
Structural Decentralised Control of 

Concurrent Discrete-Event Systems

Sang-Heon Lee

B.Sci Inha Univ./ M.EngSci Univ. of New South Wales

September 1998

A thesis submitted for the degree of Doctor of Philosophy 

of The Australian National University

Department of Systems Engineering 

CRC for Robust and Adaptive Systems 

Research School of Information Science and Engineering 

Australian National University



Statement of Originality

These doctoral studies were conducted with Professor John. B. Moore as supervisor, and Dr 

Kai Wang and Robert E. Mahony as advisors.

The work presented in this thesis is the result of original research, and has not been sub­

mitted for a higher degree in any other university or educational institution.

Sang-Heon Lee 

September 1998



Acknowledgements

I wish to thank firstly my supervisor Professor John Moore for his support and encour­

agement. I am specially grateful to Dr Kai Wong for his ideas, comments, many enjoyable 

discussions and his inspiration on the subject of this thesis. I also would like to thank Dr. 

Robert Mahony and Professor Iven Mareels for their ideas and comments on the areas in adap­

tive control. I am also grateful to Leonardo Kammer and Robert Orsi for their friendship and 

good advice on LaTeX and Matlab. With them, I feel more comfortable during my study.

I wish to thank Professor Murray Wonham from the University of Toronto for the TCT 

software which is used for synthesising supervisors throughout this thesis. I also would like 

to thank Dr. Jayantha Katupitiya from University of New South Wales, my master degree 

supervisor, for his encouragement and good advice. I would like to acknowledge the financial 

support from ANU graduate school and CRAsys.

I also would like to thank my family in Korea, especially my brother Sang-Tag Lee, for 

their spiritual support. I wish to thank my wife Eun-Joo Chong Lee for her persistent sup­

port and love. Finally, without smiles and endless implicit encouragement of my daughter, 

Nara Jee-Hyong, and my son, Joshua Min-Hyong, this thesis surely would not exist. Their 

understanding, support and especially patience are the most important stimuli during my study.



Abstract

In this thesis, within the framework of supervisory control theory, structural decentralised 

control of DES is investigated. Firstly, we have found two structural conditions, under which 

the distributivity of the control synthesis operator over the synchronous composition holds. 

That is, under these structural conditions, for a set of local requirements the concurrent actions 

of local decentralised controllers will achieve the global control objective and the control for 

one system does not cause blocking in the other subsystems. By achieving these two structural 

conditions, there may be an exponential saving of the computational efforts. Secondly, we have 

shown that under similar structural conditions, a coordination scheme can be used to solve some 

rescheduling problems among local plants. Thirdly, we have developed algorithms to modify 

the system structure, if that is possible, so that the resultant systems will possess the desired 

structural properties. Finally, we illustrate our result with a cleaning-in-place (CIP) process for 

a multipurpose, multiproduct batch plant. Using our results, a decentralised solution for the 

control of the CIP process is obtained.

Appendix contains the result of the first year of my degree, which is not related to the 

main subject of this thesis. In this appendix, a non-linear approach of model reference adap­

tive control is presented. Using a non-Euclidean gradient descent algorithm with respect to a 

Riemannian metric, we have shown that how a Riemannian metric can be chosen so that the 

modelled plant dynamics do in fact match the true plant dynamics. Simulations show that the 

proposed scheme can achieve faster asymptotic convergence of parameters when compared to 

a traditional model reference adaptive control scheme using the classical sensitivity derivatives 

(Euclidean gradients) for the descent algorithm.
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Chapter 1

Introduction

1.1 Discrete Event Systems(DES)

Conventional control systems are usually described by differential equations, where the changes 

of underlying (continuous) state variables are continuously specified over time. However, over 

recent decades there is a growing need for dynamical models of systems whose behaviour is 

characterised by asynchronous, discrete and qualitative changes of state values with abrupt 

occurrences of events over time rather than by ticks of a clock. Unlike the conventional time- 

driven system, the micro-changes between event occurrences have no visible effects on the 

system, thus they are ignored. A useful example is a manufacturing plant with several ma­

chines to process different parts for a final product. This system may be adequately described 

by ‘start processing part A’, ‘transfer part A to an assembly line’ and ‘when machines A and B 

breakdown at the same time, then fix machine B first before fixing machine A’, etc. The main 

parts of such sentences are phrases: start-processing-part, transfer-part, machine-brokedown, 

machine-fixed, etc. These phrases indicate the occurrences of certain discrete events without 

mentioning micro-changes such as ‘the amount of metal cut’. So, the fundamental difference 

between these systems and the conventional control systems is that they only describe the 

orderly changes of behaviours but indicate no information about the real time at which the 

changes occur. This feature leads us to the new area of dynamic systems, called ‘discrete event

1
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systems’. Abstractly, Discrete Event System (DES) is a dynamic system that evolves accord­

ing to the abrupt occurrences of physical events at possibly unknown irregular time intervals. 

DES modelling is finding more applications on computer networks, automated manufacturing 

systems, intelligent communication networks, and air traffic control systems, etc.

In the past, DES has been sufficiently small so that intuitive or ad-hoc solutions to various 

problems have been considered adequate. But due to the rapid application of computer tech­

nology to these systems, the significant increase of complexity requires more formal methods 

for the analysis and design of DES. The developments of DES methods vary due to the many 

areas in which DES arises and the different aspects of behaviours in each area. The most basic 

methods are based on the assumption that ignores the time of occurrences of events and con­

siders only the order in which they occur. This leads to ‘logical DES models’. Some examples 

of this approach are finite state machine [RW87a, RW87b, WR87, CDFV88, RW89, WH91], 

or Petri-nets [Pet81, Den88, IH87, HK90]. However, in some applications the timing informa­

tion is crucial, and must be included in the model. This leads to ‘timed model.’ This can be 

further classified as nonstochastic and stochastic models. The formalisms belong to this class 

are timed Petri-nets [DA94], the max-algebra [CDQV85, CMQV89, BCOQ92], timed finite 

state machine [OW90, BW94], queueing networks [Haj84, LK84, RVW82], and perturbation 

analysis [HC83, GG90, HC91], etc.

Each of the above approaches has its own problem of interests and limitations. So no 

method can satisfy all problems of the modelling and analysis of DES. In this work we focus 

on the approach using finite state machine initiated by Ramadge and Wonham [Ram83, RW87b, 

RW89] l. Their approach has one important feature. Since it treats the concept of open-loop 

plant and the feedback control separately, it allows us to evaluate and compare the effect of 

different control policies on the behaviour of the ‘uncontrolled’ system. Hence it permits the 

formulation and solution of a variety of control synthesis problems.

'This approach is usually called the ‘Supervisory Control Theory’ of discrete event systems.
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1.2 Literature Survey

The Supervisory Control Theory of DES was proposed by Ramadge and Wonham [RW87b, 

RW87a, WR87]. Briefly, in this approach, a DES to be controlled (a plant) is modelled as an 

automaton, called a generator. This generator is interpreted as a device that executes its state 

transitions spontaneously and outputs the corresponding transition or event label. In this way, 

the DES is said to generate a set of finite sequences of event labels (called languages). The be­

haviours of a DES are modelled by the languages that it generates. The control is implemented 

by disabling a subset of events and hence preventing them from occurring using an external 

controller (called a supervisor). A control requirement for this plant DES is given by the lan­

guage generated by another automaton. This language is often called a specification language. 

The idea is to synthesise a controller which enables or disables events depending suitably on 

past behaviours of the generating plant DES so that the behaviour of the resulting closed-loop 

system (the language generated by the plant DES under supervision) could be made to satisfy 

the given requirement, i.e., the closed-loop behaviour is a subset of the specification language. 

It is often possible to construct a supervisor to meet the specification in an ‘optimal’, that 

is, minimally restrictive, fashion using the concept of the supremal controllable sublanguage. 

Conditions for the existence and method for the calculation of such a supervisor are given by 

Wonham and Ramadge [RW87b, WR87].

Computational problems in DES are usually complex. The computational complexity to 

synthesise supervisors is polynomial in terms of state sizes of the generators representing 

the plant behaviours and specifications (see [WR88]). However, since the system is usually 

composed of a number of components, the effort to compute a supervisor increases exponen­

tially with the number of components [Ram88, RW89]. To overcome this problem, within 

this framework, modular control [RW87a, WR88], decentralised control [LW88a, CDFV88, 

WH91, RW92], and hierarchical control [ZW90] have been proposed and studied.

Modular approach in this framework provides a way to synthesise supervisors more effi­

ciently. In [RW87b], a modular approach to the synthesis of feedback controls for maintaining 

logical invariants is investigated. A companion paper [WR88] examines the modular synthesis 

of supervisors when the control task is split into several subtasks. For each subtask, a subcon-
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troller is designed using the existing theory, and the resultant subcontrollers are combined to 

form a solution for the original problem. To ensure that the supervisor that is synthesised mod- 

ularly is nonblocking, it is necessary to check that subcontrollers are nonconflicting [WR88].

In decentralised supervisory control, instead of a single global supervisor, there are several 

local supervisors that operate concurrently. Each local supervisor observes and controls only a 

subset of the events of the global system. In [CDFV88], a necessary and sufficient condition 

was introduced to guarantee that the decentralised control scheme achieves the global optimal 

behaviour. Authors in [LW88a] consider the following situation in decentralised control: spec­

ifications are given on local models of a global process and supervisors are synthesised locally. 

The problem of interest is to find conditions under which the concurrent operations of these 

local supervisors are equivalent to a global supervisor synthesised for the overall requirements. 

Sufficient conditions for the decentralised supervisors to obtain the same optimal behaviour as 

in the centralised case are presented. Decentralised supervisory control is further investigated 

in [RW92] by considering problem formulations that model systems whose specifications are 

given as global constraints but whose solution is described by the local controllers. In [WH91] 

authors investigate decentralised control in a more structural situation, namely when the global 

system G is composed of a number of subsystems G i, G 2, • • • , G n, operating concurrently. 

Suppose that for each subsystem there is a local supervisor that observes and controls only the 

corresponding local events. For a global specification on G, a necessary and sufficient condi­

tion is given for the concurrent controls of a set of local supervisors on the G ;’s to obtain the 

optimal behaviour of a global supervisor. Some guidelines for the construction of decentralised 

solutions from centralised ones are proposed in [KW95]. Authors in [LW90, Lin91, WW96c] 

introduce a concept of coordination. After decentralised local supervision has been established, 

a second or ‘higher’ level of supervision is added to supervise the coordination among lower 

level subsystems. In [WvS96], authors investigate a problem of existence of communication 

channels between two decentralised supervisors for implementing a supervisory control.

Finally hierarchical aspects have been considered within the RW framework [ZW90]. The 

concept is that the process model is split into two hierarchical layers, with communicating 

supervisors applied to both. The top layer (the manager) views an abstracted process model 

derived from the bottom layer(the process) according to a set of vocalised states. High level
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control instructions are passed down to an agent supervising the actual process. The concept 

of hierarchical consistency is introduced by which the information sent up from the process is 

timely and sufficiently detailed for various critical low level situations to be distinguished.

Control under partial observation is introduced in [LW88b, CDFV88]. This is the situation 

in which the supervisor does not see all the events of the plant but only a proper subset of 

observable events. Events in the system model would not be observable by the supervisor due 

to the absence of sensors or due to limitations on communication. For the generalisation of the 

controllability theorem with partial observation, the concept of the observability is introduced 

in [LW88b].

Recently, a control theory of timed discrete event systems(TDES) with its own control 

mechanism is developed in [Bra93, BW94]. The passage of time is modelled with a special 

event tick, representing the tick of a dock. In addition to the provision that certain events are 

controllable, another means of control is ‘forcing’; a forcible event can be used (by the supervi­

sor) to preempt a tick event and hence models the situation in which an action is forced to occur 

within certain time limits. Even though the control mechanism is somewhat different in the time 

setting, the class of controllable languages shares with the standard theory certain key algebraic 

properties such as closure under (arbitrary) union. Brandin and Wonham [BW94] generalised 

the concepts of controllability and maximally permissive supervisory controls to timed DESs. 

With time modelled explicitly, the computational complexity of TDES is inevitably increased. 

Thus the architectural approaches mentioned above could be used in the time setting to ren­

der the complexity problem more manageable. To this end, the modular, decentralised and 

hierarchical control were extended to the timed framework in [Bra93, WW96b].

More recently, other control problems have been investigated. In the papers [Ove94, 

YLA95, HL96, HL98], the authors extend supervisory control theory for the control of sys­

tems modelled as nondeterministic finite state machines. Nondeterministic finite state ma­

chines may result from the projection of the continuous parts of a hybrid process model onto a 

discrete model. Li and Wonham [LW93, LW94] consider the control of Vector Discrete Event 

Systems(VDES). VDES is the system in which states are represented by vectors with integer 

components and state transitions by integer vector addition. Also, limited lookahead policy
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[CLL92] and adaptive and robust supervisory control [Lin93] are studied in this framework.

An application of supervisory control theory employing automated toy trains and cranes 

is reported by Leduc [Led96]. Model reduction techniques are developed to solve the state 

explosion problem so that controllability of modular supervisors can be established. Lauzon et 

al. [LMMB96] report another application to a laboratory scale robotic workcell. Importantly, 

in this work, the authors present an automatic generator of ladder logic code from finite state 

machines. Also other various applications of supervisory control theory have been addressed in 

the areas of database management [Laf88], communication protocol [RW90], workcell control 

[BBW91], robotics [KB94, RSR95], and manufacturing systems [BHG+90, WBS96].

1.3 Motivations

Our basic motivation is the same as that of some other works in modular and decentralised 

control (e.g., [WR88, LW88a, WH91]), namely, to investigate methods to overcome the com­

plexity problem. However, our approach is different from these works. In all the existing 

works, the conditions, which guarantee that decentralised control achieves the same behaviour 

as centralised control would, are specification-dependent. That is, the conditions have to be 

verified for each given specification. In our approach, we are seeking conditions which are ‘not 

specification-dependent’. That is, once those conditions have been verified, then decentralised 

control is achieved for a set of specifications. We will call this approach ‘structural decen­

tralised control’ to distinguish it from other works. A similar approach [Als96] is also taken in 

a slightly different control framework, called Procedural Control Theory [San96].

One of the advantages of this structural approach is the following. Assume that the effort 

of computing decentralised supervisors is less than that of synthesising a centralised supervi­

sor. In a specification-dependent approach, the effort of verifying the conditions is incurred 

for each new specification. To justify this approach, one needs to ensure that the effort of de­

signing decentralised supervisors and verifying the conditions is less than that of computing a 

centralised supervisor. For example in [WR88], such an analysis is carried out. But in other 

works in decentralised control, it is not clear whether one can generally achieve savings in
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computational effort. However, in the structural approach the effort of verifying or establishing 

the conditions is incurred only once. Thus, if the established structure is used for a sufficiently 

large number of specifications, structural decentralised control will generally provide savings 

in computational effort.

In the paper [WR88], the authors consider the situation in which the legal specification 

can be decomposed into an intersection of partial specifications, and determine conditions un­

der which it is possible to synthesise the appropriate control for the overall specification in 

a modular fashion. If we use an operator, denoted n in this thesis, to represent the process 

of synthesising a least restrictive supervisor, then they show that under certain conditions the 

distributivity of the control synthesis operator n over the language intersection holds. Here we 

are seeking conditions under which an equivalent property in decentralised control framework, 

i.e, the distributivity of k over the synchronous composition of languages, holds. Consider a 

number of DES plants G i, G 2, • • •, G n. Let k( G E t) denote the function of synthesising 

the optimum supervisor for G z and a given specification DES E,-. So the main question of this 

thesis is:

Under what structural conditions, i.e., the conditions on the G t ’s, is it true that for any 

specification E i on Gi (i = 1 ,  2, • • • , n),

k(G! II G 2 II • • • ||G n, E , IIE2 II • • • ||E„) =  k(G !, E ,)  || k(G 2, E 2) || • • • || k(G„, E„),

where | | denotes synchronous composition ?

Recall that the complexity of computing a supervisor increases exponentially with respect 

to the number of components in the plant. By achieving the above equation, one could have 

exponential savings in computational complexity.

Having obtained the conditions for the above question, the next natural question is:

For given G; ’s, how can the conditions be arranged ?

This thesis mainly addresses these two questions.
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1.4 Contributions and Outline of the Thesis

The main contributions of this thesis are : we have

1. obtained structural properties to guarantee that the distributivity of the control operator 

k  over synchronous composition holds(Chapter 3).

2. investigated a coordination and decentralised control architecture (Chapter 4).

3. developed procedures to arrange the structural properties for distributivity (Chapter 5).

Chapter 2

This chapter contains a brief review of some basic concepts in a theory of supervisory control 

of discrete event systems that are used throughout this thesis.

Chapter 3

This chapter contains the main conceptual idea of this thesis. In Section 3.2, we formulate a 

problem of decentralised control of concurrent discrete event systems. We consider the system 

as the synchronous composition of a number of subsystems as in [WH91]. The local specifica­

tion languages are generally non-prefix-closed. The problem is to find conditions under which 

the concurrent actions of decentralised supervisors will achieve the global optimality, and con­

trol of one system never causes blocking in the other subsystems. As we will see, this problem 

can be seen as that of achieving the distributivity of the control synthesis operator k over syn­

chronous composition. In Section 3.3, we establish two sufficient conditions on the system 

structure and their shared events so that decentralised control in the above sense is achieved, 

for any local specification languages closed relative to the marked behaviours of the subsys­

tems. The first condition, called the shared-event-marking condition, is mainly concerned with 

‘marking’ in subsystems. This condition roughly says that the states before the shared events 

in each subsystem should be marked. Intuitively this may mean that the subsystems have com­

pleted their respective tasks and are ready for the synchronisation. The second condition, called 

the mutual controllability condition, says that a subsystem is able to track any uncontrollable 

shared event that could occur in the other subsystem. As we will see in a more detailed anal-
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ysis, by achieving these two structural conditions there may be an exponential saving of the 

computational efforts involved.

Chapter 4

In this chapter, we show how coordination can be used to solve some rescheduling problems 

among local plants. The coordination plant model consists of only the shared events among the 

subplants. For a specification on the coordination plant, the corresponding supervisor, called 

a coordinator, can be designed. We show that under structural conditions similar to the ones 

in Chapter 3, the combined actions of the coordinator with the existing local supervisors will 

satisfy some rescheduling requirements. For different tasks, different coordinators can be de­

signed. Again we note that the conditions are structural. So, once established, the coordination 

architecture can be used for a number of tasks.

Chapter 5

In this chapter, we have developed procedures to modify the system structure, if that is possible, 

so that the resultant systems will possess the desired structural properties. For the shared-event­

marking condition, we mark the state before a shared event if that state is not already marked. 

For the mutual controllability condition, uncontrollable shared events are selflooped to the 

necessary states.

Chapter 6

In some applications, we found that the shared-event-marking condition may be too ‘strong’, 

namely that too many states have to be marked. So, in this chapter, we develop two ways to 

relax this condition. Here we consider a global system consisting of two subsystems. In Sec­

tion 6.3, we show that if local supervisors are bisimular with each other and with the marked 

behaviour of the other plant, then decentralised control can be achieved. In Section 6.4, we 

describe how an observer property is used to relax the condition. In both cases, the mutual 

controllability condition still remains as a structural condition. However, the conditions that 

replace the shared-event-marking condition now become specification-dependent. We still al­

low local specification languages to be non-prefix-closed.
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Chapter 7

In this chapter, we apply our results to a cleaning-in-place (CIP) process for a multipurpose, 

multiproduct batch plant. In most chemical processes, the model for each component is usually 

simple. However, the overall system generally consists of many components and thus is very 

complex. For example, the plant model for the CIP process has 5.0 x 108 states. Using our 

results, decentralised solution for the control of the CIP process is obtained.

Chapter 8

This chapter contains conclusions and suggestions for future research.

Appendix

In this appendix, the result of the first year of my degree, which is not related to the main sub­

ject of this thesis, is presented. Here, we develop a new non-linear approach to the design of 

adaptive control scheme based around the use of a non-Euclidean gradient descent algorithm 

with respect to a Riemannian metric. It is shown that how a Riemannian metric can be chosen 

so that the modelled plant dynamics do in fact match the true plant dynamics. The approach is 

demonstrated by a case study of a simple single-pole and no zero, linear, discrete-time plant. 

The performance of the proposed scheme is compared to a traditional model reference adaptive 

control scheme using the classical sensitivity derivatives (Euclidean gradients) for the descent 

algorithm. Simulations show that the scheme described in this appendix offers faster asymp­

totic convergence of parameters and more flexibility in the transient response of the closed-loop 

system. The key contributions are: the formulation of the gradient descent algorithm in such a 

way as to incorporate the true plant dynamics and the development of a criterion and a method 

to determine suitable positive definite matrices for the adaptation mechanism. Further work is 

required to investigate stability issues as well as the generalisation to continuous-time plants 

and more general system models.



Chapter 2

Preliminaries

In this chapter we recall some basic concepts in supervisory control theory of discrete-event 

systems using automata and formal language models, pioneered by Ramadge and Wonham 

[RW87b, RW89]. In Section 2.1, the basic DES model is presented. In Section 2.2, we recall 

the ideas of product and synchronous composition for combining several DES into a single 

DES. In Section 2.3, the concept of controllable languages and some basic control problems 

are presented. In Section 2.4, a way of implementing the supervisory control using automata 

is discussed. In view of complexity in the control of DES, two solutions, modular and decen­

tralised control syntheses, are presented in Section 2.5 and Section 2.6, respectively. Finally, 

in Section 2.7 we present some simple facts which will be used later in this thesis.

2.1 Formal Description of Discrete-Event Systems

2.1.1 Representation of DES

In the supervisory control approach [RW87b, Won96], an uncontrolled DES is modelled by an 

5-tuple automaton, called a generator 1,

G =  (Q, £ , <5, q0, Qm) ,

'A lso the term finite state machine or deterministic finite automaton is often used in the literature.

11
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where Q is a set of states (we assume that Q is finite),

E is a finite set of event labels, often called an alphabet,

8 : Q X E — > Q is a (partial) state transition function, 

Qo £ Q is the initial state,

Q m C Q is a set of marker states.

The transition function 8 is generally a partial function, meaning that, for each q £ Q , £(cr, g) 

is defined for a (possibly proper) subset Eg  (q) C E that depends on q. We call E q (<7) the 

active event set at the state q of a given generator G. Formally, a transition or event of G is a 

triple of the form (q , <r, q ) ,  where 8(q, o ) =  </, and q, q €. Q are respectively the ejaY state 

and the entrance state, while a  £ E is a event label. The event set of G is the set of all such 

triples. A DES G starts in the initial state qo, executes transitions according to 8, and produces a 

sequence of events. Events are considered to occur spontaneously, asynchronously (not clock- 

driven) and instantaneously. G is thought to be nondeterministic in the sense that more than 

one event may be available for a given state. However, it is assumed to be deterministic in the 

sense that a distinct event exiting from a given state always have a distinct label. For brevity 

we shall often refer to ‘the event <r\ meaning any or all events (transitions) that happen to be 

labelled by o.

The behaviours of a process G are modelled by sets of finite sequences of events generated 

by G. Formally they are languages. Let E+ be the set of all finite strings of event labels in 

E. Let E* =  E + U {c}, where e ^ E represents the empty string, the string with length 0. 

Any subset of E* is a language over E (see, e.g., p. 17 of [Lin96]). The transition function is 

inductively extended to strings as 

8 : Q x E* — Q

according to

8(q,e) =  q 

and

% ,s<r) =  8(8(q,s) ,a)

whenever both q' := 8{q, s) and 8(q', o) are defined.
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The languages associated with G are the closed behaviour of G  

L (G) {s 6 S* I 6(go, s) is defined },

and the marked behaviour of G

-^m(Gr) := { s  G L (G) | 8(qo, s ) G Qm}•

The language L(G) is the set of all possible finite sequences of events that G can generate from 

the initial state q0. While Lm(G) C L (G) is a subset of these sequences that reach marker 

states, perhaps representing completed “tasks” carried out by the physical process that G is 

intended to model. Note that there is no implication that the generating action by the generator 

halts after the completion of some marked sequences, i.e., it is not necessarily for the marker 

states of G to be the “final” states.

Next, it is usually convenient to eliminate the states of G which can never be reached from 

qo. The set of reachable states, denoted by Qr C Q, is defined to be

= {? eQI(3s€ S') %o, «) = ?}•

DES G is called reachable if Qr =  Q. A state q of G is said to be coreachable if a marker 

state is reachable from q. Formally, the set of coreachable states Qcr C Q is defined by

Qcr —  {q €  Q\ (3s G £*) <$(<7, s) G Qm}-

The generator G is coreachable if Qcr =  Q. If G is both reachable and coreachable, it is 

called trim. Every transition structure has a unique trim structure [Eil74, Sec. 3.5].

To introduce control to DES G, it is assumed that a subset of events can be disabled (pre­

vented from occurring) and enabled (permitted to occur) by some control agent(s) whenever 

desired. These events £ c C £  are controllable events. The remaining events £ u := £  — £ c are 

uncontrollable events. It may be thought that since uncontrollable events cannot be prevented 

from occurring, they can be considered as always enabled. How a given event is chosen as an 

uncontrollable event usually depends on the designer’s point of view. However, some events 

in the following cases would be modelled as uncontrollable events: the event is inherently 

impossible to prevent from occurring (a failure event such as machine breakdown, accident),
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the event models some changes of sensor reading, or the event represents the expiration of a 

specified time period.

Remark 2.1 We explain how a generator can be used to represent a language. The starting 

point is that a generator is a device that generates a language according to a specified set of 

well-defined rules. The basic question is: Can we construct a finite state automaton (we call 

a generator) that generates a given language? The answer is ‘yes’ if the language is regular 

(for details see [Cas93, Chapter 2], [Lin96, Chapter 2]). That is if a language is regular, then 

it can be generated by a finite state automaton; and if a language is generated by a finite state 

automaton, then it is regular. Therefore, it is always possible to represent a regular language 

with a finite state automaton2. O

A DES can be represented by a transition graph in which the nodes of the graph represent 

the states and the directed branches (arrows) represent the events. In a transition graph, the 

initial state is labelled with an entering arrow (— k>), and a marker state is labelled with an 

exiting arrow (o — >). A double arrow (04— >) represents that the initial state is also a marker 

state. An event is described by an arrow from an exit state to an entrance state. An arrow with

a tick (—h>) represents a controllable event, while an arrow without a tick (---->) represents

an uncontrollable event.

Example 2.1 Consider a simple DES representing a timer called T30 as shown in Figure 2.1. 

The system is comprised of four states Q = { /, i?, 7/, E}  for ‘idle’, ‘released’, ‘held’ and 

‘expired’, respectively. The initial state is q0 = I  and the marker states are Qm = { /, E}.  

The controllable events are £ c =  {fi\ , ^ 2 , H3 , while the uncontrollable event is =

{^ 5 }. The operation of T30 proceeds as follows. Starting from the initial state / ,  T30 executes 

a sequence of events according to its transition graph. The event h 1 is a controllable event. So if 

Hi is enabled by an external agent, T30 can execute the transition (/, /i1? R ) which represents 

‘release the timer’. In the state R , either the transition (i?,/u2 ,7F) (representing ‘hold the 

timer’) or (/?,/z5, E)  (representing ‘timer expired’) may occur. However, T30 can select just

2Note that it is always possible to present any language by an automaton (maybe with a infinite state set) 

[CL095]. However, if the language is regular (which is the case we consider in this thesis), it can be represented 

by a finite state automaton.
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—  M-1

Figure 2.1: A simple DES T30

one of them. Note that since p 5 is uncontrollable, this event is always possible. Since all the 

states are reachable and coreachable, T30 is trim. The closed behaviour of T30 is 

L(T30) =  ‘

The marked behaviour is

-^m(rf'3 0 ) — { C  A^l/^5) P 1 P5 P 6 1  /^l/^2/^'3/^'5> /-^l/^2/^4? ’ * ’ }• ^

2.1.2 Closure and Nonblocking Properties

For two strings s, u E £*, s is a prefix of u if there is a string v E £* such that u = sv. Let 

H  C £* be an arbitrary language. The prefix closure of H , denoted H, is the set of all prefixes 

of strings in H, formally defined by

H = {s € £* I 3u G £* such that sv E H }.

The language H  C £* is closed if H = H. Let F  C H  C E*. Then, the language F  is said to 

be H-closed if

F = F DH.

Thus, a sublanguage F of H  is F-closed if and only if any prefix of F which is also a string 

of H  should be a string of F. Let F// be the set of all F-closed languages.

A system is said to be blocked if it can no longer complete its tasks. There are two typical 

types of blocking in this framework. One case is that if an automata G is reached a state
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q where Eg (</) =  4> but q ^ Qm, this is called deadlock because no further event can be 

executed. The other case is when there is a repeated cycle of unmarked states in G without the 

events going out of the cycle. If the system falls into such a situation, this is called livelock. 

Even though the system can always execute an event, it can never complete its tasks. In both 

case, the system is not able to reach the marker states. The problem of avoiding blocking is 

an important issue in DES. The concept of nonblocking is introduced to capture this notion 

[RW87b]. Let H  C E*. Then a language F  is nonblocking with respect to H  if 

F = F D H .

Namely, a language F  is nonblocking with respect to H  if any string in the closure of F  can 

always be extended to a string in H  within the closure of F. If F  C H , then F  is nonblocking 

with respect to H.  It is also clear that if F  is H -closed, then it is nonblocking with respect to 

H.  We say that G is nonblocking if L(G) is nonblocking with respect to Lm(G), i.e.,

L(G) = Lm(G).

In other words, if G is nonblocking then every reachable state of G is coreachable.

The following example illustrates the concepts of closed languages and nonblocking.

Example 2.2 Let a generator G be as displayed in Figure 2.2. Let H be the marked behaviour

Figure 2.2: An example for closure and nonblocking

of G, i.e. H = {c, a ß , aß^}.  Then H =  {e, a, aß, aß j } .  Since H ^  H,  the language H  

is not closed. To find the set of all H -closed languages, Tu,  let Fi := {e, aß}  C H.  Clearly 

Fi = {6, a, aß}  and fl H = F\. So Fi is a member of Tu.  Now let F2 {®ß} C H.  

Then F2 = {e, a, aß}  and F2 fl H = {e, aß}  /  F2. So F2 is not a member of Tu-  Similarly, 

the set of all //-closed languages can be found: T u  = {{e}, {e, aß},  {e, aß, aß^}}.

To illustrate the concept of nonblocking, let K\  =  {e, aß}.  Hence K\ = {e, a, aß}  and 

K i fi H = {e, aß}  =  K\  (//-closed). Thus K\  n H = {e, a, aß} = K i which shows that
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K i is nonblocking with respect to H. To give a negative example, let K 2 =  {«}• Then 

K 2 =  {e,«}, A2 H =  {e}, and K 2 fl H = {e} /  Ä'2. So Ä'2 is not nonblocking with 

respect to H. Since the string a in I i 2 cannot be extended to a string in H  within K 2, it is 

blocked at the state iA 2\  O

2.2 Projection and Products of DES

It is often required to combine several DES into a single, more complex DES. Such cases arise 

naturally when the modelling of control problems involves the coordination or synchronisation 

of several DES. In this section, we describe two ways to combine DES. For this, firstly we 

introduce the union, intersection and concatenation of two languages L (G i) and L(G2) as 

follows, where both languages are subsets of E*:

o Union: L(G i) U L (G 2) =  {s G E* | s G L (G i) or s G L (G 2)},

o Intersection: L(G i) n  L (G 2) =  {s G E* | s 6 L (G i) and s G L(G2)},

o Concatenation: L(G i)L(G 2) =  {s G E* | s =  s \s 2, S\ G L (G i) and s2 G L(G2)}.

Then we define the natural projection. Let Ei and E2 be two event alphabets, not neces­

sarily disjoint, i.e., E i fl E2 /  <t>. Let E =  Ei U E2. Define the natural projection 

P i : E* —* E* (for i =  1, 2),

according to

P i ( t )  = €,
f a  if cr G Ei,

Pi(<7) = )
I e otherwise,

Pi (so) = Pi (s)Pi (a ) ,

for s GE* and a G E. The action of pi on a string s G E* is just to erase all the elements a  of 

s which do not belong to E

Example 2.3 Let Ei =  {o', ß}  and E =  {a, /?, 7, ^}. The natural projection p\ : E* — > E^ 

is given
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P i (0  =  c> P i { a )  =  a ,  pi(ß) =  ß,

Pi(7) = U pi($) = £, pi(s<r) = pi(s)pi(<r),

for s £ £* ander £ £. For example, pi ( a ^ o ^ )  =  pi(a:)pi(/3)pi(7)pi(c*)pi(<$) =  a/Jcf. 

Notice that due to p\(y)  =  pi(£), we can no longer distinguish the events 7 and 5 when 

observing only the outputs of p \ . O

Now we introduce two ways of combining DES; one is the product, denoted x, and the 

other is the synchronous composition, denoted | | . The product is called completely syn­

chronous composition, while the synchronous composition is often termed parallel compo­

sition [CL095].

Consider two automata defined as

G i  =  (Q\,  S i ,  <$i, <710, Q i ,m )>

G 2  =  ( Q 2 ,  £ 2 ,  <720, Q 2 , m ) -

Let the active event sets be, for q\ £ Q\ and q2 £ Q2,

^ g x(Q\) = {tr I (^1, cr) is defined}, and £ g 2(<?2) =  I £2(42,cr) is defined}.

The product of G i and G 2 is given by

G l X G2 =  Rch(Q  1 X Q2, £1 n  £2, £1 X 82, (</io, q2o)i Ql,m X Q2,m), 

according to

r r ,, , \ \ (6i(qu<r),h(q2,<r)) if a £ £ Gl (qi) n  £ q 2 fe ) ,
<h X 82({qu q2),(j) = <

I undefined otherwise,

where Rch{• • •) means the reachable component of an automaton. In the product, only the 

transitions of two automata with common event labels are permitted to occur and they should 

occur simultaneously. It can be verified that the closed and marked behaviours of the product 

are

i ( G i X G j )  = L ( G i ) n t ( G 2),

^m (G[ x G 2) = Lm(G i) n Lm(G 2).



19 2.2. PROJECTION AND PRODUCTS OF DES

The synchronous composition is defined by

G l || G2 =  Rch(Q  1 X Q2, 'El U E2, #12, (910? 92o), Ql,m X Q2,m),

according to

<*12((9l>?2),<7)

(Si(qi,<r),fa{q2,<r)) if o- C E G l(91) O S g 2(92), 

(#1 (91,(7), 92) if er G E Gl (91) & ^  ̂ E2,

(91,^2(92,^)) if <j G E q 2 (92) & <7  ̂ E i ,

undefined otherwise.

In the synchronous composition, an event shared by both G i and G 2 occurs only when 

it is permitted by both automata simultaneously. The unshared events can occur whenever 

possible. In this sense, the two automata are ‘synchronised’ on the shared events. We can 

obtain the behaviours of G i 11 G 2 from those of G i and G 2 as follows:

L(G,IIG2) = pr1( i ( G i ) ) n p 2- 1( i ( G 2)),

£m(Gi IIG2) = p71(Lm(G1) ) n p 2- 1( t m(G2)),

where p ~ l is the inverse image map of p i ; formally, for L{ G E* and i — 1, 2,

V ~ \ U )  := {s  G (E i U S 2)* I ( i t  G U ) Pl{s) =  t}.

Also, observe that we can define a corresponding synchronous composition of languages. With 

L{, L iiTn C E* and pi defined as above, let

Li | | L2 := F2- ' ( i 2),

( ' l  ,m II ^ 2 ,m  •“  P i  ( ( ' l  ,m) ^  P 2

Finally, if L(G{)  =  Li C E* for i =  1, 2, then one can think of G i and G 2 as generating 

Li  II Z/2 ‘cooperatively’ by agreeing to synchronise the events with common labels. Also, 

events with different labels are assumed not to occur at the same time.

In the special case of Ei =  S 2, all transitions are forced to be synchronised and thus the 

synchronous composition can be reduced to the product. In the case of Ei D S 2 =  <fr, there 

are no synchronised transitions. Then the synchronous composition is called the shuffle of 

G i and G 2. Thus the language of the shuffle of G i and G 2 over disjoint alphabets is the
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language consisting of all possible interleaving of strings of L (G i) with the strings of L (G 2). 

