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Abstract

• p. ix, 1. 7 -“...low-complexity multiuser detectors...” should be read as “...low-complexity 
multiuser detector...”

• p. x, 1. 20 -“...Guassian...” should be replaced by “...Gaussian...”

Chapter 1

• p. 3,1. 1 2 -“...1960’s...” should be replaced by “...1980’s...”. It should also be noted that 
Qualcomm was the first company to actually produce a system [87]. Previously, only military 
systems had been developed.

•  p. 6,1. 12 The squared minimum Euclidean distance is defined as

d min =  >k  =  ! > • • • >  K ,
where df k is given by (3.34) and (3.35) for synchronous and asynchronous systems respec­
tively.

Chapter 2

• p.10,1. 9 -“third generation spread spectrum systems” should be replaced by “third generation 
mobile and personal communications systems”.

•  p. 10,1. 14 -“IS-54” should be replaced by “IS-136”.

• p. 11,1. 1 - Remark: It should be noted that virtually all cellular radio standards call for 
the use of sectored antennas. CDMA does not gain capacity because of this, rather it gains 
through the use of voice activity detection and the soft degradation as the interference levels 
increase.

•  p. 11,1. 18 and p. 12,1. 7 - Include references [87] and [88] after “... shown in Fig. ...”.

• p. 13, Section 2.4 - Design Methodology and Implications
It should be noted that one advantage of long spreading codes is that they avoid a number of 
synchronisation problems, particularly in coherent systems. Long codes have the advantage 
that they do not exhibit short term periodicities that can cause spurious locking of the phase 
locked loops used for carrier and timing recovery.

• p. 20 - Following equation (2.11), Rj (m) should be replaced by R,:(0).

• p. 20 - Ri(0)k’k' should be replaced by R i (m)k’k' .

• p. 22, Section 2.7.1 -
Solution to the near far problem - Note that multiuser detection (MUD) only provides resis­
tance to the near far problem in any practical context, although in theory it solves it. 
Increased capacity - Note that MUD increases the available channel capacity. It merely allows 
for better use of the available capacity.



•  p. 25-26, 1. 6 - Note that the decorrelating detector causes noise enhancement only if 
7Z^lk >  1. The structure of this detector is analogous to zero forcing equalisation. This 
detector completely eliminates MAI if 1Z is invertible.

Chapter 3

•  p. 34,1. 6 - “...followed” should be replaced by “...reproduced”.

•  p. 35 - p(ck) is the probability that the encoder chooses the path Ck to send.

•  p. 37 - Remark: When we calculate a distance spectrum line with df, we need to find all 
error events of different lengths L, that share this distance, df. The lengths normally have a 
large range. Note that it is not possible to compute the infinite set of all distances, hence we 
propose to truncate the computation of the spectrum after a sufficiently large L. A sa  rule of 
thumb we have used the cut off threshold to be T  =  2.5 times the squared minimum distance.

•  p.37 - The partial distance spectrum can be defined as the set of all pairs {df,  Ad2}, where 
df < Td'2mtn i , T  is the cut off threshold.

•  p. 46 1. 4 - The sentence “Any finite .. irregular” should be deleted. Note that in general 
to obtain the complete distance spectrum requires an exhaustive search. This is due to the 
irregularity of the finite state machine structure of a multiuser system.

•  p.47 1 . 3-  The following reference should be included.
[Benedetto] Benedetto S, Mondin M, Montorsi G, “ Performance evaluation of trellis-coded 
modulation schemes”, Proceedings of the IEEE, vol.82, no.6 , June 1994, pp.833-55.
The sentence “The synchronous algorithm can thus be written as follows:” should be replaced 
by “Knowing the distances and multiplicities, the algorithm in [Benedetto] has been modified 

to allow the partial distance spectrum to be computed for the multiuser case.”

•  p .47,1. 26 - The words “(say 31)” should be removed. Historically, a processing gain of 31 is 
not considered large in spread spectrum signalling. Note that IS-95, which is a narrow band 
spread spectrum system has a processing gain of approximately 128.

*  *

•  p.48 - In fig. 3.7 £i ,£'2 and £ 3  should be replaced by £t,i. e*,2 and £^3 respectively.

•  p.50 - In fig. 3.8 £i , £ 2  and e3  should be replaced by £»+1,1, f i+ 1,2 and 3 respectively.

•  p .511. 3 - P (e) should be replaced by P (e).

•  p .511. 4 - The words “normalised error” should read as “normalised squared estimation error 
probability”. W'  should also be replaced by W ' .

•  p.51, 3.7.1 no. 5 - “normalised variance” should read as “normalised standard deviation”.

•  p .521. 9 - Replace “(SNR)” by “( SNR  =  ^ ) ”. In the remainder of the thesis SNR is also 

defined as



• p.54 last line - Remark: In general there is no guarantee that the fading processes of all users 
on the down link are identical. In fact in reality this is hardly the case. In accordance with the 
previous statements, the last line should be deleted or justified for only hypothetical cases.

• p.55, Condition 2 - {e < e, e" < e) is satisfied if (*) | < |ej(i)| for all j  =  1, * - *, K  and 
i = - M ,  ■■■, M.

• p.61, - Fig 3.18 should be labelled as follows, x-axis - User index, k, y-axis - User index, k 
and z-axis - Average Variance of MAI.

• Remark - The complexity of the distance spectrum calculations has been reported separately 
in the following two references.
1) Schlegel C and Wei L, “A simple way to compute the minimum distance in multiuser 
CDMA systems”, IEEE Transactions on Communications, vol.45, no.5, May 1997, pp.532- 
5.
2) Jana R and Wei L, “Performance bounds for optimum coded multiuser DS-CDMA sys­
tems”, in. Proc. of IEEE International Conference on Communications Systems, Singapore, 
Nov. 1996.

Chapter 4

• p. 65,1. 3 - This reference should be included. “Boudreau GD, Falconer DD, Mahmoud SA. 
A comparison of trellis coded versus convolutionally coded spread-spectrum multiple-access 
systems IEEE Journal on Selected Areas in Communications, vol.8, no.4, pp.628-40, May 
1990.”
Throughout the majority of chapter 4 the author has dealt only with convolutional codes. 
Towards the end of the chapter, numerical results are presented on the complexity of the tree 
search for rate 2/3 Ungerboeck 8-PSK trellis codes.

•  p. 71, Eqn. (4.18) - T is the total number of output symbols in the multiuser joint trellis.

• p. 71,1. 2 - D (E ) =  eTTim+L£ is the distance matrix, where e =  {eq, £2 , • • •, Ek } represents 
the error vector for all users and nm +L the correlation matrix given by (4.19).

• p.83 - The numerator in the second term in equation (4.67) should read as c f  A ,cp

• Part I - Remark: In this thesis, an information theoretic approach for the capacity of mul­
tiuser systems has not been pursued. For the benefit of the reader, two references are included 
namely,
1) S.V. Hanly and D.N.Tse, “Multi-access, fading channels: Part II: Delay limited capacities,” 
IEEE Transactions on Information Theory, vol. 44, No. 7, pp. 2816-2831, Nov. 1998.
2) S.V. Hanly, “Capacity and power control on spread spectrum macrodiversity radio net­
works,” IEEE Transactions on Communications, Vol. 44, No. 2, pp. 247-256, Feb. 1996.

Chapter 5



• p. 95, 1. 10 - The sentence “Diffraction...impenetrable body.” should read as “Diffraction 
occurs when the radio path between the transmitter and receiver is obstructed by a surface that 
has sharp irregularities (edges). The secondary waves resulting from the obstructing surface 
are present throughout the space and even behind the obstacle, giving rise to a bending of 
waves around the obstacle, even when a line-of-sight path does not exist between transmitter 

and receiver, (see page 78, [91]).”

• p. 96 last line - Remark: It should be noted that WSSUS is a special case arising from more 
general definitions of Bello’s work, [14].

•  p. 98 section 5.5 - Replace f c ( r , t ) c * ( t ' , t ') (^ j  ̂ ^  ) 6 y  P c(r,t)c*(< ',T ') (^> t  t t  ) •

• p. 102 section 5.9 - The sentence “Physically, (5.4) represents a ...” should be changed to 
“Physically, (5.4) may be modelled as a densely tapped transversal filter.”.

• p. 105 - Remark: It should be noted that the model of [120] and Jake’s model correspond to 
isotropic scattering in the vicinity of the receive antenna of the mobile terminal. In general 
this model will not apply at a base station.

• p. 111,113- The captions of figures 5.12 and 5.14 should be interchanged.

• p. 116 - It should be noted that the Viterbi algorithm may be effectively applied whenever 
a recursively additive metric can be defined. This is in fact the motivation for using the 
log-likelihood in receiver and decoder design. In the more general context of dynamic pro­
gramming many other metrics are possible.

Chapter 6

• p. 122 - Remark: The RAKE receiver used in CDMA systems utilizes the large bandwidth 
of spread spectrum signalling waveforms to achieve multipath diversity. The conventional 
RAKE receiver is optimal for slow fading frequency selective scenarios, and is implicitly 
based on a time-invariant channel model. In fact, practical implementations rely on slow fad­
ing to obtain accurate channel estimates by averaging over several symbols. Indeed, the errors 
incurred in channel estimation are primarily responsible for the performance degradation of 
the RAKE receiver under fast fading. The fast fading channel is an inherently time-varying 
system. Figure 6.1 shows a multiuser RAKE receiver that employs jo in t time — frequency 
representations (TFRs) of the time-varying mobile wireless channel. In the absence of 
MAI, corresponding to the single user case, the optimal receiver for each user is the TF 
RAKE receiver with maximal-ratio-combining (MRC), which coherently combines the differ­
ent multipath-Doppler shifted signal. Note that MRC requires the knowledge of the channel 
coefficients H^, which may be estimated through a pilot transmission. The optimal multiuser 
detector essentially augments the single user receiver by suppressing MAI. The multiuser sep­
aration is followed by a whitening operation to decorrelate the noise in the estimates. Finally, 
MRC is applied to the different multipath-Doppler components of each user.

• p. 132 - Remark: An approximation to the error performance is produced and that this approx­
imation is asymptotically an upper bound when all possible error events are included.



•  p. 134 - Equation (6.43), the first factor to be differentiated should be ((  -  pi)n‘.

• p.136 - The second paragraph should refer to figure 6.6.

Chapter 7

•  p. 145 - 146 - Remark: For the sake of clarity it was shown that the E { y m |B , ym- 1} is the 
minimum mean squared error estimate of ym. This result is also shown in [81]. It is sufficient 
to assert this well known result. Similarly, we assert that (7.19) is the Innovations process 
(see reference [81]). A brief note on innovations sequence is provided for the benefit of the 
reader. Suppose {ym} is a sequence of Gaussian vectors.
Define ym — ym~E{y™ \ Then { ym} is an innovations sequence.
1) { ym } is a linear combination of y0, t/t, • • •, ym
2) By the orthogonality principle, {ym} is orthogonal to y0, yi, • ■ •, ym and all linear combi­
nations of these variables.
Conditions 1) and 2) imply E{ymyn} =  0, rn f  n. Furthermore, ym is independent of yn,
m j ^ n .
If {ym} is NOT a Gaussian sequence, then E {ym\ B , y m_i}  is constructed as the best non­
linear prediction. In general E {ymy'n} = 0 and {ym} is an independent Gaussian sequence 
(see [Kailath]).
[Kailath] T. Kailath, “The innovations approach to detection and estimation theory”, Pro­
ceedings of the IEEE, vol. 58, no. 5, May 1970.

•  p. 150 - Remark: The algorithm in section 7.3 is closely related to the work of Hart and 

Taylor [49]. However, it also investigates the effect of multiple access interference (MAI) in 
a CDMA environment. Furthermore, ideas on the decomposition of (Cholesky factorisation) 
7 were explored.

•  p. 158 - The horizontal axis of figure (7.7) should be labelled as “Number of Users”.
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Abstract

The work in this thesis addresses a variety of issues relating to single user and multiuser 
detection schemes in the context of broadband wireless communications.

These studies present a simple and effective technique to evaluate the performance of 
Direct Sequence - Code Division Multiple Access systems using multiuser detectors over 
additive white Gaussian noise channels and mobile fading channels; the development 
of optimum multiuser receiver architectures to combat the fading channel's time varia­
tion and frequency selectivity; and the design of a low-complexity multiuser detectors to 
achieve near optimum performance.

Spread spectrum communication is a well known technique which has found enor­
mous utility in mobile communication systems. In a cellular environment where there 
are a large number of users simultaneously active, it is an extremely difficult task to char­
acterise the performance of such a system. Much work has been done in the recent past 
and is still underway to develop computationally attractive algorithms to evaluate such 
complex systems. In the first part of the thesis we utilise analytic or semi-analytic meth­
ods to evaluate the system performance over AWGN and fading channels through the 
computation of some key parameters:

• Squared minimum Euclidean distance d2min>

• Number of nearest neighbours,

• Partial distance spectrum,

• Bit error probability (BEP) bounds.

Though this technique relies on already published contributions such as the union bound 
and other statistical tools like importance sampling, we recognize its importance and 
usefulness in many system environments. With the use of this method it is now possible 
to obtain upper and lower bounds on the BEP for an uncoded multiuser CDMA system 
in complex channels and high system load.

The use of error control coding and the addition of redundant bits allows for the detec­
tion and / or correction of errors. Accordingly, we show how to evaluate a Trellis-Coded 
Modulated (TCM) multiuser CDMA system. In particular, three properties of the squared 
minimum Euclidean distance, measure are studied. The significance of this param­
eter stems from the fact that it determines the asymptotic performance of the system.

ix



The author derives an upper bound on (Pmin for a multiuser system using error control 
coding, studies how is affected by non-orthogonal spreading sequences and shows 
the relationship between in coded and uncoded synchronous multiuser systems for 
certain special cases.

In the second half of the thesis, we focus on the development of more sophisticated 
receivers to combat the harsh nature of the wireless environment. In particular, the wire­
less channel is modelled as a time varying, frequency selective Rayleigh fading channel. 
Four receivers are proposed namely the 1) Multiuser Known Channel Impulse Response 
Receiver (MUKCIR), 2) Multiuser Known Channel Autocovariance Receiver (MUKCA), 
3) Single User Known Channel Impulse Response Receiver (SUKCIR) and 4) Single User 
Known Channel Autocovariance Receiver (SUKCA). The MUKCIR receiver assumes per­
fect knowledge of the channel impulse response. The MUKCA receiver however, relies 
on the channel's second order statistics only. Simulations and analysis show that both the 
optimal receivers are capable of exploiting joint Doppler and delay spreads to achieve 
substantial gains. Due to the overwhelming exponential complexity of the optimal re­
ceivers, two linear complexity receivers are also proposed. Both receivers provide a use­
ful tradeoff between a priori information, performance and complexity.

Although suboptimal multiuser detection has not been the major focus of this thesis, 
we present a novel multiuser receiver that uses a sequential decoding algorithm. The re­
duced complexity receiver metric is derived using a Guassian approximation technique. 
It has a performance comparable to the optimal receiver for a high system load.
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Chapter 1

Introduction

Mobile communications has had a significant impact on today's society. The various 

forms of wireless communications - mobile telephones, cordless phones and radio pagers 

- continue to experience growth, showing a large increase in the number of users.

On one level the mobile communication system appears as several independent users 
transmitting to a single base station. Due to the uncoordinated nature of the users' trans­

missions, the uplink (mobiles to base station) is more difficult to manage than the down­
link (base station to mobiles). This is because the downlink is effectively synchronized 
since it comes from one source.

In wireless communication the precious transfer medium (commonly known as the 

channel) can be visualized as a region of the time frequency plane. For example a partic­
ular user may transmit at a particular time t with a particular frequency / . Space may also 

be used as another dimension, where directional antennae may be required. The way in 

which the users utilise the channel resource is determined by the accessing scheme used 

in the communications system.

Conventional multiple access schemes simply partition the time frequency plane into 

K  slices, one for each user. The users then employ their own particular slice for com­

munication, and the receiver examines the corresponding portion of the time frequency 

plane for the signal transmitted by the user. Signalling in such a way implies that the 

users transmit over orthogonal channels where there is no interference from one user's 

channel to another's. In Time-Division-Multiple-Access the partitioning is in time, so 

that each user utilises the entire frequency spectrum available but at different times. In 

Frequency-Division-Multiple-Access the partitioning is in frequency, and the users trans-

1
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mit data at the same time but in different frequency slots. The advantages of each scheme 

over the other have been thoroughly debated and the best of the two probably depends 

on implementation issues such as complexity, protocols, bandwidth and power limita­

tions [54] [63]. The most popular digital standard for multiple access communications in 

Europe and Australia is the Global System for Mobile Communications (GSM) which is 

based on TDMA [91] [54].

Spread-Spectrum-Multiple-Access (SSMA) is a well known technique which has also 

found numerous applications in cellular communications [54] [127]. Each user employs 

the entire channel resource to transmit a particular symbol. Specifically, the users trans­

mit at the same time using the same bandwidth. Consequently the channels over which 

the users communicate to the receiver are not necessarily orthogonal to one another and 

co-channel (multiuser) interference results [135]. Co-channel interference also arises in 

FDMA and TDMA, but between users that occupy different cells [62]. That is why fre­

quency planning is so important in GSM. Detection of data transmitted using the SSMA 

scheme may seem hopeless. An analogy which indicates that this is not so is our ability 

to discern different musical instruments in an orchestral piece of music. SSMA works via 

knowledge of the waveform that makes each user (instrument) unique. So although each 
user transmits at the same time using the same bandwidth the actual waveforms or chip 
sequences (pitch/timbre) are sufficiently different to allow the receiver (ear) to determine 

the data (notes) that each user transmits.

SSMA gained popularity initially in the 1960's for military reasons. The waveforms 

used for transmission were constructed to appear as noise. The original motivation was 

both to conceal transmission and to combat intentional jamming [112].

In spread-spectrum technology a modulated waveform is modulated (spread) a sec­

ond time in such a way as to generate an expanded bandwidth or wideband signal. In 

such a system, each user's signal is identified by its unique spreading waveform. Some 

applications and potential advantages of spread spectrum systems include [85]:

• Improved interference rejection,

• Low-density power spectra for signal hiding,

• Increased capacity and spectral efficiency,
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• Antijam capability,

• Secure communications

To the naive observer, the spread spectrum signal looks like noise. It is true however, 

that the same noise-like signal will appear over and over on the channel allowing covert 

reception. Spread spectrum systems come in many flavours. The most commonly used 

techniques are the following

• Direct-sequence (DS) CDMA

• Frequency hopping (FH) CDMA

• Carrier sense multiple access (CSMA) spread spectrum (for wireline communica­

tions)

• Hybrid spread spectrum methods

Several companies made substantial investments in SSMA in the early 1960's, Qual­
comm being the first [87][881. Control over the waveform transmitted by a particular 
user can be achieved using spreading codes and a chip waveform. The resulting access 

scheme is termed Direct Sequence SSMA or simply DS-Code Division Multiple Access 

(DS-CDMA). Another commonly employed SS modulation technique is Frequency Hop­

ping Multiple Access (FH). The FH subsystem produces a spreading effect by pseudo 

randomly hopping the radio frequency (RF) carrier frequency over the available RF fre­

quencies [91] [86]. This thesis will focus on DS-CDMA systems only.

In a cellular system, a number of mobiles communicate with one base station. Each 

mobile is concerned only with its own signal while the base station must detect all signals. 

Thus, the mobile has the knowledge of only its own chip sequence while the base station 

has information of all the chip sequences. As the handset complexity must be minimal 

(where size, weight and cost are critical), and because a CDMA system could potentially 

have a large number of users (a few hundreds in practice), multiuser detection can only 

be feasibly realised at the base station.

CDMA systems with single-user detection suffer two major drawbacks: the near-far 

problem and a limited network capacity due to multiple access interference. The con-
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ventional receiver demodulates each signal using the corresponding single-user detector 

(matched filter followed by a threshold decision device) thereby treating the multiple ac­

cess interference as white Gaussian noise, or equivalently, ignoring the cross-correlations 
between the modulating signals of different users [127]. Since the matched filter contains 

a component which is linear in the amplitude of each of the interfering user, the strongest 

user often severely interferes with the other users. This effect can very often swamp the 

desired user's signal strength. Consequently, the anti jamming capability of the weakest 

user is severely tested and its BER degrades substantially. This imbalance in the received 

powers is referred to as the near-far problem. Thus in order to maintain an acceptable 

BER for all users, the DS-CDMA system requires strict power control for each user. Even 

with perfect power control the interference limits the number of users to only 10% of the 

maximum capacity [87]. It is not surprising that reliable performance from the conven­

tional detector has been possible only for low bandwidth efficiencies [24], The capacity is 

calculated for Gaussian (thermal) noise only, but single user receivers treat interference 

as noise also. Thus even when the noise is removed, there is still MAI and thus there are 

still errors. The system is therefore interference limited.

These drawbacks of single-user detection have initiated recent interest into more so­
phisticated receiver structures such as joint multiuser detection, in which the multiuser 

interference is treated as part of the information rather than noise. The study of the 
optimum demodulator by Verdü [121] [122] [124] shows that while significantly superior 

performance over the conventional detector is possible, it requires a marked increase in 

computational complexity which is exponential in the number of users. Thus when the 

number of users is large the optimum detector becomes too expensive to implement. 

Therefore, detectors are sought which can closely approximate the performance of the 

optimum receiver, yet whose complexity is more comparable to the complexity of the 

conventional single user receiver. In this thesis we will study both optimum and sub­

optimum receivers. In particular, multiuser receivers are designed that are optimum for 

the time varying frequency selective Rayleigh fading channel.
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1.1 Research Account

This thesis is organised in two parts. Part I investigates performance evaluation tech­

niques for both uncoded and coded multiuser DS-CDMA systems in Gaussian and slow 

fading channels. Part II is devoted to the study of receiver designs for multiuser DS- 

CDMA systems in the presence of time varying frequency selective Rayleigh fading chan­

nels.

Chapter 2 provides the necessary background information on spread spectrum sys­

tems. A specific CDMA communication system model (IS-95) is discussed in some detail 

which helps us to identify some of the design methodologies and implications. A basic 

DS-CDMA system model is constructed which will be augmented as the need arises from 

chapter to chapter. Finally, a comprehensive literature survey is provided on CDMA and 

multiuser detection in particular. It is beyond the scope of this thesis to cover all the 

background of DS-CDMA; however, the reader will quickly establish a strong CDMA 

foundation and thus appreciate some of the potential enhancements currently being pro­

posed.

Chapter 3 focuses on the performance evaluation of DS-CDMA systems over Gaus­

sian and slow Rayleigh fading channels. The performance evaluation of CDMA systems 

is a complicated task, even on Gaussian channels [91]. The optimal multiuser detector 

is not only too complicated to implement but accurate analysis of its error performance 

is even more complicated, having a complexity of 0(3K) [124]. Most of the work to date 

has focussed on the concept of asymptotic efficiency. The asymptotic efficiency indicates 

that the logarithm of the error probability goes to zero with the same slope as the sin­

gle user bit error rate. In this chapter a simple and efficient method is proposed and 

investigated to evaluate the bit error performance for synchronous and asynchronous 

multiuser DS-CDMA systems. A generalisation of the work in [102] is used to compute 

upper and lower bounds on the bit error probability of optimal multiuser detection with­

out error control coding. A 31 user system using random binary signature sequences of 

length 31 is modelled. Recently, Monte-Carlo simulations with Importance Sampling (IS) 

techniques have been proposed and studied [104] [78] [79][139]. Importance sampling bi­

ases (scaling/shifting) the noise distribution such that more samples are taken from the 

important regions. In this chapter we use an optimal conditional importance sampling



§1.1 Research Account 6

(OCIS) method developed by Wei [139] to obtain performance bounds. Specifically, up­

per and lower bounds on the bit error probability for a specific spreading sequence set 

were computed and then averaged over a few thousand sets of spreading codes using 

OCIS techniques. It is also shown that this technique can be readily applied to a time 

invariant frequency flat Rayleigh fading channel.

Chapter 4 considers the problem of multiuser detection with error control coding. Of­

ten in an attempt to improve performance, error control coding is used on each of the 

users' transmitted data sequences. Two important questions were answered for coded 

multiuser systems, namely: 1) is it worthwhile studying coded multiuser systems, and 

if so 2) by how much does the performance of coded CDMA degrade with multiuser 

interference compared to that of a system with no multiuser interference? In particu­

lar, two properties of the minimum squared Euclidean distance d2min were studied. The 

distance measure is an important criterion to characterise the performance of a coded 

system. First, an upper bound on is derived. It will be shown that the multiuser 

upper bound is identical to the single user upper bound. This confirms the intuitive idea 

that the multiuser system performance (in terms of BER) cannot be better than a system 
with one user, hence the reason for comparing multiuser receivers' performances to the 
single user bound. Second, we study the effect of non-orthogonal spreading on d ^ n. As 

a result, the concept of asymptotic efficiency for the uncoded case shown by Lupas and 

Verdu [66] is extended for the coded case. We show ways to calculate the asymptotic 

efficiency for an infinite dimension spreading code cross-correlation matrix. Last but not 

least, we show that for the special case of a convolutionally coded synchronous multiuser 

system, d^in is no less than the product of the free distance of the error control code and 
the minimum Euclidean distance of the corresponding uncoded system.

Chapter 5 investigates the modelling aspects of the wireless propagation environment 

and introduces the theories and practices of receiver design. The physics of radio propa­

gation is reviewed and a discrete delay, time varying frequency selective channel model 

suitable for digital simulation is described. The receiver has the job of deciding which 

symbol sequence was originally transmitted based on all the information it has. We re­

view the maximum likelihood (ML) and the maximum a posteriori (MAP) criteria of 

optimality applied to data symbols and sequences. This chapter introduces the reader to 

the concepts and notations adopted throughout Part II of the thesis.
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Chapter 6 discusses the problem of optimum multiuser detection in a time varying 

frequency selective Rayleigh fading channel. Due to scatterers and mobility, the received 

signal contains the sum of delayed and dynamically distorted replicas. This results in 

amplitude and phase distortion as a function of time (time variation) and frequency (fre­

quency selectivity). Accordingly, a multiuser maximum likelihood sequence detector is 

developed for linearly modulated signals sent over a time varying frequency selective 

Rayleigh fading channel. The receiver assumes perfect knowledge of the channel's im­

pulse response, hence its name - the Multiuser Known Channel Impulse Response Re­

ceiver (MUKCIR). Simulations and analysis show that the receiver is capable of exploit­

ing joint Doppler and delay spreads to achieve substantial gains. The optimal receiver's 

complexity is however, exponential in the number of users and as a consequence we pro­

pose (in chapter 7) a possible realisation of a linear complexity receiver using techniques 

learnt in Chapter 7.

Chapter 7 designs, simulates and analyses another multiuser maximum likelihood se­

quence detector for the time varying frequency selective Rayleigh fading channel. Unlike 

the MUKCIR developed in chapter 6, this receiver avoids the unrealistic assumption of 
perfect knowledge of the channel impulse response. Instead it relies on the channel's 
second order statistics only. The receiver uses predictors to estimate the received signal 

and forms a weighted Euclidean distance between the predicted and the received sam­
ples. Once again results show that it is capable of exploiting the implicit Doppler and 

delay diversity of fast fading frequency selective channels. The operation of the receiver 

and the prediction process are described to give the reader an intuitive feeling. Due to 

the overwhelming exponential complexity of the optimal receiver, a linear complexity 

receiver is proposed and simulated. The receivers of chapter 6 and 7 provide a useful 

tradeoff between a priori information, performance and complexity.

Chapter 8 contains concluding remarks and some possible directions for future work.

Appendix A derives and simulates a suboptimal multiuser detector that uses a se­

quential decoding algorithm. This is an application of a depth first search algorithm to 

multiuser interference suppression using an improved metric function that has a perfor­

mance comparable to the optimal receiver's metric. This reduced complexity receiver 

metric is derived using a Gaussian approximation technique.
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Appendix B is provided as supplementary reading material. During the thesis, the au­

thor and his colleague, (Dr. Subhrakanti Dey, Department of Systems Engineering, Aus­

tralian National University) also researched the design and implementation of change 

detection algorithms for various teletraffic models. In particular, we devise likelihood 

based ratio tests to detect distributional changes in common teletraffic models such as 

the Markov modulated Poisson process (MMPP), and processes exhibiting long range 

dependency like the family of Gaussian fractional ARIMA processes. As a continuation 

of this work, we are currently investigating the feasibility of these techniques to detect 
the change in user population in a dynamic CDMA system.

1.2 Thesis Contributions

We now list the technical contributions made in this thesis.

• Performance evaluation techniques using Monte-Carlo simulations and importance 

sampling methods for both the synchronous and asynchronous uncoded CDMA 
system.

• Upper and lower bounds on the bit error probability of optimal multiuser detection 

for a synchronous and asynchronous 31 user CDMA system using different chip 

pulse shapes.

• Properties of the "squared minimum Euclidean distance" measure for a multiuser 
CDMA system using error control coding. The upper bound on the squared mini­
mum Euclidean distance was derived. Upper and lower bounds were derived for 

the ratio of minimum distance between a non-orthogonal and an orthogonal system 

(ie. asymptotic efficiency).

• The design, analysis and simulation of the multiuser known channel impulse re­

sponse receiver for a time varying frequency selective Rayleigh fading channel.

• The design, analysis and simulation of a "predictor based" multiuser receiver for a 

time varying frequency selective Rayleigh fading channel. The design and simula­

tion of a linear complexity single user receiver.
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• The design and simulation of a suboptimal receiver with an improved metric func­

tion using a Gaussian approximation technique.



Chapter 2

Introduction to CDMA Multiuser 
Detection

Overview: This chapter will provide the necessary background information on spread 

spectrum systems, and the DS-CDMA system in particular. The fundamental concepts 

of multiuser and single user detection will be introduced. A simple system model of DS- 

CDMA will then be presented to familiarize the reader with the notations and assump­

tions used later in the thesis. Finally, a literature review highlights the state-of-the-art 

research on this topic.

2.1 Direct Sequence Spread Spectrum

Spread spectrum multiple access communication, known commercially as CDMA, is 

a driving technology behind the rapidly advancing personal communications indus­

try. Several third generation spread spectrum systems such as direct sequence (DS) and 

frequency-hopped (FH) have all been standardised. However, these lead to different air 

interfaces and thus are not interoperable with each other.

CDMA is a modulation and multiple access scheme based on spread spectrum com­

munications. Proponents of the CDMA technology cite several potential advantages over 

the traditional FDMA AMPS and TDMAIS-54 approaches [38] [133]. The CDMA system, 

pioneered by Qualcomm Incorporated of San Diego, was standardised and is known as 

the IS-95 standard of the Electronics Industries Association (ElA IS-95). Statistics show 

that voice activity in a full duplex two-way conversation is about 40%. It is difficult 

to exploit voice activity in a TDMA or FDMA based system because of the time delays

10



§2.2 CDMA Forward Link 11

associated with reassigning channel resources in speech pauses. However, in a CDMA 

system this can be handled very easily by reducing the transmission rate in the absence 

of speech, thereby reducing interference to other users, which finally translates to an in­

crease in system capacity. Another direct advantage to CDMA system designers is that 

special frequency reuse plans are not necessary. This is because each user is distinguished 

from other users by virtue of a unique signature code. Hence, reducing co-channel in­

terference by frequency reuse is no longer required. Nonetheless, there are other sources 

of interference. Since all users share the same frequency bandwidth, every user is inter­

fering with every other user. This has direct implications in the proper design of power 

control algorithms. The current standard uses both open loop and closed loop power 

control techniques to optimise system performance. In addition to reducing multiple ac­

cess interference (MAI), the base station also uses three sectored antennas (each covers 

120° of the azimuth).

This thesis will concentrate only on direct sequence systems. We start with a brief 

description of the forward (base station to mobile station) and reverse link (mobile to 

base station) of a typical DS-CDMA system.

2.2 CDMA Forward Link

The forward link utilises a combination of frequency division, pseudorandom code divi­
sion and orthogonal signal multiple access techniques. This is shown in Fig. 2.1.

The underlying maximum data rate of the forward link is 9600 bits/sec. The speech 

coder detects speech activity and changes the data rate to a lower value during quiet 

intervals. The bit stream is partitioned in blocks then convolutionally encoded by a rate 

 ̂code with constraint length 9. This 19.2 kbits/sec data output stream is then interleaved 

over a 20 msec interval for burst error protection in a fast fading channel. The interleaved 

data is multiplied by a long code, which serves as a privacy mask. The privacy mask is 

used as a first level security mechanism. The data is next spread using orthogonal Walsh 

codes of length 64, resulting in a data rate of 1.228 Mchips/sec. This is then separated 

into I and Q streams, each of which is modified by a unique short code of length 32768. 

