{2}\left(\mathrm{PPh}_{2} \mathrm{Me}\right)_{2}\right]$ ($\mathrm{P}-\mathrm{Ru}-\mathrm{P}$ bond angle of $\left.93^{\circ}\right) .^{14}$ Similar P-M-P angles were found for the complexes $\left[\mathrm{Rh}(\mathrm{acac})(\mathrm{PCy})_{2}\right],{ }^{31}$ cis- $\left[\mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{PR}_{3}\right)_{2}\right](\mathrm{R}=\mathrm{Ph}, \mathrm{Cy})\left(\text { both } 105^{\circ}\right)^{33,34}$ and cis$\left[\mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{PPh}_{2} \mathrm{Me}\right)_{2}\right]\left(93^{\circ}\right){ }^{33}$ The average Mo-P bond distance for cis$\left[\mathrm{Mo}(\mathrm{CO})_{4}\left(\mathrm{PCy}_{3}\right)_{2}\right](2.654 \AA)$ was found to be $c a .0 .08 \AA$ longer than that for the PPh_{3} complex and $\mathrm{c} a .0 .1 \AA$ longer than that for the $\mathrm{PPh}_{2} \mathrm{Me}$ complex; the longer Mo-P distances for the phosphines with a larger cone angle ${ }^{96}$ appears to be the main method for relieving steric strain in these complexes. On this basis, it is notsurprising that $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$ does not readily form. Steric repulsion between adjacent PCy3 groups may destabilise the corresponding cis-isomer, although, as previously stated, complexes which contain cis-PCy3 groups do exist and crystal structures have been determined. ${ }^{31,34}$

The Ru-C $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ bond lengths for the complexes cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{NH}_{3}, \mathrm{PPr}^{i} 3\right.$ and PCy 3$)$ range from $2.157(3)$ to 2.212(2) \AA. Steric interaction between the ethene protons and the co-ligand may result in the adoption of different conformations in the complexes cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ and $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}^{i}\right)\right]$ (see p. 51). The ethene protons having a greater interaction with the isopropyl protons than with the ammine protons. A slight increase in the Ru-P bond length for cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PCy}_{3}\right)\right]$ may reduce this steric interaction between the ethene protons and the cyclohexyl protons so that both orientations are observed. The Ru-C distances fall in the range $2.15-2.21 \AA$, with cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ at the lower end of the range and cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ at the upper end. Presumably, the range of $\mathrm{Ru}-\mathrm{C}$ distances reflects the ease of replacement of the ethene ligand. Additional evidence for this statement can be derived from the comparison of the $\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$ potentials (see Chapter 3).

2.11 References

(1) Lehmann, H.; Schenk, K. J.; Chapuis, G.; Ludi, A. J. Am. Chem. Soc. 1979, 101, 6197.
(2) Laurenczy, G.; Merbach, A. E. Chem. Commun. 1993, 187.
(3) Levy, G. C.; Lichter, R. L.; Nelson, G. L. Carbon-13 Nuclear Magnetic Resonance Spectroscopy; 2nd ed.; Wiley: New York, 1980, p 89.
(4) Bodner, G. M.; Stornoff, B. N.; Doddrell, D.; Todd, L. J. Chem. Commun. 1970, 1530.
(5) Szymanska-Buzar, T.; Kern, K.; Downs, A. J.; Green, T. M.; Morris, L. J.; Parsons, S. New J. Chem. 1999, 407.
(6) Cramer, R. J. Am. Chem. Soc. 1964, 86, 217.
(7) Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; 4th ed.; Wiley: New York, 1986.
(8) Pruchnik, F. P. Organometallic Chemistry of the Transition Elements; Fackler Jr., J. P., Ed.; Plenum Press: New York and London, 1990.
(9) Bennett, M. A.; Heath, G. A.; Hockless, D. C. R.; Kovacik, I.; Willis, A. C. J. Am. Chem. Soc. 1998, 120, 932.
(10) Ricci, J. S.; Ibers, J. A. J. Am. Chem. Soc. 1970, 92, 5333.
(11) Grünwald, G.; Laubender, M.; Wolf, J.; Werner, H. J. Chem. Soc., Dalton Trans. 1998, 833.
(12) Cramer, R.; Kline, J. B.; Roberts, J. D. J. Am. Chem. Soc. 1969, 91, 2519.
(13) Bellamy, L. J. The Infrared Spectra of Complex Molecules; 3rd ed.; Chapman and Hall: London, 1975.
(14) Bennett, M. A.; Chung, G.; Hockless, D. C. R.; Neumann, H.; Willis, A. C. J. Chem. Soc., Dalton Trans. 1999, 3451.
(15) Abbenhius, R. A. T. M.; del Río, I.; Bergshoef, M. M.; Boersma, J.;

Veldman, N.; Spek, A. L.; van Koten, G. Inorg. Chem. 1998, 37, 1749.
(16) Leung, W. H.; Zheng, H.; Chim, J. L. C.; Chan, J.; Wong, W. T.; Williams, I. D. J. Chem. Soc., Dalton Trans. 2000, 423.
(17) Hoffman, P. R.; Caulton, K. G. J. Am. Chem. Soc. 1975, 97, 4221.
(18) Armit, P. W.; Sime, W. J.; Stephenson, T. A.; Scott, L. J. Organomet. Chem. 1978, 161, 391.
(19) Jung, C. W.; Garrou, P. E.; Hoffman, P. R.; Caulton, K. G. Inorg. Chem. 1984, 23, 726.
(20) Vierkötter, S. A.; Barnes, C. E.; Garner, G. L.; Butler, L. G. J. Am. Chem. Soc. 1994, 116, 7445.
(21) Baar, C. A.; Jenkins, H. A.; Jennings, M. C.; Yap, G. P. A.; Puddephatt, R. J. Organometallics 2000, 19, 4870.
(22) Herberhold, M.; Kreiter, C. G.; Wiedersatz, G. O. J. Organomet. Chem. 1976, 120, 103.
(23) Sandström, J. Dynamic NMR Spectroscopy; Academic Press: London, 1982, p 76.
(24) Wickenheiser, E. B.; Cullen, W. R. Inorg. Chem. 1990, 29, 4671.
(25) Holloway, C. E.; Hulley, G.; Johnson, B. F. G.; Lewis, J. J. Chem. Soc. (A) 1969, 53.
(26) Holloway, C. E.; Hulley, G.; Johnson, B. F. G.; Lewis, J. J. Chem. Soc. (A) 1970, 1653.
(27) Ashley-Smith, J.; Douek, I.; Johnson, B. F. G.; Lewis, J. J. Chem. Soc., Dalton Trans. 1972, 1776.
(28) Bennett, M. A.; Neumann, H. unpublished results.
(29) Mann, B. E.; Masters, C.; Shaw, B. L.; Slade, R. M.; Stainbank, R. E. Inorg. Nucl. Chem. Letters 1971, 7, 881.
(30) Chaudret, B. J. Organomet. Chem. 1984, 268, C33.
(31) Esteruelas, M. A.; Lahoz, F. J.; Oñate, E.; Oro, L. A.; Rodríguez, L.; Steinert, P.; Werner, H. Organometallics 1996, 15, 3436.
(32) Werner, H.; Schäfer, M.; Nürnberg, O.; Wolf, J. Chem. Ber. 1994, 127, 27.
(33) Cotton, F. A.; Darenbourg, D. J.; Klein, S.; Kolthammer, B. W. S. Inorg. Chem. 1982, 21, 294.
(34) Watson, M.; Woodward, S.; Conole, G.; Kessler, M.; Sykara, G. Polyhedron 1994, 13, 2455.
(35) Antonova, A. B.; Ioganson, A. A. Russ. Chem. Rev. 1989, 58, 693.
(36) Puerta, M. C.; Valerga, P. Coord. Chem. Rev. 1999, 193-195, 977.
(37) Chatt, J.; Nikolsky, A. B.; Richards, R. L.; Sanders, J. R. Chem. Coттии. 1969, 154.
(38) Creutz, C.; Taube, H. Inorg. Chem. 1971, 10, 2664.
(39) Treitel, I. M.; Flood, M. T.; March, R. E.; Gray, H. B. J. Am. Chem. Soc. 1969, 91, 6512.
(40) Lide, R. D. Handbook of Chemistry and Physics; 76th ed.; CRC Press: New York, 1998, Section 9, p 20.
(41) Ondrechen, M. J.; Ratner, M. J.; Ellis, D. E. J. Am. Chem. Soc. 1981, 103, 1656.
(42) Abdur-Rashid, K.; Gusev, D. G.; Lough, A. J.; Morris, R. H. Organometallics 2000,19, 1652.
(43) Jolly, P. W.; Jonas, K.; Krüger, C.; Tsay, Y. H. J. Organomet. Chem. 1971, 33, 109.
(44) Coia, G. M.; Demadis, K. D.; Meyer, T. J. Inorg. Chem. 2000, 39, 2212.
(45) Brown, L. D.; Barnard, C. F. J.; Daniels, J. A.; Mawby, R. J.; Ibers, J. A. Inorg. Chem. 1978, 17, 2932.
(46) Bruce, M. I.; Wong, F. S. J. Organomet. Chem. 1981, 210, C5.
(47) Mynott, R.; Lehkuhl, H.; Kreuzer, E.-M.; Joussen, E. Angew. Chem. Int. Ed. (Engl) 1990, 29, 289.
(48) Crocker, M.;'Green, M.; Orpen, A. G.; Thomas, D. M. Chem. Commun. 1984, 1141.
(49) Faller, J. W.; Johnson, B. V. J. Organomet. Chem. 1975, 88, 101.
(50) Werner, R.; Werner, H. Chem. Ber. 1983, 116, 2074.
(51) Werner, H.; Werner, R. Chem. Ber. 1985, 118, 4543.
(52) Collman, J. P.; Brothers, P. J.; McElwee-White, L.; Rose, E.; Wright, L. J. J. Am. Chem. Soc. 1985, 107, 4570.
(53) del Río, I.; Gossage, R. A.; Hannu, M. S.; Lutz, M.; Spek, A. L.; van Koten, G. Organometallics 1999, 18, 1097.
(54) Hesschenbrouck, J.; Solari, E.; Scopelliti, R.; Floriani, C.; Re, N. J. Organomet. Chem. 2000, 596, 77.
(55) Guerchais, V.; Lapinte, C.; Thépot, J. Organometallics 1988, 7, 604.
(56) Borowski, A. F.; |Sabo-Etienne, S.; Christ, M. L.; Donnadieu, B.; Chaudret, B. Organometallics 1996, 15, 1427.
(57) Werner, H.; Braun, T.; Daniel, T.; Gevert, O.; Schulz, M. J. Organomet. Chem. 1997, 541, 127.
(58) Burrell, A. K.; Clark, G. R.; Rickard, C. E. F.; Roper, W. R.; Wright, A. H. J. Chem. Soc., Dalton Trans. 1991, 609.
(59) Campion, B. K.; Heyn, R. H.; Tilley, T. D. Chem. Commun. 1988, 278.
(60) Johnson, T. J.; Huffman, J. C.; Caulton, K. G. J. Am. Chem. Soc. 1992, 114, 2725.
(61) Gemel, C.; Huffman, J. C.; Caulton, K. G.; Mauthner, K.; Kirchner, K. J. Organomet. Chem. 2000, 593-594, 342.
(62) Cramer, R. J. Am. Chem. Soc. 1967, 89, 4621.
(63) Tolman, C. J. Am. Chem. Soc. 1974, 96, 2780.
(64) Muhs, M. A.; Weiss, F. T. J. Am. Chem. Soc. 1962, 84, 4697.
(65) Cvetanovíc, R. J.; Duncan, F. J.; Falconer, W. E.; Irwin, R. S. J. Am. Chem. Soc. 1965, 87, 1827.
(66) Albright, T. A.; Hoffmann, R.; Thibeault, J. C.; Thorn, D. L. J. Am. Chem. Soc. 1979, 101, 3801.
(67) Carmona, E.; Marin, J. M.; Poveda, M. L.; Atwood, J. L.; Rogers, R. D. J. Am. Chem. Soc. 1983, 105, 3104.
(68) Carmona, E.; Galindo, A.; Poveda, M. L.; Rogers, R. D. Inorg. Chem. 1985, 24, 4033.
(69) Komiya, S.; Baba, A. Organometallics 1991, 10, 3105.
(70) Bachmann, C.; Demuynck, J.; Veillard, A. J. Am. Chem. Soc. 1978, 100, 2366.
(71) Burdett, J. K.; Albright, T. A. Inorg. Chem. 1979, 18, 2112.
(72) Evans, J. A.; Russell, D. R. Chem. Commun. 1971, 197.
(73) Blom, R.; Rankin, D. W. H.; Robertson, H. E.; Perutz, R. N. J. Chem. Soc., Dalton Trans. 1993, 1983.
(74) Hazel, N. J.; Howard, J. A. K.; Spencer, J. L. Chem. Commun. 1984, 1663. (74a) Johnson, T. J.; Huffman, J. C.; Caulton, K. G.; Jackson, S. A.; Eisenstein, O. Organometallics 1989, 8, 2073.
(75) Chatt, J.; Duncanson, L. A. J. Chem. Soc. 1953, 2939.
(76) Dewar, M. J. S. Bull. Soc. Chim. France 1951, 18, C79.
(77) Mahmoud, K. A.; Rest, A. J.; Alt, H. G. J. Chem. Soc., Dalton Trans. 1985, 1365.
(78) Faller, J. W.; Johnson, B. V. J. Organomet. Chem. 1975, 88, 101.
(79) de Klerk-Engels, B.; Delis, J. G. P.; Ernsting, J.; Elsevier, C. J.; Frühauf, H.; Stufkens, D. J.; Vrieze, K.; Goubitz, K.; Fraanje, J. Inorg. Chim. Acta 1995, 240, 273.
(80) Alt, H.; Herberhold, M.; Kreiter, C. G.; Strack, H. J. Organomet. Chem. 1974, 77, 353.
(81) Segal, J. A.; Johnson, B. F. G. J. Chem. Soc., Dalton Trans. 1975, 677.
(82) Gutowsky, H. S.; Belford, G. G.; McMahon, P. E. J. Chem. Phys. 1962, 36, 3353.
(83) Elian, M.; Hoffmann, R. Inorg. Chem. 1975, 14, 1058.
(84) Burdett, J. K. J. Chem. Soc., Faraday Trans. 2 1974, 70, 1599.
(85) Ariel, S.; Dolphin, D.; Domazetis, G.; James, B. R.; Leung, T. W.;

Rettig, S. J.; Trotter, J.; Williams, G. M. Can. J. Chem. 1984, 62, 755.
(86) Appleton, T. G.; Clark, H. C.; Manzer, L. E. Coord. Chem. Rev. 1973, 10, 335.
(87) Bruneau, C.; Dixneuf, P. H. Acc. Chem. Res. 1999, 32, 311.
(88) Bruce, M. I. Chem. Rev. 1991, 91, 197.
(89) Naota, T.; Takaya, H.; Murahashi, S.-I. Chem. Rev. 1998, 98, 2599.
(90) Wakatsuki, Y.; Koga, N.; Yamazaki, H.; Morokuma, K. J. Am. Chem. Soc. 1994, 116, 8105.
(91) Werner, H.; Baum, B.; Schneider, D.; Windmüller, B. Organometallics 1994, 13, 1089.
(92) Rappert, T.; Nürnberg, O.; Mahr, N.; Wolf, J.; Werner, H. Organometallics 1992, 11, 4156.
(93) Wolf, J.; Werner, H.; Serhadli, O.; Ziegler, M. L. Angew. Chem. Int. Ed. Engl. 1983, 22, 414.
(94) Wakatsuki, Y.; Koga, N.; Werner, H.; Morokuma, K. J. Am. Chem. Soc. 1997, 119, 360.
(94a) Oliván, M; Clot, E;Eisenstein, O; Caulton, K. G. Organometallics 1998, 17, 3091.
(95) Goldman, A. S.; Halpern, J. J. Organomet. Chem. 1990, 382, 237.
(96) Tolman, C. A. Chem. Rev. 1977, 77, 313.
(97) Serron, S. A.; Nolan, S. P. Organometallics 1995, 14, 4611.
(98) Cucullu, M. E.; Luo, L.; Nolan, S. P. Orgamanometallics 1995, 14, 289.
(99) Luo, L.; Nolan, S. P. Organometallics 1994, 13, 4781.
(100) Bennett, M. A.; Heath, G. A.; Hockless, D. C. R.; Kovacik, I.; Willis, A.
C. Organometallics 1998, 17, 5867.

Co-ordination and organometallic chemistry of
bis(β-diketonato)ruthenium(III)
complexes

As mentioned in the Introduction, the $\mathrm{Ru}^{3+/ 2+}$ redox potentials for $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{~L}\right]^{2+},\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{x} \mathrm{~L}_{6-\mathrm{x}}\right]^{2+}$ and $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ (where $\mathrm{L}=$ monodentate ligand) have been extensively studied to determine the relative stability of the two oxidation states. This chapter deals with the redox properties of the new complexes mentioned in the preceding chapter. Various electrochemical methods, often coupled with spectroscopic techniques, have been used in this work in order to determine the stability of the oxidised products and whether the $\mathrm{Ru}(\mathrm{III})$ oxidation state is chemically accessible. As a consequence, the chapter is divided into the following sections: voltammetry, electrolytic oxidation, chemical oxidation and discussion.

3.1 Voltammetry

The cyclic and AC (alternating current) voltammograms of cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ show a quasi-reversible electron transfer process at $+0.95 \mathrm{~V}(v s \mathrm{Ag} / \mathrm{AgCl})$ at $c a .-50{ }^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (see Figure 3.1). Although the observed couple is symmetrical, the difference between the potentials of the oxidation and reduction processes, $\Delta \mathrm{E}_{\mathrm{P}}$, varies with scan rate (see Table 3.1). ${ }^{1}$ Ferrocene was also measured under these non-standard conditions and its $\Delta \mathrm{E}_{\mathrm{P}}$ varies little at low scan rates but increases at a scan rate of $500 \mathrm{mV} \mathrm{s}{ }^{-1}$. The AC trace of a mixture of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ and ferrocene at ca. -50 ${ }^{\circ} \mathrm{C}$ shows two symmetric peaks with a peak width at half-height of 105 mV and 85 mV , respectively.

At room temperature, a non-symmetric cyclic voltammogramic trace was found for cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ at slow scan rates $\left(c a .50 \mathrm{mVs}^{-1}\right) . \mathrm{A}$ second complex, whose reversibility was not investigated, was also detected during the reduction process at $\mathrm{EPc}=+0.40 \mathrm{~V}(v s \mathrm{Ag} / \mathrm{AgCl})$.

Figure 3.1: $C V$ and $A C$ voltammograms of $\underline{\left.\text { cis-[Ru(acac })_{2}\left(\eta^{2}-C_{2} H_{4}\right)_{2}\right]}$ measured at ca. $-50{ }^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Table 3.1: Variation of ΔE_{P} with scan rate for cis- $\left[R u(a c a c)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ and $\mathrm{Cp}_{2} \mathrm{Fe}$ at ca. $-50{ }^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Scan Rate $\left(\mathrm{mV} \mathrm{s}^{-1}\right)$	$\Delta \mathrm{E}_{P}(\mathrm{mV})$	
	cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$	$\mathrm{Cp}_{2} \mathrm{Fe}$
50	90	62
100	106	64
200	122	66
500	160	85

The replacement of one ethene ligand by a ligand L to form cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{NH}_{3}, \mathrm{MeCN}, \mathrm{SbPh}_{3}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{PPr}_{3}{ }_{3}, \mathrm{PCy} 3\right)$ lowers the $\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$ potentials to between +0.37 and $+0.59 \mathrm{~V}(v s \mathrm{Ag} / \mathrm{AgCl})$; all of the isolated monoethene complexes show fully reversible voltammograms at ca. $-50{ }^{\circ} \mathrm{C}$ at a scan rate of $100 \mathrm{mVs}^{-1}$. The lowest oxidation potential found for the monoethene complexes corresponds to
both geometric isomers of $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right](+0.37 \mathrm{~V}$ vs $\mathrm{Ag} / \mathrm{AgCl})$; the highest potential found is shown by cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{SbPh}_{3}\right)\right]$ (see Table 3.2).

Table 3.2: The oxidation potentials $E_{1 / 2}\left(R u^{3+/ 2+}\right)$ (vs $\mathrm{Ag} / \mathrm{AgCl}$) of the complexes $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}\right.\right.$-alkene $\left.) L\right]$ measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at ca. $-50{ }^{\circ} \mathrm{C}$.

Complex	Geometric isomer	$\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$ $(\mathrm{V} \mathrm{vs} \mathrm{Ag/AgCl})$
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$	trans cis	+0.37 +0.37
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)\right]$	trans	+0.38
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}_{3}\right)\right]$	cis	+0.42
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PCy}_{3}\right)\right]$	cis	+0.43
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{MeCN}^{2}\right)\right]$	cis	+0.56
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{SbPh}_{3}\right)\right]$	cis	+0.59
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$	cis	+0.95
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)\left(\mathrm{NH}_{3}\right)\right]$	cis	+0.23 a
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)\left(\mathrm{SbPh}_{3}\right)\right]$	cis	+0.44 b
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)\left(\mathrm{MeCN}^{2}\right)\right]$	cis	+0.44 b
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]$	cis	+0.77 b

a) ref. 2; b) ref. 3 .

In most cases, the geometric isomers of previously isolated $\left[R u(a c a c){ }_{2} L L^{\prime}\right]\left(L=L, L \neq L^{\prime}\right)$ complexes show different $E_{1 / 2}\left(R_{u}{ }^{3+/ 2+}\right)$ potentials, the difference $\Delta \mathrm{E}_{1 / 2}$ ranging from 50 mV for $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)_{2}\right.$] to 490 mV for $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Bu}^{t} \mathrm{NC}\right)_{2}\right]$ (see Table 1.9). The lower $\mathrm{E}_{1 / 2}$ values of the complexes trans-[Ru(acac) $)_{2} \mathrm{~L}_{2}$] presumably arise from the electronic effects of two π-acceptor ligands, even if relatively weak, competing for electron density from the same d-orbital on ruthenium(II). This is the same argument that has been proposed to account for the thermodynamic instability of the trans-complexes. ${ }^{4}$ In the corresponding cis-complexes, the π-acceptor ligands are now trans to a π-donor oxygen acac atom and no longer compete with each other for electron density, thus stabilising the metal centre at the $\mathrm{Ru}(\mathrm{II})$ level. Since NH_{3} is a saturated ligand and has no
π-acceptor ability, it will not compete for electron density from the metal (see p. 1). The acac anion is also a good π-donor and therefore the ethene ligand has no competition for π-back-donation from either ligand.

Whereas each isomer of $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ shows a fully reversible redox process at room temperature, the complex trans-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)\right]$ exhibits quasi-reversible behaviour at low scan rates, probably due to the loss of the ethene ligand. The measured $\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$ values of the three isolated mixed nitrogen-donor/ethene complexes lie within the range found for the chelated bidentate N -donor alkene complexes $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{LL}^{\prime}\right)\right]$ (LL' $=2$-vinyl-N,N-dimethylaniline, 3butenyldimethylamine, 2-allylpyridine, 2 -isopropenylaniline, 2 -isopropenyl-N,N-dimethylaniline, allyldimethylamine, 3-butenyldimethylamine) [+0.28 $-+0.52 \mathrm{~V}($ vs $\mathrm{Ag} / \mathrm{AgCl})] .{ }^{5,6}$

Although fully reversible cyclic and AC voltammograms are found for the complexes cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PR}_{3}\right)\right]\left(\mathrm{R}=\mathrm{Pr}^{i}, \mathrm{Cy}\right)$ at $-50{ }^{\circ} \mathrm{C}$, at room temperature both complexes also show irreversible behaviour with the formation in each case of an unidentified daughter product, which has not been investigated further. Increasing the scan rate to $2 \mathrm{Vs}^{-1}$ results in quasi-reversible behaviour, which suggests that the oxidised species is undergoing a chemical reaction after the electron transfer step. The CV traces for cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{PCy})\right]$ at both $-50^{\circ} \mathrm{C}$ and $+25^{\circ} \mathrm{C}$ are shown in Figure 3.2. As was the case for the nitrogen donor ligands, the $\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$ potentials measured for cis-[Ru(acac) $\left.{ }_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PR}_{3}\right)\right]\left(\mathrm{R}=\mathrm{Pr}^{i}\right.$, Cy) are close to the oxidation potential measured for the analogous chelated complex cis-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Me}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)\right](+0.46 \mathrm{~V}$ vs $\mathrm{Ag} / \mathrm{AgCl}) .{ }^{6}$

The $\mathrm{E}_{1 / 2}$ potential found for cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ is ca. 0.5-0.6 V less than the calculated values for $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{2+}$ and $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4}\left(\eta^{2-}\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{2+}$ in an organic solvent (see Table 3.3). This result is in agreement with the predicted lowering caused by replacement of two ammine or aqua
ligands by an acac ligand at the Ru^{2+} ion (see p .4). The oxidation potential found for $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ is similar to the calculated potentials for the monoethene complexes $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{2+}$ and $\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\eta^{2-}\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{2+}$ in an organic solvent (see Table 3.3), but ca. 0.2 V higher than for cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right] .^{2}$ A comparison of the $\mathrm{E}_{1 / 2}$ values of the ethene complexes cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{NH}_{3}, \mathrm{SbPh}_{3}, \mathrm{CH}_{3} \mathrm{CN}\right)$ with those of their cyclooctene analogues (see Table 1.9) also shows that the mono-ethene complexes are harder to oxidise by up to ca. 140 mV . These results correlate with the expected degree (or extent) of π-back-donation from the metal to the alkene. As was mentioned previously (see p. 92), the replacement of the hydrogen atoms at the $\mathrm{C}=\mathrm{C}$ bond by alkyl substituents increases the energy of the π and π^{*} orbitals, ${ }^{7}$ thus π-backdonation from the metal to the cyclooctene will be reduced compared to that for ethene. Hence, the Ru (III) centre will be more stable in the case of cyclooctene.

Figure 3.2: Cyclic voltammograms of $\underline{\left.\text { cis-[Ru(acac) })_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(P C y_{3}\right)\right]}$ measured at a scan rate of $100 \mathrm{mVs}^{-1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Table 3.3: Comparison of measured and expected $E_{1 / 2}\left(R u^{3+/ 2+}\right)$ values (in volts) of some Ru(II)-ethene complexes using Lever's electrochemical ligand parameters (from ref. 8).

Compound	$\Sigma \mathrm{E}_{\mathrm{L}}(\mathrm{L})$	$\begin{gathered} \mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right) \\ \text { vs } \left.\mathrm{NHE}^{2}\right) \\ \mathrm{H}_{2} \mathrm{O} \\ \hline \end{gathered}$		$\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$ vs $\mathrm{Ag} / \mathrm{AgCl}$ in organic solvent ${ }^{b}$	
		calc. ${ }^{\text {a }}$	found	calc. ${ }^{\text {c }}$	found
$\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{2+}$	+1.11	+0.91	+0.93e	+0.92	-
$\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{2+}$	+1.80	+1.70	-	+1.59	-
$\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{2+}$	+0.96	+0.74	+0.84 ${ }^{\text {e }}$	+0.77	-
$\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{2+}$	+1.68	+1.57	$>1.5{ }^{\text {f }}$	+1.47	-
cis-[Ru(acac) $\left.2_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$	+1.20	+1.02	-	+1.01	+0.95
cis-[Ru(acac) $\left.2\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$	+0.51	+0.23	-	+0.33	+0.37
trans-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$	+0.51	+0.23	-	+0.33	+0.37
trans-[Ru(acac) $\left.2\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)\right]$	+0.69	+0.44	-	+0.51	+0.38
cis-[Ru(acac) $\left.\left.2^{(} \eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{MeCN})\right]$	+0.78	+0.54	-	+0.60	+0.56
cis-[Ru(acac) $)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{SbPh}_{3}\right]$	+0.82	+0.58	-	+0.64	+0.59

a) calculated by Eq. 1.2 ; b) calculated values are 0.2 V less positive than those vs NHE; c) calculated by Eq. 1.1; d) ref. 9;e) ref. 10; f) value for $c i s-\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\right.$ diallylether $\left.)\right]$, ref. 11.

The complex trans-[Ru(acac) $\left.)_{2}\left(\operatorname{PPr}_{3}\right)_{2}\right]$ shows a fully reversible $\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$ couple at $-0.14 \mathrm{~V}(v s \mathrm{Ag} / \mathrm{AgCl})$ which is similar to the values for trans-[Ru(acac) $\left.)_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right](-0.13 \mathrm{~V} \text { vs } \mathrm{Ag} / \mathrm{AgCl})^{3}$ and trans-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{NMe}_{3}\right)_{2}\right](-0.18 \mathrm{~V} \text { vs } \mathrm{Ag} / \mathrm{AgCl})^{3}$ but $c a .140 \mathrm{mV}$ and $c a .210 \mathrm{mV}$ less than those found for trans-[Ru(acac) $\left.)_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right]^{3}$ and trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{2}$ respectively (see Table 1.9). A fully reversible oxidation couple was also found for cis-[Ru(acac) $\left.)_{2}\left(\mathrm{PPr}^{i_{3}}\right)_{2}\right]$ at +0.02 V (vs $\left.\mathrm{Ag} / \mathrm{AgCl}\right)$. The difference in oxidation potentials between the geometric isomers, $\Delta \mathrm{E}_{1 / 2}$, for $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}_{3}\right)_{2}\right]$ is 160 mV , which is similar to those found for $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{MeCN})_{2}\right]\left(\Delta \mathrm{E}_{1 / 2}=120 \mathrm{mV}\right)$ and $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{AsPh}_{3}\right)_{2}\right]\left(\Delta \mathrm{E}_{1 / 2}=190\right.$ mV) (see Table 1.9). The oxidation potential of cis-[Ru(acac) $\left.)_{2}\left(\operatorname{PPr}_{3}\right)_{2}\right]$ is $c a$. 240 mV less than that for $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right](+0.26 \mathrm{~V}$ vs $\mathrm{Ag} / \mathrm{AgCl}$, see Table 1.9), which may arise from the greater electron-donating ability of $\mathrm{PPr}^{i}{ }_{3}$ relative to that of PMe_{3}. Due to the poor solubility of trans-
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$, the $\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$ potential could not be measured; however, cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)\left(\mathrm{SbPh}_{3}\right)\right]$ has a fully reversible $\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$ couple at +0.19 V (vs Ag/AgCl).

The cyclic and AC voltammograms of the isolated carbonyl phosphine complexes show fully reversible $\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$ couples at room temperature in the range $+0.64-+0.92 \mathrm{~V}(v s \mathrm{Ag} / \mathrm{AgCl})$ (see Table 3.4). These values indicate the stabilizing effect of CO on the Ru (II) oxidation state relative to tertiary phosphines. The oxidation potential for trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{CO})\left(\mathrm{PCy3}_{3}\right)\right]$ indicates that this complex is easier to oxidise by 250 mV than its cis-isomer. Both isolated vinylidene complexes cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i}{ }_{3}\right)\{=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{R}\}\right]\left(\mathrm{R}=\mathrm{SiMe}_{3}, \mathrm{Ph}\right)$ show irreversible oxidation potentials due to irreversible oxidation processes, E_{Pa}, at +0.62 V (vs $\mathrm{Ag} / \mathrm{AgCl})\left(\mathrm{R}=\mathrm{SiMe}_{3}\right)$ and $+0.75 \mathrm{~V}($ vs $\mathrm{Ag} / \mathrm{AgCl})(\mathrm{R}=\mathrm{Ph})$ at scan rates up to $500 \mathrm{mVs}^{-1}$ and at ca. $-50^{\circ} \mathrm{C}$. An irreversible oxidation process is also found for cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{CO})_{2}\right]$ under similar conditions; ${ }^{2}$ this irreversibility was explained ${ }^{2}$ on the basis that the CO ligands are strong π-acceptors and the complex is very unstable in the $\mathrm{Ru}(\mathrm{III})$ oxidation state. The complex cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}^{i}{ }_{3}\right)(\mathrm{CO})\right]$ is harder to oxidise than either vinylidene complex by up to 300 mV (see Table 3.4), which suggests that the mono-substituted vinylidene ligands are weaker π-acids than CO. A similar evaluation of π acid strength was made for the diphenylvinylidene ligand $: C=C P_{2}$ onrhodium(I). ${ }^{12}$

The cyclic and AC voltammograms of the binuclear complex cis-$\left[\left\{\operatorname{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}^{i_{3}}\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]$ show two reversible oxidation potentials at +0.30 and +0.90 V (vs $\mathrm{Ag} / \mathrm{AgCl}$) at $-50{ }^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. All previously studied mononuclear complexes of the type $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{LL}^{\prime}\right]\left(\mathrm{L}=\mathrm{L}^{\prime} ; \mathrm{L} \neq \mathrm{L}^{\prime}\right)$ containing chelated alkenes and alkynes ${ }^{5,6,13}$ or π-acceptor ligands ${ }^{2,3}$ show only one one-electron oxidation in the potential range $0-+1.5 \mathrm{~V}$ from the $\mathrm{Ru}(\mathrm{II})$ to $R u(I I I)$ oxidation state and show no $R u(I I I)$ to $R u(I V)$ oxidation. Thus, the two oxidation couples for the dinitrogen complex are believed to correspond
to the sequential oxidation of the two ruthenium metal centres i.e. $\mathrm{Ru}(\mathrm{II} / \mathrm{II})$
$\rightarrow \mathrm{Ru}$ (II/III) and Ru (II/III) $\rightarrow \mathrm{Ru}$ (III/III). At room temperature, the initial oxidation process is fully reversible whereas the second oxidation process is irreversible. The difference in potential between the oxidation couples is similar to that found for the related complex $\left[\left\{\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]^{4+}$, which undergoes a reversible one-electron oxidation potential at +0.73 V (vs NHE) and a second irreversible oxidation process at $\sim 1.2 \mathrm{~V}$ (vs NHE). ${ }^{14}$

Table 3.4: Oxidation potentials of mixed phosphine complexes in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ㄷa. $20{ }^{\circ} \mathrm{C}$ unless otherwise stated).

Complex	Geometric isomer	$\begin{gathered} \mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right) \\ (\mathrm{V} \text { vs } \mathrm{Ag} / \mathrm{AgCl}) \\ \hline \end{gathered}$
[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{\text {i }}\right)_{2}\right]$	trans cis	$\begin{aligned} & -0.14^{\mathrm{a}} \\ & +0.02 \\ & \hline \end{aligned}$
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{\text {i }} 3\right.\right.$) $\left.(\mathrm{CO})\right]$	$\begin{gathered} \text { trans } \\ \text { cis } \end{gathered}$	$\overline{-}+$
[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCyy}_{3}\right)(\mathrm{CO})\right]$	trans cis	$\begin{aligned} & +0.64^{b} \\ & +0.89^{b} \end{aligned}$
[$\left.\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{PCy3})\left(\mathrm{SbPh}_{3}\right)\right]$	cis	+0.19
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{\text {i }} 3\right.\right.$) $\left.\left(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{SiMe}_{3}\right)\right]$	cis	$+0.62^{\text {a,c }}$
$\left[\mathrm{Ru}\left(\mathrm{acac}_{2}{ }_{2}\left(\mathrm{PPr}^{i} 3\right)(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph})\right]\right.$	cis	+0.75 ${ }^{\text {a,c }}$
$\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{\text {i }}\right)_{3}\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]$	cis	+0.30, +0.90 ${ }^{\text {a }}$

a) measured at $c a .-50^{\circ} \mathrm{C} ; \mathrm{b}$) values agree $\pm 30 \mathrm{mV}$ with those reported in ref. 3 ; c) irreversible oxidation process.

3.2 Electrolytic Oxidation

3.2.1 Spectroelectrochemical Results

The electronic (UV-Vis) spectra for numerous cis- and trans$\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]^{\mathrm{n}+}\left(\mathrm{L}=\right.$ monodentate ligand) $(\mathrm{n}=0,1),{ }^{2,3}$ and the chelate alkene complexes cis-[Ru(acac) $\left.2_{2 L L}\right]^{\mathrm{n}+}\left(\mathrm{LL}^{\prime}=2\right.$-vinyl-N,N-dimethylaniline, 2 allylpyridine, 3-butenyldimethylamine, 3-butenyldimethylphosphine) ($\mathrm{n}=$ $0,1)^{5,6}$ have been recorded and show characteristic bands for each oxidation state. Unstable rutheium(III) complexes, such as cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right) \mathrm{L}\right]^{+}$ ($\mathrm{L}=\mathrm{NH}_{3}, \mathrm{MeCN}$ and SbPh_{3}) have also been generated electrochemically and
characterised in situ in an optically transparent thin layer electrode (OTTLE) cell. ${ }^{3}$

The electronic (UV-Vis) spectrum of the complex cis-[Ru(acac) $)_{2}\left(\eta^{2}\right.$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$] exhibits a broad band at $32700 \mathrm{~cm}^{-1}\left(\varepsilon=9400 \mathrm{~L} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ and a slightly stronger absorption near $38800 \mathrm{~cm}^{-1}\left(\varepsilon=12400 \mathrm{~L} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right.$) (see Figure 3.3). Applying a potential of $+1.20 \mathrm{~V}(v s \mathrm{Ag} / \mathrm{AgCl})$ to the solution at ca $-50^{\circ} \mathrm{C}$ causes the gradual loss of these bands and the formation of new bands at $13300 \mathrm{~cm}^{-1}\left(\varepsilon=2600 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right), 16000\left(\varepsilon=2200 \mathrm{~L} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ and 34100 $\mathrm{cm}^{-1}\left(\varepsilon=9400 \mathrm{~L} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$. After the solution had been exhaustively oxidized, the original $\mathrm{Ru}(\mathrm{II})$ spectrum was regenerated after applying a potential of +0.70 V (vs Ag/ AgCl). During both the oxidation and reduction process, isosbestic points were observed, as shown in Figure 3.3, indicating that only two absorbing species are present in solution. The bands found in the spectra of cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ and of the electrogenerated species are similar in both position and intensity to those of the previously studied complexes cis-[RuII/III $\left.(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]^{0 /+1}(\mathrm{~L}=\text { monodentate ligand })^{2,3}$ and the chelate complexes cis-[RuII/III (acac) $\left.2_{2}\left(\mathrm{LL}^{\prime}\right)\right]^{0 /+1} \quad\left(\mathrm{LL}^{\prime}=2-\right.$ vinyl- $\mathrm{N}, \mathrm{N}-$ dimethylaniline, 2-allylpyridine, 2-isopropenyl-N,N-dimethylaniline, allyldimethylamine, 3-butenyldimethylamine, 3butenyldimethylphosphine, 3-butenyldiphenylphosphine and isomesityl oxide $)^{5,6}$ A direct comparison can be made with the electronic spectra recorded for cis-[Ru(acac) $\left.)_{2}(\mathrm{COD})\right]^{0 /+}(\mathrm{COD}=1,5$-cyclooctadiene $),{ }^{2}$ which are shown in Figure 3.4. No cis- to trans-isomerization is believed to be occurring for the bis(ethene): complex during the oxidation process since such isomerization for the COD complex is highly improbable. Thus, the one electron oxidation of cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ results in the formation of the ruthenium(III)-bis(ethene) cation cis-[RuIII $\left.(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{+}$at low temperatures. The broadness of the bands may be attributed to a vibrational broadening phenomenon caused by distortion of the equilibrium geometry in the excited state. ${ }^{15}$

Figure 3.3: Electronic spectra recorded during the one-electron oxidation of cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ in $0.5 \mathrm{M}\left[\mathrm{Bu}^{n}{ }_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right] / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $\underline{\mathrm{ta}}-50^{\circ} \mathrm{C}\left[E_{\text {appl }}=+1.20 \mathrm{~V}(\underline{\mathrm{vs}}\right.$ $A g / A g C l)]$.

Figure 3.4: Electronic spectra recorded for $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{COD})\right]^{n+}(C O D=1,5-$ cycloctadiene) in $0.1 \mathrm{M}\left[\mathrm{Bu}^{n}{ }_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right] / \mathrm{MeCN}$ at $\underline{\mathrm{ca}}-40^{\circ} \mathrm{C}$ (taken from ref. 2).

The electronic spectra recorded at ca. $-50^{\circ} \mathrm{C}$ for the oxidation process in the complexes cis-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{NH}_{3}, \mathrm{PCy}_{3}, \mathrm{SbPh}_{3}\right)$, trans-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ and $\left.c i s-\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}_{3}\right)_{3}\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]$ show the same general features as observed for the bis(ethene) complex (see Tables 3.6 and 3.7). Above ca $30000 \mathrm{~cm}^{-1}$ aromatic $\pi \rightarrow \pi^{*}$ transitions of the phenyl rings of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{SbPh}_{3}\right)\right]$ significantly broaden the electronic spectrum. The electronic spectra for the oxidised complexes of cis-[Ru(acac) $\left.2\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]$ ($\mathrm{L}=\mathrm{NH}_{3}, \mathrm{SbPh}_{3}$) are also similar to those of the previously reported cyclooctene analogues. ${ }^{3}$ Spectra recorded during the reduction of the electrogenerated $\mathrm{Ru}(\mathrm{III})$ species were found to be identical with those of the initial $\mathrm{Ru}(\mathrm{II})$ complex, indicating that the oxidation process is fully reversible. The electronic spectra of cis- and trans-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ are very similar as shown in Figures 3.3 and 3.4, except for the v_{2} vibronic component of the $\mathrm{Ru}(\mathrm{II}) \rightarrow$ acac π^{*} MLCT transition (see Table 3.6). For the cis-complex v_{2} is located at $c a .32000 \mathrm{~cm}^{-1}$, whereas for the trans-isomer it is at $28500 \mathrm{~cm}^{-1}$. Similar differences in the electronic spectra of geometric isomers were found for cis- and trans-[$\left.\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{F}\right]\left[\mathrm{ClO}_{4}\right]$, although the bands in these complexes are due to d-d transitions. ${ }^{16}$ The electronic spectra of the oxidised products of cis- and trans-[Ru(acac) $\left.2\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ however, are almost indistinguishable from each other (see Tables 3.5 and 3.6).

The transitions for both oxidation states have been previously assigned, using the spectra of the species $\left[\mathrm{RuII} / \mathrm{III}(\mathrm{acac})_{3}\right]^{0,-1}$ as a basis. ${ }^{2}$ The electronic spectrum of $\left[\mathrm{RuIII}(\mathrm{acac})_{3}\right]$ consists of three well-defined bands due to a ligand-centred transition (acac $\left.\pi \rightarrow \pi^{*}\right)$ at $36700 \mathrm{~cm}^{-1}\left(\varepsilon=16800 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$, $\mathrm{a} \mathrm{Ru}($ III $) \rightarrow$ acac π^{*} MLCT (metal to ligand charge transfer transition) at 28800 $\mathrm{cm}^{-1}\left(\varepsilon=7500 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ and an acac $\pi \rightarrow \mathrm{Ru}$ (III) LMCT (ligand to metal charge transfer transition) at $20000 \mathrm{~cm}^{-1}\left(\varepsilon=1500 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$. The electronic spectrum of the electrogenerated $\left[\mathrm{Ru}^{\mathrm{II}}(\mathrm{acac})_{3}\right]^{-}$anion, measured in situ, shows two main bands due to a ligand acac $\pi \rightarrow$ acac π^{*} transitions at 36300

Figure 3.5: Electronic spectra recorded during the one-electron oxidation of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $\underline{\mathrm{ca} .}-50{ }^{\circ} \mathrm{C}$.

Figure 3.6: Electronic spectra recorded during the one-electron oxidation of trans-[Ru(acac) $\left.2_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at ca. $-50^{\circ} \mathrm{C}$.

Table 3.5: Principal electronic band maxima (in cm^{-1}) for the isolated ethene complexes $\left[R u^{I I}(a c a c)_{2}\left(\eta^{2}-C_{2} H_{4}\right) L\right]$ and cis-[\{Ru(acac) $\left.\left.\left.{ }_{2}\left(P r^{i}\right)_{3}\right)\right\}_{2}\left(\mu-N_{2}\right)\right]$ (figures in brackets are the molar absorptivities in $\left.M^{-1} \mathrm{~cm}^{-1} L^{-1}\right)$.

COMPLEX	MLCT		$\begin{gathered} \operatorname{acac} \pi \rightarrow \\ \text { acac } \pi^{*} \end{gathered}$	$\begin{gathered} \mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right) \\ (\mathrm{V} \mathrm{vs} \\ \mathrm{Ag} / \mathrm{AgCl}) \end{gathered}$
	v_{1}	v_{2}		
cis-[Ru(acac) $\left.2\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$	$\begin{aligned} & \hline 25500 \\ & (3100) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 31000 \\ & (4900) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 36700 \\ (15100) \\ \hline \end{gathered}$	+0.37
trans-[Ru(acac) $\mathbf{2}^{\left.\left(\eta \eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]}$	$\begin{aligned} & 25000 \\ & (2700) \end{aligned}$	$\begin{array}{r} 28500 \\ (4000) \\ \hline \end{array}$	$\begin{gathered} 37700 \\ (14500) \\ \hline \end{gathered}$	+0.37
cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PCy}_{3}\right)\right]$	$\begin{aligned} & 29600 \\ & (6500) \\ & \hline \end{aligned}$	-	$\begin{gathered} 36700 \\ (14600) \\ \hline \end{gathered}$	+0.43
cis-[Ru(acac) $\left.\left.)^{(} \eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{SbPh}_{3}\right)\right]$	$\begin{aligned} & 26200 \\ & (2800) \end{aligned}$		$\begin{gathered} 38800 \\ (12600) \\ \hline \end{gathered}$	+0.59
cis-[Ru(acac) $2^{\left.\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]}$	$\begin{aligned} & 32700 \\ & (6000) \\ & \hline \end{aligned}$		$\begin{aligned} & 38800 \\ & (8000) \end{aligned}$	+0.95
cis-[\{(Ru(acac) $\left.\left.{ }_{2}\left(\operatorname{PPr}^{i_{3}}\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]$	$\begin{gathered} 27500 \\ (16900) \\ \hline \end{gathered}$		$\begin{gathered} 37400 \\ (53500) \\ \hline \end{gathered}$	$+0.30 /+0.90$

Table 3.6: Principal electronic band maxima (in cm^{-1}) for the isolated ethene complexes $\left[R u^{I I I}(a c a c)_{2}\left(\eta^{2}-C_{2} H_{4}\right) L\right]+$ and cis-[\{Ru(acac) $\left.\left.)_{2}\left(P^{2} r^{i_{3}}\right)\right\}_{2}\left(\mu-N_{2}\right)\right]^{2+}$ (figures in brackets are the molar absorptivities in $M^{-1} \mathrm{~cm}^{-1} L^{-1}$)*.

COMPLEX	MLCT		MLCT	$\begin{gathered} \text { acac } \\ \left(\pi \rightarrow \pi^{*}\right) \end{gathered}$
	v_{3}	v_{4}		
cis-[Ru(acac) $\left.2\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$	$\begin{aligned} & 16800 \\ & (2200) \\ & \hline \end{aligned}$	-	$\begin{gathered} 27000 \\ \text { (sh) } \end{gathered}$	$\begin{aligned} & \hline 34000 \\ & (9800) \\ & \hline \end{aligned}$
trans-[Ru(acac) $2\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)$]	$\begin{aligned} & 16000 \\ & (1000) \\ & \hline \end{aligned}$	-	-	$\begin{aligned} & 36000 \\ & (8000) \\ & \hline \end{aligned}$
cis-[Ru(acac)2 $\left.\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{PCy} 3)\right]$	$\begin{aligned} & 14700 \\ & (1300) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 17600 \\ & (1300) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 29400 \\ & (4700) \end{aligned}$	$\begin{gathered} 36600 \\ (12700) \end{gathered}$
cis-[Ru(acac) $\left.{ }_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{SbPh}_{3}\right)\right]$	$\begin{aligned} & 13900 \\ & (1300) \end{aligned}$	$\begin{aligned} & 16900 \\ & (1200) \end{aligned}$	-	-
cis-[Ru(acac) $\left.\left.2^{(} \eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$	$\begin{aligned} & 13300 \\ & (2100) \\ & \hline \end{aligned}$	$\begin{aligned} & 16000 \\ & (1800) \\ & \hline \end{aligned}$	-	$\begin{aligned} & \hline 34100 \\ & (8000) \\ & \hline \end{aligned}$
cis-[$\left[\left(\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{\text {i }} \text {) }\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]$	$\begin{aligned} & 13900 \\ & (3000) \\ & \hline \end{aligned}$	$\begin{aligned} & 17800 \\ & (3000) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 30300 \\ (16700) \end{gathered}$	$\begin{gathered} \hline 37600 \\ (35700) \\ \hline \end{gathered}$
cis-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)\left(\mathrm{NH}_{3}\right)\right]^{\text {a }}$	17200	-	-	34600
cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)\left(\mathrm{SbPh}_{3}\right)\right]^{\text {a }}$	14600	-	-	35000

a) ref. 3 .
cm^{-1} and a $\mathrm{Ru}(\mathrm{II}) \rightarrow$ acac π^{*} MLCT transition at $19800 \mathrm{~cm}^{-1}$ (a shoulder at $c a$. $21000 \mathrm{~cm}^{-1}$ is very likely a higher vibronic component of the same band). ${ }^{2}$

The spectra of the complexes cis-[RuII $\left.(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ and the chelate alkene and alkyne complexes cis-[RuII(acac) $\left.)_{2}\left(L^{\prime}\right)\right]$ are similar to that of $\left[\mathrm{Ru}{ }^{\mathrm{II}}(\mathrm{acac})_{3}\right]^{-}$, dominated by just two bands belonging to the acac $\pi \rightarrow$ acac π^{*} transition and $\mathrm{Ru}(\mathrm{II}) \rightarrow$ acac π^{*} (MLCT) transition. ${ }^{2,6}$ The latter transition has two components labelled v_{1} and ν_{2}; the latter component appears as a weak shoulder to lower energy. The energies of these components, which fall in the range 20000 to $34000 \mathrm{~cm}^{-1}$ depending on the ligands, have been found to vary linearly with the $\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$ values, which span a potential range of -0.65 V to $+0.87 \mathrm{~V} .^{2,3,6}$ In contrast with [$\mathrm{Ru}^{\mathrm{III}}(\mathrm{acac})_{3}$], the electronic spectra of the complexes cis- $\left[\mathrm{Ru}{ }^{\mathrm{III}}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]^{+}$and the alkene chelate complexes cis-[RuIII (acac) $\left.)_{2}\left(\mathrm{LL}^{\prime}\right)\right]^{+}$generally show just two bands assigned to the acac $\pi \rightarrow \mathrm{Ru}(\mathrm{III})$ LMCT, generally found in the range $12700-20000 \mathrm{~cm}^{-1}$, and an acac $\pi \rightarrow$ acac π^{*} transition usually at $33700-35000 \mathrm{~cm}^{-1}$. 2,6 The acac π $\rightarrow \mathrm{Ru}$ (III) LMCT usually appears as a single, broad band or as a double feature with higher (v_{3}) and lower energy (v_{4}) components. These two components are usually found between 13000 and $18000 \mathrm{~cm}^{-1}$ (see Table 3.6).

The electronic spectrum of cis-[\{Ru(acac) $\left.\left.)_{2}\left(\operatorname{PPr}^{i_{3}}\right)\right\}_{2}\left(\mu-N_{2}\right)\right]$ is very similar to the spectra of other isolated complexes that have similar $\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$ values, as shown in Table 3.6. After applying a potential of $c a$. $+1.2 \mathrm{~V}(v s \mathrm{Ag} / \mathrm{AgCl})$ at $c a .-50^{\circ} \mathrm{C}$, the electrogenerated spectra are consistent with the presence of the doubly oxidised species cis-[\{RuIII $\left.(a c a c)_{2}\left(\operatorname{PPr}^{i}{ }_{3}\right)\right\}_{2}(\mu-$ N_{2})] ${ }^{2+}$, see Table 3.6 for band positions. Spectra recorded during the reduction of the electrogenerated $\mathrm{Ru}(\mathrm{III} / \mathrm{III})$ complex were found to be identical with those of the initial $\mathrm{Ru}(\mathrm{II} / \mathrm{II})$ complex, indicating that the twoelectron oxidation process is fully reversible.

The electronic spectrum of the mixed-valence species cis-$\left[\left\{\operatorname{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}^{i_{3}}\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]^{+}$displays a broad, weak, asymmetric near-IR band
Figure 3.7: Electronic spectra recorded during the one-electron oxidation of $\underline{c i s-\left[\left(R u(a c a c)_{2}\left(\text { PPr }_{3}{ }_{3}\right)_{2}\left(\mu-\mathrm{N}_{2}\right)\right] \text { in } 0.5 \mathrm{M}\left[B u^{n}{ }_{4}\right]\left[\mathrm{PF}_{6}\right] / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.}$
at $\underline{\text { ca }-50^{\circ} \mathrm{C}\left[E_{\text {appl }}=+0.60 \mathrm{~V}(\underline{\mathrm{vs}} \mathrm{Ag} / \mathrm{Ag} \mathrm{Cl})\right] \text {. }}$

Figure 3.8 The near-IR band for the mixed valence complex cis-$\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}_{3}^{i}\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]^{+}$in a standard $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ electrolyte solution at ca. $-50{ }^{\circ} \mathrm{C}$.

Figure 3.9 The near-IR band for the mixed valence complex $\left[\left\{\left(\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]^{5+}\right.$ (taken from ref. 14).

at ca. $8900 \mathrm{~cm}^{-1}$ which is not present in either the Ru (II/II) or Ru (III/III) oxidation states (see Figures 3.7 and 3.8). Similar near-IR bands have been reported for the mixed-valence species $\left[\left\{\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]^{5+14}$ (see Figure 3.9) and the Creutz-Taube ion $\left[\left\{\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right\}_{2}(\mu \text {-pyz) }]^{5+}\right.$ (pyz = pyrazine). ${ }^{17,18}$ Although this band is broader for $\left[\left\{\operatorname{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}^{i}{ }_{3}\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]+\left(\omega_{1 / 2}\right.$ ca. 3700 $\left.\mathrm{cm}^{-1}\right)$ than for $\left[\left\{\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]^{5+}\left(\omega_{1 / 2} \mathrm{ca} .2630 \mathrm{~cm}^{-1}\right),{ }^{14}$ the half-width is less than the value of $c a .4750 \mathrm{~cm}^{-1}$ predicted by the Hush theory ${ }^{19}$ for localized mixed-valence systems. Hush has also suggested that delocalized systems will show asymmetric bands. ${ }^{20}$ These observations suggest that cis-$\left[\left\{\operatorname{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}_{3}\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]^{+}$is valence delocalized, but probably not to the same extent as either the Creutz-Taube ion or $\left[\left\{\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]^{5+} .{ }^{14}$

3.2.2 EPR Spectra

As mentioned earlier, many configurationally stable Ru (III) complexes only differ from the corresponding $\mathrm{Ru}(\mathrm{II})$ complexes by one unit of charge (see p. 1). The $R u(I I I)$ ion is low-spin $4 d^{5}$ with one unpaired electron. The majority of its complexes are paramagnetic and, in principle, should show electron paramagnetic resonance (EPR) spectra. EPR spectroscopy may provide important information about the electronic structure of paramagnetic systems. EPR studies have been carried out on numerous $\mathrm{Ru}(\mathrm{IIII})$ complexes including $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right],{ }^{21}\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+22}$ and $\left[\mathrm{Ru}(\mathrm{en})_{3}\right]^{3+}{ }^{23}$

There are two possible spin-states for a single electron ($s=1 / 2$) which are degenerate in the absence of zero-field splitting. This degeneracy is lifted in the presence of an external magnetic field and transitions between these levels are now possible. The difference in energy between these two levels which is measured in an EPR spectrum is related to the spectroscopic splitting factor g. For a free electron g is 2.0023; however, g is a tensor quantity and has inherent direction. The magnitude of g depends on the except when the system is cubic orientation of the system with respect to the magnetic field. Isotropic
behaviour is observed for a perfect cubic system since g will have a value independent of orientation. Anisotropic behaviour is found for systems which have lower electronic symmetry and will usually have nonequivalent components along the x, y and z axes. In the case of a complex which shows rhombic symmetry, e.g. cis $-\mathrm{MX}_{4} \mathrm{~L}_{2}$ (where L and X are monodentate ligands), all three components are indeed inequivalent, $g_{x} \neq g_{y}$ $\neq g_{z}$, which gives rise to three absorptions. One example is cis-[W(CO)4 $\left(\eta^{2-}\right.$ alkene $\left.)_{2}\right]^{+}$(alkene $=1$-pentene, 1-hexene, cyclopentene, cyclohexene, cycloheptene, cyclooctene). ${ }^{18}$ For a frozen solution it is not possible to assign these peaks to g_{x}, g_{y} and g_{z}. If the complex shows overall axial symmetry, as is usually found for trans $-\mathrm{MX}_{4} \mathrm{~L}_{2}$ (where L and X are monodentate ligands), then g will have one component $\left(g_{\mathrm{z}}\right)$ parallel to the principal symmetry axis, known as $g_{\|}$. The components along the x and y axes (g_{x} and g_{y}) are equivalent and give rise to a single resonance labelled g_{\perp}. Examples of $\mathrm{Ru}(\mathrm{III})$ complexes with axial spectra include trans$\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4}\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left[\mathrm{CF}_{3} \mathrm{SO}_{3}\right]_{3}{ }^{24}$ and trans$\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{P}(\mathrm{OEt})_{3}\right]_{2}\right]\left[\mathrm{CF}_{3} \mathrm{SO}_{3}\right]_{3} .{ }^{25}$

However, complexes which contain bidentate ligands, eg. acac and bipy, usually show three resonances in the EPR spectrum regardless of whether the complex has overall axial or rhombic symmetry. The two donor atoms of one ligand are not completely electronically independent of each other as are the donor atoms of two monodentate ligands. This is known as the Orgel effect ${ }^{26,27}$ and will become manifest in a slight rhombic distortion of cis or trans $-\mathrm{MX}_{4} \mathrm{~L}_{2}$ when chelating ligands (AA) replace X , giving $\mathrm{M}(\mathrm{AA})_{2} \mathrm{~L}_{2} \cdot{ }^{28}$ In the case of trans-[RuIII $\left.(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]\left[\mathrm{PF}_{6}\right]\left(\mathrm{L}=\mathrm{Bu}{ }^{t} \mathrm{NC}\right.$, PPh_{3}), the spectra may be regarded as pseudo-axial with two relatively close resonances, g_{1} and g_{2}, between 2.28 and 2.20 (see Table 3.7). For the complexes cis-[RuIII $\left.(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]\left[\mathrm{PF}_{6}\right]\left(\mathrm{L}=\mathrm{MeCN}, \mathrm{PPh}_{3}, \mathrm{Bu}^{t} \mathrm{NC} ; \mathrm{L}_{2}=\right.$ dppe, dppp, 1,5-cyclooctadiene and 2-styryldiphenylphosphine) the difference between the g-values of these absorptions is greater than 0.13 (see Table 3.7). Thus, it
appears to be possible, in principle, to discriminate between Ru (III) geometric isomers on the basis of their EPR spectra, but it must be noted that several complexes such as cis-[RuIII(bipy) $\left.\mathrm{L}_{2}\right]\left[\mathrm{ClO}_{4}\right]\left(\mathrm{L}=\mathrm{MeOC}(\mathrm{S}) \mathrm{S}^{-}\right.$, $\left.\mathrm{Et}_{2} \mathrm{NC}(\mathrm{S}) \mathrm{S}^{-}\right)$also show only two g-values ${ }^{29}$ and trans- $\mathrm{Cs}\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{Cl}_{2}\right]$ shows three well separated resonances (see Table 3.7).

Figure 3.10: EPR spectra for complexes of the type $\left[R u^{I I I}(a c a c)_{2} L_{2}\right]\left[P F_{6}\right](L=$ monodentate ligand) (taken from ref. 2).*

*) DPPH = diphenylpicrylhydrazyl $\left(g_{0}=2.0037\right)$.
Figure 3.11: EPR spectra for complexes of the type $\left[R u^{I I I}(a c a c)_{2} L L^{\prime}\right]\left[P F_{6}\right]\left(L L^{\prime}=\right.$ 2-styryldiphenylphosphine, 2-allylpyridine) (taken from ref. 2 and 6).*

*) DPPH = diphenylpicrylhydrazyl ($g_{0}=2.0037$).

Bulk anodic electrolysis of trans-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ at $-40{ }^{\circ} \mathrm{C}$ results in a colour change from yellow to blue; a small aliquot of the solution was frozen and the EPR spectrum recorded. The spectrum is shown in Figure 3.12 and appears to beconsistent with the presence of an axially distorted ruthenium(III) complex. Since trans-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ is axially distorted (neglecting the bridging backbone of the acac ligands), one
interpretation is that isomerization has not occurred during oxidation (see the reservation above). This conclusion agrees with those drawn from the spectroelectrochemical results.

Table 3.7: g-Values for various [Ru(acac) $\left.2_{2} L_{2}\right]\left[P F_{6}\right]$ and [Ru(acac) $\left.)_{2} L L^{\prime}\right]\left[P F_{6}\right.$] complexes.

Complex	Geometric Isomer	g1	g2	g3
$\mathrm{Cs}\left[\mathrm{Ru}{ }^{\text {III }}(\mathrm{acac})_{2} \mathrm{Cl}_{2}\right]^{\mathrm{a}}$	trans	2.67	2.16	1.28
$\left[\mathrm{Ru}^{\text {III }}(\mathrm{acac})_{2}(\mathrm{MeCN})_{2}\right]\left[\mathrm{PF}_{6}\right]^{\mathrm{b}}$	cis	2.40	2.17	1.77
$\left[\mathrm{Ru}^{\text {III }}\right.$ (acac)2 ${ }^{\text {(dppe }}$) $]\left[\mathrm{PF}_{6}\right]^{\text {b }}$	cis	2.29	2.14	1.92
$\left[\mathrm{RuIII}(\mathrm{acac})_{2}(\mathrm{dppp})\right]\left[\mathrm{PF}_{6}\right]^{\mathrm{b}}$	cis	2.40	2.12	1.86
$\left.\left[\mathrm{Ru}^{\text {III }} \text { (acac) }\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]^{\mathrm{b}}$	trans cis	$\begin{array}{\|l\|} \hline 2.28 \\ 2.40 \\ \hline \end{array}$	$\begin{aligned} & 2.23 \\ & 2.08 \end{aligned}$	$\begin{aligned} & 1.84 \\ & 1.84 \end{aligned}$
$\left[\mathrm{Ru}^{\text {III }}(\mathrm{acac})_{2}\left(\mathrm{Bu}{ }^{t} \mathrm{NC}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]^{\mathrm{b}}$	trans cis	$\begin{aligned} & 2.24 \\ & 2.28 \end{aligned}$	$\begin{aligned} & 2.20 \\ & 2.10 \end{aligned}$	$\begin{aligned} & 1.89 \\ & 1.91 \end{aligned}$
$\left[\mathrm{Ru}^{\text {III }}\right.$ (acac) $\left.{ }_{2}(\mathrm{COD})\right]\left[\mathrm{PF}_{6}\right]^{\mathrm{b}, \mathrm{c}}$	cis	2.23	2.10	1.94
$\left.\left[\mathrm{Ru}^{\text {III }} \text { (acac) }{ }_{2}(\mathrm{SP})\right]^{\text {P }} \mathrm{PF}_{6}\right]^{\mathrm{b}, \mathrm{c}}$	cis	2.33	2.05	1.91
$\left[\mathrm{Ru}^{\mathrm{II}}(\mathrm{acac})_{2}\left(o-\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right]\left[\mathrm{PF}_{6}\right]^{\mathrm{d}}$	cis	2.42	2.03	1.85
$\left[\mathrm{Ru}^{\text {III }}(\mathrm{acac})_{2}\left(o-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]^{\mathrm{e}}$	cis	2.22	2.05	1.92

a) ref. 30; b) ref. 2; c) $\mathrm{COD}=1,5$-cyclooctadiene, $\mathrm{SP}=2$-styryldiphenylphosphine; d) ref. 5 ; e) ref. 13.

Figure 3.12: The EPR spectrum of the species isolated from the anodic oxidation of trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ at $\mathrm{ca} .-40^{\circ} \mathrm{C}$.

Anodic oxidation of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ under the same conditions outlined for trans-[Ru(acac) $\left.2\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ also results in the formation of a deep blue solution. However, in situ cyclic voltammetric experiments show that a second species is present in solution, the same as that previously detected when the CV traces were recorded at room temperature (see p. 107). The EPR spectrum of this frozen solution shows several resonances which are also typical of ruthenium(III) complexes but the identity of the species responsible for them is unknown.

3.3 Chemical oxidation of monoethene complexes trans-

 $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ and $\underline{\text { cis- }}\left[\mathrm{Ru}(\text { acac })_{2}\left(\eta^{2}\right.\right.$-alkene $\left.) \mathrm{L}\right]\left(\right.$ alkene $=\mathrm{C}_{2} \mathrm{H}_{4}, L=$ $\mathrm{PCy}_{3} ;$ alkene $\left.=\mathrm{C}_{8} \mathrm{H}_{14}, \mathrm{~L}=\mathrm{SbPh}_{3}\right)$As the electronic and EPR spectra of the products arising from the anodic electrolysis of the complexes trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ and cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{NH}_{3}, \mathrm{SbPh}_{3}\right.$ and $\left.\mathrm{PCy} y_{3}\right]$ were obtained at $c a$. $-50{ }^{\circ} \mathrm{C}$ over a timescale of tens of minutes and did not show any change at this temperature, attempts were made to isolate these new species. The addition of one equivalent of AgPF_{6} to a chilled standard electrolyte solution containing cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{PCy} 3)\right]$ in a jacketed electrochemical cell gave a deep blue solution, whose CV traces (Ru III \rightarrow RuII) were superimposable on those previously recorded before the addition of the oxidant ($\mathrm{Ru}^{\mathrm{II}} \rightarrow \mathrm{Ru}^{\mathrm{III}}$). Hydrodynamic voltammetric results show that for $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{PCy} 3)\right]$ no current is detected between 0 and +0.4 V ($v s \mathrm{Ag} / \mathrm{AgCl}$), as shown in Figure 3.13A. As the potential passes between +0.4 and +0.5 V (vs $\mathrm{Ag} / \mathrm{AgCl})$, however, a positive current passes through the solution which corresponds to the oxidation of the complex; above +0.5 V a limiting current is reached. The potential at half the current height is $c a .+0.45 \mathrm{~V}$ (vs $\mathrm{Ag} / \mathrm{AgCl})$ which agrees with the value measured previously by cyclic voltammetry (see p. 109). After the addition of a slight excess of AgPF_{6}, a negative current is found between 0 and +0.4 V ; above
+0.5 V there is no current passing through the solution as shown in Figure 3.13B. The potential at half the current height is also ca. +0.45 V which indicates that the oxidised species cis- $\left.\left[\mathrm{Ru} \mathrm{III}_{(\mathrm{acac}}\right)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PCy}_{3}\right)\right]\left[\mathrm{PF}_{6}\right]$ is present in solution. The current is slightly greater after the addition of the oxidant but this may be due to a slight concentration of the solution owing to loss of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ by evaporation, the presence of colloidal silver on the electrodes or the slight excess of $\mathrm{Ag}(\mathrm{I})$.

Figure 3.13: Hydrodynamic voltammograms for A) $\underline{\text { cis-[Ru(acac) })_{2}\left(\eta^{2}-~\right.}$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PCy}_{3}\right)$] (scan rate $20 \mathrm{mV} \mathrm{s}{ }^{-1}$) and B) after the addition of $\mathrm{Ag}_{\mathrm{PF}}^{6}$ (scan rate $10 \mathrm{mV} \mathrm{s}{ }^{-1}$) starting from 0 V ($\underline{\mathrm{vs}} \mathrm{Ag} / \mathrm{AgCl}$).

