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Abstract 
Array processing techniques, such as beamforming, require accurate knowledge of the 

positions of the array's sensors. If the array's shape is not known accurately enough the array 

processor will be unable to estimate the signal parameters it was designed to. Towed arrays 

have omnidirectional sensors called hydrophones that are built into a thin flexible cylinder. The 

cylinder, drawn behind a towing vessel, is often assumed to have a linear shape. This assumption 

may not be true due to maneuvering of the tow vessel, ocean currents and hydrodynamic effects. 

To maintain the processor's performance under these conditions the array must be calibrated 

by regularly estimating its shape. 

In this thesis I investigate methods of towed-array calibration. The investigation includes a 

theoretical derivation of the necessary conditions for array calibration using signals, development 

of algorithms and a comparison of algorithms from the literature. 

I show the conditions necessary to determine the array and signal parameters using 

information only from impinging signals. This is a fundamental question of invertibility and 

applies to any type of array. I relate these results to the more specific problem of towed arrays 

which have additional geometric constraints on their shape. 

I describe three new algorithms for estimating the shape of towed arrays. Two of the 

algorithms use signal information only. The third algorithm uses a state-space representation 

of the array that combines signal and heading-sensor information, and uses a model of the 

dynamics of towed, flexible cylinders. 

I compare the accuracies of a selection of array calibrators from the literature. I explain 

assumptions, both explicit and implicit, made for each algorithm and, through computer 

simulations, determine how robust the algorithms are to variations in signal-source distribution 

and signal-to-noise ratio. The results of the simulations are used to investigate the sensitivities 

of the algorithms to the underlying assumptions. I analyse one of the algorithms, which is 

called sharpness, in greater detail and resolve conflicting reports on its effectiveness. Based on 

the analysis I give an improved, more robust sharpness function for towed arrays. 
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Chapter 1 Introduction 

Towed arrays have omnidirectional, underwater, acoustic sensors called hydrophones that 

are built into a thin, flexible cylinder. The cylinder is drawn behind a towing vessel, such 

as a ship or submarine. Towed arrays are used in seismology for mineral exploration and 

in passive sonar surveillance where it is desirable to detect another vessel without revealing 

the tow-vessel's own location. Array processors combine the signals from the hydrophones 

to estimate signal parameters such as direction of arrival (DOA), power, spectrum and range 

to the source. For a correctly calibrated array, the signal-to-noise ratio (SNR) improvement 

of the array over one of its sensors is proportional to the number of sensors in the array and 

the resolution and range-estimation accuracy improves with the length of the array. And so, 

because of the need for increased resolution and SNR, users demand longer arrays with more 

hydrophones. Towed arrays are now of the order of one kilometre in length. 

Towed arrays are often assumed to be linear when the tow vessel travels in a straight line. 

However, this assumption may not always be true due to ocean currents and hydrodynamic 

effects. A linear array is able to resolve the DOA angle relative to itself but an ambiguity exists 

as to where on the cone defined by that angle the signal source really is. If the signal source is 

assumed to lie on a plane the ambiguity becomes whether the signal source is on the left or the 

right side. This ambiguity is resolved by turning the tow vessel and noting in which direction 

the signal source has moved. During the turn the array will have a bend in it. At typical tow 

speeds of around 5 knots up to six minutes (for a one kilometre array) can elapse before the 

array regains its nominal, linear shape. 

Array processing techniques require accurate knowledge of the positions of the array 

sensors [Car79, Has84, Nie91]. Without sufficiently accurate sensor-position knowledge an 

array processor will be unable to estimate the signal parameters it was designed to. The 

sensitivity of an array processor to incorrect knowledge of the sensor locations depends on 

the complexity of the processor. For example, high resolution, eigenvector-based direction-of

arrival estimators [JD82, Pi189], range estimators [Hin79, Has84], and adaptive noise cancellers 

[Ows84b] are very sensitive to imperfect sensor-location knowledge. 

Ocean currents, hydrodynamic effects and tow-vessel maneuvering cause the assumption 

of array linearity to be invalid and will reduce the performance of array processing even to 

the point where no information about the impinging signals can be obtained. To retain the full 
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performance of the array processor and to allow processing to continue during a maneuver the 

locations of the hydrophones need to be estimated each time the array is to be processed. This 

is commonly called array calibration or array straightening. The term "array calibration" 

generally implies knowing the array's shape, gain characteristics of the hydrophones and 

amplifiers and properties of the propagating medium. In this thesis it is assumed that the 

gain characteristics of the sensors are known and that the propagating medium is uniform and 

lossless. And so, to calibrate a towed array we need estimate only its shape. Care needs to 

be taken when reading the literature on array calibration. For certain arrays it is implicit in 

the problem definition that the array shape is known accurately and calibration means knowing 

only the channel gains. Radio astronomy arrays are one example; the sensors are directional 

(unlike hydrophones which are omni-directional) and atmospheric disturbances cause unknown 

channel-related gains that are assumed to be independent of the signal-source distribution. TIlis 

definition of calibration is not applicable to towed arrays. 

One approach to towed-array calibration is to instrument the array with a number of heading 

and depth sensors. For mechanical and economical reasons the numbers of heading and depth 

sensors are often small which are not enough to infer the location of every hydrophone directly. 

Instead, the heading and depth sensors are used to estimate the coefficients of a low-order 

polynomial approximation of the array shape [Ows81, Ows84a]. The advantages of heading 

and depth sensors are that they provide shape information independently of external factors and 

they are accurate. Their accuracy is on the order of 10 and they have a slowly varying bias also 

on the order of 10 [Ows81]. The disadvantage of heading sensors is that they are expensive. 

A second approach to array calibration is to use redundant information in the impinging 

signals to estimate the array shape [GWR89, TN88, Wah93]. A typical signal-based calibrator 

uses phase- or time-delay information from calibrating signals and estimates the hydrophone 

locations by imposing geometric constraints. If the calibrating signals are the same ones whose 

parameters are to be estimated then this is known as self calibration. This thesis deals largely 

with self-calibration methods and in part with the combination of data from self calibrators 

and heading sensors. Signals used for self calibration of towed arrays are assumed to be 

uncooperative. That is , there is no control over their DOA or spectrum and they can't be turned 

on and off as desired. 

Array processors make use of correlations. The correlations are measured between pairs 

of sensors. The spatial separation between sensors is known as the baseline over which the 

correlation is measured. The correlations are functions of signal and noise parameters and 

spatial separation. Array processors estimate the signal parameters given the correlations as a 

function of separation (i.e. the known sensor positions). When the separations are unknown 
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a towed-array self calibrator estimates the sensor positions without knowledge of the signal 

parameters. Once the array has been calibrated the array processor then estimates the desired 

signal parameters. Estimating the sensor positions and signal parameters from the correlations 

is an inverse problem; i.e. knowing correlation as a function of separation, what is separation 

as a function of correlation? 

Inverse problems are notoriously difficult. Towed-array self calibration is akin to finding 

the discrete Fourier transform of a signal from discrete samples without knowing the times at 

which the samples were taken. From this description, it is not obvious that the correlation 

function will be invertible. A proof of the existence of the inverse and the conditions under 

which it does is the first topic of this thesis. 

However, the proof is necessary but not sufficient for practical applications. Although the 

correlation function is invertible, this does not indicate whether the inversion is well posed. A 

proof of invertibility is based on exact knowledge of the function (in our case, the correlations). 

In practice, the correlations are not known exactly and must be estimated in the presence of 

noise. Any algorithm that solves for the sensor and signal parameters will be sensitive, in some 

degree, to the noisy correlation estimates. An algorithm necessarily makes certain assumptions 

about the signals and noise. In practice the assumptions may not be entirely accurate. I discuss 

how sensitive an algorithm is to deviations from the assumed conditions and how robust it is 

to adverse conditions such as noisy correlation estimates. 

I mentioned two approaches to towed-array calibration: sensor based and signal based. A 

third possibility is to combine the two approaches. Combining sensor and signal information 

will result in more accurate calibration. Problems to be overcome with this approach include 

synchronising data, proper weighting of data according to the accuracy of the individual 

measurements and combining the two measurement systems in an efficient framework. 

1.1 Problem Setting 

For the purpose of self calibration, the SNR of underwater acoustic signals can vary, as 

a guide only, from -20 dB to 10 dB. The range to the signal source and the type of vessel 

generating the signal affect the SNR; a merchant ship produces a lot of acoustic energy while 

a submarine is designed to produce very little. The spectra of vessel-generated signals are 

strongest at frequencies in the range of tens to hundreds of hertz [Coa90]. There are strong 

spectral lines at the frequencies of rotating machinery, such as the engine's and propeller shaft's, 

with harmonics at the propeller blade rate. Signal processing can be done in a broadband or 

narrowband context. Broadband processing can be used to obtain a spectral signature of a signal 

source. A skilled operator can look at the position of the spectral lines from a signal source 
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1.2 Literature Overview 

'This section presents a very general and incomplete overview of the literature with emphasis 

on the more significant towed-array research. A more complete review is given in Chapter 5 

which compares eight self calibrators with theory and computer simulation. 

The dynamic behaviour of towed, thin, flexible cylinders was investigated by Paidoussis 

[pai66a, Pai66b, Pai73a, Pai73b]. Paidoussis gave a differential equation describing the motion 

of a towed cylinder in response to tow-point induced motion. The differential equation was 

examined under special cases by Kennedy [Ken81], Kennedy and Strahan [KS81] and Ortloff 

and Ives [0169]. Dowling examined the same special cases using a corrected version of 

Paidoussis' equation [Dow88a, Dow88b]. In a Kalman-filter calibrator [GAB88, GAB93], 

Gray et al. took advantage of a special form of the Paidoussis equation, valid for low-frequency 

disturbances, known as the water-pulley model. 'This Kalman-filter calibrator is significant 

because it uses the entire measurement history to calibrate the array as opposed to only the most 

recent measurements. No other known algorithms make use of the array's dynamic behaviour. 

The measurements in the Kalman-filter calibrator come from heading sensors. 

Other heading-sensor-based calibrators have been developed by Owsley [Ows81, Ows84a]. 

The heading sensors are used to estimate a low order polynomial approximation of the array 

shape. The slowly varying heading-sensor biases are also estimated. 

Self calibration has been a concern of astronomers for longer than it has been for sonar 

processors. Bucker [Buc78] and later Ferguson [Fer90b] adapted a technique known as 

sharpness for towed-array calibration. Sharpness was originally used to correct, in real time, 

atmospherically-distorted optical telescope images [MB74]. Sharpness was proven [HON77] to 

be identical to another self-calibration algorithm that makes use of redundant baselines [MM92]. 

A number of array calibrators rely on the assumption that there is only one narrowband 

signal impinging upon the array at a particular frequency or at a particular time (known as 

disjoint source assumption) [GWR89, Dor78, WRM94, AGP93, 11M92]. This signal is called 

the calibrating signal. The calibrators are sensitive, in varying degrees, to the disjoint source 

assumption. Phase information from the calibrating signal is used to estimate the locations of 

the array's hydrophones. 

Some calibrators use the eigenstructure of the array-covariance matrix [LM87, FW88]. They 

begin by estimating the number of signals that are represented in the array-covariance matrix. 

This non-trivial task relies on the relative magnitudes of the eigenvalues. An iterative scheme 

is used to obtain the unknown sensor positions and signal DOAs. Eigenstructure methods suffer 
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from a number of problems. They are sensitive to the presence of coherent signals and to low 

SNR and they have a large computational load. 

A few array calibrators assume the availability of broadband signals with which to calibrate 

an array [TN88, Wah93]. They use time-delay estimates to estimate the locations of the array's 

hydrophones. Time-delay estimation is insensitive to coherent and interfering signals but tends 

to be more sensitive to noise than some of the narrowband calibrators. 

1.3 Contributions 

The thesis contributes the following knowledge on towed-array calibration: 

1. A proof of the fundamental question of the invertibility of the spatial correlation function 

(Chapter 3). I p~ove this for generic arrays and also relate the results to the more specific 

case of towed arrays. 

2. Closed-form solutions for the sensor positions and signal DOAs from signal phase or time

delay information for both 2D and 3D arrays (Section 3.2.2). 

3. Three new towed-array calibrators, including on~ that makes simultaneous use of both 

heading-sensor and signal data (Chapter 4). 

4. A method for reducing the number of computations of a Kalman Filter when there are 

more measurements than states (Section 4.4.4). 

5. Analysis and comparison, using computer simulations, of a selection of towed-array 

calibrators from the literature (Chapter 5). I show how robust the calibrators are to 

signal-source distributions and noise. I show how sensitive they are to their underlying 

assumptions. 

6. A new sharpness function that can be maximised to calibrate a towed array. This was 

found after analysing the sharpness algorithm (Chapter 6). 

1.4 Thesis Outline 

Chapter 2 introduces basic array processing. This includes a derivation of the array

covariance matrix and a formal definition of the array-calibration problem. The assumptions 

used in this thesis are given. Received signal information is expressed for both 2D and 3D 

arrays and narrowband and broadband signals. In Section 2.4 I briefly describe conventional 

beamforming. Section 2.5 gives the geometric constraints on a towed array's shape and describes 

a procedure for combining the constraints with signal information to obtain hydrophone position 

estimates. This procedure is known as the chord approach. 
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In Chapter 3 I give the conditions under which the spatial correlation function will be 

invertible. The analysis is applicable to generic arrays, for which only general sensor location 

information is known a priori. Similar analyses have been done in [RS87a, RS87b, Lo92]. 

The thesis generalises these analyses and clarifies a number of the results. The proofs are more 

intuitive than the ones given in [RS87a, RS87b, Lo92] as they are geometric rather than purely 

algebraic. In addition they yield closed form solutions for the sensor locations and signal DOAs 

from the phase-delay information. Based on the geometric constraints of Section 2.5, I infer 

the conditions for which sensor and signal parameters will be unique for towed arrays. 

I give three new array-calibration algorithms in Chapter 4. Two of the algorithms use a 

least-square error optimisation. One uses a narrowband signal to estimate phase delays, and the 

other uses a broadband signal to estimate time delays. The broadband algorithm is insensitive to 

the presence of interfering and coherent signals. The third algorithm is based on a state-space 

model of the array shape that includes a model of the array's dynamic motion. The model 

allows signal and heading-sensor information to be combined easily. The states of the model 

define the array's shape and a Kalman filter is used to estimate the states. I use computer 

simulations to verify the theory. 

In Chapter 5 I compare a number of representative array calibrators from the literature. 

They were chosen on the basis that all calibrators in the literature are similar to one of the 

representative calibrators. I identify the explicit and implicit assumptions made for each 

calibrator. Computer simulations are used to investigate the sensitivity of the calibrators 

to the underlying assumptions. I investigate how robust the calibrators are to variations in 

the distribution of signal sources and in the array shape. I found that broadband calibrators 

outperform narrowband calibrators in the presence of coherent signals. 

Confiicting reports have been given concerning an algorithm known as sharpness. Bucker 

[Buc78] and Ferguson [Fer90b] report that the sharpness algorithm is an effective towed-array 

calibrator. Davidson and Cantoni [DC92] analyse sharpness algebraicly and show that the 

sharpness algorithm will work only in special cases and is generally unusable for towed arrays. 

In Chapter 6 I resolve the discrepancies between these reports. I investigate sharpness as 

it is applied to towed arrays and compare it with the original sharpness algorithm which 

was applied to optical telescopes. The sharpness algorithm is unique amongst signal-based 

calibration algorithms. It ostensibly makes no assumptions about the signals. Further, it is 

conceivable that it can be used to estimate parameters other than the array shape; the range 

to the signal sources, for example. Simulations reveal new sharpness functions that give more 

robust array-shape estimates than the functions in [Buc78, Fer90b]. 
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The final chapter summarises the thesis and discusses the merits of various algorithms. I 

gi ve some suggestions for further research topics. 



Chapter 2 Array Processing 

This chapter gives expressions for the hydrophone signals. I introduce the travelling-wave 

model of the signals and the array-covariance matrix. I use the same model of the array and 

signals as given in [Pi189]. The derivations for 2D arrays are essentially the same as for 3D 

arrays, the only difference being in the size of the vectors that describe the sensor positions and 

signal DOAs. In Chapter 3, 2D and 3D arrays are dealt with as separate cases. In the remaining 

chapters the array and all signal sources are assumed to lie in a horizontal plane. 

2.1 Hydrophone Signals 

In this section I make no assumption about the bandwidth of the signals. Assume that the 

signals impinging upon the array have an, as yet, unspecified bandwidth with centre frequency 

fo Hz. If the speed of sound in water is Cs then the wavelength at the centre frequency is 

A = cs / fo. Throughout the thesis all distances are made dimensionless by normalising with 

Al2. 

Figure 1 Definition of coordinate system. 
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is the elevation. Azimuth is measured from the positive x-axis in the xy-plane and elevation 

is measured from the xy-plane as shown in Figure 1. If the array and signals lie in a plane 

then On = 0, \:In. 

Assume that the signal sources are in the far field and the propagating medium is non

dispersive. The signal wavefronts that impinge upon the array will be planar. The direction

cosine vectors, {on}, are unit vectors in the DOAs of the signals and are given by 

{

[cos <Pn, sin <Pn]T, 
On = 

[cos <Pn cos On, sin <Pn cos On, sin On]T, 

2D array 

3D array. 

Figure 2 Projection of sensor position onto the direction cosine vector. 
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Refer to Figure 2. The distance, dmn, from the first sensor to the mth in the line of sight 

to the nth signal source is the projection of the m th sensor's position onto the nth direction 

cosine vector. That is, 

dmn = Xmon 

= { Xm cos <Pn + Ym sin <Pn, 2D array (2.8) 

Xm cos <Pn cos On + Ym sin <Pn cos On + Zm sin On, 3D array. 

The time of arrival, tmn , of the nth signal at the mth sensor, relative to the first, is therefore 

given by 

tmn = dmn / Cs • (2.9) 

The analytic signal received at each hydrophone, zm(t), is a superposition of the N, 

appropriately-delayed impinging signals and noise. Noise includes effects such as internal 

electronic noise and external background noise. Therefore, 

N 

zm(t) = L sn(t - tmn ) + vm(t), (2.10) 
n=l 
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where v'r(l. (t) is noise. Equation (2.10) is valid for both narrowband and broadband signals. I 

have assumed that the propagating medium is lossless in the region of the array so that the 

amplitude of the signals are unaffected, in the region of the array, by the distance they have 

travelled. 

2.2 Narrowband Signals 

Assume that the impinging signals are narrowband. I define what is meant by narrowband 

in an array-processing context in the next section. For the moment, a narrowband signal is 

one that has infinitesimal bandwidth. The time delays of (2.9) and (2.10) can be replaced with 

phase changes, {amn }, that are related to the time delays by 

amn = exp (j7rtmncs ) 

= exp (j7rdmn ). 
(2.11) 

Note that wavelength does not appear in (2.11) because all distances are normalised by >../2. 

Thus, the sum of delayed signals in (2.10) can be written as 

N 

zm(t) = L exp (j7rdmn )sn(t) + vm(t) 
n=l 

(2.12) 
N 

= L amnsn(t) + vm(t). 
n=1 

Using matrix notation: z(t) = [ZI(t),,,,,ZM(t)]T, set) = [SI(t)"",SN(t)]T, vet) 

[VI(t), .. . , VM(t)]T and A is the matrix of elements {amn }. Then, 

z(t) = As(t) + vet). (2.13) 

The N column vectors, {an}, of A are known as steering vectors. A steering vector represents 

the relative complex amplitude of a signal as it arrives at each hydrophone. 

2.3 Array-Covariance Matrix 

The array-covariance matrix, sometimes called cross-spectral matrix, is important in 

processing narrowband array signals. The elements of the array-covariance matrix are the 

correlations of pairs of signals received by the sensors of the array. I assume the following: 

l. noise is uncorrelated with the signals, and 

2. the array shape and signal DOAs are changing slowly. 
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The array-covariance matrix, R, is given by 

R = (z(t)zH(t)) 

= A(s(t)sH(t))AH + (v(t)vH(t)) 

= ARsAH + R n, 

(2.14) 

where superscript H is the Hermitian transpose operator, and ( ... ) denotes a time average. The 

matrix of steering vectors, A, is taken outside the time average because it is approximately 

constant for the period of averaging if assumption 2 is true. The matrix Rn = (v(t)vH(t)) 

is called the noise-covariance matrix and Rs = (s(t)sH(t)) is called the signal-covariance 

matrix. The diagonal elements of Rs are the signal powers and the off-diagonal elements 

are the cross powers. If the signals are incoherent Rs is diagonal. A non-zero value at the 

(j k )th element of the signal-covariance matrix means that the jth and kth signals are coherent. 

Likewise, the elements of Rn are the noise powers and cross powers and if noise is spatially 

uncorrelated Rn is diagonal. 

The array-covariance matrix contains discrete samples of the spatial correlation function. 

The correlation function is a continuous function of spatial separation but the function is sampled 

only at the discrete separations of the array's sensors. Under the infinitesimal bandwidth 

assumption from Section 2.2 the spatial-correlation function can be seen by expanding one 

of the terms in the R. Correlation is a function of the length and orientation of the baseline 

upon which it is observed. It is independent of the position of that baseline if the signals 

originate in the far field; Le. if the wavefronts are planar. Expanding (2.14), (2.11) and (2.8), 

the noise-free correlation as a function of separation for one signal is 

r(Xj - Xk) = a s
2 exp (j7r(Xj - xk)(h), (2.15) 

where as
2 is the signal power. Using X = Xj - Xb 

rex) = as
2 exp (j7rXb1). (2.16) 

'This is a periodic function. 

If the signals have finite bandwidth with a rectangular passband then the observed spatial 

correlation function will be modulated by a sinc-function envelope [Th089]. The width of the 

main lobe of the sinc function is approximately cs / BW where BW is the bandwidth of the 

impinging signals. Because of the envelope the full amplitude of the spatial correlation function 

is observed only when the distance between sensors in the direction of the signal is zero (Le. 

dmn = 0). The longest baseline for which the spatial correlation function amplitude is within 

x% of the maximum value, where x is small, can be obtained from [Th089] , 

(
7r Bwdmn)2 < 6x . 

Cs 100 
(2.17) 
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For example if the array is 100 m long and beams are formed at all angles to endfire (dmn = 100) 

and 10% attenuation of the spatial correlation function is allowable then the bandwidth must 

be less than 3.7 Hz. Therefore, narrowband, in an array processing context, is any bandwidth 

smaller than that defined by (2.17). 

Equations (2.7) to (2.14) describe how to obtain the exact array-covariance matrix given 

the signal, sensor and noise parameters. This is the forward problem. The array-covariance 

matrix contains discrete samples of the spatial correlation function. Array calibration is the 

inverse problem. Given the discrete samples of the correlation function, without knowing the 

baselines on which they were measured, the aim of self-calibration is to find those baselines; 

the baselines define the array shape. 

2.3.1 Signal model - deterministic or random? 

There are two models commonly used to describe the signals: 

Deterministic the signal is represented as a phasor, i.e. it is a constant complex number, 

and 

Random the signal is a random, zero-mean, complex variable. 

The choice of model does not affect the signal and correlation equations (2.13), (2.14) and 

(2.15). However, model choice does affect the second order statistics of the signals and their 

correlations. In Section 4.4 I use the second order statistics of a self calibrator. I assumed 

a random signal model. Elsewhere, I have not been concerned with the statistics and so 

the choice of signal model is unimportant. There is no clear argument for or against using 

either of the models. 

2.4 Beamforming 

The purpose of array processing is to isolate a wanted signal from interfering signals 

and noise and to estimate parameters of the isolated signal such as DOA or power. This is 

spatial filtering. A beamfonner (also known as delay-and-sum beamfonner and conventional 

beamfonner) estimates received power, Pb( ¢, 8), as a function of DOA [Pil89]. It delays the 

hydrophone signals and sums them so that, for a given look direction, a signal arriving from 

that direction is summed coherently (see Figure 3). The summed signal is squared and averaged 

to obtain a power estimate. Signals not in the look direction are summed destructively. The 

delays, {Tm}, equal the path delays given in (2.9) when the look direction is the same as the 
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nth signal's DOA. That is, Tm = Xm84> ,B, where 

{ 

[coscp,sincp]T, 
84> B = 

, [cos cp cos (), sin cp cos () , sin ()]T , 

Thus, beamformer power is 

2D array 

3D array. 

Pb( </>,0) = \ fl zm(t + T m (</>,0)) ). 

Figure 3 Schematic of a delay and sum beamformer. 

hydrophones 

{ 

1_ Pb(<I>,8) 

(2.18) 

(2.19) 

If the signals are narrowband then, as in Section 2.2, the time delays can be replaced 

by phase changes, wm(</J, ()) = exp (j7rTm(</J, 8)cs). The weight vector for the conventional 

beamformer is 

w = [exp (j7rTICs), ... , exp (j7rTMCs)]T. 

Therefore, the beamformer power is 

Pb = (IWHZI2) 

= (WHZZHW) 

= WH(ZZH)W 

- HR -w w. 

(2.20) 

(2.21) 

A beamformer image for a uniform array with 7 sensors and a single impinging signal broadside 

to the array is shown in Figure 4 ( dashed line). 

There are other algorithms that estimate power or DOA. One of them is the Capon estimator 

which I will describe without going into any mathematical detail. The Capon estimator has 

better resolution than the conventional beamformer but it is more sensitive to sensor-position 

errors. It achieves this by choosing a weight vector such that the received power is minimised 
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while constraining the gain in the look direction to be unity. This has the effect of reducing 

power-estimate bias caused by interfering signals. The weight vectors of the Capon estimator 

are calculated from the array-covariance matrix unlike the conventional beamformer where they 

are independent of the signals and so can be calculated off line. A Capon estimator image for 

a uniform array with 7 sensors and a single impinging signal broadside to the array is shown 

in Figure 4 (solid line). 

Figure 4 Images from a uniform, 7-sensor array using a conventional 

beamformer (dashed line) and a Capon estimator (solid line). 
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2.5 Geometric Constraints and the Chord Approach 

In this section I show how constraints on the shape of a towed array simplify the problem 

of estimating it. A number of self-calibrators in the literature, as well as those presented in 

Chapter 4, make use of what Gray et al. [GWR89] call the chord approach. The chord 

approach is simply a method of combining known constraints on the array's geometry with a 

calibrating signal's phase- or time-delay information to estimate the array shape. It is assumed 

that the array is 2D and the calibrating-signal source lies in the plane of the array. 

Self calibrators can give estimates of the shape of an array and the DOA of the impinging 

signals in relation to the estimated shape. However, there will always be a rotational and 

reflectional ambiguity to the shape unless supplemental information is available!. In this section, 

I show how a single heading sensor added to the array can eliminate the rotational ambiguity and 

Rotational and reflectional ambiguities are described in Chapter 3. Without additional information, such as 

from heading sensors , a self calibrator can not give the orientation of the array with respect to an arbitrary coordinate 

system, such as the earth ' s magnetic field . 
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a second heading sensor can eliminate the reflectional ambiguity. The supplemental heading

sensor information is easily integrated with the chord approach. 