One can think of G i and G 2 as generating L (G i) || L (G 2) by independent and asynchronous 

generation of L (G i) and L (G 2) respectively.

Example 2.4 Let Ei =  {or, ß}  and E2 =  {ß,  A}. Thus E =  Ei U E2 =  {a , ß,  A}. Consider 

L (G i) and L (G 2) as given in Figure 2.3. The behaviour of product can be obtained easily by

L(Gi  x G 2) = L( G1) n L ( G 2).

For the synchronous composition, the language P~l L(G{) for i = 1,2 is computed. The 

language P~l L(G t-) models the behaviour of G* with selflooping3 of the events in E -  Et- as 

displayed in Figure 2.3. The synchronous composition is obtained by

Lm( Gl || G 2) := p ^ i L ^ G i ))n p J 1( I m(G 2)).

Here, the two systems G i and G 2 generate event ß synchronously while the other events are 

permitted to occur whenever possible. O

L(G! X G 2)L(Gi) f

L(G2) J
o—- - o -  -o

p ' A u g , ) )  J
o p -o-

jiO

a

P2(L(G2)) t
i  ßo *~o~

a O  “ Ö

L ( G i  11 G 2 )

Figure 2.3: An example for product and synchronous composition

3Selfloop is a transition of a generator for which the exit and the entrance states are the same. Formally, for a 

DES G  =  (Q , E, <5, q0, Qm),  we say that an event a  €  E is a selfloop at the state q €  Q if 5(q, cr) =  q.
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2.3 Controllability and Supervisory Control

In supervisory control theory, the generator G plays the role of the ‘plant’ in the sense of 

classical control theory. The uncontrolled DES G described in the previous sections is simply 

a spontaneous generator of event strings without means of external control. To implement 

control to such a DES, a ‘controller’ (called supervisor in DES), playing the same role as in 

classical control theory, needs to be designed. The purpose of control is to restrict the system 

behaviour to a desirable subset of states and transitions (i.e. the specifications). This allows 

us to influence the evolution of system by prohibiting key events from occurring at certain 

points. By doing this, the supervisor ensures that the resulting closed-loop system satisfies the 

specified constraints.

2.3.1 Controlled DES and Nonblocking

We now formally introduce a means of control to DES G as follows. Firstly, the set of all 

control patterns for G is defined to be

r  =  {7 Q £  I 7 2  £ u},

where each control pattern 7 E T is a subset of events to be enabled. We say that if a £ 7, 

then o is enabled by 7 (permitted to occur), otherwise a is disabled by 7 (prohibited from 

occurring). The condition 7 D E u means that uncontrollable events are always enabled. Then 

a supervisory control for G is any map 

v : L(G)  T.

Thus a supervisory control is a map that specifies the set of events to be enabled for each string 

in the closed behaviour of G.

To formalise enablement and disablement on DES G, we extend the process G to 

Gc =  X S , Sc, <7o i Qm)  5

where the transition function
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is a partial function according to

I S(q,o) if S(q, a) is defined and <7 E 7
&c{q, 7 , ° )  =  \

undefined otherwise.

The process G c (often called controlled DES) is assumed to operate in the same way as the 

uncontrolled DES G except that an event can occur only when it is enabled. Note that enabled 

events are not necessarily forced to occur but simply permitted to occur.

The closed-loop DES consisting of the plant G under the supervision of a supervisory 

control v is denoted by (G, v) or v /G.  The closed behaviour of v / G,  denoted L(v /G) ,  is 

defined inductively as follows:

•  e G L(v /G) ,

•  loo E L(v /G)  if and only if lo E L(u/G ) , o  E u(cj) and loo E L{G).

• No other strings belong to L ( v / G ) .

Clearly, L(v / G)  C L(G), and it is prefix-closed by definition. The marked behaviour of the 

supervised system is defined by

L m{v/G) — L(v /G)  n Lm(G).

This is just the part of the original marked behaviour Lm(G) that survives under supervision. 

Since L m (G) represents completed tasks, it indicates those tasks that will be completed under 

supervision.

We say a supervisory control v is nonblocking for G if 

L m(v/G)  = L(v/G) .

Namely, if every string generated by the closed-loop process v / G  can be extended to reach 

the set of marker states of G, then v is said to be nonblocking for G. Otherwise, v is said to 

be blocking. The property of nonblocking of the closed-loop system indicates that the ability 

of a supervisory control v to take the system from its initial state to marker states. Since 

marker states represent completed tasks, blocking means that the closed-loop system cannot 

accomplish the execution of given tasks.
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2.3.2 Controllability

The basic control problem in this framework is then as follows:

Problem 2.1 For a given language K  C L(G), is there a nonblocking supervisor v such 

that L m(v/G)  = K ?  In other words, what behaviour K  C L(G) can be achieved by the 

supervision o f a nonblocking supervisor? □

The answer for this problem is in the concept of controllability [RW87b]. A language K  C £* 

is controllable (with respect to L{G) and Eu) if

K E U fl L(G) C K .

This condition describes that for any prefix of a string in K , s E K , if s is extended by an 

uncontrollable event a E £ u in L (G), then it should be a prefix of a string in K , i.e., so  E K . 

Since uncontrollable events cannot be prevented from occurring, it is intuitively clear that for 

K  to be controllable if an uncontrollable event occurs along a ‘sample path’ in K , then the 

extended sample path should also be in K . Intuitively, this means that ‘if you have a string 

which cannot be prevented from occurring, then it has to be in the controlled behaviour’. Note 

that we can observe from the definition that K  is controllable if and only if K  is controllable. 

It is easy to verify that </>, L (G), and £* are always controllable with respect to G.

Then we have the following result ([RW87b]) which provides a necessary and sufficient 

condition for Problem 2.1.

Theorem 2.1 Consider a DES G where £ u C £  is the set o f uncontrollable events. For a 

nonempty language K  C L m (G), there exists a nonblocking supervisory control v for  G such 

that

L m(v/G) =  K

if and only if  the following two conditions hold:

1. K  is controllable with respect to G, i.e., K E U fl L(G) C K .

2. K  is L m(G)-closed, i.e., K  =  K  D L m(G). □



2.3. CONTROLLABILITY AND SUPERVISORY CONTROL 24

2.3.3 Specification Language

An uncontrolled DES G represents all possible strings generated in the open-loop process. In a 

controlled system, the behaviour of the system is usually restricted to a set of desirable strings 

which represent the user requirements for a given system. A process specification language is 

a set of such desirable strings within which a controlled system is permitted to evolve. Since in 

general an uncontrollable DES G is assumed to be generate ‘illegal’ behaviour, a supervisory 

controller v is introduced so that the closed-loop system produce only the ‘legal’ behaviour 

given by a specification language. Like the case of system representation, a specification can 

be formally represented as a generator E which generates the specification language L(E). 

After we account for all the user requirements which are imposed on the system, we can obtain 

specification languages E{ for i = 1, 2, • • • , n. They can be formally represented by generators 

E,-. The overall specification language is taken by the intersection 4 of all these languages. If 

this language is not a subset of Lm(G), then we take 

E = Lm(G ) n ( f i r  Ei).

2.3.4 Supremal Controllable Sublanguage

Let G be a controlled DES. Then consider an arbitrary language E  C E*. We introduce the set 

of all sublanguages of E  that are controllable with respect to G. Later language E  will play 

the role of a specification language for G.

Let C (E) be the set of all controllable (with respect to G) sublanguages of E\

C(E) = {K  C E \ K  is controllable with respect to G}.

Some properties of this family of languages are [RW87b, Won96]: for E \ , E 2 £ C (E),

1. E x U E2 is controllable.

2. Ex fl E 2 need not be controllable

3. if Ex and E 2 are closed, then so is Ei  n  E2.

This family of languages is closed under arbitrary union ([RW87b, Proposition 7.1]). Since

4In some cases (like in decentralised control described in Section 2.6), we may have to take synchronous com­

position ( 11) instead of the intersection
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the empty language f  is controllable, it is a member of C(E). So C(E) is always nonempty. 

Hence, taking the union of members of C(E), the ‘supremal’ (in the sense of subset inclusion) 

controllable sublanguage of E  always exists in C (E ). In here, we denote this language by

*l(G)(£) := supC(£).

Clearly f  C k u ^ ( E )  C E.  If a given language E  is not controllable, then k l ( G ) { E )  is the 

largest possible or ‘optimal’ behaviour that can be synthesised by a supervisory control v and 

is contained in E. The role of supervisory control v is to restrict the behaviour of G properly 

so that all the sequences generated by G under v form a subset of the specification E.  Thus 

the language ^l(G) {E) represents the least restrictive control that will guarantee to satisfy the 

specification E.

Now we have the following theorem [RW87b, Won96].

Theorem 2.2 Let E  C E* be Lm(G)-closed. If kl(G){E) is nonempty, then there exists a 

nonblocking supervisory control v for G such that Lm (v /G ) = Kl (G) (E)- d

2.4 Realisation of a Supervisory Control

Let v be a nonblocking supervisory control for the controlled DES G =  (Q, E, <5, go, Qm), 

with Lm (v / G ) =  K  and L(v/G) = K.  Now let S be a DES such that 

K  =  Lm(S) D Lm(G), K  = L(S)DL{G).

If this relation holds, then we say that a DES S implements v [Won96]. Formally, let a DES S 

be

S =  (V, E,£, x0y X m),

where X  is a finite state set, E is an alphabet, ( : I x E  — > X  is a (partial) transition function, 

x 0 G X  is the initial state and X m C X  is the marker states. Assume that S implements v. 

Then the control action is exercised by S on G implicitly, by a state feedback map 

$  : X  — > T 

defined as follows: for x G l ,

xp(x) := {<7 £ E I £(x, o) is defined }.
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A nonblocking generator S (i.e., Lm(S) =  L{S)) is said to be a supervisor for G [Won96] 

if

(i) Lm(S) is controllable with respect to G,

(ii) Lm(S) n L m(G) = M S )  n L(G).

If, in addition, S is trim (reachable and coreachable), then S is called a proper supervisor 

[Won96].

Let us denote the closed-loop system consisting of the plant G and the supervisor S by 

S /G  (see Figure 2.4). The operation of S /G  can be described as follows. The supervisor 

S starts at the initial state x0 and executes state transition — > X  in response to

events o £ E generated by G. At each state the map ^ decides whether a is to be disabled 

or enabled at the corresponding state of G. The next possible event that can be generated by 

the closed-loop system S /G  is any event a E E such that only both £(x. o) and S(q. o) are 

defined. In this way, the supervisor S exerts some control over the future evolution of G (for 

detail, see [RW87b]). Note that the supervisor S does not force G to execute a particular event. 

It simply permits some events to occur. However, S can effectively force a particular event to 

occur by disabling all the other events at the given state except the desired one.

Control
Pattern

Y

Enabled 
Event Label

a

Closed-loop

Behaviour

Figure 2.4: Supervisory control of DES

Now, denote the closed and marked behaviour of S /G  to be L (S /G ) and Lm(S /G ) re­

spectively. Then if a proper supervisor S which implements a supervisory control v is con­

nected to G by the product operation, the result S x G represents exactly the behaviour of 

S /G , i.e.,

S /G  — (A x Q , S , £ x S, (xch Qo)i  X m x Qm),
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where

£ x 5 : X  x Q x  E — » X  x Q, 

according to, for q £ Q, x £ X  and o £ E,

I (£(:c, er), £(<7, er)) if £(#, er) is defined and er) is defined,
£ X =  <

I undefined otherwise.

So we have that

L (S /G ) =  L(S x G) =  L(G)  f lL (S ),

Lm(S /G ) -  Lm(S X G) =  Lm(G) fl L m(S).

For given DES G and E, there is an algorithm for computing a supervisor S [WR87] such

that

Lm(S /G ) =  KL(G)(£m(E) n Lm(G )).

The computational effort to obtain S is 0 ( n 2m 2), where n is the number of states in G, and m  

is the number of states in E [WR88].

2.5 Modular Control

In this section, we recall modular control as formalised in [WR88]. Often a complex system 

is composed of two or more simpler components. Likewise, a control task can be divided into 

several subtasks. Such systems are easily found in the case when modelling the concurrent 

operations of several asynchronous, or partially synchronous subtasks, for example, a flow rate 

control system consisting of tanks, valves and pumps. In this system, one control specification 

may be given as preventing overflow or underflow of tanks and another establishes the priorities 

of certain pumps or valves. In addition, a specification may also be required for which pump 

should be fixed before the others when several pumps are broken down at the same time. When 

we are dealing with these kinds of systems, one of the difficulties is that the number of states of 

the system as well as the overall specifications increase exponentially with the number of their 

components [Ram88, RW89]. To solve this problem, one can design a local subcontroller from 

the local specifications for each subtask and then the resultant subcontrollers are combined 

to form a solution to the original global problem. This approach is often called ‘divide and
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conquer’. We refer to such a method as modular synthesis and the resulting supervisor as 

modular supervisor.

One advantage of this approach is that a modular supervisor can be synthesised more eas­

ily. Another advantages is that such a modular supervisor is more easily modified, updated 

and maintained. For example, when a subtask is changed, without modular synthesis, we need 

to design the entire supervisor again and this results in high computational cost. While with 

modular synthesis, we only need to redesign the corresponding subcontroller, which gives us 

more flexibility when designing a complex system. The main disadvantages of this approach 

is the problem of conflict between local systems when combined in the global level. The fact 

that each local systems are designed based only on local specification makes the design much 

simpler. However, since these local systems are to run concurrently in quasi-independent fash­

ion on the basis of local information, the global system may exhibit conflict such as blocking 

(impossible to complete the global task) or deadlock (impossible to continue the operation). 

So the fundamental issue in the modular supervisory control is how to prevent conflict from 

occurring between local systems and how to ensure that the local supervisors achieve the same 

optimal control action as a single global supervisor when they are running concurrently in the 

global level.

2.5.1 Supervisor Conjunction and Nonconflicting

To characterise modular supervisors, we introduce a means of combining supervisors. Let Si =  

(X, E, £q, X m) and S2 =  (Y, E, 77, t/ch Ym) be supervisors for G. Then the conjunction of

Si and S2 is given by the supervisor

Si A S2 =  R ch (Si x S2) =  R ch(X  x Y, E,£ x 77, (xQ,yQ) , X m x Ym),

where

(£(z, cr), 77(1/, <7)) if both £(ar, cr) and rj(y, <r)are defined, 

undefined otherwise,

and R ch(• • •) means the reachable component of an automaton. Si A S2 simply consists of 

the automata Si and S2 operating together in parallel (modelled by Si x S2), in which the
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supervisory action of Si A S2 is to enable the event a only when a is enabled by both Si and 

S2 simultaneously.

Then it is straightforward to have the following [WR88]: let Si and S 2 are nonblocking 

supervisors for G. Then for the supervisor S =  Si A S 2,

•  L(S /G )  =  L(S i /G)  fl L(S2/G ) ,

.  Lm(S/G)  =  Lm(S i /G )  n Lm(S2/G ) .

However, since the nonblocking property of supervisors is not closed under conjunction, there 

is no guaranteed that combining of two nonblocking subsystems will yield a nonblocking sys­

tem. Indeed it is clear that if two supervisors are implemented to achieve the contradictory' 

objectives, their conjunction will end up in a blocking situation. The concept of nonconflicting 

languages introduced in [WR88] captures this notion. Consider two languages Hi, H2 C £* 

to be specified as controllable languages with respect to G. Since it may usually be desired to 

satisfy two constraints simultaneously, the overall constraint is specified as Hi D / / 2. It is then 

always true that

Hi  n i / 2 C Hi n / / 2.

In the case of the equality, it is said to be nonconflicting [WR88], i.e.,

Hi  n / / 2 —  Hi  n / / 2•

In other words, two languages are nonconflicting if, whenever they share a prefix, they also 

share a string containing this prefix. For instance, any two closed languages are nonconflicting. 

If H i and / / 2 fail to be nonconflicting, we say that they are conflicting. Now we have the 

following:

Proposition 2.1 ([Won96]) Two nonblocking supervisors S i and S2 running concurrently will 

form a proper nonblocking conjunctioned supervisor S =  Si A S 2 if and only if S is trim and 

Lm(£>i/G) and Lm(S 2/G ) are nonconflicting. □

2.5.2 Modular Supervision

Now let Ei, E2 C Lm(G)  be two specification languages. If the modular approach is taken, 

optimal subsupervisors Si and S2 can be obtained for E 1 and E 2 respectively, i.e., Lm (St-/G ) =



2.6. DECENTRALISED SUPERVISORY CONTROL 30

^L(G) (■£/*)> for i = 1,2. Alternatively, an optimal supervisor S can be synthesised for the 

overall specification E\  fl E 2 , namely Lm(S /G ) =  « l (G)(-^i O E 2 ). Then the following is 

established in [WR88].

Theorem 2.3 / / kl(G)(#i) n ^l(G){E2) ±  <j), and 

kL(G){Ei ) and k^(g ) {E2) are nonconflicting, then 

L m{(Si A S2)/G ) =  Lm(S /G ).

In other words,

kl {g ) [Ei ) n  kl{g )(E2) =  kL(g ) {Ei n  E 2). □
Theorem 2.3 indicates that in modular synthesis, if subsupervisors are designed for the cor­

responding local specifications and these subsupervisors are operated together, then the cen­

tralised supervisory control objective can be achieved under the condition that the subsupervi­

sors are nonconflicting. If we use an operator kl(G) t0 represent the process of synthesising an 

optimal supervisor restricted in L{G ), then Theorem 2.3 states the distributivity of the control 

synthesis operator n over language intersection.

Finally, to see the benefit of modular synthesis, let us compare the computation complexity 

with nonmodular synthesis [WR88]. Suppose that E\,  E 2 C L m (G) and the state size of 

the generator G is bounded by n and the state sizes of the generators for E z are bounded 

by m. For the centralised synthesis, to compute kl(g )(E i H E 2) directly requires 0 ( m 4n2) 

computations. In contrast, to find modular supervisors takes 0 ( m 2n2) computations and then 

to verify the nonconflicting condition also takes 0 { m 2n2) computations. The total complexity 

of the modular synthesis is 0 ( m 2n2). Therefore, if the state size of constraints m  is large, the 

computation savings of modular approach could be substantial.

2.6 Decentralised Supervisory Control

In one approach to decentralised supervisory control formalised by Lin and Wonham [LW88a], 

the ‘global’ behaviour is observed through a number of channels, modelled as natural projec­

tions. These channels may correspond to quasi-independent component activities (e.g., buffer 

operation vs. repair and maintenance). Each such a channel determines a projected ‘local’ 

plant model. A decentralised controller is designed for each local model according to a local
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specification. Such a scheme is similar to modular supervisory control except that decentralised 

control has an additional constraint that synthesis is carried out based on partial information 

and partial control. In many applications, decentralised supervisory control is more suitable 

than centralised supervisory control. In particular when the global task splits into subtasks for 

which local supervisory controllers are fairly easy to obtain. However, like in modular supervi­

sory control, the fundamental issue is how to ensure that the local supervisors achieve the same 

optimal control action as a single global supervisor when they are running concurrently in the 

global level without conflict problems among local systems.

2.6.1 Projection and Normality Condition

Here, we define the local projection of languages and the key property of normality. Let E 0 C 

E be a subalphabet of E with the assumption that E0 ^  0. Here E 0 is interpreted as the set of 

events of G which is observed by the local supervisor. Then define a natural projection

P : E ” E *
0 1

according to

P(0 =  U

\  o if o <E E 0,
p{(j) =  (

I € otherwise, i.e., <j ^ E0, 

p(scr) =p{s)p(a) ,
for s G E* and a E E. The action of p on a string s £ E* is simply to erase the elements a of 

s which do not belong to E 0. Denote by

P~ 1 : V ( K )  —> P(£*)

the inverse projection of p, where V(-) is the power set of (•).

Let K  C L(G) be an arbitrary sublanguage of L(G), Then under the natural projection 

p : E* — » E*, where E 0 C E, K  appears as the language p ( K ) C E* at the local level. 

Notice that the inclusion

KCL ( G ) n p - ' ( p ( K ) )

is always true since K  C L(G). In the case of equality, it is said that K  is normal (with respect 

to L(G) and p) [LW88a], i.e.,
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K  = L(G) C\p~1(p(I<)).

Thus K  is normal if it can be recovered from its projection, p(K),  together with the global 

closed language L(G). Equivalently, from a string s £ K,  for t £ L(G) if p(t) = p(s), then 

one may infer that t £ K.

2.6.2 Local and Global Supervisors

The behaviours of a global plant G viewed in the local level are simply p(L( G )) and p(Lm(G)). 

They can be represented by a local DES model G 0, with L(G0) =  p(L(G)), and Lm(G 0) = 

p(Lm(G)). The locally controllable and locally uncontrollable events of G 0 are

e u,o — S 0 ci s u, s C)0 =  e 0 n e c.

Let E0 C E* be a nonempty closed sublanguage, representing a specification of legal 

behaviour at the local level. The corresponding specification E  on the global level can be taken 

to be

E  =  (p |l(g ))-1 (Eo) =  L(G) n p~l (E0),

the inverse image of E0 [LW88a]. At this point, we can proceed in two different ways. In one 

way, we obtain a global supervisor S that synthesises the supremal controllable sublanguage 

K  of the global specification E\

K  := kl (g )(E) =  kl(g )(L( G) p - \ E 0)) C E*. 

Alternatively, a local supervisor S0 is chosen in order to synthesise the supremal (locally) 

controllable sublanguage K 0 for the local specification E0\

K 0 ~  «1(G . ) ( # ( G ) ) n £ () C E ; .

By applying the default control rule in [LW88a] that permanently enables all events in 

Ec — EC)0, a local supervisor S0 can be extended to a global supervisor S0 for the global plant 

G. The language synthesised by the local supervision at the global level is obtained as 

K 0 := L(G) fl p~1(K0) C E*.

Then we have the following [LW88a].

Lemma 2.1 The language synthesised by the local supervision is globally optimal i.e., K  =
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K a if  and only i f  K  is normal. Furthermore if K  is normal., then

K (E — E Cj0) Cl L(G)  C K.

Equivalently, if  s € K ,c r E E -  E C)0, and so  E L (G), then so  E K . □

Lemma 2.1 implies that in the synthesis of K , controllable events that are not locally control­

lable (i.e., E — E Cj0) never need to be disabled if K  is normal.

In practice, the use of local supervisor is more attractive than the global supervisor because 

of its relatively simple structure and ease of synthesis. So one would like to be able to justify 

the use of supervisor S0 without actually computing and comparing it with the global structure 

K  since in general this may be more complicated and expensive to compute. Theorem 3.3 in 

[LW88a] show that this can be done on the basis of some sufficient conditions which do not 

require K  to be explicitly computed.

2.6.3 Decentralised Supervision

We now return to the decentralised problem. Assuming that nonempty subalphabets E, C E

(i E {1, 2, • • • , n}) are given, not necessarily pairwise disjoint. Define the natural projection

Pi : E* — > E* as in the previous section. Let G t be the local models of G, that is, G z is the

generator of pi(L(G)). Let the local specifications be the closed languages Ei,0 C E*. The

corresponding specifications on the global level are then E{ = p~1(Eit0) C E*, with global

supervisors S2. The overall global legal specification on the behaviour of G is then obtained

by n
E = f ) p ~ l (Ei,0) c Z \

2=1

Then we have the following [LW88a].

Theorem 2.4 I f each St is optimal for the corresponding legal specification, i.e.,

(Vi € {1,2, • • • , n}) L(S./G ) =  kl {g )(L(G) fl ^ ( E ; ) ) -

A sO /Gj  = «i(G)(i(G) n E).

□
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This result is interpreted as the concurrent operation of globally optimal decentralised super­

visors is globally optimal. This result is most likely useful when the supervisors S; can be 

designed and implemented in the local level. Thus for i E {1,2,*--  , n}, define

Ki kl (G){L{G) n p{ 1(E'i,0)) C E*,

I<i,o := «*,o(Pi(^(G)) H £ ,> ) C E*,

: = I ( G ) n p- ' ( / g c S * ,

£(St-,o/Gi) =  if,,0)

where,

K i : the supremal controllable sublanguage of the global specification

for the ith subsystem,

K {)0 : the supremal locally controllable sublanguage for local specification Ei)CI,

K i,0 : the global language resulting from local control for the ith subsystem.

Let Sj be the global version of a local supervisor St)0 (i.e. L{Sz/ G )  =  K ty0). Thus St- perma­

nently enables all events that are not observed by Sl 0, otherwise behaves exactly as Sj)0 does. 

We say that G is locally controllable with respect to the family of local sublanguages E t)0, if 

Ki =  Ki j0 for i E {1, 2, • • • , n}. Then the following result is obtained [LW88a]:

Theorem 2.5 Let G be locally controllable with respect to the family E l)0. Then

— kl(g ) {L{G)  n  E).

□

Theorem 2.5 states that if G is locally controllable with respect to a set of local specifications, 

i.e., the local control for each of these specifications is globally optimal, then the combined 

supervisory actions of the local controllers achieve the overall optimality.

2.7 Simple Facts

In this section, we present some simple facts which will be used later in this thesis.
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Lemma 2.2 Let E3 C E2 C Ei. Let p\ : Ê  —> E2 and p\ : Ê  — > E3 be the natural 

projections. Then

p \ ° p \  =  P31

where o denotes the composition o f functions.

Proof: For the empty string e, p\ o p\{e) = p\{p\(f)) = ^ (e ) .

Assume that for s E p\opl(s)  = p\(s).  Then consider a string so E E^, where a E Ei. If 

a E (E i - E 2) (i.e., a E2 ander g E3), then p* op* (scr) =  p l3(p\{so)) = pl{p\{s)) = p\(s),  

and p3(so) = pl(s) .  If a E (S 2 -  E3) (i.e., a E E2 and a ^ E3), then p\ o p\{so) — 

pU pK ^ ) )  = pUp K 8)*) = pUpI ^ ) )  = Pl(s )i and p l3{so) = p\(s).  Finally, if o E E 3, 

thenp* op*(s<7) =  p3(p\{so)) = p l3(pl2(s)o) = pl3(p\(s))o = pl(s)o, and pl3{so) =  pj(s)<r. 

Therefore, P3 o p^ =  p\- □

Lemma 2.3 Let E3 C E2 C Ei. Let p3 : E£ — > E3 and p3 : E* — Y E3 be the natural 

projections. Then

pI = p\\v2,
where P31e? denotes the restriction o fp \ to E£.

Proof: For the empty string e, p\(e) = e, and pI\e* (e) =  P3(c) =  € (since e E Ep.

Suppose that for a string s E E£, p§(s) =  P3I2:* (s). Then consider a string so E E£, where 

0 E E 2. If a E (E2 -  E3), then p3{so) =  p§(s) =  p £|e*(s) =  p\{s), and P3|e; M  =  

pU scr) =  Pa(s)- If °  £ E3, then p§(s<j ) =  p§(s)<7 =  pJ |E*(s)(j =  p^(s)<r, andpJ|E*(s<r) =  

pl(so) = p\{s)o.  Therefore p3(so) = pl\^*(so). So, pi = p \ |e*. □

Lemma 2.4 Let Ei, E2 C E. Let pi : E* — )■ E* be the natural projection, for i =  1, 2. T/ẑ n 

fo r  u E E*

P1P2M = P2Pi(u).

Proof: For the empty string e, pip2(e) = Pi(e) =  € and p2pi(e) =  P2 (c) =  e.

Suppose that for a string s E E*, pip 2 (s) = P 2Pi(s). Then consider a string scr E E*.

i) If o- E Ei and 0 (£ S 2, then pip2{so) = Pi(p2{s)p2{v)) = Pi(P2{s)) = P\P2{s) and
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p2pi{s(j) = p2{pi(s)pi((r)) = p2(Pl (s)(j)= P2{Pi {s))P2{v ) = P2Pi{s). So pip2(s(r) =  

P2Pi{sa). The case o £ Ei and a G S 2 is similar.

ii) If er G Ei and er e S 2, then pip2(s<r) =  Pi(p2{s)p2{(j)) = Pi(p2{s)v) = PiP2{s)cr and 

P2Pi{s(j) = P2(p i {s)p i {ct))= p2(pi(s)<r) = P2{pi(s))p2{(j) =  P2P\(s)cr. Hencep xp2(sa) =

P2P\(sa).

iii) The cases of er  ̂ Ei and er  ̂ E2 is trivial. □



Chapter 3

Structural Decentralised Control of

Concurrent DES with

Non-prefix-Closed Local Specifications

In this chapter, a problem in decentralised control of concurrent discrete event systems (DES) 

is formulated. Here we consider that the system is the synchronous composition of a number of 

subsystems. Specifications are to be given locally on the subsystems. We obtain two sufficient 

‘structural’ conditions which ensure that, for a set of local specifications, local syntheses and 

controls achieve the same optimal behaviour as that would be obtained by a centralised control 

for the overall specification, and the control in one subsystem does not cause blocking in the 

other subsystems. Followed by an introduction in Section 3.1, a problem formulation is given 

in Section 3.2. Sufficient conditions are obtained in Section 3.3. In Section 3.4, examples are 

provided for illustration. Conclusions are presented in Section 3.5.

3.1 Introduction

In this chapter, we formulate a problem in decentralised control of concurrent discrete event 

systems (DES). The decentralised control considered in here is similar to that in [LW88a] with

37
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the following differences. Firstly, in [LW88a] the local specifications are given by prefix-closed 

languages and as a result the issue of blocking in the concurrent supervisions of decentralised 

controllers never arises. Here, we allow local specifications to be non-prefix-closed. So, the 

question of blocking then needs to be addressed. Secondly, we are more interested in ‘structural 

decentralised control’, namely we are seeking conditions that are on the arrangement of the 

structures of local systems, and are generally independent of the specifications. That is, once 

the structural conditions are verified for a given system, then decentralised control is achieved 

for a set of specifications. Our approach is similar to that in [Als96]. In contrast, the conditions 

in [LW88a] are ‘specification-dependent’. That is, for each given local specification one has 

to check the consistency between local and global control. In this sense the present work is 

also different from that in [LW91] where conditions are obtained for ‘efficient’ verification of 

nonconflictingness between given decentralised supervisors.

As an initial attempt, we consider a more structural situation than that in [LW88a], namely 

that the overall system G is the synchronous composition of local systems, G i, G 2, • • •, G n, 

as studied in [WH91]. The event sets of G t and Gj, for i , j  6 {1, 2, • • • , n} and i ^  j ,  need 

not to be disjoint, and the shared events may be controllable or uncontrollable. In [WH91] this 

situation is called concurrent DES.

We believe that despite the restriction that G is the synchronous composition of the subsys­

tems G i, G 2, • • • , G n, the result that we obtain can still be applied to a large class of systems. 

For example, G i, G 2, • • • , G n might represent different workcells in a manufacturing plant or 

different departments in an organisation. There are often requirements that are specified locally 

for which local supervisors are synthesised. Since there are synchronisations through shared 

events, local control in one subsystem might affect the behaviour of the other subsystems. Thus 

the role of the conditions that we seek is to ensure that this potential interference of local con­

trols does not result in conflict and the loss of optimality as compared to a globally designed 

supervisor for the combined local specifications. If, for instance, the structures of G i , G 2, • • • , 

G n and their synchronisation can be designed, then one can arrange these conditions to ensure 

that decentralised control is achieved. In our examples, this intuitively could be interpreted as 

to build appropriate ‘infrastructure’ of workcells or departments.
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3.2 Problem Formulation

In this section we formulate a problem of decentralised control of concurrent DES as shown in 

Figure 3.1. For notational simplicity we present the problem formulation in terms of languages.

Figure 3.1: Decentralised control of concurrent DES

Let E i, E 2, • • • , En be the event alphabets of subplants, G i, G 2, • • •, G n, respectively. It 

is allowed that E t- fl E j ^  0, for i, j  E {1,2, • • • , n} and i ^  j .  Assume that E t- is partitioned 

into controllable and uncontrollable events, i.e. E; =  E;c U Etu. We assume that the following 

relation holds between the control status of events between two subsystems G; and G j:

Eiu n  Ej =  EJ n E iu. (3.1)

That is, G{ and G j agree on the control status of shared events, for j  E {1, 2, • • • , n} and

* /  j-

Let E := (J”=1 E ? be the event set of the global system, say G. Let E c := U?=1 ^ic and 

E u := Ur=i S.'u- It can be easily checked that

E iu — Ej D Eu, (3.2)

for i = 1,2, • • • , n. Let pi be the natural projection from E* to E*. Let Lt-)Tri, C E* represent

respectively the marked and closed behaviours of system G [. We assume that The
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marked and closed behaviours of the overall system G are respectively

— ( P \ )  ,7 7 i)  O { p 2 ) 1(- /̂2,m) n  . . .  n  (P n ) 1 { L n , m)  — O i = l  {Pi )

L  -  L \  II L 2 j II • • • II L n

= W H i i )  n (p2) - 1( i 2) n • • ■ n W 1̂ » ) =

Now let Ei C Li^m be L;)Tn-closed language, not necessarily prefix-closed, representing a 

specification on the system G;. The corresponding specification on G can be taken to be 

(where (p ;|l ) denotes the restriction of pi to L ), the inverse image of Ei, as done 

in [LW88a]. The overall specification then is

E ~  (pi\L)-1(E1) n ( p 2\L) - 1(E2) n • • • n (Pn\LY \ E n) =  (3.3)

We can proceed in two different ways. Firstly, we synthesise local supervisors on G; whose 

closed-loop marked and closed behaviours are respectively kl , {Ei) and kl , {Ei). By applying 

the default control rule in [LW88a] that permanently enables all events in E c — E zc, the closed 

language synthesised on the system G is (p ;|l )-1 («l, {Ei)). The closed behaviour under the 

concurrent supervisions of the local supervisors is

{pi \l) 1{KLl{ E i ) ) n { p 2\L) 1{ L̂2{E2) ) n- - r ] { prl\L) 1{KLn{En)) = P |( p , |l ) 1{KLi{Ei)).

Secondly, we can synthesise for the global specification E  and obtain k l {E) as the closed 

behaviour of a global supervisor. We are interested in the following.

Problem 3.1 Under what condition is it true that, for i = 1,2, • • • , n and for any

n

n

Ei e ELi m,

n

(3.4)

and

Pi{ni{E)) is nonblocking with respect to L iyTn ? (3.5)

We recall that Tj_l< m is the set o f L ifTn-closed languages. O
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Thus the problem is to find conditions under which local syntheses and control for any L{>m- 

closed specifications do not result in the loss of optimality compared to the global synthesis as 

stated in Eq. 3.4, and control of one subsystem never incurs blocking in the other subsystems 

as stated in Eq. 3.5. Since E[ C Li}Tn, it is easy to see that k l (E)  C E  C L m. So k l (E) is 

always nonblocking with respect to Lm.

The following examples show that the equality of Eq. 3.4 is generally not true.

Example 3.1 Consider the case when n — 2. Let S i =  {<*,/?} and £2 =  {ß}.  Let 

Li,m = { a , a ß , ß } ,  L 2,m = {ß}, L x =  L hm =  { e , a , a ß , ß} ,  and L 2 = {e,ß}.  Also 

let L m = L \ ym II L2,m =  {aß , ß}  and L = L i \ \L2 =  { e , a , aß , ß} .  Let S c =  S an d  

Ei = {a , ß},  E 2 = {ß}.  It can be checked that E{ is L;tm-closed for i = 1, 2. Since every 

event is controllable, «7,. (Eß = E{ for i = 1, 2 . It can be checked that (p i |l) - 1(kLi (Eß)  =  

{r, a , ß],  and (p 2|l) -1 («l2 ( # 2)) =  { c  <*, aß,  ß}.  Hence

(p i|l) —1 (-^1)) n {p2 \l )~1{î l2{E2)) = {e ,a,ß} .

From Eq. 3.3 one has E  = {ß}.  Again since every event is controllable, k l {E) = E.  Thus,

v X e ) c  n

with strict inclusion. Clearly the behaviour under concurrent local controls 

{P l l L^ i ^Lr i E i ) )  n{p2\L)~1{^L2{E2))

is not nonblocking (with respect to Lm). This is also reflected in the conflict between the global 

languages associated with the goals the local supervisors, namely that the two languages 

(Pi |l)_ 1(kLi ( £ i )) =  {<*,/?} and (p2|l)_1 («l2{E2)) =  { a ß , ß }  

are not nonconflicting. Intuitively, for local supervisor 2 to complete its task, the event ß  needs 

to occur; however, for local supervisor 1, if a  occurs then ß  will be disabled. Consequently, 

this prevents local supervisor 2 from reaching its marker state. O

Example 3.2 Again, we consider the case when n = 2. Let S i =  {o-, ß}  and S 2 =  {/?, 7 }. 

