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ABBREVIATIONS 

The symbols and abbreviations that are listed in Plant Physiology's 

Instructions to Contributors have been adopted and are used without definition. The 

abbreviations not included in this list are listed below: 

AS asparagine synthetase 

BA 6-benzy laminopurine 

DAA days after anthesis 

DAFF days after first flower 

IBA indole-3-butyric acid 

NOS nopaline synthase 

NPTII neomycin phosphotransf erase 
--ocs octopine synthase 

PEPC phosphoenolpyruvate carboxylase 

SPS sucrose-phosphate synthase 

SSC (1 x) 150 mM NaCl, 15 mM sodium citrate, pH 7.0 

SuSy sucrose synthase 

TDZ thidiazuron 

TE 10 mM Tris, 1 mM EDTA, pH 8.0 

NOMENCLATURE 

DNA sequences originating from microbes are presented as lowercase italics 

( eg. nptl[) and those from plants are presented as normal text and the first letter is 

capitalized if the gene is nuclear-encoded (eg. RbcS). Gene products are presented in 

uppercase (eg. NPTII). Shoots regenerating from tissue culture were numbered 

sequentially and were given a SK-prefix (eg. SK43). Regenerants from the same 

callus had the same identification number and were followed by a letter and may or 

may not be independent transformation events (eg. SK96A, SK96B). 
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ABSTRACT 

Sources of assimilates required for the growth and development of canola 

(Brassica napus L.) change during its life cycle. Leaves senesce before rapid seed 

filling within 3 5 d after first flower, therefore assimilates needed for seed storage­

product synthesis must be derived from silique wall (pod wall), seed or stem 

photosynthesis and remobilization of stored reserves. Silique wall photosynthetic 

capacity was greater than leaf on a chlorophyll basis but not on an area basis due to a 

75 to 80 % lower chlorophyll content per unit area. Total extractable ribulose-1,5-

bisphosphate carboxylase / oxygenase (Rubisco) activity in silique wall tissue was 

higher than leaf (23 vs. 13 µmol mg chlorophylr1 min-1
). In contrast to leaves, the 

silique wall preferentially partitioned 14C02 into sucrose rather than starch. The 

predominant accumulated carbohydrates were hexoses, however, and correspondingly 

high soluble acid invertase activities suggest vacuolar localization of cleaved sucrose 

as hexose. Hexose contents rapidly declined in parallel with rapid seed growth and 

were presumably remobilized. Seed starch and hexose were localized to the seed coat 

or liquid endosperm and were depleted on the transition to rapid embryo growth. 

Sucrose imported into seeds during storage-product synthesis appears to be cleaved 

by sucrose synthase (20 nmol min-1 seed-1
) rather than soluble acid or alkaline 

invertases (1.5, 6.6 nmol min-1 seed-1
) and sucrose-phosphate synthase (SPS)­

mediated sucrose resynthesis may modulate carbon allocation to glycolysis . 

In addition to the silique wall, developing seeds had significant CO2 fixation 

capacity and the major component of this capacity was embryo Rubisco. Total 

Rubisco activity was 14.3 nmol min-1 embryo-1 (3.8 µmol min-1 mg chlorophylr1
) at 

28 days after anthesis (DAA) with smaller contributions from seed coat and embryo 

PEPC. Rubisco activities were probably maximal in vivo because of high silique 

cavity CO2 concentrations (0.8 to 2.5 %). Seed chlorophyll content rapidly increased 

over 10-fold from 20 to 3 0 D AA and with 20 % of incident light transmitted through 

the silique wall, embryos demonstrated appreciable photosynthetic electron transport 

rates. Seeds were estimated to have a 1.2 to 2. 5-fold higher CO2 refixation capacity 

than silique wall endocarp during oil filling. 
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Transgenic plants were produced to perturb normal source to sink relations. 

Transformation vectors were constructed containing cDNA clones encoding for SPS 

and asparagine synthetase (AS), key enzymes for the biosynthesis of carbon and 

nitrogen transport compounds. These genes were cloned in the sense direction under 

the control of either constitutive or tissue-specific pro1noters. Before successful 

transformation with Agrobacterium, plant regeneration frequencies had to be 

increased by identifying and modifying the most critical tissue culture factors of 

explant age and water source. Incorporation of the transgenes was confirmed in 

regenerated shoots by Southern blot analysis and transgene expression or activities of 

its product was assayed in T1 progeny. SPS activities in the leaves, silique wall and 

seed of T1 progeny ranged from 92 % reductions to 8.6-fold increases compared to 

untransformed plants and were correlated with profound effects on plant growth and 

development. 

This thesis has provided baseline knowledge on source to sink carbohydrate 

metabolism during seed filling. These data allow the identification of suitable targets 

for the genetic manipulation of seed assimilate partitioning and preliminary 

assessment_ of transgenic plants with perturbed source metabolism suggested that 

these changes can indeed affect seed sinks. 

X 



CHAPTER 1: INTRODUCTION 

GENERAL ASPECTS 

Brassica napus L. and B. rapa L. (formerly B. campestris L.) are two species 

of rapeseed. B. rapa is a diploid species while B. napus is an amphidiploid derived 

from B. rapa and B. oleracea (U, 1935). Cultivars of both species can be of canola­

quality, indicating that the anti-nutritional compounds erucic acid and glucosinolates 

are present in minimal amounts, and are simply known as canola or oilseed rape. In 

recent years, canola has been increasingly grown in many parts of the world as a high 

value crop (for review, see Kimber and McGregor, 1995). The harvestable product 

is the seeds which typically contain 40 percent oil and this oil is high in unsaturated 

fats with excellent nutritional properties (for review, see McDonald, 1995). After oil 

extraction, seed meal can be used as a high protein feed (for Feview, see Bell, 1995). 

Non-canola-quality rapeseed oil has a number of industrial applications (for reviews, 

see Korbitz, 1995; Sonntag, 1995). 

Canola is a C3 dicotyledon with an indeterminate growth habit. At the onset 

of flowering, the main raceme bolts upwards and produces flowers (Fig. I. IA). 

Secondary branching also occurs from the main raceme. A pollinated carpel extends 

to form a silique (i.e. pod) within which seeds develop (Fig. 1. IB) and silique 

development is from the base of the raceme upwards. Individual seeds follow the 

growth and development patterns typical of other dicotyledonous crops (Fig. I. IC). 

Double fen;ilization produces both a diploid embryo and a triploid liquid endosperm 

w bile the surrounding seed coat is maternal. 

Developing seeds receive assimilates through the phloem from 

photosynthetic source tissues (Fig. 1.2). In these source tissues, photosynthesis 

produces the energy needed to fix atmospheric CO2 into organic carbon. Some of 

this carbon is then exported as sucrose to young leaves and roots during vegetative 

growth and to seeds during reproductive growth. Once in sink tissues, sucrose is 

cleaved into its constituent hexoses and either stored as starch or utilized by the 

respiratory pathways to produce energy or substrates for fatty acids, protein and other 

compounds. Nitrogen is taken up from the soil as nitrate or ammonium and is 
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Figure 1.1. Growth and development in canola. A: At the initiation of 

flowering the main stem bolts and produces many flower-bearing branches. 

Pollinated flowers extend to form siliques (box). B: Developing seeds 

within the silique cavity are attached to the rest of the plant by a central 

septum. C: Dicotyledonous embryos develop through globular (G), heart (H), 

torpedo (T), early-cotyledonary (EC), mid-cotyledonary (MC), late­

cotyledonary (LC), and desiccation phases. 
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reduced to organic forms either in the roots or in the leaves (Andrews, 1986). The 

form of organic nitrogen transported to sink tissues, for use in the synthesis of 

protein and other compounds, varies with species but is typically glutamine and 

asparagine or ureides in tropical legumes (Lea and Miflin, 1980). 

WHOLE-PLANT SOURCE TO SINK CARBON PARTITIONING 

14CO2 feeding studies have been a very useful tool to track carbon 

partitioning between source and sink tissues of Brassica. Brar and Thies ( 1977) fed 
14CO2 to individual B. napus leaves at different developmental stages. The fully 

expanded second leaf translocated 14C to young sink leaves. The fully expanded fifth 

leaf translocated the majority of assimilates to the stem where it was retained for at 

least 28 d. After feeding the flag leaf, label first appeared in the stem and then 

transferred to silique walls and finally to seeds. Major et al. ( 1978) demonstrated 

that lower leaves export assimilates to roots while upper leaves and stems export 

carbon to siliques and seeds. 

The onset of flowering marks the beginning of a transition from leaves being 

the sole source of photosynthate to other tissues taking over assimilate provision. 

Clarke and Simpson (1978) reported that maximum B. napus leaf area indices were 

not reached until shortly after first flower but leaf area was rapidly declining by two 

weeks after first flower. Morrison et al. (1992) showed that the first two leaves 

senesced before flowering started. These leaves were, however, quite small and may 

not have significantly reduced total leaf area. In another study, total leaf area had 

decreased by 80 percent in the two weeks following first flower (Pechan and 

Morgan, 1985). The total loss of leaf area did not occur until 46 d after first flower 

which preceded maturity of the first silique by 8 d (Kasa and Kondra, 1986). At this 

stage, a large number of siliques at the top of the plant will just be commencing rapid 

seed filling. 

The provision of photoassimilates after first flower is critical. Over 50 

percent of final above-ground biomass in B. napus was assimilated after flowering 

(Thurling, 1974; Lewis and Thurling, 1994). Of this total, approximately 40 percent 
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ended up in the seeds (Lewis and Thurling, 1994). Vegetative yield (all above­

ground biomass except seeds) over the life of the plant shows a strong correlation (r 

= 0.93 - 0.96) to final seed yield (Campbell and Kandra, 1978). The number of 

siliques per plant is also very important (Campbell and Kandra, 1978; Tayo and 

Morgan, 1979). Silique area indices are, however, poorly correlated with seed yield 

(Clarke and Simpson, 1978). Leaf shading or removal around first flower caused 

reductions in the numbers of open flowers, siliques per plant and plant height (Tayo 

and Morgan, 1979). The number of seeds per individual silique and weight per seed 

were unaffected which indicates that the reduced number of siliques were responsible 

for the lower seed yield per plant. In a separate study, the removal of all leaves at 

late flowering caused a 35 percent reduction in final seed yield (Freyman et al., 

1973). Leaves are obviously important components of yield but the effect could be 

either direct or indirect. Direct provision of assimilates to seeds is straightforward. 

Alternatively, carbon could be translocated to growing raceme meristems thereby 

feeding the development of additional autotrophic siliques. 

Rood et al. (1984b) have nicely demonstrated the developmental transition of 

assimilate sources in B. rapa using whole plant 14CO2 labelling. At first flower, 

stems and leaves were the major incorporation sites. This label then translocated to 

roots and seeds. When the lower siliques were filling, the major incorporation sites 

were stems and silique walls. These labelled assimilates were translocated 

predominantly to the seeds. During seed ripening, silique walls and stems 

incorporated 14CO2. Again, most label was transferred to seeds and this preferential 

partitioning progressively increased with development. 

The high proportion of apparent stem incorporation in the work of Rood et al. 

(1984b) is somewhat surprising. A long pulse length (1 h) could potentially 

overestimate incorporation if some of the stem label was fixed in another tissue and 

be en route to sink tissues. Addo-Quaye et al. (1986), however, found a significant 

proportion of stem label after a shorter 15 minute pulse period of B. napus. Canola 

stems contain chlorophyll and have stomata (Major, 1975; Brar and Thies, 1977) so 

it is possible that they are photosynthetically active but their vertical orientation 

would presumably make it difficult to intercept light efficiently. 
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Several weeks after first flower, leaf area is severely diminished at a time 

when there is a great sink demand for assimilates. The older siliques at the base of 

the raceme are actively synthesizing oil and protein storage products while new 

siliques are emerging at the top of the plant. At these later stages, the sources of 

carbon are unclear. Major et al. (1978) claimed that autotrophic B. napus siliques do 

not export carbon but solely supply their own seeds, however no data was presented 

to substantiate this claim. This claim is questionable because at the time of greatest 

seed sink demand, the photosynthetic capacity of the silique wall is declining. B. 

rapa silique photosynthetic rates peak at 20 to 30 dafter anthesis (Singal et al., 1987; 

Dua et al., 1994) which is when the storage oil synthesis is beginning and storage 

protein synthesis has not yet begun in B. napus (Murphy and Cummins, 1989). 

Starch transiently stored in seeds in the first few weeks of development would be 

inadequate to entirely meet oil and protein synthesis requirements (Norton and 

Harris, 1975). Remobilization from silique wall reserves is a possible source 

because silique wall dry weight decreases during seed filling (Norton and Harris, 

1975; Rood et al., 1984a). Constant stem and root dry weights argue against 

significant remobilization from these tissues in B. rapa (Rood et al., 1984a). 

Sheoran et al. ( 1991) examined the effect of covering B. rapa siliques on seed 

yield. Covering siliques from 7 d after anthesis resulted in a 48 percent decrease in 

silique wall dry matter and a 73 percent decrease in seed dry matter. Coverage 

starting at 20 d after anthesis produced 59 percent less seed while only a 14 percent 

decrease occurred when siliques were covered from 40 d after anthesis. The simple 

explanation for these results is that silique primary CO2 fixation is critical to seed 

filling. The absence of light could, however, also arrest light-dependent refixation of 

seed-respired CO2 and light-dependent production of energy within developing 

embryos. 

Instead of covering siliques, Rood and Major (1984) removed B. napus and 

B. rapa siliques at emergence. Four weeks after removal, dry weights of other plant 

parts were greater than an undefoliated control suggesting that siliques need to 

import assimilates. In a study by Khanna-Chopra and Sinha ( 197 6), B. rapa seeds 

gained 68 mg dry matter during the phase of rapid dry weight accumulation. During 

this same period, the enclosing silique wall lost 40 mg dry matter. If it is assumed 
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that all of the 40 mg loss went to the seeds then the source of the extra 28 mg of seed 

dry matter is unknown. Almost half of the plant's leaf area had senesced at the start 

of the sampling period consequently leaves could likely only contribute dry matter by 

remobilization. Other possible sources are stem photosynthesis and/or 

remobilization, export from other siliques or seed photosynthesis. 

Canola source-sink relations are complicated by its indeterminate nature. 

Provision of carbon to seed sinks can be from a number of sources at any one time. 

These sources and the relative contribution of each likely changes over whole-plant 

development. The possibilities of significant stem primary CO2 fixation, seed 

fixation and the transfer of photoassimilates between siliques have not been 

adequately explored in the literature. 

PHOTOSYNTHESIS AND CARBOHYDRATE METABOLISM 

METABOLIC PATHWAYS 

The photosynthetic light harvesting reactions occur in the thylakoid 

membranes of chloroplasts and through the photosynthetic electron transport chain 

produce oxygen, NADPH and ATP (Fig. 1.3) (for review, see Edwards and Walker, 
plastidial 

1983). In theory, this energy can be used in any A metabolic reaction, however 

photosynthetic electron transport in C3 plants is normally coupled to Rubisco­

dependent CO2 fixation. The Calvin cycle (also known as the photosynthetic carbon 

reduction cycle or reductive pentose phosphate cycle) is localized to the chloroplast 

stroma and can be broadly divided into three components (Fig. 1.4 ). First, Rubisco 

catalyzes the carboxylation of ribulose-1,5-bisphosphate (RuBP) and CO2 into the 

three-carbon compound 3-phosphoglycerate (3-PGA). Second, 3-PGA is reduced to 

triose-P using the photosynthetically-produced ATP and NADPH. Third, a portion 

of the produced triose-P is recycled to regenerate RuBP. 

The remaining triose-P is further metabolized into sucrose and starch, 

regarded as the primary end products of photosynthesis (Fig. 1.5). In leaves, starch 

synthesis occurs in the chloroplast (for review, see Smith and Martin, 1993). For 

sucrose, triose-P is transferred to the cytosol in exchange for Pi by a specific 
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Figure 1.3. Photosynthetic electron transport. Light excites chlorophyll 

within the photosystem protein complexes (PSII, PSI) of the chloroplast 

thylakoid membranes. The excited electrons are sequentially transferred 

to adjacent pigments and reduce NADP+ to NADPH on the stromal side. 

The oxidation of water on the lumen side produces oxygen and protons. 

These protons and those evolved by the cytochrome b6-f complex acidify 

the lumen and drive the ATP synthase-mediated production of ATP. 
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triose-P using energy produced from photosynthetic electron 

transport. Some of the triose-P is used to regenerate RuBP while 

the rest is used in other metabolic reactions. 
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translocator where it is first converted to hexose-P then to sucrose (for review, see 

Stitt et al., 1987). In leaves of C3 dicotyledonous species, photosynthetic carbon 

fixation typically leads to an accumulation of starch during the photoperiod which is 

remobilized to sink tissues during the subsequent dark period. 

The proportion of photosynthate partitioned toward sucrose is important for 
principal in most species 

productivity because sucrose is the/\ carbon form transported to sink tissues/\ and 

sucrose or metabolites involved in its synthesis may feedback on photosynthetic rate 

(for review, see Stitt et al., 1987). Two enzymes play key roles in controlling the rate 

of sucrose synthesis; cytosolic Fru-1,6-bisPase (FBPase) and sucrose-phosphate 

synthase (SPS) (Fig. 1.5). The regulation of the sucrose synthesis pathway has been 

thoroughly reviewed (Stitt et al., 1987; Stitt, 1993; Quick and Schaffer, 1996) and 

only a few key points will be addressed here. SPS has been estimated to have a flux 

control coefficient of 0.3 to 0.5 indicating that several enzymes share control in this 

pathway (Stitt, 1995b). SPS itself is primarily regulated post-translationally by 

reversible protein phosphorylation (for review, see Huber and Huber, 1996). Glc-6-P 

is an allosteric activator and Pi is an inhibitor of SPS activity and affect the affinities 

for its substrates. Protein kinase-mediated SPS phosphorylation at a conserved 

serine residue (Ser158) of the spinach leaf enzyme inactivates the enzyme and can be 

reactivated by phosphatase-mediated dephosphorylation (McMichael et al., 1993, 

1995). Phosphorylation status seems to correlate with the light/dark 

activation/deactivation seen with some species (Huber et al., 1989) and may be 

regulated by Ca +2 availability and its effects on protein kinase activity (Huber and 

Huber, 1996). Alternatively, a circadian rhythm controlling protein phosphatase 

transcription may regulate SPS phosphorylation in tomato (Jones and Ort, 1997). 

Although it is tempting to reduce cellular processes down to individual steps , 

it is important to remember that the pathways of photosynthesis and carbohydrate 

partitioning are inter-related and the effects of environmental signals and molecular 

manipulation will be complex. These subcellular interactions ultimately affect 

whole-plant growth and development. Pathway identification is only the first step 

and much research is needed to determine the factors controlling metabolic flux from 

source to sink tissues. 
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LEAF PHOTOSYNTHESIS 

Although there is little detailed published data on canola leaf photosynthesis 

and carbohydrate metabolism, it is unlikely to be much different from other C3 

species (for reviews, see Stitt et al., 1987; Wardlaw, 1990; Smith and Martin, 1993; 

Geiger and Servaites, 1994; Foyer and Galtier, 1996; Quick and Schaffer, 1996). 

Dekker and Sharkey (1992) and Sundby et al. (1993) have examined leaf 

photosynthetic regulation in two B. napus cultivars, one of which had a mutation in 

the D 1 protein of the photosynthetic electron transport chain. Cold temperature 

effects on leaf carbohydrate metabolism have been examined in the short-term by 

Paul et al. (1990) and in the long-term by Hurry et al. (1995). 

SILIQUE PHOTOSYNTHESIS 

Although canola leaf photosynthesis is typical of many C3 species, the 

provision of significant photoassimilates by siliques is somewhat unique although 

reproductive organs of other species are capable of photosynthesis; eg. wheat 

(Kriedemann, 1966; Singal et al., 1986a), pea (Lovell and Lovell, 1970; Sinha and 

Sane, 1976; Flinn et al., 1977), bean (Crookston et al., 1974), soybean (Quebedeaux 

and Chollet, 1975), chickpea (Singal et al., 1986b), and cotton (Wullshleger and 

Oosterhuis, 1990). In contrast to other species, the relative contribution in canola is 

very high because senescence quickly lowers functional leaf area before the 

completion of seed filling (Pechan and Morgan, 1985). 

The bulk of research on silique photosynthetic capacity has been done in the 

toria ecotype of B. rapa. Silique wall total chlorophyll contents on a fresh weight 

basis are greatest early in development and then decline linearly with aging (Singal et 

al., 1987; Dua et al., 1994). These contents are less than in a leaf (Hozyo et al., 

1972; Khanna-Chopra and Sinha, 1976; Singal et al., 1987) although expression of 

data on a fresh weight basis is deceptive because silique walls are thicker and will be 

heavier per unit area. In B. napus, stomata are less abundant than in leaves; 20 to 60 

percent of that of the lower side of a leaf (Major, 1975; Brar and Thies, 1977). 

Silique photosynthetic rates peak at 20 to 30 d after an thesis (Singal et al., 

1987; Dua et al., 1994). At an irradiance of 1000 µmol quanta m-2 s- 1
, intact siliques 

had a peak photosynthetic rate of 16 µmol CO2 m-2 s- 1 (Dua et al., 1994). Stomatal 
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conductance also peaked at this stage (742 mmol m-2 s-1 
) while transpiration rate 

(13-18 mmol m-2 s-1 
) and intercellular CO2 concentration (280-288 µL L-1

) did not 

change until later developmental stages. Using isolated chloroplasts from silique 

walls, whole chain electron transport, PSI and PSII activities all followed the same 

trend as net photosynthesis over development (Dua et al., 1994). Activities of 

measured Calvin Cycle enzymes (Rubisco, NADP-GAP dehydrogenase, Ru-5-P 

kinase) decreased linearly with development (Singal et al., 1987). On a chlorophyll 

basis, Rubisco activities in silique walls were 3.5-fold greater than in leaves 

(Khanna-Chopra and Sinha, 1976). Enzymes and metabolites of carbon metabolism 

correlated with changes in photosynthetic rates (Singal et al., 1992). For example, 

sucrose phosphate synthase activity reached a maximum of 66 µmol kg- 1 (protein) s- 1 

when the photosynthetic rate peaked at 21 d after anthesis. Exceptions to the trend 

were Fru-2,6-bisP and Fru-6-P-2-kinase which didn't peak until 42 d after anthesis. 

A number of papers have been published on Brassica silique photosynthesis, 

although almost entirely from the toria ecotype of B. rapa, which each provide some 

insight, however a definitive study of canola photosynthesis and subsequent 

carbohydrate production has not been conducted. 

CO2 REFIXA TION 

SILIQUE WALL 

In addition to the primary fixation of CO2, it has been speculated that the 

interior silique wall minimizes carbon loss by refixing some of the vast amount of 

respired seed CO2 (Mendham and Salisbury, 1995). Pod wall cross-sectioning 

revealed that there are two structural zones in pea (Fig. 1.6) (Atkins et al., 1977; 

Price and Hedley, 1988). The inner endocarp is separated from the mesocarp by a 

sclerenchyma layer and separate analysis of the inner and outer layers demonstrated 

that endocarp chlorophyll content (Price et al., 1988; Donkin and Price, 1990) and 

PEP carboxylase activities (Atkins et al., 1977; Price and Hedley, 1980; Price and 

Hedley, 1988) were considerably higher than the outer layers. On a fresh weight 

basis, Rubisco activities were the same or greater in the endocarp (Atkins et al., 



Atmosphere 

Pod cavity 

Figure 1.6. Transverse pod wall anatomy. The epidermis (Ep) is on the 

outer surf ace of the pod and much of the pod wall is con1posed of 

parenchyma cells in the interior mesocarp (M). A sclerenchyma layer (S) 

and parenchyma cells on the inner surf ace of the pod wall compose the 

endocarp (En). V, Vascular bundle. Bar, 300 µm. 
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1977; Price and Hedley, 1980; Price and Hedley, 1988) and importantly the endocarp 

received over 20 percent of incident light (Atkins et al., 1977; Price et al., 1988; 

Donkin and Price, 1990). In intact pea pods, photosynthetic carbon fixation was 

only greater than respiratory CO2 evolution early in development when seed 

respiration rates were low (Harvey et al., 1976; Price and Hedley, 1988). Later in 

development, pod cavity CO2 concentration reached a remarkable 4.3 percent at one 

stage (Harvey et al., 1976). 

After injecting 14C02 into pea pod cavities, 45 percent of incorporated 

ethanol-soluble label was found in the endocarp while the remaining 55 percent was 

fixed by the outer layers (Atkins et al., 1977). By increasing the incident light to 

2200 µmol quanta m-2 s-1 from 850 µmol quanta m-2 s- 1 this ratio shifted to 66:34 

percent (Atkins et al., 1977) and increasing irradiances lowered cavity CO2 

concentrations (Flinn et al., 1977). This light-dependence strongly suggests that 

photosynthetic electron transport and Rubisco are involved in CO2 refixation. The 

pod wall sclerenchyma layer presumably acts as a diffusion barrier and would slow 

the loss of respired CO2 to the atmosphere. The resulting high cavity CO2 

concentrations could improve growth efficiency by not only reducing carbon loss but 

also by the operation of Rubisco close to its V max for the carboxylase reaction. 

Although no reports have directly studied canola silique wall refixation, it is 

doubtful that PEP carboxylase is involved. Singal et al. (1987) reported that B. rapa 

leaf and silique wall activities were very similar. In addition, the ratio of Rubisco 

and PEP carboxylase activities for B. rapa leaf and silique wall tissues were 

comparable (7: 1, 5: 1) (Khanna-Chopra and Sinha, 1976). In contrast, pea enzyme 

ratios were 5: 1 for leaf and only 0.7: 1 for pod wall (Khanna-Chopra and Sinha, 

1976). Pod cavity CO2 concentrations were extremely high in pea (Harvey et al. , 

1976) while B. rapa concentrations peaked at a lower 0.63 percent (Sheoran et al., 

1991). 

It is unarguable that developing Brassica seeds must have high respiration 

rates to support growth and storage product synthesis consequently large amounts of 

CO2 will be evolved. The fate of this CO2 is open to a number of possibilities. 

First, seed-respired carbon may easily diffuse through the silique wall and escape to 

the atmosphere. Second, respired carbon may be efficiently refixed in the silique 
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wall inner layers. Third, developing canola embryos contain chlorophy 11 (Eastmond 

et al., 1996), therefore respired CO2 might be refixed by the embryo itself. 

SEED 

Seed CO2 fixation would be an intriguing mechanism for seeds to contribute 

to their own carbon economy by recycling respiratory CO2. This recycling could 

theoretically be mediated by Rubisco and PEPC. Brassica seed PEPC activities have 

been shown to be three times greater than silique walls (Singal et al., 1987) and 

seemed to peak during the oil accumulation phase (Singal et al., 1995; Tittonel et al., 

1995). This observation correlates with increasing respiration rates from 10 to 40 d 

after anthesis (Eastmond et al., 1996). One possible role for PEPC-mediated CO2 

fixation is the replenishment of TCA cycle intermediates. Although fatty acids are 

the predominant storage product in Brassica seeds, a significant amount of storage 

protein and chlorophyll are being synthesized during this time (Rakow and 

McGregor, 1975; Crouch and Sussex, 1981; Murphy and Cummins, 1989) and 

require cx-ketoglutarate and oxaloacetate to be drawn from the TCA cycle (Fig. 1.7). 

PEPC-mediated provision of oxaloacetate may partially waive the need for the cycle 

to regenerate oxaloacetate. Isocitrate dehydrogenase, a TCA cycle enzyme, and 

PEPC activities were correlated in pea pod walls and seed coats but not in cotyledons 

(Hedley et al., 1975). 