A

$$
+1.0
$$

Potential (V vs Ag/AgCl)

B

From the chemical oxidation of trans-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ with [$\left.\mathrm{Cp}_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right.$] (0.9 equivalents) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature a red solid can be isolated. CV studies of this red solid show that this is a mixture of species, including ferrocene, $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$, and an unidentified species which gives an electrochemically irreversible wave at -0.21 V (vs $\mathrm{Ag} / \mathrm{AgCl})$. This solid has not been studied further. The oxidation of trans-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ with AgPF_{6} (1.3 equivalents) at ca. $-70^{\circ} \mathrm{C}$, however, results in the formation of a deep blue solution from which a deep blue solid may be obtained. Dissolving this blue solid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature results in a red solution after several minutes. Storage of the blue solid at ca. $-20{ }^{\circ} \mathrm{C}$ also results in a slow colour change to red after several weeks. The IR spectrum
of the blue solid (KBr disc) shows a very strong absorption at $1521 \mathrm{~cm}^{-1}$ and a weak absorption at $2964 \mathrm{~cm}^{-1}$, both bands characteristic of $v(\mathrm{C}=\mathrm{O})$ and $v(\mathrm{C}=\mathrm{C})$ in coordinated O -bonded bidentate acac and $\mathrm{N}-\mathrm{H}$ deformation of coordinated NH_{3}, respectively. ${ }^{31}$ The presence of the PF_{6} anion was confirmed by the presence of strong bands at 847 and $558 \mathrm{~cm}^{-1} .{ }^{31}$

The EPR spectrum of a solution obtained by in situ chemical oxidation of trans-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ with AgPF_{6} at $c a .-70{ }^{\circ} \mathrm{C}$ shows three resonances at $\mathrm{g}_{1}=2.56, \mathrm{~g}_{2}=2.06$ and $\mathrm{g}_{3}=1.77$ (see Figure 3.14A). As previously mentioned (see p. 124), a large separation between g_{1} and g_{2} is consistent with a cis-complex. However, this spectrum differs from that obtained by anodic electrolysis (see p. 126) in the presence of a signal at $g 2.06$ which at first sight, might suggest that trans- to cis-isomerization has occurred during chemical oxidation. A similar EPR spectrum has also been recorded for the solid isolated from the chemical oxidation of cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)\left(\mathrm{SbPh}_{3}\right)\right]$ (see below). The result for the ethene complex appears to contrast with the conclusion drawn from the spectroelectrochemical results for cis- and trans-[Ru(acac) $\left.2_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ (see p. 117). However, the EPR spectrum of AgPF_{6} shows a resonance which is believed to be due to a small amount of colloidal silver (see Figure 3.14B). Since the valence electronic configuration for $\operatorname{Ag}(0)$ is $4 d^{105 s}{ }^{1}$ with one unpaired electron, an EPR signal is expected. Thus, the resonance at slightly lower field than $g 2.10$ in the spectrum shown in Figure 3.14A may be due to colloidal silver. Since no attempt was made to filter the solution at ca. $-70{ }^{\circ} \mathrm{C}$, the amount of colloidal silver must be equal to that of the ruthenium complex. If this peak at $g 2.06$ is subtracted, the appearance of the spectrum is much closer to that of the solution obtained by bulk electrolysis However, further EPR studies on trans-[Ru(acac)2 $\left.\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$, as well as $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ and other available complexes are required clarify this situation.

Figure 3.14: EPR spectra of A) in situ chemical oxidation of trans[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ chemical oxidation and B) AgPF_{6} as a frozen solution of $0.5 \mathrm{M}\left[\mathrm{Bu}^{{ }^{n}}{ }_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right] / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 4.7 K .

Chemical oxidation of a cold solution of cis-[Ru(acac) $)_{2}\left(\eta^{2}\right.$ $\left.\left.\mathrm{C}_{8} \mathrm{H}_{14}\right)\left(\mathrm{SbPh}_{3}\right)\right]^{4}$ with AgPF_{6} also gives a deep blue solid which, unlike the corresponding compound made from trans-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$, appears to be indefinitely stable at room temperature; a sample has been kept for over one year. The elemental analysis of the solid was consistent with the formulation $\left[\mathrm{Ru}{ }^{\mathrm{III}}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)\left(\mathrm{SbPh}_{3}\right)\right]\left[\mathrm{PF}_{6}\right]$ containing $c a .10 \%$ of AgPF_{6}. The +ve FAB mass spectrum shows the presence of the parent cation $\mathrm{at} \mathrm{m} / \mathrm{z} 762.2$ and ions corresponding to $\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{SbPh}_{3}\right)\right\}^{+}$; the IR spectrum shows two absorptions at 1552 and $1518 \mathrm{~cm}^{-1}$, consistent with O bonded bidentate acac coordination and a strong absorptions at 840 and 557 cm^{-1} indicating the presence of the $\left[\mathrm{PF}_{6}\right]$ anion. ${ }^{31}$ Cyclic and AC voltammetric studies at ca. $-45{ }^{\circ} \mathrm{C}$ show that the isolated blue solid has a fully reversible $\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$ couple at $+0.48 \mathrm{~V}(v s \mathrm{Ag} / \mathrm{AgCl})$, which is very close to the reported potential of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)\left(\mathrm{SbPh}_{3}\right)\right]$ (see Table 1.10).

The EPR spectrum of $\left[\mathrm{Ru}^{\mathrm{III}}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)\left(\mathrm{SbPh}_{3}\right)\right]\left[\mathrm{PF}_{6}\right]$ shown in Figure 3.15 is similar to that of the 2-allylpyridine complex cis-[Ru(acac) $\mathbf{2}^{(0-}$ $\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N} \quad$ (see p. 125). The largest absorption at slightly lower field than ca.g 1.98 probably has a small contribution from $\operatorname{Ag}(0)$ present in the solid (see above). However, the magnitude of the difference between g_{1} (2.48) and $\mathrm{g}_{2}(1.98)$ suggests that a cis-[$\left.\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ species is present in solution.

Figure 3.15: EPR Spectrum of the blue solid isolated from the oxidation of
 4.7 K.

*) absorption which probably contains a small contribution from Ag present.

The complexes $\left[\mathrm{Ru}{ }^{\mathrm{III}}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]^{+}$show a characteristic acac $\pi \rightarrow \mathrm{Ru}$ (III) LMCT between $12000-20000 \mathrm{~cm}^{-1}$ in solution (see Table 3.6). For comparison, the electronic spectrum of the blue solid was therefore recorded by solid state reflectance UV-Vis spectroscopy. It shows a broad band between 12000-18000 cm^{-1} in either a matrix of KCl or $\left[\mathrm{Bu}_{4} \mathrm{n}^{2}\right]\left[\mathrm{BF}_{4}\right]$, as shown in Figure 3.16. This transition is also present in the spectrum of the isolated solid cis-[$\left.\mathrm{Ru}{ }^{\mathrm{III}}(\mathrm{acac})_{2}\left(o-\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ but is absent for cis-[RuII $\left.(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{SbPh}_{3}\right)\right]$ in both matrices. The spectrum of [$\left.\mathrm{Ru}^{\mathrm{III}}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)\left(\mathrm{SbPh}_{3}\right)\right]\left[\mathrm{PF}_{6}\right]$ in MgO does not show this transition, possibly because traces of water in MgO may form hydroxide ions which can
reduce the $\mathrm{Ru}(\mathrm{III})$ species to $\mathrm{Ru}(\mathrm{II})$ complexes in a similar manner found for ethoxide ions and cis-[Ru(acac) $\left.)_{2}\left(0-\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right] .{ }^{6}$

Figure 3.16 Solid state electronic spectra in KCl matrix.

On the basis of the available evidence, the blue solid isolated from the oxidation of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)\left(\mathrm{SbPh}_{3}\right)\right]$ with AgPF_{6} at low temperatures is $c i s-\left[\mathrm{Ru}^{\mathrm{III}}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)\left(\mathrm{SbPh}_{3}\right)\right]\left[\mathrm{PF}_{6}\right]$.

3.4 Discussion

There are relatively few well-characterised mononuclear paramagnetic transition metal alkene and alkyne complexes and most contain either early transition metals or 3d-elements. They include $\left[\left(\mathrm{N}_{3} \mathrm{~N}\right) \mathrm{Mo}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]\left[\left(\mathrm{N}_{3} \mathrm{~N}\right)^{3-}=\left[\left(\mathrm{Me}_{3} \mathrm{SiNCH}_{2} \mathrm{CH}_{2}\right)_{3} \mathrm{~N}\right]^{3-}\right]^{32}\left[\mathrm{Tp}^{t-B u}, \mathrm{Me} \mathrm{Co}\left(\eta^{2-}\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]\left(\mathrm{Tp}{ }^{t-B u}, \mathrm{Me}=\right.$ hydridotris(3-t-Bu-5-methyl-pyrazolyl)borate), ${ }^{33}\left[\left(\eta^{5}: \eta^{1-}\right.\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{4}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ni}-\mathrm{Pr}\right) \mathrm{V}\left(\eta^{4}-\mathrm{C}_{6} \mathrm{H}_{10}\right)\right],{ }^{34}\left[\mathrm{CpV}^{\mathrm{I}}(\mathrm{L})\left(\mathrm{PMe}_{3}\right)_{2}\right]\left(\mathrm{L}=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{PhC} \equiv \mathrm{CPh}\right)^{35}$ $\left[\mathrm{V}(\mathrm{CO})_{4}\left(\mathrm{LL}^{\prime}\right)\right]\left(\mathrm{LL}^{\prime}=o-\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}, \mathrm{E}-0-\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHC}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}\right),{ }^{36}$ $\left[\mathrm{Cp}_{2} \mathrm{~V}\left(E-\mathrm{MeO}_{2} \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Me}\right)\right],{ }^{37-39}\left[\mathrm{Fe}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right],{ }^{40}\left[\mathrm{CoI}\left(\eta^{2-}\right.\right.$ $\left.\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCN}\right)\left(\mathrm{PMe}_{3}\right)_{3}\right]\left[\mathrm{BF}_{4}\right],{ }^{41}\left[\mathrm{Co}^{\mathrm{I}}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PR}_{3}\right)_{3}\right]\left(\mathrm{R}=\mathrm{Me}^{42-44} \mathrm{Ph}^{45}\right)$, $\left[\mathrm{Co}^{\mathrm{I}}(\mathrm{COD})\left(\mathrm{PMe}_{3}\right)_{2}\right](\mathrm{COD}=1,5$-cyclooctadiene $),{ }^{44}\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{SiMe}_{3}\right)_{2} \mathrm{Nb}\left(\eta^{2-}\right.\right.$
$\left.\left.R C \equiv C R^{\prime}\right)\right]\left(R=R^{\prime}=P h, M e, \mathrm{CO}_{2} \mathrm{Me} ; R=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{CO}_{2} \mathrm{Me}\right),{ }^{46}\left[\eta^{6}\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{Cr}^{\mathrm{I}}\left(\eta^{2}-\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CSiMe}_{3}\right)(\mathrm{CO})_{2}\right]\left[\mathrm{PF}_{6}\right]^{47}$ and $\left[\eta^{6}-\mathrm{C}_{6} \mathrm{Me}_{6-\mathrm{x}} \mathrm{H}_{\mathrm{x}}\right) \mathrm{Cr}\left(\eta^{2}\right.$ $\mathrm{PhC} \equiv \mathrm{CPh})]\left[\mathrm{PF}_{6}\right](\mathrm{x}=0,1) .{ }^{48}$

Examples of paramagnetic alkene and alkyne complexes for a later transition metal are the complexes cis-[Ru $\left.{ }^{\mathrm{III}}(\mathrm{acac})_{2}\left(\mathrm{LL}^{\prime}\right)\right]\left[\mathrm{PF}_{6}\right]\left(\mathrm{LL}^{\prime}=2\right.$-vinyl$\mathrm{N}, \mathrm{N}$-dimethylaniline, 2 -isopropenyl- N, N-dimethylaniline, 3butenyldimethylamine, 2-allylpyridine, isomesityl oxide, 2-methoxystyrene, 3-butenylmethylether, 2-phenylethynyl- N, N-dimethylaniline, 2-trimethylsilylethynyl-N,N-dimethylaniline ${ }^{5,13}$ which make use of the chelate effect to increase stability. The work described in this Chapter shows that non-chelated alkene-ruthenium(III) complexes $\left[\mathrm{Ru}^{\mathrm{III}}(\mathrm{acac})_{2}\left(\eta^{2}\right.\right.$ alkene) L$][\mathrm{X}]$ (alkene $=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{~L}=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{NH}_{3}, \mathrm{PCy} 3, \mathrm{MeCN}, \mathrm{SbPh} 3$; alkene $=$ $\mathrm{C}_{8} \mathrm{H}_{14}{ }^{3}, \mathrm{~L}=\mathrm{NH}_{3}, \mathrm{MeCN}, \mathrm{SbPh}_{3}$) can be generated electrochemically at low temperature. Unlike the related chelated alkene complexes however, these oxidised species decompose in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature. Presumably decomposition occurs by alkene dissociation as a direct result of the reduced π-backbonding of the $\mathrm{Ru}(\mathrm{III})$ ion (see p. 2), although the possibility that the oxidised species are reacting with the solvent cannot be discounted.

However, chemical oxidation of the complexes trans-[Ru(acac) $)_{2}\left(\eta^{2-}\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ and $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)\left(\mathrm{SbPh}_{3}\right)\right]$ with a suitable oxidant at low temperatures affords the corresponding salts trans-[RuiII $(\mathrm{acac})_{2}\left(\eta^{2}-\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]\left[\mathrm{PF}_{6}\right]$ and $c i s-\left[\mathrm{RuIII}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)\left(\mathrm{SbPh}_{3}\right)\right]\left[\mathrm{PF}_{6}\right]$; the latter solid appears to be indefinitely stable at room temperature. Spectroelectrochemical results suggest that the complexes retain their geometric configuration during oxidation, although attempts to confirm this conclusion by EPR spectroscopy have been inconclusive. Further studies with these very sensitive oxidised alkene complexes are required to establish this point. Other alkenes which have electron-donating substituents attached to the $\mathrm{C}=\mathrm{C}$ bond could also be expected to stabilise the Ru (III)
oxidation state as well, whereas alkenes with electron-withdrawing substituents would be expected to give more reactive and unstable species than that found for ethene.

The oxidation potential of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)\left(\mathrm{SbPh}_{3}\right)\right]$ is $c a .200$ mV higher than trans-[Ru(acac)$\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$, yet, qualitatively, the oxidised triphenylstibine complex appears to be much more stable than the oxidised ammine complex. Oxidation of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{SbPh}_{3}\right)\right]$ under similar conditions would presumably result in a species which is more stable than the ammine complex but less stable than the cyclooctene analogue. The reason for the greater stability at the $\mathrm{Ru}(\mathrm{III})$ level when triphenylstibine is co-ligand is not known.

Although non-chelated mono- or di-substituted alkyne complexes $\left.[R u(a c a c))_{2}\left(\eta^{2}-R C \equiv C R\right) L\right](L=c o-l i g a n d)$ have not been isolated (see Chapter 2), the oxidation potentials for such complexes can be predicted to lie 200 to 300 mV lower than those found for the corresponding ethene complexes (see Table 1.8). The chemical oxidation of these compounds may also be expected to yield isolable ruthenium(III)-alkyne complexes $\left[\mathrm{RuIII}(\mathrm{acac})_{2}\left(\eta^{2-}\right.\right.$ $R C \equiv C R) L][X]$. Structural studies of redox-active alkyne complexes cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(o-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]^{\mathrm{n}+}(\mathrm{n}=0,1),{ }^{13}\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{HMe}_{5}\right) \mathrm{Cr}\left(\eta^{2}-\right.\right.$ $\left.\mathrm{PhC} \equiv \mathrm{CPh})(\mathrm{CO})_{2}\right]^{\mathrm{n}+}$ and $\left[\left(\mathrm{Tp} \mathrm{p}^{\prime}\right) \mathrm{Mo}\left(\eta^{2}-\mathrm{PhC} \equiv \mathrm{CPh}\right)(\mathrm{CO})_{2}\right]^{\mathrm{n}+}\left[\mathrm{Tp}^{\prime}=\mathrm{HB}(3,5-\right.$ dimethylpyrazolyl $\left.)_{3}\right](n=0,1)^{49}$ appear to indicate that the alkyne-binding affinities for both oxidation states do not differ greatly, unlike the alkene redox pair cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(o-\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]^{\mathrm{n}+}(\mathrm{n}=0,1) .{ }^{5}$
(1) Astruc, D. Electron Transfer and Radical Processes in Transition Metal Chemistry; VCH: New York, 1995, p 98.
(2) Wallace, L. PhD Thesis, ANU, 1991.
(3) Menglet, D. PhD Thesis, ANU, 1996.
(4) Bennett, M. A.; Chung, G.; Hockless, D. C. R.; Neumann, H.; Willis, A. C. J. Chem. Soc., Dalton Trans. 1999, 3451.
(5) Bennett, M. A.; Heath, G. A.; Hockless, D. C. R.; Kovacik, I.; Willis, A. C. J. Am. Chem. Soc. 1998, 120, 932.
(6) Kovacik, I. PhD Thesis, ANU, 1995.
(7) Albright, T. A.; Hoffmann, R.; Thibeault, J. C.; Thorn, D. L. J. Am. Chem. Soc. 1979, 101, 3801.
(8) Lever, A. B. P. Inorg. Chem. 1990, 29, 1271.
(9) Lehmann, H.; Schenk, K. J.; Chapuis, G.; Ludi, A. J. Am. Chem. Soc. 1979, 101, 6197.
(10) Aebischer, N.; Sidorenkova, E.; Ravera, M.; Laurenczy, G.; Osella, D.; Weber, J.; Merbach, A. E. Inorg. Chem. 1997, 36, 6009.
(11) McGrath, D. V.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1991, 113, 3611.
(12) Kovacik, I.; Gevert, O.; Werner, H.; Schmittel, M.; Söllner, R. Inorg. Chim. Acta 1998, 275-276, 435.
(13) Bennett, M. A.; Heath, G. A.; Hockless, D. C. R.; Kovacik, I.; Willis, A. C. Organometallics 1998, 17, 5867.
(14) Richardson, D. E.; Sen, J. P.; Buhr, J. D.; Taube, H. Inorg. Chem. 1982, 21, 3136.
(15) Dodsworth, E. S.; Lever, A. B. P. Chem. Phys. Lett. 1986, 124, 152.
(16) Lever, A. B. P. Inorganic Electronic Spectroscopy; Elsevier: Amsterdam, 1968, p 306.
(17) Creutz, C.; Taube, H. J. Am. Chem. Soc. 1969, 91, 3988.
(18) Creutz, C.; Taube, H. J. Am. Chem. Soc. 1973, 95, 1086.
(19) Hush, N. Prog. Inorg. Chem. 1967, 8, 391.
(20) Hush, N. In Mixed-Valence Compounds; Brown, D. B., Ed.; Reidel Publishing Co.: Dordrecht, Holland, 1980; p 151.
(21) Simone, R. E. D. J. Am. Chem. Soc. 1973, 95, 6238.
(22) Griffiths, J. H. E.; Owen, J.; Ward, I. M. Proc. Roy. Soc., Ser. A 1963, 219, 526.
(23) Stanko, J. A.; Peresie, H. J.; Bernstein, R. A.; Wang, R.; Wang, P. S. Inorg. Chem. 1973, 12, 634.
(24) de Rezende, N. M. S.; de Martins, S.; Marinho, L. A.; Santos, J. A. V. d.; Tabak, M.; Perussi, J. R.; Franco, D. W. Inorg. Chim. Acta 1991, 182, 87.
(25) Mazzetto, S. E.; Rodrigues, E.; Franco, D. W. Polyhedron 1993, 12, 971.
(26) Orgel, L. E. J. Chem. Soc. 1961, 3683.
(27) Ceulemans, A.; Dendooven, M.; Vanquickenborne, L. G. Inorg. Chem. 1985, 24, 1153.
(28) Sugano, S.; Tanabe, Y.; Kamimura, H. Multiplets of Transition Metal Ions in Crystals; Academic Press: New York, 1970.
(29) Kulkarni, S. S.; Santra, B. K.; Munshi, P.; Lahiri, G. K. Polyhedron 1998, 17, 4365.
(30) Heath, G. A.; Webster, R. unpublished results
(31) Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; 4th ed.; Wiley: New York, 1986.
(32) Greco, G. E.; O'Donoghue, M. B.; Seidel, S. W.; Davis, W. M.; Schrock, R. R. Organometallics 2000, 19, 1132.
(33) Jewson, J. D.; Liable-Sands, L. M.; Yap, G. P. A.; Rheingold, A. L.; Theopold, K. H. Organometallics 1999, 18, 300.
(34) Witte, P. T.; Meetsma, A.; Hessen, B. Organometallics 1999, 18, 2944.
(35) Hessen, B.; Auke, M.; Bolhuis, F. V.; Teuben, J. H.; Helgesson, G.; Jagner, S. Organometallics 1990, 9, 1925.
(36) Interrante, L. V.; Nelson, G. V. J. Organomet. Chem. 1970, 25, 153.
(37) Fachinetti, G.; Nero, S. D.; Floriani, C. J. Chem. Soc., Dalton Trans. 1976, 1046.
(38) Fachinetti, G.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. Inorg. Chem. 1979, 18, 2282.
(39) Morán, M.; Santos-Garcia, J. J.; Masaguer, J. R.; Fernández, V. J. Organomet. Chem. 1985, 295, 327.
(40) Hoberg, H.; Jenni, K.; Angermund, K.; Krüger, C. Angew. Chem. Int. Ed. Engl. 1987, 26, 153.
(41) Peres, Y.; Dartiguenave, M.; Devillers, J. Nouv. J. Chim. 1986, 10, 149.
(42) Klein, H.-F. Angew. Chem., Int. Ed. Engl. 1985, 26, 153.
(43) Klein, H.-F.; Gross, J.; Bassett, J.-M.; Schubert, U. Z. Naturforsch. B 1980, 35, 614.
(44) Klein, H.-F.; Gross, J.; Witty, H.; Neugebauer, D. Z. Naturforsch. B. 1984, 39, 643.
(45) Kubo, Y.; Pu, L.-S.; Yamamoto, A.; Ikeda, S. J. Organomet. Chem. 1975, 84,369.
(46) Antinolo, A.; Otero, A.; Fajardo, M.; Garcia-Yebra, C.; LopezMardomingo, C.; Martin, A.; Gomez-Sal, P. Organometallics 1997, 16, 2601.
(47) Connelly, N. G.; Orpen, A. G.; Rieger, A. L.; Rieger, P. H.; Scott, C. J.; Rosair, G. M. Chem. Commun. 1992, 1293.
(48) Connelly, N. G.; Johnson, G. A. J. Organomet. Chem. 1974, 77, 341.
(49) Bartlett, I. M.; Connelly, N. G.; Orpen, A. G.; Quayle, M. J.; Rankin, J. C. Chem. Commun. 1996, 2583.

Reactivity of alkene and and alkyne bis(β-diketonato)ruthenium(III) complexes

4.1 Nucleophilic Addition Reactions

The complexation of alkenes or alkynes to a metal atom which is in a high oxidation state (II to IV) and has either a full formal positive charge or remote electron-withdrawing ligands such as CO usually renders the unsaturated hydrocarbons susceptible to nucleophilic attack. ${ }^{1-3}$ Such changes in reactivity are generally attributed to the net withdrawal of electron density from the unsaturated carbon atoms, although theoretical calculations suggest that alkene slippage from η^{2} - to η^{1}-coordination is required for external nucleophilic attack. ${ }^{4}$ The addition of neutral or charged nitrogen and oxygen nucleophiles to mono-alkenes, chelating alkenes or dienes that are coordinated to $\mathrm{Pd}(\mathrm{II}),{ }^{5-10} \mathrm{Pt}(\mathrm{II})^{8-19}$ and $\mathrm{Fe}(\mathrm{II})^{20-25}$ has been extensively studied and many of these reactions are synthetically or industrially important. In most cases, attack of the nucleophile on a coordinated alkene occurs exo to the metal centre. ${ }^{1}$ Even tertiary phosphines can behave as nucleophiles rather than ligands e.g. dimethylphenylphosphine PPhMe_{2} reacts with the coordinated ethene of $\left[\mathrm{RuCl}_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{CO})\left(\mathrm{PPhMe}_{2}\right)_{2}\right]$ at low temperatures to give nucleophilic addition products instead of ethene displacement. ${ }^{26}$ The addition of nucleophiles to alkynes coordinated to Pt (II), ${ }^{27-30} \mathrm{Fe}$ (II), ${ }^{31-34} \mathrm{~W}$ (II) and $\mathrm{Mo}(\mathrm{II})^{35-39}$ has also been studied.

The fact that alkenes and alkynes can coordinate to ruthenium(III), a relatively high oxidation state, suggested the possibility that they might be susceptible to nucleophilic attack. There is a report that ruthenium(III) chloride catalyses the hydration of various alkynes to ketones via an undetected $\mathrm{Ru}(\mathrm{III})$-vinyl alcohol complex. ${ }^{40}$ However, because the coordination is generally weak, especially for alkenes, the work described in this Chapter is restricted to systems stabilised by chelation, i.e. cis$\left[\mathrm{Ru}^{\mathrm{III}}(\mathrm{acac})_{2}\left(\mathrm{LL}^{\prime}\right)\right]\left[\mathrm{PF}_{6}\right] \quad\left(\mathrm{LL}^{\prime}=2\right.$-vinyl-N,N'-dimethylaniline, ${ }^{41}{ }^{2}$ -phenylethynyl- N, N '-dimethylaniline ${ }^{42}$). Preliminary studies were described
in the PhD thesis of Kovácik. ${ }^{43}$ He made the following observations: neutral nucleophiles do not add to the alkene in the Ru (II) starting materials nor do they displace the coordinated alkene or alkyne; addition of ethoxide ions to these $R u$ (III) salts results in the one-electron reduction to the corresponding $\mathrm{Ru}(\mathrm{II})$ compounds; a similar one-electron reduction of cis-[RuIII $(\mathrm{acac})_{2}(o-$ $\left.\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ to the $\mathrm{Ru}(\mathrm{II})$ compound is observed with pyridine; cis-[Ru $\left.{ }^{\mathrm{III}}(\mathrm{acac})_{2}\left(o-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ reacts with water and pyridine, and in the case of cis-[$\left.\mathrm{Ru}^{\mathrm{III}}(\mathrm{acac})_{2}\left(o-\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ with excess PMe_{3}, to form red solids whose structures were unknown. ${ }^{43}$

In this subsequent discussion, the label C_{α} refers to the carbon atom attached to the N, N-dimethylaniline unit and C_{β} to the next carbon atom (see Figure 4.1).

Figure 4.1: Labelling of the chelate alkene and alkyne carbon atoms for the complexes cis-[RuIII(acac) $\left.\mathbf{2}_{2}\left(\underline{o}-P h C \equiv C_{6} H_{4} N M e_{2}\right)\right]\left[P F_{6}\right]$ and $c i s-\left[R u^{I I I}(a c a c)_{2}(o-\right.$ $\left.\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NM}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$.

4.2 Reaction of $\underline{\text { cis }}-\left[\mathrm{RuIII}(\mathrm{acac})_{2}\left(\underline{o}-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ with pyridine and diethylamine.

The addition of excess pyridine or diethylamine to $c i s-\left[\mathrm{Ru}{ }^{\mathrm{III}}(\mathrm{acac})_{2}(o-\right.$ $\left.\left.\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]^{42}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ results in a red solution almost immediately from which red to black crystals of 1:1 adducts can be isolated in yields of ca. 50-75\%. Although satisfactory elemental analyses were not obtained for either solid, the amount of nitrogen detected is consistent with the presence of only two nitrogen atoms per ruthenium atom. The +ve FAB
mass spectral data for these isolated solids show parent molecular ion peaks which correspond to $\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CPh} . \mathrm{NC}_{5} \mathrm{H}_{5}\right)\right\}^{+}$and $\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CPh} . \mathrm{NEt}_{2}\right)\right\}^{+}$(see Table 4.1).

Table 4.1: +ve $F A B$ mass spectral data for the isolated solids from the reaction of pyridine or diethylamine with cis-[Ru(acac)2(o$\left.\left.\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$.

Nucleophile	m / z	Assignment	Relative Intensity $(\%)$
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	600.2	$\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CPh}^{2} \mathrm{NC}_{5} \mathrm{H}_{5}\right)\right\}^{+}$	30
	521.1	$\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CPh}\right)\right\}^{+}$	100
$\mathrm{Et}_{2} \mathrm{NH}$	593.2	$\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CPh} . \mathrm{NEt}_{2}\right)\right\}^{+}$	100
	522.1	$\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CPh} . \mathrm{H}^{+}\right)\right\}^{+}$	8
	495.1	$\left\{\mathrm{Ru}(\mathrm{acac})\left(\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CPh} . \mathrm{NEt}_{2} \mathrm{H}\right)\right\}^{+}$	10

Electrochemical studies show a fully reversible $\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$ process at $-0.50 \mathrm{~V}(v s \mathrm{Ag} / \mathrm{AgCl})$ for the pyridine adduct, which is considerably more negative than that previously found for cis-[Ru(acac)2 (TMPDA $^{(T M}$) (TMPDA $=$ $\mathrm{N}, \mathrm{N}, \mathrm{N}$ 'N,'-tetramethyl-1,2-phenylenediamine) (-0.29 V vs $\mathrm{Ag} / \mathrm{AgCl})^{43}$ trans-[Ru(acac) $\left.\mathbf{2}_{2}\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)_{2}\right](-0.04 \mathrm{~V}$ vs $\mathrm{Ag} / \mathrm{AgCl}),{ }^{44}$ cis-[Ru(acac) $\left.\mathbf{2}^{(}\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)_{2}\right]$ $(+0.01 \mathrm{~V} \text { vs } \mathrm{Ag} / \mathrm{AgCl})^{44}$ and cis-[Ru(acac) $\left.2\left(o-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right](+0.26 \mathrm{~V}$ vs $\mathrm{Ag} / \mathrm{AgCl}) .{ }^{42}$ This electrochemical evidence strongly suggests that the product is not simply a coordination compound of pyridine, e.g. $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ or $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(o-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right)\right]\left[\mathrm{PF}_{6}\right]$ formed by complete or partial displacement of the alkyne ligand. By contrast, there is no detectable redox $\left(\mathrm{Ru}^{3+} / 2+\right)$ process between -1.0 and +1.0 V (vs $\mathrm{Ag} / \mathrm{AgCl})$ for the solid obtained from the diethylamine reaction. The EPR spectrum for the pyridine adduct as a frozen solution, is shown in Figure 4.2. It has three resonances at $\mathrm{g}_{1}=2.35, \mathrm{~g}_{2}=2.29, \mathrm{~g}_{3}=1.76$ as well as some fine structure, and is typical for a ruthenium(III) complex (see p. 123-125).

The IR spectra (KBr disc) for both solids show two strong bands at 1580 and $1510 \mathrm{~cm}^{-1}$, characteristic of O-bonded bidentate acac ${ }^{45}$ and strong bands
at ca. 842 and $557 \mathrm{~cm}^{-1}$ due to the PF_{6} anion (see Table 4.2). ${ }^{45}$ There are no absorptions in the region of $c a .1970 \mathrm{~cm}^{-1}$ and $c a .2200 \mathrm{~cm}^{-1}$ due to the $v(\mathrm{C} \equiv \mathrm{C})$ of the coordinated and free alkyne, respectively. ${ }^{42}$ A band detected in the spectrum at $1547 \mathrm{~cm}^{-1}$ in the pyridine adduct is presumably due to a "breathing" vibration of the coordinated pyridine. ${ }^{46}$

Figure 4.2: EPR Spectra of the isolated solid from the reaction of pyridine with cis-[Ru(acac) $\left.)_{2}\left(\underline{o}-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ as a frozen solution of 0.5 M $\left[\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right] / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 4.7 K .

Field / G

Table 4.2: IR spectral data for the isolated solids from the reaction of pyridine and diethylamine with cis-[Ru(acac) $\left.{ }_{2}\left(\underline{o}-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} N M e_{2}\right)\right]\left[P F_{6}\right]$ (KBr disc).

Nucleophile	$v(\mathrm{acac})$	v (PF6)	Other
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	1569,1519	841,558	1547
NHEt $_{2}$	1578,1518	842,557	-

The structures of the pyridine and diethylamine adducts were identified by X-ray crystallography as (E)-
 cases, addition to the coordinated alkyne has occurred as shown in

Equations 4.1 and 4.2, respectively. The structures are best regarded as zwitterionic with a formal positive charge on the nitrogen atom and a negative charge on the metal atom. In both cases, the ruthenium complex has an overall positive charge.
Equation 4.1: Formation of (E) -cis-[Ru $\left.{ }^{I I I}(a c a c)_{2}\right)^{\{ }\left(\underline{0}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}=\mathrm{C}\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right) \mathrm{Ph}_{\Lambda}^{\}}\left[\mathrm{PF}_{6}\right]\right.$ from the reaction of pyridine with cis-[Ru(acac) $\left.2_{2}\left(\underline{o}-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$.

Equation 4.2: Formation of $\left.\underline{\text { cis-[Ru }}{ }^{I I I}(a c a c)_{2}\left\{\underline{o}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}\left(=N E t_{2}\right) \mathrm{C}(H) P h\right\}\right]\left[P F_{6}\right]$ from the reaction of diethylamine with $\underline{\text { cis-}}\left[R u(a c a c)_{2}\left(\underline{o}-P h C \equiv C C_{6} H_{4} N M e_{2}\right)\right]\left[P F_{6}\right]$.

The molecular structures of the cations are shown in Figures 4.3 and 4.4.; selected metrical data are presented in Tables 4.3 and 4.4. Crystal and refinement data, together with the full set of interatomic distances and angles, are given in Appendix A. 11 and 12.

In the pyridine adduct, the nitrogen atom of the pyridine is bound to the β-carbon atom of the alkyne and forms a five-membered ring containing a substituted vinyl group via a single $N-C$ bond $[\mathrm{N}(2)-\mathrm{C}(8)$ atom (ca. 1.49 \AA)]. The pyridine group is endo to the ruthenium atom about the $C=C$ bond.

The distance between the alkene carbon atoms $C(7)$ and $C(8)(c a .1 .35 \AA$) is characteristic of a $\mathrm{C}=\mathrm{C}$ bond (see Chapter 2). A single bond is also evident between the Ru atom and the C_{α} atom of the vinyl group [$\mathrm{Ru}-\mathrm{C}(7) \mathrm{ca} .2 .03$ \AA], whereas there is no interaction between the $R u$ and $C(8)$ atoms, the separation being ca. $3.06 \AA$.

In contrast, the diethylamine adduct contains a six-membered ring, the secondary amine nitrogen atom, $N(2)$, being attached to the α-carbon atom by a double bond (ca. $1.33 \AA$), a distance ca. $0.04 \AA$ longer than in other iminium salts. ${ }^{47-50}$ A single bond is also evident between the $R u$ atom and the C_{α} atom $[R u-C(8) c a .2 .19 \AA]$, although this distance is significantly greater than that in the pyridine adduct. Moreover, the distance between the $R u$ and the β-carbon atom $C(7)$ atoms is $c a .2 .73 \AA$, | which, |is substantially shorter than the corresponding non-bonding distance in the pyridine adduct. Also the $C(7)-C(8)$ bond distance of the vinyl group (ca. $1.43 \AA$), which is midway between the expected values for a $\mathrm{C}=\mathrm{C}$ bond (ca. $1.33 \AA$) and a C-C bond (ca. $1.53 \AA$), suggests the possibility of delocalization of the N-C π-electrons into the adjacent $C-C$ bond. The hydrogen atom on the β carbon atom was clearly located in the difference maps and there was no peak adjacent to $\mathrm{N}(2)$.

A possible resonance structure, an enamine, is shown in Scheme 4.1B in which there is partial double bond character in the bond between atoms $C(7)$ and $C(8)$ and a lone pair of electrons at $N(2)$. The distance between α carbon and $\mathrm{N}(2)$ atoms is $c a .0 .07 \AA$ shorter than those typically found for an enamine. ${ }^{50-52}$ A resonance contribution of this type does not always lead to pyramidalization at the nitrogen atom, as several enamines ${ }^{50-52}$ show N trigonal planar geometry: in this case the three bond angles about $N(2)$ add up to ca. 360°. However, the enamine resonance form probably does not contribute much to the observed structure because the difference in the Ru-

Figure 4.3: ORTEP diagram of th cation of (E)$\left.\stackrel{\text { cis- }\left[R u^{I I I}(a c a c)_{2}\left(\underline{o}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}\right.\right.}{ }=C\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right) P h\right]\left[P F_{6}\right]$.

Table 4.3: Selected metrical parameters of cis-[$\left.\overparen{R u^{I I I}(a c a c)_{2}\left(\underline{o}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}\right.}=C\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right) P h\right]\left[P F_{6}\right]$.

Bond Distances (\AA)			
$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.116(5)$	$\mathrm{Ru}(1)-\mathrm{C}(7)$	$2.031(7)$
$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.018(5)$	$\mathrm{N}(2)-\mathrm{C}(8)$	$1.488(8)$
$\mathrm{Ru}(1)-\mathrm{O}(3)$	$2.018(5)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.348(9)$
$\mathrm{Ru}(1)-\mathrm{O}(4)$	$2.002(5)$	$\mathrm{N}(2)-\mathrm{C}(8)$	$1.488(8)$
$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.152(5)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.475(9)$
Bond Angles $\left({ }^{\circ}\right)$			
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$89.4(2)$	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$175.5(2)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$84.2(2)$	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{C}(7)$	$103.1(2)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$90.5(2)$	$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$86.7(2)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$91.7(2)$	$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{C}(7)$	$103.1(2)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{C}(7)$	$87.4(2)$	$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{C}(7)$	$81.1(2)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$86.7(2)$	$\mathrm{Ru}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$110.0(5)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$178.1(2)$	$\mathrm{Ru}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$128.4(5)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$95.2(2)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$121.0(6)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{C}(7)$	$87.4(2)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$133.4(6)$
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$91.4(2)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{N}(2)$	$116.1(6)$

Chapter 4
Figure 4.4: ORTEP diagram of the cation of cis-[Ru $\left.{ }^{I I I}(a c a c)_{2}\left\{\underline{o}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}\left(=N E t_{2}\right) \mathrm{C}(\mathrm{H}) \mathrm{Ph}\right\}\right]\left[\mathrm{PF}_{6}\right]$.

Table
4.4: Selected
metrical
parameters

Bond Distances (Å)			
$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.081(2)$	$\mathrm{Ru}(1)-\mathrm{C}(7)$	$2.729(3)$
$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.004(2)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.426(4)$
$\mathrm{Ru}(1)-\mathrm{O}(3)$	$2.019(2)$	$\mathrm{C}(7)-\mathrm{N}(2)$	$1.331(4)$
$\mathrm{Ru}(1)-\mathrm{O}(4)$	$1.990(2)$	$\mathrm{N}(2)-\mathrm{C}(17)$	$1.477(4)$
$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.181(3)$	$\mathrm{N}(2)-\mathrm{C}(19)$	$1.483(4)$
$\mathrm{Ru}(1)-\mathrm{C}(8)$	$2.194(3)$		
Bond Angles $\left(^{\circ}\right)$			
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$89.47(9)$	$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$86.3(1)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$88.43(9)$	$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{C}(8)$	$92.6(1)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$90.1(1)$	$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{C}(8)$	$97.5(1)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$88.9(1)$	$\mathrm{Ru}(1)-\mathrm{C}(8)-\mathrm{C}(7)$	$95.5(2)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{C}(8)$	$173.1(1)$	$\mathrm{Ru}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	$113.9(2)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$88.28(9)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$123.7(3)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$179.5(1)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$119.2(3)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$93.4(1)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(2)$	$118.1(3)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{C}(8)$	$87.9(1)$	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{N}(2)$	$122.7(3)$
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$92.0(1)$	$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(17)$	$123.5(3)$
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$176.9(1)$	$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(19)$	$121.9(3)$
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{C}(8)$	$85.1(1)$	$\mathrm{C}(17)-\mathrm{N}(2)-\mathrm{C}(19)$	$114.3(3)$

C bond lengths to the α and β carbon catoms (ca. 2.14, $2.73 \AA$) is far greater than those to the alkene carbon atoms in the $\mathrm{Ru}(\mathrm{III})$ chelate complex cis-$\left.\left[\mathrm{Ru}^{\mathrm{III}}(\mathrm{acac})\right)_{2}\left(o-\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{SbF}_{6}\right]$ (both $2.24 \AA$). ${ }^{41}$

Scheme 4.1: Possible resonances structures for the diethylamine adduct.

4.3 Reaction of cis-[RuIII $\left.(\text { acac })_{2}\left(\underline{o}-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ with $\mathrm{H}_{2} \mathrm{O}$.

Red crystals of a 1:1 adduct can be isolated in ca. 70% yield from a red solution obtained by stirring cis-[Ru $\left.{ }^{\mathrm{III}}(\mathrm{acac})_{2}\left(o-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]^{42}$ in aqueous THF overnight. Satisfactory elemental analyses were obtained. The +ve FAB mass spectrum shows the parent molecular ion at $m / z 539.0(100 \%$ relative abundance) and is assigned to $\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CPh} \cdot \mathrm{H}_{2} \mathrm{O}\right)\right\}^{+}$. An ion peak at $\mathrm{m} / \mathrm{z} 299.1$ (47% relative abundance) is due to $\left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\}^{+}$. The IR spectrum of this solid (KBr disc) shows a strong broad absorption at 1523 cm^{-1}, characteristic of bidentate O-bonded acac, ${ }^{45}$ as well as strong bands at 843 and $558 \mathrm{~cm}^{-1}$ due to the presence of the PF_{6} anion. ${ }^{45} \mathrm{~A}$ mediumintensity peak at $1594 \mathrm{~cm}^{-1}$ can be assigned to $\mathrm{v}(\mathrm{C}=\mathrm{O})$ of a coordinated keto group. No absorptions assignable to free or coordinated alkyne were detected.

A fully reversible $\mathrm{Ru}^{3+/ 2+}$ couple was found at +0.05 V (vs $\mathrm{Ag} / \mathrm{AgCl}$), which is $c a .0 .5 \mathrm{~V}$ more positive than that found for the pyridine adduct and is similar to the values found for coordination complexes of the type $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}_{2}\right]$ (see Chapter 3). The EPR spectrum for water adduct as a frozen
glass, shown in Figure 4.5, has three resonances at $g_{1}=2.35, g_{2}=2.29$ and $g_{3}=$ 1.76, and is typical for a ruthenium(III) complex (see p. 123-125).

Figure 4.5: EPR Spectra of the isolated solid from the reaction of water with cis-[Ru(acac) $\left.{ }_{2}\left(\underline{o}-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ as a frozen solution of 0.5 M $\left[\mathrm{Bu}^{n}{ }_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right] / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 4.7 K .

An X-ray crystallographic study identified the red solid as the benzyl ketone complex cis-[Ru $\left.\left.\stackrel{\mathrm{III}}{(\mathrm{acac})_{2}\left(o-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O})\right.} \mathrm{CH}_{2} \mathrm{Ph}\right)\right]\left[\mathrm{PF}_{6}\right]$ formed by addition of water to the coordinated alkyne, as shown in Equation 4.3. The molecular structure is shown in Figure 4.6; selected metrical data are presented in Table 4.5. Crystal and refinement data, together with the full set of interatomic distances and angles, are given in Appendix A.13.
Equation 4.3: Formation of $\underline{\text { cis- }\left[R u^{I I I}(a c a c)_{2}\left(\underline{o}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} P h\right)\right]\left[P F_{6}\right]}$ from the reaction of water with cis-[Ru(acac) $\left.)_{2}\left(\underline{o}-P h C \equiv C C_{6} H_{4} N M e_{2}\right)\right]\left[P F_{6}\right]$.

The oxygen atom from the water molecule is attached to the C_{α} atom and the distance between these atoms (ca. $1.24 \AA$) is typical of a C=O bond.

The bond distance between the C_{α} and C_{β} carbon atoms is ca. $1.53 \AA$, which is typical of a C-C single bond. The distance between the ruthenium atom and the coordinated keto oxygen atom $[\mathrm{Ru}-\mathrm{O}(5)]$ was found to be $\mathrm{ca} .2 .02 \AA$, similar to that found for RuIII-O acac bond lengths (see later). The alternative tautomeric enol structure (see Scheme 4.2) can be rejected on the basis of the structural evidence.

Scheme 4.2: Possible benzyl ketone and enol|tautomeric structures.

Figure 4.6: ORTEP diagram of the cation of $\underline{\text { cis- }}\left[\mathrm{Ru}^{\mathrm{III}}(\mathrm{acac})_{2}\left(\underline{o}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{Ph}\right)\right]\left[\mathrm{PF}_{6}\right]$.

Bond Distances (Å)			
$\mathrm{Ru}(1)-\mathrm{O}(1)$	$1.978(7)$	$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.148(9)$
$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.003(6)$	$\mathrm{O}(5)-\mathrm{C}(7)$	$1.24(1)$
$\mathrm{Ru}(1)-\mathrm{O}(3)$	$1.989(7)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.46(2)$
$\mathrm{Ru}(1)-\mathrm{O}(4)$	$1.995(7)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.53(1)$
$\mathrm{Ru}(1)-\mathrm{O}(5)$	$2.016(7)$		
Bond Angles ($\left.{ }^{\circ}\right)$			
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$92.2(3)$	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(5)$	$87.8(3)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$89.0(3)$	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$171.6(3)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$86.8(3)$	$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{O}(5)$	$89.2(3)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(5)$	$174.8(3)$	$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$90.2(3)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$99.0(3)$	$\mathrm{O}(5)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$84.3(3)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$90.1(3)$	$\mathrm{Ru}(1)-\mathrm{O}(5)-\mathrm{C}(7)$	$130.0(8)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$177.0(3)$	$\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(6)$	$122(1)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(5)$	$92 .(3)$	$\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(8)$	$115(1)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$87.1(3)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$123(1)$
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$92.7(3)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$114(1)$

4.4 Reactions of $\left.\underline{\text { cis- }}\left[\mathrm{Ru} \mathrm{III}_{(a c a c}\right)_{2}\left(\underline{o}-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ with PPh 3 and with MeOH

The addition of excess PPh_{3} to cis-[Ru(acac)2(o$\left.\left.\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]^{42}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ immediately gave a red solution from which a red solid, believed to be a 1:1 adduct, was isolated in $c a .62 \%$ yield. Similarly, a red crystalline solid was isolated from a red solution obtained by stirring a THF solution of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(o-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]^{42}$ with dry methanol overnight. The yield of this solid is $c a .86 \%$ on the basis of addition of one methanol ligand per ruthenium cation. Although satisfactory elemental analyses were not obtained for either product, they were consistent with the formation of a $1: 1$ adduct in each case. The parent molecular ions for a 1:1 adduct were detected in the + ve FAB mass spectra of both compounds, but the elemental analyses were not satisfactory.

Table 4.6: +ve FAB mass spectral data for the isolated solids from the reaction of $P P h_{3}$ or methanol with cis-[Ru(acac) $\left.{ }_{2}\left(\underline{o}-P h C \equiv C C_{6} H_{4} N M e_{2}\right)\right]\left[P F_{6}\right]$.

Nucleophile	m / z	Assignment	Relative Intensity $(\%)$
	783.1	$\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CPh}^{2} \mathrm{PPh}_{3}\right)\right\}^{+}$	17
	684.0	$\left\{\mathrm{Ru}(\mathrm{acac})\left(\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CPh} . \mathrm{PPh}_{3}\right)\right\}^{+}$	3
	5210	$\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CPh}\right)\right\}^{+}$	100
MeOH	553.0	$\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CPh} . \mathrm{MeOH}\right)\right\}^{+}$	35
	538.0	$\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CPh} . \mathrm{OH}\right)\right\}^{+}$	100
	522.0	$\left\{\mathrm{Ru}(\mathrm{acac})\left(\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CPh} . \mathrm{H}\right)\right\}^{+}$	50

The IR spectra of both products show two strong bands between 1570 and $1510 \mathrm{~cm}^{-1}$, characteristic of bidentate O-coordinated acac; ${ }^{45}$ the presence of the $\left[\mathrm{PF}_{6}\right]$ anion was confirmed by the strong absorptions 843 and 558 $\mathrm{cm}^{-1} .^{45}$ As was previously found for the pyridine and diethylamine adducts, there were no detectable absorption bands corresponding to the alkyne. A band of medium intensity at $1632 \mathrm{~cm}^{-1}$ in the methanol adduct may be assigned to $v(C=C)$.

Table 4.7: IR spectral data for the isolated solids from the reaction of PPh_{3} or methanol with cis-[Ru(acac) $\left.{ }_{2}\left(\underline{o}-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ (KBr disc).

Nucleophile	$v(\mathrm{acac})$	$v\left(\mathrm{PF}_{6}\right)$	Other
PPh_{3}	1567,1517	843,558	-
MeOH	1564,1521	843,558	1632

The EPR spectrum for PPh_{3} adduct is shown in Figure 4.7 as a frozen solution. There are three resonances at $\mathrm{g}_{1}=2.42, \mathrm{~g}_{2}=2.25$ and $\mathrm{g}_{3}=1.79$, and is typical for a ruthenium(III) complex (see p. 123-125). The electrochemical behaviour of these complexes |has not been investigated.

Figure 4.7: EPR Spectra of the isolated solid from the reaction of $P P h_{3}$ with cis- $\left[R u(a c a c)_{2}\left(\underline{o}-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} N \mathrm{Ne}_{2}\right)\right]\left[P F_{6}\right]$ as a frozen solution of 0.5 M $\left[\mathrm{Bu}^{n}{ }_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right] / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 4.7 K .

Field / G

The structures of both products are not known since X-ray quality crystals could not be obtained. Possible structures for the PPh_{3} adduct, a phosphonium ylid, and the methanol adduct, a vinyl ether, are shown in Figures 4.8 and 4.9, respectively. These proposed structures are not unreasonable given that a phosphonium ylid complex (E)$\left[\mathrm{CpMn}(\mathrm{CO})_{2}\left(\mathrm{C}\left\{\mathrm{CO}_{2} \mathrm{Me}\right\}=\mathrm{C}(\mathrm{H}) \mathrm{PPh}_{3}\right)\right]^{53}$ and several vinyl ether complexes ${ }^{33,54,55}$ have been isolated from alkyne complexes.

Figure 4.8: Possible structures of the red compound isolated from the

Figure 4.9: Possible structures of the red compound isolated from the addition of methanol to cis-[Ru(acac) $\left.)_{2}\left(o-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ in THF.

4.5 Reaction of cis-[Ru(acac) $\left.)_{2}\left(\underline{o}-\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ with PPh_{3}.

A red solution forms almost immediately upon adding excess PPh_{3} to a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of cis- $\left[\mathrm{Ru}{ }^{\mathrm{III}}(\mathrm{acac})_{2}\left(o-\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]^{41}$ or cis-$\left[\mathrm{Ru}^{\mathrm{III}}(\mathrm{acac})_{2}\left(o-\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{BF}_{4}\right]$ at room temperature under an inert atmosphere. The isolated $\left[\mathrm{BF}_{4}\right]$ salt gave an elemental analysis $(\mathrm{C}, \mathrm{H}, \mathrm{N}$, P) in apparent agreement with the formulation as a 1:1 adduct and on this basis the yield was ca. 50-60\%. The [PF_{6}] salt did not analyse satisfactorily. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectrum in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ revealed the presence of the [PF_{6}] anion and the $\left[\mathrm{PO}_{2} \mathrm{~F}_{2}\right]$ anion as a septet at $\delta_{\mathrm{P}}-143.8\left(\mathrm{~J}_{\mathrm{PF}}=710 \mathrm{~Hz}\right)$ and a triplet at $\delta-16.4\left(J_{\mathrm{PF}}=950 \mathrm{~Hz}\right)$, respectively. The spectroscopic data for the difluorophosphate anion are similar to data previously reported in the literature. ${ }^{56,57}$ Hydrolysis of AgPF_{6} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is known ${ }^{57}$ and may be occurring here as a slight excess of this silver salt was used to oxidise cis[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(o-\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]$. However, the hydrolysis of the [PF_{6}] anion may also be catalysed by the presence of a transition metal. ${ }^{56}$

The +ve FAB mass spectrum of the red solid isolated from the reactioninvolving the $\left[\mathrm{PF}_{6}\right]$ anion shows the highest mass peak, presumably due to the parent ion, at $\mathrm{m} / \mathrm{z} 723.1$ (15% relative abundance) which is assigned to $\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}_{2} \mathrm{H} . \mathrm{OPPh}_{3}\right\}^{+}\right.$. Ion peaks at $\mathrm{m} / \mathrm{z} 706.1$ (63% relative abundance) and 406.1 (100% relative abundance) are assigned to $\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}_{2} \cdot \mathrm{PPh}_{3}\right)\right\}^{+}$and $\left\{\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}_{2} \cdot \mathrm{PPh}_{3}\right\}^{+}$, respectively.

The IR spectrum of the solid (KBr disc) |shows strong absorptions at 1549 and $1520 \mathrm{~cm}^{-1}$, characteristic of O-bonded, bidentate acac; ${ }^{45}$ strong absorptions at 840 and $558 \mathrm{~cm}^{-1}$ confirmed the presence of the $\left[\mathrm{PF}_{6}\right]$ anion. ${ }^{45}$ A medium absorption at $1307 \mathrm{~cm}^{-1}$ may be due to $v(\mathrm{PO})$ of the $\left[\mathrm{PO}_{2} \mathrm{~F}_{2}\right]$ anion. ${ }^{57}$ The $\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$ value for red crystals isolated from this reaction was -0.45 V (vs $\mathrm{Ag} / \mathrm{AgCl}$), similar to that found for the pyridine adduct (see p. 140).

The structure of the 1:1 adduct isolated from the reaction of PPh_{3} and cis-[Ru $\left.{ }^{I I I}(\mathrm{acac})_{2}\left(o-\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]^{41}$ was identified by X -ray crystallography as the triphenylphosphonium-ylid complex $c i s-\left[\mathrm{Ru}^{\mathrm{II}}(\mathrm{acac})_{2}\left\{0-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{H})\left(\mathrm{PPh}_{3}\right)\right\}\right]\left[\mathrm{PF}_{6}\right]$ as shown in Equation 4.4. There was no difluorophosphate anion detected in the crystal. This structure may also be regarded a zwitterion with a formal positive charge on the phosphorus atom and a negative charge on the metal atom. The PPh_{3} unit is attached to the β-carbon atom to give a six-membered chelate ring and, unexpectedly, the α-carbon atom carries an oxygen atom. Thus, the attack by the nucleophile PPh_{3} is accompanied by the loss of two hydrogen atoms and the gain of one oxygen atom. The analytical data for this formulation does not differ significantly from that for the expected 1:1 adduct for both the $\left[\mathrm{BF}_{4}\right]$ or $\left[\mathrm{PF}_{6}\right]$ salts.
Equation 4.4: Formation of $\underline{c i s}-\left[\overrightarrow{\left.R u u^{I I}(a c a c)_{2}\left\{\underline{Q}-M e_{2} N C_{6} H_{4} \mathrm{C}(O) C(H)\left(P P h_{3}\right)\right\}\right]\left[P F_{6}\right]}\right.$ from the reaction of triphenylphosphine with $\underline{\text { cis- }}\left[R u(a c a c)_{2}(\underline{o}-\right.$ $\left.\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$.

The molecular structure is shown in Figure 4.10 and selected metrical data is presented in Table 4.8. Crystal and refinement data, together with the full set of interatomic distances and angles, are given in Appendix A.14.

The distance separating the P and the α-carbon atoms is $c a .1 .79 \AA$ and is typical for phosphorus ylid complexes which contain bulky substituents on the carbanion. ${ }^{58}$ The phosphorus atom is also exo to the ruthenium atom. A single bond is also evident between the $R u$ atom and the C_{β} atom $[\mathrm{Ru}-\mathrm{C}(20) c a .2 .16 \AA$] which is similar to that found in the diethylamine adduct. The distance between the Ru atom and α-carbon atom, $\mathrm{C}(19)$, (ca. 2.81 \AA), indicates little or no interaction.

The keto group points
away from and is not coordinated to the metal atom. The distance between the atoms $\mathrm{O}(5)$ and $\mathrm{C}(19)$ (ca. $1.23 \AA$) is slightly longer than those typically found for a $C=O$ bond. The distance between α and β-carbon atoms $[C(19)$ and $C(20)$] is ca. $1.46 \AA$, which is similar to that found for the diethylamine adduct \mid (see p. 143). The metrical data are consistent with a contribution from a zwitterionic resonance form B, as shown in Scheme 4.3, in which there is a

Scheme 4.3: Proposed resonance structures for the phosphonium adduct.

double bond between atoms $C(19)$ and $C(20)$ and a negative charge on oxygen atom $\mathrm{O}(5)$. However, as the hydrogen atom on the β-carbon atom, $\mathrm{C}(20)$, was

Figure 4.10: ORTEP diagram of the cation of cis-[Ru ${ }^{I I I}$ (acac) $)_{2}\left(\underline{o}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{CHPPh}_{3}\right]\left[\mathrm{PF}_{6}\right]$.

Table 4.8: Selected metrical
parameters
of $\underline{\text { cis-}}\left[R u^{I I I}(a c a c)_{2}\left(\underline{o}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{CHPPh}_{3}\right]\left[\mathrm{PF}_{6}\right]\right.$.

Bond Distances (A)			
$\mathrm{Ru}(1)-\mathrm{O}(1)$	$1.999(3)$	$\mathrm{O}(5)-\mathrm{C}(19)$	$1.227(5)$
$\mathrm{Ru}(1)-\mathrm{O}(2)$	$1.996(3)$	$\mathrm{P}(1)-\mathrm{C}(20)$	$1.794(5)$
$\mathrm{Ru}(1)-\mathrm{O}(3)$	$1.999(3)$	$\mathrm{P}(1)-\mathrm{C}(21)$	$1.799(5)$
$\mathrm{Ru}(1)-\mathrm{O}(4)$	$2.043(3)$	$\mathrm{P}(1)-\mathrm{C}(27)$	$1.814(5)$
$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.204(4)$	$\mathrm{P}(1)-\mathrm{C}(33)$	$1.795(5)$
$\mathrm{Ru}(1)-\mathrm{C}(20)$	$2.160(4)$	$\mathrm{C}(19)-\mathrm{C}(20)$	$1.459(6)$
$\mathrm{Ru}(1)-\mathrm{C}(19)$	$2.810(5)$	$\mathrm{C}(20)-\mathrm{H}(25)$	$0.92(4)$
Bond Angles $\left.{ }^{\circ}\right)$			
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$90.3(1)$	$\mathrm{C}(20)-\mathrm{P}(1)-\mathrm{C}(21)$	$108.4(2)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$88.1(1)$	$\mathrm{C}(20)-\mathrm{P}(1)-\mathrm{C}(27)$	$108.4(2)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$85.5(1)$	$\mathrm{C}(20)-\mathrm{P}(1)-\mathrm{C}(33)$	$119.0(2)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$174.3(1)$	$\mathrm{C}(21)-\mathrm{P}(1)-\mathrm{C}(27)$	$105.6(2)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{C}(20)$	$92.3(2)$	$\mathrm{C}(21)-\mathrm{P}(1)-\mathrm{C}(33)$	$106.1(2)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$177.2(1)$	$\mathrm{C}(27)-\mathrm{P}(1)-\mathrm{C}(33)$	$108.6(2)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$86.3(1)$	$\mathrm{Ru}(1)-\mathrm{C}(20)-\mathrm{P}(1)$	$124.0(5)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$92.0(1)$	$\mathrm{Ru}(1)-\mathrm{C}(20)-\mathrm{C}(19)$	$100.0(3)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{C}(20)$	$95.8(2)$	$\mathrm{P}(1)-\mathrm{C}(20)-\mathrm{C}(19)$	$111.5(3)$
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$91.2(1)$	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{O}(5)$	$123.8(5)$
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$89.4(1)$	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{O}(5)$	$119.5(4)$
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{C}(20)$	$86.6(2)$	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$116.5(4)$
$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$89.4(1)$	$\mathrm{Ru}(1)-\mathrm{C}(20)-\mathrm{H}(25)$	$100(3)$
$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{C}(20)$	$177.0(2)$	$\mathrm{P}(1)-\mathrm{C}(20)-\mathrm{H}(25)$	$108(3)$
$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{C}(20)$	$92.6(2)$	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(25)$	$113(3)$

clearly located in the difference maps and refined, it was possible to sum the bond angles about $C(20)\left(657^{\circ}\right)$; this value suggests sp 3-hybridization $\left(6 \times 109.5^{\circ}=657^{\circ}\right)$ at this carbon atom. Additional evidenœ for the zwitterionic structure shown in Scheme 4.6 A is that the $\mathrm{Ru}^{3+/ 2+}$ redox couple is similar to that found for the similarly formulated pyridine adduct (see p. 140) rather than that for an alkene complex (see p. 109).

4.6 General Features of Crystal Structures.

For all four structures, the metal atom occupies the centre of a distorted octahedron. The Ru-O distances are typically ca. 1.98-2.02 A, except for the Ru-O bonds trans to the Ru-C σ-bonded carbon atoms, which are between ca. 0.04 and $0.10 \AA$ longer than those trans to an acac oxygen atom (see Tables 4.3-4.4 and 4.8). These distances are ca. $0.02 \AA$ shorter than those found in cis-[Ru(acac) $\left.)_{2}\left(o-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right],{ }^{42}$ but similar to those found in cis-[Ru(acac) $\left.)_{2}\left(o-\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right] .4$

4.7 Discussion

As was expected, nucleophiles such as $\mathrm{NR}_{2} \mathrm{H}$, pyridine and $\mathrm{H}_{2} \mathrm{O}$ react with cis-[RuIII $\left.(\mathrm{acac})_{2}\left(o-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ to form products derived by attack at the unsaturated carbon atoms. Similarly PPh_{3} attacks the β-carbon atom of cis-[RuIII $\left.(\mathrm{acac})_{2}\left(o-\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$, although this process is complicated by oxidation of the aliphatic carbon atom. The structures of these nucleophilic addition products could only be reliably determined by X-ray crystallography because the paramagnetism of the complexes prevented routine NMR studies. It is believed that methanol and PPh_{3} also add to the alkyne carbon atoms in a similar manner, but the products of these |reactions have not been structurally characterized. This situation is unusual; most nucleophilic addition reactions with alkenes and alkynes involve diamagnetic complexes. There are relatively few $\mathrm{Ru}^{\text {III }}$ - $\mathrm{C} \sigma$-bonded complexes known which include [$\mathrm{Ru}(\mathrm{TPP}) \mathrm{Ph}](\mathrm{TPP}=$ dianion of 5,10,15,20-
tetraphenylporphyrin) and several cyclometallated Schiff base complexes such as $\left[\mathrm{Ru}^{\mathrm{III}} \operatorname{Br}\left(\mathrm{PPh}_{3}\right)_{2}\left(2-(\text { phenylazo }) \text { phenolato }-\mathrm{C}^{2}, N, O\right)^{59}\right.$ in which the Ru-C distance is ca. $2.03 \AA$.

Nucleophilic attack on coordinated alkenes and alkynes usually results in products in which the nucleophile is exo to the metal (see p. 138) and this is the case for the structurally characterized diethylamine and the triphenylphosphine adducts. However, for the pyridine and water adducts, the heteroatom of the nucleophile is endo to the ruthenium atom. An alternative possible mode of attack is initial displacement of the alkyne, coordination of the nucleophile to the metal, followed by insertion of the alkene or alkyne into the metal-nucleophile bond. ${ }^{1}$ This would cause the nucleophile to occupy an endo-position relative to the metal atom.

However, the stereochemistry of the product isolated from the addition of a nucleophile to a coordinated alkyne need not necessarily define the mode of addition. For example, the reaction of dimethyl acetylenedicarboxylate to $\left[\mathrm{CpRuH}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{60}$ and $\left[\mathrm{RhH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{3}\right]^{61}$ affords $\left[\mathrm{CpRu}\left(\mathrm{PPh}_{3}\right)_{2}\left\{\right.\right.$ trans $\left.\left.-\mathrm{MeO}_{2} \mathrm{CC}=\mathrm{C}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Me}\right\}\right]$ and $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\{\right.$ trans $\left.\mathrm{MeO}_{2} \mathrm{CC}=\mathrm{C}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Me}\right\}$], respectively. In a similar fashion, the reaction of $\mathrm{PhC} \equiv \mathrm{CPh}$ to $\left[\mathrm{Ni}(\mathrm{acac})(\mathrm{Me})\left(\mathrm{PPh}_{3}\right)\right]$ results in the formation of the vinyl complex $\left[\mathrm{Ni}(\mathrm{acac})\left(\mathrm{PPh}_{3}\right)(\right.$ trans $\left.-\mathrm{PhC}=\mathrm{C}(\mathrm{Me}) \mathrm{Ph})\right] .{ }^{62}$ In all three cases, it is believed that the metal-H or metal-alkyl bond adds endo to the coordinated alkyne, followed by cis- to trans-isomerization of the vinyl groups. Schwartz and Hart^{63} were able show that cis $-\mathrm{MeCO}_{2} \mathrm{C}(\mathrm{Me}) \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{CCO}_{2} \mathrm{Me}$ is exclusively formed from the pyrolysis of a freshly prepared solution of $\left[\mathrm{RhI}(\mathrm{Me})(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}\left\{\mathrm{MeCO}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{CO}_{2} \mathrm{Me}\right\}\right]$, whereas as a mixture of cisand trans $-\mathrm{MeCO}_{2} \mathrm{C}(\mathrm{Me}) \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{CCO}_{2} \mathrm{Me}$ is detected after allowing the same rhodium solution to stir for 24 hours before heating. This cis- to transisomerization can be rationalized by postulating rotation about the $\mathrm{C}=\mathrm{C}$ double bond via adipolar intermediate, asshowninScheme 4.4; the formation of a double bond
between the metal and carbon atom and a single bond bond between the vinyl carbon atoms allows the rotation to occur. The sign and the location of the charge will probably depend on the metal, the oxidation state of the metal and the substituents of the vinyl group.

Scheme 4.4: Possible dipole mechanisms for the rotation of the substituents about the $C=C$ bond.

Therefore, initial coordination of pyridine to the ruthenium complex may be exo giving a (Z)-vinyl species. Rotation of the phenyl and pyridine substituents probably also occurs via a resonance structure to form the observed (E)-vinyl complex, as shown in Scheme 4.5. The reasons for this trans to cis isomerization are not known.

The benzyl ketone complex is probably formed by initial exo-attack of water on the α-carbon atom to give a vinyl alcohol intermediate, as shown in Scheme 4.6. As for most organic aliphatic enols, the equilibrium for this keto-enol tautomer would be expected to be heavily in favour of the ketone, ${ }^{64}$ which is the observed product. The ketone oxygen atom can now coordinate to the ruthenium atom after rotation about a C-C bond. An iron (1-benzoyl)ethyl complex, $\left[\mathrm{CpFe}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}(\mathrm{CH}(\mathrm{Me}) \mathrm{C}(=\mathrm{O}) \mathrm{Ph})\right]$, and an iron vinyl ether complex, $(\mathrm{E})-\left[\mathrm{CpFe}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}(\mathrm{C}(\mathrm{Me})=\mathrm{C}(\mathrm{OMe}) \mathrm{Ph})\right]$ have been

Chapter 4
Scheme 4.5: Proposed pathway for the formation of cis-[Ru $\left.\sqrt{\text { III }(a c a c)_{2}\left(\underline{o}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}\right.}=\mathrm{C}\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right) P h\right]\left[\mathrm{PF}_{6}\right]$ via initial trans addition of pyridine to $\left.\underline{\text { cis }-[R u I I I(a c a c)})_{2}\left(\underline{o}-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$.

Scheme 4.6: Proposed reaction pathway for the formation of cis-[Ru $\left.{ }^{\text {III }}(\mathrm{acac})_{2}\left(o-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{Ph}\right)\right]\left[\mathrm{PF}_{6}\right]$

H^{+}shift

Observed product
isolated by passing a solution of $\left[\mathrm{CpFe}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}\left(\eta^{2}-\mathrm{MeC} \equiv \mathrm{CPh}\right)\right]\left[\mathrm{BF}_{4}\right]$ through neutral alumina and reacting the alkyne complex with methanol in the presence of a base, respectively. ${ }^{33}$ Presumably, the first product arises by attack of water adsorbed on the alumina on the alkyne to give an enolate, which then undergoes a keto-enol tautomerism. Taube and coworkers ${ }^{55}$ have shown that water and methanol will add to $\left[\mathrm{Os}\left(\mathrm{NH}_{3}\right)_{5}\left(\eta^{2}\right.\right.$ $\mathrm{MeC} \equiv \mathrm{CMe})][\mathrm{OTf}]_{2}$ to form $\left[\mathrm{Os}\left(\mathrm{NH}_{3}\right)_{5}\left(c i s-\eta^{2}-\mathrm{MeHC}=\mathrm{C}(\mathrm{OH}) \mathrm{Me}\right)\right][\mathrm{OTf}]_{2}$ and $\left[\mathrm{Os}\left(\mathrm{NH}_{3}\right)_{5}\left(\right.\right.$ cis $\left.\left.-\eta^{2}-\mathrm{MeHC}=\mathrm{C}(\mathrm{OMe}) \mathrm{Me}\right)\right][\mathrm{OTf}]_{2}$, respectively. Oxidation of $\left[\mathrm{Os}\left(\mathrm{NH}_{3}\right)_{5}\left(c i s-\eta^{2}-\mathrm{MeHC}=\mathrm{C}(\mathrm{OH}) \mathrm{Me}\right)\right][\mathrm{OTf}]_{2}$ results in the formation of the tautomeric 2 -butanone complex, ${ }^{55}$ similar to the ruthenium(III) keto-complex isolated here; one electron reduction of the latter might be expected to form the enol tautomer.

