Towards a Room-Temperature Spin Quantum Bus in Diamond via Electron Photoionization, Transport, and Capture

M. W. Doherty, 1,* C. A. Meriles, 2 A. Alkauskas, 3 H. Fedder, 4 M. J. Sellars, 1,5 and N. B. Manson 1

1 Laser Physics Centre, Research School of Physics and Engineering, Australian National University, Australian Capital Territory 2601, Australia
2 Department of Physics, CUNY-City College of New York, New York, New York 10031, USA
3 Center for Physical Sciences and Technology, Vilnius LT-10257, Lithuania
4 Physikalisches Institut and Research Center SCOPE, University Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
5 ARC Centre for Quantum Computation and Communication Technology, Australian National University, Australian Capital Territory 2601, Australia

(Received 27 November 2015; revised manuscript received 23 September 2016; published 18 November 2016)

Diamond is a proven solid-state platform for spin-based quantum technology. The nitrogen-vacancy center in diamond has been used to realize small-scale quantum information processing and quantum sensing under ambient conditions. A major barrier in the development of large-scale quantum information processing in diamond is the connection of nitrogen-vacancy spin registers by a quantum bus at room temperature. Given that diamond is expected to be an ideal spin transport material, the coherent transport of spin directly between the spin registers offers a potential solution. Yet, there has been no demonstration of spin transport in diamond due to difficulties in achieving spin injection and detection via conventional methods. Here, we exploit detailed knowledge of the paramagnetic defects in diamond to identify novel mechanisms to photoionize, transport, and capture spin-polarized electrons in diamond at room temperature. Having identified these mechanisms, we explore how they may be combined to realize an on-chip spin quantum bus.

DOI: 10.1103/PhysRevX.6.041035

Subject Areas: Quantum Information, Semiconductor Physics, Spintronics

I. INTRODUCTION

The success of quantum information processing (QIP) in diamond is owed to the remarkable nitrogen-vacancy (NV) center [1]. The spins of individual NV centers are optically addressable, such that light can be used to initialize and readout their electronic spin states [1]. Additionally, the NV center has the longest spin coherence time ($T_2 \sim 2$ ms) of any solid-state system at room temperature [2]. Using these properties, the room-temperature operation of spin registers has been demonstrated in diamond by constructing clusters of NV centers or combining NV centers with other paramagnetic defects, such as 13C isotopic impurities and substitutional nitrogen N$_5$ donor centers [3–10]. As the clusters are ultimately limited to a few spins, large-scale QIP in diamond requires many clusters to be networked together by quantum buses. To be scalable, the quantum buses must be sufficiently compact to be incorporated on chip [11]. Furthermore, to exploit diamond’s primary advantage over competing QIP platforms, such as superconducting qubits [12–14] and phosphorus dopants in silicon [15–17], the quantum buses should ideally be capable of room-temperature operation. Beyond QIP, such a spin quantum bus will enable quantum-enhanced sensitivity of diamond’s diverse nanometrology applications [18,19].

At cryogenic temperatures, the coherence of the center’s optical transitions has been exploited to entangle two spin registers separated by macroscopic distances via an optical quantum bus [20–22]. However, since the coherence of the center’s optical transitions is lost above ~35 K, an optical quantum bus is not possible at room temperature [23]. An alternative currently being explored is to use phonons of nanomechanical oscillators, rather than optical photons, to mediate entanglement between distant spins [24–30]. But this alternative is also limited to cryogenic temperatures.

One suggestion for the realization of a quantum bus at room temperature has been to extend a chain of defect spins between two spin registers [31,32], but this is difficult to engineer and requires significant resources to control. An attractive alternative is the coherent electrical transport of a spin from one spin register to the other. Diamond presents as an ideal spin transport material: its large electronic band gap, inversion symmetry, small spin-orbit interaction, and low nuclear spin density promise long spin-relaxation times [33]. Indeed, ab initio calculations predict a transport $T_1 \sim 180$ ns at room temperature (10 times longer than

*marcus.doherty@anu.edu.au

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
in silicon [33], which corresponds to an exceptional transport distance of \(\sim 2\) mm in high-purity diamond [34] with a modest electric field of \(\sim 100\) V/cm. Since only paramagnetic impurities (whose densities can be controlled) and magnetic field inhomogeneity offer additional dephasing mechanisms, transport is also expected to be coherent, with ultimately \(T_2 \sim T_1\) at room temperature [2,36]. Since coherent electrical spin transport can be controlled by nanoelectrodes [37], which can be arranged in a scalable architecture [38], it poses as a suitable quantum bus for scalable diamond QIP devices that can operate at room temperature. This is a possibility that appears to be unique to diamond due to its extreme properties and unique defects.

Despite this ample motivation, virtually no spin transport experiments in diamond have been reported. This palpable deficiency has been due to the apparent absence of any mechanism to inject spin into diamond [39]. Similar to silicon [40], the indirect band gap of diamond precludes conventional optical orientation via circularly polarized light and conventional electrical injection is expected to be prevented by difficulties in interfacing ferromagnetic electrodes with diamond. While advances in the interfacing of ferromagnetic electrodes ultimately enabled spin injection in silicon [40], this method is not suitable for coherent transport between spin registers, and neither is the recent proposal to spin polarize carriers in conductive dopant wires in diamond heterostructures via Overhauser cross relaxation with optically pumped ensembles of NV centers [41].

In this paper, we explore how spin-coherent photoionization, transport, and capture of electrons in diamond can be used to realize an on-chip spin quantum bus. We begin by reviewing the unique properties of the NV and \(N_5\) centers. In doing so, we identify how NV-\(N_5\) defect pairs can be used to achieve spin-coherent electron photoionization and capture. In subsequent sections, we combine the NV-\(N_5\) mechanisms with a drift-diffusion model of electronic transport to describe the coherent transport of spin between distant spin clusters. We find that clusters must be connected by diamond nanowires in order to sufficiently control the electron transport. Finally, we propose protocols for entangling distant spin clusters via spin-coherent electron transport and estimate that entanglement fidelities sufficient for fault-tolerant QIP can be achieved at cryogenic temperatures and, with further nanowire engineering, potentially at room temperature.

II. NV AND \(N_5\) CENTERS

A. NV center

The NV center is a point defect composed of a substitutional nitrogen-carbon vacancy pair orientated along the \(\langle 111\rangle\) crystallographic direction [see Fig. 1(a) for diagram and Ref. [1] for an extensive review of the NV center]. It is stable in neutral (\(NV^0\)) and negative (\(NV^-\)) charge states, which are characterized by their optical zero-phonon lines at 2.156 eV (\(NV^0\)) and 1.946 eV (\(NV^-\)). NV\(^-\) possesses the required properties for quantum technology and so is the desired charge state in thermal equilibrium. The thermal charge state is determined by the local density of electron donors and acceptors. \(N_5\) is the most prevalent donor in diamond and naturally coexists with the NV center as a by-product of NV formation: either through N CVD doping or ion implantation. Indeed, localized NV-\(N_5\) clusters, in which the \(N_5\) preferentially donates its electron to the NV to form \(NV^-\), can be created by ion implantation [3,44].

