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SUMMARY

Chain binomial models are a commonly used discrete time model for the spread of an 

infectious disease in a closed population. The best known chain binomial models are 

those due to Greenwood and to Reed and Frost. In the Greenwood model it is assumed 

that the infection rate is the same at all time points, while in the Reed-Frost model, the 

infection rate at time t depends on the number of individuals infected at time t — 1.

The aim of this thesis is to extend the Greenwood model (for a closed population) to a 

model which allows for the possibility of migration into the population at risk of infection 

from the disease. In fact, we modify the Greenwood model to a model which assumes 

individuals enter the susceptible population as a Poisson process. In particular, the 

number of migrants entering during a unit time interval (t -  1, t] is a Poisson random 

variable.

The model we use assumes that migration counts during disjoint unit time intervals are 

independent and identically distributed Poisson random variables. That is, we assume the 

migration rate (and infection rate) to be constant.

Chapter One discusses some estimators for the infection rate in the Greenwood model 

for a closed population. In particular, we review a technique used by Saunders (1980b) 

to derive a strongly consistent estimator. Our modified Greenwood model, which allows 

for the possibility of (constant rate) migration, is also developed in this chapter. All 

subsequent analysis is based on this model.

Let Xt denote the number of newly infected individuals at time t . In Chapter Two we 

establish some limit theorems for the sequence {X t : t = 1 ,2 ,3 ,...}*  Specifically, we

show that a strong law of large numbers holds for this sequence of random variables. 

Also the cumulative infected count,
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obeys a central limit theorem.

The sequence {Yt : t -  0,1, 2, , where Yt is the number of susceptible individuals who

escape infection at time t , forms a Markov chain. In Chapter Three we show that this 

sequence of random variables can be formulated as the convolution of a Galton-Watson 

branching process and an independent Poisson process. That is, it is an example of what 

is known in the literature as a branching process with immigration. Using this 

interpretation we show that, in the limit as time goes to infinity, the count of susceptible 

individuals escaping infection converges in distribution to a Poisson random variable.

It is also shown that, the bivariate Markov chain {(X,, Yt ): t -  0,1, 2, ...} has a proper

limiting distribution. From this limiting distribution we deduce that, as t tends to 

infinity, Xt converges in distribution to a Poisson random variable X^ . Furthermore,

the parameter of the distribution of X ^  is equal to the rate at which individuals migrate 

into the susceptible population.

Since {Yt : t = 0,1,2, ...} is a branching process with immigration then we can use the

estimation theory for this type of process to derive estimators of the infection and 

migration rates. We give formulae for estimators derived in this fashion which are jointly 

asymptotically normal.

These estimators assume we can observe the count of susceptible individuals escaping 

infection at regular time intervals. However, for many infectious diseases this data is not 

available. For example, in the case of cholera in South East Asia, the available data only 

consists of information about the number of infected individuals. In Chapter Four we 

demonstrate that the Gibbs sampler (a Monte Carlo data augmentation algorithm) can be 

used to obtain estimates of the infection and migration rates when the data consists of 

just counts of infected individuals (and the initial size of the susceptible population).
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CHAPTER ONE

DISCRETE TIME MODELS FOR INFECTIOUS DISEASES

1.0 Introduction

In this chapter we introduce the class of so-called chain binomial models, a flexible type 

of discrete time model used extensively in the modelling of the spread of an infectious 

disease.

As pointed out in Section 14.1 of Bailey (1975) there are diseases where it is not 

appropriate to assume that infection occurs as a continuous time process. For diseases 

where the incubation and latent periods are of low variability and the infectious period is 

short, discrete time models should be employed.

Compared to continuous time models the amount of theory developed for discrete time 

models is quite small. However, chain binomial models have proven to be a useful tool 

in modelling epidemics since their introduction by Reed and Frost in about 1928 and 

Greenwood in 1931.

Gani and Jerwood (1971) relate chain binomial models to the general theory of 

stochastic processes with particular emphasis on Markov chains. This approach has 

several advantages, in particular, it leads to the formulation of a relatively simple method 

of calculating the probability distributions of the duration time and total infected count 

for an epidemic. Note that an epidemic terminates when either all susceptibles become 

infected or when, at a particular time point, there are no new infecteds. Prior to the 

work of Gani and Jerwood these distributions had been obtained by calculating the 

probabilities associated with all possible paths of infection.
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In Section 1.1 we discuss the structure of chain binomial models and look at the special 

cases due to Greenwood and to Reed and Frost. In Section 1.2 we investigate 

determining the probability distributions of the duration time and total infected count. 

We first use a small example to illustrate the amount of work involved in enumerating all 

patterns of infection to solve this problem and then show that the work of Gani and 

Jerwood leads to great simplification.

In Section 1.3 we look at the problem of estimation in chain binomial models and 

describe an approximate maximum likelihood estimator for the infection rate. The 

asymptotic properties of this estimator will also be discussed. In Section 1.4 we show 

how chain binomial models can be extended to include the possibility of individuals 

migrating into the population at risk of infection. Finally, in Section 1.5 we compare the 

methods suggested in Section 1.4 with the capture-recapture methods used to estimate 

mortality rate and population size in animal populations.

1.1 Chain Binomial Models for Closed Populations

Chain binomial models are commonly used to model the spread of an infectious disease 

through a population. The structure of these models can be described as follows.

In an initial population of size N 0 a number of individuals, X0 , become infected at time 

f = 0 . Prior to time t -  1 there will be Y0 = N 0 -  X 0 susceptible individuals. We 

assume that each susceptible individual has the same probability p{ 1) of being infected at 

time t = 1 and that infection of an individual occurs independently of infection to any 

other individual. If we let Xj be the number of newly infected individuals at time t = 1 

then in a chain binomial model we assume X x, conditional on N 0 -  X0, is binomial with 

parameters N ] = N 0 -  X 0 and p( 1). In general, let X t be the number of newly infected

individuals at time t then, conditional on {Â 0,X 0, X t is binomial with 

parameters N t and p{t) where
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N , = N 0 - ‘f l Xj
j =0

and p(t) is the probability that an individual susceptible to the disease immediately prior 

to time t becomes infected at time t . Of course, we make this assumption provided N t 

is strictly greater than zero. As soon as N t reaches zero for some t we conclude the 

epidemic has ended.

Chain binomial models are best applied to diseases where the incubation period and 

latent period (where the disease is present but the infected individual can not transmit the 

disease) are of low variability and the infectious period is relatively short. Measles, 

mumps and chickenpox are examples of diseases with these characteristics. For such 

diseases the epidemic may be thought of as commencing with the infection of X0 

individuals simultaneously. The epidemic then spreads as a series of generations where 

the time between successive generations is equal to the sum of the incubation and latent 

periods.

The probability of infection at time t , p(t) , is usually assumed to be a function of N t , 

I t and A where N t is the size of the susceptible population,

t- 1 

7=0

is the total number of infected individuals in the population prior to time t and A, is a 

constant. Typically, the values of N t and I t are readily calculated from the data and 

our aim is to make inference about A .

The two best known examples of chain binomial models are those developed by Reed 

and Frost in about 1928 and by Greenwood in 1931. The simpler model is the 

Greenwood model where the chance of infection depends only on whether there are 

infected individuals already present. That is, it does not depend on the number of such 

individuals. For this model we have
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p(t)= A. if /, > 0

0 otherwise

for some 0 < X < 1. In the Reed-Frost model it is assumed that p{t) depends on the 

number of individuals infected at time t — 1. We suppose that any of the X t_x 

individuals can independently infect a susceptible with probability X . Thus, for a 

susceptible, the probability of avoiding infection is

(l-x,)*'-1.

Thus,

p ( t ) = l - ( l - x f ' - ' .

If we let Yt be the number of individuals escaping infection at time t then, from Gani 

and Jerwood (1971), in the Greenwood model {Yt : t -  0,1, 2, ...} forms a Markov chain. 

The probability transition matrix M ={ } is given by

niij fOx‘- j (i -  x y for 0 < j  < i

0 otherwise.

In the Reed-Frost model a bivariate Markov chain is formed by

{(X( ,rt ) : /  = 0 ,1,2,...}

for which the probability transition matrix takes the form {(m^ )rs}, where
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(m,j)|t = P( X ,+] = j ,

r j [ l - ( l - X ) i J , ( l -X,) ' (r j) for r = s + j

0 otherwise.

In the Reed-Frost model, we can approximate p(t) by its first order Taylor polynomial 

when X is small. That is, p{t) can be approximated by

This form of p{t) is particularly appropriate for diseases with very short infectious 

periods because we are assuming the chance of infection does not depend on the number 

of individuals infected prior to time t — 1. The model is also appropriate for modelling 

diseases which often effect animal populations where infected individuals inevitably die 

from the disease. That is, ‘old’ infecteds are removed from the population by death.

Saunders (1980a) uses a chain binomial model to study an epidemic of myxomatosis in a 

rabbit population. In this case p(t) is of the form

where at depends on the total population size, the size of the susceptible population and 

the number of active infecteds prior to time t . This approach may be regarded as an 

extension of the approximation to the Reed-Frost model given in equation (1.1.1).

Chain binomial models where the probability of infection is of the form given in equation 

(1.1.2) have been extensively studied by Saunders (1980b) and Huggins (1993). The 

work of these two authors will be discussed in Section 1.3.

1 -(1  ~ X X t_l ) = XXt_l . ( 1. 1. 1)

p(t) = Xat , ( 1. 1.2)
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As mentioned earlier, we aim to extend chain binomial models to a model which includes 

immigration. The application of the theory of Markov chains to such a model will be 

discussed in Chapter Three. Gani and Jerwood (1971) show that, for the Greenwood 

model, the susceptible counts at times t = 0,1, 2, ... may be regarded as a Markov chain 

embedded in a (continuous time) pure death process. Similarly, for the Reed-Frost 

model, over a unit time interval (t, t + 1], the susceptible count at time t + 1 (given the 

susceptible count at time t) may also be approximated by a continuous time process.

1.2 The Probability Distributions of the Duration Time and Total Infected Count

We now consider the problem of determining the joint probability distribution of the 

duration time and total infected count in a chain binomial model. In Subsection 1.2.1 we 

use an example to show that enumerating all possible paths of infection is tedious even 

when the population size is small. In Subsection 1.2.2 we discuss the more sophisticated 

Markov chain method of Gani and Jerwood which leads to a convenient formula for the 

joint probability generating function for these two variables.

1.2.1 An Example of Enumerating Infection Patterns

Consider an epidemic in a household of size four in which there are initially two infected 

individuals. There are four possible paths of infection.

1) No new infecteds at time t = 1. The epidemic ends with the total number of infecteds 

equal to two.

2) One new infected at time t = 1 and no new infecteds at time t -  2 . The epidemic 

ends with the total number of infecteds equal to three.

3) One new infected at time t = 1 and one new infected at time t = 2 . The epidemic 

ends with all susceptibles becoming infected.

4) Two new infecteds at time t -  1. Again the epidemic ends with all susceptibles 

becoming infected.



9

Since infection at different time points are independent processes then the probabilities of 

these four possible patterns are easily calculated. As shown on page 79 of Bailey (1957) 

the probabilities are

Pattern Probability in the 

Reed-Frost Model

Probability in the 

Greenwood Model

1 0 - q 4 ( l - x f
2 2X(1 -  X)3(2 -X ) 2 X ( l  -  X ) 1

3 2 X 2 ( \ - X f ( 2 - X ) 2 X 2 ( \ - X )

4 X2 ( 2  - X ) 2 X 2

Of course, this table is essentially the joint distribution of the duration time and total 

infected count for both models. These distributions can be presented explicitly as 

follows.

Total infecteds Duration i Probability in the 

Reed-Frost Model

Probability in the 

Greenwood Model

2 1 (i -  x)4 (i -  V)2

3 2 2 X ( l  -  X f ( 2  -  X) 2 X ( \  -  X ) 2

4 2 I 2?l2(1 -  X f ( 2  -  X) 2 X 2 ( \ - X )

4 1 X2 {2-  X ) 2 X2

From this example it is clear that enumerating all possible paths of infection will quickly 

become tedious as the population size increases. However, this approach makes little 

use of the Markovian structure of these models. Gani and Jerwood exploit this aspect 

and show that it leads to a simple method for calculating the probability generating 

function of the joint distribution of the duration time and total infected count.
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1.2.2 Applying Markov Chain Methods to the Greenwood and Reed-Frost Models

Gani and Jerwood view the Greenwood and Reed-Frost models as special cases of the 

Markov chain {zt : t -  0,1,2, ...} with finite state space {0 ,1 ,2 ,..., k } and probability 

transition matrix M  whose diagonal entries are strictly positive. In this subsection we 

give a discussion of their method and its advantages. We consider the variable T 

defined by

T = min{r > 0: zt = zr_ i}.

In the application to the Greenwood and Reed-Frost models [zt : t = 0,1,2, ...} is 

defined in such a way that T is the duration time of the epidemic.

For t > 0 and j = 0, 1, . . ., k,

?(T  = t, zt = j \ z 0 =i )  = ? ( T = t , z t =z t_l = j \ z 0 =i )

= (PV » -

Therefore, for 0 < 0, (J> < 1,

oo k

E[9 V T lz0 = i l  = X E oV A ' ^ “1* .
f = i ; = o

where

At is the 1 x (k + 1) row vector with one in the (i + l)th entry and zeroes 

elsewhere,

P = {Pij} is the (k + l) x (k + l) matrix whose entries are given by



Pij = mij 

0

if i * j  

otherwise,

1 1

and R is the transpose of [mQQ,mu ,...,mkk].

That is,

E [ e V r iz0 = i ]  = Xe'A,((|)X/>(<t)))''1fi,
t=1

where

A^q)) is the 1 x (k + l) row vector with (j)1 in the (i + l)th entry and 

zeroes elsewhere,

P((b) is the (/c + l)x  (k + l)matrix whose (j, j )  th entry is given by

Pifi j- i

That is,

E [ e V r lz0 = i ]  = A,(<t>X/-0E((|>)) 'eft. (1.2.1)

In the Greenwood model the sequence {Yt : t = 0 , 1 , 2 , . . . }  is a special case of the above 

model in which the state space is equal to {0,1,2, . . . ,  Y0 = N0 -  X 0) and the probability 

transition matrix M = {m^} is given by

mu - for 0 < j  < i

0 otherwise.
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The total infected count is equal to

Y0 - Y t = (T0 -  *j) + Oi -  Y2) + ... H Y T- x ~ Yt ) .

Therefore, by analogy with the above discussion for the general case, the joint probability 

generating function for the duration time and the total infected count is given by the last 

entry ( (T0 + 1) th entry) of

(/-6/>(<|>))H9ä ,

where P(ij)) is the (Y0 + 1) x (T0 + 1) matrix whose (i, j )  th entry is equal to

For the Reed-Frost model we have observed that{(Xr, Yt ): t = 0,1,2, ...}forms a

bivariate Markov chain. We can apply the above theory to this Markov chain with only 

slight modifications. The method involved in this application is outlined below.

We take as state space the Cartesian product of {0,1,2, . . . ,£} with itself. The 

probability transition matrix M  of size (k + l)2 x {k + l)2 is defined as follows. M

9
consists of (k + 1) submatrices (m{y)rj. each of size (k + 1) x (k + 1), where for 

r, s e {0,1, . . . ,  k } , the submatrix (m,y)rj is defined by

0 otherwise.

Define R to be the k(k + 1) x 1 column vector formed by concatenating the diagonals of 

(mij)io » (mij)20 »• • • » (mij)k0 ■ Also define as the k(k  + 1) x k(k + 1) matrix
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2
consisting of k submatrices {P(§)ij)rs where, for r, j e { l ,  2 , . . . ,  k ) , the submatrix 

( P ( § ) i j ) r s , of size (k + 1) x (k + 1), is defined by

(P«t>)y)rs = K ) ra<t>r“J -

We note that this approach not only alleviates the need to enumerate all paths of 

infection but provides a method which is applicable to a much wider class of models than 

just chain binomial models. In fact, this method can be applied to any Markov chain with 

finite state space provided the probability transition matrix has strictly positive diagonal 

entries.

1.3 An Approximate Maximum Likelihood Estimator for Chain Binomial Models

In this section we review work on an approximate maximum likelihood estimator for the 

infection rate in a chain binomial model developed by Saunders (1980b) and Huggins 

(1993). The estimator is developed using the Poisson approximation to the binomial 

distribution.

In Subsection 1.3.1 we derive the formula for the estimator by replacing the binomial 

probabilities in the likelihood with their Poisson approximations. Subsection 1.3.2 deals 

with some statistical properties of this estimator as we increase the time period over 

which the epidemic is observed. In Subsection 1.3.3 we assume the period of 

observation is fixed and we investigate the asymptotic behaviour as the size of the initial 

susceptible population increases.