Let the inter-hydrophone arc length of the flexible cylinder bearing the array be p. If the 

flexible cylinder is assumed not to stretch then each hydrophone must lie within a circle (or 

sphere in 3D) of radius p that is centred on the previous hydrophone. Further, if the distance 

between hydrophones is not large then the flexible cylinder can be approximated by straight 

line segments between hydrophones. Each hydrophone will, therefore, lie on the circumference 

of the circle (or sphere in 3D) of radius p that is centred on the previous hydrophone (see 

Figure 5). That is, 

(X m - xm_I)2 + (Ym - Ym_l)2 = p2. (2.22) 

Figure 5 Model of the segmented array approximation. 

fleTle CY~der 

-

The distance between the wavefronts of the calibrating signal arriving at one hydrophone 

and the next, dmn - dm-1,n, equals the difference between the relative arrival times of the 

signal multiplied by the speed of sound, 

dmn - dm-1,n = cs(tmn - tm-l,n)' (2.23) 

I will drop the subscript n because we are dealing with only one signal. Assume that the 

DOA of the calibrating signal, <p, is known. A coordinate system is chosen so that the first 

hydrophone is at the origin and the tow vessel is travelling in the negative x-direction. To be 

consistent with the relative time of arrival, tm, the location, (xm' Ym), of the m th hydrophone 

must be on the straight line 

(xm - Xm-l) cos <p + 

(Ym - Ym-l) sin 4> = dm - dm- 1. 
(2.24) 

This line is the signal's wavefront at a distance dm - dm - 1 before the (m - 1) th hydrophone. The 

location of the m th hydrophone is at the intersection of (2.24) and (2.22). There are two 
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simultaneous solutions to (2.24) and (2.22) so to resolve this twin ambiguity we choose the 

solution that is closest to the tow-vessel's path (i.e. the x-axis), given by 

m 

xm = cos ¢(dm - d1 ) + sin ¢ L Vp2 - (dk - dk _ 1 )2 
k=1 

m 

Ym = sin¢(dm - d1 ) - cos ¢ L Vp2 - (dk - dk _r)2, 
k=1 

and as shown in Figure 6. 

Figure 6 Choose the solution closest to the tow-vessel's path. 
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Figure 7 Estimating signal direction using two hydrophone pairs with heading sensors. 
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When the calibrating signal's DOA is not known it must be estimated. It can be seen from 

Figure 7 that dj - dj- 1 = P cos ¢j, and so 

¢j = cos-1 (cs(tj - tj-l)/ p) (2.26) 

which has two solutions. We resolve this ambiguity by equipping two pairs of adjacent 

hydrophones, (j -1 , j ) and (k -1 , k), with heading sensors to measure the absolute bearing 

of their baselines. Each pair of hydrophones will give two solutions, one corresponding to the 

real source direction, 9] , and the other a virtual source direction, ¢ J. The virtual source always 

appears as a reflection of the real source in the pair's baseline. The absolute bearing, {Xj, of a 
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source whether it be real or virtual is aj = <Pj + f3j where f3j is the heading sensor measurement 

of that baseline. If f3j =I 13k then aj = ak and aJ =I at., which eliminates the ambiguity. If 

f3j = 13k the two special baselines are parallel and the ambiguity can not be resolved. 

From the perspective of array-shape ambiguities, the first heading sensor removes the 

rotational ambiguity and the second sensor removes the reflectional ambiguity. Using the two 

heading sensors to determine the calibrating-signal DOA ensures that the estimated array shape 

will agree with the measurements from the heading sensors. 



Chapter 3 Inverting the Spatial 
Correlation Function 

3.1 Problem Description and Background 

In the literature on towed-array self calibration there is an implicit assumption that there is 

enough information in the impinging signals to estimate both the array shape and the signals' 

parameters. It is important to verify that this assumption is true; and under what conditions. 

The conditions tell us whether there are certain assumptions that a self calibrator must make 

to estimate the array shape unambiguously and, if the assumptions are incorrect, what form an 

ambiguity will take. The form of an ambiguity might be whether a sensor exists in one of a 

finite number of positions or in one an infinite number. This chapter deals with both generic 

and towed arrays. I show that for towed arrays, if there is only one signal, every hydrophone 

will have two possible positions. If there is a second signal the ambiguity is eliminated. 

I present the necessary conditions for uniqueness of the spatial correlation function's inverse. 

That is, I give the conditions for the locations of an array's sensors and the parameters of the 

signals that impinge upon the array to be unique. The only information used is the exact 

narrowband array-covariance matrix which is derived purely from the impinging signals. No 

attempt is made to analyse the sensitivities of the sensor and signal parameters' estimates when 

the array-covariance matrix is not known exactly. Nor does this chapter include algorithms for 

estimating these parameters, only evidence that a hypothetical algorithm will or will not have 

a unique solution to search for. In the manner of control systems theorists, I will say that the 

sensor and signal parameters are observable if they are unique for a given array-covariance 

matrix. 

If the signals are incoherent with each other then at least three signals for a two-dimensional 

array, and six for a three-dimensional array are required to determine the sensor, signal and noise 

parameters uniquely. If all signals originate from one source, and are thus coherent with each 

other, there is an infinite number of solutions for the sensor and signal parameters. The question 

of observability is unanswered when there are coherent signals and two or more signal sources. 

Observability of the sensor and signal parameters was investigated by Rockah and 

Schultheiss [RS87a, RS87b], for two-dimensional arrays. They assumed that the signals are 

distinct from one another by virtue of being separated spectrally or temporally. Such an analysis 
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is useful if one has the option to deploy controlled signal sources, or can otherwise guarantee 

that the signals will be disjoint Rockah and Schultheiss gave the number of signals and sensors 

required for observability, for both near- and far-field signal sources. They demonstrated that, 

without additional information, translational or rotational uncertainties of the array shape and 

signal field would be inevitable. Signals can only give information about the shape of an array 

and the distribution of the signal sources in relation to the array; they give no information about 

the absolute position of the array or its orientation. Thus, if one solution can be found for the 

array shape and signal DOAs, any translation, rotation or reflection of that solution will also be 

a solution (see Figure 8). These ambiguities can be eliminated by assuming that the location of 

three sensors, two sensors and a signal DOA, or one sensor and two signal DOAs are known 

a priori. However, for this chapter, I will regard all translations, rotations and reflections as 

trivial duplications of the one solution. 

Figure 8 Translations (b), rotations (c) and reflections (d) are regarded as trivial duplications of the one solution (a). 
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Lo and Marple [Lo92] investigated the more general problem of observability conditions 

when the signals are not spectrally or temporally disjoint. TItis involved another question; are 

the two or more steering vectors that make up the array-covariance matrix unique? Schmidt 

[Sch81] called this rank-n ambiguity. Lo and Marple assumed that all the signals are incoherent 

with one another, and that the noise-covariance matrix is known. They gave a proof for the 

minimum required numbers of signals and sensors to estimate their parameters from the steering 

vectors, which confirmed the results of [RS87a, RS87b]. The proof bears no obvious relation 

to what is a geometric problem, and so is not illuminating. 

Here I discuss the following topics that are not treated in [RS87a, RS87b, Lo92]: observ

ability of the noise-covariance matrix, 3D arrays, coherent signals and closed-form solutions 

for the sensor and signal parameters, given phase information from the signals. In Section 3.2 I 
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generalis~ the results of [RS87a, RS87b] and [Lo92]. The observability of noise characteristics 

is discussed in Section 3.2.1. If noise is assumed spatially correlated then it, and the signal and 

sensor parameters, will be unobservable. If noise is spatially uncorrelated and noise power is 

equal at all sensors, and if there are fewer signals than sensors, then the noise power is observ

able. Section 3.2.2 discusses the observability of the sensor and signal parameters, given that 

the noise-covariance matrix is known or deduced, and assuming that the signals are incoherent. 

The generalised results include conditions on 

1. the minimum numbers of sensors and signals necessary to observe their parameters, when 

the array and signal sources are assumed to exist in two and three dimensions, and 

2. a lower bound on the numbers of signals and sensors required when at least some of the 

signals are assumed to be coherent. 

There are three issues involved here; these are observability of 

1. the signal-covariance matrix and steering vectors, given the noiseless array-covariance 

matrix, i.e. factorise R - Rn =:} ARsA H; 

2. the distances between each sensor and a reference point in the direction of each of the 

signal sources, given A, i.e. {amn } =:} {dmn }; and 

3. the sensor positions and signal DOAs, given the distances of point 2, i.e. factorise 

{dmn } ::} {Xmon}. 

These three issues are separate, and the observability of one does not imply observability of the 

others. I provide an intuitive, geometric construction for solving signal and sensor parameters 

from the steering vectors. I use the construction to determine the minimum numbers of signals 

and sensors. The assumptions about the signals are that: 

1. the signals are narrowband, 

2. the signals are uncorrelated with noise, 

3. the signals are neither spectrally nor temporally disjoint, and 

4. there are fewer signals than sensors. 

In Sections 3.2.3 and 3.2.4, I discuss the question of observability assuming that some or 

all of the signals are coherent In the first case, I assume that there is just one signal source, 

with multiple, coherent signals originating from it, and in the second I assume that there are 

two or more signals sources, with at least two coherent signals. I show that in the first case 

the sensor and signal parameters are unobservable and give an example. I provide no proof of 

the observability conditions for the second case but offer a conjecture based upon the number 

of unknown parameters to be observed. 
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In Section 3.3 I relate the results of Section 3.2.2 to towed arrays. This is simply a matter of 

taking what we have learned in this Chapter and applying the geometric constraints of Section 

2.5 to it. 

3.2 Uniqueness of the Factorisation of the 
Array-Covariance Matrix 

In this section I show the necessary conditions for the parameters, {X m, <Pn, On, R s, R n}, 

of a given array-covariance matrix, R, to be observable, ignoring translations, rotations and 

reflections. Conditions on spatial correlation of noise and coherence of signals are treated 

separately. To avoid translational, rotational and reflectional ambiguities I use a coordinate 

system that is aligned with some of either the sensors or the signals. For convenience, (2.14) 

is rewritten below: 

R = ARsAH + Rn. (3.1) 

3.2.1 Observability of noise. 

Theorem 1 

The noise-covariance matrix is observable if the noise is spatially uncorrelated with equal 

power at each sensor, and there are fewer signals than sensors. 

If noise is spatially correlated and there is no a priori knowledge of the noise-covariance 

matrix, R n, then there is no constraint on Rn other than that it be Hermitian. Therefore, for 

any choice of A and R s , 

Rn = R - ARsAH, (3.2) 

there is an infinite number of solutions to (3.1), and the noise, sensor and signal parameters 

are unobservable. When the noise is spatially uncorrelated, the noise-covariance matrix, R n , is 

diagonal. Assume that the noise powers are equal at every receiver, a 2 , so that 

Rn = a 21 , (3.3) 

where I is the identity matrix. In a real system there must be at least one solution to (3.1), 

which we nominate ARsA H + Rn. Suppose a second, hypothetical, solution, BR~BH + R~ 

exists, where R~ = £21, so that 

R=ARAH+R =BR'BH+R' s n s n' 

ARsA H - BR~BH = R~ - Rn. 
(3.4) 
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It can be shown that ARsAH and BR~BH have equal rank and, furthermore, the columns of 

A and the columns of B span the same space (see Appendix A). Thus, the rank of R~ - Rn 

is equal to or less than the rank of ARsA H. But R~ - Rn = (£2 - a 2
) I, which is either full 

rank or zero rank if £2 = a 2 . But ARsA H is not full rank, which is the case when there are 

fewer signals than sensors. Therefore R~ = Rn and ARsA H = BR~BH. And so, when the 

noise is spatially uncorrelated, with equal power at every receiver, the noise power, a 2 , and 

hence the noise-covariance matrix, is observable. 

Once the noise-covariance matrix is known, the observability of sensor and signal parame

ters depends on whether the factorisation of the noiseless covariance matrix, Ra = R - R n, is 

unique. I address this in two parts; when the signals are incoherent, and when they are coherent 

3.2.2 Observability of signal and sensor parameters when the 
signals are inc9herent and noise is spatially uncorrelated. 

When the noise is spatially uncorrelated and has equal power at every receiver, Section 

3.2.1 showed that the noise-covariance matrix in (3.1) is observable. Now I look at whether the 

sensor positions, and signal DOAs and powers are observable, given the noiseless covariance 

matrix, 

Ra = ARsAH. (3.5) 

This depends on three separate observability issues: 

1. from (3.1), A must be observable when given R a , 

2. from (2.11), {dmn } must be observable when given {amn }, and 

3. from (2.8), {Xm} and {¢n} (or {¢n,(}n} in the 3D case) must be observable when given 

{ dmn }. 

Conditions for the observability of the signal and sensor parameters under various conditions 

are given in [L092]. For completeness, I include a brief explanation of the results for the first 

two points in the above list For the third point I provide a proof of the necessary conditions 

using geometric constructions. 

Theorem 2 

Matrix A is observable, given R a , if the signals are incoherent, and a linear combination of 

the steering vectors in A does not give another steering vector. 

We know that for uncorrelated signals, Rs must be diagonal, positive and full rank, because 

each element on the diagonal of Rs represents a signal power, and the steering vectors of A 

must have elements with unit magnitude. As shown in Appendix A, all solutions for A in (3.5) 
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will exist in one common subspace, eN, of the space, eM, when the number of signals, N, 

is less than the number of sensors, M. Therefore a solution for A must lie on the intersection 

of the subspace eN and the set of all possible steering vectors (Le. complex vectors that have 

all elements with unit magnitude). Because we are dealing with a real system, there must be at 

least one solution to (3.1); let that solution be ARsA H. Any other solution for A, say B, can 

therefore be expressed as a linear combination of A, given by B = AU, where U is an N x N 

matrix. However, apart from some special cases, there is no matrix, U, that will result in all 

columns of B being steering vectors. It was shown in [L092] that when there are two signals, 

the columns of B can be steering vectors if, and only if, all sensors lie on two parallel lines 

whose direction bisects the DOAs of the two signals, as shown in Figure 9. It was conjectured 

that when there are more than two signals, N > 2, the columns of B can be steering vectors if, 

and only if, there is an N x N sub matrix of A that is full rank and every other row of A is a 

scalar multiple of one of the rows of the sub matrix. This is physically impossible when there 

are more than three signals. Because the sensor positions and signal DOAs are independent of 

each other the chances of these constraints being met are small, and so, in general, no matrix U 

exists such that B = AU is composed of steering vectors. The trivial exceptions to this are the 

elementary column-swapping matrices, which are simply an identity matrix with two or more 

columns switched around. Their effect is simply to renumber the sensors. Therefore, apart from 

these special cases, A and Rs are observable given R a, when the signals are incoherent 

Figure 9 A linear combination of two steering vectors will be a steering vector only if all 

sensors lie on two parallel lines whose direction bisects the DOAs of the two signals. 
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The second observability issue, obtaining the {dmn } from the {amn }, depends on (2.11). 
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Theorem 3 

The distances, {dmn }, from the reference point to the sensors in the DOAs of the signals are 

observable, given matrix A, if and only if the sensor positions are known a priori to within 

half the wavelength of the impinging signals. 

Taking the logarithm of both sides of (2.11) gives 

dmn = Xm' on 

log amn A , + mn 
(3.6) 

J7r 

where Amn is an even integer which takes account of phase wrapping. In [Lo92] it is shown that 

the {Amn } are unique if a priori estimates of the positions of the sensors are accurate to within 

half the wavelength of the impinging signals. If a signal contains more than one narrowband 

component then replace "half the wavelength" in the previous sentence with "half the lowest 

common integral multiple of the wavelengths". 

3.2.2.1 Two-Dimensional solution for sensor positions and signal DOAs 

Theorem 4 

The 2D sensor locations and signal DOAs are observable, given {dmn }, if there are at 

least three signals and three sensors. 

Restricting the array and signals to two dimensions, suppose that there is only one signal 

source. In this case the factorisation into sensor and signal parameters will not be unique 

because one signal cannot provide information about both the x- and y-directions of a sensor. 

Figure 10 Given two signal-source OOAs, the sensor positions can be found as the intersection of 

two sets of wavefronts, which are at distances of drnl and d rn2 from the reference point 
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Now suppose there are two signal sources. The solution for {X m} and {</>n} in (2.8) can 

be found as the intersection of two sets of signal wavefronts, as in Figure (10). We remove 

the problem of rotational ambiguity by making the first signal DOA equal to 900
• The second 

sensor is free to exist anywhere in the plane. The set of solid lines represents the wavefronts 

from the first signal, as the signal arrives at each sensor, which are defined by, 

{Ym = dm1 }, (3.7) 

and the dashed set of parallel lines represents the wavefronts of the second signal from direction, 

</>2, The set of lines corresponding to the second signal source is defined by, 

{ 
-Xm dm2 } 

m= + , 
Y tan </>2 sin </>2 

(3.8) 

and the simultaneous solution to (3.7) and (3.8) is, 

{xm = (S~:;2 - dm1 ) tan¢2}, (3.9) 

{Ym = dm1 }. 

So, with two signal sources, we have a valid solution for {X m} and {</>n} f~)f any choice of </>2, 

and so there is no unique solution for {Xm} and {</>n}. 

Figure 11 Basic system, with 3 signals and 3 sources. The intervals Xl -X2 and Xl -X3 are the diameters of circles 

upon which the points, at distances {dmn } from the origin in the direction of the signals, {8n }, must lie. 
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Now consider the existence of three signals impinging on an array with three sensors. 

The system is represented geometrically in Figure 11. The intervals XI-X2 and XI-X3 are the 

diameters of circles, and because the points at {dmn On} are the projections of {X m} onto {On}, 

the {dmn On} must lie on the associated circles. The interval X r X 2 may be no smaller than the 

largest of {d2n } which, in Figure 11, is d23. So, when trying to determine {X m} and {On} from 
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the {dmn }, an initial guess for XI-X2 can be equal to the largest of {d2n }. Figure 12 shows our 

first attempt, where XI-X2 = d23 . The interval XI-X2 defines one circle and the direction-cosine 

vectors can be found from the intersection of {d2n8n } with the circle. The points Xl, d31 81 , and 

d3282 uniquely define the second circle, the diameter of which is the interval XI-X3. Because 

the point d3383 lies outside the circle this cannot be a solution to (2.8). Our second attempt at 

determining {Xm} and {8n } is shown in Figure 13. This time the point d3383 lies inside the 

second circle so it, too, is not a solution to (2.8). The position of d3383 will move from outside 

to inside the second circle as the estimate of the interval XI-X2 increases, and so d3383 will lie 

on the second circle once, and only once, over the domain of XI-X2. Thus the solution for {Xm} 

and {8n } from (2.8) is unique, and they are observable when the array is two-dimensional. 

Figure 12 The first guess for X2 is incorrect because d33 83 lies outside the circle defined by Xl, d31 81 and d32 82 . 
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Figure 13 The second guess for X2 is incorrect because d33 83 lies inside the circle defined by Xl, d31 81 and d32 82 . 
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In fact, it is possible to find a closed-form solution for {X m} and {on} as follows. A 

coordinate system is chosen in which the second sensor lies on the x-axis, so Y2 = 0 and from 

(2.8) we have 

{COS <Pn = d 2n / X2} ~=1 , 

{ 
V 2 2}3 . ~ ± X 2 - d 2n 

SIn 'f'n = , 
X2 

n=1 

(3.10) 

which defines the signal DOAs in terms of the {d2n }. Then 

{ 
d 

_ d 2n ± J xi - din} 3 
3n - X3- Y3 , 

X2 X2 
n=1 

(3.11) 

and rearranging the equation gives, 

2 ( d21 ) 2 2 (2 d 2 ) 
X2 d 31 - X3 X2 = Y3 X2 - 21 , 

2 d22 2 2 2 
( )

2 

X2 d 32 - X3 X2 = Y3 (X2 - d 22 ), (3.12) 

2 d23 2 2 2 
( )

2 

X2 d 33 - X3 X2 = Y3 (X2 - d 23 )· 

The simultaneous solution of X2, X3 and Y3 in terms of {dmn} :~~:~~i, from (3.12), is shown 

in Appendix B. There are four sets of solutions, three of which are reflections of the first about 

the x- and y-axes, and which we regard as trivial. Hence, apart from translations, rotations 

and reflections, the factorisation of the distances {dmn } into two-dimensional sensor and signal 

parameters, {X m} and {<Pn}, is unique when there are at least 3 sensors and 3 signals. 

Corollary 

The elements {dmn } :~~:~~t must satisfy the inequalities shown in Appendix B for a 

solution for the sensor locations and signal parameters to exist. 

The expressions for X2, X3 and Y3, shown in Appendix B, contain square-root operators, and 

for the expressions to be real the arguments of the square roots must be greater than zero. This 

results in two inequalities which are shown in Appendix B. The inequalities are cumbersome 

and so offer no intuitive information about the relationships of {dmn}:~~:~~~ to one another. 

Given that three sensors and three sources are enough to determine the first three signal 

DOAs and sensor locations, we now look at the conditions placed upon {dmn }m>3,n>3' when 

there are more than three sensors or sources. First, consider the addition of an nth signal source, 

where n > 3. From (3.10), <Pn is defined to be within one of two quadrants, so to resolve the 

ambiguity we use, 

d I . 
d 3n = X3 ~ ± Y3 y xi - din (3.13) 

X2 X2 
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which also constrains d3n to having one of two values. 

Now consider the addition of an mth sensor, Xm, to our basic three-sensor, three-source 

system. Figure 14 shows that the perpendiculars from the lines defined by the direction cosines, 

{bn } ~=1' at the points defined by the distances {dmn } ~=l' must intersect at a common point, 

( x m, Ym). The first two of these perpendicular lines are defined by, 

-Xm dm1 
Ym= +~, 

tan ¢l SIn \f'l 
-Xm dm2 

Ym= ~ +~, tan \f'2 SIn \f'2 

and the simultaneous solution of these equations defines (xm, Ym) to be, 

This constrains dm3 to be, 

dm1 sin ¢2 - dm2 sin ¢1 
Xm = 

sin (¢2 - ¢l) 
dm2 cos ¢l - dm1 cos ¢2 

Ym = 
sin (¢2 - ¢1) 

d - dm1 sin (¢2 - ¢3) + dm2 sin (¢3 - ¢1) 
m3 - , 

sin (¢2 - ¢l) 

where the solutions for ¢1, ¢2 and ¢3 are shown in Section 3.2.2.1. 

(3.14) 

(3.15) 

(3.16) 

Figure 14 The first three sensors define the signal DOAs so that for any other sensor the perpendiculars from the 

lines defined by the direction cosines, {8n }, at the points defined by {dmn } must intersect at a common point 
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3.2.2.2 Three-dimensional solution for sensor positions and signal DOAs 

When the signals and sensors are assumed to exist in a 3D space, the interval XrXm is 

the diameter of a sphere upon whose surface every point {dmn On} will lie. No diagram can 

adequately depict this, but some thought will show that three interval lengths, instead of one 

for the 2D case, control the solution. In this case we must resort to algebra. From (2.8), and 

using matrix notation, 

D =X~, (3.17) 

where D is composed of the elements {dmn }, X = [Xl, X2, . .. , XM]T and ~ = [01,02, ... , ON]. 

Lemma 1 

The rank of D is 2 for the 2D case and 3 for the 3D case. 

If the array and signal sources lie in a plane, if the array is not linear and if there are two 

or more signals with differing DOAs then both X and ~ will be rank 2 and so D, being the 

product of X and ~ as in (3.17), will also be rank 2. In the 3D case, if the array is not planar, 

and if there are three or more signals with DOAs that are not coplanar, then X and ~, and 

hence D, will be rank 3. 

As a starting point, if the number of known quantities is compared with the number of 

unknown quantities, we can obtain a lower bound on the numbers of sensors and signals for 

their parameters to be observable. 

Lemma 2 

A lower bound on the numbers of signals and sensors required for their parameters to be 

observable, given {dmn }, is six and four, respectively. 

From lemma 1, three columns of D will be independent, while the remaining columns 

provide only three independent pieces of information, namely, the linear multipliers that define 

those columns. And so the number of known quantities in D is given by 3( M - 1) + 
3(N - 3), N > 3, where M - 1 is used instead of M because the reference sensor (the 

first one) does not provide any information, i.e. d1 n = 0, V n. The number of unknown sensor 

parameters, {Xm = (xm, Ym, zm)}, is 3(M - 1), and the number of unknown signal parameters, 

{ cPn, On}, is 2N. Therefore the total number of unknown quantities is 3( M - 1) + 2N - 3, 

where the - 3 is the result of selecting a set of axes in which either two signals or three sensors 

are aligned with an axis and the plane of two axes. Requiring that the number of knowns equals 
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or exceeds the number of unknowns, we have 

3M + 3N - 12 > 3M + 2N - 6, 
(3.18) 

N > 6, 

and the minimum number of signals required is six when the equality is true. At least three 

non-zero rows are required in D to determine the linear multipliers that specify columns of 

D beyond the third. The first row of D contains only zeros, so there must be at least four 

rows, and hence four sensors. 

Theorem 5 

The 3D sensor locations and signal DOAs are observable, given {dmn }, if there are at least 

four sensors and six signals. 

To prove this I provide a closed-form solution for the sensor locations and signal DOAs 

from the D matrix. I choose a coordinate system, in which the first signal is in the direction 

of the positive x-axis and the second signal lies in the xy-plane, and so the direction cosine 

vectors are, 

bl = (1,0,0), 

02 = (a2, ± J 1 - a:f, 0 ), (3.19) 

bn = (a n ,bn ,±j1-a~ - b~), n> 2, 

where an = cos 1;n cos On, and bn = sin 1;n cos On. Let the linear multipliers for the nth signal, 

(n > 4), be J-Lln, J-L2n, and J-L3n, so that 

J-L lndml + J-L 2n dm2 + J-L3ndm3 = dmn , n > 4, (3.20) 

and, combining this with (2.8), 

J-LlnXmbl + J-L2nX mb2 + J-L3nXm b3 = Xmbn 

(J-Lln bl + J-L2nb2 + J-L3n b3 - bn ) . Xm = 0 (3.21) 

6p . Xm = 0, n > 4, 

where J-L = [J.Lln, J.L2n) J-L3n, _l]T is a basis for the null space of 

[ 

d~l 

dMl 

d
23 d~n J . 

dM3 dMn 

(3.22) 

This tells us that either Xm is orthogonal to 6.J-L, or 6.J-L = O. The first possibility can happen 

only in the degenerate system where all of the sensors exist in a plane or a line. Because we 
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are dealing specifically with 3D systems, we assume that this is not the case, so the second 

possibility must be true. Substituting (3.19) into (3.21) gives, 

J-lln + J-l2na2 + J-l3na3 - an = 0 

J-l2n J 1 a:J + j-l3nb3 - bn = 0 (3.23) 

J-l3n VI - ai - bi - VI - a~ - b~ = 0, n > 4. 

The origin and the three points, dm1 81, dm282 and dm383, uniquely define a sphere on which 

surface they lie. The interval XrXm is its diameter. The equation that defines the sphere is, 

(x - a)2 + (y - (3)2 + (z _ ,)2 = r2, (3.24) 

where 
a = dm1 /2, 

(3 - dm2 - dm1a2 
- 2Jl - ai ' 

(dm3 - dm1 a3)Jl- ai + dm1a2b3 - dm2b3 d ,= 2Jl-a 2-b 2Jl-a 2 ,an 
3 3 2 

(3.25) 

r2 = a2 + (32 + ,2. 

The point dmn8n, where n > 4, must also lie on this sphere, and the equation that results when 

dmn 8n issubstituted for (x,y,z) in (3.24) is, 

dm1 [J1- at (b4(a; + b; - 1) + b3V"-I---a-l--b-1J1- a; ~ b;) a2+ 

(at - 1) (a; + b; - 1)a4 + J1- al- blJ1- a; - b;(a:} - 1)a3]

dm2 J1 - a:J [b4 (a; + bi - 1) + b3J1- al- blJ1 - aj- bj]-

dm3Vl - al- blVl - ai - bi(ai - 1)-

dmn (ai - 1) (a~ + b~ - 1) = O. 