The observable electronic structures of \(NV^0\) and \(NV^-\) are defined by the occupation of the center’s three deep-level defect orbitals \((a_1, e_g, e_u)\) by three and four electrons, respectively [see Fig. 1(b)]. The electronic structure of \(NV^-\) is depicted in Fig. 1(c) and consists of ground and optically excited spin triplet levels \(^3A_2\) and \(^3E\) as well as intermediate spin singlet levels \(^1E\) and \(^1A_1\). At room temperature, the observable fine structures of the \(^3A_2\) and \(^3E\) levels are analogous and can be described by the spin Hamiltonian

![Diagrams of the NV and \(N_5\) centers that depict carbon (black) and nitrogen (blue) atoms and the vacancy (transparent).](image)

FIG. 1. (a) Diagrams of the NV and \(N_5\) centers that depict carbon (black) and nitrogen (blue) atoms and the vacancy (transparent). (b) Electronic band structure diagram depicting the defect levels of the NV \((a_1, e_g, e_u)\) and \(N_5\) centers. The diamond indirect band gap and defect photoionization energies are as indicated [42,43]. (c) Electronic structure of the NV\(^-\) center depicting the electronic levels (with corresponding electronic configurations in parentheses) and fine structure states (denoted by electronic spin projection) [1]. The visible-zero-phonon line energy and the zero-field fine-structure splittings of the triplet levels are as indicated. Solid arrows represent optical or spin transitions, whereas dashed arrows represent the spin-selective nonradiative ISCs that lead to optical spin polarization and readout.

041035-2
\[H_{NV} = D \left(S_x^2 - \frac{2}{3} \right) + \gamma_e S_z B, \]

(1)

where \(D \) is the zero-field splitting arising from spin-spin interaction that is equal to 2.87 GHz for \(^3A_2 \) and 1.42 GHz for \(^3E \), \(S_z \) is an \(S = 1 \) dimensionless electron spin operator, \(\gamma_e = g_e \mu_B / h \), \(\mu_B \) is the Bohr magneton, \(g_e \approx 2 \) is the NV\(^-\) electron \(g \) factor that is the isotropic free-electron value, \(h \) is the Planck constant, and \(B \) is the applied magnetic field that is aligned with the center’s \{111\} trigonal symmetry axis. Note that hyperfine interactions with the intrinsic \(N \) nucleus and interactions with electric and strain fields are typically of the order of \(\sim 1 \) MHz and are not included in Eq. (1) because they do not significantly influence the discussion we present here.

Optical spin polarization and readout of NV\(^-\) is enabled by spin-dependent nonradiative intersystem crossings (ISCs) between the spin triplet and singlet levels [depicted in Fig. 1(a)] [45,46]. Upon optical excitation, the ISCs offer an additional decay pathway from \(^3E \) to \(^3A_2 \) that preferentially depopulates \(m_s = \pm 1 \) and populates \(m_s = 0 \). After a few optical cycles the spin is polarized into \(m_s = 0 \) with high fidelity. The additional nonradiative decay pathway is also responsible for the contrast in the center’s fluorescence intensity between \(m_s = 0 \) and \(\pm 1 \). This contrast is used to optically readout the relative probability that the NV\(^-\) spin is in the \(m_s = 0 \) state. The time required to polarize or readout the spin is defined by the lifetime \(\sim 300 \) ns of the \(^1E \) intermediate singlet level [1]. With the addition of an appropriately tuned magnetic field, the NV\(^-\) electron spin can also be used for high-fidelity projective initialization and readout of coupled nuclear spins [10,47,48].

As we describe in detail in Appendix A, the NV center may be photoconverted between NV\(^-\) and NV\(^0\) [42]. Analysis of the one- and two-photon photoionization processes of NV\(^-\) reveals that they do not maintain a high level of spin coherence for the ionized electron (see Appendix A). Thus, it is necessary to turn to the NV\(_S\) center to achieve photoionization with high spin coherence. Note that another donor center, the substitutional phosphorus \(P_S \) center, is considered in Appendix B, but is found unsuitable.

B. \(N_S \) center

The \(N_S \) center is a deep donor in diamond and is known to exist in neutral (\(N_S^0 \)) and positive (\(N_S^+ \)) charge states. In \(N_S^0 \), the \(N_S \) donor level is occupied by one electron, whereas in \(N_S^- \) it is unoccupied. There is disagreement about the energy of the \(N_S \) donor level below the conduction band, with various photoabsorption and photoconductivity measurements reporting the energy in the broad range 1.7–2.2 eV [43,49–51]. This disagreement is likely due to a weak onset of photoconduction, thereby making the measurement of the onset energy susceptible to detection sensitivity. Consequently, it is likely that the donor level exists towards the lower bound of the range, near 1.7 eV, as supported by \textit{ab initio} calculations [52].

We thus conclude that \(N_S^0 \) will photoionize via the absorption of one photon with energy \(> 1.7 \) eV and the ejection of an electron into the conduction band. Since photons with energy \(> 1.946 \) eV are required to optically excite or photoionize NV\(^-\), it follows that a \(N_S^- \) center may be selectively photoionized using photons with energy \(< 1.946 \) eV without affecting proximal NV\(^-\). Once ionized, the \(N_S^- \) may be converted back to \(N_S^0 \) by capturing an electron either from the conduction band via multiphonon emission or from the valence band via absorption of a UV photon with energy \(> 3.8 \) eV. Ignoring the latter, for a diffusing conduction electron density \(\rho \) at the \(N_S \) center, the capture rate is \(\Gamma_{cap} = \rho \sigma_{cap} \sqrt{k_B T/m} \), where \(\sigma_{cap} \sim 3–7 \) nm\(^2\) [53] is the capture cross section of \(N_S^0 \), \(k_B \) is Boltzmann’s constant, \(T \) is temperature, and \(m \) is the effective electron mass [54].

In greater detail, photoionization and capture involve an electron transitioning between a \(N_S \) defect spin orbital and a conduction band Bloch spin orbital \(\phi_{nk} \), where \(n \) denotes the band and \(k \) is the Bloch wave vector. Considering just photoionization near threshold (i.e., photon energy between 1.7 and 1.946 eV) and capture of conduction electrons in thermal equilibrium, photoionization and capture will involve only Bloch spin orbitals that belong to the lowest conduction band and have wave vectors near the conduction band minimum. Diamond is a valley conductor with a conduction band minimum at the \(\Delta \sim 0.77X \) \(k \) point [35,55]. Near the minimum, the lowest conduction band is nondegenerate and transforms as the \(\Delta_1 \) representation. This implies that there is no spin–orbit interaction near the conduction band minimum [56]. Hence, photoionization and capture are spin conserving because both the \(N_S \) defect and Bloch spin orbitals have the same well-defined spin.

