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Abstract

In the classical planning model, state variables are assigned values in the
initial state and remain unchanged unless explicitly affected by action effects.
However, some properties of states are more naturally modelled not as direct
effects of actions but instead as derived, in each state, from the primary
variables via a set of rules. We refer to those rules as state constraints. The
two types of state constraints that will be discussed here are numeric state
constraints and logical rules that we will refer to as axioms.

When using state constraints we make a distinction between primary
variables, whose values are directly affected by action effects, and secondary
variables, whose values are determined by state constraints. While primary
variables have finite and discrete domains, as in classical planning, there is
no such requirement for secondary variables. For example, using numeric
state constraints allows us to have secondary variables whose values are real
numbers. We show that state constraints are a construct that lets us combine
classical planning methods with specialised solvers developed for other types
of problems. For example, introducing numeric state constraints enables us
to apply planning techniques in domains involving interconnected physical
systems, such as power networks.

To solve these types of problems optimally, we adapt commonly used
methods from optimal classical planning, namely state-space search guided
by admissible heuristics. In heuristics based on monotonic relaxation, the
idea is that in a relaxed state each variable assumes a set of values instead of
just a single value. With state constraints, the challenge becomes to evaluate
the conditions, such as goals and action preconditions, that involve secondary
variables. We employ consistency checking tools to evaluate whether these
conditions are satisfied in the relaxed state. In our work with numerical
constraints we use linear programming, while with axioms we use answer set
programming and three value semantics. This allows us to build a relaxed
planning graph and compute constraint-aware version of heuristics based on
monotonic relaxation.

We also adapt pattern database heuristics. We notice that an abstract
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state can be thought of as a state in the monotonic relaxation in which the
variables in the pattern hold only one value, while the variables not in the
pattern simultaneously hold all the values in their domains. This means
that we can apply the same technique for evaluating conditions on secondary
variables as we did for the monotonic relaxation and build pattern databases
similarly as it is done in classical planning.

To make better use of our heuristics, we modify the A* algorithm by
combining two techniques that were previously used independently — par-
tial expansion and preferred operators. Our modified algorithm, which we
call PREFPEA*, is most beneficial in cases where heuristic is expensive to
compute, but accurate, and states have many successors.
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Chapter 1

Introduction

Planning is one of the oldest subareas of artificial intelligence, originating
in the early 1960s, with the goal of achieving human-like problem solving
capabilities [80,110]. A planning task consists of an initial state the world is
in, a specification of what we want to achieve, or goal, and a list of actions
that are available. A solution to the planning problem, called a plan, is a
sequence of actions that transforms the world from the initial state into one
of the goal states.

In the classical planning model, action effects are explicitly given for each
of the actions, so determining the way the world is affected by the action is
straightforward. When an action is applied, the variables that do not appear
in action effects retain the same value as in the previous state. However,
some properties of states are more naturally modelled not as direct effects
of actions but instead as derived, in each state, from the primary variables
according to a set of rules that apply to all states. We call those rules state
constraints.

This work focuses on optimal planning with state constraints, which we
will employ for a number of purposes. We will use state constraints to ele-
gantly model laws of physics in interconnected systems, such as power net-
works. In these domains, the planning agent manipulates the system through
discrete control actions, such as opening or closing of the switches, yet each
action leads to a complicated interaction between elements of the system
that depends on the state of the entire network. We will show how usage
of state constraints makes some domains, such as controller verification or
Sokoban, easier to solve. In order to reason about state constraints, we will
integrate planners with systems used to reason about constraints, such as a
linear programming solver. We will describe the way we adapted techniques
commonly used in planning, namely admissible heuristics, to this setting.
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1.1 State constraints

In this section, we will give an overview of general properties of state con-
straints, describe some ways they can be used and introduce some terms that
will appear throughout this thesis.

When using state constraints, we make a distinction between state vari-
ables that are directly affected by action effects, called primary variables,
and the variables whose values are determined by state constraints, called
secondary variables. Conditions such as goals and action preconditions can
depend on both primary and secondary variables. Constraints and secondary
variables may take many different forms — for example, secondary variables
may be numeric, in which case the constraints may take form of linear in-
equalities, as we will see in Chapter 3.

Following Helmert’s [77] terminology, we refer to the assignment of pri-
mary variables as state and an assignment of both primary and secondary
variables as extended state. The assignment of only primary variables is sim-
ply called a state, or a reduced state. The relationship between a state and an
extended state depends on the types of constraints that are being used. In
some cases, there is always a unique assignment of secondary variables given
an assignment of primary variables, in which case there is one extended state
corresponding to every state. In other cases, we might have a multiple or an
infinite number of extended states corresponding to a single state.

In addition to being used to compute values of secondary variables, intro-
ducing state constraints allows us to make a distinction between walid and
invalid states. A valid state is a state in which there is at least one assign-
ment of secondary variables that satisfies all of the constraints exists. In an
invalid state, it is not possible to come up with such an assignment. A plan
is a sequence of actions that visits only valid states. In this setting, applying
an action might not be allowed, not because any of the preconditions are
unsatisfied, but because effects of the actions lead to an assignment of val-
ues to primary variables that results in an invalid state. Thus, determining
whether an action is applicable in a given state does not only involve check-
ing whether the preconditions are satisfied, but also whether the resulting
assignment of variables constitutes a valid state.

It should be noted that given our definition of state constraints, we do not
necessarily need to have secondary variables in our problem. State constraints
might, for example, prohibit some combination of values of primary variables,
as is the case in the work of Weld and Etzioni [140]. The notion of state
validity, defined through state constraints, is present, yet secondary variables
are not required.
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1.1.1 Contribution

The two types of state constraints that we will discuss in our work are numeric
state constraints and axioms.

e Numeric state constraints allow us to use real numbers as secondary
variables. As in classical planning, the primary variables are discrete.
For a given assignment of primary variables, there could either be a
unique assignment of secondary variables, or there could be multiple
or infinitely many such assignments, or there could be none. If there is
no assignment satisfying the constraints, the state is invalid.

e Axioms take the form of rules of a logic problem. Unlike in planning
with numeric constraints, both primary and secondary variables have
discrete domains. Another difference from planning with numeric con-
straints is that given an assignment of primary variables, a unique as-
signment of secondary variables satisfying the constraints is guaranteed
to exist — i.e. there are no invalid states.

We use state constraints as a construct that enables us to combine clas-
sical planning techniques with specialised solvers developed for other types
of problems. In the case of numeric constraints, this is a linear programming
solver. This widens the types of domains that can be addressed. For instance,
numeric constraints allow us to apply planning techniques to problems in-
volving interconnected physical systems. An example that we will return to
several times throughout this thesis is power network reconfiguration problem
(see Section 3.3.2).

We also show that state constraints can be used to make some domains,
previously studied in classical planning, easier to model and solve. With
axioms, modelling domains becomes more compact and easier to understand.
In some domains, namely Sokoban (Section 5.3.2) and controller verification
(Section 5.4.1), use of axioms eliminates some unnecessary choices from the
planner therefore reducing the search space.

1.2 Optimal planning

We are interested in performing optimal planning on this sort of problems.
Optimal planning is concerned with not just finding any plan that ends in
some goal state, but to find the cheapest plan, evaluated according to some
cost function.
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The reason for this is that in many of the domains that we consider, it is
beneficial to have plans that are as cheap as possible. In power network re-
configuration, this is because leaving portions of the network without power
is economically costly for power companies, so the process needs to be com-
pleted as quickly as possible. In the controller verification domain, where
finding a plan is equivalent to finding a fault in the controller, generating op-
timal plans is not necessary. However, plans that are cheaper, and therefore
shorter and simpler, are easier to understand. This makes fixing the faults
in the controller simpler as well.

The technique commonly used in optimal planning is heuristic state-space
search. This means that a search algorithm, such as A* [111] is used together
with a heuristic that determines which nodes (which represent states of the
planning problem) to expand. The heuristic estimates cost of reaching the
nearest goal state from the state being evaluated. A heuristic that never
overestimates this cost is known as admissible heuristic. The interest in
admissible heuristics is due the fact that there are search algorithms, such
as already mentioned A*, which are guaranteed to return an optimal plan if
the heuristic has this property.

Domshlak and Helmert [79] give an overview of heuristics used in classi-
cal planning. They categorise the heuristics as based on one of four ideas:
delete relaxation, critical paths, abstractions and landmarks. In this work,
we use and adapt h,,., and A*, which belongs to the first category, the pattern
database heuristic, which is a form of abstraction, and our disjoint landmark
heuristic (which combines ideas from delete relaxation and landmarks). As
we are interested in optimal planning we limit ourselves to admissible heuris-
tics.

Most of the time we will deal with cost functions that only depend on
actions — that is, actions have constant costs regardless of the state in which
they are applied. The cost of the plan is then simply the sum of the costs
of the actions making up the plan. In most domains that we will consider,
all the actions are assigned equal cost and the objective simply becomes
minimising the plan length.

In some cases, however, the cost of an action is a function of the state in
which the action is applied. In power network reconfiguration, for instance,
leaving greater portions of the network without power is more costly. Until
recently (see, for example, work by Geifler et al. [58,60]), planning with such
state dependent action costs received little attention. One reason for this is
that, while computing state dependent cost is is trivial in forward search,
accounting for them in heuristics is more challenging [60].
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1.2.1 Contribution

While axioms and various forms of numeric state constraints have been in-
vestigated by other researchers !, optimal planning in this setting has been
neglected.

Our contribution is adapting the admissible heuristics used in classical
planning to this setting. We base our approach on the idea of monotonic
relaxation (Section 2.2.1). The idea is that in a relaxed state, each vari-
able assumes a set of values instead of just a single value. The central
challenge is to evaluate the conditions (i.e. action precondition or goals)
that involve secondary variables in a relaxed state. This is approached as
a consistency checking problem — using consistency checking techniques we
determine whether there exists an assignment of secondary variables that
satisfies the constraints and the condition that we are testing. In our work
with numerical constraints, we use linear programming. With axioms, we
use answer set programming and three value semantics.

The diagram in Figure 1.1 summarises our approach. The ability to
evaluate conditions on secondary variables allows us to formulate constraint-
aware monotonic relaxation, which allows us to build a relaxed planning
graph, hence allowing us to compute the h,,,, heuristic. The relaxed plan-
ning graph also provides us with relaxed reachability testing, which we use
together with the iterative landmark algorithm [74] to compute A™. Modify-
ing this algorithm to generate disjoint landmarks also enables us to compute
a weaker heuristic, equivalent to LM-cut for unit cost actions.

Projection (Section 2.2.3) is an abstraction that works by removing some
subset of (primary) variables from the problem. The remaining (primary)
variables are called a pattern. This type of abstract state can be though of
as a relaxed state in which the variables in the pattern have a single value,
while the primary variables not in the pattern simultaneously hold all the
values in their domain. We can then employ the same consistency checking
procedures as before to evaluate the conditions involving secondary variables.
We use the abstraction of the problem to compute pattern databases heuris-
tics (PDBs). We do this in a very similar way as it done in planning without
state constraints.

Besides adapting heuristics for problems with state constraints, we also
investigated planning with state dependent action costs. We discuss the
issues arising from having a cost function that is dependent on an extended
state. We adapt the h* heuristic to deal with state-dependent action costs.

For more information on axioms see Théibaux et al. [136] and Chapter 2. While
our formulation of numeric constraints differs from that of other authors, an overview of
related work will also be given Chapter 2.
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Monotonic
relaxation

Abstraction

Y
h_ . h,
disjoint PDB
landmarks

Figure 1.1: Deriving heuristics for planning with state constraints.
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We also modified the A* algorithm by combining two techniques that were
previously used independently — partial expansion and preferred operators.
The requirement is that the heuristic that we are using needs to return a list
of preferred operators — in case of hA*, this is a set of actions that make up
the optimal relaxed plan. Our technique, which we call PREFPEA* is most
beneficial in cases where heuristic is expensive to compute, but accurate, and
states have many successors. This applies to, for example, our power network
reconfiguration domain, there are as many successors to each state as there
are switches on the network.

1.3 Thesis Outline

This thesis is structured as follows:

e Chapter 2 will give an overview of background and related work. It will
introduce the definitions and the notation that we will use throughout
this thesis. We will then explain the techniques used in classical plan-
ning that we adapted for planning with state constraints. We will also
give an overview of the related work in planning with state constraints.

e Chapter 3 deals with a specific type of state constraints, namely nu-
meric state constraints. We will show how we adapted heuristics in-
troduced in Chapter 2 to this setting and present the domains that we
used in our experiments.

e Chapter 4 will investigate state-dependent action costs in optimal plan-
ning with numeric constraints.

e Chapter 5 will cover optimal planning with axioms — again, we will show
how we adapted the well-known heuristics to this setting and present
domains that can be modelled using axioms. We will demonstrate that
axioms can make certain domains both easier to model and easier to
solve.

e Chapter 6 deals with an algorithm that we developed to improve A*
search when an informative, but expensive heuristic is used. We will
discuss the related work, present the PREFPEA* algorithm and the
experimental results.

e Chapter 7 serves as a conclusion.
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1.4 List of publications

Parts of the material in this thesis has previously appeared in the following
papers:

e Franc Ivankovic, Patrik Haslum, Sylvie Thiébaux, Vikas Shivashankar,
and Dana S. Nau. Optimal planning with global numerical state con-
straints. In Proceedings of the Twenty-Fourth International Conference
on Automated Planning and Scheduling, ICAPS 2014, Portsmouth,
New Hampshire, USA, June 21-26, 2014, 2014.

e Franc Ivankovic and Patrik Haslum. Optimal planning with axioms.
In Proceedings of the Twenty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July
25-31, 2015, pages 1580-1586, 2015.

e Patrik Haslum, Franc Ivankovic, Miquel Ramirez, Dan Gordon, Sylvie
Thiébaux, Vikas Shishankar, and Dana S. Nau. Extending classical
planning with state constraints: Heuristics and search for optimal plan-
ning. J. Artif. Intell. Res. (JAIR), 2018 (to appear).



Chapter 2

Background and related work

In the previous chapter we mentioned that introduction of state constraints
leads to a distinction between primary and secondary variables. While a (very
few) planners capable of dealing both with hybrid (a mix of real-valued and
discrete) state variables and global constraints exist, in this thesis we will
focus on cases where the primary variables have discrete and finite domains.
In that sense, our work either meets the definition of classical planning or
is only a small step away from it. To generate optimal plans we adapt
techniques that were proven successful in optimal classical planning, namely
state-space search guided by an admissible heuristic. In this chapter, we will
give a definition of classical planning and describe the admissible heuristics
commonly used in this setting. This chapter will also give an overview of the
related work.

The organisation of the chapter is as follows. Section 2.1 gives a defi-
nition of classical planning and highlights some of its limiting assumptions.
Terminology and notation used in classical planning will be defined in this
section. In subsequent chapters we will build on the formalism introduced
here to formally describe planning with state constraints. In section 2.2 we
will focus on techniques used for optimal planning in the classical setting.
We will discuss heuristics based on monotonic relaxation and abstractions.
Section 2.3 focuses on existing work on planning with state constraints. This
will cover their use in domains with discrete-valued variables, their use in
modelling interconnected physical systems and hybrid domains. Section 2.4
discusses the relation of state constraints to semantic attachments and plan-
ning modulo theories (PMT).
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2.1 Classical planning

Planning requires a formal statement, or model, of the problem. Here we
will discuss the classical planning model first and then highlight some of its
limiting assumptions. We will discuss how these assumptions relate to our
work.

Planning is a state-transformation problem. A planning problem consists
of a finite number of variables, each associated with a domain of possible
values. A state is a full valuation over the variables. Actions assign new
values to a subset of variables and therefore cause transitions between the
states. Additionally, planning problems have a goal which is usually defined
as a valuation over a subset of variables. A plan is a sequence of actions
that transforms an initial state into a state in which the goal is satisfied. A
planning agent is required to come up with such a sequence of actions.

The type of planning that has been most extensively studied is classical
planning. This area deals with a deterministic, static, finite and fully observ-
able state-transition system with restricted goals and implicit time. While
classical planning has been a very active and prolific field of research, its
limiting assumptions preclude us from dealing with real-world domains that
cannot be modelled this way [83]. As these restrictions often make formula-
tion of real world problems either impractical or impossible, there has been
an interest in relaxing them or removing them. The following list of assump-
tions in classical planning is adapted from Ghallab et al. [107]. In classical
planning;:

1. The set of states is finite. For the state-space to be finite, every variable
that we are dealing with needs to have a finite domain. Removing this
restriction is necessary when dealing with numerical state variables.
Real-world domains might require us to consider continuous variables
such as time, velocities, positions, and keeping track of resources such
as money or fuel [32]. A number of planners that we will discuss in
Sections 2.3 and 2.4 are capable of dealing with numeric state variables.
For a detailed overview see Coles et al. [32].

2. States are fully observable, meaning that our planning agent knows the
accurate value for each of the variables. This assumption has been
removed to study cases where states are partially observable. Partial
observability can be modelled by dealing with sets of states rather
than single states. Planning under partial observability has been inves-
tigated by, for example, Bonet and Geffner [15], Hoffmann and Braf-
man [84] and Kaelbling et al [89].
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. The system is deterministic. Applying an action in a given state brings

the system to a single other (predetermined) state. In contrast, by plan-
ning under uncertainty, we mean domains in which applying an action
may lead to a number of different states (and which state we end up
in is non-deterministic). A way to deal with this sort of problems is
contingency planning, meaning that some branches are executed condi-
tionally, based on the outcome of the sensory actions. Techniques that
have been employed to deal with non-determinism include Markov De-
cision Processes (MDPs) [22,37,88] and planning as model checking [8].
If Assumption 2 is removed as well, this leads to further difficulty as
the system does not know exactly the current state of the system at
run time. Dealing with this sort of problems is called conformant plan-
ning [67,131]. The aim becomes to develop non-conditional plans that
do not rely on sensory information, but still succeed no matter which
state the world is actually in. For an overview of approaches to confor-
mant planning see Palacios and Geffner [112].

. The system is static, meaning that it stays in the same state until an

action is applied. If a non static (or dynamic) system is deterministic
and fully observable, it can easily be mapped into the static system —i.e.
the planning agent knows which events will occur in any given state and
how the occuring events alter the values of variables. It then simply
becomes a modelling choice whether these changes will be described
as effects of actions or effects of deterministic events, so relaxing this
assumption is not interesting on its own. PDDL+ [50] is an exaple of
a modelling language that allows for events and processes controlled
by nature, while TM-LPSAT [129] and COLIN [32] are examples of
planners that can deal with those features.

. The planner handles only restricted goals, meaning that the objective is

to find any sequence of actions that ends in a goal state. Fxtended goals
means that we put restrictions not only on the final state, but also on
states visited by a plan — this means, for example, specifying states that
must be visited, states to be avoided, values that must be maintained
once achieved etc. Work on preventing plans from visiting some states
by Weld and Etzioni [140] that we will discuss in Section 2.3.3 is one
of the simple examples. We will discuss the meaning of state validity
in our setting in Chapter 3. It should be noted that in many cases,
domains with extended goals can be reformulated as classical planning
domains. !

!The authors mention functions to be optimised as an example of an extended goal,
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6. A solution to a planning problem is a linearly ordered finite sequence
of actions. Relaxing this assumption is often necessary when some of
the other assumptions are relaxed (e.g. when we are dealing with non-
deterministic systems). Removing this restriction enables us to present
solutions with “richer” mathematical structure. One example is already
mentioned contingency planning. Alternatively, a solution might be a
partially ordered set of actions or a sequence of sets. This sort of
solutions are generated by partial order planners such as UCPOP [113].

7. Time not explicitly defined — actions are instantaneous state transi-
tions. Plan consists of a sequence of actions, but we are not con-
cerned how long does each of the actions take (or, if we are, this can
be encoded as action cost). In temporal planning, action duration and
concurrency are taken into account. For history and an overview of
planner capable of dealing with temporal planning problems see Coles
et al. [31]. The interest this area increased when PDDL [49] was ex-
tended (as PDDL2.1) to include temporal features. Some of the early
(pre-PDDL2.1) planners include IxTeT [65], TLPLAN [3], TALPLAN-
NER [38] and Zeno [114]. More recent work includes LGP-td [63],
CRICKEY [33] and CoLIN [30].

8. Planning takes place offline. No changes occur in the system while
the agent is coming up with the plan. In practical applications the
planner often has to deal with an evolving system, which may also be
partially observable or non-deterministic. In such cases, the planner
must check online whether the solution it came up with remains valid,
and if it doesn’t, revise it (or re-plan). As online planning is related to
partial observability and non-determinism, contingency planning and
conformant planning approaches are often utilised. Ross et al. [124]
describe use of POMDP to solve this kind of problems.

In this work, we will keep all of these assumptions apart from Assump-
tion 5. The reason for this is that in planning with numeric constraints we
make a distinction between valid and invalid states. Additionally, in Chap-
ter 4, we discuss cost functions which depend on the extended state. While we
are adding mechanisms to deal with numeric variables, state variables remain
finite, so our state spaces remain finite as well, respecting 1. We keep the
Assumption 7 — for example, in our power network domain (Section 3.3.2),
we assume that the time between each switching action is long enough for

which means that under their definition optimal planning violates this assumption. How-
ever, optimal planning is usually considered classical if it respects all of the other assump-
tions.
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the system to reach a stable state. Similarly, in long-haul transportation
domain (Section 3.3.3), we simply assume that trucks do one trip a day. The
advantage of keeping most of the assumptions of classical planning is that
we can easily adapt many of the techniques developed for classical planning,
while still solving problems which would be computationally difficult using
classical planning.

Planning with axioms (Chapter 5) respects all of the above listed as-
sumptions. However, we will occasionally use the term classical planning to
mean planning without state constraints, even though this use might not be
entirely correct.

2.1.1 Finite domain representation

While there are a number of formalisms defining the classical planning prob-
lem [107], here we will use the notation and the definitions from Domsh-
lak and Nazarenko [39] called finite-domain representation (FDR), which is
based on the SAS+ formalism [21]. Unlike some earlier formalisms for clas-
sical planning, such as STRIPS [48], FDR uses multi-valued state variables
instead of propositional atoms (this feature was inherited from SAS+).

State

As explained above, one of the assumptions of classical planning is that
the set of states is finite. In FDR, this is equivalent to stating that in a
planning problem, we have a finite set of state variables V', with each v € V'
being associated with a finite domain D(v). Here we define a partial variable
assignment and a state.

Definition 1. V is a set of state variables, with each v € V' being associated
with a finite domain D(v). A partial variable assignment p is a function of
a variable subset V(p) C V that assigns each v € V(p) a value p[v] € D(v)
from its domain. A partial variable assignment s is called a state if V(s) =V
(that is, a state assigns every variable a value in its domain).

We refer to a partial variable assignment over a single variable as an elemen-
tary formula.

Partial variable assignments are used to encode conditions on states,
which are used as goals and action preconditions. Conditions are defined
as follows:

Definition 2. Given a partial variable assignment p and a state s, the value
of the condition s[p| is
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o true if s[v] = p[v] for allv € V(p) and
e false otherwise.
If s[p] is true, we say that p holds in s.

An empty partial variable assignment py holds in every state.

Planning problem
The definition of the planning problem is given by:

Definition 3. [Adapted from Domshlak and Nazarenko [39]] A planning task
in FDR representation is a tuple Il = (V, A, so, G, cost) where

e V is a set of finite-domain state variables.
e 3o 18 the initial state.
e (G is the goal, which is a partial variable assignment over V.

o A s a finite set of actions. Each action a € A is a pair (pre(a), eff(a)),
where

— pre(a) is action’s preconditions

— eff(a) is action’s effects

Both action preconditions and action effects are partial variable assign-
ments.

e cost(a,s) is a cost function. The function takes an action and a state
as an input and returns a non-negative real number which represents
the cost of applying the action in the given state.

Actions and plans

An action a is applicable in a state s iff its precondition holds in state s.
Application of a in s changes the values of every v € V(eff(a)) to eff(a)[v]
and we denote the resulting state by s[a]. All of the other variables retain
the same value as in s. Formally, this is expressed as

eff(a)[v] if v e V(eff(a))
s[v] otherwise.

STl = {

By s[{ai, ..., ax)], we denote a state that is obtained by sequentially applying
the actions aq, ..., a; (provided that all the actions are applicable in the state
obtained by applying the preceding action), starting from state s.
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Definition 4. Given a problem I1 = (V, A, so, G, cost) and a state s, a se-
quence of actions ay, ..., ay, is called an s-plan if the goal holds in s[{ay, ..., ax)].
The cost of an s-plan is the sum of the costs of the actions that the plan con-
sists of.

cost([{a1, ..., a)], s) = Z cost(a;, s[{ay, ..., a;)])

An s-plan is considered optimal if its cost is minimal among all s-plans.
Finding an optimal plan from an initial state, or so-plan, is called optimal
planning. A special case which we will consider is when all actions are as-
signed equal and constant cost (i.e. cost is always the same regardless which
action is applied in which state) and the objective becomes minimising the
plan length.

Most planning research has focused on cases where cost is only a function
of the action, rather than an action and a state. We will, however, also
consider domains with state-dependent action costs, where the cost of an
action varies depending on the state in which the action is applied. State
dependent action costs will be the subject of Chapter 4.

2.2 Techniques for optimal planning

A common technique used in optimal planning is state-space heuristic search.
Heuristic functions, in general, estimate the cost of reaching the “end state”
(in planning, some goal state) from a given state and are used to guide
informed search algorithms [80]. Admissible heuristics are lower bound func-
tions — a heuristic is admissible iff it never overestimates the true cost. Admis-
sible heuristics are used in optimal planning because certain optimal search
algorithms, like A* [111], guarantee that the solution returned is optimal,
provided that the heuristic is admissible. In such cases, efficiency of the
heuristic search depends on the accuracy of the heuristic function. The closer
the estimate is to the true optimal cost, the less search is required to find
and prove the optimality of a solution. Here, we will give an overview of
several admissible heuristics. In subsequent chapters we will show how these
heuristics were adapted for planning with state constraints.

2.2.1 Monotonic Relaxation

The standard approach to deriving admissible heuristics is to define relaxed
version of a problem, as cost-optimal solution to the relaxed problem is a
lower bound on the cost of the optimal plan (and is therefore an admissible
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heuristic cost estimate). One such relaxation is monotonic relazation. Here
we will present monotonic finite-domain representation (MFDR). For binary
variables MFDR is equivalent to delete relazation® and can be considered
its generalisation to finite-domain variables®. According to Domshlak and
Nazarenko [39], it is not clear to whom should the original idea of monotonic
relaxation for multi-valued variable domains be attributed, but it can be
traced back at least to the work of Helmert [77] on the Fast Downward
planning system.

Definition 5. Relaxed planning task is defined by a tuple 11" = (V| A, s*, G, cost).

Apart from using a relaxed state s™ instead of non-relaxed state sg, this
is the same as FDR. The rules for evaluating whether a partial variable
assignment holds and for applying an action are, however, different. The
key distinction that makes MFDR a relaxed version of the problem is that a
variable can have multiple values at the same time. As actions are applied,
variables accumulate values rather than switching between them.

Definition 6. In MFDR a relaxed state s* assigns each variable v € V a
(non-empty) subset of values from its domain, s*[v] C D(v).

Given any FDR state s, we can obtain a relaxed state s by simply replacing
each assignment of a value to a variable v; = x;, with a set containing only
that value, v; = {a;}, for all variables in V. Computation of all of the
heuristics that we will describe in the next section starts by creating a relaxed
state from the state for which we want to compute the heuristic value.

The relaxed state represents a set of states, namely those obtainable by
assigning each variable v; one value from its value set s*[v;]:

states(s*) = {{v1 = z1,.. ., v, =2, } | Vi: x; € s7(v;)}

Given a partial variable assignment p, s*[p] denotes the set of values that p
can take in s*.

Definition 7. s*[p| = {s[p] | s € states(s*)}

2The idea of using delete relaxation originated for domain independent planning orgini-
ated from Blum and Furst [10]. Bonet, Loerincs and Geffner [17] used the delete relaxation
to create an explicit heuristic.

3For planning with binary variables, the relaxed planning task is typically defined by
changing the action set, rather than redefining the effects of actions on sets of states [57].
The definition that we are using here (borrowed from Domshlak and Nazarenko [39]) is,
however, easier to generalise to planning with state constraints.
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In other words, true € s™[p] if and only if there exists a state s €
states(s™) such that s[p] = true (and analogously for false). A condition
p holds in a relaxed state if it is true in at least one of the states in the set.

Recall that goals and action precondition are conditions (that is, a par-
tial variable assignment). Applicability of an action and action effects are
modified in a relaxed setting in the following way:

Definition 8. An action a is applicable in a relazed state s* iff its precon-
dition holds in s*. Application of an action changes values of variables in

the action’s effects v € V(eff(a))from s*[v] to s*[v] U {eff(a)[v]}.

As actions are applied, the set of values associated with each variables grows
— applying an action can add a new value to the set of values, but it cannot
remove a value. Hence the name monotonic relaxation.

An MFDR action sequence (a1, ..., ax) applicable in a relaxed state s* is
an s*-plan if G[v] € s*[(aq, ..., ax)] for all v € V(G). A plan for II* starting
from a relaxed state s* is called a relaxed s*-plan.

The idea of using delete relaxation for domain independent planning orig-
inates with work by Bonet, Loerincs and Geffner [17]. Starting with Graph-
plan [11], HSP [16] and FF [85], heuristics based on delete relaxation became
common in many planning systems. The heuristics employed, HSP and FF
were, however, inadmissible variants of relaxed reachability heuristics, so
those systems performed non-optimal planning. The next section deals with
deriving admissible heuristics from MFDR.

2.2.2 Relaxation-based heuristics

Admissible heuristics built using monotonic relaxation that we will discuss
here are h*, h,,., and LM-cut. These heuristics were first formulated for the
delete relaxation, but work with MFDR formulation as well.

Computing any of those heuristics starts with creating a MFDR. Given a
planning task IT = (V, A, s¢, G, cost) and a state s of II for which we want to
compute the heuristic cost estimate, we create the relaxed planning problem
I = (V, A, s*, G, cost), where s* is the relaxed state obtained from s.

Optimal delete-relaxed plan and h*(s) heuristic

Definition 9. For any state s of II, the optimal relaxation heuristic h*(s) is
defined as the cost of an optimal relaxed s*-plan for MFDR task (V, A, s*, G).

While this heuristic is the strongest possible heuristic based on delete
relaxation [9], (i.e. Amee(s) < h*(s*) and hlM-eul(s+) < h*(s*) for all states
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in every domain), unfortunately, it is NP-equivalent to compute [20]. Other
admissible heuristics based on delete relaxation are therefore trying to find a
lower bound on h* as close as possible to its actual value in a computationally
cheaper way. For this reason, it is often desirable to find A" in order to assess
how close are the other heuristics to “the holy grail they seek” [74].

Besides using h* as a heuristic, finding optimal delete-free plans is de-
sirable in domains in which actions don’t have any delete effects. Examples
include the minimal seed-set problem from systems biology [55] and relational
database query plan generation [123].

A number of methods for computing h* have been developed. One pos-
sible approach is to remove the delete effects from actions and treat com-
puting h™ as any other planning problem, as it was done by Helmert and
Domshlak [79]. This is, however, not very efficient and in their experiments
leads to many instances where the heuristic value could not be computed.
(The authors did not propose using this method for guiding the heuristic
search or optimal delete-free planning. They wanted to find out how close
the other heuristics based on delete relaxation that they considered were to
h*.) Fukunaga and Imai [87] propose an integer programming approach to
computing h™. Pommering and Helmert [117] use branch-and-bound and
IDA* and incrementally computed LM-cut heuristic, as well as exploiting
some other properties of delete-free planning, to compute optimal delete-free
plans. Gefen and Brafman’s [56] method consists of identifying fact land-
marks and then pruning the search space using a number of techniques that
benefit from the obtained information. The method for computing h*™ that
we used in our implementations will be discussed in Section 3.5.4.

Although A™ is computationally expensive, it provides us with more in-
formation about the state being evaluated than just heuristic cost estimate —
it gives a set of actions that make up the optimal relaxed plan. In Chapter 6,
we will show how this additional information can be used together with some
alterations to A* to reduce the number of nodes evaluated during search.

Building a relaxed planning graph and calculating the h,,,, heuristic

As already stated, given that h* is computationally expensive, cheaper heuris-
tics that try to approximate h* have been developed. One such (admissible)
approximation is h,,,, heuristic, which can be computed in several different
ways. Here we will explain how it can be computed by building a relaxed
planning graph.

Besides enabling us to compute the h,,,, heuristic, building a relaxed
graph provides us with a relaxed reachability test. Given a state s and a
subset of actions of II, A” C A, building a relaxed planning graph using
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only actions in A’ tells us whether the goal is relaxed reachable from s using
only A’. We will use relaxed reachability tests in our implementation of A"
(Section 3.5.4) and disjoint landmark algorithm (Section 3.5.5).