Let £ c =  {ce, 7 } and £ u =  {/?}. Let L1>m =  {e , a ,aß} ,  L 2yTn =  { e , ß , ß i } ,  and Li = 

Li^m. It can be checked that Lm = L =  {e, a , aß,  a ß j } .  Let E\  — {e, a }  and E 2 =  

{e}. Clearly Ei is Li)m-closed. It can be checked that klJ-E'i ) =  {e} and kl2(E2) =  (f).

Thus (p i \l ) 1(kl1(E i )) H (p 2 \l ) 1{^l2{E2)) = 4>- We also have E  = (pi\L) 1( Eß  n  

(p2\L)~1(E2) =  {€,«}• Hence kl (E) = {e}. So
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(pM - ' ^ lAE i)) n c  kl (E)

with strict inclusion. Here information on synchronisation is exploited in synthesising the 

global supervisor that achieves a larger behaviour: the uncontrollable event ß  can only occur 

after the event a  as specified by the structure of subsystem L\. O

It is interesting to note that Eq. 3.4 can be rewritten as

«I* (Ex) II KL2{E2) II • • • || KLn{En) = KL1||L2...||Ln(^ l ||^ 2  * * * IIE n). (3.6)

Roughly speaking, this equation can be seen as the distributivity of the control synthesis oper­

ator k over the synchronous composition 11.

Remark 3.1 It may be informative to consider the complexity involved to see the benefit of 

achieving Eq. 3.6. Suppose that the state sizes of G i, G 2, • • •, G n are bounded above by 

k and the state sizes of the generators for E\, E 2, • • •, E n are bounded above by m. The 

sizes of the global system G and the generator for the overall specification E  are respectively 

bounded above by kn and m n. The computation complexity for the synthesis of the left-hand 

side of Eq. 3.6 is 0 { n k 2m2) and that for the right-hand side is 0((/cn)2(mTV)2 =  (k2m 2)n) (cf. 

[WR88, RW89]). Without Eq. 3.6 to guarantee that, for any Lijm-closed, local specifications, 

local syntheses and controls achieve the ‘optimal’ nonblocking behaviour, one is forced to carry 

out a global synthesis and global control. To do this, the computation may be exponentially 

more expensive. O

3.3 Main Result

In this section, we present sufficient conditions for Problem 3.1. For this, we introduce the 

following definitions.

Firstly, let i / 2, • • • , H n be languages over the alphabet E. Then H 1 , üf2, • • • , Hn are 

nonconflicting if

H x n h 2 n • • • n Hn = H x n h 2 n • • • n Hn.
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In other words, the languages are said to be nonconflicting if, whenever they share a prefix, 

they also share a string containing this prefix. This generalises the notion of nonconflicting 

languages [WR88] to n languages.

Remark 3.2 Note that as will be seen in Examples 3.3 and 3.4, the nonconflictingness between 

any pair of given languages is not equivalent to the nonconflictingness among all the given 

languages, i.e.,

Hi  n h 2 n • • • n Hn = //7 n I 7̂ n • • - n / 7̂

&  Hi n  Hj = Hi D H j , V i, j  6 {1,2, • • • , n)  and i ^  j.  O

Example 3.3 Consider the case when n — 3 . Let

H x = {<*, aa, ß, ßa},  H2 = {/?, ßß,  7, i ß }, H3 = {7,77, a, «7}.

Then Hi fl H 2 = {ß}.  So, Hi n H 2 = {e, ß}.  Also one can check that Hi n H2 = {c, ß}. So 

Hi  and H2 are nonconflicting. For the pair H2 and H3, one can see that H 2 C\ H3 = { e , i }  = 

H 2 D H3. So, H2 and H3 are nonconflicting. Also, since Z/3 n Hi =  {e, a} =  i / 3 n  i / i ,  one 

knows that i / 3 and Hi  are nonconflicting. However, Hi n  H2 fl H3 = <j> and Hi n  H2 n  H3 = 

{e}. So H i , H 2 and H3 are not nonconflicting. This shows that the nonconflictingness between 

Hi and Hj,  for i , j  = 1,2, 3 and i ^  j ,  does not imply the nonconflictingness among H 1 ,  H2 

and H3. O

Example 3.4 Again we consider the case when n = 3. Let Hi = {o-o;, 6, Sa , 7 0 },

H 2 = {a ß , ß ß , 8, 5ß}, H3 = { ß i ,  8, 81, 77}. Hence, Hi fl H2 fl H3 = {<5}, and

Hi  fl H2 n  H3 = {e, ^}. Since one has that Hi fl H2 fl H3 = {c, ^}, Hi,  H2 and H3 are

nonconflicting. However, for the pair i / i  and H2, one has that Hi fl H 2 = {e, #} and Hi n  

H 2 = {e, a , ^}. Thus Hi and H2 are not nonconflicting. Similarly one could find that the pairs

H 2 and H3, and Hi and H3 are also not nonconflicting. O

Now we have the following result as an extension of Theorem 6.1 in [WR88].

Proposition 3.1 Let L be a closed language over E. Let E{ C L for i = 1,2, • • • , n. Suppose
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that {KL(Ei) I i — 1, 2, • • • , n} are nonconflicting. Then

n n

i= l  i= l

Proof: Since n"=1 E{ C E{, one has that «L(fT=i Ei) E kl ( ^ ) 5 for * =  1, 2, • • • , n. Hence

« l (d ?=, Ei)c nr=i « t(ß o -
For the reverse inclusion, since C(L),  the set of closed, controllable sublanguages of L, is a 

complete sublattice of V(L)  and {/^(i?;) | i =  1,2, • • • , n} are nonconflicting,

r r =1K L(£i)= nr=i g c (o >

where V(L)  is the power set of L. Hence, p|"=1 kl {E{) E C(L).

Also, since n?=i kl {E{) C f|"=1 Ei, one has that

n ? = i« L (^ )c « L (n ? =1^ )-  °

Secondly, let E be an alphabet and i f  be a language over E. Let E' C E. We say that H 

marks E' if

E E ' n l C  HE'.

Thus, a language H is said to mark a given set of events S' if, for any string s E E* and any 

event a E E' such that so  E H,  the string s is in H . In other words, a language H marks 

a set of events E' if all the strings that can be extended by E'-events in H are in H,  or if the 

‘entering’ strings of all E'-events in H are in H.

Finally, let Ei, E2 , • • •, En be alphabets, not necessarily pairwise disjoint. Let pi be the 

natural projection from E* to E*, where E =  jj”=1 £*• Let Et- be partitioned into controllable 

and uncontrollable events (i.e., Et- =  Et-C U E{u) such that Eq. 3.1 holds. Let Hi C E*. Let 

i , j  6 {1, 2, • • • , n} and i /  j .  We say that Hi and Hj  are mutually controllable1 if

7^(Siu n E j) n P;j ((p}>)-1(Hj)) c  7^, and 

HjCSiun Ej) n p V ((p H '1 (S i)) c  77“

where fC and are the natural projections from (Ej U E j )* to  E* and Ej, respectively. 

Two languages Hi and Hj are mutually controllable if Hi is controllable with respect to 

pY {(p)J)~X (Hj)) and the shared uncontrollable events (Eju n Et), and Hj  is controllable

‘The term ‘mutual controllability’ was suggested by Murray Wonham.
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with respect to p j  [(pl/ ) ~ l (Hi)) and (Et-U n Ej). Let G t be a generator of Hi with event 

alphabet E The language (plJJ)~1(Hj) models the behaviour of G j with selflooping of the 

‘internal’ events of (i.e. E* -  Ej), and the language p\J (Hj)) represents the be­

haviour as seen by G t. Roughly speaking p1/  ((p1/ ) " 1 (Hj))  models the ‘external’ behaviour 

of Gj  as seen by Gj . Thus, two systems are mutually controllable if the closed behaviour of 

one system is controllable with respect to the ‘external’ behaviour of the other system for the 

uncontrollable shared events, and vice versa.

The following theorem provides sufficient conditions for Problem 3.1.

Theorem 3.1 Let E E tc, Etu, Ltjm, L, (i — 1,2, • • • , n), L m, and L be given as in Section 

3.2. Suppose that for i , j  £ {1, 2, • • • , n} and i ^  j,

i) Li iyi and Lj^m mark Sj f~l Ej,

ii) L{ and Lj are mutually controllable.

Then Problem 3.1 is solved, namely, Ei £ T l x m, Eq. 3.4 and 3.5 hold. □

Thus, Problem 3.1 is solved if the marked behaviours of any two subsystems mark their 

shared events and any two subsystems are mutually controllable. We shall call the condition 

(i) as the ‘shared-event-marking’ condition and the condition (ii) as the ‘mutual controllability’ 

condition.

One intuitive interpretation of the shared-event-marking condition may be the following. 

Since a shared event can potentially be ‘disabled’ by supervisors for other subsystems, one 

way to ensure that this disablement does not cause blocking in a given subsystem may be to 

structure the subsystem in such a way that, synchronisations by shared events are permitted 

only after the subsystem has completed certain stages of its task, i.e., has reached a marker 

state. Thus, even if the synchronisation is held up by the other subsystem, it will not cause 

blocking in the given system.

Note that

and Lj)Tn mark Ej n  E j (i j f  

L iyTn marks (Ei n  (U E j)), for alH =  1,2, • • • , n.

The former statement says that any pair of systems marks their shared events and the lat-
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ter states that a system marks all its shared events with all the other subsystems. They are 

equivalent. Since the shared events represent interactions with other subsystems, the set (Et- n 

(U j¥i Ej)) can be interpreted as all possible interactions of the plant with the ‘outside 

world’.

For the mutual controllability condition in Theorem 3.1, one example of uncontrollable 

shared events may be the interrupts between an I/O device and the CPU in a computer. In this 

example the condition requires that a subsystem should be able to track interrupts generated by 

the other system. We note that the requirement in [WH91] that all shared events be controllable 

certainly implies our condition.

Since the mutual controllability condition involves projection, the complexity of verify­

ing it might be exponential in the worst case [Rud88]. But the verification needs to be done 

only once for a given system. After the two conditions in Theorem 3.1 have been verified, 

decentralised control is achieved for all future syntheses. This cost in complexity may pay 

off in the long run. This agrees with the intuition that if the systems are structured properly 

then the operation of these systems will be easier. In the special situation when all the shared 

events are controllable, only the ‘shared-event-marking’ condition needs to be checked and the 

complexity for that is linear in the numbers of states and transitions.

For the proof of Theorem 3.1, one requires the following lemmas.

Lemma 3.1 Let E i, E2, • • *En be event alphabets. It may be that E; IT E j 7̂  for i , j  £ 

{1,2, -*-  , n} and i 7̂  j .  Let E =  (J™=1 and Pi be the natural projection from E* to E*. Let 

Hi C E*. Suppose that for i , j  £ { 1, 2, • • * , n] and i 7̂  j ,

H{ and Hj mark E; fl Ej.

Then

{ p~l {Hi) I i =  1,2, • • • , n} are nonconflicting.

Furthermore,

Pi(H) is nonblocking with respect to Hi for i =  1, 2, • • • , n, 

where H  := f f = i  P f l (Hi).

Proof: Since one inclusion is always true, we will show only
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Let s G n?=i P i 1 {Hi) = p ^ { H i )  n P2 1{H2) n ••• n pnl {Hn). Then there exist 

wi, W2 , • • • , un G E* such that s-u; G p“ 1 {Hi), for i = 1,2, • • • , n. Thus 

Pi{sui) G Hi, or pi(s)vi G Hi,

for some Vi G E*. Consider for the case i =  1. If there is an event <ti G (E i fl (Uj^i Ej)) such 

that v\ = v[<7iv” for some v[ , w" G E ,̂ then pick v[ such that v[ g (E i — (Uj^i Ej))*. Since 

<Ji G (U ^ i Ej), say <7i G S 2. Thus by the assumption that H i marks Ei fl E2 ,

Pi(s)uJ(7i g n E2 ) n i / i  c  i7i(Ei n S 2 ).

So pi{s)v[ G Hi.  If not, then pi(s)ui G # 1  and v\ g (E i — (Uj^i Ej))*. Thus without 

loss of generality, one has that pi(s)vi G H\ and v\ G (Ei -  (Uj^i Ej))*. Similarly, one has 

thatp*(s)u; G Hi, where Vi g (Ei -  (Uj^jEj))*. Thus Pi(sviv2 • • -vn) =  Pi{s)vi G Hi, for 

i =  1,2, • • •, n. Hence SU1 U2 • • • vn G n ”=i p” 1 {Hi). Therefore 

s e n t i P T 1^ ) .

It is clear that Pi{H) is prefix-closed. To show that Pi{H) is nonblocking with respect to 

Hi, one only needs to show that pi{H) C pi{H) D Hi as the other inclusion is always true. 

We show the case i = 1. Let s G Pi{H).  Then there is a string u G H  such that s = p\{u). 

Since u G H = P |™=1 P ^{H i) ,  one has that pi{u) G Hi for i = 1,2, • • • , n. So there is a 

string Vi G E* such that pi{u)vi G Hi. If there is an event ai g (E,- D E j) )  such that 

Vi = v'-<tiv" for some v[ g (Ej- — E j))*  and v" G E*, by the assumption that Hi and

Hj  marks E i n  E j ,  and the same argument as above, one has that pi{u)v[ G Hi C Hi. If not, 

again pi{u)vi G Hi C Hi and Vi g (E; — ((J^- E j))* .  Without loss of generality, one has 

that pi(u)vi G Hi and Vi g (Et- -  ( U E j ) ) * .  Thus pi{uviv2 • • -vn) = Pi{u)vi G Hi, for 

i =  1,2, • • • , n. Therefore

UV 1V2 • • -Vn G P i 1 {Hi) n p i l {H2) n • • - n p~l {Hn) = H.

Thus

Pi{uviv2 • • -Vn) = pi {u)Vi =  SÜ1 G Pi{H).

Hence

sui G Pi {H) n H u  or s G Pi {H) fl H i .

The other cases can be shown similarly. □
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Lemma 3.2 Let H := O i-i p~l {Hß and Ei C Hi, for i = 1,2, ••• , n. Suppose that 

pß l {E\), p f 1{E2), • • • ,p~ l {En) are nonconflicting. Then

(P i|//)-1 (£ i), {P2 \h )~1{E2), ••• , {pn\H)~l {En) are nonconflicting.

Proof: As the other inclusion is obvious, we only need to show the following.

{p i Ih ) - 1^ )  n {P2\h )~1{e 2) n • • • n {pn\H) - l {En) 

c p~l {Ei) n p f 1 (E2) n • • • n pü l (En)

= P i 1 {El) d p i \ E 2) D • • - n p n l {En) sincep f 1 {Ex),p i 1^ ) , - - -  ,

p~1{En) are nonconflicting

=  P i 1 {El) DP2 1{E2) n • •■npnl {En) D H  

= { p i M - ^ E i )  n {p2\h )~1{e 2) n • • • n {Pn\H) - l {En).

□

Let H  be a language over E and E ' C E. The property that H  marks E ' is generally not 

closed under inclusion, i.e. for F  C H  it is generally not true that F  marks E ' as shown in the 

following example.

Example 3.5 Let E =  {a,/?} and E' =  {ß}.  Let H = {c*, aßa}  and F  =  [aßa] .  Then 

aß  G E*E' fl F  but aß  £ EE', i.e. F  does not mark E'. O

However, we do have the following.

Lemma 3.3 Let H be a language over E and E ' C E. Suppose that H  marks E ' and F  G T u , 

i.e. F  is H-closed. Then F marks S '

Proof: Let sa  G E*E' D F. Since F  C H , so  G E*E' f) H.  Since H  marks E ', scr G HE' .  

Thus s G H.  Since F  G E h , s G F  fl H  =  F.  □

Thus, if a language H  marks a set of events E', then the property of marking S ' is inherited 

by all the sublanguages that are closed relative to the language H.
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Lemma 3.4 Under the conditions in Theorem 3.1, for i — 1,2, • • • , n and for H  £ T l x m,

f e lL ) -1( H ) = ( P .U ) - 1(ff).

With reference to Proposition 8 in [WW96a], (p2 |l) may be seen as to have a restricted observer 

property.

Proof: We show the case i = 1. Note that for all A C £*, p“ 1 (A) =  p“ 1 (A). Let H  £ TLx>rn• 

As (pt'lz,)-1 (^0 L (p ; |l )-1 (^ )  *s always true, one only needs to show the other inclusion. 

One has that

(Pi Il ) " 1^ )  = P T \ H ) K L

= p- 1 (H) n p-1 (LO n P21 (l2) n • • • n p-1 (Ln)

= p r 1(/ / n L i ) n ^ 21(L2 ) n - - - n p " 1(Ln)

=  Pi {H)  n P2 (T2)m) n • • • n pn (Ln)Tn)

— Pi (-ff) L P2 (^2,771) n  • • • fl p n (L n,m)‘

Since L,-)Tn and LJ)TO mark £,• D £ j, for i, j  £ {1, 2, • • • , n} and i j  (an assumption in 

Theorem 3.1), and H  is Li,m-closed, by Lemma 3.3, H  also marks £ i D £ t for * =  2,3, • • • , n. 

So, by Lemma 3.1

(PllL)-Mi*) =  P iY {H) n  P21 {L2,m) n  • ■ • f\P n1 {Lnxm)

—  P i  { H )  Ll P 2 ( ^ 2 , m )  0  • • • f l  p n  ( L n , m )

=  Pi {.H L Li,m) L P2 (Z/2,m) L • • • n  Pn (Ln,m) since H  C L \xTn

=  L p ^ ^ L i ^ )  0P2 1(^2,m) L • • •L p n 1(Ln,m)

=  Pi"1 (-^0 L Lm 

C p r ' W L L  

=  (Pi Il) - 1^ ) .
□

The following lemma provides a technical result which will be used later.

Lemma 3.5 For three event sets £  i ,£2, and £3, letY, 23 =  (£2>J£3) andT, = ( £ i U£2U£3). 

Let pi : £* — ¥ £* (i = 1, 2, 3)andpf3, : £23 — ¥ £* (i = 2, 3) be the natural projections. 

Then for L C £3,

P2((P3) 1{ L ) ) = p f  ( (p f)  ^ L )) .
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Proof: For the inclusion (C), let s £ P2 ((P3 )~l (L)) C E .̂ Then there exists a string 

u £ (p3)-1 (L), such that s =  p2(u). So, p3(u) £ L. By Lemma 2.2 in Section 2.7, p2(w) =  

p2 ° P2 3 (w), where p23 is the natural projection from E* to E ^. Let v := p23(w) £ E^. Then 

s =  p2(u) =  P2 ° P2 3 {u) =  p2(u). Also by Lemma 2.3 in Section 2.7, p23(u) =  p2|e*3 (v) =  

p2{v) (since v £ E ^). So s =  p2{u) =  p2{v) =  p]3(v). Also, since p§3(u) =  pl3p2 3 (u) =  

p3(u) £ L, v £ (pI3)"1^ ) .  Therefore, s =  p2(v) =  p f ( v )  £ P23((p33)-1 (L)).

For the other inclusion, let s £ p23((p33)-1 (L)). Then there exits a string m £ (p§3)— 1 (^) 

such that s =  p23(w). Since w £ E ^, by Lemma 2.3, one has that s =  pl3(u) — p2 |e*3(w) =  

P2 {u). Since u £ (p§3)_1(L) C (p3)-1 (L), u £ (p3)_1(L). Therefore s =  p2(u) £

P2({P3)~1{L)). □

Let C(L) and C (Li) be respectively the sets of controllable sublanguages of L and L*.

Lemma 3.6 Under the conditions in Theorem 3.1,

(1) for all K  £ C ( L i ) n T Lx<rn, (p1\l )~1(K)  £ C(L);

(2) for all K  £ C(L), Pi(K)  € C(L<).

Proof: To show (1), let K  £ C(L{) D T l , m and A'' := (p;|l)-1 (A'). To show that K'  is 

controllable with respect to L, let so £ K' Eu n L. Thus s £ A'', <7 £ Eu, and so £ A.

So s £ (p1\l )~1(K)  C (pj|l)_ 1(A'), orpi(s) £ K.  If o’ £ Et then 

Pi(so) =  Pi(s)o £ pi(L) C Li.

By Eq. 3.2, <r £ Et- n Eu =  Elu. Thus, since K  £ C(L{),

Pi(so) =  pi(s)o  £ KTjiu n  Li C K ,  or so  £ pt_1(A ).

Since so £ L, s«7 £ p“ 1 (A’) flL  =  (p;|l)_ 1 (A”). Since K  £ Ll, m, by Lemma 3.4 

so- e ( p ^ r ^ K )  =  (pi\L) - ^ K ) = T c .

If o g  Ei then pi(so) =  Pi(s) £ K.  By the same argument as above, so £ K ' . Hence 

K'  e C(L).

To show (2), we show the case i =  1. Let K  £ C(L) and K'  =  pi(A'). To show K'  £ 

C(Li), let so £ K'Tjiu Pi L\. Thus s £ K ' , o £ E iu, and so  £ L\. So s £ Pi(A') =  pi(A'). 

There is a string u £ K  such that s =  pi (u). Since u £ K  C L =  fj™=1 Li"1 (•£»)* one has that 

Pi(u) £ Li, for i =  1, 2, • • • , n. Since o £ E iu C Ei and p\ (u) =  s,
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Pi (uct) = pi{u)a  =  sa  G Li, or u a ^ p ^ l {L\).

For j  =  2, 3, • • • , n, if a £ Ej, then Pj{ua) =  Pj(u) G Lj,  i.e., ua  G p ' 1 (Z^); if <r G Ej 

then a  G E iu fl Ej. Thus Pj(ucr) = Pj{u)a G L j(E iu fl Ej). Since ua  G P \ l {L i) and by 

Lemma 3.5, Pj(ua)  G pj ((p i)-1 {Li))=  PjJ ((PiJ)_1(£i))- So by the mutual controllability 

of L\  and Lj  (an assumption in Theorem 3.1),

Pj{ua) G Lj ^ u H E j ) f) p]J ( ( p l ^ - ^ L ^ C  Lj.

So ua  G p J 1(Lj).  Thus ua  G DiLi V f l {Li) =  L. Since a G E iu C E u and K  is controllable, 

ua  G K E U n L C  K.

Thus pi (wer) =  pi(u)a  =  sa  G pi(JT) =  Pi(/T) =  K ' . So K'  G C{L\).  □

Lemma 3.7 Under the conditions in Theorem 3.1, for i = 1, 2, • • • n and for Ei G E l , m,

(Pi\L)~l KL,{Ei) = nL(pi\L)~l (Ei).

Proof: Let E { G Ĵ z,. m for i =  1,2, • • • , n. Then kl, (#*) € C(Lt-). Since Ll)m-closedness is 

closed under kl, (Proposition 6.1 in [WR88]),

KLi(Ei) €  C (£ t )  n

By (1) in Lemma 3.6, (piU)-1 KL,(Ei) eC (L ). Since (pilL)_1KL,(£i) Q (pilL)_1(^ i) , 

(Pi|L)_1«L,(-Ez) C Kl CPi Il)-1 {Ei).

For the reverse inclusion, since kl(Pz'|l)_1(Z?i) € C(L), by (2) in Lemma 3.6,

PiKL{Pi\L)~l (Ei) G C(Li).

Smc&piKL (pi\L) - 1(Ei) C p ,-(p <|l )_1(^*) C Ei,

Pi^L{Pi\L)~1{Ei) C kl, (-#*)•

Thus k l (Pi'Il )- 1 (-Êz) C p,“ 1« ^  (£,-). Since «l (p ; |l )_1(£ z) C L,

«T,(Pz|l )_1(-Ez) Q (Pi|L)_1K L,(^). D

Now, one is ready to prove Theorem 3.1.

Proof of Theorem 3.1: Let Ei G El ,)TTI, for i = 1,2, • • • , n. Since L,jm-closedness is closed 

under kl , (Proposition 6.1 [WR88]), kl , (E{) G E l , m. By the assumption that L,-im and Lj>m 

mark the shared events E t- n Ej for i, j, G {1, 2, • • • , n} and i j ,  and Lemma 3.3, kl, (E {) 

and KLj {Ej) also mark Et- fl Ej. By Lemma 3.1,

{Pi 1 («l< (#*)) I i = 1,2, • • • , n} are nonconflicting.
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By Lemma 3.2,

{(Pi\L)~l {KLi(Ei)) \i = 1, 2, •••,  n}  are nonconflicting. (3.7)

Since Ei G by Lemma 3.7 [pi\L)~l ^Lt (Ez) = ^ l {Pi \l )~1 {Ei). Hence

{>^L{{Pi\L)~1(Ei)) I i = 1,2, • • • , n} are nonconfiicting. (3.8)

Now it can be shown in turn, for i = 1,2, • • • , n,

nz(Pi|L)_1(«L i(^ ))

=  since kl, {Ei) G Ei,i m

and by Lemma 3.4,

=  n t fe lL )_1(K L,(^)) byEq. 3.7,

=  n t-(KL(p;|L)- 1(£i)) since Ez-G Et,m

and by Lemma 3.7,

=  AcL( f l i ( a |L ) _1( ^ ) ) )  byEq. 3.8 and

Proposition 3.1

= M E j.

To show that Pj(kl(E)) is nonblocking with respect to L;)7n, we observe that k l(E) =  

1(KL2(E2))n- • •np"1(KLn(En)). By Lemma 3.1, Pi(kl (E)) is nonblock­

ing with respect to kl{ {Ei). Since (Ei) C L;irn, it follows that p ;(kl(E;)) is nonblocking 

with respect to Li)7n. □

Since k/,. (E;) for i = 1,2, • • • , n, is controllable and Li<m-closed, by the standard the­

ory [RW89] a nonblocking supervisor Si can be synthesised so that its closed-loop marked 

behaviour with G* is precisely K£t (E;). Provided that the assumptions of marking the 

shared events and mutual controllability hold, by our result these supervisors implement the 

behaviour of an ‘optimal’ supervisor that is synthesised for the overall specification. In partic­

ular there will not be conflicts between the ‘global’ implementations of the Sz ’s and control of 

the supervisor in one subsystem will never cause blocking in the other.
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3.4 Example

In this section we illustrate our result with two examples. All the computations in this section 

are carried out with TCT [Won96]. In the first example, we consider two machines cells G i 

and G 2 that need to cooperate at some stage for processing certain parts. Let the models of 

the two machine cells be given by the generators in Figure 3.2. Here a state is represented by 

a circle and an event is described by an arrow from an exit state to an entrance state with an 

event label attached. The initial state is labelled with an entering arrow (— k>), and a marker 

state is labelled with an exiting arrow (o— »). A double arrow (c*— >) indicates that the initial 

state is also a marker state. The arrow with a ‘tick’ indicates that the event is controllable.

Figure 3.2: Generators for G i and G 2

In G i, the cycle of a\,  a 2, <5i, and S2 represents the cycle of processing that requires no 

cooperation with other machine cells. The event ß  represents the start of the cooperation. The 

event 7  indicates that the cooperation ends successfully, whereas £ indicates that the coopera­

tion is unsuccessful. The events <$3, <$4, and £5 represent respectively the event of returning to 

the initial state, the event of rejoining the process in mid-stream, and the event of returning to 

the state before cooperation. A similar explanation for events in G 2 applies.
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The event sets for local systems are

El =  {<*1, <*2, ß,  7,£,<$1,^2, 3̂» 4̂» 5̂}

^ 2  =  {Cl,  faß,  7 , f ,

The shared events Ej D E2 — {/?, 7 ,£ } . The shared uncontrollable events are { t ,C}- Let 

Li,m L m(Gi) and L{ := L(Gi).  It is easy to see that the ‘shared-event-marking’ as­

sumption in Theorem 3.1 holds in this example since all the state before the shared events are 

marked. To check the mutual controllability condition (i.e. L ;(£;u fl Ej) fl pip~l (Lj) C Li), 

the language pip^l (L2) is computed and is displayed in Figure 3.3. It can be verified that

Selfloop ol and 5j for i= l,2  and j = l , 2 , 5.

Figure 3.3: A generator for 1 (Z/2)

L i {7, C) H P 1 P 2  1 (L2) C L1 indeed holds. The other inclusion for L2 holds by symmetry.

Let the specifications E\  and E2 be the marked behaviours of the generators in Figure 3.4. 

Clearly Ei is -closed for i =  1,2. Thus in both specifications after successful cooperation 

(the event 7 ) the systems are returned to their respective initial states and perhaps new parts are 

accepted into the workcells. If the cooperation is not successful, then in E\ a re-attempt at co­

operation immediately afterwards is possible and in E2 an immediate re-attempt at cooperation 

will not be made.

It is checked that Ki,{Ei) =  Ei. We also compute L =  L\ || L2, Lm =  L\yTn || L2tTn, and 

E =  {pi \l )~1{Ei) D (p2\l)~1 (E2). The global synthesis is carried out. It can be verified that 

Eq. 3.4 and 3.5 hold.

To illustrate our result with a more practical example, we consider a chemical batch reactor 

described in [Als96]. The reactor is comprised of a feed valve V_l, a feed pump P_l, a drain
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O ( H

El E2

Figure 3.4: Generators for E \ and E 2

valve V_2, a drain pump P_2, a weight measurement unit W _l, a timer T_l, a heater with a 

temperature probe TP_1 and a continuous reaction controller C_l(see Figure 3.5). DES models 

for the elementary components are presented in Figure 3.6.

The batch reaction process operates as follows. Firstly, the feed valve V_1 is opened (event 

c*i) and then feed pump P_1 is turned on (event £i) to fill the reactor tank with material until 

W_1 indicates that the weight is 100kg (event ij3). When the weight reaches 100kg, the feed 

pump is turned off (event Ai) and the feed valve is closed (event ß\). Then the heater is turned 

on to warm up the material. When the material temperature reaches 30°C < T < (event 

u>i), the reaction controller C_1 is enabled (event 7 ). The duration of the reaction is timed by 

the timer which can be set for 3 minutes (event ^ 1), 5 minutes (event fi2) and 7 minutes (event 

^3). Assume that the controller is required to operate for 5 minutes at the material temperature 

30°C  <  T <  60°C\ So, f.i2 is chosen. During the operation, the timer can be held at its current 

time (event ^ 4 ) to handle some situations such as emergency repairs. From the held state, the 

timer can either be reset (event n 8) to the idle state or re-released (event /u5). After the set time 

has expired (uncontrollable event ^e), the controller C_1 is disabled (event £) and the timer is 

reset (event fij). We assume that now the reaction will take 5 minutes more at the material 

temperature T >  60°C. So the material temperature is increased to T >  60°C (event u>8) and 

controller is enabled again. Then, event fi2 is again chosen. When the time has expired (event
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Figure 3.5: A simple batch reactor

Hg), the controller C_1 is disabled (event S) and the timer is reset (event ^7). Before beginning 

to empty the tank, it is required that the material temperature should be less than 30°C(event 

<x>2). Then the drain valve V_2 is opened (event <22) and the drain pump P_2 is turned on (event 

£ 2 )  t o  discharge the finished product from the tank until W_1 indicates that the tank is empty 

(W< lkg) by the event t/2. When this happens, the drain pump is turned off (event A2) and the 

drain valve is closed (event ß2). This completes one cycle of the batch reaction process.

The synchronous composition of all the elementary components generates the possible sys­

tem behaviours. However, there exist some physical constraints among the elementary compo­

nents and they will restrict the system behaviour by deleting infeasible states and transitions. 

Physical constraints are often resulted from conservation of mass, energy and momentum, grav­

itational consideration and mechanical connections among the components. The automata dis­

played in Figure 3.7 represent two physical constraints, namely that the weight can only be 

increased after the feed pump is turned on (constraint 1) and can only be decreased after the 

drain pump is turned on (constraint 2).
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V_1 ,

/ \ closed

P J

/ 1 off

a i l V Ku ,

V/'  open \ 4  on

! w 1 A

W < 1kg

“Hi 4- 4-^2

lkg < W < 100kg

“Hj 4- 4 - ^

W > 100kg

V 2

open

Figure 3.6: DES models for the elementary components o f the batch reactor
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constraint 1 constraint 2

^  T]4 Ap1»' ^r\ 
' { /

i

V o *
^  T|j * \4 r \ 4

Figure 3.7: Physical constraints of the batch reactor

The complete centralised model formed by the synchronous composition of these elemen­

tary components has 1152 states with 10368 transitions.

The DES model of specification for the whole process is given in Figure 3.8. The optimal

11/  42

Figure 3.8: The specification for a centralised control of the batch reactor

centralised supervisor which satisfies the given specification is obtained and has 28 states with 

30 transitions.
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We now consider decentralised control for this example. The batch reaction process is 

decomposed naturally into three subplants: the filling subplant (G i), the draining subplant 

(G 2) and the reaction subplant (G 3). The subplants G i, G 2 and G 3 consist of, respectively, 

V_l, P_1 and W_l; V_2, P_2 and W_l; and T_l, TP_1 and C_l. Note that the component 

W_1 is the shared component of plants G i and G 2. The operation of the batch process is also 

divided naturally into three subprocesses according to the decomposition of the plant: the filling 

process, the reaction process, and the draining process. To enforce that these three processes 

are operating serially, we introduce three controllable shared events (oi, <r2, <r3). These shared 

events indicate the completion of the current process and allow the next process to proceed. For 

example, the event < j\ represents that the filling process has been completed and the chemical 

reaction process can now proceed. The event cr2 represents the completion of the chemical 

reaction, while tr3 represents that the draining has finished and indicates a complete cycle of 

the batch reaction. These controllable synchronised events are represented as ‘flag’s (Figure 

3.9) and considered as a part of the plants.

Figure 3.9: Synchronisation flags for decentralised control of the batch reactor

So, the subplants now are;

(a) flag

0, 0), <02

J—► o—I—► 0—1"

• G i: V _l,P_l,W _l,flag_l.
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•  G 2: V_2, P_2, W_l, flag_2.

•  G 2: T_l, TP_1, C_l, flag_3.

The sizes of the plants G i and G 2 are 36 states with 132 transitions, while G 3 has 48 states 

with 200 events. Comparing these with the size of centralised counterpart shows that decen­

tralised control can offer significant savings on computational effort.

The DES models of specifications, E \ , E2, and E3 ( for G i, G 2 and G 3, respectively) are 

given in Figure 3.10. The corresponding decentralised supervisors for the local specifications 

are computed. The supervisors for G i and G 2 both have 17 states with 29 transitions and that 

for G 3 has 19 states with 23 events.

The event sets for the subplants are

^ 1  — { ^ 1  ? ß l ) V l  ? 7 2 1 V3i ? £ l  ? ^ 1 1 &l  ? ^ 2  ? ^ ”3 }

E2 =  {&2, ß2,T]i,r)2,T)3, 2̂, <̂ 15 2̂, ^3 }

S 3 =  { 7 ,^ ,/ i i , / i2,/ i3,/ i4,/i5 ,/i6,/i7 ,//8,u;i,u;2,a;3,a;4,(7i,cr2,cr3}.

The shared events are

S i Pi E2 =  {r7i, 772, Z73,774, cri, cr2, <̂ 3}

s 2 n x 3 =  {< î) <̂ 2) ^3 }

s 3 n Ei = {<7i, cr2,0-3}.