Considering now the fine details of the \(N_S \) center, from electron spin resonance (ESR) studies, it is known that \(N_S^0 \) is distorted from the \(T_d \) symmetry of the simple substitutional site to \(C_{3v} \) symmetry by the elongation of one of the four N-C bonds, and is thus \{111\} oriented [57]. As is often mistaken, this distortion is not a Jahn–Teller effect because the ground electronic state has \(A \) symmetry in the undisorted configuration [58,59]. However, analogous to a Jahn–Teller distortion, \(N_S^- \) undergoes temperature-dependent reorientation between its four equivalent distortions [60]. At room temperature, the reorientation rate is \(\sim 0.3 \) kHz. The \(N_S^- \) ESR does not exhibit zero-field fine structure from spin–orbit interactions and its electron \(g \) factor is approximately isotropic and equal to the free-electron value [57]. Including hyperfine interactions, the spin Hamiltonian of \(N_S^- \) is

\[H_N = \gamma_e s_z B + \tilde{s} \cdot A + \tilde{I} + \tilde{Q} \cdot I + \gamma_n I_z B, \]

(2)

where \(\tilde{s} \) are the \(S = 1/2 \) dimensionless electron spin operators, \(\tilde{I} \) are the dimensionless nuclear spin operators,
A and Q are the magnetic and electric hyperfine tensors, respectively, that depend upon the orientation of the center and the principal magnetic (A_1, A_\perp) and electric (Q) hyperfine parameters. $\gamma_n = g_n \mu_N / h$, g_n is the nuclear g factor, and μ_N is the nuclear magneton. Note that the spin quantization axes in Eq. (2) are chosen to be parallel with the applied magnetic field B.

As can be seen in Table I, the 15N0_5 hyperfine parameters are of the magnitude $\sim 10^2$ MHz, which poses a major problem to spin-coherent photoionization and capture at centers with the 15N isotope. Owing to the stochastic nature of photoionization, the time the 15N0_5 ionizes is not precisely known. Because of the uncertainty in this ionization time, the 15N0_5 electron spin acquires an unknown phase through hyperfine interaction with the 15N $I = 1/2$ nuclear spin. The same is true when the electron is captured: the electron spin gains an unknown phase through hyperfine interactions at the new center because the capture time is not precisely known. Thus, these hyperfine interactions will dephase the electron spin on a time scale of ~ 10 ns during photoionization and capture. This dephasing can be avoided only by engineering photoionization and capture to occur on much shorter time scales (i.e., < 10 ns). However, this presents a major technical challenge, and on this basis, we rule out 15N0_5 as being a viable option for realizing a spin quantum bus. We note that 15N0_5 can, however, be used to simply produce incoherent spin-polarized conduction electrons.

The situation is different for 14N0_5 because the dephasing due to hyperfine interactions can be avoided by preparing the $I = 1$ spin of 14N0_5 into the $m_I = 0$ nuclear spin projection, which has no magnetic hyperfine interaction with the electron spin. Several techniques for this preparation have been devised and demonstrated [3,4,8,9]. Each involves optically spin polarizing a proximal NV$^-$ and transferring this polarization to the nuclear spin of the 14N0_5 center via the dipolar coupling of the NV$^-$ and 14N0_5 electron spins. Given this preparation, the electron spin dephasing rate is reduced to the rate at which the nuclear spin flips to $m_I = \pm 1$ and returns hyperfine interactions. The nuclear spin-flip rate is determined by the nonsecular terms in Eq. (2), which exist if the orientation of the magnetic field (aligned with the axis of the proximal NV$^-$) differs from the orientation of the 14N0_5 center. Because of the continuous (slow) reorientation of the 14N0_5 center at room temperature, differences in orientation are unavoidable. The effect of the nonsecular terms can be minimized by the application of a sufficiently large magnetic field ($e.g.$, $B \sim 5000$ G or $A_1 / \gamma_e \sim 50$ G), such that nonsecular terms between electron spin projections can be ignored, in which case, Eq. (2) becomes for 14N0_5

$$H_N = \alpha r_s \gamma B + Q \left[I_s^2 \gamma^2 + I_e^2 \gamma^2 \sin^2 \alpha - \frac{2}{3} \right]$$

$$+ \gamma_n B I_s \sin \alpha - \frac{Q}{2} (I_x I_e + I_y I_e),$$

where $\chi = 1$ if the orientation of the 14N0_5 center is aligned with the magnetic field and $\chi \approx \sqrt{3}/3$ if not, and the nuclear spin quantization axis has been rotated by an angle α from the magnetic field B, as denoted by the replacement $I_x, I_y, I_z \to I_x, I_y, I_z$. The angle α is defined by $\tan \alpha = 0$ or $\tan \alpha = - (A_1 - A_1) \sin 2\theta / (A_1 + A_1 + (A_1 + A_1) \cos 2\theta)$ for aligned or not aligned, respectively, where $\theta = \arccos (-1/3)$ is the tetrahedral angle. The final two terms drive the nuclear spin flips and are of the order of ~ 1 MHz. A very conservative estimate of the nuclear spin-flip rate is, thus, ~ 1 MHz, although the actual rate is likely to be much smaller due to the > 80 MHz secular magnetic hyperfine splitting of the nuclear spin states.

This conservative estimate of the nuclear spin-flip rate defines the maximum allowable period (~ 1 μs) between preparation of the 14N0_5 nuclear spin and photoionization or capture. During this period, two-qubit gates must be applied to the NV$^-$ and 14N0_5 electron spins in order to prepare or detect the 14N0_5 electron spin state. It is therefore an important remaining question as to whether these gates can be performed sufficiently fast. Their speed is limited by the dipolar coupling between the electron spins, which is a function of the distance between them. Since NV$^{-14}$N0_5 pairs with separations as small as 1.5 nm and dipolar couplings as large as 14 MHz have been engineered by ion implantation in the past, it appears that this speed requirement can be met with adequate engineering. Hence, we conclude that strongly coupled NV$^{-14}$N0_5 pairs are suitable for spin-coherent photoionization and capture.

III. Spin-Coherent Photoionization and Capture

In this section, we apply the conclusions of the previous section to describe how an electron with a well-defined spin state $|\psi\rangle = \alpha |\uparrow\rangle + \beta |\downarrow\rangle$ can be photoionized from one NV$^{-14}$N0_5 pair and subsequently captured and optically detected at another NV$^{-14}$N0_5 pair. We assume that the NV centers in the two clusters have the same orientation and the applied magnetic field is aligned with this orientation.