The formation of cis-[$\left.\sqrt{\mathrm{Ru}^{\mathrm{III}}(\mathrm{acac})_{2}\left(o-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}\right.}(\mathrm{H}) \mathrm{C}\left\{=\mathrm{NEt}_{2}\right\} \mathrm{Ph}\right]\left[\mathrm{PF}_{6}\right]$ probably occurs in a similar manner as that proposed for water viz transattack of $\mathrm{NEt}_{2} \mathrm{H}$ on the α-carbon atom followed by the transfer of the proton from the quaternary nitrogen atom to the β-carbon atom. This results in the formation of an enamine, the nitrogen analogue of an enol. The lone pair of electrons on the nitrogen atom in the enamine may be used to form the alkenyl iminium complex. The iminium complex trans$\left[\mathrm{CpFe}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}(\mathrm{C}(\mathrm{H}) \mathrm{MeC}(=\mathrm{NHPh}) \mathrm{Me})\right]\left[\mathrm{BF}_{4}\right]$ has been isolated from the reaction of phenylamine with $\left[\mathrm{CpFe}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OPh})_{3}\right\}\left(\eta^{2}-\mathrm{MeC} \equiv \mathrm{CMe}\right)\right]\left[\mathrm{BF}_{4}\right]{ }^{33}$ Evidence for the enamine proposed in Scheme 4.7 exists in the structural characterization of trans-(Z)-[PtCl $\left.2\left(\mathrm{NHEt}_{2}\right)\left(o-\mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})=\mathrm{C}\left(\mathrm{NEt}_{2}\right) \mathrm{Ph}\right)\right]$, isolated from the reaction of excess diethylamine with the non-coordinated alkyne in trans-[$\mathrm{PtCl}_{2}\left(\mathrm{SEt}_{2}\right)\left(o-\mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{C} \equiv \mathrm{CPh}\right] .{ }^{65}$ The amine nitrogen atom in the platinum complex is attached to β-carbon atom, opposite to that for ruthenium(III). The reasons for this difference in reactivity are not clear but may be related to the fact that the alkyne is not coordinated to the platinum(II) atom.

Scheme 4.7: Proposed pathway for the addition of $\mathrm{NEt}_{2} \mathrm{H}$ to cis$\left[\mathrm{Ru}{ }^{I I I}(\text { acac })_{2}\left(\underline{o}-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NM}_{2}\right]\left[\mathrm{PF}_{6}\right]\right.$.

Observed structure

Scheme 4.8: Proposed mechanism for the addition of $P P h_{3}$ to cis$\left[\mathrm{Ru} \mathrm{III}^{(a c a c}\right)_{2}\left(\underline{o}-\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right]\left[\mathrm{PF}_{6}\right]$.

The addition of PPh_{3} to cis- $\left.\left[\mathrm{Ru} \mathrm{III}^{\mathrm{IICac}}\right)_{2}\left(o-\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ probably occurs via direct attack on the alkene C_{β} atom to form a phosphonium-ylid complex cis-[Ru ${ }^{\mathrm{III}}(\text { acac })_{2}\left\{0-\mathrm{NMe}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{PPh}_{3}\right]^{2}\left[\mathrm{PF}_{6}\right]$ containing a five-membered ring, as shown in Scheme 4.8. Anionic oxygen nucleophiles, such as methoxide ions, also attack the β carbon atom of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right]^{9}$. and cis- $\left[\mathrm{PtCl}_{2}(o-\right.$ $\left.\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{AsPh}_{2}\right)\right]^{12,13,15}$ to form similar methoxyethyl platinum(II) complexes. The five-membered ring ruthenium complex is then oxidised presumably by a process in which water is eliminated and oxygen is added to the α-carbon atom to form the six-membered ring cis- $\left[\mathrm{Ru}^{\mathrm{III}}(\mathrm{acac})_{2}\left(o-\mathrm{NMe}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{C} \mathrm{CPPh}_{3}\right]\left[\mathrm{PF}_{6}\right]\right.$. The exact nature of this oxidation has not been elucidated. The added oxygen atom could come from the atmosphere or from water. The observed reactivity of triphenylphosphine with cis- $\left[\mathrm{Ru}{ }^{\mathrm{III}}(\mathrm{acac})_{2}\left(o-\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ differs to that found for the platinum(II) complex cis[$\left.\mathrm{PtCl}_{2}\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)\right]$ where PPh_{3} displaces the alkene and attacks the metal. ${ }^{9}$ This result may suggest that alkenes coordinated to Ru (III) may be more susceptible to nucleophilic attack than $\mathrm{Pt}(\mathrm{II})$.

There is much synthetic and industrial interest in the addition of heteroatoms across $C=C$ and $C \equiv C$ bonds. However, most interest has been for alkenes as stable metal-alkyne complexes are inert to nucleophilic attack whereas unstable metal-alkyne oligomerize. ${ }^{66}$ Oxygen nucleophiles, such as water and alcohols, catalytically react with alkenes and alkynes to give aldehydes or ketones in the presence of $\operatorname{Pd}(\mathrm{II}) .{ }^{1,3,66-68}$ Stoichiometric hydroamination reactions of unsaturated hydrocarbons promoted by transition metals are known, but there are few catalytic intermolecular

aminations,		mainly	because		of	the		strong
affinity	of	amines	for	the	metal		centre.	.1,3,66,69

However, intramolecular amination reactions, especially those involving
aromatic amines, are much more common and have been used to form N heterocycles catalytically. ${ }^{1,3,66,69,70 ~ A l t h o u g h ~ t h e ~ n u c l e o p h i l i c ~ r e a c t i o n s ~}$ presented in this Chapter are stoichiometric, they do suggest that $\mathrm{Ru}(\mathrm{III})$ complexes may have some potential for the addition of heteroatoms to unsaturated hydrocarbons. The reactivity of cis-[Rulif(acac)2(o$\left.\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ and $\left[\mathrm{RuIII}(\mathrm{acac})_{2}\left(\eta^{2}\right.\right.$-alkene) L$]\left[\mathrm{PF}_{6}\right]$ with nitrogen nucleophiles under anhydrous conditions should also be investigated. The the complex reduction of/chelate alkene/from $\mathrm{Ru}(\mathrm{III})$ to $\mathrm{Ru}(\mathrm{II})$ by pyridine ${ }^{43}$ may have been the result of traces of water present to form hydroxide ions which probably react in a similar manner to that found for ethoxide ions. ${ }^{43}$

The factors that determine the direction and regioselectivity of nucleophilic attack for these ruthenium(III) complexes are not yet understood. Reactions with nitrogen and phosphorus nucleophiles which differ in steric requirements and basicity from those used here should be studied in an effort to identify these factors. Important information may also be gained from varying the alkyne substituents by using the known complex cis-[Ru $\left.{ }^{\mathrm{III}}(\mathrm{acac})_{2}\left(o-\mathrm{Me}_{3} \mathrm{SiC}_{\mathrm{i}}=\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right] .{ }^{42}$ Similar information may be gained e.g. by using tertiary phosphines which have different electronic and steric properties from those of PPh_{3} in the case of cis $-\left[\mathrm{Ru}^{\mathrm{III}}(\mathrm{acac})_{2}(o-\right.$ $\left.\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$. The effect of alkyl substitution of the alkene could also be investigated by using the 2-isopropenyl- N, N-dimethylaniline analogue. ${ }^{41}$

4.8 References

(1) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: California, 1987.
(2) Pruchnik, F. P. Organometallic Chemistry of the Transition Elements; Fackler Jr., J. P., Ed.; Plenum Press: New York and London, 1990.
(3) Hegedus, L. S. In Organometallics in Synthesis - A Manual; Schlosser, M., Ed.; John Wiley and Sons: 1994; p 385.
(4) Eisenstein, O.; Hoffmann, R. J. Am. Chem. Soc. 1981, 103, 4308.
(5) Hahn, C.; Vitagliano, A.; Giordano, F.; Taube, R. Organometallics 1998, 17, 2060.
(6) Stille, J. K.; Morgan, R. A. J. Am. Chem. Soc. 1966, 88, 5135.
(7) Cope, A. C.; Kliegman, J. M.; Friedrich, E. C. J. Am. Chem. Soc. 1967, 89, 287.
(8) Palumbo, R.; Renzi, A. D.; Panunzi, A.; Paiaro, G. J. Am. Chem. Soc. 1969, 91, 3874.
(9) Haszeldine, R. N.; Hunt, R. J.; Parish, R. V. J. Chem. Soc. (A) 1971, 3705.
(10) Nyholm, R. S. Pure and Appl. Chem. 1971, 27, 127.
(11) Maresca, L.; Natile, G. Comments Inorg. Chem. 1994, 16, 95.
(12) Cooper, M. K.; Guerney, P. J.; McPartlin, M. J. Chem. Soc., Dalton Trans. 1980, 349.
(13) Cooper, M. K.; Guerney, P. J.; Donaldson, P.; McPartlin, M. J.

Organomet. Chem. 1977, 131, C11.
(14) Hewertson, W.; Taylor, I. C. Chem. Commun. 1970, 428.
(15) Cooper, M. K.; Guerney, P. J.; Ling, J. H.; Nyholm, R. S. J. Organomet.

Chem. 1975, 91, 117.
(16) Al-Najjar, I. M.; Green, M.; Kerrison, S. J. S.; Sadler, P. J. J. Chem.

Research (S) 1979, 206.
(17) Natile, G.; Maresca, L.; Cattalini, L. J. Chem. Soc., Dalton Trans. 1977, 651.
(18) Panunzi, A.; Renzi, A. D.; Palumbo, R.; Paiaro, G. J. Am. Chem. Soc. 1969, 91, 3879.
(19) Hollings, D.; Green, M.; Claridge, D. V. J. Organomet. Chem. 1973, 54, 399.
(20) Giering, W. P.; Rosenblum, M. J. Organomet. Chem. 1970, 25, C71.
(21) Giering, W. P.; Rosenblum, M. Chem. Commun. 1971, 441.
(22) Berryhill, S. R.; Rosenblum, M. J. Org. cChem. 1980, 45, 1984.
(23) Berryhill, S. R.; Price, T.; Rosenblum, M. J. Org. Chem. 1983, 48, 158.
(24) Kaplan, P. D.; Schmidt, P.; Orchin, M. J. Am. Chem. Soc. 1968, 90, 4175.
(25) Sarhan, J. K. K.; Green, M.; Al-Najjar, I. M. J. Chem. Soc., Dalton Trans. 1984, 771.
(26) Stephenson, M.; Mawby, R. J. J. Chem. Soc., Dalton Trans. 1981, 2112.
(27) Chisholm, M. H.; Clark, H. C. Chem. Commun. 1970, 763.
(28) Chisholm, M. H.; Clark, H. C. Inorg. Chem. 1971, 10, 1711.
(29) Chisholm, M. H.; Clark, H. C. Inorg. Chem. 1971, 10, 2557.
(30) Chisholm, M. H.; Clark, H. C. Acc. Chem. Res. 1973, 6, 202.
(31) Reger, D. L.; Belmore, K. A.; Mintz, E.; Charles, N. G.; Griffith, E. A.
H.; Amma, E. L. Organometallics 1983, 2, 101.
(32) Reger, D. L.; Belmore, K. A.; Mintz, E.; McElligott, P. J.

Organometallics 1984,3, 134.
(33) Reger, R. L.; Klaeren, S. A.; Lebioda, L. Organometallics 1986, 5, 1072.
(34) Akita, M.; Kakuta, S.; Sugimoto, S.; Terada, M.; Moro-oka, Y. Chem. Commun. 1992, 451.
(35) Davidson, J. L.; Vasapollo, G.; Manojlovi'c-Muir, L.; Muir, K. W.

Chem. Commun. 1982, 1025.
(36) Allen, S. R.; K.Baker, P.; Barnes, S. G.; Bottrill, M.; Green, M.; Orpen, A. G.; Williams, I. D.; Welch, A. J. J. Chem. Soc., Dalton Trans. 1983, 927.
(37) Feng, S. G.; White, P. S.; Templeton, J. L. J. Am. Chem. Soc. 1992, 114, 2951.
(38) Feng, S. G.; Templeton, J. L. Organometallics 1992, 11, 2168.
(39) Morrow, J. R.; Tonker, T. L.; Templeton, J. L.; Kenan Jr., W. R. J. Am. Chem. Soc. 1985, 107, 6956.
(40) Halpern, J.; James, B. R.; Kemp, A. L. W. J. Am. Chem. Soc. 1961, 83, 4097.
(41) Bennett, M. A.; Heath, G. A.; Hockless, D. C. R.; Kovacik, I.; Willis, A. C. J. Am. Chem. Soc. 1998, 120, 932.
(42) Bennett, M. A.; Heath, G. A.; Hockless, D. C. R.; Kovacik, I.; Willis, A. C. Organometallics 1998, 17, 5867.
(43) Kovacik, I. PhD Thesis, ANU, 1995.
(44) Menglet, D. PhD Thesis, ANU, 1996.
(45) Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; 4th ed.; Wiley: New York, 1986.
(46) Bellamy, L. J. The Infrared Spectra of Complex Molecules; 3rd ed.; Chapman and Hall: London, 1975.
(47) Trefonas, L. M.; R. L. Flurry, J.; Majeste, R.; Meyers, E. A.; Copland, R. F. J. Am. Chem. Soc. 1966, 88, 2145.
(48) Childs, R. F.; Dickie, B. D.; Faggiani, R.; Fyfe, C. A.; Lock, C. J. L.; Wasylishen, R. E. J. Crystallogr. Spectrosc. Res. 1985, 15, 73.
(49) Knop, O.; Cameron, T. S.; Bakshi, P. K.; Kwiatkowski, W.; Choi, S. C.;

Adhikesavalu, D. Can. J. Chem. 1993, 71, 1495.
(50) Knüppel, S.; Fauré, J.; Erker, G.; Kehr, G.; Nissinen, M.; Fröhlich, R. Organometallics 2000, 19, 1262.
(51) Cook, A. G. In Enamines: Synthesis, Structure and Reactions; 2nd ed.;

Cook, A. G., Ed.; Marcel Dekker: New York, 1988; p 1.
(52) Kowalski, D.; Fröhlich, R.; Erker, G. Z. Naturforsch. 1996, 51b, 1053.
(53) Kolobova, N. E.; Ivanov, L. L.; Zhvanko, O. S.; Chechulina, I. N.; |Batsanov, A. S.; Struchkov, Yu. T. J. Organomet. Chem. 1982, 238, 223.
(54) Chisholm, M. H.; Clark, H. C.; Hunter, D. H. Chem. Commun. 1971, 809.
(55) Harman, W. D.; Dobson, J. C.; Taube, H. J. Am. Chem. Soc. 1989, 111, 3061.
(56) Thompson, S. J.; Bailey, P. M.; White, C.; Maitlis, P. M. Angew. Chem. Int. Ed. Engl. 1976, 15, 490.
(57) Fernández-Galán, R.; Manzano, B. R.; Otero, A.; Lanfranchi, M.; Pellinghelli, M. A. Inorg. Chem. 1994, 33, 2309.
(58) Johnson, A. W. Ylides and Imines of Phosphorus; John Wiley and Sons: New York, 1993, p 47.
(59) Lahiri, G. K.; Bhattacharya, S.; Mukherjee, M.; Mukherjee, A. K.;

Chakravorty, A. Inorg. Chem. 1987, 26, 3359.
(60) Blackmore, T.; Bruce, M. I.; Stone, F. G. A. J. Chem. Soc., Dalton Trans. 1974, 106.
(61) Booth, B. L.; Lloyd, A. D. J. Organomet. Chem. 1972, 35, 195.
(62) Huggins, J. M.; Bergman, R. G. J. Am. Chem. Soc. 1981, 103, 3002.
(63) Hart, D. W.; Schwartz, J. J. Organomet. Chem. 1975, 87, C11.
(64) March, J. Advanced Organic Chemistry; 3rd ed.; John Wiley and Sons: New York, 1985, p 66.
(65) Dupont, J.; Casagrande, O. L.; Aiub, A. C.; Beck, J.; Hoerner, M.; Bortoluzzi, A. Polyhedron 1994, 13, 2583.
(66) Hegedus, L. S. In Comprehensive Organic Syntheses; Trost, B. M.;

Flemming, I., Eds.; Pergamon: New York, 1991; Vol. 4; p 551.
(67) Jira, R. In Applied Homogenous Catalysis with Organometallic Compounds; Cornils, B.; Herrmann, W. A., Eds.; VCH:|1996; Vol. 1; p 374.
(68) Henkelmann, J. In Applied Homogenous Catalysis with Organometallic Compounds; Cornils, B.; Herrmann, W. A., Eds.; VCH:|1996; Vol. 1; p 275.
(69) Müller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675.
(70) Cardillo, G.; Orena, M. Tetrahedron 1990, 46, 3321.

Co-ordination chemistry of alkynyldiphenylphosphine bis(β-diketonato)ruthenium(II) complexes

5.1 Reactivity of $\left.\underline{\text { cis- }[R u(a c a c})_{2}\left(\eta^{2} \text {-alkene }\right)_{2}\right]$ with two equivalents of an alkynyl tertiary phosphine

The co-ordination and reactivity of alkynyldiphenylphosphines, $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}$, has been of some interest. Alkynylphosphines are potential difunctional ligands with the capacity to co-ordinate as simple phosphines, ${ }^{1-}$ 13 or disubstituted alkynes ${ }^{8,14,15}$ or to use both the phosphine lone pair and the alkynyl π orbitals in a multidentate bonding fashion. ${ }^{8,9,11,15-19}$ Bis(diphenylphosphino)acetylene, $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}$, has also been the subject of much attention in both P-monodentate ${ }^{20,21}$ and bridging ${ }^{10,13,19-28}$ coordination modes. An electrochemical investigation of $\left[\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{11}\right\}_{2}(\mu-\right.$ $\left.\left.\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right]$ led to the conclusion that there was no detectable electronic communication between the two $\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{11}\right\}$ units but due to chemical complications the possibility of a weak interaction could not be excluded. ${ }^{29}$ The aims of the study described in this Chapter are to investigate the reactivity of various alkynyldiphenylphosphines with the bis(alkene) complexes cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ and examine the properties and reactivity of the isolated complexes.

The addition of two equivalents of the alkynyldiphenylphosphines, $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}(\mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{Ph})$, to a solution of $\operatorname{cis}-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2} \text {-alkene }\right)_{2}\right]$ (alkene $=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{8} \mathrm{H}_{14}$) in THF at room temperature results in the isolation of orange, air stable solids trans-[Ru(acac) $\left.)_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}\right)_{2}\right]$ in yields ca. 60 98%. These orange solids are virtually insoluble in THF, benzene or toluene but readily form air-stable solutions in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and chlorobenzene. Heating a solution of trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}\right)_{2}\right](\mathrm{R}=\mathrm{Me}, \mathrm{Ph})$ in chlorobenzene at reflux causes quantitative isomerization to the air-stable yellow complexes $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}\right)_{2}\right]$, which were isolated in yields of $c a .65 \%$. These solids are readily soluble in aromatic solvents and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ forming yellow, air-stable solutions. The behaviour of trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CH}\right)_{2}\right]$ is more complex as shown by monitoring of the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra. After heating,
a $\mathrm{C}_{6} \mathrm{D}_{6}$ solution of trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CH}\right)_{2}\right]$ at $85{ }^{\circ} \mathrm{C}$ for 45 minutes, the main peak observed, at $\delta 24.2$, is due to unchanged starting material; there are also smaller peaks of equal intensity at d $32.0(\mathrm{~d}, 43 \mathrm{~Hz})$ and -14.3 ($\mathrm{d}, 43 \mathrm{~Hz}$). The latter resonance suggests the presence of uncoordinated phosphorus atoms. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR chemical shift for free $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CH}$ has been reported as a singlet at $\delta-33.3$ in $\mathrm{C}_{6} \mathrm{D}_{6} \cdot{ }^{30}$ Prolonged heating of this solution results in singlets at $\delta-17.1,-16.2,42.5$ and several peaks between 47.7-49.7. This reaction has not been investigated further.

The addition of two equivalents of the bidentate ditertiary phosphine $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}$ to cis-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]$ in THF initially results in a clear orange solution. However, stirring the solution overnight gives an orange red precipitate which is insoluble in benzene, toluene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and chlorobenzene. The elemental analysis corresponds approximately to the formula trans-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right]$ and the orange solid is presumed to be an oligomeric or polymeric material, similar to those isolated from the reaction of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]$ with 1,2-bis(diphenylphosphino)ethane and 1,3-bis(diphenylphosphino)propane. ${ }^{31}$ The IR spectrum does not show any bands in the region 2300 and $1600 \mathrm{~cm}^{-1}$ due to $\mathrm{v}(\mathrm{C} \equiv \mathrm{C})$. The absence of such bands has been suggested by Carty and co-workers ${ }^{22,24,25}$ to indicate that there has been no lowering of the symmetry of the ligand due to coordination of the $\mathrm{C} \equiv \mathrm{C}$ bond. A suspension of this orange red material trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right]$ in refluxing chlorobenzene gives the yellow, airstable complex $c i s-\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right\}_{2}\right]$ in $c a .40 \%$ yield.

The ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral data for the complexes trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}\right)_{2}\right]\left(\mathrm{R}=\mathrm{H}, \mathrm{CH}_{3}, \mathrm{Ph}\right)$, cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{Ph} 2 \mathrm{PC} \equiv \mathrm{CR})_{2}\right]$ $(\mathrm{R}=\mathrm{Me}, \mathrm{Ph})$ and $c i-\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\}_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)_{2}\right]$ are shown in Tables 5.1

- 5.4. Resonances due to the aromatic protons and carbon atoms were found in the expected regions. Due to the tendency for these complexes to crystallise out of solution, it was difficult to obtain the signals due to the
carbon atoms of the alkynyl unit in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum. The C_{α} atoms of the $\mathrm{Ph}_{2} \mathrm{PC}_{\alpha} \equiv \mathrm{C}_{\beta}-\mathrm{R}(\mathrm{R}=\mathrm{Me}, \mathrm{Ph})$ functional groups were detected as a triplets for the trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}\right)_{2}\right]$ complexes, whereas in the cis-isomers, the same atoms appear as a six line symmetrical multiplet. In both cases the carbon atom C_{α} is part of an $\mathrm{AA}^{\prime} \mathrm{X}$ system $\left(\mathrm{A}={ }^{31} \mathrm{P} ; \mathrm{X}={ }^{13} \mathrm{C}\right)$ and the different patterns probably arise from the differing magnitude of $J\left(\mathrm{AA}^{\prime}\right)$ in the trans- and cis-isomers. Since the values for the resonances of the alkynyl carbon atoms change little upon co-ordination compared to the free ligands, ${ }^{30}$ the alkynyl moieties are probably not co-ordinated to the ruthenium atom. However, this evidence is not clear-cut because for the chelated alkyne complexes cis-[Ru(acac) $\left.)_{2}\left(o-\mathrm{RC} \equiv \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right](\mathrm{R}=\mathrm{H}, \mathrm{Ph}$, SiMe_{3}), the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ chemical shifts of the alkynyl carbon atoms differ only slightly from those of the free ligand. ${ }^{32}$
Table 5.1: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral parameters of the $\left\{\mathrm{Ru}(a c a c)_{2}\right\}$ moiety of the bis(alkynyldiphenylphosphine) complexes trans-[Ru(acac) ${ }_{2} L_{2}$].

Ligand	${ }^{1} \mathrm{H} \mathrm{NMR}$				
	${ }^{\mathrm{a}}$	${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}^{\mathrm{a}}$			
	$\delta \mathrm{CH}_{3}$	$\delta \mathrm{CH}$	$\delta \mathrm{CH}_{3}$	$\delta \mathrm{CH}$	$\delta \mathrm{CO}$
$\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CH}$	1.39	4.36	27.2	100.3	185.5
$\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CCH}_{3}$	1.42	4.43	27.4	99.9	185.6
$\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPh}$	1.37	4.50	27.5	100.3	186.0

Table 5.2: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad N M R$ spectral parameters of the tertiary phosphines of the bis(alkynyldiphenylphosphine) complexes trans-[Ru(acac) $)_{2} L_{2}$].

Ligand	${ }^{1} \mathrm{H}$ NMR ${ }^{\text {a }}$		${ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right\} \mathrm{NMR}^{\text {a }}$		$31 \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ${ }^{a}$
	δ	Assignment	δ	Assignment	
$\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CH}$	$\begin{gathered} 3.49(1 \mathrm{H}, \mathrm{t}, \mathrm{JPH}=2.4 \mathrm{~Hz}) \\ 7.26-7.73(10 \mathrm{H}, \mathrm{~m}) \end{gathered}$	$\mathrm{C} \equiv \mathrm{CH}$ aromatic	$\begin{gathered} 79.0\left(\mathrm{t}, J_{\mathrm{PC}}=30 \mathrm{~Hz}\right) \\ 97.7\left(\mathrm{~d}, J_{\mathrm{PC}}=4.2 \mathrm{~Hz}\right) \\ 128.1\left(\mathrm{t}, J_{\mathrm{PC}}=4.5 \mathrm{~Hz}\right) \\ 129.6 \\ 132.0\left(\mathrm{t}, J_{\mathrm{PC}}=20 \mathrm{~Hz}\right) \\ 132.7\left(\mathrm{t}, J_{\mathrm{PC}}=6.6 \mathrm{~Hz}\right) \end{gathered}$	$\begin{gathered} \mathrm{C} \equiv \mathrm{CH} \\ \mathrm{C} \equiv \mathrm{CH} \\ m-\mathrm{C}_{6} \mathrm{H}_{5} \\ p-\mathrm{C}_{6} \mathrm{H}_{5} \\ i p s o-\mathrm{C}_{6} \mathrm{H}_{5} \\ o-\mathrm{C}_{6} \mathrm{H}_{5} \end{gathered}$	+22.8

Table 5.2 (cont): ${ }^{1} H,{ }^{13} C\left\{{ }^{1} H\right\}$ and ${ }^{31} P\left\{{ }^{1} H\right\}$ NMR spectral parameters of the tertiary phosphines of the bis(alkynyldiphenylphosphine)
complexes trans-[Ru(acac) ${ }_{2} L_{2}$].

Ligand	${ }^{1} \mathrm{H}$ NMR ${ }^{\text {a }}$		${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ${ }^{\text {a }}$		${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ${ }^{a}$
	δ	Assignment	δ	Assignment	
$\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CCH}_{3}$	$\begin{gathered} 2.20(3 \mathrm{H}) \\ 7.32-7.77(10 \mathrm{H}) \end{gathered}$	$\mathrm{C} \equiv \mathrm{CCH}_{3}$ aromatic	$\begin{gathered} 5.96 \\ 72.4\left(\mathrm{t}, J_{\mathrm{PC}}=35 \mathrm{~Hz}\right) \\ 107.5 \\ 127.9\left(\mathrm{t}, J_{\mathrm{PC}}=4.1 \mathrm{~Hz}\right) \\ 129.2 \\ 132.7\left(\mathrm{t}, J_{\mathrm{PC}}=6.3 \mathrm{~Hz}\right) \\ 133.4\left(\mathrm{t}, J_{\mathrm{PC}}=20 \mathrm{~Hz}\right) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{C} \equiv \mathrm{CCH}_{3} \\ \mathrm{C} \equiv \mathrm{CCH}_{3} \\ \mathrm{C} \equiv \mathrm{CCH}_{3} \\ m-\mathrm{C}_{6} \mathrm{H}_{5} \\ p-\mathrm{C}_{6} \mathrm{H}_{5} \\ o-\mathrm{C}_{6} \mathrm{H}_{5} \\ \text { ipso- }-\mathrm{C}_{6} \mathrm{H}_{5} \\ \hline \end{gathered}$	+21.9
$\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPh}$	$7.30-7.84$ (15H)	aromatic	$83.6(\mathrm{~m})$ $108.9(\mathrm{~m})$ $128.1\left(\mathrm{t}, J_{\mathrm{PC}}=4.4 \mathrm{~Hz}\right)$ 128.8 129.5 129.6 132.1 $132.9\left(\mathrm{t}, J_{\mathrm{PC}}=6.5 \mathrm{~Hz}\right)$	$\begin{gathered} \mathrm{C} \equiv \mathrm{C} P h \\ \mathrm{C} \equiv \mathrm{CPh} \\ m-\mathrm{C}_{6} \mathrm{H}_{5} \\ o-\mathrm{C}_{6} \mathrm{H}_{5} \\ p-\mathrm{C}_{6} \mathrm{H}_{5} \\ p-\mathrm{C}_{6} \mathrm{H}_{5} \\ i p s o-\mathrm{C}_{6} \mathrm{H}_{5} \\ o-\mathrm{C}_{6} \mathrm{H}_{5} \\ \hline \end{gathered}$	+22.1

Table 5.3: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectral parameters of the $\left\{\mathrm{Ru}(\mathrm{acac})_{2}\right\}$ moiety of the bis(phosphine) complexes cis-[Ru(acac) $\left.L_{2} L_{2}\right]$.

Ligand	${ }^{1} \mathrm{H}$ NMR					
	$\delta \mathrm{NH}_{3}$	$\delta \mathrm{CH}$		${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}^{\mathrm{a}}$		
	$1.32,2.07$	5.33	$27.2,28.6$	$\delta \mathrm{CH}$	$\delta \mathrm{CO}$	
$\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CCH}_{3}$	$1.38,2.02$	5.23	$27.3,28.5$	99.5	$185.4,187.2$	
$\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPh}$	$1.45,1.65$	5.02	$27.6,27.7$	99.5	$185.4,187.3$	
$\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}$		99.6	$184.6,187.4$			

a) measured in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, all singlets.
Table 5.4: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right)$ and ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}$ NMR spectral parameters of the tertiary phosphines of the bis(alkynyldiphenylphosphine) complexes cis-[Ru(acac) $\left.{ }_{2} L_{2}\right]$.

Ligand	${ }^{1} \mathrm{H}$ NMR ${ }^{\text {a }}$		${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ${ }^{\text {a }}$		${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ${ }^{a}$
	δ	Assignment	δ	Assignment	
$\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CCH}_{3}$	$\begin{gathered} 2.02(6 \mathrm{H}, \mathrm{vt} \text { JPH } 1.2 \mathrm{~Hz}) \\ 7.10-7.90(20 \mathrm{H}, \mathrm{~m}) \end{gathered}$	$-\mathrm{C} \equiv \mathrm{CCH}_{3}$ aromatic	5.82 72.8 (a symmetrical six line multiplet, spacing between lines $17.6,38.4,6.9,37.0$ and 18.7 Hz) $\begin{gathered} 107.9\left(\mathrm{t}, J_{\mathrm{PC}}=5.5 \mathrm{~Hz}\right) \\ 127.2\left(\mathrm{t}, J_{\mathrm{PC}}=5 \mathrm{~Hz}\right) \\ 127.6\left(\mathrm{t}, J_{\mathrm{PC}}=5 \mathrm{~Hz}\right) \end{gathered}$ 128.7 $132.1\left(\mathrm{t}, \mathrm{JPC}_{\mathrm{PC}}=5.5 \mathrm{~Hz}\right)$ $132.5\left(\mathrm{t}, \mathrm{JPC}_{\mathrm{PC}}=5.5 \mathrm{~Hz}\right)$ $136.7(\mathrm{t}, \mathrm{JPC}=22 \mathrm{~Hz})$ $137.5(\mathrm{t}, \mathrm{JPC}=26 \mathrm{~Hz})$	$\begin{gathered} -\mathrm{C} \equiv \mathrm{CCH}_{3} \\ -\underline{\mathrm{C}} \equiv \mathrm{CCH}_{3} \\ \\ -\mathrm{C} \equiv \mathrm{CCH}_{3} \\ m-\mathrm{C}_{6} \mathrm{H}_{5} \\ m-\mathrm{C}_{6} \mathrm{H}_{5} \\ p-\underline{\mathrm{C}}_{6} \mathrm{H}_{5} \\ o-\mathrm{C}_{6} \mathrm{H}_{5} \\ o-\mathrm{C}_{6} \mathrm{H}_{5} \\ \text { ipso- } \underline{\mathrm{C}}_{6} \mathrm{H}_{5} \\ \text { ipso- }-\mathrm{C}_{6} \mathrm{H}_{5} \end{gathered}$	+39.8

Table 5.4 (cont): ${ }^{1} H,{ }^{13} C\left\{{ }^{1} H\right\}$ and ${ }^{31} P\left({ }^{1} H\right\}$ NMR spectral parameters of the tertiary phosphines of the bis(alkynyldiphenylphosphine)

Ligand	${ }^{1} \mathrm{H}$ NMR ${ }^{\text {a }}$		${ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right\}$ NMR ${ }^{\text {a }}$		${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$
	δ	Assignment	δ	Assignment	
$\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPh}$	7.08-7.94 (30 H, m)	aromatic	$\begin{gathered} 84.3 \text { (a six line multiplet, spacing } \\ \text { between lines } 18.6,34.0,7.7,34.0 \\ \text { and } 17.6 \mathrm{~Hz}) \\ 109.1\left(\mathrm{~d}, J_{\mathrm{PC}}=5 \mathrm{~Hz}\right) \\ 127.7\left(\mathrm{t}, J_{\mathrm{PC}}=5 \mathrm{~Hz}\right) \\ 128.8 \\ 128.9 \\ 129.5 \\ 131.9\left(\mathrm{t}, J_{\mathrm{PC}}=5.7 \mathrm{~Hz}\right) \\ 132.0 \\ 132.5\left(\mathrm{t}, J_{\mathrm{PC}}=5.5 \mathrm{~Hz}\right) \\ 136.4\left(\mathrm{t}, J_{\mathrm{PC}}=22.9 \mathrm{~Hz}\right) \\ 137.2\left(\mathrm{t}, J_{\mathrm{PC}}=26.2 \mathrm{~Hz}\right) \\ \hline \end{gathered}$	$\begin{gathered} -\underline{\mathrm{C}} \equiv \mathrm{CPh} \\ \\ -\mathrm{C} \equiv \underline{\mathrm{C}} \mathrm{Ph} \\ m-\mathrm{C}_{6} \mathrm{H}_{5} \\ p-\mathrm{C}_{6} \mathrm{H}_{5} \\ p-\mathrm{C}_{6} \mathrm{H}_{5} \\ i p s o-\mathrm{C}_{6} \mathrm{H}_{5} \\ o-\mathrm{C}_{6} \mathrm{H}_{5} \\ o-\mathrm{C}_{6} \mathrm{H}_{5} \\ o-\mathrm{C}_{6} \mathrm{H}_{5} \\ i p s o-\mathrm{C}_{6} \mathrm{H}_{5} \\ i p s o-\mathrm{C}_{6} \mathrm{H}_{5} \end{gathered}$	+40.3

a) measured in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, all singlets unless otherwise indicated.
Table 5.4 (cont): ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left({ }^{1} \mathrm{H}\right\}$ and ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}$ NMR spectral parameters of the tertiary phosphines of the bis(alkynyldiphenylphosphine) complexes cis-[Ru(acac) $\left.{ }_{2} L_{2}\right]$.

Ligand	${ }^{1} \mathrm{H}$ NMR ${ }^{\text {a }}$		${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ${ }^{\text {a }}$		${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right\}$
	δ	Assignment	δ	Assignment	
$\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}$	$\begin{aligned} & \hline 8.10-8.16(\mathrm{~m}, 16 \mathrm{H}) \\ & 6.99-7.25(\mathrm{~m}, 24 \mathrm{H}) \end{aligned}$		104.8 (a symmetrical six line multiplet, spacing between lines $19.0,30.8,7.7,27.0$ and 19.2 Hz) $\begin{gathered} 127.5\left(\mathrm{t}, J_{\mathrm{PC}}=4 \mathrm{~Hz}\right) \\ 127.6\left(\mathrm{t}, J_{\mathrm{PC}}=4 \mathrm{~Hz}\right) \\ 128.6 \\ 129.6 \\ 132.0\left(\mathrm{t}, J_{\mathrm{PC}}=5.2 \mathrm{~Hz}\right) \\ 133.9\left(\mathrm{t}, J_{\mathrm{PC}}=24 \mathrm{~Hz}\right) \\ 135.4\left(\mathrm{t}, J_{\mathrm{PC}}=5.5 \mathrm{~Hz}\right) \\ 135.9\left(\mathrm{t}, J_{\mathrm{PC}}=24 \mathrm{~Hz}\right) \end{gathered}$	$-\mathrm{C} \equiv \mathrm{CPPh}_{2}$ $\begin{gathered} m-\mathrm{C}_{6} \mathrm{H}_{5} \\ m-\mathrm{C}_{6} \mathrm{H}_{5} \\ p-\mathrm{C}_{6} \mathrm{H}_{5} \\ p-\mathrm{C}_{6} \mathrm{H}_{5} \\ o-\mathrm{C}_{6} \mathrm{H}_{5} \\ i p s o-\mathrm{C}_{6} \mathrm{H}_{5} \\ o-\mathrm{C}_{6} \mathrm{H}_{5} \\ i p s o-\mathrm{C}_{6} \mathrm{H}_{5} \end{gathered}$	+43.1

a) measured in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, all singlets unless otherwise indicated.

The IR spectra of the isolated complexes exhibit two intense bands, characteristic of bidentate O-bonded acac (see Table 5.6). ${ }^{33}$ A strong absorption was also found in the region $2200-2035 \mathrm{~cm}^{-1}$, except for cis-$\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right\}_{2}\right]$, which corresponds to the uncoordinated $v(C \equiv C)$ band. The $v(C \equiv C)$ values are $c a .12 \mathrm{~cm}^{-1}$ higher than those of the ligands (see Table 5.6), as has also been observed for the complexes [$\left(\eta^{5}\right.$ $\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Rh}_{2}(\mathrm{CO})\left(\mu-\eta^{1}: \eta^{1}-\mathrm{CF}_{3} \mathrm{C} \equiv \mathrm{CCF}_{3}\right)\left(\eta^{1}-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}\right)\right](\mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{Ph}){ }^{10}$ cis$\left[\mathrm{Pt} \mathrm{X}_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPh}\right)_{2}\right]\left(\mathrm{X}=\mathrm{I}, \mathrm{CF}_{3}, \mathrm{C}_{6} \mathrm{~F}_{5}, \mathrm{Me}\right),{ }^{34}\left[\mathrm{AuCl}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CH}\right)\right],{ }^{35}\left[\left(\eta^{6}{ }_{-}\right.\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{RuCl}_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CH}\right)\right]^{4}$ and $\left[\mathrm{PdCl}_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right] .{ }^{12}$ The Raman spectrum of cis $-\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right\}_{2}\right]$ shows a medium absorption at $2131 \mathrm{~cm}^{-1}$ which is assigned to the symmetrical $\mathrm{C} \equiv \mathrm{C}$ stretching vibration and is within the range 2143 to $2109 \mathrm{~cm}^{-1}$ found for the bridged $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}$ binuclear complexes of $\mathrm{Cu}(\mathrm{I}), \mathrm{Ag}(\mathrm{I}), \mathrm{Au}(\mathrm{I}), \mathrm{Pt}(\mathrm{II}), \mathrm{Pd}(\mathrm{II}), \mathrm{Hg}(\mathrm{II})$, $\mathrm{Rh}(\mathrm{I})$ and $\mathrm{Ni}(0) .{ }^{19,22,24,25,36}$ Calculations suggest that the $\pi * \mathrm{C} \equiv \mathrm{C}$ occupancy is higher in the free ligand than in the coordinated systems, because of delocalization of the phosphorus lone pair of electrons, thus accounting for the trend in $v(C \equiv C)$ values.

Table 5.6: IR spectral data for the complexes trans-[Ru(acac) $\left.)_{2}\left(P h_{2} P C \equiv C R\right)_{2}\right](R$ $\left.=H, \mathrm{CH}_{3}, \mathrm{Ph}\right)$ and $\underline{\text { cis- }}\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}\right)_{2}\right]\left(\mathrm{R}=\mathrm{CH}_{3}, \mathrm{Ph}\right)$.

Complex	$\begin{gathered} \mathrm{v}(\mathrm{acac})\left(\mathrm{cm}^{-1}\right) \\ \text { (solid) } \end{gathered}$	$\begin{gathered} \hline \mathrm{v}(\mathrm{C} \equiv \mathrm{C})\left(\mathrm{cm}^{-1}\right) \\ \text { (solid) } \\ \hline \end{gathered}$	$\begin{gathered} \Delta v(C \equiv C) \\ \left(\mathrm{cm}^{-1}\right)^{\mathrm{a}} \end{gathered}$
$\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CH}^{\mathrm{b}}$	-	2032	-
trans-[Ru(acac)2 $\left.\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CH}\right)_{2}\right]$	1568, 1511	2035	3
$\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}^{\mathrm{b}}$	-	2186	-
trans-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]$	1568, 1512	2198	12
cis-[Ru(acac) $\left.)_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]$	1574, 1514	2200	14
$\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPh}^{\mathrm{b}}$	-	2158	-
trans-[Ru(acac) $\left.2\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPh}\right)_{2}\right]$	1567, 1512	2172	14
cis-[Ru(acac)2 $\left.\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPh}\right)_{2}\right]$	1574, 1515	2171	13
$\begin{aligned} & c i s-\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}(\mu-\right.\right. \\ & \left.\left.\left.\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right\}_{2}\right] \end{aligned}$	1573, 1514	$2131{ }^{\text {c }}$	$34^{\text {c,d }}$

[^2]The FAB mass spectra of trans-[Ru(acac) $\left.)_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}\right)_{2}\right]\left(\mathrm{R}=\mathrm{H}, \mathrm{CH}_{3}\right.$, $\mathrm{Ph})$, cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}\right)_{2}\right]\left(\mathrm{R}=\mathrm{CH}_{3}, \mathrm{Ph}\right)$ and cis-[\{Ru(acac)$)_{2}(\mu-$ $\left.\left.\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right\}_{2}$] display the parent molecular ion peak, with the most abundant ion present corresponding to the species $\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}\right)\right\}^{+}$ (see Table 5.7). Also detected were the ions corresponding to the loss of one acac ligand from the parent ion.

Table 5.7: FAB mass spectral data of the isolated alkynyldiphenylphosphine complexes $\left[R u(a c a c)_{2}\left(\mathrm{Ph}_{2} P C \equiv C R\right)_{2}\right]$ and $\left[\left\{\mathrm{Ru}(a c a c)_{2}\left(P h_{2} P C \equiv C P P h_{2}\right)\right\}_{2}\right]$.

$\left.$| Phosphine | Geometric
 isomer | m / z | | Assignment |
| :---: | :---: | :---: | :---: | :---: | | Relative |
| :---: |
| Intensity |
| (\%) | \right\rvert\,

The structures of both geometric isomers of $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]$ and of $c i s-\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right\}_{2}\right]$ have been confirmed by single crystal X-ray crystallography. The molecular structures and selected metrical parameters are shown in Figures 5.1-5.3 and Tables 5.8-5.10, respectively. Crystal and refinement data of both complexes, together with the full set of
interatomic distances and angles, are given in Appendices A.15-A.17. In the crystal structure of cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]$ there are two independent molecules in the unit cell with one alkynyl group of the second molecule showing some disorder. The unit cell of cis-[\{Ru(acac) $\left.\left.)_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right\}_{2}\right]$ contains solvent molecules which could not be refined, the most likely species being $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{n}$-hexane or water. At present, the atom sites are modelled to resemble the contoured electron density map of this area, but the molecules responsible for it have not been identified.

The Ru-O distances in trans-[Ru(acac)2 $\left.\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]$, cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]$ and $c i s-\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right\}_{2}\right]$ are as expected, the Ru-O distances trans to the phosphorus atoms being ca. $0.03 \AA$ longer than those trans to acac oxygen atoms (see Table 5.8-5.10). The Ru-P distances vary between $2.249(1)$ to $2.3330(7) \AA$, shorter distances being found in the cis complex (see Table 5.8-5.10); the Ru-P distance of trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]$ is similar to those of $\operatorname{trans}-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{2} \mathrm{Me}\right)_{2}\right]{ }^{31}$ The P-Ru-P angles of cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]$ (two independent molecules, both 94°) and cis- $\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right\}_{2}\left(92\right.\right.$ and 94° for the one molecule) are the same as that found for cis-[Ru(acac) $\left.)_{2}\left(\mathrm{PPh}_{2} \mathrm{Me}\right)_{2}\right]$ $\left(96^{\circ}\right) .{ }^{31}$ For the propynyldiphenylphoshine complexes, the $\mathrm{C} \equiv \mathrm{C}$ bond length is ca. $1.18 \AA$ which is similar to those found for $\left[\mathrm{CpFe}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{2} \mathrm{C} \equiv \mathrm{CPh}\right]\left[\mathrm{BF}_{4}\right]\right.$ (1.202(5) A), ${ }^{7} \quad\left[\mathrm{Ru}_{3}(\mathrm{CO})_{11}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPh}\right)\right](1.182 \AA),{ }^{16}$ trans $\left[\mathrm{Pd}(\mathrm{SCN})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CBu}^{t}\right)_{2}\right]\left(1.167(16) \AA{ }^{\mathrm{A}}\right),{ }^{1}$ cis-[Pt(NCS)$\left.(\mathrm{SCN})\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CBu}^{t}\right)_{2}\right]$ (1.220(4) $\AA)_{,}{ }^{2}\left[\left(\left(\mathrm{Bu}^{t} \mathrm{C} \equiv \mathrm{CPPh}_{2} \mathrm{P}\right)_{2} \mathrm{Pt}\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right\} \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right](1.177(5)$ and $1.189(5) \AA),{ }^{11}\left[\mathrm{Fe}_{3}(\mathrm{CO})_{8}\left(\mu_{2}-\mathrm{CO}\right)\left(\mu_{3}-\mathrm{S}\right)\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPr}{ }^{i}\right)\right](1.171(9) \AA)^{3}$ and $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{8}\left(\mu_{3}-\mathrm{S}\right)\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CBu}^{t}\right)\right]\left(1.192(6) \AA \AA^{3}\right.$

The alkynyl \mid units in trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]$ are slightly distorted from/linearity, the $\mathrm{P}(1)-\mathrm{C}(6)-\mathrm{C}(7)$ angle being $c a .174^{\circ}$. A similar bending of the alkynyl carbon atoms occurs for cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]$ with bond angles varying between $173-177^{\circ}$.

Similar bending of the $\mathrm{P}-\mathrm{C} \equiv \mathrm{C}$ moiety has been observed in the complexes trans $-\left[\mathrm{Pd}(\mathrm{SCN})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CBu}^{t}\right)_{2}\right]\left(174^{\circ}\right),{ }^{1}$ cis-[$\left.\mathrm{Pt}(\mathrm{NCS})(\mathrm{SCN})\left(\mathrm{Ph}_{2} \mathrm{PCF}_{\mathrm{CBu}}{ }^{\mathrm{t}}\right)_{2}\right]$ (168 and $\left.\left.176^{\circ}\right),{ }^{2}\left[\left\{\left(\mathrm{Bu}{ }^{t} \mathrm{C} \equiv \mathrm{CPPh}_{2} \mathrm{P}\right)_{2} \mathrm{Pt}\left(\mu-\eta^{1}: \eta^{2}-\mathrm{C} \equiv \mathrm{CPh}\right)_{2}\right] \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right)_{2}\right]$ (166 and $\left.175^{\circ}\right),{ }^{11}\left[\mathrm{Fe}_{3}(\mathrm{CO})_{6}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPh}\right)_{3}\left(\mu_{3}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}\right)\left(\mu_{3}-\mathrm{Se}\right)\right]\left(168-175^{\circ}\right),{ }^{5}$ $\left[\mathrm{Ph}_{2} \mathrm{MePC} \equiv \mathrm{CBPh}_{3}\right]\left(169^{\circ}\right) .{ }^{38}$ These deviations have been attributed to nonbonding interactions between the alkyne and the groups attached to the phosphorus atoms, ${ }^{27,39}$ to crystal packing forces ${ }^{40}$ or to a contribution from a resonance form with a lone pair of electrons on the α-carbon atom of the alkynyl moiety as proposed for $\left[\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}\left(\mathrm{C} \equiv \mathrm{CPPh}_{3}\right)\right] .{ }^{41}$

Figure 5.1: ORTEP diagram of the molecular structure of trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]$.

*) atom generated by the symmetry operation (1-x, 1-y, 1-z)

Figure 5.2: ORTEP diagram of the molecular structure for one of the independent molecules of $\underline{c i s}-\left[R u(a c a c)_{2}\left(P h_{2} P C \equiv C M e\right)_{2}\right]$.

Figure 5.3: ORTEP diagram of the molecular structure of cis$\left[\left\{R u(a c a c)_{2}\left(P_{2} P C \equiv C P P h_{2}\right)\right\}_{2}\right]$.

Table 5.8: Selected metrical parameters of trans-[Ru(acac) $\left.)_{2}\left(\mathrm{Ph}_{2} P C \equiv C M e\right)_{2}\right]$.

Bond Distances (\AA)			
$\mathrm{Ru}(1)-\mathrm{P}(1)$			
$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.3330(7)$		
$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.060(2)$		
Bond Angles $\left({ }^{\circ}\right)$			
$2.063(2)$			
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)^{\mathrm{a}}$	180.0	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)^{\mathrm{a}}$	180.0
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)^{\mathrm{a}}$	$91.27(6)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$93.34(7)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$88.73(6)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)^{\mathrm{a}}$	$86.66(7)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$90.22(6)$	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(2)^{\mathrm{a}}$	180.0
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)^{\mathrm{a}}$	$89.78(6)$		

a) atom generated by the symmetry operation (1-x, 1-y, 1-z)

Table 5.9: Selected metrical parameters of $\underline{\text { cis- }\left[R u(a c a c)_{2}\left(P h_{2} P C \equiv C M e\right)_{2}\right] . ~}$

Bond Distances (\AA)			
$\mathrm{Ru}(1)-\mathrm{P}(1)$	2.249(1)	$\mathrm{Ru}(2)-\mathrm{P}(3)$	2.259(1)
$\mathrm{Ru}(1)-\mathrm{P}(2)$	2.265(1)	$\mathrm{Ru}(2)-\mathrm{P}(4)$	2.254(2)
$\mathrm{Ru}(1)-\mathrm{O}(1)$	2.063(3)	$\mathrm{Ru}(2)-\mathrm{O}(5)$	2.056(3)
$\mathrm{Ru}(1)-\mathrm{O}(2)$	2.088(3)	$\mathrm{Ru}(2)-\mathrm{O}(6)$	$2.095(3)$
$\mathrm{Ru}(1)-\mathrm{O}(3)$	2.059(3)	$\mathrm{Ru}(2)-\mathrm{O}(7)$	2.069(3)
$\mathrm{Ru}(1)-\mathrm{O}(4)$	2.098(3)	$\mathrm{Ru}(2)-\mathrm{O}(8)$	2.104(4)
Bond Angles (${ }^{\circ}$)			
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	94.20(5)	$\mathrm{P}(3)-\mathrm{Ru}(2)-\mathrm{P}(4)$	94.30(5)
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)$	91.3(1)	$\mathrm{P}(3)-\mathrm{Ru}(2)-\mathrm{O}(5)$	90.6(1)
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	174.3(1)	$\mathrm{P}(3)-\mathrm{Ru}(2)-\mathrm{O}(6)$	176.8(1)
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	93.5(1)	$\mathrm{P}(3)-\mathrm{Ru}(2)-\mathrm{O}(7)$	92.0(1)
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	90.1(1)	$\mathrm{P}(3)-\mathrm{Ru}(2)-\mathrm{O}(8)$	92.6(1)
$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{O}(1)$	89.91(9)	$\mathrm{P}(4)-\mathrm{Ru}(2)-\mathrm{O}(5)$	92.4(1)
$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{O}(2)$	91.0(1)	$\mathrm{P}(4)-\mathrm{Ru}(2)-\mathrm{O}(6)$	88.8(1)
$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	92.82(9)	$\mathrm{P}(4)-\mathrm{Ru}(2)-\mathrm{O}(7)$	91.8(1)
$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	174.2(1)	$\mathrm{P}(4)-\mathrm{Ru}(2)-\mathrm{O}(8)$	172.8(1)
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	91.2(1)	$\mathrm{O}(5)-\mathrm{Ru}(2)-\mathrm{O}(6)$	90.0(1)
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	174.3(1)	$\mathrm{O}(5)-\mathrm{Ru}(2)-\mathrm{O}(7)$	174.9(1)
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	86.0(1)	$\mathrm{O}(5)-\mathrm{Ru}(2)-\mathrm{O}(8)$	85.5(1)
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	83.8(1)	$\mathrm{O}(6)-\mathrm{Ru}(2)-\mathrm{O}(7)$	87.2(1)
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	85.0(1)	$\mathrm{O}(6)-\mathrm{Ru}(2)-\mathrm{O}(8)$	84.3(1)
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(4)$	90.9(1)	$\mathrm{O}(7)-\mathrm{Ru}(2)-\mathrm{O}(8)$	89.9(1)

Bond Distances (\AA)							
$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.265(1)$	$\mathrm{Ru}(2)-\mathrm{P}(3)$	$2.269(1)$				
$\mathrm{Ru}(1)-\mathrm{P}(2)$	$2.253(1)$	$\mathrm{Ru}(2)-\mathrm{P}(4)$	$2.261(1)$				
$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.051(3)$	$\mathrm{Ru}(2)-\mathrm{O}(5)$	$2.065(3)$				
$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.090(3)$	$\mathrm{Ru}(2)-\mathrm{O}(6)$	$2.088(3)$				
$\mathrm{Ru}(1)-\mathrm{O}(3)$	$2.068(3)$	$\mathrm{Ru}(2)-\mathrm{O}(7)$	$2.056(3)$				
$\mathrm{Ru}(1)-\mathrm{O}(4)$	$2.091(3)$	$\mathrm{Ru}(2)-\mathrm{O}(8)$	$2.097(3)$				
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.179(6)$	$\mathrm{C}(25)-\mathrm{C}(26)$	$1.190(6)$				
B							
$\mathrm{B}(12)-\mathrm{Ru}(1)-\mathrm{P}(2)$					$92.04(4)$	$\mathrm{P}(3)-\mathrm{Ru}(2)-\mathrm{P}(4)$	$94.43(4)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$91.82(9)$	$\mathrm{P}(3)-\mathrm{Ru}(2)-\mathrm{O}(5)$	$91.61(9)$				
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$173.97(9)$	$\mathrm{P}(3)-\mathrm{Ru}(2)-\mathrm{O}(6)$	$172.26(9)$				
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$91.10(9)$	$\mathrm{P}(3)-\mathrm{Ru}(2)-\mathrm{O}(7)$	$90.7(1)$				
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$95.85(9)$	$\mathrm{P}(3)-\mathrm{Ru}(2)-\mathrm{O}(8)$	$91.93(9)$				
$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$88.94(9)$	$\mathrm{P}(4)-\mathrm{Ru}(2)-\mathrm{O}(5)$	$92.06(9)$				
$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$92.60(9)$	$\mathrm{P}(4)-\mathrm{Ru}(2)-\mathrm{O}(6)$	$92.64(9)$				
$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$95.36(9)$	$\mathrm{P}(4)-\mathrm{Ru}(2)-\mathrm{O}(7)$	$91.15(9)$				
$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$170.26(9)$	$\mathrm{P}(4)-\mathrm{Ru}(2)-\mathrm{O}(8)$	$173.51(9)$				
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$92.1(1)$	$\mathrm{O}(5)-\mathrm{Ru}(2)-\mathrm{O}(6)$	$91.3(1)$				
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$174.7(1)$	$\mathrm{O}(5)-\mathrm{Ru}(2)-\mathrm{O}(7)$	$175.9(1)$				
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$85.1(1)$	$\mathrm{O}(5)-\mathrm{Ru}(2)-\mathrm{O}(8)$	$86.5(1)$				
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$84.6(1)$	$\mathrm{O}(6)-\mathrm{Ru}(2)-\mathrm{O}(7)$	$86.0(1)$				
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$79.9(1)$	$\mathrm{O}(6)-\mathrm{Ru}(2)-\mathrm{O}(8)$	$81.1(1)$				
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$90.2(1)$	$\mathrm{O}(7)-\mathrm{Ru}(2)-\mathrm{O}(8)$	$90.1(1)$				
$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(11)$	$119.7(1)$	$\mathrm{Ru}(2)-\mathrm{P}(3)-\mathrm{C}(12)$	$121.9(1)$				
$\mathrm{Ru}(1)-\mathrm{P}(2)-\mathrm{C}(25)$	$112.4(2)$	$\mathrm{Ru}(2)-\mathrm{P}(4)-\mathrm{C}(26)$	$114.1(1)$				
$\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$178.3(4)$	$\mathrm{P}(2)-\mathrm{C}(25)-\mathrm{C}(26)$	$170.1(4)$				
$\mathrm{P}(3)-\mathrm{C}(12)-\mathrm{C}(11)$	$177.9(4)$	$\mathrm{P}(4)-\mathrm{C}(26)-\mathrm{C}(25)$	$169.7(4)$				

In cis- $\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right\}_{2}\right]$ each ruthenium atom is at the centre of a distorted octahedron with the phosphorus atoms cis to each other. Only the homochiral $(\Delta \Delta / \Lambda \Lambda)$ isomer was found in the crystal. The two octahedra have different orientations as shown by a dihedral angle of $c a$. 46° between the planes defined by the atoms $\mathrm{Ru}(1), \mathrm{P}(1)$ and $\mathrm{P}(2)$, and $\mathrm{Ru}(2)$, $P(3)$ and $P(4)$, respectively (see Figure 5.3). Similar angles between the two co-ordination planes were found for $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{4}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)_{2}\right]\left(c a .33^{\circ}\right)$ and $\left[\mathrm{Pt}_{2} \mathrm{I}_{4}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)_{2}\right]\left(c a .43^{\circ}\right)$ whereas for $\left[\mathrm{Pd}_{2} \mathrm{Cl}_{4}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)_{2}\right](c a$. 0°) the 10 -membered ring is planar. ${ }^{19}$ Presumably the tilting of the two coordination planes in cis-[\{Ru(acac) $\left.\left.)_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right\}_{2}\right]$ partially releases the
strain of the 10 -membered ring as was found for $\left[\mathrm{Pt}_{2} \mathrm{X}_{4}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)_{2}\right](\mathrm{X}$ $=\mathrm{Cl}, \mathrm{I})$ but there is more strain imposed upon the ruthenium complex as the P-Ru-P angles are almost 90° where as the P-M-P angles are close to 95° for $\left[\mathrm{Pt}_{2} \mathrm{X}_{4}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)_{2}\right](\mathrm{X}=\mathrm{Cl}, \mathrm{I})^{19}$ and 105° for $c i s-\left[\mathrm{Pd}_{2} \mathrm{Cl}_{4}(\mu-\right.$ $\left.\left.\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)_{2}\right]^{19}$

The bridging $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}$ ligand defined by the $\mathrm{P}(1)$ and $\mathrm{P}(3)$ atoms of cis-[\{Ru(acac) $\left.\left.)_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right\}_{2}\right]$ lies almost parallel to the $\mathrm{Ru}-\mathrm{Ru}$ axis and is essentially linear $\left[\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{C}(12)\right.$ and $\mathrm{P}(3)-\mathrm{C}(12)-\mathrm{C}(11)$ both $\left.178^{\circ}\right]$. However, the second bridging $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}$ ligand shows a slight concave bowing shown by the angles $\mathrm{P}(2)-\mathrm{C}(25)-\mathrm{C}(26)$ and $\mathrm{P}(4)-\mathrm{C}(26)-\mathrm{C}(25)$ (170 each). This deviation from linearity of the alkyne fragment may be best viewed along the $\mathrm{Ru}-\mathrm{Ru}$ axis as shown in Figure 5.4. Similar small deviations from linearity are observed in $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}{ }^{39}$ and many of its complexes. ${ }^{13,19,26-}$ ${ }^{28}$ The bond angles about the P atoms with the Ru atom and the carbon atom of the alkyne unit varies between $120-122^{\circ}$ for atoms $\mathrm{P}(1)$ and $\mathrm{P}(3)$, and 112 - 114° for atoms $\mathrm{P}(2)$ and $\mathrm{P}(4)$. Thus, the linear bridging $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}$ ligand shows the greatest strain about the phosphorus atoms
with angles $c a .10^{\circ}$ greater than an ideal tetrahedron whilst the non-linear bridging $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}$ ligand has less strain with angles $c a .5^{\circ}$ greater.

The $\mathrm{C} \equiv \mathrm{C}$ bond lengths found in cis-[\{Ru(acac) $\left.\left.)_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right\}_{2}\right]$ (1.179(6) - $1.190(6) \AA$) are similar to those found in cis-[\{Mo(CO) $\left.)_{4}\right\}_{2}(\mu-$ $\left.\left.\left.\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right\}_{2}\right]\left(1.188(6)\right.$ and $1.192(6) \AA \AA^{26}\left[\left\{\mathrm{Os}_{3}(\mathrm{CO})_{11}\right\}_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)_{2}\right]$ $(1.22(2) \AA),{ }^{27}\left[\left\{\mathrm{CpMn}(\mathrm{CO})_{2}\right\}_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right](1.199(5) \AA),{ }^{13}\left[\mathrm{Pd}_{2} \mathrm{Cl}_{4}(\mu-\right.$ $\left.\left.\left.\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right\}_{2}\right](1.199(4) \AA)^{19}$ and $\left[\mathrm{Pt}_{2} \mathrm{Cl}_{4}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)_{2}\right](1.16(2)$ and $1.22(2) \AA)^{19}$ but differ slightly from $\left[\mathrm{Pt}_{2} \mathrm{I}_{4}\left(\left(\mu-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)_{2}\right]\right.$ (1.13(2) and $1.21(2) \AA)^{19}\left[\left\{\mathrm{Fe}_{3}(\mathrm{CO})_{9}\left(\mu_{3}-\mathrm{CMe}\right)\right\}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\left\{\mathrm{CpFe}(\mathrm{CO})_{2}\right\}\right]$ (1.210(4) and $1.250(5) \AA)^{20}$ and $\left[\left\{\mathrm{Ru}_{3}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{C} \equiv \mathrm{CBu}^{t}\right)(\mathrm{CO})_{8}\right\}_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right] .{ }^{28}$

Figure 5.4: Chem3D diagram of $\underline{\text { cis }}\left[\left\{R u(a c a c)_{2}\left(\mu-P h_{2} P C \equiv C P P h_{2}\right)\right\}_{2}\right]$ viewed down the Ru - Ru axis (acac and phenyl carbon atoms have been omitted for clarity).

5.2 Electrochemical Studies

The cyclic and AC voltammograms of the complexes trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}\right)_{2}\right](\mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{Ph})$ and $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}\right)_{2}\right](\mathrm{R}=$ $\mathrm{Me}, \mathrm{Ph})$ show fully reversible $\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$ couples between +0.09 and +0.49 V (vs $\mathrm{Ag} / \mathrm{AgCl}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature (see Table 5.11). The measured potentials for the trans analogues are similar to those of trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{2} \mathrm{Me}\right)_{2}\right]\left(+0.04 \mathrm{~V}\right.$, see Table 1.9), trans-[Ru(acac) $\left.2\left(\mathrm{PPh}_{3}\right)_{2}\right](+0.07$ V, see Table 1.9) and trans-[Ru(acac) $\left.)_{2}\left(\mathrm{P}_{(}\left(\mathrm{OCH}_{3}\right)_{3}\right)_{2}\right](+0.22 \mathrm{~V}$, see Table 1.9). The cis complexes are more difficult to oxidise than the trans by ca. 0.3 V , the potentials being similar to those of cis-[Ru(acac) $\left.)_{2} \mathrm{~L}_{2}\right]\left(\mathrm{L}=\mathrm{PPh}_{2} \mathrm{Me}, \mathrm{PPh}_{3}\right)$ (see Table 1.9). The cyclic and AC voltammograms of the binuclear complex cis-[\{Ru(acac) $\left.\left.)_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right\}_{2}\right]$ show two reversible oxidation potentials at +0.60 and $+0.90 \mathrm{~V}(v s \mathrm{Ag} / \mathrm{AgCl})$, attributable to the sequential oxidation of the two metal centres $\mathrm{Ru}(\mathrm{II} / \mathrm{II}) \rightarrow \mathrm{Ru}(\mathrm{II} / \mathrm{III})$ and $\mathrm{Ru}(\mathrm{II} / \mathrm{III}) \rightarrow \mathrm{Ru}(\mathrm{III} / \mathrm{III})$ (see Chapter 3). The $\mathrm{Ru}(\mathrm{II} / \mathrm{II}) \rightarrow \mathrm{Ru}(\mathrm{II} / \mathrm{III})$ potential is $c a .150 \mathrm{mV}$ higher than that of the $R u(I I) \rightarrow R u(I I I)$ potentials of cis-[Ru(acac) $\left.)_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}\right)_{2}\right]$, indicative of the electron-withdrawing influence of the adjacent $\left\{\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{2}\right)_{2}\right\}\right.$ centre.

Table 5.11: Oxidation potentials of bis(alkynylphosphine) complexes measured at a scan rate of $100 \mathrm{mVs}^{-1}$ and $+20^{\circ} \mathrm{C}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Complex	Geometric isomer	$\mathrm{E}_{1 / 2}(\mathrm{Ru} 3+/ 2+$ $(\mathrm{V} \mathrm{vs} \mathrm{Ag} / \mathrm{AgCl})$
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CH}\right)_{2}\right]$	trans	+0.16
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]$	trans	+0.09
	cis	+0.45
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPh}\right)_{2}\right]$	trans	+0.12
	cis	+0.49
$\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right\}_{2}\right]$	cis	$+0.60(\mathrm{II} / \mathrm{III})$,
		$+0.90(\mathrm{III} / \mathrm{II})$

The electronic (UV-Vis) spectra of the complexes cis and trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]$ and the binuclear complex cis$\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right\}_{2}\right]$, dissolved in a standard electrolyte solution, show the expected bands due to the $\mathrm{Ru}(\mathrm{II}) \rightarrow$ acac π^{*} transition as well as the acac $\pi \rightarrow$ acac π^{*} transition (see Table 5.12). Above ca. $30000 \mathrm{~cm}^{-1}$ the $\pi \rightarrow \pi^{*}$ transitions of the phenyl rings broaden or hide the acac transitions. ${ }^{12,42}$ Applying a potential of $c a .300 \mathrm{mV}$ greater than the previously measured $\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3 / 2+}\right)$ values results in the loss of these bands and the appearance of new bands consistent with the presence of a ruthenium (III) species (see Table 5.13). After the complexes had been exhaustively oxidised, the original spectra were re-generated after applying a potential of $c a .300 \mathrm{mV}$ lower than the corresponding $\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3 / 2+}\right)$ values.

The one-electron anodic electrolysis ($\mathrm{E}_{\text {applied }}=+0.75 \mathrm{~V}$ vs $\mathrm{Ag} / \mathrm{AgCl}$) of the binuclear complex cis-[\{Ru(acac)$\left.\left.)_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right\}_{2}\right]$ resulted in the formation of cis-[\{RuII/III (acac) $\left.\left.)_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right\}_{2}\right]^{+}$. This mixed valence species shows the characteristic $\mathrm{Ru}(\mathrm{III}) \rightarrow$ acac π^{*} transition MLCT [13800 \wedge ($\varepsilon 4400 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$) and $\left.16200 \mathrm{~cm}^{-1} \mid\left(\varepsilon=4400 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)\right]$; however, no intervalence band between $6000-10000 \mathrm{~cm}^{-1}$ was detected suggesting that the mixed valence species has a localised structure. ${ }^{43}$ This was confirmed by the second one-electron oxidation ($\mathrm{E}_{\text {applied }}=+1.10 \mathrm{~V} v \mathrm{~s} \mathrm{Ag} / \mathrm{AgCl}$) of the mixedvalence complex formed in situ, which caused the intensity of the $\mathrm{Ru}($ III $) \rightarrow$ acac π^{*} transition MLCT to double (see Table 5.13). Changes in the band positions above $30000 \mathrm{~cm}^{-1}$ were also observed, probably reflecting the fact that only one chromophore was present for the $\mathrm{Ru}(\mathrm{III} / \mathrm{III})$ species. The changes in the electronic spectrum after both anodic electrolytic processes were found to be reversible when the species were reduced.

Table 5.12: Principal electronic band maxima (in cm^{-1}) for both isomers of $\left[R u^{I I}(a c a c)_{2}\left(P h_{2} P C \equiv C M e\right)_{2}\right]$ and $\underline{\underline{c i s}-\left[\left\{R u^{I I}(a c a c)_{2}\left(P h_{2} P C \equiv C P P h_{2}\right)\right)_{2}\right] \mid \text { figures in }}$ brackets are the molar absorptivity in $\mathrm{L} \mathrm{mol}^{-1} \mathrm{~cm}^{-1}$).