Finally, the information is transmitted as filtered quadrature phase shift keying (QPSK) 

modulation. Note that different signals transmitted from a given base station can be



§2.3 CDMA Reverse Link 12

User
Long Code 

Mask

I Channel 
Short Code cos(coc(t))

User
Walsh Code,

W,(t)

Pilot
Walsh Code, 

W/t)

Speech
Coder

Interleaver

Baseband
Filter

Baseband
Filter

Long Code 
Generator

Convolutional 
Encoder 

and Repetition

Q Channel sin(coc(t))
Short Code

Figure 2.1: IS-95 CDMA forward link

distinguished at the mobile receiver by the choice of orthogonal Walsh code. In this 

w ay the CDMA m odulator can establish 64 channels on the same carrier frequency on 

the forward link. Pilot information is transm itted at a relatively higher pow er level to 

allow the carrier phase to be tracked to perm it coherent dem odulation of the data bearing 

signals. The mobile receiver uses a num ber of correlators for dem odulating the data 

bearing signals from the base station.

2.3 CDMA Reverse Link

The reverse link is shown in Fig. 2.2. The data rate of the reverse link is also 9600 bits/sec. 

The inform ation stream is partitioned once again into 20 msec blocks followed by convo­

lutional encoding by a 1 /3  code w ith constraint length 9. This provides a coded bit rate 

up to 28.8 kbits/sec which is then interleaved. Code w ords of 6 bits each are formed. The 

code w ords select one of the 64 different orthogonal codes for transmission. In this case 

the Walsh code is determ ined by the information being transm itted (a way of achiev­

ing 64-ary modulation). The chip rate at the outpu t of the Walsh m odulator is 307.2 

kchips/sec w hich is further spread to 1.228 M chips/sec using the mobile-specific long 

code. The data stream is once again split into I and Q streams where it is multiplied by 

the same short code pair as that used for the forward link. The resulting spread spectrum
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signal is then carried over the air interface with a filtered offset-QPSK modulation. The 

signals from the multiple transmitting users are distinguished at the base station by their 

use of the very long 242 — 1 pseudo-noise (PN) sequence. Each user has a unique time off­

set. At the base station, the received signal is processed by non coherent RAKE receivers
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Baseband
Filter

M-ary orthogonal 
Walsh modulator
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Q Channel sin(coc(t))
Short Code

Figure 2 .2: IS-95 CDMA reverse link

since there is no provision for pilot information. The P  strongest paths are ordered and 

combined via a bank of delay filters.

2.4 Design Methodology and Implications

Let us now consider some CDMA design methodologies. There are basically two philoso­

phies [119] which favour different lengths of pseudo-noise (PN) sequences used as spread­

ing codes:

• Long Codes - the PN sequence's period is much longer than the symbol period.

• Short Codes - the PN sequence's period is exactly one symbol period

This thesis will only consider short codes although it can be generalised to long codes. 

In Part I, we will concentrate on the performance evaluation of uncoded and coded
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CDMA systems using random codes. We do not select spreading codes with particu­

larly good auto-correlation and cross-correlation properties to suppress MAI. In fact, it 

has been shown that the use of random codes incurs no penalty in the sum capacity 

asymptotically as the number of users increase [45] [44]. In Part II, we will investigate 

the performance of two multiuser detectors for the time-varying, frequency-selective 

Rayleigh channel. The spreading sequences will once again be chosen randomly and 

are constrained to one symbol interval. However, there is some amount of signature 

overlapping due to the use of root raised cosine chip pulse shaping. The use of short 

codes facilitates the design of multiuser receiver structures.

As discussed in the previous sections, the IS-95 CDMA standard adopts the long code 
philosophy. At the heart of this approach is the fundamental claim that the MAI appears 

as wideband AWGN [132]. As the number of users increase the contribution from the 

interfering users (assuming each have equal received power) can be approximated by a 

Gaussian random variable [119]. This claim is a misconception as pointed out by Verdü 

on many occasions and is the underlying reason for the near far problem of CDMA. In the 

common situation where all of the signals arriving at the receiver are of different signal 

strengths, the stronger signals tend to swamp the weak signals. Because of this, an accu­

rate power control mechanism is required in the IS-95 reverse link to limit fluctuations in 
the received signal's power to within a fraction of a dB.

Single user detection is often tied to the concept of Matched Filtering. In this case the 
received signal is correlated with the spreading sequence and the correlator's output is 

generally followed by a decision device. When there is only one user (ie. no MAI) this 
detection scheme is optimal. However, in the multiuser scenario it is only optimal if the 

delays are known perfectly and the signature sequences of all users are orthogonal (ie. 

no MAI) [127]. To reiterate, the Gaussian approximation disregards the rich structure of 

the MAI, thereby losing valuable information that could have been used to make more 

accurate decisions.

2.5 Basic DS-CDMA System Model

In this section a basic system model will be described. This basic model will be aug­

mented in each chapter to allow new parameters to be incorporated as the need arises.
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The model consists of a data source, a transmitter, a channel, a receiver and a data sink. 

The source data is usually source encoded to reduce the amount of redundancy (data 
compression), then channel encoded to allow a limited number of transmission errors to 

be corrected. The encoded signals are then mapped to a signal constellation (eg. BPSK, 

QPSK). The ith transmitted symbol (a constellation point in the signal space) of the /cth 

user is denoted by 6^. The signature sequence for the ith time interval and /cth user 

is Sitk(t). In a spread spectrum system, the number of chips per symbol period, N, is 

known as the processing gain. It determines the signal's resistance to jamming or multi­

ple interferers [127]. It is defined as the ratio of the symbol duration to the chip duration 

as

For a reverse link it is appropriate to model each user as transmitting independently. 

This asynchronism amongst users can also be characterised by a delay The delay is 

fractionally chip aligned. In the basic model, each chip uses rectangular pulse shaping. 

In the later chapters we will relax this to incorporate raised cosine and root raised cosine 
pulse shaping.

Radio propagation is usually characterised by three partially separable effects known 

as path loss, shadowing and multipath fading. Path loss characterises the reduction in 

the received power level, P(r) with distance r. It generally follows an inverse power law 

in the distance between the transmitter and the receiver, as

Shadowing is caused by terrain features in the propagation environment. It imposes large 

scale variations on the path loss formula. Typically a log-normal distribution has been 

best found to fit the experimental data in an urban area. In our work, we can ignore path 

loss and shadowing, as these large scale attenuations are compensated by power con­

trol. Only multipath affects the system performance and receiver design. The multipath 

model will be described in detail in Part II (chapter 5). For now, it suffices to know that 

due to the cluttered environment, the signal transmitted from the base station reflects,

N = Ts/Tc (2 .1)

(2.2)
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diffracts and is scattered off trees, buildings, hills and other obstacles before arriving at 

the receiver. These travel different distances, so they arrive with different carrier phases 

and add as a complex sum. In the "time invariant frequency flat" case, where all the 

paths have similar lengths and the mobile terminal is moving slowly, the channel is char­

acterised by a single complex gain, Ck when there are many paths. It is Rician distributed 

if there is a line of sight (LOS) component and Rayleigh distributed otherwise. Thus 

the total received signal can be modelled as the sum of each user's transmitted signal 

multiplied by this complex gain (see Fig. 2.3), as

r(t) = A(t, b) +  n(t) (2.3)

where

k  n - i

A(t, b) =  \ f E i i K k ckSk(t ~  iTs -  Ofc)
fc=l i=0

(2.4)

yjEi^k is the gain for power control in the zth interval for the k\h user. This model is 

typical of a reverse link where each user has their own independent delays.

n(t)

Transmitter Channel

Figure 2.3: DS-CDMA System Model

A

f a ;

A

fa;

At the receiver there are three options in order to obtain a set of sufficient statistics
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about the received signal. The continuous time waveform can either be sampled at the 

Nyquist rate 1/Tr = r/Tc, the chip rate 1/TC, or the symbol rate l/T s. For the chip 

matched filtering case, a front end filter matched to the chip waveform is used. For 

an AWGN or frequency flat, time invariant channel the received waveform is passed 

through a filter matched to the set of preassigned signature waveforms and sampled at 

the symbol rate. It is the output of these filters that is important and has been used in 

various ways to cancel MAI to produce a reliable decision. We discuss some of these 

methods in a later section.

2.5.1 Synchronous AWGN CDMA Channel Model

In this section we assume all transmitters are synchronised to the same time origin (ie. a 

synchronous model) and that the channel exhibits no multipath. K  users transmit their 

respective symbols 6̂ * where i denotes the symbol interval i 6 {0, ••• — 1}. The

spreading code used by user k at symbol interval i consists of N  chips and is stored in 

the vector By arranging the K  spreading codes at time i in a matrix S*, the energies, 

y/Eitk of of all users in a matrix W*, the data bits in a vector b* and the noise samples in 
a vector n̂ , the received signal samples r; over the ith symbol period can be written as

Vi =  S*W*bi + n i (2.5)

where

s i = ■ ■ , sK,i) e { - i , i } N,K

Wj = diag

b, = (6 i ,i ,  - • - M , k )TG { - 1 > 1 } K 

n; =  (rii'i,--- ,n itiv)r  e U N
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Hence, for the entire transmitting interval i = {0, • • • , fi}

S = diag(S0,-.- , s n - i ) 6 { - l , l } nw'nif

W  =  diag(W 0,- - - ,W n- i ) € R njr’n,f

b = (bJ’, - , b S _ 1)7' e { - l , l } “ ,r

n = ( 4 , - - . , n S _ 1)T € R nJV

so that the entire output of the channel is simply

r =  SW b + n G E fiw (2.6)

The received waveform is matched to the set of signature waveforms used for transmis­

sion. The MF output can thus be written as

r' =  STr

-  STSW b + STn

=  ftW b  + STn (2.7)

where 71 is the non-negative definite correlation matrix

71 =  STS e R nK'nK.
’R o(O) 0 ••• 0

Ri(0) ••• 0
0 R 2(0) ••• 0

: (2.8)
5 5 : R n -3(0) 0

R o- 2(0) 0
0 0 0 0 R n-i(0)

and

R t (0) = SfSj (2.9)
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The MF receiver is a direct application of a single user system to the multiuser case. 

The second term in (2.7) represents the white noise being coloured, with autocorrelation 

matrix NolZ.

If the MF output is now passed through a thresholding function, such as sgn(.) a con­

ventional detector is realised. It treats all other transmissions as noise. The structure of 

this receiver is shown in Fig. 2.4.

MF
UserK

MF 
User 1

MF 
User 2

A
b ,

A
b2

A
bK

Figure 2.4: Conventional DS-CDMA Detector

2.5.2 Asynchronous AWGN CDMA Channel Model

Asynchronism between users can also be handled in a similar way. The received signal 

after a bank of MFs can be expressed in a linear algebraic form as

r W b  +  STn (2.10)
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where the correlation matrix 7Z is now block tri-diagonal since the spreading codes that 

arrive more than a symbol apart do not overlap. It equals

U

'Ro(O) R f(l) 0 0
Ri(l) Ri(0) Rj (1) ••• 0

0 R2(l) R2(0) ••• 0

1 i i Rsi-3(0) R L 2(!) 2
Rf!-2(1) R n -2(0) R L i( ! )  

0 0 0 0 R n -i(l) Rn-i(0)

(2.11)

where

R i{m) G RK,h , 0 < i < Q — l i s  symmetric, and 

Ri(l) G RK'K , 1 < i < Q, — 2 is strictly upper triangular

The (k, k1)th element of R*(ra) describes the energy collected by the kth user's matched 

filter at symbol interval i due to the transmission by user k1 in the symbol interval i — m. 
Since R^_i(—1) = R f (1), R t(—1) has been replaced by R^_i(l) in (2.11). R i{rn) equals

k,l 6 {1,

is { o , n - i }
m  G {-1 ,0 ,1 }

In the asynchronous case it is possible to transform the problem into an equivalent syn­

chronous case. In the one shot approach, where each symbol interval is considered sep­

arately, bit overlapping between users can be regarded as separate transmissions by fic­

titious users [123]. Take, for example, a 2 user case where bit 0 of user 1 occupying the 

interval [0, T] overlaps with bit —1 of user 2 over the interval [0, (2] and also bit 0 of user 

2 over the interval [&,T]. This problem can be decomposed into a 3-user synchronous 

channel. At the heart of this approach is the partitioning of the signature waveform of 

user 2 to its left and right components. The one shot detector has lower complexity than 

the asynchronous detector at the expense of some performance degradation.
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2.6 Interference Rejection

As more users transmit over the top of one another the increased sharing of spectrum 

naturally translates into a higher likelihood of users interfering with one another. Inter­

ference rejection (IR) techniques allow more users to be supported within the available 

spectrum as compared to a system lacking IR techniques. Moreover, as more than one 

technology usually exists at any time, as older technologies are superseded by newer 

ones, hybrid networks are inevitable. For example, an IS-95 CDMA system overlaid with 

AMPS results in AMPS-to-IS-95 and IS-95-to-AMPS interference on adjacent cells. An­

other example is broadband CDMA (B-CDMA) suggested by Schilling et ai. [98]. It co­

exists with the current cellular services yet provides additional capacity to the network. 

B-CDMA causes interference to existing services yet must be robust to their interference, 

such as high powered narrowband interference from TV and FM radio stations. In satel­
lite systems, geostationary satellites can interfere with each other as well as with LEO 

satellites. In all these situations, interference rejection techniques may be applied to null 
out unwanted distortions and considerably improve the quality of service. An organisa­

tional chart of the many interference cancellation techniques to date can be found in Fig. 

2.5

In this thesis we will be mainly concerned with wideband interference. An example of 

wideband interference is multiple access interference (MAI). A comprehensive literature 
survey on multiuser detection can be found in many references [32, 61, 74, 127]. We 

highlight some of the key contributions here.

2.7 The Multiuser Detection Problem

Multiuser detection is the study of strategies to demodulate the digital information sent 

simultaneously by several transmitters who share a common channel. As is well known 

the conventional single user detector minimises the probability of error in a single user 

channel (in the absence of interfering users). However, this scheme is no longer opti­

mal when there are several users. In fact, it is necessary to obtain information about all 

users so that they can be demodulated jointly to produce a more accurate decision. This 

problem of joint demodulation and decoding is the multiuser detection problem.
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Figure 2.5: Interference rejection (IR) techniques for wireless digital communications [611

2.7.1 Advantages of M ultiuser D etection

Solution to the Near Far problem - Correlation receivers are susceptible to the near far 

problem when multiple access signals are received with different signal powers. Before 

the emergence of multiuser detection, success in this area has been very limited and the 

only remedies were fast and accurate power control and the design of signals with even 

more stringent crosscorrelation properties. The solution to the near far problem has been 

advertised as the main achievement of multiuser detection.

Increased capacity - Greater channel capacity can be achieved by using interference 

rejection techniques like multiuser detection to mitigate MAI. The reduction in interfer­

ence power transforms into either an increase in system capacity or a reduction in the 

mobile's average transmit power. Compared to the conventional single user detector, it 

has been reported that multiuser detector doubles or triples channel capacity [61].
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2.7.2 Disadvantages of Multiuser Detection

Too complicated - The optimal multiuser receiver is hopelessly too complex to be imple­

mented. As a result, several sub-optimal receivers have been proposed to approximate it. 

Sophisticated signal processing techniques such as the use of adaptive equalisation, neu­

ral networks and other nonlinear approaches still require a heavy computational load. 

As digital signal processing capabilities improve these schemes are starting to show more 

promise.

Incomplete Analytical Performance Results - BER analyses of the numerous mul­

tiuser techniques are beginning to become more complete. However, there is still scope 

for further analysis to include their impact on the overall system capacity, so that their 

contributions may be fully appreciated.

Increased need for estimation - In a practical multiuser system there is an increased 

need for parameter estimation. There are more system unknowns (eg. signature se­

quences of all users, timing synchronisation parameters for all users), but the observation 

space is of the same order.

2.8 Optimum Multiuser Detection

A Maximum Likelihood (ML) multiuser sequence detector selects the most likely trans­

mitted sequence according to

b ml  = arg max p  (r|b) (2.12)
be{-i,+i}nK
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Verdü [122] proposed this receiver in 1986 and it is generally known as the optimum 

receiver. The likelihood function that needs to be maximised can be written as

b ML arg max p (r |b ) 
be{-i,+i}nK

1
arg max -——— — -

be{-i,+i}n/c det(27rRnn)
exp - i ( r - S W b ) ffR ^ ( r - S W b )

arg min (r -  S W b )" R : ' (r -  SW b) 
°be{-i,+i}n*

arg min |r — SW b 12 in white noise, 
be{-i,+i}nK

arg min r ^ r  -  2b//W S 7/r +  b ^ W S ^ S W b
be{-i,+i}nK

arg min - 2 b //W S //r  +  b ^ W S HSW b 
be{-i,+i}nK

(2.13)

assuming the white Gaussian noise with autocorrelation matrix equal to

= - E W
2 1 } = N0l (2.14)

r' =  Sn r in (2.13) can be viewed as a bank of MF followed by a Viterbi algorithm (VA) 

instead of a hard decision device as is the case for a conventional single user detector 

(see Fig. 2.6). The VA has an exponential complexity in the number of users. In the K  

user case, there are 2A possible realisations of b and no algorithm exists that can solve 

(2.13) via a number of steps that is polynomial in the number of users [123]. It has been 

shown in [124] that the MLSD algorithm belongs to the class of longstanding combinato­

rial problems such as the travelling salesman problem which are NP-hard.

2.9 Suboptimal Receivers

Although the optimum detector achieves important performance gains over the conven­

tional single user detector, the price for this is its exponential complexity in the number 

of users. This has triggered the search for low-complexity multiuser detectors that ex­

hibit good performance and are also near far resistant. An organisational chart in Fig. 2.7 

shows the various techniques used to combat MAI from a DS-CDMA perspective.
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Figure 2.6: Optimum multiuser detector

2.9.1 Linear Complexity Receivers

In the context of multiuser detection, a linear complexity receiver is one whose complex­

ity is linear in the number of users. In general, a linear transformation of the MF outputs 

is produced to pass soft information onto a subsequent stage of the detection process 

[31] [114] [138] [146].

Decorrelating detector - This receiver multiplies the MF outputs in (2.7) by the inverse 

cross-correlation matrix 7Z~l . Note that the decorrelating detector completely eliminates 

MAI. However, the power of the noise is No(7l~l ) which is greater than the noise power 

at the output of the MF. The bit error rate for the kth user of the decorrelator is given by

° (\Z30 (2j5>
where 7̂ )7 J, is the (k,k)th  element of the matrix 1Z~l . Observe that the decorrelating 

detector requires a matrix inversion which is not particularly suitable for a large number
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Figure 2.7: Organisational chart for multiuser interference rejection in DS-CDMA [61]

of users. On the other hand, the decorrelating receiver provides the same degree of near 

far resistance as the optimum multiuser receiver and is substantially easier to compute. 

Furthermore, it does not require knowledge of the powers of the interfering users.

MMSE - The linear minimum mean squared error (MMSE) detector replaces the in­

verse cross-correlation matrix R ~ l by [R + iVoW- 2 ] - 1  such that noise enhancement is 

balanced against MAI. The MMSE detector can outperform a decorrelating detector when 

the desired user is strong and all the interferers are very weak. Essentially this receiver 

is a multidimensional version in its output of the MMSE linear equaliser for the single- 

user ISI channel [32]. Unlike the decorrelator it does not require the assumption of linear 

independence for all signature waveforms. It is an appealing solution due to its relative 

ease in an adaptive implementation. Its performance is similar to the decorrelator in the 

absence of background noise but approaches the conventional single user detector in the 

presence of significant MAI.

2.10 Nonlinear Receivers

Nonlinear receiver structures can be mainly classified into four categories:
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• Multistage Detectors

• Decision Feedback Detectors

• Successive Interference Cancellers

• Neural Networks

In general these receivers detect the stronger users first and these are then cancelled from 

the signal so that weaker users may be detected. Problems of error propagation and long 

delays are inevitable, but these receivers promise to be practical and efficient solutions to 

the near far problem.

Multistage detection techniques involve repetitive detection/cancellation steps. All 

users are detected in the first stage and then used in the next stage to cancel interference 

present in the signal of the desired user. Due to delay and complexity constraints it is 

desirable to limit the number of stages to two. To obtain more reliable estimates, the 

decorrelator is often chosen as the first stage. Two important design questions arise [32]:

• How should the initial stage be chosen?

• How should the subsequent processing stages be chosen?

Successive Interference Cancellers cancel the strongest signal before detection of the 

other signals because it has the most negative effect. Subtracting off the strongest re­

maining signal at each step assumes accurate estimation and ordering of the received 

user amplitudes. Hence, the process must operate fast enough so as not to introduce 

large decision delays. Viterbi has concluded that the complexity and the processing de­

lay make the application of this scheme questionable [134]. A parallel successive inter­

ference cancellation method was recently proposed whereby all of the users' signals are 

subtracted simultaneously from all other users [84]. This scheme outperforms the succes­

sive scheme when all users are received with equal strength. Both schemes outperform 

the conventional detector. Decision feedback detectors are another class of receivers that 

use feedforward and feedback filters to cancel MAI [29] [31].

Neural networks have only been recently used for CDMA applications. Multiuser de­

tection using a backpropagation neural net was proposed by Aazhang to approximate the
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MLSD receiver [1]. These algorithms can simultaneously account for non-linearity in de­

cision boundaries between signal states, non-stationarity and non-Gaussian interference. 

A radial basis function neural network was used by Mitra to perform multiuser detection 

and has shown near-optimal performance in realistic communication environments [73].

2.11 Adaptive Multiuser Detection

Adaptive detection is required for practical time varying channels. The receivers are 

continually being optimised as the channel conditions or the user environment changes.

MMSE - The minimum mean squared error (MMSE) solution has been used on a num­

ber of occasions [68] [69]. The channel output is first passed through a filter matched to 

the chip waveform and then sampled at the chip rate. This MMSE detector computes 

filter coefficients, w(i), adaptively based on minimising the mean squared error for each 

user as

Wj+i = wi -  pe{i)ri (2.16)

where p is the step size. This is the Least Mean Squares (LMS) algorithm. To increase the 
acquisition speed of the LMS algorithm, other faster algorithms like the Recursive Least 

Squares (RLS) have been used [69].

Rapajic et al. proposed a "single-user" asynchronous receiver where the receiver is 

trained by a known training sequence in the start up phase before actual data transmis­

sion [89]. This receiver is termed "single-user" since only one user's spreading code and 

delay is known and utilised by the receiver. A fractionally spaced LMS filter is adapted 

instead of the standard MF with fixed coefficients. Simulation results have verified a sub­

stantial improvement in BER when compared to the conventional single user detector. 

This is shown in Fig. 2.8. Lately in [90] Rapajic also investigated an adaptive transmitter- 

receiver pair such that the transmitter signatures are adjusted according to a MSE crite­

rion during data transmission. Systems employing such a scheme in the presence of MAI 

can achieve the matched filter bound as they can eliminate interference.

Cyclostationary algorithms have been applied successfully to interference rejection in
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Figure 2.8: Adaptive "single-user" receiver

DS-CDMA [2]. Cyclostationary CDMA signals have periodic statistical properties that 

exist at the chip rate. By exploiting spectral diversity in CDMA networks, a more stable 

and robust system is realised. Aue and Reed also show how spectral correlation can be 

exploited by an adaptive filter [10].

Blind detection algorithms are also of interest in their own right since they enable re­

ceivers to asynchronously acquire a transmission at any time. Adaptive multiuser detec­

tors generally solve this problem by using a training phase to initialise filter coefficients 

and system parameters and thus prepare themselves for future data transmissions. How­

ever, this training sequence is wasteful in terms of capacity, and in a multiuser environ­

ment training is required for all users. In a fading channel retraining is needed after a 

user experiences a deep fade. Detection before the next training sequence is therefore 

unreliable. Blind detection removes this dependence since the receiver can recover auto­

matically. Such receivers can be classified into three main categories, namely [70]:

1. The receiver knows the timing and spreading waveform of the desired user.

2. The receiver knows only the spreading waveform of the desired user.

3. The receiver does not know any information about the desired user, other than the 

fact that the desired user signal is digitally modulated at a given symbol rate.

Honig [52] proposed a blind linear complexity near-far resistant receiver of category (1), 

namely the constrained minimum output energy, (CMOE) receiver. The strategy is to
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minimise the output error, which is equivalent to minimising the MSE. It has global con­

vergence due to the convexity of the cost function. Category (2) receivers are usually sub­

space based blind receivers. Recently, subspace based representations of multiuser detec­

tors have been considered in [136]. If the signal and noise subspaces can be estimated, 

the problem reduces to one of finding the best fit among different hypothesized propaga­

tion channels with the estimated subspaces. One example is the MUSIC algorithm which 

minimises the projection of the hypothesised signal vectors onto the estimated noise sub­

space. Category (3) would be classified as blind equalisation for a system with one user 

and blind source separation for multiple users. This class of receivers use higher order 

statistics (HOS) to separate digitally modulated sources.

The Constant Modulus Algorithm (CMA) has recently been applied to this area. For 

constant modulus signals (eg. frequency shift keying (FSK), phase shift keying (PSK)) the 

CMA works by adapting a filter to restore the signal's constant envelope thereby rejecting 

interference and suppressing the channel's distortions. It is attractive due to its relatively 

low complexity and faster local convergence rate. However, the cost function does not 

distinguish between the desired user and interfering symbols, which leads to a number 

of local minima. To this end many variations of the modified CMA have been studied, 

namely linearly constrained CMA and anchored CMA [72] [59].

The application of blind adaptive algorithms to the suppression of multiuser interfer­

ence is a continuing area of research that promises to provide substantial performance 

gains over conventional reception, yet with very low complexity.

2.12 Summary

This chapter provided an overview of spread spectrum communications, in particular 

code-division-multiple-access. An overview of the IS-95 CDMA standard was given 

to highlight the current standards and design methodologies. A basic direct sequence 

CDMA system model has been introduced although further elaborations will be incor­

porated. Finally, a survey of the various techniques used for interference rejection has 

been presented with special attention to wideband interference (MAI).



PARTI

Performance evaluation techniques of uncoded and 
coded multiuser DS-CDMA systems in Gaussian and 

slow Rayleigh fading channels

OVERVIEW: We investigate methods to compute accurate bit error probability bounds 

for an uncoded multiuser CDMA system accommodating a large number of users. These 

bounds are useful since they provide a theoretical benchmark to compare other practical 

receiver designs. In the later half of this section we study parameters and algorithms to 

evaluate a multiuser CDMA system using error control coding.
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Chapter 3

Performance Evaluation of Optimum 
Multiuser DS-CDMA Systems

Overview: The exact bit error rate (BER) performance of a CDMA system with a large 

number of users is difficult to compute analytically. An efficient method is proposed 

to compute accurate BER bounds for various system configurations. This simple yet 

powerful method relies on well known bounding techniques and can provide theoretical 

benchmarks for comparison with other receiver designs.

3.1 Introduction

Recently joint multiuser detection, in which the multiuser interference is treated as part 

of the information, rather than noise, has attracted much attention. The seminal work of 

Verdü has shown that significant performance improvement and optimum near far resis­

tance over the conventional detector can be achieved by a maximum likelihood multiuser 

detector [121] [122]. The substantial improvements however, are obtained at the expense 

of a dramatic increase in computational complexity. This complexity grows exponentially 

with the number of users. Thus, as the number of users increases, the optimum detector 

becomes infeasible. It is therefore necessary to use a "near" optimum, low complexity 

detector for CDMA systems which accommodates a large number of users.

Since then many low complexity multiuser detectors have been proposed. Lupas and 

Verdü considered a linear complexity multiuser detector in [66] [67]. The linear multiuser 

detector achieves optimum near-far resistance but cannot provide "close" to optimum 

performance. A multistage technique was proposed by Varanasi and Aazhang [114] [115],

32
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and Duel-Hallen suggested the decorrelating decision feedback detector (DDFD) [29]. 

Due to error propagation, the multistage multiuser detector and the DDFD achieve "near" 

optimum performance only when the interfering users are significantly stronger than the 

user under consideration (ie. the weakest user benefits the most).

Many other suboptimum detectors have been proposed in the last decade and have 

claimed to be "near" optimum. The question is how near is "near"? Does there exist 

a benchmark to compare all variants of receiver designs and performances? To date a 

reliable performance measure like the bit error rate or the asymptotic efficiency is not 

known for a large number of users, except for the single user bound which is a simple 

performance lower bound. This makes it hard to compare objectively the performances 

claimed by the numerous suboptimum multiuser detectors.

This chapter will first provide background information on multiuser error events. This 

will then provide the basis to compute bit error probability bounds, in particular an exact 

lower bound and a tight upper bound for a multiuser DS-CDMA system corrupted by 

additive white Gaussian noise or a time-invariant frequency flat Rayleigh fading channel.

It will be shown that on Gaussian channels, the upper bound converges to the lower 
bound at moderate to large signal to noise ratios. However, on fading channels the upper 

bound does not converge and hence, only a lower bound is obtained. From numerical 

simulations, it will be shown that (a) the bit error probability (BEP) of a 31 user CDMA 

system with binary random spreading codes of length 31 is only 2 to 4 times higher than 

the BEP of the single user system, (b) the number of users that can be accommodated 

in an asynchronous CDMA system is larger than the processing gain and (c) the opti­

mum multiuser detection outperforms linear detection (eg. the decorrelating detector) 

by about 2.8 to 5.7 dB.

3.2 Bit Error Probability Bounds

The information data bits are usually passed through an encoder (finite-state machine, 

FSM) before they are modulated and transmitted over the wireless channel. The tran­

sitions of the FSM are determined by the input data sequence. We also know that the 

optimum decoder is a copy of this FSM, which attempts to retrace the path (ie., the state
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sequence) taken by the encoder. The decoder will make an error if the path it follows 

does not match with the one taken by the encoder. The data is decoded progressively, as 

the algorithm traverses through a trellis. An important measure of interest is the bit error 

probability associated with such a decoder.

An analytic technique to evaluate bounds on the error probability was presented in 

[35] and [101] and this will be followed here. An error event occurs when the decoded 

path differs from a correct path. An instance of an error event is shown in Figure 3.1. 

The decoder makes an incorrect estimate by following the incorrect path at time j  

and remerges with the correct path, Ck at time j  + L. The overall probability of error can 

be computed by summing each individual constituent error probability. To do this an 

exhaustive trellis search has to be performed which is extremely inefficient.

j  jd-L

correct path 
incorrect path

Figure 3.1: Correct path and an error path in a trellis of length L

For simplicity and conciseness we adopt notations and methodologies from [101]. The 

figure below shows an example of a correct path (solid) and all possible incorrect paths 

(dashed). Without loss of generality, we assume that the error events originate at the zero 

state and terminate at the zero state.

The probability of sequence error from the transmitted sequence c ,̂ P, is the probabil­

ity that any incorrect path is chosen, ie. the probability of the union of individual errors
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— Correct Path 
—• Incorrect path

Figure 3.2: Correct path and an error path in a trellis of length L

e i , j ,

P{ck) = Pr (ULK I ckj (3-1)

where el;j denotes the divergence of the i-th error path from the correct path ck at time 

interval j. By averaging over all possible correct paths we obtain

P  =  ^ P { c k ) P r
Ck

U U eid I Cfc
j  i

(3.2)

where p(ck) is the probability of choosing the correct path ck- The union bound states 

that the probability of the union of events is not greater than the sum of their individual 

probabilities,

Pr (e*.i U e i>2 U e *>3 ‘ ‘ * I Ck) -  Pr(e*d I
j

Using the above statement (3.2) can be simplified as

P < 5>(c*) Pr ( U I °k
ck j  \  i

(3.3)

(3.4)

(3.4) calculates the probability of any error at any time j. Since an infinite trellis looks 

identical at every time unit it is possible to eliminate the sum over j  in (3.4) to obtain the
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error probability per time unit

P < Y ^ P (c^ Pr (Uei I Ck ) (3-5)
Cfc V i  /

where e* is the event that an error starts at an arbitrary but fixed time unit. Applying the 

union bound again over i, the probability of error is upper bounded by

p < Pr (ei ICfc) (3-6)
Ck

Pr(ei\ck) is usually a binary hypothesis test and is written as

Pr(ei I c*) = 0 (37)

where R  is the code rate in bits/symbol, Nq is the one-sided noise power spectral density, 

Eb is the energy per bit and d2ki is the squared Euclidean distance between the signals on 
the error path e* and the correct path ĉ . Q(.) is defined as

1 f°°
Q(x) = ~7tt= /  exP (- y / 2) dV (3-8)

V J x

The upper bound on the P can now be written as

p  < y>(c*)E<2 (3-9)
ck e,|cfc V /

= <3-10>
i,dfev \  V

where V  is the set of all possible squared Euclidean distances d2; Ad2 , the average mul­

tiplicity is the average number of times d2 occurs. The average bit error probability can 

also be simply obtained by finding the average number of bit errors on the error paths, 

Bd2 with distance d2. This bit error probability bound - also known as the Forney bound
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[35] can be further elaborated to

*  s  M « )  (3-id
i,d2tev  V V 0 /  eie£d

where the set Ed contains all error events with a squared Euclidean distance df, and w{ei) 

is the Hamming weight of the error event e*.