We verify that the system structure of this example (G i, G 2 and G 3 ) satisfies the conditions 

given in Theorem 3.1. Since all shared events are controllable, the ‘mutual controllability’ 

condition is satisfied trivially. For the ‘shared-event-marking’ condition, we mark all the states 

before the shared events in G z and E{, for i = 1,2,3.  The marking of the shared events seem 

natural in this case. For example, the marking of the states before the event o\ represents the 

completion of the filling process and the beginning of the chemical reaction process. It can be 

checked that specification E{ is Lt>m-closed language, where Lt->m are the marked behaviours 

of Gi, for i = 1, 2,3.  Then, we compute the global system behaviours, L = L\ || L2 || L3, 

Lm = L lfTn II L2}m || L3}Tn, and the global specification, E = (p i |l)_1( ^ i ) H {p2\l )~1{E2) n 

(P3|l ) - 1  (£3). The global synthesis is now carried out. The result shows that Eq. 3.4 and 3.5

hold.
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selfl0°P f’l ! ) selfloopl 1j )

Figure 3.10: Local specifications for decentralised control of the batch reactor
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Note that the generator for L after we project out the synchronisation events is not the 

same as the system model obtained as the synchronous composition of all the elementary com­

ponents. This is because the synchronisation events <7i, <j 2 and <73 impose certain orders in the 

behaviour. For example, without these synchronisation events the draining of material from the 

tank is possible at the start of the operation, whereas with these synchronisation events, drain­

ing is allowed only after the reaction in the tank has been completed. However, the specification 

E  is the same as the specification in Figure 3.8 if the synchronisation events cr1, a 2 and a3 are 

projected out from E.  Thus, by introducing the ‘high-level’ order of feeding-reaction-draining 

into the system structure using these controllable synchronisation events, the specification is 

decomposed accordingly. With this decomposition, the synthesis may be carried out more 

efficiently.

Intuitively, it is the requirements within the subprocesses that are often changed (e.g. for 

different chemicals), whereas the high-level structure like feeding-reaction-draining remains 

constant for many different requirements. Thus, the other advantage of this decomposition is 

that any change in specification in a subprocess can be localised and adapted to efficiently by 

re-computing only the corresponding sub-supervisor. In this case, after verifying the synchro­

nisation structure with the result in Theorem 3.1, the structure can be used for any Llim-closed 

local specifications. As a simple illustration, let us consider that the specification for G 2 is 

changed as follows:

1. Warm up the material to T> 60°C (event u>3).

2. Enable the controller (event 7 ) for 3 minutes (event fii).

3. After the timer has expired, disable the controller, reset the timer, and then let the material 

cool down to 30°C < T < 60°C (event UJ4 ).

4. Set the timer and enable C\  (event 7 ) for 7 minutes (event ^3).

5. After the timer has expired, disable the controller and reset the timer.

6 . Wait until the material is cooled down to T < 30°C (event u 2).

DES model for this specification is given in Figure 3.11. Since it has already been verified
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0 /  o2 <7?

( ?  “<

5

Figure 3.11: Modified local specification for G 2

that our conditions are satisfied, we only need to check whether this specification language is 

Z/2 ,m-closed. It can be verified (using TCT) that this is the case, and the new supervisor for G 2 

is then synthesised.

3.5 Conclusions

In this chapter, we have formulated a problem of structural decentralised control of concurrent 

discrete event systems. In particular, we have considered a system G as the synchronous com­

position of subsystems G i, G 2, • • •, G n with shared events. If the marked behaviours of the 

subsystems mark the shared events and each pair of subsystems is mutually controllable, then 

for any Lljm-closed specifications on the subsystems, local syntheses and controls will achieve 

the same optimal behaviour as that would be obtained by a centralised control for the overall 

specification, and the control in one subsystem will not cause blocking in the other subsystems. 

Without the result in Theorem 3.1, one is forced to carry out a global synthesis and global con­

trol, and its computational complexity may be exponentially more expensive. Even though we 

have restricted that the plant is the synchronous composition of the local systems, the result 

can still be used for many practical applications such as a CIP process presented in Chapter 7.
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Chapter 4

Task Rescheduling using Coordinator

In many applications of decentralised control, after the local supervisors have been designed for 

a given task, rescheduling of task may be handled by a coordinator. In this chapter, we investi­

gate this idea. The result in the previous chapter is used here to establish such a coordination 

scheme. Examples are provided for illustration.

4.1 Introduction

In many applications, after a decentralised control design has already been established, one 

might need to reschedule certain jobs in local subsystems to meet different requirements such 

as the production of different types of products. In some cases, a coordinator can be used to 

handle such rescheduling. As an example, consider the following.

Example 4.1 Consider two machines modelled as in Figure 4.1(a). Assume that the systems 

need to cooperate at some stage so that certain products can be processed. The event sets are

^1 =  {«i, ßi, /?2> ßz, ̂ 1^2,

^2 =  { « 1 , 0 2 ,  /5l , / 2̂, ßzi Al,  A2, A3}.

The shared event set is Ei f lE2 =  {aq, ß \ ,  /?2, ßz} -  Assume that all the events are controllable. 

Let pi be the natural projection from (Ei U E2)* to E* and let the closed and marked behaviour

65



4.1. INTRODUCTION 66

of the plant Gj be respectively Li and Li?rn for i — 1, 2. In this case, one knows that Li = LiiTn. 

Assume that the system produces two types of parts, say part A and B. Assume that for part 

A the synchronisation of the event ß\ is required, while for part B the event ß2 is required. 

The specifications (say E\ and E2) are given in Figure 4.1(b). Here, after the shared event a i 

occurs, the system G 2 needs one more event (a2) before the synchronisation (ßi or ß 2). The 

events £i, S2, S3 , £ 4  in G i and Ai, A2, A3  in G 2  represent certain processes required before the 

completion of one cycle of the whole operation. The shared event ßs indicates the completion 

of the operation. Local supervisors (say Si and S2) can now be designed for given local 

specifications (E1 and E2). Let the marked and closed behaviours of the closed-loop local 

system S z/G ; be respectively kl, {Eß and K,L,{Eß for i = 1,2. Since the systems satisfy 

the conditions given in Theorem 3.1, the concurrent actions of decentralised supervisors will 

achieve the global task.

Let G/i be a DES such that L(Gf ß =  ps{L) and L m(Gh) = ps{Lm) where ps : (Ei U 

E2)* — > (Ei D E2)*, as represented in Figure 4.1(c). Here after the event ot\ both ßi and ß2 

are allowed to occur. Write Lh for ps{L). The system G^ models the interactions of G i and 

G 2, and is usually simpler than the G*’s. Now we consider the following situation. Assume 

that the system is required to produce only one type of product for some period of time, and to 

prohibit the production of the other product due to, for example, market demands or problems 

in the next assembly line. This requirement could be achieved in the plant G/* by prohibiting 

the shared event ß\ or ß2 from occurring. The model given in Figure 4.1(d) represents the 

specification (denoted by Eha) for the situation that only part A is produced. A supervisor, 

denoted by S/^, is then computed. Let the marked and closed behaviours of the closed-loop 

system S ha/ G h be respectively KLh{Eha) and KLh(Eha)-

Let

E'  = (p i|L )-‘ (ß i)  n  (P2\l ) - ' ( e 2) n  W l ) - 1 

Here E'  represents the modified global specification. In this case, it can be verified that the 

control action of Ska with the concurrent actions of local supervisors will achieve the control 

objective. That is,

kl{E') =  (p i \l ) L(kLi ( £ 1 )) n  (p2|l) 1{kl2(E2)) n (ps\L) l {KLh(Eha)). (4.1)
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Figure 4.1: An example of coordination
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For different requirements such as only part B is produced, a supervisor Shb can be computed 

and an equation similar to Eq 4.1 can be verified. This example shows that in some situations, 

modifications of the given specification can be carried out by a supervisor designed for the 

plant Gh- We may call this supervisor a coordinator. O

The concept of coordination in supervisory control of DES was introduced in [LW90]. 

In that paper, the authors consider a situation in which after decentralised supervisors have 

been designed, a coordinating supervisor, called a coordinator, at a higher or a second level 

may supervise the interactions of the decentralised supervisors. They have established the 

conditions for the existence of such a coordinator. In the paper [Lin91], the author considers 

the case that the decentralised control alone cannot achieve the overall task. Using a coordinator 

(another supervisor), the overall task can be achieved by allocating subtasks to the coordinator 

and local supervisors. That is, in such a case, decentralised control can achieve only a part of the 

overall task and a coordinator is used to achieve the rest of the overall task and this intervention 

by the coordinator should be minimal. In the paper [WW96c], the authors investigate a scheme 

of hierarchical coordination for resolving potential conflicts between the modular supervisors 

in a ‘non-intrusive manner’. Once a conflict situation is detected, the high-level controller 

will ‘disable’ those high-level transitions that will inevitably lead to conflict. In practice, a 

command is sent down to a low-level coordinator which will carry out the disablement so as to 

prevent the low-level system from evolving into a conflict situation.

In this chapter, we consider the case that the global system G is obtained by the syn­

chronous composition of a number of local subsystems, and we assume that the local systems 

satisfy the conditions given in Theorem 3.1. We will take the model, denoted by G^, of only the 

synchronisation events in G as a high-level plant for coordination. For a specification given on 

Gh, a coordinator can be computed. By using different coordinators, we will show that under 

some conditions it is possible to achieve the control objectives for different tasks.

4.2 A Coordination Scheme

Firstly we introduce a definition of coordinator. Consider a system as given in Figure 4.2. Let
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Figure 4.2: A coordination scheme

E,- be the event alphabets for the plants G; for i =  1,2, • • • , n. It is allowed that E ; fl Ej ^  (f> 

for z, j  £ {1,2,*** , n } and i ±  j .  Let E := |J™=1 E; be the event set of the overall system 

G. Let Ec := U?=1 EiC and Eu := U"=i S tu. Let pi be the natural projection from E* to E*. 

Let Li)Tn, Li C E* represent respectively the marked and closed behaviours of the local system 

G i. We assume that Li =  Lt,m. The marked and closed behaviours of the overall system G 

are respectively

L-m — L \ ^ m  | |  1 / 2 , 7 7 1 5  II ’ II L f 7,777, —  P l { ’= l ( p i )  ( L i }7 7 i ) ,

l  =  r ,  ii z .2.  i i . . .  ii z . „  =  n r =1

Now let Ei  C Li tm be an L;)m-closed language, not necessarily prefix-closed, representing 

a specification on the system G;. As in the previous chapter, the overall specification is

i—1

Local supervisors, denoted Si, can be designed for given local specifications (Ei ). The marked 

and closed behaviours of the closed-loop local system St/G,- are respectively KL,(Ei) and 

k l , {Ei). Assume that the systems G; and G j, for i, j  £ {1,2,  • • • , n} and i ^  j ,  satisfy the 

conditions in Theorem 3.1. Then one has that
n

2=1

where k l {E)  is the closed behaviour of a global closed-loop system (say S/G).
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Let the shared event set be Es = IJ^E,- n (Uj^i £ j)) =  U n £j)» and let ps be 

the natural projection from E* to E*. Consider a system Gh  such that L(Gh) = pa(L) and 

L m{Gh)  =  ps(Lm). Write Lh for ps{L) and Lh,m for ps(Lm). Let a specification on the 

system G^, Eh C Lh,m, be an L/^m-closed language. Now compute a supervisor for the 

specification Eh on the plant G^. Then the marked and closed behaviours of the closed-loop 

system Sh/Gh are KLh(Eh) and KLh{Eh), respectively.

The modified global specification is

71

E' =  p |( f t |t ) -1(^i) n (Pshr^Ek)  = B n (p .U )-1
t=l

We call Sh a coordinator if
71

^ J B 7) =  r > . W ' C T Ö )  n  (P-lt)_1(« th(-E’*))- (4.2)
2 =  1

That is, a coordinator is a supervisor on G^ which coordinates the local supervisions such that 

the combined supervision will achieve the modified global control objective.

Now, suppose that for a given system G, any pair of subsystems G; and Gj  satisfies that

and LjiTn mark Ej n S j , 

ii)L{ and Lj  are mutually controllable,

where i , j  € {1, 2, • • • , n} and i ^  j .  From Chapter 3, we know that, if for all pairs of 

the systems G i, G 2 , • • •, G n, and G^ satisfy the shared-event-marking condition and the 

mutual controllability condition, then for any L^>m-closed language Eh, Eq. 4.2 is true, i.e., 

the supervisor for Eh on G^ is a coordinator.

Proposition 4.1 shows that under given the assumptions in Eq. 4.3, the pair of the systems 

(G z, G h), for i =  1 ,2, • • • , n, satisfies the shared-event-marking condition.

Proposition 4.1 Let E*, Es, Lh,m be defined as above, for i = 1, 2, • • • , n. Then 

Li}Tn and Lh,m mark E,- fl E5.

To prove Proposition 4.1, we firstly establish the following lemmas.
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Lemma 4.1 Assume that Li, Ll)Tn andps are given as above where i = 1,2, • • • , n. Then

P s ( L i )  —  P s { L i trn)•

Proof: Since one inclusion is always true, one only needs to show that ps(Li) C ps(L;)m). 

Let s £ ps(Li). Then there exists a string u £ Li such that s = ps (u). Since Li = Li^m, 

there exists a string v £ £* such that uv £ Hence ps(uv) £ ps (Li,m). we consider two 

cases. If v £ (£*• — £ 5)*, thenps(ui>) =  ps(u)ps(v) =  ps(u) = s £ ps(Z/;,m). Otherwise, 

there are events ax, o2, • • • , on £ £ s and wi, uo2, • • • , wn, iün+i € (Si -  £ s)* such that 

v = w i (Tiw 2(T2 • • ■ wn(jnwn+\. Since uv £ LiyTn,

uv = uw\0\W2(J2 • • -wn(jnwn+1 £ Lifm. Hence iticiiri £ Li)Tn.

Also, since u £ L; and w\ £ (£; -  £ s)*, uw i  £ £*. Since cr £ £ s =  n  £ j ) »

a £ £j n £ j for some j. By the assumption of the shared event marking condition between 

two systems G t and Gj, one has that uw\ £ L,)m. Therefore,

Ps(uwi) =  Pa(u)pa(wi) =  p3{u) =  S  £ ps(L,,m). □

Next two lemmas are used to establish Lemma 4.4.

Lemma 4.2 1 For alphabets £ 0, E i ,£ 2  with £  =  E i  U £2 and E 0 C £ ,  let L\ C £*, 

L2 C £2, and let P0 : £* — > £* be the natural projection. Then 

P0(L\ II L2) C (P0L i ) | | ( P 0L2).

Note that P0Li C ( £ 0 fl E t)*.

Proof: Recall that L\ || L2 =  p~[l (L \ ) n (Z/2), where pi : £* — £* and 

{P0L\) II {P0L2) = (Pi)_ 1(p0(^i)) D (p^)-1(p0(L2)), wherep? : £* — > (£ 0 n £;)* . 

ToshowP0(Li II L2) C (Poh)  II (P0L2), consider a strings £ P0{Li || L2). Then there exists 

a string it £ L\ || L2 such that s =  p0(it). Hence it £ p “̂1 (L1) Pi P2 1 (L2) and s =  p0(u). So, 

Pi (it) £ L\ andp2(it) £ L2. Therefore,

PoP\(u) G p0(£i) andp0p2(it) £ p0(L2).

Note that in this case p-’(s) =  p^PoM =  Pip0(u) =  p0pt(it). Hence, Pi(s) £ p0(Zq) and 

P2(5) € p0(L2)- So,

^ € (pJJ- 'poJLi) n  (p°2)-lPo(L2) =  (P0Li) II (P0L2). □

'This lemma is Exercise 3.3.3 in [Won96].
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Lemma 4.3 Let £ 0, E i , £2, Po, Pi, P° be defined as in Lemma 4.2. Suppose that

Ei n £2 c £0.
Then

Po(L1 \\L2) = (P0L 1) \ \ (P 0L 2).

Proof : One inclusion (C) is already shown in Lemma 4.2. For the other inclusion, we firstly 

show the following claims.

Claim 4.1 For L C E* (for i = 1, 2)

{Pi)~1Po(L) = p 0(pi)~l (L),

where p° : £* — > (£ 0 fl Ei)*. Note that P0(L) C (E0 fl £,■)*.

Proof of the claim: We show the case i = 1. For one inclusion Q ), let s £ p0(pi)-1 {L). Then 

there exists a string u E (p i)_1(L) such that s = p0(u). Hence pi(u) E L. So p0(pi(u)) E 

p0{L). Note thatp ^ s )  = p°p0(u) = pip0{u) =  p0pi{u) E p0{L)- Hence s E (p°l )~1p0(L). 

For the reverse inclusion, let s E (P°\)~lPo{L) E £*. Hence Pi(s) E p0{L). We have two 

cases. If s € (E & — Ei)*, then Pi(s) =  € E p&(L). So, there exists a string u £ L such that 

p0(u) =  €. Hence u E (Ei -  £ 0)*. Since p\(su) = u E L, one has su E p~[l (L). Hence 

p0(su) = s E PoP\l {L). If s ^ (E0 -  Ei)*, one can consider a string

s =  wiOivo2o2 • • •wm(jm% +i, where aru  cr2, • • • , <rm € (Ei H E 0),

wi, w2, * * * , »1», % + i  € (E0 -  Si)*.
Since Pi(s) E p0(T), one has that Pi{s) = <7i <t2 • • -om E p0(L). Hence there exists a string 

u £ L such thatp-’(s) =  cti<72 • • • <rm =  p0{u). Since u £ L C £*, one has that

w =  uiOiu2<72 • • -wmCTmwm+i, where ui, u2, • • • , um, wm+i E (Ei -  E 0)*.

Define a string v := wiuicriu;2u2(72 • • • tiiffl«m(rmti)m + iV i ' Then

Pi(u) =  ui<j iu2<t2 • - • um<rmum+i = u £ L. Hence v £ p i l (L). Thusp0(u) E p0P i l (L). 

Also p0{v) — w\(Jiw2(j2 • • • wmomwm+i — s. Therefore s =  p0{v) £ p0p1 l (L). This proves 

the claim.

Claim 4.2 Suppose that Ei fl E2 C £ 0, Then

PoPil {L\)PPoP2 l {L2) C ^ ( p - ^ L i )  flp2 1(t 2)).
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Proof of the claim: Lets G PoPi^Li)  Dp0p~1(L2). Then s G ands G p0p^1(L2).

Hence there exist a string u G such that s =  Po(^). So pi(u) G Li and s =  pQ{u).

Also there is a string v G (Z>2) such that s =  p0(v). So p2(u) G L 2 and s =  p0(v).

If s =  6, then u ,v  £ (E -  E0)*. Since Ei n E2 C E0, one has that E -  E0 C E -  (Ei fl E2) =  

(Ei -  E2) U (E2 -  Ei). So, u, v G ((Ei -  E2) U (E2 -  Ei))*. Therefore 

Pi(u) G (Ei -  E2)* andp2(v) G (E2 -  Ei)*.

Let w := pi(u)p2(v). Then px(w) = px(u) G L x and p2(w) = p2{v) G L2. Hence w G 

P \ l iL l) n P2 1(L2). So p0(w) = Po{P\{u)p2{v)) = PoP\(u)p0p2(v) =  P\Po{u)p2p0{v) =  

Pi{e)p2{e) = e = s. Hence s G p ^ p ^ 1 (Lx) D p ^ 1 {L2)).

If then s = a xa2 • • • an, for some n > 1 and G E0. Write

u = u \o xu2a2 • •■un(7nun + 1 and v = vxo xv2o2 • • •vnanvn+i , 

for some G (E -E 0)*. SinceEiflE2 C E0, one has that E - E 0 C (Ex- E 2)U(E2- E i ). 

Therefore

Pi{ui) e (El -  E 2)* andp2(vi) G (E2 -  Ei)*.

Define a string

w := pi{ui)p2(vi) 

Pi(un)P2{vn)

So,

<?i

Pl (° l )P2(v i )

O’n

P l { ° n ) P 2 { ° n )

if cf\ G (Ei n  E2) 

if (T\ G E — (Ei D E 2) 

if on G (Ei n E 2) 

if (jn G E  -  (Ei n E 2)

J Pi{u2)P2{v2) • • •

I Pl{un+l)P2{vn+l)-

Pi(w)  =  Pi(ui)pi((Ji)pi(u2)pi((j2) • • ‘Pi{un)pi(an)pi(un+i) G Li 

p2{w) =  P2{vi)p2(al )p2(v2)p2((T2) • • -p2 {vn)P2 {Vn)P2 {vn+l) € L2. 

Hence w G 2). Sop0(w) =  <ricr2 • • -<jn =  s. Therefore

» e n P2 1(L2))-

This proves the claim.

Proof for Lemma 4.3: We now show that (P0Li) || (P0L2) C P0(LX || L2).

(P0L\)  || (P0L2) = W r ' p o i L J n W r ' p o f a )

= PoPil {Li)C\p0p2 l {L2) (by Claim 4.1)

C Po{pil {L \ ) Pp 2 l {L2)) (by Claim 4.2)

C P0(Li ||L 2).

□
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Lemma 4.4 Let E,• be the event alphabets for the plant G z for i = 1, 2, • • • , n and let E := 

(J”=1 E;. It is allowed that E,- fl Ej /  f  for i , j  G { 1 ,2 , • • • , n} and i 7̂  j.  Let Es =  

U,w  (Ej-flEj), /ef pi andps be the natural projection from E* to E* and to E*, respectively.

Then for L{ C E*,

ps{Li  II L 2 II • • • II Ln) =  PsiLi)  II Ps{L2) II • • • II Ps{Ln) •

Proof: One has that

Ps(Lx \ \L2 \\ • • • II Ln)

=  Ps{Li) \\ps(L2 II • • • II Ln) (since El n Ej) C E5 and by Lemma 4.3)

=  Ps(Li)\ \Ps{L2)\ \Ps{L3 II • • • II Ln) (by Lemma 4.3)

=  Ps{L\ ) \ \Ps{L2) II • • • U p a ^ n - i l l  L n) (by Lemma 4.3)

=  Ps(Li) \\ps{L2) II • • •  II Ps(Ln)'

It follows from Lemmas 4.1 and 4.4, we have the following.

Lemma 4.5 Let Lfô m — Ps(Lm  ̂ and L^ — Ps[L f  Then L^ — Lfi^m.

Proof: It can be shown in turn

L h = ps{Li II L2 II • • • M Ln)

= ps(L i ) \ \ p s{L2)\\ ■' • \\ ps(Ln) (by Lemma 4.4)

=  Ps(Li im) \ \ p s(L2,m)\\ Ps{Ln,m) (by Lemma4.1) 

=  Ps(Li,Tn \ \ L 2,m\\ L n,m) (by Lemma 4.4)

—  Lh^m .

□

□

Now we show Proposition 4.1.

Proof of Proposition 4.1: It is obvious that marks Et D E s since we assume that L;)Tn 

for i =  1,2, • • • , n, marks its shared events. Given Lemma 4.5, Lh,m also marks Et- n  E s. □

The proposition 4.1 shows that some of the structural properties of the given subsystems G; 

are inherited by the coordination plant G&. However, for the mutual controllability condition, 

we could only show the following.
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Proposition 4.2 Assume that £  =  £ i U £ 2 » S* =  £;c U £ tu, ami £ s =  £ 1  fl £ 2 . Let pi and 

ps be the natural projections from £* to £* and to £*. Let Li C £* be prefix-closed. Define 

L =  L\ II L 2. Let Lh = PS{L). Then one has that

L i(£ s„ n s i) n p ’s (pi° ) - 1(Li,) C Li,

where p\s and plss are the natural projections from (£,■ U £ s)* to £* and £* respectively. □ 

We need the following lemma to prove Proposition 4.2.

Lemma 4.6 Let £ , L;, p;, ps and Lh be defined as above for i = 1, 2. Then for L j C £* and 

3 ±  i

plp~l (Lh) C PiPj^Lj ) .

ProofrWe only need to consider the case that Lh is not empty. We note that

Pip- l ( Lh) = { u \ u e  (£,• -  £ s)*} U

{u I (3 <TX, <r2, —  ,crn G £ s) (3« i ,«2, ••• ,wn,un + 1  G (£< -  £ 5 )*)

<Xi<r2 • • • < r n  €  Eh. and u =  u \ < j \ U 2 < J 2  * * •,uncrnun+1}.
Let s G If s G (£ t- -  £ s)*, then s G p“ 1^ ) .  Thus s =  pi(s) G pip~l {Lj).

For the other case s =  u\G\U2 G2 • • • «n^n«n+i> for some wi, wn, un+i G (£,■ —

Es)* and cri, £72, • • • , crn G £ s, such that crifr2 • • -<7n G Lh-

Since Lh =  ps ( p j l (L 1) fl pij1 (L2 )) C ps(pj)~1(LJ), for j  =  1, 2, one has that

<7 1 ^ 2  -  Ps(pJ1 (A?))*

Thus there exist strings ui, • • • , un + 1 G ((£; -  £ j)  U (£ j — £;))* such that

V101V202 • • - v n(jn v n + i G pJ^Lj) andps(uiaiu2a2 • • • v na n v n + i )  =  g xg 2 ■ • - <7n. 

Therefore,

Pj(ui<TiW2<72 • * 'VnGnVn+i) =  Pj(vl )Glpj {v2)G2 • * * Pj (yn)<7npj (^n+1) 6 Lj.

Note that pj(uh) G (£ j -  £;)* for fc =  1,2, • • • , n +  1. Let

W 1= UiPj(vl )GiU2Pj{v2 )G2 • • •UnPj(vn)<Tnttn+lPj(t>n+l).

Since G (£ t- -  £j)* for 1 < k < n +  1, w G p~l {Lj). Hence 

Piiyo) =  «i<r1M2<r2 • • -wno-nwn+i G PiP~l {Lf).

Therefore s =  pfiw) G p i p j l (Lj).  □
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Proof of Proposition 4.2: By Lemma 3.5 in Chapter 3, one has that

=Pi(Ps)~1iLh) and p/{p]J) - l {Lj) =  pl {pJ)~1 {Lj).

Also, by Lemma 4.6, and by the assumption that L; and Lj are mutually controllable, one has 

that
Li{^iu n Es) n p\s (plss) l {Lh) =  Li{T,iU n E s) n Pi(ps) l {Lh)

c  Li{Tiiu n Es) n PiPj (Lj )

= l,(Ei>nE ,)n P;)(Pi,)-1( y
C Li.

□

At this point, it is still an open question whether the mutual controllability condition is 

satisfied in general, given our assumptions on the structure of the subsystems G*. However, 

under some additional conditions, the mutual controllability is also inherited by coordination 

plant as well (See Proposition 4.3 below). But in general we could state the following.

Theorem 4.1 Under the foregoing assumptions, suppose that any pair of the systems in 

{ G i , G 2 , • • • G n} satisfies the assumptions given in Eq. 4.3 and suppose further that G ? and 

Gh are mutually controllable. Then any supervisor for a Lh,m-closed sublanguage is a coor­

dinator. □

Corollary 4.1 Under the same assumptions as in Theorem 4.1, suppose that n =  2 and 

L/l (S tu n £ s) n  p\s (p]s)~l (L{) C Lh- Then the same conclusion follows.

Proof: This follows from Proposition 4.2 and the assumption. □

Now, we consider a special structure which under the assumptions in Eq. 4.3, mutual con­

trollability follows automatically. Assume that £ tu fl Ej =  E ju fi £;. for z, j  £ {1, 2, • • •, n} 

and Li =  Lî m. Then we have the following.

Proposition 4.3 Suppose that

(V (7 e £ ;)  (3 s G Li) so e Li,

and



77 4.2. A COORDINATION SCHEME

Ps{L l) = Ps(L2) = • • • = Ps(£n).
77zen L/! and Lt are mutually controllable.

Proof: Firstly, we show that Lh{Esu D E,-) fl PsS(PiS)_1 (^') C Lh . Let so- G Lh{E su n

Si) 0  p*/((p-s)_1(Li)), for i =  1,2, ••• , n. Thus s G Lh, o G (Esu n  E t) and so G 

PsS((p-s)-1 (Lt)). By Lemma 3.5 in Chapter 3, p\s ((p\s)~ l (L{)) = ps(pi)~1(Li). We now 

show the following.

Claim 4.3 E s =  E t- fl E j, for i j.

Proof of Claim: It suffices to show E,-nEj =  EiflE^, where i, j , k are distinct. Let o G E tflEj. 

Hence o G Ej. By the first assumption in this Proposition, there exists t G Lj such that 

to G Lj.  Since o G Et- n  E j C E s, one has thatps(£o) =  pa(t)o G ps{Lj) = ps(Lk). Hence 

o G E k- Therefore o G E* fl E*. This proves the claim.

It follows from the claim that E s C E,-. Hence, ps(Pi)~l [L{) = ps(Li). Hence, one 

has that so G ps ((pi)~1(Li))= ps{Li) Consider a string so =  o \o2 • • •omo G p5(Li) =  

ps (Z/2) =  • • • =  ps(Ln), where oi, o2, • • • , om, G E s. Therefore, there exist strings

such that
v[oiv”o2 • • • v™omv™+1o G Li, 

U2 O1 U2 O2 • • •v£lomt;Jl+1o G L2,

Define

•Jn+1uJl+1 • • • C +1o.

One has that
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Pi (uj) =  v\axv'[a2 • • • w f 1 omv™+lo  £  L 1 ?

p 2 ( w )  =  V 2 < T \V 2 < J 2  * • • t ’2 l 0-m v J l + 1 <T €  L 2 ,

P n ( w )  =  v'n (Jiv"<72  • • • C < J m u ^ + 1 a  £  L n .

Hence a; £ p]"1 (Li) n P2 1 (£ 2) fl • • • fl p“ 1 (Ln) =  L. So

ps(u) = 0x02 • " O mO = SO £ ps(L) = L h.

Now we show that L,-(ESU fl Et-) fl p-s(p1/ ) -1 (L/ )̂ C L{. Firstly, we establish that for 

Lj  £ E* and j  ^  i, pipJl (Lh) C pip~l (Lj): by Claim 4.3, we know that E s C Et-. Then 

the above statement can be shown similar to Lemma 4.6. Then the rest of the proof follows 

similarly as that of Proposition 4.2. □

To arrange the mutual controllability condition in Theorem 4.1, we could use algorithms 

developed in the next chapter. We may point out that given Li, for i =  1,2, • • • , n, one has 

that Lh = ps{L) where L is synchronous composition of the Li’s. Now suppose we apply the 

algorithms in Chapter 5 to obtain L[ and Vh for which the mutual controllability condition is 

satisfied. It may be the case that ps{L') ^ L'h where V  is synchronous composition of the 

L[’s. However, this would cause no problems as far as coordination is concerned.

4.3 Example

In this section, we consider an example for illustrating the results in this chapter. Consider 

again the chemical reactor shown in Figure 3.5 and described in Section 3.4. At this time, we 

assume that the reactor can produce several different products depending on different materials 

and catalysts supplied and also the process methods chosen. Figure 4.3 is a schematic diagram 

of the plant.

The reactor is comprised of the following elementary components: the reaction tank, three 

material feed valves V_l, V_2 and V_3, three material feed pumps P_l, PJ2 and P_3, three 

drain valves V_4, V_5 and V_6, three drain pumps P_4, P_5 and P_6, two supply valves for 

catalysts V_7 and V_8, a low and high level sensors WL_1 and WH_1 for the tank, a heater with 

a temperature probe TP_1, a continuous reaction controller C_1 and two timers T_1 and T_2.
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Figure 4.3: Modified batch reactor
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The duration of the chemical reaction is timed by the timer T_l, which can be set for 10 or 15 

minutes. A 30-second timer T_2 is for the timing requirement of adding catalysts.

Like the case in Section 3.4, the whole plant can be naturally decomposed into three sub­

plants as shown in Figure 4.3: the filling subplant (G i), the reaction subplant (G 2) and the 

draining subplant (G 3). Note that there are no shared components among subplants. Also, the 

whole operation can be divided naturally into three subprocesses according to the decomposi­

tion of the plant: the filling process, the reaction process, and the draining process. To enforce 

that these three processes are operating serially, we introduce controllable shared events which 

indicate the beginning (cr1? cr2, • • • , aio) or the ending (Ai, A2, A3) of a certain process. They 

will be described in detail later. These controllable synchronised events are represented as DES 

models, called ‘flag’s, and considered as a part of the plants.

DES models of elementary components of G i are shown in Figure 4.4. The automaton

Figure 4.4: DES models for the elementary components of the plant G i

presented in Figure 4.5(a) represents a physical constraint, namely that the level in the tank
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cannot be increased after all the feed valves have been closed. The DES model for flag_l given 

in Figure 4.5(b) represents that after the shared events (cri, cr2, or v 3) have occurred, the feed 

valves are allowed to be closed (/5i, /32 and ß3). Then with the occurrences of the events Ai and 

A3 , a cycle of the operation is completed. For this example we assume that we always have a 

combination of two materials from materials @, (B) and ©  (see Figure 4.3) for the chemical 

reaction. But this assumption is made for convenience and it is not crucial. Other combinations 

of the materials can be specified in a similar manner. Now, we explain the roles of the shared 

events <t i, cr2, <r3, Ai and A3. The shared event <ti is for indicating that only the materials @ 

and (B) are used for the production, while (r2 and a 3 respectively indicate that the materials (B) 

and © , and (A) and ©  are used. The shared event Ai represents that the filling process has 

been completed and the chemical reaction process can now proceed. The event A3 represents 

a complete cycle of the batch reaction. The selfloops of the shared events at the state after Xi 

in Figure 4.5 (b) are interpreted as that the system G i monitors the progress of the status the 

other plants but takes no action. The DES model for the plant G i is obtained by synchronous

flag 1

O j  o 2 O 3

ßi ß2 ßj
ß / ß 2 ß j CD

Figure 4.5: DES models for physical constraint and synchronisation flag for the plant G i

composition of the elementary components and the physical constraint. Since it is assumed 

that the mixture of any two materials is used for the chemical reaction, the specification for the
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plant G i, denoted by E\,  is as follows:

1. For the mixture of the materials (§) and (B), after the event <7i (indicating this mixture) 

has occurred, open the valves V_1 and V_2 (c*i, a 2) and turn on the pumps P_1 and P_2 

(7 i ,72).

2. For the mixture of the materials (B) and © , after the event a2 has occurred, open the 

valves V_2 and V_3 (a 2, ct:3) and turn on the pumps P_2 and P_3 (72, 7 3 ) .

3. For the mixture of the materials (A) and © , after the event <r3 has occurred, open the 

valves V_1 and V_3 (c*i, c*3) and turn on the pumps P_1 and P_3 (71, 7 3 ) .

4. When the level in the tank reaches L > 1001 (7/1), turn off the pumps (#1, <52, £3) and 

close the valves (ß\, ß2, ß$) whichever necessary. Then send a signal (Ai) to the other 

plants.

5. The selfloops at the initial state mean that the subplant G i does not restrict the behaviours 

of the other subplants.

DES model of E i  is given in Figure 4.6. Then a local supervisor S i for E \  is designed.

DES models of elementary components for the chemical reaction process, G 2, are shown in 

Figure 4.7. The duration of the reaction is timed by the timer T_1 which can be set for 10 (event 

H i )  or 15 minutes (event H2)• Assume that there are four possible ways of how the chemical 

reaction will proceed. The details will be presented below. The automaton displayed in Figure 

4.8 represents flag_2. Here after the shared event Ai indicating that the filling process has been 

completed, the shared events (<74, cr5, <r6, <j7) are allowed to occur. These shared events indicate 

that different chemical reactions will take place. The chemical reaction starts with the increase 

of temperature of the material in the tank to T  > 30°C (u;i). After the temperature returns 

to T  < 30°C (u>2), the shared event A2 indicating a completion of the chemical reaction is 

permitted to occur. The selfloops of the shared events at the initial state can be interpreted 

similarly as the case in G i. The DES model for the plant G 2 is obtained by synchronous 

composition of the elementary components.
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^ 2  <*8

Figure 4.6: Specification E\ for the plant G i

It is assumed that there are four different chemical reactions. We denote them by methods I, 

II, III and IV. The shared controllable events <74, <t5, <t6 and <77 are used respectively to indicate 

that which method is taken for the chemical reaction. With reference to Figure 4.9, for method 

I, we assume that after the occurrence of Ai the requirements are:

1. After the shared event <74 has occurred, increase the temperature of mixed material in the 

tank to 30°C < T < 60°C (cui). Then enable the reaction controller C_1 (£1).

2. Release the timer T_l. Assume that the controller is required to operate for 10 minutes 

at the material temperature 30°C < T < 60°C. So fi\ is chosen.

3. During the operation, the timer can be held at its current time (/i^) to handle some situ­

ations such as emergency repairs. From the held state, the timer can either be reset (117) 

to the idle state or re-released (/x4).