COMPLEX	MLCT		$\begin{gathered} \operatorname{acac} \pi \rightarrow \\ \text { acac } \pi^{*} \end{gathered}$	$\begin{gathered} \mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right) \\ (\mathrm{V} v s \\ \mathrm{Ag} / \mathrm{AgCl}) \end{gathered}$
	v_{1}	v_{2}		
trans-[Ru(acac)2 $\left.{ }_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]$	$\begin{aligned} & 28100 \\ & (5900) \end{aligned}$	27000	$\begin{gathered} 35900 \\ (15500) \\ \hline \end{gathered}$	+0.09
cis-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]$	$\begin{aligned} & 30000 \\ & (6900) \end{aligned}$	-	$\begin{gathered} \hline 36700 \\ (14400) \end{gathered}$	+0.45
cis-[\{Ru(acac) $\left.\left.)_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right\}_{2}\right]$	$\begin{gathered} \hline 31700 \\ (12700) \\ \hline \end{gathered}$	-	$\begin{gathered} 36300 \\ (23400) \\ \hline \end{gathered}$	+0.60

Table 5.13: Principal electronic band maxima (in cm^{-1}) for both isomers of $\left[\mathrm{Ru} u^{I I I}(a \mathrm{acac})_{2}\left(\mathrm{Ph} h_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]$ and $\underline{\text { cis- }\left[\left\{\mathrm{Ru} u^{I I I}(a c a c)_{2}\left(P h_{2} P C \equiv C P P h_{2}\right)\right)_{2}\right] \mid(f i g u r e s}$ in brackets are the molar absorptivity in $L \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$).

COMPLEX	MLCT		MLCT	$\begin{array}{\|c\|} \hline \operatorname{acac} \pi \\ \rightarrow \\ \operatorname{acac} \pi^{*} \end{array}$	$\begin{gathered} \mathrm{E}_{1 / 2} \\ \left(\mathrm{Ru}^{3+/ 2+}\right) \\ (\mathrm{V} \text { vs } \\ \mathrm{Ag} / \mathrm{AgCl}) \end{gathered}$
	v_{3}	v_{4}			
$\begin{gathered} \text { trans- } \\ {\left[\mathrm{Ru}^{\left.\mathrm{II}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC}=\mathrm{CMe}\right)_{2}\right]}\right.} \end{gathered}$	$\begin{aligned} & 14900 \\ & (1300) \\ & \hline \end{aligned}$	-	$\begin{array}{\|c\|} \hline 32100 \\ (21700) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 34200 \\ (19500) \\ \hline \end{array}$	+0.09
$c i$-[$\left.\mathrm{Ru}{ }^{\text {III }}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]$	$\begin{aligned} & 15000 \\ & (2300) \\ & \hline \end{aligned}$	-	$\begin{aligned} & 33500 \\ & (8500) \\ & \hline \end{aligned}$		+0.45
$c i s-$ $\left[\left\{\mathrm{Ru}^{\mathrm{III}}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right\}_{2}\right]$	$\begin{aligned} & 13800 \\ & (4400) \end{aligned}$	$\begin{aligned} & 16200 \\ & (4400) \end{aligned}$	$\begin{array}{\|c\|} \hline 33300 \\ (16500) \end{array}$		+0.90

5.4 Chemical Oxidation

Addition of a slight excess of AgPF_{6} to an orange solution of trans$\left[\mathrm{Ru}^{\mathrm{II}}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}\right)_{2}\right](\mathrm{R}=\mathrm{H}, \mathrm{Me})$ at room temperature results in the |formation of the green complexes trans-[Ru $\left.{ }^{I I I}\left(\mathrm{acac}_{2}\right)_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}\right)_{2}\right]\left[\mathrm{PF}_{6}\right](\mathrm{R}=\mathrm{H}$, Me) in yields of $c a .90 \%$. These green solids were characterised by elemental
analysis, cyclic and AC voltammetric studies, IR spectroscopy, mass spectroscopy, EPR spectroscopy and in the case of trans$\left[\mathrm{Ru}^{\mathrm{III}}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}_{2}\right)_{2}\left[\mathrm{PF}_{6}\right]\right.$, an X -ray crystallographic study (see below). The chemical oxidation of trans-[Ruli $\left.{ }^{12}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPh}\right)_{2}\right]$ has not been investigated. Addition of approximately one equivalent of AgPF_{6} to a yellow solution of $c i s-\left[\mathrm{Ru}^{\mathrm{II}}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}\right)_{2}\right](\mathrm{R}=\mathrm{Me}, \mathrm{Ph})$ under analogous conditions results in the formation of deep blue solutions. However, neither of these complexes have been isolated as pure crystalline solids.

The highest detectable ion in the +ve FAB mass spectra is due to the parent cation $\left[\mathrm{RuIII}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}\right)_{2}\right]^{+}$and ions associated with the loss of one phosphine (see Table 5.14). The IR spectra of trans$\left[\mathrm{RuIII}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}\right)_{2}\right]\left[\mathrm{PF}_{6}\right](\mathrm{R}=\mathrm{H}, \mathrm{Me})$ shows either two strong bands or one strong band with a shoulder on the high-energy side between 1560-1510 cm^{-1}, whose position and intensity are characteristic of bidentate, O-bonded acac for the chelated N -donor alkene and alkyne complexes cis$\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{LL}\right]^{32,44}$ The presence of the $\left[\mathrm{PF}_{6}\right]$ - anion for both isolated $\mathrm{Ru}(\mathrm{III})$ compounds was confirmed by the bands belonging to the IR active v_{3} and v_{4} valence vibrations of the anion found at $c a .840$ and $558 \mathrm{~cm}^{-1}$, respectively. ${ }^{33}$ A strong absorption between $2201-2059 \mathrm{~cm}^{-1}$ corresponds to the uncoordinated $v(\mathrm{C} \equiv \mathrm{C})$ band (see Table 5.15).

Table 5.14: Positive $F A B$ mass spectral data of the complexes trans[Ru(acac) $\left.{ }_{2} L_{2}\right]\left[P F_{6}\right]$.

Complex	m / z	Assignment	Rel. Int. $(\%)$
$\left[\mathrm{Ru}{ }^{\left.\mathrm{III}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CH}\right)_{2}\right]^{+}}\right.$	720.2	$\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CH}\right)_{2}\right\}^{+}$	25
	510.2	$\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CH}\right)\right\}^{+}$	100
$\left[\mathrm{RuIII}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]^{+}$	748.2	$\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right\}^{+}$	30
	649.1	$\left\{\mathrm{Ru}(\mathrm{acac})\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right\}^{+}$	10
	524.1	$\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)\right\}^{+}$	100

Table 5.15: IR spectral data (in cm^{-1}) for the complexes trans$\left[R u^{\text {III }}(a c a c)_{2}\left(\mathrm{Ph}_{2} P \mathrm{PC} \equiv \mathrm{CR}\right)_{2}\right]\left[P F_{6}\right](R=H, M e)(K B r)$.

Complex	$v(\mathrm{acac})$	$v(\mathrm{C} \equiv \mathrm{C})$	$v\left(\mathrm{PF}_{6}\right)$	
			v_{3}	v_{4}
$\left[\mathrm{RuIII}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CH}\right)_{2}\right]^{+}$	1538,1520	2059	841	558
$\left[\mathrm{Ru}^{\mathrm{II}}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]^{+}$	1520	2201	840	558

Cyclic and AC voltammograms of the green complexes indicate that trans to cis isomerisation has not occurred during the chemical oxidation process as the measured $\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$ potentials do not differ from those of the starting complexes (see Table 5.11). The EPR spectra recorded as frozen solutions in $0.5 \mathrm{M}\left[\mathrm{Bu}^{\mathrm{n}}{ }_{4} \mathrm{~N}\right]\left[\left[\mathrm{PF}_{6}\right] / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ show three g values (see Figure 5.4 and Table 5.16). The features of the EPR spectra are consistent with axial symmetry $\mathrm{C}_{4 \mathrm{v}}$. Since trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CH}_{3}\right)_{2}\right]$ belongs to the $\mathrm{C}_{4 \mathrm{v}}$ point group (ignoring the bidentate ligand backbone), the EPR spectra also suggest that the coordination sphere has remained unchanged during the oxidation process. These results indicate that the cations generated by oxidation are typical of ruthenium(III) and are not ruthenium(II) complexes which contain a cationic ligand radical, for which a g-value close to the free-electron value (2.00) would be expected. ${ }^{44}$

Although three resonances were found in the EPR spectra, tetragonal distortion is thought to have occurred with the $\mathrm{g}_{\|}$occupying the lowest value and two closely resonances corresponding to g_{\perp} (see Chapter 3). Similar spectra were recorded for trans-[Ru(acac) $\left.)_{2} \mathrm{~L}_{2}\right]^{+}\left(\mathrm{L}=\mathrm{PPh}_{3}, \mathrm{CNBu}^{t}\right) .{ }^{45}$ The measurable splitting of g_{\perp} implies that there is also a slight rhombic distortion, most likely due to the Orgel effect of bidentate ligands. ${ }^{46-48}$ The Orgel effect allows for the fact that the two donor atoms on one ligand are not completely independent of each other and expressed in a rhombic distortion of trans- or cis- $\mathrm{MX}_{4} \mathrm{~L}_{2}$ when the chelating ligands (AA) replace X
to give $\mathrm{M}(\mathrm{AA})_{2} \mathrm{~L}_{2}$. EPR spectra recorded for the complexes trans-
$\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4}\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left[\mathrm{CF}_{3} \mathrm{SO}_{3}\right]_{3}{ }^{49}$ and trans$\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4}\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{2}\right]\left[\mathrm{CF}_{3} \mathrm{SO}_{3}\right]_{3}^{50}$ show a similar tetrgonal distortion but there was no splitting of the g_{\perp} resonance.

Table 5.16: g-Values for some trans-[Ru $u^{I I I}(a c a c)_{2} L_{2} I\left[P F_{6}\right]$ complexes.

COMPLEX	g_{1}	$\mathrm{~g}_{2}$	$\mathrm{~g}_{3}$
trans- $\left[\mathrm{Ru}^{\mathrm{III}}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{2} \mathrm{PC} \equiv \mathrm{CH}\right)_{2}\right]^{+}$	2.27	2.23	1.86
trans- $\left[\mathrm{Ru}^{\mathrm{III}}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]^{+}$	2.26	2.22	1.86
trans- $\left[\mathrm{Ru}^{\mathrm{III}}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+\mathrm{a}}$	2.28	2.23	1.84
trans-[RuIII $\left.(\mathrm{acac})_{2}\left(\mathrm{Bu}^{t} \mathrm{NC}\right)_{2}\right]^{+} \mathrm{a}$	2.24	2.20	1.89

a) recorded in 1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /toluene at 120 K , taken from ref. 45 .

Figure 5.4: EPR Spectra of the complexes trans$\left[\mathrm{R} u^{I I I}(a c a c)_{2}\left(P P h_{2} P C \equiv C R\right)_{2}\right]\left[P F_{6}\right](R=H, M e)$ recorded as a frozen glass in 0.5 $M\left[\mathrm{Bu}^{n}{ }_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right] / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at 4.7 K .

Field/G

Field / G

The structure of trans-[RuII $\left.(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ was confirmed by an X-ray crystallographic study. The molecular structure and selected metrical parameters are shown in Figure 5.5 and Table 5.17, respectively. Crystal and refinement data of the isomers, together with the full set of interatomc distances and angles, are given in Appendix A.18. Two molecules of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ co-crystallised in the unit cell per molecule of ruthenium.

The Ru-O distances characterising the coordination of the acetylacetonato anion are 2.003(3) and 2.011(3) A. These distances, which are very similar to the analogous ones (ca.2.00 \AA) in the orthorhomic and monoclinic forms of the $\left[\mathrm{Ru}{ }^{\mathrm{III}}(\mathrm{acac})_{3}\right], 51,52$ are ca. $0.05 \AA$ shorter than in the parent trans-[Ru(acac) $\left.)_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]$. They confirm the stronger coordination of acac- anions to $\mathrm{Ru}(\mathrm{III})$ than to $\mathrm{Ru}(\mathrm{II})$. The $\mathrm{Ru}-\mathrm{P}(1)$ bond distance was found to be $2.393(1) \AA$ which is $c a .0 .06 \AA$ longer than in the parent $\mathrm{Ru}(\mathrm{II})$ complex and may reflect the reduction in π-back-bonding ability of the Ru (III) ion. ${ }^{53}$

Figure 5.5: ORTEP diagram of the cation of trans$\left[\mathrm{Ru}{ }^{I I I}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}_{2}{ }_{2}\right]\left[\mathrm{PF}_{6}\right]\right.$.

Table 5.17: Selected metrical parameters of trans$\left[\mathrm{Ru} \mathrm{III}^{\mathrm{I}}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$.

Bond Distances (\AA)			
$\mathrm{Ru}(1)-\mathrm{O}(1)$		$2.011(3)$	
$\mathrm{Ru}(1)-\mathrm{O}(2)$		$2.003(3)$	
Bond Angles $\left({ }^{\circ}\right)-\mathrm{P}(1)$			
$2.393(1)$			
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)^{\mathrm{a}}$	180.0	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$89.64(8)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$90.3(1)$	$\mathrm{O}(1) \mathrm{a}-\mathrm{Ru}(1)-\mathrm{P}(1)$	$90.36(8)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)^{\mathrm{a}}$	$89.7(1)$	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$88.88(9)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(2)^{\mathrm{a}}$	180.0	$\mathrm{O}(2) \mathrm{a}-\mathrm{Ru}(1)-\mathrm{P}(1)$	$91.12(9)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)^{\mathrm{a}}$	180.0		

5.5 Discussion

the complexes
The ligands $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}(\mathrm{R}=\mathrm{H}, \mathrm{Me}, \mathrm{Ph})$ form $\mid\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}\right)_{2}\right]$ similar to those formed by other monodentate P-donors. ${ }^{31}$ In most cases these exist as trans- and cis-isomers, the latter being, as usual, thermodynamically the more stable. In no case was evidence found for coordination of the triple bond.

The complexes show a reversible $R u^{3+/ 2+}$ couple at room temperature. The $\mathrm{E}_{1 / 2}$-values, are in the range $+0.09-+0.16 \mathrm{~V}(v s \mathrm{Ag} / \mathrm{AgCl})$ (trans) and $+0.45-+0.49 \mathrm{~V}$ (vs Ag/ AgCl) (cis), these values being consistently $c a .100 \mathrm{mV}$ more positive than the values for the corresponding PPh_{3} and PMePh_{2} complexes. This trend indicates that there may be an electronwithdrawing influence of the alkynyl substituent that slightly stablizes the $R u(I I)$ relative to the $R u(I I I)$ oxidation state. As in the case of the complexes with other monodentate P-donors, the redox process occurs with retention of the geometrical configuration at the metal atom.

The trends in the $\mathrm{M}-\mathrm{O}$ and M-P distances in trans- and cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]$ are similar to those in trans- and cis$\left.\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{2} \mathrm{Me}\right)_{2}\right]\right]^{31}$ Likewise, the M-O and M-P distances in trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ are similar to those in the chelating alkene and alkyne N -donor ligand complexes cis-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{LL}^{\prime}\right)\right]\left[\mathrm{SbF}_{6}\right], 32,44$ and in the orthorhomic and monoclinic modifications of $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right] .{ }^{51,54}$

The complex cis-[\{Ru(acac) $\left.\left.)_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right\}_{2}\right]$ shows two fully reversible couples at room temperature separated by $c a .300 \mathrm{mV}$. However, the electronic spectra recorded during these oxidation processes indicate that the mixed-valence complex displays the properties found for the isolated redox centers $\mathrm{Ru}(\mathrm{II})$ and $\mathrm{Ru}(\mathrm{III})$. Therefore, the mixed-valence complex cis$\left[\left\{\mathrm{Ru}^{\left.\left.\mathrm{II} / \mathrm{III}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right\}_{2}\right]^{+} \text {is a Class II compound according to the }}\right.\right.$ Robin-Day classification ${ }^{55}$ i.e. there is no electronic communication between
the metal centres and the observed separation of the $E_{1 / 2}$-values is probably due to electrostatic effects. The mixed valence complex is not a Class I compound for which the electronic interactions are so weak that only the properties of the isolated redox centres are observed and only the only one $\mathrm{E}_{1 / 2}(\mathrm{Ru} 3+/ 2+)$ potential would be anticipated. Similar results were found for $\left[\left\{\mathrm{Ru}_{3}(\mathrm{CO})_{11}\right\}_{2}\left(\mu-\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right]$, ${ }^{29}$ except that fast chemical decomposition of the reduced species occurred so the cyclic voltammograms were irreversible and any weak interactions could not be detected.

5.6 References

(1) Berau, G.; Carty, A. J.; Chieh, P. C.; Patel, H. A. J. Chem. Soc., Dalton Trans. 1973, 488.
(2) Wong, Y. S.; Jacobson, S.; Chieh, P. C.; Carty, A. J. Inorg. Chem. 1974, 13, 284.
(3) Hogarth, G.; Taylor, N. J.; Carty, A. J.; Meyer, A. Chem. Commun. 1988, 834.
(4) Gaye, M.; Demerseman, B.; Dixneuf, P. H. J. Organomet. Chem. 1992, 424, 65 .
(5) Imhof, W.; Eber, B.; Huttner, G.; Emmerich, C. J. Organomet. Chem 1993, 447, 21.
(6) Moldes, I.; de la Encarnación, E.; Ros, J;; Alaverz-Larena, A.; Piniella, J. F. J. Organomet. Chem. 1998, 566, 165.
(7) Louattani, E.; Lledós, A.; Suades, J.; Alvarez-Larena, A.; Piniella, J. F. Organometallics 1995, 14, 1053.
(8) Carty, A. J.; Paik, H. N.; Ng, T. W. J. Organomet. Chem. 1974, 74, 279.
(9) Sappa, E.; Predieri, G.; Tiripicchio, A.; Camellini, M. T. J. Organomet. Chem. 1985, 297, 103.
(10) Dickson, R. S.; Simone, T. D.; Parker, R. J.; Fallon, G. D. Organometallics 1997,16, 1531.
(11) Ara, I.; Falvello, L. R.; Fernández, S.; Fornés, J.; Lalinde, E.; Martín, A.; Moreno, M. T. Organometallics 1997, 16, 5923.
(12) Wheelock, K. S.; Nelson, J. H.; Jonassen, H. B. Inorg. Chim. Acta. 1970, 4,399 .
(13) Orama, O. J. Organomet. Chem. 1986, 314, 273.
(14) Ward, B. C.; Templeton, J. L. J. Am. Chem. Soc. 1980, 102, 1532.
(15) Powell, A. K.; Went, M. J. J. Chem. Soc., Dalton Trans. 1992, 439.
(16) Jacobson, S.; Carty, A. J.; Mathew, M.; Palenik, G. J. J. Am. Chem. Soc. 1974, 96, 4330.
(17) Carty, A. J.; Smith, W. F.; Taylor, N. J. J. Organomet. Chem. 1978, 146, C1.
(18) Hota, N. K.; Patel, H. A.; Carty, A. J.; Mathew, M.; Palenik, G. J. J. Organomet. Chem. 1971, 32, C55.
(19) Oberhauser, W.; Bachmann, C.; Stampfl, T.; Brüggeller, P. Inorg. Chim. Acta 1997, 256, 223.
(20) Louattani, E.; Suades, J.; Urtiaga, K.; Arriortua, M. I.; Solans, X. Organometallics 1996, 15, 468.
(21) Adams, C. J.; Bruce, M. I.; Skelton, B. W.; White, A. H. J. Organomet. Chem. 1993, 447, 91.
(22) Carty, A. J.; Efraty, A. Chem. Commun. 1968, 1559.
(23) Carty, A. J.; Ng, T. W. Chem. Commun. 1970, 149.
(24) Anderson, W. A.; Carty, A. J.; Efraty, A. Can. J. Chem. 1969, 47, 3361.
(25) Carty, A. J.; Efarty, A. Can. J. Chem. 1968, 46, 1598.
(26) Hogarth, G.; Norman, T. Polyhedron 1996, 15, 2859.
(27) Amoroso, A. J.; Johnson, B. F. G.; Lewis, J.; Massey, A. D.; Raithby, P. R.; Wong, W. T. J. Organomet. Chem 1992, 440, 219.
(28) Bruce, M. I.; Humphrey, P. A.; Skelton, B. W.; White, A. H. Aust. J. Chem. 1997, 50, 535.
(29) Osella, D.; Hanzlík, J. Inorg. Chim. Acta 1993, 213, 311.
(30) Bennett, M. A.; Cobley, C. J.; Rae, A. D.; Wenger, E.; Willis, A. C. Organometallics 2000, 19, 1522.
(31) Bennett, M. A.; Chung, G.; Hockless, D. C. R.; Neumann, H.; Willis, A. C. J. Chem. Soc., Dalton Trans. 1999, 3451.
(32) Bennett, M. A.; Heath, G. A.; Hockless, D. C. R.; Kovacik, I.; Willis, A. C. Organometallics 1998, 17, 5867.
(33) Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; 4th ed.; Wiley: New York, 1986.
(34) Johnson, D. K.; Rukachaisirikul, J.; Sun, Y.; Taylor, N. J.; Canty, A. J.; Carty, A. J. Inorg. Chem. 1993, 32, 5544.
(35) Jia, G.; Puddephatt, R. J.; Vittal, J. J. J. Organomet. Chem. 1993, 449, 211.
(36) Carty, A. J.; Efraty, A. Inorg. Chem. 1969, 8, 543.
(37) Mathais, R.; Mathis, M. B. E. F. J. Mol. Structure 1968, 1, 481.
(38) Bestmann, H. J.; Behl, H.; Bremer, M. Angew. Chem. Int. Ed. Engl. 1989, 28, 1219.
(39) Bart, J. C. J. Acta Crystallogr., Sect. B 1969, 25, 489.
(40) Yuan, Z.; Taylor, N. J.; Sun, Y.; Marder, T. B.; Williams, I. D.; Cheng, L. J. Organomet. Chem. 1993, 449, 27.
(41) Goldberg, S. Z.; Duesler, E. N.; Raymond, K. N. Inrog. Chem. 1972, 11, 1397.
(42) Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. Spectrometric Identification of Organic Compounds; 5th ed.; John Wiley and Sons: New York, 1991, p 306.
(43) Astruc, D. Electron Transfer and Radical Processes in Transition Metal Chemistry; VCH: New York, 1995, p 98.
(44) Bennett, M. A.; Heath, G. A.; Hockless, D. C. R.; Kovacik, I.; Willis, A. C. J. Am. Chem. Soc. 1998, 120, 932.
(45) Wallace, L. PhD Thesis, ANU, 1991.
(46) Orgel, L. E. J. Chem. Soc. 1961, 3683.
(47) Sugano, S.; Tanabe, Y.; Kamimura, H. Multiplets of Transition Metal Ions in Crystals; Academic Press: New York, 1970.
(48) Ceulemans, A.; Dendooven, M.; Vanquickenborne, L. G. Inorg. Chem. 1985, 24, 1153.
(49) de Rezende, N. M. S.; Martins, S. d. C.; Marinho, L. A.; Santos, J. A. V. d.; Tabak, M.; Perussi, J. R.; Franco, D. W. Inorg. Chim. Acta 1991, 182, 87.
(50) Mazzetto, S. E.; Rodrigues, E.; Franco, D. W. Polyhedron 1993, 12, 971.
(51) Knowles, T. S.; Howlin, B. J.; Jones, J. R.; Povey, D. C.; Amodio, C. A. Polyhedron 1993, 12, 2921.
(52) Knowles, T. S.; Howells, M. E.; Howlin, B. J.; Smith, G. W.; Amodio, C. A. Polyhedron 1994, 13, 2197.
(53) Taube, H. In Survey of Progress in Chemistry; Scott, A. F., Ed.; Academic Press: 1973; Vol. 6; p 45.
(54) Matsuzawa, H.; Ohashi, Y.; Kaizu, Y.; Kobayashi, H. Inorg. Chem. 1988, 27, 2981.
(55) Robin, M. B.; Day, P. Adv. Inorg. Chem. Radiochem. 1967, 10, 247.

Conclusions

6.1 Conclusions

All of the aims of this study have been met with varying degrees of further success, although there many areas which need to be investigated. The complex cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ has been isolated and characterised, and its structure in the solid state has been established. This result provides support for the formulation of the much more labile cis-cyclooctene analogue, which can only be made in situ. Apart from ethene or cyclooctene, various other alkenes and disubstituted alkynes probably can be coordinated to ruthenium using this methodology. Depending on the reaction conditions used, one ethene ligand may be replaced by certain monodentate ligands (L) to form complexes of the type cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{NH}_{3}\right.$, $\left.\mathrm{MeCN}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{SbPh}_{3}, \mathrm{PPr}_{3}{ }_{3}, \mathrm{PCy}_{3}\right)$. These complexes are probably formed via the complexes trans-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]$, which can only be detected or isolated in the case of $\mathrm{L}=\mathrm{NH}_{3}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$. Isolation of the kinetic products trans $-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]\left(\mathrm{L}=\mathrm{NH}_{3}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$ provides important information about the likely course of the replacement reaction of cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2} \text {-alkene }\right)_{2}\right]$ (alkene $\left.=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{8} \mathrm{H}_{14}\right)$. In the first step, alkene dissociation forms the five-coordinate, square pyramidal species $\left[R u(a c a c)_{2}\left(\eta^{2}\right.\right.$-alkene $\left.)\right]$ and ligand L then adds preferentially| to the vacant coordination site. Isomerization of trans $-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right) \mathrm{L}\right]$ to the corresponding cis-complexes also occurs with initial loss of the alkene to reform the five-coordinate species square pyramidal $\left[\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{~L}\right]$, which rearranges to a trigonal bipyramidal species; re-coordination of the alkene results in the formation of the thermodynamically favoured cis-isomer. There is spectroscopic evidence for the five-coordinate species [$\mathrm{Ru}(\mathrm{acac})_{2} \mathrm{PCy3}$], which is formed when trans-[Ru(acac $\left.)_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$ or $\operatorname{cis}-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}\right.\right.$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{PCy})$] are dissolved in THF, although the possibility that it is a sixcoordinate solvento species trans-[Ru(acac)2 $(\mathrm{PCy3})(\mathrm{THF})]$ cannot be excluded.

Since the coordinated ethene of cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PR}_{3}\right)\right]\left(\mathrm{R}=\mathrm{Pr}^{i}\right.$, Cy) is quite labile, these complexes may also prove to be useful starting materials. The complexes cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PR}_{3}\right)_{2}\right]\left(\mathrm{R}=\mathrm{Pr}^{i}, \mathrm{Cy}\right)$ are also potential starting materials as one PR_{3} ligand may be replaced by 1-alkynes or CO to form cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PR}_{3}\right)\left\{=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{R}^{\prime}\right\}\right] \quad\left(\mathrm{R}^{\prime}=\mathrm{Ph}, \mathrm{SiMe}_{3}\right)$ and trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PR}_{3}\right)(\mathrm{CO})\right]$, respectively. Disubstituted alkynes do not displace ethene from these complexes with heating, but dinitrogen reversibly displaces ethene from cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\operatorname{PPr}^{i}{ }_{3}\right)\right]$ to form the binuclear complex cis-[\{Ru(acac) $\left.\left.)_{2}\left(\operatorname{PPr}^{i}{ }_{3}\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]$.

Although the $\mathrm{Ru}(\mathrm{III})$ ion undoubtedly has a lower π-back-bonding ability than $\mathrm{Ru}(\mathrm{II}), \mathrm{Ru}(\mathrm{III})-\eta^{2}$-ethene complexes including the parent bis(ethene) complex cis-[RuIII $\left.(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$, have been detected in ca. $-50{ }^{\circ} \mathrm{C}$. The effect of the two acac ligands is to reduce the $\mathrm{Ru}^{3+/ 2+}$ oxidation potentials for the ethene complexes to between +0.4 and +1.0 V (vs $\mathrm{Ag} / \mathrm{AgCl}$) relative to $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\right]^{2+},\left[\mathrm{Ru}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]^{2+}$. These oxidised ethene complexes show no signs of isomerization by UV-Vis or EPR spectroscopy and although these species appear to be indefinitely stable at low temperatures, decomposition occurs at ambient temperatures. Despite this instability, the first $\mathrm{Ru}^{\mathrm{III}}$-alkene complex that is not stabilised by chelation, $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)\left(\mathrm{SbPh}_{3}\right)\right]\left[\mathrm{PF}_{6}\right]$, has been isolated as a deep blue solid at low temperatures. Thus, it appears that at low temperature and with a suitable choice of alkene, a range of $\mathrm{Ru}^{\mathrm{III}}$-alkene complexes should be capable of isolation.

The last aim of this work was to investigate the reactivity of the paramagnetic ruthenium(III)-alkene and -alkyne complexes with nucleophiles. Because of the instability of most the unchelated alkeneruthenium(III) complexes at room temperature and the lack of analogous alkyne complexes, studies have been restricted to the isolable complexes cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(o-\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NME}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ and cis-[Ru(acac)$)_{2}(o-$
$\left.\left.\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ originally prepared by Kovácik in this group. These react with various neutral nucleophiles, including $\mathrm{PPh}_{3}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{Et}_{2} \mathrm{HN}$ and $\mathrm{H}_{2} \mathrm{O}$, without displacement of the alkene or alkyne. The crystal structures of the pyridine and diethylamine adducts show that these nucleophiles have attacked one of the unsaturated carbon atoms with formation of a $\mathrm{Ru}-\mathrm{C} \sigma$ bond. The reasons for the preferential attack of the nucleophile with one unsaturated carbon atom over another are not understood. However, if the synthetic difficulties in the synthesis of RuII-alkyne complexes could be overcome, nucleophilic addition reactions with these oxidised species would probably present a rich area of chemistry.

Experimental

Experimental

7.1 General Procedures

All operations were carried out under an argon atmosphere, unless otherwise stated using standard Schlenk techniques. Solvents were purified by standard methods. Pentane, hexane, THF, diethyl ether, benzene and toluene were pre-dried over sodium wire and distilled from sodium/benzophenone/tetraglyme under nitrogen. Dichloromethane was dried over CaH_{2} and distilled under nitrogen. Chlorobenzene was washed successively with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$, aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and water, pre-dried over CaSO_{4} and distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$ under nitrogen. ${ }^{1}$ Dried solvents were stored under nitrogen or argon in Schlenk flasks fitted with Young's taps.

Zinc dust was washed successively with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$, water and THF immediately before use. Liquid zinc amalgam (2-3\% Zn), ${ }^{2}\left[\mathrm{Ru}(\mathrm{acac})_{3}\right],{ }^{3-6}$ $\left[\mathrm{Cp}_{2} \mathrm{Fe}\right]\left[\mathrm{PF}_{6}\right],{ }^{7}$ cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)\left(\mathrm{SbPh}_{3}\right)\right]^{8}$ cis-[Ru(acac)$)_{2}(o-$ $\left.\left.\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]^{9}$ and $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(o-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]^{10}$ were prepared according to the literature methods. The (alkynyl)diphenylphosphines $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CR}\left(\mathrm{R}=\mathrm{H},{ }^{11} \mathrm{Me},{ }^{12} \mathrm{Ph}^{12}\right.$) were prepared by Dr. C. Cobley (RSC); bis(diphenylphosphino)acetylene was used obtained from Fluka and as received. Industrial grade ethene (Gas Code 090), dihydrogen (Gas Code 135) and anhydrous ammonia (Gas Code 178) were used as received from BOC Gases. CO (C.P. Grade, Gas Code 156, 99.0\% minimum purity) was also used as received from BOC Gases.

All reactions which involved ethene were carriedoutina Lab Crest medium pressure vessel (90 mm height $\times 50 \mathrm{~mm}$ width) in a well ventilated room behind a safety screen. Reactions involving CO or dihydrogen were carried out in a fumehood and behind a safety screen if the vessel was pressurised higher than 1 bar.

Nuclear magnetic resonance spectra were recorded at $20.5^{\circ} \mathrm{C}$ (unless otherwise indicated) on a Varian Gemini 300 BB or on Varian VXR 300/ $\left({ }^{1} \mathrm{H}\right.$ at $300 \mathrm{MHz},{ }^{13} \mathrm{C}$ at $75.4 \mathrm{MHz},{ }^{31} \mathrm{P}$ at 121.4 MHz$)$. Variable temperature

NMR spectra were recorded on the Varian VXR 300 instrument. The chemical shifts (δ) for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ are given in ppm referenced to the residual protons and the carbon atoms of the deuterated solvents. The ${ }^{31} \mathrm{P}$ chemical shifts are referenced to external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$. The coupling constants (J) are given in Hertz (Hz). Infrared spectra were recorded on either a Perkin-Elmer 1800 Fourier Transform Infrared Spectrophotometer or a Perkin-Elmer Spectrum One infrared spectrometer using KBr discs or 0.1 mm path length KBr cells for the mid-IR range (4000-400 cm^{-1}). Fast Atom Bombardment (FAB) mass spectra were measured on a VG ZAB2-SEQ mass spectrometer using either 3-nitrobenzyl alcohol or (3-nitrophenyl)octyl ether as the matrix. The mass spectral data are presented in the relevant chapters. Microanalyses were performed by the staff of the Australian National University Analytical Services Unit, Canberra.

Cyclic voltammetry (CV) and alternating current voltammetry (ACV) measurements were performed using a PAR-170 system, linked to a Macintosh LC630 computer via an AD Instruments MacLab interface system. A standard three-electrode configuration was used. Standard electrolyte solutions consisted of $0.5 \mathrm{M}\left[\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The working electrode was a platinum disc and the auxiliary electrode was a platinum bar. The reference electrode was a $\mathrm{Ag} / \mathrm{AgCl}$ electrode. ${ }^{13}$ Under these conditions ferrocene was oxidised at +0.55 V . Typical scan rates for CV were 50 to $500 \mathrm{mVs}^{-1}$ and $20 \mathrm{mVs}-1$ for ACV. The electrochemical vessel was a jacketted glass cell (ca. 5 mL). The electrolyte solutions were purged with N_{2} and the cell maintained under an inert atmosphere. Low-temperature measurements were performed with the jacketted glass cell connected to a Lauda RL6 cooling bath with circulating methanol. The temperature was monitored by a digital thermometer with the probe placed in the electrochemical solution. The potentials of the complexes were recorded in standard electrolyte solutions of $0.5 \mathrm{M}\left[\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at ambient temperatures unless otherwise indicated and referenced to a $\mathrm{Ag} / \mathrm{AgCl}$
electrode. The ferrocene couple was recorded under these non-standard conditions to assess electrochemical reversibility.

The electronic spectra in the range $6000-45000 \mathrm{~cm}^{-1}$ were collected from a cryogenically controlled, optically transparent thin-layer electrode (OTTLE) cell placed in the beam of either a Perkin-Elmer $\lambda 9$ or a Cary 5E UV-Vis-NIR spectrophotometer, as described previously. ${ }^{13}$ The sample solution was prepared and transferred into the sample cell in an Argon-filled M-BRAUN Labmaster 130 dry-box. The electrolysis was carried out at a potential typically 300 mV past the relevant $\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$ value, and continued until the spectrum ceased to change and the current decayed to a constant minimum. After completion, the potential was reset and the spectrum of the starting complex was regenerated. The observation of sharply defined isosbestic points and the full regeneration of the starting spectra were taken as evidence for chemical reversibility for the observed process.

Solid state reflectance spectra were collected with a Harrick Praying Mantis Diffuse Reflection Attachment installed in a Cary 5 UV-Vis-NIR spectrophotometer. The sample was diluted in either $\mathrm{MgO}, \mathrm{KCl}$ or $\left[\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{BF}_{4}\right]$.

Continuous wave X-band EPR spectra were collected by Dr. R. Webster (RSC, ANU) on a Bruker ESP 300e (with a frequency counter for accurate g-value measurements) spectrometer employing a rectangular TE102 cavity. The modulation frequency was set at $50-100 \mathrm{kHz}$, the microwave power to 2.0 mW (sufficiently low to avoid sample saturation), the modulation amplitude set at 5 Gauss, the time constant to 0.33 s and the sweep time 330 s . The temperature was lowered to 4.8 K using liquid He and an Oxford Instruments cryostat. The EPR spectral data are presented in chapters 3,4 and 5 .

Raman spectra were collected by Dr. V. Otieno-Alego (University of Canberra) on a Renishaw Raman system 2000 (Renishaw Plc) configured with an external Olympus BH-2 microscope and Peltier cooled ($-70^{\circ} \mathrm{C}$.) CCD detector comprising ca. 400×600 pixels. A holographic notch filter was used as a beam splitter. The excitation source was either an air cooled 25 mW helium neon (HeNe) laser (Spectra-Physics Lasers, Inc., model 127) emitting at 632.8 nm or a Renishaw near infrared (NIR) laser diode (Renishaw Plc Transducer Systems) emitting at 780 nm . The system was set to give $3-4 \mathrm{~cm}^{-1}$ spectral resolution (determined by measuring the FWHM of the laser line by curve fitting. Typically, the laser was focussed onto the sample using a x50 microscope objective and the spectra were collected using integration times ranging between 10 and 20 seconds, with 2 to 5 accumulations.

Crystal and molecular structures of the ruthenium complexes were collected and solved by Dr A. Edwards, Dr. D. C. R. Hockless and Dr. A. C. Willis (RSC ANU Canberra). The experimental conditions and methods used are described in the appendices.

7.2.1 Preparation of cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$

Freshly activated zinc dust ($2.4 \mathrm{~g}, 36.7 \mathrm{mmol}$) was mixed with [$\left.\mathrm{Ru}(\mathrm{acac})_{3}\right](930 \mathrm{mg}, 2.34 \mathrm{mmol})$ in a medium pressure vessel which was evacuated and backfilled with ethene (1 bar) three times. Freshly distilled THF (20 mL) and ca. 12 drops of deoxygenated, distilled $\mathrm{H}_{2} \mathrm{O}$ were added to the mixture via syringe. The flask was then heated to $c a .80^{\circ} \mathrm{C}$ with magnetic stirring under 3 bar of ethene pressure (safety shield used when pressure of the vessel was higher than 1 bar). Within one hour, the colour of the solution changed from cherry-red to dark brown then finally orange.

After allowing the reaction vessel to cool to room temperature and reducing the ethene pressure (1 bar), the heterogenous reaction mixture was allowed to stand for ca. 10 minutes. The zinc dust quickly settled on the
bottom of the flask and the cloudy orange solution was carefully decanted into a Schlenk flask under an ethene atmosphere (1 bar). The solvent was removed in vacuo, leaving an orange residue. Addition of n-pentane (10 mL) resulted in an orange solution with a white colloidal suspension, presumably containing zinc(II) by-products. Filtration through a short column (ca. $5 \times 2 \mathrm{~cm}$) of neutral alumina (Activity III) under $\mathrm{C}_{2} \mathrm{H}_{4}$ (1 bar) with n-pentane and then benzene gave a clear orange solution. The solvent was removed in vacuo and the minimum amount of n-pentane (ca. 5 mL) was added to re-dissolve the residue. After 2 days at $-20^{\circ} \mathrm{C}, 500 \mathrm{mg}(60 \%)$ of the orange microcrystalline solid cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ was isolated. The solid was carefully washed with cold n-pentane. Crystals suitable for X-ray diffraction studies were obtained from the slow evaporation of the supernatant.

The orange solid appears to be stable indefinitely under an argon atmosphere at $c a .25^{\circ} \mathrm{C}$ and may also be handled for several hours in the air without any visible signs of decomposition. However, after two weeks' exposure of a sample to air a change in colour from orange to violet had occurred. The bis(ethene) complex cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ forms stable, airsensitive solutions in THF, benzene and toluene, but slowly decomposes in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Microanalysis: (Found: C, $47.06 \mathrm{H} 5.89 \% . \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Ru}$ requires $\mathrm{C}, 47.31$; H 6.24%). IR (KBr): v(acac) 1576 and $1515 \mathrm{~cm}^{-1}$. NMR ($\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$): $\delta_{\mathrm{H}}(300 \mathrm{MHz})$ $5.24[2 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}] ; 3.85-3.70\left[8 \mathrm{H}, \mathrm{m}, \mathrm{C}_{2} \underline{\mathrm{H}}_{4}\right] ; 1.86,1.82$ [6 H each, s, $\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$]; $\delta_{\mathrm{C}}(75.43 \mathrm{MHz}) 186.6,185.1$ [both s, $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; 98.0[\mathrm{~s}, \mathrm{C}(\mathrm{O}) \underline{\mathrm{CH}}] ; 78.2$ $\left[\mathrm{s}, \mathrm{C}_{2} \mathrm{H}_{4}\right] ; 27.5,26.9\left[\mathrm{~s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] . \mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right):+0.95 \mathrm{~V}\left(-45^{\circ} \mathrm{C} ; \Delta \mathrm{E}_{\mathrm{P}}=100 \mathrm{mV}\right)$.

For the following syntheses, a solution of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ was prepared immediately before as outlined above and the yield was assumed to be quantitative.

7.2.2 Preparation of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{SbPh}_{3}\right)\right]$

A solution of $\mathrm{SbPh}_{3}(412 \mathrm{mg}, 1.17 \mathrm{mmol})$ in THF (40 mL) was added dropwise to a THF solution (ca. 40 mL) of cis-[Ru(acac) $\left.\mathbf{2}_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ (prepared from $\left.500 \mathrm{mg}\left[\mathrm{Ru}(\mathrm{acac})_{3}\right], 1.26 \mathrm{mmol}\right)$ and stirred overnight at room temperature to give a brown solution. The solvent was removed in vacuo, leaving a brown residue. A yellow band was eluted first when the brown residue was chromatographed on a neutral alumina column (Activity III) with benzene or toluene. The yellow solution collected was immediately pumped to dryness to give a brownish oil. A yellow solid ($537 \mathrm{mg}, 63 \%$) that formed after stirring the brown oil in n-pentane (150 mL) for 45 minutes was isolated by filtration. An orange fraction from the chromatography was collected and discarded; a brown ring remained at the top of the column.

The ${ }^{1} \mathrm{H}$ NMR spectrum of the isolated yellow complex cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{SbPh}_{3}\right)\right]$ showed the presence of a small amount \mid of $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{SbPh}_{3}\right)\right]$, which could not be removed. The solid cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\right.\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{SbPh}_{3}\right)\right]$ appears to be very stable when exposed to air, but forms airsensitive solutions in THF, benzene and toluene.

Microanalysis: (Found: $\mathrm{C}, 53.36$; $\mathrm{H} 4.79 \% . \mathrm{C}_{30} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{RuSb}$ requires $\mathrm{C}, 52.96 ; \mathrm{H}$ 4.89%). IR (KBr): v(acac) 1568 and $1514 \mathrm{~cm}^{-1}$. NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.70-$ 7.67 [$6 \mathrm{H}, \mathrm{m}, o-\mathrm{SbC}_{6} \underline{\mathrm{H}}_{5}$]; 7.13-7.00 [9 H, m, m - and $p-\mathrm{SbC}_{6} \underline{\mathrm{H}}_{5}$]; $5.30,5.15[1 \mathrm{H}$ each, s, $\mathrm{C}(\mathrm{O}) \mathrm{CH}] ; 4.26-3.99\left[4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{2} \underline{\mathrm{H}}_{4}\right] ; 2.02,1.74,1.69,1.62[3 \mathrm{H}$ each, s, $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] . \delta_{\mathrm{C}}(75.43 \mathrm{MHz}) 188.7,186.8,185.8,185.3$ [all s, $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; 136.6,132.0$, 129.6, 128.9 [all s, $\mathrm{SbC}_{6} \mathrm{H}_{5}$]; 100.2, 98.6 [both s, $\mathrm{C}(\mathrm{O}) \underline{\mathrm{C}} \mathrm{H}$]; 57.9 [s, $\underline{\mathrm{C}}_{2} \mathrm{H}_{4}$], 28.0, 27.9, 27.7, 27.4 [all s, $\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$]. $\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right):+0.59 \mathrm{~V}\left(\right.$ ca. $\left.-50^{\circ} \mathrm{C}\right)$

A solution of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ (prepared from 360 mg [$\left.\left.\mathrm{Ru}(\mathrm{acac})_{3}\right], 0.90 \mathrm{mmol}\right)$ in THF $(20 \mathrm{~mL})$ was stirred with acetonitrile $(0.2 \mathrm{~mL}$, $4.1 \mathrm{mmol})$ at room temperature overnight and the mixture evaporated to dryness. The yellow brown solid cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{MeCN})\right]$ was isolated by filtration ($250 \mathrm{mg}, 75 \%$) after the residue had been stirred with n hexane (ca. 10 mL) for 20 minutes and filtered.

Solid cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{MeCN})\right]$ appears to be stable when stored in air for several months at room temperature and readily forms yellow solutions in THF, benzene and toluene.

Microanalysis: (Found: C, 45.39 ; H, 5.99; N, $3.43 \% \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Ru}$ requires C, 45.65; H, 5.75; N, 3.80\%). IR (KBr): v(N三C) $2262 \mathrm{~cm}^{-1} ; ~ v(a c a c) 1571$ and 1518 cm^{-1}. NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 5.50,5.29[1 \mathrm{H}$ each, $\mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}] ; 4.44-4.37[4$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{C}_{2} \mathrm{H}_{4}\right] ; 2.17,2.01,2.00,1.81$ [3 H each, $\left.\mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; 0.59\left[3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{CN}\right] . \mathrm{\delta}_{\mathrm{C}}$ (75.43 MHz) $187.8,186.8,185.8,185.3$ [all s, $\underline{\mathbf{C}}(\mathrm{O}) \mathrm{CH}_{3}$]; $99.1,99$ [both s, $\underline{\mathbf{C}} \mathrm{HC}(\mathrm{O})] ; 72.5\left[\mathrm{~s}, \underline{\mathrm{C}}_{2} \mathrm{H}_{4}\right] ; 28.2,27.9,27.7,27.3$ [all s, $\left.\mathrm{C}(\mathrm{O}) \underline{C H}_{3}\right] . \mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$: $+0.56 \mathrm{~V}\left(c a .-50^{\circ} \mathrm{C}\right)$.

7.2.4 Preparation of trans-[Ru(acac) $\mathbf{2}^{\left.\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]}$

Bubbling NH_{3} through a solution of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ (prepared from 1.254 g [Ru(acac) $\left.{ }^{2}\right], 3.15 \mathrm{mmol}$) in THF for 20 minutes formed an orange precipitate. The solvent was removed in vacuo. $670 \mathrm{mg}(62 \%)$ of trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ was isolated after the orange brown solid had been washed several times with n-hexane.

The complex trans-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ is very stable when exposed to air as a solid; the solid is insoluble in THF, benzene, toluene and n-hexane, but readily dissolves in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Microanalysis: (Found: C, $41.73 ; \mathrm{H}, 6.07 \%$. N, $4.13 ; \mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Ru}$ requires C, 41.85; H, 6.15; N, 4.07\%). IR (KBr): v(NH) $3335 \mathrm{~cm}^{-1}$; v(acac) 1568 and $1509 \mathrm{~cm}^{-}$ 1. NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta_{\mathrm{H}}(300 \mathrm{MHz}) 5.38[2 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}] ; 3.70\left[4 \mathrm{H}, \mathrm{s}, \mathrm{C}_{2} \mathrm{H}_{4}\right] ; 3.05$ $\left[3 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{3}\right] ; 1.91$ [12 H, s, $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] . \delta_{\mathrm{C}}(75.43 \mathrm{MHz}) 186.9\left[\mathrm{~s}, \underline{\mathrm{C}}(\mathrm{O}) \mathrm{CH}_{3}\right] ; 99.6$ $[\mathrm{s}, \underline{\mathrm{C}} \mathrm{HC}(\mathrm{O})] ; 72.2\left[\mathrm{~s}, \underline{\mathrm{C}}_{2} \mathrm{H}_{4}\right] ; 27.8\left[\mathrm{~s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] . \mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right):+0.37 \mathrm{~V}$.

7.2.5 Preparation of $\left.\underline{\text { cis }-[R u(a c a c})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$

Bubbling NH_{3} through a solution of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ (prepared from $607 \mathrm{mg}\left[\mathrm{Ru}(\mathrm{acac})_{3}\right], 1.52 \mathrm{mmol}$) in THF for 20 minutes results in the formation of an orange precipitate. The mixture was evaporated to dryness and the orange brown residue dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. 2 mL) and then chromatographed on a neutral alumina column (Activity III) with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. A red fraction was collected first and discarded. An orange fraction was then collected and the solvent removed in vacuo leaving a yellow residue. Stirring the residue in n-pentane $(20 \mathrm{~mL})$ precipitated the required compound as a yellow brown micro-crystalline solid ($230 \mathrm{mg}, 45 \%$). Crystals suitable for X-ray diffraction studies were obtained from the slow evaporation of the supernatant.

The yellow brown solid cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ is stable for several months when exposed to air at room temperature, and is also soluble in THF, benzene and toluene forming moderately air-sensitive yellow solutions.

Microanalysis: (Found: C, 41.76; $\mathrm{H}, 5.90 ; \mathrm{N}, 4.07 ; \mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Ru}$ requires C , $41.85 ; \mathrm{H}, 6.15 ; \mathrm{N}, 4.07$). IR (KBr): $\mathrm{v}(\mathrm{NH}) 3334 \mathrm{~cm}^{-1} ; \mathrm{v}(\mathrm{acac}) 1566$ and $1509 \mathrm{~cm}^{-1}$. NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 5.28,5.14$ [1 H each, s, C(O)CH]; 4.30-4.10[4 H, m, $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right] ; 2.35,2.18,2.02,1.97$ [3 H each, s, $\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$]; 1.52 [$3 \mathrm{H}, \mathrm{br}, \mathrm{NH}_{3}$]. $\delta_{\mathrm{C}}(75.43$ MHz) $189.1,185.6,185.5,184.0$ [all s, $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; 99.1,98.9$ [both s, $\underline{\mathrm{C}} \mathrm{HC}(\mathrm{O})$]; 65.9 [s, $\left.\underline{\mathrm{C}}_{2} \mathrm{H}_{4}\right] ; 28.1,28.0,27.7,27.4$ [all s, $\left.\mathrm{C}(\mathrm{O}) \underline{\mathrm{CH}}_{3}\right] . \mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right):+0.37 \mathrm{~V}$.

$$
\begin{aligned}
& \text { 7.2.6 }{ }^{31 P\left\{{ }^{1} H\right\} \text { NMR Studies of the reaction of one equivalent of } P R_{3}(R=P h,} \begin{aligned}
p \text {-tolyl, } P r^{i}, C y \text { and } R^{\prime}=P h, R^{\prime \prime} & \left.=M e) \text { with cis-[Ru(acac) })_{2}\left(\eta^{2} \text {-alkene }\right)_{2}\right] \text { (alkene } \\
& \left.=C_{2} H_{4}, C_{8} H_{14}\right)
\end{aligned}
\end{aligned}
$$

A typical experiment involved the preparation of fresh solutions of $\mathrm{Ru}(\mathrm{acac})_{2}$ (alkene) $)_{2}$ (alkene $=\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{8} \mathrm{H}_{14}$) in THF, of which aliquots were injected into a NMR tube under an inert atmosphere. These tubes were then sealed after the addition of a small amount of $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$. A standard solution of PR_{3} in $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{CD}_{3}$ was also prepared. The solutions were then cooled in a dry ice/acetone slush bath. After mixing the solutions, the sample were then immediately placed into a pre-cooled NMR probe ($-40^{\circ} \mathrm{C}$) and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded immediately.

7.2.7 Preparation of cis-[Ru(acac) $\left.\mathbf{2}_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}^{i_{3}}\right)\right]$

To a magnetically stirred solution of freshly prepared cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ (prepared from $\left.1.0 \mathrm{~g}\left[\mathrm{Ru}(\mathrm{acac})_{3}\right], 2.51 \mathrm{mmol}\right)$ in benzene $(40 \mathrm{~mL})$ was added $\operatorname{PPr}^{i}{ }_{3}(0.48 \mathrm{~mL}, 2.51 \mathrm{mmol})$ at room temperature. After stirring overnight, the solution had changed colour from yellow to orange. The solvent was removed in vacuo and the orange residue was redissolved in n -pentane (ca. 5 mL). The solution was cooled to $-20^{\circ} \mathrm{C}$ and a red crystalline solid formed. The supernatant liquid was carefully decanted from the solid which was washed with cold n-pentane. The volume of supernatant was reduced to obtain a second crop of the red crystalline
material. The total amount of the solid cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\operatorname{PPr}^{i}{ }_{3}\right)\right]$ isolated was 676 mg (55%). Crystals suitable for X-ray diffraction studies were obtained from the first crystallisation.

The solid red complex cis- $\left[\operatorname{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\operatorname{PPr}^{i}{ }_{3}\right)\right]$ appears to be stable indefinitely under an argon atmosphere at ca. $25^{\circ} \mathrm{C}$ and is very soluble in benzene and toluene to form yellow solutions. Exposure of these solutions to air results in the formation of a green solution.

Microanalysis: (Found: $\mathrm{C}, 51.10 \mathrm{H}, 7.61 \% . \mathrm{C}_{30} \mathrm{H}_{51} \mathrm{O}_{4} \mathrm{PRu}$ requires $\mathrm{C}, 51.73 ; \mathrm{H}$, 8.06). IR (KBr): v(acac) 1583 and $1514 \mathrm{~cm}^{-1}$. NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 5.35$, 5.30 [1 H each, $\mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}] ; 4.60-4.00\left[4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{2} \mathrm{H}_{4}\right] ; 2.45[3 \mathrm{H}, \mathrm{m} \mathrm{CHCH} 3] ; 1.94$, $1.88,1.86,1.84\left[3 \mathrm{H}\right.$ each, $\left.\mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; 1.23,1.08$ (9 H each, both dd, $\mathrm{JPH}_{\mathrm{PH}}=12 \mathrm{~Hz}$, $\left.J_{\mathrm{HH}}=7.2 \mathrm{~Hz}, \mathrm{PCHCH}_{3}\right] . \delta_{\mathrm{C}}(75.43 \mathrm{MHz}) 187.7(\mathrm{~s}), 185.5\left(\mathrm{~d}, \mathrm{JPC}_{\mathrm{PC}}=2.2 \mathrm{~Hz}\right)$, 184.7(s), 185.5(s) [$\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; 99.8,98.1$ [both s, $\left.\mathrm{C}(\mathrm{O}) \underline{\mathrm{CH}}\right] ; 69.6$ [s, $\mathrm{C}_{2} \mathrm{H}_{4}$]; 28.3(s), $28.1\left(\mathrm{~d}, \mathrm{JPC}_{\mathrm{PC}}=5.6 \mathrm{~Hz}\right), 27.5(\mathrm{~s}), 27.2(\mathrm{~s})\left[\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; 24.8\left(\mathrm{~d}, \mathrm{JPC}^{2}=19 \mathrm{~Hz}, \mathrm{PCHCH} 3\right] ;$ $19.4,19.0\left[\right.$ both $\left.\mathrm{s}, \mathrm{PCHCH}_{3}\right] . \delta_{\mathrm{P}}(121.5 \mathrm{MHz})+50.6(\mathrm{~s}) . \mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+} / 2+\right):+0.42 \mathrm{~V}(-$ $50^{\circ} \mathrm{C}$).

7.2.8 Preparation of $\left.\underline{\text { cis-[}} \mathbf{R u}(a c a c)_{2}\left(\eta^{2}-C_{2} H_{4}\right)\left(P C y_{3}\right)\right]$

A freshly prepared solution of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ (prepared from $\left.420 \mathrm{mg}\left[\mathrm{Ru}(\mathrm{acac})_{3}\right], 1.05 \mathrm{mmol}\right)$ in benzene $(40 \mathrm{~mL})$ was treated dropwise with a solution of $\mathrm{PCy}_{3}(292 \mathrm{mg}, 1.04 \mathrm{mmol})$ in benzene $(10 \mathrm{~mL})$ at room temperature and the mixture was stirred overnight. After one hour the solution had changed colour from yellow to orange. Removal of the solvent in in vacuo resulted in an orange residue which was re-dissolved in n-pentane (20 mL) with magnetic stirring. Reducing the volume of solution gave a yellow micro-crystalline solid which was washed with cold npentane. The mother liquor was reduced again in volume, cooled to $c a .-20$
${ }^{\circ} \mathrm{C}$ and allowed to stand overnight. A second crop of the yellow microcrystalline solid was obtained. Slow evaporation of the supernatant resulted in yellow crystals suitable for X-ray diffraction studies. The total yield of solid isolated was $641 \mathrm{mg}(68 \%)$.

The solid yellow complex cis-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{PCy})\right]$ appears to be stable indefinitely under an argon atmosphere at ca. $25^{\circ} \mathrm{C}$, but slowly turns green when exposed to air after 3-4 weeks. It also readily dissolves in benzene and toluene to form yellow, air-sensitive solutions. Exposure of these solutions to air gives a green solution.

Microanalysis: (Found: C, $57.78 ; \mathrm{H}, 8.11 \% . \mathrm{C}_{30} \mathrm{H}_{51} \mathrm{O}_{4} \mathrm{PRu}$ requires $\mathrm{C}, 59.29 ; \mathrm{H}$, 8.46%). IR (KBr): v(acac) 1585 and $1512 \mathrm{~cm}^{-1}$. NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 5.40$, 5.29 [1 H each, s, C(O)CH]; 4.38-3.78 [4 H, m, C2H4]; 1.98, 1.87, 1.86, 1.83 [3 H each, s, C(O)CH3$] ; 2.25-1.10\left(33 \mathrm{H}\right.$, br m, $\mathrm{C}_{6} \mathrm{H}_{11}$). $\delta_{\mathrm{C}}(75.43 \mathrm{MHz}) 187.7(\mathrm{~s}), 185.6$ $\left(\mathrm{d}, J_{\mathrm{PC}}=2.2 \mathrm{~Hz}\right), 185.0(\mathrm{~s}), 184.6(\mathrm{~s})\left[\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; 99.8,98.2$ [both $\left.\mathrm{s}, \mathrm{C}(\mathrm{O}) \underline{\mathrm{CH}}\right] ; 69.5[\mathrm{~s}$, $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right] ; 35.4\left[\mathrm{~d}, \mathrm{JPC}_{\mathrm{P}}=19 \mathrm{~Hz}, \mathrm{PCH}\left(\mathrm{CH}_{2}\right)_{5}\right] ; 28.4(\mathrm{~s}), 28.1\left(\mathrm{~d}, \mathrm{JPC}_{\mathrm{PC}}=5.6 \mathrm{~Hz}\right), 27.7(\mathrm{~s})$, 27.6(s) $\left[\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; 29.2,28.9,28.7,28.6,28.5,27.2$ (all s, $\left.\mathrm{PCH}\left(\mathrm{CH}_{2}\right)_{5}\right) . \delta \mathrm{p}(121.5$ $\mathrm{MHz})+40.0(\mathrm{~s}) . \mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right):+0.43 \mathrm{~V}\left(-50^{\circ} \mathrm{C}\right)$.

The C and H elemental analyses are in good agreement with the formula $\mathrm{C}_{28} \mathrm{H}_{47} \mathrm{O}_{4} \mathrm{PRu}$, corresponding to the loss of ethene from cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PCy}_{3}\right)\right]$. Although the compound does not appear to lose ethene at room temperature in an inert atmosphere, it is possible that ethene is lost as the temperature of the analytical oven is raised before combustion occurs. The compound appears to be spectroscopically pure.

A solution of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]$ (prepared from 800 mg [Ru(acac) ${ }_{3}$], ca. 2.0 mmol) in THF (30 mL) was cooled to $c a .<-25^{\circ} \mathrm{C}$ and $\mathrm{PPr}^{i}{ }_{3}$ ($0.78 \mathrm{~mL}, 4.08 \mathrm{mmol}$) was added via a gas-tight syringe. After stirring for one hour, a fine rust-red solid was observed. The volume of solvent was reduced in vacuo by half and cold n-hexane was cannulated into the flask. The mixture was stirred for $c a .5$ minutes and then allowed to settle. The supernatant was decanted from the solid and cold n-pentane was cannulated into the flask. The above process was repeated until supernatant was almost colourless. The rust-red solid trans-[Ru(acac) $\left.)_{2}\left(\operatorname{PPr}^{i}{ }_{3}\right)_{2}\right](0.58 \mathrm{~g}, \mathrm{ca} .45 \%)$ was isolated after filtration.

The isolated solid is stable under an inert atmosphere and at ca. -20 ${ }^{\circ} \mathrm{C}$; slow decomposition occurs when exposed to air at room temperature. The solid readily dissolves in cold toluene and isomerises to cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i}{ }_{3}\right)_{2}\right]$ at room temperature in solution. This compound has been \mid prepared independently by Werner and coworkers ${ }^{14}$ by addition of an excess of $\operatorname{PPr}^{i}{ }_{3}$ to $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{SbPr}^{i}{ }_{3}\right)_{2}\right]$ or by reduction of $\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$ with $\mathrm{Zn} / \mathrm{Hg}$ in the presence of excess $\mathrm{PPr}^{i} 3$.

Microanalysis (Found: $\mathrm{C}, 53.32 ; \mathrm{H} 8.38 \% . \mathrm{C}_{28} \mathrm{H}_{56} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Ru}$ requires $\mathrm{C}, 54.26 ; \mathrm{H}$ 8.38%). IR (KBr): v(acac) 1565 and $1507 \mathrm{~cm}^{-1}$. NMR (d_{8}-toluene $-35^{\circ} \mathrm{C}$): δ_{H} (300 MHz) $5.10[2 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}] ; 2.30\left[6 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right] ; 1.75[12 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right], 1.32\left[36 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right] . \delta_{\mathrm{C}}(75.43 \mathrm{MHz}) 184.1\left[\mathrm{~s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right]$; 100.5 [s, $\mathrm{C}(\mathrm{O}) \underline{\mathrm{CH}}] ; 27.4$ [s, $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; 24.8\left[\mathrm{br}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right] ; 20.0\left[\mathrm{br}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right]$. $\delta_{P}(121.5 \mathrm{MHz})+29.6(\mathrm{~s}) . \mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+} / 2+\right):-0.14 \mathrm{~V}\left(-45^{\circ} \mathrm{C}\right)$.

A solution of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ (prepared from 300 mg [$\mathrm{Ru}(\mathrm{acac})_{3}$], 0.75 mmol) in THF (15 mL) was stirred with PCy3 ($500 \mathrm{mg}, 1.78$ mmol) at room temperature and within approximately 30 minutes a fine brown solid had formed. \quad The mixture was stirred for another 6 hours and then allowed to stand overnight. The supernatant was carefully decanted off and the solid washed with n-pentane. 530 mg of a brown solid was isolated (82\%).

The isolated solid is air-stable and insoluble in benzene and toluene but dissolves in hot aromatic solvents. The solid appears to be partially soluble in THF at room temperature. The solid appears to decompose in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Microanalysis (Found: C, 64.23; H 9.57; P 6.93\%. $\mathrm{C}_{46} \mathrm{H}_{80} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Ru}$ requires C , 64.23; H 9.37; P 7.20\%). IR (KBr): v(acac) 1563 and $1506 \mathrm{~cm}^{-1}$. NMR ($\mathrm{d}_{8}{ }^{-}$ toluene): $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 5.3$ [2 H, s, C(O)CH]; 2.40-2.20, 2.10-1.60, 1.45-1.15 [$66 \mathrm{H}, \mathrm{br}$ m, $\left.\mathrm{PC}_{6} \underline{\mathrm{H}}_{11}\right] ; 1.94,1.82$ [6 H each, $\mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$]. $\delta_{\mathrm{C}}(75.43 \mathrm{MHz}) 186.7$, 183.5 [both s, $\underline{C}(\mathrm{O}) \mathrm{CH}_{3}$]; 100.3 [s, $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}\right] ; 38.0$ [br, $\mathrm{PCH}\left(\mathrm{CH}_{2}\right)_{5}$]; 30.2 [br, $\left.\mathrm{PCH}\left(\mathrm{CH}_{2}\right)_{5}\right] ; 29.1,27.5\left(\mathrm{~m}, \mathrm{PCH}\left(\mathrm{CH}_{2}\right)_{5}\right] ; 28.0(\mathrm{~s}), 27.7(\mathrm{~d}, \mathrm{JPC}=2.2 \mathrm{~Hz})$ $\left[\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] . \delta_{\mathrm{P}}(121.5 \mathrm{MHz})+38.5(\mathrm{vb} \mathrm{s})$.

7.2.11 Attempted reaction of cis-[Ru(acac) $\left.)_{2}\left(\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]$ with 2 equivalents of PBu_{3}

To a stirred solution of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]$ (prepared from 260 $\left.\mathrm{mg}\left[\mathrm{Ru}(\mathrm{acac})_{3}\right], 0.65 \mathrm{mmol}\right)$ in THF $(20 \mathrm{~mL}), \mathrm{PBu}_{3}(250 \mu \mathrm{~L})$ was added via syringe. After 7 days an aliquot of the solution was removed. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum showed only one singlet due to $\mathrm{PBu}^{t_{3}}$ at $\delta+62.5$, hence no reaction had taken place.

A cold solution $\left(-70{ }^{\circ} \mathrm{C}\right)$ of trans-[Ru(acac) $\left.)_{2}\left(\mathrm{PPr}^{i_{3}}\right)_{2}\right](246 \mathrm{mg}, 0.40$ mmol) in toluene (2 mL) and n-hexane (5 mL) was slowly warmed to room temperature under a CO atmosphere (1 bar). When the temperature of the solution had reached ca. $-15^{\circ} \mathrm{C}$, a yellow solution had formed. Removal of the solvent in vacuo left a yellow residue. The residue was stirred with pentane (5 mL) and the solution was reduced in volume ($c a .2 \mathrm{~mL}$). The yellow solution was cooled to $-20^{\circ} \mathrm{C}$ for two days during which a yellow solid crystallised. The solid was filtered from the solution and washed with a small amount of cold pentane (2 mL). 105 mg of the required compound was isolated was a yellow solid (52%).

It appears to be stable towards air, but after several months the solid has a green tinge. The complex is readily soluble in THF, benzene and toluene.

Microanalysis (Found: $\mathrm{C}, 49.10 ; \mathrm{H}, 7.25 ; \mathrm{P}, 6.36 \% \mathrm{C}_{20} \mathrm{H}_{35} \mathrm{O}_{5} \mathrm{PRu}$ requires C , $49.27 ; \mathrm{H}, 7.24 ; \mathrm{P}, 6.35 \%$). IR (KBr): $\mathrm{v}(\mathrm{CO}) 1931 \mathrm{~cm}^{-1} ; \mathrm{v}(\mathrm{acac}) 1566$ and $1517 \mathrm{~cm}^{-1}$. NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 5.08[2 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}] ; 2.27[3 \mathrm{H}, \mathrm{m} \mathrm{PCHCH} 3] ; 1.70$ $\left.\left[12 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; 1.23\left(18 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}}=12 \mathrm{~Hz}, \mathrm{JHH}_{\mathrm{HH}}=7.1 \mathrm{~Hz}, \mathrm{PCHCH}\right]_{3}\right] . \delta_{\mathrm{C}}(75.43$ $\mathrm{MHz}) 206.5$ [d, $\mathrm{JPC}=120 \mathrm{~Hz}, \mathrm{C} \equiv \mathrm{O}$]; 189.1 [$\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$]; 100.8 [C(O)CH]; 27.0 $\left[\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; 23.1\left[\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=20 \mathrm{~Hz}, \mathrm{PCHCH}_{3}\right] ; 19.1\left[\mathrm{PCHCH}_{3}\right] . \delta_{\mathrm{P}}(121.5 \mathrm{MHz})+18.9$ (s).

A solution of cis-[Ru(acac) $\left.)_{2}\left(\operatorname{PPr}^{i}\right)_{2}\right](197 \mathrm{mg}, 0.32 \mathrm{mmol})$ was dissolved in benzene ($c a .10 \mathrm{~mL}$) and stirred for 3 days under a CO atomsphere (3 bar) in a medium pressure vessel behind a safety shield. The reaction was followed by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy and free $\mathrm{PPr}^{\mathrm{i}}{ }_{3}$, trans-
$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i_{3}}\right)(\mathrm{CO})\right]$ and a small amount $\left.c i s-\left[\mathrm{Ru}_{(\mathrm{acac}}\right)_{2}\left(\mathrm{PPr}^{i_{3}}\right)(\mathrm{CO})\right]$ were detected.

CO (1 bar) was gently bubbled through a solution of cis-[Ru(acac) $)_{2}\left(\eta^{2}-\right.$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}^{i}\right)$] (ca. $\left.15 \mathrm{mg}, 0.03 \mathrm{mmol}\right)$ in $\mathrm{C}_{6} \mathrm{D}_{6}(0.4 \mathrm{~mL})$ for 30 minutes. The ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were checked periodically over several hours and showed that trans-[Ru(acac) $\left.)_{2}\left(\mathrm{PPr}^{i_{3}}\right)(\mathrm{CO})\right]$ was formed quantitatively.