(3.26) 

There are three of these equations, one for each of the sensors from two to four. These equations 

are linear in {dmn }, and so they can be represented in matrix form by, 

[ 
d21 d22 d23 d2n ] 
d31 d32 d33 d3n 
d41 d42 d43 d4n 

Df = 0, 

where f = [11,12,/3, 14]T, and from (3.26), 

11 0 
12 0 
13 0 I, 

14 0 

h =J1- a:J(b4 (a; + b; -1) + b3J1- al- blJ1- a; - bj )a2+ 

(ai - 1) (a~ + b~ - 1)a4 + V1- al- blV1- ai - bi(ai - 1)a3' 

(3.27) 

h = - J1- a:J [b4 (ai Hi - 1) H3J1- al- blJ1- aj - bj], (3.28) 

13 =V1- al- bJV1- a~ - bi(l- ai), 

14 = (1 - ai) (a~ + b~ - 1). 
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And so, from (3.27), the vector, f, lies in the null space, Af-L, of the matrix D, where A is an 

unknown scalar. Thus, 

11 f-Ll n 

12 =A f-L2n 
13 f-L3n 

(3.29) 

14 -1 

Combining the (dependent) equations in (3.23) with (3.29), a solution can be found for 

a3, a4, b4 and A in terms of the parameters a2 and b3, 

-2f-L2nf-L3n b3Vl - a? - f-Lln - 2f-Llnf-L2na2 - f-L?n - f-Lln + 1 
a3 = 

2f-L3n(f-Lln + f-L2n a2) 

- 2f-L2nf-L3n b3 Jr-l---a~? + f-L{n + 2f-Llnf-L2na2 + 2f-L?n a? - f-L?n - f-Lln + 1 
a4 = 

2(f-Lln + f-L2n a2) 

(3.30) 

b4 = f-L2n VI ~ a? + f-L3nb3. 

The value for A is unimportant, aside from the fact that it is unique, and has not been given here. 

There are seven more parameterised solutions, other than that in (3.30), which are reflections 

of each other through the X-, y- and z-axes, and which we regard as trivial duplications of the 

one solution. From (3.30), and using 4 < n < 6, we have three simultaneous equations 

- 2f-L24f-L34b3 VI - a? - f-Ll4 - 2f-L14f-L24a2 - f-L?4 - f-L14 + 1 
a3 = 

2f-L34(J-l14 + f-L24 a2) 
r----",.. 

- 2f-L25J-l3s b3 VI - a? - J-l{s - 2J-llSJ-l2sa2 - f-L?s - f-Lis + 1 
a3 = 

2J-l3S(f-LlS + f-L2S a2) 

- 2f-L26f-L36b3 Vr-1---a-=? - J-l{6 - 2f-L16f-L26a2 - J-l?6 - f-Li6 + 1 
a3 = 

2J-l36(J-l16 + f-L26 a2) 

and solving for a2 and b3 we obtain 

[J-l34f-L36(f-L14J-l26 - f-L16J-l24) (f-L12s + f-L?s + f-Lis - 1) 
+J-l34f-L3S(f-LlSJ-l24 - J-l14J-l2S) (f-L1

2
6 + J-l2

2
6 + f-Li6 - 1) 

_ + f-L3SJ-l36(f-L16f-L2S - f-LlSf-L26) (f-Ll4 + J-li4 + J-li4 - 1)] a2 - , 
2[J-l14f-L24f-L3Sf-L36(f-LlSJ-l26 - f-L16f-L2S) + f-L16J-l26J-l34f-L3S(f-L14J-l2S - f-LlSJ-l24) 

b3 = 

+ f-Ll Sf-L2Sf-L34f-L36 (f-L16f-L24 - f-L14f-L26)] 

[( f-LlSf-L3S + J-l2Sf-L3s a2) (f-L{4 + 2f-L14J-l24 a2 + J-li4 + f-Li4 - 1) 
- (f-L14J-l34 + f-L24f-L34 a2) (f-Lls + 2f-LlSf-L2s a2 + f-Lis + f-Lis - 1)] 

2f-L34f-L3s )1 - a? (f-L14f-L25 - f-LlSJ-l24) 

(3.31) 

(3.32) 

(3.33) 

Therefore, disregarding translations, rotations and reflections, the sensor locations and signal 

directions are observable, given {dmn }) when the system has at least four sensors and six signals. 
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3.2.2.3 Summary of Sections 3.2.2.1 and 3.2.2.2 

The four observability theorems discussed in this section are separate from one another 

in the sense that the existence of the conditions for theorem 2 does not imply existence of 

the conditions for theorems 3,4 or 5. Sections 3.2.2.1 and 3.2.2.2 require minimum systems 

of three sensors and three signals, and four sensors and six signals, in the 2D and 3D cases 

respectively. However, considering the observability of the noise (Section 3.2.1) there must 

be more sensors than signals for the sensor and signal parameters to be observable from the 

array-covariance matrix. Therefore, there must be a minimum of four and seven sensors for 

the 2D and 3D cases, respectively. 

3.2.3 Observability of signal and sensor parameters when 
the signals are coherent and there is one signal source. 

This section and the next deal with systems that have coherent signals. I start by introducing 

the extra notation to handle coherent signals, and then proceed on the assumption that there is 

only one source of all the signals. I assume there is more than one signal source in Section 3.2.4. 

Suppose that some of the signals arriving at the array are reflections of other signals. All 

of the signals that originate from the one source will be coherent. Let the complex amplitudes 

of the ~th signal group be SK = [81K' 82K, ••• , 8r"K]T, where r K is the number of reflected 

and direct signals impinging upon the array, from the ~th signal source. The form of the 

signal-covariance matrix, Rs will no longer be diagonal but, instead, will be block diagonal, 

Rs = diag [Sl Sr, s2sJi , ... , SKS~] , (3.34) 

where K is the number of signal sources, as opposed to the number of signals, N, which is 
K 

given by N = L r K. Each of the blocks, {SKS!l}, in the signal-covariance matrix is rank 1 
K=l 

because SK is a vector, and so the rank of the signal-covariance matrix, R s , and of the noiseless 

covariance matrix, Ra = ARs A H, is K. If we write 

81 0 0 0 

~=I 
0 82 0 

I , (3.35) 
0 

0 0 0 8K 

then the signal-covariance matrix is given by, 

Rs = ~~H. (3.36) 

The noiseless covariance matrix, R a , can be factorised in the form, 

Ra = BBH
, (3.37) 
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where B, which is of rank K, is given by 

B=A~. (3.38) 

The column vectors, {bx;}, of B, are linear combinations of steering vectors, and so if 

r x; > 1, b x;, in general, will not be a steering vector. Indeed, when factorising R a , without 

any prior information about the signals, it cannot be assumed that any of the vectors in B are 

steering vectors. Further, we can discover only the number of signal sources, K, being equal 

to the rank of R a , and have no prior information about the total number of impinging signals, 

N. For the same reasons as in Section 3.2.2, all solutions for B in (3.37) must be linear 

combinations of one another. So, given that there must be at least one solution, say BB H , 

another possible solution, C, is given by, C = BU, where U is a K x K matrix. Then, 

Ra = BBH 

= CU-1U-HCH, 
(3.39) 

and, if U is unitary, then Ra = CCH is another possible factorisation. Thus, any rotation of 

one solution for B is also a solution. Given one possible solution, B, to (3.37), the steering 

vectors must be determined from the equation, 

r" 
bx; = 2: ah,,+n)Snx;, 

n=l 

(3.40) 

x;-1 
where ah,,+n) is the (-'x; + n )th steering vector of A, IX; = L r n , fo = 0, and bx; is the 

n=O 
~th vector ofB. Ifsx; is ordered so that ISlx;1 > IS2x;1 > ... > IsrlCx;l, then, from the triangle 

inequality we know that 

r" { ~ I SPKI > m~ 

rIC {~-l } 
Is~ x; I - 2: Ispx; 1 < ~n bmx; - 2: ahlC+q)sqx; , 

p=~+l q=1 

~-l } 

bmx; - 2: ahlC+q)sqx; , 
q=1 

(3.41) 

l<j.l<fx;. 

As is typical when using algebra to describe geometry, this is a tedious way of requiring that 

f x; line segments with lengths { I Sn x; I} ~~1' be able to span the distance from the origin to all 

of lYJ points in a plane (the Argand diagram), when arranged end to end at various angles. 

Equation (3.41 ) obviously has an infinite number of solutions, as does (3.40), and so if we are 

to determine whether the sensor and signal parameters are observable, we must know whether 

the constraint that all the steering vectors conform to a common system of sensors and signals 

is enough to restrict the number of possible factorisations. 



3.2 Uniqueness of the Factorisation of the Array-Covariance Matrix 37 

Definition 

1\vo systems with equal numbers of sensors, that have different array shapes and/or different 

signal powers and DOAs, are isocovariant if their respective noiseless array covariance 

matrices are identical. 

Theorem 6 

If an array receives signals that are coherent and there is only one signal source, it will be 

isocovariant with an infinite number of other systems. 

This theorem is proven by demonstrating an algorithm that can estimate an infinite number 

of systems from the one array-covariance matrix, when there is one signal source with multipath 

propagation. For the remainder of this section, suppose that only one signal source exists, and 

assume, for the purposes of our decomposition, that the direct signal, plus two reflections, 

impinge upon the array. The noiseless array-covariance matrix, R a , is rank 1, and can be 

factorised into, Ra = b bH
, which is unique because the only unitary 1 x 1 matrix is the identity 

matrix. From (3.40), we have, 

bm = am 1 8 1 + am 2 8 2 + am 3 83 (3.42) 

where m is the sensor number, and the subscript K has been dropped because there is onI y one 

signal source. Because the {amn } are complex, if the {8n } are given, then choosing a value 

for am 1 will determine the values for am 2 and am 3 to be one of two possible solutions. This 

can be seen as the intersection of two circles of radii \ 82\ and \ 83\, in Figure 15 

Figure 15 Given amI and {8 n }, then a m 2 and a m 3 can be found 

from the intersection of two circles with radii 1821 and 1831. 
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For a 2D system, Section 3.2.2 and Section 3.2.2.1 show that steering vector information 

from only the first three sensors and signals fully determines the locations of those sensors as well 

as the signal DOAs. Therefore, the {sn} may be selected in a random fashion, while respecting 

the constraints of (3.41). In practice, the constraints on {dmn}:~~ :~~i, established in Appendix 

A are loose enough that (3.40) can be solved for random d 21 and d 31 , and the constraints in 

Appendix A will be met in about 50% of all cases. If the constraints in Appendix A are not 

met, simply by tweaking the value of either d 21 or d 31 , and correspondingly recalculating d m2 

and dm3 , the constraints can be satisfied. 

Having proceeded this far, {8n}i and {Xm}i can be calculated using the closed-form 

expression of Appendix B, then we can simultaneously solve (3.40) and (3.16) to obtain solutions 

for {Xm}~. Because amn = exp (j7rd T1 n), the simultaneous equations are complicated by the 

inclusion of the transcendental terms, and no explicit solution for {X m} ~ can be found. 

Instead, a numerical zero-finding algorithm is applied to 

(d ) 
- d _ dml ( cos <P3 sin <P2 - cos <P2 sin <P3 ) + dm2 ( cos <PI sin <P3 - cos <P3 sin <PI) 

f ml - m3 A. • A. A. ' A. ' 
COS 'fJl sm 'fJ2 - COS 'fJ2 sm 'fJI 

(3.43) 

which is a rearrangement of (3.16). Given dm1 , (3.40) can be used to calculate values for dm2 

and dm3 , which are in the range -1 to 1. A typical plot of f( dm1 ) versus dm1 is shown in 

Figure 16. The discontinuities are the result of phase wrapping of 7rdm2 and 7rdm3 : If multiples 

of 2 are added to the values for d m2 and dm3 , f( dm1 ) will be shifted vertically, either up or 

down. The zero-finding algorithm calculates the function, f( dmd, a number of times, using a 

range of multiples of 2 added to dm2 and dm3 . A zero is searched for in the region around the 

particular multiples of 2 that begin with a value for f (dm1 ) closest to zero. Any number of 

zeros may be found using different additive multiples of 2. 

Figure 16 Plot of typical function f(d m1 ). 
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The algorithm presented can be used on any system that has only one signal source. 

Regardless of the number of signals in the real system, the algorithm will always find an 

infinite number of isocovariant systems with three signals. Clearly, a one-signal source system 

does not have a unique array-covariance matrix. The algorithm can be adapted to estimate a 

system with more than three versions of the signal source impinging upon the array, but, for the 

purpose of proving whether the array-covariance matrix is unique or not, this is not necessary. 

Simulation studies were done to verify theorem 6. The simulated system comprised a 40-

element array, in the shape shown by the solid line in Figure 17, with four coherent signals of 

amplitudes, lLO°, 0.8L30°, 0.8L300° and 0.7 L45°, where xLyo is a signal with amplitude x 

and relative phase yO. The signals' respective DOAs were 90°, 70°, 140° and -50°, measured 

anti clockwise from the x-axis. The speed of the signals in the propagating medium is 500 S-1 

and the centre frequency of the signals is 250 Hz. Noise is assumed to be spatially uncorrelated. 

The noiseless array-covariance matrix is calculated using (2.8), (2.11), (3.36) and (3.5). 

Figure 17 1\vo equivalent systems have array shapes shown by the solid line and the circles, respectively. 
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With randomly chosen signal amplitudes, 2.9L 17°, 3.0L325° and 2.8L 163°, a system that 

has an identical array-covariance matrix to the simulated system is depicted in Figure 17. The 

three signal DOAs are -93°, -85° and +93°, and the sensor locations are represented by the 

small circles. Despite the vast differences between the two array shapes, and the difference in 

the number of signals, the two systems shown in Figure 17 are isocovariant. 
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3.2.4 Observability of signal and sensor parameters when the signals 
are coherent and there is more than one signal source. 

Continuing from the results of the previous section, suppose that the 2D system includes a 

l'i:th signal source with its associated reflections. Given that the first signal source has allowed 

us to determine the (non-unique) sensor positions, all steering vectors associated with the l'i:th 

signal source must be appropriate for that array shape. The equations that govern the unknown 

variables, {SnK' <Pn, r K}' are given by (3.40), and (2.8). Using Xm = IXml cos (LXm), and 

Ym = IXml sin (LXm), where IXml and LXm are the distance from the origin, and the angle 

from the positive x-axis, to the mth sensor, respectively, and breaking (3.40) into two real 

equations, we have the following system of simultaneous equations: 

dmn = IXm 1 cos (<Pn - LXm), 
r", 

Re{bmK } = L IS')'KI cos (LS')'K + 7rdm,),), 
,),=1 (3.44) 

rIC 

SSm{bmK } = L IS')'KI sin (Ls')'K + 7rdm')'). 
,),=1 

No solution to (3.44) could be found (unique or otherwise) due to the transcendental terms. 

However, we can analyse the numbers of known and unknown quantities to see whether it is 

at least possible that there is a unique solution to (3.5), when there are coherent signals. 

Lemma 3 

For the sensor and signal parameters to be observable, given the noiseless array-covariance 

matrix, a lower bound on the number of signal sources, K, is 

{~
M 4N-7 
2 M-2) 

K > 3 ±5N-13 
2(M-2) 

2D case 

3D case. 
(3.45) 

The number of known quantities in a coherent model will be 2K(M - 1) for the complex 

matrix, B. In the 2D case, we know from lemma 1 that D is rank 2 and so, from (3.20) 

amn = exp (j7rdmn ) 

= exp (j7r/-L1ndm1) exp (j7r/-L2ndm2) 

= (am1)Jlln(am2)Jl:ln, V n > 2. 

(3.46) 

The number of unknown quantities consists of 2( M - 1) for the first two signals in the matrix 

D, 2(N - 2) for the linear multipliers {/-Lln, /-L2n} of the remaining signals, 2N for the complex 

signal amplitudes {SnK}' K for the number of signals arriving at the array from each signal 

source,{r K} and K - 1 for the rotation angles that define the unitary matrix U in (3.39). Thus 
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the total number of unknowns is 2M + 4N + 2K - 7, so for the number of known quantities 

to be greater than the number of unknown quantities, 

K> 2M +4N -7 
- 2(M - 2) . (3.47) 

By definition, N > K, so the inequality of (3.47) is met under the conditions tabulated in Table 

1. For example, if there are 5 sensors and 3 signals, there must be at least 3 signal sources, and 

because K = N then, despite the assumption to the contrary, the signals must be incoherent 

If the 3D model is assumed then the total number of unknowns is 3M + 5N + 2K - 13 

and the inequality that must be satisfied is 

Sensors, 

M 

5 

6 

7 

8 

9 

10 

K> 3M + 5N -13 
- 2(M - 2) 

Table 1 A lower bound on the minimum number of signal sources required for a 2D 

system with M sensors and N signals to have a unique array-covariance matrix. 

Number of Signals, N 

3 4 5 6 

3 4 4 5 

3 3 4 4 

2 3 3 4 

2 2 3 3 

2 2 3 3 

2 2 3 3 

3.3 Uniqueness Results Applied to Towed Arrays 

(3.48) 

7 

6 

5 

4 

4 

3 

3 

Given the additional geometric constraints of Section 2.5 at least two signal sources are 

required to determine a towed array's shape uniquely when given only signal information. From 

Section 3.2.2.1 we know that three signals are required to guarantee observability of the sensor 

and signal parameters. Some thought will reveal that when it is known that a hydrophone must 

lie on a circle of radius p less than three signals are required to guarantee observability. But 

is it one signal or two? If there is one signal then as explained in Section 2.5 there will be 

a twin ambiguity with regard to the position of each hydrophone. And so, a second signal is 

required to resolve the ambiguity. 

In Section 2.5 the twin ambiguity was resolved not by using a second signal but by assuming 

the solution closest to the x-axis is the correct one. If the slope of the array in the y-direction 
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with respect to the x-direction is small, then the twin-ambiguity assumption will be correct most 

of the time. From Figure 18(a), if the signal DOA angle is greater than the angle between the 

baseline of two sensors and the x-axis then the twin-ambiguity assumption will be correct In 

Figure 18(b) it can be seen that if the signal DOA angle is less than the angle between the 

baseline of two sensors and the x-axis then the twin-ambiguity assumption will be incorrect. If 

the slopes of the baselines are small then the chance of a calibrating-signal DOA angle being 

less than the angle of the baseline will also be small. 

Figure 18 Resolving the twin ambiguity when (a) signal OOA is greater than the 

angle of the baseline and (b) signal OOA is less than the angle of the baseline. 

(a) (b) 

3.4 Summary of Chapter 3 

x 

Sensor locations, signal DOAs, powers and cross-powers and noise power are observable, 

given the array-covariance matrix, under the following conditions: 

1. noise is spatially uncorrelated with equal power at every sensor, 

2. signals are incoherent, 

3. there are at least three signals for a 2D array and six signals for a 3D array, and 

4. there are more sensors than signals. 

The factorisation of the array-covariance matrix will not be unique under the following con

ditions: 

1. when noise is spatially correlated, 

2. when signals are coherent and there is only one signal source, or 

3. when signals are coherent and there is not the minimum number of signal sources required 

by (3.45). 
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When the noise is spatially uncorrelated, when there are coherent signals and when the conditions 

of (3.45) are met, it is not known whether the sensor and signal parameters are observable. These 

results were based on the assumption that the distance each signal travels from each sensor to 

the reference point is known to within plus or minus half a signal wavelength, which eliminates 

the ambiguities caused by phase wrapping. It is interesting to discover that the matrix D, where 

the (m n ) th element of D is the distance from the m th sensor to a reference point in the direction 

of arrival of the nth signal, is rank 2 in the 2D case and rank 3 in the 3D case. 



Chapter 4 New Array Calibrators 

4.1 Enter the Calibrators 

In this Chapter I describe three new array calibrators. Two of the algoritluns are self 

calibrators. The first, given in Section 4.2, assumes the presence of a narrowband signal. It is 

designed to have a low computational demand on the array processor and to be insensitive to 

spatiall y uncorrelated noise. It uses a simple linear regression to obtain an impinging signal's 

phases at each hydrophone from measurements of the phase difference between all pairs of 

hydrophones. The phase-difference measurements come directly from the array-covariance 

matrix. 

The second calibrator, given in Section 4.3, uses a broadband signal and estimates time 

delays. It is similar to the first because it uses the same linear regression to estimate the signal's 

times of arrival at each hydrophone from measureme~ts of the time delay between all pairs of 

hydrophones. Broadband processing eliminates a number of problems that affect narrowband 

algorithms. Narrowband algorithms are sensitive to the presence of 

1. multiple signals, 

2. coherent signals and 

3. spatially correlated noise; 

the broadband algorithm in Section 4.3 is not. The computational requirements of this algorithm 

are greater than that of the narrowband self-calibrator. However, an advantage is that it is not 

necessary to find a suitable narrowband signal from the available spectrum. Both calibrators use 

the chord approach to apply known geometric constraints to the calibrating signal information 

to estimate the hydrophones' positions. The chord approach is described in Section 2.5. 

The last towed-array calibrator that I present is based on a state-space representation of 

the array. This representation is derived from a simple, dynamical model of a towed, flexible 

cylinder's motion. A Kalman filter can be used to recursively estimate the array shape from 

heading-sensor data [GAB93]. I show how to include a self calibrator into the state-space 

framework and combine the signal information with heading-sensor data. The Kalman filter has 

a memory; the latest array-shape estimate is consistent with previous estimates according to the 

dynamical model of the array's motion. Thus, the Kalman filter will give array-shape estimates 

that are more accurate than a self calibrator alone can give. Although any self calibrator may 
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be used with the Kalman filter, I chose to use the narrowband one presented in Section 4.2. 

'This inspired an interesting question: can a system with more measurements than states be 

equivalent to a system with an equal number of measurements as states? The answer is yes 

and I give a proof for this in Section 4.4.4. 

4.2 A Narrowband Self Calibrator 

I present a towed-array self calibrator that uses redundant information from an impinging, 

narrowband signal. The method is simple and computationally efficient, although its sensitivity 

to the presence of interfering signals is greater than methods which are computationally more 

complex. Hereafter, the algorithm is referred to as the least-squares error (LSE) method. 

While a number of self calibrators exist in the literature, the LSE method was developed 

because of a perceived need to solve two problems with these algorithms. The first problem, 

shared by the eigenstructure [BMH91, GWR89, LM87] and sharpness [Buc78, Fer90b] methods, 

is the high computational demand they put on the signal processor; the LSE method puts a much 

lower computational load on the signal processor. The second problem, which the algorithms 

in [Dor78, WF88] exhibit, is the high sensitivity of the array-shape estimator to noise. The 

underwater acoustic environment is a noisy one and, possibly, the first estimation of the quality 

of towed-array calibrators will be based on how well they perform at low SNRs. Computer 

simulations have shown the LSE method to perform as well as any method at low SNR (Chapter 

5). The LSE method does, however, show greater sensitivity to the presence of interfering 

signals than the self-calibrator in [GWR89]; this is the trade-off for reduced computational load. 

For the LSE method, I make the following assumptions in addition to those given in 

Chapter 2: 

1. the array and signals are restricted to two dimensions, 

2. there is a far-field narrowband signal source (referred to as the calibrating signal) that 

allows us to estimate the array-shape, 

3. the noise is spatially uncorrelated, 

4. the calibrating signal is the only signal impinging upon the array in its frequency band, 

5. the interhydrophone spacing is equal to, or less than, half the calibrating signal wavelength, 

The arguments of the elements of the array-covariance matrix are modulo-27r measurements of 

the difference in phase of the calibrating signal between each pair of hydrophones. Section 4.2.1 

describes the relation of the phase differences to the distance between pairs of hydrophones, in 

the direction of the calibrating signal. I show how the modulo-27r phase-difference measure

ments can be unwrapped uniquely, by observing that no phase-wrapping will occur between 
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hydrophones that are separated by less than half a wavelength. Section 4.2.2 contains the re

sults of computer simulations of the LSE method. I investigate its sensitivity to noise and 

calibrating-signal frequency and DOA and compare the computational load with that of the 

calibrator in [GWR89]. 

4.2.1 Theory 

Assuming there is only one narrowband signal impinging upon the array at a given 

frequency, then, from (2.15), the (j k )th element of the array-covariance matrix is given by 

Tjk = a s
2 exp (j1f(Xj - xk)(h) 

= a} exp (j1f(djI - dkI )). 
(4.1) 

From now on the subscript 1 will be dropped because there is only one impinging signal. Let 

{"pjk} be the arguments of the array-covariance matrix elements so that "pjk = 1f( dj - dk ) 

modulo 21f. If the exact array-covariance matrix is not known and an estimate is used then an 

error term, ejb must be included. This gives a system of equations of the form 

{ -j;jk + Ajk = 1f( dj - dk) + ejJ. }, (4.2) 

where Ajk is a multiple of 21f and the hat indicates an estimate. Using matrix notation we 

can write this as 

't/J + A = 1fBd + e, 

where 
"p = ["p12, ... , "pIM, "p23, ... , "pM -I,M] T , 

A = [A12, ... , AIM, A23, .. . , AM_I,M]T, 

d = [dl , .. . ,dM]T, 

e = [e12,' .. , elM, e23, . .. , eM_l,M]T 

and B is a matrix of +1 's and O's of the form 

1 -1 0 0 
1 0 -1 0 

B = I. I' 
0 0 1 -1 

(4.3) 

(4.4) 

(4.5) 

There are M (M - 1)/2 pairs of hydrophones and so, for an array with more than two 

hydrophones, (4.3) is over determined. We take a least-square error estimate of d by minimising 

the error function C = 11-0 + A - 1f B d 11
2

, where /I ... 11 denotes a norm. If P is the Moore

Penrose pseudo inverse of B then C is minimised by choosing 

d = p(,z + >-) 
(4.6) 

1f 
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The estimate of d requires only one matrix multiplication, as P can be precalculated, which 

is an advantage for real-time applications. 

Because 1fJ is a modulo-27r measurement of phase difference, some of the elements of ).. are 

likely to be nonzero. However, we have assumed that the array has an interhydrophone spacing 

less than or equal to half the calibrating signal wavelength, so we know that there can be no 

phase wrapping between adjacent hydrophones and Am,m+l = 0, 1 < m < M - 1. Also, the 

phase difference of the calibrating signal between two hydrophones, j and k, is equal to the sum 

of phase differences between each pair of adjacent hydrophones, in-between the ph and kth , 

~ ~ ~ ~ 

1fJjk + ).. jk = 1fJj,(j+l) + 1fJ(j+l),(j+2) + ... + 1fJ(k-l),k + e jk, (4.7) 

where the error term, e jb is included because we have only the estimates of the phase 

differences. So, · the 27r multiples that are associated with nonadjacent hydrophone pairs, 

Ajb k > j + 1, can be found by choosing the value of Ajk that minimises ejk in (4.7). 

Once d is estimated the chord approach of Section 2.5 is used to estimate the hydrophones' 

positions. 

4.2.2 Examples 

To test the LSE algorithm I simulated a 35-element, uniformly spaced array with an 

interhydrophone spacing of 1. The sound field consists of spatially uncorrelated noise and a 

single 0 dB far field, narrowband signal with a centre frequency equal to the design frequency. 

The shape of the array is represented by the solid line in Figure 19. The exact noiseless 

array-covariance matrix was calculated using Ra = alar, and an estimate of the noise

covariance matrix was added to this. The exact noise-covariance matrix is diagonal for spatially 

uncorrelated noise but its estimate has small nonzero terms off the diagonal. It is calculated 

with the time average of the covariances of 35 channels of white Gaussian noise, with 256 

samples in each channel. The asterisks on Figure 19 represent the array shape estimated by the 

least-squares error algorithm, which closely matches the true array shape, when the signal was 

located at an angle of 90°. Figure 20 shows the wavelength-normalised, hydrophone position 

errors at each hydrophone. The RMS error is less than one-hundredth of a wavelength which 

is accurate enough for even very sensitive array processors. 
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Figure 19 Actual and estimated array shapes. SOlITce direction is 90°. 
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Figure 20 Normalised hydrophone position errors at each hydrophone. Source direction is 90°. 
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The LSE algorithm requires approximately 8M3 floating-point operations to produce an 

array shape from the array-covariance matrix. By comparison, the eigen decomposition of 

the array-covariance matrix, which is the fundamental operation used in [BMH91, GWR89, 

LM87], requires between 16M3 /3 and 32M3 /3 floating-point operations alone [PFfV87]. 

Thus, the LSE algorithm uses approximately one-half of the processing power of the algorithms 

of [BMH91, GWR89, LM87]. 

Table 2 shows some of the performance parameters for calibrating signal DOAs other than 

90°, obtained through Monte Carlo trials of 50 simulations each. The performance parameters 

are 

1. the calibrating-signal DOA estimation error, 
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2. the RMS error of estimation of the distance between each hydrophone and the reference 

point, in the direction of the calibrating signal, normalised by the signal wavelength, and 

3. the RMS hydrophone position estimation error, normalised by the signal wavelength. 