An alternative PEPC function in developing seeds could be the provision of 

acetyl-CoA, the precursor for fatty acid synthesis. After conversion of PEP and CO2 

into oxaloacetate, malate can be formed by cytosolic malate dehydrogenase (Fig. 1.7) 

(Sangwan et al., 1992; Singal et al., 1995). This malate can be decarboxylated to 

pyruvate by NAD(P) malic enzyme and then converted to acetyl-CoA through the 

pyruvate dehydrogenase complex. Activities of the required enzymes followed the 

same trends as PEPC during chickpea seed development (Singal et al. , 1986b). If 

malate is taken up by fatty acid-synthesizing plastids before decarboxy lation to 

pyruvate then the produced NADPH could be used in the energy-intensive fatty acid 

pathways (Dennis and Blakeley, 1993). This energy production may be the key 

difference between PEPC-dependent acetyl-CoA provision and the more direct 
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Figure 1.7. Respiratory reactions of the mitochondrial TCA cycle. 

Carbon enters the cycle as either acetyl-CoA or OAA after conversion 

from PEP produced in glycolysis. Cycle intermediates are withdrawn 

to be used for the synthesis of other compounds (blue) and the energy 

produced in the cycle (green) is used for mitochondrial electron 

transport. Note that the cycle evolves net CO2 (red). PK, pyruvate 

kinase; PDC, pyruvate dehydrogenase complex; PEPC, phosphoenol­

pyruvate carboxylase; MDH, malate dehydrogenase; ME, malic enzyme; 

OAA, oxaloacetate; a-KG, a-ketoglutarate. 
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conversion of PEP to acetyl-CoA through pyruvate by pyruvate kinase and the 

pyruvate dehydrogenase complex (Fig. 1.7). 

14CO2 pulse-labelling experiments with seeds have confirmed CO2 fixation 

into malate, presumably PEPC-mediated. In lupin seeds, B. rapa seeds, chickpea 

seed coats and pea embryos, the first fixation product was malate (Atkins and Flinn, 

1978; Flinn, 1985; Singal et al., 1986b; Singal et al., 1987). Radioactivity chased 

into isocitrate / citrate and amino acids in darkened lupin seeds and pea embryos 

(Atkins and Flinn, 1978; Flinn, 1985). Under light conditions, it is interesting that 

both malate and 3-PGA immediately appear after exposing lupin embryos and pea 

seed coats to 14CO2 (Atkins and Flinn, 1978; Flinn, 1985). During the chase period, 

radioactivity increased in the sugar phosphate, aspartate and isocitrate / citrate 

fractions. This labelling pattern suggests independent and simultaneous fixation of 

CO2 by PEPC and Rubisco, rather than a true C4 photosynthetic pathway. 

The energy required for Rubisco-mediated CO2 fixation is presumably 

supplied by photosynthetic electron transport, as it is in leaves. Rubisco activity and 

chlorophyll content were well correlated in lupin and both were localized to the 

embryo whereas PEPC activity was equally distributed between the embryo and seed 

coat (Atkins and Flinn, 1978). In contrast, both Rubisco and PEPC activities were 

found in pea seed coats (Hedley et al., 1975; Flinn, 1985). In B. rapa seeds, the ratio 

between seed Rubisco and PEPC activities rose during development and seeds were 

able to reduce net CO2 evolution by 20 percent in the light (Singal et al., 1987). 

This suggestion of significant light-dependent CO2 fixation was addressed in 

developing canola seeds (Eastmond et al., 1996). Seeds, specifically embryos, were 

able to evolve 0 2 in a light-dependent manner indicative of photosynthetic electron 

transport. Embryos had maximum net 0 2 evolution rates of 3.1 nmol min-1 embyro-1 

around 40 d after anthesis which translated into an estimated gross evolution rate of 

5.8 nmol min- 1 embyro- 1 after adding the dark 0 2 consumption (respiration) rate. 

Although 02 evolution rates and chlorophyll content are only indicative of 

photosynthetic electron transport and not CO2 fixation, Rubisco content and NADP­

GAPDH activity (another Calvin Cycle enzyme) followed the same trend over 

development. Embryo chloroplasts, however, had a 2.5-fold higher uncoupled 

electron transport rate compared to leaf chloroplasts possibly suggesting that 
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reductant is being supplied to fatty acid synthesis rather than CO2 fixation. In 14CO2 

pulse-labelling experiments of B. rapa seeds, insignificant levels of label were 

detected in 3-PGA apparently indicating the absence of Rubisco fixation capacity 

(Singal et al., 1987). This result is difficult to interpret because seeds were labelled 

at low CO2 concentrations (500 µL L-1
) and photoinhibitory light levels (1000 µmol 

quanta m-2 s-1
) which are not representative of in vivo conditions (Sheoran et al., 

1991; Eastmond et al., 1996) 

In summary, the significance of developing Brassica seed CO2 fixation has 

. not been conclusively determined. Although embryos are capable of photosynthetic 

electron transport and contain Rubisco, CO2 fixation has not been experimentally 

determined. As well, the purpose of high PEPC activities during storage product 

synthesis and the fate of the fixed carbon has not been established. The localization 

of these enzymes within seeds and their developmental profiles also needs to be 

determined in canola. 

SEED CARBON UT/LIZA TION 

SUCROSE CLEAVAGE AND CARBOHYDRATE POOLS 

Seeds are an important sink tissue in many species, including canola. To be 

utilized in metabolism, imported sucrose has to be cleaved by either invertase or 

sucrose synthase (SuSy). Invertase isoforms are localized to different cellular 

compartments which affects their properties and metabolic role (for review, see 

Quick and Schaffer, 1996). Alkaline invertase has an optimum pH of 7 to 8 and is 

localized to the cytosol, soluble acid invertase has an optimum pH of 4 to 5.5 and is 

localized to the vacuole, and insoluble acid invertase is membrane-bound outside of 

the cell (apoplastic). Invertase cleavage of sucrose produces free fructose and 

glucose. In contrast, SuSy cleavage produces free fructose and UDP-Glc. SuSy 

generally occurs in the cytosol although a cell wall-bound form is associated with 

cellulose synthesis in cotton (Amor et al., 1995). Unlike invertase, SuSy can 

catalyze both the cleavage and also the synthesis of sucrose (for review, see Quick 

and Schaffer, 1996). The net direction of flux in vivo is unresolved and 
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controversial, however cellular pH (Morell and Copeland, 1985), substrate affinities 

and availability (for review, see Quick and Schaffer, 1996), and phosphorylation 

status (Huber et al., 1996) will all be influential. 

In starch-storing species, SuSy activity has been positively correlated with 

starch storage (Chourey and Nelson, 1976; Edwards and ap Rees, 1986; Doehlert, 

1990; Heim et al., 1993; Weber et al., 1995; Zrenner et al., 1995; Ross et al., 1996; 

Dejardin et al., 1997). In oil-storing species, starch and hexose accumulate 

transiently at the early stages of seed development (Norton and Harris, 197 5; 

. Hendrix, 1990; Munshi and Kochhar, 1994; Kuang et al., 1996; Kuo et al., 1997) and 

either invertases (Kuo et al., 1997) or SuSy (Hendrix, 1990) have been reported to 

have the highest sucrolytic enzyme activities. In cotton, these carbohydrate reserves 

are localized to the seed coat and most hexose is destined for epidermal hair growth 

(ie. cellulose fibres) (Hendrix, 1990). Similarly in cruciferous species, seed coat 

starch disappears during development as an epidermal mucilage layer is formed (Van 

Caeseele et al., 1981; Kuang et al., 1996). 

Developmental profiles of sucrose metabolic enzymes in developing canola 

seeds have not been reported. The further localization of these enzymes and 

carbohydrate pools within seed constituents would help to postulate the roles of each. 

This knowledge is needed to identify suitable targets for the molecular manipulation 

of carbohydrate metabolism. 

SUGAR DELIVERY 

The bulk of seed-imported sugar in most dicotyledonous species is destined 

for the cotyledons of the developing embryo and the timing and pathways of this 

delivery are the subjects of continuing research (for reviews, see Thorne, 1985; Ho, 

1988; Wolswinkel, 1992; Patrick and Offler, 1995; Patrick, 1997; Weber et al. , 

1997b). In dicotyledons, assimilates are delivered to the developing seed coat by a 

continuous vascular system and then move symplastically through the coat tissues 

(for reviews, see Patrick and Offler, 1995; Patrick, 1997). The subsequent transfer to 

the embryo must be apoplastic because the maternal seed coat is physically separate 

from the filial embryo. During early developmental stages, a cell wall-bound acid 

invertase seems to be involved in apoplastic transfer (Weber et al. , 1995; Cheng et 
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al., 1996) and expression in faba bean has been localized to the thin-wall parenchyma 

cells of the inner seed coat (Weber et al., 1995). Invertase-mediated sucrose 

cleavage could explain the high hexose pools found during early developmental 

stages (Norton and Harris, 1975; Heim et al., 1993; Munshi and Kochhar, 1994). 

Once the cotyledons have grown large enough to be in close contact with the 
faba bean 

seed coat, transfer cells develop on tne"cotyledonary epidermal surface and sucrose 

may pass intact from the seed coat. These cells are highly invaginated to expose 

more cotyledon surface area to the apoplastic space. Sucrose influx into faba bean 

cotyledons has a large energy-dependent component (Harrington et al., 1997b) and 

subsequent transfer to the cotyledon's storage parenchyma cells is likely symplastic 

(for reviews, see Patrick and Offler, 1995; Patrick, 1997). The expression of a 

sucrose transporter gene and the presence of H+ / A TPase and sucrose binding proteins 

in epidermal cells corresponded to the appearance of wall ingrowths (Harrington et 

al., 1997b). In addition, the H+/ATPase and sucrose binding proteins were localized 

to the thin-walled parenchyma cells of the faba bean seed coat (Harrington et al., 

1997a). Expression of a sucrose transporter gene has been localized to cotyledonary 

epidermal cells covering storage parenchyma cells while expression of a hexose 

transporter gene peaked earlier in development and was localized in epidermal cells 

covering dividing parenchyma cells (Weber et al., 1997a). These molecular biology 

results confirm the conclusions from physiological experiments that sucrose transfer 

from seed coats to cotyledons is active at later stages of development (for reviews , 

see Patrick and Offler, 1995; Patrick, 1997), however the existence of analogous 

mechanisms in oilseeds is presently unexplored. 

RESPIRATION 

Once sugar reaches cells synthesizing storage products , hexoses formed after 

sucrose cleavage have to be phosphory lated by hexokinases before further utilization 

(Fig. 1.8). For example, Glc-6-P is imported into pea embryo amyloplasts to 

synthesize starch (Smith and Denyer, 1992). For oil, protein and energy synthesis , 

hexose phosphate enters glycolysis, the first reaction series of respiration (Fig. 1.8) 

(for review, see Plaxton, 1996). These reactions take place in the cytosol ( although 

the complete pathway can be duplicated in plastids; Dennis and Miemyk, 1982) and 
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yield pyruvate, NADH and ATP. Glycolytic intermediates can be removed to 

produce other compounds, such as the glycerol needed for storage oil formation. 

The pyruvate produced by glycolysis can be utilized in two ways. First, it can 

be transported into mitochondria where it is converted initially to acetyl-CoA 

through the pyruvate dehydrogenase complex and then to citrate, thereby entering the 

TCA cycle (Fig. 1.7). This cycle produces NADH and ATP. A large number of 

compounds, such as amino acids and chlorophyll, are produced from carbon 

skeletons withdrawn from the TCA cycle. An important consequence of the TCA 

cycle is the evolution of up to three molecules of CO2 per pyruvate. The second use 

of pyruvate is particularly important in developing oilseeds. Although carbon's point 

of entry into leucoplasts is unclear, it appears that pyruvate and malate are excellent 

substrates (Smith et al., 1992; Kang and Rawsthorne, 1994). Once in the leucoplasts, 

pyruvate is converted to acetyl-CoA which is then used to synthesize fatty acids (for 

review, see Ohlrogge and Jaworski, 1997). 

The NADH produced by glycolysis and the TCA cycle is used as an electron 

donor in mitochondrial electron transport (Fig. 1.9). Electrons are transferred 

through a series of membrane proteins, protons are extruded to the intermembrane 

space, an electrochemical gradient is formed, and ATP synthase utilizes this energy to 

, form ATP. 

MOLECULAR MANIPULATION OF SOURCE-SINK RELATIONS 

Transgenic plants offer an additional tool to decipher the pathways and 

regulation of assimilate production and the subsequent supply to storage sinks. 

Unlike defoliation and pulse-labelling experiments, the effects of up- or down­

regulation of a single enzyme can be precisely monitored under normal growth 

conditions without confounding side effects. This approach has been used 

successfully for many enzymes involved in source-to-sink carbon metabolism (Table 

1.1) and has been reviewed extensively (Blakeley and Dennis, 1993; Frommer and 

Sonnewald, 1995; Furbank and Taylor, 1995; Stitt, 1995a,b; Stitt and Sonnewald, 

1995; KoBmann et al., 1996). 
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Table 1.1: Molecular manipulation of carbon metabolism in transgenic plants. 

PROCESS 

Photosynthesis 

Glycolysis 

Starch synthesis 

Sucrose synthesis 

Sucrose cleavage 

Phloem transport 

TARGET 

Review 

PFP 

PFK 

Pyruvate kinase 

AGPase 

Starch synthase 

Glycogen synthase 

FBPase 

Fru-2,6-bisP 

SPS 

Invertase 

Sucrose synthase 

UGPase 

Pyrophosphatase 

Sucrose transporter 

REFERENCE 

Furbank and Taylor (1995) 

Hajirezaei et al. ( 1994) 

Paul et al. ( 1995) 

Burrel et al. ( 1994) 

Scott and Kruger ( 1995) 

Gottlob-McHugh et al. (1992) 

Mliller-Rober et al. ( 1992) 

Stark et al. ( 1992) 

Visser et al. ( 1991) 

Shewmaker et al. ( 1994) 

Juan and Vasconcelos ( 1994) 

Zrenner et al. ( 1996) 

Scott et al. ( 1995) 

Worrell et al. (1991) 

Galtier et al. ( 1993, 1995) 

Micallef et al. ( 1995) 

von Schaewen et al. ( 1990) 

Dickinson et al. ( 1991) 

Sonnewald et al. ( 1991) 

Reineke et al. ( 1992) 

Zrenner et al. ( 1995) 

Zrenner et al. ( 1993) 

J elitto et al. ( 1992) 

Sonnewald ( 1992) 

Lerchl et al. ( 1995) 

Geigenberger et al. ( 1996) 

Riesmeier et al. ( 1994) 

Klihn et al. ( 1996) 

Lemoine et al. ( 1996) 
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Metabolic engineering involves either the reduction in the level of an 

endogenous enzyme (gene suppression), the increase of an endogenous enzyme's 

activity by the introduction of extra gene copies ( overexpression), or the introduction 

of genes coding for novel enzymes. The results of these molecular manipulations 

have not always been predictable and have raised a number of important issues; 

multiple enzymes share regulatory control of metabolic fluxes through pathways, 

post-translational modification and alternative pathways can compensate for the 

suppression of one enzyme, enzymes catalyzing irreversible reactions can have low 

flux control, enzymes catalyzing reversible reactions are not always present in 

excess, and enzymes within and between pathways interact (Stitt and Sonnewald, 

1995). Downregulation of enzyme activity, through antisense RN A, is relatively 

straightforward compared to attempts to increase the activity of endogenous 

enzymes. In fact, plant transformation with overexpression gene constructs can 

reduce the targeted endogenous enzyme's activity and this phenomenon is termed 

cosupression or gene silencing (for reviews, see Baulcombe, 1996; Stam et al., 

1997). For successful overexpression, the choice of divergent gene sequences can 

avoid a plant's natural regulatory mechanisms. Bacterial genes are obviously 

divergent, although codon usage may pose a problem, and monocotyledonous 

sequences show low nucleotide identity to dicotyledonous sequences. Another issue 

to be considered is the targeted enzyme's subcellular location and isoform (Blakeley 

and Dennis, 1993) which requires the correct temporal and spatial expression of 

transgenes. This level of precision is limited by few promoter choices rather than the 

availability of coding sequences, largely because of the invaluable Arabidopsis and 

rice expressed sequence tag (EST) databases. 

One example of metabolic engineering is the alteration of sucrose synthesis 

capacity. In source tissues, sucrose is the interface between CO2 fixation and 

carbohydrate transport to sink tissues. SPS is believed to have significant control of 

the sucrose biosynthetic pathway and would therefore appear to be a good target for 

modification. A maize cDNA encoding SPS has been transformed into tomato under 

the control of a rbcS promoter. SPS activities in a transgenic line were up to six-fold 

higher than wild-type, sucrose contents were two-fold higher, and starch content 
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decreased by 50 % (Worell et al., 1991). Higher photosynthetic rates were detectable 

in transformed plants at saturating conditions (Galtier et al., 1993; Micallef et al. , 

1995; Galtier et al., 1995), sugar-to-starch CO2 partitioning increased (Micallef et al., 

1995; Galtier et al., 1995), a significant decrease in root dry weight increased the 

shoot-to-root ratio (Galtier et al., 1993), and these plants flowered earlier producing 

increased numbers of inflorescences and fruit (Micallef et al., 1995). Clearly, 

dramatic whole-plant effects were demonstrated through the introduction of a single 

gene into these tomato plants. Attempts to repeat these effects in potato and tobacco 

led to increased SPS protein but enzyme activity was unaffected because post­

translational modification kept the excess protein inactivated (Sonnewald et al., 

1994 ). It is therefore not clear whether dramatic effects on the whole plant level, 

such as those seen in tomato, can be reproduced in other species. 

NITROGEN METABOLISM 

In contrast to carbohydrate metabolism, the biochemistry of nitrogen 

metabolism in non-nodulating species has not been extensively studied. Nitrogen is 

nevertheless a major assimilate that is used to synthesize protein, nucleic acids and 

other compounds. Non-nodulated plants acquire inorganic nitrogen from the soil as 

either NO3- or NH4+. NO3- is reduced either in the roots or leaves (for review, see 

Andrews, 1986) by nitrate reductase and nitrite reductase to NO2- and then NH4 +, 

respectively (Fig. 1. 10). Due to the toxicity of ammonium, it must be quickly 

converted with glutamate to glutamine by glutamine synthetase. Glutamine can also 

be converted to the other amide, asparagine, by asparagine synthetase. These amides 

can then serve as nitrogen donors for the synthesis of other amino acids by 

aminotransferases. 

Glutamine, glutamate, asparagine and aspartate are the predominant forms of 

nitrogen that are phloem-transported to sink tissues and the relative contents of each 

vary between species. In canola and Arabidopsis, glutamine and glutamate are the 

most abundant phloem amino acids but serine, aspartate and asparagine are also 

significant (Weibull and Melin, 1990; Lohaus, 1995; Lam et al., 1995). Asparagine 
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conserves carbon more efficiently and is more stable than glutamine but its synthesis 

requires extra ATP (Lea and Miflin, 1980; Siegiechowicz, 1988). This efficient use 

of carbon may explain the prevalence of asparagine during environmental stress and 

prolonged dark periods (Rabe, 1990; Tsai and Coruzzi, 1990, 1991; Lam et al., 1995; 

Chevalier et al., 1996; Dembinski et al., 1996) as well as the observation that phloem 

asparagine content is strongly correlated with maize kernel protein content (Lohaus, 

1995). 

Asparagine synthesis is catalyzed by asparagine synthetase, an enzyme whose 

activity has proven very difficult to measure (Joy et al., 1983; Joy and Ireland, 1990). 

With the isolation of gene sequences, mRNA expression studies have proven useful 

in generating physiological information (Tsai and Coruzzi, 1990). Expression of 

AS 1, the predominant isoform in pea leaves, is localized to vascular tissue, 

accumulates in the dark and is repressed by light at very low levels (Tsai and 

Coruzzi, 1990, 1991; Tsai, 1991). Transformed tobacco plants have been produced 

containing a sense construct of the pea AS 1 cDNA (Brears et al., 1993). These 

plants had up to 40-fold higher leaf asparagine contents and its substrates, glutamine 

and aspartate, were lower than wild-type plants. A rudimentary growth analysis 

suggested that plant fresh weights were marginally increased in the transgenic plants. 

Similarly to carbohydrate metabolism, transgenic plants and mutants of 

annno acid metabolism are useful tools to understand plant biochemistry and to 

possibly create agronomically-useful germplasm. A number of reviews have 

examined the molecular approaches to amino acid metabolism (Coruzzi, 1991 ; 

McGrath and Coruzzi, 1991; Hoff et al., 1994; Lea and Forde, 1994; Lam et al. , 

1995, 1996; Oliveira et al, 1997). These approaches provide a unique tool to 

elucidate the relationships between source tissue amino acid content and seed amino 

acid and protein composition in an analogous way to the approach used in 

carbohydrate metabolism. 

~ 
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THESIS OBJECTIVES 

The general objective of this thesis was to understand the biochemical and 

physiological factors determining seed yield in canola (Brassica napus L.). Obvious 

deficiencies existed in the literature, consequently it was hoped that a clearer picture 

of the factors involved in assimilate partitioning to seeds could be later exploited to 

design effective genetic engineering strategies for crop improvement. 

First, the key elements of source-sink carbohydrate metabolism during seed 

filling were e~amined. Photosynthetic capacities, carbon partitioning, carbohydrate 

reserves and sucrose metabolic enzyme activities were determined while seeds were 

synthesizing storage products. Second, the CO2 fixation capacities of developing 

seeds and silique wall were assessed and related to in vivo conditions. Third, DNA 

vectors designed to perturb normal assimilate partitioning were constructed and 

transformed into cotyledonary explants via Agrobacterium. Fourth, T 1 plants were 

screened for transgene expression levels, enzyme activities, and phenotypic changes. 

~ 
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The sources of assimilate for developing canola seeds have not been clearly 

elucidated. During the life of a plant there is a clear sequence of developmental 

phases proce~ding from leaf to stem to silique (pod) to seed (Mendham and 

Salisbury, 1995). Leaf photosynthesis provides assimilate for the growth of shoot 

and root meristems. At the initiation of reproductive growth, there is a rapid increase 

in flower-bearing branches from the shoot apical meristem. Photosynthetic leaf area 

then quickly declines due to senescence (Pechan and Morgan, 1985) thereby 

removing one source of assimilate at a time when seeds have a great import demand. 

At this time, only the oldest seeds at the base of a plant would have begun storage 

product synthesis. In the absence of leaves, silique wall photosynthesis is the main 

source of assimilates during this growth phase and may contribute up to 50-60 

percent of final plant dry matter (Lewis and Thurling, 1994). 
most 

Likel\other dicotyledonous plants, canola produces seed storage products in 

the embryo (Murphy and Cummins, 1989). Early in development, the embryo is very 

small and the main seed constituents are the seed coat and liquid endosperm (Fowler 

and Downey, 1970). During these initial stages embryo cells are rapidly dividing. 

At the early- to mid-cotyledon stage, embryo cells begin to rapidly expand (Fig. 1.1 

and Pomeroy et al., 1991) and the resulting growth consumes the liquid endosperm 

and the embryo fills the seed's internal space (Fowler and Downey, 1970). 

Coincident with rapid embryo growth, storage oil accumulates and peaks at 

maximum fresh weight (Rakow and McGregor, 1975; Murphy and Cummins, 1989; 

Hocking and Mason, 1993). There is a delay after oil accumulation initiation before 

storage protein accumulates (Crouch and Sussex, 1981; Murphy and Cummins, 

1989). 

Starch and sucrose are the major end products of photosynthetic carbon 

fixation and sucrose is the preferred form of carbon which is exported via the phloem 

~ 
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to sink tissue (see Chapter 1). The products of sucrose cleavage are converted to 

hexose phosphates and can enter the respiratory pathways via glycolysis to provide 

substrates and energy for growth and storage product synthesis. 

This study has focussed on the growth and development of source silique 

wall and its developing seed sinks during the oil filling period. Photosynthetic 

carbon partitioning, carbohydrate content and sucrose metabolic enzymes have been 

measured and compared at the beginning, middle and end of this period. The 

objective was to identify key elements of source-sink carbohydrate metabolism in 

canola siliques. 

MATERIALS AND METHODS 

MATERIALS 

Plants of Brassica napus L. cvs Westar, Hyola 42 were grown in a mixture of 

compost and perlite ( 1: 1, v/v) supplemented with Osmocote slow-release fertilizer 

(Scotts, Nedlands, Australia). Plants were grown in a naturally-illuminated 

glasshouse with temperatures set at 23/18 °c day/night. At floral initiation emerging 

flowers were tagged three times weekly in the early morning. Only siliques from the 

main raceme and the first two branches were used for experiments. All plants were 

well-spaced to maximize light interception and to minimize canopy effects. 

All biochemicals and enzymes were supplied by Boehringer Mannheim 

Australia (Sydney, NSW) or Sigma Chemical Co. (St. Louis, MO). Barium [14C] 

carbonate was obtained from Amersham Australia (Sydney, NSW). All other 

reagents were of analytical grade. 

LEAF AREA MEASUREMENTS 

At weekly intervals following the opening of the first flower, leaf area was 

individually measured for all leaves from each of four plants. Each leaf outline was 

traced onto paper, cut out and weighed on an electronic balance. Paper weights were 

converted to leaf area using a standard curve. Each leaf was also visually scored for 

... 
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its colour. Only leaves that had lost all green pigmentation were counted as being 

senescent. 

PHOTOSYNTHETIC RATES 

Net CO2 consumption rates of intact fully-expanded leaves and 28 DAA 

siliques were measured using ADC LCA2 (ADC, Hoddenson, UK) and Li-Cor 6400 

(Li-Cor, Lincoln, NE) infrared gas analysers, respectively. Data were collected at 

air-level CO2 concentrations using a flow rate of 200 cm3 min- 1 and chamber 

temperatures were maintained between 22 and 26 °C. After dark adaptation, 

irradiances were increased step-wise to saturating levels and steady-state CO2 

exchange rates were reached between increases. 

Net 0 2 evolution rates of leaf discs and silique wall pieces were measured in 

a leaf -disc 0 2 electrode at 25 °C (Hansatech, Norfolk, UK). Saturating CO2 

conditions were established with IM NaHCO3 and tissues were dark-adapted in the 

chamber for at least 20 min before the initiation of data collection. Light was 

provided by a slide projector and irradiance was modulated with neutral density 

filters. 

14
CO2 PARTITIONING 

Leaves and siliques were pulse-labelled with 14CO2 as described by Lunn and 

Hatch (1995). Two leaf pieces of approximately 25 cm2 were cut around the mid-rib 

of young fully-expanded leaves before placing the basal end in a water-filled trough 

of a perspex chamber. For siliques, the cut pedicel ends of four siliques were placed 

in the water-filled trough. Tissues were illuminated for 30 min at an irradiance of 

1000 to 1200 µmol quanta m-2 s- 1
, 400 to 420 µL L- 1 CO2 and 25 °C to reach steady­

state photosynthetic rates before injection of 14CO2 into the sealed chamber. After a 

135 s pulse, leaves were removed and killed in boiling 80 % (v/v) ethanol for 1 min. 

Siliques were removed after 600 s and plunged into liquid nitrogen. Gentle crushing 

with a pestle allowed separation of silique wall and seed tissues before boiling in 80 

% (v/v) ethanol. The rest of the extraction procedure and analysis was identical to 

Lunn and Hatch (1995). 

~ 
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CARBOHYDRATE AND LIGNIN ANALYSIS 

Tissue samples were taken from three plants (replicates) just before sunrise 

(06:00) and after 12 h (18:00) during a partly sunny day in late spring. The day's 

accumulated PAR was 29.9 mol quanta m-2 as measured inside a glasshouse. 

Immediately after harvest, samples were frozen in liquid nitrogen and stored at -80 

~C until analysis. Each leaf sample contained three 1.33 cm2 leaf discs from the 

youngest, fully-expanded leaf on plants sown one month previously. Each silique 

sample contained two intact siliques of the same age. 