As depicted in Fig. 2(a), three steps are required to photoionize an electron with spin state $|\psi\rangle$ using a

<table>
<thead>
<tr>
<th>Defect</th>
<th>Orientation g_s</th>
<th>g_n</th>
<th>I</th>
<th>A_1 (MHz)</th>
<th>A_\perp (MHz)</th>
<th>Q (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14N0_5</td>
<td>(111)</td>
<td>2</td>
<td>0.40</td>
<td>114</td>
<td>81</td>
<td>-3.97</td>
</tr>
<tr>
<td>15N0_5</td>
<td>(111)</td>
<td>2</td>
<td>-0.57</td>
<td>1/2</td>
<td>-160</td>
<td>-114</td>
</tr>
</tbody>
</table>
reinitialize the NV− electron spin rather than a second optical pulse. The advantage of this alternative is that there is no interference with the \(^{14}\text{N}_5 \) and, so, no requirement for charge reinitialization. In (2), the NV− electron spin and microwave pulses are used to prepare the \(^{14}\text{N}_5 \) electron spin in \(|\psi\rangle \). Finally, in (3), a red optical pulse is applied to photoionize the \(^{14}\text{N}_5 \) and eject the prepared electron spin into the conduction band. Given the hyperfine dephasing of the \(^{14}\text{N}_5 \) electron spin, steps (2) and (3) must be completed within \(\sim 1 \mu s \) of the preparation of the \(^{14}\text{N}_5 \) nuclear spin in (1). This can be comfortably achieved if the NV−•\(^{14}\text{N}_5 \) dipolar coupling is \(\sim 10 \text{ MHz} \), so that the NV−•\(^{14}\text{N}_5 \) two-qubit gates that are used in (2) to prepare the \(^{14}\text{N}_5 \) electron spin are limited to \(\sim 100 \text{ ns} \).

There are three steps to capture and optical detection [see Fig. 2(b)]. (1) initialization of the NV− spin and the charge and nuclear spin state of the \(^{14}\text{N}_5 \), (2) capture of the electron by the \(^{14}\text{N}_5 \), and (3) optical readout of the \(^{14}\text{N}_5 \) electron spin via the NV− spin. Step (1) is as per photoionization, except the \(^{14}\text{N}_5 \) is not recharged at the end and left in the positive charge state. In step (2), there is first a wait time for the electron to be photoionized, transported, and captured. In step (3), the \(^{14}\text{N}_5 \) electron spin is readout by the NV− spin via two-qubit gates realized by microwave pulses and a final green optical pulse. As per photoionized, steps (2) and (3) must be completed within \(\sim 1 \mu s \) of the time that the \(^{14}\text{N}_5 \) nuclear spin is prepared in step (1). However, this is not the most restrictive time. The most restrictive time is \(\sim 180 \text{ ns} \) for transport and capture that is set by the intrinsic spin dephasing time of diamond. As discussed previously, the capture rate is proportional to the electron probability density at the \(^{14}\text{N}_5 \). To achieve a capture time of \(\sim 100 \text{ ns} \), this probability density must be \(\sim 50 \text{ µm}^{-3} \), which roughly corresponds to confining the electron to a cube with side lengths \(\sim 270 \text{ nm} \). Therefore, the transport of the electron must occur over \(< 80 \text{ ns} \) and spatially controlled to this degree to achieve the capture within the total \(180 \text{ ns} \). This significant challenge is addressed in the next section.

Another important question that we have yet to address is whether it is possible for a free electron, other than the one prepared and photoionized, to be captured in error. In high-purity diamond, such free electrons can come only from background \(\text{N}_5 \) impurities. If the \(\text{N}_5 \) impurity of the diamond is comparable to or better than the attainable \(\sim 10 \text{ µm}^{-3} \) [35], then given the \(\sim 1.7 \text{ eV} \) depth of the \(\text{N}_5 \) donor level, Fermi-Dirac statistics imply that there are essentially \(\sim 0 \) free electrons thermally excited to the conduction band. It also means that there will be \(< 0.25 \) free electrons photoionized during the optical pulses (assuming a diffraction-limited spot of \(\sim 500 \text{ nm} \) in diameter). Hence, we surmise that the chance of capturing a spurious electron, instead of the one that is prepared and injected, can be made negligibly small.
IV. SPIN TRANSPORT

When the electron occupies a Bloch spin orbital near the conduction band minimum, its spin is decoupled from its orbital degrees of freedom and evolves according to the pure Zeeman spin Hamiltonian $H_{\text{cond}} = g_e S \cdot B$. As described previously, this decoupling is due to the absence of spin-orbit interaction in the Δ_1 conduction band. Furthermore, the electron g factor in the Δ_1 band is close to the free-electron value (within $\pm 10^{-3}$) because the interband spin-orbit interaction is small (~ 6 meV) compared with the interband energy separation (~ 5 eV) [56]. Since H_{cond} is identical to Eq. (3) when the 14N$_5$ nuclear spin is correctly prepared, the electron does not accumulate a relative phase during its time in the Bloch spin orbital. Consequently, in the absence of impurities and magnetic field inhomogeneities, spin dephasing during transport is limited to the intrinsic Elliot-Yafet spin-relaxation mechanism of diamond.

The Elliot-Yafet mechanism is a mixture of interband spin-orbit interaction and momentum scattering by phonons [33,39]. The mechanism is dominant in solids with inversion symmetry and is particularly weak in diamond due to its small spin-orbit interaction, weak momentum scattering, and large band separations. Ab initio calculations predict that the Elliot-Yafet relaxation time in diamond at room temperature is the longest of any solid, $T_2 \sim T_1 \sim 180$ ns [33]. As discussed in the previous section, this defines the maximum time allowed for transport and capture, and we allocate ~ 80 and ~ 100 ns, respectively.

Given the decoupling of the electron's orbital and spin degrees of freedom, only its orbital degrees of freedom need to be considered in a model of its transport. For weak applied electric fields \vec{E}_E, where transport occurs over time scales much longer than momentum and energy relaxation within the conduction band (~ 1 ps), a drift-diffusion model of the injected electron’s probability density $\rho(\vec{r}, t)$ may be adopted [35,61]:

$$\frac{\partial \rho}{\partial t} = \vec{\nabla} \cdot \left(D_n \vec{\nabla} \rho + \mu_{np} \vec{E} \right) + k_i(t) N_I \delta(\vec{r} - \vec{r}_i) - \rho k_C (1 - N_C) \delta(\vec{r} - \vec{r}_C) + (1 - N_I) \delta(\vec{r} - \vec{r}_I),$$

$$\frac{dN_I}{dt} = -k_i(t) N_I + \rho k_C (1 - N_I),$$

$$\frac{dN_C}{dt} = \rho k_C (1 - N_C),$$

where $\mu_n = 450 \mu^2 m / V \text{ns}$ is the room-temperature electron mobility in high-purity diamond [62], $D_n = \mu_n k_B T / e = 11 \mu m^2 / \text{ns}$ is the room-temperature electron diffusion constant, e is the fundamental charge, $k_i(t)$ is the photoionization rate of the ionizing 14N$_5$ center located at \vec{r}_i during the optical injection pulse, $k_C = \sigma_{\text{e-p}} k_B T / m$ is the (re)capture rate per unit electron density of the (ionizing) capturing 14N$_5$ center located at $(\vec{r}_I) \vec{r}_C$, N_I and N_C are the probabilities that the electron is occupying the ionizing and capturing centers, respectively,

$$\vec{E} = \vec{E}_E - \frac{e}{4 \pi e} \vec{\nabla} \left[\frac{1 - N_I}{|\vec{r} - \vec{r}_I|} + \frac{1 - N_C}{|\vec{r} - \vec{r}_C|} \right]$$

is the total electric field including contributions from the charged centers, and e is the electric permittivity of diamond.