1.3.1 Definition of the Approximate Maximum Likelihood Estimator

Before discussing the work of Saunders (1980b) and Huggins (1993) we switch to the 

notation they use which is appropriate for chain binomial models where the probability of 

infection is of the form given in equation (1.1.2).
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Let {X t : t = 1, 2 ,...}  be a sequence of random variables and let 3t be the o-field 

generated by {N0, X0, X x, X t ) . Suppose that, for t = 1, 2, . . . , X t , conditional on 

3t_x, is binomially distributed with parameters N t and Xat where N ( and at are 

3t_x -measurable random variables. That is, N t and at are determined by 

N 0, X0, . . ., Xt_x. The quantity X is a constant which we aim to estimate.

Define

At = max {a,: t = 1 ,2 ,... ,  T}

then the likelihood function for 0 <  X < AT 1, given N 0 , X 0 , X \ , .  . . , X T_x, is defined 

by

T
l (X) = n

/ = i

Ckat ) x ' ( l - \ a , ) N' - x • . (1.3.1)

From the log-likelihood

ia> = X
t = 1 UJ+ X , ln(A a,)  + (N,-  X , ) \ n ( \ - X a t )

it is readily seen that the maximum likelihood estimator X is the solution of the equation

j ^ X . - X a . N ,

Following Saunders (1980b) we now replace each term in equation (1.3.1) with its 

Poisson approximation. That is, we assume X t , conditional on 3t_x, is approximately

*Poisson with parameter XatN t . This gives an approximate likelihood function L 

defined, for 0 < X < AT~] , by
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^*(k) A 4 X,!

We define an approximate maximum likelihood estimator A, as the value of X  which

. . * maximises L  .

T
l \ X )  = In l"(X) = £ [-X a ,W , + X, ln(X a,A T,)-ln(X ,!)]

t = 1

f=l ^r=l

Therefore,

T

X*,
i  _  / = lA, — — -----------.

X a<w<
f=l

1.3.2 Some Statistical Properties of this Approximate MLE

We now derive some statistical properties of X  which depend both on the analytic form 

of the estimator and the assumption that, for t = 1, 2, . . . , X t (conditional on 3t_x) is 

approximately Poisson.

In this subsection we outline the work of Saunders (1980b) which deals with the 

asymptotic behaviour of X  and also provides a bound for its mean square error under the 

assumption that the conditional expectation of X t , given 9t_ j , is bounded.

In order to derive these properties Saunders introduces the following conditions.



There exists a strictly positive constant m such that 

XatN t >m almost surely.
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(A)

There exists a strictly positive constant M  such that

XatNt < M  almost surely. (B)

The first theorem of Saunders (1980b) states that, for a chain binomial model satisfying 

condition (A), X is strongly consistent. That is, as T tends to infinity, X converges to 

X almost surely.

This result is obtained by noting that

£ ( X ,- V j , i V , )
=  ^ --------------------

Br
(1.3.2)

where Bt atNt •

/ = l

To see that this quantity converges to zero almost surely we consider the zero mean 

martingale {Ut , 3t : t -  1, 2, ...} where,

t  D

7=1 J

and ?t is the a-field generated by {N0, X 0, Xj, ..., X t ) . That this is a zero mean 

martingale can be shown, using the fact that Bt is 3t_\ -measurable, as follows

E[U,\3t_x] = U,_x +±-E!? , _ , ]

= ut- 1
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Furthermore,

t
E [ U 2] = J j E[E[ ( Xj - \ a j N j )2 / B2 \Zt_ j]]

7=1

= E
(  tI
U=i

Xa j Nj ( \  -  Xaj)

b :

< £ I
U=i

**JN J
B2

\

B , - f i 7-1
A

/

_;'=2Vß 7'-l
+

7 y Ä

< 2A,

« l^ i
<  °o .

Hence, we can apply the Martingale Convergence Theorem (see page 242 of Feller 

(1971)) to {Ut , 3t : t = 1 ,2 ,...} . This implies that [Ut : t = 1,2, ...} converges almost

surely. The result now follows from Kronecker’s Lemma (see page 239 of Feller 

(1971)).

We remark that, in a closed population, N t is montonically decreasing. It is intuitively 

clear that N t approaches zero as t tends to infinity. For a rigorous proof of this we 

note that, the least value of t for which N t is zero, is the duration time of the epidemic. 

The result now follows from page 593 of Gani and Jerwood (1971) where it is shown 

that the probability distribution of the duration time sums to one. Since N t converges to
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zero then it follows from the definition of X that asymptotic normality does not hold for 

this estimator as T tends to infinity.

Saunders uses equation (1.3.2) to show that if both conditions (A) and (B) hold in a 

chain binomial model, the mean square error of X is bounded by

\ 2m

t W

That is, the relative mean square error of X is bounded by

M

Conditions (A) and (B) are likely to hold in most practical situations. However, in (B) 

we are putting a condition on E[ Xt \3t_\] which is not entirely natural. We would

expect the performance of X to improve as the expected number of infecteds increases. 

So it seems a little inappropriate to put an upper bound on this quantity.

The upper bound on MSE{X)  involves the unnatural bound M . However, an upper 

bound for MSE(X)  can be derived from condition (A) alone if we assume the coefficient 

of variation of BT is low and the dependence between BT and X t -  Xat N t is also low 

for all t -  1 ,2 ,3 ,... ,  T . Again using equation (1.3.2), Saunders shows the mean square 

error is bounded above by

tm

Note that this agrees with the bound derived above when m and M  are approximately 

the same. We also point out that this gives a bound for the relative mean square error of

tm
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1.3.3 Asymptotic Inference When the Susceptible Count is Large

In Huggins (1993) asymptotic properties of X are given when the time period over 

which the epidemic is observed is fixed and the size of the initial susceptible population 

tends to infinity.

We now introduce notation analogous to that used in the previous subsection. For a 

strictly positive integer n , let {Xnt: t = 1 ,2 ,...}  be a sequence of random variables and

let 3nt be the G-field generated by {X nl, Xn2, . . . ,  X nt). Conditional on <5rnf_1, X nt has 

a binomial distribution with parameters Nnt and Xant, where Nnt and ant are 3nt_i -

measurable random variables. We consider values of X in the interval (0, A~j) , where

AnT = max{ant: t = 1 , 2 , T ) .

Define

T

YjwntXnt

’Z Wnla n,N m
t = 1

where {wnt: t = 1 ,2 ,..., T) is a sequence of non-negative 3nt-\ -measurable random 

variables which do not depend on X and have the property that, for each n , wnt > 0 for

at least one t e  {1,2, ...» T ) . We note that A. is a special case of X when wnt = 1 for 

all f = 1 ,2 ,... ,  T.

Huggins shows that, under the following regularity conditions, asymptotic normality 

holds for X as n tends to infinity.

—> oo in probability. (1.3.3)

For t = 1 ,2 ,...» T , there exist constants at e  (0, AT1) and bt e  (0,1) such that
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a nt a t in probability, (1.3.4)

bnt bt in probability, (1.3.5)

and there exist constants wt , where wt >  0 for at least one value of t , such that

wnt - >  wt in probability. (1.3.6)

Under these conditions

(  T ^ \/l ~
Y u w m a n t N n t 

\ t  = 1 )

(  t  y Y i  t

^  w nta nt Nnt ^  w nt ( ̂ n t
\ t =i y t =l

— X a ntN n t )

converges in distribution to a normally distributed random variable with mean zero and 

variance

T

t = i _______________________
T

Y .wtbtat
t= 1

We comment that there is little point in including the possibility of migration into the 

susceptible population if the initial size of the susceptible population is increasing to 

infinity. It is intuitive that as the initial size of the susceptible population increases the 

effect of migration decreases. Heuristically, we expect the possibility of migration will 

have no effect on the asymptotic results derived from this approach.

Hence, although Huggins’ approach is very innovative, this line of investigation will not 

be discussed further in this thesis. That is, in our analysis the initial size of the 

susceptible population will be a known constant.
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1.4 A Model Incorporating Migration

So far we have discussed a model for the spread of an infectious disease in a closed 

population. That is, we have not considered the possibility of migration into or out of 

the population at risk of infection. In such a model, change in the size of the susceptible 

population is solely due to individuals becoming infected.

When we use a closed population model we are assuming that changes in the susceptible 

population due to factors other than the disease are negligible. This may be appropriate, 

for example, when the susceptible population is very large. However, for most infectious 

diseases this is not an appropriate assumption because the susceptible population may be 

changing due to factors such as individuals changing location, and perhaps more 

importantly, changing their behaviour.

The models we have considered also assume that once an individual has become infected 

they are permanently removed from the susceptible population. This is true for diseases 

such as measles , mumps and chickenpox where infection confers protective immunity. 

That is, upon recovery infected individuals are no longer susceptible to the disease. 

Another situation where this assumption is valid is where infected individuals inevitably 

die from the disease. As mentioned earlier, this is often the case for diseases effecting 

animal populations such as myxomatosis in rabbits. However, many diseases do not have 

this characteristic, for example, influenza and many sexually transmitted diseases such as 

gonorrhea.

The model we now consider is subject to the same constraints as a chain binomial model 

for a closed population except that it allows for the possibility of individuals migrating 

into the population at risk of infection. A model which allows for migration can be 

applied to diseases in which infected individuals are not removed from the susceptible 

population. This can be done by regarding an individual recovering from infection as a 

migrant coming into the susceptible population if they continue to exhibit behaviour 

which puts them at risk of infection.

In order to develop a model which allows for migration into the susceptible population 

we proceed as follows. Suppose migrants of susceptibles arrive as a Poisson stream with
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parameter ji(7). That is, the probability of M t new susceptibles arriving between time 

t -  1 and time t is given by

P(M , =mt ) =
e-^yco'”-

mt !
for mt -  0,1,2, ... .

We also assume that the number of migrants entering the susceptible population during 

the time interval { t -  1, t ] is independent of the number of individuals infected at time 

t -  1. Thus we have, for nt > nt_x -  x t_x and 0 < x t <n t ,

? ( N t = n t , X t = x t \ N t_x =n t_ x, X t_x = x t_x)

= P ( X t = x t \ N t = nt , N t_x = nt_x, X t_x = x t_x) 

x ? ( N t = nt \ N t_x = nt_x, X t_x = x t_x)

nt  ̂
\ Xt;

p(t)X‘ (1 -  p{t)) n , - x t e ~ ^ ‘V  ( 0 [”' ~x,~x)]
[nt ~ ( n t_i - x t_x)]\

(1.4.1)

Furthermore, since migration counts in disjoint time intervals are assumed independent 

and infection counts at distinct time points are also assumed independent (in chain 

binomial models) then

P(-/Vj — nx, X x — X\ ,N 2 — N j  — rij X j  — Xj  I <5̂ )

n nt \
p(t)x' ( l - p ( t ) ) n' - x'

x tJ (nt - n t_x + x r_!)!

T
- 5 > ( 0

i n lL(t)nt~nt - l+xt- 1 (rtf'  
(nt - n t_x + x t_x) ' \ x t ;

= e p(t)x<(i-p( . t) )n>-xi
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Note that the natural logarithm of this expression is equal to

T T T

Y * t ln ( /? ( 0 )  + Y ( nt ~ xt) ln (!  -  Pit)) -  Y  ^ ( o
/=i t=l r=l

T T

+ X  (nt ~  n t - l  +  * r - i ) ln ( |X (0 )  +  X ln  
r=l r=l

(/i,-nM +xM )!

Consider the case where p{t) and p(f) are of the form described in equation (1.1.2). 

That is,

P i t )  =  h i t

and

UM = M hi .

where X and p are unknown constants and at and bt are known functions of the data. 

Then the log-likelihood for X and p is given by

l ( X , \ L  I Nq — Hq,Xq — X q , . . . ,  Nj — Ylj,Xj — X j )

T T T

= X xt(1R ^ at) + ^ j i nt ~ ) ln(l -  Xat) -  [ lY ^ t
t - \  t = l  t = l

T
+ X  (nt -  nt_x + xt_x )(ln p + ln bt) + C ,

t=l



24

where

c=X|n
t = l

y

Maximising with respect to X we have

Td I Xj —Xcî yi  ̂
d X ~  £ \ \ ( \ - X a t )

Hence, the maximum likelihood estimator X of X satisfies

y  x , -  ’kaln, _ ^
h  1 - V j,

Maximising with respect to [i we have

9/ 1 T
TT = - X  + -  E  -  ”/-i + )
^  r=l ^  f=l

Thus, the maximum likelihood estimator |1 of (I satisfies

T - \
nT ~ n 0 + X * /

A = -------- j—

I*.
t=\

In the Greenwood model we put a, = 1 for all t . That is, we assume the probability of

infection only depends on whether there are infected individuals already present, but not 

on the number of such individuals. We now make the analogous assumption regarding 

the migration rate. That is, we put bt = 1 for all t . Of course, in making this
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assumption we are assuming the migration process does not depend on any aspect of the 

history of the epidemic such as the cumulative number of infected individuals.

The likelihood is then given by

L(X, fl I N q — riQ , X q — Xq , . . . ,  N j  — y i j . X j  — X j )

7-1
n T ~no + ^ Xt T

= C’e~vT\l 1 = 0 f J V '( 1 - X .) " ' ~x‘ , ( 1 . 4 . 2 )
t = 1

where

7

c ' = n
t=l

( n t - n t - \ + x t - \ ) \

\ J

The log-likelihood is equal to

7  7  f  7 -1  ^
^  x t ln X + ^  (nt -  x t ) ln(l -  X) -  \iT -I- nT -  nQ + ^  xt 
t=l t=l V t—o J

ln p  + C .

The maximum likelihood estimators become

X =

7

and

7-1

W7 - W0 + X ^
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At this stage we wish to make it clear that all analysis in this thesis is based on the 

assumption that, for all t , p(t) = X and |l(0  = | l .

The data on the spread of an infectious disease usually consists of counts of diagnosed 

infecteds. Rarely will information on the size of the susceptible population at regular 

time intervals be available. Note that this is certainly the case for the AIDS epidemic and 

also for diseases, such as cholera, which are still endemic in parts of South East Asia. In 

Chapter Four we will consider the problem of estimating X and ]1 where the data 

consists of a realisation of X\, X 2, X T (where T  is fixed) and the initial conditions 

N 0 = n0 and X0 = x 0 .

1.5 Capture-Recapture Methods

There is a close analogy between estimating infection and migration rates in 

epidemiology and the capture-recapture methods of estimating mortality rate and 

population size in animal populations. Capture-recapture methods are discussed in detail 

in Seber (1982).

The capture-recapture method closest to discrete time epidemiological models is where 

information is gathered from a single batch of tagged animals. See Chapter Six of Seber 

(1982). In this type of experiment a batch of tagged animals is released at time t = 0 

and the whole population (tagged and untagged animals) is subsequently sampled at 

discrete time points t = 1,2, ..., T .

To illustrate how estimation is performed we introduce the following notation which is 

used by Seber. For t -  1 ,2 ,..., T , let

N t = size of the whole population immediately before the t -th sample is drawn,

M t = size of the marked (tagged) population immediately before the t -th sample 

is drawn,

nt = size of the t -th sample,
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mt = number of marked animals in the t -th sample.

Expressions for Mt and N t are derived in a series of deterministic equations involving 

the initial population size N0 , the natural mortality rate and the rate at which animals

enter the population T . For t = 1,2, T , N t , Mt and nt are known constants and

estimation of N0 , <{> and t is performed as follows.

In general, Mt will be small compared to Nt so it is assumed that mt has a Poisson 

distribution with parameter a t , where

This follows from the assumption that marked and unmarked animals have the same 

chance of being selected in any particular sample. Thus the likelihood function is

Ty e a ' o t w'
L(N0, (J), T I raj, m2, . . . ,  m T) = [

t = l mt !

Capture-recapture methods rely on having information on marked animals whose 

behaviour is assumed to be representative of the whole population with respect to the 

parameters of interest. The analogous information when studying the spread of an 

infectious disease would be counts of infected individuals for an identifiable 

subpopulation. If this type of information is not available then capture-recapture 

methods do not seem applicable to modelling the spread of an infectious disease.

We also note that in capture-recapture models there are a large number of unknown 

parameters to be imputed, namely, 0Cj, a 2 , otr . This is also the case in the model of 

the previous section when the migration counts can not be observed. In this case the 

susceptible counts can be thought of as unknown parameters. In Chapter Four we show 

that the Gibbs sampler can be used to estimate the unknown parameters in this situation.
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Hence, it is quite possible that a Markov chain Monte Carlo method could be applied to 

estimate the parameters of a capture-recapture model. However, we will not attempt to 

deal with this problem.
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CHAPTER TWO

MOMENTS AND CENTRAL LIMIT THEOREMS FOR THE 

GREENWOOD MODEL

2.0 Introduction

In Section 1.4 we discussed a possible extension of chain binomial models which would 

allow for the possibility of migration into the population at risk of infection. In 

particular, we showed that the Greenwood model could be extended to allow for 

immigration (see equation (1.4.2)). As mentioned in Section 1.4, the results of this thesis 

are restricted to this particular model. That is, we assume, for t = 1, 2, 3, ...,

Pi t) = 

and

|X(?) = |X.