Regardless of the calibrating signal's DOA, the RMS, normalised distance error is of the order of 

10-2 . The direction estimation error is less than 0.5° in all cases. The normalised hydrophone

position error is calculated with regards to the direction estimation error, that is, it indicates the 

accuracy of the shape estimate, and not the rotational errors which are caused by the direction

estimation error. The normalised hydrophone-position errors reflect the accurate relative distance 

estimates, until the calibrating signal sources reaches shallow DOAs, of 10° or less. At this 

point, the RMS position errors become unacceptably high. Of the two simultaneous solutions 

to (2.24) and (2.22) we assumed that the one closest to the x-axis was the correct one. When 

the signal DOA angle is less than the angle of the baseline from one hydrophone to the next, 

then that assumption is false, and large position errors will occur at these hydrophones, despite 

the high accuracy of the relative distance estimates. This can be seen in Figure 21, where the 

estimated array shape deviates from the actual between about x = 20 and x = 50 m. 

Figure 21 Actual and estimated array shapes. Source direction is 10°. 
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Table 3 shows the performance parameters as a function of the centre frequency of the 

calibrating signal, when the calibrating signal is at 90° and the array's design frequency is 250 

Hz. The relative distance error is consistently good over all signal frequencies but the direction 

estimate becomes markedly worse at lower frequencies. This is consistent with the fact that 

resolution becomes worse at lower frequencies. 
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Table 2 Comparison of direction estimation and RMS, normalised, hydrophone distance and 

position errors as a function of source direction. Signal frequency is 250 Hz. 

Signal DOA direction estimation RMS clistance error RMS position error 
(degrees) error (degrees) (climensionless) (climensionless) 

90 0.3 1.3 x 10-2 1.5 X 10-2 

45 0.2 1.4 x 10-2 2.0 X 10-2 

20 0.3 1.3 x 10-2 14 X 10- 2 

10 0.3 1.3 x 10-2 3.7 

5.0 0.4 1.4 x 10-2 7.9 

1.0 0.4 1.3 x 10-2 12 

Table 3 Comparison of direction estimation, and RMS, normalised hydrophone distance 

and position errors as a function of frequency. Source direction is 90°. 

Frequency (Hz) direction estimation RMS clistance error RMS position error 
error (degrees) (climensionless) (climensionless) 

300 0.2 1.4 x 10-2 1.5 X 10-2 

250 0.3 1.3 x 10-2 1.5 X 10-2 

200 0.3 1.3 x 10-2 1.5 X 10-2 

150 0.4 0.3 x 10-2 0.5 X 10-2 

100 0.5 1.2 x 10-2 1.4 X 10-2 

50 0.8 1.3 x 10-2 1.5 X 10-2 

25 2.9 1.4 x 10-2 1.7 X 10-2 

Table 4 shows the performance parameters for various SNRs. The calibrating signal has 

a DOA of 90°, and a centre frequency of 250 Hz. The 3rd and 4th columns show that the 

array-shape estimate is adequate for beamforming at SNRs down to -5 dB. At lower SNRs a 

longer time average can be used to compensate. 

Table 4 Comparison of direction estimation, and RMS , normalised hydrophone distance and position errors 

as a function of signal-to-noise ratio . Source direction is 90° and frequency is 250 Hz. 

Signal-to-noise direction estimation RMS distance error RMS position error 
ratio (dB) error (degrees) (dimensionless) (dimensionless) 

0 0.3 1.3 x 10- 2 1.5 X 10- 2 

-5 0.7 4.2 x 10- 2 4.8 X 10-2 

-10 56 18 20 
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4.2.3 Summary of the narrowband self calibrator 

The LSE algorithm estimates the signal delays with sufficient accuracy for beamforming 

over a wide range of frequencies. The method is insensitive to uncorrelated noise, because noise 

terms in the array-covariance matrix only appear on the diagonal, while the algorithm uses only 

off-diagonal elements. The effects of noise will be smaller when the array-covariance matrix 

is averaged for longer. The LSE method is computationally more efficient than the methods 

described in [BMH91 , GWR89 , LM87] by a factor of 2 or more. The method is compared, 

using computer simulations, with a variety of other self calibrators in Chapter 5. 

4.3 A Broadband Self Calibrator 

In this section I present an algorithm for calibrating a towed array using broadband signals. 

This algorithm is also known as the time domain method. The algorithm addresses the problems 

of 

1. the availability of narrowband signals, 

2. the presence of interfering signals, and 

3. the presence of coherent signals. 

I assume that one signal has greater power than all other signals and call this signal the calibrating 

signal. The algorithm uses estimates of the relative time of arrival of the calibrating signal at 

each hydrophone. The relative arrival times are obtained using standard time-delay estimation 

techniques and a simple, robust least-squares optimisation. The sensor locations are estimated 

from the arrival times using the chord approach explained in Section 2.5. The algorithm is 

robust with regard to the first three problems above because time-delay estimation is 1) more 

accurate as the bandwidth of the signal increases, and 2) insensitive to interfering and coherent 

signals. To decrease the likelihood that interfering signals will affect the calibrating signal's 

time-delay estimates we select delay estimates only from regions that make sense physically. In 

Section 4.3.2 I present the results of a simulation experiment that demonstrates the performance 

of the algorithm. The following discussion is limited to two dimensions, i.e. the array and 

calibrating signal source lie in a plane. 

4.3.1 Estimating the relative time of arrival of the calibrating signal 

Let the one impinging signal's time of arrival at the mth hydrophone be tm . The time 

of arrival is given by (2.9) where the subscript n for signal number is dropped because we 

are only interested in one signal, designated the calibrating signal. The time delay of arrival 

(TDOA), T j k, between any pair of hydrophones is, by definition, the difference in relative 
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times of arrival. And so, 

Tjk = tj - tk' (4.8) 

If the unknown TDOAs are estimated we must include an error term, ejk, in (4.8). This gives 

a system of equations of the form 

{ Tj k = t j - t k + e j k }. 

U sing matrix notation we can write this as 

where 

T = Bt + e, 

T = [TI2 , ... , TIM, T 23 , . .. , TM_I,M]T, 

t = [tl,"" tM]T, 

e = [eI2,' .. , elM, e23,' .. , eM_I,M]T, 

and B is a matrix of +l's and O's of the form 

B= 

1 -1 0 
1 0 ' -1 

o o 

o 
o 

1 -1 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

There are M(M - 1)/2 pairs of hydrophones so, for an array with more than two receivers, 

(4.10) is over determined. We take a least-squares error estimate of t by minimising the cost 

function C = II T - B t II· The estimate of t is given by 

t = PT, (4.13) 

where P is the Moore-Penrose pseudo inverse of B. The pseudo inverse can be calculated off 

line so that after estimating the TDOAs only one matrix multiplication is required to obtain 

the relative times of arrival. 

The TDOA, Tjb between every pair of hydrophones can be estimated using well-known 

generalised cross-correlation (GeC) techniques [Car93]. The generalised cross-correlation 

function is a standard cross correlator with two prefilters (see Figure 22). Various choices 

of the prefilters, HI( f ) and H2 ( f ), have been designed to enhance frequencies where the signal 

is strong, and attenuate frequencies where the noise is strong [Car93]. The TDOA estimate is 

the lag at which the GeC function is a maximum. There are no conditions on the spectrum of 

the signals; they do not have to be narrowband. In fact, the wider the bandwidth of the signals, 

the less is the chance of ambiguous TDOA estimates [Car93]. If the hydrophones receive N 

signals there will be .N peaks in the GCC function. The lag of a peak corresponds to a particular 
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signal's TDOA between the two hydrophones. Assuming that the power of one of the signals 

is sufficiently greater than all the others, the delay of that signal will always be found as the lag 

of the biggest peale TIlis also applies in the case of multipath propagation, which gives rise to 

coherent signals. Assuming that the direct-path signal has greater power than the reflected-path 

signals then the biggest peak will correspond to the direct-path signal. For these reasons the 

Gee is insensitive to the presence of multiple and/or coherent signals. 

Figure 22 Block diagram of a generalised cross correlator. 
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All of the time-delay estimates must relate to the one signal for (4.10) to be a consistent set 

of equations. In the presence of multiple signals consistency is ensur~ by the requirement that 

one source have greater power than any of the others. We can reduce interference from other 

signals and noise even further by searching for a maximum only in regions that make physical 

sense. If the hydrophones are adjacent the peak can be expected to occur at a lag in the range 

- p / Cs < Tk ,k+l < P / cs , where p is the distance between the hydrophones. For non-adjacent 

hydrophones the peak can be expected to occur at a point close to the sum of the lags of all 

adjacent hydrophone pairs between the two being correlated. That is Tjk ~ Tj,j+l + .. . +Tk-l,k. 

The times of arrival are used with geometric constraints to estimate the hydrophones' 

positions (see the description of the chord approach in Section 2.5). 

4.3.2 Example 

I simulate the array-calibration algorithm using a 32-element array with a hydrophone 

spacing of 1 and a speed of sound in water of 300 S-1. The sound field consists of spatially 

uncorrelated noise and five far-field signal sources with a bandwidth of 1000 Hz. The first four 

signals have DOAs of 90°, 50°, 30° and 110°. Their SNRs are OdB, -6dB, -6dB and -6dB 

respectively. The fifth signal simulates a reflection from the sea bed. It is coherent with the 

first, has a DOA of 90° and elevation 10° below the plane of the array with an SNR of -6dB. 

Standard cross correlations were used to estimate time delay using 1024 independent samples. 
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Figure 23 Actual (solid line) and estimated (dashed line) array shapes. 
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Figures 23 and 24 show the results of the simulation. In Figure 23 it can be seen that the 

estimated array shape appears identical to the actual shape, apart from a small rotation about 

the origin. The small rotation is due to a 0.7° error in the calibrating-signal DOA estimate. 

This error causes the beamformer image to be shifted by 0.70 but does not otherwise affect the 

image quality. Ignoring the DOA estimation error, the RMS hydrophone location error is only 

2% of the interhydrophone distance (one-hundredth of a wavelength at the design frequency). 

Figure 24 shows the images from a Capon estimator assuming a straight array and a calibrated 

array. The straight array image shows no recognisable signal sources. However, the calibrated 

array image clearly shows all five signal sources (there are two at 90°). 

4.3.3 Summary of the broadband self calibrator 

The broadband algorithm estimates the shape of a towed array with sufficient accuracy for 

beamforming. The generalised cross correlation lends the algorithm robustness to the presence 

of interfering and coherent signals. If the SNR is low the effects of noise can be reduced by 

using more than l024 samples for the generalised cross correlation. To minimise errors arising 
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from the incorrect assumption that the array shape is fixed for the duration of averaging, the 

number of samples cannot be too large. It is likely that low SNR would be the greatest hurdle 

for this algorithm when using real underwater data. Much substantial work on underwater 

time-delay estimation exists in the literature and so further investigation of this algorithm using 

underwater data is warranted. 

4.4 Data Fusion Using Kalman Filters 

In this Section I introduce a Kalman-filter-based array calibrator that uses heading-sensor 

measurements [GAB 88, Gra86, GAB93, HRG90, RG]. The Kalman-filter calibrator uses a 

state-space representation of the arraythat is a convenient framework for data fusion. I propose 

combining the compass data with phase or time-delay information from a self calibrator. I 

present three systems in which the measurements are either the signal phases, the heading

sensor data or a combination of the two. I use solutions of the Riccati equation to predict and 

compare the mean-square error (MSE) of the state estimates, given each of these systems. 

There is evidence that the shape of a towed array at one instant in time can be partially 

inferred from its shape at an earlier time [Ken81 , RGH90]. For an array fitted with a small 

number of heading or depth sensors, this property can be used to estimate the slopes or 

transverse displacements of hydrophones at points where a heading or depth sensor is not 

located. Propagation of a thin, flexible cylinder's transverse displacements is described by a 

partial differential equation known as the Paidoussis equation [pai66a, Pai66b]. Disturbances 

induced at the tow-point, termed tow-point induced (TPI) motion, with wavelengths that are 

long compared to the array length, propagate down the array at a speed close to the array's tow 

speed and are lightly attenuated [Dow88a, Dow88b, Ken81]. 

If the Paidoussis equation is discretised in time, the transverse displacement of a small 

segment of the array at one instant in time is related to the displacements of upstream segments 

at earlier instants. This suggests a discrete-time state-space formulation of the array, in which 

the state of the system is a finite-dimensional vector with components that are the transverse 

displacements of the segments [GAB93]. Alternatively, the states can be the slopes of the 

segments. The state-transition matrix, which describes how the states of the system at time t 

are related to the states at time t - 1, is determined by the discretised Paidoussis equation. It 

is the same regardless of whether the states are displacements or slopes. Tow-point induced 

disturbances are introduced as driving terms which mayor may not be known. The outputs 

of heading and depth sensors are related linearly to the states. Given this linear, state-space 

representation of the system, the Kalman filter is a powerful method of estimating the states 

of the system. Based on all measurements to the current time, it may be used to give an 
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estimate of the states at a future time (prediction), the present time (filtering) or some past 

time (smoothing). In addition, it is robust to model errors and incorrect assumptions about 

the noise statistics, which is desirable as oceanic conditions will introduce model errors in the 

array dynamics. 

There are many examples of towed-array self calibrators in the literature [Buc78, Fe~Ob, 

Gor95c, GM95a, GWR89, ~92, Wah93]. Typically, these algorithms estimate the phase or 

time delay of a calibrating signal between each hydrophone and a reference hydrophone. The 

chord approach (Section 2.5) is then used to estimate the DOA of the calibrating signal and 

the hydrophone locations. The phase or time-delay estimates from any of these algorithms are 

related linearly to the states of the towed-array system, and so, they may be used to either replace 

or supplement measurements from heading sensors. The signal-based algorithms use the latest 

measurements only. Combining one of the self calibrators with the Kalman filter of [GAB93] 

will reduce the error of the hydrophone position estimates because all past measurements are 

used by the Kalman filter. 

The state-space framework allows data from a self-calibrator to be fused with heading

sensor data. Data fusion will result in smaller errors than either a self-calibrator or heading

sensor-based calibrator alone will give. 

In Section 4.4.1 I present the array-shape estimation problem within the state-space frame

work. The problem is assumed to be a two-dimensional one, where displacements are in the 

horizontal plane. The array is divided into equal-sized segments, each segment being a straight

line approximation of a short piece of the array. A hydrophone is assumed to be at each end of 

the segment. This assumption may be dropped at the expense of a more cumbersome notation. 

I assume TPI disturbances have long wavelengths in comparison to the length of the array so 

that the Paidoussis equation reduces to a simple, linear form. For the states I use the slopes of 

the segments which propagate down the array at close to the tow speed with little damping. The 

displacements of the segments may be used instead of slopes and the state-transition equations 

will not be any different. This is discussed further in Section 4.4.3.3. 

The self calibrator I use is the least-squares error method of Section 4.2. I assume the 

DOA of the calibrating signal is known or estimated with the chord approach and the process 

noise-covariance matrix is diagonal. I give an interesting corollary that describes how to reduce 

the computational load of a Kalman filter when there are more measurements than states. 

The noise statistics of the phase estimates are all that is required to complete the state-space 

representation of the towed-array system [WRM94]. 

In section 4.4.2 I examine three systems that differ only by the measurements. The 

measurements for the three systems are heading sensors only, calibrating-signal phases only, 
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and phases and heading sensors combined. I compare the mean-square error of the Kalman 

filter's state estimates for each of the three systems. The mean-square errors of the three 

systems depend on the SNR of the hydrophone signals and heading sensors, the numbers of 

hydrophones or heading sensors, the number of snapshots of the hydrophone signals, the DOA 

of the calibrating signal and process noise of the state-transition equation. I briefly discuss 

transient response of the Kalman filter in Section 4.4.2.2 

In Section 4.4.3 I discuss enhancements to the state-space system; I describe how the x

positions of the hydrophones may be incorporated into the state-space framework, observability 

of the measurement systems is examined and I give the measurement matrices for a system that 

uses displacements instead of slopes for the states. 

4.4.1 Towed arrays in (state) space 

Paidoussis [pai66a, Pai66b, Pai73b] derived a differential equation describing the dynamics 

of thin, flexible cylinders towed in fluid. The Paidoussis equation was found by linearising 

viscous drag coefficients for small angles of attack. A term was omitted from this early work 

and Paidoussis gave the correct equation in [pai73a]. A fourth-order term has a coefficient that 

depends on the bending stiffness of the cylinder. Because towed arrays have small diameters in 

relation to their lengths, the restoring force due to bending stiffness is very small. Recognising 

this, the bending stiffness has been assumed negligible and the Paidoussis equation approximated 

by a second order differential equation [Dow88a, Dow88b, Ken81, KS81, 0169]. It was found 

that for TPI disturbances with long wavelengths relative to the array length, every point on 

the cylinder follows the same path. This is referred to as worm-in-hole or water pulley 

motion. Incidentally, [Ken81, KS81, 0169] is based on Paidoussis' early erroneous equation, 

and [Dow88a, Dow88b] is based on Paidoussis' corrected equation. Despite this, these works 

agree in regards to long wavelength TPI motion. 

In view of having already used the symbol x to represent hydrophones' longitudinal 

positions, I will go against convention and use the symbol b to represent the state vector. 

The discrete-time, state-space representation of a system is as follows [BH83]: 

1. the linear system is modelled in the form 

b(t + 1) = F(t)b(t) + u(t) + w(t) (4.14) 

and 

2. the measurement of the process is represented by 

z(t) = H(t)b(t) + v(t). (4.15) 
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The terms and notation of (4.14) and (4.15) are: 

b(t) =(M x 1) state vector at time t 

F(t) =(M x M) state-transition matrix describing how the state at time t + 1 is related to the 

state at time t in the absence of a forcing function 

u(t) =(M x 1) driving-term vector at time t 

w(t) =(M x 1) process-noise vector - a white sequence with known covariance 

z ( t) = (N xl) measurement vector at time t 

H ( t) = (N x M) measurement matrix relating noise-free measurements to the state at time t 

v(t) =(N x 1) measurement noise vector - a white sequence with known covariance that has 

zero cross correlation with w(t) 

Note that the number of measurements, N, may be different from the number of states, M. 

When the states are the slopes, the number of hydrophones is M + 1. The covariance matrices 

of w(t) and v(t) are given by 

E{w(t)wT(t)} = Q(t) 

E{v(t)vT(t)} =V(t). 
(4.16) 

I show how a towed array may be modelled as a state-space system in the following 

sections. Following the work of [Gra86, GAB88] Section 4.4.1.1 describes how the state

transition matrix is derived from the Paidoussis equation. Section 4.4.1.2 discusses the driving 

terms and model noise. The model noise accounts for approximation errors in the state-transition 

matrix and effects that are not due to TPI motion, such as ocean currents. Sections 4.4.1.3, 

4.4.1.4 and 4.4.1.5 describe the three measurement systems that we will compare. These systems 

are: Section 4.4.1.3 heading-sensor measurement equations, Section 4.4.1.4 calibrating-signal 

measurement equations and Section 4.4.1.5 combined signal and sensor measurement equations. 

The signal and sensor data may be synchronous or asynchronous; the Kalman filter is able 

to handle both situations. 

4.4.1.1 State-transition matrix 

Assume we have a nominally linear towed array with hydrophones at regular spacings, p. 

Time is assumed to be normalised by the time it takes for the towing vessel to travel a distance 

of 1 (dimensionless unit). If the tow vessel's speed is U S-l then time is normalised by l/U. 

Disturbances from long wavelength TPI motion were shown in [Ken81] to be governed by the 

equation 

y ( t, x) = f (x - wt). (4.17) 
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The constant w depends on the tangential and normal drags of the array, y is the transverse 

displacement of the array at distance x fro the tow point (x is measured in the opposite direction 

to the tow-vessel's course), and f describes the array's shape. The wavelength of a disturbance 

is considered to be long if it exceeds the length of the array. The term water pulley is used 

to describe disturbances that propagate down the array at a speed of w U with little damping. 

The constant, W, is often close to unity. 

Figure 25 Model of the discretised array. 
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For small transverse deviations, I assume that the array shape can be represented using the 

model of Figure 25. In this model, the distances between adjacent hydrophones in the x-direction 

are constant and equal to the known hydrophone separation. Following [GAB93 , Gra86] , we 

discretise the Paidoussis equation in space and time. Let hx be the spatial discretisation interval 

and ht be the temporal discretisation interval. For a simpler notation we choose hx to be equal 

to the hydrophone separation. The states, bet) = [b1(t), b2(t), ... , bM(t)]T, of the array system 

are the slopes of the segmented array between hydrophones and are given by 

bm = (Ym+l - Ym)/hx' (4.18) 

The shape of an array with M + 1 hydrophones is completely defined by M states. The 

state-transition matrix, F, for the water pulley model of (4.17) is 

F = (1 - w)1 + w L, (4.19) 

where L is an M x M matrix whose only nonzero elements are on the first diagonal below the 

main diagonal and are equal to unity, i.e. 

0 0 
1 0 

L = 10 1 (4.20) 

0 0 1 0 

The constant, w, is given by 

w = whtlhx . (4.21) 
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If the cliscretisation time, ht, is selected so that w = 1, then F = L. TIlls tells us that the 

slope of a segment at one instant equals the slope of an upstream segment at a previous instant 

Bitmead and Anderson [BA84] suggest that the water pulley model is adequate in practice, and 

that it may be augmented by a damping coefficient, a, that is close to unity. With this, the 

state-transition matrix is 

F = aL. (4.22) 

4.4.1.2 Model-noise and driving terms 

The model-noise term, w(t), is assumed to be a white noise sequence that accounts for 

transition matrix approximations and random effects such as ocean currents. Following [Gra86, 

GAB88], I assume that 

Q(t) = aq
2 I, (4.23) 

where a q2 is the model-noise variance. 

The driving term is defined by boundary conditions of the Paidoussis equation, and, for 

the water pulley model, u( t) is a vector with all elements zero except for the first TIlls 

represents TPI disturbances that are introduced into the system at each time instant. When 

the driving term is not known it is modelled as a white noise sequence with covariance, 

U(t) = diag [a 1,0, . .. , oJ, where a I is the TPI disturbance variance. The unknown driving 

term is uncorrelated with the model noise. 

4.4.1.3 Heading sensor measurement equations 

A heading sensor, placed in the middle of the m th array segment, measures the angle 

of orientation, f3m, of that segment This information is related linearly to the slope of the 

segment by 

1 
tan f3m = hx (Ym+1 - Ym) 

(4.24) 

Xm · 

Assume there are K heading sensors on segments PI, P2, ... ,PK and the measurements are the 

tangents of the {f3m}. The measurement matrix, Hh, is defined by 

Hh(k,m) = op/cm. (4.25) 

The measurement vector is given by Zh = [tan f31, ... , tan f3 K]T. The measurement noise, 

v h ( t), will depend on the heading sensors used. I assume that the noise at one sensor is 
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independent of the noise at the other sensors and so the measurement noise-covariance matrix 

is diagonal. For small measurement variance, a J, the tan function can be approximated by a 

line around the mean of the angle measurement, 13m. The slope of the tan function at this point 

is tan2 13m + 1. Therefore, the variance of the slope estimate is a J (tan2 13m + 1) 2. And so, 

the measurement noise-covariance matrix can be approximated by 

2. [( 2 - ) 2 (2 - ) 2] Vc=a,ediag tan 131+ 1 , ... , tan f3K+1 . (4.26) 

4.4.1.4 Calibrating signal measurement equations 

When using a calibrating signal to estimate the locations of an array's sensors it is the 

phase of the calibrating signal, received at each sensor, that gives this information. Assume 

there is a calibrating signal, s(t), with known DOA, 4>. The distance, dm , from the first sensor 

to the m th along the line of sight to the calibrating signal source can be obtained by observing 

the phase, Om, of arrival of the calibrating signal as it is received at each sensor. From (2.11), 

dm is given by 

1 
dm = -(Om - ( 1 ), 

7r 

where the subscript n has been dropped because we are dealing with only one signal. 

(4.27) 

Specific methods of obtaining the calibrating signal's phases is the subject of much 

literature. I have chosen to use the least-squares algorithm of Section 4.2. I choose this 

calibrator because it uses a simple linear regression to estimate {Om} which, in the context of 

Kalman filtering, poses an interesting question. The question deals with state-space systems 

that have more measurements than states and I discuss this in Section 4.4.4. 

From (2.8) and (4.27), 

Om - 01 = 7r(xm cos 4> + Ym sin 4», 

and subtracting Om-l - 01 from both sides, 

Om - Om-l = 7r(( Xm - xm-d cos 4> + (Ym - Ym-l) sin 4» 

= 7rhx ( cos 4> + bm sin 4». 

This can be written in matrix form as 

where 

Zs(t) = 7rhx sin4>Ib(t) +vs(t), 

Zs(t) = [02(t) - Ol(t), ... , OM+l(t) - OM(t)]T 

-7rhx cos 4>(k)[l, ... , l]T 

(4.28) 

(4.29) 

(4.30) 

(4.31) 
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and vs(t) is the measurement noise of {8m - 8m - I }. The measurement matrix is 

Hs = 7rh x sin ¢ I. (4.32) 

The measurement noise-covariance matrix, V s, is given by 

Vs = E[vs(t)v;(t)] 

= Cov[zs(t)z;(t)] (4.33) 

= PCov [ ("b(t) + A(t)) ("b(t) + A(t) n pT, 

where ~(t) + A(t) is given in (4.2). Wylie et al [WRM94] use a random model for the 

calibrating signal and show that 

[ ) ( ~ ) T] 1 ( bmk ) ( bjn ) 
COY (~(t) + A(t) 'ljJ(t) + A(t) = 2J 1 + SNR 1 + SNR ' (4.34) 

where SNR is the signal-to-noise ratio and J is the number of time samples of data used to 

calculate the array-covariance matrix. We note that if a deterministic model for the calibrating 

signal is used the covariance matrix of ~( t) + A ( t) will be different There is no clear argument 

for using one model over the other so we use the random model. 

4.4.1.5 Combined sensor and signal measurement equations 

The state-space structure allows the two separate measurement equations of Sections 

4.4.1.3 and 4.4.1.4 to be combined into one. Assuming that the measurements are available 

synchronously, the combined equation is 

ze(t) = Hex(t) + ve(t), (4.35) 

where 

[Zh(t)] [Hh] [Vh(t)] 
ze(t) = zs(t) , He = Hs ' and ve(t) = vs(t) . (4.36) 

The heading-sensor measurement noise is independent of the calibrating-signal noise, and so, 

the measurement noise-covariance matrix is given by 

[
Vh 0 1 

Ve = 0 Vs (4.37) 

For convenience, I have, till now, dropped the notation showing dependency on time of 

H e, H h , H s, V e, V h and Vs. The Kalman filter allows these matrices to vary in time. And 

so, if heading-sensor and signal-phase measurements are not available at the same instants, the 

Kalman recursion equations need only use the H and V matrices that are appropriate. This 

asynchronous measurement Kalman filter makes use of whatever measurements are available 

at any instant. 
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4.4.2 Examples and discussion 

Based on a set of measurements up to the current time, the Kalman filter may be used 

to estimate the states at a future time (prediction), the current time (filtering) or a past time 

(smoothing). One step prediction, denoted b(t + lit), predicts the state at time t+ 1, conditional 

on all measurements up to time t. Filtering, denoted b(tlt), estimates the states at time t based 

on measurements up to the same time. For array calibration, this is the technique most likely to 

be used. Fixed-lag smoothing, denoted b(t - Kit), estimates the states at K sampling instants 

before the latest measurement, where K is the fixed lag interval. The real-time constraints 

of processing power and memory requirements are likely to preclude smoothing from at-sea 

applications. 