It is sufficient to realise at this stage that by computing the distance spectrum - the set 

of pairs {d f, A d?}, the upper bound on the true probability of error can be determined. 

Similarly, a lower bound can also be obtained when V  contains error events of minimum 

squared Euclidean distances only. The upper bound, being a union of all possible error 

events, tends to be loose. The tightness of the bounds relates to how closely the lower and 

upper bounds agree and the asymptotic behaviour refers to the bounds at high signal to 

noise ratios.

' ! "! /  :!•;

j | | j |  . m l  j jg j  HHHBjlj

Lower and Upper bounds

Squared Euclidean Distance

Threshold, T

Figure 3.3: Distance Spectrum and Bound Computation

Figure 3.3 captures the essential idea of bound computation. The distance spectrum is 

precomputed for a particular channel realisation (ie. one R  matrix). Note that it is not 

possible to compute the infinite set of all pairs {d?, Ad2 }, in the distance spectrum. The 

probability of very long error events is negligible; consequently, the set can be truncated
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using a threshold, T. The larger T  gets, the more computationally intensive it becomes 

to compute the partial distance spectrum. However, the truncated upper bound and the 

true upper bound agree much more closely. Tighter upper bounds have been suggested 

by Verdü [125]. These bounds are calculated based on a special set of error sequences 

- indecomposable error sequences. They are carefully constructed such that all error se­

quences in this set are orthogonal to each other and every possible error sequence can be 

reconstructed by a linear combination of elements in this minimal set. The Verdü bound 

can thus be written as

where Td denotes the set of indecomposable error sequences. The special properties that 

define the method of decomposability can be found in [122].

3.3 Bit Error Probability Bounds for Multiuser DS-CDMA

It is a difficult task to determine analytically the exact bit error probability of multiuser 

DS-CDMA systems. Most of the research to date has focussed on the concept of asymp­

totic efficiency, pk defined in [121] as

Pk and Ek are the bit error probability and the energy per bit for the fcth user respectively; 

and cr2 is the variance of the additive white Gaussian noise. The asymptotic efficiency in­

dicates that the logarithm of the error probability goes to zero with the same slope as the 

single user bit error rate with energy PkE^. It was proved in [122][124] that the compu­

tation complexity of the asymptotic efficiency is an NP-hard combinatorial optimisation 

problem. Known bounding techniques similar to ideas presented in section 3.2 will be 

used to estimate the bit error probability of optimum multiuser detection for both syn­

chronous and asynchronous systems on Gaussian and time-invariant frequency flat fad­

ing channels. We demonstrate that the computation of the minimum distance (and hence 

the asymptotic efficiency) of optimum multiuser detection, albeit NP-hard in general, can 

be performed in almost all cases.

P (3.12)

(3.13)
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Both synchronous and asynchronous systems can be modelled as finite state machines. 

This is shown in Fig. 3.4 In the synchronous situation all transmissions can be mapped

User 3

User 2

User 1

Time interval t

Correct Path (+1 , -1 , -1 )  

Incorrect Path (+1, +1, +1)

(a) Synchronous CD M A

User 3

User 2

•e— □

Error Event (0, -2, -2)

(b) Synchronous C D M A  Error Tree 

Figure 3.4: State Diagram and Error Events for a 3-user Synchronous system

to a particular path along a binary tree. Each level of the tree is partitioned with respect 

to a user. For simplicity we assume that the users are using antipodal signalling. The 

correct path is shown in bold and the incorrect decoded path is shown in dashed lines. 

User 1 is not in error, but user 2 and 3 are. An error tree can be used to convey the 

same information, where each error event maps to a particular path along the error tree. 

The error tree grows very quickly and has 3A paths for a binary uncoded synchronous 

system, where K  is the number of active users. In this case there is no ISI or delay spread, 

so each symbol does not overlap with later ones.
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For asynchronous CDMA systems, an error event S is defined in the traditional way 

such that it starts when the error state sequence differs from the correct state sequence 

and ends when the two sequences merge again for the first time. This is a generalisation 

of the standard intersymbol interference trellis to the MU arrangement. The distance 

measure has to be calculated based on errors made by users in previous symbols as well 

as their influence in the current time interval. Fig. 3.5 shows the state transitions and the 

remergence of the error events (bold lines) for an asynchronous system. Note that a valid 

error event occurs when all users have merged back with the correct sequences.

Users: 1

Asynchronous CDMA

Figure 3.5: State Diagram and Error Events for a 3-user Asynchronous system

Some notations have to be introduced at this stage to describe multiuser error events 

and its associated BEP. Let Ac(t) and Ae(t) be the noiseless received waveforms associ­

ated with the correct and errored sequences of S respectively. The normalised squared 

Euclidean distance of £, d2(£), is then defined as || Ac(t) — Ae(t) ||2 /4Eb where || 

x(t) \\2= x2{t)dt. We also assume that the bit energy of all users are the same, 

i.e. E\ = E2 = • • • Ek = Eb. Let w(£) be the Flamming distance between two bit se­

quences associated with £, V be the set of all possible distances, £_d k be the subset of 

error events for user k for which d(£) = d and be the subset of error events in for

which d(£) = dmin, which is the minimum normalised Euclidean distance. The average 

bit error probability (averaged over all users) for a given spreading code set Si can then
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be bounded by a lower bound and an upper bound [35] respectively

P(e|Si) > A d* Q
m i n (1 (3-14)

(3.15)

where

K  is the total number of users and A2dmin is the probability that the transmitted sequence 

is such that one of its congruent error sequences in which at least one error occurs and 

has the minimum possible distance, dmin. w(£) is the Hamming weight of £. We assume 

that random spreading codes are used. Our interest is in the average BEP over different 

spreading code sets. There are mainly two motivations for using random codes. First, 

random signature waveforms are often used in practice, since proper design of codes 

with very low crosscorrelation is not a simple task. Second, the performance of a system 

with random codes can always be regarded as an upper bound on the BEP of a system 

with a "good" set of spreading codes. The BEP is thus computed by averaging P(e|Si) 

over a few hundred or thousand sets of spreading codes, determined by a normalised 

standard deviation e#. The basis for this is a technique called Optimal Conditional Im­

portance Sampling [139] (see section 3.7). Importance sampling techniques biases the 

noise distribution such that more samples are taken from the important regions.

3.4 System Model

Consider a general asynchronous DS-CDMA system and a set of unity energy preas­

signed periodic signature waveforms, Sk(t) k = 1,2,••• ,iT of duration Ts. The input



§3.4 System Model 42

signal to the receiver is

r(t) = A(t, b) +  n(t) (3.16)

where

K  M

A{t , b) =  biyksk(t -  iTs -  Ck)ck exp(j6k), (3.17)
k= 1 i = —M

M  is a positive integer which can be infinite, bi)k is the transmitted signal of the kth. user at 

the time interval (iTs,iT s 4- Ta], C,k is the random transmission delay, which is assumed to 

be uniformly distributed over (0,TS] for asynchronous systems and zero for synchronous 

systems, and n(t) is white complex Gaussian noise with double sided power spectral 

density No where N q = 2a2.

For additive white Gaussian noise channels, ck = 6. For slow time-invariant Rayleigh 

fading channels, ck is a single complex gain. It is also assumed that (l < C2 < • • • < ( k , 

and that the receiver has perfect knowledge of the carrier phase 6k/ the time delay (k/ and 

the bit energy of the received signal.

The sampled output of a bank of matched filters is (similar to 167])

r ' =  7£Wb + z, (3.18)

where

1 r /
r  — [r - M i ” • , * ' m ] — [r ' - M , l i r ' - M , (2>*

. .  J
’ '  i r M ,  1> • * * 5 r M , / d T > (3.19)

b =  [b - M , ” ' , b m ] — b - M , 2 ,  • • • » b - M , K ,  • ' • , b M , 1 , • • (3.20)

Z  =  [ z _ M )  ’ ’

£1T—<1II

"
5s

'  * * • , * M ,  1 , • • '  , Z M , k ]T i (3.21)

n

Ri(0) R i ( - l )  • . R i ( - f i )
R 2(1) r 2(0) . . R i( -n  + i)

Rn(fi) . . R n(l) Rn(0)

(3.22)
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V̂ b̂ -Ki (3.23)

=  2M  +  1 ,1^ is a K  x K  identity matrix, K  = Q.K, the superscript T denotes matrix 

transpose, z; is the matched filter output noise vector with the K  x K  autocorrelation 

matrix given by

R^q( i - m ) =  Sk{t -  Ck)sq{t + (i -  m)Ts -  (q)dtexp(j2ir(6k -  6q)) (3.25)

In (3.22), for a large processing gain (say 31), we only need to consider inter-chip interfer­

ence (ICI) from two symbol durations (ie. minimum 31 chips at each side or R i(k) = 0 for 

I k I > 2). If the processing gain is very small (say 8), then in (3.22) we have to consider ICI 

from more symbol durations for root Nyquist (root raised cosine) pulses. If time limited 

pulses such as rectangular or cosine pulses are used R(2) = R(2) =  0. For synchronous 

systems, R(2) =  R (l) =  R (—2) = R( — 1) = 0. It is easy to show that R^(2) =  R 7/(—2), 

R /7(l) =  R /f(—1) and R ff(0) =  R(0), where the notation (.)H denotes Hermitian trans­

pose. In a later section, we will evaluate upper and lower bounds for asynchronous DS- 

CDMA systems using different chip pulse shapes, namely rectangular, cosine and root 

raised cosine.

From the above arguments, the correlation matrix 7Z is symmetric. It is also assumed 

that the matrix 7Z is positive definite. This condition has been well justified by Lupas 

and Verdü (see linear independence assumption in [67]). Since 7Z is positive definite 

and symmetric, it is possible find a unique lower triangular, non-singular matrix T  such 

that 1Z =  T t T  (Cholesky decomposition, [40]). Thus the matrix T  has the following 

structure:

(3.24)

where the (k , qO-th element of R*(i -  m) is

■oo

—oo

T

Fi(0) 0
F 2(l) F 2(0)
F 3(2) F 3(l) F 3(0)

0
0
0 (3.26)

F q(2) F n (l) F n (0)0
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It has been shown by Wei et al. [140] that by applying a post-processor filter, namely the 

whitening filter to the output of the matched filter, the performance is greatly enhanced 

when dealing with sub-optimum detectors. In particular, the M- and the T- algorithm 

(reduced tree search algorithms) detectors based on whitened filter outputs can achieve 

"near" optimum performance at a very low complexity compared to the optimum de­

tector. If the whitening filter {1FT)~1 is applied to the sampled output of the MF , the 

whitened MF output vector stored in y is

y = jrypb + n (3.27)

where

y  =  [y-M, • • • ,  y  m ] =  [ y - M , i , y - M , 2 ,  • • • ,  y - M , K ,  • • • » y M , u  • • • » y M, K] T , (3.28)

and n = [n ~m , - "  , nM] = [n~M,h n-M,2, • • • »«-m./t»**' i »*** ,nM,K]T, is a white
Gaussian noise vector with autocorrelation matrix, R(n) = ^1^-.

Fig. 3.6 shows the system diagram of a typical multiuser CDMA system using a 

whitening MF.

Multiuser
Detector

Transmitter Channel Receiver

Figure 3.6: Baseband equivalent model of a multiuser CDMA system

In a practical system the whitening filter is related to time varying system parameters. 

Time variations such as the arrival and departure of users, random signature waveforms 

and multipath effects make it necessary to derive the whitening filter after each system 

change. It is obvious that the matched filter detector complexity is far less than a detector
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based on a whitened matched filter. To derive the whitening filter by Cholesky decom­

position requires K 3/3 multiplications. Compared to the decorrelator detector which re­

quires K 3/ 2 multiplications to obtain the inverse of 7Z [29], it is seen as a rather attractive 

solution.

It is important to realise that to obtain an ideal whitening filter, the correlation matrix 

7Z has to be factorised. As the size of the matrix grow large (ie. Q -> oo), the Cholesky 

decomposition becomes impractical. The ideal whitening filter is also an infinite impulse 

response filter. As a more realistic option, Wei [140] proposed a finite impulse response 

filter which is a more viable real-time option as Tl —> oo. In any case, for the relevance of 

the work here it is assumed that 71 can be factorised and that there exists a unique lower 

triangular non-singular matrix T .

3.5 Procedure to Compute The Near Ideal Noise Whitening Fil­
ter

For asynchronous systems the average BEP is computed using cosine and root Nyquist 
chip pulse shaping. In [140] a method was shown to derive a near ideal noise whitening 
filter for time limited pulses. For root Nyquist filtering, F(Z) can be determined by the 

following procedures:

Stepl :

Find F m (0). { Cholesky Decomposition F^/ (0)Fm (0) = R m (0) }

Set F m+i (1) = F m+i (2) = 0
Step2 :

Loop i=M,- • • ,1

Fi(l) = (Ff(O))-1 [R,(l) - F f +1(1)F,+1(2)]

F;(2) = F n 0 )) -1R,(2)

F^.1(0)Fj_i(0) =  R,_i(0) -  F f  (l)Fj(l) -  Ff+1(2)Fi+1(2)

StepS :

F(0 =  F x (Z), l =  0,1,2.

Thus for a reasonably large M  (say 10), one can obtain F(Z).



§3.6 The Partial Distance Spectrum Calculation 46

3.6 The Partial Distance Spectrum Calculation

In this section we present a method to compute the partial distance spectra for both syn­

chronous and asynchronous systems. The distance spectrum can only be computed by 

an exhaustive tree search, as a consequence of the irregularity of multiuser systems. Any 

finite state machine can be classified as regular, quasi-regular or irregular. If the system 

is regular or quasi-regular, then one can obtain the distance spectrum by considering just 

one path as the correct path. However, if it is irregular then it is not possible to truncate 
or prune the exhaustive tree search during computation of the distance spectra.

3.6.1 Synchronous Case

The decision rule for the optimum synchronous multiuser detector is to select the symbol 

vector b which minimises the Euclidean metric

K
b 6 arg min || y — JFWb jj2 = arg min A* * (3.29)

b e { —i , + i } *  b G { - i , + i } *  ’

where

K k  =  (  Vi,k-  Y ,'‘ '’ (O (3.30)
k'=1

is the k-th. user metric function based on the whitened filter outputs and F^k,k ) (0) denote 

the (fc, k')-th element of the lower triangular matrix F(0) at a time interval i. The squared 

minimum Euclidean distance for time i and user k is therefore

Lmin min || JTWb -  TW b  ||2
b,be{-l,+l}K

min || ||2

K
min > df ̂

£ M - 2,0,2}*A.fc#0“  ’

dlk F f  >fc,)(0)Ek.SiJk,

(3.31)

(3.32)

(3.33)

(3.34)
j f c ' = i
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where the error event £{ is a vector consisting of the individual errors of each user, (ie. 

£_{ = [£i,i£i,2 , • • • , £{,k]) during a particular time interval i.

The synchronous algorithm can thus be written as follows:

1. Start at root node, for user number k = 1.

2. Compute distance, d2k and accumulate in D2

3. Store error path Hamming weight.

4. Drop paths from future extension with D2 > threshold, T.

5. Increment k to the next user;

6. If k = K  stop and compute bit multiplicity, probability of error else go to 2).

The computation of the minimum distance is straightforward, since a threshold T 

of twice the single user distance will ensure discarding most of the paths in the tree 

search. In general, the number of branches searched by the above algorithm is signifi­

cantly smaller than the full tree. This is shown in Fig. 3.7.

3.6.2 Asynchronous

We proceed along similar lines to that described above and compute a partial distance 

spectrum for asynchronous systems. The error vector now comprises of elements from 

the current and previous symbol intervals. The algorithm is broken up into two phases. 

The first phase (startup phase for symbol interval i) extends branches in the same fash­

ion as the synchronous case, (ie. the incremental distance d2k is calculated using only 

F;(0)). It is assumed that there are no users in error before the startup time interval. The 
distance metric is given as in (3.34). The cumulative distance is always carried along 

with the paths. At any time interval, paths with distances greater than the threshold, T 

are eliminated. This is done in a recursive manner. From the second time interval and 

beyond the contribution to the overall distance is not only from users within the current 

symbol but also from users in the previous symbols intervals.

For large processing gains (say 31) it is only necessary to consider inter-chip interfer­

ence (ICI) from the previous two symbol intervals. For time limited chip pulse shapes
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User 3
User 2

path terminated, > T

User 1

d,,!=(F,!J(0)£ü+Fiu (0)£,.2)J

d ,;= (F1x,(0)£1>l+F1u (0)£,J+F,J'!(0)£u)!

Threshold, T = twice the single user minimum distance

Figure 3.7: Distance computation for a synchronous tree

such  as cosine or rectangular, the increm ental d istance d fk is w ritten  as

Y l F(ik'k')(0)Ek,£iik.+  Y , (3.35)

For root N yqu ist chip pulse  shaping  (w here the interference is from  the prev ious 2 

sym bol periods), the generic increm ental distance beyond  the sta rtup  phase is given by

dh =  ( Y FiC \ 0 ) E k,£i,k, + Y F ,t ' k' \ l ) E k.£i- 1,k.+  Y
\k '= 1 k'= 1 k'=k+1 /
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A successful error event in the asynchronous situation occurs when all K  users have 

merged back with the correct sequence. The terminating conditions are

1) All users have merged back with the correct sequence for a particular error event, or

2) The cumulative distance D2k has grown beyond the threshold, or

3) The tree has been completely searched.

Until these terminating criteria are met, paths need to be extended indefinitely. Note 

that the deletion of paths was strictly based on the property that the incremental distance 

can only be positive. If however, the distance computation was based on the MF output 

[121], paths with D2 k can not be dropped since a future branch may arise in a negative 

distance increment. For each valid error event its associated squared Euclidean distance 

and the bit multiplicity are recorded. The general asynchronous algorithm (cosine chip 

pulse shaping) can be written as follows:

1. Initialise threshold, T; Set user index k =  1;

2. Synchronous start-up phase. Construct error tree as per synchronous case for initial 

symbol interval.

3. Compute incremental distance d2k and accumulate in D2 according to 3.34.

4. Retain path information (ie. Hamming weight and accumulated distance so far) 

with jD2 < T  for future extensions.

5. If k = K, increment time interval to i + 1.

6. Compute incremental distance d2+l k according to 3.35 and accumulate.

7. Check if any of the terminating criteria is met else go to 6.

8. For all successful paths (accumulated distance less than T after termination), com­

pute bit multiplicity and BER.

The following diagram (Fig. 3.8) helps to illustrate the operation of the algorithm. For 

the sake of clarity, in a 3 user system, if the incremental distance metric d2+l k, is being 

calculated at time interval i + 1 and k = 2, contributions from user 1 and 2 are calculated 

with the use of JTi+1(0) while user 3 is computed using 7i+i(l).
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User 3 User 1 User 2 User 3
User 2

path terminated, D,2 > T

User 1

,<WHF”w<0Ku+O 0 K u ^ m < lK i ’

Fu 0 F12F,j F„
J,(0)= f", F22 5w(1) = 0 o'V“ 5i+1(0)= f", F22

F„ F„ Fjj 0 0 0 F„ Fj2 Fj,

Figure 3.8: Distance computation for an asynchronous tree

3.7 Average BEP for Random Codes

A technique called Optimal Conditional Importance Sampling [139] has been applied 

to estimate the average BEP. From the preceding sections, it is possible to calculate the 

conditional error probability, P(e|S) given a particular correlation matrix, where S is a 

sample matrix from the density ps(S). Applying the total probability theorem, we have

P(e) = [  P{e\S)ps {S)dS (3.36)
J  R(S)

where R(S) is the space spanned by the set of randomly selected spreading codes. For a 

small number of matrices one can compute the exact value of P(e). However, for a large 

set this becomes practically impossible. An approximation technique well suited for this 

can be found in Appendix 1 of [139] where it is shown that one can estimate P(e) by its
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unbiased estimator P'(e), where

P '(e ) = !  X > ( e | s i) (3.37)

3  is the number of simulation trials and Si are independent realisations of S which are 

generated according to the pdf of S, ps(S). Since P'(e) =  P{e), the estimator of the error 

probability in (3.37) is unbiased and its normalised error, W  is given by

W ' = IP*(e\S)ps(S)dS (3.38)
J  R(S)

However, the evaluation of (3.38) has the same complexity as (3.36), thus we can estimate 

it also using an unbiased estimator, given by

The normalised standard deviation, e#, indicates the number of simulation trials re­

quired for a reliable estimate of the probability of error. The approach of (3.40) is similar 

to that used to estimate 7 and 7* in [78] and [79].

3.7.1 Procedure to estimate the BEP

The procedure followed to estimate the BEP is outlined below,

1. Generate a set of random spreading codes, time delays, (i and carrier phases,

2. Compute R(/) based on (3.25)

3. Compute F (/) based on the algorithm in section 3.5

4. Find a partial distance spectrum using the method in section (3.6.2).

(3.39)

(3.40)
k=1

5. Compute P(e|Si) based on (3.15) and then the estimated normalised variance, e# 

to monitor the accuracy of the estimator. If e# is too large (say > 5%), go back to
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step 1 and run more simulations.

3.8 Numerical Results

In this section we use the above algorithm to evaluate performance bounds for asyn­

chronous CDMA with binary random signature waveforms of length 31. For asynchronous 

systems we use both cosine and root Nyquist pulse shaping, while the results for syn­

chronous CDMA apply for all pulse shapes since there is no interference between chips 

for each user. T  = 2.5 times the minimum distance of the single user system and e# < 5% 

for all simulation results.

The effect of the threshold T, can be seen in Fig.3.9. At low signal to noise ratios (SNR) 

the union bound is loose and truncation is not valid, however, at moderate to high SNR 

the bound is both valid and effective since error events with minimum distance only 

contribute at large. Therefore, as a rule of thumb we can compute an approximate upper 

bound by selecting T to be 2.5 times dmin of a single user system.

6
SNR(dB)

Simulated symbol error probability and truncated union bound

Figure 3.9: Comparison of union bounds for different thresholds T, synchronous CDMA with 
binary random spreading codes of length 31,1 = 31.

Figs. 3.10 and 3.11 show the partial distance spectra of synchronous and asynchronous 

systems for the worst case of 100 simulations. For synchronous systems the distances
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have only a few possible values, while for asynchronous the distance spectrum is much 
denser and many of the distances are concentrated about 2 and 4.

Partial Distance Spectrum,1=31 ,N=31 .Synchronous,Threshold=5.1

2.5
Distance

Figure 3.10: Synchronous system partial distance spectrum
Partial Distance Spectrum, 1=31 ,N=31 .Asynchronous,Threshold=5.1

.£ •  2

2.5
Distance

Figure 3.11: Asynchronous system partial distance spectrum

Figs. 3.12 and 3.13 show the upper and lower bounds on the BER as a function of 

Eb/No for CDMA systems with 31 users and a spreading length of 31, using cosine pulse 

shaping. Over thousand sets of binary random spreading code were generated. It can 

be seen that the lower and upper bounds are asymptotically tight at high signal to noise
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ratios.

Fig. 3.14 shows the average BEP as a function of the number of users, I, for E^/N q = 

7dB. Clearly the lower and upper bounds are very tight. It is seen that as the number 

of users increases the optimum BEP increases slightly for both synchronous and asyn­

chronous systems. The BEP for 1=30 is about twice that of the single user case which 

agrees with the simulation results in [138] and [140]. The BEP of the decorrelator detector 

is estimated by

In the asynchronous scenario, a system with root Nyquist chip pulse shaping has a 

performance slightly worse than one with a cosine pulse. There are three interesting phe­

nomena. (a) The maximum number of users that can be accommodated in asynchronous 

systems is larger than the processing gain without catastrophically increasing the BEP. 

However, the number of users that can be accommodated in synchronous systems is lim­

ited to the processing again [138], (b) The optimum asynchronous system has a much 

lower BEP than the synchronous case. This can be explained by investigating the statisti­

cal properties (namely mean and variance) of F M(0), where F*,l(0) indicates the diagonal 

element of F(0). The value of F z,*(0) indicates how much energy is present in the sig­

nal domain of the ith user. The higher the correlation between the users the lower the 

value of F M(0), generally leading to a poorer system performance. Typically the values 

of F M(0) in synchronous systems are smaller than in asynchronous systems. In sum­

mary, asynchronism decreases the correlation between spreading codes, which explains 

why asynchronous systems outperform synchronous ones, (c) For E^/No = 7dB, the op­

timum detector significantly outperforms the linear detector by about 2.8 to 5.7 dB (20 to 

31 users) for asynchronous systems with cosine pulse shaping.

In a typical cellular system both forward and reverse channels experience Rayleigh fad­

ing. For time-invariant frequency flat fading channels, we have obtained similar bounds 

on the BEP for optimal detection. However, the upper bound does not converge for the 

fading channel, hence we can only estimate the BEP of the system using the lower bound. 

For the down-link, the fading processes of all users are identical, thus the Q-function in

(3.41)
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(pp. 717, [86] ie. bit error rate over a flat Rayleigh fading channel) is simply replaced by,

In (3.42), we assume that the channel parameters do not change over the error event 

with the minimum distance. For the up-link, the fading process of each user is inde­

pendent and has a Rayleigh distribution. We will estimate the bit error probability by 

computing the lower bound on P(e|Si) in (3.14) for a given set of spreading codes and 

fading parameters. In Fig. 3.15, the BEP as a function of the number of users is plotted 

for a time-invariant frequency flat Rayleigh fading channel and cosine pulse shaping. It 

shows that the BEP for 31 users is almost the same as the single user bound which is 

supported by the simulation results in [137]. For the down-link, the error rate is slightly 

higher than that for up-link. Up to 150,000 sets of binary random spreading codes were 

tried to ensure e# <5%.

Fig. 3.16 compares the tightness of the upper bounds for a 5 user asynchronous system, 

with random binary spreading codes of length 31 using the Forney bound and Verdu's 

theory of indecomposable error events. An error sequence S 6 £ is decomposable into 

S' e S  and S" € £  if

1. € = S' +  S"

2. S' < S ,S "  < S

3. < S{S '),S(S") > > 0

where the final condition is the inner product of the multiuser signal modulated by the 

error sequences S' and S",

The procedures followed to determine decomposability of error events are outlined be­

low:

(3.42)

i = —M k'=1 i= i' — 1 fc=l

1. Find all error events in S
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2. Create a set E of all possible combinations of error events. The conditions for 

constructing such a set are (a) there is no element in the combination set which 

is larger than 2 or smaller than -2, (b) there is no cancellation at any position in 

set E. For example, consider a 2 user system using BPSK. Let the set of all er­

(2,2), (—2,2), (2, -2 ) , (-2 , -2 ). The combined error event of (2,0) and (2, -2 ) is 

(4, -2 ). This is discarded since one of its element is larger than 2. Similarly, (2,0) is 

discarded due to the cancellation of the first element in (2,0) and (—2,2).

3. Check if set E has any identical error events, £ in the original set £_. If it does then 

that error event £ can be decomposed into the constituent error events £' and £".

4. Using £' and £" check decomposability criteria.

5. If all conditions are satisfied then delete £ from original set.

For a 31 user system, we need to examine approximately 1.75e8 combined error events, 

which is too computationally intensive. We will however calculate the Verdü upper 

bound for a 5 user system and show its tightness relative to the Forney bound (see Fig. 

3.16).

In Fig. 3.17 and 3.18 the mean and variance of multiuser interference for synchronous 

CDMA systems is shown. It is seen that the mean of diagonal terms of T  increases and 

the variance decreases as the user index, i increases. The diagonal element is well above 

the interference except for the first few users. For synchronous systems, we define the 

sample mean as

Figs. 3.19 and 3.20 show the mean and the variance of an asynchronous system using 

cosine chip pulse shaping (ie. T  has components F(0) and F(l) only) plotted against 

a delay index k. To explain, the user delay index k, is analogous to a finite impulse 

response filter tap. The figures illustrate that (a) the diagonal element (tap 1) contains 

about 80% of the total energy and the remaining energy spread across the interfering 

30 users(taps) as a result of the non-orthogonal signature sequences, (b) the average in-

ror events be £ = [£\£2] = (0,2), (2,0), (0 ,-2 ), (-2 ,0 ), (2 ,-2 ), (2,2). Set E =

(3.43)
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terference energy of each tap is lower than in the synchronous situation. The statistical 

properties of T  were obtained by averaging over 10000 sets of binary random spreading 

codes of length 31. In summary, as the number of users increases the the interfering en­

ergy is shared or distributed among users and previous symbols. The impact of this is 

a marginal improvement in the BER performance for asynchronous systems. Compared 

to corresponding synchronous systems, the interfering energy of each tap is lower while 

the energy in the diagonal element is much higher. This also gives us some explanations 

why many low complexity detectors can provide near optimum performance.

3.9 Summary

This chapter has used the union bounding technique to evaluate the optimal performance 

of synchronous and asynchronous multiuser DS-CDMA systems. An algorithm has been 

presented to compute bounds on the BEP of CDMA systems. The truncated upper bound 

was calculated by considering distances up to a threshold, T. It was found that the up­

per and lower bounds on Gaussian channels converge when the error probability is less 

than 10-4 . Numerical results and simulations show that the optimal performance of 

asynchronous systems is better than synchronous systems. Another observation is the 

graceful degradation in the bit error probability for optimum multiuser detection as the 

number of users in the system exceed the processing gain. This is in contrast to the per­

formance of CDMA systems employing single user detection. The BEP of asynchronous 

systems with 31 users and binary random spreading codes of length 31 is very close to the 

BEP of the single user bound. The optimum detector outperforms the linear detector by 

about 2.8 to 5.7 dB. Finally a lower bound was obtained for slow frequency flat Rayleigh 

fading channels. This bound was very close to the single user bound.
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31 users, Average of 100 simulations, synchronous

Upper Bound

Lower Bound

Single User Bound

SNR(dB)

Figure 3.12: Synchronous system - Average upper and lower bounds for a 31-user DS-CDMA 
system with binary random spreading codes, N=31

31 users, Average of 100 stmutaVions, asynchronous

5
SNR(dB)

Figure 3.13: Asynchronous system -Average upper and lower bounds for a 31-user DS-CDMA 
system with binary random spreading codes, N=31
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BEP vs number of users for DS-CDMA systems

lower
Asynchronous, RNF:i upper 
...........4...................... i lower■ luw ei

Synchronous, decorrelator 
Synchronous, Cosine, decorrelator

15 20
Number of users, I

Figure 3.14: BEP bounds as a function of the number of users I for Eb/N0 = 7dB with binary 
random signature waveforms of length 31.

Lower bounds for slow flat Rayleigh fading channel
0.001

Equal fading for all users -b- 
Random fading for all users •-*-

0.0001
15 20
Number of users

Figure 3.15: BEP versus the number of users for slow Rayleigh fading channel, Et, /No = 34dB, 
cosine pulse shaping
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Upper Bounds, 1=5, Spreading length = 31, Asynchronous

:orney Upper bound

Verdu Upper Bound

Single User Bound

SNR(dB)

Figure 3.16: Comparison of Verdü and Forney bound

Figure 3.17: Mean of T  for synchronous systems, Mean MAI = 0.1491
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Variance of 10000 Random matrices

Figure 3.18: Variance of T  for synchronous systems, average variance of MAI for 10000 sets = 
0.0225

Mean of the average multiuser channel

Delay index, k

Figure 3.19: Mean of T  for asynchronous systems
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Variance of the average multiuser channel

Delay index, k

Figure 3.20: Variance of T  for asynchronous systems



Chapter 4

Performance Evaluation of Trellis 
Coded Multiuser CDMA

Overview: This chapter shows how to evaluate a Trellis-Coded Modulated (TCM) mul­
tiuser CDMA system. It describes the parameters and algorithms used to evaluate their 

performances. The performance of trellis codes, like that of block codes, depends on 
a suitably defined minimum distance property of the code. In particular, we study 

three properties of the minimum squared Euclidean distance, (d^in) namely (a) an upper 
bound on (b) the effect of non-orthogonal spreading on d^in and (c) the relation­
ship between d?rnin in coded and uncoded synchronous multiuser systems. We prove that 
if all users use trellis codes with the same memory length and the same number of in­

put bits but different signal mapping sets, the upper bound on the normalised minimum 

squared Euclidean distance for a multiuser CDMA system with non-orthogonal spread­

ing is identical to that of a system with one user. The results indicate that the coded 

multiuser system may be able to recover the minimum distance loss of an uncoded mul­

tiuser system due to non-orthogonal spreading (if there is such a loss). As a result, we 

derive and study upper and lower bounds on the ratio of djCn between a system with 

non-orthogonal and orthogonal spreading. Finally, we show that the minimum squared 
Euclidean distance for a convolutional coded synchronous multiuser system is no less 

than the product of the free distance and the minimum Euclidean distance for a corre­

sponding uncoded synchronous multiuser system.