Consider the simple transport architecture depicted in Fig. 3 that consists of two surface electrodes on bulk diamond. For simplicity, we ignore the finite photoionization time and slow capture processes and make the approximation $\vec{E} \approx \vec{E}_E \approx -E_\parallel$ [63]. In this case, the drift-diffusion model reduces to $\partial \rho / \partial t = D_n \vec{\nabla}^2 \rho - \mu_{np} \vec{E} \partial \rho / \partial z$. The initial condition can be defined by approximating the electron probability density by a Gaussian $\rho(\vec{r}, 0) = e^{-|\vec{r} - \vec{r}_I|^2/2 \sigma^2}$ centered at \vec{r}_I and with width σ. This approximate model has the separable solution $\rho = X(x, t)Y(y, t)Z(z, t)$, where

$$X(x, t) = \frac{1}{\sqrt{4 \pi D_n t^3}} \left[e^{-(x-x_i)^2/4D_n t^*} + e^{-(x-x_i)^2/4D_n t^*} \right],$$

$$Y(y, t) = \frac{1}{\sqrt{4 \pi D_n t^3}} e^{-y^2/4D_n t^*},$$

$$Z(z, t) = \frac{1}{\sqrt{4 \pi D_n t^3}} e^{-z^2/4D_n t^*} e^{\mu_{pe} E d / 2 \sigma^2} e^{\mu_{pe} E d / 2 \sigma^2},$$

$$t^* = t + w^2 / 2D_n, \quad \text{and the zero flux} \ (D_n \vec{\nabla} \rho + \mu_{pe} \vec{E}) \cdot \hat{n} = 0 \ \text{boundary condition is enforced at the surface with unit normal vector} \ \hat{n}. \quad \text{For} \ \sqrt{2} D_n t^* \ll x_i, \ \text{the mean position of} \ \rho \ \text{is} \ \langle \vec{r} \rangle \approx x_i \hat{x} + \mu_{pe} E t^* \ \text{and its width} \ \langle (x - \langle x \rangle)^2 \rangle^{1/2} = \langle (y - \langle y \rangle)^2 \rangle^{1/2} = \langle (z - \langle z \rangle)^2 \rangle^{1/2} \ \approx \ \sqrt{2} D_n t^* \ \text{is isotropic and, for} \ D_n t^* \gg w^2, \ \text{approximately equal to} \ \sqrt{2} D_n t^*. \ \text{So, on average, the electron is transported a distance} \ \mu_{pe} E t \ \text{and freely diffused over a volume with radius} \ \sqrt{2} D_n t. \ \text{We now consider the conclusions of the previous section, to achieve capture within the allocated ~100 ns,} \ \rho \ \text{must be centered at} \ \vec{r}_C \ (i.e., \ \mu_{pe} E t = d), \ \text{where} \ \vec{r}_C = \vec{r}_I + d \hat{z} \ \text{and have a radius} \ \sqrt{2} D_n t < 135 \ \text{nm for a period of time ~100 ns. However, after ~1 ps, the radius will be ~135 nm} [64], \ \text{and we can immediately conclude that this simple transport architecture cannot meet the requirements for capture because it} \ \text{does not adequately confine the diffusion of the electron probability density.} \ \text{We can conceive of two strategies to confine the electron diffusion: (1) apply confining electric fields via additional surface electrodes or (2) employ a diamond nanowire. There are two approaches to strategy (1): (A) use transverse electrodes to tightly focus the electron diffusion in the}
Consider the rectangular diamond nanowire with dimension $l \times l \times L$ sketched in Fig. 3. The side and end surfaces of the wire confine the electron probability density, such that after sufficient time, $t \gg \sqrt{D_n}$ and $L/\mu_n E$, it reaches the static distribution

$$\rho(\vec{r}) \approx \frac{\mu_n E}{D_n L^2} e^{-\left(\mu_n E/D_n\right)(L-z)},$$

where it is assumed that $\mu_n E L/D_n \gg 1$. ρ is thus uniformly distributed over the transverse wire cross section and confined to the wire end face by an exponential distribution with decay constant $\mu_n E/D_n$. Defining the distance from the capture center to the end face to be $(L-z_c) = l/2$, Fig. 3(c) plots the region in the parameter space $\{E, l\}$ where the electron probability density $\rho > 50 \mu m^{-3}$ is sufficiently large to yield a capture time < 100 ns. For $l = 0.2 \mu m$, the applied electric field must be $E > 63 \text{ mV/\mu m}$, which is achievable [66]. In such electric fields, the center of the electron density is transported at a speed $\mu_n E > 28 \mu m/\text{ns}$ and can, in principle, be transported $> 2 \mu m$ during the allocated ~ 80 ns. This is clearly more than adequate for a scalable device. Given that the technology already exists to fabricate diamond nanowires of these dimensions that contain NV and N$_\text{V}$ centers [67–70], diamond nanowires appear to be a very promising strategy to control spin transport.

This encouraging conclusion is, however, conditional on two assumptions that require further investigation: (1) the zero-flux boundary condition is strictly enforced at the diamond surface so that there is perfect confinement of the electron to the nanowire’s interior and (2) spin relaxation during transport has not been altered by the structure and surfaces of the nanowire. Partial failure of these assumptions will result in electron losses and increased spin relaxation, respectively, and reduce the maximum attainable transport distance below the ideal estimate of 2 nm.

Assumption (1) pertains to the termination and quality of the nanowire surfaces. Surface defects and impurities can act as electron traps and so must be avoided. Nanowire surfaces exposed to air or vacuum must have a positive electron affinity in order to avoid loss of the electron. Oxygen- and nitrogen-terminated diamond surfaces are known to have positive electron affinities [71]. The latter, in particular, is predicted to have low densities of paramagnetic defects and therefore is more suited to spin-related applications [71]. Alternatively, it is possible that surface emission can be avoided by embedding the nanowire in another semiconductor or a dielectric, whose electron affinity is much smaller than diamond’s. To assess the validity of assumption (1), future work should explore the yet-to-be-studied electronic properties of diamond nanowires and their associated surface effects.

Assumption (2) pertains to the increase of spin relaxation by paramagnetic surface defects or the emergence of transverse directions to achieve very high electron density at the capture center or (B) trap the electron using an electrostatic trap (e.g., a quadrupole trap [65]) and move the trap site from the ionizing to capture centers over the allocated ~ 80 ns. A significant undertaking of device design is clearly required to properly assess strategy (1). Here, we leave this undertaking for future work and instead focus on strategy (2).
another transport relaxation mechanism other than the Elliot-Yafet mechanism. While the former can, in principle, be controlled by fabrication precision and choice of surface termination, the latter is a more fundamental question. If the geometry of the nanowire sufficiently perturbs the inversion symmetry properties of the conduction band Bloch orbitals, then the D’yakonov-Perel’ spin-relaxation mechanism may emerge [39]. However, as observed in Ref. [72], as long as the nanowire’s width is smaller than or comparable to the electron mean-free path, the D’yakonov-Perel’ mechanism is suppressed. Since the electron mean-free path in diamond at room temperature $\mu_n \sqrt{m_k T} / e \sim 0.17 \mu m$ is comparable with the relevant nanowire widths, we expect that the increased spin relaxation due to the D’yakonov-Perel’ mechanism will be negligible. Having said this, future ab initio studies are really needed to properly assess the emergence of the D’yakonov-Perel’ mechanism in diamond nanowires.