7.2.13 Preparation of trans-[Ru(acac)2 $\left.\left(\mathrm{PC}_{3}\right)(\mathrm{CO})\right]$

A suspension of $\left[\mathrm{Ru}(\mathrm{acac})_{2}(\mathrm{PCy})_{2}\right]$ ($200 \mathrm{mg}, 0.23 \mathrm{mmol}$) was stirred in benzene (10 mL) under a CO atmosphere (1 bar) and within 30 minutes, a clear orange solution had formed; the solvent was evaporated to almost dryness. The yellow residue was stirred with pentane (5 mL) and the solution was then reduced to $c a .2 \mathrm{~mL}$ in volume. A yellow solid was filtered from the solution and washed with a small amount of pentane (2 $\mathrm{mL}) .101 \mathrm{mg}$ of trans-[Ru(acac) $\left.\left.\mathbf{2}^{(\mathrm{PCy}}\right)(\mathrm{CO})\right]$ was isolated (72%).

The yellow solid trans-[Ru(acac)2 $\left.\left.\mathbf{2 P C y}_{3}\right)(\mathrm{CO})\right]$ also appears to be stable towards air, but like trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i_{3}}\right)(\mathrm{CO})\right]$ after several months the solid has a green tinge. The complex is readily soluble in THF, benzene and toluene.

Microanalysis (Found: C, 57.08; H, 7.66; P, 4.62\%. $\mathrm{C}_{29} \mathrm{H}_{47} \mathrm{O}_{5} \mathrm{PRu}$ requires C , $57.31 ; \mathrm{H}, 7.79 ; \mathrm{P}, 5.10 \%$). IR (KBr): v(CO) $1950 \mathrm{~cm}^{-1}$; v(acac) 1572 and $1510 \mathrm{~cm}^{-1}$. NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 5.09[2 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}] ; 2.30-1.50,1.40-1.05[33 \mathrm{H}, \mathrm{br}$ $\left.\mathrm{m}, \mathrm{P}\left(\mathrm{C}_{6} \underline{\mathrm{H}}_{11}\right)_{3}\right] ; 1.73$ [12H, C(O)CH$\left.\underline{H}_{3}\right] . \delta_{\mathrm{C}}(75.43 \mathrm{MHz}) 206.8\left[\mathrm{~d}, J_{\mathrm{PC}}=120 \mathrm{~Hz}\right.$, $\mathrm{C} \equiv \mathrm{O}] ; 188.9\left[\underline{\mathrm{C}}(\mathrm{O}) \mathrm{CH}_{3}\right] ; 100.6[\mathrm{C}(\mathrm{O}) \underline{\mathrm{CH}}] ; 33.3\left[\mathrm{~d}, \mathrm{JPC}=10 \mathrm{~Hz}, \mathrm{PCH}\left(\mathrm{CH}_{2}\right)_{5}\right] ; 29.1$, $28.6\left(\mathrm{~d}, J_{\mathrm{PC}}=8.8 \mathrm{~Hz}\right), 27.1\left[\mathrm{PCH}\left(\mathrm{CH}_{2}\right)_{5}\right] ; 27.0\left[\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] . \delta_{\mathrm{P}}(121.5 \mathrm{MHz})+8.4(\mathrm{~s})$.

A solution of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{PCy} 3)\right](20 \mathrm{mg}, 0.04 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ (ca. 0.4 mL) was made up under a CO atmosphere (1 bar) overnight. The ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were checked periodically over several hours; they showed the quantitative formation of trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)(\mathrm{CO})\right]$.

7.2.14 Preparation of cis-[Ru(acac) $\left.\left.\mathbf{2 P P r}^{\left({ }^{i}\right)}\right)(\mathrm{CO})\right]$

A solution of trans-[Ru(acac)2 $\left.\left(\operatorname{PPr}^{i}{ }_{3}\right)(\mathrm{CO})\right](150 \mathrm{mg}, 0.31 \mathrm{mmol})$ was prepared in benzene (10 mL) and refluxed for 1 hour during which the colour of the solution had faded. The solvent was evaporated almost to dryness and n-pentane (ca. 2 mL) was added to the yellow residue. The light yellow solution was cooled to $-20^{\circ} \mathrm{C}$ for two days. The light yellow crystalline solid $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}_{3}{ }_{3}\right)(\mathrm{CO})\right]$ was isolated by filtration $(85 \mathrm{mg}$, 57%) and washed with cold n-pentane.

It is stable in air for several weeks and is readily soluble in aromatic solvents.

Microanalysis (Found: $\mathrm{C}, 49.20 ; \mathrm{H}, 6.90 ; \mathrm{P}, 6.03 \% \mathrm{C}_{20} \mathrm{H}_{35} \mathrm{O}_{5} \mathrm{PRu}$ requires C , $49.27 ; \mathrm{H}, 7.24 ; \mathrm{P}, 6.35 \%$. IR (KBr): $\mathrm{v}(\mathrm{CO}) 1928 \mathrm{~cm}^{-1} ; v(\mathrm{acac}) 1588,1573$ and 1516 cm^{-1}. NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 5.34,5.16[1 \mathrm{H}$ each, both s, C(O)CH]; 2.25 [3 H, m PCHCH 3]; 1.91, 1.85, 1.79, 1.71 [3 H each, all s, C(O)CH3$\left.\underline{H}_{3}\right] ; 1.25,1.13$ (9 H each, both dd, $\left.J_{\mathrm{PH}}=13 \mathrm{~Hz}, J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, \mathrm{PCHCH}_{3}\right] . \delta_{\mathrm{C}}(75.43 \mathrm{MHz}) 209.4[\mathrm{~d}$, $\left.J_{\mathrm{PC}}=20 \mathrm{~Hz}, \underline{\mathrm{C}}=\mathrm{O}\right] ; 189.1,187.8,186.6,186.0\left[\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; 100.2,99.1[\mathrm{C}(\mathrm{O}) \underline{\mathrm{CH}}] ;$ 28.0, 27.8, 27.7, $27.2\left[\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; 24.7$ [d, JPC $\left.=22 \mathrm{~Hz}, \mathrm{PCHCH}_{3}\right] ; 19.4,18.8$ $\left[\mathrm{PCHCH}_{3}\right] . \delta_{\mathrm{P}}(121.5 \mathrm{MHz})+61.5(\mathrm{~s})$.

7.2.15 Preparation of $\left.\underline{\text { cis }-[R u(a c a c)})_{2}\left(\mathrm{PCy}_{3}\right)(\mathrm{CO})\right]$

A solution of trans-[Ru(acac) $\left.)_{2}\left(\mathrm{PCy}_{3}\right)(\mathrm{CO})\right](200 \mathrm{mg}, 0.33 \mathrm{mmol})$ was prepared in benzene (10 mL) and refluxed for 1 hour during which the colour of the solution became paler. The solvent was evaporated almost to dryness and n-pentane (ca. 3 mL) was added to the yellow residue. A light yellow solid was formed after stirring the solution overnight and isolated ($123 \mathrm{mg}, 62 \%$) after filtration.

The light yellow solid cis-[$\left.\mathrm{Ru}\left(\mathrm{acac}_{2}\right)_{2}\left(\mathrm{PCy}_{3}\right)(\mathrm{CO})\right]$ stable in air for several weeks and is readily soluble in aromatic solvents.

Microanalysis (Found: C, $57.21 ; \mathrm{H}, 7.87$; P, $4.87 \% . \mathrm{C}_{29} \mathrm{H}_{47} \mathrm{O}_{5} \mathrm{PRu}$ requires C , $57.31 ; \mathrm{H}, 7.79 ; \mathrm{P}, 5.10 \%$). IR (KBr): v(CO) $1944 \mathrm{~cm}^{-1}$; v(acac) 1589, 1575 and 1520 cm^{-1}. NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 5.40,5.17$ [1H each, both s, $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}\right] ; 2.30-$ 2.10, 2.00-1.50, 1.30-1.10 [33H, br m, $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}$]; 1.98, 1.86, 1.86, 173 [3H each, all s, $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] . \delta_{\mathrm{C}}(75.43 \mathrm{MHz}) 209.6[\mathrm{~d}, \mathrm{JPC}=18 \mathrm{~Hz}, \underline{\mathrm{C}} \equiv \mathrm{O}$]; 189.0, 187.9, 186.4, $186.0\left[\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; 100.3,99.2[\mathrm{C}(\mathrm{O}) \mathrm{CH}] ; 35.1\left[\mathrm{~d}, \mathrm{JPC}_{\mathrm{PC}}=21 \mathrm{~Hz}, \mathrm{PCH}\left(\mathrm{CH}_{2}\right)_{5}\right] ; 29.5$, $29.0(\mathrm{~d}, \mathrm{JPC}=2 \mathrm{~Hz}), 28.4\left(\mathrm{~d}, \mathrm{JPC}^{2}=3 \mathrm{~Hz}\right), 28.2(\mathrm{~d}, \mathrm{JPC}=2 \mathrm{~Hz}), 27.0\left[\mathrm{PCH}\left(\mathrm{CH}_{2}\right)_{5}\right]$; $28.1,27.9,27.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=5.4 \mathrm{~Hz}\right), 27.3\left[\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] . \delta_{\mathrm{P}}(121.5 \mathrm{MHz})+52.3(\mathrm{~s})$.

7.2.16 Preparation of cis-[Ru(acac) $\left.)_{2}\left(P^{2} r^{i}\right)(=C=C(H) P h)\right]$

A sample of cis-[Ru(acac) $\left.)_{2}\left(\mathrm{PPr}^{i_{3}}\right)_{2}\right](38 \mathrm{mg}, 0.06 \mathrm{mmol})$ was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}$ (ca. 0.4 mL) and $\mathrm{PhC} \equiv \mathrm{CH}(10 \mu \mathrm{~L}, 0.09 \mathrm{mmol})$ was added via microsyringe. The reaction mixture was allowed to stand at room temperature. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum was checked periodically and showed quantitative formation of cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i}{ }_{3}\right)(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph})\right]\left[\delta\left[{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\right]+54.3\right.$ (s)] [literature value of $+53.8(\mathrm{~s})]^{14}$ after two days. No intermediates were detected during the course of the reaction.

A solution of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}^{i_{3}}\right)\right](20 \mathrm{mg}, 0.04 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ (ca. 0.4 mL) and $\mathrm{PhC} \equiv \mathrm{CH}(10 \mu \mathrm{~L}, 0.09 \mathrm{mmol})$ was added via microsyringe. The reaction mixture allowed to stand at room temperature. After two days the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum showed that cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i_{3}}\right)\{=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Ph}\}\right]$ had formed quantitatively. No intermediates were detected during the course of the reaction. This compound has been previously prepared ${ }^{14}$ by treating cis- $\left[\mathrm{Ru}\left(\mathrm{acac}_{2}\right)_{2}\left(\mathrm{PPr}_{3}{ }_{3}\right)_{2}\right]$ with $\mathrm{PhC} \equiv \mathrm{CH}$ in hot benzene.

7.2.17 Preparation of $\left.\left.\underline{\text { cis }-\left[R u(a c a c)_{2}\left(P P r i_{3}\right) \mid=C=C(H) S i M e\right.} 3\right\}\right]$

To a solution of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i}\right)_{2}\right](99 \mathrm{mg}, 0.16 \mathrm{mmol})$ in benzene (8 mL), $\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CH}$ (ca. $65 \mu \mathrm{~L}, 0.46 \mathrm{mmol}$) was added via gas-tight syringe and the reaction mixture was refluxed for 1 hour. After allowing the solution to cool to room temperature, the solvent was removed in vacuo leaving a sticky red residue. The red residue was dissolved in \mathbf{n}-hexane and after 2 weeks at $-10{ }^{\circ} \mathrm{C}, 50 \mathrm{mg}$ of the red solid cis$\left.\left.\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i}\right)^{2}\right)\left\{=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{SiCH}_{3}\right)_{3}\right\}\right]$ was isolated (56\%).

The compound is stable to air for several weeks but prolonged exposure leads to the formation of trans-[Ru(acac) $\left.)_{2}\left(\mathrm{PPr}^{i_{3}}\right)(\mathrm{CO})\right]$, probably due to reaction with oxygen. The compound is readily soluble in benzene or toluene but insoluble in methanol.

Microanalysis: (Found: C, $51.91 ; \mathrm{H}, 8.40 ; \mathrm{P}, 5.57 \% \mathrm{C}_{24} \mathrm{H}_{45} \mathrm{O}_{4} \mathrm{PRuSi}$ requires C, $51.68 ; \mathrm{H}, 8.13, \mathrm{P}, 5.55 \%$). IR (KBr): v(C=C) $1610 \mathrm{~cm}^{-1}$; v(acac) 1589 and $1519 \mathrm{~cm}^{-}$ 1. NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 5.35,5.20\left[1 \mathrm{H}\right.$ each, s, CHC(O)]; $3.67\left[1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{PH}}\right.$ $\left.=4.2 \mathrm{~Hz}, \mathrm{Ru}=\mathrm{C}=\mathrm{C}(\underline{\mathbf{H}}) \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right] ; 2.45\left[3 \mathrm{H}, \mathrm{m}, \mathrm{PCHCH}_{3}\right] ; 1.94\left[6 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right]$ 1.84, 1.79 [3 H each, s, C(O)CH3]; 1.29, 1.21 (9 H each , both dd, $\mathrm{JPH}_{\mathrm{PH}}=12.9 \mathrm{~Hz}$, $\left.J_{\mathrm{HH}}=7.4 \mathrm{~Hz}, \mathrm{PCHCH}_{3}\right] . \delta_{\mathrm{C}}(75.43 \mathrm{MHz}) 338.5\left[\mathrm{~d}, J_{\mathrm{PC}} 19.0 \mathrm{~Hz}, \mathrm{Ru}=\mathrm{C}=\mathrm{C}\right] ; 188.3$,
187.6, 186.8, 184.7 [$\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; 100.2,99.5[\mathrm{C}(\mathrm{O}) \underline{\mathrm{CH}}] ; 93.0[\mathrm{Ru}=\mathrm{C}=\mathbf{C H S i}] ; 28.6,28.5$, 28.4, $27.7\left[\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; 24.9\left(\mathrm{~d}, \mathrm{JPC}=22 \mathrm{~Hz}, \mathrm{PCHCH}_{3}\right] ; 19.7,19.4\left[\mathrm{PCHCH}_{3}\right] ; 2.3$ $\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right] ; \delta_{\mathrm{P}}(121.5 \mathrm{MHz})+56.9(\mathrm{~s})$.

7.2.18 Preparation of cis-[Ru(acac) $\mathbf{2}^{\left.\left(P^{2}{ }^{i}{ }_{3}\right)(=C=C(H) B u t)\right]}$

A solution of cis-[Ru(acac) $\left.)_{2}\left(\mathrm{PPr}^{i_{3}}\right)_{2}\right](205 \mathrm{mg}, 0.33 \mathrm{mmol})$ in benzene $(10 \mathrm{~mL})$ was refluxed in the presence of $\mathrm{Bu}{ }^{\mathrm{t}} \mathrm{C} \equiv \mathrm{CH}(41 \mu \mathrm{~L}, 0.33 \mathrm{mmol})$ for 1 hour. The solution was evaporated almost to dryness leaving a red residue. The red residue was dissolved in the minimum amount of n-hexane ($c a .1$ mL) and the resulting solution was chromatographed on neutral alumina (Activity III) with n-hexane. The red fraction eluted with n-hexane was discarded. Ether was then used to eluate the red band on the top of the column. The ether was then removed in vacuo and a small amount of nhexane was added. The solution was cooled in dry ice/ethanol and 115 mg of red crystals were collected (yield 64.2\%).

The solid cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i}{ }_{3}\right)\left(=\mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{Bu}^{t}\right)\right]$ appears to be stable to air for several weeks but prolonged exposure also leads to the formation of trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}_{3}{ }_{3}\right)(\mathrm{CO})\right]$. The red complex is readily soluble in benzene or toluene but insoluble in methanol.

Microanalysis: (Found: C, 55.08; $\mathrm{H}, 7.73 ; \mathrm{P}, 5.52 \% . \mathrm{C}_{25} \mathrm{H}_{45} \mathrm{O}_{4} \mathrm{PRu}$ requires C , 55.47; H, 8.31, P, 5.72\%). IR ($\mathrm{C}_{6} \mathrm{H}_{6}$): v(C=C) $1638 \mathrm{~cm}^{-1}$; v(acac) 1580 and 1514 $\mathrm{cm}^{-1} . \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}(300 \mathrm{MHz}) 5.35,5.18[1 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}] ; 4.11\left[1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{\mathrm{PH}}=\right.$ $\left.4.0 \mathrm{~Hz}, \mathrm{Ru}=\mathrm{C}=\mathrm{C}(\underline{\mathbf{H}}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; 2.47\left[3 \mathrm{H}, \mathrm{m}, \mathrm{PC} \underline{H C H}_{3}\right] ; 1.97,1.93,1.80,1.77$ [3 H each, all s, $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; 1.29,1.21$ (9 H each, both dd, $J_{\mathrm{PH}}=12.9 \mathrm{~Hz}, J_{\mathrm{HH}}=7.2 \mathrm{~Hz}$, $\left.\mathrm{PCHCH}_{3}\right] . \delta_{\mathrm{C}}(75.43 \mathrm{MHz}) 356.4\left[\mathrm{~d}, \mathrm{~J}_{\mathrm{PC}}=20.0 \mathrm{~Hz}, \mathrm{Ru}=\underline{\mathrm{C}}=\mathrm{C}(\mathrm{H}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; 188.3$, $187.6,186.8,184.7\left[\underline{C}(\mathrm{O}) \mathrm{CH}_{3}\right], 121.2\left[=\mathrm{C}=\mathbf{C}(\mathrm{H}) \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right] ; 99.7,98.8[\mathrm{C}(\mathrm{O}) \mathrm{CH}] ; 33.1$

7.2.19 Attempted reaction of $\mathrm{HC} \equiv \mathrm{CCO}_{2} \mathrm{Me}$ with cis-[Ru(acac) $\left.)_{2}\left(\mathrm{PPr}^{i}\right)_{2}\right]$

A sample of cis-[Ru(acac) $\left.)_{2}\left(\operatorname{PPr}_{3}\right)_{2}\right](131 \mathrm{mg}, 0.21 \mathrm{mmol})$ was dissolved in benzene (5 mL) and $\mathrm{HC} \equiv \mathrm{CCO}_{2} \mathrm{CH}_{3}(19 \mu \mathrm{~L}, 0.21 \mathrm{mmol})$ was added via syringe. The mixture was then refluxed for 2 hours. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction mixture indicated that no reaction had taken place.
7.2.20 Attempted reaction of $P h C \equiv C P h$ with cis- $\left[R u(a c a c)_{2}\left(P P^{i}\right)_{2}\right]$

A mixture of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{i}{ }_{3}\right)_{2}\right](33 \mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{PhC} \equiv \mathrm{CPh}$ ($90 \mathrm{mg}, 0.50 \mathrm{mmol}$) in $\mathrm{C}_{6} \mathrm{D}_{6}$ (ca. 0.4 mL) was heated to $80^{\circ} \mathrm{C}$ for two hours. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy of the reaction mixture indicated that no reaction had taken place.

7.2.21 Attempted reaction of 3-hexyne with cis-[Ru(acac) $\left.\mathbf{2}_{\mathbf{2}}\left(\mathrm{PPr}^{i_{3}}\right)_{2}\right]$

A mixture of cis-[Ru(acac) $\left.)_{2}\left(\mathrm{PPr}^{i}\right)_{2}\right](15 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CCH}_{2} \mathrm{CH}_{3}(10 \mu \mathrm{~L}, 0.09 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}(c a .0 .4 \mathrm{~mL})$ was heated to 80 ${ }^{\circ} \mathrm{C}$ for two hours. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy of the reaction mixture indicated that no reaction had taken place.

7.2.22 Attempted reaction of 3-hexyne with cis-[Ru(acac) $\left.\mathbf{2}_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PCy}_{3}\right)\right]$

A solution of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{PCy})\right](31 \mathrm{mg}, 0.05 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ (ca. 0.4 mL) was mixed with excess 3-hexyne at room temperature. There was no detectable reaction at room temperature after one day or heating to $80^{\circ} \mathrm{C}$ for one hour by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy.
7.2.23 Attempted reaction of 2-butyne with cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}^{i}{ }_{3}\right)\right]$

A solution of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{PCy3})\right](28 \mathrm{mg}, 0.06 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ (ca. 0.4 mL) was mixed with excess 2-butyne at room temperature. There was no detectable reaction at room temperature after heating to $55{ }^{\circ} \mathrm{C}$ for three hours by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy.

7.2.24 Synthesis of cis-[Ru(acac) $\left.\mathbf{2}_{2}\left(\mathrm{PCy}_{3}\right)\left(\mathrm{SbPh}_{3}\right)\right]$

A solution of $\mathrm{SbPh}_{3}(115 \mathrm{mg}, 0.33 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$ was added dropwise to a solution of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)(\mathrm{PCy})\right](200 \mathrm{mg}, 0.33$ mmol) and the mixture was stirred overnight at room temperature. An orange residue was obtained after the solvent had been removed in vacuo. The addition of n-pentane ($c a .10 \mathrm{~mL}$) to the residue and subsequent magnetic stirring resulted in the formation of an orange micro-crystalline solid. The solid was isolated after filtration and washing with small amounts of n-hexane ($256 \mathrm{mg}, 83 \%$).

The orange solid $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)\left(\mathrm{SbPh}_{3}\right)\right]$ appears to be air-stable and is readily soluble in aromatic solvents.

Microanalysis (Found: C, 58.85; H 6.68; P 3.13\%. $\mathrm{C}_{46} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{PRuSb}$ requires C , 59.21; H 6.70; P 3.32\%). IR (KBr): v(acac) 1568 and $1510 \mathrm{~cm}^{-1}$. NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): δ_{H} (300 MHz) 7.80-7.77 [6 H, m, $o-\mathrm{SbC}_{6} \underline{H}_{5}$]; 7.13-7.06 [$9 \mathrm{H}, \mathrm{m}, m$ - and $p-\mathrm{SbC}_{6} \underline{\mathrm{H}}_{5}$]; 5.46, 5.02 [1 H each, s, $\mathrm{C}(\mathrm{O}) \mathrm{CH}$]; $2.30-1.00$ [$33 \mathrm{H}, \mathrm{br}$ m, $\mathrm{PC}_{6} \underline{\mathrm{H}}_{11}$]; 2.00, 1.93, 1.80, 1.68 [3 H each, s, $\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$]. $\delta_{\mathrm{C}}(75.43 \mathrm{MHz}) 186.8,186.2,184.7,184.0$ [$\underline{\mathrm{C}}(\mathrm{O}) \mathrm{CH}_{3}$]; 137.1 [$\mathrm{SbC}_{6} \mathrm{H}_{5}$]; 136.5 [ipso- $\mathrm{SbC}_{6} \mathrm{H}_{5}$]; 129.0, 128.4 [$\mathrm{SbC}_{6} \mathrm{H}_{5}$]; 100.4, 99.6 [C(O)CH]; $38.8\left(\mathrm{~d}, J_{\mathrm{PC}}=19 \mathrm{~Hz}, \mathrm{PCH}\left(\mathrm{CH}_{2}\right)_{5}\right] ; 29.8(\mathrm{~s}), 29.1(\mathrm{~s}), 28.6\left(\mathrm{~d}, J_{\mathrm{PC}}=4 \mathrm{~Hz}\right), 28.5(\mathrm{~d}$, $\left.J_{\mathrm{PC}}=4 \mathrm{~Hz}\right), 27.4(\mathrm{~s})\left[\mathrm{PCH}\left(\mathrm{CH}_{2}\right)_{5}\right] ; 28.0_{4}, 28.0_{0}, 27.9\left[\right.$ all s, $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] . \delta_{\mathrm{P}}(121.5$ $\mathrm{MHz})+53.5(\mathrm{~s})$.

A mixture of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{SbPh}_{3}\right)\right](18 \mathrm{mg}, 0.03 \mathrm{mmol})$ and PCy3 $(8 \mathrm{mg}, 0.03 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ was left for three days at $c a .25{ }^{\circ} \mathrm{C}$ with quantitative formation of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PCy}_{3}\right)\left(\mathrm{SbPh}_{3}\right)\right]$ by ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy.

7.2.25 Attempted reaction of CO with $\underline{\left.\text { cis-[Ru(acac) })_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{SbPh}_{3}\right)\right]}$

A solution of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{SbPh}_{3}\right)\right](170 \mathrm{mg}, 0.25 \mathrm{mmol})$ in benzene (10 mL) was placed under CO ($2-3 \mathrm{bar}$) behind a safety shield and stirred for 3 days. ${ }^{1} \mathrm{H}$ NMR spectroscopy and IR spectroscopy indicated that the replacement of $\mathrm{C}_{2} \mathrm{H}_{4}$ was not occurring at a detectable level.

7.2.26 Attempted reaction of PC_{3} with cis-[Ru(acac) $\left.\mathbf{2}_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$

A solution of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right](41 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ (ca. 0.4 mL) was treated with $\mathrm{PCy}_{3}(11 \mathrm{mg}, 0.04 \mathrm{mmol})$ and any reaction monitored by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectroscopy. There was no detectable reaction after one week at room temperature.

7.2.27 Reaction of dinitrogen with cis-[Ru(acac) $\left.\mathbf{2}_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}_{3}{ }_{3}\right)\right]$ to give cis$\left[\left(R \mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}^{\boldsymbol{i}} \mathrm{i}_{3}\right)\right)_{2}\left(\mu-\mathrm{N}_{2}\right)\right]$

Benzene (10 mL) was added to cis-[Ru(acac) $\left.2\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}^{i_{3}}\right)\right]$ (167 mg , 0.34 mmol) under an industrial grade dihydrogen $\left(\mathrm{H}_{2}\right)$ atmosphere (1 bar) in a medium pressure vessel. The dihydrogen probably contains at least 100 ppm N_{2} (specified in Grade 3.8 High Purity which contains 100 ppm). The H_{2} pressure was increased (3 bar) and the yellow solution heated to $60^{\circ} \mathrm{C}$ for two days. After allowing the solution to cool to room temperature and reducing the H_{2} pressure (1 bar), the solution was cannulated into a Schlenk
flask under a H_{2} atmosphere and the solvent removed in vacuo. A yellow residue was isolated and a small amount of n-pentane was added forming a yellow solution. The flask was then cooled to $-20^{\circ} \mathrm{C}$ for two days during which yellow crystals formed. These crystals were isolated ($149 \mathrm{mg}, 92 \%$) after filtration under an argon atmosphere and washed with small aliquots of cold n-pentane. They were identified by X-ray crystallography as the yellow binuclear dinitrogen complex cis $-\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\operatorname{PPr}^{i_{3}}\right)\right\}_{2}\left(\mu-\mathrm{N}_{2}\right)\right]$.

It may be handled for short periods in air but was stored under an argon atmosphere. It forms stable, air-sensitive solutions in benzene or toluene but decomposes in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to form an unidentified red complex. Exposure of the yellow benzene solutions to air results in a green solution which also has not been identified.

Microanalysis (Found: $\mathrm{C}, 48.07$; H 7.61 ; $\mathrm{N} 2.63 \% . \mathrm{C}_{38} \mathrm{H}_{70} \mathrm{O}_{8} \mathrm{P}_{2} \mathrm{Ru}_{2}$ requires C , 48.19; H, 7.45; N, 2.96\%). IR (KBr): v(acac) 1582 and $1512 \mathrm{~cm}^{-1}$. Raman (solid): $v(\mathrm{~N} \equiv \mathrm{~N}) 2087 \mathrm{~cm}^{-1} . \mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta_{\mathrm{H}}(300 \mathrm{MHz})$ (major isomer) $5.33,5.26[1 \mathrm{H}$ each. both s, $\mathrm{C}(\mathrm{O}) \mathrm{C} \underline{\mathrm{H}}] ; 2.47\left[6 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{\mathrm{H}} \mathrm{CH}_{3}\right] ; 2.03,1.85,1.83,1.81[3 \mathrm{H}$ each, all $\mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$]; 1.40, 1.29 [9 H each, both dd $J_{\mathrm{PC}}=12.5 \mathrm{~Hz}, J_{\mathrm{PH}}=7.5 \mathrm{~Hz}, \mathrm{PCHCH}_{3}$]; (minor isomer) $5.35,5.29[1 \mathrm{H}$ each, both s, $\mathrm{C}(\mathrm{O}) \mathrm{CH}] ; 2.47[6 \mathrm{H}, \mathrm{m}, \mathrm{PCHCH} 3] ;$ 2.08, 1.87, 1.80 [3 H each, all s, $\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$]; 1.40, 1.29 [9 H each, both dd $\mathrm{JPC}_{\mathrm{PC}}=12.5$ $\left.\mathrm{Hz}, J_{\mathrm{PH}}=7.5 \mathrm{~Hz}, \mathrm{PCHCH}_{3}\right] ; \delta_{\mathrm{C}}(75.43 \mathrm{MHz})$ major isomer $187.5,186.4,185.7$, 184.6 [all s, $\underline{C}(\mathrm{O}) \mathrm{CH}_{3}$]; 100.3, 98.5 [both s, $\mathrm{C}(\mathrm{O}) \underline{\mathrm{CH}}$]; 24.6 (d, $\mathrm{JPC}_{\mathrm{PC}}=20 \mathrm{~Hz}$, $\left.\mathrm{PCHCH}_{3}\right] ; 28.3\left(\mathrm{~d}, \mathrm{JPC}_{\mathrm{PC}}=5.6 \mathrm{~Hz}\right), 27.8(\mathrm{~s}), 27.6(\mathrm{~s}), 27.2(\mathrm{~s})\left[\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; 19.5,19.2$ [both s, PCHCH_{3}]; minor isomer $187.6,185.8,184.5$ [all s, $\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$]; 100.3, 98.6 [both s, C(O)CH]; $24.6\left(\mathrm{~d}, J_{\mathrm{PC}}=20 \mathrm{~Hz}, \mathrm{PCHCH}_{3}\right] ; 28.4\left(\mathrm{~d}, J_{\mathrm{PC}}=5.6 \mathrm{~Hz}\right), 27.6(\mathrm{~s})$, 27.2 (s), $\left[\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; 19.4,19.1$ [both s, $\left.\mathrm{PCHCH}_{3}\right] ; \delta_{\mathrm{P}}(121.5 \mathrm{MHz})$ major isomer $+60.6(\mathrm{~s}) ;$ minor isomer $+60.5(\mathrm{~s}) . \mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right):+0.30$ and $+0.90 \mathrm{~V}(c a .-50$ ${ }^{\circ} \mathrm{C}$).
7.2.28 Attempted oxidation of trans-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ with $\left[C_{2}{ }_{2}{ }^{F e}\right] P_{6}$

A solution of trans-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right](36 \mathrm{mg}, 0.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $c a .20^{\circ} \mathrm{C}$ was mixed with $\left[\mathrm{CP}_{2} \mathrm{Fe}^{2}\right] \mathrm{PF}_{6}(31 \mathrm{mg}, 0.09 \mathrm{mmol})$. Within 5 minutes, the solution had turned initally green and finally purple. The solvent was removed in vacuo and n-pentane added. An unidentified mauve solid (25 mg) was isolated. Cyclic voltammogram traces indicated that $\mathrm{Cp}_{2} \mathrm{Fe},\left[\mathrm{Ru}(\mathrm{acac})_{3}\right]$ and an unidentified compund were present.

7.2.29 Oxidation of trans-[Ru(acac) $\left.\mathbf{2}_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$ with AgPF_{6}

A solution of trans-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right](105 \mathrm{mg}, 0.31 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was cooled to $\mathrm{ca} .-70^{\circ} \mathrm{C}$ before the addition of $\mathrm{AgPF}_{6}(105$ $\mathrm{mg}, 0.41 \mathrm{mmol})$. After stirring for one hour at $-70^{\circ} \mathrm{C}$, the deep blue solution was filtered through Celite (in a dry ice chilled column) and evaporated in vacuo resulting in a blue residue. A blue solid, believed to be trans-$\left[\mathrm{Ru}^{\mathrm{III}}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]\left[\mathrm{PF}_{6}\right]$ (see Chapter 3), was isolated ($115 \mathrm{mg}, 70 \%$) after stirring the residue with cold ether for two hours. Over a period of two weeks at $-20^{\circ} \mathrm{C}$, the solid changed colour from blue to purple and finally red.

7.2.30 Oxidation of $\left.\underline{\text { cis }-[R u(a c a c)})_{2}\left(\eta^{2}-C_{8} H_{14}\right)\left(S b P h_{3}\right)\right]$ with AgPF_{6}

$\mathrm{AgPF}_{6}(165 \mathrm{mg}, 0.65 \mathrm{mmol})$ was added to a chilled solution $\left(-70{ }^{\circ} \mathrm{C}\right)$ of cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)\left(\mathrm{SbPh}_{3}\right)\right]^{8}(330 \mathrm{mg}, 0.43 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and the mixture was allowed to stir for one hour, during which a blue solution formed. The mixture was filtered through Celite (in a dry ice chilled column) and the solvent was removed in vacuo to leave a blue residue. A blue solid, believed to be cis-[RuIII $\left.(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)\left(\mathrm{SbPh}_{3}\right)\right]\left[\mathrm{PF}_{6}\right]$ (see Chapter
3), was isolated ($316 \mathrm{mg}, 80 \%$) after stirring in cold ether for two hours. The blue solid appears to be stable when exposed to air at room temperature as a solid for several months.

Microanalysis (Found: C, 46.27; H, 4.84; P, 3.33; Ag, 1.60. $\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{~F}_{6} \mathrm{O}_{4} \mathrm{P}_{3} \mathrm{Ru} .0 .1\left(\mathrm{AgPF}_{6}\right.$) requires $\mathrm{C}, 46.35 ; \mathrm{H}, 4.65 ; \mathrm{P}, 3.65 ; \mathrm{Ag}, 1.16$). IR $(\mathrm{KBr}): \mathrm{v}(\mathrm{acac}) 1552$ and $1518 \mathrm{~cm}^{-1} ; \mathrm{v}\left(\left[\mathrm{PF}_{6}\right]\right) 840 \mathrm{~cm}^{-1} . \mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right):+0.48 \mathrm{~V}(c a$. $-45{ }^{\circ} \mathrm{C}$)

7.2.31 Reaction of $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ with $\underline{\left.\text { cis-[Ru(acac) })_{2}\left(\underline{(\underline{o}}-\mathrm{PhC}=\mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]}$

To a violet solution of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(o-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$ (154 $\mathrm{mg}, 0.23 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$, neat $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(38 \mu \mathrm{~L}, 0.47 \mathrm{mmol})$ was added via microsyringe resulting in an almost immediate colour change to red. After stirring for 3 hours, the solvent was evaporated until a concentrated solution was obtained and then layered with n-hexane (ca. 10 mL) Red crystals identified as cis-(E)-[Ru $\left.{ }^{\text {III }}(\mathrm{acac})_{2}\left\{0-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}=\mathrm{C}\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right) \mathrm{Ph}\right\}\right]\left[\mathrm{PF}_{6}\right]$ by X-ray crystallography (see Chapter 3) were filtered from the colourless solution. The yield was 128 mg (74\%).

Microanalysis (Found: C, 48.20; H, 4.52; N, 3.59\%. $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{PRu}$ requires C, $50.00 ; \mathrm{H}, 4.60 ; \mathrm{N}, 3.76 \%$). IR (KBr): v(acac) 1569 and $1519 \mathrm{~cm}^{-1} ; \mathrm{v}\left(\mathrm{PF}_{6}\right) 841$ and $558 \mathrm{~cm}^{-1} . \mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right):-0.50 \mathrm{~V}$.

7.2.32 Reaction of $\mathrm{NEt}_{2} \mathrm{H}$ with $\underline{\left.\text { cis-[Ru(acac) })_{2}\left(\underline{(0}-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe} 2\right)\right]\left[\mathrm{PF}_{6}\right]}$

To a violet solution of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(o-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right](67$ $\mathrm{mg}, 0.10 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(c a .3 \mathrm{~mL})$, neat $\mathrm{NEt}_{2} \mathrm{H}(35 \mu \mathrm{~L}, 0.34 \mathrm{mmol})$ was added via micro-syringe causing an immediate colour change to deep red. After stirring for at least one hour, the solution was concentrated in vacuo
and layered with n -hexane ($c a .5 \mathrm{~mL}$). Blackish red crystalline material of the complex cis-[$\mathrm{Ru}^{\mathrm{III}}(\mathrm{acac})_{2}\left(o-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H}) \mathrm{C}\left\{=\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right] \mathrm{Ph}\right]\left[\mathrm{PF}_{6}\right]$ was isolated by filtration ($39 \mathrm{mg}, 48 \%$).

An acceptable analysis was not obtained, carbon and hydrogen percentages being consistently low. Possible contaminants may include $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Microanalysis (Found: $\mathrm{C}, 44.33 ; \mathrm{H}, 4.90 ; \mathrm{N}, 3.79 \% . \mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{PRu}$ requires C, $48.78 ; \mathrm{H}, 5.46 ; \mathrm{N}, 3.79 \%$). IR (KBr): v(acac) 1547 and $1518 \mathrm{~cm}^{-1} ; \mathrm{v}^{\left(\mathrm{PF}_{6}\right)} 842$ and $557 \mathrm{~cm}^{-1}$.

7.2.33 Reaction of $\mathrm{H}_{2} \mathrm{O}$ with cis-[Ru(acac) $\left.\mathbf{2}_{2}\left(\underline{o}-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$

Deoxygenated distilled water ($101 \mu \mathrm{~L}$) was added via microsyringe to a violet solution of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(o-\mathrm{PhC}_{2} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right](257 \mathrm{mg}, 0.39$ mmol) in THF (40 mL). After stirring overnight, the solution was red. The solution was concentrated in vacuo and layered with n-hexane which afforded a sticky red residue. A red crystalline solid was isolated after stirring rapidly with dry ether for 30 minutes. Red crystals of cis-[$\left.\mathrm{Ru}^{\text {III }}(\mathrm{acac})_{2}\left\{o-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{Ph}\right\}\right]\left[\mathrm{PF}_{6}\right]$ were identified by X-ray crystallography after dissolving the solid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution was carefully layered with n -hexane ($181 \mathrm{mg}, 69 \%$).

Microanalysis (Found: C, 45.21; H, 4.42; N, 2.29; P, 4.81. $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~F}_{6} \mathrm{NO}_{5} \mathrm{PRu}$ requires $\mathrm{C}, 45.68 ; \mathrm{H}, 4.57 ; \mathrm{N}, 2.05 ; \mathrm{P}, 4.53)$. IR (KBr) $\mathrm{v}(\mathrm{C}=\mathrm{O}) 1594 \mathrm{~cm}^{-1} ; v(\mathrm{acac})$ $1523 \mathrm{~cm}^{-1} ; \mathrm{v}\left(\mathrm{PF}_{6}\right) 843$ and $558 \mathrm{~cm}^{-1} . \mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)(v \mathrm{~s} \mathrm{Ag} / \mathrm{AgCl}): 0.00 \mathrm{~V}$.

7.2.34 Reaction of PPh_{3} with $\left.\underline{\text { cis-[Ru(acac) }} \mathbf{2}\left(\underline{o}-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe} 2\right)\right][\mathrm{PF} 6]$

Excess PPh_{3} ($290 \mathrm{mg}, 1.11 \mathrm{mmol}$) was added to a violet solution of cis[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(o-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right](218 \mathrm{mg}, 0.33 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ resulting in a red solution within 5 minutes. After 3 hours the solution was evaporated leaving a sticky red residue. This residue was rapidly stirred in $\mathrm{Et}_{2} \mathrm{O}$ to afford a red crystalline material (180 mg) was isolated after filtration. Crystals suitable for X -ray crystallography were not isolated. Microanalysis (Found: C, 55.67; H 4.75; N 1.58. $\mathrm{C}_{44} \mathrm{H}_{44} \mathrm{~F}_{6} \mathrm{NO}_{4} \mathrm{P}_{2} \mathrm{Ru}$ requires C , 56.96; H 4.78; $\mathrm{N} 1.51, \mathrm{C}_{44} \mathrm{H}_{44} \mathrm{~F}_{6} \mathrm{NO}_{5} \mathrm{P}_{2} \mathrm{Ru}$ requires $\mathrm{C}, 55.99$; H 4.70; N 1.48). IR (KBr): v(acac) 1567 and $1517 \mathrm{~cm}^{-1} ; v\left(\mathrm{PF}_{6}\right) 841$ and $558 \mathrm{~cm}^{-1} . \mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$ ($v \mathrm{~s}$ $\mathrm{Ag} / \mathrm{AgCl}):-0.46 \mathrm{~V}$.

7.2.35 Reaction of dry MeOH with $\underline{\text { cis- }\left[\mathrm{Ru}(a c a c)_{2}\left(\underline{o}-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}{ }_{6}\right]}$

Dry methanol (ca. 5 mL) was added via syringe to a violet solution of cis-[Ru(acac) $\left.)_{2}\left(0-\mathrm{PhC} \equiv \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right](160 \mathrm{mg}, 0.24 \mathrm{mmol})$ in THF (10 $\mathrm{mL})$. After stirring for one hour, the solution was red. The solution was concentrated in vacuo and dry ether added, from which a red crystalline solid (144 mg) was isolated after stirring rapidly for 30 minutes. Although Xray crystals were not isolated, the product is believed to be an 1:1 adduct of MeOH per ruthenium cation.

An acceptable elemental analysis could not be obtained, carbon and hydrogen percentages being consistently low.

Microanalysis (Found: $\mathrm{C}, 42.20 ; \mathrm{H}, 4.20 ; \mathrm{N}$, 2.01. $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~F}_{6} \mathrm{NO}_{5} \mathrm{PRu}$ requires C, 46.49; H, 4.77; N, 2.01). IR (KBr): v(CO) $1632 \mathrm{~cm}^{-1} ; v(\mathrm{acac}) 1564$ and 1523 $\mathrm{cm}^{-1} ; \mathrm{v}\left(\mathrm{PF}_{6}\right) 843$ and $558 \mathrm{~cm}^{-1}$.

7.2.36 Reaction of PPh_{3} with cis $-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\underline{o}-\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right]$

Excess $\mathrm{PPh}_{3}(193 \mathrm{mg}, 0.74 \mathrm{mmol})$ was added to a blue solution of cis-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(o-\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{H}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right](133 \mathrm{mg}, 0.22 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL) resulting in a red solution within 5 minutes. After 1.5 hours the solution was evaporated leaving a sticky red residue. This red residue was stirred rapidly in $\mathrm{Et}_{2} \mathrm{O}$ to afford a red crystalline solid ($156 \mathrm{mg}, 56 \%$) after filtration. Crystals suitable for X-ray crystallography were grown from a $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{n}$-hexane solution exposed to air.

This reaction was repeated several times; in all cases the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum showed the presence of $\left[\mathrm{PO}_{2} \mathrm{~F}_{2}\right]^{-}$, which may account for the poor elemental analysis of the isolated compound.

Microanalysis (Found: C, 50.63; H 4.33; N 1.31. $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~F}_{6} \mathrm{NO}_{4} \mathrm{P}_{2} \mathrm{Ru}$ requires C , 53.46; H 4.96; N 1.64). IR (KBr): $v(\mathrm{acac}) 1549$ and $1520 \mathrm{~cm}^{-1}$; $v\left(\mathrm{PF}_{6}\right) 840$ and 558 $\mathrm{cm}^{-1} . \mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)(v \mathrm{~s} \mathrm{Ag} / \mathrm{AgCl}):-0.46 \mathrm{~V}$.

Microanalysis (Found: C, 57.38; H 4.95; N 1.38; P 4.62. $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{BF}_{4} \mathrm{NO}_{4} \mathrm{PRu}$ requires C, 57.37; H 5.32; N 1.76; P 3.89). IR (KBr): v(acac) 1551 and $1516 \mathrm{~cm}^{-1}$; $v\left(\mathrm{BF}_{4}\right) 1056$ and $520 \mathrm{~cm}^{-1}$.

7.2.37 Preparation of trans-[Ru(acac) $\mathbf{2}^{\left.\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CH}\right)_{2}\right]}$

A clear solution of cis-[Ru(acac)2 $\left.\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ (prepared from 260 mg [$\left.\left.\mathrm{Ru}(\mathrm{acac})_{3}\right], 0.65 \mathrm{mmol}\right)$ in THF $(20 \mathrm{~mL})$ was stirred with $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CCH}(275$ $\mathrm{mg}, 1.31 \mathrm{mmol}$) for one hour, within 5 minutes of mixing, a fine orange precipitate had formed. An orange solid was isolated after evaporating the mixture to dryness and washing with n-hexane 3 times (ca. 10 mL). 357 mg (79%) of trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CH}\right)_{2}\right]$ was isolated after filtration and air-
dried. A small amount of the orange solid was recrystallised from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and n-pentane was vapour diffused into the solution resulting in large orange crystals.

The orange complex trans-[Ru(acac) $\left.)_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CH}\right)_{2}\right]$ is very stable towards air as a solid; the solid is insoluble in benzene, toluene, n-hexane, diethyl-ether but is readily soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ forming air-stable solutions.

Microanalysis (Found: C, 63.31; H 4.97; P $8.68 \% . \mathrm{C}_{38} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Ru}$ requires C , 63.42; H 5.04; P 8.61\%). IR (KBr): v(C三C) $2035 \mathrm{~cm}^{-1}$; v(acac) 1568 and $1511 \mathrm{~cm}^{-1}$. NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.73-7.66\left[8 \mathrm{H}, \mathrm{m}, 0-\mathrm{PC}_{6} \underline{H}_{5}\right] ; 7.36-7.26[12 \mathrm{H}, \mathrm{m}$, m - and $\left.p-\mathrm{PC}_{6} \underline{H}_{5}\right] ; 4.36\left[2 \mathrm{H}, \mathrm{s}, \mathrm{CHCH}_{3}\right] ; 3.49\left[1 \mathrm{H}, \mathrm{t}, \mathrm{JPH}_{\mathrm{H}}=2.4 \mathrm{~Hz}, \equiv \mathrm{CCH}\right] ; 1.39$ $\left[12 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; \delta_{\mathrm{C}}(75.43 \mathrm{MHz}) 185.5\left[\mathrm{~s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; 132.7[\mathrm{t}, \mathrm{JPC}=6.6 \mathrm{~Hz}, 0-$ $\mathrm{C}_{6} \mathrm{H}_{5}$]; 132.0 [$\mathrm{t}, ~ J \mathrm{PC}=20 \mathrm{~Hz}, i p s o-\mathrm{C}_{6} \mathrm{H}_{5}$]; 129.6 [s, $p-\mathrm{C}_{6} \mathrm{H}_{5}$]; 128.1 [$\mathrm{t}, J_{\mathrm{PC}}=4.5 \mathrm{~Hz}$, $\left.m-\mathrm{C}_{6} \mathrm{H}_{5}\right] ; 100.3[\mathrm{C}(\mathrm{O}) \underline{\mathrm{C}} \mathrm{H}] ; 97.7\left[\mathrm{~d}, J_{\mathrm{PC}}=4.2 \mathrm{~Hz},-\mathrm{C} \equiv \underline{\mathrm{CH}}\right] ; 79.0\left(\mathrm{t}, J_{\mathrm{PC}}=30 \mathrm{~Hz}\right.$, $-\underline{\mathrm{C}} \equiv \mathrm{CH}] ; 27.6\left[\mathrm{~s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; \delta_{\mathrm{P}}(121.5 \mathrm{MHz})+21.9(\mathrm{~s}) . \mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right):+0.16 \mathrm{~V}$.

7.2.38 Preparation of trans-[Ru(acac) $\left.\mathbf{2}_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]$

A solution of cis-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ (prepared from 260 mg $\left.\left[\mathrm{Ru}(\mathrm{acac})_{3}\right], 0.65 \mathrm{mmol}\right)$ in THF $(20 \mathrm{~mL})$ was stirred with $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CCCH}_{3}(305$ $\mathrm{mg}, 1.36 \mathrm{mmol}$) for one hour during which a fine orange precipitate formed. An orange solid was isolated after removing the solvent in vacuo and washed with n-hexane 3 times (ca. 10 mL). 482 mg of the orange solid trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CCH}_{3}\right)_{2}\right.$] was isolated (98% yield). The solid was recrystallised from the vapour diffusion of n-pentane into an orange $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution resulting in the isolation of orange crystals suitable for X -ray diffraction studies.

The orange solid trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CCH}_{3}\right)_{2}\right]$ has similar physical properties to those described for trans-[Ru(acac) $\left.)_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CH}\right)_{2}\right]$

Microanalysis (Found: C, 63.98; H 5.61; P 8.41\%. $\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Ru}$ requires C, 64.25; H 5.39; P 8.28\%). IR (KBr): v(C三C) $2198 \mathrm{~cm}^{-1}$; v(acac) 1568 and $1512 \mathrm{~cm}^{-1}$. NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.77-7.71\left[8 \mathrm{H}, \mathrm{m}, \mathrm{o}-\mathrm{PC}_{6} \mathrm{H}_{5}\right] ; 7.37-7.32[12 \mathrm{H}, \mathrm{m}$, m - and $\left.p-\mathrm{PC}_{6} \underline{\mathrm{H}}_{5}\right] ; 4.43\left[2 \mathrm{H}, \mathrm{s}, \mathrm{CHCH}_{3}\right] ; 2.20\left[6 \mathrm{H}, \mathrm{s},-\mathrm{C} \equiv \mathrm{CCH}_{3}\right] ; 1.42[12 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] . \delta_{\mathrm{C}}(75.43 \mathrm{MHz}) 185.6\left[\mathrm{~s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; 133.5\left[\mathrm{t}, \mathrm{JPC}_{\mathrm{P}}=20 \mathrm{~Hz}, i p s o-\mathrm{PC}_{6} \mathrm{H}_{5}\right.$]; 132.7 [t, JPC $\left.=6.3 \mathrm{~Hz}, o-\mathrm{PC}_{6} \mathrm{H}_{5}\right] ; 129.2\left[\mathrm{~s}, \mathrm{pPC} \underline{6}_{6}\right] ; 127.9[\mathrm{t}, \mathrm{JPC}=4.3 \mathrm{~Hz}$, $\left.m \mathrm{PC}_{6} \mathrm{H}_{5}\right] ; 107.5\left[\mathrm{~s},-\underline{\mathrm{C}} \equiv \mathrm{CCH}_{3}\right] ; 99.9[\mathrm{C}(\mathrm{O}) \mathrm{CH}] ; 72.4\left[\mathrm{t} \mathrm{JPC}=36 \mathrm{~Hz},-\mathrm{C} \equiv \mathrm{CCH}_{3}\right] ; 27.4$ $\left[\mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right], 6.0\left[\mathrm{~s},-\mathrm{C} \equiv \mathrm{CCH}_{3}\right] ; \delta_{\mathrm{P}}(121.5 \mathrm{MHz})+21.9(\mathrm{~s}) . \mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+} / 2+\right):+0.08 \mathrm{~V}$.

7.2.39 Preparation of trans-[Ru(acac) $\left.)_{2}\left(\mathrm{Ph}_{2} P C \equiv C P h\right)_{2}\right]$

A solution of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]\left(208 \mathrm{mg}\left[\mathrm{Ru}(\mathrm{acac})_{3}\right], 0.52 \mathrm{mmol}\right)$ in THF (16 ml) was stirred with $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPh}(300 \mathrm{mg}, 1.05 \mathrm{mmol})$ for one hour during which an orange solid formed. The solvent was removed in vacuo to leave an orange solid which was washed with n-pentane (ca. 20 mL) and isolated via filtration. The solid was washed a further two times with n-pentane (ca. 10 mL). The mass of the isolated material was 278 mg (61\%).

The orange solid trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPh}\right)_{2}\right]$ has similar physical properties to those described for trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CH}\right)_{2}\right]$.

Microanalysis (Found: C, 68.67; H 5.22; P 7.00\%. $\mathrm{C}_{50} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{P}_{2}$ Ru requires C , 68.88; H 5.09; P 7.10\%). IR (KBr): v(C三C) $2172 \mathrm{~cm}^{-1}$; v(acac) 1567 and $1512 \mathrm{~cm}^{-1}$. NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.84-7.30\left[30 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \underline{\mathrm{H}_{5}}\right] ; 4.50\left[2 \mathrm{H}, \mathrm{s}, \mathrm{CHCH}_{3}\right]$; $1.37\left[12 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] . \delta_{\mathrm{C}}(75.43 \mathrm{MHz}) 186.0\left[\mathrm{~s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; 132.9\left[\mathrm{t}, J_{\mathrm{PC}}=6.5 \mathrm{~Hz}\right.$, ipso- $\mathrm{PC}_{6} \mathrm{H}_{5}$]; 132.1 [s, ipso- $\left.\underline{\mathrm{C}}_{6} \mathrm{H}_{5}\right] ; 129.6$ [s, $\left.\underline{\mathrm{C}}_{6} \mathrm{H}_{5}\right] ; 129.5$ [s, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right] ; 128.8\left[\mathrm{~s}, \mathrm{C}_{6} \mathrm{H}_{5}\right]$;
$128.1\left[\mathrm{t}, \mathrm{J}_{\mathrm{PC}}=4.3 \mathrm{~Hz}, m \mathrm{PC}_{6} \mathrm{H}_{5}\right] ; 108.9[\mathrm{~m},-\underline{\mathrm{C}} \equiv \mathrm{C}-\mathrm{Ph}] ; 100.3[\mathrm{~s}, \mathrm{C}(\mathrm{O}) \underline{\mathrm{CH}}], 83.6[\mathrm{~m}$, $-\mathrm{C} \equiv \underline{\mathrm{C}}-\mathrm{Ph}] ; 27.5\left[\mathrm{~s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; \delta_{\mathrm{P}}(121.5 \mathrm{MHz})+22.1(\mathrm{~s}) . \mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right):+0.12 \mathrm{~V}$.

7.2.40 Preparation of trans- $\left[R u(a c a c)_{2}\left(P_{2} P C \equiv C P P h_{2}\right)\right]_{n}$

Solid $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}(400 \mathrm{mg}, 1.01 \mathrm{mmol})$ was added to a THF solution of $c i s-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{8} \mathrm{H}_{14}\right)_{2}\right]\left(200 \mathrm{mg}\left[\mathrm{Ru}(\mathrm{acac})_{3}\right], 0.51 \mathrm{mmol}\right)$ and the mixture was stirred overnight, during which time an orange solid formed. The solid was isolated after filtration (325 mg) and washed several times with n hexane. Free $\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}$ was detected in the supernatant by ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectroscopy but no attempt was made to determine the amount present.

The isolated solid is insoluble in THF, benzene, toluene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ and could not, therefore, be purified by recrystallization. The properties are suggestive of an oligomeric structure trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right]_{n}$.

Microanalysis (Found: C, 64.24; H 4.95. $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Ru}$ requires $\mathrm{C}, 62.33 ; \mathrm{H}$ 4.94). IR (KBr): v(acac) 1564 and $1510 \mathrm{~cm}^{-1}$.

7.2.41 Preparation of cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]$

An orange solution of trans-[$\left.\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CCH}_{3}\right)_{2}\right](232 \mathrm{mg}, 0.31$ mmol) in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}(5 \mathrm{~mL})$ was refluxed for 1 hour, during which time a colour change from orange to yellow occurred. A yellow residue was obtained after the solvent was removed in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ forming a yellow solution and n -hexane (25 mL) was carefully poured into the flask. A yellow micro-crystalline solid was obtained the following day which was filtered and washed with n-hexane (ca. 5 mL). 151 mg of the bright yellow solid cis-[Ku(acac) $\left.)_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CCH}_{3}\right)_{2}\right]$ was isolated (65\%).

It is very stable towards air and is readily soluble in benzene, toluene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ forming yellow air-stable solutions.

Microanalysis (Found: C, 64.54; H 5.43; P 8.33%. $\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Ru}$ requires C , 64.25; H 5.39; P 8.28\%). IR (KBr): v(C三C) $2200 \mathrm{~cm}^{-1}$; $v(\mathrm{acac}) 1574$ and $1514 \mathrm{~cm}^{-1}$. NMR ($\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.90-7.00\left[40 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \mathrm{H}_{5}\right] ; 7.59-7.53[4 \mathrm{H}, \mathrm{m}$, $\mathrm{C}_{6} \underline{\mathrm{H}}_{5}$]; 7.25-7.08[12 H, m, $\mathrm{C}_{6} \underline{\mathrm{H}}_{5}$]; $5.33[2 \mathrm{H}, \mathrm{s}, \mathrm{C}(\mathrm{O}) \mathrm{CH}] ; 2.07,1.32$ [6 H each, both s, $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; 2.02\left[6 \mathrm{H}, \mathrm{t}, J_{\mathrm{PH}}=1.2 \mathrm{~Hz},-\mathrm{C} \equiv \mathrm{CCH}_{3}\right] . \delta_{\mathrm{C}}(75.43 \mathrm{MHz}) 187.2$, 185.4 [both s, $\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$]; 137.5 [$\mathrm{t}, J_{\mathrm{PC}}=26 \mathrm{~Hz}$, ipso- $\mathrm{C}_{6} \mathrm{H}_{5}$]; 136.7 [$\mathrm{t}, J_{\mathrm{PC}}=22 \mathrm{~Hz}$, ipso- $\left.\underline{C}_{6} \mathrm{H}_{5}\right] ; 132.5\left[\mathrm{t}, \mathrm{JPC}_{\mathrm{PC}}=5.5 \mathrm{~Hz}, o-\mathrm{C}_{6} \mathrm{H}_{5}\right] ; 132.1\left[\mathrm{t}, J_{\mathrm{PC}}=5.5 \mathrm{~Hz}, o-\mathrm{C}_{6} \mathrm{H}_{5}\right] ; 128.7$ $\left[\mathrm{s}, p-\mathrm{C}_{6} \mathrm{H}_{5}\right] ; 127.6\left[\mathrm{t}, \mathrm{J}_{\mathrm{PC}}=5 \mathrm{~Hz}, m-\mathrm{C}_{6} \mathrm{H}_{5}\right] ; 127.2\left[\mathrm{t}, \mathrm{JPC}=5 \mathrm{~Hz}, m-\mathrm{C}_{6} \mathrm{H}_{5}\right] ; 107.9[\mathrm{t}$, $\left.J_{\mathrm{PC}}=5.5 \mathrm{~Hz},-\mathrm{C} \equiv \mathrm{CCH}_{3}\right] ; 99.5[\mathrm{~s}, \mathrm{C}(\mathrm{O}) \underline{\mathrm{CH}} \mathbf{H}$; 72.8 (a symmetrical six line multiplet, spacing between lines $17.6,38.4,6.9,37.0$ and $\left.18.7 \mathrm{~Hz},-\mathrm{C} \equiv \mathrm{CCH}_{3}\right]$; 28.6, 27.2 [both s, $\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$]; 5.8 [s, $\left.-\mathrm{C} \cong \mathrm{CCH}_{3}\right] . \delta_{\mathrm{P}}(121.5 \mathrm{MHz})+39.9$ (s). $\mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)(v s \mathrm{Ag} / \mathrm{AgCl}):+0.19 \mathrm{~V}$.

7.2.42 Preparation of $\underline{\text { cis- }}\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPh}\right)_{2}\right]$

A solution of trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPh}\right)_{2}\right](120 \mathrm{mg}, 0.14 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}(20 \mathrm{~mL})$ was refluxed for one hour during which time the colour changed from orange to yellow. The solvent was evaporated leaving a yellow residue from which a yellow solid formed after stirring with nhexane (10 mL). The solid was filtered and washed with n -hexane ($c a .5 \mathrm{~mL}$). The yield was 80 mg (67\%).

The yellow solid cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPh}\right)_{2}\right]$ has similar physical properties to those described for $\operatorname{cis}-\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CCH}_{3}\right)_{2}\right]$.

Microanalysis (Found: C, 67.74; H 5.08. $\mathrm{C}_{50} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Ru}$ requires $\mathrm{C}, 68.88 ; \mathrm{H}$ 5.09). IR (KBr): $v(\mathrm{C} \equiv \mathrm{C}) 2171 \mathrm{~cm}^{-1} ; v(\mathrm{acac}) 1574$ and $1515 \mathrm{~cm}^{-1}$. NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$:
$\delta_{\mathrm{H}}(300 \mathrm{MHz}) 7.94-7.08\left[30 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \underline{\mathrm{H}}_{5}\right], 5.23[2 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{C} \underline{\mathbf{H}}], 2.02,1.38[12 \mathrm{H}$, $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] . \delta_{\mathrm{C}}(75.43 \mathrm{MHz}) 187.3,185.4\left[\underline{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; 137.2\left[\mathrm{t}, \mathrm{JPC}_{\mathrm{PC}}=26 \mathrm{~Hz}\right.$, ipso$\left.\mathrm{C}_{6} \mathrm{H}_{5}\right] ; 136.7\left[\mathrm{t}, J_{\mathrm{PC}}=23 \mathrm{~Hz}\right.$, ipso- $\left.\underline{\mathrm{C}}_{6} \mathrm{H}_{5}\right] ; 132.5\left[\mathrm{t}, J_{\mathrm{PC}}=5.5 \mathrm{~Hz}, o-\underline{\mathrm{C}}_{6} \mathrm{H}_{5}\right] ; 132.0[\mathrm{~s}$, $\left.o-\mathrm{C}_{6} \mathrm{H}_{5}\right] ; 132.0\left[\mathrm{~s}, o-\mathrm{C}_{6} \mathrm{H}_{5}\right] ; 131.9\left[\mathrm{t}, J_{\mathrm{PC}}=5.5 \mathrm{~Hz}, o-\mathrm{C}_{6} \mathrm{H}_{5}\right] ; 129.5\left[\mathrm{~s}, o-\mathrm{C}_{6} \mathrm{H}_{5}\right] ; 128.9$ [$\mathrm{s}, p-\mathrm{C}_{6} \mathrm{H}_{5}$]; $128.8\left[\mathrm{~s}, p-\underline{\mathrm{C}}_{6} \mathrm{H}_{5}\right] ; 127.7\left(\mathrm{t}, J_{\mathrm{PC}}=5 \mathrm{~Hz}, m-\mathrm{C}_{6} \mathrm{H}_{5}\right) ; 109.09\left[\mathrm{t}, J_{\mathrm{PC}}=5 \mathrm{~Hz}\right.$, $-\mathrm{C} \equiv \underline{\mathrm{C}} \mathrm{Ph}] ; 99.5$ [s, $\mathrm{C}(\mathrm{O}) \underline{\mathrm{C}} \mathrm{H}] ; 84.3$ [a symmetrical six line multiplet, spacing between lines $18.6,34.0,7.7,34.0$ and $17.6 \mathrm{~Hz},-\mathrm{C} \equiv \mathrm{CCH}_{3}$]; 28.6, 27.2 [both s, $\left.\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] . \delta_{\mathrm{P}}(121.5 \mathrm{MHz})+40.3(\mathrm{~s}) . \mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right):+0.49 \mathrm{~V}$.

7.2.43 Preparation of cis-[\{Ru(acac) $\left.\left.\mathbf{2}_{2}\left(\mathrm{Ph}_{2} P C \equiv C P P h_{2}\right)\right\}_{2}\right]$

A suspension of the oligomeric material trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CPPh}_{2}\right)\right]_{\mathrm{n}}(157 \mathrm{mg} ; 0.11 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}(20 \mathrm{~mL})$ was heated to ca. $150{ }^{\circ} \mathrm{C}$ for 3 hours, during which time a clear yellow solution formed. After cooling the solution, the solvent was removed in vacuo leaving a yellow residue which was dissolved in a small amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and layered with n -hexane (20 mL). $63 \mathrm{mg}(40 \%)$ of the yellow cis-isomer was isolated after filtration and washed with n-hexane.

The isolated air-stable yellow solid is readily soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ and also forms yellow air-stable solutions.

Microanalysis (Found: $\mathrm{C}, 61.18 ; \mathrm{H} 4.95 \% . \mathrm{C}_{72} \mathrm{H}_{68} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{Ru}_{2}$ requires $\mathrm{C}, 62.33 ; \mathrm{H}$ 4.95%). IR (KBr): v(acac) 1573 and $1514 \mathrm{~cm}^{-1}$. Raman (solid): $\mathrm{v}(\mathrm{C} \equiv \mathrm{C}) 2131 \mathrm{~cm}^{-1}$. NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta_{\mathrm{H}}(300 \mathrm{MHz}) 8.16-8.10\left[16 \mathrm{H}, \mathrm{m}, \mathrm{C}_{6} \underline{H}_{5}\right] ; 7.25-6.99[14 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right] ; 5.02[2 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}] ; 1.65,1.45\left[12 \mathrm{H}, \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] . \delta_{\mathrm{C}}(75.43 \mathrm{MHz}) 187.4$, $184.6\left[\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right] ; 135.9\left[\mathrm{t}, J_{\mathrm{PC}}=24 \mathrm{~Hz}\right.$, ipso- $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right] ; 135.4\left[\mathrm{t}, J_{\mathrm{PC}}=5.5 \mathrm{~Hz}, o-\mathrm{C}_{6} \mathrm{H}_{5}\right]$; $133.9\left[\mathrm{t}, J_{\mathrm{PC}}=24 \mathrm{~Hz}\right.$, ipso- $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right] ; 132.0\left[\mathrm{t}, \mathrm{JPC}_{\mathrm{PC}}=5.2 \mathrm{~Hz}, o-\mathrm{C}_{6} \mathrm{H}_{5}\right] ; 129.6\left[\mathrm{~s}, p-\mathrm{C}_{6} \mathrm{H}_{5}\right] ;$ 128.6 [s, $p-\mathrm{C}_{6} \mathrm{H}_{5}$]; $127.6\left[\mathrm{t}, J_{\mathrm{PC}}=4 \mathrm{~Hz}, m-\mathrm{C}_{6} \mathrm{H}_{5}\right] ; 127.5\left[\mathrm{t}, \mathrm{JPC}=4 \mathrm{~Hz}, m-\mathrm{C}_{6} \mathrm{H}_{5}\right.$]; 104.8 [a symmetrical six line multiplet, spacing between lines 19.0, 30.8, 7.7,
27.0 and $19.2 \mathrm{~Hz},-\mathrm{C} \equiv \mathrm{CPPh}_{2}$]; 99.6 [s, $\left.\mathrm{C}(\mathrm{O}) \mathbf{C H}\right] ; 27.7,27.6$ [both s, $\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}$]. δ_{P} $(121.5 \mathrm{MHz})+43.1(\mathrm{~s}) . \mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right):+0.60$ and +0.90 V .

7.2.44 Preparation of trans-[Ru(acac) $\left.)_{2}\left(\mathrm{Ph}_{2} \mathrm{PC}=\mathrm{CH}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$

The addition of AgPF_{6} ($50 \mathrm{mg}, 0.20 \mathrm{mmol}$) to a solution of trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CH}\right)_{2}\right](100 \mathrm{mg}, 0.14 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ resulted in immediate change in colour from orange to blue-green, a grey metallic mirror forming on the flask. The solution was stirred for 30 minutes and filtered through Celite. The solvent was removed in vacuo leaving a green solid which was dissolved in a small amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and carefully layered with n-pentane. $96 \mathrm{mg}(89 \%)$ of the green crystalline solid trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CH}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ was isolated.

It is stable towards air and is insoluble in benzene and ether but is readily soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ forming air-stable green solutions. Microanalysis (Found: C, 50.52; H 4.11; P 10.40\%. $\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{~F}_{6} \mathrm{O}_{4} \mathrm{P}_{3} \mathrm{Ru} .0 .5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ requires $\mathrm{C}, 50.98$; $\mathrm{H} 4.11 ; \mathrm{P} 10.24 \%$). IR (KBr): $v(\mathrm{C} \equiv \mathrm{C}) 2059 \mathrm{~cm}^{-1} ; v(\mathrm{acac}) 1538$ and $1520 \mathrm{~cm}^{-1} ; v\left(\mathrm{PF}_{6}\right) 841 \mathrm{~cm}^{-1} . \mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right)$: +0.16 V .

7.2.45 Preparation of trans-[Ru(acac) $\left.)_{2}\left(\mathrm{Ph}_{2} \mathrm{PC}=C \mathrm{CMe}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$

The addition of AgPF_{6} ($52 \mathrm{mg}, 0.21 \mathrm{mmol}$) to an orange solution of trans-[Ru(acac) $\left.)_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CCH}_{3}\right)_{2}\right](65 \mathrm{mg}, 0.09 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ resulted in a immediate colour change to a green and a grey solid formed. The reaction was stirred for 90 minutes before filtrating through Celite and the removal of the solvent in vacuo resulted in a green residue. A small amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to dissolve the residue and layered with n pentane (ca. 5 mL). The solution was then stirred for 1 minute and the
solution allowed to stand. The green solid settled to the bottom of the flask leaving a pale orange solution. The solution was decanted off and the above procedure was repeated until the solution was colourless. The green solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. 2 mL) and n-pentane (ca. 10 mL) was carefully layered onto the green solution, which was left to stand overnight. 70 mg (90\%) of the green crystalline solid trans-[Ru(acac) $\left.)_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CCH}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ had formed with some X-ray quality green crystals.