63
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4.1 Introduction

In a CDMA system, several users transmit information simultaneously and indepen­

dently over a common channel using preassigned signature waveforms. If the signature 

waveforms are orthogonal, the conventional single-user detector (sampled matched filter 

followed by a threshold decision device) provides optimum demodulation. However, in 

practice, such as in the mobile radio environment, non-orthogonal, but low correlation, 

signature waveforms are often used. The problem of the design of strictly orthogonal 

codes for a large number of users (relative to the processing gain) is known to be a dif­

ficult problem for the synchronous case; the practical reality of asynchronous transmis­

sion renders this pursuit almost futile. Hence, nonorthogonal spreading waveforms with 

low crosscorrelation properties such as pseudo random sequences are employed in prac­

tice [39] [77] [95] [43]. In a CDMA system with non-orthogonal waveforms conventional 

single-user detection suffers two main drawbacks. First, it requires strict control of the 

transmitter power of each user, which in most cases is difficult to achieve and second, as 

the number of users approaches the processing gain, the conventional detector performs 

poorly. These drawbacks are caused by the fact that the conventional detector treats mul­

tiuser interference as noise rather than exploiting the rich multiuser correlation structure 

to achieve interference cancellation.

There has been a large amount of interest recently in the design of multiuser receivers 

for CDMA systems. Most of this work has focussed on uncoded links (ie. without the 

use of error control coding) [121][31][114][89][4]. These receivers treat all signals as infor­

mation bearing and decode all users jointly. The significant "value add" that multiuser 

detectors promise is enhanced spectral utilization and a reduced need for precise power 

control. The substantial improvements however, are obtained at the expense of a dra­

matic increase in complexity. The complexity grows exponentially with the number of 

users. Thus when the number of users is large the optimum detector [121] becomes in­

feasible. As a consequence, much effort has been directed towards sub-optimal receiver 

structures for both Gaussian and fading channels [114][115][100][89][8][69].

Combining forward error-control (FEC) coding with CDMA is a relatively new ap­

proach that has been studied only recently [37][50][42][7][100][56][5]. Error control codes 

are necessary for reliable performance of cellular systems. When convolutional codes
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are employed by all users, the optimal sequence detector is more complex than the opti­

mal detector for the uncoded case (since there is additional memory associated with each 

user due to error control coding). Once again, research efforts have been directed to the 

design of numerous sub-optimal methods. Some of the key contributions in the area of 

multiuser detectors for encoded data are discussed below.

A successive cancellation technique using a class of orthogonal convolutional codes 

was applied to CDMA systems [131]. The author showed that the use of very low rate 

codes is an ideal choice for CDMA since it is able to support a composite data rate to 

bandwidth ratio of greater than 1 b its/sec/H z (ie. an improvement over traditional mul­

tiple access schemes like TDM A and FDMA). When used by a large number of users in 

the presence of white Gaussian background noise, these special codes achieved an aggre­

gate data rate approaching the Shannon capacity of Gaussian noise channels.

Reference [37] discussed multistage detection for convolutionally encoded signals. Two 

approaches were taken, (a) a partition trellis based receiver, in which equalisation and de­

coding were done separately (see Fig. 4.1) and (b) an optimum sequence estimator, where 

the decoded symbols of the interferers were used to cancel the multiple access interfer­

ence from the desired user's signal. It was realised that the exponential dependence of 

the time-complexity-per-bit (TCB) on the number of users rendered the optimal decoder 

prohibitive for a realistic system. Nevertheless, the optimal receiver is important since 

it represents a benchmark that can be used to compare the performances of suboptimal 

schemes.

Soft Estimate r,

Code Bit Estimates

Soft Estimate rK

multistage
DFE,

multistage
D FE .

Soft Viterbi

Soft Viterbi

Figure 4.1: Multistage DFE multiuser equalisation followed by Soft Viterbi algorithm
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A novel scheme was proposed by [100] which used single user trellis decoding rather 

than optimal joint decoding in an attempt to reduce complexity (see Fig.4.2). The single 

user decoders take a soft metric from a multiuser device that is responsible for decou­

pling the multiuser channel into single user channels. This is another example where 

the multiuser equalisation is done prior to the decoding operation. In the case where the 

near orthogonal Gold codes were employed the loss from single user performance was 

minimal however in the random code channel, the loss was several dB. The random code 

channel appears to be a more harsh environment than the Gold code synchronous chan­

nel. In any case the design of this decoupling receiver is important since it will form the 

basis of any future implementation of a practical system.

Soft InformationSpread c,(t)

Chip
Matched

filter

Encoder 2

Encoder K

Encoder 1 SU Viterbi

SU Viterbi

SU Viterbi

n(t)

Figure 4.2: Baseband equivalent model for coded CDMA and SU receiver

Most of the research to date has focussed on the design of multiuser receiver structures 

with error control coding. The performance evaluation of these receivers can be studied 

by computing the "minimum distance" measure. This "measure" is directly related to 

the bit error performance and will ultimately enlighten us on how to design more robust 
CDMA systems, ie. combating multiuser interference by using error control codes to en­

hance performance. In this chapter we will not design sub-optimal receivers but rather 

investigate properties of the squared Euclidean distance, djGn for coded multiuser sys­

tems. The asymptotic performance for the optimal multiuser detector is determined by 

dinin’ We are interested in the question: Is there any loss in the upper bound of due 

to a non-orthogonal or non-singular spreading waveform set? Based on a natural exten­

sion of Calderbank et al. [22] we will derive upper bounds on for coded CDMA
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systems given any trellis code. It will characterise the behaviour of such systems. If the 

upper bound on d2min for a coded multiuser system is significantly worse than that of a 

single user system, it may not even be worthwhile studying coded multiuser systems. 

We show that the multiuser minimum squared Euclidean distance is upper bounded by 

single user systems. The effect of non-orthogonal spreading on is studied next. This 

effort extends the work of Lupas and Verdü [66] for uncoded system to a coded system. 

In particular, upper and lower bounds are derived on the ratio between in systems 

with non-orthogonal and orthogonal spreading. Last but not least, we show that it is 

possible to compute for the coded multiuser case provided we know the minimum 

Euclidean distance for the corresponding uncoded case.

4.2 System Model

Consider a general asynchronous DS-CDMA system and a set of unity energy preas­

signed periodic signature waveforms, Si(t) i =  1,2, •• • , i f  of duration Ts. We assume 

that

• the i-th user uses a trellis code with k{ input bits, n* output bits and memory length 

of i>i bits

• the input and output bits of different users are independent

• the input ki bits are represented as a 2fci-ary symbol, bmj

• the output rii bits are mapped into the 2ni-ary two dimensional symbol xmj  (ie., 

QPSK or QAM mapping) where m is the symbol interval

The input signal to the receiver is

r(t) =  A(t, b) +  n(t) (4.1)

where

K  M

A{t , b) = ^2  exP{jOi)xm,iSi{t -  mTs -  £*), (4.2)



§4.2 System Model 68

M  is a positive integer which can be infinite, 6i is the carrier phase, Ci is the random 

transmission delay, which is assumed to be uniformly distributed over (0,TS] for asyn­

chronous systems and zero for synchronous systems, and n(t) is white complex Gaussian 

noise with double sided power spectral density Na where AT0 = 2cr2. We also assume that 

Ci < (2  <  • • • <  ( k , and that the receiver has perfect knowledge of the carrier phase 0*, 

the time delay Ci- This model closely follows that of section 3.4.

x m,i is the transmitted signal of the zth user at the time interval (mTs, mTs +  Ts\. It is a 

function of the most recent symbol (6m>i) and previous 1̂  symbols (6m-i,i, • • • , 6m-i/i,i) of 

user i, the mapping function being represented by a(). Thus

%m,i — ^{bm,ii bm—l,i? ’ ' * 7 7̂71—1/1,1)- (4-3)

For the multiuser case the output symbol vector xm can be represented in a similar form 

to (4.3) as,

X m  =  [2-771,15 7 2 / J7X)/ c ]  <2 (^7 7 1 ,1 7  7 ^771 —1 /1 ,1 ?  7 ^771, K  ? * * * ? ^771 — I / f f , / c )  ( ^ - ^ )

The multiuser joint trellis represents a trellis code with k = k\ + H---- + kj< inputs and

a constraint length of V  =  v\ +  v2 + • • • +  vr bits. Using a notation similar to Lupas and 

Verdü [67], we obtain sufficient statistic at the output of the matched filter bank,

where rm j  is the sampled output of the matched filter for the m-th bit of the i-th user and

r' = 1ZX + z, (4.5)

(4.6)

(4.7)

(4.8)

[* * * 7 X 771— 1? X 77l? X 7 7 1 + l?  * '  ’
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and the symmetric correlation matrix TZ is

. R(l) R(0) R (—1) 0
0 R(l) R(0) R ( - l )  . (4.9)

The baseband model of the receiver is shown in (4.3).

Trellis 
Encoder K

Trellis 
Encoder 1

Multiuser
Detector

Transmitter Channel Receiver

Figure 4.3: Baseband equivalent m odel for coded CDMA

As in chapter 3, it is assumed that the matrix 1Z is positive definite. This condition has 

been well justified by Lupas and Verdü (see linear independence assumption in [67]). 

Since 7Z is positive definite and symmetric, it is possible find a unique lower triangular, 

non-singular matrix T  such that TZ = T t T  (Cholesky decomposition, [40]). Thus the 

matrix T  has the following structure:

. F (l) F(0) 0 0 .
0 F (l) F(0) 0 . (4.10)

where F(0) is a K  x K  lower triangular matrix with a non-zero diagonal (ie. F m,z(0) =  0 

if l > m  and F (l) is an upper right triangular matrix with a zero diagonal (ie. F m,i(l) =  0 

if / > m. Thus, if the whitening filter (T t )~1 is applied to the sampled output of the
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matched filter, the output vector is

y =  E X  +  n (4.11)

where

y — [* * * 5 2/m, 1 j 2/m,2) '  '  ’ i ym,K»' ‘ ] (4-12)

and n is a white complex Gaussian noise vector with autocorrelation matrix R{n) =  

liV0I. where I is an identity matrix. Similar to the work of Forney [35], we adopt an 

equivalent discrete model of the multiuser system illustrated in Figure (4.4).

Trellis 
Encoder K

Trellis 
Encoder 1

Multiuser
Detector

Transmitter Channel Receiver

Figure 4.4: Equivalent discrete model of the system

4.3 Normalised Minimum Squared Euclidean Distance

In this section we will use matrix notation to define a multiuser error event and its asso­

ciated distance measure. Let an error event E of length L last from time m to time m + L, 

ie. the decoder having decided X =  (xm+i, • • • , x m+/,) instead of the correct sequence
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X — (xm-|-i, •• • , xm+^). The squared Euclidean distance d2(E) is

d2(E) = II T  (x - x) ||2 (4.13)

= Qh£t K Z +l £Q (4.14)

= q hd (e )q (4.15)

where D{E)  is a symmetric, positive, semi-definite matrix which is called the distance 

matrix,

QT =  [Qf, " •,< & ] (4.16)

=  fei,o> • • • > 9i,ri-ii • • * 5 Qk ,o, • • • , Qk ,rK-i] (4-17)

is a vector comprising of all possible output symbols, V 

K  K
r  =  ^ 2 r  i = ^T 2"i+fci (4.18)

i = l  i = 1

E is a T x K L  matrix such that X -  X = EQ where E — [£i,£2 , * • • , £k ]-

7Z™+L is a K L  x KL  correlation matrix given by,

' j p m + L

R(0) R (—1) 0 0 0 ••• 0
R (l) R(0) R (—1) 0

0 . . . . .

. R (l) R(0) R (—1) 
0 ••• 0 0 0 R (l) R(0)

(4.19)

For a code with k input bits and a memory length of v bits, there are a total of 2"+k 

unique branches in its trellis. If each branch is mapped onto a symbol q, the maximum 

number of symbols is 2u+k. Let us look at the following example to illustrate the above 

concepts.

Example 1: Consider a two user system with a 4 and 2 state trellis code with mapping 

illustrated by Fig. 4.5.
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state input/output

Trellis of user 1

Aim

q.,4°
q.,5

Trellis of user 2 mapping

Figure 4.5: Trellis diagram and arbitrary mapping format of a 4 state and a 2 state code
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The normalised squared Euclidean distance of error event

E = {X,X} =  {(gi,0>92,0>9l,0>92,0>9l,0»92,o)>(9l,4)92,2)9l,2)92,l»9l,l)92,o)}

is

d2(E) =  Q hEt V?0£Q (4.20)

where

Q

s

n 3
0

Q i 

Q2
(4.21)

'91,0, • • * , 91,7)92,0» • • ) 92,3]
T (4 .2 2 )

[SiS2] (4 .2 3 )

' 1 0 0 0 - 1  0 0 0  1 0  0  0 0  "

0 0 0 0 0 0 0 0  1 1 0  - 1 0

1 0 - 1  0 0 0 0 0  1 0  0  0 0
(4 .2 4 )

0  0 0 0 0  0 0 0  1 1 0  - 1 0

1 - 1 0 0 0 0 0 0  1 0  0  0 0

0  0 0 0 0 0 0 0  1 0  0  0 0  _

' # 1 1  (0) # 1 2 ( 0 ) 0 0 0 0 '

# 1 2 ( 0 ) # 2 2 ( 0 ) # 2 1  (1) 0 0 0

0 # 2 1 ( 1 ) # 1 1  (0) # 1 2 ( 0 ) 0 0
(4 .2 5 )

0 0 # 1 2 ( 0 ) # 2 2 ( 0 ) # 2 1  (1) 0

0 0 0 # 2 1  (1) # 1 1  (0) « 1 2  (0 )
0 0 0 0 # 1 2 ( 0 ) # 2 2 ( 0 )

The m inim um  Euclidean distance of user i can now be given as

dmin,i = min QHSTH \SQ (4.26)

where Z{ is the set of all finite-length error sequences with Si ^  0 (ie. the zth user must 

be in error).
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Let Z  = {Zi : i = 1, • • • ,K }  and P  be the average power, ie.,

F= 2^E E «*
/C 2fct+l/i

(4.27)
z= l m =0

4.4 Properties of d2mini for Coded Multiuser CDMA

In this section we will investigate two properties of d2mini. Specifically we will derive an 

upper bound for the multiuser squared minimum Euclidean distance and secondly we 

will investigate the effect of non-orthogonal spreading on

4.4.1 Upper Bound on Squared Minimum Euclidean Distance

We are concerned with the transmission of digital data using trellis codes to gain im­

munity over standard uncoded methods. Let us consider the upper bound of the nor­

malised squared minimum Euclidean distance d 2m in  of a coded multiuser CDMA system 

for any given non-orthogonal and non-singular spreading waveform set and any trellis 

code mapping format. That is

Upper bounds for in a single-user scenario using trellis codes have been well studied

by coding theorists. We generalise the results of Calderbank et al. [22] to a multiuser 

environment. In this section we are interested in the question, is there any loss in the 

upper bound on due to a non-orthogonal and non-singular spreading waveform 

set? It is easy to verify that the upper bound is the same as those for the single-user case 

by selectively choosing an orthogonal spreading code set. This is not very informative, 

so we choose to study the upper bound without constraining ourselves to a specific set or 

sets of spreading codes, rather the ensemble over all spreading codes and all trellis code 

mapping formats. It is thus important to realise that should the upper bound for the 

case P  ^  I be significantly worse than the single-user upper bound, the coded multiuser 

system may not be useful in practice and therefore not worthwhile studying at all. Let us

d 2m i n / p  =  max
m i n i d m in ,i

p
= max min 

Q E e z

Qh D{E)Q
P (4.28)
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familiarise ourselves with some of the results in [22]. First, an upper bound on for a 

trellis code with constraint length, v and k input bits is

dmin>/P< 4(1+ £) (4.29)

if k divides v, and second, Lemma 3 of [22] states that the total number of times rrii{x{a)), 

a branch with symbol x(a) occurs in section i of the error events of set S, is given by

2 19 1
Trii(x(a)) = (4.30)

In the following two lemmas it is proved that the two properties hold for I Z ^ I .

Lemma 4.1 The i-th diagonal entry of the distance matrix D (E ) is equal to the total num ­

ber o f times the branch with symbol q% appears in an error event o f length L.

Proof: For a given error event, the i-th diagonal entry of D{E),

D ( E f  = eJ 11% ei (4.31)

where e* is the i-th column vector of S. Since ej consists only of -1,0, +1,

D (E )Ü = ne, (ftfo ) (4.32)

where nej denotes the number of non-zero elements of vector e*. Since ('llq)11 = 1,

D (E )" = nei. I

For the above example we have D(E)11 = 3ilu (0) = 3 

Lemma 4.2 All row sums o f D{E) are zero.

Proof: It is true since all row sums of S are zero. |

Proposition 4.1 If all users use trellis codes with the same m emory length and the same 

number o f input bits but different signal mapping sets (ie. Vi = v, ki = k, i = 1, • • • , K )
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and k divides v, then the normalised squared minimum Euclidean distance for a 

trellis coded multiuser CDMA system with TZ ^  I satisfies

d2min/P  < 4(1 +  "-) (4.33)

which is identical to the single-user case o f (4.29).

Intuitively for 71 = 1, this amounts to computing the upper bound for a multiuser joint 

trellis code with a total constraint length of K v  and input bits of Kk.

Proof:

d m i n / P max min 
Q Eez

Qh D(E)Q

„+V  . QhD(E)Q2K+ max mm -
Q Eez QHQ

(4.34)

(4.35)

Let S  be an arbitrary set of error events and S L be the set of all error events of minimal 

length L where L = {u + k)/k.  Since the minimum distance is upper bounded by the 

average,

d m i n / P  —

2k+v
max 

Q
(E Ees^ d (E)) Q 

QHQ
(4.36)

Let D l = Y .ecSLwe ^ en have

d m i n / P  <
2K+V
\ S L \ Q

max

2K+V
r̂ T

QHDLQ
QHQ

(Dl )

(4.37)

(4.38)

where Amax(.) denote the largest eigenvalue of matrix (.). According to the Gershgorin 

circle theorem [40], the distance between the eigenvalue and diagonal element is always 

less than or equal to the row sum of the off diagonal elements. From lemma 4.2, (ie.
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A — diagonal < diagonal).

Am a x ( D L ) < 2(diagonal) = 2 ( U \ S L \\  
\  2*+v ) (4.39)

Thus for a minimum length L = (v +  k)/k,

d m i n / P  < 4 L (4.40)

(4.41)

I

Proposition (4.1) indicates that the correlation matrix does not affect the upper bound 

of the normalised squared minimum Euclidean distance. This suggests that one may be 

able to find an error control code that can cancel the influence of the correlation matrix. 

Hence, the trellis coded multiuser system may be able to recover the minimum distance 

loss of the uncoded multiuser system due to the correlation matrix (if there is such a loss).

It is worth mentioning that if we introduce a linear processing filter V  before spread­

ing (see Fig. 4.6), such that V = T ~l , then the correlation between users due to non- 

orthogonal spreading codes can be eliminated. Therefore, if there is a code that can 

achieve the above upper bound for the single-user system (ie.TZ = I), then by proper de­

sign of a multiuser joint trellis code (trellis code and filter T ~ l ), the above upper bound 

for the multiuser CDMA system can also be achieved. This spreading process can be 

viewed as a joint encoding scheme (ie. to incorporate the effect of a decorrelating filter 

along with the trellis code). However, this will violate the assumption that all users are 

encoded independently. But of course, for all practical purposes, the transmitter gener­

ally does not know how to construct this filter, which motivates us to investigate the next 

topic - the loss in minimum distance due to the effect of 7Z.

Proposition 4.2 If the error control code is catastrophic or the correlation matrix 7Z sin­

gular; then the coded multiuser system is not feasible

Proof: An encoder with generator matrix G(D ) is catastrophic if there exists a u(D)

such that Hw(u(D)) =  oo and Hw(u(D)G(D)) < 'oo, where Hw(.) denote the Hamming
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Trellis 
Encoder 1

Trellis 
Encoder K

Multiuser
Detector

Transmitter Channel Receiver

Figure 4.6: Linear processing filter V before spreading

distance of the sequence. Such an encoder will imply that a finite number of errors in the 

received sequence can cause an infinite number of errors in the data sequence u{D). 1

4.4.2 Effect of 7Z on d2min

It is easy to show that if the filter V  is used in the system, the minimum squared Euclidean 

distance of user i is given by

= m i? Qh£t V t KD£Q (4.42)

In this section we study the effect of 7Z by evaluating the ratio of the squared minimum 

distance of user i between the system with 7Z and a system with orthogonal spreading 

codes 71 = 1,

minEeZi QH£TV T71V£Q 
7/1 “  minEeZiQH£TV TV£Q

minEeZj eH7le
minEe2i

(4.43)
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where e =  VSQ  for a given error event E. The following lemma is important for further 

analysis.

Lemma 4.3 (a)

Amin ( 7 C + i + 1 ) <  A m in C 'C 4 1 ')

\  ( ' ] ? m + L + l \  ^  \ ( ' r ? m + L \
Araai \ ,x"m ) — Amax \ /v m /

(4.44)

(4.45)

(bj If'll is positive definite, Am*n (7£™+L) and ^ max (7̂ ™+L) for L = 1 , 2 , • • • , oo form two 

convergent series.

Proof: If a matrix A is Hermitian, the Rayleigh coefficient xxiiAxx is bounded by Amin (A )  

and Amax(A) [40].

A m i n (^4) 5:
X H  Ax 

X H X
5: A m a x { A ) (4.46)

(a) can be illustrated by the following arguments. Let 7£™+1° be of the form

-r>m+10
/cm

R(0)i,! R ( - 1 )i ,2 0 0 0 . . .  0
R(l)2,l R(0)2,2 R(l)2,3 0

0 . . . .

0
• R ( l ) 9 , 8  R ( 0 ) 9 , 9  R . ( l ) 9 ,1 0

0 . . .  0 0 0 R(l) R(0)io,io

and 7£™+30 be of the form

'T'7 7 7 1 + 3 0

R(0)i,i R (—l)i,2 0 0 0 0
R(1)2’i R(0)2,2 R(1)2,3 0

o

o
. R ( l ) 2 9 , 2 8  R ( 0 ) 2 9 ,2 9  R ( l ) 2 9 , 3 0

o . . .  0 0 0 R (l) R(0)30,30
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where 7£™+30 can be written as

'j^rn+30
y h

(4.47)

where Amin(7£™+30) is the minimum eigenvalue of the correlation matrix 7£™+30 and 

equals

AmmC^m+3°) =  m)n
X H V % + 3 0 X

X H X
min x HH 2 +™x

x ^ 0 , x H x = l

Rewrite x ). Now (4.48) can be written as
y  J

A m i n P C + 3 °)

<

. /  ~ \ (  n m+l° ym m j ^ 0 ! / ) (  z

min ( 2/io y ) (
x H x = l , y =0  \

K™+1°
Y «

From eqn.(4.50)

Ami„ ( f t" +3°) < min =  Amin(R™+30)
2/io2/io=l

(4.48)

(4.49)

(4.50)

(4.51)

As n -» oo the eigenvalues of TZ™+n get smaller. The same analysis applies for the maxi­

mum eigenvalues.

(b) Since Amin(7£™+L) decreases monotonically and is lower bounded by 0 and Amax( 7 ^ +L) 

increases monotonically and upper bounded by oo (< oo), Am*n(7?,™+L) and Amax(7£™+L) 

form two convergent series. |

We now state the following proposition about the upper and lower bound of the ratio,

m-

Proposition 4.3 For any trellis code and filter V  used in the system , the ratio r]i is bounded 

by

Am in (fä )  'Hi — Amax (fä )  j * — 1 j ’ ’ * 5 K - (4.52)
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Proof: Let ei and e2 be two vectors of length L 1 and L2 (ie. elements of both e\ and 6 2  

are zero outside (m, m  + Lj}) to satisfy

e * K 2 +L'el e f f td
CHC€i 6 1 €fci

ei

C2

< T]i

arg min eHlZe (4.53)EeZi
arg min eHe (4.54)

EeZi
minEeZi^Ue ^ e^TZe2 _  e^ft™+L2e2 „  ccx

. it S rj j j  (4.00)min EeZi^e  e2 e2 e2

Since

H'Tjm+L. /7?m+L\ /vm < \
un V ‘ "̂m ) — "  ^  A (7C + l)e"e _  max (4.56)

we have

Amin(K2+Ll) < TH minEeZj eH1Ze 
minEeZi eHe

< Amax(nZ+L2) (4.57)

According to lemma 4.3, we have

A™„(7?) < \ m i n ( K Z + L l ) < V i <  Amax(R” +L2) < Amax(K) (4.58)

■

The above proposition shows that for a given 7Z, regardless of the kind of linear fil­

ter and trellis code used, the minimum distance ratio is bounded by the minimum and 

maximum eigenvalues of IZ. For specific linear filters we can obtain tighter bounds.

Lemma 4.4 (a) If V = I, then ry < 1.

(b) If V  = T ~ l, then ry > 1

Proof: (a) If V  = I, the minimisation of the denominator in eqn. (4.43) (ie. m in # ^  e#e) 

can be realised by an error event (say e') which only user i has error (ie. Si 0) and all 

others do not have error (ie. Sj =  0 for j  =  1, • • • , i — 1, i +  1, • • • , K). We then have

min eHn Z +Le < e HlZe' = e He' (4.59)
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(b) I fV  = Jr \  then r]t = m^ ^ H £Tn -?£Q and we can prove (b) similarly |

For uncoded binary systems and V  =  I part (a) of the lemma 4.4 was shown by Verdü 

and r]i is equivalent to the concept of asymptotic efficiency of user i given by (9) in [122]. 

For an infinite dimensional matrix TZ, it is difficult to compute the exact value of the 

minimum and maximum eigenvalues. However, according to lemma 4.3 it is possible to 

estimate the above bounds.

4.4.3 Asymptotic efficiency for coded CDMA

If V  =  I, an analysis similar to [66] can be carried out to obtain a tighter lower bound for 

r/j. Let us reorder the matrix 1Z as

R = a i
I (4.60)

where A* is obtained from 7Z by deleting all rows and columns related to the z-th user 

and a* is comprised of the columns related to the z-th user with the entries of the z-th user 

removed. Let

A* a *
- l G* Si

TL  a / I T[ g i H z  .
(4.61)

For example 1, z =  1 and L = 3 we have,

i?22(0) 0 0 | #12(0) f l2l ( l ) 0
0 f l22(0) 0 1 0 f l i 2(0) Ä 2l( l)
0 0 1^22(0) 1 0 0 f i i 2(0)

fll2(0) 0 0 1 # n ( 0 ) 0 0

Ä 2l( l) f i i 2(0) 0 1 0 f in ( 0 ) 0
0 Ä12(0) 0 0 Ä ii(0 )

Proposition 4.4 I fV  = I ,  then 

1
m >

(4.62)

^m ax (Hj)
(4.63)
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where H z can be contracted by partitioning 71 into R and taking its inverse. As a special 

case for synchronous CDMA, rji > which is the same as (2.13) of [66].

Proof: If V  = I, then

min eHe = min (SiQi)H SiQi.
E&Zi E£Zi

Since eH7Ze, (SiQi)H SiQi and are positive for E e Z if

minEeZi eH7Ze . eH7Ze
TJi =   ;-------- 1-----TJ—  >  m m  ------------- 77---------

mm BeZi eHe Eez{ (£.Qi)H SiQi

Let ei = SiQi and cz =  [e[ , • • • , ej_l , e[+l, • • • , e^]T. We then obtain

(4.64)

(4.65)

min
eHlZe = min

r „H „H l 'A  i a i ' C i
[ ci ei \ p 1__ . ei .

E&  {SiQi) SiQi

=  min ( 1 +  
E€Z,

e f e {
clA lci c(/ azet +  eEa[cl \
e“ ez + efe* )

where the minimum of this is achieved by any element cz such that

(4.66)

(4.67)

A jc f  =  - a zez (4.68)

Since 71 is positive definite, so is A*. Thus substituting cz =  -  A xazez in (4.67), we have

min
eH7Ze

E (S i Qi r  SiQi E^
= min I 1 -  =  min ( l  -  e^ Ai ^ e<

EeZief e z e fe j
(4.69)

Then simplifying the above expression we obtain

eH7Ze
min
E ^ z i { S iQ i)*1 S iQ i  e f e *

= m i n , ^ 0 1 > 1
kmax (Hj)

(4.70)
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In the special case of synchronous CDMA,

H, =  ((R(0)_1))‘’ l»}j > min
E^ ‘ (SiQi)" SiQ, ((R(O))-1)- 1

(4.71)

I

Since Amax(Hi) < Xmax{R~*) =  X^in(R) = A~-n(ft), the lower bound of (4.63) is tighter 

than that of (4.52). For an infinite dimensional matrix 1Z, it is difficult to compute the 

exact value of Amax(Hj). However, we can estimate the value by the following procedure. 

Reorder the matrix TZq as R l ,

E l  =
&i,L

I L
(4.72)

where A ^  is obtained from TZq by deleting all rows and columns related to the i-th user 

and a»,!, is comprised of the columns related to the i-th user with the entries of the i-th 

user removed, I I  is an identity matrix of size L x L. Let

A  i tL &i,L
- 1

g  i,L
T

L a i,L IL .
T

L s h H itL (4.73)

According to Lemma (4.3) Amai(Hi)z/) forms a monotonically increasing convergent 

series as L increases. Thus the value of Amax(H;)00) can be estimated by Amax(H i^) with 

a large value of L. This is further illustrated in the numerical section.

From propositions (4.3) and (4.4) it is shown that the squared minimum distance ratio 

between the system with 1Z and the system with a set of orthogonal spreading codes is 

lower and upper bounded, regardless of the kind of trellis code or linear filter V  used.

Proposition 4.5 If binary channel signals are used, then i > d/ree.i^min.i f°r

user i, where c(^in i is the squared minimum Euclidean distance for a coded system and 

dfree , i is the free distance.

Proof: A multiuser error event comprises of error events (ie. Xj — X* ^  0) or zero

sequences (X* — X* = 0) of individual users. For binary channel signals, dfreej  is the
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minimum number of positions for which xpj  ^  xpj. For synchronous CDMA systems 

with V = I,

= mm ( x - x ) T R ” + i ( x - x )  (4.74)

m + L

=  S  (xp -  x?)T R (°) (xp -  xp) (4.75)
p —m

Let xp — xp = ep. Since

^ min,i = min epR(0)ep
xp,i' 'Xp,i' ixp,i^xp,i

(4.76)

we obtain
m + L

(4.77)

= J 2  epR(0)ep > dfreeAd2mi i
p —m

(4.78)

1

The above proposition indicates that if convolutional codes are used using binary sig­
nalling in synchronous multiuser systems, then the minimum distance of user i is no less 
than the product of djree  ̂and the corresponding minimum distance of the uncoded sys­
tem. It also indicates that it may be better (in terms of maximising {) not to use the 
same error control code for all users.

4.5 Numerical Results

In this section we highlight numerically some of the propositions claimed. Firstly, we 

show the convergences of sequences (as L -+ oc): Amax(H ;!L), Am i n { ^ m + L ) and Amax(7Z™+L ) 

in section (4.4.2). We generate 100 sets of 1Z for a 3-user asynchronous and synchronous 

systems with binary random spreading codes of length 5. Random spreading code sets 

have to be discarded due to singularities in the correlation matrix. A singular R ma­

trix occurs when the terms Fz,l(0) = 0 for the k-th. interval. In this case the whitening 

filter does not exist. If min(FM(°)) < 0.005, i = 1, • • • ,K , then the set is discarded. If 

the matrices generated were singular then the set was discarded and a new set of ran­

dom waveforms generated. We present Amax(H i)L), Am in{K ™ + L ) and Amax( 7 ^ +L) as a
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function of L for the best and worst cases. The worst cases each satisfy

arg j  max 
100sets7l

arg r max
lOOsetsft

' . (nm+m -  1 l< °-05Amm t /v m )

\m * x (K T L)
A, ( K S +100) 1 K  0 05

arg t max 
100sets77

AmaxlH^/,) 
Amax (H ^ io o )

1 |< 0.05

and the best cases each satisfy

argr min
100 sets'll

arg r min
100se£s7?.

argr min 
100sets7£.