Silique samples were separated into silique wall and seed fractions by gently 

crushing in liquid nitrogen. Each fraction was ground to a fine powder in liquid 

nitrogen and then transferred to a plastic centrifuge tube. After evaporation of the 

liquid nitrogen, carbohydrates were extracted in boiling 80% (v/v) ethanol as 

described by Lunn and Hatch (1995). Hexoses were measured 

spectrophotometrically in a lmL assay mix containing 100 mM Tris-HCl / 5 mM 

MgCh, pH 8.1, 1 mM ATP, 0.5 mM NADP and 2 U Glc-6-P-dehydrogenase (EC 

1.1.1.49) by the successive addition of 2 U hexokinase (EC 2.7.1.1) and 3.33 U 

phosphoglucoisomerase (EC 5.3.1.9). Seed extracts were treated with activated 

charcoal before assay to remove compounds that interfered with absorbance 

measurements. Sucrose and starch were assayed as per Lunn and Hatch ( 1995). 

To localize seed carbohydrates, fresh seeds containing early-cotyledon 

embryos were dissected on ice into seed coat/endosperm and embryo fractions. Each 

fraction was ground to a powder in liquid nitrogen and then sucrose, hexose and 

starch were extracted and assayed as described above. In parallel to carbohydrate 

determinations, samples were used to determine the fresh and dry weights of each 

fraction and the water content was considered to be the difference between these 

weights. Tissues were oven-dried to constant weight at 90°C. Both the carbohydrate 

and weight determinations were done in triplicate with approximately 20 tissues per 

replicate. 

The aqueous-ethanol insoluble residues remaining after extraction of soluble 

carbohydrates and treatment with KOH (Lunn and Hatch, 1995) were assayed for 

cellulose and lignin. Residues were collected by centrifugation for 5 min at 12 000 g 

and then dried to constant weight at 90 °C. Non-cellulosic compounds were 
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solubilized with boiling acetic/nitric reagent and then cellulose was collected by 

centrifugation (Updegraff, 1969). Cellulose was hydrolyzed by boiling in 67 % (v/v) 

H2SO4 containing 0.13 % (w/v) anthrone for 16 min. A standard curve was 

generated using pre-dried microcrystalline cellulose (Avicel) (Merck, Darmstadt, 

Germany). For lignin assays, 20 to 70 mg oven-dried aqueous-ethanol insoluble 

residue underwent a two-stage acid hydrolysis procedure to solubilize other 

compounds (Sewalt et al., 1996). Acid-insoluble (Klason) lignin was collected by 

vacuum filtration and dried to constant weight at 90 °C before weighing. 

MICROSCOPY -

Developing 21 and 28 DAA seeds were vacuum infiltrated into a fixative 

solution containing 2 % (w / v) paraformaldehyde and 0.1 % (v / v) glutaraldehyde in 

25 rnM Na2HPO4 / NaH2PO4 buffer, pH 7.2 immediately after removal from the 

silique. After 1.5 h at 4 °C, the samples were washed with buffer and then taken 

through an ethanol dehydration series at 4 °C and then an infiltration series with LR 

White resin before polymerization at 45 °C for 1 to 1.5 h under a dry N2 atmosphere. 

Embedded seeds were sectioned 1 µm thick using a Reichart Ultracut microtome, 

stained with toluidine blue O (0.025 % w / v in 1 % NaBO4, pH 11), and visualized 

under bright-field. 

ENZYME ASSAYS 

Triplicate silique and leaf samples were taken at midday in late summer 

(whole-day accumulated PAR was 35.9 mol quanta m-2
) and were immediately 

frozen in liquid nitrogen before storage at -80°C until analysis. Siliques were gently 

crushed in liquid nitrogen to separate silique wall and seed tissue. Samples of silique 

wall containing approximately 40 µg chlorophyll or 15 seeds were extracted in 1.5 

mL buffer. The extraction buffer contained 50 rnM Hepes-KOH, pH 7.5, 10 mM 

MgC12, 1 mM EDTA, 1 rnM EGTA, 2 mM DTT, 5 mM £-aminocaproic acid, 1 mM 

PMSF, 1 mM benzamidine, 1 mM benzamide, 2% (w/v) insoluble PVP, 0.5% (w/v) 

BSA, 0.1% (v/v) Triton X-100, 2 µM leupeptin, and 2 µM antipain. A 100 µL 

sample of extract was added to 1 mL of cold methanol for chlorophy 11 determination 

(Porra et al., 1989). The remaining extract was centrifuged for 2 min at 12 000 g and 

a 0.5 mL sample of the supernatant was desalted by passage through a 4 mL 
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Sephadex G-25 (Pharmacia, Uppsala, Sweden) column pre-equilibrated with 

extraction buffer minus BSA, insoluble PVP and Triton X-100. All procedures were 

done at 4 °C. Enzymes were assayed immediately in duplicate. 

For a separate experiment on seed components, seeds were dissected 

immediately after harvest at 4 °C and then frozen in liquid nitrogen and stored at -80 

°C until analysis. Triplicate samples of 15 organs each were ground in 1.0 mL of 

extraction buffer and desalted as above. 

Sucrose-phosphate synthase (EC 2.4.1.14). Total SPS activities were assayed 

by measuring the synthesis of Suc-6-P (and sucrose) from UDP-Glc and Fru-6-P 

(Huber and Huber, 1991). Each reaction contained 20 mM UDP-Glc, 5 mM Fru-6-P, 

17.5 mM Glc-6-P and 50 µL extract in a total volume of 100 µL. The reaction was 

started by the addition of extract and incubated at 25 °C for 10 min. After stopping 

the reaction with 100 µL of 5 M KOH and 10 min heating at 100 °C to destroy 

unreacted hexoses and hexose phosphates, 1 mL of 0.14% (w/v) anthrone in 80% 

(v/v) H2SO4 was added before 40 min incubation at 40 °C. Suc-6-P (and sucrose) 

content was determined by relating the A628 to that of a standard curve (0-200 nmol 

sucrose). The recovery of sucrose was estimated by incubating 50 µL extract with 

100 nmol sucrose under the above assay conditions. 

Sucrose synthase (EC 2.4.1.13). UDP-dependent cleavage of sucrose into 

UDP-Glc and Fru was assayed (Copeland, 1990). Each reaction contained 20 mM 

Pipes-KOH, pH 6.5, 100 mM sucrose, 2 mM UDP and 20 µL extract in a total 

volume of 250 µL. Control reactions lacked UDP. Reactions were started by the 

addition of extract and incubated at 25 °C for 30 min. The reactions were stopped 

with 250 µL of 0.5M Tricine-KOH, pH 8.3 and boiling for 10 min. Fru was 

measured spectrophotometrically as described above. 

Invertases (EC 3.2.1.26). Soluble acid and alkaline invertases were measured 

by incubation of 20 µL of extract with 100 mM sucrose in 100 mM acetic acid­

N aOH, pH 5.0 (acid invertase) or 100 mM sodium acetate-acetic acid, pH 7.5 

(alkaline invertase) in a total volume of 250 µL. Reactions were started by the 

addition of extract and incubated at 25 °C for 30 min. The reactions were stopped 

with 250 µL of 0.5M Tricine-KOH, pH 8.3 and boiling for 10 min. Control reactions 
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contained boiled extract. Glc was measured spectrophotometrically as described 

above. 

RESULTS 

PHOTOSYNTHESIS 

As a first step in determining the important elements of silique carbon 

metabolism, the potential contribution from leaves was assessed by measuring leaf 

area after the emergence of the first flower. At weekly intervals, leaf area was 

measured non-destructively and leaf colour . was used as an indicator of 

photosynthetic competence. Fully yellow leaves were classified as being senescent. 

By first flower, 40 percent of total leaf area was already senescent and all leaves were 

senescent by 35 DAFF (Fig. 2.1 ). By 35 DAFF, seed age on a plant would range 

from approximately 14 to 35 DAA due to canola' s indeterminate growth habit. 

Embryos developed from mid- to late-cotyledon stages from 23 to 32 DAA, the 

period of maximum storage oil accumulation (Pomeroy et al., 1991). 

The photosynthetic capacities of leaves and siliques were compared using 

CO2 gas exchange analysis. Young fully-expanded leaves had a maximum net CO2 

assimilation rate of 32 µmol m-2 s-1 and were light-saturated over 800 µmol quanta 

m-2 s- 1 (Fig. 2.2). In contrast, 28 DAA siliques had a maximum rate of 10 µmol m-2 

s-1
. The silique light compensation point and the dark CO2 evolution rate were 

several-fold higher than leaves. The photosynthetic capacity of silique wall was 

measured by removing the seeds and placing silique wall pieces into a leaf-disc 02 

electrode (Table 2.1). Under saturating conditions, silique wall evolved up to 5.2 

µmol 0 2 min-1 mg chlorophylr1
, a rate equivalent to leaves, but much lower 

chlorophyll concentrations reduced photosynthesis per unit surface area. 

Siliques were further compared to leaves by measuring the incorporation of 

14CO2 into the primary photosynthetic end products, sucrose and starch, after a short 

pulse under steady-state physiological conditions. Radioactivity in sucrose and 

aqueous-ethanol insoluble fractions was used to calculate the partitioning of 

photosynthate between sucrose and starch. Within the first hour of illumination both 
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Figure 2.1. Increase of senscent leaf area after first flower. Fully yellow leaves were 

scored as senescent and their areas are expressed as a percentage of total area at 

first flower. Individual leaves did not increase in area after this time. 
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Figure 2.2. Photosynthetic capacity of leaves and siliques. The net CO2 assimilation 

rates of young fully-expanded leaves (filled symbols) and 28 DAA siliques ( open 

symbols) were measured at atmospheric CO
2 

concentrations and varying irradiances 

using infrared gas analyzers. Each symbol shape represents measurement froma 

separate plant. 
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Table 2.1. Maximum silique wall photosynthetic capacity. 0 2 evolution was 

measured from silique wall pieces placed in a leaf-disc oxygen electrode under 

saturating CO2 and 800 µmol quanta m-2 s- 1
. For comparison, data on young fully­

expanded source leaf rates were collected in a separate experiment (saturating CO2, 

950 µmol quanta m-2 s- 1 
). Values are expressed as mean values (+ SE) per unit area 

and per unit chlorophyll from 3 to 4 replicates . 

DAA 0 2 Evolution 

µmol m-2 s-1 µmol min-1 mg chlorophylZ-1 

14 

21 

28 

Source Leaf 

5.1 (1.3) 

4.3 (0.3) 

4.0 (0.3) 

36.2 (0.6) 

3.6 (0.5) 

4.2 (0.2) 

5.2 (0.6) 

5.5 (0.1) 
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source leaves and siliques preferentially partitioned newly fixed carbon into sucrose 

(Table 2.2). Near the end of the photoperiod, leaves were producing more starch 

than sucrose while siliques continued to partition more photosynthate into sucrose. 

At both times, silique sucrose to starch partitioning ratios were 3 to 4-fold higher 

than leaves. Negligible radioactivity was found in seeds and in all other tissues 

hexoses contained less than 2.5 percent of total radioactivity. 

CARBOHYDRATE CONTENTS 

Carbohydrate accumulation in silique wall and seed tissues was examined 

during the progression from embryo early- to late-cotyledon stages. All samples 

were taken on a single day from plants sown on the same day (plants for leaf samples 

sown later). To guard against a position effect, only the main raceme and the first 

two branches were used for sampling. As well, samples for all experiments reported 

here were taken from plants aged 30 to 40 DAFF. The contents of hexose, sucrose 

and starch of developing siliques are presented in Fig. 2.3. In silique wall, the 

predominant carbohydrates were glucose and fructose (Fig. 2.3A). With age, hexose 

levels fell rapidly. Although present in a smaller quantity, starch also decreased with 

development while sucrose levels were essentially stable. In seeds, the predominant 

carbohydrate was starch (Fig. 2.3B). Along with sucrose, starch levels did not 

significantly change in the 21 to 35 DAA period. Hexoses did, however, drop 

significantly between 21 and 28 DAA. This period corresponds to the beginning of 

rapid embryo fresh weight gains (see Chapter 3). The data presented in Fig. 2.3 are 

drawn from samples taken at the beginning of the photoperiod (06:00). An equal 

number of samples were taken near the end of the photoperiod (18:00). There were 

no significant differences between the morning and evening samples in either silique 

wall or seed (data not shown). As a comparison, starch increased five-fold in 

photosynthetically-active leaves (Table 2.3). 

To investigate carbohydrate distribution within young seeds, embryos were 

dissected from the seed coat and liquid endosperm before separate analysis for 

hexoses, sucrose and starch. On a dry weight basis, sucrose was evenly distributed 

between the seed coat/endosperm and the embryo while hexoses and starch were 

much more prevalent in the seed coat/endosperm (Table 2.4 ). Assuming that the 
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Table 2.2. Photosynthate partitioning in canola leaves and siliques. The relative 

rates of 14CO2 incorporation into sucrose and starch were measured in leaves and 

siliques undergoing steady-state photosynthesis at an irradiance of 1000-1200 µmol 

quanta m-2 s- 1
, 400-420 µL L-1 CO2 and 25 °C. Measurements were made in 

duplicate 1 h and 9h after the start of the photoperiod. 

Tissue 

Leaf 

Silique 

Age 

Expanded 

21 DAA 

35DAA 

Photosynthate Partitioning . 

(
14C sucrose to 14C starch) 

1 h 

1.8 

5.7 

6.0 

9h 

0.8 

3.1 

2.5 
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Figure 2.3. Carbohydrate content of developing silique wall (A) and seed (B) . 

Samples were taken at sunrise on a single day. Mean values and standard errors 

of three replicates are plotted for each measured carbohydrate and age. 
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Table 2.3. Diurnal carbohydrate accumulation in canola source leaves. Samples 

were taken at 06:00 (sunrise) and 18:00 from plants grown in a naturally-illuminated 

glasshouse. Accumulated PAR for the day was 29.9 mol quanta m-2
. Values are 

expressed as mean values ( +/- SE) from three replicates. 

Carbohydrate Carbohydrate Content Diurnal 

06:00 18:00 Accumulation 

µmol hexose equivalent mg chZ-1 

Starch 12.5 (1.0) 73.2 (19.7) 60.7 

Glc 13.0 (2.4) 19.8 (5.3) 6.8 

Fru 12.0 (2.3) 17 .7 (5.2) 5.7 

Sue 4.1 (1.3) 4.6 (1.0) 0.5 

Table 2.4. Carbohydrate localization in canola seeds containing early-cotyledon 

embryos. Parallel triplicate samples were used to measure carbohydrates and dry 

weight. Standards errors of mean ranged from 2 to 23 percent. 

Carbohydrate Carbohydrate Content 

Seed Coat I Embryo 

Endosperm 

µmol hexose equivalent g dry wf 1 

Starch 939 266 

Glc 128 49 

Fru 145 62 

Sue 312 318 
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sugars were evenly distributed within organs, there was a concentration difference 

between the seed coat/endosperm and the embryo for hexoses (68 vs. 18 rnM) and 

sucrose (78 vs. 52 rnM). It was difficult to separate very small embryos completely 

from the liquid endosperm the ref ore some of the hexose and starch in the embryo 

samples may have come from liquid endosperm adhesion. Asymmetric carbohydrate 

distribution may be more pronounced than indicated by the data in Table 2.4. In 

young seeds, starch seemed to be evenly distributed between the seed coat and liquid 

endosperm (Fig. 2.4C). Seed coat starch completely disappeared by 28 DAA (Fig. 

2.4D) and the partial consumption of the liquid endosperm by the expanding embryo 

(compare Fig. 2.4A and B) would further reduce total seed starch content. At 28 

DAA, endosperm cells proximal to the seed coat still contained abundant starch 

granules (Fig. 2.4D). 

CELL WALL THICKENING 

Silique wall secondary cell-wall thickening may be an additional sink for 

carbon during development. Secondary cell walls are comprised of cellulose, lignin, 

hemicellulose, and pectin (Aspinall, 1980). To estimate the importance of secondary 

cell wall thickening cellulose and lignin contents were determined. · With aging, 

silique wall cellulose and Klason lignin (acid-insoluble) contents rose significantly 

(Table 2.5). To allow comparison to Fig. 2.3A, cellulose contents rose from 1.1 

mmol hexose equivalents mg ch1-l at 21 DAA to 2.4 mmol hexose equivalents mg 

ch1-l at 35 DAA. The cellulose content alone is higher than combined hexose , 

sucrose and starch after 21 DAA. 

SUCROSE METABOLIC ENZYMES 

To investigate the pathways of carbohydrate metabolism, the activities of key 

enzymes of sucrose metabolism were measured in silique wall, seed and leaf tissues. 

Care was taken to prevent proteolysis during extraction by including a variety of 

protease inhibitors in the extraction buffer. As well, all extraction procedures were 

done quickly at 4 °C followed immediately by enzyme assay. Assay conditions were 

pre-optimized for each tissue to ensure that saturating substrate concentrations were 

used and that the rate of product formation was linear with respect to time and the 

amount of extract assayed. For SPS, sucrose recoveries after incubation with 
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Figure 2.4. Morphology and starch distribution of developing 21 DAA 

(A, C) and 28 DAA (B, D) seeds. Sections were cut from LR White resin­

embedded seeds, stained with toluidine blue 0, and photographed under 

bright-field. The cotyledons (C), radicle (R), liquid endosperm (LE), seed 

coat (SC), outer integument (OI), sclerenchyma (S), pigment layer (P), 

and starch granules (SG) are marked. Bars, 250 µm (A, B), 25 µm (C, D). 
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Table 2.5. Cellulose and Klason lignin contents of developing canola silique wall. 

Samples were taken at sunrise. Values are expressed as mean values ( +/- SE) from 

three replicates. 

DAA Cellulose Klason Lignin 

-2 -2 
gm gm 

21 10.1 (2.3) 6.9 (1.7) 

28 18.5 (3.0) 12.8 (0.1) 

35 21.1 (0.9) 15.2 (1.8) 



~- ~- -- - -· ? .. ~- GT :?'. •=··-,.... ···-- .. .,. - £ --- _,.._ ___ --·· - g_- #!:b ,;-::_-~-=...-.:.-::...:::~~-----"" - z. ·-- - ·-· -- ~ - ~ 5 ; - -·- s;;;;;;;;; 

I . 

~ 3.0 
~ 

I -..c: 
(.) 

0) 2.5 
E 

~ 
I 

-~ 2.0 

0 

§_ 1.5 
..._... 
>, 
+-' 

;: 1.0 
(.) 
cu 
Q) 

E 0.5 
>, 
N 
C 

w 0. 0 

A B • SuSy C 
• SPS 

• alk 
T acid 

SuSy SPS alk acid 22 24 26 28 30 22 24 26 28 30 

Enzyme DAA l DAA 

Figure 2.5 . Total enzyme activities of source leaves (A), developing silique wall (B), and seed (C) . Samples were taken 

at midday on a single day . Mean values and standard errors of three replicates are plotted for SuSy, SPS, alkaline 

invertase (alk), and soluble acid invertase (acid). 

~ 
~ 

20 1

""0 
Q) 
Q) 
en 

16 "7 C 
·-
E 

12 
0 
E 
C ..._... 

.c 
8 > ·-....., 

(.) 
cu 
Q) 

4 E 
>, 
N 
C 
w 

0 



111! 
,; 
I 

49 

extracts were greater than 92 percent showing that measurement of SPS activity was 

not significantly affected by sucrose losses during the reaction. In the SuSy assays, 

control reactions without UDP were used to correct for any hexose production via 

invertases. The absence of UDP in desalted extracts would prevent Susy-dependent 

cleavage of sucrose in the invertase assays. 

Silique wall activities of SPS and alkaline invertase were very similar on a 

chlorophyll basis at all measured ages to those in leaf tissue (Fig. 2.5, A and B). In 

the silique wall SuSy activity was 1.2 to 1.5-fold higher than SPS whereas in fully­

expanded leaves SuSy activity was barely detectable. Soluble acid invertase activity 

in the silique wall was initially higher than alkaline invertase activity but dropped 

markedly between 22 and 26 DAA. The timing of this drop corresponded to the 

reduction in silique wall hexose content (Fig. 2.3A). Enzyme activities in 

developing seeds are expressed on a seed basis because chlorophy 11 content increased 

dramatically during the sampling period (0.8 µg seed-1 at 22 DAA, 1.4 µg seed- 1 at 

26 DAA and 1.5 µg seed-1 at 30 DAA). In young seeds where embryos were at the 

early-cotyledon stage (22 DAA), the activities of the four measured enzymes were 

similar. As embryo cells rapidly gained fresh weight and developed to the mid- and 

late-cotyledon stages, total SuSy activity increased 3.6-fold (26 to 30 DAA). At the 

same time, soluble acid invertase activity declined linearly. 

The enzymes of sucrose metabolism were localized within developing seeds 

containing mid-cotyledonary embryos (21 DAA) and late-cotyledonary embryos (28 

DAA). Within 21 DAA seed coats, the total extractable activities of SuSy, alkaline 

invertase, and soluble acid invertase were essentially equal while SPS activities were 

much lower (Fig. 2.6A). By 28 DAA, soluble acid invertase activities were 71 % 

lower and activities of the other enzymes were unchanged. In embryos, activities of 

SuSy, SPS and alkaline invertase were much higher than in the seed coat (Fig. 2.6B). 

Activities of these three enzymes each increased 2 to 3-fold by 28 DAA and SuSy 

activities predominated at both developmental stages. It should be noted that 

development of the seeds used in this experiment was 2 to 3 d ahead of those used in 

the experiments presented in Figs. 2.3 and 2.5 because of environmental effects. 
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DISCUSSION 

SILIQUE WALL METABOLISM 

The rapid decline of functional leaf area after floral initiation (Fig. 2.1) 

removes a major source of photoassimilate to developing seeds. All leaves were 

senescent by 35 DAFF which is before completion of storage product synthesis in the 

bulk of a plant's seeds. Silique wall and possibly stem tissues must therefore take 

over carbon provision. Intact 28 DAA siliques and isolated silique walls had 70 % 

and 89 % lower net -photosynthetic capacities than source leaves on an area basis 

(Fig. 2.2; Table 2.1), however the silique wall chlorophyll content is typically 75 to 

80 percent lower than leaves (85 vs. 400 mg chl m-2) consequently photosynthetic 

efficiency on a chlorophyll basis was not different (Table 2.1). Interestingly, this 

chlorophy 11 difference is comparable to the difference in stomatal frequencies 

(Major, 1975; Brar and Thies, 1977). At 28 DAA, developing seeds within siliques 

were at the mid- to late-cotyledon stage and were respiring large amounts of CO2 

(Eastmond et al. , 1996). This situation is indicated by the high dark CO2 evolution 

rates and the high light compensation point of intact siliques (Fig. 2.2). 

Unlike many starch-storing leaves of C3 dicotyledonous species, canola 

silique wall preferentially partitions photosynthate into sucrose (Table 2.2). A 

portion of this sucrose appears to be hydrolyzed by acid invertase to hexose for 

vacuolar storage before rapid seed growth (Fig. 2.3A and 2.5B). Unlike source leaf 

(Table 2.3), there was no detectable diurnal increase in silique wall carbohydrates 

thereby suggesting balanced synthesis and utilization during the day and little 

utilization at night. As well , the hexose pool appears to relatively stable because 

hexoses were not labelled after a 10 min pulse with 14CO2. 

Silique wall hexose storage is only temporary as contents dropped markedly 

at the onset of rapid seed growth (Fig. 2.3A). Although present in lesser amounts, 

starch also declined over this period. These trends suggest the remobilization of 

silique wall carbon to seeds. The parallel timing of silique wall carbon loss and 

rapid seed growth has been previously observed under different growth conditions 

(Norton and Harris, 1975; see Mendham and Salisbury, 1995). In addition, silique 

wall carbon reserves can be used for internal metabolic events as suggested by the 
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continued high SuSy activities 22 to 30 DAA (Fig. 2.5B). Silique wall cellulose and 

lignin contents increased 21 to 35 DAA indicating secondary cell wall thickening 

(Table 2.5). In addition, other carbon compounds such as hemicellulose and pectin 

will be involved in thickening (Aspinall, 1980). ·There are therefore simultaneous 

large carbon requirements for secondary cell wall synthesis and rapid seed growth. It 

is proposed that this carbon is drawn from a silique wall sucrose pool derived from 

photosynthesis, import (ie. younger siliques, stem) and hexose resynthesis (Fig. 2.7). 

This sucrose pool can be depleted by a combination of export to seeds and SuSy or 

alkaline invertase-cleavage to fuel secondary cell wall thickening and protein 

synthesis. Although silique wall sucrose contents were always low (Fig. 2.3A), 

continuous input and output is not reflected by this type of measurement. In the 

absence of leaves (Fig. 2.1), silique wall tissue must be a major supplier of carbon to 

developing seeds. 

SEED METABOLISM 

In this chapter, seed carbohydrate metabolism has been examined during 

early-, mid- and late-cotyledon stages corresponding to maximum fatty acid 

accumulation (Pomeroy et al. , 1991). Imported sucrose is likely to be the 

predominant carbon source for seed growth. At 21 DAA, seed starch content was 

higher than sucrose or hexose (Fig. 2.3B). Embryos were at the mid-cotyledon stage 

by 28 DAA and had filled the seed by 35 DAA. Starch and hexose in seeds 

containing early-cotyledon embryos were localized to the seed coat or liquid 

endosperm (Table 2.4). In contrast, sucrose was evenly distributed between seed 

fractions. Seed starch is a temporary carbon reserve during early developmental 

stages and is depleted early in the filling phase (Norton and Harris , 1975; Munshi 

and Kochhar, 1994). In pea, there is a transitory starch accumulation in seed coat 

parenchyma cells until rapid embryo growth (Rochat and Boutin, 1992) and in canola 

there was a very striking disappearance of seed coat starch during rapid embryo 

growth (Fig. 2.4 ). It is tempting to speculate that this starch is remobilized to the 

growing embryos, however seed coat starch disappearance has also been correlated 
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with mucilage (high molecular weight heteropolysaccharides; Werker, 1997) 

production in the seed coat epidermis (Hyde, 1970; Van Caeseele et al., 1981; Kuang 

et al., 1996). The liquid endosperm is a much larger starch reserve and its 

consumption in conjunction with cotyledon expansion suggests remobilization to 

embryos. The remnant starch noted just beneath the seed coat pigment layer (Fig. 

2.4D) is likely the aleurone layer which is typically rich in starch and protein (Kuang 

et al., 1996). 

Although starch was the predominant carbohydrate in seeds (Fig. 2.3B ), the 

quantity is insufficient to fulfil oil synthesis requirements . Norton and Harris (1975) 

reported that total oil was 5-fold higher than the peak starch content. Clearly, 

reserves must be supplemented by continued sucrose import and possibly seed CO2 

fixation. In addition to measured soluble sugars and starch, seeds may contain other 

potential reserve carbon sources such as pectins, hemicellulose and sucrosyl­

oligosaccharides. It is doubtful that non-fructan sucrosyl-oligosaccharides are 

present in appreciable quantities from 21 to 35 DAA because equimolar quantities of 

Glc and Fru were released after invertase treatment of aqueous phase samples. 

Invertase cleavage of common non-fructan sucrosyl-oligosaccharides would release 

either a single Glc or Fru unit but would leave the remaining oligosaccharide intact 

(for structures , see Keller, 1989). The presence of sucrosyl-oligosaccharides during 

the desiccation phase of seed development, beyond the range measured in this study, 

would not be unexpected (Hendrix, 1990; Leprince et al. , 1990; Kuo et al. , 1997) 

Hexose contents of seeds containing early-cotyledon embryos were higher 

than seeds containing mid- to late-cotyledon embryos (Fig. 2.3B). This early 

presence of hexose has been noted previously in various species including canola 

(Norton and Harris, 1975; Tittonel et al. , 1995) and faba bean (Vicia faba L.) (Heim 

et al. , 1993; Weber et al. , 1995). In faba bean, activities of a seed coat cell wall­

bound acid invertase were also high early in development (Weber et al., 1995). 