The Kalman filter recursively estimates the state-estimation error, as well as the states 

themselves. Solutions of the Riccati equation tell us what the steady-state, state-estimation 

error will be, independent of the measurements. In this section I compare the state-estimation 

errors for prediction, filtering and smoothing of the three systems defined by the measurement 

equations (4.25, 4.26), (4.30) and (4.36). I also investigate the sensitivity of the Kalman 

filter to cilibrating-signal-DOA estimation errors. The simulated array is uniform and has 20 

hydrophones (19 states) and the states are the slopes of the flexible cylinder between adjacent 

hydrophones. The spatial discretisation interval, hx is 1. Deviations in the tow-vessel's course 

cause TPI motion of the array. The TPI motion has a frequency low enough that the water 

pulley model may be used. The temporal discretisation interval is chosen to be ht = 1/0, 

so that w = 0 hx / h t = 1. In other words, the temporal discretisation interval is the time 

taken for a disturbance to move one spatial discretisation interval. The variance of the heading 

sensor measurements is assumed to be 10. The sampling rate of the hydrophones is 1428 per 

discretisation interval. The process attenuation constant, Q, is 0.9, which corresponds to a 

damping of 0.14 over the whole array. The driving term is unknown and is assumed to have 

variance equal to the process noise variance. Hydrophone SNR, process noise variance, (J q2, and 

calibrating-signal DOA are treated specially in 4.4.2.1. There are four heading sensors located 

at the first, 5th, 10th and 15th segments of the array. 

4.4.2.1 Specific examples 

Figure 26 shows the steady-state estimation errors for prediction, filtering and infinite fixed

lag smoothing. The SNR is - 20dB, (J q2 = 0.05 and calibrating signal DOA is 900. Part (a) 

shows results for the heading-sensor-only measurement equations (4.25, 4.26), part (b) shows 

the results for the calibrating-signal-only measurement equations (4.30) and part (c) shows the 

results for the combined measurement equations (4.36). Mean-square errors are plotted against 
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segment number. Prediction is represented by the dotted lines, filtering by the solid lines and 

smoothing by the dashed lines. 

Figure 26 Mean square errors of the Kalman filter for (a) calibrating-signal meastrrements 

only, (b) heading-sensor measurements only and (c) calibrating-signal and 

heading-sensor measurements combined. SNR=-20dB, a; = 0.05 and DOA=90°. 
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The characteristics of the MSEs in Figure 26(a) have been discussed in [GAB93], and I 

briefly recount that discussion. At segments with a heading sensor, the MSE equals the heading 

sensor variance. Downstream of heading sensors the MSE increases by a q2 less an amount 

proportional to the damping factor. The damping factor causes the filter's MSE function to 

curve on the upward ramp. Without a heading sensor at the end of the array the prediction, 

filtering and smoothing MSEs are identical after the last heading sensor. Prediction and filtering 

errors only differ at segments where heading sensors are located 

The MSEs in Figure 26(b) are largely constant with respect to segment number. Slight 

variations of the errors are due to the non-uniform structure of the calibrating-signal, noise

covariance matrix of (4.34). At this SNR the error of the phase estimates is around 0.117r. 

After division by If and filtering, the MSE of the state estimates is around 0.03. The error 
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reduction is due to the Kalman filter's use of all measurements to the current time. The MSE 

of the predictor is the sum of the filter MSE and the process noise variance. As expected, the 

infinite fixed-lag smoother has a smaller error than the filter. 

The MSEs for the combined heading-sensor and calibration-signal measurements (Figure 

26(c)) are always less than the MSEs of the separate measurement systems. Given that, in this 

example, the MSEs of Figure 26(b) are much less than those of Figure 26(a), the improvement 

in Figure 26( c) over Figure 26(b) is not very great. 

Figure 27 shows the effect of DOA on the MSE of the calibrating-signal measurement 

system. The DOA in Figure 27 is (a) 90°, (b) 45°, (c) 10° and (d) 0° and the SNR is 

- 20 dB. The graphs show only the filter MSE. The performance of the calibrating-signal-only 

measurement system is dependent on DOA. As the DOA approaches endfire the calibrating 

signal provides less information about the transverse displacements of the hydrophones, and so, 

the MSE increases. When the calibrating signal is at endfire, it gives no information about the 

transverse displacements at all, and the Kalman filter will estimate a straight array shape. 
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Figure 27 MSE of the Kalman filter state estimates using a calibrating 

signal with DOA of (a) 90°, (b) 45°, (c) 10° and (d) 0°. SNR is -20 dB. 
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Figure 28 shows the MSE performance of the calibrating-signal measurement system at 

different SNRs. The filter MSE is shown for SNRs of (a) -20 dB, (b) -25 dB, (c) -30 dB 
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and (d) - 35 dB and DOA of 900
• As expected, the MSE is greater at low SNR. The effects of 

low SNR can be offset by increasing the number of hydrophone signal samples, although, the 

maximum number of samples is limited by errors arising from the incorrect assumption that the 

array shape is fixed for the duration of averaging. If the number of hydrophones is increased, 

the redundancy of the measured information will be greater. Therefore, increasing the number 

of hydrophones will offset the effects of low SNR, too. 

Figure 28 MSE of the Kalman filter state estimates using a calibrating signal with 

SNR of (a) -20 dB, (b) -25 dB, (c) -30 dB and (d) -35 dB. OOA is 90 0
• 

(a) (b) 
0.4 I 0.4 r-, -----,----.---------r--------, 

0.3 

w 
~ 0.2 

0.1 

O~I ------~----~------~----~ 
o 5 10 15 20 

segment number 

(c) 
0.4 0' -----r------,..---.--------, 

0.3 

w 
(/)02 
~. 

0.1 

Ol~----~------~---~----~ 

o 5 10 15 20 
segment number 

0.3 

w 
~0.2 

0.1 

O'~----~------~----~----~ 
o 

0.6 

w 
(/) 04 
::E' 

0.2 

o 

5 10 15 20 
segment number 

(d) 

5 10 15 20 
segment number 

Figure 29 shows the effects of process noise variance on the MSE performance of the 

heading-sensor measurement system. The graph compares the Kalman filter MSE for aq
2 = 0.05 

and a q2 = 0.1. The MSE of segments downstream from a heading sensor increase at the rate 

of the a q2, and so, overall MSE will be smaller when a q2 is smaller. If the SNR = - 30 dB and 

a q
2 = 0.05, the MSE of the calibrating-signal system would be much greater than that of the 

heading-sensor system. In this case there would be little justification for the extra computing 

effort of using calibrating-signal information in a combined-measurement system. On the other 

hand, if SNR = -20 dB and a q
2 = 0.1, the MSE of the heading-sensor system would be much 

greater than that of the calibrating-signal system, while the DOA is not near endfire. In this 
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case, in a combined measurement system, heading-sensors would only be useful if the DOA 

was near endfire. 

Towed-array self calibrators rely on knowledge of the calibrating-signal DOA. So far, I 

have assumed that the calibrating-signal DOA is known exactly. In practice, it will not be 

known and an estimate will have to be used instead. For this reason, it is important to know 

how sensitive the state estimates are to errors in the estimate of DOA. The array model of Figure 

25 counteracts rotational ambiguities by constraining the array to be close to a line defining the 

tow-vessel's path. Overall, the Kalman filter is insensitive to calibrating-signal-DOA estimation 

errors. Figure 30 compares MSEs when the DOA is known exactly (solid line) and when it 

is known approximately (dashed line). When the DOA is 80° and the estimate is 90° (Figure 

30(a» the MSE appears no worse than if the DOA had been known exactly. When the DOA 

is 10° and its estimate is 20° (Figure 30(b» there is a slight deterioration of the MSE over the 

case when DOA is known exactly. The MSE is increased by only 4% at most, when there is 

a 10° DOA-estimation error. 

Figure 29 MSE of the Kalman filter state estimates using heading 

sensors with process noise variance of (a) 0.05 and (b) 0.1. 

(a) (b) 
0.4 0.4 

0.3 0.3 

w w 
~0.2 

!\ !\ / 
~0.2 

0.1 !\ 0.1 

0' . 0' . 
o 5 10 15 20 o 5 10 15 20 

segment number segment number 

4.4.2.2 Transient response 

Not much needs to be said about transient response of the Kalman filter on the towed

array, state-space system. The state-transition matrix is so simple that the transient response 

can explained by inspection. The system model shows that disturbances propagate in one 

direction only. Because the heading-sensor-measurement errors are very small in comparison 

to the process noise, the system effectively will reach steady state in the time it takes for a 

disturbance to travel from one heading sensor to the next. 

The signal-based-measurement errors are comparable to the process noise and so, even 

though measurements are made at every spatial discretisation interval, a disturbance will have 

to travel some number of intervals before the Kalman filter reaches a steady-state error. The 
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Figure 30 MSE of the state estimates when the DOA is known exactly (solid line) and when DOA 

estimate is used in place of its true value (dashed line). (a) </>=80°, ¢=90°, (b) </>=10°, ¢=20°. 
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exact number of intervals depends on the relative magnitudes of the measurement errors and 

the process noise. 

4.4.3 Extensions to the state-space system 

This section· discusses some interesting expansions of the state-space system described in 

Section 4.4.1. In Section 4.4.3.1 I examine a system in which the state includes the x-positions 

of the hydrophones. This is a simple extension of the original state-space system and it raises 

the question of observability. I discuss whether the state of the towed array is observable given 

heading-sensor and calibrating-signal measurements in Section 4.4.3.2. In Section 4.4.3.3 I 

discuss the use of displacements as the system state, rather than slopes. 

4.4.3.1 Augmenting the state vector 

Our model for the discretised array of Figure 25 assumes that the x-positions of the 

hydrophones are constant and known, however, in some cases, it may be of interest to estimate 

the x-positions of the hydrophones. To allow this we can model the x-positions as time-varying, 

unknown quantities by augmenting the state vector. The augmented state vector is given by 

b = [x 2 - Xl) ... ) X M + 1 - X M ) Y2 - Yl) ... ) Y M + 1 - Y M ] T . (4.38) 

The x-direction terms. {Xm+l - X m }, are assumed to propagate undamped, whilst the usual 

damping applies to the y-direction terms, {Ym+l - Ym}. In this case the augmented state

transition matrix will be given by 

Fa = [~ "OL] (4.39) 
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We assume the process noise-covariance matrix to be diagonal, and given by 

Q = [a q21 I ~] , 
o aq2 I 

(4.40) 

where a q~ and a;2 are process noise variances for the x-direction and y-direction terms, 

respectively. If the driving term is not known it may be modelled as a white-noise sequence 

with covariance given by 

U = diag[a:1 ,0, ... ,0,a;2,0, ... ,0], (4.41) 

where a:1 and a:2 are process noise variances for the x-direction and y-direction terms, 

respectively.The heading-sensor slopes are related to the state by 

tan 13k = Yk+1 - Yk 

Xk+1 - Xk ' 
(4.42) 

which is not linear in Xk. Assume that the Xk+1 - Xk term in (4.42) can be replaced by the 

constant, hx . And so, the heading sensor measurement matrix is defined by 

1 
Hh(k, m) = hx 8pk +M,m. (4.43) 

The phases of the calibrating signal are related to the state by (4.29). By inspection it can 

be seen that the calibrating signal measurement matrix is 

Hs = 1(" [cos 4>11 sin 4>1] (4.44) 

and the measurement vector is 

Zs = [82 - 81, ... , 8M +1 - 8M]T. (4.45) 

4.4.3.2 Observability of the state 

From [AM79], the state of a system is unobservable if an eigenvector of the state-transition 

matrix, F, lies in the null space of the measurement matrix, H. That is, if there exists a w 1: 0 

such that 

Fw = AW, and 

Hw=O. 
(4.46) 

In [GAB93] it was shown that, the eigenvectors of F are all of the form [0, ... ,0, WM]T. 

For W M 1: 0, Hh W = 0 only if the last column of Hh is the zero vector. Thus, for the 
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state to be observable, a heading sensor must exist on the last segment of the array, when the 

only measurements are from heading sensors. This is because disturbances are modelled as 

travelling only downstream. Any disturbance generated after the last heading sensor on the 

array will propagate aft, undetected. And so, unless there is a heading sensor at the end of the 

array, some states will be unobservable. The last column of Hs is not the zero vector so the 

calibrating-signal system is always observable. 

Using the augmented matrices of Section 4.4.3.1, the eigenvalues of Fa are all zero. The 

first M eigenvectors have the form [0, ... ,0, WM, 0, ... , O]T and the second M eigenvectors 

have the form [0, ... ,0, W2M]T. The first M eigenvectors of F a are in the null space of the 

augmented Hh matrix so the x-positions of the hydrophones are unobservable using heading 

sensors. This is not surprising, as the heading sensors do not give any information about the 

segments' x-positions. The Mth and last columns of the augmented Hs matrix are non-zero 

and so the augmented state is always observable when using calibrating-signal measurements. 

4.4.3.3 Using displacements in the state vector 

There may be situations where the displacements of segments of the array are of more 

interest than the slopes. If the Paidoussis equation is discretised such that the states are 

displacements, then the state-transition matrix will have the form given in (4.22) [GAB93]. That 

is, the state-transition matrix will be the same whether the states are slopes or displacements. 

The measurement matrices will be slightly different. For heading sensors, the measurement 

vector is given by 

Zh = [tan,61, ... , tan,6K]T. (4.47) 

The measurement matrix is defined by 

1 
Hkm = hx (opk m +l - °pkm ) ' (4.48) 

For a calibrating signal the measurement equations come from (4.28). Each segment of the 

array is assumed to have one hydrophone at its centre (h x = 1) and the displacements of the 

segments are measured with respect to the first. The measurement vector is 

Z s = [e2 - el , ... ,eM +l - el ]T - 7rhx cos¢[1, 2, .. . , M]T (4.49) 

and the measurement matrix is 

H s = sin ¢ I. (4.50) 
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4.4.4 Reducing computational load when there 
are more measurements than states 

The measurements of a linear system are expressed as a linear combination of the states as 

in (4.15). In Section 4.4.1.4 I gave a system in which the measurements {Om - Om-I} are a 

linear combination of a second, larger set of measurements, { ,(j;jk + Ajk}. Therefore, the state 

is a linear combination of the second set of measurements. This makes one wonder whether 

the two systems using measurements {Om - Om-I} and {,(j;jk + Ajk} will give the same state 

estimates. The answer is that they do. In this Section I show how a state-space system with 

more measurements than states may be replaced by an equivalent system that has the same 

number of measurements as states. I prove that the systems are equivalent by showing that 

in each case the Kalman filter will produce the same sequence of error-covariance matrices 

and state estimates. Then I give an expression that approximates the fractional reduction in 

computation that the equivalent system gives. 

A 

The Kalman filter begins with an initial, a priori estimate of the state, b k1k- 1 , and the 

error-covariance matrix, 

P k1k- 1 = E{ (b k - bklk- 1) (bk - bklk- 1) T}. (4.51) 

The Kalman filter equations are shown in Table 5. The state estimate and the error-covariance 

matrix are propagated from each recursion to the next. Given an initial estimate of the error

covariance matrix and state, I show that the updated estimates of the two systems are the same. 

Therefore, by induction, the two systems are equivalent. 