The explanation that we will present here is adapted from Halsum [71].
The relaxed planning graph consists of alternating layers of actions and re-
laxed states. Given a state s for which we want to find Ap..(s), the first
relaxed state is obtained by creating the corresponding relaxed state s*. The
first layer of actions consists of all actions that are applicable in the ini-
tial relaxed state, ai,...,ar. The next layer is a relaxed state in which for
every variable the set of values consists of the union of the sets of values
that are obtained by applying all the actions in the first layer of actions,
slv]U{efflar)[v]}U...U{efflar)[v]}. Subsequent layers of actions and relaxed
states alternate until we reach a state in which the goal is satisfied or until
we run out of applicable actions. If we run out of applicable actions, the
goal is unreachable (and if the goal is unreachable in the relaxed setting, it
implies that it is unreachable from this state in the non-relaxed case as well).

Since the relaxed state contains initial values of variables, they can be said
to be reachable in zero steps. Values in the second relaxed state are reach-
able within one step. The relaxation lies in the fact that all of the values in
the second relaxed state cannot be reached at the same time, since in non-
relaxed setting a variable can have only one value. Additionally, values of a
variable added in the second relaxed state for two different variables might
not be achievable at the same time, as actions assigning those values might
be incompatible. In the third relaxed state (as well as all the subsequent re-
laxed states), it is not even certain whether the values appearing are actually
reachable. However, if a value is not found in the n-th relaxed state, then it
is certain that it cannot be reached in n — 1 steps. Thus, the index of the
relaxed state in which the value appears is the lower bound on the number
actions needed to reach it [71]. If all of the actions have equal and constant
cost ¢, then the cost of reaching a relaxed state s* is cost(s™) = ¢(n — 1).
(The cost of the first state in a relaxed planning graph is zero.)

Definition 10. Given a state s of a problem 11 and a relaxed planning graph
starting from s, the heuristic cost estimate h,q.(S) is the cost of reaching the
cheapest relazed state in which the goal ofll has been reached [71].

This heuristic is a lower bound on A* as the optimal relaxed plan cannot
contain fewer actions than there are action layers in the relaxed planning
graph and the cost of that plan cannot be less than the number of layers of
actions times the action cost. In Section 3.5.4, we will present the version
of this heuristic for domains where actions have different (but not state-
dependent) costs.
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LM-cut heuristic

Unfortunately, hyax is not a very accurate heuristic. In a set of experiments
by Helmert and Domshlak [79] designed to measure the relative accuracy of
a number of different heuristics with the respect to h*, hpa, performed the
worst. The heuristic that proved to be the closest to At was the landmark
cut heuristic (LM-cut). The authors report the average additive errors for
hmax and LM-cut as 27.99 and 0.28, receptively. The relative errors were
68.5% and 2.5% repectively. For more than 70% of the instances, LM-cut
computed the exact h™ value [14,79]. This section will describe the LM-cut
heuristic.

LM-cut heuristic was introduced by Helmert and Domshlakh [79] and its
computation involves finding a collection of disjunctive action landmarks. A
disjunctive action landmark, which we denote £ = {L;,...,L,}, is a set of
actions in which there is at least one action that must be contained in every
plan. The cost of a landmark is defined as equal to the cost of the cheapest
action in that landmark [117].

Definition 11. LM-cut heuristic is the sum of costs of landmarks making
up collection L:

pEM-eut(g) = Z Minger, cost(a)

The definitions and the description of the procedure used to calculate LM-
cut presented here are adapted from Bonet and Helmert [14] and Helmert and
Domshlak [79]. Before describing the algorithm, we will describe justification
graphs. Computing the justification graph starts with finding the h,,,, for all
of the variables. Then, a new planning task I’ is computed by performing
two modifications of the relaxed planning task II*. First, the goal and all of
the operators preconditions are modified by removing all except one variable-
value assignment — we only keep the assignment with the highest value of
hma: (mapping of each of the action to one of its effects is called precondition-
choice function by some authors [14]). If there are multiple variables that
fit this criterion, ties are broken arbitrarily. Bonet and Helmert state that
in their experiments they have observed that accuracy of the heuristic varies
significantly depending on how the preconditions are modified. Second, each
action a is replaced by a number of copies ay,...,a, such that if eff(a) =
{vi = z1,...,v, = x,}, then eff(a;) = {v; = x1},...,eff(a,) = {v, = z,.}.
After these transformations, all of the actions have a single precondition and
a single effect. These transformations do not alter the h,,,, value of the initial
state.

The modified problem is then used to create a justification graph for IT'.
Justification graph is a directed weighted graph in which the vertices are
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elementary formulas, and which has an arc from u to v with weight w iff
there is an operator with a precondition u, effect v and cost w (parallel arcs
are allowed if there are multiple actions with same precondition and same
effect). The authors use the term justification graph, because, although it
describes a planning task much simpler than the original planning task, it
retains enough information to justify the h,., costs. On the justification
graph starting from s, the length of the shortest path from s to the goal
is Amas(s). Labelling the start state s and the goal ¢, an s — t-cut is a a
partition of vertices into two sets that separate s from t. Cut-set is a set
of all edges that cross from the set containing s to the set containing ¢. As
paths that from the start s to the goal t traverse at least one arc in the
cut-set, it is straightforward to see that every cut-set of a justification graph
is a disjunctive action landmark for the planning task.

The steps for finding the collection £ are listed below. The procedure
consists of alternately computing a landmark and then modifying the cost
function before computing the next landmark. We denote the cost function
used in step i as cost; and the landmark computed in step i as L; (the cost
function calculated in step i is therefore cost;y1). Initially, the cost function
is the same as the original cost function, cost; = cost. At step i, the landmark
L; and the cost function cost; are computed using the following steps:

1. Compute h,,,, values for every variable assignment. If hy..(t) = 0,
terminate.

2. Compute a modified planning task, IT', by performing the transfor-
mations explained above. After this step, each action has only one
precondition and only one effect.

3. Construct the justification graph G;.

4. Construct an s — t-cut C; = (V%, V*; U V%) where V*; contains ¢ all
of the nodes from which ¢ can be reached through zero cost edges, V%
contains s and all nodes reachable from s without passing through some
nodes in V*; and V?; contains all other nodes.

5. The landmark L; is a set of labels of the edges (actions) that form the
s — t-cut C; (lead from V°; to V*;).

6. Let m; = minger,c;(a). We modify the costs of all actions as

(a) costiyi(a) = costi(a) if a € L; and
(b) costit1(a) = costi(a) —m; if a € L;.
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Bonet and Helmert [14] note that in case of binary-cost planning tasks,
where all action costs are limited to 0 and 1, the computed landmarks are
disjoint, L; N L; = (0 for all 7 # j.

2.2.3 Abstraction-based heuristics

Another group of admissible heuristics are those based on abstractions, which
includes pattern database heuristics (PDBs).

Abstraction in general means to ignore some information or some con-
straints to make problem easier. In our context, it refers to a mapping of a
planning problem to an abstract planning problem that makes fewer distinc-
tion between states. Subsets of states are aggregated into one, while making
sure that the existence of path between two states implies existence of path
of equal or lower cost between the corresponding abstract states [80]. Ob-
viously, the cost of reaching the goal from a given abstract state is a lower
bound on reaching the goal in the original problem, so it can be used as
heuristic cost estimate. Size of the abstraction of the number of abstract
states in the abstraction of the planning problem.

PDBs are the most well known and widely used abstraction heuristics
[80]. They were introduced by Culberson and Schaffer [35], who used for
optimal solving the 15 puzzle. Korf adapted their concept in solving Rubik’s
cube problem [98], and Korf and Zhang [99] used for finding the optimal
global alignment of DNA or amino-acid sequences. While all of those cases
depended on manual construction of PDBs, Edelkamp [41] generalised their
approach to domain-independent classical planning.

PDB heuristics are based on the idea of projection — a set of states are
aggregated together if all variables in a subset VA4 C V| called the pattern,
have the same values in all of those states.

Definition 12. Under projection, state s corresponds to an abstract state
s if and only if they agree on the values of the variables in a chosen pattern.

Key challenge for PDB heuristics is choosing which variables to keep and
which to discard. The methods for finding a good pattern have been discussed
by Haslum et al. [72].

Variables not in the pattern are removed from the initial state, goals,
action preconditions and action effects. We can view an abstract state s* as
analogous to a relaxed state in which variables in V4 have only a single value
and variables not in V4 have all the values in their domain. The abstract
state s4 represents a set of states

states(s4) = {{z1=v1,...,7, =V, }|
v; = s(w;)if v, € Ajelsev; € D(wy)}.
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The point of aggregating states together is to turn the problem into one
that is small enough to be solved optimally for every state by blind exhaustive
search (the size of the abstraction is bounded by [[ .4 | D(v) |). A planner
that uses PDB heuristic first precomputes the optimal cost of reaching the
goal for all abstract states and stores the values in a look-up table (hence the
name pattern database heuristic). The planner then uses these values each
time the heuristic cost estimate is needed (i.e. given a state s it finds the
value for the corresponding abstract state s*). In classical planning, PDBs
can be effectively constructed by an exhaustive reverse exploration from the
abstract goal states. This is, however, not easily adapted to problems with
state constraints, as we will explain in Sections 3.5.2 and 5.6.4.

Besides PDBs, another class of abstraction heuristics worth mention-
ing are merge-and-shrink heuristics, which strictly dominate the PDBs. We
haven’t used them in our work, so we will omit describing them here, but
details can be found in Helmert et al. [80].

2.3 State constraints

In the classical planning model that we discussed in Section 2.1, variables are
assigned values in the initial state and remain unchanged unless explicitly
modified by action effects. However, it is often more natural to model some
properties of a state not as direct effects of actions, but as derived, in each
state, via a set of rules which apply for all states. We refer to these rules
as state constraints and these are the main subject of this thesis. In this
section, we will give an overview of general properties of state constraints
and list the related work.

When using state constraints, we make a distinction between state vari-
ables that are directly affected by action effects, called primary variables,
and the variables whose values are determined by the state constraints, called
secondary variables. The domains of secondary variables are related to the
form of constraints used — for example, they might be real numbers, in which
case the constraints may take form of linear inequalities, as we will see in
Chapter 3.

Following Helmert’s terminology [77], we will refer to assignment of all
of the primary variables as a state and an assignment of all primary and all
secondary variables as an extended state. The relationship between reduced
states and extended states varies depending on the type of state constraints
used. For instance, when using axioms, there is always one unique extended
state corresponding to each state. With numeric state constraints, there
might be one, more than one (possibly infinitely many) or none (if the state
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is invalid) possible extended states given an assignment of primary variables.

2.3.1 Axioms in PDDL

Axioms in PDDL [136] are an example of state constraints that take the
form of rules of a logic program. In this case, both primary and secondary
variables have finite and discrete domains, in line with Assumption 1. Hence,
planning with axioms is classical planning.

Primary variables are obtained from basic predicates and secondary vari-
ables are obtained from derived predicates. Axioms have the form of rules
with the derived variable in the head and the body being a formula built
using both basic and derived predicates. They provide us with a natural way
to reason about some properties of networks, such as a way of computing
transitive closure. This is useful in dealing with real-world structures such
as power grids, networks of pipes, traffic flows etc. For example, one bench-
mark that was used in the deterministic track of 2004 International Planning
Competition (IPC-4) [43] is a power supply restoration (PSR) problem [135].
In this problem, we are given a power network consisting of generators, bus-
bars (which are the points where loads connect to the network), power lines
and switches and the task of reconfiguring the network by opening and clos-
ing the switches. In PSR axioms are used to compute connectivity between
different network elements. A more detailed description and more advanced
formulation of the problem will be given in Section 3.3.2.

There are a number of early planners that were capable of reasoning with
this types of rules, including work by Manna and Waldinger [104], UCPOP
by Barret et al. [6], SHOP by Nau et al. [108] and GPT planner by Bonet
and Geffner [13,18]. The first version of PDDL [105] included axioms and de-
rived predicates. Unfortunately, they were removed in PDDL2.1 version [49],
which was an extension of the PDDL language to temporal planning, and
fell into disuse afterwards. A common criticism of axioms was that they
were a non-essential language feature [136] — i.e. all domains that can be
expressed using axioms can be rewritten without axioms. Several authors
(such as Gazen et al. [53], Garagnani [52] and Davidson and Garagnani [36])
held the view that, as axioms are a non-essential language feature, it might
be better to compile them away, rather than to deal with them explicitly.
The advantage of this is that it allows for using simpler, efficient, already
existing planners that don’t implement axioms. Another criticism was that
their semantics was ill-specified. Specifically, the organisers of the 2002 In-
ternational Planning Competition objected that the conditions under which
the truth of the derived predicates in PDDL could be uniquely determined
were unclear [136].
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However, Thiébaux et al. [136] proved that any compilation scheme results
in either a worst-case exponential blow-up in the size of domain description or
worst-case exponential blow up in the size of the length of the shortest plan.
The same paper also provides clear semantics for axioms (by using negation
as failure and requiring the set of axioms to be stratified), while remaining
consistent with the original definition from the first version of PDDL [105].
Axioms were re-introduced in PDDL2.2, which was used in 2004 International
Planning Competition (IPC-4). Modern planners that provide support for
axioms include FFy by Thiébaux et al. [136], LPG (Gerevini et al. [64]),
Fast Downward (Helmert [77], Marvin (Coles and Smith [34]) and LAMA
(Richter and Westphal [121]). However, there is no research on cost optimal
planning with axioms, which is a problem that we will focus on in Chapter 5.
In the same chapter we will show that axioms allow us to formulate some
domains in a way that makes them easier to solve.

2.3.2 Other uses of state constraints in discrete do-
mains

Work by Frances and Geffner [51] models problems with constraints over
variables with discrete domains. While there is no state validity or secondary
variables, state constraints are still used to encode action preconditions and
goals. A constraint might take the form of a conjunction of relations between
the variables (i.e. if we the variables have integer values, they might be
equalities or inequalities), with a single variable appearing more than once
in the constraint.

As an example, they introduce the counters domain. This domain features
n counters, X, ..., X5, each ranging over integers 0,...,m. Actions inc(7)
and dec(i) increment and decrement, respectively, counter ¢ by 1. Initial
values of the counters can be all zero, all maximum, or random. The goal is
X; < Xiqq forie[0,n—1].

Like in our work, one of the central ideas is accounting for state con-
straints in heuristics. While constraints of this form can easily be compiled
away, the authors demonstrate that accounting for them enables us to formu-
late stronger relaxations. For example, we could create an atom val(i, k) for
each equality X; = k and an atom less(i, j) for each inequality X; < X;. The
goal is then represented by less(i,7 + 1) for i € [0, — 1] and the initial state
by val(i, 0) for all . Unfortunately, treating the constraints this way prevents
us from accounting for them in the monotonic relaxation, due to the that it
forces the relaxation to evaluate each of those atoms in isolation from one
another. In the initial relaxed state applying the inc action just once to all of
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the variables makes both val(i,0) and val(i, 1) true for all ¢ in the subsequent
relaxed state. This, in turn, makes all of the atoms in the goal true and gives
the computed value of h,,., as 1, (while the actual number of actions that
we need to apply to reach the goal is n(n — 1)/2). This underestimate can
happen whenever goals or action preconditions contain different non-unary
atoms involving state variables.

The authors observe that the cause of this is that the value-accumulating
relaxation makes two simplification — (i) monotonicity, i.e. we add values to
the set as we apply actions, and (ii) decomposition, which means that the
conjunction of atoms is regarded as true in a propositional layer whenever
each one of the atoms in the conjunction is true. Their approach is to de-
velop a planning graph, called constrained relaxed planning graph (CRPG)
that retains monotonicity, but avoids decomposition. This is done by re-
moving the assumption that a variable can have more than one value at the
same time in a relaxed state. This lets them formulate constrained versions
of hpee and hpp [82] heuristics. Unfortunately, computation of these new
heuristics is intractable, so the authors also develop weaker approximations
using tractable, but incomplete local consistency algorithms.

In Section 3.3.4 we will model the counters domain using switched con-
straints, but without conditional effects. We will also use the concept of
strengthening the relaxation by removing decomposition in developing heuris-
tics both for numeric state constraints and for axioms.

2.3.3 State validity

It should be noted here that introducing state constraints does not necessarily
mean that we have a set of secondary variables. Another property of a state
that we might be interested in is determining state wvalidity, or to make a
distinction between wvalid and invalid states. As we will show in Chapter 3,
these two uses are not mutually exclusive. The same set of constraints can
be used to determine the state validity and compute the values of secondary
variables as part of the same process.

As an example, we might want to place a restriction on the possible values
of two or more variables, such as “at least one of these has to true” or, given
variables that represent integers, “one must be greater than the other at
all times”. In a domain where we are scheduling jobs for a hotel staff, we
might want to express requirements of the form “at least one person must
be at reception at all times”. In other words, state constraints can be used
to prohibit the plan from visiting the states that we want to rule out. If
there are only primary variables, having an invalid state simply means that
the given assignment does not satisfy the constraints. If we have secondary
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variables as well, an invalid state is the one in which we cannot come up with
an assignment of secondary variables that satisfies all of the constraints —i.e.
there is no extended state corresponding to the given assignment of primary
variables. When we have this requirement, applying an action might not be
allowed, not because any of the preconditions are unsatisfied, but because
effects of the actions lead to an invalid state. Thus, determining whether an
action is applicable in a given state does not only involve checking whether
the preconditions are satisfied, but also whether the resulting assignment of
primary variables respects all of the constraints.

There are various reasons why we might want to impose such restrictions,
depending on what types of domains are we dealing with. For instance, we
might want to preclude the planner from generating plans that are impossible
to execute (because they violate laws of physics) or we might want to avoid
visiting some states because they violate some safety constraints. In the PSR
example, power lines and generators have limited capacities and changing the
configuration of the network might overload some of them. State constraints
are used for expressing the laws of physics governing the flow of power and
adding bounds related to capacities of the devices. They can then be used to
determine whether the given configuration of switches is allowed, given those
limitations.

The need to prohibit planners from generating plans that visit certain
states has been discussed by Weld and Etzioni [140], somewhat inspired by
Asimov’s three laws of robotics. The authors discuss different ways of making
sure that the planner does not disturb certain facts. In their case, there are
no secondary variables and the constraints are used to place restrictions on
the primary variables. The authors define dont-disturb primitive that takes
a single, function free sentence as an argument. For example, to prevent
a planning agent from deleting files that are not backed up on a tape, the
following constraint is used: dont-disturb(written-to-tape(f) V isa(f,file)) (with
f being interpreted as universally quantified). Unlike with state constraints,
some violations of this condition may already exist in the initial state, but the
planning agent is prohibited from creating any further violations. However,
as in our work with state constraints, in order to determine whether an
action is applicable in a given state, it is required that we check whether
the resulting state violates any of the conditions (in addition to checking the
preconditions of an action). In their formulation it is, however, required that
all of the individual action descriptions explicitly enumerate changes to every
predicate that is affected. State constraints of this form also appear in the
original PDDL [105].
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2.3.4 Interconnected physical systems

The IPC-4 version of the PSR problem, described in the axiom subsection
above, is relatively simple compared to the behaviour of power networks in
the real world. A more accurate model of the network requires us to com-
pute numeric quantities such as voltages, power flows, phase angles, power
generations and consumptions. While opening or closing a switch changes
only the state of that switch, such an action changes the topology of the
whole network and the above-mentioned numeric quantities are affected in a
way that is dependent on the state of all the other switches in the network.
The configuration of the network can be described only with the status of
the switches (state), but these numeric quantities are higher level properties
of the state (that might be of interest to us) — i.e. values of those variables
are the extended state. These values depend on physical laws that can be
expressed as a system of equations. Effects of actions (i.e. opening or clos-
ing a switch) on those quantities are not obvious and we are required to
recompute the state of the network after each action. State constraints act
as a bridge relating states of the switches (primary variables) and numeric
quantities (secondary variables), as we will explain in Section 3.3.2.

The way of checking the consistency of the constraints works depends on
their type. While PDDL axioms are rules only over propositional variables,
our PSR example requires us to compute numeric quantities. In a power
network, physical quantities (power flows, phase angles generations and con-
sumptions) can be computed using different models with different degrees
of accuracy. The AC model is the very accurate, but it involves non-linear
equations and it is computationally expensive, so it is often approximated or
relaxed. Other models, which use quadratic equations, include the dist-flow
relaxation [5], the quadratic constraint model [28] and the quadratic approx-
imation [100]. The linearised DC power flow model [127,132], which we will
use, lets us formulate the relevant constraints using only linear equations and
inequalities. Satisfiability of the set of equations and inequalities then deter-
mines whether the configuration violates any of the constraints (i.e. whether
the state is valid), so we will employ a linear programming (LP) solver for
consistency checking.

While there has been some work on numeric planning (Coles et al. [30]
give an overview) and on state constraints in the classical setting like ax-
ioms, work on global numerical state constraints received less attention. We
will discuss two papers that describe planning in domains describing inter-
connected physical systems — Aylett et al. [2], who consider managing a
chemical plant, Piacentini et al. [115], who address a power balancing prob-
lem in a power network. The challenge that appears in these cases is that
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the effects of actions are not straightforward, as we already seen above for
the power network example. Similarly to us, Aylett et al. highlight the
difference between well known planning domains and this type of problems:
“In a robot blocks world, removing one block normally has no effect on the
other blocks (as long as the blocks are taken from the top of the piles). In
a process plant, the significant effect of opening or shutting a valve is not
that the state of the valve changes, but that depending on the state of the
rest of the plant at the time, one or more of the chemical processes might
be started or stopped. The interconnectedness is reflected in the particular
properties of flow.” Both Aylett et al. and Piacentini et al. approached
the problem by creating domain-specific planners in which a special-purpose
solver is integrated with a planner.

The similarity between these approaches and the work that we will present
in Chapter 3 is that the central idea is to combine classical planning with
external solvers capable of reasoning about interconnected physical systems.
Unlike in our work, their planners do not directly handle the discrete topo-
logical changes that affect the flow of power or of chemicals. In the case of
chemical plant, opening and closing of the valves is handed over to a sub-
planner, and in the case of power balancing problem, there are no switching
operations.

The problem that Piacentini et al. are addressing is the electricity net-
work balancing problem. Here the goal is to reach the end of a 24 hour
period over which the zone of the power network is to be balanced — that is
the elements within the network that the planner has control over have to be
manipulated in such way that the demand is matched by supply at all times.
Allowed actions are: (i) switching from which generators the power is gener-
ated, (ii) connecting and disconnecting different branches of the network and
(iii) varying the transformer tap settings. Each of those actions has global
effect. That is, they might affect the voltages and phase angles on all of the
busbars and magnitude of power flowing into all of the lines.

To account for the fact that a discrete action changes the network in
a non-obvuous way, the authors make the distinction between direct and
indirect action effects. Direct effects are simple assignments of new values
to a subset of variables. Indirect effects are not trivial to compute and have
to be calculated using global constraints. Piacentini et al. integrated an
existing planner, POPF [29], with an external module that solves power flow
problems. POPF is a forward-chaining state-based search planner capable
of dealing with numeric-temporal problems. The external solver deals with
a large number of non-linear equations describing the flow of power and
is used to compute indirect effects of actions. The external solver receives
parametrised calls from the planner and returns the values of a subset of
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variables. The numeric variables in the problem are divided into independent,
dependent and special. The variables whose values are determined by the
solver are special, while the variables whose values affect the output of the
solver are dependent. The variables whose values don’t affect the special
variables (and aren’t passed to the external solver) are called independent
variables. Special variables include voltages on the busbars, the power flowing
into the lines and power generated by the generators. Dependent variables
include settings on the transformers and the power that can be shed. (In our
terminology, the independent and dependent variables are primary variables
and the special variables are secondary variables. The difference is that we
do not make the distinction between the variables that affect and those that
do not affect the values of secondary variables.)

A similarity with our work is that they are adapting an already exist-
ing heuristic to their setting. They modified the POPF heuristic in a way
that takes into account the special variables. As the effects the actions have
on special variables cannot be expressed as a linear numeric function, ap-
proximations are used to determine whether an action increases, decreases
or doesn’t affect the value of special variable (amount by which it changes is
found in the preprocessing stage).

Aylett et al. created the Chemical Engineering Planner (CEP) as a plan-
ner capable of generating plans for chemical plants. One of the requirements
is that the plans must not visit any states that violate any safety rules. Their
way of dealing with these global constraints is similar to the one proposed
by Weld and Etzioni [140]. There are some propositions, goals of prevention,
whose values must not be changed in any state visited by any valid plan
(similar to don’t disturb goals). When an action is added to a plan, CEP ex-
amines it to see whether it violates the constraints, and if it does, adds new
preconditions to actions. Similarly to flow of power in PSR, the authors note
that flow is a property of the configuration of valves in the whole network
(that is, whether each of the valves is open or closed). Like Piacentini et al.,
Aylett et al. use an external solver, or subplanner, to calculate the flow of
chemicals. This external solver is tasked with finding a flow achieving some
goal. From this, it finds which valves need to be opened and which have to be
closed for such flow of chemicals to occur. This is represented as a partially
ordered plan and handed back to main planner which arranges the actions
while respecting any constraints.

The need to model interconnected physical systems has also been dis-
cussed by Boddy and Johnson [12] in the context of scheduling (i.e. deter-
mining the order of actions and allocation of resources [107], rather than
planning) in oil refineries and process industries. Their situation is similar
to the two we described above and to the domains that we will describe in



2.3. STATE CONSTRAINTS 31

Chaprer 3 — the problem requires accounting for the interaction between dis-
crete choices (which in their case involves resource assignment and sequenc-
ing decisions) and continuous variables. Similar to the two above mentioned
groups of authors (and similar to us), they combine a discrete solver and a
continuous solver — whenever a discrete choice is made, it is required that
the continuous solver (which may have to with hundreds or thousands of
variables and quadratic equations and inequalities) finds whether the assign-
ment is infeasible. (And if it is, the choices made by the scheduler need to
be refined and the refined solution needs to be handed back to the quadratic
solver.)

2.3.5 Hybrid systems

By hybrid planning, we mean planning in domains that involve both propo-
sitional and numeric variables.

An early example of such a hybrid planner was Zeno by Penberthy and
Weld [114] which was capable of dealing with discrete finite variables, con-
tinuous resources and time. Processes were described with differential equa-
tions. Its limitation was that the concurrent actions cannot apply continuous
effects on the same variable. This requirement results from the fact that the
simultaneous equations must be consistent with one another, rather than
accumulating additive effects. Other early approaches to hybrid planning
involved compilation of problems into integer programming problems or Sat-
isfiability Modulo Theories (SMT) instances [7]. Examples of compilation
integer programming include work by Kautz and Walzer [92] and Vossen et
al. [139] An of a planner that compiles problems into SMT is LPSAT by
Wolfman and Weld [142], capable of solving planning problems with propo-
sitional and metric variables. The solver consists of SAT part and linear
programming (LP) part (hence the name). The SAT solver activates a sub-
set of constraints that are passed to the LP solver. If the LP solver can
find a solution, it is decoded into a plan; otherwise the conflicts are added
to the SAT problem in form of nogoods and new problem is handed back
to the SAT solver. This is repeated until a plan is found (or the problem is
determined to be unsolvable). TM-LPSAT by Shin and Davies [129] is an
extension that translates the problems with durative actions and continuous
change to numeric quantities to LPSAT problems and extracts the plan from
the solution returned by LPSAT (therefore extending its capabilities com-
pared to original LPSAT). Unfortunately, TM-LPSAT is reported to be very
slow.

Scala et al. [126] build on the SMT approach by adding the capability
to express and solve problems with disjunctive global constraints. Like us,
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they make distinction between variables directly affected by action effects
and variables whose values are computed by global constraints (and each
variable strictly falls into one of those two categories). One of the key differ-
ences from our work is that they allow for actions to directly modify values of
both numeric and propositional variables, i.e. primary variables can be nu-
meric. While propositional effects are state-independent, the interpretation
of numeric effects is state-dependent. For example, an action can increase
value of some variable by a fixed amount, so the value in the resulting state
depends on the value in the state the action was applied in. This means
that if such action is applied twice (or more times) in a row, its effects are
different each time. One of the important features of their encoding is that
it exploits this property by allowing to roll up many instances of a given
action with state dependent numeric effects so they are executed in a single
plan step, subject to constraints determining the validity of such sequence.
This greatly reduces the planning horizon at which the theory models valid
plans. The authors describe the conditions under which rolling up actions
is possible, while guaranteeing that the constraints are not violated. An-
other important difference from our work is that the global constraints are
allowed to be disjunctive?. For example, in the ROVERS domain from the
numeric track of the 3rd International Planning Competition [49], the areas
constituting obstacles are modelled by as a disjunction of linear inequalities.

Like work by Scala et al., the Kongming planner by Li and Williams [102]
generates hybrid plans (i.e. actions effects can modify both discrete or contin-
uous variables) and is capable of reasoning with global constraints. The plan-
ner works by creating a Hybrid Flow Graph which combines planning graph
for discrete actions and flow tubes (a way of representing infinite number of
trajectories by finding the boundaries of reachable space) for continuous ac-
tions. Hybrid Flow Graph is then encoded as a mixed logic linear /non-linear
program (ML(N)LP) and solved using off-the-shelf solver. The domain the
Kongming planner has been applied to is guiding an autonomous underwater
vehicle (AUV), and constraints are used to represent obstacles (same as in
the ROVERS domain).

Lohr et al. [103] combine planning techniques with methods from control
theory to create what they call Domain Predictive Control. The control of
dynamic systems aims to minimise deviations of continuous state variables
from the given reference values. The behaviour of those systems is modelled
by a set of linear differential equations and the goal is to generate the input

4In our framework presented in Chapter 3 disjunctive constraints can be modelled in
a very inefficient manner. We could, for example, split each action that activates a given
disjunctive constraint into as many copies as there are disjuncts. Alternatively, we could
employ a solver capable of determining consistency of disjunctive constraints.
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that guides the system from its initial state, described using only continuous
variables, to the desired set point within the given time interval. Their work,
in contrast, addresses hybrid systems which contain a number of discrete
(in their case Boolean) variables that are used to model reconfigurable dy-
namics, like mode switches or logical dependencies between input signals and
state transitions. They demonstrate how to generate input signals for hybrid
systems, taking the system dynamics and different modes into account. The
choice of the input for logic variables is, in part, done by employing a planner
(they integrate Temporal Fast Downward [44]). Unfortunately, this approach
is not well-suited for the problems we address as it works for modelling the
association of only a small number of discrete modes. For example, in the
PSR domain the number of modes required to model it using their methods
would be equal to the number of possible network configurations (this is 2"
with n being the number of switches).

2.4 Relation to semantic attachments and plan-
ning modulo theories

As evident from the preceding section, certain kinds of state constraints let
us combine propositional planning with non-propositional variables, such as
numeric quantities. Here we will discuss two other ways of integrating non-
propositional variables with planning, namely semantic attachments [40] and

Planning Modulo Theories (PMT) [68].

2.4.1 Semantic attachments

Dornhege et al. [40] introduce a feature that they call semantic attachments,
Semantic attachments allow for numeric and other types of non-propositional
state variables, whose values are computed by calling a function. These
functions are “external” to the planner in the sense that their meanings are
not defined in the planning model (i.e. the way those values are computed
is opaque to the rest of the planner). They return the new values for a given
input without having any more information about the planning domain and
problem than the input that they get. This allows us to integrate efficient
(separately developed) tools, such as motion planners, to calculate values
of a subset of variables. Semantic attachments are, therefore, a framework
for integrating a planner employing well-known planning techniques such as
heuristic state-space search (also called high-level, symbolic or task planner
by the authors), with low-level solvers or reasoners for sub-problems.
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An example from robotics is a class of problems which involve combining
high-level planning (i.e. deciding on which actions to perform) with motion
planning. These examples include taking the dishes out of the washer and
stacking them to dry, building a model of a house or rearranging furniture
in a room to a specific configuration. While symbolic planner is capable of
generating a high-level plan, it is incapable of solving the sub-problems, such
as determining the specific motion trajectories, which can be computed using
specialised tools. The task planner is suitable for deciding on which objects
to move, while the motion planner is suitable for finding a path through
which to move (i.e. deciding on how the chosen actions are performed).

The function is invoked to provide information to the higher level planner
during the planning process and only if relevant to the planner. There are
two kinds of semantic attachments — condition checkers, which tests whether
some action precondition is satisfied, and effect applicators, which compute
changes to state variables. For example, an effect applicator for a “put down”
action in a domain where a robot is manipulating objects, a low-level rea-
soner would be called to determine the new position of an object and update
the state variables representing the position (i.e. three variables representing
the position and three variables representing the orientation). There is a
requirement that both the condition checker and effect applicator are deter-
ministic. The condition checker must always terminate and return a truth
value, which should always be the same for identical parameters and world
states (in that sense condition checkers compute derived predicates). Effect
applicators must always terminate and result, for identical parameters and
states, in identical settings of the state variables they act on. The authors,
however, stated that they want to remove this restriction and enable the
planner to branch over an initially unknown, but finite number of outcomes.