Expression of the corresponding gene was localized to the thin-layer parenchyma 

cells associated with apoplastic unloading. An apoplastic step is required because 

there is no symplastic connection between the maternal seed coat and the filial 

embryo. It was therefore postulated that imported sucrose unloaded in the seed coat 

is hydrolyzed by acid invertase while being transferred to the endosperm (for review, 



i: 
I 
I 

55 

see Patrick and Offler, 1995). In maize, a cell wall-bound invertase is critical for full 

endosperm growth (Cheng et al. , 1996). In dicotyledonous seeds, the young embryo 

could then take up hexose from the endosperm possibly by utilizing a hexose 

transporter in cotyledon epidermal cells (Weber et al. , 1997a). 

As canola embryos began the transition from cell division to cell expansion 

(21 to 28 DAA), seed hexose dropped (Fig. 2.3B). In faba bean, young embryos 

cultured without hexose stopped cell division and initiated expansion (Weber et al., 

1996a). Similarly in pea, embryos cultured on high sucrose favoured cell expansion 

(Ambrose et al. , 1987). As well, hexose seems to inhibit SuSy activity (Morell and 

Copeland, 1985; Heim et al. , 1993; Quick and Schaffer, 1996; Weber et al., 1996b; 

Dejardin et al. , 1997). On the disappearance of hexose from developing canola seeds 

(Fig. 2.3B), SuSy activities rapidly increased while the other enzymes measured did 

not change as dramatically (Fig. 2.5C). Comparing a number of species, SuSy was 

found to be high in active sinks but not in quiescent sinks (Sung et al., 1989). No 

similar correlation with sink type was found with six glycolytic enzymes and soluble 

invertase activities were low in both sink types. 

SuSy activity has been positively correlated with storage product synthesis 

(Chourey and Nelson, 1976; Edwards and ap Rees, 1986; Doehlert, 1990; Heim et 

al., 1993; Weber et al., 1995; Zrenner et al. , 1995; Ross et al. , 1996; Dejardin et al., 

1997). In each of these cases, a starch-storing sink was examined. Interestingly in 

canola, SuSy also mirrored storage product synthesis even though seeds are a 

predominantly oil-storing sink and was primarily localized to the embryo (Fig. 2.6). 

SuSy activity was much lower in early stages when starch was accumulating 

compared to activities after the switch to oil deposition. Using statistical cluster 

analysis, SuSy clustered with starch and ADP-Glc pyrophosphorylase in starch­

storing maize endosperm (Doehlert, 1990). Instead of SuSy, oil clustered with 

hexokinase activity in oil-storing maize embryos (Doehlert, 1990). The implication 

is that invertase supplied carbon for oil synthesis because hexokinases are required to 

convert free hexose to hexose phosphate. Mature maize kernel contains 66 percent 

starch and 4 percent oil (Doehlert, 1990) whereas mature canola seed contains 54 

percent oil and insignificant starch (Murphy and Cummins, 1989). It appears that 

SuSy activity reflects the synthesis of the predominant storage product regardless of 
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its form; starch in grains and oil in oilseeds. Compared to invertase, Susy-mediated 

cleavage conserves ATP and its bidirectional capability may allow for finer 

metabolic control. 

Estimates were made to assess the sucrose flux needed to support oil 

synthesis in canola seeds. From Murphy and Cummins ( 1989) it was calculated that 

embryos form 0.13 mg oil d-1 during rapid accumulation. Based on this deposition 

rate and the mature seed composition of fatty acid types (Murphy and Cummins, 

1989), 410 nmol of total fatty acid and 140 nmol of glycerol 3-P would be needed 

daily. Assuming that the required 3.7 µmol acetyl-CoA, 3.3 µmol ATP and 6.6 µmol 

NADPH is entirely supplied by sucrose flux through the pentose phosphate pathway, 

glycolysis and the pyruvate dehydrogenase complex, 1.6 µmol of sucrose would be 

needed daily. An additional 0.03 µmol sucrose would satisfy glycerol 3-P 

requirements. Although oil synthesis is the predominant carbon sink some carbon 

will be used for cell wall and protein synthesis therefore calculated sucrose 

requirements are a minimum. From maximum extractable activities at 26 DAA (Fig. 

2.5C), SuSy and alkaline invertase are in excess and therefore could metabolize the 

necessary carbon but soluble acid invertase activity is insufficient. The much higher 

embryo SuSy activity and its developmental timing suggests that it plays a major role 

in providing sucrose for oil synthesis. 

Developing seeds had appreciable total SPS activities at all measured stages 

(Figs. 2.5C and 2.6) . The barely detectable activities in seed coats suggest that SPS 

is not involved in starch remobilization. Sucrose synthesis via SPS could have two 

possible roles in canola embryos. First, SPS could catalyze sucrose formation from 

newly-fixed CO2 as in source tissues (Stitt et al. , 1987). Although Eastmond et al. 

( 1996) reported that developing embryos are capable of in vitro photosynthesis, it 

was speculated that embryo Rubisco-dependent CO2 fixation under the low light 

conditions within the silique in vivo would be of little significance (for detailed 

discussion, see Chapter 3). Second, SPS could resynthesize sucrose from hexose 

produced by cleavage of imported sucrose. A continuous cycle of synthesis and 

degradation in sink tissues has been previously described (Dancer et al., 1990; 

Wendler et al. , 1990; Geigenberger and Stitt, 1991) and could regulate metabolite 

supply for sink growth. In such a cycle small changes in enzyme activity can 



57 

markedly alter the rate and direction of net flux (Wendler et al. , 1990). In canola 

embryos synthesizing oil, the ratio of total cleavage and synthetic enzyme activities 

suggest that the bulk of imported sucrose is cleaved by SuSy and alkaline invertase to 

be used in respiration while a small proportion of the resulting hexose may be 

recycled by SuSy and SPS. In contrast to invertase, Susy-mediated sucrose cleavage 

produces UDP-Glc and Fru and would require less energy to resynthesize sucrose in 

a futile cycle. 

In summary (Fig. 2.8), developing canola seeds appear to store imported 

sucrose transiently as starch and hexose outside of the embryo before storage product 

synthesis. Acid invertase localized to the seed coat appears to mediate hexose 

production. A consequence of high hexose concentrations is the promotion of cell 

division (Weber et al., 1996a) and the inhibition of transfer cell development (Offler 

et al., 1997), SuSy activity (Quick and Schaffer, 1996), and storage product synthesis 

(Weber et al., 1996b). Once embryos have consumed the liquid endosperm and 

filled the seed's internal space, imported sucrose could possibly be actively 

transported intact to the embryo via epidermal transfer cells (Harrington et al., 

1997a,b; Weber et al., 1997a) before cleavage by SuSy in storage parenchyma cells. 

The bulk of hexose would be converted to hexose-phosphate to feed into glycolysis. 

Flux to respiration may be modulated by a continuous cycle of sucrose cleavage and 

resynthesis. 
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Oil extracted from canola seeds is of high economic value but surprisingly 

little is known about the initial steps of carbon provision to filling seeds. The results 

presented in Chapter 2 identified the enzymes involved in the initial provision of 

metabolizable sugars which pass through respiratory pathways to produce the carbon 

substrates and energy required for seed growth and the synthesis of complex storage 

products. A consequence of respiration is the evolution of CO2 which if allowed to 

escape to the atmosphere would represent a significant carbon loss. Seeds and the 

surrounding silique (pod) may have developed mechanisms to reduce this respiratory 

carbon loss. 

The two major enzymes capable of CO2 fixation in higher plants are Rubisco 

and PEP carboxylase (PEPC). Rubisco and associated Calvin cycle enzymes 

catalyze the conversion of ribulose-1 , 5-bisphosphate and CO2 into triose-P within 

the chloroplast. This carboxylation is light-dependent because the ATP and NADPH 

required in the Calvin cycle are produced after light absorption by chlorophyll 

pigments in the photosynthetic electron transport chain. In C3 plants PEPC catalyses 

the carboxylation of glycolytic PEP and CO2 into oxaloacetate, a TCA cycle 

intermediate. 

In pea, it has been well established that Rubisco and PEPC in the pod wall 

endocarp refix seed-respired CO2 thereby reducing carbon loss (Atkins et al., 1977; 

Flinn et al., 1977; Price and Hedley, 1980; Price and Hedley, 1988). The endocarp is 

composed of a few cell layers on the inner side of the pod wall and is separated from 

the rest of the pod wall by a sclerenchyma layer (Atkins et al., 1977; Price et al., 

1988). Over 20 % of incident light reaches the pea endocarp (Atkins et al., 1977; 

Price et al. , 1988; Donkin and Price, 1990) where absorption by abundant 

chlorophyll (Price et al., 1988; Donkin and Price, 1990) drives Rubisco-dependent 

CO2 fixation thereby reducing the pod cavity CO2 concentration (Flinn et al., 1977; 
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Flinn, 1985; Donkin and Price, 1989). CO2 refixation by elevated endocarp PEPC 

seems to be equally as important (Atkins et al., 1977; Price and Hedley, 1980; Price 

and Hedley, 1988). A lack of similarly detailed studies in Brassica has led to 

speculation of an analogous situation (Mendham and Salisbury, 1995). 

In addition to the silique wall, Brassica seeds may be able to refix their own 

respired CO2. PEPC has been shown to catalyze CO2 fixation in B. rapa seeds 

(Singal et al., 1987; Singal et al. 1995). Developing canola seeds are very green and 

chlorophyll content has been shown to peak during active filling (Rakow and 

McGregor, 1975; Crouch and Sussex, 1981; McGregor, 1995; Eastmond et al., 

1996). Until recently, the potential contribution of seed photosynthesis in CO2 

refixation or in energy provision has not been directly addressed. Eastmond et al. 

(1996) have demonstrated that developing seeds have the capacity for light­

dependent 0 2 evolution and that Rubisco protein is present but speculated that net 

carbon gain in vivo would be unlikely. 

Determining the function of seed chlorophy 11 is of particular industrial 

importance. In the world's major canola-growing regions, cool temperatures and 

frost during seed maturation can result in chlorophy 11 remaining in harvested seed 

(Mendham and Salisbury, 1995). During processing, chlorophyll is extracted with 

oil and expensive purification steps are required to prevent chlorophyll-induced 

catalyst blocking and oil oxidation (see Ward et al., 1995). This problem has led to 

suggestions of using genetic engineering to reduce seed chlorophyll (Plant 

Biotechnology Institute, 1996). 

In this chapter, the CO2 refixation capacities of canola seeds and inner silique 

wall were examined during seed filling. Contributions of Rubisco and PEPC in each 

tissue were assessed and an estimate made on the relative importance of each tissue. 

Determination of the physiological significance of seed chlorophyll was a particular 

emphasis. 
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MATERIALS AND METHODS 

MATERIALS 

Growth conditions of canola (cv. Westar) plants and materials were as 

described in Chapter 2. N aH 14CO3 was obtained from Amersham. 

SILIQUE DEVELOPMENT 

To produce developmental curves of fresh weights and chlorophyll contents, 

plants were sampled on two occasions; 15 to 27 DAA (ie. top to bottom of raceme) 

at 31 DAFF and 27 to 39 DAA at 41 DAFF. Fresh weights and silique 

measurements were taken immediately after harvest with 4 to 5 replicates per tissue 

and age. Silique surface areas were calculated by treating a silique as a cylinder or as 

a box and the reported areas represent the average of these two calculations. All 

samples were ground in cold methanol to extract chlorophyll (Porra et al., 1989). 

ENZYME ASSAYS 

Total activities of leaf, silique wall and seed Rubisco and PEPC were 

measured on the same extracts as described in Chapter 2. 

Rubisco ( EC 4.1.1. 39 ). A radiometric assay was used to measure Rubisco 

activity. Desalted extract (50 µL) was activated in 125 mM Tricine-KOH, pH 8.3, 

14 mM KHCO3, and 14 rnM MgCh at 25 °C for 10 minutes in a total volume of 112 

µL before the addition of 120 µL reaction mix containing 52 mM Tricine-KOH, pH 

8.3, 7 mM KH 14CO3 (24 GBq mor1
), 14 mM MgCh, and 35 mM DTT. Reactions 

were initiated with 20 µL of 10 mM RuBP and stopped after 60 s at 25 °C with 50 

µL 1 M HCl. A 100 µL aliquot was spotted onto a glass fibre disk and then counted 

for 14C in a scintillation counter. Each extract was assayed in duplicate with 

individual blanks (no RuBP). 

PEPC (EC 4.1.1.31). Activities were measured in a continuous 

spectrophotometric assay at 25 °C. A background rate was established in 50 mM 

Tricine-KOH, pH 8.3 , 1 mM KHCO3, 5 mM MgCb, 5 mM Glc-6-P, 2 mM DTT, 0.2 

rnM NADH, 2.0 U malate dehydrogenase (EC 1.1.1.37) and 20 µL extract in a 1 mL 

total volume. The reaction was started by the addition of 1.0 µL 250 mM PEP. 
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Activities were calculated from the linear portion of the reaction rate after correction 

for the background rate. All samples were measured in duplicate. 

SILIQUE WALL PROPERTIES 

Light Transmission. The proportion of incident PPFD transmitted through 

adaxial silique wall was measured using a quantum sensor and a cool white 

fluorescent light source. For each replicate, light readings were taken in the presence 

and absence of silique wall from three points along the silique wall surface. 

Silique Cavity CO2 Concentration. A gas-tight syringe was used to sample 

20 µL from the silique cavity. Gas samples were then injected into a 1.6 mL gas­

tight cuvette attached to a mass spectrometer (MM6, VG Instruments , Winsford, 

UK). A teflon membrane separated the gas in the cuvette from the vacuum of the 

mass spectrometer and gas was continually inlet from the cuvette into the mass 

spectrometer source. The mass spectrometer was focused on mass 44 (CO2) and its 

response to CO2 was calibrated by injecting known amounts of CO2. Gas samples 

were taken from plants which had been placed in the dark or light (800 to 1100 

µrnol quanta m-2 s-1
) for at least 1 h prior to sampling. 

Sectioning and Staining. Hand sections of silique wall were stained in either 

0.05 % (w I v) toluidine blue O (Sigma) or 1.6 % (w / v) phlorglucinol (Sigma). The 

phlorglucinol stock solution was prepared by dissolving 2 % (w / v) phlorglucinol in 

ethanol and the working solution was made by combining 80 % stock solution with 

20 % concentrated HCl. 

Chlorophyll Distribution. Chlorophyll fluorescence of silique wall transverse 

sections was quantified using a Nikon Optiphot microscope and Image 1 software 

(Universal Imaging Corp. , West Chester, PA). Before use, hand sections of silique 

wall were floated in 10 µM DCMU for at least 30 minutes to maximize the 

fluorescence signal. Fluorescence readings were taken across the section 

approximately one cell layer at a time. Sections were positioned in the light field 

using weak white light and then left in the dark for one minute prior to exposure to 

fluorescence excitation light. Fluorescence excitation and measurement was 

performed using a Nikon-compatible epifluorescence cube attachment (Chroma 

Technology Corp. , Brattleboro, VT). The light from a mercury vapour lamp passed 
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through a 540 nm short wavelength cut-off filter to the sample while the emitted 

fluorescence passed through a 660 nm long wavelength cut-on filter to the video 

display. Photodestruction was minimised by brief exposures to the intense short­

wavelength excitation light. 

O2EXCHANGE 

0 2 evolution rates of intact embryos were measured in liquid 0 2 electrodes 

(Rank Brothers, Cambridge, UK). Samples of 10 embryos were placed in the cuvette 

with 50 mM Hepes-NaOH, pH 7.6 and 10 mM NaHCO3 (Eastmond et al. , 1996). 

Dark 0 2 consumption rates were added to net 02 evolution rates at 17 5 and 400 µmol 

quanta m-2 s-1 to estimate gross 02 evolution. 

To determine the gaseous permeability of seed coat, samples of 10 seeds or 

embryos were placed in the liquid 0 2 electrodes. Nitrogen was used to make 

stepwise reductions of the 0 2 concentration within the sample cuvette from air­

saturated levels (253 µM at 25 °C) and linear 0 2 consumption rates were measured at 

each step in darkness. 

PULSE-MODULATED CHLOROPHYLL FLUORESCENCE 

Samples of 10 seeds or embryos were placed in a cuvette with a continuous 

flow of compressed air passing across the tissues which was humidified by passage 

through a water bubbler. A 1 % CO2 in air mixture was used to provide high CO2 

while a soda lime scrubber was used to remove CO2 from a compressed air line. 

Tissues acclimatized to these atmospheres in the dark for 20 min before fluorescence 

measurement initiation using a PAM 101 Chlorophyll Fluorometer fitted with a 

PAM 103 flash trigger control, a Schott KL 1500-T lamp and a polyfurcated fibre 

optic system (Heinz Walz, Effeltrich, Germany). Actinic light at 160 and 350 µmol 

quanta m-2 s- 1 was provided by a slide projector and 1 s saturating flashes were 

applied at 1 min intervals. Photosynthetic electron transport rates were calculated by 

the equation: 

J ( F~~.F•) * PPFD * 0.85 * 0.25 
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where Fm' was the maximal fluorescence signal during a saturating light flash, Fs was 

the steady-state fluorescence signal, and PPFD was the incident actinic light. It was 

assumed that tissue light absorbance was 85 % (Seaton and Walker, 1992) and that 1 

electron was transported for every 4 photons absorbed. A detailed discussion of 

fluorescence analysis can be found in Genty et al. (1989). 

RESULTS 

Fresh weights and chlorophyll contents were measured during silique 

development (Fig. 3.1). Silique fresh weight reached a maximum by 23 DAA with 

the majority being in the silique wall (Fig. 3. lA). Seeds, specifically embryos, began 

to gain mass after the silique wall and continued throughout the sampling period 

(Fig. 3.lB). Silique wall began losing chlorophyll around 30 DAA (Fig. 3.lC) while 

seed chlorophyll exponentially increased from 19 DAA and reached a peak by 31 

DAA (Fig. 3.1D). The bulk of seed chlorophyll was localized to the embryo. The 

proportion of chlorophyll a and b pigments were calculated from the data presented 

in Fig. 3.1. There were no large changes in either silique wall or seed chlorophyll alb 

ratios from 15 to 39 DAA, however silique wall had higher ratios than seed (2.9 + 

0.05 vs. 2.0 + 0.04). 

Total activities of Rubisco and PEPC, the two enzymes capable of CO2 

fixation, were assayed in leaf, silique wall and seed tissues. All extraction 

procedures included protease inhibitors and were performed quickly at 4 °C followed 

by immediate assay. Assay conditions were pre-optimized to ensure saturating 

substrate concentrations, peak activation times (Rubisco ), and linear reaction rates 

over time. On a chlorophyll basis, silique wall Rubisco and PEPC activities were 

significantly higher than source leaf but the Rubisco-PEPC ratios were similar (Table 

3.1). Silique wall Rubisco activities declined with development, particularly 

between 26 and 30 DAA, which lowered the Rubisco-PEPC ratio from 19.1 to 11.9. 

In developing seeds, Rubisco activities were much lower than silique wall or leaf 

whereas PEPC activities were several fold higher yielding Rubisco-PEPC ratios of 

0.80 at 22 DAA and 1.29 at 30 DAA (Table 3.1). 
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Figure 3 .1. Fresh weight (A, B) and chlorophyll contents (C, D) of developing intact siliques (A), silique walls (A, C), seeds (B, D), and 

embryos (B, D) . Mean values and standard errors from five replicates are plotted. Plants were sampled on two days; 15 to 27 DAA 

at 31 DAFF (filled symbols) and 27 to 39 DAA at 41 DAFF (open symbols). 
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Table 3.1. Total extractable enzyme activities of Rubisco and PEPC from canola 

tissues. Values are expressed as means ( + SE) from three replicates with each 

replicate assayed in duplicate. 

Tissue 

Leaf 

Silique wall 

Seed 

Age 

Expanded 

22 

26 

30 

22 

26 

30 

Rubisco PEPC 

µmol min-1 mg chlorophylf 1 

12.9 (0.45) 0.7 (0.05) 

22.9 (0.80) 

21.2 (1.24) 

16.6 (0.48) 

4.3 (0.49) 

4.2 (0.11) 

4.5 (0.41) 

1.2 (0.19) 

1.2 (0.02) 

1.4 (0.10) 

5.4 (0.23) 

4.0 (0.18) 

3.5 (0.36) 

Rubisco:PEPC 

18.4 

19.1 

17.7 

11.9 

0.80 

1.05 

1.29 
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SEED PHOTOSYNTHESIS AND CO2 FIXATION 

Given the abundance of seed chlorophyll (Fig. 3.1D) and measurable Rubisco 

activities (Table 3 .1) the potential for Rubisco-dependent seed carbon fixation was 

examined further. The enclosing silique wall transmitted 20 + 0.5 % (n = 16) of 

PPFD to developing seeds from 22 to 34 DAA. Incident light to seeds would 

therefore be no more than 400 µmol quanta m-2 s- 1 under field conditions and light 

reaching the chlorophyll-rich embryos would be reduced further because of seed coat 

attenuation. Embryo photosynthetic electron transport, as gross 0 2 evolution, rates 

were derived from dark respiration rates and net 02 evolution rates at 175 and 400 

µmol quanta m-2 s-1 (Table 3.2). It is assumed that there is no light-stimulated 0 2 

consumption, such as photorespiration or 02 photoreduction, under high CO2 (Table 

3.3). Photosynthetic electron transport capacity decreased from 21 to 27 DAA on a 

chlorophyll basis (Table 3.2), however there was no difference on a fresh weight 

basis and increased 2.5-fold on a whole embryo basis. The capacity to use 

photosynthetically-produced energy for CO2 fixation was assessed by measuring 

embryo Rubisco activities. Rubisco activity per unit chlorophyll was maintained 

between 21 and 27 DAA (Table 3.2) as embryo chlorophyll content increased (Fig. 

3.1D). If it is assumed that the Rubisco rate is maximal under the high CO2 

concentrations found in vivo (Table 3.3) then embryo Rubisco-dependent CO2 

fixation capacity was in excess of photosynthetic electron transport at both ages 

(Table 3.2). 

The seed coat's CO2 fixation capacity was also examined. Seeds were 

dissected into seed coat and embryo samples and assayed for Ru bisco and PEPC 

activities at two developmental stages. In seeds containing small early-cotyledonary 

embryos (21 DAA), the vast majority of PEPC activity and some Rubisco activity 

was localized to the seed coat (Table 3.4). In 28 DAA seeds containing late­

cotyledonary embryos, seed coat Rubisco was barely detectable and PEPC was 

slightly lower than 21 DAA seed coat. With the large embryo growth between 21 

and 28 DAA (Fig. 3.1) the proportions of Rubisco and PEPC localized to embryos 
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Table 3 .2. Estimation of photosynthetic electron transport and light-dependent CO2 

fixation capacities of canola embryos. Gross 0 2 evolution rates were measured at 175 

and 400 µmol quanta m-2 s-1 in a liquid electrode and Rubisco activities were 

determined using saturating conditions. Values are expressed as means ( + SE) from 

3 to 4 replicates. 

DAA 

21 

27 

Gross 0 2 evolution Rubisco 

175 400 

µmol min-1 mg chlorophylt1 

2.6 (0.5) 3.0 (0.5) 4.9 ( 1.3) 

1.5 (0.2) 1.9 (0.2) 4.7 (0.1) 

Table 3.3. Silique cavity CO2 concentration. Using a gas-tight syringe, a 20 µL 

sample was taken from siliques placed in the dark or light (800 to 1100 µmol quanta 

m-2 s-1
) and then injected into a mass spectrometer for analysis. Values are exp~essed 

as means ( + SE) from 2 to 6 replicates. 

DAA 

26 

30 

34 

CO2 Concentration ( % ) 

Dark 

1.6 (0.24) 

2.1 (0.36) 

1.8 (0.29) 

Light 

0.8 (0.19) 

1.4 (0.36) 

2.5 (0.39) 
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Table 3.4. Localization of Rubisco, PEPC and chlorophyll within developing canola 

seeds. Values are expressed as means(+ SE) from 3 replicates. Chl, Chlorophyll. 

21DAA 28DAA 

Organ Rubisco PEPC Chl Rubisco PEPC Chl 

nmol min-1 organ -1 nmol min-1 organ -1 
µg µg 

-1 -1 
organ organ 

Seed coat 2.6 5.6 0.6 0.5 4.6 0.6 

(0.06) (0.41) (0.07) (0.37) (0.22) (0.10) 

Embryo 4.1 0.9 1.6 14.3 4.5 3.8 

(0.34) (0.06) (0.43) (1.22) (0.19) (0.13) 

Seed 9.7 6.7 1.4 16.3 7.8 3.6 

(1.51) (0.34) (0.22) (0.47) (0.52) (0.15) 
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also dramatically increased. Embryo Rubisco appears to be the largest contributor to 

seed CO2 fixation capacity in this age range (Table 3.4). 

During experimentation on seeds and embryos, it became apparent that the 

seed coat could be a barrier to gaseous diffusion. To test this possibility, intact seeds 

and isolated embryos were placed in the dark in liquid 0 2 electrode cuvettes. The 0 2 

concentration of the liquid phase was progressively reduced from 250 µM (air­

saturated at 25°C) and net 02 consumption (respiration) rates of the tissues were 

measured. Embryo response to 02 concentration was hyberbolic and was saturated at 

approximately 50 % of air levels (Fig. 3.2). In contrast, seed response to 0 2 was 

linear and was not saturated at atmospheric 0 2 levels thereby suggesting that 

diffusion across the seed coat to the embryo severely limited the respiration rate. 

If the seed coat is a major barrier to gaseous diffusion, it is possible that seed 

photosynthesis proceeds independently of externally-supplied CO2; that is CO2 

fixation is solely dependent on trapped embryo-respired CO2. To test this 

hypothesis, photosynthetic electron transport rates calculated from pulse-modulated 

chlorophy 11 fluorescence data were compared for seeds and embryos placed in air 

containing 1 % or O % CO2. This technique provides an estimate of the gross rate of 

electron transport to photosynthetic electron acceptors whereas 0 2 evolution 

measurements only determine the net balance between photosynthetic 0 2 production 

and respiratory 0 2 consumption. In tissues dependent on the external atmosphere, 

such as leaves, there should be a large decrease in photosynthetic electron transport 

in the absence of CO2 due to the reduced regeneration of NADP and ADP by the 

Calvin cycle. In contrast, electron transport and light-dependent CO2 fixation in a 

closed photosynthetic system should be unaffected by the external atmosphere. 

Intact seeds appear to be self-sufficient for CO2 because electron transport rates were 

the same in either 1 % or O % CO2 (Table 3.5). Somewhat surprisingly, the removal 

of the seed coat diffusion barrier only resulted in a small but statistically significant 

drop in electron transport for embryos exposed to CO2-free air (p < 0.01) (Table 3.5). 

SILIQUE WALL CO2 FIXATION 

Apart from seed CO2 fixation, the possibility that the silique wall can 

incorporate cavity CO2 was investigated. Transverse sections of silique wall showed 
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Table 3.5. Photosynthetic electron transport rates (J) of 27 DAA canola seeds and 

embryos in different CO2 atmospheres. Rates were calculated using the equation 

presented in the Materials and Methods section from chlorophyll fluorescence data at 

350 µmol quanta m-2 s- 1 and flowing air was supplied by compressed gas cylinders. 

Values are expressed as means (+ SE) from 3 replicates. Dark-adapted Fv:Fm ratios 

were 0.78 for seeds and 0.83 for embryos. 

Atmosphere 

1 % CO2, 21 % 02 

0 % CO2, 21 % 02 

Photosynthetic electron transport ( J) 

Seed Embryo 

I I -2 -1 
µmo e ectrons m s 

43.8 (0.73) 

43.3 (0.34) 

41.5 (0.15) 

37.5 (0.69) 



73 

a sclerenchyma cell layer near the inner surface (Fig. 3.3A) which stained intensely 

with toluidine blue 0, a general stain, and phlorglucinol (Fig. 3.3B), a phenol 

alcohol-specific stain. The endocarp is composed of this sclerenchyma layer and a 

single cell layer on the interior surface. The sclerenchyma layer may act as a gaseous 

diffusion barrier causing a build-up of endocarp and seed respired CO2 within the 

silique cavity in both the dark and light (Table 3.3). Light-dependent CO2 fixation 

significantly lowered cavity CO2 only at 26 DAA (p = 0.03), a time when silique 

wall chlorophyll is high (Fig. 3.lC) and seed respiration is low (Eastmond et al., 

1996). 