7---- ( v m+100a - 1 l < 0 - 0 5 f .

At ™ +L) 1 | < 0 Q 5
771+100 \ 1 U ,U 0\  /''T>777+IUU\

Amax v ^

A7?iax (H i,Z /)  

Amax(Hf)ioo)
-  1 |< 0.05

(4.79)

(4.80)

(4.81)

(4.82)

(4.83)

(4.84)

where the maximum value of L used is 100. From Figs. 4.7 and 4.8 it can be seen 

that we can approximate Amax(Hj)00), Amm (7 ^ +°°) and Amax ( ^ +°°) by Amax(Hi)L), 

Amin (^ ^ +L) and AmQI(77^+L) with a sufficiently large value of L.

Best and worst c a s e s  for mininum and maximum eigenvalues
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Figure 4.7: Ami„(7£™+L) and Xmax(R-m+L) as a function of L for the best and worst cases
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Figure 4.8: Amax(HjiJ[/) as a function of L for the best and worst cases

In Fig.4.9 we present the estimated bounds L = 60 and the exact value of min^i,... 17i

where V  =  I and K  = 3. All users use a rate 1/2, 4 state convolutional code (generator 

polynomial (5,7) in octal) to encode the binary data bits. The figure shows that for the 

100 1Z matrices investigated, the lower bound Amax(H. L) *s alwaYs tighter than that of
\  . 7?m +60''m in  ''•'771

It is often an easy task to use the method described in chapter 3 to compute the min­

imum squared Euclidean distance for an uncoded system even for a large number of 

users, say 31. However, it has been found that this algorithm does not scale very well 

for the coded multiuser system. It grows exponential in complexity to compute d2min. 

To illustrate the complexity, a tree search for a simple 2-user system, both users em­

ploying rate 2 /3 Ungerboeck 8PSK code requires more than 3 million paths to obtain 

minj=i5... d ^ in i. This obstacle is due to the truncation threshold, T  set at the minimum 

distance for the coded single user system (much larger than the corresponding distance 

of the uncoded system). Note that the tree collapses quickly as the paths have distances 

exceeding the threshold, T (see Fig. 4.10).



§4.6 Summary 88

t'* ' / i

/ "  ' Ü ?

B 0.4

;—  Exact value of eta
solid 1 /lambda_.max(Hi)
—.o mineig(R)

) 40 50 60 1
R matrix no.(100 ca ses  studied)

Figure 4.9: Lower bounds and exact values of rfr for 100 sets of 1Z

4.6 Summary

Several properties of the minimum squared Euclidean distance • were presented for 

a coded multiuser system. Although intuitive, it has been proved that if all users use 

trellis codes with the same constraint length and the same number of input bits, but dif­

ferent signal mapping sets, then the upper bound of d2min i is identical to that of the upper 

bound of the single user case. This result indicates that a coded multiuser system may re­

cover the minimum distance loss of an uncoded multiuser system due to non-orthogonal 

spreading (if there is indeed such a loss). We thus introduced a linear processing filter 

V = before the spreading to negate the effects of non-orthogonal spreading. How­

ever, in a realistic situation this is not feasible, since the transmitter requires knowledge 

of the correlation matrix 1Z.

Motivated we then continued to study the effect of 1Z on In particular, the ratio of 

between a system with 1Z I and 1Z = I was investigated. Tight upper and lower 

bounds using matrix algebra for this ratio rji were derived for a coded asynchronous 

system and their rates of convergences proved.
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Finally, numerical results were used to illustrate the convergence of the bounds. Ap­
proximations were made to estimate rn for infinite dimensional TZ matrices. A note on the 
computation complexity of minimum distance for a coded multiuser system was made. 

The algorithm developed in chapter 3 to compute the minimum squared Euclidean dis­

tance for an uncoded system has been found not to scale well for a coded system.



PART 2

Multiuser Detection for the Time Varying Frequency
Selective Channel

OVERVIEW: In the remainder of the thesis, we examine the design and performance of 

Maximum Likelihood Sequence Detectors (MLSDs) for linearly modulated or DS-CDMA 

signals sent over time varying, frequency selective Rayleigh fading channels, corrupted 

by Gaussian noise and multiple access interference. Two optimal multiuser detectors are 

investigated. One knows a priori the time varying channel impulse response, the other, 

more realistically, knows the channel autocovariance. The computational complexity of 

these centralised receivers grows exponentially with the number of users. To this end, we 

propose two additional single user receivers that are linear in complexity with respect to 

the number of users. The single user receivers take into account the structure of the 

multiple access interference when making decisions. An analysis of the MLSDs is also 

provided. We obtain tight bit error probability bounds using a truncated union bounding 

approach.
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Chapter 5

The Transmitter, Multipath Channel 
and Receiver

Overview: In this chapter, we characterize the transmitter, investigate a model for the 

wireless propagation environment and study the theories and practices of receiver de­

sign. We set the stage for the two subsequent chapters by providing a common signal 

model and an understanding of the need for more advanced receiver structures. The 

properties of time and frequency selective multipath channels are explained. An appre­
ciation of the problems in mobile communications will be identified to allow the design 
of more sophisticated receiver architectures.
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5.1 Introduction

The wireless channel in mobile communications is difficult to communicate over. When a 

radio signal is transmitted over a wireless channel, the wave propagates through a physi­

cal medium and interacts with physical objects such as buildings, trees, hills and moving 

vehicles. The propagation of radio waves through this medium is a complicated process 

that involves diffraction, refraction and multiple reflections. Any attempt to characterise 

the wireless communication channel must be a reasonably approximate model. In this 

chapter we capture the time varying dispersive nature of the multipath channel and rep­

resent some of its characteristics statistically. This model will then be used in subsequent 

chapters to design and evaluate the performance of multiuser receivers. Shown in Fig.

5.1 is a diagram of the multiuser communication system, where each user's transmitted 

signal is convolved with the time-varying channel impulse response Ck(t, r).

ChannelTransmitter

A

Figure 5.1: Multiuser CDMA communication system

5.2 The Transmitter

The spread spectrum generation process involves two fundamental steps: modulation 

and spreading. This modulated spread spectrum signal is then upconverted to the de­

sired RF frequency. Each user is allocated the same RF carrier frequency and occupies 

the same RF bandwidth. In our discussion we assume that the complex baseband sig-
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nal is transmitted and received (ie. we bypass upconversion and downconversion). The 

transmitter design is essentially the same as Part I, however, for the sake of completeness 

some notations must be reintroduced.

The transmitted signal ak(t) of the 7th user is

7 - 1

ak(t) = ^2 \kV ^ksi,k{t -  iTs -  Ck) (5-1)
i=0

where 6 ^  is the kth user's ith transmitted symbol; y/Ek is the 7th user's transmitted bit 

energy (different due to power control); 7 is the data packet length (Note the change in 

notation from Tl in Part I to 7 in Part II); Ts is the symbol duration and £* is the time 

delay of the kth user due to asynchronism. The data bits are combined into M-ary digits 

taken from an M -ary alphabet, then mapped either directly or with differential phase 

to the constellation points 6^ . In CDMA signals, b^k is usually taken from the binary 

constellation {+1,-1} . The data bits from all users are arranged in a 7 x K  matrix B 

such that (B )^  =  b^k- Si,k{t) is either the kth user's unit energy signature waveform 

with DS-CDMA or every user's pulse shape with linear modulations (taking into ac­

count all transmitter filtering). In long code DS-CDMA signals (like IS-95) the signature 

sequence effectively changes every transmitted symbol. For linearly modulated or short 

code CDMA signals, Si tk ( t )  = Sk( t ) .  We also introduce Tc as the duration of a chip, and N  

as the number of chips per symbol period (so NTC = Ts and N  = 1 for linearly modulated 

signals).

Chip pulse shaping is important in asynchronous transmissions since it directly affects 

the amount of interchip or intersymbol interference in the received signal. In our investi­

gations, each chip used a root raised cosine chip pulse shape truncated to 1.5 chip periods 

with 30% excess bandwidth. Bandwidth efficient pulses such as the raised cosine pulse,

sinTrt /T c cosx?rt/Tc 
* t/Tc 1 - 4X2*2/ T 2

(5.2)
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and the square root raised cosine pulse,

hp{t) = ^ Y ^ s in c (— -  + — sincixt/Tc 4- 1/4)cos(7t£/Tc + tt/4) +

^-sinc{xt/Tc -  l/4)cos(7ri/Tc -  tt/ 4 )  (5.3)

are often used, x  is the excess bandwidth, 0 < x < h  so the one sided bandwidth of both 

pulses is Shown in Figs. 5.2 and 5.3 are some typical pulse shapes in the time and 

frequency domains. The pulses were truncated to 50 chip periods.

Time in chip periods, T

Figure 5.2: Chip waveforms in time domain, x = 0.3 for cosine and root raised cosine

5.3 Radio Propagation and Mother Nature

In this section we consider an asynchronous multiple access channel shared by multi­

ple users whose signals are subject to a time varying frequency selective Rayleigh fad­

ing channel and additive white Gaussian noise. Fig. 5.4 shows a typical wireless com­

munication environment. A typical model of land mobile radio consists of an elevated
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Figure 5.3: Chip waveforms in frequency domain

base-station antenna, a line of sight (LOS) propagation path, many non LOS propagation 

paths and a mobile antenna mounted on the vehicle or the portable unit. The situation 

of more than one propagation path is referred to as multipath propagation. Because of 

natural and man-made structures located between the mobile receiver and the base sta­
tion, a direct LOS may not exist. The mechanisms which govern the propagation of the 
non LOS paths are complex and diverse, and that they can in general be attributed to 

three basic propagation mechanisms: reflection, diffraction and scattering. Reflection 

occurs when the electromagnetic wave impinges upon an obstruction with dimensions 

very large compared to the wavelength of the radio wave. Reflections are caused by the 

surface of the earth and from buildings. Diffraction occurs when the radio paths between 

the transmitter and receiver is completely obstructed by an inpenetrable body. It explains 

how radio waves can travel without a LOS path and is often called "shadowing". Scat­

tering occurs when the radio channel contains objects with dimensions that are on the 

order of the wavelength or less of the propagating wave. Scattering causes energy from 

the transmitter to be reradiated in many different directions. For example if a mobile is 

at street level without a LOS path to the base station, diffraction and scattering are most
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Figure 5.4: The Mobile communications environment

likely to dominate the propagation. As each propagating signal traverses a different path 
from its source to destination, not all signals arrive at the receiver exactly at the same 
time instant. When the difference is small with respect to the chip period, the only effect 

is a change in carrier phase. The complex gains of the multipaths may add constructively 

or destructively, leading to amplitude fading (Rayleigh or Rician). When the difference is 

comparable to the chip period the path time delays are described by the concept of delay 

spread. Since the carrier phase changes completely every carrier wavelength, the vector 

sum of the multiple paths' gains changes rapidly over short distances. Thus slight move­

ments in either the receiver or its surroundings cause a time varying complex gain. The 

rate of variation of this is described as Doppler spread. In general, the multipath channel 

can be characterised as time varying and dispersive.

5.4 Channel - Linear Time Varying Filter

A time-varying multipath communication channel can be modelled as a linear time vary­

ing filter. Its applications in the characterising communication channels were studied in 

the late 1950's and 1960's by Bello [14]. His work, including dual theory [86] and the 

wide-sense stationary uncorrelated scattering (WSSUS) model, is part of the foundation
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of today's channel measurement and modelling techniques. In the CDMA context, each 

user is characterised by its own channel Ck(t, r). For convenience we examine just one 

user and thus drop the dependency on k.

A linear time varying filter can be represented by its impulse response c(£, r). c(£, r) is 

defined as the response measured at time t to a unit impulse applied at time t — r. For 

an input signal x(t), the filter output y(t) can be expressed by the convolution of x(t) and 

c(t , r) , as

r  oo
y(t) =  / c(t, r)x(t  — r)d r (5.4)

J —oo

This applies to all linear time varying linear channels, such as the telephone channel, the 

optical fibre channel and most importantly the mobile radio channel. Bello named c(t, r) 

the Input Delay-Spread Function. The response of the time varying system can also be 

studied in the frequency domain. For the two time variables, there are two corresponding 

or dual frequency variables, namely

t ++ / ,  and t v,

where v is the Doppler shift and /  is the transfer function frequency. By performing 

Fourier transforms on each of the time domain variables we can obtain the dual functions. 

The time varying frequency response C(t, f ) is the Fourier transform in the r  domain of 

c(t, r) , as

r oo
C ( t , f ) =  / c (f,r)ex p (-j2 7 r/r)d r (5.5)

J —oo

The Doppler-delay spread function is defined by

r oo
S(is, t) =  / c(t, t) exp(—j27ri>t)dt (5.6)

J —oo

The spread function has a clear physical meaning. It is the response of the network to a 

input exp(j2irvt) divided by exp(j2nut). The impulse response can be obtained by the
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inverse Fourier transform

S(v, r) exp(j2nvt)du (5.7)

5.5 Channel - Random Time Varying Filter

Since c(t, r) is difficult to estimate precisely and due to the complex scattering typical of 

the mobile communication channel, it is appropriate to model c(£, r) by a random time- 

varying filter. Thus the behaviour of c(t, r) is determined completely by its probability 

densities at all times t and for all impulse excitation delays T{. The ensemble mean of 

c(t, t) is defined as

roo roo
gc{t,T) =  E{c(t ,T)}zi  / c(i,r)pc(t>T)(c ( t,r ) )^ d r  (5.8)

J — oo J —oo

where pc(t)T)(c(t, r)) is the probability density of c(£, r) for any given r  and t. The auto­

correlation function is defined as

Rc{t,t'\T, t ') -E{c(t , r)c*(t', r')} (5.9)

c(£, t)c* (*', r')pc(t)T)c.(t/)T/)(t, r, T')dtdt' drdr'
—oo •/ —oo •/ —oo ^ —oo

where denotes complex conjugation and / c ( t>T)c * (t ',T')(^ T>r / ) denotes the joint prob­

ability density function for all pairs of c(<, r) and c*(£', r ').

5.6 Complex Gaussian Distributions

The envelope of a complex Gaussian random variable, z is \z\ =  y  z\  +  z] and the phase 

is tan~ 1{z i / z r ). When the random variable z is zero-mean, the phase is uniformly dis­

tributed and the envelope is Rayleigh distributed.

,z > 0 (5.10)



§5.6 Complex Gaussian Distributions 99

where o\ =  E (z2). If the channel has a non-zero mean, then the channel envelope has a 

Rician distribution.

Given a length n vector of samples, Z from a complex Gaussian random process with 

mean E (Z), the multivariate pdf equals

P(Z) =  (2,) -ndet]Rzzl eXP(^ (Z -  £(Z ))ffR - (Z "  (5'n )

where the n x n autocovariance matrix is given by

Rzz = lß ( (Z -£ (Z ) ) (Z -£ (Z ) )" )  (5.12)

This result (5.11) is a special case (ie. when the covariance matrix of the real and imag­

inary parts are equal) of a more general result. For the sake of completeness, we now 

state this general result [81]. Given a length n vector of samples Z' =  X + j Y  = 

[zi, • • • , zn], Zi = Xi + jyi from a complex Gaussian random process, the joint density 

is given by

p(Z#)

p(Z#)

P(z l, ? y i j  ■ ■ ’ iVn) 

1  ' 1 
27 (27r)n det |Z)|

exp{-^Z  'D~l Z,H}

This function is an exponential in terms of the 2n by 2n matrix, D where

(5.13)

(5.14)

D
Ryx Ryy

(5.15)

consisting of the 2n -I- n2 real parameters R x x  =  ^{x^Xj}, R yy  =  E{yiyj }  and R x y  =  

E{x.iyj}. The covariance matrix of the complex vector Z' is an n by n Hermitian matrix

R zz =  R x x  + R yy -  j(R x y  -  R yx) (5.16)

If the vectors X and Y are such that R x x  =  R yy and R x y  =  —R yx  then the joint 

density is given by (5.11).
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5.7 Wide Sense Stationary Uncorrelated Scattering (WSSUS)

When the system is said to have the property of being wide-sense stationary (WSS), the 

mean gc(t, r) and the correlation function Rc(t, t'; r, t ') depend on time differences only, 

not absolute times, as

This is a good model for wireless communications as the channel is approximately WSS 

for long intervals (COST 207).

If the channel's responses at different delays r  are uncorrclated, the system is said to 

be uncorrelated scattered (US). Physically it means that rays at different delays traverse 

such different routes and are scattered by such different scatterers that the responses at 

different delays are uncorrelated.

Wide sense stationary uncorrelated scattering (WSSUS) is when both the WSS and US 

conditions are satisfied. This is the simplest statistical model that still has enough degrees 

of freedom to model practical channels accurately.

r) = /i c(t )

R c{t,t']T,T') = R c{t -  t'\T,T')

(5.17)

(5.18)

R c(t,t']T,T’) = R c{t,t'-,T)6{T ~ t ') (5.19)

Rcit,t'\T,T') =  R{At,T)6{T -  r') (5.20)

where R{At, r) is the autocorrelation in time of each tap r.

5.8 Delay Spread and Doppler Spread

In a realistic multipath environment, there can be many paths and they can arrive at 

different, sometimes long, delays. These components form a delay power profile. The 

extent of the power delay profile is called the delay spread, r.
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Figure 5.5: Typical delay power profile, r p  = first arrival delay, Tr m s  = rms delay, LtTs = t l  — t f  

maximum excess delay, tl =final arrival delay

The root-mean-square delay is normally used as a measure of delay spread, rrms. It is 

the delay standard deviation. The ratio rrms/Tc is an important measure of the channel's 

frequency selectivity. For rrms/Tc = 0, the channel is frequency flat. The larger the 

delay spread the more severe the dispersion of the transmitted signal. In general, receiver 

complexity increases for increasing r . Although rrms is a useful parameter to characterise 

the channel, the total delay spread, LtTs is more important for MLSD receiver design. 

Note that rp may also be viewed as the asynchronism between users

The Fourier transform of the tap autocovariance R (A t , r) with respect to A t is the 

Doppler spectrum,

Doppler spread captures the rate of variation of the channel. Even the smallest movement 

causes time varying multipath, and thus randomly time varying signal reception. For ex­

ample, if a carrier wave (an unmodulated sinusoidal tone) of frequency f x is transmitted, 

then because of Doppler spread fp ,  we receive a smeared signal spectrum with spectral

(5.21)
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components between f x — fo  and f x + / d - The amount of "smearing" is characterised 

by a dimensionless quantity fo T s. When / dTs =  0, the channel is time-invariant. For 

higher values of foTs, the fading is often labelled "fast" or "slow". There are no precise 

definitions of these, and the most workable definition is that a channel is considered fast 

fading if a receiver designed for a slow fading channel is limited by the fading rate rather 

than the noise in its operating region. It is however, generally accepted for frequency flat 

channels that when fr>Ts < 0.01, the fading is considered slow (ie. the fading process re­

mains relatively constant over a few symbol intervals), and when fo T s > 0.1, the fading 

process is known as fast fading.

5.9 Discrete Delay and Discrete Time Channel Modelling

Physically, (5.4) represents a transversal filter, where each value of r  indexes a tap with 

a time varying gain c(£, r) and the outputs are summed together. The tap positions and 

gains are functions of time. For a discrete multipath channel with P  paths, the complex 

baseband channel output is

p - i
y(t) = _  r*)

i=0
(5.22)

The channel impulse response is thus

p - i
c(f,t) =  Ci(t)6{r -  Ti) (5.23)

z=0

and is shown diagrammatically in Fig. 5.6. There are two types of limitations involved 

with a channel. One is associated with the physical limitation of the channel itself such as 

its delay spread and its rate of change reflected in the maximum delay LT and maximum 

Doppler shift /p.  The second type of limitation comes from the interaction of the channel 

with the signal, and is due to the latter's bandwidth and duration. Limited bandwidth 

is precisely the condition required by the time sampling theorem. For example, if the 

complex baseband input signal x(t) is bandlimited, that is

* ( / )  =  o , m > / x (5.24)
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Tapped Delay line

T0 T, T0 Tj-Xj., Tp-Xp.,

Figure 5.6: Channel impulse response represented as a tapped delay line

where X (/)  is the Fourier transform of x(t), then the time sampling theorem states that

oo

x ( t ) =  Y ,  x{iTs)sinc{t/Ts - i )  (5.25)
i=—oo

if the sampling rate f s = l /Ts satisfies

f s  >  2 /x (5.26)

The frequency 2f x is known as the Nyquist rate. In practice the transmitted signal x{t) is 

bandlimited due to regulatory authorities imposing laws to reduce interference spill-over 

from adjacent frequency bands.

x(t) = [  X(f)exp( j2nf t )df  (5.27)
J - f x

The Doppler spread is limited due to the finite speeds of the transmitters, receivers 

and scatterers. The channel tap processes are therefore bandlimited, and is restricted 

to - f D •••/£> Hz.

rfü
' S(is, t) exy>{j2,Kvt)dv 
- I d

c{t,r) (5.28)
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Therefore, the received signal y(t) is given by,

y(t) x(t — r)c(f, r)d r

fx r f ö
!

roo r j x n]D
/ / / X{f)exp(j2irf(t  -  r)df S(v,r) exp(j2irvt)dv

J—OO J—fx * —f  D 
r fx r f o  roo

/  /  exp(j2n(f +  u))t / X(f)S{v,  r) exp(-j27r/r)drd/d^
—f* J —fn J — oo

(5.29)

(5.30)

(5.31)

The inner integral in (5.31) is independent of time, so ?/(£) is a weighted sum of complex 

exponentials with limited bandwidth due to the integral limits. y(t) is thus bandlim- 

ited and is sampled at Tc/r  sec, where the number of samples per chip, r, is made large 

enough to satisfy the signal's Nyquist rate. It can be readily seen from (5.31) that the 

received signal can now be represented completely if the sampling rate satisfies the fol­

lowing condition,

1
2 {fx + I d )

(5.32)

5.10 Simulating the Channel

In our investigations, we adopt the simple P-path channel model,

p -1
c ( f , r )  =  C j ( t ) £ ( r  -  Tj)

i = 0

Ef=o1cj( t ) Ä ( r - ^ T) , P >0
c(£),P =  0

where the P  paths have uniformly spaced delays and uniformly distributed mean pow­

ers, E{\ci(t)\2} =  -p and the Ci( t )  are mutually independent, circularly symmetric corre­

lated complex Gaussian (ie. Rayleigh fading) random processes. Therefore, the received

(5.33)

(5.34)
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signal is given by

r oo
V ( t )  =  /  x ( t - T ) c { t , T ) d T

J —oo
(5.35)

[ £ « * ( *  " A  ) c i ( t ) , P > 2

= (5.36)
( x ( t ) C i { t ) , P  =  1

By convolving the delay with the transmitted pulse shape, the transmitter can generate P  

uniformly delayed versions of the transmitted signal at arbitrary delays without increas­

ing the sampling rate. The individual tap processes, C i ( t ) ,  are obtained by passing white 

Gaussian noise through a filter with impulse response [120],

9i

J 1 (27TlfDTr) 

(\l\Tr )1/4

r(5/4) 0

(5.37)

However, it is common in the literature to use (Jake's model) where Jo(.) is

a Bessel function of the first kind of order 0.

By windowing this infinite impulse response with a Hanning window, the filter's com­

plexity can be restricted while ensuring that the fading process still evolves smoothly. An 

impulse response that does not taper to zero at its ends generates a fading process with 

an unpredictable fine structure [47]. Shown below are typical amplitude and phase vari­

ations of one tap of a fading process. Fig. 5.7 plots a sample fading process with time as a 

parameter. Any signal transmitted through the channel is dynamically distorted by this 

process. Hence, the signal strength drops substantially at certain times when the signal 

enters a deep fade. The smooth evolution of this process, a property of its bandlimit- 

edness, makes it easy to predict the channel. In Chapter 7, we depend on this property 

to design a multiuser receiver. The amplitude variation is shown in Fig. 5.8. Note that 

deep nulls occur frequently. In Fig. 5.9 the phase variation vs time is shown. Detection 

of a phase encoded signals becomes difficult in the vicinity of a deep fade, as rapid phase 

shifts occur. These large and abrupt changes can cause tracking and estimation errors. Fi­

nally, the power spectral density of a windowed and truncated fading process is shown.
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The U-shaped Doppler spectrum is given as

Stt(f) = 7TW M / / / ^ 2 ^  ^  f D
0 otherwise

(5.38)

90
1.6

Figure 5.7: Polar plot of a fading process generated by filtering complex white noise by the trun­
cated and windowed impulse response of (5.37). This process evolves smoothly.

5.11 The Time and Frequency Selective Channel

This channel is the most general of all linear channels. A sample of the transfer func­

tion (5.5) is plotted in Fig. 5.11. The channel distorts any transmitted signal in both time 

and frequency. The distortion has to be estimated by the receiver, for reliable detection 

of data. Essentially it means tracking the channel to see how it evolves with time and 

frequency/delay. The use of pilot tones or symbols are often sent together with the trans­

mitted data to "probe" the channel.
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Figure 5.8: Logarithmic plot of fading amplitude vs time

5.12 The Time Selective Channel

This is a special case of the more general channel model, c(t, r) where

c(t,r) = c{t)5{r) (5.39)

The time selective channel (see Fig. 5.14) is fading in time but frequency flat. The transfer 

function C(t , / )  can be simplified to

C { t J )  = c{t) (5.40)
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Figure 5.9: Plot of channel tap phase (radians) vs time. Large phase shifts occur during deep 
fades

The received signal is thus a scaling of the transmitted signal by a time varying random 

process, as

y{t) = x(t)c(t) (5.41)

In this case the received signal appears to arrive at the receiver via a single fading path.

5.13 The Frequency Selective Channel

In high rate communications, the path length differences, d divided by the speed of light, 

c are comparable to the symbol period (d/c ~ Ts). If the scatterers and the mobile receiver 

are moving very slowly, the channel is said to be time invariant. Gathering these ideas
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Frequency(Hz)

Figure 5.10: Power spectral density of a sample windowed and truncated fading process

together, we can say that the channel is fading in frequency but time invariant. The 

transfer function can be simplified to

roc
C{t , f )  =  C( 0 , f ) =  c (0 ,r)exp (-j27 r/r)d r (5.42)

J — oo

The received signal is thus the convolution of the transmitted signal and the channel's 

impulse response (now a linear time invariant filter). This is shown in Fig. 5.13.

5.14 The Receiver Front End

The transmitted signal distorted by the channel and corrupted by multiuser interference, 

additive white Gaussian noise finally arrives at the receiver. The receiver then has the 

job of deciding which data was originally transmitted based on all the information it
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Figure 5.11: Plot of the amplitude of the time and frequency selective channel's amplitude transfer 
function as a function of time and frequency

has. First, however, it m ust perform carrier recovery, phase recovery, tim ing recovery 

and sample the signal w ithout loss of information. For our purposes the first three are 

assum ed to have been recovered perfectly, and we concentrate on the last. The receiver 

front end com prises a noise limiting filter followed by a sampler. Fig. 5.15 shows a 

typical receiver front end. The filter is designed such that the Doppler spread received 

signal is negligibly distorted. Samples are taken every Tr =  T j r  such that there are r  >  1 

samples per chip period, w here r  is chosen large enough such that the filtered signal is 

negligibly aliased. With these constraints, negligible inform ation is lost during filtering 

and sampling, and the received signal can be w ritten in discrete form. The received 

samples are stored in the vector y.
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Figure 5.12: Plot of the amplitude of the time selective channel's transfer function as a function of 
time and frequency

5.15 Received Signal Model

Each sample is the cumulative signal of all users

Vm

K  poo
/ ak(mTr -  T)ck(mTr,T)dT +  nm 

k=iJ~°°
K  ̂  I —I ___ /• oo

^ 2 ^ 2 b*,kV ^ k  /  si,k{{rn — irN )Tr — Cfc — T)ck(mTr,T)dT +  nr
. ^ .• rv J — OOk—1 i=0

(5.43)

(5.44)

where K  is the number of users; nm is a low pass sample of a zero mean additive white 

Gaussian bandpass noise process with two sided bandpass noise spectral density, 4^. 

Cfc(t, t ) denotes the kth user's channel impulse response at time t to an impulse at time 

t — t . Alternatively, as in section 5.9, the channel can be visualised as a densely tapped 

transversal filter, where the taps are index by t and ck(t, r) is the time varying random 

complex gain at that delay.
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Tapped Delay line, x

Figure 5.13: Tapped delay line model of frequency selective channel

Now define the kth user's zth time varying received pulse as

h i ,k,m—irN

POO

y/Ek /  si)k{ { m - i r N ) T r
7  — no

-  iTs -  Ck ~  T)ck(mTr, r)dr (5.45)

In practice most of the transmitter pulse's energy is restricted to a finite duration. We 

also assume that the filtered signature waveform is time-limited to Ls (fractional) symbol 

periods, as Sifk(t) = 0 for t < 0 and t > LSTS. The channel's maximum delay spread 

LrTs is finite, as ck(t,r) = 0 for r  < 0 and r  > LtTs. The asynchronism amongst users 

can also be characterised by 0 < C,k  < L ( T S . Therefore the received pulse length equals 

L h — \LS +  Lt +  Lc and the ith received pulse is fully located within the interval i rN  < 

m  < (Lk +  i) rN — 1. Using (5.45) the received signal of (5.44) may be more compactly 

written as

K  [m / rN\

Vm =  'y  ̂ y  ̂ bijkhi ,k ,m—irN  "I" n m  (5.46)
k= 1 i = - L h+ l + [ m / r N \

This is the familiar notation for linear modulations, but now however, the received pulse 

shape is different between users and symbol period. The total number of data bearing 

received samples is Y  = (I + Lk -  1 )rN.  The received samples are stored in the vector 

y, [y0, • • • , yy- i]T - Define also y m- i as the vector of received signal samples up to the 

( m  -  1) th sample ie. [yo, • • • ,ym- i]T- The channel vector h is made up of all received
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Figure 5.14: Plot of the amplitude of the frequency selective channel's transfer function as a func­
tion of time and frequency

pulse samples, as

h i,k =  {hi ,k,0 ,  * * * , h i ^ k ^ h r N - l ) ,  £  C 1 ’^  1 

h i =  (hi)1, . . .  ,hi,K) e & KL"rN- 1 

h =  (h0, • • • , h y _ i)  (E (£}JYLhrN- i

(5.47)

(5.48)

(5.49)

Define n =  [no,-* - , n r - i ] T as the vector of the sampled noise process. The noise 

autocovariance is R nn = ^E {n n H}. When the noise-limiting filter is designed such that 

the sampled noise remains white (eg. it has the transfer function rect(/Tr)), the noise 

autocovariance equals Rnn =  No/TrI, where I is the identity matrix. Define the received
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Figure 5.15: A basic receiver front end

sample autocovariance as H yy = \E { y y H |B}, w ith entries given by

\E { y my*m, |B}
K  K  [m /rN \  \m' / r N \

E E  E E
k= 1 k '= l  i = - L h+ l + l m / r N \  i ' = - L h+ l + [ m ' / r N J 

1  ̂ 1 
^i,kK',k' 2 ^ { ^ i , k , m - i r N K ' , k ' , m ' - i ' r N )  +  ^

(5.50)

w here the pulse autocovariance is

^ _______  roo r  oo
’zE{hi^^m —irN^lii^k',m'—i'rN^ ~  \ / E kE k> I / si,k{{m  ~  irN )T r ~  Ck ~  Tl.) *
^ J — oo J  —oo

-  i'rN )T r -  -  T2 ) -E { c k{Ti,mTr)ck,(T2 ,m 'T r)*}dTidT2 (5.51)

5.16 Detection Criteria

In this section we are concerned with the general design m ethodology for an optim um  

receiver. There are basically four criteria of optimality that can be applied to signal de­

tection and estimation; they are

1. M aximum likelihood sequence detection (MLSD),

B =  arg maxg p(y | B)
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2. ML symbol detection

k,k = arg rnaxj.^ p(y \ b^k)

3. Maximum a posteriori sequence detection (MAPSD)

B =  arg maxgp(B | y)

4. MAP symbol detection 

Kk =  arg max£. p(bifk | y)

The data symbols from all users are arranged in a I  x K  matrix B ^  such that (B )^  =  

The MLSD (ie. the Viterbi algorithm, add-compare-select) and the MAP symbol by 

symbol (ie. forward backward algorithm, soft input soft output algorithm for decoding of 

Turbo codes [18]) detection the two most important criteria. Let the data symbol matrix 

B be transmitted and y be received. Then the a posteriori sequence probability is the 

probability that the sequence B was transmitted, given that y was received, and may be 

written as

p {B I y) (5.52)

The MAP decision is therefore the value of B that maximizes the a posteriori probabil­

ity density function,

P(B I y) =  M  (5.53)

where p(B) is the a priori probability density function of B. The maximum likelihood 

(ML) estimate of B is the value that maximises p (y | B). Note that if there is no prior 

knowledge of B, it is usually assumed that p{B) is uniform over the range of values of 

B. In such a case the value of B that maximises p{B | y) is identical to the value of B that 

maximises p (y | B). Thus the MAP and ML criteria are identical for sequence detection 

(and for equiprobable symbol detection also). In this thesis we only adopt MLSD criterion 

for detection due to its straightforward implementation (add-compare-select).
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The conditional probabilities can be computed in a recursive fashion. The MLSD re­

ceiver as written, has to compute the likelihood p(y | B) for each hypothesis, B. In 

general the number of metric computations grows exponentially with the transmission 

duration. Moreover, the computation of the log-likelihoods is impossible in a realistic en­

vironment involving unknown and random processes, since it becomes mathematically 

difficult to construct the joint pdf. To this end, the MLSD receiver is infeasible.