An interesting domain illustrating the concept is an extension of the Lo-
gistics domain from International Planning Competition. The domain mod-
els a logistics problem, in which trucks are required to deliver packages from
one place to another. In the original formulation, each truck can carry un-
limited number of packages. This problem becomes more challenging if the
trucks have defined capacities, the packages have defined sizes and we allow
the trucks to carry as many packages as they can fit. Both storage spaces
and the sizes of the packages are three dimensional, having height, length
and width. To determine whether an arrangement of packages can fit in a
truck, it is not enough to simply sum up their volumes and see whether it
is less than the capacity (it is easy to see that two cube-shaped boxes of
volume v would not fit into a cube shaped space of volume 2v). Although
symbolic planners cannot solve the three-dimensional packing problem, there
are, however, specialised algorithms that are capable of computing this. The
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action of picking up a package might have a precondition with a semantic
attachment that uses a solver to determine whether all of the packages can
fit into the truck. The modelling of this domains has a number of parallels
with our use of numeric constraints that we will describe in Chapter 3 — the
specialised solver, which is unaware of the planning aspect of the problem,
is used to determine the validity of a given state. In the extended logistics
domain, the state is defined by the discrete variables determining which truck
or city is which package in, while in the PSR domain used in Chapter 3, the
discrete variables are the positions of the switches. As a side effect, the solver
also computes values of the secondary variables. In this case those are the
exact positions of the packages inside the truck, while in PSR those are the
variables like flows of power in the lines, phase angles on the busbars and
generations in the generators.

While semantic attachments are similar to our use of LP solver when
dealing with numeric state constraints or Piecentini’s use of solvers for power
networks, there is an important difference. With state constraints, states are
defined by primary discrete variables, and a solver capable of dealing with
the constraints computes some properties of the state (such as values of sec-
ondary variables), but it does not change values of primary state variables.
In contrast, semantic attachments allow for action applicators to manipu-
late state variables (whose values can still be altered by actions). Condition
checking, such as determining whether the boxes can fit into the truck, how-
ever, means determining whether a set of constraints is satisfiable.

2.4.2 Planning modulo theories

Gregory et al. [68] describe PMT as an extension to planning, analogous to
the way in which SMT extends the propositional satisfiability (SAT) problem.
The authors observe that classical planning is similar to the SAT problem in
that both deal with propositional variables. SMT is an extension of SAT in
which the formulae retain their core structure, and therefore core SAT solving
technology can be reused, while expressive power is increased by allowing for
use of arbitrary predicate symbols, provided that there are interpretations
of symbols given in a corresponding module that can be plugged into the
core solver. PMT, similarly, allows for addition of new types (such as sets,
vectors etc.) to the planning model and defining functions operating over
those types that can be used in actions.

Unlike semantic attachments, where the extension is based on using low-
level reasoners to compute functions, Gregory et al. focus on the addition of
theories for types. To paraphrase, in semantic attachments, external module
used takes a state as an input and returns new valuations of a subset of
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variables. In contrast, in PMT, actions use functions and predicates with
known parameters as inputs. The type of each of the inputs is defined for each
function, which makes manipulation of variables more transparent. That
is, the planner knows which variables are being passed to the function and
what are their types. The functions here are more transparent (compared
to functions in semantic attachments), so this information can be used in
computing heuristics.

PMT and planning with state constraints both allow for extending plan-
ning problem to manipulation of non-propositional variables, but they best
described as orthogonal extensions. While in planning with state constraints
actions directly affect values of only (primary) propositional variables and
values of secondary (possibly non-propositional) variables are computed via
state constraints, the PMT framework (like semantic attachments) allows
for values of non-propositional variables to be directly affected by functions.
PMT, however, does not have a way of dealing with global state constraints.

2.4.3 Heuristics in semantic attachments and PMT plan-
ners

Both Dornhege et al. [40] and Gregory et al. [68] implemented state-space
search planners. As in our work, both groups were interested in developing
delete-relaxation based heuristics to guide the search.

Dornhege et al. created extensions of the FF planner, a classical plan-
ning system based on forward state-space search [85], and Temporal Fast
Downward, a planning system which extends original classical planning sys-
tem Fast Downward [77] with durative actions as well as numeric and object
fluents [44]. Their extension to FF planner (called FF/M) incorporates the
semantic attachments in calculation of FF’s delete relaxation based heuristic.
The condition checkers and effect applicators, when invoked by the symbolic
planner take a Boolean parameter h, which, when set to true, aims for faster
computation, at the expense of accuracy. The symbolic planner can request
this approximations when computing the heuristics. FF/M treats the condi-
tions computed by a module the same way as the assignment of variables in
the symbolic portion of the planning task — once the condition is met in a
relaxed state, it remains true in all the subsequent relaxed states (therefore
preserving the monotonicity). In some domains, the authors manually added
domain-dependent rules for whether some condition has been achieved in a
relaxed setting. For example, in the extended logistics domain, the total vol-
ume of the packages must not exceed the truck capacity, so evaluating this
requirement can be used instead of calling the condition checker.
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Gregory et al. explored both compilation to SMT, using a form of plan-
ning graph-based encoding, and heuristic search. Like us, they formulated
an equivalent of delete relaxation and the h,,,,. Central to their approach
is the concept of domain abstraction (this is different from abstraction that
we talked about in Section 2.2.3). Some examples of domain abstractions
given include the three-value semantics, {true, false, unknown}, for arbitrary
propositional sentences, and the replacement of domains of real numbers with
intervals (as it is done in heuristic computations in MetricFF [83]). Formally,
domain abstraction is a join semi-lattice, which is a set with partial order
and a defined join or fold operator. When an action is applied in a relaxed
state, effects of actions, instead of assigning new values to variables combine
the previously held values with the new values using this operator. Abstract
domains are then used to define the relaxed state space by simply replacing
the domain of each variable with its domain abstraction. As in monotonic
relaxation, applying a set of actions to a relaxed state creates a new abstract
state, in which the set of values for each of the variables is a superset of the
set of values in which the actions were applied (i.e. the relaxation is mono-
tonic). This lets us build the relaxed planning graph which can be used to
perform relaxed reachability analysis and compute h,,q,.

The issue that remains is how to create a domain abstraction for a given
variable domain. The authors provide several examples. One example of
is what they call enumerated abstraction. Give a domain D it consists of
a power set P(D), ordered by set inclusion and with set union as a join
operator. Unfortunately, this abstraction is infinite for infinite domains.
The authors discuss bounded enumerated abstraction and finite basis abstrac-
tion, which are two ways creating domain abstractions for variables with
infinite domains. The finite basis abstraction simply adds a special limit
value to the power set — for example, domain of integers can be abstracted as
{{0},{1},{0,1}, large}, where large represents any set with a value greater
than 1. Bounded enumerated abstraction is a generalisation of the intervals
abstraction from MetricFF and works by finding bounds on the range of
possible values.
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Chapter 3

Numeric state constraints

In Section 2.3, we introduced some examples of work with state constraints
and discussed some of their general properties. In this chapter we will in-
troduce a concrete type of state constraints called numeric state constraints,
show how domains can be expressed using them, and adapt heuristics intro-
duced in Section 2.2 to this setting.

This chapter is structured as follows. In Section 3.1 we will give an
overview of the types of problems that initially motivated us to formalise
and implement these types of constraints. In Section 3.2 we will introduce a
formalism for numerical state constraints by extending the previously intro-
duced FDR from Section 2.1.1. In Section 3.3 we will present a number of
example domains. We will then (Section 3.4) discuss the relation to classical
planning, and the complexity of problems with numeric state constraints. In
Section 3.5 will deal with the adaptation of heuristics. We will conclude the
chapter (Section 3.7) with a brief discussion of future work.

3.1 Motivation

We were motived by the need to apply planning techniques in environments
that form interconnected physical systems (Section 2.3.4). In these domains,
a planning agent manipulates the system through discrete control actions,
yet the interaction between elements of the system (or subsystems) needs to
be described using continuous quantities. Performing a single control action
might change the state of the whole system in a way that depends on the
states of all the other components. For example, closing a switch in a power
network will affect the flow, not only in the given power line, but also through-
out the network. Rules that govern the behaviour of continuous quantities
might arise either from physical laws or from requirements of the problem
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and are referred to as numerical state constraints. This addition is a small
step away from classical planning (as we will see in Section 3.4, the domains
presented here can be compiled to classical planning, although with poten-
tially exponential increase in problem size) and towards hybrid planning, yet
it enables us to model relevant properties of various practical problems. Ini-
tially, we focused on the power network reconfiguration (Section 3.3.2) as a
practical example domain. It is, however, important to emphasise that the
approach is likely to be useful in dealing with various other types of practical
problems, such as water and gas networks or transportation systems. In this
chapter, we will only consider state constraints consisting of linear equations
and inequalities, although our framework is not limited to the constraints of
that type.

While numerical state constraints and metric planning both allow us to
use non-discrete variables in planning, this is done in different ways. Here
action effects and the initial state description assign values only to discrete
variables. The planning agent is then free to choose any assignment of nu-
meric variables which satisfies the constraints. This approach can be con-
trasted with metric planning in which values of numeric variables are directly
altered by action effects, but which lack mechanisms for expressing global
constraints. Metric planning and usage of global numeric constraints can
therefore be thought of as orthogonal extensions to classical planning.

3.2 Formalism

Here we will define formalism for planning with numeric state constraints
and explain how it relates to FDR (Definition 3) introduced in Chapter 2.

3.2.1 State

Recall that in FDR, states are assignments to a finite set of variables, each
of which has a finite domain of values. Preconditions of actions and goals are
then defined as partial valuations over those variables, while action effects
assign new values to a subset of variables.

We enrich this formalism by adding a second set of variables: variables of
the classical planning model will be referred to as primary variables, Vp, while
the variables that appear in the second set are referred to as secondary vari-
ables, V. Unlike primary variables, secondary variables are not restricted to
finite domains — when dealing with numeric state constraints, the domains of
secondary variables are real numbers. The relationship between the primary
and secondary variables is defined through a set of state constraints.
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Because the primary variables function in the same way as state variables
in FDR, terms in Definition 1 and Definition 2 apply to the primary variables.
That is, partial variable assignment over the primary variables is defined the
same way as the partial variable assignment over state variables in FDR.

Definition 13. A state is a partial primary variable assignment s of values
to all variables in the set Vp of primary state variables.

We write s[v] for the value of a primary variable v in s, and s[p] to denote
the value of partial primary variable assignment p in s (true if p holds in s,
false otherwise).

Borrowing the terminology originally used [77] for axioms (Chapter 5),
we define an extended state.

Definition 14. An extended state, s., is a partial primary variable assign-
ment to values to all variables in the set Vp, and an assignment to each
vs € Vs a value s.[vs] € D(vg) from its domain, such that all of the con-
straints in Ci,, are satisfied.

(Ciny will be defined below.) We will occasionally refer to state (i.e. an assign-
ment only over primary variables) as reduced state. In a planning problem
with global numeric constraints, there can be multiple (or potentially an
infinite number of) extended states corresponding to a single reduced state.

3.2.2 Planning problem
The definition of a planning problem is modified from Definition 3 as follows:

Definition 15. A planning problem with numeric state constraints is defined
by a tuple I1 = (Vp, Vs, A, Ciny, S0, G, cost) where:

o Vp is a set of primary variables, with each vp € Py being associated
with a finite domain D(vp).

e 3o is an initial assignment of values to all variables in Vp (or initial
state).

o Vs is a set of secondary variables. Fach vs € Vs, is associated with a
domain D(vs) of real numbers, optionally with an upper bound, a lower
bound or both upper and lower bounds.

o A is a set of actions, each action a defined by:

— a partitioned condition pre(a) = (prep(a), preg(a)) called the pre-
condition, and
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— a partial primary variable assignment eff (a) called the effect.
e (. is a set of invariant switched constraints.
e G = (Gp,Gyg) is a partitioned goal condition.

e cost(a, s) is a cost function, which is defined the same as in Definition 3.
Here s can be an extended state.

Switched constraints and partitioned conditions will be defined in the follow-
ing two subsections.

3.2.3 Switched constraints

Primary and secondary variables interact only through switched constraints.
Definition 16. Switched constraints are of the form ¢ — v, where
e o is a partial primary variable assignment, which we call the trigger.

e 7 is a constraint over the secondary variables. It has a form of a linear
equation or a linear inequality.

In a state in which the trigger holds, we say that the switched constraint is
active.

It should be noted that very often we have switched conditions that should
be active in every state, in which case the trigger is simply the empty partial
variable assignment, py (recall that the empty partial variable assignment
holds in every state). For example, in our power network reconfiguration
domain (see Section 3.3.2), these are the laws of physics, such as Kirchoff’s
laws.

In some of our example domains (see Section 3.3), we will use switched
constraints that are active in states in which value of some primary variable
is unequal to some value. While this can be expressed as a set of switched
constraints with different triggers, it is more convenient to abbreviate this
set of constraints as a single constraint with an inequality in the trigger. For
example, if a constraint over secondary variables v is satisfied in all states in
which a primary variable v (whose domain is D(v) = {1,...,m}) is not equal
to some value k (with k£ € D(v)), this means that we have m — 1 switched
constraints of the form

v=1—7 1=1,....m0#k
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To abbreviate, we write this set of constraints as
vEk =y

Switched constraints are used in two ways — in a set of invariant con-
straints and as secondary part of partitioned conditions (this will be defined
in Section 3.2.4). The set of invariant constraints, denoted Ci,y, is defined in
every problem and are used to determine state validity — all of the constraints
in this set must be simultaneously satisfied in every state visited by a plan.
As the secondary part of partitioned conditions, switched constraints appear
as secondary action preconditions and secondary goals (denoted preg(a) and
G, respectively, in the Definition 15). This means in order for an action
to be applicable in some state, the union of Cj,, and the secondary action
preconditions associated with that action must be satisfied in that state. Sim-
ilarly, the union of Cj,, and the secondary goals must be satisfied in every
goal state.

Formally, we define a set of active constraints and a valid state:

Definition 17. If C is a set of switched constraints, then the set of active
constraints (from C) in a state s is

active(C,s) ={y | ¢ = v € C, ¢ holds in s}.

Given a planning problem, 11 with a defined set of invariant constraints Ci,y,
a state s is valid iff active(Ci,y, s) is satisfiable.

It should be noted that active(Cj,,s) is a collection consisting only of
right-hand sides of switched constraints. Consequently, a solver that we
use to check satisfiability does not need to deal with the primary variables.
All that is required is a solver that is capable of dealing with the type of
constraints on secondary variables. As in planning with numerical state con-
straints the domains of secondary variables are real numbers, and constraints
over secondary variables are linear equations and linear inequalities, satisfi-
ability of active(Cj,, s) can be checked using a linear programming solver.

An interesting thing to note is that switched constraints can be used
to encode conditions on primary variables. For example, if pi,...,py are
primary variables with Boolean domains, and C},, includes the constraints
(pi = true) — (v; = 1) and (p; = false) — (v; = 0) for 1 < i < k, then
Gs = {true — (3.F_, v;) = 1} enforces that exactly one of py, ..., py is true
in any goal state. The concept of expressing conditions on primary variables
in this way will be elaborated on in Section 3.4.
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Other types of constraints

While the secondary variables discussed in this chapter are real numbers and
the constraints over the secondary variables we will focus on are linear equa-
tions and inequalities, it is important to note that the formalism discussed
in this chapter (and the heuristics that we will develop) remains valid for
other types of constraints. I.e. we can retain the Definition 15, but change
the definition of secondary variables Vs and/or the form of the constraint
over secondary variables (switched constraints retain the same form ¢ — 7).
The only requirement is that removing a constraint from a consistent set of
constraints (i.e. making a switched constraint inactive) will not make the
set inconsistent. That is, we require that if a set of constraints is satisfiable,
all of the subsets are satisfiable as well. While this requirement is true for
most systems of constraints, there are counter examples, like non-monotonic
logics such as default logics [119].

3.2.4 Partitioned condition

Definition 18. A partitioned condition is a pair (cp,cs), where cp is a
partial primary variable assignment and cs a set of switched constraints. We
will refer to cp as the primary part and cs as a secondary part of a partitioned
condition. (cp,cs) holds in state s iff

e s[cp] holds and
e active(cg U Ciny, S) is satisfiable.

A partitioned condition with an empty partial variable assignment in the
primary part and an empty set of switched constraints in the secondary part
holds in every state. We will denote such partitioned condition ¢y.

As stated in Definition 15, action preconditions and the goal are parti-
tioned conditions. We will call the first and the second part of partitioned
conditions the primary and secondary precondition and primary and sec-
ondary goal, respectively. E.g. in our power network reconfiguration ex-
ample, positions of the switches in a network are primary variables, while
whether the given users are supplied with power are secondary variables. A
primary goal might consist of specifying positions for a subset of switches and
a secondary goal might specify which of the buses are supplied with power.
In every goal state, the configuration of switches specified in the primary
goal is true and the union of invariant constraints and goal constraints is
satisfiable.
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3.2.5 Actions

Action effects function the same way as in FDR (Section 2.1.1) — applying
an action assigns new values to a subset of primary variables. Formally,
application of a in s changes the values of every v € V(eff(a)) to eff(a)[v]
and we denote the resulting state by s[a] (values of all the other variables
remain the same as in s). We limit the action effects to this form as we
wanted to keep the state space finite, in line with Assumption 1 of classical
planning (Section 2.1).!

Determining whether we are allowed to apply a given action in a given
state is, however, more complicated than in classical planning, as we make
distinction between whether the action is applicable and whether the action
is allowed in that state. While in classical planning an action precondition
is a partial variable assignment (Definition 3), in planning with numeric
state constraints, an action precondition is a partitioned condition. We still
say that an action a is applicable in state s iff its precondition, pre(a) =
(prep(a),preg(a)), holds in s (see Definition 18). However, for an action to
be allowed in s, it has to be both applicable in s and the resulting state s[a]
has to be valid. We can think of this as an implicit precondition.

In our PSR example actions are opening and closing of the switches.
Phase angles are secondary variables with a range between —m and 7 and we
are not allowed to close a switch if the difference between the phase angles on
two sides of a switch is above some threshold value. As an example suppose
that we have a switch s that is associated with a power line that connects
two buses by and b; (which are associated with phase angles 6 and 6;). Also
suppose that we want to make sure that the difference between the phase
angles in the buses that are to be connected below 6;. In that case, the
precondition of an action close(s) is (Sciosea = false, true —| 6y — 61 |< ;).
That is, for the action to be applicable both the switch must not be closed and
the union of secondary precondition and the invariant constraints must be
satisfiable. Capacity constraints and Kirchoff’s laws are examples of invariant
constraints in the PSR domain — for the action action to be allowed (in
addition to being applicable), the resulting state must obey those constraints.

We should note here that introducing the concept of allowed actions is
not the only way to model our domains. We can think of a portion of pre-

ITf this assumption was removed, we could allow for the planner to have more control
over the secondary variables, for example, via numeric parameters to actions. This would
place us, however in the domain of metric and hybrid planning (Section 2.3.5), and the
techniques that are applicable would have to be very different. Keeping as close as possible
to the classical planning model enables us to adapt techniques that were developed in this
area, while still tackling problems that would be difficult to model and solve using purely
classical formulation.
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conditions as being hidden in the secondary model — i.e. it can be argued
that we are actually working with incomplete models of actions. While in-
troducing the concept of allowed actions could be avoided by placing more
information in action preconditions or in goals, the differentiation between
valid and invalid states (and therefore allowed and non-allowed actions) more
clearly highlights what situations we want to avoid. For example, we could
model the PSR domain in which we can always close or open any switch, but
this action may result in component failures. This could than be addressed
by having no component failures as part of the goal. However, we found that
modelling the actions with implicit preconditions is more straightforward.

3.2.6 Plans

As in classical planning, s[(as, ..., a)] denotes the state that is obtained by
sequentially applying the actions aq, ..., a, starting from state s. The only
difference is that we require all the actions to be allowed in the state in
which they are applied (that is, all the states in a sequence induced by the
sequence of actions are valid). The definition of an s-plan is analogous to the
Definition 4 given in Section 2.1.1.

Definition 19. Given a problem 11 = (Vp, Vs, A, Ciny, S0, G, cost) and a
state s, a sequence of actions ay,...,ax 1S called an s-plan if G holds in

s[{ay, ..., ax)].

We have previously defined (Definition 3 in Section 2.1.1) the cost of an
action a as a function of the action and the state s in which a is applied
— cost(a, s). The definition of an optimal plan (Section 2.1.1) remains un-
changed: It is a plan whose cost is minimal among all plans starting from an
initial state.

Note that when the domain involves secondary variables, the cost of an
action can be a function of an extended state. This can present an issue if
there are multiple (or an infinite number of) extended states corresponding
to a single reduced state. If that’s the case, how do we determine the values
of secondary variables that the action cost depends on?

In this chapter, we only deal with domains where action costs are not
state dependent and the heuristics that we will present in Section 3.5 were
developed under this assumption. Chapter 4, which will discuss planning
with state-dependent action costs in more detail, will focus (mostly) on the
case where all the values affecting action costs are uniquely determined given
an assignment of primary variables and, consequently, the above question
can be avoided.
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In the preceding subsection (3.2.5), we discussed the reasons for not al-
lowing the planner to directly control the secondary variables through action
parameters. However, in domains where are multiple (or infinite number of)
extended states corresponding to a single state s and where those states have
different costs, the planner may be allowed to minimise the cost by picking
the values of secondary variables such that the cost function is at minimum.
This is still consistent with the restrictions on action effects explained in
Section 3.2.5. Allowing this kind of manipulation of secondary variables may
or may not be reasonable depending on the problem that we are trying to
model.

3.3 Domain examples

To illustrate the power, and limitations, of the formalism, we present four
examples of domain models. We also note that the way the problem is mod-
elled might influence the accuracy of problem’s relaxation — we will provide
an example of this in Section 3.5. As a notational convention throughout
this work, constants are distinguished from variables by an overline bar (¢ vs

v).

3.3.1 Hydraulic blocks world

This domain is an extension of the Blocks World domain. The Blocks World
was originally developed by Winograd [141] as a test bed for his program
for understanding the natural language, but it was subsequently used much
more widely as a test bed for planning algorithms [107]. The Blocks World
consists of a finite number of blocks stacked into towers on a surface large
enough to hold all of the blocks. The positioning of the towers on the surface
is irrelevant (i.e. state is defined by which block is in which tower and by
positions of the blocks within the towers). The planning problem is to turn
the initial state into a goal state by moving one block at a time from the top
of a tower (i.e. it is only possible to pick up a block if it is on the top of the
tower) onto the top of another tower or to the table [130].

Our extension of the problem is called Hydraulic Blocks World (HBW).
As before, we have a fixed number of m towers and n blocks. The differences
are that each of the blocks has an assigned weight and that each tower k
sits on a piston inside a vertical cylinder with area ay, rising from a sealed
reservoir of hydraulic fluid, as illustrated in Figure 3.1(a). Each block ¢ has
a weight w;. The height of each piston is determined by the total weight
of the blocks in each cylinder and their areas, observing the physical law
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Figure 3.1: An example of the Hydraulic Blocks World domain. (a) A valid
(initial) state: The weight of block A is 1 and the weight of block B, which
sits on a twice as large area, is 2, causing pistons 1 and 2 to balance at the
same height while the empty piston 3 rises higher. The total volume of fluid
is v = 4. (b) An invalid state: Placing B on A in cylinder 1, the combined
weight causes the piston to fall through the bottom of the cylinder. (c) A
valid goal state: Placing the total weight of A and B on the larger piston 3
makes it possible to counterbalance the weight with smaller fluid columns in
the other cylinders.



3.3. DOMAIN EXAMPLES 49

stating that the pressure that each column exerts on the reservoir must be
equal and that the total volume of fluid remains constant (the fluid is non-
compressible). As in original Blocks World, the goal is to rearrange the blocks
until the goal configuration of blocks is reached. However, we also have an
additional requirement that the fluid in each of the cylinders must not fall
below some minimum level or rise above some maximum level.

Actions are the usual pickup, putdown, unstack and stack, indexed to indi-
cate what cylinder the block is moved to or from. For example, unstack; ;
takes block i off block j in cylinder k.

Primary state variables are pos;, representing the position of block i,
whose domain is the set of pistons, other blocks and the constant in-hand; in;,
representing the which cylinder block i is in, with domain {1, ..., m}U{none};
a Boolean variable clear;, representing if block ¢ is clear, and holding, whose
domain is the set of blocks and none. The preconditions and effects of actions
on the primary variables are as expected. For example, unstack; ;. requires
pos; = j, in; = k, clear; = true and holding = none, and causes pos; = in-hand,
holding = i, in; = none, clear; = false and clear; = true. Actions have no
secondary preconditions.

The key secondary variable is the height hj; of the fluid column in each
cylinder k, and the main safety constraint is that this variable remains above
0 and below the height I;, of the cylinder:

0<hy <l (HBW.a)

for k = 1,...,m. (Note that this is actually a switched constraint, whose
triggering condition is py. We omit the trigger for such constraints to sim-
plify the notation.) The total weight of the tower of blocks in cylinder & is
represented by a secondary variable p,. To compute pi, we use secondary
variables p;, ¢ = 0,...,n, k = 1,...,m, representing the contribution that
block 7 makes to the total weight in cylinder k. p; is either O, if block ¢ is
not in cylinder k, or the weight of the the block, w;, if it is. This is enforced
by the following switched constraints:

inj #k — pir=20 (HBW.b.1)
Pr = Zpi,k (HBW.b.iii)

i=1
0 <pir <w i=1,....,n,k=1,...,m (HBW.Db.iv)

Constraint (HBW.b.iv) is redundant, since it is implied by (HBW.b.i-HBW.b.ii).
However, as we will see in the section on relaxations, adding redundant con-
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straints to the secondary model can improve the inference power of relax-
ations. We can determine hj; via the following system of equations, which
state that (HBW.c) the total amount of fluid ¥ in the cylinders is constant,
(HBW.d) the force f; at the bottom of cylinder & is proportional to the weight
pr of the tower of blocks plus the weight of the fluid column in the cylinder
(the fluid density p times the fluid’s volume, where a, is the cylinder’s cross-
sectional area), and (HBW.e) the pressure (force per unit area) at the bottom
of a cylinder is the same for each cylinder:

Zakhk:@ kE=1,...,m (HBW.C)
k=1

fr = pr + paghy k=1,...,m (HBW.d)
f—szkH k=1,....m-1 (HBW.e)
Qg Qk+1

Suppose the initial state is as shown in Figure 3.1(a), and that the goal is to
place block B on block A. Considering only the primary part of the model,
this can be achieved by picking up B and stacking it on A. However, the
resulting state is not valid, because the combined weight of A and B placed
on the small area in cylinder 1 exerts too much pressure; to counterbalance
it, the columns in cylinders 2 and 3 would need more fluid than the total
volume, v = 4. A valid goal state is shown in Figure 3.1(c). Here, the weight
of the tower is placed in cylinder 3, which has a larger area as = 3, making
it possible to counterbalance the weight with lower columns in cylinders 1
and 2. This state is reachable by moving A from piston 1 to piston 3, then
moving B onto A. All intermediate states in this plan are valid.

3.3.2 Switching Problems in Power Networks

Our second domain exemplifies the kind of useful problem that our approach
enables planning to address. Here our task is to reconfigure a power network,
by opening and closing switches that, respectively, isolate or connect power
lines in the network. This can be for several purposes — in Section 2.3 we
discussed the Power Supply Restoration (PSR) benchmark used in IPC-4 [43].
For another example, we may want to isolate a particular line or generator,
that is being phased out for servicing, while maintaining supply to all loads
at every intermediate state of the plan.

In contrast to the version of PSR used in the IPC benchmark, numeric
state constraints allow us to model power flows and capacity constraints,
which is an essential requirement to make the model realistic. The PSR
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problem consists of determining a sequence of switching operations that re-
configures a faulty network such that the faults are isolated from the rest
of the system and as many customers are resupplied as quickly as possi-
ble. Faults are particularly common in bad weather conditions and faults on
multiple network elements are not rare. When faults occur, circuit break-
ers open to protect the network from overloading, leaving the entire area
connected to that circuit breaker without power. In these situations, faulty
elements must be located, which is a problem that we assume is solved. A
subset of switches is operated remotely, while the rest require manual opera-
tion. Automated PSR, which is the problem considered here and in the paper
by Thiébaux et al. [134], consists of only operating the remotely controlled
switches. Automated PSR must be completed within a time bound (1-5 min-
utes), otherwise it results in heavy fines from the power regulators. Currently,
PSR is most commonly performed by human operators, sometimes aided by
rule-based algorithms capable of issuing switching recommendations in very
simple fault situations. The existing literature mostly deals with finding the
final configuration of the network and in many cases, the problem is limited
to finding a configuration resupplying areas downstream of faults assumed
to be already isolated. Additionally, the existing approaches produce sub-
optimal solutions or make various simplifying assumptions such as assuming
that all non-faulty lines can be supplied or limiting the problem to only one
fault [134].

Here we formulate the PSR as a planning problem. It has been previously
modelled as a mixed-integer programming (MIP) problem by Thébaux et
al. [134]. Their approach is to decompose the problem into two MIP sub-
problems — first, the problem of finding the optimal configuration of the
network is solved, ignoring the intermediate plan steps. Secondly, they solve
the sequencing problem, i.e. deciding on how to drive the network into
the previously determined optimal configuration. This may produce sub-
optimal plans, but they show that their solutions are nearly indistinguishable
from optimal. Unfortunately, while MIP works for generating short plans
with known lengths, it is not well suited for generating plans consisting of
many actions. Our work aims to develop an alternative to MIP in such
circumstances.

Power networks

The power network is modelled as a graph (B, L) whose nodes are buses
i € B supporting constant consumer loads [;; a subset of buses (G) supply
variable generation g; (generators have capacities that constrain the power
Gimaz Produced). In the PSR problem, we also distinguish a subset F of faulty
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buses. Edges (i,j) € L,i < j of the graph are power lines of the network.
A subset of these edges is associated with remotely-operated switches (with
one switch associated with each edge) that, when flipped, disconnect the
associated line (or remove the edge from the graph).

Distribution networks have meshed topology, which is often configured
radially. The switches are set so that a path taken by power from each circuit-
breaker forms a distinct tree called a feeder, each element being fed by at
most one circuit breaker. However, the advent of the distributed generation
is gradually turning the distribution system into meshed networks for which
the radiality assumption does not hold [134].

A bus is supplied with power, or fed (f;), iff there is a path of lines (with
corresponding switches closed) connecting it to a generator bus (in G), in
which case its entire load must be supplied. In our planning domain, this
is modelled by a secondary variable f; for each bus i € B. Lines also have
capacities p;; that limit the maximum power that can flow through them.

In this model, the only primary variables are the switch positions y;; on
the power lines. Opening/closing a switch toggles y;; between false (open)
and true (closed). The planner also varies each generator’s output. This is,
however, modelled by allowing the planner to assign value of the secondary
variable representing generation g;, which represent the power produced at
generator bus ¢ € G, rather than explicit actions. In a meshed network
configuration there can be multiple solutions to the active state constraints.

As positions of the switches are the only primary variables in this domain,
configuration of their positions determines the state. An interesting thing to
note is that, given the configuration of the switches, the “fed” values of
the buses are uniquely determined by the switched constraints ( PSR.d) and
( PSR.e). In Chapter 4 we will explain how we exploited this property of the
domain for planning with state-dependent action costs.

The behaviour of the power grid can be modelled in several ways, so the
form the secondary model takes depends on how do we decide to describe
the power flow. The most accurate model is the AC model, but it is also
very computationally expensive, as it requires dealing with sets of non-linear
equations. For this reason, various (computationally cheaper) simplifications
have been been developed. Here we use the linear DC power flow model
[127,132].

In this model, the DC power flows are a linear approximation derived
from the AC power flows through a series of approximations justified by
operational considerations. For the explanation of assumptions under which
this model holds and the derivation, see Powell [118] and Thiébaux et al.
[134].  Under these assumptions, flow of power through a power line p;;
between the buses i and 7, 7, j € B, is proportional to the difference between
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the phase angles associated with the buses the line connects and the line
susceptance b;; (which is a constant associated with each line). That is,
pij = —b(0; — 0;).

The DC powerflow model uses only linear constraints, so the formulation
of the problem is consistent with the Definition 15. The AC model uses
equations containing trigonometric functions [134]2. This model is, however,
still consistent with the requirements we outlined in Section 3.2.3, so solving
power network reconfiguration problem with a more accurate power flow
model would simply involve replacing the equations in the secondary model.

Adopting the DC power flow model, our secondary variables are:

e phase angles, 6; for each ¢ € B, which are real number ranging between
—m/2 and 7/2

e powerflows, p;; for each line (¢, ) € £, which are real numbers

e power generated, g; for each ¢+ € G, which are real numbers, ranging
between 0 and g; e, and

o “feds”, f; for each i € B, which take value of either 0 or 1.

There are three main types of invariant constraints in this domain [134].
The first group of invariant constraints define the line power flows. The flow
of power through a power line is given by the linearised DC powerflow model.
Powerflow in the lines for which the switch is open is zero. Therefore the
switched constraints are:

yij = true — pi; = —b;;(0; — 6;) (1,7) € L (PSR.a.i)
Yij = false = p;; =0 (i,j) € £ (PSR.a.ii)

Constraints of the second type govern the flow of power. These include:

2The AC model requires to consider both the real power flow p;; and the reactive power
flow g;; for each line (¢, j) € £. In addition, with constants known as susceptance l;ij and
conductance ¢;; are specified for each line. Variables associated with each bus ¢ are voltage
magnitude | V; | and phase angle ;. The AC power flow equations for a line (i, j) are:

pij = | Vi |? ¢ij— | Vi || V; | (€ijcos(6; — ;) + byjsin(8; — 6;))

i =— | Vi |? bij— | Vi || Vj | (izsin(0; — 0;) — bijcos(0; — 0;))
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e Kirchoff’s law of power flow. Makes sure that the power flow is con-
served at the buses.

g+ Y pi=Ufi+ Yy i€B  (PsrD)

J(dA)eL Ji(d.4)eL
e No faulty buses can be supplied with power.
fi=0 ieF (PSR.c)
e All non-faulty generator buses are fed.
fi=1 i€ G\ F (Psr.d)
e Buses that are connected must always have the same fed status.

yij = true —f; = f; (1,j) € L (PSR.e)

Finally, we have capacity constraints:

e (Capacities of the generators.
0 S i S gi,maz 1€ g (PSR‘f>

e Capacities on the power flow.