Brassica siliques are too small to dissect into layers therefore another method 

was used to analyze photosynthetic activity distribution within the endocarp. Using a 

fluorescence microscope fitted with a chlorophyll-specific filter, chlorophyll 

fluorescence across transverse silique wall sections was quantified (Fig. 3.4). 

DCMU, which blocks photosynthetic electron transport, was used to maintain 

maximal signal and precautions were taken to minimize photodestruction during data 

collection. The highest silique wall chlorophy 11 concentration was in the outer layers 

just under the epidermis. Chlorophyll concentration dropped in the interior layers 

but there was a small rise in endocarp chlorophyll. Endocarp chlorophyll was 

calculated to be 6.2 % of the total (Fig. 3.4). 

To estimate endocarp CO2 fixation capacity, it was assumed that Rubisco 

distribution is equivalent to chlorophyll therefore total endocarp Rubisco activity 

would be 6.2 % of the silique wall values reported in Table 3.1. Without a 

comparable method to quantify endocarp PEPC, it was assumed that PEPC was 

equally distributed across the silique wall and endocarp PEPC would be 16 % of the 

total silique wall activity (Table 3.1) based on thickness measurements (Srinivasan 

and Morgan, 1996). Having estimates of endocarp Rubisco and PEPC activities and 

also seed measurements (Table 3.1), it was possible to estimate the relative 

contributions of endocarp and seed CO2 fixation (Table 3.6). It is assumed that 

PEPC and Rubisco are independently fixing CO2 and are not linked as in C4 

photosynthesis. To make the comparison between tissues, enzyme activities were 

first converted to a common silique surface area basis. Table 3.6 shows that the 

relative seed to endocarp fixation capacities increased from 22 to 30 DAA because of 
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Figure 3 .3. Anatomy of canola silique wall transverse hand sections. 

The section in panel A was stained with toluidine blue O and the section 

in panel B was stained with phlorglucinol before photographing. The 

epidermis (Ep), mesocarp (M), sclerenchyma (S), endocarp (En), 

vascular bundle (V), and replar bundle (R) are marked. Bars, 300 µm. 
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fluorescence-specific filter and quantification software. Individual points from 

four separate determinations are plotted with a fitted regression curve (r2 = 0.73). 
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Table 3.6. Estimation of relative canola seed and silique wall endocarp CO2 fixation 

capacities. Data was derived from Table 3.1, and Figs. 3.1 and 3.4. Calculations 

were based on the endocarp containing 6.2 % of total silique wall Rubisco and 16 % 

of total silique wall PEPC. Rates are expressed per unit silique surface area with the 

assumption that there were 2.3 seeds cm-2 silique (Srinivasan and Morgan, 1996). 

Seed Endocarp Seed : Endocarp 

DAA Rubisco PEPC Total Rubisco PEPC Total Ratio Rangea 

µmol m-2 silique s-1 µmol m-2 silique s-1 

22 74.2 93.2 167.3 118.6 16.0 134.6 1.2 (1.4 - 0.8) 

26 140.1 133.4 273.5 127.4 18.6 146.0 1.9 (2.1 - 1. 1) 

30 151.1 117.5 268.6 88.7 19.3 108.0 2.5 (3 .0 - 1.3) 

a Range calculated using the two extremes of O to 100 % PEPC localization to 

endocarp. 



77 

a large increase in seed Rubisco activities and a smaller decrease in endocarp 

Rubisco activities. Given the imprecise estimate of endocarp PEPC localization, 

endocarp to seed fixation ratios were also calculated under two extremes; 0 and 100 

% PEPC localization to the endocarp. Even with 100 % PEPC localization, seed 

fixation capacity exceeded the endocarp capacity after 22 DAA (Table 3.6). 

DISCUSSION 

Refixation of respired CO2 in developing siliques could potentially conserve 

significant amounts of carbon needed for costly oil synthesis in embryos. This 

refixation may occur at two points; within the silique wall or within the seed. These 

two tissues were assessed for their CO2 fixation capacities via Rubisco and PEPC 

during the oil filling period. 

DEVELOPMENTAL PROFILES 

Under a variety of growth conditions, the timing of maximum embryo oil 

content corresponded with maximum fresh weight (Rakow and McGregor, 1975; 

Murphy and Cummins, 1989; Hocking and Mason, 1993; Perry and Harwood, 1993; 

Singal et al., 1995). It is therefore concluded that maximum fatty acid synthesis rates 

correlate with fresh weight gains regardless of environment. The timing of growth, 

however, is temperature-dependent and will be variable (Mendham and Salisbury, 

1995). In this study, rapid embryo fresh weight gains occurred between 23 and 30 

DAA (Fig. 3.lB) therefore fatty acids would also be accumulated during this period. 

Early- to mid-cotyledon stage embryos were 10 % of total seed fresh weight at 23 

DAA and exponentially grew to late-cotyledon stage by 31 DAA composing 50 to 60 

% of seed weight. Pomeroy et al. ( 1991) reported that embryo fresh weight and fatty 

acid content exponentially increased in unison from mid- to late-cotyledon stages. 

In addition to fresh weight and fatty acids, seed chlorophyll rapidly 

accumulated 20 to 30 DAA (Fig. 3. lD). The majority of chlorophyll was localized 

to the embryo. No data was collected after 39 DAA, however embryo cotyledons 

were yellow by 50 DAA suggesting rapid degreening 39 to 50 DAA. This narrow 

chlorophyll peak has been reported previously (Rakow and McGregor, 1975; 
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McGregor, 1995). Seed chlorophyll alb ratios were lower than silique wall possibly 

indicating shade adaptation to 80 % light attenuation by the silique wall. 

SEED PHOTOSYNTHESIS 

The use of 0 2 electrodes to measure light-dependent 0 2 evolution is a 

convenient way to determine photosynthetic capacity. Eastmond et al. (1996) 

demonstrated that canola seeds and embryos are capable of evolving net 0 2 with 

increasing irradiances and under saturating CO2. The high light compensation point 

for embryos (250 to 300 µmol m-2 s-1
) is indicative of large respiration rates. 

Respiration per embryo increased with growth but remained essentially constant on a 

fresh weight basis. We have generated similar results under different growth 

conditions and using a different cultivar (data not shown). A limitation of 0 2 

evolution data is that although it measures photosynthetic electron transport, it can 

not determine the fate of the produced NADPH and ATP. This energy could 

potentially be used to drive Rubisco-dependent CO2 fixation as in leaves or it could 

be directly used to drive other metabolic processes such as fatty acid synthesis. 

To address this question, ratios between photosynthetic electron transport 

rates (gross 0 2 evolution) and light-dependent CO2 fixation capacity (Rubisco 

activity) were determined (Table 3.2). Given the elevated CO2 concentrations within 

siliques (Table 3.3), photorespiration should be eliminated therefore respiration rates 

in the dark and in the light may be equivalent and gross 0 2 evolution rates could be 

estimated by adding dark respiration 0 2 rates to net 0 2 evolution rates at 

physiological light levels. Another consequence of high CO2 concentrations is that 

Rubisco activities would be maximal therefore in vitro total Rubisco activities likely 

represent in vivo rates. The fixation of 1 mol CO2 by Rubisco in the Calvin cycle 

requires the evolution of 1 mol 0 2 from photosynthetic electron transport to produce 

the necessary energy. In both early- and late-cotyledonary embryos the CO2 fixation 

capacity was higher than the photosynthetic electron transport capacity (Table 3.2). 

It therefore seems that energy produced from light harvesting was destined for 

Rubisco-dependent CO2 fixation, however contributions to fatty acid biosynthesis 

cannot be conclusively ruled out from these data. The photosynthetic electron 

transport capacity to produce NADPH has been estimated to be of the same order of 
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magnitude as the fatty acid synthesis requirements derived from the data of Murphy 

and Cummins (1989). 

CO2 FIXATION CAPACITIES 

Total activities of Rubisco and PEPC were measured in developing seeds, 

silique wall and leaf (Table 3.1 ). In seeds, Rubisco was measurable and much lower 

than leaf and silique wall photosynthetic tissues. This difference is somewhat 

misleading because Rubisco activities of leaf and silique wall growing in 

atmospheric CO2 concentrations would be less than 50 % of V max (Mate et al., 1996), 

whereas seed activities in vivo would likely approach their maximums because of 

extremely elevated silique cavity CO2 (Table 3.3). Seed PEPC activities were 

significantly higher than leaf and silique wall (Table 3. 1) indicative of a large role of 

anapleurotic metabolism. In contrast to seeds, Rubisco-PEPC ratios in leaf and 

silique wall were very large (Table 3 .1 ). High leaf and silique wall ratios and low 

seed ratios have been noted previously in B. rapa (Singal et al., 1987). Large and 

comparable ratios in B. rapa leaf and silique wall were also found in another study 

while in contrast the pea pod wall ratio was less than one (Khanna-Chopra and 

Sinha, 1976). This difference is interesting because pea pod wall is known to refix 

seed-derived respiratory CO2 (Atkins et al. , 1977; Flinn et al., 1977). 

Similar to pea, canola silique wall has a sclerenchyma layer near the inner 

surface (Fig. 3.3A). This layer stained for phenol alcohols, the precursors for lignin 

or suberin, and was continuous around the silique (Fig. 3.3B) and presumably acts as 

a gaseous diffusion barrier which elevates cavity CO2 concentrations (Table 3.3). In 

contrast to pea, the endocarp layer did not contain enriched levels of chlorophyll 

(Fig. 3.4). To estimate endocarp CO2 fixation capacity, it was assumed that Rubisco 

and chlorophyll distributions were equivalent and that PEPC was equally distributed 

across the silique wall. From these estimates it appears that seeds themselves are 

primarily responsible for CO2 refixation and become increasingly important during 

the oil filling phase (Table 3.6). Silique cavity CO2 concentrations were not 

significantly reduced in the light after 26 DAA (Table 3.3 ) indicating a lack of 

significant light-dependent CO2 fixation capacity in the endocarp or the outer seed 
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coat, the tissues between the silique wall sclerenchyma layer and the seed coat 

diffusion barriers. 

Before rapid oil accumulation (21 DAA), seed CO2 fixation capacity was 

primarily in the seed coat (Table 3.4). As the embryo grew to fill the seed's volume, 

its capacity exceeded the seed coat mainly because of increased Rubisco activity. 

Embryo PEPC activity also dramatically increased between 21 and 28 DAA, the oil 

filling phase. 14C02 pulse-chase experiments are needed to determine the fate of 

CO2 fixed by embryo Rubisco and PEPC. It is unknown whether triose-P from the 

Calvin cycle would be used to synthesize sucrose and starch as in leaves or would 

enter glycolysis. CO2 fixed by PEPC into oxaloacetate may replenish TCA cycle 

intermediates depleted by protein and chlorophyll synthesis or may be sequentially 

converted to malate, pyruvate, and acetyl-CoA for use in fatty acid synthesis (Fig. 

1.7). 

Embryo loss of respired CO2 was presumably slowed by a poorly permeable 

seed coat. Intact seeds had an elevated apparent Km for respiratory 0 2 (Fig. 3.2) and 

photosynthetic electron transport, as measured by pulse-modulated chlorophyll 

fluorescence, was unaffected by external CO2 concentration for seeds but not isolated 

embryos (Table 3.5). Electron transport rates of these 27 DAA embryos in CO2-free 

air were, however, much higher than predicted even after 1 h without exogenous 

CO2. The thickness of the expanded cotyledons at this developmental stage may 

generate a long path-length for CO2 diffusion to the atmosphere. As chlorophy 11, 

Rubisco, and PEPC are presumably distributed throughout the cotyledons, respired 

CO2 could be refixed at any point along this diffusion path. The majority of 

Rubisco-dependent refixation would likely occur at the outer cell layers where light 

availability is maximal. 

Besides providing energy for Rubisco-dependent refixation, embryo 

photosynthesis may play another important role. The seed coat retards 02 diffusion 

from the atmosphere to embryos and appears to limit respiratory activity in the dark 

at atmospheric 0 2 concentrations (Fig. 3 .2) . Growing embryos require increasing 

amounts of 0 2 to support increasing respiration rates (Eastmond et al., 1996) 

therefore 0 2 evolved by seed photosynthetic electron transport may be necessary for 

high embryo respiration and growth rates. This theory agrees with the observations 
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that soybean seed yield was dramatically reduced after growth in subambient oxygen 

atmospheres (Quebedeaux and Hardy, 1975; Sinclair et al., 1987). Furthermore, 

embryo uptake of 14C-labelled assimilates was inhibited by low 0 2 concentrations 

and less lipid and protein were formed possibly indicating a respiratory limitation 

(Quebedeaux and Giaquinta, 1978; Thorne 1982). 

The thickness of late-cotyledonary embryos poses special considerations. For 

the purposes of this chapter, it has been simplistically assumed that enzyme activities 

and photosynthetic capacity are evenly distributed throughout embryos. Although 

casual observation suggests even chlorophy 11 distribution throughout developing 

cotyledons, it is quite conceivable that respiration, PEPC activity and storage product 

synthesis are localized within developing cotyledons while light harvesting and 

Rubisco activity would surely be greatest in the outer cotyledon cell layers. This 

concept must be considered when interpreting the results of this chapter until 

localization experiments have been conducted. 

CO2 refixation is likely limited by light. PEPC is independent of light and 

would have plentiful CO2 substrate (Table 3.3). Rubisco would also have abundant 

CO2 but light-dependent production of ATP and NADPH would be modulated by 

tissue light attenuation. Seeds would receive 20 % of incident light which could be 

up to 400 µmol quanta m-2 s-1 under Australian summer conditions, a level greater 

than the light compensation point for intact seeds (data not shown). With additional 

PEPC CO2 fixation (Table 3.1), seeds could have a net carbon gain for much of the 

photoperiod. A key part of this refixation capacity is Rubisco-catalyzed CO2 fixation 

in embryos (Table 3.4) which is driven by energy produced from chlorophyll light 

absorption. Seed photosynthesis may also be important for producing 0 2 to fuel 

respiration. Any reduction in embryo chlorophyll content by genetic engineering to 

reduce industrial processing problems may therefore adversely affect seed growth 

and would need careful temporal targeting. Endocarp refixation would also 

contribute to total refixation (Table 3.6) and together these carbon recoveries 

supplement carbon imported into seeds from other plant parts. Even if seed and 

endocarp fixation does not exceed respiratory CO2 losses it is important to note that 

any loss reduction would surely benefit seed growth. Preliminary estimates have 

indicated that refixation capacity is of the same order of magnitude as seed growth 
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rates, however further experiments are needed to evaluate the levels of CO2 

refixation relative to sucrose import. 
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CHAPTER 4 : TISSUE CULTURE AND TRANSF-ORMATION 

INTRODUCTION 

Genetic engineering is a powerful method to make defined changes in plant 

metabolism. A number of techniques have produced stably transformed plants and 

most of them rely on to ti potency, the ability to form plants from single or a small 

group of cells. Transformation typically relies on selection pressure to distinguish 

rare transformed cells. To produce a shoot these transformed cells must also be 

competent for regeneration, another rare event. Efficient techniques are therefore 

those capable of both high transformation and high regeneration frequencies. 

Agrobacterium-mediated transformation (De Block et al., 1984; Horsch et al., 

1984) and particle bombardment (Klein et al. , 1987) are the most common methods 

to deliver foreign DNA into plants. Like other dicotyledonous species, canola has 

been transformed by Agrobacterium (Fry et al., 1987; Pua et al., 1987; Charest et al., 

1988; Radke et al, 1988; De Block et al., 1989; Moloney et al., 1989; Boulter et al., 

1990; Damgaard and Rasmussen, 1991; Schroder et al., 1994) although other 

methods have been used (Guerche et al., 1987; Neuhaus et al., 1987; Chen and 

Beversdorf, 1994). Once feasibility has been established it is necessary to develop 

an efficient and routine procedure that is not labour-intensive and genotype­

dependent. The choice and culturing of target tissue greatly influences 

transformation success. 

Stem segments (Fry et al. , 1987; Pua et al., 1987), thin 
1

cell layers (Charest et 

al. , 1988), hypocotyls (Radke et al, 1988; De Block et al., 1989; Schroder et al. , 

1994 ), cotyledonary petioles (Moloney et al., 1989) and inflorescence stalks (Boulter 

et al. , 1990) have all been used for Agrobacterium tumefaciens transformation of 

canola. Of these tissues, coty ledonary petioles appear to be the best choice, offering 

high-frequency reliable regeneration and being relatively easy to transform. Ono et 

al. ( 1994) reported that 98 out of 100 B. nap us genotypes regenerated shoots from 

cotyledonary petioles. Moloney et al. (1989) reported up to 55 percent of 

cotyledonary petioles yielded transgenic shoots after Agrobacterium transformation. 
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The objectives of the work described in this chapter were to construct 

Agrobacterium transformation vectors, to introduce gene expression constructs into 

canola cotyledonary petioles and to regenerate transformed shoots. The gene 

constructs to be introduced were intended to perturb assimilate partitioning by 

supplementing regulatory enzymes in carbon and nitrogen transport compound 

biosynthetic pathways. The physiological and biochemical consequences of these 

defined changes will be assessed in Chapter 5. 

MATERIALS AND METHODS 

TRANSFORMATION VECTORS 

Agrobacterium tumefaciens-mediated transformation vectors containing a 

selectable marker gene and a gene of interest were either obtained or were 

constructed. All DNA manipulations were done using standard procedures 

(Sa1nbrook et al., 1989). Initial construct cloning was completed in E. coli followed 

by transfer to a binary plasmid for subsequent introduction into an Agrobacterium 

strain. 

35S - GUS - 35S 3' I pGA492. A binary plasmid containing a CaMV 35S - ~ 

glucuronidase (GUS) - 35S 3' expression construct in the Agrobacterium strain 

AGLl (Lazo et al., 1991) was provided by T.J.V. Higgins (CSIRO Plant Industry). 

The backbone of this binary plasmid is pGA492 (An, 1987) and has been named 

pMCP3 (Shade et al., 1994) after the cloning of several genes within the T-DNA 

region. 

35S - spinach SJ 58A - ocs I pBinl 9. A binary plasnlid containing a spinach 

(Spinacia oleracea L.) SPS cDNA (GenBank S54379) was provided by U. 

Sonnewald (IPK, Gatersleben, Germany) (Fig. 4.1). The phosphorylation site at 

position 158 of SPS had been mutagenized from serine to alanine, thereby removing 

one mechanism of regulating enzyme activity (McMichael et al., 1993). This 

mutagenized cDNA was cloned in the sense direction into pBinAR (Hofgen and 

Willmitzer, 1990) as an EcoRV - SmaI fragment. The binary plasmid provided by 

Sonnewald was introduced into the hypervirulent Agrobacterium strain AGLl by 
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triparental mating. A single colony was inoculated into 10 mL MGL liquid medium 

with 60 µg mL-1 kanamycin monosulphate (Sigma, St. Louis, MO) and 20 µg mL- 1 

rifampicin (Sigma, St. Louis, MO) and grown to saturation at 28 °C. Aliquots of 1.5 

mL were centrifuged in an Eppendorf tube and the pellet was resuspended in 0.5 mL 

LB containing 15 % (v / v) glycerol. After overnight incubation at room 

temperature, the tubes were stored at -80 °C. 

RbcS 5' - maize SPS - RbcS 3' I pGA492. An overexpress1on construct 

containing a maize (Zea mays L.) SPS cDNA (GenBank S40876) under the control 

of a tissue-specific RbcS promoter was made. A summary of the cloning strategy is 

presented in Fig. 4.2. To prepare the SPS insert, pTZl 9R containing the SPS cDNA 

(courtesy A. Ashton, CSIRO Plant Industry) was digested with EcoRI. The 

overhanging ends were filled using Klenow DNA polymerase. The insert was 

released from the plasmid by BamHI digestion and gel purified using a Geneclean kit 

(Bresatec, Adelaide, SA). The pWM5 vector (courtesy T.J.V. Higgins, CSIRO Plant 

Industry) was derived from pDH51 (Pietzak et al., 1986) by replacement of the 

CaMV 35S promoter and terminator sequences with an Arabidopsis RbcS promoter 

and 5' untranslated region (GenBank X1361 l) and a tobacco (Nicotiana tabacum L.) 

RbcS 3' untranslated region (GenBank X02353). p WMS was digested with Sall and 

the overhanging ends were filled with Klenow DNA polymerase. It was then 

digested with BamHI and treated with alkaline phosphatase before ligation with the 

purified SPS fragment. Ligations were transformed into CaC}i-competent E. coli 

NM522. Insertions were confirmed by diagnostic restriction digests of alkaline lysis 

miniprep DNA from ampicillin-resistant colonies. 

To clone into a binary plasmid, the SPS / p WMS construct was digested with 

EcoRI and the 5.5 kb RbcS 5' - SPS - RbcS 3' fragment was gel purified from the 

plasmid backbone. This fragment was ligated with EcoRI-digested and alkaline 

phosphatase-treated pGA492 (An, 1987). Insertions and their direction was assessed 

by diagnostic restriction digests. The resulting construct is illustrated in Fig. 4.3. 

This binary plasmid was introduced into Agrobacteriuni (AGLl ) by triparental 

mating. A single colony was inoculated into 10 mL MGL with 6 µg mL-1 

tetracycline (Sigma, St. Louis, MO) and 20 µg mL-1 rifampicin and grown to 
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Figure 4.2. Cloning strategy for the construction of an E. coli plas1nid 

containing a RbcS- maize SPS- RbcS 3' gene construct. 
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saturation at 28 °C. Glycerol stocks were prepared as described for 35S - spinach 

S 158A - ocs / pBin19 and stored at -80 °C. 

rolC - rice AS - nos I pGA492. An overexpression construct containing a rice 

( Oryza sativa L.) asparagine synthetase (AS) cDNA (GenBank 055873) under the 

control of the tissue-specific rolC promoter (GenBank X64255) was made. A 

summary of the cloning strategy is presented in Fig. 4.4. The AS cDNA was 

provided by the Rice Genome Research Program (Tsukuba, Japan) as a Sall - Notl 

fragment in pBluescriptII SK+. This plasmid was digested with Sacl and the 

overhanging ends were filled with Klenow DNA polymerase before digestion with 

Sall. The vector pRolC.cas (courtesy M. Graham, CSIRO Plant Industry) was 

digested with Sall and SmaI, treated with alkaline phosphatase and ligated with AS. 

Ligations were transformed into CaC!i-competent E. coli NM522. Insertions were 

confirmed by diagnostic restriction digests of alkaline lysis miniprep DNA from 

ampicillin-resistant colonies. 

To clone into the pGA492 binary plasmid, the AS I pRolC.cas construct was 

linearized with Clal. The construct was ligated with Clal-digested and alkaline 

phosphatase-treated pGA492. Insertions and their direction was assessed by 

diagnostic restriction digests. The resulting construct is illustrated in Fig. 4.5. This 

binary plasmid was introduced into Agrobacterium (AGLl) by triparental mating as 

described for RbcS 5' - maize SPS - RbcS 3'. 

TISSUE CULTURE OPTIMIZATION 

The cotyledonary petiole culture procedure was based on Moloney et al. 

(1989). B. napus seeds cv. Westar were surface-sterilized in 70 % (v / v) ethanol for 

30 s followed by 20 min in 1 % (v / v) sodium hypochlorite. The seeds were rinsed 

three times in sterile deionized water for 5 min each. Seeds were then placed on 

germination medium containing MS salts (Murashige and Skoog, 1962), BS vitamins 

(Gamborg et al., 1968), 100 mg L-1 myo-inositol, 3 % (w / v) sucrose and 0.8 % (w / 

v) purified agar (Sigma, St. Louis, MO) at a density of 16 or 20 seeds per plate. The 

100 x 20 mm plates were wrapped with Micropore surgical tape (3M Health Care, St. 

Paul, MN). Seeds were germinated at 24 °C in a 16 h photoperiod (30 - 40 µmol m-2 

s- 1
) provided by Philips PowerMiser Daylight TLD36W/54 fluorescent tubes. 
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Explants were prepared by cutting the cotyledonary petiole close to the 

hypocotyl without including any apical meristem cells. Four to five day-old 

seedlings had recently formed chlorophy 11 and the petioles were 1 to 3 mm in length. 

The cut end of the cotyledonary petiole was embedded in callus induction medium. 

This medium is identical to germination medium except 20 µM BA ( 6-

benzylaminopurine; Sigma, St. Louis, MO) was added to induce callus and 0.3 % (w 

/ v) Phytagel (Sigma, St. Louis, MO) was substituted for agar in later experiments. 

Filter-sterilized BA was added to autoclaved medium just prior to pouring. Plates 

containing 10 cotyledons were wrapped with Micropore tape and cultured under the 

conditions described above. After 4 to 6 weeks, the number of explants forming 

callus and the number of calluses regenerating shoots were counted. 

TRANSFORMATION 

On the day prior to cocultivation, 50 or 100 µL Agrobacterium glycerol stock 

culture was added to 10 mL liquid MGL. After overnight incubation in a 28 °C 

shaking waterbath the OD6oo of the culture was measured using a spectrophotometer. 

Cultures were diluted with MGL medium to a final OD600 of 0.15 prior to use. The 

petiole ends of freshly-cut explants were dipped in the Agrobacterium solution for 

approximately 5 s and placed on callus induction medium (see Tissue culture 

optimization section above). For each transformation, explants were also cultured 

without exposure to Agrobacterium. After 3 d incubation at the light and 

temperature conditions described previously, selection was initiated by transferring 

cocultivated explants to callus induction medium supplemented with 15 or 20 mg L- 1 

kanamycin monosulphate and 200 mg L- 1 Timentin (ticarcillin and clavulanic acid; 

SmithKline Beecham Australia, Dandenong, VIC). These antibiotics were added to 

cooled autoclaved medium just prior to pouring. Half of the explants not exposed to 

Agrobacterium were also transferred to selection medium as a selection control. As 

a regeneration control, the other uncocultivated explants remained on medium 

without antibiotics. Subculture to fresh selection medium was after 3 weeks and 

then biweekly until callus was necrotic. 
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PLANT REGENERATION FROM SELECTION MEDIUM 

Shoots regenerating on selection medium were cut from the callus and placed 

on modified selection medium where sucrose was reduced to 1 % (w / v), kanamycin 

was increased to 50 mg L-1
, and BA was omitted. No callus was subcultured with 

shoots. Once a shoot had formed 2 to 3 leaves, it was dipped in 1 mg mL- 1 IBA 

(indole-3-butyric acid) (Sigma, St. Louis, MO) for 15 s to stimulate root formation 

and then placed on modified selection medium in round 65 x 75 mm plastic jars with 

screw caps. At each biweekly subculture, non-rooting shoots were again treated with 

IBA. Sometimes the basal ends of shoots were recut at a stem node prior to IBA 

treatment. 

Shoots that formed roots were transferred to pots containing a vermiculite : 

perlite mixture ( 1: 1, v / v) in a naturally-illuminated glasshouse fitted with 

shadecloth. Pots were initially covered with plastic food wrap to maintain humidity. 

Once hardened and established, shoots were transferred to a compost and perlite 

mixture ( 1: 1, v / v) in an unshaded glasshouse with temperatures set at 23 / 15 °C day 

/ night. Seed was collected from mature plants. 