4. After the set time has expired (uncontrollable event /z5), the controller C_1 is disabled

(£2) and the timer T_1 is reset (fie)-
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Figure 4.7: DES models for the elementary components of the plant G 2

5. To supply the catalyst open the valve V_7 (0 7 ); then release the 30-second timer T_2

M -

6 . After T_2 has expired (uncontrollable event /i9), close the valve V_7 (#7).

7. Then increase the temperature to T > 60°C (^3 ) and enable the reaction controller C_1 

(£1) again.

8 . Release the timer T_l. At this time, we assume that the reaction is required to operate 

for 15 minutes. So /i2 is chosen.

9. When the time has expired (/z5), the controller C_1 is disabled (£2) and the timer is reset

10. Wait until the material temperature is cooled down to T < 30°C(ct;4, tu2).

11. The selfloops at the initial state mean that the subplant G 2 does not restrict the behaviours
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ö i  Ö2 ö 3

Figure 4.8: Synchronisation flag (flag_2) for the plant G 2 

of the other subplants.

The requirements for the other methods, II, III and IV, can also be established similarly. DES 

models of the requirements for G 2, denoted by E 2 , is given in Figure 4.9. A local supervisor 

S 2 for E 2 is then computed.

Similarly, one can obtain a local supervisor S3 for the plant G 3. The elementary com­

ponents of G 3 are modelled as shown in 4.10. A physical constraint is represented as an 

automaton given in Figure 4.11 (a), namely, the level in the tank cannot be decreased after all 

the drain valves are closed. The DES model for flag_3 displayed in Figure 4.11(b) represents 

that after the shared event A2 indicating a completion of the chemical reaction, the synchroni­

sation events (erg, <79, <t io ) are permitted and then the drain valves will be closed (^ 4 , and 

ße). Then with the occurrence of the event A3, a cycle of the operation is completed. In here, 

we explain the roles of the shared events cr8, cr9 and cr10. The shared event a8 represents that 

the drain exit 0  (see Figure 4.3) will be used for the draining of the product. The events <r9 

and (T10 respectively indicate that the drain exits 0) and 0  will be used. The selfloops of the 

shared events at the initial state can be interpreted similarly as the case in G i. The DES model 

for the plant G 3 is obtained by synchronous composition. The specification for G 3, denoted 

by E8, is as follows: after occurrence of the event A2,

1. For draining to the exit 0  after the event <j 8 has occurred, open the valve V_4 (c*4) and 

turn on the pump P_4 (7 4 ).

2. For draining to © , after the event cr9 has occurred, open the vale V_5 (0 :5 ) and turn on

the pump P_5 (7 5 ).
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Method II Method III

Method IVMethod I

Figure 4.9: Specification E 2 for the plant G 2
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Figure 4.10: DES models for the elementary components of the plant G 3

flag 3

(b)

Figure 4.11: DES models for physical constraint and synchronisation flag for the plant G 3
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3. For draining to ® , after the event <ti0 has occurred, open the valve V_6 (a^) and turn on 

the pump P_6 (76).

4. When the level in the tank reaches L  < 1 1 (773), turn off the pump (£4, £5, <$6) and close 

the valve (/34, ß$ , ße )  whichever necessary. Then send a signal (A3) to the other plants.

5. The selfloops at the initial state mean that the subplant G3 does not restrict the behaviours 

of the other subplants.

DES model of E 3 is given in Figure 4.12. A local supervisor S3 for E 3 is then computed.

Figure 4.12: Specification E 3 for the plant G 3

The event sets for the subplants are

5 1  =  { a i ,  « 2 ,  a 3,  ß l ,ß 2 ,  ß$,  7 l ,  7 2 ,  7 3 ,  ^1, <$2, <̂ 3, ^1,  ^2,  ^ 1 ,  ^ 2 ,  <^3, ^ 8 ,  ^9 ,  ^10 ,  ^1 ,  ^ 2 ,  ^ 3 } ,

5 2 =  { 0 ' 7 , ö; 8 , / ^ 7 , / ^ 8 , ^ 1 , ^ 2 , ^ ,1 , ^ ,2 , ^ 3 , ^ 4 , ^ 1 , ^ 2 , M 3 , ^ 4 , ^ 5 , / ^ 6 , ^ 7 ,  ^ 8 , ^ 9 ,

0 4 , <72, <73, <^5, <̂ 6 , &7, A i ,  A 2 , A 3 } ,

53  — {< 4̂, <-̂ 5, <-̂ 6, /^4, ßb 1 ß&i 74, 75, 76, <̂ 4, <̂ 5, <̂ 6, ^ 3 , 7̂4, <̂ 4, <̂ 5, <73, <̂ 7, <73, <7?, <70, ^1, ^2, ^ 3 }  •
The shared event set is

S 5 =  {<7 i, <72 , <J3, <74, «75, cr6, cr7, <r8, a9,a  10, Ax, A2, A3).

We verify that the system structure of this example (G i, G 2, and G3) satisfies the required
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conditions in Theorem 3.1. Since all the shared events are controllable, the mutual controllabil­

ity conditions are satisfied trivially. For the ‘shared event marking’ condition, we mark all the 

states before the shared events. It can be checked that the local specification Ei is Ll)m-closed 

language, where is the marked behaviour of G t for z =  1,2,3.

Now we obtain the coordination system by natural projection ps : E* — > E*. Figure 

4.14(a) represents a DES model for the plant G^. Assume that the system can produce four 

kinds of products as presented in Figure 4.13. Here the product type I is produced from the 

mixed materials (A) and ® , with the catalyst ®  by the reaction method I, and then the prod­

uct will be drained through the drain exit 0 .  For the product types II, III, and IV, it can be 

interpreted similarly. The specification for this in G h is displayed in Figure 4.14(b).

Materials Catalyst Drain Exit

Product type I : CJi —~ ®  + ® — - 0 4 — 08 —  ©  "

type I I : O2 — - ®  +  © - — G5 — ®  — -  09 — ©

type III: O3 —- ®  +  © - -  06 — 08 —  ©

type IV : 0 1 ——  ®  + ® — O7 - — O10 ——  ®

Figure 4.13: Processes for the batch reaction

Now assume that due to, for example, market demands, the system is required to produce 

only two types of products, type I and another type of product, say the product type V. Assume 

that the product type V is made from the mixed materials ®  and © , with the catalyst ©  by the 

reaction method IV which starts with the shared event <j7, and then the product will be drained 

through the drain exit @ . To meet with this requirements, this can be done in the plant G h 

by prohibiting certain shared events from occurring. We change the specification Eh as shown 

in Figure 4.14(c) and design based on the modified Eh- By Theorem 4.1, the concurrent 

actions of Sh and St will guarantee to achieve the modified requirements.
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Figure 4.14: A coordination plant
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4.4 Conclusions

In this chapter, we have shown that after the local supervisors have been designed for a given 

task, a coordinator can be used to solve some rescheduling problems among local plants G z. 

The coordination system models the interactions of local plants, and is usually simpler than

the G ;’s. Then a coordinator is designed based on the specification given for the system G^. 

Under the conditions given in Theorem 4.1, the combined concurrent actions of the coordina­

tor with the existing local supervisors will achieve the rescheduling requirements. By using 

different coordinators, we have shown that under some conditions it is possible to achieve the 

control objectives for different tasks, as seen in the example provided.
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Chapter 5

Structure Synthesis

For a given system G obtained by synchronous composition of n subsystems, in Chapter 3 we 

have shown that if the system G possesses the structural properties given in Theorem 3.1, we 

can achieve decentralised control. In this chapter we investigate one way to arrange the struc­

tural conditions. In Section 5.1, some basic concepts used in this chapter are introduced. We 

present methods to arrange the shared-event-marking condition in Section 5.2, and the mutual 

controllability condition in Section 5.3. Examples are provided in Section 5.4 for illustration. 

This chapter ends with some concluding remarks in Section 5.5

5.1 Preliminaries

In this section, we introduce some useful concepts for subsequent discussions. Recall that 

throughout this thesis, we assume that a DES has finite sets of states and events. Firstly, we 

define selfloop operation. A selfloop is a transition for which the exit state and the entrance 

state are the same. Formally, for a DES G =  (Q, E, <5, q0, Q m), we say that a transition 

(</, <t, q') in G is a selfloop if q' =  q. Then the Selfloop Operation for a given generator 

G i =  (Qi, Ei , <$i, <7io, where Ei C E, is defined as follows: for a state qs E Q \ and a

set of events, E 0 C E,

S s 0(Gi)  := (Qi, Ei U E0, Sf, <710, Qi,m),

93
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where the partial transition function 8̂  : Q i x (Ei U E 0) — > Q i is defined as follows: 

for 9 G Q\,<t G (Si U E0),

1. if (g, a) is defined, then

8{{q, cr) is defined and 8f (</, <r) =  8i(q, <r),

2. if =  <7S, a G E 0 and <5i(</, cr) is not defined, then

Sl(q, cr) is defined and SI(q, cr) =  <7,

3. undefined, otherwise.

Selfloop operation is just to add additional selfloop transitions to a specific state in the original 

structure of a given generator. Since no selfloop transition a G E 0 is added to the states 

of G j at which a is already defined, the selfloop operation does not destroy the property of 

determinism of G i. Also, the reachable, coreachable and trim properties are preserved by the 

selfloop operation.

Secondly, let Gi =  (Qi, Et-, Si, qio, Qi,m) for * =  1,2 be trim, finite automata. Assume 

that Lm(G 2) C Lm(G i). Then we say that G 2 refines G i [WR87] if

(Vs, t G Lm(G 2)), 82(q20,s) = S2(q2o,t) implies <$1 (g10, s) = Sl (ql0, t).

Also, if G 2 refines G i, then there exists a unique function 

h : Q 2 — y Q\,

satisfying

h o S2(<720, s) =  8i(ql0,s) for s G Lm(G 2).

The following will be used later.

Lemma 5.1 ([WR87]) Let G; := (Q;, E,-, , qi0 ,  Qi,m) for i = 1,2 be trim, finite automata. 

Let G =  G i x G 2. Then G refines G i and G 2. □

5.2 Arrangement for the Shared-Event-Marking Condition

In this section, we present a procedure to arrange the system structure for the shared-event- 

marking condition. Let G; =  (Q i , £,-, <7*0 , Qi,m) be generators over the alphabet E ,■ C E

for i = 1,2, • • • , n. Let E ,• = E tc U Etu. Let Li and Li,m be respectively the closed and
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marked behaviours of G t. We assume that =  L;. Suppose that the shared-event-marking 

condition in Theorem 3.1 is not satisfied for some G z, for i £ {1, 2, • • • , n}. In other words, 

Litm does not mark E* fl E j for some j  and j  i. For this situation, we develop the following 

procedure to modify the system G* so that the resultant generators G ' =  (Q;, Et-, Si, gz0, Q\ m) 

will satisfy the shared-event-marking condition. That is, for all i , j  £ {1, 2, • • • , n} and i ^  j ,

E*(E; n Ej) n L'i m C Lj)m(Ei Cl Ej), (5.1)

where L'i m is the marked behaviour of G '. The new marker states of G ', Q ■ m C Qi, is 

obtained by the following procedure. Assume that all the states are numbered, i.e., Qi =  

{<7o, q i r  ’ ‘ i Q i , } ’ where + 1 is the number of states of G,-. Let Eq , (q k ) be the active event 

set at the state qk £ Qi.

Procedure I (Shared-Event-Marking Condition)

Q i,m  Q i,ru ­

le : =  0 .

For k < li do

If qk i  Q i,m  and E g ,{qk) n (^i)) ^  & then
Q \,m  := Q i , m  LK̂fc}-

end if 

k :=  k +  1. 

end for

qiOiQi^m)- G

This procedure simply adds markings to the unmarked states of G z which contain some 

shared events in their active event sets. The property of nonblocking in the original structure is 

preserved, i.e., L\ m =  L\. It is assumed that the generators G t have finite sets of transitions 

and states. Therefore, the procedure will stop in a finite number of steps. Lemma 5.2 shows that 

the resultant DES G ' obtained by Procedure I will satisfy the shared-event-marking condition.

Lemma 5.2 Suppose that for given systems G;, for i =  1 ,2, • • • , n, DES G ' are constructed 

by Procedure /. Then G ' marks Ez D Ej for any i j.
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Proof: Let sa £ E*(E,- fl Ej) D L'i m. That is s £ EJ, a £ (Et- 0  E j) and sa £ L'i m = L\. So, 

s £ L'. Let q := s). Since sa £ L', i.e., ^ (^ o , scr) is defined, a £ E g , (<?)• Therefore,

^G,(g) O (U j^i(Sj)) ^  <t>- So, g £ Q'im . That is Sl{qt0,s) £ Q \m. Hence s £ L' m. 

Therefore, sa £ L\ m(E; fl Ej). □

Remark 5.1 In some situations, another way to arrange the shared-event-marking condition 

may be to ‘internalise’ some of the shared events if that is meaningful and feasible in a par­

ticular application. Intuitively, internalisation of a shared event may be interpreted as follows: 

consider a system with two machine cells. Assume that there is one robot which transfers the 

products of the two cells to the next assembly line. Since they share the robot, the events which 

model the behaviours of the robot are shared events. However, if one more robot is available 

and is used to transfer the products of one system and the existing robot is used for the other 

system, then the events for the robot behaviour are not shared events any more. In this way, 

some shared events can be internalised. O

Remark 5.2 It may be the case that many of the states need to be marked for the shared-event- 

marking condition to be satisfied. In some applications the author found that this is indeed the 

case. To deal with this there may be two approaches: one is to weaken the shared event marking 

condition in our result. We will attempt to do this in Chapter 6. The other may be to minimise 

the number of shared events by appropriate decomposition of the system. This may be seen as 

minimising interactions among subsystems. This approach seems to agree with the philosophy 

in the papers [Par72, PCW85]. Internalisation of the shared events might be another way to 

minimise the interactions among subsystems. O

5.3 Arrangement for the Mutual Controllability Condition

In this section we present algorithms to arrange the system for the mutual controllability condi­

tion. Let G{ =  (Qt, E q^) be the minimal, reachable generator for Lt- for i = 1,2, • • • , n. 

Thus, L(Gi) = Li. Assume that Et- =  E iu U Et-c and E;u fl Ej = Eju fl Et- =  Elu fl Eju, 

for i , j  £ {1, 2, • • • , n] and i /  j .  Suppose that the mutual controllability condition between
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Gj and are not satisfied. We develop an algorithm to modify the given systems so that the 

resultant systems, G' and G ', will satisfy the mutual controllability condition. That is, for all 

i j  € {1 ,2 , ••• ,n} and z /  j ,

i ; (E i . n E i)npV (pJ?) - 1Lj c L', 

n E,) n c v

where L' =  L(G '), and p-J and are natural projections from (E; U Ej)* to E* and to E*, 

respectively.

Firstly, we introduce the following selfloop algorithm. Let G a := (Qa, Ea, <$a, qa0) and 

Gf, := (Q b ^b ^b i Qbo) be the finite, reachable generators. Assume that Ea =  Eau U Eac, 

Eb = Ebu U Ebe, Sau n E& =  Ebu H Ea and E =  Ea U E&. Recall that Eg , (</) represents the 

active event set at the state q £ Qi.

Selfloop Algorithm

G ab :— G a X Gfc — {Qa X Qbi S ,  Sabi (9a0, Q b o ) ) -

Define
h . Qa X Qb  ̂Qbt 9 - Qa X Qb  ̂Qa,

{Qa, qb) '--- > 96, (9a, Qb) '----> Qa-

Number Q a x Qb: Q a * Q b  = {<?o, 9i, • • * , Qi}-

G sa ( - 1) :=  Ga-

k := 0.

For k < l do

S sA: := S gb{h{qk)) n (Eau n Eft) -  EGa6(9A:).

If Esk ^  4>> then

G*(fc) := S s ’l ) (G »(fc-l)) .

end if 

k = k 4-1 

end for

G £ := GJ(fc).

We denote this algorithm as the following function for notational simplicity:
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G* =  S ( G a,G 6).

This algorithm simply adds selfloops of shared uncontrollable events to some states of DES G a 

when necessary. Hence the general structure of DES G a is not changed except that selfloops 

are added to some states.

We note that G£ is generally not controllable with respect to Gf, as shown in Example 5.1.

Example 5.1 Consider two systems G a and Gf, over the alphabet £  =  {a, ß, 7 , <$}. Assume 

that all the events are shared uncontrollable events and all the states are marked. Let G a

Figure 5.1: Example for controllability of G* and Gf,

and Gf, be given as in Figure 5.1(a). So L(Ga x Gf,) =  {c,a}. By the selfloop algorithm, 

G* =  S ( G a,G{,) can be obtained and is displayed in Figure 5.1(b). Clearly, G£ is not 

controllable with respect to Gf,. O

Let G a :=  (Qa, £ a, 8a, qa0) and Gf, :=  (Qb, £*, Sb, qb0) be defined as in the selfloop algo­

rithm. Let pa and pb be the natural projections from (£ a U £ b)* to £* and to £J, respectively. 

The following algorithm produces two systems such that the closed behaviour of one system is 

controllable with respect to the ‘external’ behaviour of the other system and the shared uncon­

trollable events (for one direction only):
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Algorithm I (One Directional Controllability)

1. G f  := (Q f , S a,S ^ , qj^) such that L (G ^)  =  pa(pj)_1L(G(,).

2. Obtain GJ, : = S ( G a,G f) .

3. k ■.= 1.

4. F indG ^1 = S ( G * „ G f ) .

5. If G J+1 =  G *„ then G ,  := G k+l and stop.

6. Otherwise, k := k + 1 and go to Step 4. □

Again, for notational convenience, we denote Algorithm I as a function:

G / =  F], (G a, G&).

Figure 5.2 is the flow chart of Algorithm I.

Algorithm I keeps adding selfloops of shared uncontrollable events to some states in G a 

until L (G j) is controllable with respect to pa(pb)~1 L(Gb) and(E aunE6). Note that since we 

have assumed that the generators G t have finite numbers of states and transitions, Algorithm I 

will converge in a finite number of steps. Proposition 5.1 shows that L (G j)  is controllable.

Proposition 5.1 Let G a := (Qa, Ea, <5a, qa0) and G& := (Qb, E 6, <$&, qbo) be defined as in the 

selfloop algorithm. Let pa and pb be natural projections from  (Ea U Ej,)* to E* and to E£, 

respectively. Let Eu =  E au fl E& =  E&u fl E a. Let G f  := {Qb , E a, öfj*, qfj0) be such that 

L{Gjj’) = pa{pb)~1 L{Gb). L e tG j := F i{ G a,Gb). Then L(Gj )  is controllable with respect 

to L {G ^) and E u, i.e.,

L( G, )Eu n L ( G ^ ) C L ( G J). □

We need the following lemmas to prove Proposition 5.1.

Lemma 5.3 Let G{ := (Qi, E <5,-, qio), for i = 1, 2, be the reachable generators. Let E =  

Ei U E 2  and E =  E u U E c. Suppose that G i refines G 2 . (Thus, there exists a unique function 

h : Q 1 — > Q 2 such that h o Si(qio, s) = 52{q20, s) for s € L(Gi) . )
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START

Define G ph : =(Qph, T a^ hP0 ) 

such that L C G ^ P J W 1 L(G t)

Figure 5.2: Flow chart for Algorithm I: G j  =  F i  (G ffl, G&)
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Then

L(G,) (Su) n L ( G 2) I(G!)

if  and only if

(Vq E Qi) ,  S G2( / i ( g ) ) n E u C E G l (?).

Proof: For one implication (=>), consider an event a such that, for q E Q i, 

o E E G2(h(q)) n E u.

Since g E Q 1 and G i is reachable, there exists a string s E L (G i) such that 

q = 5i{qio,s) E Qi.

Also, o E E G2(Mtf)) =  ^ g 2 «)) =  E g 2(<$2(̂ 20, s ))- That is

^2(^20, so) is defined, or so E L(G 2).

Therefore

sa  E L (G i)(E„) n L{G 2) C L (G 0 .

Hence <$1(910, s<r) E Qi or Si (910, so) is defined. So o E E gj (<$1(910, s )) = E G l(q). 

For the reverse implication, consider a string so E L (G !)(E U) D L(G2), i.e., 

s E L (G i), o E (Eu), and scr E L(G2).

Hence < $ 1 (9 1 0 , s) E Qi. Therefore by assumption,

E G2{h(6l (ql0 ,s))) D E u C E Gl(<$i(9io,s)), 

or,

S g 2(£2(920, s)) n  E u c  E g ! (<$1(910, «))•

Since so  E L (G 2), one has that ($2(920, so) E Q2- That is 

o E E g 2 (^2(920, «)).

Therefore, since o E E u,

o E S g 2(<$2(920, s )) O E u C E g ! (<$1(910, s )).

That is

$1 (</io, so) is defined, or so E L (G i). □

Lemma 5.4 For given languages Ä', L C E*,

K  Eu fl L C K  if and only i f  (K  fl L) Eu fl L C (A' fl L).

Proof: For one implication (=> ),
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(k  n  L)EU n  L =

c  A £ u n  L 

= A £ u n L n  L

C K  C\ L. (by assumption)
For the reverse inclusion, Let so £ A £ u n  L. That is,

s £ K , o £ E u and so £ L.

Hence, s £ K  D L. Therefore,

so £ (Ä' fl L) E u f U C  (A' fl L) (by assumption).

So, scr £ A'. □

Now, one is ready to prove Proposition 5.1.

Proof of Proposition 5.1: Recall that the selfloop algorithm S ( G a, G ^) simply adds self­

loops of some shared uncontrollable events to some states of the original system G a. So, when 

one obtains G j  in Step 5 of Algorithm I, one has that G j  = G ks =  G J+1. Let us define

Gas :=  (<?„,£„ A*, 9ao) a n d G ^ 1 := (Qa, «*+*,9o0),

where 8k and are the original transition function 8a plus some selfloops added by the 

selfloop algorithm. In the first step of the selfloop algorithm, one has that 

G ab =  G as x G f ,  and hence G kab refines G^s and G f .

Therefore, there are unique functions

h l Q a X Q b  -----» Qb> 9 • Qa  X Q b ---- > Qa-

Since G ks = G J+1, one has that 8k =  8k+1. Thus, for q £ Qa x Qb , one has that 

£ g p (M<7)) £ G* (9)* Since G kab refines G ks and G b , by Lemma 5.3,

L ( G * J Z u n L ( G f ) C L ( G * J .

Since L (G kab) = L(  G*,) n  L (G b ) and G } =  G *„ by Lemma 5.4

L ( G f ) E u n  L ( G b ) C L (G /). □

We now establish the algorithm for the mutual controllability condition for a given pair of 

systems, say G i and G 2. The flow chart for the algorithm is given in Figure 5.3. Again for 

notational convenience, we denote the following algorithm as a function:

(G'1? G'2) =  F 2(G i , G 2).
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m=m+l

START

Figure 5.3: Flow chart for Algorithm II: (G '^G ^) =  F 2 ( G i , G 2)
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Algorithm II (Mutual Controllability for a pair of systems)

1. Let m = 0.

2. L e tG f  =  G i.G ip  =  G 2.

3. Using Algorithm I, find G™+1 =  F i (G™,G™).

4. Again using Algorithm I, find G™+1 =  F i (G™, G™+1).

5. If G™+1 =  G™, then let G': =  G™+1 and G'2 =  G™+1 and stop.

6. Otherwise m = m  +  1 and go to Step 7.

7. Find G™+1 =  F i ( G J \  G™).

8. If G™+1 =  G™, then let G'x =  G™+1 and G'2 =  G™+1 and stop.

9. Otherwise go to Step 4. □

Algorithm II is the procedure which adds selfloops of shared uncontrollable events to some 

states in a given pair of systems G i and G 2 repeatedly until the mutual controllability condi­

tion, Eq 5.2, is satisfied. Since the given pair of DES G i and G 2 are assumed to have finite 

number of states and transitions, Algorithm II will stop in a finite number of steps. The proof 

that L\ and L 2 are mutually controllable is given in Proposition 5.2, where L[ = L (G ') for 

i = 1,2.

Proposition 5.2 For a given pair o f systems G i and G 2, suppose that DES G'x and G 2 are 

obtained by Algorithm II, i.e., (G'1? G 2) =  F 2{G i, G 2). Then L[ and L'2 are mutually con­

trollable.

Proof: The Algorithm II proceeds explicitly as in Figure 5.4. At the beginning, we obtain G} 

from the pair (G i, G 2), using Algorithm I (Step @). So, by Proposition 5.1, one knows that 

L(G}) is controllable with respect to the ‘external’ behaviours of L ( G 2) and S 2u fl £ i .  Then 

again using Algorithm I, we obtain G 2 from the pair (G 2, G}), (Step (§)). Again by Proposition
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©
G2 — F j ( G 2 ,Gy )

( I )

G 2 =F1(g I29g 21)

YES
G 2

Figure 5.4: Procedure of Algorithm II
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5.1, L(G*) is controllable with respect to the ‘external’ behaviours of L(G j) and E i u fl E 2. 

If G 2  =  G 2, one has that L(G}) and L(G\)  are mutually controllable by the controllability 

obtained in Step @ and (B). So, we denote G'x =  G} and G 2  =  Gi; (Step ©). Otherwise, 

using procedure II again, we obtain G j (Step 0). One knows that L{G j) is controllable with 

respect to the ‘external’ behaviours of L(G\)  and E 2u n  Ei. In here, if G 2 =  G j, then L(G 2) 

and L(G\)  are mutually controllable. So, we denote G'x =  Gf and G'2 =  G 2  (Step 0). We 

repeat the procedure until we find a pair which satisfies the mutual controllability condition 

(Step 0). So the resultant pair L\ and L'2 are mutually controllable. □

Finally the algorithm to arrange the mutual controllability condition for a system with n 

subsystems is as follows:

Algorithm III (Mutual Controllability for a system with n subplants)

1. Let G° =  Gj  for j  = 1, 2, • • • , n.

2. Let k =  0, i =  1.

3. (G,t+1, G ^ / )  =  F 2(G f,G f+1).

4. Do (G*+2, G $ )  =  F 2(G ‘+/, G?+2), =  1, while 2.

5. (G*+2, G j+2) =  F 2(Gj;+1, G j+I).

6. If G f+ 2 =  Gf  for all i — 1,2, • • •, n then goto Step 8.

7. Otherwise let k = k +  2 and i = 1, and go to Step 3.

8. Let GJ =  G f+2 for all * =  1,2, • • • , n. □

Algorithm III proceeds as displayed in Figure 5.5. Algorithm III is to arrange all the pairs of 

subsystems in a given plant using Algorithm II so that each pair is mutually controllable. Since 

the number of plants is finite and each subsystem is assumed to have finite number of states and 

transitions, Algorithm III is guaranteed to converge in a finite number of steps. The following 

proposition shows that each pair of the L\ is mutually controllable.
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G 2....©

If G,2 = G, t then G' = G,2 for all i=l,2,...,n 
Else,

©

If G, -  G, then G' = Gf for all i-l,2,. .. ,n  
Else,

Figure 5.5: Procedure of Algorithm III
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Proposition 5.3 For given systems G t-, for i =  1 ,2, • • • , n, suppose that the systems G' are 

obtained by Algorithm III. Then each pair o f the L\ is mutually controllable.

Proof: Since the number of plants is finite and we assume that each subsystem has finite 

numbers of states and transitions, Algorithm III will stop. Thus for some k , one has that 

G f =  G^+2, meaning that no additional selfloops are required for the mutual controllability 

conditions. Hence one has that G^ =  G ^ + 1  =  G^+2. Therefore, clearly all pairs are mutually 

controllable. □

There are some special situations in which no additional selfloops are required for the 

mutual controllability condition. For instance, see the first example in Section 3.4. For another 

example, consider a waste neutralisation system, borrowed from [Als96], as given in Figure 5.6 

(a). A continuous stream of alkaline industrial waste is neutralised by an injection of acid via 

pump P_1 and the valve V_1. Acidic wastes are neutralised by the basic liquid via P_2 and V_2. 

The pH level of the stream is measured continuously by pH probe H_l. Their DES models are 

displayed in Figure 5.6 (b). The plant is naturally decomposed into two subplants; the subplant 

G] for the treatment of basic waste, and the other subplant G 2 for acidic waste. Their event 

sets are

5 1  =  { c * i , / ? i ,  71 , 61,771, 772,7/3 ,774} ,

5 2 =  { « 2 ,  /?2, 7 2 , ^2, V l i  *?2, ??3, ty l}-

Note that H_1 is the shared component and all the events of H_1 are uncontrollable. The DES 

models for subplants, Gi and G 2, are obtained by synchronous composition. It can be verified 

that G i and G 2 are mutually controllable. In fact mutual controllability holds in general for 

this type of systems as shown in Proposition5.4.

Proposition 5.4 Let G; be generators over the alphabet E for i = 1, 2, 3. Let L{ be the 

closed behaviour o f the plant G;. Let Ga and G& such that their closed behaviours are respec­

tively La — L\ II L 2 and Lb = L2 \\ L3. Suppose that {E; | i = 1,2, 3} is pairwise disjoint, 

i.e., E i fl E j = f f o r  i 7  ̂ j.  Then La and Lb are mutually controllable.

Proof: Consider a string so  E La(E&un E a) n p a(pb)~l {Lb), where E a =  E i U E 2 andE& =  

E 2 U E3, and pa and pb are the natural projections from E* to (Ea)* and to (Ef,)*, respectively.
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WASTE

BASE

DISPOSAL

closed

neutral 6<pH<8

basic pH>8closed acidic pH<6

Figure 5.6: Waste neutralisation plant and DES models for its components
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Hence s £ L a, a £ (Etu D Ea) and so £ pa{Pb) 1{Lb)- Since {E z | i = 1 ,2 ,3 }  is pairwise 

disjoint, E6un E a =  E 2u and pa(pb)~l (Lb) = (p^)~l {L2). So, a G E2uandsa G (p%)~1(L2). 

Also s G L a = fl (P% ) - 1 (L2) where P f  and P% are the natural projections from

E* to E} and to E£ respectively. So, s £ (P^)~x (Li).  Since a £ E2u and {E t-1 i = 1, 2, 3} is 

pairwise disjoint, scr £ (P^)~l (Li).  Therefore, sct g (P^)~l (Li) fl (P2 )_1(£ 2) = L a. □

Remark 5.3 Intuitively, selflooping of shared uncontrollable events on one system G i might 

be interpreted as to represent the ‘monitoring’ of the other subsystem G 2 by G i, without G i 

taking any actions. In short one system simply allows shared uncontrollable events in the other 

subsystems to occur. O

Remark 5.4 Here we consider other possible solutions for the arrangement of the mutual con­

trollability condition. Firstly we recall the following. For given languages, L C A4 C E*, 

the supremal controllable sublanguage of L with respect to M,  denoted by Ü , 1 may be inter­

preted to represent a modification of L so that the modified language, L is controllable with 

respect to M.  There is a ‘dual’ concept to the supremal controllable sublanguage, namely the 

infimal closed, controllable superlanguage [LW88b, LC90]. The infimal closed, controllable 

superlanguage of a language L C M,  denoted L is defined as 

L+ =  inf {A  I L C K,  K  = K  and Ä E U n M  C 7T}, 

where E u C E is the set of uncontrollable events. The closed-form expression of L  ̂ is [LC90] 

L± = MDLZ*U.

In summary, we have the following inclusions:

^ C L k L C L C L k E * .

Assume that we are given two languages L i , L 2 C E* such that L\  is not controllable with 

respect to the ‘external’ behaviour of L2, p\p^ 1{L2), and vice versa. In other words, L\  and 

L 2 are not mutually controllable. Let L\  — pjp~l [L{) for i ^  j .  To modify L\  and L 2 so that 

their modifications are mutually controllable, one way would be to use k operator as shown in 

Figure 5.7. If the algorithm displayed in Figure 5.7 stops, then we have a mutually controllable 

pair of languages. However, it is still an open question whether this algorithm will stop in a

1 We use the notation k m ( L )  throughout this thesis, but in here we use this notation for a clearer comparison.
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k z.^(L i)

K^ (  L 2)

If L f

Else,

L i ? Stop L i 
L'2

k l » ( L ! )

k l \ '(L2)

Figure 5.7: Algorithm for arranging mutual controllability using k operator
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finite number of steps.

The other way would be to use the infimal closed, controllable superlanguages of the given 

languages:

l \  =  l 2 e ;.

It can be shown that L\ and are mutually controllable. Note that the language L\ obtained 

by Algorithm II may be bigger than L\. Figure 5.8 displays an example of the generators 

obtained by Algorithm II (b) and by infimal operator |  (c). One can see that L\ could get into

Figure 5.8: Algorithms for arranging mutual controllability

a ‘blocking’ situation. That is, once 7 occurs, transitions in the original structure of L\ are 

no longer possible. This may not be desirable. In a similar vein, the generators obtained by 

k operator, if exist, also do not in general preserve the original structure of the given systems. 

However, L\ preserves the original structure and has an intuitive interpretation as discussed in 

Remark 5.3. O

Remark 5.5 If one needs to arrange a given system for both conditions, one should first ar­

range the system for the mutual controllability condition and then carry out the arrangement 

for the shared-event-marking condition. The reason is that the selflooping of shared uncon­

trollable events might change the active event sets of some of the states. This might require to 

mark additional states for the shared-event-marking condition. O
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5.4 Example

In this section, we illustrate our results with two examples.

The first example illustrates the arrangement for the shared-event-marking condition. We 

consider a system with three subplants (as in Figure 5.9(a)). The event sets for three subplants 

are

£ l =  {«1, «2, <*3, C*4, ßi, 7i}, E 2 =  {«5, <*6, ßu  ß2, Tl}»

^ 3  =  { 0 f 7 , Q ! 8 » a 9 , / / i , / ? 2 , 7 l } .

Assume that all the events are controllable. Clearly, this system does not satisfy the shared- 

event-marking condition. Therefore, we need to modify the system to arrange for the desired 

condition. In G i, the state A0 is already marked. So A0 E Q[<m- The active event set for the 

state Ai, E G l(Ai) =  {ßi}. So, E G l(Ai) n  ( U # i ( s j)) /  <t>- Hence, Ax E Q'l m. Also, 

for the state A2, E G l(A2) =  {71}. So, E G l(A2) n  ( U ^ i ( s j)) i 1 <t>- Hence, A2 E Q'hm. 

However, for the state A3, E G l(A3) =  {or2, ĉ 4). So, E Gl (A3)fl (U j^ i(E j)) =  4>- Therefore, 

A3 <£ Q\ m. Similarly, A4 £ Q[ m. The systems G 2 and G 3 can also be arranged similarly. 

The resultant systems G \, G '2 and G3 are presented in Figure 5.9(b).

To illustrate the arrangement for the mutual controllability condition for a pair of systems, 

Algorithm II, we consider two systems modelled as in Figure 5.10(a). Assume that all the states 

are marked. Let G i and G 2 be generators of L\ and L2 respectively, defined as follows:

G i := {Q\, Ei, <$i, <710), G 2 := (Q2, E 2, S2, g20),

where

Q 1 =  {^o5 Ai, A2, A3},

Ei =  {q?i ,Q!2, « s},

(5i : (Ao,ai) 1— y Ai, 

(Ai,c*2) 1— ¥ A2, 

(A2, 0:3) 1— ¥  A3, 

(A3, a?2) 1— ¥ A3,

Q 2  =  { B o ,  B 1 , B 2 , B 3 } ,  

E 2 =  { a \ , a 2, a 4},

$2 • (Ho,rvi) 1— ¥ B\,  

{B\, a 2) 1— ¥ B\,  

{B\, a 4) 1— y B2,

(B2,0:2) 1— ¥ B3,

Q20 =  B q .qio =  Ao,

The shared event set is Ex n  E 2 =  { a l5 0'2}. Assume that a i  is a controllable event, while a 2 

is an uncontrollable event. So, E iu D E2u =  {a2}. Then define a new generator G 2 such that
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Figure 5.9: Example: arrange the system for the shared-event-marking condition
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) = p i ( p 2) l L{G 2) (Figure 5.10(b));

G f  := (Q ? ,E i, # ,< /£ ) ,

where

q ?  =  {c'0, c 1},

• (Co, «1) 1—* Ci? (Go, <23) 1—> Co,

(C i, o;2) 1— > Ci, (Ci, «3)1— > Ci,

2̂0 = Co-

Then compute the product G f2 =  G j x G ^ (Figure 5.10(c)):

Gf2 = Gi x G^ = (Qi x Qf,Ei,(5i x <S2P, (<?io, <72p0))>
where

Qi x Q f  =  {(A0,Co) ,(A i ,C i ) ,(A2,C i ) ,(A3,C i )},

<̂i x : ((Ao,Co),«i) 1—> (Ai,Ci), ((Ai,Ci) ,«2) 1—> (A2,C i )), 

((A2,C i ) , a 3) 1—> (A3,C i), ((A3,C i ) ,a?) 1— > (A3,C i )),

(910, 920) =  (A), Co).