— Dij < Dij < Dij (i,7) e L (PSR.g)
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Opening or closing a switch may cause transient phenomena that can
threaten network stability. Whilst here actions have no secondary precondi-
tions, using these would be beneficial to prevent certain transient phenomena
which could cause instability. For example, before connecting two buses by
closing a line, the difference between the phase angles on the buses 0; — 0;
should be relatively small. If it is not, a generation redispach is necessary to
reduce it [76]. This can be accounted for by adding a secondary precondition
to the closing action associated with a line (7, j) constraining the difference
6; — 0; to lie within safety bounds. (This, has, however, not been used in our
experiments.)

Plans

As noted earlier, reconfiguring the power network can be done for a number
of possible reasons, including power supply restoration, load rebalancing,
isolating a network element (so that it can be repaired or replaced) etc.
A solution of a PSR problem is a sequence of switching operations such
that in the final configuration a predetermined subset of buses is supplied
with power. That is, the (secondary) goal is f; = 1 for i € Bga. (In our
experiments, a set of buses By, is precomputed for each problem.)

There are different ways that the cost of a solution can be evaluated. In
simplest case, we want to minimise the number of switching operations —
i.e. a shorter solution is preferable as it resupplies the network sooner. A
more meaningful objective is to resupply as much of the network as soon as
possible — if we plot the portion of the network supplied with power as a func-
tion of time, we want to maximise the area under the curve [134]. Another
objective is to minimise the deviation from standard (pre-default) configu-
ration. Both objectives can be formulated as state-dependent action costs
(see Chapter 4). However, minimising the number of switching operations
is a reasonable proxy (at least for the latter objective) and is much easier
for planners to do. The reason for this assumption is that we are assuming
that we don’t need to flip any single switch more than once. That is, if we
measure the difference between the configurations by counting the number
of switches that are in a different position (rather than, say, using quantities
such as flows of power in different power lines), minimising the number of
switching operations also minimises the difference between the initial and
final configurations.
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3.3.3 Multi-commodity Long-haul Transportation

Logistics problems have long been a staple planning benchmark. Our third
example domain models a real-world multi-commodity long-haul transporta-
tion problem [94].

Goods, of different types, needs to be transported from a depot to cus-
tomer locations, 1,...,m. As a convention, we label the depot location
0. Dyj, i,j € {0,...,m} is the distance, along the road network, between
locations 7 and j. Each customer i has a demand g} for good type g. Trans-
portation is done with a fleet of n trucks. Each truck k has a set G of
goods types that it can carry, a capacity pg, and a per-kilometre cost cy.
In the problems we encounter, there are usually several trucks of the same
type, i.e., with identical parameters. Also, there are only two goods types:
ambient and chilled. Refrigerated trucks can carry both types, while non-
refrigerated trucks can only carry ambient temperature goods. All trucks
start at the depot and must return to the depot at the end of the plan, as
well as meet all customer demands. We assume that trucks get loaded with
goods in the morning and do one trip a day —i.e. they do not revisit the depot
once loaded. This problem is based on the requirements a Queensland-based
transportation company, which provided the data [94].

In our model of this problem, all reasoning about goods delivery is done
in the secondary model. Primary state variables are loc; for each truck k,
with domain {0, ...,m}, representing the current location of the truck. In
addition, a Boolean variable visitedy; keeps track of whether truck k has
visited location 7. The only action is drivey;;, with precondition loc, = 1,
effect loc; = j and visitedy, ; = true, and cost ¢ - D; ;.

For each truck k, customer location i, and goods type g € {am,ch}, a
secondary variable di,i represents the amount of goods type g that truck &
delivers to customer ¢. The following constraints ensure that trucks deliver
only to locations that they visit, and that type and capacity restrictions are
met:

visitedy, ; = false — dj ; = 0 k=1,...,n,i=1,...,m,
(LH.a)

g € {am, ch}
> d, | <pr k=1,....7 (LH.b)

1=1,...,m,g€{am,ch}

The goal of meeting customer demands is expressed by a secondary goal
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constraint:

Z di,| =4¢ i=1,...,m,g€ {am,ch} (LH.)
k:geGy,

Demand and capacity values are integer, and for every problem instance there
is a finite maximum. Hence, this problem can also be modelled as a classical
planning problem, using only finite-domain variables.

Because our approach to optimally solving planning problems with global
numeric state constraints is based on admissible heuristic search, it is affected
by problem symmetries, such as those caused by identical trucks in the long-
haul transportation problem. We can eliminate some of these symmetries
(though by no means all) by a small reformulation of the primary model.
Similarly, we can improve the accuracy of the relaxation from which derive
admissible heuristics by some reformulation of the model.

First, we split the representation of the depot into two locations: the
source, 0, from which all trucks depart, and the sink m + 1, to which they
must return. drive actions are modified so that trucks can not leave the sink
location or move back to the source once they have left it. To permit the
plan to not use a particular truck, a zero-cost action drivey o 541 is added for
each truck. Since movements of different trucks are completely independent,
they can be ordered in any way. To avoid the factorial number of equivalent
plans that differ only by reordering of independent actions, we force trucks
to move in sequence: truck k41 can only leave the source (depot) after truck
k has reached the sink (depot). Furthermore, if trucks k£ 4+ 1 and k are of
the same type (i.e., Gy = Gri1, Dr = Pry1 and ¢ = Cry1), then truck k + 1
must be used (i.e., visit at least one customer) if truck k& was. This avoids
the exponential number of equivalent plans that differ only by which subset
of identical trucks is used.

3.3.4 The Counters Domain

The Counters domain was invented by Francés and Geffner [51] as a way
to illustrate one flaw of heuristics based on monotonic relaxation. We al-
ready discussed this domain in Section 2.3.2. Here we will show how it can
be modelled with switched constraints. The original domain also featured
conditional effects (the inc action has assigns different values to variables in
different states), which we remove, as they are not allowed in our formalism.

As already stated, the domain features n counters, X, ..., X5, each rang-
ing over integers 0, ..., m. Actions inc(z) and dec() increment and decrement,
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respectively, counter ¢ by 1. Initial values of the counters can be all zero, all
maximum, or random. The goal is X; < X;,; fori € [0,7 — 1].

In our model, primary state variables are m propositional variables, p; ;,
for each counter i. The model represents X; = k with p; ; = true for j =
1,...,k and p;; = false for j = k + 1,...,m. Formulating the actions
to maintain this representation is straightforward. Because we do not use
conditional effects we need a separate action for each counter value. For
example, action inc(7, j) (with j > 0), which increments counter i from j — 1
to j, has primary precondition p; j_1 = true (except if j = 1) and p; ; = false,
and effect p;,; = true. FEach counter is also represented by a secondary
variable, x;. The following invariant constraints ensure that the primary and
secondary representations agree:

Dij = lrue — x; > j i=1,...,A,j=1,...,m  (COUNTERS.)
pij = Jalse = z; < j —1 (COUNTERS.ii)
0<z;<m i=1...,n (COUNTERS.iii)

For example, if p;; = true and p; » = false, (COUNTERS.i) and (COUNTERS.ii)
force 1 < z; < 2 —1, ie., ; = 1. Constraint (COUNTERS.iii) ensures that
x; = 0 when p; ; = false and that x; = m when p; 5 = true.

The reader may wonder why we adopt such a complex representation,
instead of simply a single primary variable with domain {0, ..., m} for each
counter. The reason for this is that this is an artificial domain, modelled this
way to allow for stronger relaxation and therefore better heuristic values.
This will be detailed on in Section 3.5.1.

The goal is expressed on the secondary variables. To account for the
fact that counter values are integer, we write the subgoals as z; +1 < x;,1.
Alternatively, we could write x; < z;,1 and add the requirement that the
x; variables are integer, but this would require the use of a mixed-integer
programming (MIP) solver rather than just an LP solver, for checking con-
sistency of the secondary constraints.

3.4 Expressivity

In Section 2.3.1 we mentioned that axioms can be complied away, although
this leads to either a worst-case exponential blow-up in the size of domain
description or worst-case exponential blow up in the size of the length of the
shortest plan [136]. The question that arises is whether the formalism with
state constraints is more expressive than classical planning, and what’s the
complexity of solving problems expressed in it.
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Our first observation is that the secondary part of any partitioned con-
dition can be compiled into the primary part. The proofs of the two propo-
sitions are presented in the appendix and will also be given in our JAIR
paper [73].

Proposition 1. Let {(¢p, ps) be a partitioned condition. There is a formula
F(ps) over Vp such that for every state s, slpp A F(pg)] = true if and only

if {(pp,ps) holds in s.

Thus, secondary conditions can be eliminated from action preconditions and
the goal.

We now discuss compilation of invariant constraints. A formula F(Ci,,)
that characterises valid states in terms of the primary variables only can be
constructed as in Proposition 1. Adding F(C},,) to all action preconditions
and to the goal ensures that a plan visits only valid states: Each state except
the last must be valid for the next action to be applicable, and the final
state must be valid to satisfy the goal. It follows that our formalism can
be reduced to classical planning, though potentially at the expense of an
exponential increase in problem size.

Is the blow-up in the size of the problem avoidable? This depends on
the the kind of global state constraints in use. However, our second propo-
sition, which will be given below provides a partial answer. Recall that
although in this work we focus on switched constraints over real-valued sec-
ondary variables, our approach to extending classical planning with global
state constraints, as defined in Section 3.2.3, is independent of the constraint
language. Proposition 1 holds no matter what kinds of secondary variables
and constraints over them appear in the problem. This also implies that,
independently of the size of the problem that results from compiling away
global state constraints, we cannot say anything about the time complex-
ity of performing the compilation, since checking if a set of constraints are
satisfiable in a given state may not even be decidable.

Our second observation is that we can encode complex conditions over
the primary variables into secondary constraints, provided the constraint lan-
guage is sufficiently expressive. In particular, within the formalism of linear
switched constraints over real-valued secondary variables we can formulate
action preconditions and goals that are equivalent to general formulas over
the primary variables. Therefore, the restriction that primary conditions
need to be partial variable assignments is not a true restriction of the expres-
sivity of our formalism.

Proposition 2. Let ¢ be any formula over the primary variables Vp. There
exists a set of switched constraints C' such that for every state s, (py, C') holds
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in s if and only if s[¢] = true. In addition, the size of C' is polynomial in the
size of .

(Since there is no primary part of the partitioned condition is the empty par-
tial variable assignment, figuring out whether (pg, C') holds in s is equivalent
to determining whether active(C, s) is satisfiable.)

Nebel [109] analyzed the complexity of compilations between classical
planning formalisms spanning from (propositional) ADL to (propositional)
STRIPS. Two of the implications of his results are that compiling away gen-
eral Boolean formulas (in action preconditions and the goal) requires either
a worst-case exponential increase in the size of the problem, or a super-linear
(but still polynomial) increase in plan length. This partially answers the
question of whether the increase in problem size when compiling away global
state constraints (Proposition 1) is avoidable: If the constraint language is
sufficiently expressive to compactly encode arbitrary action preconditions
and goals over the primary variables — and linear switched constraints are,
as shown by Proposition 2 — then compiling away those constraints must
require at least the same complexity as compiling away those pre- and goal
conditions.

3.4.1 Example

Here we will demonstrate the compilation of the invariant constraints and
secondary conditions into a logical formula. We will use a small example from
the power network domain (Section 3.3.2). Consider a small power network
with only three power lines (and the corresponding switches 1,y and ys),
two buses with loads B; and By (we denote their loads l; and I, and the
“fed” statuses fp1 and fp o, respectively) and two generator buses G; and
G4 (with the generations g; and g2). We denote the power in the lines py, po
and p3. The susceptances of the lines are by = by = by = 1. The maximum
generation in each if the buses is §i maz = G2,mez = 1 and the loads of the
loads of the non-generating buses are [; = I, = 1. The network is shown in
Figure 3.2.
The state constraints are:

Y1 = true — py = —b1(0g1 — 0p.1)
Y1 = true — fa1= fpa

Yy = false — p; =0

Yo = true — py = —by(0g2 — Op2)
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G, Y B,
Y3
G, Y B,

Figure 3.2: A small powernetowk.

Y2 = true = fao = fB2

Yo = false — ps =0

Y3 = true — p3 = —(_?3((93,1 - 93,2)
ys = true — fp1= fp2

ys = false — p3 =0

g1—p1=0
Jei—p1+p3=0
go—p2 =10
fB2—Dp2—p3=0
Jaa=1

fa2=1

g1 <1

g2 <1

The goal is to supply both loads, so the goal constraints are fp; = fpo = 1.

As there are three switches there are three variables with binary domains
and therefore 8 possible states, enumerated in the Figure 3.3. We can use
the above given constraints to determine the validity of each of the states
as well as whether the goal conditions are achieved in it. Using this, we can
rewrite the goal as a formula y; A y,. The state validity can be expressed as
(11 <> y2) V —ys (the two invalid states violate the constraints as in each of
them one generator feeds two loads).
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’ U1 \ Yo \ Y3 H Validity \ Goal reached ‘
F|F|F T F
F|F|T T F
F|T|F T F
F|T|T F F
T|F|F T F
T|F|T F F
T|T|F T T
T|T|T T T

Figure 3.3: Possible states.

3.5 Computing Heuristics

As seen in Section 2.2, relaxations of planning problems are used to derive
admissible heuristics which are then used to guide search for optimal plans.
Here we will adapt two well known relaxations used in classical planning
to domains with numeric state constraints — monotone relaxation (see Sec-
tion 2.2.1) and a form of abstraction called projection (see Section 2.2.3).
The heuristics that we derive from the monotone relaxation are h,,q,, h* and
an equivalent of LM-cut for problems with unit-cost actions. From abstrac-
tion we obtain the pattern-database heuristics. All of the relaxations below
are developed for problems in which action costs are constant (meaning that
the cost of an action is same regardless in which state is the action applied).

3.5.1 Monotone relaxations

The relaxation that we will describe in this section is an extension of MFDR
(see Section 2.2.1) for planning with numeric state constraints. Primary
variables function the same way as variables in MFDR, so defining the relaxed
state is straightforward. As actions assign values only to primary variables,
action effects function in the same way as in MFDR. Action preconditions
and goals are partitioned conditions, so we will need to develop ways of
determining whether they hold in a given relaxed state. We will define three
different ways in which the partitioned conditions are evaluated and hence
obtain three different relaxations. We will also discuss how these relaxations
relate to each other.
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Relaxed state

Here we will define the relaxed state which we will use for all three relax-
ations. This definition is analogous to Definition 6. As before a relaxed state
associates a set of values (which is a subset of the variable’s domain) with
each primary variable.

Definition 20. Let Vp be the set of primary state variables, and for each
variable v € Vp, with D(v) being the domain of v. A relaxed state s*, is a
mapping from Vp to sets of values such that s*[v] C D(v) for all v € Vp.

Recall from Section 2.2.1 that a relaxed state s* represents a set of states,
namely those obtainable by assigning each variable v; one value from its value
set sT[vy]:

states(s*) = {{vi1 = z1,.. ., v, = 2, } | Vi : x; € sT[v;]}

In the same section, we have also seen that in the monotonic relaxation
variables accumulate values as actions are applied, rather than switching
between values as in the non-relaxed setting. Application of an action a in
a relaxed state s leads to a state t* = s™[a] in which the sets of values
associated with the variables are: t7[v] = s*[v] U {eff(a)[v]} for all variables
that appear in the effects of a and t*[v] = sT[v] for all other variables. Of
course, as in the non-relaxed case, a can only be applied if it is allowed in
st — we will explain how do we determine whether an action is allowed in a
relaxed state later on.

As in classical planning, the value-set semantics extends to partial pri-
mary variable assignments (we will show that this has additional relevance
in planning with numeric state constraints as triggers are partial primary
variable assignments). Definition 7, which states that given a partial vari-
able assignment ¢, s™[¢] denotes the set of values that ¢ can take in relaxed
state sT. To paraphrase, true € s™[p] if and only if there exists a state
s € states(s') such that s[¢] = true (and analogously for false).

The relaxed planning problem

The relaxed planning problem II* is defined by replacing the states with
relaxed states (Definition 20), the applications of actions with the relaxed
application of actions and evaluation of partitioned conditions (that is, ac-
tion preconditions and goals) with one of the three possible ways of evalu-
ating whether a partitioned condition holds in a relaxed state. Depending
on which of those three definitions are used, we obtain either weak relaz-
ation, intermediate relaxation or strong relaxzation. We denote the resulting
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relaxed planning problems II" year, II* intermediate OF I grong, Tespectively. The
three ways partitioned conditions are evaluated will be given in the following
sections.

As with MFDR, any plan for the original problem is also a plan under
relaxed semantics and, therefore, the minimal relaxed plan cost is also a lower
bound on minimal real plan cost (this is true regardless which of the three
relaxations are used). The key property ensuring this is that the relaxation
is monotonic — for any partial variable assignment ¢ and a relaxed state
s, if e € s*[p] with e being either true or false, then e € t*[yp] for any
relaxed state t* reachable from s* by relaxed action application. Also, any
partitioned condition that holds in s* still holds in ¢* (in a delete relaxation
we say that “true conditions remain true”).

The monotonicity property of the relaxation means that we can build a
relaxed planning graph, following the same procedure as in MEDR (see expla-
nation in Section 2.2.2). The relaxed planning graph consists of alternating
relaxed states (they are analogous to the fact layers in delete relaxation) and
action layers. Each action layer includes all actions that are allowed in the
preceding relaxed state and that have not appeared in any previous action
layer. An action a is allowed in a relaxed state s iff (i) (pre(a)p, pre(a)s)
holds in s* and (ii) (eff(a), @) holds in s™[a]. (We will formulate three differ-
ent ways of determining whether a partitioned condition holds in a relaxed
state, leading to three relaxations of different strength. These will be pre-
sented in the following sections.) The second part ensures that the action’s
effects, considered by themselves, do not lead to an invalid state. Note that
just as in the classical relaxed planning graph, we make an independence
assumption in that the allowableness of each action is tested separately from
other actions in the same layer. The next fact layer is the relaxed state that
results from applying the effects of all actions in the current layer. (There
is no need for explicit no-ops, since previously achieved values remain under
the value accumulating semantics.) Graph construction stops when the goal
holds in the last relaxed state, or when two consecutive relaxed states are the
same, indicating that all reachable variable values have been achieved. This
process provides a procedure for determining the relaxed plan existence — if
it ends with a final relaxed state in which the goal does not hold, the goal is
not relaxed reachable.

The size of the relaxed planning graph is polynomial with respect to the
size of the planning problem. There are two ways to show that this is the
case. First, we are never required to apply any action more than once, so
the number of layers representing the relaxed states is at most the number of
actions in the relaxed planning problem II" plus one (representing the initial
relaxed state). This also bounds the length of optimal plans for IIT by the
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number of actions in the problem. (However, computing the optimal cost of
a plan for the relaxed problem is NP-hard [20].)

Another way to demonstrate this property is to note that since the values
accumulate with relaxed action application, in the final relaxed state every
variable can end up having at most the number of values as there are in its
domain, so the set of values associated with the variable can grow at most
the number of times equal to the size of its domain minus one (due to the
initial value in the set). This means that the number of layers is bounded by

14+ v (D) = ).

The weak monotone relaxation

We start with the weakest relaxation. The key question is how to evalu-
ate conditions on secondary variables in a relaxed state. We treat this as a
question of consistency, which can be delegated to an appropriate external
solver. As mentioned in Section 3.2, the syntactic form of switched con-
straints provides a natural interface for this separation of concerns, wherein
the constraint solver only needs to consider the secondary part of the active
subset of constraints. We therefore need to figure out which of the constraints
are active, given a relaxed state. The following definition is used in the weak
and the intermediate relaxations.

Definition 21. For a relaxed state s* and a set of switched constraints C,
the relaxed active constraints of C' in s* are

active”(C, s7) ={v | ¢ = v € C, false & s*[¢]}

That is, a switched constraint ¢ — 7 is active in a relaxed state only if
the triggering condition ¢ cannot evaluate to false in st —i.e. ¢ must be
true.

As in the non-relaxed case, in order for a partitioned condition to hold in
a given state, both primary and secondary conditions need to hold in that
state. The primary condition holds if there is at least one state in a set
of states represented by the relaxed state in which the primary condition
holds. For the secondary condition, we use the Definition 21 to figure out
which of the constraints are active and then we determine whether the active
constraints are satisfiable.

Definition 22. The weak monotone relaxation of a planning problem with
global state constraints replaces the evaluation of partitioned conditions with
the following condition: a partitioned condition (@p,ps) holds in s* iff (i)
true € s*[pp] and (ii) active (@g U Ciny, s7) is satisfiable.
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The relaxation obtained using this definition is monotonic. As more ac-
tions are applied, sets of values associated with each of the variables grows.
[.e. applying an action can only add a new value to a set associated with
a variable and cannot remove a value. Consequently, the set of active con-
straints can only shrink as more actions are applied. Applying an action
cannot activate a constraint that was previously inactive. Monotonicity ap-
plies to partitioned conditions as well:

Proposition 3. Let s* be a relazed state and t* be a state that results from
the application of a sequence of actions ay,...,a, in s*. Let {cp,cs) be a
partitioned condition. If (cp,cs) holds in s*, it also holds in t*.

Proof. Monotonicity of the primary condition cp follows directly from the
monotonicity of the classical relaxation. Let ¢ — v be a switched constraint
in cg. Since the set of values grows monotonically, s™[p] C ¢*[p]. Therefore,
if false € s*[p] then false € t™[p]. As ¢ — ~ is inactive in any relaxed
state in which false is in the set of values associated with ¢, the set of
active constraints in t* is a subset of the set of active constraints in s*,
active™ (cg,t7) C active®(cg, s7). As removing a constraint from a set cannot
cause a contradiction, if active*(cg, s™) is satisfiable, then active*(cg,t") is
also satisfiable. ]

This relaxation also has the property that invariant constraints are always
satisfiable in any relaxed state that can be reached starting from a valid state
(this is because applying an action can only remove constraints from the set
of active constraints as mentioned earlier). Thus, in this relaxation, if an
action’s precondition holds in a relaxed state, the action is also allowed in
that relaxed state. This eliminates one of the two consistency tests needed
for each action in each layer of the relaxed planning graph. If the action has
no secondary preconditions, no consistency test is needed; it suffices to check
if the primary precondition holds in the relaxed state.

If the consistency of a set of constraints can be determined in polynomial
time (as is the case when the constraints are linear), the allowedness of an
action can be determined in polynomial time as well. Therefore, the relaxed
planning graph (either for reachability testing or computing h,,.;), can be
constructed in polynomial time.

In Section 2.3.2, we described how Frances and Geffner [51] use state
constraints as a way to strengthen the monotonic relaxation. Here we will
demonstrate that same can be done in our framework. Consider, for example,
an instance of the Counters domain with three (integer) counters, X;, X, and
X3, initially all at zero, and the goal {X; < X5, X5 < X3} (domain described
in Section 3.3.4). In our formulation of the problem, relaxed application of
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the actions inc(2) and inc(3) leads to a relaxed state s™ where: s™[p1o] =
stpao] = s'[pso] = {true}, s*[pia] = s*[p22] = s*[psa] = {false}, and
st[pa1] = st[psa] = {true, false}. Hence, we have the active constraints
0<z1<0,0<xy<1land0<x3<1. (Recall that the secondary variables
x; here are real-valued, while the counters X; are integer-valued.) We can see
that their conjunction with the secondary goal condition {x; + 1 < 9,z +
1 < z3} is not satisfiable. Therefore, although both of the individual goal
conjuncts are relaxed achievable by the plan inc(2), inc(3), their conjunction
is not.

The intermediate monotone relaxation

The intermediate monotone relaxation is more computationally expensive,
but it can give higher bounds on the heuristic cost estimate.

Consider an example from Hydraulic Blocks World domain described in
Section 3.3.1. In the state depicted in Figure 3.1(a), the variable ing = 2.
Applying the action pickupp , to this relaxed state results in a new relaxed
state with s*[ing] = {2,none}. We need to take into account the invariant
constraints (HBW.b.i-HBW.b.ii):

ing #k — pi, =0 (HBW.Db.1)
ing =k — pir = w; (HBW.b.ii)

with k = 2, ¢ = B and wg = 2. We wish to test whether the resulting set of
constraints is consistent with the query py — pg, = 1.
We obtain the following set of constraints:

ing € {2, none} (EXAMPLE.1.1)
ing #2 — pg, =10 (EXAMPLE.1.ii)
ing =2 — pgy =2 (EXAMPLE.1.iii)
p— 0<pg, <2 (EXAMPLE.1.iv)
P — PRy =1 (EXAMPLE.1.v)

In the relaxed state above the variable ing is associated with the set of
values {2, none}, meaning that the relaxed state represents the set of all states
in which the value of ing is in that set. In each of those states, ing has only
one value — either 2 or none. Assigning either of those values to ing results
in a non-satisfiable set of constraints, meaning that those states are not
consistent with the query pg — pg, = 1. However, given Definition 22 (weak
relaxation), the constraints ing # 2 — po = 0 and ing =2 — pg, = 2
are both inactive and the set of constraints is satisfiable. Hence, although
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the query pyp — pp, = 1 is not satisfiable in any of the states in s*, it is
consistent if we use the Definition 22 to determine the active subset. (This
also demonstrates why the constraint (HBW.b.iv), which is redundant in the
non-relaxed problem, is useful in the relaxation: without it, PR would be
free to take any value in s*.)

As a way to partially rectify this, we present the intermediate monotone
relaxation. This relaxation uses the concept of conditioned relaxed state.

Definition 23. Let s* be a relaxed state and ¢ a partial primary variable
assignment such that true € s*[p]. s*|@, called s* conditioned on ¢, is the
relaxed state defined by

(s*[@)[v] = {e} if plv] =

(s ]p)[v] = s7[v] otherwise

It is obvious that states(s*|¢) C states(s™) for any ¢ because s|p[v] C s7[v]
for all v.

Definition 24. We define the intermediate monotone relaxation of a plan-
ning problem with global state constraints by replacing the evaluation of par-
titioned conditions with the following — a partitioned condition {(pp, s) holds
in st iff (i) true € s*[pp] and (i) active® (pg U Ciny, s*|@p) is satisfiable.

Conditioning the relaxed state on the primary part of an action’s pre-
condition (or its effects when testing if the resulting relaxed state is valid)
asserts the variable-value equalities that are known to be necessarily true
while evaluating the triggering conditions of switched constraints and there-
fore strengthens the relaxation. For example, to determine if the action
stackg A ; is allowed in the relaxed state s* in the example above, we test
the Satlsﬁablhty of the invariant constraints that are active in the resulting
state condition on this action’s effects. The action has the effect ing = 1,
so in the resulting state t* = s¥[stackg o ], t*[ing] = {1,2,none}. How-
ever, (t*|eff(stackg a ;))[ing] = 1, activating constraints ing =1 — pg; = 2,
ing # 2 = pg, = 0, etc., such that the resulting set of active secondary
constraints is unsatisfiable, proving that the sequence of actions pickupp ,,
stackg A ; is not valid in the intermediate relaxation of the problem.

It should be noted that the difference between the weak and the inter-
mediate monotone relaxation exists only in domains in which some of the
reachable states are invalid (such as the Hydraulic Blocks World and the
Switching Problems in Power Networks). In the two other example domains,
namely the Long-haul and Counters domains, the secondary model deter-
mines only whether the goal has been achieved (and there is no primary goal
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condition) and no reachable state is invalid. In those domains the interme-
diate and the weak relaxation are equally strong.

As with the weak relaxation, whether a partitioned condition holds can
be decided in polynomial time (provided that the consistency of the set of
constraints can be determined in polynomial time).

The strong monotone relaxation

Finally, we will show how the strong relaxation works. Here a set of con-
straints holds in a relaxed state s™ only if it is consistent with the restric-
tions on the primary variable assignment imposed by s*. To paraphrase, in a
strong relaxation a partitioned condition holds if and only if the set states(s™)
contains at least one state in which the partitioned condition holds. Re-
turning to the above HBW example (Figure 3.1), we note that the primary
variable ing can either take the value of 2 or none. The set of constraints
ExaMPLE.1.i-EXAMPLE.1.v is not satisfiable, since s encodes a discrete dis-
junction between ing = 2 A pg, = 2 and ing = none A pg, = 0. That is, no
state consistent with these constraints exists within states(s™).

Definition 25. The strong monotone relaxation of a planning problem with
global state constraints replaces the evaluation of partitioned conditions with
the following condition: a partitioned condition (pp, ps) holds in s* iff {op}U
{vestv] |veVp}UpsUCy, is satisfiable.

Note that if {@p}U{v € sT[v] | v € Vp} is satisfiable, then true € s*[pp]
by definition; hence, we omit this condition. We also make the following
observation regarding the relationship between strong and intermediate re-
laxations.

Proposition 4. Let Vp and Vs be sets of primary and secondary state vari-
ables, respectively. Let (pp,ps) be a partitioned condition, and s* a relaxed
state. Then (pp,ps) holds in s* under strong relaxation only if there is an
assignment to Vs satisfying active” (pgs U Ciny, $7|@p).

Proof. Suppose (pp,ps) holds in s*, ie., that {pp} U{v € st[v] | v €
Vp} Upg U Cy, is satisfiable (Definition 25); let o be a satisfying assignment
over Vp U Vs. If o restricted to Vs does not satisfy active® (pg U Ciny, sT|pp)
there must be a switched constraint ¢ — 7 € active® (g U Ciny, sT|p) such
that ~ is false under assignment o. Let s’ be o restricted to the primary
variables, Vp. Because o satisfies pg U C},,, it must then be the case that
the triggering condition v is false under o, i.e., §'[¢)] = false. Because o
satisfies {@p} U{v € sT[v] | v € Vp}, ' is a state in states(s"|¢p). Hence,
false € s*|pp[1], contradicting that ¢ — v € active® (pg U Ciny, sT|op). O
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Comparing the relaxations

Proposition 5. Given a planning problem 11, any plan for its strong relaz-
ation 117 gyong 45 also a plan for its intermediate relazation 117 piermediate-

Proof. Any partitioned condition {(pp, ¢g) that holds in a given relaxed state
st under the strong relaxation also holds in the same relaxed state under the
intermediate relaxation. Referring to Definition 24, this is because (i) if ¢p
holds in s under strong relaxation, true € s™[pp| is true by definition (see
above) and (ii) if (¢p, ¢s) holds in s™ under the strong relaxation, then it
also holds in the intermediate one due to the Proposition 4. Therefore any
condition, such as goal or action precondition, that holds in s* under the
strong relaxation also holds in the intermediate relaxation and any plan for
the strong relaxation of a planning problem is also a plan for the intermediate
monotone relaxation. O

Proposition 6. Given a planning problem 11, any plan for its intermediate
relaxation 117 ;iermediate 1S also a plan for its weak relaxation I17 .

Proof. 1f (pp, ps) holds in s™ under intermediate relaxation, it also holds s*
under the weak relaxation. Comparing Definition 24 and Definition 22, we see
that the requirement (i), true € s™[pp], is identical under both relaxations.
As for the requirement (ii), given that states(s*|p) C states(s™) (see above),
it follows that active™(¢g U Ciny, s7) C active® (¢g U Ciny, sT|pp). Given that
inactivating a constraint cannot make a previously consistent set inconsistent,
if active™ (o5 U Ciny, s*|pp) is satisfiable, then active™ (g U Ciyy, s7) has to be
satisfiable as well. Any condition, such as action preconditions and goal, that
holds in s* under the intermediate relaxation also holds in under s* under
the weak relaxation. Therefore, any plan for the intermediate relaxation is
also a plan for the weak relaxation. O

A consequence of these two propositions is that the optimal plan cost for
the problem under the intermediate relaxation is a lower bound on the cost
of the strong relaxation and the optimal plan cost under the weak relaxation
is a lower bound for the cost of the intermediate relaxation.

Computational costs

An important difference between the three above mentioned relaxations are
their computational costs. As already stated, the size of the relaxed planning
graph is polynomial regardless of the relaxation used.

Despite this, its construction is not necessarily tractable if we use the
strong relaxation. As shown in Section 3.4, the secondary model can encode



3.5. COMPUTING HEURISTICS 71

constraints that are equivalent to non-simple conditions over the primary
state variables. Thus, evaluating a partitioned condition in a relaxed state
according to Definition 25 is NP-hard. This is true even if all state constraints
are linear switched constraints, because Definition 25 asks for an assignment
to the discrete primary variables that are under-constrained by the relaxed
state. We prove this by reducing a zero-one integer program (with no opti-
misation) to the problem of finding an assignment to a relaxed state s* (note
that finding an assignment consistent with the constraints is equivalent to
finding a single state in states(s")).

Proposition 7. Finding an assignment of variables consistent with a relazed
state s* is NP-hard.