However, there are a few exceptions. If the transmission interval is small (ie. small 

tree search) or if the branch metric computation depends only on the finite past, the op­

timisation problem can be solved recursively. Assume for now that the channel impulse 

response is known completely. If the intersymbol interference only lasts L symbols, then 

the branch metric only depends on a finite number, KL,  of past symbols and therefore 

there are M KL hypothesis vectors (ie. all the immediate L past symbols are important 

since the energy spreads across their L neighbouring symbols due to the channel or de­

liberate design). A trellis of states and M KL branches is used to find the most

likely transmitted sequence. In essence, the multiuser joint trellis is just a super trellis 

constructed by combining each user's individual trellis. The joint trellis state at a partic­

ular symbol i is given by the past K(L — 1) symbols. A branch is represented by the most 

recent K L  symbols.

The Viterbi Algorithm (VA), originally proposed for decoding convolutional codes in 

1967 by Viterbi [129], is an effective implementation of the solution to the MLSD problem. 

The sequence metrics can be written as the recursive accumulation of branch metrics 

a*) by keeping a running total, the path metric T^Bj). It equals the path metric 

at the (i—l)th  symbol period plus the branch metric for the ith. symbol period, A;(cri_i, cr*), 

as

ri(B,) = IVi(B*_i) + A*(cTj_i,(Tj) (5.54)

where

Oi

(  bi-L+2,1

\  hi

b i - L + 2 ,K  \  

bi,K  )

(5.55)

(5.56)
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denotes a particular state in the trellis at time i. At any time i there are paths
that need to be retained and extended for the next time interval. The branch retained 

is referred to as the survivor. The sequence of survivors from the current time back to 

the start of processing is known as the survivor sequence. There are survivors

at any point, and when their sequences are followed back for some period they merge 

with high probability. When these paths merge, a decision can be made regarding the 

most likely transmitted symbol for that time interval. For the VA to be practically imple- 

mentable, it is important to limit this decision delay to some fixed value. It is generally 

accepted that this delay should be about seven times the memory length of the error 

control code or L in our case.

5.17 Multiuser Detection in Multipath Fading Channels

Multipath fading presents a major limitation on the performance of wireless CDMA sys­
tems. To date most of the research has been conducted for slow or time-invariant fading 
channels. In this section we only highlight contributions in this latter area (ie. for the 
slow fading channel).

The conventional receiver, in the case of a multipath fading channel with delay spread, 

consists of a bank of RAKE receivers, one for each active user at the base station and 

one for the desired user in a mobile. A RAKE receiver can be interpreted as a com­

biner of correlator outputs. The correlations performed at each tap of the RAKE receiver 

are simply cross correlations of the received signal with the locally generated signature 

waveform. Thus the spreading waveforms are used to resolve the multipath introduced 

by the channel. In a frequency selective channel, the receiver observes P faded replicas 

of the same transmitted signal. Hence a receiver that processes the received signal in an 

optimum manner will achieve a performance equivalent to a Pth order diversity system. 

The RAKE receiver ignores the MAI, and this results in an error probability floor. This 

error floor directly determines the maximum number of users in a CDMA system. These 

disadvantages of conventional reception techniques can be found in [60].

The optimal MLSD receiver for multipath fading CDMA channel consists of the same 

front-end, a bank of RAKE filters, followed by the Viterbi algorithm. This receiver has 

the same error probability in the single user case at the expense of high complexity [153].
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Motivated by the high complexity of the optimum MLSD receiver, many low complex­

ity multiuser detectors for frequency selective Rayleigh channels have been proposed 

whose performance is independent of the interfering signal energy [154] [155]. For wide­

band signals, the total number of resolvable paths is given by

P = [ w /T c l  + 1 (5.57)

where rmax is the maximum multipath delay spread of the channel. Zvonar [154] looks 

at passing the PK  signal replicas through a decorrelator to eliminate MAI. The output of 

the decorrelator is then fed into a maximum ratio combiner. In coherent detection knowl­

edge of the individual fading paths' phase plus the carrier phase is required for coherent 

combining. For the case where the channel coefficients cannot be estimated differentially 

coherent detection using Differential Phase Shift Keying (DPSK) signalling has also been 

studied in [154]. The difference in performance between differentially coherent and co­

herent detection is of the order of the single user case. It has been shown that both these 

multiuser detectors alleviate the near-far problem and remove the error probability floor.

5.18 MLSE Receiver Analysis

In this section we briefly outline the theory involved in analysing the bit error rate per­
formance of a receiver. The exact BER is difficult to compute since it involves computing 

the joint pdf of all hypothesised sequences' path metrics for a particular transmitted se­

quence and integrating it over an irregular region, corresponding to the ML sequence. 

The average BER is this quantity averaged across all transmitted sequences. Since the 

number of path metrics increase exponentially with the transmission length, the joint pdf 

gets extremely complicated.

However, a tight upper and lower bound on the BER is still possible using Forney's 

or Verdu's technique [35] [125]. When the ML sequence is detected instead of the trans­

mitted sequence, there are a number of bit errors. The probability that the ML sequence 

is not the transmitted sequence can be upper bounded by the probability that any error 

sequence has a larger path metric than the transmitted sequence. Thus a joint pdf is not 

needed, only the pdf of the path metric difference, for all possible transmitted and error
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sequences.

The upper bound on the BER can be deduced from a union bound over all error events. 

The union bound of the error events can be written as

sum and must be truncated. If at least the dominant error events are considered, the 

truncated bound can still reasonably be considered an approximate upper bound. The 

pairwise error probability computation will be detailed in the next few chapters.

5.19 Summary

In this chapter, we revisited the transmitter, channel and receiver. In particular, a time 

varying frequency selective multipath channel was modelled and described in detail to 

serve as a grounding for subsequent chapters. Simplifications of the general channel 

model resulted in the purely time selective or frequency selective channel. We reviewed 

optimal receiver detection strategies and proposed a typical receiver front end. The per­

formance analysis of such receivers is studied using union bounds.

(5.58)

where P(B) is the transmission probability, P(B  —> B) is the pairwise probability of error 

and w (B —> B) indicates the number of bit errors in the error event. This is an infinite



Chapter 6

Optimum Multiuser Detection for 
Known Time Varying, Frequency 
Selective Rayleigh Channels

Overview: This chapter develops a multiuser maximum likelihood sequence detector for 

the time varying, frequency selective, multipath fading channel corrupted by additive 
Gaussian noise. To ensure optimality, the receiver assumes perfect knowledge of the 

channel's time varying channel impulse response. It is proposed as a benchmark for 
comparing other more practical detectors, such as multiuser detectors whose complexity 
is linear in the number of users. An analysis of the multiuser receiver is also provided. 
Bit error probability bounds are obtained using a truncated union bound approach.
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6.1 Introduction

This chapter develops a multiuser maximum likelihood sequence detector (MLSD) for 

linearly modulated or DS-CDMA signals sent over time varying, frequency selective 

Rayleigh fading channels. The receiver assumes perfect knowledge of the channel im­

pulse response (CIR). Accordingly, it shall be known as the multiuser known channel 

impulse response receiver (MUKCIR).

Two of the most significant factors limiting the performance of existing mobile wire­

less systems are multipath fading and multiple access interference. Multipath fading is 

due to the presence of multiple scatterers, and the mobility of the transmitter, scatterers 

and receiver. It results in a received signal comprising the sum of delayed and dynami­

cally distorted replicas of the original signal, modelled as a time varying and frequency 

selective channel. Multiple access interference, on the other hand, is caused by the multi­

ple users transmitting on the same channel simultaneously. Diversity (including channel 

coding) can help to combat the detrimental effects of the channel's Rayleigh fading, but 
only proper equaliser design can minimise the consequences of the channel's amplitude 
and frequency distortion as a function of time and frequency. As discussed in previous 

chapters, MAI is inherent in DS-CDMA systems, but it also arises in TDMA systems as 
inter-cellular cochannel interference.

Research into equaliser design has followed three main threads. First, there is single 
user equalisation of DS-CDMA signals for frequency selective multipath channels. The 

RAKE receiver is used in practice to combat fading [86] [91]. Fast fading encountered 

in many mobile communication scenarios significantly degrades the performance of the 

RAKE receiver due to less reliable channel estimation. In fact existing systems exhibit a 

limiting bit error probability floor that cannot be improved by increasing the transmitted 

power [106].

Second, there is multiuser equalisation for DS-CDMA signals in AWGN and slowly 

time varying multipath channels [121][114][33]. Previous work in the area of multiuser 

detection in fading channels by Zvonar et al. looked at detectors for synchronous trans­

missions over Rician channels [118] and the optimum detector for the asynchronous 
CDMA frequency selective Rayleigh fading channel which incorporates multipath di-
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versity reception [155]. Multiuser RAKE receivers have been proposed to combat MAI in 

fading channels; however, such schemes are applicable only in slow fading scenarios in 

which the channel characteristics change slowly over time [154]. Multiuser MAP based 

receivers have been studied by Davis and Collings [26] [27] in fast fading channels.

Recently several single user receiver structures have been developed to combat the fast 

fading that caused the limiting error floor in the RAKE receivers [48] [65] [152]. Recently, 

a novel multiuser receiver was proposed that exploits both the Doppler spread and the 

delay spread [96] [97]. At the heart of the approach is a time-frequency channel decom­

position of a WSSUS channel model. This leads to a time-frequency formulation of the 

RAKE receiver that exploits joint multipath-Doppler diversity. This is shown in Fig. 6.1. 

Multiuser detectors based on this idea show improved performance compared to exist-

Whitener
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Whitener

Whitener

Time-Frequency 
Matched Filter
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Figure 6.1: Time-frequency RAKE receiver

ing systems by achieving an inherently higher level of diversity. We put this in context 

by deriving and analysing the performance of the optimum receiver for this case. Both 

are fundamentally performing the same function: exploiting joint multipath-Doppler di­

versity in a multiuser CDMA framework, but one relies on the idea of using a RAKE 

structure with a time-frequency representation of the signal, and the other is based on 

the generalisation of Ungerboeck's matched filter MLSD [113] [48].
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In this chapter we leverage these new approaches to propose a new multiuser detector 

to combat MAI in fast fading multipath channels. The MUKCIR receiver relies on the 

provision of high quality channel information. This can be estimated in a real time system 

from a comb of pilot tones and /or pilot symbols. The comb of pilot tones/symbols is 

multiplexed in frequency/time with the transmitted signal and is thus distorted in a 

similar manner. A pilot tone characterises the time varying transfer function, C(t , f ) ,  

at some frequency for all time. A pilot symbol characterises C(t , / )  at some time for 

the frequency range of the transmitted signal. Interestingly in a channel that changes 

very slowly, it can be tracked accurately by applying past channel information to predict 

the future, an idea that will be pursued in the next chapter to design a new multiuser 

receiver. For a fast fading channel, the channel transfer function earlier than t -  Ts can 

vary considerably from the transfer function at t. Neither pilot tones nor pilot symbols 

can deal with fast fading and a large delay spread.

In this chapter the MUKCIR receiver is derived for all linear channel models as long 

as the transmitted chip waveform, the signature waveforms of all users and the exact 

CIR is available. We propose this receiver as a theoretical structure. Though it cannot 

be implemented, it is the optimal receiver and provides a benchmark for rating other 

suboptimum receivers. Towards the end of the chapter we analyse the receiver's BER 

performance and highlight some interesting numerical results.

6.2 MUKCIR Receiver Derivation

The MLSD searches all allowed transmitted sequences and chooses the one with maxi­

mum likelihood, as

B = arg max p (y | B ,h) =  arg max lnp(y | B ,h ) =  arg max T(B)
B B B

(6.1)
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where lnp() is the log likelihood, T(B) is labelled the sequence metric and the channel 

vector h is given by

=  (/>!,*;,o r "  ihi,Jc,Lhr N - l ) t £  1 (6.2)

h i =  (hi,1)- , h iii() 6 C , Ä " v- 1 (6.3)

h =  (h0,--- ,h r _i) e C l , I Y L hrN (6.4)

Since y — E {y | B ,h} =  n (conditioned on B being transmitted), the desired log- 

likelihood in (6.1) matches the log likelihood of the Gaussian noise vector n, as

-  lnp(y|B, h) = — lnpn(n) (6.5)

Using the multivariate Gaussian density function, the log-likelihood lnpn(n) equals (up 

to a constant independent of the hypothesised sequence B),

Y - 1 Y - 1 K  I - 1

m=0 m '—O 1 i= 0
lnpn(n) ~ - E E | * - E E  K k K k , m - i r  JV |  X

( K ^  ~  \
S Um' ' y  y y   ̂ bi> f t  h i 1 f t  yrn'—V rN  f  (6-6)
I k ' = l i ' = 0  )

Y - 1 Y - 1

- E E
m —0 m '= 0

7C /- I
y m ( ^ ‘nn)m ,m 'ym ' ~  ym {^"nn)m,m' ^   ̂ ^   ̂ f t ^ i ' f t  ,m'—i'r N ~

fc '= lt '=0
7C /- I

y m '(R 'n n )m ,m 'y m l )̂ i,k^l i ,k ,m - ir N 'ir
k = 1 z=0

7C /- I  7C /- I
5 ^ 5 ^  X I  ^  ~ K k K ,k ,m - i r N hi ' ,k 'K ' ,k' ,m '- i ' r N  
fc=l i=0 /c'=l i'=0

This log-likelihood can now be represented as a sequence metric, T(B), by interchanging 

the order of summations and neglecting the term -  Y Z i=o Xlm'io 2/m(R'nn)m,m/2/m'/ since 

it is independent of the hypothesised sequence. The sequence metric can now be written 

as

7 -1  K  7 -1  7 -1  K  K

r (ß ) =  E  E 2Re f a w }  -  E  E  E  E  K k h i 'w b i ',»
i—0 k = l  i=0  i'=0 k = l  k '= l

(6.7)
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where Re(.) denotes the real part of (.) and the matched filter term ra^  and the ISI term 

are defined as

Y - 1 Y - 1

m i,k =  'y " Vm' { ^ n n ) m , m '  ^ i , k , m - i r N  (6-8)
m =0 m'—O

Y - l  Y - 1

fi ,i' ,k ,k' — l̂ i , k , m - i r N ( ^ ‘n n ) m ,m ' h i \ k l ,m ' - i ' r N  (6-9)
m =0 m '—O

Equation (6.8) can be viewed as an equivalent despreading and MF operation for time 

varying channels in coloured noise. By exploiting the conjugate symmetry of fi,i>,k,k'> as 

fi,i ',k,k' — f* i '  k k" sequence metric can be simplified as

I - l  (  K  K  K  i - 1 ]  K

r(B) = ^  2Re < b*kmiyk -  ^  ^  ^  i>lk fi,i',k,k'i>i',k' f “  I h k  f  h,i,k,äß-W) 
i=0 lfc=l k = l k = l i ' = 0  )  k=1

Note that the effects of fast fading are incorporated implicitly in the above formulation 
by the channel vector h. The first term is similar to the time-frequency RAKE receiver in 

[96], and the second term eliminates the MAI and ISI. Exhaustive comparison is needed 

to find the maximum metric and thus the maximum likelihood sequence. If the ISI term 

has a finite memory, say L, then fi^'^,k' = 0 for | i' — i |> L and the sequence metric 

simplifies to

/ - i  (  K  K  K  i - l  \  K

r (B ) =  Y 2  2Re ] S  K k m i,k  - ^ 2 ^ 2  ^ 2  K k fi , i ',k ,k ~ b i ',k ' f “  I h k f  f i , i ,k ,k
i = 0 lfc=l k = l k ' = l i ' = i - L + l  )  k = 1

Past symbols and the state matrix are defined as

(  h i t>0,K \ (  b i - L + 2 , 1  • • b i - L + 2 , K  \

B i _ i  —

\  &*-M b i ~ i , K  /

° i  -

V h i K k )

The sequence metrics can be written as the recursive accumulation of branch metrics 

er,) by keeping a running total, the path metric r*(Bi). It equals the path metric
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at the (i — l)th symbol period plus the branch metric Aj(cri_i, c )̂ as

(6.12)

where

I W B i- ! )  =  (6.13)
i - 1  f  K  K  K  l - l  )  K

^ 2  2Re \  bt k m l,k bikfl,l',k,k'bl',k' f I bl’k 12fl,l,k,k
1=0 U = 1 k = l k ' = l l ' = l - L + l  ) k= 1

\ i ( ( 7 i - i , ( T i )  =  (6.14)
( K  K  K  i - 1 } K

I ^ 2  bi,km i,k ~  ^2  122 122 bi,kfi,i',k,k'bi'yk' r — ^ 2  I b^k I fi,i,k,k
U =1 k = l k ' = l i ' = i - L + l  ) k= 1

The path metric is a function of the previous hypothesised sequences, B;_i, which con­

tains symbols up to the the start of transmission. The branch metric, however, depends 
only on the L previous symbols and thus the evolution of the path metrics may be de­
scribed by a trellis. Since the ISI lasts L symbols only, there are only combina­
tions of <j i or states in the trellis and each state has M K branches. The Viterbi algorithm 
automates the calculation of these path metrics and the minimisation procedure of (6.1). 
This has exponential computational complexity in the number of users. For L = 2, as is 

often the case in CDMA, the trellis is fully connected. To reduce the complexity of this 

receiver we propose a linear complexity receiver in chapter 7. We delay this proposition 

since the techniques introduced in chapter 7 will greatly facilitate the derivation of the 

Single User Known Channel Impulse Response receiver (SUKCIR).

6.2.1 White Noise

In the case of white noise the noise autocovariance matrix equals of Rnn = \E {nn/f} = 

N0/TrI. By substituting R “,} = (iV0/Tr)-11 into (6.8) and (6.9), and neglecting the com­

mon data independent factor of (N0/Tr)~l, the receiver structure is particularly simple
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since

m tk
(Lh+ i ) r N - 1

ym .hi it m _ irN — Um * ^'iyk,—m \m = irN i (6.15)
TTL— i r  N

K  [m/ r N\ (Lh+ i ) r N - 1 

^i,kfi, i',k,k'  T  ^  ^y  ] y  ] bi,kfi, i ' ,k,k'  +
fc=l i——L h + l +  [ m / r iVj 

(Lh+i)r  AT-1

(6.16)

(6.17)

and it is clear that L = in this instance.

An alternate Euclidean distance sequence metric that merits mention is obtained di­

rectly obtained by substituting R “,J = (N0/T r)~lI into (6.6),

The same sequence, path and branch metric of (6.7), (6.13) and (6.14) are still correct.

Now that the noise covariance is not present, it is easier to see that the quantity 

can be interpreted as a time-frequency matched filter for the kth  user's «th symbol. In 

time varying channels, the matched filter has a different response, h*km in m  for each 

symbol and user. The kth  matched filter's irN th output sample is a sufficient statistic 

for the kth. user's ith  transmitted symbol. The quantity f iyi>yk,k' can be viewed as the ISI 

introduced by the k 'th  user's «'th symbol on the kth  user's «th symbol.

6.2.2 The Time Invariant Frequency Selective Channel

When short codes are transmitted, Si^{t) = Sk(t). In time invariant channels, Cfc(f,r) = 

c*;(0, r) and the received pulse is time invariant,

(6.18)
m = 0 fc=l i=0

(6.19)
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Hence the MF and the ISI values reduce to

(Lh+ i ) r N - 1

ym ô k̂,m-irN (6.20)
m = ir N  

(Lh+ i ) r N - 1

h o ,k ,m - ir N h Q k ' ,m - i ' r N  ( 6 -2 1 )
m—irN

It is clear from (6.21) that the ISI terms are due to interference within users (self inter­

ference) and between users (multiuser interference). This is a generalisation of the re­

sult proved by Ungerboeck in [113]. Note that if long codes are employed, h^k,m-irN 7̂  

ho,k,m—irN since the signature sequences change every symbol period, i (ie. Sifk{t) ■£ 

so,k(t)). In this special case the MF and ISI terms and hence the received pulse change 

every symbol even if the channel is time invariant.

6.2.3 The Time Selective Frequency Flat Channel

In time selective, frequency flat channels (c(i,r) =  c(f)£(r)), the received pulse is given 

by

hi ,k ,m—irN  — \ /  ̂ k ^ i , k { ^  ivN)Tr (̂k)ck(TnTr) (6.22)

In the white noise environment, the kth. matched filter output is computed as

mi,k
Y - 1

V&k y(m)sik((m ~ irN)Tr -  £k)c*k{mTr)
m = 0

(y(m)c*k(mTr )) * s*i k{-m Tr -  (k) (6.23)

It can be readily seen that the optimum receiver obtains its sufficient statistics by mul­

tiplying the received signal with the conjugated fading process, then filtering this signal 

by the time reversed signature waveform (ie. a matched filter). This has an intuitive ex­

planation. As the transmitted pulse is distorted in time by the fading process, the receiver 

must compensate for this scaling by weighting the received pulse according to the depth 

of the fade (ie. matching to the channel), followed by the conventional matched filtering
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operation used in the AWGN channel.

The ISI term is time varying over Lh symbol periods and K  users.

(Lh+ i ) r N - 1

f i ,i' ,k,k' =  X si M m -  irN)Tr -  ck)si',k'{{m -  i'rN )Tr -  C*:/)cJ(mTr )cfc/(mTr )
m —irN

6.2.4 The Time Invariant Frequency Flat Channel

This special case has been widely explored by many researchers and is the subject of Part 

I of this thesis. Essentially, the receiver only needs to know the constant complex gains 

of the channels (cm), so the received pulse is given by

h i ,k,m —irN  = \ /  ̂ kCmSi,k{{^ irN )Tr C/c) (6.24)

The kth  matched filter output is

_ ( L h+ i ) r N - 1

m i)k = \fE~k X ymSi,k({rn -  irN )Tr -  Ck)cm (6.25)
m = ir N

= {ymcm) * si,k(~m Tr — Ck) (6.26)

The received signal is thus filtered with the time reversed complex conjugated signature 

waveform. Note the ISI is no longer time varying since it is completely determined by 

the cross-correlation of the users' signatures as

(Lh+ i ) r N - l

fi,i',k,k' =  X 5i,Jfc((m ~ irN)Tr — (k)si',k'{{'m — i'rN )Tr — (k')\cm\2 (6.27)
m = irN

For orthogonal spreading sequences, the correlation between user's signatures is zero, 

however, the signatures still exhibit self interference, since each user is still correlated 

with itself.
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6.3 Receiver Operation

The operation of the receiver is shown in Fig. 6.2. In a practical receiver, the CIR is 

unavailable. An estimate of this must be obtained to allow the computation of and 

according to (6.8) and (6.9) respectively. However, the MUKCIR receiver assumes 

ideal CIR provided as side information (ie. genie aided).

For each symbol period, M KL branch metrics are computed according to (6.14) for all 

possible hypothesised sequences and applied to a Viterbi processor.

User 1

Decisions

Viterbi
Alg.

Calc.

Calc.

Calc.
Branch

Metric,

Genie Aided 
CIR

Estimator

Genie Aided 
CIR

Estimator

Figure 6.2: MUKCIR receiver block diagram

6.4 Receiver Analysis

In this section the MUKCIR receiver's BER is analysed for a fa s t, frequency selective 

Rayleigh fading channel in white noise. The conventional methods (ie. distance spectrum 

and transfer function bounds) of analysing the BER described in Part I do not apply. They 

require the fading to be sufficiently slow such that it is approximately constant over the 

error event, hence, the BER maybe computed as a function of the fading amplitude. The 

average BER is then obtained by weighting the BER according to the fading amplitude 

pdf [86].
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The technique presented here does not require any approximation about slow or flat 

fading and therefore applies to the time varying frequency selective channels in ques­

tion. Since the channel is known, coherent detection is possible. Let B be the matrix of 

transmitted symbols and B be the matrix of detected symbols. Define E =  B — B as the 

difference between the transmitted and detected sequence. The receiver's performance 

is characterised via the application of the union bound. An error event occurs when an 

erroneous detected sequences has a greater likelihood than the transmitted sequence. An 

error event of length ee starts at symbol te and stops at te +  ee.

The BER can be upper bounded by (5.58), as

ber<ET.
B B

P (B )P(B  -> B)w(B -> B) 
K  log2 M

(6.28)

The pairwise probability of error for a particular sequence can be written as

P(B  B) =  P(T(B) > T(B))

=  P

I - l  ( K  K  K  i - l  'j KÊ 2Re < ŷ _ ŷ ŷ ŷ  ̂?_ ŷ i i
Lz=—0 lfc=l k = l  k ' = l i ' = i - L + l  J k = 1

I - l  (  K  K  K  i - l  ]  K

E I E ̂ i,krn i>k ~  E yZ E/ bikf i , i ' ,k,k'bi ' ,k' r ~ E I I /i,i,k,k > 0z=0 K k = 1 k = l k ' = l i ' = i - L + l J Jfc=l
( t e+ e e - l  K  -

Re ?  Ev i= t e k = l

k = l k ' = l i ' = i - L + l
K  i - l

2 e i,km i,k ~  2 E E e i ,kf i , i ' ,k,k'e i ' , k ' -
k ' = l i ' = i - L + l  

K  min{ee—l,z+L—1}

E E e i ,kf i , i ,k,k'e i',k’  ̂ >  0
k = l  z'=max{0,z—L + l}

(6.29)

Substituting (6.8) and (6.9) into (6.29), this pairwise probability of error equals

(L+z)rn— 1

y y 2 '̂i,k '̂lh'i,k,l—irN
1—irN

( te+ee—1 K

H  E E
 ̂ i—te k = 1

min{ee—l,z+L— 1} K  (L+min{ i , i ' } )rN—1

E E E e *i,ke i' ,k 'K ,k , l - ir N h i' ,k' ,1 -i'rN
z'=:max{0,z—L + l}  k '—l i=max{z,z'}rAT

> 0 (6.30)

The left hand side of the inequality is a Gaussian quadratic form in the received pulse
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and noise samples, so the desired probability can be calculated easily via its characteris­

tic function. The Gaussian quadratic form only depends explicitly on the error sequence 

E, but as this may only take on certain values, it still depends implicitly on the transmit­

ted sequence, B. The computation of the BER bound is still prohibitive since all possible 

combinations of the transmitted sequences have to be accounted for. Error events can 

begin in any symbol interval, during which K  log2 M  bits are sent. In a fast fading sce­

nario, long error events are very unlikely since most errors occur in deep fades. Hence, 

it is important to note that the upper bound is not the union of all error events, instead 

only error events of short lengths. As we shall soon see, this truncated bound is easily 

calculated and still asymptotically correct at high SNRs. From this discussion, the union 

bound may be rewritten as a function of a limited set of error events E, as

B E R  <
E

P(E)iu(E) (6.31)

It has been noted in [48] that the union bound over all error events is a difficult task 

computationally. Although a rigorous proof of the upper bound convergence cannot be 

established, it is seen that if the fading is fast and the SNR high, the dominant error 

events are short. Thus there is a balance between incorporating sufficient error events so 

that some reasonable claim of "upper bound" can be supported, yet disregarding ones 

that evidently contribute little to the bound and thus reduce the computation involved.

Define g as a column vector g = [he ne]T where h e is a column vector of length ee x 

K  x L rN  of the received pulse samples and ne is a column vector of length (L -1- ee) x rN  

of the additive noise samples. This g contains the relevant Gaussian random variables 

during the error event. Define k  = g ;/Gg as the left hand side of the inequality in (6.30) 

where the kernel G is a Hermitian symmetric matrix defined implicitly. The autocovari­

ance matrix of g, Tlgg is given by

R 99  =  \ E {SS"}  = (6.32)

where the noise and channel are assumed independent and R /^ =  \E { h eh^} and its 

entries are calculated from (5.51). With these definitions, K gg is completely described.
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The pairwise probability of error for each error sequence (ie. the probability that one 

sequence's metric exceeds the transmitted sequence's metric) can be written as a Gaus­

sian quadratic function (GQF). In complex Gaussian fading channels both metrics are 

GQFs and so too is their difference. The pairwise error probability is evaluated by inte­

grating the pdf of the metric difference over the positive axis. Thus the pdf of a GQF is 

required. A real GQF, k is given by

where g is a vector of zero mean, i.i.d complex Gaussian random variables. The GQF's 

pdf is calculated from the characteristic function. Given a pdf, pk(k), its characteristic 

function, is given by

The pdf can similarly be computed from the inverse transform of the characteristic func­

tion,

k =  g " G g (6.33)

(6.34)

(6.35)

The characteristic function of a GQF can be written as [103][111]

C i(0  =  det (I — j2£Rfl5G )-1 (6.36)

(6.37)

where the poles, pi are zeros of the determinant as,

1 (6.38)
2j  eig»{R59G}

where eigi(.) denotes the zth eigenvalue of (.) The pairwise probability of error is the
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probability that k > nmin

ro c  ro c  ^ r  oo
/  pK{n)dK =  —  Ct(£)exp(-j£K)d£dK

” f tm in  ' ' f tm in  ^  * 00
■*oo1 r

2 + /_
Cj(g)exp(-jg«min)

j2 <

(6.39)

(6.40)

This is a line integral along the real axis. For Km{n < 0, the pairwise probability of error 

equals [48]

r oo 

J  K m i n

pK(K,)dK = 1 + Rcc I eXP I
i , 3 { p i } <0

(6.41)

and for Kmjn > 0

r  pK(K)d« = -  £  Res, {
^'Cmin i ,9 { p i} < 0   ̂ ^

(6.42)

where Resi(.) is the residue at the i-th pole defined by,

1 Arii-l)
Res,{X«)} = Um _ (({ -  *)?*<«)) (6.43)

The pairwise probability of error can now be calculated as

p (b —> b ) = y :  i h r ^
i ,9 { p i} < 0  k ^ i

(1 - P i / P k )
(6.44)

where pi is the 2th pole of (6.37).

6.5 Numerical Results

The following section provides an overview of the MUKCIR receiver's performance for 

a variety of transmitter, channel and receiver parameters. It is not possible to explore 

all combinations of such parameters; instead we highlight the influence of a particular 

parameter by keeping all others fixed. The chosen baseline signal model is as follows.
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The DS-CDMA transmitter uses a root raised cosine chip pulse shaping truncated to 1.5 

chip periods with 30% excess bandwidth, with a random signature sequence comprising 

5 chips. The channel has P = 2 paths with equal mean power. A relatively large delay 

spread is used, LT = 0.5Ts and so the received pulse is restricted to L = 2 symbol periods. 

Due to the exponential growth in complexity, it is feasible to simulate and analyse a 

maximum of 5 users. The Doppler spectra of the simulated fading processes closely 

approximate Jakes model with fo T  = 0.1 (ie. very fast fading). It is assumed that r = 2 

samples per chip period satisfies the Nyquist criterion.

Shown in Fig. 6.3 are the analytic performance graphs for the baseline model for 1 user. 

The BER is asymptotically correct at high SNRs. It becomes increasingly difficult to com­

pute the upper bound for longer error events and beyond two symbol errors. However, 

the two symbol error events bound converge quickly on the one symbol curve. Thus it 

can be clearly seen that the dominant error events are the one symbol error events in fast 

fading and high SNR.

Figure 6.3: BER-SNR curves for different union bounds: all one symbol error events; and all one 
and two symbol error events

Figure 6.4 shows the dependence of the BER on the chip pulse's excess bandwidth. As 

X  is increased from 0.1 to 0.9 there is only a slight change in the BER at high SNRs.
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b e ta  = 0 .9
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Figure 6.4: BER-SNR curves for root raised cosine chip pulse shaping with varying excess band­
width, x for 1 user

Figure 6.5 shows the dependence of the BER on the severity of the chip pulse's trun­
cation. Once again, as the chip pulse's duration varies from 1.5 chips to 3.5 chips, there 
is minimal change in the BER. Note that elongating the chip pulse only slightly increases 

the overall spread-bit duration: it is still less than 2 symbol periods. For pulses longer 
than 2 symbol periods the analysis' complexity becomes substantially higher.