Since G f2 refines G i and G ^, there exist unique functions

such that

h i ’. Q i X  — ¥ Q2 and gx : Q x x — * Q 1,

/il ( <5l^ f ) ( (9 lO ,9 P0)»S) =

=  ^i(9io ,0 »

where the strings s, £ are in Lm (Gj°2), the closure of the marked behaviour of G f2. So one can 

easily find the functions h\ and g\ given as follows:

/ii(Ao, Co) 

hi (A2, Ci)

<7i (A0, Co)

Co,

Ci,

^0,

M A i,C i)  

^l(A3, Cl) 

5i (Ai , Ci)

Cl,

Cl,

M ,

A3 .gi (^21 Ci) 1— >■ A2, <7i (A3,C i)

Then, using the selfloop algorithm, G}s =  S (G i ,  G p ) is computed (Step 2 in Algorithm I). 

Firstly, for a state (A0,C 0) € Qi x Qp , since (E iu n  E 2u) =  {<a2}, E(A0,C 0) =  {«1} 

and E(/ii(A 0,C 0)) =  E(C0) =  {«1,0(3}, one has that Es =  E(hi  (A0, C0)) n  (E iu n
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£2u) — £ (A 0,Co) — <£• So, no selfloop is required at the state g\{Ao,Co) =  A0 £ Q 

At the state (A \ , C \ ), «2 is already defined. For the state (A2,Ci), since T,{A2,C\) =  {a^} 

and £ (C i) =  {0^2,03}, one has that £ s =  {«2}- So one needs to selfloop c*2 at the state 

9 i {A2,C i ) = A2 € Q\.  Similarly, one can find that £ s =  <f> at the state (A3,C i ). So one 

obtains G}s =  (Qi, Ei,£}, <710) where 6} consists of all the transitions of £1 with an additional 

selfloop (A2, a 2) — > A 2 (Figure 5.10(d)). Then again, one can find G |s =  S ( G i ,G p ) 

(Step 4 in Algorithm I). It is found that G}s =  G js. So let G} =  G |s (Step 5 in Algorithm I). 

Hence by Proposition 5.1, one knows that L(G{) is controllable with respect to L (G P) (Step 

3 in Algorithm II).

Then for the pair G} and G 2, we define G \ p such that L(G}P) =  p2{pi)~1 L(G\)  (Figure 

5.10(e)):

G \ p  :=  ( Q f ,E i ,6 lP ,qf’0),

where
Q f  =  { 0 0 ,0 ,} ,

S\p : (D oi^i) 1— * D\, {Do, »4) 1— * Do,

{D \ ,ol2) 1— > D\,  (Di,ot4) 1— > D\,

^20 =

Then find the product G \ p =  G 2 x G}p as follows (Figure 5.10(f)):

G \ p = G 2 x G}p  =  (Q2 x Qp , £ 2,<*2 x 6{p , te o ,g f0)),

where
Q2 x Qi = {{Bo, Do), {Bi ,D\) ,  {B2, D i ), {B3, D i )},

S2 x <$JP : {{Bo, Do), a i)  1— > {B\,Di) ,  {{B\, D i ) , a 2) 1— > {B \ ,D \) ) ,

{{Bi, Di), a 4) 1— > {B2,D i)) ,  {{B2, Di), a 2) '— > {B3,D i ),

{Q20, 9\o) =  {Bo, D0).

One knows that G \ p refines G2 and G{p . So one has the unique functions 

hi : Q 2 x Q i — > Qi and gi : Q2 x Qp — * Q 2,

as follows:
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hi{Bo,Do) I— > Do, 

hi (D2, D\) 1—> D i, 

gi(Bo, Do) 1—» Do, 

5̂1 (-Ö2, -Dl) 1--- > ^2,

^i(Di, Di) 1—* Di,

^1(^3, ^1) 1— * ^1, 

9i {B\, D\) i— > Di, 

^ 1  (^B.3 , ^ 1 )  1— > D 3 .

Then, by the selfloop algorithm, G ja =  S ( G 2, G}p ) is computed (Step 2 in Algorithm I). 

One can find that for the state (D3, D 1), £ s =  {a2}. So one needs to selfloop a 2 at the 

state <7i (D 3,D i ) =  D3 £ Q 2. So G ^  =  (Q2, S 2, 8\, Q20) is obtained where 8\  consists 

of all the transitions of S2 with an additional selfloop (D3, a 2) — > B% . Again one obtains 

G^s =  S ( G 2, G}p ) (Step 4 in Algorithm I). It is found that G ^  =  G ^ . So, let G j =  G ^  

(Step 5 in Algorithm I). One knows that ^(G^) is controllable with respect to L(G}P). Since 

G2 7̂  G 2, one needs to repeat Algorithm II for a pair G j and G2 (Step 6 in Algorithm II). 

Then one obtains Gf (Step 7 in Algorithm II). It is found that G j =  G j. Therefore, the 

resultant DESs are given by G\  =  G j and G'2 =  G2 (Step 8 in Algorithm II). The closed 

behaviours of the resultant DESs G^ and G2 are given in Figure 5.10(g). Clearly, one can see 

that the languages L(G'1) and L(G'2) are mutually controllable.

5.5 Conclusions

In this chapter, for the systems which do not satisfy the conditions in Theorem 3.1, we have 

developed a method to modify the systems so that the resultant systems will possess the desired 

structural properties. With the arranged structure, one can carry out decentralised synthesis 

and control. For the shared-event-marking condition, we have shown a systematic method in 

which all the necessary states are marked. For the mutual controllability condition, we firstly 

introduced selfloop operation and then we have presented an algorithm to add selfloops of 

shared uncontrollable events so that the resultant systems are pairwise mutually controllable.

The procedure is rather complicated. However, this procedure is applied to the structure 

of the systems and so it needs to be done only once. Then for any family of Lt-iTn-closed 

specification languages, one can use decentralised control without further checking.
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Figure 5.10: Example: arrange the system for the mutual controllability condition



Chapter 6

Weakening the Shared-Event-Marking 

Condition

In this chapter, we describe two ways to weaken the shared-event-marking condition. In Sec­

tion 6.1, some basic concepts used in this chapter are introduced. In Section 6.2, we formulate 

a problem. In Section 6.3, bisimulation is used for weakening the condition. In Section 6.4 we 

explain how observer properties are applied to weaken the condition. An example is presented 

for illustration in Section 6.5. This chapter ends with some concluding remarks in Section 6.6

6.1 Preliminary

In Chapter 3, we have presented two structural sufficient conditions, the shared-event-marking 

condition and the mutual controllability condition, for a decentralised control of concurrent 

DES. In some applications, however, we have found that too many of the states for given 

systems need to be marked for the shared-event-marking condition to be satisfied. Hence, it 

is desirable if we can relax this condition. In this chapter, we investigate this idea using two 

different but closely related concepts. We consider a global system that is the synchronous 

composition of two subsystems. We obtain sufficient conditions for given local, not necessary 

prefix-closed, specification languages. However, the conditions now become specification-

119
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dependent conditions. So, like conditions obtained in [LW88a], if a specification is changed, 

our conditions are required to be verified again for the changed specification. However, still 

unlike in [LW88a], we allow non-prefix-closed specification languages and hence the problem 

of blocking will be addressed.

Firstly, we recall the following concept of bisimulation [Am94, Fer89, Mil80]. For two 

transition systems, the concept of bisimulation is one way to describe an equivalence relation 

between them. Let E b e  the event alphabet of a subplant G;, for z =  1,2. It is allowed that 

Ej- D Ej 4> f°r i j- Let E := Ei U E2 and E s := Ei D E2. Let ps be the natural projections 

from E* to E*. Let H{ C E* for i = 1,2. Define a binary relation =h uh2Q #1 x H 2 as 

follows:

Definition 6.1 For s\ 6 H\ and s2 G H2, we say that s\ = h uh2 s2 if and only if ps ( s 1) =  

Ps(s2). □

Now we recall a concept of bisimulation [Am94, Mil80].

Definition 6.2 Let S  C H\ x H2. We say that S  is a bisimulation on H\ and H2 with respect 

to E i PI E 2, if  for  ( s ! ,s 2) £ S,

i) (V <T! G Ei) si<7i £ H 1 implies (3 u €  E£) ps{u) =  ps{o 1), s2u G H2

and (s i<71, s2u) G S.

ii) (Vcr2 G S 2) s2o2 G H2 implies (3 v G E^1) ps{v) — ps{(r2), s iv  G H 1 

and (siu, s2o2) G S.

Hi) si G H 1 implies (3 u G E2) ps{u) =  e and s2u G H2 and ( s i ,s 2u) G S.

iv) s2 G H2 implies (3 v G E^) ps(v) =  e and S\V £ H\ and (s\V, s2) G S. □

We say that H\ and H2 are bisimular with respect to Ei fl E2 if = h uh2 is a bisimulation. 

Intuitively, two languages are bisimular with respect to their shared events if a shared event 

is possible at some point in one language, that shared event should also be possible in the 

other language and vice versa; and if a marked string is reached in one language, then from a 

corresponding string in the other language, a marked string is also reachable.

Now we recall some concepts of observers in the supervisory control of DES framework.
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For detail, refer [WW96a, WTHM95, ZW90], Let L C S* be a prefix-closed language, repre­

senting the behaviour of a system G. Let T  be another set of event labels.

Definition 6.3 A map 9 : L — > T* is a causal reporter map [ZW90] if

6 ( e )  =  c,

0(s)r for some t £ T ,
9(scr) =

9(s) otherwise,

fo r s E L and a  E E.

The map 6 preserves the history of an event sequence such that if s < u, then 9(s) < 9(u). A 

causal reporter map can be characterised as follows [WW96a]:

9 is a causal reporter map iff for all H  C L, 9(H) =  9(H).

Let M  := 9(L).  An observer property of 9 is introduced in [WW96a] and can be characterised 

as follows:

9 is an observer (V K  C M ) 9~l (K ) =  9~l (K) .

Let H  C L and N  : =9( H) .

Definition 6.4 We say that 6 is an H-observer if for all N' C N, 

where, 9h denotes the restriction o f 9 to H, i.e., 9h =  9\h .

If H =  L, then 9 is an observer. We recall some properties of H-observer [WTHM95]. Let 9 

be a causal reporter map 9 : L — > T* and H  C L. Then

1. 9 is an H-observer

<=> (Vs E L) (Vi G T*) 9(s)t  £ 9(H) = >  (3u E £*) su E H  and 9(su) =  9(s)t .  (6.1)

2. If 9 is an H-observer, then 9~l 9(H)  =  H . If H =  L, then 9 is an observer. (6.2)

6.2 Problem Formulation

Let be the event alphabet of a subplant G;, for i =  1, 2. It is allowed that Ej fl S 2 /  4>. 

Assume that =  £ lc U £ ;u. We assume that the control status of shared events are the same,
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i.e.,

Eiu n £2 -  £2 n Siu-
Let £  := £1  U £ 2 be the event set of the global system, say G. Let £ c := £ i c fl £ 2c, 

£ u := £ i u H £ 2u and £ s := £1 fl £ 2. Let px and ps be the natural projections from £* to 

£* and to £*, respectively. Let L{ C £* represent respectively the marked and closed 

behaviours of system G,-. We assume that L{ = Li,m. The marked and closed behaviours of 

the system G are respectively

L-m — m {I L2)7n, and L =  L\ || L2.

Now let E{ C LiiTn be the local specification language on the subsystem G;, not necessarily 

prefix-closed. The overall specification is then

E : =  (pi\L)-1(E1) n ( p 2\L) - \ E 2).

For a decentralised control approach, we synthesise local supervisors on G ; whose closed-loop 

marked and closed behaviours are respectively kl, {Ei) and KL,{Ei). The closed behaviour 

under the concurrent supervisions of the local supervisors is then

(Pi Il) n (p2\l) 1(kl2(E2))-

For a centralised control approach, we can synthesise for the global specification E  and obtain 

kl (E)  as the closed behaviour of a global supervisor.

Now we establish the following problem.

Problem 6.1 For given E{ C Ljjm, where i = 1,2, under what condition is it true that

(Pi Il) " 1^ ^ ! ) )  n {p2\l )~1{^l2{E2)) = *l {E) , (6.3)

and

Pi{ni,{E)) is nonblocking with respect to LiyTn ? (6.4)

O

Note that this problem is different from Problem 3.1, in that the conditions that we seek depend 

on the given specifications. We have developed two ways to solve this problem.
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6.3 Using Bisimulation

The following theorem provides sufficient conditions for Problem 6.1.

Theorem 6.1 Let E E , - c, Et-U, and Li, for i = 1,2, be given as in Section 6.2. Suppose 

that L \ and L 2 are mutually controllable. Let Ei C Suppose further that

i) k l1 (E i ) and k,l2 (E 2) are bisimularwith respect to Es,

ii) kl, (Ei) and Lj^m are bisimularwith respect to Es, for i f  j.

Then Eq. 6.3 and 6.4 hold.

Note that the mutual controllability condition remains a structural condition. For given speci­

fications, now one needs to check whether local supervisors are bisimular with each other and 

the marked behaviour of the other plant.

To prove Theorem 6.1, one requires the following lemmas.

Lemma 6.1 Let Hi C E* for i = 1,2. Suppose that H\ and H 2 are bisimular with respect to 

Ei H E2. Then

P i l (H 1 ) and p ^ 1 (H 2 ) are nonconflicting.

Furthermore,

Pi(H) is nonblocking with respect to Hi, 

where H  := p ^ 1 (Hi) D p ^ 1 (H2).

Proof: We will show only one inclusion since the other inclusion is always true. Let s E 

P i l (H 1 ) r \p2 l (H2). Then pi (s) E H 1 andp2(s) € H2. Let si := pi(s) and s2 P2 (s). 

Then one has that

Ps (s i) =  PsPi (s) = Ps (s) and ps (s2) = psP2 (s) = ps («) •

So, Ps(si) =  ps(s2 ). Therefore by definition, one has that 

si = h 1,h2 s2-

Since we assume that H 1 and H2 are bisimular, si =h {,h2 s 2 is a bisimulation. Also, since 

« 1  E Hi,  there is a string m E EJ such that 

Siu E Hi.
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If u = e, since s i = huh2 s2 there is a string i G £ 2 such that ps(t) =  e, s2t G H2 and 

(si,S2t) G =Hi ,H2- Thus for a string si G £*,

Pi (si) =  pi(s)e =  siw G Hi and p2(si) =  P2(s)t =  s2i G H 2.

Hence si G pj-1 (Hi) D P2l {H2). Therefore,

s e p p ^ O n p J 1^ ) .

Otherwise, write u = G\cr2 • • • crn, where d i , <j 2 • • • , <jn G £1 for some n. Since si =  h x ,h2 s2 

and si<7i G i / i ,  there is a string G £2 such that

P»(vi) = P s (0 i ) , s 2vi e H2, and (s1<71, s 2u1) G =h 1}h2- 

Repeating this for <r2, cr3, • • • , <rn, one has v2, V3, • • • , vn G £2 su°h that

Ps(vi) = P a ( ^ t), s2uiu2 ---Ui G / / 2, and ( s i ^ i ^  • • s2uiu2 • • -Ui) G = h uh2, (6.5)

for i =  2, 3, • • • , n. Let v := V\V2 • • • vn G ££• Since s\u G Hi and (siw, S2u) G = huh2,

there is a string i G £2 such that

p s (i) =  U s2vt G tf2 and (siu, s2vt) G = huH2-

Thus

s xw =  Pi(s)w G Hi and s2vt = p2(s)vt G / / 2,

where u G £ i , u  G £2 and i G (£ 2 -  £1)*. For G{ G £1 fl £2, write V{ =  WiGiri, where 

w;, r t- G (£ 2 -  £1)*. Note that if Oi ^ £1 fl £ 2, i.e., ai G £1 -  £ 2, then ps(<jt) =  e. So, by 

Eq. 6.5, one has thatps(ul) =  6, i.e., ut G (£ 2 — £1)*. Let 

^EinS2 *•= {*|1 < * < n,<7i G £1 0  £ 2}.

That is, if i G / s inE2» then ut- =  w w i , wt-,r,- G (£ 2 -  £1)* and Oi G £1 fl £ 2, and if 

i i  H xc\Y.2, then G (£ 2 -  £1)*. Write / s in£2 =  {*1, *2, * * • , *m}- Let

X .— @\Vl ’ • • j _  1 Uj i _  1 Ujj (7j j-|_ 1 Uj j _|_i • • * &i2 — 1 Uj2 — 1 V%2 & i2 +  1 ^ i2 +  1

‘ crim - ^ v i m - l v im <7im + l v im + l ' ' * ° n .v n L

Thus
Pi(sx) =  Pi(s)pi(a;)

=  Si<7i • • • G i i — i G [ l (Jjj-i.1 • • • Gi2 — \ G i 2 G i2+ \  ' " " G im  — l^t’m ^ m  + 1 ’ ‘ ’

=  Siw G iFi-
Also,

p2(sa;) =  p2(s)p2(x)

=  « 2 ( s ) u i  • • • U i 1 _ 1 Ut l U j 1 + 1  • • •u , -2 _ 1 u t-2 u t-2 + 1  • • • U i m _ i u l m u l m + 1  • • • u n i

=  S2ui G t f 2.
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Hence sx E px 1 {Hi) n p2 1 {H2). Therefore,

sepr'^Onp?1̂ ) .
Using a similar construction as the above, one can show that Pi(H) is nonblocking with respect 

to Hi. □

Lemma 6.2 Let E i, E t-c, Etu, Lt, and (£?;), for i =  1, 2, be given as in Section

6.2. Suppose that the conditions given in Theorem 6.1 hold. Then 

(p*|l)_1 («£,<(£»)) = (p«|l)_1(«l,■(#«))•

Proof: This can be shown using Lemma 6.1 as in Lemma 3.4 in Section 3.3. □

Lemma 6.3 For given Ei C Li>m, for i = 1,2, suppose that the conditions given in Theorem 

6.1 hold. Then

( Pi \ L) - l (KLt { E i ) ) £ C { L ) ,

where C(L) is the set o f controllable sublanguages o f L.

Proof: The proof can proceed similarly as in Lemma 3.6 in Section 3.3. □

Note that the preservation of controllability from the global system to the local system (cf. (ii) 

in Lemma 3.6) is due entirely to mutual controllability of the subsystems. Therefore it remains 

valid in here.

Lemma 6.4 For given E{ C for i = 1,2, suppose that the conditions given in Theorem 

6.1 hold. Then

(PzIl)-1 KLi(Ei) =  nL(pi\L) - l (Ei).

Proof: The proof can proceed similarly as in Lemma 3.7 in Section 3.3. □

Now one can prove Theorem 6.1.

Proof of Theorem 6.1: The proof is similar to that of Theorem 3.1 in Section 3.3. □
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6.4 Using H-Observers

In this section, we present sufficient conditions for Problem 6.1 using the concepts of H- 

observer. Under the same assumption as in Section 6.2. Then we have the following.

Theorem 6.2 Under the foregoing assumption, suppose that L\ and L 2  are mutually control­

lable. Let E{ C Lî m and let K{ := kl,(E{). Suppose further that

1. p \(K  1 ) and p2s (K 2) are nonconflicting, and 

pls(Ki) and pi(LJirn) are nonconflicting, for i /  j.

2. pls I is a K{-observer and pls \ l, is an L{>m -observer, for i =  1,2.

Then Eq. 6.3 and 6.4 hold. □

Remark 6.1 The first condition is concerned with nonconflictingness between the shared- 

event images of the two local supervisors and between those of a supervisor and the marked 

behaviour of the other subsystem. The second condition basically states that the shared-event 

image is a sufficiently ‘accurate’ model of the subsystem. Namely, if an event is possible in a 

state in the shared-event image, then it should be possible in any of the corresponding states in 

the subsystem. O

To prove Theorem 6.2, one needs the following lemmas.

Lemma 6.5 Suppose that H{ C Ll)m C E* for i =  1,2,

1. p](H  1 ) and p2(H2) are nonconflicting,

2. pls\j[ is H{-observer.

Then, p~[l (Hi) andp^1 [Hf) are nonconflicting. Furthermore,

P{(H) is nonblocking with respect to H{, 

where H := p~[l (Hi) r\p 2 1(H2).

Proof: We will show only one inclusion since the other inclusion is always true. Let s E

p l 1 (Hi) fl p2 1 (H2). So there exist strings w', v' 6 E* such that su' E p x 1 (Hi) and
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sv'  £ Thus Pi(su') G i / i  and p2 (sv') G H2. So for some strings w" G S t and

v” G S 2, pi(s)u" £ Hi C Hi and p2 (s)v" G H 2 C H2. Hence 

pi(s) G #1 and p2(s) € H2.

Then, one has p ls(pi(s)) G pl(Hi)  and r f(p 2(s)) € p2s(H2). Also, since p‘ ( i f t-) =  p*(ifi), 

one has that

Pl(Pi{s)) e p \ (H 1) = pl(Hi)  and r f (p 2(s)) € ^ ( # 2 )  =  rf(# 2 )- 

Also, we have p\(pi(s)) = p^(p2 (s)). Since it is assumed that p\(H  1) and p2s(H2) are non­

conflicting, i.e., pl(H  1) ft p2 (H2) = pl{Hi)  n p 2 s{ H 2), one has that

pI(p i {s)) = p2{p2{s)) e pj(^i) nrf(tf2) = rf(/fi)np2(/72).

Hence there exists a strings G (S i n  S 2)* such that

pHp i {s))u = P2s (P2(s ) ) u  G pI (H i ) Dp 2 (H2).

So pl(pi (s) )u  G Pls {Hi) and p^(p2(s))u; G P2 (H2). Since p,(s) G Hi and tu G (S i f l S 2)*, 

one has that

rf(p iM )w  =  r i l^ r ( p i ( s ))w e rfl ^ ( # 1 ) ,

rf(P2(«))w =  pjlsä(p2(«))w € p23\ f y ( H 2).

Then, since we assume that pls\jj  is Hi-observer, by Eq. 6.1,

(3 u G S t) pi(s)u  G Hi and p j(p i(s)u) =  rf(p i(s))w ,

(3 u G S 2) p2 (s)v G H2 and rf(p 2(s)u) =  pJ(P2(*))w.

So one has pl(pi(s))p\(u)  = p ls (pi(s))u, i.e., u  =  p*(w). Likewise, one has that 

u) =  Ps(u). Therefore, p\(u) = p2 (v). Now we consider two cases, u> = e and u  ^  e.

Firstly, the case of lj = e implies that u G (Si -  S 2)* and v G (S 2 — Si)*. Consider a string 

suv  G S*. Then

Pi (suv) = pi (s) u G H\,  and p2 (suv) =  p2 (s) v G H2.

So, suv G P i l (Hi) r \ p ^ ( H 2). Therefore,

s e p r V f f O n p j 1^ ) .

For the case of u  ^  e, let u  = pls(u) = p2 (v) — o io 2 "  ■ on. Consider strings -u, v as follows: 

u — Ui(Jiu2a2 • • -unonun+1 G S t and v = vi(Ti V2ct2 • • -vn(rnvn+i G S 2,

where

«1, u2, • • • , un+i G (S i -  S 2)*, üi, v2, • • • , un+i G (S 2 — Si)*, and

° l  ? 02> * * • I^n £ Si n s2.
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Then consider a string sx E E* such that

S X  —  S 1 L \V \ ( J \  ^ 2 ^ 2  * * * ^ n -\-1 ^ n -\-1 •

Then
Pl(sz) =  V\{s)U\(T\U2(T2 • • -CTnUn+i = Pl(s)u  E i / l ,

p2(sz) =  p2(s)^(71^2(72 • • -(JnVn+l = P2 {s)v E #2-
Hence sx  E (/fi) Pi p~if1 ( # 2 )- Therefore,

s e p f ' ^ O n p ; 1̂ ) .
Using a similar construction as the above, one can show that pi{H) is nonblocking with respect 

to Hi. □

Lemma 6.6 Let E i, E;c, E;u, L;)m, L,, E{ and (£;), for i = 1,2, be g/ven 0 5  in Section 

6.2. Suppose that the conditions given in Theorem 6.2 hold. Then 

( Pi \ L) ~ l (KLt ( Ei ) )  =  (pill/)- (Ei))-

Proof: This can be shown using Lemma 6.1 as in Lemma 3.4 in Section 3.3. □

Lemma 6.7 For given E{ C Ll)Tn, for i = 1,2, suppose that the conditions given in Theorem

6.2 hold. Then

(p i |l ) - 1(« l. ( £ . ) ) € C ( L ) .

Proof: The proof can proceed similarly as in Lemma 3.6 in Section 3.3. □

Lemma 6.8 For given Ei C LZ)m, for i =  1,2, suppose that the conditions given in Theorem

6.2 hold. Then

(Pi \ L) ~1^ L , { E i ) =  KL( Pi \ L) ~l ( Ei ) .

Proof: The proof can proceed similarly as in Lemma 3.7 in Section 3.3. □

Now one can prove Theorem 6.2.

Proof of Theorem 6.2: The proof is similar to that of Theorem 3.1 in Section 3.3. □

Remark 6.2 If there is conflicting in the shared-event model, one could use a coordination 

scheme presented in [WW96c]. This may be another direction of future research. The concepts
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of bisimulation and if-observer are closely related as shown in the paper [WW96a]. O

6.5 Example

Consider the first example given in Section 3.4. The DES models for the local plants and local 

specifications are given in Figures 3.2 and 3.4, respectively. Here, we do not need the marking 

before the shared event. So the only marker state is the initial state. The local supervisors are 

obtained and it turns out that in this case, the behaviours of the local supervisors are the same 

as the specification languages. It can be checked that the conditions in Theorem 6.1 and 6.2 

hold.

For a more practical example, consider again a simplified version of the chemical reactor 

shown in Figure 3.5 and described in Section 3.4. Figure 6.1 is a schematic diagram of the plant. 

The reactor is comprised of a feed valve V_l, a drain valve V_2, a weight measurement unit

Figure 6.1: Simplified batch reactor

W_l, a timer T_l, and a continuous reaction controller C_l. DES models for the components 

are the same as presented in Figure 3.6 in Section 3.4 except W_1 (shown in Figure 6.2(a)).

At this time, we divide the whole plant into two subplants, the filling-draining subplant 

(Gi)  and the reaction subplant (G 2 ). Note that there are no shared components among sub-
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plants. Also, like the case in Section 3.4, to enforce the process proceeds in a specified order, 

we introduce controllable shared events (<ti, <T2 , <t3) which indicate a completion of a certain 

process. These controllable synchronised events are represented as ‘flag’s and the DES models 

are shown in Figure 6.2(b) and (c).

(a) WJ (b) flag I (c) flag 2

Figure 6.2: DES models for W_1 and synchronisation flags

The process will proceed similarly as described in Section 3.4. Also, the user requirements 

can be established similarly. The automata displayed in Figure 6.3 represent specifications {E\ 

and E2) for the subplants. It can be checked that Ei C Lt)Tn. The supervisors are obtained and

Figure 6.3: DES models for local specifications

their marked behaviours^^ (E\) and kl2 (E2)) are displayed in Figure 6.4. It can be checked 

that in this case, the conditions in Theorem 6.1 and 6.2 hold.
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(a)K L , ( E l )  (b)KL2( E 2)

Figure 6.4: Behaviours of the local supervisors

6.6 Conclusions

In this chapter, we have presented two ways to relax the shared-event-marking condition. Un­

like the work in Chapter 3, the conditions are specification-dependent. That means now some 

of our conditions are on-line. So for given specification languages, our conditions are required 

to be verified. The issue of how to establish these conditions as structural conditions, namely 

they hold for a set of specifications, is still an open question.
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Chapter 7

Application

In this chapter, we describe an application of the result in Chapter 3 to the automation of 

a cleaning-in-place (CIP) process for a small scale multipurpose, multiproduct batch plant 

([LM93, Als96]). Three suboperations of the CIP process, Water Rinse, Detergent Preparation 

and Detergent Rinse, are considered.

7.1 Introduction

The purpose of the CIP process is to clean the equipments and their associated pipelines using 

detergent solutions. In many chemical processes, CIP process is important for safety reasons 

and product qualities. However, in many cases the problem is that the CIP process takes a large 

portion of the total production time. So the reduction of the CIP operation time is an important 

issue in the efficient production of the final product. The automation of the CIP process is one 

way to reduce the operating time.

In the following, we examine a DES control synthesis of the CIP process for a small batch 

plant. Since the CIP process is typically running in a batch-mode (so it is inherently discrete), 

the process can be suitably modelled as a DES. Furthermore, the CIP process often requires 

flexible configurations. For example, the cleaning process for one part of the plant is often dif­

ferent from the cleaning of another part, and the cleaning procedure might need to be changed

133



7.2. DECOMPOSITION OF THE CIP PROCESS 134

depending on the materials being processed in the plant. Therefore, the decentralised approach 

is more suitable in this case.

The plant employed in this example is a small scale batch process for food and pharma­

ceutical products. The schematic diagram of the plant is presented in Figure 7.1'. The main 

components of the plant are two feed preparation vessels (T_2, T_3), a multipurpose batch re­

actor (T_4), two product storage vessels (T_5,T_6), and two heat exchangers (HE_1, HE.2). 

These components are connected with pipelines, valves and pumps. In addition to these main 

components, the tank T_1 is provided to prepare the hot caustic detergent solution for the CIP 

process. The flexible operation of the CIP system enables parts of the plant to be cleaned sep­

arately. In here, we consider the automatic process of cleaning the feed preparation tank T_2 

and its associated pipelines.

The components involved in the CIP operation of T_2 are comprised of pumps (P_l-P_4), 

valves (DV_1,DV_2,V_1-V_15, V_22), a temperature controller in the heat exchanger HE_1 

(C_l), a conductivity level sensor which monitors the caustic level in the detergent solution 

(CS_1), a sensor for the lid position of the tank T_2 (PO_l), a temperature probe for the tank 

T_1 (TP_1), a low level sensor for the tank T_1 (LT_1), a high level sensor for the tank T_1 

(HT_1), and a continuous level sensor for the tank T_2 (LT_2). The number of the elementary 

components is 29. So if each component is assumed to have 2 states, the total number of states 

is more than 5.0 x 108. This is generally too big to analyse as a whole. This is another reason 

to use the decentralised control approach.

7.2 Decomposition of the CIP process

The CIP process of the tank T_2 consists of complex sequences of discrete-event driven activ­

ities. However, it is possible to divide the whole operation into the following four sequential 

suboperations.

1. Water Pre-Rinse of TJ2: the tank T_2 will be cleaned with high pressured water for 10

'This diagram is adapted from [Als96] with slight modifications.
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Figure 7.1: Schematic diagram of the batch process
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minutes.

2. Detergent Preparation in T_1: the hot caustic detergent solution is prepared in the tank 

T_l.

3. Detergent Rinse of T_2: the tank T_2 is cleaned with high pressure spray of the detergent 

solution for 10 minutes.

4. Water Rinse of T_2: Clean T_2 with high pressure water spray to dissolve the residual 

detergent for 10 minutes. This operation is the same as the first operation, water pre­

rinse.

Since the suboperations are operated in sequence, it is possible to assume that each subop­

eration is operated in isolation from each other, i.e., the supervisor of one operation can be 

designed independently from the supervisors of the other suboperations. The DES models of 

the elementary components for the CIP operation of T_2 are presented in Figures 7.2, 7.3 and 

7.4. Note that the initial states of the valves V_1 and V_2 are ‘open’ while those of the other 

valves are ‘closed’. A timer (TS_10) is included to deal with the timing requirements.

The DES model of each suboperation is obtained by the synchronous composition of those 

elementary components involved in that particular operation. In addition, since these subop­

erations should be operated in a specific sequence, it is necessary to have an additional DES 

model to enforce this sequential requirement. To this end, we introduce four controllable shared 

events, Ai, A2, A3, A4 (see Figure 7.5). These shared events indicate the completion of the cur­

rent suboperation and allow the next suboperation to proceed. For example, the event Ai is a 

shared event of the water pre-rinse operation and the detergent preparation. It represents that 

the water pre-rinse operation has been completed and the detergent preparation can now pro­

ceed. The event A4 is an event shared by all suboperations, representing a complete cycle of 

the CIP operation of the tank T_2. The synchronisation events, Ai, A2, A3, A4, are represented 

as ‘flag’s in the modelling process and are considered as a part of the plant. In the following 

sections, we synthesise a supervisor for each suboperation.
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Figure 7.2: DES models for the elementary components of CIP process I
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Figure 7.3: DES models for the elementary components of CIP process II
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Figure 7.4: DES models for the elementary components of CIP process III
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Water Rinse

Water Pre-rinse

Detergent Preparation

Detergent Rinse

Figure 7.5: Sequential control of the CIP process

7.3 Water-Rinse Operation

In the water-rinse operation, the residual solids in the tank T_2 are removed by intermittent 

bursts of spraying water at high pressure from pump P_2 for 10 minutes. The water-rinse 

operation proceeds as follows. See Figure 7.6 for the elementary components involved in this 

operation. At the beginning of the operation, each elementary component is in its initial state, 

the tank T_2 is empty and the lid of T_2 is closed. The operation is started with opening the 

feed route from the water main to T_2 (via V_4, V_6, V_8), and the drain route from TJ2 to 

the main drain (via V_13, V_15, DV_1,V_22, DV_2, V_l). T_2 is cleaned with high-pressure 

water spray using the pump P_2 for 10 minutes. During the normal operation, the water level 

inside T_2 should remain between 6L to 20L. If the lid of TJ2 is opened at any time during 

the operation, water feed should be stopped and not be permitted to restart until the lid is shut. 

When the lid is closed, water feed can be started again only after the water in the tank T_2 is 

fully drained. Water is drained from T_2 by the pump P_3. P_3 should be stopped if the water 

level of T_2 is less than 3L. After 10 minutes of the above operations, T_2 is drained until the
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v j X  V J X  v j oX v. h X  v- 12X

Figure 7.6: Water-Rinse operation

water level is less than 3L. Finally all the components are returned to their initial states.

7.3.1 Decomposition of the Components in the Water-Rinse Operation

The number of components involved in the water-rinse operation is 23. So the size of the whole 

plant is still too big to analyse. The elementary components are partitioned naturally into two 

groups: one group of components which actively participate in the water-rinse operation of the 

tank T_2 (designated as Gyp) and the other group which are required to remain at their initial 

states during the operation (Gid). Furthermore, in the plant (Gyp), the components involved in 

the preparation of the feed or drain route (Gpr) are separated from those involved in the actual 

cleaning and draining (Gpa). Finally, in subplants Gpr, Gpa and Gid, the components involved 

in the water feed, from the water main to the tank T_2 (Gfpr, G fpa, G/id), are separated from 

those components involved in the water drain, from T_2 to the main drain (Gdpr, Gdpa, Gdid)- 

The partitioning table of the elementary components is presented in Table 7.1. Note that only 

LT_2 is a shared component between partitioned subsystems, Gj pa and Gdpa•
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Gpr
G fpr MX  V_4, V_6 Preparation water feed

G y p
Gdpr DV_1, DV_2, V_15, V_22 Preparation water drain

G ijjr G pa
G f pa PO_l, LT_2, P_2, V_8, TS_10 Water feeding and cleaning

G dpa LT_2, P_3, V_13 Water draining

Gid
Gfid V_5, V_9, V_10, V_l l ,  V_12 Idle in water feed part

G did P_4, V_1,V_3, V_14 Idle in water drain part

Table 7.1: Partition table for water-rinse operation

The water-rinse operation is also divided naturally into the following three sequential pro­

cesses like the decomposition of the elementary components:

1. Prepare the feed and drain routes.

2. Clean the tank T_2 for 10 minutes.

3. Return the feed and drain routes into their initial states.

So, it is necessary to enforce that these three processes are operating in sequence. To this end, 

three controllable shared events (cr\, 02, 03) are introduced. These shared events play the same 

role as the shared events between suboperations (A 1-A 4). The event o\ represents that the feed 

route is ready, while the event represents the drain route is ready. The event 0-3 represents 

that the water spray to the tank T_2 is completed and now all the components can return to their 

initial states.