Proof. The problem of finding an assignment of x € {0, 1}" that is consistent
with the constraints Az < b where A is a m X n matrix and b is an m-vector
is NP-hard [90]. We introduce a primary variable p; for each x; € x and
set of switched constraints that restricts each variable to {0,1} domain. We
define a relaxed state s™ where s™[p;] = {true, false} for all p;. This allows
us to express this problem as finding an assignment consistent with:

Ax < b

p; = true - x; = 1

p; = false —» x; = 0
stpi] = {true, false}
for 1=1,...,n

Therefore, by finding the consistent assignment to the relaxed state, we can
solve the original problem. It follows that determining the consistency of a
relaxed state under the strong relaxation is NP-hard. ]

Using the intermediate relaxation makes the relaxed planning graph con-
struction tractable. This is because determining the satisfiability is decid-
able in polynomial time, assuming that the consistency of the secondary
constraints is tractable (as is the case with systems of linear equations).

However, although tractable, the intermediate monotone relaxation can
still be too computationally expensive to be the basis of a cost-effective search
heuristic. It needs two secondary constraint consistency checks for each ac-
tion that may be added to each layer of the relaxed planning graph. Each
consistency check involves a call to an external solver, which is substantially
more time-consuming than evaluating a partial variable assignment over the
primary variables in a relaxed state. In contrast, the weak relaxation only
requires one secondary constraint consistency check for each action whose
applicability we are testing (or zero, if an action has no secondary precondi-
tions).
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3.5.2 Abstraction-based heuristics

In Section 2.2.3 we discussed PDB, which is an abstraction-based heuristic.
Here, we will explain how can PDBs be adapted for planning with state
constraints.

Recall that we can view an abstract state s4 as a relaxed state in which
variables in V4 have only a single value and variables not in A have all pos-
sible values in their domain. Thus, the truth value of a partitioned condition
in an abstract state is determined in the same way as in any other relaxed
state, according to Definition 22, or one of the two stronger relaxations.

In the classical setting, a PDB can be efficiently constructed by an ex-
haustive reverse exploration from the (abstract) goal states, but this strategy
is not easily adapted to problems with global state constraints. For example,
in most of the example domains presented in Section 3.3, the goal condition
is defined on the secondary model only. This means to even identify the ab-
stract goal states we need to enumerate the models of the set of constraints
over primary and secondary variables.

Instead, we create PDBs using the following two step method:

1. In the first stage, we build an explicit graph of the reachable abstract
space by forward exploration. In this stage we also identify which of
the abstract states satisfy the goal.

2. Next, we compute the optimal costs to reach the goal for each of the
abstract states generated in the previous step. This is done by reverse
exploration, same as in the classical case.

This is more expensive than the classical PDB construction, but still practical
for projections that induce a small enough abstract state space. Once the
PDB is built, however, state evaluation is done by a table lookup, and takes
no more time than in a standard PDB heuristic.

3.5.3 Computation of h,,q:

The relaxed planning graph (introduced in Section 2.2.2 can be constructed
under all three monotone relaxations, and provides a basis for computing sev-
eral admissible heuristics. As already discussed, it provides a relaxed reach-
ability test, which enables us to compute A" using the iterative landmark
algorithm (described below). The number of action layers needed before the
goal condition holds is a lower bound on optimal plan length. If all actions
have unit cost, it is also a lower bound on plan cost, and analogous to the
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hmax heuristic [11,16]. A cost-sensitive version of this heuristic can be ob-
tained by indexing fact layers of the relaxed planning graph by cost, rather
than depth.

This is done in the following way (see Figure 3.4) — given a relaxed plan-
ning graph, the cost of a relaxed state cost(s*) is defined as the sum of the
costs of layers of actions that lead to that state, with the initial state having
the cost of zero, cost(s™y) = 0. For a relaxed state s*, there is a subset of
actions that are applicable in s*, which we denote A,+. This set of actions
is divided into subsets by cost, Ag+ .\, ..., Agt ., With costs cer1,. .., Cst p.

Given s*, the construction of the relaxed planning graph starts by ap-
plying all the actions its cheapest set, A+, .,, creating a new relaxed state
t*1, whose cost is cost(t*1) = cost(sy) + cs+,1. The values of variables in
tT1 are determined using the rules for relaxed action application, t;[v] =
sTo[v] U {eff(a)[v]} for variables v that appear in the effects of the actions
a € Ag+.,, and t*[v] = sT[v] for all the other variables (if some variable
appears in more than one action, all of the values are added to the set).
Whenever an action is applied, it can be discarded, as we never have to
apply any action more than once.

We build the relaxed planning graph by always adding the next cheapest
relaxed state. Whenever we generate a relaxed state, we identify the ap-
plicable set of actions, e.g. A;+, for t*1, and divide it into subsets by cost,
At ey oy Apr e, We then compare the costs of the all the relaxed states that
could potentially be created, considering all the states currently in the graph
and their corresponding sets of (still unused) applicable actions, and generate
the one with the minimum cost. E.g., cost(t™1) + ¢+ 1 < cost(sTg) + cs+ 2,
then the state u; is created by applying actions in A+ ., to t*;. Otherwise,
the next cheapest state, t*9, is created by applying actions in Ag+, ., to s7.
For each variable v, the set of values appearing in any relaxed state is the
union of the values in the effects of all actions used to generate the relaxed
state and the most expensive state of lower (or equal) cost. E.g., if u™y is
cheaper than (or of equal cost as) t*o, the effects of the actions in A;+ ., will
appear in t*5 (together with the values appearing in the effects of actions in
A+, .c,)- 1f two relaxed states end up having equal costs, we simply combine
them by assigning each variable a union of values held in those two relaxed
states.

We keep adding relaxed states in this manner until we run out of actions,
in which case the goal is not relaxed reachable (and the non-relaxed problem
is unsolvable), or we find a relaxed state in which the goal holds (whichever
comes first). The value hy.y is the cost of the cheapest relaxed state which
achieves the goal. If the goal is not relaxed reachable, hp,., is infinite.
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cost(s)+c,

st

t+

cost(s)+c,

t+

s7[v] U {eff(a)[v]} if v appears

in the effects of any a actionin 4

s7[v] otherwise

c1?

t,[v] U {eff(a)[v]} if v appears
in the effects of any action a in Asﬂz,

t*,[v] otherwise

Figure 3.4: Building a relaxed planning graph. The relaxed state t*; is
obtained by applying the actions in set Ay+ ., and the relaxed state t*5 is
obtained by applying the actions in the set A+ .,. The cost of ¢ is cost(s*)+
c1, where ¢; is the cost of each of the actions in A+ ,. The cost of t*; is
cost(s™)+cqe, where ¢, is the cost of each of the actions in A+ .,. Since ¢; < ¢y,
for each variable v, the set of values associated with v in ¢*5 contains all of
the values in ¢ [v] as well as the values added due to the effects of the actions

in Ag+ c,.
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3.5.4 Computation of h*

In Section 2.2.2 we introduced the optimal delete relaxation heuristic, or ht,
whose value is the cost of the optimal relaxed plan (in our case under mono-
tone, rather than delete relaxation). Although it is NP-hard to compute, it
dominates all the heuristics based on the delete relaxation [14]. To compute
h*, we use the algorithm by Haslum, Slaney and Thiébaux [74], which we
will briefly describe below. The algorithm finds a set of disjunctive action
landmarks [91] such that a minimum-cost hitting set over this collection is
an optimal relaxed plan and computes its cost. Because this algorithm in-
terfaces with the planning formalism only through the relaxed reachability
test?, which we can perform as explained above, and because our relaxation,
like the classical delete-relaxation, does not require any action more than
once in an optimal relaxed plan, this algorithm can be applied unchanged to
compute h* in our setting as well.

Disjunctive landmark algorithm

A disjunctive action landmark (or a landmark, for short) of a problem IT* is
a set of actions such that at least one action in the set has to be included in
any valid plan for II*. Consequently, for any collection of landmarks L for
IT*, any valid plan for II" contains at least one action from each landmark
in L.

The simple algorithm for finding the collection of landmarks £ and com-
puting At is shown in Figure 3.5. Initially, the collection of landmarks £ and
a set of action A are empty.

NEWLANDMARK takes a set of actions A as an input and returns an
inclusion-minimal landmark. By inclusion minimal landmark we mean that
no proper subset of the returned landmark is also a landmark. We know
that given any set of actions A such that the goal is not relaxed-reachable
with actions in A, the complement A of A (with respect to the whole set of
actions of the problem II*), is a disjunctive action landmark for IT* (as A has
to contain at least one action that is necessary to make the goal reachable).
If A is inclusion-maximal®, then A is inclusion-minimal landmark (since if
some proper subset of A were also a landmark, A would not be maximal).

Therefore, we take an action a from A and test whether the goal is reach-
able with A U {a} (reachability testing is performed by building a relaxed

3That is, to determine whether the goal is relaxed-reachable from the initial state using
a given subset of actions.

4By inclusion-maximal, or maximal with the respect to set inclusion, we mean that no
proper superset of A has the same properties —i.e. the goal is relaxed reachable with every
proper superset of A.



76 CHAPTER 3. NUMERIC STATE CONSTRAINTS

1: procedure ITERATIVE LANDMARK ALGORITHM
22 L=10
32 A=
4: while Goal not reachable with actions in A do
5 L =L UNEWLANDMARK(A)
6 A = MINCOSTHITTINGSET(L)
ht =3 .c4 cost(a)
7. return A"

Figure 3.5: Iterative Landmark Algorithm.

planning graph). Iff adding a does not make the goal reachable, A is assigned
AU {a} and a is removed from A. After testing all of the actions that were
initially in A, the actions remaining in A form a landmark, as adding any of
those actions to A would make the goal reachable using A.

MINCOSTHITTINGSET is a procedure for finding the minimum-cost hit-
ting set over a collection of landmarks. The definition of a hitting set which
we give here is adapted from Bonet and Helmert [14]. Let A = {a4,...,a,}
be a set and F = {F},..., F,} a collection of subsets of A. A subset H C A
is a hitting set iff H N F; # (0 for all 1 < i < m (i.e. H hits each set F}).
If each a € A is associated with a cost, then the cost of a hitting set is
Y wcp Cost(a), where cost(a) is a constant cost of an action a (recall that
our heuristic only works for problems in which the cost of an action does
not depend on the state the action is applied in). In our implementation,
we formulate the problem of finding a cost-optimal hitting set as an integer
programming problem and we use Gurobi to solve it.

The algorithm terminates when the goal is reachable using only actions in
A. (Of course, if the goal cannot be reached with all of the actions of IT*, the
problem is unsolvable and hence A" is infinite.) As any plan for the relaxed
problem must contain an action from every landmark in £, the minimum
cost hitting set has to be the cheapest possible relaxed plan and therefore
the sum of the costs of actions in A is the cost of the optimal relaxed plan
h*.

We can use information from the parent state to speed up the iterative
landmark algorithm computation. Let s be a state, £(s) the collection of
landmarks found for s, and ¢’ the state resulting from applying action a in
s. Then each element of {L € L(s) | a ¢ L} is also a landmark for s
Thus, we can start the algorithm with this collection of landmarks, instead
of an empty collection. This reduces the number of iterations, and hence the
number of relaxed reachability tests substantially. A similar technique was
used by Pommerening and Helmert [117] for the LM-Cut heuristic.
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1: procedure DISJOINT LANDMARK ALGORITHM
22 L=10

32 A=

4: while Goal not reachable with actions in A do
5: L =L UNEWLANDMARK(A)

6 A=Upee!

7

8

hpra = Y jcp Minger cost(a)
return hpra

Figure 3.6: Disjoint Landmark Algorithm.

The algorithm given in Figure 3.5 can be improved in several other ways,
which are explained in the paper by Haslum et al. [74].

3.5.5 A weaker approximation of h*

As noted in Section 2.2.2, given that A" is computationally expensive, we have
explored computing admissible approximations. By restricting Algorithm 3.5
to generating only disjoint landmarks, we obtain a faster-to-compute but
potentially weaker heuristic. If all the actions have binary costs, this heuristic
becomes equivalent to the LM-Cut.

Our new algorithm (Figure 3.6) differs from the algorithm we used to
compute A" in that instead of calculating the minimum-cost hitting set, we
use the union of all of the landmarks generated so far (Line 6) as an argument
for the NEWLANDMARK procedure. We stop when the goal is reachable with
the set A ={J, .. L. Since we are using the union of all the landmarks as a
starting point for generating a new landmark, landmarks obtained this way
are disjoint — that is, for all ¢ # j, L; N L; = 0.

As each of the landmarks contains at least one of the actions that have
to be included in every solution of a delete-relaxed problem, the sum of the
minimum action costs in all landmarks places a lower bound on A*. This
value is therefore our heuristic cost estimate:

hpra = E min,ey, cost(a)
LeL

For unit cost actions, the heuristic cost estimate simply becomes the number
of landmarks | £ | generated. As with A", we can reuse the collection of
landmarks generated in a given state when we are computing the hpya of its
children.

Recall from Section 2.2.2 that if the planning problem is limited to binary
cost actions, the landmarks generated by LM-cut procedure are disjoint. On
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Figure 3.7: Total nodes expanded (a) and total planning time (b) on HBW
problems with different heuristics. Instances in each set are sorted by in-
creasing shortest plan length.

those types of problems, it is possible that the algorithm in Figure 3.6 and the
procedure described in Section 2.2.2 find the same collection of landmarks.
Both LM-cut and our disjoint landmark heuristic are defined as sum of the
costs of landmarks (see Definition 11 and Line 7), they can return the same
value.

However, both LM-cut and our algorithm use arbitrary tie-breaking, so
in practice, the sets of landmarks returned by the two heuristics may by
different (and therefore the heuristic cost estimates might be different). In
our case, the NEWLANDMARK procedure extends the set of actions A by
adding actions from A in an arbitrary order. LM-cut arbitrarily chooses
which action preconditions to discard when constructing the justification
graph (and there is often high variability in quality of LM-cut with respect
to this choice).

3.6 Experiments

Here we will present the experiments comparing the performance of the
heuristics: blind (i.e. returning h value of 0 for every state), h™** h* and
PDB. The pattern in the PDB heuristic was selected according to the method
described in Haslum et al. [72]. The sets of problems are the following:

e The set of HBW problems consisted of 69 instances, with 4 to 7 block
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Figure 3.8: Total nodes expanded (a) and total planning time (b) on Coun-
ters problems with different heuristics. Instances in each set are sorted by
increasing shortest plan length.
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Figure 3.9: Total nodes expanded (a) and total planning time (b) on Counters
problems with different heuristics, sorted by increasing shortest plan length.
Note that only the instances solved with blind and PDBs are presented on
this graph. A™* is capable of solving a much greater number of instances.
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’ Domain \ Number of problems H Blind \ hmax \ h* \ PDB ‘
HBW 69 69 | 69 |58| 69
Counters 22 14 14 15| 22
Long-haul transportation 62 7 58 | 4| 7

Figure 3.10: Number of instances solved in each domain and with each con-
figuration within a given time limit.

and 3 to 5 cylinders, created using Slaney and Thiébaux [130] Blocks
World generator.

o A set of 22 Counters problems, with between 2 and 24 counters — 4
with 2 counters (3 with random initial values), 4 with 4 counters (3
with random initial values), 2 with 5 counters, 3 with 6 counters 3 with
7 counters and one problem each with 8, 12, 16, 20 and 24 counters.
In all problems with non-random initial state, all counters were set to
zero at start.

e A set of 62 Long-haul transportation instances, based on data from a
Queensland-based transportation company [94]. Each of the problems
involved 6 locations (with different demands for each type of good at
each location). The fleet consisted of 4 ambient temperature trucks
and 4 refrigerated trucks.’

The CPU time was limited to 1800 seconds for the Counters, 3600 seconds for
the HBW instances and 600 seconds for the Longhaul Transportation domain.
The results are shown in Figures 3.7, Figure 3.8 and 3.9. The numbers of
instances solved (within the time limit) using each of the configurations and
in each of the domains are presented in Figure 3.10.

From the results we can observe that the usefulness of the heuristics
varies by domain. In HBW and Counters domains, PDB and h* perform
best in terms of node expansions (blind search performs the worst, as it is to
be expected). The PDB is, however, convincingly cheaper in terms of time
(h* is the slowest). h™** is both much slower and worse in terms of node
expansions than PDB. In contrast, in the Long-haul transportation domain,
h™a* is the only heuristic that solves a significant portion of instances, while
PDB performs nearly identical to Blind in terms of nodes expanded and
total time (note, however, that the number of instances solved with those
two heuristics is very small).

5While the data consisted of 364 days in total, we only used the instances that we knew
in advance could be solved with this fleet of vehicles.
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3.7 Future work

One of the properties of our framework is that the constraints place restric-
tions on each state in the plan trajectory independently. As we move from
one state to another, the values of the secondary variables are discarded and
then recomputed regardless of what their values were in the state before.
This means that we cannot express problems which may require persistence
of secondary variables — for example trajectories in space or slow moving
network flows. Adapting our framework to allow for modelling of these types
of domains is the subject of future work.
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Chapter 4

State-dependent action costs

In the PSR problem, it is desirable to maximise the power supplied to con-
sumers in the time period between starting the restoration operation and
reaching the final configuration. Assuming that the shortest plan minimises
the unsupplied load over time, the simplest solution is to assign all actions
equal and constant costs, and the cheapest plan becomes the one involv-
ing the fewest switching operations. There is, however, no guarantee that
such assumption holds. The actual cost that we wish to minimise is the
sum of unsupplied loads at each time step. In our framework, this can be
expressed as a sum of action costs, with the costs being dependent on the
state in which the action is taken. We assume that all the action have equal
durations and that the duration between all action applications are equal.
The cost of taking an action becomes the sum of unsupplied loads in the
state the action is applied to. Previous work that dealt with state-dependent
action costs (SDAC) involved only problems without the secondary state con-
straints. As secondary variables were absent, action costs were functions only
over primary variables. In our case, the status of each load is represented
by a secondary variable, “fed”, so our action cost needs to be a function of
extended state.

This chapter is organised as follows. In Section 4.1, we will go over
related work. Section 4.2 will present cost functions that we will use and
discuss the difficulties associated with calculating the state-dependent action
costs. Section 4.3 will present an adaptation of h* heuristic to this setting.
Results of the PSR experiments will be given in Section 4.4 and, finally, in
Section 4.5 we will discuss future work.

33
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4.1 Related work

Formulating state-dependent action costs in unrestricted numeric PDDL [49]
is straightforward, since problem metric can be any fluent expression and ac-
tions can have arbitrarily complex and conditional effects on numeric fluents.
Another way to express state-dependent action costs is through PDDL3’s
preferences in action preconditions [62] which incur a penalty (cost) when
applying an action in a state in which the preference is unsatisfied. How-
ever, optimal planning with state-dependent action costs has received rela-
tively little attention. The optimal MIPS-BDD planner handles an expressive
fragment of PDDL3’s preferences, but not preferences in action precondi-
tions [42]. The LTOP planner [137] extends optimal planning to complex
objectives, including action costs that are a function of action’s duration,
but not of state the action is applied in. Neither of these approaches are
actually applicable for the problem we are discussing here.

Recently, Geifler et al. [58-60] presented ways of adapting heuristics
for planning with state-dependent costs, namely additive heuristic h%% [17]
(which is inadmissible and therefore cannot be used in optimal planning) and
an (admissible) abstraction heuristic. Central to their approach is represent-
ing cost functions as edge-valued multi-valued decision diagrams (EVMDDs)
[25,101] and using them to compute costs in relaxed and abstract states. Ab-
stract cost for a given abstract state s* and an action a is defined as minimal
of applying a over all the states abstracted to s4. The authors show that,
for Cartesian abstractions [4], this value can be efficiently computed using
EVMDDs. They then extend counterexample guided abstraction refinement
(CEGAR, which is an established method for deriving Cartesian abstrac-
tions [27,128]) to this setting. CEGAR, in its original formulation iteratively
refines the abstraction until a specific criterion is met, or until an optimal
abstract plan is concretiseable (i.e. it can be applied to the original prob-
lem). In the former case, the resulting abstraction is used to compute PDB
heuristic. In the later case, the computed plan is also an optimal plan for the
original problem (since cost of an optimal plan in an abstract state space is
a lower bound on the optimal cost in the concrete state space). Geifler et al.
generalise the CEGAR algorithm to SDAC planning by adding detection of
mismatch flaws, which occur whenever applying an action has different cost
in the abstract state space than in the original state space.
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4.2 Formalism

In Section 3.2.6 we mentioned that having state constraints in a planning
problem opens the possibility for an action cost to be a function of an ex-
tended state. Our interest in state-dependent action costs was motivated by
the need to more meaningfully evaluate the plans for the PSR problems. An
action should be more expensive if it taken in a state in which fewer buses
are fed. Therefore, the the cost of the action depends on the “fed” statuses
of the buses, which are secondary variables. Thus, we require formalism for
expressing the action cost as a function of the extended state.

Definition 26. We define a conditional cost as a pair (p,c) where ¢ is a
partitioned condition and c is a positive constant cost.

The primary part of ¢ is denoted pp and the secondary part ¢g. Each action
a has a set of conditional costs associated with it:

cost(a) = {{¢i, i) bi=1..k

If @ has an unconditional cost, we denote that cu,conditionar With the corre-
sponding term {pg, Cunconditional)- Given an extended state Segendeq and a set
of conditional costs, the cost of applying an action a in S.uendeq 1S

COSt(CL, Sextend> = Cuncond + Z {CIKQDH Ci> € COSt(G), Soi,P holds in Sextend
and Segeng Satisfies active(y; s, Sestend)

Given that there are possibly multiple, or an infinite number of extended
states corresponding to a single assignment of primary variables, we need
to decide which one to use to evaluate the action cost. In Section 3.2.6, we
stated that in some domains the planner may be allowed to chose the cheapest
extended state such that any secondary preconditions of an action, preg(a),
are satisfied. Therefore we define the action cost in the following way:

Definition 27. cost(a,s) is the cost of the cheapest extended state that is
consistent with active(preg(a) U Ciny, S).

Proposition 8. Given an action a and a state s, the problem of finding
cost(a, s) is NP-hard.

This is because the values of the secondary variables must be chosen
such that fewest conditions ;, weighted by cost ¢;, are satisfied. Given
a set of conditional costs and a (reduced) state s, it is straightforward to
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determine whether the primary part of each of the conditions holds (if it
doesn’t the associated cost does not apply). Among those for which the
primary part of the condition holds, we then have to look at those for which
active(y; g, ) is not an empty set (if the primary part holds in s and the
set of active constraints in s is an empty set, then ¢; holds in s and ¢; has
to be added to the action cost). Given active(p; s U Ciny, s) and associated
costs ¢;, the associated costs count towards the action costs iff the assignment
of secondary variables satisfies active(y; s U Ciny, s). The cheapest extended
state is therefore the one that satisfies the fewest secondary conditions (or soft
constraints) weighted by associated costs (the active invariant constraints in
the state are the hard constraints). As in Section 3.5.1, we can show that
this problem is NP-hard by reducing a problem of satisfying a set of linear
inequalities with 0-1 integer variables problem (or zero-one integer linear
program without optimisation), which we know is NP-hard [90], to this kind
of problem.

Proposition 9. Given two sets of linear inequalities Az < b (hard con-
straints) and Cx < d (soft constraints), where A and C are a m x n matrices,
b and d are an m-vectors and x is a n-vector, such that x € {0,1}", finding

x such that the number of soft constraints that are satisfied is mazimum® is

NP-hard.

Proof. A zero-one integer linear program without optimisation consists of a
set of constraints Ax < b, with A being a m X n matrix, b is an m-vector
and z is a n-vector of variables. Domains of all the variables x; € = are
{0,1}. This problem is known to be NP-hard [90] and we can rewrite it in
the formulation given above as: (i) Az < b are the hard constraints of the
reduced problem, (ii) a constraint 0 < z; < 1 for every variable is added
to this hard constraints and (iii) ; < 0 and x; > 1 for every variable are
the soft constraints of the reduced problem. Constraints in (ii) and (iii)
ensure that the assignment of each x; is either 0 or 1, as required by the
original problem. Solving the reduced problem means finding the maximum
number of constraints in (iii) that can be satisfied (we assign equal cost to
all of the constraints, so the objective becomes finding an assignment that
satisfies the most of them). If the original problem has a solution, then
one of the constraints in (iii) for each z; can be satisfied: this is because if
the original problem is consistent each x; € x is either 1 or 0 and therefore
satisfies exactly one of the two inequalities associated with it in (iii). If

INote that finding a minimum number of inequalities that can be satisfied is equivalent
to multiplying each inequality in Cz < d by -1 (flipping their signs) and finding the
maximum number that can be satisfied.
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the the original problem is inconsistent, then there is no such assignment to
variables in z, meaning that the maximum number soft constraints that can
be satisfied is less than half: if it were consistent, each variable would be
either zero or one, therefore satisfying half of the soft constraints. (we can
never satisfy more than half soft constraints, because both soft constraints
in (iii) for the same variable cannot hold at the same time). Solving this
problem therefore tells us whether the original problem is consistent or not.
Solving the converted problem is therefore NP-hard. O

Luckily, there are cases where calculating the state dependent action
cost is easier. If the conditions in each of the conditional costs have only
the primary part (i.e. secondary part is an empty set of switched con-
straints), we have the problem that is the same as classical planning with
state dependent action costs. Evaluating the the cost of an action in a
given state simply becomes evaluating the primary partial variable assign-
ment. As an example where the cost depends on the extended state, we
might have cases where the portion of the cost that depends on the sec-
ondary variables can be expressed as a linear function only over the sec-
ondary variables. Here finding the cheapest extended state becomes a linear
programming problem. I.e. we might have the portion of the cost that is
a function over only the secondary variables csccondary = ) ; @i0;, Where q;
are constants and v; are secondary variables. In this case we have a lin-
ear programming problem with active(preg(a) U Ciny, ) as constraints and
Csecondary @S the objective function. The cost of applying a in s becomes
cost(a, Sextended) = Cunconditional Csecondary + Zi{ci|<<9@i,Pa ®>7 Cz‘) € COSt(CL)}
(the final element are the conditional costs in which the conditions have only
the primary part). The linear programming problem is known to be solvable
in polynomial time [93].

4.2.1 Cases where all the extended states have the
same cost

We will, however, focus on simpler cases in which the problem of finding the
cheapest extended state can be avoided — here we will discuss the domains
where all of the extended states have the same cost, yet the cost still depends
on the values of a subset of secondary variables. This is true when the subset
of secondary variables that affects the conditional costs is assigned unique
values given an assignment of primary variables. The state constraints are,
however, still involved in finding this cost, as the values of the secondary
variables are determined using the state constraints. Even if a single state
corresponds to a (potentially infinite) number of extended states, as long
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as all the secondary variables that the conditional cost may depend on are
uniquely defined given an assignment of primary variables, calculating their
costs and incorporating it in search is straightforward.

A condition (pp, ps) is uniquely defined in a given state if all the sec-
ondary variables that appear in the switched constraints in ¢g have unique
values in all of the states. We can then evaluate each condition one by one by
(1) evaluating ¢p (ii) determining whether active(¢gUpreg(a)UCiny, s) is sat-
isfiable. If both the primary and the secondary part of the condition are true,
the associated cost is added to total cost. Finding the state-dependent ac-
tion cost can in this case be done in polynomial time, i.e. the time necessary
to evaluate the conditions (which involves solving the linear programming
problem) and to sum up the costs.

While this case may seem restricted, it still allows us to model interesting
and practically useful problems, such as PSR. In PSR, the secondary variables
affecting the costs are “fed” statuses of the buses and the position of the
switches uniquely determines whether each of the buses is supplied with
power or not. The conditional costs are the same for every action, cost(a, s) =
{{{pg, po — f; = 0),1;)|i € B}. That is, if the bus is not fed, f; = 0, the cost
that needs to be added to the cost of the action is the load associated with
the bus, /;. Each action also has a constant cost ¢y = 1, in order to minimise
the total number of switching operations.

4.3 Computing heuristics

Extending h* to account for state-dependent action costs is more challenging.
We will discuss only the case where all the extended states have the same
cost.

First, we will define a negation of a partitioned condition (denoted —¢ for
a partitioned condition ¢). The negation of a partitioned condition holds in
every state in which the original partitioned condition does not hold, which
is the case whenever its primary part ¢p doesn’t hold or active(¢psUpreg(a)U
Cinv, 8) 1s unsatisfiable. —¢ does not hold in every state in which the ¢ holds.

The way the state-dependent costs are formulated is essentially as con-
ditional action effects (see Haslum [69]). Therefore, it is possible to ap-
ply the same kind of problem transformation that is used to compile the
conditional effects to reduce the problem to the one that has constant ac-
tion costs. That is, replace each action a with a number of copies of an
action, one ay corresponding to each subset X C cost(a). Each copy’s
cost is constant cost(ax) = co + >_{ci|{pi,¢;) € X}, i.e. the sum of the
costs in the subset X. Precondition of the copy of an action becomes
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pre(ax) = pre(a) A {—¢;|(¢i,ci) € cost(a) — X}, ensuring that the action
is applicable only in states where the conditional costs not in X apply.

The problem with this approach is exponential blow-up. In one of our
PSR problems, there are 45 loads, meaning that each action would end up
having 2%5 copies. To avoid this, we take an approach similar to optimal re-
laxed planning with conditional effects [69]. The procedure works as follows:

1. We assume that every action will be applied in least-cost state, therefore
making its cost constant. We compute an optimal relaxed plan under
this assumption, by using the algorithm from Section 3.5.4 (Figure 3.5).
This gives us a set of actions in the relaxed plan A. The cost of the
relaxed plan is the sum of costs of actions in A.

2. We use systematic branch-and-bound search to try to sequence the
actions in A so that the assumed cost is actually achieved. If this is
possible we are done.

3. If such sequencing is not possible, we record which of the conditional
costs got triggered for each action (therefore preventing us from achiev-
ing the minimum cost). This gives us a subset of actions A. and a
corresponding list of conditional costs for each action. For each of the
actions a in this set:

(a) We select one of the triggered conditional costs of a, {¢;, ¢;).

(b) We split a into two copies.

(c) Onme copy, a’ gets the added precondition —; (corresponding to
any choice of X with (¢;,¢;) & X).

(d) The second copy a' has ¢; added to its unconditional cost (corre-
sponding to any choice of X with (¢;, ¢;) € X).

(e) We remove (¢;, c;) from the conditional costs of both a® and a'.
We return to the Step 1 with the modified action set.

The process is repeated until the step 2 succeeds.

4.4 Experiments

We tested the procedure described in the previous section on 45 single-fault
PSR problems. The network consisted of 7 generators, 45 power-lines and
45 loads, all of different, predefined capacities. The location of the fault was
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Figure 4.1: Accuracy of the relaxed plan heuristic with state-dependent ac-
tion costs, and with unit cost actions. The accuracy in the unit-cost case here
is different from that in Figure 6.3(a), because the problem set is smaller.

different in each problem and the goal consisted of a subset of loads that
have to be fed.

The iterated relaxed plan construction is very effective at reducing the
number of copies of actions: For the initial states of these problems the
average number of iterations was 3.62 and the average number of action
copies was less than ten. In contrast, full compilation would have created 24
copies of each action. However, this heuristic is not time efficient. The time
to evaluate a single state is, on average 6.85 times higher than in the unit-
cost case. This reflects both the repeated h* computation and the overload
of sequencing the action set. The heuristic becomes less accurate than it
is with constant costs, as shown in Figure 4.1. Consequently, blind search
solves more of these problems than search with the A* heuristic.

4.5 Future work

Future work should focus on developing computationally cheaper heuristics
for this setting. One possible solution could be to build on the approach by
GeiBler et al. [60], described earlier (Section 4.1). However, their method for
calculating cost of applying an action in the abstract state cannot be easily
applied to our case: to find abstract cost values, they encode a cost function
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for each action as an EVMDD, whose nodes are (primary) variables, and
perform local minimisation over the edges (which correspond to values of
the primary variables) of the EVMDD. Given an abstract state, it is clear
which values are possible for each of variables. In our case, costs may be
functions over secondary variables and, for a given abstract state, it is not
obvious which values are possible for a given secondary variable. To apply
their approach, we need to either adapt EVMDD computation or find an
alternative way of efficiently evaluating cost functions in an abstract state.
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Chapter 5

Axioms

The type of state constraints that we will explore in this chapter are ax-
ioms. Unlike in planning with numeric constraints, here the domains of both
primary and secondary variables are finite and discrete. We will show that
the addition of axioms can make problems easier to solve as well as easier to
model. As we did with numeric state constraints, we will develop a formalism
describing the planning problem with axioms and adapt existing admissible
heuristics to this setting. We will describe several types of domains where
their usage improves performance. Unlike previous work on axioms by other
researchers (see Section 2.3.1), we will focus on cost optimal planning.

In Section 5.1 we give reasons for using axioms. Section 5.2 gives a for-
mal definition of axioms in FDR and of a planning problem with axioms,
and the relation to axioms in PDDL. Sections 5.3-5.5 describe example do-
mains, which can be grouped as: domains where axioms are used to compute
transitive closure, pseudo-adversarial domains and social planning domains.
Section 5.6 shows how we compute admissible axiom-aware heuristics. We
follow the same approach as we did for the numeric constraints, thus de-
riving axiom-aware monotonic relaxation based heuristics and abstractions.
Section 5.7 presents the experimental results.