Figure 6.5 shows the graceful BER degradation of the MUKCIR and as the number of 
users increases. The analytic bounds agree well with the simulations.

Figure 6.7 highlights a benefit of wideband CDMA. In frequency selective channels, 

spreading the signal further captures more of the implicitly delay diversity, hence, the 

MUKCIR receiver's performance improves. However, there must be multiple paths for 

the benefits to be realised.

Joint multipath-Doppler diversity gains in a multiuser environment were also reported 

in [96]. Time selective signalling and reception in a single user environment was also 

looked at by Bhasyam et al. [20]. By introducing overlaps between successive symbol 

waveforms, significant gains were observed. Clearly, the overlap between symbols in­

troduces ISI, however, for signature waveforms with good autocorrelation properties the
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Figure 6.5: BER-SNR curves for root raised cosine chip pulse shaping truncated to different 
lengths

ISI is negligible.

Fig. 6.8 shows the MUKCIR receiver's ability to exploit the channel's implicit diversity, 
both in delay and Doppler. The faster fading and longer delay spread steepen the BER 

curve's gradient. A slight degradation in the BER with respect to the users can be seen 

especially at low SNRs. This difference is minimal at high SNRs. The other aspect is the 

variation in the Doppler spread. Fixing the delay spread at the small value of 0.005, and 

increasing the Doppler spread from 0.005 to 0.5 steepens the BER.

In the common situation where all of the signals arriving at the receiver are of differ­

ent strengths, the strong signals tend to overwhelm the weak signals, even with good 

signature sequences. This problem is referred to as the near — far problem. The near- 

far resistance of this receiver has not been explicitly simulated. However, this optimal 

receiver must be near-far resistant since we assume perfect knowledge of the user signa­

tures, channel impulse responses and timing/synchronisation parameters, thus ensuring 

that the optimal solution is obtained for all users regardless of the fluctuating users' en­

ergies.
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Figure 6.6: BER-SNR curves of the MUKCIR receiver for a fast time varying frequency selective 
channel where foTs = 0.1, LtTs = 0.5TS r = 2, N = 5 ,P  = 2

6.6 Summary

In this chapter the MLSD receiver for a multiuser CDMA system operating over a time 

varying, frequency selective Rayleigh channel was derived and its BER upper bounded. 

This receiver is exponential in complexity with respect to the number of users. The BER 

has been bounded assuming ideal knowledge of the time varying channel impulse re­

sponse. We evaluated the performance of the receiver under varying transmitter, chan­

nel and receiver parameters. Relatively small Doppler and delay spreads encountered in 

practice can be leveraged into significant diversity gains. This near far resistant receiver 

has the ability to achieve an inherently higher level of diversity due to joint multipath- 

Doppler processing.
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Figure 6.7: Effect on the MUKCIR receiver's BER of varying the number of independent paths, P, 
K  = 1, LtTs = 0.5TS, f DTs = 0.01
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Figure 6.8: Effect on the MUKCIR receiver's BER of varying the Doppler and delay spreads, r=2, 
N=4, P=2



Chapter 7

Predictor Based Multiuser Detection 
for Time Varying, Frequency 
Selective Rayleigh Channels

Overview: Multiuser detection is considered for linearly modulated signals (eg. asyn­
chronous Code Division Multiple Access (CDMA) signals) sent over time varying, fre­

quency selective Rayleigh fading channels. The multiuser maximum likelihood sequence 

detector (MLSD) using linear predictors is derived assuming knowledge of the channel 
second order statistics only, hence, the name Multiuser Known Channel Autocovariance 
(MUKCA) receiver. This receiver is appropriate when there is no pilot information and 

the channel's time varying impulse response cannot be accurately estimated. The re­
ceiver uses predictors to estimate the received signal and form a weighted Euclidean 

distance between the predicted and received samples. The computational complexity of 

this receiver grows exponentially with the number of users. To this end, we propose an 

additional single user receiver, SUKCA, that is constrained to track and lock to the signal 

of the desired user. Unlike the conventional single user receiver, it is optimised to take 

into account the structure of the multiple access interference (MAI). As an extension, we 

use similar techniques and propose a single user receiver, (SUKCIR) for the optimal re­

ceiver derived in chapter 6. An analysis of the multiuser receiver is also provided. We 

obtain tight bit error probability bounds using a truncated union bound approach.

140



§7.1 Introduction 141

7.1 Introduction

An optimal multiuser MLSD receiver, the MUKCIR receiver structure, was derived as­

suming perfect knowledge of the channel impulse response in chapter 6. In this chapter, 

we approach the same problem from a more practical perspective. We assume knowl­

edge of the channel's second order statistics only (ie. the CIR is unavailable) and thus de­

rive another MLSD receiver structure. Accordingly, the MLSD receiver will be known as 

the Multiuser Known Channel Autocovariance (MUKCA) receiver. However, due to its 

exponential computational complexity in the number of users, lower complexity subop- 

timal receivers are often sought in practice. Hence, we discuss an approach for designing 

a single user receiver that is computationally feasible yet can take into account properties 

of the multiple access interference (MAI) when making decisions. This receiver will be 

known as the Single User Known Channel Autocovariance (SUKCA) receiver.

Research in the design of such receivers can be classified into three main areas (see Fig. 

7.1), namely 1) known CIR, 2) estimated CIR and 3) averaged CIR. A known CIR detector 

was discussed in chapter 6 where the channel was assumed completely known through 

the aid of a "genie". The decision rule can be written as

Detectors which attempt to estimate the CIR may use training symbols prior to trans­

mission or no training symbols at all in which case they are classified as "blind". Blind 

receivers assume no a priori knowledge of the channel or any of its second order statis­

tics. For detectors which estimate the CIR, the decision criterion is

where h is the estimated CIR vector (ie. the estimated parameter is used as if it were 

exact). Finally, detectors which average over the "nuisance" CIR make their decisions as

B =  argmaxp(y | B ,h)
B

(7.1)

B =  arg maxp(y | B ,h) 
B

(7.2)

B

=  a rg m ax p (y |B ) 
B

(7.3)

(7.4)
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In the case of complex Gaussian channels, this averaging requires the channel autoco­

variance and noise variance. As before, these may be known (the MUKCA receiver) 

estimated or averaged over. This leads to a tree where at each level of the tree there is 
a known parameter, an estimated parameter and a parameter to be averaged over. Each 

node of the infinite tree is a possible realisation of a new receiver structure.

Detectors
-Known CIR (MUKCIR)

-Estimated CIR 
-training symbols 
Lno training symbols (Blind)

-Averaged CIR 
-  non-Gaussian (?)

L Gaussian
~ Known channel autocovariance (MUKCA)

Estimated channel autocovariance 
training symbols 

L no training symbols (Blind) 
Averaged channel autocovariance 

Known
-  Estimated
-  Averaged

-  Known
- Estimated 

Averaged

Figure 7.1: Different detector realisations

Our development of the receivers is based on a generalisation of Yu and Pasupathy 

[152] and of Hart and Taylor [49]. In time varying channels it is generally impossible 

to estimate the channel impulse response (CIR) exactly. The channel and noise auto­

covariances are generally more stationary than the CIR, so they can be accurately esti­

mated from prior transmissions. Hence such receivers can actually be closely obtained.
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Nonetheless, we do not explore how the Rayleigh channel's second order statistics can be 

estimated in a realistic situation. This is more clearly explained in [49]. The most practical 

method is via a long training sequence.

Yu and Pasupathy describe a receiver structure for the case of Rayleigh fading, in­

dependent diversity and ideal synchronisation. Hart and Taylor have extended this by 

relaxing the requirements for ideal carrier acquisition, symbol timing and Rayleigh fad­

ing. However, for our purposes it is important to note that at the heart of both their 

approaches, linear prediction is used to estimate the received signal. The receiver then 

forms a weighted Euclidean distance between the predicted and received samples, and 

this is used as a measure in the Viterbi Algorithm (VA) to reliably detect the (single) user's 

data.

Our formulation still results in an optimal receiver provided that only the received 

pulse and noise second order statistics are known. We propose it as a benchmark for 

other receivers operating in the same environment.

7.2 MUKCA Receiver Derivation

We consider the problem of detecting the K  users' maximum likelihood transmitted se­

quences. Under the assumption that all the possible transmissions by each user over the 

interval under consideration are equally likely, the MLSD rule is one important criterion 

of optimality as discussed in section (5.16). MAP symbol detection is another. Thus the 

MLSD searches all allowed transmitted sequences and chooses the one with maximum 

likelihood, as

arg  m ax p (y | B)
B

(7.5)

arg  m in  — ln p (y  | B) 
B

(7.6)

That is the MLSD receiver requires as a metric the probability of observing the sequence 

of received samples y, conditioned on the hypothesised symbols. Since the received sig­

nal samples, ?/m, conditioned on B, are complex Gaussian (because they are a linear com­

bination of only the complex Gaussian random variables, /**,*;,m- ir;v and nm), we can
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write

P(y 1 Ü) = d e t ^ R , , )  6XP ( - 5 y ,,R » (ß )y )  (7'7)

Hence the log-likelihood can be written as

Y- 1
— lnp(y I B) = - 5 3 l n p ( » m | B , y m- i )  (7.8)

m = 0

= i y HR„-!)1(B)y + ln(det(25rR#s(B))) (7.9)

where Hyy = ^E{yyH | B} as described in (5.51). Hyy is positive definite if the noise is

non-zero and so its inverse can be Cholesky decomposed as [152],

R - ‘(B) = A "(B )D -1(B)A(B) (7.10)

where A(B) is a lower triangular forward prediction matrix with unity main diagonal 

entries,

i

00

0 \
-« 4 .1(B) 1 0 ••• 0

A(B) = « .. 
^

 CO

1

- ^ 3 , 1  (B) 1 ••• 0

1 )

and 2D is a diagonal matrix, written as 2D= diag(2cr ,̂ •• • , 2 0

Therefore (7.9) can be rewritten as

lnp(y I B) = Y, 1 —  E i= ‘ , ^ 5 ’f B)Vm~‘ |2 + ln 2^ m (B ) (7-12)m=0 2(Tm(B)

In a parallel derivation, we can expand the desired pdf of (7.6) by using the definition of
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conditional probability repeatedly to obtain

Y - 1

p(y  I B ) =  n  p (ym I
m=0

(7.13)

where ym- i =  [yo, • • • , ym_i]T. Relying on the received samples' Gaussianity, this equals

f I Vm — E  l y m I B, 11 
l n p ( y |B )  =  E l -------

m=0 ^ 2 ^ ( B )
+  ln27TCT (̂B) (7.14)

Matching (7.12) up with (7.14), we identify that E  | ym | B,3^m_ i |  is calculated as the 

linear combination of past samples as

m—1

E ^JJm I B, d̂ m—l j* — 'y ^ (7.15)

where iomij (B) is the Zth tap for the ML predictor of ym/ given the hypothesised sequence 

and 2cr^(B) is the variance of the error. It now remains to be shown that the conditional 

expectation E  j ym | B, is in fact the output of the best linear predictor, where ym

are samples of a random zero mean process that is complex Gaussian. First, the predic­

tion error must satisfy the Orthogonality Principle (ie. the prediction error is orthogonal 

to past samples of the random process ym-m')f as

1 [ w
2 ^  I (Vm ~  y   ̂w m , l f ä ) y m - l ) y m - m '  r = 

1 W ~ 1
2  E ( y m y m - m ' )  ~  Wm,l  (B ) ^ ^ ( y m - i y m - m ' ) ~  0 ,

(7.16)

Second, by comparison, the MMSE taps are designed to satisfy

1 -y/  ̂ ~
m(B) =  arg min -  | ym -  V  wmti{B)ym-i f  

Z ,=1
(7.17)

Differentiating (7.17) with respect to u>m,/(B), and setting the result to zero we obtain a
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system of W  linear equations that identify the MMSE taps u>m)/(B), as

(7.18)

which is an identical system of equations to (7.15) Thus the conditional expectation is the 

output of a linear MMSE predictor, as (7.15).

y-m E  I ym I B, Tm—1 ̂  

2<4(B)
(7.19)

is the Innovations process. "Innovations" is used since the sequence comprises the unpre­

dictable part of the random process. The expectation is computed by a predictor which 

takes a linear combination of the past samples.

Since rN  samples are received every symbol interval, the log-likelihood can also be 

written in recursive form as

T t ( B i )  =  T i _ i ( B i _ i )  +  X i ( a i _ i , c r i ) (7.20)

where

r<_i(Bi_i)

i, (Ji)

i r N —1

E I ym E  I ym I B, Tm—1 ^ |2

2<4(B)
-t-ln27rcr 2m

( i + l ) r N —1

E
m —irN

I ym E |y m I B, I2

2°‘m(B)
+  ln27ra^(

(7.21)

(7.22)

It can be clearly seen from (7.15) that the predictor tap weights tumi/(B) depend on its 

infinite past history of transmitted symbols. This is not very practical since the receiver 

then has a complexity which increases exponentially with time. In order to fix the com­

plexity of the receiver it is necessary to make K;m)/(B) depend only on its finite past his­

tory. This is achieved by providing the predictors with a fixed number of finite past sam­

ples, W. Accordingly, we can now approximate E  j ym | B, T’m -i}  by E  j ym \ B, y m- i } 

where ym_i =  [ym- w , • • • and W  is the order of the truncated predictor [152].
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The quantity 2cr^(B) is reinterpreted as the variance of this suboptimal prediction error. 

The prediction, predictor tap weights and the prediction error variances are computed 

according to

E  I B , y m_ i |  = w^(B)ym (7.23)

Ryy,m(B)wm(B) : r yy,m( B) (7.24)

°Vn(®) =  (R-yy (B))m,m — Wm(B)ryyjm(B) (7.25)

where

R-yy,m(B) — —Ü7 I ^  J  (7.2 6)

rw .m(B) = \E { y m,/m ! B} (7.27)

wm =  [lUm,l> • • • ,Wm,w]H (7.28)

Therefore £  |y m | B, X n-i} is now approximated by the truncated prediction,

w
E  ^Vm I BjYm— 1^ = ^ ] w m,l (B)ym—f (7.29)

l—\

having the prediction error

w _
CTm(B) = E ( y 2mI B ,y m- i )  -  | b ) (7.30)

/=1

The log-likelihood metric can now be approximated by the finite complexity predictor

Ti(Bi) =  rj_i(Bj_i) +  \ i ( (T i- i , (J i )  (7.31)
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where

, CTj)

” ^  [ I Vm E ( ymI B, y m—l)  ,  _
E  < ------------ “T^TT^--------  I- In 2^(7^ (B)
m —0 2^(B)

( i+ l ) r /v - l  f  I y m -  ß { y m I I2

. 5 ,  — U .B ) " " 2 ro - |B1

(7.32)

(7.33)

Past symbols and the state matrix are defined as

(  V i b o ,K  \ f  bt - L + 2,1 • ■ b i - L + 2 , K  \

B i-l =

\  *>»-1,1

Oi =

V h i ~bi,K )

The branch metric Aj(cri_i,cjj) is a function of L hypothesised sequences where L = 

\W/rN~\ +  Lh. The number of states in a multiuser trellis is and the number of

branches M KL. These are fixed and finite due to restricting the predictor and ISI lengths 

to L symbol periods. This trellis search is done most efficiently by the Viterbi algorithm.

The path metric for the ith symbol is computed based only on the path metric's current 

state (Ti-i and the next state Oi. Note that the predictions are being computed on-line; the 

predictor coefficients are however, precomputed. Note however, that for long codes, K yy 

in (7.27) change every symbol period, even if the data sequence does not. Therefore, dif­

ferent prediction coefficients are needed every sample and it is infeasible to precompute 

them. A better, but still infeasible, strategy is to compute them on the fly.

7.3 SUKCA Receiver Derivation

Due to the prohibitive complexity of the MUKCA receiver, we investigate a simplified 

version of MUKCA, whose complexity is linear with respect to the number of users. A 

single user approach is studied whereby the receiver is constrained to track and lock to 

the signal of the desired user. Unlike the conventional single user receiver, it is optimised 

to take into account the colouration of the MAI. The received signal is given by (5.46). 

The contributions from the interfering users (k = 2, • • • , K) are grouped with the additive
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noise as

Vm —
[m/r  N\

E i rN
i = —Lh+ l  +  [m/ rN\

K  [m/ r N\

“1” ^   ̂ ^   ̂ bi^khi,k,m—irN T
k—2 i = —Lh +  l +  lm / r N\

(7.35)

The simplification comes when we assume that the latter two terms comprise coloured 

Gaussian noise without further structure. The MAI plus Gaussian noise equals

[m / rN\  K

v m ~  'y  ̂ y   ̂ î ,k^ i,k ,m —irN  ~t~ n m  (7.36)
i = —L h + l + [ m / r N \  k = 2

with autocovariance equal to

(Rt;u)m,m' =  — }
[m/ r N  J K  [m' / rN\  K

= E E E E
i = —L + l + [ m / r N \  k=2 i ' = —L-\ - l+[m' /rN\  k'=2

E {b i , k b i ' yk ' }  2 ^ ^ ^ k T̂n- i r N l̂ i , k , m ' - i r N }  +  2  

\ rn/rN\  K  ̂ ^

y! y! r̂ 7̂7,77177,771'} (7-̂7)
t = —L+l+Lm/rTVj /c=2

since the crosscorrelation of the interfering users' bits is unity if they match in time i and 

user k otherwise zero. Define the vector B su  =  (B)i,i as the first column in B so that 

it only contains only the desired user's transmitted symbols. Assuming that the MAI is 

Gaussian, the MLSD decision rule for B su  can be written as

B su = arg min \ y HK~^{BSu)y  +  ln(det(27rRy2/(B5C/))) (7.38)
B su ^

where the received signal autocorrelation R yy(Bsu )m mi is given by

Lm/rN\  [m'/rN\

\E{ymy'm,\BSu} E E
i——Lh+l+  [m/rN\ i '=—Lh +  l+ [m' / r N\

i r N ^ i ' j'riv} *b (Ruu)m,m' (7.39)
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As with (7.22) this may be Cholesky factorised, and the sequence metric of (7.38) con­

verted to a recursive path plus branch metric, processed by the VA with a considerably 

reduced number of states, namely M L~l, where L = + \W/rN].  For example, a

full state MUKCA receiver with 10 users and a memory length of 3, where = 2 and 

W  = r N ) has 220 states and 230 branches. For a single user receiver, there are 4 states 

and 8 branches in all. Moreover, in practice a viable reduced complexity receiver can 

retain fewer survivor sequences during the trellis search. Of course, this reduction in 

complexity comes at a cost of an increased BER.

7.3.1 The SUKCIR Receiver Derivation

The ideas presented in section 7.3 can also be applied to the MUKCIR receiver to derive a 

single user receiver with substantially reduced complexity, the single user known chan­

nel impulse response (SUKCIR) receiver. However, the MUKCIR receiver omits the noise 

whitening operation in white noise and so, applying the ideas of section 7.3 will appear 

to be more complex. The received signal may be written as

\rn/rN\

Um — ^   ̂ T" Vm
i= —Lfc + l+Lm/rATJ

(7.40)

Using the same steps as in 7.2, the sequence metric may be derived as

i = —L + l+ [m /r N \ i = - L + l + [ m / r N \  i ' = - L + l + [ l / r N \
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where

(7.41)
1=0 m—0 
Y - 1 Y - l

(7.42)

It is important to note that the computation of R ^ 1 in the previous equation is pro­

hibitively difficult, since it does not have finite span in general. Accordingly to contain 

the complexity, we must employ the same technique as in section 7.2. is Cholesky 

factored, interpreted as a MMSE predictor with an increasing number of taps, then rein­

terpreted as a MMSE predictor using a fixed number of past samples, W. By restricting L 

to Lh -I- \W/rN]  we may proceed as per section 7.2 to compute the log-likelihood metric. 

However, we do not pursue this any further since our motivation for studying the MUK- 

CIR receiver was to devise an absolute benchmark, not for obtaining an implementable 

receiver.

7.4 Receiver Operation

The predictions of (7.29) are being computed during detection and are therefore evolv­

ing with the channel. However, for stationary channels and short codes the predictor tap 

weights are invariant and may be precomputed. The calculation of the branch metric is 

shown more clearly in Figure 7.2. For each symbol interval, rN  received samples are 

admitted into the receive buffer one by one. Each sample, ym, is estimated via the predic­

tion E  Iym I B , y m_i J using the precalculated predictor coefficients. These are used in 

computing a scaled, squared Euclidean distance plus a bias term which is then summed 

over all r N  samples of the symbol period. This forms the branch metric of each state.

7.5 Receiver Analysis

In this section the MUKCA receiver's BER is analysed for a fast ,  time varying frequency 

selective Rayleigh fading channel in white noise. Once again as in chapter 6, let B be the 

matrix of transmitted symbols and B be the matrix of detected symbols. An error event
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Figure 7.2: Branch metric computation

occurs w hen an erroneous detected sequence has a greater likelihood than the transm it­

ted sequence. An error event of length ce starts at symbol te and stops at te +  ee. Only 

the dom inant short error events are considered. In a fast fading situation the dom inant 

error events are short, and hence the truncated bound can neglect longer error events. 

On the other hand, for a very slow fading channel, it is not valid to neglect the longer 

error events since most errors occur in deep fades and persist for hundreds of symbols at 

reasonable SNRs. The BER can be upper bounded by

BER<HH
B B

P{B)P(B  —> B)w{B -> B) 
K  l°g2 M

(7.43)

w here P(B) is the transm ission probability, P(B —► B) is the probability that the erro­

neous sequence is detected above the the transm itted sequence and iu(B -¥ B) indicates 

the num ber of bit errors in the error event.

Define the normalised predictor tap weights as

&m,l
\/20m(B) 
~ wm,l (B) 
V ^ 2 ö 'm ( B )

,1 =  0

•,/ =  1..W
(7.44)
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and

e  , - ) V 2 a m ( B  y l 
e m ,l ~  <, - w mA(B ) l =  1 w

1 y/2am { B ) ' 1 L~ W

(7.45)

Define the ratio of the bias terms as

Y - 1

Kmin — ^  ^
m —0 ^ ( B )

(7.46)

Then the pairwise probability of error is given by

P(B  ->B )
'y - i

P  ( yV™- A S ? g J ] L I2- +  ln(27T<4(B)) >
vm=0 2 ^ ( B )

y ------------ + ln ß jro ^ B ))
^  2oä,B mV "Jm =0

' Y - l

p E
\m = 0

Vm X ^m '=l ( B ) y J7l_m '
2<4(B)

y - l

E
m =0

+  ln(27rcr^(B)) >

Vm w m,m' ( B ) y m _ m'

2<Tm(B)
+ ln(27rcr^(B))

y - i

p E
. m =0 m '= 0 m '= 0

^  Kmin

/ Y - l  W  W \
P  ( y !  [em,mi Gm,m2 ~ em,miem,m2] | (7.47)

\ m = 0 m i = 0  m2=0 /

We define k as the left hand side of the inequality in (7.47). It is a Gaussian quadratic
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function in ym with a Hermitian symmetric matrix kernel, Y defined implicitly by (7.47).

k = ye^Yye (7.48)

Y e \V—W i ' " ’ j V{L+ee— \ ) r N —1 + W ] (7.49)

The entries in the autocovariance matrix Ryy are given by (5.51) and the characteristic 

function of k is thus given by

C(£) = det (I -  j2£RvyY)-1 (7.50)

From standard residue calculus, the pairwise probability of error equals [49]

P {B B) = 1 -  exP( -J P iK m in )  f l  ^  _  p
i,Q{pi}>0 k=l,k^i P i / P k )

(7.51)

for Kmin < 0 and

P ( B - > B )  = 1 +  exp{ - j p i K m i n )  Y \  n -  1
}>0 k=l,k^i (1 - P i / P k )

(7.52)

for Kmin > 0 where pi is the ith pole of (7.50).

The single user receivers may be analysed following a similar approach. In this special 

case, the normalised predictor tap weights em)j, and the variance of the prediction error 

cr^(B) in (7.47), defined explicitly in terms of B) in (7.44) and (7.30), are replaced by 

the single user quantities wmj and em  ̂obtained from (7.39).

7.6 Numerical Results

This section provides an overview of the two proposed receivers' performances for a 

variety of transmitter, channel and receiver parameters. It is not possible to explore all 

combinations of such parameters; instead we highlight the influence of a particular pa­

rameter by keeping all others fixed. The baseline signal model is chosen as follows. The 

DS-CDMA transmitter uses a root raised cosine chip pulse shape truncated to 1.5 chip
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periods with 30% excess bandwidth, with a random signature sequence comprising of 

5 chips. Two users are transmitting (to keep complexity low). The channel comprises 

P =  2 equally spaced paths with equal mean power. The delay spread is Lr = 0.5. The 

Doppler spectra of the simulated fading processes closely approximate Jakes model (the 

do(27r/oAt) model)with f o T  = 0.1 (ie. fast fading). The receiver takes r  =  2 samples per 

chip period and uses W = 10 taps for the predictor. Note that the simulations have been 

done using fixed but randomly selected codes. Codes with better crosscorrelation prop­

erties will normally be used and accordingly, the graphs shown represent "moderate" 

performance.

Fig. 7.3 shows the graceful BER degradation of the MUKCA receiver as the number 

of users increases. The analytic bounds agree well with the simulations. To make the 

simulation/analysis complexity manageable a maximum of 3 users were simultaneously 

active.

Fig. 7.4 shows that the effect of increasing the number of multipaths. If the channel 

impulse response were known ideally the receiver's performance would improve with 

each additional path due to the additional implicit delay diversity available. However, 

for the MUKCA receiver this improvement in BER is not significant for the SNRs shown, 

although it appears that there may be at higher SNRs (for predictor receivers, a steepen­

ing in the BER curve is usually headed by an initial flattening).

In Fig. 7.5 it is the delay spread that is varied. The performance degrades slightly 

with the addition of new users. For the larger delay spreads of half a symbol period, the 

receiver performs remarkably well at high SNR, with an implicit diversity gain of 5dB.

Fig. 7.6 show similar results, and as before, it is interesting to note that the MUKCA 

adapts well to a slower fading rate. For the more extreme channel, the implicit diversity 

is lost, since accurate prediction is difficult. The slowly fading channel is predicted more 

easily and the delay spread offers significant gains. When there is considerable Doppler 

and delay diversity together, it becomes difficult to distinguish the data from the highly 

distorted received signal and performance degrades (for the value of W  chosen).

Fig. 7.7 shows the effect on the BER performance of increasing the number of active 

users. Both the KCA receivers show graceful degradations in the BER as the number
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Figure 7.3: BER-SNR curves of the MUKCA receiver for a fast time varying frequency selective 
channel where föTs = 0.1, LrTs = 0.5TS r = 2. N = 5, P = 2

of users increase. The dramatic reduction in the SUKCA's computational complexity 

outweighs its slight BER degradation.

Fig. 7.8 studies the effect of truncating the predictor taps to contain the complexity 

of the receiver designs. For very short predictors the receiver's performance reaches a 

high BER floor. As the number of predictor taps increase, the BER floor diminishes. For 

K  =  2 users, r =  2 samples per Tc, N =  5 chips and at moderate to high SNRs W > 7 is 

sufficient. Proper choice of W  will depend from case to case and in general as the number 

of users increase, W  will also grow.

7.7 Summary

This chapter proposed two receivers for linearly modulated or DS-CDMA signals sent 

over a time varying frequency selective channel. The complexity of the multiuser known 

channel autocovariance (MUKCA) receiver grows exponentially with the number of users. 

As a result, we propose a linear complexity receiver which is able to exploit the structure 

of the MAI when making decisions. Both receivers provide useful tradeoff between a 

priori information, performance and complexity. An analysis of the optimal receiver is 

also provided which shows good agreement with simulation.
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Figure 7.4: Effect on the MUKCA receiver's BER of varying the number of independent paths, P, 
where r  = 2, N = 4, LtTs = 0.5Ts, fo T s = 0.01
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Figure 7.8: Effect of the MUKCA receiver's BER for different predictor lengths, W, where K  = 2



Chapter 8

Conclusion

8.1 Achievements

The performance evaluation of CDMA for a range of channel models and receiver com­

plexities is an important research topic for mobile communications systems. The author 

has contributed to the area directly.

To date the effectiveness of a multiuser CDMA system has always been ascertained by 
comparing its performance to that of a single user system. Driven by the need to find a 
more accurate benchmark, an efficient method is proposed in chapter 3 to compute tight 

bit error rate performance bounds. Applying the well known union bounding technique, 
upper and lower bounds were obtained for both synchronous and asynchronous sys­

tems in Gaussian noise channels. It was observed that as the number of users exceeded 

the processing gain there is a graceful degradation in the BER for optimum multiuser 

detection. This method is finally applied to obtain a lower bound for the slow frequency 

flat Rayleigh fading channel. The technique was found to be relatively fast and simple to 

use. However, it is important to note that the method relies on perfect knowledge of the 

channel parameters and signature sequences of all users.

Our understanding of the value of applying error control coding to the CDMA channel 

has been limited to date. The author investigates several important properties of the 

minimum squared Euclidean distance for a coded multiuser system in chapter 4. The 

minimum distance is (a) indicative of the error correcting capability of the system and 

(b) it determines the performance of the system at asymptotically high signal to noise 

ratios. It was proved that the upper bound on the minimum squared Euclidean distance 

for a multiuser system is the same as that of a single user system provided all users use
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trellis codes with the same constraint length, number of input bits and mapping sets. 

This has implications which warrant further research into the design of error control 

code and signature sequences in a joint fashion. The impact of non orthogonal signature 

sequences on d2min was investigated next. More specifically, we studied the ratio of the 

squared minimum distance between a non orthogonal system and an interference free 

system. This resulted in the computation of tight asymptotic efficiency bounds for both 

synchronous and asynchronous coded systems. Finally it was shown that the minimum 

Euclidean distance for a convolutional coded synchronous multiuser system is no less 

than the product of the free distance and the minimum distance of the corresponding 

uncoded synchronous multiuser system. This provides a quick way of computing

While Part I investigated techniques to evaluate the performance of both uncoded 

and coded multiuser systems for Gaussian channels, Part II of the thesis was devoted 

to the design of receiver structures for the more general time varying frequency selec­

tive Rayleigh fading channel. A brief introduction to the modelling of such a channel 
was discussed in chapter 5. Two novel receiver structures have been designed, simulated 
and analysed. The first, the MUKCIR receiver, is the multiuser MLSD receiver structure 
with perfect knowledge of the channel and signature sequence of all users and involves 
matched filtering. The second, the MUKCA receiver, assumes, more realistically, knowl­

edge of the channel's second order statistics, and makes use of linear prediction.

The MUKCIR receiver is the optimal receiver structure for the time varying, frequency 

selective Rayleigh channel. Accordingly, its performance is a benchmark for other re­

ceivers. However, it is exponential in the complexity with respect to the number of users. 

The main advantage of this receiver is its ability to jointly exploit relatively small Doppler 

and delay spreads and transform them into substantial dB gains. The receiver's BER is 

also bounded for the fast Rayleigh fading frequency selective channel. Under fast fading 

environments, it was found that the error events which contributed most to the union 

bound were relatively short.

The MUKCA receiver is also an optimal multiuser receiver in the absence of a priori 
knowledge about the channel impulse response. Similarly it acts as a benchmark for 
other receiver structures. This receiver predicts the received signal and forms a weighted 

Euclidean distance between these predicted and received samples. Once again the com­

putational complexity grows exponentially with the number of users. The receiver's BER
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is bounded and the analysis shows good agreement with simulations. A comprehensive 

set of BER results shows that the receiver is capable of exploiting the implicit Doppler 

and delay diversity in fast fading. As a means to reduce complexity a single user linear 

complexity receiver, the SUKCA receiver, was proposed. It takes into account the struc­

ture of the multiple access interference when making decisions, unlike the conventional 

single user detector.

Finally, a suboptimal multiuser detector that used a sequential decoding algorithm 

was presented. The traditional metric function (Fano's metric) was modified using a 

Gaussian approximation method to enable the computation of the metric efficiently for 

a synchronous CDMA system with a large number of users. The improved receiver's 

performance was obtained using computer simulations. It was found that this detector 

achieved results comparable to the optimal receiver with much reduced complexity.

8.2 Future Research

This thesis can be extended in many directions. A number of future research directions 
are listed as follows.

• Equation (4.4.3) computes the minimum Euclidean distance for a convolutionally 
coded, synchronous multiuser system. It remains to be seen if it can be gener­

alised to trellis coded synchronous multiuser systems with a higher dimensional 
signalling constellation.