We also assume that N0 and X0 are known constants.

The aim of this chapter is to establish a central limit theorem for the cumulative infected 

count ^  Xt . Central limit theorems are also given for ^  N t and ^  Yt , where Yt is 

the number of susceptible individuals escaping infection at time t . That is,

Yt = Nt - X t .
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However, when interpreting the results for ^  Nt and ^  Yt we need to keep in mind 

that a single individual can contribute to Nt or Yt for more than one value of t .

In Section 2.1 we calculate the moments of Xt , N t and Yt and look at the properties of 

these moments as t tends to infinity. In Section 2.2 we obtain the limiting values of the 

expectation and variance of the averages:

Xn=ii*,. %=&,.
t —i / = i  t = i

We also show, using the limit theory of martingales, that a strong law of large numbers 

holds for each of the sequences {Xt : t  = 1 ,2 ,3 ,...} , [Yt \ t - 1 ,2 ,3 ,...}  and

{Nt : t  = 1, 2 ,3 ,...} .

The limit theory of martingales is again used in Section 2.3 to establish central limit 

theorems for each of ^ X t , ^ N t and Yt .

The results of this chapter can be formally stated as follows.

Theorem 2.1 For the model described in equation (1.4.2), we have the following 

formulae for the moments associated with Xt and N t .

E(X,I70 ) =  (X — |x(l — X)' + X ( \ -X ) ’- \ N Ü-  X0) (2.1.1)

E(N,I?o) = j - - | - ( l  -  X)‘ +(1 - X / _1()Vo -  X0) (2.1.2)

£(r,l?0) = x ( l - ^ ) - x ( 1- ^ ) ' +1 + 0 - X ) ‘ ( N 0 - X 0 ) (2.1.3)

Var(X,\Z0) = n[l - ( !  -  X)']+ X.(l -  X)'“1 [l -  X(1 - X y - ]\ N 0 -  X0)(2.1.4)
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Var(N,\30 ) = jl + (1 -  X)[] -(1 -  X)'“1 Jg- + (1 -  -  X0)] (2.1.5)

Var(Y,l?0) = (1 ■- X)[\ -  (1 -  X)‘ J f + (1 - X) ' - 1 (N0 -  X0)] (2.1.6)

Cov(X„Yt\30) = -X (l -  X)2‘- \ n 0 -  X0) (2.1.7)

For j  > i>  1,

Cov(Xi,Xj\30) = - X 2( l - X y +J- 2(N0 - X 0) (2.1.8)

Cov(Ni,Nj\30)=  (1 -  X y - '{ n  + (1 -  X)[\ -  (1 -  A.)'-1 ][■£ + (1 -  xy~2(N0 -  X0)]} (2.1.9)

Cov(Yl, Yjl?0) = (1 -  X)j - ‘+ 1[ l - ( l - X ) i j £  + ( l - A .) '- 1 (N0 )] (2.1.10)

The proof of this theorem is given in Section 2.1.

Theorem 2.2 For the model described in equation (1.4.2):

(i) As n tends to infinity

E{Xn) l1 >

e ( F „ ) ^ £ ( 1 - A ) ,

E ( N n ) ~ * J -

(ii) Var(Xn^, Var(Yn ĵ and Var(Nn) all converge to zero as n tends to infinity.
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(iii) A weak law of large numbers holds for each of the sequences [Xt : t = 1,2,3, ...} , 

{Yt : t  = 1 ,2 ,3 ,...}  and {Ar : f = 1, 2, 3, ...}. That is, as n tends to infinity, Xn , Yn and 

Nn converge in probability to p , y  (1 -  X) and y -, respectively.

(iv) A strong law of large numbers holds for each of the sequences [Xt : t = 1, 2, 3, ...} , 

[Yt : t = 1, 2, 3, ...} and {Nt : t = 1,2, 3, ...}. That is, as n tends to infinity, Xn , Yn and 

N n converge almost surely to p , y  (1 -  A,) and -£■, respectively.

The proof of this theorem is given in Section 2.2. Parts (i) and (ii) are proved in 

Subsection 2.2.1, part (iii) is proved in Subsection 2.2.2 and part (iv) is proved in 

Subsection 2.2.3. Since almost sure convergence implies convergence in probability then 

part (iii) follows immediately from part (iv). However, a separate proof of part (iii) is 

given to show that this result is a simple consequence of Chebychev’s inequality. Part 

(iv) is established using a result from the limit theory of martingales. This mirrors the 

situation for a sequence of independent and identically distributed random variables in 

that the weak law of large numbers follows from Chebychev’s inequality while the strong 

law requires a far more complex argument.

Theorem 2.3 If 3't is the c-field generated by {N0, X 0, A 1? Xj, ..., N t , X t } then, for 

the model described in equation (1.4.2), we have the following central limit theorems.

(i)
n

j = 1
X e(W -i)

converges in distribution to a normal random variable with mean zero and variance

H O -^  + A,2).

(ii)
n

J =1
-X£(W-i)
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converges in distribution to a normal random variable with mean zero and variance

jli(1 -  X)(2 -  X ) .

(iii)
n

_t=1
£ e ( W . i)

converges in distribution to a normal random variable with mean zero and variance jlx .

The proof of this theorem is given in Section 2.3. Parts (i), (ii) and (iii) are proved in 

Subsections 2.3.1, 2.3.2 and 2.3.3, respectively.

2.1 Moments of Xt. Yt and Nt

In this section we derive formulae for the means, variances and covariances of X t , Yt 

and N t . We will also discuss the asymptotic behaviour of these quantities as t tends to

infinity. In particular, we note that for these three variables, the limit of the expectation 

is equal to the limit of the variance.

In Subsection 2.1.1 we derive a recurrence relation for the probability generating 

function of {Yt : t = 0,1,2, ...}from which we obtain our formulae. This recurrence

relation will be used again in Chapter Three where we investigate the existence of a 

limiting distribution for [Yt \ t -  0 ,1 ,2 ,...} . Means, variances and covariances are

derived in Subsections 2.1.2, 2.1.3 and 2.1.4, respectively.

2.1.1 The Probability Generating Function of Yt

Let Yt(z) denote the probability generating function of Yt . That is,

Y,(z) = e (z y>).
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In order to evaluate this expectation we begin with the conditional expectation 

E[zYt I Fr_ j), which is equal to

£„,(£(/'I y,_i,;v,-i)).

In the Greenwood model Yt is binomially distributed with parameters Nt and 1 -  X . 

Thus,

£ ( / '  I Y,_i = y , - i ) = E Nl( a  + a  -  ^ )z )N' )

oo

= I
nt=yt-i

q  + (l -X)z)n‘ e-VyJ1*-*-'
{nt - y t_x)\

oo

= e^(X + (l-X)z)>'- 1 X (X + (1 -

{nt - y t- 1>!

= e-H(l->.)(l-z)[^ + (1_ ^ ) z].v,_i

Taking expectations,

Y,(z) = e ^ <|- M(|- z)K,_1 (X + (1 -  X)z). (2.1.11)

2.1.2 Expectations

Differentiating both sides of equation (2.1.11) gives

Y,'(z) = (1 -  X)e“^a “Xxl“ZJ[nF,_1(X + (1 -  X)z)+ F/„, (X +(1 -  *.)z)]

Putting z -  1 we have
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£ ( F , )  =  ( 1 - > 0 ( | 1 +

This implies

E(Y, ) = |l[(l -  X) + (1 -  X )2] + (1 -  E{Y,_2).

Continuing this procedure we obtain

E(Y,) = |i[(l -  X) + (1 -  \ ) 2 +...+(1 -  X)' ] + (1 -  r0) .

Since we assume N0 and X0 are known constants then

E(Yt ) = £(1 -  >0[l -(1  - X / ]  + 0  - X ) l-  X0) .

Note that

lim £(y,) = ^ ( l - X . ) .
t—> oo

The expectation of Nt can now be calculated using

N, = Y,_, + M ,,

where Mt is the number of susceptible migrants arriving during the time interval 

(t -  1, t]. Since Mt is a Poisson random variable with parameter ji then

E(Nt) = [i + E(Yt. l )

We observe that



36

lim E(Nt) = £ .
t->  oo A'

The limiting expectation of Nt is an increasing function of p and a decreasing function 

of X . Both of these results are clearly intuitive.

Finally,

E(X,) = ENl(E(Xt\N,j)

= E(XN,)

= | a [ l - ( l - X ) ' ]  + X(l-A.)f(Af0 - ^ o ) -

Hence,

lim E(Xt) = [i.
/— > oo

That is, X( is a consistent estimator of the migration rate.

The formulae given in this subsection are expectations conditional on the initial values 

N0 and X0 . However, the results may be stated more generally as follows. For 

0 < r < t,

E {x ,K r)  = IX -  |i(l -  X)r + X(1 -  X ) r ~( N , _ r - X , _ r ) ,  (2.1.1’) 

E(N,\j;_r) = x - x ( l - ^ ) r + d - ^ r‘ ‘ (N>-r -  ) . (2.1.2’)

E(Y,\tr) = f  (1 -  X) -  £  (1 -  ^ ) r+l + (1 -  X)r(N,_r -  X,_r ) , (2.1.3’)

where 3t\ r is the G-field generated by {N0, X0, Xx, ..., Nt_r, Xt_r) .
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2.1.3 Variances

Differentiating equation (2.1.11) a second time gives

y; \ Z) = (i -  X) V tl('-*-)(|- z)[n2y,_l(>. + (i -X)z)+nr/_,(X  + (i -  X)z)]

+ (i -  X) + (i -  X )z )+  r/_'| (A.+ (i -  x>z)].

Putting z — 1 we have

y; \ \ )  = (1 -  X)2 [n2 y,_i (1)+2 ny/_, (i)+ f/_', (i)]

Now

//i \i2Var(Yt ) = F,"(l) + F/(l) -  [F/(l)]

(1 -  X.)2 [n 2 + 2 |iF /_, (1) + F” , 0 )] + (1 -  X)[n + y/_, (1)]

- ( i -  X)2 Li2 + 2|xf;., ( l)+ (r;_, (d ):

= (1 -  X)n + (1 -  X)2 £[F,_,(F,_, -  1)] + (1 -  X)£(F,_,) -  (1 -  X)2[£(F,_,)];

= (1 -  X)n + X(1 -  X)£(F,_,) + (1 -  X)2 Var(F,_i) .

That is,

Vflr(F,) =  |X (1  -  X) + n (l -  X)2 -  |i(l -  X)'+1 + X(1 -  X)' + (1 -  X)2 Var(F,_]).

We now demonstrate that the solution of this recurrence relation is
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Using this formula to obtain Var(Yt_]\30), the right hand side of the recurrence relation 

becomes

|i(l - X )  + ji(l -  A,)2 -  |i(l -  + A.(l -  X)'(N0 -  X0)

+(1 -  X )3 {[l -  (1 -  X ) ' - 1 ] [ f  + (1 -  \ ) ' - 2(N0 -  X0)] |.

This is equal to

(l-xon 1 +  (1 -  X) - ( 1  -  X.)' +  0  ^ )2 ( l  -  (1 -  X ) '“ 1)

+(N0 -  X0 )(1 -  X ) '[ x  + (1 -  X)(l -  (1 -  X )'-1)].

That is,

^ 4 ^ (l -  (! -  X ) ')■+ (1 -  X ) '( l  -  (1 -  X ) ').N0 -  X0),

which is the proposed value of Var(Yt \3o).

We observe that

lim Var(Yt) = $ (  1 -  A) = lim E(Yt ) .
f —> °o  K  OO

The variance of Nt is now readily obtained using

Var(Nt )=Var(Mt +Yt_l ).

Since we assume the migration and infection processes are independent then
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Var(N,l?o ) = n + (1 — X)[l — (1 -  X)'“1 | £  + (1 -  X)'“2 (N0 -  X0)].

Hence,

lim Var(N,) = ^  = lim E(N,).
t —t  oo / —>oo

We now use the formulae for E(Nt ) and Var{Nt ) to derive Var(Xt ).

V«r(X,) = VarNi [E(X,IW,)]+ EN/ [Var(X, IN , )]

=  Var(XN,) + E[X(\-X)N,]

= X2 {|1 + (1 -  X)[l -  (1 -  X ) '- '] [ f  + (1 -  X)'~2(N0 -  X0)]}

+x(i -  x > { f-  ^(1 - x y +  (i -  x y - ] (Nn -  x 0)}

= X2n + (1 -  X)n{(x -  X(1 -  X)'~‘) + (l -  (1 -  X)')}

+{x2(l -  X )'-1 ( l - ( l -  X ) '-1)+  X(1 -  X)'}(/V0 -  X0) 

=n -  n (l -  X)' + X(1 -  X )'-1 (l -  X(1 -  X )'-1 y N 0

Note that

lim Var(Xt) = \L= lim E(Xt) .
/ —> oo > °o

Finally, as in Subsection 2.1.2, the formula given for the variance of Xt , Nt and Yt may 

be stated more generally in the following way. For 0 < r < t,
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Var(x, l £ r )=  n [l -  (1 -  X)r ] + \ ( l  -  X)r- '[ l  -  X(1 -  X)r“1 ](Nt_r -  X,_r), (2.1.4')

Var(N,\s;.r ) = H + (1 -  X)[l -  (1 -  X)1" '  + (1 -  -  X,_r )], (2.1.5')

Var(Y, !?;.,) = (1 -  X)[\ -  (1 -  X)r ][|- + (1 -  X)r~' (N,_r -  X ,_r )], (2.1.6')

where Tt.r is the G-field generated by {N0, X0, X1? Nt_r, Xt_r }.

2.1.4 Covariances

We begin by calculating the covariance of Xt and Yt , that is, we establish equation 

(2.1.7). Since

X, + Y,= N,

then this covariance is necessarily negative.

Cov(Xt,Yt) = E[(Nt -  Xt )Xt]-E[(Nt -  X ,)]£ (* ,)

= XE(N2 ) - E ( X 2) - X (  1 -  X)[E(N, )]2

= XE(N 2) -  Var(X,)~-  -  X)[E(N,)]2.

Since

Var(X,) = ENl [ V a r ( X , \ N , ) ]  + VarN[ IN , )]

= *.(1 -  X)E(N, ) + \ 2E(N? ) -  \ 2[E(N, )]2

then
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Cov(X„ Yt ) = \ ( l  -  X)(£[(JV2)] - [E(N, )]2) -

= X(\-X)(Var(N,)-E(N,))(2.1.12)

=  - X ( l - X ) 2' - 1( W o - X 0 ) .

By the same argument we have, for 0 < r < t,

C ov(x„F ,l£ ,.) = -5l(l -  X)2r- ' ( N ,_ r -  X,_r ).

Also note that

lim Cov(Xr,Y,l?0) = O.
t — > ° o

The formula for the covariance of Xt and Yt can be used to derive the covariance of Xt 

and Xt_r (for 0 < r < t ). Before calculating this covariance we point out that we should 

anticipate a negative value for this quantity. To see this, consider the case when r is 

equal to one. If Xt_x is large then (assuming the number of migrants entering during the

interval (t -  1 ,t] is not extraordinarily large) the number of susceptibles at time t will be 

much smaller than that at time t -  1. Since we are assuming a constant rate of infection, 

X , then the expected number of new infecteds at time t will also be comparatively 

small. Similarly, when is small we expect the value of Xt to be large.

i£r))

= o + cov(ii -  ix(i -  x y  + X(\ -  xy~ ' (N,_r -  x ,_r)

Cov(X„X,_rl?o)= £  , [cov(x„X,_rl?;.r )) +C0v (£ (x ,u ;.r ) £ ( x

= X(1 -  X)r“‘ Cov(N,_r -  X ,.r ,X ,_r )
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= -X2(l -  X)2,~r~2( -  X0) .

We comment that this formula is consistent with our intuitive belief that the correlation 

between Xt and Xt_r is negative for all 0 < r < t .

In Section 2.2 this formula will be used in the alternative form, for j  > i> 1,

Cov(X„ Xj\S0) = - X 2 ( \  - X)‘+j- 2(N0 

In general, for r < k <t,

CoV{xl ,X^r\ri.l) = - X 2( \ - X ) 2̂ - r(Nl^k - X l_k).

To establish this result we apply the argument which gave equation (2.1.12) to 

Cov(xt ,Xt_r\3t[k) .thus we obtain

Cov(x,, X,_ru;_k ) = X2(1 -  XY) -  I?,*.*)) .

The result now follows from equations (2.1.2') and (2.1.5').

We now calculate the covariance of the susceptible counts using a similar technique to 

that used in calculating the covariance of the infected counts. Because of the constant 

infection rate we anticipate that the covariance of Nt and Nt_r will be positive for

0 < r < t .