5.1 Motivation

In Section 3.4, we noted that numeric constraints can be compiled to classical
planning, although with potentially exponential increase in problem size.
The same is true of axioms [136]. As we noted earlier (Section 2.3.1), some
authors (such as Gazen and Knoblock [53], Garagnani [52], Davidson and
Garagnani [36]) held the view that, it might be better to compile them away,
rather than to deal with them explicitly. One of their arguments was that

93
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this allows for using already existing planners that don’t implement axioms.

We will demonstrate that use of axioms on certain classes of domains has
two advantages. Firstly, axioms allow us write the domain descriptions in
a more concise and readable forms. Thiébaux et al. [136] prove that any
compilation scheme results in either a worst-case exponential blow-up in the
size of domain description or worst-case exponential blow up in the size of the
length of the shortest plan. Secondly, use of axioms can make problems easier
to solve, as specifying indirect action effects removes unnecessary choices from
the search space of the planner. The second point will be demonstrated by
our experiments.

5.2 Formalism

Here we will formally define axioms and planning tasks with this form of
global constraints. We will first present a definition given by Helmert [78§]
whose formalism is compatible with FDR. We will subsequently give the
definitions by Thiébaux et al. [136], which is the work that reintroduced
axioms into PDDL, and show that this form can be compiled into the one
that we are using.

5.2.1 Axioms in FDR

As with numeric state constraints, we make the distinction between primary
and secondary variables. Following the terminology used in Chapters 2 and
3, we will refer to variables whose values are determined by action effects
as primary variables (or state variables) and variables whose values are de-
termined by state constrains as secondary variables.! The definitions here
follow Helmert [78] who presents formalism for axioms with discrete domain
primary and secondary variables. To make the presentation easier and to
simplify the derivation of heuristics,? we will only consider domains in which
all secondary variables are Boolean. We will, however, explain how to gen-
eralise the formalism to finite discrete domain variables.

Each secondary variable has a default value, which is retained if we cannot
justify assigning it any other value. In all of our domains, the default values

'We should note here that other authors use different terms. Thiébaux et al. [136]
refer to primary variables as basic variables and secondary variables as derived variables.
Helmert uses the term fluents for primary variables and derived variables for secondary
variables. Confusingly, the same author refers to the union of primary and secondary
variables as state variables. To be consistent with the terminology used in the rest of our
work, we will refer to primary variables as state variables.

2 Answer set programming uses binary variables, see Section 5.6.2
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are always false, meaning that everything that cannot be derived as true is
assumed to be false — this is referred to as negation as failure or closed world
assumption.

Definition 28. [Adapted from Helmert [78]] > Axioms have the form v <+
cond where

e cond is a partial variable assignment (over both primary and secondary
variables), called condition or body of the axiom and

e v is a secondary variable called affected variable or head of the aziom.

In any state in which the condition holds, the affected variable is assigned
true.

It is required that the secondary variables and the axioms are stratified.
A set of secondary variables Vg is partitioned into a totally ordered set of
secondary variable layers, Vs, < -+ < Vgj. This induces the stratification
of the set of axioms A — i.e. there are as many layers of axioms as there are
layers of secondary variables and the layer an axiom is in corresponds to the
layer the secondary variable in the head of the axiom is in, A; < -+ < A
(i.e. if the affected is in the nth secondary variable layer, than the axiom is
in the nth axiom layer). Within the same layer, each affected variable must
appear with the unique value in all axiom heads and bodies. That is, within
the same layer, we cannot have axioms with the different derived values for
the same variable, and if a variable appears in the head of an axiom, it may
not appear with a different value in in its body.

When all of the secondary variables are Boolean and all of the default
values are false, stratification means that the secondary variables belonging
to the first layer, Vg, are defined in terms of the primary ones, possibly using
negation (i.e. allowing for the assignment of false in the assignment in the
axiom body), or in terms of themselves (allowing for recursion) but without
using negation (only allowing true to the variable in the axiom body). In the
second layer of axioms, variables in heads of the axioms belong to Vs o layer,
while the body consists of variables in the Vg ; layer (possibly using negation)
and the primary variables (again, possibly using negation), or in terms of
themselves, but without using negation. Each subsequent layer is then built
using the secondary variables in the lower levels, possibly using negation or

3As Helmert allows for non-binary variables, axioms in his formalism are triples
(cond, v, d), where cond and v are the same as in our definition and d € D(v) is called
the derived value for v. In any state in which the condition holds, the affected variable is
assigned the value d.
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: procedure EVALUATE AXIOMS(Ay, ..., A, s)
for variable v do
if v is a primary variable then
s'lv] = s[v]
else if v is a secondary variable then
s'[v] = false
forie {1,...,k} do
while there exists an axiom v <— cond € A; with s'[cond] and §'[v] =
false do
9: Choose such an axiom v < cond
10: s'[v] = true

Figure 5.1: Algorithm for evaluating a layered set of axioms Aj,..., Ay,
given an assignment of primary variables s. Adapted from Helmert [78].
The differences between the procedure presented here and in Helmert’s work
is that, as secondary variables are not limited to binary variables, (i) the
value initially assigned to the variable is not neccesarily false (but its default
value) and (ii) the axiom has the form (cond, v, d), where d is any value from
D(v) other than the default value. The Line 10 assigns d to s'[v].

in terms of themselves (without negation). Primary variables may be used
freely (possibly negated) in any layer. When no secondary variable occurs
with the value false in the body of any axiom, there is only one stratum. A
number of researchers have considered this special case, namely Gazen and
Knoblock [53], Garagnani [52] and Davidson and Garagnani [36].

Stratification guarantees that this procedure terminates and produces the
deterministic result for a given state. That is, starting with the lowest layer,
evaluating axioms in any order within that layer, only moving to the next
layer after all of the axioms within that layer have been evaluated, and work-
ing upwards until all of the axioms in the highest layer have been evaluated
always gives the same assignment [136]. This procedure is presented in in
Figure 5.1.

5.2.2 Planning problem with axioms

The definition of a planning problem with axioms is very similar to the def-
inition of the planning problem with numeric state constraints, with several
notable differences. Secondary variables have discrete finite domains instead
of real number domains and switched constraints are replaced by axioms.
Goals and action preconditions are partial variable assignments over both



5.2. FORMALISM 97

primary and secondary variables. We can think of action preconditions and
goals as partitioned conditions (Definition 18) (@p,¢g) in which the sec-
ondary part (g is a partial variable assignment over the secondary variables.
Note, however, that the action effects are still partial variable assignments
only over the primary variables. Likewise states (including the initial state)
are still defined as variable assignments only over the primary variables. The
definition of a planning problem with axioms is therefore:

Definition 29. A planning problem with axioms s defined by a tuple 11 =
(Vp,Vs,C, A, so, G, cost) where

o Vp is a set of primary variables, with each vp € Vp being associated
with a finite domain D(vp). A state assigns each primary variable a
value from its domain.

® sy 1s an initial state.

o Vs is a set of secondary variables, with each variable being associated
with a Boolean domain, {true, false}.

e (C is a set of layered axioms.

e (G, the goal, is a partial variable assignment over both primary and
secondary variables.

o A is a finite set of actions. Each action a € A is a pair (pre(a), eff(a)).

— pre(a), or precondition, is a partial variable assignment over both
primary and secondary variables.

— eff(a), or effects, is a partial variable assignment only over the
primary variables.

e cost(a,s) is a cost function with a being an action and s an extended
state.

Same as with planning with numeric constraints, we have a concept of an
extended state.* While a state (or a reduced state) is an assignment over all
primary variables, an extended state is an assignment over all primary and
all secondary variables. As already stated, stratification ensures that there
is a unique extended state associated with every state.

The definitions of action applicability, plans and plan costs are exactly
the same as in FDR planning (see Section 2.1.1).

4The term was, in fact, originally introduced by Helmert for planning with axioms.
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5.2.3 Axioms in PDDL

We will now give a very brief overview of axioms in the form they were (re-
)introduced to PDDL by Thiebaux et al [136]. We will show that PDDL
axioms can be converted to the FDR formalism given earlier. Helmert [78]
uses the FDR formalism to show how to translate PDDL tasks (with axioms)
to a grounded representation that uses finite domain variables. That compila-
tion procedure is used in his Fast Downward planning system [78], which is a
planner that we use as well. While PDDL is a restricted first-order formalism,
planning systems such as Fast Downward compile the problem specification
into a propositional representation by grounding predicates, operators and
goal specifications.

In PDDL with axioms distinction is made between basic predicates (also
called fluent predicates) and derived predicates, with B and D being used to
denote sets of basic and derived predicate symbols, respectively (with those
two sets being disjoint BND = ().

The notation used in PDDL is as follows:

Definition 30. PDDL azioms are of the form (: derived(d?Z)(f?%)), where
o d €D isa derived predicate and

o f is a first-order formula built using both basic and derived predicates
and whose free variables are those in vector I.

Here (d?Z) is the consequent (corresponds to the head in FDR) of the
axiom and (f7Z) is the antecedent (corresponds to the body). of the axiom.
Intuitively, (: derived(d?Z)(f?%)) means that whenever (f7Z)) is true, we
should derive that (d?Z) is true in the same state (note that, unlike in FDR,
we are here dealing with Boolean variables). As with FDR axioms, everything
that cannot be derived as true is assumed to be false. For this reason,
consequents are restricted to the contain only positive literals [136]. The
distinction between primary and secondary variables in FDR arises from this
division of predicates into basic and derived.

Here we will show that PDDL axioms can be compiled to the form pre-
sented in Section 5.2.1. While grounded PDDL allows for an arbitrary for-
mula in the body of an axiom, our FDR representation requires the body to
be a partial variable assignment. The arbitrary formula can be rewritten as
a partial variable assignment with polynomial increase in size. This is done
by rewriting it in a conjunctive normal form (CNF) and introducing a new
variable corresponding to each clause. The formula, converted to CNF is
q < N\; V;(=)zi;. We introduce a new variable corresponding to each clause
(i.e. p; for clause i) and a set of axioms with one axiom corresponding to
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each term in the clause and rewrite the original axiom ¢ as a partial variable
assignment over the newly introduced variables.

p1 < (_')$1,1

p1 (ﬂ)ﬂh,j

Finally, the original axiom ¢ is rewritten as a partial variable assignment over
the newly introduced variables ¢ <— A, p;.

5.2.4 Comparison with numeric state constraints

Here we will give a few remarks on the differences between the switched
constraints and axioms. The similarities are obvious — in both formalisms
primary variables function as in classical planning (in both cases primary
variables have discrete and finite domains, respecting the Assumption 1 of
classical planning), while state constraints are used to evaluate secondary
variables. In both cases, the problem can be compiled to classical planning
(see Section 2.3.1 for axioms and Section 3.4 for numeric constraints), al-
though this leads to an exponential increase in problem size.

One of the differences is in relation between reduced states and extended
states. An important consequence of the layering property of axioms is that,
given a reduced state, there is guaranteed to exists a unique assignment to
secondary variables that satisfies the constraints (so there is one unique ex-
tended state corresponding to assignment of primary variables). In contrast,
in planning with numeric state constraints, there is no guarantee that there
are any extended states corresponding to a given assignment of primary vari-
ables (in which case such an assignment is an invalid state). On the other
hand, for a given reduced state, we could have a single extended state, a
finite number of extended states or an infinite number of extended states.

5.3 Modelling with Axioms

All planning problems that can be formulated with axioms can be formulated
without using them. We can however, show that in certain classes of domains,
axioms not only make problems easier and more compact to formulate, but
also easier to solve. The difference between the formulation with and without
axioms will be shown in Section 5.7.

We will discuss three groups of domains where the use of axioms can be
beneficial:
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e The domains where we reason about transitive closure properties (i.e.
exsistence of paths in a graph or reachability of flows). This group was
identified by Thiébaux et al. [136] in their work on axioms.

e Pseudo-adversarial domains — the domains in which we are required to
reason about actions of an opponent that follows some complex, yet
deterministic rules.

e Related to the previous group are the social and multi-agent planning
domains.

5.3.1 Min-Cut

This is an example of a domain where we use axioms to compute transitive
closure relations. Consider an undirected graph, with a source node s and
a target node t. K roadblocks are located on the edges of the graph and
can be moved between adjacent edges. More than one roadblock can occupy
the same edge and one roadblock can pass another on the edge. The goal is
to move the roadblocks so that there is no unblocked path from the source
to the target node. In other words, a goal state identifies an s — t-cut of
size < K. Hence, we call it the Min-Cut domain. Figure 5.2 shows a small
instance, with roadblocks A and B.

The primary variables are the locations of roadblocks, at;, and their do-
main is the set of edges. In the PDDL encoding of the domain this is
expressed with a function that maps the block to the edge. The derived
predicates are: blocked(4, j), reachable(i) and isolated (7). The complete PDDL
encoding can be found in the appendix. Translated to finite domain repre-
sentation, the secondary variables and their defining axioms are:

blocked; ; —at=¢; l=1,... K
reachable; < source; = true (source node)
reachable; < reachable; = true,blocked; ; = false j € N (i)
isolated; < reachable; = false

In the third axiom N (i) is the set of neighboring nodes of i, meaning that
this line represents a set of axioms with one for each of the neighbors. Note
that reachable; means that ¢ is reachable from s by an unblocked path. The
action, move,, ; .., moves the block [/, changing its location at; from e; ; to
€jk-

In the state in Figure 5.2, ata = e;5 and atg = e34, SO we can derive
blocked; o = false and blockedys = false and from this reachable; = true,
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Figure 5.2: An example problem from the Min-Cut domain.

reachables = true and reachables = true. To achieve the goal, the two road-
blocks must move to edges e; 2 and e5¢.

5.3.2 Sokoban

Sokoban was originally created as a single-player computer game developed
by Hiroyuki Imabayashi and published by Thinking Rabbit in 1982. It was
later formulated as a planning problem and used in International Planning
Competitions (IPC). As in the Min-Cut domain, we are using axioms to
express the transitive closure relation.

An example Sokoban problem is depicted in Figure 5.3. It features a
man who can move around a maze and push stones, one at a time. The
goal is to push “stones”® to the designated goal positions. The goal positions
are shown as red circles here. The stones that are not in the goal locations
are shown in lighter colour, while the ones already at the goal locations are
darkened. The stones are identical and interchangeable — i.e. any stone can
be pushed to any of the goal positions. The man can move only through the
empty spaces (i.e. he cannot move through the stones or the maze walls).

The cost function that we are using assigns cost of one to all pushes and
zero to all move actions. That is, we are minimising the number of pushes;
the moves in between the pushes don’t count, as long as he is able to reach
the square that is next to the stone that is to be pushed. The problem
is usually modelled by having stepwise (non-pushing) moves of the man as
actions with zero cost. This forces the planner to make an irrelevant choice
of the exact path the man takes between each push action, increasing the
size of the state space and plan length.

Reachability of a particular location is straightforward to express as a re-
cursively derived property, given the current arrangement of stones. There-
fore, using axioms, it is possible to formulate the problem with pushing

5They are depicted in Figure 5.3 as boxes, but usually referred to as “stones” in lit-
erature. The Japanese word “sokoban” means warehouse keeper, so boxes are what they
were most likely meant to represent in the original game.
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actions only, allowing the man to “jump” from one stone to the next as long
as the path between them exists.

The complete PDDL formulation of the domain is given in the Appendix
B. Here we will show some of the axioms in PDDL and the translation to
finite domain representation. The axioms are used to determine whether
stones are at the goal locations. is-goal(l) and at(s,l) where [ is a location
and s is a stone. Firstly, we use them in an axiom defining the derived
predicate at-goal(s), which tells us whether a stone s is at any of the goal
locations:

(:derived (at-goal ?s - stone)
(exists (71 - location) (and (is-goal 71)
(at ?s 71))))

In the translation, the derived predicates become secondary variables (again,
existential quantifier means that there is corresponding axiom for each ).

at-goal; ; < dl is-goal, = true,aty; = true

Secondly, the following rules determine whether a location [ is clear (not
blocked by any of the stones s).

(:derived (blocked ?1 - location)
(exists (?s - stomne) (at ?s 71)))
(:derived (clear 71 - location) (not (blocked 71)))

Translated, they become:

blocked; < ds at;s = true
clear; — blocked; = false

Finally, axioms are used to compute whether some location [ is reachable by
a player p.

(:derived (can-reach ?p - player 71 - location)
(at ?p 71))

(:derived (can-reach ?p - player 71 - location)
(and (clear 71)
(exists (?d - direction ?m - location)
(and (MOVE-DIR ?m 7?1 ?7d)
(can-reach ?p ?m)))))
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These translate to:

can-reach,; < at, = (
can-reach,; < 3Im,d clear; = true, move-dir,, ;4 = true, can-reach, ,, = true

Here m is a location and d is a direction. neighbour,,; ; tells us whether [ is
the neighbour of m in the direction d.

5.4 Modelling with axioms — Pseudo-adversarial
domains

By pseudo-adversarial domains we mean the domains where we are required
to reason about the actions of an opponent that follows some complex, yet
known and deterministic rules. These are usually game-like planning prob-
lems where the planning agent is facing an opponent who is actively trying
to disrupt the plan. We call these pseudo-adversarial domains.

5.4.1 Controller verification

Ghosh et al. [66] formulate verification of functional requirements of dis-
tributed automotive control system as a planning problem. The verification
problems can be thought of as examples of pseudo-adversarial problems, in
which the planning agent is the environment and the adversary is the con-
trol system — acting according to its specification. The overall purpose of
controller verification is to find bugs in the controller.

The environment disturbs the state of the system, while the controller re-
turns the system to one among many safe states. If the control is distributed,
then the controller’s move typically consists of an orchestrated set of actions
across the system components. The components’ actions may execute in
different sequences due to non-determinism arising out of task scheduling
and communication latencies between the components. Ghosh et al. note
that it is important to guarantee that the control is correct in spite of this
non-determinism. For this reason, they allow the environment to exploit this
non-determinism in the controller by choosing the order of applicable control
actions. The environment may only take actions when the controller is in
a control stable state, meaning that no control action is applicable (an envi-
ronment action may change the state to one that is not control stable). This
reflects the fact that the control action application is faster than the pace
at which the events in the environment occur. Whenever the environment
changes the state of the system, the controller executes one or more appli-
cable control actions to return the system to a (possibly different) control
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Figure 5.3: Sokoban. From https://en.wikipedia.org/wiki/Sokoban#
/media/File:Sokoban_ani.gif
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stable state. A control fail is a state in which some of the safety requirements
are violated. If the control fail state is reached, it demonstrates the failure of
the controller specifications (i.e. controller specifications need to be changed
as there is a bug).

The problem can be expressed as a classical planning problem, using
STRIPS. The goal of the problem is to reach any of the control fail states — in
other words, the existence of a plan for the problem is a counter-example for
the safety requirement which is violated in that control fail state. The actions
are divided into two disjoint sets, environment actions A.,, and controller
actions A.4. A Boolean variable en, is added for each action @ which indicates
that a may be applicable. A set of conditions {en, = false |a € Ay} is added
to the precondition of every environment action (that is, the environment
takes actions only when no controller action is applicable) and to the goal
(no controller action is applicable in the control fail state). A “disabling”
action d; for each literal [ that appears in the precondition of some control
action a, with pre(d;) = {l = false} and eff(d;) = {en, = false |l € pre(a)},
is used to mark control actions inapplicable.

Each (environment and control) action that potentially contributes to
making pre(a) true (i.e. that sets any variable to a value required by pre(a))
sets en, = true, so the plan must include disabling actions before each envi-
ronment action to verify its applicability. Because the compiled problems are
hard for the planners they tried, they also propose an incremental, partial
compilation coupled with a plan repair approach.

However, the requirement that no control action is applicable in a control
stable state can be easily formulated using axioms:

stable < {en, = false|a € Ay}
en, < pre(a)

Although these rules mirror almost exactly the actions in the compilation
by Ghosh et al., making them axioms instead of disabling actions removes
the choice of when and which disabling actions to apply from the planner,
resulting in a smaller state space and shorter plans. This is similar to the
effect that using axioms has in the Sokoban domain — removing unnecessary
choices makes the problem easier. The effects of this will be discussed in
Section 5.7.2.

Examples

Ghosh et al. present two examples from automotive industry — a car door
lock and an adaptive cruise control (ACC) system. We will use their PDDL
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encodings of these two domains in our experiments (see Section 5.7 for ex-
periments and the Appendix B for the domains). We will describe the door
lock system as a simple example. The system is supposed to ensure that all
doors are locked when a car attains a pre-calibrated speed. In the example
problem, the control system’s actions are: (i) if the car switches from low-
speed state to high-speed state, the system arms the auto lock procedure; (ii)
if the auto-lock procedure is armed and all doors are closed, the the system
automatically locks all doors and disarms; (iii) if the remote unlock com-
mand is detected, and the doors are locked the system arms the auto-unlock
procedure and (iv) if the doors are locked and the auto-unlock procedure is
armed, the system unlocks all locked doors and disarms the auto-unlock. The
environment’s (i.e.the driver’s) actions include opening and closing the doors,
putting the key into ignition, running the engine, accelerating the car and
issuing a remote unlock command. The environment can achieve the goal
(i.e. violate the safety requirements) by getting the car into the high speed
state and arming the auto-unlock. This shows that the system’s action (iii)
should have it not-moving-at-high-speed added to its preconditions. With
preconditions rewritten this way, the environment’s goals are not achievable.

The ACC system is a driver assistance feature designed to automatically
adjust the vehicle’s speed. It operates in two modes: speed control mode, in
which it maintains the vehicle’s speed v¢,, at some chosen wv,ef, and time gap
mode, in which it maintains a safe distance (or time gap) between the vehicle
and any other nearby vehicles. In the speed control mode the controller’s
actions are: (i) accelerate if ve, < vref; (il) decelerate if ven, > vpef; (iil)
maintain constant speed if v, = vyer and (iv) switch to the time gap mode if
there are other vehicles within the predetermined time gap t,. In the time gap
mode the controller’s actions are: (i) accelerate if there is a vehicle directly
in front of the car within the time gap t5 that are going faster than v.,, and
Vear < Uref; (i1) decelerate if there are vehicles within the time gap ¢, that are
slower than ve,,; (iii) maintain speed if the vehicle directly in front is going
at the same speed as the ve,,; (iv) switch to speed control mode if there are
no vehicles within ¢, and (v) if there are any vehicles within the pre-fixed
time gap ty, the driver is warned with an audible signal. The environment
actions include the driver’s actions and the actions of other vehicles (such as
switching lanes, accelerating or decelerating). The safety requirements are:
(1) if the ACC is engaged and the warning signal is on, the control is also
applying negative acceleration and (ii) if the ACC is engaged and there is a
vehicle within the t, time gap whose speed is slower than v,,, then v.,, must
not be increasing.

The authors performed the experiments on the ACC domain problems us-
ing a number of model checkers (NuSMV [26] and SPIN [86]), SAT planners
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and heuristic state-space planners with and without support for derived pred-
icates. They report that, among the tested approaches, the model checker
SPIN, and the planners Mp [122], Fast Downward [77] and LAMA [121] show
most promise that they would scale to larger problems. The planners, how-
ever, generate much shorter plans than SPIN, which makes debugging easier
(unlike us, they do not perform optimal planning, so the solutions can be of
varying lengths).

5.4.2 Blocker domain

A domain that better illustrates what we mean by term pseudo-adversarial
is the blocker domain. Here, we have a game-like problem with two players —
the blocker, which is a planning agent, and the cat, which is an opponent. The
game takes place on an undirected graph G on which a subset of nodes are
marked as exits. As in Min-Cut domain, we denote neighbourhood of a node
n with N(n). The cat’s actions consist of moving from a node to one of the
neighbouring nodes, always choosing the one that is the closest to the nearest
exit node. To ensure deterministic behaviour of the cat, ties are broken by
arbitrary numbering of the nodes. The cat moves one node at a time, and
in between each of the moves of the cat, the blocker can permanently block
any node of the graph that the cat does not currently occupy (the cat cannot
move through the nodes that have been blocked). The cat wins if it reaches
the exit, while the blocker wins if the cat is blocked from reaching any of the
exits.

To formulate the cat’s strategy we need to determine which of two neigh-
bouring nodes is closer to an exit:

closer, ,, < dte,,; = true,dte, ; = false 0<i<|G]
dte,, o + is-exit, = true, blocked,, = false

dte,, ; < blocked,, = false,dte,s ;1 = true n' € N(n)
dtem- — dtem_l = true

The secondary variable dte, ; (“distance-to-exit”) is true if the shortest dis-
tance, along an unblocked path, to an exit from node n is ¢ steps or less.
Hence, node n is closer to an exit than n’ iff dte, ; is true and dte,, ; is false,
for some i. Nodes n and n’ are at the same distance (same,, ;s is true) iff both
closer,, ,» and closer,, ,, are false. The shortest distance is bounded by the size
of the graph, |G|. The variable order,, , simply means that n preferred over
n' under the arbitrary lexical ordering of the nodes. The cat’s reasoning can



5.5. SOCIAL AND MULTI-AGENT PLANNING 109

be expressed as

better-node,, ,, <— blocked,,
better-node,, ,» <— prefer,,
prefer,, ./ < closer,, ,» = true

prefer,, < same,, = true,order, ,» = true

Let cat-pos be the primary variable variable representing the cat’s current
node. The precondition of an action that moves the cat from cat-pos to n is

pre(cat-move-to,,) = n € N(cat-pos),
{better-node,, ,, = true|n’ € N(cat-pos) \ {n}}

Since dte, ; is false for all ¢ when there is no unblocked path from n to an
exit, the blocker’s goal is expressed as

trapped < {dtecat-pos; = false|0 <i < |G|}

5.5 Modelling with axioms — Social and multi-
agent planning

Multi-agent planning can be similar to pseudo-adversarial planning, except
that the other agents are not necessarily opposing the planning agent in
accomplishing the goal. Interaction between the agents is more varied and
not always adversarial. Agents may attempt to influence the behaviour of
other agents, based on the beliefs about others’ behaviour in a given situation.
In this section we will explain how other authors used axioms in this type of
settings.

5.5.1 Chang and Soo

Chang and Soo [24] refer to this as social planning and use it for automated
narrative generation. In Chang and Soo’s formulation, characters plan both
with their own actions and actions of other characters, but each action taken
by another character requires that the character has a motive for achiev-
ing the action’s effects. Characters use rules to update their mental state
according to perception.

The example used in their work is a simplified plot of Shakespear’s play
Othello. Much of the story can be viewed as an execution of a plan by
villain of the play, Iago, who manipulates other characters into carrying out
his aims. Iago hates Othello for promoting a younger man named Cassio
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above him, and decides to make him suffer by making him kill his own wife,
Desdemona. To carry out his plan, lago first asks his wife Emilia to take
a handkerchief that Othello gave Desdemona and give it to Iago. Iago then
plants the handkerchief in Cassio’s residence, expecting that Cassio would
pick it up. Othello sees the handkerchief on Cassio and, believing that Cassio
received the handkerchief from Desdemona, decides to kill her.

The complete encoding of the problem (in PDDL) is given in the Ap-
pendix B. In this particular problem, there are four characters (Iago, Emilia,
Desdemona and Cassio), one item (the handkerchief) and four locations (gar-
den, bedroom, residence and palace). The initial state gives describes the
relations between the characters (such as that Othello and Desdemona are
married), their locations, their psychological attributes (such as that Iago
is evil or that Othello is suspicious) and the attributes of the objects (the
handkerchief is precious). The goal is that Othello kills Desdemona and,
subsequently, himself.

Actions include physical actions (moving from one location to another, or
taking, giving or dropping an item), the kill action and the communication
actions. It is required that the character has a motive for performing an
action. For example, the preconditions of kill(a, ¢, location) state that the
following need to be true: alive,, alive., atq iocation, ate,iocation, Motive-for-dead, ..
Similarly, for an a to give something an item ¢ to ¢, a needs to wish ¢ to
posses i. In addition, there are belief-revision actions adopt-belief-loves and
fall-in-love.

The axioms are used to reason about the state of the world (can-see and
alone-at) and to determine motivations and mental states of characters. For
example:

motive-has..; < greedy. = lrue, precious; = true, sees.; = true
motive-has..; < motive-has.,; = true

allows inferring that character ¢ can be motivated to take action to achieve
has.; if c is greedy and 7 is a precious item that c¢ has layed eyes on, or if ¢
desires some other character a to posses i. See other motivations (the axioms
for motive-at and motive-for-dead) and characters’ reasoning about other char-
acters (the axioms for reason-to-believe-loves) in the Appendix for additional
examples.

5.5.2 Kominis and Geffner

Kominis and Geffner [95] discuss planning in a multi-agent setting with par-
tial observability (see Section 2.1) and nested beliefs — i.e. settings where
agents are required to reason about beliefs of other agents.



5.5. SOCIAL AND MULTI-AGENT PLANNING 111

One example domain is the Muddy Children problem [46]. In the problem
n children are playing together. Each of the children wants to remain clean,
but each would love to see others get dirty. Some of them (we denote this
number by k), however, do get muddy. Each can see mud on the faces of
others, but not on his own face. Their father comes along ans says “At
least of you has mud on your forehead.” The father then asks the following
question over and over: “Does any of you know whether you have mud on
your forehead?” It can be proven [46] that first £ — 1 times he asks the
question, all of the children will reply “No.”, but when the question is asked
k-th time, the children whose foreheads are muddy will reply affirmatively
(the clean children will, at this point, still won’t know whether they are
muddy or not). Kominis and Geffener reformulate the problem by allowing
one of the children (Active Muddy Child) to ask other children whether they
know if they are clean or not (with all the other children listening to the
response). The goal is for the Active Muddy Child to figure out whether
they are muddy or not.

The author’s approach works in two stages — they first formulate what
they call linear multiagent planning problem and then they compile it into a
classical planning problem with axioms. To formulate the linear multiagent
planning problem, the authors use techniques developed for conformant and
contingent planning problems [112]% in single agent setting. This consists of
search in a belief space, where beliefs are sets of states that the agent consid-
ers possible. This is combined these techniques with the approaches for repre-
senting beliefs in multiagent dynamic systems, namely Kripke structures [45]
and dynamic epistemic logics [138]. This approach makes distinction be-
tween objective formulas, that are true in the world, and epistemic formulas,
which define mental states of other agents. Multi-agent Kripke structures are
triplets defined by a set of worlds, accessibility relations among the worlds
for each agent and truth values that define the propositions that are true in
each world. Accessibility relations define the truth conditions for epistemic
formulas.

The actions that any of the agents can take falls into one these three
categories:

e Physical actions — change the values of objective literals.

e Sensing actions — provides information about the objective literals to
an agent. The information provided by the sensing action is private.

o Communication — provides the agent information about epistemic lit-
erals.

6See Section 2.1 for explanation of contingency planning.
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Using the techniques that were developed for compiling conformant and
contingent planning problems in a single agent setting [19, 112], the linear
multiagent planning problem can be compiled to a classical planning problem.
In the translation, epistemic literals become derived variables and their values
are computed using axioms.

5.6 Computing heuristics

In deriving heuristics, we follow exactly the same approach as we did with
numeric constraints and that can be summarised using the flowchart in Fig-
ure 1.1.

The heuristics that we are using are:

1. Heuristics based on the monotonic relaxation: h.,., h™ and the disjoint
landmark heuristic.

2. Abstraction-based heuristic or pattern database heuristics (PDBs).

For an overview of monotonic relaxation and abstraction in classical plan-
ning, see Sections 2.2.1 and 2.2.3, respectively. In both cases, we have relaxed
states or abstract states, which can be viewed as representing sets of assign-
ments of primary variables in the non-relaxed problem. As before, the key
issue is how to evaluate conditions that involve secondary variables in a re-
laxed or abstract states. We apply three different approaches: the naive
relaxation, evaluation using answer set programming, and evaluation using
three-value semantics.

5.6.1 Naive relaxation

A very simple approach is what we call naive relaration. Each axiom is
treated as a zero-cost action, with the effect of the action being the head of
the axiom and the precondition being the body. Initially, all derived variables
are assigned their default value, false. Using this relaxation, any admissible
classical planning relaxation computed on a relaxed problem gives us an
admissible estimate for the problem with axioms.

Because the naive relaxation does not force the axioms to be applied, it is
blind to the difficulty of achieving the negation of a derived proposition. The
Fast Downward planner by Helmert [77] addresses this problem by using the
following mechanism — for each derived variable y that occurs negatively (i.e.
with the assignment of false) in some condition (goal, body of some axiom, or
a precondition of some action), a new variable g and a set of axioms defining
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y are added to the problem. If A, = {y < ¢; = true | i = 1,...,k} is the
set of axioms that define y, we add an axiom A; = {y < {¢; = false | i =
1,...,k}}. As the default values for both y and 3 is false, admissibility is
preserved. However, as the planner rewrites all the bodies of the axioms to
disjunctive normal form (that is, Ay is rewritten as a set of axioms with 7 in
the head of each of the axioms and different partial variable assignment in
the bodies), this transformation often results in an exponential blow-up of
problem size.

In many of the domains that we presented earlier, the naive relaxation is
not informative. Consider the Min-Cut problem in Figure 5.2 — in any state of
the relaxed problem, the goal is achievable at no cost by simply choosing not
to derive reachable, and applying the axiom isolated; <— {reachable; = false}.

5.6.2 Axiom-aware relaxations

To develop stronger relaxations, we take the same approach as we did in plan-
ning with switched constraints — we treat this as a question of consistency,
which is delegated to an appropriate external solver. In case of planning with
axioms, this is an answer set programming (ASP) solver.