To SCREENING 

Regenerated shoots were tested for activity of the introduced NPTII gene 

product using a dot blot assay modified from McDonnell et al. ( 1987). A 1.3 cm2 

leaf punch was taken from shoots either in culture or in soil and ground fresh in an 

1.5 mL Eppendorf tube with granular washed quartz and 50 to 70 µL extraction 

buffer (62 mM Tris-HCI, pH 6.8, 10 % (v / v) glycerol, 10 mM DTT). After 5 min 

centrifugation, 30 µL of supernatant was added to 30 µL reaction mix (65 mM Tris , 

12 rnM MgCb, 200 mM NH4Cl, pH 7.1, 10 µM ATP, 30 µM neomycin, 10 mM 

NaF, 10 µCi mL- 1 [y2P]ATP). Samples were incubated at 37 °C for 1 h prior to 

spotting 40 µL onto cellulose phosphate paper (Whatman P81). The paper was 

pretreated with 20 mM ATP and 100 mM pyrophosphate. Once the spots were dry, 

the blot was washed at 60 °C for 20 min in 10 % (w / v) proteinase Kand 1 % (w / v) 

SDS. The blot was then washed 1 to 2 times in 10 rnM NaPO4, pH 7.5 for 20 min at 

60 °C. The blot was sealed in plastic and placed in a Phosphor Screen (Molecular 

Dynamics, Sunnyvale, CA) overnight before Phosphorimager scanning. 
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RESULTS 

TISSUE CULTURE OPTIMIZATION 

From published reports, Agrobacterium transformation of B. napus using 

cotyledonary petioles seemed to be the most efficient and the least labour-intensive 

method (Moloney et al., 1989). To adapt this system to this laboratory's conditions, 

plant regeneration frequencies were first tested because good regeneration is a 

prerequisite for successful transformation. The age of germinating Westar seedlings 

was thought to be a critical factor therefore explants were cultured 4 to 7 d after seed 

plating. Petioles younger than 3 d were too short to prepare explants. From 4 to 7 d 

the proportion of explants which produced callus rose exponentially (Fig. 4.6). 

There was, however, very little shoot regeneration. Only one callus from the 7 d 

treatment produced shoots. The seed used in this experiment germinated slowly. 

Using seeds with much quicker germination and development, regeneration was 

significantly higher from 5 day-old explants compared to 7 day-old (p << 0.01) (Fig. 

4.7). In a separate experiment, 4 day-old explants regenerated higher numbers of 

shoots compared to 5 day-old explants (Fig. 4.8) although the difference was not 

significant (p = 0.10). 

Explants were cultured from four seed sources; seeds provided by P. 

Salisbury (VIDA, Horsham, VIC) and D.J. Murphy (John Innes Centre, Norwich, 

UK) and seeds produced from these sources. Germination time varied amongst seed 

sources therefore explants were cultured when cotyledonary petioles were 1 to 3 mm 

in length rather than all at the same time. Explants from produced seeds were 

cultured 94 h after plating, Salisbury seed was cultured 100 h after plating and 

Murphy seed was cultured 139 h after plating. With this staging, regeneration 

frequencies were not significantly different between seed sources (p = 0.82) (Fig. 

4.9). 

As an alternative to BA for inducing callus and shoots, the cytokinin 

thidiazuron (TDZ) was tested from 0.1 to 10 µM. In addition, sterilizing BA by 

autoclaving or filtering was compared. Apart from explant age, there was no 
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significant regeneration differences between any of the treatments (p = 0.17) (Fig. 

4.7). Although regeneration frequencies were not different there was an obvious 

visual difference in explant health after 4 weeks in culture. Explants on 1.0 and 1 0 

µM TDZ remained green while those on 0.1 µM TDZ and BA were necrotic. In a 

second experiment comparing TDZ concentrations between 1.0 and 10 µM, calluses 

farmed from 5 day-old explants produced the same number of shoots for all 

treatments (p = 0.95) (Fig. 4.10). There was some explant necrosis visible on plates 

containing 1. 0 µM TDZ. 

The source of water used to make tissue culture 111edia was also examined. 

Medium was prepared using either deionized (reverse osmosis), glass distilled or tap 

water. ANOV A statistical results showed that water source had a highly significant 

effect on shoot regeneration (p = 0.004 ). Cultures on 1nedium prepared with tap 

water regenerated the most number of shoots while there was no difference between 

deionized and glass distilled treatments (Fig. 4.11). In a separate experiment, 

medium prepared from tap water was compared to medium prepared with MilliQ 

filtered water (Millipore, Bedford, MA). This 2 x 2 factorial experiment also 

compared medium sterilization by autoclaving or by filtering. The use of tap water 

and filter sterilization produced the largest number of shoots (Fig. 4.12). Statistical 

analysis demonstrated that water source had a highly significant effect (p = 0.003), 

sterilization method also was significant (p = 0.046), and there was not a significant 

interaction between these two factors (p = 0.76). 

TRANSFORMATION AND REGENERATION FROM SELECTION MEDIUM 

With the increase of plant regeneration frequencies to over 80 percent, the 

chances of recovering transgenic shoots was much higher. With the 111odifications to 

the tissue culture protocol shoots began to appear from explants cocultivated with 

Agrobacterium. The Agrobacterium cells contained a binary plasmid with a gene of 

interest and also the nptll kanamycin resistance gene under the control of nos 

promoter and terminator sequences (Figs. 4.1, 4.3 and 4.5). The addition of 

kanamycin to callus induction medium greatly reduced callus production. From a 

small site of initiation on the cut petiole end, callus gradually proliferated. In 

contrast to medium without kanamycin, callus was generally white, however some 
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portions of callus developed green pigmentation. Shoots regenerated from these 

green regions after 4 to 6 weeks in culture. Shoots that developed quickly (0 - 2 

weeks) after culture initiation were likely meristematic in origin and many developed 

the kanamycin sensitivity symptoms of white leaves with purple margins (Schroder 

et al., 1994 ). 

Some aspects of the transformation protocol were modified to improve 

frequencies. Moloney et al. (1989) centrifuged overnight Agrobacterium cultures 

before resuspension in MS medium. Based on his experience with pea (Pisum 

sativum L.) transformation, H.E. Schroeder (CSIRO Plant Industry) established that 

dilution of Agrobacterium cultures is preferable to centrifugation. As well, wetting 

the scalpel blade with Agrobacterium solution prior to cutting explants purportedly 

increases transformation. An experiment was setup to assess the combinations of 

these factors. From 50 explants per combination, a wet scalpel and diluted 

Agrobacterium regenerated the most number of shoots from selection (11). Of the 

21 regenerated shoots in all treatments only four survived selection, formed roots, 

survived transplantation and were fertile . 

During tissue culture experiments, it was shown that callus induction medium 

containing TDZ instead of BA supported explant longevity without affecting 

regeneration frequencies (see results above). Given the potential for selection to 

delay regeneration, it might be advantageous to replace BA with TDZ. On three 

occasions cocultivated explants were divided between media containing 2 µM TDZ 

(see Figs. 4.7 and 4.10) and 20 µMBA (Moloney et al., 1989). Explants on TDZ 

selection medium produced twice as many regenerated shoots as BA selection 

medium, however the number that survived to maturity was higher on BA selection 

medium (Table 4.1 ). 

Table 4.2 summarizes all the transformation experiments with Westar. In 

parallel with cocultivated explants, two sets of controls were used. As a selection 

control, explants not exposed to Agrobacterium were plated on selection medium 

and subcultured to fresh medium at the same time as cocultivated explants. No 

shoots were ever produced from this control. As a regeneration control, explants not 

exposed to Agrobacterium were plated on callus induction medium. After 5 to 6 

weeks, the numbers of explants forming callus and the number of calluses forming 
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Table 4.1: Effect of callus-inducing cytokinin on the regeneration of shoots fron1 

canola cotyledonary explants cocultivated with an Agrobacteriuni binary plasmid 

containing a npt/1 kanamycin resistance gene. 

Hormone 

BA (20 µM) 

TDZ (2 µM) 

No. 

Explants 

280 

220 

No. 

Regenerants 

28 (10 %) 

46 (21 %) 

No. T1 

Seed 

14 (5.0 %) 

9 (4.1 %) 

No. NPTII 

Positive 

7 (2.5 %) 

4(1.8 %) 
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Table 4.2: Summary of Agrobacterium cocultivation experiments to produce transgenic canola plants from cotyledonary petiole explants. See 

Materials and Methods for experimental details . nd, not determined; 3, first use of 4-5 day-old seedlings; 6, first use of Micropore tape· c first use 
d ' ' 

of tap water, diluted Agro bacterium, and wet scalpel blade; , first use of Phytagel. 

Cocultivations Negative Control 

No. No. % 
Experiment No . No. No. Tl NPTII No. No . % Shooting Shooting 

Date Construct Exelants Re8en Seed +ve Exelants Callus Callus Callus Callus 

26-Oct-94 35S-SPS 80 0 0 0 60 17 28 0 0 

20-Dec-94 35S-SPS 60 0 0 0 50 nd nd 10 20 

14-Feb-95 35S-SPS 70 0 0 0 nd nd nd nd nd a 

l l-Mar-95 35S-SPS I 35S-GUS 120 0 0 0 50 nd nd 33 66 b 

28-Mar-95 35S-SPS I RbcS-GUS 100 0 0 0 45 40 89 23 51 

29-Mar-95 35S-SPS I RbcS-GUS 100 0 0 0 37 37 100 11 30 

6-May-95 35S-GUS 200 14 5 3 40 38 95 25 63 C 

29-May-95 35S-S158 180 2 1 1 50 50 100 39 78 

12-Jun-95 RolC-AS 260 5 2 2 50 48 96 30 60 

4-Jul-95 35S-S158 180 22 2 1 60 56 93 45 75 d 

l 9-Jul-95 RolC-AS 140 86 25 11 nd nd nd nd nd 

25-Sep-95 35S-Sl58 160 2 2 2 30 29 97 25 83 

3-Nov-95 35S-Sl58 220 28 10 6 37 37 100 24 65 

l 9-Dec-95 35S-Sl58 180 1 0 0 30 28 93 21 70 

16-Jan-96 35S-Sl58 200 0 0 0 40 39 98 35 88 

24-Apr-96 RbcS-SPS 210 315 18 7 30 29 97 22 73 

6-May-96 RbcS-SPS 210 120 8 1 30 30 100 16 53 

Totals 2670 595 73 34 639 478 91 359 56 
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shoots were counted. As results became available from tissue culture optimization 

experiments, improvements were incorporated into the transformation protocol. 

With multiple improvements, regeneration from control plates reached a consistently 

high level by 6 May 1995 (Table 4.2). The first shoots to regenerate under 

kanamycin selection were also from explants cocultivated on this date. The 

regeneration frequency from selection was quite variable in the subsequent ten 

experiments. This variability did not seem to correlate with regeneration frequencies 

on control plates. Of 595 regenerated shoots (including multiple shoots from same 

callus), 489 (82 % ) were discarded because they died on selection or showed 

kanamycin sensitivity symptoms, 5 (0.8 % ) became contaminated with fungus, 20 

(3.4 %) died in soil, 8 (1.3 %) were infertile and 73 (12 %) produced seed. 

To SCREENING 

TO plants surviving on selection medium tested either positive or negative for 

NPTII enzyme activity (Table 4.2). A total of 168 regenerated shoots were tested for 

NPTII activity and 62 were tested on more than one occasion. Contradictory results 

were found for 15 of these plants. Fourteen plants initially tested positive but tested 

negative at a later date. Only one plant produced a positive result after initially 

testing negative. The unreliability of the dot blot assay resulted in all healthy­

looking plants being maintained regardless of NPTII results. 

DISCUSSION 

The purpose of this research was to produce canola plants transformed with 

genes designed to elevate enzyme activities at key points in the biosynthetic 

pathways of carbon and nitrogen transport compounds. Agrobacterium vectors were 

constructed, regeneration from coty ledonary petiole target tissue was improved and 

shoots were produced after Agrobacterium cocultivation and selection. 

TRANSFORMATION VECTORS 

Carbon is transported to sink tissues as sucrose and SPS partly regulates its 

synthesis (see Chapter 1) . The choice of the SPS cDNA was important to maximize 
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the chances of producing plants which overexpress SPS . Two strategies were used in 

this research. First, a spinach SPS cDNA was used which had a single amino acid 

change within the phosphorylation site (Ser-158 to Ala). SPS phosphorylation (post­

translational modification) inactivates enzyme activity (Huber et al., 1989; Huber 

and Huber, 1992) and its prevention could enable SPS to remain active at all times. 

Second, a SPS cDNA from the monocotyledonous species maize was chosen because 

its sequence is divergent from dicotyledonous species and would reduce the chances 

of cosupression (Fig. 4.13). Overexpression of maize SPS in tomato (Lycopersicon 

esculentum Mill.) led to notable changes in leaf carbon partitioning and whole plant 

performance (Worrell et al. , 1991; Galtier et al. , 1993; Galtier et al., 1995; Micallef 

et al. , 1995; Foyer and Galtier, 1996). SPS constructs were used with either a 

constitutive or tissue-specific promoter. RbcS promoters direct expression in 

photosynthetic cells where fixed carbon is synthesized into sucrose (Stitt et al., 

1987). 

Glutamine and asparagine are major transport forms of nitrogen (see Chapter 

1). Manipulation of asparagine synthesis by overexpressing asparagine synthetase 

(AS) was chosen because glutamine feeds into many amino acid pathways whereas 

asparagine synthesis is a terminal pathway. An AS cDNA was used from the 

monocotyledonous species rice. Of the publicly-available plant AS sequences, rice 

AS is the most dissimilar to canola' s close relative B. oleracea having 68 percent 

nucleotide identity within the coding region (Fig. 4.14). AS 1 gene expression has 

been localized to vascular tissue in pea (Tsai , 1991 ) consequently the rice cDNA 

was cloned behind the phloem-specific rolC promoter from Agrobacterium 

rhizogenes. Constitutive overexpression of pea AS 1 in tobacco led to 40-fold 

increases in leaf asparagine and decreases in its substrates, aspartate and glutamine 

(Brears et al. , 1993). 

TISSUE CULTURE AND TRANSFORMATION PROCEDURES 

To introduce the gene constructs, Agrobacterium tumefaciens-mediated 

transformation of cotyledonary petioles was chosen. The method published by 

Moloney et al. (1989) yielded high numbers of transgenic shoots without stringent 

technical requirements. This simplicity should make the technique reproducible, 
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,-- rice (indica) (U33 l 75) 

--- rice (japonica) (D45890) 

- maize (M97550) 

- sugarcane (AB001337) 

Craterostigrna (Yl 1795) 

faba bean (Z56278) 

---
Craterostigrna (Y 11821) 

-
...--

potato (X73477) 

sugar beet (X8 l 97 5) 

spinach (S543 79) 

sugarcane (AB001338) 

Figure 4 .13. Dendrogram of plant sucrose-phosphate synthase (SPS) 

clones. Relationships of translated sequences were generated by the 

PILEUP command of Genetics Computer Group software (Madison, 

WI). Each species name is followed by its GenBank accession number. 
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maize 
(X82849) 

. 
rice 
(U55873) 

broccoli 
(X84448) 

Arabidopsis 
(L29083) 

peaAS2 
(X52180) 

greater trefoil 1 
(X89409) 

alfalfa 
(L40327) 

pea ASl 
(X52179) 

soybean 
(U55874) 

greater trefoil 2 
(X89410) 

asparagus 
(X67958) 

Figure 4.14. Dendrogram of full-length plant asparagine 

synthetase clones. Relationships of translated sequences were 

generated by the PILEUP cormnand of Genetics Co1nputer Group 

software (Madison, WI). Each species name is followed by its 

GenBank accession number. 
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however initial attempts to regenerate shoots from coty ledonary petioles failed (Fig. 

4.6 and data not shown). Subsequent experiments improved the regeneration 

frequency to the high levels needed for transformation. Seedling development at the 

time of preparing explants is a very critical factor for regeneration. Under the 

conditions used, 4 to 5 d seedlings were the best (Figs. 4.7 and 4.8) and agrees with 

previous reports (Hachey et al., 1991; Ono et al. , 1994). At this age, petioles were 

just long enough to cut separately from meristem cells at the hypocotyl. 

The source of water used to prepare culture media profoundly affected 

regeneration. Explants cultured on medium prepared with tap water regenerated 

significantly more shoots than media prepared with MilliQ filtered, deionized 

(reverse osmosis) or glass distilled water (Figs. 4.11 and 4.12). Either tap water 

contains something beneficial which is retained by the various purification systems 

or the other sources introduce a deleterious substance. The abundance of macro- and 

micro-elements present in MS medium makes it difficult to believe that tap water 

contains an otherwise limiting factor. On the other hand, apparatus used for water 

purification could introduce bacterial lipopolysaccharides if not regularly cleansed. 

Bacterial lipopolysaccharide inhibition would only be evident in locations, such as 

Canberra, with high-purity domestic water supplies. Although Davies et al. (1989) 

found that water source did not affect lucerne (Medicago sativa L.) protoplast 

culture, high molecular weight inhibitors (> 200 kDa) were discovered in stocks of 

medium components and could possibly be bacterial lipopolysaccharides. These 

inhibitors would pass through standard 0.45 µm tissue culture fi lters. 

Plant regeneration was significantly higher on filter-sterilized media 

compared to autoclaved media (p = 0.046) (Fig. 4.1 2). Autoclaving therefore likely 

introduces other inhibitory compounds (Sawyer and Hsiao, 1992; Schenk et al., 

1991 ), however autoclaving continued to be used to sterilize media because the 

magnitude of the filter sterilization benefit did not warrant the added expense. 

TDZ is a potent cytokinin that has been used successfully in a number of 

culture systems (Malik and Saxena, 1992; Huetteman and Preece, 1993; Murthy et 

al. , 1996a,b; Tosca et al. , 1996). It was therefore tested as an alternative to BA for 

canola cotyledonary petioles. An equivalent number of calluses produced shoots on 

TDZ- and BA-containing media (Fig. 4.7). The observation that explants cultured on 
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TDZ media seemed to survive longer is a trait important for transformation because 

selection lengthens regeneration time. TDZ use in selection medium did not appear 

to be beneficial because more escapes were produced without an increase in shoots 

reaching maturity (Table 4.1 ). BA was consequently used in all subsequent 

experiments. 

Further changes were made to the Moloney et al. ( 1989) procedure. First, 

deep-dish plates (100 x 20 mm) were used and were wrapped with Micropore tape. 

This permeable tape allows for better gas exchange and combined with the larger 

plate volume decreases humidity (De Block et al. , 1989). Second, Phytagel was used 

as the medium gelling agent instead of purified agar in later experiments. Increased 

culture performance on Phytagel-based media compared to agar-based media has 

been documented (Tremblay and Tremblay, 1991; Van Ark et al., 1991; Yadav et al., 

1996). Third, in spite of unconvincing data Agrobacterium cultures were diluted 

without centrifugation and explants were cut with a scalpel blade wetted with 

Agrobacterium. 

To REGENERATION AND SCREENING 

The improved shoot regeneration frequencies undoubtedly increased the 

probability of regenerating transformed shoots. After culture parameter 

modification, shoots regenerated from explants cocultivated with Agrobacterium. As 

documented in Table 4.2, the number of explants forming on selection medium was 

highly variable even though control plates had relatively consistent regeneration. It 

is possible that the window for successful transformation is narrower than the 

regeneration window. From 14 Feb 1995, seedling age at the time of cocultivation 

varied from 94 to 121 h but transformation success did not seem to correlate with 

absolute time. The optimal time will surely vary with season because seeds will 

germinate and develop at different rates. Petiole length is a more precise indicator 

for staging than seedling age. 

The vast majority of shoots regenerated from selection were escapes (Table 

4.2). Instead of showing the kanamycin sensitivity symptoms of white leaves with 

purple pigmentation (Schroder et al. , 1994 ), most shoots died after a number of 

subculture rounds. Similar to other reports (Fry et al. , 1987; Pua et al., 1987, 
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Schroder et al., 1994), the large number of escapes suggests ineffective kanamycin 

selection. The nptll resistance gene was under the control of the nos promoter in all 

constructs (Figs. 4.1 , 4.3 and 4.5) which does not give particularly strong expression 

(Sanders et al. , 1987). As well, selection medium initially contained 15 or 20 µg mL-

1 kanamycin, a low concentration, but was increased to 50 µg mL- 1 kanamycin once 

shoots had formed. This higher selection pressure was ineffective on shoots that 

already had 2 to 3 true leaves when transferred. Raising the initial selection pressure 

seems to be logical advice even though 15 or 20 µg mL- 1 kanamycin was high 

enough to prevent regeneration from uncocultivated explants on selection medium. 

In addition, stringent biweekly subcultures to fresh selection medium are necessary 

because delaying subculture or using media prepared days earlier can allow shoots to 

regenerate due to kanamycin breakdown near the end of a subculturing round. Once 

shoots formed it was difficult to kill escapes. 

An effective screen of TO plants would decrease the labour needed to 

maintain escapes. A quick and easy NPTII dot blot assay was used but the integrity 

of the results was suspicious. In contrast to other species used in this laboratory, 

canola extracts did not give a strong signal. Using protease inhibitors, larger tissue 

samples and changing washing conditions did not alleviate the problem ( data not 

shown). A substance contained in canola extracts was not responsible for poor 

signals because the signal in a NPTII-positive Flaveria bidentis extract was not 

diminished when canola extract was mixed with it (data not shown). A number of 

canola regenerants that were tested on multiple occasions produced conflicting 

results. Curiously, all but one of these plants tested NPTII-positive initially and then 

later tested NPTII-negative. It is unknown whether these contradictory results are 

due to loss of nptll expression, patchy expression or simply because of assay 

problems. As a consequence, shoots that remained healthy in culture and in soil 

were taken to maturity regardless of NPTII results. A total of 73 shoots reached 

maturity of which 34 tested NPTII-positive at least once. Seed was collected from 

these mature plants. 
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CONCLUSION 

Transgenic canola plants were produced after Agrobacterium tumef aciens­

mediated transformation of cotyledonary petiole explants. The adaptation of a 

published protocol was not straight-forward and required modification. Alteration of 

tissue culture conditions greatly improved shoot regeneration frequencies and 

allowed the recovery of shoots from selection medium. The most critical factors 

were using 4 day-old seedlings for explants and using tap water to prepare media. A 

large number of escapes were regenerated from cocultivated explants on kanamycin 

selection medium. Future work should consider increasing the kanamycin 

concentration during callus induction or using an alternate selectable marker gene. A 

NPTII dot blot assay was an imperfect method to cull escapes because results were 

not always consistent. With the large number of escapes, screening by more time­

consuming methods, such as Southern analysis, was deemed to be an unacceptable 

use of limited time. As well, screening TO plants for activity of the genes of interest 

would likely have been inconclusive because seedling growth was adversely affected 

by the culturing process thereby making reliable detection of enzyme activities 

significantly different from wild-type levels unrealistic. Instead, screening was 

conducted by germinating T1 seed on kanamycin-containing medium (see Chapter 5). 

Although transformation frequencies fell well short of those reported by Moloney et 

al. (1989), they are comparable with other labs (C. Jones, John Innes Centre and D. 

Schulze, Pioneer Hi-Bred, personal communications). The protocol does not require 

extensive technical expertise or labour and is relatively genotype-independent (Ono 

et al. , 1994). Only minor modifications should be needed to adapt it to Australian 

genotypes. 
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CHAPTER 5: ANALYSIS OF TRANSGENIC PLANTS 

INTRODUCTION 

The molecular alteration of enzymes involved in the biosynthesis of carbon 

and nitrogen transport compounds offers a powerful method of understanding the 

biochemical regulation of source-to-sink relations. As well, there is potential for the 

econonnc benefits of increased crop performance if the alterations are properly 

targeted. In tomato, overexpression of SPS resulted in increased photosynthetic 

capacity, increased sucrose partitioning in source tissues and an increased number of 

fruits (Worell et al., 1991, Galtier et al ., 1993, Micallef et al., 1995, Galtier et al., 

1995). In tobacco, overexpression of AS shifted the leaf amino acid composition 

towards asparagine, a transportable amino acid that conserves carbon (Brears et al., 

1993). The parallel approaches of individually altering carbon and nitrogen 

assimilate supply can be combined in the long-term to study the interactions of these 

inter-related processes. 

The objectives of this chapter were to confirm transformation in the plants 

produced after Agrobacterium cocultivation with SPS and AS overexpression gene 

constructs ( see Chapter 4) and to conduct a preliminary biochemical and 

physiological assessment of effects in T 1 progeny. Once key traits have been 

identified, attention can be focussed for a more thorough and rigorous analysis of the 

regulation of source-to-sink assimilate provision. 

MATERIALS AND METHODS 

SEED GERMINATION ON KANAMYCIN 

Approximately 20 seeds per TO line (ie. T 1 seed) were surface-sterilized and 

germinated on MS selection medium (see Chapter 4) containing 3 % (w / v) sucrose 

and 75 mg L-1 kanamycin sulphate (Sigma, St. Louis , MO). After two weeks, 
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seedlings showing any purpling or bleaching were scored as susceptible to 

kanamycin and seedlings without these symptoms were scored as resistant. 

PLANT MATERIALS AND NPTII DOT BLOT 

A few transgenic lines were selected for growth analysis. Ten seeds from 

each selected line were planted in a compost and per lite soil mix ( 1: 1, v / v) and 

grown in a naturally-illuminated glasshouse with daily liquid nutrient and 

temperatures set at 23 °C / 15 °C day / night. Established seedlings were given an 

identification number and a 1.33 cm2 leaf disc was sampled from each plant and 

tested for expression of npt/1. The dot blot procedure described in Chapter 4 was 

modified to be more representative of the original protocol (McDonnell et al., 1987) 

by increasing DTT to 50 mM in the extraction buffer and MgCh to 42 rnM in the 

reaction mix. After Phosphorimager scanning of the blots, relative dot strengths 

were quantified using ImageQuant software (Molecular Dynamics, Sunnyvale, CA). 

DNA EXTRACTION AND SOUTHERN BLOTTING 

DNA extraction. Genomic DNA was isolated from leaf samples taken from 

TO plants and stored at -80 °C. Samples were ground in liquid nitrogen and the 

powder was transferred to 18 mL cell lysis solution containing 10 mM Tris-HCl, pH 

8.0, 1 rnM EDTA and 1 % (w / v) SDS. Samples were incubated at 65 °C for 1 h 

then cooled to room temperature before the addition of 90 µL RNase A. After a 15 

min incubation at 37 °C, proteins were precipitated by adding 6 mL 6 M NH4-

acetate, vortexing vigorously and centrifuging at 3 000g for 10 min. As a further 

purification, 12 mL phenol:chloroform (1: 1, v / v) was added to the supernatant, the 

solution was vigorously vortexed and then centrifuged. The aqueous phase was 

transferred to a fresh tube containing 18 mL ice-cold isopropanol. The precipitated 

DNA was pelleted by a 5 min centrifugation at 3 000g. After removal of the 

supernatant, the DNA pellet was washed with 18 mL 70 % (v / v) ethanol. After 

centrifugation and supernatant removal , the pellet was dried in a vacuum desiccator 

for 5 min. DNA was resuspended in 200 µL TE by incubation in a 65 °C water bath 

for 5 min. DNA concentrations were determined by measuring the absorbance at 260 

nm and using the conversion factor of 50 µ g DNA mL- 1
• 



r 

n: 

116 

Southern blotting. Where available, 10 µg DNA was digested with EcoRI 

(NEB, Beverly, MA) overnight at 37 °C. The resulting fragments were separated 

using 1 % agarose gel electrophoresis and the DNA was then capillary transferred to 

a GeneScreen Plus membrane (DuPont NEN, Boston, MA) using the alkali transfer 

method (Sambrook et al., 1989). Membranes were pre-hybridized for at least 10 hat 

65 °C in a solution containing 50 mM Hepes, 3 x SSC, 1 % (w / v) SDS, 0.2 % (w / 

v) Ficoll, , 0.2 % (w / v) BSA, 0.2 % (w / v) PVP and 18 mg L- 1 sheared herring 

sperm DNA. The hybridization solution was the same except 10 % (w / v) dextran 

sulphate and a 32P-labelled DNA probe was added (see below). After hybridization 

for at least 6 h at 65 °C, membranes were washed once in 2 x SSC at room 

temperature for 2 min, once in 2 x SSC at 65 °C for 20 min, once in 1 x SSC at 65 °C 

for 20 min, and once in 0.5 x SSC, 0.1 % (w / v) SDS at 65 °C for 20 min (gene copy 

number blot only). Washed membranes were placed in a Phosphor Screen for 1 to 4 

d before Phosphorimager scanning. 