Cov(N„N,_rl?0) = E ^(c0v(w„W,_rlj;.,)) +C«v(e(jV ,I?/4E(Nt_r\3t'_r))

= 0 +  Cov[t ~TO -  + d  -  A.)r-'(Af,_r -  X,_r ), /V,_r )

= (1 -  A.)r-' Cov{N,_r -  X,_r, W,_r)
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= (1 -  \y- 'E[(N,_r -  X,_r)N,_r ] - (1 -  i f  .

Since

E{(N,_r -  Xt_r)N,_r] = (1 -

= (1 -X){Var(N,_r) + [E(N,.r) f )

then

Cov{N„ N,_r\?0) = (1 -  X)rVar 

which is equal to

(i - x y  {n+a - xi[\ - (i - xy~r- ] ][£+(.- xy - r~2(N0 -  x0)]}-

Alternatively, for j  > i>  1,

Cov(Ni,N) \S0) = (l -  x y - ' j n  + (1 -  X)[l - (1  -  A,)*"1 ][£ + (1 -  X)‘- 2(N0 -  X0)]}

In general, for r < k <t,

Cov(N„Nt_r\z;_k) = ( 1 -  XyVar(N,_r\ft_k) 

and this is equal to

a - x y  {n+a - xi[i - (i - x)k~r~1 ][x+a - e)m (n0 - x0)]|

The assumption of a constant infection rate implies that the covariance of Yt and Yt_r
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is positive for all positive values of r . To see why this is true we again consider the case 

where r is equal to one.

n , = y(_, + m , ,

where Mt is the number of new susceptibles entering during the time interval (t — 1, t ] . 

Suppose Yt_j is large then Nt will also be large. Then, as individuals escape infection at 

a constant rate (equal to 1 -  X ), we expect Yt will be relatively large. Similarly, suppose 

Yt_ , is small then Nt is approximately equal to Mt . Thus, Nt is small so we expect Yt 

to be small.

We now derive a formula for the covariance of Yt and Yt_r .

- r 'C ) )

= a > v (£ a  -  X) - £ a  -  xy+' + (i -  X)r(N,_r -  x ,_r\  -  )

= ( \ - X Y V a r(N , . r - X , _ r)

= (i -  [i - (i -  ^ ) '_ r] [x + a  -  x y - r- \ N 0 -  x 0)].

In Section 2.2 we will use this result in the alternative form, for j  > i> 1, 

cov(Yh y,i?0) = ( i  -  x y - M  (i -  (i -  x y j f r + i  i -  x y - \ N , _ k -  x,_k )) .

In general, for r <k <t ,

Cov(Y„ Y ^ rU0)= E r (CoV(Y„ Yt _rl?(*r )) +Cov(E(Yl\ll\ r),E(Yl

cov(Y„Y,_r\s;.k) = (i -  x y +,( i -  (i -  x f ~r ̂ + (i -  x y - ’- 'iN ,^  -  x,_k >)
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2.2 The Averages of Xt. Nt and Y>

This section is concerned with the moments of Xn , Nn and Yn ; the averages of Xt, Nt 

and Yt over the time points t -  1 ,2 ,3 ,... . Implications for the asymptotic properties of 

these random variables will be investigated.

In Subsection 2.2.1 we give formulae for the expectations of these averages and the 

variance of Xn . The limiting values of Var{Nn) and Var(Yn) are also given. In

Subsection 2.2.2 we show that Chebychev’s inequality is sufficient to establish a weak 

law of large numbers for [Xt : t = 1,2,3, ...} , {N t : t = 1,2,3, ...} and

{Yt : t  = 1 ,2 ,3 ,...} . That is, Xn converges in probability to p , Nn converges in 

probability to y  and Yn converges in probability to In Subsection 2.2.3 we

show each of these results can be extended to a strong law of large numbers. That is, 

Xn converges almost surely to p , Nn converges almost surely to y  and Yn converges

almost surely to —y — .

2.2.1 Expectations and Variances of Xn, Nn and Yn

Using equation (2.1.1) we have

t = l

lim E(Xn) = \ l .

Note that
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That is, the mean of the count of newly infected individuals is a consistent estimator of 

the rate at which new susceptibles enter the population at risk of infection.

_  i (  n ^
Var(X„) = —  £Var(X,) + 2 £C ov(X ,,X ,) .

n \ t = 1 1<s<t<n )

From equation (2.1.8),

J 4 C o V ( X s , X , )  =  - ^ - ^
l<s<t<n  1<s<t<n

Since

5 ^ 0  -  x y +>= ((i -  x y  + (i -  X)4 + (i -  x )5 +. ,.+(i -  >.)"+l)
l<s<t<n

+ ( ( 1 - X ) 5 +  ( 1 - ^ ) 6 +  (1 -  X )7 + . . .+ ( l  -  X )” + 2 )

+ ..  .+((1 -  X ) 2 "-3 +  (1 -  X)2"“2 ) + (1 -  

=  | ( ( 1  -  X )3 +  (1 -  X ) 5  +  (1 -  k ) 7 + . ..+ (1  -  X ) 2" - ‘ )

-  J - ( ( l  -  X ) n + 2  +  (1 -  X )n+3 +  (1 -  a .) " + 4 + . . .+ ( l  -  X ) 2 n )

= (‘~ X)3 - 0 - X )" + (1  — X )2”-1 ')
XZ(2-M V ’

X  cov(xs,x,) = -  x 0)(i -  (i -  x y - '  -  (i -  X)n + (i -  X)2" - 1)
l<s<£<«

then
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= M ( w0- a:0)(i- ( i-^)"-1)(i- ( i-X)").

From equation (2.1.4),

Var(X, ) = H -  (1(1 -  X)‘ + X(N0 -  X0)(l -  X )'"1 -  -  X0)(\ -at-2

X  Var(X,) = n \ i - i^ 2( l -(1  - X ) n)+(N0 -  X0) ( l-(1  -  X0) ( l-(1  - X ) 2")
/  =  1

nil -  (l -  (1 -  \ ) n)•+ (l -(1 -  A,)")(2 -  2X -  X(\-  X)n).

Now

Var(Xn) = - i ^ ( l  - (1  -  X)") + (N0 -  X0)(l -  X)n(l -  (1 -  X)")]

= -L [nji -  (l -  (1 -  Xy' j iNo  -  X0)(l -  X)" +  n  -  £ )

Note that

lim Var(Xn) = 0 .
n— > ° °

For the average susceptible count we have

E(Nn) = - J l E(N,)
n
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We note that as n tends to infinity, E(Nn) converges to y .  We now show that 

Var(Nn) converges to zero as n tends to infinity.

n ^
Var(Nn) = - y  J j Var(N,) + 2 J^Cov(Ns,N,) .

n \ t = 1 1<s<t<n j

Now, from equation (2.1.9),

X Cov(Ns,N ,) < (n + y  + N0 - X0)
l<5<r<n 1<s<t<n

which is equal to

(|I + £  + N0 -  X0J((n -  1)(1 -  X) + (« -2X1 -  X)2+.. .+(1 -  X )"'1).

Therefore,

X Cov(Ns , N , ) < n(n + £  + N0 -  X0) X d  ~ W
l<s<t<n  7=1

= - ^ ( n  + £  + N0 -  X0)(l -  (1 -  X )"-1). (2.2.1)

Thus, as n tends to infinity,

-L X <V v(N „N ,)-*0 .
n 1<s<t<n

Also, from equation (2.1.5),

X  Var(Nt )
t = 1

- X o —> 0 as n —> °° .
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Hence,

Var(Nn) —» 0 .

For the average number of individuals escaping infection over the time points 

t = 1,2,3, n, we have

E(Y„) = ~ Y J E(Yl )
n ,=1

= ̂  ^ X + ("o  - ))(l -(1 - ^)n)

no-*.)

The variance of this average also converges to zero as n tends to infinity. To see this 

we again use

Var(Yn) =
\

Var(Y,) + 2 X C ov(K „y,) •
l<5<f<n y

By equation (2.1.10),

c 0v(y„y,) < (i -  X )(£ + (n 0 -  x 0))(i -  x y ~ s

so, by the argument used to show

-L- ^C ov(JV „W ,)-4  0 ,
n 1<s<t<n

we also have
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- j  J^Cov(Ys,Y,)
n 1<s<t<n

From equation (2.1.6),

j j > r ( y , ) < n ( £  + (Ar0 - X 0 ) ) .
t= 1

Thus,

Var(Yn)->  0.

2.2.2 Weak Laws of Large Numbers

We now show that Xn converges in probability to the migration rate | i . By 

Chebychev’s inequality, for £ > 0,

P ( lX „ - i i l> e ) < - L .£ ( ( X „ - v i ) 2)

= -L (v a r ( f„ )  + (£ (X „ )- |x )2).

Since Var(Xn) and E(Xn)~  |i converge to zero then the result holds.

A weak law of large numbers also holds for {N t : t -  1,2,3, ...}. That is, Nn converges 

in probability to y .  This is clearly true as E(Nn) converges to y  and Var(Nn) 

converges to zero.

Yn = N n - X n

Since
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then Yn converges in probability to

i t _ „  M-(l ->•)
X  ^  X  '

2.2.3 Strong Laws of Large Numbers

In this subsection we use the Martingale Convergence Theorem (see page 242 of Feller 

(1971)) to show that the weak laws of large numbers established in the previous 

subsection can be extended to strong laws of large numbers.

To prove this property for {Xt : t = 1,2,3, ...} we consider {Un : n = 1, 2, 3, ...} , where

U „ = ^ ( X , - E ( X , ) ) .
t = 1

In Un the summand has zero expectation. Furthermore,

E(u2n ) = %- \ Var{X , )  + 2 )  •

t = 1 1 \<s<t<n

From equation (2.1.8),

Cov(Xs,Xt ) < 0

E(^)<Z-^Var(Xt).
t= 1 1

Equation (2.1.4) states that



Var(X, ) = |i[l -  (1 -  a.)'] + X.(l -  ^ ) '_1 [l -  X(1 -  X)'“1 ](

52

which implies

Var(Xt )<[i  + (N0 - X 0).

Hence,

E(U2„ ) < (n  + (N0 -  X0 ) ) £ - -L < 4  (V- + ( ■ -  *0)) •
t=l 1

This implies,

E((Un — Um)  ̂  ̂0 as nt, n —> °° .

By the Martingale Convergence Theorem (see pages 242 and 243 of Feller (1971)), 

{Un : n = 1,2,3, ...} converges almost surely. Therefore, by Kronecker’s lemma (see 

page 239 of Feller (1971)),

1 n
— ̂  (X, -  E(X t )) —> 0 almost surely.
n t = l

The result now follows since

n I
t = l

£ (* ,) -> F •

In order to establish the strong law of large numbers for {Nt : t = 1,2,3, ...} we use 

[U'n : n = 1,2,3, ...} , where
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n

K =  Z t (N, -E(N, ) ) .

e {(U’„ )2) = X 7  Var(N,) + 2 X 7i Cov<-N*’ N <) •

By equation (2.1.5),

V a r ( W , ) < n  +  f -  +  (/V0 - X 0 )

SO

XiVar(iV,) 
/=! '

is a convergent series.

Also, by equation (2.1.9),

X ^ C o v C J V ^ ^  + f  + JVo-Xo)
1<s<t<n \<s<t<n

< (n  + ^  + Af0 - X 0)
fc = l

Hence,

as m, n —> °° .
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Thus,

1 n
— ^  (jWt -  E(Nt )) —» 0 almost surely.
n  t=l

Therefore, the result holds.

Since Xn converges to p. almost surely and Nn converges to y  almost surely then

Yn = N n - X n

converges almost surely to — .

2.3 Central Limit Theorems

We now combine the formulae derived in Section 2.1 with a result from the limit theory 

of martingales to prove Theorem 2.3. That is, we establish central limit theorems for

andXi',.
t = \ /  =  1 t=  1

In particular,

t= 1

and

j ^ V a r ( N , - X , )  = o(n2)
7=1

are key results used in establishing the asymptotic normality of these random variables.
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We begin by re-stating the theorem.

Theorem 2.3 If 3t * is the G-field generated by {N0, X0, N x, X1? N t , X t } then, for 

the model described in equation (1.4.2), we have the following central limit theorems.

(i)
n

J = 1
S e ( x , I ? m )
t=1

converges in distribution to a normal random variable with mean zero and variance

jx(l — A, + A?).

(ii)
n

J = 1

converges in distribution to a normal random variable with mean zero and variance

jii(l -  A,)(2 -  X ) .

(iii)
n

_f=l

converges in distribution to a normal random variable with mean zero and variance ( I .

The proofs of parts (i), (ii) and (iii) are given in Subsections 2.3.1, 2.3.2 and 2.3.3, 

respectively.

2.3.1 Proof of the Asymptotic Normality of Xn

Consider the array {Sni, 3*ni: n -  1, 2, 3, ..., 1 < i < n) , where 3*ni = 3* (the G-field 

generated by {N0, X0, N Y, X x, ..., N h X t}) and
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7=1

This is a martingale array as

~  Sfii- 1 •

Furthermore, since E(sn\ I ^ q) *s zero ^ en 11 ls a zero mean martingale array.

Let {Wni: n = 1, 2,3, 1 < i < n] be the martingale differences. That is, for

n = 1, 2, 3, ...,

K i  =  Snl

= Sni ~ Sw-_i for 2 < i < n .

By Theorem 3.5 of Hall and Heyde (1980) (see page 71), Snn converges in distribution

to a normally distributed random variable with mean zero and variance jll(1 - X  + X ) 

when the following three conditions are satisfied.

(A) e (iV„2 -  (1(1 — A, + X2) )  —> 0 ,

where

vf = tE(wftrnjA).
7=1

max E ( w h f nj_x) ^ 0
1 <  I <  n  '  '

(B) in probability.
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(C) For any 8 > 0 ,

£ 4 ^ K ' > e} ) b o -

where /(.)  is the indicator function.

We now show that each of these conditions is satisfied. Firstly, we show that

£(lV„2 - n ( l - ^ .  + X2)l) -^ 0 .

By definition,

y n = i E ( ^ x J -E<.xj \rj_l))2\rM )
7=1

7=1

= lVL + h S £ H f tiNj_l - X M ).
7=1

Hence,

s2n = e (v 2 )=^  + £  E(Nm
7=1

= ^ + ^ ^ X [ - ^ ( i - ( i - ^ y - ') + ( i - £ y - |(iv0-x 0)]
7=1
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X r  * J + 1=ilT d - ( N o - X o )

—> +  jj. ( 1  — > . ) 2 =  |i ( l  -  X  +  X 2).

So to show condition (A) is satisfied we need to show £ l̂ V2 -  s2fj converges to 

We do this by showing

E [ ( Vn -■sn)2] ^ ° -

Note that

E { { V ? - * n )  = M V«2)

r
— War

n- 1 A
^  + “ 1  (Nj - X j )

J=1

\ 2(1-X)2 Var
n- 1 ^
^ ( N j - X j )

U=1

From equation (2.1.6),

Var(Nj -  X j ) <(1 -  + N - X0) for all

From equation (2.1.10), for j  > i > 1,

zero.

Cov i Ni - Xi ' Nj - Xj
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Hence,

X 2 ( \ - X )2
( x +Afo - (n —1)(1 — A.) + 2(1 —

\<i< j < n - \

Now

X (1  -  A.)'"' < (n -  2)((1 -  X) + (1 -  X)2+...+(l -  X)"-2)
\< i< j < n - \

SO

E[{vn2 -  s2„)2] < x2(' - ^ 3(n-'>(^ + X0)(l + M ( l  -(1  -  ))

- > 0 .

For condition (B) which requires

max e (\V^ \3*j i > 0 in probability,
l <j<n  \  J J /

we observe that

£«■ 1  K j - \ ) =  i  Var(Xj\) = 1 (Ä41 + X.(l -  -  XM )).

Therefore, we need to show

Nr xj ->omax
\ < j < n - \ n in probability.
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For e > 0 ,

(  n- 1

P (Nj-  Xj > nt  for some 1 < j  < n - l) = P ^ ({^ j “  Xi >»£})> «e
\J=i

n- 1
z  ( N j - X j ) l ( { N j - X j > m } )

U=1

n—1
£  E[ ( Nj - Xj

j  = 1
2 2 ne

n—1
^ V a r ( N j - X j )

M ________ +

( E ( N j - X j ) f  
i=]_________

(£ + No - X o) + (£ + N o - X 0)'

- > 0 .

Finally, we show that, for e > 0 ,

I*KMRl>e} ))- i (Xj-E(T ;'-l)) /({'̂  -  £(X; iy ;.,) l> e ^ } )
7=1 U  =1 J

- > 0 .

Now

^  (X; -£(X; l^_j))2 
n

\ j =1

\

)
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where

Z j =Xj - E<. X j \ S ' j _  i ) .