The green crystalline solid trans- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CCH}_{3}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$ has similar physical properties to those found for trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CH}\right)_{2}\right]\left[\mathrm{PF}_{6}\right]$.

Microanalysis (Found: $\mathrm{C}, 53.61$; $\mathrm{H} 4.55 ; \mathrm{P}, 10.71 \%$). $\mathrm{C}_{40} \mathrm{H}_{40} \mathrm{~F}_{6} \mathrm{O}_{4} \mathrm{P}_{3} \mathrm{Ru}$ requires C, 53.82; H 4.52; P, 10.41\%). IR (KBr): v(CC) $2201 \mathrm{~cm}^{-1}$; v(acac) $1520 \mathrm{~cm}^{-1}$; $v\left(\left[\mathrm{PF}_{6}\right]\right) 840 \mathrm{~cm}^{-1} . \mathrm{E}_{1 / 2}\left(\mathrm{Ru}^{3+/ 2+}\right):+0.09 \mathrm{~V}$.

7.3 References

(1) Armarego, W. L. F.; Perrin, D. D. Purification of Laboratory Chemicals; 4th ed.; Butterworth Heinemann: 1996.
(2) Brauer, G. Handbook of Preparative Chemistry; Academic: New York, 1965; Vol. 2, p 1806.
(3) Gordon, J. G.; O'Connor, M. J.; Holm, R. H. Inorg. Chim. Acta 1971, 5, 381.
(4) Earley, J. E.; Base, R. N.; Berrie, B. H. Inorg. Chem. 1983, 22, 1836.
(5) Knowles, T. S.; Howlin, B. J.; Jones, J. R.; Povey, D. C.; Amodio, C. A. Polyhedron 1993, 12, 2921.
(6) Knowles, T. S.; Howells, M. E.; Howlin, B. J.; Smith, G. W.; Amodio, C. A. Polyhedron 1994, 13, 2197.
(7) Brauer, G. Handbuch der Präparativen Anorganischen Chemie; Ferdinand Enke Verlag: Stuggart, 1981, p 1845.
(8) Bennett, M. A.; Chung, G.; Hockless, D. C. R.; Neumann, H.; Willis, A. C. J. Chem. Soc., Dalton Trans. 1999, 3451.
(9) Bennett, M. A.; Heath, G. A.; Hockless, D. C. R.; Kovacik, I.; Willis, A. C. J. Am. Chem. Soc. 1998, 120, 932.
(10) Bennett, M. A.; Heath, G. A.; Hockless, D. C. R.; Kovacik, I.; Willis, A. C. Organometallics 1998, 17, 5867.
(11) Charrier, C.; Chodkiewicz, W.; Cadiot, P. Bull. Soc. Chim. Fr. 1966, 1002.
(12) Carty, A. J.; Hota, N. K.; Ng, T. W.; Patel, H. A.; O'Connor, T. J. Can. J. Chem. 1971, 49, 2706.
(13) Duff, C. M.; Heath, G. A. Inorg. Chem. 1991, 30, 2528.
(14) Grünwald, G.; Laubender, M.; Wolf, J.; Werner, H. J. Chem. Soc., Dalton Trans. 1998, 833.

Appendices

Table A.1.1: Crystallographic and refinement data for cis-[Ru(acac) $2_{2}\left(\eta^{2}-\right.$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$] at 200 K .

Crystal Data

Empirical Formula	$\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Ru}$
Formula Weight	355.40
Crystal Colour, Habit	yellow, plate
Crystal Dimensions	$0.20 \times 0.20 \times 0.10 \mathrm{~mm}$
Crystal System	triclinic
Lattice Type	Primitive
Lattice Parameters	$\mathrm{a}=7.6278(2) \AA$
	$\mathrm{b}=8.9725(4) \AA$
	$\mathrm{c}=12.5027(5) \AA$
	$\alpha=76.719(2)^{\circ}$
	$\beta=74.620(2)^{\circ}$
	$\gamma=70.659(2)^{\circ}$
Space Group	$\mathrm{V}=766.78(3) \AA \AA^{3}$
	$\mathrm{P} \overline{1}(\# 2)$
Z value	2
$\mathrm{D}_{\text {calc }}$	$1.535 \mathrm{~g} / \mathrm{cm}^{3}$
F	364.00
$\mu($ MoK $\alpha)$	$10.27 \mathrm{~cm}^{-1}$

Intensity Measurements

diffractometer
Radiation

Detector Aperture
Data Images
Detector Position
$2 \theta_{\text {max }}$
No. of Reflections Measured
Corrections

Nonius KappaCD
$\operatorname{MoK} \alpha(\lambda=0.71069 \AA)$
graphite monochromated $65 \mathrm{~mm} \times 65 \mathrm{~mm}$
$2.00^{\circ} /$ frame; $20 \mathrm{sec} /{ }^{\circ}$ 25.00 mm 55.1°
Total: 8834
Unique: $3476\left(\mathrm{R}_{\text {int }}=0.028\right)$
Lorentz-polarization
Absorption
(trans. Factors: 0.905-0.845)

Table A.1.1 (cont): Crystallographic and refinement data for $\underline{\text { cis-[Ru(acac) })_{2}\left(\eta^{2}-1 .\right.}$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$] at 200 K .

Structure Solution and Refinement

Structure Solution	Patterson Methods (DIRDIF92 PATTY)
Refinement	Full-Matrix least squares
Function Minimized	$\sum w\left(\|\mathrm{Fo}\|-\left\|\mathrm{Fc}_{\mathrm{c}}\right\|\right)^{2}$
Least Squares Weights	$w=\left[\sigma_{\mathrm{c}}^{2}(\mathrm{Fo})+0.25 \mathrm{p}^{2} \mathrm{Fo}^{2}\right]^{-1}$
p-factor	0.040
Anamalous Dispersion	All non-hydrogen atoms
No. Observations (I $>2.0 \sigma(\mathrm{I})$)	3285
No. of variables	196
Reflection/Parameter Rotation	16.76
Residuals: R; Rw	$0.025 ; 0.035$
Goodness of Fit Indicator	1.23
Max Shift/Error in Final Cycle	<0.01
Max peak in Final Diff. Map	$0.44 e^{-} / \AA^{3}$
Min peak in Final Diff Map	$-0.96 e^{-/} / \AA^{3}$

Table A.1.2: Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ at 200 K.

$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.080(1)$	$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.068(1)$
$\mathrm{Ru}(1)-\mathrm{O}(3)$	$2.061(1)$	$\mathrm{Ru}(1)-\mathrm{O}(4)$	$2.055(1)$
$\mathrm{Ru}(1)-\mathrm{C}(11)$	$2.205(2)$	$\mathrm{Ru}(1)-\mathrm{C}(12)$	$2.209(2)$
$\mathrm{Ru}(1)-\mathrm{C}(13)$	$2.212(2)$	$\mathrm{Ru}(1)-\mathrm{C}(14)$	$2.183(2)$
$\mathrm{O}(1)-\mathrm{C}(2)$	$1.270(2)$	$\mathrm{O}(2)-\mathrm{C}(4)$	$1.264(2)$
$\mathrm{O}(3)-\mathrm{C}(7)$	$1.272(3)$	$\mathrm{O}(4)-\mathrm{C}(9)$	$1.273(3)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.506(3)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.396(3)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.391(3)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.509(3)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.506(3)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.396(3)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.403(3)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.507(3)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.370(3)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.353(4)$
$\mathrm{C}(11)-\mathrm{H}(15)$	$0.90(3)$	$\mathrm{C}(11)-\mathrm{H}(16)$	$0.89(3)$
$\mathrm{C}(12)-\mathrm{H}(17)$	$0.98(2)$	$\mathrm{C}(12)-\mathrm{H}(18)$	$0.90(3)$
$\mathrm{C}(13)-\mathrm{H}(19)$	$0.88(3)$	$\mathrm{C}(13)-\mathrm{H}(20)$	$1.04(3)$
$\mathrm{C}(14)-\mathrm{H}(21)$	$0.98(3)$	$\mathrm{C}(14)-\mathrm{H}(22)$	$0.95(3)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$90.32(6)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$85.87(6)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$170.05(5)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{C}(11)$	$111.64(7)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{C}(12)$	$75.63(7)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{C}(13)$	$98.47(8)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{C}(14)$	$85.18(8)$	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$81.56(6)$

Table A.1.2 (cont): Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}\right]$ at 200 K.

$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$79.86(6)$	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{C}(11)$	$152.77(8)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{C}(12)$	160.95	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{C}(13)$	$112.26(8)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{C}(14)$	$79.25(8)$	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$94.21(6)$
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{C}(11)$	$84.11(7)$	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{C}(12)$	$84.60(8)$
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{C}(13)$	$165.35(8)$	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{C}(14)$	$158.74(9)$
$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{C}(11)$	$78.24(7)$	$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{C}(12)$	$114.29(7)$
$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{C}(13)$	$83.92(8)$	$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{C}(14)$	$91.35(8)$
$\mathrm{C}(11)-\mathrm{Ru}(1)-\mathrm{C}(12)$	$36.17(8)$	$\mathrm{C}(11)-\mathrm{Ru}(1)-\mathrm{C}(13)$	$81.28(9)$
$\mathrm{C}(11)-\mathrm{Ru}(1)-\mathrm{C}(14)$	$117.13(9)$	$\mathrm{C}(12)-\mathrm{Ru}(1)-\mathrm{C}(13)$	$83.0(1)$
$\mathrm{C}(12)-\mathrm{Ru}(1)-\mathrm{C}(14)$	$111.66(9)$	$\mathrm{C}(13)-\mathrm{Ru}(1)-\mathrm{C}(14)$	$35.85(9)$
$\mathrm{Ru}(1)-\mathrm{O}(1)-\mathrm{C}(2)$	$124.0(1)$	$\mathrm{Ru}(1)-\mathrm{O}(2)-\mathrm{C}(4)$	$124.4(1)$
$\mathrm{Ru}(1)-\mathrm{O}(3)-\mathrm{C}(7)$	$121.4(1)$	$\mathrm{Ru}(1)-\mathrm{O}(4)-\mathrm{C}(9)$	$121.6(1)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$114.9(2)$	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$126.6(2)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$118.4(2)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$127.2(2)$
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	$126.4(2)$	$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$114.5(2)$
$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(8)$	$127.2(2)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$118.5(2)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$128.3(2)$	$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{C}(8)$	$126.9(2)$
$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{C}(10)$	$114.3(2)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$118.7(2)$
$\mathrm{Ru}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$72.1(1)$	$\mathrm{Ru}(1)-\mathrm{C}(12)-\mathrm{C}(11)$	$71.7(1)$
$\mathrm{Ru}(1)-\mathrm{C}(13)-\mathrm{C}(14)$	$70.9(1)$	$\mathrm{Ru}(1)-\mathrm{C}(14)-\mathrm{C}(13)$	$73.2(1)$
$\mathrm{Ru}(1)-\mathrm{C}(11)-\mathrm{H}(15)$	$103(2)$	$\mathrm{Ru}(1)-\mathrm{C}(11)-\mathrm{H}(16)$	$108(2)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(15)$	$121(2)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(16)$	$123(2)$
$\mathrm{H}(15)-\mathrm{C}(11)-\mathrm{H}(16)$	$115(2)$	$\mathrm{Ru}(1)-\mathrm{C}(12)-\mathrm{H}(17)$	$103(1)$
$\mathrm{Ru}(1)-\mathrm{C}(12)-\mathrm{H}(18)$	$110(2)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(17)$	$121(2)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(18)$	$120(2)$	$\mathrm{H}(17)-\mathrm{C}(12)-\mathrm{H}(18)$	$117(2)$
$\mathrm{Ru}(1)-\mathrm{C}(13)-\mathrm{H}(19)$	$105(2)$	$\mathrm{Ru}(1)-\mathrm{C}(13)-\mathrm{H}(20)$	$116(1)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(19)$	$117(2)$	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(20)$	$126(2)$
$\mathrm{H}(19)-\mathrm{C}(13)-\mathrm{H}(20)$	$112(2)$	$\mathrm{Ru}(1)-\mathrm{C}(14)-\mathrm{H}(21)$	$101(2)$
$\mathrm{Ru}(1)-\mathrm{C}(14)-\mathrm{H}(22)$	$109(2)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(21)$	$123(2)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(22)$	$118(2)$	$\mathrm{H}(21)-\mathrm{C}(14)-\mathrm{H}(22)$	$117(2)$

Table A.2.1: Crystallographic and refinement data for trans-[Ru(acac) $2_{2}\left(\eta^{2}-\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]$.

Crystal Data	
Empirical Formula	$\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Ru}$
Formula Weight	406.44
Crystal Colour, Habit	orange, plate
Crystal Dimensions	$0.27 \times 0.19 \times 0.08 \mathrm{~mm}$
Crystal System	monoclinic
Lattice Type	Primitive
No. of Reflections Used for Unit Cell Determination (2θ range)	23 (109.2-109.8 ${ }^{\circ}$)
Omega Scan Peak Width at Half-height	$0.31{ }^{\circ}$
Lattice Parameters	$\begin{gathered} \mathrm{a}=8.340(1) \AA \\ \mathrm{b}=17.307(1) \AA \\ \mathrm{c}=13.026(1) \AA \end{gathered}$
	$\begin{gathered} \beta=99.324(9)^{\circ} \\ V=1855.3(3) \AA^{3} \end{gathered}$
Space Group	$\mathrm{P} 21 / \mathrm{n}$ (\#14)
Z value	4
D calc	$1.455 \mathrm{~g} / \mathrm{cm}^{3}$
F_{000}	832.00
$\mu(\operatorname{MoK} \alpha)$	$71.42 \mathrm{~cm}^{-1}$
Intensity Measurements	
diffractometer	Rigaku AFC6R
Radiation	$\operatorname{CuK} \alpha(\lambda=1.54178 \AA)$ graphite monochromated
Take-off Angle	6.0°
Detector Aperture	9 mm horizontal
	7.0 mm vertical
Crystal to Detector Distance	400 mm
Voltage, Current	$50 \mathrm{kV}, 180 \mathrm{~mA}$
Temperature	$-30.0{ }^{\circ} \mathrm{C}$
Scan Type	$\omega-2 \theta$
Scan Rate	$16.0^{\circ} / \mathrm{min}$ (in ω) (up to 4 scans)
Scan Width	$(1.20+0.30 \tan \theta)^{\circ}$
$2 \theta_{\text {max }}$	120.1°
No. of Reflections Measured	Total: 5970
Corrections	Lorentz-polarization Absorption (trans. Factors: 0.2791-0.5797)

Table A.2.1 (cont): Crystallographic and refinement data for trans-$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]$.

Structure Solution and Refinement

\(\left.\left.$$
\begin{array}{cc}\text { Structure Solution } & \begin{array}{c}\text { Direct Methods (SIR92) } \\
\text { Full-Matrix least squares }\end{array}
$$

Refinement \& \sum w(|\mathrm{Fo}|-|\mathrm{Fc}|)^{2}\end{array}\right] $$
\begin{array}{cc}\text { Function Minimized } & w=\left[\sigma_{\mathrm{c}}^{2}(\mathrm{Fo})+0.25 \mathrm{p}^{2} \mathrm{Fo}^{2}\right]^{-1}\end{array}
$$\right]\)| Least Squares Weights | All non-hydrogen atoms |
| :---: | :---: |
| p-factor | 2551 |
| Anamalous Dispersion | 227 |
| No. Observations (I>2.0 $\sigma(\mathrm{I})$) | 11.24 |
| No. of variables | $0.028 ; 0.031$ |
| Reflection/Parameter Rotation | 1.83 |
| Residuals: R; Rw | 0.02 |
| Goodness of Fit Indicator | $0.71 e^{-} / \AA^{3}$ |
| Max Shift/Error in Final Cycle | $-0.58 e^{-} / \AA^{3}$ |
| Max peak in Final Diff. Map | |

Table A.2.2: Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of trans-[Ru(acac) $2_{2}\left(\eta^{2}-\right.$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$.

$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.054(2)$	$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.046(2)$
$\mathrm{Ru}(1)-\mathrm{O}(3)$	$2.063(2)$	$\mathrm{Ru}(1)-\mathrm{O}(4)$	$2.051(2)$
$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.095(3)$	$\mathrm{Ru}(1)-\mathrm{C}(110)$	$2.171(5)$
$\mathrm{Ru}(1)-\mathrm{C}(111)$	$2.164(8)^{*}$	$\mathrm{Ru}(1)-\mathrm{C}(120)$	$2.179(5)$
$\mathrm{Ru}(1)-\mathrm{C}(121)$	$2.179(7)^{*}$	$\mathrm{O}(1)-\mathrm{C}(2)$	$1.262(4)$
$\mathrm{O}(2)-\mathrm{C}(4)$	$1.265(4)$	$\mathrm{O}(3)-\mathrm{C}(7)$	$1.270(4)$
$\mathrm{O}(4)-\mathrm{C}(9)$	$1.278(4)$	$\mathrm{N}(1)-\mathrm{C}(13)$	$1.337(4)$
$\mathrm{N}(1)-\mathrm{C}(17)$	$1.344(4)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.514(5)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.399(5)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.389(5)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.505(5)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.516(5)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.396(5)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.387(4)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.514(5)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.375(5)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.367(5)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.361(5)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.372(5)$	$\mathrm{C}(110)-\mathrm{C}(111)$	$0.73(2)$
$\mathrm{C}(110)-\mathrm{C}(120)$	$1.35(1)$	$\mathrm{C}(111)-\mathrm{C}(121)$	$1.39(3)$

[^3]Table A.2.2 (cont): Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of trans-[Ru(acac) $)_{2}\left(\eta^{2}-\right.$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$.

$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$93.58(9)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$169.72(9)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$85.65(9)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{C}(11)$	$83.96(9)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{C}(110)$	$112.8(2)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{C}(111)$	$98.0(5)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{C}(120)$	$76.7(2)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(121)$	$96.6(4)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$86.76(8)$	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$176.22(9)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$88.0(1)$	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{C}(110)$	$91.9(2)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{C}(111)$	$105.8(5)$	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{C}(120)$	$93.4(2)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{C}(121)$	$68.7(5)$	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$93.34(8)$
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$85.78(9)$	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{C}(110)$	$77.4(2)$
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{C}(111)$	$91.8(5)$	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{C}(120)$	$113.6(2)$
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{C}(121)$	$93.4(4)$	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$88.2(1)$
$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{C}(110)$	$91.8(2)$	$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{C}(111)$	$77.9(5)$
$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{C}(120)$	$90.0(2)$	$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{C}(121)$	$115.1(5)$
$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{C}(110)$	$163.2(2)$	$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{C}(111)$	$165.8(5)$
$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{C}(120)$	$160.6(2)$	$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{C}(121)$	$115.1(5)$
$\mathrm{C}(110)-\mathrm{Ru}(1)-$	$36.1(3)$	$\mathrm{C}(111)-\mathrm{Ru}(1)-$	$37.3(7)$
$\mathrm{C}(120)$		$\mathrm{C}(121)$	
$\mathrm{Ru}(1)-\mathrm{O}(1)-\mathrm{C}(2)$	$122.4(2)$	$\mathrm{Ru}(1)-\mathrm{O}(2)-\mathrm{C}(4)$	$122.2(2)$
$\mathrm{Ru}(1)-\mathrm{O}(3)-\mathrm{C}(7)$	$122.6(2)$	$\mathrm{Ru}(1)-\mathrm{O}(4)-\mathrm{C}(9)$	$122.2(2)$
$\mathrm{Ru}(1)-\mathrm{N}(1)-\mathrm{C}(13)$	$121.3(2)$	$\mathrm{Ru}(1)-\mathrm{N}(1)-\mathrm{C}(17)$	$121.7(2)$
$\mathrm{C}(13)-\mathrm{N}(1)-\mathrm{C}(17)$	$117.0(3)$	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$114.3(4)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$126.4(3)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$119.2(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$128.4(3($	$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	$126.9(4)$
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$114.3(3)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$118.8(3)$
$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(6)$	$115.2(3)$	$\mathrm{O} 93)-\mathrm{C}(7)-\mathrm{C}(8)$	$126.2(3)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$118.6(3)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$128.8(3)$
$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{C}(8)$	$126.8(3)$	$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{C}(10)$	$114.4(3)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$118.9(4)$	$\mathrm{N}(1)-\mathrm{C}(13)-\mathrm{C}(14)$	$123.1(3)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$118.9(4)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$122.5(3)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$119.7(3)$	$\mathrm{N}(1)-\mathrm{C}(17)-\mathrm{C}(16)$	$122.5(3)$
$\mathrm{Ru}(1)-\mathrm{C}(110)-$	$72.3(3)$	$\mathrm{Ru}(1)-\mathrm{C}(111)-$	$72.0(6)$
$\mathrm{C}(120)$		$\mathrm{C}(121)$	
$\mathrm{Ru}(1)-\mathrm{C}(120)-$	$71.6(3)$	$\mathrm{Ru}(1)-\mathrm{C}(121)-$	$70.7(5)$
$\mathrm{C}(110)$		$\mathrm{C}(111)$	

Table A.3.1: Crystallographic and refinement data for cis-[Ru(acac) $2_{2}\left(\eta^{2}-\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$.

Crystal Data

Empirical Formula
Formula Weight
Crystal Colour, Habit
Crystal Dimensions
Crystal System
Lattice Type
No. of Reflections Used for

Unit Cell Determination (2θ

Space Group
Z value
$\mathrm{D}_{\text {calc }}$
F000
$\mu(\operatorname{MoK} \alpha)$
range)
range)
Omega Scan Peak Width at
Half-height
Lattice Parameters
$\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Ru}$
344.37
orange, plate
$0.38 \times 0.29 \times 0.08 \mathrm{~mm}$
monoclinic
Primitive
$25\left(49.7-54.8^{\circ}\right)$

$$
\begin{gathered}
\mathrm{a}=11.869(3) \AA \\
\mathrm{b}=10.400(4) \AA \\
\mathrm{c}=12.247(2) \AA \\
\beta=203.26(1)^{\circ} \\
\mathrm{V}=1471.5(5) \AA^{3} \\
\mathrm{P} 21 / \mathrm{n}(\# 14) \\
4 \\
1.554 \mathrm{~g} / \mathrm{cm}^{3} \\
704.00 \\
10.49 \mathrm{~cm}^{-1}
\end{gathered}
$$

Intensity Measurements
diffractometer
Radiation

Take-off Angle
Detector Aperture
Crystal to Detector Distance
Voltage, Current
Temperature
Scan Type
Scan Rate
Scan Width
$2 \theta_{\max }$
No. of Reflections Measured
Corrections

Rigaku AFC6S
$\mathrm{CuK} \alpha(\lambda=0.71069 \AA)$
graphite monochromated
6.0°
7.0 mm horizontal 7.0 mm vertical 200 mm $50 \mathrm{kV}, 30 \mathrm{~mA}$ $23.0^{\circ} \mathrm{C}$ $\omega-2 \theta$ $4.0^{\circ} / \mathrm{min}$ (in ω) (up to 4 scans) $(1.20+0.34 \tan \theta)^{\circ}$ 55.1°
Total: 3755
Unique: $3589\left(\mathrm{R}_{\text {int }}=0.012\right)$
Lorentz-polarization
Absorption
(trans. Factors: 0.7525-0.9196)

Table A.3.1 (cont): Crystallographic and refinement data for $\underline{\operatorname{cis}-[R u(a c a c)})_{2}\left(\eta^{2-}\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$.

Structure Solution and Refinement

Structure Solution	Direct Methods (SIR92) Full-Matrix least squares
Refinement	$\sum w\left(\|\mathrm{Fo}\|-\left\|\mathrm{Fc}_{\mathrm{c}}\right\|\right)^{2}$
Function Minimized	$w=\left[\sigma_{\mathrm{c}}^{2}(\mathrm{Fo})+0.25 \mathrm{p}^{2} \mathrm{Fo}^{2}\right]^{-1}$
Least Squares Weights	0.0200
p-factor	All non-hydrogen atoms
Anamalous Dispersion	2713
No. Observations (I>2.0 $\sigma(\mathrm{I})$)	226
No. of variables	12.00
Reflection/Parameter Rotation	$0.021 ; 0.022$
Residuals: R; Rw	1.33
Goodness of Fit Indicator	0.08
Max Shift/Error in Final Cycle	$0.28 e^{-} / \AA^{3}$
Max peak in Final Diff. Map	$-0.30 e^{-/ / \AA^{3}}$

Table A.3.2: Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of $\underline{\text { cis- }}\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$.

$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.052(2)$	$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.066(2)$
$\mathrm{Ru}(1)-\mathrm{O}(3)$	$2.048(2)$	$\mathrm{Ru}(1)-\mathrm{O}(4)$	$2.092(2)$
$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.108(2)$	$\mathrm{Ru}(1)-\mathrm{C}(11)$	$2.147(3)$
$\mathrm{Ru}(1)-\mathrm{C}(12)$	$2.151(3)$	$\mathrm{O}(1)-\mathrm{C}(2)$	$1.275(3)$
$\mathrm{O}(2)-\mathrm{C}(4)$	$1.272(3)$	$\mathrm{O}(3)-\mathrm{C}(7)$	$1.264(3)$
$\mathrm{O}(4)-\mathrm{C}(9)$	$1.275(3)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.499(3)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.272(3)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.389(3)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.507(4)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.503(3)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.409(3)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.396(3)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.500(4)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.356(4)$
$\mathrm{C}(11)-\mathrm{H}(18)$	$0.94(3)$	$\mathrm{C}(11)-\mathrm{H}(19)$	$1.06(3)$
$\mathrm{C}(12)-\mathrm{H}(20)$	$0.96(3)$	$\mathrm{C}(12)-\mathrm{H}(21)$	$0.97(3)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$93.07(6)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$176.67(6)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$88.28(6)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$89.74(8)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{C}(11)$	$89.87(9)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{C}(12)$	$90.05(9)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$90.18(6)$	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$83.68(6)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$165.43(8)$	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{C}(11)$	$78.30(9)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{C}(12)$	$115.02(9)$	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$92.79(6)$
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$87.29(7)$	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{C}(11)$	$90.09(9)$
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{C}(12)$	$87.93(9)$	$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$82.12(8)$

Table A.3.2 (cont): Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of $\underline{c i s}-\left[R u(a c a c)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{NH}_{3}\right)\right]$.

$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{C}(11)$	$161.75(9)$	$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{C}(12)$	$161.29(9)$
$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{C}(11)$	$116.0(1)$	$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{C}(12)$	$79.2(1)$
$\mathrm{C}(11)-\mathrm{Ru}(1)-\mathrm{C}(12)$	$36.8(1)$	$\mathrm{Ru}(1)-\mathrm{O}(1)-\mathrm{C}(2)$	$122.9(1)$
$\mathrm{Ru}(1)-\mathrm{O}(2)-\mathrm{C}(4)$	$122.0(2)$	$\mathrm{Ru}(1)-\mathrm{O}(3)-\mathrm{C}(7)$	$123.7(1)$
$\mathrm{Ru}(1)-\mathrm{O}(4)-\mathrm{C}(9)$	$121.9(1)$	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$115.3(2)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$126.1(2)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$118.6(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$128.8(2)$	$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	$126.9(2)$
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$114.5(2)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$118.6(2)$
$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(6)$	$114.9(2)$	$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(8)$	$126.0(2)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$119.1(2)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$128.7(2)$
$\mathrm{O} 94)-\mathrm{C}(9)-\mathrm{C}(8)$	$126.6(2)$	$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{C}(10)$	$115.2(2)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$118.3(2)$	$\mathrm{Ru}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$71.8(2)$
$\mathrm{Ru}(1)-\mathrm{C} 12)-\mathrm{C}(11)$	$71.4(2)$	$\mathrm{Ru}(1)-\mathrm{C}(11)-\mathrm{H}(18)$	$110(2)$
$\mathrm{Ru}(1)-\mathrm{C}(11)-\mathrm{H}(19)$	$110(2)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(18)$	$121(2)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(19)$	$119(1)$	$\mathrm{H}(18)-\mathrm{C}(11)-\mathrm{H}(19)$	$115(2)$
$\mathrm{Ru}(1)-\mathrm{C}(12)-\mathrm{H}(20)$	$113(2)$	$\mathrm{Ru}(1)-\mathrm{C}(12)-\mathrm{H}(21)$	$109(2)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(20)$	$125(2)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(21)$	$118(2)$
$\mathrm{H}(20)-\mathrm{C}(12)-\mathrm{H}(21)$	$111(3)$		

Table A.4.1: Crystallographic and refinement data for $\underline{\underline{c i s}-[R u(a c a c})_{2}\left(\eta^{2-}\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{Prr}^{i}\right)\right]$.

Crystal Data

Empirical Formula	$\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{O}_{4} \mathrm{PRu}$
Formula Weight	487.58
Crystal Colour, Habit	orange, wedge
Crystal Dimensions	$0.30 \times 0.16 \times 0.10 \mathrm{~mm}$
Crystal System	triclinic
Lattice Type	Primitive
No. of Reflections Used for Unit Cell	$24\left(104.5-109.4^{\circ}\right)$
Determination (2 θ range)	
Omega Scan Peak Width at Half-height	0.33°
Lattice Parameters	$\mathrm{a}=9.747(1) \AA$
	$\mathrm{b}=15.645(2) \AA$
$\mathrm{c}=17.270(2) \AA$	
	$\alpha=66.391(7)^{\circ}$
	$\beta=81.03(1)^{\circ}$
	$\gamma=89.79(1)^{\circ}$
	$\mathrm{V}=2378.5(5) \AA^{\circ}$
P	$\mathrm{P} \overline{1}(\# 2)$
Space Group	4
Z value	$1.362 \mathrm{~g} / \mathrm{cm}^{3}$
$\mathrm{D}_{\text {calc }}$	1024.00
Fooo	$62.70 \mathrm{~cm}^{-1}$

Table A.4.1 (cont): Crystallographic and refinement data for $\underline{\text { cis-[Ru(acac) })_{2}\left(\eta^{2}-1\right.}$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}_{3} \mathrm{i}_{3}\right)$.

Intensity Measurements

diffractometer	
Radiation	$\mathrm{CuK} \alpha(\lambda=1.5178 \AA)$ graphite monochromated
Take-off Angle	6.0°
Detector Aperture	9.0 mm horizontal 7.0 mm vertical
Crystal to Detector Distance	400 mm
Voltage, Current	$50 \mathrm{kV}, 180 \mathrm{~mA}$
Temperature	$-30.0{ }^{\circ} \mathrm{C}$
Scan Type	$\omega-2 \theta$
Scan Rate	$32.0{ }^{\circ} / \mathrm{min}$ (in ω) (up to 4 scans)
Scan Width	$(1.20+0.30 \tan \theta)^{\circ}$
$2 \theta_{\text {max }}$	120.1°
No. of Reflections Measured	Unique: 7064 ($\mathrm{R}_{\text {int }}=0.045$)
Corrections	Lorentz-polarization Absorption (trans. Factors: 0.3566-0.5408) Decay (1.41% decline)
Structure Sol	d Refinement
Structure Solution	Direct Methods (SIR92)
Refinement	Full-Matrix least squares
Function Minimized	$\Sigma w(\|\mathrm{Fo}\|-\|\mathrm{Fc}\|)^{2}$
Least Squares Weights	$w=\left[\sigma_{\mathrm{c}}{ }^{2}(\mathrm{Fo})+0.25 \mathrm{p}^{2} \mathrm{Fo}^{2}\right]^{-1}$
p-factor	0.020
Anamalous Dispersion	All non-hydrogen atoms
No. Observations ($\mathrm{I} \times 2.0 \sigma$ (I)	5865
No. of variables	511
Reflection/Parameter Rotation	11.48
Residuals: R ; Rw	0.036; 0.044
Goodness of Fit Indicator	1.88
Max Shift/Error in Final Cycle	0.03
Max peak in Final Diff. Map	$0.78 e^{-/ / \AA^{3}}$
Min peak in Final Diff Map	$-0.74 e^{-} / \AA^{3}$

Table A.4.2: Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structures of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}^{i}{ }_{3}\right)\right]$ (ethene hydrogen atoms included).

$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.321(1)$	$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.079(3)$
$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.077(3)$	$\mathrm{Ru}(1)-\mathrm{O}(3)$	$2.071(3)$
$\mathrm{Ru}(1)-\mathrm{O}(4)$	$2.094(3)$	$\mathrm{Ru}(1)-\mathrm{C}(11)$	$2.172(5)$
$\mathrm{Ru}(1)-\mathrm{C}(12)$	$2.181(5)$	$\mathrm{Ru}(2)-\mathrm{P}(2)$	$2.322(1)$
$\mathrm{Ru}(2)-\mathrm{O}(5)$	$2.082(3)$	$\mathrm{Ru}(2)-\mathrm{O}(6)$	$2.079(3)$
$\mathrm{Ru}(2)-\mathrm{O}(7)$	$2.064(3)$	$\mathrm{Ru}(2)-\mathrm{O}(8)$	$2.089(3)$
$\mathrm{Ru}(2)-\mathrm{C}(32)$	$2.180(6)$	$\mathrm{Ru}(2)-\mathrm{C}(33)$	$2.185(5)$
$\mathrm{P}(1)-\mathrm{C}(13)$	$1.864(5)$	$\mathrm{P}(1)-\mathrm{C}(16)$	$1.866(5)$
$\mathrm{P}(1)-\mathrm{C}(19)$	$1.867(5)$	$\mathrm{P}(2)-\mathrm{C}(34)$	$1.869(5)$
$\mathrm{P}(2)-\mathrm{C}(37)$	$1.877(5)$	$\mathrm{P} 92)-\mathrm{C}(40)$	$1.867(5)$
$\mathrm{O}(1)-\mathrm{C}(2)$	$1.279(6)$	$\mathrm{O}(2)-\mathrm{C}(4)$	$1.269(5)$
$\mathrm{O}(3)-\mathrm{C}(7)$	$1.278(5)$	$\mathrm{O}(4)-\mathrm{C}(9)$	$1.264(5)$
$\mathrm{O} 95)-\mathrm{C}(23)$	$1.274(5)$	$\mathrm{O}(6)-\mathrm{C}(25)$	$1.279(5)$
$\mathrm{O}(7)-\mathrm{C}(28)$	$1.273(5)$	$\mathrm{O}(8)-\mathrm{C}(30)$	$1.257(6)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.513(7)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.381(7)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.394(7)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.505(7)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.504(7)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.389(7)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.404(7)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.500(7)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.350(9)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.508(7)$
$\mathrm{C}(13)-\mathrm{C}(15)$	$1.532(7)$	$\mathrm{C}(16)-\mathrm{C}(17)$	$15.30(7)$
$\mathrm{C}(16)-\mathrm{C}(18)$	$1.515(8)$	$\mathrm{C}(19)-\mathrm{C}(20)$	$1.525(7)$
$\mathrm{C}(19)-\mathrm{C}(21)$	$1.516(7)$	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.497(7)$
$\mathrm{C}(23)-\mathrm{C}(24)$	$1.389(7)$	$\mathrm{C}(24)-\mathrm{C}(25)$	$1.392(6)$
$\mathrm{C}(25)-\mathrm{C}(26)$	$1.501(7)$	$\mathrm{C}(27)-\mathrm{C}(28)$	$1.509(7)$
$\mathrm{C}(28)-\mathrm{C}(29)$	$1.388(7)$	$\mathrm{C}(29)-\mathrm{C}(30)$	$1.404(7)$
$\mathrm{C}(30)-\mathrm{C}(31)$	$1.499(7)$	$\mathrm{C}(32)-\mathrm{C}(33)$	$1.350(9)$
$\mathrm{C}(34)-\mathrm{C}(35)$	$1.495(8)$	$\mathrm{C}(34)-\mathrm{C}(36)$	$1.526(7)$
$\mathrm{C}(37)-\mathrm{C}(38)$	$1.536(7)$	$\mathrm{C}(37)-\mathrm{C}(39)$	$1.517(8)$
$\mathrm{C}(40)-\mathrm{C}(41)$	$1.521(8)$	$\mathrm{C}(40)-\mathrm{C}(42)$	$1.517(7)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)-\mathrm{O}(3)$	$90.70(9)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$175.9(1)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{C}(11)$	$99.7(2)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{C}(12)$	$91.3(2)$
$\mathrm{C}(12)-\mathrm{H}(3)$	$1.00(6)$	$\mathrm{C}(11)-\mathrm{H}(2)$	$0.87(6)$
$\mathrm{C}(32)-\mathrm{H}(5)$	$0.91(5)$	$\mathrm{C}(12)-\mathrm{H}(4)$	$0.88(6)$
$\mathrm{C}(33)-\mathrm{H}(7)$	$0.97(6)$	$\mathrm{C}(32)-\mathrm{H}(6)$	$0.92(6)$
	$0.89(5)$	$\mathrm{C}(33)-\mathrm{H}(8)$	$1.08(5)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$91.63(9)$		

Table A.4.2 (cont): Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of $\underline{\text { cis- }}\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}_{3}\right)\right]$.

$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	89.1(1)	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	167.4(1)
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	81.4(1)	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{C}(11)$	111.2(2)
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{C}(12)$	77.3(2)	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	79.9(1)
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	85.4(1)	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{C}(11)$	155.3(2)
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{C}(12)$	166.3(2)	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(4)$	91.6(1)
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{C}(11)$	78.2(2)	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{C}(12)$	113.4(2)
$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{C}(11)$	84.1(2)	$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{C}(12)$	90.9(2)
$\mathrm{C}(11)-\mathrm{Ru}(1)-\mathrm{C}(12)$	36.1(2)	$\mathrm{P}(2)-\mathrm{Ru}(2)-\mathrm{O}(5)$	95.93(9)
$\mathrm{P}(2)-\mathrm{Ru}(2)-\mathrm{O}(6)$	91.14(9)	$\mathrm{P}(2)-\mathrm{Ru}(2)-\mathrm{O}(7)$	90.48(9)
$\mathrm{P}(2)-\mathrm{Ru}(2)-\mathrm{O}(8)$	175.01(9)	$\mathrm{P}(2)-\mathrm{Ru}(2)-\mathrm{C}(32)$	100.5(2)
$\mathrm{P}(2)-\mathrm{Ru}(2)-\mathrm{C}(33)$	91.0(2)	$\mathrm{O}(5)-\mathrm{Ru}(2)-\mathrm{O}(6)$	89.5(1)
$\mathrm{O}(5)-\mathrm{Ru}(2)-\mathrm{O}(7)$	168.1(1)	$\mathrm{O}(5)-\mathrm{Ru}(2)-\mathrm{O}(8)$	81.4(1)
$\mathrm{O}(5)-\mathrm{Ru}(2)-\mathrm{C}(32)$	110.2(2)	$\mathrm{O}(5)-\mathrm{Ru}(2)-\mathrm{C}(33)$	76.9(2)
$\mathrm{O}(6)-\mathrm{Ru}(2)-\mathrm{O}(7)$	80.3(1)	$\mathrm{O}(6)-\mathrm{Ru}(2)-\mathrm{O}(8)$	84.7(1)
$\mathrm{O}(6)-\mathrm{Ru}(2)-\mathrm{C}(32)$	155.6(2)	$\mathrm{O}(6)-\mathrm{Ru}(2)-\mathrm{C}(33)$	166.4(2)
$\mathrm{O}(7)-\mathrm{Ru}(2)-\mathrm{O}(8)$	91.5(1)	$\mathrm{O}(7)-\mathrm{Ru}(2)-\mathrm{C}(32)$	78.3(2)
$\mathrm{O}(7)-\mathrm{Ru}(2)-\mathrm{C}(33)$	113.1(2)	$\mathrm{O}(8)-\mathrm{Ru}(2)-\mathrm{C}(32)$	84.4(2)
$\mathrm{O}(8)-\mathrm{Ru}(2)-(\mathrm{C} 33)$	92.5(2)	$\mathrm{C}(32)-\mathrm{Ru}(2)-\mathrm{C}(33)$	36.0(2)
$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(13)$	112.4(2)	$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(16)$	117.2(2)
$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(19)$	115.1(2)	$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{C}(16)$	100.5(2)
$\mathrm{C}(13)-\mathrm{P}(1)-\mathrm{C}(19)$	108.5(2)	$\mathrm{C}(16)-\mathrm{P}(1)-\mathrm{C}(19)$	101.7(2)
$\mathrm{Ru}(2)-\mathrm{P}(2)-\mathrm{C}(34)$	112.7(2)	$\mathrm{Ru}(2)-\mathrm{P}(2)-\mathrm{C}(37)$	116.7(2)
$\mathrm{Ru}(2)-\mathrm{P}(2)-\mathrm{C}(40)$	115.4(2)	$\mathrm{C}(34)-\mathrm{P}(2)-\mathrm{C}(37)$	100.3(2)
$\mathrm{C}(34)-\mathrm{P}(2)-\mathrm{C}(40)$	108.3(2)	$\mathrm{C}(37)-\mathrm{P}(2)-\mathrm{C}(40)$	101.9(2)
$\mathrm{Ru}(1)-\mathrm{O}(1)-\mathrm{C}(2)$	123.6(3)	$\mathrm{Ru}(1)-\mathrm{O}(2)-\mathrm{C}(4)$	125.3(3)
$\mathrm{Ru}(1)-\mathrm{O}(3)-\mathrm{C}(7)$	122.7(3)	$\mathrm{Ru}(1)-\mathrm{O}(4)-\mathrm{C}(9)$	124.0(3)
$\mathrm{Ru}(2)-\mathrm{O}(5)-\mathrm{C}(23)$	123.9(3)	$\mathrm{Ru}(2)-\mathrm{O}(6)-\mathrm{C}(25)$	124.3(3)
$\mathrm{Ru}(2)-\mathrm{O}(7)-\mathrm{C}(28)$	123.2(3)	$\mathrm{Ru}(2)-\mathrm{O}(8)-\mathrm{C}(30)$	124.2(3)
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	113.4(4)	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	127.1(4)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	119.5(5)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	126.8(5)
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	125.7(4)	$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	114.9(4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	119.4(4)	$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(6)$	113.6(4)
$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(8)$	127.6(5)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	118.8(4)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	128.1(5)	$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{C}(8)$	125.7(5)
$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{C}(10)$	115.6(5)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	118.6(5)
$\mathrm{Ru}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	72.3(3)	$\mathrm{Ru}(1)-\mathrm{C}(12)-\mathrm{C}(11)$	71.6(3)
$\mathrm{P}(1)-\mathrm{C}(13)-\mathrm{C}(14)$	114.5(4)	$\mathrm{P}(1)-\mathrm{C}(13)-\mathrm{C}(15)$	117.1(3)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(15)$	109.4(4)	$\mathrm{P}(1)-\mathrm{C}(16)-\mathrm{C}(17)$	113.0(4)

Table A.4.2 (cont): Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of $\underline{\text { cis- }}\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PPr}_{3}\right)\right]$.

$\mathrm{P}(1)-\mathrm{C}(16)-\mathrm{C}(18)$	$113.5(4)$	$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(18)$	$110.1(5)$
$\mathrm{P}(1)-\mathrm{C}(19)-\mathrm{C}(20)$	$113.5(4)$	$\mathrm{P}(1)-\mathrm{C}(19)-\mathrm{C}(21)$	$117.6(4)$
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(21)$	$109.2(5)$	$\mathrm{O}(5)-\mathrm{C}(23)-\mathrm{C}(22)$	$114.8(4)$
$\mathrm{O}(5)-\mathrm{C}(23)-\mathrm{C}(24)$	$126.5(4)$	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$118.7(4)$
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$127.1(4)$	$\mathrm{O}(6)-\mathrm{C}(25)-\mathrm{C}(24)$	$126.2(4)$
$\mathrm{O}(6)-\mathrm{C}(25)-\mathrm{C}(26)$	$114.9(4)$	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$119.0(4)$
$\mathrm{O}(7)-\mathrm{C}(28)-\mathrm{C}(27)$	$113.9(4)$	$\mathrm{O}(7)-\mathrm{C}(28)-\mathrm{C}(29)$	$126.9(5)$
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	$119.2(5)$	$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	$128.6(5)$
$\mathrm{O}(8)-\mathrm{C}(30)-\mathrm{C}(29)$	$125.4(5)$	$\mathrm{O}(8)-\mathrm{C}(30)-\mathrm{C}(31)$	$115.8(5)$
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	$118.8(5)$	$\mathrm{Ru}(2)-\mathrm{C}(32)-\mathrm{C}(33)$	$72.2(3)$
$\mathrm{Ru}(2)-\mathrm{C}(33)-\mathrm{C}(32)$	$71.8(3)$	$\mathrm{P}(2)-\mathrm{C}(34)-\mathrm{C}(35)$	$114.6(4)$
$\mathrm{P}(2)-\mathrm{C}(34)-\mathrm{C} 936)$	$117.4(4)$	$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{C}(36)$	$108.8(5)$
$\mathrm{P}(2)-\mathrm{C} 937)-\mathrm{C}(38)$	$111.6(4)$	$\mathrm{P}(2)-\mathrm{C}(37)-\mathrm{C}(39)$	$112.9(4)$
$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{C}(39)$	$110.4(5)$	$\mathrm{P}(2)-\mathrm{C}(40)-\mathrm{C}(41)$	$112.8(4)$
$\mathrm{P}(2)-\mathrm{C}(40)-\mathrm{C}(42)$	$118.0(4)$	$\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{C}(42)$	$109.3(5)$
$\mathrm{Ru}(1)-\mathrm{C}(11)-\mathrm{H}(1)$	$115(4)$	$\mathrm{Ru}(1)-\mathrm{C}(11)-\mathrm{H}(2)$	$99(4)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(1)$	$117(4)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(2)$	$114(4)$
$\mathrm{H}(1)-\mathrm{C}(11)-\mathrm{H}(2)$	$125(6)$	$\mathrm{Ru}(1)-\mathrm{C}(12)-\mathrm{H}(3)$	$113(4)$
$\mathrm{Ru}(1)-\mathrm{C}(12)-\mathrm{H}(4)$	$105(4)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(3)$	$117(4)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(4)$	$111(4)$	$\mathrm{H}(3)-\mathrm{C}(12)-\mathrm{H}(4)$	$126(5)$
$\mathrm{Ru}(2)-\mathrm{C}(32)-\mathrm{H}(5)$	$108(4)$	$\mathrm{Ru}(2)-\mathrm{C}(32)-\mathrm{H}(6)$	$97(4)$
$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{H}(5)$	$112(4)$	$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{H}(6)$	$109(4)$
$\mathrm{H}(5)-\mathrm{C}(32)-\mathrm{H}(6)$	$137(5)$	$\mathrm{Ru}(2)-\mathrm{C}(33)-\mathrm{H}(7)$	$122(4)$
$\mathrm{Ru}(2)-\mathrm{C}(33)-\mathrm{H}(8)$	$102(3)$	$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{H}(7)$	$123(4)$
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{H}(8)$	$102(3)$	$\mathrm{H}(7)-\mathrm{C}(33)-\mathrm{H}(8)$	$117(5)$

Table A.5.1: Crystallographic and refinement data for $\underline{\text { cis- }[R u(a c a c)})_{2}\left(\eta^{2}-\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PC}_{3}\right)\right]$.

Crystal Data

Empirical Formula
Formula Weight
Crystal Colour, Habit
Crystal Dimensions

Crystal System
Lattice Type
No. of Reflections Used for
Unit Cell Determination (2θ range)
Omega Scan Peak Width at

Space Group
Z value
$\mathrm{D}_{\text {calc }}$
F_{000}
$\mu(\mathrm{MoK} \alpha)$

Half-height
Lattice Parameters
$\mathrm{C}_{30} \mathrm{H}_{51} \mathrm{O}_{4} \mathrm{PRu}$
607.78
orange, triangular fragment $0.50 \times 0.30 \times 0.18 \mathrm{~mm}$ monoclinic
Primitive

24 (104.5-109.4 ${ }^{\circ}$)

Table A.5.1 (cont): Crystallographic and refinement data for cis-[Ru(acac) $)_{2}\left(\eta^{2}-\right.$ $\left.\left.\mathrm{C}_{2} \mathrm{H}_{4}\right)\left(\mathrm{PC} y_{3}\right)\right]$.

Intensity Measurements

diffractometer	Rigaku AFC6S
Radiation	$\operatorname{MoK} \alpha(\lambda=0.7107 \AA)$
	graphite monochromated

Take-off Angle
Detector Aperture

Crystal to Detector Distance
Voltage, Current
Temperature
6.0°
9.0 mm horizontal 7.0 mm vertical 400 mm $50 \mathrm{kV}, 180 \mathrm{~mA}$ $23.2{ }^{\circ} \mathrm{C}$
Scan Type
$\omega-2 \theta$
Scan Rate
Scan Width $2 \theta_{\text {max }}$
No. of Reflections Measured

Corrections
graphite monochromated
$4.0^{\circ} / \mathrm{min}$ (in ω) (up to 5 scans)
$(0.80+0.34 \tan \theta)^{\circ}$ 120.1°
Total: 5995
Unique: 5743 ($\mathrm{R}_{\text {int }}=0.050$
Lorentz-polarization
Absorption
(trans. Factors: 0.3566-0.5408)
Decay (-0.47% decline)

Structure Solution and Refinement

Reflection/Parameter Rotation 11.48

Structure Solution
Refinement
Function Minimized
Least Squares Weights
p-factor
Anamalous Dispersion
No. Observations ($\mathrm{I}>2.0 \sigma(\mathrm{I})$)
No. of variables

Residuals: R; Rw
Goodness of Fit Indicator
Max Shift/Error in Final Cycle
Max peak in Final Diff. Map
Min peak in Final Diff Map

Direct Methods (SIR92)
Full-Matrix least squares
$\sum w(|\mathrm{Fo}|-|\mathrm{Fc}|)^{2}$
$w=\left[\sigma_{\mathrm{c}}{ }^{2}(\mathrm{Fo})+0.25 \mathrm{p}^{2} \mathrm{Fo}^{2}\right]^{-1}$
0.020

All non-hydrogen atoms
5865
511
0.036; 0.044
1.88
0.03
$0.78 e^{-} / \AA^{3}$
$-0.74 e^{-} / \AA^{3}$

Table A.5.2: Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of cis-[Ru(acac) $\left.)_{2}\left(\eta^{2}-C_{2} H_{4}\right)\left(P C y_{3}\right)\right]$.

$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.356(7)$	$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.06(2)$
$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.10(2)$	$\mathrm{Ru}(1)-\mathrm{O}(3)$	$2.07(2)$
$\mathrm{Ru}(1)-\mathrm{O}(4)$	$2.074(18)$	$\mathrm{Ru}(1)-\mathrm{C}(110)$	$2.167(2)$
$\mathrm{Ru}(1)-\mathrm{C}(111)$	$2.151(2)$	$\mathrm{Ru}(1)-\mathrm{C}(120)$	$2.190(2)$
$\mathrm{Ru}(1)-\mathrm{C}(121)$	$2.148(2)$	$\mathrm{P}(1)-\mathrm{C}(13)$	$1.87(3)$
$\mathrm{P}(1)-\mathrm{C}(19)$	$1.87(3)$	$\mathrm{P}(1)-\mathrm{C}(25)$	$1.88(3)$
$\mathrm{O}(1)-\mathrm{C}(2)$	$1.27(4)$	$\mathrm{O}(2)-\mathrm{C}(4)$	$1.27(4)$
$\mathrm{O}(3)-\mathrm{C}(9)$	$1.27(4)$	$\mathrm{O}(4)-\mathrm{C}(7)$	$1.27(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.52(5)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.38(5)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.39(5)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.50(5)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.51(4)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.39(5)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.40(5)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.50(5)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.53(4)$	$\mathrm{C}(13)-\mathrm{C}(18)$	$1.54(4)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.52(5)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.51(6)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.52(5)$	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.52(4)$
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.54(4)$	$\mathrm{C}(19)-\mathrm{C}(24)$	$1.54(4)$
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.53(4)$	$\mathrm{C}(21)-\mathrm{C}(22)$	$1.51(5)$
$\mathrm{C}(22)-\mathrm{C}(23)$	$1.51(5)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.52(4)$
$\mathrm{C}(25)-\mathrm{C}(26)$	$1.52(4)$	$\mathrm{C}(25)-\mathrm{C}(30)$	$1.52(4)$
$\mathrm{C}(26)-\mathrm{C}(27)$	$1.52(4)$	$\mathrm{C}(27)-\mathrm{C}(28)$	$1.50(5)$
$\mathrm{C}(28)-\mathrm{C}(29)$	$1.50(5)$	$\mathrm{C}(29)-\mathrm{C}(30)$	$1.53(4)$
$\mathrm{C}(110)-\mathrm{C}(111)^{*}$	1.00	$\mathrm{C}(110)-\mathrm{C}(120)^{*}$	1.34
$\mathrm{C}(110)-\mathrm{C}(121)^{*}$	0.99	$\mathrm{C}(111)-\mathrm{C}(120)^{*}$	1.10
$\mathrm{C}(111)-\mathrm{C}(121)^{*}$	1.36	$\mathrm{C}(120)-\mathrm{C}(121)^{*}$	0.74

${ }^{*}$) restrained during refinement and thus no estimated standard deviations are reported.

Table A.6.1: Crystallographic and refinement data for trans-[Ru(acac) $\left.)_{2}\left(P C y_{3}\right)_{2}\right]$ at 200 K .

Crystal Data

Empirical Formula	$\mathrm{C}_{46} \mathrm{H}_{80} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Ru}$
Formula Weight	860.16
Crystal Colour, Habit	Brown, plate
Crystal Dimensions	-
Crystal System	Monoclinic
Lattice Type	$\mathrm{a}=9.56650(10) \AA$
Lattice Parameters	$\mathrm{b}=17.8085(3) \AA$
	$\mathrm{c}=13.6210(2) \AA$
	$\alpha=90.00^{\circ}$
	$\beta=109.4660(10)^{\circ}$
Space Group	$\gamma=90.00^{\circ}$
Z value	$\mathrm{V}=2187.90(5) \AA^{3}$
$\mathrm{D}_{\text {calc }}$	$\mathrm{P} 21 / \mathrm{n}$
F000	2
$\mu($ MoK $\alpha)$	$1.306 \mathrm{~g} / \mathrm{cm}^{3}$
	924
	$0.47 \mathrm{~cm}^{-1}$

Intensity Measurements
diffractometer
Radiation

Detector Aperture Data Images
Detector Position
$2 \theta_{\text {max }}$
No. of Reflections Measured

Corrections

Nonius KappaCD
$\operatorname{MoK} \alpha(\lambda=0.71073 \AA)$
graphite monochromated
$65 \mathrm{~mm} \times 65 \mathrm{~mm}$
$2.00^{\circ} /$ frame; $20 \mathrm{sec} /{ }^{\circ}$ 25.00 mm
66.3°
Total: 45663
Unique: $8233\left(\mathrm{R}_{i n t}=0.047\right)$
Lorentz-polarization
Absorption
(trans. Factors: 0.977-0.892)

Table A.6.1 (cont): Crystallographic and refinement data for trans[Ru(acac) $\left.{ }_{2}\left(\mathrm{PCy}_{3}\right)_{2}\right]$ at 200 K .

Structure Solution and Refinement

Structure Solution
Refinement
Function Minimized
Least Squares Weights p-factor
Anamalous Dispersion
No. Observations (I>3.0 $\mathbf{~ (I)}$)
No. of variables
Reflection/Parameter Rotation
Residuals: R; Rw
Goodness of Fit Indicator
Max Shift/Error in Final Cycle
Max peak in Final Diff. Map
Min peak in Final Diff. Map

Patterson Methods (DIRDIF92 PATTY)
Full-Matrix least squares
$\Sigma w\left(|\mathrm{Fo}|-\left|\mathrm{Fc}_{\mathrm{c}}\right|\right)^{2}$
$w=\left[\sigma_{\mathrm{c}}{ }^{2}(\mathrm{Fo})+0.25 \mathrm{p}^{2} \mathrm{Fo}^{2}\right]^{-1}$
0.040

All non-hydrogen atoms
5902
241
24.49
0.038; 0.061
1.475
<0.01
$0.46 e^{-} / \AA^{3}$
$-1.35 e^{-} / \AA^{3}$

Table A.6.2: Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of trans-[Ru(acac) $\left.)_{2}\left(P C y_{3}\right)_{2}\right]$ at 200 K.

$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.4268(3)$	$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.0707(10)$
$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.0646(10)$		
$\mathrm{P}(1)-\mathrm{C}(6)$	$1.8680(10)$	$\mathrm{P}(1)-\mathrm{C}(12)$	$1.8880(10$
$\mathrm{P}(1)-\mathrm{C}(18)$	$1.8640(10)$	$\mathrm{O}(1)-\mathrm{C}(2)$	$1.271(2)$
$\mathrm{O}(2)-\mathrm{C}(4)$	$1.276(2)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.507(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.401(2)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.398(2)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.511(2)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.528(2)$
$\mathrm{C}(6)-\mathrm{C}(11)$	$1.537(2)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.532(2)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.523(2)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.516(2)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.531(2)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.543(2)$
$\mathrm{C}(12)-\mathrm{C}(17)$	$1.542(2)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.528(2)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.517(2)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.528(2)$
$\mathrm{C}(16)-\mathrm{C}(17)$	$1.524(2)$	$\mathrm{C}(18)-\mathrm{C}(19)$	$1.534(2)$
$\mathrm{C}(18)-\mathrm{C}(23)$	$1.541(2)$	$\mathrm{C}(19)-\mathrm{C}(20)$	$1.529(2)$
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.522(2)$	$\mathrm{C}(21)-\mathrm{C}(22)$	$1.519(2)$
$\mathrm{C}(22)-\mathrm{C}(23)$	$1.529(2)$		

$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)^{\mathrm{a}}$	180.0	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$91.0(1)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)^{\mathrm{a}}$	$89.0(1)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$91.1(1)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)^{\mathrm{a}}$	$88.9(1)$	$\mathrm{P}(1)^{\mathrm{a}}-\mathrm{Ru}(1)-\mathrm{O}(1)$	$91.0(1)$

Table A.6.2 (cont): Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of trans-[Ru(acac) $\left.)_{2}\left(P C y_{3}\right)_{2}\right]$ at 200 K.

$\mathrm{P}(1)^{\mathrm{a}}-\mathrm{Ru}(1)-\mathrm{O}(2)$	$88.9(1)$	$\mathrm{P}(1)^{\mathrm{a}}-\mathrm{Ru}(1)-\mathrm{O}(2)^{\mathrm{a}}$	$91.1(1)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)^{\mathrm{a}}$	180.0	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$91.9(1)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)^{\mathrm{a}}$	$88.1(1)$	$\mathrm{O}(1)^{\mathrm{a}}-\mathrm{Ru}(1)-\mathrm{O}(2)$	$88.1(1)$
$\mathrm{O}(1)^{\mathrm{a}}-\mathrm{Ru}(1)-\mathrm{O}(2)^{\mathrm{a}}$	$91.9(1)$	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(2)^{\mathrm{a}}$	180.0
$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(6)$	$116.9(1)$	$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(12)$	$113.8(1)$
$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(18)$	$113.9(1)$	$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(6)$	$116.9(1)$
$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(12)$	$113.8(1)$	$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(18)$	$113.9(1)$
$\mathrm{C}(6)-\mathrm{P}(1)-\mathrm{C}(12)$	$100.5(1)$	$\mathrm{C}(6)-\mathrm{P}(1)-\mathrm{C}(18)$	$101.8(1)$
$\mathrm{C}(12)-\mathrm{P}(1)-\mathrm{C}(18)$	$108.4(1)$	$\mathrm{Ru}(1)-\mathrm{O}(1)-\mathrm{C}(2)$	$123.7(1)$
$\mathrm{Ru}(1)-\mathrm{O}(2)-\mathrm{C}(4)$	$123.3(1)$	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$115.5(2)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$126.2(2)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$118.3(2)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$127.7(2)$	$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	$126.9(2)$
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$115.0(2)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$118.1(2)$
$\mathrm{P}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$116.9(2)$	$\mathrm{P}(1)-\mathrm{C}(6)-\mathrm{C}(11)$	$110.3(1)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)$	$110.4(2)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$110.2(2)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$111.5(2)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$111.1(2)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$111.5(2)$	$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$	$110.5(2)$
$\mathrm{P}(1)-\mathrm{C}(12)-\mathrm{C}(13)$	$118.6(1)$	$\mathrm{P}(1)-\mathrm{C}(12)-\mathrm{C}(17)$	$113.9(1)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(17)$	$107.7(2)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$111.0(2)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$112.7(2)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$110.9(2)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$110.6(2)$	$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(16)$	$111.5(2)$
$\mathrm{P}(1)-\mathrm{C}(18)-\mathrm{C}(19)$	$116.4(1)$	$\mathrm{P}(1)-\mathrm{C}(18)-\mathrm{C}(23)$	$114.3(1)$
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(23)$	$109.9(2)$	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$110.6(2)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$111.2(2)$	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$110.8(2)$
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$111.6(2)$	$\mathrm{C}(18)-\mathrm{C}(23)-\mathrm{C}(22)$	$110.7(2)$

Table A.7.1: Crystallographic and refinement data for cis-[Ru(acac) $\left.)_{2}\left(\mathrm{PPr}_{3}\right)_{2}\right]$.
Crystal Data

Table A.7.1 (cont): Crystallographic and refinement data for cis[Ru(acac) $\left.)_{2}\left(\text { Prri}_{3}\right)_{2}\right]$.

Structure Solution and Refinement

Structure Solution
Refinement
Function Minimized
Least Squares Weights
p-factor
Anamalous Dispersion
No. Observations ($\mathrm{I}>2.0 \sigma(\mathrm{I})$)
No. of variables
Reflection/Parameter Rotation
Residuals: R; Rw
Goodness of Fit Indicator
Max Shift/Error in Final Cycle
Max peak in Final Diff. Map
Min peak in Final Diff Map

Direct Methods (SIR92)
Full-Matrix least squares

$$
\begin{gathered}
\sum w(|\mathrm{Fo}|-|\mathrm{Fc}|)^{2} \\
w=\left[\sigma_{\mathrm{c}}^{2}(\mathrm{Fo})+0.25 \mathrm{p}^{2} \mathrm{Fo}^{2}\right]^{-1} \\
0.030
\end{gathered}
$$

All non-hydrogen atoms
4295
317
13.55
0.028; 0.034
1.71
0.03
$0.275 e^{-/} / \AA^{3}$
$-0.52 e^{-} / \AA^{3}$

Table A.7.2: Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of $\underline{\text { cis- }}\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPri}_{3}\right)_{2}\right]$.

$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.3525(9)$	$\mathrm{Ru}(1)-\mathrm{P}(2)$	$2.3467(8)$
$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.068(2)$	$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.088(2)$
$\mathrm{Ru}(1)-\mathrm{O}(3)$	$2.059(2)$	$\mathrm{Ru}(1)-\mathrm{O}(4)$	$2.104(2)$
$\mathrm{P}(1)-\mathrm{C}(11)$	$1.873(3)$	$\mathrm{P}(1)-\mathrm{C}(14)$	$1.886(3)$
$\mathrm{P}(1)-\mathrm{C}(17)$	$1.863(3)$	$\mathrm{P}(2)-\mathrm{C}(20)$	$1.878(3)$
$\mathrm{P}(2)-\mathrm{C}(23)$	$1.884(3)$	$\mathrm{P}(2)-\mathrm{C}(26)$	$1.874(3)$
$\mathrm{O}(1)-\mathrm{C}(2)$	$1.276(4)$	$\mathrm{O}(2)-\mathrm{C}(4)$	$1.274(4)$
$\mathrm{O}(3)-\mathrm{C}(7)$	$1.276(4)$	$\mathrm{O}(4)-\mathrm{C}(9)$	$1.272(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.501(5)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.395(5)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.380(5)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.513(4)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.505(4)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.395(4)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.383(4)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.518(4)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.532(5)$	$\mathrm{C}(11)-\mathrm{C}(13)$	$1.538(4)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.532(5)$	$\mathrm{C}(14)-\mathrm{C}(16)$	$1.543(4)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.540(4)$	$\mathrm{C}(17)-\mathrm{C}(19)$	$1.530(4)$
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.528(4)$	$\mathrm{C}(20)-\mathrm{C}(22)$	$1.533(4)$
$\mathrm{C}(23)-\mathrm{C}(24)$	$1.528(5)$	$\mathrm{C}(23)-\mathrm{C}(25)$	$1.540(4)$
$\mathrm{C}(26)-\mathrm{C}(27)$	$1.523(5)$	$\mathrm{C}(26)-\mathrm{C}(28)$	$1.527(4)$

Table A.7.2 (cont): Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of cis-[Ru(acac) $\left.)_{2}\left(P P^{i} i_{3}\right)_{2}\right]$.

$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	$105.42(3)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$90.20(6)$
$\mathrm{R}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$167.23(6)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$93.86(6)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$87.57(6)$	$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$94.43(6)$
$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$87.25(6)$	$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$88.73(6)$
$\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$167.01(6)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$90.46(8)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$174.02(7)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$85.28(8)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$84.62(8)$	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$79.77(8)$
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$90.50(8)$	$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(11)$	$118.7(1)$
$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(14)$	$110.6(1)$	$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(17)$	$118.8(1)$
$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(14)$	$106.7(1)$	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(17)$	$101.2(1)$
$\mathrm{C}(14)-\mathrm{P}(1)-\mathrm{C}(17)$	$98.4(1)$	$\mathrm{Ru}(1)-\mathrm{P}(2)-\mathrm{C}(20)$	$117.9(1)$
$\mathrm{Ru}(1)-\mathrm{P}(2)-\mathrm{C}(23)$	$110.3(1)$	$\mathrm{Ru}(1)-\mathrm{P}(2)-\mathrm{C}(26)$	$119.3(1)$
$\mathrm{C}(20)-\mathrm{P}(2)-\mathrm{C}(23)$	$106.2(1)$	$\mathrm{C}(20)-\mathrm{P}(2)-\mathrm{C}(26)$	$101.9(1)$
$\mathrm{C}(23)-\mathrm{P}(2)-\mathrm{C}(26)$	$99.0(1)$	$\mathrm{Ru}(1)-\mathrm{O}(1)-\mathrm{C}(2)$	$123.8(2)$
$\mathrm{Ru}(1)-\mathrm{O}(2)-\mathrm{C}(4)$	$123.5(2)$	$\mathrm{Ru}(1)-\mathrm{O}(3)-\mathrm{C}(7)$	$124.0(2)$
$\mathrm{Ru}(1)-\mathrm{O}(4)-\mathrm{C}(9)$	$122.2(2)$	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$114.6(3)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$126.3(3)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$119.1(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$127.9(3)$	$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	$126.5(3)$
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$113.6(3)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$119.9(3)$
$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(6)$	$114.2(3)$	$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(8)$	$126.4(3)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$119.5(3)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$127.4(3)$
$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{C}(8)$	$127.3(3)$	$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{C}(10)$	$114.4(3)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$118.3(3)$	$\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$111.0(2)$
$\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{C}(13)$	$118.5(2)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(13)$	$109.5(3)$
$\mathrm{P}(1)-\mathrm{C}(14)-\mathrm{C}(15)$	$116.9(2)$	$\mathrm{P}(1)-\mathrm{C}(14)-\mathrm{C}(16)$	$115.9(2)$
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(16)$	$109.7(3)$	$\mathrm{P}(1)-\mathrm{C}(17)-\mathrm{C}(18)$	$112.0(2)$
$\mathrm{P}(1)-\mathrm{C}(17)-\mathrm{C}(19)$	$114.6(2)$	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(19)$	$109.5(3)$
$\mathrm{P}(2)-\mathrm{C}(20)-\mathrm{C}(21)$	$111.6(2)$	$\mathrm{P}(2)-\mathrm{C}(20)-\mathrm{C}(22)$	$118.7(2)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(22)$	$109.4(3)$	$\mathrm{P}(2)-\mathrm{C}(23)-\mathrm{C}(24)$	$117.3(2)$
$\mathrm{P}(2)-\mathrm{C}(23)-\mathrm{C}(25)$	$115.5(2)$	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(25)$	$109.2(3)$
$\mathrm{P}(2)-\mathrm{C}(26)-\mathrm{C}(27)$	$112.4(2)$	$\mathrm{P}(2)-\mathrm{C}(26)-\mathrm{C}(28)$	$113.7(2)$
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(28)$	$109.7(3)$		

Table A.8.1: Crystallographic and refinement data for cis$\left[R u(a c a c)_{2}\left(P C y_{3}\right)\left(S b h_{3}\right)\right]$.