Probe preparation. Gel-purified DNA fragments wer-e used to prepare 32P­

labelled probes for hybridizations. A full-length 3.9 kb spinach SPS cDNA 

(GenBank S54379) was used to screen S 158A-cocultivated transformants and a full­

length 2.2 kb rice AS cDNA (GenBank U55873) was used to screen AS-cocultivated 

transformants. To determine gene copy number, both S 158A- and AS-cocultivated 

transformants were probed with a 387 bp Ncol I Pstl nptll fragment (GenBank 

V00618). These fragments were used as templates in random priming labelling 

reactions using a Ready-To-Go dCTP labelling kit (AMRAD Pharmacia, Sydney, 

NSW) and 50 µCi cx32P-dCTP (Amersham, Sydney, NSW). After a 1 h incubation at 

37 °C, DNA-incorporated radiolabel was separated from unincorporated radiolabel 

using a Sephadex G-50 spin column. Probes were denatured for 2 to 3 min at 100 °C 

before addition to hybridization solutions. 

RNA EXTRACTION AND NORTHERN BLOTTING 

RNA extraction. Total RNA was isolated from expanding leaves (1 g fresh 

weight) taken from rolC-AS T 1 plants and quickly frozen in liquid nitrogen. 

Standard precautions were taken to prevent RNA degradation. Samples were ground 

to a fine powder in liquid nitrogen and then homogenized in 2 volumes NTES (0.1 M 
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NaCl, 10 mM Tris, pH 8.0, 1 mM EDT A, 1.0 % (w / v) SDS) and 3 volumes 

phenol:chloroform (1: 1, v / v). The homogenate was centrifuged at 10 000g for 10 

min. The aqueous phase was transferred to a fresh tube and mixed with 0.1 volume 

of 20 % (w / v) Na-acetate, pH 5.5, before adding 2 volumes ice-cold ethanol. 

Nucleic acids were allowed to precipitate for at least 30 min at 4 °C before 

centrifugation at 10 000g for 10 min. The supernatant was poured off and the pellet 

was resuspended with 2 mL sterile dH20 before adding an equal volume of 4 M 

LiCl. After mixing, the tubes were left at 4 °C overnight to fully precipitate the 

RNA. After centrifugation at 10 000g for 10 min and removal of the supernatant, 

pellets were dissolved with 0.5 mL sterile dH20 and RNA was reprecipitated with 2 

volumes of ethanol for at least 1 h at 4 °C. The RN A was again collected by 

centrifugation and the pellet was washed with 80 % (v / v) ethanol before a final 

resuspension in sterile dH20. RN A concentrations were determined by measuring 

the absorbance at 260 nm and using the conversion factor of 40 µg RNA mL- 1
. 

Northern blotting. RNA fragments (10 µg per lane) were separated using 

denaturing formaldehyde-agarose gel electrophoresis (Sambrook et al., 1989). As 

positive controls, RNA isolated from light-grown and etiolated rice seedlings were 

included (courtesy Graham Scofield, CSIRO Plant Industry). Separated RNA was 

blotted to a GeneScreen Plus membrane, pre-hybridized and hybridized as described 

above for Southern blotting. The only difference was that 50 mM NaOH was 

substituted for 0.4 M NaOH during the alkaline capillary transfer. The membrane 

was probed with the full-length AS cDNA described above for Probe preparation. 

After hybridization, the membrane was washed once in 2 x SSC at room temperature 

for 2 min and then through a series of single washes containing 0.1 % (w I v) SDS at 

65 °C for 20 min; 2 x SSC, 1 x SSC, 0.5 x SSC, 0.1 x SSC. The blot was exposed to 

a Phosphor Screen for 1 d before Phosphorimager scanning and ImageQuant 

quantification. 

SPS ASSAYS 

Leaf, silique wall and seed tissues from 35S- S 158A T 1 lines were assayed 

for SPS activities and compared with untransformed plants. Samples from young 

fully-expanded leaves were taken mid-morning 35 d after planting and quickly 
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frozen in liquid nitrogen before storage at -80 °C. A second complete set of leaf 

samples was taken 12 d later. Although all seeds were planted on the same day, 

plants flowered at different times. Assuming that developmental stage affects SPS 

V max more than environmental effects, silique samples were taken over a 1 0 day 

period when plants were 28 to 40 DAFF. Regardless of sample date, 26 DAA 

siliques were quickly harvested in the mid-morning and were immediately frozen in 

liquid nitrogen. 

For assays, all tissues were ground in extraction buffer (see Chapter 2) but 

BSA and Triton X-100 were omitted to allow protein determination. Leaf extracts 

were desalted by passage through a Sephadex column and assayed in duplicate as 

described in Chapter 2. Extract protein concentrations were determined from a 

Bradford assay kit using )'-globulin as a standard (Bio-Rad, Hercules, CA). 

As a result of high absorbances in blank samples using the anthrone SPS 

assay and low sucrose production rates, silique wall and seed samples were assayed 

using a radiometric procedure. Silique samples were gently crushed under liquid 

nitrogen to separate silique wall from seed tissues. From a single sample, two silique 

wall and two seed extracts were prepared. Extracts were not desalted and 50 µL of 

extract was immediately used in reactions containing 22.5 mM [1 4C]Fru-6-P pre­

equilibrated with phosphoglucoisomerase (EC 5.3.1.9) and 20 mM UDP-Glc in a 

total volume of 100 µL. The reactions were stopped after 10 min at 25 °C by boiling 

for 5 min. Pre-boiled extract was used as a control reaction. Sugars in the reactions 

were dephosphorylated by treating with 3.5 U alkaline phosphatase (Boehringer) 

overnight at 40 °C. A 20 µL aliquot of each reaction and 10 µL of a marker mixture 

containing 2 % (w / v) Sue, 1.5 % (w / v) Glc, and 1.5 % (w / v) Fru were spotted 

onto paper chromatograms (Whatman 3MM) and were run for 25 h in ethy 1 

acetate:pyridine:dH2O (8:2: 1, v / v) to separate sucrose from hexoses. The sucrose 

location was determined by dipping the strips containing the marker mixture in 1 % 

(v / v) H3PO4 in acetone followed by 0.5 % (v / v) p-anisidine and 0.5 % (v / v) 

aniline in chloroform. The strips were then developed at 100 °C. The region 

corresponding to the sucrose peak was cut out from the reaction strips and placed in 

1 to 2 mL dH2O to solubilize the sucrose. Scintillation fluid was added and 14C was 

counted in a liquid scintillation counter. 
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CARBOHYDRATE CONTENTS 

Silique wall and seed tissues from 35S- S 158A T 1 lines were assayed for 

carbohydrate contents and compared with untransformed plants. Intact 26 DAA 

siliques were harvested at dusk, on the same or the next day as the SPS samples 

described above, and immediately frozen in liquid nitrogen before storage at -80 °C 

until analysis. Two silique wall and two seed extracts were prepared from each 

sample. The boiling ethanol extraction and spectrophotometric sugar and starch 

assay procedures were as described in Chapter 2. 

SEED YIELD AND WEIGHT 

The seed produced from 35S- S158A T 1 lines was harvested 143 to 144 d 

after planting (81-105 DAFF). Immature seed-bearing racemes that appeared late 

because of the daily nutrient regime were not included in the analysis. Harvested 

seeds were allowed to dry to final moisture contents in the laboratory for one week 

before total seed weight per plant and triplicate samples of 100 seeds were weighed 

from each line. 

RESULTS 

A large number of plants were regenerated from selection media after 

Agrobacterium cocultivation with overexpression gene constructs designed to 

perturb the synthesis of carbon and nitrogen transport compounds ( see Table 4.2 ). 

Before the extent of these perturbations could be assessed it was necessary to 

confirm transgene incorporation in the regenerated shoots. Seeds produced from 

each primary transformant (T 1 seed) were germinated on medium containing 75 mg 

L- 1 kanamycin, a concentration previously determined to produce purpling and 

bleaching susceptibility symptoms in the first true leaves of 88 % of untransformed 

seedlings. Individual progeny were scored as kanamycin-resistant or -susceptible 

and a population average was calculated for each T I line. A number of lines had 

high resistance averages, indicative of expression of the introduced nptll kanamycin 

resistance gene, and were chosen for further analysis (Fig. 5.1, gray bars). 
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Figure 5 .1. Kanamycin resistance in germinating T 

1 
progeny. Approximately 20 T 1 

seeds from each primary transforrnant were germinated on MS medium containing 

75 mg L-1 kanamycin sulphate and seedlings were scored for sensitivity symptoms 

after two weeks. Plotted values represent mean numbers of resistant seedlings 

within each T 1 segregating population. Resistance in untransformed seedlings is 

represented by black bars (W) and T 
1 

lines chosen for further analysis are represented 

by dark gray bars. SK- prefixes have been omitted from all labels. 
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CONFIRMATION OF TRANSFORMATION 

Once promising lines were identified, genomic DNA was isolated from leaf 

samples previously taken from the original primary transformants and stored at -80 

~C. Digestion of 35S-S 158A - cocultivated lines with EcoRI releases the full-length 

3.9 kb cDNA fragment (Fig. 4.1) and hybridization with the 32P-labelled full-length 

SPS fragment would confirm the presence of the transgene. Confirmation can be 

confirmed after EcoRI digestion of rolC-AS - cocultivated lines and hybridization 

with the full-length 2.2 kb AS cDNA by the presence of 1.3 kb bands (Fig. 4.5). 

Figures 5.2 and 5.3 show the results of these hybridization for 3 S 158A-cocultivated 

TO lines and 14 AS-cocultivated TO lines, respectively. For both SK90B and SK96A, 

the expected 3.9 kb band was present while an approximately 4.4 kb band was 

present in SK9A (Fig. 5.2) and the expected 1.3 kb bands were present in all lanes of 

AS- cocultivated lines except SK45 (Fig. 5.3). 

With the confirmation that regenerants were successfully transformed, 

Southern blot hybridization was used to determine the nun1ber of transgene copies 

inserted into the genome. A fragment of the nptll kanamycin resistance gene present 

in the transformation constructs was used as a probe of EcoRI-digested genomic 

DNA. Gene copy number determination relied on the fact that there is not an EcoRI 

site between the sequence homologous to the probe and the Agrobacterium T-DNA 

right border (Figs. 4.1 and 4.5) consequently the size of the hybridizing fragment will 

depend on the position of EcoRI sites within the plant genome. Each band visible 

after hybridization will therefore represent an individual copy. Most tested lines 

appear to contain multiple transgene copies, except SK9A and possibly SK57 A 

which appear to be single copy insertions (Fig. 5.4). Complete DNA digestion is 

required for accurate determination of gene copy number and the fainter bands 

visible in some lanes are assumed to be incompletely digested. 

TRANSGENE EXPRESSION AND ACTIVITY 

Several transformants having high numbers of progeny expressing the nptll 

transgene (Fig. 5.1) were chosen for growth analysis. Ten T 1 seeds from each chosen 
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Figure 5.2. Detection of the S158 transgene in primary 

transformants. Leaf genomic DNA ( 10 µg) was digested with 

EcoRI to release the full-length coding sequence (3.9 kb), 

electrophoresed in 1 % agarose, and transferred to a 

GeneScreen Plus membrane. Hybridization was with the 

full-length spinach SPS cDNA at 65 °C. 
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Figure 5.3. Detection of the AS transgene in primary 

transformants. Leaf genomic DNA ( 10 µg) was digested with 

EcoRI to release the coding and nos terminator sequences into 

two equally sized fragments ( 1.3 kb), electrophoresed in 1 % 

agarose, and transferred to a GeneScreen Plus n1embrane. 

Hybridization was with the full-length 2.2 kb rice AS cDNA 

at 65 °C. 
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Figure 5 .4. Determination of gene copy nun1ber in primary 

transformants. Up to 10 µg of leaf genomic DNA was digested with 

Eco RI, electrophoresed in 1 % agarose, and transferred to a 

GeneScreen Plus membrane. Hybridization was with a 387 bp nptll 

fragment at 65 °C and the blot was washed at high stringency (0.5 x 

SSC). DNA loadings were variable because of limited DNA 

quantities. W, wild-type. 
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line were planted in soil and all emerging seedlings were assayed for NPTII activity 

(Fig. 5.5). From this small sample size, it was not possible to calculate segregation 

ratios, however the high numbers of progeny expressing nptll within each family is 

consistent with independent multiple copy insertions (Fig. 5.4). There is clearly a 

wide variation in expression levels within families , up to 20-fold. 

Transgenes within the same T-DNA do not necessarily coexpress (Peach and 

Velten, 1991) consequently plants were also tested for expression or activity of the 

genes of interest. Northern blot analysis was used to detect transgene expression 

from progeny derived from rolC-AS transformants (Fig. 5.6) because the enzyme 

assay procedures are unreliable and troublesome (Joy et al. , 1983; Joy and Ireland, 

1990). RN A from young expanding leaves was extracted from plants showing 

NPTII activity (Fig. 5.5B) and 3 of these 13 plants (nos. 22, 25, 39) had detectable 

transcripts of the proper size (2.2 kb) after hybridization with the full-length rice AS 

cDNA while no cross-hybridization to endogenous AS was detectable in any of the 6 

wild-type samples (nos. 50 - 56). Transcript levels were, however, quite low 

compared to rice RNA from young seedlings (5 - 8 % of light-grown rice). Three 

plants which showed NPTII activity were not included in the northern analysis 

because the plants were too small (SK48E-16, SK49-23, SK57 A-44). 

For S 158A transformants , total extractable SPS activity was assayed for all 

plants tested for NPTII activity (Fig. 5.5A) and one additional plant, designated 

SK9A-0, which was accidentally omitted from the NPTII assay. In young fully­

expanded leaves, no SPS maximal activity differences on a protein basis between 

transformed and wild-type plants were apparent (Fig. 5.7 A). Expression of the rates 

on a chlorophyll or surface area bases suggested that SK90B-7, 9 and SK96A-13, 14 

were 29 , 26, 46 and 66 % lower than wild-type while SK9A-6 and SK96B-16 

activities were over 2-fold higher (Fig. 5.7B). In 26 DAA silique wall , each plant 

within SK9A and also SK96B-20 had higher SPS activities than wild-type; up to 3.6-

fold (Fig. 5.8A). SK90B-8, SK96A-12, and SK96B- 15 all had lower SPS activities 

than wild-type; 92, 92, and 51 % reductions. Expression of the rates on a chlorophyll 

basis did not change the relative levels. In 26 DAA seeds, some plants within each 

T 1 line had increased SPS activities (8.6-fold for SK96B-l 7) and no plants had 
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Figure 5.5. NPTII activities in the T1 progeny of 35S- S158A (A) and 

rolC- AS (B) transformants. Leaf discs (1.33 cm2) from each seedling 

emerging after the planting of 10 seeds per T l line was assayed using 

a NPTII dot blot procedure (McDonnell et al., 1987). 
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Figure 5.6. Northern analysis of AS transgene expression. Total RNA 

was extracted from young expanding leaves of rolC- AS T 1 progeny 

and 10 µg was loaded per lane and electrophoresed in denaturing 

agarose / formaldehyde gels before blotting to a GeneScreen Plus 

membrane. As positive controls, 10 µg RNA from etiolated (E) and 

light-grown (L) rice seedlings were included. Hybridization was with 

the 2.2 kb full-length rice AS cDNA at 65 °C followed by high 

stringency washing (0.1 x SSC). 
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reduced SPS activities (Fig. 5.8B). Relative activities between plants were consistent 

when expressed per unit chlorophyll or per seed. 

CARBOHYDRATE CONTENTS 

In addition to SPS assays, 26 DAA silique wall and seed tissues were assayed 

for hexose, sucrose and starch contents. In the silique walls of SK9 A progeny, a SPS 

overexpressing family (Fig. 5.8A), soluble sugars to starch ratios were equivalent to 

wild-type and in the silique walls of progeny from the other three lines, some of 

which were SPS cosuppressed, ratios were moderately reduced (Fig. 5.9A). 

Similarly in seeds, soluble sugars to starch ratios were within 50 % of wild-type 

values (Fig. 5.9B). The inherent variability in carbohydrate assays made it difficult 

to detect real changes in ratios, however it is clear that carbohydrate contents of 

silique wall and seed tissues were not as dramatically altered as SPS activities (Fig. 

5.8). The Sue to starch ratios showed the same trends as soluble sugars to starch 

ratios with wild-type values of 4.7 + 0.7 and 0.87 + 0.09 for silique walls and seeds, 

respectively. 

GROWTH OBSERVATIONS 

Cosuppressed SPS lines. For S 158A T 1 transformants, a number of 

phenotypes were apparent during all stages of growth and are summarized in Table 

5.1. Progeny from SK90B had poor germination rates (30 - 46 % ) and some 

seedlings of both SK90B and SK96A had extreme difficulty in producing true leaves 

and one of the two cotyledons on these struggling seedlings quickly shrivelled after 

emergence. Some plants recovered after this initial slow period of growth but 

SK90B-9 continued to grow slowly and only had three leaves when wild-type plants 

and its sibling (SK90B-8) started to flower (Fig. 5.10A). SK90B-9 and another 

sibling, SK90B-7, flowered later than most plants ; 119 d and 62 d after planting 

(Table 5.2). Once SK90B-9 reached the flowering stage, no petals emerged and 

many buds aborted hence no siliques were formed. Atypically, this plant had large 

number of small leaves along its racemes (Fig. 5.l0B). Closer examination of floral 

buds revealed a striking morphology. The unopened buds appeared very swollen 

compared to wild-type (Fig. 5.1 lA) because a second bud was contained within each 

one (Fig. 5.1 lB). To contain these buds, the four sepals were broader and shorter 
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Table 5.1. Observed phenotypes in T1 progeny of 35S- S 158A transgenic canola. 

T1LINE PHENOTYPE AFFECTED PLANTS 

SK9A none 

SK90B low germination rates 

slow emergence and growth 9 

delayed flowering 7,9 

altered floral morphology 9 
'j 

abortion 9 
Ii 
I 

SK96A slow emergence 

wilted leaves 13, 14 

unexpanded leaves 13, 14 

poor root production 13, 14 

abortion 13, 14 

short siliques 11 

SK96B extra green leaves 17 

thin stems 17 

early flowering 16 

altered floral morphology 17, 18 

short siliques 17, 18, 19, 20 

i,: 
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for 26 DAA silique wall (A) and seed (B). W, wild-type; na, not available. 
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Figure 5.10. Phenotypes of putative cosuppressed 35S- S158A 

T1 progeny. A, B: SK90B-9 (A, right) was slow growing 

compared to its sibling SK90B-8 (A, left) and flowered much later. 

Floral buds on SK90B-9 did not open and racemes were unusually 

leafy (B, right; wild-type on left). C, D: SK96A-14 (C, D, right) 

was short, had small wilted leaves and thin stems compared to 

wild-type (C, D, left). SK96A-14 flowered at the same time as 

wild-type plants but did not set seed. 
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Table 5.2. Number of days to first flower in T 1 progeny of 35S- S 158A transgenic 

canola. Values considered to be outside of the normal range are highlighted. 
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Figure 5 .11. Characterization of mutant floral morphology in SK90B-9, 

a putative cosuppressed T 1 plant from a 35S- S 158A transformant. 

A: unopened floral bud, B: opened mutant bud showing second axillary 

bud, C: sepals, D: petals, E: stamens, F: carpels. In all panels, wild-type 

organs are on the left and SK90B-9 organs are on the right. 
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than wild-type sepals (Fig. 5.1 lC). In the mutant, petals and stamens were shrivelled 

while the carpels were extremely thickened (Fig. 5.1 lD-F). 

In SK96A, two of the five T1 progeny (nos. 13 and 14) were severely wilted 

at all stages of growth (Fig. 5. l0C). Leaves on these plants did not expand (Fig. 

5.12A) and in combination with reduced root production presumably caused the poor 

biomass accumulation and short stature. In addition, stems and branches were very 

spindly and the plants were not self-supporting (Fig. 5.10D). These plants flowered 

at the same time as wild-type plants (Table 5.2) but many siliques aborted and no 

more than six seeds were produced on each plant. 

Overexpressing SPS lines. No phenotypes were detected in progeny of SK9A 

during any growth period even though silique wall tissues were overexpressing SPS 

(Fig. 5.8A). In SK96B, all segregants appeared essentially nor.mal during vegetative 

growth. The leaves of SK96B-17 appeared to be greener than other plants and the 

leaf surface was dimpled and the margins curled downwards (Fig. 5.12B), however 

the data collected for Fig. 5.7 A revealed that the chlorophyll content was not 

significantly different from other plants. At flowering , this plant and SK96B-18 had 

swollen floral buds similar to the cosuppressed SK90B-9 plant described above. In 

contrast to SK90B-9, SK96B-17 flowers appeared to pollinate and many carpels 

started to extend into a silique, however many aborted shortly thereafter (Fig. 5.12C). 

The siliques that did continue through development were quite short and 

consequently contained few seeds per silique, a phenotype shared by its siblings 

SK96B-18, 19 and 20. The stems and racemes of SK96B- 17 were markedly thinner 

than other plants. Another phenotype documented within this family was early 

flowering (SK96B-16, Table 5.2). 

rolC- AS. For AS T 1 transformants, several phenotypes were detected and 

some were common to several families. Progeny within SK49 and SK57 A had 

increased numbers of leaves during reproductive growth resulting from the 

production of branches from axillary meristems near the base of the plant (Fig. 

5.12D). Individual leaves of SK54B-31 appeared to be much larger than wild-type 

leaves. Other phenotypes within AS transformants were thickened stems (SK49-20, 

21, 22, 26, and 27), horizontal stem growth (SK49-25, SK54B-39), floral bud 

abortion (SK54B-39) and increased numbers of racemes (SK57 A-45, 11 vs. 5). 
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Figure 5.12 Phenotypes ofT1 progeny. A: Largest leaves of wild-type 

(left) and 35S- S158A SK96A-14 (right). B: Apparent increased 

chlorophyll content in leaf of 35S- S 158A SK96B- l 7 (right) compared 

to wild-type (left). Note that leaf sizes cannot be compared. C: Silique 

abortion in SK96B-17 (right; wild-type on left). D: Increased leaf area 

from lower axillary meristems in rolC- AS SK49-22. 
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Observation of phenotypes within AS transformants was hindered by crowded 

growth conditions causing poor light interception from low-angled winter sun. 

Future work will need to separate environmental effects from true effects of 

transformation. 

PLANT PERFORMANCE 

The T 1 progeny of S 158A transformants were grown to maturity and yield 

parameters were determined to quantify plant performance integrated over the entire 

life cycle. The range of seed produced per plant was highly variable between plants 

(Fig. 5.13). With the exception of SK9A-1, 2, and 3, all transformants had less seed 

than wild-type plants. Due to the floral abnormalities described in the previous 

section, SK90B-9, SK96A-13, 14 and SK96B-17 produced very few or no seeds. 

Short siliques was the only phenotype observed for SK96B-19 during growth, 

however its yield was also severely reduced. Weight per 100 seeds, an indicator of 

seed density and size, was consistent across all plants (Table 5.3). 

CORRELATIONS 

Correlation analysis was used to determine any relationships between 

measured parameters for the T1 S158A transformants (Table 5.4). Of particular 

interest was the strong positive correlation between the silique wall soluble sugars to 

starch ratios and seed yield (r = 0.70) and the negative correlation between seed SPS 

V max and yield (r = -0.58). As well, silique wall SPS V max and seed soluble sugars to 

starch ratios were negatively correlated (r = -0.66). Interestingly, activities of the two 

transgene products, NPTII and SPS, were not correlated in leaves (r = -0.01). 

DISCUSSION 

With over 70 plants regenerating from selection medium after Agrobacterium 

cocultivation and producing T 1 seed, it was necessary to reduce the number of 

analyzed lines to a manageable size. Screening primary transformants for altered 

phenotypes was not attempted because it was felt that environmental and tissue 

culture effects would mask any trans gene effects. Instead, T 1 seed was germinated 
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Figure 5.13. Seed yield in T1 progeny of 35S- S158A transformants . Mature seeds 

were harvested from each plant and weighed. Wild-type yields (W) are derived 

from three separate plants. na, not available. 
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Table 5.3. Weight per 100 seeds harvested from T 1 progeny of 35S- S 158A 

transgenic canola. Mean values and standard errors (SE) from three replicates are 

presented. W, wild-type; na, not available. 

T1 NO. SEED SE T1 NO. SEED SE 

LINE WEIGHT LINE WEIGHT 

g 100 seeds-1 g 100 seeds-1 

SK9A 0 0.44 0.003 SK96A 10 0.49 0.009 

1 0.47 0.002 11 0.53 0.013 

2 0.50 0.007 12 0.48 0.008 

3 0.47 0.004 13 na 

4 0.46 0.002 14 na 

5 0.51 0.010 SK96B 15 0.47 0.006 

6 0.45 0.005 16 0.45 0.022 

SK90B 7 0.44 0.006 17 0.46 0.007 

8 0.43 0.005 18 0.49 0.011 

9 na 19 0.38 0.015 

20 0.53 0.007 

w 21 0.42 0.001 

22 0.52 0.007 

23 0.46 0.002 
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Table 5.4. Correlations between measured traits in Tl progeny of 35S- S 158A transgenic canola. Coefficients greater than 0.50 are highlighted. 

Leaf NPTII 

Leaf SPS 

Wall SPS 

Seed SPS 

Wall Sugars:starch 

Seed Sugars:starch 

First Flower 

Yield 

Seed l00wt 

Leaf 

NPTII 

1.00 

-0.01 

-0.39 

-0.37 

0.44 

-0.07 

-0.70 

-0.08 

Leaf SPS 

1.00 

0.29 

0.12 

-0.38 

-0.36 

-0.16 

-0.23 

0.12 

Wall SPS 

1.00 

-0.17 

0.31 

0.23 

0.30 

0.31 

Seed SPS 

1.00 

-0.23 

0.31 

-0.18 

-0.33 

Wall Seed 

Sugar:starch Sugar:starch 

1.00 

-0.15 

-0.07 

-0.12 

1.00 

-0.35 

-0.19 

0.03 

First 

Flower 

1.00 

-0.33 

-0.11 

Yield 

1.00 

0.13 

Seed 

l00wt 

1.00 
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on selection medium and seedlings were scored for their ability to tolerate 

kanamycin. This tolerance would necessitate expression of the introduced nptll 

resistance gene and although it is realized that nptll expression is not a prerequisite 

for expression of the other introduced transgenes (ie. S 158A, AS) (Peach and Velten, 

1991), the seed germination test was a very simple and quick method of choosing 

proniising lines. From the results, four families from 35S- S 158A cocultivations and 

14 rolC- AS families had resistance averages greater than wild-type seedlings and 

were chosen for further analysis (Fig. 5.1). Strangely, no lines from RbcS- maize 

SPS cocultivations showed greater resistance levels than wild-type seedlings. 

Atte1npts to reisolate the binary plasmid from the Agrobacterium RbcS- maize SPS 

glycerol stock cultures failed presumably indicating the loss of the plasmid during 

final preparation. 

CONFIRMATION OF TRANSFORMATION 

After identifying promising families, incorporation of the S 158A and AS 

transgenes was confirmed in the primary transformants (Figs. 5.2 and 5.3). Of the 

chosen lines, SK45 was the only line in which a transgene could not be detected by 

Southern blot analysis and interestingly its T 1 seedlings had the lowest average 

resistance to kanamycin (Figs. 5.1 and 5.3). Many high molecular bands were visible 

on hybridized Southern blots and likely represent incompletely digested DNA or 

cross-hybridization to endogenous sequences because of the low stringency blot 

washing (1 x SSC). Of more concern is the predominant 4.4 kb band, higher than the 

expected 3.9 kb band, in the SK9A lane of the S 158A Southern blot (Fig. 5.2). This 

band could be the result of partial digestion if the Eco RI site between at the 5' end of 

S 158A coding sequence was not digested and the EcoRI sites at the 5' end of the 0.5 

kb 35S promoter and at the 3' end of the 3.9 kb S 158A coding sequence were 

properly digested (see Fig. 4.1). To genomic DNA was in very limited supply but as 

much DNA as possible was used to determine gene copy number in some of the 

chosen lines. The majority of lines contained multiple T-DNA copies at independent 

insertion sites (Fig. 5 .4) reflecting the inherent bias of the seed germination screening 

procedure to select multiple copy transformants. For a single insertion, a 3: 1 
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phenotypic segregation ratio would be expected in the T 1 generation after self­

pollination. 