V. ROOM-TEMPERATURE SPIN QUANTUM BUS

Based on the conclusions of the previous sections, we propose that a room-temperature on-chip spin quantum bus can be constructed in diamond by connecting two defect spin clusters by a diamond nanowire [see Fig. 4(a)]. Each spin cluster contains at least a NV center, a 14N$_5$ donor center, and a logic spin qubit (either the N nuclear spin of the NV center, a 13C isotopic impurity, or another NV center). The NV center acts as a fast local bus to prepare, control, and readout the logic and 14N$_5$ spins with high fidelity. The logic spin is chosen to have a long coherence time to minimize errors. The 14N$_5$ center is included to facilitate spin-coherent electron transmission between clusters via photoionization, transport, and capture, as outlined in previous sections. In order to recharge the 14N$_5$ center on demand, each spin cluster is accompanied by a nearby ensemble of N_5 centers to act as donors upon photoionization. Surface electrodes are used to control the spin transport between the clusters and the recharge process. The NV centers of the clusters have the same orientation, which can be achieved via preferential growth techniques [73], and the applied magnetic field is aligned with this orientation.

In a scalable design, similar to the one outlined in Ref. [38], the spin clusters are located at the nodes of a network of diamond nanowires. Pursuant to the discussion of the previous section, the surface electrodes must also be used to apply an electrostatic trap [e.g., via a quadrupole configuration as per Fig. 4(a)] at the node in order to confine the transport electron and achieve the required capture rate. It is possible that there are other network designs where the spin clusters are not located at nodes, but somewhere where the nanostructured diamond can offer confinement of the transport electron without the need for electrostatic traps. While the maximum distance between spin clusters is important to assess the range of connections between spin clusters, the minimum distance is important to assess the ultimate scalability of the device (i.e., how many clusters can be integrated on a single chip). The maximum distance is as determined in the previous section to be $\sim 2 \text{ mm}$. The minimum distance is determined by the dimensions of the electrodes and diamond nanowires ($\sim 0.2 \mu m$) as well as the ability to selectively apply microwave control pulses to the clusters. If the clusters

![Diagram](image.png)

Fig. 4. (a) Sketch of two nodes of the proposed spin quantum bus network constructed from diamond nanowires (white) on top of a substrate (brown). Spin clusters A and B (red) are located at the nodes and contain logic (either the N nuclear spin of the NV center or a 13C isotopic impurity), NV, and 14N$_5$ spins. Nearby ensembles of N_5 centers (green) for recharging the 14N$_5$ centers in the clusters are located in compartments next to the nodes. Surface electrodes (blue) are used to control electron transport between clusters and the recharge process. At each node, four of the electrodes are arranged in a quadrupole configuration to aid in trapping the transport electron at the node. A magnetic field (B field) defines the spin quantization axis and is aligned with the (assumed identical) axes of the NV centers. For clarity, optical, microwave, and magnetic control structures have not been included in the sketch. (b) The proposed protocol to generate entanglement between the logic qubits located in clusters A and B. See text for details of the protocol.
are too close to be addressed by individual microwave microstructures (i.e., < 1 \mu m), then the latter requires the application of a magnetic field gradient during pulses (removed during transport to avoid spin dephasing) by a magnetic microstructure. Sufficient gradients (> 10 T/\mu m) to selectively address clusters \approx 0.2 \mu m apart can be achieved using magnetic resonance force microscopy tips [74]. However, we leave the precise implementation of such tips as a question for future work and instead conservatively estimate a minimum cluster separation of > 1 \mu m.

In previous sections, we discuss how this design of a spin quantum bus can be used to coherently transmit a spin state between two spin clusters. The other important function of a quantum bus is to generate entanglement between distant logic qubits. In our design, entanglement is generated between two distant logic qubits, located in spin clusters A and B, via the coherent transport of an entangled spin and entanglement swapping operations. In Fig. 4, we outline a protocol to generate a maximally entangled Bell state of logic qubits A and B. The protocol begins with the initialization of the NV and 14N\textsubscript{5} centers in the two clusters as defined in Sec. III. The desired Bell state is generated between logic A and 14N\textsubscript{5} electron spin A via a fast entanglement gate mediated by NV A, such as \textsc{cphase} [10,75]. Photoionization, transport, and capture proceeds as defined in Secs. III and IV and transfers the transport electron from 14N\textsubscript{5} A to 14N\textsubscript{5} B. Finally, the entanglement is swapped from the transport electron at 14N\textsubscript{5} B to logic B via a series of \textsc{cnot} gates and NV B.

The only complication that this entanglement protocol adds to the ones already discussed in Secs. III and IV is that the entanglement gate must also be performed within the \approx 1-\mu s period extending from initialization of the 14N\textsubscript{5} nuclear spins to the final operation on the transport electron [the \textsc{cnot} gate with NV B in Fig. 4(b)]. Since the complete initialization sequence defined in Sec. III includes \approx 500 ns after the initialization of the 14N\textsubscript{5} nuclear spins, there is \approx 500 ns left for the gate operations and spin transport in Fig. 4(b). Given the NV-14N\textsubscript{5} gate operation times and spin transport times already discussed, the entanglement gate must be completed within \approx 220 ns. Assuming a NV-14N\textsubscript{5} coupling of \approx 10 MHz, the entanglement gate can be completed within \approx 220 ns as long as the NV-logic qubit coupling is also \approx 10 MHz. This is attainable for 13C logic qubits [6]. Hence, we conclude that, in light of all of our considerations, it is feasible to realize the entanglement generation protocol of Fig. 4(b).

It remains to estimate the fidelity of the entanglement generated by the protocol, which is given by the product of the fidelities of each of the spin cluster initialization, measurement, one- and two-qubit gates, and transport operations. Initialization (\approx 99%), measurement (\approx 99%), and one- (\approx 99%) and two-qubit (\approx 90%) gate operation fidelities at or approaching fault-tolerant thresholds (\approx 99%) have been previously demonstrated by diamond spin clusters [10]. Pursuant to the discussion in Sec. IV, the transport fidelity is primarily determined by the transport spin relaxation \approx e^{-T_2/T_1}, where \textit{T}_2 is the transport and capture time and \textit{T}_2 \approx 180 ns is the transport spin lifetime. As the protocol has been outlined above, the transport time is taken to be \textit{T}_2 \approx T_2, and so the transport fidelity is \approx 37\%. Thus, the entanglement fidelity is \approx 37\%, which is far from thresholds for fault-tolerant quantum computing. Only if the transport time can be reduced to < 2 ns through nanoelectrode and nanowire engineering can the protocol approach the required thresholds at room temperature. Alternatively, there may be a heralded entanglement protocol at room temperature that we are yet to identify that more simply meets the thresholds. The protocol and architecture as outlined may, however, meet the thresholds at cryogenic temperatures, where it is projected that \textit{T}_2 > 10 \mu s [33]. In which case, it will be competitive with existing cryogenic optical quantum bus realizations, particularly since it potentially has an entanglement generation rate of \approx 100 kHz compared to the demonstrated \approx 10^{-3} Hz for the optical approach [21]. However, it should be highlighted that the optically generated entanglement is heralded.