Table 5 Kalman filter equations 

~~~~q~~:=~:~~~ ···p~! ;1~1~;t ·~··~~M~~·~~ {; . !i; •. : ." 
Compute Kalman gain 

Update state. estimate · 

Project ahead 

Kk = PklkH1Vkl 

~;,~ }~~i~~~i ~k.(zi -;i~~k~~--l ) .. 
bk+11k = Fkbklk 
P k+11k = FkPklkFl + Qk 
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4.4.4.1 A reduced-measurement system 

Suppose we have a system given by F, Q, zl, HI and VI in which there are more 

measurements than states (Le. n > m). Because VIis positive definite there exists a non

singular (n X n) matrix, S, such that 

V
1
- 1 = SST. (4.52) 

This matrix is known as a pre-whitening matrix because it transforms a system into one with 

uncorrelated noise. From (4.52), 
S-1 V 1-IS-T = I 

= STV1S, 
(4.53) 

where I is the identity matrix. Now suppose that A is the pseudo inverse of STHI so that 

A = (H!SSTH1)-I H !S 
(4.54) 

( 
T -1 ) -1 T = HI VI HI HI S, 

AST = (H!V I-1H1) -I H !V 1-\ and ASTHI = I. Pre-multiplying both sides of (4.15) by 

AST and dropping the subscript k gives 

ASTzl = ASTH1b + ASTy 

= bfASTy. 
. (4.55) 

This defines a new measurement system in which the measurement vector is Z2 = AST ZI, the 

measurement matrix is H2 = I and the noise-covariance matrix is 

V 2 = ASTV1SA T 

( 
T -1 )-1 = HI Rl HI . 

(4.56) 

The new measurement vector is length m. The two systems, defined by the measurement 

equations {ZI' HI, V I} and {Z2, H 2, V 2}, are identical. We prove that the systems are identical 

by showing that the error covariance matrices and updated state estimates for both systems are 

the same. 

4.4.4.2 Error-covariance matrix 

From Table 5 the updated error-covariance matrix is 

P kil(H, V) = P kil-l + H T V-1H, (4.57) 

where the subscript k has been dropped from H and V. The updated error -covariance matrices 

for the two systems will be identical if 

H!V1-
1H 1 = H!V2-

1H 2. (4.58) 

Expanding the right-hand side of (4.58) and using (4.56) gives 

H TV-1H - V-I 2 2 2 - 2 

= H!V1-
1H 1. 

(4.59) 

And so the updated covariance matrices for the two systems are identical. 
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4.4.4.3 State estimate 

From the Kalman filter equations in Table 5 the updated state estimate is given by 

Xklk(H, V,z) = xklk-l + K(H, V)(z - HXklk-l), (4.60) 

where the subscript k has been dropped from H, V and z. The state estimates from the two 

systems are identical if 

K(Hl, VI) (ZI - H 1Xklk-l) = K(H2' V 2) (Z2 - H 2Xklk-l). 

The right-hand side of (4.61) is given by 

K(H2, V 2)(Z2 - HiXklk-l) = Pklk H i v 2-1 (Z2 - HiXklk-d 

= Pklk (Hlv1-
1 H 1)AST (ZI - H1Xklk-l) 

= P klkH1V1-
1 (zl - H 1Xklk-l). 

And so the updated state estimates for the two systems are identical. 

(4.61) 

(4.62) 

As a result of (4.59) and (4.62) the two state systems, {zl,H1 ,V1 } and {z2,H2,V2} 

are identical if 

1. there are more measurements than states in the first system, 

2 . . z2 = AST
Z1, 

3. H 2 = I, which has the same dimension as the state vector, and 

( 
T -1 )-1 4. V 2 = HI VI HI . 

4.4.4.4 Computation savings 

The number of computations for one recursion of the Kalman filter is 0 (2m 2 n) + 
o (2mn2) + 0 (m3

) + 0 (n3
). If n = am where a > 1 then the number of computations 

can be written 0 [(1 + 2a + 2a2 + a3 )m3
]. Using the equivalent system with H2 = I, the 

number of computations becomes 0 (3m3
). And so the number of computations for the system 

{H2 ,V2 } is O[3/(1+2a+2a2 +a3
)] times the number for the system {H1 ,V1 }. If, for 

example, a = 2 then 3/ (1 + 2a + 2a 2 + a 3) = 0.14 which is a significant computational saving. 

4.4.5 Summary of the Kalman-filter-based array calibrator 

A towed, flexible cylinder may be represented by a state-space formulation derived from 

a special solution of the Paidoussis equation known as the water pulley model. Given this 

representation, the Kalman filter is a powerful method of estimating the shape of the cylinder, or 

array. It can easily accommodate measurements from different sources, either synchronously or 

asynchronously. I have shown a way of fusing data from heading sensors and a self calibrator. 
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The state vector may be augmented to include the segments' x-positions. In this case the 

measurement equations must include calibrating signal measurements as heading sensors provide 

no information about the x-positions of the segments. I demonstrated how a general system with 

more measurements than states may be reduced to a system with a number of measurements 

equal to the number of states. The reduced system gives identical results to the original and 

has on the order of 0.14 times the number of computations per recursion of the Kalman filter. 
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5.1 Introducing the Self Calibrators 

In this Chapter I examine and compare a variety of towed-array self calibrators. I give 

the assumptions, both explicit and implicit, made for each algorithm and, through computer 

simulations, determine how robust they are to variations in signal-source distribution and SNR. 

I explain the performance of the methods by relating the simulation results to the assumptions. 

The results of the simulations are used to investigate the sensitivity of the algorithms to the 

underlying assumptions. 

For the first set of simulations, I arbitrarily chose a test array shaped as shown by the 

solid line in Figure 33, and explored the response of the methods to changes in signal-source 

distribution and SNR. In the second set of simulations the array shape and signal-source 

distribution were smoothly and randomly changing. I show the output from a beamformer 

using the estimated array-shape. This allows the effectiveness of the methods to be judged 

without bias due to choice of array shape or signal-source distribution. 

The self calibrators investigated in this chapter can be loosely grouped into the follow

ing categories: a) broadband source [GM95a, Wah93] , b) disjoint source [DM80, Dor78, 

Gor95c, MM88, MM92, RS86, RS87a, RS87b], c) eigenstructure [BMH91 , GWR89 , LM87], 

d) nonlinear minimisation [FW88, L088, TN88] and e) sharpness [Buc78 , FGR92, Fer90a, 

Fer90b]. 

Unlike methods using narrowband signals, broadband-source methods assume the avail

ability of a signal source with a spectrum that spans, say, a few hundred hertz. Disjoint-source 

methods rely on the assumption that the calibrating signal is separate from the other signals in 

time or frequency, so that estimating the phase delays between hydrophones of the calibrating 

signal proceeds on the basis that there is no interference from any other signal. This greatly 

simplifies towed-array self calibration because separating the contributions from multiple sig

nals is one of its biggest problems. Disjoint sources may exist by the good fortune that the 

signals have different spectral lines. 

Eigenstructure methods are narrowband methods which exploit properties of the array

covariance matrix. When all signals are incoherent with each other the eigenvectors of the 

array-covariance matrix form two orthogonal subspaces - the signal subspace and the noise 
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subspace. This is also the basis for the Multiple Signal Classification (MUSIC) DOA estimator 

[Sch79]. The eigenstructure method investigated in this chapter also assumes that signals are 

disjoint, but this is not necessarily the case for all eigenstructure methods. 

Nonlinear minimisation methods typically involve a two-step iteration: first estimate DOA, 

then the relative sensor phases or sensor locations. Each step seeks to minimise a cost function 

which is generally nonlinear and therefore is an iterative process in itself. A priori estimates 

of high-SNR signal DOAs and sensor locations are required to initialise these methods, which 

are non-parametric in the sense that they proceed with no knowledge of geometric constraints 

such as the inter-hydrophone spacing. 

The sharpness method starts by representing the array shape as a harmonic series. The 

parameters of this harmonic series are adjusted iteratively until a performance indicator known 

as sharpness is maximised. When sharpness is maximised it is assumed that parameters have 

been chosen such that the parameterised array shape matches the actual array shape as closely 

as possible. 

In this chapter I assume that all hydrophones and signal sources are coplanar. Some of the 

methods I investigate were originally developed for the general case where there are no physical 

restrictions on sensor placement. In comparing methods this is taken into account , and, I show 

that applying them to the more specific case of towed arrays does not affect the assumptions 

made in developing the algorithms. The array calibrators that will be investigated are: 

1. time domain (Section 4.3) 

2. phase difference self survey (PDSS) 

[Wah93] 

3. least-squares error (Section 4.2) 

4. self-cohering [Dor78, DM80] 

5. redundant self-calibration [MM92] 

6. eigenvector [GWR89, GR90, FGR92] 

7. maximum likelihood [WF88] 

8. sharpness [Buc78, Fer90b, HON77] 

The chapter is structured as follows. Section 5.2 explains the theory of each and identifies 

implicit and explicit assumptions; Section 5.2.9 summarises these assumptions. The results of 

computer simulations are presented in Section 5.3 and are used to compare the performance 

of the various array calibrators. 

5.2 The Calibrators Explained 

Each of the methods I investigate is explained briefly. The penultimate goal of almost 

all array self calibrators is to determine the relative phases or times of arrival of a signal at 

each hydrophone. The chord approach of Section 2.5 is then used to obtain estimates of the 

hydrophone positions. The exceptions to this procedure are the maximum likelihood (Section 
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5.2.7) and the sharpness (Section 5.2.8) methods, which estimate the hydrophone positions 

directly. 

5.2.1 A time-domain method 

This method is described in Section 4.3. For the equations of (4.10) to be consistent with 

each other, the measured { Tjk} must always relate to one calibrating signal. In the presence 

of multiple signals, consistency is ensured by assuming that one source has greater power than 

any of the others so that its peak in the cross correlation is always dominant. 

An implicit assumption made in this method is that the spectrum of the calibrating signal 

source cannot consist of just a few spectral lines; the signal must be at least partially broadband 

to avoid ambiguous time-delay estimates. 

5.2.2 Phase difference self-survey (PDSS) [Wah93] 

This method revolves around frequency-wavenumber pictures which are commonly used 

to estimate bearing with linear equispaced arrays. A typical frequency-wavenumber diagram 

is shown in Figure 31(a). Rays beginning at the origin correspond to sources, and the slope 

of each line corresponds to the signal DOA. When. the array is perturbed, phase errors cause 

the lines to be smeared in the wavenumber direction as in Figure 31(b). The PDSS method 

is iterative and is as follows: 

1. Convert raw data from the hydrophones to the frequency-wavenumber domain using a 2D 

Fourier transform. 

2. Apply a window to the data which is intended to capture the energy from one smeared 

source. Wmdow position is determined by doing an incoherent average of the frequency

wavenumber data over frequency. The window is centred at the wavenumber bin corre

sponding to the peak of the incoherent average. The window width is chosen as the lesser 

of either the - 10 dB points or two-thirds of the previous iteration's width. 

3. Inverse Fourier transform the windowed data back to the frequency-distance domain. Make 

a maximum-likelihood estimate of the phase delay, Bm ,m-l(Wr ), 2 < m < M, at a given 

reference frequency, between every pair of adjacent hydrophones, where Wr is the reference 

frequency. This is given as 

Om,m-l (w r ) = arg or:!:.'!:, Re{ t [9(m-1),i9,im exp (j(}m,m-l Ui)) } (5.1) 

where {gm} are the Fourier coefficients of the hydrophone signals, {zm}, I is the number 

of frequency bins available, * represents complex conjugate, and Ui = 1 + Wi / W r • This step 

is identical to estimating time delay using a circular rather than a linear cross correlation. 
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Because of the circular cross correlation the estimate will be accurate only if the time delay 

is small compared to the length of the time series data 
m 

4. The phase error relative to the first sensor is e~,m-1 (wr ) = e~,!n-1 (wr ) + 2: B~,C-1 (w r ), 
c=2 

where the superscript i refers to the current iteration and e~,m-1 = O. The signals are 

delayed at each hydrophone by multiplying with exp ( - je~,m-1 Ui). This makes the 

calibrating source appear to be at broadside to the array while removing any smearing due 

to a perturbed array. 

S. Repeat steps 2 to 4 until the window width reaches a predetermined value. Each time the 

width is reduced the filter rejects more of the interfering signals and noise while retaining the 

calibrating signal. Thus the phase- (time-) delay estimates become more accurate without 

the presence of interfering signals and noise. 

6. The final values of e~ m-1 are used to estimate the hydrophone positions. Wahl [Wah93] , 

describes a procedure for estimating the hydrophone positions from the phase-delay esti

mates which assumes that the calibrating signal source appears on one side of the array 

only. This is not always realistic and so we use instead the chord approach described above. 

Explicit assumptions (apart from those mentioned in Chapter 2) are: a) the sources radiate zero 

mean Gaussian random processes; b) there is constant inter-hydrophone spacing; c) the first and 

last hydrophones are on the x-axis; and d) the signal DOA is between 0 and 7r. Assumptions 

c) and d) can be dropped if the chord approach is used. 

Implicitly, doing an incoherent average over frequency assumes that the calibrating signal

source is close to broadside (or the signal bandwidth is limited). 

5.2.3 A least-squares error method [Gor95c] 

This method is described in Section 4.2. 

An implicit assumption used in this method is that the magnitude of the error in each estimate 
- - -

of phase difference, e j k = ej,j +1 + .. . + e k - 1,b where the tilde indicates the estimation error, 

is less than 7r. If this error is > 7r the integer multiple, p j k, will be incorrect. 

5.2.4 Self-cohering method [Dor78, DM80] 

This method was developed and used on an experimental radar antenna array. No physical 

constraints were assumed, and so the method required at least two (not three because the signal 

DOAs are assumed to be known) narrowband sources to estimate the sensor locations. Turning 

on and off each source in turn. the phases of arrival of the narrowband signals are measured with 

respect to a reference directly at the hydrophones . The signal DOAs must be known in advance 

as well as a priori estimates of sensor position that are accurate to within half a wavelength 
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Figure 31 Typical frequency wavenumber diagrams for an array with 128 hydrophones 

and two signal sources; (a) array is linear, and (b) array has sinusoidal shape 

with an amplitude of 0.50 metres in the direction orthogonal to ship's motion. 
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so that there is no phase ambiguity. Each signal DOA and the associated phases of arrival 

define a line on which the sensor, whose position is to be determined, must lie. Although only 

two calibrating sources are needed to estimate the sensor position, Dorny and Meagher [Dor78, 

DM80] use four to determine the LSE estimates of sensor position and a channel-dependent 

phase error. This method can be applied to towed arrays simply by using one calibrating signal 

and applying the chord approach. 

The signal-to-noise ratio must be high to give reasonably accurate measurements of phases 

of arrival. 

5.2.5 Redundant self-calibration method [MM92] 

This method was originally applied to radio astronomy antenna arrays in which a turbulent 

atmosphere produces phase errors that are analogous to the position errors of towed arrays. The 

basis of redundant self-calibration is to recognise that a uniform array has many baselines of the 

same length. If a uniform array is straight then the correlations between every pair of sensors 

with identical baselines (Le. sensors that are adjacent, one apart, two apart, etc.) will be equal. 
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The measured correlation between two sensors, j and k, is modelled as 

* I Tjk = 9j9kTjk (5.2) 

where 9j is the complex gain at sensor j due to position error, and Tjk is the true correlation 

that would be measured if the array were straight. Because the array is redundant 

I I I _ I 
T12 = T23 = T34 ... = Tl 

I I I _ I 
T13 = T24 T35 ... = T2 (5.3) 

The system of equations defined by (5.2) is linearised by taking logarithms and dividing into real 

and imaginary parts. The imaginary part is the phases of the correlations. The set of equations 

of the imaginary part for a five-hydrophone example are written in matrix form in (5.4). 

'l/J12 

'l/J13 

'l/J14 

'l/J15 

'l/J23 

'l/J24 

'l/J25 

'l/J34 

'l/J35 

'l/J45 
iJr 

iJ s 

1 -1 
1 0 
1 0 
1 0 
o 1 
o 1 

o 1 
o 0 
o 0 
o 0 
1 0 

o 0 
-1 0 
o -1 
o 0 

-1 0 
o -1 
o 0-
1 -1 

1 0 
o 1 
o 0 

1 -1 0 o 

o 100 0 
o 1 0 0 0 
o 

-1 
o 
o 

-1 

1 000 
1 0 0 0 
o 
o 
o 

o 0 
-1 0 
-1 0 
o 0 

100 
100 
100 
010 
010 
001 
000 

o 0 0 0 0 

x 

()l 
()2 

()3 

()4 

()5 

'l/J~ 
'l/J; 

'l/J~ 
'l/J~ 

(5.4) 

where 'l/Jjk is the phase of the measured correlation, 'l/Jj is the phase of the true correlation and 

()m is the phase of the complex gain at sensor m. In the last two rows of the matrix the phase 

at hydrophone one is set equal to a reference phase, iJ r , and the phase difference between the 

first and second hydrophones is set equal to iJ s' The reference phase is typically set equal to 

zero, and iJ s is derived from a heading sensor placed on the array between the first and second 

hydrophones, which provides absolute information about the orientation of the array. 

As in the LSE method of Section 4.2, the pseudo inverse matrix is used to give a least-
~ ~ 

squares error estimate of the gain phases, ()m, and the true phases, 'l/Jj. A similar matrix equation 

may be derived for the real parts of the logarithms of (5.2) which gives estimates of the gain 

amplitudes. Note that the gain phases are not phases of arrival except for the case where there 

is only one signal (disjoint case). There is no attempt to estimate a signal DOA; it is assumed 

that the gain phases represent hydrophone position errors in the y-direction, which is equivalent 

to assuming that the signal source is at 900
• All the gain phases are assumed to be within ±7r 

of each other. If, for example, an array is 100 ill long and the signal wavelength is 6 m, a 

source need only be a few degrees off broadside before the end hydrophone's gain phase is 
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no longer < 7f, or > -7f. Likewise, if the array is perturbed by more than half a wavelength 

in the y-direction, phase wrapping will occur. If the signals are disjoint and a DOA is known 

then the array may be steered towards the calibrating signal source by adjusting the phases of 

the correlations so that the source appears as if it is at 90°. To avoid the restrictions on source 

DOA and hydrophone displacements, we unwrap the phases using the same method as in the 

LSE method of Section 4.2. 

There are no implicit assumptions in this method. 

5.2.6 Eigenvector method [FGR92, GR90, GWR89] 

Eigenstructure methods are based on the eigenvectors and eigenvalues of the array

covariance matrix, R = ARs A H + Rn. If the eigenvalues of this matrix are found and 

sorted into descending order the first N (where N is the number of signals) will be related 

to the incident signals and the associated eigenvectors will form an orthogonal basis for what 

is known as the signal subspace. When Rn = (J2 I, the remaining M - N eigenvalues are 

equal to the uncorrelated noise power, (J2. Their associated eigenvectors form an orthogonal 

basis for the noise subspace. The noise and signal subspaces are orthogonal to each other. The 

eigenvector method is based on the signal-subspace-basis vectors being a linear combination 

of the columns of A (Le. the signal vectors whose phases we wish to know). For the case 

of only one signal, A is an M x 1 matrix and it follows that the desired signal vector, aI, is 

simply a multiple of the eigenvector corresponding to the maximum eigenvalue, referred to as 

the maximum eigenvector. Having found this eigenvector, the relative phases can be found 

and the chord approach used to determine hydrophone positions. 

The method is a disjoint one. The A matrix must have one column only for the signal 

vector to be a multiple of the maximum eigenvector. But, in practice, the method gives good 

results despite the presence of multiple signals and so it is worth looking into the method's 

behaviour. Consider the following. Assuming that there are two signal sources, then the 

maximum eigenvector of the array-covariance matrix, el is a linear combination of the signal 

vectors, el = clal + C2a2. Then if A is the corresponding maximum eigenvalue 

R(Clal + C2a 2) = A(clal + C2a2)i (5.5) 

but from (2.14) R = (Jlala[i + (Jla2ar + (J2I, where (J12 and (Jl are the two signals' powers 

and assuming the signals are incoherent. And so 

2 H 2 H 2 H 
(Jl Clalal al + (J2 C2 a 2a 2 a2 + (Jl C2a l a l a2+ 

(5.6) 
2 H 2 2 '( ) (J2 Clala2 a2 + (J clal + (J C2a 2 = /\ Clal + C2a2 . 
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If al and a2 are orthogonal, then aJIal = a]Ia2 = O. Also, a]Ial = aJIa2 = M and 

(a-;M + cr2)Clal + (crlM + cr2
)C2a 2 = A(Clal + C2a2) 

Cl (crl M + cr 2 - A)al + C2(cr22 M + cr2 - A)a2 = o. 

There are three solutions to (5.7): 

(5.7) 

1. A = crl M + cr 2 cr{ M + cr2, no constraint on Cl and C2. (Le. the two sources have 

equal power) 

\ 2 2 2. /\ = cr1 + cr , C2 0, no constraint on Cl. 

3. A = cr{ + cr 2
, Cl 0, no constraint on C2. 

Thus, if the signal powers are unequal and steering vectors al and a2 are orthogonal, the 

maximum eigenvector is a multiple of al or a2 rather than a linear combination of al and a2. 

This can be easily extended to more than two signal sources. If the conditions of orthogonality 

are not met, the maximum eigenvector will be a linear combination of the columns of A. 

The array-shape estimates tend to be good nevertheless, because in practice the maximum 

eigenvector is composed mostly of the dominant signal's steering vector. 

An implicit assumption of this method is that the signals are disjoint 

5.2.7 A maximum-likelihood approach [WF88] 

The maximum-likelihood (ML) approach gives a unique solution if the array is coplanar 

but not collinear. The method seeks to minimise a nonlinear cost function, Q, defined as 

J 

Q = L Ilz(j) - As(j)1\2 (5.8) 
j=l 

where, from (2.13), z(j) = As(j) + v(j), j has been added to indicate the index of different 

snapshots and J is the number of snapshots. If an estimate of A is known and z(j) is measured 

at the hydrophone outputs, an estimate of s(j) can be obtained by linear regression: 

s(j) = (AHA)-l AHz(j). (5.9) 

An initial estimate of A is derived from a priori estimates of the number of signal sources, 

their directions of arrival and hydrophone positions. The ML approach has two steps, each is 

an iterative procedure. The two steps are iterated until Q converges to a minimum. (The ML 

method does not guarantee that this will be a global minimum; it may be a local minimum.) 

Step one aims to minimise Q with respect to the signal DOAs. The steering vector matrix, 

A, is updated along with the DOAs. Each signal's DOA is updated separately, reviewing one 

DOA after another until Q arrives at a minimum given the best current estimates of hydrophone 
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positions. Step two minimises Q with respect to the hydrophone positions, and updates A with 

improvements to hydrophone position estimates. The cost function is minimised separately 

for each hydrophone using a closed-form solution (5.10) which gives the deviations of the 

hydrophones, ~xm and ~Ym from their previous estimates. 

[ ~xm] = [~e{B~Bm}] -l~e{B~zm} 
~Ym 

(5.10) 

where 
2: Amnsn(l) cos ~n 2: Amnsn(1) sin ~n 
n n 

B _ JWo 
m - --

Cs I ~ ~~ 

2: Amnsn( J) cos 4>n 
n 

2: Amnsn (J) sin ~n 
n (5.11) 

zm(j) = zm(j) - L Amnsn(j) 
n 

Zm = [zm(l) zm(2) ... zm(J) ]T. 

The updates of the hydrophone positions are used to recalculate an estimate of the A matrix. 

In this manner Q is minimised until it converges for the current estimates of signal DOAs. 

An implicit assumption is that there is more than one calibrating signal. 

The reason for this assumption is that, without geometric constraints, it is not possible to 

estimate both x and Y positions of a hydrophone with only one signal source. For the inverse in 

(5ol0) to be solvable, Re{B~Bm} must be non-singular. When there is only one signal source, 

Re{B~Bm} is singular, and so there must be at least two calibrating signals. 1bis method is a 

convoluted one involving a number of nonlinear minimisations, calculating such intermediates 

as the signal snapshots, sn ( k ), and making no use of geometric constraints. Because of this we 

expect that the method will perform poorly in the presence of noise. 

5.2.8 Sharpness method [Buc78, Fer90b, HON77] 

This method is based on the assumption that the output from a beamformer will improve 

in some quantifiable sense as the estimated sensor positions become closer to the actual sensor 

positions. The output power, Pb, from a beamformer depends upon estimated hydrophone 

positions, {Xm}, and look direction, 4>. Sharpness is defined as 

7r 

S( {Xm}) = J Pb( {Xm}, ¢? sin ¢ d¢. (5.12) 

o 

Sharpness is assumed to be a maximum when the estimated hydrophone positions assume their 

actual values. In [DC92] it is shown that sharpness does not necessarily become a maximum 

when the estimated array shape is equal to the actual shape. However, when the array shape is 

modelled as the sum of a harmonic series of sinusoidal shapes, then array-shape estimates from 
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the sharpness method are quite robust to changes of the signal-source distribution. In [Buc78, 

Fer90b] the array shape is parametrised in the form of a harmonic series 

A 

Y = L [Q), sin (A7T"X / ea ) + 13>, cos (A7T"X / ea )] (5.13) 
),=1 

where ea = La + vaT, La is the length of the array, Va is the towing vessel's velocity and 

T is the time over which the beamformer output is integrated. The coefficients, Q), and (3), 

may be found by maximising sharpness using a method explained in [Buc78]. Here, for the 

shape estimate, we use a single sinusoid with a variable wavelength as well as amplitude 2. 

Rather than doing a two-dimensional search over amplitude and wavenumber for the maximum 

value of sharpness, a series of one-dimensional searches are used. Sharpness is maximised 

over amplitude, for fixed values of wavenumber from 3/8 to 1 5/8 in 1132 increments where 

a wavenumber of one means the array has a shape with one complete sinusoid. Then the 

wavenumber/amplitude pair with maximum sharpness is chosen. 

An implicit assumption of this method is that S( {Xm}) is a maximum when {Xm} = {Xm}. 

5.2.9 Comparing assumptions 

The purpose of this section is to provide a means of comparing the assumptions that are 

made in developing the array-shape-estimation methods. Assumptions that are common to 

every array calibrator outlined in this chapter are: a) all signals are zero mean, stationary 

and incoherent with each other; b) noise is zero mean, spatially uncorrelated and uncorrelated 

with the signals; c) the array shape changes slowly enough to be assumed unchanging; d) 

hydrophones are joined by straight-line segments of cable (this assumption is not made for the 

ML approach of Section 5.2.7); and e) signal sources are far field with planar wavefronts, i.e. 

non-dispersive propagating medium. A summary of the method-specific explicit and implicit 

assumptions is shown in Table 6. 

5.3 Simulations and Results 

In this section I present the results of computer simulations. Simulated data were generated 

as follows: 

1. 

2. 

3. 

2 

The array used in the simulations has a quartic shape in the y-direction with respect to x, 

with a maximum displacement from the x-axis of 0.67. 

There are 32 hydrophones with a uniform inter-hydrophone spacing of 1. 

The speed of sound in water is 1500 ms-l. 

This technique was explained in a personal communication from B. G. Ferguson. 
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TABLE 6 

Comparison of explicit and implicit assumptions. 

Method 
Time Domain 

Phase Difference Self 
Survey 

Least-Squares Error 

Self-Cohering 

Redundant 
Self-Cali bration 

Eigenvector Method 

Maximum-Likelihood 
Approach 

Sharpness 

Explicit Assumptions 
Broadband sources. 
One signal source is dominant 
Broadband sources. 
Signal source is Gaussian 
noise process. 
Constant inter -hydrophone 
spacing. 
Narrowband sources. 
Sources are disjoint. 
Inter-hydrophone distance is 
less than half a wavelength. 
Narrowband sources. 
Sources are disjoint 
Inter-hydrophone distance is 
less than half a wavelength. 
Narrowband Sources. 
Sources are disjoint 
Inter-hydrophone distance is 
less than half a wavelength. 
Narrowband sources. 
Sources are disjoint. 
Narrowband sources. 
Have a priori estimates of 
sensor positions. 
Have a priori estimates of the 
number of signal sources and 
their DOAs. 
Sharpness is maximized when 
the estimated sensor positions 
are correct. 

Implicit Assumptions 
Signal source is Gaussian noise 
process. 
Calibrating source is at or close 
to broadside. 

Magnitude of phase difference 
errors is less than 7r. 

Signal-to-noise ratio is high. 

None 

If sources aren't disjoint, one 
signal is dominant. 
There are at least two signal 
sources. 

When the parametrized array 
shape comes closest to the 
actual array shape the 
sharpness will be a maximum. 

4. Narrowband processing is done at the design frequency which is 250 Hz for the simulated 

array. 

5. Raw data are sampled at a frequency of 10kHz. 

6. The number of time samples from each hydrophone is 1024. Each algorithm uses the same 

number of data points. 

7. Signal sources lie in the same plane as the array. 

8. Simulations with multipath signals have one direct, and one reflected, path signal. The 

reflected signal has azimuth DOA the same as the direct path with elevation 10° above 

horizontal. The amplitude of the reflected signal is half that of the direct path signal. 
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TABLE 7 

RMS position error (metres) and mean direction error (degrees) for various distributions of signal sources. RMS 

position errors which are greater than one-tenth of the wavelength at the design frequency are shown in boldface. 

Scen- Signal Sources SNR TIme PDSS Least Self Redund. Eigen
Self Cal vector 

ML 
arlo (dB) Domain Squares Cohere 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

90° 

1 

90° 

1 

90° 

1 

90° 

1 

70° 

1 

10° 

1 

3° 

1 

90° ,45° 

1,0.2 

90° ,45° 

1,0.5 

90° ,45° 

1,0.8 

90° ,45° 

1, 1 

90° ,45° 

1,0.8 

90° ,45° ,120° 

1, 0.8, 0.2 

90° ,45° ,120° 

1,0.8, 1 

90° ,45° ,120, 
150° 

1,0.8, 0.8, 0.5 

90° ,45° ,120°, 
150° 

1,0.8, 0.8, 1 

45°,140° 

1, 1 

90° ,90°* 

1,0.5 

90°,90°*,45° 

1,0.5, 0.8 

40° ,30° 

I, 0.8 

10° 

50 

10 

-5 

-20 

50 

50 

50 

50 

50 

50 

50 

10 

50 

50 

50 

50 

50 

50 

50 

50 

-5 

2.9xl(j3 4.0x10-3 7.0xlO-6 1.3xl0-3 1.3xlO-4 7.0xl0-6 

0.17° 2.8e-3° 4.3e-4° 6.3e-2° 

2.9xlO-3 4.3x10-3 8.0xI0-4 0.28 

0.22° 

0.33 

1.0° 

9 

2.8e-3 ° 

0.15 

0.15° 

14 

33° 47° 

2.7x 10-3 3.7x 10-3 

3.3e-2° 5.1 ° 
4.0x 10-3 9 

0.24° 

0.17 

4.3° 

7.3x 10-6 

2.7e-4° 

33° 

15 

60° 

l.4x 10-3 

7.7e-2° 

4.3e-4° 

1.1xlO-2 8.0xI0-4 

3.3e-2° 

7.3xlO-2 4.0x10-3 

0.24° 

0.83 2.7x 10-2 

1.1 ° 

0.11 

0.25° 

0.12 

0.11 ° 

0.17 5.7x 10-5 2.9x 10-2 2.9 

7.3 x 10-6 

2.7e-4° 

5.7x 10-5 

1.4e-3° 

0.57 

1.0e-3 ° 

5.7x 10-3 

0.38° 

8.6e-2° 

0.31 

0.65° 

2.7x 10-3 

0.17° 

3.0x 10-3 

0.36° 

0.20 

0.51 ° 

1.3 x 10-2 

2.8e-3° 

4.7x10-2 

0.26° 2.8e-3° 

3.0x 10-3 0.12 

0.26° 

14 

13° 

0.40 

2.8e-3° 

8.3 

2.8e-3° 

0.12 

0.84 ° 2.8e-3 ° 

7.0x 10-3 0.12 

0.35° 

19 

13° 

0.26 

0.75° 

9.0 

2.8e-3° 

27 

120° 

3.7 

0.58° 

8.7 

1.8° 

1.4e-3° 

0.57 

1.Oe-3 ° 

5.3x 10-3 

0.36° 

0.37 

13° 
0.37 

13° 
8.0 

26° 

0.37 

13° 

0.37 

13° 

5.7 

9.3° 

6.7 

9.6° 

2.4 

7.0° 1.5° 

10 2.5 X 10-2 6.0 

0.19° 

0.57 

0.32° 

0.10 

7.2° 

0.43 

20° 

1.1 

36° 

2.6 

47° 

6.7 

39° 

8.7 

9.1 ° 

8.3 

35° 

12 

86° 

13 

2.6° 

15 

3.3 

0.11 

0.31 

15 

1.0 

1.0 

1.6 

2.1 

3.3 

1.1 

2.1 

1.9 x 10-2 

1.2° 

0.10 

3.8° 

2.7 

47° 

0.10 

3.8° 

0.10 

3.9° 

8.7 

10° 

0.13 

5.7° 

24 

150° 

10 

5.0 

3.0° 

2.2 

2.2° 

2.1 

2.2° 

2.3 

1.8° 

1.3 

1.6° 

1.2 

1.2° 

1.1 

0.86° 

1.1 

1.6° 

1.6 

3.0° 

2.8 

6.2° 0.80° 21 ° 45° 42° 3.5° 

4.0x 10-3 5.3 X 10-3 1.2x 10-3 1.5 x 10-3 1.2x 10-2 1.2 x 10-3 1.3 

0.26° 2.8e-3° 3.8e-2° 5.0e-2° 3.8e-2° 0.14° 

3.7x 10-3 3.1 x 10-2 6.3 1.9 0.93 0.43 0.77 

0.26° 0.30° 

8.7 x 10-2 0.22 

2.0° 

1.5 

7.5° 

0.42° 

3.0 

24° 

20° 

0.25 

3.7° 

0.17° 

0.31 

4.0° 

7.3 X 10-2 21 

0.79° 88° 

0.93 

2.8 

36° 

0.21 

0.94° 

6.7 x 10-2 

0.79° 

0.29° 

0.87 

2.1 ° 

Sharp
ness 

0.11 

0.11 

0.11 

0.11 

0.11 

2.1 

2.1 

0.11 

0.11 

0.11 

0.11 

0.11 

0.11 

0.11 

0.11 

0.11 

0.11 

0.11 

0.11 

0.11 

2.1 

A number of possible scenarios are presented in Table 7 in which the following parameters 

are adjusted: 
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source bearings - up to four signal sources placed in the far field in any direction from 0° 

to 180°. 

source amplitudes - the relative signal strengths of each source. 

signal-to-noise ratio - measured relative to the strongest signal source. The SNR of the signals 

is the same for both the narrowband and the broadband simulations. This circumvents the 

problem of comparing data that have different time-bandwidth products. 

For each scenario the methods are run ten times using different noise each time and the 

results are averaged. Table (7) shows the following results: 

direction-estimation error - Incorrectly estimating the DOA of the calibrating signal source 

results in the estimated array shape's being rotated about the origin by the direction-estimate 

error. This affects the direction-estimation accuracy of the beamformer. 1\vo of the methods, 

the redundant self-calibration and sharpness methods, do not estimate the DOA of the calibrating 

source and so the direction-estimate error is not given for these methods. 

RMS position error - normalised, is calculated by first correcting for the direction-estimate 

error. In other words this is an indication of how well the method will estimate the shape and 

"not the orientation of the array . . 

As a rough guide, an RMS position error of up to 0.2 (or one-tenth of a wavelength at the 

design frequency) is acceptable in terms of the beamformer output that it gives. A method is 