Answer sets

Answer sets, also known as stable models provide declarative semantics for
programs with negation as failure and epistemic disjunction [61]. (Answer
set programs may use both negation as failure and classical logical negation.
However, as we only use the former, we omit the later from the discussion.)

Definition 31. A (ground) answer set program is a set of rules of the form
loor ... orlg < lgi1,---lm, notlyiq,..., notl,

The left hand side is known as the head and is a disjunction of propositions.
The right hand side, known as the body is a conjunction of literals. The
connectives not and or called default negation and epistemic disjunction,
respectively.

The intuitive meaning of this is that when all the literals in the body hold,
then so does at least one of the propositions in the head.

A rule with an empty body is called a fact, and it asserts that at least one
of the propositions in the head holds. A rule with an empty head is called a
constraint, and it asserts that the literals in the body cannot all hold.

A model of a logic program is a set of true propositions that satisfies all
of the rules of the program (propositions not in this set are false). A stable
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model or answer set is a model of a logic program that is minimal with the
respect to set inclusion — i.e. it respects the negation by failure.” Hence, both
negation in the body and disjunction in the head are interpreted as a form
of defaults: p is false and —p is therefore true, unless p is implied by a set of
rules. A disjunction p or ¢ is not exclusive, but as long as there is no other
justification to infer that both p and ¢ are true, the epistemic disjunction
implies that at most one of them is true.

Given a planning problem with axioms, a state s can be represented as an
answer set program 7(s). Axioms are rules of the ASP, while the assignment
of primary variables variables is represented using facts: (z = s[z]) < py.
Because 7(s) is stratified, it is consistent and has a unique answer set [1].
The planning formalism defines the values of secondary variables in s as their
values in the model. Hence, a secondary variable y is has the value true in s
if w(s) U {0 < y = false} is consistent.

The solver that we use to find stable models to answer set programs is
Clasp by Gebser et al. [54].

5.6.3 Consistency-based monotonic relaxation

As we did for the switched constraints in Section 3.5.1, we extend MFDR
(see Section 2.2.1) to accommodate for axioms. As already discussed, in a
MFDR primary variables accumulate, rather than change values as actions
are applied. In a relaxed state s* each primary variable has a set of values
associated with it, s*[x;] C D(x;), and s* itself is a set of states that can
be obtained by assigning each variable z; one value from its set s*[x;]. As
before, action whose effect assigns value of a variable x; to v in a relaxed
application, adds v to the set of values associated with z;.

We now explain how a relaxed state s™ can be represented as an ASP.
For each primary variable x we have a disjunctive fact,

(\V z=v)<m
vEstz]
and a set of mutual exclusion constraints,
)+ x=v,xz =1'for allv,v" € s*[x]such thatv # o'

to ensure that the variable has only one value. We denote the answer set
program representing the relaxed state s* by m(s™).

"This is because the smallest set will only contain those propositions that have to be
true according to the rules of the program. If there are no reasons to assign true to a
proposition, it remains false and is left out of the set (i.e. as we failed to find a reason to
assign true to the proposition, it is false by default).
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Proposition 10. Let s* be a relaved state. w(s*) U {D < y = false} is
consistent if and only if y is true in some state in states(s?).

We will demonstrate this on Min-Cut example given in Figure 5.2:

Example 32. With actions moveg ¢, ¢, and moveg ., ., We reach a relaxed
state such that s*[ata] = {e12, €15, €56} and s*|atg] = {ess}. The program
7(s™) has three stable models (one for each value of ata) and reachableg is
true in all, since no matter where roadblock A is placed the target node 6 is
reachable as long as B does not move. Hence, 7(s™)U{() < isolatedg = false}
1s not consistent.

We may add to m(s™) some further constraints, such as mutual exclusion
between primary variable assignments. This excludes from states(s™) certain
states that are not reachable in the original planning problem, thus strength-
ening the relaxation. It is the same idea as constrained abstraction, used to
improve pattern database heuristics, as described by Haslum et al. [70].

As shown on the diagram in Figure 1.1, the monotonic relaxation is used
to build a relaxed planning graph and compute the admissible heuristics.
As with planning with switched constraints, we compute A4, ht and the
disjoint landmark heuristic. We use exactly the same procedures to compute
those heuristics as we did for numeric constraints (see Sections 3.5.3, 3.5.4
and 3.5.5, respectively).

5.6.4 Consistency-based abstraction

Again, we employ projection (see Sections 2.2.3 and 3.5.2) to build PDBs.
Our approach is the same as with switched constraints — abstract states can
be thought of as relaxed states in which the variables in the pattern have
only a single value, while variables not in the pattern have all of the variables
in their domain. Therefore, the abstract state s4 can be formulated as an
answer set program, 7(s) and the consistency can be checked in the same
way as before (that is, using an ASP solver). As an illustration, we use the
problem from the Min-Cut domain.

Example 33. Consider again the Min-Cut problem in Figure 5.2, and a
projection on the single-variable set A = {ata}. The abstract state has
sA[atA] = {615} and SA[atB] = {612,614,615, 623,62676367645,656}, i.e., the set
of all edges. Again, the program m(s?) U {() < isolateds = false} is not
consistent since node 6 remains reachable no matter where B is as long as A
stays on edge e;5.
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As stated in Section 3.5.2, PDBs are computed by exhaustive reverse
exploration from the abstract goal states. This approach is not easily adapted
to problems with axioms for the same reason it is not easily adapted for
switched constraints — goal is a partial variable assignment over both primary
and secondary variables, so it is not straightforward to find all the goal
states. Reverse exploration is also difficult as action preconditions are partial
variable assignments over both primary and secondary variables, so finding
the states in which an action can be applied is more difficult than in classical
planning without state constraints.

As with switched constraints, we use a two-stage PDB computation al-
ready described in Section 3.5.2. Hence, building an axiom aware PDB takes
more time than the standard PDB construction. An advantage of PDB
heuristics in this setting is, however, that this overhead is limited to the
precomputation phase only; state evaluation is done by a table lookup, and
takes no more time than in a standard PDB heuristic.

5.6.5 Exploring weaker relaxations

Invoking an ASP solver each time we need to test consistency of a given
condition is time consuming. Although the heuristics we obtain are more
informed than the ones we will describe in this section, the time needed to
compute the heuristics means that, in most cases, they are not effective (as
we will see in the experiments). For this reason, we also developed a weaker
relaxation. As long as consistency test is sound and we treat the secondary
condition as unsatisfied only when it is proven inconsistent with the relaxed
state, our relaxation, and the heuristics we derive from it, are still admissible.

In this relaxation, we use three value semantics to determine the truth
of a given condition. Given a relaxed state s, we treat a value assignment
st[z] = v in a relaxed state as

o false if v & sT[z],
e true if v is the only value in the set, s™[z] = {v} and
e unknown otherwise.

We evaluate compound formulas using the rules given in Figure 5.5 (par-
tial variable assignments are evaluated as a conjunction of single variable
value assignments). We then apply the stratified fixpoint evaluation proce-
dure (given in Figure 5.1) to compute a value in {false, true, unknown} for
each secondary variable. A secondary literal y is considered true if it eval-
uates to true or unknown. This is sound, in that y remains false only if
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(AAB|T[U[F] (AVB[T[U[F] ~A[T|U[F]
T |T|U|F T |T[T[T | [F|U|T]
U |U|U[F U [T|U[U
F [[F[F[F F [[T[U|F

Figure 5.5: Three value semantics.

y is false under every interpretation of the unknown propositions, and thus
only if m(s™) U {0 < y = false} is inconsistent. While this evaluation is
sound, it is not complete (i.e. guaranteed to derive the condition as false iff
it is false in every state belonging to states(s'), as stated in Proposition 10),
making the relaxation weaker than the ASP-based relaxation. Again, we can
demonstrate this on an example:

Example 34. Consider again the Min-Cut problem in Figure 5.2, and the
relaxed state s™[ata] = {e12,€15,€56} and s*latg] = {ess} from Example
32. Since atpa = eqp and atpa = es¢ both evaluate to unknown, we can
derive that isolatedg is also unknown. Thus, the relaxation fails to prove that
moving roadblock A alone is insufficient to reach the goal, unlike the stronger
relaxations shown in Examples 32 and 33.

This is the same as the relationship between the strong relaxation in plan-
ning with numeric constraints and its two weaker approximations, presented
in Section 3.5.1. A partitioned condition ¢ holds in the strong relaxation iff
there is a state in states(s') in which ¢ holds. In contrast, ¢ might hold in s*
under intermediate (or weak) relaxation, even if there is no such state. How-
ever, if ¢ does not hold under intermediate (or weak) relaxation, this implies
that there is no such state in states(s™). Similar idea can also be found in
the work of Frances and Geffener [51], who also develop weaker, but compu-
tationally tractable relaxation using incomplete local consistency algorithms,
as an approximation to their original relaxation (see Section 2.3.2).

5.6.6 Extending the relaxations to discrete finite do-
main secondary variables
The ASP-based relaxation and the relaxation based on three value semantics

can be extended to discrete finite domain secondary variables in the following
ways:

1. For the ASP-based relaxation, we make two changes to the program.
First, for each secondary variable, we need to add a disjunctive fact,
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Figure 5.6: Node expansions required to prove optimality on equivalent prob-
lem formulations with and without axioms: (a) Sokoban problems; (b) con-
troller verification problems due to Ghosh et al. [2015]. The door controller
problems are marked with a dot (e) in (b).

(Voest [z, Ts = ) = po, and a set of mutual exclusion constraints same
as for the primary variables. Second, Proposition 10 changes in the
following way — given a relaxed state st and a variable y with the
domain D(y) = {z1,..., 2}, the program w(s*) U,y {0 <y =
x;} is consistent if and only if y is z; in some state in states(s*).

2. The three value semantics based relaxation can be extended by assign-
ing each secondary variable a set of values. If the body of the axiom
evaluates to true, we assign the variable the value in the head of the
axiom. If it evaluates to false, we assign the variable its default value.
If the body evaluates to unknown, we assign it the set consisting of its
default value and the value given in the head of the axiom.

5.7 Experiments

Here we will present results of the experiments. We will show that reformu-
lating the problems using axioms eliminates the unnecessary choices from the
solver, therefore leading to smaller state space and shorter plans, using the
Sokoban and the controller verification domains. We will also compare the
above described heuristics with each other and with blind search in terms of
nodes expanded and total time to solve each of the problems.
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Figure 5.7: Total nodes expanded (above) and total planning time (below)
with different heuristics. Instances in each set are sorted by increasing short-
est plan length.
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5.7.1 Sokoban

Figure 5.6 shows the effect that reformulating the Sokoban problem using
axioms (as opposed to having explicit “move” actions) has on A* search. The
graph shows the number of node expansions needed to prove the optimality,
i.e. to reach the f*-value®. (This is a function of size of the search space and
informedness of the heuristic only, not subject to the tie-breaking variations.)
In our experiments, we compared the STRIPS formulation used in IPC 2008
(that is, without axioms) with our formulation that uses axioms. The pattern
database heuristic used is the canonical additive combination of several PDBs
[72]. For the formulation with axioms, we use one PDB per stone location
variable. In the STRIPS formulation, the location and “at-goal” status of
each stone is split over variables, so we included both in each PDB to get an
equivalent heuristic. CPU time was limited to 1 hour and memory to 3GB
per problem.

Blind search on the STRIPS formulation expands, on average, 17 times
more nodes than the formulation with axioms. However, node expansion
with axioms is, on average, an order of magnitude slower, so runtimes end
up within a factor of 2.7 of each other. The precomputation time for the
axiom aware PDB heuristic is also several orders of magnitude larger.

5.7.2 Controller verification

The advantage of using axioms can also be seen in the controller verification
domain — again, unnecessary actions and choices are removed, resulting in
smaller state space. Figure 5.6 shows the comparison between the compila-
tion with axioms and the STRIPS compilation on two sets of problems from
Ghosh et al. [66], testing several safety properties of a door lock and an ACC
systems. Some of these problems have no plan — we consider these problems
as “solved” when the planner proves the non-existence of a plan.

The door lock system is relatively small, with only 6 control actions and
8 environment actions. The ACC example is much bigger, with 34 control
actions and 691 environment actions. Neither heuristic nor blind search
were able to solve any of the ACC problems if given STRIPS formulation,
even with 4 hours CPU time and 60GB of memory. Using formulation with
axioms, in contrast, solves all of the problems using blind search, with even
the most difficult ones taking less than a minute.

8 f* is the optimal cost. Terminology related to A* will be given in Section 6.1.
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5.7.3 Experiments with weaker relaxations

The impact of different relaxations on the search is shown in Figure 5.7. We
used 5 sets of problems:

e The verification problems from Ghosh et al. (Section 5.4.1) [66]
e The PSR domain (middle-size set from IPC 2004)

e Multi-agent planning problems from Kominis and Geffner [95] (Sec-
tion 5.5)

e Instances of the trapping game (blocker) (Section 5.4.2), played on
graphs with 4 to 47 nodes and

e Random instances of Min-Cut domain, with graphs of size 12-20 and
3-4 roadblocks (Section 5.3.1).

Each planner was run with up to 1h CPU time and 3GB memory per problem.
Our implementation is built on Fast Downward planner [78] and uses Clasp
v2.1.3 as an ASP solver.

If there are no assignments of false to secondary variables in the bodies of
the axioms, the naive version of h™** coincides with 3-value semantics h™**
(here, this happens only in the verification problems). For all the other prob-
lems, the naive relaxation is as uninformed as blind search. The ASP-based
relaxation is more accurate than the 3-value semantics relaxation only when
some secondary facts can be derived from the disjunction in a relaxed state.
In our test set, this occurs only in the PSR and Min-Cut domains. However,
the weaker relaxation is much faster to compute. (Results for the ASP-based
h™a* heuristic are omitted from the other domains, in which it expands ex-
actly the same number of nodes but takes far more time to do so.) Although
all the heuristics except the naive reduce the amount of search, blind search
is still often the fastest; its main limitation is memory. This has also been
demonstrated in STRIPS planning, e.g. in results from the IPCs °. The
3-valued h™** heuristic is faster than blind search on the hardest of Kominis
and Geffener’s problems and results with axiom-aware PDB heuristic on the
Min-Cut domain show that even the ASP-based relaxation can be sufficiently
informative to compensate for the overhead of computing it. We did not try
the PDB heuristic on other problems since we do not know which are good
abstractions, if indeed any exist.

Yhttp://icaps-conference.org/ipc2008/deterministic/
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Chapter 6

Preferred operators in partial
expansion A”

To compute optimal plans, we use A* search guided by an admissible heuris-
tic. We have, however, also developed a new search algorithm which can
result in significant savings in terms of memory and time when the heuristic
is expensive to compute, yet accurate and state have many successors. This
situation is characteristic of many planning problems, including the PSR
problem (Section 3.3.2). In the PSR problem, each state has at most as
many possible successors as there are switches in the network — the number
of switches can be in the order of thousands (e.g. transmission network for
New South Wales), and in the network used in our experiments there were
45. While not all of those successor states are necessarily valid, they still
need to be generated before we can determine that they are invalid. The
algorithm that will be presented in this chapter can save us from generating
some of those states as well.

Our algorithm, which we call PREFPEA*, combines preferred operators
with partial expansion A*. While preferred operators have been used in
non-optimal planning, they have not been combined with optimal search
algorithms such as A*. In our case, the preferred operators are obtained as a
side effect of computing h*. While At is expensive to compute, the optimal
plan for a relaxed problem can provide us with more information than just
heuristic cost estimate. We only partially expand the nodes, therefore and
avoid generating all of the successors and reduce the number of heuristic
computations (as well as computation necessary for determining whether the
states are valid).

Techniques that we build on will be described in Section 6.1. In Sec-
tion 6.2 we will explain how we combined those two ideas to reduce the num-
ber of heuristic evaluations in cases where the heuristic is informative yet

123
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expensive to compute. Section 6.3 will present the experiments and results.

6.1 Background

Here, we will give an overview of search techniques that we build on, namely
identifying preferred or useful actions, and partial expansion A* (PEA*).

For the description of the A* see the original paper by Hart et al. [111].
We assume that the reader is familiar with the algorithm and the terms used.
Here, we will just give a few definitions of the terms used in this chapter, all
which are borrowed from Hart et al.’s paper. For a given node n, cheapest
known cost of reaching n from the start state is denoted g(n). Heuristic cost
estimate of n is denoted h(n) and it estimates the minimum cost of reaching
the cheapest goal state from the given state. If the heuristic is known to
never overestimate the cost, it is an admissible heuristic. As stated earlier,
admissible heuristics are used in optimal planning because certain optimal
search algorithms, like A*, guarantee that the solution returned is optimal,
provided that the heuristic is admissible. Fvaluation function, or f(n), is the
sum g(n) and h(n) values. The cost of the cheapest path to a goal state is
denoted f*. A* can be described as best-first search on the f-value.

A* is a graph search algorithm, but in this work we are interested in
presenting and solving the planning problems as state-space search. There-
fore, our graph is a state-space of the planning problem, and our succes-
sor operators are actions. We will use the term node to refer to a tuple

n=(s,g(s),h(s)). We define g(n) = g(s), h(n) = h(s) and f(n) = f(s).

6.1.1 Preferred actions in non-optimal search

Identifying preferred actions has been developed and used with non-optimal
search techniques such as hill-climbing and greedy search (see Richter and
Helmert [120] and Hoffmann [81]). The preferred actions in state s are actions
in a relaxed plan computed from s that are also applicable in s. The intuition
behind this idea is that, if the relaxed plan is similar to the actual plan, then
choosing an action that is also part of it is more likely to be a step towards the
goal and giving preference to successor states generated from those actions
can lead to the goal state more quickly.

6.1.2 A* with partial expansion

An optimal search algorithm such as A* must expand any state that could
possibly lie on a cheaper path to the goal. That is, any state whose f-value
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is less than the optimal f-value must be expanded. In problems with large
branching factor, this leads to heavy memory requirements. To tackle this
challenge, Yoshizumi et al. [143] developed PEA* algorithm, originally ap-
plied for multiple sequence alignment problem in genome informatics. Their
algorithm tries to avoid placing unpromising states on the open list, by ex-
panding states only partially and re-inserting them on the open list for later
consideration with lowered priority. This reduces the memory requirements
and is useful in cases where the branching factor is large.

The algorithm works as follows — they introduce a (predefined and non-
negative) cut-off value parameter C' (which is constant) and an additional
value F' associated with every node (which is separate from the f-value in
simplest form of A*). Initially, when a node ng is selected for expansion, the
F-value of ng set to its f-value. After the node is expanded, a child node
ny is stored in the open list only if f(n;) < F(ng) + C. In that case n; is
considered a promising child. Otherwise, ny is considered unpromising, and
is not stored. If ny has any unpromising children, the F-value of ng is then
set to the smallest f-value among all the unpromising children of ny and
ng is stored in the open list with the new F-value recorded (if there are no
unpromising children, ng is placed in the closed list). While A* expands nodes
on the open list in incremental order of f-value, here nodes are expanded in
the incremental order of F-value. If ny has no promising child nodes, then
it does not store child nodes at all and only revises the parent’s F-value to
the lowest f-value among unpromising child nodes (this lowers the priority
of the parent node for expansion).

When C' is infinity, this algorithm becomes A*. With C' = 0, it never
stores nodes whose f-values are greater than the optimal cost and the mem-
ory requirement becomes the same as the closed list of A*. This makes
their algorithm very effective when the ratio of open to closed list is large.
Yoshizumi et al. give the following example — suppose that the state space
forms a tree with the branching factor of b. The ratio of open to closed list
size becomes b — 1 to 1 and consequently, with C' = 0, the memory require-
ments are reduced by a factor of b (as the algorithm only needs the same
memory as the closed list). In their multiple sequence alignment problem
experiments, they report reducing the memory requirement by a factor of
few hundred (in best case).

6.1.3 PEA* with selective node generation

This form of PEA*, however, still generates and evaluates all successor states
of an expanded state to determine which are promising. Despite the memory
benefits of using the basic form of PEA*, it incurs a time overhead, as it
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repeatedly generates all the children of a given node each time the node is
expanded. Thus, while memory is always saved, time trade-off exists. Felner
et al. [47] further improved the algorithm by using a problem- and heuristic-
specific procedures to determine the successor set without generating and
evaluating all the successors. They called their algorithm Enhanced PEA*
(EPEA*). The idea is to, when expanding a node n, only generate children
whose f-value is the same as f(n).

This works in domains in which the operators applicable to n can be
classified by the change in f-value (Af) of the children of n they generate.
EPEA* requires defining a domain-dependent Operator Selection Function
(OSF), which gets a state p and a value v as an input and returns a list of
operators that, when applied to p, lead to a state whose difference in f-value
from p is v. Additionally, it returns v,.., that is the next Af in the set of
operators applicable to p.

When a node n is expanded with stored value F(n), F(n) might be larger
than f(n), in cases where n has already been expanded in the past and it
has inherited F'(n) from one of it’s children. We only want to generate a
children with f(c¢) = F(n), so we need operators with Af = F(n) — f(n).
Operator selection function is then called with node n and Af to identify
such operators. Children with the f-value of f(c) are generated, and n is
returned into the open list with the redefined value of F(n) = f(n) + vpeu-
If no larger value is possible (so all children nodes have been generated), the
node is placed on the closed list. If the goal is found before n is placed on
the closed list, EPEA* never generates any nodes with suboptimal f-value.

6.2 Algorithm

We adopted the idea of partial expansion, but staged the node expansion
by preferredness of successors instead of by f-value. Pseudo-code is shown
in Figure 6.1. When a heuristic value is calculated, as a side-effect, a set
of preferred actions associated with that node is found and stored with the
state. L.e. a node becomes a tuple (s, g(s), h(s), pref(s)), where s is a state,
g(s) is the g-value of s, h(s) is the h-value and pref(s) is the set of preferred
actions. In our experiments, the heuristic is A" and the set of preferred
actions are the actions comprising the optimal delete-relaxed plan.! When a
node is selected for expansion, we generate and evaluate only one preferred
successor (Line 8), using one of the actions in the preferred set. The action is
then removed from the set (Line 7) of preferred actions associated with the

Tt should be noted that this algorithm can work with other heuristics, as long as the
heuristic identifies a set of preferred successor operators.
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parent node and the parent node is kept on the open list. If the node that is
selected for the expansion has no preffered operators left, then the then we
generate all the remaining successor states by using the set of non-preferred
operators (Lines 10-13). The node is then moved to the closed list.

The rules for choosing a node to expand are shown in Line 4. We priori-
tise the nodes that still have unexplored preferred successors. This is done
using non-emptiness of the preferred action set as an additional tie-breaking
criterion, after the standard tie-breaking in favour of lower h-value. That is,
if two nodes have equal f-values and equal h-values, but one of them has a
non-empty set of preferred actions, that node is chosen for expansion.

6.3 Experiments

The benefit of our algorithm is limited to avoiding heuristic evaluations in the
same layer as the optimal f-value (see Figure 6.2). This is most useful when
states have many successors and the heuristic is accurate. In cases where, on
the other hand, the heuristic is inaccurate or the branching factor is small,
the savings are small as well. The experiments on the HBW domain and the
PSR domain illustrate both cases (the domains were described in Sections
3.3.1 and 3.3.2, respectively). While there are substantial savings in the PSR
domain, the savings for hydraulic blocks world, where the branching factor
is lower, are much lower. Because PREFPEA* sometimes expands nodes
in different order than A*, and because the remaining ties are still broken
arbitrarily, it is possible for PREFPEA* to be “unlucky” and expand more
nodes than A*, even if the aggregate results are better. This was observed
in small number of cases (less than 2%).

For the PSR domain, we use the semi-rural network from Thiebaux et al.
[134] and generate 171 problems with one, two or three faults. The network
consisted of 7 generators, 45 buses and 26 switches. The faults were generated
by chosing the buses at random. We used constant (state-independent) cost
of one for each action. For the hydraulic blocks world domain, we used 80
problems with between 4 and 7 blocks and 3 to 5 cylinders. Parameters such
as block weights, cylinder heights and areas, etc. were set randomly, with
the aim of creating problems that are solvable, but with the state constraints
forcing the plans to be different than in the unconstrained case. The addition
of the limit on the number of towers and the state constraints makes this
problem much harder than the usual STRIPS Blocksworld. (Blind A* solves
only 4 out of 20 6-block problems, while A* search with A" heuristic solves
17.)

With a 30 minute timeout for each problem and a plain A*, the planner
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1: procedure PREFPEA*
2: Set open = {(s0,0, h(so), pref(so))}, closed = 0.
3:  while open # () do
4: Select n = min_ open, where
(n=<n)=(f(n)<f(n))
V (f(n) = f(n') A(n) < h(n'))
V (f(n) = f(n) A h(n) = h(n)
NApref(n) # 0 A pref(n') = 0))

5: if n is a goal state then return n.

6: if pref(n) # () then

7 Select a € pref(n), remove a from pref(n).

8: Generate s’ from n through a.

9: NEWSTATE(s', g(n) + cost(a))

10: else

11: for each non-preferred successor (d’,s’) of n do
12: NEWSTATE(S, g(n) + cost(a’))

13: Move n to closed.

14:  return null.

15: procedure NEWSTATE(Ss, g)

16: if An’ € openU closed with state s then
17: Add (s, g, h(s), pref(s)) to open.

18:  else if g < g(n') then

19: Set g(n’) = ¢ and update parent pointer.
20: if n’ € closed then Move n’ back to open.

Figure 6.1: Partial Expansion A* with Preferred Actions. The NEWSTATE
subroutine handles updating of path cost and node re-opening, as in standard

A
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Figure 6.2: [lustration of PREFPEA*. Black nodes have f(n) < f*; these
must be fully expanded. Gray nodes have f(n) = f*; some of these will
be expanded, and may be partially expanded. White nodes have f(n) > f*.
The dashed part represents non-preferred successor nodes that are never gen-
erated or evaluated. Once the search has reached the f* layer and hit a node
on an optimal path, tie-breaking on h will keep it on this path (assuming no
zero-cost actions). From this point, only preferred successors are generated.

solver only 150 PSR problems and 62 HBW problems. Figure 6.3 shows how
close the heuristic estimate of initial state, h*(sg), is to the actual optimal
f-value of the final state as a percentage. It was found to be more accurate
in the PSR problems than in the HBW problems. Additionally, the average
branching factor in PSR is 26.7, while in HBW it is 1.99. Consequently, the
reduction in number of state evaluations is much higher in PSR problems
than in HBW problem (see Figure 6.3). In PSR, using PREFPEA* reduces
the number of evaluated states by 42.8% compared to A* (aggregated on the
problems solved with both), and over 90% in over a quarter of the instances.
Since computing the h™ heuristic accounts for 95% of the total runtime (on
average), in this domain, this translates to a roughly proportional 41.6%
reduction in aggregated runtime. In HBW, the aggregate reduction in evalu-
ations is only 3.4%, and, as heuristic evaluations are much faster in problems
in this domain (only 16.2% of the total time on average), this does not lead
to any reduction in the total runtime.

6.4 Related work

Given the high memory requirements of the original A*, we are not the first
to attempt to create more memory-efficient, yet still optimal alternatives.
One example is the iterative deepening A* (IDA*) [96], which, unlike
ordinary A*, does not maintain an open list of nodes, other than the ones
on the current path (it works the same as iterative-deepening depth-first
search [96], except it uses the f-value as a cutoff). It’s memory requirement
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Figure 6.3: (a) Accuracy of the relaxed plan heuristic, measured by h*(so)
as a percentage of f*. (b) Distribution of the reduction in number of state
evaluations using PREFPEA* compared to plain A*. (A “reduction” < 0
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is linear in the length of the solution. Another example is the recursive best-
first search (RBFS) [97], which keeps track of f-value of the best alternative
path available from any ancestor of the current node. If the node being
evaluated exceeds this value, the search continues from the best alternative
path. The memory requirement is linear in the size of the optimal solution.
A shortcoming of IDA* and RBFS is that they might need to potentially re-
explore same nodes many times (and therefore have greater time complexity
than A*). Another weakness is that they do not utilise all of the memory
available (which could be used to store more nodes and avoid as much re-
exploration of same paths). Memory-bounded A* [23] and simplified memory-
bounded A* (SMA*) [125] were, on the other hand, created to reduce the
number of nodes re-generated by filling in all of the available memory. SMA*
works just like ordinary A* except, after it fills in all of the memory, it drops
the leaf node with the highest f-value and (like RBFS) backs up the value
of the forgotten node to it’s parent.

Unlike these alternatives, our algorithm never has to re-expand a node,
as all of the visited nodes are kept in the memory. It therefore makes saving
both in terms of memory and time requirements.

6.5 Future work

So far, we tested the procedure only on a small set of problems and only
on the domains with numeric state constraints. The algorithm is, however,
more general — while it works well on our PSR problems, there is no reason
while it couldn’t be employed on classical planning problems or other kind
of search problems. To properly evaluate the algorithm, it should be tested
on a larger set of domains and problems, for instance the problems from the
International Planning Competition?.

Besides A", it could be tested with other heuristics. For example, we could
use abstraction heuristics. Given a state, there exists a set of actions in the
abstract space that achieve the goal from the corresponding abstract state.
These could be used as a set of preferred operators. However, if an operator
in the abstract space corresponds to multiple operators in the non-abstract
space, we would need to make the choice of which non-abstract operator to
place in the set.

’https://helios.hud.ac.uk/scommv/IPC-14/domains\_sequential.html
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Chapter 7

Conclusion

In this thesis we demonstrated how state constraints can be used to model
a variety of problems. The concrete examples of state constraints that were
introduced were numeric constraints and axioms. In the first case, we pre-
sented state constraints as a construct that allows us to combine methods
from classical planning with solvers for other kinds of problems. An example
are interconnected physical systems whose behaviour can be modelled by a
set of equations. While efficient solvers for these constraints exist, they might
not be able to effectively deal with the planning aspect of the problem. We
presented how we can enable a planner to utilise those tools. In the second
case, we formulated some existing domains from classical planning using ax-
ioms, which are a type of state constraints, making the domain descriptions
more elegant and the problems easier to solve (which is a consequence of
removing unnecessary choices from the planner).

We adapted the well-known techniques from optimal classical planning to
this setting. We used the consistency-checking techniques to evaluate con-
ditions involving secondary variables in a relaxed state. For both numeric
constraints and axioms we developed relaxations of different strengths — the
computationally expensive complete check, and incomplete, but sound and
computationally tractable relaxations. This allowed to build a relaxed plan-
ning graph, which we used to compute constraint-aware versions of admissible
heuristics A4, AT and disjoint landmark heuristic. We demonstrated that an
abstract state is equivalent to a relaxed state, so the same method allowed
us to reason about abstract states. This, in turn, enabled us to compute
pattern database heuristics.

We discussed compilation of problems with state constraints to formula-
tions without them. We have shown that planning with switched numeric
constraints can be reduced to classical planning, although potentially at ex-
ponential increase in problem size. The same observation has already been

133
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made by Thiébaux et al. [136] for axioms.

Motivated by the need to properly evaluate plans in power reconfiguration
domain, we discussed the issues related to the action cost being a function
of an extended state. In this domain, all secondary variables affecting the
cost have a unique assignment of values in a given state. This simplifies the
problem as, although the variables involved are still calculated using state
constraints, we don’t need to find the cost in the cheapest extended state.
We modified h* heuristic for this problem, but our approach was unfortu-
nately not efficient enough to be useful for search. Efficient computation of
heuristics in this setting remains an open problem.

We modified the A* heuristic by combining the idea of preferred oper-
ators with partial expansion A*. The resulting algorithm, which we call
PREFPEA*, works well in cases where the heuristic is informative and the
states have many successors. It requires that the heuristic used also returns
a set of preferred operators (in case of h*, these are the actions that make
up the optimal relaxed plan). In the PSR domain, PREFPEA* reduces the
number of evaluated states by 42.8% compared to A* (aggregated on the
problems solved with both), and over 90% in over a quarter of the instances.

7.1 Alternative frameworks and future work

The approach to planning with state constraints presented here was relatively
narrowly focused — the only technique that we adapted was optimal plan-
ning using state-space search guided by an admissible heuristic. State-space
search was used as it is the most commonly used way of optimally solving
classical planning problems [79]. This leaves plenty of room for investigating
possible alternatives. In Chapter 2, we already mentioned a paper by Scala
et al. [126] which proposes solving problems by compilation to SMT. Other
potential approaches might include, for example, plan space planning, compi-
lation to optimisation problems such as MIP or use of constraint-satisfaction
techniques. Focus on optimal planning was chosen because in many of the
domains that we consider (such as PSR and controller verification), shorter
plans are preferable. In many cases, however, end user might be satisfied
with sub-optimal or near-optimal solutions. These can be generated if the
heuristic is non-admissible (such as additive heuristic [16], FF-heuristic [85]
or pairwise max heuristic [106]), or if the non-optimal search algorithm is
used (examples include weighted A* [116], explicit estimation search [133]
other forms of bounded suboptimal search [75]).



Appendix A

Proofs

Proofs of Proposition 1 and Proposition 2 given in Section 3.4 are presented
here. These proofs are to appear in our JAIR paper [73].