7.3.2 Modelling and Synthesis for Gpr

The elementary components of Gpr are those involved in the preparation of the water feed and 

drain routes. The subplant Gpr is further decomposed since it is easier for analysis and synthe­

sis (before the decomposition, Gpr has 724 states with 1151 transitions). Naturally Gpr can be 

divided into two subplants, G f pr for the elementary components involved in the feed route and 

Gdpr for those components involved in the drain route. Also, since the synchronisations with 

the other subplants are required, the events 0-1,02, 03 as well as Ai, A4 are included in the flags 

(see Figure 7.7). The plant G f pr consists of V_6, VJ2, V_4 and flagj pr, and the subplant Gdpr 

is comprised of DV_1, DV_2, V_15, V_22 and flagdpr.
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Figure 7.7: Synchronisation flags for Gpr

The interpretation of flagypr, shown in Figure 7.7 (a), is as follows: when the valve V_2 

is closed (ß2), and V_4 and V_6 are opened (0-4, a 6), the feed route is ready (<7i). After high 

pressured water spray to T_2 has finished (a3), all valves are allowed to return to their initial 

states (c*2, /?4, ßß)- Then the water rinse operation is finished (AO. The event A4 represents a 

completion of the CIP process of TJ2. The DES flagdpr in Figure 7.7 (b) is interpreted similarly. 

Here after the valves V_15, V_16, V_17, V_18 have been opened (c*15, a 16, cx17, a 18), send the 

drain route ready signal (o-2). After <73 has occurred, all the valves are allowed to be closed 

(/3i5, ß i6, ß n ,  ßiü)- The orders of valve operations are important to avoid an unnecessary waste 

of water. The selfloops of events after the event Ai in both figures are essential for the events 

to be allowed to occur in the other suboperations (for example, Detergent Rinse and Detergent 

Preparation).

The DES models for G j pr and Gdpr are obtained by synchronous composition and the 

event sets are

^ / p r  — { « 2 , /^2, « 4 , /^4, « 6 ,  /^6, « 1 , « 2 ,  « 3 ,  , ^ 4 }  5

'Edpr =  { « 1 5 , ß l 5 , « 1 6 , / 3 l 6 ,  « 1 7 , ß l 7 ,  « l S i ß l S , « ! , ^ , ^ , ^ ! , ^ } -

The shared events are E /pr D E dpr = {«1, «2, «3, ^ i, ^4} and Epr =  E /pr U E jpr. The size of 

G fpr is 32 states and 63 transitions while Gdpr has 64 states with 147 transitions.

The system requirements for the subplant G jpr(E jpr) are:
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1. Close the valve V_2 (ß^) and open the valves V_4, V_6 («4 , « 6 ). Then send the feed- 

route-ready signal (<Ji).

2. Keep remaining at this state until the water spraying of TJ2 is finished (0 3 ).

3. When the water spraying has finished (0 3 ), return V_2 ,V_4, V_6 to their initial states 

(c*2 , /?4 , ße)- Then send the signals \ \  and A4.

4. The selfloops at the state after Ai mean that the subplant G j pr does not restrict the 

behaviours of the other subplants.

Formally, they can be modelled as in Figure 7.8(a). The specifications for Gdpr (Edpr) are 

similar to those for G j pr and its DES model is given in Figure 7.8(b). The supervisors are 

computed. The supervisor for G j pr has 17 states with 36 transitions, and the supervisor for 

Gdpr has 27 states with 78 transitions.

O2 O2

Figure 7.8: Specifications for Gpr

7.3.3 Modelling and Synthesis for Gpa

The subplant Gpa consists of the elementary components which actively participate in the 

water-rinse operation of the tank T_2 . The subplant Gpa is still very complex; it has 1344
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states with 7616 transitions. Thus, Gpa is further decomposed into two subplants; G/ pa and 

Gdpa- Gfpa consists of the elementary components involved in the water feed while Gdpa com­

prises of those involved in the water drain. The plant Gfpa consists of PO_l, LT_2, P_2, V_8, 

TS_10 and flagypa which models the behaviour of synchronisation events as shown in Figure 

7.9(a). Similarly, the subplant Gdpa consists of P_3, V_13, LT_2 and flagdpa (Figure 7.9(b)).

The interpretation of flagypa, shown in Figure 7.9(a), is as follow: when the feed route is 

ready (<7i) and the drain route is ready (<r2), the timer TS_10 can be started (fix). After the 

timer has expired (/i4), send a signal <73 to the other subplants. Then after the timer has been 

reset (/z5), the water rinse operation is completed with the occurrence of the synchronisation 

event Ai and the detergent preparation can now proceed. Finally, one cycle of CIP process of 

T_2 is finished with the signalling of the event A4. Figure 7.9(b) can be interpreted similarly. In 

here, after the events o\ and cr2, once the amount of water in T_2 is more than 3L then the 

valve V_13 is opened (013). After V_13 is closed C$13), the process is finished with the event 

<73 followed by the events Ai, A4. Like in the case of Gpr, the selfloops of events after the event 

Xi in both figures are necessary to allow the events to occur in the other suboperations.

The synchronous composition of all the components involved generates the possible system 

behaviours. However, there exist some physical constraints among the elementary components 

and they will restrict the system behaviour by deleting infeasible states and transitions. The 

automata shown in Figure 7.10 (a) and (b) represent physical constraints for Gfpa, namely that

0»)fla« ^

Figure 7.9: Synchronisation flags for Gpa
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the level of the tank T_2 can only be increased after the feed pump P_2 is turned on (Figure 

7.10(a)) and the feed valve V_8 is opened (Figure 7.10(b)). Figure 7.10 (c) and (d) represent 

similar physical constraints for the plant Gdpa-

(a) (b) (c) (d)

Figure 7.10: Physical constraints of G pa

The synchronous composition of physical constraints with the elementary components 

gives the DES models of the subplant G f pa and Gdpa• The event sets are

S/pa =  { 0 's ,  /?8, 7 2 , ^ 2 ,  ^ 6 , ^ 6 ,  ^ 7 , ^ 7 ,  f] 8 , ^ 8 ,  ?7l0, ^ 1 0 ,  ß l , A*2» /^3, /̂ 4i 1^5, <?1, ^ 2 ,  ^ 3 ,  ^1> ^4 }

S d p a  =  { 7 3 i  ^3, a i 3 , / ? i 3 ,  r/6 , a;6 , 777, W7, r/8 , cj8 , a i ,  cr2 , <73 , A i ,  A 4 } .

The shared events are E/pa 0  E^pa — ^6? 77i 7̂» 8̂? "̂ij ”̂2» "̂3? Aj, A4} und Epa —

E/pa U E^pa- The size of G /pa is 736 states with 3922 transitions while Gdpa has 118 states 

and 337 transitions.

The specifications for Gdpa (Edpa) are:

1. Wait until receiving signals that indicate the feed and drain routes are ready(<7i, <72).

2. If the water level in the tank T_2 is more than 3L (ry6), open V_13 ((*13) and then turn on 

P-3 (73).

3. If the water level is decreased to less than 3L (u^), turn off P_3 (£3) and then close V_13
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4. The synchronisation event a3 is possible only after P_3 is turned off (<$3) and V_13 is 

closed (ß13).

5. Finish the operation with sending the signals Ai and A4.

6 . The selfloops at the state after Xi mean that the subplant Gdpa does not restrict the be­

haviours of the other subplants.

The DES models for these specifications are given in Figure 7.11. Similarly, the system re-

Izli

Figure 7.11: Specification for Gdpa (Edpa)

quirements for the subplant G j pa (E j pa) are:

1. Wait until receiving signals that indicate the feed and drain routes are ready(<7i , <r2).

2. If the lid of T_2 is opened (ryi0), wait until the lid is shut (wio).

3. Open the valve V_8 first (c^) and turn on the pump P_2 (72). Then release the timer 

TS_10 (h i ).

4. The pump P_2 should be turned off (£2) before the valve V_8 is closed (ß$).

5. If the lid of T_2 is opened (7710), hold the timer (/i2) and turn off P_2 (<52). Then close 

V -8 O08).

6 . If the lid of T_2 is shut (uqo), drain all water in T_2 (^6) ar,d open V_8 (ag). Then turn 

on P_2 (72) and re-release the timer (/U3).
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7. After the timer is expired (^4), turn off P_2 (<52) and then close V_8 ( ß 8).

8. If the water level in T_2 is increased to more than 20L (77g), tum off P_2 (<S2) and then 

close V_8 ( ß 8).

9. If the water level is decreased to less than 6L ( u 7), open V_8 (a-g) and turn on P_2 (72).

10. After the timer expired, turn off P_2 (<S2) and close V_8 (ß8). Then send the signal <r3.

11. The timer TS_10 can be reset (/i5) only after the lid of T_2 is shut (u^o), P-2 is off (<$2) 

and the timer is expired (/i4).

12. Finish the operation with sending the signals Ai and A4.

13. The selfloops at the state after Ai mean that the subplant G f pa does not restrict the 

behaviours of the other subplants.

Formally, they can be modelled as in Figure 7.12. Supervisors satisfying these requirements 

are computed. The sizes of the supervisors are respectively 95 states with 221 transitions for 

G f  pa and 33 states with 75 transitions for G d pa-

7.3.4 Modelling and Synthesis for Gfid and Gdid

The subsystem G f i d  comprises of the elementary components which are required to remain 

open or closed in the feed route during the water-rinse operation, while Gdid consists of those 

in the drain route. The flags representing synchronisation events are presented in Figure 7.13. 

The size of G f i d  is 64 states with 384 transitions, while Gdid has 32 states with 160 transitions. 

The event sets of G f i d  and Gdid are

'Efid =  {»5, ß5,  A?) »10, ßio, «11, ß l h  <*12, ß \2 ,  Al, A4},

^did =  {V4j 4̂) «1, ß l ,  <a3, /?3, Oti4, /?i4, Ai, A4}.

The common events of S fid and T,did are Ai, A4, and E =  E f i d U Edid- For these two systems 

G  fid and G did* the specifications are to prohibit the occurrences of all the events at their initial 

states except Ai and A4, as shown in Figure 7.14. Like in the previous cases, the selfloops are 

included after the event Ax in both figures. The sizes of the supervisors are respectively 64 

states with 304 transitions for G f i d  and 32 states with 128 transitions for Gdid-
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io \® io  h l/o  ©/® PI/® ©/® 4

PI/® ©i® P l/e  ©/® hl I® ©I®

io ©/® Pi/® ©/® P l/oko/j

©« PI/®)©/® h J f f l i®  P l/o© /®

ZA =  { a « ß« 12 M ® T ]7 T I«T1/0 ©< ©7 ©« ©/® \L, \l2 M-J P i  P j }

Figure 7.12: Specification for G j pa ([Efpa)
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A,/ A,/

Figure 7.13: Synchronisation flags for G f i d  and G did
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Figure 7.14: Specifications for G f i d  and G d id
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7.3.5 Verification for Water-Rinse Operation

In the previous sections, we have obtained the DES models of the subplants, specified local 

requirements, and then computed the corresponding local supervisors for the water rinse op­

eration. In this section we will verify that the plant DESs of water rinse operation satisfy the 

sufficient conditions given in Chapter 3.

The event sets of the plants are

S / p a  =  { « 8 ) ß& i 72 )  <$2, 7 6 ) ^ 6 ) 77) <^7, 78) ^ 8 , 7 1 0 ) ^ 1 0 ,  ^ 1 ,  ^ 2 ,  ^ 3 ,  /^4) ^ 5 ,  » 1 ,  » 2 ,  » 3 ,  A i ,  A4 }  

Srfpa =  { 7 3 ) <$3 , » 1 3 ,  ß l 3 , 7 6 , ^ 6 ,  7 7 , ^ 7 , 7 8 , ^ 8 ,  » 1, » 2 , » 3 , A i ,  A4 } ,

S / p r  — { » 2 , /^2 , » 4 , /^4, » 6 ) /^6, » l , » 2 , » 3 ,  A i , A4} ,

s dpr =  { » 1 5 , /?15, » 16, /?16, » 1 7 ,  ß l 7 ,  » 18, /?18, <7i, (72 , 0 3 , A 1? A4 } ,

S / i d  =  { » 5 )  /?5, » 9 )  /?9, » 10) ßlO) » 11) /5l 1, » 12) /?12) A i ,  A4 } ,

S did  =  { 7 4 ) ^4 ) » 1 ) /^l) » 3 ) /?3 ) » 1 4 ) /^14) A i ,  A4 } .

The shared event set of each system, £ s. =  E; ft (U â I ^ ) ) ’ are as follows:

^ S f p a =  { 7 6 ,  ^ 6 )  7 7 ) ^ 7 )  7 8 ) ^ 8 )  »1) » 2 ,  » 3 ,  A i , A4 })

^ s dpa =  { 7 6 , ^ 6 ,  77, <^7, 7 8 , ^ 8 ,  » 1 , » 2 ,  » 3 ,  A i , A4} ,

‘~ ‘s f p r =  { » 1 , » 2 , <73, A i ,  A4 } ,

^  s d p r =  { » 1 , » 2 , » 3 , A i ,  A4 } ,

=  {  A i ,  A4 } ,

^ S d .d II

Since all the shared events are controllable, the mutual controllability conditions are verified 

trivially. For the shared-event-marking conditions, we mark all the states before the shared 

events. In addition, the conditions in Theorem 3.1 require that local specification languages 

should be L;)m-closed. We verify this by checking if Ei = E{ D Ll)m, where Ei is the specifi­

cation given on the plant G ;, and i is the index of the plant. Therefore, all the requirements in 

Theorem 3.1 are now satisfied. This guarantees that the concurrent actions of the decentralised 

supervisors achieve the same optimal behaviour as the centralised counterpart without blocking 

problems.
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7.4 Detergent Preparation Operation

The detergent preparation operation is the procedure for preparing the hot caustic detergent 

solution in the tank T_l. Figure 7.15 is a schematic diagram of the elementary components 

involved in this operation. The operation proceeds as follows: at the beginning of the operation,

V_1 (WO) V_2 (N /0)

WATER

Figure 7.15: Detergent Preparation operation.

each elementary component is in its initial state and T_1 is with full of water. The operation is 

started with opening the circulating route around T_l. This will be done by closing V_l, and 

opening V_3 and V_5. The cleaning solution is to be circulated around the tank T_1 by the 

pump P_2. To heat up the solution, steam is admitted to HE_1 by opening the steam inlet valve 

V-7. The controller C_1 will keep the steam outlet temperature under 80°C. The steam valve 

V_7 is to be closed if the level in T_1 is less than 3L or the circulation pump P_2 is turned off. 

The solution will be heated to about 75°C. Concentrated caustic solution is to be supplied to 

T_1 by the pump P_1. The caustic solution is mixed with the solution circulating around T_1. If 

the required caustic level in the detergent solution is reached, P_1 is stopped. Also, P_1 should 

be turned off if the level in T_1 is less than 3L or the circulation pump P_2 is stopped.
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Gcr V_l, V_3, V_5, P_2, LT_1, HT_1 Circulating the solution

G det
Gap

Ghc
Gcs LT_1, CS_1,P_1, P_2 Caustic dosing

Ghe LT_1, TP_1, V_7, C_l, P_2 Heating the solution

Gdnp V_2, V_4, V_6 , DV_2 Idle

Table 7.2: Partition table for detergent preparation

7.4.1 Decomposition of the Components in the Detergent Preparation

The number of components involved in the detergent preparation is 15. So, the number of 

states in DES model is still about 4.9 x 104 which is fairly big to analyse and to synthesise a 

centralised supervisor. Therefore, we partition the component DESs into subplants to reduce 

the number of states to a manageable size. The first decomposition is to divide the components 

into two groups: one group of components which actively participates in the detergent prepa­

ration (designated as Gap) and the other group which does not (Gdnp)• The plant Gap is further 

decomposed into the components involved in circulating the solution around the tank T_1 (Gcr) 

and those for the heating and caustic dosing (Ghc)• Finally, the plant Ghc is partitioned into 

the heating part (Ghe) and the caustic supplying part (Gcs). The partition table is presented in 

Table 7.2. Note that LT_1 and P.2 are shared components of Ghe* Gcs and Gcr.

In addition to the elementary components, like in the water-rinse operation, we introduce 

the synchronisation events, Ai, A2, A4, <7 4 , <7 5 . Now, the detergent preparation is operated as 

follows: after the synchronisation event Ai has occurred indicating the completion of water- 

rinse operation, appropriate valves in the detergent preparation operation are opened and then 

the circulation pump P_2 is turned on. The pump P_2 will be turned off when the synchroni­

sation event <r4 (indicating that the caustic level in the detergent solution reaches a set value) 

and <75 (indicating that the right temperature is reached) occur. The synchronisation event A2 

indicates the completion of the detergent preparation. The event A4 signals that one cycle of 

the CIP process for the tank T_2 has completed.
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7.4.2 Modelling and Synthesis for Gap

The plant Gap consists of the subplants Gcr and Ghe* and the latter comprises of Gcs and Ghe- 

The subplant Gcr consists of the elementary components for the circulation of the detergent 

solution around the tank T_1. The subplant Gcs comprises of those components for dosing 

concentrated caustic solution, while Ghe consists of those components for heating the solution. 

The DES ‘flag’ including the synchronisation events are presented in Figure 7.16.

al ß/ otj ß3 
«5 ß5 Y;52

Figure 7.16: synchronisation flags for Gap

Figure 7.16 (a) represents the following: after the water rinse operation has finished (Ai), 

the valve V_1 is closed (ß\), and V_3 and V_5 are opened (c*3, <25). Then the pump P_2 is turned 

on (72). After the caustic level is ready (<r4) and the detergent temperature is ready (<75), all 

the valves and pump are allowed to return to their initial states (ari, ß3, /?5, <$2). The detergent 

preparation is completed with occurrence of the event A2. This is followed by the completion 

of the CIP process (A4). Figure 7.16 (b) and (c) are interpreted similarly. When the pump P_2 

is on (72), the events <j 4 (in (b)) and 05 (in (c)) are permitted to occur. Like in Water rinse 

process, the selfloops after the event A2 and before A4 are necessary to allow for those events 

to occur in the other subprocesses.
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The automata shown in Figure 7.17 represent three physical constraints of G cr. Fig­

ure 7.17 (a) represents that the level of the tank T_1 can only be increased after the feed valve 

V_3 has been opened and can only be decreased after the drain valve V_5 has been opened. 

Figure 7.17 (b) represents that the level of T_1 can be increased only after P_2 has been turned 

off. The DES for the physical constraint between the low level and the high level sensors of 

T_1 is given in Figure 7.17 (c). Four physical constraints are identified for the subplant Ghc

Figure 7.17: Physical constraints of G cr

and given in Figure 7.18. Physical constraint represented in Figure 7.18(a) says that the level 

of T_1 can be increased only after P_2 has been turned on. The constraints modelled as the au­

tomata shown in Figure 7.18 (b), (c) and (d) are similar to (a) except that (b) is for the caustic 

level, and (c) and (d) are for the temperature of the solution. The plant G cs requires (a) and (b), 

while Ghe needs (a), (c) and (d). Note that the level increase of the tank T_1 by caustic supply 

is minimal and thus is ignored.

The DES G cr, G cs and Ghe are computed using the synchronous compositions. Their event 

sets are

£ cr =  {<*1, ß l, üf3, /?3, £*5, ß5, 72, <$2,0>i, 77i ,U72, 7/2, 04, 05, Alt A2, A4},

£ cs =  {Ti, ^1, 72, <$2, ^ 1, 7/1, CJ3, 773,04, <75, Al, A2, A4},

S / i e  =  { » 7 , ^ 7 , 7 2 ,  ^2,  ^ l , 7 7 l ,  075,7/5,  Cl ,  C2 , ^ 4 ,  ^5 ,  ^ 1 , ^ 2 ,  ^ 4 }-

Here, E he =  £ cs U E/^, E ap =  E cr U E ^ ,  and the shared events are E cs D E/^ =  E cr fl
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Figure 7.18: Physical constraints of Ghe (G cs and Ghe)

Ecs =  £ cr n  =  {72, <$2, c*7 , TU, Ai, cr4, <75, A2, A4}. The subplant G cr has 486 states with 

1668 transitions and G cs has 72 states with 314 transitions, while Ghe has 144 states with 754 

transitions.

The requirements for G cr (E cr) are as follows:

1. After the synchronisation event Ai (completion of the water rinse operation) has oc­

curred, close V_1 (/?i), and open V_3 and V_5 («3, <25). Then turn on P_2 (72).

2. If the level of T_1 is less than 3L (07 ), turn off P_2 (£2).

3. If the level is increased to more than 3L (771), turn on P_2 (72).

4. After both the synchronisation events <r4 (caustic level ready) and cr5 (temperature ready) 

have occurred, turn off P_2 (<$2).

5. Return all valves to their initial states(ai, ß3, f35). Then the detergent preparation opera­

tion is completed with the occurrence of the synchronisation event A2.

6. The selfloops at the initial state mean that the subplant G cr does not restrict the be­

haviours of the other subplants.

Formally, they are represented as an automaton given in Figure 7.19.

The requirements for G cs (E cs) are:
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selfloopl T\2 ©2}

Figure 7.19: Specification forG cr (Ecr)

1. After the synchronisation event Aihas occurred, tum on the circulation pump P_2 (72). 

Then turn on the caustic supplying pump P_1 (71).

2. During the operation, if P_2 is turned off (<$2) or the level of the tank T_1 is less than 3L 

(07), turn offP_l (Si).

3. If the caustic level is ‘ready’, turn off P_1 (#1) and send the signal 04 to the other plants.

4. Turn off P_2 (<$2) and finish the operation with the occurrence of the synchronisation 

event A2.

5. The selfloops at the initial state mean that the subplant G cs does not restrict the be­

haviours of the other subplants.

The DES model for these requirements is presented in Figure 7.20. Similarly, the specification
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for Ghe (Ehe) can be constructed and the DES model for the specifications is presented in 

Figure 7.21.

O a o .

All states are marked.

Figure 7.20: Specification for Gcs (Ecs)

The supervisors for Ecr, Ecs and Ehe are computed. The supervisor for Ecr has 44 states 

with 158 transitions and the supervisor for Ecs has 45 state with 109 transitions, while the 

supervisor for Ehe has 54 states with 138 transitions.
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selfloop{G4 }

All states are marked.

Figure 7.21: Specification for Ghe {Ehe)
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7.4.3 Modelling and Synthesis for Gdnp

The plant Gdnp consists of the elementary components that are required to remain at their initial 

states during the detergent preparation. The synchronisation events are included in the flags 

shown in Figure 7.22. The DES models for Gdnp are obtained by synchronous composition.

Figure 7.22: Synchronisation flag for Gdnp

The event set for Gdnp is

Srinp =  {C*2 , 02 , 04 , 06 , 018 , Al, ^ 2 , A4 }.

The plant Gdnp has 48 states with 240 transitions. Since the components of Gdnp are required to 

stay at their initial states during the detergent-preparation operation, the specification for Gdnp 

(Ednp) is to disable all the events at their initial states. The DES model of Ednp is presented in 

Figure 7.23. The supervisors for Ednp is computed and its size is 48 state with 208 transitions.

Figure 7.23: Specification for Gdnp (Ednp)
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7.4.4 Verification for Detergent Preparation Operation

The verification of the structural conditions described in Chapter 3 for the detergent preparation 

operation can proceed similarly as the case of the water-rinse operation.

Firstly, we show that each local specification is Ll)Tn-closed, i.e.,

E{ — E{ n

where E{ and L;jTn are the specification and the marked behaviour of a local plant G r e s p e c ­

tively. Here i is the index of the plant. The event sets are

£ Cr — {<*1? ß\t <*35 /?3 , <*5, /?5 , 7 2 i^2 ,k>li ^ l ,^ ,  ?/2i 0 4 , 0 5 , Ax, A2, A4},

E CS =  { 7 l l  ^ 1 , 7 2 ,  ^ 2 , ^ 1 ,  T /ll^ S l  ^3, 0 4 ,  0 5 ,  A t , A 2 , A4 } ,

Ehe =  { 0 ' 7 , / 5 7 , 7 2 i ^ 2 , ^ l i ^ l i ^ 5 , ^ 5 i C l i C 2 , ^ 4 i ^ 5 ,  Ax,  A 2 , A4 } ,

Ednp =  { q '2 i /?2 , » 4 , /^4, « 6 , /^6, « 18 , /^18 , Ax, A 2 , A4 } .

Then one has that the shared event sets of each system, £ s. =  E,- fl ((Jfĉ t- (£*))» are as follows:

E Scr — {72, 2̂l<̂ li l/li 0 4 , 0 5 , Ax, A 2 , A4 } ,

E s ca =  {72, <̂2 , ^ 1 , 7?1, 0 4 ,  0 5 ,  Ax, A2 , A4 } ,

^ s / , e =  {72, <$2 , ^ 1 , l / l ,  0 4 , 0 -5 , Ax, A2 , A4 } ,

Esdnp =  {Ax,A2,A4}.

Since all shared events are controllable, the mutual controllability conditions are verified triv­

ially. For the shared-event-marking condition, we mark all the states before the shared events.

7.5 Detergent-Rinse Operation

The detergent-rinse operation is similar to the water-rinse operation except that here the deter- 

gen. solution is sprayed instead of water. The control logic in water-rinse operation needs to 

be slightly changed to meet the requirements for this exception. If the level in the tank T_2 

exceeds 20L, the flow is diverted to T_1 by the valve V_2. When the lid of T_2 is opened, 

the detergent-rinse operation will respond in the same way as the water-rinse operation. The 

effluent of the detergent solution in T_2 is returned to T_1. The supervisors for detergent-rinse 

ope*ation are synthesised similarly.
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7.6 Conclusions

In this chapter, we have shown an application of the theory of structural decentralised control 

of concurrent DES described in Chapter 3 to a CIP process for a small batch plant. The whole 

operation is firstly divided into four sequential operations and then in each operation further 

decomposition is carried out to reduce the number of states in the DES models of the plants and 

specifications. The modelling and the syntheses of supervisors for each operation are presented 

and the verifications of the conditions for each operation are also given.



Chapter 8

Conclusions and Future Works

In this thesis, within the framework of supervisory control theory, a structural decentralised 

control of DES and the related works are investigated. Firstly, we formulate a problem of 

structural decentralised control of concurrent DES. In particular, we consider the situation in 

which the global system is the synchronous composition of a number of subsystems with con­

trollable or uncontrollable shared events. Local requirements are specified on the subsystems, 

and for these requirements local supervisors are designed. We have established two structural 

conditions such that, for a set of local requirements, local design and control achieve the same 

behaviour as that by a global optimal supervisor. Unlike the work in [LW88a], we allow non­

prefix-closed local specifications and thus the question of blocking has been addressed. The 

first condition, the shared-event-marking condition, says that the states before the shared events 

in subsystems are required to be marked. The second condition, the mutual controllability con­

dition, is interpreted as that a subsystem needs to track any uncontrollable shared event that 

could occur in the other subsystem. We have pointed out that the conditions are sufficient 

to achieve the distributivity of the control synthesis operator k over synchronous composition. 

Also, since the conditions are dependent on the system structure not on each specification, once 

the conditions are established, decentralised control is achieved for a set of Ll)Tn-closed local 

specifications. The main advantages of this approach are: by achieving these two structural 

conditions there may be an exponential savings of the computational efforts involved, while 

it still offers the same optimal behaviour as that would be obtained by a centralised control;

163
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once a system structure has been verified, it can be used for a number of tasks without further 

checking. In Chapter 4, we have shown that a coordination scheme can be used to solve some 

rescheduling problems among local plants under structural conditions similar to the ones in 

Chapter 3. Again we have pointed out that since the conditions are structural, once the coordi­

nation architecture has been established, it can be used for different tasks. This approach may 

be useful for a plant which produces several products from a number of materials as shown in 

the example in Section 4.3. For the systems which do not satisfy the structural conditions, we 

have developed procedures to arrange the system structure (Chapter 5). Also, since we have 

found that in some situation, the shared-event-marking condition may be too stringent, we have 

investigated two possible ways to weaken the condition using the concepts of bisimulation and 

observer (Chapter 6). In Chapter 7, to illustrate our result, we consider a Cleaning-In-Process 

of a batch chemical process. Using our results, decentralised controllers of three subopera­

tions, Water-Rinse, Detergent Preparation and Detergent-Rinse, are synthesised. Finally, in 

Appendix, as a result which is not related to the main subject of this thesis, we have developed 

a new non-linear approach to the design of model reference adaptive control scheme using a 

non-Euclidean gradient descent algorithm with respect to a Riemannian metric.

In summary, we have achieved the following in this thesis:

1. we have obtained structural properties to guarantee the distributivity of the control oper­

ator k  over synchronous composition (Chapter 3).

2. Using a coordination scheme, we have solved some rescheduling problems under the 

structural conditions (Chapter 4).

3. We have developed procedures to modify the system structure to arrange for the desired 

structural conditions (Chapter 5).

4. We have investigated ways to weaken the shared-event-marking condition (Chapter 6).

In the rest of this chapter, we give some areas for possible future research.

Extending to a more general structure
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One possible direction of future research is to extend this result to more general structures. As 

mentioned in Chapter 3, the overall system G is the synchronous composition of subsystems 

as studied in [WH91]. Our conditions are obtained for this special structure. It would be useful 

to investigate whether our conditions can be extended to more general structures as in [LW88a], 

where the local systems are constructed by natural projections from a given global system, and 

this global system may not be a synchronous composition of the local systems. In addition, 

one may consider the situation in which the control status of shared events among subsystems 

is not the same.

Relaxation of the conditions

In Chapter 6, we have investigated methods to weaken the shared-event-marking condition. 

However, the new conditions are no longer structural. So it may be useful to investigate ways 

to weaken the condition while the structural property is maintained.

Building a better structure

Intuitively, the arrangement of a structural condition may mean building a better structure be­

fore one designs a controller. So, as an extension of our results in this thesis, it is useful to 

investigate this idea. For example, consider two systems as shown in Figure 8.1(a). The two 

systems are required to be synchronised at some stage. The states <712, 913,922 and <723 are 

marked for the shared-event-marking condition. However, we have a situation that a string 

ßiß3 in G i occurs while a string 7274 in G 2 occurs. In this situation, since we mark the states 

<7i2 and <723* we can consider that they are not blocking (i.e., both systems reach a marked 

states). However, strictly speaking it may be blocking since both systems do not have syn­

chronisation. If one could use shared events 07 and a2 as communications between two plants 

(Figure 8.1(b)), this problem can be solved. How to formalise this idea mathematically requires 

more study.



166 8. CONCLUSION AND FUTURE WORKS

G ,  } G 2 j

t i l t
(b)

Figure 8.1: An example for building a better structure
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Appendix A

Model Reference Adaptive Control Using Non-Euclidean

Gradient Descent

Abstract

In this appendix, a non-linear approach to the design of model reference adaptive control is 

presented. The approach is demonstrated by a case study of a simple single-pole and no zero, 

linear, discrete-time plant. The essence of the idea is to generate a full non-linear model of the 

plant dynamics and the parameter adaptation dynamics as a gradient descent algorithm with 

respect to a Riemannian metric. It is shown how a Riemannian metric can be chosen so that 

the modelled plant dynamics do in fact match the true plant dynamics. The performance of the 

proposed scheme is compared to a traditional model reference adaptive control scheme using 

the classical sensitivity derivatives (Euclidean gradients) for the descent algorithm.

KEY WORDS: Adaptive control; Discrete-time system; Riemannian geometry

A.l Introduction

Model reference adaptive control (MRAC) is one of the main approaches to the adaptive control 

of servo systems. Model reference adaptive control (MRAC) scheme has been attractive from 

the beginning of the adaptive control era because it is simple in practical implementation and 

does not require plant identification. In MRAC, the desired performance of a closed-loop 

system is specified in terms of a reference model and the controller parameters are adjusted to 

minimise a given error function.

Historically, the MIT rule [OWK61] was the parameter adaptation mechanism used for the 

first published application of MRAC. In this case, the control parameters are updated accord­

ing to a continuous-time ordinary differential equation (ODE) generated by setting the time 

derivatives of the parameter equal to the negative gradient of a performance index. The per-
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formance index used was the integral square of the response error, the difference between the 

actual closed-loop system output and the reference model output. This gradient is commonly 

known as the sensitivity derivative of the system. To balance between system stability and the 

adaptation speed, an adaptation gain is introduced into the control parameter ODE. This adap­

tation gain plays a crucial role in system stability, ensuring that the dynamics induced in the 

controller by the adaptation rule do not interfere with the system dynamics. Unfortunately, it is 

usually not possible a priori to choose a suitable value for the adaptation gain. Consequently, 

the MIT rule for the adaptation of control parameters suffers from a fundamental stability prob­

lem [Par66, HP73, str83].

Among many subsequent approaches to adaptive control, the schemes that retain the clos­

est resemblance to the MIT rule are those based on using the Lyapunov stability method 

[Par66, SB65]. These designs have the advantage that they take into consideration the com­

bined system and parameter adaptation dynamics and design a controller to guarantee stability 

of the full system [Lan79, NA89]. (A recent overview of design procedures is given in [sW95, 

Chapter 5].) However, it has proved difficult to generate valid Lyapunov functions for the full 

system dynamics, and the classical Lyapunov design relies on the assumption that the adap­

tation dynamics does not evolve quickly compared to the system dynamics. Once again the 

gain of the adaptation dynamics plays a crucial role in determining system stability. To provide 

an estimate of when MRAC systems designed using Lyapunov techniques are practical, sev­

eral authors [KAM87, ABJ+86] have used the averaging theory to produce rigorous stability 

results.

Classical adaptive control designs were based around linear design techniques. However, 

works in the late eighties [MB86, MB88, GY88] showed that highly non-linear and even 

chaotic behaviour can result from relatively simple adaptive control schemes. This perspective 

has lead some people to view the adaptive control design as a fully non-linear design problem. 

Authors [KKK92, KKK94, KKK95, JP96] have made some advances in explicit non-linear 

adaptive control design methodology. However, much of this design methodology is still based 

around Lyapunov concepts. A fundamental limitation of Lyapunov theory is the difficulty of 

finding a suitable Lyapunov function for a given system.
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In this appendix, we present a non-linear approach to the design of model reference adap­

tive control schemes for linear systems. In our approach, we begin with a full non-linear system 

model, combining the non-linear parameter adaptation dynamics and the linear plant dynamics 

as a gradient descent algorithm with respect to a general Riemannian metric. At each step, 

the Riemannian metric is chosen so that the modelled plant dynamics does in fact match the 

true plant dynamics. Once the Riemannian metric is fully specified, the adaptation dynamics 

is uniquely defined. In this way, the adaptation dynamics induced in the adjustable parameters 

incorporates the knowledge of the true plant dynamics.

An advantage of the proposed design procedure is that the adaptation gain no longer plays 

a role in the adaptive mechanism. Adaptation gain requires to balance between the system 

stability and the adaptation speed. Since there is no knowledge about the size of this gain, 

we usually force to choose smaller gain than would be desired. As a consequence, classical 

adaptation schemes generally result in slow adaptation of the closed-loop systems. Conversely, 

the proposed scheme achieves fast convergence of the adaptive parameters by subsuming the 

adaptation gain into the Riemannian metric and incorporating knowledge of the plant dynamics 

in the adaptation rule.

The design procedure is demonstrated by a case study of a simple single-pole, strictly 

proper, discrete-time plant. Since our aim in this appendix is to study a new adaptation law in a 

simple situation, we make a number of strong assumptions on plant structure. We assume that 

the system is a deterministic model with no noise. The reference signal is taken to be a step 

function and the plant and the reference model are both strictly stable. In addition we assume 

that the high frequency gains of plant and reference model have the same sign.

This appendix consists of seven sections including the introduction. Section A.2 describes 

the explicit formulation of the MRAC scheme considered. In Section A.3, a classical Euclidean 

gradient adaptation scheme using the MIT rule is reviewed. Section A.4 shows how to form 

a non-linear adaptive system from the combination of parameter adaptation dynamics and the 

plant dynamics in the form of a non-Euclidean gradient descent algorithm. In Section A.5, 

the problem of finding a positive definite matrix which defines the Riemannian metric required 

for the adaptive law is presented as a semi-definite programming problem. In Section A.6, the
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performance of the proposed MRAC scheme is compared to a classical MRAC scheme. Sec­

tion A.7 reviews the contribution and outlines the advantages and limitations of the proposed 

scheme.