We anticipate the result in Section 3.3 that {(X,, Yt ): t = 0,1,2, ...} is an irreducible,

aperiodic, positive recurrent Markov chain and so has a proper limiting distribution. The 

sequences {Xt : t -  0,1,2, ...} and {Yt : t = 0,1,2, ...} both converge in distribution to

Poisson random variables. This implies that, for t = 0,1, 2, ..., all moments of X t and 

Yt are finite. Therefore, for j  = 1, 2,3, ...,

is also finite.

Hence, it follows that

- > 0 .

This completes the proof of part (i) of Theorem 2.3.

Note that since

-------=- ^ 1  in L,
| l ( l - ? l  +  ?L2 )
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then the convergence of

-\j p(l—A,+

to a standard normal random variable is equivalent to the convergence (in distribution) of

to a standard normal random variable. That is, we have an analogous result where the
9 9norming factor, , is a random variable. Furthermore, the randomness in is a 

function of the randomness in the history of the process. Recall that

Hence, the norming factor at time n is representative of the history of the process up to 

time n -  1.

2.3.2 Proof of the Asymptotic Normality of Yn

We prove part (ii) of Theorem 2.3 in exactly the same way we proved part (i). In this 

case we use the zero mean martingale array {S'ni, 3*ni: n = 1, 2, 3, ..., 1 < i < n}, where

n

We denote the martingale differences by {W^\ n = 1,2, 3, ... , 1 < i < n } . To establish 

this result we need to show the following conditions are satisfied.
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(A') £(l(V„')2 - n ( l -A .) ( 2 - >01)^0 ,

where

(v;)2 = X 4 ^ )2|̂ -i)-
7=i

(BO max 
1 <j<n

E{(w'j)2\rnj.,) - > 0 in probability.

(CO For any e > 0 ,

Xz-((W„')2/({lVK'l> e } ) ) ^ ° .
7=1

Condition (A')

7=1

= M.d -? l) + AazM^(jv._1- X._1). 
7=1

Therefore,

(s' )2 = e ((V')2) = n( \ -X)+ ̂  X E(NM  -  x M )
7=1

\K 1 -M
n 1" * J
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—» |i(l -  A,)(2 -  X).

The argument used to show Zs(l Vn2 -  s2l) converges to zero can also be used to show 

e (\(V„)2 ~(s'n)21) converges to zero. Therefore, condition (A') is satisfied.

Condition (B ')

E( ( W’j i V a r f o l f a ) = 1((1 -  X)H + M l -  I M j - i  ~ ))

and we have already shown (when proving condition (B) holds) that

N j - X j
max —— -— » 0 in probability.

1< j < n - \  n

Condition (C')

t  '(l1 %[> e}))= zt E[(ẑ 2 ê "})]'
7=1 "  7=1

where

z ’j  =  Yj-E(Yj \

As in Subsection 2.3.1, we anticipate from Section 3.3 that {Yt : t  = 0 ,1 ,2 ,...}

converges in distribution to a Poisson random variable. This implies that, for 

t = 0,1, 2, .. . ,  all moments of Yt are finite. Therefore, for j  -  1, 2,3, ...,
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is also finite.

Thus, the following inequality completes the proof.

(z'i)2

j=> En^Jn 1 'z ' f
Lj = i

^ 0 .

2.3.3 Proof of the Asymptotic Normality of Nn

In this case we use the zero mean martingale array {SJ ,̂ 3f*t : n = 1, 2,3, ..., 1 < i < n) , 

where

7=1

We denote the martingale differences by {W^ : n = 1,2, 3, ... , 1 < i < n } . To prove part 

(iii) of Theorem 2.3 we need to show the following conditions are satisfied.

(A") E(l (V ')2-  |ll) —» 0 ,

where

(V ')2 = J j E((W")2\33.]).
7 =  1

(B") max e ((W")2 \$nj- \) —> 0 in probability.
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(C") For any 8 > 0 ,

XE((W „p2/({ lW "l> e}))^0 .
7=1

Condition (A")

( K f  = } £  Var(Nj
7=1

7=1

Therefore,

(s")2 = E ( ( V ' ? ) = \ L .

Condition (B")

)=i M np u  H  - » °  •

Condition (C")

£  4  W ”)1 /({l W’’\ > e })) = -; f e [(z ’ j) 2 /({l z)1 > eV^})], 
7=1 7=1

where

Z/' = ^  -E{Nj \ f j_X).

In order to show this condition holds we again use the result from Section 3.3 that
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{(Xf , Yt ) : t  = 0 ,1 ,2 ,...}  has a proper limiting distribution; with [Yt \ t -  0 ,1 ,2 ,...}  and 

[Nt : t -  0,1, 2, ...} both converging (in distribution) to Poisson random variables. This 

implies that, for j  = 1, 2, 3, ,

is finite. It follows that

(zjY

7 =  1
Cnjn

7=1

- * 0 .
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CHAPTER THREE

THE LIMITING BEHAVIOUR OF THE INFECTED 

AND SUSCEPTIBLE COUNTS

3.0 Introduction

This chapter examines the long run behaviour of Xt , N t and Yt (the number of 

individuals escaping infection at time t ). We show that of these three random variables 

only Yt forms a univariate Markov chain. A bivariate Markov chain is formed by any of 

the pairs (Xt , Yt ) , (Nt , X t ) or (Nt , Yt ). Our attention will be focussed on determining 

the limiting distributions of (T,: t = 0,1,2, ...] and {(Xt, Yt): t = 0 ,1,2, .

In Section 3.1 we derive the joint probability generating function for the pairs (X t , Yt ) , 

(Nt , X t ) and (Nt , Yt ) conditional on . These functions are then used in Section 3.2 

and 3.3 to determine the limiting behaviour of {Yt : t  = 0 ,1 ,2 ,...}  and 

{(Xt , Y t ) : t  = 0 ,1 ,2 ,...} . In Section 3.2 we consider the Markov chain 

{Yt : t = 0,1, 2, ...} and show that it can be regarded as the convolution of a branching

process and a Poisson process. We use this description to determine its limiting 

behaviour. In fact, using the theory of Heathcote (1966) we show the existence of a 

proper limiting distribution for [Yt : t = 0,1,2, ...} is guaranteed. In Section 3.3 we use

the limiting distribution of [Yt : t -  0,1,2, ...} to show {(Xr, Yt ): t -  0,1,2, ...} also has

a proper limiting distribution. In Section 3.4 we give a discussion of results from the 

estimation theory of branching processes that are pertinent to {Yt : t = 0,1, 2, ...} .

These results are then used to derive estimators for the infection rate X and the 

migration rate ( I .
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We conclude this introduction with a summary of the main results presented in this 

chapter.

Theorem 3.1

The probability generating function Yt(z) = E^zY‘ j for the process {Yt : t = 0,1, 2, ...} 

is equal to

- £ ( 1 - \ ) [ 1 - ( 1 - M '] ( 1  -Z )
e a.

Consequently, {Tf : ? = 0,1, 2, ...} converges in distribution to T^, where Ŷ  is a 

Poisson random variable with parameter

M>(1 -  A.)
A.

From this theorem we deduce that

P(Yt =0\?0)= Y t (0) = e
- £ ( 1 - X ) [ 1 - ( 1 - X ) ' ]

[ l - ( l - j L ) ') y° .

The event Yt = 0 occurs when there are no susceptibles left to be infected. In this case,

the epidemic will only be perpetuated if there is subsequent migration of individuals into 

the susceptible population.

Theorem 3.2

The bivariate Markov chain {(X,, Yt ): t -  0,1,2, ...} has a proper limiting distribution 

(X^,  7 ^ ), whose probability generating function is given by

^ - -^ (1 -Ä .Z l  — Z 'i +X^2 )
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Theorem 3.3

We consider the estimators X  and |i of X  and (I defined by

T f  T T \

Ob -  Yt)I  Y , _ , + T  X Y,Y,-i - X Y,2- 1
*,= r=l Vf=l /=i y

/ 7, \ 2  T

1 ^ - 1  -  T ' i
Vf=l y f=l

77 _ >=1 f=l t=1 r=l

/=1 /=! r=l

The fact that the value of X  lies strictly between zero and one implies that both 

estimators are strongly consistent and their joint distribution is asymptotically normal. 

Another pair of strongly consistent estimators whose joint distribution is asymptotically 

normal is

^  __________ t —1_________ /=J___________

i ^ - . + D X i r i T T - 7’2
t= 1 t=1

T T T T

X ^ X i ^ r - X ^ X ^ T
7T   / = ! f=l_________f = 1 f = l_______\X, — j  j  j

r=l /=! f=l

These estimators have the advantage that their asymptotic properties do not depend on 

prior knowledge of the true value of X . Therefore, they are applicable to a much 

broader class of practical problems.

Theorems 3.1, 3.2 and 3.3 are proved in Sections 3.2, 3.3 and 3.4, respectively.
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3.1 Probability Generating Functions Associated with the Greenwood Model

We begin by noting that the joint probability density function of Nt and Yt , given 3t\ x, is

of a form which enables a very straightforward calculation of the corresponding 

probability generating function. The conditional density

P(N, =n, ,Yt = y , \N,^ Y,_i = y , - 0

is zero unless 0 < yt < n t and yt_x < nt . Within this range, its value is given by

fnt N

<yu
p(t)n‘- y‘ ( \ - P(t))y‘

e - ^ n t ~ y t ~  1 

(nt - y t_x)\

This expression is obtained from equation (1.4.1) by setting

p (0  = \L

for all t — 1,2,3, ... .

Now specialising to the case of the Greenwood model, with p(t) = X for all t , and 

assuming a constant migration rate |x(t) = | i , the joint conditional density becomes

P(Nl = n l ,Yt = y t \ft.x) = { n,\ n' - y' ( i - X y >  e ^
(nt - y t_x)\

for 0 < y t < n t , y t_x < n t

= 0 otherwise.

Hence,

E[zy  z$  I fr  + (1 -  k)z2 f '  11 \ ]
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oo

I
* t =yt-1

{z { [ \  +  ( \ - \ ) z 2 ] T  \Ln' - y- '  
(nt - y t- i ) \

That is,

oo

" t - y t-i

E [ z " '  z2' I ] = (z, [X + (1 -  X)z2 ]/'-■ e“ ^[l _Xz' (3 ,1)

We now derive the other two probability generating functions (for (Xt , Yt ) and 

(Nt , X t )). The former is used in Section 3.3 to show that {(X r, Yt ): t = 0,1, 2, ...} has a 

proper limiting distribution. We include the probability generating function of (Nt , Xt ) 

for completeness.

e u ^ zI ’ !? ;.,]=  e [z i ’ +r‘ z2I?;.,] = (ziz2)r‘ I ].

Putting z — Z\ and w = ZjZ2 in equation (3.1.1) we obtain

£[zx'w1' =[Xz + ( l - X ) w ] v- '  _

Since

f i l z / V '  !?;.,] = E U ^ z " ' “ * ' I?;.,] = £ [(z,z2)n' z2x- I?,*.,]

then putting u -  Z\Z2 and v = z21 in equation (3.1.1) we have

E [u N' v X‘ \Z;a ] = [ u( \ v +  \ - X ) ] Y‘-' e- W -u + ^ u - \u v ) ' (3.1.2)
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The probability generating functions of the marginal distributions 

obtained from equation (3.1.1).

are also readily

E[zN , \riA ] = z Y' - ' e ~ ^ z). (3.1.3)

E[zr’ 1 ] = IX + (1 -  X)z]r- '  e"^(|- XK' “z). (3.1.4)

E[zx‘ i ] = [i -  x  +  t e f '- 1 . (3.1.5)

3.2 The Markov Chain {Yt : t  = 0, 1, 2, . . . I

From equations (3.1.3), (3.1.4) and (3.1.5) we see that it is possible to calculate the 

probability that Yt takes a particular value given the value of Yt_x. However, this is not

the case for Xt given Xt_\ nor for N t given Nt_ i . That is, of {X t : t = 0 ,1,2, ...} 

{Yt : t = 0,1, 2, ...} and {Nt : t = 0,1, 2, ...} only [Yt : t = 0,1, 2, ...} forms a univariate

Markov chain. Also note that equation (3.1.4) is a re-statement of the recurrence 

relation for the probability generating functions associated with 

[Yt : t = 0,1, 2, ...} originally derived in Section 2.1

We assume T0 is a known constant and show that [Yt : t = 0,1, 2, ...} can be regarded as

the convolution of a Galton-Watson branching process and a Poisson process. Becker 

(1977) first applied branching processes to epidemiology when he used such a model for 

the number of infected individuals in the early stages of an epidemic. This analysis did 

not allow for the possibility of migration into the population at risk of infection.

This interpretation of [Yt : t = 0,1,2, ...} enables us to make use of the Theorem of

Heathcote (1966) which guarantees the existence of a proper limiting distribution for this 

process. The form of this limiting distribution is also given. We point out that 

Heathcote’s result was generalised slightly by Seneta (1969), however, we will not need 

this improved result for our purposes.
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3.2.1 Interpreting IY<_ : t = 0. 1. 2. . . I as a Branching Process with Immigration

We now show that {Yt : t  = 1 ,2 ,3 ,...}  can be formulated as the convolution of a 

branching process and a Poisson process. Let Ut be the number of susceptible

individuals migrating into the population at risk of infection during the time interval 

(f — 1, t] who do not become infected at time t . Let St be the number of individuals

escaping infection at time t who also escaped infection at time t -  1. That is, St is the 

number of individuals in the susceptible population at time t -  1 who escape infection at 

both time t -  1 and time t . For t = 1,2,3, ...,

Yt = S ,+ U , .

We repeat that T0 is assumed to be a known constant.

Each individual escaping infection at time t -  1 either escapes infection at time t , and so 

contributes to St , or becomes infected and does not contribute to St . Thus, we regard 

individuals comprising the count St as offspring of the Yt_x individuals escaping 

infection at time t — 1. That is,

s' = 1 aj 
j =1

where Aj is the number of offspring produced by individual j . For this interpretation 

the offspring counts A1? A2, ..., A^_] are independent Bernoulli random variables with

parameter 1 -  X . That is, the offspring counts are independent and identically distributed 

random variables and if A denotes a random variable with their common distribution 

then

P(A = a) = ( l - X ) a V~" for a = 0,1

0 otherwise.
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The probability generating function for the offspring distribution is

A{z) = A, + (l - X ) z .

Since migration counts during disjoint time intervals are independent and infected counts 

at distinct time points are also independent then {Ut : t = 1, 2,3, ...} is a sequence of

independent random variables. Furthermore, the infection process is independent of time 

so [Ut : t = 1,2,3, ...} is a sequence of independent and identically distributed random

variables. Let U be a random variable with their common distribution. We 

subsequently show that U is Poisson with parameter p,(l -  X) .

Thus, [Yt : t = 1, 2, 3, ...} is the sum of two independent processes; the branching process 

{St : t = 1, 2,3, ...} and the process [Ut : t = 1, 2,3, ...} . For the branching process the 

offspring counts at time points t = 1, 2,3, ... are independent and identically distributed. 

This is also true of Ux, U2, U3, ... . That is, {Yt : t = 1, 2, 3, ...} together with the initial 

condition Yq = y0 forms an example of what is known in the literature as a branching 

process with immigration. In this context, {Ut : t  = 1 ,2 ,3 ,...}  is the immigration 

process. The problem of estimating the mean of the offspring distribution and the mean 

of the immigration distribution (whose value in this case is jli(1 — 2c)) has received 

considerable attention. Research in this area will be discussed in Section 3.4. The 

formulation of [Yt : t = 0,1, 2, ...} as a branching process with immigration allows us to

use the work of Heathcote (1966) and give a very simple derivation of the recurrence 

relation for the probability generating function of Yt (originally derived in equation

(2.1.11)).

From page 1 of Heathcote (1966) and the fact that {St : t = 1,2,3, ...}and 

[Ut : t -  1,2,3, ...} are independent we have

Yt(z) = U(z)Yt_i (X + (1 -  X)z) , (3.2.1)

where U(z) is the probability generating function for the random variable U .
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For t  — 1 ,2 ,3 ,... ,  let M t be the number of susceptible migrants entering the population 

at risk of infection during the time interval — then Afj, M2, M3, ... , are 

independent and identically distributed Poisson random variables with parameter p . For

k  =  0 , 1, 2 ,

P (U = k )=  ^  P(M = m)P(U = k \ M = tn), (3.2.2)
m—0

where M is Poisson with parameter p . Since the second term in this summation is zero 

for m strictly less than k then

P (U = k) = I
m- k m !

k  ̂m- k

I
—U ,, m

— ( l - X ) kXm~k 
k\{m — k)\

k \

That is, U is Poisson with parameter p(l -  A,).