A.1 Proposition 1

Proposition 11. Let (vp, ps) be a partitioned condition. There is a formula
F(ps) over Vp such that for every state s, slpp A F(pg)] = true if and only

if {pp,ps) holds in s.
Proof. Let

True(ps) = {s|Cp(s) Upgs U Ci,y, is satisfiable }

{pp,ps) holds in state s if and only if s[pp] = true and s € True(ps) (by
Definition 18). Since states are assignments of values to the primary state
variables, each of which has a finite domain of values (Definition 13), the
set of possible states is finite (though exponentially large) and hence so is
True(pg). Thus we can write a formula, F(pg), over Vp, that is true exactly
in the states True(yg). This formula can be written simply as a disjunction
of partial variable assignments, each defining a complete state in True(ys),
but more compact forms may also exist. Then pp A F(pg) characterises
exactly the states in which (pp, pg) holds. O

A.2 Proposition 2

Proposition 12. Let ¢ be any formula over the primary variables Vp. There
exists a set of switched constraints C' such that for every state s, (py, C') holds
in s if and only if s[¢| = true. In addition, the size of C' is polynomial in the

size of .
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Proof. Without loss of generality we can assume ¢ to be in negation normal
form, since translation to this form does not increase the size of the formula
more than polynomially.

We will introduce a secondary variable 0 < p,, <1 for every subformula
¥ of ¢, along with a set of constraints C’ such that

{py > 0} UC" U Cp(s) is satisfiable iff s[¢)] = true (A)

The constraint set C' claimed by the proposition is then given by C' = {p, >
0} U C". The construction of C" is as follows:

e For each assignment of the form v = e, C' contains the two switched
constraints v = e — py,—. = 1 and v # e — p,—. = 0.

e For each conjunctive subformula ¢» = x; A ... A x, C’ contains the
constraints py, < Py, ..., Dy < Py

e For each disjunctive subformula ¢» = x; V...V xx, C’ contains the
constraint py, < py, + ...+ Dy,

Both the number of constraints in ¢’ and the number of terms in any
expression that appears in one of them is bounded by a constant times the
number of subformulas of ¢, so the size of C' is polynomial in that of ¢. It
remains to show that C’ has property (A).

For the “if” part, let s be an arbitrary state and extend s to an assignment
o over primary variables and the secondary variables mentioned in C’ by
setting o[py] = 1 if s[¢p] = true and o[py] = 0 if s[y)] = false for each
subformula ¥. We will show that o satisfies every constraint in C’. Thus,
this assignment is a witness to the fact that {o[py] > 0} U C" U Cp(s) is
satisfiable if s[¢)] = true.

If o[v = €] = true the constraint v = e — p,—. = 1 is satisfied because
0[pv=e] = 1 (by construction) and the constraint v # e — p,—. = 0 is
satisfied because olv # €| = false; if o[v = e] = false, then it is the other
way around. Constraints v # ¢ — pyze = 1 and v = e = pyz. = 0 are
analogous. The constraints py < py,,...,py < Dy, created for a conjunction
1 =x1 A ... A Xy are satisfied because o[py] = 1 only if o[¢)] = true only if
o[xi] = true for each conjunct x;, in which case o[p,,] = 1; when o[p,] = 0
the constraints are satisfied because all the indicator variables are bounded
be greater than or equal to zero. Similarly, the constraint py < p,, +...4+py,
created for a disjunction is satisfied because o[py] = 1 only if o[¢)] = true
only if o[x;] = true for at least one disjunct x;, in which case o[p,,] = 1 which
makes also the sum at least 1, and o[p,] = 0 because zero also lower-bounds
the sum.
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For the “only if” part, we proceed by a structural induction. As the first
base case, consider an atomic subformula of the form v = e, and a state
s such that s(v = e) = false. Then {o(p,=1) > 0} UC" U Cp(s) contains
{v==¢€,v# e = py=e = 0,py=e > 0}, for some ¢’ # e, which is clearly not
satisfiable. The second base case, an atomic subformula of the form v # e,
is analogous.

Consider a conjunctive formula, ©» = y1 A ... A xx. If s[t)] = false then
s[xi;] = false for at least one conjunct x;. By inductive assumption, this
implies {p,, > 0} U C" U Cp(s) is unsatisfiable. Since C' contains py < p,,,
py > 0 implies p,, > 0 in any model for C’, which means that {p, >
0} U C"UCp(s) is also unsatisfiable.

Finally, consider a disjunctive formula, ©» = x1 V...V x. If s[t)] = false
then s[x;] = false for every disjunct x;. By inductive assumption, this implies
{py; > 0} UC"UCp(s) is unsatisfiable. Thus, the sum p,, + ...+ p,, also
cannot be greater than zero (since that would imply one of its parts is), and
thus {py, > 0} UC" U Cp(s) is also unsatisfiable. O
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Appendix B

Domains

B.1 Min-cut

(define (domain min-cut)
(:requirements :strips :typing :negative-preconditions :derived-predicates)

(:types node edge block)

(:predicates
;3 static
(adjacent 7e - edge 7f - edge)
(edge-from 7e - edge ?n - node)
(edge-to 7e - edge 7n - node)
(source-node ?n - node)
;; derived:
(blocked ?7e - edge)
(reachable-node ?n - node)
(reachable-edge 7e - edge)
(isolated ?n - node)

)

(:functions

;3 primary state variables:
(at 7b - block) - edge

)

(:derived (blocked 7e - edge)
(exists (7b - block) (= (at 7b) 7e)))

~

:derived (reachable-node ?n - node) (source-node ?7n))
:derived (reachable-node ?n - node)
(exists (7e - edge) (and (edge-to 7e 7n)
(not (blocked 7e))
(reachable-edge 7e))))
(:derived (reachable-edge 7e - edge)
(exists (7n - node) (and (edge-from 7e 7n)
(reachable-node ?n))))
:derived (isolated 7n - node) (not (reachable-node 7n)))

~

~

(:action move
:parameters (7b - block ?from - edge 7to - edge)
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:precondition (and (adjacent 7from ?to)
(= (at 7b) ?from))

:effect (assign (at ?b) 7to)

)

B.2 Sokoban

(define (domain sokoban-sequential)
(:requirements :typing :derived-predicates)
(:types thing location direction - object

player stone - thing)

(:predicates

(clear ?1 - location)

(blocked 7?1 - location)

(at ?t - thing ?1 - location)

(at-goal ?s - stone)

(IS-GOAL 7?1 - locationm)

(IS-NONGOAL 71 - location)

(MOVE-DIR 7from 7to - location ?dir - direction)
(can-reach ?p - player 7?1 - location)

)
(:functions (total-cost))

;3 axiom for at-goal
(:derived (at-goal ?s - stone)
(exists (?1 - location) (and (is-goal 71) (at ?s 71))))

;; axiom for clear. note that only stones count as obstacles,
;3 the player does not; he will always move so that he is not
;5 in the way of the square he’s pushing into.
(:derived (blocked 71 - location)
(exists (?s - stomne) (at 7s 71)))
(:derived (clear ?1 - location) (mot (blocked ?71)))
;3 (:derived (clear 7?1 - location)
HH (forall (?s - stone) (not (at ?s ?71))))

;; axioms for can-reach
(:derived (can-reach ?p - player 7?1 - location)
(at ?p 71))

(:derived (can-reach ?p - player ?1 - location)
(and (clear 71)
(exists (?d - direction 7m - location)
(and (MOVE-DIR 7m 71 ?7d)
(can-reach 7p 7m)))))

(:action push
:parameters (7p - player 7s - stone
?ppl 7ppos ?from ?to - location
?dir - direction)
:precondition (and (at ?p 7ppl)
(can-reach ?p ?ppos)
(at ?s 7from)
(clear ?7to)
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(MOVE-DIR ?ppos ?from ?dir)
(MOVE-DIR 7from ?7to ?7dir)
)
:effect (and (not (at 7p 7ppl))

(not (at ?s 7from))

(at ?7p 7from)

(at ?s 7to)

(increase (total-cost) 1)

)

B.3 Controller verification

From Ghosh et al. [66]. Sourced from http://www.facweb.iitkgp.ernet.
in/~pallab/PAPLAN.tar.gz. The door lock system is presented here. The
adaptive cruise control domain can be found from the link above.

(DEFINE (DOMAIN DOOR-EXAMPLE)

(:PREDICATES (ARM-AUTOLOCK) (ARM-AUTOUNLOCK) (DOORS-CLOSED) (DOORS-LOCKED)
(KEY-IGNITION) (REMOTE-UNLOCK-CMD) (ENGINE-ON) (TRANS-MODE-DRIVE)
(HIGH-SPEED) (LOW-SPEED) (PREV-LOW-SPEED) (STATIONARY)
(DISABLED-CONTROL-C4-AUTO-UNLOCK) (DISABLED-CONTROL-C3-ARM-AUTO-UNLOCK)
(DISABLED-CONTROL-C2-AUTO-LOCK) (DISABLED-CONTROL-UNMARK-PREV-LOW-SPEED)
(DISABLED-CONTROL-MARK-PREV-LOW-SPEED) (DISABLED-CONTROL-C1-ARM-AUTO-LOCK))

(:DERIVED (DISABLED-CONTROL-C4-AUTO-UNLOCK)

(OR (NOT (ARM-AUTOUNLOCK)) (NOT (DOORS-LOCKED))))

(:DERIVED (DISABLED-CONTROL-C3-ARM-AUTO-UNLOCK)
(OR (NOT (REMOTE-UNLOCK-CMD))

(NOT (DOORS-LOCKED))
(HIGH-SPEED)
(ARM-AUTOUNLOCK) ))

(:DERIVED (DISABLED-CONTROL-C2-AUTO-LOCK)

(OR (NOT (ARM-AUTOLOCK)) (NOT (DOORS-CLOSED)) (DOORS-LOCKED)))

(:DERIVED (DISABLED-CONTROL-UNMARK-PREV-LOW-SPEED)

(OR (NOT (PREV-LOW-SPEED)) (LOW-SPEED) (HIGH-SPEED)))

(:DERIVED (DISABLED-CONTROL-MARK-PREV-LOW-SPEED)

(OR (NOT (LOW-SPEED)) (PREV-LOW-SPEED)))

(:DERIVED (DISABLED-CONTROL-C1-ARM-AUTO-LOCK)

(OR (NOT (PREV-LOW-SPEED)) (NOT (HIGH-SPEED)) (LOW-SPEED)))

(:ACTION E7-COMMAND-REMOTE-UNLOCK :PARAMETERS () :PRECONDITION
(AND (DOORS-LOCKED)

(NOT (REMOTE-UNLOCK-CMD))
(DISABLED-CONTROL-C4-AUTO-UNLOCK)
(DISABLED-CONTROL-C3-ARM-AUTO-UNLOCK)
(DISABLED-CONTROL-C2-AUTO-LOCK)
(DISABLED-CONTROL-UNMARK-PREV-LOW-SPEED)
(DISABLED-CONTROL-MARK-PREV-LOW-SPEED)
(DISABLED-CONTROL-C1-ARM-AUTO-LOCK))
:EFFECT (AND (REMOTE-UNLOCK-CMD)))

(:ACTION E6-SPEED-LOW-TO-HIGH :PARAMETERS () :PRECONDITION

(AND (ENGINE-ON)
(TRANS-MODE-DRIVE)
(LOW-SPEED)
(DISABLED-CONTROL-C4-AUTO-UNLOCK)
(DISABLED-CONTROL-C3-ARM-AUTO-UNLOCK)
(DISABLED-CONTROL-C2-AUTO-LOCK)
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(DISABLED-CONTROL-UNMARK-PREV-LOW-SPEED)
(DISABLED-CONTROL-MARK-PREV-LOW-SPEED)
(DISABLED-CONTROL-C1-ARM-AUTO-LOCK) )
:EFFECT (AND (NOT (LOW-SPEED)) (HIGH-SPEED)))
(:ACTION E6-SPEED-STAT-TO-LOW :PARAMETERS () :PRECONDITION
(AND (ENGINE-ON)
(TRANS-MODE-DRIVE)
(STATIONARY)
(DISABLED-CONTROL-C4-AUTO-UNLOCK)
(DISABLED-CONTROL-C3-ARM-AUTO-UNLOCK)
(DISABLED-CONTROL-C2-AUTO-LOCK)
(DISABLED-CONTROL-UNMARK-PREV-LOW-SPEED)
(DISABLED-CONTROL-MARK-PREV-LOW-SPEED)
(DISABLED-CONTROL-C1-ARM-AUTO-LOCK))
:EFFECT (AND (NOT (STATIONARY)) (LOW-SPEED)))
(:ACTION E5-PUT-TRANSMISSION-DRIVE :PARAMETERS () :PRECONDITION
(AND (ENGINE-ON)
(DOORS-CLOSED)
(NOT (TRANS-MODE-DRIVE))
(DISABLED-CONTROL-C4-AUTO-UNLOCK)
(DISABLED-CONTROL-C3-ARM-AUTO-UNLOCK)
(DISABLED-CONTROL-C2-AUTO-LOCK)
(DISABLED-CONTROL-UNMARK-PREV-LOW-SPEED)
(DISABLED-CONTROL-MARK-PREV-LOW-SPEED)
(DISABLED-CONTROL-C1-ARM-AUTO-LOCK) )
:EFFECT (AND (TRANS-MODE-DRIVE)))
(:ACTION E4-RUN-ENGINE :PARAMETERS () :PRECONDITION
(AND (KEY-IGNITION)
(NOT (ENGINE-ON))
(DISABLED-CONTROL-C4-AUTO-UNLOCK)
(DISABLED-CONTROL-C3-ARM-AUTO-UNLOCK)
(DISABLED-CONTROL-C2-AUTO-LOCK)
(DISABLED-CONTROL-UNMARK-PREV-LOW-SPEED)
(DISABLED-CONTROL-MARK-PREV-LOW-SPEED)
(DISABLED-CONTROL-C1-ARM-AUT0-LOCK))
:EFFECT (AND (ENGINE-ON)))
(:ACTION E3-PUT-KEY-IN-IGNITION :PARAMETERS () :PRECONDITION
(AND (NOT (KEY-IGNITION))
(DISABLED-CONTROL-C4-AUTO-UNLOCK)
(DISABLED-CONTROL-C3-ARM-AUTO-UNLOCK)
(DISABLED-CONTROL-C2-AUTO-LOCK)
(DISABLED-CONTROL-UNMARK-PREV-LOW-SPEED)
(DISABLED-CONTROL-MARK-PREV-LOW-SPEED)
(DISABLED-CONTROL-C1-ARM-AUTO-LOCK))
:EFFECT (AND (KEY-IGNITION)))
(:ACTION E2-CLOSE-DOORS :PARAMETERS () :PRECONDITION
(AND (NOT (DOORS-CLOSED))
(DISABLED-CONTROL-C4-AUTO-UNLOCK)
(DISABLED-CONTROL-C3-ARM-AUTO-UNLOCK)
(DISABLED-CONTROL-C2-AUTO-LOCK)
(DISABLED-CONTROL-UNMARK-PREV-LOW-SPEED)
(DISABLED-CONTROL-MARK-PREV-LOW-SPEED)
(DISABLED-CONTROL-C1-ARM-AUTO-LOCK))
:EFFECT (AND (DOORS-CLOSED)))
(:ACTION E1-OPEN-DOORS :PARAMETERS () :PRECONDITION
(AND (NOT (DOORS-LOCKED))
(NOT (TRANS-MODE-DRIVE))
(STATIONARY)
(DOORS-CLOSED)
(DISABLED-CONTROL-C4-AUTO-UNLOCK)
(DISABLED-CONTROL-C3-ARM-AUTO-UNLOCK)
(DISABLED-CONTROL-C2-AUTO-LOCK)
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(DISABLED-CONTROL-UNMARK-PREV-LOW-SPEED)

(DISABLED-CONTROL-MARK-PREV-LOW-SPEED)

(DISABLED-CONTROL-C1-ARM-AUTO-LOCK))
:EFFECT (AND (NOT (DOORS-CLOSED))))

(:ACTION CONTROL-C4-AUTO-UNLOCK :PARAMETERS () :PRECONDITION
(AND (ARM-AUTOUNLOCK) (DOORS-LOCKED)) :EFFECT
(AND (NOT (DOORS-LOCKED)) (NOT (ARM-AUTOUNLOCK))))

(:ACTION CONTROL-C3-ARM-AUTO-UNLOCK :PARAMETERS () :PRECONDITION
(AND (REMOTE-UNLOCK-CMD)

(DOORS-LOCKED)

(NOT (HIGH-SPEED))

(NOT (ARM-AUTOUNLOCK)))
:EFFECT (AND (ARM-AUTOUNLOCK)))

(:ACTION CONTROL-C2-AUTO-LOCK :PARAMETERS () :PRECONDITION
(AND (ARM-AUTOLOCK) (DOORS-CLOSED) (NOT (DOORS-LOCKED))) :EFFECT
(AND (DOORS-LOCKED) (NOT (ARM-AUTOLOCK))))

(:ACTION CONTROL-UNMARK-PREV-LOW-SPEED :PARAMETERS () :PRECONDITION
(AND (PREV-LOW-SPEED) (NOT (LOW-SPEED)) (NOT (HIGH-SPEED))) :EFFECT
(AND (NOT (PREV-LOW-SPEED))))

(:ACTION CONTROL-MARK-PREV-LOW-SPEED :PARAMETERS () :PRECONDITION
(AND (LOW-SPEED) (NOT (PREV-LOW-SPEED))) :EFFECT (AND (PREV-LOW-SPEED)))

(:ACTION CONTROL-C1-ARM-AUTO-LOCK :PARAMETERS () :PRECONDITION
(AND (PREV-LOW-SPEED) (NOT (LOW-SPEED)) (HIGH-SPEED)) :EFFECT
(AND (ARM-AUTOLOCK) (NOT (PREV-LOW-SPEED)))))

B.4 Blocker

(define (domain blocker-strips)
(:requirements :strips :derived-predicates)

;35 The set of objects are the numbers from O to N-1, where N is the
;; number of nodes in the graph. These are used both to represent the
;3 nodes in the graph and distances (because distances in the graph
;3 will never be greater than the number of nodes minus one).

(:predicates

;5 primary predicates:
(cat ?7x)

(blocked ?7x)
(blockers-turn)
(cats-turn)

;; static predicates:
(exit 7x)

(edge ?7x ?7y)

(is-zero 7x)

(next ?x ?7y)

;; derived predicates:
(prefer 7x ?7y)
(cat-moves 7from 7to)
(distance-to-exit ?x ?7n)
(closer-or-equal-to-exit ?7x ?7y)
(closer-to-exit ?x ?y)
(less ?x ?7y)

(trapped)

)

;; (distance-to-exit ?x ?n) holds if we can reach an exit node from
;5 ?x in ?n steps or less, given the current set of blocked nodes.
(:derived (distance-to-exit 7x 7z)
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(and (exit ?7x) (is-zero 7z)))

(:derived (distance-to-exit ?x 7k)

(exists (?7y ?7j)
(and (edge ?x 7y)
(next 7j 7k)
(not (blocked ?y))
(distance-to-exit ?y ?j))))

(:derived (distance-to-exit ?x 7k)

B
B

B

H
H

H

(exists (7j)
(and (next ?j 7k)
(distance-to-exit 7x 7j))))

(closer-to-exit ?x ?y) holds if the shortest distance to an exit
from ?x is stricly smaller than the shortest distance to an exit
from 7y.

(:derived (closer-to-exit ?x ?y)

B
B

B

s
H

H

(exists (7k)
(and (distance-to-exit ?x 7k)
(not (distance-to-exit ?y 7k)))))

(closer-or-equal-to-exit ?x ?y) holds if the shortest distance to
an exit from 7x is less than or equal to the shortest distance to
an exit from 7y.

(:derived (closer-or-equal-to-exit ?x 7y)

H

H

(not (closer-to-exit ?y ?x)))

(less 7x ?7y) iff ?x is strictly less than ?y.

(:derived (less ?7x 7y)

B

B

H

)

(or (next 7x 7y)
(exists (?7z) (and (next ?x ?z) (less 7z 7y)))))

(trapped) is true iff the cat is trapped; that is, distance-to-exit
is false for every value from the cat’s current position.

(:derived (trapped)

B

(exists (7x)
(and (cat 7x)
(forall (?n) (not (distance-to-exit ?x 7n))))))

(prefer 7x ?7y) iff cat prefers moving to ?x over ?y (only
relevant if ?x and ?y are both neighbours of the cat’s current
position, but this is not tested for here). This is true if 7y
is blocked; ?x is strictly closer to an exit than ?y; or ?x and
?y are at the same distance to exit but 7x is less than 7y (i.e.,
numeric order of the nodes is used as the final tie-breaker).

(:derived (prefer ?7x ?7y)

B
B
B

B

)
H
H

H

(or (blocked ?7y)
(closer-to-exit 7x 7y)
(and (closer-or-equal-to-exit ?x ?y)
(less 7x 7y))))

(cat-moves 7from ?7to) iff ?to is the node that the cat will move to
from ?from. This is the node that is closest to an exit, or least
among the nodes the minimum distance to exit. If the cat is already
trapped, this predicate is false for all destinatioms.

(:derived (cat-moves ?from ?to)

(and (edge 7from 7to)
(not (blocked 7to))
(not (trapped))
(forall (7alt)

DOMAINS
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(or (= ?to 7alt)
(not (edge 7from 7alt))
(prefer 7to 7alt)))))

;; In the strips formulation, the blocker’s and cat’s actions alternate.

;; Blocker’s action:
(:action block
:parameters (7b)
:precondition (and (blockers-turn)
(not (cat 7b)))
:effect (and (blocked ?7b)
(not (blockers-turn))
(cats-turn))

;; Blocker’s other action (useless):
;; (:action unblock

;; :parameters (7b)

;3 :precondition (and (blockers-turn)

HH (blocked 7b))
;3 :effect (and (not (blocked 7b))
HH (not (blockers-turn))

HH (cats-turn))

;3 Cat’s action:
(:action move
:parameters (7from 7to)
:precondition (and (cats-turn)
(cat ?from)
(not (exit 7from))
(cat-moves ?from 7to))
:effect (and (not (cat 7from))
(cat ?to)
(not (cats-turn))
(blockers-turn))

B.5 Automated narrative generation

The domain:

(define (domain social-planning)
(:requirements :adl :typing :derived-predicates)

(:types locatable place - object
character item - locatable)

(:predicates

;; static properties/relations:

(man ?c - character)

(woman ?c - character)

(married 7a - character 7b - character)
(friend-of 7a - character ?b - character)
(precious ?7i - item)

(main-character ?7c - character)
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;; character traits (also static):
(is-greedy ?c - character)
(is-curious ?c - character)
(is-pursuing ?c - character)
(is-obedient ?c - character)
(is-suspicious ?c - character)
(is-jealous 7c - character)
(is-vain ?c - character)
(is-lustful 7c - character)
(is-wrathful ?c - character)
(is-evil ?7c - character)

;; state of the world:

(alive ?c - character)

(dead ?c - character)

(at ?1 - locatable 7p - place)

(has ?c - character ?7i - item)

;; state of mind:

(loves ?c - character ?d - character)

(believes-loves 7a - character 7c - character 7d - character)
;; records of passed actions:

(requested-at 7a - character ?c - character 7p - place)
(requested-has 7a - character ?c - character ?7i - item)
(gift ?from - character 7to - character 7i - item)
(killed 7a - character ?7c - character)

;3 derived predicates:

(can-see 7c - character 7?1 - locatable)

(alone-at ?c - character ?7p - place)

(motive-for-has 7a - character 7c - character 7i - item)
(motive-for-at 7a - character 71 - locatable 7p - place)
(motive-for-dead 7a - character 7c - character)
(reason-to-believe-loves 7a - character ?c - character ?d - character)
(reason-to-love 7a - character ?7c - character)

)

(:derived (can-see 7c - character 71 - locatable)
(exists (?p - place)
(and (at ?c 7p)
(at 71 ?p))))

(:derived (alone-at ?c - character ?p - place)
(forall (7d - character)
(or (not (at ?d ?p))
(= 7d 7))))

;3 7a has motive for (has 7a 7i) if 7a is greedy and 7i is precious:
(:derived (motive-for-has ?a - character 7a - character ?7i - item)
(and (is-greedy ?a)
(precious 7i)
(can-see ?a 7i)))

;5 7a has motive for (at ?7a ?p) if ?a is curiuous and a friend of
;5 7a has asked 7a to be at 7p:
(:derived (motive-for-at ?7a - character 7a - character ?p - place)
(and (is-curious 7a)
(exists (?7f - character)
(and (friend-of ?7a 7f)
(requested-at 7f 7a 7p)))))

;5 7a has motive for (has ?c 7i) if 7a is "pursuing", in love
;; with ?c, and 7i is precious:
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(:derived

;3 7a has
;3 and 7c
(:derived

;3 7a has
(:derived

53 7a has
;3 7a has
(:derived

;3 7a has
;3 and 7i
(:derived

;3 7a has
;3 and 7c

(motive-for-has 7a - character 7c - character 7i - item)
(and (is-pursuing ?a)

(loves ?7a ?c)

(precious 7i)))

motive for (has ?7c ?7i) if 7a is obedient, loves 7c,
has requested to have 7i
(motive-for-has 7a - character 7c - character 7i - item)
(and (is-obedient 7a)
(loves ?a 7?c)
(requested-has 7c 7c ?7i)))

motive for (has 7a 7i) if 7a has motive for (has 7c 7i):
(motive-for-has 7a - character 7a - character 7i - item)
(exists (7c - character)

(motive-for-has ?7a 7c 7i)))

motive for (at 7a 7p) if 7a has motive for (has 7c 7i)
?7i, and ?c is at 7p:
(motive-for-at 7a - character 7a - character 7p - place)
(exists (?c - character 7i - item)
(and (motive-for-has ?a ?c 7i)
(has ?7a 7i)

(at ?c 7p))))

motive for (at 7a ?p) if 7a has motive for (has 7a ?7i)
is at 7p:
(motive-for-at 7a - character ?a - character ?p - place)
(exists (71 - item)

(and (motive-for-has 7a 7a 7i)

(at ?i ?p))))

motive for (at 7c ?p) if ?a has motive for (has 7a ?7i)
is at 7q and 7i is at ?q and 7p != ?q (i.e., 7a is

;3 planning to steal ?i at 7p):

(:derived

;3 7a has
;3 and 7a
(:derived

;3 7a has
;3 and 7a
(:derived

;3 7a has
;3 7c has
(:derived

(motive-for-at ?7a - character 7c - character 7p - place)
(exists (7?1 - item ?q - place)
(and (motive-for-has ?a ?a 7i)
(at 71 7q)
(at ?c 79))))

motive for (dead 7c) if 7a is jealous, ?7c is the spouse of 7a,

believes ?c loves 7d:
(motive-for-dead 7a - character 7c - character)
(and (is-jealous 7a)
(not (= 7c 7a))
(exists (?d - character)
(and (married 7a 7c)
(believes-loves ?a 7c ?7d)))))

motive for (dead ?d) if 7a is jealous, ?7c is the spouse of 7a,

believes 7c loves 7d:
(motive-for-dead 7a - character 7d - character)
(and (is-jealous ?a)
(not (= 7d 7a))
(exists (7c - character)
(and (married 7a 7c)
(believes-loves 7a ?c 7d)))))

motive for (dead ?7c) if 7a is wrathful, 7a loves ?d, and

killed 7d:
(motive-for-dead 7a - character 7c - character)

147
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(and (is-wrathful 7a)
(not (= 7c 7a))
(exists (?d - character)
(and (loves ?7a 7d)
(killed ?c ?d)))))

;3 7a has motive for (at ?7a ?p) if ?a has motive for (dead ?7c)
;; and ?c is at ?p:
(:derived (motive-for-at ?7a - character 7a - character 7p - place)
(exists (?7c - character)
(and (motive-for-dead 7a 7c)
(at 7c 7p))))

;; Belief revision rules:

;3 7a may (believe-loves 7a ?c 7d) if 7a is suspicious, and ?7a observes
;5 (has ?d 7i) for an 7i that was a gift from 7a to 7c
(:derived (reason-to-believe-loves
?a - character ?c - character ?d - character)
(and (is-suspicious 7a)
(not (= ?7c 7d))
(not (= ?7a ?c))
(not (= 7a 7d))
(exists (?7i - item)
(and (gift ?7a ?c 7i)
(has ?7d 7i)
(can-see 7a 7d)))))

;3 7a may fall in love with ?c if 7a is a woman, 7a is vain,
;3 7c is a man, and 7c has given 7a something precious:
(:derived (reason-to-love 7a - character 7c - character)
(and (woman ?a)

(is-vain ?7a)

(man ?c)

(exists (?i - item)

(and (gift 7c 7a 7i)
(precious ?7i)))))

;; 7a may fall in love with ?c if 7a is a man, 7a is "lustful",
;3 7c is a woman, and ?7c is wearing ("has") something precious:
(:derived (reason-to-love 7a - character 7c - character)
(and (man 7a)

(is-lustful 7a)

(woman ?c)

(can-see 7a ?7c)

(exists (?7i - item)

(and (has ?c 7i)
(precious 7i)))))

;; Belief revision actions:
;; Beliefs can persist beyond the current state, so we need to have
;; actions that allow characters to adopt beliefs.

(:action adopt-belief-loves
:parameters (7a - character ?c - character 7d - character)
:precondition (and (reason-to-believe-loves 7a 7c 7d)
(alive 7a)
(alive ?c))
:effect (believes-loves 7a 7c 7d)

)

(:action fall-in-love
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:parameters (7a - character 7c - character)
:precondition (and (reason-to-love 7a 7c)
(not (= 7a 7c))
(alive 7a)
(alive ?7c))
:effect (loves 7a 7c)

)
;3 Character actions:

(:action take
:parameters (7a - character ?i - item ?p - place)
:precondition (and (or (main-character 7a)
(motive-for-has 7a 7a 7i))
(alive 7a)
(at 71 7p)
(at 7a 7p)
(alone-at ?7a 7p))
:effect (and (not (at ?i ?p))
(has 7a 7i))

(:action drop
:parameters (7a - character ?i - item ?p - place)
:precondition (and (or (main-character 7a)
(motive-for-at 7a ?i ?p))
(alive 7a)
(has 7a 7i)

(at 7a ?p))
:effect (and (not (has 7a ?7i))
(at ?i ?p))

(:action give

:parameters (7a - character ?c - character ?i - item 7p - place)

:precondition (and (or (main-character 7a)
(motive-for-has ?7a 7c 7i))
(alive 7a)
(alive 7c)
(has 7a ?7i)
(at 7a ?p)
(at ?c 7p))
:effect (and (not (has 7a 7i))
(has ?c ?7i)
(gift 7a 7c 7i))

(:action goto
:parameters (?a - character ?p - place ?from - place)
:precondition (and (or (main-character 7a)
(motive-for-at 7a 7a ?p))
(alive 7a)
(at 7a ?from)
(not (= ?7p 7from)))
:effect (and (not (at 7a 7from))
(at 7a ?p))

;5 Although he is evil, Iago is too cautious to kill other
;3 characters himself...
(:action kill

:parameters (7a - character ?c - character ?p - place)

149
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:precondition (and (motive-for-dead 7a 7c)
(alive 7a)
(alive ?c)

(at 7a ?7p)

(at ?7c 7p))

:effect (and (not (alive 7c))
(dead 7c)

(killed 7a 7c))

;; Communicative actions. Note that requests (as modelled here) are
;; not made to a specific character.

(:action request-at
:parameters (7a - character ?c - character ?p - place)
:precondition (and (or (main-character 7a)
(motive-for-at ?7a ?c 7p))
(alive 7a)
(alive ?c))
:effect (requested-at 7a 7c 7p)

)

(:action request-has
:parameters (7a - character ?c - character 7i - item)
:precondition (and (or (main-character 7a)
(motive-for-has ?7a ?7c 7i))
(alive 7a)
(alive ?7c))
:effect (requested-has 7a 7c 7i)

)

An instance (corresponding to Iago’s problem):

;; An instance of the social planning domain, based on Iago’s problem:
;3 How to make Othello kill Desdemona and then die?

(define (problem Iago-2)
(:domain social-planning)

(:objects

Iago Othello Emilia Desdemona Cassio - character
handkerchief - item

garden bedroom residence palace - place

)

(:init

(man Iago)

(man Othello)

(woman Emilia)

(woman Desdemona)

(man Cassio)

(married Iago Emilia)
(married Emilia Iago)
(married Othello Desdemona)
(married Desdemona Othello)
(friend-of Cassio Iago)
(friend-of Othello Iago)
(friend-of Desdemona Emilia)
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(precious handkerchief)
(loves Emilia Iago)
(loves Othello Desdemona)
(loves Desdemona Othello)
(is-curious Othello)
(is-jealous Othello)
(is-suspicious Othello)
(is-wrathful Othello)
(is-curious Cassio)
(is-greedy Cassio)
(is-lustful Cassio)
(is-wrathful Cassio)
(is-obedient Emilia)
(is-vain Emilia)
(is-curious Desdemona)
(is-obedient Desdemona)
(is-evil Iago) ;; MUHAHAHAHA!!
(main-character Iago)
(alive Iago)

(alive Othello)

(alive Emilia)

(alive Desdemona)

(alive Cassio)

(at Iago garden)

(at Othello palace)

(at Desdemona bedroom)
(at Emilia garden)

(at Cassio residence)

(at handkerchief bedroom)
(gift Othello Desdemona handkerchief)
)

(:goal (and (killed Othello Desdemona)
(dead Othello)))
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