A.2 Problem Formulation

In this section, a MRAC system for a simple linear plant is presented. Controller design is done 

on the assumption that the plant to be controlled has a single pole and no zero, and is a linear, 

stable, discrete-time system. The classical approach to MRAC in the discrete-time domain is 

shown in Figure A.l. The performance specifications are given in terms of a reference model, 

G, along with the reference input signal, r(k).  Based on an estimate of the plant parameters, 

the certainty equivalence principle is used to design a feedback controller, C.  The parameters 

are updated at each time instance k, according to the mismatch error, e{k), between the actual 

closed-loop system output, y(k),  and the reference model output, y(k).

Figure A.l: System block diagram

In this work, the system considered is a deterministic model with no noise. The reference 

signal, r(k),  is taken to be a step function. As a result, the adaptation algorithm is not per­

sistently excited and the consequence of this choice is discussed in later analysis. In addition, 

we assume that the plant and the reference model are both strictly-stable first order plants with 

relative degree one. It is assumed that the sign of the high frequency gain of the plant is known
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and is the same as that of the reference model.

The discrete-time plant, G,  to be controlled and the reference model, G , representing the 

control objective are given by

hz  ̂ — bz ^
G(z ) =  — ----- r , G{z) = — -----r ,

v 1 1 +  az~l ’ v ' l + ä z - 1 ’
(A .l)

where, a, 6, a, b £ M are the unknown plant parameters and the reference model parameters 

respectively.

Equivalently, the difference equations for the closed-loop system output and the reference 

model output are

y(k) = b[r(k -  1) +  u(k -  1)] -  ay(k -  1) , (A.2)

and

y(k ) =  br{k — 1) — ay(k — 1) . (A.3)

The controller design is based on a simple pole/zero placement technique using the cer­

tainty equivalence principle; the closed-loop transfer function of the true plant is

y(z)  = G(z)
[ /  -  G(z)C(z)}

R(z ) , (A.4)

where C(z)  is the controller. Using the certainty equivalence to replace the plant G(z)  in 

Eq. A.4 with an estimates, G(z ), and solving for C(z)  yields

C(*) =
(6 — 6) +  (ab — ab)z 1 

bbz~ 1
(A.5)

where a, b € M are the estimates of the unknown plant parameters.

A consequence of the simple design method used in here is that the controller C(z)  is non- 

causal. Since such a control strategy is impossible to apply in practice, it is necessary to modify 

Eq. A.5 to yield a causal controller. The option taken is to include a stable, low-pass filter of 

relative order 1 in the feedback loop

= 0 ^  • <A-6>
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where 0 < 7 < 1. Thus, the difference equation of the final control action is

(1 - 7 )u(k — 1) =  7 u(k — 2) +
b b k - i

+{äk- ib -  abk-i)y(k  -  2)

(b -  bk- i ) y (k  -  1)

(A.7)

Remark A.l The low-pass filter, Eq. A.6, can be interpreted in two ways. Firstly, since the 

filter has relative order 1, the overall relative order of the controller is zero and the control 

law can be implemented as a causal operator. Secondly, and perhaps more importantly, the 

designed controller C(z)  of Eq. A.5 is a PD (Proportional Derivative) controller. This is evident 

by rewriting Eq. A.5 in the form

C(z) = U - b ) ( z -  D + f l - f r  +  Cf i *- 6* ) . 
bb bb

Such controllers are highly susceptible to high frequency noise due to the derivative operation. 

In practice, the derivative operator is usually combined with a low-pass filter to ensure good 

behaviour. This is exactly the form of the new control action M(z)C(z) .  Even though the 

original control action generated by C(z)  is modified by the low-pass filter M(z) ,  the control 

action from M (z)C{z ) still results in the same steady-state behaviour as C{z).  O

A.3 Classical Euclidean Gradient Descent Adaptation Scheme

In this section, a brief review of the MIT rule of the adaptive control is given in the context 

of the model considered. We refer to this adaptation rule as a Euclidean gradient adaptation 

scheme.

The key principle of MRAC design is to use an error, in this work the output mismatch 

error,

e(k) := y{k) -  y(k) , (A.8)

to measure the performance of the adaptive algorithm. Consider taking a cost function,
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where Ök- 1 =  (dfc_i, 6^_i) 6 M2 is the vector of parameter estimates at time k — 1. This cost 

function is used in the MIT rule of the original MRAC scheme [OWK61], [sW95, chapter 5].

The mismatch error e(k) is obtained from Eq.’s A.2 and A.3. Explicitly, writing e(k) to 

display its dependence on the parameters, ak- i ,  bk-u yields

e(k) =  br(k — 1) — ay(k — 1) — 6 r(k — 1) +  7 u(k — 2) +  —L- ^
bbk-i

+ {ak- \b -  äbk- i ) y ( k  -  2)

(6 -  bk- l )y(k -  1) 

+  ay{k — 1) . (A. 10)

Note that u(k -  2), y(k -  1) and y(k -  2) are independent from the (k -  l ) ’th parameters, 

b ' k — i  i b k — l  •

The partial derivatives of e(k) with respect to ak- i  and bk- 1 are

de(k) b
dak- i  
de(k) 
dbk-1 bk- l  bk_i

(1 -  7 )y(k -  2) ,

y{k -  1) +  ak- i y ( k  -  2)

bk-1 
b ( I - 7 )

The adaptation mechanism for the parameter estimates vector is given by the discrete-time 

gradient descent algorithm;

Ok = Ok- 1  -  Skd^(Ok-i)
dOk-i

=  O k - 1 -  Sfce(fc)
<9e(fc)

0 ? f c V
(A.l 1)

where

&■(*) /  I f S  )  (  -(1  -  T)y(* -  2) \
9^k~1 V  /  \  ^ t 1 - ' ! ' ) [ » ( *  -  1 )  +  O f c - i < / ( f c  -  2 ) ]  y  * * - i  ’

and Sfc is the adaptation gain. This algorithm is just a discrete-time version of the MIT rule 

[sW95, Chapter 5].

Remark A.2 Since the true plant parameters a and b are unknown, some approximations are 

required to compute the gradient in practice. In the adaptive scheme, the model estimates d^-i 

and 6fc_i are used to replace the unknown plant parameters a and b respectively. Also, to have 

the correct sign of the adaptation gain sk, the sign of the high frequency gain of plant b is used 

and the term “sign(^A-)” is substituted “r —̂ □Ofc-l bk_i
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Since an under exciting input reference signal is considered and the goal in MRAC systems 

is simply to force the error, e(k) =  y(k) — y(k),  to converge to zero, it is not necessary that the 

adjustable parameter values o, 6, should converge to the true plant parameters a, 6, respectively. 

Rather, it is expected there is a whole set of the possible parameters (a, 6) for which the error, 

e(k) =  0. By assuming asymptotic convergence of the adaptive parameters to this set and then 

analysing the closed-loop difference equations, one finds the explicit equation for this set to be 

(a +  l )bk-i  -  äk- ib - 6  =  0.

The line defined by the above equation is termed as I/O behaviour line. It should be mentioned 

that since e(k) =  0 in the steady-state with (a, 6) parameters on the I/O behaviour line, the 

adaptation dynamics are also zero. Thus, for a single step change in the reference input, the 

system should settle back into steady-state behaviour with constant controller coefficient after 

a short transient period.

Intuitively, it is expected that the adaptation gain sk in Eq. A.l 1 has a significant effect on 

the parameter convergence rate, i.e. parameters will converge to I/O behaviour line slowly for 

small Sfc and quickly for large Sk. In practice, however, for large Sk the adaptation behaviour 

becomes unpredictable and for small sk convergence becomes sluggish. This observation is 

not conclusive evidence of the inadequacy of the scheme under normal operating conditions, 

but does tend to reduce confidence in the method.

Practically, MRAC schemes are used when there is a time-scale separation between the 

plant dynamics and the adaptive dynamics. Thus, the non-linearities introduced by the coupling 

of adaptation and plant dynamics are negligible, and the gradient, Eq. A. 12, maintains the 

properties expected in gradient descent algorithms. This requirement tends to force a choice of 

adaptation gain, s*, smaller than would be desired and results in closed-loop systems with very 

slow transient behaviour. To overcome this difficulty, it is necessary to design the adaptation 

dynamics to incorporate knowledge of the true plant dynamics.
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A.4 Non-Euclidean Gradient Descent Adaptation Scheme

In this section, a non-linear approach to the design of the adaptation algorithm in MRAC 

scheme is presented. In the proposed approach, the state of the plant is combined with the 

parameter adaptation dynamics to form a state for the full non-linear system. Taking the gra­

dient of the cost function $ , Eq. A.9, with respect to a Riemannian metric, a gradient descent 

algorithm on the full non-linear state is induced. At each step, the Riemannian metric is chosen 

so that the modelled plant dynamics do in fact match the true plant dynamics. Once the Rie­

mannian metric is fully specified, the adaptation dynamics are uniquely defined. In this way, 

the adaptation dynamics induced in the adjustable parameters incorporate the knowledge of the 

true plant dynamics. General background on Riemannian geometry can be found in [HM94, 

Appendix C.10]

The full state of the system given in Fig. 1 is defined to be

* y(k)  ^

& := «fc
\  h  /

(A. 13)

Note that the state of the adjustable parameter estimates vector Ok =  (a*, bk) in the classi­

cal MRAC scheme is M2 while the state of parameter vector in the proposed scheme is M3. 

The y{k) state added in the proposed scheme is just the state of the linear system dynamics.

The cost function is the same as used in Eq. A.9. However, now it is considered as a cost 

on the full state space $  : M3 — > M,

$(& _!) := ^e(fc)2 , (A. 14)

where e{k) is given by Eq. A.8 and £k-i  is the full state of the system at time instance 

k -  1.

To define the non-Euclidean gradient vector of $(£fc-i)> a Riemannian metric is introduced 

in M3. A Riemannian metric is a bilinear, positive definite map for each £k-i  G M3,
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which varies smoothly with £k-i- For 77 , v £ M3, tangent vectors of M3 at 1, then

{{l , v))ih_x := Qik_x £ M3x3 , (A. 15)

where =  Qj k l  > 0 (positive definite) and 1 t denotes the inverse of Q^k_r

Let D<h(£fc_i) denote the vector of partial differentials of $(£*:-1) with respect to the full 

state, i.e.

D$(&-i) =

(  a*(a-i) \
d y ( k - l )  

d*(tk-i)
d a k_ x

\  dbk_,  J
The gradient of $(£fc-i), denoted g r a d ^ ^ - i ) ,  with respect to the choice of a Riemannian 

metric is uniquely generated as the solution of [dC92, page 83]

« X  , g r a d =  X tD *(& -i )

Solving Eq. A. 16 yields

g ra d $ (^ _ i)  =  Qik_xD $(£fc_i) . 

Note that Q^k_l is dependent on the states ^ - 1  •

(A. 16)

(A. 17)

Remark A.3 As long as Q(k_l is positive definite, then instantaneously, the cost $ ( ^ - 1) is 

decreasing. This becomes clearer if a continuous-time adaptation law is studied. Consider the 

continuous-time gradient descent adaptation law

£{t) = —grad$(£ (f)),

then, the directional derivative of the cost <f> in the direction of flow of £(£) is
J

4> =  — $(£(£)) =  -D $ (£ ( t ) )T mrGQ  =  —(grad$, grad4>) =  - ||g ra d $ | | 2 < 0 . (A.18)

Thus, the control parameters a(£), &(£), must evolve such that the cost $(£(£)) is decreased. 

Of course, it is necessary to ensure that y(t) evolves to match the true dynamics of the plant by 

utilising the freedom of choice in Q^m.  This is a difficult problem in itself and in this work we 

consider discrete-time plants and present a method of determining a suitable positive definite 

matrix Q^k-1. □
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The explicit equations for the entries of D<f>(£fc_i) are computed as partial derivatives of 

the difference equation for e(k), Eq. A.10, with respect to the (k -  l ) ’th parameters y(k — 

1), a /c-i, bk-1, respectively. The second and the third entries of D $ (^ _ i)  are obtained using 

Eq. A. 12. For the additional state, the partial differentiation of the cost function $(£/._ i) with 

respect to y(k — 1), ^k-if , recluired. One has,

* * ( f e - i )  JL) 9e(k)
dy(k-l) [ ' d y ( k - l ) '

where

de(k) 
dy{k -  1)

f o f c - i

b )(! — T)
6

bk-1

As described in Section A.2, the model estimates d^-i and bk~\ can be substituted for the 

unknown plant parameters a and b respectively. Also, the sign of the high frequency gain of 

plant b is known, yielding

d*(£k- i )
dy{k  -  1) =  e(k) sign(^y-)ak- i  -  (1 -  ^ p - ) ( l  ~ 7 ) ] s ig n ( ^ - )bk-]

bk-]
(A. 19)

The gradient descent algorithm induced by Eq. A. 17 is simply

=  €k-1 -  -Sfcgrad$(^-i) =  €k-1 -  SkQu- i^®(€k- i )  , (A.20)

where Sk is the adaptation gain.

Note that since the only constraint on Q$k_1 at this stage is that Q^k_i is positive definite, 

then, without loss of generality one can write

skQ(,k_l — Q itt _ i  •

The gradient descent algorithm becomes

& = i k - 1 -  Q^- iD^fe- l )  ,

with unit step size.

(A.21)

Remark A.4 One of the advantages of the proposed scheme is the fact that the adaptation 

gain size no longer plays a role in the scheme. This is significant because, as mentioned in
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Section A.3, the adaptation gain sk affects the convergence rate of the adjustable parameters 

and in turn, the stability of the system. Instead of guessing the size of sk to keep the system 

stable, the adaptation speed is automatically considered in the calculation procedure of the 

positive definite matrix Q^k_1 by incorporating the true plant dynamics. This guarantees fast 

convergence. □

Remark A.5 A disadvantage of the proposed scheme (cf. Eq. A.21) is that there is no a priori 

guarantee that the cost $ (^ + i)  < ${€k)- Recalling that for the continuous-time adaptation 

rule, Eq. A. 18, one has 4> < 0. For sk sufficiently small in Eq. A.20, an equivalent result 

should hold. However, the necessity of subsuming Sk into Q$k_l leads to potential stability 

problems. Understanding this issue is an area of ongoing research. □

Consider the dynamics induced in the state y(k) by Eq. A.21. These dynamics can be 

written

y{k) = y(k  -  1) -  E j Qik_xD $(£fc- i)  , (A.22)

where E\  E jK.3 is the unit vector with a one in the first entry. Given that y{k) and y{k — 1 ) are 

measured directly from the plant output, then Eq. A.22 generates a linear constraint on Q(k_l

Ei Q(k_,D$(£,t_i) =  y(k -  1) -  y(k) . (A.23)

As long as Q(k_l satisfies Eq. A.23, the first entry of the induced gradient dynamics in 

Eq. A.21 exactly replicate the true plant dynamics.

This leads to an optimisation problem that lies at the heart of the proposed scheme.

Problem A.l At each time instance k, find a matrix Q(k_1 which depends smoothly on £k-i> 

satisfying

1. Qtk_x > 0 and Q^k_x = Qjk_l (Positive definite).

2. E iQ tk_1 D<I>(£jfc-i) =  y(k — 1) — y(k) (Linearconstraint)

and such that the closed-loop system shows desirable behaviour. □



APPENDIX 191

Remark A.6 Requirements 1 and 2 of Problem A.l are the practical requirements that ensure 

the gradient descent algorithm replicates the true plant dynamics and displays gradient charac­

teristics. These constraints, however, leave a great deal of leeway in choosing Q(k_l to ensure 

the closed-loop system shows desirable behaviour. □

A.5 Determination of an Optimal Positive Definite Matrix

In this section, a specific approach to solve the optimisation problem, Problem A.l, is pre­

sented. The approach relies on choosing Q(k_x to minimise a one-step-ahead estimate of the 

cost $  of Eq. A. 14.

A natural approach to finding Qt>k_l is to generate a one-step-ahead estimate of the output, 

ye(k +  1), based on a particular Q^k_x and then minimise the cost ||ye(k +  1) — y{k +  1)||2 

subject to the requirements of Problem A.l. Ensuring that Q(k_x satisfies Eq. A.23 should not 

be difficult as this is simply a linear constraint on symmetric matrix space. Dealing with the 

positive definite constraint forces one into the realm of semi-definite programming. Following 

the lead of recent development of semi-definite programming [VB96], we introduce the cost 

function

( % _ i)  = IIye(k +  !) “  y(k + i)!!2 — €ln(det(Q |fc l ) ) , (A.24)

where ye(k +  1) is one-step-ahead estimation of output y(k +  1) and Q^  i is the estimate of 

Qtk_x. Here, det(Q |fc i) is the determinant of the matrix and y(k  -1- 1) is the output of

the reference model which can be easily obtained from Eq. A.3.

Remark A.7 The first term in Eq. A.24 is the desired quadratic cost term while the second 

term is a self-concordant barrier function [NN94][VB96] added to ensure the minimum of 

(Qlk- 1 ) always l'es set °f positive definite matrices. By choosing e sufficiently 

small, the influence of the barrier function on the quadratic cost function is negligible except 

in the neighbourhood of the boundary of positive definite matrices. □

When Q^k_x needs to be determined, the current and the previous value of output y(k) 

y(k  — 1), reference model output y(k), y(k -  1), input r(fc), r(k -  1), and error e(k) as well as
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the previous values of control action u(k — 1) and the adjustable parameter vector d^_i, bk_i 

are known. In addition, the derivative of the cost, D $ (^ _ i) ,  is also available.

The one-step-ahead output estimation ye(k +  1) is obtained using the one-step-ahead esti­

mation of control action to the system, ue(k),

ye{k +  1) =  bk(üe(k) +  r(k)) -  äky(k ) . (A.25)

The control action iie(k) is generated from the difference equation for the control, 

Eq. A.7,

(1 - 7 )ue(k) =  7 u(k — 1) + ( b - b ek)y(k) + ( ä t b - ä b t ) y ( k - l ) (A.26)

where aek and bek are the one-step-ahead estimates of model parameters based on the gradient 

descent algorithm generated from the Riemannian metric given by the matrix Q \k x > 0 . 

Equation A.21 yields

ä'fc =  äi _1 - f : 2TQ|jj_iD4>(6-i), (A.27)

and

H = bk. i - E l Q l _ l D $ ( & - i ) ,  (A.28)

where and £3  are the unit vectors with a one in the second and third entries respectively.

To solve Problem A. 1, we proceed by deriving a gradient descent algorithm on the set of 

positive definite matrices satisfying the constraints of the Problem A. 1. To find the gradient of 

1 (Qlk 1) ’ consider the Euclidean metric on the positive definite matrices,

(U, V) =  tr(UTV ) ,

where U = UT, V =  E T, U,V € Mnxn. This is just the metric on the positive definite 

matrices inherit as an open set of symmetric matrix space.

Using this metric along with the definition of gradient, Eq. A. 16, yields

(X .g r a d tf^ , ( Q ^ J )  = tr(ATgrad®L.1(QL_1)) =  D » ^ _ , ^  , (A.29)
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where D'P t k - i
€k-1

[X] is the directional derivatives of ]

point i . This is given by1

in direction X  evaluated at the

£ k - I QSk- 1
[X] = 2 (» '(*  +  1) -  y(fc +  1)) D ( f ( k  +  1) -  y(k  +  1 ))U  [X]

Wtk- \

-€ tr  X ' ( Q I J - 1)  -

or as only ye{k +  1) contains ^

Dvp£k-i
* k - l

[X] =  2 ( f ( k  +  1) -  y(k  +  1)) Dy’ (k +  1 )U  [X]
tk-1

- e t v ( x T ( Q l _ J - ' )  ■ (A.30)

Rewriting ye(k +  1) in terms of ak and bk, one has an explicit form for 

Dy e( k + l ) \ 0 e [X] as follows
V4fc-1

Dye(k + l)\Qe [XI =  D { i lMk  -  1) +  r  (k)) + ^ - ^ { ( 6  -  H ) S (*) 

+ ( ä |6 - ä 6 |) y ( f c - l ) } - ä t j i ( f c ) }  [X ].
€ k - l

As shown in Eq.’s A.27 and A.28, aek and bek are the only terms dependent on Qlt\ ^. Thus,

D » e ( *  +  l ) l g « t _ i  W  =  - E 3r A - D $ ( & _ 1 ) { 7 « ( f c - l )  +  r ( f c ) }

+  ̂ { £ 3TI » f o - i )j;(J)) +  { - l E j X  D $ ( ^ _ 0  

+ ä £ jX D $ (& _ 1)}y(fc -  1)} +  E2TX D $ fe _ 1)y(k),

or,

D f ( k + 1)|QL _ [X] =  i t r { x T{ D $ fe _ 1)ß3r  +  E3D $(?t . 1)T} } { - { 7 « ( k - l )

+r(fc)} +  V - ^ - { y ( k )  + äy(k -  1)}} + i t r { x r { D $ ( 6 - 1)B2T 

+ E 2D $ f e - 1)T}}{y(fc) -  (1 -  -  1)} ,

*D ln(det(Q|fc_1)) Iq. ^  [X] =tr(XT(Q |fc_1 ) ~ l [VB96, Page 70],
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where D < f > i )T is the transpose of D4>(£*._i ).

By substituting the above equation into Eq. A.30 and comparing with Eq. A.29, the gradient 

of the cost function is obtained explicitly,

grad1P|1_1 (Q(k_l) =  { r ( * + l ) - y ( f c + l ) } { [ D $ ( ? t - 1)ß 37’ + ß 3 D $ (6 -i)

+ [D $ fc _ ,)£-{■yu(k -  1) +  r(fc)} + — - ^  {;/(<:) +  ay(k -  1)}

+ £ 2D<I>(&-i )T] [y(k) -  (1 -  7 )y(k - 1)]} -  £(<&_,)-*. (A.31)

The gradient, grad'f^ i {Q\k x), gives the optimum descent direction of the cost

i ,) on set of symmetric matrices. Due to the barrier function, a steepest descent 

algorithm based on a descent direction, grad4>^ i (Q\k x), and initialised with a positive def­

inite matrix will never evolve outside the set of positive definite matrices. It is now necessary 

to ensure that the gradient descent direction also satisfies the linear constraint, Eq. A.23. This 

is achieved by projecting grad'P^ i (Q\k t) orthogonally onto the tangent space of the linear 

space, £(£fc_i) =  {Q\k l \ E j Q \ k_xD $ (^ - t)  = y ( k -  1) -  y(fc)}, to generate a constrained 

descent direction satisfying Eq. A.23.

The tangent space of the linear space £ ( ^ - i )  is

4 > f c * - i )  -

=  {XI E j X D H t k - ! )  0}. (A.32)

Taking the projection of grad^|fc i {Qlk_l ) onto T qc £(£*._t), one generates a 

constrained descent direction satisfying Eq. A.23. The projection operator is denoted

p £o& -i) : I r 3 x 3  — ► T g ^ / f e - t ) , 

and an explicit form for IP)£0(^_1) can be computed.

The final result required for an effective optimisation procedure to solve Problem A.l is 

an initial condition satisfying the constraints. An explicit method for calculating such a matrix 

is given in Appendix B.

To conclude this section, we give the optimisation procedure used to generate Q$k_l .



APPENDIX 195

Algorithm A .l Optimisation algorithm to determine Q k̂_l .

0 : Input the known output y(k), y(k — 1), reference model output y(k), y(k — 1), 

input r(k), r(k — 1), error e(k), control u(k — 1), and parameter estimates

Ok- 1  =  (äfc-i, bk-i) as well as the derivative of the cost D<b(£k-i) to

the algorithm.

1 : Generate the initial positive definite matrix (0) satisfying the linear 

constraint Eq. A.23 (See Appendix B.)

2 : Let e =  1 in Eq. A.24 and set j  =  0.

3 : Compute grad,J ^ _ i using Eq. A.31 and the projection IP)£0(̂ fc_1)(g r a d ^ fc_i ).

(The projection is taken to ensure the linear constraint (Eq. A.23) is satisfied.)

4 :  Compute a  j := mina>0 -  alp£o(^_i)(grad^ fc- i ) ^

(Use the MATLAB optimisation toolbox.)

5 :SetQ \k i (3 +  1) =

6 : Compute the projection Q ] (j +  1) =  P£(^fc_1)Q |fc_1 {j +  1), the orthogonal

projection onto C(£k-\) to compensate numerical error.

7: If j  is divisible by 5, let e =  10-1 e.

8 : If e =  10-8 goto 9. Else j  =  j  +  1, goto 3.

9 : Qtk- i  =  {j +  1); This matrix always satisfies the requirements of

Problem A.l.

□

Remark A.8 Note that the computational cost of calculating Qzk_l is significant. Simulations 

indicate that this calculation can be achieved in 2-3 seconds for the plant considered2. It is 

expected that by improving the computational efficiency of the optimisation algorithm, this 

computational cost can be significantly reduced. As a consequence, the authors expect that 

the proposed method should be applicable to most process control problems. In contrast, the 

computational complexity is likely to rule out applications in telecommunications. □

Calculations were done using the MATLAB optimisation toolbox on a Sun UltraSPARC I machine, clock speed

167 MHz.
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A.6 Simulation Results and Discussion

In this section, the results of simulations of both the classical and proposed model reference 

adaptive control systems are presented. The simulation indicates several desirable features of 

the proposed algorithm, though there are still unanswered questions in the application of this 

method, such as developing a full understanding of its stability properties. Simulations of nu­

merous examples have shown, however, that the proposed scheme displays good convergence 

properties.

For this simulation, the plant and reference model transfer functions were chosen to be

GW = r ■ GW =  T T 5 Ü  •
The initial condition for the model parameter estimates was chosen to be (a, 6) =

(0.4, —0.2), leading to an estimated transfer function;

GW = ■

As mentioned before, the choice of adaptation gain for the classical MRAC system is important. 

The tradeoff between the system stability and the parameter convergence speed was examined 

for various gain values. After several trials, a fixed adaptation gain — 0.2 for all time 

instance k has been chosen for this example. In both schemes, the cost function $  =  \e{k )2 is 

used. The value of 7 in the low-pass filter, Eq. A.6, was chosen to be 0.9.

A step input was used as the reference command input. Because of this, the parameter 

estimates need not to approach their true plant values, but should converge to the I/O behaviour 

line.

The simulation results are presented in Figures A.2 and A.3. In the figures of parameter 

estimates evolution, Figures A.2, the dotted line is the I/O behaviour line and the contour lines 

are closed-loop system stability measure lines. These contour lines enclose regions in param­

eter space where the largest absolute value of a pole of the closed-loop system is less than or 

equal to a marked contour value. In both the classical and proposed schemes, the convergence 

to the I/O behaviour line seems acceptable. However, the relative difference in performance is 

clearly shown in Figures A.3. Here, the log plot of error versus time is given and the extremely 

rapid asymptotic convergence of the proposed scheme is displayed. In the both schemes, the
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adaptation scheme is only initiated at time k=4 to avoid initialisation difficulties. The initial 

condition is chosen in an unstable region of parameter space and consequently, a short tran­

sient is observed in both schemes. Observe in Figure A.3(b) that immediately the parameter 

adjustment is initiated, the error is stabilised and quickly decreased. Conversely, in the classi­

cal MRAC scheme the small adaptation gain restricts the rate of adaptation, leading to a larger 

transient before convergence. Moreover, the adaptation gain also limits the asymptotic rate of 

the convergence. Note that increasing the magnitude of the adaptation gain for the classical 

scheme leads to stability problems.

A.7 Conclusion

In this appendix, we have developed a new non-linear approach to the design of adaptive control 

schemes based around the use of a non-Euclidean gradient descent algorithm with respect to 

a Riemannian metric. It is shown that how a Riemannian metric can be chosen so that the 

modelled plant dynamics do in fact match the true plant dynamics. Simulations show that the 

proposed scheme offers faster asymptotic convergence of parameters and more flexibility in 

the transient response of the closed-loop system. The key contributions are; the formulation 

of the gradient descent algorithm in such a way as to incorporate the true plant dynamics and 

the development of a criterion and method to determine suitable positive definite matrices for 

the adaptation mechanism. Simulations have shown that the parameter convergence of the 

proposed scheme is much faster than the classical MRAC scheme. Further work is required 

to investigate stability issues as well as the generalisation to continuous-time plants and more 

general system models.
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Parameter Estimates Evolution Parameter Estimates Evolution

initial cond.

a(estimate)

initial cond .'

a(estimate)

(a) the classical MRAC scheme (b) the proposed MRAC scheme

Figure A .2: Parameter estimates evolution plot

Time(sec) Time(sec)

(a) the classical MRAC scheme (b) the proposed MRAC scheme

Figure A.3: Error(y -  y ) plot
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Finding a feasible initial positive definite matrix

In this appendix, a systematic method for a calculating an initial positive definite matrix 

satisfying the constraints in Problem A.l is presented. This matrix is then used as the input for 

the Algorithm A.l in Section A.5.

A positive definite matrix can always be factored into the form

(0 ) = %-,PL,- (b-d
where Q^k_x (0) =  {Q(k_1 (0))T > 0 is an initial positive matrix required for Algorithm A.l 

and P?k_x G GL(n)  is a square root of Q^k_x (0).

Substituting Eq. B.l into the linear constraint Eq. A.23, one has

= v(* - ! )  -  ■
Assume that D<f>(£*:-i) ^  0 (that is e(k) ^  0), and define

g{k) =
II D S(& -i) II

and t(k) = y(k  -  1) -  y(k)
II D$fe-i) II

Then, one has

E i p tk- iP[k- M k) =  t (k ) , (B.2)

where g(k ) and E\  are both the unit length vectors, and all the scaling information is contained 

in t(k).

The development proceeds by thinking of P^ ( as a transformation on M3x3. Using the 

vector inner product (w, v) = uTv, where u, v E Mn, one has from Eq. B.2

f-L.sW) = *(*)• (B.3)

Consider the 2-dimensional subspace in M3 given by sp{P i, g(k)}.  An orthonormal basis 

for this subspace is provided by the vectors

TI, E\  +  g(k) E\  — g(k) o
Wi = t—----- and IT2 =  tttt----€ M3.Il î+̂ WII 11̂ 1 -*(*)ll

(B.4)

199
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Expressing E\ and g(k) as 2-dimensional vectors in this subspace, written in terms of the 

coordinates induced by the orthonormal vectors, W\ and W2 , one has

Here \\Ei\\ = 1 and ||g(A:)|| =  1 since E\ and g(k) lie in the span of W\ and W 2 .

Note that the two coordinate vectors W\ and W2 are chosen such that the vectors 

Ei and g(k) always lie symmetrically about the W2 axis in the right half plane of the 2-D 

subspace, spanned by W\ and W 2 (see Figure B.l). To preserve the intuition provided by this 

construction, it is necessary to be careful about the sign of t(k) in Eq. B.3.

1. case of t(k) > 0: In this case, the two vectors E\ and g(k) are in the right half plane. If 

the angle between two vectors E\ and g(k) is larger than a set value (in this case 7r/3) 

and less than 7r, a scaling matrix P^k_1 is chosen to premultiply E\  and g(k) which acts 

to reduce the angle. In the case that the angle is less than the set value, it is sufficient to 

choose P^k_1 =  I2 € M2x2. This is the case that Eq.B.2 can be satisfied by adjusting a 

scaling parameter 8 .̂ (cf. Eq. B .l6).

2. case of t(k) < 0: In this case, the intuition of reducing the angle between E\  and g(k) 

is not valid. Take E\  =  —E\ and t(k) = —t(k). This leaves Eq. B.3 valid, and returns 

the analysis to that discussed in case 1.

Remark B.l The choice of P^k_l to premultiply E\ and g(k) in case 1 can be thought of as 

tweaking the direction of gradient flow slightly by adjusting the metric to make sure that the 

sign of ( P j  Ei,  -P^_j</(&)) is the same as the sign of t(k). Once this is the case, then 

ensuring that Eq. B.3 is satisfied can be achieved by scaling P^k_l . □

Remark B.2 To complete the construction indicated above, it is necessary that 

Ei  7̂  ±g{k), or equivalently the angle between £ j and g(k) is neither 0 nor 7r. In practice, 

this seems never to occur. In the case that such a situation occur, the adaptation would be frozen 

for that time instance. □

(B.5)
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Figure B.l: Subspace given by sp{£a, g{k)}

The matrix P^k_x € M2x2 applied case 1 above is simply

l + ß  0 

0 1
Pzk-i =  ( 1 , where ß > - 1

To determine the unknown ß, consider computing the angle between PJk j E\  and 

Pjk t g (k) via the equation

(pL A ’PLm *)) = ™smpLA\\\\pL ,9 m  ■

Remark B.3 In this development, we do not explicitly fix 0, the desired angel between 

E\  and g(k). In practice, we have been choosing 9 = tt/3.

Observe that the symmetry of the construction (cf. Figure B.l) yields

Using this along with the symmetry of P^k_x, one has from Eq. B.7

E l P l _ J ( k )  =

or

(B.6)

(B.7)

□

(B.8)

(B.9)

E '[ P l _ l \ g ( k ) - E 1cas(9)] = 0. (B.10)
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To simplify the computation, let

Substituting Eq. B.6 and Eq. B. 11 into Eq. B. 10 yields

(B.l 1)

s i[ l  +  2ß +  ß 2][s\ -  si cos(0)] +  s2[ - s2 -  s2 cos(0)] =  0 .

Solving for ß  yields

ß =
■ 1 +  cos(0)'
. 1 — cos(0). ’

(B.12)

where the argument inside the square root can not be negative because of triangular relation­

ships.

Observe that s i and s2 are the orthogonal projections of E\  onto the axes W\  and W 2. 

Thus, one has from Eq. B.5 and Eq. B.l 1,

s l = w j E 1 = ( Wu E 1) =
[EJ  +  gT(fc)]g,

l|E i+ S (* )ll
1 4- {Ei^g{k))
Pi + sWII

and

«2 =  W I Bi =  (W2, E x) =
[EJ  -  gT (k)}E,

ll î -am
l -<Ei , g ( f c ) )
Pi-sWII '

Also, it is easily verified that

l|ß i +  9 (fc)||2 =  | |ß : ||2 +  ||<,(fc)l|2 +  2 Ej g(k)  = 2(1 +  (ßi,9(fc)>),

and

\\Ei -  9(fc)||2 =  l l ^ l l2 +  \\g(k)\\2 -  2Ej g(k)  = 2(1 -  (Eu g(k))).
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Therefore, from the above equations, the explicit expression for si and s2 are

s i =  \WE \ +  tfWII and s2 =  i | |^ i  -  g{k)\\. (B.13)

Choosing the positive square root of Eq. B. 12 ( so that ß  > - 1 )  yields an explicit value for

ß = - l  +
\ \E i -g (k ) \ \  / r l  +  cos(0)

\\Ei +9(k)\\ V Ll “ cos(<9)-1 

Thus, Pzk_l G M2x2 of Eq. B .6 is uniquely defined.

The matrix P%k_l £ M3x3 is now defined by

=<5t[ll3 -(^ i w2)
W 7  \ / \ ' j w{

1 +(m ^  p£t_ , 1

(B.14)

(B.15)

where I3 G M3x3 is the identity matrix and 5k is the scaling factor, <5̂ > 0 G M.

By construction, the matrix P f̂cl given by Eq. B.15 should satisfy Eq. B.2. Observe that 

when P^k_r is substituted into Eq. B.2 only the last term contributes to the inner product. Thus, 

Eq. B.2 becomes

S l E ß l V ,  W2) p ik_t
w ?

g(k) = t(k ) ,

where

S l i P i ^ E u  P L tff(*)) =  t(*h

W2) tk - 1

w ?

w j

Finally, solving for the scaling factor 5(k), one has

t(k)

K . ^ pL M k» '
(B.16)
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where the argument of the square root is strictly positive since (P^ i E \ , P^  ^{k) )  > 0 by 

construction and t (k) > 0  by choice (cf. case 2).

Thus, an initial positive definite matrix Qt>k_l (0) for input into the optimisation procedure, 

Algorithm A.l, is given by

(B.17)

where