deemed to have failed to estimate shape if the RMS position error is greater than this amount, 

and this is indicated in Table 7 by bold type. Figure 32 shows the mean time taken for each 

method to estimate the array shape given 1024 samples of raw data. Simulations were performed 

using Matlab on a SPARe 10 workstation. For the reasons outlined in Section 5.2.7, the ML 

method is not simulated when only one source is used. The performance of each method is 

discussed in greater detail below. 

Figure 32 T1llle taken to estimate array shape from 1024 samples of raw data. 
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Figure 33 Array calibration results - actual array shape (solid line) estimated array shape (asterisks); (a) 

time-domain method, scenario 3; (b) PDSS method, scenario 6; (c) self-cohering method, scenario 8; (d) redundant 

self-calibration method, scenario 6; (e) eigenvector method, scenario 19; (f) maximum-likelihood 

method, scenario 11; (g) maximum-likelihood method, scenario 12; (h) sharpness method, scenario 1. 
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The time-domain method relies on cross correlation to estimate time delay. Because 

a time-delay estimate is obtained from the argument of a maximum value rather than the 

maximum itself, its accuracy will be good unless either the noise or an interfering signal 

becomes too strong, at which point the error of the time-delay estimate increases rapidly. The 

cross correlation between two hydrophones, Tjk( T), is equal to the sum of the individual cross 

correlations of the signals, {TsJT)}, and the noise, Tn(T), 

Tz(T) = TSl(T) + ... + TSN(T) + Tn(T). (5.14) 

If two of the signals have similar powers, as in Figure 34, then for some hydrophone pairs the 

argument of the maximum of T z( T) will be equal to the TDOA of one signal, while for other 

hydrophone pairs it will be equal to the TDOA of the other signal. When TDOA estimates 
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that correspond to the same signal for each hydrophone pair cannot be obtained, large RMS 

hydrophone-position errors will occur. 

Figure 34 Detail of a typical cross correlation with two signal sources. 
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The reliability of the time-delay estimation can be seen in scenarios 1, 2, 5 and 8-10, where 

the RMS position error is consistently low. In scenarios 3, 4 and 11 the RMS position errors 

are large due to either high noise or a strong interfering source. The noise is just beginning 

to affect the position estimates in scenario 3 (as shown in Figure 33(a)). The method works 

equally well when sources are correlated. (see scenarios 18 and 19) assuming that the reflected

path signals have smaller amplitudes th~ the direct-path signals. Their peaks will appear in 

a cross correlation, but the amplitude of the peaks corresponding to the multipath signals will 

still be smaller than the peak corresponding to the true time delay, because the amplitude of 

the reflected signal will be smaller than the amplitude of the direct signal. 

5.3.2 Phase difference self-survey (PDSS) 

This method relies on a spatial filter to capture the calibrating source and separate it from 

the interfering sources and noise. Because the frequency-wavenumber diagram is incoherently 

averaged along the frequency axis, the filter is predisposed towards signal sources that are close 

to broadside. Equation (5.1) is equivalent to the time-delay estimation used in the time-domain 

method. The PDSS method is shown to fail at very low signal-to-noise ratios such as in scenario 

4 where the SNR=-20 dB. The performance of the PDSS method is better than the time-domain 

method because the filter can reduce interference from noise. 

When the array is even only slightly perturbed, the lines in a frequency wavenumber 

diagram become smeared to the point where they are no longer recognisable as lines. Spatial 

aliasing only makes this problem worse. Energy from each source tends to become spread 

evenly over the diagram and, under certain conditions, the filter cannot separate the calibrating 

and interfering sources as it should. Thus, in scenario 11, when there are two equal-power 

signal sources, the method fails because the filter is unable to separate the two. An error in 

estimating one time delay will affect only one sensor-position estimate. Therefore, when the 
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method begins to fail there will typically be two sub-arrays which have their shapes accurately 

estimated but which are not correctly positioned with respect to each other. See Figure 33(b) 

which shows a shape estimation for scenario 6. 

5.3.3 Least-squares error method 

This method uses the array-covariance matrix as its starting point. For uncorrelated noise, 

the noise-covariance matrix is (72I. In practice, off-diagonal terms appear. The variance of the 

magnitude of these off-diagonal terms diminishes as increasing numbers of time samples are 

taken. For these simulations, when the signal-to-noise ratio is 0 dB, the ratio of the magnitude 

of the off-diagonal signal terms to the off-diagonal noise terms, was about 20: 1, with the result 

that the least-squares error method is relatively insensitive to noise (as are all methods which use 

the array-covariance matrix), as the only terms in the array-covariance matrix which affect the 

array-shape estimates are the off-diagonal terms. The effects of noise don't become significant 

till the signal-to-noise ratio reaches - 20 dB. 

Being a disjoint method it was not surprising that it failed when a second signal source 

was added, although, as can be seen in scenario 8, the method was successful when the ~econd 

source had only a small amplitude. The phase-difference measurements are taken directly from 

the elements of the array-covariance matrix and so the method tends to perform gradually 

worse as noise is added. Compare scenarios 1-4 in which the noise increases, with the time

domain method which uses the argument of the maximum of a cross correlation and performs 

consistently well up to a point at which it suddenly fails. 

5.3.4 Self-cohering method 

With no procedure for reducing the error on phase measurements, this method suffers badly 

from noise. At only 10 dB, as in scenario 2, the results show significant hydrophone position 

errors. Similarly, the method fails as soon as an interfering source is introduced. The estimation 

results for scenario 8, in which a second signal source with amplitude of 0.2 is introduced, is 

shown in Figure 33(c). 

5.3.5 Redundant self-calibration 

This method assumes that there is a calibrating signal source in the direction in which the 

array is steered. The estimated phases of arrival at the hydrophones are modelled as sensor 

position deviations in the steered direction which, in these simulations, is broadside. As the 

calibrating signal source moves away from the steered direction, the hydrophone position errors 

increase. This is seen in scenarios 5-7, and Figure 33(d) which shows the results of scenario 
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6. In practice the array can be steered towards the strongest source by using information from 

the last beamformer output. 

Although the method assumes the signals are disjoint it works when a second or even third 

source is present, such as in scenarios 8-10 and 12-13. In these cases there is still a signal 

source in the steered direction, i.e. 90°. Because the method ascribes only a single error to each 

sensor, the estimates of array-shape deviations in the y-direction tend to be insensitive to the 

signal sources that are not in the steered direction. The method is insensitive to noise for the 

same reason as the LSE method, namely that the measurements of phase difference are taken 

from the array-covariance matrix which is mainly unaffected by uncorrelated noise. 

5.3.6 Eigenvector method 

This method begins with the array-covariance matrix and so, for the same reasons given 

in Section 5.3.3, the eigenvector method is insensitive to noise. Degradation in performance is 

not significant till less than - 20 dB SNR. The assumption that the maximum eigenvector of 

the array-covariance matrix is a multiple of the calibrating signal vector, aI, is true, in general, 

only for the case of one signal source. When there is more than one source the maximum 

eigenvector will be a linear combination of all the signal vectors, {an}. However, the method 

is fairly robust with respect to the presence of interfering sources. As an example, compare 

scenarios 10 and 20 which are identical in all respects except for the location of the signal 

sources. The ratio of signal source strengths hasn't changed, yet moving the sources away from 

broadside has an adverse effect on the method's performance. 

The SNR has an effect on performance that is related to signal source direction. Consider 

scenarios 6 and 21 where a single source is located at 10°. Scenario 6 with a signal-to-noise 

ratio of 50 dB has an RMS position error of 5.7 x 10-5 whereas scenario 20, with a signal-to

noise ratio of - 5 dB, has an RMS position error of 0.21. Yet when the source is at 90°, as in 

scenarios 1 and 3, the effect of noise is not nearly so great. Scenario and 19 demonstrates the 

eigenvector method's inability to cope with correlated signals. When two signals are impinging 

on an array and one is just a delayed version of the other then the array-covariance matrix will 

have only one signal subspace eigenvector given by 

el = ISl lal + IS2 1a2eXp (j 1jJ) (5.15) 

where exp (j 1jJ) is a delay term. When the direct- and reflected-path signals arrive from different 

directions, the two vectors al and a2 will be linearly independent and the maximum eigenvector 

will give a distorted array-shape estimate. Figure 33(e) shows the results of a shape estimation 

where a multipath signal appears from 90° with a reflected version coming from 10° above 

the horizontal plane. 
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5.3.7 Maximum-likelihood (ML) approach 

Some methods require that there be no more than one signal source to be able to estimate 

phases or times of arrival, whereas some are capable of working whether there is one signal 

source or many. The ML approach is unusual because it requires at least two signal sources. 

As explained in Section 5.2.7, this stems from the fact that the matrix, Re{B~Bm}' in (5.10) 

is singular when there is only one signal source. Hence no results are given for situations in 

which there is only one signal source. 

The a priori estimates of hydrophone positions are obtained by randomly perturbing 

the actual hydrophone positions in the x- and y-directions. The standard deviation of the 

perturbations is one fifth of the inter-hydrophone distance in both the x- and y-directions. A 

priori estimates of signal source directions are taken in the above manner using a standard 

deviation of 4°. The number of sources is correctly known in the simulations; I don't analyse 

the sensitivity of this method to errors in the estimate of the number of sources. The a priori 

estimates of the signal sources' DOAs and sensor positions need to be fairly accurate. The 
J 

quadratic error function given in (5.8) is Q = 2: Ilz(j) - As(j)112. Figure (35) shows a plot 
j=l 

of Q versus DOA estimate error, ¢, when the sensor positions are known exactly and there is a 

single source at 90°. As can be seen, if the a priori DOA estimate error is > rv 5° the method 

will converge to a local minimum rather than the global minimum. The method consistently 

has an RMS position error in the range 3 to 7 m. Although this is large, it is due mostly to 

systematic lateral displacements of the hydrophones, and the array-shape estimate is quite good. 

The array-shape-estimate results from scenario 11 are shown in Figure 33(f). The ML method 

does not apply physical constraints and so there is no reason for it to maintain inter-hydrophone 

distances to their known values. Figure 33(f) shows the estimated array-shape shrinking along 

the x-direction. 

The ML method performs poorly in the presence of noise. Figure 33(g) shows the results 

of scenario 12 with the same two sources as scenario 10 but with a signal-to-noise ratio of 10 

dB. The results from 10 are similar to those in Figure 33(f) yet the addition of some noise in 

scenario 12 causes the method to fail. 
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Figure 35 Quadratic error function, Q, versus DOA estimate. 

Sensor locations are known exactly and source DOA = 90°. 
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5.3.8 Sharpness method 

Obviously when the estimated array-shape can only be a sinusoid and the actual shape is 

arbitrary, the sharpness method will not produce the accurate results that can be obtained with 

other methods, hence the relatively high values of hydrophone position errors that are seen in 

Table 7. Figure 33(h) shows that the estimated array shape approximates the actual shape as 

far as a sinusoid can. In spite of the large hydrophone position errors, Figure 36 shows that the 

calibrated beamformer output has easily observable peaks corresponding to the signal sources. 

Of the methods examined here the sharpness method is the only one which gives workable 

results in almost all cases, but it has one serious drawback in that large errors in direction 

estimation can be observed in the beamformer output. The sharpness method estimates the 

array shape with no notion of the true orientation of the array. Even if a heading sensor is 

placed on the cable and the estimated array shape is rotated so that it matches the information 

obtained from the heading sensor, the orientation of the array will still cause direction estimation 

errors. This method takes the longest to run. It involves 41 one-dimensional maximisations, 

each of which calculates beamformer output about 12 times. For an array that requires more 

parameters in the shape estimate, the number of calls to the beamformer procedure would rise 

sharply, thereby lengthening the time required for an estimate. 

Figure 36 Array calibration results for scenario 1; sharpness method. Continuous and 

dashed lines represent uncalibrated and calibrated beamformer output respectively. 
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5.3.9 Continuous simulation with beamformer output 

Quality of the beamformer output is what we are ultimately trying to achieve. As Figure 

33(f) and 36 show, the RMS position error does not give a true indication of how the beamformer 

will perform. In this section I simulate an array shape that is continually changing, with signal 

sources that are also changing in amplitude and DOA. In total there are 100 shape estimates 

and beamformer outputs calculated for each method. These are displayed in Figures 38 and 

39 in the form of contour plots, where the contours are lines of equal power. A plot of the 

ideal beamformer output is shown in Figure 37. The main track, beginning at 350 and finishing 

at 1340
, has a constant amplitude of 1. It is shadowed by a multipath reflected source which 
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Figure 37 Continuous simulation - ideal beamformer output 
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arrives from an angle 100 above the direct path source. The reflected signal has a constant 

amplitude of 0.5. The other signal sources that can be seen have no multipath components. 

Their amplitudes, which vary in time from 0.2 to 1, are shown at various points on Figure 37. 

The SNR is set to 5 dB. 

The best methods are the PDSS followed closely by the time domain. The distinguishing 

factor is that they are broadband methods. The sharpness method produces clean beamformer 

output but it can be seen that the DOA estimation error is quite large. The eigenvector method 

has fairly clean beamformer output but its performance is not so good in the presence of 

multiple signals. 

5.4 Conclusions and Summary of Chapter 5 

The towed-array self calibrators presented here are intended to represent a cross-section 

of methods in the literature. I have rated the methods in terms of their accuracy to estimate 

shape and signal-source direction and the time required to run. In seeking to characterise 

performance and differentiate between the methods, I have also investigated the robustness 

of each method to variations in signal-source distribution and noise characteristics. Explicit 

and implicit assumptions were given, and the sensitivity of the methods to the underlying 

assumptions was determined through simulations which violated the assumptions. The results 

of these simulations have been summarised in Table 7. 

The time-domain and the PDSS methods perform the best in the presence of coherent 

signals while the eigenvector and sharpness methods perform the best at low SNRs. The 

continuous simulations of Section 5.3.9 show that the performance of the other methods was 

unsatisfactory. The time-domain and PDSS methods are both broadband methods and this seems 

to be the differentiating factor for overall success or failure with coherent signals. 
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Figure 38 Continuous simulation, (a) time-domain method, (b) PDSS 

method, (c) least-squares error method, (d) self-cohering method. 
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Figure 39 Continuous simulation, (a) redundant self-calibration method, (b) 

eigenvector method, (c) maximum-likelihood method, (d) sharpness method. 
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Chapter 6 Applying Sharpness 
to Towed Arrays 

6.1 Sharpness Revisited 

In this chapter I examine the sharpness array calibrator [Buc78, FGR92, Fer90a, Fer90b, 

MB74] in more detail than in Chapter 5. In the literature, some of the reports on the sharpness 

method give contradictory conclusions for which I provide an explanation. With computer 

simulations, I investigate the robustness of the method to the number and distribution of signals 

and present a new, robust sharpness function suitable for omnidirectional arrays (e.g. towed 

arrays). I conclude that the sharpness method is useful for towed-array calibration. 

Sharpness has a number of advantages over other self calibrators; in particular, it requires 

no prior knowledge of the signal parameters, because sharpness is based purely upon the 

beamformer output. Also, sharpness can be maximised over any array parameters that affect 

the beamformer output. For instance, this could be some arbitrary parameterisation of the 

array-shape, or an estimate of the range to a particular source. 

Note that there is a difference between the sharpness concept and a sharpness function. 

The sharpness concept is that a function of the beamformer output, when maximised over some 

sensor position (or other unknown quantity) estimates, will be a maximum when the errors of 

these estimates are zero. There are eight different sharpness functions presented in [MB74] , 

not all of which satisfy the sharpness concept The sharpness function used in [Buc78, Fer90b] 

does not strictly satisfy the sharpness concept although, as I will show, if the array shape is 

modelled as the sum of a small number of sinusoid shapes, then the maximisation of their 

sharpness function may be successful for towed arrays. 

The first paper on sharpness [MB74] applied the technique to the real-time restoration of 

optical telescope images. The method required all signals to be located in an isoplanatic patch 

of the sky. An isoplanatic patch is a region from which all signals will have the same phase 

errors caused by a turbulent propagating medium. The size of the isoplanatic patch depends on 

wavelength and the scale of the propagating medium disturbances. Proofs are given in [MB74, 

HON77] for the sharpness functions in [MB74]. After a small modification, Bucker [Buc78] 

applied one of these sharpness functions to the similar problem of towed-array calibration. 

Ferguson [Fer90b] modified this sharpness function slightly and applied it to towed arrays, 
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again with similar results. The sharpness algorithm for towed arrays approximates the array's 

shape with a sum of a small number of sinusoids. Towed arrays have omnidirectional sensors, 

and so the assumption that all signals come from an isoplanatic patch was violated in [Buc78] 

and [Fer90b]. Despite this, the results of these papers showed that sharpness, applied to towed 

arrays, is viable. 

The lack of a proof for the sharpness functions in [Buc78] and [Fer90b] prompted the work 

of [DC92], where it is shown that they are not consistent with the sharpness concept. Because 

the sharpness function for towed arrays is complex, a general proof could not be provided. 

Instead, using a series of simplified functions, it is shown that sharpness will not be a maximum 

in every circumstance when the errors of the hydrophone position estimates are zero. Thus, the 

results of [DC92] disagree with those of [Buc78, Fer90b]. Here I will try to resolve this. 

The outline of this chapter is as follows. Section 6.2 introduces array-processing concepts 

that supplement Chapter 2. In Section 6.3 I trace, from the literature, the development of the 

sharpness concept applied to real-time correction of optical-telescope images [MB74], and point 

out the similarity of this to a self-calibration technique used on radio telescopes [HON77]. I 

then look at how one of the shClfPness functions discussed in [MB74] was adapted to towed 

arrays [Buc78, Fer90b], and at its analysis in [DC92]. I assume that the towed array and signals 

exist within a plane, the signals are narrowband and that the noise is spatially uncorrelated and 

uncorrelated with the signals. Section 6.4 contains a discussion on the results and discrepancies 

of [DC92] and [Buc78, Fer90b]. I use computer simulations to help explain the characteristics 

of the sharpness function of [Buc78, Fer90b]. In section 6.5 I do computer simulations using a 

number of trial sharpness functions, to determine whether or not alternate sharpness functions 

might exist for towed arrays. The results of these simulations give some indication of whether 

the trial functions are convex, and whether they will meet the sharpness concept. I found three 

trial functions that are convex. Conclusions are given in section 6.6. 

I stress that an algebraic analysis of sharpness for towed arrays is very difficult. As shown 

in [DC92] an algebraic analysis can be applied only to simple two-element arrays. This is why 

I have used computer simulations to investigate the behaviour of the sharpness functions. 

6.2 More Array Concepts 

The power output from a beamformer is given in (2.21). When the hydrophone positions 

are imprecisely known then estimates of the sensor positions must be used in (2.20), in place 

of their actual values. Writing the dependence of the beamformer output explicitly, 

Pb( <p, {<Pn}, {Xm}, {Xm}) = wH
( <p, {X m} )R( {<Pn}, {Xm} )w( <p, {Xm} ), (6.1) 
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where a hat denotes an estimate. When {Xm} = {Xm}, (6.1) is a discrete Fourier transform 

relation. Correlation is a function in the separation domain and power is a function in the 

direction-cosine domain. The Fourier transform relationship of power and correlation can be 

explained more formally by introducing the pupil function and the transfer function. 

The pupil function, p(X), of an array or telescope is a function of position and is the 

complex amplitude of a signal as detected by a sensor at X (it includes gains of the sensor, 

amplifiers etc.). It includes the effect of the propagating medium as well as sensor gains. If all 

sensors have identical gain and the propagating medium is ideal, as assumed earlier, then the 

pupil function is unity at the locations of the sensors of an array (or within the aperture of a 

telescope) and zero elsewhere. The transfer function, T(X), is the autocorrelation of the pupil 

function, and is thus a function of separation. The beamformer output, or image, is the Fourier 

transform of the correlation function, r(x), windowed by the transfer function. 

Assuming that an infinite number of sensors, each the size of a point, can be packed into an 

area so that they form a continuous sensor, the correlations of (2.15) can be measured at every 

separation up to the size of the continuous sensor. The beamformer output from the continuous 

sensor is the continuous Fourier transform of the correlations. This is exactly what is achieved 

by an optical or radio telescope. The lens or parabolic reflector of a telescope performs a 

continuous Fourier transform on the correlations in the aperture to produce the equivalent of 

the beamformer output (in astronomical terms the output is called the image). Some form of 

sensor, such as an eye (for optical telescopes), is then able to measure the power of the image 

at each point bn . The pupil and transfer functions are ideally as shown in Figure 40. The pupil 

and transfer functions of an array of point sensors consists only of impulses. 

Figure 40 Pupil and transfer functions of a telescope. 
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A telescope is typically used to view signal sources that are directly above the aperture 

plane. Signals that source from outside the main lobe of a telescope's beam pattern are greatly 

attenuated and their effect on the correlations is assumed negligible. Thus the elevation of all 

signal sources in view is very close to 90°. 
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6.3 Development of the Sharpness Concept 

This section traces the development of the sharpness concept in the literature, from its use 

in optical [MB74] and radio telescopes [HON77], to its application to towed arrays [Buc78, 

Fer90b]. 

6.3.1 Sharpness applied to optical astronomy 

The sharpness concept was developed by Muller and Buffington [MB74] , as a means of 

correcting atmospherically degraded images in real time. We know that for optical telescopes 

with an aperture greater than 10-30 centimetres, atmospheric turbulence will distort the signals' 

wavefronts, by changing the phase of light with different paths, so that they will not be planar. 

This will cause the image to degrade because the telescope relies on receiving plane waves. 

Muller and Buffington define sharpness in such a way that, under certain conditions, the "value 

of sharpness for an atmospherically degraded image is always less than that of the true image." 

Their first trial sharpness function was 

Sl(Pb) = J J P/(8¢,o) d[8¢,oJ. (6.2) 

They proposed introducing elements into the light path which could adjust the phase of the 

light and cancel the atmospheric disturbances in real time. Sharpness, S 1 is maximised with 

respect to the phases introduced by the adjusting elements. All signals are assumed to exist in 

an isoplanatic patch of the sky which is centred on a point in the far field, perpendicular to the 

aperture plane. Their proposed model for atmospherically induced errors is shown in Figure 

(41). This model supposes that the complex correlations in the aperture plane are distorted 

by a function which depends solely on the separation of the correlation, and is independent of 

the signal distribution. The independence of the distortion to the signal distribution is a direct 

consequence of the isoplanatic signals assumption. That is, 

r'(x) = r(x)T(x) (6.3) 

where I indicates a distorted measurement. Therefore, maximising S 1 will depend on the state 

of the atmosphere and be independent of the signals. Sharpness function, S 1, is defined so 

that if T (X), which includes the effects of correction as well as the atmospheric distortion, is 

anything other than a simple translation of the image (P(X) = exp [j( a + bX)]), then sharpness 

will be less than a maximum. 
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Figure 41 Muller and Buffington' s [1] model for atmospheric phase distmbances. The 

position of the arrows indicates relative phase. Phase errors are independent of signal 

direction, assuming that all signals are located in an isoplanatic patch of the sky. 
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6.3.2 Proof of the sharpness funcUon and comparison with 
radio astronomical methods of self-calibration . 

Muller and Buffington's proof that their sharpness functions satisfy the requirements of 

the sharpness concept is cumbersome. Hamaker et al. [HON77], provide an alternative, more 

accessible proof for the sharpness function, Sl, that allows them to compare sharpness with a 

radio astronomy array-calibrating technique known as redundant self-calibration (see Section 

5.2.5). The image, Pb(84), (} ), is related to the correlations and transfer function, T(X) , by the 

Fourier transform relation and (6.3): 

Pb ( 84>, (}) {::: FT =? r' (X) 

Pb(84), (} ) {:::FT =? r (x)T (x) . 

According to Parseval ' s theorem, 

Sl(Pb) = J J P/( 8~,8) d [8~ , 8l 

= J J Ir(x)1 2 IT(x)1 2 dx· 

(6.4) 

(6.5) 

The correlations, r(x) are determined by the source distribution alone, and so maximising Sl 

with respect to the phase errors is equivalent to maximising T (X) for all x. The transfer 

function , TC'(), is the autocorrelation of the pupil function, p(X) and, assuming that the 

unperturbed pupil function , Po(X) , is real and the atmospheric disturbances affect only the phase, 

then p(X) = Po(X) exp [j e(x)], where e(x) is the phase distortion resulting from atmospheric 
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turbulence at position x. And so, 

T(X) = J J Po(w)Po(w + X) exp [j(e(w) - e(w + X))] dw. (6.6) 

This integral represents a summation of complex vectors, {exp [j ( e( w) - e( w + X))]}, which 

is maximised when the orientations are all the same. Thus, 

e(w) - e(w + X) = 'l1(X) (6.7) 

is independent of wand it can be shown that e(x) = a+bx. The constant a is of no consequence 

and the tilt, b, represents a shift of the image. So, apart from this shift, maximising Sl leads 

to a fully restored image. 

The self calibrator of Section 5.2.5 relies on the existence of redundant baselines. In a 

uniform linear array of M elements, for example, there are M - 1 baselines of single spacing, 

M - 2 baselines of double spacing, and so on. The correlation measured at baselines of equal 

length and orientation should be equal, so that any differences in those correlations must be 

caused by atmospheric disturbances. Indeed, as pointed out in [HON77], the interpretation of 

(6.7) is that measurements of the same correlation at different locations in the aperture should 

yield the same answer. The sharpness function, S 1, applies the constraint in (6.7) without the 

need to measure the correlations, directly. 

6.3.3 Sharpness applied to towed arrays 

Bucker [Buc78] formulated the sharpness function, 

7r 

S2(Pb) = J p/( </» sin </> d</> (6.8) 

o 

to estimate the shape of towed arrays. The addition of the sin 4> term in (6.8) compensates for 

lower resolution, and broader beams, of the beamformer at endfire, so that undue weighting 

is not given to targets that approach the endfire directions. The estimated array-shape was 

parameterised in the form of a harmonic series, 

A 

Ym = f( {C>,\}, {,8,\}, Xm) = {; [c>,\ sin ( )..7r;m ) + ,8,\ cos C~m ) ], (6.9) 

where H = La + cvT, La is the length of the array, Cv is the tow vessel's speed, and T is the 

total integration time of the time average in (2.21). 
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Figure 42 Flow chart for basic operation in the maximisation of sharpness, 52. One iteration 

loop consists of doing the basic flow chart operation for every parameter, {Q' >.} and 

Uh}. Sharpness is maximised by repeating the iteration loop a fixed number of times. 
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Bucker proposed a method for maximising sharpness where each parameter, a). or (3)., is 

adjusted in turn. Beginning with an initial array-shape estimate, such as all a). and (3). set to 

zero, an initial set of step sizes for each parameter, 8a). and 8(3)., and a value of sharpness 

for the initial array-shape, the adjustment of each of the parameters and step sizes proceeds 

according to the flowchart of Figure 42. An iteration consists of repeating the basic operation, 

as defined in Figure 42, once for each of the parameters, {a).} and {(3).}, in (6.9). The procedure 

is stopped after a predetermined number of iterations. Bucker claims that although the method 

is crude, it is reliable. He demonstrated the method with both simulated and real data. 

The optimisation procedure of Figure 42 works well and, from my own simulations, I would 

agree with Bucker when he says it is reliable. For ten iterations and an array modelled by four 

sinusoids, the procedure requires around 60 calculations of sharpness. Compare this with the 

procedure of Sections 5.2.8 and 5.3.8 which require around 492 calculations of sharpness for 

an array modelled by just one sinusoid. 

Bucker's work was extended by Ferguson [Fer90b] who used a Capon estimator instead of 

the conventional beamformer. The sharpness function, S3, used in [Fer90b], is given by 

53 = J Pa2
( q,) sin q, d</>, (6.10) 
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where 

Pa ( ¢) = [wHR -lw]-l (6.11) 

is the power output of a Capon estimator, for look direction ¢. Like the conventional 

beamformer, the Capon estimator estimates signal power for a given look direction. It has 

narrower beam widths and lower sidelobe levels, for a given array, than the conventional 

beamformer. Its resolution is finer because it maintains unity gain in the look direction while 

reducing interference from signals away from the look direction. The Capon estimator and, 

hence, S3 , are more sensitive to position estimation errors. Results similar to those in [Buc78] 

were obtained. Neither [Buc78] nor [Fer90b] presented a proof for their respective sharpness 

functions. 

6.3.4 Mathematical analysis of sharpness 

Recognising that there was no formal justification for the sharpness functions, S2 and 

S3, in [Buc78] and [Fer90b], an attempt to study S2 algebraically was made by Davidson 

and Cantoni [DC92]. Expressions, for the partial derivatives of S2 with respect to the estimated 

array parameters, {&A} and {~A} were derived, and 'these are shown in appendix C. Because of 

the complexity of the expressions for 8 S 2/8 & A and 8 S 2/ 8 ~ A' Davidson and Cantoni assum~d 

that the sensor position estimates are independent of one another, and that the estimates in 

orthogonal directions are also independent Despite this assumption, the partial derivatives for 

a general M element array are still too complex to analyse, and so simplified models consisting 

of two-element arrays with unknown separation, were analysed instead. Davidson and Cantoni 

show that the partial derivatives, 8S2 /8X and 8S3 /8X, depend on the signal distributions and 

the white-noise level, and thus will not necessarily be zero when X = x. This tells us that 

S2 will not necessarily be a maximum when the hydrophone positions are estimated correctly. 

Sidelobe leakage is identified as the cause of this problem. Because 8 X /8 & A and 8 X / 8 ~ A are 

independent of both the signal directions and the look direction, S2 will not necessarily have a 

maximum if the array shape is parameterised in the form of (6.9), and 

&A = <lA' 
A 

(6.12) 
fh. = fh" v A, 