GROWTH AND PERFORMANCE OF T1 LINES 

35S- S158A Seedling Growth. Growth of T, plants from four S158A 

transgenic lines revealed a number of phenotypes. Segregants of SK90B and SK96A 

were slow growing during emergence and SK90B-9 continued to grow slowly at later 

stages. Even though leaf maximal SPS activities within these plants were no 

different to others on a protein basis, reduced protein contents in SK90B-9 and 

SK96A-14 resulted in lower activities on area and on chlorophyll bases. If SPS was 

also suppressed in germinating seedlings then the slow growth phenotype could be 

explained by reductions in sucrose synthesis after gluconeogenic degradation of seed 

storage products and therefore reductions in the supply of remobilized carbon to 

growing meristems (Geigenberger and Stitt, 1991). The reduced protein contents 

suggest a carbon shortage to the respiratory pathways which provide substrates for 

amino acid synthesis. 

Vegetative Growth. During vegetative growth, the suppression of SPS was 

manifested in separate ways within SK90B and SK96A. SK90B-9 leaves appeared 

normal but the growth rate was simply slower and it took twice as long for this plant 

to reach the flowering stage (Fig. 5.10A and Table 5.2). For SK96A-13 and 14, leaf 

initiation seemed to occur at similar rates to wild-type plants but these leaves did not 

expand and were constantly wilted (Fig. 5.12A). Flowering time was not affected in 

these two plants (Table 5.2). A suppression in the capacity to synthesize Sue in 

source leaves may affect the amount of assimilate which is transported to sink tissues 

and Sue supply to apical meristems has been implicated in the modulation of 

flowering time (Friend et al., 1984). The observation that flowering time was 

delayed in the putative cosuppressed SK90B-9 plant and promoted in the putative 

overexpressing SK96B-16 agrees with this hypothesis (Table 5.2) and is consistent 

with the effects of elevated SPS activities on flowering in tomato (Micallef et al. , 

1995). 

Pollination. Poor pollination was apparent in a number of T 1 plants. In the 

most severe example, pollen-bearing stamens were completely shrivelled and ovule-
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containing carpels were extremely enlarged in all SK90B-9 flowers (Fig. 5.11). It is 

unknown if the stigmas would be receptive to pollen from other plants. The 

complete lack of pollination obviously explains the absence of siliques and seeds on 

this plant (Fig. 5.13). SK96A-13 and 14 and SK96B-17 also had extreme 

reproductive difficulties but abortion in these plants occurred after pollinated carpels 

extended to less than 2 cm (Fig. 5.12C). Moderate swelling of floral buds was 

evident in SK96B-17 and 18. 

Floral abortion in three of the four independently-transformed S 158A lines 

suggests that this phenotype is caused by SPS-mediated alterations in sucrose 

metabolism rather than secondary effects of the transformation process. In addition, 

rolC- AS transgenic plants did not display the same difficulties. The limited data 

available on floral carbohydrate metabolism has concentrated on sucrose cleavage 

(Hawker et al., 1976; Miller and Ranwala, 1994; Aloni et al., 1996, 1997; Xu et al., 

1996; Collier, 1997) and cannot explain the observed phenotype. It is intriguing to 

speculate that the constitutive expression of S 158A in petals and stamens, which 

have large respiratory requirements, arrested the ability to utilize imported carbon by 

diverting cleaved hexoses into SPS-mediated Sue resynthesis at the expense of 

glycolysis. Alternatively, the combination of a futile Sue synthesis / degradation 

cycle and SPS cosuppression in these tissues may keep hexose to sucrose ratios high 

preventing cell ~xpansion analogous to the situation in developing embryos (Ambrose 

et al., 1987; Weber et al., 1996a). A third possibility is that sucrose is an essential 

signal in floral transduction pathways (for reviews, see Sheen, 1990; Koch, 1996). 

Silique Growth. In contrast to leaves, T 1 plants showed major differences in 

maximal SPS activities. Measurement of 26 DAA silique wall SPS activities 

revealed that segregants of SK9A all had higher V max activities (3.6-fold in SK9A-2) 

than wild-type plants (Fig. 5.8A). This increased capacity for sucrose synthesis did 

not correlate with carbohydrate ratios (Table 5.4). In the two apparent cosuppressed 

lines, SK90B and SK96A, silique wall SPS activities were reduced by 92 % in two 

of the five plants able to produce siliques (nos. 8 and 12; Fig. 5.8A) and the 

corresponding reductions in soluble sugars lowered the soluble sugars to starch ratio 

by 60 % (Fig. 5.9A). Smaller changes in carbohydrates compared to SPS activity 

have been previously documented in tomato (Worrell et al., 1991; Gal tier et al., 
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1993, 1995) and highlights the important point that SPS activities in vivo will not 

reach maximum capacity because its substrate concentrations will not be saturating. 

In the absence of saturating substrates, post-translational modification of SPS 

activation state modulates its activity and previous efforts to overexpress SPS in 

tobacco and potato failed because the excess SPS protein was not activated 

(Sonnewald et al., 1994). To avoid this problem in the present work, the introduced 

transgene contained a single amino acid change designed to prevent phosphorylation 

deactivation, however the DNA sequence of the spinach clone was apparently too 

similar to the endogenous canola SPS sequence thereby causing cosuppression at the 

transcriptional level in the leaves and silique wall of some T 1 progeny. The degree 

of identity between these genes is unknown because full-length SPS sequences from 

either canola or Arabidopsis, a close relative, have not been reported. In seeds and 

silique wall of some progeny, SPS was successfully overexpressed up to 8.6-fold. A 

possible explanation for this difference is that each tissue could be expressing 

different SPS isoforms and the sequences of the endogenous forms present in silique 

walls and seeds may be sufficiently heterologous to the introduced spinach cDNA, 

originally cloned from leaves, to avoid cosuppression. Indeed, it has been recently 

reported that there are multiple SPS isoforms in potato (Reimholz et al., 1997). 

Furthermore, two cDNA clones have been isolated from Craterostigma 

plantagineum Hochst and also sugarcane and analysis of the sequences indicates that 

one clone of each species clusters with sequences from monocotyledonous species 

and the other clone clusters with sequences from dicotyledonous species (Fig. 4. 13). 

Alternatively, cosuppression may be minimized in silique wall and seed tissues 

because the endogenous SPS is only active in a minority of specific cells and 

constitutive expression of S 158A in the other cells leads to a net increase in SPS 

activity for the entire organ. The localization of chlorophyll to a few outer silique 

wall cell layers (fig. 3.4) and the normal association of SPS with photosynthesis 

supports this argument. In seeds, SPS activity is predominantly in the embryo (Fig. 

2.6) and the heterogeneity of metabolism within embryos means that endogenous 

SPS is likely to be further compartmentalized. In vivo SPS activity in cells where it 
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is not normally active would be dependent on the presence of its UDP-Glc and Fru-

6-P substrates. 

Seed growth. While T 1 progeny of SK9A were overexpressing SPS in silique 

wall, overexpression in 26 DAA seeds was most pronounced in progeny of SK96B 

(8.6-fold increase in SK96B-17; Fig. 5.8B). Some plants within each of the other 

three lines overexpressed SPS 2.1- to 3.6-fold. In contrast to leaf and silique wall, no 

plants had lower maximal activities than wild-type plants. Seed SPS activities were 

not correlated to accumulated carbohydrates but were negatively correlated to seed 

yield (Table 5 .4 ). This correlation may be indicative of a shift in the net direction of 

the proposed embryo futile cycle (see Chapter 2) towards Sue synthesis rather than 

cleavage thereby affecting hexose supply to glycolysis. There was not, however, an 

obvious accumulation of Sue or Fru (Fig. 5.9). Future work should closely examine 

this question and include measurements of the central metabolite UDP-Glc. 

Regardless of mechanism, seed yield was severely reduced in the SPS 

overexpressing plants SK96B-17 and 19 (Fig. 5.13). All progeny in the four T 1 

families produced seeds of the same weight indicating that seed number is more 

easily affected than seed weight by SPS perturbation (Table 5.3). 

rolC- AS. Only a minimal examination of rolC- AS T 1 plants was conducted 

because of time constraints. Three plants had detectable transcripts of the rice AS 

transgene (Fig. 5.6) and strangely the stems of two of these plants were observed to 

grow predominantly horizontally rather than vertically (SK49-25, SK54B-39). The 

transcript levels in leaves was less than 10 % of the levels in young rice seedlings 

and this difference may reflect the inclusion of stem tissue in the rice samples 

because expression of the pea AS 1 gene has been localized to vascular tissue (Tsai, 

1991 ). This localization was the basis for choosing the vascular tissue-specific 

promoter, rolC, to drive rice AS transgene expression in these experiments. The 

apparent thickened stems observed in the progeny of SK49 needs to be correlated 

with transgene expression and accumulation of nitrogenous or carbon compounds. 

Northern analysis also revealed that AS mRNA levels in etiolated rice 

seedlings were 2-fold higher than in light-grown seedlings (Fig. 5.6). This 

accumulation agrees with previous reports that AS expression is repressed by light in 

pea and maize (Tsai and Coruzzi, 1990, 1991; Tsai, 1991 ; Dembinski et al. , 1996) 
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and is enhanced during carbohydrate deprivation in maize root tips (Chevalier et al., 

1996). The more efficient use of carbon by asparagine rather than the predominant 

transport compound glutamine (Lea and Miflin, 1980; Siegiechowicz, 1988) may 

offer increased performance during stress periods (for review, see Rabe, 1990) 

therefore this concept should be considered when the transgenic AS plants produced 

in this research are fully characterized. 

CONCLUSION 

In this chapter, plants regenerated from tissue culture after Agrobacterium 

cocultivation were confirmed to be transgenic and many expressed the introduced 

nptll kanamycin resistance gene. As well, expression of the rice AS cDNA 

transgene was confirmed in the leaves of three T 1 plants from two families. For 

plants transformed with the spinach S 158A mutant SPS cDNA, SPS V max activities 

in leaves were the same as wild-type levels on a protein basis, however SPS 

activities in three T 1 plants from two families appeared to be cosuppressed and one 

T 1 plant appeared to overexpress leaf SPS when the data was expressed per unit 

chlorophyll or per unit area. The cosuppressed plants had severe flower fertility 

problems and the overexpressing plant flowered early thereby suggesting an 

important role for sucrose in the flowering process. In 26 DAA silique wall and 

seeds, up to 3.6- and 8.6-fold increases in SPS V max were documented possibly 

indicating less susceptibility to cosuppression of endogenous SPS isoforms in these 

tissues. Seed SPS activities were negatively correlated to seed yield which supports 

the hypothesis of a continuous Sue synthesis / degradation cycle regulating 

carbohydrate supply to respiratory pathways in developing embryos (see Chapter 2). 

Sugar to starch ratios of 26 DAA silique wall and seed tissues were equivalent or 

moderately different to wild-type ratios and only the seed soluble sugars to starch 

ratio was correlated to SPS activity. The silique wall soluble sugars to starch ratio 

was positively correlated to seed yield which further highlights the importance of 

silique wall to assimilate partitioning. 
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CHAPTER 6: GENERAL DISCUSSION 

OVERVIEW 

SILIQUE WALL AS A SOURCE 

The thesis has focussed on the biochemical basis of assimilate supply to 

developing canola seeds. During the phase of storage oil synthesis in embryos, carbon 

assimilate sources were identified and examined. With the rapid loss of photosynthetic 

leaf area shortly after first flower (Fig. 2.1 ), the silique wall plays a major role in carbon 

assimilation and its photosynthetic capacity per unit chlorophyll was equivalent to source 

leaves but less per unit area (Table 2.1 and Fig. 2.2). A major difference to leaves was 

the discovery that silique walls preferentially partition photosynthate into Sue over starch 

and accumulate vacuolar hexose (Table 2.2, Fig. 2.7). Remobilization of these 

carbohydrate reserves is not entirely to filling seeds because there are large simultaneous 

carbon requirements for silique wall secondary cell wall thickening (Table 2.5) . The 

importance of silique wall carbohydrates to seed filling was highlighted by a positive 

correlation between the soluble sugars to starch ratio and seed yield in transgenic plants 

with varying capacities to synthesize Sue (Table 5.4). 

SEED CARBOHYDRATES AS A SOURCE 

Transient reserves within seeds were found to be a second source of carbohydrates 

to expanding embryos. Before the onset of rapid embryo fresh weight gain, and therefore 

storage product synthesis, starch and smaller amounts of hexoses were localized to the 

seed coat and liquid endosperm (Table 2.4 and Fig. 2.4 ). Similar to the silique wall , the 

growing embryo may not be the only sink for these reserves because seed coat mucilage 

production (Van Caeseele et al. , 1981 ; Kuang et al., 1996) and increasing sclerenchyma 

lignification (Fig. 2.4) apparently occur simultaneously. 
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SEED CO2 FIXATION AS A SOURCE 

The potential of refixed CO2 to act as a third source of carbon was examined in 

silique wall and seed tissues. Developing seeds had a higher CO2 fixation capacity than 

the silique wall endocarp during the oil filling period (Table 3.6) and embryo Rubisco 

was the major component of this capacity (Table 3.4). The morphology of the 

reproductive structures is a critical component because the cotyledon thickness, the seed 

coat and the silique wall sclerenchyma layer presumably all restrict gaseous diffusion 

consequently there was a massive increase in silique cavity CO2 concentrations (Table 

3.3) that would elevate Rubisco's activity in vivo. PEPC-mediated CO2 fixation in 

developing seeds is also a significant component and may either replenish TCA cycle 

intermediates or be converted within leucoplasts to acetyl-CoA, the precursor to fatty 

acids. 

Rubisco-mediated CO2 fixation is normally dependent of energy produced by 

photosynthetic electron transport and it has been previously assumed that the quantity of 

light reaching the chlorophyll-rich embryos would be insufficient to drive significant 

energy production. Under Australian conditions, seeds would receive up to 400 µmol 

quanta m-2 s-1 and allowing for a further 55 % attenuation by the seed coat, embryos had 

very respectable electron transport rates at 175 µmol quanta m-2 s- 1 (Table 3.2). These 

rates were less than Rubisco V max therefore it is possible that the produced energy is 

utilized for CO2 fixation, however NADPH production rates were of the same order of 

magnitude as fatty acid synthesis requirements and energy partitioning between these two 

alternatives was not assessed. 

EMBRYO SINK METABOLISM 

Regardless of carbon source, the ultimate sink of economic interest in canola is 

the oil-rich cotyledons. Imported sucrose is proposed to be cleaved by seed coat acid 

invertase during early developmental stages (Fig. 2.8), a time when the combined hexose 

content is approximately twice as high as sucrose (Fig. 2.3). By analogy to other 

dicotyledonous species, this ratio may maintain embryo cell division rates (Weber et al., 

1996a) and inhibit SuSy activity (for review, see Quick and Schaffer, 1996). In parallel 

with rapid embryo growth, acid invertase activities and hexose contents declined (Figs. 

2.3, 2.6 and 3.1) and the resulting high sucrose to hexose ratio may be involved in the 
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transition to cell expansion and the relief of SuSy inhibition. Embryo SuSy maximum 

activities rose over 2-fold during this period (Fig. 2.6) suggesting that it is the 

predominant enzyme of sucrose metabolism during the storage product synthesis phase, 

in common with starch-storing species (see Chapter 1). Interestingly, significant SPS 

activities were measured in developing embryos and it is proposed that a continuous Sue 

synthesis / degradation cycle modulates carbon supply to glycolysis, analogous to other 

sinks (Fig. 2.8 and Dancer et al., 1990; Wendler et al., 1990; Geigenberger and Stitt, 

1991). 

MOLECULAR ALTERATION OF ASSIMILATE SUPPLY 

The molecular alteration of enzyme activities is an excellent way to elucidate the 

regulatory mechanisms involved in source to sink relations but the development of gene 

constructs, the transformation and regeneration of plant tissues, and the screening for 

suitable lines can unfortunately take several years. In this thesis, a modified 

Agrobacterium-mediated transformation protocol was utilized to transfer gene constructs, 

designed to increase sucrose and asparagine supply, into cotyledonary petiole explants. 

Tissue culture regeneration frequencies had to be increased by modifying several culture 

parameters including explant age (Figs. 4.7 and 4.8) and medium water source (Figs. 4.11 

and 4.12) before plantlets were regenerated from selection medium. Many T 1 progeny 

had detectable phenotypes (Table 5 .1) and S 158A trans genies had either increased or 

decreased SPS activities compared to untransformed plants in leaf, silique wall and seed 

tissues (Figs. 5.7 and 5.8) while expression of the rice AS transgene was detected in some 

T 1 progeny derived from AS transformants (Fig. 5.6). This initial screening successfully 

identified several promising lines with which a detailed and rigorous growth analysis can 

be conducted. Although several phenotypes were common to independently-transformed 

lines, the biggest challenge in future work will be to separate environmental and 

pleiotropic effects from direct transgene effects. This is particularly important here where 

effects on assimilate supply can have large implications for the growth and morphology 

of transf armed lines. 
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SOME REMAINING ISSUES 

SOURCE TISSUES 

The research reported in this thesis has formed a foundation for the understanding 

of source to seed carbon provision in canola. As described above, several notable and 

novel features have been documented here but there are still many unanswered questions. 

One of canola' s unique developmental features is rapid leaf senescence shortly after the 

initiation of flowering and one's first impression is that this loss of carbon assimilation 

capacity would be detrimental to plant performance. The large amounts of dry matter 

needed to quickly form the reproductive structures and the corresponding thickening of 

the main stem (Fig. 1. lA) must be in excess of leaf photosynthetic capacity and 

senescence-mediated assimilate remobilization at the leaf's expense may be the only way 

to get plant development to a stage where siliques are self-supporting. Remobilization of 

nitrogen from leaf proteolysis may be more important than carbon provision because it 

was observed that plants retained leaf area longer when grown with daily nutrient 

watering possibly suggesting that, in the absence of sufficient soil nitrogen, seed nitrogen 

needs are met by accelerated leaf senescence (Rood et al., 1984a). It will be interesting to 

screen the rolC- AS transgenic plants to determine if a shift of transported organic 

nitrogen to the more conservative asparagine form has any effect on the timing of leaf 

senescence initiation. 

Seemingly surplus amounts of dry matter are invested in the racemes and main 

stem during the flowering period. This unharvested material is responsible for canola' s 

low production efficiency; harvest indices (seed to total shoot biomass) are typically 

around 20 % (Thurling, 1974; Rood et al., 1984a; Kasa and Kondra, 1986). Excessive 

numbers of flowers are formed and many abort, particularly those appearing near the end 

of the flowering period, possibly reflecting an inadequate assimilate supply (Habekotte, 

1993). This sensitivity was illustrated by the pollination problems documented 1n 

cosuppressed S 158A transgenics (see Chapter 5). The rationale for choosing to 

overexpress SPS was to examine the potential to increase Sue production 1n source 

tissues and, after export to the phloem, to increase Sue supply to sink tissues. In tomato 

plants overexpressing SPS, fruit yield increased without affecting total biomass 
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production thereby raising the harvest index (Micallef et al., 1995). One T 1 canola plant, 

which overexpressed SPS 3-fold in silique wall, had a 36 % increase in seed yield (Figs. 

5.8A and 5.13). A positive correlation between silique wall carbohydrate ratios and seed yield 

also support the hypothesis that carbon supply from silique walls is an important yield 

determinant. Future experiments should examine the harvest indices and abortion 

frequencies in overexpressing plants to examine the theory that Sue supply affects yield, 

indicative of a source limitation. 

There are two further issues that have not been addressed in this thesis. First, the 

influence of stems on assimilate provision, either by primary fixation or remobilization, is 

unknown. No research has adequately examined this phenomenon in canola, however it 

is known that stems do contain chlorophyll and stomata (Major, 1975; Brar and Thies, 

1977) and it has been suggested that B. rapa stems do not remobilize significant reserves 

to filling seeds (Rood et al., 1984a). Second, clear data is needed to substantiate the 

claim that siliques do not export carbon and solely supply the seeds contained within 

(Major et al., 1978), 

ALTERNATIVE SINKS 

The focus of this thesis has been on developing seed sinks, due to their economic 

importance, but there are also a number of other competing sinks. As outlined in the 

previous section, stems and racemes consume large amounts of dry matter, apparently 

without later remobilization. Obviously, a plant that is over 1.5 m tall needs a strong 

stem to remain upright and much of this dry matter is probably in the form of lignin. It 

would, however, be interesting to stain stem transverse sections with iodine to detect the 

presence of starch in the large pithy stem core at various developmental stages. If 

significant amounts of non-structural carbohydrates are present then a potential strategy 

to increase seed yield would be to use antisense engineering to specifically reduce 

carbohydrates in stems. 

As noted in Chapter 2, silique wall secondary cell wall thickening has a very large 

carbon demand. Although the sclerenchyma layer (Fig. 3.3) apparently acts as a gaseous 

diffusion barrier to impede the loss of respired CO2 to the atmosphere, lignin and 

cellulose contents continued to rise after its formation (Table 2.2) and phlorglucinol 

staining of silique wall transverse sections revealed that mesocarp cells progressively 



153 

thickened towards the epidermis with development. It may be useful to increase seed­

available carbohydrates by the molecular reduction of flux to cell wall thickening, 

however a suitable cell type-specific promoter is not presently available. Even if this 

strategy was technically feasible , the strength provided by thickening likely enables 

siliques to maintain their horizontal orientation, which is efficient for light interception, 

while the increasing weight of seeds would be exerting downward pressure. 

Similarly in the seed coat, the synthesis of mucilage, fibre and phenolic-rich 

pigments (Fig. 2.4) require carbon and it may be attractive to engineer flux diversions 

towards oil- and protein-storing embryos, however these polymers may serve critical 

physiological functions. First, the seed coat sclerenchyma or mucilage layers are likely to 

be responsible for the gaseous diffusion barrier proposed to increase the efficiency of 

embryo CO2 fixation (see Chapter 3). Second, lignin and tannins cross-link with 

polysaccharides to give the seed coat strength and therefore physical protection of the 

embryo (Werker, 1997). Third, phenolics also protect the embryo against pathogen attack 

and premature germination (Werker, 1997). Mature canola seeds are typically black, 

from the seed coat pigments, but some plant breeders are currently developing yellow­

seeded lines which contain less fibre and the seed meal contains increased amounts of 

digestible energy (K. Bett, personal communication). If an absent sclerenchyma layer is 

responsible for the reduced fibre content then the relative importance of the seed coat 

diffusion barrier and hence CO2 refixation to yield could be assessed. Presumably the 

seed coat pigment layer is missing from yellow seeds and the increased digestibility could 

either result from less phenolic binding to proteins or from the reduction of pigment and 

fibre sinks leading to increased carbohydrate content. This latter option would imply that 

storage oil pathways cannot utilize excess carbon. It will also be interesting to determine 

if yellow seeds are more susceptible to pathogens than phenolic-rich black seeds. 

SEED METABOLISM 

The enzymes involved in the utilization of seed-in1ported Sue have been 

characterized (see Chapter 2). Invertase-mediated cleavage is important during the initial 

cell division stages while Susy-mediated cleavage predominates during the cell 

expansion (storage product synthesis) phase. The manipulation of invertase activity in 

young seeds may be of some value because cotyledon cell number is a critical 
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determinant of final size and hence yield (see Weber et al. , 1996a and references therein). 

Although acid invertase activity was localized to canola seed coats (Fig. 2.6), the 

measurements predominantly reflect activity of the soluble form and not the insoluble 

form associated with the apoplastic carbohydrate transfer from the seed coat to the liquid 

endosperm (Weber et al. , 1995; Cheng et al. , 1996). The inclusion of detergent and 

chelating agents in the extraction buffer used in this research may have solubilized some 

insoluble acid invertase, however repeated extractions in nonsaline buffer followed by the 

release of the bound form in saline buffer are required to distinguish soluble acid 

invertase from the full activity of the insoluble form (for review, see Quick and Schaffer, 

1996). 

Once developing embryos have grown large enough to come in contact with the 

seed coat, Sue is proposed to be actively transferred without cleavage to cotyledons 

(Patrick and Offler, 1995; Harrington et al., 1997a, b ; Patrick, 1997; Weber et al., 1997a) 

where Susy-mediated cleavage provides substrate for glycolysis (Fig. 2.6). Interestingly, 

significant activities of the Sue synthesis enzyme SPS were measured in developing 

embryos. From previous work in other sink tissues, it has been proposed that a 

continuous Sue synthesis / degradation cycle modulates hexose supply (Dancer et al., 

1990; Wendler et al., 1990; Geigenberger and Stitt, 1991), however this proposal assumes 

that SuSy and SPS activities are present in the same cells. There are likely to be 

heterogenous populations of cells within developing cotyledons with cells in some 

regions synthesizing storage products while cells in other regions are still dividing, 

however in situ localization of SPS and SuSy transcripts were co-localized in developing 

faba bean cotyledons (Weber et al. , 1996b ). Similar studies in canola of the in situ or 

imrnunolocalization of SPS , SuSy and invertases would be valuable. 

The concept of cellular heterogeneity also impacts on the utilization of 

photosynthetically-produced energy. Embryo photosynthesis is likely to be confined to 

the few outer layers of developing cotyledons where light availability is highest while 

fatty acid synthesis may be occurring in cells several layers beneath the outer surface. 

Even within single cells, individual plastids may not be photosynthesizing and also 

producing storage fatty acids. Although it has been estimated that embryo photosynthetic 

electron transport rates are of the same order of magnitude as fatty acid requirements (see 
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Chapter 3), this compartmentation argues against the direct prov1s1on of 

photosynthetically-produced reducing power to fatty acid synthesis and argues for 

Rubisco-mediated CO2 fixation. Experimental data has, however, documented reductant 

flow to alternative sinks in developing soybean and Arabidopsis seeds (Wilms et al., 

1997) and high uncoupled photosynthetic electron transport rates in isolated canola 

embryo plastids (Eastmond et al., 1996). There is also a curious light-dependence of fatty 

acid synthesis in developing oilseeds (Browse and Slack, 1985; Fuhrmann et al., 1994; 

Eastmond et al., 1997). Substrate could be produced independently of light by PEPC­

mediated CO2 fixation into malate and the subsequent decarboxylation of malate within 

leucoplasts produces enough NADPH to supply fatty acid requirements in castor (Dennis 

and Blakeley, 1993). Even though canola seeds have significant PEPC activities, 

pyruvate appears to be a superior substrate compared to malate for fatty acid synthesis 

(Kang and Rawsthorne, 1994). The fates of photosynthetically-produced energy and 

CO2-derived carbon remain to be definitively resolved. 

PERSPECTIVE 

The research presented in this thesis has provided important data on source to sink 

relations in canola. The great time required to produce transgenic plants necessitates the 

prudent choice of genetic engineering targets consequently the identification of the key 

enzymes and processes involved in source tissue carbon assimilation and its subsequent 

utilization in seed sink tissues is invaluable. In addition, this research has challenged the 

commonly-held beliefs that silique wall CO2 refixation is as important in canola as it 

apparently is in pea and that seed chlorophy 11 and photosynthesis are artifacts and serve 

no significant physiological function . As well , transgenic T 1 plants have been produced 

containing gene constructs designed to perturb the supply of carbon and nitrogen 

assimilates to sinks and preliminary analysis has identified a number of intriguing 

phenotypes. The common theme of this research was the integration of cellular 

metabolism with whole-plant growth and performance; a perspective requiring the 

bridging of the gaps between individual genes and enzymes and empirical crop 

physiological research. Cano la is a species of great potential and a heightened know ledge 

of its physiology can be exploited for economic advantage. 
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