Therefore,

C/(Z) =

Substituting this value of U(z) into equation (3.2.1) we obtain

Y,(z) = c -M-Cl-XXl-z)Fr_i (X + (i _  ^ )z) _
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which is equation (2.1.11).

The Theorem of Heathcote (1966) gives the following necessary and sufficient 

conditions for the existence of a proper limiting distribution for a branching process with 

immigration which forms an irreducible aperiodic Markov chain.

(i) The mean of the offspring distribution is strictly less than one.

(ii)

where

X o ' 0 + 1 ) 1 < 0 0 ’

7=0

oo

r, = £ P ( l /  = fc).
7+1

[Yt : t = 0,1, 2, ...} is clearly an irreducible Markov chain on the non-negative integers so

to show it is aperiodic it is sufficient to show that state zero is aperiodic. This follow's 

from equation (3.1.4) which states,

oo

X zJP(Y,; = j\Y,_i = 0) = e-t*(1-W i-* ) . 
j= 0

Whence,

P(Y, = 01 = 0) = e~]l(x~X) *  0 .

Condition (i) is clearly satisfied as the mean of the offspring distribution is 1 -  X which, 

in any practical situation, is strictly less than one. For condition (ii) we note that

XoO + ir1 < Y Jrj =E(U) = \ l ( . \ - \ ) .
7=0 7=0
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Hence, [Yt : t -  0,1, 2, ...} has a proper limiting distribution Y^ .

The probability density of Y^ can be found by taking limits of both sides of equation 

(2.1.11). This gives

K»(z) = + (1 - \ ) z ) .

It is readily checked that the probability generating function

-f(l-X )O -z )  
z e K

is a solution of this equation. Thus, by the convergence property of probability 

generating functions,

Y„{z) = e
- f ( l - X ) d - z ) (3.2.3)

Since a probability generating function uniquely defines the associated probability density 

function then we conclude Y^ is Poisson with parameter

H d - A . )
X '

Alternatively, we can use equation (2.1.11) to obtain an expression for Yt(z) and take 

the pointwise limit as t goes to infinity. That is,

Yooiz) = lim Yt (z).
t —> oo

Yt (z) is given by iterating the recurrence relation

where

Yt(z) = U(z)Yt_l (A(z)).

= U(z)U(A(z)Yt_2(A2(z)),
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A2(z) = A(A(z)).

In general, let Ak{z) be the k -fold composition of the function A(z) with itself. That is,

Ak (z) = A(Ak_x (z)) = A(A(Ak_2 (z)))

Then

Now,

Yt(z) = U(z)U(A(z)) x . . . x U i A ^ i z W o i M z ) ) .

A2(z) = A(X + ( l - X ) z )

=  A. +  (1  — A.)[A. +  (1 — X .)z]

=  A. +  (1 — X ) X  +  (1 -  X ) 2 z .

Similarly,

A 3 ( z ) =  A[1 + ( 1  -  A )  +  ( l  -  X ) 2 ] +  ( l  -  A ) 3 z 

= [ 1 - ( 1 - A ) 3] + ( l - A ) 3z .

In general,

At( z )=[ \ -a - xy]+( \ - xyz .

Thus,

Yt(z) = e

= e

= e

-|i(l-X)(l-z)[l+(l-X)+...+(l-X)*  ̂lyjj(Af(z))

(A,(z))y°

[1 - (1 -A ) '+ (1 -A .) 'z ]1'0 .
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In particular,

P(K, =0iy„)=r,(0) = e * [1 -  (1 -  ?L)r]K° . (3.2.4)

This is the probability that all members of the susceptible population at time t become 

infected at time t . We remark that, in the absence of immigration, this would mean that 

the epidemic had come to an end.

Finally, we note that,

—Y-(l—A,)(l —z)
Yooiz) = lim Yt(z) = e x

/ —>°o

which agrees with equation (3.2.3).

3.3 The Limiting Behaviour of the Markov Chain l(X«_,Y«_) : t = 0, 1. 2, . . .)

It is clear that {(Xp Yt): t = 0,1,2, ...} is a Markov chain on the Cartesian product of 

the set of non-negative integers with itself. In Subsection 3.3.1 we show that this 

Markov chain is irreducible, aperiodic and positive recurrent. Therefore, it has a proper 

limiting distribution which we calculate in Subsection 3.3.2. Of course, the

moments of X^ and = X„  + Y^ are readily calculated from the joint probability 

generating function of X^  and Y^. In Subsection 3.3.3 we show that deriving the 

moments in this way gives results which are consistent with those given in Chapter Two.

3.3.1 Properties of {(Xt ,Yt ) : t = 0, 1, 2 , . . .}

Since this chain is irreducible then all states are of the same type. Hence, to show all 

states are aperiodic and positive recurrent it is sufficient to show that any particular state 

has these properties. The state (0, 0) is convenient to work with.
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For t = 1, 2,3,

P(Xt =0,Yt =0\ X0 =0,Y0 =0) = P(Xt =0,Yt = 0 1Y0 = 0).

Since Xt and Yt are non-negative random variables then this is equal to

p(w, =oiy0 = o).

Now

P (Nt = 01 y0 = 0) = P(Fr_! = 01F0 = o)P(M, = o ) ,

where Mt is the number of individuals entering the susceptible population during the 

time interval ( t - \ , t ] .

From equation (3.2.4),

- T - n - o - M 'iP(JV, = 01Y0 = 0) = e x 

Thus, as t tends to infinity

_ü
P(N, = 01 r0 = 0) -> e x ,

which implies that state (0,0) is positive recurrent. Hence, we have shown 

{(Xf, Yt ): t = 0,1, 2, ...} is an irreducible, aperiodic, positive recurrent Markov chain.
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3.3.2 The Limiting Behaviour of {(Xt ,Yt ) : t = 0 , 1, 2 , . . .}

S ince  {(Xt ,Yt ) : t = 0, 1, 2, . . .} is irreducible, aperiodic and positive recurrent then 

(for example, by Theorem III.2.2 of Isaacson and Madsen (1976)) it has a proper limiting 

distribution, (X^, Ŷ ) , which is characterised as the unique solution to

P ( * o o 7 lX j 2) = X p(x ~
■l.‘2=0

*1, X. = h )P(X, = h. Y, = 721 X - l  = h . S - i  = <2)

which also satisfies

X P ( X . = J i J . = j 2) = l •
71 >72 =0

V  y

The first of these conditions implies E[z\ °°z2 °°] is equal to

X  Zlj 'Z2n  X P ^X“  = i , ’y”  = i2>P <X< =;i>5'» = J 2' X/ - 1 = 'l> y(-l =<2)-
71 >72=0 «1>«2 =°

By Fubini’s Theorem, this is equal to

oo ooX P(X„ = ; , X  = /2) X z^ z2j'2P(X( = 7 „ y , = ; 2IX,_, = i1,Y ,.i
*1>*2 =° 71 >72=°

Thus we have

E[zi*~z21'“ ] = X p(x ~ = 'i> y~ = <2){te, + ( ! - X)z2 }‘2 e P(1 ^  Z2+Xz2)
(l,/2=0

OO oo

=  e - M ( l - f e , - Z2+Xz2) £  ^ P ( X ^ = i 1, r TC= l 2 ){Xz1 + ( l - M Z 2 ) i2 

*2 =0*1 =0
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= e - n ( i - k , - * 2 + k 2) £ P(ytio =  i2 ) { x Zi  +(1 - X)z2}‘2
j'2=0

= e - m - h . , - z 2+Xz2) E [XZ{+ ( \ - X ) z2Y~ .

From equation (3.2.3) we obtain

E [Z X „ Z Y„^=  e - \ i ( \ - ^ - z 2+Xz2) £- m r , - l) ( l - \z 1-z2+Xz2)

(l-A^i - z 2 +A.z2)
— e K

Putting Z\ = z2 -  1 giyes

X p ( ^ = i , , n . = / 2) = i .
*1 - *2 =0

Thus the probability distribution with probability generating function

— 7~ ( 1—tel  ~Z2 +^Z2) 
(Zi ,Z2 ) e k (3.3.1)

is the proper limiting distribution of {(Xr, Yt ): t = 0,1, 2, ...}.

3.3.3 The Limiting Behaviour of the Associated Marginal Distributions

We now derive the distributions of X ^  and N ^  = X ^  from the probability 

generating function of the joint distribution of XM and Ŷ . We compare the means and 

variances of these quantities with the limiting values of the means and variances of X t , 

Yt and N t given in Chapter Two. Recall that in Section 2.1 we showed that

lim E[ Xt ]= lim Var[Xt ]= f t .
t—)°O t—>°°

(3.3.2)
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lim E[Y,} = lim Var[Xt } = ^ ( \ - \ ) . (3.3.3)
t —>oo oo A,

and

lim £[A , ] = lim Var[Nt ] = - ^ . (3.3.4)

As a check on the consistency of our calculations we show that these equations are also 

satisfied by the moments of the corresponding limiting distributions.

Putting z2 = 1 in the probability generating function of given in equation

(3.3.1), we obtain

E[ziX~] = e~H1~z,)

so X „  is Poisson with parameter p . That is, the distribution of X „  is exactly the same 

as that of the count of migrants entering the susceptible population during a unit time 

interval. In other words, at equilibrium, the count of new infecteds is ‘balanced’ by 

‘new’ individuals migrating into the susceptible population.

Similarly, for we have

E[z2y-
~Ir0- .̂)0~Z2 )

] = e A

so, as shown in Subsection 3.2.1, is Poisson with parameter Putting

Z\ = Z2 = z in the probability generating function of ( X ^ , ^ )  we have

i  _  - £ 0 - z )E[z ~ ] = e



so is Poisson with parameter y .
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Clearly equations (3.3.2), (3.3.3) and (3.3.4) are satisfied when the limits of the moments 

are replaced with the moments of the corresponding limiting distributions.

Note also that

Var [N00) = Var[X00] + Var[Y„].

Hence, X t and Yt are asymptotically uncorrelated. This is consistent with equation 

(2.1.12) which states that

Cov[Xt ,Yt ]= M\  -  X)(Var[Nt ]~ E[Nt] ) .

Alternatively, the covariance of and can be calculated from their joint probability 

generating function.

d 2
dz\dz2 E[zlx - z 2r- ]  =

a2

dz\dzz2
— 4 ( 1  — A.Z] ~ Z 2  + ^ 2  ) e

= ̂ ( \ - X ) e — (1—Az i —z 2 +Xz2 )

So EI X^Y^]  = -y-(l -  X) and hence the covariance of X ^  and Y^ is zero, as expected.

We remark that since X^ and Ŷ  are uncorrelated then the value of X ^  provides no 

information about the value of Y^ . That is, we can not predict Y^ from X^  .

3.4 Branching Process Estimators for the Infection and Migration Rates

In Section 3.2 we showed that {Yt : t -  0,1, 2, ...} can be formulated as a branching 
process with immigration. Y0 is assumed to be a known constant and, for t = 1,2,3, ...,
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Yt is the sum of the offspring count St and immigrant count Ut For {St : t = 1,2,3, ...} 

the offspring distribution is Bernoulli with parameter 1 -  X and {Ut : t = 1, 2, 3,...} is a 

Poisson process with parameter pi(l — X,). Subsection 3.4.1 deals with the estimation 

theory for these processes and we obtain estimators for the mean of the offspring 

distribution 0 j = 1 -  X and the mean of the immigration process 0 2 = p(l -  X) .

X and jlx are functions of 0 j  and 0 2  which have continuous partial derivatives of all 

orders on R \ (0, 0 ). In Subsection 3.4.2 we use this observation to derive estimators 

for these parameters from the estimators of 0 j  and 0 2 . Results concerning the 

asymptotic behaviour of these estimators are also given.

Of course, these estimators assume we can observe [Yt : t = 0,1, 2, ...} from time t -  0 

to time t - T .  That is, in addition to knowing N0 and X0 we must be able to observe 

the newly infected counts X1? X 2, ..., X T and the susceptible population sizes 

N^, N 2, N T . In contrast, in Chapter Four we give estimators of X and \x based on 

just a realisation of X x, X 2, ..., X T and the initial conditions N0 = n0 and X0 = x 0.

3.4.1 A Least Squares Approach to Branching Processes with Immigration

Work on estimating the means of the offspring and immigration distributions dates back 

to Patankar and Bartlet. Their estimates, derived using a maximum likelihood approach, 

are discussed in Bartlet (1955). For our process {Yt : t -  0,1,2, ...} , the mean of the

offspring distribution is strictly less than one. In this case estimators of both means have 

usually been derived using the so-called conditional least squares approach. Hence, we 

will concentrate on estimators derived using this method.

From Subsection 3.2.1 we have, for t = 1, 2,3, ...,

Yt-1
Yt = S t + U , =  ̂ A j  + U,,  

j = 1
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where A1? A2, ..., ^yt_\ are independent and identically distributed Bernoulli random 

variables with parameter 9 } = 1 -  X and Ut is a Poisson random variable with parameter 

0 2 = | lI ( 1 - A ) .  Hence, if is the a-field generated by

{N0, X 0, N ], X l , . . . , N t_l , X t_l}ihen

E[Yt\z;A] = QlYt_l +Q2. (3.4.1)

Klimko and Nelson (1978) defined the conditional least squares estimators 0! and 0 2 

as the values of 0 j and 0 2 which minimise

T

t = 1

That is,

e, = t=l t=l t=l
(  T \ 2 T

2  I'm
V = i  y r=l

and

0 2 =  —
r=l r=l f = 1

f  TI
V/=l

\ 2 T

1 M

) t = 1

On page 638 these authors show that 0 ] and 0 2 are strongly consistent and

77(57-0,, e2-e 2).
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is asymptotically normal with variance-covariance matrix expressed in terms of the 

infection and migration rates, X  and p , as follows

~\2(| i ‘ ' - \ )  +  2 X  - H 0 - X X 2 - A . )

-H (l-X )(2-X ) [[x(l -  X)(2 -  X) + X]

Venkataraman (1982) uses the analogy between equation (3.4.1) and the first order 

autoregression model for time series to establish the asymptotic normality of

V r ( F - £ ( o , e I - e „ e ; - e 2),

where

t=1

This analogy was first discussed in Heyde and Seneta (1972).

The results of Klimko and Nelson (1978) and Venkataraman (1982) are only applicable 

when the mean of the offspring distribution is strictly less than one. Of course, this is 

sufficient for our purposes because 0 j = 1 -  X  is always strictly less than one. However, 

Wei and Winnicki (1987), (1989) and (1990) were concerned with using conditional 

least squares estimators for the other two cases 0 j > 1.

In Wei and Winnicki (1987) and (1989) it is shown that 0j is strongly consistent when 

0 j > 1 and weakly consistent when 0 j = 1. With the goal of obtaining unified results for 

the asymptotic properties of the estimators of both 0 ] and 0 2 , Wei and Winnicki (1990)

define alternative estimators 0 j and 0 2 . These estimators are derived using weighted 

conditional least squares’, a technique introduced by Nelson (1980).

Multiplying both sides of equation (3.4.1) by the weight
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1

we have

. e 2
V ^ H  V ^ T T

0 j and 0 2 .are defined as the values of 0 ] and 0 2 which minimise

X
t=l

y, e2 l2

yßun  VsT+i.