for the same reason. So, on the one hand, the results of [Buc78, Fer90b] suggest that the 

sharpness method is a reliable means of array calibration while, on the other hand, [DC92] 

proves that, in general, S2 does not satisfy the sharpness concept, and therefore that the sharpness 

method is not worth pursuing as a method of estimating the shape of a towed array. 
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6.4 Why Sharpness Works 

In this section, I present computer simulations of the sharpness function, S 2, that are 

more comprehensive than those of [Buc78, Fer90b]. The simulations indicate that, despite the 

proof of [DC92] that S2 does not meet the sharpness concept, the sharpness method described in 

[Buc78] will provide sufficiently accurate array-shape estimates for beamforming to maintain its 

performance under a variety of realistic array shapes and signal-source distributions. Davidson 

and Cantoni [DC92] explain why S 1 meets the sharpness concept when it is applied to optical 

astronomy, yet S2 does not when it is applied to towed arrays; 

1. the beamformer of (2.21) bears no relation to optical telescope imaging, and 

2. sidelobe power leakage of the beamformer, when there are multiple signals, biases the 

sensor position estimates. 

In fact, as was explained in Section 6.2, optical imaging and beamforming are the same, 

both being a Fourier transform of the spatial correlations windowed by the transfer function, 

making point 1 incorrect. The difference between the two systems is that a telescope produces 

images over portions of the hemisphere that is the sky above the aperture plane, while a 

towed-array beamformer is generally only used to produce an image over the hemisphere's 

circumference, which is in the plane of the array. The telescope's look direction is represented 

by two parameters, azimuth and elevation, while the towed-array beamformer's look direction 

is represented by a single parameter, azimuth. Considering this, point 2 of the list is also 

clearly incorrect, because if sidelobe leakage causes a bias in the sensor position estimates of 

[Buc78, Fer90b], then it would also cause a similar bias in the phase disturbance estimates of 

[MB74, HON77] and, as it was proven, this is not the case. The real reason that S2 does not 

meet the sharpness concept is that all of the signals do not originate from an isoplanatic patch. 

This isoplanatic signals assumption is equivalent to assuming that the image errors are caused 

solely by unknown channel- (or position-) related phase errors (see Figure 41). In other words, 

the phase error, e(x), at a particular channel (or at a particular point) is the same for every 

signal, and so is independent of the signal direction. For towed arrays, if the sensor-position 

estimation errors are {X m}, then the error of the correlation estimate, for the nth signal and 

position Xm is exp (j7rXmon), which depends on the DOA of the signal. Therefore, the signals 

do not originate from an isoplanatic patch for towed arrays and each signal will have different 

phase errors for a given separation. 

In spite of this, when the array is parameterised by modelling it as a sum of a small number 

of sinusoidal shapes, as described in [Buc78], and sharpness is maximised according to the flow 

chart of Figure 42, good array-shape estimates can be obtained. To demonstrate this I present 
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Figure 43 Relative values of sharpness versus estimated sensor separation. The 

system has two sensors with a true separation of one and a single signal at 90° . 

The value for sharpness is given relative to the sharpness at the correct separation. 
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a series of computer simulations that will highlight the difference between sharpness when the 

estimated array shape is unconstrained and when the estimated array shape is a sum of sinusoids. 

In these simulations I use the ideal array-covariance matrix, as given in (2.14). The 

beamformer power is calculated at 10 intervals from 00 to 1800 using (6.1). The integrals in 

(6.8) and other sharpness functions are calculated by summing the discrete beamformer powers. 

It is shown in [DC92] that, for a simplified system involving just two sensors, sharpness 

will not necessarily be a maximum when the estimated separation between the sensors is equal 

to the true separation. This is because the resolution of a beamformer is inversely related to 

the size of the array's aperture which, for the two-element array, is the distance between the 

sensors. Thus, the smaller the separation of the two sensors, the broader the beam, and S 2 is 

greater. This can be seen in the plot of sharpness versus estimated separation of Figure 43, in 

which the maximum value for sharpness occurs when the separation is smallest. It explains a 

tendency for S2 to have maxima at points where the estimated array-shape doubles back on 

itself, producing the smallest aperture. As can be seen in the simulation results of Figure 45, S2 

has a local, and possibly global, maximum at the point where the estimated array shape has the 

smallest aperture. When the estimated array shape is parameterised, this problem is eliminated, 

because the sinusoids that model the array do not double back on themselves. 

To visualise how the sharpness function behaves with respect to changes in the array 

shape and signal distribution, I simulate an unconstrained array with four sensors that have 

an interelement distance equal of one. The form of the unconstrained array shape is shown in 

Figure 44. It consists of a series of straight-line segments (of constant length p) that deviate from 

one another by angles, { 'ljJm}, which are measured from extensions of the previous segments. 
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The first segment is fixed to the x-axis, to avoid rotational ambiguities (sharpness can only be 

maximised to within a shift of the original image which, for beamformers, corresponds to a 

rotation of the array). The contour plots of Figure 45 show sharpness plotted against the angular 

deviations of the second and third segments of the four-sensor array. In each case, the point A 

represents the true angular deviations of the second and third segments, and point B represents 

the nearest local maximum of sharpness to A. Figure 45(a) shows a case where the array's 

second and third segment angular deviations are 'Tr/6 and -'Tr1l2 radians, respectively, as shown 

at point A, and there is one signal at 90°. It can be seen that the location of the maximum, point 

B, is equal to point A, and so, for this case, sharpness is a local maximum when the estimated 

array shape equals the true array shape. We expect this to be the case whenever there is only 

one signal because, as explained previously in this Section, all signals (and in this case there 

is only one) will have the same phase error at a given sensor. 

Figure 44 Example of an unparameterised array. 

p 

Xl ~ 

Figure 45(b), represents the case in which there are two signals of equal power, at 90° and 

150°, and it can be seen that the true array shape, at point A, and the location of the maximum 

of sharpness, at point B, do not coincide. If the signals are closer together, such as in the 

example of Figure 45(c), where the signal directions are 90° and 1()()0, then the true array shape 

and the location of the maximum, at points A and B respectively, are nearly coincident. This 

is because the phase errors of one signal will be approximately equal to the phase errors of 

another signal, when their directions are approximately equal. In general, S2 will not have a 

local maximum at the point equal to the true array shape when there are two or more signals, 

unless the signals are spaced closely together, because each signal will have a different phase 

error for a given separation. 

The problems of multiple signals with widely different directions of arrival, are overcome 

by modelling the array as a sum of sinusoids. Figure 46 shows the solutions for array shape 

that are obtained by maximising sharpness, subject to the array shape's being: 

1. unconstrained, where sharpness is maximised over the angular deviations of all segments 

(Figures 46(a), (c) and (e)); and 
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Figure 45 Contour plot of sharpness versus the estimated second and third segments' angular deviations. The 

array has four sensors, with a true array shape defined by the point A. The nearest local maximum 

to A is point B. The signal DOAs are (a) 90°, (b) 90° and 150°, and (c) 90° and 100°. 
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2. modelled as a sum of three sinusoids, of wavenumber H /2, H and 2H, and one cosinusoid 

of wavenumber H /2 (Figures 46(b), (d) and (f)). 

Also shown are the true and estimated beamformer outputs, the estimated one being based on 

the array-shape estimate. In each case, the true beamformer output or array shape is drawn 
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with a solid line, and the estimates with dashed lines. The array I simulate has 35 hydrophones 

that are joined by inflexible segments with a length of one. The signals are narrowband and 

incoherent. When the estimated array-shape is unconstrained, the angular deviations between 

successi ve segments of the array are estimated by maximising S 2 with a simplex search method. 

When the sum of sinusoids model is used, S 2 is maximised according to the method outlined in 

Section 6.3.3. The true array shape is the same in each simulation, and is defined by a quartic 

shape in the y-direction with respect to the x-direction, with a maximum deviation from the 

x-axis of 0.83 times the signal wavelength. 

There is one signal source at broadside (90°) in the simulations of Figure 46(a) and 

46(b). It can be seen that the unconstrained array-shape estimate in Figure 46(a) is almost 

indistinguishable from the true array shape, so that the bearnformer image is indistinguishable 

from the true image. When the array-shape is parameterised, as in Figure 46(b), the array-shape 

estimate is seen to be as close to the true array shape as the parameterisation will allow. The 

bearnformer output is faithful to the true bearnformer output; signal power is underestimated 

and the sidelobes are increased only slightly. 

Based on the contour plot of Figure 45(b), and our understanding of the importance of 

an isoplanatic signal distribution, it comes as no surprise that the unconstrained array-shape 

estimate of Figure 46(c) shows no resemblance to the true array shape, due to the inclusion of 

a second signal at 150°. The bearnformer output shows what could be two very broad signals 

at around 90° and 120°, which confirms why sharpness is a maximum for this, rather than the 

true, array shape. In Figure 46(d), the parameterised array-shape estimate appears unaffected 

by the inclusion of a second source at 150°. This array-shape estimate is very similar to that 

of Figure 46(b), and so the estimated bearnformer output, when there are two signals, is also 

close to the true beamformer output. The directions of the signals in the bearnformer output are 

slightly different from the true signal directions; this is due to two effects: 1) the maximum of 

sharpness determines the true array shape to within an unknown shift, or rotation, and 2) the 

parameterised array-shape estimate distorts the apparent DOA of the signals. 

Figures 46(e) and 46(f) show the results of the two maximisation methods, when there are 

two closely spaced signals, at 90° and 100°. The close proximity of the two signals has resulted 

in a good approximation to the true array shape (Figure 46e) for the unconstrained array, which 

is because both signals have approximately equal correlation phase errors for a given sensor 

separation. The beamformer output shows a substantial signal-direction error, because of the 

invariance of S2 to rotations of the estimated array-shape. The same rotation is evident in the 

parameterised array of Figure 46(e), although its shape is still close to the true array shape. 
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Figure 46 Plot of actual (solid lines) and estimated (dashed lines) array shapes and beamformer 

images using sharpness function 52. The array is not parameterised in (a), (c) and (e). The array is 

modelled as the sum of three sinusoids with wavenumbers of H /2, H and 2H in (b), (d) and (f). 
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6.5 New Sharpness Functions for Towed-Arrays 

In this Section, I test for the possible existence of a sharpness function that will satisfy the 

sharpness concept, for omnidirectional arrays. The sharpness functions that I investigate are 

taken from [MB74]. I test the functions by simulating a 35-element array with two signals, 
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at 90° and 150°. The array has the same shape as the simulations of Figure 46. A group of 

2500 random array shapes are produced by adding a random angle to the angular deviation of 

each segment of the true array-shape. The random angles added to each angular deviation have 

normal distributions, with zero mean and a standard deviation of S°. A second group of 2500 

random array shapes is prcx1uced by adding twice the random angles of each array-shape in the 

first group to the angular deviations of the true array-shape. The value of sharpness is calculated 

in each case, and plotted for each group. If the sharpness function being tested satisfies the 

sharpness concept, then we assume that sharpness will be convex, at least in the region local 

to the true array-shape point (the solution for all parameters that define the array-shape can be 

thought of as a point in a multidimensional space). If the trial sharpness function is convex 

it will always be greater for smaller values of the standard deviation. In this case the plots 

of sharpness for the first 30 array shapes would look something like the plot of Figure 47(a); 

convexity is shown by the two lines not intersecting. A sharpness of unity corresponds to the 

value of sharpness for the true array shape. Figure 47(b) shows the plots of sharpness for the 

first 30 simulations for the sharpness function S2- The condition we require for the sharpness 

concept to be met has been broken, because the solid line is above the dashed line in only 

78% of the simulations. 

As an indication of how likely it is that a particular function will meet the sharpness 

concept, I run the simulation as described, and calculate the percentage of instances where the 

lower line is above the upper line. Figure 48 shows the results of the experiments for 11 trial 

sharpness functions. The trial functions are 

1. f Pb(~) sin ~ ap 7. Pb (¢n) 
2. f p/(¢) sin ¢ ap 8. f IdPb( ¢)! apl2 ap 
3. f P/ ( ~ ) sin ~ ap 9. f I d 2 Pc ( ¢ ) ! ap212 ap 
4. f Pc 4 

( ¢ ) sin ~ ap 
10. f Id3 Pc (¢)!ap3 1

2 ap 
S. f Pb ( ~ ) cos ~ ap 

11. flog r Pb(~) ap 
6. Pb( ~n) 

The best trial functions are 8, 9 and 10, which have performance indicators very close 

to 100%. These functions maximise derivatives of the beamformer output. Maximising S2 

when the signal sources are widely separated results in a beamformer output that has broad 

peaks. However, only beamformer output that has sharp, narrow peaks will maximise functions 

8-10. Figure 49 shows array-shape estimates and beamformer outputs for function 9, using 

the same true array-shape and signal-source distribution as in Figure 46. Whether the signal 

sources are widely separated or not, trial function 9 gives accurate array-shape estimates for both 

parameterised and unparameterised arrays. This function is a gocx1 choice of sharpness function 
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for omnidirectional arrays. However, it is likely that the true array shape is not represented 

by the global maximum of trial function 9, only by a local maximum. Local maxima are not 

likely to be a problem for towed arrays. If the array is assumed to have small deviations from a 

straight line and the starting point of the maximisation is a straight line, then the local maximum 

will most likely be the point that defines, or is close to, the array shape. 

Figure 47 Sharpness versus simulation number. The solid line is for a nominal 

standard deviation of 5°, and the dashed line is for a nominal standard deviation 

of 10°. (a) ideal, convex sharpness function, and (b) sharpness function 52. 
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Figure 48 Results of simulation tests for convexity of trial sharpness functions. A performance 

indicator value of 100% indicates that the function is convex in a region around the true array shape. 
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Figure 49 Plot of actual and estimated array shapes and beamformer images (estimates are shown 

with dashed lines) using trial function 9. The array is unconstrained in (a) and (c). The array is 

modelled as the sum of three sinusoids with wavenumbers of H /2, H and 2H in (b) and (d). 

21 2 
'" ..... 

J 0 '" J J ~~, /~" 
-1 "9' -1 

-2 
5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 

distance distance 

1500 1500 

1 A 

... 1000[ ~ ... 1000 

[ 5: 1\ [ ~l- JL ,J\~ 
o 50 100 150 200 0 50 100 150 200 

direction (degrees) direction (degrees) 

(a) (b) 

2 6

t 

- - -- - -1 4 "" ----
~ ~..-
00"-

~ 0 .$ 2 /'" 
~ ~ 
~ ~ 

-1 0 ..... --

-2 -2 
o 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 

distance distance 

I ::1 ~ ~ II ::[ ~ ~ !: 
II 

01 ...J w,\... 01 J.w,~ 
o 50 100 150 200 0 50 100 150 200 

direction (degrees) direction (degrees) 

~ (~ 

6.6 Summary of Chapter 6 

The sharpness method presented in [MB74] was proven to restore atmospherically degraded 

telescope images to their undistorted state. For omnidirectional arrays such as towed arrays, 

S2 [Buc78, Fer90b] is based on the assumption that the signals arrive from only one narrow 

range of directions, if the array is unconstrained. Sharpness function S2 has been shown to be 

sensiti ve to the distribution of signals if this assumption is false. If the array is parameterised 

as a sum of a small number of sinusoid shapes, reliable array-shape estimates can be obtained, 

regardless of the number of signals or their distribution. The estimates are as close to the true 

array-shape as the parameterisation will allow. TIrrough simulations, I found that trial sharpness 

functions 8-10 of page 110 are close to convex in the region around the true array shape, for 

towed arrays. My investigations show that a local maximum of trial sharpness function 9 will 

provide an accurate shape estimate for towed (omnidirectional) arrays independently of the 
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number or distribution of signal sources and of whether the array is parameterised or not. In 

all cases sharpness function requires no a priori knowledge of the signals. I conclude that the 

sharpness algorithm is useful for estimating the shape of towed arrays. 
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Chapter 7 Conclusion 

It is essential for towed array processors to calibrate the array if best performance is 

needed at all times. The trend is to make towed arrays longer and use more complex array 

processors so that array calibration will become a necessity. Array calibrators fall into two 

main categories: signal-based and heading-sensor-based. I have concentrated largely on self 

(signal-based) calibrators. Self calibrators typically use phase or time-delay information from 

the impinging signals. The array shape is estimated by applying geometric constraints in a 

procedure known as the chord approach. 

I dealt with the theoretical problem of correlation function invertibility in Chapter 3. This 

problem has no simple and complete answer. I gave the necessary conditions for the sensor, 

signal and noise parameters to be observable, in 2D and 3D arrays. Based on a geometric 

analysis, I found closed form solutions for the sensor and signal parameters given the signal 

steering vectors. These results are applicable to a generic array. With the additional geometric 

constraints of towed arrays the parameters are observable, apart from a twin ambiguity, with 

just one signal . . The twin ambiguity is resolved by making the assumption that the array is 

close to a straight line. 

For a generic array, noise parameters are observable if the noise is spatially uncorrelated 

and uncorrelated with the signals. Given this, the sensor and signal parameters are observable 

if the signals are incoherent, there are more sensors than signals and there are at least three 

signals for a 2D array or six signals for a 3D array. The parameters will be unobservable when: 

1. noise is spatially correlated, or 

2. the signals are coherent and there are less signal sources than given in Section 3.2.4. 

When the signals are coherent and the number of signal sources satisfies the requirements in 

Section 3.2.4 it is not known whether the parameters are observable. 

Chapter 4 gave three new towed-array calibrators. The first two calibrators are based on 

a simple least-squares error optimisation; one uses phase-delay information from narrowband 

signals and the other uses time-delay information from broadband signals. The first algorithm 

requires that there be no interfering signals. The second algorithm is insensitive to interfering 

and coherent signals because of the properties of time-delay estimation. I demonstrated the 

algorithms' accuracy using computer simulations. However, the exact signal-to-noise ratio of 
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real underwater acoustic signals is an unknown factor, and is likely to determine whether the 

algorithms work in a real situation. The third algorithm gives an easy way to fuse measurements 

from different sources. It uses a state-space model of the towed array. The state-space model is 

derived from the Paidoussis equation which describes the dynamics of towed flexible cylinders. 

It provides a convenient framework for array-calibration using the Kalman filter. The Kalman 

filter has the useful property that it uses the entire measurement history, rather than only the most 

recent measurements. The mean-square error of the Kalman filter is lower than an equivalent 

calibrator that uses only the latest measurements. 

In Chapter 5 I compared, in theory and using computer simulation, a representative set of 

towed-array calibrators from the literature. The sensitivities of the calibrators to their underlying 

assumptions were investigated. I looked at robustness of the calibrators to the following factors: 

signal-to-noise ratio, presence of interfering signals, presence of coherent signals, and direction

of-arrival of the calibrating signal. I found that the broadband calibrators perform best when 

there are coherent signals. When there are no coherent signals, the eigenvector [GWR89] and 

sharpness [Buc78, Fer90b] calibrators are most robust in the presence of interfering signals 

and low SNR. 

The sharpness calibrator is interesting because it tries to make the beamformer image 

"correct" by maximising a sharpness function. It was originally applied to real-time, optical

telescope image correction. There have been conflicting reports on the sharpness calibrator 

when applied to towed arrays. I resolved these discrepancies in Chapter 6. I showed that 

the sharpness calibrator relies on the assumption that all signals arrive from approximately the 

same direction. However, if the array-shape is parameterised, then the sharpness-calibrator is 

insensitive to an incorrect assumption of this type. Using the criterion that a sharpness function 

must be convex, at least in a region local to the maximum, I found a sharpness function that 

is a better choice than the sharpness function given in [Buc78, Fer90b]. 

7.1 Further Research 

The work in this thesis suggests a number of possible avenues of further research. 

7.1.1 Data modelling 

In this thesis I have assumed, in keeping with the literature, that the array-covariance matrix 

is estimated using signals with infinitesimal bandwidth. This model of the data is an ideal one. 

As was explained in Section 2.14, the correlation estimates will be attenuated if the signals have 

finite bandwidth. The effect of finite signal bandwidth on self calibrators and array processing 

algorithms could be investigated. 
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7.1.2 Three-dimensional array calibration 

This thesis is largely restricted to 2D arrays. It would be interesting to investigate the 

feasibility of estimating the array shape in 3D. I expect that this would involve independent 

shape estimates in the horizontal and vertical planes. Vertical position information could possibly 

be provided by noise generated on the ocean's surface, such as by waves breaking. 

7.1.3 Issues on array-calibration accuracy 

To measure the performance of an array calibrator objectively I have used the RMS 

position error of the hydrophone estimates. To measure performance subjectively we look 

at the beamformer output and decide whether the signal directions-of-arrival can be identified 

and whether sidelobes are within reasonable limits. As shown by the widespread use of the first 

method, it is generally accepted that the two methods agree with each other. However, as was 

shown in Chapter 5, there is no simple correlation between the two performance indicators. The 

results for the sharpness simulations show that even for RMS position errors of the order of a 

wavelength the beamformer output can still be good subjectively. Although the RMS position 

error is high, the sine-wave shape estimated by the sharpness calibrator is a good approximation 

to the array's true polynomial shape. This suggests that the RMS position error criterion may 

not lead to optimal array calibration when the results are viewed subjectively. Constraining 

array-shape estimates to be within a subset (e.g. sine-waves) of all possible array shapes may 

result in better subjective performance of the calibrator. It would be interesting to discover 

what the optimal subset of array shapes might be. 

One possibility comes from the fact that tow-point induced motion of an array implies there 

is a smooth transition from one shape to the next Assume that the tow-vessel is travelling in a 

straight line and the array lies on the same line. Then a series of array shapes, as the tow vessel 

turns, might look something like those shown in Figure 50. This indicates that a calibrator 

could operate like a state machine where each state is one particular array shape. The first state, 

for instance, could be a straight line. The calibrator could either remain in that state, or go to 

a state like that of Figure 50(b) for a left-hand turn or go to a state which is a reflection of 

Figure 50(b) for a right-hand turn. To decide whether to remain in the current state or proceed 

to the next a self calibrator could be used. 

7.1.4 Processing by subarrays 

An interesting alternative to array-calibration is to process by subarrays. Fuchs [Fuc93] 

gave a procedure for testing the straightness of an array. He proposed that during a tow-vessel 

turn the array's shape will have two linear sections with a bend between them. Although the 
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Figure 50 Example of how a towed array's shape may vary during a tow-vessel maneuver. 

(a.) (b) (c) 

/ ~ 
(d) (e) (f) 

I / 
entire array can not be processed on the assumption of linearity, the two straight subarrays can 

be processed separately. The straightness-testing procedure is used to discover maximum-length 

straight subarrays. The two sub array can be processed as one and have comparable direction

finding resolution to the full array [SW94]. In this case, the orientation of the straight line 

subarrays relative to each other would have to be estimated. 

7.1.5 Development of real-time calibrators 

There are now plenty of towed-array self calibrators in the literature. Attention needs to be 

given to the development of real-time self calibrators. As a first step, real data from a towed 

array should be used to compare algorithms from the literature. Chapter 5 has identified the 

sensitivities of a number of algorithms, and so, from trials with real data it should be possible 

to decide if the sensitivities are critical. From the algorithms that perform well, the following 

work needs to be done to develop a working array calibrator: 

1. Before starting to develop signal-based array-calibrators the cost of development should 

be estimated. I have not considered costs in this thesis. But a decision needs to be made 

as to whether self calibrators will be cheaper than heading-sensor-based calibrators. If 

they are significantly cheaper, or their performance is significantly better for the same cost, 

development can proceed. 

2. For narrowband self calibrators, discover a way of choosing a frequency band that has a 

high SNR. Also, for algorithms that require only one signal to be present in the band, a 

method of ensuring that that condition is met is needed. Such a method can be based upon 

the fact that if there is only one signal, and asSuming the noise power at every hydrophone 

is equal, then the power of each hydrophone's signal will be equal 

3. A method of on-line performance evaluation may be an essential feature of towed-array 

calibrators. To gain operator acceptance it may be necessary for the system to estimate a 

performance figure such as hydrophone RMS position error. If the changing performance 
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figure agrees with the operator's opinion of the performance the system is more likely to 

be accepted by the operator. 
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Appendix A In factorising 
R = ARsA H + J, all possible solutions 
for A must have the same rank and 
exist in the same subspace of c: M • 

Let the rank of ARsA H be N, and VI, V2, ... , VN be the eigenvalues. Then the M 

eigenvalues of R are given by, 

A { Vm + (7'2 
m ' (7'2 , 

1 <m< N 
(A.l) N<m<M 

where (7'2 is the noise power. And so the number of eigenvalues not equal to the lowest value, 

(7'2, is the rank, N, of ARsAH. If Y = [VI, V2, ... , VM), where Vm are the eigenvectors, and 

A = diag [AI, . .. AM], then R = YAyH , and the last M - N eigenvectors, corresponding to 

the (7'2 eigenvalues, span what is known as the noise subspace. We have, 

R 2· Vm =(7'Vm 

= (ARsA H + (7'21) V m (A.2) 

= ARsAHvm + (7'2Vm' V N < m < M 

hence ARsA HVm = 0, and because A and Rs are full rank, 

AHvm = 0, or 

H an Vm = 0, V n, N < m < M. 
(A.3) 

This result tells us that the noise subspace of rank M - N is orthogonal to the rank N subspace 

defined by the column vectors of A. Thus, all solutions for A, when factorising the array

covariance matrix, must have the same rank and span the same subspace. 



Appendix B Simultaneous solution 
of sensor positions from the 
steering-vector matrix for three 
sensors and three signals. 
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The positions of the first, second and third sensors in a three-sensor, three-signal system can 

be determined by the simultaneous solution of the equations in (3.12), which are reproduced 

in (B.1) for clarity. 

2 d21 2 2 2 

( )

2 

X2 d31 - X3 X2 = Y3 (X2 - d21 ), 

2 d22 2 2 2 
( )

2 

X2 d32 - X3 X2 = Y3 (X2 - d22 ), (B.1) 

2 (d d23 ) 2 2 (2 d 2 ) X2 33 - X3 X2 = Y3 X2 - 23' 

The first sensor is assumed to be at the origin and the second sensor is on the x-axis, which 

removes any translational or rotational ambiguities. The solutions for X2, X3 and Y3 are given 

as follows: 

X2 = 2 

- (d21 d31 (di3 - di2) + d22 d32 (dil - di3) + d23d33 (d 22 - dil)) x 
(d21 d32 - d22d31 )( d21 d33 - d23d31 )( d22 d33 - d23d32 ) 
(d21 (d32 + d33 ) - d22 (d31 + d33 ) - d23(d31 - d32 ))X 
(d21 (d32 + d33 ) - d22 (d31 - d33 ) - d23(d31 + d32 ))X 
(d21 (d32 - d33 ) - d22 (d31 + d33 ) + d23(d31 + d32 ))X 
(d21 (d32 - d33 ) - d22(d31 - d33 ) + d23(d31 - d32 )) 

X2 dil (di2 - di3) + di2 (di3 - dil) + di3 (dil - di2) 
X3 = - x (2 2 ) (2 2 ) (2 2 ) 2 d21 d31 d23 - d22 + d22d32 d21 - d23 + d23d33 d22 - d21 

Y3 = 
(d21 d32 - d22d31 )( d21 d33 - d23d31 )( d22d33 - d23d32 ) 

d21d31(d232 - d222) + d22d32(d212 - d232) + d23d33(d222 - d21 2) 

(B.2) 

(B.3) 

(BA) 

For the solutions to X2, X3 and Y3 to be real the expressions within the square-root operators 

must be positive, which constrains the variables {dmn } :~t~~i. These constraints are 

and 

(d21 d32 - d22d31)(d21d33 - d23d31)(d22d33 - d23d32 ) > 0 (B.5) 
(d21d31(d232 - d222) + d22d32(d212 - d232) + d23d33(d222 - d21 2)) -

(d21 (d32 + d33 ) - d22 ( d31 + d33 ) - d23 ( d31 - d32 )) x 

(d21 (d32 + d33 ) - d22( d31 - d33 ) - d23 ( d31 + d32 )) x 

(d21 (d32 - d33 ) - d22( d31 + d33 ) + d23 ( d31 + d32 )) x 

(d21 (d32 - d33 ) - d22 ( d31 - d33 ) + d23( d31 - d32 )) < O. 

(B.6) 
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Appendix C The derivatives of 
sharpness function 8 2 with respect to 
array-shape parameters {etA} and {!3A}. 

7r 

852 = 2/ P (rI,.) [8Pc(¢) 8X ] . rl,.drl,. 
s: A elf's: A 8 A SI n If' If" uaA uX a A 

o 
7r 

b~2 = 2/pc(¢)[ai~¢) a~] sin¢d¢, 
b~A X 8~A o 

(C.l) 

where ffc is given by 
UXm 

8Pc = J'rrb [wH Reolj w - w * R row j w] 
8

A <P m m , 
Xm 

(C.2) 

and 
bXm [bX m bYm] 
baA = baA' baA ' 

bXm _ [bXm bYm] -A- - -A-, -A- , 
b~A b~A b~A 

(C.3) 

where 
bYm ( \ A) \ A . (\ A ) bXm -A- = COS AXm - AaA SIn AXm ~, 8aA uaA 

bYm . (\ A) \ ?J. (\ A ) 8Xm 
-A- = SIn AX m - AfJA COS AX m -A-' 

b~A b~A 

(C.4) 

Xm can be calculated using the distance along a curve: 

Xm 

(m-l)p= / y1+ [I'(a,\,~,\,t)r dt, (C.S) 

o 

wherej'(aA'~A' t) = fftj(aA'~A' t) and j(aA'~A' t) is defined in (6.9), and 

Xm 
aim A / f'(o:,\,{3,\,t)sin(At) d 

a~,\ = VI + [j'(0:,\,{3,\,t)]2 0 VI + [j'(0:,\,{3,\,t)]2 t. 

(C.6) 

Xm 
aXm = - A / 1'(0:,\, {3,\, t) cos (At) dt, 

8 a A j 1 + [j I ( a A , ~ A, t)] 2 0 j 1 + [j I ( a A , ~ A, t)] 2 

Rcol) and Rrow) are the jth column and the jth row of R, respectively. 



Errata for Towed-Array Calibration 

January 2nd, 1997 

On page 10 substitute the fo llowing for equation 2.4 

X(f) = XR(f) + jXI(f) 

and substit ute the following for equation 2.5 

XI(f) = { ~jXR(f) f > 0 
JXR(f) f < 0 

On page 24, theorem 2, substitute the words "and no linear" for "and a 
linear" and substitute the word "equals" for "does not give". 

On page 26, last paragraph , substitute the word "coordinates" for "direc
tions" . 

On page 35, Section 3.2.3 , insert the sentence "Throughout this section I 
assume that the signals are perfectly correlated." between the second and third 
sentences of t he first paragraph. 

On page 50 insert the words "and SNR is OdB" between "Hz" and the period 
in the caption of Table 2 and between "900

" and the period in the caption of 
Table 3. 

On page 65, second-last paragraph, insert the words "and the MSE will in
crease monotonically (Figure 27( d))" between "estimate a straight array shape" 
and the period. 

On page 66 insert the following sentences at the end of the first paragraph. "In 
Figures 28 (c) and 28(d) the SNR is so low that the signal gives little information 
about the array shape. The NISE asymptotically approaches a limit defined by 
the SNR , a i and the damping factor." 

On page 81 , equa tion 5.6, substitute "o-icla2aJial" for the first term in 
the second line. 
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