Empirical Formula	$\mathrm{C}_{46} \mathrm{H}_{62} \mathrm{O}_{4} \mathrm{PRuSb}$
Formula Weight	932.79
Crystal Colour, Habit	orange, platelet
Crystal Dimensions	$0.19 \times 0.18 \times 0.08 \mathrm{~mm}$
Crystal System	triclinic
Lattice Type	Primitive
No. of Reflections Used for	
Unit Cell Determination (2θ range)	25 (29.1-32.0 ${ }^{\circ}$
Lattice Parameters	$\mathrm{a}=12.220(3) \AA$
	$\mathrm{b}=12.829(3) \AA$
	$\mathrm{c}=14.693(3) \AA$
	$\alpha=86.39(2){ }^{\circ}$
	$\beta=73.90$ (2) ${ }^{\circ}$
	$\gamma=89.43$ (2) ${ }^{\circ}$
	$\mathrm{V}=2208.6(9) \AA^{3}$
Space Group	P ${ }^{-1}\left(\begin{array}{l}\text { 2 }\end{array}\right.$
Z value	2
$\mathrm{D}_{\text {calc }}$	$1.403 \mathrm{~g} / \mathrm{cm}^{3}$
F_{000}	960.00
$\mu(\mathrm{MoK} \alpha)$	$10.29 \mathrm{~cm}^{-1}$
Intensity Measurements	
diffractometer	Philips PW1100/20
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71069 \AA)$ graphite monochromated
Take-off Angle	3.0°
Detector Aperture	3.4 mm horizontal 3.4 mm vertical
Crystal to Detector Distance	195 mm
Voltage, Current	$50 \mathrm{kV}, 30 \mathrm{~mA}$
Temperature	$20.0{ }^{\circ} \mathrm{C}$
Scan Type	$\omega-2 \theta$
Scan Rate	$2.0^{\circ} / \mathrm{min}($ in ω)
Scan Width	$(1.00+0.35 \tan \theta)^{\circ}$
$2 \theta_{\text {max }}$	52.2°
No. of Reflections Measured	$\begin{gathered} \text { Total: } 8691 \\ \text { Uniqu: } 8690\left(\mathrm{R}_{\text {int }}=0.022\right) \end{gathered}$
Corrections	Lorentz-polarization
	(trans. Factors: $0.922-0.801$)

Table A.8.1 (cont): Crystallographic and refinement data for cis$\left[\mathrm{Ru}(a c a c)_{2}\left(\mathrm{PCy}_{3}\right)\left(\mathrm{SbPh}_{3}\right)\right]$.

Structure Solution and Refinement

Structure Solution	Direct Methods (SIR92)
Refinement	Full-Matrix least squares
Function Minimized	$\sum w(\|\mathrm{Fo}\|-\|\mathrm{Fc}\|)^{2}$
Least Squares Weights	$w=\left[\sigma_{\mathrm{c}}{ }^{2}(\mathrm{Fo})+0.25 \mathrm{p}^{2} \mathrm{Fo}^{2}\right]^{-1}$
p-factor	0.020
Anomalous Dispersion	All non-hydrogen atoms
No. Observations ($\mathrm{I}>2.0 \sigma(\mathrm{I})$)	5927
No. of variables	478
Reflection/Parameter Rotation	12.40
Residuals: R; Rw	0.045; 0.036
Goodness of Fit Indicator	1.22
Max Shift/Error in Final Cycle	0.02
Max peak in Final Diff. Map	$0.51 e^{-} / \AA^{3}$
Min peak in Final Diff Map	$-0.56 e^{-} / \AA^{3}$

Figure A.8.1: ORTEP diagram of the molecular structure of cis$\left[R u(a c a c)_{2}\left(\mathrm{PCy}_{3}\right)\left(\mathrm{SbPh}_{3}\right)\right]$.

Table A.8.2: Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of cis-[Ru(acac) $\left.)_{2}\left(P \mathrm{Cy}_{3}\right)\left(\mathrm{SbPh}_{3}\right)\right]$.

$\mathrm{Sb}(1)-\mathrm{Ru}(1)$	$2.5847(5)$	$\mathrm{Sb}(1)-\mathrm{C}(11)$	$2.151(5)$
$\mathrm{Sb}(1)-\mathrm{C}(17)$	$2.135(5)$	$\mathrm{Sb}(1)-\mathrm{C}(23)$	$2.156(5)$
$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.309(1)$	$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.059(3)$

Table A.8.2 (cont): Interatomic distances (A) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of cis-[Ru(acac) $\left.2_{2}\left(P C y_{3}\right)\left(\mathrm{SbPh}_{3}\right)\right]$.

$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.058(3)$	$\mathrm{Ru}(1)-\mathrm{O}(3)$	$2.059(3)$
$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.058(3)$	$\mathrm{Ru}(1)-\mathrm{O}(3)$	$2.059(3)$
$\mathrm{Ru}(1)-\mathrm{O}(4)$	$2.121(3)$	$\mathrm{P}(1)-\mathrm{C}(29)$	$1.865(5)$
$\mathrm{P}(1)-\mathrm{C}(35)$	$1.858(5)$	$\mathrm{P}(1)-\mathrm{C}(41)$	$1.873(5)$
$\mathrm{O}(1)-\mathrm{C}(2)$	$1.265(6)$	$\mathrm{O}(2)-\mathrm{C}(4)$	$1.271(6)$
$\mathrm{O}(3)-\mathrm{C}(7)$	$1.277(6)$	$\mathrm{O}(4)-\mathrm{C}(9)$	$1.267(6)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.511(7)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.382(8)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.383(7)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.506(8)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.507(7)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.384(7)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.387(7)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.523(7)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.364(7)$	$\mathrm{C}(11)-\mathrm{C}(16)$	$1.380(7)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.388(8)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.357(9)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.357(9)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.377(8)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.377(7)$	$\mathrm{C}(17)-\mathrm{C}(22)$	$1.383(7)$
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.400(7)$	$\mathrm{C}(19)-\mathrm{C}(20)$	$1.362(7)$
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.363(7)$	$\mathrm{C}(21)-\mathrm{C}(22)$	$1.373(7)$
$\mathrm{C}(23)-\mathrm{C}(24)$	$1.377(7)$	$\mathrm{C}(23)-\mathrm{C}(28)$	$1.383(7)$
$\mathrm{C}(24)-\mathrm{C}(25)$	$1.388(7)$	$\mathrm{C}(25)-\mathrm{C}(26)$	$1.367(9)$
$\mathrm{C}(26)-\mathrm{C}(27)$	$1.355(9)$	$\mathrm{C}(27)-\mathrm{C}(28)$	$1.391(8)$
$\mathrm{C}(29)-\mathrm{C}(30)$	$1.529(7)$	$\mathrm{C}(29)-\mathrm{C}(34)$	$1.534(7)$
$\mathrm{C}(30)-\mathrm{C}(31)$	$1.521(7)$	$\mathrm{C}(31)-\mathrm{C}(32)$	$1.514(8)$
$\mathrm{C}(32)-\mathrm{C}(33)$	$1.507(9)$	$\mathrm{C}(33)-\mathrm{C}(34)$	$1.525(8)$
$\mathrm{C}(35)-\mathrm{C}(36)$	$1.521(8)$	$\mathrm{C}(35)-\mathrm{C}(40)$	$1.530(7)$
$\mathrm{C}(36)-\mathrm{C}(37)$	$1.533(9)$	$\mathrm{C}(37)-\mathrm{C}(38)$	$1.511(9)$
$\mathrm{C}(38)-\mathrm{C}(39)$	$1.502(9)$	$\mathrm{C}(39)-\mathrm{C}(40)$	$1.513(8)$
$\mathrm{C}(41)-\mathrm{C}(42)$	$1.522(7)$	$\mathrm{C}(41)-\mathrm{C}(46)$	$1.513(7)$
$\mathrm{C}(42)-\mathrm{C}(43)$	$1.525(8)$	$\mathrm{C}(43)-\mathrm{C}(44)$	$1.503(8)$
$\mathrm{C}(44)-\mathrm{C}(45)$	$1.499(8)$	$\mathrm{C}(45)-\mathrm{C}(46)$	$1.530(8)$

$\mathrm{Ru}(1)-\mathrm{Sb}(1)-\mathrm{C}(11)$	$11.2(1)$	$\mathrm{Ru}(1)-\mathrm{Sb}(1)-\mathrm{C}(17)$	$115.1(1)$
$\mathrm{Ru}(1)-\mathrm{Sb}(1)-\mathrm{C}(23)$	$133.9(1)$	$\mathrm{C}(11)-\mathrm{Sb}(1)-\mathrm{C}(17)$	$95.5(2)$
$\mathrm{C}(11)-\mathrm{Sb}(1)-\mathrm{C}(23)$	$95.6(2)$	$\mathrm{C}(17)-\mathrm{Sb}(1)-\mathrm{C}(23)$	$98.1(2)$
$\mathrm{Sb}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)$	$100.20(4)$	$\mathrm{Sb}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$88.6(1)$
$\mathrm{Sb}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$167.42(9)$	$\mathrm{Sb}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$94.93(9)$
$\mathrm{Sb}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$84.09(9)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$95.2(1)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$92.3(1)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$91.7(1)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$171.6(1)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$82.9(1)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$83.2(1)$	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$83.5(1)$
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$89.9(1)$	$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(29)$	$116.8(2)$

Table A.8.2 (cont): Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of $\underline{\left.\text { cis-[Ru(acac) })_{2}\left(P C y_{3}\right)\left(S b P h_{3}\right)\right] \text {. }}$

$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(35)$	$111.3(2)$	$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(41)$	$116.8(2)$
$\mathrm{C}(29)-\mathrm{P}(1)-\mathrm{C}(35)$	$101.1(2)$	$\mathrm{C}(29)-\mathrm{P}(1)-\mathrm{C}(41)$	$101.0(2)$
$\mathrm{C}(35)-\mathrm{P}(1)-\mathrm{C}(41)$	$108.3(2)$	$\mathrm{Ru}(1)-\mathrm{O}(1)-\mathrm{C}(2)$	$122.4(4)$
$\mathrm{Ru}(1)-\mathrm{O}(2)-\mathrm{C}(4)$	$123.1(4)$	$\mathrm{Ru}(1)-\mathrm{O}(3)-\mathrm{C}(7)$	$123.6(3)$
$\mathrm{Ru}(1)-\mathrm{O}(4)-\mathrm{C}(9)$	$123.0(3)$	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$113.6(6)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$127.5(5)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$118.9(6)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$127.4(5)$	$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	$126.6(5)$
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$114.2(5)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$119.2(5)$
$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(6)$	$114.0(5)$	$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(8)$	$127.0(5)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$118.8(5)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$127.1(5)$
$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{C}(8)$	$126.9(5)$	$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{C}(10)$	$115.2(5)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$117.8(5)$	$\mathrm{Sb}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$119.4(4)$
$\mathrm{Sb}(1)-\mathrm{C}(11)-\mathrm{C}(16)$	$121.9(4)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C} 16)$	$118.7(5)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$120.8(6)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$119.8(6)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$119.9(6)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$120.8(6)$
$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	$120.0(6)$	$\mathrm{Sb}(1)-\mathrm{C}(17)-\mathrm{C}(18)$	$117.6(4)$
$\mathrm{Sb}(1)-\mathrm{C}(17)-\mathrm{C}(22)$	$123.2(4)$	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(22)$	$118.7(5)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$119.6(5)$	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$120.8(5)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$119.5(5)$	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$120.6(5)$
$\mathrm{C}(17)-\mathrm{C}(22)-\mathrm{C}(21)$	$120.9(5)$	$\mathrm{Sb}(1)-\mathrm{C}(23)-\mathrm{C}(24)$	$121.3(4)$
$\mathrm{Sb}(1)-\mathrm{C}(23)-\mathrm{C}(28)$	$120.0(4)$	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(28)$	$118.7(5)$
$\mathrm{C}(23)-\mathrm{C} 924)-\mathrm{C}(25)$	$120.8(5)$	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$119.8(6)$
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	$120.0(6)$	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	$120.8(6)$
$\mathrm{C}(23)-\mathrm{C}(28)-\mathrm{C}(27)$	$119.8(6)$	$\mathrm{P}(1)-\mathrm{C}(29)-\mathrm{C}(30)$	$113.5(4)$
$\mathrm{P}(1)-\mathrm{C}(29)-\mathrm{C}(34)$	$114.2(4)$	$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(34)$	$109.7(4)$
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	$112.0(5)$	$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	$112.3(5)$
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	$111.3(5)$	$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	$111.8(5)$
$\mathrm{C}(29)-\mathrm{C}(34)-\mathrm{C}(33)$	$111.6(5)$	$\mathrm{P}(1)-\mathrm{C}(35)-\mathrm{C}(36)$	$115.3(4)$
$\mathrm{P}(1)-\mathrm{C}(35)-\mathrm{C}(40)$	$119.2(4)$	$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(40)$	$108.5(5)$
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(37)$	$111.1(5)$	$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{C}(38)$	$111.6(6)$
$\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{C}(39)$	$111.3(6)$	$\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(40)$	$111.9(6)$
$\mathrm{C}(35)-\mathrm{C}(40)-\mathrm{C}(39)$	$110.9(5)$	$\mathrm{P}(1)-\mathrm{C}(41)-\mathrm{C}(42)$	$113.4(4)$
$\mathrm{P}(1)-\mathrm{C}(41)-\mathrm{C}(46)$	$119.2(4)$	$\mathrm{C}(42)-\mathrm{C}(41)-\mathrm{C}(46)$	$109.4(4)$
$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(43)$	$113.0(5)$	$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)$	$112.4(6)$
$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)$	$110.3(5)$	$\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{C}(46)$	$112.4(5)$
$\mathrm{C}(41)-\mathrm{C}(46)-\mathrm{C}(45)$	$112.0(5)$		

Table A.9.1: Crystallographic and refinement data for cis-[Ru(acac) $\left.{ }_{2}\left(\mathrm{SbPh}_{3}\right)_{2}\right]$. Crystal Data

Empirical Formula	$\mathrm{C}_{46} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{RuSb}_{2}$
Formula Weight	1005.42
Crystal Colour, Habit	yellow, plate
Crystal Dimensions	$0.44 \times 0.20 \times 0.05 \mathrm{~mm}$
Crystal System	triclinic
Lattice Type	Primitive
No. of Reflections Used for	21 (18.2-23.4 ${ }^{\circ}$)
Unit Cell Determination (2θ range)	
Lattice Parameters	$\begin{aligned} & \mathrm{a}=10.810(4) \AA \\ & \mathrm{b}=11.414(6) \AA \\ & \mathrm{c}=18.170(6) \AA \end{aligned}$
	$\alpha=74.89(4)^{\circ}$
	$\beta=87.06(4)^{\circ}$
	$\gamma=79.56$ (3) ${ }^{\circ}$
	$\mathrm{V}=2129(2) \AA^{3}$
Space Group	P $\overline{1}$ (\#2)
Z value	2
$\mathrm{D}_{\text {calc }}$	$1.569 \mathrm{~g} / \mathrm{cm}^{3}$
F_{000}	996.00
$\mu(\operatorname{MoK} \alpha)$	$16.49 \mathrm{~cm}^{-1}$
Intensity Measurements	
diffractometer	Philips PW1100/20
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71069 \AA)$ graphite monochromated
Take-off Angle	$2.8{ }^{\circ}$
Detector Aperture	3.4 mm horizontal 3.4 mm vertical
Crystal to Detector Distance	195 mm
Voltage, Current	$50 \mathrm{kV}, 25 \mathrm{~mA}$
Temperature	$23.0{ }^{\circ} \mathrm{C}$
Scan Type	$\omega-2 \theta$
Scan Rate	$3.0^{\circ} / \mathrm{min}($ in ω)
Scan Width	$(1.10+0.34 \tan \theta)^{\circ}$
$2 \theta_{\text {max }}$	52.0°
No. of Reflections Measured Corrections	Total: 8349 Lorentz-polarization Absorption (trans. Factors: 0.718-0.922)

Table A.9.1 (cont): Crystallographic and refinement data for cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{SbPh}_{3}\right)_{2}\right]$.

Structure Solution and Refinement

Structure Solution
Refinement
Function Minimized
Least Squares Weights
p-factor
Anamalous Dispersion
No. Observations ($\mathrm{I}>2.0 \sigma(\mathrm{I})$)
No. of variables
Direct Methods (SHELXS86)
Full-Matrix least squares
$\Sigma w(|\mathrm{Fo}|-|\mathrm{Fc}|)^{2}$
$w=\left[\sigma_{c}{ }^{2}(\mathrm{Fo})+0.25 \mathrm{p}^{2} \mathrm{Fo}^{2}\right]^{-1}$
0.02

All non-hydrogen atoms 4480 478
Reflection/Parameter Rotation
Residuals: R; Rw
Goodness of Fit Indicator
Max Shift/Error in Final Cycle
Max peak in Final Diff. Map
Min peak in Final Diff Map
9.37
0.048; 0.043
1.41
0.01
$0.94 e^{-} / \AA^{3}$
$-0.69 e^{-/} / \AA^{3}$

Table A.9.2: Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of cis-[Ru(acac) $\left.)_{2}\left(\mathrm{SbPh}_{3}\right)_{2}\right]$.

$\mathrm{Sb}(1)-\mathrm{Ru}(1)$	2.571(1)	$\mathrm{Sb}(1)-\mathrm{C}(11)$	2.163(9)
$\mathrm{Sb}(1)-\mathrm{C}(17)$	2.135(9)	$\mathrm{Sb}(1)-\mathrm{C}(23)$	2.132(9)
$\mathrm{Sb}(2)-\mathrm{Ru}(1)$	2.543(1)	$\mathrm{Sb}(2)-\mathrm{C}(29)$	2.132(9)
$\mathrm{Sb}(2)-\mathrm{C}(35)$	2.133(9)	$\mathrm{Sb}(2)-\mathrm{C}(41)$	2.141(9)
$\mathrm{Ru}(1)-\mathrm{O}(1)$	2.052(6)	$\mathrm{Ru}(1)-\mathrm{O}(2)$	2.067(6)
$\mathrm{Ru}(1)-\mathrm{O}(3)$	2.057(6)	$\mathrm{Ru}(1)-\mathrm{O}(4)$	2.063(6)
$\mathrm{O}(1)-\mathrm{C}(2)$	1.25(1)	$\mathrm{O}(2)-\mathrm{C}(4)$	1.27(1)
$\mathrm{O}(3)-\mathrm{C}(7)$	1.27(1)	$\mathrm{O}(4)-\mathrm{C}(9)$	1.27(1)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.50(1)	C(2)-C(3)	1.39(1)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.40(1)	C(4)-C(5)	1.51(1)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.51(1)	C(7)-C(8)	1.38(1)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.39(1)	C(9)-C(10)	1.51(1)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.36(1)	$\mathrm{C}(11)-\mathrm{C}(16)$	1.39(1)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.39(1)	C(13)-C(14)	1136(2)
C(14)-C(15)	1.36(2)	C(15)-C(16)	1.39(1)
C(17)-C(18)	1.35(1)	C(17)-C(22)	1.41(1)
C(18)-C(19)	1.41(1)	$\mathrm{C}(19)-\mathrm{C}(20)$	1.37(2)
C(20)-C(21)	1.34(2)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.40(1)
$\mathrm{C}(23)-\mathrm{C}(24)$	1.36 (1)	C(23)-C(28)	1.39(1)
$\mathrm{C}(24)-\mathrm{C}(25)$	1.40(1)	C(25)-C(26)	1.34(1)
C(26)-C(27)	1.37(2)	C(27)-C(28)	1.36(1)
C(29)-C(30)	1.37(1)	C(29)-C(32)	1.35(2)
C(32)-C(33)	1.37(2)	C(33)-C(34)	1.40(2)
C(35)-C(36)	1.32(1)	C(35)-C(40)	1.39(1)
C(36)-C(37)	1.41(2)	C(37)-C(38)	1.37(2)
C(38)-C(39)	1.40(2)	C(39)-C(40)	1.35(2)
C(41)-C(42)	1.38(1)	C(41)-C(46)	1.37(1)
C(42)-C(43)	1.38(1)	C(43)-C(44)	1.33(2)
$\mathrm{C}(44)-\mathrm{C}(45)$	1.37(2)	$\mathrm{C}(45)-\mathrm{C}(46)$	1.39(1)
$\mathrm{Ru}(1)-\mathrm{Sb}(1)-\mathrm{C}(11)$	125.1(3)	$\mathrm{Ru}(1)-\mathrm{Sb}(1)-\mathrm{C}(17)$	109.1(3)
$\mathrm{Ru}(1)-\mathrm{Sb}(1)-\mathrm{C}(23)$	118.9(2)	$\mathrm{C}(11)-\mathrm{Sb}(1)-\mathrm{C}(17)$	101.5(4)
$\mathrm{C}(11)-\mathrm{Sb}(1)-\mathrm{C}(23)$	98.3(4)	$\mathrm{C}(17)-\mathrm{Sb}(1)-\mathrm{C}(23)$	100.1(4)
$\mathrm{Ru}(1)-\mathrm{Sb}(1)-\mathrm{C}(29)$	121.0(3)	$\mathrm{Ru}(1)-\mathrm{Sb}(2)-\mathrm{C}(35)$	115.4(3)
$\mathrm{Ru}(1)-\mathrm{Sb}(2)-\mathrm{C}(41)$	116.3(3)	$\mathrm{C}(29)-\mathrm{Sb}(2)-\mathrm{C}(35)$	100.3(4)
$\mathrm{C}(29)-\mathrm{Sb}(2)-\mathrm{C}(41)$	100.7(4)	$\mathrm{C}(35)-\mathrm{Sb}(2)-\mathrm{C}(41)$	99.6(4)
$\mathrm{Sb}(1)-\mathrm{Ru}(1)-\mathrm{Sb}(2)$	96.89(3)	$\mathrm{Sb}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)$	87.4(2)
$\mathrm{Sb}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	173.2(2)	$\mathrm{Sb}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	94.7(2)
$\mathrm{Sb}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	87.4(2)	$\mathrm{Sb}(2)-\mathrm{Ru}(1)-\mathrm{O}(1)$	92.4(2)

Table A.9.2 (cont): Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of cis-[Ru(acac) $\left.)_{2}\left(\mathrm{SbPh}_{3}\right)_{2}\right]$.

$\mathrm{Sb}(2)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$89.9(2)$	$\mathrm{Sb}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$89.2(2)$
$\mathrm{Sb}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$175.4(2)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$92.3(2)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$177.1(3)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$86.3(2)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$85.4(2)$	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$85.8(2)$
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$91.9(2)$	$\mathrm{Ru}(1)-\mathrm{O}(1)-\mathrm{C}(2)$	$123.8(6)$
$\mathrm{Ru}(1)-\mathrm{O}(2)-\mathrm{C}(4)$	$123.0(6)$	$\mathrm{Ru}(1)-\mathrm{O}(3)-\mathrm{C}(7)$	$123.5(6)$
$\mathrm{Ru}(1)-\mathrm{O}(4)-\mathrm{C}(9)$	$122.8(6)$	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$116(1)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$125.9(9)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$118(1)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$129.0(9)$	$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	$125.6(9)$
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$114.5(9)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$119.9(9)$
$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(6)$	$115(1)$	$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(8)$	$126.5(9)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$118(1)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$128(1)$
$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{C}(8)$	$127(1)$	$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{C}(10)$	$114(1)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$119(1)$	$\mathrm{Sb}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$119.6(8)$
$\mathrm{Sb}(1)-\mathrm{C}(11)-\mathrm{C}(16)$	$121.3(8)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$	$119.0(9)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$121(1)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$120(1)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$120(1)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$121(1)$
$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	$119(1)$	$\mathrm{Sb}(1)-\mathrm{C}(17)-\mathrm{C}(18)$	$1202 .(8)$
$\mathrm{Sb}(1)-\mathrm{C}(17)-\mathrm{C}(22)$	$120.5(8)$	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(22)$	$119(1)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$121(1)$	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$120(1)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$119(1)$	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$122(1)$
$\mathrm{C}(17)-\mathrm{C}(22)-\mathrm{C}(21)$	$118(1)$	$\mathrm{Sb}(1)-\mathrm{C}(23)-\mathrm{C}(24)$	$120.3(8)$
$\mathrm{Sb}(1)-\mathrm{C}(23)-\mathrm{C}(28)$	$122.7(8)$	$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(28)$	$116.9(9)$
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$122(1)$	$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$119(1)$
$\mathrm{C} 925)-\mathrm{C}(26)-\mathrm{C}(27)$	$122(1)$	$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	$119(1)$
$\mathrm{C}(23)-\mathrm{C}(28)-\mathrm{C}(27)$	$122(1)$	$\mathrm{Sb}(2)-\mathrm{C}(29)-\mathrm{C}(30)$	$118.3(8)$
$\mathrm{Sb}(2)-\mathrm{C}(29)-\mathrm{C}(34)$	$122.8(8)$	$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(34)$	$119(1)$
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	$123(1)$	$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	$118(1)$
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	$122(1)$	$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	$120(1)$
$\mathrm{C}(29)-\mathrm{C}(34)-\mathrm{C}(33)$	$118(1)$	$\mathrm{Sb}(2)-\mathrm{C}(35)-\mathrm{C}(36)$	$119.4(9)$
$\mathrm{Sb}(2)-\mathrm{C}(35)-\mathrm{C}(40)$	$122.1(8)$	$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(40)$	$118(1)$
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(37)$	$123(1)$	$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{C}(38)$	$118(1)$
$\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{C}(39)$	$120(1)$	$\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(40)$	$119(1)$
$\mathrm{C}(35)-\mathrm{C}(40)-\mathrm{C}(39)$	$122(1)$	$\mathrm{Sb}(2)-\mathrm{C}(41)-\mathrm{C}(42)$	$117.4(8)$
$\mathrm{Sb}(2)-\mathrm{C}(41)-\mathrm{C}(46)$	$124.0(8)$	$\mathrm{C}(42)-\mathrm{C}(41)-\mathrm{C}(46)$	$118(1)$
$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(43)$	$121(1)$	$\mathrm{C}(42)-\mathrm{C} 943)-\mathrm{C}(44)$	$120(1)$
$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)$	$120(1)$	$\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{C}(46)$	$120(1)$
$\mathrm{C}(41)-\mathrm{C}(46)-\mathrm{C}(45)$	$120(1)$		

Table A.10.1: Crystallographic and refinement data for cis-$\left[\left\{\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{PPr}_{3}\right)\right]_{2}\left(\mu-\mathrm{N}_{2}\right)\right] . \mathrm{C}_{6} \mathrm{H}_{14}$ at 200 K .

Crystal Data

Empirical Formula
Formula Weight
Crystal Colour, Habit
Crystal Dimensions
Crystal System
Lattice Type
Lattice Parameters

Space Group
Z value
$\mathrm{D}_{\text {calc }}$
F_{000}
$\mu(\operatorname{MoK} \alpha)$
$\mathrm{C}_{44} \mathrm{H}_{84} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{P}_{2} \mathrm{Ru}_{2}$ 1033.24
orange, block
$0.20 \times 0.10 \times 0.10 \mathrm{~mm}$ monoclinic
C-centered
$a=20.087(1) \AA$
$\mathrm{b}=14.562(1) \AA$
$\mathrm{c}=18.065(1) \AA$
$\beta=106.538(4)^{\circ}$
$V=5065.5(5) \AA^{3}$
P2/c (\#15)
4
$1.355 \mathrm{~g} / \mathrm{cm}^{3}$
2176.00
$7.07 \mathrm{~cm}^{-1}$

Intensity Measurements
diffractometer
Radiation

Detector Aperture
Data Images
Detector Position
$2 \theta_{\text {max }}$
No. of Reflections Measured
Corrections

Nonius KappaCD
$\operatorname{MoK} \alpha(\lambda=0.71069 \AA)$
graphite monochromated
$65 \mathrm{~mm} \times 65 \mathrm{~mm}$
$1.9^{\circ} /$ frame; $30 \mathrm{sec} /{ }^{\circ}$ 25.00 mm
55.1°
Total: 9739
Unique: $5751\left(\mathrm{R}_{\text {int }}=0.051\right)$
Lorentz-polarization

Table A.10.1 (cont): Crystallographic and refinement data for cis$\left[\left\{R u(a c a c)_{2}\left(\text { Prri }_{3}\right)\right\}_{2}\left(\mu-N_{2}\right)\right] . C_{6} H_{14}$ at 200 K .

Structure Solution and Refinement

Structure Solution
Refinement
Function Minimized
Least Squares Weights
p-factor
Anamalous Dispersion
No. Observations ($\mathrm{I}>2.0 \sigma(\mathrm{I})$)
No. of variables
Reflection/Parameter Rotation
Residuals: R; Rw
Goodness of Fit Indicator
Max Shift/Error in Final Cycle
Max peak in Final Diff. Map
Min peak in Final Diff Map

Patterson Methods (DIRDIF92 PATTY)
Full-Matrix least squares
$\sum w(|\mathrm{Fo}|-|\mathrm{Fc}|)^{2}$
$w=\left[\sigma_{\mathrm{c}}^{2}(\mathrm{Fo})+0.25 \mathrm{p}^{2} \mathrm{Fo}^{2}\right]^{-1}$
0.040

All non-hydrogen atoms
3093
254
12.18
0.050; 0.059
1.44
0.01
$0.62 e^{-} / \AA^{3}$
$-0.55 e^{-} / \AA^{3}$

Table A.10.2: Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of cis-[\{Ru(acac) $\left.)_{2}\left(P^{2} \boldsymbol{i}_{3}\right)\right\}_{2}(\mu$ $\left.N_{2}\right)$]. $\mathrm{C}_{6} \mathrm{H}_{14}$ at 200 K .

$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.312(2)$	$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.046(4)$
$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.035(4)$	$\mathrm{Ru}(1)-\mathrm{O}(3)$	$2.050(4)$
$\mathrm{Ru}(1)-\mathrm{O}(4)$	$2.107(4)$	$\mathrm{Ru}(1)-\mathrm{N}(1)$	$1.919(4)$
$\mathrm{P}(1)-\mathrm{C}(11)$	$1.855(7)$	$\mathrm{P}(1)-\mathrm{C}(14)$	$1.871(9)$
$\mathrm{P}(1)-\mathrm{C}(17)$	$1.88(1)$	$\mathrm{P}(1)-\mathrm{C}(17 \mathrm{a})$	$1.91(2)$
$\mathrm{O}(1)-\mathrm{C}(2)$	$1.268(7)$	$\mathrm{O}(2)-\mathrm{C}(4)$	$1.273(7)$
$\mathrm{O}(3)-\mathrm{C}(7)$	$1.281(7)$	$\mathrm{O}(4)-\mathrm{C}(9)$	$1.272(7)$
$\mathrm{N}(1)-\mathrm{N}(1)^{\mathrm{a}}$	$1.135(8)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.502(9)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.382(9)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.397(9)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.496(9)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.487(9)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.389(9)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.394(9)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.512(9)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.53(1)$
$\mathrm{C}(11)-\mathrm{C}(13)$	$1.53(1)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.52(1)$
$\mathrm{C}(14)-\mathrm{C}(16)$	$1.53(1)$	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.60(2)$
$\mathrm{C}(17)-\mathrm{C}(19)$	$1.49(2)$	$\mathrm{C}(17 \mathrm{a})-\mathrm{C}(19 \mathrm{a})$	$1.54(3)$
$\mathrm{C}(31)-\mathrm{C}(32)$	$1.354(9)^{*}$	$\mathrm{C}(32)-\mathrm{C}(33)$	$1.351(9)^{*}$
$\mathrm{C}(33)-\mathrm{C}(34)$	$1.346(9)^{*}$	$\mathrm{C}(34)-\mathrm{C}(35)$	$1.348(9)^{*}$
$\mathrm{C}(35)-\mathrm{C}(36)$	$1.345(9)^{*}$		

Table A.10.2 (cont): Interatomic distances (\AA) and angles (${ }^{\circ}$) involving non-
hydrogen atoms of the molecular structure of cis-[\{Ru(acac) $\left.)_{2}\left(P_{P r} i_{3}\right)\right\}_{2}(\mu-$ $\left.N_{2}\right)$ J. $\mathrm{C}_{6} \mathrm{H}_{14}$ at 200 K .

$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$96.0(1)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$92.3(1)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$90.2(1)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$177.9(1)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$92.6(1)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$92.4(2)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$173.8(2)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$82.5(2)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$90.3(2)$	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$86.8(1)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$86.4(1)$	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$174.2(2)$
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$91.3(2)$	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$90.0(2)$
$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$88.9(2)$	$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(11)$	$112.8(3)$
$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(14)$	$116.4(3)$	$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(17)$	$110.8(4)$
$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(17 \mathrm{a})$	$119.7(6)$	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(14)$	$101.8(4)$
$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(17)$	$117.9(5)$	$\mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(17 \mathrm{a})$	$93.6(7)$
$\mathrm{C}(14)-\mathrm{P}(1)-\mathrm{C}(17)$	$96.0(5)$	$\mathrm{C}(14)-\mathrm{P}(1)-\mathrm{C}(17 \mathrm{a})$	$108.9(7)$
$\mathrm{Ru}(1)-\mathrm{O}(1)-\mathrm{C}(2)$	$122.3(4)$		
$\mathrm{Ru}(1)-\mathrm{O}(2)-\mathrm{C}(4)$	$123.3(4)$	$\mathrm{Ru}(1)-\mathrm{O}(3)-\mathrm{C}(7)$	$124.7(4)$
$\mathrm{Ru}(1)-\mathrm{O}(4)-\mathrm{C}(9)$	$122.4(4)$	$\mathrm{Ru}(1)-\mathrm{N}(1)-\mathrm{N}(1)^{\mathrm{a}}$	$174.2(4)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$114.4(6)$	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$127.1(6)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$118.4(6)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$127.4(6)$
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	$126.1(5)$	$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$114.7(6)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$119.2(6)$	$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(6)$	$114.0(6)$
$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(8)$	$125.5(6)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$120.5(6)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$128.7(6)$	$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{C}(8)$	$126.8(6)$
$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{C}(10)$	$115.2(6)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$118.0(6)$
$\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$117.1(6)$	$\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{C}(13)$	$114.5(6)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(13)$	$109.9(7)$	$\mathrm{P}(1)-\mathrm{C}(14)-\mathrm{C}(15)$	$111.6(6)$
$\mathrm{P}(1)-\mathrm{C}(14)-\mathrm{C}(16)$	$110.4(7)$	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(16)$	$112.9(9)$
$\mathrm{P}(1)-\mathrm{C}(17)-\mathrm{C}(18)$	$108.8(8)$	$\mathrm{P}(1)-\mathrm{C}(17)-\mathrm{C}(19)$	$118.5(9)$
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(19)$	$114(1)$	$\mathrm{P}(1)-\mathrm{C}(17 \mathrm{a})-\mathrm{C}(18)$	$119(1)$
$\mathrm{P}(1)-\mathrm{C}(17 \mathrm{a})-\mathrm{C}(19 \mathrm{a})$	$122(2)$	$\mathrm{C}(18)-\mathrm{C}(17 \mathrm{a})-$	$118(2)$
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(35)$	$57(2)$	$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	$108(3)^{*}$
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	$112(3)^{*}$	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	$114(3)^{*}$
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$	$111(3)^{*}$		

[^4]Table A.11.1: Crystallographic and refinement data for cis-[Ru(acac) $\left.{ }_{2}\left(\underline{o}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}=\mathrm{C}\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right) \mathrm{Ph}\right)\right]\left[\mathrm{PF}_{6}\right] .\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$.

Crystal Data

Empirical Formula	$\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{PRu}$
Formula Weight	683.57
Crystal Colour, Habit	brown, block
Crystal Dimensions	$0.34 \times 0.28 \times 0.16 \mathrm{~mm}$
Crystal System	monoclinic
Lattice Type	Primitive
No. of Reflections used for Unit Cell Determination (2θ range)	20 (12.1-20.0 ${ }^{\circ}$
Omega Scan Peak Width at	0.33°
Half-height	
Lattice Parameters	$\begin{gathered} a=7.711(7) \AA \\ b=18.807(3) \AA \end{gathered}$
	$\mathrm{c}=20.903(4) \AA$
	$\beta=100.99(3){ }^{\circ}$
	$\mathrm{V}=2976(3) \AA^{3}$
Space Group	$\mathrm{P} 21 / \mathrm{n}$ (\#14)
Z value	4
$\mathrm{D}_{\text {calc }}$	$1.526 \mathrm{~g} / \mathrm{cm}^{3}$
F_{000}	1388.00
$\mu(\operatorname{MoK} \alpha)$	$6.39 \mathrm{~cm}^{-1}$
Intensit	urements
diffractometer	Rigaku AFC6S
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71069 \AA)$ graphite monochromated
Take-off Angle	6.0°
Detector Aperture	3.5 mm horizontal 3.5 mm vertical
Crystal to Detector Distance	200 mm
Temperature	$23.0{ }^{\circ} \mathrm{C}$
Scan Type	$\omega-2 \theta$
Scan Rate	$4.0^{\circ} / \mathrm{min}$ (in ω) (up to 4 scans)
Scan Width	$(0.80+0.34 \tan \theta)^{\circ}$
$2 \theta_{\text {max }}$	50.1°
No. of Reflections Measured	Total: 5877
Corrections	Unique: $5448\left(\mathrm{R}_{\text {int }}=0.032\right)$ Lorentz-polarization Absorption (trans. Factors: 0.9535-1.0000)

Table A.11.1 (cont): Crystallographic and refinement data for cis-[Ru(acac) $\left.)_{2}\left(\underline{o}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}=\mathrm{C}\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right) \mathrm{Ph}\right)\right]\left[\mathrm{PF}_{6}\right]$.

Structure Solution and Refinement

Structure Solution	Direct Methods (SIR92)
Refinement	Full-Matrix least squares
Function Minimized	$\sum w(\|\mathrm{Fo}\|-\|\mathrm{Fc}\|)^{2}$
Least Squares Weights	$w=\left[\sigma_{\mathrm{c}}{ }^{2}(\mathrm{Fo})+0.25 \mathrm{p}^{2} \mathrm{Fo}^{2}\right]^{-1}$
p-factor	0.050
Anamalous Dispersion	All non-hydrogen atoms
No. Observations ($\mathrm{I}>2.0 \sigma(\mathrm{I})$)	2626
No. of variables	347
Reflection/Parameter Rotation	7.57
Residuals: R; Rw	0.058; 0.051
Goodness of Fit Indicator	2.54
Max Shift/Error in Final Cycle	0.05
Max peak in Final Diff. Map	$1.13 e^{-} / \AA^{3}$
Min peak in Final Diff Map	$-0.65 e^{-} / \AA^{3}$

Table A.11.2: Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of cis-[Ru(acac) $\left.)_{2}\left(\underline{o}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}=\mathrm{C}\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right) P h\right)\right]\left[P F_{6}\right]$.

$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.116(5)$	$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.018(5)$
$\mathrm{Ru}(1)-\mathrm{O}(3)$	$2.018(5)$	$\mathrm{Ru}(1)-\mathrm{O}(4)$	$2.002(5)$
$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.152(5)$	$\mathrm{Ru}(1)-\mathrm{C}(7)$	$2.031(7)$
$\mathrm{P}(1)-\mathrm{F}(1)$	$1.452(8)$	$\mathrm{P}(1)-\mathrm{F}(2)$	$1.48(1)$
$\mathrm{P}(1)-\mathrm{F}(3)$	$1.491(7)$	$\mathrm{P}(1)-\mathrm{F}(4)$	$1.454(9)$
$\mathrm{P}(1)-\mathrm{F}(5)$	$1.428(9)$	$\mathrm{P}(1)-\mathrm{F}(6)$	$1.543(7)$
$\mathrm{O}(1)-\mathrm{C}(23)$	$1.268(9)$	$\mathrm{O}(2)-\mathrm{C}(25)$	$1.287(8)$
$\mathrm{O}(3)-\mathrm{C}(28)$	$1.270(8)$	$\mathrm{O}(4)-\mathrm{C}(30)$	$1.265(8)$
$\mathrm{O}(5)-\mathrm{C}(32)$	$1.12(2)$	$\mathrm{N}(1)-\mathrm{C}(1)$	$1.468(8)$
$\mathrm{N}(1)-\mathrm{C}(15)$	$1.481(9)$	$\mathrm{N}(1)-\mathrm{C}(16)$	$1.489(9)$
$\mathrm{N}(2)-\mathrm{C}(8)$	$1.488(8)$	$\mathrm{N}(2)-\mathrm{C}(17)$	$1.329(9)$
$\mathrm{N}(2)-\mathrm{C}(21)$	$1.344(9)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.376(9)$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.391(9)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.38(1)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.37(1)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.36(1)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.401(9)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.494(9)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.348(9)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.475(9)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.396(9)$	$\mathrm{C}(9)-\mathrm{C}(14)$	$1.39(1)$
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.37(1)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.38(1)$

Table A.11.2 (cont): Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of cis- $\left[R u(a c a c)_{2}\left(\underline{o}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}=\mathrm{C}\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right) \mathrm{Ph}\right)\right]\left[\mathrm{PF}_{6}\right]$.

$\mathrm{C}(12)-\mathrm{C}(13)$	$1.37(1)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.39(1)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.38(1)$	$\mathrm{C}(18)-\mathrm{C}(19)$	$1.36(1)$
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.37(1)$	$\mathrm{C}(20)-\mathrm{C}(21)$	$1.37(1)$
$\mathrm{C}(22)-\mathrm{C}(23)$	$1.50(1)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.40(1)$
$\mathrm{C}(24)-\mathrm{C}(25)$	$1.40(1)$	$\mathrm{C}(25)-\mathrm{C}(26)$	$1.50(1)$
$\mathrm{C}(27)-\mathrm{C}(28)$	$1.52(1)$	$\mathrm{C}(28)-\mathrm{C}(29)$	$1.38(1)$
$\mathrm{C}(29)-\mathrm{C}(30)$	$1.39(1)$	$\mathrm{C}(30)-\mathrm{C}(31)$	$1.50(1)$
$\mathrm{C}(32)-\mathrm{C}(33)$	$1.48(4)$	$\mathrm{C}(32)-\mathrm{C}(34)$	$1.32(3)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$89.4(2)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$84.2(2)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$90.5(2)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$91.7(2)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{C}(7)$	$171.8(2)$	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$86.7(2)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$178.1(2)$	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$95.2(2)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{C}(7)$	$87.4(2)$	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$91.4(2)$
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$175.5(2)$	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{C}(7)$	$103.1(2)$
$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$86.7(2)$	$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{C}(7)$	$92.9(2)$
$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{C}(7)$	$81.1(2)$	$\mathrm{F}(1)-\mathrm{P}(1)-\mathrm{F}(2)$	$89.1(8)$
$\mathrm{F}(1)-\mathrm{P}(1)-\mathrm{F}(3)$	$94.3(2)$	$\mathrm{F}(1)-\mathrm{P}(1)-\mathrm{F}(4)$	$178(1)$
$\mathrm{F}(1)-\mathrm{P}(1)-\mathrm{F}(5)$	$91.4(9)$	$\mathrm{F}(1)-\mathrm{P}(1)-\mathrm{F}(6)$	$88.3(5)$
$\mathrm{F}(2)-\mathrm{P}(1)-\mathrm{F}(3)$	$95.4(7)$	$\mathrm{F}(2)-\mathrm{P}(1)-\mathrm{F}(4)$	$92.4(9)$
$\mathrm{F}(2)-\mathrm{P}(1)-\mathrm{F}(5)$	$179.0(7)$	$\mathrm{F}(2)-\mathrm{P}(1)-\mathrm{F}(6)$	$93.7(5)$
$\mathrm{F}(3)-\mathrm{P}(1)-\mathrm{F}(4)$	$86.8(6)$	$\mathrm{F}(3)-\mathrm{P}(1)-\mathrm{F}(5)$	$83.8(6)$
$\mathrm{F}(3)-\mathrm{P}(1)-\mathrm{F}(6)$	$177.2(6)$	$\mathrm{F}(4)-\mathrm{P}(1)-\mathrm{F}(5)$	$87.0(7)$
$\mathrm{F}(4)-\mathrm{P}(1)-\mathrm{F}(6)$	$90.7(5)$	$\mathrm{F}(5)-\mathrm{P}(1)-\mathrm{F}(6)$	$97.1(7)$
$\mathrm{Ru}(1)-\mathrm{O}(1)-\mathrm{C}(23)$	$122.7(5)$	$\mathrm{Ru}(1)-\mathrm{O}(2)-\mathrm{C}(25)$	$124.1(5)$
$\mathrm{Ru}(1)-\mathrm{O}(3)-\mathrm{C}(28)$	$121.5(5)$	$\mathrm{Ru}(1)-\mathrm{O}(4)-\mathrm{C}(30)$	$123.5(5)$
$\mathrm{Ru}(1)-\mathrm{N}(1)-\mathrm{C}(1)$	$106.8(4)$	$\mathrm{Ru}(1)-\mathrm{N}(1)-\mathrm{C}(15)$	$111.4(5)$
$\mathrm{Ru}(1)-\mathrm{N}(1)-\mathrm{C}(16)$	$109.6(4)$	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(15)$	$109.2(6)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(16)$	$111.2(6)$	$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{C}(16)$	$108.5(6)$
$\mathrm{C}(8)-\mathrm{N}(2)-\mathrm{C}(17)$	$120.6(6)$	$\mathrm{C}(8)-\mathrm{N}(2)-\mathrm{C}(21)$	$118.9(6)$
$\mathrm{C}(17)-\mathrm{N}(2)-\mathrm{C}(21)$	$120.4(7)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$121.2(7)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	$117.0(6)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$121.8(7)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$118.7(7)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$121.0(7)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$119.9(7)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$121.3(7)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$117.2(6)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$116.4(6)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$126.2(7)$	$\mathrm{Ru}(1)-\mathrm{C}(7)-\mathrm{C}(6)$	$110.0(5)$
$\mathrm{Ru}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$128.4(5)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$121.0(6)$

Table A.11.2 (cont): Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of cis- $\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\underline{o}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}=\mathrm{C}\left(\mathrm{NC}_{5} \mathrm{H}_{5}\right) \mathrm{Ph}\right)\right]\left[\mathrm{PF}_{6}\right]$.

$\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(7)$	$116.1(6)$	$\mathrm{N}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	$110.5(6)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$133.4(6)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$121.5(7)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)$	$122.1(7)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)$	$116.4(7)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$121.5(7)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$121.3(8)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$118.2(8)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$120.6(8)$
$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	$121.9(8)$	$\mathrm{N}(2)-\mathrm{C}(17)-\mathrm{C}(18)$	$120.4(8)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$119.4(8)$	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$119.8(8)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$118.9(8)$	$\mathrm{N}(2)-\mathrm{C}(21)-\mathrm{C}(20)$	$121.0(7)$
$\mathrm{O}(1)-\mathrm{C}(23)-\mathrm{C}(22)$	$115.1(8)$	$\mathrm{O}(1)-\mathrm{C}(23)-\mathrm{C}(24)$	$125.5(7)$
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$119.4(8)$	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$126.8(7)$
$\mathrm{O}(2)-\mathrm{C}(25)-\mathrm{C}(24)$	$126.0(7)$	$\mathrm{O}(2)-\mathrm{C}(25)-\mathrm{C}(26)$	$116.1(7)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$117.9(7)$	$\mathrm{O}(3)-\mathrm{C}(28)-\mathrm{C}(27)$	$113.1(7)$
$\mathrm{O}(3)-\mathrm{C}(28)-\mathrm{C}(29)$	$126.8(7)$	$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	$120.1(8)$
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	$125.7(7)$	$\mathrm{O}(4)-\mathrm{C}(30)-\mathrm{C}(29)$	$125.8(7)$
$\mathrm{O}(4)-\mathrm{C}(30)-\mathrm{C}(31)$	$115.8(7)$	$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	$118.3(7)$
$\mathrm{O}(5)-\mathrm{C}(32)-\mathrm{C}(33)$	$118(4)$	$\mathrm{O}(5)-\mathrm{C}(32)-\mathrm{C}(34)$	$137(4)$
$\mathrm{C}(33)-\mathrm{C}(32) \mathrm{C}(34)$	$102(3)$		

Table A.12.1: Crystallographic and refinement data for $\left.\left.\underset{\text { cis-[Ru }}{\substack{I I I \\(a c a c)_{2}\left(\underline{O}-M e_{2} N C_{6} H_{4} C \\ C\right.}}(H)-C\left(=N E t_{2}\right) P h\right)\right]\left[P F_{6}\right]$.

Crystal Data

Empirical Formula
Formula Weight
Crystal Colour, Habit
Crystal Dimensions
Crystal System
Lattice Type
No. of Reflections used for
Unit Cell Determination (2θ
range)
Omega Scan Peak Width at
Half-height
Lattice Parameters

Space Group
Z value
$\mathrm{D}_{\text {calc }}$
F000
$\mu(\operatorname{MoK} \alpha)$
$\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{PRu}$ 738.69
black, block
$0.63 \times 0.20 \times 0.20 \mathrm{~mm}$
monoclinic
Primitive
25 (43.1-46.5 ${ }^{\circ}$)
0.35°
$\mathrm{a}=9.965(3) \AA$ $\mathrm{b}=21.604$ (4) \AA $\mathrm{c}=15.417(2) \AA$
$\beta=100.26(1)^{\circ}$ $\mathrm{V}=3266(1) \AA^{3}$

P2 ${ }_{1} / \mathrm{c}$ (\#14)
4
$1.502 \mathrm{~g} / \mathrm{cm}^{3}$
1516.00
$5.86 \mathrm{~cm}^{-1}$

Intensity Measurements
diffractometer
Radiation

Take-off Angle
Detector Aperture
Crystal to Detector Distance
Temperature
Scan Type
Scan Rate
Scan Width
$2 \theta_{\text {max }}$
No. of Reflections Measured
Corrections

Rigaku AFC6S
$\operatorname{MoK} \alpha(\lambda=0.71069 \AA$ Aㄱ graphite monochromated 6.0°
4.0 mm horizontal 4.0 mm vertical 200 mm $23.0^{\circ} \mathrm{C}$ $\omega-2 \theta$
$8.0^{\circ} / \mathrm{min}($ in $\omega)$ (up to 4 scans)
$(1.10+0.34 \tan \theta)^{\circ}$ 55.1°
Total: 8160
Unique: $7729\left(\mathrm{R}_{\text {int }}=0.020\right)$
Lorentz-polarization
Absorption
(trans. Factors: 0.8714-0.9172)

Table A.12.1 (cont): Crystallographic and refinement data for $\left.\left.\left.\underset{\text { cis- }\left[R u^{I I I}(a c a c)_{2}\left(\underline{O}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})-\mathrm{C}(=\mathrm{NEt}\right.\right.}{2}\right) \mathrm{Ph}\right)\right]\left[\mathrm{PF}_{6}\right]$.

Structure Solution and Refinement

Structure Solution
Refinement
Function Minimized
Least Squares Weights p-factor
Anamalous Dispersion
No. Observations ($\mathrm{I}>2.0 \sigma(\mathrm{I})$)
No. of variables
Reflection/Parameter Rotation
Residuals: R; Rw
Goodness of Fit Indicator
Max Shift/Error in Final Cycle
Max peak in Final Diff. Map
Min peak in Final Diff Map

Direct Methods (SIR92)
Full-Matrix least squares
$\sum w(|\mathrm{Fo}|-|\mathrm{Fc}|)^{2}$
$w=\left[\sigma_{\mathrm{c}}^{2}(\mathrm{Fo})+0.25 \mathrm{p}^{2} \mathrm{Fo}^{2}\right]^{-1}$
0.020

All non-hydrogen atoms
4652
517
9.00 0.033; 0.035
1.42
0.07
$0.46 e^{-} / \AA^{3}$
$-0.31 e^{-} / \AA^{3}$

Table A.12.2: Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of cis-[Ru $\left.{ }^{I I I}(\text { acac })_{2}\left(\underline{o}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})-\mathrm{C}\left(=\mathrm{NEt}_{2}\right) \mathrm{Ph}\right)\right]\left[\mathrm{PF}_{6}\right]$.

$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.081(2)$	$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.004(2)$
$\mathrm{Ru}(1)-\mathrm{O}(3)$	$2.019(2)$	$\mathrm{Ru}(1)-\mathrm{O}(4)$	$1.990(2)$
$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.181(3)$	$\mathrm{Ru}(1)-\mathrm{C}(8)$	$2.194(3)$
$\mathrm{P}(1)-\mathrm{F}(1)$	$1.568(3)$	$\mathrm{P}(1)-\mathrm{F}(2)$	$1.577(3)$
$\mathrm{P}(1)-\mathrm{F}(3)$	$1.564(3)$	$\mathrm{P}(1)-\mathrm{F}(4)$	$1.582(3)$
$\mathrm{P}(1)-\mathrm{F}(5)$	$1.549(3)$	$\mathrm{P}(1)-\mathrm{F}(6)$	$1.579(3)$
$\mathrm{O}(1)-\mathrm{C}(22)$	$1.280(4)$	$\mathrm{O}(2)-\mathrm{C}(24)$	$1.286(4)$
$\mathrm{O}(3)-\mathrm{C}(27)$	$1.266(4)$	$\mathrm{O}(4)-\mathrm{C}(29)$	$1.279(5)$
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.472(4)$	$\mathrm{N}(1)-\mathrm{C}(15)$	$1.498(5)$
$\mathrm{N}(1)-\mathrm{C}(16)$	$1.503(5)$	$\mathrm{N}(2)-\mathrm{C}(19)$	$1.483(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.383(5)$	$\mathrm{C}(1)-\mathrm{C}(6)$	$1.397(4)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.383(5)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.360(6)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.377(5)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.392(4)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.495(4)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.426(4)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.500(4)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.390(5)$
$\mathrm{C}(9)-\mathrm{C}(14)$	$1.392(5)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.381(5)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.370(6)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.369(6)$

Table A.12.2 (cont): Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of

$\underline{\text { cis-[Ru }}$ [II $\left.(a c a c)_{2}\left(\underline{O}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{H})-\mathrm{C}\left(=N E t_{2}\right) P \mathrm{Ph}\right)\right]\left[P F_{6}\right]$.			
$\mathrm{C}(13)-\mathrm{C}(14)$	1.392(5)	$\mathrm{C}(17)-\mathrm{C}(18)$	1.503(6)
$\mathrm{C}(19)-\mathrm{C}(20)$	1.512(6)	$\mathrm{C}(21)-\mathrm{C}(22)$	1.510(6)
C(22)-C(23)	1.380(5)	$\mathrm{C}(23)-\mathrm{C}(24)$	1.379(5)
$\mathrm{C}(24)-\mathrm{C}(25)$	1.502(5)	$\mathrm{C}(26)-\mathrm{C}(27)$	1.497(6)
C(27)-C(28)	1.400(6)	$\mathrm{C}(28)-\mathrm{C}(29)$	1.377(6)
$\mathrm{C}(29)-\mathrm{C}(30)$	1.499(7)		
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	89.47(9)	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	88.43(9)
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	90.1(1)	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	88.9(1)
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{C}(8)$	173.1(1)	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	88.28(9)
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	179.5(1)	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	93.4(1)
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{C}(8)$	87.9(1)	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(4)$	92.0(1)
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{N}(1)$	176.9(1)	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{C}(8)$	85.1(1)
$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{N}(1)$	86.3(1)	$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{C}(8)$	92.6(1)
$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{C}(8)$	97.5(1)	$\mathrm{F}(1)-\mathrm{P}(1)-\mathrm{F}(2)$	89.0(2)
$\mathrm{F}(1)-\mathrm{P}(1)-\mathrm{F}(3)$	91.8(2)	$\mathrm{F}(1)-\mathrm{P}(1)-\mathrm{F}(4)$	178.5(2)
$\mathrm{F}(1)-\mathrm{P}(1)-\mathrm{F}(5)$	91.4(2)	$\mathrm{F}(1)-\mathrm{P}(1)-\mathrm{F}(6)$	89.0(2)
$\mathrm{F}(2)-\mathrm{P}(1)-\mathrm{F}(3)$	89.7(2)	$\mathrm{F}(2)-\mathrm{P}(1)-\mathrm{F}(4)$	89.6(2)
$\mathrm{F}(2)-\mathrm{P}(1)-\mathrm{F}(5)$	179.4(2)	$\mathrm{F}(2)-\mathrm{P}(1)-\mathrm{F}(6)$	88.7(2)
$\mathrm{F}(3)-\mathrm{P}(1)-\mathrm{F}(4)$	88.8(2)	$\mathrm{F}(3)-\mathrm{P}(1)-\mathrm{F}(5)$	90.7(2)
$\mathrm{F}(3)-\mathrm{P}(1)-\mathrm{F}(6)$	178.2(2)	$\mathrm{F}(4)-\mathrm{P}(1)-\mathrm{F}(5)$	89.9(2)
$\mathrm{F}(4)-\mathrm{P}(1)-\mathrm{F}(6)$	90.4(2)	$\mathrm{F}(5)-\mathrm{P}(1)-\mathrm{F}(6)$	90.9(2)
$\mathrm{Ru}(1)-\mathrm{O}(1)-\mathrm{C}(22)$	124.7(2)	$\mathrm{Ru}(1)-\mathrm{O}(2)-\mathrm{C}(24)$	126.8(2)
$\mathrm{Ru}(1)-\mathrm{O}(3)-\mathrm{C}(27)$	124.3(3)	$\mathrm{Ru}(1)-\mathrm{O}(4)-\mathrm{C}(29)$	125.1(3)
$\mathrm{Ru}(1)-\mathrm{N}(1)-\mathrm{C}(1)$	114.6(2)	$\mathrm{Ru}(1)-\mathrm{N}(1)-\mathrm{C}(15)$	109.8(2)
$\mathrm{Ru}(1)-\mathrm{N}(1)-\mathrm{C}(16)$	108.1(3)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(15)$	107.1(3)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(16)$	110.8(3)	$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{C}(16)$	106.1(3)
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(17)$	123.5(3)	$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(19)$	121.9(3)
$\mathrm{C}(17)-\mathrm{N}(2)-\mathrm{C}(19)$	114.3(3)	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	121.9(3)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	119.0(3)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	119.1(3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	120.4(4)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	121.0(4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	119.6(4)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	120.6(4)
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	119.4(3)	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	122.7(3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	117.5(3)	$\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	118.1(3)
$\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	122.7(3)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	119.2(3)
$\mathrm{Ru}(1)-\mathrm{C}(8)-\mathrm{C}(7)$	95.5(2)	$\mathrm{Ru}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	113.9(2)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	123.7(3)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	126.4(3)

Table A.12.2 (cont): Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of

$C(8)-C(9)-C(14)$	116.4(3)	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)$	117.1(3)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	121.1(4)	C(10)-C(11)-C(12)	121.2(4)
C(11)-C(12)-C(13)	118.7(4)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	120.8(4)
C(9)-C(14)-C(13)	121.0(4)	$\mathrm{N}(2)-\mathrm{C}(17)-\mathrm{C}(18)$	112.8(3)
$\mathrm{N}(2)-\mathrm{C}(19)-\mathrm{C}(20)$	112.3(3)	$\mathrm{O}(1)-\mathrm{C}(22)-\mathrm{C}(21)$	114.7(4)
$\mathrm{O}(1)-\mathrm{C}(22)-\mathrm{C}(23)$	125.6(3)	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	119.7(4)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	127.1(4)	$\mathrm{O}(2)-\mathrm{C}(24)-\mathrm{C}(23)$	125.4(4)
$\mathrm{O}(2)-\mathrm{C}(24)-\mathrm{C}(25)$	113.9(3)	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	120.6(3)
$\mathrm{O}(3)-\mathrm{C}(27)-\mathrm{C}(26)$	115.6(4)	$\mathrm{O}(3)-\mathrm{C}(27)-\mathrm{C}(28)$	125.7(4)
C(26)-C(27)-C(28)	118.7(4)	$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	126.9(4)
$\mathrm{O}(4)-\mathrm{C}(29)-\mathrm{C}(28)$	125.5(4)	$\mathrm{O}(4)-\mathrm{C}(29)-\mathrm{C}(30)$	114.1(5)
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	120.4(5)		

Table A.13.1: Crystallographic and refinement data for cis-[Ru(acac) $\left.)_{2}\left(\underline{o}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O})-\mathrm{CH}_{2} \mathrm{Ph}\right)\right]\left[\mathrm{PF}_{6}\right]$.

Crystal Data

Empirical Formula
Formula Weight
Crystal Colour, Habit
Crystal Dimensions
Crystal System
Lattice Type
No. of Reflections used for
Unit Cell Determination (2θ range)
Omega Scan Peak Width at
Half-height
Lattice Parameters
$\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~F}_{6} \mathrm{NO}_{5} \mathrm{PRu}$ 683.57
brown, block
$0.34 \times 0.28 \times 0.16 \mathrm{~mm}$ monoclinic
Primitive
$20\left(12.1-20.0^{\circ}\right)$
0.33°
$a=7.711(7) \AA$
$\mathrm{b}=18.807(3) \AA$
$\mathrm{c}=20.903(4) \AA$
$\beta=100.99(3){ }^{\circ}$
$\mathrm{V}=2976(3) \AA^{3}$
P2 ${ }_{1} / \mathrm{n}$ (\#14)
4
$1.526 \mathrm{~g} / \mathrm{cm}^{3}$
1388.00
$6.39 \mathrm{~cm}^{-1}$

Table A.13.1 (cont): Crystallographic and refinement data for cis-[Ru(acac) $\left.{ }_{2}\left(\underline{o}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O})-\mathrm{CH}_{2} P h\right)\right]\left[\mathrm{PF}_{6}\right]$.

Intensity Measurements
diffractometer
Radiation

Take-off Angle
Detector Aperture
Crystal to Detector Distance
Temperature
Scan Type
Scan Rate
Scan Width
$2 \theta_{\text {max }}$
No. of Reflections Measured
Corrections

Rigaku AFC6S
$\operatorname{MoK} \alpha(\lambda=0.71069 \AA)$
graphite monochromated
6.0°
3.5 mm horizontal 3.5 mm vertical 200 mm $23.0^{\circ} \mathrm{C}$ $\omega-2 \theta$
$4.0^{\circ} / \mathrm{min}$ (in ω) (up to 4 scans) $(0.80+0.34 \tan \theta)^{\circ}$ 50.1°

$$
\text { Total: } 5877
$$

Unique: 5448 ($\mathrm{R}_{\text {int }}=0.032$)
Lorentz-polarization
Absorption
(trans. Factors: 0.9535-1.0000)

Structure Solution and Refinement

Structure Solution
Refinement
Function Minimized
Least Squares Weights
p-factor
Anamalous Dispersion
No. Observations (I>2.0 (I))
No. of variables
Direct Methods (SIR92)
Full-Matrix least squares
$\Sigma w(|\mathrm{Fo}|-|\mathrm{Fc}|)^{2}$
$w=\left[\sigma_{\mathrm{c}}^{2}(\mathrm{Fo})+0.25 \mathrm{p}^{2} \mathrm{Fo}^{2}\right]^{-1}$
0.050

All non-hydrogen atoms
2626
347
Reflection/Parameter Rotation
7.57

Residuals: R; Rw
Goodness of Fit Indicator
Max Shift/Error in Final Cycle
Max peak in Final Diff. Map
Min peak in Final Diff Map
0.058; 0.051
2.54

$$
0.05
$$

$1.13 e^{-} / \AA^{3}$
$-0.65 e^{-} / \AA^{3}$

Table A.13.2: Interatomic distances ($A \circ$) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of $\underline{c i s}-\left[R u(a c a c)_{2}\left(\underline{o}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O})-\mathrm{CH}_{2} \mathrm{Ph}\right)\right]\left[\mathrm{PF}_{6}\right]$.

$\mathrm{Ru}(1)-\mathrm{O}(1)$	1.978(7)	$\mathrm{Ru}(1)-\mathrm{O}(2)$	2.003(6)
$\mathrm{Ru}(1)-\mathrm{O}(3)$	1.989(7)	$\mathrm{Ru}(1)-\mathrm{O}(4)$	1.995(7)
$\mathrm{Ru}(1)-\mathrm{O}(5)$	2.016(7)	$\mathrm{Ru}(1)-\mathrm{N}(1)$	2.148(9)
$\mathrm{P}(1)-\mathrm{F}(1)$	1.54(1)	$\mathrm{P}(1)-\mathrm{F}(2)$	1.53(1)
$\mathrm{P}(1)-\mathrm{F}(3)$	1.61(2)	$\mathrm{P}(1) \mathrm{F}\left(3^{\prime}\right)$	1.59(2)
$\mathrm{P}(1)-\mathrm{F}(4)$	1.56(2)	$\mathrm{P}(1)-\mathrm{F}\left(4^{\prime}\right)$	1.56(3)
$\mathrm{P}(1)-\mathrm{F}(5)$	1.59(2)	$\mathrm{P}(1)-\mathrm{F}\left(5^{\prime}\right)$	1.60(2)
$\mathrm{P}(1)-\mathrm{F}(6)$	1.52(3)	$\mathrm{P}(1)-\mathrm{F}\left(6^{\prime}\right)$	1.63(2)
$\mathrm{F}(3)-\mathrm{F}(3$ ')	0.95(3)	$\mathrm{F}(3)-\mathrm{F}\left(6^{\prime}\right)$	1.63(3)
$F\left(3^{\prime}\right)-\mathrm{F}(4)$	1.48(2)	$F(4)-F\left(4^{\prime}\right)$	1.06(3)
$\mathrm{F}\left(4^{\prime}\right)-\mathrm{F}(5)$	1.43(3)	$F(5)-\mathrm{F}\left(5^{\prime}\right)$	1.15(2)
$\mathrm{F}\left(5^{\prime}\right)-\mathrm{F}(6)$	1.38(3)	$\mathrm{F}(6)-\mathrm{F}\left(6^{\prime}\right)$	1.02(3)
$\mathrm{O}(1)-\mathrm{C}(18)$	1.27(1)	$\mathrm{O}(2)-\mathrm{C}(20)$	1.26(1)
$\mathrm{O}(3)-\mathrm{C}(23)$	1.26(1)	$\mathrm{O}(4)-\mathrm{C}(25)$	1.26(1)
$\mathrm{O}(5)-\mathrm{C}(7)$	1.24(1)	$\mathrm{N}(1)-\mathrm{C}(1)$	1.48(1)
$\mathrm{N}(1)-\mathrm{C}(15)$	1.48(1)	$\mathrm{N}(1)-\mathrm{C}(16)$	1.50(1)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.35(1)	$\mathrm{C}(1)-\mathrm{C}(6)$	1.44(1)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.39(2)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.35(2)
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.34(2)$	$\mathrm{C}(5)-\mathrm{C}(6)$	1.39(2)
C(6)-C(7)	1.46(2)	C(7)-C(8)	1.53(1)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.49(2)	C(9)-C(10)	1.36(2)
C(9)-C(14)	1.37(2)	C(10)-C(11)	1.39(2)
C(11)-C(12)	1.34(3)	$\mathrm{C}(12)-\mathrm{C}(13)$	1.33(4)
C(13)-C(14)	1.43(3)	$\mathrm{C}(17)-\mathrm{C}(18)$	1.48(1)
C(18)-C(19)	1.40(1)	$\mathrm{C}(19)-\mathrm{C}(20)$	1.39(1)
C(20)-C(21)	1.51(1)	C(22)-C(23)	1.50(1)
C(23)-C(24)	1.40(1)	$\mathrm{C}(24)-\mathrm{C}(25)$	1.39(1)
C(25)-C(26)	1.50(1)		
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	92.2(3)	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	89.0(3)
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	86.8(3)	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(5)$	174.8(3)
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	99.0(3)	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	90.1(3)
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	177.0(3)	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(5)$	92.0(3)
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	87.1(3)	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(4)$	92.7(3)
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(5)$	87.8(3)	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{N}(1)$	171.6(3)
. $\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{O}(5)$	89.2(3)	$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{N}(1)$	90.2(3)
$\mathrm{O}(5)-\mathrm{Ru}(1)-\mathrm{N}(1)$	84.3(3)	$\mathrm{F}(1)-\mathrm{P}(1)-\mathrm{F}(2)$	179.1(6)

Table A. 13.2 (cont): Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of $\left.\underline{\text { cis- }-[R u(a c a c) ~})_{2}\left(\underline{O}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O})-\mathrm{CH}_{2} \mathrm{Ph}\right)\right]\left[\mathrm{PF}_{6}\right]$.