VI. CONCLUSION

In this paper, we explore an alternate approach to realizing a room-temperature spin quantum bus in diamond, a major unsolved problem in the development of scalable diamond QIP devices. Our approach is motivated by the unique properties of diamond paramagnetic defects and the predictions of extreme spin transport in diamond. By reviewing the properties of the NV, N\textsubscript{5}, and P\textsubscript{5} centers, we identify novel photoionization and capture mechanisms. After assessing the mechanisms, we conclude that NV-14N\textsubscript{5} pairs are the best option for spin-coherent photoionization and capture. We explore spin transport in diamond by applying a drift-diffusion model of electron transport to simple architectures. It becomes clear that adequate confinement of the transport electron, so that the required capture rates can be achieved, is the principal problem that must be overcome in order to realize spin transport between discrete spin clusters. We identify that diamond nanowires are a promising solution and that they may be combined with other strategies, such as electrostatic traps, in scalable designs of networked quantum buses. We finally, propose how such nanowire quantum buses can coherently transmit spin states between and generate entanglement of distant spin clusters.

The main purpose of this paper is to stimulate investigation of this alternate approach. As we highlight throughout our discussion, there are many aspects that require further experimental and theoretical study. These aspects range from the fundamental properties of the defect centers to the electrical properties of diamond nanowires. As this future work progresses, we expect that the
preliminary ideas that we outline here will substantially evolve.

ACKNOWLEDGMENTS

This work was supported by the Australian Research Council under the Discovery Project scheme (DP120102232), the National Science Foundation (NSF-1314205), and a grant (No. M-ERA.NET-1/2015) from the Research Council of Lithuania. We wish to thank A. Stacey, J. Meijer, K. Ganesan, A. Greentree, L. C. L. Hollenberg, and S. Prawer for many useful discussions.

APPENDIX A: PHOTOIONIZATION PROCESS OF THE \(\text{NV}^- \) CENTER

\(\text{NV}^- \) can be photoionized into \(\text{NV}^0 \) by ejecting an electron into the diamond conduction band via the absorption of one photon with energy \(> 2.6 \text{ eV} \) [42] or by the successive absorption of two photons with energies \(> 1.946 \text{ eV} \) (see Fig. 5) [78]. In the latter mechanism, the first photon excites \(\text{NV}^- \) to its optical excited state and the second photon ejects the electron into the conduction band. Detection of the photocurrent produced by \(\text{NV}^- \) photoionization was reported recently [79]. \(\text{NV}^0 \) can be photovariable back to \(\text{NV}^- \) by a similar mechanism involving the ejection of a hole into the diamond valence band and the absorption of one photon with energy \(> 2.94 \text{ eV} \) or the successive absorption of two photons with energies \(> 2.156 \text{ eV} \) [42,78]. These back photoconversion mechanisms allow the desired negative charge state to be prepared on demand.

In the simplest picture, if a \(\text{NV}^- \) center is optically prepared into the \(m_s = +1 \) spin state (or equivalently the \(m_s = -1 \) state) and then photoionized by the absorption of one photon with energy near threshold, \(\sim 2.6 \text{ eV} \), then a spin-up (spin-down) electron is ejected into the conduction band with 100% probability. If the \(\text{NV}^- \) center is instead photoionized by the successive absorption of two photons with energy \(> 1.946 \text{ eV} \), then a spin-up (spin-down) electron is ejected into the conduction band with a much reduced 66% probability because there is equal chance that the electron was ejected from any one of the three occupied (two spin-up and one spin-down) \(e \) spin orbitals in the \(3E \) optical excited state [81]. However, this latter picture ignores the possibility that the \(\text{NV}^- \) center may, instead of absorbing a second photon and ionizing, decay back to the ground state. Owing to the optical spin-polarization mechanism, this decay may flip the \(\text{NV}^- \) spin to the \(m_s = 0 \) state, which reduces the probability that a spin-up (spin-down) electron is ejected during a subsequent photoionization event. It also ignores the possibility that absorption of the second photon from the optical excited state may ionize the electron 0.5 eV above threshold, where spin mixing may occur in the final conduction band orbitals [80], which will also reduce the probability. The low 66% probability plus these further reductions essentially eliminate the two-photon photoionization mechanism as an option.

Noting that the differing spin-spin interactions in the \(\text{NV}^- \) ground and optically excited states means that the electron spin dephases rapidly if the center is optically excited, the ultimate fidelity \(\mathcal{F}_{\text{NV}} \) for spin-coherent one-photon photoionization is determined by the relative probability that, upon illumination, the center absorbs a photon and photoionizes or absorbs a photon and transitions to the optical excited state. The fidelity takes the simple expression

![Fig. 5. The one- (a) and two-photon (b) ionization mechanisms of \(\text{NV}^- \). The depicted mechanisms correspond to photoionization from the \(m_s = +1 \) spin state of the \(\text{NV}^- \) ground \(^3A_2 \) level. In (a), one photon with energy \(> 2.6 \text{ eV} \) ejects an electron from the spin-up \(e \) spin orbitals of \(\text{NV}^- \) into the conduction band. In (b), one photon with energy \(> 1.946 \text{ eV} \) promotes an electron from the occupied spin-down \(e \) spin orbital to one of the unoccupied spin-down \(e \) spin orbitals (i.e., a transition from \(^1A_2 \) to \(^3E \)). A second photon with energy \(> 1.946 \text{ eV} \) ejects an electron from either the spin-up \(e \) spin orbitals or the occupied spin-down \(e \) spin orbital into the conduction band. In (a) and (b), occupied or unoccupied spin orbitals are depicted as solid or dashed lines, filled circles represent electrons and solid arrows denote spin-up or spin-down electrons, wavelike arrows denote photons. Panel (c) depicts the estimated ultimate photoionization fidelity \(\mathcal{F}_{\text{NV}} \) for one-photon photoionization (solid black line, left axis) [76] as well as the one-photon photoionization [42] (dashed blue line, right axis) and optical absorption [77] (dashed red line, right axis) transition rates per unit optical power (in the confocal arrangement described in Ref. [42]).](image)
\[f_{\text{NV}}(\lambda) = \frac{\sigma_{\text{po}}(\lambda)}{\sigma_{\text{po}}(\lambda) + \sigma_{\text{op}}(\lambda)}, \]

where \(\lambda \) is the optical wavelength, and \(\sigma_{\text{po}} \) and \(\sigma_{\text{op}} \) are the wavelength-dependent photoionization and optical absorption cross sections, respectively. In Fig. 5, we plot an estimate \([76]\) of \(f_{\text{NV}}(\lambda) \) based on data from Ref. [42] for the one-photon photoionization rate \(\propto \sigma_{\text{po}}(\lambda) \) and the well-known NV\(^-\) optical absorption spectrum \(\propto \sigma_{\text{op}}(\lambda) \) \([77]\). As can be seen, \(\sigma_{\text{op}}(\lambda) \) decays towards shorter wavelength, whereas \(\sigma_{\text{po}}(\lambda) \) grows. \(f_{\text{NV}}(\lambda) \) therefore increases towards shorter wavelength until it is ultimately limited to \(-90\%\) by the onset at \(\lambda \sim 452 \text{ nm} \) (photon energy \(\sim 2.74 \text{ eV} \)) \([82]\) of two-photon indirect excitation of electrons to the conduction band from the diamond valence band. This interband excitation will generate many conduction electrons with unpaired spins, which will swamp the spin-polarized electrons photoionized from NV\(^-\). While \(-90\%\) fidelity may be useful for applications in spintronics where spin polarization and not spin coherence is required, it is too low for the operation of a spin quantum bus. Thus, we completely rule out NV\(^-\) as a source of spin-coherent photoionized electrons.