That is,

T T T

X  Yt X  y,_i +i _ y,_J +i
jFT~   _l=l t=l 1=1
Ö j — ^  j

X^-.+DlnTfr-72
t=1 r=l

and

r  r  t t

iJ i-iIÄ -X uX Är\ _ _/=l r=l r=l f=l
° 2  ~  T T

X^-i+»Xrä-:r2
r=l r=l

They also establish the following asymptotic properties; when 0 j < 1 both estimators are 

strongly consistent, when 0 ] = 1 both estimators are weakly consistent and, for the case

0] > 1, 0j is strongly consistent and it is impossible to have a consistent estimator of

0 2 . Furthermore, the asymptotic distributions of 0j and 0 2 in these three cases are 

given. In particular, they show that, for 0j < 1, the joint distribution of
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and

I ^ - i + n
Lf=l

y2

is asymptotically normal with variance-covariance matrix given by

V -'lV (V '1)7',

where V and W can be expressed in terms of the infection rate X , the migration rate ji 

and the moments of the limiting distribution of [Yt : t -  0,1, 2, ...} as follows.

g ( f o o )

E ^ Y o o i Y o o  + 1)_1

V ^ ( ^ o o ) + l

£[^(1 -  X)Y00 + n (l -  X)] E 'A.(l-A.)yoo+^(l-X)
Y„+l

'x a -x jn .+ g a -x .)' J7
n .+ i lj

(Yeo +1)2

In Section 3.2 we showed that Y^ is Poisson with parameter

a  = li(l-A ,)
X

Therefore,



Y„ + 1

—CL Xe a= y
x=Qx\(x  + \)

1 —  e-a

and

1
(Y^ + iy = x e aa x e -“ ^  a k

q JC!(JC +  1) ' a j ^klk

From page 61 of Hansen (1975)

* ( « > y £ f f r - X - l o g a + j =
a t a t 1

-  - 6? -  l

where % is Euler’s constant, that is,

X = lim
N —>°°

Xr'-iogw
LM

Hence,

V =

a . a
Va+l "y ]-e~a

a-l+e_a l-e~a
aVöT+T "V a

and

W =

|a ( l-X )(2 -X ) 2 - x - - ^ - + (X
r r

2 - X - ^  + ^
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Finally, we show this particular V has a non-zero determinant, so its inverse exists.

det V =
« ( I - « -“ ) 0 -« ■ “ )]

a  + 1 (̂oc + l)(l-<Ta ) 

( \ - e ~ a - a e ~ a )
= ; 1 * o .

y a (a  + l)(l -<Ta )

3.4.2 Formulae and Properties for these Estimators

We now derive estimators (X,,|i) from (§7,02) and f o f t j  from Since

A, = l - 0

and

0 2
| 1  =  —  

01

then, using the formulae for 0 j and 0 2 , we have

T f  T T \

(ib -  iv )X  y,~i + t  x  y,r,-t -  X, I',2-.
x = t = 1 V=i /=i y

y T \

Xs-.
V(=l J

- t Y y,2^  t - \  

t= 1

and

X^X^i-X^-iX*'-
(=1 r=i t=i

T T T
t ^ Y ^ Y ^ - T ^ Y ^ Y ,
t = 1 ( = 1  ( = 1
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Similarly, using the formulae for 0 x and 0 2 , we derive

(y0 - F T + r ) £ ^  + r £ ^ - r 2
^  ______________ t_^\_________ _____________

£w-i + l ) t
t = 1 t = 1

and

T T T T

rr _  r=1 r=l________r=l r=l______
P 7 j  j

r=l r=l t = \

We remark that since 0 x and 0 2 are strongly consistent then X, and jl are also strongly 

consistent. Similarly, X and jl are strongly consistent.

The asymptotic distributions of these estimators can be derived from the Taylor series 

expansions of the functions gx: R2 —» R and g2 - R \ {0} x R > R defined by

g1(01,02) = l - 0 1

and

g2( 0 „ e 2) = ^2..
U1

■JT ~ x - x =  4 f
J f - P

^i(e7,e2) - g i ( 0 i , 0 2)

f t M 2) - * 2(0 f 0 2)

Now
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= VT

d g  l /  
> 1

^ i /
/ d e  2 "e, - e , '

* 2 // a 0 ,
d g 2/  

/ d e  2
®2 ~ ® 2

+•
4 f

~ d 2 g, 3 2«, 3 2a " ( e T - e , ) 2

30? Ö0 ]0 0 2 ae?
( 9 7 - e , ) ( e 7 - 9 2)

3 2g2 3 2g 2 a 2g 2
_ 36? 00 j00 2 30 2 . ^ - 0 2)2

+. ,

__ 2 __ __  _ __  2
If we assume Vt ( 0 7 - 0 j) , V r(f f |'-0 i)(0 2  - 0 2 )  and Vt (0 ^ - 0 2) converge to

zero in probability then, by Slutzky’s Theorem, the asymptotic distribution of 

is the same as that of

" - 1  0  " ' e . - e f " - 1 0 0 1 - 0 1

e 2 J _

o f  8 ,
0 2  _ ^ 2

1- X
i

l - X
0 2  ~ ^ 2

That is, the asymptotic distribution is the bivaiate normal distribution with mean zero and 

variance-covariance matrix given by

"-1 0 - 1 )  + 2 X  - n ( l - X , ) ( 2 - X ) r - i  - J L ]
l - x

1

i
J

- H ( l - X ) ( 2 - X )  i ^ r ^ [ n ( l - X ) ( 2 - X )  +  X] °  a

Similarly, if
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X  o ' ,- i+ i )
t=l

Yl

T T

X ^ - i + d X
t=\ t=l

and

T

all converge to zero in probability then the joint distribution of

t= 1

and

T

iTrhr
t= 1

/2
(jx-M-)

is asymptotically normal with mean zero and variance- covariance matrix

"-1 0

V~1W'(V'_1)T

r - 1  _ _ m_ i
l-X

_M_ _ j_ n i1-X 1-X 0 l-X
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CHAPTER FOUR

USE OF THE DATA AUGMENTATION METHODS TO ESTIMATE 

INFECTION AND MIGRATION RATES

4.0 Introduction

In this chapter we consider the use of data augmentation methods to locate the mode of 

the likelihood

L(X,\l \N0, X0, X1, . . . , X t ).

We are concerned with the situation where the susceptible counts A1?N2, . . . ,N T are 

unobservable. The calculation of the likelihood is difficult since it involves summing the 

expression for the augmented likelihood

L ^ p lA ^ X o ,* ! ,  N u N2,

(given in equation (1.4.2)) over all possible values of the latent variables.

The data augmentation methods alleviate this difficulty by imputing for the latent 

variables so that the augmented likelihood can be used for making inference about the 

infection rate X and the migration rate p,.

We give a general discussion of the EM algorithm, the data augmentation algorithm, 

chained data augmentation and the Gibbs sampler. These algorithms are discussed in 

Sections 4.1, 4.2.2, 4.2.3 and 4.2.4, respectively. When discussing each of these 

methods we will consider whether or not it is applicable to our particular problem. That
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is, we decide whether each of these algorithms can be applied to the likelihood function 

specified in equation (1.4.2).

In Section 4.4 we give estimates of X and ( I . The data on which these estimates are 

based are monthly counts of diagnosed AIDS cases in Australia from January 1985 to 

December 1994 (see Appendix A). We emphasise that the use of AIDS data is for 

illustrative purposes only. In Section 1.1 we stated that chain binomial models are 

suitable for diseases where the incubation and latent periods are of low variability and the 

infectious period is short. Clearly, these assumptions do not apply to the AIDS 

epidemic.

4.1 The EM Algorithm

In essence, the EM algorithm imputes for the latent variables by taking the expectation of 

the augmented likelihood with respect to the joint conditional distribution of the latent 

variables given the data.

The EM algorithm requires two steps at each iteration; the E-step (E standing for 

expectation) and the M-step (M standing for maximisation). In discussing this algorithm

we will use ?i(,) and p (,) to denote the current estimates of X and j l i  at the end of the 

i -th iteration.

In the E-step of the (i +1) -th iteration we calculate the expectation of

\ogL(X,[L,N],N2, . . . ,Nt \N0,X0, X], . . . ,Xt ).

That is, we take the expectation of the log-likelihood of the unknowns, 

X, p,, N ], N2, with respect to the joint conditional distribution of N l , N 2, . . . ,NT

given the data N0, X0, Xj, ..., X T.

In the M-step of the (i +1) -th iteration we maximise the expectation calculated in the E- 

step with respect to X and | i . The maximising values become the updated estimates 

and so are used in the E-step of the next iteration.
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The EM algorithm increases the value of the likelihood

L ( V R l i V 0, X 0, X „

at each iteration. That is,

z . a . ( i+l>y i + l ) i / v 0, x 0, x , ,  ...,x t ) > loS

Thus the EM algorithm converges to a local maximum of the likelihood function. For 

the algorithm to converge to the mode of the likelihood the initial values, A,(0) and p (()), 

must be sufficiently close to the mode. Otherwise, there is the possibility of convergence 

to some other point of local maxima.

Note that since

N, = N,_,- X,+ M,

then calculating the expectation of the log-likelihood with respect to (N{, N2, . . . ,NT)

will be problematic. The data augmentation algorithms, discussed in the next section, do 

not require the calculation of this expectation. Thus, we look at these algorithms as 

possible methods of estimating A and ( I .

4.2 The Data Augmentation Algorithms

In contrast to the EM algorithm, the methods discussed in this section are not aimed at 

approximating the mode of the likelihood but at approximating the shape of the entire 

function. These techniques were developed in the Bayesian context. If we have flat 

priors for our parameters A and |i then the likelihood is proportional to the conditional 

probability density

P(Q\N0, X0, X ], . . . , X t ),
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where 0 = (A, p ) . This density is approximated by these data augmentation algorithms.

In this section we discuss the data augmentation algorithm , chained data augmentation, 

and the Gibbs sampler. Chained data augmentation is just a slight modification of the 

data augmentation algorithm and the Gibbs sampler extends chained data augmentation 

from the univariate to the multivariate case.

Our data consists of the newly infected counts, X x, X 2, . . . , X T , together with the initial 

conditions N0 and X0 . So we will use X (slightly ambiguously) to denote the vector 

(Â 0,X 0,X 1? . . . , X T) and N to denote the vector of latent variables, (N]t N2, . . . , NT).

Throughout this section we closely follow Tanner (1993). Subsections 4.2.1, 4.2.2, 

4.2.3 and 4.2.4 are based on Sections 3.3, 5.1, 6.1.1 and 6.1.2 of this text, respectively. 

We begin our discussion with a statement of the method of Monte Carlo which is central 

to the theory of the techniques discussed in this section.

4.2.1 Monte Carlo Methods

Suppose x and y0 are vectors, g is a probability density function and /  is an arbitrary 

function. Consider the integral

*/(yo) = J / ( y o lx)s(x) x̂ = Eg[ / ( y 0lx )].

Assuming this expectation is finite, this integral can be approximated using the following 

steps.

Step 1 - generate an independent and identically distributed sample, Xj,x2, . . . ,x m , 

from g .

m
Step 2 - approximate 7(y0) by ^ X - ^ o lxj)-
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If, for j  = 1, 2, 3, we define the random variable Yj by

Y j = f (  y 0 !Xj)

then the Yj form a sequence of independent and identically distributed random variables 

with finite mean J{y0). Therefore, by the Law of Large Numbers, as m tends to 

infinity,

X  /(y 0 1 x j ) ->■%<>) almost surely.
7 =  1

This technique of estimation is known as the method of Monte Carlo.

In the special case that y h-> / ( ylx) is a probability density function for all x ,

J(y) = J/(yix)g(x)rfx

is a probability density function. We may obtain an independent and identically 

distributed sample of size m from this density as follows.

Step 1 - generate an independent and identically distributed sample, x 1?x 2, . . . ,x m , 

from g .

Step 2 - for each j  = 1,2,3, ..., m, generate yj from the probability density

/ ( y ix j) .

The pairs ( x ^ y j ) ,  (x2,y 2), (x3,y 3), •••, (xm, ym) form an independent and 

identically distributed sample from the joint density. Hence, {yi,y2»y3> •••»ym} ls an 

independent and identically distributed sample from the marginal distribution J . This 

technique is known as the method of composition.
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4.2.2 The Data Augmentation Algorithm

This method is based on the following two identities

P(0IX) = J P(0IX,N)P(NIX)(/N (4.2.1)

and

P(NI X) = j  P(NI <t>, X)P(<|>I X)d$ ■ (4.2.2)

Equation (4.2.1) is known as the posterior identity and equation (4.2.2) is known as the 

predictive identity. If we substitute equation (4.2.2) into equation (4.2.1) we have

P( 0 I X) =f  f P(0I X, N)P(NI (j), X)P(<t>l X)d$dN  .
J N  •'<{>

Interchanging the order of integration gives

P( 0 I X) =f  f P(0I X, N)P(NI 4)» X) J N . P(<|>l X)dty . 
J(j> JN

That is, the density P(0IX) is a solution of the integral equation

g(0) = jx(0,<|>)g(<t>)d(|>, (4.2.3)

where

K(0, <|>) = J P(0I X, N)P(NI X)rfN .
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Thus, the solution of the integral equation (4.2.3) is the (unique) limiting distribution of 

the Markov chain with transition function K(Q, <J>). The existence of this limiting 

distribution is guaranteed under the following regularity conditions.

(i) / f (0, (j)) is uniformly bounded.

(ii) The mapping (j) i-> AT(0, <}>) is equicontinuous in 0 . That is, given £ > 0 there exists 

8 j (£, (j)0) > 0 such that

||* -4 b ||< 5 i implies |AT(0,<>) — AT(0,<t>0)| <£ -

(iii) For any 0O, there exists 8 2(0o)>O such that ||0 — 0Ofl < S2 and 

jjcj) -  0o|| < 8 2 together imply

/^ (0 ,<>) > 0 .

In order to generate a realisation, {go(0), £i(0), £2(8)» this Markov chain we

sic

proceed iteratively. Given 0 from g,-(0), construct gi+j(0 ) as follows. First, sample 

from P(NIX) by applying the method of composition to the predictive identity. That is, 

generate ^  from P(NI0 ,X) .  Repeat this a further m -  1 times to obtain

N j,  N 2 , N ; , . . . ,  N ;  from P (N I0*,X ).

Now, following Tanner and Wong (1987), we apply the method of Monte Carlo to the 

posterior identity to obtain

m

?i+i(e) = i r X p(e ix ,N -).
;= i
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At each iterate of this procedure we generate a value 0* from the current approximation 

to the density P(0IX). We obtain a geometric approximation to this density by

smoothing a frequency histogram of these 0* s.

Note that for this algorithm we need to calculate the joint conditional density of

N = (AT„ N2, N3, Nj )

given X, X and p .

Since

AJt = Nt-i -  * t-1 + M t

then calculating this joint conditional density is difficult. Hence, this method is not 

applicable to our problem.

4.2.3 Chained Data Augmentation

The Gibbs sampler is a multivariate version of a special case of the data augmentation 

algorithm known as chained data augmentation. We discuss this algorithm as a way of 

introducing the Gibbs sampler.

In each iteration of the data augmentation algorithm we apply the method of composition 

to the predictive identity ( m times) to generate m latent data patterns and then apply 

the method of Monte Carlo to the posterior identity. The chained data augmentation 

algorithm is the special case where m = 1.

In chained data augmentation the 0* s which provide the approximation to the density
$

P(0IX) are generated as follows. Let 0j be the value generated from the current

$

estimate of P(0IX). We generate one latent data pattern A) from



P (N I0 j,X ).
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Now rather than apply the method of Monte Carlo to the posterior identity, as we did in 

Subsection 4.2.2, we sample directly from the updated estimate of P(0IX) by applying

the method of composition to the posterior identity. That is, we generate 0*+1 from the 

distribution

p(0ix ,n J).

We note that chained data augmentation also requires knowledge of the joint conditional 

density P(N I0,X ). However, the Gibbs sampler, discussed in the next subsection, 

imputes the latent variables sequentially. That is, imputation is carried out using the 

densities

P(N ,I0,X ,N  \ {Nj}),

where i = 1,2,3, T . In Section 4.3 it is shown that we can readily sample from each 

of these distributions. Thus, we have chosen to use the Gibbs sampler to estimate X and 

P -

4.2.4 The Gibbs Sampler

As mentioned in Subsection 4.2.3, the Gibbs sampler is a multivariate extension of 

chained data augmentation. In chained data augmentation the latent data is considered as 

a single vector N. That is, at each iterate, the latent variables are generated 

simultaneously. However, the Gibbs sampler generates each of the latent variables 

separately in a sequential manner.

Let \|f = OlH»Y2»V3» be a vector consisting of the latent variables N and the

parameters X and p . At the end of the i -th iterate of the Gibbs sampler we have 

estimates,
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vSi), v <2i).V 3)’ - . V d 0

In the (/ + l)-th iterate of the Gibbs sampler these estimates are updated using the 

procedure outlined below.

(1) Generate \|/^1+1) from Pfxj/jIXj/^0 , vi/(3° , xj/̂ 0 , ...,v|/(d° ,X ).

(2) Generate \|/(21+1) from P(\J/2I V / +1)» vS*» • • • » .

Continue till the following step is completed.

(d) Generate V <,i+1) from P(Vdl\j/<i+^ \|/< i+^  V <i+1), . . . .  V ^ . X )

The vectors ....v i/^ ) are a realisation of the Markov chain with

transition function

AT(V,t(r') = P(v;iV2.V3.V4. .... Vd,X)P(vil v 4, ...,t|/d,X)

x...xP(yJI\|r;,vJ,^,...,v,d.1,X).

Geman and Geman (1984) give conditions such that 1̂1 converges in distribution to

\j/j for all j .

4.3 Probability Densities of the Latent Variables

In Subsection 4.3.1 we prove the following theorem which provides us with the 

probability density functions needed to implement the Gibbs sampler.
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Theorem 4.3 For the model described in equation (1.4.2):

(i) For t =  1, 2 ,3 , T — 1, the conditional distribution o f Mt = N t - Y t_j given 

X =  . . . , XT) , N t_i and Nt+l is binomial with param eters Kt and where

Kt = N t+]- N t_l + Xt_l + X t .

(ii) For M t = N T -  YT_j , P (MT = r a l X,N \ {A^}) is proportional to

Yj_\ +  m \  ~U I I m

XXr (1 -  X ) Y t - '  +m~XT —  ̂  - ,
) m !

where m = 0,1, 2, . . .  .