• In general the technique developed in chapter 3 for computing for uncoded 

multiuser systems could be applied to the case of a large number of users. How­

ever, as seen in the numerical results section of chapter 4, it was only possible to 

compute j for a maximum of 3 users using error control coding. This can be at­

tributed to the cut-off threshold T being much larger for coded systems. Improved 

algorithms need to be devised to accommodate more users in a realistic situation. 

In all our studies we have assumed that the receiver has perfect knowledge of tim­

ing, channel information and correlation between spreading waveforms. Relaxing 

some of these assumptions would make it difficult if not impossible to compute 
the partial distance spectrum. Further research is required in this direction to find
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appropriate methods to compute tight upper bounds.

• Chapter 6 and 7 have not addressed the issue of error control coding. This can sig­

nificantly enhance the receivers' BER. Furthermore, this thesis has ignored the pres­

ence of multiple antennae (in particular directional antennae) as an added means of 

diversity. The benefits of multiple antennae in a single user context are considerable 

[48]; however, at the expense of additional complexity.

• Two single user receivers were proposed in chapter 7 each with an attractive com­

plexity relative to their corresponding multiuser receivers. The analysis of these 

receivers is a direct extension of the techniques provided for multiuser receivers.

• We have not investigated any "blind" receiver structures for the fast fading, fre­

quency selective channel. Sub-space based or CMA algorithms have shown promise 
in the design of blind linear complexity multiuser receivers. This has generally been 

applied to slow fading channels. Research on the applicability of these algorithms 

to the fast fading frequency selective channel merits further investigation.

• Last but not least the author has worked on change detection algorithms for a very 
general teletraffic model (see Appendix B). Presently, CDMA systems overcome 

multiple access interference by taking advantage of knowledge of the cross corre­
lations between the desired user's code and all other users' codes with a multiuser 

detector. This implies that the detector knows which users are active. However, 

knowing which users are active is difficult when users are constantly entering and 

leaving the system. The author is currently investigating techniques developed in 

Appendix B to detect a new user and estimate that user's parameters so that they 

can be incorporated into a multiuser detector.



A ppendix A

A Suboptimal Multiuser CDMA 
Receiver Using Sequential Decoding

Overview: This chapter considers the application of sequential decoding to the detection 

of data transmitted over the additive white Gaussian noise channel by K  synchronous 

transmitters using direct sequence spread spectrum multiple access (DS-SSMA). A modi­

fication of Fano's sequential decoding metric is derived using a Gaussian approximation 

(GA) method. The performance of such a decoder which uses the improved metric for a 

multiuser system is compared using computer simulations. It is found that the decoder 

achieves results comparable to the optimal receiver with much reduced complexity.

A.l Introduction

The work of Verdü has shown that optimum near-far resistance and a significant per­

formance improvement over the conventional detector can be obtained by an optimum 

maximum likelihood multiuser detector, [121]. The substantial improvements, however, 

are obtained at the expense of a dramatic increase in computational complexity. The com­

plexity grows exponentially with the number of users. Thus, when the number of users 

is large the optimum detector becomes infeasible. For this reason, several low complex­

ity multiuser detectors have been proposed, including tree-type maximum likelihood 

sequence detectors. The Fano metric is closely related to the likelihood function and it 

is developed so that paths of different lengths can be compared [71]. In the literature 

two types of sequential metric functions have been proposed by Xie et al. in [148] and 

by Xiong and Shwedyk in [149]. Xie applied sequential decoding to the matched filter 

outputs directly, however, his results show good performance only for very low cross
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correlations between users. Wei et al. have also investigated other suboptimal detectors 

for Gaussian and fading channels, mainly employing the M and T algorithm [140] [137]. 

The complexity of the sequential detector with the conventional Fano metric becomes 

much higher than the M- and T- algorithms. The fundamental feature of a sequential 

decoder is that it searches for the most likely path based upon some appropriate metric, 

rather than evaluating all candidates for the best path as does the Viterbi algorithm. The 

key ingredient in a sequential decoder is the metric function, whose properties determine 

the speed of the tree search and ultimately the bit-error probability of the decoder. In this 

chapter we use the whitened matched filter outputs (see chapter 3) fed to a sequential 

decoder and obtain asymptotically optimal performance for high cross correlations be­

tween users and a large number of users.

A.2 Metric Functions for Sequential Detection

The system model is the same as Fig. 3.6. r ' is a vector of matched filtered output signals 

given by

where 7Z is cross-correlation of the signature sequences. It is also assumed that 7Z is 

positive definite. If a whitening filter is applied to the sampled output of the MF and 

stored in vector y,

The fundamental feature of a sequential decoder is that it searches for the most likely 

path based upon local metric values, rather than evaluating all candidates for the best 

path, as does the Viterbi algorithm. As a result, the decoding effort is only linearly de­

pendent on the number of users in the system, a significant improvement over the expo­

nential dependence of the optimal receiver. We now focus on the metric function of the 

sequential decoder, the properties of which determine the speed and bit error probability 

of the decoder. The optimum multiuser detector selects the hypothesis b which, given

r' = IZWh + z, (A.l)

y =  TW b + n (A.2)
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the receiver observations, maximises

b € are max
bet-1,1}*

2r/TWb -  bTH b

where H  =  W T7ZW and 

-b im f MF>
* — l

2 r\ y/E~b — biEb — 2 bjHji
j = i

(A3)

(A.4)

is a metric function based on the matched filter outputs. The metric function given in 

equation (3.14) of [148] is based on the matched filter output. We can rewrite this expres­

sion for user i of a synchronous CDMA system as

m<MF>
/  t-1 K

-b i 2r'i -  biEb -  2 bjHji -  2 sgn[rj]Hji
\  3= 1  3=i+ 1

— N q log(2) (A.5)

The well known Fano metric for sequential decoding was shown to have certain optimal 

properties by Massey [71]. This approach was taken by Xiong in [149] equation (10), for 

intersymbol interference channels. Since a synchronous CDMA system can be treated as a 

time varying ISI channel a similar metric can be obtained for the whitened matched filter. 

The branch metric function corresponding to a branch in the multiuser tree, { — 1,1}^ for 

user i driven by a whitened matched filter output yi, can then be written as

m < W M F >  =  ^  _  ln(2)\  (A.6)

In the sequential search process, in is calculated based on tentative estimates of the previ­

ous 2 — 1 users' consecutive input symbols and the present guess of the input bit for user 

2, yi = J2)=i F*’J (0)bj Since the cascade of the whitened matched filter with the channel 

results in a noise sequence which is white the noise probability density is given by

M y i  - y i ) = 7 m exp (A7)

Using in and (A.7) one can simplify (A.6) to

m < W M F >  _  (Vi & )  _ ln(2) -  ln(p0(j/i)) +  0.5 ln(7rA0) (A.8)

To compute the metric in (A.6) one must determine p0{yi). This is the heart of the problem 

in multiuser communications using sequential decoding. Proceeding in a similar fashion
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as [149] we have for equiprobable input, p0(Vi) is given as

= i g vm'exp (-t ) (A9)
This shows that the unconditional probability density function p 0{yi),  of the noisy suffi­

cient statistic Vi is the ensemble average over all the conditional density functions pn{yi — 

Pi).  Note that p 0{yi)  is not independent of the number of users. For small values of K  

and for fixed signature sequences, this task is manageable, although demanding. For a 

sufficiently large number of users, the straightforward evaluation of (A.9) becomes im­

practical. To deal with this situation numerical estimation methods can be used. In this 

section we investigate one such procedure namely the Gaussian Approximation method. 

Taking a closer look at equations (A.5) and (A.6), it is seen that the matched filter metric 

has five terms, the first three of which are similar to the maximum likelihood metric de­

rived by Verdü in [121]. The bias term, Nq log(2), takes into account the paths explored at 

different depths in the tree search. The fourth term, SjLi+i sgn[rj]Hji shows the depen­

dence on the future section of the path that has not been searched yet. Assuming that the 

decoder has successfully decoded the first i — 1 users, i.e., {bj =  bj for j  =  1,2,..., i — 1 }, 

then on simplification

m<MF> ( 2 X ] ”  s9n \rj\H ji}  + 2biEb -  biE~b +  2zi j -  N 0log(2)
\  j=i+1 /

(A.10)

and

2

---- ln(2) -  In(poiVi)) +  0.5 ln(7rA0) (A.ll)

The metric in (A. 10) clearly shows that a particular decision suffers from MAI (the first 

term in (A.10)). However, for (A.ll), there is no MAI term. It is easy to verify that the 

average behaviour of this metric along the correct path is positive, which tends to favour 

the desired choice and opposes by making the incremental metric negative if a wrong 

path is followed along its course of journey.

We can now rewrite (A.9) by grouping the multiuser interference terms together and use

< ™ F> (F^OKfr-&,) + * )
No
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a Gaussian Approximation method to evaluate the modified unconditional probability 

density function to be used later for metric calculations in the sequential decoding algo­

rithm [86].

Vi

i - 1

3=1
F*’*(0)6< +  v

(A.12) 

(A.13)

Since the user in consideration can be either +1 or -1

P o { V i )

where p(v)

l T (  1
2 / —  l  -/Sin  ™  H

V2n(7E V 2  cj2e
- v f

^  p{v)dv

(A.14)

In the appendix of this chapter we show how the integral of (A. 14) can be simplified. The 

second term in (A.14) can be also be simplified in a similar fashion. Hence the Gaussian 

approximated unconditional probability density function may now be written as

P o { V i ) + K  exp (A.15)

where B,J5i and C,C\ are due to the two possible hypotheses respectively for the user in 

consideration. In Fig. A.l the distribution for 10 users are plotted against the domain of 

received values y{. In Fig. A.2 the absolute deviation, i.e., absolute difference between 

the exact pdf and the Gaussian Approximated pdf is plotted as a function of the number 

of users and received values. It clearly shows that as the number of users increase, by 

modelling the multiple access interference as a Gaussian process the approximation er­

ror diminishes and hence serves as a good tool for calculating (A.9) for a large number 

of users. Although the GA metric is very attractive for practical implementation, exact 

analytical results seem difficult to obtain. We will illustrate the performance of this new 

decoder by computer simulations.
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A.3 Numerical Results

This decoder (whitened matched filter output followed by the sequential decoding algo­

rithm) accommodated 10 users. We assume that the buffer size for the stack was infinite, 

thus there are no anticipated problems with erasure or buffer overflow. The SNR range 

was 0-8 dB, which represents low to moderate signal to noise ratios. The channel input 

was a random binary sequence with frames of 1024 bits. Simulations were done for the 

synchronous CDMA channel. The correlation matrix, 1Z was generated for 10 users with 

a spreading length of 31. A sa comparison to the method used in [148] we have also sim­

ulated the performance for the same channel matrix with the matched filtered outputs 

being used in the algorithm. In Fig.A.3 the bit error rate graph is plotted against signal 

to noise ratio. Is is clearly seen that the Gaussian approximated metric degrades only 

slightly as compared to the accurate metric. The matched filter output being fed to the 

sequential decoding algorithm produced an interference limited performance.

A.4 Conclusion

In this chapter we have applied sequential decoding to synchronous multiuser detection. 

The modification of the Fano metric by using the Gaussian Approximation method to 

group multiuser interference terms proved to be very useful in making reliable decisions 

for large number of users. It was shown that the approximation error reduced as the 

number of users in the system increased. Finally we showed by simulations that the GA 

method suffers only slight degradation in the bit error rate when compared to optimal 

detection, hence making this method attractive for practical implementation.

A.5 Appendix

Po{Vi) =  J
— oo \ / 2 tT(TE

exp ~{Vi ~  F*’*(0) — v)2
2<4

p(v)dv (A.16)
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Replacing A  =  y< -  F a , p l0{yi) =
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(A. 18) 

(A.19)

(  B l - C
Plo(yi) = A  exp 4

2(Jl

X ^

J J —oo \ / 2 txo2
exp -

2ol

Since the integral of a probability density function is 1, p l0{yi) can be approxim ated as

\/2no  ectu
Plo{Vi) =  AT exp (A.20)
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Exact pdf for 10 users

Figure A.l: Exact pdf of po{yi) for 10 users

Absolute approximation error for 10 users

Figure A.2: Pdf of the approximation error for 10 users
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Sequential decoding for 10 users
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Figure A.3: BER-SNR curves for 10 users



Appendix B

Change Detection in Teletraffic 
Models

B.l Abstract

In this chapter we propose a likelihood based ratio test to detect distributional changes 

in common teletraffic models. These include traditional models like Markov Modulated 

Poisson Process and processes exhibiting long range dependency, in particular Gaussian 

fractional ARIMA processes. A practical approach is also developed for the case where 

the parameter after the change is unknown. It is noticed that the algorithm is robust 

enough to detect slight perturbations in the parameter space after change. A comprehen­

sive set of numerical results including results for the mean detection delay is provided1.

B.2 Introduction

Change detection algorithms have been studied extensively for the past 50 years [80] [13]. 

Adaptive identification algorithms can track only slow fluctuations of the characteristic 

parameters and are not suited for detection of abrupt changes in general. Detection of 

abrupt changes however, is necessary in many applications like fault detection in naviga­

tional systems, onset detection in seismic signal processing, and segmentation of speech 

signals. We are interested in the problem of on-line detection of an abrupt change, with 

the minimum delay in detection with a constraint on the mean time between false alarms. 

Most of the signals treated in [13] are time-series models (linear or nonlinear). Follow-

lrrhis work was done in collaboration with Dr. Subhrakanti Dey, Dept, of Systems Engineering, The 
Australian National University
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ing techniques similar to [23], an on-line change detection algorithm was developed in 

[28] for Markov-modulated time-series models based on the CUSUM (Cumulative Sum)- 

like test derived from Page's test and the Sequential Probability Ratio Test (SPRT) [105].

In this chapter, we develop on-line change detection algorithms based on a CUSUM-like 

procedure for teletraffic models, ranging from traditional models like Markov-modulated 

Poisson Process (MMPP) to a class of current self-similar models proposed for internet 

traffic, specifically long memory time series models.

It is known that the CUSUM test is optimal in the sense that it optimizes the worst 

mean delay in detection when the mean time between false alarms goes to infinity [13]. 

The CUSUM algorithm also gives the infimum of the worst mean delay for a class of 

stopping times with pre-assigned rate of false alarms [13]. Simulations in [92] illustrated 

via a comparative study of five algorithms, (for a change in the mean of a Gaussian distri­

bution), that the CUSUM algorithm is more robust and efficient than the others. Optimal 

properties for the CUSUM algorithm are discussed in detail in [13]. Since the idea of 

the test is based on calculating the logarithm of the ratio of the conditional likelihood 

functions before and after the change, one can extend the CUSUM algorithm to the case 

of dependent observations (although initially it was designed for independent observa­

tions) where calculations of such likelihood functions are possible (e.g., hidden Markov 

models [23] and Markov-modulated time-series [28]).

In this chapter, we develop on-line change detection algorithms based on the CUSUM- 

like test for teletraffic models. The first model we treat is a traditional model for mod­

elling traffic data in communication networks also known as the Markov modulated Pois­

son Process (MMPP). It has been extensively used for modelling processes like overflow 

from a finite trunk group, superposition of packetized voice processes and packet data 

(see [34] and references therein). Although this model can account for time-varying ar­

rival rates and captures some of the important correlations between interarrival times, 

it cannot model long-range dependence (or long memory with hyperbolically decaying 

autocorrelation functions arising as a striking feature of the so-called "self-similarity"). 

Starting with the seminal paper [64], it was shown in many other works that self-similarity 

existed in ATM traffic, compressed digital video streams and web traffic between browsers 

and servers (e.g., see [93]). While self-similarity is measured by the so-called Hurst pa­

rameter (taking values between 0.5 and 1.0), it has been shown that high degrees of self-
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similarity (Hurst parameter > 0.7) have a detrimental effect on network performance, 

including packet loss and queueing delay (see [93] and references therein). Also, in­

creasing load on the Ethernet increases the degree of self-similarity. In the context of 

multimedia traffic such as video and voice with their diverse Quality of Service (QoS) 

requirements, it is important therefore that the effect of self-similarity on interconnected 

issues like queueing delay, packet loss and buffer sizes is well understood. Hence, the 

issue of detecting changes in the degree of self-similarity is quite important in such ap­

plications. In this chapter, we address this issue by developing on-line change detection 

algorithms for a class of long-range dependent processes namely, Gaussian Fractional 

ARIMA (FARIMA) processes.

It is to be remembered however, that these algorithms are optimal when the parameters 

before and after the change are exactly known. In most realistic situations, that is not the 

case (e.g, network traffic). While one can extend such methods to Generalized Likelihood 

Ratio (GLR) tests (assuming that the parameters before the change are known but not so 
after the change), one can also develop more sub-optimal methods by substituting the 

parameters before the change by their estimated values and running a bank of change 
detection algorithms with different assumed values for the parameters after the change. 
While the closest value will result in a better performance, such algorithms are obviously 

computationally quite expensive, particularly when the number of parameters is high. 

Analytical or even approximate computations of the mean delay in detection and mean 

time between false alarms are quite difficult in the case when the sequence of the test 

statistic is not independent and will not be considered in this chapter for our algorithms 

except for some simulation results.

B.3 Signal Models

B.3.1 Markov Modulated Poisson Process (MMPP)

A MMPP is a doubly stochastic Poisson process where the rate of the Poisson process is 

modulated by the state of a Markov chain. Let st € S = {1,2, • • - , N}, t £ IN+ denote a 

finite state, discrete-time, homogeneous Markov chain with a transition probability ma­

trix A = (ciij) where â - = P{st+1 = i|st = j ) and initial probability distribution given
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by 7r such that P(sq = i) = n(i). The number of arrivals (e.g., of data packets) in the 

t-th time slot is modelled by a Poisson process and is denoted by nt. The rate of ar­

rival during the £-th time slot is given by gt where essentially gt is modulated by s*. Let 

g t € g  = {/i(l), /i(2),. . .  , g(N)}  where g t = MO if st = i-

Define B(n t) = diag{bi(nt),b2{nt) , - •• ,&w(nt)}, where 6j(n) = P{nt = n\st = i). 

Due to the Poisson nature of the process nt/ we obviously have P(nt — n\st = i) = 

exp(— The complete parameter space for the MMPP is then characterised by 

A = (A , 7T, /i). The problem at hand is to detect change from one parameter space A h , to 

another, A k -

B.3.2 Long Memory Processes

By generalising the well known ARIMA(p, d, q) models of Box-Jenkins [21], it is possible 

to relax the degree of differencing d to any real value to model long-term persistence. In 

what follows, we consider stationary fractional ARIMA processes with 0 < d < 1/2 and 

Gaussian innovations.

B.3.2.1 Fractional ARIMA

We formally define a FARIMA(0, d, 0) process to be discrete-time stochastic process {re*} 

represented as

Adxt =  (, (B.l)

where the operator A d is defined by

A d = (1 -  B)d = 1 -  dB -lrf(l -  d)B 2 -  i<f(l -  2 -  d)B3   (B.2)
2 6

where B  is the backward shift operator defined by B x t = x t~\. {e*} is a sequence of 

independent identically distributed i.i.d. random variables. In this chapter, we assume et 

is Gaussian distributed with mean 0 and variance unity.
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The covariance function of {re*} is

1 _  ( - l ) fcr ( l  -  2d)
Ik {xtx t-k\r(k  -  d +  i j m  -  fc -  d)

and the correlation function

(B.3)

x r ( i  -d )T {k  + d) 
Pk ~  T(d)Y(k 1 -

(B.4)

When d =  0, the FARIMA(0,0,0) process is a white noise with a constant spectral density. 

For 0 < d < 1/2, the FARIMA(0,d, 0) process is stationary with long memory. The 

correlations are all positive and decay monotonically and hyperbolically to zero as the 

lag increases. For the purpose of this work, we assume d < 1/2, since for d > 1/2 the 

process is not stationary. When —1/2 < d < 0, the FARIMA(0,d,0) process has short 

memory.

A more general model of the ARIMA family, namely FARIMA(p, d, q) can be defined 

by a stochastic process {yt} represented as

4>(B)Adyt = 9(B)et (B.5)

where A d is the fractional differencing operator, (p(B) = 1 — cj)\B-------- (f)PB p and 6(B) =

1 -  6\B  -  • • • — 9qB q, and et is a white noise process. The effect of the d parameter on 

distant observations decay hyperbolically as the lag increases, while the effects of 0 and 

9 parameters decay exponentially. Thus d may be chosen to describe correlation in a time 

series between distant observations whereas </> and 9 describe the short term correlation.

In practice, it is expected that the FARIMA(p, d, q) processes are likely to be of most 

interest when p and q are small [53]. We will consider the simplest of such processes, 

namely, FARIMA(1, d, 0) and FARIMA(0,d, 1). These two time-series are given by the 

following equations:

=  e((1 -  4>B)i\dyt 

Adyt =  (1 -  6B)tt

(B.6)

(B.7)
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To ensure stationarity and invertibility of {yt}, we assume \d\ < \,\4>\ < 1, |0| < 1. The 

covariance functions of the FARIMA(1, d, 0) and FARIMA(0, d, 0) processes can be found 

in [53].

B.4 On-Line Change Detection

Consider a sequence of independent and identically distributed random variables yt with 

a probability density /(.)  depending on a parameter space characterised by A. Before the 

unknown change time topt/ the parameter space is given by A =  Ah and after the change 

it is A =  Ak . Assuming that the parameter space Ah arid Ak  are completely known a 

priori, the problem is then to detect and estimate this change in parameter. A cumulative 

sum (CUSUM) algorithm that uses the logarithm of likelihood ratios to detect such a 

change was devised by Page [80] in 1954. The key statistical properties of this ratio can 

be summarised as follows. A change in the parameter space A is reflected as a change in 

the sign of the mean of the log-likelihood ratio. Let St =  E i= i st{v) =  In • The

typical behaviour of the log-likelihood ratio St shows a negative drift before change and a 

positive drift after change. Although this test was designed for an independent sequence 

{yt},  a similar CUSUM like test can be designed for dependent sequences of {yt} also 

[13]. This is based on measuring the ratio of the conditional likelihood functions before 

and after the change. Note from [13] that such a sequential CUSUM-like procedure in a 

manner similar to Page's recursive test can be written as a recursion in the test statistic St 

in the following manner:

St =  max{0, St-i +  g(t)} (B.8)

where

(B.9)

As far as the change is concerned, the relevant information lies in g(t), the difference be­

tween the log-likelihood functions according to the parameter spaces Ah and Ak - The key 

property that allows detectability in a CUSUM-like procedure is E(g(t)| A#) < 0 , E(g(t)\\K) >



§B.4 On-Line Change Detection 179

0. To detect a change from Ah to Ak , usually a threshold h is set such that a change is 

detected when St > h. There are two quantities associated with the detection: the mean 

time between false alarms and the mean delay in detection. The general nature of these 

quantities are that the mean time between false alarms increases approximately exponen­

tially with increasing values of the threshold, mean delay in detection increases approx­

imately linearly with increasing values of the threshold. These two properties make the 

CUSUM test quite useful. Computation of the exact conditional log-likelihood functions 

is possible (as shown in the next section) for the MMPP process but not for long memory 

processes. So, we resort to approximate computations for long memory processes.

B.4.1 MMPP

Consider an MMPP defined in Section II A. Note that here we replace {yt} by the ob­

servation sequence {n t}. Define the following forward variable a[ = ( a [ ( l) , . . .  ,a lt(N))' 

where obviously a[ E IR^, such that the following recursion in a[ holds:

4 = B (n ty p ‘ “V1 , 4 = S(n0)V  (B.10)
2-<i

Note that in the right hand side of the first equation in (B.10), a\_x is normalized to avoid 

numerical problems.

It is easy to show that according to the above recursion, a[(j) is equal to the quantity 

f l • Then easily follows that flin t I r it- i , . . . , n0), l = K ,H  is given 

by fi(n t I i, . . .  , no) =  Y^j a tU)- It is clear that one can now perform computations of 

the test statistic as given by (B.8), (B.9).

B.4.2 Gaussian FARIMA

In this section, we show how one can extend the on-line change detection algorithm 

for long memory time-series, specifically Gaussian FARIMA(0, d, 0), FARIMA(1, d, 0) and 

FARIMA (0, d, 1).
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B.4.2.1 Gaussian FARIMA(0, d, 0)

Let A = {rro,--1 be a T-length sequence of observations from a Gaussian FARIMA

(0,d, 0) process with 0 < d < \  satisfying (B.l). For the FARIMA(0,d, 0), the parameter 

subject to change is d. For FARIMA(1, d, 0), the parameters concerned are d, <f> and for 

FARIMA(0, d, 1), they are d, 6. We assume that the parameters before and after the change 

are completely known. In the next section, where we present simulation results, we con­

sider a practical sub-optimal scheme for the case where the parameter (d in that particular 

case) is unknown after change. Next, we describe how one can go about performing a 

CUSUM-like test for long memory time series like those given by (B.l), (B.7).

It is well known [17] that an exact likelihood computation of a long memory time series, 

e.g., FARIMA(0, d, 0) is computationally prohibitive due to the covariance matrix being 
high-dimensional (for long time series) and often numerically unstable for certain values 

of d such that inverting the matrix might be a problem. There are several ways to compute 

an approximate likelihood function like ("Whittle's approximate MLE", see [142]). We 
take an alternative approach as given in Section 5.6 of [17]. Consider (B.l). Assuming 

that the long memory time series has a causal linear representation one could write xt as

00

xt = y :  b(i)xt- i + it (B.ii)
i = i

where asymptotic properties of the AR coefficients b(.) can be found in [17]. If we knew 

the infinite past of xt given by xs, s < t, we could reconstruct the sequence of i.i.d. in­

novations es, s < t. Instead of the infinite past, if only a finite number of past values is 

observed, the innovations can be estimated by et = xt — b(l)xt-i. Here, we would 
further truncate the memory such that we only consider M past samples. This is to pre­

vent growing computational needs with increasing length of the time-series. In that case, 

we represent xt by

M
Xt =  ^ 2  ßhtiXt-i +  et{d) (B.12)

1 =  1

where ßM&t-i is the best linear prediction of x t given the past M samples. For a
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FARIMA(0, d, 0) series the predictor taps Pmi are given by

M  \  T { l - d ) T { M  - d -  l + 1) 
l )  T{-d)T{M - d  + 1)

(B.13)

et{d) denotes the prediction error at time t where the dependence on d is explicitly shown. 

An approximate log-likelihood function Lt(Xt,d) can be calculated by (where X t = 

,xi)) [150] [17]

An approximate CUSUM-like test can now be devised (we call it approximate because 

of the approximate log-likelihood function) by computing g(t) in (B.9) by the logarithm of 

the ratio of f&K (xt \xt- \ , -  • • , rci) and fdH (xt \xt- i ,  • • • , z i) where dn, dK are the respective 

d values before and after the change. It is not hard to see that this is given by (due to 

Bayes' Theorem)

9(t) = (Lt(Xu dK) - L t - i { X t - u d K)) ~ (Lt(Xt,dH) -  L t - x i Xt -udn) )  (B.16) 

B.4.2.2 Gaussian FARIMA(1, d, 0) and FARIMA(0, d, 1)

The on-line change detection algorithm is essentially based on the computation of the ap­

proximate log-likelihood function for both FARIMA(1, d, 0) and FARIMA(0, d, 1). These 

approximations are based on the best linear prediction of the time-series given finite 

number of past samples. Hence one can repeat the same procedure (as done in the pre­

vious subsection for Gaussian FARIMA(0, d, 0)) for obtaining the predictor taps, the pre­

diction error covariance, and finally equations similar to (B.14) and (B.16). One will need 

to use the covariance formulae for FARIMA(1, d, 0) and FARIMA(0, d, 1) (see [53]) and to

(B.14)

where the mean squared prediction error of (d) =  E[ef(d)} is given by [150]

af(d)  = r(t)r(i -  2d)/(r(i -  d)2) (B.15)
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compute the predictor taps recursively, one can use the Levinson-Durbin algorithm. For 

space limitations, we do not go into the details of the calculations.

One can potentially consider a case where the long memory processes like Gaussian 

FARIMA(p, d, q) for nonzero p or q can have Markov modulated AR or MA parameters. 

This is an analytically hard problem and will be considered elsewhere.

B.5 Simulation

In our simulations, he Markov-modulated Poisson Process has an underlying Markov 

chain that takes values in a 4-dimensional state space. We assume that the process 

changes from a parameter space Ah to Ax  after the first 1000 points and then changes 

back to A// after another 1000 points. Different transition probability matrices Ah and 

A k  were used, along with two different sets of rate of arrivals of packets pn  and px  

(details are omitted for space limitations).

Fig. 1 shows the plot of the test statistic clearly showing the changes at t =  1000 and 

t =  2000. Fig. 2 shows the corresponding mean delay in detection versus the detec­

tion threshold, h. As the threshold is increased, the time required to detect a discernible 

change increases approximately linearly.

Figures 3,4 show the change detection for long memory processes. The data for the 

FARIMA(0, d, 0) process was generated using a statistical software package SPW, and 

FARIMA(1, d, 0) was generated by passing a FARIMA(0, d, 0) process through an appro­

priate filter. Each process was subdivided into three equal sections. The first change can 

be seen at t =  1000 and the next change at t =  2000. Figure 6 shows the delay in detec­

tion for the FARIMA(0, d, 0) process of Figure 3 and as expected, the delay is seen to be 

approximately linear in the detection threshold.

Next, we show some results where the parameter after the change, dx is assumed to 

be unknown. A practical on-line approach would be to run several change detection 

algorithms in parallel with guessed values for d x . If du, the parameter before the change 

is not known, one can substitute dx by some estimated value. Here we only concentrate 

on the case where dx  is unknown. The following figures (Figures 7-11) show the plots
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of the test statistic for various "guesses" for dx for such an algorithm. We investigate 

the proposed detection algorithm using a filter bank with the FARIMA(0, d, 0) process. 

The process was 3000 samples long and was divided into three equal sections, namely 

(t = 0..999,£ = 1000.. 1999, t = 2000..2999). The data sequence was generated using 

dH = 0.1 for the first 1000 samples, dx = 0.3 for the next 1000 and back to d# = 0.1 in 

the final section. Thus the first change can be seen at t = 1000 and the next at t = 2000.

It is readily seen that for slight changes in assumed dx the test statistic is more "jit- 

tery"and have no clean transition boundaries at the time of change. More importantly, 

the average rate of change in the test statistic decreases for a branch assuming an incor­

rect dx that is farther away from the true dx- Figure 9 shows the change for the correctly 

assumed dx value (i.e. dx = 0.3). Note that for the other branches, Sn plateaus at a lesser 
value. So, a higher slope of increase in the values of the test-statistic and cleaner transi­
tions with less jitter are indicative of a better guess. However, these are only empirical 

guidelines and the complexity of this algorithm obviously increases exponentially with 

the number of parameters.
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Markov modulated Poisson process

Figure B.l: Change detection for a MMPP process

T(average Delay) as a function of H(Threshold)

H (Threshold)

Figure B.2: Delay in detection for a MMPP process, Plot of Average delay-Threshold
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Figure B.3: Change detection for ARIMA(0,d, 0) process, d# = 0.1 (t =  0..999), dj< = 0.3 (t = 
1000..1999) and dH = 0.1 (t = 2000..2999)

Figure B.4: Change detection for ARIMA(1, d, 0) process, dn =0.1,<f> = 0.2 (f = 0..999); d^ = 0.3, 
0 =  0.4 (t = 1000..1999); dH = 0.1, 0 = 0.2 (t = 2000..2999)
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Figure B.5: Change detection for ARIMA(0, d, 1) process, dn = 0 .1 ,6  = 0.2 (t = 0..999); dx  = 0.3, 
0 = 0.4 (t = 1000..1999); dH = 0.1, 0 = 0.2 (t = 2000..2999)

Threshold, h

Figure B.6: Delay in detection for ARIMA(0, d, 0) process, dn  =  0.1, (t = 0..999); dx  = 0.3,6 = 0.4 
(t = 1000..1999);dH = 0 .1 ,9  = 0.2 (t =  2000..2999)
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Figure B.7: Change detection for ARIMA(0, d, 0) process, Tested dK — 0.20, Actual dK = 0.3

Figure B.8: Change detection for ARIMA(0, d, 0) process, Tested dK = 0.25, Actual dK = 0.3
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Figure B.9: Change detection for ARIMA(0, d, 0) process, Tested dK = 0.3, Actual dK = 0.3

Figure B.10: Change detection for ARIMA(0, d, 0) process, Tested dK = 0.35, Actual dK = 0.3
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Figure B.ll: Change detection for ARIMA(0, d, 0) process, Tested dK = 0.40, Actual dK = 0.3
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