APPENDIX B: CONSIDERATION OF THE P\(_5\) CENTER

In this Appendix, we consider the other prevalent paramagnetic donor center in diamond, the substitutional phosphorus P\(_5\) center, in a similar manner to the N\(_5\) center. While this is a worthy exercise, our ultimate conclusion is that P\(_5\) is unsuitable for spin-coherent electron photoionization and capture.

The P\(_5\) center is a comparatively shallow donor in diamond with six defect levels within 0.6 eV of the conduction band \([83–85]\). As per the N\(_5\) center, in the neutral charge state P\(_5^0\), one of these levels is occupied by an electron, whereas in the positive charge state P\(_5^+\) they are unoccupied \([83–85]\). It may be possible for NV-P\(_5\) clusters to be created in a similar way as NV-N\(_5\) clusters via N-P doping or coimplantation. However, we note that there are well-known difficulties in the incorporation of phosphorus into diamond that reduce the yield of phosphorus atoms occupying substitutional, rather than split-vacancy, sites \([86–88]\). The latter is problematic because it is a deep acceptor rather than a donor.

Similar to N\(_5\), P\(_5^0\) can be photoionized into P\(_5^+\) via absorption of one photon of energy \(> 0.6 \text{ eV} \). P\(_5^+\) may be converted back to P\(_5^0\) by capture of either a conduction band electron via a nonradiative process (likely to be a cascade mechanism) or a valence band electron via absorption of a UV photon with energy \(> 4.8 \text{ eV} \). To our knowledge, the nonradiative electron capture cross section of P\(_5^+\) has not been measured. Given that N\(_5\) is a deeper donor than P\(_5\), it is reasonable to expect that the cross section of P\(_5^+\) is larger than that of N\(_5^+\) and will, therefore, achieve faster capture rates for the same diffusing electron densities.

It is known from ESR studies that P\(_5^0\) is distorted to \(D_{2d} \) symmetry with \(\langle 100 \rangle \) orientation \([83]\). Unlike N\(_5^0\), this is known to be due to the Jahn-Teller effect. The ESR broadens with temperature and eventually becomes undetectable at \(-20 \text{ K} \) \([83, 85]\). This broadening is most likely due to rapid reorientation via Jahn-Teller dynamics \([85]\). It is still an open question as to whether these dynamics reach the motional narrowing limit at higher temperatures and, as a consequence, if P\(_5^0\) has a usable electronic spin at room temperature. This question should be answered by future ESR or NV DEER measurements.

If the motional narrowing limit is achieved by room temperature, then the spin Hamiltonian of P\(_5^0\) will be similar to that of N\(_5^0\) \([\text{see Eq. (23)}]\). The spin parameters are \(g_e \sim 2 \), \(g_n = 2.26 \), \(I = 1/2 \), \(A_1 = 162 \text{ MHz} \), and \(A_\perp = 33.9 \text{ MHz} \) \([83]\). As per the arguments presented for \(^{15} \text{N}_5^0 \), the large magnetic hyperfine interactions between the electron spin and the \(I = 1/2 \) nuclear spin of P\(_5^0\) pose major problems for spin-coherent photoionization and capture. Hence, we similarly rule out P\(_5\) as a viable option for realizing a spin quantum bus, but note that it may be suitable for applications that simply require the production of spin-polarized conduction electrons.

Based on Coupled Electron Spins in a Room-Temperature Solid, Nat. Phys. 6, 249 (2010).

[34] Calculated using the predicted $T_1 \sim 180$ ns and the observed drift velocity $\sim 10^5$ cm/s in high-purity diamond under the application of an electric field with magnitude ~ 100 V/cm [15].

[37] See, for example, B. Weber et al., "Ohm's Law Survives to the Atomic Scale," Science 335, 64 (2012).

[63] Here, we make the simplifying approximation that the surface electrodes apply a uniform electric field \(\vec{E}_s = -\varepsilon \vec{E} \) in the region where transport is occurring. We assumed that \(\vec{E}_s \) is much larger than the monopole electric fields produced by the charged ionizing and capture centers, so that they can be ignored and \(\vec{E} \approx \vec{E}_s \). Since the capture rate \(\sim 10 \text{ MHz} \) is much slower than the rates of ionization \(\sim 0.1-1 \text{ GHz} \) and drift diffusion \(\mu \text{ cm}^2/\text{V} \text{s} \), it can be safely ignored when solving for the electron drift diffusion. As ionization and drift diffusion have similar rates, the initial condition we define to solve for the electron drift diffusion is not a true initial condition (as would be the case if ionization were much faster), but rather represents a time average of the electron probability density during ionization. This time average is quantified by the initial width \(w \).

[64] Although this result is outside the applicable time scale for the drift-diffusion model, we still conclude that it implies that the simple architecture does not adequately confine the electrons.
electron probability density to achieve the required capture rates.

[76] To estimate $S_{NV}(\lambda)$, we first extract the NV^- absorption spectrum from Ref. [77] and rescale it to units of absorption rate per unit optical power by comparing it to the partial photoexcitation spectrum in Ref. [42]. We then extract the one-photon photoionization spectrum from Ref. [42], which is in similar units of photoionization rate per unit optical power. We finally insert this data into the expression for $S_{NV}(\lambda)$. This estimation method allows rates in approximately the same optical conditions to be compared.

[80] Conduction band degeneracy in diamond, and, therefore, spin-orbit mixing, first occurs ~0.5 eV above the conduction band minimum at the X k point [55]. Owing to their spin-orbit mixing, photoionization to these X_e Bloch spin orbitals will result in loss of spin coherence and polarization.

[81] The estimate of 66% probability is based on the simple picture that there is equal chance that any of the three electrons occupying the e spin orbitals in the 4E excited state are ejected. This picture is strictly true only if there is equal chance that the NV center’s final state after photoionization is any of the levels (4A_2, 4A_2, 4E, 4A_1) of the a_e, e^2 configuration. These levels are expected to be split by energies (~0.5 eV) comparable to optical energies. Thus, the final state of the NV center will depend on the optical excitation wavelength. We have worked through the implications of this complication and found that it does not alter our conclusions about the utility of the two-photon mechanism.