From  part (ii) o f this theorem  we see that the conditional distribution o f M T given X and 

N t_ j is not a standard distribution and in order to calculate this distribution explicitly 

we need the value o f the sum

(  Yt_x + m

= 0 V
\ XT( l - X ) YT - ' +m~XT

—  M- m

It can be shown that this sum is equal to

T~' x X r  (1 -  X) Yt~1 ~Xt h (yt _i + 1, Yt _] - X t + \, n ( l  -  X ) ) ,  
V Ä T J

where H  is the confluent hypergeometric function  (see page 8 o f Johnson and Kotz 

(1969)).

How ever, as m entioned above, we have chosen to use the Gibbs sampler. Therefore, we 

will need to be able to generate a value from  this non-standard distribution. In order to
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do this we use the acceptance/rejection algorithm (see, for example, page 34 of Tanner 

(1993)). A detailed discussion of this algorithm is given in Subsection 4.3.2.

4.3.1 Proof of Theorem 4.3

For t = 1, 2,3, ..., T -  1,

Nl+l = N , - X , +  M,+1

= N,_t -  X,_, - X ,  + M ,+  M(+1

That is,

M,  +  Af,+1 =  JV,+) -  /V,_, +  X ,_ , +  X , =

Now, for t = 1, 2, 3, ..., 7 -  1,

P(M/ = m ! X , N \  { ^ } ) =  P(Af/ = m\Mt + Mt+] = Kt )

_ P(Mt = m ,M t + M t+l = Kt )
P (Mt + M t+l= K t )

Since Mt and Mt+] are independent Poisson random variables with parameter |i then 

Mt + M t+i is a Poisson random variable with parameter 2 | i . Hence,

« “ V "  e ^ V i K , ~ m
P ( M , = m , M , + M l+,=K,)=-- ~  X ~ ~ ~ ~ ~T

m ! (a , -  m ) !

and

£ ~ 2 h ( 2\i )k< 
K,\

Hence,
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P(Mt = mIX, N \ {Nt }) =
Kt
m ) ( i )

(ii) P(Mt = mlX,N \ {NT}) = P(MT = mIX,N T_{)

P(Mt = m , X T = x T\ X \ { X T},NT_l ) 
P(Xt = xt \ X \ { X t } ,Nt _1)

which is proportional to

+ m'
\KXt  ( \  -  X ) YT~l +m~ XT

m !

4.3.2 Sampling Mt - The Acceptance/Rejection Algorithm

In this subsection we give a method of generating an observation from the conditional 

probability density of M T given X and N \ { N T). That is, from the non-standard 

probability density function

h(m)
oo ’

I  Mm)
m=0

where

h(m) =
( Yt _ j + m

XX j ( \ - X ) yT - \ * m- x T e ' V  
m !

m = 0,1, 2,

0 otherwise.

The device used is the acceptance/rejection algorithm. From page 34 of Tanner (1993), 

this algorithm can be implemented if we can find a probability density 7(m) and a 

constant M > 0 such that, for m -  0,1, 2 , . . . ,
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h{m) < M /(m ).

Once M  and the density 7(m) have been determined, the algorithm proceeds as follows.

(i) Generate m from l (m ).

(ii) Generate u from the uniform distribution on [0,1].

(iii) If

u <
h(m)

M / ( m )

then accept m as a value from the conditional distribution of M r . Otherwise, return to 

Step (i) and repeat this procedure.

Of course, some work is required to determine the constant M  and density I (m ) . We 

do this by finding a probability density 7 whose mode is equal to mh , the value of m 

which maximises h{m) , and whose slope is not as steep as the slope of h . That is, we 

require

h(m + 1) 7(m + 1) ..
-----------< ------------ for m > mh

h(m) I(m)

and

h(m + 1) > l{m +1) 
h(m) 7(m)

for m < mfl -  \ .

For such a distribution 7,

h(m) < MI{m ) ,
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where

M = h{m> 
I(mh)

We begin by calculating the value of mh .

h{m +1) _  (Yt _i + m + l)ß 
h(m) “  (Yr _x - X T +m + \)(m + \) ’

where

ß = |X(1-^).

Hence,

h(m + 1) ^ 1 
h(m)

is equivalent to

(YT_X +m + l)ß > {Yt_x -  X T + m + l)(m + 1).

That is,

(m + 1)2 + (yr _, -  X T -  ß)(m + 1) -  ßy-r., < 0 .

This inequality is satisfied when

0 < m < — 1 + (Yj_x — X j  — ß) + yj iYj ^  — X j  — ß)^ + 4ßTjn_j j .

Therefore,
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mh = integer part of ! ( - O V _ ,  -  XT -P)  + V(lr-1 -  Xt- -  ß )2 + 4ß lV _,)

The majorising distribution we have chosen for I is the negative binomial with 

parameters S'(a real number) and p {from the interval (0,1)). Our aim is to choose S 

and p such that the above conditions (on mode and slope) are satisfied. For 

m = 0,1,2, ...,

I(m) = * 3 / i  \  /

P (1 - p )

It is readily checked that the mode of I  occurs at the integer part of

( S - I X / T ' - I ) .

Thus, we can make the mode equal to mh by choosing

S = l + ̂ .  
1 - P

(4.3.1)

We now compare the slope of h with that of I .

h(m + 1) _ (T j^  + m + l)ß 
h{m) ~ (YT_\ - X T +m + 1 )(m + 1)

1 +
(Yj_ i — X j  + in +1) m +1

For I we have

7(m +1) 
/ ( m )

S - l  
m +1 (i - p )-
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For m > mh , we require

1 + ^ - 7  K>- p)*m +1

(
1 +

Yp_ j — X j  +  YYl + 1 m +1

Assuming equation (4.3.1) is satisfied, this inequality becomes

(m + 1)(1 — p) + pmh > ß +
XTß

1 — X j -  ■(“ u i  +  1)

For m > m h , the left hand side of this inequality is bounded below by

{mh + 1)(1 -  p) + pmh = m h + \ -  p .

The right hand side is bounded above by

ß + Yj'_ \ — Xj' +  nifj +  1

Hence, p should be chosen such that

mh + 1 -  p > ß +
x Tp

YT- i -  X T + mh + 1

That is,

p < m h + 1 -  ß -
Xr ß

YT-\ -  X T + mh + 1

For m < mh -  1, we require

h(m + 1) > I(m + 1) 
h(m) /(m)
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Again assuming equation (4.3.1) is satisfied, this inequality becomes

ß + Xj.ß
(Yy_j — Ay’ "H TYl +  1)

> (m + 1)(1 — p) + pmh .

The right hand side is bounded above by

mh( \ -  p) + pmh = m h

The left hand side is bounded below by

ß +
*rß

f y ’_ ]  — A y ’ 4" fTlfj

Thus the slope condition is satisfied if

YT-\ — Ay’ + mh h

That is,

0 > m 2h + (yT_, -  Xj- -  ß)mA -  ß>V-i •

This is true because, when calculating mh, we showed it was the integer part of the 

solution of the corresponding equality.

Now we have

h{m) < M I ( m ) ,

where



M = h(mh)
I ( m h )
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and I(m) is the negative binomial distribution with

p = mh+ 1 -  ß *rß
Yj-_\ —  4“  Wlfa 4“  1

S = \ + ~ — mh .
1 - P

However, at present the value of S may not be a strictly positive integer, 

overcome this problem by setting

S' = integer part of (S + 1).

Then

S' = S + a

for some 0 < a  < 1 .

Let I '  be the negative binomial distribution with parameters p and S ' . 

m = 0,1, 2,

I(m) _ a  S + m + \ S + m
------- = p  ------------------ x --------------x .
I ' (m) S + a  + m + \ S + a  + m

Sx -------
S + a

<p~a .

Thus we have

h{m) < p~a l ’(tn).
Kmh)

We can

Then, for
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4.4 Estimation Using the Gibbs Sampler

In Subsection 4.4.1 we show approximations to the probability densities

?(X\N0, X 0, X ], . . . , X t )

and

P(pl Âo,-X̂O’-^l’

obtained by plotting values from 1,000 iterates of the Gibbs sampler. We estimate X  

and p as the modes of these distributions.

The data used was monthly counts of diagnosed AIDS cases in Australia from January 

1985 to December 1994 (see Appendix A). As mentioned in Section 4.0, the use of 

AIDS data is strictly for illustrative purposes. The high variability of the incubation time 

of this disease and the fact that infected individuals usually remain infectious for long 

periods imply that a continuous time model should be used for this epidemic.

4.4.1 Discussion of the Estimates

Smoothed histograms of the values generated from 1,000 iterates of the Gibbs sampler 

(with starting values = 0.1, p (0) = 50 and A^0) = N0 = 540 for t = 1, 2, ..., 120) 

for X  and p are given in Figures 4.1 (page 117) and 4.2 (page 118), respectively.

We observe that the mode for X  is approximately 0.088 and the mode for p is 

approximately 47.6.

The generated values for X  ranged from 0.083 to 0.092. For p , the range was 

[45.7, 49.2]. In both cases the generated values were ‘bunched’ around the mode. For 

X  there were over 500 values within 0.001 of the mode, while for p , there were 470
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values within 0.5 of the mode. Hence, the HPD (highest posterior density) regions for 

both posterior densities will be very narrow.

Sensitivity of the mode with respect to the initial values X{{)) and p (()) was investigated 

using Â (0) = 540 , for t = 1, 2, 120, and the following values for (A5°\ p (0)) .

(0.01,50), (0.02,50), (0.1,45), (0.1,60), (0.01,45), (0.01,60), (0.02,45), (0.2,60). 

We found, with 1,000 iterates of the Gibbs sampler, that the mode of p ranged between 

47.5 and 47.8 while the mode of X was always between 0.087 and 0.089. We then 

looked at the sensitivity with respect to the initial values N \° \ N (2° \  ..., • Several

samples, of size 120, were generated from different Poisson distributions. The 

parameters of these distributions ranged from 500 to 600 . With 7,(()) = 0.1, p (0) = 50 

and the initial values for the Nt generated in this fashion we again obtained estimates of 

X between 0.087 and 0.089. The range for p was [47.2, 47.8].

From equation (3.2.4), the probability of the epidemic coming to an end at time t is

-£(i-X)[l-(l-A.)* 
e A [ l - ( l - ? 0 ' ] n\

where Y0 is the initial number of susceptible individuals. For fixed values of X , p and 

T0 , this expression is bounded above by

-min
e

£(i-Uh)

for all non-negative t . Hence, our estimated values of X and p indicate a very low 

probability of the disease dying out. However, when drawing this conclusion we must 

keep in mind that we are using AIDS data only to illustrate our methods and that this 

epidemic does not satisfy the assumptions of a discrete time model.
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APPENDIX A

Cases of AIDS in Australia by Month of Diagnosis : 1985 -1994

The following data are taken from Volume 11 of the Australian HIV surveillance report 
(see page 24) which is produced by the National Centre in HIV Epidemiology and 
Clinical Research.

Jan Feb M ar A pr M ay Jun Ju l A ug Sep Oct Nov D ec
1985 10 10 7 8 21 10 12 4 15 10 10 10 127
1986 14 15 ! 14 14 19 19 17 24 24 32 26 13 231
1987 29 27 33 20 43 34 28 26 38 30 45 29 382
1988 42 43 1 24 35 34 45 56 50 44 52 59 49 533
1989 62 47 1 41 31 47 55 48 57 56 63 50 53 610
1990 62 46 | 57 50 45 52 59 59 65 69 49 50 663
1991 65 66 I 65 70 60 61 54 66 85 77 67 60 796
1992 55 67 ! 65 61 75 64 71 73 59 63 62 57 772
1993 67 66 I  64 65 48 63 71 78 67 71 61 61 782
1994 69 63 1 74 73 55 67 50 75 85 85 46 45 787



120

BIBLIOGRAPHY

Australian HIV surveillance report. Technical Report Vol. 11 No. 2, National Centre in 
HIV Epidemiology and Clinical Research, Sydney, April 1995.

Bailey, N. T. J. (1957). The Mathematical Theory of Epidemics. Griffin, London.

Bailey, N. T. J. (1975). The Mathematical Theory of Infectious Diseases and its 
Applications. Griffin, London.

Bartlett, M. S. (1955). An Introduction to Stochastic Processes. Cambridge University 
Press, Cambridge.

Becker, N. G. (1977). Estimation for discrete time branching processes with application 
to epidemics. Biometrics, 33, 515-522.

Brown, B. M. (1971). Martingale central limit theorems. Ann. Math. Statist., 42, 59-
66 .

Chung, K. L. (1974). A Course in Probability Theory. 2nd edition. Academic Press, 
New York.

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from 
incomplete data via the EM algorithm (with discussion). Journal o f the Royal Statistical 
Society, Series B, 39, 1-38.

Feller, W. (1971). An Introduction to Probability Theory and its Applications. Vol. 2, 
2nd edition. Wiley, New York.

Gani, J. and Jerwood, D. (1971). Markov chain methods in chain binomial epidemic 
models. Biometrics, 27, 591-603.

Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distribution and the 
Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 6, 721-741.

Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and its Application. 
Academic Press, London.

Hansen, E. R. (1975). A Table of Series and Products. Prentice-Hall Inc., USA.

Heathcote, C. R. (1965). A branching process allowing immigration. Journal o f the 
Royal Statistical Society, Series B, 27, 138-143.

Heathcote, C. R. (1966). Corrections and comments on the paper “A branching process 
allowing immigration”. Journal o f the Royal Statistical Society, Series B, 28, 213-217.

Heyde, C. C. (1970). Extensions of a result of Seneta for the supercritical Galton- 
Watson process. Ann. Math. Statist., 41, 739-742.



121

Heyde, C. C. and Seneta, E. (1971). Analogues of classical limit theorems for the 
supercritical Galton-Watson process with immigration. Math. Biosci., 11, 249-259.

Heyde, C. C. and Seneta, E. (1972). Estimation theory for growth and immigration 
rates in a multiplicative process. Journal o f Applied Probability, 9, 235-258.

Heyde, C. C. and Seneta, E. (1974). Notes on “Estimation theory for growth and 
immigration rates in a multiplicative process”. Journal o f Applied Probability, 11, 572- 
577.

Huggins, R. M. (1993). Asymptotic inference for a class of chain binomial models. 
Austral. J. Statist., 35 (1), 81-87.

Isaacson, D. L. and Madsen, R. W. (1976). Markov chains - Theory and Applications. 
Wiley, New York.

Johnson, N. L. and Kotz, S. (1969). Discrete Distributions. Houghton Mifflin, Boston.

Klimko, L. A. and Nelson, P. I. (1978). On conditional least squares estimation for 
stochastic processes. Ann. Statist., 6, 629-642.

Nelson, P. I. (1980). A note on strong consistency of least squares estimators in 
regression models with martingale difference errors. Ann. Statist., 8, 1057-1064.

Port, S. C. (1994). Theoretical Probability fo r  Applications. Wiley, New York.

Saunders, I. W. (1980a). A model for myxomatosis. Math. Biosci., 48, 1-15.

Saunders, I. W. (1980b). An approximate maximum likelihood estimator for chain 
binomial models. Austral. J. Statist., 22 (3), 307-316.

Seber, G. A. F. (1982). The Estimation o f Animal Abundance : and Related 
Parameters. 2nd edition. Griffin, London.

Seneta, E. (1969). Functional equations and the Galton-Watson process. Adv. in Appl. 
Prob., 1, 1-42.

Sriram, T. N. (1991). On the uniform strong consistency of an estimator of the 
offspring mean in a branching process with immigration. Statistics and Probability 
Letters, 12, 151-155.

Sriram, T. N., Basawa, I. V. and Huggins R. M. (1991). Sequential estimation for 
branching processes with immigration. Ann. Statist., 19, 2232-2243.

Tanner, M. A. (1993). Tools fo r  Statistical Inference - Methods fo r  the Exploration o f 
Posterior Distributions and Likelihood Functions. 2nd edition. Springer-Verlag, New 
York.

Tanner, M. A. and Wong, W. H. (1987). The calculation of posterior distributions by 
data augmentation (with discussion). Journal o f the American Statistical Association, 
82, 528-550.



122

Venkataraman, K. N. (1982). A time series approach to the simple subcritical Galton- 
Watson process with immigration. Adv. in Appl. Prob., 14, 1-20.

Wei, C. Z. and Winnicki, J. (1987). A Unified Estimation Theory for the Branching 
Process with Immigration. Technical Report, Univ. Maryland.

Wei, C. Z. and Winnicki, J. (1989). Some asymptotic results for the branching process 
with migration.. Stochastic Processes and Their Applications, 31, 261-282.

Wei, C. Z. and Winnicki, J. (1990). Estimation of the means in the branching process 
with immigration. Ann. Statist., 18, 1757-1773.

Yip, P. (1991). A martingale estimating equation for a capture-recapture experiment in 
discrete time. Biometrics, 47, 1081-1088