$\mathrm{F}(1)-\mathrm{P}(1)-\mathrm{F}(3)$	$82.6(9)$	$\mathrm{F}(1)-\mathrm{P}(1)-\mathrm{F}\left(3^{\prime}\right)$	$93.4(8)$
$\mathrm{F}(1)-\mathrm{P}(1)-\mathrm{F}(4)$	$89.7(7)$	$\mathrm{F}(1)-\mathrm{P}(1)-\mathrm{F}\left(4^{\prime}\right)$	$85(1)$
$\mathrm{F}(1)-\mathrm{P}(1)-\mathrm{F}(5)$	$95.5(7)$	$\mathrm{F}(1)-\mathrm{P}(1)-\mathrm{F}\left(5^{\prime}\right)$	$86.2(7)$
$\mathrm{F}(1)-\mathrm{P}(1)-\mathrm{F}(6)$	$78(1)$	$\mathrm{F}(1)-\mathrm{P}(1)-\mathrm{F}\left(6^{\prime}\right)$	$103.7(8)$
$\mathrm{F}(2)-\mathrm{P}(1)-\mathrm{F}(3)$	$98.1(9)$	$\mathrm{F}(2)-\mathrm{P}(1)-\mathrm{F}\left(3^{\prime}\right)$	$87.4(8)$
$\mathrm{F}(2)-\mathrm{P}(1)-\mathrm{F}(4)$	$90.9(7)$	$\mathrm{F}(2)-\mathrm{P}(1)-\mathrm{F}\left(4^{\prime}\right)$	$95(1)$
$\mathrm{F}(2)-\mathrm{P}(1)-\mathrm{F}(5)$	$83.9(7)$	$\mathrm{F}(2)-\mathrm{P}(1)-\mathrm{F}\left(5^{\prime}\right)$	$93.0(7)$
$\mathrm{F}(2)-\mathrm{P}(1)-\mathrm{F}(6)$	$101(1)$	$\mathrm{F}(2)-\mathrm{P}(1)-\mathrm{F}\left(6^{\prime}\right)$	$76.2(7)$
$\mathrm{F}(3)-\mathrm{P}(1)-\mathrm{F}\left(3^{\prime}\right)$	$34.4(9)$	$\mathrm{F}(3)-\mathrm{P}(1)-\mathrm{F}(4)$	$89(1)$
$\mathrm{F}(3)-\mathrm{P}(1)-\mathrm{F}\left(4^{\prime}\right)$	$127(1)$	$\mathrm{F}(3)-\mathrm{P}(1)-\mathrm{F}(5)$	$178(1)$
$\mathrm{F}(3)-\mathrm{P}(1)-\mathrm{F}\left(5^{\prime}\right)$	$136(1)$	$\mathrm{F}(3)-\mathrm{P}(1)-\mathrm{F}(6)$	$84(1)$
$\mathrm{F}(3)-\mathrm{P}(1)-\mathrm{F}\left(6^{\prime}\right)$	$60.6(9)$	$\mathrm{F}\left(3^{\prime}\right)-\mathrm{P}(1)-\mathrm{F}(4)$	$56.3(8)$
$\mathrm{F}\left(3^{\prime}\right)-\mathrm{P}(1)-\mathrm{F}\left(4^{\prime}\right)$	$96(1)$	$\mathrm{F}\left(3^{\prime}\right)-\mathrm{P}(1)-\mathrm{F}(5)$	$147(1)$
$\mathrm{F}\left(3^{\prime}\right)-\mathrm{P}(1)-\mathrm{F}\left(5^{\prime}\right)$	$170(1)$	$\mathrm{F}\left(3^{\prime}\right)-\mathrm{P}(1)-\mathrm{F}(6)$	$118(1)$
$\mathrm{F}\left(3^{\prime}\right)-\mathrm{P}(1)-\mathrm{F}\left(6^{\prime}\right)$	$89(1)$	$\mathrm{F}(4)-\mathrm{P}(1)-\mathrm{F}\left(4^{\prime}\right)$	$40(1)$
$\mathrm{F}(4)-\mathrm{P}(1)-\mathrm{F}(5)$	$92(1)$	$\mathrm{F}(4)-\mathrm{P}(1)-\mathrm{F}\left(5^{\prime}\right)$	$133(1)$
$\mathrm{F}(4)-\mathrm{P}(1)-\mathrm{F}(6)$	$167(1)$	$\mathrm{F}(4)-\mathrm{P}(1)-\mathrm{F}\left(6^{\prime}\right)$	$144(1)$
$\mathrm{F}\left(4^{\prime}\right)-\mathrm{P}(1)-\mathrm{F}(5)$	$54(1)$	$\mathrm{F}\left(4^{\prime}\right)-\mathrm{P}(1)-\mathrm{F}\left(5^{\prime}\right)$	$94(1)$
$\mathrm{F}\left(4^{\prime}\right)-\mathrm{P}(1)-\mathrm{F}(6)$	$143(2)$	$\mathrm{F}\left(4^{\prime}\right)-\mathrm{P}(1)-\mathrm{F}\left(6^{\prime}\right)$	$170(1)$
$\mathrm{F}(5)-\mathrm{P}(1)-\mathrm{F}\left(5^{\prime}\right)$	$42.1(7)$	$\mathrm{F}(5)-\mathrm{P}(1)-\mathrm{F}(6)$	$95(1)$
$\mathrm{F}(5)-\mathrm{P}(1)-\mathrm{F}\left(6^{\prime}\right)$	$119(1)$	$\mathrm{F}\left(5^{\prime}\right)-\mathrm{P}(1)-\mathrm{F}(6)$	$53(1)$
$\mathrm{F}\left(5^{\prime}\right)-\mathrm{P}(1)-\mathrm{F}\left(6^{\prime}\right)$	$82(1)$	$\mathrm{F}(6)-\mathrm{P}(1)-\mathrm{F}\left(6^{\prime}\right)$	$37(1)$
$\mathrm{P}(1)-\mathrm{F}(3)-\mathrm{F}\left(3^{\prime}\right)$	$71(2)$	$\mathrm{P}(1)-\mathrm{F}(3)-\mathrm{F}\left(6^{\prime}\right)$	$60(1)$
$\mathrm{F}\left(3^{\prime}\right)-\mathrm{F}(3)-\mathrm{F}\left(6^{\prime}\right)$	$119(3)$	$\mathrm{P}(1)-\mathrm{F}\left(3^{\prime}\right)-\mathrm{F}(3)$	$74(2)$
$\mathrm{P}(1)-\mathrm{F}\left(3^{\prime}\right)-\mathrm{F}(4)$	$61(1)$	$\mathrm{F}(3)-\mathrm{F}\left(3^{\prime}\right)-\mathrm{F}(4)$	$131(3)$
$\mathrm{P}(1)-\mathrm{F}(4)-\mathrm{F}\left(3^{\prime}\right)$	$63(1)$	$\mathrm{P}(1)-\mathrm{F}(4)-\mathrm{F}\left(4^{\prime}\right)$	$71(2)$
$\mathrm{F}\left(3^{\prime}\right)-\mathrm{F}(4)-\mathrm{F}\left(4^{\prime}\right)$	$133(3)$	$\mathrm{P}(1)-\mathrm{F}\left(4^{\prime}\right)-\mathrm{F}(4)$	$70(2)$
$\mathrm{P}(1)-\mathrm{F}\left(4^{\prime}\right)-\mathrm{F}(5)$	$64(1)$	$\mathrm{F}(4)-\mathrm{F}\left(4^{\prime}\right)-\mathrm{F}(5)$	$131(3)$
$\mathrm{P}(1)-\mathrm{F}(5)-\mathrm{F}\left(4^{\prime}\right)$	$62(1)$	$\mathrm{P}(1)-\mathrm{F}(5)-\mathrm{F}\left(5^{\prime}\right)$	$69(1)$
$\mathrm{F}\left(4^{\prime}\right)-\mathrm{F}(5)-\mathrm{F}\left(5^{\prime}\right)$	$127(2)$	$\mathrm{P}(1)-\mathrm{F}\left(5^{\prime}\right)-\mathrm{F}(5)$	$69(1)$
$\mathrm{P}(1)-\mathrm{F}\left(5^{\prime}\right)-\mathrm{F}(6)$	$61(1)$	$\mathrm{F}(5)-\mathrm{F}\left(5^{\prime}\right)-\mathrm{F}(6)$	$130(2)$
$\mathrm{P}(1)-\mathrm{F}(6)-\mathrm{F}\left(5^{\prime}\right)$	$67(1)$	$\mathrm{P}(1)-\mathrm{F}(6)-\mathrm{F}\left(6^{\prime}\right)$	$77(2)$
$\mathrm{F}\left(5^{\prime}\right)-\mathrm{F}(6)-\mathrm{F}\left(6^{\prime}\right)$	$122(3)$	$\mathrm{P}(1)-\mathrm{F}\left(6^{\prime}\right)-\mathrm{F}(3)$	$59(1)$
$\mathrm{P}(1)-\mathrm{F}\left(6^{\prime}\right)-\mathrm{F}(6)$	$66(2)$	$\mathrm{F}(3)-\mathrm{F}\left(6^{\prime}\right)-\mathrm{F}(6)$	$102(3)$
$\mathrm{Ru}(1)-\mathrm{O}(3)-\mathrm{C}(18)$	$124.5(6)$	$\mathrm{Ru}(1)-\mathrm{O}(2)-\mathrm{C}(20)$	$124.3(6)$
$\mathrm{Ru}(7)$	$123.8(7)$	$\mathrm{Ru}(1)-\mathrm{O}(4)-\mathrm{C}(25)$	$125.0(7)$
$130(8)$	$\mathrm{Ru}(1)-\mathrm{N}(1)-\mathrm{C}(1)$	$109.6(6)$	

Table A.13.2 (cont): Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of
cis-[Ru(acac) $\left.{ }_{2}\left(\underline{o}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O})-\mathrm{CH}_{2} \mathrm{Ph}\right)\right]\left[\mathrm{PF}_{6}\right]$.

$\mathrm{Ru}(1)-\mathrm{N}(1)-\mathrm{C}(15)$	$108.3(7)$	$\mathrm{Ru}(1)-\mathrm{N}(1)-\mathrm{C}(16)$	$111.9(7)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(15)$	$112.1(9)$	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(16)$	$108.6(9)$
$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{C}(16)$	$106.4(9)$	$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$121(1)$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(6)$	$120(1)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$119(1)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$121(1)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$121(1)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$120(1)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$123(1)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(5)$	$117(1)$	$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$123(1)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$120(1)$	$\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(6)$	$122(1)$
$\mathrm{O}(5)-\mathrm{C}(7)-\mathrm{C}(8)$	$115(1)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$123(1)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$114(1)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$121(2)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)$	$122(2)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)$	$117(2)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$124(2)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$114(3)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$128(4)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$115(3)$
$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	$121(2)$	$\mathrm{O}(1)-\mathrm{C}(18)-\mathrm{C}(17)$	$115(1)$
$\mathrm{O}(1)-\mathrm{C}(18)-\mathrm{C}(19)$	$125(1)$	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$120(1)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$127(1)$	$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{C}(19)$	$125(1)$
$\mathrm{O}(2)-\mathrm{C}(20)-\mathrm{C}(21)$	$115(1)$	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$120(1)$
$\mathrm{O}(3)-\mathrm{C}(23)-\mathrm{C}(22)$	$115(1)$	$\mathrm{O}(3)-\mathrm{C}(23)-\mathrm{C}(24)$	$126(1)$
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$119(1)$	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$126(1)$
$\mathrm{O}(4)-\mathrm{C}(25)-\mathrm{C}(24)$	$125(1)$	$\mathrm{O}(4)-\mathrm{C}(25)-\mathrm{C}(26)$	$116(1)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$119(1)$		

Crystal Data

Empirical Formula
Formula Weight
Crystal Colour, Habit
Crystal Dimensions
Crystal System
Lattice Type
No. of Reflections used for
Unit Cell Determination (2θ range)
Omega Scan Peak Width at
Half-height
Lattice Parameters
space Group
Z value
$\mathrm{D}_{\text {calc }}$
F_{000}
$\mu(\operatorname{MoK} \alpha)$
Space Group
Z value
$D_{\text {calc }}$
F_{000}
$\mu(\mathrm{MoK} \alpha)$
$\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{~F}_{6} \mathrm{NO}_{5} \mathrm{P}_{2} \mathrm{Ru}$
867.75
red, plate
$0.40 \times 0.29 \times 0.07 \mathrm{~mm}$
monoclinic
Primitive
$25\left(32.0-36.9^{\circ}\right)$

$$
a=12.127(1) \AA
$$

$$
\mathrm{b}=12.397(1) \AA
$$

$$
c=26.463(3) \AA
$$

$$
\beta=101.712(9)^{\circ}
$$

$$
V=3895.4(7) \AA^{3}
$$

diffractometer
Radiation

Take-off Angle
Detector Aperture
Crystal to Detector Distance
Voltage, Current
Temperature
Scan Type
Scan Rate
Scan Width $2 \theta_{\text {max }}$
No. of Reflections Measured

Corrections

Rigaku AFC6S
$\operatorname{MoK} \alpha(\lambda=0.71069 \AA)$
graphite monochromated 6.0°
4.0 mm horizontal
4.0 mm vertical 200 mm $50 \mathrm{kV}, 30 \mathrm{~mA}$ $23.0^{\circ} \mathrm{C}$
ω
$4.0^{\circ} / \mathrm{min}$ (in ω) (up to 4 scans) $(1.20+0.34 \tan \theta)^{\circ}$ 55.1°
Total: 9869
Unique: $9432\left(\mathrm{R}_{\text {int }}=0.031\right)$
Lorentz-polarization
Absorption
(trans. Factors: 0.8974-0.9613)

Table A.14.1 (cont): Crystallographic and refinement data for cis- $\left[R \mathrm{Ru}(\mathrm{acac})_{2}\left(\underline{o}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O})-\mathrm{C} H \mathrm{CPh}_{3}\right)\right]\left[\mathrm{PF} F_{6}\right]$.

Structure Solution and Refinement

Structure Solution
Refinement
Function Minimized
Least Squares Weights
p-factor
Anamalous Dispersion
No. Observations ($\mathrm{I}>2.0 \sigma(\mathrm{I})$)
No. of variables
Reflection/Parameter Rotation
Residuals: R; Rw
Goodness of Fit Indicator
Max Shift/Error in Final Cycle
Max peak in Final Diff. Map
Min peak in Final Diff Map

Direct Methods (SIR92) Full-Matrix least squares $\Sigma w(|\mathrm{Fo}|-|\mathrm{Fc}|)^{2}$
$w=\left[\sigma_{\mathrm{c}}{ }^{2}(\mathrm{Fo})+0.25 \mathrm{p}^{2} \mathrm{Fo}^{2}\right]^{-1}$ 0.020

All non-hydrogen atoms 4858 481 10.10
0.044; 0.046

$$
1.53
$$

$$
0.02
$$

$$
0.47 e^{-} / \AA^{3}
$$

$$
-0.56 e^{-} / \AA^{3}
$$

Table A.14.2: Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of cis-[Ru(acac) $\left.\mathbf{2}_{2}\left(\underline{O}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O})-\mathrm{CHPPh}_{3}\right)\right]\left[\mathrm{PF}_{6}\right]$.

$\mathrm{Ru}(1)-\mathrm{O}(1)$	$1.999(3)$	$\mathrm{Ru}(1)-\mathrm{O}(2)$	$1.996(3)$
$\mathrm{Ru}(1)-\mathrm{O}(3)$	$1.999(3)$	$\mathrm{Ru}(1)-\mathrm{O}(4)$	$2.043(3)$
$\mathrm{Ru}(1)-\mathrm{N}(1)$	$2.204(4)$	$\mathrm{Ru}(1)-\mathrm{C}(20)$	$2.160(4)$
$\mathrm{P}(1)-\mathrm{C}(20)$	$1.794(5)$	$\mathrm{P}(1)-\mathrm{C}(21)$	$1.799(5)$
$\mathrm{P}(1)-\mathrm{C}(27)$	$1.814(5)$	$\mathrm{P}(1)-\mathrm{C}(33)$	$1.795(5)$
$\mathrm{P}(2)-\mathrm{F}(1)$	$1.430(5)$	$\mathrm{P}(2)-\mathrm{F}(2)$	$1.545(5)$
$\mathrm{P}(2)-\mathrm{F}(3)$	$1.519(6)$	$\mathrm{P}(2)-\mathrm{F}(4)$	$1.576(6)$
$\mathrm{P}(2)-\mathrm{F}(5)$	$1.514(6)$	$\mathrm{P}(2)-\mathrm{F}(6)$	$1.516(5)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.286(6)$	$\mathrm{O}(2)-\mathrm{C}(4)$	$1.288(6)$
$\mathrm{O}(3)-\mathrm{C}(6)$	$1.293(6)$	$\mathrm{O}(4)-\mathrm{C}(9)$	$1.277(6)$
$\mathrm{O}(5)-\mathrm{C}(19)$	$1.227(5)$	$\mathrm{N}(1)-\mathrm{C}(11)$	$1.502(6)$
$\mathrm{N}(1)-\mathrm{C}(12)$	$1.502(6)$	$\mathrm{N}(1)-\mathrm{C}(13)$	$1.477(6)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.498(8)$	$\mathrm{C}(1)-\mathrm{C}(3)$	$1.388(8)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.393(7)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.501(7)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.490(7)$	$\mathrm{C}(6)-\mathrm{C}(8)$	$1.393(7)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.373(8)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.498(7)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.392(7)$	$\mathrm{C}(13)-\mathrm{C}(18)$	$1.381(6)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.371(9)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.370(9)$

Table A.14.2 (cont): Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of
cis-[Ru(acac) $\left.{ }_{2}\left(\underline{o}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O})-\mathrm{CHPPh} 3\right)\right]\left[\mathrm{PF}_{6}\right]$.

$\mathrm{C}(16)-\mathrm{C}(17)$	$1.363(8)$	$\mathrm{C}(17)-\mathrm{C}(18)$	$1.388(6)$
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.494(6)$	$\mathrm{C}(19)-\mathrm{C}(20)$	$1.459(6)$
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.386(7)$	$\mathrm{C}(21)-\mathrm{C}(26)$	$1.382(7)$
$\mathrm{C}(22)-\mathrm{C}(23)$	$1.381(7)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.362(9)$
$\mathrm{C}(24)-\mathrm{C}(25)$	$1.35(1)$	$\mathrm{C}(25)-\mathrm{C}(26)$	$1.393(8)$
$\mathrm{C}(27)-\mathrm{C}(28)$	$1.370(7)$	$\mathrm{C}(27)-\mathrm{C}(32)$	$1.382(7)$
$\mathrm{C}(28)-\mathrm{C}(29)$	$1.387(7)$	$\mathrm{C}(29)-\mathrm{C}(30)$	$1.373(8)$
$\mathrm{C}(30)-\mathrm{C}(31)$	$1.352(9)$	$\mathrm{C}(31)-\mathrm{C}(32)$	$1.379(8)$
$\mathrm{C}(33)-\mathrm{C}(34)$	$1.382(7)$	$\mathrm{C}(33)-\mathrm{C}(38)$	$1.371(7)$
$\mathrm{C}(34)-\mathrm{C}(35)$	$1.384(7)$	$\mathrm{C} 935)-\mathrm{C}(36)$	$1.360(9)$
$\mathrm{C}(36)-\mathrm{C}(37)$	$1.34(1)$	$\mathrm{C}(37)-\mathrm{C}(38)$	$1.386(9)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$90.3(1)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$88.1(1)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$85.5(1)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$174.3(1)$
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{C}(20)$	$92.3(2)$	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(3)$	$177.2(1)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$86.3(1)$	$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$92.0(1)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{C}(20)$	$95.8(2)$	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(4)$	$91.2(1)$
$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$89.4(1)$	$\mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{C}(20)$	$86.6(2)$
$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{N}(1)$	$89.4(1)$	$\mathrm{O}(4)-\mathrm{Ru}(1)-\mathrm{C}(20)$	$177.0(2)$
$\mathrm{N}(1)-\mathrm{Ru}(1)-\mathrm{C}(20)$	$92.6(2)$	$\mathrm{C}(20)-\mathrm{P}(1)-\mathrm{C}(21)$	$108.4(2)$
$\mathrm{C}(20)-\mathrm{P}(1)-\mathrm{C}(27)$	$108.4(2)$	$\mathrm{C}(20)-\mathrm{P}(1)-\mathrm{C}(33)$	$119.0(2)$
$\mathrm{C}(21)-\mathrm{P}(1)-\mathrm{C}(27)$	$105.6(2)$	$\mathrm{C}(21)-\mathrm{P}(1)-\mathrm{C}(33)$	$106.1(2)$
$\mathrm{C}(27)-\mathrm{P}(1)-\mathrm{C}(33)$	$108.6(2)$	$\mathrm{F}(1)-\mathrm{P}(2)-\mathrm{F}(2)$	$93.3(4)$
$\mathrm{F}(1)-\mathrm{P}(2)-\mathrm{F}(3)$	$95.9(5)$	$\mathrm{F}(1)-\mathrm{P}(2)-\mathrm{F}(4)$	$179.3(5)$
$\mathrm{F}(1)-\mathrm{P}(2)-\mathrm{F}(5)$	$90.6(5)$	$\mathrm{F}(1)-\mathrm{P}(2)-\mathrm{F}(6)$	$92.6(5)$
$\mathrm{F}(2)-\mathrm{P}(2)-\mathrm{F}(3)$	$87.0(4)$	$\mathrm{F}(2)-\mathrm{P}(2)-\mathrm{F}(4)$	$86.0(4)$
$\mathrm{F}(2)-\mathrm{P}(2)-\mathrm{F}(5)$	$175.9(4)$	$\mathrm{F}(2)-\mathrm{P}(2)-\mathrm{F}(6)$	$90.4(4)$
$\mathrm{F}(3)-\mathrm{P}(2)-\mathrm{F}(4)$	$84.2(4)$	$\mathrm{F}(3)-\mathrm{P}(2)-\mathrm{F}(5)$	$93.5(4)$
$\mathrm{F}(3)-\mathrm{P}(2)-\mathrm{F}(6)$	$171.2(4)$	$\mathrm{F}(4)-\mathrm{P}(2)-\mathrm{F}(5)$	$90.0(4)$
$\mathrm{F}(4)-\mathrm{P}(2)-\mathrm{F}(6)$	$87.3(4)$	$\mathrm{F}(5)-\mathrm{P}(2)-\mathrm{F}(6)$	$88.6(4)$
$\mathrm{Ru}(1)-\mathrm{O}(1)-\mathrm{C}(1)$	$122.5(3)$	$\mathrm{Ru}(1)-\mathrm{O}(2)-\mathrm{C}(4)$	$122.0(3)$
$\mathrm{Ru}(1)-\mathrm{O}(3)-\mathrm{C}(6)$	$122.5(3)$	$\mathrm{Ru}(1)-\mathrm{O}(4)-\mathrm{C}(9)$	$121.7(3)$
$\mathrm{Ru}(1)-\mathrm{N}(1)-\mathrm{C}(11)$	$107.1(3)$	$\mathrm{Ru}(1)-\mathrm{N}(1)-\mathrm{C}(12)$	$106.9(3)$
$\mathrm{Ru}(1)-\mathrm{N}(1)-\mathrm{C}(13)$	$118.9(3)$	$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(12)$	$106.8(4)$
$\mathrm{C}(11)-\mathrm{N}(1)-\mathrm{C}(13)$	$106.6(4)$	$\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(13)$	$109.9(4)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$114.9(6)$	$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(3)$	$125.0(5)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(3)$	$120.1(6)$	$\mathrm{C}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$125.5(5)$

Table A. 14.2 (cont): Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of
cis- $\left.\left[R u(a c a c)_{2}\left(\underline{o}-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O})-\mathrm{CHPPh}\right)_{3}\right)\right]\left[\mathrm{PF}_{6}\right]$.

$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	$125.4(5)$	$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$114.9(5)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$119.7(5)$	$\mathrm{O}(3)-\mathrm{C}(6)-\mathrm{C}(7)$	$114.2(5)$
$\mathrm{O}(3)-\mathrm{C}(6)-\mathrm{C}(8)$	$125.8(5)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(8)$	$120.0(5)$
$\mathrm{C}(6)-\mathrm{C}(8)-\mathrm{C}(9)$	$126.8(5)$	$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{C}(8)$	$125.8(5)$
$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{C}(10)$	$114.6(5)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$119.6(5)$
$\mathrm{N}(1)-\mathrm{C}(13)-\mathrm{C}(14)$	$120.8(5)$	$\mathrm{N}(1)-\mathrm{C}(13)-\mathrm{C}(18)$	$119.6(4)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(18)$	$118.9(5)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$120.2(6)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$121.0(6)$	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$119.1(6)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$121.3(5)$	$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(17)$	$119.5(5)$
$\mathrm{C}(13)-\mathrm{C}(18)-\mathrm{C}(19)$	$123.8(4)$	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$116.7(5)$
$\mathrm{O}(5)-\mathrm{C}(19)-\mathrm{C}(18)$	$119.5(4)$	$\mathrm{O}(5)-\mathrm{C}(19)-\mathrm{C}(20)$	$123.8(5)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$116.5(4)$	$\mathrm{Ru}(1)-\mathrm{C}(20)-\mathrm{P}(1)$	$124.0(2)$
$\mathrm{Ru}(1)-\mathrm{C}(20)-\mathrm{C}(19)$	$100.0(3)$	$\mathrm{P}(1)-\mathrm{C}(20)-\mathrm{C}(19)$	$111.5(3)$
$\mathrm{P}(1)-\mathrm{C}(21)-\mathrm{C}(22)$	$118.7(4)$	$\mathrm{P}(1)-\mathrm{C}(21)-\mathrm{C}(26)$	$123.4(4)$
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(26)$	$117.9(5)$	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$121.4(5)$
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$118.9(6)$	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$121.4(6)$
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	$120.0(6)$	$\mathrm{C}(21)-\mathrm{C}(26)-\mathrm{C}(25)$	$120.2(6)$
$\mathrm{P}(1)-\mathrm{C}(27)-\mathrm{C}(28)$	$121.5(4)$	$\mathrm{P}(1)-\mathrm{C}(27)-\mathrm{C}(32)$	$119.5(4)$
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C} 932)$	$118.9(5)$	$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	$120.3(5)$
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	$120.0(6)$	$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	$120.0(6)$
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	$120.4(6)$	$\mathrm{C}(27)-\mathrm{C}(32)-\mathrm{C}(31)$	$120.4(6)$
$\mathrm{P}(1)-\mathrm{C}(33)-\mathrm{C}(34)$	$121.3(4)$	$\mathrm{P}(1)-\mathrm{C}(33)-\mathrm{C}(38)$	$119.2(4)$
$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{C}(38)$	$118.9(5)$	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	$120.6(5)$
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(36)$	$119.3(6)$	$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(37)$	$120.8(7)$
$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{C}(38)$	$120.8(7)$	$\mathrm{C}(33)-\mathrm{C}(38)-\mathrm{C}(37)$	$119.6(6)$

Table A.15.1: Crystallographic and refinement data for trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}_{2}\right]_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$.

Crystal Data

Empirical Formula	$\mathrm{C}_{42} \mathrm{H}_{44} \mathrm{Cl}_{4} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Ru}$
Formula Weight	917.64
Crystal Colour, Habit	orange, block
Crystal Dimensions	$0.20 \times 0.12 \times 0.10 \mathrm{~mm}$
Crystal System	triclinic
Lattice Type	Primitive
Lattice Parameters	$\begin{aligned} & \mathrm{a}=10.247(1) \AA \\ & \mathrm{b}=11.045(3) \AA \\ & \mathrm{c}=11.720(2) \AA \end{aligned}$
	$\alpha=117.21(2)^{\circ}$
	$\beta=94.27(2){ }^{\circ}$
	$\gamma=107.61(1)^{\circ}$
	$\mathrm{V}=1088.3(5) \AA^{3}$
Space Group	P $\overline{1}$ (\#2)
Z value	1
$\mathrm{D}_{\text {calc }}$	$1.400 \mathrm{~g} / \mathrm{cm}^{3}$
F_{000}	470.00
$\mu(\operatorname{MoK} \alpha)$	$63.16 \mathrm{~cm}^{-1}$
Intensity	urements
diffractometer	Rigaku AFC6R
Radiation	$\operatorname{CuK} \alpha(\lambda=1.54178 \AA)$ graphite monochromated
Take-off Angle	6.0°
Detector Aperture	7.0 mm horizontal 7.0 mm vertical
Crystal to Detector Distance	400 mm
Voltage, Current	$180 \mathrm{kV}, 50 \mathrm{~mA}$
Temperature	$-80.0{ }^{\circ} \mathrm{C}$
Scan Type	$\omega-2 \theta$
Scan Rate	$32.0^{\circ} / \mathrm{min}($ in ω) (up to 4 scans)
Scan Width	$(1.42+0.30 \tan \theta)$
$2 \theta_{\text {max }}$	120.0°
No. of Reflections Measured	Total: 3425 Unique: 3241 ($\mathrm{R}_{\text {int }}=0.039$)
Corrections	Lorentz-polarization Absorption (trans. factors: 0.4566-0.6079)

Table A.15.1 (cont): Crystallographic and refinement data for trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right] .2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Structure Solution and Refinement

Structure Solution
Refinement
Function Minimized
Least Squares Weights
p-factor
Anamalous Dispersion
No. Observations ($\mathrm{I}>2.0 \sigma(\mathrm{I})$)
No. of variables
Reflection/Parameter Rotation
Residuals: R; Rw
Goodness of Fit Indicator
Max Shift/Error in Final Cycle
Max peak in Final Diff. Map
Min peak in Final Diff Map

Direct Methods (SIR92)
Full-Matrix least squares
$\Sigma w(|\mathrm{Fo}|-|\mathrm{Fc}|)^{2}$
$w=\left[\sigma_{\mathrm{c}}{ }^{2}(\mathrm{Fo})+0.25 \mathrm{p}^{2} \mathrm{Fo}^{2}\right]^{-1}$
0.020

All non-hydrogen atoms 3026 307 9.86
0.028; 0.035
1.63
0.04
$0.49 e^{-/} / \AA^{3}$
$-0.43 e^{-} / \AA^{3}$

Table A.15.2: Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph} 2 \mathrm{PC} \equiv \mathrm{CMe}_{2}\right)\right] .2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.3330(7)$	$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.060(2)$
$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.063(2)$		
$\mathrm{CL}(1)-\mathrm{C}(21)$	$1.739(5)$	$\mathrm{Cl}(2)-\mathrm{C}(21)$	$1.742(5)$
$\mathrm{P}(1)-\mathrm{C}(6)$	$1.760(3)$	$\mathrm{P}(1)-\mathrm{C}(9)$	$1.835(3)$
$\mathrm{P}(1)-\mathrm{C}(15)$	$1.827(3)$	$\mathrm{O}(1)-\mathrm{C}(2)$	$1.281(3)$
$\mathrm{O}(2)-\mathrm{C}(4)$	$1.277(3)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.502(4)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.388(4)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.393(4)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.511(4)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.185(4)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.458(5)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.376(4)$
$\mathrm{C}(9)-\mathrm{C}(14)$	$1.392(4)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.404(5)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.372(7)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.356(6)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.388(5)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.378(4)$
$\mathrm{C}(15)-\mathrm{C}(20)$	$1.402(4)$	$\mathrm{C}(16)-\mathrm{C}(17)$	$1.375(5)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.382(7)$	$\mathrm{C}(18)-\mathrm{C}(19)$	$1.368(7)$
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.391(5)$		
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)^{\mathrm{a}}$	180.0	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$88.73(6)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)^{\mathrm{a}}$	$91.27(6)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$90.22(6)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)^{\mathrm{a}}$	$89.78(6)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)^{\mathrm{a}}$	180.0
$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$93.34(7)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)^{\mathrm{a}}$	$86.66(7)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(2)^{\mathrm{a}}$	180.0	$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(6)$	$114.8(1)$

Table A.15.2 (cont): Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}_{2}\right)\right] \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(9)$	$113.34(9)$	$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(15)$	$117.7(1)$
$\mathrm{C}(6)-\mathrm{P}(1)-\mathrm{C}(9)$	$102.6(1)$	$\mathrm{C}(6)-\mathrm{P}(1)-\mathrm{C}(15)$	$103.1(1)$
$\mathrm{C}(9)-\mathrm{P}(1)-\mathrm{C}(15)$	$103.5(1)$	$\mathrm{Ru}(1)-\mathrm{O}(1)-\mathrm{C}(2)$	$122.2(2)$
$\mathrm{Ru}(1)-\mathrm{O}(2)-\mathrm{C}(4)$	$121.2(2)$	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$114.9(3)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$126.1(3)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$119.0(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$128.7(3)$	$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	$127.2(3)$
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$114.0(3)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$118.7(3)$
$\mathrm{P}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$174.5(3)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C} 98)$	$179.6(4)$
$\mathrm{P}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	$121.1(3)$	$\mathrm{P}(1)-\mathrm{C}(9)-\mathrm{C}(14)$	$119.3(2)$
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)$	$119.4(3)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$119.8(4)$
$\mathrm{C}(100-\mathrm{C}(11)-\mathrm{C}(12)$	$119.7(4)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$120.9(4)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$120.2(4)$	$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	$120.0(4)$
$\mathrm{P}(1)-\mathrm{C}(15)-\mathrm{C}(16)$	$118.3(2)$	$\mathrm{P}(1)-\mathrm{C}(15)-\mathrm{C}(20)$	$122.3(3)$
$\mathrm{C} 916)-\mathrm{C} 915)-\mathrm{C}(20)$	$119.3(3)$	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$120.8(4)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$120.1(4)$	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$119.9(4)$
$\mathrm{C}(18)-\mathrm{C} 919)-\mathrm{C}(20)$	$120.8(4)$	$\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(19)$	$119.1(4)$
$\mathrm{Cl}(1)-\mathrm{C}(21)-\mathrm{Cl}(2)$	$112.5(2)$		

Table A.16.1: Crystallographic and refinement data for cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right] \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Crystal Data

Empirical Formula	$\mathrm{C}_{81} \mathrm{H}_{82} \mathrm{Cl}_{2} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{Ru}_{2}$
Formula Weight	1580.48
Crystal Colour, Habit	yellow, hexagonal prism
Crystal Dimensions	$0.52 \times 0.24 \times 0.16 \mathrm{~mm}$
Crystal System	triclinic
Lattice Type	Primitive
Lattice Parameters	$\mathrm{a}=16.417(4) \AA$
	$\mathrm{b}=16.469(6) \AA$
	$\mathrm{c}=18.975(4) \AA$
	$\alpha=65.46(2)^{\circ}{ }^{\circ}$
	$\beta=66.17(2)^{\circ}$
Space Group	$\gamma=60.76(2)^{\circ}$
Z value	$\mathrm{V}=60.76(2) \AA^{3}$
$\mathrm{D}_{\text {calc }}$	$\mathrm{P} \overline{1}(\# 2)$
F_{000}	2
$\mu($ MoK $\alpha)$	$1.340 \mathrm{~g} / \mathrm{cm}^{3}$
	1628.00
	$5.88 \mathrm{~cm}^{-1}$

Table A.16.1 (cont): Crystallographic and refinement data for cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right] .0 .5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Intensity Measurements

diffractometer	Rigaku AFC6S
Radiation	$\operatorname{CuK} \alpha(\lambda=0.71069 \AA)$ graphite monochromated
Take-off Angle	6.0°
Detector Aperture	5.0 mm horizontal 4.0 mm vertical
Crystal to Detector Distance	200 mm
Voltage, Current	$50 \mathrm{kV}, 30 \mathrm{~mA}$
Temperature	$23.0{ }^{\circ} \mathrm{C}$
Scan Type	$\omega-2 \theta$
Scan Rate	$8.0^{\circ} / \mathrm{min}$ (in ω) (up to 4 scans)
Scan Width	$(1.10+0.34 \tan \theta)$
$2 \theta_{\text {max }}$	$55.1{ }^{\circ}$
No. of Reflections Measured	Total: 18715 Unique: $18081\left(\mathrm{R}_{\text {int }}=0.030\right)$
Corrections	Lorentz-polarization Absorption (trans. factors: 0.8823-0.9179) Decay (11.82% decline)
Structure Sol	and Refinement
Structure Solution	Direct Methods (SIR92)
Refinement	Full-Matrix least squares
Function Minimized	$\Sigma w(\|\mathrm{Fo}\|-\|\mathrm{Fc}\|)^{2}$
Least Squares Weights	$w=\left[\sigma_{\mathrm{c}}{ }^{2}(\mathrm{Fo})+0.25 \mathrm{p}^{2} \mathrm{Fo}^{2}\right]^{-1}$
p-factor	0.0200
Anamalous Dispersion	All non-hydrogen atoms
No. Observations ($\mathrm{I}>2.0 \sigma(\mathrm{I}$)	9045
No. of variables	876
Reflection/Parameter Rotation	10.33
Residuals: R; Rw	0.042; 0.044
Goodness of Fit Indicator	1.54
Max Shift/Error in Final Cycle	0.03
Max peak in Final Diff. Map	$0.70 e^{-/} \AA^{3}$
Min peak in Final Diff Map	$-0.54 e^{-} / \AA^{3}$

Table A.16.2: Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structures of cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right] \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.249(1)$	$\mathrm{Ru}(1)-\mathrm{P}(2)$	$2.265(1)$
$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.063(3)$	$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.088(3)$
$\mathrm{Ru}(1)-\mathrm{O}(3)$	$2.059(3)$	$\mathrm{Ru}(1)-\mathrm{O}(4)$	$2.098(3)$
$\mathrm{Ru}(2)-\mathrm{P}(3)$	$2.259(1)$	$\mathrm{Ru}(2)-\mathrm{P}(4)$	$2.254(2)$
$\mathrm{Ru}(2)-\mathrm{O}(5)$	$2.056(3)$	$\mathrm{Ru}(2)-\mathrm{O}(6)$	$2.095(3)$
$\mathrm{Ru}(2)-\mathrm{O}(7)$	$2.069(3)$	$\mathrm{Ru}(2)-\mathrm{O}(8)$	$2.104(4)$
$\mathrm{Cl}(1)-\mathrm{C}(81)$	$1.687(8)$	$\mathrm{Cl}(21)-\mathrm{C}(81)$	$1.621(8)$
$\mathrm{P}(1)-\mathrm{C}(11)$	$1.768(5)$		
$\mathrm{P}(1)-\mathrm{C}(14)$	$1.834(5)$	$\mathrm{P}(1)-\mathrm{C}(20)$	$1.831(5)$
$\mathrm{P}(2)-\mathrm{C}(26)$	$1.770(5)$	$\mathrm{P}(2)-\mathrm{C}(29)$	$1.840(5)$
$\mathrm{P}(2)-\mathrm{C}(35)$	$1.840(5)$	$\mathrm{P}(3)-\mathrm{C}(54)$	$1.840(6)$
$\mathrm{P} 93)-\mathrm{C}(60)$	$1.846(6)$	$\mathrm{P}(3)-\mathrm{C}(511)$	$1.77(1)$
$\mathrm{P}(3)-\mathrm{C}(512)$	$1.79(2)$	$\mathrm{P}(4)-\mathrm{C}(66)$	$1.770(5)$
$\mathrm{P}(4)-\mathrm{C}(69)$	$1.842(5)$	$\mathrm{P}(4)-\mathrm{C}(75)$	$1.835(5)$
$\mathrm{O}(1)-\mathrm{C}(2)$	$1.282(6)$	$\mathrm{O}(2)-\mathrm{C}(4)$	$1.249(6)$
$\mathrm{O} 93)-\mathrm{C}(7)$	$1.271(5)$	$\mathrm{O}(4)-\mathrm{C}(9)$	$1.271(5)$
$\mathrm{O}(5)-\mathrm{C}(42)$	$1.267(5)$	$\mathrm{O}(6)-\mathrm{C}(44)$	$1.268(6)$
$\mathrm{O}(7)-\mathrm{C}(47)$	$1.265(6)$	$\mathrm{O}(8)-\mathrm{C}(49)$	$1.254(6)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.511(7)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.390(8)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.398(8)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.507(8)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.510(7)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.382(7)$
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.387(7)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.514(7)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.183(6)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.458(7)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.386(7)$	$\mathrm{C}(14)-\mathrm{C}(19)$	$1.381(7)$
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.394(7)$	$\mathrm{C}(16)-\mathrm{C}(17)$	$1.372(8)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.354(8)$	$\mathrm{C}(18)-\mathrm{C}(19)$	$1.375(7)$
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.38797)$	$\mathrm{C}(20)-\mathrm{C}(25)$	$1.373(7)$
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.387(8)$	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.372(9)$
$\mathrm{C}(23)-\mathrm{C}(24)$	$1.355(9)$	$\mathrm{C}(24)-\mathrm{C}(25)$	$1.379(7)$
$\mathrm{C}(26)-\mathrm{C}(27)$	$1.180(6)$	$\mathrm{C}(27)-\mathrm{C}(28)$	$1.470(7)$
$\mathrm{C}(29)-\mathrm{C}(30)$	$1.386(7)$	$\mathrm{C}(29)-\mathrm{C}(34)$	$1.385(7)$
$\mathrm{C}(30)-\mathrm{C}(31)$	$1.376(8)$	$\mathrm{C}(31)-\mathrm{C}(32)$	$1.362(9)$
$\mathrm{C}(32)-\mathrm{C}(33)$	$1.354(9)$	$\mathrm{C}(33)-\mathrm{C}(34)$	$1.383(8)$
$\mathrm{C}(35)-\mathrm{C}(36)$	$1.391(6)$	$\mathrm{C}(35)-\mathrm{C}(40)$	$1.379(6)$
$\mathrm{C}(36)-\mathrm{C}(37)$	$1.381(7)$	$\mathrm{C}(37)-\mathrm{C}(38)$	$1.365(7)$
$\mathrm{C}(38)-\mathrm{C}(39)$	$\mathrm{C}(39)-\mathrm{C}(40)$	$1.379(7)$	
$\mathrm{C}(41)-\mathrm{C}(42)$	$\mathrm{C}(42)-\mathrm{C}(43)$	$1.388(7)$	
$\mathrm{C}(43)-\mathrm{C}(44)$	$1.366(7)-\mathrm{C}(45)$	$1.510(7)$	

Table A.16.2 (cont): Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of cis$\left[\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}_{2}\right] \cdot 0 \cdot 5 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.\right.$.
$\left.\begin{array}{cccc}\mathrm{C}(46)-\mathrm{C}(47) & 1.515(7) & \mathrm{C}(47)-\mathrm{C}(48) & 1.383(8) \\ \mathrm{C}(48)-\mathrm{C}(49) & 1.402(8) & \mathrm{C}(49)-\mathrm{C}(50) & 1.504(8) \\ \mathrm{C}(54)-\mathrm{C}(55) & 1.365(8) & \mathrm{C}(54)-\mathrm{C}(59) & 1.394(7) \\ \mathrm{C}(55)-\mathrm{C}(56) & 1.395(8) & \mathrm{C}(56)-\mathrm{C}(57) & 1.344(9) \\ \mathrm{C}(57)-\mathrm{C}(58) & 1.35(1) & \mathrm{C}(58)-\mathrm{C}(59) & 1.385(9) \\ \mathrm{C}(60)-\mathrm{C}(61) & 1.377(8) & \mathrm{C}(60)-\mathrm{C}(65) & 1.391(8) \\ \mathrm{C}(61)-\mathrm{C}(62) & 1.390(8) & \mathrm{C}(62)-\mathrm{C}(32) & 1.37(1) \\ \mathrm{C}(63)-\mathrm{C}(64) & 1.35(1) & \mathrm{C}(64)-\mathrm{C}(65) & 1.383(9) \\ \mathrm{C}(66)-\mathrm{C}(67) & 1.177(6) & \mathrm{C}(67)-\mathrm{C}(68) & 1.450(7) \\ \mathrm{C}(69)-\mathrm{C}(70) & 1.388(7) & \mathrm{C}(69)-\mathrm{C}(74) & 1.379(7) \\ \mathrm{C}(70)-\mathrm{C}(71) & 1.381(7) & \mathrm{C}(71)-\mathrm{C}(72) & 1.372(8) \\ \mathrm{C}(72)-\mathrm{C}(73) & 1.362(8) & \mathrm{C}(73)-\mathrm{C}(74) & 1.377(7) \\ \mathrm{C}(75)-\mathrm{C}(76) & 1.374(7) & \mathrm{C}(75)-\mathrm{C}(80) & 1.375(7) \\ \mathrm{C}(76)-\mathrm{C}(77) & 1.390(8) & \mathrm{C}(77)-\mathrm{C}(78) & 1.351(9) \\ \mathrm{C}(78)-\mathrm{C}(79) & 1.351(8) & \mathrm{C}(79)-\mathrm{C}(80) & 1.382(7) \\ \mathrm{C}(511)-\mathrm{C}(521) & 1.18(2) & \mathrm{C}(512)-\mathrm{C}(522) & 1.20(2) \\ \mathrm{C}(521)-\mathrm{C}(531) & 1.53(2) & \mathrm{C}(522)-\mathrm{C}(532) & 1.53(2) \\ \mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(2) & 94.20(5) & \mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(1) & 91.3(1) \\ \mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(2) & 174.3(1) & \mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(3) & 93.5(1) \\ \mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(4) & 90.1(1) & \mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{O}(1) & 89.91(9) \\ \mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{O}(2) & 91.0(1) & \mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{O}(3) & 92.82(9) \\ \mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{O}(4) & 174.2(1) & \mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2) & 91.2(1) \\ \mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(3) & 174.3(1) & \mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(4) & 86.0(1) \\ \mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(3) & 83.8(1) & \mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(4) & 85.0(1) \\ \mathrm{O}(3)-\mathrm{Ru}(1)-\mathrm{O}(4) & 90.9(1) & \mathrm{P}(3)-\mathrm{Ru}(2)-\mathrm{P}(4) & 94.30(5) \\ \mathrm{P}(3)-\mathrm{Ru}(2)-\mathrm{O}(5) & 90.6(1) & \mathrm{P}(3)-\mathrm{Ru}(2)-\mathrm{O}(6) & 176.8(1) \\ \mathrm{P}(3)-\mathrm{Ru}(2)-\mathrm{O}(7) & 92.0(1) & \mathrm{P}(3)-\mathrm{Ru}(2)-\mathrm{O}(8) & 92.6(1) \\ \mathrm{P}(4)-\mathrm{Ru}(2)-\mathrm{O}(5) & 92.4(1) & \mathrm{P}(4)-\mathrm{Ru}(2)-\mathrm{O}(6) & 88.8(1) \\ \mathrm{P}(4)-\mathrm{Ru}(2)-\mathrm{O}(7) & 91.8(1) & \mathrm{P}(4)-\mathrm{Ru}(2)-\mathrm{O}(8) & 172.8(1) \\ \mathrm{O}(5)-\mathrm{Ru}(2)-\mathrm{O}(6) & 90.0(1) & \mathrm{O} 95)-\mathrm{Ru}(2)-\mathrm{O}(7) & 174.9(1) \\ \mathrm{O} 95)-\mathrm{Ru}(2)-\mathrm{O}(8) & 85.5(1) & \mathrm{O}(6)-\mathrm{Ru}(2)-\mathrm{O}(7) & 87.2(1) \\ \mathrm{O}(6)-\mathrm{Ru}(2)-\mathrm{O}(8) & 84.3(1) & \mathrm{O}(7)-\mathrm{Ru}(2)-\mathrm{O}(8) & 89.9(1) \\ \mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(11) & 115.6(2) & & 118.0(2) \\ \mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(14) & 116.5(2) & \mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(20) & 118.4(2) \\ \mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(14) & 100.9(2) & \mathrm{C}(11)-\mathrm{P}(1)-\mathrm{C}(20) & 102.3(2) \\ \mathrm{C}(14)-\mathrm{P}(1)-\mathrm{C}(20) & 100.8(2) & \mathrm{Ru}(1)-\mathrm{P}(2)-\mathrm{C}(26) & 115.0(2) \\ \mathrm{Ru}(1)-\mathrm{P}(2)-\mathrm{C}(29) & 114.4(2) & \mathrm{Ru}(1)-\mathrm{P}(2)-\mathrm{C}(35) & 1210\end{array}\right)$

Table A.16.2 (cont): Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right] 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

$\mathrm{C}(26)-\mathrm{P}(2)-\mathrm{C}(29)$	$108.2(2)$	$\mathrm{C}(26)-\mathrm{P}(2)-\mathrm{C}(35)$	$102.3(2)$
$\mathrm{C}(29)-\mathrm{P}(2)-\mathrm{C}(35)$	$100.0(2)$	$\mathrm{Ru}(2)-\mathrm{P}(3)-\mathrm{C}(54)$	$115.5(2)$
$\mathrm{Ru}(2)-\mathrm{P}(3)-\mathrm{C}(60)$	$118.7(2)$	$\mathrm{Ru}(2)-\mathrm{P}(3)-\mathrm{C}(511)$	$116.6(4)$
$\mathrm{Ru}(2)-\mathrm{P}(3)-\mathrm{C}(512)$	$115.4(5)$	$\mathrm{C}(54)-\mathrm{P}(3)-\mathrm{C}(60)$	$100.6(2)$
$\mathrm{C}(54)-\mathrm{P}(3)-\mathrm{C}(511)$	$93.5(6)$	$\mathrm{C}(54)-\mathrm{P}(3)-\mathrm{C}(512)$	$108.1(6)$
$\mathrm{C}(60)-\mathrm{P}(3)-\mathrm{C}(511)$	$108.1(6)$	$\mathrm{C}(60)-\mathrm{P}(3)-\mathrm{C}(512)$	$95.9(6)$
$\mathrm{Ru}(2)-\mathrm{P}(4)-\mathrm{C}(66)$	$115.8(2)$		
$\mathrm{Ru}(2)-\mathrm{P}(4)-\mathrm{C}(69)$	$115.0(2)$	$\mathrm{Ru}(2)-\mathrm{P}(4)-\mathrm{C}(75)$	$120.6(2)$
$\mathrm{C}(66)-\mathrm{P}(4)-\mathrm{C}(69)$	$101.6(2)$	$\mathrm{C}(66)-\mathrm{P}(4)-\mathrm{C}(75)$	$1007 .(2)$
$\mathrm{C}(69)-\mathrm{P}(4)-\mathrm{C}(75)$	$100.2(2)$	$\mathrm{Ru}(1)-\mathrm{O}(1)-\mathrm{C}(2)$	$122.0(4)$
$\mathrm{Ru}(1)-\mathrm{O}(2)-\mathrm{C}(4)$	$123.3(4)$	$\mathrm{Ru}(1)-\mathrm{O}(3)-\mathrm{C}(7)$	$124.2(3)$
$\mathrm{Ru}(1)-\mathrm{O}(4)-\mathrm{C}(9)$	$122.5(3)$	$\mathrm{Ru}(2)-\mathrm{O}(5)-\mathrm{C}(42)$	$124.3(3)$
$\mathrm{Ru}(2)-\mathrm{O}(6)-\mathrm{C}(44)$	$122.5(3)$	$\mathrm{Ru}(2)-\mathrm{O}(7)-\mathrm{C}(47)$	$123.5(4)$
$\mathrm{Ru}(2)-\mathrm{O}(8)-\mathrm{C}(49)$	$123.8(4)$	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$113.5(6)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$127.0(5)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$119.5(6)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$127.8(5)$	$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	$126.0(5)$
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$115.8(6)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$118.2(6)$
$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(6)$	$113.9(5)$	$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(8)$	$126.6(5)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$119.5(5)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$127.8(5)$
$\mathrm{O} 94)-\mathrm{C}(9)-\mathrm{C}(8)$	$126.9(5)$	$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{C}(10)$	$114.5(5)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$118.5(5)$	$\mathrm{P}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$175.8(5)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$178.8(6)$	$\mathrm{P}(1)-\mathrm{C}(14)-\mathrm{C}(15)$	$119.3(4)$
$\mathrm{P}(1)-\mathrm{C}(14)-\mathrm{C}(19)$	$121.9(4)$	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(19)$	$118.6(5)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$119.2(5)$	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$121.4(6)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$118.9(6)$	$\mathrm{C}(17)-\mathrm{C} 918)-\mathrm{C}(19)$	$121.1(6)$
$\mathrm{C}(14)-\mathrm{C}(19)-\mathrm{C}(18)$	$120.9(6)$	$\mathrm{P}(1)-\mathrm{C}(20)-\mathrm{C}(21)$	$119.2(4)$
$\mathrm{P}(1)-\mathrm{C}(20)-\mathrm{C}(25)$	$122.2(4)$	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(25)$	$118.4(5)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$120.1(6)$	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$119.9(6)$
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$120.5(6)$	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	$119.8(6)$
$\mathrm{C}(20)-\mathrm{C}(25)-\mathrm{C}(24)$	$121.3(6)$	$\mathrm{P}(2)-\mathrm{C}(26)-\mathrm{C}(27)$	$176.4(5)$
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	$178.9(6)$	$\mathrm{P}(2)-\mathrm{C}(29)-\mathrm{C}(30)$	$118.1(4)$
$\mathrm{P}(2)-\mathrm{C}(29)-\mathrm{C}(34)$	$123.4(4)$	$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(34)$	$118.5(5)$
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	$120.0(6)$	$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	$120.8(7)$
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	$119.8(7)$	$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)$	$120.6(6)$
$\mathrm{C}(29)-\mathrm{C}(34)-\mathrm{C}(33)$	$120.2(6)$	$\mathrm{P}(2)-\mathrm{C}(35)-\mathrm{C}(36)$	$118.6(4)$
$\mathrm{P}(2)-\mathrm{C}(35)-\mathrm{C}(40)$	$122.6(4)$	$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(40)$	$118.7(5)$
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(37)$	$120.2(5)$	$\mathrm{C}(36)-\mathrm{C}(37)-\mathrm{C}(38)$	$120.2(5)$
$\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{C}(39)$	$120.2(5)$	$\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(40)$	$120.2(5)$

Table A.16.2 (cont): Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of cis$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right] \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

$\mathrm{C}(35)-\mathrm{C}(40)-\mathrm{C}(39)$	$120.5(5)$	$\mathrm{O}(5)-\mathrm{C}(42)-\mathrm{C}(41)$	$114.2(5)$
$\mathrm{O}(5)-\mathrm{C}(42)-\mathrm{C}(43)$	$126.2(5)$	$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(43)$	$119.6(5)$
$\mathrm{C}(42)-\mathrm{C}(43)-\mathrm{C}(44)$	$127.4(5)$	$\mathrm{O}(6)-\mathrm{C}(44)-\mathrm{C}(43)$	$126.3(5)$
$\mathrm{O}(6)-\mathrm{C}(44)-\mathrm{C}(45)$	$115.0(5)$	$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)$	$118.7(5)$
$\mathrm{O}(7)-\mathrm{C}(47)-\mathrm{C}(46)$	$113.4(6)$	$\mathrm{O}(7)-\mathrm{C}(47)-\mathrm{C}(48)$	$127.7(5)$
$\mathrm{C}(46)-\mathrm{C}(47)-\mathrm{C}(48)$	$118.9(6)$	$\mathrm{C}(47)-\mathrm{C}(48)-\mathrm{C}(49)$	$127.0(5)$
$\mathrm{O}(8)-\mathrm{C}(49)-\mathrm{C}(48)$	$126.0(6)$	$\mathrm{O}(8)-\mathrm{C}(49)-\mathrm{C}(50)$	$115.5(6)$
$\mathrm{C}(48)-\mathrm{C}(49)-\mathrm{C}(50)$	$118.5(5)$	$\mathrm{P}(3)-\mathrm{C}(54)-\mathrm{C}(55)$	$119.3(4)$
$\mathrm{P}(3)-\mathrm{C}(54)-\mathrm{C}(59)$	$122.4(5)$	$\mathrm{C}(55)-\mathrm{C}(54)-\mathrm{C}(59)$	$118.3(6)$
$\mathrm{C}(54)-\mathrm{C}(55)-\mathrm{C}(56)$	$120.5(6)$	$\mathrm{C}(55)-\mathrm{C}(56)-\mathrm{C}(57)$	$120.2(7)$
$\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{C}(58)$	$120.7(7)$	$\mathrm{C}(57)-\mathrm{C}(58)-\mathrm{C}(59)$	$120.1(7)$
$\mathrm{C}(54)-\mathrm{C}(59)-\mathrm{C}(58)$	$120.2(7)$	$\mathrm{P}(3)-\mathrm{C}(60)-\mathrm{C}(61)$	$117.5(5)$
$\mathrm{P}(3)-\mathrm{C}(60)-\mathrm{C}(65)$	$124.1(5)$	$\mathrm{C}(61)-\mathrm{C}(60)-\mathrm{C}(65)$	$118.4(6)$
$\mathrm{C}(60)-\mathrm{C}(61)-\mathrm{C}(62)$	$119.9(7)$	$\mathrm{C}(61)-\mathrm{C}(62)-\mathrm{C}(63)$	$120.9(8)$
$\mathrm{C}(62)-\mathrm{C}(63)-\mathrm{C}(64)$	$119.4(8)$	$\mathrm{C}(63)-\mathrm{C}(64)-\mathrm{C}(65)$	$120.9(8)$
$\mathrm{C}(60)-\mathrm{C}(65)-\mathrm{C}(64)$	$120.4(7)$	$\mathrm{P}(4)-\mathrm{C}(66)-\mathrm{C}(67)$	$177.2(5)$
$\mathrm{C}(66)-\mathrm{C}(67)-\mathrm{C}(68)$	$179.4(7)$	$\mathrm{P}(4)-\mathrm{C}(69)-\mathrm{C}(70)$	$119.0(4)$
$\mathrm{P}(4)-\mathrm{C}(69)-\mathrm{C}(74)$	$122.4(4)$	$\mathrm{C}(70)-\mathrm{C}(69)-\mathrm{C}(74)$	$118.6(5)$
$\mathrm{C}(69)-\mathrm{C}(70)-\mathrm{C}(71)$	$120.4(5)$	$\mathrm{C}(70)-\mathrm{C}(71)-\mathrm{C}(72)$	$119.9(6)$
$\mathrm{C}(71)-\mathrm{C}(72)-\mathrm{C}(73)$	$120.2(6)$	$\mathrm{C}(72)-\mathrm{C}(73)-\mathrm{C}(74)$	$120.2(6)$
$\mathrm{C}(69)-\mathrm{C}(74)-\mathrm{C}(73)$	$120.7(5)$	$\mathrm{P}(4)-\mathrm{C}(75)-\mathrm{C}(76)$	$119.3(4)$
$\mathrm{P}(4)-\mathrm{C}(75)-\mathrm{C}(80)$	$122.3(4)$	$\mathrm{C}(76)-\mathrm{C}(75)-\mathrm{C}(80)$	$118.2(5)$
$\mathrm{C}(75)-\mathrm{C}(76)-\mathrm{C}(77)$	$120.2(6)$	$\mathrm{C}(76)-\mathrm{C}(77)-\mathrm{C}(78)$	$120.2(7)$
$\mathrm{C}(77)-\mathrm{C}(78)-\mathrm{C}(79)$	$120.5(6)$	$\mathrm{C}(78)-\mathrm{C}(79)-\mathrm{C}(80)$	$119.9(6)$
$\mathrm{C}(75)-\mathrm{C}(80)-\mathrm{C}(79)$	$121.0(6)$	$\mathrm{Cl}(1)-\mathrm{C}(81)-\mathrm{Cl}(2)$	$117.2(5)$
$\mathrm{P}(3)-\mathrm{C}(511)-\mathrm{C}(521)$	$173(1)$	$\mathrm{P}(3)-\mathrm{C}(512)-\mathrm{C}(522)$	$173(2)$
$\mathrm{C}(511)-\mathrm{C}(521)-$	$177(2)$	$\mathrm{C}(512)-\mathrm{C}(522)-$	$180(2)$
$\mathrm{C}(531)$	$\mathrm{C}(532)$		

Table A.17.1: Crystallographic and refinement data for trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right]\left[\mathrm{PF}_{6}\right] .2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Crystal Data

Empirical Formula
Formula Weight
Crystal Colour, Habit
Crystal Dimensions
Crystal System
Lattice Type
Omega Scan Peak Width at
Half-Height
Lattice Parameters

Space Group
Z value
$\mathrm{D}_{\text {calc }}$
F_{000}
$\mu(\operatorname{MoK} \alpha)$
$\mathrm{C}_{42} \mathrm{H}_{44} \mathrm{Cl}_{4} \mathrm{~F}_{6} \mathrm{O}_{4} \mathrm{P}_{3} \mathrm{Ru}$ 1062.60
green, rhomboid
$0.08 \times 0.07 \times 0.07 \mathrm{~mm}$ triclinic
Primitive
0.29°
$a=9.7900(9) \AA$
$\mathrm{b}=11.1192(8) \AA$
$\mathrm{c}=11.1518(9) \AA$
$\alpha=104.946(6)^{\circ}$
$\beta=93.248(7)^{\circ}$
$\gamma=97.520(7)^{\circ}$
$\mathrm{V}=1157.6(2) \AA^{3}$
P $\overline{1}$ (\#2)
1
$1.524 \mathrm{~g} / \mathrm{cm}^{3}$
539.00
$64.07 \mathrm{~cm}^{-1}$

Intensity Measurements
diffractometer
Radiation

Take-off Angle
Detector Aperture
Crystal to Detector Distance
Voltage, Current
Temperature
Scan Type
Scan Rate
Scan Width $2 \theta_{\text {max }}$
No. of Reflections Measured
Corrections

Rigaku AFC6R
$\operatorname{CuK} \alpha(\lambda=1.54178 \AA)$
graphite monochromated
6.0°
7.0 mm horizontal 7.0 mm vertical

400 mm $180 \mathrm{kV}, 50 \mathrm{~mA}$ $-80.0^{\circ} \mathrm{C}$ $\omega-2 \theta$
$32.0^{\circ} / \mathrm{min}$ (in ω) (up to 4 scans) $(1.30+0.30 \tan \theta)$ 120.1°
Total: 3678
Unique: $3443\left(\mathrm{R}_{\text {int }}=0.031\right)$
Lorentz-polarization Absorption (trans. factors: 0.5183-0.7.467)

Decay (2.62% decline)

Table A.17.1 (cont): Crystallographic and refinement data for trans$\left.\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right)\right]\left[\mathrm{PF}_{6}\right] .2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Structure Solution and Refinement

Structure Solution
Refinement
Function Minimized
Least Squares Weights
p-factor
Anamalous Dispersion
No. Observations ($\mathrm{I}>2.0 \sigma(\mathrm{I})$)
No. of variables
Reflection/Parameter Rotation
Residuals: R; Rw
Goodness of Fit Indicator
Max Shift/Error in Final Cycle
Max peak in Final Diff. Map
Min peak in Final Diff Map

Direct Methods (SIR92)
Full-Matrix least squares

$$
\begin{gathered}
\sum w(|\mathrm{Fo}|-|\mathrm{Fc}|)^{2} \\
w=\left[\sigma_{\mathrm{c}}^{2}(\mathrm{Fo})+0.25 \mathrm{p}^{2} \mathrm{Fo}^{2}\right]^{-1} \\
0.020
\end{gathered}
$$

All non-hydrogen atoms 2737 340 8.05
0.036; 0.041
1.36
0.09
$0.55 e^{-} / \AA^{3}$
$-0.46 e^{-} / \AA^{3}$

Table A.17.2: Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structures of trans$\left.\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}\right)_{2}\right)\right]\left[\mathrm{PF}_{6}\right] .2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.393(1)$	$\mathrm{Ru}(1)-\mathrm{O}(1)$	$2.011(3)$
$\mathrm{Ru}(1)-\mathrm{O}(2)$	$2.003(3)$	$\mathrm{Cl}(1)-\mathrm{C}(21)$	$1.756(6)$
$\mathrm{Cl}(2)-\mathrm{C}(21)$	$1.760(6)$	$\mathrm{P}(1)-\mathrm{C}(6)$	$1.753(5)$
$\mathrm{P}(1)-\mathrm{C}(9)$	$1.826(4)$	$\mathrm{P}(1)-\mathrm{C}(15)$	$1.816(4)$
$\mathrm{P}(2)-\mathrm{F}(1)$	$1.595(3)$	$\mathrm{P}(2)-\mathrm{F}(2)$	$1.597(3)$
$\mathrm{P}(2)-\mathrm{F}(3)$	$1.597(3)$	$\mathrm{O}(1)-\mathrm{C}(2)$	$1.280(5)$
$\mathrm{O}(2)-\mathrm{C}(4)$	$1.281(5)$	$\mathrm{C}(1)-\mathrm{C}(2)$	$1.503(6)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.394(6)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$1.403(6)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.490(6)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.185(6)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.451(7)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.395(6)$
$\mathrm{C}(9)-\mathrm{C}(14)$	$1.388(6)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.372(7)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.378(8)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.374(8)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.381(7)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.395(6)$
$\mathrm{C}(15)-\mathrm{C}(20)$	$1.400(6)$	$\mathrm{C}(16)-\mathrm{C}(17)$	$1.383(6)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.369(7)$	$\mathrm{C}(18)-\mathrm{C}(19)$	$1.371(8)$
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.376(7)$		

$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(1)^{\mathrm{a}}$	180.0	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)$	$89.64(8)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)^{\mathrm{a}}$	$90.36(8)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$88.88(9)$
$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)^{\mathrm{a}}$	$91.12(9)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(1)^{\mathrm{a}}$	180.0

Table A.17.2 (cont): Interatomic distances (\AA) and angles (${ }^{\circ}$) involving nonhydrogen atoms of the molecular structure of trans$\left[\mathrm{Ru}(\mathrm{acac})_{2}\left(\mathrm{Ph}_{2} \mathrm{PC} \equiv \mathrm{CMe}_{2}\right)\right]\left[\mathrm{PF}_{6}\right] .2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$.

$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)$	$90.3(1)$	$\mathrm{O}(1)-\mathrm{Ru}(1)-\mathrm{O}(2)^{\mathrm{a}}$	$89.7(1)$
$\mathrm{O}(2)-\mathrm{Ru}(1)-\mathrm{O}(2)^{\mathrm{a}}$	180.0	$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(6)$	$114.6(2)$
$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(9)$	$113.1(1)$	$\mathrm{Ru}(1)-\mathrm{P}(1)-\mathrm{C}(15)$	$113.8(1)$
$\mathrm{C}(6)-\mathrm{P}(1)-\mathrm{C}(9)$	$103.2(2)$	$\mathrm{C}(6)-\mathrm{P}(1)-\mathrm{C}(15)$	$104.7(2)$
$\mathrm{C}(9)-\mathrm{P}(1)-\mathrm{C}(15)$	$106.4(2)$	$\mathrm{F}(1)-\mathrm{P}(2)-\mathrm{F}(1)^{\mathrm{a}}$	180.0
$\mathrm{~F}(1)-\mathrm{P}(2)-\mathrm{F}(2)$	$89.4(2)$	$\mathrm{F}(1)-\mathrm{P}(2)-\mathrm{F}(2)^{\mathrm{a}}$	$90.6(2)$
$\mathrm{F}(1)-\mathrm{P}(2)-\mathrm{F}(3)$	$89.9(2)$	$\mathrm{F}(1)-\mathrm{P}(2)-\mathrm{F}(3)^{\mathrm{a}}$	$90.1(2)$
$\mathrm{F}(2)-\mathrm{P}(2)-\mathrm{F}(2)^{\mathrm{a}}$	180.0	$\mathrm{~F}(2)-\mathrm{P}(2)-\mathrm{F}(3)$	$89.5(2)$
$\mathrm{F}(2)-\mathrm{P}(2)-\mathrm{F}(3)^{\mathrm{a}}$	$90.5(2)$	$\mathrm{F}(3)-\mathrm{P}(2)-\mathrm{F}(3)^{\mathrm{a}}$	180.0
$\mathrm{Ru}(1)-\mathrm{O}(1)-\mathrm{C}(2)$	$122.9(3)$	$\mathrm{Ru}(1)-\mathrm{O}(2)-\mathrm{C}(4)$	$124.2(3)$
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(1)$	$114.8(4)$	$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$125.5(4)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$119.6(4)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$125.8(4)$
$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(3)$	$124.3(4)$	$\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{C}(5)$	$115.2(4)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$120.4(4)$	$\mathrm{P}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$178.9(5)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$179.3(6)$	$\mathrm{P}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	$119.4(4)$
$\mathrm{P}(1)-\mathrm{C}(9)-\mathrm{C}(14)$	$121.9(4)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)$	$118.6(4)$
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	$120.6(5)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$120.2(5)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$120.0(5)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$120.3(5)$
$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{C}(13)$	$120.4(5)$	$\mathrm{P}(1)-\mathrm{C} 915)-\mathrm{C}(16)$	$118.1(3)$
$\mathrm{P}(1)-\mathrm{C}(15)-\mathrm{C}(20)$	$122.6(4)$	$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(20)$	$119.3(4)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$120.0(4)$	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$120.1(5)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$120.2(5)$	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$121.1(5)$
$\mathrm{C}(15)-\mathrm{C}(20)-\mathrm{C}(19)$	$119.2(5)$	$\mathrm{Cl}(1)-\mathrm{C}(21)-\mathrm{Cl}(2)$	$110.9(3)$

a) Atom generated by the symmetry operation (1-x, 1-y, 1-z)

[^0]: a) singlets unless otherwise indicated.

[^1]: + recorded in $\mathrm{C}_{6} \mathrm{H}_{6}$.

[^2]: a) $\Delta v(C \equiv C)=v(C \equiv C)_{\text {complex }}-v(C \equiv C)_{\text {free; b) ref. } 37 ; ~ c) ~ R a m a n ~ s p e c t r u m ; ~ d) ~ r e f . ~}^{22}$

[^3]: * restrained during refinement

[^4]: a) Indicates atom generated by the symmetry operation (2-x,y,3/2-z);
 ${ }^{*}$) Restrained during refinement.

